cuBLAS
Release 12.1

NVIDIA

Apr 17,2023

Contents

1 Data Layout

2 New and Legacy cuBLAS API

3 Example Code

4 Using the cuBLAS API
4.1 General Description e
4.1.1 Error Status e
4.1.2 CUBLAS Context
413 Thread Safety
4.1.4 Results Reproducibility
415 Scalar Parameters. e
4.1.6 Parallelism with Streams
4.1.7 BatchingKernels e
4.1.8 Cache Configuration e
4.1.9 Static Library Support
4.1.10 GEMM Algorithms Numerical Behavior
4.1.11 Tensor Core UsSage ot it i i e e
4.1.12 CUDA Graphs Support e
4.1.13 64-bitIntegeriInterface L
4.2 CUBLAS Datatypes Reference e
4.2.1 cublasHandle_t
4.2.2 cublasStatus_t
423 cublasOperation_t e
424 cublasFillMode_t
425 cublasDiagType_t e
4.2.6 cublasSideMode_t
4.2.7 cublasPointerMode_t.
42.8 cublasAtomicsMode_t L
42,9 cublasGemmAIlgo_t
4210 cublasMath_t
4.2.11 cublasComputeType_t
4.3 CUDA Datatypes Reference
4.3.1 cudaDataType_t e
432 libraryPropertyType_t e
4.4 CUBLAS Helper Function Reference
4.4 cublasCreate() e
442 cublasDestroy()
4.4.3 cublasGetVersion()
4.4.4 cublasGetProperty()
4.45 cublasGetStatusName()
446 cublasGetStatusString()

447 cublasSetStream() e 26
4.4.8 cublasSetWorkspace() e 26
4.49 cublasGetStream() 27
44,10 cublasGetPointerMode() 27
4411 cublasSetPointerMode() 28
4412 cublasSetVector() 28
4413 cublasGetVector() 29
4414 cublasSetMatrix() e 29
4415 cublasGetMatrix() 30
44,16 cublasSetVectorAsync() 30
44,17 cublasGetVectorAsync() e 30
4418 cublasSetMatrixAsync() 31
4419 cublasGetMatrixAsync() e 31
4420 cublasSetAtomicsMode() 32
4421 cublasGetAtomicsMode() 32
4422 cublasSetMathMode() e 32
4423 cublasGetMathMode() e 33
4424 cublasSetSmCountTarget() 33
4425 cublasGetSmCountTarget() 34
4.426 cublasLoggerConfigure() 34
4.4.27 cublasGetLoggerCallback() 35
4.4.28 cublasSetLoggerCallback() 35
45 CUuBLAS Level-1 Function Reference e 35
451 cublasl<t>amax() 36
452 cublasl<t>amin() 37
453 cublas<t>asum(). 38
454 cublas<t>axpy() 39
455 cublas<t>copy() 40
456 cublas<t>dot() 41
457 cublas<t>nrm2() e 42
458 cublas<t>rot() 43
459 cublas<tarotg() 44
4510 cublas<t>rotm() 45
4511 cublas<t>rotmg() 47
4512 cublas<t>scal(). 48
4513 cublas<t>swap() 49
4.6 CUBLAS Level-2 Function Reference 49
4.6.1 cublas<t>gbmv() 50
46.2 cublas<t>gemv(). 52
46.3 cublas<t>ger() 54
46.4 cublas<t>sbmv() 55
46.5 cublas<t>spmv() 57
46.6 cublas<t>spr() e 59
4.6.7 cublas<t>spr2() 60
4.6.8 cublas<t>symv() 62
46.9 cublas<t>syr() 64
4.6.10 cublas<t>syr2() 65
46.11 cublas<t>tbmv() e 67
46.12 cublas<t>tbsv() e 69
4.6.13 cublas<t>tpmv() 71
4.6.14 cublas<t>tpsv() 73
4.6.15 cublas<t>trmv() e 75
46.16 cublas<t>trsv() 77
46.17 cublas<t>hemv(). 79

4.6.18 cublas<t>hbmv() 81

4.6.19 cublas<t>hpmv() 83
4.6.20 cublas<t>her() 85
4.6.21 cublas<t>her2() 86
4.6.22 cublas<t>hpr() 88
4.6.23 cublas<t>hpr2() 89
4.6.24 cublas<t>gemvBatched() 91
4.6.25 cublas<t>gemvStridedBatched() 94
4.7 CUBLAS Level-3 Function Reference 98
4.7.1 cublas<t>gemm() 98
4.7.2 cublas<t>gemm3m() 101
473 cublas<t>gemmBatched(). 103
47.4 cublas<t>gemmStridedBatched() 106
475 cublas<t>symm() 110
47.6 cublas<t>syrk() 112
47.7 cublas<t>syr2k() e 114
47.8 cublas<t>syrkx() 116
479 cublas<t>trmm() 119
47.10 cublas<t>trsm() 122
47.11 cublas<t>trsmBatched() 124
47.12 cublas<t>hemm() 127
47.13 cublas<t>herk() e 129
4714 cublas<t>her2k() 131
4.7.15 cublas<t>herkx() 133
4.8 BLAS-like Extension 135
4.8.1 cublas<t>geam() 135
4.8.2 cublas<t>dgmm() 138
483 cublas<t>getrfBatched() 140
484 cublas<t>getrsBatched() 142
485 cublas<t>getriBatched() 145
4.8.6 cublas<t>matinvBatched() 147
4.8.7 cublas<t>geqrfBatched() 149
4.8.8 cublas<t>gelsBatched() 151
489 cublas<t>tpttr() 153
4.8.10 cublas<t>trttp() 154
4.8.11 cublas<t>gemmEx() 156
4.8.12 cublasGemmEX() 159
4.8.13 cublasGemmBatchedEx() 164
48.14 cublasGemmStridedBatchedEx() 169
4.8.15 cublasCsyrkEX() e 173
4.8.16 cublasCsyrk3mEX() 175
4.8.17 cublasCherkEX() e 177
4.8.18 cublasCherk3mEX() e 179
4.8.19 cublasNrm2EX() o o 182
4.820 cublasAXpyEX() 184
4821 cublasDotEX() e 185
4822 cublasRotEX(). e 187
4823 cublasScalEx() 189
5 Using the cuBLASLt API 191
5.1 General Description e e 191
5.1.1 Heuristics Cache e 191
5.1.2 CUBLASLt LOgging e e 192
5.1.3 8-bit Floating Point Data Types (FP8)Usage 192

5.1.4 Disabling CPU Instructions 193
5.2 cuBLASLt Code Examples 193
53 CcuBLASLt Datatypes Reference 194

53.1 cublasLtClusterShape_t 194

5.3.2 cublasLtEpilogue_t 196

5.3.3 cublasLtHandle_t 198

5.3.4 cublasLtLoggerCallback_t. 198

535 cublasLtMatmulAlgo_t 198

5.3.6 cublasLtMatmulAlgoCapAttributes_t.o 199

5.3.7 cublasLtMatmulAlgoConfigAttributes_t L. 201

5.3.8 cublasLtMatmulDesc_t 202

5.3.9 cublasLtMatmulDescAttributes_t L 202

5.3.10 cublasLtMatmulHeuristicResult_t, 204

5.3.11 cublasLtMatmullnnerShape_t 204

5.3.12 cublasLtMatmulPreference_t. L 205

5.3.13 cublasLtMatmulPreferenceAttributes_t o L. 205

5.3.14 cublasLtMatmulSearch_t 206

5.3.15 cublasLtMatmulTile_t 206

5.3.16 cublasLtMatmulStages_t 207

5.3.17 cublasLtNumericallmplFlags_t 209

5.3.18 cublasLtMatrixLayout_t 211

5.3.19 cublasLtMatrixLayoutAttribute_t 211

5.3.20 cublasLtMatrixTransformDesc_t 213

5.3.21 cublasLtMatrixTransformDescAttributes_t 213

5.3.22 cublasLtOrder_t 214

5.3.23 cublasLtPointerMode_t 214

5.3.24 cublasLtPointerModeMask_t 215

5.3.25 cublasLtReductionScheme_t L 215
54 CUBLASLt APIReference e 216

5.4.1 cublasLtCreate() 216

542 cublasLtDestroy() 217

5.4.3 cublasLtDisableCpulnstructionsSetMask() 217

5.4.4 cublasLtGetCudartVersion() 218

5.45 cublasLtGetProperty() 218

5.4.6 cublasLtGetStatusName(). 219

5.4.7 cublasLtGetStatusString() 219

5.4.8 cublasLtHeuristicsCacheGetCapacity() 219

549 cublasLtHeuristicsCacheSetCapacity() 219

5.4.10 cublasLtGetVersion() 220

5.4.11 cublasLtLoggerSetCallback() 220

5.4.12 cublasLtlLoggerSetFile() 221

5.4.13 cublasLtLoggerOpenFile() 221

5.4.14 cublasLtLoggerSetLevel() 222

5.4.15 cublasLtLoggerSetMask() 222

5.4.16 cublasLtLoggerForceDisable() 223

5.4.17 cublasLtMatmul() e 223

5.4.18 cublasLtMatmulAlgoCapGetAttribute() 229

5.4.19 cublasLtMatmulAlgoCheck() 230

5.4.20 cublasLtMatmulAlgoConfigGetAttribute() 232

5.4.21 cublasLtMatmulAlgoConfigSetAttribute() 233

5.4.22 cublasLtMatmulAlgoGetHeuristic() 233

5.4.23 cublasLtMatmulAlgoGetlds() 234

5.4.24 cublasLtMatmulAlgolnit() 236

5.4.25 cublasLtMatmulDescCreate() 237

5.4.26 cublasLtMatmulDesclnit() 237
5.4.27 cublasLtMatmulDescDestroy() 238
5.4.28 cublasLtMatmulDescGetAttribute(). 239
5.4.29 cublasLtMatmulDescSetAttribute() 240
5.4.30 cublasLtMatmulPreferenceCreate() 240
5.4.31 cublasLtMatmulPreferencelnit() 241
5.4.32 cublasLtMatmulPreferenceDestroy() 242
5.4.33 cublasLtMatmulPreferenceGetAttribute() 242
5.4.34 cublasLtMatmulPreferenceSetAttribute() L. 243
5.4.35 cublasLtMatrixLayoutCreate() 244
5.4.36 cublasLtMatrixLayoutlnit() 245
5.4.37 cublasLtMatrixLayoutDestroy() 246
5.438 cublasLtMatrixLayoutGetAttribute() 247
5.439 cublasLtMatrixLayoutSetAttribute() 248
5.4.40 cublasLtMatrixTransform() 248
5.4.41 cublasLtMatrixTransformDescCreate() 250
5.4.42 cublasLtMatrixTransformDesclnit() 250
5.4.43 cublasLtMatrixTransformDescDestroy() 251
5.4.44 cublasLtMatrixTransformDescGetAttribute() 251
5.4.45 cublasLtMatrixTransformDescSetAttribute() 252
6 Using the cuBLASXt API 255
6.1 General description 255
6.1.1 Tiling designapproach 255
6.1.2 Hybrid CPU-GPU computation 257
6.1.3 Results reproducibility 257
6.2 cuBLASXt APl Datatypes Reference 257
6.2.1 cublasXtHandle_t 257
6.2.2 cublasXtOpType_t e 258
6.2.3 cublasXtBlasOp_t 258
6.2.4 cublasXtPinningMemMode_t. 259
6.3 CUBLASXt API Helper FunctionReference 259
6.3.1 cublasXtCreate() 259
6.3.2 cublasXtDestroy() 259
6.3.3 cublasXtDeviceSelect() 260
6.3.4 cublasXtSetBlockDim() 260
6.3.5 cublasXtGetBlockDim() 260
6.3.6 cublasXtSetCpuRoutine() 261
6.3.7 cublasXtSetCpuRatio() 261
6.3.8 cublasXtSetPinningMemMode() 261
6.3.9 cublasXtGetPinningMemMode() 262
6.4 CuBLASXt APl Math Functions Reference 262
6.4.1 cublasXt<t>gemm() 263
6.4.2 cublasXt<t>hemm() 265
6.4.3 cublasXt<t>symm() 267
6.4.4 cublasXt<t>syrk() 269
6.4.5 cublasXt<t>syr2k() 271
6.4.6 cublasXt<t>syrkx() 273
6.4.7 cublasXt<t>herk() 275
6.4.8 cublasXt<t>her2k() e 277
6.4.9 cublasXt<t>herkx() 279
6.4.10 cublasXt<t>trsm() e 281
6.4.11 cublasXt<t>trmm() e 283
6.4.12 cublasXt<t>spmm() 285

7 Using the cuBLAS Legacy API

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

Error Status

Initialization and Shutdown L
Thread Safety e
Memory Management L
Scalar Parameters.
Helper Functions
Level-1,2,3 FUNCtions e
Converting Legacy to the cuBLAS API

Examples .

8 cuBLAS Fortran Bindings

9

Interaction with Other Libraries and Tools

9.1

nvprune . .

10 Acknowledgements

11 Notices

11.1
11.2
11.3

Notice . ..
OpenCL . .
Trademarks

289
289
290
290
290
290
291
291
291
292

297

301
301

303

Vi

cuBLAS, Release 12.1

The API Reference guide for cuBLAS, the CUDA Basic Linear Algebra Subroutine library.

The cuBLAS library is an implementation of BLAS (Basic Linear Algebra Subprograms) on top of the
NVIDIA®CUDA™ runtime. It allows the user to access the computational resources of NVIDIA Graphics
Processing Unit (GPU).

The cuBLAS Library exposes three sets of API:

The , Which is simply called cuBLAS API in this document (starting with CUDA 6.0),
The (starting with CUDA 6.0), and
The (starting with CUDA 10.1)

To use the cuBLAS API, the application must allocate the required matrices and vectors in the GPU
memory space, fill them with data, call the sequence of desired cuBLAS functions, and then upload the
results from the GPU memory space back to the host. The cuBLAS API also provides helper functions
for writing and retrieving data from the GPU.

To use the cuBLASXt API, the application may have the data on the Host or any of the devices involved
in the computation, and the Library will take care of dispatching the operation to, and transferring the
data to, one or multiple GPUs present in the system, depending on the user request.

The cuBLASLt is a lightweight library dedicated to GEneral Matrix-to-matrix Multiply (GEMM) opera-
tions with a new flexible API. This library adds flexibility in matrix data layouts, input types, compute
types, and also in choosing the algorithmic implementations and heuristics through parameter pro-
grammability. After a set of options for the intended GEMM operation are identified by the user, these
options can be used repeatedly for different inputs. This is analogous to how cuFFT and FFTW first
create a plan and reuse for same size and type FFTs with different input data.

Contents 1

index.html#using-the-cublas-api
index.html#using-the-cublasxt-api
index.html#using-the-cublaslt-api

cuBLAS, Release 12.1

2 Contents

Chapter 1. Data Layout

For maximum compatibility with existing Fortran environments, the cuBLAS library uses column-major
storage, and 1-based indexing. Since C and C++ use row-major storage, applications written in these
languages can not use the native array semantics for two-dimensional arrays. Instead, macros or inline
functions should be defined to implement matrices on top of one-dimensional arrays. For Fortran
code ported to C in mechanical fashion, one may chose to retain 1-based indexing to avoid the need

to transform loops. In this case, the array index of a matrix element in row “i” and column “” can be
computed via the following macro

#define IDX2F(1i,j,1d) ((((j)-1)*(1d))+((i)-1))

Here, Id refers to the leading dimension of the matrix, which in the case of column-major storage is
the number of rows of the allocated matrix (even if only a submatrix of it is being used). For natively
written C and C++ code, one would most likely choose O-based indexing, in which case the array index

w “e

of a matrix element in row “” and column “}” can be computed via the following macro

#define IDX2C(1i,j,1d) (((j)*(1d))+(1i))

cuBLAS, Release 12.1

4 Chapter 1. Data Layout

Chapter 2. New and Legacy cuBLAS API

Starting with version 4.0, the cuBLAS Library provides a new API, in addition to the existing legacy API.
This section discusses why a new APl is provided, the advantages of using it, and the differences with
the existing legacy APL.

Warning: The legacy cuBLAS APl is deprecated and will be removed in future release.

The new cuBLAS library APl can be used by including the header file cublas_v2 . h. It has the following
features that the legacy cuBLAS API does not have:

The handle to the cuBLAS library context is initialized using the function and is explicitly passed
to every subsequent library function call. This allows the user to have more control over the
library setup when using multiple host threads and multiple GPUs. This also allows the cuBLAS
APIs to be reentrant.

The scalars o« and 8 can be passed by reference on the host or the device, instead of only be-
ing allowed to be passed by value on the host. This change allows library functions to execute
asynchronously using streams even when « and 3 are generated by a previous kernel.

When a library routine returns a scalar result, it can be returned by reference on the host or the
device, instead of only being allowed to be returned by value only on the host. This change allows
library routines to be called asynchronously when the scalar result is generated and returned by
reference on the device resulting in maximum parallelism.

The error status cublasStatus_t is returned by all cuBLAS library function calls. This change
facilitates debugging and simplifies software development. Note that cublasStatus was re-
named cublasStatus_t to be more consistent with other types in the cuBLAS library.

The cublasAlloc() and cublasFree() functions have been deprecated. This change removes
these unnecessary wrappers around cudaMalloc() and cudaFree(), respectively.

The function cublasSetKernelStream() was renamed cublasSetStream() to be more con-
sistent with the other CUDA libraries.

The legacy cuBLAS API, explained in more detail in , can be used by in-
cluding the header file cublas.h. Since the legacy APl is identical to the previously released cuBLAS
library API, existing applications will work out of the box and automatically use this legacy API without
any source code changes.

The current and the legacy cuBLAS APIs cannot be used simultaneously in a single translation unit:
including both cublas.h and cublas_v2.h header files will lead to compilation errors due to incom-
patible symbol redeclarations.

In general, new applications should not use the legacy cuBLAS API, and existing applications should
convert to using the new API if it requires sophisticated and optimal stream parallelism, or if it calls

index.html#using-the-cublas-legacy-api

cuBLAS, Release 12.1

CUuBLAS routines concurrently from multiple threads.

For the rest of the document, the new cuBLAS Library API will simply be referred to as the cuBLAS
Library API.

As mentioned earlier the interfaces to the legacy and the cuBLAS library APIs are the header file
cublas.h and cublas_v2.h, respectively. In addition, applications using the cuBLAS library need
to link against:

The DSO cublas. so for Linux,
The DLL cublas.d11 for Windows, or
The dynamic library cublas.dylib for Mac OS X.

Note: The same dynamic library implements both the new and legacy cuBLAS APIs.

6 Chapter 2. New and Legacy cuBLAS API

Chapter 3. Example Code

For sample code references please see the two examples below. They show an application written in
C using the cuBLAS library API with two indexing styles (Example 1. “Application Using C and cuBLAS:
1-based indexing” and Example 2. “Application Using C and cuBLAS: 0-based Indexing”).

