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Chapter 1. Introduction

1.1.  The Benefits of Using GPUs

The Graphics Processing Unit (GPU)' provides much higher instruction throughput and
memory bandwidth than the CPU within a similar price and power envelope. Many applications
leverage these higher capabilities to run faster on the GPU than on the CPU (see GPU
Applications). Other computing devices, like FPGAs, are also very energy efficient, but offer
much less programming flexibility than GPUs.

This difference in capabilities between the GPU and the CPU exists because they are designed
with different goals in mind. While the CPU is designed to excel at executing a sequence of
operations, called a thread, as fast as possible and can execute a few tens of these threads in
parallel, the GPU is designed to excel at executing thousands of them in parallel (amortizing
the slower single-thread performance to achieve greater throughput).

The GPU is specialized for highly parallel computations and therefore designed such that
more transistors are devoted to data processing rather than data caching and flow control.
The schematic Figure 1 shows an example distribution of chip resources for a CPU versus a
GPU.

" The graphics qualifier comes from the fact that when the GPU was originally created, two decades ago, it was designed as a
specialized processor to accelerate graphics rendering. Driven by the insatiable market demand for real-time, high-definition,
3D graphics, it has evolved into a general processor used for many more workloads than just graphics rendering.
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Figure 1. The GPU Devotes More Transistors to Data Processing
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Devoting more transistors to data processing, for example, floating-point computations, is
beneficial for highly parallel computations; the GPU can hide memory access latencies with
computation, instead of relying on large data caches and complex flow control to avoid long
memory access latencies, both of which are expensive in terms of transistors.

In general, an application has a mix of parallel parts and sequential parts, so systems are
designed with a mix of GPUs and CPUs in order to maximize overall performance. Applications
with a high degree of parallelism can exploit this massively parallel nature of the GPU to
achieve higher performance than on the CPU.

1.2.  CUDA®: A General-Purpose
Parallel Computing Platform and
Programming Model

In November 2006, NVIDIA® introduced CUDA®, a general purpose parallel computing
platform and programming model that leverages the parallel compute engine in NVIDIA GPUs
to solve many complex computational problems in a more efficient way than on a CPU.

CUDA comes with a software environment that allows developers to use C++ as a high-level
programming language. As illustrated by Figure 2, other languages, application programming
interfaces, or directives-based approaches are supported, such as FORTRAN, DirectCompute,
OpenACC.
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Figure 2. GPU Computing Applications
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1.3. A Scalable Programming Model

The advent of multicore CPUs and manycore GPUs means that mainstream processor chips
are now parallel systems. The challenge is to develop application software that transparently
scales its parallelism to leverage the increasing number of processor cores, much as 3D
graphics applications transparently scale their parallelism to manycore GPUs with widely
varying numbers of cores.

The CUDA parallel programming model is designed to overcome this challenge while
maintaining a low learning curve for programmers familiar with standard programming
languages such as C.

At its core are three key abstractions - a hierarchy of thread groups, shared memories, and
barrier synchronization - that are simply exposed to the programmer as a minimal set of
language extensions.
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These abstractions provide fine-grained data parallelism and thread parallelism, nested within
coarse-grained data parallelism and task parallelism. They guide the programmer to partition
the problem into coarse sub-problems that can be solved independently in parallel by blocks
of threads, and each sub-problem into finer pieces that can be solved cooperatively in parallel
by all threads within the block.

This decomposition preserves language expressivity by allowing threads to cooperate when
solving each sub-problem, and at the same time enables automatic scalability. Indeed, each
block of threads can be scheduled on any of the available multiprocessors within a GPU, in
any order, concurrently or sequentially, so that a compiled CUDA program can execute on any
number of multiprocessors as illustrated by Figure 3, and only the runtime system needs to
know the physical multiprocessor count.

This scalable programming model allows the GPU architecture to span a wide market

range by simply scaling the number of multiprocessors and memory partitions: from the
high-performance enthusiast GeForce GPUs and professional Quadro and Tesla computing
products to a variety of inexpensive, mainstream GeForce GPUs (see CUDA-Enabled GPUs for
a list of all CUDA-enabled GPUs].
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Figure 3. Automatic Scalability

Note: A GPU is built around an array of Streaming Multiprocessors (SMs) (see Hardware
Implementation for more details). A multithreaded program is partitioned into blocks of
threads that execute independently from each other, so that a GPU with more multiprocessors
will automatically execute the program in less time than a GPU with fewer multiprocessors.

1.4. Document Structure

This document is organized into the following chapters:

>

>

Chapter Introduction is a general introduction to CUDA.

Chapter Programming Model outlines the CUDA programming model.

Chapter Programming Interface describes the programming interface.

Chapter Hardware Implementation describes the hardware implementation.

Chapter Performance Guidelines gives some guidance on how to achieve maximum
performance.

Appendix CUDA-Enabled GPUs lists all CUDA-enabled devices.

CUDA C++ Programming Guide PG-02829-001_v11.7 | 5



Introduction

» Appendix C++ Language Extensions is a detailed description of all extensions to the C++
language.

» Appendix Cooperative Groups describes synchronization primitives for various groups of
CUDA threads.

» Appendix CUDA Dynamic Parallelism describes how to launch and synchronize one kernel
from another.

» Appendix Virtual Memory Management describes how to manage the unified virtual
address space.

» Appendix Stream Ordered Memory Allocator describes how applications can order
memory allocation and deallocation.

» Appendix Graph Memory Nodes describes how graphs can create and own memory
allocations.

» Appendix Mathematical Functions lists the mathematical functions supported in CUDA.

» Appendix C++ Language Support lists the C++ features supported in device code.

» Appendix Texture Fetching gives more details on texture fetching

» Appendix Compute Capabilities gives the technical specifications of various devices, as
well as more architectural details.

» Appendix Driver APl introduces the low-level driver API.

» Appendix CUDA Environment Variables lists all the CUDA environment variables.

» Appendix Unified Memory Programming introduces the Unified Memory programming
model.
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Chapter 2. Programming Model

This chapter introduces the main concepts behind the CUDA programming model by outlining
how they are exposed in C++.

An extensive description of CUDA C++ is given in Programming Interface.

Full code for the vector addition example used in this chapter and the next can be found in the
vectorAadd CUDA sample.

2.1. Kernels

CUDA C++ extends C++ by allowing the programmer to define C++ functions, called kernels,
that, when called, are executed N times in parallel by N different CUDA threads, as opposed to
only once like regular C++ functions.

A kernel is defined using the  global  declaration specifier and the number of CUDA
threads that execute that kernel for a given kernel call is specified using a new <<<...>>>
execution configuration syntax (see C++ Language Extensions). Each thread that executes
the kernel is given a unique thread ID that is accessible within the kernel through built-in
variables.

As an illustration, the following sample code, using the built-in variable threadIdx, adds two
vectors A and B of size N and stores the result into vector C:

// Kernel definition
__global void VecAdd(float* A, float* B, float* C)
{

int 1 = threadIdx.x;
C[i] = A[i] + B[i];
}

int main ()
{

// Kernel invocation with N threads
VecAdd<<<l, N>>>(A, B, C);

}

Here, each of the N threads that execute vecadd () performs one pair-wise addition.
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2.2. Thread Hierarchy

For convenience, threadIdx is a 3-component vector, so that threads can be identified using
a one-dimensional, two-dimensional, or three-dimensional thread index, forming a one-
dimensional, two-dimensional, or three-dimensional block of threads, called a thread block.
This provides a natural way to invoke computation across the elements in a domain such as a
vector, matrix, or volume.

The index of a thread and its thread ID relate to each other in a straightforward way: For a
one-dimensional block, they are the same; for a two-dimensional block of size (D,, Dy},the
thread ID of a thread of index [x, y/ is (x + y D,J; for a three-dimensional block of size (D,, D, D),
the thread ID of a thread of index [x, y, z)is (x + y D, + z D, D, ).

As an example, the following code adds two matrices A and B of size NxN and stores the result
into matrix C:

// Kernel definition

__global void MatAdd(float A[N][N], float BI[N][N],
float C[N][N])

{

int 1 = threadIdx.x;
int j = threadIdx.y;
C[i1[3] = A[i][3J] + BIi1[31;

int main ()

// Kernel invocation with one block of N * N * 1 threads
int numBlocks = 1;

dim3 threadsPerBlock (N, N);

MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

}

There is a limit to the number of threads per block, since all threads of a block are expected to
reside on the same processor core and must share the limited memory resources of that core.
On current GPUs, a thread block may contain up to 1024 threads.

However, a kernel can be executed by multiple equally-shaped thread blocks, so that the total
number of threads is equal to the number of threads per block times the number of blocks.

Blocks are organized into a one-dimensional, two-dimensional, or three-dimensional grid
of thread blocks as illustrated by Figure 4. The number of thread blocks in a grid is usually
dictated by the size of the data being processed, which typically exceeds the number of
processors in the system.
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Figure 4. Grid of Thread Blocks
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The number of threads per block and the number of blocks per grid specified in the
<<<...>>>syntax can be of type int or dim3. Two-dimensional blocks or grids can be
specified as in the example above.

Each block within the grid can be identified by a one-dimensional, two-dimensional, or
three-dimensional unique index accessible within the kernel through the built-in blockIdx
variable. The dimension of the thread block is accessible within the kernel through the built-in
blockDim variable.

Extending the previous Matadd () example to handle multiple blocks, the code becomes as
follows.

// Kernel definition
__global  void MatAdd(float A[N][N], float B[N][N],
float CI[N][N])
{
int i blockIdx.x * blockDim.x + threadIdx.x;
int j blockIdx.y * blockDim.y + threadIdx.y;
if (1 < N && j < N)
C[i1[3] = A[i][3J] + BIi1[31;

}

int main ()
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// Kernel invocation

dim3 threadsPerBlock (16, 16);

dim3 numBlocks (N / threadsPerBlock.x, N / threadsPerBlock.y);
MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);

}

A thread block size of 16x16 (256 threads), although arbitrary in this case, is a common choice.
The grid is created with enough blocks to have one thread per matrix element as before. For
simplicity, this example assumes that the number of threads per grid in each dimension is
evenly divisible by the number of threads per block in that dimension, although that need not
be the case.

Thread blocks are required to execute independently: It must be possible to execute them
in any order, in parallel or in series. This independence requirement allows thread blocks to
be scheduled in any order across any number of cores as illustrated by Figure 3, enabling
programmers to write code that scales with the number of cores.

Threads within a block can cooperate by sharing data through some shared memory and by
synchronizing their execution to coordinate memory accesses. More precisely, one can specify
synchronization points in the kernel by calling the  syncthreads () intrinsic function;
__syncthreads () acts as a barrier at which all threads in the block must wait before any is
allowed to proceed. Shared Memory gives an example of using shared memory. In addition to
__syncthreads (), the Cooperative Groups API provides a rich set of thread-synchronization
primitives.

For efficient cooperation, the shared memory is expected to be a low-latency memory near
each processor core (much like an L1 cache] and  syncthreads () is expected to be
lightweight.

2.3. Memory Hierarchy

CUDA threads may access data from multiple memory spaces during their execution as
illustrated by Figure 5. Each thread has private local memory. Each thread block has shared
memory visible to all threads of the block and with the same lifetime as the block. All threads
have access to the same global memory.

There are also two additional read-only memory spaces accessible by all threads: the constant
and texture memory spaces. The global, constant, and texture memory spaces are optimized
for different memory usages (see Device Memory Accesses). Texture memory also offers
different addressing modes, as well as data filtering, for some specific data formats (see
Texture and Surface Memoryl.

The global, constant, and texture memory spaces are persistent across kernel launches by the
same application.
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Figure 5. Memory Hierarchy
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As illustrated by Figure 6, the CUDA programming model assumes that the CUDA threads
execute on a physically separate device that operates as a coprocessor to the host running the
C++ program. This is the case, for example, when the kernels execute on a GPU and the rest of
the C++ program executes on a CPU.
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The CUDA programming model also assumes that both the host and the device maintain

their own separate memory spaces in DRAM, referred to as host memory and device memory,
respectively. Therefore, a program manages the global, constant, and texture memory spaces
visible to kernels through calls to the CUDA runtime (described in Programming Interface).
This includes device memory allocation and deallocation as well as data transfer between host
and device memory.

Unified Memory provides managed memory to bridge the host and device memory spaces.
Managed memory is accessible from all CPUs and GPUs in the system as a single, coherent
memory image with a common address space. This capability enables oversubscription of
device memory and can greatly simplify the task of porting applications by eliminating the
need to explicitly mirror data on host and device. See Unified Memory Programming for an
introduction to Unified Memory.
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Figure 6. Heterogeneous Programming
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2.5.  Asynchronous SIMT Programming
Model

In the CUDA programming model a thread is the lowest level of abstraction for doing a
computation or a memory operation. Starting with devices based on the NVIDIA Ampere GPU
architecture, the CUDA programming model provides acceleration to memory operations via
the asynchronous programming model. The asynchronous programming model defines the
behavior of asynchronous operations with respect to CUDA threads.

The asynchronous programming model defines the behavior of Asynchronous Barrier

for synchronization between CUDA threads. The model also explains and defines how
cuda::memcpy_async can be used to move data asynchronously from global memory while
computing in the GPU.

2.5.1. Asynchronous Operations

An asynchronous operation is defined as an operation that is initiated by a CUDA thread and
Is executed asynchronously as-if by another thread. In a well formed program one or more
CUDA threads synchronize with the asynchronous operation. The CUDA thread that initiated
the asynchronous operation is not required to be among the synchronizing threads.

Such an asynchronous thread (an as-if thread) is always associated with the CUDA thread
that initiated the asynchronous operation. An asynchronous operation uses a synchronization
object to synchronize the completion of the operation. Such a synchronization object can

be explicitly managed by a user (e.g., cuda: :memcpy async) or implicitly managed within a

library (e.g., cooperative groups::memcpy async).

A synchronization object could be a cuda: :barrier or a cuda: :pipeline. These objects

are explained in detail in Asynchronous Barrier and Asynchronous Data Copies using
cuda::pipeline. These synchronization objects can be used at different thread scopes. A scope
defines the set of threads that may use the synchronization object to synchronize with the
asynchronous operation. The following table defines the thread scopes available in CUDA C++
and the threads that can be synchronized with each.

Thread Scope Description

Only the CUDA thread which initiated

cuda: :thread scope::thread scope thread . .
- - - asynchronous operations synchronizes.

All or any CUDA threads within the same thread

cuda: :thread scope::thread scope block o
- - - block as the initiating thread synchronizes.

All or any CUDA threads in the same GPU device

cuda: :thread scope::thread scope device o .
- - - as the initiating thread synchronizes.
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Thread Scope Description

All or any CUDA or CPU threads in the same

cuda: :thread scope::thread scope system o .
- - - system as the initiating thread synchronizes.

These thread scopes are implemented as extensions to standard C++ in the CUDA Standard C
++ library.

2.6.  Compute Capability

The compute capability of a device is represented by a version number, also sometimes

called its "SM version”. This version number identifies the features supported by the GPU
hardware and is used by applications at runtime to determine which hardware features and/or
instructions are available on the present GPU.

The compute capability comprises a major revision number X 'and a minor revision number Y
and is denoted by X.Y.

Devices with the same major revision number are of the same core architecture. The major
revision number is 8 for devices based on the NVIDIA Ampere GPU architecture, 7 for devices
based on the Volta architecture, 6 for devices based on the Pascal architecture, b for devices
based on the Maxwell architecture, 3 for devices based on the Kepler architecture, 2 for
devices based on the Fermi architecture, and 1 for devices based on the Tesla architecture.

The minor revision number corresponds to an incremental improvement to the core
architecture, possibly including new features.

Turing is the architecture for devices of compute capability 7.5, and is an incremental update
based on the Volta architecture.

CUDA-Enabled GPUs lists of all CUDA-enabled devices along with their compute capability.
Compute Capabilities gives the technical specifications of each compute capability.

Note: The compute capability version of a particular GPU should not be confused with the
CUDA version (for example, CUDA 7.5, CUDA 8, CUDA 9), which is the version of the CUDA
software platform. The CUDA platform is used by application developers to create applications
that run on many generations of GPU architectures, including future GPU architectures yet to
be invented. While new versions of the CUDA platform often add native support for a new GPU
architecture by supporting the compute capability version of that architecture, new versions of
the CUDA platform typically also include software features that are independent of hardware
generation.

The Tesla and Fermi architectures are no longer supported starting with CUDA 7.0 and CUDA
9.0, respectively.
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Chapter 3. Programming Interface

CUDA C++ provides a simple path for users familiar with the C++ programming language to
easily write programs for execution by the device.

It consists of a minimal set of extensions to the C++ language and a runtime library.

The core language extensions have been introduced in Programming Model. They allow
programmers to define a kernel as a C++ function and use some new syntax to specify the
grid and block dimension each time the function is called. A complete description of all
extensions can be found in C++ Language Extensions. Any source file that contains some of
these extensions must be compiled with nvcc as outlined in Compilation with NVCC.

The runtime is introduced in CUDA Runtime. It provides C and C++ functions that execute on
the host to allocate and deallocate device memory, transfer data between host memory and
device memory, manage systems with multiple devices, etc. A complete description of the
runtime can be found in the CUDA reference manual.

The runtime is built on top of a lower-level C API, the CUDA driver API, which is also
accessible by the application. The driver API provides an additional level of control by exposing
lower-level concepts such as CUDA contexts - the analogue of host processes for the device

- and CUDA modules - the analogue of dynamically loaded libraries for the device. Most
applications do not use the driver APl as they do not need this additional level of control and
when using the runtime, context and module management are implicit, resulting in more
concise code. As the runtime is interoperable with the driver API, most applications that need
some driver API features can default to use the runtime APl and only use the driver APl where
needed. The driver APl is introduced in Driver APl and fully described in the reference manual.

3.1.  Compilation with NVCC

Kernels can be written using the CUDA instruction set architecture, called PTX, which is
described in the PTX reference manual. It is however usually more effective to use a high-level
programming language such as C++. In both cases, kernels must be compiled into binary code
by nvce to execute on the device.

nvcce is a compiler driver that simplifies the process of compiling C++ or PTX code: It provides
simple and familiar command line options and executes them by invoking the collection

of tools that implement the different compilation stages. This section gives an overview of
nvce workflow and command options. A complete description can be found in the nvcc user
manual.
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3.1.1.  Compilation Workflow
3.1.1.1.  Offline Compilation

Source files compiled with nvce can include a mix of host code [i.e., code that executes on the
host) and device code [i.e., code that executes on the device]. nvec's basic workflow consists in
separating device code from host code and then:

» compiling the device code into an assembly form (PTX code) and/or binary form (cubin
object],

» and modifying the host code by replacing the <<<...>>> syntax introduced in Kernels
(and described in more details in Execution Configuration) by the necessary CUDA runtime
function calls to load and launch each compiled kernel from the PTX code and/or cubin
object.

The modified host code is output either as C++ code that is left to be compiled using another
tool or as object code directly by letting nvcc invoke the host compiler during the last
compilation stage.

Applications can then:

» Either link to the compiled host code (this is the most common case),

» Orignore the modified host code (if any) and use the CUDA driver API (see Driver API) to
load and execute the PTX code or cubin object.

3.1.1.2.  Just-in-Time Compilation

Any PTX or NVWM IR code loaded by an application at runtime is compiled further to binary
code by the device driver. This is called just-in-time compilation. Just-in-time compilation
increases application load time, but allows the application to benefit from any new compiler
improvements coming with each new device driver. It is also the only way for applications

to run on devices that did not exist at the time the application was compiled, as detailed in
Application Compatibility.

When the device driver just-in-time compiles some PTX or NVWM [R code for some application,
it automatically caches a copy of the generated binary code in order to avoid repeating the
compilation in subsequent invocations of the application. The cache - referred to as compute
cache - is automatically invalidated when the device driver is upgraded, so that applications
can benefit from the improvements in the new just-in-time compiler built into the device
driver.

Environment variables are available to control just-in-time compilation as described in CUDA
Environment Variables

As an alternative to using nvcc to compile CUDA C++ device code, NVRTC can be used to
compile CUDA C++ device code to PTX at runtime. NVRTC is a runtime compilation library for
CUDA C++; more information can be found in the NVRTC User guide.
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3.1.2.  Binary Compatibility

Binary code is architecture-specific. A cubin object is generated using the compiler option
-code that specifies the targeted architecture: For example, compiling with -code=sm_35
produces binary code for devices of compute capability 3.5. Binary compatibility is guaranteed
from one minor revision to the next one, but not from one minor revision to the previous one or
across major revisions. In other words, a cubin object generated for compute capability X.y will
only execute on devices of compute capability X.z where z>y.

Note: Binary compatibility is supported only for the desktop. It is not supported for Tegra. Also,
the binary compatibility between desktop and Tegra is not supported.

3.1.3.  PTX Compatibility

Some PTX instructions are only supported on devices of higher compute capabilities. For
example, Warp Shuffle Functions are only supported on devices of compute capability 3.0
and above. The -arch compiler option specifies the compute capability that is assumed
when compiling C++ to PTX code. So, code that contains warp shuffle, for example, must be
compiled with ~arch=compute 30 (or higher].

PTX code produced for some specific compute capability can always be compiled to binary
code of greater or equal compute capability. Note that a binary compiled from an earlier

PTX version may not make use of some hardware features. For example, a binary targeting
devices of compute capability 7.0 (Volta) compiled from PTX generated for compute capability
6.0 (Pascal) will not make use of Tensor Core instructions, since these were not available on
Pascal. As a result, the final binary may perform worse than would be possible if the binary
were generated using the latest version of PTX.

3.1.4. Application Compatibility

To execute code on devices of specific compute capability, an application must load binary or
PTX code that is compatible with this compute capability as described in Binary Compatibility
and PTX Compatibility. In particular, to be able to execute code on future architectures with
higher compute capability (for which no binary code can be generated yet), an application
must load PTX code that will be just-in-time compiled for these devices (see Just-in-Time

Compilation).
Which PTX and binary code gets embedded in a CUDA C++ application is controlled by the -

arch and -code compiler options or the -gencode compiler option as detailed in the nvcc user
manual. For example,

nvcc x.cu
-gencode arch=compute 50,code=sm 50
-gencode arch=compute 60,code=sm 60
-gencode arch=compute 70, code=\"compute 70, sm_70\"

embeds binary code compatible with compute capability 5.0 and 6.0 (first and second -gencode
options) and PTX and binary code compatible with compute capability 7.0 (third ~gencode
option).
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Host code is generated to automatically select at runtime the most appropriate code to load
and execute, which, in the above example, will be:

» 5.0 binary code for devices with compute capability 5.0 and 5.2,
» 6.0 binary code for devices with compute capability 6.0 and 6.1,
» 7.0 binary code for devices with compute capability 7.0 and 7.5,

» PIX code which is compiled to binary code at runtime for devices with compute capability
8.0 and 8.6.

x.cu can have an optimized code path that uses warp shuffle operations, for example, which
are only supported in devices of compute capability 3.0 and higher. The  cuba ARCH _ macro
can be used to differentiate various code paths based on compute capability. It is only defined
for device code. When compiling with -arch=compute 35 for example,  CUDA ARCH _is equal
to 350.

Applications using the driver APl must compile code to separate files and explicitly load and
execute the most appropriate file at runtime.

The Volta architecture introduces Independent Thread Scheduling which changes the way
threads are scheduled on the GPU. For code relying on specific behavior of SIMT scheduling
in previous architectures, Independent Thread Scheduling may alter the set of participating
threads, leading to incorrect results. To aid migration while implementing the corrective
actions detailed in Independent Thread Scheduling, Volta developers can opt-in to Pascal's
thread scheduling with the compiler option combination -arch=compute 60 -code=sm 70.

The nvec user manual lists various shorthands for the —~arch, -code, and -gencode
compiler options. For example, -arch=sm_70 is a shorthand for -arch=compute 70 -
code=compute 70,sm 70 (which is the same as -gencode arch=compute 70, code=
\"compute 70,sm_70\ ")

3.1.5.  C++ Compatibility

The front end of the compiler processes CUDA source files according to C++ syntax rules. Full
C++ is supported for the host code. However, only a subset of C++ is fully supported for the
device code as described in C++ Language Support.

3.1.6.  64-Bit Compatibility

The 64-bit version of nvce compiles device code in 64-bit mode [i.e., pointers are 64-bit).
Device code compiled in 64-bit mode is only supported with host code compiled in 64-bit
mode.

Similarly, the 32-bit version of nvcc compiles device code in 32-bit mode and device code
compiled in 32-bit mode is only supported with host code compiled in 32-bit mode.

The 32-bit version of nvce can compile device code in 64-bit mode also using the -mé4
compiler option.

The 64-bit version of nvee can compile device code in 32-bit mode also using the -m32
compiler option.

CUDA C++ Programming Guide PG-02829-001_v11.7 | 19



Programming Interface

3.2. CUDA Runtime

The runtime is implemented in the cudart library, which is linked to the application, either
statically via cudart.lib or libcudart.a, or dynamically via cudart.dll or libcudart. so.
Applications that require cudart.d11 and/or cudart. so for dynamic linking typically include
them as part of the application installation package. It is only safe to pass the address of
CUDA runtime symbols between components that link to the same instance of the CUDA
runtime.

All its entry points are prefixed with cuda.

As mentioned in Heterogeneous Programming, the CUDA programming model assumes
a system composed of a host and a device, each with their own separate memory. Device
Memory gives an overview of the runtime functions used to manage device memory.

Shared Memory illustrates the use of shared memory, introduced in Thread Hierarchy, to
maximize performance.

Page-Locked Host Memory introduces page-locked host memory that is required to overlap
kernel execution with data transfers between host and device memory.

Asynchronous Concurrent Execution describes the concepts and API used to enable
asynchronous concurrent execution at various levels in the system.

Multi-Device System shows how the programming model extends to a system with multiple
devices attached to the same host.

Error Checking describes how to properly check the errors generated by the runtime.
Call Stack mentions the runtime functions used to manage the CUDA C++ call stack.

Texture and Surface Memory presents the texture and surface memory spaces that provide
another way to access device memory; they also expose a subset of the GPU texturing
hardware.

Graphics Interoperability introduces the various functions the runtime provides to interoperate
with the two main graphics APls, OpenGL and Direct3D.

3.2.1. Initialization

There is no explicit initialization function for the runtime; it initializes the first time a runtime
function is called (more specifically any function other than functions from the error handling
and version management sections of the reference manual). One needs to keep this in mind
when timing runtime function calls and when interpreting the error code from the first call
into the runtime.

The runtime creates a CUDA context for each device in the system [see Context for more
details on CUDA contexts). This context is the primary context for this device and is initialized
at the first runtime function which requires an active context on this device. It is shared
among all the host threads of the application. As part of this context creation, the device
code is just-in-time compiled if necessary (see Just-in-Time Compilation) and loaded

into device memory. This all happens transparently. If needed, for example, for driver API
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interoperability, the primary context of a device can be accessed from the driver APl as
described in Interoperability between Runtime and Driver APIs.

When a host thread calls cudabDeviceReset (), this destroys the primary context of the device
the host thread currently operates on [i.e., the current device as defined in Device Selection).
The next runtime function call made by any host thread that has this device as current will
create a new primary context for this device.

Note: The CUDA interfaces use global state that is initialized during host program initiation
and destroyed during host program termination. The CUDA runtime and driver cannot detect
if this state is invalid, so using any of these interfaces (implicitly or explicitly] during program
initiation or termination after main) will result in undefined behavior.

3.2.2. Device Memory

As mentioned in Heterogeneous Programming, the CUDA programming model assumes

a system composed of a host and a device, each with their own separate memory. Kernels
operate out of device memory, so the runtime provides functions to allocate, deallocate, and
copy device memory, as well as transfer data between host memory and device memory.

Device memory can be allocated either as linear memory or as CUDA arrays.

CUDA arrays are opaque memory layouts optimized for texture fetching. They are described in
Texture and Surface Memory.

Linear memory is allocated in a single unified address space, which means that separately
allocated entities can reference one another via pointers, for example, in a binary tree or
linked list. The size of the address space depends on the host system (CPU) and the compute
capability of the used GPU:

Table 1. Linear Memory Address Space
x86_64 POWER
(AMD64) (ppcééle) ARMé64
up to compute capability 5.3 (Maxwell) 40bit 40bit 40bit
compute capability 6.0 (Pascal) or newer up to 47bit up to 49bit up to 48bit

Note: On devices of compute capability 5.3 (Maxwell) and earlier, the CUDA driver creates an
uncommitted 40bit virtual address reservation to ensure that memory allocations (pointers) fall
into the supported range. This reservation appears as reserved virtual memory, but does not
occupy any physical memory until the program actually allocates memory.

Linear memory is typically allocated using cudaMalloc () and freed using cudaFree ()

and data transfer between host memory and device memory are typically done using
cudaMemcpy (). In the vector addition code sample of Kernels, the vectors need to be copied
from host memory to device memory:

// Device code
__global void VecAdd(float* A, float* B, float* C, int N)
{
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int 1 = blockDim.x * blockIdx.x + threadIdx.x;
if (i < N)
C[i] = A[i] + B[i];
}

// Host code
int main ()
{
int N = ...;
size t size = N * sizeof (float);

// Allocate input vectors h A and h B in host memory
float* h A (float*)malloc (size) ;
float* h B (float*)malloc (size);
float* h C = (float*)malloc(size);

// Initialize input vectors

// Allocate vectors in device memory
float* d _A;

cudaMalloc (&d A, size);

float* d B;

cudaMalloc (&d B, size);

float* d _C;

cudaMalloc (&d C, size);

// Copy vectors from host memory to device memory
cudaMemcpy (d A, h A, size, cudaMemcpyHostToDevice) ;
cudaMemcpy (d B, h B, size, cudaMemcpyHostToDevice) ;

// Invoke kernel
int threadsPerBlock = 256;
int blocksPerGrid =
(N + threadsPerBlock - 1) / threadsPerBlock;
VecAdd<<<blocksPerGrid, threadsPerBlock>>>(d A, d B, d C, N);

// Copy result from device memory to host memory
// h _C contains the result in host memory
cudaMemcpy (h C, d C, size, cudaMemcpyDeviceToHost) ;

// Free device memory
cudaFree(d A);
cudaFree (d B);
cudaFree (d C);

// Free host memory

Linear memory can also be allocated through cudaMallocPitch () and cudaMalloc3D().
These functions are recommended for allocations of 2D or 3D arrays as it makes sure that the
allocation is appropriately padded to meet the alignment requirements described in Device
Memory Accesses, therefore ensuring best performance when accessing the row addresses
or performing copies between 2D arrays and other regions of device memory (using the
cudaMemcpy2D () and cudaMemcpy3D () functions). The returned pitch (or stride) must be used
to access array elements. The following code sample allocates a width x height 2D array of
floating-point values and shows how to loop over the array elements in device code:

// Host code

int width = 64, height = 64;
float* devPtr;

size t pitch;

cudaMallocPitch (&devPtr, &pitch,
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width * sizeof (float), height);
MyKernel<<<100, 512>>>(devPtr, pitch, width, height);

// Device code
__global  void MyKernel (float* devPtr,
size t pitch, int width, int height)
{
for (int r = 0; r < height; ++r) {
float* row = (float*) ((char*)devPtr + r * pitch);
for (int ¢ = 0; c < width; ++c) {
float element = row([c];

}

The following code sample allocates a width x height x depth 3D array of floating-point
values and shows how to loop over the array elements in device code:

// Host code

int width = 64, height = 64, depth = 64;

cudaExtent extent = make cudaExtent (width * sizeof (float),
height, depth);

cudaPitchedPtr devPitchedPtr;

cudaMalloc3D (&devPitchedPtr, extent);

MyKernel<<<100, 512>>>(devPitchedPtr, width, height, depth);

// Device code
__global  void MyKernel (cudaPitchedPtr devPitchedPtr,
int width, int height, int depth)
{
char* devPtr = devPitchedPtr.ptr;
size t pitch = devPitchedPtr.pitch;
size t slicePitch = pitch * height;
for (int z = 0; z < depth; ++z) {
char* slice = devPtr + z * slicePitch;
for (int y = 0; y < height; ++y) {
float* row = (float*) (slice + y * pitch);
for (int x = 0; x < width; ++x) {
float element = row[x];

}

Note: To avoid allocating too much memory and thus impacting system-wide performance,
request the allocation parameters from the user based on the problem size. If the

allocation fails, you can fallback to other slower memory types (cudaMallocHost (),
cudaHostRegister (), etc.), or return an error telling the user how much memory was needed
that was denied. If your application cannot request the allocation parameters for some reason,
we recommend using cudaMallocManaged () for platforms that support it.

The reference manual lists all the various functions used to copy memory between linear
memory allocated with cudaMalloc (), linear memory allocated with cudaMallocPitch ()
or cudaMalloc3D (), CUDA arrays, and memory allocated for variables declared in global or
constant memory space.

The following code sample illustrates various ways of accessing global variables via the
runtime API:

__constant  float constData[256];
float datal[256];
cudaMemcpyToSymbol (constData, data, sizeof (data));
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cudaMemcpyFromSymbol (data, constData, sizeof (data));

__device  float devData;
float value = 3.14f;
cudaMemcpyToSymbol (devData, &value, sizeof (float));

__device  float* devPointer;

float* ptr;

cudaMalloc (&ptr, 256 * sizeof (float)):;
cudaMemcpyToSymbol (devPointer, &ptr, sizeof (ptr));

cudaGetSymbolAddress () is used to retrieve the address pointing to the memory allocated
for a variable declared in global memory space. The size of the allocated memory is obtained
through cudaGetSymbolSize ().

3.2.3. Device Memory L2 Access Management

When a CUDA kernel accesses a data region in the global memory repeatedly, such data
accesses can be considered to be persisting. On the other hand, if the data is only accessed
once, such data accesses can be considered to be streaming.

Starting with CUDA 11.0, devices of compute capability 8.0 and above have the capability to
influence persistence of data in the L2 cache, potentially providing higher bandwidth and lower
latency accesses to global memory.

3.2.3.1. L2 cache Set-Aside for Persisting Accesses

A portion of the L2 cache can be set aside to be used for persisting data accesses to global
memory. Persisting accesses have prioritized use of this set-aside portion of L2 cache,
whereas normal or streaming, accesses to global memory can only utilize this portion of L2
when it is unused by persisting accesses.

The L2 cache set-aside size for persisting accesses may be adjusted, within limits:

cudaGetDeviceProperties (&prop, device id);

size t size = min(int (prop.l2CacheSize * 0.75), prop.persistingL2CacheMaxSize);

cudaDeviceSetLimit (cudaLimitPersistingL2CacheSize, size); /* set-aside 3/4 of 12
cache for persisting accesses or the max allowed*/

When the GPU is configured in Multi-Instance GPU (MIG) mode, the L2 cache set-aside
functionality is disabled.

When using the Multi-Process Service (MPS], the L2 cache set-aside size
cannot be changed by cudaDeviceSetLimit. Instead, the set-aside size can
only be specified at start up of MPS server through the environment variable
CUDA DEVICE DEFAULT PERSISTING L2 CACHE PERCENTAGE LIMIT.

3.2.3.2. L2 Policy for Persisting Accesses

An access policy window specifies a contiguous region of global memory and a persistence
property in the L2 cache for accesses within that region.
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The code example below shows how to set an L2 persisting access window using a CUDA
Stream.

CUDA Stream Example

cudaStreamAttrValue stream attribute; //
Stream level attributes data structure
stream attribute.accessPolicyWindow.base ptr = reinterpret cast<void*>(ptr); //
Global Memory data pointer
stream attribute.accessPolicyWindow.num bytes = num bytes; //
Number of bytes for persistence access.
//
(Must be less than cudaDeviceProp::accessPolicyMaxWindowSize)
stream attribute.accessPolicyWindow.hitRatio = 0.6; //
Hint for cache hit ratio
stream attribute.accessPolicyWindow.hitProp = cudaAccessPropertyPersisting; //
Type of access property on cache hit
stream attribute.accessPolicyWindow.missProp = cudaAccessPropertyStreaming; //

Type of access property on cache miss.
//Set the attributes to a CUDA stream of type cudaStream t

cudaStreamSetAttribute (stream, cudaStreamAttributeAccessPolicyWindow,
&stream attribute);

When a kernel subsequently executes in CUDA stream, memory accesses within the global
memory extent [ptr..ptr+num bytes) are more likely to persist in the L2 cache than
accesses to other global memory locations.

L2 persistence can also be set for a CUDA Graph Kernel Node as shown in the example below:

CUDA GraphKernelNode Example

cudaKernelNodeAttrValue node attribute; //
Kernel level attributes data structure

node attribute.accessPolicyWindow.base ptr = reinterpret cast<void*>(ptr); //
Global Memory data pointer

node attribute.accessPolicyWindow.num bytes = num bytes; //
Number of bytes for persistence access.

// (Must

be less than cudaDeviceProp::accessPolicyMaxWindowSize)

node attribute.accessPolicyWindow.hitRatio = 0.6; // Hint
for cache hit ratio

node attribute.accessPolicyWindow.hitProp = cudaAccessPropertyPersisting; // Type
of access property on cache hit

node attribute.accessPolicyWindow.missProp = cudaAccessPropertyStreaming; // Type

of access property on cache miss.

//Set the attributes to a CUDA Graph Kernel node of type cudaGraphNode t
cudaGraphKernelNodeSetAttribute (node, cudaKernelNodeAttributeAccessPolicyWindow,
&node attribute);

The hitRatio parameter can be used to specify the fraction of accesses that receive the
hitProp property. In both of the examples above, 60% of the memory accesses in the global
memory region [ptr..ptr+num bytes) have the persisting property and 40% of the memory
accesses have the streaming property. Which specific memory accesses are classified

as persisting (the hitProp) is random with a probability of approximately hitRatio; the
probability distribution depends upon the hardware architecture and the memory extent.
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For example, if the L2 set-aside cache size is 16KB and the num bytes in the
accessPolicyWindow is 32KB:

» With a hitRatio of 0.5, the hardware will select, at random, 16KB of the 32KB window to
be designated as persisting and cached in the set-aside L2 cache area.

» With ahitRatio of 1.0, the hardware will attempt to cache the whole 32KB window in
the set-aside L2 cache area. Since the set-aside area is smaller than the window, cache
lines will be evicted to keep the most recently used 16KB of the 32KB data in the set-aside
portion of the L2 cache.

The hitRatio can therefore be used to avoid thrashing of cache lines and overall reduce the
amount of data moved into and out of the L2 cache.

A hitRatio value below 1.0 can be used to manually control the amount of data different
accessPolicyWindows from concurrent CUDA streams can cache in L2. For example, let

the L2 set-aside cache size be 16KB:; two concurrent kernels in two different CUDA streams,
each with a 16KB accessPolicyWindow, and both with hitRatio value 1.0, might evict

each others’ cache lines when competing for the shared L2 resource. However, if both
accessPolicyWindows have a hitRatio value of 0.5, they will be less likely to evict their own or
each others’ persisting cache lines.

3.2.3.3. L2 Access Properties

Three types of access properties are defined for different global memory data accesses:

1. cudaAccessPropertyStreaming: Memory accesses that occur with the streaming
property are less likely to persist in the L2 cache because these accesses are
preferentially evicted.

2. cudaAccessPropertyPersisting: Memory accesses that occur with the persisting
property are more likely to persist in the L2 cache because these accesses are
preferentially retained in the set-aside portion of L2 cache.

3. cudaAccessPropertyNormal: This access property forcibly resets previously applied
persisting access property to a normal status. Memory accesses with the persisting
property from previous CUDA kernels may be retained in L2 cache long after their
intended use. This persistence-after-use reduces the amount of L2 cache available
to subsequent kernels that do not use the persisting property. Resetting an access
property window with the cudaAccessPropertyNormal property removes the persisting
(preferential retention) status of the prior access, as if the prior access had been without
an access property.

3.2.3.4. L2 Persistence Example

The following example shows how to set-aside L2 cache for persistent accesses, use the set-
aside L2 cache in CUDA kernels via CUDA Stream and then reset the L2 cache.
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cudaStream t stream;
cudaStreamCreate (&stream) ;
// Create CUDA stream

cudaDeviceProp prop;
// CUDA device properties variable
cudaGetDeviceProperties ( &prop, device id);
// Query GPU properties
size t size = min( int(prop.l2CacheSize * 0.75) , prop.persistingL2CacheMaxSize );
cudaDeviceSetLimit ( cudalimitPersistingL2CacheSize, size);
// set-aside 3/4 of L2 cache for persisting accesses or the max allowed

size t window size = min(prop.accessPolicyMaxWindowSize, num bytes);
// Select minimum of user defined num bytes and max window size.

cudaStreamAttrValue stream attribute;
// Stream level attributes data structure
stream attribute.accessPolicyWindow.base ptr = reinterpret cast<void*>(datal);
// Global Memory data pointer
stream attribute.accessPolicyWindow.num bytes = window size;
// Number of bytes for persistence access

stream attribute.accessPolicyWindow.hitRatio = 0.6;
// Hint for cache hit ratio

stream attribute.accessPolicyWindow.hitProp = cudaAccessPropertyPersisting;
// Persistence Property

stream attribute.accessPolicyWindow.missProp = cudaAccessPropertyStreaming;

// Type of access property on cache miss

cudaStreamSetAttribute (stream, cudaStreamAttributeAccessPolicyWindow,
&stream attribute); // Set the attributes to a CUDA Stream

for(int i = 0; i < 10; i++) {
cuda_kernelA<<<grid size,block size, 0, stream>>>(datal);
// This datal is used by a kernel multiple times
}
// [datal + num bytes) benefits from L2 persistence
cuda_kernelB<<<grid size,block size,0, stream>>>(datal)
// A different kernel in the same stream can also benefit

// from the persistence of datal

stream attribute.accessPolicyWindow.num bytes = 0;
// Setting the window size to 0 disable it
cudaStreamSetAttribute (stream, cudaStreamAttributeAccessPolicyWindow,
&stream attribute); // Overwrite the access policy attribute to a CUDA Stream
cudaCtxResetPersistingL2Cache () ;
// Remove any persistent lines in L2

cuda_kernelC<<<grid size,block size, 0, stream>>>(data2);
// data2 can now benefit from full L2 in normal mode

3.2.3.5. Reset L2 Access to Normal

A persisting L2 cache line from a previous CUDA kernel may persist in L2 long after it has
been used. Hence, a reset to normal for L2 cache is important for streaming or normal
memory accesses to utilize the L2 cache with normal priority. There are three ways a
persisting access can be reset to normal status.

1. Reset a previous persisting memory region with the access property,

cudaAccessPropertyNormal
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2. Reset all persisting L2 cache lines to normal by calling
cudaCtxResetPersistingL2Cache ().

3. Eventually untouched lines are automatically reset to normal. Reliance on automatic reset
Is strongly discouraged because of the undetermined length of time required for automatic
reset to occur.

3.2.3.6. Manage Utilization of L2 set-aside cache

Multiple CUDA kernels executing concurrently in different CUDA streams may have a different
access policy window assigned to their streams. However, the L2 set-aside cache portion is
shared among all these concurrent CUDA kernels. As a result, the net utilization of this set-
aside cache portion is the sum of all the concurrent kernels’ individual use. The benefits of
designating memory accesses as persisting diminish as the volume of persisting accesses
exceeds the set-aside L2 cache capacity.

To manage utilization of the set-aside L2 cache portion, an application must consider the
following:

» Size of L2 set-aside cache.

» CUDA kernels that may concurrently execute.

> The access policy window for all the CUDA kernels that may concurrently execute.

» When and how L2 reset is required to allow normal or streaming accesses to utilize the
previously set-aside L2 cache with equal priority.

3.2.3.7. Query L2 cache Properties

Properties related to L2 cache are a part of cudaDeviceProp struct and can be queried using
CUDA runtime APl cudaGetDeviceProperties

CUDA Device Properties include:
> 12cacheSize: The amount of available L2 cache on the GPU.

> persistingL2CacheMaxSize: The maximum amount of L2 cache that can be set-aside for
persisting memory accesses.

> accessPolicyMaxWindowSize: The maximum size of the access policy window.

3.2.3.8.  Control L2 Cache Set-Aside Size for Persisting
Memory Access

The L2 set-aside cache size for persisting memory accesses is queried using
CUDA runtime AP| cudaDeviceGetLimit and set using CUDA runtime API

CUDA C++ Programming Guide PG-02829-001_v11.7 | 28



Programming Interface

cudaDeviceSetLimit as a cudaLimit. The maximum value for setting this limit is

cudaDeviceProp: :persistinglL2CacheMaxSize.

enum cudalLimit {
/* other fields not shown */
cudalimitPersistingL2CacheSize

i

3.2.4. Shared Memory

As detailed in Variable Memory Space Specifiers shared memory is allocated using the
__shared memory space specifier.

Shared memory is expected to be much faster than global memory as mentioned in Thread
Hierarchy and detailed in Shared Memory. It can be used as scratchpad memory (or software
managed cache] to minimize global memory accesses from a CUDA block as illustrated by the
following matrix multiplication example.

The following code sample is a straightforward implementation of matrix multiplication that
does not take advantage of shared memory. Each thread reads one row of A and one column
of B .and computes the corresponding element of C as illustrated in Figure 7. A is therefore
read B.width times from global memory and B is read A.height times.

// Matrices are stored in row-major order:
// M(row, col) = *(M.elements + row * M.width + col)
typedef struct {
int width;
int height;
float* elements;
} Matrix;

// Thread block size
#define BLOCK SIZE 16

// Forward declaration of the matrix multiplication kernel
__global  void MatMulKernel (const Matrix, const Matrix, Matrix);

// Matrix multiplication - Host code
// Matrix dimensions are assumed to be multiples of BLOCK SIZE
void MatMul (const Matrix A, const Matrix B, Matrix C)
{
// Load A and B to device memory
Matrix d A;
d A.width = A.width; d A.height = A.height;
size t size = A.width * A.height * sizeof (float);
cudaMalloc (&d A.elements, size);
cudaMemcpy (d_A.elements, A.elements, size,
cudaMemcpyHostToDevice) ;
Matrix d B;
d B.width = B.width; d B.height = B.height;
size = B.width * B.height * sizeof (float);
cudaMalloc (&d B.elements, size);
cudaMemcpy (d_B.elements, B.elements, size,
cudaMemcpyHostToDevice) ;

// Allocate C in device memory

Matrix d C;

d C.width = C.width; d C.height = C.height;
size = C.width * C.height * sizeof (float);
cudaMalloc (&d C.elements, size);
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// Invoke kernel

dim3 dimBlOCk(BLOCK_SIZE, BLOCK SIZE);

dim3 dimGrid(B.width / dimBlock.x, A.height / dimBlock.y);
MatMulKernel<<<dimGrid, dimBlock>>>(d A, d B, d C);

// Read C from device memory
cudaMemcpy (C.elements, d C.elements, size,
cudaMemcpyDeviceToHost) ;

// Free device memory

cudaFree (d A.elements);
cudaFree (d B.elements) ;
cudaFree (d C.elements);

}

// Matrix multiplication kernel called by MatMul ()
__global  void MatMulKernel (Matrix A, Matrix B, Matrix C)
{

// Each thread computes one element of C

// by accumulating results into Cvalue

float Cvalue = 0;

int row = blockIdx.y * blockDim.y + threadIdx.y;

int col = blockIdx.x * blockDim.x + threadIdx.x;

for (int e = 0; e < A.width; ++e)

Cvalue += A.elements[row * A.width + e]
* B.elements[e * B.width + col];
C.elements[row * C.width + col] = Cvalue;
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Figure 7. Matrix Multiplication without Shared Memory
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The following code sample is an implementation of matrix multiplication that does take
advantage of shared memory. In this implementation, each thread block is responsible for
computing one square sub-matrix Cp of C and each thread within the block is responsible for
computing one element of Cqyp. As illustrated in Figure 8, Cqyp is equal to the product of two
rectangular matrices: the sub-matrix of A of dimension (A.width, block_size) that has the same
row indices as Cs,p, and the sub-matrix of B of dimension (block_size, A.width Jthat has the
same column indices as Cqp. In order to fit into the device's resources, these two rectangular
matrices are divided into as many square matrices of dimension block_size as necessary and
Csup is computed as the sum of the products of these square matrices. Each of these products
is performed by first loading the two corresponding square matrices from global memory to
shared memory with one thread loading one element of each matrix, and then by having each
thread compute one element of the product. Each thread accumulates the result of each of
these products into a register and once done writes the result to global memory.

By blocking the computation this way, we take advantage of fast shared memory and save a
lot of global memory bandwidth since A is only read (B.width / block_size) times from global
memory and B is read (A.height / block_size) times.
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The Matrix type from the previous code sample is augmented with a stride field, so that sub-

matrices can be efficiently represented with the same type. _ device
get and set elements and build any sub-matrix from a matrix.
// Matrices are stored in row-major order:
// M(row, col) = *(M.elements + row * M.stride + col)
typedef struct {

int width;

int height;

int stride;

float* elements;
} Matrix;
// Get a matrix element
__device  float GetElement (const Matrix A, int row, int col)
{

return A.elements[row * A.stride + col];
}
// Set a matrix element
__device void SetElement (Matrix A, int row, int col,

float value)

{

A.elements[row * A.stride + col] = value;

}

// Get the BLOCK SIZExBLOCK SIZE sub-matrix Asub of A that is

// located col sub-matrices to the right and row sub-matrices down
// from the upper-left corner of A

_ device  Matrix GetSubMatrix (Matrix A, int row,

{

int col)

Matrix Asub;

Asub.width =
Asub.height
Asub.stride =
Asub.elements =

BLOCK_SIZE;

BLOCK SIZE;

A.stride;

&A.elements[A.stride * BLOCK SIZE * row
+ BLOCK SIZE * col];

return Asub;

}

// Thread block size
#define BLOCK SIZE 16

// Forward declaration of the matrix multiplication kernel
__global void MatMulKernel (const Matrix, const Matrix, Matrix);

// Matrix multiplication - Host code

// Matrix dimensions are assumed to be multiples of BLOCK SIZE

void MatMul (const Matrix A, const Matrix B, Matrix C)

{
// Load A and B
Matrix d A;
d_A.width = d_A.stride = A.width; d _A.height = A.height;
size t size = A.width * A.height * sizeof (float);
cudaMalloc (&d A.elements, size);
cudaMemcpy (d_A.elements, A.elements, size,

cudaMemcpyHostToDevice) ;

Matrix d B;
d B.width = d B.stride = B.width; d B.height =
size = B.width * B.height * sizeof (float);

to device memory

B.height;

cudaMalloc (&d B.elements,
cudaMemcpy (d_B.elements,
cudaMemcpyHostToDevice) ;

size) ;

B.elements, size,
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// Allocate C in device memory

Matrix d C;

d_C.width = d_C.stride = C.width; d_C.height = C.height;
size = C.width * C.height * sizeof (float);
cudaMalloc (&d C.elements, size);

// Invoke kernel

dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);

dim3 dimGrid(B.width / dimBlock.x, A.height / dimBlock.y);
MatMulKernel<<<dimGrid, dimBlock>>>(d A, d B, d C);

// Read C from device memory
cudaMemcpy (C.elements, d C.elements, size,
cudaMemcpyDeviceToHost) ;

// Free device memory

cudaFree (d A.elements);
cudaFree (d B.elements) ;
cudaFree (d C.elements) ;

// Matrix multiplication kernel called by MatMul ()

{

__global  void MatMulKernel (Matrix A, Matrix B, Matrix C)

// Block row and column
int blockRow = blockIdx.y;
int blockCol = blockIdx.x;

// Each thread block computes one sub-matrix Csub of C
Matrix Csub = GetSubMatrix (C, blockRow, blockCol) ;

// Each thread computes one element of Csub
// by accumulating results into Cvalue
float Cvalue = 0;

// Thread row and column within Csub
int row = threadIdx.y;
int col = threadIdx.x;

// Loop over all the sub-matrices of A and B that are
// required to compute Csub

// Multiply each pair of sub-matrices together

// and accumulate the results

for (int m = 0; m < (A.width / BLOCK SIZE); ++m) {

// Get sub-matrix Asub of A
Matrix Asub = GetSubMatrix (A, blockRow, m);

// Get sub-matrix Bsub of B
Matrix Bsub = GetSubMatrix (B, m, blockCol);

// Shared memory used to store Asub and Bsub respectively
__shared  float As[BLOCK_SIZE] [BLOCK SIZE];
~_shared  float Bs[BLOCK SIZE] [BLOCK SIZE];

// Load Asub and Bsub from device memory to shared memory
// Each thread loads one element of each sub-matrix
As[row] [col] = GetElement (Asub, row, col);

Bs[row] [col] = GetElement (Bsub, row, col);

// Synchronize to make sure the sub-matrices are loaded
// before starting the computation
___syncthreads () ;

// Multiply Asub and Bsub together
for (int e = 0; e < BLOCK SIZE; ++e)
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Cvalue += As[row][e] * Bs[e][col];

// Synchronize to make sure that the preceding
// computation is done before loading two new
// sub-matrices of A and B in the next iteration
__syncthreads () ;

}

// Write Csub to device memory

// Each thread writes one element
SetElement (Csub, row, col, Cvalue);

Figure 8. Matrix Multiplication with Shared Memory
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3.2.5. Page-Locked Host Memory

The runtime provides functions to allow the use of page-locked (also known as pinned) host
memory (as opposed to regular pageable host memory allocated by malloc () J:

» cudaHostAlloc () and cudaFreeHost () allocate and free page-locked host memory;

» cudaHostRegister () page-locks a range of memory allocated by malloc () (see
reference manual for limitations).
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Using page-locked host memory has several benefits:

» Copies between page-locked host memory and device memory can be performed
concurrently with kernel execution for some devices as mentioned in Asynchronous
Concurrent Execution.

