

Release Notes

Release 12.0

NVIDIA

Jan 28, 2023

Contents

-- -

1	CUDA Toolkit Major Component Versions	3			
2	New Features 2.1 General CUDA 2.2 CUDA Compilers 2.3 CUDA Developer Tools	9 9 10 10			
3	Deprecated or Dropped Features	11			
4 Known Issues 4.1 CUDA Tools					
5		15 15 15 16 17 17 17 17 17 18 18 18 19 19			
6		22			

NVIDIA CUDA Toolkit Release Notes

The Release Notes for the CUDA Toolkit.

The release notes for the NVIDIA[®] CUDA[®] Toolkit can be found online at https://docs.nvidia.com/cuda/ cuda-toolkit-release-notes/index.html.

Note: The release notes have been reorganized into two major sections: the general CUDA release notes, and the CUDA libraries release notes including historical information for 12.x releases.

Chapter 1. CUDA Toolkit Major Component Versions

CUDA Components Starting with CUDA 11, the various components in the toolkit are versioned independently.

For CUDA 12.0 Update 1, the table below indicates the versions:

Component Name		Version Informa- tion	Supported Archi- tectures	Supported Plat- forms	
CUDA C++ Core	Thrust	2.0.1	x86_64, POWER, aarch64-jetson	Linux, Windows	
Compute Li- braries	CUB	2.0.1			
	libcu++	1.9.0			
	Cooperative Groups	12.0.0			
CUDA Compatibilit	CUDA Compatibility		x86_64, POWER, aarch64-jetson	Linux, Windows	
CUDA Runtime (cudart)		12.0.146	x86_64, POWER, aarch64-jetson	Linux, Windows, WSL	
cuobjdump		12.0.140	x86_64, POWER, aarch64-jetson	Linux, Windows	
CUPTI		12.0.146	x86_64, POWER, aarch64-jetson	Linux, Windows, WSL	
CUDA cuxxfilt (demangler) CUDA Demo Suite		12.0.140	x86_64, POWER, aarch64-jetson	Linux, Windows	
		12.0.140	x86_64	Linux, Windows	
CUDA GDB		12.0.140	x86_64, POWER, aarch64-jetson	Linux, WSL	
CUDA Nsight Eclipse Plugin		12.0.140	x86_64, POWER	Linux	
CUDA NVCC		12.0.140	x86_64, POWER, aarch64-jetson	Linux, Windows, WSL	

continues on next page

Component Name	Version Informa- tion	Supported Archi- tectures	Supported Plat- forms
CUDA nvdisasm	12.0.140	x86_64, POWER, aarch64-jetson	Linux, Windows
CUDA NVML Headers	12.0.140	x86_64, POWER, aarch64-jetson	Linux, Windows, WSL
CUDA nvprof	12.0.146	x86_64, POWER	Linux, Windows
CUDA nvprune	12.0.140	x86_64, POWER, aarch64-jetson	Linux, Windows, WSL
CUDA NVRTC	12.0.140	x86_64, POWER, aarch64-jetson	Linux, Windows, WSL
NVTX	12.0.140	x86_64, POWER, aarch64-jetson	Linux, Windows, WSL
CUDA NVVP	12.0.146	x86_64, POWER	Linux, Windows
CUDA OpenCL	12.0.140	x86_64	Linux, Windows
CUDA Profiler API	12.0.140	x86_64, POWER, aarch64-jetson	Linux, Windows, WSL
CUDA Compute Sanitizer API	12.0.140	x86_64, POWER, aarch64-jetson	Linux, Windows, WSL
CUDA cuBLAS	12.0.2.224	x86_64, POWER, aarch64-jetson	Linux, Windows, WSL
CUDA cuDLA	12.0.140	aarch64-jetson	Linux
CUDA cuFFT	11.0.1.95	x86_64, POWER, aarch64-jetson	Linux, Windows, WSL
CUDA cuFile	1.5.1.14	x86_64	Linux
CUDA cuRAND	10.3.1.124	x86_64, POWER, aarch64-jetson	Linux, Windows, WSL
CUDA cuSOLVER	11.4.3.1	x86_64, POWER, aarch64-jetson	Linux, Windows, WSL
CUDA cuSPARSE	12.0.1.140	x86_64, POWER, aarch64-jetson	Linux, Windows, WSL
CUDA NPP	12.0.1.104	x86_64, POWER, aarch64-jetson	Linux, Windows, WSL
CUDA nvJitLink	12.0.140	x86_64, POWER, aarch64-jetson	Linux, Windows, WSL
CUDA nvJPEG	12.0.1.102	x86_64, POWER, aarch64-jetson	Linux, Windows, WSL
CUDA NVVM Samples	12.0.140	x86_64, POWER, aarch64-jetson	Linux, Windows

