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Preface

What Is This Document?

This Best Practices Guide is a manual to help developers obtain the best performance from
NVIDIA® CUDA® GPUs. It presents established parallelization and optimization techniques
and explains coding metaphors and idioms that can greatly simplify programming for CUDA-
capable GPU architectures.

While the contents can be used as a reference manual, you should be aware that some
topics are revisited in different contexts as various programming and configuration topics are
explored. As a result, it is recommended that first-time readers proceed through the guide
sequentially. This approach will greatly improve your understanding of effective programming
practices and enable you to better use the guide for reference later.

Who Should Read This Guide?

The discussions in this guide all use the C++ programming language, so you should be
comfortable reading C++ code.

This guide refers to and relies on several other documents that you should have at your
disposal for reference, all of which are available at no cost from the CUDA website https://
docs.nvidia.com/cuda/. The following documents are especially important resources:

» CUDA Installation Guide

» CUDA C++ Programming Guide
» CUDA Toolkit Reference Manual

In particular, the optimization section of this guide assumes that you have already successfully
downloaded and installed the CUDA Toolkit (if not, please refer to the relevant CUDA
Installation Guide for your platform) and that you have a basic familiarity with the CUDA C++

programming language and environment (if not, please refer to the CUDA C++ Programming
Guide).
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Preface

Assess, Parallelize, Optimize, Deploy

This guide introduces the Assess, Parallelize, Optimize, Deploy [APOD] design cycle for
applications with the goal of helping application developers to rapidly identify the portions of
their code that would most readily benefit from GPU acceleration, rapidly realize that benefit,
and begin leveraging the resulting speedups in production as early as possible.

APOD is a cyclical process: initial speedups can be achieved, tested, and deployed with only
minimal initial investment of time, at which point the cycle can begin again by identifying
further optimization opportunities, seeing additional speedups, and then deploying the even
faster versions of the application into production.

Assess

Deploy Parallelize

Optimize

Assess

For an existing project, the first step is to assess the application to locate the parts of the
code that are responsible for the bulk of the execution time. Armed with this knowledge, the
developer can evaluate these bottlenecks for parallelization and start to investigate GPU
acceleration.

By understanding the end-user’s requirements and constraints and by applying Amdahl’'s and
Gustafson's laws, the developer can determine the upper bound of performance improvement
from acceleration of the identified portions of the application.
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Preface

Parallelize

Having identified the hotspots and having done the basic exercises to set goals and
expectations, the developer needs to parallelize the code. Depending on the original code, this
can be as simple as calling into an existing GPU-optimized library such as cuBLAS, cuFFT,

or Thrust, or it could be as simple as adding a few preprocessor directives as hints to a
parallelizing compiler.

On the other hand, some applications’ designs will require some amount of refactoring to
expose their inherent parallelism. As even CPU architectures will require exposing parallelism
in order to improve or simply maintain the performance of sequential applications, the CUDA
family of parallel programming languages (CUDA C++, CUDA Fortran, etc.) aims to make the
expression of this parallelism as simple as possible, while simultaneously enabling operation
on CUDA-capable GPUs designed for maximum parallel throughput.

Optimize

After each round of application parallelization is complete, the developer can move to
optimizing the implementation to improve performance. Since there are many possible
optimizations that can be considered, having a good understanding of the needs of the
application can help to make the process as smooth as possible. However, as with APOD as a
whole, program optimization is an iterative process (identify an opportunity for optimization,
apply and test the optimization, verify the speedup achieved, and repeat), meaning that it is
not necessary for a programmer to spend large amounts of time memorizing the bulk of all
possible optimization strategies prior to seeing good speedups. Instead, strategies can be
applied incrementally as they are learned.

Optimizations can be applied at various levels, from overlapping data transfers with
computation all the way down to fine-tuning floating-point operation sequences. The available
profiling tools are invaluable for guiding this process, as they can help suggest a next-best
course of action for the developer’s optimization efforts and provide references into the
relevant portions of the optimization section of this guide.

Deploy

Having completed the GPU acceleration of one or more components of the application it is
possible to compare the outcome with the original expectation. Recall that the initial assess
step allowed the developer to determine an upper bound for the potential speedup attainable
by accelerating given hotspots.

