
PTX ISA
Release 8.1

NVIDIA

Apr 14, 2023

Contents

1 Introduction 5
1.1 Scalable Data-Parallel Computing using GPUs . 5
1.2 Goals of PTX . 6
1.3 PTX ISA Version 8.1 . 6
1.4 Document Structure . 7

2 Programming Model 9
2.1 A Highly Multithreaded Coprocessor . 9
2.2 Thread Hierarchy . 9
2.2.1 Cooperative Thread Arrays . 9
2.2.2 Cluster of Cooperative Thread Arrays . 10
2.2.3 Grid of Clusters . 10

2.3 Memory Hierarchy . 12

3 PTX Machine Model 15
3.1 A Set of SIMT Multiprocessors . 15
3.2 Independent Thread Scheduling . 17
3.3 On-chip Shared Memory . 17

4 Syntax 19
4.1 Source Format . 19
4.2 Comments . 19
4.3 Statements . 20
4.3.1 Directive Statements . 20
4.3.2 Instruction Statements . 20

4.4 Identifiers . 22
4.5 Constants . 22
4.5.1 Integer Constants . 22
4.5.2 Floating-Point Constants . 23
4.5.3 Predicate Constants . 23
4.5.4 Constant Expressions . 24
4.5.5 Integer Constant Expression Evaluation . 25
4.5.6 Summary of Constant Expression Evaluation Rules . 26

5 State Spaces, Types, and Variables 27
5.1 State Spaces . 27
5.1.1 Register State Space . 28
5.1.2 Special Register State Space . 29
5.1.3 Constant State Space . 29
5.1.3.1 Banked Constant State Space (deprecated) . 29

5.1.4 Global State Space . 30
5.1.5 Local State Space . 30
5.1.6 Parameter State Space . 30
5.1.6.1 Kernel Function Parameters . 31

i

5.1.6.2 Kernel Function Parameter Attributes . 32
5.1.6.3 Kernel Parameter Attribute: .ptr . 32
5.1.6.4 Device Function Parameters . 32

5.1.7 Shared State Space . 34
5.1.8 Texture State Space (deprecated) . 34

5.2 Types . 35
5.2.1 Fundamental Types . 35
5.2.2 Restricted Use of Sub-Word Sizes . 35
5.2.3 Alternate Floating-Point Data Formats . 36
5.2.4 Packed Data Types . 36
5.2.4.1 Packed Floating Point Data Types . 36
5.2.4.2 Packed Integer Data Types . 37

5.3 Texture Sampler and Surface Types . 37
5.3.1 Texture and Surface Properties . 38
5.3.2 Sampler Properties . 38
5.3.3 Channel Data Type and Channel Order Fields . 40

5.4 Variables . 41
5.4.1 Variable Declarations . 41
5.4.2 Vectors . 42
5.4.3 Array Declarations . 42
5.4.4 Initializers . 42
5.4.5 Alignment . 44
5.4.6 Parameterized Variable Names . 45
5.4.7 Variable Attributes . 45
5.4.8 Variable and Function Attribute Directive: .attribute . 45

5.5 Tensors . 46
5.5.1 Tensor Dimension, size and format . 46
5.5.2 Tensor Access Modes . 47
5.5.3 Tiled Mode . 47
5.5.3.1 Bounding Box . 47
5.5.3.2 Traversal-Stride . 47
5.5.3.3 Out of Boundary Access . 49

5.5.4 Im2col mode . 50
5.5.4.1 Bounding Box . 50
5.5.4.2 Traversal Stride . 56
5.5.4.3 Out of Boundary Access . 57

5.5.5 Interleave layout . 57
5.5.6 Swizzling Modes . 57
5.5.7 Tensor-map . 64

6 Instruction Operands 67
6.1 Operand Type Information . 67
6.2 Source Operands . 67
6.3 Destination Operands . 67
6.4 Using Addresses, Arrays, and Vectors . 68
6.4.1 Addresses as Operands . 68
6.4.1.1 Generic Addressing . 69

6.4.2 Arrays as Operands . 69
6.4.3 Vectors as Operands . 69
6.4.4 Labels and Function Names as Operands . 70

6.5 Type Conversion . 70
6.5.1 Scalar Conversions . 70
6.5.2 Rounding Modifiers . 71

6.6 Operand Costs . 72

ii

7 Abstracting the ABI 73
7.1 Function Declarations and Definitions . 73
7.1.1 Changes from PTX ISA Version 1.x . 76

7.2 Variadic Functions . 76
7.3 Alloca . 76

8 Memory Consistency Model 77
8.1 Scope and applicability of the model . 77
8.1.1 Limitations on atomicity at system scope . 77

8.2 Memory operations . 77
8.2.1 Overlap . 78
8.2.2 Aliases . 78
8.2.3 Multimem Addresses . 78
8.2.4 Memory Operations on Vector Data Types . 78
8.2.5 Memory Operations on Packed Data Types . 78
8.2.6 Initialization . 79

8.3 State spaces . 79
8.4 Operation types . 79
8.5 Scope . 80
8.6 Proxies . 80
8.7 Morally strong operations . 80
8.7.1 Conflict and Data-races . 81
8.7.2 Limitations on Mixed-size Data-races . 81

8.8 Release and Acquire Patterns . 81
8.9 Ordering of memory operations . 82
8.9.1 Program Order . 82
8.9.1.1 Asynchronous Operations . 82

8.9.2 Observation Order . 83
8.9.3 Fence-SC Order . 83
8.9.4 Memory synchronization . 83
8.9.5 Causality Order . 84
8.9.6 Coherence Order . 85
8.9.7 Communication Order . 85

8.10 Axioms . 85
8.10.1 Coherence . 85
8.10.2 Fence-SC . 85
8.10.3 Atomicity . 86
8.10.4 No Thin Air . 87
8.10.5 Sequential Consistency Per Location . 87
8.10.6 Causality . 88

9 Instruction Set 91
9.1 Format and Semantics of Instruction Descriptions . 91
9.2 PTX Instructions . 91
9.3 Predicated Execution . 92
9.3.1 Comparisons . 92
9.3.1.1 Integer and Bit-Size Comparisons . 92
9.3.1.2 Floating Point Comparisons . 93

9.3.2 Manipulating Predicates . 94
9.4 Type Information for Instructions and Operands . 94
9.4.1 Operand Size Exceeding Instruction-Type Size . 95

9.5 Divergence of Threads in Control Constructs . 98
9.6 Semantics . 98
9.6.1 Machine-Specific Semantics of 16-bit Code . 98

iii

9.7 Instructions . 99
9.7.1 Integer Arithmetic Instructions . 99
9.7.1.1 Integer Arithmetic Instructions: add . 100
9.7.1.2 Integer Arithmetic Instructions: sub . 101
9.7.1.3 Integer Arithmetic Instructions: mul . 101
9.7.1.4 Integer Arithmetic Instructions: mad . 102
9.7.1.5 Integer Arithmetic Instructions: mul24 . 103
9.7.1.6 Integer Arithmetic Instructions: mad24 . 104
9.7.1.7 Integer Arithmetic Instructions: sad . 105
9.7.1.8 Integer Arithmetic Instructions: div . 105
9.7.1.9 Integer Arithmetic Instructions: rem . 106
9.7.1.10 Integer Arithmetic Instructions: abs . 107
9.7.1.11 Integer Arithmetic Instructions: neg . 107
9.7.1.12 Integer Arithmetic Instructions: min . 108
9.7.1.13 Integer Arithmetic Instructions: max . 109
9.7.1.14 Integer Arithmetic Instructions: popc . 110
9.7.1.15 Integer Arithmetic Instructions: clz . 110
9.7.1.16 Integer Arithmetic Instructions: bfind . 111
9.7.1.17 Integer Arithmetic Instructions: fns . 112
9.7.1.18 Integer Arithmetic Instructions: brev . 113
9.7.1.19 Integer Arithmetic Instructions: bfe . 114
9.7.1.20 Integer Arithmetic Instructions: bfi . 115
9.7.1.21 Integer Arithmetic Instructions: szext . 116
9.7.1.22 Integer Arithmetic Instructions: bmsk . 117
9.7.1.23 Integer Arithmetic Instructions: dp4a . 118
9.7.1.24 Integer Arithmetic Instructions: dp2a . 119

9.7.2 Extended-Precision Integer Arithmetic Instructions . 120
9.7.2.1 Extended-Precision Arithmetic Instructions: add.cc 120
9.7.2.2 Extended-Precision Arithmetic Instructions: addc 121
9.7.2.3 Extended-Precision Arithmetic Instructions: sub.cc 122
9.7.2.4 Extended-Precision Arithmetic Instructions: subc 122
9.7.2.5 Extended-Precision Arithmetic Instructions: mad.cc 123
9.7.2.6 Extended-Precision Arithmetic Instructions: madc 124

9.7.3 Floating-Point Instructions . 125
9.7.3.1 Floating Point Instructions: testp . 128
9.7.3.2 Floating Point Instructions: copysign . 128
9.7.3.3 Floating Point Instructions: add . 129
9.7.3.4 Floating Point Instructions: sub . 130
9.7.3.5 Floating Point Instructions: mul . 131
9.7.3.6 Floating Point Instructions: fma . 132
9.7.3.7 Floating Point Instructions: mad . 134
9.7.3.8 Floating Point Instructions: div . 135
9.7.3.9 Floating Point Instructions: abs . 137
9.7.3.10 Floating Point Instructions: neg . 137
9.7.3.11 Floating Point Instructions: min . 138
9.7.3.12 Floating Point Instructions: max . 140
9.7.3.13 Floating Point Instructions: rcp . 141
9.7.3.14 Floating Point Instructions: rcp.approx.ftz.f64 . 143
9.7.3.15 Floating Point Instructions: sqrt . 144
9.7.3.16 Floating Point Instructions: rsqrt . 145
9.7.3.17 Floating Point Instructions: rsqrt.approx.ftz.f64 . 147
9.7.3.18 Floating Point Instructions: sin . 148
9.7.3.19 Floating Point Instructions: cos . 149
9.7.3.20 Floating Point Instructions: lg2 . 150

iv

9.7.3.21 Floating Point Instructions: ex2 . 151
9.7.3.22 Floating Point Instructions: tanh . 152

9.7.4 Half Precision Floating-Point Instructions . 153
9.7.4.1 Half Precision Floating Point Instructions: add . 153
9.7.4.2 Half Precision Floating Point Instructions: sub . 155
9.7.4.3 Half Precision Floating Point Instructions: mul . 157
9.7.4.4 Half Precision Floating Point Instructions: fma . 158
9.7.4.5 Half Precision Floating Point Instructions: neg . 160
9.7.4.6 Half Precision Floating Point Instructions: abs . 161
9.7.4.7 Half Precision Floating Point Instructions: min . 162
9.7.4.8 Half Precision Floating Point Instructions: max . 164
9.7.4.9 Half Precision Floating Point Instructions: tanh . 166
9.7.4.10 Half Precision Floating Point Instructions: ex2 . 167

9.7.5 Comparison and Selection Instructions . 169
9.7.5.1 Comparison and Selection Instructions: set . 169
9.7.5.2 Comparison and Selection Instructions: setp . 170
9.7.5.3 Comparison and Selection Instructions: selp . 172
9.7.5.4 Comparison and Selection Instructions: slct . 172

9.7.6 Half Precision Comparison Instructions . 173
9.7.6.1 Half Precision Comparison Instructions: set . 173
9.7.6.2 Half Precision Comparison Instructions: setp . 176

9.7.7 Logic and Shift Instructions . 177
9.7.7.1 Logic and Shift Instructions: and . 178
9.7.7.2 Logic and Shift Instructions: or . 178
9.7.7.3 Logic and Shift Instructions: xor . 179
9.7.7.4 Logic and Shift Instructions: not . 180
9.7.7.5 Logic and Shift Instructions: cnot . 180
9.7.7.6 Logic and Shift Instructions: lop3 . 181
9.7.7.7 Logic and Shift Instructions: shf . 182
9.7.7.8 Logic and Shift Instructions: shl . 184
9.7.7.9 Logic and Shift Instructions: shr . 184

