<3

NVIDIA.

cuBLAS Library

User Guide

DU-06702-001_v12.0 | January 2023

Chapter 1. Introduction

The cuBLAS library is an implementation of BLAS (Basic Linear Algebra Subprograms) on top
of the NVIDIA® CUDA® runtime. It allows the user to access the computational resources of
NVIDIA Graphics Processing Unit (GPU).

The cuBLAS Library exposes three sets of API:

» The cuBLAS API, which is simply called cuBLAS APl in this document (starting with CUDA
6.0),

» The cuBLASXt API (starting with CUDA 6.0), and
» The cuBLASLt API (starting with CUDA 10.1)

To use the cuBLAS API, the application must allocate the required matrices and vectors in the
GPU memory space, fill them with data, call the sequence of desired cuBLAS functions, and
then upload the results from the GPU memory space back to the host. The cuBLAS APl also
provides helper functions for writing and retrieving data from the GPU.

To use the cuBLASXt API, the application may have the data on the Host or any of the devices
involved in the computation, and the Library will take care of dispatching the operation to, and
transferring the data to, one or multiple GPUs present in the system, depending on the user
request.

The cuBLASLt is a lightweight library dedicated to GEneral Matrix-to-matrix Multiply (GEMM)
operations with a new flexible API. This library adds flexibility in matrix data layouts, input
types, compute types, and also in choosing the algorithmic implementations and heuristics
through parameter programmability. After a set of options for the intended GEMM operation
are identified by the user, these options can be used repeatedly for different inputs. This is
analogous to how cuFFT and FFTW first create a plan and reuse for same size and type FFTs
with different input data.

1.1. Data Layout

For maximum compatibility with existing Fortran environments, the cuBLAS library uses
column-major storage, and 1-based indexing. Since C and C++ use row-major storage,
applications written in these languages can not use the native array semantics for two-
dimensional arrays. Instead, macros or inline functions should be defined to implement
matrices on top of one-dimensional arrays. For Fortran code ported to C in mechanical
fashion, one may chose to retain 1-based indexing to avoid the need to transform loops. In this

cuBLAS Library DU-06702-001_v12.0 | 1

Introduction

case, the array index of a matrix element in row “i” and column “j” can be computed via the
following macro

#define IDX2F (i,j,1d) ((((3)-1)*(1d))+((i)-1))

Here, 1d refers to the leading dimension of the matrix, which in the case of column-major
storage is the number of rows of the allocated matrix (even if only a submatrix of it is being
used). For natively written C and C++ code, one would most likely choose 0-based indexing, in
which case the array index of a matrix element in row “i” and column " can be computed via
the following macro

#define IDX2C(i,j,1d) (((3)*(1d))+(1))

1.2. New and Legacy cuBLAS API

Starting with version 4.0, the cuBLAS Library provides a new API, in addition to the existing
legacy API. This section discusses why a new APl is provided, the advantages of using it, and
the differences with the existing legacy API.

E WARNING: The legacy cuBLAS API is deprecated and will be removed in a future release.

The new cuBLAS library APl can be used by including the header file “cublas v2.h". It has
the following features that the legacy cuBLAS API does not have:

» The handle to the cuBLAS library context is initialized using the function and is explicitly
passed to every subsequent library function call. This allows the user to have more control
over the library setup when using multiple host threads and multiple GPUs. This also
allows the cuBLAS APIs to be reentrant.

» The scalars o and B can be passed by reference on the host or the device, instead of only
being allowed to be passed by value on the host. This change allows library functions to
execute asynchronously using streams even when o and B are generated by a previous
kernel.

» When a library routine returns a scalar result, it can be returned by reference on the
host or the device, instead of only being allowed to be returned by value only on the host.
This change allows library routines to be called asynchronously when the scalar result is
generated and returned by reference on the device resulting in maximum parallelism.

» The error status cublasstatus_t is returned by all cuBLAS library function calls.
This change facilitates debugging and simplifies software development. Note that

cublasStatus was renamed cublasStatus_t to be more consistent with other types in
the cuBLAS library.

» The cublasAlloc() and cublasFree () functions have been deprecated. This change
removes these unnecessary wrappers around cudaMalloc () and cudaFree (),
respectively.

» The function cublasSetKernelStream () was renamed cublasSetStream() to be more
consistent with the other CUDA libraries.

cuBLAS Library DU-06702-001_v12.0 | 2

Introduction

The legacy cuBLAS API, explained in more detail in the Appendix A, can be used by including
the header file “"cublas.h”. Since the legacy APl is identical to the previously released cuBLAS
library API, existing applications will work out of the box and automatically use this legacy API
without any source code changes.

The current and the legacy cuBLAS APIs cannot be used simultaneously in a single translation
unit: including both “cublas.h” and “cublas v2.h" header files will lead to compilation
errors due to incompatible symbol redeclarations.

In general, new applications should not use the legacy cuBLAS API, and existing applications
should convert to using the new APl if it requires sophisticated and optimal stream
parallelism, or if it calls cuBLAS routines concurrently from multiple threads.

For the rest of the document, the new cuBLAS Library APl will simply be referred to as the
cuBLAS Library API.

As mentioned earlier the interfaces to the legacy and the cuBLAS library APIs are the header
file "cublas.h” and “cublas v2.h", respectively. In addition, applications using the cuBLAS
library need to link against:

» The DSO cublas.so for Linux,
» The DLL cublas.dl1 for Windows, or

» The dynamic library cublas.dylib for Mac OS X.

D Note: The same dynamic library implements both the new and legacy cuBLAS APIs.

1.3. Example Code

The following code examples show an application written in C using the cuBLAS library API
with two indexing styles. Example 1 shows 1-based indexing and Example 2 shows 0-based
indexing.

//Example 1. Application Using C and cuBLAS: l-based indexing
A e
#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <cuda runtime.h>

#include "cublas v2.h"

#define M 6

#define N 5

#define IDX2F (i,73,1d) ((((3)=-1)*(1d))+((1i)-1))

static inline void modify (cublasHandle t handle, float *m, int 1dm, int n, int
p, int g, float alpha, float beta) {

cublasSscal (handle, n-g+l, &alpha, &m[IDX2F (p,q,ldm)], 1ldm);

cublasSscal (handle, ldm-p+l, &beta, &m[IDX2F (p,q,ldm)], 1);
}

int main (void) {
cudaError t cudaStat;
cublasStatus t stat;
cublasHandle t handle;

cuBLAS Library DU-06702-001_v12.0 | 3

Introduction

int i, Jj;

float* devPtrA;

float* a = 0;

a = (float *)malloc (M * N * sizeof (*a));

if (la) {
printf ("host memory allocation failed");
return EXIT_FAILURE;

}

for (jJ = 1; 7 <= N; j++) {
for (i = 1; 1 <= M; i++) {
al[IDX2F (i, j,M)] = (float) ((i-1) * N + 7J);

}
}
cudaStat = cudaMalloc ((void**)&devPtrA, M*N*sizeof (*a));
if (cudaStat != cudaSuccess) {
printf ("device memory allocation failed");
return EXIT FAILURE;
}
stat = cublasCreate (&handle);
if (stat != CUBLAS_STATUS SUCCESS) ({
printf ("CUBLAS initialization failed\n");
return EXIT FAILURE;
}
stat = cublasSetMatrix (M, N, sizeof(*a), a, M, devPtrA, M);
if (stat != CUBLAS STATUS SUCCESS) {
printf ("data download failed");
cudaFree (devPtrd);
cublasDestroy (handle) ;
return EXIT FAILURE;
}
modify (handle, devPtrA, M, N, 2, 3, 16.0f, 12.0f);
stat = cublasGetMatrix (M, N, sizeof(*a), devPtrA, M, a, M);
if (stat != CUBLAS STATUS SUCCESS) {
printf ("data upload failed");
cudaFree (devPtrAd);
cublasDestroy (handle) ;
return EXIT FAILURE;
}
cudaFree (devPtrAd);
cublasDestroy (handle) ;
for (3 = 1; j <= N; j++) {
for (1 = 1; 1 <= M; 1i++) {
printf ("%7.0f", a[IDX2F(i,j,M)1]1);
}
printf ("\n");
}
free(a);
return EXIT SUCCESS;

//Example 2. Application Using C and cuBLAS: 0O-based indexing
e e e e ittt
#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <cuda runtime.h>

#include "cublas v2.h"

#define M 6

#define N 5

#define IDX2C(i,3,1d) (((3)*(1d))+ (1))

static inline void modify (cublasHandle t handle, float *m, int 1ldm, int n, int
p, int g, float alpha, float beta) {
cublasSscal (handle, n-g, &alpha, &m[IDX2C (p,q,ldm)]
cublasSscal (handle, ldm-p, é&beta, &m[IDX2C (p,q,ldm)

, 1dm);
I, 1)

cuBLAS Library DU-06702-001_v12.0 |

4

Introduction

}

int main (void) {

cudaError t cudaStat;

cublasStatus t stat;

cublasHandle t handle;

int i, j;

float* devPtrA;

float* a = 0;

a = (float *)malloc (M * N * sizeof (*a));

if ('a) {
printf ("host memory allocation failed");
return EXIT FAILURE;

}

for (3 = 0; J < N; j++) |
for (i = 0; i < M; i++) {
alIDX2C(i,j,M)] = (float) (i * N + j + 1);
}
}
cudaStat = cudaMalloc ((void**)&devPtrA, M*N*sizeof (*a));
if (cudaStat !'= cudaSuccess) {

printf ("device memory allocation failed");
return EXIT_FAILURE;
}
stat = cublasCreate (&handle) ;
if (stat != CUBLAS STATUS SUCCESS) {
printf ("CUBLAS initialization failed\n");
return EXIT FATILURE;
}
stat = cublasSetMatrix (M, N, sizeof(*a), a, M, devPtrA, M);
if (stat != CUBLAS_ STATUS SUCCESS) {
printf ("data download failed");
cudaFree (devPtrA);
cublasDestroy (handle) ;
return EXIT_FAILURE;
}
modify (handle, devPtrA, M, N, 1, 2, 16.0f, 12.0f);
stat = cublasGetMatrix (M, N, sizeof(*a), devPtrA, M, a, M);
if (stat != CUBLAS_ STATUS SUCCESS) {
printf ("data upload failed");
cudaFree (devPtrA);
cublasDestroy (handle) ;
return EXIT_FAILURE;
}
cudaFree (devPtrA);
cublasDestroy (handle) ;
for (3 = 0; jJ < N; j++) {
for (i = 0; i < M; i++) {
printf ("%7.0f", a[IDX2C(i,j,M)1]1);
}
printf ("\n");
}
free(a);
return EXIT SUCCESS;

cuBLAS Library DU-06702-001_v12.0 | 5

Chapter 2. Using the cuBLAS API

2.1. General Description

This section describes how to use the cuBLAS library API.

2.1.1. Error status

All cuBLAS library function calls return the error status cublasStatus_t.

2.1.2. cuBLAS context

The application must initialize the handle to the cuBLAS library context by calling the
cublasCreate () function. Then, the handle is explicitly passed to every subsequent library
function call. Once the application finishes using the library, it must call the function
cublasDestroy () to release the resources associated with the cuBLAS library context.

This approach allows the user to explicitly control the library setup when using multiple

host threads and multiple GPUs. For example, the application can use cudaSetbevice () to
associate different devices with different host threads and in each of those host threads it can
initialize a unique handle to the cuBLAS library context, which will use the particular device
associated with that host thread. Then, the cuBLAS library function calls made with different
handle will automatically dispatch the computation to different devices.

The device associated with a particular cuBLAS context is assumed to remain unchanged
between the corresponding cublasCreate () and cublasDestroy () calls. In order for the
cuBLAS library to use a different device in the same host thread, the application must set the
new device to be used by calling cudasetDevice () and then create another cuBLAS context,
which will be associated with the new device, by calling cublasCreate ().

A cuBLAS library context is tightly coupled with the CUDA context that is current at the time
of the cublasCreate () call. An application that uses multiple CUDA contexts is required to
create a cuBLAS context per CUDA context and make sure the former never outlives the latter.

2.1.3. Thread Safety

The library is thread safe and its functions can be called from multiple host threads, even with
the same handle. When multiple threads share the same handle, extreme care needs to be
taken when the handle configuration is changed because that change will affect potentially

cuBLAS Library DU-06702-001_v12.0 | 6

Using the cuBLAS API

subsequent cuBLAS calls in all threads. It is even more true for the destruction of the handle.
So it is not recommended that multiple thread share the same cuBLAS handle.

2.1.4. Results Reproducibility

By design, all cuBLAS API routines from a given toolkit version generate the same bit-wise
results at every run when executed on GPUs with the same architecture and the same number
of SMs. However, bit-wise reproducibility is not guaranteed across toolkit versions because
the implementation might differ due to some implementation changes.

This guarantee holds when a single CUDA stream is active only. If multiple concurrent
streams are active, the library may optimize total performance by picking different internal
implementations.

Note: The non-deterministic behavior of multi-stream execution is due to library optimizations
in selecting internal workspace for the routines running in parallel streams. To avoid this
effect, users can either:

» provide a separate workspace for each used stream using the cublasSetWorkspace ()
function, or

» have one cuBLAS handle per stream, or

» use cublasLtMatmul () instead of the *gemm* () family of functions and provide user-
owned workspace, or

» set the debug environment variable CUBLAS WORKSPACE CONFIG to ":16:8" [may limit
overall performance) or ":4096:8" (will increase library footprint in GPU memory by
approximately 24MiB].

Any of those settings will allow for deterministic behavior even with multiple concurrent
streams sharing a single cuBLAS handle.

This behavior is expected to change in a future release.

For some routines such as cublas<t>symv and cublas<t>hemv, an alternate significantly
faster routine can be chosen using the routine cublasSetAtomicsMode (). In that case, the
results are not guaranteed to be bit-wise reproducible because atomics are used for the
computation.

2.1.5. Scalar Parameters

There are two categories of the functions that use scalar parameters:

» Functions that take alpha and beta parameters by reference on the host or the device as
scaling factors, such as gemm.

» Functions that return a scalar result on the host or the device such as amax (), amin,
asum (), rotg (), rotmg (), dot (), and nrm2 ().

For the functions of the first category, when the pointer mode is set to

CUBLAS POINTER MODE HOST, the scalar parameters alpha and beta can be on the stack
or allocated on the heap, and should not be placed in managed memory. Underneath,

the CUDA kernels related to those functions will be launched with the value of alpha and

cuBLAS Library DU-06702-001_v12.0 | 7

Using the cuBLAS API

beta. Therefore if they were allocated on the heap, they can be freed just after the return

of the call even though the kernel launch is asynchronous. When the pointer mode is set to
CUBLAS POINTER MODE DEVICE, alpha and beta must be accessible on the device, and their
values should not be modified until the kernel is done. Note that since cudaFree () does an
implicit cudaDeviceSynchronize (), cudaFree () can still be called on alpha and beta just
after the call but it would defeat the purpose of using this pointer mode in that case.

For the functions of the second category, when the pointer mode is set to

CUBLAS POINTER MODE HOST, these functions block the CPU, until the GPU has completed its
computation and the results have been copied back to the host. When the pointer mode is set
to CUBLAS POINTER MODE DEVICE, these functions return immediately. In this case, similar to
matrix and vector results, the scalar result is ready only when execution of the routine on the
GPU has completed. This requires proper synchronization in order to read the result from the
host.

In either case, the pointer mode CUBLAS POINTER MODE DEVICE allows the library functions
to execute completely asynchronously from the Host even when alpha and/or beta are
generated by a previous kernel. For example, this situation can arise when iterative methods
for solution of linear systems and eigenvalue problems are implemented using the cuBLAS
library.

2.1.6. Parallelism with Streams

If the application uses the results computed by multiple independent tasks, CUDA streams
can be used to overlap the computation performed in these tasks.

The application can conceptually associate each stream with each task. In order to achieve
the overlap of computation between the tasks, the user should create CUDA streams using
the function cudastreamCreate () and set the stream to be used by each individual cuBLAS
library routine by calling cublasSetStream () just before calling the actual cuBLAS routine.
Note that cublasSetStream () resets the user-provided workspace to the default workspace
pool; refer to cublasSetWorkspace(). Then, the computation performed in separate streams
would be overlapped automatically when possible on the GPU. This approach is especially
useful when the computation performed by a single task is relatively small and is not enough
to fill the GPU with work.

We recommend using the new cuBLAS APl with scalar parameters and results passed by
reference in the device memory to achieve maximum overlap of the computation when using
streams.

A particular application of streams, batching of multiple small kernels, is described in the
following section.

2.1.7. Batching Kernels

In this section, we explain how to use streams to batch the execution of small kernels.
For instance, suppose that we have an application where we need to make many small
independent matrix-matrix multiplications with dense matrices.

It is clear that even with millions of small independent matrices we will not be able to achieve
the same GFLOPS rate as with a one large matrix. For example, a single nx n large matrix-

cuBLAS Library DU-06702-001_v12.0 | 8

Using the cuBLAS API

matrix multiplication performs n3 operations for n2 input size, while 1024 3—712 X3_712 small

3 p3
matrix-matrix multiplications perform 1024(3—”2) z% operations for the same input size.

However, it is also clear that we can achieve a significantly better performance with many
small independent matrices compared with a single small matrix.

The architecture family of GPUs allows us to execute multiple kernels simultaneously.
Hence, in order to batch the execution of independent kernels, we can run each of them in a
separate stream. In particular, in the above example we could create 1024 CUDA™ streams
using the function cudaStreamCreate (), then preface each call to cublas<t>gemm()

with a call to cublasSetStream() with a different stream for each of the matrix-matrix
multiplications (note that cublasSetStream() resets user-provided workspace to the default
workspace pool, see cublasSetWorkspace ()). This will ensure that when possible the
different computations will be executed concurrently. Although the user can create many
streams, in practice it is not possible to have more than 32 concurrent kernels executing at
the same time.

2.1.8. Cache Configuration

On some devices, L1 cache and shared memory use the same hardware resources.

The cache configuration can be set directly with the CUDA Runtime function
cudaDeviceSetCacheConfig. The cache configuration can also be set specifically for some
functions using the routine cudaFuncSetCacheConfig. Refer to the CUDA Runtime API
documentation for details about the cache configuration settings.

Because switching from one configuration to another can affect kernel's concurrency, the
cuBLAS Library does not set any cache configuration preference and relies on the current
setting. However, some cuBLAS routines, especially Level-3 routines, rely heavily on shared
memory. Thus the cache preference setting might affect adversely their performance.

2.1.9. Static Library Support

The cuBLAS Library is also delivered in a static form as 1ibcublas static.a on Linux.
The static cuBLAS library and all other static math libraries depend on a common thread
abstraction layer library called 1ibculibos.a.

For example, on Linux, to compile a small application using cuBLAS, against the dynamic
library, the following command can be used:

nvcc myCublasApp.c -lcublas -o myCublasApp

Whereas to compile against the static cuBLAS library, the following command must be used:

nvce myCublasApp.c -lcublas static -lculibos -o myCublasApp

It is also possible to use the native Host C++ compiler. Depending on the Host operating
system, some additional libraries like pthread or d1 might be needed on the linking line. The
following command on Linux is suggested :

cuBLAS Library DU-06702-001_v12.0 | 9

https://docs.nvidia.com/cuda/cuda-runtime-api/index.html

Using the cuBLAS API

g++ myCublasApp.c -lcublas static -lculibos -lcudart static -lpthread -1dl -I
<cuda-toolkit-path>/include -L <cuda-toolkit-path>/1ib64 -o myCublasApp

Note that in the latter case, the library cuda is not needed. The CUDA Runtime will try to open
explicitly the cuda library if needed. In the case of a system which does not have the CUDA
driver installed, this allows the application to gracefully manage this issue and potentially run
if a CPU-only path is available.

Starting with release 11.2, using the typed functions instead of the extension functions
(cublas**Ex ()] helps in reducing the binary size when linking to static cuBLAS Library.

2.1.10. GEMM Algorithms Numerical Behavior

Some GEMM algorithms split the computation along the dimension K to increase the GPU
occupancy, especially when the dimension K is large compared to dimensions M and N. When
this type of algorithm is chosen by the cuBLAS heuristics or explicitly by the user, the results
of each split is summed deterministically into the resulting matrix to get the final result.

For the routines cublas<t>gemmEx and cublasGemmEx, when the compute type is greater
than the output type, the sum of the split chunks can potentially lead to some intermediate
overflows thus producing a final resulting matrix with some overflows. Those overflows
might not have occurred if all the dot products had been accumulated in the compute type
before being converted at the end in the output type. This computation side-effect can

be easily exposed when the computeType is CUDA R 32F and Atype, Btype and Ctype

are in CUDA_R_16F. This behavior can be controlled using the compute precision mode
CUBLAS_MATH DISALLOW REDUCED PRECISION REDUCTION with cublasSetMathMode ()

2.1.11. Tensor Core Usage

Tensor cores were first introduced with Volta GPUs (compute capability>=sm_70) and
significantly accelerate matrix multiplications. Starting with cuBLAS version 11.0.0, the
library will automatically make use of Tensor Core capabilities wherever possible, unless
they are explicitly disabled by selecting pedantic compute modes in cuBLAS (refer to
cublasSetMathMode(),cublasMathitL

It should be noted that the library will pick a Tensor Core enabled implementation wherever it
determines that it would provide the best performance.

Starting with cuBLAS version 11.0.0 there are no longer any restrictions on matrix dimensions
and memory alignments to use Tensor Cores. However, the best performance when using
Tensor Cores can be achieved when the matrix dimensions and pointers meet certain memory
alignment requirements. Specifically, all of the following conditions must be satisfied to get
the most performance out of Tensor Cores:

> m % 8 == 0

» k%8 =0

» op B == CUBLAS OP N || n%8 ==
> intptr t(A) % 16 == 0

> intptr t(B) % 16 == 0

cuBLAS Library DU-06702-001_v12.0 | 10

Using the cuBLAS API

> intptr t(C) % 16 == 0

> intptr t(A+lda) % 16 == 0
> intptr t(B+ldb) % 16 == 0
> intptr t(C+ldc) % 16 == 0

2.1.12. CUDA Graphs Support

cuBLAS routines can be captured in CUDA Graph stream capture without restrictions in most
situations.

The exception are routines that output results into host buffers [e.g. cublas<t>dot while
pointer mode CUBLAS_POINTER MODE_ HOST is configured), as it enforces synchronization.

For input coefficients (such as alpha, beta) behavior depends on the pointer mode setting:

» Inthe case of CUBLAS (LT) POINTER MODE HOST, coefficient values are captured in the
graph.

» Inthe case of pointer modes with device pointers, coefficient value is accessed using the
device pointer at the time of graph execution.

Note: Every time cuBLAS routines are captured in a new CUDA Graph, cuBLAS will allocate
workspace memory on the device. This memory is only freed when the cuBLAS handle used
during capture is deleted. To avoid this, use cublasSetWorkspace () function to provide user-
owned workspace memory.

2.1.13. 64-bit Integer Interface

cuBLAS version 12 introduced 64-bit integer capable functions. Each 64-bit integer function is
equivalent to a 32-bit integer function with the following changes:

» The function name has 64 suffix.

» The dimension (problem size) data type changed from int to int64 t. Examples of
dimension: m, n, and k.