Table	1 – continued from	previous page
TUDIC		previous puge

continues on next page

Component Name	Version Informa- tion	Supported Archi- tectures	Supported Plat- forms
Nsight Compute	2022.4.1.6	x86_64, POWER, aarch64-jetson	Linux, Windows, WSL (Windows 11)
Nsight Systems	2022.4.2.50	x86_64, POWER, aarch64-jetson	Linux, Windows, WSL
Nsight Visual Studio Edition (VSE)	2022.4.1.23005	x86_64 (Win- dows)	Windows
nvidia_fs1	2.14.14	x86_64, aarch64- jetson	Linux
Visual Studio Integration	12.0.140	x86_64 (Win- dows)	Windows
NVIDIA Linux Driver	525.85.12	x86_64, POWER, aarch64-jetson	Linux
NVIDIA Windows Driver	528.33	x86_64 (Win- dows)	Windows, WSL

Table 1 – continued from previous page

CUDA Driver Running a CUDA application requires the system with at least one CUDA capable GPU and a driver that is compatible with the CUDA Toolkit. See Table 3. For more information various GPU products that are CUDA capable, visit https://developer.nvidia.com/cuda-gpus.

Each release of the CUDA Toolkit requires a minimum version of the CUDA driver. The CUDA driver is backward compatible, meaning that applications compiled against a particular version of the CUDA will continue to work on subsequent (later) driver releases.

More information on compatibility can be found at https://docs.nvidia.com/cuda/ cuda-c-best-practices-guide/index.html#cuda-compatibility-and-upgrades.

Note: Starting with CUDA 11.0, the toolkit components are individually versioned, and the toolkit itself is versioned as shown in the table below.

The minimum required driver version for CUDA minor version compatibility is shown below. CUDA minor version compatibility is described in detail in https://docs.nvidia.com/deploy/ cuda-compatibility/index.html

¹ Only available on select Linux distros

CUDA Toolkit	Minimum Required Driver Version for CUDA Minor Version Compatibility*		
	Linux x86_64 Driver Version	Windows x86_64 Driver Version	
CUDA 12.0.x	>=525.60.13	>=527.41	
CUDA 11.8.x	>=450.80.02	>=452.39	
CUDA 11.7.x	>=450.80.02	>=452.39	
CUDA 11.6.x	>=450.80.02	>=452.39	
CUDA 11.5.x	>=450.80.02	>=452.39	
CUDA 11.4.x	>=450.80.02	>=452.39	
CUDA 11.3.x	>=450.80.02	>=452.39	
CUDA 11.2.x	>=450.80.02	>=452.39	
CUDA 11.1 (11.1.0)	>=450.80.02	>=452.39	
CUDA 11.0 (11.0.3)	>=450.36.06**	>=451.22**	

Table 2: Table 2. CUDA Toolkit and Minimum Required Driver Version for CUDA Minor Version Compatibility

* Using a Minimum Required Version that is **different** from Toolkit Driver Version could be allowed in compatibility mode – please read the CUDA Compatibility Guide for details.

** CUDA 11.0 was released with an earlier driver version, but by upgrading to Tesla Recommended Drivers 450.80.02 (Linux) / 452.39 (Windows), minor version compatibility is possible across the CUDA 11.x family of toolkits.

The version of the development NVIDIA GPU Driver packaged in each CUDA Toolkit release is shown below.

