NVIDIA.

Tuning CUDA Applications for Hopper

Application Note

DA-11076-001_v12.0 December 2022

Table of Contents

Chapter 1. NVIDIA Hopper Tuning GUIAe.......coiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeee e 1
1.7, NVIDIA Hopper GPU ArChiteCtUNe. ..o it 1
1.2, CUDA Best PraCtiCes. ..o 1
1.3. Application CompatiBility.......ooiiii e 2
T4 NVIDIA HOPPEE TUNING ottt 2

T.4.7. Streaming MUl PrOCESSO . .o i i 2
T 1T DCCUPANCY et 2
1.4.1.2. Tensor Memory ACCELErator. ..o 2
1.4.1.3. Thread BLlock CLUSTEIS. ... 3
1.4.1.4. Improved FP32 Throughput.....ocooii 3
1.4.1.5. Dynamic Programming INStruCtioNS.........cociiiiiiiii e 3

T.4.2. MEMOTY SYSTRIM oo 4
1.4.2.1. High-Bandwidth Memory HBM3 Subsystem.........ccccoiiiii 4
1.4.2.2. Increased L2 CapacCity.. ..o 4
T.4.2.3. INUNE COMPIESSION. ...ttt 4
1.4.2.4. Unified Shared Memory/L1/Texture Cache...........ccoooiiiiiiiiieeeeeeeee e, 5

1.4.3. Fourth-Generation NVLINK. ... 5

Appendix A. Revision History

Tuning CUDA Applications for Hopper DA-11076-001_v12.0 | i

Chapter 1. NVIDIA Hopper Tuning
Guide

1.1. NVIDIA Hopper GPU Architecture

The NVIDIA® Hopper GPU architecture is NVIDIA's latest architecture for CUDA® compute
applications. The NVIDIA Hopper GPU architecture retains and extends the same CUDA
programming model provided by previous NVIDIA GPU architectures such as NVIDIA Ampere
GPU architecture and NVIDIA Turing, and applications that follow the best practices for
those architectures should typically see speedups on the NVIDIA H100 GPU without any

code changes. This guide summarizes the ways that an application can be fine-tuned to gain
additional speedups by leveraging the NVIDIA Hopper GPU architecture’s features.'

For further details on the programming features discussed in this guide, refer to the CUDA C+
+ Programming Guide.

1.2. CUDA Best Practices

The performance guidelines and best practices described in the CUDA C++ Programming
Guide and the CUDA C++ Best Practices Guide apply to all CUDA-capable GPU architectures.
Programmers must primarily focus on following those recommendations to achieve the best
performance.

The high-priority recommendations from those guides are as follows:

» Find ways to parallelize sequential code.

» Minimize data transfers between the host and the device.

» Adjust kernel launch configuration to maximize device utilization.
» Ensure that global memory accesses are coalesced.

» Minimize redundant accesses to global memory whenever possible.

! Throughout this guide, NVIDIA Volta refers to devices of compute capability 7.0, NVIDIA Turing refers to devices of compute
capability 7.5, NVIDIA Ampere GPU Architecture refers to devices of compute capability 8.x, and NVIDIA Hopper refers to devices of
compute capability 9.0.

Tuning CUDA Applications for Hopper DA-11076-001_v12.0 | 1

https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/

NVIDIA Hopper Tuning Guide

» Avoid long sequences of diverged execution by threads within the same warp.

1.3. Application Compatibility

Before addressing specific performance tuning issues covered in this guide, refer to the
Hopper Compatibility Guide for CUDA Applications to ensure that your application is compiled
in a way that is compatible with NVIDIA Hopper.

1.4. NVIDIA Hopper Tuning

1.4.1. Streaming Multiprocessor

The NVIDIA Hopper Streaming Multiprocessor (SM] provides the following improvements over
Turing and NVIDIA Ampere GPU architectures.

1.4.1.1. Occupancy

The maximum number of concurrent warps per SM remains the same as in NVIDIA Ampere
GPU architecture (that is, 64, and other factors influencing warp occupancy are:

» The register file size is 64K 32-bit registers per SM.
» The maximum number of registers per thread is 255.

» The maximum number of thread blocks per SM is 32 for devices of compute capability 9.0
(that is, H100 GPUs).

» For devices of compute capability 9.0 (H100 GPUs), shared memory capacity per SM is 228
KB, a 39% increase compared to A100’s capacity of 164 KB.

» For devices of compute capability 9.0 (H100 GPUs), the maximum shared memory per
thread block is 227 KB.

» For applications using Thread Block Clusters, it is always recommended to compute the
occupancy using cudaOccupancyMaxActiveClusters and launch cluster-based kernels
accordingly.

Overall, developers can expect similar occupancy as on NVIDIA Ampere GPU architecture
GPUs without changes to their application.

1.4.1.2. Tensor Memory Accelerator

The Hopper architecture builds on top of the asynchronous copies introduced by NVIDIA
Ampere GPU architecture and provides a more sophisticated asynchronous copy engine: the
Tensor Memory Accelerator (TMA).

