Contents

1 CUDA Toolkit Major Component Versions .. 3
 2 New Features .. 9
 2.1 General CUDA .. 9
 2.2 CUDA Compilers .. 9
 2.3 CUDA Developer Tools .. 10
 3 Deprecated or Dropped Features .. 11
 4 Known Issues ... 13
 4.1 General CUDA Known Issues ... 13
 4.2 CUDA Compiler Known Issues .. 13
 5 CUDA Libraries ... 15
 5.1 cuBLAS Library .. 15
 5.1.1 cuBLAS: Release 12.0 Update 1 15
 5.1.2 cuBLAS: Release 12.0 .. 16
 5.2 cuFFT Library .. 17
 5.2.1 cuFFT: Release 12.1 ... 17
 5.2.2 cuFFT: Release 12.0 Update 1 ... 17
 5.2.3 cuFFT: Release 12.0 ... 17
 5.3 cuSPARSE Library ... 18
 5.3.1 cuSPARSE: Release 12.0 .. 18
 5.3.2 cuSPARSE: Release 12.0 .. 18
 5.4 Math Library ... 19
 5.4.1 CUDA Math: Release 12.1 ... 19
 5.4.2 CUDA Math: Release 12.0 ... 19
 5.5 NVIDIA Performance Primitives (NPP) 19
 5.5.1 NPP: Release 12.0 .. 19
 5.6 nvJPEG Library .. 20
 5.6.1 nvJPEG: Release 12.0 ... 20
 6 Notices ... 21
 6.1 Notice ... 21
 6.2 OpenCL .. 22
 6.3 Trademarks .. 22
NVIDIA CUDA Toolkit Release Notes

The Release Notes for the CUDA Toolkit.

The release notes for the NVIDIA® CUDA® Toolkit can be found online at https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html.

Note: The release notes have been reorganized into two major sections: the general CUDA release notes, and the CUDA libraries release notes including historical information for 12.x releases.
Chapter 1. CUDA Toolkit Major Component Versions

CUDA Components Starting with CUDA 11, the various components in the toolkit are versioned independently.
For CUDA 12.1, the table below indicates the versions:

<table>
<thead>
<tr>
<th>Component Name</th>
<th>Version Information</th>
<th>Supported Architectures</th>
<th>Supported Platforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUDA C++ Core Libraries</td>
<td>Thrust</td>
<td>x86_64, POWER, aarch64-jetson</td>
<td>Linux, Windows</td>
</tr>
<tr>
<td></td>
<td>CUB</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>libcu++</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cooperative Groups</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CUDA Compatibility</td>
<td>12.1.32432504</td>
<td>x86_64, POWER</td>
<td>Linux, Windows</td>
</tr>
<tr>
<td>CUDA Runtime (cudart)</td>
<td>12.1.55</td>
<td>x86_64, POWER, aarch64-jetson</td>
<td>Linux, Windows, WSL</td>
</tr>
<tr>
<td>cuobjdump</td>
<td>12.1.55</td>
<td>x86_64, POWER, aarch64-jetson</td>
<td>Linux, Windows</td>
</tr>
<tr>
<td>CUPTI</td>
<td>12.1.62</td>
<td>x86_64, POWER, aarch64-jetson</td>
<td>Linux, Windows, WSL</td>
</tr>
<tr>
<td>CUDA cuxxfilt (demangler)</td>
<td>12.1.55</td>
<td>x86_64, POWER, aarch64-jetson</td>
<td>Linux, Windows</td>
</tr>
<tr>
<td>CUDA Demo Suite</td>
<td>12.1.55</td>
<td>x86_64</td>
<td>Linux, Windows</td>
</tr>
<tr>
<td>CUDA GDB</td>
<td>12.1.55</td>
<td>x86_64, POWER, aarch64-jetson</td>
<td>Linux, WSL</td>
</tr>
<tr>
<td>CUDA Nsight Eclipse Plugin</td>
<td>12.1.55</td>
<td>x86_64, POWER</td>
<td>Linux</td>
</tr>
<tr>
<td>CUDA NVCC</td>
<td>12.1.66</td>
<td>x86_64, POWER, aarch64-jetson</td>
<td>Linux, Windows, WSL</td>
</tr>
</tbody>
</table>