//Example 1. Application Using C and cuBLAS: 71-based indexing

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <cuda_runtime.h>

#include "cublas_v2.h"

#define M 6

#define N 5

#define IDX2F(1i,j,1d) ((((j)-1)*(1d))+((i)-1))

static __inline__ void modify (cublasHandle_t handle, float *m, int 1ldm, int n, int p,
— int g, float alpha, float beta)({

cublasSscal (handle, n-g+1, &alpha, &m[IDX2F(p,q,1ldm)], 1ldm);

cublasSscal (handle, ldm-p+1, &beta, &m[IDX2F(p,q,ldm)], 1);

}

int main (void)({

cudaError_t cudaStat;

cublasStatus_t stat;

cublasHandle_t handle;

int i, j;

float* devPtrA;

float* a = 0;

a = (float *)malloc (M * N * sizeof (*a));

if ('a) {
printf ("host memory allocation failed");
return EXIT_FAILURE;

}

for (j = 1; J <= N; j++) {
for (i = 1; 1 <= M; i++) {

a[IDX2F(i,j,M)] = (float)((i-1) * N + j);

}
}
cudaStat = cudaMalloc ((void**)&devPtrA, M*N*sizeof(*a));
if (cudaStat !'= cudaSuccess) {
printf ("device memory allocation failed");
return EXIT_FAILURE;
}

stat = cublasCreate(&handle);
(continues on next page)

cuBLAS, Release 12.1

(continued from previous page)

if (stat != CUBLAS_STATUS_SUCCESS) {
printf ("CUBLAS initialization failed\n");
return EXIT_FAILURE;
}
stat = cublasSetMatrix (M, N, sizeof(*a), a, M, devPtrA, M);
if (stat != CUBLAS_STATUS_SUCCESS) {
printf ("data download failed");
cudaFree (devPtrA);
cublasDestroy(handle);
return EXIT_FAILURE;

}
modify (handle, devPtrA, M, N, 2, 3, 16.0f, 12.0f);
stat = cublasGetMatrix (M, N, sizeof(*a), devPtrA, M, a, M);
if (stat != CUBLAS_STATUS_SUCCESS) {

printf ("data upload failed");

cudaFree (devPtrA);

cublasDestroy(handle);

return EXIT_FAILURE;
}
cudaFree (devPtrA);
cublasDestroy(handle);
for (j = 1; J <= N; j++) {

for (i = 1; i <= M; i++) {

printf ("%7.0f", a[IDX2F(i,j,M)]);

}

printf ("\n");
}
free(a);

return EXIT_SUCCESS;

//Example 2. Application Using C and cuBLAS: 6-based indexing

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <cuda_runtime.h>

#include "cublas_v2.h"

#define M 6

#define N 5

#define IDX2C(1i,j,1d) (((j)*(1d))+(1i))

static __inline__ void modify (cublasHandle_t handle, float *m, int ldm, int n, int p,
— int q, float alpha, float beta){

cublasSscal (handle, n-q, &alpha, &m[IDX2C(p,q,ldm)], 1dm);

cublasSscal (handle, ldm-p, &beta, &m[IDX2C(p,q,ldm)], 1);

}

int main (void)({
cudaError_t cudaStat;
cublasStatus_t stat;
cublasHandle_t handle;
int i, j;
float* devPtrA;
float* a = 0;
(continues on next page)

8 Chapter 3. Example Code

cuBLAS, Release 12.1

(continued from previous page)
a = (float *)malloc (M * N * sizeof (*a));
if ('a) {
printf ("host memory allocation failed");
return EXIT_FAILURE;
}
for (j = 0; j < N; j++) {
for (i = 0; 1 < M; i++) {
a[IDX2C(i,j,M)] = (float)(i * N + j + 1);
}
}

cudaStat = cudaMalloc ((void**)&devPtrA, M*N*sizeof(*a));
if (cudaStat !'= cudaSuccess) {
printf ("device memory allocation failed");
return EXIT_FAILURE;
}
stat = cublasCreate(&handle);
if (stat != CUBLAS_STATUS_SUCCESS) {
printf ("CUBLAS initialization failed\n");
return EXIT_FAILURE;
}
stat = cublasSetMatrix (M, N, sizeof(*a), a, M, devPtrA, M);
if (stat != CUBLAS_STATUS_SUCCESS) {
printf ("data download failed");
cudaFree (devPtrA);
cublasDestroy(handle);
return EXIT_FAILURE;
}
modify (handle, devPtrA, M, N, 1, 2, 16.0f, 12.0f);
stat = cublasGetMatrix (M, N, sizeof(*a), devPtrA, M, a, M);
if (stat != CUBLAS_STATUS_SUCCESS) {
printf ("data upload failed");
cudaFree (devPtrA);
cublasDestroy(handle);
return EXIT_FAILURE;
}
cudaFree (devPtrA);
cublasDestroy(handle);
for (j = ©; j < N; j++) {
for (i = 0; i < M; i++) {
printf ("%7.ef", a[IDX2C(i,j,M)]);

printf ("\n");
}
free(a);
return EXIT_SUCCESS;

cuBLAS, Release 12.1

10 Chapter 3. Example Code

Chapter 4. Using the cuBLAS API

This section describes how to use the cuBLAS library API.

All cuBLAS library function calls return the error status cublasStatus_t.

The application must initialize the handle to the cuBLAS library context by calling the cublasCre-
ate() function. Then, the handle is explicitly passed to every subsequent library function call. Once
the application finishes using the library, it must call the function cublasDestroy() to release the
resources associated with the cuBLAS library context.

This approach allows the user to explicitly control the library setup when using multiple host threads
and multiple GPUs. For example, the application can use cudaSetDevice() to associate different
devices with different host threads and in each of those host threads it can initialize a unique handle
to the cuBLAS library context, which will use the particular device associated with that host thread.
Then, the cuBLAS library function calls made with different handle will automatically dispatch the
computation to different devices.

The device associated with a particular cuBLAS context is assumed to remain unchanged between
the corresponding cublasCreate() and cublasDestroy() calls. In order for the cuBLAS library to
use a different device in the same host thread, the application must set the new device to be used by
calling cudaSetDevice() and then create another cuBLAS context, which will be associated with the
new device, by calling cublasCreate().

A cuBLAS library context is tightly coupled with the CUDA context that is current at the time of the
cublasCreate() call. Anapplication that uses multiple CUDA contexts is required to create a cuBLAS
context per CUDA context and make sure the former never outlives the latter.

11

cuBLAS, Release 12.1

The library is thread safe and its functions can be called from multiple host threads, even with the
same handle. When multiple threads share the same handle, extreme care needs to be taken when
the handle configuration is changed because that change will affect potentially subsequent cuBLAS
calls in all threads. It is even more true for the destruction of the handle. So it is not recommended
that multiple thread share the same cuBLAS handle.

By design, all cuBLAS API routines from a given toolkit version, generate the same bit-wise results at
every run when executed on GPUs with the same architecture and the same number of SMs. However,
bit-wise reproducibility is not guaranteed across toolkit versions because the implementation might
differ due to some implementation changes.

This guarantee holds when a single CUDA stream is active only. If multiple concurrent streams are
active, the library may optimize total performance by picking different internal implementations.

Note: The non-deterministic behavior of multi-stream execution is due to library optimizations in
selecting internal workspace for the routines running in parallel streams. To avoid this effect user can
either:

provide a separate workspace for each used stream using the cublasSetWorkspace() function,
or

have one cuBLAS handle per stream, or

use cublasLtMatmul() instead of *gemm*() family of functions and provide user owned
workspace, or

set a debug environment variable CUBLAS_WORKSPACE_CONFIG to :16:8 (may limit overall per-
formance) or :4096 : 8 (will increase library footprint in GPU memory by approximately 24MiB).

Any of those settings will allow for deterministic behavior even with multiple concurrent streams shar-
ing a single cuBLAS handle.

This behavior is expected to change in a future release.

For some routines such as cublas<t>symv and cublas<t>hemv, an alternate significantly faster rou-
tine can be chosen using the routine cublasSetAtomicsMode (). In that case, the results are not
guaranteed to be bit-wise reproducible because atomics are used for the computation.

There are two categories of the functions that use scalar parameters :

Functions that take alpha and/or beta parameters by reference on the host or the device as
scaling factors, such as gemm.

Functions that return a scalar result on the host or the device such as amax(), amin, asum(),
rotg(), rotmg(),dot() and nrm2().

12 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.1

For the functions of the first category, when the pointer mode is set to CUBLAS_POINTER_MODE_HOST,
the scalar parameters alpha and/or beta can be on the stack or allocated on the heap, shouldn’t be
placed in managed memory. Underneath, the CUDA kernels related to those functions will be launched
with the value of alpha and/or beta. Therefore if they were allocated on the heap, they can be freed
just after the return of the call even though the kernel launch is asynchronous. When the pointer mode
is set to CUBLAS_POINTER_MODE_DEVICE, alpha and/or beta must be accessible on the device and
their values should not be modified until the kernel is done. Note that since cudaFree() does an
implicit cudaDeviceSynchronize(), cudaFree() can still be called on alpha and/or beta just after
the call but it would defeat the purpose of using this pointer mode in that case.

For the functions of the second category, when the pointer mode is set to
CUBLAS_POINTER_MODE_HOST, these functions block the CPU, until the GPU has completed its
computation and the results have been copied back to the Host. When the pointer mode is set to
CUBLAS_POINTER_MODE_DEVICE, these functions return immediately. In this case, similar to matrix
and vector results, the scalar result is ready only when execution of the routine on the GPU has
completed. This requires proper synchronization in order to read the result from the host.

In either case, the pointer mode CUBLAS_POINTER_MODE_DEVICE allows the library functions to ex-
ecute completely asynchronously from the Host even when alpha and/or beta are generated by a
previous kernel. For example, this situation can arise when iterative methods for solution of linear
systems and eigenvalue problems are implemented using the cuBLAS library.

If the application uses the results computed by multiple independent tasks, CUDA™ streams can be
used to overlap the computation performed in these tasks.

The application can conceptually associate each stream with each task. In order to achieve the overlap
of computation between the tasks, the user should create CUDA™ streams using the function cud-
aStreamCreate() and set the stream to be used by each individual cuBLAS library routine by calling
cublasSetStream() just before calling the actual cuBLAS routine. Note that cublasSetStream()
resets the user-provided workspace to the default workspace pool; see . Then,
the computation performed in separate streams would be overlapped automatically when possible
on the GPU. This approach is especially useful when the computation performed by a single task is
relatively small and is not enough to fill the GPU with work.

We recommend using the new cuBLAS API with scalar parameters and results passed by reference in
the device memory to achieve maximum overlap of the computation when using streams.

A particular application of streams, batching of multiple small kernels, is described in the following
section.

In this section, we explain how to use streams to batch the execution of small kernels. For instance,
suppose that we have an application where we need to make many small independent matrix-matrix
multiplications with dense matrices.

It is clear that even with millions of small independent matrices we will not be able to achieve the same
GFLOPS rate as with a one large matrix. For example, a single n x n large matrix-matrix multiplication
performs n? operations for n2 input size, while 1024 35 X 35 small matrix-matrix multiplications perform

1024 (%)3 = % operations for the same input size. However, it is also clear that we can achieve a

4.1. General Description 13

index.html#cublassetworkspace

cuBLAS, Release 12.1

significantly better performance with many small independent matrices compared with a single small
matrix.

The architecture family of GPUs allows us to execute multiple kernels simultaneously. Hence, in or-
der to batch the execution of independent kernels, we can run each of them in a separate stream.
In particular, in the above example we could create 1024 CUDA™ streams using the function cud-
aStreamCreate(), then preface each call to cublas<t>gemm() with a call to cublasSetStream()
with a different stream for each of the matrix-matrix multiplications (note that cublasSetStream()
resets user-provided workspace to the default workspace pool, see cublasSetWorkspace()). This
will ensure that when possible the different computations will be executed concurrently. Although the
user can create many streams, in practice it is not possible to have more than 32 concurrent kernels
executing at the same time.

On some devices, L1 cache and shared memory use the same hardware resources. The cache config-
uration can be set directly with the CUDA Runtime function cudaDeviceSetCacheConfig. The cache
configuration can also be set specifically for some functions using the routine cudaFuncSetCacheCon-
fig. Please refer to the CUDA Runtime APl documentation for details about the cache configuration
settings.

Because switching from one configuration to another can affect kernels concurrency, the cuBLAS
Library does not set any cache configuration preference and relies on the current setting. However,
some cuBLAS routines, especially Level-3 routines, rely heavily on shared memory. Thus the cache
preference setting might affect adversely their performance.

Starting with release 6.5, the cuBLAS Library is also delivered in a static form as libcublas_static.a on
Linux and Mac OSes. The static cuBLAS library and all other static math libraries depend on a common
thread abstraction layer library called libculibos.a.

For example, on Linux, to compile a small application using cuBLAS, against the dynamic library, the
following command can be used:

nvcc myCublasApp.c -lcublas -o myCublasApp

Whereas to compile against the static cuBLAS library, the following command must be used:

nvcc myCublasApp.c -lcublas_static -lculibos -o myCublasApp

Itis also possible to use the native Host C++ compiler. Depending on the Host operating system, some
additional libraries like pthread or d1 might be needed on the linking line. The following command on
Linux is suggested :

g++ myCublasApp.c -lcublas_static -lculibos -lcudart_static -lpthread -1dl -I
—»<cuda-toolkit-path>/include -L <cuda-toolkit-path>/1ib64 -o myCublasApp

Note that in the latter case, the library cuda is not needed. The CUDA Runtime will try to open explicitly
the cuda library if needed. In the case of a system which does not have the CUDA driver installed, this
allows the application to gracefully manage this issue and potentially run if a CPU-only path is available.

14 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.1

Starting with release 11.2, using the typed functions instead of the extension functions (cublas**Ex())
helps in reducing the binary size when linking to static cuBLAS Library.

Some GEMM algorithms split the computation along the dimension K to increase the GPU occupancy,
especially when the dimension K is large compared to dimensions M and N. When this type of algo-
rithm is chosen by the cuBLAS heuristics or explicitly by the user, the results of each split is summed
deterministically into the resulting matrix to get the final result.

For the routines cublas<t>gemmEx and cublasGemmEx, when the compute type is greater than the
output type, the sum of the split chunks can potentially lead to some intermediate overflows thus
producing a final resulting matrix with some overflows. Those overflows might not have occurred if
all the dot products had been accumulated in the compute type before being converted at the end
in the output type. This computation side-effect can be easily exposed when the computeType is
CUDA_R_32F and Atype, Btype and Ctype are in CUDA_R_16F. This behavior can be controlled us-
ing the compute precision mode CUBLAS_MATH_DISALLOW_REDUCED_PRECISION_REDUCTION with

Tensor cores were first introduced with Volta GPUs (compute capability 7.0 or above) and significantly
accelerate matrix multiplications. Starting with cuBLAS version 11.0.0, the library will automatically
make use of Tensor Core capabilities wherever possible, unless they are explicitly disabled by selecting
pedantic compute modes in cuBLAS (see ,).

It should be noted that the library will pick a Tensor Core enabled implementation wherever it deter-
mines that it would provide the best performance.

Starting with cuBLAS version 11.0.0 there are no longer any restriction on matrix dimensions and
memory alignments to use Tensor Cores. However, the best performance when using Tensor Cores can
be achieved when the matrix dimensions and pointers meet certain memory alignment requirements.
Specifically, all of the following conditions must be satisfied to get the most performance out of Tensor
Cores:

m%8 ==20
k % 8 == 0
op_B == CUBLAS_OP_N || n%8 == @
intptr_t(A) % 16 ==

intptr_t(B) % 16 ==

intptr_t(C) % 16 == 0
intptr_t(A+lda) % 16 =
intptr_t(B+1ldb) % 16 =
intptr_t(C+ldc) % 16 ==

0
0
0

4.1. General Description 15

index.html#cublassetmathmode
index.html#cublassetmathmode
index.html#cublasmath-t

cuBLAS, Release 12.1

4.1.12. CUDA Graphs Support

CcuBLAS routines can be captured in CUDA Graph stream capture without restrictions in most situa-
tions.

The exception are routines that output results into host buffers (e.g. cublas<t>dot while pointer
mode CUBLAS_POINTER_MODE_HOST is configured), as it enforces synchronization.

For input coefficients (such as alpha, beta) behavior depends on the pointer mode setting:
» In the case of CUBLAS(LT)_POINTER_MODE_HOST, coefficient values are captured in the graph.

» In the case of pointer modes with device pointers, coefficient value is accessed using the device
pointer at the time of graph execution.

Note: Every time cuBLAS routines are captured in a new CUDA Graph, cuBLAS will allocate workspace
memory on the device. This memory is only freed when the cuBLAS handle used during capture is
deleted. To avoid this, use the cublasSetWorkspace() function to provide user-owned workspace
memory.

4.1.13. 64-bit Integer Interface

CcUBLAS version 12 introduced 64-bit integer capable functions. Each 64-bit integer function is equiv-
alent to a 32-bit integer function with the following changes:

» The function name has _64 suffix.

» The dimension (problem size) data type changed from int to int64_t. Examples of dimension:
m, n, and k.

» The leading dimension data type changed from int to int64_t. Examples of leading dimension:
1da, 1db, and 1dc.

» The vector increment data type changed from int to int64_t. Examples of vector increment:
incx and incy.

For example, consider the following 32-bit integer functions:

cublasStatus_t cublasSetMatrix(int rows, int cols, int elemSize, const void *A, int
—1lda, void *B, int 1ldb);

cublasStatus_t cublasIsamax(cublasHandle_t handle, int n, const float *x, int incx,
—int *result);

cublasStatus_t cublasSsyr(cublasHandle_t handle, cublasFillMode_t uplo, int n, const
—float *alpha, const float *x, int incx, float *A, int 1lda);

The equivalent 64-bit integer functions are:

cublasStatus_t cublasSetMatrix_64(int64_t rows, int64_t cols, int64_t elemSize, const
—void *A, int64_t lda, void *B, int64_t 1db);

cublasStatus_t cublasIsamax_64(cublasHandle_t handle, int64_t n, const float *x,
—int64_t incx, int64_t *result);

cublasStatus_t cublasSsyr_64(cublasHandle_t handle, cublasFillMode_t uplo, int64_t n,
—const float *alpha, const float *x, int64_t incx, float *A, int64_t 1lda);

16 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.1

Not every function has a 64-bit integer equivalent. For instance, cublasSetMathMode() doesn’t have
any arguments that could meaningfully be int64_t. For documentation brevity, the 64-bit integer
APIs are not explicitly listed, but only mentioned that they exist for the relevant functions.

4.2. cuBLAS Datatypes Reference

4.2.1. cublasHandle t

The cublasHandle_t typeisa pointer type to an opaque structure holding the cuBLAS library context.
The cuBLAS library context must be initialized using cublasCreate() and the returned handle must
be passed to all subsequent library function calls. The context should be destroyed at the end using
cublasDestroy().

4.2.2. cublasStatus_t

The type is used for function status returns. All cuBLAS library functions return their status, which
can have the following values.

4.2. cuBLAS Datatypes Reference 17

index.html#cublassetmathmode

cuBLAS, Release 12.1

Value

Meaning

CUBLAS_S

TRA&Sp8IHGHESSompleted successfully.

CUBLAS_S

TAAYSUBL A NBfarALdZ& Dhot initialized. This is usually caused by the lack of a prior
cublasCreate() call, an error in the CUDA Runtime API called by the cuBLAS routine,
or an error in the hardware setup.

To correct: call cublasCreate() before the function call; and check that the hardware,
an appropriate version of the driver, and the cuBLAS library are correctly installed.

CUBLAS_S

TRE&BIrak DO CcBADhERIled inside the cuBLAS library. This is usually caused by a cud-
aMalloc() failure.
To correct: prior to the function call, deallocate previously allocated memory as much as
possible.

CUBLAS_S

TARUB\STNYALTHY VuBbr parameter was passed to the function (a negative vector size,
for example).
To correct: ensure that all the parameters being passed have valid values.

CUBLAS_S

TRT® SuARGHn MESMAGEH feature absent from the device architecture; usually caused by
compute capability lower than 5.0.
To correct: compile and run the application on a device with appropriate compute capa-
bility.

CUBLAS_S

TARUR CMAPRONGPBRRORoOry space failed, which is usually caused by a failure to bind a
texture.
To correct: before the function call, unbind any previously bound textures.

CUBLAS_S

TAA&GPEXREIGrE ONIedLtIBDEXecute. This is often caused by a launch failure of the kernel
on the GPU, which can be caused by multiple reasons.
To correct: check that the hardware, an appropriate version of the driver, and the cuBLAS
library are correctly installed.

CUBLAS_S

TARUSLENEERNABL ARREeration failed. This error is usually caused by a cudaMem-
cpyAsync() failure.
To correct: check that the hardware, an appropriate version of the driver, and the cuBLAS
library are correctly installed. Also, check that the memory passed as a parameter to the
routine is not being deallocated prior to the routine’s completion.

CUBLAS_S

TRA® SUNETorSIRPOBAEBsted is not supported.

CUBLAS_S

TAAUAFCENSEY ERROSSted requires some license and an error was detected when trying
to check the current licensing. This error can happen if the license is not present or is
expired or if the environment variable NVIDIA_LICENSE_FILE is not set properly.

18

Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.1

The cublasOperation_t type indicates which operation needs to be performed with the dense ma-
trix. Its values correspond to Fortran characters ‘N’ or ‘n’ (non-transpose), ‘T’ or ‘t’ (transpose)
and ‘C’ or ‘¢’ (conjugate transpose) that are often used as parameters to legacy BLAS implementa-

tions.

Value Meaning

CUBLAS_OP_N | The non-transpose operation is selected.

CUBLAS_OP_T | The transpose operation is selected.

CUBLAS_OP_C | The conjugate transpose operation is selected.

The type indicates which part (lower or upper) of the dense matrix was filled and consequently should
be used by the function. Its values correspond to Fortran characters L or 1 (lower) and U or u (upper)
that are often used as parameters to legacy BLAS implementations.

Value Meaning
CUBLAS_FILL_MODE_LOWER | The lower part of the matrix is filled.
CUBLAS_FILL_MODE_UPPER | The upper part of the matrix is filled.
CUBLAS_FILL_MODE_FULL | The full matrix is filled.

The type indicates whether the main diagonal of the dense matrix is unity and consequently should

not be touched or modified by the function. Its values correspond to Fortran characters ‘N’ or ‘n
(non-unit) and ‘U’ or ‘u’ (unit) that are often used as parameters to legacy BLAS implementations.

Value Meaning
CUBLAS_DIAG_NON_UNIT | The matrix diagonal has non-unit elements.
CUBLAS_DIAG_UNIT The matrix diagonal has unit elements.

4.2. cuBLAS Datatypes Reference 19

cuBLAS, Release 12.1

The type indicates whether the dense matrix is on the left or right side in the matrix equation solved
by a particular function. Its values correspond to Fortran characters ‘L’ or ‘1’ (left)and ‘R’ or ‘r’
(right) that are often used as parameters to legacy BLAS implementations.

Value Meaning
CUBLAS_SIDE_LEFT | The matrix is on the left side in the equation.
CUBLAS_SIDE_RIGHT | The matrix is on the right side in the equation.

The cublasPointerMode_t type indicates whether the scalar values are passed by reference on the
host or device. It is important to point out that if several scalar values are present in the function call,
all of them must conform to the same single pointer mode. The pointer mode can be set and retrieved
using cublasSetPointerMode() and cublasGetPointerMode() routines, respectively.