TMA allows applications to transfer 1D and up to 5D tensors between global memory and
shared memory, in both directions, as well as between the shared memory regions of different
SMs in the same cluster (refer to Thread Block Clusters). Additionally, for writes from shared

Tuning CUDA Applications for Hopper DA-11076-001_v12.0 | 2

https://docs.nvidia.com/cuda/hopper-compatibility-guide/
https://docs.nvidia.com/cuda/cuda-occupancy-calculator/CUDA_Occupancy_Calculator.xls

NVIDIA Hopper Tuning Guide

memory to global memory, it allows specifying element wise reduction operations such as
add/min/max as well as bitwise and/or for most common data types.

This has several advantages:

» Avoids using registers for moving data between the different memory spaces.

» Avoids using SM instructions for moving data: a single thread can issue large data
movement instructions to the TMA unit. The whole block can then continue working on
other instructions while the data is in flight and only wait for the data to be consumed
when actually necessary.

» Enables users to write warp specialized codes, where specific warps specialize on data
movement between the different memory spaces while other warps only work on local
data within the SM.

This feature will be exposed through cuda: :memcpy async along with the cuda: :barrier
and cuda: :pipeline for synchronizing data movement.

1.4.1.3. Thread Block Clusters

NVIDIA Hopper Architecture adds a new optional level of hierarchy, Thread Block Clusters,
that allows for further possibilities when parallelizing applications. A thread block can read
from, write to, and perform atomics in shared memory of other thread blocks within its
cluster. This is known as Distributed Shared Memory. As demonstrated in the CUDA C+

+ Programming Guide, there are applications that cannot fit required data within shared
memory and must use global memory instead. Distributed shared memory can act as an
intermediate step between these two options.

Distributed Shared Memory can be used by an SM simultaneously with L2 cache accesses.
This can benefit applications that need to communicate data between SMs by utilizing the
combined bandwidth of both distributed shared memory and L2.

The maximum portable cluster size supported is 8; however, NVIDIA Hopper H100 GPU

allows for a nonportable cluster size of 16 by opting in. Launching a kernel with a nonportable
cluster size requires setting the cudaFuncAttributeNonPortableClusterSizeAllowed function
attribute. Using larger cluster sizes may reduce the maximum number of active blocks across
the GPU (refer to Occupancy).

1.4.1.4. Improved FP32 Throughput

Devices of compute capability 9.0 have 2x more FP32 operations per cycle per SM than devices
of compute capability 8.0.

1.4.1.5. Dynamic Programming Instructions

The NVIDIA Hopper architecture adds support for new instructions to accelerate dynamic
programming algorithms, such as the Smith-Waterman algorithm for sequence alignment in
bioinformatics, and algorithms in graph theory, game theory, ML, and finance problems. The
new instructions permit computation of max and min values among three operands, max and
min operations yielding predicates, combined add operation with max or min, operating on

Tuning CUDA Applications for Hopper DA-11076-001_v12.0 | 3

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#distributed-shared-memory
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#distributed-shared-memory

NVIDIA Hopper Tuning Guide

signed and unsigned 32-bit int and 16-bit short2 types, and half2. All DPX instructions with 16-
bit short types DPX instructions enable 128 operations per cycle per SM.

1.4.2. Memory System
1.4.2.1. High-Bandwidth Memory HBM3 Subsystem

The NVIDIA H100 GPU has support for HBM3 and HBM2e memory, with capacity up to 80 GB.
GPUs HBM3 memory system supports up to three TB/s memory bandwidth, a 93% increase
over the 1550 GB/s on A100.

1.4.2.2. Increased L2 Capacity

The NVIDIA Hopper architecture increases the L2 cache capacity from 40 MB in the A100 GPU
to 50 MB in the H100 GPU. Along with the increased capacity, the bandwidth of the L2 cache
to the SMs is also increased. The NVIDIA Hopper architecture allows CUDA users to control
the persistence of data in L2 cache similar to the NVIDIA Ampere GPU Architecture. For more
information on the persistence of data in L2 cache, refer to the section on managing L2 cache
in the CUDA C++ Programming Guide.

1.4.2.3. Inline Compression

The NVIDIA Hopper architecture allows CUDA compute kernels to benefit from the new

inline compression (ILC). This feature can be applied to individual memory allocation, and the
compressor automatically chooses between several possible compression algorithms, or none
if there is no suitable pattern.

In case compression can be used, this feature allows accessing global memory at significantly
higher bandwidth than global memory bandwidth, since only compressed data needs to be
transferred between global memory and SMs.

However, the feature does not allow for reducing memory footprint: since compression is

automatic, even if compression is active, the memory region will use the same footprint as
if there was no compression. This is because underlying data may be changed by the user
application and may not be compressible during the entire duration of the application.