continues on next page
<table>
<thead>
<tr>
<th>Component Name</th>
<th>Version Information</th>
<th>Supported Architectures</th>
<th>Supported Platforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUDA nvdisasm</td>
<td>12.1.55</td>
<td>x86_64, POWER, aarch64-jetson</td>
<td>Linux, Windows</td>
</tr>
<tr>
<td>CUDA NVML Headers</td>
<td>12.1.55</td>
<td>x86_64, POWER, aarch64-jetson</td>
<td>Linux, Windows, WSL</td>
</tr>
<tr>
<td>CUDA nvprof</td>
<td>12.1.55</td>
<td>x86_64, POWER</td>
<td>Linux, Windows</td>
</tr>
<tr>
<td>CUDA nvprune</td>
<td>12.1.55</td>
<td>x86_64, POWER, aarch64-jetson</td>
<td>Linux, Windows, WSL</td>
</tr>
<tr>
<td>CUDA NVRRTC</td>
<td>12.1.55</td>
<td>x86_64, POWER, aarch64-jetson</td>
<td>Linux, Windows, WSL</td>
</tr>
<tr>
<td>NVTX</td>
<td>12.1.66</td>
<td>x86_64, POWER, aarch64-jetson</td>
<td>Linux, Windows, WSL</td>
</tr>
<tr>
<td>CUDA NVVP</td>
<td>12.1.55</td>
<td>x86_64, POWER</td>
<td>Linux, Windows</td>
</tr>
<tr>
<td>CUDA OpenCL</td>
<td>12.1.56</td>
<td>x86_64</td>
<td>Linux, Windows</td>
</tr>
<tr>
<td>CUDA Profiler API</td>
<td>12.1.55</td>
<td>x86_64, POWER, aarch64-jetson</td>
<td>Linux, Windows, WSL</td>
</tr>
<tr>
<td>CUDA Compute Sanitizer API</td>
<td>12.1.55</td>
<td>x86_64, POWER, aarch64-jetson</td>
<td>Linux, Windows, WSL</td>
</tr>
<tr>
<td>CUDA cuBLAS</td>
<td>12.1.0.26</td>
<td>x86_64, POWER, aarch64-jetson</td>
<td>Linux, Windows, WSL</td>
</tr>
<tr>
<td>CUDA cuDLA</td>
<td>12.1.55</td>
<td>aarch64-jetson</td>
<td>Linux</td>
</tr>
<tr>
<td>CUDA cuFFT</td>
<td>11.0.2.4</td>
<td>x86_64, POWER, aarch64-jetson</td>
<td>Linux, Windows, WSL</td>
</tr>
<tr>
<td>CUDA cuFile</td>
<td>1.6.0.25</td>
<td>x86_64</td>
<td>Linux</td>
</tr>
<tr>
<td>CUDA cuRAND</td>
<td>10.3.2.56</td>
<td>x86_64, POWER, aarch64-jetson</td>
<td>Linux, Windows, WSL</td>
</tr>
<tr>
<td>CUDA cuSOLVER</td>
<td>11.4.4.55</td>
<td>x86_64, POWER, aarch64-jetson</td>
<td>Linux, Windows, WSL</td>
</tr>
<tr>
<td>CUDA cuSPARSE</td>
<td>12.0.2.55</td>
<td>x86_64, POWER, aarch64-jetson</td>
<td>Linux, Windows, WSL</td>
</tr>
<tr>
<td>CUDA NPP</td>
<td>12.0.2.50</td>
<td>x86_64, POWER, aarch64-jetson</td>
<td>Linux, Windows, WSL</td>
</tr>
<tr>
<td>CUDA nvJitLink</td>
<td>12.1.55</td>
<td>x86_64, POWER, aarch64-jetson</td>
<td>Linux, Windows, WSL</td>
</tr>
<tr>
<td>CUDA nvJPEG</td>
<td>12.1.0.39</td>
<td>x86_64, POWER, aarch64-jetson</td>
<td>Linux, Windows, WSL</td>
</tr>
<tr>
<td>CUDA NVVM Samples</td>
<td>12.1.55</td>
<td>x86_64, POWER, aarch64-jetson</td>
<td>Linux, Windows</td>
</tr>
</tbody>
</table>