Value Meaning
CUBLAS_POINTER_MODE_HOST The scalars are passed by reference on the host.
CUBLAS_POINTER_MODE_DEVICE | The scalars are passed by reference on the device.

The type indicates whether cuBLAS routines which has an alternate implementation using atomics can
be used. The atomics mode can be set and queried using cublasSetAtomicsMode() and cublas-
GetAtomicsMode () and routines, respectively.

Value Meaning
CUBLAS_ATOMICS_NOT_ALLOWED | The usage of atomics is not allowed.
CUBLAS_ATOMICS_ALLOWED The usage of atomics is allowed.

cublasGemmAlgo_t type is an enumerant to specify the algorithm for matrix-matrix multiplication on
GPU architectures up to sm_75. On sm_80 and newer GPU architectures, this enumarant has no effect.
cuBLAS has the following algorithm options:

20 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.1

Value Meaning
CUBLAS_GEMM_DEFAULTApply Heuristics to select the GEMM algorithm

CUBLAS_GEMM_ALGO® | Explicitly choose an Algorithm [0,23]. Note: Doesn’t have effect on NVIDIA
to Ampere architecture GPUs and newer.
CUBLAS_GEMM_ALGO023

CUBLAS_GEMM_DEFAULTIFIENS8OBe(0B[@EREEEEDRNd will be removed in a future release. Apply
Heuristics to select the GEMM algorithm, while allowing use of reduced pre-
cision CUBLAS_COMPUTE_32F_FAST_16F kernels (for backward compati-

bility).
CUBLAS_GEMM_ALGOO_| TENSSXRvd)Res are deprecated and will be removed in a future release. Explic-
to itly choose a Tensor core GEMM Algorithm [0,15]. Allows use of reduced

CUBLAS_GEMM_ALGO15_Jed80dn GRIBERBECAMIPJTE_32F_FAST_16F kernels (for backward com-
patibility). Note: Doesn’t have effect on NVIDIA Ampere architecture GPUs
and newer.

cublasMath_t enumerate type is used in cublasSetMathMode() to choose compute precision
modes as defined in the following table. Since this setting does not directly control the use of Ten-
sor Cores, the mode CUBLAS_TENSOR_OP_MATH is being deprecated, and will be removed in a future
release.

Value Meaning

CUBLAS_DEFAULTOMAT#Ithe default and highest-performance mode that uses compute and inter-
mediate storage precisions with at least the same number of mantissa and expo-
nent bits as requested. Tensor Cores will be used whenever possible.

CUBLAS_PEDANTIthiMATidde uses the prescribed precision and standardized arithmetic for all
phases of calculations and is primarily intended for numerical robustness stud-
ies, testing, and debugging. This mode might not be as performant as the other
modes.

CUBLAS_TF32_T/HnS4Re GRcMIETation of single-precision routines using TF32 tensor cores.

CUBLAS_MATH_DIRAceOWNREBHOETIoARECEBEOMaRERUWOTE N cations to use the accumulator type
(that is, compute type) and not the output type in case of mixed precision routines
where output type precision is less than the compute type precision. This is a flag
that can be set (using a bitwise or operation) alongside any of the other values.

CUBLAS_TENSOR_DisMAddtte is deprecated and will be removed in a future release. Allows the library
[DEPRECATED] | to use Tensor Core operations whenever possible. For single precision GEMM rou-
tines cuBLAS will use the CUBLAS_COMPUTE_32F_FAST_16F compute type.

4.2. cuBLAS Datatypes Reference 21

cuBLAS, Release 12.1

cublasComputeType_t enumerate type is used in cublasGemmEx and cublasLtMatmul (including
all batched and strided batched variants) to choose compute precision modes as defined below.

Value Meaning

CUBLAS_COMAbIE s1tte default and highest-performance mode for 16-bit half precision floating
point and all compute and intermediate storage precisions with at least 16-bit half
precision. Tensor Cores will be used whenever possible.

CUBLAS_COMABIE pidde REBANTE-Git half precision floating point standardized arithmetic for all
phases of calculations and is primarily intended for numerical robustness studies, test-
ing, and debugging. This mode might not be as performant as the other modes since
it disables use of tensor cores.

CUBLAS_COMRUIEis32He default 32-bit single precision floating point and uses compute and inter-
mediate storage precisions of at least 32-bits.

CUBLAS_COMREE 32BitRiiDgKTAr@cision floatin point arithmetic for all phases of calculations and
also disables algorithmic optimizations such as Gaussian complexity reduction (3M).

CUBLAS_COMPUIbts3IDle libASAy thalkse Tensor Cores with automatic down-conversion and 16-bit half-
precision compute for 32-bit input and output matrices.

CUBLAS_COMRUds32He H&SFy 16Bkse Tensor Cores with automatic down-convesion and bfloat16
compute for 32-bit input and output matrices. See section
for more details on bfloat16.

CUBLAS_COMPlIbtys32e_|FASHy Td-82e Tensor Cores with TF32 compute for 32-bit input and output
matrices. See section for more details on TF32 compute.

CUBLAS_COMAbiEisa4le default 64-bit double precision floating point and uses compute and inter-
mediate storage precisions of at least 64-bits.

CUBLAS_COMPISEE 654 BitREANE PEecision floatin point arithmetic for all phases of calculations and
also disables algorithmic optimizations such as Gaussian complexity reduction (3M).

CUBLAS_COMRUIE(S3HE default 32-bit integer mode and uses compute and intermediate storage
precisions of at least 32-bits.

CUBLAS_COMPEE 322BhitRREEEF ICithmetic for all phases of calculations.

Note: Setting the environment variable NVIDTA_TF32_OVERRIDE

@ will override any defaults or

programmatic configuration of NVIDIA libraries, and consequently, cuBLAS will not accelerate FP32
computations with TF32 tensor cores.

22

Chapter 4. Using the cuBLAS API

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#wmma-altfp
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#wmma-altfp

cuBLAS, Release 12.1

The chapter describes types shared by multiple CUDA Libraries and defined in the header file
library_types.h.

The cudaDataType_t type is an enumerant to specify the data precision. It is used when the data

reference does

For example, it

not carry the type itself (e.g void *)

is used in the routine cublasSgemmEx.

Value Meaning

CUDA_R_16F | the data type is a 16-bit real half precision floating-point

CUDA_C_16F | the data type is a 32-bit structure comprised of two half precision floating-points
representing a complex number.

CUDA_R_16BH the data type is a 16-bit real bfloat16 floating-point

CUDA_C_16BH the data type is a 32-bit structure comprised of two bfloat16 floating-points repre-
senting a complex number.

CUDA_R_32F | the data type is a 32-bit real single precision floating-point

CUDA_C_32F | the data type is a 64-bit structure comprised of two single precision floating-points
representing a complex number.

CUDA_R_64F | the data type is a 64-bit real double precision floating-point

CUDA_C_64F | thedatatypeisa 128-bit structure comprised of two double precision floating-points
representing a complex number.

CUDA_R_BI | the data type is a 8-bit real signed integer

CUDA_C_8I | the datatypeisa 16-bit structure comprised of two 8-bit signed integers represent-
ing a complex number.

CUDA_R_8U | the data type is a 8-bit real unsigned integer

CUDA_C_8U | the data type is a 16-bit structure comprised of two 8-bit unsigned integers repre-
senting a complex number.

CUDA_R_321 | the data type is a 32-bit real signed integer

CUDA_C_321I | the data type is a 64-bit structure comprised of two 32-bit signed integers repre-
senting a complex number.

CUDA_R_B8F _E4tfi® data type is an 8-bit real floating point in E4AM3 format

CUDA_R_B8F_ESii2 data type is an 8-bit real floating point in EEM2 format

4.3. CUDA Datatypes Reference

23

cuBLAS, Release 12.1

The libraryPropertyType_t is used as a parameter to specify which property is requested when
using the routine cublasGetProperty

Value Meaning

MAJOR_VERSION | enumerant to query the major version

MINOR_VERSION | enumerant to query the minor version
PATCH_LEVEL number to identify the patch level

cublasStatus_t
cublasCreate(cublasHandle_t *handle)

This function initializes the cuBLAS library and creates a handle to an opaque structure holding the
CUBLAS library context. It allocates hardware resources on the host and device and must be called
prior to making any other cuBLAS library calls. The cuBLAS library context is tied to the current CUDA
device. To use the library on multiple devices, one cuBLAS handle needs to be created for each device.
Furthermore, for a given device, multiple cuBLAS handles with different configurations can be created.
Because cublasCreate() allocates some internal resources and the release of those resources by
calling cublasDestroy() will implicitly call cublasDeviceSynchronize(), it is recommended to
minimize the number of cublasCreate()/cublasDestroy() occurrences. For multi-threaded ap-
plications that use the same device from different threads, the recommended programming model is
to create one cuBLAS handle per thread and use that cuBLAS handle for the entire life of the thread.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the initialization succeeded
CUBLAS_STATUS_NOT_INITIALIZED | the CUDA™ Runtime initialization failed
CUBLAS_STATUS_ALLOC_FAILED the resources could not be allocated
CUBLAS_STATUS_INVALID_VALUE handle == NULL

24 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.1

cublasStatus_t
cublasDestroy(cublasHandle_t handle)

This function releases hardware resources used by the cuBLAS library. This function is usually the
last call with a particular handle to the cuBLAS library. Because cublasCreate() allocates some
internal resources and the release of those resources by calling cublasDestroy() will implicitly call
cublasDeviceSynchronize(), it is recommended to minimize the number of cublasCreate()/
cublasDestroy() occurrences.

Return Value Meaning
CUBLAS_STATUS_SUCCESS the shut down succeeded
CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized

cublasStatus_t
cublasGetVersion(cublasHandle_t handle, int *version)

This function returns the version number of the cuBLAS library.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_INVALID_VALURhe provided storage for library version number is not initialized
(NULL)

cublasStatus_t
cublasGetProperty(libraryPropertyType type, int *value)

This function returns the value of the requested property in memory pointed to by value. Refer to
libraryPropertyType for supported types.

Return Value Meaning
CUBLAS_STATUS_SUCCESS The operation completed successfully
CUBLAS_STATUS_INVALID_VALUE Invalid type value

If invalid type value or
value == NULL

4.4. cuBLAS Helper Function Reference 25

cuBLAS, Release 12.1

const char* cublasGetStatusName(cublasStatus_t status)

This function returns the string representation of a given status.

Return Value Meaning

NULL-terminated string | The string representation of the status

const char* cublasGetStatusString(cublasStatus_t status)

This function returns the description string for a given status.

Return Value Meaning

NULL-terminated string | The description of the status

cublasStatus_t
cublasSetStream(cublasHandle_t handle, cudaStream_t streamId)

This function sets the cuBLAS library stream, which will be used to execute all subsequent calls to
the cuBLAS library functions. If the cuBLAS library stream is not set, all kernels use the defaultNULL
stream. In particular, this routine can be used to change the stream between kernel launches and then
to reset the cuBLAS library stream back to NULL. Additionally this function unconditionally resets the
cuBLAS library workspace back to the default workspace pool (see cublasSetWorkspace()).

Return Value Meaning

CUBLAS_STATUS_SUCCESS the stream was set successfully

CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized

cublasStatus_t
cublasSetWorkspace(cublasHandle_t handle, void *workspace, size_t

—workspaceSizeInBytes)

This function sets the cuBLAS library workspace to a user-owned device buffer, which will be used
to execute all subsequent calls to the cuBLAS library functions (on the currently set stream). If the

26 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.1

cuBLAS library workspace is not set, all kernels will use the default workspace pool allocated dur-
ing the cuBLAS context creation. In particular, this routine can be used to change the workspace
between kernel launches. The workspace pointer has to be aligned to at least 256 bytes, otherwise
CUBLAS_STATUS_INVALID_VALUE error is returned. The cublasSetStream() function uncondition-
ally resets the cuBLAS library workspace back to the default workspace pool. Too small workspace-
SizelInBytes may cause some routines to fail with CUBLAS_STATUS_ALLOC_FAILED error returned
or cause large regressions in performance. Workspace size equal to or larger than 16KiB is enough
to prevent CUBLAS_STATUS_ALLOC_FATILED error, while a larger workspace can provide performance
benefits for some routines. Recommended size of user-provided workspace is at least 4MiB (to match

cuBLAS’ default workspace pool).

Return Value

Meaning

CUBLAS_STATUS_SUCCESS

the stream was set successfully

CUBLAS_STATUS_NOT_INITIALIZED

the library was not initialized

CUBLAS_STATUS_INVALID_VALUE

the workspace pointer wasn't aligned to at least 256 bytes

cublasStatus_t

cublasGetStream(cublasHandle_t handle, cudaStream_t *streamId)

This function gets the cuBLAS library stream, which is being used to execute all calls to the cuBLAS
library functions. If the cuBLAS library stream is not set, all kernels use the defaultNULL stream.

Return Value

Meaning

CUBLAS_STATUS_SUCCESS

the stream was returned successfully

CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized

CUBLAS_STATUS_INVALID_VALUE streamId == NULL

cublasStatus_t

cublasGetPointerMode(cublasHandle_t handle, cublasPointerMode_t *mode)

This function obtains the pointer mode used by the cuBLAS library. Please see the section on the
cublasPointerMode_t type for more details.

Return Value

Meaning

CUBLAS_STATUS_SUCCESS

the pointer mode was obtained successfully

CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized

CUBLAS_STATUS_INVALID_VALUE mode == NULL

4.4. cuBLAS Helper Function Reference 27

cuBLAS, Release 12.1

cublasStatus_t
cublasSetPointerMode(cublasHandle_t handle, cublasPointerMode_t mode)

This function sets the pointer mode used by the cuBLAS library. The default is for the values to be
passed by reference on the host. Please see the section on the cublasPointerMode_t type for more
details.

Return Value Meaning
CUBLAS_STATUS_SUCCESS the pointer mode was set successfully
CUBLAS_STATUS_NOT_INITIALI#Ztibrary was not initialized

CUBLAS_STATUS_INVALID_VALURode is not CUBLAS_POINTER_MODE_HOST or
CUBLAS_POINTER_MODE_DEVICE

cublasStatus_t
cublasSetVector(int n, int elemSize,
const void *x, int incx, void *y, int incy)

This function supports the

This function copies n elements from a vector x in host memory space to a vector y in GPU memory
space. Elements in both vectors are assumed to have a size of elemSize bytes. The storage spacing
between consecutive elementsis given by incx for the source vector x and by incy for the destination
vectory.

Since column-major format for two-dimensional matrices is assumed, if a vector is part of a matrix, a
vector increment equal to 1 accesses a (partial) column of that matrix. Similarly, using an increment
equal to the leading dimension of the matrix results in accesses to a (partial) row of that matrix.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_INVALID_VALUE | the parameters incx, incy, elemSize<=0
CUBLAS_STATUS_MAPPING_ERROR | there was an error accessing GPU memory

28 Chapter 4. Using the cuBLAS API

index.html#bit-integer-interface

cuBLAS, Release 12.1

cublasStatus_t

cublasGetVector(int n, int elemSize,
const void *x, int incx, void *y, int incy)

This function supports the

This function copies n elements from a vector x in GPU memory space to a vector y in host memory
space. Elements in both vectors are assumed to have a size of elemSize bytes. The storage spacing
between consecutive elements is given by incx for the source vector and incy for the destination

vectory.

Since column-major format for two-dimensional matrices is assumed, if a vector is part of a matrix, a

vector increment equal to 1 accesses

a (partial) column of that matrix. Similarly, using an increment

equal to the leading dimension of the matrix results in accesses to a (partial) row of that matrix.

Return Value

Meaning

CUBLAS_STATUS_SUCCESS

the operation completed successfully

CUBLAS_STATUS_INVALID_VALUE | the parameters incx, incy, elemSize<=0

CUBLAS_STATUS_MAPPING_ERROR | there was an error accessing GPU memory

cublasStatus_t

cublasSetMatrix(int rows, int cols, int elemSize,
const void *A, int lda, void *B, int 1ldb)

This function supports the

This function copies a tile of rows x cols elements from a matrix A in host memory space to a
matrix B in GPU memory space. It is assumed that each element requires storage of elemSize bytes
and that both matrices are stored in column-major format, with the leading dimension of the source
matrix A and destination matrix B given in 1da and 1db, respectively. The leading dimension indicates
the number of rows of the allocated matrix, even if only a submatrix of it is being used.

Return Value

Meaning

CUBLAS_STATUS_SUCCESS

the operation completed successfully

CUBLAS_STATUS_INVALID_VALUE

the parameters rows, cols<@or elemSize, lda, 1ldb<=0

CUBLAS_STATUS_MAPPING_ERROR

there was an error accessing GPU memory

4.4. cuBLAS Helper Function Reference 29

index.html#bit-integer-interface
index.html#bit-integer-interface

cuBLAS, Release 12.1

cublasStatus_t
cublasGetMatrix(int rows, int cols, int elemSize,
const void *A, int lda, void *B, int 1ldb)

This function supports the

This function copies a tile of rows x cols elements from a matrix A in GPU memory space to a
matrix B in host memory space. It is assumed that each element requires storage of elemSize bytes
and that both matrices are stored in column-major format, with the leading dimension of the source
matrix A and destination matrix B given in 1da and 1db, respectively. The leading dimension indicates
the number of rows of the allocated matrix, even if only a submatrix of it is being used.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_INVALID_VALUE | the parameters rows, cols<@or elemSize, lda, 1ldb<=0
CUBLAS_STATUS_MAPPING_ERROR | there was an error accessing GPU memory

cublasStatus_t
cublasSetVectorAsync(int n, int elemSize, const void *hostPtr, int incx,
void *devicePtr, int incy, cudaStream_t stream)

This function supports the

This function has the same functionality as cublasSetVector (), with the exception that the data
transfer is done asynchronously (with respect to the host) using the given CUDA™ stream parameter.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_INVALID_VALUE | the parameters incx, incy, elemSize<=0
CUBLAS_STATUS_MAPPING_ERROR | there was an error accessing GPU memory

cublasStatus_t
cublasGetVectorAsync(int n, int elemSize, const void *devicePtr, int incx,
void *hostPtr, int incy, cudaStream_t stream)

This function supports the

This function has the same functionality as cublasGetVector (), with the exception that the data
transfer is done asynchronously (with respect to the host) using the given CUDA™ stream parameter.

30 Chapter 4. Using the cuBLAS API

index.html#bit-integer-interface
index.html#bit-integer-interface
index.html#bit-integer-interface

cuBLAS, Release 12.1

Return Value Meaning
CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_INVALID_VALUE | the parameters incx, incy, elemSize<=0

CUBLAS_STATUS_MAPPING_ERROR | there was an error accessing GPU memory

cublasStatus_t
cublasSetMatrixAsync(int rows, int cols, int elemSize, const void *A,
int lda, void *B, int 1ldb, cudaStream_t stream)

This function supports the

This function has the same functionality as cublasSetMatrix(), with the exception that the data
transfer is done asynchronously (with respect to the host) using the given CUDA™ stream parameter.

Return Value Meaning
CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_INVALID_VALUE | the parameters rows, cols<@ orelemSize, lda, 1ldb<=0

CUBLAS_STATUS_MAPPING_ERROR | there was an error accessing GPU memory

cublasStatus_t
cublasGetMatrixAsync(int rows, int cols, int elemSize, const void *A,
int 1lda, void *B, int 1ldb, cudaStream_t stream)

This function supports the

This function has the same functionality as cublasGetMatrix(), with the exception that the data
transfer is done asynchronously (with respect to the host) using the given CUDA™ stream parameter.

Return Value Meaning
CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_INVALID_VALUE | the parameters rows, cols<@ orelemSize, lda, 1ldb<=0

CUBLAS_STATUS_MAPPING_ERROR | there was an error accessing GPU memory

4.4. cuBLAS Helper Function Reference 31

index.html#bit-integer-interface
index.html#bit-integer-interface

cuBLAS, Release 12.1

cublasStatus_t cublasSetAtomicsMode(cublasHandlet handle, cublasAtomicsMode_t mode)

Some routines like cublas<t>symv and cublas<t>hemv have an alternate implementation that use
atomics to cumulate results. This implementation is generally significantly faster but can generate
results that are not strictly identical from one run to the others. Mathematically, those different results
are not significant but when debugging those differences can be prejudicial.

This function allows or disallows the usage of atomics in the cuBLAS library for all routines which
have an alternate implementation. When not explicitly specified in the documentation of any cuBLAS
routineg, it means that this routine does not have an alternate implementation that use atomics. When
atomics mode is disabled, each cuBLAS routine should produce the same results from one run to the
other when called with identical parameters on the same Hardware.

The default atomics mode of default initialized cublasHandle_t object s
CUBLAS_ATOMICS_NOT_ALLOWED. Please see the section on the type for more details.

Return Value Meaning
CUBLAS_STATUS_SUCCESS the atomics mode was set successfully
CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized

cublasStatus_t cublasGetAtomicsMode(cublasHandle_t handle, cublasAtomicsMode_t *mode)

This function queries the atomic mode of a specific cuBLAS context.