Table 3: Table 3. CUDA Toolkit and Corresponding Driver Versions

CUDA Toolkit	Toolkit Driver Version		
	Linux x86_64 Driver Version	Windows x8	
CUDA 12.0 Update 1	>=525.85.12	>=528.33	
CUDA 12.0 GA	>=525.60.13	>=527.41	
CUDA 11.8 GA	>=520.61.05	>=520.06	
CUDA 11.7 Update 1	>=515.48.07	>=516.31	
CUDA 11.7 GA	>=515.43.04	>=516.01	
CUDA 11.6 Update 2	>=510.47.03	>=511.65	
CUDA 11.6 Update 1	>=510.47.03	>=511.65	
CUDA 11.6 GA	>=510.39.01	>=511.23	
CUDA 11.5 Update 2	>=495.29.05	>=496.13	
CUDA 11.5 Update 1	>=495.29.05	>=496.13	

con

CUDA Toolkit	Toolkit Driver Version	
CUDA 11.5 GA	>=495.29.05	>=496.04
CUDA 11.4 Update 4	>=470.82.01	>=472.50
CUDA 11.4 Update 3	>=470.82.01	>=472.50
CUDA 11.4 Update 2	>=470.57.02	>=471.41
CUDA 11.4 Update 1	>=470.57.02	>=471.41
CUDA 11.4.0 GA	>=470.42.01	>=471.11
CUDA 11.3.1 Update 1	>=465.19.01	>=465.89
CUDA 11.3.0 GA	>=465.19.01	>=465.89
CUDA 11.2.2 Update 2	>=460.32.03	>=461.33
CUDA 11.2.1 Update 1	>=460.32.03	>=461.09
CUDA 11.2.0 GA	>=460.27.03	>=460.82
CUDA 11.1.1 Update 1	>=455.32	>=456.81
CUDA 11.1 GA	>=455.23	>=456.38
CUDA 11.0.3 Update 1	>= 450.51.06	>= 451.82
CUDA 11.0.2 GA	>= 450.51.05	>= 451.48
CUDA 11.0.1 RC	>= 450.36.06	>= 451.22
CUDA 10.2.89	>= 440.33	>= 441.22
CUDA 10.1 (10.1.105 general release, and updates)	>= 418.39	>= 418.96
CUDA 10.0.130	>= 410.48	>= 411.31
CUDA 9.2 (9.2.148 Update 1)	>= 396.37	>= 398.26
CUDA 9.2 (9.2.88)	>= 396.26	>= 397.44
CUDA 9.1 (9.1.85)	>= 390.46	>= 391.29
CUDA 9.0 (9.0.76)	>= 384.81	>= 385.54
CUDA 8.0 (8.0.61 GA2)	>= 375.26	>= 376.51
CUDA 8.0 (8.0.44)	>= 367.48	>= 369.30
CUDA 7.5 (7.5.16)	>= 352.31	>= 353.66
CUDA 7.0 (7.0.28)	>= 346.46	>= 347.62

Table 3 – continued from previous page

For convenience, the NVIDIA driver is installed as part of the CUDA Toolkit installation. Note that this driver is for development purposes and is not recommended for use in production with Tesla GPUs.

For running CUDA applications in production with Tesla GPUs, it is recommended to download the latest driver for Tesla GPUs from the NVIDIA driver downloads site at https://www.nvidia.com/drivers.

During the installation of the CUDA Toolkit, the installation of the NVIDIA driver may be skipped on Windows (when using the interactive or silent installation) or on Linux (by using meta packages).

For more information on customizing the install process on Windows, see https://docs.nvidia.com/

cuda/cuda-installation-guide-microsoft-windows/index.html#install-cuda-software.

For meta packages on Linux, see https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index. html#package-manager-metas.

Chapter 2. New Features

This section lists new general CUDA and CUDA compilers features.