continues on next page
Table 1 – continued from previous page

<table>
<thead>
<tr>
<th>Component Name</th>
<th>Version Information</th>
<th>Supported Architectures</th>
<th>Supported Platforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nsight Compute</td>
<td>2023.1.0.15</td>
<td>x86_64, POWER, aarch64-jetson</td>
<td>Linux, Windows, WSL (Windows 11)</td>
</tr>
<tr>
<td>Nsight Systems</td>
<td>2023.1.2.43</td>
<td>x86_64, POWER, aarch64-jetson</td>
<td>Linux, Windows, WSL</td>
</tr>
<tr>
<td>Nsight Visual Studio Edition (VSE)</td>
<td>2023.1.0.23041</td>
<td>x86_64</td>
<td>Windows</td>
</tr>
<tr>
<td>nvidia_fs¹</td>
<td>2.15.1</td>
<td>x86_64, aarch64-jetson</td>
<td>Linux</td>
</tr>
<tr>
<td>Visual Studio Integration</td>
<td>12.1.55</td>
<td>x86_64</td>
<td>Windows</td>
</tr>
<tr>
<td>NVIDIA Linux Driver</td>
<td>530.30.02</td>
<td>x86_64, POWER, aarch64-jetson</td>
<td>Linux</td>
</tr>
<tr>
<td>NVIDIA Windows Driver</td>
<td>531.14</td>
<td>x86_64</td>
<td>Windows, WSL</td>
</tr>
</tbody>
</table>

CUDA Driver Running a CUDA application requires the system with at least one CUDA capable GPU and a driver that is compatible with the CUDA Toolkit. See Table 3. For more information various GPU products that are CUDA capable, visit https://developer.nvidia.com/cuda-gpus.

Each release of the CUDA Toolkit requires a minimum version of the CUDA driver. The CUDA driver is backward compatible, meaning that applications compiled against a particular version of the CUDA will continue to work on subsequent (later) driver releases.

Note: Starting with CUDA 11.0, the toolkit components are individually versioned, and the toolkit itself is versioned as shown in the table below.

The minimum required driver version for CUDA minor version compatibility is shown below. CUDA minor version compatibility is described in detail in https://docs.nvidia.com/deploy/cuda-compatibility/index.html

¹ Only available on select Linux distros
Table 2: CUDA Toolkit and Minimum Required Driver Version for CUDA Minor Version Compatibility

<table>
<thead>
<tr>
<th>CUDA Toolkit</th>
<th>Minimum Required Driver Version for CUDA Minor Version Compatibility*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Linux x86_64 Driver Version</td>
</tr>
<tr>
<td>CUDA 12.1.x</td>
<td>>=525.60.13</td>
</tr>
<tr>
<td>CUDA 12.0.x</td>
<td>>=525.60.13</td>
</tr>
<tr>
<td>CUDA 11.8.x</td>
<td>>=450.80.02</td>
</tr>
<tr>
<td>CUDA 11.7.x</td>
<td>>=450.80.02</td>
</tr>
<tr>
<td>CUDA 11.6.x</td>
<td>>=450.80.02</td>
</tr>
<tr>
<td>CUDA 11.5.x</td>
<td>>=450.80.02</td>
</tr>
<tr>
<td>CUDA 11.4.x</td>
<td>>=450.80.02</td>
</tr>
<tr>
<td>CUDA 11.3.x</td>
<td>>=450.80.02</td>
</tr>
<tr>
<td>CUDA 11.2.x</td>
<td>>=450.80.02</td>
</tr>
<tr>
<td>CUDA 11.1 (11.1.0)</td>
<td>>=450.80.02</td>
</tr>
<tr>
<td>CUDA 11.0 (11.0.3)</td>
<td>>=450.36.06**</td>
</tr>
</tbody>
</table>