9.7.8 Data Movement and Conversion Instructions . 185
9.7.8.1 Cache Operators . 186
9.7.8.2 Cache Eviction Priority Hints . 188
9.7.8.3 Data Movement and Conversion Instructions: mov 189
9.7.8.4 Data Movement and Conversion Instructions: mov 190
9.7.8.5 Data Movement and Conversion Instructions: shfl (deprecated) 191
9.7.8.6 Data Movement and Conversion Instructions: shfl.sync 194
9.7.8.7 Data Movement and Conversion Instructions: prmt 195
9.7.8.8 Data Movement and Conversion Instructions: ld . 197
9.7.8.9 Data Movement and Conversion Instructions: ld.global.nc 200
9.7.8.10 Data Movement and Conversion Instructions: ldu 202
9.7.8.11 Data Movement and Conversion Instructions: st . 203
9.7.8.12 Data Movement and Conversion Instructions: st.async 205
9.7.8.13 Data Movement and Conversion Instructions: multimem.ld_reduce, multi-

mem.st, multimem.red . 206
9.7.8.14 Data Movement and Conversion Instructions: prefetch, prefetchu 208
9.7.8.15 Data Movement and Conversion Instructions: applypriority 210
9.7.8.16 Data Movement and Conversion Instructions: discard 210
9.7.8.17 Data Movement and Conversion Instructions: createpolicy 211
9.7.8.18 Data Movement and Conversion Instructions: isspacep 213
9.7.8.19 Data Movement and Conversion Instructions: cvta 214
9.7.8.20 Data Movement and Conversion Instructions: cvt 215
9.7.8.21 Data Movement and Conversion Instructions: cvt.pack 219

v

9.7.8.22 Data Movement and Conversion Instructions: mapa 220
9.7.8.23 Data Movement and Conversion Instructions: getctarank 221
9.7.8.24 Data Movement and Conversion Instructions: Asynchronous copy 222

9.7.9 Texture Instructions . 240
9.7.9.1 Texturing Modes . 240
9.7.9.2 Mipmaps . 241
9.7.9.3 Texture Instructions: tex . 242
9.7.9.4 Texture Instructions: tld4 . 248
9.7.9.5 Texture Instructions: txq . 250
9.7.9.6 Texture Instructions: istypep . 252

9.7.10 Surface Instructions . 253
9.7.10.1 Surface Instructions: suld . 253
9.7.10.2 Surface Instructions: sust . 255
9.7.10.3 Surface Instructions: sured . 256
9.7.10.4 Surface Instructions: suq . 258

9.7.11 Control Flow Instructions . 259
9.7.11.1 Control Flow Instructions: {} . 259
9.7.11.2 Control Flow Instructions: @ . 260
9.7.11.3 Control Flow Instructions: bra . 260
9.7.11.4 Control Flow Instructions: brx.idx . 261
9.7.11.5 Control Flow Instructions: call . 262
9.7.11.6 Control Flow Instructions: ret . 264
9.7.11.7 Control Flow Instructions: exit . 264

9.7.12 Parallel Synchronization and Communication Instructions 265
9.7.12.1 Parallel Synchronization and Communication Instructions: bar, barrier 266
9.7.12.2 Parallel Synchronization and Communication Instructions: bar.warp.sync 269
9.7.12.3 Parallel Synchronization and Communication Instructions: barrier.cluster 269
9.7.12.4 Parallel Synchronization and Communication Instructions: membar/fence 271
9.7.12.5 Parallel Synchronization and Communication Instructions: atom 273
9.7.12.6 Parallel Synchronization and Communication Instructions: red 277
9.7.12.7 Parallel Synchronization and Communication Instructions: red.async 280
9.7.12.8 Parallel Synchronization and Communication Instructions: vote (deprecated) . . 282
9.7.12.9 Parallel Synchronization and Communication Instructions: vote.sync 283
9.7.12.10 Parallel Synchronization and Communication Instructions: match.sync 284
9.7.12.11 Parallel Synchronization and Communication Instructions: activemask 285
9.7.12.12 Parallel Synchronization and Communication Instructions: redux.sync 285
9.7.12.13 Parallel Synchronization and Communication Instructions: griddepcontrol 286
9.7.12.14 Parallel Synchronization and Communication Instructions: elect.sync 287
9.7.12.15 Parallel Synchronization and Communication Instructions: mbarrier 288

9.7.13 Warp Level Matrix Multiply-Accumulate Instructions . 305
9.7.13.1 Matrix Shape . 305
9.7.13.2 Matrix Data-types . 307
9.7.13.3 Matrix multiply-accumulate operation using wmma instructions 307
9.7.13.4 Matrix multiply-accumulate operation using mma instruction 321
9.7.13.5 Matrix multiply-accumulate operation using mma.sp instruction with sparse

matrix A . 392
9.7.14 Asynchronous Warpgroup Level Matrix Multiply-Accumulate Instructions 422
9.7.14.1 Warpgroup . 423
9.7.14.2 Matrix Shape . 423
9.7.14.3 Matrix Data-types . 424
9.7.14.4 Register Fragments and Shared Memory Matrix Layouts 424
9.7.14.5 Async Proxy . 445
9.7.14.6 Asynchronous Multiply-and-Accumulate Instruction: wgmma.mma_async . . . 445
9.7.14.7 Asynchronous Multiply-and-Accumulate Instruction: wgmma.fence 450

vi

9.7.14.8 Asynchronous Multiply-and-Accumulate Instruction: wgmma.commit_group . . 451
9.7.14.9 Asynchronous Multiply-and-Accumulate Instruction: wgmma.wait_group 452

9.7.15 Stack Manipulation Instructions . 453
9.7.15.1 Stack Manipulation Instructions: stacksave . 453
9.7.15.2 Stack Manipulation Instructions: stackrestore . 454
9.7.15.3 Stack Manipulation Instructions: alloca . 454

9.7.16 Video Instructions . 456
9.7.16.1 Scalar Video Instructions . 456
9.7.16.2 SIMD Video Instructions . 463

9.7.17 Miscellaneous Instructions . 470
9.7.17.1 Miscellaneous Instructions: brkpt . 470
9.7.17.2 Miscellaneous Instructions: nanosleep . 471
9.7.17.3 Miscellaneous Instructions: pmevent . 471
9.7.17.4 Miscellaneous Instructions: trap . 472
9.7.17.5 Miscellaneous Instructions: setmaxnreg . 472

10 Special Registers 475
10.1 Special Registers: %tid . 476
10.2 Special Registers: %ntid . 477
10.3 Special Registers: %laneid . 478
10.4 Special Registers: %warpid . 478
10.5 Special Registers: %nwarpid . 479
10.6 Special Registers: %ctaid . 479
10.7 Special Registers: %nctaid . 480
10.8 Special Registers: %smid . 481
10.9 Special Registers: %nsmid . 481
10.10 Special Registers: %gridid . 482
10.11 Special Registers: %is_explicit_cluster . 482
10.12 Special Registers: %clusterid . 483
10.13 Special Registers: %nclusterid . 484
10.14 Special Registers: %cluster_ctaid . 484
10.15 Special Registers: %cluster_nctaid . 485
10.16 Special Registers: %cluster_ctarank . 486
10.17 Special Registers: %cluster_nctarank . 486
10.18 Special Registers: %lanemask_eq . 487
10.19 Special Registers: %lanemask_le . 487
10.20 Special Registers: %lanemask_lt . 488
10.21 Special Registers: %lanemask_ge . 488
10.22 Special Registers: %lanemask_gt . 489
10.23 Special Registers: %clock, %clock_hi . 489
10.24 Special Registers: %clock64 . 490
10.25 Special Registers: %pm0..%pm7 . 490
10.26 Special Registers: %pm0_64..%pm7_64 . 491
10.27 Special Registers: %envreg<32> . 492
10.28 Special Registers: %globaltimer, %globaltimer_lo, %globaltimer_hi 492
10.29 Special Registers: %reserved_smem_offset_begin, %reserved_smem_offset_end, %re-

served_smem_offset_cap, %reserved_smem_offset_<2> 493
10.30 Special Registers: %total_smem_size . 494
10.31 Special Registers: %aggr_smem_size . 494
10.32 Special Registers: %dynamic_smem_size . 495
10.33 Special Registers: %current_graph_exec . 495

11 Directives 497
11.1 PTX Module Directives . 497

vii

11.1.1 PTX Module Directives: .version . 497
11.1.2 PTX Module Directives: .target . 498
11.1.3 PTX Module Directives: .address_size . 501

11.2 Specifying Kernel Entry Points and Functions . 502
11.2.1 Kernel and Function Directives: .entry . 502
11.2.2 Kernel and Function Directives: .func . 504
11.2.3 Kernel and Function Directives: .alias . 506

11.3 Control Flow Directives . 507
11.3.1 Control Flow Directives: .branchtargets . 507
11.3.2 Control Flow Directives: .calltargets . 508
11.3.3 Control Flow Directives: .callprototype . 509

11.4 Performance-Tuning Directives . 510
11.4.1 Performance-Tuning Directives: .maxnreg . 510
11.4.2 Performance-Tuning Directives: .maxntid . 511
11.4.3 Performance-Tuning Directives: .reqntid . 512
11.4.4 Performance-Tuning Directives: .minnctapersm . 512
11.4.5 Performance-Tuning Directives: .maxnctapersm (deprecated) 513
11.4.6 Performance-Tuning Directives: .noreturn . 514
11.4.7 Performance-Tuning Directives: .pragma . 514

11.5 Debugging Directives . 515
11.5.1 Debugging Directives: @@dwarf . 515
11.5.2 Debugging Directives: .section . 516
11.5.3 Debugging Directives: .file . 517
11.5.4 Debugging Directives: .loc . 518

11.6 Linking Directives . 520
11.6.1 Linking Directives: .extern . 520
11.6.2 Linking Directives: .visible . 520
11.6.3 Linking Directives: .weak . 521
11.6.4 Linking Directives: .common . 521

11.7 Cluster Dimension Directives . 522
11.7.1 Cluster Dimension Directives: .reqnctapercluster . 522
11.7.2 Cluster Dimension Directives: .explicitcluster . 523
11.7.3 Cluster Dimension Directives: .maxclusterrank . 523

12 Release Notes 525
12.1 Changes in PTX ISA Version 8.1 . 527
12.2 Changes in PTX ISA Version 8.0 . 528
12.3 Changes in PTX ISA Version 7.8 . 528
12.4 Changes in PTX ISA Version 7.7 . 529
12.5 Changes in PTX ISA Version 7.6 . 530
12.6 Changes in PTX ISA Version 7.5 . 530
12.7 Changes in PTX ISA Version 7.4 . 530
12.8 Changes in PTX ISA Version 7.3 . 531
12.9 Changes in PTX ISA Version 7.2 . 531
12.10 Changes in PTX ISA Version 7.1 . 531
12.11 Changes in PTX ISA Version 7.0 . 532
12.12 Changes in PTX ISA Version 6.5 . 533
12.13 Changes in PTX ISA Version 6.4 . 533
12.14 Changes in PTX ISA Version 6.3 . 534
12.15 Changes in PTX ISA Version 6.2 . 534
12.16 Changes in PTX ISA Version 6.1 . 535
12.17 Changes in PTX ISA Version 6.0 . 535
12.18 Changes in PTX ISA Version 5.0 . 536
12.19 Changes in PTX ISA Version 4.3 . 536

viii

12.20 Changes in PTX ISA Version 4.2 . 537
12.21 Changes in PTX ISA Version 4.1 . 537
12.22 Changes in PTX ISA Version 4.0 . 538
12.23 Changes in PTX ISA Version 3.2 . 538
12.24 Changes in PTX ISA Version 3.1 . 538
12.25 Changes in PTX ISA Version 3.0 . 539
12.26 Changes in PTX ISA Version 2.3 . 540
12.27 Changes in PTX ISA Version 2.2 . 540
12.28 Changes in PTX ISA Version 2.1 . 541
12.29 Changes in PTX ISA Version 2.0 . 541

13 Descriptions of .pragma Strings 545
13.1 Pragma Strings: “nounroll” . 545

14 Notices 547
14.1 Notice . 547
14.2 OpenCL . 548
14.3 Trademarks . 548

ix

x

List of Tables

1 PTX Directives . 20
2 Reserved Instruction Keywords . 21
3 Predefined Identifiers . 22
4 Operator Precedence . 24
5 Constant Expression Evaluation Rules . 26

6 State Spaces . 27
7 Properties of State Spaces . 28
8 Fundamental Type Specifiers . 35
9 Opaque Type Fields in Unified Texture Mode . 38
10 Opaque Type Fields in Independent Texture Mode . 39
11 OpenCL 1.0 Channel Data Type Definition . 40
12 OpenCL 1.0 Channel Order Definition . 41

