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Changes from Version 11.8

» Added section on Memory Synchronization Domains.

» Added section on Programmatic Dependent Launch and Synchronization.

» Updated CUDA dynamic parallelism with version 2. Removed support for explicit synchronization
in child kernels.

» Removed support for compute capability 3.x.

» Added support for compute capability 8.9 in Compute Capability 8.x.

» Added section on Lazy Module loading.

» Added support for CUDA graph device launch.

» Added CUDA Math functions for DPX.
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Chapter 1. The Benefits of Using GPUs

The Graphics Processing Unit (GPU)' provides much higher instruction throughput and memory band-
width than the CPU within a similar price and power envelope. Many applications leverage these higher
capabilities to run faster on the GPU than on the CPU (see GPU Applications). Other computing de-
vices, like FPGAs, are also very energy efficient, but offer much less programming flexibility than GPUs.

This difference in capabilities between the GPU and the CPU exists because they are designed with
different goals in mind. While the CPU is designed to excel at executing a sequence of operations,
called a thread, as fast as possible and can execute a few tens of these threads in parallel, the GPU
is designed to excel at executing thousands of them in parallel (amortizing the slower single-thread
performance to achieve greater throughput).

The GPU is specialized for highly parallel computations and therefore designed such that more transis-
tors are devoted to data processing rather than data caching and flow control. The schematic Figure
1 shows an example distribution of chip resources for a CPU versus a GPU.

Core Core

L1 Cache L1 Cache

Core Core

L1 Cache L1 Cache

L2 Cache

L2 Cache

L2 Cache

DRAM DRAM

CPU GPU

Fig. 1: The GPU Devotes More Transistors to Data Processing

Devoting more transistors to data processing, for example, floating-point computations, is beneficial
for highly parallel computations; the GPU can hide memory access latencies with computation, instead

! The graphics qualifier comes from the fact that when the GPU was originally created, two decades ago, it was designed as
a specialized processor to accelerate graphics rendering. Driven by the insatiable market demand for real-time, high-definition,
3D graphics, it has evolved into a general processor used for many more workloads than just graphics rendering.
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of relying on large data caches and complex flow control to avoid long memory access latencies, both
of which are expensive in terms of transistors.

In general, an application has a mix of parallel parts and sequential parts, so systems are designed with
a mix of GPUs and CPUs in order to maximize overall performance. Applications with a high degree of
parallelism can exploit this massively parallel nature of the GPU to achieve higher performance than
on the CPU.
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Chapter 2. CUDA®: A General-Purpose
Parallel Computing Platform
and Programming Model

In November 2006, NVIDIA® introduced CUDA®, a general purpose parallel computing platform and
programming model that leverages the parallel compute engine in NVIDIA GPUs to solve many complex
computational problems in a more efficient way than on a CPU.

CUDA comes with a software environment that allows developers to use C++ as a high-level program-
ming language. As illustrated by , other languages, application programming interfaces, or
directives-based approaches are supported, such as FORTRAN, DirectCompute, OpenACC.
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GPU Computing Applications

Libraries and Middleware

ali)f VSIPL

CuDNN cuBLAS MATLAB

SVM

TensorRT CURAND OpenCurrent

CUSPARSE

Mathematica

Programming Languages

e Directives
hon DirectCompute
WF;;tppers 4 (e.g. OpenACC)

CUDA-Enabled NVIDIA GPUs

NVIDIA Ampere Architecture Tesla A Series
(compute capabilities 8.x)
NVIDIA Turing Architecture GeForce 2000 Series Quadro RTX Series Tesla T Series
(compute capabilities 7.x)

NVIDIA Volta Architecture DRIVE/JETSON Quadro GV Series Tesla V Series
(compute capabilities 7.x) AGX Xavier

NVIDIA Pascal Architecture GeForce 1000 Series Quadro P Series Tesla P Series
(compute capabilities 6.x)

. * -

S PPfessional
BSkEop/Laptop Workstation

Fig. 1: GPU Computing Applications. CUDA is designed to support various languages and application
programming interfaces.
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Chapter 3. A Scalable Programming
Model

The advent of multicore CPUs and manycore GPUs means that mainstream processor chips are now
parallel systems. The challenge is to develop application software that transparently scales its paral-
lelism to leverage the increasing number of processor cores, much as 3D graphics applications trans-
parently scale their parallelism to manycore GPUs with widely varying numbers of cores.

The CUDA parallel programming model is designed to overcome this challenge while maintaining a low
learning curve for programmers familiar with standard programming languages such as C.

At its core are three key abstractions — a hierarchy of thread groups, shared memories, and barrier
synchronization —that are simply exposed to the programmer as a minimal set of language extensions.

These abstractions provide fine-grained data parallelism and thread parallelism, nested within coarse-
grained data parallelism and task parallelism. They guide the programmer to partition the problem
into coarse sub-problems that can be solved independently in parallel by blocks of threads, and each
sub-problem into finer pieces that can be solved cooperatively in parallel by all threads within the block.

This decomposition preserves language expressivity by allowing threads to cooperate when solving
each sub-problem, and at the same time enables automatic scalability. Indeed, each block of threads
can be scheduled on any of the available multiprocessors within a GPU, in any order, concurrently or
sequentially, so that a compiled CUDA program can execute on any number of multiprocessors as
illustrated by , and only the runtime system needs to know the physical multiprocessor count.

This scalable programming model allows the GPU architecture to span a wide market range by simply
scaling the number of multiprocessors and memory partitions: from the high-performance enthusiast
GeForce GPUs and professional Quadro and Tesla computing products to a variety of inexpensive,
mainstream GeForce GPUs (see for a list of all CUDA-enabled GPUs).
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Multithreaded QUDA Program

25Ms GPU with 4 5Ms

SM1 SMOD SM1 SM2

5Mz2

EERE :;
EERE

Fig. 1: Automatic Scalability

Note: A GPU is built around an array of Streaming Multiprocessors (SMs) (see Hardware Implementation for
more details). A multithreaded program is partitioned into blocks of threads that execute independently from
each other, so that a GPU with more multiprocessors will automatically execute the program in less time than a
GPU with fewer multiprocessors.
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Chapter 4. Document Structure

This document is organized into the following sections:

>

>

vV v v V. V. V. vV VY

vV v v v Y

Introduction is a general introduction to CUDA.

Programming Model outlines the CUDA programming model.

Programming Interface describes the programming interface.

Hardware Implementation describes the hardware implementation.

Performance Guidelines gives some guidance on how to achieve maximum performance.
CUDA-Enabled GPUs lists all CUDA-enabled devices.

C++ Language Extensions is a detailed description of all extensions to the C++ language.
Cooperative Groups describes synchronization primitives for various groups of CUDA threads.
CUDA Dynamic Parallelism describes how to launch and synchronize one kernel from another.
Virtual Memory Management describes how to manage the unified virtual address space.

Stream Ordered Memory Allocator describes how applications can order memory allocation and
deallocation.

Graph Memory Nodes describes how graphs can create and own memory allocations.
Mathematical Functions lists the mathematical functions supported in CUDA.

C++ Language Support lists the C++ features supported in device code.

Texture Fetching gives more details on texture fetching.

Compute Capabilities gives the technical specifications of various devices, as well as more archi-
tectural details.

Driver APl introduces the low-level driver API.
CUDA Environment Variables lists all the CUDA environment variables.

Unified Memory Programming introduces the Unified Memory programming model.
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Chapter 5. Programming Model

This chapter introduces the main concepts behind the CUDA programming model by outlining how
they are exposed in C++,

An extensive description of CUDA C++ is given in

Full code for the vector addition example used in this chapter and the next can be found in the

CUDA C++ extends C++ by allowing the programmer to define C++ functions, called kernels, that, when
called, are executed N times in parallel by N different CUDA threads, as opposed to only once like regular
C++ functions.

A kernel is defined using the __global__ declaration specifier and the number of CUDA threads that
execute that kernel for a given kernel call is specified using a new <<<. . .>>>execution configuration
syntax (see ). Each thread that executes the kernel is given a unique thread
ID that is accessible within the kernel through built-in variables.

As an illustration, the following sample code, using the built-in variable threadIdx, adds two vectors
A and B of size N and stores the result into vector C:

// Kernel definition
__global__ void VecAdd(float* A, float* B, float* C)

{
int i = threadIdx.x;
C[i] = A[i] + B[i];
}
int main()
{
// Kernel invocation with N threads
VecAdd<<<1, N>>>(A, B, C);
}

Here, each of the N threads that execute VecAdd( ) performs one pair-wise addition.

11
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For convenience, threadIdx is a 3-component vector, so that threads can be identified using a one-
dimensional, two-dimensional, or three-dimensional thread index, forming a one-dimensional, two-
dimensional, or three-dimensional block of threads, called a thread block. This provides a natural way
to invoke computation across the elements in a domain such as a vector, matrix, or volume.

The index of a thread and its thread ID relate to each other in a straightforward way: For a one-
dimensional block, they are the same; for a two-dimensional block of size (Dx, Dy), the thread ID of
a thread of index (x, y) is (x + y Dx); for a three-dimensional block of size (Dx, Dy, Dz), the thread ID of a
thread of index (x, y, z) is (x + y Dx + z Dx Dy).

As an example, the following code adds two matrices A and B of size NxN and stores the result into
matrix C:

// Kernel definition

__global__ void MatAdd(float A[N][N], float B[N][N],
float C[N][N])
{
int i = threadIdx.x;
int j = threadIdx.y;
Cl[il[j] = A[il[3] + B[il[3jl;
}
int main()
{
// Kernel invocation with one block of N * N * 1 threads
int numBlocks = 1;
dim3 threadsPerBlock(N, N);
MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
}

There is a limit to the number of threads per block, since all threads of a block are expected to reside
on the same streaming multiprocessor core and must share the limited memory resources of that
core. On current GPUs, a thread block may contain up to 1024 threads.

However, a kernel can be executed by multiple equally-shaped thread blocks, so that the total number
of threads is equal to the number of threads per block times the number of blocks.

Blocks are organized into a one-dimensional, two-dimensional, or three-dimensional grid of thread
blocks as illustrated by . The number of thread blocks in a grid is usually dictated by the size
of the data being processed, which typically exceeds the number of processors in the system.

The number of threads per block and the number of blocks per grid specified in the <<<. . .>>> syntax
can be of type int or dim3. Two-dimensional blocks or grids can be specified as in the example above.

Each block within the grid can be identified by a one-dimensional, two-dimensional, or three-
dimensional unique index accessible within the kernel through the built-in blockIdx variable. The
dimension of the thread block is accessible within the kernel through the built-in blockDim variable.

Extending the previous MatAdd() example to handle multiple blocks, the code becomes as follows.

// Kernel definition
__global__ void MatAdd(float A[N][N], float B[N][N],
float C[N][N])

(continues on next page)
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Fig. 1: Grid of Thread Blocks

(continued from previous page)

{
int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
if (i < N & j < N)
Cl[il[j] = A[il[3] + BI[il[3l;
}
int main()
{
// Kernel invocation
dim3 threadsPerBlock(16, 16);
dim3 numBlocks(N / threadsPerBlock.x, N / threadsPerBlock.y);
MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
}

A thread block size of 16x16 (256 threads), although arbitrary in this case, is a common choice. The
grid is created with enough blocks to have one thread per matrix element as before. For simplicity,
this example assumes that the number of threads per grid in each dimension is evenly divisible by the
number of threads per block in that dimension, although that need not be the case.

Thread blocks are required to execute independently: It must be possible to execute them in any order,
in parallel or in series. This independence requirement allows thread blocks to be scheduled in any order
across any number of cores as illustrated by Figure 3, enabling programmers to write code that scales
with the number of cores.

Threads within a block can cooperate by sharing data through some shared memory and by synchroniz-
ing their execution to coordinate memory accesses. More precisely, one can specify synchronization
points in the kernel by calling the __syncthreads() intrinsic function; __syncthreads() acts as a
barrier at which all threads in the block must wait before any is allowed to proceed. Shared Memory
gives an example of using shared memory. In addition to __syncthreads(), the Cooperative Groups
AP provides a rich set of thread-synchronization primitives.

For efficient cooperation, the shared memory is expected to be a low-latency memory near each pro-
cessor core (much like an L1 cache) and __syncthreads() is expected to be lightweight.
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5.2.1. Thread Block Clusters

With the introduction of NVIDIA Compute Capability 9.0, the CUDA programming model introduces
an optional level of hierarchy called Thread Block Clusters that are made up of thread blocks. Similar
to how threads in a thread block are guaranteed to be co-scheduled on a streaming multiprocessor,
thread blocks in a cluster are also guaranteed to be co-scheduled on a GPU Processing Cluster (GPC)
in the GPU.

Similar to thread blocks, clusters are also organized into a one-dimension, two-dimension, or three-
dimension as illustrated by Figure 5. The number of thread blocks in a cluster can be user-defined, and
amaximum of 8 thread blocks in a cluster is supported as a portable cluster size in CUDA. Note that on
GPU hardware or MIG configurations which are too small to support 8 multiprocessors the maximum
cluster size will be reduced accordingly. Identification of these smaller configurations, as well as of
larger configurations supporting a thread block cluster size beyond 8, is architecture-specific and can
be queried using the cudaOccupancyMaxPotentialClusterSize API.

Grid with Clusters
Thread Block Cluster Thread Block Cluster

Thread Block

Y

Thread Block

HH

Thread Block

U

Thread Block

HU

Thread Block

H

Thread Block

Y

Thread Block

HH

Thread Block

W

Fig. 2: Grid of Thread Block Clusters

Note: In a kernel launched using cluster support, the gridDim variable still denotes the size in terms
of number of thread blocks, for compatibility purposes. The rank of a block in a cluster can be found
using the Cluster Group API.

A thread block cluster can be enabled in a kernel either using a compiler time kernel attribute using
__cluster_dims__(X,Y, Z) orusing the CUDA kernel launch APl cudaLaunchKernelEx. The exam-
ple below shows how to launch a cluster using compiler time kernel attribute. The cluster size using
kernel attribute is fixed at compile time and then the kernel can be launched using the classical <<<
, >>>.If a kernel uses compile-time cluster size, the cluster size cannot be modified when launching
the kernel.

