
Ampere Tuning Guide
Release 12.0

NVIDIA

Jan 27, 2023

Contents

1 NVIDIA Ampere GPU Architecture 3

2 CUDA Best Practices 5

3 Application Compatibility 7

4 NVIDIA Ampere GPU Architecture Tuning 9
4.1 Streaming Multiprocessor . 9

4.1.1 Occupancy . 9
4.1.2 Asynchronous Data Copy from Global Memory to Shared Memory 9
4.1.3 Hardware Acceleration for Split Arrive/Wait Barrier 10
4.1.4 Warp level support for Reduction Operations . 10
4.1.5 Improved Tensor Core Operations . 10
4.1.6 Improved FP32 throughput . 12

4.2 Memory System . 12
4.2.1 Increased Memory Capacity and High Bandwidth Memory 12
4.2.2 Increased L2 capacity and L2 Residency Controls . 12
4.2.3 Unified Shared Memory/L1/Texture Cache . 12

4.3 Third Generation NVLink . 13

5 Revision History 15

6 Notices 17
6.1 Notice . 17
6.2 OpenCL . 18
6.3 Trademarks . 18
6.4 Copyright . 18

i

ii

Ampere Tuning Guide, Release 12.0

Tuning CUDA Applications for NVIDIA Ampere GPU Architecture

The programming guide for tuning CUDA Applications for GPUs based on the NVIDIA Ampere GPU
Architecture.

Contents 1

Ampere Tuning Guide, Release 12.0

2 Contents

Chapter 1. NVIDIA Ampere GPU
Architecture

The NVIDIA Ampere GPU architecture is NVIDIA’s latest architecture for CUDA compute applications.
The NVIDIA Ampere GPU architecture retains and extends the same CUDA programming model pro-
vided by previous NVIDIA GPU architectures such as Turing and Volta, and applications that follow the
best practices for those architectures should typically see speedups on the NVIDIA A100 GPU with-
out any code changes. This guide summarizes the ways that an application can be fine-tuned to gain
additional speedups by leveraging the NVIDIA Ampere GPU architecture’s features.1

For further details on the programming features discussed in this guide, please refer to the CUDA C++
Programming Guide.

1 Throughout this guide, Kepler refers to devices of compute capability 3.x, Maxwell refers to devices of compute capability
5.x, Pascal refers to device of compute capability 6.x, Volta refers to devices of compute capability 7.0, Turing refers to devices
of compute capability 7.5, and NVIDIA Ampere GPU Architecture refers to devices of compute capability 8.x

3

https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/

Ampere Tuning Guide, Release 12.0

4 Chapter 1. NVIDIA Ampere GPU Architecture

Chapter 2. CUDA Best Practices

The performance guidelines and best practices described in the CUDA C++ Programming Guide and
the CUDA C++ Best Practices Guide apply to all CUDA-capable GPU architectures. Programmers must
primarily focus on following those recommendations to achieve the best performance.

The high-priority recommendations from those guides are as follows:

▶ Find ways to parallelize sequential code.

▶ Minimize data transfers between the host and the device.

▶ Adjust kernel launch configuration to maximize device utilization.

▶ Ensure global memory accesses are coalesced.

▶ Minimize redundant accesses to global memory whenever possible.

▶ Avoid long sequences of diverged execution by threads within the same warp.

5

https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/

Ampere Tuning Guide, Release 12.0

6 Chapter 2. CUDA Best Practices

Chapter 3. Application Compatibility

Before addressing specific performance tuning issues covered in this guide, refer to the NVIDIA Am-
pere GPU Architecture Compatibility Guide for CUDA Applications to ensure that your application is
compiled in a way that is compatible with the NVIDIA Ampere GPU Architecture.

7

https://docs.nvidia.com/cuda/ampere-compatibility-guide/
https://docs.nvidia.com/cuda/ampere-compatibility-guide/

Ampere Tuning Guide, Release 12.0

8 Chapter 3. Application Compatibility

Chapter 4. NVIDIA Ampere GPU
Architecture Tuning

4.1. Streaming Multiprocessor

TheNVIDIAAmpereGPUarchitecture’s StreamingMultiprocessor (SM) provides the following improve-
ments over Volta and Turing.

4.1.1. Occupancy

The maximum number of concurrent warps per SM remains the same as in Volta (i.e., 64), and other
factors influencing warp occupancy are:

▶ The register file size is 64K 32-bit registers per SM.

▶ The maximum number of registers per thread is 255.