13 Convert Instruction Precision and Format . 71
14 Floating-Point Rounding Modifiers . 71
15 Integer Rounding Modifiers . 72
16 Cost Estimates for Accessing State-Spaces . 72

17 Operation Types . 79
18 Scopes . 80

19 Operators for Signed Integer, Unsigned Integer, and Bit-Size Types 93
20 Floating-Point Comparison Operators . 93
21 Floating-Point Comparison Operators Accepting NaN . 93
22 Floating-Point Comparison Operators Testing for NaN . 94
23 Type Checking Rules . 95
24 Relaxed Type-checking Rules for Source Operands . 96
25 Relaxed Type-checking Rules for Destination Operands . 97
26 Summary of Floating-Point Instructions . 127
27 Cache Operators for Memory Load Instructions . 187
28 Cache Operators for Memory Store Instructions . 188
29 Cache Eviction Priority Hints for Memory Load and Store Instructions 188
30 Texture, sampler and surface limits . 241

31 PTX Release History . 525

1

List of Figures

1 Grid with CTAs . 11
2 Grid with clusters . 11
3 Memory Hierarchy . 13

4 Hardware Model . 16

5 Tiled mode bounding box, tensor size and traversal stride . 48
6 Out of boundary access . 49
7 im2col mode bounding box example 1 . 51
8 im2col mode bounding box example 2 . 52
9 im2col mode example 1 . 54
10 im2col mode example 2 . 55
11 im2col mode traversal stride example . 56
12 32-byte swizzle mode example . 58
13 32-byte swizzle mode fragments . 59
14 32-byte swizzle mode destination data layout . 60
15 64-byte swizzle mode example . 61
16 64-byte swizzle mode source data layout . 62
17 64-byte swizzle mode destination data layout . 63
18 128-byte swizzle mode example . 64
19 128-byte swizzle mode source data layout . 65
20 128-byte swizzle mode destination data layout . 66

21 MMA .m8n8k4 fragment layout for row-major matrix A with .f16 type 322
22 MMA .m8n8k4 fragment layout for column-major matrix A with .f16 type 322
23 MMA .m8n8k4 fragment layout for row-major matrix B with .f16 type 323
24 MMA .m8n8k4 fragment layout for column-major matrix B with .f16 type 324
25 MMA .m8n8k4 fragment layout for matrix C/D with .ctype = .f16 325
26 MMA .m8n8k4 computation 1 and 2 fragment layout for matrix C/D with .ctype = .f32 325
27 MMA .m8n8k4 computation 3 and 4 fragment layout for matrix C/D with .ctype = .f32 326
28 MMA .m8n8k4 fragment layout for matrix A with .f64 type 326
29 MMA .m8n8k4 fragment layout for matrix B with .f64 type 327
30 MMA .m8n8k4 fragment layout for accumulator matrix C/D with .f64 type 328
31 MMA .m8n8k16 fragment layout for matrix A with .u8/.s8 type 329
32 MMA .m8n8k16 fragment layout for matrix B with .u8/.s8 type 330
33 MMA .m8n8k16 fragment layout for accumulator matrix C/D with .s32 type 331
34 MMA .m8n8k32 fragment layout for matrix A with .u4/.s4 type 332
35 MMA .m8n8k32 fragment layout for matrix B with .u4/.s4 type 333
36 MMA .m8n8k32 fragment layout for accumulator matrix C/D with .s32 type 334
37 MMA .m8n8k128 fragment layout for matrix A with .b1 type. 335
38 MMA .m8n8k128 fragment layout for matrix B with .b1 type. 336
39 MMA .m8n8k128 fragment layout for accumulator matrix C/D with .s32 type 337
40 MMA .m16n8k4 fragment layout for matrix A with .tf32 type. 338
41 MMA .m16n8k4 fragment layout for matrix A with .f64 type. 340

2

42 MMA .m16n8k4 fragment layout for matrix B with .tf32 type. 341
43 MMA .m16n8k4 fragment layout for matrix B with .f64 type. 341
44 MMA .m16n8k4 fragment layout for accumulator matrix C/D with .f32 type. 342
45 MMA .m16n8k4 fragment layout for accumulator matrix C/D with .f64 type. 343
46 MMA .m16n8k8 fragment layout for matrix A with .f16 / .bf16 type. 345
47 MMA .m16n8k8 fragment layout for matrix A with .tf32 type. 346
48 MMA .m16n8k8 fragment layout for matrix A with .f64 type. 347
49 MMA .m16n8k8 fragment layout for matrix B with .f16 / .bf16 type. 348
50 MMA .m16n8k8 fragment layout for matrix B with .tf32 type. 349
51 MMA .m16n8k8 fragment layout for matrix B with .f64 type. 350
52 MMA .m16n8k8 fragment layout for accumulator matrix C/D with .f16x2/.f32 type. . . 351
53 MMA .m16n8k8 fragment layout for accumulator matrix C/D with .f64 type. 352
54 MMA .m16n8k16 fragment layout for matrix A with .f16 / .bf16 type. 353
55 MMA .m16n8k16 fragment layout for matrix A with .f64 type. 354
56 MMA .m16n8k16 fragment layout for matrix B with .f16 / .bf16 type. 355
57 MMA .m16n8k16 fragment layout for matrix B with .f64 type. 356
58 MMA .m16n8k16 fragment layout for accumulator matrix matrix C/D. 357
59 MMA .m16n8k16 fragment layout for matrix A with .u8 / .s8 type. 358
60 MMA .m16n8k16 fragment layout for matrix B with .u8 / .s8 type. 360
61 MMA .m16n8k16 fragment layout for accumulator matrix C/D with .s32 type. 361
62 MMA .m16n8k32 fragment layout for matrix A with .u4 / .s4 type. 362
63 MMA .m16n8k32 fragment layout for matrix A with .u8 / .s8 type. 362
64 MMA .m16n8k32 fragment layout for matrix B with .u4 / .s4 type. 364
65 MMA .m16n8k32 fragment layout for rows 0–15 of matrix B with .u8 / .s8 type. 365
66 MMA .m16n8k32 fragment layout for rows 16–31 of matrix B with .u8 / .s8 type. 366
67 MMA .m16n8k32 fragment layout for accumulator matrix C/D with .s32 type. 367
68 MMA .m16n8k64 fragment layout for matrix A with .u4 / .s4 type. 368
69 MMA .m16n8k64 fragment layout for rows 0–31 of matrix B with .u4 / .s4 type. 370
70 MMA .m16n8k64 fragment layout for rows 32–63 of matrix B with .u4 / .s4 type. 371
71 MMA .m16n8k64 fragment layout for accumulator matrix C/D with .s32 type. 372
72 MMA .m16n8k128 fragment layout for matrix A with .b1 type. 372
73 MMA .m16n8k128 fragment layout for matrix B with .b1 type. 374
74 MMA .m16n8k128 fragment layout for accumulator matrix C/D with .s32 type. 375
75 MMA .m16n8k256 fragment layout for matrix A with .b1 type. 376
76 MMA .m16n8k256 fragment layout for rows 0–127 of matrix B with .b1 type. 377
77 MMA .m16n8k256 fragment layout for rows 128–255 of matrix B with .b1 type. 378
78 MMA .m16n8k256 fragment layout for accumulator matrix C/D with .s32 type. 379
79 ldmatrix fragment layout . 388
80 stmatrix fragment layout . 390
81 movmatrix source matrix fragment layout . 391
82 movmatrix result matrix fragment layout . 392
83 Sparse MMA storage example . 393
84 Sparse MMA metadata example for .f16/.bf16 type. 394
85 Sparse MMA metadata example for .tf32 type. 394
86 Sparse MMA metadata example for .u8/.s8 type. 395
87 Sparse MMA metadata example for .u4/.s4 type. 396
88 Sparse MMA .m16n8k16 fragment layout for matrix A with .f16/.bf16 type. 397
89 Sparse MMA .m16n8k16 metadata layout for .f16/.bf16 type. 398
90 Sparse MMA .m16n8k32 fragment layout for matrix A with .f16/.bf16 type. 399
91 Sparse MMA .m16n8k32 fragment layout for matrix B with .f16/.bf16 type. 400
92 Sparse MMA .m16n8k32 metadata layout for .f16/.bf16 type. 401
93 Sparse MMA .m16n8k16 fragment layout for matrix A with .tf32 type. 402
94 Sparse MMA .m16n8k16 fragment layout for matrix B with .tf32 type. 403
95 Sparse MMA .m16n8k16 metadata layout for .tf32 type. 404

3

PTX ISA, Release 8.1

96 Sparse MMA .m16n8k8 fragment layout for matrix A with .tf32 type. 405
97 Sparse MMA .m16n8k8 metadata layout for .tf32 type. 405
98 Sparse MMA .m16n8k32 fragment layout for matrix A with .u8/.s8 type. 406
99 Sparse MMA .m16n8k32 metadata layout for .u8/.s8 type. 407
100 Sparse MMA .m16n8k64 fragment layout for columns 0–31 of matrix A with .u8/.s8 type.408
101 Sparse MMA .m16n8k64 fragment layout for columns 32–63 of matrix A with .u8/.s8

type. 409
102 Sparse MMA .m16n8k64 fragment layout for rows 0–15 of matrix B with .u8/.s8 type. . 409
103 Sparse MMA .m16n8k64 fragment layout for rows 16–31 of matrix B with .u8/.s8 type. 410
104 Sparse MMA .m16n8k64 fragment layout for rows 32–47 of matrix B with .u8/.s8 type. 410
105 Sparse MMA .m16n8k64 fragment layout for rows 48–63 of matrix B with .u8/.s8 type. 411
106 Sparse MMA .m16n8k64 metadata layout for columns 0–31 for .u8/.s8 type. 412
107 Sparse MMA .m16n8k64 metadata layout for columns 32–63 for .u8/.s8 type. 412
108 Sparse MMA .m16n8k64 fragment layout for matrix A with .u4/.s4 type. 413
109 Sparse MMA .m16n8k64 metadata layout for .u4/.s4 type. 414
110 Sparse MMA .m16n8k128 fragment layout for columns 0–63 of matrix A with .u4/.s4

type. 415
111 SparseMMA .m16n8k128 fragment layout for columns 64–127 ofmatrix Awith .u4/.s4

type. 415
112 Sparse MMA .m16n8k128 fragment layout for rows 0–31 of matrix B with .u4/.s4 type. 416
113 Sparse MMA .m16n8k128 fragment layout for rows 31–63 of matrix B with .u4/.s4 type.417
114 Sparse MMA .m16n8k128 fragment layout for rows 64–95 of matrix B with .u4/.s4 type.417
115 SparseMMA .m16n8k128 fragment layout for rows 96–127 of matrix B with .u4/.s4 type.418
116 Sparse MMA .m16n8k128 metadata layout for columns 0–63 for .u4/.s4 type. 418
117 Sparse MMA .m16n8k128 metadata layout for columns 64–127 for .u4/.s4 type. 419
118 WGMMA .m64nNk16 register fragment layout for matrix A. 425
119 WGMMA .m64nNk16 register fragment layout for accumulator matrix D. 426
120 WGMMA .m64nNk8 register fragment layout for matrix A. 427
121 WGMMA .m64nNk8 register fragment layout for accumulator matrix D. 428
122 WGMMA .m64nNk32 register fragment layout for matrix A. 429
123 WGMMA .m64nNk32 register fragment layout for accumulator matrix D. 430
124 WGMMA .m64nNk256 register fragment layout for matrix A. 431
125 WGMMA .m64nNk256 register fragment layout for accumulator matrix D. 432
126 WGMMA .m64nNk16 core matrices for A and B . 433
127 WGMMA .m64nNk16 core matrix layout for A . 433
128 WGMMA .m64nNk16 core matrix layout for B . 434
129 WGMMA .m64nNk8 core matrices for A and B . 435
130 WGMMA .m64nNk8 core matrix layout for A . 435
131 WGMMA .m64nNk8 core matrix layout for B . 436
132 WGMMA .m64nNk32 core matrices for A and B . 437
133 WGMMA .m64nNk32 core matrix layout for A . 437
134 WGMMA .m64nNk32 core matrix layout for B . 438
135 WGMMA .m64nNk256 core matrices for A and B . 439
136 WGMMA .m64nNk256 core matrix layout for A . 439
137 WGMMA .m64nNk256 core matrix layout for B . 440
138 WGMMA stride and leading dimension byte offset for matrix A 441
139 WGMMA stride and leading dimension byte offset for matrix B 441
140 WGMMA core matrices with no swizzling . 442
141 WGMMA core matrices with 32-byte swizzling . 442
142 WGMMA core matrices with 64-byte swizzling . 443
143 WGMMA core matrices with 128-byte swizzling . 444

4 List of Figures

Chapter 1. Introduction

This document describes PTX, a low-level parallel thread execution virtual machine and instruction set
architecture (ISA). PTX exposes the GPU as a data-parallel computing device.