Before tackling other hotspots to improve the total speedup, the developer should consider
taking the partially parallelized implementation and carry it through to production. This

is important for a number of reasons; for example, it allows the user to profit from their
investment as early as possible (the speedup may be partial but is still valuable), and it
minimizes risk for the developer and the user by providing an evolutionary rather than
revolutionary set of changes to the application.
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Recommendations and Best
Practices

Throughout this guide, specific recommendations are made regarding the design and
implementation of CUDA C++ code. These recommendations are categorized by priority, which
Is a blend of the effect of the recommendation and its scope. Actions that present substantial
improvements for most CUDA applications have the highest priority, while small optimizations
that affect only very specific situations are given a lower priority.

Before implementing lower priority recommendations, it is good practice to make sure all
higher priority recommendations that are relevant have already been applied. This approach
will tend to provide the best results for the time invested and will avoid the trap of premature
optimization.

The criteria of benefit and scope for establishing priority will vary depending on the nature

of the program. In this guide, they represent a typical case. Your code might reflect different
priority factors. Regardless of this possibility, it is good practice to verify that no higher-priority
recommendations have been overlooked before undertaking lower-priority items.

Note: Code samples throughout the guide omit error checking for conciseness. Production
code should, however, systematically check the error code returned by each API call and check
for failures in kernel launches by calling cudaGetLastError ().
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Chapter 1. Assessing Your Application

From supercomputers to mobile phones, modern processors increasingly rely on parallelism
to provide performance. The core computational unit, which includes control, arithmetic,
registers and typically some cache, is replicated some number of times and connected to
memory via a network. As a result, all modern processors require parallel code in order to
achieve good utilization of their computational power.

While processors are evolving to expose more fine-grained parallelism to the programmer,
many existing applications have evolved either as serial codes or as coarse-grained parallel
codes [for example, where the data is decomposed into regions processed in parallel, with
sub-regions shared using MPI). In order to profit from any modern processor architecture,
GPUs included, the first steps are to assess the application to identify the hotspots, determine
whether they can be parallelized, and understand the relevant workloads both now and in the
future.
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Chapter 2. Heterogeneous Computing

CUDA programming involves running code on two different platforms concurrently: a host
system with one or more CPUs and one or more CUDA-enabled NVIDIA GPU devices.

While NVIDIA GPUs are frequently associated with graphics, they are also powerful arithmetic
engines capable of running thousands of lightweight threads in parallel. This capability makes
them well suited to computations that can leverage parallel execution.

However, the device is based on a distinctly different design from the host system, and it's
important to understand those differences and how they determine the performance of CUDA
applications in order to use CUDA effectively.

2.1. Differences between Host and Device

The primary differences are in threading model and in separate physical memories:

Threading resources
Execution pipelines on host systems can support a limited number of concurrent
threads. For example, servers that have two 32 core processors can run only 64 threads
concurrently (or small multiple of that if the CPUs support simultaneous multithreading).
By comparison, the smallest executable unit of parallelism on a CUDA device comprises
32 threads (termed a warp of threads). Modern NVIDIA GPUs can support up to 2048 active
threads concurrently per multiprocessor (see Features and Specifications of the CUDA C+
+ Programming Guide) On GPUs with 80 multiprocessors, this leads to more than 160,000
concurrently active threads.

Threads
Threads on a CPU are generally heavyweight entities. The operating system must
swap threads on and off CPU execution channels to provide multithreading capability.
Context switches (when two threads are swapped) are therefore slow and expensive. By
comparison, threads on GPUs are extremely lightweight. In a typical system, thousands
of threads are queued up for work (in warps of 32 threads each]. If the GPU must wait
on one warp of threads, it simply begins executing work on another. Because separate
registers are allocated to all active threads, no swapping of registers or other state need
occur when switching among GPU threads. Resources stay allocated to each thread until
it completes its execution. In short, CPU cores are designed to minimize latency for a small
number of threads at a time each, whereas GPUs are designed to handle a large number of
concurrent, lightweight threads in order to maximize throughput.
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Heterogeneous Computing

RAM
The host system and the device each have their own distinct attached physical memories
' As the host and device memories are separated, items in the host memory must

occasionally be communicated between device memory and host memory as described in
What Runs on a CUDA-Enabled Device?.

These are the primary hardware differences between CPU hosts and GPU devices with respect
to parallel programming. Other differences are discussed as they arise elsewhere in this
document. Applications composed with these differences in mind can treat the host and device
together as a cohesive heterogeneous system wherein each processing unit is leveraged to do
the kind of work it does best: sequential work on the host and parallel work on the device.