» The leading dimension data type changed from int to int64 t. Examples of leading
dimension: 1da, 1db, and ldc.

» The vector increment data type changed from int to int64 t. Examples of vector
increment: incx and incy.

For example, consider the following 32-bit integer functions:

cublasStatus_t cublasSetMatrix(int rows, int cols, int elemSize, const void
*A, int lda, void *B, int 1db);

cublasStatus t cublasIsamax(cublasHandle t handle, int n, const float *x, int
incx, int *result);

cublasStatus_t cublasSsyr (cublasHandle t handle, cublasFillMode t uplo, int
n, const float *alpha, const float *x, int incx, float *A, int 1lda);

cuBLAS Library DU-06702-001_v12.0 | 11

Using the cuBLAS API

The equivalent 64-bit integer functions are:

cublasStatus t cublasSetMatrix 64 (int64 t rows, int64 t cols, int64 t
elemSize, const void *A, inté64 t lda, void *B, int64 t 1db);

cublasStatus_t cublasIsamax 64 (cublasHandle t handle, int64_t n, const float *x,
int64 t incx, int64 t *result);

cublasStatus_t cublasSsyr 64 (cublasHandle t handle, cublasFillMode t uplo,
int64 t n, const float *alpha, const float *x, inté64 t incx, float *A, int64 t
lda) ;

Not every function has a 64-bit integer equivalent. For instance, cublasSetMathMode(] doesn't
have any arguments that could meaningfully be int64 t. For documentation brevity, the 64-
bit integer APIs are not explicitly listed, but only mentioned that they exist for the relevant
functions.

2.2. cuBLAS Datatypes Reference
2.2.1. cublasHandle t

The cublasHandle t typeis a pointer type to an opaque structure holding the cuBLAS library
context. The cuBLAS library context must be initialized using cublasCreate () and the
returned handle must be passed to all subsequent library function calls. The context should be
destroyed at the end using cublasDestroy ().

2.2.2. cublasStatus t

The type is used for function status returns. All cuBLAS library functions return their status,
which can have the following values.

Value Meaning
CUBLAS_STATUS_SUCCESS The operation completed successfully.
CUBLAS_STATUS NOT INITIALIZED The cuBLAS library was not initialized.

This is usually caused by the lack of a prior
cublasCreate () call, an errorin the CUDA
Runtime API called by the cuBLAS routine, or an
error in the hardware setup.

To correct: call cublasCreate () before the
function call; and check that the hardware, an
appropriate version of the driver, and the cuBLAS
library are correctly installed.

CUBLAS_STATUS_ALLOC FAILED Resource allocation failed inside the cuBLAS
library. This is usually caused by a cudaMalloc ()
failure.

To correct: prior to the function call, deallocate
previously allocated memory as much as possible.

cuBLAS Library DU-06702-001_v12.0 | 12

Using the cuBLAS API

Value Meaning

CUBLAS_ STATUS INVALID VALUE An unsupported value or parameter was passed
to the function (a negative vector size, for
example).

To correct: ensure that all the parameters being
passed have valid values.

CUBLAS_STATUS ARCH MISMATCH The function requires a feature absent from the
device architecture; usually caused by compute
capability lower than 5.0.

To correct: compile and run the application on a
device with appropriate compute capability.

CUBLAS_STATUS MAPPING ERROR An access to GPU memory space failed, which is
usually caused by a failure to bind a texture.

To correct: before the function call, unbind any
previously bound textures.

CUBLAS_STATUS_EXECUTION FAILED The GPU program failed to execute. This is often
caused by a launch failure of the kernel on the
GPU, which can be caused by multiple reasons.

To correct: check that the hardware, an
appropriate version of the driver, and the cuBLAS
library are correctly installed.

CUBLAS_STATUS_INTERNAL ERROR An internal cuBLAS operation failed. This error is
usually caused by a cudaMemcpyAsync () failure.

To correct: check that the hardware, an
appropriate version of the driver, and the cuBLAS
library are correctly installed. Also, check that
the memory passed as a parameter to the routine
is not being deallocated before the routine’s

completion.
CUBLAS_STATUS_ NOT_ SUPPORTED The functionality requested is not supported.
CUBLAS STATUS LICENSE ERROR The functionality requested requires some license

and an error was detected when trying to check
the current licensing. This error can happen if
the license is not present or is expired or if the
environment variable NVIDIA LICENSE FILE IS
not set properly.

2.2.3. cublasOperation_t

The cublasOperation_t type indicates which operation needs to be performed with the
dense matrix. Its values correspond to Fortran characters ‘N’ or ‘n’ (non-transpose), ‘T’ or
‘t’ (transpose) and ‘c’ or ‘¢’ (conjugate transpose] that are often used as parameters to
legacy BLAS implementations.

cuBLAS Library DU-06702-001_v12.0 | 13

Using the cuBLAS API

Value Meaning

CUBLAS OP N The non-transpose operation is selected.
CUBLAS OP T The transpose operation is selected.

CUBLAS OP C The conjugate transpose operation is selected.

2.2.4. cublasFillMode t

The type indicates which part (lower or upper] of the dense matrix was filled and consequently
should be used by the function. Its values correspond to Fortran characters *1.” or *1” (lower)
and ‘U’ or ‘u’ (upper) that are often used as parameters to legacy BLAS implementations.

Value Meaning

CUBLAS_FILL MODE LOWER The lower part of the matrix is filled.
CUBLAS_FILL MODE UPPER The upper part of the matrix is filled.
CUBLAS FILL MODE FULL The full matrix is filled.

2.2.9. cublasDiagType_t

The type indicates whether the main diagonal of the dense matrix is unity and consequently
should not be touched or modified by the function. Its values correspond to Fortran characters
"W’ or *n’ [non-unit) and ‘U’ or ‘u’ (unit) that are often used as parameters to legacy BLAS
implementations.

Value Meaning
CUBLAS DIAG NON UNIT The matrix diagonal has non-unit elements.
CUBLAS_DIAG UNIT The matrix diagonal has unit elements.

2.2.6. cublasSideMode t

The type indicates whether the dense matrix is on the left or right side in the matrix equation
solved by a particular function. Its values correspond to Fortran characters ‘L7 or 17 (left]
and ‘R’ or ‘r’ (right) that are often used as parameters to legacy BLAS implementations.

Value Meaning
CUBLAS_SIDE LEFT The matrix is on the left side in the equation.
CUBLAS_SIDE RIGHT The matrix is on the right side in the equation.

2.2.7. cublasPointerMode t

The cublasPointerMode t type indicates whether the scalar values are passed by reference
on the host or device. It is important to point out that if several scalar values are present in the
function call, all of them must conform to the same single pointer mode. The pointer mode

cuBLAS Library DU-06702-001_v12.0 | 14

Using the cuBLAS API

can be set and retrieved using cublasSetPointerMode () and cublasGetPointerMode ()

routines, respectively.
Value
CUBLAS_POINTER MODE_HOST

CUBLAS POINTER MODE DEVICE

2.2.8.

Meaning

The scalars are passed by reference on the host.

The scalars are passed by reference on the
device.

cublasAtomicsMode t

The type indicates whether cuBLAS routines which have an alternate implementation
using atomics can be used. The atomics mode can be set and queried using
cublasSetAtomicsMode () and cublasGetAtomicsMode () and routines, respectively.

Value

CUBLAS ATOMICS NOT ALLOWED

CUBLAS ATOMICS ALLOWED

2.2.9.

Meaning

The usage of atomics is not allowed.

The usage of atomics is allowed.

cublasGemmAlgo_t

cublasGemmAlgo_t type is an enumerant to specify the algorithm for matrix-matrix
multiplication on GPU architectures up to sm_75. On sm_80 and newer GPU architectures, this
enumarant has no effect. cuBLAS has the following algorithm options:

Value

CUBLAS_ GEMM DEFAULT

CUBLAS_GEMM ALGOO to CUBLAS_ GEMM ALGO23

Meaning
Apply Heuristics to select the GEMM algorithm.

Explicitly choose an Algorithm [0,23]. Note: Has
no effect on NVIDIA Ampere Architecture GPUs
and newer.

CUBLAS GEMM DEFAULT TENSOR OP[DEPRECATED] This mode is deprecated and will be removed in

CUBLAS_GEMM ALGOO_ TENSOR_OP to
CUBLAS GEMM ALGO15 TENSOR OP[DEPRECATED]

cuBLAS Library

a future release. Apply Heuristics to select the
GEMM algorithm, while allowing use of reduced
precision CUBLAS_COMPUTE 32F FAST 16F
kernels (for backward compatibility).

Those values are deprecated and will be
removed in a future release. Explicitly

choose a Tensor core GEMM Algorithm

[0,15]. Allows use of reduced precision
CUBLAS_COMPUTE_32F_FAST_16F kernels (for
backward compatibility). Note: Has no effect on
NVIDIA Ampere Architecture GPUs and newer.

DU-06702-001_v12.0 | 15

Using the cuBLAS API

2.2.10. cublasMath_t

cublasMath t enumerate type is used in cublasSetMathMode () to choose compute
precision modes as defined in the following table. Since this setting does not directly control
the use of Tensor Cores, the mode CUBLAS TENSOR OP MATH is being deprecated, and will be
removed in a future release.

Value Meaning

CUBLAS_DEFAULT MATH This is the default and highest-performance mode
that uses compute and intermediate storage
precisions with at least the same number of
mantissa and exponent bits as requested. Tensor
Cores will be used whenever possible.

CUBLAS_PEDANTIC MATH This mode uses the prescribed precision
and standardized arithmetic for all phases
of calculations and is primarily intended for
numerical robustness studies, testing, and
debugging. This mode might not be as performant
as the other modes.

CUBLAS_TF32 TENSOR OP MATH Enable acceleration of single-precision routines
using TF32 tensor cores.

CUBLAS MATH DISALLOW REDUCED PRECISION REDBGMIENany reductions during matrix
multiplications to use the accumulator type (that
is, compute type) and not the output type in case
of mixed precision routines where output type
precision is less than the compute type precision.
This is a flag that can be set (using a bitwise or
operation] alongside any of the other values.

CUBLAS TENSOR OP MATH [DEPRECATED] This mode is deprecated and will be removed in
a future release. Allows the library to use Tensor
Core operations whenever possible. For single-
precision GEMM routines cuBLAS will use the
CUBLAS COMPUTE 32F FAST 16F compute type.

2.2.11. cublasComputeType_t

cublasComputeType t enumerate type is used in cublasGemmEx and cublasLtMatmul
(including all batched and strided batched variants) to choose compute precision modes as
defined below.

Value Meaning

CUBLAS COMPUTE 16F This is the default and highest-performance mode
for 16-bit half precision floating point and all
compute and intermediate storage precisions with
at least 16-bit half precision. Tensor Cores will be
used whenever possible.

cuBLAS Library DU-06702-001_v12.0 | 16

Value

CUBLAS COMPUTE 16F PEDANTIC

CUBLAS_COMPUTE_32F

CUBLAS COMPUTE 32F PEDANTIC

CUBLAS COMPUTE 32F FAST 16F

CUBLAS COMPUTE 32F FAST 16BF

CUBLAS_COMPUTE 32F FAST TF32

CUBLAS_COMPUTE 64F

CUBLAS COMPUTE 64F PEDANTIC

CUBLAS_ COMPUTE 321

CUBLAS COMPUTE 32I PEDANTIC

Using the cuBLAS API

Meaning

This mode uses 16-bit half precision floating

point standardized arithmetic for all phases

of calculations and is primarily intended for
numerical robustness studies, testing, and
debugging. This mode might not be as performant
as the other modes since it disables use of tensor
cores.

This is the default 32-bit single precision floating
point and uses compute and intermediate storage
precisions of at least 32-bits.

Uses 32-bit single-precision floating point
arithmetic for all phases of calculations and
also disables algorithmic optimizations such as
Gaussian complexity reduction (3M).

Allows the library to use Tensor Cores with
automatic down-conversion and 16-bit half-
precision compute for 32-bit input and output
matrices.

Allows the library to use Tensor Cores with
automatic down-conversion and bfloat16
compute for 32-bit input and output matrices. See
Alternate Floating Point section for more details
on bfloat16.

Allows the library to use Tensor cores with TF32
compute for 32-bit input and output matrices. See
Alternate Floating Point section for more details
on TF32 compute.

This is the default 64-bit double precision floating
point and uses compute and intermediate storage
precisions of at least 64-bits.

Uses 64-bit double precision floating point
arithmetic for all phases of calculations and
also disables algorithmic optimizations such as
Gaussian complexity reduction (3M).

This is the default 32-bit integer mode and uses
compute and intermediate storage precisions of
at least 32-bits.

Uses 32-bit integer arithmetic for all phases of
calculations.

Note: Setting the environment variable NvIDIA TF32 OVERRIDE = 0 will override any
defaults or programmatic configuration of NVIDIA libraries, and consequently, cuBLAS will not
accelerate FP32 computations with TF32 tensor cores.

cuBLAS Library

DU-06702-001_v12.0 | 17

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#wmma-altfp
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#wmma-altfp

2.3.

Using the cuBLAS API

CUDA Datatypes Reference

This section describes types shared by multiple CUDA Libraries and defined in the header file

library types.h.

2.3.1.

cudaDataType_t

The cudabataType t typeis an enumerant to specify the data precision. It is used when the
data reference does not carry the type itself (such as void *)

For example, it is used in the routine cublasSgemmEx

Value

CUDA R _16F

CUDA C 16F

CUDA_R_16BF

CUDA C_16BF

CUDA R 32F

CUDA C_32F

CUDA R 64F

CUDA_C_64F

CUDA R 81

CUDA C 8I

CUDA R _8U

CUDA C 8U

cuBLAS Library

Meaning

The data type is a 16-bit real half precision
floating-point.

The data type is a 32-bit structure comprised of
two half precision floating-points representing a
complex number.

The data type is a 16-bit real bfloat16 floating-
point.

The data type is a 32-bit structure comprised
of two bfloat16 floating-points representing a
complex number.

The data type is a 32-bit real single precision
floating-point.

The data type is a 64-bit structure comprised of
two single precision floating-points representing
a complex number.

The data type is a 64-bit real double precision
floating-point.

The data type is a 128-bit structure comprised of
two double precision floating-points representing
a complex number.

The data type is an 8-bit real signed integer.

The data type is a 16-bit structure comprised of
two 8-bit signed integers representing a complex
number.

The data type is an 8-bit real unsigned integer.

The data type is a 16-bit structure comprised
of two 8-bit unsigned integers representing a
complex number.

DU-06702-001_v12.0 | 18

Using the cuBLAS API

Value Meaning

CUDA R 321 The data type is a 32-bit real signed integer.

CUDA _C 321 The data type is a 64-bit structure comprised of
two 32-bit signed integers representing a complex
number.

CUDA R 8F E4M3 The data type is an 8-bit real floating point in

E4M3 format.

CUDA R 8F E5M2 The data type is an 8-bit real floating point in
ESM2 format.

2.3.2. libraryPropertyType_t

The libraryPropertyType tis used as a parameter to specify which property is requested
when using the routine cublasGetProperty.

Value Meaning

MAJOR _VERSION Enumerant to query the major version.
MINOR VERSION Enumerant to query the minor version.
PATCH LEVEL Number to identify the patch level.

2.4. cuBLAS Helper Function Reference
2.4.1. cublasCreate|()

cublasStatus t
cublasCreate (cublasHandle t *handle)

This function initializes the cuBLAS library and creates a handle to an opaque structure
holding the cuBLAS library context. It allocates hardware resources on the host and device
and must be called prior to making any other cuBLAS library calls. The cuBLAS library
context is tied to the current CUDA device. To use the library on multiple devices, one cuBLAS
handle needs to be created for each device. Furthermore, for a given device, multiple cuBLAS
handles with different configurations can be created. Because cublasCreate () allocates
some internal resources and the release of those resources by calling cublasbestroy () will
implicitly call cublasDeviceSynchronize (), it is recommended to minimize the number of
cublasCreate () /cublasDestroy () occurrences. For multi-threaded applications that use
the same device from different threads, the recommended programming model is to create
one cuBLAS handle per thread and use that cuBLAS handle for the entire life of the thread.

Return Value Meaning
CUBLAS_STATUS SUCCESS The initialization succeeded.
CUBLAS_STATUS NOT INITIALIZED The CUDA™ Runtime initialization failed.

cuBLAS Library DU-06702-001_v12.0 | 19

Using the cuBLAS API

Return Value Meaning
CUBLAS STATUS ALLOC FAILED The resources could not be allocated.
CUBLAS STATUS INVALID VALUE handle == NULL

2.4.2. cublasDestroy()

cublasStatus t
cublasDestroy (cublasHandle t handle)

This function releases hardware resources used by the cuBLAS library. This function is
usually the last call with a particular handle to the cuBLAS library. Because cublasCreate ()
allocates some internal resources and the release of those resources by calling
cublasDestroy () will implicitly call cublasDeviceSynchronize (), it is recommended to
minimize the number of cublasCreate () /cublasDestroy () occurrences.

Return Value Meaning
CUBLAS_STATUS_SUCCESS The shut down succeeded.
CUBLAS STATUS NOT INITIALIZED The library was not initialized.

2.4.3. cublasGetVersion()

cublasStatus t
cublasGetVersion (cublasHandle t handle, int *version)

This function returns the version number of the cuBLAS library.

Return Value Meaning
CUBLAS_STATUS_SUCCESS The operation completed successfully.
CUBLAS_ STATUS_ INVALID VALUE The provided storage for library version number is

not initialized (NULL).

2.4.4. cublasGetPropertyl(]

cublasStatus t
cublasGetProperty (libraryPropertyType type, int *value)

This function returns the value of the requested property in memory pointed to by value. Refer
to libraryPropertyType for supported types.

Return Value Meaning
CUBLAS_STATUS SUCCESS The operation completed successfully.
CUBLAS_STATUS_INVALID VALUE Invalid type value:

» Ifinvalid type value or

cuBLAS Library DU-06702-001_v12.0 | 20

Using the cuBLAS API

Return Value Meaning
» value ==NULL

2.4.5. cublasGetStatusNamel)

const char* cublasGetStatusName (cublasStatus t status)

This function returns the string representation of a given status.

Return Value Meaning

NULL-terminated string The string representation of the status.

2.4.6. cublasGetStatusStringl()

const char* cublasGetStatusString(cublasStatus_t status)

This function returns the description string for a given status.
Return Value Meaning

NULL-terminated string The description of the status.

2.4.7. cublasSetStream(]

cublasStatus t
cublasSetStream(cublasHandle t handle, cudaStream t streamld)

This function sets the cuBLAS library stream, which will be used to execute all subsequent
calls to the cuBLAS library functions. If the cuBLAS library stream is not set, all kernels use
the default NULL stream. In particular, this routine can be used to change the stream between
kernel launches and then to reset the cuBLAS library stream back to NULL. Additionally this
function unconditionally resets the cuBLAS library workspace back to the default workspace
pool [see cublasSetWorkspace ()).

Return Value Meaning
CUBLAS_STATUS_SUCCESS The stream was set successfully.
CUBLAS_STATUS_NOT INITIALIZED The library was not initialized.

2.4.8. cublasSetWorkspacel()

cublasStatus t
cublasSetWorkspace (cublasHandle t handle, void *workspace, size t
workspaceSizeInBytes)

This function sets the cuBLAS library workspace to a user-owned device buffer, which will
be used to execute all subsequent calls to the cuBLAS library functions (on the currently
set stream). If the cuBLAS library workspace is not set, all kernels will use the default
workspace pool allocated during the cuBLAS context creation. In particular, this routine

cuBLAS Library DU-06702-001_v12.0 | 21

Using the cuBLAS AP

can be used to change the workspace between kernel launches. The workspace pointer

has to be aligned to at least 256 bytes, otherwise CUBLAS STATUS INVALID VALUE error

is returned. The cublasSetStream() function unconditionally resets the cuBLAS library
workspace back to the default workspace pool. Too small workspaceSizeInBytes may
cause some routines to fail with CUBLAS STATUS ALLOC FAILED error returned or cause
large regressions in performance. Workspace size equal to or larger than 16KiB is enough

to prevent CUBLAS STATUS ALLOC FAILED error, while a larger workspace can provide
performance benefits for some routines. Recommended size of user-provided workspace is at
least 4MiB (to match cuBLAS' default workspace pool).

Return Value Meaning

CUBLAS_STATUS_SUCCESS The stream was set successfully.

CUBLAS_STATUS_NOT_ INITIALIZED The library was not initialized.

CUBLAS_ STATUS INVALID VALUE The workspace pointer wasn't aligned to at least
256 bytes.

2.4.9. cublasGetStream()

cublasStatus t
cublasGetStream(cublasHandle t handle, cudaStream t *streamId)

This function gets the cuBLAS library stream, which is being used to execute all calls to the
cuBLAS library functions. If the cuBLAS library stream is not set, all kernels use the default

NULL stream.

Return Value Meaning

CUBLAS_STATUS SUCCESS The stream was returned successfully.
CUBLAS_STATUS_NOT INITIALIZED The library was not initialized.

CUBLAS STATUS INVALID VALUE streamId==NULL

2.4.10. cublasGetPointerMode()

cublasStatus t
cublasGetPointerMode (cublasHandle t handle, cublasPointerMode t *mode)

This function obtains the pointer mode used by the cuBLAS library. Please see the section on
the cublasPointerMode t type for more details.

Return Value Meaning

CUBLAS_STATUS_SUCCESS The pointer mode was obtained successfully.
CUBLAS_STATUS NOT INITIALIZED The library was not initialized.
CUBLAS_STATUS_INVALID VALUE mode == NULL

cuBLAS Library DU-06702-001_v12.0 |

22

Using the cuBLAS API

2.4.11. cublasSetPointerMode|]

cublasStatus t
cublasSetPointerMode (cublasHandle t handle, cublasPointerMode t mode)

This function sets the pointer mode used by the cuBLAS library. The default is for the values to
be passed by reference on the host. Please see the section on the cublasPointerMode t type
for more details.

Return Value Meaning

CUBLAS_STATUS_SUCCESS The pointer mode was set successfully.
CUBLAS_STATUS_NOT_ INITIALIZED The library was not initialized.
CUBLAS_STATUS INVALID VALUE mode iS Not CUBLAS_POINTER MODE HOST or

CUBLAS POINTER MODE DEVICE

2.4.12. cublasSetVector(]

cublasStatus_t
cublasSetVector (int n, int elemSize,
const void *x, int incx, void *y, int incy)

This function supports the 64-bit Integer Interface.

This function copies n elements from a vector x in host memory space to a vector y in GPU
memory space. Elements in both vectors are assumed to have a size of elemSize bytes. The
storage spacing between consecutive elements is given by incx for the source vector x and by
incy for the destination vector y.

Since column-major format for two-dimensional matrices is assumed, if a vector is part of
a matrix, a vector increment equal to 1 accesses a (partial) column of that matrix. Similarly,
using an increment equal to the leading dimension of the matrix results in accesses to a
(partial] row of that matrix.

Return Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully.
CUBLAS_STATUS INVALID VALUE The parameters incx, incy, elemSize<=0.
CUBLAS_STATUS MAPPING ERROR There was an error accessing GPU memory.