▶ The maximum number of thread blocks per SM is 32 for devices of compute capability 8.0 (i.e.,
A100 GPUs) and 16 for GPUs with compute capability 8.6.

▶ For devices of compute capability 8.0 (i.e., A100 GPUs) shared memory capacity per SM is 164
KB, a 71% increase compared to V100’s capacity of 96 KB. For GPUs with compute capability 8.6,
shared memory capacity per SM is 100 KB.

▶ For devices of compute capability 8.0 (i.e., A100 GPUs) the maximum shared memory per thread
block is 163 KB. For GPUswith compute capability 8.6maximum sharedmemory per thread block
is 99 KB.

Overall, developers can expect similar occupancy as on Volta without changes to their application.

4.1.2. Asynchronous Data Copy from Global Memory to
Shared Memory

The NVIDIA Ampere GPU architecture adds hardware acceleration for copying data from global mem-
ory to shared memory. These copy instructions are asynchronous, with respect to computation and
allow users to explicitly control overlap of compute with data movement from global memory into the
SM. These instructions also avoid using extra registers for memory copies and can also bypass the L1

9

https://docs.nvidia.com/cuda/cuda-occupancy-calculator/CUDA_Occupancy_Calculator.xls

Ampere Tuning Guide, Release 12.0

cache. This new feature is exposed via the pipeline API in CUDA. For more information please refer
to the section on Async Copy in the CUDA C++ Programming Guide.

4.1.3. Hardware Acceleration for Split Arrive/Wait Barrier

The NVIDIA Ampere GPU architecture adds hardware acceleration for a split arrive/wait barrier in
shared memory. These barriers can be used to implement fine grained thread controls, producer-
consumer computation pipeline and divergence code patterns in CUDA. These barriers can also be
used alongside the asynchronous copy. For more information on the Arrive/Wait Barriers refer to the
Arrive/Wait Barrier section in the CUDA C++ Programming Guide.

4.1.4. Warp level support for Reduction Operations

The NVIDIA Ampere GPU architecture adds native support for warp wide reduction operations for 32-
bit signed and unsigned integer operands. The warp wide reduction operations support arithmetic
add, min, and max operations on 32-bit signed and unsigned integers and bitwise and, or and xor
operations on 32-bit unsigned integers.

For more details on the new warp wide reduction operations refer to Warp Reduce Functions in the
CUDA C++ Programming Guide.

4.1.5. Improved Tensor Core Operations

The NVIDIA Ampere GPU architecture includes new Third Generation Tensor Cores that are more pow-
erful than the Tensor Cores used in Volta and Turing SMs. The new Tensor Cores use a larger base
matrix size and add powerful new math modes including:

▶ Support for FP64 Tensor Core, using new DMMA instructions.

▶ Support for Bfloat16 Tensor Core, through HMMA instructions. BFloat16 format is especially
effective for DL training scenarios. Bfloat16 provides 8-bit exponent i.e., same range as FP32,
7-bit mantissa and 1 sign-bit.

▶ Support for TF32 Tensor Core, through HMMA instructions. TF32 is a new 19-bit Tensor Core
format that can be easily integrated into programs for more accurate DL training than 16-bit
HMMA formats. TF32 provides 8-bit exponent, 10-bit mantissa and 1 sign-bit.

▶ Support for bitwise AND along with bitwise XOR which was introduced in Turing, through BMMA
instructions.

The following table presents the evolution of matrix instruction sizes and supported data types for
Tensor Cores across different GPU architecture generations.

10 Chapter 4. NVIDIA Ampere GPU Architecture Tuning

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#async-copy
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#aw-barrier
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#warp-reduce-functions

Ampere Tuning Guide, Release 12.0

Instruction GPU Archi-
tecture

Input Matrix for-
mat

Output Accumulator for-
mat

Matrix In-
struction Size
(MxNxK)

HMMA (16-bit
precision)

NVIDIA Volta
Architecture

FP16 FP16 / FP32 8x8x4

NVIDIA
Turing Archi-
tecture

FP16 FP16 / FP32 8x8x4 / 16x8x8
/ 16x8x16

NVIDIA
Ampere
Architecture

FP16 / BFloat16 FP16 / FP32 (BFloat16 only
supports FP32 as accumu-
lator)

16x8x8 /
16x8x16

HMMA (19-bit
precision)

NVIDIA Volta
Architecture

N/A N/A N/A

NVIDIA
Turing Archi-
tecture

N/A N/A N/A

NVIDIA
Ampere
Architecture

TF32 (19-bits) FP32 16x8x4

IMMA (Inte-
ger MMA)