2.2. What Runs on a CUDA-Enabled
Device?

The following issues should be considered when determining what parts of an application to
run on the device:

» The device is ideally suited for computations that can be run on numerous data elements
simultaneously in parallel. This typically involves arithmetic on large data sets (such as
matrices) where the same operation can be performed across thousands, if not millions,
of elements at the same time. This is a requirement for good performance on CUDA:
the software must use a large number (generally thousands or tens of thousands) of
concurrent threads. The support for running numerous threads in parallel derives from
CUDA's use of a lightweight threading model described above.

» To use CUDA, data values must be transferred from the host to the device. These transfers
are costly in terms of performance and should be minimized. (See Data Transfer Between
Host and Device.) This cost has several ramifications:

» The complexity of operations should justify the cost of moving data to and from the
device. Code that transfers data for brief use by a small number of threads will see
little or no performance benefit. The ideal scenario is one in which many threads
perform a substantial amount of work.

For example, transferring two matrices to the device to perform a matrix addition
and then transferring the results back to the host will not realize much performance
benefit. The issue here is the number of operations performed per data element
transferred For the preceding procedure assuming matrices of size NxN, there are
N? operations (additions) and 3N? elements transferred, so the ratio of operations

to elements transferred is 1:3 or O(1). Performance benefits can be more readily
achieved when this rat|o is higher. For example, a matrix multiplication of the same
matrices requires N3 operations (multiply-add), so the ratio of operations to elements
transferred is O[N], in which case the larger the matrix the greater the performance
benefit. The types of operations are an additional factor, as additions have different
complexity profiles than, for example, trigonometric functions. It is important to

! on Systems on a Chip with integrated GPUs, such as NVIDIA® Tegra®, host and device memory are physically the same, but
there is still a logical distinction between host and device memory. See the Application Note on CUDA for Tegra for details.
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Heterogeneous Computing

include the overhead of transferring data to and from the device in determining
whether operations should be performed on the host or on the device.

» Data should be kept on the device as long as possible. Because transfers should be
minimized, programs that run multiple kernels on the same data should favor leaving
the data on the device between kernel calls, rather than transferring intermediate
results to the host and then sending them back to the device for subsequent
calculations. So, in the previous example, had the two matrices to be added already
been on the device as a result of some previous calculation, or if the results of the
addition would be used in some subsequent calculation, the matrix addition should be
performed locally on the device. This approach should be used even if one of the steps
in a sequence of calculations could be performed faster on the host. Even a relatively
slow kernel may be advantageous if it avoids one or more transfers between host
and device memory. Data Transfer Between Host and Device provides further details,
including the measurements of bandwidth between the host and the device versus
within the device proper.

» For best performance, there should be some coherence in memory access by adjacent
threads running on the device. Certain memory access patterns enable the hardware
to coalesce groups of reads or writes of multiple data items into one operation. Data
that cannot be laid out so as to enable coalescing, or that doesn’t have enough locality
to use the L1 or texture caches effectively, will tend to see lesser speedups when
used in computations on GPUs. A noteworthy exception to this are completely random
memory access patterns. In general, they should be avoided, because compared to peak
capabilities any architecture processes these memory access patterns at a low efficiency.
However, compared to cache based architectures, like CPUs, latency hiding architectures,
like GPUs, tend to cope better with completely random memory access patterns.
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Chapter 3. Application Profiling

3.1. Profile

Many codes accomplish a significant portion of the work with a relatively small amount of
code. Using a profiler, the developer can identify such hotspots and start to compile a list of
candidates for parallelization.

3.1.1.  Creating the Profile

There are many possible approaches to profiling the code, but in all cases the objective is
the same: to identify the function or functions in which the application is spending most of its
execution time.

Note: High Priority: To maximize developer productivity, profile the application to determine
hotspots and bottlenecks.

The most important consideration with any profiling activity is to ensure that the workload is
realistic - i.e., that information gained from the test and decisions based upon that information
are relevant to real data. Using unrealistic workloads can lead to sub-optimal results and
wasted effort both by causing developers to optimize for unrealistic problem sizes and by
causing developers to concentrate on the wrong functions.

There are a number of tools that can be used to generate the profile. The following example is
based on gprof, which is an open-source profiler for Linux platforms from the GNU Binutils
collection.

