Logo
  • 1. CUDA for Tegra
  • 2. Overview
  • 3. Memory Management
  • 4. Porting Considerations
  • 5. EGL Interoperability
  • 6. CUDA Upgradable Package for Jetson
  • 7. cuDLA
cuda-for-tegra-appnote
  • »
  • Contents
  • v12.0 | PDF | Archive  

Contents

  • 1. CUDA for Tegra
  • 2. Overview
  • 3. Memory Management
    • 3.1. I/O Coherency
    • 3.2. Estimating Total Allocatable Device Memory on an Integrated GPU Device
  • 4. Porting Considerations
    • 4.1. Memory Selection
    • 4.2. Pinned Memory
    • 4.3. Effective Usage of Unified Memory on Tegra
    • 4.4. GPU Selection
    • 4.5. Synchronization Mechanism Selection
    • 4.6. CUDA Features Not Supported on Tegra
  • 5. EGL Interoperability
    • 5.1. EGLStream
      • 5.1.1. EGLStream Flow
      • 5.1.2. CUDA as Producer
      • 5.1.3. CUDA as Consumer
      • 5.1.4. Implicit Synchronization
      • 5.1.5. Data Transfer Between Producer and Consumer
      • 5.1.6. EGLStream Pipeline
    • 5.2. EGLImage
      • 5.2.1. CUDA interop with EGLImage
    • 5.3. EGLSync
      • 5.3.1. CUDA Interop with EGLSync
      • 5.3.2. Creating EGLSync from a CUDA Event
      • 5.3.3. Creating a CUDA Event from EGLSync
  • 6. CUDA Upgradable Package for Jetson
    • 6.1. Installing the CUDA Upgrade Package
      • 6.1.1. Prerequisite
      • 6.1.2. From Network Repositories or Local Installers
    • 6.2. Deployment Considerations for CUDA Upgrade Package
      • 6.2.1. Use the Right Upgrade Package
      • 6.2.2. Feature Exceptions
      • 6.2.3. Check for Compatibility Support
  • 7. cuDLA
    • 7.1. Developer Guide
      • 7.1.1. Device Model
      • 7.1.2. Loading and Querying Modules
      • 7.1.3. Memory Model
      • 7.1.4. Task Execution and Synchronization Model
      • 7.1.5. Error Reporting Model
    • 7.2. Migrating from NvMediaDla to cuDLA
    • 7.3. Profiling a cuDLA App
    • 7.4. cuDLA Release Notes

© Copyright 2018-2022, NVIDIA Corporation & Affiliates. All rights reserved. Last updated on Dec 08, 2022.