2.4.13. cublasGetVector(]

cublasStatus t
cublasGetVector (int n, int elemSize,
const void *x, int incx, void *y, int incy)

This function supports the 64-bit Integer Interface.

cuBLAS Library DU-06702-001_v12.0 | 23

Using the cuBLAS API

This function copies n elements from a vector x in GPU memory space to a vector y in host
memory space. Elements in both vectors are assumed to have a size of elemSize bytes. The
storage spacing between consecutive elements is given by incx for the source vector and
incy for the destination vector y.

Since column-major format for two-dimensional matrices is assumed, if a vector is part of
a matrix, a vector increment equal to 1 accesses a (partial) column of that matrix. Similarly,
using an increment equal to the leading dimension of the matrix results in accesses to a
(partial] row of that matrix.

Return Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully.
CUBLAS_STATUS_INVALID VALUE The parameters incx, incy, elemSize<=0.
CUBLAS_STATUS MAPPING ERROR There was an error accessing GPU memory.

2.4.14. cublasSetMatrix(]

cublasStatus t
cublasSetMatrix (int rows, int cols, int elemSize,
const void *A, int lda, void *B, int 1db)

This function supports the 64-bit Integer Interface.

This function copies a tile of rows x cols elements from a matrix A in host memory space
to a matrix B in GPU memory space. It is assumed that each element requires storage of
elemSize bytes and that both matrices are stored in column-major format, with the leading
dimension of the source matrix A and destination matrix B given in 1da and 1db, respectively.
The leading dimension indicates the number of rows of the allocated matrix, even if only a
submatrix of it is being used.

Return Value Meaning
CUBLAS_STATUS_SUCCESS The operation completed successfully.
CUBLAS_STATUS INVALID VALUE The parameters rows, cols<0 orelemSize,

lda, 1db<=0.

CUBLAS_STATUS MAPPING ERROR There was an error accessing GPU memory.

2.4.15. cublasGetMatrix()

cublasStatus t
cublasGetMatrix (int rows, int cols, int elemSize,
const void *A, int lda, void *B, int 1db)

This function supports the 64-bit Integer Interface.

This function copies a tile of rows x cols elements from a matrix 2 in GPU memory space
to a matrix B in host memory space. It is assumed that each element requires storage of
elemSize bytes and that both matrices are stored in column-major format, with the leading
dimension of the source matrix A and destination matrix B given in 1da and 1db, respectively.

cuBLAS Library DU-06702-001_v12.0 | 24

Using the cuBLAS API

The leading dimension indicates the number of rows of the allocated matrix, even if only a
submatrix of it is being used.

Return Value Meaning
CUBLAS_STATUS_SUCCESS The operation completed successfully.
CUBLAS_STATUS_INVALID VALUE The parameters rows, cols<0 orelemSize,

lda, 1db<=0.

CUBLAS_ STATUS MAPPING ERROR There was an error accessing GPU memory.

2.4.16. cublasSetVectorAsync()

cublasStatus_t
cublasSetVectorAsync (int n, int elemSize, const void *hostPtr, int incx,
void *devicePtr, int incy, cudaStream t stream)

This function supports the 64-bit Integer Interface.

This function has the same functionality as cublasSetVector (), with the exception that the
data transfer is done asynchronously (with respect to the host) using the given CUDA stream
parameter.

Return Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully.
CUBLAS_STATUS INVALID VALUE The parameters incx, incy, elemSize<=0.
CUBLAS_STATUS MAPPING ERROR There was an error accessing GPU memory.

2.4.17. cublasGetVectorAsync(]

cublasStatus_t
cublasGetVectorAsync (int n, int elemSize, const void *devicePtr, int incx,
void *hostPtr, int incy, cudaStream t stream)

This function supports the 64-bit Integer Interface.

This function has the same functionality as cublasGetVector (), with the exception that the
data transfer is done asynchronously (with respect to the host] using the given CUDA stream
parameter.

Return Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully.
CUBLAS_STATUS INVALID VALUE The parameters incx, incy, elemSize<=0.
CUBLAS_STATUS MAPPING ERROR There was an error accessing GPU memory.

2.4.18. cublasSetMatrixAsync|()

cublasStatus t

cuBLAS Library DU-06702-001_v12.0 |

25

Using the cuBLAS API

cublasSetMatrixAsync (int rows, int cols, int elemSize, const void *A,
int lda, void *B, int 1ldb, cudaStream t stream)

This function supports the 64-bit Integer Interface.

This function has the same functionality as cublasSetMatrix (), with the exception that the
data transfer is done asynchronously (with respect to the host] using the given CUDA stream
parameter.

Return Value Meaning
CUBLAS_STATUS_SUCCESS The operation completed successfully.
CUBLAS_STATUS_ INVALID VALUE The parameters rows, cols<0 or elemSize,

lda, 1db<=0.

CUBLAS_STATUS_MAPPING ERROR There was an error accessing GPU memaory.

2.4.19. cublasGetMatrixAsyncl)

cublasStatus t
cublasGetMatrixAsync (int rows, int cols, int elemSize, const void *A,
int lda, void *B, int 1ldb, cudaStream t stream)

This function supports the 64-bit Integer Interface.

This function has the same functionality as cublasGetMatrix (), with the exception that the
data transfer is done asynchronously (with respect to the host] using the given CUDA stream
parameter.

Return Value Meaning
CUBLAS STATUS SUCCESS The operation completed successfully.
CUBLAS STATUS_ INVALID VALUE The parameters rows, cols<0 or elemSize,

lda, 1db<=0.

CUBLAS_STATUS_MAPPING ERROR There was an error accessing GPU memary.

2.4.20. cublasSetAtomicsMode(]

cublasStatus_t cublasSetAtomicsMode (cublasHandlet handle, cublasAtomicsMode t mode)

Some routines like cublas<t>symv and cublas<t>hemv have an alternate implementation
that uses atomics to cumulate results. This implementation is generally significantly faster but
can generate results that are not strictly identical from one run to the others. Mathematically,
those different results are not significant but when debugging those differences can be
prejudicial.

This function allows or disallows the usage of atomics in the cuBLAS library for all routines
which have an alternate implementation. When not explicitly specified in the documentation
of any cuBLAS routine, it means that this routine does not have an alternate implementation
that use atomics. When atomics mode is disabled, each cuBLAS routine should produce the

cuBLAS Library DU-06702-001_v12.0 | 26

Using the cuBLAS API

same results from one run to the other when called with identical parameters on the same
hardware.

The default atomics mode of default initialized cublasHandle t objectis
CUBLAS ATOMICS NOT ALLOWED. Please see the section on the type for more details.

Return Value Meaning
CUBLAS_STATUS_SUCCESS The atomics mode was set successfully.
CUBLAS_STATUS_NOT_ INITIALIZED The library was not initialized.

2.4.21. cublasGetAtomicsModel()

cublasStatus_t cublasGetAtomicsMode (cublasHandle t handle, cublasAtomicsMode t
*mode)

This function queries the atomic mode of a specific cuBLAS context.

The default atomics mode of default initialized cublasHandle t objectis
CUBLAS_ATOMICS NOT ALLOWED. Please see the section on the type for more details.

Return Value Meaning

CUBLAS_STATUS_SUCCESS The atomics mode was queried successfully.
CUBLAS_STATUS_NOT INITIALIZED The library was not initialized.
CUBLAS_STATUS_ INVALID VALUE The argument mode is a NULL pointer.

2.4.22. cublasSetMathMode()

cublasStatus t cublasSetMathMode (cublasHandle t handle, cublasMath t mode)

The cublasSetMathMode function enables you to choose the compute precision

modes as defined by cublasMath t (refer to cublasMath t]. Users are allowed

to set the compute precision mode as a logical combination of them (except the

deprecated CUBLAS_TENSOR_OP MATH]. For example, cublasSetMathMode (handle,

CUBLAS DEFAULT MATH | CUBLAS MATH DISALLOW REDUCED PRECISION REDUCTION). Note
that the default math mode is CUBLAS DEFAULT MATH.

For matrix and compute precisions allowed for cublasGemmEx () and cublasLtMatmul ()
APls and their strided variants please refer to: cublasGemmEx() , cublasGemmBatchedEx(],
cublasGemmStridedBatchedEx(Jand cublasLtMatmull).

Return Value Meaning

CUBLAS_STATUS_SUCCESS The math mode was set successfully.
CUBLAS_STATUS_ INVALID VALUE An invalid value for mode was specified.
CUBLAS_STATUS NOT INITIALIZED The library was not initialized.

cuBLAS Library DU-06702-001_v12.0 | 27

Using the cuBLAS API

2.4.23. cublasGetMathMode()

cublasStatus t cublasGetMathMode (cublasHandle t handle, cublasMath t *mode)

This function returns the math mode used by the library routines.

Return Value Meaning

CUBLAS_STATUS SUCCESS The math type was returned successfully.
CUBLAS_STATUS_INVALID VALUE If mode is NULL.

CUBLAS_STATUS NOT INITIALIZED The library was not initialized.

2.4.24. cublasSetSmCountTarget()

cublasStatus t cublasSetSmCountTarget (cublasHandle t handle, int smCountTarget)

The cublasSetSmCountTarget function allows overriding the number of multiprocessors
available to the library during kernels execution.

This option can be used to improve the library performance when cuBLAS routines are
known to run concurrently with other work on different CUDA streams. E.g. a NVIDIA A100
GPU has 108 SM and there is a concurrent kenrel running with grid size of 8, one can use
cublasSetSmCountTarget with value 100 to override the library heuristics to optimize for
running on 100 multiprocessors.

When set to 0 the library returns to its default behavior. The input value should not exceed
the device's multiprocessor count, which can be obtained using cudabeviceGetAttribute.
Negative values are not accepted.

The user must ensure thread safety when modifying the library handle with this routine similar
to when using cublasSetStream, and so on.

Return Value Meaning
CUBLAS_STATUS_SUCCESS SM count target was set successfully.
CUBLAS_STATUS INVALID VALUE The value of smCountTarget outside of the

allowed range.

CUBLAS_STATUS NOT INITIALIZED The library was not initialized.

2.4.25. cublasGetSmCountTarget()

cublasStatus t cublasGetSmCountTarget (cublasHandle t handle, int *smCountTarget)

This function obtains the value previously programmed to the library handle.

Return Value Meaning

CUBLAS_STATUS SUCCESS SM count target was set successfully.

cuBLAS Library DU-06702-001_v12.0 | 28

Using the cuBLAS API

Return Value Meaning
CUBLAS_ STATUS INVALID VALUE smCountTarget is NULL.
CUBLAS_STATUS NOT INITIALIZED The library was not initialized.

2.4.26. cublaslLoggerConfigure()

cublasStatus_ t cublasLoggerConfigure (

int logIsOn,

int logToStdout,
int logToStdErr,
const char* logFileName)

This function configures logging during runtime. Besides this type of configuration, it is
possible to configure logging with special environment variables which will be checked by
libcublas:

» CUBLAS_LOGINFO DBG - Setup env. variable to "1" means turn on logging (by default,
logging is off].

» CUBLAS LOGDEST DBG - Setup env. variable encodes how to log. “stdout”, "stderr” means
to output log messages to stdout or stderr, respectively. In the other case, its specifies
“filename” of file.

Parameters
loglsOn

Input. Turn on/off logging completely. By default is off, but is turned on by calling
cublasSetLoggerCallback to user defined callback function.

logToStdOut

Input. Turn on/off logging to standard error I/0 stream. By default is off.
logToStdErr

Input. Turn on/off logging to standard error /O stream. By default is off.
logFileName

Input. Turn on/off logging to file in filesystem specified by its name.
cublasLoggerConfigure copies content of logFileName. You should provide a null
pointer if you're not interested in this type of logging.

Returns
CUBLAS_STATUS_SUCCESS

Success.

2.4.27. cublasGetLoggerCallback(]

cublasStatus t cublasGetLoggerCallback (
cublasLogCallback* userCallback)

This function retrieves function pointer to previously installed custom user defined callback
function via cublasSetLoggerCallback () or zero otherwise.

cuBLAS Library DU-06702-001_v12.0 | 29

Using the cuBLAS API

Parameters
userCallback

Output. Pointer to user defined callback function.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning
CUBLAS_STATUS_SUCCESS The operation completed successfully.
CUBLAS_STATUS_ INVALID VALUE userCallback is NULL.

2.4.28. cublasSetLoggerCallback()

cublasStatus t cublasSetLoggerCallback (
cublasLogCallback userCallback)

This function installs a custom user-defined callback function via cuBLAS C public API.

Parameters
userCallback
Input. Pointer to user defined callback function.
Returns
CUBLAS_STATUS_SUCCESS

Success.

2.5. cuBLAS Level-1 Function Reference

This section describes the Level-1 Basic Linear Algebra Subprograms (BLAS1] functions
that perform scalar and vector-based operations. We will use abbreviations <type> for type
and <t> for the corresponding short type to make a more concise and clear presentation of
the implemented functions. Unless otherwise specified <type> and <t> have the following
meanings:

<type> <t> Meaning

float ‘s'or’S Real single-precision.
double ‘dor’D’ Real double-precision.
cuComplex ‘cor’C Complex single-precision.
cuDoubleComplex 'z or'Z Complex double-precision.

When the parameters and returned values of the function differ, which sometimes happens for
complex input, the <t> can also have the following meanings ‘Sc’, ‘Cs’, 'Dz" and 'Zd".

The abbreviation Re(.) and Im(.) will stand for the real and imaginary part of a number,
respectively. Since the imaginary part of a real number does not exist, we will consider it to

cuBLAS Library DU-06702-001_v12.0 | 30

Using the cuBLAS API

be zero, and can usually discard it from the equation where it is being used. Also, the o will

denote the complex conjugate of o .

In general throughout the documentation, the lowercase Greek symbols o and 8 denote
scalars, lowercase English letters in bold type X and y denote vectors and capital English
letters A, Band C denote matrices.

2.5.1. cublasl<t>amax(]

cublasStatus_t cublasIsamax(cublasHandle t handle, int n,

const float *x, int incx, int *result)
cublasStatus t cublasIdamax(cublasHandle t handle, int n,

const double *x, int incx, int *result)
cublasStatus_t cublasIcamax(cublasHandle t handle, int n,

const cuComplex *x, int incx, int *result)
cublasStatus t cublasIzamax(cublasHandle t handle, int n,

const cuDoubleComplex *x, int incx, int *result)

This function supports the 64-bit Integer Interface.

This function finds the (smallest) index of the element of the maximum magnitude.

Hence, the result is the first i such that |Im(x[J])|+[Re(x[]])| is maximum fori=1 ..., n
and j= 1+(i- 1)* incx. Notice that the last equation reflects 1-based indexing used for
compatibility with Fortran.

Param. Memory In/out Meaning

handle input Handle to the cuBLAS library context.

n input Number of elements in the vector x.

% device input <type> vector with elements.

incx input Stride between consecutive elements of x.
result host or device output The resulting index, which is 0 if n, incx<=0.

The possible error values returned by this function and their meanings are listed in the
following table:

Error Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully.
CUBLAS_STATUS NOT INITIALIZED The library was not initialized.
CUBLAS_STATUS_ALLOC FAILED The reduction buffer could not be allocated.
CUBLAS_STATUS_EXECUTION FAILED The function failed to launch on the GPU.
CUBLAS_STATUS_INVALID VALUE result is NULL.

For references. refer to:

isamax, idamax, icamax, izamax

cuBLAS Library DU-06702-001_v12.0

31

http://www.netlib.org/blas/isamax.f
http://www.netlib.org/blas/idamax.f
http://www.netlib.org/blas/icamax.f
http://www.netlib.org/blas/izamax.f

Using the cuBLAS API

2.5.2. cublasl<t>amin(]

cublasStatus t
cublasStatus t
cublasStatus t

cublasStatus t

cublasIsamin (cublasHandle t handle, int n,

const float *x, int incx, int *result)
cublasIdamin (cublasHandle t handle, int n,

const double *x, int incx, int *result)
cublasIcamin (cublasHandle t handle, int n,

const cuComplex *x, int incx, int *result)
cublasIzamin (cublasHandle t handle, int n,

const cuDoubleComplex *x, int incx, int *result)

This function supports the 64-bit Integer Interface.

This function finds the (smallest) index of the element of the minimum magnitude.
Hence, the result is the first i such that |Irn(x[J])|+[Re(x[]])| is minimum fori=1, ..., n

and j= 1+(i- 1)* incx Notice that the last equation reflects 1-based indexing used for
compatibility with Fortran.

Param. Memory In/out Meaning

handle input Handle to the cuBLAS library context.

n input Number of elements in the vector x.

P device input <type> vector with elements.

incx input Stride between consecutive elements of x.
result host or device output The resulting index, which is 0 if n, incx<=0.

The possible error values returned by this function and their meanings are listed below.

Error Value

CUBLAS_ STATUS SUCCESS
CUBLAS STATUS NOT INITIALIZED
CUBLAS STATUS ALLOC FAILED

CUBLAS STATUS EXECUTION FAILED

Meaning

The operation completed successfully.
The library was not initialized.
The reduction buffer could not be allocated.

The function failed to launch on the GPU.

CUBLAS_STATUS INVALID VALUE result is NULL.

For references please refer to:

isamin

2.5.3. cublas<t>asuml)

cublasStatus t
cublasStatus t
cublasStatus t

cublasStatus t

cuBLAS Library

cublasSasum(cublasHandle t handle, int n,

const float *x, int incx, float “*result)
cublasDasum(cublasHandle t handle, int n,

const double *x, int incx, double *result)
cublasScasum(cublasHandle t handle, int n,

const cuComplex *x, int incx, float “*result)

cublasDzasum(cublasHandle t handle, int n,

DU-06702-001_v12.0

32

http://www.netlib.org/scilib/blass.f

Using the cuBLAS API

const cuDoubleComplex *x, int incx, double *result)

This function supports the 64-bit Integer Interface.

This function computes the sum of the absolute values of the elements of vector x. Hence, the
n
result is Zi71|lm(x[j])|+|Re(x[j])| where j=1+(i-1)* incx . Notice that the last equation reflects

1-based indexing used for compatibility with Fortran.

Param. Memory In/out Meaning

handle input Handle to the cuBLAS library context.

n input Number of elements in the vector x.

x device input <type> vector with elements.

incx input Stride between consecutive elements of x.
result host or device output The resulting index, which is 0.0 if n, incx<=0.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully.
CUBLAS STATUS NOT INITIALIZED The library was not initialized.
CUBLAS_STATUS ALLOC FAILED The reduction buffer could not be allocated.
CUBLAS_STATUS EXECUTION FAILED The function failed to launch on the GPU.
CUBLAS_ STATUS_ INVALID VALUE result is NULL.

For references please refer to:

sasum, dasum, scasum, dzasum

2.5.4. cublas<t>axpyl()

cublasStatus t cublasSaxpy(cublasHandle t handle, int n,

const float *alpha,

const float *x, 1int incx,

float *y, int incy)
cublasStatus t cublasDaxpy(cublasHandle t handle, int n,

const double *alpha,

const double *x, 1int incx,

double *y, int incy)
cublasStatus t cublasCaxpy(cublasHandle t handle, int n,

const cuComplex *alpha,

const cuComplex *x, 1int incx,

cuComplex *y, int incy)

cublasStatus t cublasZaxpy(cublasHandle t handle, int n,
const cuDoubleComplex *alpha,
const cuDoubleComplex *x, int incx,
cuDoubleComplex *y, int incy)

This function supports the 64-bit Integer Interface.

cuBLAS Library DU-06702-001_v12.0 | 33

http://www.netlib.org/blas/sasum.f
http://www.netlib.org/blas/dasum.f
http://www.netlib.org/blas/scasum.f
http://www.netlib.org/blas/dzasum.f

Using the cuBLAS API

This function multiplies the vector x by the scalar and adds it to the vector y overwriting
the latest vector with the result. Hence, the performed operation is y{J]z 0(><X[k]+y[j] for
i=1 ...,n, k=1+(-1)* incx and j=1+(i- 1)* incy. Notice that the last two equations
reflect 1-based indexing used for compatibility with Fortran.

Param. Memory In/out Meaning

handle input Handle to the cuBLAS library context.
alpha host or device input <type> scalar used for multiplication.

n input Number of elements in the vector x and y.
X device input <type> vector with n elements.

incx input Stride between consecutive elements of x.
y device in/out <type> vector with n elements.

incy input Stride between consecutive elements of y.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully.
CUBLAS STATUS NOT INITIALIZED The library was not initialized.
CUBLAS_STATUS EXECUTION FAILED The function failed to launch on the GPU.

For references please refer to:

saxpy, daxpy, caxpy, zaxpy

2.5.5. cublas<t>copyl)

cublasStatus_t cublasScopy(cublasHandle t handle, int n,

const float *x, 1int incx,

float *y, int incy)
cublasStatus t cublasDcopy(cublasHandle t handle, int n,

const double ¥R, LMt AmEsR,

double *y, int incy)
cublasStatus t cublasCcopy (cublasHandle t handle, int n,

const cuComplex *x, int incx,

cuComplex *y, int incy)

cublasStatus t cublasZcopy(cublasHandle t handle, int n,
const cuDoubleComplex *x, int incx,
cuDoubleComplex *y, int incy)

This function supports the 64-bit Integer Interface.

This function copies the vector x into the vector y. Hence, the performed operation is y[]]zx[k]
fori=1,...,n, k=1+(i-1)* incx and j=1+(i-1)* incy. Notice that the last two equations
reflect 1-based indexing used for compatibility with Fortran.

cuBLAS Library DU-06702-001_v12.0 | 34

http://www.netlib.org/blas/saxpy.f
http://www.netlib.org/blas/daxpy.f
http://www.netlib.org/blas/caxpy.f
http://www.netlib.org/blas/zaxpy.f

Using the cuBLAS API

Param. Memory In/out Meaning

handle input Handle to the cuBLAS library context.

n input Number of elements in the vector x and y.
X device input <type> vector with n elements.

incx input Stride between consecutive elements of x.
y device output <type> vector with n elements.

incy input Stride between consecutive elements of y.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully.
CUBLAS STATUS NOT INITIALIZED The library was not initialized.
CUBLAS_STATUS EXECUTION FAILED The function failed to launch on the GPU.

For references please refer to:

scopy, dcopy, ccopy, zcopy

2.5.6. cublas<t>dot()

cublasStatus_t cublasSdot (cublasHandle t handle, int n,

const float *x, 1int incx,

const float *y, int incy,

float *result)
cublasStatus_t cublasDdot (cublasHandle t handle, int n,

const double *x, 1int incx,

const double *y, int incy,

double *result)
cublasStatus_t cublasCdotu(cublasHandle t handle, int n,

const cuComplex *x, int incx,

const cuComplex *y, int incy,

cuComplex *result)
cublasStatus_t cublasCdotc(cublasHandle t handle, int n,

const cuComplex *x, int incx,

const cuComplex *y, int incy,

cuComplex *result)

cublasStatus_t cublasZdotu(cublasHandle t handle, int n,
const cuDoubleComplex *x, int incx,
const cuDoubleComplex *y, int incy,
cuDoubleComplex *result)
cublasStatus_t cublasZdotc(cublasHandle t handle, int n,
const cuDoubleComplex *x, int incx,
const cuDoubleComplex *y, int incy,
cuDoubleComplex *result)

This function supports the 64-bit Integer Interface.

n
This function computes the dot product of vectors x and y. Hence, the result is Zi_l(x[k]xy[j])
where k=1+(i-1)* incx and Jj=1+(i- 1)* incy. Notice that in the first equation the

cuBLAS Library DU-06702-001_v12.0 | 35

http://www.netlib.org/blas/scopy.f
http://www.netlib.org/blas/dcopy.f
http://www.netlib.org/blas/ccopy.f
http://www.netlib.org/blas/zcopy.f

Using the cuBLAS API

conjugate of the element of vector x should be used if the function name ends in character ‘c’
and that the last two equations reflect 1-based indexing used for compatibility with Fortran.