$ gcc -02 -g -pg myprog.c
$ gprof ./a.out > profile.txt
Each sample counts as 0.01 seconds.

% cumulative self self total
time seconds seconds calls ms/call ms/call name

33.34 0.02 0.02 7208 0.00 0.00 genTimeStep
16.67 0.03 0.01 240 0.04 0.12 calcStats
16.67 0.04 0.01 8 1.25 1.25 calcSummaryData
16.67 0.05 0.01 7 1.43 1.43 write

16.67 0.06 0.01 mcount

0.00 0.06 0.00 236 0.00 0.00 tzset

0.00 0.06 0.00 192 0.00 0.00 tolower
0.00 0.06 0.00 47 0.00 0.00 strlen

0.00 0.06 0.00 45 0.00 0.00 strchr

0.00 0.06 0.00 1 0.00 50.00 main
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Application Profiling

0.00 0.06 0.00 1 0.00 0.00 memcpy
0.00 0.06 0.00 1 0.00 10.11 print
0.00 0.06 0.00 1 0.00 0.00 profil
0.00 0.06 0.00 1 0.00 50.00 report

3.1.2. Identifying Hotspots

In the example above, we can clearly see that the function genTimeStep () takes one-third
of the total running time of the application. This should be our first candidate function for
parallelization. Understanding Scaling discusses the potential benefit we might expect from
such parallelization.

It is worth noting that several of the other functions in the above example also

take up a significant portion of the overall running time, such as calcStats () and
calcSummaryData (). Parallelizing these functions as well should increase our speedup
potential. However, since APOD is a cyclical process, we might opt to parallelize these
functions in a subsequent APOD pass, thereby limiting the scope of our work in any given pass
to a smaller set of incremental changes.

3.1.3.  Understanding Scaling

The amount of performance benefit an application will realize by running on CUDA depends
entirely on the extent to which it can be parallelized. Code that cannot be sufficiently
parallelized should run on the host, unless doing so would result in excessive transfers
between the host and the device.

Note: High Priority: To get the maximum benefit from CUDA, focus first on finding ways to
parallelize sequential code.

By understanding how applications can scale it is possible to set expectations and plan an
incremental parallelization strategy. Strong Scaling and Amdahl's Law describes strong
scaling, which allows us to set an upper bound for the speedup with a fixed problem size.
Weak Scaling and Gustafson's Law describes weak scaling, where the speedup is attained by
growing the problem size. In many applications, a combination of strong and weak scaling is
desirable.

3.1.3.1.  Strong Scaling and Amdahl’'s Law

Strong scaling is a measure of how, for a fixed overall problem size, the time to solution
decreases as more processors are added to a system. An application that exhibits linear
strong scaling has a speedup equal to the number of processors used.

Strong scaling is usually equated with Amdahl's Law, which specifies the maximum speedup
that can be expected by parallelizing portions of a serial program. Essentially, it states that the
maximum speedup S of a program is:
1
S=r—"FF
(1-P)+x
Here P is the fraction of the total serial execution time taken by the portion of code that can

be parallelized and N is the number of processors over which the parallel portion of the code
runs.
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Application Profiling

The larger N is(that is, the greater the number of processors), the smaller the P/N fraction. It
can be simpler to view N as a very large number, which essentially transforms the equation
into §=1/(1— P). Now, if 3/4 of the running time of a sequential program is parallelized, the
maximum speedup over serial code is 1/ (1 - 3/4) = 4.

In reality, most applications do not exhibit perfectly linear strong scaling, even if they do
exhibit some degree of strong scaling. For most purposes, the key point is that the larger
the parallelizable portion Pis, the greater the potential speedup. Conversely, if Pis a small
number (meaning that the application is not substantially parallelizable), increasing the
number of processors N does little to improve performance. Therefore, to get the largest
speedup for a fixed problem size, it is worthwhile to spend effort on increasing P, maximizing
the amount of code that can be parallelized.

3.1.3.2. Weak Scaling and Gustafson’s Law

Weak scaling is a measure of how the time to solution changes as more processors are
added to a system with a fixed problem size per processor; i.e., where the overall problem size
Increases as the number of processors is increased.