// Kernel definition

// Compile time cluster size 2 in X-dimension and 1 in Y and Z dimension

__global__ void __cluster_dims__(2, 1, 1) cluster_kernel(float *input, float* output)
{

}

int main()
{

(continues on next page)
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(continued from previous page)
float *input, *output;
// Kernel invocation with compile time cluster size
dim3 threadsPerBlock(16, 16);
dim3 numBlocks(N / threadsPerBlock.x, N / threadsPerBlock.y);

// The grid dimension is not affected by cluster launch, and is still enumerated
// using number of blocks.

// The grid dimension must be a multiple of cluster size.
cluster_kernel<<<numBlocks, threadsPerBlock>>>(input, output);

}

A thread block cluster size can also be set at runtime and the kernel can be launched using the CUDA
kernel launch API cudaLaunchKernelEx. The code example below shows how to launch a cluster
kernel using the extensible API.

// Kernel definition

// No compile time attribute attached to the kernel
__global__ void cluster_kernel(float *input, float* output)
{

}

int main()
{
float *input, *output;
dim3 threadsPerBlock(16, 16);
dim3 numBlocks(N / threadsPerBlock.x, N / threadsPerBlock.y);
cluster_kernel<<<numBlocks, threadsPerBlock>>>();
// Kernel invocation with runtime cluster size
{
cudalLaunchConfig_t config = {@};
// The grid dimension is not affected by cluster launch, and is still enumerated
// using number of blocks.
// The grid dimension should be a multiple of cluster size.
config.gridDim = numBlocks;
config.blockDim = threadsPerBlock;

cudalLaunchAttribute attribute[1];

attribute[0].id = cudalLaunchAttributeClusterDimension;
attribute[0].val.clusterDim.x = 2; // Cluster size in X-dimension
attribute[0].val.clusterDim.y 1;
attribute[0].val.clusterDim.z 1;
config.attrs = attribute;
config.numAttrs = 1;

cudaLaunchKernelEx(&config, cluster_kernel, input, output);
}

In GPUs with compute capability 9.0, all the thread blocks in the cluster are guaranteed to be co-
scheduled on a single GPU Processing Cluster (GPC) and allow thread blocks in the cluster to perform
hardware-supported synchronization using the Cluster Group API cluster.sync(). Cluster group
also provides member functions to query cluster group size in terms of number of threads or number
of blocks using num_threads() and num_blocks() API respectively. The rank of a thread or block in
the cluster group can be queried using dim_threads() and dim_blocks() API respectively.

Thread blocks that belong to a cluster have access to the Distributed Shared Memory. Thread blocks
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in a cluster have the ability to read, write, and perform atomics to any address in the distributed shared
memory. Distributed Shared Memory gives an example of performing histograms in distributed shared
memory.

5.3. Memory Hierarchy

CUDA threads may access data from multiple memory spaces during their execution as illustrated by
Figure 6. Each thread has private local memory. Each thread block has shared memory visible to all
threads of the block and with the same lifetime as the block. Thread blocks in a thread block cluster
can perform read, write, and atomics operations on each other’s shared memory. All threads have
access to the same global memory.

There are also two additional read-only memory spaces accessible by all threads: the constant and
texture memory spaces. The global, constant, and texture memory spaces are optimized for differ-
ent memory usages (see Device Memory Accesses). Texture memory also offers different addressing
modes, as well as data filtering, for some specific data formats (see Texture and Surface Memory).

The global, constant, and texture memory spaces are persistent across kernel launches by the same
application.

l Per thread registers and
local memory

Thread Block
Shared Memory Per block Shared memory

HH

Thread Block Cluster

Thread Block Thread Block Shared memory of all

thread blocks in a cluster
| shared Memory Shared Memory - ~ form Distributed Shared

Memory

Grid with Clusters

Thread Block Cluster Thread Block Cluster
Thread Block Thread Block Thread Block Thread Block

I Shared Memory Shared Memory I I Shared Memory Shared Memory I

Global Memory shared
between all GPU kernels

Fig. 3: Memory Hierarchy
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As illustrated by , the CUDA programming model assumes that the CUDA threads execute on
a physically separate device that operates as a coprocessor to the host running the C++ program. This
is the case, for example, when the kernels execute on a GPU and the rest of the C++ program executes
on a CPU.

The CUDA programming model also assumes that both the host and the device maintain their own sep-
arate memory spaces in DRAM, referred to as host memory and device memory, respectively. Therefore,
a program manages the global, constant, and texture memory spaces visible to kernels through calls
to the CUDA runtime (described in ). This includes device memory allocation
and deallocation as well as data transfer between host and device memory.

Unified Memory provides managed memory to bridge the host and device memory spaces. Managed
memory is accessible from all CPUs and GPUs in the system as a single, coherent memory image with
a common address space. This capability enables oversubscription of device memory and can greatly
simplify the task of porting applications by eliminating the need to explicitly mirror data on host and
device. See for an introduction to Unified Memory.

In the CUDA programming model a thread is the lowest level of abstraction for doing a computation or
a memory operation. Starting with devices based on the NVIDIA Ampere GPU architecture, the CUDA
programming model provides acceleration to memory operations via the asynchronous programming
model. The asynchronous programming model defines the behavior of asynchronous operations with
respect to CUDA threads.

The asynchronous programming model defines the behavior of for synchroniza-
tion between CUDA threads. The model also explains and defines how can be
used to move data asynchronously from global memory while computing in the GPU.

An asynchronous operation is defined as an operation that is initiated by a CUDA thread and is exe-
cuted asynchronously as-if by another thread. In a well formed program one or more CUDA threads
synchronize with the asynchronous operation. The CUDA thread that initiated the asynchronous op-
eration is not required to be among the synchronizing threads.

Such an asynchronous thread (an as-if thread) is always associated with the CUDA thread that ini-
tiated the asynchronous operation. An asynchronous operation uses a synchronization object to
synchronize the completion of the operation. Such a synchronization object can be explicitly man-
aged by a user (e.g.,, cuda: :memcpy_async) or implicitly managed within a library (e.g., coopera-
tive_groups: :memcpy_async).

A synchronization object could be a cuda: :barrier or a cuda: :pipeline. These objects are ex-
plained in detail in and . These
synchronization objects can be used at different thread scopes. A scope defines the set of threads
that may use the synchronization object to synchronize with the asynchronous operation. The follow-
ing table defines the thread scopes available in CUDA C++ and the threads that can be synchronized
with each.
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Fig. 4: Heterogeneous Programming

Note: Serial code executes on the host while parallel code executes on the device.
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Thread Scope Description

cuda: :thread_scope: :thread_scope thib E&43A thread which initiated asynchronous operations
synchronizes.

cuda: :thread_scope: :thread_sddperbdp kDA threads within the same thread block as the
initiating thread synchronizes.

cuda: :thread_scope: :thread_sddipe atenGldBA threads in the same GPU device as the initiating
thread synchronizes.

cuda: :thread_scope: :thread_sddpa_amysEEDA or CPU threads in the same system as the ini-
tiating thread synchronizes.

These thread scopes are implemented as extensions to standard C++ in the li-
brary.

The compute capability of a device is represented by a version number, also sometimes called its “SM
version”. This version number identifies the features supported by the GPU hardware and is used by
applications at runtime to determine which hardware features and/or instructions are available on the
present GPU.

The compute capability comprises a major revision number X and a minor revision number Y and is
denoted by X.

Devices with the same major revision number are of the same core architecture. The major revision
number is 9 for devices based on the NVIDIA Hopper GPU architecture, 8 for devices based on the
NVIDIA Ampere GPU architecture, 7 for devices based on the Volta architecture, 6 for devices based on
the Pascal architecture, 5 for devices based on the Maxwell architecture, and 3 for devices based on
the Kepler architecture.

The minor revision number corresponds to an incremental improvement to the core architecture, pos-
sibly including new features.

Turing is the architecture for devices of compute capability 7.5, and is an incremental update based
on the Volta architecture.

lists of all CUDA-enabled devices along with their compute capability.
gives the technical specifications of each compute capability.

Note: The compute capability version of a particular GPU should not be confused with the CUDA
version (for example, CUDA 7.5, CUDA 8, CUDA 9), which is the version of the CUDA software platform.
The CUDA platform is used by application developers to create applications that run on many genera-
tions of GPU architectures, including future GPU architectures yet to be invented. While new versions
of the CUDA platform often add native support for a new GPU architecture by supporting the com-
pute capability version of that architecture, new versions of the CUDA platform typically also include
software features that are independent of hardware generation.

The Tesla and Fermi architectures are no longer supported starting with CUDA 7.0 and CUDA 9.0, re-
spectively.
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Chapter 6. Programming Interface

CUDA C++ provides a simple path for users familiar with the C++ programming language to easily write
programs for execution by the device.

It consists of a minimal set of extensions to the C++ language and a runtime library.

The core language extensions have been introduced in . They allow programmers
to define a kernel as a C++ function and use some new syntax to specify the grid and block dimension
each time the functionis called. A complete description of all extensions can be found in

. Any source file that contains some of these extensions must be compiled with nvcc as
outlined in

The runtime is introduced in . It provides C and C++ functions that execute on the host
to allocate and deallocate device memory, transfer data between host memory and device memory,
manage systems with multiple devices, etc. A complete description of the runtime can be found in
the CUDA reference manual.

The runtime is built on top of a lower-level C API, the CUDA driver API, which is also accessible by the
application. The driver API provides an additional level of control by exposing lower-level concepts such
as CUDA contexts - the analogue of host processes for the device - and CUDA modules - the analogue
of dynamically loaded libraries for the device. Most applications do not use the driver API as they do
not need this additional level of control and when using the runtime, context and module management
are implicit, resulting in more concise code. As the runtime is interoperable with the driver API, most
applications that need some driver API features can default to use the runtime API and only use the
driver APl where needed. The driver APl is introduced in and fully described in the reference
manual.

Kernels can be written using the CUDA instruction set architecture, called PTX, which is described
in the PTX reference manual. It is however usually more effective to use a high-level programming
language such as C++. In both cases, kernels must be compiled into binary code by nvcc to execute
on the device.

nvcc is a compiler driver that simplifies the process of compiling C++ or PTX code: It provides simple
and familiar command line options and executes them by invoking the collection of tools that imple-
ment the different compilation stages. This section gives an overview of nvcc workflow and command
options. A complete description can be found in the nvcec user manual.
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Source files compiled with nvcce can include a mix of host code (i.e., code that executes on the host)
and device code (i.e., code that executes on the device). nvcc’s basic workflow consists in separating
device code from host code and then:

compiling the device code into an assembly form (PTX code) and/or binary form (cubin object),

and modifying the host code by replacing the <<<. . .>>> syntax introduced in (and de-
scribed in more details in ) by the necessary CUDA runtime function calls
to load and launch each compiled kernel from the PTX code and/or cubin object.

The modified host code is output either as C++ code that is left to be compiled using another tool or
as object code directly by letting nvcc invoke the host compiler during the last compilation stage.

Applications can then:
Either link to the compiled host code (this is the most common case),

Or ignore the modified host code (if any) and use the CUDA driver API (see ) to load and
execute the PTX code or cubin object.

Any PTX code loaded by an application at runtime is compiled further to binary code by the device
driver. This is called just-in-time compilation. Just-in-time compilation increases application load time,
but allows the application to benefit from any new compiler improvements coming with each new
device driver. It is also the only way for applications to run on devices that did not exist at the time the
application was compiled, as detailed in

When the device driver just-in-time compiles some PTX code for some application, it automatically
caches a copy of the generated binary code in order to avoid repeating the compilation in subsequent
invocations of the application. The cache - referred to as compute cache - is automatically invalidated
when the device driver is upgraded, so that applications can benefit from the improvements in the
new just-in-time compiler built into the device driver.

Environment variables are available to control just-in-time compilation as described in

As an alternative to using nvcc to compile CUDA C++ device code, NVRTC can be used to compile
CUDA C++ device code to PTX at runtime. NVRTC is a runtime compilation library for CUDA C++; more
information can be found in the NVRTC User guide.

Binary code is architecture-specific. A cubin object is generated using the compiler option -code that
specifies the targeted architecture: For example, compiling with ~-code=sm_880 produces binary code
for devices of 8.0. Binary compatibility is guaranteed from one minor revision to
the next one, but not from one minor revision to the previous one or across major revisions. In other
words, a cubin object generated for compute capability X,y will only execute on devices of compute
capability X.z where zlly.
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Note: Binary compatibility is supported only for the desktop. It is not supported for Tegra. Also, the
binary compatibility between desktop and Tegra is not supported.

Some PTX instructions are only supported on devices of higher compute capabilities. For example,

are only supported on devices of compute capability 5.0 and above. The -arch
compiler option specifies the compute capability that is assumed when compiling C++ to PTX code. So,
code that contains warp shuffle, for example, must be compiled with -arch=compute_30 (or higher).

PTX code produced for some specific compute capability can always be compiled to binary code of
greater or equal compute capability. Note that a binary compiled from an earlier PTX version may not
make use of some hardware features. For example, a binary targeting devices of compute capability
7.0 (Volta) compiled from PTX generated for compute capability 6.0 (Pascal) will not make use of Tensor
Core instructions, since these were not available on Pascal. As a result, the final binary may perform
worse than would be possible if the binary were generated using the latest version of PTX.

To execute code on devices of specific compute capability, an application must load binary or PTX
code that is compatible with this compute capability as described in and

. In particular, to be able to execute code on future architectures with higher compute
capability (for which no binary code can be generated yet), an application must load PTX code that will
be just-in-time compiled for these devices (see ).

Which PTX and binary code gets embedded in a CUDA C++ application is controlled by the -arch and
-code compiler options or the -gencode compiler option as detailed in the nvcc user manual. For
example,

nvce x.cu
-gencode arch=compute_50, code=sm_50
-gencode arch=compute_60, code=sm_60
-gencode arch=compute_70, code=\"compute_70,sm_70\"

embeds binary code compatible with compute capability 5.0 and 6.0 (first and second -gencode op-
tions) and PTX and binary code compatible with compute capability 7.0 (third -gencode option).

Host code is generated to automatically select at runtime the most appropriate code to load and
execute, which, in the above example, will be:

5.0 binary code for devices with compute capability 5.0 and 5.2,
6.0 binary code for devices with compute capability 6.0 and 6.1,
7.0 binary code for devices with compute capability 7.0 and 7.5,

PTX code which is compiled to binary code at runtime for devices with compute capability 8.0
and 8.6.