The default atomics mode of default initialized cublasHandle_t object s
CUBLAS_ATOMICS_NOT_ALLOWED. Please see the section on the type for more details.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the atomics mode was queried successfully
CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized
CUBLAS_STATUS_INVALID_VALUE the argument mode is a NULL pointer

cublasStatus_t cublasSetMathMode(cublasHandle_t handle, cublasMath_t mode)

The cublasSetMathMode function enables you to choose the compute precision
modes as defined by cublasMath_t (see). Users are allowed to set the
compute precision mode as a logical combination of them (except the deprecated
CUBLAS_TENSOR_OP_MATH). For example, cublasSetMathMode (handle, CUBLAS_DEFAULT_MATH
| CUBLAS_MATH_DISALLOW_REDUCED_PRECISION_REDUCTION). Please note that the default math
mode is CUBLAS_DEFAULT_MATH.

32 Chapter 4. Using the cuBLAS API

index.html#cublasmath-t

cuBLAS, Release 12.1

For matrix and compute precisions allowed for cublasGemmEx () and cublasLtMatmul() APIs and
their strided variants please refer to: , ,

,and
Return Value Meaning
CUBLAS_STATUS_SUCCESS the math mode was set successfully.

CUBLAS_STATUS_INVALID_VALUE an invalid value for mode was specified.
CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized.

cublasStatus_t cublasGetMathMode(cublasHandle_t handle, cublasMath_t *mode)

This function returns the math mode used by the library routines.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the math type was returned successfully.
CUBLAS_STATUS_INVALID_VALUE if mode is NULL.
CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized.

cublasStatus_t cublasSetSmCountTarget(cublasHandle_t handle, int smCountTarget)

The cublasSetSmCountTarget function allows overriding the number of multiprocessors available
to the library during kernels execution.

This option can be used to improve the library performance when cuBLAS routines are known to run
concurrently with other work on different CUDA streams. E.g. a NVIDIA A100 GPU has 108 SM and
there is a concurrent kenrel running with grid size of 8, one can use cublasSetSmCountTarget with
value 100 to override the library heuristics to optimize for running on 100 multiprocessors.

When set to @ the library returns to its default behavior. The input value should not exceed the device’s
multiprocessor count, which can be obtained using cudaDeviceGetAttribute. Negative values are
not accepted.

The user must ensure thread safety when modifying the library handle with this routine similar to when
using cublasSetStream, etc.

Return Value Meaning

CUBLAS_STATUS_SUCCESS SM count target was set successfully.
CUBLAS_STATUS_INVALID_VALUE the value of smCountTarget outside of the allowed range.
CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized.

4.4. cuBLAS Helper Function Reference 33

index.html#cublasgemmex
index.html#cublasgemmbatchedex
index.html#cublasgemmstridedbatchedex
index.html#cublasgemmstridedbatchedex
index.html#cublasltmatmul

cuBLAS, Release 12.1

cublasStatus_t cublasGetSmCountTarget(cublasHandle_t handle, int *smCountTarget)

This function obtains the value previously programmed to the library handle.

Return Value Meaning

CUBLAS_STATUS_SUCCESS SM count target was set successfully.
CUBLAS_STATUS_INVALID_VALUE smCountTarget is NULL.
CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized.

cublasStatus_t cublasLoggerConfigure(

int logIsOn,

int logToStdOut,
int logToStdErr,
const char* logFileName)

This function configures logging during runtime. Besides this type of configuration, it is possible to
configure logging with special environment variables which will be checked by libcublas:

CUBLAS_LOGINFO_DBG - Setup env. variable to “1” means turn on logging (by default logging is
off).

CUBLAS_LOGDEST_DBG - Setup env. variable encodes how to log. “stdout”, “stderr” means to
output log messages to stdout or stderr, respectively. In the other case, its specifies “filename”
of file.

Parameters

loglsOn /nput. Turn on/off logging completely. By default is off, but is turned on by calling cublas-
SetlLoggerCallback to user defined callback function.

logToStdOut /nput. Turn on/off logging to standard output I/O stream. By default is off.
logToStdErr /nput. Turn on/off logging to standard error I/O stream. By default is off.

logFileName /nput. Turn on/off logging to file in filesystem specified by it's name. cublasLoggerCon-
figure copy content of logFileName. You should provide null pointer if you’re not interested in
this type of logging.

Returns
CUBLAS_STATUS_SUCCESS Success.

34 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.1

cublasStatus_t cublasGetLoggerCallback(
cublasLogCallback* userCallback)

This function retrieves function pointer to previously installed custom user defined callback function
via cublasSetLoggerCallback or zero otherwise.

Parameters

userCallback Output. Pointer to user defined callback function.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning
CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_INVALID_VALUE | userCallback is NULL

cublasStatus_t cublasSetLoggerCallback(
cublaslLogCallback userCallback)
This function installs a custom user defined callback function via cublas C public API.
Parameters
userCallback /nput. Pointer to user defined callback function.
Returns
CUBLAS_STATUS_SUCCESS Success.

In this chapter we describe the Level-1 Basic Linear Algebra Subprograms (BLAS1) functions that per-
form scalar and vector based operations. We will use abbreviations <type> for type and <t> for the
corresponding short type to make a more concise and clear presentation of the implemented func-
tions. Unless otherwise specified <type> and <t> have the following meanings:

<type> <t> Meaning

float ‘s’or ‘S’ | real single-precision
double ‘d’ or ‘D’ | real double-precision
cuComplex ‘c’ or ‘C’ | complex single-precision
cuDoubleComplex | 'z’ or Z’ | complex double-precision

4.5. cuBLAS Level-1 Function Reference 35

cuBLAS, Release 12.1

When the parameters and returned values of the function differ, which sometimes happens for com-
plex input, the <t> can also have the following meanings Sc, Cs, Dz and Zd.

The abbreviation Re(.) and Im(.) will stand for the real and imaginary part of a number, respectively.
Since imaginary part of areal number does not exist, we will consider it to be zero and can usually simply
discard it from the equation where it is being used. Also, the & will denote the complex conjugate of a

In general throughout the documentation, the lower case Greek symbols « and g will denote scalars,
lower case English letters in bold type x and y will denote vectors and capital English letters A, B and
C will denote matrices.

cublasStatus_t cublasIsamax(cublasHandle_t handle, int n,

const float *x, int incx, int *result)
cublasStatus_t cublasIdamax(cublasHandle_t handle, int n,

const double *x, int incx, int *result)
cublasStatus_t cublasIcamax(cublasHandle_t handle, int n,

const cuComplex *x, int incx, int *result)
cublasStatus_t cublasIzamax(cublasHandle_t handle, int n,

const cuDoubleComplex *x, int incx, int *result)

This function supports the

This function finds the (smallest) index of the element of the maximum magnitude. Hence, the result
is the first i such that [Im (z[j])|+|Re (z[j])| is maximum fori=1,...,nand j = 1+ (i — 1)* incx. Notice
that the last equation reflects 1-based indexing used for compatibility with Fortran.

Param. | Memory Infout | Meaning

handle input handle to the cuBLAS library context.

n input number of elements in the vector x.

X device input <type> vector with elements.

incx input | stride between consecutive elements of x.
result host or device | output | the resulting index, which is @ if n, incx<=0.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized
CUBLAS_STATUS_ALLOC_FAILED the reduction buffer could not be allocated
CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU
CUBLAS_STATUS_INVALID_VALUE resultis NULL

For references please refer to:

36 Chapter 4. Using the cuBLAS API

index.html#bit-integer-interface

cuBLAS, Release 12.1

cublasStatus_t cublasIsamin(cublasHandle_t handle, int n,

const float *x, int incx, int *result)
cublasStatus_t cublasIdamin(cublasHandle_t handle, int n,

const double *x, int incx, int *result)
cublasStatus_t cublasIcamin(cublasHandle_t handle, int n,

const cuComplex *x, int incx, int *result)
cublasStatus_t cublasIzamin(cublasHandle_t handle, int n,

const cuDoubleComplex *x, int incx, int *result)

This function supports the

This function finds the (smallest) index of the element of the minimum magnitude. Hence, the result
is the first i such that |Im (z[j])|+|Re (z[4])| is minimum for i =1,...,nand j = 1+ (i — 1) * incx Notice
that the last equation reflects 1-based indexing used for compatibility with Fortran.

Param. | Memory

Infout | Meaning

handle input handle to the cuBLAS library context.

n input number of elements in the vector x.

X device input <type> vector with elements.

incx input stride between consecutive elements of x.

result host or device

output | the resulting index, which is 8 if n, incx<=0.

The possible error values returned by this function and their meanings are listed below.

Error Value

Meaning

CUBLAS_STATUS_SUCCESS

the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED

the library was not initialized

CUBLAS_STATUS_ALLOC_FAILED

the reduction buffer could not be allocated

CUBLAS_STATUS_EXECUTION_FAILED

the function failed to launch on the GPU

CUBLAS_STATUS_INVALID_VALUE

result is NULL

For references please refer to:

4.5. cuBLAS Level-1 Function Reference

37

http://www.netlib.org/blas/isamax.f
http://www.netlib.org/blas/idamax.f
http://www.netlib.org/blas/icamax.f
http://www.netlib.org/blas/izamax.f
index.html#bit-integer-interface
http://www.netlib.org/scilib/blass.f

cuBLAS, Release 12.1

cublasStatus_t cublasSasum(cublasHandle_t handle, int n,

const float *x, int incx, float *result)
cublasStatus_t cublasDasum(cublasHandle_t handle, int n,

const double *x, int incx, double *result)
cublasStatus_t cublasScasum(cublasHandle_t handle, int n,

const cuComplex *x, int incx, float *result)

cublasStatus_t cublasDzasum(cublasHandle_t handle, int n,
const cuDoubleComplex *x, int incx, double *result)

This function supports the

This function computes the sum of the abso

lute values of the elements of vector x. Hence, the result

is >, [Im (z[5])|+|Re (z[j])| where j = 1+ (i — 1) xincx . Notice that the last equation reflects 1-based

indexing used for compatibility with Fortran.

Param. | Memory Infout | Meaning

handle input | handle to the cuBLAS library context.

n input number of elements in the vector x.

X device input <type> vector with elements.

incx input | stride between consecutive elements of x.
result host or device | output | the resulting index, which is 8.0 if n, incx<=80.

The possible error values returned by this function and their meanings are listed below.

Error Value

Meaning

CUBLAS_STATUS_SUCCESS

the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized

CUBLAS_STATUS_ALLOC_FAILED

the reduction buffer could not be allocated

CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

CUBLAS_STATUS_INVALID_VALUE

resultis NULL

For references please refer to:

3) 3

38

Chapter 4. Using the cuBLAS API

index.html#bit-integer-interface
http://www.netlib.org/blas/sasum.f
http://www.netlib.org/blas/dasum.f
http://www.netlib.org/blas/scasum.f
http://www.netlib.org/blas/dzasum.f

cuBLAS, Release 12.1

cublasStatus_t cublasSaxpy(cublasHandle_t handle, int n,

const float *alpha,

const float *x, int incx,

float *y, int incy)
cublasStatus_t cublasDaxpy(cublasHandle_t handle, int n,

const double *alpha,

const double *x, int incx,

double *y, int incy)
cublasStatus_t cublasCaxpy(cublasHandle_t handle, int n,

const cuComplex *alpha,

const cuComplex *x, int incx,

cuComplex *y, int incy)

cublasStatus_t cublasZaxpy(cublasHandle_t handle, int n,
const cuDoubleComplex *alpha,
const cuDoubleComplex *x, int incx,
cuDoubleComplex *y, int incy)

This function supports the

This function multiplies the vector x by the scalar o and adds it to the vector y overwriting the latest
vector with the result. Hence, the performed operation is y[j] = a x x[k] + y[j] fori =1,...,n, k =
14+ (i—1)*incxand j = 1+ (¢ — 1) xincy . Notice that the last two equations reflect 1-based indexing
used for compatibility with Fortran.

Param. | Memory Infout | Meaning

handle input | handle to the cuBLAS library context.

alpha host or device | input | <type> scalar used for multiplication.

n input | number of elements in the vector x and y.
X device input | <type> vector with n elements.
incx input | stride between consecutive elements of x.
y device infout | <type> vector with n elements.
incy input | stride between consecutive elements of y.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized
CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to:

)) 3

4.5. cuBLAS Level-1 Function Reference 39

index.html#bit-integer-interface
http://www.netlib.org/blas/saxpy.f
http://www.netlib.org/blas/daxpy.f
http://www.netlib.org/blas/caxpy.f
http://www.netlib.org/blas/zaxpy.f

cuBLAS, Release 12.1

cublasStatus_t cublasScopy(cublasHandle_t handle, int n,

const float *x, int incx,

float *y, int incy)
cublasStatus_t cublasDcopy(cublasHandle_t handle, int n,

const double *x, int incx,

double *y, int incy)
cublasStatus_t cublasCcopy(cublasHandle_t handle, int n,

const cuComplex *x, int incx,

cuComplex *y, int incy)

cublasStatus_t cublasZcopy(cublasHandle_t handle, int n,
const cuDoubleComplex *x, int incx,
cuDoubleComplex *y, int incy)

This function copies the vector x into the vector y. Hence, the performed operation is y[j] = x[k] for
t=1,...,n,k=1+(i—1)*incxand j = 1+ (i — 1) x incy . Notice that the last two equations reflect
1-based indexing used for compatibility with Fortran.

Param. | Memory | Infout | Meaning

handle input handle to the cuBLAS library context.

n input number of elements in the vector x and y.
X device input <type> vector with n elements.

incx input | stride between consecutive elements of x.
y device output | <type> vector with n elements.

incy input stride between consecutive elements of y.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized
CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to:

) 3)

40 Chapter 4. Using the cuBLAS API

http://www.netlib.org/blas/scopy.f
http://www.netlib.org/blas/dcopy.f
http://www.netlib.org/blas/ccopy.f
http://www.netlib.org/blas/zcopy.f

cuBLAS, Release 12.1

cublasStatus_t cublasSdot (cublasHandle_t handle, int n,

const float *x, int incx,

const float *y, int incy,

float *result)
cublasStatus_t cublasDdot (cublasHandle_t handle, int n,

const double *x, int incx,

const double *y, int incy,

double *result)
cublasStatus_t cublasCdotu(cublasHandle_t handle, int n,

const cuComplex *x, int incx,

const cuComplex *y, int incy,

cuComplex *result)
cublasStatus_t cublasCdotc(cublasHandle_t handle, int n,

const cuComplex *x, int incx,

const cuComplex *y, int incy,

cuComplex *result)

cublasStatus_t cublasZdotu(cublasHandle_t handle, int n,
const cuDoubleComplex *x, int incx,
const cuDoubleComplex *y, int incy,
cuDoubleComplex *result)
cublasStatus_t cublasZdotc(cublasHandle_t handle, int n,
const cuDoubleComplex *x, int incx,
const cuDoubleComplex *y, int incy,
cuboubleComplex *result)

This function supports the

This function computes the dot product of vectors x and y. Hence, theresultis .7, (x[k] x y[j]) where
k=1+(i—1)xincxand j =1+ (: — 1) xincy . Notice that in the first equation the conjugate of the
element of vector x should be used if the function name ends in character ‘c’ and that the last two
equations reflect 1-based indexing used for compatibility with Fortran.

Param. | Memory Infout | Meaning

handle input | handle to the cuBLAS library context.

n input number of elements in the vectors x and y.

X device input <type> vector with n elements.

incx input | stride between consecutive elements of x.

y device input <type> vector with n elements.

incy input | stride between consecutive elements of y.
result | host or device | output | the resulting dot product, which is 8.0 if n<=0.

The possible error values returned by this function and their meanings are listed below.

4.5. cuBLAS Level-1 Function Reference 41

index.html#bit-integer-interface

cuBLAS, Release 12.1

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized
CUBLAS_STATUS_ALLOC_FAILED the reduction buffer could not be allocated
CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to:

3 3 3 3 3

cublasStatus_t cublasSnrm2(cublasHandle_t handle, int n,

const float *x, int incx, float *result)
cublasStatus_t cublasDnrm2(cublasHandle_t handle, int n,

const double *x, int incx, double *result)
cublasStatus_t cublasScnrm2(cublasHandle_t handle, int n,

const cuComplex *x, int incx, float *result)

cublasStatus_t cublasDznrm2(cublasHandle_t handle, int n,
const cuDoubleComplex *x, int incx, double *result)

This function computes the Euclidean norm of the vector x. The code uses a multiphase model
of accumulation to avoid intermediate underflow and overflow, with the result being equivalent to
VY, (x[4] x x[j]) where j = 1+ (i — 1) = incx in exact arithmetic. Notice that the last equation re-
flects 1-based indexing used for compatibility with Fortran.

Param. | Memory Infout | Meaning

handle input handle to the cuBLAS library context.

n input number of elements in the vector x.

X device input <type> vector with n elements.

incx input | stride between consecutive elements of x.
result host or device | output | the resulting norm, which is 8.0 if n, incx<=0.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized
CUBLAS_STATUS_ALLOC_FAILED the reduction buffer could not be allocated
CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU
CUBLAS_STATUS_INVALID_VALUE resultis NULL

42 Chapter 4. Using the cuBLAS API

http://www.netlib.org/blas/sdot.f
http://www.netlib.org/blas/ddot.f
http://www.netlib.org/blas/cdotu.f
http://www.netlib.org/blas/cdotc.f
http://www.netlib.org/blas/zdotu.f
http://www.netlib.org/blas/zdotc.f

cuBLAS, Release 12.1

For references please refer to:

snrm2, snrm2, dnrm2, dnrm2, scnrm2, scnrm2, dznrm?2

cublasStatus_t cublasSrot(cublasHandle_t handle, int n,

float *x, int incx,

float *y, int incy,

const float *c, const float *s)
cublasStatus_t cublasDrot(cublasHandle_t handle, int n,

double *x, int incx,

double *y, int incy,

const double *c, const double *s)
cublasStatus_t cublasCrot(cublasHandle_t handle, int n,

cuComplex *x, int incx,

cuComplex *y, int incy,

const float *c, const cuComplex *s)
cublasStatus_t cublasCsrot(cublasHandle_t handle, int n,

cuComplex *x, int incx,

cuComplex *y, int incy,

const float *c, const float *s)

cublasStatus_t cublasZrot(cublasHandle_t handle, int n,
cuDoubleComplex *x, int incx,
cuDoubleComplex *y, int incy,
const double *c, const cuDoubleComplex *s)

cublasStatus_t cublasZdrot(cublasHandle_t handle, int n,
cuDoubleComplex *x, int incx,
cuDoubleComplex *y, int incy,
const double *c, const double *s)

This function supports the

This function applies Givens rotation matrix (i.e., rotation in the x,y plane counter-clockwise by angle

defined by cos(alpha)=c, sin(alpha)=s):

G:

—S C

to vectors x and y.

Hence, the result is x[k] = ¢ x X[k] + s x y[j] and y[j] = —s x x[k] + ¢ x y[j] where k = 1+ (¢ — 1) xincx and
j=14(i — 1)xincy. Notice that the last two equations reflect 1-based indexing used for compatibility

with Fortran.

4.5. cuBLAS Level-1 Function Reference

43

index.html#bit-integer-interface

cuBLAS, Release 12.1

Param. | Memory Infout | Meaning

handle input | handle to the cuBLAS library context.

n input | number of elements in the vectors x and y.
X device infout | <type> vector with n elements.

incx input | stride between consecutive elements of x.
y device infout | <type> vector with n elements.

incy input | stride between consecutive elements of y.
C host or device | input | cosine element of the rotation matrix.

s host or device | input | sine element of the rotation matrix.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized
CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to:

’ 3) 3 3

cublasStatus_t cublasSrotg(cublasHandle_t handle,

float *a, float *b,

float *c, float *s)
cublasStatus_t cublasDrotg(cublasHandle_t handle,

double *a, double *b,

double *c, double *s)
cublasStatus_t cublasCrotg(cublasHandle_t handle,

cuComplex *a, cuComplex *b,

float *c, cuComplex *s)

cublasStatus_t cublasZrotg(cublasHandle_t handle,
cuDoubleComplex *a, cuDoubleComplex *b,
double *c, cuDoubleComplex *s)

This function supports the

This function constructs the Givens rotation matrix

G:

—S C

that zeros out the second entry of a 2 x 1 vector (a,b)” .

Then, for real numbers we can write

44 Chapter 4. Using the cuBLAS API

http://www.netlib.org/blas/srot.f
http://www.netlib.org/blas/drot.f
http://www.netlib.org/lapack/lapack_routine/crot.f
http://www.netlib.org/blas/csrot.f
http://www.netlib.org/lapack/lapack_routine/zrot.f
http://www.netlib.org/blas/zdrot.f
index.html#bit-integer-interface

cuBLAS, Release 12.1

where ¢? + s2 = 1 and r = a? + b . The parameters a and b are overwritten with r and z , respectively.
The value of z is such that ¢ and s may be recovered using the following rules:

(V1—=22,2) if |z|< 1
(¢,s) =14 (0.0,1.0) if |z2|=1
(1/2,V1=22) if |z|>1

For complex numbers we can write

_ a T . T
where A+ (sxs)=1 and.r = mx.H (a,b). [l with ||.(a,b) llo=v/]a|?+]b|? fora #0andr =bfora =0
. Finally, the parameter a is overwritten with r on exit.