2.1. General CUDA

12.0

- CUDA 12.0 exposes programmable functionality for many features of the Hopper and Ada Lovelace architectures:
 - > Many tensor operations now available via public PTX:
 - TMA operations
 - ▶ TMA bulk operations
 - ► 32x Ultra xMMA (including FP8/FP16)
 - > Membar domains in Hopper, controlled via launch parameters
 - Support Hopper asynchronous transaction barrier in C++ and PTX
 - ▶ Introduced C intrinsics for Cooperative Grid Array (CGA) relaxed barrier support
 - Programmatic L2 Cache to SM multicast (Hopper-only)
 - Public PTX for SIMT collectives elect_one
 - Genomics/DPX instructions now available for Hopper GPUs to provide faster combinedmath arithmetic operations (three-way max, fused add+max, etc.)
- > Enhancements to the CUDA graphs API:
 - You can now schedule graph launches from GPU device-side kernels by calling built-in functions. With this ability, user code in kernels can dynamically schedule graph launches, greatly increasing the flexibility of CUDA graphs.
 - ▶ The cudaGraphInstantiate() API has been refactored to remove unused parameters.
- Added the ability to use virtual memory management (VMM) APIs such as cuMemCreate() with GPUs masked by CUDA_VISIBLE_DEVICES.
- Application and library developers can now programmatically update the priority of CUDA streams.
- CUDA 12.0 adds support for revamped CUDA Dynamic Parallelism APIs, offering substantial performance improvements vs. the legacy CUDA Dynamic Parallelism APIs.

- > Added new APIs to obtain unique stream and context IDs from user-provided objects:
 - cuStreamGetId(CUstream hStream, unsigned long long *streamId)
 - cuCtxGetId(CUcontext ctx, unsigned long long *ctxId)
- ► Added support for read-only cuMemSetAccess() flag CU_MEM_ACCESS_FLAGS_PROT_READ.

2.2. CUDA Compilers

12.0

- JIT LTO support is now officially part of the CUDA Toolkit through a separate nvJitLink library. A technical deep dive blog will go into more details. Note that the earlier implementation of this feature has been deprecated. Refer to the Deprecation/Dropped Features section below for details.
- New host compiler support:
 - ▶ GCC 12.1 (Official) and 12.2.1 (Experimental)
 - VS 2022 17.4 Preview 3 fixes compiler errors mentioning an internal function std::_Bit_cast by using CUDA's support for __builtin_bit_cast.
- NVCC and NVRTC now support the c++20 dialect. Most of the language features are available in host and device code; some such as coroutines are not supported in device code. Modules are not supported for both host and device code. Host Compiler Minimum Versions: GCC 10, Clang 11, VS2022, Arm C/C++ 22.x. Refer to the individual Host Compiler documentation for other feature limitations. Note that a compilation issue in C++20 mode with <complex> header mentioning an internal function std::_Bit_cast is resolved in VS2022 17.4.
- NVRTC default C++ dialect changed from C++14 to C++17. Refer to the ISO C++ standard for reference on the feature set and compatibility between the dialects.
- NVVM IR Update: with CUDA 12.0 we are releasing NVVM IR 2.0 which is incompatible with NVVM IR 1.x accepted by the libNVVM compiler in prior CUDA toolkit releases. Linking of NVVM IR Version 1.11 with 2.0 will result in a compiler error. Users of the libNVVM compiler in CUDA 12.0 toolkit must generate NVVM IR 2.0.

2.3. CUDA Developer Tools

- ▶ For changes to nvprof and Visual Profiler, see the changelog.
- ▶ For new features, improvements, and bug fixes in CUPTI, see the changelog.
- ▶ For new features, improvements, and bug fixes in Nsight Compute, see the changelog.
- ▶ For new features, improvements, and bug fixes in Compute Sanitizer, see the changelog.
- ▶ For new features, improvements, and bug fixes in CUDA-GDB, see the changelog.

Chapter 3. Deprecated or Dropped Features

Features deprecated in the current release of the CUDA software still work in the current release, but their documentation may have been removed, and they will become officially unsupported in a future release. We recommend that developers employ alternative solutions to these features in their software.