X .cu can have an optimized code path that uses warp reduction operations, for example, which are
only supported in devices of compute capability 8.0 and higher. The __CUDA_ARCH__ macro can be
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used to differentiate various code paths based on compute capability. It is only defined for device
code. When compiling with —arch=compute_86 for example, __CUDA_ARCH__ is equal to 800.

Applications using the driver APl must compile code to separate files and explicitly load and execute
the most appropriate file at runtime.

The Volta architecture introduces Independent Thread Scheduling which changes the way threads are
scheduled on the GPU. For code relying on specific behavior of in previous architec-
tures, Independent Thread Scheduling may alter the set of participating threads, leading to incorrect
results. To aid migration while implementing the corrective actions detailed in

, Volta developers can opt-in to Pascal’s thread scheduling with the compiler option com-
bination -arch=compute_60 -code=sm_70.

The nvcc user manual lists various shorthands for the -arch, -code, and -gencode compiler op-
tions. For example, -—arch=sm_70 is a shorthand for -arch=compute_70 -code=compute_70,
sm_70 (which is the same as -gencode arch=compute_70, code=\"compute_70,sm_706\").

The front end of the compiler processes CUDA source files according to C++ syntax rules. Full C++ is
supported for the host code. However, only a subset of C++ is fully supported for the device code as
described in

The 64-bit version of nvcc compiles device code in 64-bit mode (i.e., pointers are 64-bit). Device code
compiled in 64-bit mode is only supported with host code compiled in 64-bit mode.

The runtime is implemented in the cudart library, which is linked to the application, either statically
via cudart.lib or libcudart.a, or dynamically via cudart.dll or libcudart.so. Applications
that require cudart.dll and/or cudart. so for dynamic linking typically include them as part of the
application installation package. It is only safe to pass the address of CUDA runtime symbols between
components that link to the same instance of the CUDA runtime.

All its entry points are prefixed with cuda.

As mentioned in ,the CUDA programming model assumes a system com-
posed of a host and a device, each with their own separate memory. gives an overview
of the runtime functions used to manage device memory.

illustrates the use of shared memory, introduced in , to maximize
performance.

introduces page-locked host memory that is required to overlap kernel
execution with data transfers between host and device memory.

describes the concepts and API used to enable asynchronous
concurrent execution at various levels in the system.
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shows how the programming model extends to a system with multiple devices
attached to the same host.

describes how to properly check the errors generated by the runtime.
mentions the runtime functions used to manage the CUDA C++ call stack.

presents the texture and surface memory spaces that provide another
way to access device memory; they also expose a subset of the GPU texturing hardware.

introduces the various functions the runtime provides to interoperate with
the two main graphics APIs, OpenGL and Direct3D.

There is no explicit initialization function for the runtime; it initializes the first time a runtime func-
tion is called (more specifically any function other than functions from the error handling and version
management sections of the reference manual). One needs to keep this in mind when timing runtime
function calls and when interpreting the error code from the first call into the runtime.

The runtime creates a CUDA context for each device in the system (see for more details on
CUDA contexts). This context is the primary context for this device and is initialized at the first runtime
function which requires an active context on this device. It is shared among all the host threads of the
application. As part of this context creation, the device code is just-in-time compiled if necessary (see

) and loaded into device memory. This all happens transparently. If needed,
for example, for driver API interoperability, the primary context of a device can be accessed from the
driver APl as described in

When a host thread calls cudaDeviceReset (), this destroys the primary context of the device the
host thread currently operates on (i.e., the current device as defined in ). The next
runtime function call made by any host thread that has this device as current will create a new primary
context for this device.

Note: The CUDA interfaces use global state that is initialized during host program initiation and
destroyed during host program termination. The CUDA runtime and driver cannot detect if this stateis
invalid, so using any of these interfaces (implicitly or explicitly) during program initiation or termination
after main) will result in undefined behavior.

As of CUDA 12.0, cudaSetDevice( ) will now explicitly initialize the runtime after changing the current
device for the host thread. Previous versions of CUDA delayed runtime initialization on the new device
until the first runtime call was made after cudaSetDevice( ). This change means that it is now very
important to check the return value of cudaSetDevice( ) for initialization errors.

As mentioned in ,the CUDA programming model assumes a system com-
posed of a host and a device, each with their own separate memory. Kernels operate out of device
memory, so the runtime provides functions to allocate, deallocate, and copy device memory, as well
as transfer data between host memory and device memory.

Device memory can be allocated either as linear memory or as CUDA arrays.

6.2. CUDA Runtime 25


index.html#multi-device-system
index.html#error-checking
index.html#call-stack
index.html#texture-and-surface-memory
index.html#graphics-interoperability
index.html#context
index.html#just-in-time-compilation
index.html#interoperability-between-runtime-and-driver-apis
index.html#device-selection
index.html#heterogeneous-programming

CUDA C++ Programming Guide, Release 12.0

CUDA arrays are opaque memory layouts optimized for texture fetching. They are described in

Linear memory is allocated in a single unified address space, which means that separately allocated

entities can reference one another via pointers, for example, in a binary tree or linked list. The size of

the address space depends on the host system (CPU) and the compute capability of the used GPU:
Table 1: Table 1. Linear Memory Address Space

x86_64 (AMD64) | POWER (ppc64le) | ARM64

up to compute capability 5.3 (Maxwell) 40bit 40bit 40bit

compute capability 6.0 (Pascal) or newer | up to 47bit up to 49bit up to 48bit

Note: On devices of compute capability 5.3 (Maxwell) and earlier, the CUDA driver creates an un-
committed 40bit virtual address reservation to ensure that memory allocations (pointers) fall into the
supported range. This reservation appears as reserved virtual memory, but does not occupy any phys-
ical memory until the program actually allocates memory.

Linear memory is typically allocated using cudaMalloc () and freed using cudaFree( ) and data trans-
fer between host memory and device memory are typically done using cudaMemcpy (). In the vector
addition code sample of , the vectors need to be copied from host memory to device memory:

// Device code
__global__ void VecAdd(float* A, float* B, float* C, int N)

{
int i = blockDim.x * blockIdx.x + threadIdx.x;
if (i < N)
C[i] = A[i] + B[i];
}
// Host code
int main()
{

int N = ...;
size_t size = N * sizeof(float);

// Allocate input vectors h_A and h_B in host memory

float* h_A = (float*)malloc(size);
float* h_B = (float*)malloc(size);
float* h_C = (float*)malloc(size);

// Initialize input vectors

// Allocate vectors in device memory

float* d_A;
cudaMalloc(&d_A, size);
float* d_B;
cudaMalloc(&d_B, size);
float* d_C;

cudaMalloc(&d_C, size);

// Copy vectors from host memory to device memory
cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);
(continues on next page)
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cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);

// Invoke kernel
int threadsPerBlock = 256;
int blocksPerGrid =
(N + threadsPerBlock - 1) / threadsPerBlock;
VecAdd<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, N);

// Copy result from device memory to host memory
// h_C contains the result in host memory
cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);

// Free device memory
cudaFree(d_A);
cudaFree(d_B);
cudaFree(d_C);

// Free host memory

}

Linear memory can also be allocated through cudaMallocPitch() and cudaMalloc3D(). These
functions are recommended for allocations of 2D or 3D arrays as it makes sure that the allocationis ap-
propriately padded to meet the alignment requirements described in , there-
fore ensuring best performance when accessing the row addresses or performing copies between
2D arrays and other regions of device memory (using the cudaMemcpy2D() and cudaMemcpy3D()
functions). The returned pitch (or stride) must be used to access array elements. The following code
sample allocates a width x height 2D array of floating-point values and shows how to loop over the
array elements in device code:

// Host code
int width = 64, height = 64;
float* devPtr;
size_t pitch;
cudaMallocPitch(&devPtr, &pitch,
width * sizeof(float), height);
MyKernel<<<100, 512>>>(devPtr, pitch, width, height);

// Device code
__global__ void MyKernel(float* devPtr,
size_t pitch, int width, int height)

{
for (int r = 0; r < height; ++r) {
float* row = (float*)((char*)devPtr + r * pitch);
for (int ¢ = 0; c < width; ++c) {
float element = row[c];
}
}
}

The following code sample allocates a width x height x depth 3D array of floating-point values and
shows how to loop over the array elements in device code:

// Host code
int width = 64, height = 64, depth = 64;
cudaExtent extent = make_cudaExtent(width * sizeof(float),
(continues on next page)
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height, depth);
cudaPitchedPtr devPitchedPtr;
cudaMalloc3D(&devPitchedPtr, extent);
MyKernel<<<100, 512>>>(devPitchedPtr, width, height, depth);

// Device code
__global__ void MyKernel(cudaPitchedPtr devPitchedPtr,
int width, int height, int depth)

{
char* devPtr = devPitchedPtr.ptr;
size_t pitch = devPitchedPtr.pitch;
size_t slicePitch = pitch * height;
for (int z = 0; z < depth; ++z) {
char* slice = devPtr + z * slicePitch;
for (int y = 0; y < height; ++y) {
float* row = (float*)(slice + y * pitch);
for (int x = 0; x < width; ++x) {
float element = row[x];
}
}
}
}

Note: To avoid allocating too much memory and thus impacting system-wide performance, request
the allocation parameters from the user based on the problem size. If the allocation fails, you can
fallback to other slower memory types (cudaMallocHost (), cudaHostRegister(), etc.), or return
an error telling the user how much memory was needed that was denied. If your application cannot
request the allocation parameters for some reason, we recommend using cudaMallocManaged () for
platforms that support it.

The reference manual lists all the various functions used to copy memory between linear memory allo-
cated with cudaMalloc(), linear memory allocated with cudaMallocPitch() or cudaMalloc3D(),
CUDA arrays, and memory allocated for variables declared in global or constant memory space.

The following code sample illustrates various ways of accessing global variables via the runtime API:

__constant__ float constData[256];

float data[256];

cudaMemcpyToSymbol(constData, data, sizeof(data));
cudaMemcpyFromSymbol(data, constData, sizeof(data));

__device__ float devData;
float value = 3.14f;
cudaMemcpyToSymbol(devData, &value, sizeof(float));

__device__ float* devPointer;

float* ptr;

cudaMalloc(&ptr, 256 * sizeof(float));
cudaMemcpyToSymbol(devPointer, &ptr, sizeof(ptr));

cudaGetSymbolAddress() is used to retrieve the address pointing to the memory allocated for a
variable declared in global memory space. The size of the allocated memory is obtained through cud-
aGetSymbolSize().

28 Chapter 6. Programming Interface



CUDA C++ Programming Guide, Release 12.0

6.2.3. Device Memory L2 Access Management

When a CUDA kernel accesses a data region in the global memory repeatedly, such data accesses
can be considered to be persisting. On the other hand, if the data is only accessed once, such data
accesses can be considered to be streaming.

Starting with CUDA 11.0, devices of compute capability 8.0 and above have the capability to influence
persistence of datain the L2 cache, potentially providing higher bandwidth and lower latency accesses
to global memory.

L2 cache Set-Aside for Persisting Accesses

A portion of the L2 cache can be set aside to be used for persisting data accesses to global mem-
ory. Persisting accesses have prioritized use of this set-aside portion of L2 cache, whereas normal or
streaming, accesses to global memory can only utilize this portion of L2 when it is unused by persisting
accesses.

The L2 cache set-aside size for persisting accesses may be adjusted, within limits:

cudaGetDeviceProperties(&prop, device_id);

size_t size = min(int(prop.l2CacheSize * 0.75), prop.persistinglL2CacheMaxSize);
cudaDeviceSetLimit(cudaLimitPersistinglL2CacheSize, size); /* set-aside 3/4 of L2 cache
—for persisting accesses or the max allowed#*/

When the GPU is configured in Multi-Instance GPU (MIG) mode, the L2 cache set-aside functionality
is disabled.

When using the Multi-Process Service (MPS), the L2 cache set-aside size cannot be changed by cud-
aDeviceSetLimit. Instead, the set-aside size can only be specified at start up of MPS server through
the environment variable CUDA_DEVICE _DEFAULT_PERSISTING_L2_CACHE_PERCENTAGE_LIMIT.

L2 Policy for Persisting Accesses

An access policy window specifies a contiguous region of global memory and a persistence property
in the L2 cache for accesses within that region.

The code example below shows how to set an L2 persisting access window using a CUDA Stream.
CUDA Stream Example

cudaStreamAttrValue stream_attribute; //
—~Stream level attributes data structure
stream_attribute.accessPolicyWindow.base_ptr
—Global Memory data pointer

reinterpret_cast<void*>(ptr); //

stream_attribute.accessPolicyWindow.num_bytes = num_bytes; //
—Number of bytes for persistence access.

// (Must
—be less than cudaDeviceProp::accessPolicyMaxWindowSize)
stream_attribute.accessPolicyWindow.hitRatio = 0.6; // Hint
—for cache hit ratio
stream_attribute.accessPolicyWindow.hitProp = cudaAccessPropertyPersisting; // Type

—of access property on cache hit
stream_attribute.accessPolicyWindow.missProp
—of access property on cache miss.

cudaAccessPropertyStreaming; // Type

(continues on next page)
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//Set the attributes to a CUDA stream of type cudaStream_t
cudaStreamSetAttribute(stream, cudaStreamAttributeAccessPolicyWindow, &stream_
—attribute);

When a kernel subsequently executes in CUDA stream, memory accesses within the global memory
extent [ptr..ptr+num_bytes) are more likely to persist in the L2 cache than accesses to other
global memory locations.

L2 persistence can also be set for a CUDA Graph Kernel Node as shown in the example below:
CUDA GraphKernelNode Example

cudaKernelNodeAttrValue node_attribute; // Kernel
—level attributes data structure
node_attribute.accessPolicyWindow.base_ptr
—~Memory data pointer

reinterpret_cast<void*>(ptr); // Global

node_attribute.accessPolicyWindow.num_bytes = num_bytes; // Number
—of bytes for persistence access.