Param. | Memory Infout | Meaning

handle input handle to the cuBLAS library context.

a host or device | infout | <type> scalar that is overwritten with r .
b host or device | infout | <type> scalar that is overwritten with z .
C host or device | output | cosine element of the rotation matrix.

s host or device | output | sine element of the rotation matrix.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized
CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to:

3))

cublasStatus_t cublasSrotm(cublasHandle_t handle, int n, float *x, int incx,
float *y, int incy, const float* param)

cublasStatus_t cublasDrotm(cublasHandle_t handle, int n, double *x, int incx,
double *y, int incy, const double* param)

This function applies the modified Givens transformation

4.5. cuBLAS Level-1 Function Reference 45

http://www.netlib.org/blas/srotg.f
http://www.netlib.org/blas/drotg.f
http://www.netlib.org/blas/crotg.f
http://www.netlib.org/blas/zrotg.f

cuBLAS, Release 12.1

I hii hio
ho1 haoa

to vectors x and y.

Hence, the result is x[k] = h11 X X[k] + h12 x Y[j] and y[j] = ha1 X X[k] + hae x y[j] Wwhere k =14 (i — 1) %
incxand j = 1+ (i — 1) xincy . Notice that the last two equations reflect 1-based indexing used for
compatibility with Fortran.

The elements, , and of matrix H are stored in param[1], param[2], param[3] and param[4], respec-
tively. The flag=param[@] defines the following predefined values for the matrix H entries

flag=-1.0 | flag= 0.0 | flag= 1.0 flag=-2.0
hll h12 1.0 hlg hll 1.0 1.0 0.0
h21 }LQQ h21 1.0 —1.0 }LQQ 0.0 1.0

Notice that the values -1.0, 0.0 and 1.0 implied by the flag are not stored in param.

Param. Memory In/out Meaning

han- in- handle to the cuBLAS library context.

dle put

n in- number of elements in the vectors x and y.
put

X device infout <type> vector with n elements.

incx in- stride between consecutive elements of x.
put

y device infout] <type> vector with n elements.

incy in- stride between consecutive elements of y.
put

param| host or | in- <type> vector of 5 elements, where param[0] and param[1-4] contain

device put | the flag and matrix H .

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized
CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to:

46 Chapter 4. Using the cuBLAS API

http://www.netlib.org/blas/srotm.f
http://www.netlib.org/blas/drotm.f

cuBLAS, Release 12.1

cublasStatus_t cublasSrotmg(cublasHandle_t handle, float *d1, float *d2,
float #*x1, const float *y1, float *param)
cublasStatus_t cublasDrotmg(cublasHandle_t handle, double *d1, double *d2,
double *x1, const double *y1, double *param)
This function supports the

This function constructs the modified Givens transformation
hi1 hio

H =
h21 h22

T
that zeros out the second entry of a 2 x 1 vector (\/dl xxl,v/d2 * yl) .

The flag=param[@] defines the following predefined values for the matrix H entries

flag=-1.0 | flag= 0.0 | flag= 1.0 flag=-2.0
h11 h12 1.0 h12 h11 1.0 1.0 0.0
hgl h22 h21 1.0 —1.0 h22 0.0 1.0

Notice that the values -1.0, 0.0 and 1.0 implied by the flag are not stored in param.

Param. Memory Infout Meaning

han- in- handle to the cuBLAS library context.

dle put

dl host or | infout| <type> scalar that is overwritten on exit.
device

dz2 host or | infout| <type> scalar that is overwritten on exit.
device

x1 host or | infout| <type> scalar that is overwritten on exit.
device

y1 host or | in- <type> scalar.
device put

param| host or | out- | <type>vector of 5 elements, where param[0] and param[1-4] contain
device put | the flag and matrix H .

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED | the library was notinitialized

CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

4.5. cuBLAS Level-1 Function Reference

47

index.html#bit-integer-interface

cuBLAS, Release 12.1

For references please refer to:

cublasStatus_t cublasSscal(cublasHandle_t handle, int n,

const float

float
cublasStatus_t cublasDscal(cublasHandle_t handle, int n,

const double

*alpha,
*x, int incx)

*alpha,

double *x, int incx)
cublasStatus_t cublasCscal(cublasHandle_t handle, int n,
const cuComplex *alpha,
cuComplex *x, int incx)

cublasStatus_t cublasCsscal(cublasHandle_t handle, int n,

const float

cuComplex
cublasStatus_t cublasZscal(cublasHandle_t handle, int n,
const cuDoubleComplex *alpha,
cuDoubleComplex *x, int incx)
cublasStatus_t cublasZdscal(cublasHandle_t handle, int n,

const double

*alpha,
*x, int incx)

*alpha,

cuDoubleComplex *x, int incx)

This function supports the

This function scales the vector x by the scalar o and overwrites it with the result. Hence, the performed
operationis x[j] = a x x[j] fori=1,...,nand j =1+ (i — 1) *incx . Notice that the last two equations
reflect 1-based indexing used for compatibility with Fortran.

Param. | Memory Infout | Meaning

handle input | handle to the cuBLAS library context.
alpha host or device | input | <type> scalar used for multiplication.

n input | number of elements in the vector x.

X device infout | <type> vector with n elements.

incx input | stride between consecutive elements of x.

The possible error values returned by this function and their meanings are listed below.

Table 1: :class: table-no-stripes

Error Value

Meaning

CUBLAS_STATUS_SUCCESS

the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized

CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to:

) 3) 3 3

48

Chapter 4. Using the cuBLAS API

http://www.netlib.org/blas/srotmg.f
http://www.netlib.org/blas/drotmg.f
index.html#bit-integer-interface
http://www.netlib.org/blas/sscal.f
http://www.netlib.org/blas/dscal.f
http://www.netlib.org/blas/csscal.f
http://www.netlib.org/blas/cscal.f
http://www.netlib.org/blas/zdscal.f
http://www.netlib.org/blas/zscal.f

cuBLAS, Release 12.1

cublasStatus_t cublasSswap(cublasHandle_t handle, int n, float *X,
int incx, float *y, int incy)

cublasStatus_t cublasDswap(cublasHandle_t handle, int n, double *X,
int incx, double *y, int incy)

cublasStatus_t cublasCswap(cublasHandle_t handle, int n, cuComplex *X,
int incx, cuComplex *y, int incy)

cublasStatus_t cublasZswap(cublasHandle_t handle, int n, cuDoubleComplex *x,
int incx, cuDoubleComplex *y, int incy)

This function supports the

This function interchanges the elements of vector x and y. Hence, the performed operation is
yjjl]exk] fori = 1,...,n,k =14+ (i—1)*xincxand j = 1 + (i — 1) xincy . Notice that the last
two equations reflect 1-based indexing used for compatibility with Fortran.

Param. | Memory | In/out | Meaning

handle input | handle to the cuBLAS library context.

n input | number of elements in the vector x and y.
X device infout | <type> vector with n elements.

incx input | stride between consecutive elements of x.
y device infout | <type> vector with n elements.

incy input | stride between consecutive elements of y.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized
CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to:

) 3)

In this chapter we describe the Level-2 Basic Linear Algebra Subprograms (BLAS2) functions that per-
form matrix-vector operations.

4.6. cuBLAS Level-2 Function Reference 49

index.html#bit-integer-interface
http://www.netlib.org/blas/sswap.f
http://www.netlib.org/blas/dswap.f
http://www.netlib.org/blas/cswap.f
http://www.netlib.org/blas/zswap.f

cuBLAS, Release 12.1

cublasStatus_t cublasSgbmv(cublasHandle_t handle, cublasOperation_t trans,
int m, int n, int k1, int ku,

const float *alpha,

const float *A, int lda,
const float *x, int incx,
const float *beta,

float *y, int incy)

cublasStatus_t cublasDgbmv(cublasHandle_t handle, cublasOperation_t trans,
int m, int n, int k1, int ku,

const double *alpha,

const double *A, int 1lda,
const double *x, int incx,
const double *beta,

double *y, int incy)

cublasStatus_t cublasCgbmv(cublasHandle_t handle, cublasOperation_t trans,
int m, int n, int k1, int ku,

const cuComplex *alpha,
const cuComplex *A, int 1lda,
const cuComplex *x, int incx,
const cuComplex *beta,
cuComplex *y, int incy)

cublasStatus_t cublasZgbmv(cublasHandle_t handle, cublasOperation_t trans,
int m, int n, int k1, int ku,
const cuDoubleComplex *alpha,
const cuDoubleComplex *A, int lda,
const cuDoubleComplex *x, int incx,
const cuDoubleComplex *beta,
cuDoubleComplex *y, int incy)

This function supports the

This function performs the banded matrix-vector multiplication

y = aop(A)x + By

where A is a banded matrix with kI subdiagonals and ku superdiagonals, x and y are vectors, and « and
(3 are scalars. Also, for matrix A

A if transa == CUBLAS_OP_N
op(A) =< AT if transa == CUBLAS_OP_T
A" if transa == CUBLAS_OP_H

The banded matrix A is stored column by column, with the main diagonal stored in row ku + 1 (starting
in first position), the first superdiagonal stored in row ku (starting in second position), the first sub-
diagonal stored in row ku + 2 (starting in first position), etc. So that in general, the element A (i, j) is
stored in the memory location A(ku+1+i-j,j) forj=1,...,nandi € [max (1,j — ku),min (m, j + kl)]
. Also, the elements in the array A that do not conceptually correspond to the elements in the banded
matrix (the top left ku x ku and bottom right ki x kl triangles) are not referenced.

50 Chapter 4. Using the cuBLAS API

index.html#bit-integer-interface

cuBLAS, Release 12.1

Param, Memory Infout Meaning
han- in- handle to the cuBLAS library context.
dle put
trans in- operation op(A) that is non- or (conj.) transpose.
put
m in- number of rows of matrix A.
put
n in- number of columns of matrix A.
put
ki in- number of subdiagonals of matrix A.
put
ku in- number of superdiagonals of matrix A.
put
alpha | host or de- | in- <type> scalar used for multiplication.
vice put
A device in- <type> array of dimension 1da x n with lda>=k1l+ku+1.
put
Ida in- leading dimension of two-dimensional array used to store matrix A.
put
X device in- <type> vector with n elements if transa == CUBLAS_OP_N and mele-
put | ments otherwise.
incx in- stride between consecutive elements of x.
put
beta | hostorde- | in- <type> scalar used for multiplication, if beta == 0 then y does not
vice put | have to be a valid input.
y device infout| <type> vector with m elements if transa == CUBLAS_OP_N and n ele-
ments otherwise.
incy in- stride between consecutive elements of y.
put

The possible error values returned by this function and their meanings are listed below.

4.6. cuBLAS Level-2 Function Reference 51

cuBLAS, Release 12.1

Error Value Meaning
CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE

Ifm, n, kl, ku < @or

if lda < (kl+ku+1) or

if incx, incy == @or

if trans |= CUBLAS_OP_N, CUBLAS_OPT,
CUBLAS_OP_Cor

alpha, beta == NULL

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

3))

cublasStatus_t cublasSgemv(cublasHandle_t handle,

int m, int n,

cublasOperation_t trans,

const float *alpha,

const float *A, int lda,
const float *x, int incx,
const float *beta,

float *y, int incy)

cublasStatus_t cublasDgemv(cublasHandle_t handle,

int m, int n,

cublasOperation_t trans,

const double *alpha,

const double *A, int 1lda,
const double *x, int incx,
const double *beta,

double *y, int incy)

cublasStatus_t cublasCgemv(cublasHandle_t handle,

int m, int n,

cublasOperation_t trans,

const cuComplex *alpha,

const cuComplex *A, int 1da,
const cuComplex *x, int incx,
const cuComplex *beta,
cuComplex *y, int incy)

cublasStatus_t cublasZgemv(cublasHandle_t handle,

int m, int n,

const cuDoubleComplex
const cuDoubleComplex
const cuDoubleComplex
const cuDoubleComplex

cublasOperation_t trans,

*alpha,

*A, int 1lda,
*x, int incx,
*beta,

cuDoubleComplex *y, int incy)

This function performs the matrix-vector multiplication

y = aop(A)x + By

52

Chapter 4. Using the cuBLAS API

http://www.netlib.org/blas/sgbmv.f
http://www.netlib.org/blas/dgbmv.f
http://www.netlib.org/blas/cgbmv.f
http://www.netlib.org/blas/zgbmv.f

cuBLAS, Release 12.1

where A is a m x n matrix stored in column-major format, x and y are vectors, and « and 3 are scalars.
Also, for matrix A

A if transa == CUBLAS_OP_N
op(A) = ¢ AT if transa == CUBLAS_OP_T
AH if transa == CUBLAS_OP_H
ParamMem- | InfoutMeaning
ory
han- in- | handle to the cuBLAS library context.
dle put
trans in- | operation op(A) that is non- or (conj.) transpose.
put
m in- | number of rows of matrix A.
put
n in- | number of columns of matrix A.
put
al- | host in- | <type> scalar used for multiplication.
pha | or de- | put
vice
A de- in- | <type> array of dimension 1da x n with 1da >= max(1,m). Before entry,
vice put | the leading m by n part of the array A must contain the matrix of coefficients.
Unchanged on exit.
Ida in- | leading dimension of two-dimensional array used to store matrix A. 1da must
put | be at least max(1,m).
X de- in- | <type> vector at least (1+(n-1)*abs(incx)) elements if
vice put | transa==CUBLAS_OP_N and at least (1+(m-1)*abs(incx)) elements
otherwise.
incx in- | stride between consecutive elements of x.
put
beta| host in- | <type> scalar used for multiplication, if beta==0 then y does not have to be a
or de- | put | valid input.
vice
y de- infout<type> vector at least (1+(m-1)*abs(incy)) elements if
vice transa==CUBLAS_OP_N and at least (1+(n-1)*abs(incy)) elements
otherwise.
incy in- | stride between consecutive elements of y
put

The possible error values returned by this function and their meanings are listed below.

4.6. cuBLAS Level-2 Function Reference 53

cuBLAS, Release 12.1

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized
CUBLAS_STATUS_INVALID_VALUE the parameters m, n<@ or incx, incy=0
CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to:

3) 3

cublasStatus_t cublasSger(cublasHandle_t handle, int m, int n,

const float
const float
const float

*alpha,
*x, int incx,
*y, int incy,

float *A, int lda)
cublasStatus_t cublasDger(cublasHandle_t handle, int m, int n,
const double *alpha,
const double *x, int incx,
const double *y, int incy,
double *A, int lda)
cublasStatus_t cublasCgeru(cublasHandle_t handle, int m, int n,
const cuComplex *alpha,
const cuComplex *x, int incx,
const cuComplex *y, int incy,
cuComplex *A, int 1lda)
cublasStatus_t cublasCgerc(cublasHandle_t handle, int m, int n,
const cuComplex *alpha,
const cuComplex *x, int incx,
const cuComplex *y, int incy,
cuComplex *A, int lda)

cublasStatus_t cublasZgeru(cublasHandle_t handle, int m, int n,
const cuDoubleComplex *alpha,
const cuDoubleComplex *x, int incx,
const cuDoubleComplex *y, int incy,
cuDoubleComplex *A, int lda)
cublasStatus_t cublasZgerc(cublasHandle_t handle, int m, int n,
const cuDoubleComplex *alpha,
const cuDoubleComplex *x, int incx,
const cuDoubleComplex *y, int incy,
cuDoubleComplex *A, int 1lda)

This function supports the

This function performs the rank-1 update

Ao axy” + A if ger(),geru() is called
~ |axy® + A if gerc() is called

where A is a m x n matrix stored in column-major format, x and y are vectors, and « is a scalar.

54 Chapter 4. Using the cuBLAS API

http://www.netlib.org/blas/sgemv.f
http://www.netlib.org/blas/dgemv.f
http://www.netlib.org/blas/cgemv.f
http://www.netlib.org/blas/zgemv.f
index.html#bit-integer-interface

cuBLAS, Release 12.1

Param. | Memory Infout | Meaning

handle input | handle to the cuBLAS library context.
m input | number of rows of matrix A.

n input | number of columns of matrix A.

alpha host or de- | input | <type> scalar used for multiplication.

vice
X device input | <type> vector with m elements.
incx input | stride between consecutive elements of x.
y device input | <type> vector with n elements.
incy input | stride between consecutive elements of y.
A device infout | <type> array of dimension 1da x nwith 1da >= max(1,m).
Ida input | leading dimension of two-dimensional array used to store matrix

A

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning
CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
Ifm<Oorn<O

if incx =0or incy =0or
if alpha == NULL or
1da < max(1, m)

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

)) 3 3)

cublasStatus_t cublasSsbmv(cublasHandle_t handle, cublasFillMode_t uplo,
int n, int k, const float *alpha,
const float *A, int lda,
const float *x, int incx,
const float *beta, float *y, int incy)
cublasStatus_t cublasDsbmv(cublasHandle_t handle, cublasFillMode_t uplo,
int n, int k, const double *alpha,
const double *A, int lda,
const double *x, int incx,
const double *beta, double *y, int incy)

4.6. cuBLAS Level-2 Function Reference 55

http://www.netlib.org/blas/sger.f
http://www.netlib.org/blas/dger.f
http://www.netlib.org/blas/cgeru.f
http://www.netlib.org/blas/cgerc.f
http://www.netlib.org/blas/zgeru.f
http://www.netlib.org/blas/zgerc.f

cuBLAS, Release 12.1

This function supports the
This function performs the symmetric banded matrix-vector multiplication
y = aAx + By

where A is a n x n symmetric banded matrix with k& subdiagonals and superdiagonals, x and y are
vectors, and « and 3 are scalars.

If uplo == CUBLAS_FILL_MODE_LOWER then the symmetric banded matrix A is stored column by
column, with the main diagonal of the matrix stored in row 1, the first subdiagonal in row 2 (starting at
first position), the second subdiagonal in row 3 (starting at first position), etc. So that in general, the
element A(i, j) is stored in the memory location A(1+i-j,j) for j =1,...,nandi € [j, min(m,j + k)]
. Also, the elements in the array A that do not conceptually correspond to the elements in the banded
matrix (the bottom right & x k triangle) are not referenced.

If uplo == CUBLAS_FILL_MODE_UPPER then the symmetric banded matrix A is stored column by
column, with the main diagonal of the matrix stored in row k+1, the first superdiagonal in row k (start-
ing at second position), the second superdiagonal in row k-1 (starting at third position), etc. So that
in general, the element A(i, j) is stored in the memory location A(1+k+i-j,j) forj = 1,...,n and
i € [max(1,j — k),j] . Also, the elements in the array A that do not conceptually correspond to the
elements in the banded matrix (the top left k x k triangle) are not referenced.

ParaAnMem- InfoutMeaning

ory
han- in- | handle to the cuBLAS library context.
dle put
uplo in- | indicates if matrix A lower or upper part is stored, the other symmetric part
put | is not referenced and is inferred from the stored elements.
n in- | number of rows and columns of matrix A.
put
k in- | number of sub- and super-diagonals of matrix A.
put
al- host or | in- | <type> scalar used for multiplication.
pha | device put
A device |in- | <type> array of dimension 1da x nwith \1da >= k+1.
put
Ida in- | leading dimension of two-dimensional array used to store matrix A.
put
X device in- | <type> vector with n elements.
put
incx in- | stride between consecutive elements of x.
put

beta| host or | in- | <type> scalar used for multiplication, if beta==0 then y does not have to be
device put | avalid input.

y device infout <type> vector with n elements.
incy in- | stride between consecutive elements of y.
put

56 Chapter 4. Using the cuBLAS API

index.html#bit-integer-interface

cuBLAS, Release 12.1

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning
CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
Ifn<Oork<Oor

if incx=0or incy =0or

if uplo !'= CUBLAS_FILL_MODE_LOWER,
CUBLAS_FILL_MODE_UPPER or

if alpha == NULL or beta == NULL or

lda < (1 + k)

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

cublasStatus_t cublasSspmv(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const float *alpha, const float *AP,
const float *x, int incx, const float *beta,
float *y, int incy)

cublasStatus_t cublasDspmv(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const double *alpha, const double *AP,
const double *x, int incx, const double *beta,
double *y, int incy)

This function supports the
This function performs the symmetric packed matrix-vector multiplication

y = aAx + By

where A is a n x n symmetric matrix stored in packed format, x and y are vectors, and « and S are
scalars.

If uplo == CUBLAS_FILL_MODE_LOWER then the elements in the lower triangular part of the sym-
metric matrix A are packed together column by column without gaps, so that the element A(s, j) is
stored in the memory location AP[i+((2*n-j+1)*j)/2] for j = 1,...,nand i > j. Consequently,
the packed format requires only % elements for storage.

If uplo == CUBLAS_FILL_MODE_UPPER then the elements in the upper triangular part of the sym-
metric matrix A are packed together column by column without gaps, so that the element A(3, j) is
stored in the memory location AP[i+(j*(j+1))/2] forj = 1,...,nand i < j . Consequently, the

packed format requires only @ elements for storage.

4.6. cuBLAS Level-2 Function Reference 57

http://www.netlib.org/blas/ssbmv.f
http://www.netlib.org/blas/dsbmv.f
index.html#bit-integer-interface

cuBLAS, Release 12.1

ParamMem- In/outMeaning
ory
han- in- | handle to the cuBLAS library context.
dle put
uplo in- indicates if matrix A lower or upper part is stored, the other symmetric part
put | is not referenced and is inferred from the stored elements.
n in- number of rows and columns of matrix A .
put
al- host or | in- | <type> scalar used for multiplication.
pha | device put
AP | device in- | <type> array with A stored in packed format.
put
X device in- | <type> vector with n elements.
put
incx in- | stride between consecutive elements of x.
put
beta| host or | in- | <type> scalar used for multiplication, if beta==0 then y does not have to be
device put | avalid input.
y device in- | <type> vector with n elements.
put
incy in- | stride between consecutive elements of y.
put

The possible error values returned by this function and their meanings are listed below.