* Using a Minimum Required Version that is **different** from Toolkit Driver Version could be allowed in compatibility mode – please read the CUDA Compatibility Guide for details.

** CUDA 11.0 was released with an earlier driver version, but by upgrading to Tesla Recommended Drivers 450.80.02 (Linux) / 452.39 (Windows), minor version compatibility is possible across the CUDA 11.x family of toolkits.

The version of the development NVIDIA GPU Driver packaged in each CUDA Toolkit release is shown below.

Table 3: CUDA Toolkit and Corresponding Driver Versions

<table>
<thead>
<tr>
<th>CUDA Toolkit</th>
<th>Toolkit Driver Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Linux x86_64 Driver Version</td>
</tr>
<tr>
<td>CUDA 12.1 GA</td>
<td>>=530.30.02</td>
</tr>
<tr>
<td>CUDA 12.0 Update 1</td>
<td>>=525.85.12</td>
</tr>
<tr>
<td>CUDA 12.0 GA</td>
<td>>=525.60.13</td>
</tr>
<tr>
<td>CUDA 11.8 GA</td>
<td>>=520.61.05</td>
</tr>
<tr>
<td>CUDA 11.7 Update 1</td>
<td>>=515.48.07</td>
</tr>
<tr>
<td>CUDA 11.7 GA</td>
<td>>=515.43.04</td>
</tr>
<tr>
<td>CUDA 11.6 Update 2</td>
<td>>=510.47.03</td>
</tr>
<tr>
<td>CUDA 11.6 Update 1</td>
<td>>=510.47.03</td>
</tr>
<tr>
<td>CUDA 11.6 GA</td>
<td>>=510.39.01</td>
</tr>
</tbody>
</table>

continued on next page
For convenience, the NVIDIA driver is installed as part of the CUDA Toolkit installation. Note that this driver is for development purposes and is not recommended for use in production with Tesla GPUs.

For running CUDA applications in production with Tesla GPUs, it is recommended to download the latest driver for Tesla GPUs from the NVIDIA driver downloads site at https://www.nvidia.com/drivers.
During the installation of the CUDA Toolkit, the installation of the NVIDIA driver may be skipped on Windows (when using the interactive or silent installation) or on Linux (by using meta packages).

For more information on customizing the install process on Windows, see https://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html#install-cuda-software.

Chapter 2. New Features

This section lists new general CUDA and CUDA compilers features.

2.1. General CUDA

▶ New meta-packages for Linux installation.
 ▶ cuda-toolkit
 ▶ Installs all CUDA Toolkit packages required to develop CUDA applications.
 ▶ Handles upgrading to the latest version of CUDA when it’s released.
 ▶ Does not include the driver.
 ▶ cuda-toolkit-12
 ▶ Installs all CUDA Toolkit packages required to develop CUDA applications.
 ▶ Handles upgrading to the next 12.x version of CUDA when it’s released.
 ▶ Does not include the driver.
▶ New CUDA API to enable mini core dump programmatically is now available. Refer to https://docs.nvidia.com/cuda/cuda-gdb/index.html#gpu-core-dump-support and https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__COREDUMP.html#group__CUDA__COREDUMP for more information.