» On some devices, page-locked host memory can be mapped into the address space of the
device, eliminating the need to copy it to or from device memory as detailed in Mapped

Memory.
» On systems with a front-side bus, bandwidth between host memory and device memory

is higher if host memory is allocated as page-locked and even higher if in addition it is
allocated as write-combining as described in Write-Combining Memory.

Page-locked host memory is a scarce resource however, so allocations in page-locked
memory will start failing long before allocations in pageable memory. In addition, by reducing
the amount of physical memory available to the operating system for paging, consuming too
much page-locked memory reduces overall system performance.

Note: Page-locked host memory is not cached on non I/0 coherent Tegra devices. Also,
cudaHostRegister () is not supported on non I/0 coherent Tegra devices.

The simple zero-copy CUDA sample comes with a detailed document on the page-locked
memory APls.

3.2.5.1. Portable Memory

A block of page-locked memory can be used in conjunction with any device in the system
(see Multi-Device System for more details on multi-device systems), but by default, the
benefits of using page-locked memory described above are only available in conjunction
with the device that was current when the block was allocated (and with all devices sharing
the same unified address space, if any, as described in Unified Virtual Address Space). To
make these advantages available to all devices, the block needs to be allocated by passing
the flag cudaHostAllocPortable to cudaHostAlloc () or page-locked by passing the flag
cudaHostRegisterPortable {0 cudaHostRegister ().

3.2.9.2. Write-Combining Memory

By default page-locked host memory is allocated as cacheable. It can optionally be

allocated as write-combining instead by passing flag cudaHostAllocWriteCombined to
cudaHostAlloc (). Write-combining memory frees up the host's L1 and L2 cache resources,
making more cache available to the rest of the application. In addition, write-combining
memory is not snooped during transfers across the PCI Express bus, which can improve
transfer performance by up to 40%.

Reading from write-combining memory from the host is prohibitively slow, so write-combining
memory should in general be used for memory that the host only writes to.

Using CPU atomic instructions on WC memory should be avoided because not all CPU
implementations guarantee that functionality.
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3.2.5.3. Mapped Memory

A block of page-locked host memory can also be mapped into the address space of the

device by passing flag cudaHostAllocMapped to cudaHostAlloc () or by passing flag
cudaHostRegisterMapped to cudaHostRegister (). Such a block has therefore in general
two addresses: one in host memory that is returned by cudaHostAlloc () ormalloc (), and
one in device memory that can be retrieved using cudaHostGetDevicePointer () and then
used to access the block from within a kernel. The only exception is for pointers allocated with
cudaHostAlloc () and when a unified address space is used for the host and the device as
mentioned in Unified Virtual Address Space.

Accessing host memory directly from within a kernel does not provide the same bandwidth as
device memory, but does have some advantages:

» Thereis no need to allocate a block in device memory and copy data between this block
and the block in host memory; data transfers are implicitly performed as needed by the
kernel;

» Thereis no need to use streams (see Concurrent Data Transfers] to overlap data transfers
with kernel execution; the kernel-originated data transfers automatically overlap with
kernel execution.

Since mapped page-locked memory is shared between host and device however, the
application must synchronize memory accesses using streams or events (see Asynchronous
Concurrent Execution] to avoid any potential read-after-write, write-after-read, or write-after-
write hazards.

To be able to retrieve the device pointer to any mapped page-locked memory, page-
locked memory mapping must be enabled by calling cudaSetDeviceFlags () with
the cudabDeviceMapHost flag before any other CUDA call is performed. Otherwise,
cudaHostGetDevicePointer () will return an error.

cudaHostGetDevicePointer () also returns an error if the device does not support

mapped page-locked host memory. Applications may query this capability by checking the
canMapHostMemory device property (see Device Enumeration), which is equal to 1 for devices
that support mapped page-locked host memory.

Note that atomic functions (see Atomic Functions] operating on mapped page-locked memory
are not atomic from the point of view of the host or other devices.

Also note that CUDA runtime requires that 1-byte, 2-byte, 4-byte, and 8-byte naturally aligned
loads and stores to host memory initiated from the device are preserved as single accesses
from the point of view of the host and other devices. On some platforms, atomics to memory
may be broken by the hardware into separate load and store operations. These component
load and store operations have the same requirements on preservation of naturally aligned
accesses. As an example, the CUDA runtime does not support a PCl Express bus topology
where a PCl Express bridge splits 8-byte naturally aligned writes into two 4-byte writes
between the device and the host.
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3.2.6. Asynchronous Concurrent Execution

CUDA exposes the following operations as independent tasks that can operate concurrently
with one another:

» Computation on the host;

» Computation on the device;

» Memory transfers from the host to the device;

» Memory transfers from the device to the host;

» Memory transfers within the memory of a given device;
» Memory transfers among devices.

The level of concurrency achieved between these operations will depend on the feature set and
compute capability of the device as described below.

3.2.6.1. Concurrent Execution between Host and Device

Concurrent host execution is facilitated through asynchronous library functions that

return control to the host thread before the device completes the requested task. Using
asynchronous calls, many device operations can be queued up together to be executed by the
CUDA driver when appropriate device resources are available. This relieves the host thread of
much of the responsibility to manage the device, leaving it free for other tasks. The following
device operations are asynchronous with respect to the host:

» HKernel launches;

» Memory copies within a single device's memory;

» Memory copies from host to device of a memory block of 64 KB or less;
» Memory copies performed by functions that are suffixed with Async;

» Memory set function calls.

Programmers can globally disable asynchronicity of kernel launches for all CUDA applications
running on a system by setting the CUDA_LAUNCH BLOCKING environment variable to 1. This
feature is provided for debugging purposes only and should not be used as a way to make
production software run reliably.

Kernel launches are synchronous if hardware counters are collected via a profiler (Nsight,
Visual Profiler) unless concurrent kernel profiling is enabled. Async memory copies will also
be synchronous if they involve host memory that is not page-locked.
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3.2.6.2. Concurrent Kernel Execution

Some devices of compute capability 2.x and higher can execute multiple kernels concurrently.
Applications may query this capability by checking the concurrentKernels device property
(see Device Enumeration), which is equal to 1 for devices that support it.

The maximum number of kernel launches that a device can execute concurrently depends on
its compute capability and is listed in Table 15.

A kernel from one CUDA context cannot execute concurrently with a kernel from another
CUDA context.

Kernels that use many textures or a large amount of local memory are less likely to execute
concurrently with other kernels.

3.2.6.3. Overlap of Data Transfer and Kernel Execution

Some devices can perform an asynchronous memory copy to or from the GPU

concurrently with kernel execution. Applications may query this capability by checking the
asyncEngineCount device property (see Device Enumeration), which is greater than zero for
devices that support it. If host memory is involved in the copy, it must be page-locked.

It is also possible to perform an intra-device copy simultaneously with kernel execution (on
devices that support the concurrentKernels device property) and/or with copies to or from
the device (for devices that support the asyncEngineCount property). Intra-device copies are
initiated using the standard memory copy functions with destination and source addresses
residing on the same device.

3.2.6.4. Concurrent Data Transfers

Some devices of compute capability 2.x and higher can overlap copies to and from the device.
Applications may query this capability by checking the asyncEngineCount device property
(see Device Enumeration), which is equal to 2 for devices that support it. In order to be
overlapped, any host memory involved in the transfers must be page-locked.

3.2.6.5. Streams

Applications manage the concurrent operations described above through streams. A stream
is a sequence of commands (possibly issued by different host threads) that execute in order.
Different streams, on the other hand, may execute their commands out of order with respect
to one another or concurrently; this behavior is not guaranteed and should therefore not

be relied upon for correctness (for example, inter-kernel communication is undefined). The
commands issued on a stream may execute when all the dependencies of the command

are met. The dependencies could be previously launched commands on same stream or
dependencies from other streams. The successful completion of synchronize call guarantees
that all the commands launched are completed.
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3.2.6.5.1. Creation and Destruction

A stream is defined by creating a stream object and specifying it as the stream parameter to a
sequence of kernel launches and host <-> device memory copies. The following code sample
creates two streams and allocates an array hostPtr of float in page-locked memory.

cudaStream t stream[2];

for (int 1 = 0; 1 < 2; ++1i)
cudaStreamCreate (&stream[i]) ;

float* hostPtr;

cudaMallocHost (&hostPtr, 2 * size);

Each of these streams is defined by the following code sample as a sequence of one memory
copy from host to device, one kernel launch, and one memory copy from device to host:

for (int 1 = 0; i < 2; ++i) {
cudaMemcpyAsync (inputDevPtr + i * size, hostPtr + i * size,
size, cudaMemcpyHostToDevice, stream[i]);
MyKernel <<<100, 512, 0, stream[i]>>>
(outputDevPtr + i * size, inputDevPtr + i * size, size);
cudaMemcpyAsync (hostPtr + 1 * size, outputDevPtr + i * size,
size, cudaMemcpyDeviceToHost, stream[i]);

}

Each stream copies its portion of input array hostPtr to array inputDevPtr in device
memory, processes inputDevPtr on the device by calling MyKernel (), and copies the result
outputDevPtr back to the same portion of hostPtr. Overlapping Behavior describes how the
streams overlap in this example depending on the capability of the device. Note that hostPtr
must point to page-locked host memory for any overlap to occur.

Streams are released by calling cudastreambDestroy ().

for (int i = 0; i < 2; ++1i)
cudaStreamDestroy (stream[i]) ;

In case the device is still doing work in the stream when cudaStreamDestroy () Is called,
the function will return immediately and the resources associated with the stream will be
released automatically once the device has completed all work in the stream.

3.2.6.5.2. Default Stream

Kernel launches and host <-> device memory copies that do not specify any stream
parameter, or equivalently that set the stream parameter to zero, are issued to the default
stream. They are therefore executed in order.

For code that is compiled using the --default-stream per-thread compilation flag (or that
defines the CUDA_ API PER THREAD DEFAULT STREAM macro before including CUDA headers

(cuda.h and cuda_runtime.h]], the default stream is a regular stream and each host thread

has its own default stream.

Note: #define CUDA API PER THREAD DEFAULT STREAM 1 cannot be used to enable this
behavior when the code is compiled by nvcc as nvec implicitly includes cuda runtime.h at the
top of the translation unit. In this case the --default-stream per-thread compilation flag
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needs to be used or the CUDA API PER THREAD DEFAULT STREAM macro needs to be defined
with the -DCUDA API PER THREAD DEFAULT STREAM=1 compiler flag.

For code that is compiled using the --default-stream legacy compilation flag, the default
stream is a special stream called the NULL stream and each device has a single NULL stream
used for all host threads. The NULL stream is special as it causes implicit synchronization as
described in Implicit Synchronization.

For code that is compiled without specifying a --default-stream compilation flag, --
default-stream legacy is assumed as the default.

3.2.6.5.3. Explicit Synchronization

There are various ways to explicitly synchronize streams with each other.

cudaDeviceSynchronize () waits until all preceding commands in all streams of all host
threads have completed.

cudaStreamSynchronize () takes a stream as a parameter and waits until all preceding
commands in the given stream have completed. It can be used to synchronize the host with a
specific stream, allowing other streams to continue executing on the device.

cudaStreamWaitEvent () takes a stream and an event as parameters (see Events for a
description of events)and makes all the commands added to the given stream after the call to
cudaStreamWaitEvent () delay their execution until the given event has completed.

cudaStreamQuery () provides applications with a way to know if all preceding commands in a
stream have completed.

3.2.6.9.4. Implicit Synchronization

Two commands from different streams cannot run concurrently if any one of the following
operations is issued in-between them by the host thread:

» apage-locked host memory allocation,

» adevice memory allocation,

» adevice memory set,

» amemory copy between two addresses to the same device memory,
» any CUDA command to the NULL stream,

» aswitch between the L1/shared memory configurations described in Compute Capability
3.x and Compute Capability 7.x.

For devices that support concurrent kernel execution and are of compute capability 3.0 or
lower, any operation that requires a dependency check to see if a streamed kernel launch is
complete:

» Can start executing only when all thread blocks of all prior kernel launches from any
stream in the CUDA context have started executing;
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» Blocks all later kernel launches from any stream in the CUDA context until the kernel
launch being checked is complete.

Operations that require a dependency check include any other commands within the

same stream as the launch being checked and any call to cudaStreamQuery () on that
stream. Therefore, applications should follow these guidelines to improve their potential for
concurrent kernel execution:

» Allindependent operations should be issued before dependent operations,

» Synchronization of any kind should be delayed as long as possible.

3.2.6.5.5. Qverlapping Behavior

The amount of execution overlap between two streams depends on the order in which the
commands are issued to each stream and whether or not the device supports overlap of data
transfer and kernel execution (see Overlap of Data Transfer and Kernel Execution), concurrent
kernel execution (see Concurrent Kernel Execution), and/or concurrent data transfers (see
Concurrent Data Transfers).

For example, on devices that do not support concurrent data transfers, the two streams of the
code sample of Creation and Destruction do not overlap at all because the memory copy from
host to device is issued to stream[1] after the memory copy from device to host is issued to
stream[0], so it can only start once the memory copy from device to host issued to stream[0]
has completed. If the code is rewritten the following way (and assuming the device supports
overlap of data transfer and kernel execution)

for (int i = 0; i < 2; ++1i)
cudaMemcpyAsync (inputDevPtr + i * size, hostPtr + i * size,
size, cudaMemcpyHostToDevice, stream[i]);
for (int i1 = 0; 1 < 2; ++1i)
MyKernel<<<100, 512, 0, stream[i]>>>
(outputDevPtr + i * size, inputDevPtr + i * size, size);
for (int 1 = 0; 1 < 2; ++1i)
cudaMemcpyAsync (hostPtr + i * size, outputDevPtr + i * size,
size, cudaMemcpyDeviceToHost, stream[i]);

then the memory copy from host to device issued to stream[1] overlaps with the kernel launch
issued to streaml0].

On devices that do support concurrent data transfers, the two streams of the code sample of
Creation and Destruction do overlap: The memory copy from host to device issued to stream[1]
overlaps with the memory copy from device to host issued to stream[0] and even with the
kernel launch issued to stream[0] (assuming the device supports overlap of data transfer

and kernel execution). However, for devices of compute capability 3.0 or lower, the kernel
executions cannot possibly overlap because the second kernel launch is issued to stream[1]
after the memory copy from device to host is issued to stream[0], so it is blocked until the first
kernel launch issued to stream[0] is complete as per Implicit Synchronization. If the code is
rewritten as above, the kernel executions overlap (assuming the device supports concurrent
kernel execution] since the second kernel launch is issued to stream[1] before the memory
copy from device to host is issued to stream[0]. In that case however, the memory copy from
device to host issued to stream[0] only overlaps with the last thread blocks of the kernel
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launch issued to stream[1] as per Implicit Synchronization, which can represent only a small
portion of the total execution time of the kernel.

3.2.6.5.6. Host Functions (Callbacks)

The runtime provides a way to insert a CPU function call at any point into a stream via
cudaLaunchHostFunc (). The provided function is executed on the host once all commands
issued to the stream before the callback have completed.

The following code sample adds the host function MyCallback to each of two streams after
issuing a host-to-device memory copy, a kernel launch and a device-to-host memory copy into
each stream. The function will begin execution on the host after each of the device-to-host
memory copies completes.

void CUDART CB MyCallback(cudaStream t stream, cudaError t status, void *data) {
printf ("Inside callback %d\n", (size t)data);
}

for (size t i = 0; 1 < 2; ++1i) {

cudaMemcpyAsync (devPtrIn[i], hostPtr[i], size, cudaMemcpyHostToDevice,
stream[i]) ;

MyKernel<<<100, 512, 0, stream[i]>>>(devPtrOut[i], devPtrIn[i], size);

cudaMemcpyAsync (hostPtr[i], devPtrOut[i], size, cudaMemcpyDeviceToHost,
stream[i]) ;

cudaLaunchHostFunc (stream[i], MyCallback, (void*)i);

The commands that are issued in a stream after a host function do not start executing before
the function has completed.

A host function enqueued into a stream must not make CUDA API calls (directly or indirectly),
as it might end up waiting on itself if it makes such a call leading to a deadlock.

3.2.6.5.7. Stream Priorities

The relative priorities of streams can be specified at creation using
cudaStreamCreateWithPriority (). The range of allowable priorities, ordered as [ highest
priority, lowest priority ] can be obtained using the cudaDeviceGetStreamPriorityRange ()
function. At runtime, pending work in higher-priority streams takes preference over pending
work in low-priority streams.

The following code sample obtains the allowable range of priorities for the current device, and
creates streams with the highest and lowest available priorities.

// get the range of stream priorities for this device

int priority high, priority low;
cudaDeviceGetStreamPriorityRange (&priority low, &priority high);

// create streams with highest and lowest available priorities

cudaStream t st high, st low;

cudaStreamCreateWithPriority(&st high, cudaStreamNonBlocking, priority high);
cudaStreamCreateWithPriority (&st low, cudaStreamNonBlocking, priority low);
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3.2.6.6. CUDA Graphs

CUDA Graphs present a new model for work submission in CUDA. A graph is a series of
operations, such as kernel launches, connected by dependencies, which is defined separately
from its execution. This allows a graph to be defined once and then launched repeatedly.
Separating out the definition of a graph from its execution enables a number of optimizations:
first, CPU launch costs are reduced compared to streams, because much of the setup is done
in advance; second, presenting the whole workflow to CUDA enables optimizations which
might not be possible with the piecewise work submission mechanism of streams.

To see the optimizations possible with graphs, consider what happens in a stream: when you
place a kernel into a stream, the host driver performs a sequence of operations in preparation
for the execution of the kernel on the GPU. These operations, necessary for setting up and
launching the kernel, are an overhead cost which must be paid for each kernel that is issued.
For a GPU kernel with a short execution time, this overhead cost can be a significant fraction
of the overall end-to-end execution time.

Work submission using graphs is separated into three distinct stages: definition, instantiation,
and execution.

» During the definition phase, a program creates a description of the operations in the graph
along with the dependencies between them.

» Instantiation takes a snapshot of the graph template, validates it, and performs much of
the setup and initialization of work with the aim of minimizing what needs to be done at
launch. The resulting instance is known as an executable graph.

» An executable graph may be launched into a stream, similar to any other CUDA work. It
may be launched any number of times without repeating the instantiation.

3.2.6.6.1. Graph Structure

An operation forms a node in a graph. The dependencies between the operations are the
edges. These dependencies constrain the execution sequence of the operations.

An operation may be scheduled at any time once the nodes on which it depends are complete.
Scheduling is left up to the CUDA system.

32.6.6.1.1. Node Types
A graph node can be one of:

> kernel

» CPU function call
» memory copy

> memset

» empty node

» waiting on an event
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» recording an event

» signalling an external semaphore

» waiting on an external semaphore

» child graph: To execute a separate nested graph. See Figure 9.

Figure 9. Child Graph Example

3.2.6.6.2. Creating a Graph Using Graph APIs

Graphs can be created via two mechanisms: explicit APl and stream capture. The following is
an example of creating and executing the below graph.
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Figure 10. Creating a Graph Using Graph APIls Example

// Create the graph - it starts out empty
cudaGraphCreate (&graph, 0);

// For the purpose of this example, we'll create
// the nodes separately from the dependencies to
// demonstrate that it can be done in two stages.
// Note that dependencies can also be specified
// at node creation.
cudaGraphAddKernelNode (&a, graph, NULL,

( &nodeParams) ;
cudaGraphAddKernelNode (&b, graph, NULL,

(

(

’

, &nodeParams) ;
, &nodeParams) ;
, &nodeParams) ;

cudaGraphAddKernelNode (&c, graph, NULL,
cudaGraphAddKernelNode (&d, graph, NULL,

// Now set up dependencies on each node

cudaGraphAddDependencies (graph, &a, &b, 1); // A->B
cudaGraphAddDependencies (graph, &a, &c, 1); // A->C
cudaGraphAddDependencies (graph, &b, &d, 1); // B->D
cudaGraphAddDependencies (graph, &c, &d, 1); // C->D

CUDA C++ Programming Guide PG-02829-001_v11.7 | 45



Programming Interface

3.2.6.6.3. Creating a Graph Using Stream Capture

Stream capture provides a mechanism to create a graph from existing stream-based APIs. A
section of code which launches work into streams, including existing code, can be bracketed
with calls to cudaStreamBeginCapture () and cudaStreamEndCapture (). See below.

cudaGraph t graph;

cudaStreamBeginCapture (stream) ;

kernel A<<< ..., stream >>>(...);
kernel B<<< ..., stream >>>(...);
libraryCall (stream) ;

kernel C<<< ..., stream >>>(...);

cudaStreamEndCapture (stream, &graph);

A call to cudaStreamBeginCapture () places a stream in capture mode. When a stream is
being captured, work launched into the stream is not enqueued for execution. It is instead
appended to an internal graph that is progressively being built up. This graph is then returned
by calling cudastreamEndCapture (), which also ends capture mode for the stream. A graph
which is actively being constructed by stream capture is referred to as a capture graph.

Stream capture can be used on any CUDA stream except cudaStreamLegacy (the "NULL
stream”). Note that it can be used on cudaStreamPerThread. If a program is using the legacy
stream, it may be possible to redefine stream 0 to be the per-thread stream with no functional
change. See Default Stream.

Whether a stream is being captured can be queried with cudastreamIsCapturing().
3.2.6.6.3.1. Cross-stream Dependencies and Events

Stream capture can handle cross-stream dependencies expressed with cudaEventRecord ()
and cudaStreamWaitEvent (), provided the event being waited upon was recorded into the
same capture graph.

When an event is recorded in a stream that is in capture mode, it results in a captured event. A
captured event represents a set of nodes in a capture graph.

When a captured event is waited on by a stream, it places the stream in capture mode if it is
not already, and the next item in the stream will have additional dependencies on the nodes in
the captured event. The two streams are then being captured to the same capture graph.

When cross-stream dependencies are present in stream capture, cudaStreamEndCapture ()
must still be called in the same stream where cudaStreamBeginCapture () was called;

this is the origin stream. Any other streams which are being captured to the same capture
graph, due to event-based dependencies, must also be joined back to the origin stream. This
Is illustrated below. All streams being captured to the same capture graph are taken out of
capture mode upon cudaStreamkEndCapture (). Failure to rejoin to the origin stream will
result in failure of the overall capture operation.

// streaml is the origin stream
cudaStreamBeginCapture (streaml) ;

kernel A<<< ..., streaml >>>(...);

// Fork into stream?2
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cudaEventRecord (eventl, streaml);
cudaStreamWaitEvent (stream2, eventl);

kernel B<<< ..., streaml >>>(...);
kernel C<<< ..., stream2 >>>(...);

// Join stream2 back to origin stream (streaml)
cudaEventRecord (event2, stream2);
cudaStreamWaitEvent (streaml, event2);

kernel D<<< ..., streaml >>>(...);

// End capture in the origin stream
cudaStreamEndCapture (streaml, &graph);

// streaml and stream2 no longer in capture mode

Graph returned by the above code is shown in Figure 10.

Note: When a stream is taken out of capture mode, the next non-captured item in the stream
(if any) will still have a dependency on the most recent prior non-captured item, despite
intermediate items having been removed.

3.2.6.6.3.2. Prohibited and Unhandled Operations

It is invalid to synchronize or query the execution status of a stream which is being captured
or a captured event, because they do not represent items scheduled for execution. It is also
invalid to query the execution status of or synchronize a broader handle which encompasses
an active stream capture, such as a device or context handle when any associated stream is in
capture mode.

When any stream in the same context is being captured, and it was not created with
cudaStreamNonBlocking, any attempted use of the legacy stream is invalid. This is because
the legacy stream handle at all times encompasses these other streams; enqueueing to the
legacy stream would create a dependency on the streams being captured, and querying it or
synchronizing it would query or synchronize the streams being captured.

It is therefore also invalid to call synchronous APls in this case. Synchronous APls, such as
cudaMemcpy (), enqueue work to the legacy stream and synchronize it before returning.

Note: As a general rule, when a dependency relation would connect something that is captured
with something that was not captured and instead enqueued for execution, CUDA prefers to
return an error rather than ignore the dependency. An exception is made for placing a stream
into or out of capture mode; this severs a dependency relation between items added to the
stream immediately before and after the mode transition.

It is invalid to merge two separate capture graphs by waiting on a captured event from a
stream which is being captured and is associated with a different capture graph than the
event. It is invalid to wait on a non-captured event from a stream which is being captured
without specifying the cudaEventWaitExternal flag.

A small number of APIs that enqueue asynchronous operations into streams are not currently
supported in graphs and will return an error if called with a stream which is being captured,
such as cudaStreamAttachMemAsync ().
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3.2.6.6.3.3. Invalidation

When an invalid operation is attempted during stream capture, any associated capture graphs
are invalidated. When a capture graph is invalidated, further use of any streams which are
being captured or captured events associated with the graph is invalid and will return an

error, until stream capture is ended with cudaStreamEndCapture (). This call will take the
associated streams out of capture mode, but will also return an error value and a NULL graph.

3.2.6.6.4. Updating Instantiated Graphs

Work submission using graphs is separated into three distinct stages: definition, instantiation,
and execution. In situations where the workflow is not changing, the overhead of definition and
instantiation can be amortized over many executions, and graphs provide a clear advantage
over streams.

A graph is a snapshot of a workflow, including kernels, parameters, and dependencies, in
order to replay it as rapidly and efficiently as possible. In situations where the workflow
changes the graph becomes out of date and must be modified. Major changes to graph
structure such as topology or types of nodes will require re-instantiation of the source graph
because various topology-related optimization techniques must be re-applied.

The cost of repeated instantiation can reduce the overall performance benefit from graph
execution, but it is common for only node parameters, such as kernel parameters and
cudaMemcpy addresses, to change while graph topology remains the same. For this case,
CUDA provides a lightweight mechanism known as “Graph Update,” which allows certain node
parameters to be modified in-place without having to rebuild the entire graph. This is much
more efficient than re-instantiation.

Updates will take effect the next time the graph is launched, so they will not impact previous
graph launches, even if they are running at the time of the update. A graph may be updated
and relaunched repeatedly, so multiple updates/launches can be queued on a stream.

CUDA provides two mechanisms for updating instantiated graph parameters, whole

graph update and individual node update. Whole graph update allows the user to supply

a topologically identical cudaGraph t object whose nodes contain updated parameters.
Individual node update allows the user to explicitly update the parameters of individual nodes.
Using an updated cudaGraph t is more convenient when a large number of nodes are being
updated, or when the graph topology is unknown to the caller (i.e., The graph resulted from
stream capture of a library call]. Using individual node update is preferred when the number of
changes is small and the user has the handles to the nodes requiring updates. Individual node
update skips the topology checks and comparisons for unchanged nodes, so it can be more
efficient in many cases.

CUDA also provides a mechanism for enabling and disabling individual nodes without affecting
their current parameters.

The following sections explain each approach in more detail.
3.2.6.6.4.1. Graph Update Limitations

Kernel nodes:

» The owning context of the function cannot change.
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» A node whose function originally did not use CUDA dynamic parallelism cannot be updated
to a function which uses CUDA dynamic parallelism.

cudaMemset and cudaMemcpy nodes:

» The CUDA device(s] to which the operand(s) was allocated/mapped cannot change.

» The source/destination memory must be allocated from the same context as the original
source/destination memory.

» Only 1D cudaMemset/cudaMemcpy nodes can be changed.

Additional memcpy node restrictions:

» Changing either the source or destination memory type [(i.e., cudaPitchedPtr,
cudaArray t, etc.), or the type of transfer (i.e., cudaMemcpyKind) is not supported.

External semaphore wait nodes and record nodes:

» Changing the number of semaphores is not supported.

There are no restrictions on updates to host nodes, event record nodes, or event wait nodes.
3.2.6.6.4.2. Whole Graph Update

cudaGraphExecUpdate () allows an instantiated graph (the “original graph”) to be updated
with the parameters from a topologically identical graph (the "updating” graph). The

topology of the updating graph must be identical to the original graph used to instantiate the
cudaGraphExec_t.In addition, the order in which nodes were added to, or removed from, the
original graph must match the order in which the nodes were added to (or removed from) the
updating graph. Therefore, when using stream capture, the nodes must be captured in the
same order and when using the explicit graph node creation APIs, all nodes must be added
and/or deleted in the same order.

The following example shows how the API could be used to update an instantiated graph:

cudaGraphExec t graphExec = NULL;

for (int 1 = 0; i < 10; i++) {
cudaGraph t graph;
cudaGraphExecUpdateResult updateResult;
cudaGraphNode t errorNode;

// In this example we use stream capture to create the graph.
// You can also use the Graph API to produce a graph.
cudaStreamBeginCapture (stream, cudaStreamCaptureModeGlobal) ;

// Call a user-defined, stream based workload, for example
do cuda work (stream);

cudaStreamEndCapture (stream, &graph);

// If we've already instantiated the graph, try to update it directly
// and avoid the instantiation overhead
if (graphExec != NULL) {

// If the graph fails to update, errorNode will be set to the

// node causing the failure and updateResult will be set to a

// reason code.

cudaGraphExecUpdate (graphExec, graph, &errorNode, &updateResult)
}

// Instantiate during the first iteration or whenever the update
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// fails for any reason
if (graphExec == NULL || updateResult != cudaGraphExecUpdateSuccess) {

// If a previous update failed, destroy the cudaGraphExec t
// before re-instantiating it
if (graphExec != NULL) {
cudaGraphExecDestroy (graphExec) ;
}
// Instantiate graphExec from graph. The error node and
// error message parameters are unused here.
cudaGraphInstantiate (&graphExec, graph, NULL, NULL, O);
}

cudaGraphDestroy (graph) ;
cudaGraphLaunch (graphExec, stream);
cudaStreamSynchronize (stream) ;

}

A typical workflow is to create the initial cudaGraph t using either the stream capture
or graph APIl. The cudaGraph_t is then instantiated and launched as normal. After the
initial launch, a new cudaGraph_t Is created using the same method as the initial graph
and cudaGraphExecUpdate () Is called. If the graph update is successful, indicated by
the updateResult parameter in the above example, the updated cudaGraphExec t

Is launched. If the update fails for any reason, the cudaGraphExecDestroy () and
cudaGraphInstantiate () are called to destroy the original cudaGraphExec t and
instantiate a new one.

It is also possible to update the cudaGraph_t nodes directly (i.e., Using
cudaGrathernelNodeSetParams()]andSubsequenﬂyupdatethecudaGraphExec_t
however it is more efficient to use the explicit node update APls covered in the next section.

Please see the Graph API for more information on usage and current limitations.
3.2.6.6.4.3. Individual node update

Instantiated graph node parameters can be updated directly. This eliminates the overhead
of instantiation as well as the overhead of creating a new cudaGraph_t. If the number of
nodes requiring update is small relative to the total number of nodes in the graph, it is
better to update the nodes individually. The following methods are available for updating
cudaGraphExec_t nodes

» cudaGraphExecKernelNodeSetParams ()

> cudaGraphExecMemcpyNodeSetParams ()

> cudaGraphExecMemsetNodeSetParams ()

> cudaGraphExecHostNodeSetParams ()

» cudaGraphExecChildGraphNodeSetParams ()

» cudaGraphExecEventRecordNodeSetEvent ()

» cudaGraphExecEventWaitNodeSetEvent ()

» cudaGraphExecExternalSemaphoresSignalNodeSetParams ()

» cudaGraphExecExternalSemaphoresWaitNodeSetParams ()
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Please see the Graph API for more information on usage and current limitations.

3.2.6.6.4.4. Individual node enable

Kernel, memset and memcpy nodes in an instantiated graph can be enabled or disabled using
the cudaGraphNodeSetEnabled() API. This allows the creation of a graph which contains a

superset of the desired functionality which can be customized for each launch. The enable
state of a node can be queried using the cudaGraphNodeGetEnabled(] API.

A disabled node is functionally equivalent to empty node until it is reenabled. Node parameters
are not affected by enabling/disabling a node. Enable state is unaffected by individual node
update or whole graph update with cudaGraphExecUpdate(]. Parameter updates while the
node is disabled will take effect when the node is reenabled.

The following methods are available for enabling/disabling cudaGraphExec_t nodes, as well
as querying their status :

> cudaGraphNodeSetEnabled()
> cudaGraphNodeGetEnabled()

Please see the Graph API for more information on usage and current limitations.

3.2.6.6.5. Using Graph APIs

cudaGraph_t objects are not thread-safe. It is the responsibility of the user to ensure that
multiple threads do not concurrently access the same cudaGraph_t.

A cudaGraphExec t cannot run concurrently with itself. A launch of a cudaGraphExec t will
be ordered after previous launches of the same executable graph.

Graph execution is done in streams for ordering with other asynchronous work. However, the
stream is for ordering only; it does not constrain the internal parallelism of the graph, nor
does it affect where graph nodes execute.

See Graph APL
3.2.6.7. Events

The runtime also provides a way to closely monitor the device's progress, as well as perform
accurate timing, by letting the application asynchronously record events at any point in the
program, and query when these events are completed. An event has completed when all tasks
- or optionally, all commands in a given stream - preceding the event have completed. Events
in stream zero are completed after all preceding tasks and commands in all streams are
completed.

3.2.6.7.1. Creation and Destruction
The following code sample creates two events:

cudaEvent t start, stop;
cudaEventCreate (&start) ;
cudaEventCreate (&stop) ;
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They are destroyed this way:

cudaEventDestroy (start) ;
cudaEventDestroy (stop) ;

3.2.6.7.2. Elapsed Time

The events created in Creation and Destruction can be used to time the code sample of
Creation and Destruction the following way:

cudaEventRecord (start, 0);
for (int 1 = 0; 1 < 2; ++1i) {
cudaMemcpyAsync (inputDev + i1 * size, inputHost + i * size,
size, cudaMemcpyHostToDevice, stream[i]);
MyKernel<<<100, 512, 0, stream[i]>>>
(outputDev + i * size, inputDev + i * size, size);
cudaMemcpyAsync (outputHost + i1 * size, outputDev + i * size,
size, cudaMemcpyDeviceToHost, stream[i]);
}
cudaEventRecord (stop, 0);
cudaEventSynchronize (stop) ;
float elapsedTime;
cudaEventElapsedTime (&elapsedTime, start, stop);

3.2.6.8. Synchronous Calls

When a synchronous function is called, control is not returned to the host thread before the
device has completed the requested task. Whether the host thread will then yield, block,

or spin can be specified by calling cudasetDeviceFlags () with some specific flags (see
reference manual for details) before any other CUDA call is performed by the host thread.

3.2.7. Multi-Device System

3.2.7.1. Device Enumeration

A host system can have multiple devices. The following code sample shows how to enumerate

these devices, query their properties, and determine the number of CUDA-enabled devices.

int deviceCount;

cudaGetDeviceCount (&deviceCount) ;

int device;

for (device = 0; device < deviceCount; ++device) {
cudaDeviceProp deviceProp;
cudaGetDeviceProperties (&deviceProp, device);
printf ("Device %d has compute capability %d.%d.\n",

device, deviceProp.major, deviceProp.minor);

}

3.2.7.2. Device Selection

A host thread can set the device it operates on at any time by calling cudaSetbevice ().
Device memory allocations and kernel launches are made on the currently set device;
streams and events are created in association with the currently set device. If no call to
cudaSetDevice () is made, the current device is device 0.
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The following code sample illustrates how setting the current device affects memory
allocation and kernel execution.

size t size = 1024 * sizeof (float);

cudaSetDevice (0) ; // Set device 0 as current
float* p0;

cudaMalloc (&p0, size); // Allocate memory on device 0
MyKernel<<<1000, 128>>>(p0); // Launch kernel on device 0
cudaSetDevice (1) ; // Set device 1 as current
float* pl;

cudaMalloc (&pl, size); // Allocate memory on device 1

MyKernel<<<1000, 128>>>(pl); // Launch kernel on device 1

3.2.7.3. Stream and Event Behavior

A kernel launch will fail if it is issued to a stream that is not associated to the current device as
illustrated in the following code sample.

cudaSetDevice (0) ; // Set device 0 as current
cudaStream t s0;

cudaStreamCreate (&s0) ; // Create stream sO0 on device 0
MyKernel<<<100, 64, 0, sO0>>>(); // Launch kernel on device 0 in s0
cudaSetDevice (1) ; // Set device 1 as current
cudaStream t sl;

cudaStreamCreate (&sl) ; // Create stream sl on device 1

MyKernel<<<100, 64, 0, sl>>>(); // Launch kernel on device 1 in sl

// This kernel launch will fail:
MyKernel<<<100, 64, 0, s0>>>(); // Launch kernel on device 1 in s0

A memory copy will succeed even if it is issued to a stream that is not associated to the
current device.

cudaEventRecord () will fail if the input event and input stream are associated to different
devices.

cudaEventElapsedTime () will fail if the two input events are associated to different devices.

cudaEventSynchronize () and cudaEventQuery () will succeed even if the input event is
associated to a device that is different from the current device.

cudaStreamWaitEvent () will succeed even if the input stream and input event are associated
to different devices. cudaStreamaitEvent () can therefore be used to synchronize multiple
devices with each other.

Each device has its own default stream (see Default Stream), so commands issued to the
default stream of a device may execute out of order or concurrently with respect to commands
Issued to the default stream of any other device.

3.2.7.4. Peer-to-Peer Memory Access

Depending on the system properties, specifically the PCle and/or NVLINK topology, devices
are able to address each other's memory (i.e., a kernel executing on one device can
dereference a pointer to the memory of the other device). This peer-to-peer memory access
feature is supported between two devices if cudaDeviceCanAccessPeer () returns true for
these two devices.
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Peer-to-peer memory access is only supported in 64-bit applications and must be enabled
between two devices by calling cudaDeviceEnablePeerAccess () as illustrated in the
following code sample. On non-NVSwitch enabled systems, each device can support a system-
wide maximum of eight peer connections.

A unified address space is used for both devices (see Unified Virtual Address Space), so the
same pointer can be used to address memory from both devices as shown in the code sample
below.

cudaSetDevice (0) ; // Set device 0 as current
float* p0;

size t size = 1024 * sizeof (float);

cudaMalloc (&p0, size); // Allocate memory on device 0
MyKernel<<<1000, 128>>>(p0); // Launch kernel on device 0
cudaSetDevice (1) ; // Set device 1 as current
cudaDeviceEnablePeerAccess (0, 0); // Enable peer-to-peer access

// with device 0

// Launch kernel on device 1
// This kernel launch can access memory on device 0 at address p0
MyKernel<<<1000, 128>>>(p0);

3.2.7.4.1. I0OMMU on Linux

On Linux only, CUDA and the display driver does not support IOMMU-enabled bare-metal PCle
peer to peer memory copy. However, CUDA and the display driver does support [IOMMU via VM
pass through. As a consequence, users on Linux, when running on a native bare metal system,
should disable the IOMMU. The IOMMU should be enabled and the VFIO driver be used as a
PCle pass through for virtual machines.

On Windows the above limitation does not exist.

See also Allocating DMA Buffers on 64-bit Platforms.

3.2.7.5. Peer-to-Peer Memory Copy

Memory copies can be performed between the memories of two different devices.

When a unified address space is used for both devices (see Unified Virtual Address Space), this
is done using the regular memory copy functions mentioned in Device Memory.

Otherwise, this is done using cudaMemcpyPeer (), cudaMemcpyPeerAsync (),
cudaMemcpy3DPeer (), Or cudaMemcpy3DPeerAsync () as illustrated in the following code
sample.

cudaSetDevice (0) ; // Set device 0 as current
float* p0;

size t size = 1024 * sizeof (float);

cudaMalloc (&p0, size); // Allocate memory on device 0
cudaSetDevice (1) ; // Set device 1 as current
float* pl;

cudaMalloc (&pl, size); // Allocate memory on device 1
cudaSetDevice (0) ; // Set device 0 as current
MyKernel<<<1000, 128>>>(p0); // Launch kernel on device 0
cudaSetDevice (1) ; // Set device 1 as current
cudaMemcpyPeer (pl, 1, pO, 0, size); // Copy pO to pl
MyKernel<<<1000, 128>>>(pl); // Launch kernel on device 1

A copy (in the implicit NULL stream) between the memories of two different devices:
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» does not start until all commands previously issued to either device have completed and

» runs to completion before any commands (see Asynchronous Concurrent Execution)
issued after the copy to either device can start.

Consistent with the normal behavior of streams, an asynchronous copy between the memories
of two devices may overlap with copies or kernels in another stream.

Note that if peer-to-peer access is enabled between two devices via
cudaDeviceEnablePeerAccess () as described in Peer-to-Peer Memory Access, peer-to-
peer memory copy between these two devices no longer needs to be staged through the host
and is therefore faster.

3.2.8. Unified Virtual Address Space

When the application is run as a 64-bit process, a single address space is used for the host
and all the devices of compute capability 2.0 and higher. All host memory allocations made via
CUDA API calls and all device memory allocations on supported devices are within this virtual
address range. As a consequence:

» The location of any memory on the host allocated through CUDA, or on any of the devices
which use the unified address space, can be determined from the value of the pointer
using cudaPointerGetAttributes ().

» When copying to or from the memory of any device which uses the unified address space,
the cudaMemcpyKind parameter of cudaMemcpy* () can be set to cudaMemcpyDefault
to determine locations from the pointers. This also works for host pointers not allocated
through CUDA, as long as the current device uses unified addressing.

» Allocations via cudaHostAlloc () are automatically portable (see Portable Memory)
across all the devices for which the unified address space is used, and pointers returned
by cudaHostAlloc () can be used directly from within kernels running on these devices
(i.e., there is no need to obtain a device pointer via cudaHostGetDevicePointer () as
described in Mapped Memory.

Applications may query if the unified address space is used for a particular device by checking
that the unifiedAddressing device property [see Device Enumeration] is equal to 1.

3.2.9. Interprocess Communication

Any device memory pointer or event handle created by a host thread can be directly referenced
by any other thread within the same process. It is not valid outside this process however, and
therefore cannot be directly referenced by threads belonging to a different process.

To share device memory pointers and events across processes, an application must use the
Inter Process Communication API, which is described in detail in the reference manual. The
IPC APl is only supported for 64-bit processes on Linux and for devices of compute capability
2.0 and higher. Note that the IPC APl is not supported for cudaMallocManaged allocations.

Using this API, an application can get the IPC handle for a given device memory pointer using
cudaIpcGetMemHandle (), pass it to another process using standard IPC mechanisms (for
example, interprocess shared memory or files), and use cudaIpcOpenMemHandle () to retrieve
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a device pointer from the IPC handle that is a valid pointer within this other process. Event
handles can be shared using similar entry points.

Note that allocations made by cudaMalloc () may be sub-allocated from a larger block

of memory for performance reasons. In such case, CUDA IPC APIs will share the entire
underlying memory block which may cause other sub-allocations to be shared, which can
potentially lead to information disclosure between processes. To prevent this behavior, it is
recommended to only share allocations with a 2MiB aligned size.

An example of using the IPC APl is where a single primary process generates a batch of
input data, making the data available to multiple secondary processes without requiring
regeneration or copying.

Applications using CUDA IPC to communicate with each other should be compiled, linked, and
run with the same CUDA driver and runtime.

Note: Since CUDA 11.5, only events-sharing IPC APIs are supported on L4T and embedded
Linux Tegra devices with compute capability 7.x and higher. The memory-sharing IPC APIs are
still not supported on Tegra platforms.

3.2.10. Error Checking

All runtime functions return an error code, but for an asynchronous function (see
Asynchronous Concurrent Execution), this error code cannot possibly report any of the
asynchronous errors that could occur on the device since the function returns before the
device has completed the task; the error code only reports errors that occur on the host
prior to executing the task, typically related to parameter validation; if an asynchronous error
occurs, it will be reported by some subsequent unrelated runtime function call.

The only way to check for asynchronous errors just after some asynchronous function call is
therefore to synchronize just after the call by calling cudabeviceSynchronize () (or by using
any other synchronization mechanisms described in Asynchronous Concurrent Execution) and
checking the error code returned by cudaDeviceSynchronize ().

The runtime maintains an error variable for each host thread that is initialized to cudaSuccess
and is overwritten by the error code every time an error occurs (be it a parameter

validation error or an asynchronous error). cudaPeekAtLastError () returns this variable.
cudaGetLastError () returns this variable and resets it to cudaSuccess.

Kernel launches do not return any error code, so cudaPeekAtLastError () or
cudaGetLastError () must be called just after the kernel launch to retrieve any pre-

launch errors. To ensure that any error returned by cudaPeekAtLastError () or
cudaGetLastError () does not originate from calls prior to the kernel launch, one has to
make sure that the runtime error variable is set to cudasSuccess just before the kernel launch,
for example, by calling cudaGetLastError () just before the kernel launch. Kernel launches
are asynchronous, so to check for asynchronous errors, the application must synchronize in-
between the kernel launch and the call to cudaPeekAtLastError () or cudaGetLastError ().

Note that cudaErrorNotReady that may be returned by cudaStreamQuery () and
cudaEventQuery () Is not considered an error and is therefore not reported by
cudaPeekAtLastError () Or cudaGetLastError ().

CUDA C++ Programming Guide PG-02829-001_v11.7 | 56



Programming Interface

3.2.11. Call Stack

On devices of compute capability 2.x and higher, the size of the call stack can be queried using
cudaDeviceGetLimit () and set using cudaDeviceSetLimit ().

When the call stack overflows, the kernel call fails with a stack overflow error if the application
is run via a CUDA debugger (CUDA-GDB, Nsight] or an unspecified launch error, otherwise.

3.2.12. Texture and Surface Memory

CUDA supports a subset of the texturing hardware that the GPU uses for graphics to access
texture and surface memory. Reading data from texture or surface memory instead of global
memory can have several performance benefits as described in Device Memory Accesses.

There are two different APIs to access texture and surface memory:

» The texture reference API that is supported on all devices,

» The texture object API that is only supported on devices of compute capability 3.x and
higher.

The texture reference API has limitations that the texture object APl does not have. They are
mentioned in [[DEPRECATED]] Texture Reference API.

3.2.12.1. Texture Memory

Texture memory is read from kernels using the device functions described in Texture
Functions. The process of reading a texture calling one of these functions is called a texture
fetch. Each texture fetch specifies a parameter called a texture object for the texture object API
or a texture reference for the texture reference API.

The texture object or the texture reference specifies:

» The texture, which is the piece of texture memory that is fetched. Texture objects are
created at runtime and the texture is specified when creating the texture object as
described in Texture Object API. Texture references are created at compile time and the
texture is specified at runtime by bounding the texture reference to the texture through
runtime functions as described in [[DEPRECATED]] Texture Reference API; several distinct
texture references might be bound to the same texture or to textures that overlap in
memory. A texture can be any region of linear memory or a CUDA array (described in

CUDA Arrays).

» Its dimensionality that specifies whether the texture is addressed as a one dimensional
array using one texture coordinate, a two-dimensional array using two texture coordinates,
or a three-dimensional array using three texture coordinates. Elements of the array are
called texels, short for texture elements. The texture width, height, and depth refer to the
size of the array in each dimension. Table 15 lists the maximum texture width, height, and
depth depending on the compute capability of the device.

» The type of a texel, which is restricted to the basic integer and single-precision floating-
point types and any of the 1-, 2-, and 4-component vector types defined in Built-in Vector
Types that are derived from the basic integer and single-precision floating-point types.
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» The read mode, which is equal to cudaReadModeNormalizedFloat or
cudaReadModeElementType. If it is cudaReadModeNormalizedFloat and the type of the
texel is a 16-bit or 8-bit integer type, the value returned by the texture fetch is actually
returned as floating-point type and the full range of the integer type is mapped to [0.0, 1.0]
for unsigned integer type and [-1.0, 1.0] for signed integer type; for example, an unsigned
8-bit texture element with the value Oxff reads as 1. If it is cudaReadModeElementType, NO
conversion is performed.

» Whether texture coordinates are normalized or not. By default, textures are referenced (by
the functions of Texture Functions) using floating-point coordinates in the range [0, N-1]
where N is the size of the texture in the dimension corresponding to the coordinate. For
example, a texture that is 64x32 in size will be referenced with coordinates in the range
[0, 63] and [0, 31] for the x and y dimensions, respectively. Normalized texture coordinates
cause the coordinates to be specified in the range [0.0, 1.0-1/N] instead of [0, N-1], so the
same 64x32 texture would be addressed by normalized coordinates in the range [0, 1-1/N]
in both the x and y dimensions. Normalized texture coordinates are a natural fit to some
applications’ requirements, if it is preferable for the texture coordinates to be independent
of the texture size.

» The addressing mode. It is valid to call the device functions of Section B.8 with coordinates
that are out of range. The addressing mode defines what happens in that case. The default
addressing mode is to clamp the coordinates to the valid range: [0, N) for non-normalized
coordinates and [0.0, 1.0] for normalized coordinates. If the border mode is specified
instead, texture fetches with out-of-range texture coordinates return zero. For normalized
coordinates, the wrap mode and the mirror mode are also available. When using the wrap
mode, each coordinate x is converted to frac(x/=x - floor(x) where floor(x] is the largest
integer not greater than x. When using the mirror mode, each coordinate x is converted
to fraclx/ if floor(x] is even and 1-frac(x] if floor(x/ is odd. The addressing mode is specified
as an array of size three whose first, second, and third elements specify the addressing
mode for the first, second, and third texture coordinates, respectively; the addressing
mode are cudaAddressModeBorder, cudaAddressModeClamp, cudaAddressModeWrap,
and cudaAddressModeMirror; cudaAddressModeWrap and cudaAddressModeMirror are
only supported for normalized texture coordinates

» The filtering mode which specifies how the value returned when fetching the texture is
computed based on the input texture coordinates. Linear texture filtering may be done only
for textures that are configured to return floating-point data. It performs low-precision
interpolation between neighboring texels. When enabled, the texels surrounding a texture
fetch location are read and the return value of the texture fetch is interpolated based
on where the texture coordinates fell between the texels. Simple linear interpolation
is performed for one-dimensional textures, bilinear interpolation for two-dimensional
textures, and trilinear interpolation for three-dimensional textures. Texture Fetching gives
more details on texture fetching. The filtering mode is equal to cudaFilterModePoint
or cudaFilterModeLinear. If it is cudaFilterModePoint, the returned value is the
texel whose texture coordinates are the closest to the input texture coordinates. If it is
cudaFilterModeLinear, the returned value is the linear interpolation of the two (for
a one-dimensional texture), four (for a two dimensional texture), or eight (for a three
dimensional texture] texels whose texture coordinates are the closest to the input texture
coordinates. cudaFilterModeLinear is only valid for returned values of floating-point

type.
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Texture Object APl introduces the texture object API.
[[DEPRECATED]] Texture Reference APl introduces the texture reference API.

16-Bit Floating-Point Textures explains how to deal with 16-bit floating-point textures.

Textures can also be layered as described in Layered Textures.

Cubemap Textures and Cubemap Layered Textures describe a special type of texture, the
cubemap texture.

Texture Gather describes a special texture fetch, texture gather.

3.2.12.1.1. Texture Object API

A texture object is created using cudaCreateTextureObject () from a resource description
of type struct cudaResourceDesc, which specifies the texture, and from a texture
description defined as such:

struct cudaTextureDesc

{
enum cudaTextureAddressMode addressMode[3];
enum cudaTextureFilterMode filterMode;

enum cudaTextureReadMode readMode;

int sRGB;

int normalizedCoords;
unsigned int maxAnisotropy;

enum cudaTextureFilterMode mipmapFilterMode;
float mipmapLevelBias;
float minMipmapLevelClamp;
float maxMipmapLevelClamp;

» addressMode specifies the addressing mode;
» filterMode specifies the filter mode;
» readMode specifies the read mode;

» normalizedCoords specifies whether texture coordinates are normalized or not;

> See reference manual for sRGB, maxAnisotropy, mipmapFilterMode, mipmapLevelBias

minMipmapLevelClamp, and maxMipmapLevelClamp.
The following code sample applies some simple transformation kernel to a texture.

// Simple transformation kernel

~_global void transformKernel (float* output,
cudaTextureObject t texObj,
int width, int height,
float theta)

// Calculate normalized texture coordinates
unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;

float u =
float v

x / (float)width;
y / (float)height;

// Transform coordinates
u -= 0.5f;
v -= 0.5f;
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float tu = u * cosf(theta) - v * sinf (theta) + 0.5f;
float tv = v * cosf(theta) + u * sinf (theta) + 0.5f;

// Read from texture and write to global memory
output [y * width + x] = tex2D<float>(texObj, tu, tv);

// Host code
int main ()

{

CUDA C++ Programming Guide

const int height = 1024;
const int width = 1024;
float angle = 0.5;

// Allocate and set some host data

float *h data = (float *)std::malloc(sizeof (float) * width * height);
for (int 1 = 0; i < height * width; ++1i)
h data([i] = i;

// Allocate CUDA array in device memory
cudaChannelFormatDesc channelDesc =
cudaCreateChannelDesc (32, 0, 0, 0, cudaChannelFormatKindFloat) ;
cudaArray t cuArray;
cudaMallocArray (&cuBArray, &channelDesc, width, height);

// Set pitch of the source (the width in memory in bytes of the 2D array pointed

// to by src, including padding), we dont have any padding
const size t spitch = width * sizeof (float);
// Copy data located at address h data in host memory to device memory

cudaMemcpy2DToArray (cuArray, 0, 0, h data, spitch, width * sizeof (float),

height, cudaMemcpyHostToDevice) ;

// Specify texture

struct cudaResourceDesc resDesc;

memset (&resDesc, 0, sizeof (resDesc)):;
resDesc.resType = cudaResourceTypeArray;
resDesc.res.array.array = CuArray;

// Specify texture object parameters

struct cudaTextureDesc texDesc;

memset (&texDesc, 0, sizeof (texDesc));
texDesc.addressMode [0] = cudaAddressModeWrap;
texDesc.addressMode[1l] = cudaAddressModeWrap;
texDesc.filterMode = cudaFilterModelinear;
texDesc.readMode = cudaReadModeElementType;
texDesc.normalizedCoords = 1;

// Create texture object
cudaTextureObject t texObj = 0;
cudaCreateTextureObject (&texObj, &resDesc, &texDesc, NULL);

// Allocate result of transformation in device memory
float *output;
cudaMalloc (&output, width * height * sizeof (float));

// Invoke kernel

dim3 threadsperBlock (16, 16);

dim3 numBlocks ((width + threadsperBlock.x - 1) / threadsperBlock.x,
(height + threadsperBlock.y - 1) / threadsperBlock.y);

transformKernel<<<numBlocks, threadsperBlock>>>(output, texObj, width,

angle) ;
// Copy data from device back to host
cudaMemcpy (h data, output, width * height * sizeof (float),
cudaMemcpyDeviceToHost) ;

// Destroy texture object

height,
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cudaDestroyTextureObject (texObj) ;

// Free device memory
cudaFreeArray (cuArray) ;
cudaFree (output) ;

// Free host memory
free (h data);

return O;

}

3.2.12.1.2. [[DEPRECATED]] Texture Reference API

Texture Reference APl is deprecated.