Param. Memory In/out Meaning

handle input Handle to the cuBLAS library context.

n input Number of elements in the vectors x and y.

X device input <type> vector with n elements.

incx input Stride between consecutive elements of x.

y device input <type> vector with n elements.

incy input Stride between consecutive elements of y.
result host or device output The resulting dot product, which is 0.0 if n<=0.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS SUCCESS The operation completed successfully.
CUBLAS_STATUS_NOT INITIALIZED The library was not initialized.

CUBLAS STATUS ALLOC FAILED The reduction buffer could not be allocated.
CUBLAS_STATUS EXECUTION FAILED The function failed to launch on the GPU.

For references please refer to:

sdot, ddot, cdotu, cdotc, zdotu, zdotc

2.5.7. cublas<t>nrm?2(]

cublasStatus t cublasSnrm2(cublasHandle t handle, int n,

const float *x, int incx, float “*result)
cublasStatus t cublasDnrm2(cublasHandle t handle, int n,

const double *x, int incx, double *result)
cublasStatus_t cublasScnrm2(cublasHandle t handle, int n,

const cuComplex *x, int incx, float “*result)

cublasStatus t cublasDznrm2 (cublasHandle t handle, int n,
const cuDoubleComplex *x, int incx, double *result)

This function supports the 64-bit Integer Interface.

This function computes the Euclidean norm of the vector x. The code uses a multiphase model
of accumulation to avoid intermediate underflow and overflow, with the result being equivalent

n
to \/2121(X{J]XX{J]) where j=1+(i-1)* incx in exact arithmetic. Notice that the last equation

reflects 1-based indexing used for compatibility with Fortran.
Param. Memory In/out Meaning

handle input Handle to the cuBLAS library context.

cuBLAS Library DU-06702-001_v12.0 | 36

http://www.netlib.org/blas/sdot.f
http://www.netlib.org/blas/ddot.f
http://www.netlib.org/blas/cdotu.f
http://www.netlib.org/blas/cdotc.f
http://www.netlib.org/blas/zdotu.f
http://www.netlib.org/blas/zdotc.f

Using the cuBLAS API

Param. Memory In/out Meaning

n input Number of elements in the vector x.

x device input <type> vector with n elements.

incx input Stride between consecutive elements of x.
result host or device output The resulting norm, which is 0.0 if n, incx<=0.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully.
CUBLAS_STATUS_NOT INITIALIZED The library was not initialized.
CUBLAS_STATUS_ ALLOC FAILED The reduction buffer could not be allocated.
CUBLAS STATUS EXECUTION FAILED The function failed to launch on the GPU.
CUBLAS_STATUS_ INVALID VALUE result is NULL.

For references please refer to:

snrm2, snrm?2, dnrm?2, dnrm?2, scnrm?2, scnrm?2, dznrm?2

2.5.8. cublas<t>rot(]

cublasStatus_t cublasSrot (cublasHandle t handle, int n,

float *x, 1int incx,

float *y, int incy,

const float *c, const float *s)
cublasStatus_t cublasDrot (cublasHandle t handle, int n,

double *x, 1int incx,

double *y, int incy,

const double *c, const double *s)
cublasStatus_t cublasCrot (cublasHandle t handle, int n,

cuComplex *x, 1int incx,

cuComplex *y, int incy,

const float *c, const cuComplex *s)
cublasStatus_t cublasCsrot (cublasHandle t handle, int n,

cuComplex *x, 1int incx,

cuComplex *y, int incy,

const float *c, const float *s)

cublasStatus_t cublasZrot (cublasHandle t handle, int n,
cuDoubleComplex *x, int incx,
cuDoubleComplex *y, int incy,
const double *c, const cuDoubleComplex *s)

cublasStatus_t cublasZdrot (cublasHandle t handle, int n,
cuDoubleComplex *x, int incx,
cuDoubleComplex *y, int incy,
const double *c, const double *s)

This function supports the 64-bit Integer Interface.

This function applies Givens rotation matrix (that is, rotation in the x,y plane counter-clockwise
by angle defined by cos(alphal=c, sin(alphal=s]:

cuBLAS Library DU-06702-001_v12.0 | 37

Using the cuBLAS API

659

-s C
to vectors x and y.
Hence, the result is x[k] = C><X[k]+s><y{j]and y{J]= —S><x[k]+C><y[j]vvhere

k=1+(i-1)* incx and j=1+(i-1)* incy . Notice that the last two equations reflect 1-based
indexing used for compatibility with Fortran.

Param. Memory In/out Meaning

handle input Handle to the cuBLAS library context.

n input Number of elements in the vectors x and y.
X device in/out <type> vector with n elements.

incx input Stride between consecutive elements of x.
% device infout <type> vector with n elements.

incy input Stride between consecutive elements of y.
c host or device input Cosine element of the rotation matrix.

s host or device input Sine element of the rotation matrix.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully.
CUBLAS_STATUS NOT INITIALIZED The library was not initialized.
CUBLAS_STATUS EXECUTION FAILED The function failed to launch on the GPU.

For references please refer to:

srot, drot, crot, csrot, zrot, zdrot

2.5.9. cublas<t>rotgl)

cublasStatus t cublasSrotg(cublasHandle t handle,

float *a, float *b,

float *c, float *s)
cublasStatus t cublasDrotg(cublasHandle t handle,

double *a, double “19

double *c, double *3)
cublasStatus t cublasCrotg(cublasHandle t handle,

cuComplex *a, cuComplex “19),

float *c, cuComplex “8)

cublasStatus t cublasZrotg(cublasHandle t handle,
cuDoubleComplex *a, cuDoubleComplex *Db,
double *c, cuDoubleComplex *s)

This function constructs the Givens rotation matrix
c S
GZ(—S C)

cuBLAS Library DU-06702-001_v12.0 | 38

http://www.netlib.org/blas/srot.f
http://www.netlib.org/blas/drot.f
http://www.netlib.org/lapack/lapack_routine/crot.f
http://www.netlib.org/blas/csrot.f
http://www.netlib.org/lapack/lapack_routine/zrot.f
http://www.netlib.org/blas/zdrot.f

Using the cuBLAS API

T
that zeros out the second entry of a 2% 1vector(a b) .

Then, for real numbers we can write

c s\(a ¥
(—S c)(b) - (0)
where 2+ s2=1and r=a2+b* . The parameters a and b are overwritten with ¥ and z,
respectively. The value of z is such that ¢ and s may be recovered using the following rules:

Wz i<

(c, s)=1{(0.0, 1.0) ifl4=1

(1/2\1-2) if4>1

For complex numbers we can write

c S\([4a v
(—'S C)(b) - (O)
where c2+(sx s)=1and rzﬁ x |l(a, l’))Tllzwith Il(a, l’))T||2=\/|a]2+|b|2 fora#=0and r=b for

a=0.Finally, the parameter a is overwritten with ¥ on exit.

Param. Memory In/out Meaning

handle input Hhandle to the cuBLAS library context.
a host or device in/out <type> scalar that is overwritten with r .
b host or device infout <type> scalar that is overwritten with z .
c host or device output Cosine element of the rotation matrix.

s host or device output Sine element of the rotation matrix.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully.
CUBLAS_STATUS NOT INITIALIZED The library was not initialized.
CUBLAS_STATUS EXECUTION FAILED The function failed to launch on the GPU.

For references please refer to:

srotg, drotg, crotg, zrotg

2.5.10. cublas<t>rotm()

cublasStatus t cublasSrotm(cublasHandle t handle, int n, float *x, int incx,
float *y, int incy, const float* param)

cublasStatus t cublasDrotm(cublasHandle t handle, int n, double *x, int incx,
double *y, int incy, const double* param)

cuBLAS Library DU-06702-001_v12.0 | 39

http://www.netlib.org/blas/srotg.f
http://www.netlib.org/blas/drotg.f
http://www.netlib.org/blas/crotg.f
http://www.netlib.org/blas/zrotg.f

Using the cuBLAS API

This function supports the 64-bit Integer Interface.

This function applies the modified Givens transformation
_ (hll hlZ)
hy hy,
to vectors x and y.
Hence, the result is x[k]= hy; X x[k]+ hlzxy{j] and yljl= oy X XIK]+ hzzxy{j]vvhere

k=1+(i-1)* incx and j=1+(i-1)* incy. Notice that the last two equations reflect 1-based
indexing used for compatibility with Fortran.

The elements, , and of matrix H are stored in param[1], param[2], param[3] and param[4],
respectively. The flag=param[0] defines the following predefined values for the matrix H
entries

flag=-1.0 flag= 0.0 flag= 1.0 flag=-2.0
hyp hy 10 hyp hy, 10 (LO 0.0)
hy) hy; hy, 10 ~10 hyy 00 10

Notice that the values -1.0, 0.0 and 1.0 implied by the flag are not stored in param.

Param. Memory In/out Meaning

handle input Handle to the cuBLAS library context.

n input Number of elements in the vectors x and y.

x device in/out <type> vector with n elements.

incx input Stride between consecutive elements of x.

% device infout <type> vector with n elements.

incy input Stride between consecutive elements of y.

param host or device input <type> vector of 5 elements, where param[0] and

param[1-4] contain the flag and matrix H .

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully.
CUBLAS STATUS NOT INITIALIZED The library was not initialized.
CUBLAS_STATUS EXECUTION FAILED The function failed to launch on the GPU.

For references please refer to:

srotm, drotm

cuBLAS Library DU-06702-001_v12.0 | 40

http://www.netlib.org/blas/srotm.f
http://www.netlib.org/blas/drotm.f

Using the cuBLAS API

2.5.11. cublas<t>rotmgl)

cublasStatus t cublasSrotmg(cublasHandle t handle, float *dl, float *dZ2,
float *x1, const float *yl, float *param)

cublasStatus_t cublasDrotmg(cublasHandle t handle, double *dl, double *d2,
double *x1, const double *yl, double *param)

This function constructs the modified Givens transformation

_ (hll hlZ)
h21 h22

T
that zeros out the second entry of a 2X lvector(\/E*XL \/d_Z*yl) .

The flag=param[0] defines the following predefined values for the matrix H entries

flag=-1.0 flag= 0.0 flag= 1.0 flag=-2.0
hy hyp 10 hyp hy, 10 (LO 0.0)
hy hy; hy, 10 ~10 hyy 00 10

Note that the values -1.0, 0.0 and 1.0 implied by the flag are not stored in param.

Param. Memory In/out Meaning

handle input Handle to the cuBLAS library context.

d1l host or device infout <type> scalar that is overwritten on exit.

d2 host or device in/out <type> scalar that is overwritten on exit.

x1 host or device in/out <type> scalar that is overwritten on exit.

vl host or device input <type> scalar.

param host or device output <type> vector of 5 elements, where param[0] and

param[1-4] contain the flag and matrix H .

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS SUCCESS The operation completed successfully.
CUBLAS_STATUS_NOT INITIALIZED The library was not initialized.
CUBLAS_STATUS_ EXECUTION FAILED The function failed to launch on the GPU.

For references please refer to:

srotmg, drotmg

2.5.12. cublas<t>scal(]

cublasStatus t cublasSscal (cublasHandle t handle, int n,

cuBLAS Library DU-06702-001_v12.0

41

http://www.netlib.org/blas/srotmg.f
http://www.netlib.org/blas/drotmg.f

const float *alpha,
float *x, int incx)
cublasStatus t cublasDscal (cublasHandle t handle, int n,
const double *alpha,
double *x, 1int incx)
cublasStatus t cublasCscal (cublasHandle t handle, int n,
const cuComplex *alpha,
cuComplex *x, int incx)
cublasStatus t cublasCsscal (cublasHandle t handle, int n,
const float *alpha,
cuComplex *x, int incx)

cublasStatus t cublasZscal (cublasHandle t handle, int n,

const cuDoubIeComplex *alpha,
cuDoubleComplex *x, int incx)

cublasStatus t cublasZdscal (cublasHandle t handle, int n,

const double *alpha,
cuDoubleComplex *x, int incx)

This function supports the 64-bit Integer Interface.

This function scales the vector x by the scalar a and overwrites it with the result. Hence, the

Using the cuBLAS API

performed operation is X[J]z 0(><X{j] fori=1, ...,nand j=1+(i-1)* incx. Notice that the last
two equations reflect 1-based indexing used for compatibility with Fortran.

Param. Memory In/out Meaning

handle input Handle to the cuBLAS library context.
alpha host or device input <type> scalar used for multiplication.

n input Number of elements in the vector x.

X device in/out <type> vector with n elements.

incx input Stride between consecutive elements of x.

The possible error values returned by this function and their meanings are listed below.

Error Value

CUBLAS_STATUS SUCCESS
CUBLAS STATUS NOT INITIALIZED

CUBLAS STATUS EXECUTION FAILED

Meaning

For references please refer to:

sscal, dscal, csscal, cscal, zdscal, zscal

2.5.13.

cublasStatus_
cublasStatus
cublasStatus

cublasStatus

cuBLAS Library

cublas<t>swapl]

t cublasSswap (cublasHandle t handle, int n,
int incx, float W,

t cublasDswap (cublasHandle t handle, int n,
int incx, double “Vp

t cublasCswap (cublasHandle t handle, int n,
int incx, cuComplex ®Y;

t cublasZswap (cublasHandle t handle, int n,
int incx, cuDoubleComplex *y,

The operation completed successfully.
The library was not initialized.

The function failed to launch on the GPU.

float “5Ry
int incy)
double *x,
int incy)
cuComplex ®5R

int incy)
cuDoubleComplex *x,
int incy)

DU-06702-001_v12.0

42

http://www.netlib.org/blas/sscal.f
http://www.netlib.org/blas/dscal.f
http://www.netlib.org/blas/csscal.f
http://www.netlib.org/blas/cscal.f
http://www.netlib.org/blas/zdscal.f
http://www.netlib.org/blas/zscal.f

Using the cuBLAS API

This function supports the 64-bit Integer Interface.

This function interchanges the elements of vector x and y. Hence, the performed operation is

vljle xlklfori=1, ...,n, k=1+(i-1)* incx and j=14(i- 1)* incy. Notice that the last two
equations reflect 1-based indexing used for compatibility with Fortran.

Param. Memory In/out Meaning

handle input Handle to the cuBLAS library context.

n input Number of elements in the vector x and y.
P device in/out <type> vector with n elements.

incx input Stride between consecutive elements of x.
y device in/out <type> vector with n elements.

incy input Stride between consecutive elements of y.

The possible error values returned by this function and their meanings are listed in the
following table:

Error Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully.
CUBLAS STATUS NOT INITIALIZED The library was not initialized.
CUBLAS_STATUS EXECUTION FAILED The function failed to launch on the GPU.

For references please refer to:

sswap, dswap, cswap, zswap

2.6. cuBLAS Level-2 Function Reference

This section describes the Level-2 Basic Linear Algebra Subprograms (BLAS2] functions that
perform matrix-vector operations.

2.6.1. cublas<t>gbmv(]

cublasStatus t cublasSgbmv (cublasHandle t handle, cublasOperation t trans,
int m, int n, int k1, int ku,

const float *alpha,

const float *A, int 1lda,
const float *x, int incx,
const float *beta,

float *y, int incy)

cublasStatus t cublasDgbmv (cublasHandle t handle, cublasOperation t trans,
int m, int n, int k1, int ku,

const double *alpha,
const double *A, int 1lda,
const double *x, 1int incx,
const double *beta,
double *y, int incy)

cuBLAS Library DU-06702-001_v12.0 | 43

http://www.netlib.org/blas/sswap.f
http://www.netlib.org/blas/dswap.f
http://www.netlib.org/blas/cswap.f
http://www.netlib.org/blas/zswap.f

cublasStatus t cublasCgbmv (cublasHandle t handle,

cublasStatus t cublasZgbmv (cublasHandle t handle,

int m,
const
const
const
const

int n, int k1,
cuComplex
cuComplex
cuComplex
cuComplex

Using the cuBLAS API

cublasOperation_ t trans,

int ku,
*alpha,

*A, int 1lda,
*x, int incx,
*beta,

cuComplex *y, int incy)
cublasOperation t trans,

int m,
const
const
const
const

cuDoubleComplex *y,

int n, int k1,
cuDoubleComplex
cuDoubleComplex
cuDoubleComplex
cuDoubleComplex

This function supports the 64-bit Integer Interface.

int ku,
*alpha,

*A, int 1lda,
*x, 1int incx,
*beta,

int incy)

This function performs the banded matrix-vector multiplication

y = oplA)x + By

where A is a banded matrix with kl subdiagonals and ku superdiagonals, X and y are vectors,
and o and B are scalars. Also, for matrix A

A if transa == CUBLAS_OP_N
op(A)={ AT iftransa == CUBLAS_OP_T
A" if transa == CUBLAS_OP_H
The banded matrix A is stored column by column, with the main diagonal stored in row ku+1

(starting in first position], the first superdiagonal stored in row ku (starting in second position],
the first subdiagonal stored in row ku+ 2 (starting in first position), etc. So that in general,

the element A(i, j) is stored in the memory location A (ku+1+i-3,7) for j=1, ..., nand

i e[max(1, j- ku) min(m, j+ k)] . Also, the elements in the array A that do not conceptually

correspond to the elements in the banded matrix (the top left kux ku and bottom right kI x kI
triangles) are not referenced.

Param. Memory

handle

trans

n

k1l

ku
alpha host or device

A device

lda

X device

cuBLAS Library

In/out
input
input
input
input
input
input
input
input

input

input

Meaning

Handle to the cuBLAS library context.

Operation op(a) that is non- or (conj.) transpose.

Number of rows of matrix a.

Number of columns of matrix A.

Number of subdiagonals of matrix a.
Number of superdiagonals of matrix a.

<type> scalar used for multiplication.

<type> array of dimension 1da x n with 1da>=kl+ku+1.

Leading dimension of two-dimensional array used to store

matrix A.

<type> vector with n elements if transa == CUBLAS OP N
and m elements otherwise.

DU-06702-001_v12.0 | 44

Param. Memory In/out
incx input
beta host or device input
y device infout
incy input

Using the cuBLAS API

Meaning

Stride between consecutive elements of x.

<type> scalar used for multiplication, if beta == 0theny
does not have to be a valid input.

<type> vector with m elements if transa == CUBLAS OP N
and n elements otherwise.

Stride between consecutive elements of y.

The possible error values returned by this function and their meanings are listed in the

following table:
Error Value

CUBLAS STATUS SUCCESS
CUBLAS STATUS NOT INITIALIZED

CUBLAS STATUS INVALID VALUE

CUBLAS STATUS EXECUTION FAILED

For references please refer to:

sgbmv, dgbmv, cgbmv, zgbmv

Meaning

The operation completed successfully.
The library was not initialized.

» Ifm, n, k1, ku < 0or

» iflda < (kl+ku+l) or

» ifincx, incy == 0Oor

» if trans = CUBLAS_OP_N, CUBLAS_OP_T,
CUBLAS_OP_C or

» alpha, beta == NULL

The function failed to launch on the GPU.

2.6.2. cublas<t>gemv()

cublasStatus t cublasSgemv (cublasHandle t handle, cublasOperation t trans,

int m, int n,
const float *alpha,
const float *A, int 1lda,
const float ¥R, LMt LnEsK,
const float *beta,
float *y, int incy)
cublasStatus t cublasDgemv (cublasHandle t handle, cublasOperation t trans,
int m, int n,
const double *alpha,
const double *A, int 1lda,
const double WRp ARt AnEsk,
const double *beta,
double *y, int incy)
cublasStatus t cublasCgemv (cublasHandle t handle, cublasOperation t trans,
int m, int n,
const cuComplex *alpha,
const cuComplex *A, int 1lda,
const cuComplex *x, int incx,

cuBLAS Library

DU-06702-001_v12.0 | 45

http://www.netlib.org/blas/sgbmv.f
http://www.netlib.org/blas/dgbmv.f
http://www.netlib.org/blas/cgbmv.f
http://www.netlib.org/blas/zgbmv.f

Using the cuBLAS API

const cuComplex *beta,
cuComplex *y, int incy)
cublasStatus t cublasZgemv (cublasHandle t handle, cublasOperation t trans,

int m,
const
const
const
const

int n,

cuDoubleComplex *alpha,
cuDoubleComplex *A, int lda,
cuDoubleComplex *x, int incx,
cuDoubleComplex *beta,

cuDoubleComplex *y, int incy)

This function supports the 64-bit Integer Interface.

This function performs the matrix-vector multiplication

y = aop(A)x + By

where A is a mXx n matrix stored in column-major format, X and y are vectors, and o and 8
are scalars. Also, for matrix A

opl4)=

Param.

handle

trans

alpha

lda

incx

beta

incy

[QT

Memory

host or device

device

device

host or device

device

cuBLAS Library

In/out
input
input
input
input
input

input

input

input

input

input

in/out

input

A iftransa == CUBLAS_OP_N
if transa == CUBLAS_OP_T
AP if transa == CUBLAS_OP_H

Meaning

Handle to the cuBLAS library context.

Operation op(a) that is non- or (conj.) transpose.
Number of rows of matrix a.

Number of columns of matrix a.

<type> scalar used for multiplication.

<type> array of dimension 1da x nwith 1da >=

max (1,m) . Before entry, the leading m by n part of the array
A must contain the matrix of coefficients. Unchanged on
exit.

Leading dimension of two-dimensional array used to store
matrix A. 1da must be at least max (1, m).

<type> vector at least (1+ (n-1) *abs (incx))
elements if transa==CUBLAS_OP_N and at least
(1+ (m-1) *abs (incx)) elements otherwise.

Stride between consecutive elements of x.

<type> scalar used for multiplication, if beta==0 then y
does not have to be a valid input.

<type> vector at least (1+ (m-1) *abs (incy))
elements if transa==CUBLAS _OP N and at least
(1+(n-1) *abs (incy)) elements otherwise.

Stride between consecutive elements of y.

DU-06702-001_v12.0 |

46

Using the cuBLAS API

The possible error values returned by this function and their meanings are listed in the

following table:
Error Value

CUBLAS_STATUS_SUCCESS
CUBLAS_STATUS NOT INITIALIZED
CUBLAS_STATUS INVALID VALUE
CUBLAS_ STATUS EXECUTION FATILED

For references please refer to:

SQEWW,dQEWW,quWW,quWW

2.6.3.

cublasStatus t

cublas<t>gerl()

const float
const float
const float
float
cublasStatus t
const double
const double
const double
double
cublasStatus t

cuComplex
cublasStatus t

cuComplex
cublasStatus t

cublasSger (cublasHandle t handle,

cublasDger (cublasHandle t handle,

cublasCgeru(cublasHandle t handle,
const cuComplex
const cuComplex
const cuComplex

cublasCgerc (cublasHandle t handle,
const cuComplex
const cuComplex
const cuComplex

cublaszgeru(cublasHandle t handle,

Meaning

The operation completed successfully.
The library was not initialized.
The parameters m, n<0 or incx, incy=0.