2.2. CUDA Compilers

▶ NVCC has added support for host compiler: GCC 12.2, NVC++ 22.11, Clang 15.0, VS2022 17.4
▶ Breakpoint and single stepping behavior for a multi-line statement in device code has been improved, when code is compiled with nvcc using gcc/clang host compiler compiler or when compiled with NVRTC on non-Windows platforms. The debugger will now correctly breakpoint and single-step on each source line of the multiline source code statement.
▶ PTX has exposed a new special register in the public ISA, which can be used to query total size of shared memory which includes user shared memory and SW reserved shared memory.
▶ NVCC and NVRTC now show preprocessed source line and column info in a diagnostic to help users to understand the message and identify the issue causing the diagnostic. The source line and column info can be turned off with --brief-diagnostics=true.
2.3. CUDA Developer Tools

► For changes to nvprof and Visual Profiler, see the changelog.
► For new features, improvements, and bug fixes in CUPTI, see the changelog.
► For new features, improvements, and bug fixes in Nsight Compute, see the changelog.
► For new features, improvements, and bug fixes in Compute Sanitizer, see the changelog.
► For new features, improvements, and bug fixes in CUDA-GDB, see the changelog.
Chapter 3. Deprecated or Dropped Features

Features deprecated in the current release of the CUDA software still work in the current release, but their documentation may have been removed, and they will become officially unsupported in a future release. We recommend that developers employ alternative solutions to these features in their software.

General CUDA

▶ None.

CUDA Tools

▶ None.

CUDA Compiler

▶ None.
Chapter 4. Known Issues

4.1. General CUDA Known Issues

▶ For a cross-compile toolkit (such as linux64 host, aarch64 target), we are missing the host-side stub library for libnvJitLink. As a workaround, you can copy the libnvJitlink.so from the target install (for example, /usr/local/cuda-12.1/targets/aarch64-linux/lib/libnvJitLink.so) to the host install (/usr/local/cuda-12.1/targets/aarch64-linux/lib/stubs/libnvJitLink.so). Similarly if you are using the static library version (/usr/local/cuda-12.1/targets/aarch64-linux/lib/libnvJitLink_static.a), can copy it from the target install (i.e. install on the device) to the same path on the host install. For a sbsa cross-compile replace aarch64 with sbsa in the above copies.

▶ Due to an issue in the way CUDA processes memory attachment for NVLink multicast allocations, memory must be aligned to 512MB. Alignments below this will result in a failure to attach and an error issued by the driver.

4.2. CUDA Compiler Known Issues

▶ There is an issue regarding the handling of --split-compile=0 in nvcc and nvlink. In nvcc, split compilation will be disabled when given the value of '0', whereas in nvlink, '0' is the default value for split compilation when invoked for Link Time Optimization (LTO). This issue will be addressed in a subsequent update.

▶ nvJitLink static and stub library for dynamic linking are not part of the cross-compilation builds of Aarch64-Jetson and arm64-sbsa. This will be resolved in a future release.
Chapter 5. CUDA Libraries

This section covers CUDA Libraries release notes for 12.x releases.

- CUDA Math Libraries toolchain uses C++11 features, and a C++11-compatible standard library (libstdc++ >= 20150422) is required on the host.

- Support for the following compute capabilities is removed for all libraries:
 - sm_35 (Kepler)
 - sm_37 (Kepler)

5.1. cuBLAS Library

5.1.1. cuBLAS: Release 12.0 Update 1

- **New Features**
 - Improve performance on NVIDIA H100 SXM and NVIDIA H100 PCIe GPUs.

- **Known Issues**
 - For optimal performance on NVIDIA Hopper architecture, cuBLAS needs to allocate a bigger internal workspace (64 MiB) than on the previous architectures (8 MiB). In the current and previous releases, cuBLAS allocates 256 MiB. This will be addressed in a future release. A possible workaround is to set the `CUBLAS_WORKSPACE_CONFIG` environment variable to `:32768:2` when running cuBLAS on NVIDIA Hopper architecture.