General CUDA

- CentOS Linux 8 reached End-of-Life on December 31, 2021. Support for this OS is now removed from the CUDA Toolkit and is replaced by Rocky Linux 8.
- ▶ Server 2016 support has been deprecated and shall be removed in a future release.
- ▶ Kepler architecture support is removed from CUDA 12.0.
- CUDA 11 applications that relied on Minor Version Compatibility are not guaranteed to work in CUDA 12.0 onwards. Developers will either need to statically link their applications, or recompile within the CUDA 12.0 environment to ensure continuity of development.
- From 12.0, JIT LTO support is now part of CUDA Toolkit. JIT LTO support in the CUDA Driver through the cuLink driver APIs is officially deprecated. Driver JIT LTO will be available only for 11.x applications. The following enums supported by the cuLink Driver APIs for JIT LTO are deprecated:
 - ► CU_JIT_INPUT_NVVM
 - CU_JIT_LTO
 - CU_JIT_FTZ
 - CU_JIT_PREC_DIV
 - CU_JIT_PREC_SQRT
 - CU_JIT_FMA
 - CU_JIT_REFERENCED_KERNEL_NAMES
 - > CU_JIT_REFERENCED_KERNEL_COUNT
 - CU_JIT_REFERENCED_VARIABLE_NAMES
 - CU_JIT_REFERENCED_VARIABLE_COUNT
 - CU_JIT_OPTIMIZE_UNUSED_DEVICE_VARIABLES

Existing 11.x CUDA applications using JIT LTO will continue to work on the 12.0/R525 and later driver. The driver cuLink API support for JIT LTO is not removed but will only support

11.x LTOIR. The cuLink driver API enums for JIT LTO may be removed in the future so we recommend transitioning over to CUDA Toolkit 12.0 for JIT LTO.

12.0 LTOIR will not be supported by the driver cuLink APIs. 12.0 or later applications must use nvJitLink shared library to benefit from JIT LTO.

Refer to the CUDA 12.0 blog on JIT LTO for more details.

CUDA Tools

 CUDA-MEMCHECK is removed from CUDA 12.0, and has been replaced with Compute Sanitizer.

CUDA Compiler

32-bit compilation native and cross-compilation is removed from CUDA 12.0 and later Toolkit. Use the CUDA Toolkit from earlier releases for 32-bit compilation. CUDA Driver will continue to support running existing 32-bit applications on existing GPUs except Hopper. Hopper does not support 32-bit applications. Ada will be the last architecture with driver support for 32-bit applications.

Chapter 4. Known Issues

- For a cross-compile toolkit (such as linux64 host, aarch64 target), we are missing the host-side stub library for libnvJitLink. As a workaround, you can copy the libnvJitlink.so from the target install (for example, /usr/local/cuda-12.1/targets/aarch64-linux/lib/libnvJitLink.so) to the host install (/usr/local/cuda-12.1/targets/aarch64-linux/lib/stubs/libnvJitLink.so). Similarly if you are using the static library version (/usr/local/cuda-12.1/targets/aarch64-linux/lib/libnvJitLink_static.a), you can copy it from the target install (that is, install on the device) to the same path on the host install. For an SBSA cross-compile, replace "aarch64" with "sbsa" in the above copies.
- Tegra: Application binaries built with CUDA 11.8 or older toolkit using the LTO feature may fail when running with CUDA 12.0 compat driver. This issue will be fixed in a future release.

4.1. CUDA Tools

▶ NVIDIA Visual Profiler can't remote into a target machine running Ubuntu 20.04.

Chapter 5. CUDA Libraries

This section covers CUDA Libraries release notes for 11.x releases.