1.1. Scalable Data-Parallel Computing using
GPUs

Driven by the insatiable market demand for real-time, high-definition 3D graphics, the programmable
GPU has evolved into a highly parallel, multithreaded, many-core processor with tremendous compu-
tational horsepower and very high memory bandwidth. The GPU is especially well-suited to address
problems that can be expressed as data-parallel computations - the same program is executed on
many data elements in parallel - with high arithmetic intensity - the ratio of arithmetic operations to
memory operations. Because the same program is executed for each data element, there is a lower
requirement for sophisticated flow control; and because it is executed onmany data elements and has
high arithmetic intensity, the memory access latency can be hidden with calculations instead of big
data caches.

Data-parallel processing maps data elements to parallel processing threads. Many applications that
process large data sets can use a data-parallel programming model to speed up the computations.
In 3D rendering large sets of pixels and vertices are mapped to parallel threads. Similarly, image and
media processing applications such as post-processing of rendered images, video encoding and de-
coding, image scaling, stereo vision, and pattern recognition can map image blocks and pixels to par-
allel processing threads. In fact, many algorithms outside the field of image rendering and processing
are accelerated by data-parallel processing, from general signal processing or physics simulation to
computational finance or computational biology.

PTX defines a virtual machine and ISA for general purpose parallel thread execution. PTX programs
are translated at install time to the target hardware instruction set. The PTX-to-GPU translator and
driver enable NVIDIA GPUs to be used as programmable parallel computers.

5

PTX ISA, Release 8.1

1.2. Goals of PTX

PTX provides a stable programming model and instruction set for general purpose parallel program-
ming. It is designed to be efficient on NVIDIA GPUs supporting the computation features defined by
the NVIDIA Tesla architecture. High level language compilers for languages such as CUDA and C/C++
generate PTX instructions, which are optimized for and translated to native target-architecture in-
structions.

The goals for PTX include the following:

▶ Provide a stable ISA that spans multiple GPU generations.

▶ Achieve performance in compiled applications comparable to native GPU performance.

▶ Provide a machine-independent ISA for C/C++ and other compilers to target.

▶ Provide a code distribution ISA for application and middleware developers.

▶ Provide a common source-level ISA for optimizing code generators and translators, which map
PTX to specific target machines.

▶ Facilitate hand-coding of libraries, performance kernels, and architecture tests.

▶ Provide a scalable programming model that spans GPU sizes from a single unit to many parallel
units.

1.3. PTX ISA Version 8.1

PTX ISA version 8.1 introduces the following new features:

▶ Adds support for st.async and red.async instructions for asynchronous store and asyn-
chronous reduction operations respectively on shared memory.

▶ Adds support for .oobmodifier on half-precision fma instruction.

▶ Adds support for .satfinite saturationmodifer on cvt instruction for .f16, .bf16 and .tf32
formats.

▶ Extends support for cvt with .e4m3/.e5m2 to sm_89.

▶ Extends atom and red instructions to support vector types.

▶ Adds support for special register %aggr_smem_size.

▶ Extends sured instruction with 64-bit min/max operations.

▶ Adds support for increased kernel parameter size of 32764 bytes.

▶ Adds support for multimem addresses in memory consistency model.

▶ Adds support for multimem.ld_reduce, multimem.st and multimem.red instructions to per-
form memory operations on multimem addresses.

6 Chapter 1. Introduction

PTX ISA, Release 8.1

1.4. Document Structure

The information in this document is organized into the following Chapters:

▶ Programming Model outlines the programming model.

▶ PTX Machine Model gives an overview of the PTX virtual machine model.

▶ Syntax describes the basic syntax of the PTX language.

▶ State Spaces, Types, and Variables describes state spaces, types, and variable declarations.

▶ Instruction Operands describes instruction operands.

▶ Abstracting the ABI describes the function and call syntax, calling convention, and PTX support
for abstracting the Application Binary Interface (ABI).

▶ Instruction Set describes the instruction set.

▶ Special Registers lists special registers.

▶ Directives lists the assembly directives supported in PTX.

▶ Release Notes provides release notes for PTX ISA versions 2.x and beyond.

References

▶ 754-2008 IEEE Standard for Floating-Point Arithmetic. ISBN 978-0-7381-5752-8, 2008.

http://ieeexplore.ieee.org/servlet/opac?punumber=4610933

▶ The OpenCL Specification, Version: 1.1, Document Revision: 44, June 1, 2011.

http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf

▶ CUDA Dynamic Parallelism Programming Guide.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#
cuda-dynamic-parallelism

▶ PTX Writers Guide to Interoperability.

https://docs.nvidia.com/cuda/ptx-writers-guide-to-interoperability/index.html

1.4. Document Structure 7

http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cuda-dynamic-parallelism
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cuda-dynamic-parallelism
https://docs.nvidia.com/cuda/ptx-writers-guide-to-interoperability/index.html

PTX ISA, Release 8.1

8 Chapter 1. Introduction

Chapter 2. Programming Model

2.1. A Highly Multithreaded Coprocessor

TheGPU is a compute device capable of executing a very large number of threads in parallel. It operates
as a coprocessor to the main CPU, or host: In other words, data-parallel, compute-intensive portions
of applications running on the host are off-loaded onto the device.

More precisely, a portion of an application that is executedmany times, but independently on different
data, can be isolated into a kernel function that is executed on the GPU as many different threads. To
that effect, such a function is compiled to the PTX instruction set and the resulting kernel is translated
at install time to the target GPU instruction set.

2.2. Thread Hierarchy

The batch of threads that executes a kernel is organized as a grid. A grid consists of either cooperative
thread arrays or clusters of cooperative thread arrays as described in this section and illustrated in
Figure 1 and Figure 2. Cooperative thread arrays (CTAs) implement CUDA thread blocks and clusters
implement CUDA thread block clusters.

2.2.1. Cooperative Thread Arrays

The Parallel Thread Execution (PTX) programming model is explicitly parallel: a PTX program specifies
the execution of a given thread of a parallel thread array. A cooperative thread array, or CTA, is an array
of threads that execute a kernel concurrently or in parallel.

Threads within a CTA can communicate with each other. To coordinate the communication of the
threads within the CTA, one can specify synchronization points where threads wait until all threads in
the CTA have arrived.

Each thread has a unique thread identifier within the CTA. Programs use a data parallel decomposi-
tion to partition inputs, work, and results across the threads of the CTA. Each CTA thread uses its
thread identifier to determine its assigned role, assign specific input and output positions, compute
addresses, and select work to perform. The thread identifier is a three-element vector tid, (with ele-
ments tid.x, tid.y, and tid.z) that specifies the thread’s position within a 1D, 2D, or 3D CTA. Each
thread identifier component ranges from zero up to the number of thread ids in that CTA dimension.

Each CTA has a 1D, 2D, or 3D shape specified by a three-element vector ntid (with elements ntid.x,
ntid.y, and ntid.z). The vector ntid specifies the number of threads in each CTA dimension.

9

PTX ISA, Release 8.1

Threads within a CTA execute in SIMT (single-instruction, multiple-thread) fashion in groups called
warps. A warp is a maximal subset of threads from a single CTA, such that the threads execute the
same instructions at the same time. Threads within a warp are sequentially numbered. The warp size
is a machine-dependent constant. Typically, a warp has 32 threads. Some applications may be able
to maximize performance with knowledge of the warp size, so PTX includes a run-time immediate
constant, WARP_SZ, which may be used in any instruction where an immediate operand is allowed.

2.2.2. Cluster of Cooperative Thread Arrays

Cluster is a group of CTAs that run concurrently or in parallel and can synchronize and communicate
with each other via shared memory. The executing CTA has to make sure that the shared memory of
the peer CTA exists before communicating with it via shared memory.

Threads within the different CTAs in a cluster can synchronize and communicate with each other via
shared memory. Cluster-wide barriers can be used to synchronize all the threads within the cluster.
Each CTA in a cluster has a unique CTA identifier within its cluster (cluster_ctaid). Each cluster of
CTAs has 1D, 2D or 3D shape specified by the parameter cluster_nctaid. Each CTA in the cluster also
has a unique CTA identifier (cluster_ctarank) across all dimensions. The total number of CTAs across
all the dimensions in the cluster is specified by cluster_nctarank. Threads may read and use these
values through predefined, read-only special registers %cluster_ctaid, %cluster_nctaid, %clus-
ter_ctarank, %cluster_nctarank.

Cluster level is applicable only on target architecture sm_90 or higher. Specifying cluster level during
launch time is optional. If the user specifies the cluster dimensions at launch time then it will be
treated as explicit cluster launch, otherwise it will be treated as implicit cluster launch with default
dimension 1x1x1. PTX provides read-only special register %is_explicit_cluster to differentiate
between explicit and implicit cluster launch.

2.2.3. Grid of Clusters

There is a maximum number of threads that a CTA can contain and a maximum number of CTAs that
a cluster can contain. However, clusters with CTAs that execute the same kernel can be batched to-
gether into a grid of clusters, so that the total number of threads that can be launched in a single
kernel invocation is very large. This comes at the expense of reduced thread communication and syn-
chronization, because threads in different clusters cannot communicate and synchronize with each
other.

Each cluster has a unique cluster identifier (clusterid) within a grid of clusters. Each grid of clusters
has a 1D, 2D , or 3D shape specified by the parameter nclusterid. Each grid also has a unique temporal
grid identifier (gridid). Threads may read and use these values through predefined, read-only special
registers %tid, %ntid, %clusterid, %nclusterid, and %gridid.

Each CTA has a unique identifier (ctaid) within a grid. Each grid of CTAs has 1D, 2D, or 3D shape
specified by the parameter nctaid. Thread may use and read these values through predefined, read-
only special registers %ctaid and %nctaid.

Each kernel is executed as a batch of threads organized as a grid of clusters consisting of CTAs where
cluster is optional level and is applicable only for target architectures sm_90 and higher. Figure 1 shows
a grid consisting of CTAs and Figure 2 shows a grid consisting of clusters.

Grids may be launched with dependencies between one another - a grid may be a dependent grid
and/or a prerequisite grid. To understand how grid dependencies may be defined, refer to the section
on CUDA Graphs in the Cuda Programming Guide.

10 Chapter 2. Programming Model

PTX ISA, Release 8.1

Figure 1: Grid with CTAs

Figure 2: Grid with clusters
A cluster is a set of cooperative thread arrays (CTAs) where a CTA is a set of concurrent threads that execute the

same kernel program. A grid is a set of clusters consisting of CTAs that execute independently.

2.2. Thread Hierarchy 11

PTX ISA, Release 8.1

2.3. Memory Hierarchy

PTX threadsmay access data frommultiple state spaces during their execution as illustrated by Figure
3 where cluster level is introduced from target architecture sm_90 onwards. Each thread has a private
local memory. Each thread block (CTA) has a shared memory visible to all threads of the block and to
all active blocks in the cluster and with the same lifetime as the block. Finally, all threads have access
to the same global memory.

There are additional state spaces accessible by all threads: the constant, param, texture, and surface
state spaces. Constant and texture memory are read-only; surface memory is readable and writable.
The global, constant, param, texture, and surface state spaces are optimized for different memory
usages. For example, texture memory offers different addressing modes as well as data filtering for
specific data formats. Note that texture and surface memory is cached, and within the same kernel
call, the cache is not kept coherent with respect to global memory writes and surface memory writes,
so any texture fetch or surface read to an address that has been written to via a global or a surface
write in the same kernel call returns undefined data. In other words, a thread can safely read some
texture or surfacememory location only if this memory location has been updated by a previous kernel
call or memory copy, but not if it has been previously updated by the same thread or another thread
from the same kernel call.

The global, constant, and texture state spaces are persistent across kernel launches by the same
application.

Both the host and the device maintain their own local memory, referred to as host memory and device
memory, respectively. The devicememorymay bemapped and read or written by the host, or, for more
efficient transfer, copied from the host memory through optimized API calls that utilize the device’s
high-performance Direct Memory Access (DMA) engine.