NVIDIA Volta
Architecture

N/A N/A N/A

NVIDIA
Turing Archi-
tecture

unsigned
char/signed char
(8-bit precision)

int32 8x8x16

NVIDIA
Ampere
Architecture

unsigned
char/signed char
(8-bit precision)

int32 8x8x16 /
16x8x16 /
16x8x32

IMMA (Inte-
ger sub-byte
MMA)

NVIDIA Volta
Architecture

N/A N/A N/A

NVIDIA
Turing Archi-
tecture

unsigned u4/signed
u4 (4-bit precision)

int32 8x8x32

NVIDIA
Ampere
Architecture

unsigned u4/signed
u4 (4-bit precision)

int32 8x8x32 /
16x8x32 /
16x8x64

BMMA (Bi-
nary MMA)

NVIDIA Volta
Architecture

N/A N/A N/A

NVIDIA
Turing Archi-
tecture

single bit int32 8x8x128

NVIDIA
Ampere
Architecture

single bit int32 8x8x128 /
16x8x128 /
16x8x256

DMMA (64-bit
precision)

NVIDIA Volta
Architecture

N/A N/A N/A

NVIDIA
Turing Archi-
tecture

N/A N/A N/A

NVIDIA
Ampere
Architecture

FP64 FP64 8x8x4

4.1. Streaming Multiprocessor 11

Ampere Tuning Guide, Release 12.0

For more details on the new Tensor Core operations refer to the Warp Matrix Multiply section in the
CUDA C++ Programming Guide.

4.1.6. Improved FP32 throughput

Devices of compute capability 8.6 have 2x more FP32 operations per cycle per SM than devices of
compute capability 8.0. While a binary compiled for 8.0 will run as is on 8.6, it is recommended to
compile explicitly for 8.6 to benefit from the increased FP32 throughput.

4.2. Memory System

4.2.1. Increased Memory Capacity and High Bandwidth
Memory

The NVIDIA A100 GPU increases the HBM2 memory capacity from 32 GB in V100 GPU to 40 GB in
A100 GPU. Along with the increased memory capacity, the bandwidth is increased by 72%, from 900
GB/s on Volta V100 to 1550 GB/s on A100.

4.2.2. Increased L2 capacity and L2 Residency Controls

The NVIDIA Ampere GPU architecture increases the capacity of the L2 cache to 40 MB in Tesla A100,
which is 7x larger than Tesla V100. Along with the increased capacity, the bandwidth of the L2 cache
to the SMs is also increased. The NVIDIA Ampere GPU architecture allows CUDA users to control the
persistence of data in L2 cache. For more information on the persistence of data in L2 cache, refer to
the section on managing L2 cache in the CUDA C++ Programming Guide.

4.2.3. Unified Shared Memory/L1/Texture Cache

The NVIDIA A100 GPU based on compute capability 8.0 increases the maximum capacity of the com-
bined L1 cache, texture cache and shared memory to 192 KB, 50% larger than the L1 cache in NVIDIA
V100 GPU. The combined L1 cache capacity for GPUs with compute capability 8.6 is 128 KB.

In the NVIDIA Ampere GPU architecture, the portion of the L1 cache dedicated to shared mem-
ory (known as the carveout) can be selected at runtime as in previous architectures such as Volta,
using cudaFuncSetAttribute() with the attribute cudaFuncAttributePreferredSharedMemo-
ryCarveout. The NVIDIA A100 GPU supports shared memory capacity of 0, 8, 16, 32, 64, 100, 132 or
164 KB per SM. GPUs with compute capability 8.6 support shared memory capacity of 0, 8, 16, 32, 64
or 100 KB per SM.

CUDA reserves 1 KB of sharedmemory per thread block. Hence, the A100 GPU enables a single thread
block to address up to 163 KB of shared memory and GPUs with compute capability 8.6 can address
up to 99 KB of shared memory in a single thread block. To maintain architectural compatibility, static
shared memory allocations remain limited to 48 KB, and an explicit opt-in is also required to enable
dynamic allocations above this limit. See the CUDA C++ Programming Guide for details.

12 Chapter 4. NVIDIA Ampere GPU Architecture Tuning

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#wmma
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#L2_access_intro
https://docs.nvidia.com/cuda/cuda-c-programming-guide/

Ampere Tuning Guide, Release 12.0

Like Volta, the NVIDIA Ampere GPU architecture combines the functionality of the L1 and texture
caches into a unified L1/Texture cache which acts as a coalescing buffer for memory accesses, gath-
ering up the data requested by the threads of a warp prior to delivery of that data to the warp. Another
benefit of its union with shared memory, similar to Volta L1 is improvement in terms of both latency
and bandwidth.