// (Must
—be less than cudaDeviceProp::accessPolicyMaxWindowSize)
node_attribute.accessPolicyWindow.hitRatio = 0.6; // Hint
—for cache hit ratio
node_attribute.accessPolicyWindow.hitProp = cudaAccessPropertyPersisting; // Type of
—.access property on cache hit
node_attribute.accessPolicyWindow.missProp = cudaAccessPropertyStreaming; // Type of

—.access property on cache miss.

//Set the attributes to a CUDA Graph Kernel node of type cudaGraphNode_t
cudaGraphKernelNodeSetAttribute(node, cudaKernelNodeAttributeAccessPolicyWindow, &
—node_attribute);

The hitRatio parameter can be used to specify the fraction of accesses that receive the hitProp
property. In both of the examples above, 60% of the memory accesses in the global memory region
[ptr..ptr+num_bytes) have the persisting property and 40% of the memory accesses have the
streaming property. Which specific memory accesses are classified as persisting (the hitProp) is
random with a probability of approximately hitRatio; the probability distribution depends upon the
hardware architecture and the memory extent.

For example, if the L2 set-aside cache size is 16KB and the num_bytes in the accessPolicyWindow
is 32KB:

With a hitRatio of 0.5, the hardware will select, at random, 16KB of the 32KB window to be
designated as persisting and cached in the set-aside L2 cache area.

With a hitRatio of 1.0, the hardware will attempt to cache the whole 32KB window in the set-
aside L2 cache area. Since the set-aside area is smaller than the window, cache lines will be
evicted to keep the most recently used 16KB of the 32KB data in the set-aside portion of the L2
cache.

The hitRatio can therefore be used to avoid thrashing of cache lines and overall reduce the amount
of data moved into and out of the L2 cache.

AhitRatio value below 1.0 can be used to manually control the amount of data different accessPol-
icyWindows from concurrent CUDA streams can cache in L2. For example, let the L2 set-aside cache
size be 16KB; two concurrent kernels in two different CUDA streams, each with a 16KB accessPol-
icyWindow, and both with hitRatio value 1.0, might evict each others’ cache lines when competing
for the shared L2 resource. However, if both accessPolicyWindows have a hitRatio value of 0.5, they
will be less likely to evict their own or each others’ persisting cache lines.
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L2 Access Properties

Three types of access properties are defined for different global memory data accesses:

cudaAccessPropertyStreaming: Memory accesses that occur with the streaming property
are less likely to persist in the L2 cache because these accesses are preferentially evicted.

. cudaAccessPropertyPersisting: Memory accesses that occur with the persisting property

are more likely to persist in the L2 cache because these accesses are preferentially retained in
the set-aside portion of L2 cache.

. cudaAccessPropertyNormal: This access property forcibly resets previously applied persisting

access property to a normal status. Memory accesses with the persisting property from previ-
ous CUDA kernels may be retained in L2 cache long after their intended use. This persistence-
after-use reduces the amount of L2 cache available to subsequent kernels that do not use the
persisting property. Resetting an access property window with the cudaAccessPropertyNor-
mal property removes the persisting (preferential retention) status of the prior access, as if the
prior access had been without an access property.

L2 Persistence Example

The following example shows how to set-aside L2 cache for persistent accesses, use the set-aside L2
cache in CUDA kernels via CUDA Stream and then reset the L2 cache.

cudaStream_t stream;
cudaStreamCreate(&stream);

—

// Create CUDA stream

cudaDeviceProp prop;

—

// CUDA device properties variable

cudaGetDeviceProperties( &prop, device_id);

—

// Query GPU properties

size_t size = min( int(prop.l2CacheSize * ©.75) , prop.persistingL2CacheMaxSize );
cudaDeviceSetLimit( cudaLimitPersistinglL2CacheSize, size);

—

// set-aside 3/4 of L2 cache for persisting accesses or the max allowed

size_t window_size = min(prop.accessPolicyMaxWindowSize, num_bytes);

—

// Select minimum of user defined num_bytes and max window size.

cudaStreamAttrValue stream_attribute;

—

// Stream level attributes data structure

stream_attribute.accessPolicyWindow.base_ptr = reinterpret_cast<void*>(datal);

—

// Global Memory data pointer

stream_attribute.accessPolicyWindow.num_bytes = window_size;

—

// Number of bytes for persistence access

stream_attribute.accessPolicyWindow.hitRatio = 0.6;

—

// Hint for cache hit ratio

stream_attribute.accessPolicyWindow.hitProp = cudaAccessPropertyPersisting;

—

// Persistence Property

stream_attribute.accessPolicyWindow.missProp = cudaAccessPropertyStreaming;

—

// Type of access property on cache miss

cudaStreamSetAttribute(stream, cudaStreamAttributeAccessPolicyWindow, &stream_
—attribute); // Set the attributes to a CUDA Stream

for(int i = 0; i < 10; i++) {

(continues on next page)
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cuda_kernelA<<<grid_size,block_size, 0, stream>>>(datal);

< // This datal is used by a kernel multiple times

}

N // [datal + num_bytes) benefits from L2 persistence
cuda_kernelB<<<grid_size,block_size, 0, stream>>>(datal);

. // A different kernel in the same stream can also benefit
- // from the persistence of datal

stream_attribute.accessPolicyWindow.num_bytes = 0;

o // Setting the window size to O disable it
cudaStreamSetAttribute(stream, cudaStreamAttributeAccessPolicyWindow, &stream_
—attribute); // Overwrite the access policy attribute to a CUDA Stream
cudaCtxResetPersistinglL2Cache();

s // Remove any persistent lines in L2

cuda_kernelC<<<grid_size,block_size, 0, stream>>>(data2);
. // data2 can now benefit from full L2 in normal mode

Reset L2 Access to Normal

A persisting L2 cache line from a previous CUDA kernel may persist in L2 long after it has been used.
Hence, a reset to normal for L2 cache is important for streaming or normal memory accesses to utilize
the L2 cache with normal priority. There are three ways a persisting access can be reset to normal
status.

1. Reset a previous persisting memory region with the access property, cudaAccessProper-
tyNormal.

2. Reset all persisting L2 cache lines to normal by calling cudaCtxResetPersistinglL2Cache().

3. Eventually untouched lines are automatically reset to normal. Reliance on automatic reset is
strongly discouraged because of the undetermined length of time required for automatic reset
to occur.

Manage Utilization of L2 set-aside cache

Multiple CUDA kernels executing concurrently in different CUDA streams may have a different access
policy window assigned to their streams. However, the L2 set-aside cache portion is shared among
all these concurrent CUDA kernels. As a result, the net utilization of this set-aside cache portion is
the sum of all the concurrent kernels’ individual use. The benefits of designating memory accesses as
persisting diminish as the volume of persisting accesses exceeds the set-aside L2 cache capacity.

To manage utilization of the set-aside L2 cache portion, an application must consider the following:
» Size of L2 set-aside cache.
» CUDA kernels that may concurrently execute.
» The access policy window for all the CUDA kernels that may concurrently execute.

» When and how L2 reset is required to allow normal or streaming accesses to utilize the previously
set-aside L2 cache with equal priority.
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Query L2 cache Properties

Properties related to L2 cache are a part of cudaDeviceProp struct and can be queried using CUDA
runtime API cudaGetDeviceProperties

CUDA Device Properties include:
» 12CacheSize: The amount of available L2 cache on the GPU.

» persistinglL2CacheMaxSize: The maximum amount of L2 cache that can be set-aside for per-
sisting memory accesses.

» accessPolicyMaxWindowSize: The maximum size of the access policy window.

Control L2 Cache Set-Aside Size for Persisting Memory Access

The L2 set-aside cache size for persisting memory accesses is queried using CUDA runtime API cu-
daDeviceGetLimit and set using CUDA runtime APl cudaDeviceSetLimit as a cudaLimit. The
maximum value for setting this limit is cudaDeviceProp: :persistinglL2CacheMaxSize.

enum cudalLimit {
/* other fields not shown */
cudaLimitPersistinglL2CacheSize

%

6.2.4. Shared Memory

As detailed in Variable Memory Space Specifiers shared memory is allocated using the __shared__
memory space specifier.

Shared memory is expected to be much faster than global memory as mentioned in Thread Hierarchy
and detailed in Shared Memory. It can be used as scratchpad memory (or software managed cache)
to minimize global memory accesses from a CUDA block as illustrated by the following matrix multi-
plication example.

The following code sample is a straightforward implementation of matrix multiplication that does not
take advantage of shared memory. Each thread reads one row of A and one column of B and computes
the corresponding element of C as illustrated in Figure 8. A is therefore read B.width times from global
memory and B is read A.height times.

// Matrices are stored in row-major order:
// M(row, col) = *(M.elements + row * M.width + col)
typedef struct {
int width;
int height;
float* elements;
} Matrix;

// Thread block size
#define BLOCK_SIZE 16

// Forward declaration of the matrix multiplication kernel
__global__ void MatMulKernel(const Matrix, const Matrix, Matrix);

(continues on next page)
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// Matrix multiplication - Host code
// Matrix dimensions are assumed to be multiples of BLOCK_SIZE
void MatMul(const Matrix A, const Matrix B, Matrix C)
{
// Load A and B to device memory
Matrix d_A;
d_A.width = A.width; d_A.height = A.height;
size_t size = A.width * A.height * sizeof(float);
cudaMalloc(&d_A.elements, size);
cudaMemcpy(d_A.elements, A.elements, size,
cudaMemcpyHostToDevice) ;
Matrix d_B;
d_B.width = B.width; d_B.height = B.height;
size = B.width * B.height * sizeof(float);
cudaMalloc(&d_B.elements, size);
cudaMemcpy(d_B.elements, B.elements, size,
cudaMemcpyHostToDevice) ;

// Allocate C in device memory

Matrix d_C;

d_C.width = C.width; d_C.height = C.height;
size = C.width * C.height * sizeof(float);
cudaMalloc(&d_C.elements, size);

// Invoke kernel

dim3 dimBlock (BLOCK_SIZE, BLOCK_SIZE);

dim3 dimGrid(B.width / dimBlock.x, A.height / dimBlock.y);
MatMulKernel<<<dimGrid, dimBlock>>>(d_A, d_B, d_C);

// Read C from device memory
cudaMemcpy(C.elements, d_C.elements, size,
cudaMemcpyDeviceToHost) ;

// Free device memory

cudaFree(d_A.elements);
cudaFree(d_B.elements);
cudaFree(d_C.elements);

}

// Matrix multiplication kernel called by MatMul()
__global__ void MatMulKernel(Matrix A, Matrix B, Matrix C)
{

// Each thread computes one element of C

// by accumulating results into Cvalue

float Cvalue = 0;

int row = blockIdx.y * blockDim.y + threadIdx.y;

int col = blockIdx.x * blockDim.x + threadIdx.x;

for (int e = 0; e < A.width; ++e)

Cvalue += A.elements[row * A.width + e]
* B.elements[e * B.width + coll];
C.elements[row * C.width + col] = Cvalue;

}

The following code sample is an implementation of matrix multiplication that does take advantage of
shared memory. In this implementation, each thread block is responsible for computing one square
sub-matrix Csub of C and each thread within the block is responsible for computing one element of
Csub. As illustrated in , Csub is equal to the product of two rectangular matrices: the sub-
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matrix of A of dimension (A.width, block_size) that has the same row indices as Csub, and the sub-
matrix of B of dimension (block_size, A.width )that has the same column indices as Csub. In order to fit
into the device’s resources, these two rectangular matrices are divided into as many square matrices of
dimension block_size as necessary and Csub is computed as the sum of the products of these square
matrices. Each of these products is performed by first loading the two corresponding square matrices
from global memory to shared memory with one thread loading one element of each matrix, and then
by having each thread compute one element of the product. Each thread accumulates the result of
each of these products into a register and once done writes the result to global memory.

By blocking the computation this way, we take advantage of fast shared memory and save a lot of
global memory bandwidth since A is only read (B.width / block_size) times from global memory and B
is read (A.height / block_size) times.

The Matrix type from the previous code sample is augmented with a stride field, so that sub-matrices
can be efficiently represented with the same type. _ device__ functions are used to get and set ele-
ments and build any sub-matrix from a matrix.

// Matrices are stored in row-major order:
// M(row, col) = *(M.elements + row * M.stride + col)
typedef struct {
int width;
int height;
int stride;
float* elements;
} Matrix;
// Get a matrix element
__device__ float GetElement(const Matrix A, int row, int col)

{
}

// Set a matrix element

__device__ void SetElement(Matrix A, int row, int col,
float value)

{

}
// Get the BLOCK_SIZExBLOCK_SIZE sub-matrix Asub of A that is

// located col sub-matrices to the right and row sub-matrices down
// from the upper-left corner of A
__device__ Matrix GetSubMatrix(Matrix A, int row, int col)

return A.elements[row * A.stride + col];

A.elements[row * A.stride + col] = value;

{
Matrix Asub;
Asub.width = BLOCK_SIZE;
Asub.height = BLOCK_SIZE;
Asub.stride = A.stride;
Asub.elements = &A.elements[A.stride * BLOCK_SIZE * row
+ BLOCK_SIZE * coll;
return Asub;
}

// Thread block size
#define BLOCK_SIZE 16
// Forward declaration of the matrix multiplication kernel
__global__ void MatMulKernel(const Matrix, const Matrix, Matrix);
// Matrix multiplication - Host code
// Matrix dimensions are assumed to be multiples of BLOCK_SIZE
void MatMul(const Matrix A, const Matrix B, Matrix C)
{

// Load A and B to device memory

(continues on next page)
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(continued from previous page)

Matrix d_A;

d_A.width = d_A.stride = A.width; d_A.height = A.height;

size_t size = A.width * A.height * sizeof(float);

cudaMalloc(&d_A.elements, size);

cudaMemcpy(d_A.elements, A.elements, size,
cudaMemcpyHostToDevice) ;

Matrix d_B;

d_B.width = d_B.stride = B.width; d_B.height = B.height;

size = B.width * B.height * sizeof(float);

cudaMalloc(&d_B.elements, size);

cudaMemcpy(d_B.elements, B.elements, size,

cudaMemcpyHostToDevice) ;

// Allocate C in device memory

Matrix d_C;

d_C.width = d_C.stride = C.width; d_C.height

size = C.width * C.height * sizeof(float);

cudaMalloc(&d_C.elements, size);

// Invoke kernel

dim3 dimBlock (BLOCK_SIZE, BLOCK_SIZE);

dim3 dimGrid(B.width / dimBlock.x, A.height / dimBlock.y);