12 Chapter 2. Programming Model

PTX ISA, Release 8.1

Figure 3: Memory Hierarchy

2.3. Memory Hierarchy 13

PTX ISA, Release 8.1

14 Chapter 2. Programming Model

Chapter 3. PTX Machine Model

3.1. A Set of SIMT Multiprocessors

The NVIDIA GPU architecture is built around a scalable array of multithreaded Streaming Multiproces-
sors (SMs). When a host program invokes a kernel grid, the blocks of the grid are enumerated and
distributed to multiprocessors with available execution capacity. The threads of a thread block exe-
cute concurrently on one multiprocessor. As thread blocks terminate, new blocks are launched on the
vacated multiprocessors.

A multiprocessor consists of multiple Scalar Processor (SP) cores, a multithreaded instruction unit,
and on-chip shared memory. The multiprocessor creates, manages, and executes concurrent threads
in hardware with zero scheduling overhead. It implements a single-instruction barrier synchroniza-
tion. Fast barrier synchronization together with lightweight thread creation and zero-overhead thread
scheduling efficiently support very fine-grained parallelism, allowing, for example, a low granularity
decomposition of problems by assigning one thread to each data element (such as a pixel in an image,
a voxel in a volume, a cell in a grid-based computation).

To manage hundreds of threads running several different programs, the multiprocessor employs an
architecture we call SIMT (single-instruction, multiple-thread). The multiprocessor maps each thread
to one scalar processor core, and each scalar thread executes independently with its own instruction
address and register state. The multiprocessor SIMT unit creates, manages, schedules, and executes
threads in groups of parallel threads calledwarps. (This term originates fromweaving, the first parallel
thread technology.) Individual threads composing a SIMT warp start together at the same program
address but are otherwise free to branch and execute independently.

When a multiprocessor is given one or more thread blocks to execute, it splits them into warps that
get scheduled by the SIMT unit. The way a block is split into warps is always the same; each warp
contains threads of consecutive, increasing thread IDs with the first warp containing thread 0.

At every instruction issue time, the SIMT unit selects a warp that is ready to execute and issues the
next instruction to the active threads of the warp. A warp executes one common instruction at a time,
so full efficiency is realized when all threads of a warp agree on their execution path. If threads of a
warp diverge via a data-dependent conditional branch, the warp serially executes each branch path
taken, disabling threads that are not on that path, and when all paths complete, the threads converge
back to the sameexecution path. Branch divergence occurs onlywithin awarp; differentwarps execute
independently regardless of whether they are executing common or disjointed code paths.

SIMT architecture is akin to SIMD (Single Instruction, Multiple Data) vector organizations in that a
single instruction controls multiple processing elements. A key difference is that SIMD vector organi-
zations expose the SIMD width to the software, whereas SIMT instructions specify the execution and
branching behavior of a single thread. In contrast with SIMD vector machines, SIMT enables program-
mers to write thread-level parallel code for independent, scalar threads, as well as data-parallel code
for coordinated threads. For the purposes of correctness, the programmer can essentially ignore the

15

PTX ISA, Release 8.1

SIMT behavior; however, substantial performance improvements can be realized by taking care that
the code seldom requires threads in a warp to diverge. In practice, this is analogous to the role of cache
lines in traditional code: Cache line size can be safely ignoredwhen designing for correctness butmust
be considered in the code structure when designing for peak performance. Vector architectures, on
the other hand, require the software to coalesce loads into vectors and manage divergence manually.

How many blocks a multiprocessor can process at once depends on how many registers per thread
and how much shared memory per block are required for a given kernel since the multiprocessor’s
registers and shared memory are split among all the threads of the batch of blocks. If there are not
enough registers or shared memory available per multiprocessor to process at least one block, the
kernel will fail to launch.

Figure 4: Hardware Model

A set of SIMT multiprocessors with on-chip shared memory.

16 Chapter 3. PTX Machine Model

PTX ISA, Release 8.1

3.2. Independent Thread Scheduling

On architectures prior to Volta, warps used a single program counter shared amongst all 32 threads in
the warp together with an active mask specifying the active threads of the warp. As a result, threads
from the same warp in divergent regions or different states of execution cannot signal each other or
exchange data, and algorithms requiring fine-grained sharing of data guarded by locks or mutexes can
easily lead to deadlock, depending on which warp the contending threads come from.

Starting with the Volta architecture, Independent Thread Scheduling allows full concurrency between
threads, regardless of warp. With Independent Thread Scheduling, the GPU maintains execution state
per thread, including a program counter and call stack, and can yield execution at a per-thread gran-
ularity, either to make better use of execution resources or to allow one thread to wait for data to be
produced by another. A schedule optimizer determines how to group active threads from the same
warp together into SIMT units. This retains the high throughput of SIMT execution as in prior NVIDIA
GPUs, but withmuchmore flexibility: threads can now diverge and reconverge at sub-warp granularity.

Independent Thread Scheduling can lead to a rather different set of threads participating in the exe-
cuted code than intended if the developer made assumptions about warp-synchronicity of previous
hardware architectures. In particular, any warp-synchronous code (such as synchronization-free, intra-
warp reductions) should be revisited to ensure compatibility with Volta and beyond. See the section
on Compute Capability 7.x in the Cuda Programming Guide for further details.

3.3. On-chip Shared Memory

As illustrated by Figure 4, each multiprocessor has on-chip memory of the four following types:

▶ One set of local 32-bit registers per processor,

▶ A parallel data cache or shared memory that is shared by all scalar processor cores and is where
the shared memory space resides,

▶ A read-only constant cache that is shared by all scalar processor cores and speeds up reads from
the constant memory space, which is a read-only region of device memory,

▶ A read-only texture cache that is shared by all scalar processor cores and speeds up reads from
the texture memory space, which is a read-only region of device memory; each multiprocessor
accesses the texture cache via a texture unit that implements the various addressing modes and
data filtering.

The local and global memory spaces are read-write regions of device memory.

3.2. Independent Thread Scheduling 17

PTX ISA, Release 8.1

18 Chapter 3. PTX Machine Model

Chapter 4. Syntax

PTX programs are a collection of text source modules (files). PTX source modules have an assembly-
language style syntaxwith instruction operation codes and operands. Pseudo-operations specify sym-
bol and addressing management. The ptxas optimizing backend compiler optimizes and assembles
PTX source modules to produce corresponding binary object files.

4.1. Source Format

Source modules are ASCII text. Lines are separated by the newline character (\n).

All whitespace characters are equivalent; whitespace is ignored except for its use in separating tokens
in the language.

The C preprocessor cpp may be used to process PTX source modules. Lines beginning with # are
preprocessor directives. The following are common preprocessor directives:

#include, #define, #if, #ifdef, #else, #endif, #line, #file

C: A Reference Manual by Harbison and Steele provides a good description of the C preprocessor.

PTX is case sensitive and uses lowercase for keywords.

Each PTXmodule must begin with a .version directive specifying the PTX language version, followed
by a .target directive specifying the target architecture assumed. See PTX Module Directives for a
more information on these directives.

4.2. Comments

Comments in PTX follow C/C++ syntax, using non-nested ∕* and *∕ for comments that may span
multiple lines, and using ∕∕ to begin a comment that extends up to the next newline character, which
terminates the current line. Comments cannot occur within character constants, string literals, or
within other comments.

Comments in PTX are treated as whitespace.

19

PTX ISA, Release 8.1

4.3. Statements

A PTX statement is either a directive or an instruction. Statements begin with an optional label and
end with a semicolon.

Examples

.reg .b32 r1, r2;

.global .f32 array[N];

start: mov.b32 r1, %tid.x;
shl.b32 r1, r1, 2; ∕∕ shift thread id by 2 bits
ld.global.b32 r2, array[r1]; ∕∕ thread[tid] gets array[tid]
add.f32 r2, r2, 0.5; ∕∕ add 1∕2

4.3.1. Directive Statements

Directive keywords begin with a dot, so no conflict is possible with user-defined identifiers. The direc-
tives in PTX are listed in Table 1 and described in State Spaces, Types, and Variables and Directives.

Table 1: PTX Directives

.address_size .explicitcluster .maxnreg .section

.alias .extern .maxntid .shared

.align .file .minnctapersm .sreg

.branchtargets .func .noreturn .target

.callprototype .global .param .tex

.calltargets .loc .pragma .version

.common .local .reg .visible

.const .maxclusterrank .reqnctapercluster .weak

.entry .maxnctapersm .reqntid

4.3.2. Instruction Statements

Instructions are formed froman instruction opcode followedby a comma-separated list of zero ormore
operands, and terminatedwith a semicolon. Operandsmay be register variables, constant expressions,
address expressions, or label names. Instructions have an optional guard predicate which controls
conditional execution. The guard predicate follows the optional label and precedes the opcode, and is
written as @p, where p is a predicate register. The guard predicate may be optionally negated, written
as @!p.

The destination operand is first, followed by source operands.

Instruction keywords are listed in Table 2. All instruction keywords are reserved tokens in PTX.

20 Chapter 4. Syntax

PTX ISA, Release 8.1

Table 2: Reserved Instruction Keywords

abs discard min shf vadd

activemask div mma shfl vadd2

add dp2a mov shl vadd4

addc dp4a movmatrix shr vavrg2

alloca elect mul sin vavrg4

and ex2 mul24 slct vmad

applypriority exit multimem sqrt vmax

atom fence nanosleep st vmax2

bar fma neg stackrestore vmax4

barrier fns not stacksave vmin

bfe getctarank or stmatrix vmin2

bfi griddepcontrol pmevent sub vmin4

bfind isspacep popc subc vote

bmsk istypep prefetch suld vset

bra ld prefetchu suq vset2

brev ldmatrix prmt sured vset4

brkpt ldu rcp sust vshl

brx lg2 red szext vshr

call lop3 redux tanh vsub

clz mad rem testp vsub2

cnot mad24 ret tex vsub4

copysign madc rsqrt tld4 wgmma

cos mapa sad trap wmma

cp match selp txq xor

createpolicy max set vabsdiff

cvt mbarrier setmaxnreg vabsdiff2

cvta membar setp vabsdiff4

4.3. Statements 21

PTX ISA, Release 8.1

4.4. Identifiers

User-defined identifiers follow extended C++ rules: they either start with a letter followed by zero
or more letters, digits, underscore, or dollar characters; or they start with an underscore, dollar, or
percentage character followed by one or more letters, digits, underscore, or dollar characters:

followsym: [a-zA-Z0-9_$]
identifier: [a-zA-Z]{followsym}* | {[_$%]{followsym}+

PTX does not specify a maximum length for identifiers and suggests that all implementations support
a minimum length of at least 1024 characters.

Many high-level languages such as C and C++ follow similar rules for identifier names, except that the
percentage sign is not allowed. PTX allows the percentage sign as the first character of an identifier.
The percentage sign can be used to avoid name conflicts, e.g., between user-defined variable names
and compiler-generated names.

PTX predefines one constant and a small number of special registers that begin with the percentage
sign, listed in Table 3.

Table 3: Predefined Identifiers

%clock %laneid %lanemask_gt %pm0, ..., %pm7

%clock64 %lanemask_eq %nctaid %smid

%ctaid %lanemask_le %ntid %tid

%envreg<32> %lanemask_lt %nsmid %warpid

%gridid %lanemask_ge %nwarpid WARP_SZ

4.5. Constants

PTX supports integer and floating-point constants and constant expressions. These constants may
be used in data initialization and as operands to instructions. Type checking rules remain the same for
integer, floating-point, and bit-size types. For predicate-type data and instructions, integer constants
are allowed and are interpreted as in C, i.e., zero values are False and non-zero values are True.

4.5.1. Integer Constants

Integer constants are 64-bits in size and are either signed or unsigned, i.e., every integer constant has
type .s64 or .u64. The signed/unsigned nature of an integer constant is needed to correctly evalu-
ate constant expressions containing operations such as division and ordered comparisons, where the
behavior of the operation depends on the operand types. When used in an instruction or data initial-
ization, each integer constant is converted to the appropriate size based on the data or instruction
type at its use.

Integer literals may be written in decimal, hexadecimal, octal, or binary notation. The syntax follows
that of C. Integer literals may be followed immediately by the letter U to indicate that the literal is
unsigned.