The feature is available through the CUDA driver API. See the CUDA C++ Programming Guide
section on compressible memory:

CUmemGenericAllocationHandle allocationHandle;

CUmemAllocationProp prop = {};

memset (prop, 0, sizeof (CUmemAllocationProp));

prop->type = CU MEM ALLOCATION TYPE PINNED;

prop->location.type = CU MEM LOCATION TYPE DEVICE;
prop->location.id = currentDevice;
prop->allocFlags.compressionType = CU_MEM ALLOCATION COMP_GENERIC;
cuMemCreate (&allocationHandle, size, &prop, 0);

One can check whether compressible memory is available on the given device with:

cuDeviceGetAttribute (&compressionAvailable,
CU DEVICE ATTRIBUTE GENERIC COMPRESSION SUPPORTED, currentDevice)

Tuning CUDA Applications for Hopper DA-11076-001_v12.0 | 4

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#L2_access_intro
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#physical-memory-type-compression
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#physical-memory-type-compression

NVIDIA Hopper Tuning Guide

Note that this example code does not handle errors and compiling this code requires linking
against the CUDA library (1ibcuda.so).

1.4.2.4. Unified Shared Memory/L1/Texture Cache

The NVIDIA H100 GPU based on compute capability 9.0 increases the maximum capacity of
the combined L1 cache, texture cache, and shared memory to 256 KB, from 192 KB in NVIDIA
Ampere Architecture, an increase of 33%.

In the NVIDIA Hopper GPU architecture, the portion of the L1 cache dedicated to shared
memory (known as the carveout) can be selected at runtime as in previous architectures such
as NVIDIA Ampere Architecture and NVIDIA Volta, using cudaFuncSetAttribute () with the
attribute cudaFuncAttributePreferredSharedMemoryCarveout. The NVIDIA H100 GPU
supports shared memory capacities of 0, 8, 16, 32, 64, 100, 132, 164, 196 and 228 KB per SM.

CUDA reserves 1 KB of shared memory per thread block. Hence, the H100 GPU enables a
single thread block to address up to 227 KB of shared memory. To maintain architectural
compatibility, static shared memory allocations remain limited to 48 KB, and an explicit
opt-inis also required to enable dynamic allocations above this limit. See the CUDA C++
Programming Guide for details.

Like the NVIDIA Ampere Architecture and NVIDIA Volta GPU architectures, the NVIDIA Hopper
GPU architecture combines the functionality of the L1 and texture caches into a unified L1/
Texture cache which acts as a coalescing buffer for memory accesses, gathering up the data
requested by the threads of a warp before delivery of that data to the warp. Another benefit of
its union with shared memory, similar to previous architectures, is improvement in terms of
both latency and bandwidth.

1.4.3. Fourth-Generation NVLink

The fourth generation of NVIDIA's high-speed NVLink interconnect is implemented in H100
GPUs, which significantly enhances multi-GPU scalability, performance, and reliability with
more links per GPU, much faster communication bandwidth, and improved error-detection
and recovery features. The fourth-generation NVLink has the same bidirectional data rate of
50 GB/s per link. The total number of links available is increased to 18 in H100, compared to
12 in A100, yielding 900 GB/s bidirectional bandwidth compared to 600 GB/s for A100.

NVLink operates transparently within the existing CUDA model. Transfers between NVLink-
connected endpoints are automatically routed through NVLink, rather than PCle. The
cudaDeviceEnablePeerAccess () APl call remains necessary to enable direct transfers (over
either PCle or NVLink) between GPUs. The cudaDeviceCanAccessPeer () can be used to
determine if peer access is possible between any pair of GPUs.

Tuning CUDA Applications for Hopper DA-11076-001_v12.0 | 5

https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/

Appendix A. Revision History

Version 1.0
> Initial Public Release

» Added support for compute capability 9.0

Tuning CUDA Applications for Hopper DA-11076-001_v12.0 | 6

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA
Corporation ["NVIDIA") makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this
document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any
infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material
(defined belowl), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.
Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed
in an individual sales agreement signed by authorized representatives of NVIDIA and customer ("Terms of Sale”). NVIDIA hereby expressly objects to applying any
customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed
either directly or indirectly by this document.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may
be trademarks of the respective companies with which they are associated.

Copyright
© 2022-2022 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051 @2
https://www.nvidia.com
NVIDIA.

http://www.nvidia.com

	Table of Contents
	NVIDIA Hopper Tuning Guide
	1.1. NVIDIA Hopper GPU Architecture
	1.2. CUDA Best Practices
	1.3. Application Compatibility
	1.4. NVIDIA Hopper Tuning
	1.4.1. Streaming Multiprocessor
	1.4.1.1. Occupancy
	1.4.1.2. Tensor Memory Accelerator
	1.4.1.3. Thread Block Clusters
	1.4.1.4. Improved FP32 Throughput
	1.4.1.5. Dynamic Programming Instructions

	1.4.2. Memory System
	1.4.2.1. High-Bandwidth Memory HBM3 Subsystem
	1.4.2.2. Increased L2 Capacity
	1.4.2.3. Inline Compression
	1.4.2.4. Unified Shared Memory/L1/Texture Cache

	1.4.3. Fourth-Generation NVLink

	Revision History