MatMulKernel<<<dimGrid, dimBlock>>>(d_A, d_B, d_C);

// Read C from device memory

cudaMemcpy(C.elements, d_C.elements, size,
cudaMemcpyDeviceToHost) ;

// Free device memory

cudaFree(d_A.elements);

cudaFree(d_B.elements);

cudaFree(d_C.elements);

C.height;

// Matrix multiplication kernel called by MatMul()

{

__global__ void MatMulKernel(Matrix A, Matrix B, Matrix C)

// Block row and column
int blockRow = blockIdx.y;
int blockCol = blockIdx.x;
// Each thread block computes one sub-matrix Csub of C
Matrix Csub = GetSubMatrix(C, blockRow, blockCol);
// Each thread computes one element of Csub
// by accumulating results into Cvalue
float Cvalue = 0;
// Thread row and column within Csub
int row = threadIdx.y;
int col = threadIdx.x;
// Loop over all the sub-matrices of A and B that are
// required to compute Csub
// Multiply each pair of sub-matrices together
// and accumulate the results
for (int m = 0; m < (A.width / BLOCK_SIZE); ++m) {
// Get sub-matrix Asub of A
Matrix Asub = GetSubMatrix(A, blockRow, m);
// Get sub-matrix Bsub of B
Matrix Bsub = GetSubMatrix(B, m, blockCol);
// Shared memory used to store Asub and Bsub respectively
__shared__ float As[BLOCK_SIZE][BLOCK_SIZE];
__shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];
// Load Asub and Bsub from device memory to shared memory

(continues on next page)
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(continued from previous page)
// Each thread loads one element of each sub-matrix
As[row][col] = GetElement(Asub, row, col);
Bs[row][col] = GetElement(Bsub, row, col);
// Synchronize to make sure the sub-matrices are loaded
// before starting the computation
__syncthreads();
// Multiply Asub and Bsub together
for (int e = 0; e < BLOCK_SIZE; ++e)
Cvalue += As[row][e] * Bs[e][col];
// Synchronize to make sure that the preceding
// computation is done before loading two new
// sub-matrices of A and B in the next iteration
__syncthreads();
}

// Write Csub to device memory
// Each thread writes one element
SetElement(Csub, row, col, Cvalue);

6.2.5. Distributed Shared Memory

Thread block clusters introduced in compute capability 9.0 provide the ability for threads in a thread
block cluster to access shared memory of all the participating thread blocks in a cluster. This parti-
tioned shared memory is called Distributed Shared Memory, and the corresponding address space is
called Distributed shared memory address space. Threads that belong to a thread block cluster, can
read, write or perform atomics in the distributed address space, regardless whether the address be-
longs to the local thread block or a remote thread block. Whether a kernel uses distributed shared
memory or not, the shared memory size specifications, static or dynamic is still per thread block. The
size of distributed shared memory is just the number of thread blocks per cluster multiplied by the
size of shared memory per thread block.

Accessing data in distributed shared memory requires all the thread blocks to exist. A user can guar-
antee that all thread blocks have started executing using cluster.sync() from Cluster Group API.
User also needs to ensure that all the distributed shared memory operations are completed before a
thread block exits.

CUDA provides a mechanism to access to distributed shared memory, and applications can benefit
from leveraging its capabilities. Lets look at a simple histogram computation and how to optimize it
on the GPU using thread block cluster. A standard way of computing histograms is do the computa-
tion in the shared memory of each thread block and then perform global memory atomics. A limitation
of this approach is the shared memory capacity. Once the histogram bins no longer fit in the shared
memory, a user needs to directly compute histograms and hence the atomics in the global memory.
With distributed shared memory, CUDA provides an intermediate step, where a depending on the his-
togram bins size, histogram can be computed in shared memory, distributed shared memory or global
memory directly.

The CUDA kernel example below shows how to compute histograms in shared memory or distributed
shared memory, depending on the number of histogram bins.

#include <cooperative_groups.h>

// Distributed Shared memory histogram kernel
__global__ void clusterHist_kernel(int *bins, const int nbins, const int bins_per_
—block, const int *__restrict__ input, (continues on next page)
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Fig. 2: Matrix Multiplication with Shared Memory

6.2. CUDA Runtime 39



CUDA C++ Programming Guide, Release 12.0
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size_t array_size)

extern __shared__ int smem[];
namespace cg = cooperative_groups;
int tid = cg::this_grid().thread_rank();

// Cluster initialization, size and calculating local bin offsets.
cg::cluster_group cluster = cg::this_cluster();
unsigned int clusterBlockRank = cluster.block_rank();
int cluster_size = cluster.dim_blocks().x;
for (int i = threadIdx.x; i < bins_per_block; i += blockDim.x)
{

smem[i] = O; //Initialize shared memory histogram to zeros

}

// cluster synchronization ensures that shared memory is initialized to zero in
// all thread blocks in the cluster. It also ensures that all thread blocks

// have started executing and they exist concurrently.

cluster.sync();

for (int i = tid; i < array_size; i += blockDim.x * gridDim.x)
{
int ldata = input[i];

//Find the right histogram bin.
int binid = ldata;
if (ldata < @)
binid = ©;
else if (ldata >= nbins)
binid = nbins - 1;

//Find destination block rank and offset for computing
//distributed shared memory histogram

int dst_block_rank = (int)(binid / bins_per_block);
int dst_offset = binid % bins_per_block;

//Pointer to target block shared memory
int *dst_smem = cluster.map_shared_rank(smem, dst_block_rank);

//Perform atomic update of the histogram bin
atomicAdd(dst_smem + dst_offset, 1);
}

// cluster synchronization is required to ensure all distributed shared
// memory operations are completed and no thread block exits while

// other thread blocks are still accessing distributed shared memory
cluster.sync();

// Perform global memory histogram, using the local distributed memory histogram
int *1lbins = bins + cluster.block_rank() * bins_per_block;
for (int i = threadIdx.x; i < bins_per_block; i += blockDim.x)
{
atomicAdd(&lbins[i], smem[i]);
}
}
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The above kernel can be launched at runtime with a cluster size depending on the amount of dis-
tributed shared memory required. If histogram is small enough to fit in shared memory of just one
block, user can launch kernel with cluster size 1. The code snippet below shows how to launch a clus-
ter kernel dynamically based depending on shared memory requirements.

// Launch via extensible launch

{
cudalLaunchConfig_t config = {0};
config.gridDim = array_size / threads_per_block;
config.blockDim = threads_per_block;

// cluster_size depends on the histogram size.

// ( cluster_size == 1 ) implies no distributed shared memory, just thread block
—local shared memory

int cluster_size = 2; // size 2 is an example here

int nbins_per_block = nbins / cluster_size;

//dynamic shared memory size is per block.
//Distributed shared memory size = cluster_size * nbins_per_block * sizeof(int)
config.dynamicSmemBytes = nbins_per_block * sizeof(int);

CUDA_CHECK( : :cudaFuncSetAttribute((void *)clusterHist_kernel,
—.cudaFuncAttributeMaxDynamicSharedMemorySize, config.dynamicSmemBytes));

cudaLaunchAttribute attribute[1];

attribute[0].id = cudaLaunchAttributeClusterDimension;
attribute[0].val.clusterDim.x = cluster_size;
attribute[0].val.clusterDim.y 1;
attribute[0].val.clusterDim.z = 1;

config.numAttrs = 1;
config.attrs = attribute;

cudalLaunchKernelEx(&config, clusterHist_kernel, bins, nbins, nbins_per_block, input,
— array_size);

}

The runtime provides functions to allow the use of page-locked (also known as pinned) host memory
(as opposed to regular pageable host memory allocated by malloc()):

cudaHostAlloc () and cudaFreeHost () allocate and free page-locked host memory;

cudaHostRegister() page-locks a range of memory allocated by malloc() (see reference
manual for limitations).

Using page-locked host memory has several benefits:

Copies between page-locked host memory and device memory can be performed concurrently
with kernel execution for some devices as mentioned in

On some devices, page-locked host memory can be mapped into the address space of the device,
eliminating the need to copy it to or from device memory as detailed in

On systems with a front-side bus, bandwidth between host memory and device memory is higher
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if host memory is allocated as page-locked and even higher if in addition it is allocated as write-
combining as described in

Note: Page-locked host memory is not cached on non I/O coherent Tegra devices. Also, cuda-
HostRegister() is not supported on non I/O coherent Tegra devices.

The simple zero-copy CUDA sample comes with a detailed document on the page-locked memory APIs.

A block of page-locked memory can be used in conjunction with any device in the system (see

for more details on multi-device systems), but by default, the benefits of using page-
locked memory described above are only available in conjunction with the device that was current
when the block was allocated (and with all devices sharing the same unified address space, if any, as
described in ). To make these advantages available to all devices, the
block needs to be allocated by passing the flag cudaHostAllocPortable to cudaHostAlloc() or
page-locked by passing the flag cudaHostRegisterPortable to cudaHostRegister ().

By default page-locked host memory is allocated as cacheable. It can optionally be allocated as write-
combining instead by passing flag cudaHostAllocWriteCombined to cudaHostAlloc(). Write-
combining memory frees up the host’'s L1 and L2 cache resources, making more cache available to the
rest of the application. In addition, write-combining memory is not snooped during transfers across
the PCI Express bus, which can improve transfer performance by up to 40%.

Reading from write-combining memory from the host is prohibitively slow, so write-combining memory
should in general be used for memory that the host only writes to.

Using CPU atomic instructions on WC memory should be avoided because not all CPU implementations
guarantee that functionality.

A block of page-locked host memory can also be mapped into the address space of the device by pass-
ing flag cudaHostAllocMapped to cudaHostAlloc () or by passing flag cudaHostRegisterMapped
to cudaHostRegister (). Such a block has therefore in general two addresses: one in host memory
that is returned by cudaHostAlloc() or malloc(), and one in device memory that can be retrieved
using cudaHostGetDevicePointer () and then used to access the block from within a kernel. The
only exception is for pointers allocated with cudaHostAlloc() and when a unified address space is
used for the host and the device as mentioned in

Accessing host memory directly from within a kernel does not provide the same bandwidth as device
memory, but does have some advantages:

There is no need to allocate a block in device memory and copy data between this block and the
block in host memory; data transfers are implicitly performed as needed by the kernel;

There is no need to use streams (see ) to overlap data transfers with
kernel execution; the kernel-originated data transfers automatically overlap with kernel execu-
tion.
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Since mapped page-locked memory is shared between host and device however, the application must
synchronize memory accesses using streams or events (see ) to
avoid any potential read-after-write, write-after-read, or write-after-write hazards.

To be able to retrieve the device pointer to any mapped page-locked memory, page-locked memory
mapping must be enabled by calling cudaSetDeviceFlags () with the cudaDeviceMapHost flag be-
fore any other CUDA call is performed. Otherwise, cudaHostGetDevicePointer () will return an
error.

cudaHostGetDevicePointer () also returns an error if the device does not support mapped page-
locked host memory. Applications may query this capability by checking the canMapHostMemory de-
vice property (see ), which is equal to 1 for devices that support mapped page-
locked host memory.

Note that atomic functions (see ) operating on mapped page-locked memory are not
atomic from the point of view of the host or other devices.

Also note that CUDA runtime requires that 1-byte, 2-byte, 4-byte, and 8-byte naturally aligned loads
and stores to host memory initiated from the device are preserved as single accesses from the point
of view of the host and other devices. On some platforms, atomics to memory may be broken by
the hardware into separate load and store operations. These component load and store operations
have the same requirements on preservation of naturally aligned accesses. As an example, the CUDA
runtime does not support a PCl Express bus topology where a PCI Express bridge splits 8-byte naturally
aligned writes into two 4-byte writes between the device and the host.

Some CUDA applications may see degraded performance due to memory fence/flush operations wait-
ing on more transactions than those necessitated by the CUDA memory consistency model.

__managed__ int x = 0;
__device__ cuda::atomic
—,<int, cuda::thread_scope_
—device> a(9);

__managed__ cuda: :atomic
—.<int, cuda::thread_scope_
—system> b(0);

Thread 1 (SM) Thread 2 (SM) Thread 3 (CPU)

x =1; while (a != 1) ; while (b '= 1) ;

a=1; assert(x == 1); assert(x == 1);
b =1;

Consider the example above. The CUDA memory consistency model guarantees that the asserted
condition will be true, so the write to x from thread 1 must be visible to thread 3, before the write to
b from thread 2.

The memory ordering provided by the release and acquire of a is only sufficient to make x visible to
thread 2, not thread 3, as it is a device-scope operation. The system-scope ordering provided by release
and acquire of b, therefore, needs to ensure not only writes issued from thread 2 itself are visible to
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thread 3, but also writes from other threads that are visible to thread 2. This is known as cumulativity.
As the GPU cannot know at the time of execution which writes have been guaranteed at the source
level to be visible and which are visible only by chance timing, it must cast a conservatively wide net
for in-flight memory operations.

This sometimes leads to interference: because the GPU is waiting on memory operations it is not
required to at the source level, the fence/flush may take longer than necessary.

Note that fences may occur explicitly as intrinsics or atomics in code, like in the example, or implicitly
to implement synchronizes-with relationships at task boundaries.

A common example is when a kernel is performing computation in local GPU memory, and a parallel
kernel (e.g. from NCCL) is performing communications with a peer. Upon completion, the local ker-
nel will implicitly flush its writes to satisfy any synchronizes-with relationships to downstream work.
This may unnecessarily wait, fully or partially, on slower nvlink or PCle writes from the communication
kernel.

Beginning with Hopper architecture GPUs and CUDA 12.0, the memory synchronization domains fea-
ture provides a way to alleviate such interference. In exchange for explicit assistance from code, the
GPU can reduce the net cast by a fence operation. Each kernel launch is given a domain ID. Writes
and fences are tagged with the ID, and a fence will only order writes matching the fence’s domain. In
the concurrent compute vs communication example, the communication kernels can be placed in a
different domain.

When using domains, code must abide by the rule that ordering or synchronization between distinct
domains on the same GPU requires system-scope fencing. Within a domain, device-scope fencing
remains sufficient. This is necessary for cumulativity as one kernel’s writes will not be encompassed
by a fence issued from a kernel in another domain. In essence, cumulativity is satisfied by ensuring
that cross-domain traffic is flushed to the system scope ahead of time.