22 Chapter 4. Syntax

PTX ISA, Release 8.1

hexadecimal literal: 0[xX]{hexdigit}+U?
octal literal: 0{octal digit}+U?
binary literal: 0[bB]{bit}+U?
decimal literal {nonzero-digit}{digit}*U?

Integer literals are non-negative and have a type determined by their magnitude and optional type
suffix as follows: literals are signed (.s64) unless the value cannot be fully represented in .s64 or the
unsigned suffix is specified, in which case the literal is unsigned (.u64).

The predefined integer constant WARP_SZ specifies the number of threads per warp for the target
platform; to date, all target architectures have a WARP_SZ value of 32.

4.5.2. Floating-Point Constants

Floating-point constants are represented as 64-bit double-precision values, and all floating-point con-
stant expressions are evaluated using 64-bit double precision arithmetic. The only exception is the
32-bit hex notation for expressing an exact single-precision floating-point value; such values retain
their exact 32-bit single-precision value and may not be used in constant expressions. Each 64-bit
floating-point constant is converted to the appropriate floating-point size based on the data or in-
struction type at its use.

Floating-point literals may be written with an optional decimal point and an optional signed exponent.
Unlike C and C++, there is no suffix letter to specify size; literals are always represented in 64-bit
double-precision format.

PTX includes a second representation of floating-point constants for specifying the exact machine
representation using a hexadecimal constant. To specify IEEE 754 double-precision floating point val-
ues, the constant begins with 0d or 0D followed by 16 hex digits. To specify IEEE 754 single-precision
floating point values, the constant begins with 0f or 0F followed by 8 hex digits.

0[fF]{hexdigit}{8} ∕∕ single-precision floating point
0[dD]{hexdigit}{16} ∕∕ double-precision floating point

Example

mov.f32 $f3, 0F3f800000; ∕∕ 1.0

4.5.3. Predicate Constants

In PTX, integer constants may be used as predicates. For predicate-type data initializers and instruc-
tion operands, integer constants are interpreted as in C, i.e., zero values are False and non-zero values
are True.

4.5. Constants 23

PTX ISA, Release 8.1

4.5.4. Constant Expressions

In PTX, constant expressions are formed using operators as in C and are evaluated using rules similar
to those in C, but simplified by restricting types and sizes, removing most casts, and defining full
semantics to eliminate cases where expression evaluation in C is implementation dependent.

Constant expressions are formed from constant literals, unary plus and minus, basic arithmetic op-
erators (addition, subtraction, multiplication, division), comparison operators, the conditional ternary
operator (?:), and parentheses. Integer constant expressions also allow unary logical negation (!),
bitwise complement (~), remainder (%), shift operators (<< and >>), bit-type operators (&, |, and ^), and
logical operators (&&, ||).

Constant expressions in PTX do not support casts between integer and floating-point.

Constant expressions are evaluated using the same operator precedence as in C. Table 4 gives operator
precedence and associativity. Operator precedence is highest for unary operators and decreases with
each line in the chart. Operators on the same line have the same precedence and are evaluated right-
to-left for unary operators and left-to-right for binary operators.

Table 4: Operator Precedence

Kind Operator Symbols Operator Names Associates

Primary () parenthesis n/a

Unary +- ! ~ plus, minus, negation, complement right

(.s64)(.u64) casts right

Binary *∕ % multiplication, division, remainder left

+- addition, subtraction

>> << shifts

< > <= >= ordered comparisons

== != equal, not equal

& bitwise AND

^ bitwise XOR

| bitwise OR

&& logical AND

|| logical OR

Ternary ?: conditional right

24 Chapter 4. Syntax

PTX ISA, Release 8.1

4.5.5. Integer Constant Expression Evaluation

Integer constant expressions are evaluated at compile time according to a set of rules that determine
the type (signed .s64 versus unsigned .u64) of each sub-expression. These rules are based on the
rules in C, but they’ve been simplified to apply only to 64-bit integers, and behavior is fully defined in
all cases (specifically, for remainder and shift operators).

▶ Literals are signed unless unsigned is needed to prevent overflow, or unless the literal uses a U
suffix. For example:

▶ 42, 0x1234, 0123 are signed.

▶ 0xfabc123400000000, 42U, 0x1234U are unsigned.

▶ Unary plus and minus preserve the type of the input operand. For example:

▶ +123, -1, -(-42) are signed.

▶ -1U, -0xfabc123400000000 are unsigned.

▶ Unary logical negation (!) produces a signed result with value 0 or 1.

▶ Unary bitwise complement (~) interprets the source operand as unsigned and produces an un-
signed result.

▶ Some binary operators require normalization of source operands. This normalization is known as
the usual arithmetic conversions and simply converts both operands to unsigned type if either
operand is unsigned.

▶ Addition, subtraction, multiplication, and division perform the usual arithmetic conversions and
produce a result with the same type as the converted operands. That is, the operands and result
are unsigned if either source operand is unsigned, and is otherwise signed.

▶ Remainder (%) interprets the operands as unsigned. Note that this differs from C, which allows a
negative divisor but defines the behavior to be implementation dependent.

▶ Left and right shift interpret the second operand as unsigned and produce a result with the same
type as the first operand. Note that the behavior of right-shift is determined by the type of the
first operand: right shift of a signed value is arithmetic and preserves the sign, and right shift of
an unsigned value is logical and shifts in a zero bit.

▶ AND (&), OR (|), and XOR (^) perform the usual arithmetic conversions and produce a result with
the same type as the converted operands.

▶ AND_OP (&&), OR_OP (||), Equal (==), and Not_Equal (!=) produce a signed result. The result value
is 0 or 1.

▶ Ordered comparisons (<, <=, >, >=) perform the usual arithmetic conversions on source operands
and produce a signed result. The result value is 0 or 1.

▶ Casting of expressions to signed or unsigned is supported using (.s64) and (.u64) casts.

▶ For the conditional operator (? :) , the first operand must be an integer, and the second and
third operands are either both integers or both floating-point. The usual arithmetic conversions
are performedon the second and third operands, and the result type is the same as the converted
type.

4.5. Constants 25

PTX ISA, Release 8.1

4.5.6. Summary of Constant Expression Evaluation Rules

Table 5 contains a summary of the constant expression evaluation rules.

Table 5: Constant Expression Evaluation Rules

Kind Operator Operand Types Operand Interpretation Result Type

Pri-
mary

() any type same as source same as source

constant
literal

n/a n/a .u64, .s64, or .f64

Unary +- any type same as source same as source

! integer zero or non-zero .s64

~ integer .u64 .u64

Cast (.u64) integer .u64 .u64

(.s64) integer .s64 .s64

Binary +- * ∕ .f64 .f64 .f64

integer use usual conversions converted type

< > <= >= .f64 .f64 .s64

integer use usual conversions .s64

== != .f64 .f64 .s64

integer use usual conversions .s64

% integer .u64 .s64

>> << integer 1st unchanged, 2nd is .
u64

same as 1st
operand

& | ^ integer .u64 .u64

&& || integer zero or non-zero .s64

Ternary ?: int ? .f64 : .f64 same as sources .f64

int ? int : int use usual conversions converted type

26 Chapter 4. Syntax

Chapter 5. State Spaces, Types, and
Variables

While the specific resources available in a given target GPU will vary, the kinds of resources will be
common across platforms, and these resources are abstracted in PTX through state spaces and data
types.

5.1. State Spaces

A state space is a storage area with particular characteristics. All variables reside in some state space.
The characteristics of a state space include its size, addressability, access speed, access rights, and
level of sharing between threads.

The state spaces defined in PTX are a byproduct of parallel programming and graphics programming.
The list of state spaces is shown in Table 6,and properties of state spaces are shown in Table 7.

Table 6: State Spaces

Name Description

.reg Registers, fast.

.sreg Special registers. Read-only; pre-defined; platform-specific.

.const Shared, read-only memory.

.global Global memory, shared by all threads.

.local Local memory, private to each thread.

.param Kernel parameters, defined per-grid; or
Function or local parameters, defined per-thread.

.shared Addressable memory, defined per CTA, accessible to all threads in the cluster
throughout the lifetime of the CTA that defines it.

.tex Global texture memory (deprecated).

27

PTX ISA, Release 8.1

Table 7: Properties of State Spaces

Name Addressable Initializable Access Sharing

.reg No No R/W per-thread

.sreg No No RO per-CTA

.const Yes Yes1 RO per-grid

.global Yes Yes1 R/W Context

.local Yes No R/W per-thread

.param (as input
to kernel)

Yes2 No RO per-grid

.param (used in
functions)

Restricted3 No R/W per-thread

.shared Yes No R/W per-cluster5

.tex No4 Yes, via driver RO Context

Notes:
1 Variables in .const and .global state spaces are initialized to zero by default.
2 Accessible only via the ld.param instruction. Address may be taken via mov instruction.
3 Accessible via ld.param and st.param instructions. Device function input and return parameters
may have their address taken via mov; the parameter is then located on the stack frame and its
address is in the .local state space.
4 Accessible only via the tex instruction.
5 Visible to the owning CTA and other active CTAs in the cluster.

5.1.1. Register State Space

Registers (.reg state space) are fast storage locations. The number of registers is limited, and will
vary fromplatform to platform. When the limit is exceeded, register variableswill be spilled tomemory,
causing changes in performance. For each architecture, there is a recommended maximum number
of registers to use (see the CUDA Programming Guide for details).

Registers may be typed (signed integer, unsigned integer, floating point, predicate) or untyped. Regis-
ter size is restricted; aside from predicate registers which are 1-bit, scalar registers have a width of 8-,
16-, 32-, or 64-bits, and vector registers have a width of 16-, 32-, 64-, or 128-bits. The most common
use of 8-bit registers is with ld, st, and cvt instructions, or as elements of vector tuples.

Registers differ from the other state spaces in that they are not fully addressable, i.e., it is not possible
to refer to the address of a register. When compiling to use the Application Binary Interface (ABI),
register variables are restricted to function scope and may not be declared at module scope. When
compiling legacy PTX code (ISA versions prior to 3.0) containing module-scoped .reg variables, the
compiler silently disables use of the ABI. Registers may have alignment boundaries required by multi-
word loads and stores.

28 Chapter 5. State Spaces, Types, and Variables

PTX ISA, Release 8.1

5.1.2. Special Register State Space

The special register (.sreg) state space holds predefined, platform-specific registers, such as grid,
cluster, CTA, and thread parameters, clock counters, and performancemonitoring registers. All special
registers are predefined.

5.1.3. Constant State Space

The constant (.const) state space is a read-only memory initialized by the host. Constant memory
is accessed with a ld.const instruction. Constant memory is restricted in size, currently limited to
64 KB which can be used to hold statically-sized constant variables. There is an additional 640 KB of
constant memory, organized as ten independent 64 KB regions. The driver may allocate and initialize
constant buffers in these regions and pass pointers to the buffers as kernel function parameters.
Since the ten regions are not contiguous, the driver must ensure that constant buffers are allocated
so that each buffer fits entirely within a 64 KB region and does not span a region boundary.

Statically-sized constant variables have an optional variable initializer; constant variables with no ex-
plicit initializer are initialized to zero by default. Constant buffers allocated by the driver are initialized
by the host, and pointers to such buffers are passed to the kernel as parameters. See the description
of kernel parameter attributes in Kernel Function Parameter Attributes for more details on passing
pointers to constant buffers as kernel parameters.

5.1.3.1 Banked Constant State Space (deprecated)

Previous versions of PTX exposed constant memory as a set of eleven 64 KB banks, with explicit bank
numbers required for variable declaration and during access.

Prior to PTX ISA version 2.2, the constant memory was organized into fixed size banks. There were
eleven 64 KB banks, and banks were specified using the .const[bank]modifier, where bank ranged
from 0 to 10. If no bank number was given, bank zero was assumed.

By convention, bank zero was used for all statically-sized constant variables. The remaining banks
were used to declare incomplete constant arrays (as in C, for example), where the size is not known at
compile time. For example, the declaration

.extern .const[2] .b32 const_buffer[];

resulted in const_buffer pointing to the start of constant bank two. This pointer could then be used
to access the entire 64 KB constant bank. Multiple incomplete array variables declared in the same
bank were aliased, with each pointing to the start address of the specified constant bank.

To access data in contant banks 1 through 10, the bank number was required in the state space of the
load instruction. For example, an incomplete array in bank 2 was accessed as follows:

.extern .const[2] .b32 const_buffer[];
ld.const[2].b32 %r1, [const_buffer+4]; ∕∕ load second word

In PTX ISA version 2.2, we eliminated explicit banks and replaced the incomplete array representation
of driver-allocated constant buffers with kernel parameter attributes that allow pointers to constant
buffers to be passed as kernel parameters.