- CUDA Math Libraries toolchain uses C++11 features, and a C++11-compatible standard library (libstdc++ >= 20150422) is required on the host.
- ▶ Support for the following compute capabilities is removed for all libraries:
 - sm_35 (Kepler)
 - ▶ sm_37 (Kepler)

5.1. cuBLAS Library

5.1.1. cuBLAS: Release 12.0 Update 1

New Features

- ▶ Improved performance on NVIDIA H100 SXM and NVIDIA H100 PCIe GPUs.
- Known Issues
 - For optimal performance on NVIDIA Hopper architecture, cuBLAS needs to allocate a bigger internal workspace (64 MiB) than on the previous architectures (8 MiB). In the current and previous releases, cuBLAS allocates 256 MiB. This will be addressed in a future release. A possible workaround is to set the CUBLAS_WORKSPACE_CONFIG environment variable to :32768:2 when running cuBLAS on NvMediaDlaPingByld Hopper architecture.

Resolved Issues

- ▶ Reduced cuBLAS host-side overheads caused by not using the cublasLt heuristics cache.
- > Added forward-compatible single precision complex GEMM that does not require workspace.

5.1.2. cuBLAS: Release 12.0

New Features

- cublasLtMatmul now supports FP8 with a non-zero beta.
- ▶ Added int64 APIs to enable larger problem sizes; refer to 64-bit integer interface.
- Added more Hopper-specific kernels for cublasLtMatmul with epilogues:
 - CUBLASLT_EPILOGUE_BGRAD{A,B}
 - CUBLASLT_EPILOGUE_{RELU,GELU}_AUX
 - CUBLASLT_EPILOGUE_D{RELU,GELU}
- Improved Hopper performance on arm64-sbsa by adding Hopper kernels that were previously supported only on the x86_64 architecture for Windows and Linux.

Known Issues

There are no forward compatible kernels for single precision complex gemms that do not require workspace. Support will be added in a later release.

Resolved Issues

- ▶ Fixed an issue on NVIDIA Ampere architecture and newer GPUs where cublasLtMatmul with epilogue CUBLASLT_EPILOGUE_BGRAD{A, B} and a nontrivial reduction scheme (that is, not CUBLASLT_REDUCTION_SCHEME_NONE) could return incorrect results for the bias gradient.
- cublasLtMatmul for gemv-like cases (that is, m or n equals 1) might ignore bias with the CUBLASLT_EPILOGUE_RELU_BIAS and CUBLASLT_EPILOGUE_BIAS epilogues.

Deprecations

- ▶ Disallow including cublas.h and cublas_v2.h in the same translation unit.
- ► Removed:
 - CUBLAS_MATMUL_STAGES_16x80 and CUBLAS_MATMUL_STAGES_64x80 from cublasLtMatmulStages_t. No kernels utilize these stages anymore.
 - cublasLt3mMode_t, CUBLASLT_MATMUL_PREF_MATH_MODE_MASK, and CUBLASLT_MATMUL_PREF_GAUSSIAN_MODE_MASK from cublasLtMatmulPreferenceAttributes_t. Instead, use the corresponding flags from cublasLtNumericalImplFlags_t.
 - CUBLASLT_MATMUL_PREF_POINTER_MODE_MASK, CUBLASLT_MATMUL_PREF_EPILOGUE_MASK, and CUBLASLT_MATMUL_PREF_SM_COUNT_TARGET from cublasLtMatmulPreferenceAttributes_t. The corresponding parameters are taken directly from cublasLtMatmulDesc_t.
 - CUBLASLT_POINTER_MODE_MASK_NO_FILTERING from cublasLtPointerMode-Mask_t. This mask was only applicable to CUBLASLT_MATMUL_PREF_MATH_MODE_MASK which was removed.

5.2. cuFFT Library

5.2.1. cuFFT: Release 12.0 Update 1

Resolved Issues

Scratch space requirements for multi-GPU, single-batch, 1D FFTs was reduced.

5.2.2. cuFFT: Release 12.0

New Features

 PTX JIT kernel compilation allowed the addition of many new accelerated cases for Maxwell, Pascal, Volta and Turing architectures.

Known Issues

 cuFFT plan generation time increases due to PTX JIT compiling. Refer to Plan Initialization TIme.

Resolved Issues

 cuFFT plans had an unintentional small memory overhead (of a few kB) per plan. This is resolved.