The function failed to launch on the GPU.

int m,
*alpha,
Wk, AmE
*y, int
*A, int 1lda)

int m,
*alpha,
*x, int
*y, int
*A, int 1lda)

int m,
*alpha,
*x, int
*y, int
*A, int 1lda)

int m,
*alpha,
*x, int
*y, int
*A, int 1lda)
int m,

int n,

incx,
incy,

int n,

imesz,
incy,

int n,

incx,
incy,

int n,

incx,
incy,

int n,

const cuDoubleComplex *alpha,

const cuDoubleComplex *x,
const cuDoubleComplex *y,
cuDoubleComplex *A,
cublasZgerc (cublasHandle t handle,

cublasStatus t

int
int
int lda)

int m,

incx,
incy,

int n,

const cuDoubleComplex *alpha,

const cuDoubleComplex *x,
const cuDoubleComplex *y,
cuDoubleComplex *A,

imesz,
incy,

int
int
int lda)

This function supports the 64-bit Integer Interface.

This function performs the rank-1 update

oxyT+ A if ger(,geru() is called
~ loxyH+ A if gerc() is called

where A is a mX n matrix stored in column-major format, X and y are vectors, and & is a

scalar.

cuBLAS Library

DU-06702-001_v12.0

47

http://www.netlib.org/blas/sgemv.f
http://www.netlib.org/blas/dgemv.f
http://www.netlib.org/blas/cgemv.f
http://www.netlib.org/blas/zgemv.f

Param. Memory In/out
handle input
m input
n input
alpha host or device input
X device input
incx input
y device input
incy input
: device in/out
lda input

Using the cuBLAS API

Meaning

Handle to the cuBLAS library context.

Number of rows of matrix A.

Number of columns of matrix a.

<type> scalar used for multiplication.

<type> vector with m elements.

Stride between consecutive elements of x.

<type> vector with n elements.

Stride between consecutive elements of y.

<type> array of dimension 1da x nwith 1da >= max(1,m).

Leading dimension of two-dimensional array used to store
matrix A.

The possible error values returned by this function and their meanings are listed in the

following table:

Error Value

CUBLAS_ STATUS SUCCESS
CUBLAS STATUS NOT INITIALIZED

CUBLAS STATUS INVALID VALUE

CUBLAS STATUS EXECUTION FAILED

For references please refer to:

sger, dger, cgeru, cgerc, zgeru, zgerc

Meaning

The operation completed successfully.
The library was not initialized.

» Ifm<0Oorn<0

» ifincx=0o0rincy=0or
» ifalpha==NULL or
» 1da < max(1, m)

The function failed to launch on the GPU.

2.6.4. cublas<t>sbmv()

cublasStatus t cublasSsbmv (cublasHandle t handle, cublasFillMode t uplo,
int n, int k, const float *alpha,
const float *A, int 1lda,
const float *x, int incx,
const float *beta, float *y, int incy)
cublasStatus_t cublasDsbmv (cublasHandle t handle, cublasFillMode t uplo,

int n,

int k, const double *alpha,

const double *A, int lda,
const double *x, int incx,
const double *beta, double *y, int incy)

cuBLAS Library

DU-06702-001_v12.0 |

48

http://www.netlib.org/blas/sger.f
http://www.netlib.org/blas/dger.f
http://www.netlib.org/blas/cgeru.f
http://www.netlib.org/blas/cgerc.f
http://www.netlib.org/blas/zgeru.f
http://www.netlib.org/blas/zgerc.f

Using the cuBLAS API

This function supports the 64-bit Integer Interface.

This function performs the symmetric banded matrix-vector multiplication
Yy = aAx+ By

where A is a nX n symmetric banded matrix with k subdiagonals and superdiagonals, X and y
are vectors, and o and B are scalars.

If uplo == CUBLAS FILL MODE LOWER then the symmetric banded matrix A is stored column
by column, with the main diagonal of the matrix stored in row 1, the first subdiagonal in row

2 (starting at first position], the second subdiagonal in row 3 (starting at first position), etc. So
that in general, the element A(j, j) is stored in the memory location A (1+i-7,7) for j=1, ..., n
and i €[j, min(m, j+ k)] . Also, the elements in the array a that do not conceptually correspond
to the elements in the banded matrix (the bottom right k X k triangle) are not referenced.

If uplo == CUBLAS FILL MODE UPPER then the symmetric banded matrix A is stored column
by column, with the main diagonal of the matrix stored in row k+1, the first superdiagonal

in row k (starting at second position], the second superdiagonal in row k-1 (starting at third
position), etc. So that in general, the element A(j, j) is stored in the memory location & (1+k
+i-9,7) for j=1, ..., nmand i€[max(l, j— k), j] . Also, the elements in the array A that do not
conceptually correspond to the elements in the banded matrix (the top left k X k triangle) are
not referenced.

Param. Memory Infout Meaning
handle input Handle to the cuBLAS library context.
uplo input Indicates if matrix A lower or upper part is stored, the other

symmetric part is not referenced and is inferred from the
stored elements.

n input Number of rows and columns of matrix a.

k input Number of sub- and super-diagonals of matrix a.

alpha host or device input <type> scalar used for multiplication.

A device input <type> array of dimension 1da x nwith \1da >= k+1.

lda input Leading dimension of two-dimensional array used to store
matrix A.

X device input <type> vector with n elements.

incx input Stride between consecutive elements of x.

beta host or device input <type> scalar used for multiplication, if beta==0 then y does

not have to be a valid input.
y device infout <type> vector with n elements.

incy input Stride between consecutive elements of y.

The possible error values returned by this function and their meanings are listed in the
following table:

cuBLAS Library DU-06702-001_v12.0 | 49

Using the cuBLAS API

Error Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully.
CUBLAS_STATUS NOT INITIALIZED The library was not initialized.
CUBLAS_STATUS_INVALID VALUE » Ifn<0ork<0or

» ifincx=0o0rincy=0or

» ifuplo !=CUBLAS FILL MODE LOWER,
CUBLAS_FILL MODE UPPER Or

» ifalpha == NULL or beta == NULL or

> 1lda<(1+k)

CUBLAS_STATUS_ EXECUTION FAILED The function failed to launch on the GPU.

For references please refer to:

ssbmyv, dsbmv

2.6.5. cublas<t>spmuv(]

cublasStatus t cublasSspmv (cublasHandle t handle, cublasFillMode t uplo,
int n, const float *alpha, const float *AP,
const float *x, int incx, const float *beta,
float *y, int incy)

cublasStatus t cublasDspmv (cublasHandle t handle, cublasFillMode t uplo,
int n, const double *alpha, const double *AP,
const double *x, int incx, const double *beta,
double *y, int incy)

This function supports the 64-bit Integer Interface.
This function performs the symmetric packed matrix-vector multiplication
y = 0AX+ By

where A is a nX n symmetric matrix stored in packed format, X and y are vectors, and o and
B are scalars.

If uplo == CUBLAS FILL MODE LOWER then the elements in the lower triangular part of the
symmetric matrix A are packed together column by column without gaps, so that the element
A(i, j) is stored in the memory location AP [i+ ((2*n-3+1)*5) /2] for j=1, ..., nandi>j.

+1)

. n
Consequently, the packed format requires only H(T elements for storage.
If uplo == CUBLAS FILL MODE UPPER then the elements in the upper triangular part of
the symmetric matrix A are packed together column by column without gaps, so that the

element A(i, j) is stored in the memory location AP[i+ (§* (j+1)) /2] for j=1,...,nandi<j.

Consequently, the packed format requires only @ elements for storage.

cuBLAS Library DU-06702-001_v12.0 | 50

http://www.netlib.org/blas/ssbmv.f
http://www.netlib.org/blas/dsbmv.f

Using the cuBLAS API

Param. Memory In/fout Meaning
handle input Handle to the cuBLAS library context.
uplo input Indicates if matrix A lower or upper part is stored, the other

symmetric part is not referenced and is inferred from the
stored elements.

n input Number of rows and columns of matrix A .

alpha host or device input <type> scalar used for multiplication.

AP device input <type> array with A stored in packed format.

X device input <type> vector with n elements.

incx input Stride between consecutive elements of x.

beta host or device input <type> scalar used for multiplication, if beta==0 then y does

not have to be a valid input.
y device input <type> vector with n elements.

incy input Stride between consecutive elements of y.

The possible error values returned by this function and their meanings are listed in the
following table:

Error Value Meaning

CUBLAS_STATUS SUCCESS The operation completed successfully.
CUBLAS_STATUS_NOT INITIALIZED The library was not initialized.
CUBLAS_STATUS_ INVALID VALUE » Ifn<0Oor

» ifincx=0o0rincy=0or

» ifuplo!=CUBLAS FILL MODE LOWER,
CUBLAS_FILL MODE UPPER Or

» alpha==NULL orbeta==NULL

CUBLAS_STATUS_EXECUTION FAILED The function failed to launch on the GPU.

For references please refer to:

sspmyv, dspmv

2.6.6. cublas<t>spr(]

cublasStatus t cublasSspr (cublasHandle t handle, cublasFillMode t uplo,
int n, const float *alpha,
const float *x, int incx, float *AP)
cublasStatus t cublasDspr (cublasHandle t handle, cublasFillMode t uplo,
int n, const double *alpha,
const double *x, int incx, double *AP)

cuBLAS Library DU-06702-001_v12.0 | 51

http://www.netlib.org/blas/sspmv.f
http://www.netlib.org/blas/dspmv.f

Using the cuBLAS API

This function supports the 64-bit Integer Interface.

This function performs the packed symmetric rank-1 update

A=axxT+A

where A is a nX n symmetric matrix stored in packed format, X is a vector, and « is a scalar.

If uplo == CUBLAS FILL MODE LOWER then the elements in the lower triangular part of the
symmetric matrix A are packed together column by column without gaps, so that the element
A(L, j) is stored in the memory location AP [1i+ ((2*n-j+1)*j) /2] for j=1,...,nandi>j.

+1)

Consequently, the packed format requires only n(nT elements for storage.

If uplo == CUBLAS FILL MODE UPPER then the elements in the upper triangular part of
the symmetric matrix A are packed together column by column without gaps, so that the
element A(i, j) is stored in the memory location AP[i+ (§* (§+1)) /2] for j=1,...,nandi<j.

Consequently, the packed format requires only M elements for storage.

Param. Memory In/fout Meaning
handle input Handle to the cuBLAS library context.
uplo input Indicates if matrix A lower or upper part is stored, the other

symmetric part is not referenced and is inferred from the
stored elements.

n input Number of rows and columns of matrix A .
alpha host or device input <type> scalar used for multiplication.

X device input <type> vector with n elements.

incx input Stride between consecutive elements of x.
AP device infout <type> array with A stored in packed format.

The possible error values returned by this function and their meanings are listed in the
following table:

Error Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully.
CUBLAS_STATUS NOT INITIALIZED The library was not initialized.

CUBLAS STATUS INVALID VALUE » Ifn<0Oor

» ifincx=0o0r

» ifuplo !=CUBLAS FILL MODE LOWER,
CUBLAS FILL MODE UPPER Or

» alpha==NULL

CUBLAS_STATUS EXECUTION FAILED The function failed to launch on the GPU.

cuBLAS Library DU-06702-001_v12.0 | 52

Using the cuBLAS API

For references please refer to:

sspr, dspr

2.6.7. cublas<t>spr2(]

cublasStatus t cublasSspr2(cublasHandle t handle, cublasFillMode t uplo,
int n, const float *alpha,
const float *x, int incx,
const float *y, int incy, float *AP)
cublasStatus t cublasDspr2(cublasHandle t handle, cublasFillMode t uplo,
int n, const double *alpha,
const double *x, int incx,
const double *y, int incy, double *AP)

This function supports the 64-bit Integer Interface.

This function performs the packed symmetric rank-2 update
A=a(xyT+yxT)+A
where A is a nX n symmetric matrix stored in packed format, X is a vector, and « is a scalar.

If uplo == CUBLAS FILL MODE LOWER then the elements in the lower triangular part of the
symmetric matrix A are packed together column by column without gaps, so that the element
A(l, j) is stored in the memory location AP[i+ ((2*n-3+1)*5) /2] for j=1, ..., nandi>j.

nn+1)

Consequently, the packed format requires only 5 elements for storage.

If uplo == CUBLAS FILL MODE UPPER then the elements in the upper triangular part of
the symmetric matrix A are packed together column by column without gaps, so that the
element A(i, j) is stored in the memory location AP[i+ (§* (§+1)) /2] for j=1,...,nandi<j.

+1)

Consequently, the packed format requires only n(nT elements for storage.

Param. Memory In/out Meaning
handle input Handle to the cuBLAS library context.
uplo input Indicates if matrix A lower or upper part is stored, the other

symmetric part is not referenced and is inferred from the
stored elements.

n input Number of rows and columns of matrix A.
alpha host or device input <type> scalar used for multiplication.

X device input <type> vector with n elements.

incx input Stride between consecutive elements of x.

% device input <type> vector with n elements.

incy input Stride between consecutive elements of y.
AP device infout <type> array with A stored in packed format.

cuBLAS Library DU-06702-001_v12.0 | 53

http://www.netlib.org/blas/sspr.f
http://www.netlib.org/blas/dspr.f

Using the cuBLAS API

The possible error values returned by this function and their meanings are listed in the
following table:

Error Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully.
CUBLAS_STATUS_NOT_ INITIALIZED The library was not initialized.
CUBLAS_ STATUS_ INVALID VALUE » Ifn<0Oor

» ifincx=0o0rincy=0or

» ifuplo !=CUBLAS FILL MODE LOWER,
CUBLAS FILL MODE UPPER Or

» alpha==NULL
CUBLAS_STATUS EXECUTION FAILED The function failed to launch on the GPU.

For references please refer to:

sspr2, dspr?

2.6.8. cublas<t>symv()

cublasStatus_t cublasSsymv (cublasHandle t handle, cublasFillMode t uplo,

int n, const float *alpha,
const float *A, int 1lda,
const float *x, int incx, const float
*beta,
float *y, int incy)
cublasStatus t cublasDsymv (cublasHandle t handle, cublasFillMode t uplo,
int n, const double *alpha,
const double *A, int 1lda,
const double *x, 1int incx, const double
*beta,
double *y, int incy)
cublasStatus_t cublasCsymv (cublasHandle t handle, cublasFillMode t uplo,
int n, const cuComplex *alpha, /* host or device
pointer */
const cuComplex *A, int 1lda,
const cuComplex *x, int incx, const cuComplex
*beta,
cuComplex *y, int incy)

cublasStatus t cublasZsymv (cublasHandle t handle, cublasFillMode t uplo,
int n, const cuDoubleComplex *alpha,
const cuDoubleComplex *A, int lda,
const cuDoubleComplex *x, int incx, const cuDoubleComplex
*beta,
cuDoubleComplex *y, int incy)

This function supports the 64-bit Integer Interface.

This function performs the symmetric matrix-vector multiplication.
Y = aAx+ By

where A is a nX n symmetric matrix stored in lower or upper mode, X and y are vectors, and
o and B are scalars.

cuBLAS Library DU-06702-001_v12.0 | 54

http://www.netlib.org/blas/sspr2.f
http://www.netlib.org/blas/dspr2.f

Using the cuBLAS API

This function has an alternate faster implementation using atomics that can be enabled with

cublasSetAtomicsMode ().

Please see the section on the function cublasSetAtomicsMode () for more details about the

usage of atomics.

Param. Memory In/out
handle input
uplo input
n input
alpha host or device input
A device input
lda input
X device input
incx input
beta host or device input
y device infout
incy input

Meaning

Handle to the cuBLAS library context.

Indicates if matrix lower or upper part is stored, the other
symmetric part is not referenced and is inferred from the
stored elements.

Number of rows and columns of matrix a.
<type> scalar used for multiplication.
<type> array of dimension 1da x n with 1da>=max (1,n).

Leading dimension of two-dimensional array used to store
matrix A.

<type> vector with n elements.
Stride between consecutive elements of x.

<type> scalar used for multiplication, if beta==0 then y does
not have to be a valid input.

<type> vector with n elements.

Stride between consecutive elements of y.

The possible error values returned by this function and their meanings are listed in the

following table:
Error Value
CUBLAS_STATUS SUCCESS
CUBLAS STATUS NOT INITIALIZED

CUBLAS STATUS INVALID VALUE

CUBLAS STATUS EXECUTION FAILED

For references please refer to:

ssymv, dsymv

cuBLAS Library

Meaning

The operation completed successfully.
The library was not initialized.

» Ifn<0or

» ifincx=0o0rincy=0or

» ifuplo !=CUBLAS FILL MODE LOWER,
CUBLAS FILL MODE UPPER Or

» lda<n

The function failed to launch on the GPU.

DU-06702-001_v12.0 | 55

http://www.netlib.org/blas/ssymv.f
http://www.netlib.org/blas/dsymv.f

Using the cuBLAS API

2.6.9. cublas<t>syr(]

cublasStatus t cublasSsyr (cublasHandle t handle, cublasFillMode t uplo,
int n, const float *alpha,
const float *x, int incx, float
*A, int 1lda)
cublasStatus t cublasDsyr (cublasHandle t handle, cublasFillMode t uplo,
int n, const double *alpha,
const double *x, int incx, double
*A, int 1lda)
cublasStatus t cublasCsyr (cublasHandle t handle, cublasFillMode t uplo,
int n, const cuComplex *alpha,
const cuComplex *x, int incx, cuComplex
*A, int 1lda)
cublasStatus t cublasZsyr (cublasHandle t handle, cublasFillMode t uplo,
int n, const cuDoubleComplex *alpha,
const cuDoubleComplex *x, int incx, cuDoubleComplex
*A, int 1lda)

This function supports the 64-bit Integer Interface.

This function performs the symmetric rank-1 update
A=oxxT+A

where A is a n X n symmetric matrix stored in column-major format, X is a vector, and & is a
scalar.

Param. Memory Infout Meaning
handle input Handle to the cuBLAS library context.
uplo input Indicates if matrix A lower or upper part is stored, the other

symmetric part is not referenced and is inferred from the
stored elements.

n input Number of rows and columns of matrix a.

alpha host or device input <type> scalar used for multiplication.

X device input <type> vector with n elements.

incx input Stride between consecutive elements of x.

A device in/out <type> array of dimensions 1da x n, with 1da>=max (1,n).

lda input Leading dimension of two-dimensional array used to store
matrix A.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully.
CUBLAS_STATUS_NOT_ INITIALIZED The library was not initialized.
CUBLAS_STATUS INVALID VALUE » Ifn<0Oor

cuBLAS Library DU-06702-001_v12.0 |

56

Error Value

Using the cuBLAS API

Meaning
» ifincx=0or

» ifuplo !=CUBLAS FILL MODE LOWER,
CUBLAS FILL MODE UPPER Or

» if 1da < max(1, n) or

» alpha==NULL

The function failed to launch on the GPU.

CUBLAS STATUS EXECUTION FAILED

For references please refer to:

ssyr, dsyr

2.6.10.

cublasStatus t cublasSsyr2(cublasHandle t handle,
const float

cublas<t>syr2()

*x, int incx,
const float
*A, int 1lda
cublasStatus t cublasDsyr2 (cublasHandle t handle,
const double
*x, 1int incx,
const double
*A, int lda
cublasStatus t cublasCsyr2(cublasHandle t handle,
const cuComplex
*x, int incx,
const cuComplex
*A, int lda
cublasStatus t cublasZsyr2(cublasHandle t handle,
const cuDoubleComplex
*x, int incx,
const cuDoubleComplex
*A, int 1lda

This function supports the 64-bit Integer Interface.

This function performs the symmetric rank-2 update

cublasFillMode t uplo,
*alpha, const float

int n,

*y, int incy, float

cublasFillMode t uplo,
*alpha, const double

int n,

*y, int incy, double

cublasFillMode t uplo,
*alpha, const cuComplex

int n,

*y, int incy, cuComplex

cublasFillMode t uplo, int n,
*alpha, const cuDoubleComplex

*y, int incy, cuDoubleComplex

A=a(xyT+yxT)+A

where A is a n X n symmetric matrix stored in column-major format, X and y are vectors, and

& is a scalar.

Handle to the cuBLAS library context.

Indicates if matrix A lower or upper part is stored, the other
symmetric part is not referenced and is inferred from the

Number of rows and columns of matrix A.

Param. Memory In/fout Meaning
handle input
uplo input

stored elements.
n input
alpha host or device input

cuBLAS Library

<type> scalar used for multiplication.

DU-06702-001_v12.0 | 57

http://www.netlib.org/blas/ssyr.f
http://www.netlib.org/blas/dsyr.f

Param. Memory In/out
X device input
incx input
y device input
incy input
A device in/out
lda input

Using the cuBLAS API

Meaning

<type> vector with n elements.

Stride between consecutive elements of x.

<type> vector with n elements.

Stride between consecutive elements of y.

<type> array of dimensions 1da x n, with 1da>=max (1,n).

Leading dimension of two-dimensional array used to store
matrix A.

The possible error values returned by this function and their meanings are listed in the

following table:
Error Value
CUBLAS_STATUS SUCCESS
CUBLAS_STATUS NOT INITIALIZED

CUBLAS STATUS INVALID VALUE

CUBLAS STATUS EXECUTION FAILED

For references please refer to:

ssyr2, dsyr?

Meaning

The operation completed successfully.
The library was not initialized.

» Ifn<0Oor

» ifincx=0o0rincy=0or

» ifuplo |=CUBLAS FILL MODE LOWER,
CUBLAS_FILL MODE UPPER Or

» ifalpha == NULL or

» 1lda < max(1, n

The function failed to launch on the GPU.

2.6.11.

cublasStatus

cublasStatus

cublasStatus

cublasStatus

cuBLAS Library

cublas<t>tbmv(]

t cublasStbmv (cublasHandle t handle, cublasFillMode t
cublasOperation t trans,
int n, int k, const float
float *x, int incx)

t cublasDtbmv (cublasHandle t handle, cublasFillMode t
cublasOperation t trans,
int n, int k, const double
double *x, int incx)

t cublasCtbmv (cublasHandle t handle, cublasFillMode t
cublasOperation t trans,
int n, int k, const cuComplex
cuComplex *x, int incx)

t cublasZtbmv (cublasHandle t handle, cublasFillMode t
cublasOperation t trans,
int n, int k, const cuDoubleComplex *A,
cuDoubleComplex *x, int incx)

*A,

*A,

*A,

DU-06702-001_v12.0

cublasDiagType

cublasDiagType

cublasDiagType

cublasDiagType

uplo,
t diag,
int 1lda,

uplo,
t diag,
int 1lda,

uplo,
t diag,
int 1lda,

uplo,
t diag,
int 1lda,

58

http://www.netlib.org/lapack/explore-html/db/d99/ssyr2_8f_source.html
http://www.netlib.org/lapack/explore-html/de/d41/dsyr2_8f_source.html

Using the cuBLAS API

This function supports the 64-bit Integer Interface.