Some of the attributes of a texture reference are immutable and must be known at compile
time; they are specified when declaring the texture reference. A texture reference is declared
at file scope as a variable of type texture:

texture<DataType, Type, ReadMode> texRef;

where:

> DataType specifies the type of the texel;

» Type specifies the type of the texture reference and is equal to cudaTextureTypelD,
cudaTextureType2D, Or cudaTextureType3D, for a one-dimensional, two-dimensional,
or three-dimensional texture, respectively, or cudaTextureTypelDLayered Or
cudaTextureType2DLayered for a one-dimensional or two-dimensional layered texture
respectively; Type is an optional argument which defaults to cudaTextureTypelD;

» ReadMode specifies the read mode; it is an optional argument which defaults to
cudaReadModeElementType.

A texture reference can only be declared as a static global variable and cannot be passed as
an argument to a function.

The other attributes of a texture reference are mutable and can be changed at runtime
through the host runtime. As explained in the reference manual, the runtime APl has a low-
level C-style interface and a high-level C++-style interface. The texture type is defined in the
high-level APl as a structure publicly derived from the textureReference type defined in the
low-level APl as such:

struct textureReference {
int normalized;
enum cudaTextureFilterMode filterMode;
enum cudaTextureAddressMode addressMode[3];
struct cudaChannelFormatDesc channelDesc;

int sRGB;

unsigned int maxAnisotropy;

enum cudaTextureFilterMode mipmapFilterMode;
float mipmapLevelBias;
float minMipmapLevelClamp;
float maxMipmapLevelClamp;

}

» normalized specifies whether texture coordinates are normalized or not;
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> filterMode specifies the filtering mode;
» addressMode specifies the addressing mode;

» channelDesc describes the format of the texel; it must match the DataType argument of
the texture reference declaration; channelDesc is of the following type:

struct cudaChannelFormatDesc {
int x, vy, z, w;
enum cudaChannelFormatKind £f;

}i

where x, v, z, and w are equal to the number of bits of each component of the returned
value and f is:

» cudaChannelFormatKindSigned if these components are of signed integer type,
» cudaChannelFormatKindUnsigned if they are of unsigned integer type,
» cudaChannelFormatKindFloat if they are of floating point type.

> See reference manual for sRGB, maxAnisotropy, mipmapFilterMode, mipmapLevelBias
minMipmapLevelClamp, and maxMipmapLevelClamp.

normalized, addressMode, and filterMode may be directly modified in host code.

Before a kernel can use a texture reference to read from texture memory, the texture
reference must be bound to a texture using cudaBindTexture () or cudaBindTexture2D ()
for linear memory, or cudaBindTextureToArray () for CUDA arrays. cudaUnbindTexture ()
is used to unbind a texture reference. Once a texture reference has been unbound, it can be
safely rebound to another array, even if kernels that use the previously bound texture have not
completed. It is recommended to allocate two-dimensional textures in linear memory using
cudaMallocPitch () and use the pitch returned by cudaMallocPitch () as input parameter
t0 cudaBindTexture2D ().

The following code samples bind a 2D texture reference to linear memory pointed to by
devPtr:

» Using the low-level API:

texture<float, cudaTextureType2D,

cudaReadModeElementType> texRef;
textureReference* texRefPtr;
cudaGetTextureReference (&texRefPtr, &texRef);
cudaChannelFormatDesc channelDesc =

cudaCreateChannelDesc<float>();
size t offset;
cudaBindTexture2D (&offset, texRefPtr, devPtr, &channelDesc,
width, height, pitch);

» Using the high-level API:

texture<float, cudaTextureType2D,
cudaReadModeElementType> texRef;
cudaChannelFormatDesc channelDesc =
cudaCreateChannelDesc<float>();
size t offset;
cudaBindTexture2D (&offset, texRef, devPtr, channelDesc,
width, height, pitch);
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The following code samples bind a 2D texture reference to a CUDA array cuArray:
» Using the low-level API:

texture<float, cudaTextureType2D,
cudaReadModeElementType> texRef;

textureReference* texRefPtr;

cudaGetTextureReference (&texRefPtr, &texRef) ;

cudaChannelFormatDesc channelDesc;

cudaGetChannelDesc (&channelDesc, cuArray);

cudaBindTextureToArray (texRef, culArray, &channelDesc) ;

» Using the high-level API:

texture<float, cudaTextureType2D,
cudaReadModeElementType> texRef;
cudaBindTextureToArray (texRef, culArray);

The format specified when binding a texture to a texture reference must match the

parameters specified when declaring the texture reference; otherwise, the results of texture

fetches are undefined.

There is a limit to the number of textures that can be bound to a kernel as specified in Table

15.

The following code sample applies some simple transformation kernel to a texture.

// 2D float texture
texture<float, cudaTextureType2D, cudaReadModeElementType> texRef;

// Simple transformation kernel

__global void transformKernel (float* output,
int width, int height,
float theta)

// Calculate normalized texture coordinates
unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;

float u x / (float)width;
float v = y / (float)height;

// Transform coordinates

u -= 0.5f;
v -= 0.5f;
float tu = u * cosf(theta) - v * sinf (theta) + 0.5f;

float tv = v * cosf(theta) + u * sinf (theta) + 0.5f;

// Read from texture and write to global memory
output [y * width + x] = tex2D(texRef, tu, tv);
}

// Host code
int main ()
{
// Allocate CUDA array in device memory
cudaChannelFormatDesc channelDesc =
cudaCreateChannelDesc (32, 0, 0, O,
cudaChannelFormatKindFloat) ;
cudaArray* cuArray;
cudaMallocArray (&culArray, &channelDesc, width, height);

// Copy to device memory some data located at address h data
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// in host memory
cudaMemcpyToArray (cuArray, 0, 0, h data, size,
cudaMemcpyHostToDevice) ;

// Set texture reference parameters
texRef.addressMode [0] cudaAddressModeWrap;
texRef.addressMode[1] cudaAddressModeWrap;
texRef.filterMode cudaFilterModeLinear;
texRef.normalized true;

// Bind the array to the texture reference
cudaBindTextureToArray (texRef, cuArray, channelDesc);

// Allocate result of transformation in device memory
float* output;
cudaMalloc (&output, width * height * sizeof (float));

// Invoke kernel
dim3 dimBlock (16, 16);
dim3 dimGrid((width + dimBlock.x - 1) / dimBlock.x,
(height + dimBlock.y - 1) / dimBlock.y);
transformKernel<<<dimGrid, dimBlock>>> (output, width, height,
angle) ;

// Free device memory
cudaFreeArray (cuArray) ;
cudaFree (output) ;

return 0O;

}

3.2.12.1.3. 16-Bit Floating-Point Textures

The 16-bit floating-point or half format supported by CUDA arrays is the same as the IEEE
754-2008 binary? format.

CUDA C++ does not support a matching data type, but provides intrinsic functions to

convert to and from the 32-bit floating-point format via the unsigned short type:
__floachalf_rn(float)and__half2float(unsigned short).ThesefuncUonsareonw
supported in device code. Equivalent functions for the host code can be found in the OpenEXR
library, for example.

16-bit floating-point components are promoted to 32 bit float during texture fetching before
any filtering is performed.

A channel description for the 16-bit floating-point format can be created by calling one of the
cudaCreateChannelDescHalf* () functions.

3.2.12.1.4. Layered Textures

A one-dimensional or two-dimensional layered texture (also known as texture array in
Direct3D and array texture in OpenGL] is a texture made up of a sequence of layers, all of
which are regular textures of same dimensionality, size, and data type.

A one-dimensional layered texture is addressed using an integer index and a floating-

point texture coordinate; the index denotes a layer within the sequence and the coordinate
addresses a texel within that layer. A two-dimensional layered texture is addressed using an
integer index and two floating-point texture coordinates; the index denotes a layer within the
sequence and the coordinates address a texel within that layer.
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A layered texture can only be a CUDA array by calling cudaMalloc3DArray () with the
cudaArrayLayered flag (and a height of zero for one-dimensional layered texture).

Layered textures are fetched using the device functions described in tex1DLayered(],
tex1DLayered|(), tex2DLayered|(), and tex2DLayered(]. Texture filtering (see Texture Fetching) is
done only within a layer, not across layers.

Layered textures are only supported on devices of compute capability 2.0 and higher.

3.2.12.1.5. Cubemap Textures

A cubemap texture is a special type of two-dimensional layered texture that has six layers
representing the faces of a cube:

» The width of a layer is equal to its height.

» The cubemap is addressed using three texture coordinates x, y, and z that are interpreted
as a direction vector emanating from the center of the cube and pointing to one face of the
cube and a texel within the layer corresponding to that face. More specifically, the face
Is selected by the coordinate with largest magnitude m and the corresponding layer is
addressed using coordinates (s/m+1)/2 and (t/m+1)/2 where s and t are defined in Table 2.

Table 2. Cubemap Fetch

face m s t
x>0 0 X -z -y

Ix| > lyl and Ix] > |z
x <0 1 -X vd -y
>0 2 X z

lyl > Ix] and Iyl > |z] vz y

y<0 3 -y X -Z
z>0 4 z X -y

lz| > Ix] and Iz| > lyl
z<0 5 -z -X -y

A cubemap texture can only be a CUDA array by calling cudaMalloc3DArray () with the
cudaArrayCubemap flag.

Cubemap textures are fetched using the device function described in texCubemap() and
texCubemapl).

Cubemap textures are only supported on devices of compute capability 2.0 and higher.

3.2.12.1.6. Cubemap Layered Textures

A cubemap layered texture is a layered texture whose layers are cubemaps of same dimension.

A cubemap layered texture is addressed using an integer index and three floating-point
texture coordinates; the index denotes a cubemap within the sequence and the coordinates
address a texel within that cubemap.

A cubemap layered texture can only be a CUDA array by calling cudaMalloc3DArray () with
the cudaArraylLayered and cudaArrayCubemap flags.
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Cubemap layered textures are fetched using the device function described in
texCubemapl ayered() and texCubemapLayered(]). Texture filtering (see Texture Fetching) is
done only within a layer, not across layers.

Cubemap layered textures are only supported on devices of compute capability 2.0 and higher.

3.2.12.1.7. Texture Gather

Texture gather is a special texture fetch that is available for two-dimensional textures only. It
is performed by the tex2Dgather () function, which has the same parameters as tex2D(),
plus an additional comp parameter equal to 0, 1, 2, or 3 (see tex2Dgather() and tex2Dgather()).
It returns four 32-bit numbers that correspond to the value of the component comp of each of
the four texels that would have been used for bilinear filtering during a regular texture fetch.
For example, if these texels are of values (253, 20, 31, 255), (250, 25, 29, 254), (249, 16, 37, 253),
(251, 22, 30, 250), and comp is 2, tex2Dbgather () returns (31, 29, 37, 30).

Note that texture coordinates are computed with only 8 bits of fractional precision.
tex2Dgather () may therefore return unexpected results for cases where tex2D () would
use 1.0 for one of its weights (a or B, see Linear Filtering). For example, with an x texture
coordinate of 2.49805: xg=x-0.5=1.99805, however the fractional part of xg is stored in an 8-
bit fixed-point format. Since 0.99805 is closer to 256.f/256.f than it is to 255.f/256.f, xg has the
value 2. A tex2Dgather () in this case would therefore return indices 2 and 3 in x, instead of
indices 1 and 2.

Texture gather is only supported for CUDA arrays created with the cudaArrayTextureGather
flag and of width and height less than the maximum specified in Table 15 for texture gather,
which is smaller than for regular texture fetch.

Texture gather is only supported on devices of compute capability 2.0 and higher.

3.2.12.2. Surface Memory

For devices of compute capability 2.0 and higher, a CUDA array (described in Cubemap
Surfaces], created with the cudaaArraysurfaceloadsStore flag, can be read and written via a
surface object or surface reference using the functions described in Surface Functions.

Table 15 lists the maximum surface width, height, and depth depending on the compute
capability of the device.

3.2.12.2.1. Surface Object API

A surface object is created using cudaCreateSurfaceObject () from a resource description
of type struct cudaResourceDesc.

The following code sample applies some simple transformation kernel to a texture.

// Simple copy kernel

__global  void copyKernel (cudaSurfaceObject t inputSurfObj,
cudaSurfaceObject t outputSurfObj,
int width, int height)

// Calculate surface coordinates
unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x < width && y < height) {

uchar4 data;
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// Read from input surface
surf2Dread (&data, inputSurfObj, x * 4, vy);
// Write to output surface
surf2Dwrite (data, outputSurfObj, x * 4, vy);

// Host code
int main ()

{
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const int height = 1024;
const int width = 1024;

// Allocate and set some host data
unsigned char *h data =

(unsigned char *)std::malloc(sizeof (unsigned char) * width * height * 4);

for (int 1 = 0; i < height * width * 4; ++i)
h datali] = i;

// Allocate CUDA arrays in device memory
cudaChannelFormatDesc channelDesc =

cudaCreateChannelDesc (8, 8, 8, 8, cudaChannelFormatKindUnsigned) ;

cudaArray t culnputArray;

cudaMallocArray (&culnputArray, &channelDesc, width, height,
cudaArraySurfacelLoadStore) ;

cudaArray t cuOutputArray;

cudaMallocArray (&cuOutputArray, &channelDesc, width, height,
cudaArraySurfacelLoadStore) ;

// Set pitch of the source (the width in memory in bytes of the 2D array

// pointed to by src, including padding), we dont have any padding
const size t spitch = 4 * width * sizeof (unsigned char);

// Copy data located at address h data in host memory to device memory

cudaMemcpy2DToArray (culnputArray, 0, 0, h data, spitch,
4 * width * sizeof (unsigned char), height,
cudaMemcpyHostToDevice) ;

// Specify surface

struct cudaResourceDesc resDesc;

memset (&resDesc, 0, sizeof (resDesc));
resDesc.resType = cudaResourceTypeArray;

// Create the surface objects
resDesc.res.array.array = culnputArray;
cudaSurfaceObject t inputSurfObj = 0;
cudaCreateSurfaceObject (&inputSurfObj, &resDesc) ;
resDesc.res.array.array = cuOutputArray;
cudaSurfaceObject t outputSurfObj = 0;
cudaCreateSurfaceObject (&outputSurfObj, &resDesc) ;

// Invoke kernel
dim3 threadsperBlock (16, 16);
dim3 numBlocks ( (width + threadsperBlock.x - 1) / threadsperBlock.x,

(height + threadsperBlock.y - 1) / threadsperBlock.y);
copyKernel<<<numBlocks, threadsperBlock>>> (inputSurfObj, outputSurfObj,

height) ;

// Copy data from device back to host
cudaMemcpy2DFromArray (h data, spitch, cuOutputArray, 0, O,
4 * width * sizeof (unsigned char), height,
cudaMemcpyDeviceToHost) ;

// Destroy surface objects
cudaDestroySurfaceObject (inputSurfObj) ;
cudaDestroySurfaceObject (outputSurfObj) ;

// Free device memory

PG-02829-001_v11.7

width,

67



Programming Interface

cudaFreeArray (culnputArray) ;
cudaFreeArray (cuOutputArray) ;

// Free host memory
free (h data);

return 0;

}

3.2.12.2.2. [[DEPRECATED]] Surface Reference API

Surface Reference APl is deprecated.

A surface reference is declared at file scope as a variable of type surface:

surface<void, Type> surfRef;

where Type specifies the type of the surface reference and is equal

to cudaSurfaceTypelD, cudaSurfaceType2D, cudaSurfaceType3D,
cudaSurfaceTypeCubemap, cudaSurfaceTypelDLayered, cudaSurfaceType2DLayered,
or cudaSurfaceTypeCubemapLayered; Type IS an optional argument which defaults to
cudaSurfaceType1D. A surface reference can only be declared as a static global variable and
cannot be passed as an argument to a function.

Before a kernel can use a surface reference to access a CUDA array, the surface reference
must be bound to the CUDA array using cudaBindSurfaceToArray ().

The following code samples bind a surface reference to a CUDA array cuArray:
» Using the low-level API:

surface<void, cudaSurfaceType2D> surfRef;
surfaceReference* surfRefPtr;

cudaGetSurfaceReference (&surfRefPtr, "surfRef");
cudaChannelFormatDesc channelDesc;

cudaGetChannelDesc (&channelDesc, culArray);
cudaBindSurfaceToArray (surfRef, cuArray, &channelDesc);

» Using the high-level API:

surface<void, cudaSurfaceType2D> surfRef;
cudaBindSurfaceToArray (surfRef, cuArray);

A CUDA array must be read and written using surface functions of matching dimensionality
and type and via a surface reference of matching dimensionality; otherwise, the results of
reading and writing the CUDA array are undefined.

Unlike texture memory, surface memory uses byte addressing. This means that the x-
coordinate used to access a texture element via texture functions needs to be multiplied by
the byte size of the element to access the same element via a surface function. For example,
the element at texture coordinate x of a one-dimensional floating-point CUDA array bound to
a texture reference texRef and a surface reference surfRef is read using texld (texRef,
x) Via texRef, but surflDread (surfRef, 4*x)VE)surfRef.SHﬂHarW,theekﬂﬂentat
texture coordinate x and y of a two-dimensional floating-point CUDA array bound to a texture
reference texRef and a surface reference surfRef is accessed using tex2d (texRef, x,

y) Via texRef, but surf2Dread (surfRef, 4*x, y) via surfRef[thebyKeoﬁsetofthey—
coordinate is internally calculated from the underlying line pitch of the CUDA array).
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The following code sample applies some simple transformation kernel to a texture.

// 2D surfaces
surface<void, 2> inputSurfRef;
surface<void, 2> outputSurfRef;

// Simple copy kernel
__global  void copyKernel (int width, int height)

{

}

// Calculate surface coordinates
unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x < width && y < height) {

uchar4 data;

// Read from input surface

surf2Dread (&data, inputSurfRef, x * 4, vy);

// Write to output surface

surf2Dwrite (data, outputSurfRef, x * 4, vy);

// Host code
int main ()

{

// Allocate CUDA arrays in device memory
cudaChannelFormatDesc channelDesc =
cudaCreateChannelDesc (8, 8, 8, 8,
cudaChannelFormatKindUnsigned) ;
cudaArray* culnputArray;
cudaMallocArray (&culnputArray, &channelDesc, width, height,
cudaArraySurfacelLoadStore) ;
cudaArray* cuOutputArray;
cudaMallocArray (&cuOutputArray, &channelDesc, width, height,
cudaArraySurfacelLoadStore) ;

// Copy to device memory some data located at address h data

// in host memory

cudaMemcpyToArray (culnputArray, 0, 0, h data, size,
cudaMemcpyHostToDevice) ;

// Bind the arrays to the surface references
cudaBindSurfaceToArray (inputSurfRef, culnputArray);
cudaBindSurfaceToArray (outputSurfRef, cuOutputArray);

// Invoke kernel

dim3 dimBlock (16, 16);

dim3 dimGrid((width + dimBlock.x - 1) / dimBlock.x,
(height + dimBlock.y - 1) / dimBlock.y);

copyKernel<<<dimGrid, dimBlock>>>(width, height);

// Free device memory
cudaFreeArray (culnputArray) ;
cudaFreeArray (cuOutputArray) ;

return 0;

3.2.12.2.3. Cubemap Surfaces

Cubemap surfaces are accessed usingsurfCubemapread () and surfCubemapwrite ()

(surfCubemapread and surfCubemapwrite) as a two-dimensional layered surface, i.e., using
an integer index denoting a face and two floating-point texture coordinates addressing a texel
within the layer corresponding to this face. Faces are ordered as indicated in Table 2.
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3.2.12.2.4. Cubemap Layered Surfaces

Cubemap layered surfaces are accessed using surfCubemapLayeredread () and
surfCubemapLayeredwrite () [surfCubemaplayeredread(] and surfCubemaplayeredwrite())
as a two-dimensional layered surface, i.e., using an integer index denoting a face of one of
the cubemaps and two floating-point texture coordinates addressing a texel within the layer
corresponding to this face. Faces are ordered as indicated in Table 2, so index ((2 * 6) + 3), for
example, accesses the fourth face of the third cubemap.

3.2.12.3. CUDA Arrays

CUDA arrays are opaque memory layouts optimized for texture fetching. They are one
dimensional, two dimensional, or three-dimensional and composed of elements, each of
which has 1, 2 or 4 components that may be signed or unsigned 8-, 16-, or 32-bit integers, 16-
bit floats, or 32-bit floats. CUDA arrays are only accessible by kernels through texture fetching
as described in Texture Memory or surface reading and writing as described in Surface

Memory.

3.2.12.4. Read/Write Coherency

The texture and surface memory is cached (see Device Memory Accesses] and within the same
kernel call, the cache is not kept coherent with respect to global memory writes and surface
memory writes, so any texture fetch or surface read to an address that has been written to

via a global write or a surface write in the same kernel call returns undefined data. In other
words, a thread can safely read some texture or surface memory location only if this memory
location has been updated by a previous kernel call or memory copy, but not if it has been
previously updated by the same thread or another thread from the same kernel call.

3.2.13. Graphics Interoperability

Some resources from OpenGL and Direct3D may be mapped into the address space of CUDA,
either to enable CUDA to read data written by OpenGL or Direct3D, or to enable CUDA to write
data for consumption by OpenGL or Direct3D.

A resource must be registered to CUDA before it can be mapped using the functions
mentioned in OpenGL Interoperability and Direct3D Interoperability. These functions return a
pointer to a CUDA graphics resource of type struct cudaGraphicsResource. Registering a
resource is potentially high-overhead and therefore typically called only once per resource. A
CUDA graphics resource is unregistered using cudaGraphicsUnregisterResource (). Each
CUDA context which intends to use the resource is required to register it separately.

Once a resource is registered to CUDA, it can be mapped and unmapped as many times as
necessary using cudaGraphicsMapResources () and cudaGraphicsUnmapResources ().
cudaGraphicsResourceSetMapFlags () can be called to specify usage hints (write-only,
read-only) that the CUDA driver can use to optimize resource management.

A mapped resource can be read from or written to by kernels using the device memory
address returned by cudaGraphicsResourceGetMappedPointer () for buffers and
cudaGraphicsSubResourceGetMappedArray () for CUDA arrays.
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Accessing a resource through OpenGL, Direct3D, or another CUDA context while it is mapped
produces undefined results. OpenGL Interoperability and Direct3D Interoperability give
specifics for each graphics APl and some code samples. SLI Interoperability gives specifics for
when the system is in SLI mode.

3.2.13.1. OpenGL Interoperability

The OpenGL resources that may be mapped into the address space of CUDA are OpenGL
buffer, texture, and renderbuffer objects.

A buffer object is registered using cudaGraphicsGLRegisterBuffer (). In CUDA, it appears
as a device pointer and can therefore be read and written by kernels or via cudaMemcpy ()
calls.

A texture or renderbuffer object is registered using cudaGraphicsGLRegisterImage ().

In CUDA, it appears as a CUDA array. Kernels can read from the array by binding it to a
texture or surface reference. They can also write to it via the surface write functions if the
resource has been registered with the cudaGraphicsRegisterFlagsSurfaceLoadStore
flag. The array can also be read and written via cudaMemcpy?2D () calls.
cudaGraphicsGLRegisterImage () supports all texture formats with 1, 2, or 4 components
and an internal type of float (for example, GL_RGBA FLOAT32), normalized integer (for
example, GI, RGBA8, GL INTENSITY16), and unnormalized integer (for example, GI_ RGBASUT)
(please note that since unnormalized integer formats require OpenGL 3.0, they can only be
written by shaders, not the fixed function pipeline).

The OpenGL context whose resources are being shared has to be current to the host thread
making any OpenGL interoperability API calls.

Please note: When an OpenGL texture is made bindless (say for example by requesting an
image or texture handle using the glGetTextureHandle*/glGet TmageHandle* APIs] it cannot
be registered with CUDA. The application needs to register the texture for interop before
requesting an image or texture handle.

The following code sample uses a kernel to dynamically modify a 2D width x height grid of
vertices stored in a vertex buffer object:

GLuint positionsVBO;
struct cudaGraphicsResource* positionsVBO CUDA;

int main ()

{
// Initialize OpenGL and GLUT for device 0
// and make the OpenGL context current

glutDisplayFunc (display) ;

// Explicitly set device 0
cudaSetDevice (0) ;

// Create buffer object and register it with CUDA
glGenBuffers (l, &positionsVBO) ;
glBindBuffer (GL ARRAY BUFFER, positionsVBO) ;
unsigned int size = width * height * 4 * sizeof (float);
glBufferData (GL_ARRAY BUFFER, size, 0, GL DYNAMIC DRAW) ;
glBindBuffer (GL ARRAY BUFFER, O0);
cudaGraphicsGLRegisterBuffer (¢positionsVBO CUDA,
positionsVRBO,
cudaGraphicsMapFlagsWriteDiscard) ;
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// Launch rendering loop
glutMainLoop () ;

void display ()

{

// Map buffer object for writing from CUDA

float4* positions;

cudaGraphicsMapResources (1, &positionsVBO CUDA, O0);

size t num bytes;

cudaGraphicsResourceGetMappedPointer ( (void**) &positions,
&num_ bytes,
positionsVBO CUDA)) ;

// Execute kernel

dim3 dimBlock (16, 16, 1);

dim3 dimGrid(width / dimBlock.x, height / dimBlock.y, 1);

createVertices<<<dimGrid, dimBlock>>>(positions, time,
width, height);

// Unmap buffer object
cudaGraphicsUnmapResources (1, &positionsVBO CUDA, O0);

// Render from buffer object

glClear (GL _COLOR BUFFER BIT | GL DEPTH BUFFER BIT);
glBindBuffer (GL_ARRAY BUFFER, positionsVBO) ;
glvertexPointer (4, GL FLOAT, 0, 0);
glEnableClientState (GL VERTEX ARRAY);
glDrawArrays (GL _POINTS, 0, width * height);
glDisableClientState (GL_VERTEX ARRAY);

// Swap buffers
glutSwapBuffers () ;
glutPostRedisplay () ;

void deleteVBO ()

{

cudaGraphicsUnregisterResource (positionsVBO CUDA) ;
glDeleteBuffers(l, &positionsVBO) ;

__global void createVertices (float4* positions, float time,
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unsigned int width, unsigned int height)

unsigned int x blockIdx.x * blockDim.x + threadIdx.x;
unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;

// Calculate uv coordinates

float u = x / (float)width;

float v = y / (float)height;
u=u* 2.06 - 1.0f;

v=v * 2.0f] - 1.0f;

// calculate simple sine wave pattern
float freq = 4.0f;
float w = sinf(u * freq + time)

* cosf(v * freq + time) * 0.5f;

// Write positions
positions[y * width + x] = make floatd4(u, w, v, 1.0f);
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On Windows and for Quadro GPUs, cudaWGLGetDevice () can be used to retrieve the
CUDA device associated to the handle returned by wg1EnumGpusNV () . Quadro GPUs offer
higher performance OpenGL interoperability than GeForce and Tesla GPUs in a multi-
GPU configuration where OpenGL rendering is performed on the Quadro GPU and CUDA
computations are performed on other GPUs in the system.

3.2.13.2. Direct3D Interoperability

Direct3D interoperability is supported for Direct3D 9Ex, Direct3D 10, and Direct3D 11.

A CUDA context may interoperate only with Direct3D devices that fulfill the following criteria:
Direct3D 9Ex devices must be created with DeviceType set to D3DDEVTYPE HAL and
BehaviorFlags with the D3DCREATE HARDWARE VERTEXPROCESSING flag; Direct3D 10 and
Direct3D 11 devices must be created with briverType set to D3D DRIVER TYPE HARDWARE.

The Direct3D resources that may be mapped into the address space of CUDA are

Direct3D buffers, textures, and surfaces. These resources are registered using
cudaGraphicsD3D9RegisterResource (), cudaGraphicsD3D10RegisterResource (), and
cudaGraphicsD3Dl11RegisterResource ().

The following code sample uses a kernel to dynamically modify a 2D width x height grid of
vertices stored in a vertex buffer object.

3.2.13.2.1. Direct3D 9 Version

IDirect3D9* D3D;
IDirect3DDevice9* device;
struct CUSTOMVERTEX {
FLOAT x, vy, z;
DWORD color;
b
IDirect3DVertexBuffer9* positionsVB;
struct cudaGraphicsResource* positionsVB_ CUDA;

int main ()
{
int dev;
// Initialize Direct3D
D3D = Direct3DCreate9Ex(D3D_SDK_VERSION);

// Get a CUDA-enabled adapter
unsigned int adapter = 0;
for (; adapter < g_pD3D—>GetAdapterCount(); adapter++) {
D3DADAPTER_IDENTIFIER9 adapterId;
g _pD3D->GetAdapterIdentifier (adapter, 0, &adapterId);
if (cudaD3D9GetDevice (&dev, adapterId.DeviceName)
== cudaSuccess)
break;

// Create device
D3D->CreateDeviceEx (adapter, D3DDEVTYPE HAL, hWnd,
D3DCREATE_HARDWARE_VERTEXPROCESSING,

&params, NULL, &device);

// Use the same device
cudaSetDevice (dev) ;

// Create vertex buffer and register it with CUDA
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unsigned int size = width * height * sizeof (CUSTOMVERTEX) ;
device->CreateVertexBuffer (size, 0, D3DFVF CUSTOMVERTEX,
D3DPOOL DEFAULT, &positionsVB, 0);

cudaGraphicsD3D9RegisterResource (&positionsVB CUDA,

positionsVB,

cudaGraphicsRegisterFlagsNone) ;

cudaGraphicsResourceSetMapFlags (positionsVB CUDA,

cudaGraphicsMapFlagsWriteDiscard) ;

// Launch rendering loop
while (...) {

Render () ;

void Render ()
{
// Map vertex buffer for writing from CUDA
floatd4* positions;
cudaGraphicsMapResources (1, &positionsVB CUDA, 0);
size t num bytes;
cudaGraphicsResourceGetMappedPointer ( (void**) &positions,
&num_bytes,
positionsVB CUDA)) ;

// Execute kernel

dim3 dimBlock (16, 16, 1);

dim3 dimGrid(width / dimBlock.x, height / dimBlock.y, 1);

createVertices<<<dimGrid, dimBlock>>>(positions, time,
width, height);

// Unmap vertex buffer
cudaGraphicsUnmapResources (1, &positionsVB CUDA, 0);

// Draw and present

}

vold releaseVB ()

{
cudaGraphicsUnregisterResource (positionsVB_ CUDA) ;
positionsVB->Release() ;

}

__global void createVertices(float4* positions, float time,
unsigned int width, unsigned int height)
{
unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;

// Calculate uv coordinates
float u = x / (float)width;

float v = y / (float)height;
u=u* 2.0f£ - 1.0f;
v=v* 2.0f - 1.0f;

// Calculate simple sine wave pattern
float freq = 4.0f;
float w = sinf(u * freq + time)

* cosf(v * freq + time) * 0.5f;

// Write positions
positions[y * width + x] =
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make float4(u, w, v,  int as float (0xff00££00));

3.2.13.2.2. Direct3D 10 Version

ID3D10Device* device;
struct CUSTOMVERTEX {
FLOAT x, vy, 2Z;
DWORD color;
}i
ID3D10Buffer* positionsVB;
struct cudaGraphicsResource* positionsVB CUDA;

int main ()

{
int dev;
// Get a CUDA-enabled adapter
IDXGIFactory* factory;
CreateDXGIFactory( uuidof (IDXGIFactory), (void**)s&factory);
IDXGIAdapter* adapter = 0;

for (unsigned int i = 0; !adapter; ++1i) {
if (FAILED (factory->EnumAdapters (i, &adapter))
break;
if (cudaD3D10GetDevice (&dev, adapter) == cudaSuccess)
break;

adapter->Release () ;

}

factory->Release() ;
// Create swap chain and device

D3D10CreateDeviceAndSwapChain (adapter,
D3D10_DRIVER_TYPE_HARDWARE, 0,
D3D10 CREATE DEVICE DEBUG,
D3D10_SDK_VERSION,
&swapChainDesc, &swapChain,
&device) ;

adapter->Release () ;

// Use the same device
cudaSetDevice (dev) ;

// Create vertex buffer and register it with CUDA
unsigned int size = width * height * sizeof (CUSTOMVERTEX) ;
D3D10 BUFFER DESC bufferDesc;

bufferDesc.Usage D3D10 USAGE DEFAULT;

bufferDesc.ByteWidth = size;
bufferDesc.BindFlags = D3D10 BIND VERTEX BUFFER;
bufferDesc.CPUAccessFlags = 0;

bufferDesc.MiscFlags = 0;

device->CreateBuffer (&bufferDesc, 0, &positionsVB);
cudaGraphicsD3D10RegisterResource (&épositionsVB CUDA,
positionsVB,

Programming Interface

cudaGraphicsRegisterFlagsNone) ;

cudaGraphicsResourceSetMapFlags (positionsVB CUDA,

cudaGraphicsMapFlagsWriteDiscard) ;

// Launch rendering loop
while (...) {

Render () ;
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void Render ()
{
// Map vertex buffer for writing from CUDA
float4* positions;
cudaGraphicsMapResources (1, &positionsVB CUDA, O0);
size t num bytes;
cudaGraphicsResourceGetMappedPointer ( (void**) &positions,
&num_bytes,
positionsVB CUDA)) ;

// Execute kernel

dim3 dimBlock (16, 16, 1);

dim3 dimGrid(width / dimBlock.x, height / dimBlock.y, 1);

createVertices<<<dimGrid, dimBlock>>>(positions, time,
width, height);

// Unmap vertex buffer
cudaGraphicsUnmapResources (1, &positionsVB CUDA, O0);

// Draw and present

}

void releaseVB ()

{
cudaGraphicsUnregisterResource (positionsVB CUDA) ;
positionsVB->Release () ;

}

__global  void createVertices(float4* positions, float time,
unsigned int width, unsigned int height)
{
unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;

// Calculate uv coordinates
float u = x / (float)width;

float v = y / (float)height;
u=u* 2.0f - 1.0£;
v=v * 2.0f - 1.0f;

// Calculate simple sine wave pattern
float freq = 4.0f;
float w = sinf(u * freqg + time)

* cosf(v * freq + time) * 0.5f;

// Write positions
positions[y * width + x] =
make float4(u, w, v,  int as float (0xff00f££00));

3.2.13.2.3. Direct3D 11 Version

ID3D11Device* device;
struct CUSTOMVERTEX ({
FLOAT x, vy, z;
DWORD color;
}i
ID3D11Buffer* positionsVB;
struct cudaGraphicsResource* positionsVB CUDA;

int main ()
{
int dev;
// Get a CUDA-enabled adapter
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IDXGIFactory* factory;
CreateDXGIFactory( uuidof (IDXGIFactory), (void**)s&factory);
IDXGIAdapter* adapter = 0;

for (unsigned int i = 0; !adapter; ++1i) {
if (FAILED (factory->EnumAdapters (i, &adapter))
break;
if (cudaD3Dl11GetDevice (&dev, adapter) == cudaSuccess)
break;

adapter->Release() ;
}

factory->Release () ;
// Create swap chain and device

sFnPtr D3Dl1CreateDeviceAndSwapChain (adapter,
D3D117DRIVER7TYPE7HARDWARE,
0,
D3D11 CREATE DEVICE DEBUG,
featurelevels, 3,
D3D11 SDK_VERSION,
&swapChainDesc, &swapChain,
&device,
&featurelevel,
&deviceContext) ;
adapter->Release() ;

// Use the same device
cudaSetDevice (dev) ;

// Create vertex buffer and register it with CUDA
unsigned int size = width * height * sizeof (CUSTOMVERTEX) ;
D3D11 BUFFER DESC bufferDesc;

bufferDesc.Usage = D3D11 USAGE DEFAULT;
bufferDesc.ByteWidth = size;
bufferDesc.BindFlags = D3D1l_BIND_VERTEX_BUFFER;
bufferDesc.CPUAccessFlags = 0;

bufferDesc.MiscFlags = 0;

device->CreateBuffer (&bufferDesc, 0, &positionsVB);
cudaGraphicsD3Dl11RegisterResource (&positionsVB CUDA,
positionsVB,
cudaGraphicsRegisterFlagsNone) ;
cudaGraphicsResourceSetMapFlags (positionsVB CUDA,
cudaGraphicsMapFlagsWriteDiscard) ;

// Launch rendering loop
while (...) {

Render () ;

volid Render ()

{
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// Map vertex buffer for writing from CUDA

floatd4* positions;

cudaGraphicsMapResources (1, &positionsVB CUDA, O0);

size t num bytes;

cudaGraphicsResourceGetMappedPointer ( (void**) &positions,
&num bytes,
positionsVB CUDA)) ;

// Execute kernel
dim3 dimBlock (16, 16, 1);
dim3 dimGrid(width / dimBlock.x, height / dimBlock.y, 1);
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createVertices<<<dimGrid, dimBlock>>>(positions, time,
width, height);

// Unmap vertex buffer
cudaGraphicsUnmapResources (1, &positionsVB CUDA, 0);

// Draw and present

}

void releaseVB ()

{

cudaGraphicsUnregisterResource (positionsVB_ CUDA) ;
positionsVB->Release() ;

__global  void createVertices (float4* positions, float time,
unsigned int width, unsigned int height)

blockIdx.x * blockDim.x + threadIdx.x;
blockIdx.y * blockDim.y + threadIdx.y;

unsigned int x
unsigned int y

// Calculate uv coordinates

float u = x / (float)width;
float v. = y / (float)height;
u=u* 2.0 - 1.0f;

v=v * 2.0 - 1.0f;

// Calculate simple sine wave pattern
float freq = 4.0f;
float w = sinf(u * freqg + time)

* cosf(v * freq + time) * 0.5f;

// Write positions
positions[y * width + x] =
make float4(u, w, v,  int as float (0xff00££00));

3.2.13.3. SLI Interoperability

In a system with multiple GPUs, all CUDA-enabled GPUs are accessible via the CUDA driver
and runtime as separate devices. There are however special considerations as described
below when the system is in SLI mode.

First, an allocation in one CUDA device on one GPU will consume memory on other GPUs that
are part of the SLI configuration of the Direct3D or OpenGL device. Because of this, allocations
may fail earlier than otherwise expected.

Second, applications should create multiple CUDA contexts, one for each GPU in the SLI
configuration. While this is not a strict requirement, it avoids unnecessary data transfers
between devices. The application can use the cudab3D[9]10|11]GetDevices () for Direct3D
and cudaGLGetDevices () for OpenGL set of calls to identify the CUDA device handle(s) for
the device(s] that are performing the rendering in the current and next frame. Given this
information the application will typically choose the appropriate device and map Direct3D

or OpenGL resources to the CUDA device returned by cudabD3D[9]10|11]GetDevices ()

or cudaGLGetDevices () when the deviceList parameteris set to cudad3D[9]10]|
11]DevicelistCurrentFrame O cudaGLDevicelListCurrentFrame.

Please note that resource returned from cudaGraphicsD9D[9]|10|11]RegisterResource
and cudaGraphicsGLRegister [Buffer|Image] must be only used on device the registration
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happened. Therefore on SLI configurations when data for different frames is computed on
different CUDA devices it is necessary to register the resources for each separately.

See Direct3D Interoperability and OpenGL Interoperability for details on how the CUDA
runtime interoperate with Direct3D and OpenGL, respectively.

3.2.14. External Resource Interoperability

External resource interoperability allows CUDA to import certain resources that are explicitly
exported by other APls. These objects are typically exported by other APIs using handles
native to the Operating System, like file descriptors on Linux or NT handles on Windows.
They could also be exported using other unified interfaces such as the NVIDIA Software
Communication Interface. There are two types of resources that can be imported: memory
objects and synchronization objects.

Memory objects can be imported into CUDA using cudaImportExternalMemory (). An
imported memory object can be accessed from within kernels using device pointers mapped
onto the memory object via cudaExternalMemoryGetMappedBuffer () or CUDA mipmapped
arrays mapped via cudaExternalMemoryGetMappedMipmappedArray (). Depending on

the type of memory object, it may be possible for more than one mapping to be setup on a
single memory object. The mappings must match the mappings setup in the exporting API.
Any mismatched mappings result in undefined behavior. Imported memory objects must be
freed using cudabDestroyExternalMemory (). Freeing a memory object does not free any
mappings to that object. Therefore, any device pointers mapped onto that object must be
explicitly freed using cudaFree () and any CUDA mipmapped arrays mapped onto that object
must be explicitly freed using cudaFreeMipmappedArray (). It is illegal to access mappings to
an object after it has been destroyed.

Synchronization objects can be imported into CUDA using

cudaImportExternalSemaphore (). An imported synchronization object can then

be signaled using cudaSignalExternalSemaphoresAsync () and waited on using
cudaWaitExternalSemaphoresAsync (). It is illegal to issue a wait before the corresponding
signal has been issued. Also, depending on the type of the imported synchronization object,
there may be additional constraints imposed on how they can be signaled and waited on,

as described in subsequent sections. Imported semaphore objects must be freed using
cudaDestroyExternalSemaphore (). All outstanding signals and waits must have completed
before the semaphore object is destroyed.

3.2.14.1. Vulkan Interoperability
3.2.14.1.1. Matching device UUIDs

When importing memory and synchronization objects exported by Vulkan, they must be
imported and mapped on the same device as they were created on. The CUDA device

that corresponds to the Vulkan physical device on which the objects were created can be
determined by comparing the UUID of a CUDA device with that of the Vulkan physical device,
as shown in the following code sample. Note that the Vulkan physical device should not be
part of a device group that contains more than one Vulkan physical device. The device group

CUDA C++ Programming Guide PG-02829-001_v11.7 | 79



Programming Interface

as returned by vkEnumeratePhysicalDeviceGroups that contains the given Vulkan physical
device must have a physical device count of 1.

int getCudaDeviceForVulkanPhysicalDevice (VkPhysicalDevice vkPhysicalDevice) {
VkPhysicalDeviceIDProperties vkPhysicalDeviceIDProperties = {};
vkPhysicalDeviceIDProperties.sType =

VK _STRUCTURE TYPE PHYSICAL DEVICE ID PROPERTIES;
vkPhysicalDeviceIDProperties.pNext = NULL;

VkPhysicalDeviceProperties2 vkPhysicalDeviceProperties2 = {};

vkPhysicalDeviceProperties2.sType =
VK_STRUCTURE TYPE PHYSICAL DEVICE PROPERTIES 2;

vkPhysicalDeviceProperties2.pNext = &vkPhysicalDeviceIDProperties;

vkGetPhysicalDeviceProperties2 (vkPhysicalDevice, &vkPhysicalDeviceProperties?2);

int cudaDeviceCount;
cudaGetDeviceCount (&cudaDeviceCount) ;

for (int cudaDevice = 0; cudaDevice < cudaDeviceCount; cudaDevice++) {
cudaDeviceProp deviceProp;
cudaGetDeviceProperties (&deviceProp, cudaDevice) ;
if (!memcmp (&deviceProp.uuid, vkPhysicalDeviceIDProperties.deviceUUID,
VK_UUID SIZE)) {
return cudaDevice;
}
}

return cudalInvalidDevicelId;

3.2.14.1.2. Importing Memory Objects

On Linux and Windows 10, both dedicated and non-dedicated memory objects
exported by Vulkan can be imported into CUDA. On Windows 7, only dedicated memory
objects can be imported. When importing a Vulkan dedicated memory object, the flag
cudaExternalMemoryDedicated must be set.

A Vulkan memory object exported using
VK_EXTERNAL MEMORY HANDLE TYPE OPAQUE FD BIT can be imported into CUDA using

the file descriptor associated with that object as shown below. Note that CUDA assumes
ownership of the file descriptor once it is imported. Using the file descriptor after a successful
import results in undefined behavior.

cudaExternalMemory t importVulkanMemoryObjectFromFileDescriptor (int
fd, unsigned long long size, bool isDedicated) {
cudaExternalMemory t extMem = NULL;
cudaExternalMemoryHandleDesc desc = {};

memset (&desc, 0, sizeof (desc));

desc.type = cudaExternalMemoryHandleTypeOpaqueFd;
desc.handle.fd = £d;

desc.size = size;
if (isDedicated) {
desc.flags |= cudaExternalMemoryDedicated;

}
cudalImportExternalMemory (&extMem, &desc);

// Input parameter 'fd' should not be used beyond this point as CUDA has assumed
ownership of it
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return extMem;

A Vulkan memory object exported using

VK_EXTERNAL MEMORY HANDLE TYPE OPAQUE WIN32 BIT can be imported into CUDA using
the NT handle associated with that object as shown below. Note that CUDA does not assume
ownership of the NT handle and it is the application’s responsibility to close the handle when
it is not required anymore. The NT handle holds a reference to the resource, so it must be
explicitly freed before the underlying memory can be freed.

cudaExternalMemory t importVulkanMemoryObjectFromNTHandle (HANDLE

handle, unsigned long long size, bool isDedicated) ({
cudaExternalMemory t extMem = NULL;
cudaExternalMemoryHandleDesc desc = {};

memset (&desc, 0, sizeof (desc));

desc.type = cudaExternalMemoryHandleTypeOpaqueWin32;
desc.handle.win32.handle = handle;

desc.size = size;
if (isDedicated) {
desc.flags |= cudaExternalMemoryDedicated;

}
cudaImportExternalMemory (&extMem, &desc);

// Input parameter 'handle' should be closed if it's not needed anymore
CloseHandle (handle) ;

return extMem;

A Vulkan memory object exported using
VK_EXTERNAL MEMORY HANDLE TYPE OPAQUE WIN32 BIT can also be imported using a
named handle if one exists as shown below.

cudaExternalMemory t importVulkanMemoryObjectFromNamedNTHandle (LPCWSTR
name, unsigned long long size, bool isDedicated) ({
cudaExternalMemory t extMem = NULL;
cudaExternalMemoryHandleDesc desc = {};

memset (&desc, 0, sizeof (desc)):;

desc.type = cudaExternalMemoryHandleTypeOpaqueWin32;

desc.handle.win32.name = (void *)name;
desc.size = size;
if (isDedicated) {

desc.flags |= cudaExternalMemoryDedicated;

}
cudalmportExternalMemory (&extMem, &desc);

return extMem;

A Vulkan memory object exported using
VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT can be imported into
CUDA using the globally shared D3DKMT handle associated with that object as shown below.
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Since a globally shared D3DKMT handle does not hold a reference to the underlying memory it
is automatically destroyed when all other references to the resource are destroyed.

cudaExternalMemory t importVulkanMemoryObjectFromKMTHandle (HANDLE

handle, unsigned long long size, bool isDedicated) ({
cudaExternalMemory t extMem = NULL;
cudaExternalMemoryHandleDesc desc = {};

memset (&desc, 0, sizeof (desc));

desc.type = cudaExternalMemoryHandleTypeOpaqueWin32Kmt;

desc.handle.win32.handle = (void *)handle;
desc.size = size;
if (isDedicated) {

desc.flags |= cudaExternalMemoryDedicated;

}
cudaImportExternalMemory (&extMem, &desc);

return extMem;

3.2.14.1.3. Mapping Buffers onto Imported Memory Objects

A device pointer can be mapped onto an imported memory object as shown below. The offset
and size of the mapping must match that specified when creating the mapping using the
corresponding Vulkan API. All mapped device pointers must be freed using cudaFree () .

void * mapBufferOntoExternalMemory (cudaExternalMemory t extMem, unsigned long long
offset, unsigned long long size) {

void *ptr = NULL;
cudaExternalMemoryBufferDesc desc = {};

memset (&desc, 0, sizeof (desc));

desc.offset = offset;

desc.size = size;
cudaExternalMemoryGetMappedBuffer (&ptr, extMem, &desc);

// Note: ‘ptr’ must eventually be freed using cudaFree ()

return ptr;
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3.2.14.1.4. Mapping Mipmapped Arrays onto Imported Memory

Objects

A CUDA mipmapped array can be mapped onto an imported memory object as shown below.
The offset, dimensions, format and number of mip levels must match that specified when
creating the mapping using the corresponding Vulkan API. Additionally, if the mipmapped
array is bound as a color target in Vulkan, the flag cudaArrayColorAttachment must be
set. All mapped mipmapped arrays must be freed using cudaFreeMipmappedArray (). The
following code sample shows how to convert Vulkan parameters into the corresponding CUDA
parameters when mapping mipmapped arrays onto imported memory objects.

cudaMipmappedArray t mapMipmappedArrayOntoExternalMemory (cudaExternalMemory t

}

extMem,

memset (&desc, 0, sizeof (desc))

desc.offset = offset;

desc.formatDesc = *formatDesc;

desc.extent = *extent;
desc.flags = flags;
desc.numLevels = numLevels;

unsigned long long offset,
*extent, unsigned int flags, unsigned int numLevels)
cudaMipmappedArray t mipmap =
cudakExternalMemoryMipmappedArrayDesc desc

NULL;

’

= {};

cudaChannelFormatDesc *formatDesc, cudaExtent

// Note: ‘mipmap’ must eventually be freed using cudaFreeMipmappedArray ()

cudaExternalMemoryGetMappedMipmappedArray (&mipmap,

return mipmap;

extMem,

&desc) ;

cudaChannelFormatDesc getCudaChannelFormatDescForVulkanFormat (VkFormat format)

{

cudaChannelFormatDesc d;
memset (&d, 0, sizeof(d));

switch (format) {

case VK _FORMAT R8 UINT:
cudaChannelFormatKindUnsigned;
case VK FORMAT R8 SINT:
cudaChannelFormatKindSigned;
case VK_FORMAT R8G8 UINT:
cudaChannelFormatKindUnsigned;
case VK FORMAT R8G8 SINT:
cudaChannelFormatKindSigned;
case VK_FORMAT R8GS8BS8AS UINT:
cudaChannelFormatKindUnsigned;
case VK FORMAT R8G8B8A8 SINT:
cudaChannelFormatKindSigned;
case VK _FORMAT R16 UINT:
cudaChannelFormatKindUnsigned;
case VK FORMAT R16 SINT:
cudaChannelFormatKindSigned;
case VK_FORMAT R16G16 UINT:
cudaChannelFormatKindUnsigned;
case VK FORMAT R16G16 SINT:
cudaChannelFormatKindSigned;

break;
break;
break;
break;
break;
break;
break;
break;
break;

break;

case VK FORMAT R16G16B16A16 UINT:

cudaChanHelFormgtKindUnsignea;
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case VK FORMAT R16G16B16Al6 SINT: d.x = 16; d.y = 16; d.z = 16; d.w = 16; d.£f
= cudaChannelFormatKindSigned; break;

case VK FORMAT R32 UINT: d.x = 32; d.y = 0; d.z =0; d.w=0; d.f
= cudaChannelFormatKindUnsigned; break;

case VK _FORMAT R32 SINT: d.x = 32; d.y = 0; d.z =0; d.w=0; d.f
= cudaChannelFormatKindSigned; break;

case VK FORMAT R32 SFLOAT: d.x = 32; d.y = 0; d.z =0; d.w=0; d.f
= cudaChannelFormatKindFloat; break;

case VK FORMAT R32G32 UINT: d.x = 32; d.y = 32; d.z = 0; d.w = 0; d.f
= cudaChannelFormatKindUnsigned; break;

case VK FORMAT R32G32 SINT: d.x = 32; d.y = 32; d.z = 0; d.w = 0; d.f
= cudaChannelFormatKindSigned; break;

case VK FORMAT R32G32 SFLOAT: d.x = 32; d.y = 32; d.z = 0; d.w = 0; d.f
= cudaChannelFormatKindFloat; break;

case VK FORMAT R32G32B32A32 UINT: d.x = 32; d.y = 32; d.z = 32; d.w = 32; d.f
= cudaChannelFormatKindUnsigned; break;

case VK FORMAT R32G32B32A32 SINT: d.x = 32; d.y = 32; d.z = 32; d.w = 32; d.f
= cudaChannelFormatKindSigned; break;

case VK FORMAT R32G32B32A32 SFLOAT: d.x = 32; d.y = 32; d.z = 32; d.w = 32; d.f
= cudaChannelFormatKindFloat; break;

default: assert(0);
}

return d;