5.3. cuSPARSE Library

5.3.1. cuSPARSE: Release 12.0 Update 1

New Features

- cusparseSDDMM() now supports mixed precision computation.
- Improved cusparseSpMM() alg2 mixed-precision performance on some matrices on NVIDIA Ampere architecture GPUs.
- ▶ Improved cusparseSpMV() performance with a new load balancing algorithm.
- cusparseSpSV() and cusparseSpSM() now support in-place computation, namely the output and input vectors/matrices have the same memory address.

5.3.2. cuSPARSE: Release 12.0

New Features

- JIT LTO functionalities (cusparseSpMMOp()) switched from driver to nvJitLto library. Starting from CUDA 12.0 the user needs to link to libnvJitLto.so, see cuSPARSE documentation. JIT LTO performance has also been improved for cusparseSpMMOpPlan().
- Introduced const descriptors for the Generic APIs, for example, cusparseConst-SpVecGet(). Now the Generic APIs interface clearly declares when a descriptor and its data are modified by the cuSPARSE functions.
- Added two new algorithms to cusparseSpGEMM() with lower memory utilization. The first algorithm computes a strict bound on the number of intermediate product, while the second one allows partitioning the computation in chunks.
- Added int8_t support to cusparseGather(), cusparseScatter(), and cusparseCsr2cscEx2().
- ▶ Improved cusparseSpSV() performance for both the analysis and the solving phases.
- ▶ Improved cusparseSpSM() performance for both the analysis and the solving phases.
- ▶ Improved cusparseSDDMM() performance and added support for batch computation.
- Improved cusparseCsr2cscEx2() performance.

Resolved Issues

- cusparseSpSV() and cusparseSpSM() could produce wrong results.
- cusparseDnMatGetStridedBatch() did not accept batchStride == 0.
- Deprecations
 - ▶ Removed deprecated CUDA 11.x APIs, enumerators, and descriptors.

5.4. Math Library

5.4.1. CUDA Math: Release 12.0

New Features

Introduced new integer/fp16/bf16 CUDA Math APIs to help expose performance benefits of new DPX instructions. Refer to https://docs.nvidia.com/cuda/cuda-math-api/index.html.

Known Issues

Double precision inputs that cause the double precision division algorithm in the default 'round to nearest even mode' produce spurious overflow: an infinite result is delivered where DBL_MAX 0x7FEF_FFFF_FFFF_FFFF is expected. Affected CUDA Math APIs: __ddiv_rn(). Affected CUDA language operation: double precision / operation in the device code.

Deprecations

▶ All previously deprecated undocumented APIs are removed from CUDA 12.0.

5.5. NVIDIA Performance Primitives (NPP)

5.5.1. NPP: Release 12.0

Deprecations

▶ Deprecating non-CTX API support from next release.

Resolved Issues

A performance issue with the NPP ResizeSqrPixel API is now fixed and shows improved performance.

5.6. nvJPEG Library

5.6.1. nvJPEG: Release 12.0

- New Features
 - ▶ Immproved the GPU Memory optimisation for the nvJPEG codec.
- Resolved Issues
 - An issue that causes runtime failures when nvJPEGDecMultipleInstances was tested with a large number of threads is resolved.
 - > An issue with CMYK four component color conversion is now resolved.
- Known Issues
 - Backend NVJPEG_BACKEND_GPU_HYBRID Unable to handle bitstreams with extra scans lengths.
- Deprecations
 - ► The reuse of Huffman table in Encoder (nvjpegEncoderParamsCopyHuffmanTables).

Chapter 6. Notices

6.1. Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA Corporation ("NVIDIA") makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer ("Terms of Sale"). NVIDIA hereby expressly objects to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer's own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA. It is customer's sole responsibility to evaluate and determine the applicability of any information contained in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of the application or the product. Weaknesses in customer's product designs may affect the quality and reliability of the NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document. Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or

services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WAR-RANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CON-SEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARIS-ING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Notwithstanding any damages that customer might incur for any reason whatso-ever, NVIDIA's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms of Sale for the product.

6.2. OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

6.3. Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

6.4. Copyright

© 2007-2023, NVIDIA Corporation & Affiliates. All rights reserved.