- **Resolved Issues**
 - Reduced cuBLAS host-side overheads caused by not using the cublasLt heuristics cache. This began in the CUDA Toolkit 12.0 release.
 - Added forward compatible single precision complex GEMM that does not require workspace.
5.1.2. cuBLAS: Release 12.0

► New Features
 ► `cublasLtMatmul` now supports FP8 with a non-zero beta.
 ► Added int64 APIs to enable larger problem sizes; refer to 64-bit integer interface.
 ► Added more Hopper-specific kernels for `cublasLtMatmul` with epilogues:
 ◆ `CUBLASLT_EPILOGUE_BGRAD{A,B}`
 ◆ `CUBLASLT_EPILOGUE_{RELU,GELU}_AUX`
 ◆ `CUBLASLT_EPILOGUE_D{RELU,GELU}`
 ► Improved Hopper performance on arm64-sbsa by adding Hopper kernels that were previously supported only on the x86_64 architecture for Windows and Linux.

► Known Issues
 ► There are no forward compatible kernels for single precision complex gemms that do not require workspace. Support will be added in a later release.

► Resolved Issues
 ► Fixed an issue on NVIDIA Ampere architecture and newer GPUs where `cublasLtMatmul` with epilogue `CUBLASLT_EPILOGUE_BGRAD{A,B}` and a nontrivial reduction scheme (that is, not `CUBLASLT_REDUCTION_SCHEME_NONE`) could return incorrect results for the bias gradient.
 ► `cublasLtMatmul` for gemv-like cases (that is, m or n equals 1) might ignore bias with the `CUBLASLT_EPILOGUE_RELU_BIAS` and `CUBLASLT_EPILOGUE_BIAS` epilogues.

Deprecations
 ► Disallow including `cublas.h` and `cublas_v2.h` in the same translation unit.
 ► Removed:
 ◆ `CUBLAS_MATMUL_STAGES_16x80` and `CUBLAS_MATMUL_STAGES_64x80` from `cublasLtMatmulStages_t`. No kernels utilize these stages anymore.
 ◆ `cublasLt3mMode_t`, `CUBLASLT_MATMUL_PREF_MATH_MODE_MASK`, and `CUBLASLT_MATMUL_PREF_GAUSSIAN_MODE_MASK` from `cublasLtMatmulPreferenceAttributes_t`. Instead, use the corresponding flags from `cublasLtNumericalImplFlags_t`.
 ◆ `CUBLASLT_MATMUL_PREF_POINTER_MODE_MASK`, `CUBLASLT_MATMUL_PREF_EPILOGUE_MASK`, and `CUBLASLT_MATMUL_PREF_SM_COUNT_TARGET` from `cublasLtMatmulPreferenceAttributes_t`. The corresponding parameters are taken directly from `cublasLtMatmulDesc_t`.
 ◆ `CUBLASLT_POINTER_MODE_MASK_NO_FILTERING` from `cublasLtPointerModeMask_t`. This mask was only applicable to `CUBLASLT_MATMUL_PREF_MATH_MODE_MASK` which was removed.
5.2. cuFFT Library

5.2.1. cuFFT: Release 12.1

► New Features
 ► Improved performance on Hopper GPUs for hundreds of FFTs of sizes ranging from 14 to 28800. The improved performance spans over 542 cases across single and double precision for FFTs with contiguous data layout.

► Known Issues
 ► Starting from CUDA 11.8, CUDA Graphs are no longer supported for callback routines that load data in out-of-place mode transforms. An upcoming release will update the cuFFT callback implementation, removing this limitation. cuFFT deprecated callback functionality based on separate compiled device code in cuFFT 11.4.

► Resolved Issues
 ► cuFFT no longer produces errors with compute-sanitizer at program exit if the CUDA context used at plan creation was destroyed prior to program exit.

5.2.2. cuFFT: Release 12.0 Update 1

► Resolved Issues
 ► Scratch space requirements for multi-GPU, single-batch, 1D FFTs were reduced.