Weak scaling is often equated with Gustafson’s Law, which states that in practice, the problem
size scales with the number of processors. Because of this, the maximum speedup S of a
program is:

S=N+(1-PX1-N)

Here P is the fraction of the total serial execution time taken by the portion of code that can
be parallelized and N is the number of processors over which the parallel portion of the code
runs.

Another way of looking at Gustafson’s Law is that it is not the problem size that remains
constant as we scale up the system but rather the execution time. Note that Gustafson’s Law
assumes that the ratio of serial to parallel execution remains constant, reflecting additional
cost in setting up and handling the larger problem.

3.1.3.3. Applying Strong and Weak Scaling

Understanding which type of scaling is most applicable to an application is an important part
of estimating speedup. For some applications the problem size will remain constant and
hence only strong scaling is applicable. An example would be modeling how two molecules
interact with each other, where the molecule sizes are fixed.

For other applications, the problem size will grow to fill the available processors. Examples
include modeling fluids or structures as meshes or grids and some Monte Carlo simulations,
where increasing the problem size provides increased accuracy.

Having understood the application profile, the developer should understand how the problem
size would change if the computational performance changes and then apply either Amdahl's
or Gustafson's Law to determine an upper bound for the speedup.
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Chapter 4. Parallelizing Your
Application

Having identified the hotspots and having done the basic exercises to set goals and
expectations, the developer needs to parallelize the code. Depending on the original code, this
can be as simple as calling into an existing GPU-optimized library such as cuBLAS, cuFFT,

or Thrust, or it could be as simple as adding a few preprocessor directives as hints to a
parallelizing compiler.

On the other hand, some applications’ designs will require some amount of refactoring

to expose their inherent parallelism. As even CPU architectures require exposing this
parallelism in order to improve or simply maintain the performance of sequential applications,
the CUDA family of parallel programming languages (CUDA C++, CUDA Fortran, etc.] aims to
make the expression of this parallelism as simple as possible, while simultaneously enabling
operation on CUDA-capable GPUs designed for maximum parallel throughput.
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Chapter 5. Getting Started

There are several key strategies for parallelizing sequential code. While the details of how to
apply these strategies to a particular application is a complex and problem-specific topic, the
general themes listed here apply regardless of whether we are parallelizing code to run on for
multicore CPUs or for use on CUDA GPUs.

H.1. Parallel Libraries

The most straightforward approach to parallelizing an application is to leverage existing
libraries that take advantage of parallel architectures on our behalf. The CUDA Toolkit
includes a number of such libraries that have been fine-tuned for NVIDIA CUDA GPUs, such as
cuBLAS, cuFFT, and so on.

The key here is that libraries are most useful when they match well with the needs of the
application. Applications already using other BLAS libraries can often quite easily switch to
cuBLAS, for example, whereas applications that do little to no linear algebra will have little use
for cuBLAS. The same goes for other CUDA Toolkit libraries: curFFT has an interface similar to
that of FFTW, etc.

Also of note is the Thrust library, which is a parallel C++ template library similar to the C

++ Standard Template Library. Thrust provides a rich collection of data parallel primitives
such as scan, sort, and reduce, which can be composed together to implement complex
algorithms with concise, readable source code. By describing your computation in terms of
these high-level abstractions you provide Thrust with the freedom to select the most efficient
implementation automatically. As a result, Thrust can be utilized in rapid prototyping of CUDA
applications, where programmer productivity matters most, as well as in production, where
robustness and absolute performance are crucial.

5.2. Parallelizing Compilers

Another common approach to parallelization of sequential codes is to make use of
parallelizing compilers. Often this means the use of directives-based approaches, where the
programmer uses a pragma or other similar notation to provide hints to the compiler about
where parallelism can be found without needing to modify or adapt the underlying code itself.
By exposing parallelism to the compiler, directives allow the compiler to do the detailed work
of mapping the computation onto the parallel architecture.
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Getting Started

The OpenACC standard provides a set of compiler directives to specify loops and regions of
code in standard C, C++ and Fortran that should be offloaded from a host CPU to an attached
accelerator such as a CUDA GPU. The details of managing the accelerator device are handled
implicitly by an OpenACC-enabled compiler and runtime.

See http://www.openacc.org/ for details.

5.3. Coding to Expose Parallelism

For applications that need additional functionality or performance beyond what existing
parallel libraries or parallelizing compilers can provide, parallel programming languages such
as CUDA C++ that integrate seamlessly with existing sequential code are essential.

Once we have located a hotspot in our applicati