5.1. State Spaces 29

PTX ISA, Release 8.1

5.1.4. Global State Space

The global (.global) state space is memory that is accessible by all threads in a context. It is the
mechanism by which threads in different CTAs, clusters, and grids can communicate. Use ld.global,
st.global, and atom.global to access global variables.

Global variables have an optional variable initializer; global variables with no explicit initializer are ini-
tialized to zero by default.

5.1.5. Local State Space

The local state space (.local) is private memory for each thread to keep its own data. It is typically
standard memory with cache. The size is limited, as it must be allocated on a per-thread basis. Use
ld.local and st.local to access local variables.

When compiling to use the Application Binary Interface (ABI), .local state-space variables must be
declared within function scope and are allocated on the stack. In implementations that do not sup-
port a stack, all local memory variables are stored at fixed addresses, recursive function calls are not
supported, and .local variables may be declared at module scope. When compiling legacy PTX code
(ISA versions prior to 3.0) containing module-scoped .local variables, the compiler silently disables
use of the ABI.

5.1.6. Parameter State Space

The parameter (.param) state space is used (1) to pass input arguments from the host to the kernel,
(2a) to declare formal input and return parameters for device functions called from within kernel ex-
ecution, and (2b) to declare locally-scoped byte array variables that serve as function call arguments,
typically for passing large structures by value to a function. Kernel function parameters differ from
device function parameters in terms of access and sharing (read-only versus read-write, per-kernel
versus per-thread). Note that PTX ISA versions 1.x supports only kernel function parameters in .param
space; device function parameters were previously restricted to the register state space. The use of
parameter state space for device function parameters was introduced in PTX ISA version 2.0 and re-
quires target architecture sm_20 or higher.

Note: The location of parameter space is implementation specific. For example, in some implementa-
tions kernel parameters reside in global memory. No access protection is provided between parameter
and global space in this case. Though the exact location of the kernel parameter space is implemen-
tation specific, the kernel parameter space window is always contained within the global space win-
dow. Similarly, function parameters are mapped to parameter passing registers and/or stack locations
based on the function calling conventions of the Application Binary Interface (ABI). Therefore, PTX code
should make no assumptions about the relative locations or ordering of .param space variables.

30 Chapter 5. State Spaces, Types, and Variables

PTX ISA, Release 8.1

5.1.6.1 Kernel Function Parameters

Each kernel function definition includes an optional list of parameters. These parameters are address-
able, read-only variables declared in the .param state space. Values passed from the host to the kernel
are accessed through these parameter variables using ld.param instructions. The kernel parameter
variables are shared across all CTAs from all clusters within a grid.

The address of a kernel parameter may be moved into a register using the mov instruction. The result-
ing address is in the .param state space and is accessed using ld.param instructions.

Example

.entry foo (.param .b32 N, .param .align 8 .b8 buffer[64])
{

.reg .u32 %n;

.reg .f64 %d;

ld.param.u32 %n, [N];
ld.param.f64 %d, [buffer];
...

Example

.entry bar (.param .b32 len)
{

.reg .u32 %ptr, %n;

mov.u32 %ptr, len;
ld.param.u32 %n, [%ptr];
...

Kernel function parameters may represent normal data values, or they may hold addresses to objects
in constant, global, local, or shared state spaces. In the case of pointers, the compiler and runtime
system need information about which parameters are pointers, and to which state space they point.
Kernel parameter attribute directives are used to provide this information at the PTX level. See Kernel
Function Parameter Attributes for a description of kernel parameter attribute directives.

Note: The current implementation does not allow creation of generic pointers to constant variables
(cvta.const) in programs that have pointers to constant buffers passed as kernel parameters.

5.1. State Spaces 31

PTX ISA, Release 8.1

5.1.6.2 Kernel Function Parameter Attributes

Kernel function parametersmay be declaredwith an optional .ptr attribute to indicate that a parameter
is a pointer to memory, and also indicate the state space and alignment of the memory being pointed
to. Kernel Parameter Attribute: .ptr describes the .ptr kernel parameter attribute.

5.1.6.3 Kernel Parameter Attribute: .ptr

.ptr

Kernel parameter alignment attribute.

Syntax

.param .type .ptr .space .align N varname

.param .type .ptr .align N varname

.space = { .const, .global, .local, .shared };

Description

Used to specify the state space and, optionally, the alignment of memory pointed to by a pointer type
kernel parameter. The alignment value N, if present, must be a power of two. If no state space is
specified, the pointer is assumed to be a generic address pointing to one of const, global, local, or
shared memory. If no alignment is specified, the memory pointed to is assumed to be aligned to a 4
byte boundary.

Spaces between .ptr, .space, and .alignmay be eliminated to improve readability.

PTX ISA Notes

▶ Introduced in PTX ISA version 2.2.

▶ Support for generic addressing of .const space added in PTX ISA version 3.1.

Target ISA Notes

▶ Supported on all target architectures.

Examples

.entry foo (.param .u32 param1,
.param .u32 .ptr.global.align 16 param2,
.param .u32 .ptr.const.align 8 param3,
.param .u32 .ptr.align 16 param4 ∕∕ generic address

∕∕ pointer
) { .. }

5.1.6.4 Device Function Parameters

PTX ISA version 2.0 extended the use of parameter space to device function parameters. The most
common use is for passing objects by value that do not fit within a PTX register, such as C structures
larger than 8 bytes. In this case, a byte array in parameter space is used. Typically, the caller will declare
a locally-scoped .param byte array variable that represents a flattened C structure or union. This will
be passed by value to a callee, which declares a .param formal parameter having the same size and
alignment as the passed argument.

Example

32 Chapter 5. State Spaces, Types, and Variables

PTX ISA, Release 8.1

∕∕ pass object of type struct { double d; int y; };
.func foo (.reg .b32 N, .param .align 8 .b8 buffer[12])
{

.reg .f64 %d;

.reg .s32 %y;

ld.param.f64 %d, [buffer];
ld.param.s32 %y, [buffer+8];
...

}

∕∕ code snippet from the caller
∕∕ struct { double d; int y; } mystruct; is flattened, passed to foo

...

.reg .f64 dbl;

.reg .s32 x;

.param .align 8 .b8 mystruct;

...
st.param.f64 [mystruct+0], dbl;
st.param.s32 [mystruct+8], x;
call foo, (4, mystruct);
...

See the section on function call syntax for more details.

Function input parameters may be read via ld.param and function return parameters may be written
using st.param; it is illegal to write to an input parameter or read from a return parameter.

Aside from passing structures by value, .param space is also required whenever a formal parameter
has its address taken within the called function. In PTX, the address of a function input parameter
may be moved into a register using the mov instruction. Note that the parameter will be copied to the
stack if necessary, and so the address will be in the .local state space and is accessed via ld.local
and st.local instructions. It is not possible to use mov to get the address of or a locally-scoped .
param space variable. Starting PTX ISA version 6.0, it is possible to use mov instruction to get address
of return parameter of device function.

Example

∕∕ pass array of up to eight floating-point values in buffer
.func foo (.param .b32 N, .param .b32 buffer[32])
{

.reg .u32 %n, %r;

.reg .f32 %f;

.reg .pred %p;

ld.param.u32 %n, [N];
mov.u32 %r, buffer; ∕∕ forces buffer to .local state space

Loop:
setp.eq.u32 %p, %n, 0;

@%p: bra Done;
ld.local.f32 %f, [%r];
...
add.u32 %r, %r, 4;
sub.u32 %n, %n, 1;
bra Loop;

Done:
...

}

5.1. State Spaces 33

PTX ISA, Release 8.1

5.1.7. Shared State Space

The shared (.shared) state space is a memory that is owned by an executing CTA and is accessible to
the threads of all the CTAs within a cluster. An address in shared memory can be read and written by
any thread in a CTA cluster.

Additional sub-qualifiers ::cta or ::cluster can be specified on instructions with .shared state
space to indicate whether the address belongs to the shared memory window of the executing CTA
or of any CTA in the cluster respectively. The addresses in the .shared::cta window also fall within
the .shared::cluster window. If no sub-qualifier is specified with the .shared state space, then
it defaults to ::cta. For example, ld.shared is equivalent to ld.shared::cta.

Variables declared in .shared state space refer to the memory addresses in the current CTA. Instruc-
tion mapa gives the .shared::cluster address of the corresponding variable in another CTA in the
cluster.

Shared memory typically has some optimizations to support the sharing. One example is broadcast;
where all threads read from the same address. Another is sequential access from sequential threads.

5.1.8. Texture State Space (deprecated)

The texture (.tex) state space is global memory accessed via the texture instruction. It is shared by
all threads in a context. Texture memory is read-only and cached, so accesses to texture memory are
not coherent with global memory stores to the texture image.

The GPU hardware has a fixed number of texture bindings that can be accessed within a single kernel
(typically 128). The .tex directive will bind the named texture memory variable to a hardware texture
identifier, where texture identifiers are allocated sequentially beginning with zero. Multiple names
may be bound to the same physical texture identifier. An error is generated if the maximum number
of physical resources is exceeded. The texture name must be of type .u32 or .u64.

Physical texture resources are allocated on a per-kernel granularity, and .tex variables are required to
be defined in the global scope.

Texturememory is read-only. A texture’s base address is assumed to be aligned to a 16 byte boundary.

Example

.tex .u32 tex_a; ∕∕ bound to physical texture 0

.tex .u32 tex_c, tex_d; ∕∕ both bound to physical texture 1

.tex .u32 tex_d; ∕∕ bound to physical texture 2

.tex .u32 tex_f; ∕∕ bound to physical texture 3

Note: Explicit declarations of variables in the texture state space is deprecated, and programs should
instead reference texture memory through variables of type .texref. The .tex directive is retained
for backward compatibility, and variables declared in the .tex state space are equivalent to module-
scoped .texref variables in the .global state space.

For example, a legacy PTX definitions such as

.tex .u32 tex_a;

is equivalent to:

34 Chapter 5. State Spaces, Types, and Variables

PTX ISA, Release 8.1

.global .texref tex_a;

See Texture Sampler and Surface Types for the description of the .texref type and Texture Instruc-
tions for its use in texture instructions.

5.2. Types

5.2.1. Fundamental Types

In PTX, the fundamental types reflect the native data types supported by the target architectures. A
fundamental type specifies both a basic type and a size. Register variables are always of a fundamental
type, and instructions operate on these types. The same type-size specifiers are used for both variable
definitions and for typing instructions, so their names are intentionally short.

Table 8 lists the fundamental type specifiers for each basic type:

Table 8: Fundamental Type Specifiers

Basic Type Fundamental Type Specifiers

Signed integer .s8, .s16, .s32, .s64

Unsigned integer .u8, .u16, .u32, .u64

Floating-point .f16, .f16x2, .f32, .f64

Bits (untyped) .b8, .b16, .b32, .b64

Predicate .pred

Most instructions have one or more type specifiers, needed to fully specify instruction behavior.
Operand types and sizes are checked against instruction types for compatibility.

Two fundamental types are compatible if they have the same basic type and are the same size. Signed
and unsigned integer types are compatible if they have the same size. The bit-size type is compatible
with any fundamental type having the same size.

In principle, all variables (aside from predicates) could be declared using only bit-size types, but typed
variables enhance program readability and allow for better operand type checking.

5.2.2. Restricted Use of Sub-Word Sizes

The .u8, .s8, and .b8 instruction types are restricted to ld, st, and cvt instructions. The .f16
floating-point type is allowed only in conversions to and from .f32, .f64 types, in half precision float-
ing point instructions and texture fetch instructions. The .f16x2 floating point type is allowed only
in half precision floating point arithmetic instructions and texture fetch instructions.

For convenience, ld, st, and cvt instructions permit source and destination data operands to be
wider than the instruction-type size, so that narrow values may be loaded, stored, and converted us-
ing regular-width registers. For example, 8-bit or 16-bit values may be held directly in 32-bit or 64-bit
registers when being loaded, stored, or converted to other types and sizes.