Note that this modifies the definition of thread_scope_device. However, because kernels will de-
fault to domain O as described below, backward compatibility is maintained.

Domains are accessible via the new launch attributes cudaLaunchAttributeMemSyncDomain and
cudaLaunchAttributeMemSyncDomainMap. The former selects between logical domains cud-
aLaunchMemSyncDomainDefault and cudaLaunchMemSyncDomainRemote, and the latter provides
a mapping from logical to physical domains. The remote domain is intended for kernels performing
remote memory access in order to isolate their memory traffic from local kernels. Note, however, the
selection of a particular domain does not affect what memory access a kernel may legally perform.

The domain count can be queried via device attribute cudaDevAttrMemSyncDomainCount. Hopper
has 4 domains. To facilitate portable code, domains functionality can be used on all devices and CUDA
will report a count of 1 prior to Hopper.

Having logical domains eases application composition. An individual kernel launch at a low level in the
stack, such as from NCCL, can select a semantic logical domain without concern for the surrounding
application architecture. Higher levels can steer logical domains using the mapping. The default value
for the logical domain if it is not set is the default domain, and the default mapping is to map the
default domain to 0 and the remote domain to 1 (on GPUs with more than 1 domain). Specific libraries
may tag launches with the remote domain in CUDA 12.0 and later; for example, NCCL 2.16 will do so.
Together, this provides a beneficial use pattern for common applications out of the box, with no code
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changes needed in other components, frameworks, or at application level. An alternative use pattern,
for example in an application using nvshmem or with no clear separation of kernel types, could be to
partition parallel streams. Stream A may map both logical domains to physical domain O, stream B to
1, and so on.

// Example of launching a kernel with the remote logical domain
cudalLaunchAttribute domainAttr;

domainAttr.id = cudalLaunchAttrMemSyncDomain;

domainAttr.val = cudalLaunchMemSyncDomainRemote;
cudaLaunchConfig_t config;

// Fill out other config fields

config.attrs = &domainAttr;

config.numAttrs = 1;

cudaLaunchKernelEx(&config, myKernel, kernelArgl, kernelArg2...);

// Example of setting a mapping for a stream

// (This mapping is the default for streams starting on Hopper if not

// explicitly set, and provided for illustration)

cudaLaunchAttributeValue mapAttr;

mapAttr.memSyncDomainMap.default_ = 0;

mapAttr.memSyncDomainMap.remote = 1;

cudaStreamSetAttribute(stream, cudalLaunchAttrMemSyncDomainMap, &mapAttr);

// Example of mapping different streams to different physical domains, ignoring
// logical domain settings
cudaLaunchAttributeValue mapAttr;
mapAttr.memSyncDomainMap.default_ =
mapAttr.memSyncDomainMap.remote Q;
cudaStreamSetAttribute(streamA, cuda
mapAttr.memSyncDomainMap.default_ =
mapAttr.memSyncDomainMap.remote = 1;
cudaStreamSetAttribute(streamB, cudaLaunchAttrMemSyncDomainMap, &mapAttr);

95

LaunchAttrMemSyncDomainMap, &mapAttr);
1

As with other launch attributes, these are exposed uniformly on CUDA streams, individual launches us-
ing cudaLaunchKernelEx, and kernel nodes in CUDA graphs. A typical use would set the mapping at
stream level and the logical domain at launch level (or bracketing a section of stream use) as described
above.

Both attributes are copied to graph nodes during stream capture. Graphs take both attributes from
the node itself, essentially an indirect way of specifying a physical domain. Domain-related attributes
set on the stream a graph is launched into are not used in execution of the graph.

CUDA exposes the following operations as independent tasks that can operate concurrently with one
another:

Computation on the host;

Computation on the device;

Memory transfers from the host to the device;
Memory transfers from the device to the host;

Memory transfers within the memory of a given device;
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Memory transfers among devices.

The level of concurrency achieved between these operations will depend on the feature set and com-
pute capability of the device as described below.

Concurrent host execution is facilitated through asynchronous library functions that return control
to the host thread before the device completes the requested task. Using asynchronous calls, many
device operations can be queued up together to be executed by the CUDA driver when appropriate de-
vice resources are available. This relieves the host thread of much of the responsibility to manage the
device, leaving it free for other tasks. The following device operations are asynchronous with respect
to the host:

Kernel launches;

Memory copies within a single device’s memory;

Memory copies from host to device of a memory block of 64 KB or less;
Memory copies performed by functions that are suffixed with Async;
Memory set function calls.

Programmers can globally disable asynchronicity of kernel launches for all CUDA applications running
on a system by setting the CUDA_LAUNCH_BLOCKING environment variable to 1. This feature is pro-
vided for debugging purposes only and should not be used as a way to make production software run
reliably.

Kernel launches are synchronous if hardware counters are collected via a profiler (Nsight, Visual Pro-
filer) unless concurrent kernel profiling is enabled. Async memory copies might also be synchronous
if they involve host memory that is not page-locked.

Some devices of compute capability 2.x and higher can execute multiple kernels concurrently. Appli-
cations may query this capability by checking the concurrentKernels device property (see
), which is equal to 1 for devices that support it.

The maximum number of kernel launches that a device can execute concurrently depends on its com-
pute capability and is listed in

A kernel from one CUDA context cannot execute concurrently with a kernel from another CUDA con-
text.

Kernels that use many textures or a large amount of local memory are less likely to execute concur-
rently with other kernels.
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Some devices can perform an asynchronous memory copy to or from the GPU concurrently with kernel
execution. Applications may query this capability by checking the asyncEngineCount device property
(see ), which is greater than zero for devices that support it. If host memory is
involved in the copy, it must be page-locked.

It is also possible to perform an intra-device copy simultaneously with kernel execution (on devices
that support the concurrentKernels device property) and/or with copies to or from the device (for
devices that support the asyncEngineCount property). Intra-device copies are initiated using the
standard memory copy functions with destination and source addresses residing on the same device.

Some devices of compute capability 2.x and higher can overlap copies to and from the device. Ap-
plications may query this capability by checking the asyncEngineCount device property (see

), which is equal to 2 for devices that support it. In order to be overlapped, any host
memory involved in the transfers must be page-locked.

Applications manage the concurrent operations described above through streams. A stream is a se-
quence of commands (possibly issued by different host threads) that execute in order. Different
streams, on the other hand, may execute their commands out of order with respect to one another
or concurrently; this behavior is not guaranteed and should therefore not be relied upon for correct-
ness (for example, inter-kernel communication is undefined). The commands issued on a stream may
execute when all the dependencies of the command are met. The dependencies could be previously
launched commands on same stream or dependencies from other streams. The successful completion
of synchronize call guarantees that all the commands launched are completed.

A stream is defined by creating a stream object and specifying it as the stream parameter to a se-
qguence of kernel launches and host <-> device memory copies. The following code sample creates
two streams and allocates an array hostPtr of float in page-locked memory.

cudaStream_t stream[2];

for (int 1 = 0; i < 2; ++1i)
cudaStreamCreate(&stream[i]);

float* hostPtr;

cudaMallocHost(&hostPtr, 2 * size);

Each of these streams is defined by the following code sample as a sequence of one memory copy
from host to device, one kernel launch, and one memory copy from device to host:

for (int i = 0; i < 2; ++i) {
cudaMemcpyAsync(inputDevPtr + i * size, hostPtr + i * size,
size, cudaMemcpyHostToDevice, stream[i]);
MyKernel <<<100, 512, 0, stream[i]>>>
(outputDevPtr + i * size, inputDevPtr + i * size, size);
cudaMemcpyAsync(hostPtr + i * size, outputDevPtr + i * size,
(continues on next page)
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(continued from previous page)
size, cudaMemcpyDeviceToHost, stream[i]);

}

Each stream copies its portion of input array hostPtr to array inputDevPtr in device memory, pro-
cesses inputDevPtr onthe device by calling MyKernel(), and copies the result outputDevPtr back
to the same portion of hostPtr. describes how the streams overlap in this ex-
ample depending on the capability of the device. Note that hostPtr must point to page-locked host
memory for any overlap to occur.

Streams are released by calling cudaStreamDestroy().

for (int 1 = 0; i < 2; ++1i)
cudaStreamDestroy(stream[i]);

In case the device is still doing work in the stream when cudaStreamDestroy () is called, the function
will return immediately and the resources associated with the stream will be released automatically
once the device has completed all work in the stream.

Kernel launches and host <-> device memory copies that do not specify any stream parameter, or
equivalently that set the stream parameter to zero, are issued to the default stream. They are therefore
executed in order.

For code thatis compiled using the --default-stream per-thread compilation flag (or that defines
the CUDA_API_PER_THREAD_DEFAULT_STREAM macro before including CUDA headers (cuda.h and
cuda_runtime.h)), the default stream is a regular stream and each host thread has its own default
stream.

Note: #define CUDA_API_PER_THREAD_DEFAULT_STREAM 1 cannot be used to enable this be-
havior when the code is compiled by nvcc as nvcc implicitly includes cuda_runtime.h at the top
of the translation unit. In this case the --default-stream per-thread compilation flag needs
to be used or the CUDA_API_PER_THREAD_DEFAULT_STREAM macro needs to be defined with the
-DCUDA_API_PER_THREAD_DEFAULT_STREAM=1 compiler flag.

For code that is compiled using the --default-stream legacy compilation flag, the default stream
is a special stream called the NULL stream and each device has a single NULL stream used for all
host threads. The NULL stream is special as it causes implicit synchronization as described in

For code that is compiled without specifying a --default-stream compilation flag,
--default-stream legacy is assumed as the default.
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There are various ways to explicitly synchronize streams with each other.

cudaDeviceSynchronize () waits until all preceding commands in all streams of all host threads
have completed.

cudaStreamSynchronize()takes a stream as a parameter and waits until all preceding commands
in the given stream have completed. It can be used to synchronize the host with a specific stream,
allowing other streams to continue executing on the device.

cudaStreamWaitEvent()takes a stream and an event as parameters (see for a description of
events)and makes all the commands added to the given stream after the call to cudaStreamWait-
Event()delay their execution until the given event has completed.

cudaStreamQuery () provides applications with a way to know if all preceding commands in a stream
have completed.

Two commands from different streams cannot run concurrently if any one of the following operations
is issued in-between them by the host thread:

a page-locked host memory allocation,

a device memory allocation,

a device memory set,

a memory copy between two addresses to the same device memory,
any CUDA command to the NULL stream,

a switch between the L1/shared memory configurations described in

Operations that require a dependency check include any other commands within the same stream as
the launch being checked and any call to cudaStreamQuery () onthat stream. Therefore, applications
should follow these guidelines to improve their potential for concurrent kernel execution:

All independent operations should be issued before dependent operations,

Synchronization of any kind should be delayed as long as possible.

The amount of execution overlap between two streams depends on the order in which the commands

are issued to each stream and whether or not the device supports overlap of data transfer and ker-

nel execution (see ), concurrent kernel execution (see
), and/or concurrent data transfers (see ).

For example, on devices that do not support concurrent data transfers, the two streams of the code
sample of do not overlap at all because the memory copy from host to device
is issued to stream[1] after the memory copy from device to host is issued to stream[0], so it can only
start once the memory copy from device to host issued to stream[0] has completed. If the code is
rewritten the following way (and assuming the device supports overlap of data transfer and kernel
execution)
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for (int 1 = 90; i < 2; ++1i)
cudaMemcpyAsync(inputDevPtr + i * size, hostPtr + i * size,
size, cudaMemcpyHostToDevice, stream[i]);
for (int 1 = 90; i < 2; ++1i)
MyKernel<<<100, 512, 0, stream[i]>>>
(outputDevPtr + i * size, inputDevPtr + i * size, size);
for (int 1 = 9; i < 2; ++1i)
cudaMemcpyAsync(hostPtr + i * size, outputDevPtr + i * size,
size, cudaMemcpyDeviceToHost, stream[i]);

then the memory copy from host to device issued to stream[ 1] overlaps with the kernel launch issued
to stream([0].

On devices that do support concurrent data transfers, the two streams of the code sample of

do overlap: The memory copy from host to device issued to stream[1] overlaps with
the memory copy from device to host issued to stream[0] and even with the kernel launch issued to
stream[0] (assuming the device supports overlap of data transfer and kernel execution).

The runtime provides a way to insert a CPU function call at any point into a stream via cudalLaunch-
HostFunc(). The provided function is executed on the host once all commands issued to the stream
before the callback have completed.

The following code sample adds the host function MyCallback to each of two streams after issuing a
host-to-device memory copy, a kernel launch and a device-to-host memory copy into each stream. The
function will begin execution on the host after each of the device-to-host memory copies completes.

void CUDART_CB MyCallback(cudaStream_t stream, cudaError_t status, void *data)({
printf("Inside callback %d\n", (size_t)data);

}

for (size_t i =0; i < 2; ++i) {
cudaMemcpyAsync(devPtrIn[i], hostPtr[i], size, cudaMemcpyHostToDevice, stream[i]);
MyKernel<<<100, 512, 0, stream[i]>>>(devPtrOut[i], devPtrIn[i], size);
cudaMemcpyAsync(hostPtr[i], devPtrOut[i], size, cudaMemcpyDeviceToHost,
—stream[i]);
cudalLaunchHostFunc(stream[i], MyCallback, (void*)i);
}

The commands that are issued in a stream after a host function do not start executing before the
function has completed.

A host function enqueued into a stream must not make CUDA API calls (directly or indirectly), as it
might end up waiting on itself if it makes such a call leading to a deadlock.
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Stream Priorities

The relative priorities of streams can be specified at creation using cudaStreamCreateWithPrior-
ity(). The range of allowable priorities, ordered as [ highest priority, lowest priority ] can be obtained
using the cudaDeviceGetStreamPriorityRange() function. At runtime, pending work in higher-
priority streams takes preference over pending work in low-priority streams.

The following code sample obtains the allowable range of priorities for the current device, and creates
streams with the highest and lowest available priorities.