This function performs the triangular banded matrix-vector multiplication
X=0p(A)x
where A is a triangular banded matrix, and X is a vector. Also, for matrix A

A if transa == CUBLAS_OP_N
op(4)={ AT iftransa == CUBLAS_OP_T
A" if transa == CUBLAS_OP_C

If uplo == CUBLAS FILL MODE LOWER then the triangular banded matrix A is stored column
by column, with the main diagonal of the matrix stored in row 1, the first subdiagonal in row

2 (starting at first position], the second subdiagonal in row 3 (starting at first position), etc. So
that in general, the element A(j, j) is stored in the memory location A (1+i-7,7) for j=1, ..., n
and i €[j, min(m, j+ k)] . Also, the elements in the array a that do not conceptually correspond
to the elements in the banded matrix (the bottom right k X k triangle) are not referenced.

If uplo == CUBLAS FILL MODE UPPER then the triangular banded matrix A is stored column
by column, with the main diagonal of the matrix stored in row k+1, the first superdiagonal

in row k (starting at second position], the second superdiagonal in row k-1 (starting at third
position), and so on. So that in general, the element A(j, j) is stored in the memory location
A(1+k+i-j,7) for j=1, ...,nand i€[max(l, j- Kk, j)]. Also, the elements in the array A that do
not conceptually correspond to the elements in the banded matrix (the top left kX k triangle)
are not referenced.

Param. Memory Infout Meaning

handle input Handle to the cuBLAS library context.

uplo input Indicates if matrix & lower or upper part is stored, the other part
is not referenced and is inferred from the stored elements.

trans input Operation op(a) that is non- or (conj.) transpose.

diag input Indicates if the elements on the main diagonal of matrix A are
unity and should not be accessed.

n input Number of rows and columns of matrix a.

k input Number of sub- and super-diagonals of matrix .

A device input <type> array of dimension 1da x n, with 1da>=k+1.

lda input Leading dimension of two-dimensional array used to store
matrix A.

X device in/out <type> vector with n elements.

incx input Stride between consecutive elements of x.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully.

cuBLAS Library DU-06702-001_v12.0 | 59

Using the cuBLAS API

Error Value Meaning

CUBLAS_ STATUS NOT INITIALIZED

CUBLAS STATUS INVALID VALUE >

CUBLAS_STATUS ALLOC_FAILED

CUBLAS STATUS EXECUTION FAILED

For references please refer to:

stbmv, dtbmyv, ctbmy, ztbmv

2.6.12. cublas<t>tbsv(]

The library was not initialized.

fn<Oork<0or
if incx=0or

if trans |= CUBLAS OP N, CUBLAS OP C,
CUBLAS OP_Tor

if uplo = CUBLAS FILL MODE LOWER,
CUBLAS FILL MODE UPPER Or

if diag |= CUBLAS DIAG UNIT,
CUBLAS_DIAG NON UNIT or

lda < (1 + k)

The function failed to launch on the GPU.

cublasStatus t cublasStbsv(cublasHandle t handle, cublasFillMode t uplo,
cublasOperation t trans, cublasDiagType t diag,
int n, int k, const float *A, int 1lda,

float *X,

int incx)

cublasStatus t cublasDtbsv (cublasHandle t handle, cublasFillMode t uplo,
cublasOperation t trans, cublasDiagType t diag,
int n, int k, const double *A, int 1lda,

double *x,

int incx)

cublasStatus t cublasCtbsv(cublasHandle t handle, cublasFillMode t uplo,
cublasOperation t trans, cublasDiagType t diag,
int n, int k, const cuComplex *A, int 1lda,

cuComplex *x,

int incx)

cublasStatus t cublasZtbsv(cublasHandle t handle, cublasFillMode t uplo,
cublasOperation t trans, cublasDiagType t diag,
int n, int k, const cuDoubleComplex *A, int lda,

cuDoubleComplex *x,

This function supports the 64-bit Integer Interface.

int incx)

This function solves the triangular banded linear system with a single right-hand-side

oplAx=b

where A is a triangular banded matrix, and X and b are vectors. Also, for matrix A

A if transa == CUBLAS_OP_N
op(A)={AT if transa == CUBLAS_OP_T
AH if transa == CUBLAS_OP_C

The solution X overwrites the right-hand-sides b on exit.

cuBLAS Library

DU-06702-001_v12.0

The allocation of internal scratch memory failed.

60

http://www.netlib.org/blas/stbmv.f
http://www.netlib.org/blas/dtbmv.f
http://www.netlib.org/blas/ctbmv.f
http://www.netlib.org/blas/ztbmv.f

Using the cuBLAS API

No test for singularity or near-singularity is included in this function.

If uplo == CUBLAS FILL MODE LOWER then the triangular banded matrix A is stored column
by column, with the main diagonal of the matrix stored in row 1, the first subdiagonal in row

2 [starting at first position), the second subdiagonal in row 3 (starting at first position], etc. So
that in general, the element A(j, j) is stored in the memory location A (1+i-3,75) for j=1, ..., n
and i1 €[j, min(m, j+ k)] . Also, the elements in the array a that do not conceptually correspond
to the elements in the banded matrix (the bottom right kX k triangle) are not referenced.

If uplo == CUBLAS FILL MODE UPPER then the triangular banded matrix A is stored column
by column, with the main diagonal of the matrix stored in row k+1, the first superdiagonal

in row k (starting at second position), the second superdiagonal in row k-1 (starting at third
position), etc. So that in general, the element A(l, j) is stored in the memory location & (1+k
+i-9,7) for j=1, ...,nand i€[max(l, j- Kk, j)]. Also, the elements in the array a that do not
conceptually correspond to the elements in the banded matrix (the top left k X k triangle) are
not referenced.

Param. Memory Infout Meaning

handle input Handle to the cuBLAS library context.

uplo input Indicates if matrix A lower or upper part is stored, the other part
is not referenced and is inferred from the stored elements.

trans input Operation op(a) that is non- or (conj.) transpose.

diag input Indicates if the elements on the main diagonal of matrix & are
unity and should not be accessed.

n input Number of rows and columns of matrix a.

k input Number of sub- and super-diagonals of matrix a.

A device input <type> array of dimension 1da x n, with 1da >= k+1.

lda input Leading dimension of two-dimensional array used to store
matrix A.

X device in/out <type> vector with n elements.

incx input Stride between consecutive elements of x.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully.
CUBLAS_STATUS NOT INITIALIZED The library was not initialized.
CUBLAS_ STATUS_ INVALID VALUE » Ifn<0ork<0or

» ifincx=0o0r

» if trans |= CUBLAS OP N, CUBLAS_OP C,
CUBLAS_OP_Tor

cuBLAS Library DU-06702-001_v12.0 | 61

Using the cuBLAS API

Error Value Meaning

» ifuplo!=CUBLAS FILL MODE LOWER,
CUBLAS_FILL MODE UPPER Or

» ifdiag!= CUBLAS DIAG UNIT,
CUBLAS DIAG NON UNIT or

> 1da < (1 +k)

CUBLAS_STATUS EXECUTION FAILED The function failed to launch on the GPU.

For references please refer to:

stbsy, dtbsv, ctbsv, ztbsv

2.6.13. cublas<t>tpmuv(]

cublasStatus t cublasStpmv (cublasHandle t handle, cublasFillMode t uplo,
cublasOperation t trans, cublasDiagType t diag,
int n, const float WAP,
float *x, int incx)

cublasStatus t cublasDtpmv (cublasHandle t handle, cublasFillMode t uplo,
cublasOperation t trans, cublasDiagType t diag,
int n, const double *AP,
double *x, int incx)

cublasStatus t cublasCtpmv (cublasHandle t handle, cublasFillMode t uplo,
cublasOperation t trans, cublasDiagType t diag,
int n, const cuComplex *AP,
cuComplex *x, int incx)

cublasStatus t cublasZtpmv (cublasHandle t handle, cublasFillMode t uplo,
cublasOperation t trans, cublasDiagType t diag,
int n, const cuDoubleComplex *AP,
cuDoubleComplex *x, int incx)

This function supports the 64-bit Integer Interface.

This function performs the triangular packed matrix-vector multiplication
X=0p(A)x
where A is a triangular matrix stored in packed format, and X is a vector. Also, for matrix A

A iftransa == CUBLAS_OP_N
op(A)={AT if transa == CUBLAS_OP_T
A" if transa == CUBLAS_OP_C
If uplo == CUBLAS FILL MODE LOWER then the elements in the lower triangular part of the

triangular matrix Aare packed together column by column without gaps, so that the element
A(l, j) is stored in the memory location AP[i+ ((2*n-3+1) *j) /2] for j=1, ..., nandi>j.

. +1
Consequently, the packed format requires only % elements for storage.

If uplo == CUBLAS FILL MODE_ UPPER then the elements in the upper triangular part of
the triangular matrix A are packed together column by column without gaps, so that the
element A(i, j) is stored in the memory location AP [i+ (§* (§+1)) /2] for A(, j)and i< j .

nn+1

Consequently, the packed format requires only —5 elements for storage.

cuBLAS Library DU-06702-001_v12.0 | 62

http://www.netlib.org/blas/stbsv.f
http://www.netlib.org/blas/dtbsv.f
http://www.netlib.org/blas/ctbsv.f
http://www.netlib.org/blas/ztbsv.f

Param. Memory

handle

uplo

trans

diag

AP device
x device

incx

In/out
input

input

input

input

input
input
infout

input

Meaning

Handle to the cuBLAS library context.

Using the cuBLAS API

Indicates if matrix & lower or upper part is stored, the other part
is not referenced and is inferred from the stored elements.

Operation op(a] that is non- or (conj.) transpose.

Indicates if the elements on the main diagonal of matrix A are
unity and should not be accessed.

Number of rows and columns of matrix a.

<type> array with A stored in packed format.

<type> vector with n elements.

Stride between consecutive elements of x.

The possible error values returned by this function and their meanings are listed below.

Error Value

CUBLAS STATUS SUCCESS

CUBLAS STATUS NOT INITIALIZED

CUBLAS STATUS INVALID VALUE

CUBLAS STATUS ALLOC FAILED

CUBLAS STATUS EXECUTION FAILED

For references please refer to:

stpmyv, dtpmv, ctpmy, ztpmv

2.6.14.

cublasStatus t cublasStpsv(cublasHandle t handle,
cublasOperation t trans,

cublasStatus t cublasDtpsv(cublasHandle t handle,
cublasOperation t trans,

cuBLAS Library

cublas<t>tpsv()

Meaning

The operation completed successfully.

The library was not initialized.

» Ifn < oOor

» ifincx == 0or

» ifuplo != CUBLAS FILL MODE UPPER,
CUBLAS FILL MODE LOWER Or

» if trans != CUBLAS OP N, CUBLAS OP T,

CUBLAS_OP C or

» diag != CUBLAS DIAG UNIT,

CUBLAS_DIAG NON UNIT

The allocation of internal scratch memory failed.

The function failed to launch on the GPU.

int n, const float *AP,

float

*x, int incx)

int n, const double *AP,

cublasFillMode t uplo,
cublasDiagType t diag,

cublasFillMode t uplo,
cublasDiagType t diag,

DU-06702-001_v12.0 | 63

http://www.netlib.org/blas/stpmv.f
http://www.netlib.org/blas/dtpmv.f
http://www.netlib.org/blas/ctpmv.f
http://www.netlib.org/blas/ztpmv.f

Using the cuBLAS API

double *x, 1int incx)

cublasStatus t cublasCtpsv(cublasHandle t handle, cublasFillMode t uplo,
cublasOperation t trans, cublasDiagType t diag,
int n, const cuComplex *AP,
cuComplex *x, 1int incx)

cublasStatus t cublasZtpsv(cublasHandle t handle, cublasFillMode t uplo,
cublasOperation t trans, cublasDiagType t diag,
int n, const cuDoubleComplex *AP,
cuDoubleComplex *x, int incx)

This function supports the 64-bit Integer Interface.

This function solves the packed triangular linear system with a single right-hand-side
op(Ax=b
where A is a triangular matrix stored in packed format, and X and b are vectors. Also, for
matrix A

A if transa == CUBLAS_OP_N
op(A)={AT if transa == CUBLAS_OP_T

AP if transa == CUBLAS_OP_C
The solution X overwrites the right-hand-sides b on exit.

No test for singularity or near-singularity is included in this function.

If uplo == CUBLAS FILL MODE LOWER then the elements in the lower triangular part of the
triangular matrix A are packed together column by column without gaps, so that the element
A(i, j) is stored in the memory location AP [i+ ((2*n-3+1)*5) /2] for j=1, ..., nandi>j.

nn+1)

Consequently, the packed format requires only —5 elements for storage.

If uplo == CUBLAS FILL MODE UPPER then the elements in the upper triangular part of
the triangular matrix A are packed together column by column without gaps, so that the
element A(i, j) is stored in the memory location AP[i+ (§* (j+1)) /2] for j=1,...,nandi<j.

Consequently, the packed format requires only @ elements for storage.

Param. Memory Infout Meaning
handle input Handle to the cuBLAS library context.

uplo input Indicates if matrix a lower or upper part is stored, the other part
is not referenced and is inferred from the stored elements.

trans input Operation op(a) that is non- or (conj.) transpose.

diag input Indicates if the elements on the main diagonal of matrix are
unity and should not be accessed.

n input Number of rows and columns of matrix a.
AP device input <type> array with & stored in packed format.
X device in/out <type> vector with n elements.

incx input Stride between consecutive elements of x.

cuBLAS Library DU-06702-001_v12.0 | 64

Using the cuBLAS API

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS
CUBLAS_STATUS NOT INITIALIZED
CUBLAS_STATUS INVALID VALUE >

>

CUBLAS STATUS EXECUTION FAILED

For references please refer to:

stpsv, dtpsvy, ctpsv, ztpsv

2.6.15. cublas<t>trmv(]

The operation completed successfully.

The library was not initialized.

lfn<0or
if incx=0or

if trans |= CUBLAS_OP_N, CUBLAS OP_C,
CUBLAS_OP_Tor

if uplo |= CUBLAS FILL MODE LOWER,
CUBLAS_FILL MODE UPPER Or

diag != CUBLAS DIAG UNIT,
CUBLAS_DIAG NON UNIT

The function failed to launch on the GPU.

cublasStatus t cublasStrmv (cublasHandle t handle, cublasFillMode t uplo,
cublasOperation t trans, cublasDiagType t diag,

int n, const float
float *x,

*A, int 1lda,
int incx)

cublasStatus t cublasDtrmv (cublasHandle t handle, cublasFillMode t uplo,
cublasOperation t trans, cublasDiagType t diag,

int n, const double
double *x,

*A, int 1lda,
int incx)

cublasStatus t cublasCtrmv (cublasHandle t handle, cublasFillMode t uplo,
cublasOperation t trans, cublasDiagType t diag,
int n, const cuComplex *A, int 1lda,

cuComplex W5y

int incx)

cublasStatus t cublasZtrmv (cublasHandle t handle, cublasFillMode t uplo,
cublasOperation t trans, cublasDiagType t diag,
int n, const cuDoubleComplex *A, int lda,

cuDoubleComplex *x,

This function supports the 64-bit Integer Interface.

int incx)

This function performs the triangular matrix-vector multiplication

x=o0p(A)x

where A is a triangular matrix stored in lower or upper mode with or without the main

diagonal, and X is a vector. Also, for matrix A

A if transa == CUBLAS_OP_N
op(A)={AT if transa == CUBLAS_OP_T
AH if transa == CUBLAS_OP_C

cuBLAS Library

DU-06702-001_v12.0

65

http://www.netlib.org/blas/stpsv.f
http://www.netlib.org/blas/dtpsv.f
http://www.netlib.org/blas/ctpsv.f
http://www.netlib.org/blas/ztpsv.f

Param. Memory Infout Meaning

Using the cuBLAS API

handle input Handle to the cuBLAS library context.

uplo input Indicates if matrix & lower or upper part is stored, the other part

is not referenced and is inferred from the stored elements.

trans input Operation op(a] (that is, non- or conj.] transpose.

diag input Indicates if the elements on the main diagonal of matrix A are

unity and should not be accessed.

n input Number of rows and columns of matrix a.

A device input <type> array of dimensions 1da x n, with 1da>=max (1,n).

lda input Leading dimension of two-dimensional array used to store
matrix A.

x device in/out <type> vector with n elements.

incx input Stride between consecutive elements of x.

The possible error values returned by this function and their meanings are listed below.

Error Value

CUBLAS STATUS SUCCESS
CUBLAS STATUS NOT INITIALIZED

CUBLAS STATUS INVALID VALUE

CUBLAS_STATUS ALLOC_FAILED

CUBLAS STATUS EXECUTION FATILED

For references please refer to:

strmy, dtrmv, ctrmyv, ztrmv

2.6.16. cublas<t>trsv(]

Meaning

The operation completed successfully.

The library was not initialized.

>

The allocation of internal scratch memory failed.

lfn<0or
if incx=0or

if trans |= CUBLAS OP N, CUBLAS OP C,
CUBLAS OP_Tor

if uplo |= CUBLAS FILL MODE LOWER,
CUBLAS_FILL MODE UPPER Or

if diag = CUBLAS DIAG UNIT,
CUBLAS DIAG NON UNIT or

1da < max(1, n)

The function failed to launch on the GPU.

cublasStatus t cublasStrsv(cublasHandle t handle, cublasFillMode t uplo,

cuBLAS Library

DU-06702-001_v12.0

66

http://www.netlib.org/blas/strmv.f
http://www.netlib.org/blas/dtrmv.f
http://www.netlib.org/blas/ctrmv.f
http://www.netlib.org/blas/ztrmv.f

Using the cuBLAS API

cublasOperation t trans, cublasDiagType t diag,
int n, const float *A, int lda,
float *x, 1int incx)

cublasStatus t cublasDtrsv(cublasHandle t handle, cublasFillMode t uplo,

cublasOperation t trans, cublasDiagType t diag,
int n, const double *A, int 1lda,
double *x, int incx)

cublasStatus t cublasCtrsv(cublasHandle t handle, cublasFillMode t uplo,

cublasOperation t trans, cublasDiagType t diag,
int n, const cuComplex *A, int 1lda,
cuComplex *x, 1int incx)

cublasStatus t cublasZtrsv(cublasHandle t handle, cublasFillMode t uplo,

cublasOperation t trans, cublasDiagType t diag,
int n, const cuDoubleComplex *A, int lda,
cuDoubleComplex *x, int incx)

This function supports the 64-bit Integer Interface.

This function solves the triangular linear system with a single right-hand-side

op(Ax=b

where A is a triangular matrix stored in lower or upper mode with or without the main
diagonal, and x and b are vectors. Also, for matrix A

A if transa == CUBLAS_OP_N
op(A)={AT if transa == CUBLAS_OP_T
AH if transa == CUBLAS_OP_C

The solution X overwrites the right-hand-sides b on exit.

No test for singularity or near-singularity is included in this function.

Param.

handle

uplo

trans

diag

A device

lda

x device

incx

Memory

In/out
input

input

input

input

input
input

input

in/out

input

Meaning

Handle to the cuBLAS library context.

Indicates if matrix A lower or upper part is stored, the other part
is not referenced and is inferred from the stored elements.

Operation op(a) that is non- or (conj.) transpose.

Indicates if the elements on the main diagonal of matrix A are
unity and should not be accessed.

Number of rows and columns of matrix a.
<type> array of dimension 1da x n, with 1da>=max (1,n).

Leading dimension of two-dimensional array used to store
matrix A.

<type> vector with n elements.

Stride between consecutive elements of x.

The possible error values returned by this function and their meanings are listed below.

Error Value

CUBLAS STATUS SUCCESS

cuBLAS Library

Meaning

The operation completed successfully.

DU-06702-001_v12.0 | 67

Using the cuBLAS API

Error Value Meaning
CUBLAS_STATUS NOT INITIALIZED The library was not initialized.
CUBLAS_STATUS_INVALID VALUE » Ifn<Qor

» ifincx=0o0r

» if trans |=CUBLAS OP N, CUBLAS OP C,
CUBLAS OP_Tor

» ifuplo !=CUBLAS FILL MODE LOWER,
CUBLAS FILL MODE UPPER Or

» ifdiag |= CUBLAS DIAG UNIT,
CUBLAS_DIAG NON UNIT or

» 1da < maxl1, n)
CUBLAS_STATUS EXECUTION FAILED The function failed to launch on the GPU.

For references please refer to:

strsv, dtrsv, ctrsv, ztrsv

2.6.17. cublas<t>hemv(]

cublasStatus t cublasChemv (cublasHandle t handle, cublasFillMode t uplo,

int n, const cuComplex *alpha,
const cuComplex *A, int 1lda,
const cuComplex WRp ARt AmEsk,
const cuComplex *beta,
cuComplex *y, int incy)

cublasStatus t cublasZhemv (cublasHandle t handle, cublasFillMode t uplo,
int n, const cuDoubleComplex *alpha,
const cuDoubleComplex *A, int lda,
const cuDoubleComplex *x, int incx,
const cuDoubleComplex *beta,
cuDoubleComplex *y, int incy)

This function supports the 64-bit Integer Interface.

This function performs the Hermitian matrix-vector multiplication
y = 0Ax+ By

where A is a nX n Hermitian matrix stored in lower or upper mode, X and y are vectors, and
o and B are scalars.

This function has an alternate faster implementation using atomics that can be enabled with
cublasSetAtomicsMode ().

Please see the section on the function cublasSetAtomicsMode () for more details about the
usage of atomics.

Param. Memory Infout Meaning

handle input Handle to the cuBLAS library context.

cuBLAS Library DU-06702-001_v12.0 | 68

http://www.netlib.org/blas/strsv.f
http://www.netlib.org/blas/dtrsv.f
http://www.netlib.org/blas/ctrsv.f
http://www.netlib.org/blas/ztrsv.f

Using the cuBLAS API

Param. Memory In/fout Meaning

uplo

input Indicates if matrix & lower or upper part is stored, the other
Hermitian part is not referenced and is inferred from the
stored elements.

n input Number of rows and columns of matrix a.

alpha host or device input <type> scalar used for multiplication.

A device input <type> array of dimension 1da x n, with 1da>=max (1,n).
The imaginary parts of the diagonal elements are assumed
to be zero.

lda input Leading dimension of two-dimensional array used to store
matrix A.

X device input <type> vector with n elements.

incx input Stride between consecutive elements of x.

beta host or device input <type> scalar used for multiplication, if beta==0 then y does
not have to be a valid input.

y device infout <type> vector with n elements.

incy input Stride between consecutive elements of y.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning
CUBLAS_STATUS SUCCESS The operation completed successfully.
CUBLAS_STATUS_NOT_ INITIALIZED The library was not initialized.
CUBLAS_STATUS_ INVALID VALUE » Ifn<0Oor

» ifincx=0o0rincy=0or

» ifuplo!=CUBLAS FILL MODE LOWER,

CUBLAS_FILL MODE UPPER Or

» lda<n

CUBLAS_STATUS_EXECUTION FAILED The function failed to launch on the GPU.

For references please refer to:

chemv, zhemv

2.6.18.

cublas<t>hbmv()

cublasStatus t cublasChbmv (cublasHandle t handle, cublasFillMode t uplo,

cuBLAS Library

int n, int k, const cuComplex *alpha,
const cuComplex *A, int 1lda,
const cuComplex *x, int incx,

DU-06702-001_v12.0 | 69

http://www.netlib.org/blas/chemv.f
http://www.netlib.org/blas/zhemv.f

Using the cuBLAS API

const cuComplex *beta,
cuComplex *y, int incy)
cublasStatus t cublasZhbmv (cublasHandle t handle, cublasFillMode t uplo,
int n, int k, const cuDoubleComplex *alpha,
const cuDoubleComplex *A, int lda,
const cuDoubleComplex *x, int incx,
const cuDoubleComplex *beta,
cuDoubleComplex *y, int incy)

This function supports the 64-bit Integer Interface.