}
cudaExtent getCudaExtentForVulkanExtent (VkExtent3D vkExt, uint32 t arraylayers,
VkImageViewType vkImageViewType) {

cudakExtent e = { 0, 0, 0 };

switch (vkImageViewType) {

case VK IMAGE VIEW TYPE 1D: e.width = vkExt.width; e.height = 0;

e.depth = 0; break;

case VK IMAGE VIEW TYPE 2D: e.width = vkExt.width; e.height =
vkExt.height; e.depth = 0; break;

case VK IMAGE VIEW TYPE 3D: e.width = vkExt.width; e.height =
vkExt.height; e.depth = vkExt.depth; break;

case VK IMAGE VIEW TYPE CUBE: e.width = vkExt.width; e.height =
vkExt.height; e.depth = arraylayers; break;

case VK _IMAGE VIEW TYPE 1D ARRAY: e.width = vkExt.width; e.height = 0;

e.depth = arraylayers; break;

case VK IMAGE VIEW TYPE 2D ARRAY: e.width = vkExt.width; e.height =

vkExt.height; e.depth = arraylayers; break;

case VK_IMAGE VIEW TYPE CUBE ARRAY: e.width = vkExt.width; e.height =
vkExt.height; e.depth = arraylayers; break;

default: assert(0);

}

return e;

}

unsigned int getCudaMipmappedArrayFlagsForVulkanImage (VkImageViewType

vkImageViewType, VkImageUsageFlags vkImageUsageFlags, bool allowSurfaceLoadStore) {
unsigned int flags = 0;

switch (vkImageViewType) {

case VK IMAGE VIEW TYPE CUBE: flags |= cudaArrayCubemap;
break;

case VK IMAGE VIEW TYPE CUBE ARRAY: flags |= cudaArrayCubemap |
cudaArraylayered; break;

case VK IMAGE VIEW TYPE 1D ARRAY: flags |= cudaArraylayered;
break;

case VK IMAGE VIEW TYPE 2D ARRAY: flags |= cudaArraylLayered;
break;
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default: break;
}

if (vkImageUsageFlags & VK IMAGE USAGE COLOR_ATTACHMENT BIT) {
flags |= cudaArrayColorAttachment;
}

if (allowSurfaceLoadStore) {
flags |= cudaArraySurfacelLoadStore;

}

return flags;

3.2.14.1.5. Importing Synchronization Objects

A Vulkan semaphore object exported using

VK_EXTERNAL SEMAPHORE HANDLE TYPE OPAQUE FD BITcan be imported into CUDA using
the file descriptor associated with that object as shown below. Note that CUDA assumes
ownership of the file descriptor once it is imported. Using the file descriptor after a successful
import results in undefined behavior.

cudaExternalSemaphore t importVulkanSemaphoreObjectFromFileDescriptor (int fd) {
cudaExternalSemaphore t extSem = NULL;
cudaExternalSemaphoreHandleDesc desc = {};
memset (&desc, 0, sizeof (desc));

desc.type = cudaExternalSemaphoreHandleTypeOpaqueFd;
desc.handle.fd = £fd;

cudaImportExternalSemaphore (&extSem, &desc);

// Input parameter 'fd' should not be used beyond this point as CUDA has assumed
ownership of it

return extSem;

A Vulkan semaphore object exported using

VK_EXTERNAL SEMAPHORE HANDLE TYPE OPAQUE WIN32 BIT can be imported into CUDA
using the NT handle associated with that object as shown below. Note that CUDA does not
assume ownership of the NT handle and it is the application’s responsibility to close the
handle when it is not required anymore. The NT handle holds a reference to the resource, so it
must be explicitly freed before the underlying semaphore can be freed.

cudaExternalSemaphore t importVulkanSemaphoreObjectFromNTHandle (HANDLE handle) {
cudaExternalSemaphore t extSem = NULL;
cudaExternalSemaphoreHandleDesc desc = {};

memset (&desc, 0, sizeof (desc)):;

desc.type = cudaExternalSemaphoreHandleTypeOpaqueWin32;
desc.handle.win32.handle = handle;

cudaImportExternalSemaphore (&extSem, &desc);

// Input parameter 'handle' should be closed if it's not needed anymore
CloseHandle (handle) ;

return extSem;
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A Vulkan semaphore object exported using
VK_EXTERNAL SEMAPHORE HANDLE TYPE OPAQUE WIN32 BIT can also be imported using a
named handle if one exists as shown below.

cudaExternalSemaphore t importVulkanSemaphoreObjectFromNamedNTHandle (LPCWSTR name) {
cudaExternalSemaphore t extSem = NULL;
cudaExternal SemaphoreHandleDesc desc = {};

memset (&desc, 0, sizeof (desc));

desc.type = cudaExternalSemaphoreHandleTypeOpaqueWin32;
desc.handle.win32.name = (void *)name;

cudaImportExternalSemaphore (&extSem, &desc);

return extSem;

A Vulkan semaphore object exported using

VK_EXTERNAL SEMAPHORE HANDLE TYPE OPAQUE WIN32 KMT BIT can be imported into
CUDA using the globally shared D3DKMT handle associated with that object as shown
below. Since a globally shared D3DKMT handle does not hold a reference to the underlying
semaphore it is automatically destroyed when all other references to the resource are
destroyed.

cudaExternalSemaphore t importVulkanSemaphoreObjectFromKMTHandle (HANDLE handle) {
cudaExternalSemaphore t extSem = NULL;
cudaExternalSemaphoreHandleDesc desc = {};

memset (&desc, 0, sizeof (desc));

desc.type = cudaExternalSemaphoreHandleTypeOpaqueWin32Kmt;
desc.handle.win32.handle = (void *)handle;

cudalmportExternalSemaphore (&extSem, &desc);

return extSem;

3.2.14.1.6. Signaling/Waiting on Imported Synchronization Objects

An imported Vulkan semaphore object can be signaled as shown below. Signaling such a
semaphore object sets it to the signaled state. The corresponding wait that waits on this signal
must be issued in Vulkan. Additionally, the wait that waits on this signal must be issued after
this signal has been issued.

void signalExternalSemaphore (cudaExternalSemaphore t extSem, cudaStream t stream) {
cudaExternalSemaphoreSignalParams params = {};

memset (&params, 0, sizeof (params));

cudaSignalExternalSemaphoresAsync (&extSem, &params, 1, stream);
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An imported Vulkan semaphore object can be waited on as shown below. Waiting on such
a semaphore object waits until it reaches the signaled state and then resets it back to the
unsignaled state. The corresponding signal that this wait is waiting on must be issued in
Vulkan. Additionally, the signal must be issued before this wait can be issued.

void waitExternalSemaphore (cudaExternalSemaphore t extSem, cudaStream t stream) {
cudaExternal SemaphoreWaitParams params = {};

memset (&params, 0, sizeof (params));

cudaWaitExternalSemaphoresAsync (&extSem, &params, 1, stream);

}

3.2.14.2. OpenGL Interoperability

Traditional OpenGL-CUDA interop as outlined in OpenGL Interoperability works by CUDA
directly consuming handles created in OpenGL. However, since OpenGL can also consume
memory and synchronization objects created in Vulkan, there exists an alternative approach
to doing OpenGL-CUDA interop. Essentially, memory and synchronization objects exported by
Vulkan could be imported into both, OpenGL and CUDA, and then used to coordinate memory
accesses between OpenGL and CUDA. Please refer to the following OpenGL extensions for
further details on how to import memory and synchronization objects exported by Vulkan:

» GL_EXT_memory_object

» GL_EXT_memory_object_fd

» GL_EXT_memory_object_win32
» GL_EXT_semaphore

» GL_EXT_semaphore_fd

» GL_EXT_semaphore_win32

3.2.14.3. Direct3D 12 Interoperability
3.2.14.3.1. Matching Device LUIDs

When importing memory and synchronization objects exported by Direct3D 12, they must be
imported and mapped on the same device as they were created on. The CUDA device that
corresponds to the Direct3D 12 device on which the objects were created can be determined
by comparing the LUID of a CUDA device with that of the Direct3D 12 device, as shown in the
following code sample. Note that the Direct3D 12 device must not be created on a linked node
adapter. l.e. the node count as returned by ID3D12Device: : GetNodeCount must be 1.

int getCudaDeviceForD3D12Device (ID3D12Device *d3dl2Device) {
LUID d3dl12Luid = d3dl2Device->GetAdapterLuid() ;

int cudaDeviceCount;
cudaGetDeviceCount (&cudaDeviceCount) ;

for (int cudaDevice = 0; cudaDevice < cudaDeviceCount; cudaDevice++) {
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cudaDeviceProp deviceProp;
cudaGetDeviceProperties (&deviceProp, cudaDevice) ;
char *cudaLuid = deviceProp.luid;

if (!memcmp (&d3dl2Luid.LowPart, cudalLuid, sizeof (d3dl2Luid.LowPart)) &&
'memcmp (&d3d12Luid.HighPart, cudalLuid
+ sizeof (d3dl12Luid.LowPart), sizeof (d3dl2Luid.HighPart))) {
return cudaDevice;
}
}

return cudalnvalidDeviceId;

3.2.14.3.2. Importing Memory Objects

A shareable Direct3D 12 heap memory object, created by setting the flag

D3D12 HEAP FLAG SHARED in the call to ID3D12Device: :CreateHeap, can be imported into
CUDA using the NT handle associated with that object as shown below. Note that it is the
application’s responsibility to close the NT handle when it is not required anymore. The NT
handle holds a reference to the resource, so it must be explicitly freed before the underlying
memory can be freed.

cudaExternalMemory t importD3Dl2HeapFromNTHandle (HANDLE handle, unsigned long long
size) {
cudaExternalMemory t extMem = NULL;
cudaExternalMemoryHandleDesc desc = {};
memset (&desc, 0, sizeof (desc));
desc.type = cudaExternalMemoryHandleTypeD3D12Heap;
desc.handle.win32.handle = (void *)handle;
desc.size = size;

cudaImportExternalMemory (&extMem, &desc);

// Input parameter 'handle' should be closed if it's not needed anymore
CloseHandle (handle) ;

return extMem;

A shareable Direct3D 12 heap memory object can also be imported using a named handle if
one exists as shown below.

cudaExternalMemory t importD3Dl12HeapFromNamedNTHandle (LPCWSTR
name, unsigned long long size) {
cudaExternalMemory t extMem = NULL;
cudaExternalMemoryHandleDesc desc = {};
memset (&desc, 0, sizeof (desc));
desc.type = cudaExternalMemoryHandleTypeD3Dl12Heap;
desc.handle.win32.name = (void *)name;
desc.size = size;

cudaImportExternalMemory (&extMem, &desc);

return extMem;
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A shareable Direct3D 12 committed resource, created by setting the flag

D3D12 HEAP FLAG SHARED in the call to D3D12Device: :CreateCommittedResource, can be
imported into CUDA using the NT handle associated with that object as shown below. When
importing a Direct3D 12 committed resource, the flag cudaExternalMemoryDedicated must
be set. Note that it is the application’s responsibility to close the NT handle when it is not
required anymore. The NT handle holds a reference to the resource, so it must be explicitly
freed before the underlying memory can be freed.

cudaExternalMemory t importD3Dl2CommittedResourceFromNTHandle (HANDLE
handle, unsigned long long size) {

cudaExternalMemory t extMem = NULL;

cudaExternalMemoryHandleDesc desc = {};

memset (&desc, 0, sizeof (desc));

desc.type = cudaExternalMemoryHandleTypeD3Dl12Resource;

desc.handle.win32.handle = (void *)handle;
desc.size = size;
desc.flags |= cudaExternalMemoryDedicated;

cudalmportExternalMemory (&extMem, &desc);

// Input parameter 'handle' should be closed if it's not needed anymore
CloseHandle (handle) ;

return extMem;

A shareable Direct3D 12 committed resource can also be imported using a named handle if
one exists as shown below.

cudaExternalMemory t importD3D12CommittedResourceFromNamedNTHandle (LPCWSTR
name, unsigned long long size) {

cudaExternalMemory t extMem = NULL;

cudaExternalMemoryHandleDesc desc = {};

memset (&desc, 0, sizeof (desc)):;

desc.type = cudaExternalMemoryHandleTypeD3D12Resource;

desc.handle.win32.name = (void *)name;
desc.size = size;
desc.flags |= cudaExternalMemoryDedicated;

cudaImportExternalMemory (&extMem, &desc);

return extMem;

3.2.14.3.3. Mapping Buffers onto Imported Memory Objects

A device pointer can be mapped onto an imported memory object as shown below. The offset
and size of the mapping must match that specified when creating the mapping using the
corresponding Direct3D 12 API. All mapped device pointers must be freed using cudaFree ().

void * mapBufferOntoExternalMemory (cudaExternalMemory t extMem, unsigned long long
offset, unsigned long long size) {
void *ptr = NULL;
cudaExternalMemoryBufferDesc desc = {};
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memset (&desc, 0, sizeof (desc)):;

desc.offset = offset;
desc.size = size;

cudaExternalMemoryGetMappedBuffer (&ptr, extMem, &desc);

// Note: ‘ptr’ must eventually be freed using cudaFree ()
return ptr;

3.2.14.3.4. Mapping Mipmapped Arrays onto Imported Memory
Objects

A CUDA mipmapped array can be mapped onto an imported memory object as shown

below. The offset, dimensions, format and number of mip levels must match that specified
when creating the mapping using the corresponding Direct3D 12 API. Additionally,

if the mipmapped array can be bound as a render target in Direct3D 12, the flag
cudaArrayColorAttachment must be set. All mapped mipmapped arrays must be freed
using cudaFreeMipmappedArray (). The following code sample shows how to convert Vulkan
parameters into the corresponding CUDA parameters when mapping mipmapped arrays onto
imported memory objects.

cudaMipmappedArray t mapMipmappedArrayOntoExternalMemory (cudaExternalMemory t
extMem, unsigned long long offset, cudaChannelFormatDesc *formatDesc, cudaExtent
*extent, unsigned int flags, unsigned int numLevels) {

cudaMipmappedArray t mipmap = NULL;
cudaExternalMemoryMipmappedArrayDesc desc = {};

memset (&desc, 0, sizeof (desc));

desc.offset = offset;
desc.formatDesc = *formatDesc;
desc.extent = *extent;
desc.flags = flags;
desc.numlLevels = numLevels;

// Note: ‘mipmap’ must eventually be freed using cudaFreeMipmappedArray ()
cudaExternalMemoryGetMappedMipmappedArray (&mipmap, extMem, &desc) ;

return mipmap;

}
cudaChannelFormatDesc getCudaChannelFormatDescForDxgiFormat (DXGI FORMAT dxgiFormat)
{

cudaChannelFormatDesc d;

memset (&d, 0, sizeof(d));

switch (dxgiFormat) {

case DXGI FORMAT R8 UINT: d.x = 8; d.y =0; d.z=20; d.w=20; d.f
= cudaChannelFormatKindUnsigned; break;

case DXGI FORMAT R8 SINT: d.x =8; d.y =0; d.z=0; d.w=20; d.f
= cudaChannelFormatKindSigned; break;

case DXGI FORMAT R8G8 UINT: d.x = 8; d.y =8; d.z=0; d.w=20; d.f
= cudaChannelFormatKindUnsigned; break;

case DXGI FORMAT R8G8 SINT: d.x =8; d.y =28; d.z=0; d.w=20; d.f
= cudaChannelFormatKindSigned; break;

case DXGI FORMAT R8G8B8A8 UINT: d.x = 8; d.y =8; d.z=28; d.w=28; d.f
= cudaChannelFormatKindUnsigned; break;

case DXGI FORMAT R8G8B8A8 SINT: d.x =8; d.y =28; d.z=28; d.w=8; d.f
= cudaChannelFormatKindSigned; break;
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case DXGI FORMAT R16 UINT: d.x = 16; d.y = 0; d.z =0; d.w = 0; d.f
= cudaChannelFormatKindUnsigned; break;

case DXGI FORMAT R16 SINT: d.x = 16; d.y = 0; d.z =0; d.w = 0; d.f
= cudaChannelFormatKindSigned; break;

case DXGI FORMAT R16Gl6 UINT: d.x = 16; d.y = 16; d.z = 0; d.w = 0; d.f
= cudaChannelFormatKindUnsigned; break;

case DXGI FORMAT R16Gl6 SINT: d.x = 16; d.y = 16; d.z = 0; d.w = 0; d.f
= cudaChannelFormatKindSigned; break;

case DXGI_ FORMAT R16G16B16Al6 UINT: d.x = 16; d.y = 16; d.z = 16; d.w = 16; d.f
= cudaChannelFormatKindUnsigned; break;
case DXGI FORMAT R16G16B16Al6 SINT: d.x = 16; d.y = 16; d.z = 16; d.w = 16; d.f

= cudaChannelFormatKindSigned; break;

case DXGI_ FORMAT R32 UINT: d.x = 32; d.y = 0; d.z =0; d.w = 0; d.f
= cudaChannelFormatKindUnsigned; break;

case DXGI FORMAT R32 SINT: d.x = 32; d.y = 0; d.z =0; d.w=0; d.f
= cudaChannelFormatKindSigned; break;

case DXGI FORMAT R32 FLOAT: d.x = 32; d.y = 0; d.z =0; d.w = 0; d.f
= cudaChannelFormatKindFloat; break;

case DXGI FORMAT R32G32 UINT: d.x = 32; d.y = 32; d.z = 0; d.w = 0; d.f
= cudaChannelFormatKindUnsigned; break;

case DXGI FORMAT R32G32 SINT: d.x = 32; d.y = 32; d.z = 0; d.w = 0; d.f
= cudaChannelFormatKindSigned; break;

case DXGI FORMAT R32G32 FLOAT: d.x = 32; d.y = 32; d.z = 0; d.w = 0; d.f
= cudaChannelFormatKindFloat; break;

case DXGI_ FORMAT R32G32B32A32 UINT: d.x = 32; d.y = 32; d.z = 32; d.w = 32; d.f
= cudaChannelFormatKindUnsigned; break;
case DXGI FORMAT R32G32B32A32 SINT: d.x = 32; d.y = 32; d.z = 32; d.w = 32; d.f

= cudaChannelFormatKindSigned; break;
case DXGI_ FORMAT R32G32B32A32 FLOAT: d.x = 32; d.y = 32; d.z = 32; d.w = 32; d.f
= cudaChannelFormatKindFloat; break;

default: assert(0);

}

return d;

}
cudakExtent getCudaExtentForD3D12Extent (UINT64 width, UINT height, UINT16
depthOrArraySize, D3D12 SRV _DIMENSION d3dl12SRVDimension) {

cudaExtent e = { 0, 0, 0 };

switch (d3d12SRVDimension) {

case D3D12 SRV DIMENSION TEXTURELD: e.width = width; e.height = 0;
e.depth = 0; break;

case D3D12 SRV _DIMENSION TEXTUREZ2D: e.width = width; e.height = height;
e.depth = 0; break;

case D3D12 SRV DIMENSION TEXTURE3D: e.width = width; e.height = height;
e.depth = depthOrArraySize; break;

case D3D12 SRV DIMENSION TEXTURECUBE: e.width = width; e.height = height;
e.depth = depthOrArraySize; break;

case D3D12 SRV DIMENSION TEXTURE1DARRAY: e.width = width; e.height = 0;
e.depth = depthOrArraySize; break;

case D3D12 SRV DIMENSION TEXTUREZDARRAY: e.width = width; e.height = height;

e.depth = depthOrArraySize; break;

case D3D12 SRV DIMENSION TEXTURECUBEARRAY: e.width = width; e.height = height;
e.depth = depthOrArraySize; break;

default: assert(0);

}

return e;

}
unsigned int getCudaMipmappedArrayFlagsForD3Dl12Resource (D3D12 SRV DIMENSION

d3d12SRVDimension, D3D12 RESOURCE FLAGS d3dl2ResourceFlags, bool
allowSurfacelLoadStore) {
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unsigned int flags = 0;

switch (d3d12SRVDimension) {

case D3D12 SRV DIMENSION TEXTURECUBE: flags |= cudaArrayCubemap;
break;

case D3D12 SRV DIMENSION TEXTURECUBEARRAY: flags |= cudaArrayCubemap |

cudaArraylLayered; break;

case D3D12 SRV DIMENSION TEXTURE1DARRAY: flags |= cudaArraylayered;
break;

case D3D12 SRV DIMENSION TEXTUREZ2DARRAY: flags |= cudaArraylLayered;
break;

default: break;
}

if (d3dl2ResourceFlags & D3D12 RESOURCE FLAG ALLOW RENDER TARGET) ({
flags |= cudaArrayColorAttachment;

}

if (allowSurfaceloadStore) {
flags |= cudaArraySurfacelLoadStore;

}

return flags;

3.2.14.3.5. Importing Synchronization Objects

A shareable Direct3D 12 fence object, created by setting the flag D3D12 FENCE FLAG SHARED
in the call to ID3D12Device: :CreateFence, can be imported into CUDA using the NT handle
associated with that object as shown below. Note that it is the application’s responsibility to
close the handle when it is not required anymore. The NT handle holds a reference to the
resource, so it must be explicitly freed before the underlying semaphore can be freed.

cudaExternalSemaphore t importD3Dl2FenceFromNTHandle (HANDLE handle) {
cudaExternalSemaphore t extSem = NULL;
cudaExternalSemaphoreHandleDesc desc = {};

memset (&desc, 0, sizeof (desc)):;

desc.type = cudaExternalSemaphoreHandleTypeD3D12Fence;
desc.handle.win32.handle = handle;

cudalmportExternalSemaphore (&extSem, &desc);

// Input parameter 'handle' should be closed if it's not needed anymore
CloseHandle (handle) ;

return extSem;

A shareable Direct3D 12 fence object can also be imported using a named handle if one exists
as shown below.

cudaExternalSemaphore t importD3Dl2FenceFromNamedNTHandle (LPCWSTR name) {
cudaExternalSemaphore t extSem = NULL;
cudaExternalSemaphoreHandleDesc desc = {};

memset (&desc, 0, sizeof (desc));

desc.type = cudaExternalSemaphoreHandleTypeD3D12Fence;
desc.handle.win32.name = (void *)name;

cudalImportExternalSemaphore (&extSem, &desc);
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return extSem;

}

3.2.14.3.6. Signaling/Waiting on Imported Synchronization Objects

An imported Direct3D 12 fence object can be signaled as shown below. Signaling such a fence
object sets its value to the one specified. The corresponding wait that waits on this signal must
be issued in Direct3D 12. Additionally, the wait that waits on this signal must be issued after
this signal has been issued.

void signalExternalSemaphore (cudaExternalSemaphore t extSem, unsigned long long
value, cudaStream t stream) ({
cudaExternalSemaphoreSignalParams params = {};

memset (&params, 0, sizeof (params));
params.params. fence.value = value;

cudaSignalExternalSemaphoresAsync (&extSem, &params, 1, stream);

}

An imported Direct3D 12 fence object can be waited on as shown below. Waiting on such a
fence object waits until its value becomes greater than or equal to the specified value. The
corresponding signal that this wait is waiting on must be issued in Direct3D 12. Additionally,
the signal must be issued before this wait can be issued.

void waitExternalSemaphore (cudaExternalSemaphore t extSem, unsigned long long value,
cudaStream t stream) {
cudaExternal SemaphoreWaitParams params = {};
memset (&params, 0, sizeof (params));

params.params. fence.value = value;

cudaWaitExternalSemaphoresAsync (&extSem, &params, 1, stream);

}

3.2.14.4. Direct3D 11 Interoperability
3.2.14.4.1. Matching Device LUIDs

When importing memory and synchronization objects exported by Direct3D 11, they must be
imported and mapped on the same device as they were created on. The CUDA device that
corresponds to the Direct3D 11 device on which the objects were created can be determined
by comparing the LUID of a CUDA device with that of the Direct3D 11 device, as shown in the
following code sample.

int getCudaDeviceForD3Dl1Device (ID3D11Device *d3dllDevice) {
IDXGIDevice *dxgiDevice;
d3dllDevice->QueryInterface( uuidof (IDXGIDevice), (void **)&dxgiDevice);

IDXGIAdapter *dxgiAdapter;
dxgiDevice->GetAdapter (&dxgiAdapter) ;

DXGI_ ADAPTER DESC dxgiAdapterDesc;
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dxgiAdapter->GetDesc (&dxgiAdapterDesc) ;
LUID d3dllLuid = dxgiAdapterDesc.AdapterLuid;

int cudaDeviceCount;
cudaGetDeviceCount (&cudaDeviceCount) ;

for (int cudaDevice = 0; cudaDevice < cudaDeviceCount; cudaDevice++) {
cudaDeviceProp deviceProp;
cudaGetDeviceProperties (&deviceProp, cudaDevice) ;
char *cudaLuid = deviceProp.luid;

if (!memcmp (&d3dllLuid.LowPart, cudalLuid, sizeof (d3dllLuid.LowPart)) &&
'memcmp (&d3d11Luid.HighPart, cudalLuid
+ sizeof (d3dllLuid.LowPart), sizeof (d3dllLuid.HighPart))) {
return cudaDevice;
}
}

return cudalInvalidDeviceId;

3.2.14.4.2. Importing Memory Objects

A shareable Direct3D 11 texture resource, viz, ID3D11TexturelD, ID3D11Texture2D Or
ID3D11Texture3D, can be created by setting either the D3D11 RESOURCE MISC SHARED

or D3D11 RESOURCE MISC SHARED KEYEDMUTEX (on Windows 7) or

D3D11 RESOURCE MISC SHARED NTHANDLE (on Windows 10]) when calling
ID3D1l1Device:CreateTexturelD, ID3D11Device:CreateTexture2D Or
ID3D11Device:CreateTexture3D respectively. A shareable Direct3D 11 buffer resource,
ID3D11Buffer, can be created by specifying either of the above flags when calling
ID3D11Device: :CreateBuffer. A shareable resource created by specifying the

D3D11 RESOURCE MISC SHARED NTHANDLE can be imported into CUDA using the NT handle
associated with that object as shown below. Note that it is the application’s responsibility to
close the NT handle when it is not required anymore. The NT handle holds a reference to the
resource, so it must be explicitly freed before the underlying memory can be freed. When
importing a Direct3D 11 resource, the flag cudakExternalMemoryDedicated must be set.

cudaExternalMemory t importD3Dl1lResourceFromNTHandle (HANDLE
handle, unsigned long long size) {
cudaExternalMemory t extMem = NULL;
cudaExternalMemoryHandleDesc desc = {};

memset (&desc, 0, sizeof (desc));

desc.type = cudaExternalMemoryHandleTypeD3Dl1Resource;

desc.handle.win32.handle = (void *)handle;
desc.size = size;
desc.flags |= cudaExternalMemoryDedicated;

cudalmportExternalMemory (&extMem, &desc);

// Input parameter 'handle' should be closed if it's not needed anymore
CloseHandle (handle) ;

return extMem;
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A shareable Direct3D 11 resource can also be imported using a named handle if one exists as
shown below.

cudaExternalMemory t importD3Dl1lResourceFromNamedNTHandle (LPCWSTR
name, unsigned long long size) {
cudaExternalMemory t extMem = NULL;
cudaExternalMemoryHandleDesc desc = {};

memset (&desc, 0, sizeof (desc));

desc.type = cudaExternalMemoryHandleTypeD3Dl1lResource;

desc.handle.win32.name = (void *)name;
desc.size = size;
desc.flags |= cudaExternalMemoryDedicated;

cudalmportExternalMemory (&extMem, &desc);

return extMem;

A shareable Direct3D 11 resource, created by specifying the D3D11 RESOURCE MISC SHARED
or D3D11 RESOURCE MISC SHARED KEYEDMUTEX, can be imported into CUDA using the
globally shared D3DKMT handle associated with that object as shown below. Since a globally
shared D3DKMT handle does not hold a reference to the underlying memory it is automatically
destroyed when all other references to the resource are destroyed.

cudaExternalMemory t importD3DllResourceFromKMTHandle (HANDLE
handle, unsigned long long size) {
cudaExternalMemory t extMem = NULL;
cudaExternalMemoryHandleDesc desc = {};

memset (&desc, 0, sizeof (desc)):;

desc.type = cudaExternalMemoryHandleTypeD3Dl11ResourceKmt;

desc.handle.win32.handle = (void *)handle;
desc.size = size;
desc.flags |= cudaExternalMemoryDedicated;

cudalImportExternalMemory (&extMem, &desc);

return extMem;

3.2.14.4.3. Mapping Buffers onto Imported Memory Objects

A device pointer can be mapped onto an imported memory object as shown below. The offset
and size of the mapping must match that specified when creating the mapping using the
corresponding Direct3D 11 API. All mapped device pointers must be freed using cudaFree () .

void * mapBufferOntoExternalMemory (cudaExternalMemory t extMem, unsigned long long
offset, unsigned long long size) {
void *ptr = NULL;
cudaExternalMemoryBufferDesc desc = {};

memset (&desc, 0, sizeof (desc)):;

desc.offset = offset;
desc.size = size;
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cudaExternalMemoryGetMappedBuffer (&ptr, extMem, &desc);

// Note: ‘ptr’ must eventually be freed using cudaFree ()
return ptr;

3.2.14.4.4. Mapping Mipmapped Arrays onto Imported Memory
Objects

A CUDA mipmapped array can be mapped onto an imported memory object as shown

below. The offset, dimensions, format and number of mip levels must match that specified
when creating the mapping using the corresponding Direct3D 11 API. Additionally,

if the mipmapped array can be bound as a render target in Direct3D 12, the flag
cudaArrayColorAttachment must be set. All mapped mipmapped arrays must be freed
using cudaFreeMipmappedArray (). I'he following code sample shows how to convert
Direct3D 11 parameters into the corresponding CUDA parameters when mapping mipmapped
arrays onto imported memory objects.

cudaMipmappedArray t mapMipmappedArrayOntoExternalMemory (cudaExternalMemory t
extMem, unsigned long long offset, cudaChannelFormatDesc *formatDesc, cudaExtent
*extent, unsigned int flags, unsigned int numLevels) {

cudaMipmappedArray t mipmap = NULL;
cudaExternalMemoryMipmappedArrayDesc desc = {};

memset (&desc, 0, sizeof (desc)):;

desc.offset = offset;
desc.formatDesc = *formatDesc;
desc.extent = *extent;
desc.flags = flags;
desc.numLevels = numLevels;

// Note: ‘mipmap’ must eventually be freed using cudaFreeMipmappedArray ()
cudakExternalMemoryGetMappedMipmappedArray (&mipmap, extMem, &desc) ;

return mipmap;

}

cudaChannelFormatDesc getCudaChannelFormatDescForDxgiFormat (DXGI FORMAT dxgiFormat)
{

cudaChannelFormatDesc d;

memset (&d, 0, sizeof(d));

switch (dxgiFormat) ({

case DXGI_ FORMAT R8 UINT: d.x =8; d.y =0; d.z=0; d.w=0; d.f
= cudaChannelFormatKindUnsigned; break;

case DXGI FORMAT R8 SINT: d.x =8; d.y =0; d.z=0; d.w=20; d.f
= cudaChannelFormatKindSigned; break;

case DXGI FORMAT R8G8 UINT: d.x = 8; d.y =28; d.z=0; d.w=20; d.f
= cudaChannelFormatKindUnsigned; break;

case DXGI FORMAT R8G8 SINT: d.x = 8; d.y =8; d.z =20; d.w=20; d.f
= cudaChannelFormatKindSigned; break;

case DXGI_ FORMAT R8G8B8A8 UINT: d.x = 8; d.y =28; d.z=28; d.w=8; d.f
= cudaChannelFormatKindUnsigned; break;

case DXGI FORMAT R8G8B8A8 SINT: d.x = 8; d.y =8; d.z=28; d.w=28; d.f
= cudaChannelFormatKindSigned; break;

case DXGI_ FORMAT R16 UINT: d.x = 16; d.y = 0; d.z =0; d.w = 0; d.f
= cudaChannelFormatKindUnsigned; break;

case DXGI FORMAT R16 SINT: d.x = 16; d.y = 0; d.z =0; d.w = 0; d.f
= cudaChannelFormatKindSigned; break;

case DXGI FORMAT R16Gl6 UINT: d.x = 16; d.y = 16; d.z = 0; d.w = 0; d.f

= cudaChanneIFormat?indUnszgned; break;
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case DXGI FORMAT R16Gl6 SINT: d.x = 16; d.y = 16; d.z = 0; d.w = 0; d.f
= cudaChannelFormatKindSigned; break;

case DXGI FORMAT R16G16B16Al6 UINT: d.x = 16; d.y = 16; d.z = 16; d.w = 16; d.f
= cudaChannelFormatKindUnsigned; break;

case DXGI_ FORMAT R16G16B16Al6 SINT: d.x = 16; d.y = 16; d.z = 16; d.w = 16; d.f

= cudaChannelFormatKindSigned; break;

case DXGI FORMAT R32 UINT: d.x = 32; d.y = 0; d.z =0; d.w=0; d.f
= cudaChannelFormatKindUnsigned; break;

case DXGI_ FORMAT R32 SINT: d.x = 32; d.y = 0; d.z =0; d.w = 0; d.f
= cudaChannelFormatKindSigned; break;

case DXGI FORMAT R32 FLOAT: d.x = 32; d.y = 0; d.z =0; d.w=0; d.f
= cudaChannelFormatKindFloat; break;

case DXGI_ FORMAT R32G32 UINT: d.x = 32; d.y = 32; d.z = 0; d.w = 0; d.f
= cudaChannelFormatKindUnsigned; break;

case DXGI FORMAT R32G32 SINT: d.x = 32; d.y = 32; d.z = 0; d.w = 0; d.f
= cudaChannelFormatKindSigned; break;

case DXGI_ FORMAT R32G32 FLOAT: d.x = 32; d.y = 32; d.z = 0; d.w = 0; d.f
= cudaChannelFormatKindFloat; break;

case DXGI FORMAT R32G32B32A32 UINT: d.x = 32; d.y = 32; d.z = 32; d.w = 32; d.f
= cudaChannelFormatKindUnsigned; break;
case DXGI_ FORMAT R32G32B32A32 SINT: d.x = 32; d.y = 32; d.z = 32; d.w = 32; d.f

= cudaChannelFormatKindSigned; break;
case DXGI FORMAT R32G32B32A32 FLOAT: d.x = 32; d.y = 32; d.z = 32; d.w = 32; d.f
= cudaChannelFormatKindFloat; break;

default: assert(0);
}

return d;

}
cudaExtent getCudaExtentForD3D11Extent (UINT64 width, UINT height, UINT1l6
depthOrArraySize, D3D12 SRV DIMENSION d3dl1SRVDimension) {

cudaExtent e = { 0, 0, 0 };

switch (d3dl11SRVDimension) {

case D3D11 SRV DIMENSION TEXTURELD: e.width = width; e.height = 0;
e.depth = 0; break;

case D3D11 SRV DIMENSION TEXTURE2D: e.width = width; e.height = height;
e.depth = 0; break;

case D3D11 SRV _DIMENSION TEXTURE3D: e.width = width; e.height = height;
e.depth = depthOrArraySize; break;

case D3D11 SRV DIMENSION TEXTURECUBE: e.width = width; e.height = height;
e.depth = depthOrArraySize; break;

case D3D11 SRV DIMENSION TEXTURE1DARRAY: e.width = width; e.height = 0;
e.depth = depthOrArraySize; break;

case D3D11 SRV DIMENSION TEXTURE2DARRAY: e.width = width; e.height = height;

e.depth = depthOrArraySize; break;

case D3D11 SRV DIMENSION TEXTURECUBEARRAY: e.width = width; e.height = height;
e.depth = depthOrArraySize; break;

default: assert(0);

}

return e;

}

unsigned int getCudaMipmappedArrayFlagsForD3Dl12Resource (D3D11 SRV DIMENSION

d3d11SRVDimension, D3D11 BIND FLAG d3dllBindFlags, bool allowSurfaceLoadStore) {
unsigned int flags = 0;

switch (d3dl11SRVDimension) {

case D3D11 SRV DIMENSION TEXTURECUBE: flags |= cudaArrayCubemap;
break;
case D3D11 SRV DIMENSION TEXTURECUBEARRAY: flags |= cudaArrayCubemap |

cudaArraylLayered; break;
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case D3D11 SRV DIMENSION TEXTURE1DARRAY: flags |= cudaArraylayered;
break;

case D3D11 SRV DIMENSION TEXTUREZDARRAY: flags |= cudaArraylayered;
break;

default: break;
}

if (d3dllBindFlags & D3D11 BIND RENDER TARGET) {
flags |= cudaArrayColorAttachment;

}

if (allowSurfaceLoadStore) {
flags |= cudaArraySurfacelLoadStore;

}

return flags;

3.2.14.4.5. Importing Synchronization Objects

A shareable Direct3D 11 fence object, created by setting the flag D3D11 FENCE FLAG SHARED
in the call to ID3D11Device5: :CreateFence, can be imported into CUDA using the NT handle
associated with that object as shown below. Note that it is the application’s responsibility to
close the handle when it is not required anymore. The NT handle holds a reference to the
resource, so it must be explicitly freed before the underlying semaphore can be freed.

cudaExternalSemaphore t importD3Dl1lFenceFromNTHandle (HANDLE handle) {
cudaExternalSemaphore t extSem = NULL;
cudaExternal SemaphoreHandleDesc desc = {};
memset (&desc, 0, sizeof (desc));

desc.type = cudaExternalSemaphoreHandleTypeD3Dl1Fence;
desc.handle.win32.handle = handle;

cudalImportExternalSemaphore (&extSem, &desc);

// Input parameter 'handle' should be closed if it's not needed anymore
CloseHandle (handle) ;

return extSem;

A shareable Direct3D 11 fence object can also be imported using a named handle if one exists
as shown below.

cudaExternalSemaphore t importD3Dl1FenceFromNamedNTHandle (LPCWSTR name) {
cudaExternalSemaphore t extSem = NULL;
cudaExternalSemaphoreHandleDesc desc = {};
memset (&desc, 0, sizeof (desc)):;

desc.type = cudaExternalSemaphoreHandleTypeD3Dl1Fence;
desc.handle.win32.name = (void *)name;

cudalImportExternalSemaphore (&extSem, &desc)

return extSem;
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A shareable Direct3D 11 keyed mutex object associated with a shareable

Direct3D 11 resource, viz, IDXGIKeyedMutex, created by setting the flag

D3D11 RESOURCE MISC SHARED KEYEDMUTEX, can be imported into CUDA using the

NT handle associated with that object as shown below. Note that it is the application’s
responsibility to close the handle when it is not required anymore. The NT handle holds a
reference to the resource, so it must be explicitly freed before the underlying semaphore can
be freed.

cudaExternalSemaphore t importD3DllKeyedMutexFromNTHandle (HANDLE handle) {
cudaExternalSemaphore t extSem = NULL;
cudaExternalSemaphoreHandleDesc desc = {};

memset (&desc, 0, sizeof (desc));

desc.type = cudaExternalSemaphoreHandleTypeKeyedMutex;
desc.handle.win32.handle = handle;

cudaImportExternalSemaphore (&extSem, &desc);

// Input parameter 'handle' should be closed if it's not needed anymore
CloseHandle (handle) ;

return extSem;

A shareable Direct3D 11 keyed mutex object can also be imported using a named handle if one
exists as shown below.

cudaExternalSemaphore t importD3Dl1lKeyedMutexFromNamedNTHandle (LPCWSTR name) {
cudaExternalSemaphore t extSem = NULL;
cudaExternalSemaphoreHandleDesc desc = {};

memset (&desc, 0, sizeof (desc)):;

desc.type = cudaExternalSemaphoreHandleTypeKeyedMutex;
desc.handle.win32.name = (void *)name;

cudaImportExternalSemaphore (&extSem, &desc);

return extSem;

A shareable Direct3D 11 keyed mutex object can be imported into CUDA using the globally
shared D3DKMT handle associated with that object as shown below. Since a globally shared
D3DKMT handle does not hold a reference to the underlying memory it is automatically
destroyed when all other references to the resource are destroyed.

cudaExternalSemaphore t importD3DllFenceFromKMTHandle (HANDLE handle) {
cudaExternalSemaphore t extSem = NULL;
cudaExternalSemaphoreHandleDesc desc = {};

memset (&desc, 0, sizeof (desc)):;

desc.type = cudaExternalSemaphoreHandleTypeKeyedMutexKmt;
desc.handle.win32.handle = handle;

cudaImportExternalSemaphore (&extSem, &desc);

// Input parameter 'handle' should be closed if it's not needed anymore
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CloseHandle (handle) ;

return extSem;

}

3.2.14.4.6. Signaling/Waiting on Imported Synchronization Objects

An imported Direct3D 11 fence object can be signaled as shown below. Signaling such a fence
object sets its value to the one specified. The corresponding wait that waits on this signal must
be issued in Direct3D 11. Additionally, the wait that waits on this signal must be issued after
this signal has been issued.

void signalExternalSemaphore (cudaExternalSemaphore t extSem, unsigned long long
value, cudaStream t stream) {
cudaExternalSemaphoreSignalParams params = {};

memset (&params, 0, sizeof (params));
params.params.fence.value = value;

cudaSignalExternalSemaphoresAsync (&extSem, &params, 1, stream);

}

An imported Direct3D 11 fence object can be waited on as shown below. Waiting on such a
fence object waits until its value becomes greater than or equal to the specified value. The
corresponding signal that this wait is waiting on must be issued in Direct3D 11. Additionally,
the signal must be issued before this wait can be issued.

void waitExternalSemaphore (cudaExternalSemaphore t extSem, unsigned long long value,
cudaStream t stream) ({
cudaExternal SemaphoreWaitParams params = {};
memset (&params, 0, sizeof (params));

params.params.fence.value = value;

cudaWaitExternalSemaphoresAsync (&extSem, &params, 1, stream);

}

An imported Direct3D 11 keyed mutex object can be signaled as shown below. Signaling such
a keyed mutex object by specifying a key value releases the keyed mutex for that value. The
corresponding wait that waits on this signal must be issued in Direct3D 11 with the same key
value. Additionally, the Direct3D 11 wait must be issued after this signal has been issued.

void signalExternalSemaphore (cudaExternalSemaphore t extSem, unsigned long long key,
cudaStream t stream) ({
cudaExternalSemaphoreSignalParams params = {};
memset (&params, 0, sizeof (params));

params.params.keyedmutex.key = key;

cudaSignalExternalSemaphoresAsync (&extSem, &params, 1, stream);

}

An imported Direct3D 11 keyed mutex object can be waited on as shown below. A timeout
value in milliseconds is needed when waiting on such a keyed mutex. The wait operation
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waits until the keyed mutex value is equal to the specified key value or until the timeout has
elapsed. The timeout interval can also be an infinite value. In case an infinite value is specified
the timeout never elapses. The windows INFINITE macro must be used to specify an infinite
timeout. The corresponding signal that this wait is waiting on must be issued in Direct3D 11.
Additionally, the Direct3D 11 signal must be issued before this wait can be issued.

void waitExternalSemaphore (cudaExternalSemaphore t extSem, unsigned long long
key, unsigned int timeoutMs, cudaStream t stream) {
cudaExternalSemaphoreWaitParams params = {};

memset (&params, 0, sizeof (params));

params.params. keyedmutex.key = key;
params.params.keyedmutex.timeoutMs = timeoutMs;

cudaWaitExternalSemaphoresAsync (&extSem, &params, 1, stream);

}

3.2.14.5. NVIDIA Software Communication Interface
Interoperability (NVSCI)

NvSciBuf and NvSciSync are interfaces developed for serving the following purposes:

» NvSciBuf: Allows applications to allocate and exchange buffers in memory
» NvSciSync: Allows applications to manage synchronization objects at operation boundaries

More details on these interfaces are available at: https://docs.nvidia.com/drive.

3.2.14.5.1. Importing Memory Objects

For allocating an NvSciBuf object compatible with a given CUDA device, the corresponding
GPU id must be set with NvSciBufGeneralAttrKey Gpuld in the NvSciBuf attribute list as
shown below. Optionally, applications can specify the following attributes -

» NvSciBufGeneralAttrKey NeedCpuAccess: Specifies if CPU access is required for the
buffer

» NvSciBufRawBufferAttrKey Align: Specifies the alignment requirement of
NvSciBufType RawBuffer

» NvSciBufGeneralAttrKey RequiredPerm: Different access permissions can
be configured for different UMDs per NvSciBuf memory object instance. For
example, to provide the GPU with read-only access permissions to the buffer,
create a duplicate NvSciBuf object using NvSciBufObjDupWithReducePerm () with
NvSciBufAccessPerm Readonly as the input parameter. Then import this newly created
duplicate object with reduced permission into CUDA as shown

» NvSciBufGeneralAttrKey EnableGpuCache: To control GPU L2 cacheability
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» NvSciBufGeneralAttrKey EnableGpuCompression: [0 specify GPU compression

Note: For more details on these attributes and their valid input options, refer to NvSciBuf
Documentation.

The following code snippet illustrates their sample usage.

NvSciBufObj createNvSciBufObject () {
// Raw Buffer Attributes for CUDA
NvSciBufType bufType = NvSciBufType RawBuffer;
uint64 t rawsize = SIZE;
uint64 t align = 0;
bool cpuaccess flag = true;
NvSciBufAttrValAccessPerm perm = NvSciBufAccessPerm ReadWrite;

NvSciRmGpulId gpuid[] ={};
CUuuid uuid;
cuDeviceGetUuid (&uuid, dev));

memcpy (&gpuid[0] .bytes, &uuid.bytes, sizeof (uuid.bytes));
// Disable cache on dev
NvSciBufAttrValGpuCache gpuCache[] = {{gpuid[0], false}};
NvSciBufAttrValGpuCompression gpuCompression[] = {{gpuid[0],
NvSciBufCompressionType GenericCompressible}};
// Fill in values
NvSciBufAttrKeyValuePair rawbuffattrs[] = {
{ NvSciBufGeneralAttrKey Types, &bufType, sizeof (bufType) },
{ NvSciBufRawBufferAttrKey Size, &rawsize, sizeof (rawsize) },
{ NvSciBufRawBufferAttrKey Align, &align, sizeof (align) },
{ NvSciBufGeneralAttrKey NeedCpuAccess,
&cpuaccess_ flag, sizeof (cpuaccess flag) },
{ NvSciBufGeneralAttrKey RequiredPerm, &perm, sizeof (perm) },
{ NvSciBufGeneralAttrKey Gpuld, &gpuid, sizeof (gpuid) },
{ NvSciBufGeneralAttrKey EnableGpuCache &gpuCache, sizeof (gpuCache) },
{ NvSciBufGeneralAttrKey EnableGpuCompression
&gpuCompression, sizeof (gpuCompression) }

’

// Create list by setting attributes
err = NvSciBufAttrListSetAttrs (attrListBuffer, rawbuffattrs,
sizeof (rawbuffattrs) /sizeof (NvSciBufAttrKeyValuePair)) ;

NvSciBufAttrListCreate (NvSciBufModule, &attrListBuffer);

// Reconcile And Allocate

NvSciBufAttrListReconcile (&attrListBuffer, 1, &attrListReconciledBuffer,
gattrListConflictBuffer)

NvSciBufObjAlloc (attrListReconciledBuffer, &bufferObjRaw) ;

return bufferObjRaw;

NvSciBufObj bufferObjRo; // Readonly NvSciBuf memory obj

// Create a duplicate handle to the same memory buffer with reduced permissions

NvSciBufObjDupWithReducePerm (bufferObjRaw, NvSciBufAccessPerm Readonly,
&bufferObjRo) ;
return bufferObjRo;

The allocated NvSciBuf memory object can be imported in CUDA using the NvSciBufObj
handle as shown below. Application should query the allocated NvSciBufObj for
attributes required for filling CUDA External Memory Descriptor. Note that the
attribute list and NvSciBuf objects should be maintained by the application. If the
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NvSciBuf object imported into CUDA is also mapped by other drivers, then based on
NvSciBufGeneralAttrKey GpuSwNeedCacheCoherency output attribute value the application
must use NvSciSync objects (Refer Importing Synchronization Objects) as appropriate barriers
to maintain coherence between CUDA and the other drivers.

Note: For more details on how to allocate and maintain NvSciBuf objects refer to NvSciBuf API
Documentation.

cudaExternalMemory t importNvSciBufObject (NvSciBufObj bufferObjRaw) {

/*************** Query NVSClBuf Object **************/
NvSciBufAttrKeyValuePair bufattrs[] = {
{ NvSciBufRawBufferAttrKey Size, NULL, 0 },
{ NvSciBufGeneralAttrKey GpuSwNeedCacheCoherency, NULL, 0 },
{ NvSciBufGeneralAttrKey EnableGpuCompression, NULL, 0 }
i
NvSciBufAttrListGetAttrs (retList, bufattrs,
sizeof (bufattrs) /sizeof (NvSciBufAttrKeyValuePair))) ;
ret size = *(static_cast<const uint64 t*>(bufattrs[0].value));

// Note cache and compression are per GPU attributes, so read values for
specific gpu by comparing UUID

// Read cacheability granted by NvSciBuf

int numGpus = bufattrs[l].len / sizeof (NvSciBufAttrValGpuCache) ;

NvSciBufAttrValGpuCache[] cacheVal = (NvSciBufAttrValGpuCache
*)bufattrs[l].value;

bool ret cacheval;

for (int i = 0; 1 < numGpus; i++) {

if (memcmp (gpuid[0] .bytes, cachevVal[i].gpuld.bytes, sizeof (CUuuid)) == 0) {
ret cacheVal = cacheVal[i].cacheability);

}
}

// Read compression granted by NvSciBuf
numGpus = bufattrs([2].len / sizeof (NvSciBufAttrValGpuCompression) ;
NvSciBufAttrValGpuCompression[] compVal = (NvSciBufAttrValGpuCompression
*)bufattrs[2] .value;
NvSciBufCompressionType ret compVal;
for (int 1 = 0; i < numGpus; i++) {
if (memcmp (gpuid[0].bytes, compVal[i].gpuld.bytes, sizeof (CUuuid)) == 0) {
ret compVal = compVal[i].compressionType) ;
}
}

/*************** NVSClBUf Registration Wlth CUDA **************/

// Fill up CUDA EXTERNAL MEMORY HANDLE DESC
cudaExternalMemoryHandleDesc memHandleDesc;

memset (&§émemHandleDesc, 0, sizeof (memHandleDesc)) ;

memHandleDesc.type = cudaExternalMemoryHandleTypeNvSciBuf;
memHandleDesc.handle.nvSciBufObject = bufferObjRaw;

// Set the NvSciBuf object with required access permissions in this step
memHandleDesc.handle.nvSciBufObject = bufferObjRo;

memHandleDesc.size = ret size;

cudaImportExternalMemory (&extMemBuffer, &memHandleDesc) ;

return extMemBuffer;
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3.2.14.5.2. Mapping Buffers onto Imported Memory Objects

A device pointer can be mapped onto an imported memory object as shown below. The offset
and size of the mapping can be filled as per the attributes of the allocated NvsciBufobs. All
mapped device pointers must be freed using cudaFree ().

void * mapBufferOntoExternalMemory (cudaExternalMemory t extMem, unsigned long long
offset, unsigned long long size) {
void *ptr = NULL;
cudaExternalMemoryBufferDesc desc = {};

memset (&desc, 0, sizeof (desc));

desc.offset = offset;
desc.size = size;

cudaExternalMemoryGetMappedBuffer (&ptr, extMem, &desc);

// Note: ‘ptr’ must eventually be freed using cudaFree ()
return ptr;

3.2.14.5.3. Mapping Mipmapped Arrays onto Imported Memory
Objects

A CUDA mipmapped array can be mapped onto an imported memory object as

shown below. The offset, dimensions and format can be filled as per the attributes

of the allocated NvSciBufObj. All mapped mipmapped arrays must be freed using
cudaFreeMipmappedArray (). The following code sample shows how to convert NvSciBuf
attributes into the corresponding CUDA parameters when mapping mipmapped arrays onto
imported memory objects.

E Note: The number of mip levels must be 1.

cudaMipmappedArray t mapMipmappedArrayOntoExternalMemory (cudaExternalMemory t
extMem, unsigned long long offset, cudaChannelFormatDesc *formatDesc, cudaExtent
*extent, unsigned int flags, unsigned int numLevels) {

cudaMipmappedArray t mipmap = NULL;
cudaExternalMemoryMipmappedArrayDesc desc = {};

memset (&desc, 0, sizeof (desc)):;

desc.offset = offset;
desc.formatDesc = *formatDesc;

desc.extent = *extent;
desc.flags = flags;
desc.numlLevels = numLevels;

// Note: ‘mipmap’ must eventually be freed using cudaFreeMipmappedArray ()
cudaExternalMemoryGetMappedMipmappedArray (&mipmap, extMem, &desc);

return mipmap;
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NvSciSync attributes that are compatible with a given CUDA device can be generated using
cudaDeviceGetNvSciSyncAttributes (). The returned attribute list can be used to create a

NvSciSyncObj that is guaranteed compatibility with a given CUDA device.