// get the range of stream priorities for this device

int priority_high, priority_low;
cudaDeviceGetStreamPriorityRange(&priority_low, &priority_high);

// create streams with highest and lowest available priorities

cudaStream_t st_high, st_low;

cudaStreamCreateWithPriority(&st_high, cudaStreamNonBlocking, priority_high);
cudaStreamCreateWithPriority(&st_low, cudaStreamNonBlocking, priority_low);

Programmatic Dependent Launch and Synchronization

The Programmatic Dependent Launch mechanism allows for a dependent secondary kernel to launch
before the primary kernel it depends on in the same CUDA stream has finished executing. Available
starting with devices of compute capability 9.0, this technique can provide performance benefits when
the secondary kernel can complete significant work that does not depend on the results of the primary
kernel.

Background

A CUDA application utilizes the GPU by launching and executing multiple kernels on it. A typical GPU
activity timeline is shown in Figure 10.

Fig. 3: Figure 10: GPU activity timeline

Here, secondary_kernel is launched after primary_kernel finishes its execution. Serialized exe-
cution is usually necessary because secondary_kernel depends on result data produced by pri-
mary_kernel. If secondary_kernel has no dependency on primary_kernel, both of them can
be launched concurrently by using CUDA streams. Even if secondary_kernel is dependent on pri-
mary_kernel, there is some potential for concurrent execution. For example, almost all the kernels
have some sort of preamble section during which tasks such as zeroing buffers or loading constant
values are performed.

Figure 11 demonstrates the portion of secondary_kernel that could be executed concurrently with-
out impacting the application. Note that concurrent launch also allows us to hide the launch latency
of secondary_kernel behind the execution of primary_kernel.
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Fig. 4: Figure 11: Preamble section of secondary_kernel
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Fig. 5: Figure 12: Concurrent execution of primary_kernel and secondary_kernel

The concurrent launch and execution of secondary_kernel shown in Figure 12 is achievable using
Programmatic Dependent Launch.

Programmatic Dependent Launch introduces changes to the CUDA kernel launch APIs as explained in
following section. These APIs require at least compute capability 9.0 to provide overlapping execution.

API Description

In Programmatic Dependent Launch, a primary and a secondary kernel are launched in the same CUDA
stream. The primary kernel should execute cudaTriggerProgrammaticLaunchCompletion with
all thread blocks when it’s ready for the secondary kernel to launch. The secondary kernel must be
launched using the extensible launch API as shown.

__global__ void primary_kernel() {
// Initial work that should finish before starting secondary kernel

// Trigger the secondary kernel
cudaTriggerProgrammaticLaunchCompletion();

// Work that can coincide with the secondary kernel

}

__global__ void secondary_kernel()

{
// Independent work

// Will block until all primary kernels the secondary kernel is dependent on have
—completed and flushed results to global memory

(continues on next page)
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(continued from previous page)
cudaGridDependencySynchronize();

// Dependent work
}

cudaLaunchAttribute attribute[1];

attribute[0].id = cudalLaunchAttributeProgrammaticStreamSerialization;
attribute[0].val.programmaticStreamSerializationAllowed = 1;
configSecondary.attrs = attribute;

configSecondary.numAttrs = 1;

primary_kernel<<<grid_dim, block_dim, 0, stream>>>();
cudaLaunchKernelEx(&configSecondary, secondary_kernel);

When the secondary kernel is launched using the cudaLaunchAttributeProgrammaticStreamSe-
rialization attribute, the CUDA driver is safe to launch the secondary kernel early and not wait on
the completion and memory flush of the primary before launching the secondary.

The CUDA driver can launch the secondary kernel when all primary thread blocks have launched and
executed cudaTriggerProgrammaticLaunchCompletion. If the primary kernel doesn’t execute the
trigger, it implicitly occurs after all thread blocks in the primary kernel exit.

In either case, the secondary thread blocks might launch before data written by the primary kernel
is visible. As such, when the secondary kernel is configured with Programmatic Dependent Launch, it
must always use cudaGridDependencySynchronize or other means to verify that the result data
from the primary is available.

Please note that these methods provide the opportunity for the primary and secondary kernels to
execute concurrently, however this behavior is opportunistic and not guaranteed to lead to concurrent
kernel execution. Reliance on concurrent execution in this manner is unsafe and can lead to deadlock.

CUDA Graphs present a new model for work submission in CUDA. A graph is a series of operations,
such as kernel launches, connected by dependencies, which is defined separately from its execution.
This allows a graph to be defined once and then launched repeatedly. Separating out the definition
of a graph from its execution enables a number of optimizations: first, CPU launch costs are reduced
compared to streams, because much of the setup is done in advance; second, presenting the whole
workflow to CUDA enables optimizations which might not be possible with the piecewise work sub-
mission mechanism of streams.

To see the optimizations possible with graphs, consider what happens in a stream: when you place a
kernel into a stream, the host driver performs a sequence of operations in preparation for the execu-
tion of the kernel on the GPU. These operations, necessary for setting up and launching the kernel,
are an overhead cost which must be paid for each kernel that is issued. For a GPU kernel with a short
execution time, this overhead cost can be a significant fraction of the overall end-to-end execution
time.

Work submission using graphs is separated into three distinct stages: definition, instantiation, and
execution.

During the definition phase, a program creates a description of the operations in the graph along
with the dependencies between them.

Instantiation takes a snapshot of the graph template, validates it, and performs much of the
setup and initialization of work with the aim of minimizing what needs to be done at launch. The
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resulting instance is known as an executable graph.

» An executable graph may be launched into a stream, similar to any other CUDA work. It may be

launched any number of times without repeating the instantiation.

Graph Structure

An operation forms a node in a graph. The dependencies between the operations are the edges. These
dependencies constrain the execution sequence of the operations.

An operation may be scheduled at any time once the nodes on which it depends are complete. Schedul-
ing is left up to the CUDA system.

Node Types

A graph node can be one of:

>

Yy v vV vV V. V. VvV VY

kernel

CPU function call

memory copy

memset

empty node

waiting on an event

recording an event

signalling an external semaphore
waiting on an external semaphore

child graph: To execute a separate nested graph. See Figure 10.

Fig. 6: Child Graph Example
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Creating a Graph Using Graph APIs

Graphs can be created via two mechanisms: explicit APl and stream capture. The following is an ex-
ample of creating and executing the below graph.

Fig. 7: Creating a Graph Using Graph APIs Example

// Create the graph - it starts out empty
cudaGraphCreate(&graph, 0);

// For the purpose of this example, we'll create

// the nodes separately from the dependencies to

// demonstrate that it can be done in two stages.

// Note that dependencies can also be specified

// at node creation.

cudaGraphAddKernelNode(&a, graph, NULL, ©, &nodeParams);

cudaGraphAddKernelNode (&b, graph, NULL, 0, &nodeParams);
cudaGraphAddKernelNode(&c, graph, NULL, ©, &nodeParams);
cudaGraphAddKernelNode(&d, graph, NULL, ©, &nodeParams);

// Now set up dependencies on each node

cudaGraphAddDependencies(graph, &a, &b, 1) // A->B
cudaGraphAddDependencies(graph, &a, &c, 1) // A->C
cudaGraphAddDependencies(graph, &b, &d, 1); // B->D
cudaGraphAddDependencies(graph, &c, &d, 1); // C->D
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Stream capture provides a mechanism to create a graph from existing stream-based APIs. A section
of code which launches work into streams, including existing code, can be bracketed with calls to
cudaStreamBeginCapture() and cudaStreamEndCapture(). See below.

cudaGraph_t graph;

cudaStreamBeginCapture(stream);

kernel_A<<< ..., stream >>>(...);
kernel_B<<< ..., stream >>>(...);
libraryCall(stream);

kernel_C<<< ..., stream >>>(...);

cudaStreamEndCapture(stream, &graph);

A call to cudaStreamBeginCapture() places a stream in capture mode. When a stream is being
captured, work launched into the stream is not enqueued for execution. It is instead appended to
an internal graph that is progressively being built up. This graph is then returned by calling cudaS-
treamEndCapture( ), which also ends capture mode for the stream. A graph which is actively being
constructed by stream capture is referred to as a capture graph.

Stream capture can be used on any CUDA stream except cudaStreamlLegacy (the “NULL stream”).
Note that it can be used on cudaStreamPerThread. If a program is using the legacy stream, it may
be possible to redefine stream O to be the per-thread stream with no functional change. See

Whether a stream is being captured can be queried with cudaStreamIsCapturing().

Stream capture can handle cross-stream dependencies expressed with cudaEventRecord() and cu-
daStreamWaitEvent(), provided the event being waited upon was recorded into the same capture
graph.

When an event is recorded in a stream that is in capture mode, it results in a captured event. A captured
event represents a set of nodes in a capture graph.

When a captured event is waited on by a stream, it places the stream in capture mode if it is not already,
and the next item in the stream will have additional dependencies on the nodes in the captured event.
The two streams are then being captured to the same capture graph.

When cross-stream dependencies are present in stream capture, cudaStreamEndCapture() must
still be called in the same stream where cudaStreamBeginCapture() was called; this is the origin
stream. Any other streams which are being captured to the same capture graph, due to event-based
dependencies, must also be joined back to the origin stream. Thisis illustrated below. All streams being
captured to the same capture graph are taken out of capture mode upon cudaStreamEndCapture().
Failure to rejoin to the origin stream will result in failure of the overall capture operation.

// streaml is the origin stream
cudaStreamBeginCapture(stream1);

kernel_A<<< ..., streaml >>>(...);

// Fork into stream2
(continues on next page)
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(continued from previous page)

cudaEventRecord(event1, streaml);
cudaStreamWaitEvent(stream2, eventl);

kernel_B<<< ..., streaml >>>(...);
kernel_C<<< ..., stream2 >>>(...);

// Join stream2 back to origin stream (stream)
cudaEventRecord(event2, stream2);
cudaStreamWaitEvent(streaml, event2);

kernel_D<<< ..., streaml >>>(...);

// End capture in the origin stream
cudaStreamEndCapture(streaml1, &graph);

// streaml and stream2 no longer in capture mode

Graph returned by the above code is shown in

Note: When a stream is taken out of capture mode, the next non-captured item in the stream (if any)
will still have a dependency on the most recent prior non-captured item, despite intermediate items
having been removed.

It is invalid to synchronize or query the execution status of a stream which is being captured or a
captured event, because they do not represent items scheduled for execution. It is also invalid to
query the execution status of or synchronize a broader handle which encompasses an active stream
capture, such as a device or context handle when any associated stream is in capture mode.

When any stream in the same context is being captured, and it was not created with cudaStream-
NonBlocking, any attempted use of the legacy stream is invalid. This is because the legacy stream
handle at all times encompasses these other streams; enqueueing to the legacy stream would cre-
ate a dependency on the streams being captured, and querying it or synchronizing it would query or
synchronize the streams being captured.

It is therefore also invalid to call synchronous APIs in this case. Synchronous APIs, such as cudaMem-
cpy (), enqueue work to the legacy stream and synchronize it before returning.

Note: As a general rule, when a dependency relation would connect something that is captured with
something that was not captured and instead enqueued for execution, CUDA prefers to return an error
rather than ignore the dependency. An exception is made for placing a stream into or out of capture
mode; this severs a dependency relation between items added to the stream immediately before and
after the mode transition.

Itis invalid to merge two separate capture graphs by waiting on a captured event from a stream which
is being captured and is associated with a different capture graph than the event. It is invalid to wait
on a non-captured event from a stream which is being captured without specifying the cudaEventWai-
tExternal flag.

A small number of APIs that enqueue asynchronous operations into streams are not currently sup-
ported in graphs and will return an error if called with a stream which is being captured, such as cud-
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aStreamAttachMemAsync ().

When an invalid operation is attempted during stream capture, any associated capture graphs are
invalidated. When a capture graph is invalidated, further use of any streams which are being captured
or captured events associated with the graph is invalid and will return an error, until stream capture
is ended with cudaStreamEndCapture(). This call will take the associated streams out of capture
mode, but will also return an error value and a NULL graph.

Work submission using graphs is separated into three distinct stages: definition, instantiation, and ex-
ecution. In situations where the workflow is not changing, the overhead of definition and instantiation
can be amortized over many executions, and graphs provide a clear advantage over streams.

A graphis asnapshot of a workflow, including kernels, parameters, and dependencies, in order to replay
it as rapidly and efficiently as possible. In situations where the workflow changes the graph becomes
out of date and must be modified. Major changes to graph structure such as topology or types of
nodes will require re-instantiation of the source graph because various topology-related optimization
techniques must be re-applied.

The cost of repeated instantiation can reduce the overall performance benefit from graph execution,
but it is common for only node parameters, such as kernel parameters and cudaMemcpy addresses,
to change while graph topology remains the same. For this case, CUDA provides a lightweight mecha-
nism known as “Graph Update,” which allows certain node parameters to be modified in-place without
having to rebuild the entire graph. This is much more efficient than re-instantiation.

Updates will take effect the next time the graph is launched, so they will not impact previous graph
launches, even if they are running at the time of the update. A graph may be updated and relaunched
repeatedly, so multiple updates/launches can be queued on a stream.

CUDA provides two mechanisms for updating instantiated graph parameters, whole graph update and
individual node update. Whole graph update allows the user to supply a topologically identical cud-
aGraph_t object whose nodes contain updated parameters. Individual node update allows the user
to explicitly update the parameters of individual nodes. Using an updated cudaGraph_t is more con-
venient when a large number of nodes are being updated, or when the graph topology is unknown to
the caller (i.e., The graph resulted from stream capture of a library call). Using individual node update
is preferred when the number of changes is small and the user has the handles to the nodes requiring
updates. Individual node update skips the topology checks and comparisons for unchanged nodes, so
it can be more efficient in many cases.

CUDA also provides a mechanism for enabling and disabling individual nodes without affecting their
current parameters.

The following sections explain each approach in more detail.
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Kernel nodes:
The owning context of the function cannot change.

A node whose function originally did not use CUDA dynamic parallelism cannot be updated to a
function which uses CUDA dynamic parallelism.

cudaMemset and cudaMemcpy nodes:
The CUDA device(s) to which the operand(s) was allocated/mapped cannot change.

The source/destination memory must be allocated from the same context as the original
source/destination memory.

Only 1D cudaMemset/cudaMemcpy nodes can be changed.
Additional memcpy node restrictions:

Changing either the source or destination memory type (i.e.,, cudaPitchedPtr, cudaArray_t,
etc.), or the type of transfer (i.e., cudaMemcpyKind) is not supported.