This function performs the Hermitian banded matrix-vector multiplication
Yy = aAx+ By

where A is a nX n Hermitian banded matrix with k subdiagonals and superdiagonals, x and y
are vectors, and o and B are scalars.

If uplo == CUBLAS FILL MODE LOWER then the Hermitian banded matrix A is stored column
by column, with the main diagonal of the matrix stored in row 1, the first subdiagonal in row

2 (starting at first position], the second subdiagonal in row 3 (starting at first position), etc. So
that in general, the element A(j, j) is stored in the memory location A (1+i-7,7) for j=1, ..., n
and i €[j, min(m, j+ k)] . Also, the elements in the array a that do not conceptually correspond
to the elements in the banded matrix (the bottom right k X k triangle) are not referenced.

If uplo == CUBLAS FILL MODE UPPER then the Hermitian banded matrix A is stored column
by column, with the main diagonal of the matrix stored in row k+1, the first superdiagonal

in row k (starting at second position], the second superdiagonal in row k-1 (starting at third
position), etc. So that in general, the element A(j, j) is stored in the memory location & (1+k
+i-9,7) for j=1, ..., nmand i€[max(l, j— k), j] . Also, the elements in the array A that do not
conceptually correspond to the elements in the banded matrix (the top left k X k triangle) are
not referenced.

Param. Memory Infout Meaning
handle input Handle to the cuBLAS library context.
uplo input Indicates if matrix A lower or upper part is stored, the other

Hermitian part is not referenced and is inferred from the
stored elements.

n input Number of rows and columns of matrix a.

k input Number of sub- and super-diagonals of matrix a.

alpha host or device input <type> scalar used for multiplication.

A device input <type> array of dimensions 1da x n, with 1da>=k+1. The
imaginary parts of the diagonal elements are assumed to be
zero.

lda input Leading dimension of two-dimensional array used to store
matrix A.

X device input <type> vector with n elements.

incx input Stride between consecutive elements of x.

cuBLAS Library DU-06702-001_v12.0 | 70

Using the cuBLAS API

Param. Memory In/fout Meaning

beta host or device input <type> scalar used for multiplication, if beta==0 then does
not have to be a valid input.

y device infout <type> vector with n elements.

incy input Stride between consecutive elements of y.

The possible error values returned by this function and their meanings are listed in the
following table:

Error Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully.
CUBLAS_STATUS NOT INITIALIZED The library was not initialized.
CUBLAS_STATUS_INVALID VALUE » Ifn<0ork<0or

» ifincx=0o0rincy=0or

» ifuplo!=CUBLAS FILL MODE LOWER,
CUBLAS_FILL MODE UPPER Or

» iflda<(x+1)or

» alpha==NULL orbeta==NULL

CUBLAS_STATUS_ EXECUTION FAILED The function failed to launch on the GPU.

For references please refer to:

chbmy, zhbmv

2.6.19. cublas<t>hpmv()

cublasStatus t cublasChpmv (cublasHandle t handle, cublasFillMode t uplo,

int n, const_cuComplex *alpha,
const cuComplex *AP,

const cuComplex *x, int incx,
const cuComplex *beta,
cuComplex *y, int incy)

cublasStatus t cublasZhpmv (cublasHandle t handle, cublasFillMode t uplo,
int n, const cuDoubleComplex *alpha,
const cuDoubleComplex *AP,
const cuDoubleComplex *x, int incx,
const cuDoubleComplex *beta,
cuDoubleComplex *y, int incy)

This function supports the 64-bit Integer Interface.

This function performs the Hermitian packed matrix-vector multiplication
y = 0AX+ By

where A is a nX n Hermitian matrix stored in packed format, X and y are vectors, and o and 8
are scalars.

cuBLAS Library DU-06702-001_v12.0 | 71

http://www.netlib.org/blas/chbmv.f
http://www.netlib.org/blas/zhbmv.f

Using the cuBLAS A

If uplo == CUBLAS FILL MODE LOWER then the elements in the lower triangular part of the
Hermitian matrix A are packed together column by column without gaps, so that the element
A(l, j) is stored in the memory location AP[i+ ((2*n-3+1) *5) /2] for j=1, ..., nandi>j.

+1)

: nn
Consequently, the packed format requires only (T elements for storage.

If uplo == CUBLAS FILL MODE_UPPER then the elements in the upper triangular part of
the Hermitian matrix A are packed together column by column without gaps, so that the

Pl

element A(i, j) is stored in the memory location AP [i+ (§* (§+1)) /2] for j=1,...,nandi<j.

: n+1
Consequently, the packed format requires only % elements for storage.
Param. Memory In/out Meaning
handle input Handle to the cuBLAS library context.
uplo input Indicates if matrix A lower or upper part is stored, the other

Hermitian part is not referenced and is inferred from the
stored elements.

n input Number of rows and columns of matrix A.
alpha host or device input <type> scalar used for multiplication.
AP device input <type> array with A stored in packed format. The imaginary

parts of the diagonal elements are assumed to be zero.

X device input <type> vector with n elements.
incx input Stride between consecutive elements of x.
beta host or device input <type> scalar used for multiplication, if beta==0 then y

does not have to be a valid input.
y device in/out <type> vector with n elements.

incy input Stride between consecutive elements of y.

The possible error values returned by this function and their meanings are listed in the
following table:

Error Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully.
CUBLAS_STATUS NOT INITIALIZED The library was not initialized.
CUBLAS_STATUS_INVALID VALUE » Ifn<0Oor

» ifincx==0o0rincy==0o0r

» ifuplo !=CUBLAS FILL MODE UPPER,
CUBLAS FILL MODE LOWER Or

» alpha==NULL orbeta==NULL

CUBLAS_STATUS_EXECUTION FAILED The function failed to launch on the GPU.

cuBLAS Library DU-06702-001_v12.0 |

72

For references please refer to:

chpmy, zhpmyv

2.6.20.

Using the cuBLAS API

cublas<t>her()

cublasStatus t cublasCher (cublasHandle t handle, cublasFillMode t uplo,

int n,

const float

*alpha,

const cuComplex *x, 1int incx,
cuComplex *A, int 1lda)
cublasStatus t cublasZher (cublasHandle t handle, cublasFillMode t uplo,

int n,

const double *alpha,

const cuDoubleComplex *x, int incx,
cuDoubleComplex *A, int lda)

This function supports the 64-bit Integer Interface.

This function performs the Hermitian rank-1 update

A=oxxH+A

where A is a nX n Hermitian matrix stored in column-major format, X is a vector, and & is a

scalar.

Param. Memory

handle

uplo

n
alpha host or device
X device

incx

A device

lda

In/out
input

input

input
input
input
input

in/out

input

Meaning

Handle to the cuBLAS library context.

Indicates if matrix A lower or upper part is stored, the other
Hermitian part is not referenced and is inferred from the
stored elements.

Number of rows and columns of matrix a.
<type> scalar used for multiplication.
<type> vector with n elements.

Stride between consecutive elements of x.

<type> array of dimensions 1da x n, with 1da>=max (1,n).
The imaginary parts of the diagonal elements are assumed
and set to zero.

Leading dimension of two-dimensional array used to store
matrix A.

The possible error values returned by this function and their meanings are listed in the

following table:

Error Value

CUBLAS_STATUS_ SUCCESS

CUBLAS STATUS NOT INITIALIZED

CUBLAS_ STATUS INVALID VALUE

cuBLAS Library

Meaning

The operation completed successfully.
The library was not initialized.

» Ifn<0or

DU-06702-001_v12.0 | 73

http://www.netlib.org/blas/chpmv.f
http://www.netlib.org/blas/zhpmv.f

Error Value

CUBLAS STATUS EXECUTION FAILED

For references please refer to:

cher, zher

2.6.21.

Using the cuBLAS API

Meaning
» ifincx==0o0r

» ifuplo !=CUBLAS FILL MODE UPPER,
CUBLAS FILL MODE LOWER Or

» if 1da < max(1, n) or

» alpha==NULL

The function failed to launch on the GPU.

cublas<t>her?2()

cublasStatus t cublasCher2 (cublasHandle t handle, cublasFillMode t uplo,

int n,

const cuComplex

*alpha,

const cuComplex *x, int incx,

const cuComplex *y, int incy,

cuComplex *A, int 1lda)

cublasStatus t cublasZher2 (cublasHandle t handle, cublasFillMode t uplo,

int n,

const cuDoubleComplex *alpha,

const cuDoubleComplex *x, int incx,
const cuDoubleComplex *y, int incy,
cuDoubleComplex *A, int lda)

This function supports the 64-bit Integer Interface.

This function performs the Hermitian rank-2 update

A=oxyH+ayxH+ A

where A is a nX n Hermitian matrix stored in column-major format, X and y are vectors, and

« is a scalar.

Param. Memory

handle

uplo

n
alpha host or device
x device

incx

v device

incy

cuBLAS Library

In/out
input

input

input
input
input
input
input

input

Meaning

Handle to the cuBLAS library context.

Indicates if matrix A lower or upper part is stored, the other
Hermitian part is not referenced and is inferred from the
stored elements.

Number of rows and columns of matrix Aa.
<type> scalar used for multiplication.
<type> vector with n elements.

Stride between consecutive elements of x.
<type> vector with n elements.

Stride between consecutive elements of y.

DU-06702-001_v12.0 | 74

http://www.netlib.org/blas/cher.f
http://www.netlib.org/blas/zher.f

Using the cuBLAS API

Param. Memory In/fout Meaning

A device infout <type> array of dimension 1da x n with 1da>=max (1,n).
The imaginary parts of the diagonal elements are assumed
and set to zero.

lda input Leading dimension of two-dimensional array used to store
matrix A.

The possible error values returned by this function and their meanings are listed in the
following table:

Error Value Meaning

CUBLAS STATUS SUCCESS The operation completed successfully.
CUBLAS_STATUS NOT INITIALIZED The library was not initialized.
CUBLAS_STATUS_INVALID VALUE » Ifn<Qor

» ifincx==0o0rincy==0or

» ifuplo !=CUBLAS FILL MODE UPPER,
CUBLAS FILL MODE LOWER Or

» if 1da < max(1, n) or

» alpha==NULL
CUBLAS_STATUS_EXECUTION FAILED The function failed to launch on the GPU.

For references please refer to:
cher2, zher?

2.6.22. cublas<t>hpr(]

cublasStatus t cublasChpr (cublasHandle t handle, cublasFillMode t uplo,
int n, const float *alpha,
const cuComplex ¥, ARE LMEsK,
cuComplex *AP)

cublasStatus t cublasZhpr (cublasHandle t handle, cublasFillMode t uplo,
int n, const double *alpha,
const cuDoubleComplex *x, int incx,
cuDoubleComplex *AP)

This function supports the 64-bit Integer Interface.

This function performs the packed Hermitian rank-1 update
A=oxxH+A
where A is a nX n Hermitian matrix stored in packed format, X is a vector, and « is a scalar.

If uplo == CUBLAS FILL MODE LOWER then the elements in the lower triangular part of the
Hermitian matrix A are packed together column by column without gaps, so that the element

cuBLAS Library DU-06702-001_v12.0 | 75

Using the cuBLAS API

A(l, j) is stored in the memory location AP[i+ ((2*n-3+1)*5) /2] for j=1, ..., nandi>j.

+1)

: n
Consequently, the packed format requires only H(T elements for storage.

If uplo == CUBLAS FILL MODE_UPPER then the elements in the upper triangular part of
the Hermitian matrix A are packed together column by column without gaps, so that the
element A(i, j) is stored in the memory location AP [i+ (§* (j+1)) /2] for j=1,...,nandi<j.

Consequently, the packed format requires only @ elements for storage.

Param. Memory In/out Meaning
handle input Handle to the cuBLAS library context.
uplo input Indicates if matrix A lower or upper part is stored, the other

Hermitian part is not referenced and is inferred from the
stored elements.

n input Number of rows and columns of matrix A.

alpha host or device input <type> scalar used for multiplication.

x device input <type> vector with n elements.

incx input Stride between consecutive elements of x.

AP device infout <type> array with A stored in packed format. The imaginary

parts of the diagonal elements are assumed and set to zero.

The possible error values returned by this function and their meanings are listed in the
following table:

Error Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully.
CUBLAS_STATUS_NOT_ INITIALIZED The library was not initialized.
CUBLAS_ STATUS INVALID VALUE » Ifn<0Oor

» ifincx==0o0r

» ifuplo !=CUBLAS FILL MODE UPPER,
CUBLAS FILL MODE LOWER Or

» alpha==NULL
CUBLAS_STATUS EXECUTION FAILED The function failed to launch on the GPU.

For references please refer to:

chpr, zhpr

2.6.23. cublas<t>hpr2()

cublasStatus t cublasChpr2 (cublasHandle t handle, cublasFillMode t uplo,

cuBLAS Library DU-06702-001_v12.0 | 76

http://www.netlib.org/blas/chpr.f
http://www.netlib.org/blas/zhpr.f

Using the cuBLAS API

int n, const cuComplex *alpha,
const cuComplex *x, int incx,
const cuComplex *y, int incy,
cuComplex *AP)

cublasStatus t cublasZhpr2 (cublasHandle t handle, cublasFillMode t uplo,
int n, const cuDoubleComplex *alpha,
const cuDoubleComplex *x, int incx,
const cuDoubleComplex *y, int incy,
cuDoubleComplex *AP)

This function supports the 64-bit Integer Interface.

This function performs the packed Hermitian rank-2 update
A=oxyH+ayxH+ A

where A is a nX n Hermitian matrix stored in packed format, X and y are vectors, and & is a
scalar.

If uplo == CUBLAS FILL MODE_ LOWER then the elements in the lower triangular part of the
Hermitian matrix A are packed together column by column without gaps, so that the element
A(i, j) is stored in the memory location AP[i+ ((2*n-3+1)*5) /2] for j=1, ..., nandi>j.

nn+1)

Consequently, the packed format requires only —5 elements for storage.

If uplo == CUBLAS FILL MODE UPPER then the elements in the upper triangular part of
the Hermitian matrix A are packed together column by column without gaps, so that the
element A(i, j) is stored in the memory location AP[i+ (§* (j+1)) /2] for j=1,...,nandi<j.

Consequently, the packed format requires only @ elements for storage.

Param. Memory Infout Meaning
handle input Handle to the cuBLAS library context.
uplo input Indicates if matrix & lower or upper part is stored, the other

Hermitian part is not referenced and is inferred from the
stored elements.

n input Number of rows and columns of matrix A.

alpha host or device input <type> scalar used for multiplication.

X device input <type> vector with n elements.

incx input stride between consecutive elements of x.

y device input <type> vector with n elements.

incy input Stride between consecutive elements of y.

AP device in/out <type> array with A stored in packed format. The imaginary

parts of the diagonal elements are assumed and set to zero.

The possible error values returned by this function and their meanings are listed in the
following table:

cuBLAS Library DU-06702-001_v12.0 | 77

Error Value

CUBLAS_STATUS SUCCESS
CUBLAS STATUS NOT INITIALIZED

CUBLAS STATUS INVALID VALUE

CUBLAS STATUS EXECUTION FAILED

For references please refer to:

chpr?2, zhpr2

2.6.24.

Using the cuBLAS API

Meaning

The operation completed successfully.
The library was not initialized.

» Ifn<0or

» ifincx==0o0rincy==0o0r

» ifuplo !=CUBLAS FILL MODE UPPER,
CUBLAS_FILL MODE LOWER Or

» alpha==NULL

The function failed to launch on the GPU.

cublas<t>gemvBatched|()

cublasStatus_t cublasSgemvBatched(cublasHandle t handle, cublasOperation t trans,

cublasStatus t

cublasStatus t

cublasStatus t

cublasStatus t

cuBLAS Library

int m, int n,

const float *alpha,

const float *Aarray[], int lda,
const float *xarrayl[], int incx,
const float *beta,

float *yarrayl[], int incy,

int batchCount)

cublasDgemvBatched (cublasHandle t handle, cublasOperation t trans,

int m, int n,

const double *alpha,

const double *Aarray[], int lda,
const double *xarrayl[], int incx,
const double *beta,

double *yarray[], int incy,

int batchCount)

cublasCgemvBatched (cublasHandle t handle, cublasOperation t trans,

int m, int n,

const cuComplex *alpha,

const cuComplex *Aarray[], int lda,
const cuComplex *xarrayl[], int incx,
const cuComplex *beta,

cuComplex *yarrayl[], int incy,

int batchCount)

cublaszZgemvBatched (cublasHandle t handle, cublasOperation t trans,

int m, int n,

const cuDoubleComplex *alpha,

const cuDoubleComplex *Aarrayl[], int 1lda,
const cuDoubleComplex *xarrayl[], int incx,
const cuDoubleComplex *beta,

cuDoubleComplex *vyarrayl[],

int batchCount)

int incy,

int m, int n,

const float *alpha,

const _ half *Aarray[], int lda,
const half *xarrayl[], int incx,
const float *beta,

__half *yarray[], int incy,

DU-06702-001_v12.0

cublasHSHgemvBatched (cublasHandle t handle, cublasOperation t trans,

| 78

Using the cuBLAS API

int batchCount)
cublasStatus t cublasHSSgemvBatched (cublasHandle t handle, cublasOperation t trans,
int m, int n,

const float *alpha,

const _ half *Aarray[], int lda,
const _ half *xarray[], int incx,
const float *beta,

float *yarray[], int incy,

int batchCount)
cublasStatus t cublasTSTgemvBatched(cublasHandle t handle, cublasOperation t trans,
int m, int n,

const float *alpha,
const _ nv bfloatlé6 *Aarray[], int lda,
const nv bfloatlé6 *xarray[], int incx,
const float *beta,

nv_bfloatl6 *yarray[], int incy,

int batchCount)
cublasStatus t cublasTSSgemvBatched (cublasHandle t handle, cublasOperation t trans,
int m, int n,

const float *alpha,

const _ nv bfloatlé6 *Aarray[], int lda,

const nv bfloatlé6 *xarray[], int incx,
const float *beta,

float *yarrayl[], int incy,

int batchCount)

This function supports the 64-bit Integer Interface.

This function performs the matrix-vector multiplication of a batch of matrices and vectors.
The batch is considered to be “uniform”, i.e. all instances have the same dimensions (m, nJ,
leading dimension (lda), increments (incx, incy) and transposition (trans] for their respective
A matrix, x and y vectors. The address of the input matrix and vector, and the output vector
of each instance of the batch are read from arrays of pointers passed to the function by the
caller.

ylil= aop(AliDx{i]+ Bylil fori €[0, batchCount — 1]

where o and B are scalars, and A is an array of pointers to matrice Ali] stored in column-
major format with dimension mXx n, and X and y are arrays of pointers to vectors. Also, for

matrix Ali],
Ali] if trans == CUBLAS_OP_N
op(Ali)={ Ali]" if trans == CUBLAS_OP_T
A[ﬂH if trans == CUBLAS_OP_C

Note: yli] vectors must not overlap, that is, the individual gemv operations must be
computable independently; otherwise, undefined behavior is expected.

On certain problem sizes, it might be advantageous to make multiple calls to cublas<t>gemv
in different CUDA streams, rather than use this API.

Param. Memory In/out Meaning

handle input Handle to the cuBLAS library context.

trans input Operation op(a[i]] that is non- or (conj.) transpose.
m input Number of rows of matrix a[1].

n input Number of columns of matrix A[i].

cuBLAS Library DU-06702-001_v12.0 | 79

Param.
alpha

Aarray

lda

xarray

incx

beta

yarray

incy

batchCount

Memory

host or device

device

device

host or device

device

In/out
input

input

input

input

input

input

in/out

input

input

Using the cuBLAS A

Meaning

<type> scalar used for multiplication.

Array of pointers to <type> array, with each array of dim.
lda x nwith 1da>=max (1, m)

All pointers must meet certain alignment criteria. Please
see below for details.

Leading dimension of two-dimensional array used to store
each matrix a[i].

Array of pointers to <type> array, with each dimension n if
trans==CUBLAS OP_ N and m otherwise.

All pointers must meet certain alignment criteria. Please
see below for details.

Stride of each one-dimensional array x[il.

<type> scalar used for multiplication. If beta == 0, y does
not have to be a valid input.

Array of pointers to <type> array. It has dimensions m if
trans==CUBLAS_OP N and n otherwise. Vectors y[i]
should not overlap; otherwise, undefined behavior is
expected.

All pointers must meet certain alignment criteria. Please
see below for details.

Stride of each one-dimensional array ylil.

Pl

Number of pointers contained in Aarray, xarray and yarray.

If math mode enables fast math modes when using cublasSgemvBatched (), pointers (not
the pointer arrays) placed in the GPU memory must be properly aligned to avoid misaligned
memory access errors. ldeally all pointers are aligned to at least 16 Bytes. Otherwise it is
recommended that they meet the following rule:

» if k%4==0then ensure intptr t(ptr) % 16 == 0,

The possible error values returned by this function and their meanings are listed in the
following table:

Error Value

CUBLAS_STATUS_SUCCESS

CUBLAS STATUS NOT INITIALIZED

CUBLAS_ STATUS INVALID VALUE

CUBLAS STATUS EXECUTION FATILED

cuBLAS Library

Meaning

The operation completed successfully.
The library was not initialized.
The parameters m, n, batchCount<0 .

The function failed to launch on the GPU.

DU-06702-001_v12.0 |

80

Using the cuBLAS API

2.6.25.

cublasStatus_t cublasSgemvStridedBatched(cublasHandle t handle,
cublasOperation t trans,

cublas<t>gemvStridedBatched()

int m, int n,

const float *alpha,

const float *A, int 1lda,
long long int strideA,
const float *x, int incx,
long long int stridex,
const float *beta,

float *y, int incy,
long long int stridey,

int batchCount)

cublasStatus_t cublasDgemvStridedBatched(cublasHandle t handle,

cublasOperation t trans,

int m, int n,

const double *alpha,

const double *A, int 1lda,
long long int strideA,
const double *x, int incx,
long long int stridex,
const double *beta,

double
long long int
int batchCount)

cublasStatus_t cublasCgemvStridedBatched(cublasHandle t handle,

*yarrayl[], int incy,

stridey,

cublasOperation t trans,

int m, int n,

const cuComplex *alpha,

const cuComplex *A, int 1lda,
long long int strideA,
const cuComplex *x, int incx,
long long int stridex,
const cuComplex *beta,
cuComplex *y, int incy,
long long int stridey,

int batchCount)
cublasStatus_t cublasZgemvStridedBatched(cublasHandle t handle,
cublasOperation t trans,
int m, int n,
const cuDoubleComplex *alpha,
const cuDoubleComplex *A, int lda,
long long int strideA,
const cuDoubleComplex *x, int incx,
long long int stridex,
const cuDoubleComplex *beta,
cuDoubleComplex *y, int incy,
long long int stridey,
int batchCount)
cublasStatus_t cublasHSHgemvStridedBatched (cublasHandle t handle,
cublasOperation t trans,
int m, int n,

const float *alpha,

const half *A, int 1lda,
long long int strideA,
const _ half *x, int incx,
long long int stridex,
const float *beta,

__half *y, int incy,
long long int stridey,
int batchCount)

cublasStatus_t cublasHSSgemvStridedBatched (cublasHandle t handle,
cublasOperation t trans,
int m, int n,

cuBLAS Library DU-06702-001_v12.0 | 81

Using the cuBLAS API

const float *alpha,

const half *A, int 1lda,
long long int strideA,
const _ half *x, 1int incx,
long long int stridex,
const float *beta,

float *y, int incy,
long long int stridey,

int batchCount)

cublasStatus t cublasTSTgemvStridedBatched (cublasHandle t handle,
cublasOperation t trans,
int m, int n,

const float *alpha,

const nv bfloatlé6 *A, int lda,
long long int strideA,
const nv bfloatlé6 *x, 1int incx,
long long int stridex,
const float *beta,

~ nv _bfloatlé *y, int incy,
long long int stridey,

int batchCount)

cublasStatus t cublasTSSgemvStridedBatched (cublasHandle t handle,
cublasOperation t trans,
int m, int n,

const float *alpha,

const nv bfloatlé6 *A, int lda,
long long int strideA,
const nv bfloatlé6 *x, 1int incx,
long long int stridex,
const float *beta,

float *y, int incy,
long long int stridey,

int batchCount)

This function supports the 64-bit Integer Interface.