NvSciSyncObj createNvSciSyncObject () {
NvSciSyncObj nvSciSyncObj
int cudaDev0 = 0;
int cudaDevl = 1;
NvSciSyncAttrList signalerAttrList = NULL;
NvSciSyncAttrList waiterAttrList = NULL;
NvSciSyncAttrList reconciledList = NULL;
NvSciSyncAttrList newConflictList = NULL;

NvSciSyncAttrListCreate (module, &signalerAttrList);
NvSciSyncAttrListCreate (module, &waiterAttrList);

NvSciSyncAttrList unreconciledList[2] = {NULL, NULL};
unreconciledList[0] = signalerAttrList;
unreconciledList[1l] = waiterAttrList;

cudaDeviceGetNvSciSyncAttributes (signalerAttrList, cudaDev0,

CUDA NVSCISYNC ATTR SIGNAL);
cudaDeviceGetNvSciSyncAttributes (waiterAttrList, cudaDevl,
CUDA NVSCISYNC ATTR WAIT) ;

NvSciSyncAttrListReconcile (unreconciledList, 2, &reconciledList,

&newConflictList) ;
NvSciSyncObjAlloc (reconciledList, &nvSciSyncObj) ;

return nvSciSyncObj;

}

An NvSciSync object (created as above] can be imported into CUDA using the NvSciSyncObj
handle as shown below. Note that ownership of the NvSciSyncObj handle continues to lie with

the application even after it is imported.

cudaExternalSemaphore t importNvSciSyncObject (void* nvSciSyncObj)

cudaExternalSemaphore t extSem = NULL;
cudaExternalSemaphoreHandleDesc desc = {};

memset (&desc, 0, sizeof (desc));

desc.type = cudaExternalSemaphoreHandleTypeNvSciSync;
desc.handle.nvSciSyncObj = nvSciSyncObj;

cudaImportExternalSemaphore (&extSem, &desc);

{

// Deleting/Freeing the nvSciSyncObj beyond this point will lead to undefined

behavior in CUDA

return extSem;

3.2.14.5.5. Signaling/Waiting on Imported Synchronization Objects

An imported NvSciSyncObj object can be signaled as outlined below. Signaling NvSciSync
backed semaphore object initializes the fence parameter passed as input. This fence
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parameter is waited upon by a wait operation that corresponds to the aforementioned signal.
Additionally, the wait that waits on this signal must be issued after this signal has been
issued. If the flags are set to cudaExternalSemaphoreSignalSkipNvSciBufMemSync

then memory synchronization operations (over all the imported NvSciBuf in this

process) that are executed as a part of the signal operation by default are skipped. When
NvsciBufGeneralAttrKey GpuSwNeedCacheCoherency is FALSE, this flag should be set.

void signalExternalSemaphore (cudaExternalSemaphore t extSem, cudaStream t

stream, void *fence) {
cudaExternalSemaphoreSignalParams signalParams = {};

memset (&signalParams, 0, sizeof (signalParams)) ;

signalParams.params.nvSciSync.fence = (void*) fence;
signalParams.flags = 0; //OR cudaExternalSemaphoreSignalSkipNvSciBufMemSync

cudaSignalExternalSemaphoresAsync (&extSem, &signalParams, 1, stream);

An imported NvSciSyncObj object can be waited upon as outlined below. Waiting on
NvSciSync backed semaphore object waits until the input fence parameter is signaled by
the corresponding signaler. Additionally, the signal must be issued before the wait can

be issued. If the flags are set to cudaExternalSemaphoreWaitSkipNvSciBufMemSync
then memory synchronization operations (over all the imported NvSciBuf in this

process] that are executed as a part of the signal operation by default are skipped. When
NvsciBufGeneralAttrKey GpuSwNeedCacheCoherency is FALSE, this flag should be set.

void waitExternalSemaphore (cudaExternalSemaphore t extSem, cudaStream t stream, void
*fence) {

cudaExternal SemaphoreWaitParams waitParams = {};

memset (&waitParams, 0, sizeof (waitParams))

waitParams.params.nvSciSync.fence = (void*) fence;
waitParams.flags = 0; //OR cudaExternalSemaphoreWaitSkipNvSciBufMemSync

cudaWaitExternalSemaphoresAsync (&extSem, &waitParams, 1, stream);

3.2.15. CUDA User Objects

CUDA User Objects can be used to help manage the lifetime of resources used by
asynchronous work in CUDA. In particular, this feature is useful for CUDA Graphs and stream

capture.

Various resource management schemes are not compatible with CUDA graphs. Consider for
example an event-based pool or a synchronous-create, asynchronous-destroy scheme.

// Library API with pool allocation

void libraryWork (cudaStream t stream) {
auto &resource = pool.claimTemporaryResource () ;
resource.waitOnReadyEventInStream (stream) ;
launchWork (stream, resource);
resource.recordReadyEvent (stream) ;
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// Library API with asynchronous resource deletion
void libraryWork (cudaStream t stream) {
Resource *resource = new Resource(...);
launchWork (stream, resource);
cudaStreamAddCallback (
stream,
[] (cudaStream t, cudaError t, void *resource) {
delete static_cast<Resource *> (resource) ;

by

resource,
0)7
// Error handling considerations not shown

These schemes are difficult with CUDA graphs because of the non-fixed pointer or handle

for the resource which requires indirection or graph update, and the synchronous CPU code
needed each time the work is submitted. They also do not work with stream capture if these
considerations are hidden from the caller of the library, and because of use of disallowed APls
during capture. Various solutions exist such as exposing the resource to the caller. CUDA user
objects present another approach.

A CUDA user object associates a user-specified destructor callback with an internal refcount,
similar to C++ shared ptr. References may be owned by user code on the CPU and by CUDA
graphs. Note that for user-owned references, unlike C++ smart pointers, there is no object
representing the reference; users must track user-owned references manually. A typical use
case would be to immediately move the sole user-owned reference to a CUDA graph after the
user object is created.

When a reference is associated to a CUDA graph, CUDA will manage the graph operations
automatically. A cloned cudaGraph t retains a copy of every reference owned by the source
cudaGraph t, with the same multiplicity. An instantiated cudaGraphExec t retains a copy of
every reference in the source cudaGraph_t. When a cudaGraphExec_t Is destroyed without
being synchronized, the references are retained until the execution is completed.

Here is an example use.

cudaGraph t graph; // Preexisting graph

Object *object = new Object; // C++ object with possibly nontrivial destructor
cudaUserObject t cuObject;
cudaUserObjectCreate (

&cuObject,

object, // Here we use a CUDA-provided template wrapper for this API,

// which supplies a callback to delete the C++ object pointer
1, // Initial refcount
cudaUserObjectNoDestructorSync // Acknowledge that the callback cannot be
// waited on via CUDA

)i
cudaGraphRetainUserObject (

graph,

cuObject,

1, // Number of references

cudaGraphUserObjectMove // Transfer a reference owned by the caller (do

// not modify the total reference count)

)
// No more references owned by this thread; no need to call release API
cudaGraphExec t graphExec;

CUDA C++ Programming Guide PG-02829-001_v11.7 | 107



Programming Interface

cudaGraphInstantiate (&§graphExec, graph, nullptr, nullptr, 0); // Will retain a
// new reference
cudaGraphDestroy (graph); // graphExec still owns a reference
cudaGraphLaunch (graphExec, 0); // Async launch has access to the user objects
cudaGraphExecDestroy (graphExec); // Launch is not synchronized; the release
// will be deferred if needed

cudaStreamSynchronize (0); // After the launch is synchronized, the remaining

// reference is released and the destructor will

// execute. Note this happens asynchronously.
// If the destructor callback had signaled a synchronization object, it would
// be safe to wait on it at this point.

References owned by graphs in child graph nodes are associated to the child graphs, not

the parents. If a child graph is updated or deleted, the references change accordingly.

If an executable graph or child graph is updated with cudaGraphExecUpdate or
cudaGraphExecChildGraphNodeSetParams, the references in the new source graph are
cloned and replace the references in the target graph. In either case, if previous launches are
not synchronized, any references which would be released are held until the launches have
finished executing.

There is not currently a mechanism to wait on user object destructors via a CUDA

API. Users may signal a synchronization object manually from the destructor code. In
addition, it is not legal to call CUDA APIs from the destructor, similar to the restriction on
cudaLaunchHostFunc. This is to avoid blocking a CUDA internal shared thread and preventing
forward progress. It is legal to signal another thread to perform an API call, if the dependency
Is one way and the thread doing the call cannot block forward progress of CUDA work.

User objects are created with cudaUserObjectCreate, which is a good starting point to
browse related APls.

3.3.  Versioning and Compatibility

There are two version numbers that developers should care about when developing a CUDA
application: The compute capability that describes the general specifications and features
of the compute device [see Compute Capability] and the version of the CUDA driver API that
describes the features supported by the driver APl and runtime.

The version of the driver APl is defined in the driver header file as cUDA VERSION. It allows
developers to check whether their application requires a newer device driver than the one
currently installed. This is important, because the driver APl is backward compatible, meaning
that applications, plug-ins, and libraries (including the CUDA runtime) compiled against

a particular version of the driver APl will continue to work on subsequent device driver
releases as illustrated in Figure 11. The driver APl is not forward compatible, which means
that applications, plug-ins, and libraries (including the CUDA runtime) compiled against a
particular version of the driver APl will not work on previous versions of the device driver.

It is important to note that there are limitations on the mixing and matching of versions that is
supported:

» Since only one version of the CUDA Driver can be installed at a time on a system, the
installed driver must be of the same or higher version than the maximum Driver API
version against which any application, plug-ins, or libraries that must run on that system
were built.
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» All plug-ins and libraries used by an application must use the same version of the CUDA
Runtime unless they statically link to the Runtime, in which case multiple versions of
the runtime can coexist in the same process space. Note that if nvec is used to link the
application, the static version of the CUDA Runtime library will be used by default, and all
CUDA Toolkit libraries are statically linked against the CUDA Runtime.

» All plug-ins and libraries used by an application must use the same version of any
libraries that use the runtime (such as cuFFT, cuBLAS, ...) unless statically linking to those

libraries.
Figure 11. The Driver API Is Backward but Not Forward Compatible
Apps, Apps, Apps,
Libs & Libs & Libs &
Plug-ins Plug-ins Plug-ins | «u.
1.0 1.1 2.0
Driver Driver Driver “es
Compatible Incompatible

—

For Tesla GPU products, CUDA 10 introduced a new forward-compatible upgrade path for the
user-mode components of the CUDA Driver. This feature is described in CUDA Compatibility.

The requirements on the CUDA Driver version described here apply to the version of the user-
mode components.

3.4. Compute Modes

On Tesla solutions running Windows Server 2008 and later or Linux, one can set any device in
a system in one of the three following modes using NVIDIA's System Management Interface
(nvidia-smi), which is a tool distributed as part of the driver:
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» Default compute mode: Multiple host threads can use the device (by calling
cudaSetDevice () on this device, when using the runtime API, or by making current a
context associated to the device, when using the driver API) at the same time.

» Exclusive-process compute mode: Only one CUDA context may be created on the device
across all processes in the system. The context may be current to as many threads as
desired within the process that created that context.

» Prohibited compute mode: No CUDA context can be created on the device.

This means, in particular, that a host thread using the runtime APl without explicitly calling
cudaSetDevice () might be associated with a device other than device O if device 0 turns
out to be in prohibited mode or in exclusive-process mode and used by another process.
cudaSetValidDevices () can be used to set a device from a prioritized list of devices.

Note also that, for devices featuring the Pascal architecture onwards (compute capability
with major revision number 6 and higher), there exists support for Compute Preemption.
This allows compute tasks to be preempted at instruction-level granularity, rather than
thread block granularity as in prior Maxwell and Kepler GPU architecture, with the benefit
that applications with long-running kernels can be prevented from either monopolizing

the system or timing out. However, there will be context switch overheads associated with
Compute Preemption, which is automatically enabled on those devices for which support
exists. The individual attribute query function cudabDeviceGetAttribute () with the attribute
cudaDevAttrComputePreemptionSupported can be used to determine if the device in use
supports Compute Preemption. Users wishing to avoid context switch overheads associated
with different processes can ensure that only one process is active on the GPU by selecting
exclusive-process mode.

Applications may query the compute mode of a device by checking the computeMode device
property (see Device Enumeration).

3.5. Mode Switches

GPUs that have a display output dedicate some DRAM memory to the so-called primary
surface, which is used to refresh the display device whose output is viewed by the user. When
users initiate a mode switch of the display by changing the resolution or bit depth of the
display (using NVIDIA control panel or the Display control panel on Windows), the amount of
memory needed for the primary surface changes. For example, if the user changes the display
resolution from 1280x1024x32-bit to 1600x1200x32-bit, the system must dedicate 7.68 MB

to the primary surface rather than 5.24 MB. [Full-screen graphics applications running with
anti-aliasing enabled may require much more display memory for the primary surface.] On
Windows, other events that may initiate display mode switches include launching a full-screen
DirectX application, hitting Alt+Tab to task switch away from a full-screen DirectX application,
or hitting Ctrl+Alt+Del to lock the computer.

If a mode switch increases the amount of memory needed for the primary surface, the system
may have to cannibalize memory allocations dedicated to CUDA applications. Therefore, a
mode switch results in any call to the CUDA runtime to fail and return an invalid context error.
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3.6. Tesla Compute Cluster Mode for
Windows

Using NVIDIA's System Management Interface (nvidia-smi), the Windows device driver can be
put in TCC (Tesla Compute Cluster) mode for devices of the Tesla and Quadro Series.

TCC mode removes support for any graphics functionality.
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The NVIDIA GPU architecture is built around a scalable array of multithreaded Streaming
Multiprocessors (SMs). When a CUDA program on the host CPU invokes a kernel grid, the
blocks of the grid are enumerated and distributed to multiprocessors with available execution
capacity. The threads of a thread block execute concurrently on one multiprocessor, and
multiple thread blocks can execute concurrently on one multiprocessor. As thread blocks
terminate, new blocks are launched on the vacated multiprocessors.

A multiprocessor is designed to execute hundreds of threads concurrently. To manage such
a large amount of threads, it employs a unique architecture called SIMT (Single-Instruction,
Multiple-Thread) that is described in SIMT Architecture. The instructions are pipelined,
leveraging instruction-level parallelism within a single thread, as well as extensive thread-
level parallelism through simultaneous hardware multithreading as detailed in Hardware
Multithreading. Unlike CPU cores, they are issued in order and there is no branch prediction
or speculative execution.

SIMT Architecture and Hardware Multithreading describe the architecture features of the
streaming multiprocessor that are common to all devices. Compute Capability 3.x, Compute
Capability 5.x, Compute Capability 6.x, and Compute Capability 7.x provide the specifics for
devices of compute capabilities 3.x, 5.x, 6.x, and 7.x respectively.

The NVIDIA GPU architecture uses a little-endian representation.

4.1. SIMT Architecture

The multiprocessor creates, manages, schedules, and executes threads in groups of 32
parallel threads called warps. Individual threads composing a warp start together at the same
program address, but they have their own instruction address counter and register state

and are therefore free to branch and execute independently. The term warp originates from
weaving, the first parallel thread technology. A half-warp is either the first or second half of a
warp. A gquarter-warp is either the first, second, third, or fourth quarter of a warp.

When a multiprocessor is given one or more thread blocks to execute, it partitions them

into warps and each warp gets scheduled by a warp scheduler for execution. The way a block
is partitioned into warps is always the same; each warp contains threads of consecutive,
increasing thread IDs with the first warp containing thread 0. Thread Hierarchy describes how
thread IDs relate to thread indices in the block.

A warp executes one common instruction at a time, so full efficiency is realized when all
32 threads of a warp agree on their execution path. If threads of a warp diverge via a data-
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dependent conditional branch, the warp executes each branch path taken, disabling threads
that are not on that path. Branch divergence occurs only within a warp; different warps
execute independently regardless of whether they are executing common or disjoint code
paths.

The SIMT architecture is akin to SIMD (Single Instruction, Multiple Data) vector organizations
in that a single instruction controls multiple processing elements. A key difference is that
SIMD vector organizations expose the SIMD width to the software, whereas SIMT instructions
specify the execution and branching behavior of a single thread. In contrast with SIMD vector
machines, SIMT enables programmers to write thread-level parallel code for independent,
scalar threads, as well as data-parallel code for coordinated threads. For the purposes of
correctness, the programmer can essentially ignore the SIMT behavior; however, substantial
performance improvements can be realized by taking care that the code seldom requires
threads in a warp to diverge. In practice, this is analogous to the role of cache lines in
traditional code: Cache line size can be safely ignored when designing for correctness but
must be considered in the code structure when designing for peak performance. Vector
architectures, on the other hand, require the software to coalesce loads into vectors and
manage divergence manually.

Prior to Volta, warps used a single program counter shared amongst all 32 threads in the
warp together with an active mask specifying the active threads of the warp. As a result,
threads from the same warp in divergent regions or different states of execution cannot signal
each other or exchange data, and algorithms requiring fine-grained sharing of data guarded
by locks or mutexes can easily lead to deadlock, depending on which warp the contending
threads come from.

Starting with the Volta architecture, Independent Thread Scheduling allows full concurrency
between threads, regardless of warp. With Independent Thread Scheduling, the GPU
maintains execution state per thread, including a program counter and call stack, and can
yield execution at a per-thread granularity, either to make better use of execution resources
or to allow one thread to wait for data to be produced by another. A schedule optimizer
determines how to group active threads from the same warp together into SIMT units. This
retains the high throughput of SIMT execution as in prior NVIDIA GPUs, but with much more
flexibility: threads can now diverge and reconverge at sub-warp granularity.

Independent Thread Scheduling can lead to a rather different set of threads participating
in the executed code than intended if the developer made assumptions about warp-
synchronicity2 of previous hardware architectures. In particular, any warp-synchronous
code (such as synchronization-free, intra-warp reductions) should be revisited to ensure
compatibility with Volta and beyond. See Compute Capability 7.x for further details.

Notes

The threads of a warp that are participating in the current instruction are called the active
threads, whereas threads not on the current instruction are inactive (disabled). Threads can
be inactive for a variety of reasons including having exited earlier than other threads of their
warp, having taken a different branch path than the branch path currently executed by the

Z The term warp-synchronous refers to code that implicitly assumes threads in the same warp are synchronized at every
instruction.
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warp, or being the last threads of a block whose number of threads is not a multiple of the
warp size.

If a non-atomic instruction executed by a warp writes to the same location in global or shared
memory for more than one of the threads of the warp, the number of serialized writes that
occur to that location varies depending on the compute capability of the device (see Compute
Capability 3.x, Compute Capability 5.x, Compute Capability 6.x, and Compute Capability 7.x,
and which thread performs the final write is undefined.

If an atomic instruction executed by a warp reads, modifies, and writes to the same location in
global memory for more than one of the threads of the warp, each read/modify/write to that
location occurs and they are all serialized, but the order in which they occur is undefined.

4.2. Hardware Multithreading

The execution context [program counters, registers, etc.) for each warp processed by a
multiprocessor is maintained on-chip during the entire lifetime of the warp. Therefore,
switching from one execution context to another has no cost, and at every instruction issue
time, a warp scheduler selects a warp that has threads ready to execute its next instruction
(the active threads of the warp) and issues the instruction to those threads.

In particular, each multiprocessor has a set of 32-bit registers that are partitioned among the
warps, and a parallel data cache or shared memory that is partitioned among the thread blocks.

The number of blocks and warps that can reside and be processed together on the
multiprocessor for a given kernel depends on the amount of registers and shared memory
used by the kernel and the amount of registers and shared memory available on the
multiprocessor. There are also a maximum number of resident blocks and a maximum
number of resident warps per multiprocessor. These limits as well the amount of registers
and shared memory available on the multiprocessor are a function of the compute capability
of the device and are given in Appendix Compute Capabilities. If there are not enough registers
or shared memory available per multiprocessor to process at least one block, the kernel will
fail to launch.

The total number of warps in a block is as follows:

AT
Cell( , 1)
Wsize
» Tisthe number of threads per block,
> Wiz is the warp size, which is equal to 32,

» ceillx, y) is equal to x rounded up to the nearest multiple of y.

The total number of registers and total amount of shared memory allocated for a block are
documented in the CUDA Occupancy Calculator provided in the CUDA Toolkit.

CUDA C++ Programming Guide PG-02829-001_v11.7 | 114



Chapter 5. Performance Guidelines

5.1.  Overall Performance Optimization
Strategies

Performance optimization revolves around four basic strategies:

» Maximize parallel execution to achieve maximum utilization;

» Optimize memory usage to achieve maximum memory throughput;

» Optimize instruction usage to achieve maximum instruction throughput;
» Minimize memory thrashing.

Which strategies will yield the best performance gain for a particular portion of an application
depends on the performance limiters for that portion; optimizing instruction usage of a kernel
that is mostly limited by memory accesses will not yield any significant performance gain,

for example. Optimization efforts should therefore be constantly directed by measuring and
monitoring the performance limiters, for example using the CUDA profiler. Also, comparing
the floating-point operation throughput or memory throughput—whichever makes more
sense—of a particular kernel to the corresponding peak theoretical throughput of the device
indicates how much room for improvement there is for the kernel.

H.2. Maximize Utilization

To maximize utilization the application should be structured in a way that it exposes as much
parallelism as possible and efficiently maps this parallelism to the various components of the
system to keep them busy most of the time.

5.2.1. Application Level

At a high level, the application should maximize parallel execution between the host, the
devices, and the bus connecting the host to the devices, by using asynchronous functions calls
and streams as described in Asynchronous Concurrent Execution. It should assign to each
processor the type of work it does best: serial workloads to the host; parallel workloads to the
devices.
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For the parallel workloads, at points in the algorithm where parallelism is broken because
some threads need to synchronize in order to share data with each other, there are two
cases: Either these threads belong to the same block, in which case they should use
__syncthreads () and share data through shared memory within the same kernel invocation,
or they belong to different blocks, in which case they must share data through global memory
using two separate kernel invocations, one for writing to and one for reading from global
memory. The second case is much less optimal since it adds the overhead of extra kernel
invocations and global memory traffic. Its occurrence should therefore be minimized by
mapping the algorithm to the CUDA programming model in such a way that the computations
that require inter-thread communication are performed within a single thread block as much
as possible.

H.2.2. Device Level

At a lower level, the application should maximize parallel execution between the
multiprocessors of a device.

Multiple kernels can execute concurrently on a device, so maximum utilization can also be
achieved by using streams to enable enough kernels to execute concurrently as described in
Asynchronous Concurrent Execution.

5.2.3. Multiprocessor Level

At an even lower level, the application should maximize parallel execution between the various
functional units within a multiprocessor.

As described in Hardware Multithreading, a GPU multiprocessor primarily relies on thread-
level parallelism to maximize utilization of its functional units. Utilization is therefore directly
linked to the number of resident warps. At every instruction issue time, a warp scheduler
selects an instruction that is ready to execute. This instruction can be another independent
instruction of the same warp, exploiting instruction-level parallelism, or more commonly

an instruction of another warp, exploiting thread-level parallelism. If a ready to execute
instruction is selected it is issued to the active threads of the warp. The number of clock cycles
it takes for a warp to be ready to execute its next instruction is called the latency, and full
utilization is achieved when all warp schedulers always have some instruction to issue for
some warp at every clock cycle during that latency period, or in other words, when latency is
completely "hidden”. The number of instructions required to hide a latency of L clock cycles
depends on the respective throughputs of these instructions (see Arithmetic Instructions for
the throughputs of various arithmetic instructions). If we assume instructions with maximum
throughput, it is equal to:

» 4L for devices of compute capability 5.x, 6.1, 6.2, 7.x and 8.x since for these devices, a
multiprocessor issues one instruction per warp over one clock cycle for four warps at a
time, as mentioned in Compute Capabilities.

» 2L for devices of compute capability 6.0 since for these devices, the two instructions issued
every cycle are one instruction for two different warps.

» 8L for devices of compute capability 3.x since for these devices, the eight instructions
issued every cycle are four pairs for four different warps, each pair being for the same
warp.

CUDA C++ Programming Guide PG-02829-001_v11.7 | 116



Performance Guidelines

The most common reason a warp is not ready to execute its next instruction is that the
instruction’s input operands are not available yet.

If all input operands are registers, latency is caused by register dependencies, i.e., some of the
input operands are written by some previous instruction(s) whose execution has not completed
yet. In this case, the latency is equal to the execution time of the previous instruction and

the warp schedulers must schedule instructions of other warps during that time. Execution
time varies depending on the instruction. On devices of compute capability 7.x, for most
arithmetic instructions, it is typically 4 clock cycles. This means that 16 active warps per
multiprocessor (4 cycles, 4 warp schedulers] are required to hide arithmetic instruction
latencies (assuming that warps execute instructions with maximum throughput, otherwise
fewer warps are needed). If the individual warps exhibit instruction-level parallelism, i.e.

have multiple independent instructions in their instruction stream, fewer warps are needed
because multiple independent instructions from a single warp can be issued back to back.

If some input operand resides in off-chip memory, the latency is much higher: typically
hundreds of clock cycles. The number of warps required to keep the warp schedulers

busy during such high latency periods depends on the kernel code and its degree of
instruction-level parallelism. In general, more warps are required if the ratio of the number of
instructions with no off-chip memory operands (i.e., arithmetic instructions most of the time]
to the number of instructions with off-chip memory operands is low [this ratio is commonly
called the arithmetic intensity of the program].

Another reason a warp is not ready to execute its next instruction is that it is waiting at

some memory fence (Memory Fence Functions) or synchronization point (Synchronization
Functions). A synchronization point can force the multiprocessor to idle as more and more
warps wait for other warps in the same block to complete execution of instructions prior

to the synchronization point. Having multiple resident blocks per multiprocessor can help
reduce idling in this case, as warps from different blocks do not need to wait for each other at
synchronization points.

The number of blocks and warps residing on each multiprocessor for a given kernel call
depends on the execution configuration of the call (Execution Configuration), the memory
resources of the multiprocessor, and the resource requirements of the kernel as described in
Hardware Multithreading. Register and shared memory usage are reported by the compiler
when compiling with the --ptxas-options=-v option.

The total amount of shared memory required for a block is equal to the sum of the amount of
statically allocated shared memory and the amount of dynamically allocated shared memory.

The number of registers used by a kernel can have a significant impact on the number

of resident warps. For example, for devices of compute capability 6.x, if a kernel uses 64
registers and each block has 512 threads and requires very little shared memory, then two
blocks [(i.e., 32 warps) can reside on the multiprocessor since they require 2x512x64 registers,
which exactly matches the number of registers available on the multiprocessor. But as soon
as the kernel uses one more register, only one block (i.e., 16 warps] can be resident since two
blocks would require 2x512x65 registers, which are more registers than are available on the
multiprocessor. Therefore, the compiler attempts to minimize register usage while keeping
register spilling (see Device Memory Accesses) and the number of instructions to a minimum.
Register usage can be controlled using the maxrregcount compiler option or launch bounds
as described in Launch Bounds.
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The register file is organized as 32-bit registers. So, each variable stored in a register needs at
least one 32-bit register, for example, a double variable uses two 32-bit registers.

The effect of execution configuration on performance for a given kernel call generally
depends on the kernel code. Experimentation is therefore recommended. Applications can
also parametrize execution configurations based on register file size and shared memory
size, which depends on the compute capability of the device, as well as on the number of
multiprocessors and memory bandwidth of the device, all of which can be queried using the
runtime (see reference manuall.

The number of threads per block should be chosen as a multiple of the warp size to avoid
wasting computing resources with under-populated warps as much as possible.

5.2.3.1.  Occupancy Calculator

Several APl functions exist to assist programmers in choosing thread block size based on
register and shared memory requirements.

» The occupancy calculator API, cudaOccupancyMaxActiveBlocksPerMultiprocessor,
can provide an occupancy prediction based on the block size and shared memory usage
of a kernel. This function reports occupancy in terms of the number of concurrent thread
blocks per multiprocessor.

» Note that this value can be converted to other metrics. Multiplying by the number of
warps per block yields the number of concurrent warps per multiprocessor; further
dividing concurrent warps by max warps per multiprocessor gives the occupancy as a
percentage.

» The occupancy-based launch configurator APls, cudaOccupancyMaxPotentialBlockSize
and cudaOccupancyMaxPotentialBlockSizeVariableSMem, heuristically calculate an
execution configuration that achieves the maximum multiprocessor-level occupancy.

The following code sample calculates the occupancy of MyKernel. It then reports the
occupancy level with the ratio between concurrent warps versus maximum warps per
multiprocessor.

// Device code

__global  void MyKernel (int *d, int *a, int *b)

{
int idx = threadIdx.x + blockIdx.x * blockDim.x;
d[idx] = a[idx] * b[idx];

}

// Host code

int main ()

{
int numBlocks; // Occupancy in terms of active blocks
int blockSize = 32;

// These variables are used to convert occupancy to warps
int device;

cudaDeviceProp prop;

int activeWarps;

int maxWarps;

cudaGetDevice (&device) ;
cudaGetDeviceProperties (&prop, device);
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cudaOccupancyMaxActiveBlocksPerMultiprocessor (
&numBlocks,
MyKernel,
blockSize,
0);

activeWarps = numBlocks * blockSize / prop.warpSize;
maxWarps = prop.maxThreadsPerMultiProcessor / prop.warpSize;

std::cout << "Occupancy: " << (double)activeWarps / maxWarps * 100 << "%" <<
std::endl;

return 0O;

The following code sample configures an occupancy-based kernel launch of MyKernel
according to the user input.

// Device code
__global  void MyKernel (int *array, int arrayCount)
{
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < arrayCount) {
array[idx] *= array[idx];
}
}

// Host code
int launchMyKernel (int *array, int arrayCount)

{

int blockSize; // The launch configurator returned block size

int minGridSize; // The minimum grid size needed to achieve the
// maximum occupancy for a full device
// launch

int gridSize; // The actual grid size needed, based on input
// size

cudaOccupancyMaxPotentialBlockSize (
&minGridSize,
&blockSize,
(void*)MyKernel,
0,
arrayCount) ;

// Round up according to array size
gridSize = (arrayCount + blockSize - 1) / blockSize;

MyKernel<<<gridSize, blockSize>>>(array, arrayCount);
cudaDeviceSynchronize () ;

// If interested, the occupancy can be calculated with
// cudaOccupancyMaxActiveBlocksPerMultiprocessor

return 0;

The CUDA Toolkit also provides a self-documenting, standalone occupancy calculator and
launch configurator implementation in <CUDA Toolkit Path>/include/cuda occupancy.h
for any use cases that cannot depend on the CUDA software stack. A spreadsheet version of
the occupancy calculator is also provided. The spreadsheet version is particularly useful as

a learning tool that visualizes the impact of changes to the parameters that affect occupancy
(block size, registers per thread, and shared memory per thread).
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5.3. Maximize Memory Throughput

The first step in maximizing overall memory throughput for the application is to minimize data
transfers with low bandwidth.

That means minimizing data transfers between the host and the device, as detailed in Data
Transfer between Host and Device, since these have much lower bandwidth than data
transfers between global memory and the device.

That also means minimizing data transfers between global memory and the device by
maximizing use of on-chip memory: shared memory and caches [i.e., L1 cache and L2 cache
available on devices of compute capability 2.x and higher, texture cache and constant cache
available on all devices).

Shared memory is equivalent to a user-managed cache: The application explicitly allocates
and accesses it. As illustrated in CUDA Runtime, a typical programming pattern is to stage
data coming from device memory into shared memory; in other words, to have each thread of
a block:

» Load data from device memory to shared memory,

» Synchronize with all the other threads of the block so that each thread can safely read
shared memory locations that were populated by different threads,

» Process the data in shared memory,

» Synchronize again if necessary to make sure that shared memory has been updated with
the results,

» Write the results back to device memory.

For some applications (for example, for which global memory access patterns are data-
dependent), a traditional hardware-managed cache is more appropriate to exploit data locality.
As mentioned in Compute Capability 3.x, Compute Capability 7.x and Compute Capability

8.x, for devices of compute capability 3.x, 7.x and 8.x, the same on-chip memory is used for
both L1 and shared memory, and how much of it is dedicated to L1 versus shared memory is
configurable for each kernel call.

The throughput of memory accesses by a kernel can vary by an order of magnitude depending
on access pattern for each type of memory. The next step in maximizing memory throughput
Is therefore to organize memory accesses as optimally as possible based on the optimal
memory access patterns described in Device Memory Accesses. This optimization is especially
important for global memory accesses as global memory bandwidth is low compared to
available on-chip bandwidths and arithmetic instruction throughput, so non-optimal global
memory accesses generally have a high impact on performance.

H.3.1. Data Transfer between Host and Device

Applications should strive to minimize data transfer between the host and the device. One
way to accomplish this is to move more code from the host to the device, even if that means
running kernels that do not expose enough parallelism to execute on the device with full
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efficiency. Intermediate data structures may be created in device memory, operated on by the
device, and destroyed without ever being mapped by the host or copied to host memory.

Also, because of the overhead associated with each transfer, batching many small transfers
into a single large transfer always performs better than making each transfer separately.

On systems with a front-side bus, higher performance for data transfers between host and
device is achieved by using page-locked host memory as described in Page-Locked Host

Memory.

In addition, when using mapped page-locked memory (Mapped Memory), there is no need to
allocate any device memory and explicitly copy data between device and host memory. Data
transfers are implicitly performed each time the kernel accesses the mapped memory. For
maximum performance, these memory accesses must be coalesced as with accesses to
global memory (see Device Memory Accesses). Assuming that they are and that the mapped
memory is read or written only once, using mapped page-locked memory instead of explicit
copies between device and host memory can be a win for performance.

On integrated systems where device memory and host memory are physically the same, any
copy between host and device memory is superfluous and mapped page-locked memory
should be used instead. Applications may query a device is integrated by checking that the
integrated device property (see Device Enumeration) is equal to 1.

5.3.2. Device Memory Accesses

An instruction that accesses addressable memory [i.e., global, local, shared, constant, or
texture memory) might need to be re-issued multiple times depending on the distribution

of the memory addresses across the threads within the warp. How the distribution affects

the instruction throughput this way is specific to each type of memory and described in the
following sections. For example, for global memory, as a general rule, the more scattered the
addresses are, the more reduced the throughput is.

Global Memory

Global memory resides in device memory and device memory is accessed via 32-, 64-, or 128-
byte memory transactions. These memory transactions must be naturally aligned: Only the
32-, 64-, or 128-byte segments of device memory that are aligned to their size (i.e., whose first
address is a multiple of their size] can be read or written by memory transactions.

When a warp executes an instruction that accesses global memory, it coalesces the memory
accesses of the threads within the warp into one or more of these memory transactions
depending on the size of the word accessed by each thread and the distribution of the memory
addresses across the threads. In general, the more transactions are necessary, the more
unused words are transferred in addition to the words accessed by the threads, reducing the
instruction throughput accordingly. For example, if a 32-byte memory transaction is generated
for each thread's 4-byte access, throughput is divided by 8.

How many transactions are necessary and how much throughput is ultimately affected varies
with the compute capability of the device. Compute Capability 3.x, Compute Capability 5.x,
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Compute Capability 6.x, Compute Capability 7.x and Compute Capability 8.x give more details
on how global memory accesses are handled for various compute capabilities.

To maximize global memory throughput, it is therefore important to maximize coalescing by:

» Following the most optimal access patterns based on Compute Capability 3.x, Compute
Capability 5.x, Compute Capability 6.x, Compute Capability 7.x and Compute Capability 8.x

» Using data types that meet the size and alignment requirement detailed in the section Size
and Alignment Requirement below,

> Padding data in some cases, for example, when accessing a two-dimensional array as
described in the section Two-Dimensional Arrays below.

Size and Alignment Requirement

Global memory instructions support reading or writing words of size equalto 1, 2, 4, 8, or 16
bytes. Any access (via a variable or a pointer] to data residing in global memory compiles to a
single global memory instruction if and only if the size of the data type is 1, 2, 4, 8, or 16 bytes
and the data is naturally aligned [i.e., its address is a multiple of that size).

If this size and alignment requirement is not fulfilled, the access compiles to multiple
instructions with interleaved access patterns that prevent these instructions from fully
coalescing. It is therefore recommended to use types that meet this requirement for data that
resides in global memory.

The alignment requirement is automatically fulfilled for the Built-in Vector Types.

For structures, the size and alignment requirements can be enforced by the compiler using
the alignment specifiers  align (8) or  align (16), suchas
struct  align (8) {

float x;

float y;
i

or

struct  align_ (16) {
float x;
float y;
float z;

}i

Any address of a variable residing in global memory or returned by one of the memory
allocation routines from the driver or runtime APl is always aligned to at least 256 bytes.

Reading non-naturally aligned 8-byte or 16-byte words produces incorrect results (off by a few
words), so special care must be taken to maintain alignment of the starting address of any
value or array of values of these types. A typical case where this might be easily overlooked

Is when using some custom global memory allocation scheme, whereby the allocations of
multiple arrays (with multiple calls to cudaMalloc () or cuMemAlloc ()] is replaced by the
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allocation of a single large block of memory partitioned into multiple arrays, in which case the
starting address of each array is offset from the block's starting address.

Two-Dimensional Arrays

A common global memory access pattern is when each thread of index (tx, ty) uses the
following address to access one element of a 2D array of width width, located at address
BaseAddress of type type* (where type meets the requirement described in Maximize
Utilization):

BaseAddress + width * ty + tx

For these accesses to be fully coalesced, both the width of the thread block and the width of
the array must be a multiple of the warp size.

In particular, this means that an array whose width is not a multiple of this size will be
accessed much more efficiently if it is actually allocated with a width rounded up to the
closest multiple of this size and its rows padded accordingly. The cudaMallocPitch () and
cuMemAllocPitch () functions and associated memory copy functions described in the
reference manual enable programmers to write non-hardware-dependent code to allocate
arrays that conform to these constraints.

Local Memory

Local memory accesses only occur for some automatic variables as mentioned in Variable
Memory Space Specifiers. Automatic variables that the compiler is likely to place in local
memory are:

> Arrays for which it cannot determine that they are indexed with constant quantities,
» Large structures or arrays that would consume too much register space,

» Anyvariable if the kernel uses more registers than available (this is also known as register
spilling).

Inspection of the PTX assembly code (obtained by compiling with the -ptx or-keep option] will
tell if a variable has been placed in local memory during the first compilation phases as it will
be declared using the .1ocal mnemonic and accessed using the 1d.local and st.local
mnemonics. Even if it has not, subsequent compilation phases might still decide otherwise
though if they find it consumes too much register space for the targeted architecture:
Inspection of the cubin object using cuobjdump will tell if this is the case. Also, the compiler
reports total local memory usage per kernel (1mem) when compiling with the --ptxas-
options=-v option. Note that some mathematical functions have implementation paths that
might access local memory.

The local memory space resides in device memory, so local memory accesses have the same
high latency and low bandwidth as global memory accesses and are subject to the same
requirements for memory coalescing as described in Device Memory Accesses. Local memory
is however organized such that consecutive 32-bit words are accessed by consecutive thread
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IDs. Accesses are therefore fully coalesced as long as all threads in a warp access the same
relative address (for example, same index in an array variable, same member in a structure
variable).

On some devices of compute capability 3.x local memory accesses are always cached in L1
and L2 in the same way as global memory accesses (see Compute Capability 3.x).

On devices of compute capability 5.x and 6.x, local memory accesses are always cached in
L2 in the same way as global memory accesses (see Compute Capability 5.x and Compute

Capability 6.x).

Shared Memory

Because it is on-chip, shared memory has much higher bandwidth and much lower latency
than local or global memory.

To achieve high bandwidth, shared memory is divided into equally-sized memory modules,
called banks, which can be accessed simultaneously. Any memory read or write request made
of n addresses that fall in n distinct memory banks can therefore be serviced simultaneously,
yielding an overall bandwidth that is n times as high as the bandwidth of a single module.

However, if two addresses of a memory request fall in the same memory bank, there is a bank
conflict and the access has to be serialized. The hardware splits a memory request with bank
conflicts into as many separate conflict-free requests as necessary, decreasing throughput by
a factor equal to the number of separate memory requests. If the number of separate memory
requests is n, the initial memory request is said to cause n-way bank conflicts.

To get maximum performance, it is therefore important to understand how memory addresses
map to memory banks in order to schedule the memory requests so as to minimize bank
conflicts. This is described in Compute Capability 3.x, Compute Capability 5.x, Compute
Capability 6.x, Compute Capability 7.x, and Compute Capability 8.x for devices of compute
capability 3.x, 5.x, 6.x, 7.x and 8.x, respectively.

Constant Memory
The constant memory space resides in device memory and is cached in the constant cache.

A request is then split into as many separate requests as there are different memory
addresses in the initial request, decreasing throughput by a factor equal to the number of
separate requests.

The resulting requests are then serviced at the throughput of the constant cache in case of a
cache hit, or at the throughput of device memory otherwise.
Texture and Surface Memory

The texture and surface memory spaces reside in device memory and are cached in texture
cache, so a texture fetch or surface read costs one memory read from device memory only
on a cache miss, otherwise it just costs one read from texture cache. The texture cache is
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optimized for 2D spatial locality, so threads of the same warp that read texture or surface
addresses that are close together in 2D will achieve best performance. Also, it is designed for
streaming fetches with a constant latency; a cache hit reduces DRAM bandwidth demand but
not fetch latency.

Reading device memory through texture or surface fetching present some benefits that
can make it an advantageous alternative to reading device memory from global or constant
memory:

> |f the memory reads do not follow the access patterns that global or constant memory
reads must follow to get good performance, higher bandwidth can be achieved providing
that there is locality in the texture fetches or surface reads;

» Addressing calculations are performed outside the kernel by dedicated units;
» Packed data may be broadcast to separate variables in a single operation;

» 8-bitand 16-bit integer input data may be optionally converted to 32 bit floating-point
values in the range [0.0, 1.0] or [-1.0, 1.0] (see Texture Memory].

0.4.  Maximize Instruction Throughput

To maximize instruction throughput the application should:

» Minimize the use of arithmetic instructions with low throughput; this includes trading
precision for speed when it does not affect the end result, such as using intrinsic instead
of regular functions [(intrinsic functions are listed in Intrinsic Functions), single-precision
instead of double-precision, or flushing denormalized numbers to zero;

» Minimize divergent warps caused by control flow instructions as detailed in Control Flow
Instructions

» Reduce the number of instructions, for example, by optimizing out synchronization points
whenever possible as described in Synchronization Instruction or by using restricted
pointers as described in __restrict_ .

In this section, throughputs are given in number of operations per clock cycle per
multiprocessor. For a warp size of 32, one instruction corresponds to 32 operations, so if N is
the number of operations per clock cycle, the instruction throughput is N/32 instructions per
clock cycle.

All throughputs are for one multiprocessor. They must be multiplied by the number of
multiprocessors in the device to get throughput for the whole device.

5.4.1. Arithmetic Instructions

Table 3 gives the throughputs of the arithmetic instructions that are natively supported in
hardware for devices of various compute capabilities.
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Table 3. Throughput of Native Arithmetic Instructions

(Number of Results per Clock Cycle per Multiprocessor)

Compute Capability
3.5,3.7 5.0,5.2 5.3 6.0 6.1 6.2 7.x 8.0 8.6

16-bit
floating-

point

add, N/A 256 128 2 256 128 256°
multiply,
multiply-

add

32-bit
floating-

point

add, 192 128 b4 128 b4 128
multiply,
multiply-

add

b4-bit
floating-

point

add, 64 4 32 4 32° 32 2
multiply,
multiply-

add

32-bit
floating-
point
reciprocal
reciprocal
square
root,
base-2
logarithm 32 16 32 16
( log2f),
base 2
exponential
[epof],
sine
[7sinf],
cosine
[7cosf]
32-bit
integer
add,
extended-

160 128 64 128 64

128 for __ nv_bfloat16
8 for GeForce GPUs, except for Titan GPUs
2 for compute capability 7.5 GPUs
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3.5,3.7 5.0,5.2

precision
add,
subtract,
extended-
precision
subtract

32-bit
integer
multiply,
multiply-
add, 32
extended-
precision
multiply-
add

24-bit
integer
multiply

([ [ulmul24)

32-bit
integer 64!
shift

compare,
minimum, 160
maximum

32-bit
integer
bit
reverse
Bit field
extract/ 32
insert

32-bit
bitwise

AND,
OR, XOR

count of
leading
zeros,
most 32
significant
non-
sign bit

32

160
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64

64

64

64

128

Compute Capability

5.3 6.0

6.1

Multiple instruct.

32

32

32

32

64

Multiple instruct.

64

64

128

32

32 for extended-precision

32 for GeForce GPUs, except for Titan GPUs

6.2

Performance Guidelines

7.x 8.0 8.6
64°

64

64
16

Multiple Instruct.

64
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Compute Capability
3.5,3.7 5.0,5.2 5.3 6.0 6.1 6.2 7.x 8.0 8.6

population

32 16 32 16
count

warp 8
shuffle 32 32 32
warp

reduce Multiple instruct. 16

sum of
absolute 32 b4 32 b4
difference

SIMD
video
instructions
vabsdiff2

SIMD
video
instructions
vabsdiff4

All other
SIMD
video

instructions

Type
conversions
from 8-
bit and
16-bit 128 32 16 32 b4
integer
to 32-bit
integer
types
Type
conversions
from
and to
b4-bit
types
All other
type 32 16 32 16
conversions

160 Multiple instruct.

160 Multiple instruct. b4

32 Multiple instruct.

327 4 16 4 160 16 2

Other instructions and functions are implemented on top of the native instructions. The
implementation may be different for devices of different compute capabilities, and the
number of native instructions after compilation may fluctuate with every compiler version. For

16 for compute capabilities 7.5 GPUs
7 8 for GeForce GPUs, except for Titan GPUs
2 for compute capabilities 7.5 GPUs

CUDA C++ Programming Guide PG-02829-001_v11.7 | 128



Performance Guidelines

complicated functions, there can be multiple code paths depending on input. cuobjdump can
be used to inspect a particular implementation in a cubin object.

The implementation of some functions are readily available on the CUDA header files
[math_functions .h, device functions.h, ]

In general, code compiled with -ftz=true (denormalized numbers are flushed to zero) tends
to have higher performance than code compiled with -ftz=false. Similarly, code compiled
with -prec-div=false (less precise division) tends to have higher performance code than
code compiled with -prec-div=true, and code compiled with -prec-sqrt=rfalse (less
precise square root) tends to have higher performance than code compiled with -prec-
sgrt=true. The nvcc user manual describes these compilation flags in more details.

Single-Precision Floating-Point Division

__fdividef (x, y) [see Intrinsic Functions) provides faster single-precision floating-point
division than the division operator.

Single-Precision Floating-Point Reciprocal Square Root

To preserve IEEE-754 semantics the compiler can optimize 1.0/sgrtf () into rsqrtf () only
when both reciprocal and square root are approximate, (i.e., with -prec-div=false and -
prec-sqrt=falsel. It is therefore recommended to invoke rsqrtf () directly where desired.

Single-Precision Floating-Point Square Root

Single-precision floating-point square root is implemented as a reciprocal square root
followed by a reciprocal instead of a reciprocal square root followed by a multiplication so that
it gives correct results for 0 and infinity.

Sine and Cosine

sinf (x), cosf (x), tanf (x), sincosf (x), and corresponding double-precision instructions
are much more expensive and even more so if the argument x is large in magnitude.

More precisely, the argument reduction code (see Mathematical Functions for
implementation] comprises two code paths referred to as the fast path and the slow path,
respectively.

The fast path is used for arguments sufficiently small in magnitude and essentially consists
of a few multiply-add operations. The slow path is used for arguments large in magnitude and
consists of lengthy computations required to achieve correct results over the entire argument
range.

At present, the argument reduction code for the trigonometric functions selects the fast path
for arguments whose magnitude is less than 105615.0f for the single-precision functions,
and less than 2147483648.0 for the double-precision functions.

As the slow path requires more registers than the fast path, an attempt has been made to
reduce register pressure in the slow path by storing some intermediate variables in local
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memory, which may affect performance because of local memory high latency and bandwidth
(see Device Memory Accesses). At present, 28 bytes of local memory are used by single-
precision functions, and 44 bytes are used by double-precision functions. However, the exact
amount is subject to change.

Due to the lengthy computations and use of local memory in the slow path, the throughput
of these trigonometric functions is lower by one order of magnitude when the slow path
reduction is required as opposed to the fast path reduction.

Integer Arithmetic

Integer division and modulo operation are costly as they compile to up to 20 instructions. They
can be replaced with bitwise operations in some cases: If n is a power of 2, (i/n] is equivalent
to (i>>1og2(n)) and (i%n) is equivalent to [i& (n-1)); the compiler will perform these
conversions if nis literal.

__brevand popc map to asingle instructionand brevlland popcll to afew
instructions.

_[ulmul24 are legacy intrinsic functions that no longer have any reason to be used.

Half Precision Arithmetic

In order to achieve good performance for 16-bit precision floating-point add, multiply or
multiply-add, it is recommended that the half2 datatype is used for half precision and
__nv _bfloatl162 be used for nv bfloatlé precision. Vector intrinsics (for example,
_ _hadd2, hsub2, hmul2, hfma2]can then be used to do two operationsin a
single instruction. Using half2 or _nv bfloatl62 in place of two calls using half or
__nv_bfloatl6 may also help performance of other intrinsics, such as warp shuffles.

The intrinsic __halves2half2 is provided to convert two half precision values to the half2
datatype.

Theintrinsic __halves2bfloatl162 is provided to converttwo nv bfloat precision values
tothe nv bfloatlé62 datatype.
Type Conversion

Sometimes, the compiler must insert conversion instructions, introducing additional execution
cycles. This is the case for:

» Functions operating on variables of type char or short whose operands generally need to
be converted to int,

» Double-precision floating-point constants (i.e., those constants defined without any type
suffix) used as input to single-precision floating-point computations (as mandated by C/C+
+ standards).

This last case can be avoided by using single-precision floating-point constants, defined with
an £ suffix such as 3.141592653589793f£, 1.0£, 0.5¢f.
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H.4.2. Control Flow Instructions

Any flow control instruction (i f, switch, do, for, while] can significantly impact the effective
instruction throughput by causing threads of the same warp to diverge [i.e., to follow different
execution paths]. If this happens, the different executions paths have to be serialized,
increasing the total number of instructions executed for this warp.

To obtain best performance in cases where the control flow depends on the thread ID, the
controlling condition should be written so as to minimize the number of divergent warps.
This is possible because the distribution of the warps across the block is deterministic as
mentioned in SIMT Architecture. A trivial example is when the controlling condition only
depends on (threadIdx / warpSize)] where warpSize is the warp size. In this case, no warp
diverges since the controlling condition is perfectly aligned with the warps.

Sometimes, the compiler may unroll loops or it may optimize out short if or switch blocks by
using branch predication instead, as detailed below. In these cases, no warp can ever diverge.
The programmer can also control loop unrolling using the #pragma unroll directive (see
#pragma unroll].

When using branch predication none of the instructions whose execution depends on the
controlling condition gets skipped. Instead, each of them is associated with a per-thread
condition code or predicate that is set to true or false based on the controlling condition and
although each of these instructions gets scheduled for execution, only the instructions with a
true predicate are actually executed. Instructions with a false predicate do not write results,
and also do not evaluate addresses or read operands.

5.4.3. Synchronization Instruction

Throughput for _ syncthreads () is 128 operations per clock cycle for devices of compute
capability 3.x, 32 operations per clock cycle for devices of compute capability 6.0, 16 operations
per clock cycle for devices of compute capability 7.x as well as 8.x and 64 operations per clock
cycle for devices of compute capability 5.x, 6.1 and 6.2.

Note that  syncthreads () can impact performance by forcing the multiprocessor to idle as
detailed in Device Memory Accesses.

5.9.  Minimize Memory Thrashing

Applications that constantly allocate and free memory too often may find that the allocation
calls tend to get slower over time up to a limit. This is typically expected due to the nature of
releasing memory back to the operating system for its own use. For best performance in this
regard, we recommend the following:

» Tryto size your allocation to the problem at hand. Don’t try to allocate all available
memory with cudaMalloc / cudaMallocHost / cuMemCreate, as this forces memory
to be resident immediately and prevents other applications from being able to use that
memory. This can put more pressure on operating system schedulers, or just prevent
other applications using the same GPU from running entirely.

CUDA C++ Programming Guide PG-02829-001_v11.7 | 131



Performance Guidelines

» Tryto allocate memory in appropriately sized allocations early in the application and
allocations only when the application does not have any use for it. Reduce the number of
cudaMalloc+cudaFree calls in the application, especially in performance-critical regions.

» If an application cannot allocate enough device memory, consider falling back on other
memory types such as cudaMallocHost or cudaMallocManaged, which may not be as
performant, but will enable the application to make progress.

» For platforms that support the feature, cudaMallocManaged allows for oversubscription,
and with the correct cudaMemAdvise policies enabled, will allow the application to retain
most if not all the performance of cudaMalloc. cudaMallocManaged also won't force an
allocation to be resident until it is needed or prefetched, reducing the overall pressure on
the operating system schedulers and better enabling multi-tenet use cases.
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Appendix A. CUDA-Enabled GPUs

https://developer.nvidia.com/cuda-gpus lists all CUDA-enabled devices with their compute
capability.

The compute capability, number of multiprocessors, clock frequency, total amount of device
memory, and other properties can be queried using the runtime (see reference manual).
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Appendix B. C++ Language Extensions

B.1. Function Execution Space Specifiers

Function execution space specifiers denote whether a function executes on the host or on the
device and whether it is callable from the host or from the device.

B.1.1. _ global__

The global execution space specifier declares a function as being a kernel. Such a
function is:

> Executed on the device,
> Callable from the host,

» Callable from the device for devices of compute capability 3.2 or higher [see CUDA
Dynamic Parallelism for more details).

A global function must have void return type, and cannot be a member of a class.

Any calltoa global function must specify its execution configuration as described in
Execution Configuration.

Acalltoa global functionisasynchronous, meaning it returns before the device has
completed its execution.

B.1.2. _ device

The device execution space specifier declares a function that is:
> Executed on the device,
> Callable from the device only.

The global and device execution space specifiers cannot be used together.

B.1.3. _ host

The host  execution space specifier declares a function that is:
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» Executed on the host,
» Callable from the host only.

It is equivalent to declare a function with only the _host  execution space specifier or to
declare it without any of the _host , device ,or global execution space specifier;
in either case the function is compiled for the host only.

The global and host  execution space specifiers cannot be used together.