Error Value

Meaning

CUBLAS_STATUS_SUCCESS

the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED

the library was not initialized

CUBLAS_STATUS_INVALID_VALUE

Ifn<Oor

if incx=0o0r incy =0or

if uplo != CUBLAS_FILL_MODE_LOWER,
CUBLAS_FILL_MODE_UPPER or

alpha == NULL or beta == NULL

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

58

Chapter 4. Using the cuBLAS API

http://www.netlib.org/blas/sspmv.f
http://www.netlib.org/blas/dspmv.f

cuBLAS, Release 12.1

cublasStatus_t cublasSspr(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const float *alpha,
const float *x, int incx, float *AP)
cublasStatus_t cublasDspr(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const double *alpha,
const double *x, int incx, double *AP)

This function supports the

This function performs the packed symmetric rank-1 update

A=oaxxT + A

where A is a n x n symmetric matrix stored in packed format, x is a vector, and « is a scalar.

If uplo == CUBLAS_FILL_MODE_LOWER then the elements in the lower triangular part of the sym-
metric matrix A are packed together column by column without gaps, so that the element A(i, j) is
stored in the memory location AP[i+((2*n-j+1)*j)/2] forj = 1,...,nand i > j . Consequently,
the packed format requires only w elements for storage.

If uplo == CUBLAS_FILL_MODE_UPPER then the elements in the upper triangular part of the sym-
metric matrix A are packed together column by column without gaps, so that the element A(i, j) is
stored in the memory location AP[i+(j*(j+1))/2] for j = 1,...,nand i < j . Consequently, the

packed format requires only w elements for storage.

ParamMem- InfoutMeaning
ory
han- in- | handle to the cuBLAS library context.
dle put
uplo in- | indicates if matrix A lower or upper part is stored, the other symmetric part
put | is not referenced and is inferred from the stored elements.
n in- | number of rows and columns of matrix A .
put
al- host or | in- | <type> scalar used for multiplication.
pha | device put
X device in- | <type> vector with n elements.
put
incx in- | stride between consecutive elements of x.
put

AP | device infout<type> array with A stored in packed format.

The possible error values returned by this function and their meanings are listed below.

4.6. cuBLAS Level-2 Function Reference 59

index.html#bit-integer-interface

cuBLAS, Release 12.1

Error Value Meaning
CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
Ifn<Oor

if incx =0or

if uplo != CUBLAS_FILL_MODE_LOWER,
CUBLAS_FILL_MODE_UPPER or

alpha == NULL

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

cublasStatus_t cublasSspr2(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const float *alpha,
const float *x, int incx,
const float *y, int incy, float *AP)
cublasStatus_t cublasDspr2(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const double *alpha,
const double *x, int incx,
const double *y, int incy, double *AP)

This function supports the

This function performs the packed symmetric rank-2 update

A=oa(xy" +yxT) + 4

where A is an x n symmetric matrix stored in packed format, x is a vector, and « is a scalar.

If uplo == CUBLAS_FILL_MODE_LOWER then the elements in the lower triangular part of the sym-
metric matrix A are packed together column by column without gaps, so that the element A(i, j) is
stored in the memory location AP[i+((2*n-j+1)*j)/2] for j = 1,...,nand i > j . Consequently,
the packed format requires only @ elements for storage.

If uplo == CUBLAS_FILL_MODE_UPPER then the elements in the upper triangular part of the sym-
metric matrix A are packed together column by column without gaps, so that the element A(3, j) is
stored in the memory location AP[i+(j*(j+1))/2] forj = 1,...,nand i < j . Consequently, the

n(n+1

packed format requires only T) elements for storage.

60 Chapter 4. Using the cuBLAS API

http://www.netlib.org/blas/sspr.f
http://www.netlib.org/blas/dspr.f
index.html#bit-integer-interface

cuBLAS, Release 12.1

ParamMem- In/outMeaning
ory
han- in- | handle to the cuBLAS library context.
dle put
uplo in- | indicates if matrix A lower or upper part is stored, the other symmetric part
put | is not referenced and is inferred from the stored elements.
n in- | number of rows and columns of matrix A .
put
al- | host or | in- | <type> scalar used for multiplication.
pha | device | put
X device in- | <type> vector with n elements.
put
incx in- | stride between consecutive elements of x.
put
y device | in- | <type> vector with n elements.
put
incy in- | stride between consecutive elements of y.
put
AP | device infout<type> array with A stored in packed format.

The possible error values returned by this function and their meanings are listed below.

Error Value

Meaning

CUBLAS_STATUS_SUCCESS

the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED

the library was not initialized

CUBLAS_STATUS_INVALID_VALUE

Ifn<Oor

if incx=0o0r incy =0or

if uplo != CUBLAS_FILL_MODE_LOWER,
CUBLAS_FILL_MODE_UPPER or

alpha == NULL

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

4.6. cuBLAS Level-2 Function Reference 61

http://www.netlib.org/blas/sspr2.f
http://www.netlib.org/blas/dspr2.f

cuBLAS, Release 12.1

4.6.8. cublas<t>symyv()

cublasStatus_t cublasSsymv(cublasHandle_t handle, cublasFillMode_t uplo,

int n, const float *alpha,

const float *A, int 1lda,

const float *x, int incx, const float
—*beta,

float *y, int incy)
cublasStatus_t cublasDsymv(cublasHandle_t handle, cublasFillMode_t uplo,

int n, const double *alpha,

const double *A, int 1lda,

const double *x, int incx, const double
. *beta,

double *y, int incy)
cublasStatus_t cublasCsymv(cublasHandle_t handle, cublasFillMode_t uplo,

int n, const cuComplex *alpha, /* host or device
—pointer */

const cuComplex *A, int 1da,

const cuComplex *x, int incx, const cuComplex
—*beta,

cuComplex *y, int incy)

cublasStatus_t cublasZsymv(cublasHandle_t handle, cublasFillMode_t uplo,

int n, const cuDoubleComplex *alpha,

const cuDoubleComplex *A, int lda,

const cuDoubleComplex *x, int incx, const cuDoubleComplex
—*beta,

cuDoubleComplex *y, int incy)

This function supports the 64-bit Integer Interface.

This function performs the symmetric matrix-vector multiplication.

y = aAx + Sy where A is a n x n symmetric matrix stored in lower or upper mode, x and y are vectors,
and « and § are scalars.

This function has an alternate faster implementation using atomics that can be enabled with cublas-
SetAtomicsMode().

Please see the section on the function cublasSetAtomicsMode () for more details about the usage
of atomics.

62 Chapter 4. Using the cuBLAS API

index.html#bit-integer-interface

cuBLAS, Release 12.1

ParaJnMem- In/oytMeaning
ory

han- in- | handle to the cuBLAS library context.

dle put

uplo in- | indicates if matrix lower or upper part is stored, the other symmetric part is
put | not referenced and is inferred from the stored elements.

n in- | number of rows and columns of matrix A.
put

al- | host or | in- | <type> scalar used for multiplication.

pha | device put

A device |in- | <type> array of dimension 1da x n with 1da>=max(1,n).
put

Ida in- | leading dimension of two-dimensional array used to store matrix A.
put

X device in- | <type> vector with n elements.
put

incx in- | stride between consecutive elements of x.
put

beta| host or | in- | <type> scalar used for multiplication, if beta==0 then y does not have to be

device put | avalid input.

y device infout<type> vector with n elements.

incy in- | stride between consecutive elements of y.
put

The possible error values returned by this function and their meanings are listed below.

Error Value

Meaning

CUBLAS_STATUS_SUCCESS

the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED

the library was not initialized

CUBLAS_STATUS_INVALID_VALUE

Ifn<Qor

if incx=0orincy =0or

if uplo != CUBLAS_FILL_MODE_LOWER,
CUBLAS_FILL_MODE_UPPER or

lda<n

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

4.6. cuBLAS Level-2 Function Reference 63

http://www.netlib.org/blas/ssymv.f
http://www.netlib.org/blas/dsymv.f

cuBLAS, Release 12.1

cublasStatus_t

—1da)
cublasStatus_t

—1da)
cublasStatus_t

—1lda)
cublasStatus_t

—1da)

cublasSsyr(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const float *alpha,
const float *x, int incx, float *A,

cublasDsyr(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const double *alpha,
const double *x, int incx, double *A,

cublasCsyr(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const cuComplex *alpha,
const cuComplex *x, int incx, cuComplex *A,

cublasZsyr(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const cuDoubleComplex *alpha,
const cuDoubleComplex *x, int incx, cuDoubleComplex *A,

This function supports the

This function performs the symmetric rank-1 update

A=axxT + A

int

int

int

int

where A is a n x n symmetric matrix stored in column-major format, x is a vector, and « is a scalar.

pha | device

ParaAnMem- InfoutMeaning
ory

han- in- | handle to the cuBLAS library context.

dle put

uplo in- | indicates if matrix A lower or upper part is stored, the other symmetric part
put | is not referenced and is inferred from the stored elements.

n in- | number of rows and columns of matrix A.
put

al- | host or | in- | <type> scalar used for multiplication.

X device in- | <type> vector with n elements.
put

incx in- | stride between consecutive elements of x.
put

A device | infout<type> array of dimensions 1da x n, with 1da>=max(1,n).

Ida in- | leading dimension of two-dimensional array used to store matrix A.
put

The possible error values returned by this function and their meanings are listed below.

64

Chapter 4. Using the cuBLAS API

index.html#bit-integer-interface

cuBLAS, Release 12.1

Error Value Meaning
CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
Ifn<Oor

if incx =0or

if uplo != CUBLAS_FILL_MODE_LOWER,
CUBLAS_FILL_MODE_UPPER or

if 1da < max(1, n) or

alpha == NULL

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

cublasStatus_t cublasSsyr2(cublasHandle_t handle, cublasFillMode_t uplo, int n,

const float *alpha, const float *X,
—int incx,

const float *y, int incy, float *A,
—int lda
cublasStatus_t cublasDsyr2(cublasHandle_t handle, cublasFillMode_t uplo, int n,

const double *alpha, const double *X,
—int incx,

const double *y, int incy, double *A,
—int lda
cublasStatus_t cublasCsyr2(cublasHandle_t handle, cublasFillMode_t uplo, int n,

const cuComplex *alpha, const cuComplex *X,
—int incx,

const cuComplex *y, int incy, cuComplex *A,
—int lda

cublasStatus_t cublasZsyr2(cublasHandle_t handle, cublasFillMode_t uplo, int n,
const cuDoubleComplex *alpha, const cuDoubleComplex *Xx,
—int incx,
const cuDoubleComplex *y, int incy, cuDoubleComplex *A,
—int lda

This function supports the
This function performs the symmetric rank-2 update
A=a(xy" +yxT)+ A

where A is a n x n symmetric matrix stored in column-major format, x and y are vectors, and a is a
scalar.

4.6. cuBLAS Level-2 Function Reference 65

http://www.netlib.org/blas/ssyr.f
http://www.netlib.org/blas/dsyr.f
index.html#bit-integer-interface

cuBLAS, Release 12.1

ParaJnMem- In/oytMeaning
ory
han- in- | handle to the cuBLAS library context.
dle put
uplo in- | indicates if matrix A lower or upper part is stored, the other symmetric part
put | is not referenced and is inferred from the stored elements.
n in- | number of rows and columns of matrix A.
put
al- | host or | in- | <type> scalar used for multiplication.
pha | device put
X device in- | <type> vector with n elements.
put
incx in- | stride between consecutive elements of x.
put
y device |in- | <type> vector with n elements.
put
incy in- | stride between consecutive elements of y.
put
A device | infout<type> array of dimensions 1da x n, with 1da>=max(1,n).
Ida in- | leading dimension of two-dimensional array used to store matrix A.
put

The possible error values returned by this function and their meanings are listed below.

Error Value

Meaning

CUBLAS_STATUS_SUCCESS

the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED

the library was not initialized

CUBLAS_STATUS_INVALID_VALUE

Ifn<Oor

if incx=0o0r incy =0or

if uplo != CUBLAS_FILL_MODE_LOWER,
CUBLAS_FILL_MODE_UPPER or

if alpha == NULL or

1da < max(1, n)

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

66

Chapter 4. Using the cuBLAS API

http://www.netlib.org/lapack/explore-html/db/d99/ssyr2_8f_source.html
http://www.netlib.org/lapack/explore-html/de/d41/dsyr2_8f_source.html

cuBLAS, Release 12.1

cublasStatus_t cublasStbmv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, int k, const float *A, int lda,
float *x, int incx)

cublasStatus_t cublasDtbmv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, int k, const double *A, int 1lda,
double *x, int incx)

cublasStatus_t cublasCtbmv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, int k, const cuComplex *A, int 1lda,
cuComplex *x, int incx)

cublasStatus_t cublasZtbmv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, int k, const cuDoubleComplex *A, int lda,
cuDoubleComplex *x, int incx)

This function supports the
This function performs the triangular banded matrix-vector multiplication
x = op(4)x

where A is a triangular banded matrix, and x is a vector. Also, for matrix A

A if transa == CUBLAS_OP_N
op(4) =4 AT if transa == CUBLAS_OP_T
A" if transa == CUBLAS_OP_C

If uplo == CUBLAS_FILL_MODE_LOWER then the triangular banded matrix A is stored column by
column, with the main diagonal of the matrix stored in row 1, the first subdiagonal in row 2 (starting at
first position), the second subdiagonal in row 3 (starting at first position), etc. So that in general, the
element A(i, j) is stored in the memory location A(1+i-j,j) forj =1,...,nandi € [j, min(m,j + k)]
. Also, the elements in the array A that do not conceptually correspond to the elements in the banded
matrix (the bottom right & x k triangle) are not referenced.

If uplo == CUBLAS_FILL_MODE_UPPER then the triangular banded matrix A is stored column by
column, with the main diagonal of the matrix stored in row k+1, the first superdiagonal in row k (start-
ing at second position), the second superdiagonal in row k-1 (starting at third position), etc. So that
in general, the element A(i, j) is stored in the memory location A(1+k+i-j,j) forj = 1,...,n and
i € [max(1l,j — k,j)] . Also, the elements in the array A that do not conceptually correspond to the
elements in the banded matrix (the top left k x k triangle) are not referenced.

4.6. cuBLAS Level-2 Function Reference 67

index.html#bit-integer-interface

cuBLAS, Release 12.1

ParamMem-| InfoutMeaning
ory
han- in- | handle to the cuBLAS library context.
dle put
uplo in- | indicates if matrix A lower or upper part is stored, the other part is not refer-
put | enced and is inferred from the stored elements.
trans in- | operation op(A) that is non- or (conj.) transpose.
put
diag in- | indicates if the elements on the main diagonal of matrix A are unity and should
put | not be accessed.
n in- | number of rows and columns of matrix A.
put
k in- | number of sub- and super-diagonals of matrix .
put
A de- in- | <type> array of dimension 1da x n, with 1da>=k+1.
vice put
Ida in- | leading dimension of two-dimensional array used to store matrix A.
put
X de- infout <type> vector with n elements.
vice
incx in- | stride between consecutive elements of x.
put

The possible error values returned by this function and their meanings are listed below.

Error Value

Meaning

CUBLAS_STATUS_SUCCESS

the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED

the library was not initialized

CUBLAS_STATUS_INVALID_VALUE

Ifn<Qork<Oor

if incx=0or

if trans != CUBLAS_OP_N, CUBLAS_OP_C,
CUBLAS_OP_T or

if uplo != CUBLAS_FILL_MODE_LOWER,
CUBLAS_FILL_MODE_UPPER or

if diag 1= CUBLAS_DIAG_UNIT,
CUBLAS_DIAG_NON_UNIT or
lda < (1 + k)

CUBLAS_STATUS_ALLOC_FAILED

the allocation of internal scratch memory failed

CUBLAS_STATUS_EXECUTION_FAILED

the function failed to launch on the GPU

For references please refer to:

3) 3

68

Chapter 4. Using the cuBLAS API

http://www.netlib.org/blas/stbmv.f
http://www.netlib.org/blas/dtbmv.f
http://www.netlib.org/blas/ctbmv.f
http://www.netlib.org/blas/ztbmv.f

cuBLAS, Release 12.1

cublasStatus_t cublasStbsv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, int k, const float *A, int lda,
float *x, int incx)

cublasStatus_t cublasDtbsv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, int k, const double *A, int 1lda,
double *x, int incx)

cublasStatus_t cublasCtbsv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, int k, const cuComplex *A, int 1lda,
cuComplex *x, int incx)

cublasStatus_t cublasZtbsv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, int k, const cuDoubleComplex *A, int lda,
cuDoubleComplex *x, int incx)

This function supports the
This function solves the triangular banded linear system with a single right-hand-side
op(A)x=Db

where A is a triangular banded matrix, and x and b are vectors. Also, for matrix A

A if transa == CUBLAS_OP_N
op(A) = ¢ AT if transa == CUBLAS_OP_T
Afif transa == CUBLAS_OP_C
The solution x overwrites the right-hand-sides b on exit.
No test for singularity or near-singularity is included in this function.

If uplo == CUBLAS_FILL_MODE_LOWER then the triangular banded matrix A is stored column by
column, with the main diagonal of the matrix stored in row 1, the first subdiagonal in row 2 (starting at
first position), the second subdiagonal in row 3 (starting at first position), etc. So that in general, the
element A(i, j) is stored in the memory location A(1+i-j, j) forj=1,...,nandi € [j,min(m,j + k)]
. Also, the elements in the array A that do not conceptually correspond to the elements in the banded
matrix (the bottom right k x k triangle) are not referenced.

If uplo == CUBLAS_FILL_MODE_UPPER then the triangular banded matrix A is stored column by
column, with the main diagonal of the matrix stored in row k+1, the first superdiagonal in row k (start-
ing at second position), the second superdiagonal in row k-1 (starting at third position), etc. So that
in general, the element A(i, j) is stored in the memory location A(1+k+i-j,j) forj = 1,...,n and
1 € [max(1,j — k,j)] . Also, the elements in the array A that do not conceptually correspond to the
elements in the banded matrix (the top left k x k triangle) are not referenced.

4.6. cuBLAS Level-2 Function Reference 69

index.html#bit-integer-interface

cuBLAS, Release 12.1

ParamMem-| InfoutMeaning
ory
han- in- | handle to the cuBLAS library context.
dle put
uplo in- | indicates if matrix A lower or upper part is stored, the other part is not refer-
put | enced and is inferred from the stored elements.
trans in- | operation op(A) that is non- or (conj.) transpose.
put
diag in- | indicates if the elements on the main diagonal of matrix A are unity and should
put | not be accessed.
n in- | number of rows and columns of matrix A.
put
k in- | number of sub- and super-diagonals of matrix A.
put
A de- in- | <type> array of dimension 1da x n, with 1da >= k+1.
vice put
Ida in- | leading dimension of two-dimensional array used to store matrix A.
put
X de- infout <type> vector with n elements.
vice
incx in- | stride between consecutive elements of x.
put

The possible error values returned by this function and their meanings are listed below.

Error Value

Meaning

CUBLAS_STATUS_SUCCESS

the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED

the library was not initialized

CUBLAS_STATUS_INVALID_VALUE

Ifn<Qork<Oor

if incx =0or

if trans != CUBLAS_OP_N, CUBLAS_OP_C,
CUBLAS_OP_T or

if uplo != CUBLAS_FILL_MODE_LOWER,
CUBLAS_FILL_MODE_UPPER or

if diag = CUBLAS_DIAG_UNIT,
CUBLAS_DIAG_NON_UNIT or

lda < (1 +k)

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

3 3

70

Chapter 4. Using the cuBLAS API

http://www.netlib.org/blas/stbsv.f
http://www.netlib.org/blas/dtbsv.f
http://www.netlib.org/blas/ctbsv.f
http://www.netlib.org/blas/ztbsv.f

cuBLAS, Release 12.1

cublasStatus_t cublasStpmv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const float *AP,
float *x, int incx)

cublasStatus_t cublasDtpmv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const double *AP,
double *x, int incx)

cublasStatus_t cublasCtpmv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const cuComplex *AP,
cuComplex *x, int incx)

cublasStatus_t cublasZtpmv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const cuDoubleComplex *AP,
cuDoubleComplex *x, int incx)

This function supports the
This function performs the triangular packed matrix-vector multiplication
x = op(4)x

where A is a triangular matrix stored in packed format, and x is a vector. Also, for matrix A

A if transa == CUBLAS_OP_N
op(A) = ¢ AT if transa == CUBLAS_OP_T
A" if transa == CUBLAS_OP_C

If uplo == CUBLAS_FILL_MODE_LOWER then the elements in the lower triangular part of the tri-
angular matrix A are packed together column by column without gaps, so that the element A(i, j) is
stored in the memory location AP[i+((2*n-j+1)*j)/2] forj = 1,...,nand i > j . Consequently,

the packed format requires only @ elements for storage.