5.2.3. cuFFT: Release 12.0

► New Features
 ► PTX JIT kernel compilation allowed the addition of many new accelerated cases for Maxwell, Pascal, Volta and Turing architectures.

► Known Issues
 ► cuFFT plan generation time increases due to PTX JIT compiling. Refer to Plan Initialization Time.

► Resolved Issues
 ► cuFFT plans had an unintentional small memory overhead (of a few kB) per plan. This is resolved.
5.3. cuSPARSE Library

5.3.1. cuSPARSE: Release 12.0

▶ New Features
 ▶ JIT LTO functionalities (cusparseSpMMOp()) switched from driver to nvJitLto library. Starting from CUDA 12.0 the user needs to link to libnvJitLto.so, see cuSPARSE documentation. JIT LTO performance has also been improved for cusparseSpMMOpPlan().
 ▶ Introduced const descriptors for the Generic APIs, for example, cusparseConstSpVecGet(). Now the Generic APIs interface clearly declares when a descriptor and its data are modified by the cuSPARSE functions.
 ▶ Added two new algorithms to cusparseSpGEMM() with lower memory utilization. The first algorithm computes a strict bound on the number of intermediate product, while the second one allows partitioning the computation in chunks.
 ▶ Added int8_t support to cusparseGather(), cusparseScatter(), and cusparseCsr2cscEx2().
 ▶ Improved cusparseSpSV() performance for both the analysis and the solving phases.
 ▶ Improved cusparseSpSM() performance for both the analysis and the solving phases.
 ▶ Improved cusparseSDDMM() performance and added support for batch computation.
 ▶ Improved cusparseCsr2cscEx2() performance.

▶ Resolved Issues
 ▶ cusparseSpSV() and cusparseSpSM() could produce wrong results.
 ▶ cusparseDnMatGetStridedBatch() did not accept batchStride == 0.

▶ Deprecations
 ▶ Removed deprecated CUDA 11.x APIs, enumerators, and descriptors.
5.4. Math Library

5.4.1. CUDA Math: Release 12.1

▶ New Features

▶ Performance and accuracy improvements in atanf, acosf, asinf, sinpif, cospif, powf, erff, and tgammaf.

5.4.2. CUDA Math: Release 12.0

▶ New Features

Known Issues

▶ Double precision inputs that cause the double precision division algorithm in the default 'round to nearest even mode' produce spurious overflow: an infinite result is delivered where DBL_MAX \(0x7FEFFFFFFFFFFFFFF\) is expected. Affected CUDA Math APIs: __ddiv_rn(). Affected CUDA language operation: double precision / operation in the device code.

▶ Deprecations

▶ All previously deprecated undocumented APIs are removed from CUDA 12.0.

5.5. NVIDIA Performance Primitives (NPP)

5.5.1. NPP: Release 12.0

▶ Deprecations

▶ Deprecating non-CTX API support from next release.

▶ Resolved Issues

▶ A performance issue with the NPP ResizeSqrPixel API is now fixed and shows improved performance.
5.6. nvJPEG Library

5.6.1. nvJPEG: Release 12.0

- **New Features**
 - Improved the GPU Memory optimisation for the nvJPEG codec.

- **Resolved Issues**
 - An issue that causes runtime failures when `nvJPEGDecMultipleInstances` was tested with a large number of threads is resolved.
 - An issue with CMYK four component color conversion is now resolved.

- **Known Issues**
 - Backend `NVJPEG_BACKEND_GPU_HYBRID` - Unable to handle bistreams with extra scans lengths.

- **Deprecations**
 - The reuse of Huffman table in Encoder (`nvjpegEncoderParamsCopyHuffmanTables`).
Chapter 6. Notices

6.1. Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA Corporation ("NVIDIA") makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer ("Terms of Sale"). NVIDIA hereby expressly objects to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document. Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or
services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms of Sale for the product.

6.2. OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

6.3. Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright

©2007-2023, NVIDIA Corporation & Affiliates. All rights reserved