The device and host__ execution space specifiers can be used together however,

in which case the function is compiled for both the host and the device. The  CcUDA ARCH
macro introduced in Application Compatibility can be used to differentiate code paths between
host and device:

__host ~ device  func()
{
#if  CUDA ARCH _ >= 800

// Device code path for compute capability 8.x
#elif  CUDA ARCH _ >= 700

// Device code path for compute capability 7.x
#elif  CUDA ARCH _ >= 600

// Device code path for compute capability 6.x
#elif  CUDA ARCH _ >= 500

// Device code path for compute capability 5.x
#elif  CUDA ARCH _ >= 300

// Device code path for compute capability 3.x
#elif !defined( CUDA ARCH )

// Host code path

B.1.4. Undefined behavior

A ‘cross-execution space’ call has undefined behavior when:

» _ CUDA_ARCH__ is defined, a call from withina __global__, _ device_ or __host__
__device_ functiontoa _host function.

»  CUDA ARCH__ is undefined, a call from withina __host__ functiontoa _device
function. '
B.1.5. _ noinline__and _ forceinline___

The compilerinlines any device  function when deemed appropriate.

The noinline function qualifier can be used as a hint for the compiler not to inline the
function if possible.

The forceinline function qualifier can be used to force the compiler to inline the
function.

n When the enclosing __host__ function is a template, nvcc may currently fail to issue a diagnostic message in some cases; this
behavior may change in the future.
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The noinline and forceinline  function qualifiers cannot be used together, and
neither function qualifier can be applied to an inline function.

B.2. Variable Memory Space Specifiers

Variable memory space specifiers denote the memory location on the device of a variable.

An automatic variable declared in device code without any of the  device , shared
and constant memory space specifiers described in this section generally resides in a
register. However in some cases the compiler might choose to place it in local memory, which
can have adverse performance consequences as detailed in Device Memory Accesses.

B.2.1. _ device _

The device memory space specifier declares a variable that resides on the device.

At most one of the other memory space specifiers defined in the next three sections may be
used together with  device  to further denote which memory space the variable belongs
to. If none of them is present, the variable:

> Resides in global memory space,
» Has the lifetime of the CUDA context in which it is created,
» Has adistinct object per device,

» Is accessible from all the threads within the grid and from the host through the runtime
library (cudaGetSymbolAddress () / cudaGetSymbolSize () / cudaMemcpyToSymbol () /
cudaMemcpyFromSymbol()L

B.2.2. _ constant

The constant _ memory space specifier, optionally used together with  device
declares a variable that:

» Resides in constant memory space,
> Has the lifetime of the CUDA context in which it is created,
> Has a distinct object per device,

» Is accessible from all the threads within the grid and from the host through the runtime
library (cudaGetSymbolAddress () / cudaGetSymbolSize () / cudaMemcpyToSymbol () /
cudaMemcpyFromSymbol()L

B.2.3. _ shared

The shared memory space specifier, optionally used together with device , declares
a variable that:
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> Resides in the shared memory space of a thread block,

» Has the lifetime of the block,

» Has adistinct object per block,

> |s only accessible from all the threads within the block,

» Does not have a constant address.

When declaring a variable in shared memory as an external array such as

extern  shared  float shared[];

the size of the array is determined at launch time (see Execution Configuration). All variables
declared in this fashion, start at the same address in memory, so that the layout of the
variables in the array must be explicitly managed through offsets. For example, if one wants
the equivalent of

short array0[128];

float arrayl[64];
int array2[256];

in dynamically allocated shared memory, one could declare and initialize the arrays the
following way:
extern  shared  float arrayl[];

__device  void func() // __device or  global  function

{
short* array0 = (short*)array;
float* arrayl = (float*)é&array0[128];
int* array2 = (int*) &arrayl[64];
}

Note that pointers need to be aligned to the type they point to, so the following code, for
example, does not work since array1 is not aligned to 4 bytes.

extern  shared  float arrayl[];
__device  wvoid func() // __device or _ global  function

{

short* array0 = (short*)array;

float* arrayl = (float*) &array0[127];
}

Alignment requirements for the built-in vector types are listed in Table 4.

B.2.4. _ grid_constant__

The grid constant__ annotation for compute architectures greater or equal to 7.0
annotates a const-qualified  global function parameter of non-reference type that:

» Has the lifetime of the grid,

> |s private to the grid, i.e., the object is not accessible to host threads and threads from
other grids, including sub-grids,
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» Has adistinct object per grid, i.e., all threads in the grid see the same address,

» Isread-only, i.e.,, modifyinga grid constant _ object or any of its sub-objects is
undefined behavior, including mutable members.

Requirements:

» Kernel parameters annotated with  grid constant  must have const-qualified non-
reference types.

» All function declarations must match with respectto any grid constant parameters.

> A function template specialization must match the primary template declaration with
respecttoany grid constant _ parameters.

» Afunction template instantiation directive must match the primary template declaration
with respecttoany grid constant  parameters.

If the address of a  global function parameter is taken, the compiler will ordinarily make
a copy of the kernel parameter in thread local memory and use the address of the copy, to
partially support C++ semantics, which allow each thread to modify its own local copy of
function parameters. Annotatinga  global function parameter with  grid constant
ensures that the compiler will not create a copy of the kernel parameter in thread local
memory, but will instead use the generic address of the parameter itself. Avoiding the local
copy may result in improved performance.

__device void unknown function (S consté&);

__global  void kernel(const _ grid constant S s) {
s.x += threadIdx.x; // Undefined Behavior: tried to modify read-only memory

// Compiler will not create a per-thread thread local copy of "s
unknown function(s);

}

B.2.5. _ _managed__

The managed memory space specifier, optionally used together with  device
declares a variable that:

» Can be referenced from both device and host code, for example, its address can be taken
or it can be read or written directly from a device or host function.

» Has the lifetime of an application.

See managed  Memory Space Specifier for more details.

B.2.6. _ restrict

nvcce supports restricted pointers via the  restrict  keyword.

Restricted pointers were introduced in C99 to alleviate the aliasing problem that exists in C-
type languages, and which inhibits all kind of optimization from code re-ordering to common
sub-expression elimination.
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Here is an example subject to the aliasing issue, where use of restricted pointer can help the
compiler to reduce the number of instructions:

void foo(const float* a,
const float* Db,

float* c)
{

c[0] = a[0] * b[O];

c[1l] = a[0] * b[O];

c[2] = al0] * b[0] * a[l];
c[3] = al[0] * a[l];

cl[4] = a[0] * b[0];

cl = b[0];

}

In C-type languages, the pointers a, b, and ¢ may be aliased, so any write through ¢ could
modify elements of a or b. This means that to guarantee functional correctness, the compiler
cannot load a[0] and b [0] into registers, multiply them, and store the result to both c[0]
and c[1], because the results would differ from the abstract execution model if, say, a[0]

is really the same location as c[0]. So the compiler cannot take advantage of the common
sub-expression. Likewise, the compiler cannot just reorder the computation of c[41] into the
proximity of the computation of c[0] and c[1] because the preceding write to c[3] could
change the inputs to the computation of c[4].

By making a, b, and c restricted pointers, the programmer asserts to the compiler that
the pointers are in fact not aliased, which in this case means writes through ¢ would never
overwrite elements of a or b. This changes the function prototype as follows:

void foo(const float*  restrict a,
const float*  restrict Db,
float*  restrict ©c¢);

Note that all pointer arguments need to be made restricted for the compiler optimizer to
derive any benefit. With the  restrict  keywords added, the compiler can now reorder and
do common sub-expression elimination at will, while retaining functionality identical with the
abstract execution model:

void foo(const float*  restrict a,
const float*  restrict b,
float* restrict c¢)

{

float t0 = a[0];
float tl = b[0];
float t2 = t0 * t1;
float t3 = all];
c[0] = t2;

cl[l] = t2;

cl[4] = t2;

c[2] = t2 * t3;
c[3] = t0 * t3;

cl = tl;
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The effects here are a reduced number of memory accesses and reduced number of
computations. This is balanced by an increase in register pressure due to "cached” loads and
common sub-expressions.

Since register pressure is a critical issue in many CUDA codes, use of restricted pointers can
have negative performance impact on CUDA code, due to reduced occupancy.

B.3. Built-in Vector Types
B.3.1. char, short, int, long, longlong, float, double

These are vector types derived from the basic integer and floating-point types. They are
structures and the 1st, 2nd, 3rd, and 4th components are accessible through the fields x, y, z,
and w, respectively. They all come with a constructor function of the form make <type name>;
for example,

int2 make int2(int x, int y);

which creates a vector of type int2 with value (x, vy).

The alignment requirements of the vector types are detailed in Table 4.

Table 4. Alignment Requirements
Type Alignment

char1, uchar? 1

char?, uchar? 2

—

char3, uchar3
char4, uchar4
short1, ushort1
short?, ushort2
short3, ushort3
short4, ushort4
int1, uint1

int2, uint2

M~ 00 TN BN~

int3, uint3
int4, uint4 16
long1, ulong] 4 if sizeof(long) is equal to sizeof(int] 8, otherwise

long2, ulong? 8 if sizeof(long) is equal to sizeof(int], 16, otherwise
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Type Alignment
long3, ulong3 4 if sizeof(long) is equal to sizeof(int], 8, otherwise
long4, ulong4 16

longlong1, ulonglong? | 8

longlong?, ulonglong?2 16

longlong3, ulonglong3 | 8

longlong4, ulonglong4 | 16

float1 4
float2 8
float3 4
floatsd 16
doublel 8
double? 16
double3 8
double4 16

B.3.2. dim3

This type is an integer vector type based on uint3 that is used to specify dimensions. When
defining a variable of type dim3, any component left unspecified is initialized to 1.

B.4. Built-in Variables

Built-in variables specify the grid and block dimensions and the block and thread indices. They
are only valid within functions that are executed on the device.

B.4.1. gridDim

This variable is of type dim3 (see dim3) and contains the dimensions of the grid.

B.4.2. blockldx

This variable is of type uint3 (see char, short, int, long, longlong, float, double) and contains
the block index within the grid.

B.4.3. DblockDim

This variable is of type dim3 (see dim3) and contains the dimensions of the block.
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B.4.4. threadldx

This variable is of type uint3 (see char, short, int, long, longlong, float, double ] and contains
the thread index within the block.

B.4.5. warpSize

This variable is of type int and contains the warp size in threads (see SIMT Architecture for
the definition of a warp).

B.5. Memory Fence Functions

The CUDA programming model assumes a device with a weakly-ordered memory model, that
is the order in which a CUDA thread writes data to shared memory, global memory, page-
locked host memory, or the memory of a peer device is not necessarily the order in which the
data is observed being written by another CUDA or host thread. It is undefined behavior for two
threads to read from or write to the same memory location without synchronization.

In the following example, thread 1 executes writexy (), while thread 2 executes readxy ().

__device int X =1, Y = 2;

__device  void writeXY ()

{
X
Y

10;
20;
}
_ device void readXY ()
{
int B
int A

Y;
X5

}

The two threads read and write from the same memory locations x and Y simultaneously. Any
data-race is undefined behavior, and has no defined semantics. The resulting values for a and
B can be anything.

Memory fence functions can be used to enforce a sequentially-consistent ordering on memory
accesses. The memory fence functions differ in the scope in which the orderings are enforced
but they are independent of the accessed memory space (shared memory, global memory,
page-locked host memory, and the memory of a peer device).

void _ threadfence block();

Is equivalent to cuda: :atomic_thread fence (cuda::memory order seg cst,
cuda::thread scope block) and ensures that:
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» All writes to all memory made by the calling thread before the call to
__threadfence block () are observed by all threads in the block of the calling thread
as occurring before all writes to all memory made by the calling thread after the call to
__threadfence block();

» All reads from all memory made by the calling thread before the call to
__threadfence block() are ordered before all reads from all memory made by the
calling thread after the call to  threadfence block().

void _ threadfence();

Is equivalent to cuda: :atomic_thread fence (cuda::memory order seg cst,

cuda: :thread scope device) and ensures that no writes to all memory made by the
calling thread after the call to _ threadfence () are observed by any thread in the device
as occurring before any write to all memory made by the calling thread before the call to

___threadfence ().

void _ threadfence system();

Is equivalent to cuda: :atomic_thread fence (cuda::memory order seq cst,

cuda::thread scope system) and ensures that all writes to all memory made by the calling
thread before the callto  threadfence system() are observed by all threads in the device,
host threads, and all threads in peer devices as occurring before all writes to all memory
made by the calling thread after the call to  threadfence system().

__threadfence system() Is only supported by devices of compute capability 2.x and higher.

In the previous code sample, we can insert fences in the codes as follows:

__device int X =1, Y = 2;

__device  void writeXY ()

{

X = 10;
__threadfence();
Y = 20;

}

__device  void readXY()

{

int B = Y;
___threadfence();
int A = X;

}

For this code, the following outcomes can be observed:
» aequalto1andBequalto?,
» aequalto 10 and B equal to 2,

» Aequalto 10 and B equal to 20.
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The fourth outcome is not possible, because the first write must be visible before

the second write. If thread 1 and 2 belong to the same block, it is enough to use
__threadfence block(). If thread 1 and 2 do not belong to the same block,

__threadfence () must be used if they are CUDA threads from the same device and
__threadfence system() must be used if they are CUDA threads from two different devices.

A common use case is when threads consume some data produced by other threads as
illustrated by the following code sample of a kernel that computes the sum of an array of N
numbers in one call. Each block first sums a subset of the array and stores the result in global
memory. When all blocks are done, the last block done reads each of these partial sums

from global memory and sums them to obtain the final result. In order to determine which
block is finished last, each block atomically increments a counter to signal that it is done with
computing and storing its partial sum (see Atomic Functions about atomic functions). The last
block is the one that receives the counter value equal to gridDim.x-1. If no fence is placed
between storing the partial sum and incrementing the counter, the counter might increment
before the partial sum is stored and therefore, might reach gridbim.x-1 and let the last
block start reading partial sums before they have been actually updated in memory.

Memory fence functions only affect the ordering of memory operations by a thread; they do
not, by themselves, ensure that these memory operations are visible to other threads (like
__syncthreads () does for threads within a block (see Synchronization Functions]). In the
code sample below, the visibility of memory operations on the result variable is ensured by
declaring it as volatile (see Volatile Qualifier].

__device  unsigned int count = 0;
__shared  bool isLastBlockDone;
__global void sum(const float* array, unsigned int N,
volatile float* result)
{
// Each block sums a subset of the input array.
float partialSum = calculatePartialSum(array, N);

if (threadIdx.x == 0) {

// Thread 0 of each block stores the partial sum
// to global memory. The compiler will use

// a store operation that bypasses the L1 cache
// since the "result" variable is declared as

// volatile. This ensures that the threads of

// the last block will read the correct partial
// sums computed by all other blocks.
result[blockIdx.x] = partialSum;

// Thread 0 makes sure that the incrementation

// of the "count" variable is only performed after

// the partial sum has been written to global memory.
__threadfence();

// Thread 0 signals that it is done.
unsigned int value = atomicInc (&count, gridDim.x);

// Thread 0 determines if its block is the last

// block to be done.
isLastBlockDone = (value == (gridDim.x - 1));
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// Synchronize to make sure that each thread reads
// the correct value of isLastBlockDone.
___syncthreads() ;

if (isLastBlockDone) {

// The last block sums the partial sums
// stored in result[0 .. gridDim.x-1]
float totalSum = calculateTotalSum(result) ;

if (threadIdx.x == 0) {

// Thread 0 of last block stores the total sum
// to global memory and resets the count

// varialble, so that the next kernel call

// works properly.

result[0] = totalSum;
count = 0;

B.6. Synchronization Functions

void _ syncthreads();

waits until all threads in the thread block have reached this point and all global and shared
memory accesses made by these threads priorto  syncthreads () are visible to all threads
in the block.

__syncthreads () is used to coordinate communication between the threads of the same
block. When some threads within a block access the same addresses in shared or global
memory, there are potential read-after-write, write-after-read, or write-after-write hazards
for some of these memory accesses. These data hazards can be avoided by synchronizing
threads in-between these accesses.

___syncthreads () is allowed in conditional code but only if the conditional evaluates
identically across the entire thread block, otherwise the code execution is likely to hang or
produce unintended side effects.

Devices of compute capability 2.x and higher support three variations of  syncthreads ()
described below.

int  syncthreads count (int predicate);

is identical to  syncthreads () with the additional feature that it evaluates predicate for all
threads of the block and returns the number of threads for which predicate evaluates to non-
zero.

int _ syncthreads_and(int predicate);
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is identical to __syncthreads () with the additional feature that it evaluates predicate for all
threads of the block and returns non-zero if and only if predicate evaluates to non-zero for all
of them.

int  syncthreads or(int predicate);

is identical to  syncthreads () with the additional feature that it evaluates predicate for all
threads of the block and returns non-zero if and only if predicate evaluates to non-zero for any
of them.

void _ syncwarp (unsigned mask=0xffffffff);

will cause the executing thread to wait until all warp lanes named in mask have executed
a__ syncwarp () (with the same mask) before resuming execution. All non-exited threads
named in mask must execute a corresponding __ syncwarp () with the same mask, or the
result is undefined.

Executing  syncwarp () guarantees memory ordering among threads participating in the
barrier. Thus, threads within a warp that wish to communicate via memory can store to
memory, execute _ syncwarp (), and then safely read values stored by other threads in the
warp.

Note: For .target sm_6x or below, all threads in mask must execute the same  syncwarp () in
convergence, and the union of all values in mask must be equal to the active mask. Otherwise,
the behavior is undefined.

B.7. Mathematical Functions

The reference manual lists all C/C++ standard library mathematical functions that are
supported in device code and all intrinsic functions that are only supported in device code.

Mathematical Functions provides accuracy information for some of these functions when
relevant.

B.8. Texture Functions

Texture objects are described in Texture Object AP

Texture references are described in [[DEPRECATED]] Texture Reference API

Texture fetching is described in Texture Fetching.
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B.8.1. Texture Object API
B.8.1.1. tex1Dfetch(]

template<class T>
T texlDfetch(cudaTextureObject t texObj, int x);

fetches from the region of linear memory specified by the one-dimensional texture object
texObj using integer texture coordinate x. tex1Dfetch () only works with non-normalized
coordinates, so only the border and clamp addressing modes are supported. It does not
perform any texture filtering. For integer types, it may optionally promote the integer to single-
precision floating point.

B.8.1.2. tex1D()

template<class T>
T texlD(cudaTextureObject t texObj, float x);

fetches from the CUDA array specified by the one-dimensional texture object texObj using
texture coordinate x.

B.8.1.3. tex1DLodl]

template<class T>
T texlDLod(cudaTextureObject t texObj, float x, float level);

fetches from the CUDA array specified by the one-dimensional texture object tex0bj using
texture coordinate x at the level-of-detail level.

B.8.1.4. tex1DGrad()

template<class T>
T texlDGrad(cudaTextureObject t texObj, float x, float dx, float dy):;

fetches from the CUDA array specified by the one-dimensional texture object texObj using
texture coordinate x. The level-of-detail is derived from the X-gradient dx and Y-gradient dy.

B.8.1.5. tex2D()

template<class T>
T tex2D(cudaTextureObject t texObj, float x, float y);

fetches from the CUDA array or the region of linear memory specified by the two-dimensional
texture object texOb7 using texture coordinate (x,y).

B.8.1.6. tex2DLod()

template<class T>
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tex2DLod (cudaTextureObject t texObj, float x, float y, float level);

fetches from the CUDA array or the region of linear memory specified by the two-dimensional
texture object texOb3j using texture coordinate (x,y) at level-of-detail level.

B.8.1.7. tex2DGrad(]

template<class T>
T tex2DGrad(cudaTextureObject t texObj, float x, float y,
float2 dx, float2 dy);

fetches from the CUDA array specified by the two-dimensional texture object tex0Ob3 using
texture coordinate (x,y). The level-of-detail is derived from the dx and dy gradients.

B.8.1.8. tex3DI()

template<class T>
T tex3D(cudaTextureObject t texObj, float x, float y, float z);

fetches from the CUDA array specified by the three-dimensional texture object tex0bj using
texture coordinate (x,vy, z).

B.8.1.9. tex3DLod()

template<class T>
T tex3DLod(cudaTextureObject t texObj, float x, float y, float z, float level);

fetches from the CUDA array or the region of linear memory specified by the three-
dimensional texture object texObj using texture coordinate (x,y, z) at level-of-detail 1level.

B.8.1.10. tex3DGrad(]

template<class T>
T tex3DGrad(cudaTextureObject t texObj, float x, float y, float z,
floatd4d dx, floatd dy):;

fetches from the CUDA array specified by the three-dimensional texture object tex0b3j using
texture coordinate (x,y, z) at a level-of-detail derived from the X and Y gradients dx and dy.

B.8.1.11. tex1DLayered|()

template<class T>
T texlDLayered (cudaTextureObject t texObj, float x, int layer);

fetches from the CUDA array specified by the one-dimensional texture object texObj using
texture coordinate x and index layer, as described in Layered Textures

B.8.1.12. tex1DLayeredLod()

template<class T>
T texlDLayeredLod(cudaTextureObject t texObj, float x, int layer, float level);
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fetches from the CUDA array specified by the one-dimensional layered texture at layer layer
using texture coordinate x and level-of-detail 1evel.

B.8.1.13. tex1DLayeredGrad(]

template<class T>
T texlDLayeredGrad (cudaTextureObject t texObj, float x, int layer,
float dx, float dy);

fetches from the CUDA array specified by the one-dimensional layered texture at layer layer
using texture coordinate x and a level-of-detail derived from the dx and dy gradients.

B.8.1.14. tex2DLayered|()

template<class T>
T tex2DLayered(cudaTextureObject t texObj,
float x, float y, int layer);

fetches from the CUDA array specified by the two-dimensional texture object tex0Obj using
texture coordinate (x,y) and index layer, as described in Layered Textures.

B.8.1.15. tex2DLayeredLod()

template<class T>
T tex2DLayeredLod (cudaTextureObject t texObj, float x, float y, int layer,
float level);

fetches from the CUDA array specified by the two-dimensional layered texture at layer layer
using texture coordinate (x,y).

B.8.1.16. tex2DLayeredGrad|(]

template<class T>
T tex2DLayeredGrad (cudaTextureObject t texObj, float x, float y, int layer,
float2 dx, float2 dy);

fetches from the CUDA array specified by the two-dimensional layered texture at layer layer
using texture coordinate (x,y) and a level-of-detail derived from the dx and dy Xand Y
gradients.

B.8.1.17. texCubemanpl])

template<class T>
T texCubemap (cudaTextureObject t texObj, float x, float y, float z);

fetches the CUDA array specified by the cubemap texture object tex0Obj using texture
coordinate (x,vy, z), as described in Cubemap Textures.

B.8.1.18. texCubemapLod(]

template<class T>
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T texCubemapLod (cudaTextureObject t texObj, float x, float, y, float z,
float level):;

fetches from the CUDA array specified by the cubemap texture object texobs using texture
coordinate (x,y, z) as described in Cubemap Textures. The level-of-detail used is given by

level.

B.8.1.19. texCubemapLayered|()

template<class T>
T texCubemaplLayered(cudaTextureObject t texObj,
float x, float y, float z, int layer);

fetches from the CUDA array specified by the cubemap layered texture object tex0Obj using
texture coordinates (x, vy, z), and index layer, as described in Cubemap Layered Textures.

B.8.1.20. texCubemapLayeredLod(]

template<class T>
T texCubemapLayeredLod (cudaTextureObject t texObj, float x, float y, float z,
int layer, float level);

fetches from the CUDA array specified by the cubemap layered texture object tex0Obj using
texture coordinate (x,y,z) and index layer, as described in Cubemap Layered Textures, at
level-of-detail level level.

B.8.1.21. tex2Dgather(]

template<class T>
T tex2Dgather (cudaTextureObject t texObj,
float x, float y, int comp = 0);

fetches from the CUDA array specified by the 2D texture object tex0Obj using texture
coordinates x and y and the comp parameter as described in Texture Gather.

B.8.2. Texture Reference API
B.8.2.1. tex1Dfetchl(]

template<class DataType>
Type texlDfetch (
texture<DataType, cudaTextureTypelD,
cudaReadModeElementType> texRef,
int x);

float texlDfetch (
texture<unsigned char, cudaTextureTypelD,
cudaReadModeNormalizedFloat> texRef,
int x);

float texlDfetch (
texture<signed char, cudaTextureTypelD,
cudaReadModeNormalizedFloat> texRef,
int x);
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float texlDfetch (
texture<unsigned short, cudaTextureTypelD,
cudaReadModeNormalizedFloat> texRef,
int x);

float texlDfetch (
texture<signed short, cudaTextureTypelD,
cudaReadModeNormalizedFloat> texRef,
int x);

fetches from the region of linear memory bound to the one-dimensional texture reference
texRef using integer texture coordinate x. tex1Dfetch () only works with non-normalized
coordinates, so only the border and clamp addressing modes are supported. It does not
perform any texture filtering. For integer types, it may optionally promote the integer to single-
precision floating point.

Besides the functions shown above, 2-, and 4-tuples are supported; for example:

floatd4 texlDfetch(
texture<uchar4, cudaTextureTypelD,
cudaReadModeNormalizedFloat> texRef,
int x);

fetches from the region of linear memory bound to texture reference texRef using texture
coordinate x.

B.8.2.2. tex1Dl()

template<class DataType, enum cudaTextureReadMode readMode>
Type texlD (texture<DataType, cudaTextureTypelD, readMode> texRef,
float x);

fetches from the CUDA array bound to the one-dimensional texture reference texRef

using texture coordinate x. Type Is equal to DataType except when readMode Is equal to
cudaReadModeNormalizedFloat (see [[DEPRECATED]] Texture Reference API), in which case
Type Is equal to the matching floating-point type.

B.8.2.3. tex1DLod(]

template<class DataType, enum

cudaTextureReadMode readMode>

Type texlDLod (texture<DataType, cudaTextureTypelD, readMode> texRef, float x,
float level);

fetches from the CUDA array bound to the one-dimensional texture reference texRef using
texture coordinate x. The level-of-detail is given by level. Type is the same as DataType
except when readMode is cudaReadModeNormalizedFloat (see [[DEPRECATED]] Texture
Reference API), in which case Type is the corresponding floating-point type.

B.8.2.4. tex1DGrad(]

template<class DataType, enum
cudaTextureReadMode readMode>
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Type texlDGrad (texture<DataType, cudaTextureTypelD, readMode> texRef, float x,
float dx, float dy):

fetches from the CUDA array bound to the one-dimensional texture reference texRef using
texture coordinate x. The level-of-detail is derived from the dx and dy X- and Y-gradients.
Type IS the same as DataType except when readMode IS cudaReadModeNormalizedFloat
(see [[DEPRECATED]] Texture Reference API), in which case Type is the corresponding
floating-point type.

B.8.2.5. tex2Dl()

template<class DataType, enum cudaTextureReadMode readMode>
Type tex2D (texture<DataType, cudaTextureType2D, readMode> texRef,
float x, float vy);

fetches from the CUDA array or the region of linear memory bound to the two-dimensional
texture reference texRef using texture coordinates x and y. Type Is equal to DataType except
when readMode is equal to cudaReadModeNormalizedFloat [see [[DEPRECATED]] Texture
Reference API), in which case Type is equal to the matching floating-point type.

B.8.2.6. tex2DLodl]

template<class DataType, enum

cudaTextureReadMode readMode>

Type tex2DLod (texture<DataType, cudaTextureType2D, readMode> texRef,
float x, float y, float level);

fetches from the CUDA array bound to the two-dimensional texture reference texkRef using
texture coordinate (x,y). The level-of-detail is given by level. Type is the same as DataType
except when readMode is cudaReadModeNormalizedFloat (see [[DEPRECATED]] Texture
Reference API), in which case Type is the corresponding floating-point type.

B.8.2.7. tex2DGrad()

template<class DataType, enum

cudaTextureReadMode readMode>

Type tex2DGrad (texture<DataType, cudaTextureType2D, readMode> texRef,
float x, float y, float2 dx, float2 dy);

fetches from the CUDA array bound to the two-dimensional texture reference texRef using
texture coordinate (x,y). The level-of-detail is derived from the dx and dy X- and Y-gradients.
Type IS the same as DataType except when readMode is cudaReadModeNormalizedFloat
(see [[DEPRECATED]] Texture Reference API), in which case Type is the corresponding
floating-point type.

B.8.2.8. tex3D()

template<class DataType, enum cudaTextureReadMode readMode>
Type tex3D(texture<DataType, cudaTextureType3D, readMode> texRef,
float x, float y, float z);
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fetches from the CUDA array bound to the three-dimensional texture reference texRef using
texture coordinates x, y, and z. Type Is equal to DataType except when readMode is equal to
cudaReadModeNormalizedFloat (see [[DEPRECATED]] Texture Reference API), in which case
Type Is equal to the matching floating-point type.

B.8.2.9. tex3DLodl]

template<class DataType, enum

cudaTextureReadMode readMode>

Type tex3DLod (texture<DataType, cudaTextureType3D, readMode> texRef,
float x, float y, float z, float level);

fetches from the CUDA array bound to the two-dimensional texture reference texRef using
texture coordinate (x,y, z). The level-of-detail is given by level. Type is the same as
DataType except when readMode is cudaReadModeNormalizedFloat (see [[DEPRECATED]]
Texture Reference API), in which case Type is the corresponding floating-point type.

B.8.2.10. tex3DGrad()

template<class DataType, enum

cudaTextureReadMode readMode>

Type tex3DGrad (texture<DataType, cudaTextureType3D, readMode> texRef,
float x, float y, float z, float4d dx, float4d dy);

fetches from the CUDA array bound to the two-dimensional texture reference texRef

using texture coordinate (x,y, z). The level-of-detail is derived from the dx and

dy X- and Y-gradients. Type is the same as DataType except when readMode is
cudaReadModeNormalizedFloat (see [[DEPRECATED]] Texture Reference API), in which case
Type Is the corresponding floating-point type.

B.8.2.11. tex1DLayered|()

template<class DataType, enum cudaTextureReadMode readMode>

Type texlDLayered (
texture<DataType, cudaTextureTypelDLayered, readMode> texRef,
float x, int layer);

fetches from the CUDA array bound to the one-dimensional layered texture reference texRef
using texture coordinate x and index layer, as described in Layered Textures. Type Is equal
to DataType except when readMode is equal to cudaReadModeNormalizedFloat [see
[[DEPRECATED]] Texture Reference API), in which case Type is equal to the matching floating-
point type.

B.8.2.12. tex1DLayeredLod()

template<class DataType, enum cudaTextureReadMode readMode>
Type texlDLayeredLod (texture<DataType, cudaTextureTypelD, readMode> texRef,
float x, int layer, float level);
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fetches from the CUDA array bound to the one-dimensional texture reference texRef

using texture coordinate x and index layer as described in Layered Textures. The level-
of-detail is given by level. Type is the same as DataType except when readMode Iis
cudaReadModeNormalizedFloat (see [[DEPRECATED]] Texture Reference API), in which case
Type Is the corresponding floating-point type.

B.8.2.13. tex1DLayeredGrad(]

template<class DataType, enum cudaTextureReadMode readMode>
Type texlDLayeredGrad (texture<DataType, cudaTextureTypelD, readMode> texRef,
float x, int layer, float dx, float dy);

fetches from the CUDA array bound to the one-dimensional texture reference texRef using
texture coordinate x and index layer as described in Layered Textures. The level-of-detail is
derived from the dx and dy X- and Y-gradients. Type Is the same as DataType except when
readMode iS cudaReadModeNormalizedFloat (see [[DEPRECATED]] Texture Reference APIJ,
in which case Type Is the corresponding floating-point type.

B.8.2.14. tex2DLayered|()

template<class DataType, enum cudaTextureReadMode readMode>

Type tex2DLayered (
texture<DataType, cudaTextureType2DLayered, readMode> texRef,
float x, float y, int layer);

fetches from the CUDA array bound to the two-dimensional layered texture reference texRef
using texture coordinates x and y, and index layer, as described in Texture Memory. Type is
equal to DataType except when readMode is equal to cudaReadModeNormalizedFloat [see
[[DEPRECATED]] Texture Reference API), in which case Type is equal to the matching floating-
point type.

B.8.2.15. tex2DLayeredLod(]

template<class DataType, enum cudaTextureReadMode readMode>
Type tex2DLayeredLod (texture<DataType, cudaTextureType2D, readMode> texRef,
float x, float y, int layer, float level);

fetches from the CUDA array bound to the two-dimensional texture reference texRef

using texture coordinate (x,y) and index layer as described in Layered Textures. The
level-of-detail is given by level. Type is the same as DataType except when readMode is
cudaReadModeNormalizedFloat (see [[DEPRECATED]] Texture Reference API), in which case
Type Is the corresponding floating-point type.

B.8.2.16. tex2DLayeredGrad|(]

template<class DataType, enum cudaTextureReadMode readMode>
Type tex2DLayeredGrad (texture<DataType, cudaTextureType2D, readMode> texRef,
float x, float y, int layer, float2 dx, float2 dy);
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fetches from the CUDA array bound to the two-dimensional texture reference texRef using
texture coordinate (x,y) and index layer as described in Layered Textures. The level-of-
detail is derived from the dx and dy X- and Y-gradients. Type is the same as DataType except
when readMode is cudaReadModeNormalizedFloat (see [[DEPRECATED]] Texture Reference
API), in which case Type is the corresponding floating-point type.

B.8.2.17. texCubemapl]

template<class DataType, enum cudaTextureReadMode readMode>
Type texCubemap (
texture<DataType, cudaTextureTypeCubemap, readMode> texRef,
float x, float y, float z);

fetches from the CUDA array bound to the cubemap texture reference texRef using texture
coordinates x, y, and z, as described in Cubemap Textures. Type is equal to DataType except
WhenreadModeisequaltocudaReadModeNormalizedFloat[See[“JEPRECATEDHTbXUNe
Reference API), in which case Type is equal to the matching floating-point type.

B.8.2.18. texCubemapLod(]

template<class DataType, enum cudaTextureReadMode readMode>
Type texCubemapLod (texture<DataType, cudaTextureTypeCubemap, readMode> texRef,
float x, float y, float z, float level);

fetches from the CUDA array bound to the cubemap texture reference texRref using texture
coordinate (x,y, z). The level-of-detail is given by 1level. Type is the same as DataType
exceptwhenreadModeiScudaReadModeNormalizedFloat[See[HJEPRECATEEﬂ]TeHure
Reference API), in which case Type is the corresponding floating-point type.

B.8.2.19. texCubemapLayered|(]

template<class DataType, enum cudaTextureReadMode readMode>

Type texCubemapLayered (

texture<DataType, cudaTextureTypeCubemaplayered, readMode> texRef,
float x, float y, float z, int layer);

fetches from the CUDA array bound to the cubemap layered texture reference texRef

using texture coordinates x, y, and z, and index layer, as described in Cubemap

Layered Textures. Type is equal to DataType except when readMode is equal to
cudaReadModeNormalizedFloat (see [[DEPRECATED]] Texture Reference API), in which case
Type Is equal to the matching floating-point type.

B.8.2.20. texCubemapLayeredLod(]

template<class DataType, enum cudaTextureReadMode readMode>
Type texCubemaplayeredLod (texture<DataType, cudaTextureTypeCubemaplayered, readMode>
texRef, float x, float y, float z, int layer, float level);

fetches from the CUDA array bound to the cubemap layered texture reference texRef
using texture coordinate (x,y,z) and index layer as described in Layered Textures. The
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level-of-detail is given by level. Type is the same as DataType except when readMode is
cudaReadModeNormalizedFloat (see [[DEPRECATED]] Texture Reference API), in which case
Type Is the corresponding floating-point type.

B.8.2.21. tex2Dgather()

template<class DataType, enum cudaTextureReadMode readMode>
Type tex2Dgather (
texture<DataType, cudaTextureType2D, readMode> texRef,
float x, float y, int comp = 0);

fetches from the CUDA array bound to the 2D texture reference texRef using texture
coordinates x and y and the comp parameter as described in Texture Gather. Type is a 4-
component vector type. It is based on the base type of DataType except when readMode is
equal to cudaReadModeNormalizedFloat (see [[DEPRECATED]] Texture Reference API), in
which case it is always float4.

B.?. Surface Functions

Surface functions are only supported by devices of compute capability 2.0 and higher.

Surface objects are described in described in Surface Object API

Surface references are described in Surface Reference API.

In the sections below, boundaryMode specifies the boundary mode, that is how out-of-range
surface coordinates are handled; it is equal to either cudaBoundaryModeClamp, in which
case out-of-range coordinates are clamped to the valid range, or cudaBoundaryModeZero,
in which case out-of-range reads return zero and out-of-range writes are ignored, or
cudaBoundaryModeTrap, in which case out-of-range accesses cause the kernel execution to
fail.

B.9.1. Surface Object API
B.9.1.1. surfi1Dread(]

template<class T>
T surflDread(cudaSurfaceObject t surfObj, int x,
boundaryMode = cudaBoundaryModeTrap) ;

reads the CUDA array specified by the one-dimensional surface object surfob3 using
coordinate x.

B.9.1.2. surf1Dwrite

template<class T>
void surflDwrite (T data,
cudaSurfaceObject t surfObj,
int x,
boundaryMode = cudaBoundaryModeTrap) ;
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writes value data to the CUDA array specified by the one-dimensional surface object sur£0bj
at coordinate x.

B.9.1.3. surf2Dread(]

template<class T>
T surf2Dread(cudaSurfaceObject t surfObj,
int x, int vy,
boundaryMode = cudaBoundaryModeTrap) ;
template<class T>
void surf2Dread(T* data,
cudaSurfaceObject t surfObj,
int x, int vy,
boundaryMode = cudaBoundaryModeTrap) ;

reads the CUDA array specified by the two-dimensional surface object surfobj using
coordinates x and y.

B.9.1.4. surf2Dwrite(]

template<class T>
void surf2Dwrite (T data,
cudaSurfaceObject t surfObj,
int x, int vy,
boundaryMode = cudaBoundaryModeTrap) ;

writes value data to the CUDA array specified by the two-dimensional surface object sur£0bj
at coordinate x and y.

B.9.1.5. surf3Dread()

template<class T>
T surf3Dread(cudaSurfaceObject t surfObj,
int x, int y, int z,
boundaryMode = cudaBoundaryModeTrap) ;
template<class T>
void surf3Dread(T* data,
cudaSurfaceObject t surfObj,
int x, int y, int z,
boundaryMode = cudaBoundaryModeTrap) ;

reads the CUDA array specified by the three-dimensional surface object sur£0bj using
coordinates x, y, and z.

B.9.1.6. surf3Dwrite(]

template<class T>
void surf3Dwrite (T data,
cudaSurfaceObject t surfObj,
int x, int y, int z,
boundaryMode = cudaBoundaryModeTrap) ;

writes value data to the CUDA array specified by the three-dimensional object surfobj at
coordinate x, y, and z.
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B.9.1.7. surf1DLayeredread|()

template<class T>
T surflDLayeredread (
cudaSurfaceObject t surfObj,
int x, int layer,
boundaryMode = cudaBoundaryModeTrap) ;
template<class T>
void surflDLayeredread(T data,
cudaSurfaceObject t surfObj,
int x, int layer,
boundaryMode = cudaBoundaryModeTrap) ;

reads the CUDA array specified by the one-dimensional layered surface object surf0bj using
coordinate x and index layer.

B.9.1.8. surfl1DLayeredwrite(]

template<class Type>
void surflDLayeredwrite (T data,
cudaSurfaceObject t surfObj,
int x, int layer,
boundaryMode = cudaBoundaryModeTrap) ;

writes value data to the CUDA array specified by the two-dimensional layered surface object
surfObj at coordinate x and index layer.

B.9.1.9. surf2DLayeredread()

template<class T>
T surf2DLayeredread (
cudaSurfaceObject t surfObj,
int x, int y, int layer,
boundaryMode = cudaBoundaryModeTrap) ;
template<class T>
void surf2DLayeredread (T data,
cudaSurfaceObject t surfObj,
int x, int y, int layer,
boundaryMode = cudaBoundaryModeTrap) ;

reads the CUDA array specified by the two-dimensional layered surface object surfobj using
coordinate x and y, and index layer.

B.9.1.10. surf2DLayeredwrite(]

template<class T>
void surf2DLayeredwrite (T data,
cudaSurfaceObject t surfObj,
int x, int y, int layer,
boundaryMode = cudaBoundaryModeTrap) ;

writes value data to the CUDA array specified by the one-dimensional layered surface object
surfObj at coordinate x and y, and index layer.
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B.9.1.11. surfCubemapread|(]

template<class T>
T surfCubemapread (
cudaSurfaceObject t surfObj,
int x, int y, int face,
boundaryMode = cudaBoundaryModeTrap) ;
template<class T>
void surfCubemapread(T data,
cudaSurfaceObject t surfObj,
int x, int y, int face,
boundaryMode = cudaBoundaryModeTrap) ;

reads the CUDA array specified by the cubemap surface object surfobj using coordinate x
and vy, and face index face.

B.9.1.12. surfCubemapwrite()

template<class T>
void surfCubemapwrite (T data,
cudaSurfaceObject t surfObj,
int x, int y, int face,
boundaryMode = cudaBoundaryModeTrap) ;

writes value data to the CUDA array specified by the cubemap object surfobj at coordinate x
andy, and face index face.

B.9.1.13. surfCubemaplLayeredread|(]

template<class T>
T surfCubemaplayeredread (
cudaSurfaceObject t surfObj,
int x, int y, int layerFace,
boundaryMode = cudaBoundaryModeTrap) ;
template<class T>
void surfCubemaplayeredread (T data,
cudaSurfaceObject t surfObj,
int x, int y, int layerFace,
boundaryMode = cudaBoundaryModeTrap) ;

reads the CUDA array specified by the cubemap layered surface object surfobj using
coordinate x and y, and index layerFace.

B.9.1.14. surfCubemaplLayeredwrite()

template<class T>

void surfCubemaplayeredwrite (T data,
cudaSurfaceObject t surfObj,
int x, int y, int layerFace,
boundaryMode = cudaBoundaryModeTrap) ;

writes value data to the CUDA array specified by the cubemap layered object surfobj at
coordinate x and y, and index layerFace.
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B.9.2. Surface Reference API
B.9.2.1. surf1Dread(]

template<class Type>
Type surflDread(surface<void, cudaSurfaceTypelD> surfRef,
int x,
boundaryMode = cudaBoundaryModeTrap) ;
template<class Type>
void surflDread (Type data,
surface<void, cudaSurfaceTypelD> surfRef,
int x,
boundaryMode = cudaBoundaryModeTrap) ;

reads the CUDA array bound to the one-dimensional surface reference surfRef using
coordinate x.

B.9.2.2. surf1Dwrite

template<class Type>

void surflDwrite (Type data,
surface<void, cudaSurfaceTypelD> surfRef,
int x,
boundaryMode = cudaBoundaryModeTrap) ;

writes value data to the CUDA array bound to the one-dimensional surface reference surfRef
at coordinate x.

B.9.2.3. surf2Dread|(]

template<class Type>
Type surf2Dread(surface<void, cudaSurfaceType2D> surfRef,
int x, int vy,
boundaryMode = cudaBoundaryModeTrap) ;
template<class Type>
void surf2Dread(Type* data,
surface<void, cudaSurfaceType2D> surfRef,
int x, int vy,
boundaryMode = cudaBoundaryModeTrap) ;

reads the CUDA array bound to the two-dimensional surface reference surfRef using
coordinates x and y.

B.9.2.4. surf2Dwrite(]

template<class Type>

void surf3Dwrite (Type data,
surface<void, cudaSurfaceType3D> surfRef,
int x, int y, int z,
boundaryMode = cudaBoundaryModeTrap) ;

writes value data to the CUDA array bound to the two-dimensional surface reference surfRef
at coordinate x and y.
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B.9.2.5. surf3Dread(]

template<class Type>
Type surf3Dread(surface<void, cudaSurfaceType3D> surfRef,
int x, int y, int z,
boundaryMode = cudaBoundaryModeTrap) ;
template<class Type>
void surf3Dread (Type* data,
surface<void, cudaSurfaceType3D> surfRef,
int x, int y, int z,
boundaryMode = cudaBoundaryModeTrap) ;

reads the CUDA array bound to the three-dimensional surface reference surfRef using
coordinates x, y, and z.

B.9.2.6. surf3Dwrite(]

template<class Type>

void surf3Dwrite (Type data,
surface<void, cudaSurfaceType3D> surfRef,
int x, int y, int z,
boundaryMode = cudaBoundaryModeTrap) ;

writes value data to the CUDA array bound to the three-dimensional surface reference
surfRef at coordinate x, y, and z.

B.9.2.7. surfiDLayeredread|]

template<class Type>
Type surflDLayeredread (
surface<void, cudaSurfaceTypelDLayered> surfRef,
int x, int layer,
boundaryMode = cudaBoundaryModeTrap) ;
template<class Type>
void surflDLayeredread (Type data,
surface<void, cudaSurfaceTypelDLayered> surfRef,
int x, int layer,
boundaryMode = cudaBoundaryModeTrap) ;

reads the CUDA array bound to the one-dimensional layered surface reference surfRef using
coordinate x and index layer.

B.9.2.8. surfl1DLayeredwrite(]

template<class Type>

void surflDLayeredwrite (Type data,
surface<void, cudaSurfaceTypelDLayered> surfRef,
int x, int layer,
boundaryMode = cudaBoundaryModeTrap) ;

writes value data to the CUDA array bound to the two-dimensional layered surface reference
surfRef at coordinate x and index layer.
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B.9.2.9. surf2DLayeredread|()

template<class Type>
Type surf2DLayeredread (
surface<void, cudaSurfaceTypez2DLayered> surfRef,
int x, int y, int layer,
boundaryMode = cudaBoundaryModeTrap) ;
template<class Type>
void surf2DLayeredread (Type data,
surface<void, cudaSurfaceType2DLayered> surfRef,
int x, int y, int layer,
boundaryMode = cudaBoundaryModeTrap) ;

reads the CUDA array bound to the two-dimensional layered surface reference surfRef using
coordinate x and y, and index layer.

B.9.2.10. surf2DLayeredwrite(]

template<class Type>

void surf2DLayeredwrite (Type data,
surface<void, cudaSurfaceType2DLayered> surfRef,
int x, int y, int layer,
boundaryMode = cudaBoundaryModeTrap) ;

writes value data to the CUDA array bound to the one-dimensional layered surface reference
surfRef at coordinate x and y, and index layer.

B.9.2.11. surfCubemapread(]

template<class Type>
Type surfCubemapread (
surface<void, cudaSurfaceTypeCubemap> surfRef,
int x, int y, int face,
boundaryMode = cudaBoundaryModeTrap) ;
template<class Type>
void surfCubemapread (Type data,
surface<void, cudaSurfaceTypeCubemap> surfRef,
int x, int y, int face,
boundaryMode = cudaBoundaryModeTrap) ;

reads the CUDA array bound to the cubemap surface reference surfRef using coordinate x
and y, and face index face.

B.9.2.12. surfCubemapwrite()

template<class Type>

void surfCubemapwrite (Type data,
surface<void, cudaSurfaceTypeCubemap> surfRef,
int x, int y, int face,
boundaryMode = cudaBoundaryModeTrap) ;

writes value data to the CUDA array bound to the cubemap reference surfRref at coordinate x
and y, and face index face.
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B.9.2.13. surfCubemaplayeredread|(]

template<class Type>

Type surfCubemaplayeredread (
surface<void, cudaSurfaceTypeCubemapLayered> surfRef,
int x, int y, int layerFace,
boundaryMode = cudaBoundaryModeTrap) ;

template<class Type>

void surfCubemapLlLayeredread (Type data,
surface<void, cudaSurfaceTypeCubemaplayered> surfRef,
int x, int y, int layerFace,
boundaryMode = cudaBoundaryModeTrap) ;

reads the CUDA array bound to the cubemap layered surface reference surfRef using
coordinate x and y, and index layerFace.

B.9.2.14. surfCubemaplLayeredwrite()

template<class Type>

void surfCubemaplayeredwrite (Type data,
surface<void, cudaSurfaceTypeCubemaplLayered> surfRef,
int x, int y, int layerFace,
boundaryMode = cudaBoundaryModeTrap) ;

writes value data to the CUDA array bound to the cubemap layered reference surfRef at
coordinate x and y, and index layerFace.

B.10. Read-0Only Data Cache Load Function

The read-only data cache load function is only supported by devices of compute capability 3.5
and higher.

T  1ldg(const T* address);

returns the data of type T located at address address, where T is char, signed char, short,
int, long, long long unsigned char, unsigned short, unsigned int, unsigned long
unsigned long long, char2, char4, short2, short4, int2, int4, longlong2 uchar?,
uchar4, ushort2, ushort4, uint2, uint4, ulonglong2 float, float?2, float4, double, Or
double2. With the cuda_fpl16.h header included, T canbe halfor half2. Similarly, with
the cuda bfl6.h headerincluded, T canalso be nv bfloatléor nv bfloatlé62. The
operation is cached in the read-only data cache (see Global Memory).

B.11. Load Functions Using Cache Hints

These load functions are only supported by devices of compute capability 3.5 and higher.

T  ldcg(const T* address);
T  ldca(const T* address);
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T  ldcs(const T* address);
T _ 1ldlu(const T* address);
T  ldcv(const T* address);

returns the data of type T located at address address, where T is char, signed char, short,
int, long, long long unsigned char, unsigned short, unsigned int, unsigned long,
unsigned long long, char2, char4, short2, short4, int2, int4, longlong2 uchar?2,
uchar4, ushort?2, ushort4, uint2, uint4, ulonglong?2 float, float2, float4, double, Or
double2. With the cuda_fpl16.h header included, T canbe halfor half2. Similarly, with
the cuda bfl6.h headerincluded, T canalsobe nv bfloatl6éor nv bfloatlé62.The
operation is using the corresponding cache operator (see PTX ISA)

B.12. Store Functions Using Cache Hints

These store functions are only supported by devices of compute capability 3.5 and higher.

void  stwb(T* address, T value);
void  stcg(T* address, T value);
void  stecs(T* address, T value);
void  stwt(T* address, T value);

stores the value argument of type T to the location at address address, where T is char,
signed char, short, int, long, long long unsigned char, unsigned short, unsigned
int, unsigned long, unsigned long long, char2, char4, short2, short4, int2, int4,
longlong2 uchar?2, uchar4, ushort2, ushort4, uint2, uint4, ulonglong2 float, float2,
float4, double, or double2. With the cuda fpl6.h headerincluded, T can be half or
__half2. Similarly, with the cuda_bf16.h header included, T can also be nv bfloatlé6 or
__nv_bfloat162. The operation is using the corresponding cache operator (see PTXISA )

B.13. Time Function

clock t clock();
long long int clock64();

when executed in device code, returns the value of a per-multiprocessor counter that is
incremented every clock cycle. Sampling this counter at the beginning and at the end of a
kernel, taking the difference of the two samples, and recording the result per thread provides
a measure for each thread of the number of clock cycles taken by the device to completely
execute the thread, but not of the number of clock cycles the device actually spent executing
thread instructions. The former number is greater than the latter since threads are time
sliced.
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B.14. Atomic Functions

An atomic function performs a read-modify-write atomic operation on one 32-bit or 64-bit
word residing in global or shared memory. For example, atomicAdd () reads a word at some
address in global or shared memory, adds a number to it, and writes the result back to the
same address. Atomic functions can only be used in device functions.

The atomic functions described in this section have ordering cuda: :memory order relaxed
and are only atomic at a particular scope:

» Atomic APIs with _system suffix [example: atomicAdd system] are atomic at scope

cuda: :thread scope system.

» Atomic APIs without a suffix ([example:  atomicadd) are atomic at scope

cuda::thread scope device

» Atomic APIs with block suffix [example: atomicAdd block] are atomic at scope

cuda: :thread scope block

In the following example both the CPU and the GPU atomically update an integer value at
address addr:

global  void mykernel (int *addr) {

atomicAdd system(addr, 10); // only available on devices with compute
capability 6.x

}

void foo () {
int *addr;
cudaMallocManaged (&addr, 4);
*addr = 0;

mykernel<<<...>>>(addr) ;
__sync_fetch and add(addr, 10); // CPU atomic operation
}

Note that any atomic operation can be implemented based on atomiccas () (Compare
And Swap). For example, atomicadd () for double-precision floating-point numbers is not
available on devices with compute capability lower than 6.0 but it can be implemented as
follows:

#if  CUDA ARCH < 600
__device  double atomicAdd(double* address, double val)

{
unsigned long long int* address as ull =
(unsigned long long int*)address;

unsigned long long int old = *address_as ull, assumed;

do {
assumed = old;
old = atomicCAS (address _as ull, assumed,
__double as longlong(val +
~ _longlong as double (assumed))) ;
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// Note: uses integer comparison to avoid hang in case of NaN (since NaN != NaN)
} while (assumed != old):;

return _ longlong as double (old);

}
#endif

There are system-wide and block-wide variants of the following device-wide atomic APls, with
the following exceptions:

» Devices with compute capability less than 6.0 only support device-wide atomic operations,

» Tegra devices with compute capability less than 7.2 do not support system-wide atomic
operations.

B.14.1. Arithmetic Functions
B.14.1.1. atomicAdd()

int atomicAdd (int* address, int wval);
unsigned int atomicAdd (unsigned int* address,
unsigned int wval);
unsigned long long int atomicAdd(unsigned long long int* address,
unsigned long long int wval);
float atomicAdd (float* address, float wval);
double atomicAdd (double* address, double wval);
__half2 atomicAdd( half2 *address, _ half2 wval);
__half atomicAdd( half *address, _ half val);
_ nv _bfloatl62 atomicAdd( nv bfloatl62 *address,  nv bfloatl62 val);
_ nv bfloatl6 atomicAdd( nv bfloatlé *address, = nv bfloatl6 val);

reads the 16-bit, 32-bit or 64-bit word o1d located at the address address in global or shared
memory, computes (old + val), and stores the result back to memory at the same address.
These three operations are performed in one atomic transaction. The function returns old.

The 32-bit floating-point version of atomicadd () is only supported by devices of compute
capability 2.x and higher.