4.3. Third Generation NVLink

The third generation of NVIDIA’s high-speed NVLink interconnect is implemented in A100 GPUs, which
significantly enhances multi-GPU scalability, performance, and reliability with more links per GPU,
much faster communication bandwidth, and improved error-detection and recovery features. The
third generation NVLink has the same bi-directional data rate of 50 GB/s per link, but uses half the
number of signal pairs to achieve this bandwidth. Therefore, the total number of links available is in-
creased to twelve in A100, versus six in V100, yielding 600 GB/s bidirectional bandwidth versus 300
GB/s for V100.

NVLink operates transparently within the existing CUDAmodel. Transfers between NVLink-connected
endpoints are automatically routed through NVLink, rather than PCIe. The cudaDeviceEnablePeer-
Access() API call remains necessary to enable direct transfers (over either PCIe or NVLink) between
GPUs. The cudaDeviceCanAccessPeer() can be used to determine if peer access is possible be-
tween any pair of GPUs.

In the NVIDIA Ampere GPU architecture remote NVLINK accesses go through a Link TLB on the remote
GPU. This Link TLBhas a reach of 64GB to the remoteGPU’smemory. Applicationswith remote random
accesses may want to constrain the remotely accessed region to 64 GB for each peer GPU.

4.3. Third Generation NVLink 13

Ampere Tuning Guide, Release 12.0

14 Chapter 4. NVIDIA Ampere GPU Architecture Tuning

Chapter 5. Revision History

Version 1.1

▶ Initial Public Release

▶ Added support for compute capability 8.6

15

Ampere Tuning Guide, Release 12.0

16 Chapter 5. Revision History

Chapter 6. Notices

6.1. Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a
certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no repre-
sentations or warranties, expressed or implied, as to the accuracy or completeness of the information
contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall
have no liability for the consequences or use of such information or for any infringement of patents
or other rights of third parties that may result from its use. This document is not a commitment to
develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any
other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that
such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the
time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by
authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA
product referenced in this document. No contractual obligations are formed either directly or indirectly
by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military,
aircraft, space, or life support equipment, nor in applicationswhere failure ormalfunction of theNVIDIA
product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or
applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIAmakes no representation or warranty that products based on this document will be suitable for
any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA.
It is customer’s sole responsibility to evaluate and determine the applicability of any information con-
tained in this document, ensure the product is suitable and fit for the application planned by customer,
and perform the necessary testing for the application in order to avoid a default of the application or
the product. Weaknesses in customer’s product designs may affect the quality and reliability of the
NVIDIA product andmay result in additional or different conditions and/or requirements beyond those
contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or prob-
lem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is
contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other
NVIDIA intellectual property right under this document. Information published by NVIDIA regarding
third-party products or services does not constitute a license from NVIDIA to use such products or

17

Ampere Tuning Guide, Release 12.0

services or a warranty or endorsement thereof. Use of such information may require a license from a
third party under the patents or other intellectual property rights of the third party, or a license from
NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA
in writing, reproduced without alteration and in full compliance with all applicable export laws and
regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENTANDALLNVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE
BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WAR-
RANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENTWILL NVIDIA BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CON-
SEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARIS-
ING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCHDAMAGES. Notwithstanding any damages that customermight incur for any reasonwhatso-
ever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein
shall be limited in accordance with the Terms of Sale for the product.

6.2. OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

6.3. Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the
U.S. and other countries. Other company and product names may be trademarks of the respective
companies with which they are associated.

6.4. Copyright

© 2020-2023, NVIDIA Corporation & Affiliates. All rights reserved.

18 Chapter 6. Notices

	NVIDIA Ampere GPU Architecture
	CUDA Best Practices
	Application Compatibility
	NVIDIA Ampere GPU Architecture Tuning
	Streaming Multiprocessor
	Occupancy
	Asynchronous Data Copy from Global Memory to Shared Memory
	Hardware Acceleration for Split Arrive/Wait Barrier
	Warp level support for Reduction Operations
	Improved Tensor Core Operations
	Improved FP32 throughput

	Memory System
	Increased Memory Capacity and High Bandwidth Memory
	Increased L2 capacity and L2 Residency Controls
	Unified Shared Memory/L1/Texture Cache

	Third Generation NVLink

	Revision History
	Notices
	Notice
	OpenCL
	Trademarks
	Copyright