This function performs the matrix-vector multiplication of a batch of matrices and vectors.
The batch is considered to be "uniform”, that is, all instances have the same dimensions

(m, nJ, leading dimension (1da), increments (incx, incy) and transposition (trans] for their
respective A matrix, x and y vectors. Input matrix & and vector x, and output vector y for each
instance of the batch are located at fixed offsets in number of elements from their locations
in the previous instance. Pointers to A matrix, x and y vectors for the first instance are passed
to the function by the user along with offsets in number of elements - stridea, stridex and
stridey that determine the locations of input matrices and vectors, and output vectors in
future instances.

y+i*stridey = cop(A+ i* strideA)x + i * stridex)+ B(y + i * stridey), for i €[0, batchCount — 1]

where o and B are scalars, and A is an array of pointers to matrix stored in column-major
format with dimension Alil mXx n, and X and y are arrays of pointers to vectors. Also, for
matrix Ali]

Ali] if trans == CUBLAS_OP_N
oplAli) = {Ali]" if trans == CUBLAS_OP_T

Al if trans == CUBLAS_OP_C

Note: y{i] matrices must not overlap, i.e. the individual gemv operations must be computable
independently; otherwise, undefined behavior is expected.

On certain problem sizes, it might be advantageous to make multiple calls to cublas<t>gemv
in different CUDA streams, rather than use this API.

cuBLAS Library DU-06702-001_v12.0 | 82

Note: In the table below, we use A[i7,

Using the cuBLAS API

x[i], yI[i] as notation for A matrix, and x andy

vectors in the ith instance of the batch, implicitly assuming they are respectively offsets in
number of elements strideA, stridex, strideyawayfroma[i-1], x[i-1]1, y[i-1].
The unit for the offset is number of elements and must not be zero.

Param. Memory In/out
handle input
trans input
m input
n input
alpha host or device input
A device input
lda input
strideA input
X device input
incx input
stridex input
beta host or device input
y device infout
incy input
stridey input
batchCount input

Meaning

Handle to the cuBLAS library context.

Operation op(a[i]] that is non- or (conj.) transpose.
Number of rows of matrix a[1].

Number of columns of matrix a[17].

<type> scalar used for multiplication.

<type>* pointer to the A matrix corresponding to the first
instance of the batch, with dimensions 1da x n with
lda>=max (1,m).

Leading dimension of two-dimensional array used to store
each matrix a[1i].

Value of type long long int that gives the offset in number
of elements between a[i] and A[i+1]

<type>* pointer to the x vector corresponding to the
first instance of the batch, with each dimension n if
trans==CUBLAS_OP N and m otherwise.

Stride of each one-dimensional array x[il.

Value of type long long int that gives the offset in number
of elements between x[i] and x[1i+1]

<type> scalar used for multiplication. If beta == 0, y does
not have to be a valid input.

<type>* pointer to the y vector corresponding to the
first instance of the batch, with each dimension m if
trans==CUBLAS OP N and n otherwise. Vectors y[1i]
should not overlap; otherwise, undefined behavior is
expected.

Stride of each one-dimensional array ylil.

Value of type long long int that gives the offset in number
of elements between y[i] and y[i+1]

Number of GEMVs to perform in the batch.

The possible error values returned by this function and their meanings are listed in the

following table:

cuBLAS Library

DU-06702-001_v12.0 | 83

Error Value

CUBLAS_STATUS SUCCESS
CUBLAS STATUS NOT INITIALIZED
CUBLAS STATUS INVALID VALUE

CUBLAS STATUS EXECUTION FAILED

2.7.

Using the cuBLAS API

Meaning

The operation completed successfully.
The library was not initialized.
The parameters m, n, batchCount<O0.

The function failed to launch on the GPU.

cuBLAS Level-3 Function Reference

This section describes the Level-3 Basic Linear Algebra Subprograms (BLAS3] functions that

perform matrix-matrix operations.

2.7.1.

cublas<t>gemm(]

cublasStatus t cublasSgemm(cublasHandle t handle,

cublasOperation t transa, cublasOperation t transb,

int m, int n, int k,

const float *alpha,
const float *A, int 1lda,
const float *B, int 1ldb,
const float *beta,

float *C, int 1ldc)

cublasStatus t cublasDgemm(cublasHandle t handle,
cublasOperation t transa, cublasOperation t transb,

int m, int n, int k,

const double *alpha,
const double *A, int 1lda,
const double *B, int 1ldb,
const double *beta,
double *C, int 1ldc)

cublasStatus t cublasCgemm(cublasHandle t handle,
cublasOperation t transa, cublasOperation t transb,

int m, int n, int k,

const cuComplex *alpha,
const cuComplex *A, int 1lda,
const cuComplex *B, int 1ldb,
const cuComplex *beta,
cuComplex *C, int 1ldc)

cublasStatus t cublasZgemm(cublasHandle t handle,
cublasOperation t transa, cublasOperation t transb,

int m, int n, int k,

const cuDoubleComplex *alpha,
const cuDoubleComplex *A, int lda,
const cuDoubleComplex *B, int 1ldb,
const cuDoubleComplex *beta,
cuDoubleComplex *C, int 1ldc)

cublasStatus t cublasHgemm(cublasHandle t handle,
cublasOperation t transa, cublasOperation t transb,

int m, int n, int k,
const _ half *alpha,
const _ half *A, int 1lda,
const half *B, int 1ldb,
const half *beta,
__half *C, int 1dc)

This function supports the 64-bit Integer Interface.

cuBLAS Library

DU-06702-001_v12.0 | 84

Using the cuBLAS API

This function performs the matrix-matrix multiplication
C = aop(A)op(B)+ BC

where o and B are scalars, and A, Band C are matrices stored in column-major format with
dimensions op(A) mx k, op(B) kx nand C mXx n, respectively. Also, for matrix A
A if transa == CUBLAS_OP_N
op(A)={ A" if transa == CUBLAS_OP_T
AP if transa == CUBLAS_OP_C
and op(B) is defined similarly for matrix B .

Param. Memory In/fout Meaning

handle input Handle to the cuBLAS library context.

transa input Operation op(a) that is non- or (conj.) transpose.

transb input Operation op(B] that is non- or (conj.) transpose.

m input Number of rows of matrix op(a) and c.

n input Number of columns of matrix op(B) and c.

k input Number of columns of op(a) and rows of op(B).

alpha host or device input <type> scalar used for multiplication.

A device input <type> array of dimensions 1da x k with 1da>=max (1, m) if
transa == CUBLAS OP Nandlda x mwith 1da>=max (1, k)
otherwise.

lda input Leading dimension of two-dimensional array used to store

the matrix A.

B device input <type> array of dimension 1db x n with 1db>=max (1, k) if
transb == CUBLAS OP Nand ldb x kwith 1db>=max (1,n)
otherwise.

1db input Leading dimension of two-dimensional array used to store
matrix B.

beta host or device input <type> scalar used for multiplication. If beta==0, ¢ does not

have to be a valid input.

C device in/out <type> array of dimensions 1dc x n with 1de>=max (1, m).
ldc input Leading dimension of a two-dimensional array used to store
the matrix c.

The possible error values returned by this function and their meanings are listed in the
following table:

Error Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully.

cuBLAS Library DU-06702-001_v12.0 | 85

Using the cuBLAS API

Error Value Meaning
CUBLAS_STATUS NOT INITIALIZED The library was not initialized.
CUBLAS_STATUS INVALID VALUE » Ifmn k<0or

» if transa, transb |= CUBLAS OP N,
CUBLAS_OP C, CUBLAS_OP T oOr

> iflda<rﬂax“,m]ﬁtransa==CUBLASioP7N
and 1da < max(1, k) otherwise or

» if 1db < max(1, k] if transb == CUBLAS_OP_N
and 1db < max(1, n) otherwise or

» if 1dc < max(1, m) or
» if alpha, beta == NULL or

¢ == NULL if ¢ needs to be scaled

v

CUBLAS STATUS ARCH MISMATCH In the case of cublasHgemm the device does not
support math in half precision.

CUBLAS_STATUS EXECUTION FAILED The function failed to launch on the GPU.

For references please refer to:

SQEHWﬂ,dqeﬁﬂﬂ,quﬁWﬂ,quﬁﬂﬂ

2.7.2. cublas<t>gemm3m()

cublasStatus_t cublasCgemm3m (cublasHandle t handle,
cublasOperation t transa, cublasOperation t transb,
int m, int n, int k,

const cuComplex *alpha,
const cuComplex *A, int 1lda,
const cuComplex *B, int 1ldb,
const cuComplex *beta,
cuComplex *C, int 1ldc)

cublasStatus_t cublasZgemm3m (cublasHandle t handle,
cublasOperation t transa, cublasOperation t transb,
int m, int n, int k,
const cuDoubleComplex *alpha,
const cuDoubleComplex *A, int lda,
const cuDoubleComplex *B, int 1ldb,
const cuDoubleComplex *beta,
cuDoubleComplex *C, int 1ldc)

This function supports the 64-bit Integer Interface.

This function performs the complex matrix-matrix multiplication, using Gauss complexity
reduction algorithm. This can lead to an increase in performance up to 25%

C = aop(A)op(B)+ BC

where o and B are scalars, and A, Band C are matrices stored in column-major format with
dimensions op(A) mx k, op(B) kx nand C mx n, respectively. Also, for matrix A

cuBLAS Library DU-06702-001_v12.0 | 86

http://www.netlib.org/blas/sgemm.f
http://www.netlib.org/blas/dgemm.f
http://www.netlib.org/blas/cgemm.f
http://www.netlib.org/blas/zgemm.f

Using the cuBLAS API

A if transa == CUBLAS_OP_N
op(A)={ A" if transa == CUBLAS_OP_T

A if transa == CUBLAS_OP_C
and op(B) is defined similarly for matrix B .

Note: These 2 routines are only supported on GPUs with architecture capabilities equal to or
greater than 5.0.

Param. Memory

handle
transa

transb

alpha host or device

A device

lda

B device

1db

beta host or device

C device

1ldc

In/out
input
input
input
input
input
input
input

input

input

input

input

input

in/out

input

Meaning

Handle to the cuBLAS library context.

Operation op(a] that is non- or (conj.) transpose.
Operation op(B] that is non- or (conj.) transpose.
Number of rows of matrix op(a) and c.

Number of columns of matrix op(s) and c.
Number of columns of op(a) and rows of op(B).
<type> scalar used for multiplication.

<type> array of dimensions 1da x k with 1da>=max (1, m) if
transa == CUBLAS_OP Nandlda x mwith lda>=max (1, k)
otherwise.

Leading dimension of two-dimensional array used to store
the matrix a.

<type> array of dimension 1db x n with 1db>=max (1, k) if
transb == CUBLAS_OP Nandldb x kwith ldb>=max(1,n)
otherwise.

Leading dimension of two-dimensional array used to store
matrix B.

<type> scalar used for multiplication. If beta==0, ¢ does not
have to be a valid input.

<type> array of dimensions 1dc x n with 1dc>=max (1,m).

Leading dimension of a two-dimensional array used to store
the matrix c.

The possible error values returned by this function and their meanings are listed in the

following table:

Error Value

CUBLAS_STATUS_ SUCCESS

CUBLAS STATUS NOT INITIALIZED

cuBLAS Library

Meaning

The operation completed successfully.

The library was not initialized.

DU-06702-001_v12.0 | 87

Error Value

CUBLAS_ STATUS INVALID VALUE

CUBLAS STATUS ARCH MISMATCH

CUBLAS STATUS EXECUTION FAILED

For references please refer to:

cgemm, zgemm

2.7.3.

Using the cuBLAS API

Meaning
» Ifmn, k<0or

» if transa, transb |= CUBLAS OP N,
CUBLAS OP C, CUBLAS OP T oOr

» if 1da < max(1, m) if transa == CUBLAS OP N

and 1da < max(1, x) otherwise or

» if 1db < max(1,] if transb == CUBLAS 0P N

and 1db < max(1, n) otherwise or

» if 1dc < max(1, m) or
» if alpha, beta==NULL or

» C==NULL if ¢ needs to be scaled

The device has a compute capability lower than
5.0.

The function failed to launch on the GPU.

cublas<t>gemmBatched()

cublasStatus t cublasHgemmBatched(cublasHandle t handle,

cublasOperation t transa,
cublasOperation t transb,
int m, int n, int k,

const half *alpha,
const _ half *Aarray[], int 1lda,
const _ half *Barray[], int 1ldb,
const half *beta,

half *Carray([], int 1ldc,

int batchCount)

cublasStatus_t cublasSgemmBatched (cublasHandle t handle,

cublasOperation t transa,
cublasOperation t transb,
int m, int n, int k,

cublasStatus t cublasDgemmBatched(cublasHandle t handle,

const float *alpha,

const float *Aarray[], int lda,
const float *Barray[], int 1ldb,
const float *beta,

float *Carray[], int ldc,

int batchCount)

cublasOperation t transa,
cublasOperation t transb,

int m, int n, int k,

const double *alpha,

const double *Aarray[], int lda,
const double *Barray[], int 1ldb,
const double *beta,

double *Carray[], int ldc,

int batchCount)

cublasStatus_t cublasCgemmBatched (cublasHandle t handle,

cuBLAS Library

DU-06702-001_v12.0

88

http://www.netlib.org/blas/cgemm.f
http://www.netlib.org/blas/zgemm.f

Using the cuBLAS API

cublasOperation t transa,
cublasOperation t transb,
int m, int n, int Xk,

const cuComplex *alpha,

const cuComplex *Aarray[], int lda,
const cuComplex *Barray[], int 1db,
const cuComplex *beta,

cuComplex *Carray[], int ldc,

int batchCount)

cublasStatus t cublasZgemmBatched (cublasHandle t handle,
cublasOperation t transa,
cublasOperation t transb,
int m, int n, int k,
const cuDoubleComplex *alpha,
const cuDoubleComplex *Aarrayl]
const cuDoubleComplex *Barrayl]
const cuDoubleComplex *beta,
cuDoubleComplex *Carray[], int ldc,
int batchCount)

, int 1lda,
, int 1db,

This function supports the 64-bit Integer Interface.

This function performs the matrix-matrix multiplication of a batch of matrices. The batch is
considered to be "uniform”, that is, all instances have the same dimensions [m, n, kJ, leading
dimensions (1da, 1db, 1dc) and transpositions (transa, transb) for their respective A, B and
C matrices. The address of the input matrices and the output matrix of each instance of the
batch are read from arrays of pointers passed to the function by the caller.

dil= aop(Ali)op(Bli) + BCli} fori €[0, batchCount — 1]
where ot and B are scalars, and A, Band C are arrays of pointers to matrices stored
in column-major format with dimensions op(Ali) mx k , op(B[i) kx nand Clil mx n,
respectively. Also, for matrix A

A if transa == CUBLAS_OP_N
op(A)={AT if transa == CUBLAS_OP_T

A if transa == CUBLAS_OP_C
and op(Bli) is defined similarly for matrix Bli] .

Note: (i] matrices must not overlap, that is, the individual gemm operations must be
computable independently; otherwise, undefined behavior is expected.

On certain problem sizes, it might be advantageous to make multiple calls to cublas<t>gemm
in different CUDA streams, rather than use this API.

Param. Memory In/out Meaning

handle input Handle to the cuBLAS library context.

transa input Operation op(a[i]] that is non- or (conj.) transpose.
transb input Operation op(B[i1]] that is non- or (conj.) transpose.
m input Number of rows of matrix op(ari])and cri].

n input Number of columns of op(B[i])and c[i].

k input Number of columns of op(a[i]) and rows of op(B[i]).

cuBLAS Library DU-06702-001_v12.0 | 89

Param. Memory
alpha host or device
Aarray device

lda

Barray device

1db

beta host or device
Carray device

ldc

batchCount

In/out
input

input

input

input

input

input

in/out

input

input

Using the cuBLAS A

Meaning
<type> scalar used for multiplication.

Array of pointers to <type> array, with each array of dim.
lda x k with lda>=max(1,m)iftransa==CUBLAS_OP_N
and 1da x mwith 1da>=max (1, k) otherwise.

All pointers must meet certain alignment criteria. Please
see below for details.

Leading dimension of two-dimensional array used to store
each matrix a[i].

Array of pointers to <type> array, with each array of dim.
1db x nwith 1db>=max (1, k) if transb==CUBLAS OP N
and 1db x k with 1db>=max (1, n) max(1,) otherwise.

All pointers must meet certain alignment criteria. Please
see below for details.

Leading dimension of two-dimensional array used to store
each matrix B[1].

<type> scalar used for multiplication. If beta == 0, C does
not have to be a valid input.

Array of pointers to <type> array. It has dimensions 1dc x
n with 1de>=max (1, m). Matrices c[i] should not overlap;
otherwise, undefined behavior is expected.

All pointers must meet certain alignment criteria. Please
see below for details.

Leading dimension of two-dimensional array used to store
each matrix c[1i].

Number of pointers contained in Aarray, Barray and
Carray.

If math mode enables fast math modes when using cublasSgemmBatched (), pointers (not
the pointer arrays) placed in the GPU memory must be properly aligned to avoid misaligned
memory access errors. ldeally all pointers are aligned to at least 16 Bytes. Otherwise it is
recommended that they meet the following rule:

» if k%4==0then ensure intptr t(ptr) % 16 == 0,

Pl

The possible error values returned by this function and their meanings are listed the following

table:

Error Value

CUBLAS_STATUS_SUCCESS

CUBLAS STATUS NOT INITIALIZED

CUBLAS_ STATUS INVALID VALUE

cuBLAS Library

Meaning

The operation completed successfully.
The library was not initialized.

» Ifm, n, k, batchCount < 0 or

DU-06702-001_v12.0 |

90

Using the cuBLAS API

Error Value Meaning

» if transa, transb |= CUBLAS OP N,
CUBLAS_OP C, CUBLAS_OP T oOr

> iflda<rﬂax“,m]Htransa==CUBLASioP7N
and 1da < max(1, x) otherwise or

» if 1db < max(1, k) if transb == CUBLAS OP N
and 1db < max(1, n) otherwise or

» if 1dc < max(1, m)

CUBLAS_STATUS_EXECUTION FAILED The function failed to launch on the GPU.

CUBLAS_STATUS_ARCH MISMATCH cublasHgemmBatched is only supported for GPU
with architecture capabilities equal to or greater
than 5.3.

2.7.4. cublas<t>gemmStridedBatched|()

cublasStatus t cublasHgemmStridedBatched (cublasHandle t handle,
cublasOperation_t transa,
cublasOperation t transb,
int m, int n, int k,

const _ half *alpha,
const _ half *A, int 1lda,
long long int strideA,
const half B, imnt lel,
long long int strideB,
const half *beta,
__half *C, int 1ldc,
long long int strideC,

int batchCount)
cublasStatus_t cublasSgemmStridedBatched (cublasHandle t handle,

cublasOperation t transa,

cublasOperation t transb,

int m, int n, int k,

const float *alpha,
const float *A, int 1lda,
long long int strideA,
const float *B, int 1ldb,
long long int strideB,
const float *beta,

float *C, int ldc,
long long int strideC,

int batchCount)
cublasStatus t cublasDgemmStridedBatched (cublasHandle t handle,

cublasOperation t transa,

cublasOperation t transb,

int m, int n, int k,

const double *alpha,
const double *A, int lda,
long long int strideA,
const double *B, int 1ldb,
long long int strideB,
const double *beta,
double *C, int ldc,
long long int strideC,

int batchCount)
cublasStatus_ t cublasCgemmStridedBatched(cublasHandle t handle,

cublasOperation t transa,

cublasOperation_t transb,

cuBLAS Library DU-06702-001_v12.0 | 91

Using the cuBLAS API

int m, int n, int k,

const cuComplex *alpha,
const cuComplex *A, int 1lda,
long long int strideA,
const cuComplex *B, int 1ldb,
long long int strideB,
const cuComplex *beta,
cuComplex *C, int ldc,
long long int strideC,

int batchCount)

cublasStatus t cublasCgemm3mStridedBatched (cublasHandle t handle,
cublasOperation t transa,
cublasOperation t transb,
int m, int n, int k,

const cuComplex *alpha,
const cuComplex *A, int 1lda,
long long int strideA,
const cuComplex *B, int 1ldb,
long long int strideB,
const cuComplex *beta,
cuComplex *C, int ldc,
long long int strideC,

int batchCount)

cublasStatus t cublasZgemmStridedBatched (cublasHandle t handle,
cublasOperation t transa,
cublasOperation t transb,
int m, int n, int Xk,
const cuDoubleComplex *alpha,
const cuDoubleComplex *A, int lda,

long long int strideA,
const cuDoubleComplex *B, int 1ldb,
long long int strideB,
const cuDoubleComplex *beta,
cuDoubleComplex *C, int ldc,
long long int strideC,

int batchCount)

This function supports the 64-bit Integer Interface.

This function performs the matrix-matrix multiplication of a batch of matrices. The batch is
considered to be "uniform”, i.e. all instances have the same dimensions (m, n, kJ, leading
dimensions (lda, ldb, ldc) and transpositions (transa, transb) for their respective A, B and C
matrices. Input matrices A, B and output matrix C for each instance of the batch are located
at fixed offsets in number of elements from their locations in the previous instance. Pointers
to A, B and C matrices for the first instance are passed to the function by the user along with
offsets in number of elements - strideA, strideB and strideC that determine the locations of
input and output matrices in future instances.

C+i*strideC= aop(A+i*strideA)op(B+ i*strideB)+ B(C + i*strideC), fori €[0, batchCount — 1]

where o and B are scalars, and A, Band C are arrays of pointers to matrices stored
in column-major format with dimensions op(Ali)) mx k , op(Bli) kx nand Clil mx n,
respectively. Also, for matrix A

A if transa == CUBLAS_OP_N
op(d)={ A" if transa == CUBLAS_OP_T

A" if transa == CUBLAS_OP_C
and op(Bli) is defined similarly for matrix B[i] .

Note: (i] matrices m