The 64-bit floating-point version of atomicadd () is only supported by devices of compute
capability 6.x and higher.

The 32-bit _ half2 floating-point version of atomicAdd () is only supported by devices of
compute capability 6.x and higher. The atomicity of the half2or nv bfloatl62 add
operation is guaranteed separately for each of thetwo halfor nv bfloatlé6 elements;
the entire  half2or nv bfloatlé62 is not guaranteed to be atomic as a single 32-bit
access.

The 16-bit _ half floating-point version of atomicAdd () is only supported by devices of
compute capability 7.x and higher.

The 16-bit  nv bfloatlé floating-point version of atomicadd () is only supported by devices
of compute capability 8.x and higher.
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B.14.1.2. atomicSubl)

int atomicSub (int* address, int wval);
unsigned int atomicSub (unsigned int* address,
unsigned int val);

reads the 32-bit word o1d located at the address address in global or shared memory,
computes (old - wval), and stores the result back to memory at the same address. These
three operations are performed in one atomic transaction. The function returns old.

B.14.1.3. atomicExchl]

int atomicExch (int* address, int wval);
unsigned int atomicExch (unsigned int* address,
unsigned int wval);
unsigned long long int atomicExch (unsigned long long int* address,
unsigned long long int wval);
float atomicExch (float* address, float wval);

reads the 32-bit or 64-bit word o1d located at the address address in global or shared
memory and stores val back to memory at the same address. These two operations are
performed in one atomic transaction. The function returns old.

B.14.1.4. atomicMin()

int atomicMin (int* address, int wval);
unsigned int atomicMin (unsigned int* address,
unsigned int wval);
unsigned long long int atomicMin (unsigned long long int* address,
unsigned long long int val);
long long int atomicMin(long long int* address,
long long int wval);

reads the 32-bit or 64-bit word o1d located at the address address in global or shared
memory, computes the minimum of o1d and val, and stores the result back to memory at the
same address. These three operations are performed in one atomic transaction. The function
returns old.

The 64-bit version of atomicMin () is only supported by devices of compute capability 3.5 and
higher.

B.14.1.5. atomicMax|()

int atomicMax (int* address, int val);
unsigned int atomicMax (unsigned int* address,
unsigned int wval);
unsigned long long int atomicMax (unsigned long long int* address,
unsigned long long int val);
long long int atomicMax(long long int* address,
long long int val);

reads the 32-bit or 64-bit word o1d located at the address address in global or shared
memory, computes the maximum of o1d and val, and stores the result back to memory at the
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same address. These three operations are performed in one atomic transaction. The function
returns old.

The 64-bit version of atomicMax () is only supported by devices of compute capability 3.5 and
higher.

B.14.1.6. atomiclInc(]

unsigned int atomicInc (unsigned int* address,
unsigned int wval);

reads the 32-bit word o1d located at the address address in global or shared memory,
computes ((old >= val) ? 0 : (old+1)),and stores the result back to memory at the
same address. These three operations are performed in one atomic transaction. The function
returns old.

B.14.1.7. atomicDec()

unsigned int atomicDec (unsigned int* address,
unsigned int wval);

reads the 32-bit word o1d located at the address address in global or shared memory,
computes (((old == 0) || (old > val)) 2 val : (old-1) ], and stores the result
back to memory at the same address. These three operations are performed in one atomic
transaction. The function returns old.

B.14.1.8. atomicCAS()

int atomicCAS (int* address, int compare, int wval);
unsigned int atomicCAS (unsigned int* address,
unsigned int compare,
unsigned int wval);
unsigned long long int atomicCAS (unsigned long long int* address,
unsigned long long int compare,
unsigned long long int wval);
unsigned short int atomicCAS (unsigned short int *address,
unsigned short int compare,
unsigned short int wval);

reads the 16-bit, 32-bit or 64-bit word o1d located at the address address in global or
shared memory, computes (old == compare ? val : old) ,and stores the result
back to memory at the same address. These three operations are performed in one atomic
transaction. The function returns o1d (Compare And Swap).

B.14.2. Bitwise Functions

B.14.2.1. atomicAnd(]

int atomicAnd (int* address, int wval):;
unsigned int atomicAnd (unsigned int* address,
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unsigned int wval);
unsigned long long int atomicAnd(unsigned long long int* address,
unsigned long long int val);

reads the 32-bit or 64-bit word o1d located at the address address in global or shared
memory, computes (old & vall, and stores the result back to memory at the same address.
These three operations are performed in one atomic transaction. The function returns old.

The 64-bit version of atomicAnd () is only supported by devices of compute capability 3.5 and
higher.

B.14.2.2. atomicOr(]

int atomicOr (int* address, int wval);
unsigned int atomicOr (unsigned int* address,
unsigned int wval);
unsigned long long int atomicOr (unsigned long long int* address,
unsigned long long int wval);

reads the 32-bit or 64-bit word o1d located at the address address in global or shared
memory, computes (old | val), and stores the result back to memory at the same address.
These three operations are performed in one atomic transaction. The function returns old.

The 64-bit version of atomicOr () is only supported by devices of compute capability 3.5 and
higher.

B.14.2.3. atomicXor(]

int atomicXor (int* address, int val);
unsigned int atomicXor (unsigned int* address,
unsigned int wval);
unsigned long long int atomicXor (unsigned long long int* address,
unsigned long long int wval);

reads the 32-bit or 64-bit word o1d located at the address address in global or shared
memory, computes (old ~ val), and stores the result back to memory at the same address.
These three operations are performed in one atomic transaction. The function returns old.

The 64-bit version of atomicxor () is only supported by devices of compute capability 3.5 and
higher.

B.15. Address Space Predicate Functions

The functions described in this section have unspecified behavior if the argument is a null
pointer.

B.15.1. _ isGlobal()

__device  wunsigned int _ isGlobal (const void *ptr);
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Returns 1 if ptr contains the generic address of an object in global memory space, otherwise
returns 0.

B.15.2. _ isShared()

__device  unsigned int _ isShared(const void *ptr);

Returns 1 if ptr contains the generic address of an object in shared memory space, otherwise
returns 0.

B.15.3. _ isConstant(]

__device  unsigned int _ isConstant (const void *ptr);

Returns 1 if ptr contains the generic address of an object in constant memory space,
otherwise returns 0.

B.15.4. _ isGridConstant()

__device unsigned int _ isGridConstant (const void *ptr);

Returns 1 if ptr contains the generic address of a kernel parameter annotated with
__grid constant__, otherwise returns 0. Only supported for compute architectures greater
than or equal to 7.x or later.

B.15.5. _ isLocal()

__device  unsigned int _ isLocal (const void *ptr);

Returns 1 if ptr contains the generic address of an object in local memory space, otherwise
returns 0.

B.16. Address Space Conversion Functions

B.16.1. __ cvta_generic_to_globall()

__device size t  cvta generic to global (const void *ptr);

Returns the result of executing the PTX cvta.to.global instruction on the generic address
denoted by ptr.

B.16.2. _ cvta_generic_to_shared|()

__device  size t _ cvta generic to shared(const void *ptr);
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Returns the result of executing the PTX cvta.to.shared instruction on the generic address
denoted by ptr.

B.16.3. _ cvta_generic_to_constant()

__device size t  cvta generic to constant (const void *ptr);

Returns the result of executing the PTX cvta.to.const instruction on the generic address
denoted by ptr.

B.16.4. _ cvta_generic_to_locall]

__device size t  cvta generic to local (const void *ptr);

Returns the result of executing the PTX cvta.to.local instruction on the generic address
denoted by ptr.

B.16.5. _ cvta_global to generic(]

__device wvoid *  cvta global to generic(size t rawbits);

Returns the generic pointer obtained by executing the PIX cvta.global instruction on the
value provided by rawbits.

B.16.6. _ cvta_shared to_generic()

__device  void * _ cvta shared to generic(size_ t rawbits);

Returns the generic pointer obtained by executing the PTX cvta.shared instruction on the
value provided by rawbits.

B.16.7. _ cvta_constant_to_generic()

__device void *  cvta constant to generic(size t rawbits);

Returns the generic pointer obtained by executing the PTX cvta.const instruction on the
value provided by rawbits.

B.16.8. _ cvta_local_to_generic(]

__device void *  cvta local to generic(size t rawbits);

Returns the generic pointer obtained by executing the PTX cvta.local instruction on the
value provided by rawbits.
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B.17. Alloca Function
B.17.1. Synopsis

__host ~ device void * alloca(size t size);

B.17.2. Description

The alloca () function allocates size bytes of memory in the stack frame of the caller. The
returned value is a pointer to allocated memory, the beginning of the memory is 16 bytes
aligned when the function is invoked from device code. The allocated memory is automatically
freed when the caller to alloca () is returned.

Note: On Windows platform, <malloc.h> must be included before using alloca (). Using
alloca () may cause the stack to overflow, user needs to adjust stack size accordingly.

It is supported with compute capability 5.2 or higher.
B.17.3. Example

__device_ void foo(unsigned int num) {
int4 *ptr = (int4 *)alloca(num * sizeof (int4));
// use of ptr

}

B.18. Compiler Optimization Hint Functions

The functions described in this section can be used to provide additional information to the
compiler optimizer.

B.18.1. _ builtin_assume_aligned(]

void * builtin assume aligned (const void *exp, size t align)

Allows the compiler to assume that the argument pointer is aligned to at least align bytes,
and returns the argument pointer.

Example:

void *res = builtin assume aligned(ptr, 32); // compiler can assume 'res' is
// at least 32-byte aligned
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Three parameter version:

void * builtin assume aligned (const void *exp, size t align,
<integral type> offset)

Allows the compiler to assume that (char *)exp - offset is aligned to at least align
bytes, and returns the argument pointer.

Example:
void *res = builtin assume aligned(ptr, 32, 8); // compiler can assume

// '(char *)res - 8' is
// at least 32-byte aligned.

B.18.2. _ builtin_assume(]

void  builtin assume (bool exp)

Allows the compiler to assume that the Boolean argument is true. If the argument is not true
at run time, then the behavior is undefined. The argument is not evaluated, so any side-effects
will be discarded.

Example:
__device  int get(int *ptr, int idx) {
builtin assume (idx <= 2);

return pt?[idx];

}

B.18.3. _ assumel]

void  assume (bool exp)

Allows the compiler to assume that the Boolean argument is true. If the argument is not true
at run time, then the behavior is undefined. The argument is not evaluated, so any side-effects
will be discarded.

Example:

__device  int get(int *ptr, int idx) {
__assume (idx <= 2);
return ptr[idx];

}

B.18.4. _ builtin_expect(]

long builtin expect (long exp, long c)

Indicates to the compiler that it is expected that exp == ¢, and returns the value of exp.
Typically used to indicate branch prediction information to the compiler.
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Example:

// indicate to the compiler that likely "var == 0",
// so the body of the if-block is unlikely to be
// executed at run time.
if (_ _builtin expect (var, 0))
doit ()

B.18.5. _ builtin_unreachable()

void  builtin unreachable (void)

Indicates to the compiler that control flow never reaches the point where this function is being
called from. The program has undefined behavior if the control flow does actually reach this
point at run time.

Example:

// indicates to the compiler that the default case label is never reached.
switch (in) {

case 1: return 4;

case 2: return 10;

default:  builtin unreachable();

}

B.18.6. Restrictions

__assume () is only supported when using c1.exe host compiler. The other functions are
supported on all platforms, subject to the following restrictions:

» If the host compiler supports the function, the function can be invoked from anywhere in
translation unit.

» Otherwise, the function must be invoked from within the body of a  device /
__global function, or only when the CcUDA ARCH macrois defined'?.

B.19. Warp Vote Functions

int all sync(unsigned mask, int predicate);

int  any sync(unsigned mask, int predicate);
unsigned  ballot sync(unsigned mask, int predicate);
unsigned  activemask();

Deprecation notice: _any, all,and ballot have been deprecated in CUDA 9.0 for all
devices.

12 The intent is to prevent the host compiler from encountering the call to the function if the host compiler does not support it.
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Removal notice: When targeting devices with compute capability 7.x or higher, any, all,

and _ballot are no longer available and their sync variants should be used instead.

The warp vote functions allow the threads of a given warp to perform a reduction-and-
broadcast operation. These functions take as input an integer predicate from each thread i
the warp and compare those values with zero. The results of the comparisons are combined
(reduced) across the active threads of the warp in one of the following ways, broadcasting a
single return value to each participating thread:

__all sync(unsigned mask, predicate):
Evaluate predicate for all non-exited threads in mask and return non-zero if and only if
predicate evaluates to non-zero for all of them.

__any sync(unsigned mask, predicate):
Evaluate predicate for all non-exited threads in mask and return non-zero if and only if
predicate evaluates to non-zero for any of them.

__ballot_sync(unsigned mask, predicate):

n

Evaluate predicate for all non-exited threads in mask and return an integer whose Nth bit
is set if and only if predicate evaluates to non-zero for the Nth thread of the warp and the

Nth thread is active.

__activemask ():
Returns a 32-bit integer mask of all currently active threads in the calling warp. The Nth
bit is set if the Nth lane in the warp is active when  activemask () is called. [nactive
threads are represented by 0 bits in the returned mask. Threads which have exited the
program are always marked as inactive. Note that threads that are convergent at an
__activemask () call are not guaranteed to be convergent at subsequent instructions
unless those instructions are synchronizing warp-builtin functions.

Notes

For all sync, any sync,and ballot sync, a mask must be passed that specifies the
threads participating in the call. A bit, representing the thread's lane ID, must be set for each

participating thread to ensure they are properly converged before the intrinsic is executed
by the hardware. All active threads named in mask must execute the same intrinsic with the
same mask, or the result is undefined.

B.20. Warp Match Functions

__match any syncand match all sync perform a broadcast-and-compare operation of a

variable between threads within a warp.

Supported by devices of compute capability 7.x or higher.

B.20.1. Synopsis

unsigned int  match any sync(unsigned mask, T value);
unsigned int  match all sync(unsigned mask, T value, int *pred);
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T can be int, unsigned int, long, unsigned long, long long, unsigned long long
float Oor double.

B.20.2. Description

The match sync () intrinsics permit a broadcast-and-compare of a value value across
threads in a warp after synchronizing threads named in mask.
__match_any sync
Returns mask of threads that have same value of value in mask
__match_all sync
Returns mask if all threads in mask have the same value for value; otherwise 0 is returned.
Predicate pred is set to true if all threads in mask have the same value of value; otherwise
the predicate is set to false.

The new * sync match intrinsics take in a mask indicating the threads participating in the
call. A bit, representing the thread's lane id, must be set for each participating thread to
ensure they are properly converged before the intrinsic is executed by the hardware. All non-
exited threads named in mask must execute the same intrinsic with the same mask, or the
result is undefined.

B.21. Warp Reduce Functions

The reduce sync(unsigned mask, T value) intrinsics perform a reduction operation on
the data provided in value after synchronizing threads named in mask. T can be unsigned or
signed for {add, min, max} and unsigned only for {and, or, xor} operations.

Supported by devices of compute capability 8.x or higher.

B.21.1. Synopsis

// add/min/max
unsigned  reduce add sync(unsigned mask, unsigned value);
unsigned _ reduce min sync (unsigned mask, unsigned value) ;

unsigned  reduce max sync(unsigned mask, unsigned value);
int = reduce add sync(unsigned mask, int value);
int  reduce min sync(unsigned mask, int value);
int = reduce max sync(unsigned mask, int value);

// and/or/xor

unsigned  reduce and sync (unsigned mask, unsigned value);
unsigned  reduce or sync (unsigned mask, unsigned value);
unsigned  reduce xor sync(unsigned mask, unsigned value);
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B.21.2. Description

__reduce_add_sync, _reduce_min_sync, __reduce max_sync
Returns the result of applying an arithmetic add, min, or max reduction operation on the
values provided in value by each thread named in mask.

__reduce_and_sync, _ _reduce_or_sync, __reduce_xor_sync
Returns the result of applying a logical AND, OR, or XOR reduction operation on the values
provided in value by each thread named in mask.

The mask indicates the threads participating in the call. A bit, representing the thread's lane
id, must be set for each participating thread to ensure they are properly converged before the
intrinsic is executed by the hardware. All non-exited threads named in mask must execute the
same intrinsic with the same mask, or the result is undefined.

B.22. Warp Shuffle Functions

__shfl sync, shfl up sync, shfl down sync,and shfl xor sync exchange a
variable between threads within a warp.

Supported by devices of compute capability 3.x or higher.

Deprecation Notice:  shfl, shfl up, shfl down,and shfl xor have been
deprecated in CUDA 9.0 for all devices.

Removal Notice: When targeting devices with compute capability 7.x or higher,  shf1,
__shfl up, shfl down,and shfl xor are no longer available and their sync variants
should be used instead.

B.22.1. Synopsis

T shfl sync(unsigned mask, T var, int srcLane, int width=warpSize);

T shfl up sync(unsigned mask, T var, unsigned int delta, int width=warpSize);
T shfl down sync(unsigned mask, T var, unsigned int delta, int width=warpSize);
T shfl xor sync(unsigned mask, T var, int laneMask, int width=warpSize);

T can be int, unsigned int, long, unsigned long, long long, unsigned long long,
float or double. With the cuda fp16.h headerincluded, T canalso be halfor half2.
Similarly, with the cuda_bf16.h header included, T can also be nv bfloatl6 or
__nv_bfloatl6Z2.

B.22.2. Description

The shfl sync() intrinsics permit exchanging of a variable between threads within a warp
without use of shared memory. The exchange occurs simultaneously for all active threads
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within the warp (and named in mask), moving 4 or 8 bytes of data per thread depending on the
type.

Threads within a warp are referred to as lanes, and may have an index between 0 and
warpSize-1 (inclusive). Four source-lane addressing modes are supported:
__shfl sync()
Direct copy from indexed lane
__shfl up sync()
Copy from a lane with lower ID relative to caller
__shfl down_sync()
Copy from a lane with higher ID relative to caller
__shfl xor_ sync()
Copy from a lane based on bitwise XOR of own lane ID

Threads may only read data from another thread which is actively participating in the
__shfl sync () command. If the target thread is inactive, the retrieved value is undefined.

All of the  shfl sync () intrinsics take an optional width parameter which alters the
behavior of the intrinsic. width must have a value which is a power of 2; results are undefined
if width is not a power of 2, or is a number greater than warpsSize.

_shfl sync() returns the value of var held by the thread whose ID is given by srcLane. If
width is less than warpsize then each subsection of the warp behaves as a separate entity
with a starting logical lane ID of 0. If srcLane is outside the range [0:width-1], the value
returned corresponds to the value of var held by the srcLane modulo width (i.e. within the
same subsection).

__shfl up sync () calculates a source lane ID by subtracting delta from the caller’s lane ID.
The value of var held by the resulting lane ID is returned: in effect, var is shifted up the warp
by delta lanes. If width is less than warpsize then each subsection of the warp behaves as a
separate entity with a starting logical lane ID of 0. The source lane index will not wrap around
the value of width, so effectively the lower delta lanes will be unchanged.

__shfl down sync () calculates a source lane ID by adding delta to the caller's lane ID. The
value of var held by the resulting lane ID is returned: this has the effect of shifting var down
the warp by delta lanes. If width is less than warpSize then each subsection of the warp
behaves as a separate entity with a starting logical lane ID of 0. As for _ shfl up sync (), the
ID number of the source lane will not wrap around the value of width and so the upper delta
lanes will remain unchanged.

__shfl xor sync() calculates a source line ID by performing a bitwise XOR of the caller’s
lane ID with 1aneMask: the value of var held by the resulting lane ID is returned. If width
Is less than warpsize then each group of width consecutive threads are able to access
elements from earlier groups of threads, however if they attempt to access elements from
later groups of threads their own value of var will be returned. This mode implements a
butterfly addressing pattern such as is used in tree reduction and broadcast.
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The new *_sync shfl intrinsics take in a mask indicating the threads participating in the call.
A bit, representing the thread's lane id, must be set for each participating thread to ensure
they are properly converged before the intrinsic is executed by the hardware. All non-exited
threads named in mask must execute the same intrinsic with the same mask, or the result is
undefined.

B.22.3. Notes

Threads may only read data from another thread which is actively participating in the
__shfl sync () command. If the target thread is inactive, the retrieved value is undefined.

width must be a power-of-2 (i.e., 2, 4, 8, 16 or 32). Results are unspecified for other values.

B.22.4. Examples

B.22.4.1. Broadcast of a single value across a warp

#include <stdio.h>

__global void bcast (int arg) {
int lanelId = threadIdx.x & Ox1f;
int value;
if (laneId == 0) // Note unused variable for
value = arg; // all threads except lane 0
value =  shfl sync(Oxffffffff, value, 0); // Synchronize all threads in warp,
and get "value" from lane 0
if (value != argqg)
printf ("Thread %d failed.\n", threadIdx.x):;
}

int main() {
bcast<<< 1, 32 >>>(1234);
cudaDeviceSynchronize () ;

return 0;

}

B.22.4.2. Inclusive plus-scan across sub-partitions of 8
threads

#include <stdio.h>

__global void scan4() {
int laneId = threadIdx.x & Ox1f;
// Seed sample starting value (inverse of lane ID)
int value = 31 - laneld;

// Loop to accumulate scan within my partition.

// Scan requires log2(n) == 3 steps for 8 threads

// It works by an accumulated sum up the warp

// by 1, 2, 4, 8 etc. steps.

for (int i=1; i<=4; 1i*=2) {
// We do the  shfl sync unconditionally so that we
// can read even from threads which won't do a
// sum, and then conditionally assign the result.
int n = shfl up sync(Oxffffffff, value, i, 8);
if ((laneId & 7) >= 1)
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value += n;

}

printf ("Thread %d final value = %d\n", threadIdx.x, value);

int main () {
scand<<< 1, 32 >>>();
cudaDeviceSynchronize () ;

return 0;

B.22.4.3. Reduction across a warp

#include <stdio.h>
__global  void warpReduce () {
int laneId = threadIdx.x & Ox1f;
// Seed starting value as inverse lane ID
int value = 31 - laneId;
// Use XOR mode to perform butterfly reduction
for (int i=16; i>=1; i/=2)
value += _ shfl xor sync(Oxffffffff, value, i, 32);
// "value" now contains the sum across all threads
printf ("Thread %d final value = %d\n", threadIdx.x, value);

int main() {
warpReduce<<< 1, 32 >>>();
cudaDeviceSynchronize () ;

return 0;

B.23. Nanosleep Function
B.23.1. Synopsis

T _ nanosleep (unsigned ns);

B.23.2. Description

__nanosleep (ns) suspends the thread for a sleep duration approximately close to the delay
ns, specified in nanoseconds.

It is supported with compute capability 7.0 or higher.
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B.23.3. Example

The following code implements a mutex with exponential back-off.

__device  void mutex lock(unsigned int *mutex) {
unsigned int ns = 8;
while (atomicCAS (mutex, 0, 1) == 1) {
__nanosleep(ns);
if (ns < 256) {
ns *= 2;

}
}

__device  void mutex unlock(unsigned int *mutex) {
atomicExch (mutex, 0);

}

B.24. Warp Matrix Functions

C++ warp matrix operations leverage Tensor Cores to accelerate matrix problems of the form
D=A*B+C. These operations are supported on mixed-precision floating point data for devices
of compute capability 7.0 or higher. This requires co-operation from all threads in a warp.

In addition, these operations are allowed in conditional code only if the condition evaluates
identically across the entire warp, otherwise the code execution is likely to hang.

B.24.1. Description

All following functions and types are defined in the namespace nvcuda: :wmma. Sub-byte
operations are considered preview, i.e. the data structures and APIs for them are subject to
change and may not be compatible with future releases. This extra functionality is defined in
the nvcuda: :wmma: :experimental namespace.

template<typename Use, int m, int n, int k, typename T, typename Layout=void> class
fragment;

void load matrix sync(fragment<...> &a, const T* mptr, unsigned ldm);

void load matrix sync(fragment<...> &a, const T* mptr, unsigned ldm, layout t
layout) ;

void store matrix sync(T* mptr, const fragment<...> &a, unsigned ldm, layout t
layout) ;

void fill fragment (fragment<...> &a, const T& v);

void mma sync(fragment<...> &d, const fragment<...> &a, const fragment<...>

&b, const fragment<...> &c, bool satf=false);

fragment

An overloaded class containing a section of a matrix distributed across all threads in the
warp. The mapping of matrix elements into fragment internal storage is unspecified and
subject to change in future architectures.
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Only certain combinations of template arguments are allowed. The first template
parameter specifies how the fragment will participate in the matrix operation. Acceptable
values for Use are:

» matrix_a when the fragment is used as the first multiplicand, a,
» matrix b when the fragmentis used as the second multiplicand, B, or

» accumulator when the fragment is used as the source or destination accumulators (c
or D, respectively).

The m, n and k sizes describe the shape of the warp-wide matrix tiles participating in
the multiply-accumulate operation. The dimension of each tile depends on its role. For
matrix_a the tile takes dimensionm x k; formatrix b the dimensionis k x n, and

accumulator tilesarem x n.

The data type, T, may be double, float, half, nv bfloatlé, char, or unsigned char
for multiplicands and double, float, int, or _ half for accumulators. As documented

in Element Types and Matrix Sizes, limited combinations of accumulator and multiplicand
types are supported. The Layout parameter must be specified formatrix a and matrix b
fragments. row major or col major indicate that elements within a matrix row or column
are contiguous in memory, respectively. The Layout parameter for an accumulator matrix
should retain the default value of void. A row or column layout is specified only when the
accumulator is loaded or stored as described below.

load matrix sync

Waits until all warp lanes have arrived at load_matrix_sync and then loads the matrix
fragment a from memory. mptr must be a 256-bit aligned pointer pointing to the

first element of the matrix in memory. 1dm describes the stride in elements between
consecutive rows (for row major layout) or columns (for column major layout) and must
be a multiple of 8 for __half element type or multiple of 4 for £1oat element type.

(i.e., multiple of 16 bytes in both cases]. If the fragment is an accumulator, the layout
argument must be specified as either mem row major ormem col major. Formatrix a
and matrix b fragments, the layout is inferred from the fragment’'s 1ayout parameter.
The values of mptr, 1dm, layout and all template parameters for a must be the same for
all threads in the warp. This function must be called by all threads in the warp, or the result
Is undefined.

store_matrix sync

Waits until all warp lanes have arrived at store_matrix_sync and then stores the matrix
fragment a to memory. mptr must be a 256-bit aligned pointer pointing to the first element
of the matrix in memory. 1dm describes the stride in elements between consecutive rows
(for row major layout) or columns (for column major layout]) and must be a multiple of 8 for
__half element type or multiple of 4 for £1oat element type. (i.e., multiple of 16 bytes in
both cases). The layout of the output matrix must be specified as either mem row major or
mem_col major. Thevalues of mptr, 1dm, layout and all template parameters for a must
be the same for all threads in the warp.
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fill fragment

Filla matrix fragment with a constant value v. Because the mapping of matrix elements
to each fragment is unspecified, this function is ordinarily called by all threads in the warp
with a common value for v.

mma_sync

Waits until all warp lanes have arrived at mma_sync, and then performs the warp-
synchronous matrix multiply-accumulate operation b=A*B+C. The in-place operation,
C=A*B+C, Is also supported. The value of satf and template parameters for each matrix
fragment must be the same for all threads in the warp. Also, the template parameters m,
n and k must match between fragments &, B, ¢ and D. This function must be called by all
threads in the warp, or the result is undefined.

If satf (saturate to finite value) mode is true, the following additional numerical properties
apply for the destination accumulator:

» If an element result is +Infinity, the corresponding accumulator will contain +MAX NORM
> If an element result is -Infinity, the corresponding accumulator will contain -MAX NORM
» If an element result is NaN, the corresponding accumulator will contain +0

Because the map of matrix elements into each thread’'s fragment is unspecified,

individual matrix elements must be accessed from memory (shared or global) after calling
store matrix_sync. In the special case where all threads in the warp will apply an element-
wise operation uniformly to all fragment elements, direct element access can be implemented
using the following fragment class members.

enum fragment<Use, m, n, k, T, Layout>::num elements;
T fragment<Use, m, n, k, T, Layout>::x[num elements];

As an example, the following code scales an accumulator matrix tile by half.

wmma : : fragment<wmma::accumulator, 16, 16, 16, float> frag;
float alpha = 0.5f; // Same value for all threads in warp
VA |

for (int t=0; t<frag.num elements; t++)

frag.x[t] *= alpha;

B.24.2. Alternate Floating Point

Tensor Cores support alternate types of floating point operations on devices with compute
capability 8.0 and higher.

__nv_bfloatlé

This data format is an alternate fp16 format that has the same range as 32 but reduced
precision (7 bits). You can use this data format directly with the  nv bfloat16 type
available in cuda bf16.h. Matrix fragments with  nv _bfloatlé6 data types are required
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to be composed with accumulators of £loat type. The shapes and operations supported are
the same aswith  half.

t£32

This data format is a special floating point format supported by Tensor Cores, with the
same range as f32 and reduced precision (>=10 bits). The internal layout of this format is
implementation defined. In order to use this floating point format with WMMA operations,
the input matrices must be manually converted to tf32 precision.

To facilitate conversion, a new intrinsic __ float to t£32 Is provided. While the input and
output arguments to the intrinsic are of £loat type, the output will be t£32 numerically.
This new precision is intended to be used with Tensor Cores only, and if mixed with other
floattype operations, the precision and range of the result will be undefined.

Once an input matrix ([matrix a ormatrix b)is converted to tf32 precision, the
combination of a fragment with precision::t£32 precision, and a data type of float

to load matrix sync will take advantage of this new capability. Both the accumulator
fragments must have float data types. The only supported matrix size is 16x16x8 (m-n-k].

The elements of the fragment are represented as float, hence the mapping from
element type<T> 10 storage element type<T> is:

precision::tf32 -> float

B.24.3. Double Precision

Tensor Cores support double-precision floating point operations on devices with compute
capability 8.0 and higher. To use this new functionality, a fragment with the double type must
be used. The mma_sync operation will be performed with the .rn (rounds to nearest even)
rounding modifier.

B.24.4. Sub-byte Operations

Sub-byte WMMA operations provide a way to access the low-precision capabilities of Tensor
Cores. They are considered a preview feature i.e. the data structures and APIs for them

are subject to change and may not be compatible with future releases. This functionality is
available via the nvcuda: :wmma: : experimental namespace:

namespace experimental {
namespace precision {
struct ud4; // 4-bit unsigned
struct s4; // 4-bit signed
struct bl; // 1-bit
}

enum bmmaBitOp {

bmmaBitOpXOR = 1, // compute 75 minimum
bmmaBitOpAND = 2 // compute 80 minimum

}i

enum bmmaAccumulateOp { bmmaAccumulateOpPOPC = 1 };
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For 4 bit precision, the APIs available remain the same, but you must specify
experimental::precision::u4 Or experimental::precision::s4 as the fragment data
type. Since the elements of the fragment are packed together, num storage elements will
be smaller than num elements for that fragment. The num elements variable for a sub-byte
fragment, hence returns the number of elements of sub-byte type element type<T>. This
is true for single bit precision as well, in which case, the mapping from element type<T> to
storage element type<T>is as follows:

experimental: :precision::u4 -> unsigned (8 elements in 1 storage element)
experimental: :precision::s4 -> int (8 elements in 1 storage element)
experimental::precision::bl -> unsigned (32 elements in 1 storage element)
T -> T //all other types

The allowed layouts for sub-byte fragments is always row major formatrix a and

col major formatrix b.

For sub-byte operations the value of 1dmin load matrix sync should be a multiple of 32 for
element type experimental: :precision::u4 and experimental: :precision::s4 0ora
multiple of 128 for element type experimental: :precision::bl (i.e., multiple of 16 bytes in
both cases).

Note: Support for the following variants for MMA instructions is deprecated and will be
removed in sm_90:

» experimental::precision::u4
>  experimental::precision: :s4
» experimental::precision::bl with bmmaBitOp set to bmmaBitOpXOR
bmma sync
Waits until all warp lanes have executed bmma_sync, and then performs the warp-
synchronous bit matrix multiply-accumulate operationD = (A op B) + C, where

op consists of a logical operation bmmaBitOp followed by the accumulation defined by
bmmaAccumulateOp. The available operations are:

bmmaBitOpXOR, a 128-bit XOR of a row inmatrix a with the 128-bit column of matrix b

bmmaBitOpAND, a 128-bit AND of a row in matrix_a with the 128-bit column of matrix b,
available on devices with compute capability 8.0 and higher.

The accumulate op is always bmmaAccumulateOpPOPC which counts the number of set bits.

B.24.5. Restrictions

The special format required by tensor cores may be different for each major and minor
device architecture. This is further complicated by threads holding only a fragment (opaque
architecture-specific ABI data structure] of the overall matrix, with the developer not
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allowed to make assumptions on how the individual parameters are mapped to the registers
participating in the matrix multiply-accumulate.

Since fragments are architecture-specific, it is unsafe to pass them from function A to
function B if the functions have been compiled for different link-compatible architectures
and linked together into the same device executable. In this case, the size and layout of the
fragment will be specific to one architecture and using WMMA APIs in the other will lead to
incorrect results or potentially, corruption.

An example of two link-compatible architectures, where the layout of the fragment differs, is
sm_70 and sm_75.

fragA.cu: void foo() { wmma::fragment<...> mat a; bar(&mat a); }
fragB.cu: void bar (wmma::fragment<...> *mat a) { // operate on mat a }

// sm_70 fragment layout

$> nvcc -dc -arch=compute 70 -code=sm 70 fragA.cu -o fragA.o
// sm_ 75 fragment layout

$> nvcc -dc -arch=compute 75 -code=sm 75 fragB.cu -o fragB.o
// Linking the two together

$> nvcc -dlink -arch=sm 75 fragA.o fragB.o -o frag.o

This undefined behavior might also be undetectable at compilation time and by tools at
runtime, so extra care is needed to make sure the layout of the fragments is consistent. This
linking hazard is most likely to appear when linking with a legacy library that is both built for a
different link-compatible architecture and expecting to be passed a WMMA fragment.

Note that in the case of weak linkages (for example, a CUDA C++ inline function), the linker
may choose any available function definition which may result in implicit passes between
compilation units.

To avoid these sorts of problems, the matrix should always be stored out to memory for transit
through external interfaces (e.g. wnma: : store matrix sync(dst, ..);)andthenitcan be
safely passed to bar () as a pointer type [e.g. float *dst].

Note that since sm_70 can run on sm_79, the above example sm_75 code can be changed to
sm_70 and correctly work on sm_75. However, it is recommended to have sm_75 native code
in your application when linking with other sm_75 separately compiled binaries.

B.24.6. Element Types and Matrix Sizes

Tensor Cores support a variety of element types and matrix sizes. The following table presents
the various combinations of matrix a, matrix b and accumulator matrix supported:

Matrix A Matrix B Accumulator Matrix Size (m-n-k)
__half __half float 16x16x16
__half __half float 32x8x16
__half __half float 8x32x16
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Matrix A
__half
half

__half
unsigned char
unsigned char
unsigned char
signed char

signed char

signed char

Matrix B
__half
half

__half
unsigned char
unsigned char
unsigned char

signed char

signed char

signed char

Alternate Floating Point support:

Matrix A

__nv_bfloat1é
__nv_bfloat1é
__nv_bfloat1é

precision::tf32

Double Precision Support:

Matrix A
double

Experimental support for sub-byte operations:

Matrix A
precision::u4
precision::s4

precision::b1

Matrix B
__nv_bfloat16
__nv_bfloat16
__nv_bfloat16

precision::tf32

Matrix B
double

Matrix B
precision::u4
precision::s&

precision::b1

Accumulator

__ half
_ half
__half

int

int

int

int

int

int

Accumulator
float
float
float

float

Accumulator
double

Accumulator
int
int

int
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Matrix Size [m-n-k)

16x16x16
32x8x16
8x32x16
16x16x16
32x8x16
8x32x16
16x16x16
32x8x16
8x32x16

Matrix Size [m-n-k)

16x16x16
32x8x16

8x32x16

16x16x8

Matrix Size [m-n-k)

8x8x4

Matrix Size (m-n-k)

8x8x32
8x8x32
8x8x128

The following code implements a 16x16x16 matrix multiplication in a single warp.

#include <mma.h>
using namespace nvcuda;

__global  void wmma ker (half *a, half *b,

// Declare the fragments
wmma: : fragment<wmma: :matrix a, 16,
wmma: : fragment<wmma::matrix b, 16, 16, 16, half, wmma::row major> b frag;

wmma : : fragment<wmma: :accumulator,
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16, 16,

float *c) {

float> c_ frag;

16, half, wmma::col major> a frag;
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// Initialize the output to zero
wmma: :fill fragment (c frag, 0.0f);

// Load the inputs
wmma: :load matrix sync(a frag, a, 16);
wmma: :load matrix sync(b frag, b, 16);

// Perform the matrix multiplication
wmma: :mma_sync (c_frag, a frag, b frag, c_ frag);

// Store the output
wmma: :store matrix sync(c, c_ frag, 16, wmma::mem row major);

B.25. Asynchronous Barrier

The NVIDIA C++ standard library introduces a GPU implementation of std::barrier. Along

with the implementation of std: :barrier the library provides extensions that allow users

to specify the scope of barrier objects. The barrier APl scopes are documented under Thread
Scopes. Devices of compute capability 8.0 or higher provide hardware acceleration for barrier
operations and integration of these barriers with the memcpy async feature. On devices with
compute capability below 8.0 but starting 7.0, these barriers are available without hardware
acceleration.

nvcuda: :experimental: :awbarrier is deprecated in favor of cuda: :barrier.

B.25.1. Simple Synchronization Pattern

Without the arrive/wait barrier, synchronization is achieved using _ syncthreads () (to
synchronize all threads in a block] or group.sync () when using Cooperative Groups.

#include <cooperative groups.h>

__global void simple sync(int iteration count) {
auto block = cooperative groups::this thread block();

for (int 1 = 0; 1 < iteration count; ++i) {
/* code before arrive */
block.sync(); /* wait for all threads to arrive here */
/* code after wait */

}

Threads are blocked at the synchronization point (block.sync ()] until all threads have
reached the synchronization point. In addition, memory updates that happened before

the synchronization point are guaranteed to be visible to all threads in the block after the
synchronization point, i.e., equivalent to atomic_thread fence (memory order seq cst,
thread scope block) as well as the sync.

This pattern has three stages:

> Code before sync performs memory updates that will be read after the sync.
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> Synchronization point

» Code after sync point with visibility of memory updates that happened before sync point.

B.25.2. Temporal Splitting and Five Stages of
Synchronization

The temporally-split synchronization pattern with the std: :barrier is as follows.

#include <cuda/barrier>
#include <cooperative groups.h>

__device  void compute (float* data, int curr iteration);

__global wvoid split arrive wait(int iteration count, float *data) {
using barrier = cuda::barrier<cuda::thread scope block>;

__shared  barrier bar;
auto block = cooperative groups::this thread block();
if (block.thread rank() == 0) {

init (&bar, block.size()); // Initialize the barrier with expected arrival
count

}
block.sync () ;

for (int curr iter = 0; curr iter < iteration count; ++curr iter) {
/* code before arrive */
barrier::arrival token token = bar.arrive(); /* this thread arrives. Arrival
does not block a thread */
compute (data, curr iter);
bar.wait (std: :move (token)); /* wait for all threads participating in the
barrier to complete bar.arrive()*/
/* code after wait */
}
}

In this pattern, the synchronization point [block.sync ()] is split into an arrive point
[bar.arrive ()] and a wait point (bar.wait (std: :move (token))]. A thread begins
participating in a cuda: :barrier with its first call to bar.arrive (). When a thread calls
bar.wait (std::move (token)) it will be blocked until participating threads have completed
bar.arrive () the expected number of times as specified by the expected arrival count
argument passed to init (). Memory updates that happen before participating threads’

call tobar.arrive () are guaranteed to be visible to participating threads after their call to
bar.wait (std: :move (token)). Note that the call to bar.arrive () does not block a thread,
it can proceed with other work that does not depend upon memory updates that happen before
other participating threads' call to bar.arrive ().

The arrive and then wait pattern has five stages which may be iteratively repeated:
» Code before arrive performs memory updates that will be read after the wait.

» Arrive point with implicit memory fence (i.e., equivalent to

atomic_thread fence (memory order seq cst, thread_scope_block)l

» Code between arrive and wait.
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> Wait point.

» Code after the wait, with visibility of updates that were performed before the arrive.

B.25.3. Bootstrap Initialization, Expected Arrival
Count, and Participation

Initialization must happen before any thread begins participating in a cuda: :barrier.

#include <cuda/barrier>
#include <cooperative groups.h>

__global  wvoid init barrier() {
~_shared  cuda::barrier<cuda::thread scope block> bar;
auto block = cooperative groups::this thread block();

if (block.thread rank() == 0) {
init (&bar, block.size()); // Single thread initializes the total expected

arrival count.

}
block.sync () ;

}

Before any thread can participate in cuda: :barrier, the barrier must be initialized using
init () with an expected arrival count, block.size () in this example. Initialization must
happen before any thread calls bar.arrive (). This poses a bootstrapping challenge in that
threads must synchronize before participating in the cuda: :barrier, but threads are creating
a cuda::barrier in order to synchronize. In this example, threads that will participate are
part of a cooperative group and use block.sync () to bootstrap initialization. In this example
a whole thread block is participating in initialization, hence  syncthreads () could also be
used.

The second parameter of init () is the expected arrival count, i.e., the number of

times bar.arrive () will be called by participating threads before a participating thread

is unblocked from its call to bar.wait (std: :move (token)). In the prior example

the cuda: :barrier is initialized with the number of threads in the thread block i.e.,
cooperative groups::this thread block().size (), and all threads within the thread
block participate in the barrier.

A cuda::barrier is flexible in specifying how threads participate (split arrive/wait) and which
threads participate. In contrast this_ thread block.sync () from cooperative groups or
__syncthreads () is applicable to whole-thread-block and  syncwarp (mask) is a specified
subset of a warp. If the intention of the user is to synchronize a full thread block or a full
warp we recommend using __ syncthreads () and __ syncwarp (mask) respectively for
performance reasons.
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B.25.4. A Barrier's Phase: Arrival, Countdown,
Completion, and Reset

A cuda::barrier counts down from the expected arrival count to zero as participating
threads call bar.arrive (). When the countdown reaches zero, a cuda: :barrier is complete
for the current phase. When the last call to bar.arrive () causes the countdown to reach
zero, the countdown is automatically and atomically reset. The reset assigns the countdown to
the expected arrival count, and moves the cuda: :barrier to the next phase.

A token object of class cuda: :barrier::arrival token, as returned from
token=bar.arrive (), Is associated with the current phase of the barrier. A call to
bar.wait (std::move (token)) blocks the calling thread while the cuda: :barrierisin
the current phase, i.e., while the phase associated with the token matches the phase of the
cuda::barrier. If the phase is advanced (because the countdown reaches zero) before
the call to bar.wait (std: :move (token)) then the thread does not block; if the phase

Is advanced while the thread is blocked in bar.wait (std: :move (token) ), the thread is
unblocked.

It is essential to know when a reset could or could not occur, especially in non-trivial arrive/
wait synchronization patterns.

» Athread's calls to token=bar.arrive () and bar.wait (std: :move (token)) must be
sequenced such that token=bar.arrive () occurs during the cuda: :barrier’s current
phase, and bar.wait (std: :move (token)) occurs during the same or next phase.

» Athread's call to bar.arrive () must occur when the barrier's counter is non-zero. After
barrier initialization, if a thread’s call to bar.arrive () causes the countdown to reach
zero then a call to bar.wait (std: :move (token)) must happen before the barrier can be
reused for a subsequent call to bar.arrive ().

» bar.wait () mustonly be called using a token object of the current phase or the
immediately preceding phase. For any other values of the token object, the behavior is
undefined.

For simple arrive/wait synchronization patterns, compliance with these usage rules is
straightforward.

B.25.5. Spatial Partitioning (also known as Warp
Specialization)

A thread block can be spatially partitioned such that warps are specialized to perform
independent computations. Spatial partitioning is used in a producer or consumer pattern,
where one subset of threads produces data that is concurrently consumed by the other
(disjoint) subset of threads.
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A producer/consumer spatial partitioning pattern requires two one sided synchronizations to
manage a data buffer between the producer and consumer.

Producer Consumer

wait for buffer to be ready to be filled signal buffer is ready to be filled
produce data and fill the buffer

signal buffer is filled wait for buffer to be filled

consume data in filled buffer

Producer threads wait for consumer threads to signal that the buffer is ready to be filled;
however, consumer threads do not wait for this signal. Consumer threads wait for producer
threads to signal that the buffer is filled; however, producer threads do not wait for this signal.
For full producer/consumer concurrency this pattern has (at least) double buffering where
each buffer requires two cuda: :barriers.

#include <cuda/barrier>
#include <cooperative groups.h>

using barrier = cuda::barrier<cuda::thread scope block>;

__device  void producer (barrier ready[], barrier filled[], float* buffer, float*
in, int N, int buffer len)
{
for (int i = 0; i < (N/buffer len); ++i) {
ready[i%2].arrive and wait(); /* wait for buffer (i%2) to be ready to be
filled */ -
/* produce, i.e., fill in, buffer (i%2) */
barrier::arrival token token = filled[i%2].arrive(); /* buffer (i%2) is
filled */
}
}

__device  void consumer (barrier ready[], barrier filled[], float* buffer, float*
out, int N, int buffer len)

{

barrier::arrival token tokenl
initial f£ill */
barrier::arrival token token2 = ready[l].arrive(); /* buffer 1 is ready for
initial fill */
for (int i = 0; i < (N/buffer len); ++i) {
filled[i%2].arrive and wait(); /* wait for buffer (i%2) to be filled */
/* consume buffer (i%2) */
barrier::arrival token token = readyl[i%2].arrive(); /* buffer (i%2) is ready
to be re-filled */

}

ready[0] .arrive(); /* buffer 0 is ready for

}

//N is the total number of float elements in arrays in and out
__global  void producer consumer pattern(int N, int buffer len, float* in, float*
out) {

// Shared memory buffer declared below is of size 2 * buffer len
// so that we can alternatively work between two buffers.

// buffer 0 = buffer and buffer 1 = buffer + buffer len

~ shared  extern float buffer[];

// bar[0] and bar[l] track if buffers buffer 0 and buffer 1 are ready to be
filled,
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// while bar[2] and bar[3] track if buffers buffer 0 and buffer 1 are filled-in
respectively
~_shared  barrier bar([4];

auto block = cooperative groups::this thread block();
if (block.thread rank() < 4)

init (bar + block.thread rank(), block.size());
block.sync () ;

if (block.thread rank() < warpSize)

producer (bar, bar+2, buffer, in, N, buffer len);
else

consumer (bar, bar+2, buffer, out, N, buffer len);

}

In this example the first warp is specialized as the producer and the remaining warps
are specialized as the consumer. All producer and consumer threads participate (call
bar.arrive () Orbar.arriveiandiwait()]HﬁeachOfthefourcuda::barrierSSOthe
expected arrival counts are equal to block.size ().

A producer thread waits for the consumer threads to signal that the shared memory buffer
can be filled. In order to wait for a cuda: :barrier a producer thread must first arrive on that
ready[i%2].arrive () to get a token and then ready[i%2].wait (token) with that token.
For simplicity ready[i%2] .arrive and wait () combines these operations.

bar.arrive and wait();
/* is equivalent to */
bar.wait (bar.arrive()):;

Producer threads compute and fill the ready buffer, they then signal that the buffer is filled by
arriving on the filled barrier, fil1led[i%2] .arrive (). A producer thread does not wait at this
point, instead it waits until the next iteration’s buffer (double buffering] is ready to be filled.

A consumer thread begins by signaling that both buffers are ready to be filled. A consumer
thread does not wait at this point, instead it waits for this iteration’s buffer to be filled,
filled[i%2].arrive and wait (). After the consumer threads consume the buffer they
signal that the buffer is ready to be filled again, ready[i1%2].arrive (), and then wait for the
next iteration’s buffer to be filled.

B.25.6. Early Exit (Dropping out of Participation]

When a thread that is participating in a sequence of synchronizations must exit early from that
sequence, that thread must explicitly drop out of participation before exiting. The remaining
participating threads can proceed normally with subsequent cuda: :barrier arrive and wait
operations.

#include <cuda/barrier>
#include <cooperative groups.h>

__device  bool condition check();

__global  void early exit kernel (int N) {
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using barrier = cuda::barrier<cuda::thread scope block>;
__shared  barrier bar;
auto block = cooperative groups::this thread block();

if (block.thread rank() == 0)
init (&bar , block.size());
block.sync() ;
for (int 1 = 0; i < N; ++i) {
if (condition check()) {
bar.arrive and drop();
return;

}

/* other threads can proceed normally */

barrier::arrival token token = bar.arrive();

/* code between arrive and wait */

bar.wait (std::move (token)); /* wait for all threads to arrive */
/* code after wait */

This operation arrives on the cuda: :barrier to fulfill the participating thread’s obligation
to arrive in the current phase, and then decrements the expected arrival count for the next
phase so that this thread is no longer expected to arrive on the barrier.

B.25.7. Memory Barrier Primitives Interface

Memory barrier primitives are C-like interfaces to cuda: :barrier functionality. These
primitives are available through including the <cuda awbarrier primitives.h> header.

B.25.7.1. Data Types

typedef /* implementation defined */ _ mbarrier t;
typedef /* implementation defined */  mbarrier token t;

B.25.7.2. Memory Barrier Primitives API

uint32 t mbarrier maximum count();
void  mbarrier init( mbarrier t* bar, uint32 t expected count);

» bar must be a pointerto _shared memory.
> expected count <= mbarrier maximum count ()

> Initialize *bar expected arrival count for the current and next phase to expected count.

void  mbarrier inval( mbarrier t* bar);

> bar must be a pointer to the mbarrier object residing in shared memory.

> Invalidation of *bar is required before the corresponding shared memory can be
repurposed.
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__mbarrier token t  mbarrier arrive(_ mbarrier t* bar);

> Initialization of *bar must happen before this call.
» Pending count must not be zero.
» Atomically decrement the pending count for the current phase of the barrier.

» Return an arrival token associated with the barrier state immediately prior to the
decrement.

__mbarrier token t mbarrier arrive and drop( mbarrier t* bar);

> Initialization of *bar must happen before this call.
» Pending count must not be zero.

» Atomically decrement the pending count for the current phase and expected count for the
next phase of the barrier.

> Return an arrival token associated with the barrier state immediately prior to the
decrement.

bool mbarrier test wait( mbarrier t* bar, mbarrier token t token);

> token must be associated with the immediately preceding phase or current phase of
*this.

» Returns true if token is associated with the immediately preceding phase of *bar,
otherwise returns false.

//Note: This API has been deprecated in CUDA 11.1
uint32 t mbarrier pending count( mbarrier token t token);

B.26. Asynchronous Data Copies

CUDA 11 introduces Asynchronous Data operations with memcpy async API to allow device
code to explicitly manage the asynchronous copying of data. The memcpy async feature
enables CUDA kernels to overlap computation with data movement.

B.26.1. memcpy async AP

The memcpy async APls are provided in the cuda/barrier, cuda/pipeline, and
cooperative groups/memcpy async.h header files.

The cuda: :memcpy async APIs work with cuda: :barrier and cuda: :pipeline
synchronization primitives, while the cooperative groups::memcpy async synchronizes

using coopertive groups::wait.
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These APIs have very similar semantics: copy objects from src to dst as-if performed
by another thread which, on completion of the copy, can be synchronized through

cuda::pipeline, cuda: :barrier, Or cooperative groups::wait.

The complete APl documentation of the cuda: :memcpy async overloads for cuda: :barrier
and cuda: :pipeline is provided in the libcudacxx APl documentation along with some
examples.

The APl documentation of memcpy async is provided in the cooperative groups Section of the
documentation.

The memcpy async APls that use Asynchronous Barrier and cuda: :pipeline require
compute capability 7.0 or higher. On devices with compute capability 8.0 or higher,
memcpy_async operations from global to shared memory can benefit from hardware
acceleration.

B.26.2. Copy and Compute Pattern - Staging Data
Through Shared Memory

CUDA applications often employ a copy and compute pattern that:
> fetches data from global memory,
> stores data to shared memory, and

» performs computations on shared memory data, and potentially writes results back to
global memory.

The following sections illustrate how this pattern can be expressed without and with the
memcpy_async feature:

» The section Without introduces an example that does not overlap computation with data
movement and uses an intermediate register to copy data.

» The section With improves the previous example by introducing the memcpy async and
the cuda: :memcpy async APls to directly copy data from global to shared memory without
using intermediate registers.

» Section Asynchronous Data Copies using cuda::barrier shows memcpy with cooperative
groups and barrier

> Section Single-Stage Asynchronous Data Copies using cuda::pipeline show memcpy with
single stage pipeline

> Section Multi-Stage Asynchronous Data Copies using cuda::pipeline show memcpy with
multi stage pipeline
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B.26.3. Without memcpy async

Without memcpy async, the copy phase of the copy and compute pattern is expressed as
shared[local idx] = global[global idx]. This global to shared memory copy is
expanded to a read from global memory into a register, followed by a write to shared memory
from the register.

When this pattern occurs within an iterative algorithm, each thread block needs to synchronize
after the shared[local idx] = global[global idx] assignment, to ensure all writes

to shared memory have completed before the compute phase can begin. The thread block
also needs to synchronize again after the compute phase, to prevent overwriting shared
memory before all threads have completed their computations. This pattern is illustrated in
the following code snippet.

#include <cooperative groups.h>

__device  void compute(int* global out, int const* shared in) {
// Computes using all values of current batch from shared memory.
// Stores this thread's result back to global memory.