External semaphore wait nodes and record nodes:
Changing the number of semaphores is not supported.

There are no restrictions on updates to host nodes, event record nodes, or event wait nodes.

cudaGraphExecUpdate() allows an instantiated graph (the “original graph”) to be updated with the
parameters from a topologically identical graph (the “updating” graph). The topology of the updating
graph must be identical to the original graph used to instantiate the cudaGraphExec_t. In addition,
the order in which the dependencies are specified must match. Finally, CUDA needs to consistently
order the sink nodes (nodes with no dependencies). CUDA relies on the order of specific api calls to
achieve consistent sink node ordering.

More explicitly, following the following rules will cause cudaGraphExecUpdate() to pair the nodes in
the original graph and the updating graph deterministically:

For any capturing stream, the API calls operating on that stream must be made in the same order,
including event wait and other api calls not directly corresponding to node creation.

The API calls which directly manipulate a given graph node’s incoming edges (including captured
stream APIs, node add APIs, and edge addition / removal APIs) must be made in the same or-
der. Moreover, when dependencies are specified in arrays to these APlIs, the order in which the
dependencies are specified inside those arrays must match.

Sink nodes must be consistently ordered. Sink nodes are nodes without dependent nodes / out-
going edges in the final graph at the time of the cudaGraphExecUpdate( ) invocation. The fol-
lowing operations affect sink node ordering (if present) and must (as a combined set) be made
in the same order:

Node add APIs resulting in a sink node.
Edge removal resulting in a node becoming a sink node.

cudaStreamUpdateCaptureDependencies(), if it removes a sink node from a capturing
stream’s dependency set.

cudaStreamEndCapture().

6.2. CUDA Runtime 59



CUDA C++ Programming Guide, Release 12.0

The following example shows how the API could be used to update an instantiated graph:

cudaGraphExec_t graphExec = NULL;

for (int i = 0; i < 10; i++) {
cudaGraph_t graph;
cudaGraphExecUpdateResult updateResult;
cudaGraphNode_t errorNode;

// In this example we use stream capture to create the graph.
// You can also use the Graph API to produce a graph.
cudaStreamBeginCapture(stream, cudaStreamCaptureModeGlobal);

// Call a user-defined, stream based workload, for example
do_cuda_work(stream) ;

cudaStreamEndCapture(stream, &graph);

// If we've already instantiated the graph, try to update it directly
// and avoid the instantiation overhead
if (graphExec !'= NULL) {

// If the graph fails to update, errorNode will be set to the

// node causing the failure and updateResult will be set to a

// reason code.

cudaGraphExecUpdate(graphExec, graph, &errorNode, &updateResult);
}

// Instantiate during the first iteration or whenever the update
// fails for any reason
if (graphExec == NULL || updateResult != cudaGraphExecUpdateSuccess) {

// If a previous update failed, destroy the cudaGraphExec_t
// before re-instantiating it
if (graphExec !'= NULL) {
cudaGraphExecDestroy(graphExec) ;
}

// Instantiate graphExec from graph. The error node and

// error message parameters are unused here.

cudaGraphInstantiate(&graphExec, graph, NULL, NULL, ©);
}

cudaGraphDestroy(graph) ;
cudaGraphLaunch(graphExec, stream);
cudaStreamSynchronize(stream);

}

A typical workflow is to create the initial cudaGraph_t using either the stream capture or graph API.
The cudaGraph_t is then instantiated and launched as normal. After the initial launch, a new cud-
aGraph_t is created using the same method as the initial graph and cudaGraphExecUpdate() is
called. If the graph update is successful, indicated by the updateResult parameter in the above
example, the updated cudaGraphExec_t is launched. If the update fails for any reason, the cud-
aGraphExecDestroy() and cudaGraphInstantiate() are called to destroy the original cuda-
GraphExec_t and instantiate a new one.

It is also possible to update the cudaGraph_t nodes directly (i.e., Using cudaGraphKernelNodeSet-
Params()) and subsequently update the cudaGraphExec_t, however it is more efficient to use the
explicit node update APIs covered in the next section.

Please see the Graph API for more information on usage and current limitations.
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Instantiated graph node parameters can be updated directly. This eliminates the overhead of instanti-
ation as well as the overhead of creating a new cudaGraph_t. If the number of nodes requiring update
is small relative to the total number of nodes in the graph, it is better to update the nodes individually.
The following methods are available for updating cudaGraphExec_t nodes:

cudaGraphExecKernelNodeSetParams()
cudaGraphExecMemcpyNodeSetParams()
cudaGraphExecMemsetNodeSetParams()
cudaGraphExecHostNodeSetParams()
cudaGraphExecChildGraphNodeSetParams()
cudaGraphExecEventRecordNodeSetEvent ()
cudaGraphExecEventWaitNodeSetEvent ()
cudaGraphExecExternalSemaphoresSignalNodeSetParams()
cudaGraphExecExternalSemaphoresWaitNodeSetParams()

Please see the for more information on usage and current limitations.

Kernel, memset and memcpy nodes in an instantiated graph can be enabled or disabled using the
cudaGraphNodeSetEnabled() API. This allows the creation of a graph which contains a superset of the
desired functionality which can be customized for each launch. The enable state of a node can be
queried using the cudaGraphNodeGetEnabled() API.

A disabled node is functionally equivalent to empty node until it is reenabled. Node parameters are not
affected by enabling/disabling a node. Enable state is unaffected by individual node update or whole
graph update with cudaGraphExecUpdate(). Parameter updates while the node is disabled will take
effect when the node is reenabled.

The following methods are available for enabling/disabling cudaGraphExec_t nodes, as well as query-
ing their status:

cudaGraphNodeSetEnabled()
cudaGraphNodeGetEnabled()

Please see the for more information on usage and current limitations.

cudaGraph_t objects are not thread-safe. It is the responsibility of the user to ensure that multiple
threads do not concurrently access the same cudaGraph_t.

A cudaGraphExec_t cannot run concurrently with itself. A launch of a cudaGraphExec_t will be
ordered after previous launches of the same executable graph.

Graph execution is done in streams for ordering with other asynchronous work. However, the stream
is for ordering only; it does not constrain the internal parallelism of the graph, nor does it affect where
graph nodes execute.
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See

There are many workflows which need to make data-dependent decisions during runtime and execute
different operations depending on those decisions. Rather than offloading this decision-making pro-
cess to the host, which may require a round-trip from the device, users may prefer to perform it on
the device. To that end, CUDA provides a mechanism to launch graphs from the device.

Device graph launch provides a convenient way to perform dynamic control flow from the device, be
it something as simple as a loop or as complex as a device-side work scheduler. This functionality is
only available on systems which support

Graphs which can be launched from the device will henceforth be referred to as device graphs, and
graphs which cannot be launched from the device will be referred to as host graphs.

Device graphs can be launched from both the host and device, whereas host graphs can only be
launched from the host. Unlike host launches, launching a device graph from the device while a previ-
ous launch of the graph is running will result in an error, returning cudaErrorInvalidValue; there-
fore, a device graph cannot be launched twice from the device at the same time. Launching a device
graph from the host and device simultaneously will result in undefined behavior.

In order for a graph to be launched from the device, it must be instantiated explicitly for device
launch. This is achieved by passing the cudaGraphInstantiateFlagDevicelaunch flagtothe cud-
aGraphInstantiate() call. Asis the case for host graphs, device graph structure is fixed at time
of instantiation and cannot be updated without re-instantiation, and instantiation can only be per-
formed on the host. In order for a graph to be able to be instantiated for device launch, it must adhere
to various requirements.

General requirements:
The graph’s nodes must all reside on a single device.
The graph can only contain kernel nodes, memcpy nodes, memset nodes, and child graph nodes.
Kernel nodes:
Use of CUDA Dynamic Parallelism by kernels in the graph is not permitted.
Cooperative launches are permitted so long as MPS is not in use.
Memcpy nodes:
Only copies involving device memory and/or pinned device-mapped host memory are permitted.
Copies involving CUDA arrays are not permitted.

Both operands must be accessible from the current device at time of instantiation. Note that
the copy operation will be performed from the device on which the graph resides, even if it is
targeting memory on another device.
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In order to launch a graph on the device, it must first be uploaded to the device to populate the nec-
essary device resources. This can be achieved in one of two ways.

Firstly, the graph can be uploaded explicitly, either via cudaGraphUpload( ) or by requesting an upload
as part of instantiation via cudaGraphInstantiateWithParams().

Alternatively, the graph can first be launched from the host, which will perform this upload step im-
plicitly as part of the launch.

Examples of all three methods can be seen below:

// Explicit upload after instantiation
cudaGraphInstantiate(&deviceGraphExec1, deviceGraphi,
—cudaGraphInstantiateFlagDevicelaunch);
cudaGraphUpload(deviceGraphExec1, stream);

// Explicit upload as part of instantiation

cudaGraphInstantiateParams instantiateParams = {0};

instantiateParams.flags = cudaGraphInstantiateFlagDevicelLaunch |
—~cudaGraphInstantiateFlagUpload;

instantiateParams.uploadStream = stream;
cudaGraphInstantiateWithParams(&deviceGraphExec2, deviceGraph2, &instantiateParams);

// Implicit upload via host launch
cudaGraphInstantiate(&deviceGraphExec3, deviceGraph3,
—cudaGraphInstantiateFlagDevicelLaunch);
cudaGraphLaunch(deviceGraphExec3, stream);

Device graphs can only be updated from the host, and must be re-uploaded to the device upon exe-
cutable graph update in order for the changes to take effect. This can be achieved using the same
methods outlined in the previous section. Unlike host graphs, launching a device graph from the device
while an update is being applied will result in undefined behavior.

Device graphs can be launched from both the host and the device via cudaGraphLaunch(), which
has the same signature on the device as on the host. Device graphs are launched via the same handle
on the host and the device. Device graphs must be launched from another graph when launched from
the device.

Device-side graph launch is per-thread and multiple launches may occur from different threads at the
same time, so the user will need to select a single thread from which to launch a given graph.
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Device Launch Modes

Unlike host launch, device graphs cannot be launched into regular CUDA streams, and can only be
launched into distinct named streams, which each denote a specific launch mode:
Table 2: Table 2. Device-only Graph Launch Streams

Stream Launch Mode

cudaStreamGraphFireAndForget | Fire and forget launch

cudaStreamGraphTaillLaunch Tail launch

Fire and Forget Launch

As the name suggests, a fire and forget launch is submitted to the GPU immediately, and it runs in-
dependently of the launching graph. In a fire-and-forget scenario, the launching graph is the parent,
and the launched graph is the child.

fireAndForgetLaunch(X)

Fig. 8: Fire and forget launch

The above diagram can be generated by the sample code below:

__global__ void launchFireAndForgetGraph(cudaGraphExec_t graph) {
cudaGraphLaunch(graph, cudaStreamGraphFireAndForget);
}

void graphSetup() {
cudaGraphExec_t gExec1, gExec2;
cudaGraph_t g1, g2;

// Create, instantiate, and upload the device graph.
create_graph(&g2);
cudaGraphInstantiate(&gExec2, g2, cudaGraphInstantiateFlagDevicelLaunch);
(continues on next page)
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(continued from previous page)
cudaGraphUpload(gExec2, stream);

// Create and instantiate the launching graph.
cudaStreamBeginCapture(stream, cudaStreamCaptureModeGlobal);
launchFireAndForgetGraph<<<1, 1, 0, stream>>>(gExec2);
cudaStreameEndCapture(stream, &g1);
cudaGraphInstantiate(&gExec1, g1);

// Launch the host graph, which will in turn launch the device graph.
cudaGraphLaunch(gExec1, stream);

}

A graph can have up to 120 total fire-and-forget graphs during the course of its execution. This total
resets between launches of the same parent graph.

In order to fully understand the device-side synchronization model, it is first necessary to understand
the concept of an execution environment.

When a graph is launched from the device, it is launched into its own execution environment. The
execution environment of a given graph encapsulates all work in the graph as well as all generated fire
and forget work. The graph can be considered complete when it has completed execution and when
all generated child work is complete.

The below diagram shows the environment encapsulation that would be generated by the fire-and-
forget sample code in the previous section.

When launched from the host, a device graph has an additional top level environment called the stream
environment, which encapsulates all work generated as part of the overall launch. The stream launch
is complete (i.e. downstream dependent work may now run) when the overall stream environment is
marked as complete.

These environments are also hierarchical, so a graph environment can include multiple levels of sub-
environments from fire and forget launches.

Unlike on the host, it is not possible to synchronize with device graphs from the GPU via traditional
methods such as cudaDeviceSynchronize() or cudaStreamSynchronize(). Rather, in order to
enable serial work dependencies, a different launch mode - tail launch - is offered, to provide similar
functionality.

A tail launch executes when a graph’s environment is considered complete - ie, when the graph and
all its children are complete. When a graph completes, the environment of the next graph in the tail
launch list will replace the completed environment as a child environment of the parent graph. Like
fire-and-forget launches, a graph can have multiple graphs enqueued for tail launch.

The above execution flow can be generated by the code below:

__global__ void launchTailGraph(cudaGraphExec_t graph) {
cudaGraphLaunch(graph, cudaStreamGraphTaillLaunch);
}

(continues on next page)
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Fig. 9: Fire and forget launch, with execution environments
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Fig. 10: The stream environment, visualized
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Fig. 11: Nested fire and forget environments
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Fig. 12: A simple tail launch
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(continued from previous page)
void graphSetup() {
cudaGraphExec_t gExec1, gExec2;
cudaGraph_t g1, g2;

// Create, instantiate, and upload the device graph.

create_graph(&g2);

cudaGraphInstantiate(&gExec2, g2, cudaGraphInstantiateFlagDevicelLaunch);
cudaGraphUpload(gExec2, stream);

// Create and instantiate the launching graph.
cudaStreamBeginCapture(stream, cudaStreamCaptureModeGlobal);
launchTailGraph<<<1, 1, 0, stream>>>(gExec2);
cudaStreamEndCapture(stream, &g1);
cudaGraphInstantiate(&gExec1, g1);

// Launch the host graph, which will in turn launch the device graph.
cudaGraphLaunch(gExec1, stream);

}

Tail launches enqueued by a give