If uplo == CUBLAS_FILL_MODE_UPPER then the elements in the upper triangular part of the triangu-
lar matrix A are packed together column by column without gaps, so that the element A(i, j) is stored
in the memory location AP[i+(j*(j+1))/2] for A(i,j) and i < j. Consequently, the packed format

requires only % elements for storage.

4.6. cuBLAS Level-2 Function Reference 71

index.html#bit-integer-interface

cuBLAS, Release 12.1

ParamMem-| InfoutMeaning
ory
han- in- | handle to the cuBLAS library context.
dle put
uplo in- | indicates if matrix A lower or upper part is stored, the other part is not refer-
put | enced and is inferred from the stored elements.
trans in- | operation op(A) that is non- or (conj.) transpose.
put
diag in- | indicates if the elements on the main diagonal of matrix A are unity and should
put | not be accessed.
n in- | number of rows and columns of matrix A.
put
AP de- in- <type> array with A stored in packed format.
vice | put
X de- in/out <type> vector with n elements.
vice
incx in- | stride between consecutive elements of X.
put

The possible error values returned by this function and their meanings are listed below.

Error Value

Meaning

CUBLAS_STATUS_SUCCESS

the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED

the library was not initialized

CUBLAS_STATUS_INVALID_VALUE

Ifn < @or

if incx == B@or

if uplo !'= CUBLAS_FILL_MODE_UPPER,
CUBLAS_FILL_MODE_LOWER or

if trans I= CUBLAS_OP_N,
CUBLAS_OP_T, CUBLAS_OP_Cor

diag = CUBLAS_DIAG_UNIT,
CUBLAS_DIAG_NON_UNIT

CUBLAS_STATUS_ALLOC_FAILED

the allocation of internal scratch memory failed

CUBLAS_STATUS_EXECUTION_FAILED

the function failed to launch on the GPU

For references please refer to:

3 ’ 3

72

Chapter 4. Using the cuBLAS API

http://www.netlib.org/blas/stpmv.f
http://www.netlib.org/blas/dtpmv.f
http://www.netlib.org/blas/ctpmv.f
http://www.netlib.org/blas/ztpmv.f

cuBLAS, Release 12.1

cublasStatus_t cublasStpsv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const float *AP,
float *x, int incx)

cublasStatus_t cublasDtpsv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const double *AP,
double *x, int incx)

cublasStatus_t cublasCtpsv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const cuComplex *AP,
cuComplex *x, int incx)

cublasStatus_t cublasZtpsv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const cuDoubleComplex *AP,
cuDoubleComplex *x, int incx)

This function supports the
This function solves the packed triangular linear system with a single right-hand-side
op(A)x=Db

where A is a triangular matrix stored in packed format, and x and b are vectors. Also, for matrix A

A if transa == CUBLAS_OP_N
op(A) = ¢ AT if transa == CUBLAS_OP_T
Afif transa == CUBLAS_OP_C
The solution x overwrites the right-hand-sides b on exit.
No test for singularity or near-singularity is included in this function.

If uplo == CUBLAS_FILL_MODE_LOWER then the elements in the lower triangular part of the tri-
angular matrix A are packed together column by column without gaps, so that the element A(i, j) is
stored in the memory location AP[i+((2*n-j+1)*j)/2] for j = 1,...,nand i > j . Consequently,

the packed format requires only % elements for storage.

If uplo == CUBLAS_FILL_MODE_UPPER then the elementsinthe upper triangular part of the triangu-
lar matrix A are packed together column by column without gaps, so that the element A(i, j) is stored
in the memory location AP[i+(j*(j+1))/2] forj = 1,...,nand i < j . Consequently, the packed

format requires only w elements for storage.

4.6. cuBLAS Level-2 Function Reference 73

index.html#bit-integer-interface

cuBLAS, Release 12.1

ParamMem-| InfoutMeaning
ory
han- in- | handle to the cuBLAS library context.
dle put
uplo in- | indicates if matrix A lower or upper part is stored, the other part is not refer-
put | enced and is inferred from the stored elements.
trans in- | operation op(A) that is non- or (conj.) transpose.
put
diag in- | indicates if the elements on the main diagonal of matrix are unity and should
put | not be accessed.
n in- | number of rows and columns of matrix A.
put
AP de- in- <type> array with A stored in packed format.
vice | put
X de- infout <type> vector with n elements.
vice
incx in- | stride between consecutive elements of X.
put

The possible error values returned by this function and their meanings are listed below.

Error

Value

Meaning

CUBLAS_STATUS_SUCCESS

the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was

not initialized

CUBLAS_STATUS_INVALID_VALUE

if trans
if uplo

diag

Ifn<Oor
if incx=0or

= CUBLAS_OP_N, CUBLAS_OP_C,

CUBLAS_OP_T or

= CUBLAS_FILL_MODE_LOWER,

CUBLAS_FILL_MODE_UPPER or

I= CUBLAS_DIAG_UNIT,

CUBLAS_DIAG_NON_UNIT

CUBLAS_STATUS_EXECUTION_FAILED

the function failed to launch on the GPU

For references please refer to:

3

74

Chapter 4. Using the cuBLAS API

http://www.netlib.org/blas/stpsv.f
http://www.netlib.org/blas/dtpsv.f
http://www.netlib.org/blas/ctpsv.f
http://www.netlib.org/blas/ztpsv.f

cuBLAS, Release 12.1

cublasStatus_t

cublasStatus_t

cublasStatus_t

cublasStatus_t

This function su

cublasStrmv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const float *A, int 1lda,
float *x, int incx)
cublasDtrmv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const double *A, int 1lda,
double *x, int incx)
cublasCtrmv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const cuComplex *A, int 1lda,
cuComplex *x, int incx)
cublasZtrmv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const cuDoubleComplex *A, int lda,
cuDoubleComplex *x, int incx)

pports the

This function performs the triangular matrix-vector multiplication

x = op(4)x

where A is a triangular matrix stored in lower or upper mode with or without the main diagonal, and x

is a vector. Also,
A

op(4) = { AT
AH

for matrix A

if transa == CUBLAS_OP_N
if transa == CUBLAS_OP_T
if transa == CUBLAS_OP_C

4.6. cuBLAS Level-2 Function Reference

75

index.html#bit-integer-interface

cuBLAS, Release 12.1

ParamMem-| InfoutMeaning
ory
han- in- | handle to the cuBLAS library context.
dle put
uplo in- | indicates if matrix A lower or upper part is stored, the other part is not refer-
put | enced and is inferred from the stored elements.
trans in- | operation op(A) (that is, non- or conj.) transpose.
put
diag in- | indicates if the elements on the main diagonal of matrix A are unity and should
put | not be accessed.
n in- | number of rows and columns of matrix A.
put
A de- in- | <type> array of dimensions 1da x n, with 1da>=max(1,n).
vice | put
Ida in- | leading dimension of two-dimensional array used to store matrix A.
put
X de- in/out <type> vector with n elements.
vice
incx in- | stride between consecutive elements of x.
put

The possible error values returned by this function and their meanings are listed below.

Error Value

Meaning

CUBLAS_STATUS_SUCCESS

the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED

the library was not initialized

CUBLAS_STATUS_INVALID_VALUE

Ifn<Oor

if incx =0or

if trans != CUBLAS_OP_N, CUBLAS_OP_C,
CUBLAS_OP_T or

if uplo != CUBLAS_FILL_MODE_LOWER,
CUBLAS_FILL_MODE_UPPER or

if diag 1= CUBLAS_DIAG_UNIT,
CUBLAS_DIAG_NON_UNIT or

1da < max(1, n)

CUBLAS_STATUS_ALLOC_FAILED

the allocation of internal scratch memory failed

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

’)

’

76

Chapter 4. Using the cuBLAS API

http://www.netlib.org/blas/strmv.f
http://www.netlib.org/blas/dtrmv.f
http://www.netlib.org/blas/ctrmv.f
http://www.netlib.org/blas/ztrmv.f

cuBLAS, Release 12.1

cublasStatus_t

cublasStatus_t

cublasStatus_t

cublasStatus_t

This function su
This function so

op(A)x=Db

cublasStrsv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const float *A, int 1lda,
float *x, int incx)
cublasDtrsv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const double *A, int 1lda,
double *x, int incx)
cublasCtrsv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const cuComplex *A, int 1lda,
cuComplex *x, int incx)
cublasZtrsv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const cuDoubleComplex *A, int lda,
cuDoubleComplex *x, int incx)

pports the

Ives the triangular linear system with a single right-hand-side

where A is a triangular matrix stored in lower or upper mode with or without the main diagonal, and x
and b are vectors. Also, for matrix A

A
op(4) = { AT
AH

if transa == CUBLAS_OP_N
if transa == CUBLAS_OP_T
if transa == CUBLAS_OP_C

The solution x overwrites the right-hand-sides b on exit.

No test for singularity or near-singularity is included in this function.

4.6. cuBLAS Level-2 Function Reference

77

index.html#bit-integer-interface

cuBLAS, Release 12.1

ParamMem-| InfoutMeaning
ory
han- in- | handle to the cuBLAS library context.
dle put
uplo in- | indicates if matrix A lower or upper part is stored, the other part is not refer-
put | enced and is inferred from the stored elements.
trans in- | operation op(A) that is non- or (conj.) transpose.
put
diag in- | indicates if the elements on the main diagonal of matrix A are unity and should
put | not be accessed.
n in- | number of rows and columns of matrix A.
put
A de- in- | <type> array of dimension 1da x n, with 1da>=max(1,n).
vice | put
Ida in- | leading dimension of two-dimensional array used to store matrix A.
put
X de- in/out <type> vector with n elements.
vice
incx in- | stride between consecutive elements of x.
put

The possible error values returned by this function and their meanings are listed below.

Error

Value

Meaning

CUBLAS_STATUS_SUCCESS

the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED

the library was not initialized

CUBLAS_STATUS_INVALID_VALUE

Ifn<Oor

if incx =0or

if trans != CUBLAS_OP_N, CUBLAS_OP_C,
CUBLAS_OP_T or

if uplo != CUBLAS_FILL_MODE_LOWER,
CUBLAS_FILL_MODE_UPPER or

if diag 1= CUBLAS_DIAG_UNIT,
CUBLAS_DIAG_NON_UNIT or

1da < max(1, n)

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

3

78

Chapter 4. Using the cuBLAS API

http://www.netlib.org/blas/strsv.f
http://www.netlib.org/blas/dtrsv.f
http://www.netlib.org/blas/ctrsv.f
http://www.netlib.org/blas/ztrsv.f

cuBLAS, Release 12.1

cublasStatus_t cublasChemv(cublasHandle_t handle, cublasFillMode_t uplo,

int n, const cuComplex *alpha,
const cuComplex *A, int 1lda,
const cuComplex *x, int incx,
const cuComplex *beta,
cuComplex *y, int incy)

cublasStatus_t cublasZhemv(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const cuDoubleComplex *alpha,
const cuDoubleComplex *A, int lda,
const cuDoubleComplex *x, int incx,
const cuDoubleComplex *beta,
cuDoubleComplex *y, int incy)

This function supports the
This function performs the Hermitian matrix-vector multiplication

y = aAx + By

where A is a n x n Hermitian matrix stored in lower or upper mode, x and y are vectors, and a and

are scalars.
This function has an alternate faster implementation using atomics that can be enabled with

Please see the section on the for more details about the usage of atomics

4.6. cuBLAS Level-2 Function Reference

79

index.html#bit-integer-interface

cuBLAS, Release 12.1

ParaJnMem- In/outMeaning
ory

han- in- | handle to the cuBLAS library context.

dle put

uplo in- | indicates if matrix A lower or upper part is stored, the other Hermitian part is
put | not referenced and is inferred from the stored elements.

n in- | number of rows and columns of matrix A.
put

al- | host or | in- | <type> scalar used for multiplication.

pha | device | put

A device in- | <type> array of dimension 1da x n, with 1da>=max(1,n). The imaginary
put | parts of the diagonal elements are assumed to be zero.

Ida in- | leading dimension of two-dimensional array used to store matrix A.
put

X device in- | <type> vector with n elements.
put

incx in- | stride between consecutive elements of x.
put

beta| host or | in- | <type> scalar used for multiplication, if beta==0 then y does not have to be

device | put | avalid input.

y device infout<type> vector with n elements.

incy in- | stride between consecutive elements of y.
put

The possible error values returned by this function and their meanings are listed below.

Error Value

Meaning

CUBLAS_STATUS_SUCCESS

the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED

the library was not initialized

CUBLAS_STATUS_INVALID_VALUE

Ifn<Qor

if incx=0orincy =0or

if uplo != CUBLAS_FILL_MODE_LOWER,
CUBLAS_FILL_MODE_UPPER or

lda<n

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

80

Chapter 4. Using the cuBLAS API

http://www.netlib.org/blas/chemv.f
http://www.netlib.org/blas/zhemv.f

cuBLAS, Release 12.1

cublasStatus_t cublasChbmv(cublasHandle_t handle, cublasFillMode_t uplo,

int n, int k, const cuComplex *alpha,
const cuComplex *A, int lda,

const cuComplex *x, int incx,

const cuComplex *beta,

cuComplex *y, int incy)

cublasStatus_t cublasZhbmv(cublasHandle_t handle, cublasFillMode_t uplo,
int n, int k, const cuDoubleComplex #*alpha,
const cuDoubleComplex *A, int lda,
const cuDoubleComplex *x, int incx,
const cuDoubleComplex *beta,
cuDoubleComplex *y, int incy)

This function supports the
This function performs the Hermitian banded matrix-vector multiplication
y = aAx + By

where A isanxn Hermitian banded matrix with k£ subdiagonals and superdiagonals, xand y are vectors,
and « and 3 are scalars.

If uplo == CUBLAS_FILL_MODE_LOWER then the Hermitian banded matrix A is stored column by
column, with the main diagonal of the matrix stored in row 1, the first subdiagonal in row 2 (starting at
first position), the second subdiagonal in row 3 (starting at first position), etc. So that in general, the
element A(i, j) is stored in the memory location A(1+i-j, j) forj=1,...,nand i € [j,min(m,j + k)]
. Also, the elements in the array A that do not conceptually correspond to the elements in the banded
matrix (the bottom right k x k triangle) are not referenced.

If uplo == CUBLAS_FILL_MODE_UPPER then the Hermitian banded matrix A is stored column by
column, with the main diagonal of the matrix stored in row k+1, the first superdiagonal in row k (start-
ing at second position), the second superdiagonal in row k-1 (starting at third position), etc. So that
in general, the element A(i, j) is stored in the memory location A(1+k+i-j,j) forj = 1,...,n and
1 € [max(1,j — k), j] . Also, the elements in the array A that do not conceptually correspond to the
elements in the banded matrix (the top left k x k triangle) are not referenced.

4.6. cuBLAS Level-2 Function Reference 81

index.html#bit-integer-interface

cuBLAS, Release 12.1

ParaJnMem- In/outMeaning
ory

han- in- | handle to the cuBLAS library context.

dle put

uplo in- | indicates if matrix A lower or upper part is stored, the other Hermitian part is
put | not referenced and is inferred from the stored elements.

n in- | number of rows and columns of matrix A.
put

k in- | number of sub- and super-diagonals of matrix A.
put

al- | host or | in- | <type> scalar used for multiplication.

pha | device put

A device in- | <type> array of dimensions 1da x n, with 1da>=k+1. The imaginary parts
put | of the diagonal elements are assumed to be zero.

Ida in- | leading dimension of two-dimensional array used to store matrix A.
put

X device | in- | <type> vector with n elements.
put

incx in- | stride between consecutive elements of x.
put

beta| host or | in- | <type> scalar used for multiplication, if beta==0 then does not have to be a

device put | valid input.

y device infout<type> vector with n elements.

incy in- | stride between consecutive elements of y.
put

The possible error values returned by this function and their meanings are listed below.

Error Value

Meaning

CUBLAS_STATUS_SUCCESS

the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED

the library was not initialized

CUBLAS_STATUS_INVALID_VALUE

Ifn<Oork<Oor

if incx=0orincy =0or

if uplo != CUBLAS_FILL_MODE_LOWER,
CUBLAS_FILL_MODE_UPPER or

if lda<(k + 1) or

alpha == NULL or beta == NULL

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

82

Chapter 4. Using the cuBLAS API

http://www.netlib.org/blas/chbmv.f
http://www.netlib.org/blas/zhbmv.f

cuBLAS, Release 12.1

cublasStatus_t cublasChpmv(cublasHandle_t handle, cublasFillMode_t uplo,

int n, const cuComplex *alpha,
const cuComplex *AP,

const cuComplex *x, int incx,
const cuComplex *beta,
cuComplex *y, int incy)

cublasStatus_t cublasZhpmv(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const cuDoubleComplex *alpha,
const cuDoubleComplex *AP,
const cuDoubleComplex *x, int incx,
const cuDoubleComplex *beta,
cuDoubleComplex *y, int incy)

This function supports the
This function performs the Hermitian packed matrix-vector multiplication
y = aAx + By

where A is a n x n Hermitian matrix stored in packed format, x and y are vectors, and « and § are
scalars.

If uplo == CUBLAS_FILL_MODE_LOWER then the elements in the lower triangular part of the Her-
mitian matrix A are packed together column by column without gaps, so that the element A(i, j) is
stored in the memory location AP[i+((2*n-j+1)*j)/2] for j = 1,...,nand i > j . Consequently,

the packed format requires only % elements for storage.

If uplo == CUBLAS_FILL_MODE_UPPER then the elements in the upper triangular part of the Her-
mitian matrix A are packed together column by column without gaps, so that the element A(3, j) is
stored in the memory location AP[i+(j*(j+1))/2] forj = 1,...,nand i < j . Consequently, the
packed format requires only % elements for storage.

4.6. cuBLAS Level-2 Function Reference 83

index.html#bit-integer-interface

cuBLAS, Release 12.1

ParaJnMem- In/outMeaning
ory

han- in- | handle to the cuBLAS library context.

dle put

uplo in- | indicates if matrix A lower or upper part is stored, the other Hermitian part is
put | not referenced and is inferred from the stored elements.

n in- | number of rows and columns of matrix A.
put

al- | host or | in- | <type> scalar used for multiplication.

pha | device put

AP | device in- | <type> array with A stored in packed format. The imaginary parts of the di-
put | agonal elements are assumed to be zero.

X device in- | <type> vector with n elements.
put

incx in- | stride between consecutive elements of x.
put

beta| host or | in- | <type> scalar used for multiplication, if beta==0 then y does not have to be

device | put | avalid input.

y device infout <type> vector with n elements.

incy in- | stride between consecutive elements of y.
put

The possible error values returned by this function and their meanings are listed below.

Error Value

Meaning

CUBLAS_STATUS_SUCCESS

the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED

the library was not initialized

CUBLAS_STATUS_INVALID_VALUE

Ifn<Oor

if incx==0o0r incy ==0or

if uplo != CUBLAS_FILL_MODE_UPPER,
CUBLAS_FILL_MODE_LOWER or

alpha == NULL or beta == NULL

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

84

Chapter 4. Using the cuBLAS API

http://www.netlib.org/blas/chpmv.f
http://www.netlib.org/blas/zhpmv.f

cuBLAS, Release 12.1

cublasStatus_t cublasCher(cublasHandle_t handle, cublasFillMode_t uplo,

int n, const float *alpha,
const cuComplex *x, int incx,
cuComplex *A, int lda)

cublasStatus_t cublasZher(cublasHandle_t handle, cublasFillMode_t uplo,

int n, const double *alpha,
const cuDoubleComplex *x, int incx,
cuDoubleComplex *A, int lda)

This function supports the

This function performs the Hermitian rank-1 update
A=oaxxf + A

where A is an x n Hermitian matrix stored in column-major format, x is a vector, and « is a scalar.

ParamMem- In/outMeaning
ory
han- in- | handle to the cuBLAS library context.
dle put
uplo in- | indicates if matrix A lower or upper part is stored, the other Hermitian part is
put | not referenced and is inferred from the stored elements.
n in- number of rows and columns of matrix A.
put
al- host or | in- | <type> scalar used for multiplication.
pha | device put
X device | in- | <type> vector with n elements.
put
incx in- | stride between consecutive elements of x.
put
A device in/out <type> array of dimensions 1da x n, with 1da>=max(1,n). The imaginary
parts of the diagonal elements are assumed and set to zero.
Ida in- | leading dimension of two-dimensional array used to store matrix A.
put

The possible error values returned by this function and their meanings are listed below.

4.6. cuBLAS Level-2 Function Reference 85

index.html#bit-integer-interface

cuBLAS, Release 12.1

Error Value Meaning
CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
Ifn<Oor

if incx ==0or

if uplo != CUBLAS_FILL_MODE_UPPER,
CUBLAS_FILL_MODE_LOWER or

if 1da < max(1, n) or

alpha == NULL

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

3

cublasStatus_t cublasCher2(cublasHandle_t handle, cublasFillMode_t uplo,

int n, const cuComplex *alpha,
const cuComplex *x, int incx,
const cuComplex *y, int incy,
cuComplex *A, int lda)

cublasStatus_t cublasZher2(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const cuDoubleComplex *alpha,
const cuDoubleComplex *x, int incx,
const cuDoubleComplex *y, int incy,
cuDoubleComplex *A, int 1lda)

This function supports the
This function performs the Hermitian rank-2 update
A= axy? +ayxf + A

where A is a n x n Hermitian matrix stored in column-major format, x and y are vectors, and «a is a
scalar.