}

__global void without memcpy async(int* global out, int const* global in, size t
size, size t batch sz) {
auto grid = cooperative groups::this grid();
auto block = cooperative groups::this thread block();
assert (size == batch sz * grid.size()); // Exposition: input size fits batch sz *
grid size

extern  shared  int shared[]; // block.size() * sizeof (int) bytes
size t local idx = block.thread rank();

for (size t batch = 0; batch < batch sz; ++batch) {
// Compute the index of the current batch for this block in global memory:
size t block batch idx = block.group index().x * block.size() + grid.size() *
batch;
size t global idx = block batch idx + threadIdx.x;
shared[local idx] global in[global idx];

block.sync(); // Wait for all copies to complete

compute (global out + block batch idx, shared); // Compute and write result to
global memory

block.sync(); // Wait for compute using shared memory to finish

}

B.26.4. With memcpy async

With memcpy async, the assignment of shared memory from global memory

shared[local idx] = global in[global idx];

Is replaced with an asynchronous copy operation from cooperative groups
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cooperative groups::memcpy async (group, shared, global in +
batch idx, sizeof (int) * block.size()):

The memcpy_async API copies sizeof (int) * block.size () bytes from global memory
starting at global in + batch idx to the shared data. This operation happens as-if
performed by another thread, which synchronizes with the current thread's call to wait and
wait_prior after the copy has completed. Until the copy operation completes, modifying the
global data or reading or writing the shared data introduces a data race.

On devices with compute capability 8.0 or higher, memcpy async transfers from global to
shared memory can benefit from hardware acceleration, which avoids transfering the data
through an intermediate register.

#include <cooperative groups.h>
#include <cooperative groups/memcpy async.h>

__device  void compute(int* global out, int const* shared in);

__global void with memcpy async (int* global out, int const* global in, size t
size, size t batch sz) {
auto grid = cooperative groups::this grid();
auto block = cooperative groups::this thread block();
assert (size == batch sz * grid.size()); // Exposition: input size fits batch sz *
grid size

extern  shared  int shared[]; // block.size() * sizeof (int) bytes

for (size t batch = 0; batch < batch sz; ++batch) {
size t block batch idx = block.group index().x * block.size() + grid.size() *
batch;
// Whole thread-group cooperatively copies whole batch to shared memory:
cooperative groups::memcpy async (block, shared, global in +
block batch idx, sizeof(int) * block.size());

cooperative groups::wait (block); // Joins all threads, waits for all copies to
complete

compute (global out + block batch idx, shared);

block.sync() ;
}
}}

B.26.5. Asynchronous Data Copies using
cuda: :barrier

The cuda: :memcpy_ async overload for Asynchronous Barrier enables synchronizing
asynchronous data transfers using a barrier. This overloads executes the copy operation as-
if performed by another thread bound to the barrier by: incrementing the expected count of the
current phase on creation, and decrementing it on completion of the copy operation, such that
the phase of the barrier will only advance when all threads participating in the barrier have
arrived, and all memcpy async bound to the current phase of the barrier have completed. The
following example uses a block-wide barrier, where all block threads participate, and swaps
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the wait operation with a barrier arrive and wait, while providing the same functionality as
the previous example:

#include <cooperative groups.h>
#include <cuda/barrier>
__device  void compute (int* global out, int const* shared in);

__global void with barrier(int* global out, int const* global in, size t size,
size t batch sz) {
auto grid = cooperative groups::this grid();
auto block = cooperative groups::this thread block();
assert (size == batch sz * grid.size()); // Assume input size fits batch sz *
grid size

extern  shared  int shared[]; // block.size() * sizeof (int) bytes

// Create a synchronization object (C++20 barrier)
__shared  cuda::barrier<cuda::thread scope::thread scope block> barrier;

if (block.thread rank() == 0) {
init (&barrier, block.size()); // Friend function initializes barrier

}
block.sync() ;

for (size t batch = 0; batch < batch sz; ++batch) {
size t block batch idx = block.group index().x * block.size() + grid.size() *
batch;
cuda: :memcpy async (block, shared, global in + block batch idx, sizeof (int) *

block.size (), barrier);
barrier.arrive and wait(); // Waits for all copies to complete
compute (global out + block batch idx, shared);

block.sync() ;
}

B.26.6. Performance Guidance for memcpy async

For compute capability 8.x, the pipeline mechanism is shared among CUDA threads in the
same CUDA warp. This sharing causes batches of memcpy async to be entangled within a
warp, which can impact performance under certain circumstances.

This section highlights the warp-entanglement effect on commit, wait, and arrive operations.
Please refer to the Pipeline Interface and the Pipeline Primitives Interface for an overview of
the individual operations.

B.26.6.1. Alignment

On devices with compute capability 8.0, the cp.async family of instructions allows copying
data from global to shared memory asynchronously. These instructions support copying 4, 8,
and 16 bytes at a time. If the size provided to memcpy async is a multiple of 4, 8, or 16, and
both pointers passed to memcpy async are aligned to a 4, 8, or 16 alignment boundary, then
memcpy async can be implemented using exclusively asynchronous memory operations.

Additionally for achieving best performance when using memcpy async API, an alignment of
128 Bytes for both shared memory and global memory is required.
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For pointers to values of types with an alignment requirement of 1 or 2, it is often not possible
to prove that the pointers are always aligned to a higher alignment boundary. Determining
whether the cp.async instructions can or cannot be used must be delayed until run-time.
Performing such a runtime alignment check increases code-size and adds runtime overhead.

The cuda::aligned size t<size t Align>(size t size) Shape can be used to supply a
proof that both pointers passed to memcpy async are aligned to an Align alignment boundary
and that size is a multiple of Align, by passing it as an argument where the memcpy async
APls expect a Shape:

cuda: :memcpy async (group, dst, src, cuda::aligned size t<16>(N * block.size()),
pipeline);

If the proof is incorrect, the behavior is undefined.

B.26.6.2. Trivially copyable

On devices with compute capability 8.0, the cp.async family of instructions allows
copying data from global to shared memory asynchronously. If the pointer types passed
to memcpy async do not point to TriviallyCopyable types, the copy constructor of each
output element needs to be invoked, and these instructions cannot be used to accelerate

memcpy_async.

B.26.6.3. Warp Entanglement - Commit

The sequence of memcpy async batches is shared across the warp. The commit operation is
coalesced such that the sequence is incremented once for all converged threads that invoke
the commit operation. If the warp is fully converged, the sequence is incremented by one; if
the warp is fully diverged, the sequence is incremented by 32.

> Let PB be the warp-shared pipeline’s actual sequence of batches.
PB = {Bpo, Bpi, Bp2, .., Bpr}

» Let 7B be a thread's perceived sequence of batches, as if the sequence were only
incremented by this thread’s invocation of the commit operation.

TB = {Bro, Br1i, Br2, .., Bry}

The pipeline::producer commit () returnvalue is from the thread's perceived batch
sequence.

» Anindex in a thread's perceived sequence always aligns to an equal or larger index in the
actual warp-shared sequence. The sequences are equal only when all commit operations
are invoked from converged threads.

Bty = BppWheren <= m

For example, when a warp is fully diverged:
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» The warp-shared pipeline's actual sequence would be: B = {0, 1, 2, 3, ..., 31}
(PL=31).

» The perceived sequence for each thread of this warp would be:
» Thread 0: T8 = {0} (TL=0)
» Thread 1: TB = {0} (TL=0]

>

» Thread 31:TB = {0} (T1=0]

B.26.6.4. Warp Entanglement - Wait

A CUDA thread invokes either pipeline consumer wait prior<N>() or
pipeline::consumer wait () to wait for batches in the perceived sequence
TB to complete. Note that pipeline: :consumer wait () is equivalent to
pipeline consumer wait prior<N>(), where N = PL.

The pipeline consumer wait prior<N>() function waits for batches in the actual sequence
at least up to and including PL-N. Since TL <= PL, waiting for batch up to and including PL-N
includes waiting for batch TL-N. Thus, when TL < PL, the thread will unintentionally wait for
additional, more recent batches.

In the extreme fully-diverged warp example above, each thread could wait for all 32 batches.

B.26.6.5. Warp Entanglement - Arrive-On

Warp-divergence affects the number of times an arrive on (bar) operation updates the
barrier. If the invoking warp is fully converged, then the barrier is updated once. If the invoking
warp is fully diverged, then 32 individual updates are applied to the barrier.

B.26.6.6. Keep Commit and Arrive-On Operations Converged
It is recommended that commit and arrive-on invocations are by converged threads:

> to not over-wait, by keeping threads’ perceived sequence of batches aligned with the actual
sequence, and

» to minimize updates to the barrier object.

When code preceding these operations diverges threads, then the warp should be re-
converged, via __syncwarp before invoking commit or arrive-on operations.
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B.27. Asynchronous Data Copies using
cuda: :pipeline

CUDA provides the cuda: :pipeline synchronization object to manage and overlap
asynchronous data movement with computation.

The APl documentation for cuda: :pipeline is provided in the libcudacxx API. A pipeline
object is a double-ended N stage queue with a head and a tail, and is used to process work in
a first-in first-out (FIFO) order. The pipeline object has following member functions to manage
the stages of the pipeline.

Pipeline Class Member Function Description

Acquires an available stage in the pipeline

producer acquire .
- internal queue.

Commits the asynchronous operations issued
producer commit after the producer_acquire call on the currently
acquired stage of the pipeline.

Wait for completion of all asynchronous

consumer wait . T
- operations on the oldest stage of the pipeline.

Release the oldest stage of the pipeline to the
consumer release pipeline object for reuse. The released stage can
be then acquired by the producer.

B.27.1. Single-Stage Asynchronous Data Copies
using cuda: :pipeline

In previous examples we showed how to use wait and wait_prior and Asynchronous Barrier to
do asynchronous data transfers. In this section, we will use the cuda: :pipeline APl with a
single stage to schedule asynchronous copies. And later we will expand this example to show
multi staged overlapped compute and copy.

#include <cooperative groups/memcpy_ async.h>
#include <cuda/pipeline>

__device  void compute (int* global out, int const* shared in);
__global void with single stage (int* global out, int const* global in, size t
size, size t batch sz) {
auto grid = cooperative groups::this grid();
auto block = cooperative groups::this thread block();
assert (size == batch sz * grid.size()); // Assume input size fits batch sz *
grid size B

constexpr size t stages count = 1; // Pipeline with one stage

// One batch must fit in shared memory:
extern  shared  int shared[]; // block.size() * sizeof (int) bytes
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// Allocate shared storage for a two-stage cuda::pipeline:
_ _shared  cuda::pipeline shared state<
cuda: :thread scope::thread scope block,
stages count
> shared state;
auto pipeline = cuda::make pipeline (block, &shared state);

// Each thread processes ‘batch sz’ elements.
// Compute offset of the batch “batch’ of this thread block in global memory:
auto block batch = [&] (size t batch) -> int {

return block.group index().x * block.size() + grid.size() * batch;

b

for (size t batch = 0; batch < batch sz; ++batch) {
size t global idx = block batch(batch);

// Collectively acquire the pipeline head stage from all producer threads:
pipeline.producer acquire();

// Submit async copies to the pipeline's head stage to be

// computed in the next loop iteration

cuda: :memcpy async (block, shared, global in + global idx, sizeof (int) *
block.size (), pipeline);

// Collectively commit (advance) the pipeline's head stage

pipeline.producer commit () ;

// Collectively wait for the operations committed to the
// previous compute stage to complete:

pipeline.consumer wait();

// Computation overlapped with the memcpy async of the "copy" stage:
compute (global out + global idx, shared);

// Collectively release the stage resources
pipeline.consumer release();

B.27.2. Multi-Stage Asynchronous Data Copies using

cuda: :pipeline

In the previous examples with wait and wait_prior and Asynchronous Barrier, the kernel
threads immediately wait for the data transfer to shared memory to complete. This avoids
data transfers from global memory into registers, but does not hide the latency of the
memcpy_ async operation by overlapping computation.

For that we use the CUDA Pipeline Interface feature in the following example. It provides a
mechanism for managing a sequence of memcpy async batches, enabling CUDA kernels to
overlap memory transfers with computation. The following example implements a two-stage
pipeline that overlaps data-transfer with computation. It:

» Initializes the pipeline shared state (more below)
» Kickstarts the pipeline by scheduling a memcpy async for the first batch.

» Loops over all the batches: it schedules memcpy async for the next batch, blocks all
threads on the completion of the memcpy async for the previous batch, and then overlaps
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the computation on the previous batch with the asynchronous copy of the memory for the
next batch.

» Finally, it drains the pipeline by performing the computation on the last batch.

Note that, for interoperability with cuda: :pipeline, cuda: :memcpy async from the cuda/
pipeline header is used here.

#include <cooperative groups/memcpy_ async.h>
#include <cuda/pipeline>

__device  void compute(int* global out, int const* shared in);
__global void with staging(int* global out, int const* global in, size t size,
size t batch sz) {
auto grid = cooperative groups::this grid();
auto block = cooperative groups::this thread block();
assert (size == batch sz * grid.size()); // Assume input size fits batch_sz *
grid size

constexpr size t stages count = 2; // Pipeline with two stages

// Two batches must fit in shared memory:

extern _ shared  int shared[]; // stages count * block.size() * sizeof (int)
bytes

size t shared offset[stages count] = { 0, block.size() }; // Offsets to each
batch

// Allocate shared storage for a two-stage cuda::pipeline:
shared cuda::pipeline shared state<
cuda: :thread scope::thread scope block,
stages count
> shared state;
auto pipeline = cuda::make pipeline (block, &shared state);

// Each thread processes ‘batch sz’ elements.
// Compute offset of the batch ‘batch’ of this thread block in global memory:
auto block batch = [&] (size t batch) -> int {

return block.group index().x * block.size() + grid.size() * batch;

}i

// Initialize first pipeline stage by submitting a ‘memcpy async’ to fetch a
whole batch for the block:
if (batch sz == 0) return;
pipeline.producer acquire();
cuda: :memcpy async (block, shared + shared offset[0], global in +
block batch(0), sizeof (int) * block.size(), pipeline);
pipeline.producer commit () ;

// Pipelined copy/compute:

for (size t batch = 1; batch < batch sz; ++batch) {
// Stage indices for the compute and copy stages:
size t compute stage idx = (batch - 1) % 2;
size t copy stage idx = batch % 2;

size t global idx = block batch (batch);

// Collectively acquire the pipeline head stage from all producer threads:
pipeline.producer acquire();

// Submit async copies to the pipeline's head stage to be

// computed in the next loop iteration

cuda: :memcpy async (block, shared + shared offset[copy stage idx], global in
+ global idx, sizeof (int) * block.size(), pipeline);

// Collectively commit (advance) the pipeline's head stage

pipeline.producer commit () ;
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// Collectively wait for the operations commited to the
// previous "compute’ stage to complete:
pipeline.consumer wait();

// Computation overlapped with the memcpy async of the "copy" stage:
compute (global out + global idx, shared + shared offset[compute stage idx]);

// Collectively release the stage resources
pipeline.consumer release();

}

// Compute the data fetch by the last iteration

pipeline.consumer wait();
compute (global out + block batch (batch sz-1), shared + shared offset[ (batch sz -

1) % 21);
pipeline.consumer release();

A object is a double-ended queue with a head and a tail, and is used to process work in a
first-in first-out (FIFO) order. Producer threads commit work to the pipeline's head, while
consumer threads pull work from the pipeline’s tail. In the example above, all threads are both
producer and consumer threads. The threads first commit memcpy async operations to fetch
the next batch while they wait on the previous batch of memcpy async operations to complete.

» Committing work to a pipeline stage involves:

» Collectively acquiring the pipeline head from a set of producer threads using

pipeline.producer acquire().
»  Submitting memcpy async operations to the pipeline head.

» Collectively commiting (advancing] the pipeline head using

pipeline.producer commit ().
» Using a previously commited stage involves:

> Collectively waiting for the stage to complete, e.g., using pipeline.consumer wait ()
to wait on the tail (oldest] stage.

> Collectively releasing the stage using pipeline.consumer release().

cuda: :pipeline shared state<scope, count>encapsulates the finite resources that
allow a pipeline to process up to count concurrent stages. If all resources are in use,
pipeline.producer acquire () blocks producer threads until the resources of the next
pipeline stage are released by consumer threads.

This example can be written in a more concise manner by merging the prolog and epilog of the
loop with the loop itself as follows:

template <size t stages count = 2 /* Pipeline with stages count stages */>
__global void with staging unified(int* global out, int const* global in, size t
size, size t batch sz) {
auto grid = cooperative groups::this grid();
auto block = cooperative groups::this thread block();
assert (size == batch sz * grid.size()); // Assume input size fits batch sz *

grid size
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extern  shared  int shared[]; // stages_count * block.size() * sizeof (int)
bytes

size t shared offset[stages count];

for (int s = 0; s < stages count; ++s) shared offset[s] = s * block.size();

__shared  cuda::pipeline shared state<
cuda: :thread scope::thread scope block,
stages count
> shared state;
auto pipeline = cuda::make pipeline (block, &shared state);

auto block batch = [&] (size t batch) -> int {
return block.group index().x * block.size() + grid.size() * batch;

}i

// compute batch: next batch to process
// fetch batch: next batch to fetch from global memory
for (size_t compute batch = 0, fetch batch = 0; compute batch < batch_sz; +
+compute batch) {
// The outer loop iterates over the computation of the batches
for (; fetch batch < batch sz && fetch batch < (compute batch +
stages count); ++fetch batch) {
// This inner loop iterates over the memory transfers, making sure that
the pipeline is always full
pipeline.producer acquire();
size t shared idx = fetch batch % stages count;
size t batch idx = fetch batch;
size t block batch idx = block batch(batch idx);
cuda: :memcpy async (block, shared + shared offset[shared idx], global in
+ block batch idx, sizeof (int) * block.size(), pipeline);
pipeline.producer commit () ;
}
pipeline.consumer wait();
int shared idx = compute batch % stages count;
int batch idx = compute batch;
compute (global out + block batch(batch idx), shared +
shared offset[shared idx]);
pipeline.consumer release();

}

The pipeline<thread scope block> primitive used above is very flexible, and supports two
features that our examples above are not using: any arbitrary subset of threads in the block
can participate in the pipeline, and from the threads that participate, any subsets can be
producers, consumers, or both. In the following example, threads with an "even” thread rank
are producers, while other threads are consumers:

__device  void compute(int* global out, int shared in);

template <size t stages_count = 2>
__global void with specialized staging unified(int* global out, int const*
global in, size t size, size t batch sz) {
auto grid = cooperative groups::this grid();
auto block = cooperative groups::this thread block();

// In this example, threads with "even" thread rank are producers, while threads
with "odd" thread rank are consumers:
const cuda::pipeline role thread role
= block.thread rank() % 2 == 0? cuda::pipeline role::producer
cuda: :pipeline role::consumer;

// Each thread block only has half of its threads as producers:
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auto producer threads = block.size() / 2;

// Map adjacent even and odd threads to the same id:
const int thread idx = block.thread rank() / 2;

auto elements per batch = size / batch sz;
auto elements per batch per block = elements per batch / grid.group dim().x;

extern  shared  int shared[]; // stages count * elements per batch per block *
sizeof (int) bytes

size t shared offset[stages count];

for (int s = 0; s < stages count; ++s) shared offset[s] = s *
elements per batch per block;

__shared  cuda::pipeline shared state<
cuda: :thread scope::thread scope block,
stages count
> shared state;
cuda::pipeline pipeline = cuda::make pipeline(block, &shared state,
thread role);

// Each thread block processes ‘batch sz’ batches.
// Compute offset of the batch ‘batch’ of this thread block in global memory:
auto block batch = [&] (size t batch) -> int {

return elements per batch * batch + elements per batch per block * blockIdx.x;
i

for (size t compute batch = 0, fetch batch = 0; compute batch < batch sz; +
+compute batch) {
// The outer loop iterates over the computation of the batches
for (; fetch batch < batch sz && fetch batch < (compute batch +
stages count); ++fetch batch) {
// This inner loop iterates over the memory transfers, making sure that
the pipeline is always full
if (thread role == cuda::pipeline role::producer) {
// Only the producer threads schedule asynchronous memcpys:
pipeline.producer acquire();
size t shared idx = fetch batch % stages count;
size t batch idx = fetch batch;
size t global batch idx = block batch(batch idx) + thread idx;
size t shared batch idx = shared offset[shared idx] + thread idx;
cuda: :memcpy async (shared + shared batch idx, global in +
global batch idx, sizeof(int), pipeline);
pipeline.producer commit () ;
}
}
if (thread role == cuda::pipeline role::consumer) {
// Only the consumer threads compute:
pipeline.consumer wait();
size t shared idx = compute batch % stages count;
size t global batch idx = block batch(compute batch) + thread idx;
size t shared batch idx = shared offset[shared idx] + thread idx;
compute (global out + global batch idx, *(shared + shared batch idx)):;
pipeline.consumer release();

There are some optimizations that pipeline performs, for example, when all threads are both
producers and consumers, but in general, the cost of supporting all these features cannot be
fully eliminated. For example, pipeline stores and uses a set of barriers in shared memory
for synchronization, which is not really necessary if all threads in the block participate in the
pipeline.
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For the particular case in which all threads in the block participate in the pipeline, we can do
better than pipeline<thread scope block> by using a pipeline<thread scope thread>
combined with  syncthreads () :

template<size t stages count>
__global void with staging scope thread(int* global out, int const* global in,
size t size, size t batch sz) {
auto grid = cooperative groups::this grid();
auto block = cooperative groups::this thread block();
auto thread = cooperative groups::this thread();
assert (size == batch sz * grid.size()); // Assume input size fits batch sz *
grid size

extern _ shared  int shared[]; // stages count * block.size() * sizeof (int)
bytes

size t shared offset[stages count];

for (int s = 0; s < stages count; ++s) shared offset[s] = s * block.size();

// No pipeline::shared state needed
cuda: :pipeline<cuda::thread scope thread> pipeline = cuda::make pipeline();

auto block batch = [&] (size t batch) -> int {
return block.group index().x * block.size() + grid.size() * batch;

b

for (size_t compute batch = 0, fetch batch = 0; compute batch < batch _sz; +
+compute batch) {
for (; fetch batch < batch sz && fetch batch < (compute batch +
stages_count); ++fetch batch) {
pipeline.producer acquire();
size t shared idx = fetch batch % stages count;
size t batch idx = fetch batch;
// Each thread fetches its own data:
size t thread batch idx = block batch(batch idx) + threadIdx.x;
// The copy is performed by a single ‘thread’ and the size of the batch
is now that of a single element:
cuda: :memcpy async (thread, shared + shared offset[shared idx]
+ threadIdx.x, global in + thread batch idx, sizeof (int), pipeline);
pipeline.producer commit ();
}
pipeline.consumer wait();
block.sync(); // _ syncthreads: All memcpy async of all threads in the block
for this stage have completed here
int shared idx = compute batch % stages count;
int batch idx = compute batch;
compute (global out + block batch (batch idx), shared +
shared offset[shared idx]);
pipeline.consumer release();

}

If the compute operation only reads shared memory written to by other threads in the same
warp as the current thread,  syncwarp () suffices.

B.27.3. Pipeline Interface

The complete APl documentation for cuda: :memcpy async is provided in the libcudacxx API
documentation along with some examples.

The pipeline interface requires
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> atleast CUDA 11.0,
> atleast ISO C++ 2011 compatibility, e.g., to be compiled with -std=c++11, and
> #include <cuda/pipeline>.

For a C-like interface, when compiling without ISO C++ 2011 compatibility, see Pipeline
Primitives Interface.

B.27.4. Pipeline Primitives Interface

Pipeline primitives are a C-like interface for memcpy async functionality. The pipeline
primitives interface is available by including the <cuda_pipeline.h> header. When compiling
without ISO C++ 2011 compatibility, include the <cuda pipeline primitives.h> header.

B.27.4.1. memcpy async Primitive

void  pipeline memcpy async(void*  restrict  dst shared,
const void*  restrict src global,
size t size and align,
size t zfill=0);

> Request that the following operation be submitted for asynchronous evaluation:

size t i = 0;

for (; i < size and align - zfill; ++i) ((char*)dst shared) [1] =
((char*)src_shared) [1]; /* copy */

for (; i < size and align; ++i) ((char*)dst shared)[i] = 0; /* zero-fill */

> Requirements:

» dst_shared must be a pointer to the shared memory destination for the

memcpy_async.
» src_global must be a pointer to the global memory source for the memcpy async.
» size and align mustbe 4, 8, or 16.
> zfill <= size and align.
» size and align must be the alignment of dst shared and src_global.

> Itis arace condition for any thread to modify the source memory or observe the
destination memory prior to waiting for the memcpy async operation to complete. Between
submitting a memcpy async operation and waiting for its completion, any of the following
actions introduces a race condition:

» Loading from dst_shared.
» Storing to dst_shared or src_global.

> Applying an atomic update to dst_shared or src_global.
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B.27.4.2. Commit Primitive

void  pipeline commit () ;

»  Commit submitted memcpy async to the pipeline as the current batch.

B.27.4.3. Wait Primitive

void  pipeline wait prior(size t N);

» Let{o, 1, 2, ..., L} bethesequence of indices associated with invocations of
__pipeline commit () by a given thread.

» Wait for completion of batches at least up to and including L-N.

B.27.4.4. Arrive On Barrier Primitive

void  pipeline arrive on(_mbarrier t* bar);

> bar points to a barrier in shared memory.

» Increments the barrier arrival count by one, when all memcpy_async operations
sequenced before this call have completed, the arrival count is decremented by one and
hence the net effect on the arrival count is zero. It is user’'s responsibility to make sure that
the increment on the arrival count does not exceed mbarrier maximum count ().

B.28. Profiler Counter Function

Each multiprocessor has a set of sixteen hardware counters that an application can increment
with a single instruction by calling the  prof trigger () function.

void _ prof trigger (int counter);

increments by one per warp the per-multiprocessor hardware counter of index counter.
Counters 8 to 15 are reserved and should not be used by applications.

The value of counters 0, 1, ..., 7 can be obtained via nvprof by nvprof --events

prof trigger Oxwherexis0, 1,.., 7. All counters are reset before each kernel launch [note
that when collecting counters, kernel launches are synchronous as mentioned in Concurrent
Execution between Host and Device).
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B.29. Assertion

Assertion is only supported by devices of compute capability 2.x and higher.

void assert (int expression);

stops the kernel execution if expression is equal to zero. If the program is run within a
debugger, this triggers a breakpoint and the debugger can be used to inspect the current
state of the device. Otherwise, each thread for which expression is equal to zero prints

a message to stderr after synchronization with the host via cudabDeviceSynchronize (),
cudaStreamSynchronize (), or cudaEventSynchronize (). The format of this message is as
follows:

<filename>:<line number>:<function>:

block: [blockId.x,blockId.x,blockIdx.z],

thread: [threadIdx.x,threadIdx.y,threadIdx.z]
Assertion ‘<expression>" failed.

Any subsequent host-side synchronization calls made for the same device will return
cudaErrorAssert. No more commands can be sent to this device until cudaDeviceReset ()
Is called to reinitialize the device.

If expression is different from zero, the kernel execution is unaffected.
For example, the following program from source file test.cu

#include <assert.h>

__global  void testAssert(void)
{

int is one = 1;

int should be one = 0;

// This will have no effect
assert (is one);

// This will halt kernel execution
assert (should be one);

}

int main(int argc, char* argv[])

{
testAssert<<<l,1>>>();
cudaDeviceSynchronize () ;

return 0O;

will output:

test.cu:19: void testAssert(): block: [0,0,0], thread: [0,0,0] Assertion
"should be one” failed.

Assertions are for debugging purposes. They can affect performance and it is therefore
recommended to disable them in production code. They can be disabled at compile time by
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defining the NDEBUG preprocessor macro before including assert.h. Note that expression
should not be an expression with side effects (something like (++i > 0), for example),
otherwise disabling the assertion will affect the functionality of the code.

B.30. Trap function

A trap operation can be initiated by calling the  trap () function from any device thread.

void _ trap();

The execution of the kernel is aborted and an interrupt is raised in the host program.

B.31. Breakpoint Function

Execution of a kernel function can be suspended by calling the  brkpt () function from any
device thread.

void _ brkpt();

B.32. Formatted Output

Formatted output is only supported by devices of compute capability 2.x and higher.

int printf (const char *format([, arg, ...]);

prints formatted output from a kernel to a host-side output stream.

The in-kernel print£ () function behaves in a similar way to the standard C-library printf ()
function, and the user is referred to the host system’s manual pages for a complete
description of printf () behavior. In essence, the string passed in as format is output to

a stream on the host, with substitutions made from the argument list wherever a format
specifier is encountered. Supported format specifiers are listed below.

The printf () command is executed as any other device-side function: per-thread, and in the
context of the calling thread. From a multi-threaded kernel, this means that a straightforward
call to printf () will be executed by every thread, using that thread’s data as specified.
Multiple versions of the output string will then appear at the host stream, once for each thread
which encountered the printf ().

It is up to the programmer to limit the output to a single thread if only a single output string is
desired (see Examples for an illustrative example).

Unlike the C-standard printf (), which returns the number of characters printed, CUDA's
printf () returns the number of arguments parsed. If no arguments follow the format string,
0 is returned. If the format string is NULL, -1 is returned. If an internal error occurs, -2 is
returned.
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B.32.1. Format Specifiers

As for standard printf (), format specifiers take the form: $[flags] [width] [ .precision]
[size]type

The following fields are supported (see widely-available documentation for a complete
description of all behaviors):

» Flags: "#' ' ' 0" '+' ="

»  Width: "= '0-9"

» Precision: '0-9"

» Size:'h' '1' '11"

» Type: "$cdiouxXpeEfgGaAs"

Note that CUDA's printf () will accept any combination of flag, width, precision, size and
type, whether or not overall they form a valid format specifier. In other words, "shd” will be

accepted and printf will expect a double-precision variable in the corresponding location in the
argument list.

B.32.2. Limitations

Final formatting of the printf () output takes place on the host system. This means that the
format string must be understood by the host-system’'s compiler and C library. Every effort
has been made to ensure that the format specifiers supported by CUDA's printf function form
a universal subset from the most common host compilers, but exact behavior will be host-0S-
dependent.

As described in Format Specifiers, printf () will accept all combinations of valid flags and

types. This is because it cannot determine what will and will not be valid on the host system
where the final output is formatted. The effect of this is that output may be undefined if the

program emits a format string which contains invalid combinations.

The printf () command can accept at most 32 arguments in addition to the format string.
Additional arguments beyond this will be ignored, and the format specifier output as-is.

Owing to the differing size of the 1ong type on 64-bit Windows platforms (four bytes on 64-
bit Windows platforms, eight bytes on other 64-bit platforms), a kernel which is compiled on
a non-Windows 64-bit machine but then run on a winé4 machine will see corrupted output
for all format strings which include "$1d". It is recommended that the compilation platform
matches the execution platform to ensure safety.

The output buffer for printf () is set to a fixed size before kernel launch (see Associated
Host-Side API). It is circular and if more output is produced during kernel execution than can
fit in the buffer, older output is overwritten. It is flushed only when one of these actions is
performed:
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» Kernel launch via <<<>>> or cuLaunchKernel () (at the start of the launch, and if the
CUDA LAUNCH_BLOCKING environment variable is set to 1, at the end of the launch as
well),

» Synchronization via cudaDeviceSynchronize (), cuCtxSynchronize (),
cudaStreamSynchronize (), cuStreamSynchronize (), cudaEventSynchronize (), Or

cuEventSynchronize (),
» Memory copies via any blocking version of cudaMemcpy* () Or cuMemcpy* (),
» Module loading/unloading via cuModuleLoad () Or cuModuleUnload (),
» Context destruction via cudaDeviceReset () Or cuCtxDestroy ().

» Prior to executing a stream callback added by cudastreamaddCallback or
cuStreamAddCallback

Note that the buffer is not flushed automatically when the program exits. The user must call
cudaDeviceReset () or cuCtxDestroy () explicitly, as shown in the examples below.

Internally printf () uses a shared data structure and so it is possible that calling printf ()
might change the order of execution of threads. In particular, a thread which calls printf ()
might take a longer execution path than one which does not call printf (), and that path
length is dependent upon the parameters of the printf£ (). Note, however, that CUDA makes
no guarantees of thread execution order except at explicit  syncthreads () barriers, so

it is impossible to tell whether execution order has been modified by printf () or by other
scheduling behavior in the hardware.

B.32.3. Associated Host-Side API

The following API functions get and set the size of the buffer used to transfer the print£ ()
arguments and internal metadata to the host (default is 1 megabyte):

» cudaDeviceGetLimit (size t* size,cudalimitPrintfFifoSize)

» cudaDeviceSetLimit (cudalLimitPrintfFifoSize, size t size)

B.32.4. Examples

The following code sample:

#include <stdio.h>

__global  void helloCUDA (float f)
{

printf ("Hello thread %d, f=%f\n", threadIldx.x, f);
}

int main ()

{
helloCUDA<<<1, 5>>>(1.2345f);
cudaDeviceSynchronize () ;
return 0;
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}

will output:

Hello thread 2, f=1.2345
Hello thread 1, f=1.2345
Hello thread 4, f=1.2345
Hello thread 0, f=1.2345
Hello thread 3, f=1.2345

Notice how each thread encounters the printf () command, so there are as many lines of
output as there were threads launched in the grid. As expected, global values [i.e., float f]
are common between all threads, and local values [i.e., threadIdx.x] are distinct per-thread.

The following code sample:

#include <stdio.h>

__global  void helloCUDA (float f)
{
if (threadIdx.x == 0)
printf ("Hello thread %d, f=%f\n", threadIdx.x, f) ;
}

int main ()

{
helloCUDA<<<1, 5>>>(1.2345f);
cudaDeviceSynchronize () ;
return 0;

}

will output:

Hello thread 0, f£=1.2345

Self-evidently, the i £ () statement limits which threads will call print£, so that only a single
line of output is seen.

B.33. Dynamic Global Memory Allocation
and Operations

Dynamic global memory allocation and operations are only supported by devices of compute
capability 2.x and higher.

__host ~ device void* malloc(size t size);
__device void * nv_aligned device malloc(size t size, size t align);
__host ~ device  void free(void* ptr);

allocate and free memory dynamically from a fixed-size heap in global memory.

__host ~ device  void* memcpy(void* dest, const void* src, size t size);
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copy size bytes from the memory location pointed by src to the memory location pointed by
dest.

__host ~ device void* memset (void* ptr, int value, size t size);

set size bytes of memory block pointed by ptr to value (interpreted as an unsigned char).

The CUDA in-kernelmalloc () function allocates at least size bytes from the device heap
and returns a pointer to the allocated memory or NULL if insufficient memory exists to fulfill
the request. The returned pointer is guaranteed to be aligned to a 16-byte boundary.

The CUDA in-kernel  nv aligned device malloc() function allocates at least size bytes
from the device heap and returns a pointer to the allocated memory or NULL if insufficient
memory exists to fulfill the requested size or alignment. The address of the allocated memory
will be a multiple of align. align must be a non-zero power of 2.

The CUDA in-kernel free () function deallocates the memory pointed to by ptr, which must
have been returned by a previous call tomalloc() or nv aligned device malloc (). If
ptris NULL, the call to free () isignored. Repeated calls to free () with the same ptr has
undefined behavior.

The memory allocated by a given CUDA thread viamalloc () or

_ nv_aligned device malloc () remains allocated for the lifetime of the CUDA context, or
until it is explicitly released by a call to free (). It can be used by any other CUDA threads even
from subsequent kernel launches. Any CUDA thread may free memory allocated by another
thread, but care should be taken to ensure that the same pointer is not freed more than once.

B.33.1. Heap Memory Allocation

The device memory heap has a fixed size that must be specified before any program
usingmalloc (), nv aligned device malloc() or free () Is loaded into the
context. A default heap of eight megabytes is allocated if any program uses malloc () or
_ nv_aligned device malloc () without explicitly specifying the heap size.

The following API functions get and set the heap size:
> cudaDeviceGetLimit (size t* size, cudalimitMallocHeapSize)
» cudaDeviceSetLimit (cudaLimitMallocHeapSize, size t size)

The heap size granted will be at least size bytes. cuCtxGetLimit ()and
cudaDeviceGetLimit () return the currently requested heap size.

The actual memory allocation for the heap occurs when a module is loaded into the context,
either explicitly via the CUDA driver API [see Module), or implicitly via the CUDA runtime
API [see CUDA Runtime). If the memory allocation fails, the module load will generate a
CUDA ERROR SHARED OBJECT INIT FAILED error.

Heap size cannot be changed once a module load has occurred and it does not resize
dynamically according to need.
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Memory reserved for the device heap is in addition to memory allocated through host-side
CUDA API calls such as cudaMalloc ().

B.33.2. Interoperability with Host Memory API

Memory allocated via device malloc () or nv aligned device malloc () cannot be freed
using the runtime [i.e., by calling any of the free memory functions from Device Memory).

Similarly, memory allocated via the runtime [i.e., by calling any of the memory allocation
functions from Device Memory) cannot be freed via free ().

In addition, memory allocated by a call tomalloc() or nv aligned device malloc () In
device code cannot be used in any runtime or driver API calls (i.e. cudaMemcpy, cudaMemset,
etc).

B.33.3. Examples

B.33.3.1. Per Thread Allocation

The following code sample:

#include <stdlib.h>
#include <stdio.h>

__global  void mallocTest ()
{
size t size = 123;
char* ptr = (char*)malloc (size);
memset (ptr, 0, size);
printf ("Thread %d got pointer: %p\n", threadIdx.x, ptr);
free (ptr);

int main ()

// Set a heap size of 128 megabytes. Note that this must

// be done before any kernel is launched.
cudaDeviceSetLimit (cudalimitMallocHeapSize, 128*1024*1024);
mallocTest<<<l, 5>>>();

cudaDeviceSynchronize () ;

return 0;

}

will output:

Thread 0 got pointer: 00057020
Thread 1 got pointer: 0005708c
Thread 2 got pointer: 000570£8
Thread 3 got pointer: 00057164
Thread 4 got pointer: 000571d0

Notice how each thread encounters the malloc () and memset () commands and so receives
and initializes its own allocation. (Exact pointer values will vary: these are illustrative.)
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#include <stdlib.h>

__global  void mallocTest ()
{

__shared  int* data;
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// The first thread in the block does the allocation and then
// shares the pointer with all other threads through shared memory,

// so that access can easily be coalesced.
// 64 bytes per thread are allocated.

if (threadIdx.x == 0) {
size t size = blockDim.x * 64;
data = (int*)malloc(size);

}

__syncthreads() ;

// Check for failure
if (data == NULL)
return;

// Threads index into the memory, ensuring coalescence
int* ptr = data;
for (int 1 = 0; i < 64; ++1i)

ptr[i * blockDim.x + threadIdx.x] = threadIdx.x;

// Ensure all threads complete before freeing
__syncthreads() ;

// Only one thread may free the memory!

if (threadIdx.x == 0)
free (data) ;

int main ()

cudaDeviceSetLimit (cudalimitMallocHeapSize, 128*1024*1024);

mallocTest<<<10, 128>>>();
cudaDeviceSynchronize () ;
return 0;

B.33.3.3. Allocation Persisting Between Kernel Launches

#include <stdlib.h>
#include <stdio.h>

#define NUM _BLOCKS 20

__device  int* dataptr[NUM BLOCKS]; // Per-block pointer
__global void allocmem()

{

// Only the first thread in the block does the allocation
// since we want only one allocation per block.

if (threadIdx.x == 0)
dataptr[blockIdx.x] = (int*)malloc(blockDim.x * 4);
__syncthreads() ;

// Check for failure
if (dataptr[blockIdx.x] == NULL)
return;
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// Zero the data with all threads in parallel
dataptr[blockIdx.x] [threadIdx.x] = 0;
}

// Simple example: store thread ID into each element
__global void usemem()
{
int* ptr = dataptr[blockIdx.x];
if (ptr != NULL)
ptr[threadIdx.x] += threadIdx.x;
}

// Print the content of the buffer before freeing it
~ _global void freemem()

{
int* ptr = dataptr[blockIdx.x];
if (ptr != NULL)
printf ("Block %d, Thread %d: final value = %d\n",
blockIdx.x, threadIdx.x, ptr[threadIdx.x]):;

// Only free from one thread!
if (threadIdx.x == 0)
free (ptr);
}

int main ()

{
cudaDeviceSetLimit (cudalimitMallocHeapSize, 128*1024*1024);

// Allocate memory
allocmem<<< NUM BLOCKS, 10 >>>();

// Use memory

usemem<<< NUM BLOCKS, 10 >>>();
usemem<<< NUM BLOCKS, 10 >>>();
usemem<<< NUM BLOCKS, 10 >>>();

// Free memory
freemem<<< NUM BLOCKS, 10 >>>();

cudaDeviceSynchronize () ;

return 0;

B.34. Execution Configuration

Any calltoa global function must specify the execution configuration for that call. The
execution configuration defines the dimension of the grid and blocks that will be used to
execute the function on the device, as well as the associated stream (see CUDA Runtime for a
description of streams].

The execution configuration is specified by inserting an expression of the form <<< Dg, Db,
Ns, S >>>between the function name and the parenthesized argument list, where:

» Dgis of type dim3 (see dim3) and specifies the dimension and size of the grid, such that
Dg.x * Dg.y * Dg.z equals the number of blocks being launched;
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» Db is of type dim3 (see dim3) and specifies the dimension and size of each block, such that
Db.x * Db.y * Db.z equalsthe number of threads per block;

> Nsis of type size t and specifies the number of bytes in shared memory that is
dynamically allocated per block for this call in addition to the statically allocated memory;
this dynamically allocated memory is used by any of the variables declared as an external
array as mentioned in __shared__; Ns is an optional argument which defaults to 0;

> Sisof type cudaStream t and specifies the associated stream; S is an optional argument
which defaults to 0.

As an example, a function declared as

__global  void Func(float* parameter);

must be called like this:

Func<<< Dg, Db, Ns >>>(parameter);

The arguments to the execution configuration are evaluated before the actual function
arguments.

The function call will fail if bg or Db are greater than the maximum sizes allowed for the device
as specified in Compute Capabilities, or if Ns is greater than the maximum amount of shared
memory available on the device, minus the amount of shared memory required for static
allocation.

B.35. Launch Bounds

As discussed in detail in Multiprocessor Level, the fewer registers a kernel uses, the more
threads and thread blocks are likely to reside on a multiprocessor, which can improve
performance.

Therefore, the compiler uses heuristics to minimize register usage while keeping register
spilling (see Device Memory Accesses) and instruction count to a minimum. An application can
optionally aid these heuristics by providing additional information to the compiler in the form
of launch bounds that are specified using the  launch bounds__ () qualifier in the definition
ofa global function:

global  void

__launch bounds (maxThreadsPerBlock, minBlocksPerMultiprocessor)
MyKernel (...)

{

}

» maxThreadsPerBlock specifies the maximum number of threads per block with which the
application will ever launch MyKernel () ; it compiles to the .maxntid PTX directive;
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» minBlocksPerMultiprocessor is optional and specifies the desired minimum number of
resident blocks per multiprocessor; it compiles to the .minnctapersm PTX directive.

If launch bounds are specified, the compiler first derives from them the upper limit L on the
number of registers the kernel should use to ensure that minBlocksPerMultiprocessor
blocks (or a single block if minBlocksPerMultiprocessor is not specified) of
maxThreadsPerBlock threads can reside on the multiprocessor (see Hardware
Multithreading for the relationship between the number of registers used by a kernel and the
number of registers allocated per block). The compiler then optimizes register usage in the
following way:

» If the initial register usage is higher than L, the compiler reduces it further until it
becomes less or equal to L, usually at the expense of more local memory usage and/or
higher number of instructions;

» If the initial register usage is lower than L

> |f maxThreadsPerBlock is specified and minBlocksPerMultiprocessor is not, the
compiler uses maxThreadsPerBlock to determine the register usage thresholds for
the transitions between n and n+1 resident blocks [i.e., when using one less register
makes room for an additional resident block as in the example of Multiprocessor Level)
and then applies similar heuristics as when no launch bounds are specified;

> |f both minBlocksPerMultiprocessor and maxThreadsPerBlock are Specified,
the compiler may increase register usage as high as L to reduce the number of
instructions and better hide single thread instruction latency.

A kernel will fail to launch if it is executed with more threads per block than its launch bound

maxThreadsPerBlock.

Per thread resources required by a CUDA kernel might limit the maximum block size

in an unwanted way. In order to maintain forward compatibility to future hardware and
toolkits and to ensure that at least one thread block can run on an SM, developers should
include the single argument  launch bounds (maxThreadsPerBlock) which specifies
the largest block size that the kernel will be launched with. Failure to do so could lead to
“too many resources requested for launch” errors. Providing the two argument version of
__launch bounds  (maxThreadsPerBlock,minBlocksPerMultiprocessor) can improve
performance in some cases. The right value for minBlocksPerMultiprocessor should be
determined using a detailed per kernel analysis.

Optimal launch bounds for a given kernel will usually differ across major architecture
revisions. The sample code below shows how this is typically handled in device code using the
__CUDA_ARCH _ macro introduced in Application Compatibility

#define THREADS PER BLOCK 256

#if  CUDA ARCH _ >= 200
#define MY KERNEL MAX THREADS (2 * THREADS PER BLOCK)
#define MY KERNEL MIN BLOCKS 3

#else
#define MY KERNEL MAX THREADS THREADS PER BLOCK
#define MY KERNEL MIN BLOCKS 2
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#endif

// Device code

__global  wvoid

__launch bounds (MY KERNEL MAX THREADS, MY KERNEL MIN BLOCKS)
MyKernel (...)

{

}

In the common case where MyKernel is invoked with the maximum number of threads
per block [specified as the first parameter of  launch bounds ()], it is tempting to use
MY KERNEL MAX THREADS as the number of threads per block in the execution configuration:

// Host code
MyKernel<<<blocksPerGrid, MY KERNEL MAX THREADS>>>(...);

This will not work however since  CUDA ARCH is undefined in host code as mentioned

in Application Compatibility, so MyKernel will launch with 256 threads per block even when

_ CUDA ARCH__ Is greater or equal to 200. Instead the number of threads per block should be
determined:

» Either at compile time using a macro that does not depend on  CUDA ARCH |, for
example

// Host code
MyKernel<<<blocksPerGrid, THREADS PER BLOCK>>>(...);

» Or at runtime based on the compute capability

// Host code
cudaGetDeviceProperties (&deviceProp, device);
int threadsPerBlock =
(deviceProp.major >= 2 ?
2 % THREADS PER BLOCK : THREADS PER BLOCK) ;
MyKernel<<<blocksPerGrid, threadsPerBlock>>>(...);

Register usage is reported by the --ptxas-options=-v compiler option. The number of
resident blocks can be derived from the occupancy reported by the CUDA profiler (see Device
Memory Accessesfor a definition of occupancy).

Register usage can also be controlled forall _ global functions in a file using the
maxrregcount compiler option. The value of maxrregcount is ignored for functions with
launch bounds.

B.36. #pragma unroll

By default, the compiler unrolls small loops with a known trip count. The #pragma unroll
directive however can be used to control unrolling of any given loop. It must be placed
immediately before the loop and only applies to that loop. It is optionally followed by an
integral constant expression (ICE)"™. If the ICE is absent, the loop will be completely unrolled

13 See the C++ Standard for definition of integral constant expression.
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if its trip count is constant. If the ICE evaluates to 1, the compiler will not unroll the loop. The
pragma will be ignored if the ICE evaluates to a non-positive integer or to an integer greater
than the maximum value representable by the int data type.

Examples:

struct S1 t { static const int value = 4; };
template <int X, typename T2>
__device  void foo(int *pl, int *p2) {

// no argument specified, loop will be completely unrolled
#pragma unroll
for (int i = 0; 1 < 12; ++1i)
plli] += p2[i]*2;
// unroll value = 8
#pragma unroll (X+1)
for (int 1 = 0; 1 < 12; ++1)
plli] += p2[i]*4;
// unroll value = 1, loop unrolling disabled
#pragma unroll 1
for (int 1 = 0; 1 < 12; ++1)
plli] += p2[i]*8;
// unroll value = 4
#pragma unroll (T2::value)
for (int 1 = 0; 1 < 12; ++1)
pl[i] += p2[i]*16;
}
__global  wvoid bar(int *pl, int *p2) {
foo<7, S1_t>(pl, p2);
}

B.37. SIMD Video Instructions

PTX ISA version 3.0 includes SIMD (Single Instruction, Multiple Data) video instructions which
operate on pairs of 16-bit values and quads of 8-bit values. These are available on devices of
compute capability 3.0.

The SIMD video instructions are:
» vadd?, vadd4

> vsub?, vsub4

> vavrg2, vavrg4

> vabsdiff2, vabsdiff4

> vminZ, vmin

> vmaxZ, vmaxa

> vset?, vsets
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PTX instructions, such as the SIMD video instructions, can be included in CUDA programs by
way of the assembler, asm (), statement.

The basic syntax of an asm () statement is:

asm("template-string" : "constraint" (output) : "constraint" (input)"));

An example of using the vabsdiff4 PTX instruction is:

asm("vabsdiff4.u32.u32.u32.add" " %0, %1, %2, %3;": "=r" (result):"r" (A), "r"
(B), "r" (C));

This uses the vabsdiff4 instruction to compute an integer quad byte SIMD sum of absolute

differences. The absolute difference value is computed for each byte of the unsigned integers
A and B in SIMD fashion. The optional accumulate operation (.add) is specified to sum these

differences.

Refer to the document "Using Inline PTX Assembly in CUDA" for details on using the assembly
statement in your code. Refer to the PTX ISA documentation ("Parallel Thread Execution ISA
Version 3.0" for example] for details on the PTX instructions for the version of PTX that you are
using.

B.38. Diagnostic Pragmas

The following pragmas may be used to control the error severity used when a given diagnostic
message is issued.

#pragma nv_diag suppress

#pragma nv_diag warning

#pragma nv_diag error

#pragma nv_diag default
#pragma nv_diag once

Uses of these pragmas have the following form:

#pragma nv_diag xxx error number, error number ...

The diagnostic affected is specified using an error number showed in a warning message.
Any diagnostic may be overridden to be an error, but only warnings may have their

severity suppressed or be restored to a warning after being promoted to an error. The
nv_diag default pragma is used to return the severity of a diagnostic to the one that was in
effect before any pragmas were issued [i.e., the normal severity of the message as modified
by any command-Lline options). The following example suppresses the "declared but never
referenced" warning on the declaration of foo:

#pragma nv_diag suppress 177

void foo ()
{
int 1=0;
}
#pragma nv_diag default 177
void bar ()
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{
int 1i=0;

}

The following pragmas may be used to save and restore the current diagnostic pragma state:

#pragma nv_diagnostic push
#pragma nv_diagnostic pop

Examples:

#pragma nv_diagnostic push
#pragma nv_diag suppress 177
void foo()
{

int i=0;
}
#pragma nv_diagnostic pop
void bar ()

{
int 1i=0;

}

Note that the pragmas only affect the nvcc CUDA frontend compiler; they have no effect on the
host compiler.

Note: NVCC also implements diagnostic pragmas without nv_ prefix, for example, #pragma
diag suppress, but they are deprecated and will be removed from future releases, using
these diagnostic pragmas will be warned with messages like this:

pragma "diag suppress" is deprecated, use "nv diag suppress" instead
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C.1. Introduction

Cooperative Groups is an extension to the CUDA programming model, introduced in CUDA 9,
for organizing groups of communicating threads. Cooperative Groups allows developers to
express the granularity at which threads are communicating, helping them to express richer,
more efficient parallel decompositions.

Historically, the CUDA programming model has provided a single, simple construct for
synchronizing cooperating threads: a barrier across all threads of a thread block, as
implemented with the  syncthreads () intrinsic function. However, programmers would
like to define and synchronize groups of threads at other granularities to enable greater
performance, design flexibility, and software reuse in the form of “collective” group-wide
function interfaces. In an effort to express broader patterns of parallel interaction, many
performance-oriented programmers have resorted to writing their own ad hoc and unsafe
primitives for synchronizing threads within a single warp, or across sets of thread blocks
running on a single GPU. Whilst the performance improvements achieved have often been
valuable, this has resulted in an ever-growing collection of brittle code that is expensive
to write, tune, and maintain over time and across GPU generations. Cooperative Groups
addresses this by providing a safe and future-proof mechanism to enable performant code.

C.2.  What's New in Cooperative Groups
C.2.1. CUDA11.7

» Asynchronous variants of reduce and update variants of inclusive_scan and exclusive_scan
are now available in experimental namespace.

C.2.2. CUDA11.6

» To keep names of functions enumerating threads in groups more consistent, size,
block dimand grid dimare now considered legacy aliases. num threads, dim threads
and dim blocks were introduced as a replacement.
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C.23. CUDA11.5

» New collectives for thread block tiles and coalesced groups: exclusive scan and
inclusive scan.

C.2.4. CUDA11.3

» multi grid group is now deprecated.

C.2.5. CUDA11.1

» tiled partition and thread block tile supporting sizes larger than 32 were
introduced in the experimental namespace.

C.2.6. CUDA11.0

» Separate compilation is no longer required to use the grid-scoped group and
synchronizing this group is now up to 30% faster. Additionally we've enabled cooperative
launches on latest Windows platforms, and added support for them when running under
MPS.

» grid group is now convertible to thread group.
» New collectives for thread block tiles and coalesced groups: reduce and memcpy_async.

» New partition operations for thread block tiles and coalesced groups: labeled partition
and binary partition.

» New APls, meta group rank andmeta group size which provide information about the
partitioning that led to the creation of this group.

» Thread block tiles can now have their pa