86 Chapter 4. Using the cuBLAS API

http://www.netlib.org/blas/cher.f
http://www.netlib.org/blas/zher.f
index.html#bit-integer-interface

cuBLAS, Release 12.1

Para%Mem- In/oytMeaning
ory

han- in- | handle to the cuBLAS library context.

dle put

uplo in- | indicates if matrix A lower or upper part is stored, the other Hermitian part is
put | not referenced and is inferred from the stored elements.

n in- | number of rows and columns of matrix A.
put

al- | host or | in- | <type> scalar used for multiplication.

pha | device | put

X device in- | <type> vector with n elements.
put

incx in- | stride between consecutive elements of x.
put

y device in- | <type> vector with n elements.
put

incy in- | stride between consecutive elements of y.
put

A device | in/out<type> array of dimension 1da x n with lda>=max(1,n). The imaginary

parts of the diagonal elements are assumed and set to zero.

Ida in- | leading dimension of two-dimensional array used to store matrix A.

put

The possible error values returned by this function and their meanings are listed below.

Error Value

Meaning

CUBLAS_STATUS_SUCCESS

the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED

the library was not initialized

CUBLAS_STATUS_INVALID_VALUE

Ifn<Oor

if incx==0o0r incy ==0or

if uplo != CUBLAS_FILL_MODE_UPPER,
CUBLAS_FILL_MODE_LOWER or

if 1da < max(1, n) or

alpha == NULL

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

cher2, zher2

4.6. cuBLAS Level-2 Function Reference 87

cuBLAS, Release 12.1

cublasStatus_t cublasChpr(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const float *alpha,
const cuComplex *x, int incx,
cuComplex *AP)

cublasStatus_t cublasZhpr(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const double *alpha,
const cuDoubleComplex *x, int incx,
cuDoubleComplex *AP)

This function supports the

This function performs the packed Hermitian rank-1 update

A=axxf + A

where A is a n x n Hermitian matrix stored in packed format, x is a vector, and « is a scalar.

If uplo == CUBLAS_FILL_MODE_LOWER then the elements in the lower triangular part of the Her-

mitian matrix A are packed together column by column without gaps, so that the element A(3, j) is

stored in the memory location AP[i+((2*n-j+1)*j)/2] forj = 1,...,nand i > j. Consequently,
(n+1)

the packed format requires only ==~ elements for storage.

If uplo == CUBLAS_FILL_MODE_UPPER then the elements in the upper triangular part of the Her-
mitian matrix A are packed together column by column without gaps, so that the element A(i, j) is
stored in the memory location AP[i+(j*(j+1))/2] forj = 1,...,nand i < j. Consequently, the

packed format requires only @ elements for storage.
ParaJnMem- In/outMeaning
ory

han- in- | handle to the cuBLAS library context.

dle put

uplo in- | indicates if matrix A lower or upper part is stored, the other Hermitian part is
put | not referenced and is inferred from the stored elements.

n in- | number of rows and columns of matrix A.
put

al- | host or | in- | <type> scalar used for multiplication.

pha | device put

X device in- | <type> vector with n elements.
put

incx in- | stride between consecutive elements of x.
put

AP | device infout<type> array with A stored in packed format. The imaginary parts of the di-
agonal elements are assumed and set to zero.

The possible error values returned by this function and their meanings are listed below.

88 Chapter 4. Using the cuBLAS API

index.html#bit-integer-interface

cuBLAS, Release 12.1

Error Value Meaning
CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE
Ifn<Oor

if incx ==0or

if uplo != CUBLAS_FILL_MODE_UPPER,
CUBLAS_FILL_MODE_LOWER or

alpha == NULL

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

cublasStatus_t cublasChpr2(cublasHandle_t handle, cublasFillMode_t uplo,

int n, const cuComplex *alpha,
const cuComplex *x, int incx,
const cuComplex *y, int incy,
cuComplex *AP)

cublasStatus_t cublasZhpr2(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const cuDoubleComplex *alpha,
const cuDoubleComplex *x, int incx,
const cuDoubleComplex *y, int incy,
cuDoubleComplex *AP)

This function supports the

This function performs the packed Hermitian rank-2 update

A= axy? + ayxf + A

where A is a n x n Hermitian matrix stored in packed format, x and y are vectors, and « is a scalar.

If uplo == CUBLAS_FILL_MODE_LOWER then the elements in the lower triangular part of the Her-
mitian matrix A are packed together column by column without gaps, so that the element A(i, j) is
stored in the memory location AP[i+((2*n-j+1)*j)/2] forj = 1,...,nand i > j . Consequently,

the packed format requires only "("TH) elements for storage.

If uplo == CUBLAS_FILL_MODE_UPPER then the elements in the upper triangular part of the Her-
mitian matrix A are packed together column by column without gaps, so that the element A(i, j) is
stored in the memory location AP[i+(j*(j+1))/2] for j = 1,...,nand i < j . Consequently, the

: 1
packed format requires only ”("TJ” elements for storage.

4.6. cuBLAS Level-2 Function Reference 89

http://www.netlib.org/blas/chpr.f
http://www.netlib.org/blas/zhpr.f
index.html#bit-integer-interface

cuBLAS, Release 12.1

ParaJnMem- In/outMeaning
ory
han- in- | handle to the cuBLAS library context.
dle put
uplo in- | indicates if matrix A lower or upper part is stored, the other Hermitian part is
put | not referenced and is inferred from the stored elements.
n in- | number of rows and columns of matrix A.
put
al- | host or | in- | <type> scalar used for multiplication.
pha | device | put
X device in- | <type> vector with n elements.
put
incx in- | stride between consecutive elements of x.
put
y device in- | <type> vector with n elements.
put
incy in- | stride between consecutive elements of y.
put
AP | device infout<type> array with A stored in packed format. The imaginary parts of the di-
agonal elements are assumed and set to zero.

The possible error values returned by this function and their meanings are listed below.

Error Value

Meaning

CUBLAS_STATUS_SUCCESS

the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED

the library was not initialized

CUBLAS_STATUS_INVALID_VALUE

Ifn<Oor

if incx ==0or incy ==0or

if uplo !'= CUBLAS_FILL_MODE_UPPER,
CUBLAS_FILL_MODE_LOWER or

alpha == NULL

CUBLAS_STATUS_EXECUTION_FAILED the function failed to launch on the GPU

For references please refer to:

chprz, zhpr2

90

Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.1

cublasStatus_t

cublasStatus_t

cublasStatus_t

cublasStatus_t

cublasStatus_t

cublasStatus_t

cublasStatus_t

int m, int n,
const float
const float
const float
const float

cublasSgemvBatched(cublasHandle_t handle, cublasOperation_t trans,

*alpha,

*Aarray[], int lda,
*xarray[], int incx,
*beta,

float *yarray[], int incy,

int batchCount)

int m, int n,
const double
const double
const double
const double

cublasDgemvBatched(cublasHandle_t handle, cublasOperation_t trans,

*alpha,

*Aarray[], int lda,
*xarray[], int incx,
*beta,

double *yarray[], int incy,

int batchCount)

int m, int n,

const cuComplex
const cuComplex
const cuComplex
const cuComplex

cublasCgemvBatched(cublasHandle_t handle, cublasOperation_t trans,

*alpha,

*Aarray[], int lda,
*xarray[], int incx,
*beta,

cuComplex *yarray[], int incy,

int batchCount)

int m, int n,

const cuDoubleComplex
const cuDoubleComplex
const cuDoubleComplex
const cuDoubleComplex

cublasZgemvBatched(cublasHandle_t handle, cublasOperation_t trans,

*alpha,

*Aarray[], int lda,
*xarray[], int incx,
*beta,

cuDoubleComplex *yarray[], int incy,

int batchCount)

int m, int n,
const float
const __half

const __half
const float
__half

int batchCount)

int m, int n,
const float
const half

const __half
const float
float

int batchCount)

int m, int n,

const float

const __nv_bfloat16
const __nv_bfloat16

const float
__nv_bfloat16

cublasHSHgemvBatched(cublasHandle_t handle, cublasOperation_t trans,

*alpha,

*Aarray[], int lda,
*xarray[], int incx,
*beta,

*yarray[], int incy,

cublasHSSgemvBatched(cublasHandle_t handle, cublasOperation_t trans,

*alpha,

*Aarray[], int lda,
*xarray[], int incx,
*beta,

*yarray[], int incy,

cublasTSTgemvBatched(cublasHandle_t handle, cublasOperation_t trans,

*alpha,

*Aarray[], int lda,
*xarray[], int incx,
*beta,

*yarray[], int incy,

(continues on next page)

4.6. cuBLAS Level-2 Function Reference

cuBLAS, Release 12.1

(continued from previous page)
int batchCount)

cublasStatus_t cublasTSSgemvBatched(cublasHandle_t handle, cublasOperation_t trans,
int m, int n,

const float *alpha,
const __nv_bfloat16 *Aarray[], int 1lda,
const __nv_bfloat16 *xarray[], int incx,
const float *beta,
float *yarray[], int incy,

int batchCount)

This function supports the

This function performs the matrix-vector multiplication of a batch of matrices and vectors. The batch
is considered to be “uniform”, i.e. all instances have the same dimensions (m, n), leading dimension
(Ida), increments (incx, incy) and transposition (trans) for their respective A matrix, x and y vectors.
The address of the input matrix and vector, and the output vector of each instance of the batch are
read from arrays of pointers passed to the function by the caller.

y[i] = aop(A[i])x[i] + By[i], fori € [0, batchCount — 1]

where o and f are scalars, and A is an array of pointers to matrice A[i] stored in column-major format
with dimension m x n, and x and y are arrays of pointers to vectors. Also, for matrix A[i],

Ali] if trans == CUBLAS_OP_N
op(Ali]) = ¢ A[i]" if trans == CUBLAS_OP_T
A" if trans == CUBLAS_OP_C

Note: y[i] vectors must not overlap, i.e. the individual gemv operations must be computable indepen-
dently; otherwise, undefined behavior is expected.

On certain problem sizes, it might be advantageous to make multiple calls to cublas<t>gemv in dif-
ferent CUDA streams, rather than use this API.

92 Chapter 4. Using the cuBLAS API

index.html#bit-integer-interface

cuBLAS, Release 12.1

ParamMem+ InfoutMeaning

ory
han- in- | handle to the cuBLAS library context.
dle put
trang in- | operation op(A[1i]) that is non- or (conj.) transpose.
put
m in- | number of rows of matrix A[i].
put
n in- | number of columns of matrix A[1].
put
al- | host | in- | <type> scalar used for multiplication.
pha | or put
de-
vice
Aar-| de- |in- | array of pointers to <type> array, with each array of dim. lda x n with

ray | vice | put | lda>=max(1,m).
All pointers must meet certain alignment criteria. Please see below for details.

Ida in- | leading dimension of two-dimensional array used to store each matrix A[i].
put
xar- | de- |in- | arrayof pointersto <type> array, with each dimension nif trans==CUBLAS_OP_N

ray | vice | put | and motherwise.
All pointers must meet certain alignment criteria. Please see below for details.

incx in- | stride of each one-dimensional array x[i].
put
beta| host | in- | <type> scalar used for multiplication. If beta == 0, y does not have to be a valid
or put | input.
de-
vice
yarrayde- | infoutarray of pointers to <type> array. It has dimensions m if trans==CUBLAS_OP_N
vice and n otherwise. Vectors y[i] should not overlap; otherwise, undefined behavior
is expected.
All pointers must meet certain alignment criteria. Please see below for details.
incy in- | stride of each one-dimensional array y[il.
put
batch- in- | number of pointers contained in Aarray, xarray and yarray.
Count put

If math mode enables fast math modes when using cublasSgemvBatched(), pointers (not the
pointer arrays) placed in the GPU memory must be properly aligned to avoid misaligned memory ac-
cess errors. Ideally all pointers are aligned to at least 16 Bytes. Otherwise it is recommended that they
meet the following rule:

if K % 4==0 then ensure intptr_t(ptr) % 16 == 0,

The possible error values returned by this function and their meanings are listed below.

4.6. cuBLAS Level-2 Function Reference 93

cuBLAS, Release 12.1

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized
CUBLAS_STATUS_INVALID_VALUE the parameters m, n, batchCount<0
CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

cublasStatus_t cublasSgemvStridedBatched(cublasHandle_t handle,
cublasOperation_t trans,
int m, int n,

const float *alpha,

const float *A, int lda,
long long int strideA,
const float *x, int incx,
long long int stridex,
const float *beta,

float *y, int incy,
long long int stridey,

int batchCount)

cublasStatus_t cublasDgemvStridedBatched(cublasHandle_t handle,
cublasOperation_t trans,
int m, int n,

const double *alpha,

const double *A, int 1lda,

long long int strideA,

const double *x, int incx,

long long int stridex,

const double *beta,

double *yarray[], int incy,
long long int stridey,

int batchCount)

cublasStatus_t cublasCgemvStridedBatched(cublasHandle_t handle,
cublasOperation_t trans,
int m, int n,

const cuComplex *alpha,

const cuComplex *A, int 1lda,
long long int strideA,
const cuComplex *x, int incx,
long long int stridex,
const cuComplex *beta,
cuComplex *y, int incy,
long long int stridey,

int batchCount)
cublasStatus_t cublasZgemvStridedBatched(cublasHandle_t handle,
cublasOperation_t trans,
int m, int n,
const cuDoubleComplex #*alpha,
const cuDoubleComplex *A, int lda,
long long int strideA,
const cuDoubleComplex *x, int incx,
(continues on next page)

94 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.1

(continued from previous page)

long long int stridex,
const cuDoubleComplex *beta,
cuDoubleComplex *y, int incy,
long long int stridey,

int batchCount)
cublasStatus_t cublasHSHgemvStridedBatched(cublasHandle_t handle,
cublasOperation_t trans,

int m, int n,

const float *alpha,

const __half *A, int lda,
long long int strideA,
const __half *x, int incx,
long long int stridex,
const float *beta,

__half *y, int incy,
long long int stridey,

int batchCount)

cublasStatus_t cublasHSSgemvStridedBatched(cublasHandle_t handle,

cublasOperation_t trans,
int m, int n,

const float *alpha,

const __half *A, int lda,
long long int strideA,
const __half *x, int incx,
long long int stridex,
const float *beta,

float *y, int incy,
long long int stridey,

int batchCount)

cublasStatus_t cublasTSTgemvStridedBatched(cublasHandle_t handle,

cublasOperation_t trans,

int m, int n,

const float *alpha,

const __nv_bfloat16 *A, int lda,
long long int strideA,
const __nv_bfloat16 *x, int incx,
long long int stridex,
const float *beta,
__nv_bfloat16 *y, int incy,
long long int stridey,

int batchCount)

cublasStatus_t cublasTSSgemvStridedBatched(cublasHandle_t handle,

This function supports the

cublasOperation_t trans,

int m, int n,

const float *alpha,

const __nv_bfloat16 *A, int lda,
long long int strideA,
const __nv_bfloat16 *x, int incx,
long long int stridex,
const float *beta,

float *y, int incy,
long long int stridey,

int batchCount)

This function performs the matrix-vector multiplication of a batch of matrices and vectors. The batch
is considered to be “uniform”, i.e. all instances have the same dimensions (m, n), leading dimension

4.6. cuBLAS Level-2 Function Reference

95

index.html#bit-integer-interface

cuBLAS, Release 12.1

(Ida), increments (incx, incy) and transposition (trans) for their respective A matrix, x and y vectors.
Input matrix A and vector x, and output vector y for each instance of the batch are located at fixed
offsets in number of elements from their locations in the previous instance. Pointers to A matrix, x
and y vectors for the first instance are passed to the function by the user along with offsets in number
of elements - strideA, stridex and stridey that determine the locations of input matrices and vectors,
and output vectors in future instances.

Y + i * stridey = aop(A + i * strideA)(X + i x stridex) + S(Y + i * stridey), fori € [0, batchCount — 1]

where o and 3 are scalars, and A is an array of pointers to matrix stored in column-major format with
dimension A[i] m x n,and x and y are arrays of pointers to vectors. Also, for matrix A[i]

A[i] if trans == CUBLAS_OP_N
op(Ali]) = ¢ A[i]" if trans == CUBLAS_OP_T
A[i)" if trans == CUBLAS_OP_C

Note: y[i] matrices must not overlap, i.e. the individual gemv operations must be computable inde-
pendently; otherwise, undefined behavior is expected.

On certain problem sizes, it might be advantageous to make multiple calls to cublas<t>gemv in dif-
ferent CUDA streams, rather than use this API.

Note: In the table below, we use A[i], x[i], y[i] as notation for A matrix, and x and y vectors in
the ith instance of the batch, implicitly assuming they are respectively offsets in number of elements
strideA, stridex, stridey away from A[i-1], x[i-1], y[i-1]. The unit for the offset is
number of elements and must not be zero .

96 Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.1

ParamMem-+ In/outMeaning
ory
han- in- | handle to the cuBLAS library context.
dle put
trans in- | operation op(A[1]) that is non- or (conj.) transpose.
put
m in- | number of rows of matrix A[1].
put
n in- | number of columns of matrix A[1].
put
al- host | in- | <type> scalar used for multiplication.
pha | or put
de-
vice
A de- in- | <type>*pointer to the A matrix corresponding to the first instance of the batch,
vice | put | with dimensions 1da x n with 1da>=max(1,m).
Ida in- | leading dimension of two-dimensional array used to store each matrix A[i].
put
strideA in- | Value of type long long int that gives the offset in number of elements between
put | A[i] and A[i+1]
X de- in- | <type>* pointer to the x vector corresponding to the first instance of the batch,
vice | put | with each dimension n if trans==CUBLAS_OP_N and m otherwise.
incx in- | stride of each one-dimensional array x[i].
put
stridex in- | Value of type long long int that gives the offset in number of elements between
put | x[i] and x[i+1]
beta | host | in- | <type> scalar used for multiplication. If beta == 8, y does not have to be a
or put | valid input.
de-
vice
y de- infout <type>* pointer to the y vector corresponding to the first instance of the batch,
vice with each dimension mif trans==CUBLAS_OP_N and n otherwise. Vectors y[i]
should not overlap; otherwise, undefined behavior is expected.
incy in- | stride of each one-dimensional array y[il.
put
stridey in- | Value of type long long int that gives the offset in number of elements between
put | y[i]landy[i+1]
batch- in- | number of GEMVs to perform in the batch.
Counrc put

The possible error values returned by this function and their meanings are listed below.

4.6. cuBLAS Level-2 Function Reference 97

cuBLAS, Release 12.1

Error Value

Meaning

CUBLAS_STATUS_SUCCESS

the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED

the library was not initialized

CUBLAS_STATUS_INVALID_VALUE

the parameters m, n, batchCount<0

CUBLAS_STATUS_EXECUTION_FAILED

the function failed to launch on the GPU

In this chapter we describe the Level-3 Basic Linear Algebra Subprograms (BLAS3) functions that per-

form matrix-matrix operations.

cublasStatus_t

cublasStatus_t

cublasStatus_t

cublasSgemm(cublasHandle_t handle,
cublasOperation_t transa, cublasOperation_t transb,

int m, int n, int Kk,

const float *alpha,
const float *A, int 1lda,
const float *B, int 1db,
const float *beta,

float *C, int 1ldc)

cublasDgemm(cublasHandle_t handle,

cublasOperation_t transa, cublasOperation_t transb,

int m, int n, int Kk,

const double *alpha,
const double *A, int lda,
const double *B, int 1db,
const double *beta,
double *C, int ldc)

cublasCgemm(cublasHandle_t handle,
cublasOperation_t transa, cublasOperation_t transb,

int m, int n, int Kk,

const cuComplex *alpha,
const cuComplex *A, int 1lda,
const cuComplex *B, int 1db,
const cuComplex *beta,
cuComplex *C, int ldc)

cublasStatus_t

cublasStatus_t

cublasZgemm(cublasHandle_t handle,
cublasOperation_t transa, cublasOperation_t transb,
int m, int n, int Kk,
const cuDoubleComplex
const cuDoubleComplex
const cuDoubleComplex *B, int 1db,
const cuDoubleComplex *beta,
cuDoubleComplex *C, int 1ldc)

cublasHgemm(cublasHandle_t handle,
cublasOperation_t transa, cublasOperation_t transb,

(continues on next page)

*alpha,
*A, int lda,

98

Chapter 4. Using the cuBLAS API

cuBLAS, Release 12.1

(continued from previous page)
int m, int n, int Kk,
const __half *alpha,
const half *A, int 1lda,

const __half *B, int 1ldb,
const __half *beta,
__half *C, int 1ldc)

This function supports the

This function performs the matrix-matrix multiplication

C = aop(A)op(B) + 8C

where aand § are scalars,and A, B and C are matrices stored in column-major format with dimensions
op(4) m x k,op(B) k x nand C m x n, respectively. Also, for matrix A

A if transa == CUBLAS_OP_N
op(A) = ¢ AT if transa == CUBLAS_OP_T
AH if transa == CUBLAS_OP_C

and op(B) is defined similarly for matrix B .

4.7. cuBLAS Level-3 Function Reference 99

index.html#bit-integer-interface

cuBLAS, Release 12.1

ParamMem- In/outMeaning
ory