5.2. Types 35

PTX ISA, Release 8.1

5.2.3. Alternate Floating-Point Data Formats

The fundamental floating-point types supported in PTX have implicit bit representations that indicate
the number of bits used to store exponent and mantissa. For example, the .f16 type indicates 5
bits reserved for exponent and 10 bits reserved for mantissa. In addition to the floating-point repre-
sentations assumed by the fundamental types, PTX allows the following alternate floating-point data
formats:

bf16 data format: This data format is a 16-bit floating point format with 8 bits for exponent and 7
bits for mantissa. A register variable containing bf16 data must be declared with .b16 type.

e4m3 data format: This data format is an 8-bit floating point format with 4 bits for exponent and 3
bits for mantissa. The e4m3 encoding does not support infinity and NaN values are limited to
0x7f and 0xff. e4m3 values must be used in a packed format specified as e4m3x2. A register
variable containing two e4m3 values must be declared with .b16 type.

e5m2 data format: This data format is an 8-bit floating point format with 5 bits for exponent and 2
bits for mantissa. e5m2 values must be used in a packed format specified as e5m2x2. A register
variable containing two e5m2 values must be declared with .b16 type.

tf32 data format: This data format is a special 32-bit floating point format supported by the matrix
multiply-and-accumulate instructions, with the same range as .f32 and reduced precision (>=10
bits). The internal layout of tf32 format is implementation defined. PTX facilitates conversion
from single precision .f32 type to tf32 format. A register variable containing tf32 data must
be declared with .b32 type.

Alternate data formats cannot be used as fundamental types. They are supported as source or desti-
nation formats by certain instructions.

5.2.4. Packed Data Types

Certain PTX instructions operate on two sets of inputs in parallel, and produce two outputs. Such
instructions can use the data stored in a packed format. PTX supports packing two values of the
same scalar data type into a single, larger value. The packed value is considered as a value of a packed
data type. In this section we describe the packed data types supported in PTX.

5.2.4.1 Packed Floating Point Data Types

PTX supports the following four variants of packed floating point data types:

1. .f16x2 packed type containing two .f16 floating point values.

2. .bf16x2 packed type containing two .bf16 alternate floating point values.

3. .e4m3x2 packed type containing two .e4m3 alternate floating point values.

4. .e5m2x2 packed type containing two .e5m2 alternate floating point values.

.f16x2 is supported as a fundamental type. .bf16x2, .e4m3x2 and .e5m2x2 cannot be used as
fundamental types - they are supported as instruction types on certain instructions. A register variable
containing .bf16x2 data must be declared with .b32 type. A register variable containing .e4m3x2 or
.e5m2x2 data must be declared with .b16 type.

36 Chapter 5. State Spaces, Types, and Variables

PTX ISA, Release 8.1

5.2.4.2 Packed Integer Data Types

PTX supports two variants of packed integer data types: .u16x2 and .s16x2. The packed data type
consists of two .u16 or .s16 values. A register variable containing .u16x2 or .s16x2 data must be
declared with .b32 type. Packed integer data types cannot be used as fundamental types. They are
supported as instruction types on certain instructions.

5.3. Texture Sampler and Surface Types

PTX includes built-in opaque types for defining texture, sampler, and surface descriptor variables.
These types have named fields similar to structures, but all information about layout, field ordering,
base address, and overall size is hidden to a PTX program, hence the term opaque. The use of these
opaque types is limited to:

▶ Variable definition within global (module) scope and in kernel entry parameter lists.

▶ Static initialization of module-scope variables using comma-delimited static assignment expres-
sions for the named members of the type.

▶ Referencing textures, samplers, or surfaces via texture and surface load/store instructions (tex,
suld, sust, sured).

▶ Retrieving the value of a named member via query instructions (txq, suq).

▶ Creating pointers to opaque variables using mov, e.g., mov.u64 reg, opaque_var;. The result-
ing pointer may be stored to and loaded from memory, passed as a parameter to functions, and
de-referenced by texture and surface load, store, and query instructions, but the pointer cannot
otherwise be treated as an address, i.e., accessing the pointer with ld and st instructions, or
performing pointer arithmetic will result in undefined results.

▶ Opaque variables may not appear in initializers, e.g., to initialize a pointer to an opaque variable.

Note: Indirect access to textures and surfaces using pointers to opaque variables is supported be-
ginning with PTX ISA version 3.1 and requires target sm_20 or later.

Indirect access to textures is supported only in unified texture mode (see below).

The three built-in types are .texref, .samplerref, and .surfref. For working with textures and
samplers, PTX has two modes of operation. In the unified mode, texture and sampler information is
accessed through a single .texref handle. In the independentmode, texture and sampler information
each have their own handle, allowing them to be defined separately and combined at the site of usage
in the program. In independentmode, the fields of the .texref type that describe sampler properties
are ignored, since these properties are defined by .samplerref variables.

Table 9 and Table 10 list the namedmembers of each type for unified and independent texturemodes.
These members and their values have precise mappings to methods and values defined in the texture
HW class as well as exposed values via the API.

5.3. Texture Sampler and Surface Types 37

PTX ISA, Release 8.1

Table 9: Opaque Type Fields in Unified Texture Mode

Member .texref values .surfref values

width in elements

height in elements

depth in elements

channel_data_type enum type corresponding to source language API

channel_order enum type corresponding to source language API

normalized_coords 0, 1 N/A

filter_mode nearest, linear N/A

addr_mode_0,
addr_mode_1,
addr_mode_2

wrap,mirror, clamp_ogl,
clamp_to_edge, clamp_to_border

N/A

array_size as number of textures in a texture array as number of surfaces in
a surface array

num_mipmap_levels as number of levels in a mipmapped tex-
ture

N/A

num_samples as number of samples in a multi-sample
texture

N/A

memory_layout N/A 1 for linear memory lay-
out; 0 otherwise

5.3.1. Texture and Surface Properties

Fields width, height, and depth specify the size of the texture or surface in number of elements in
each dimension.

The channel_data_type and channel_order fields specify these properties of the texture or sur-
face using enumeration types corresponding to the source language API. For example, see Channel
Data Type and Channel Order Fields for the OpenCL enumeration types currently supported in PTX.

5.3.2. Sampler Properties

The normalized_coords field indicates whether the texture or surface uses normalized coordinates
in the range [0.0, 1.0) instead of unnormalized coordinates in the range [0, N). If no value is specified,
the default is set by the runtime system based on the source language.

The filter_mode field specifies how the values returned by texture reads are computed based on
the input texture coordinates.

The addr_mode_{0,1,2} fields define the addressingmode in each dimension, which determine how
out-of-range coordinates are handled.

See the CUDA C++ Programming Guide for more details of these properties.

38 Chapter 5. State Spaces, Types, and Variables

PTX ISA, Release 8.1

Table 10: Opaque Type Fields in Independent Texture Mode

Member .samplerref values .texref values .surfref values

width N/A in elements

height N/A in elements

depth N/A in elements

channel_data_type N/A enum type corresponding to source
language API

channel_order N/A enum type corresponding to source
language AP

normalized_coords N/A 0, 1 N/A

force_unnormalized_coords 0, 1 N/A N/A

filter_mode nearest, linear ignored N/A

addr_mode_0, addr_mode_1,
addr_mode_2

wrap,mirror,
clamp_ogl,
clamp_to_edge,
clamp_to_border

N/A N/A

array_size N/A as number of tex-
tures in a texture
array

as number of sur-
faces in a surface
array

num_mipmap_levels N/A as number
of levels in a
mipmapped tex-
ture

N/A

num_samples N/A as number of
samples in a
multi-sample
texture

N/A

memory_layout N/A N/A 1 for linear mem-
ory layout; 0 oth-
erwise

In independent texture mode, the sampler properties are carried in an independent .samplerref
variable, and these fields are disabled in the .texref variables. One additional sampler property,
force_unnormalized_coords, is available in independent texture mode.

The force_unnormalized_coords field is a property of .samplerref variables that allows the sam-
pler to override the texture header normalized_coords property. This field is defined only in inde-
pendent texture mode. When True, the texture header setting is overridden and unnormalized coor-
dinates are used; when False, the texture header setting is used.

The force_unnormalized_coords property is used in compiling OpenCL; in OpenCL, the property
of normalized coordinates is carried in sampler headers. To compile OpenCL to PTX, texture headers
are always initialized with normalized_coords set to True, and the OpenCL sampler-based normal-
ized_coords flag maps (negated) to the PTX-level force_unnormalized_coords flag.

Variables using these types may be declared at module scope or within kernel entry parameter lists.
At module scope, these variables must be in the .global state space. As kernel parameters, these

5.3. Texture Sampler and Surface Types 39

PTX ISA, Release 8.1

variables are declared in the .param state space.

Example

.global .texref my_texture_name;

.global .samplerref my_sampler_name;

.global .surfref my_surface_name;

When declared atmodule scope, the typesmay be initialized using a list of static expressions assigning
values to the named members.

Example

.global .texref tex1;

.global .samplerref tsamp1 = { addr_mode_0 = clamp_to_border,
filter_mode = nearest

};

5.3.3. Channel Data Type and Channel Order Fields

The channel_data_type and channel_order fields have enumeration types corresponding to the
source language API. Currently, OpenCL is the only source language that defines these fields. Table 12
and Table 11 show the enumeration values defined in OpenCL version 1.0 for channel data type and
channel order.

Table 11: OpenCL 1.0 Channel Data Type Definition

CL_SNORM_INT8 0x10D0

CL_SNORM_INT16 0x10D1

CL_UNORM_INT8 0x10D2

CL_UNORM_INT16 0x10D3

CL_UNORM_SHORT_565 0x10D4

CL_UNORM_SHORT_555 0x10D5

CL_UNORM_INT_101010 0x10D6

CL_SIGNED_INT8 0x10D7

CL_SIGNED_INT16 0x10D8

CL_SIGNED_INT32 0x10D9

CL_UNSIGNED_INT8 0x10DA

CL_UNSIGNED_INT16 0x10DB

CL_UNSIGNED_INT32 0x10DC

CL_HALF_FLOAT 0x10DD

CL_FLOAT 0x10DE

40 Chapter 5. State Spaces, Types, and Variables

PTX ISA, Release 8.1

Table 12: OpenCL 1.0 Channel Order Definition

CL_R 0x10B0

CL_A 0x10B1

CL_RG 0x10B2

CL_RA 0x10B3

CL_RGB 0x10B4

CL_RGBA 0x10B5

CL_BGRA 0x10B6

CL_ARGB 0x10B7

CL_INTENSITY 0x10B8

CL_LUMINANCE 0x10B9

5.4. Variables

In PTX, a variable declaration describes both the variable’s type and its state space. In addition to
fundamental types, PTX supports types for simple aggregate objects such as vectors and arrays.

5.4.1. Variable Declarations

All storage for data is specified with variable declarations. Every variable must reside in one of the
state spaces enumerated in the previous section.

A variable declaration names the space in which the variable resides, its type and size, its name, an
optional array size, an optional initializer, and an optional fixed address for the variable.

Predicate variables may only be declared in the register state space.

Examples

.global .u32 loc;

.reg .s32 i;

.const .f32 bias[] = {-1.0, 1.0};

.global .u8 bg[4] = {0, 0, 0, 0};

.reg .v4 .f32 accel;

.reg .pred p, q, r;

5.4. Variables 41

PTX ISA, Release 8.1

5.4.2. Vectors

Limited-length vector types are supported. Vectors of length 2 and 4 of any non-predicate fundamen-
tal type canbedeclaredby prefixing the typewith.v2or.v4. Vectorsmust bebasedon a fundamental
type, and they may reside in the register space. Vectors cannot exceed 128-bits in length; for exam-
ple, .v4 .f64 is not allowed. Three-element vectors may be handled by using a .v4 vector, where the
fourth element provides padding. This is a common case for three-dimensional grids, textures, etc.

Examples

.global .v4 .f32 V; ∕∕ a length-4 vector of floats

.shared .v2 .u16 uv; ∕∕ a length-2 vector of unsigned ints

.global .v4 .b8 v; ∕∕ a length-4 vector of bytes

By default, vector variables are aligned to amultiple of their overall size (vector length times base-type
size), to enable vector load and store instructions which require addresses aligned to a multiple of the
access size.

5.4.3. Array Declarations

Array declarations are provided to allow the programmer to reserve space. To declare an array, the
variable name is followed with dimensional declarations similar to fixed-size array declarations in C.
The size of each dimension is a constant expression.

Examples

.local .u16 kernel[19][19];

.shared .u8 mailbox[128];

The size of the array specifies how many elements should be reserved. For the declaration of array
kernel above, 19*19 = 361 halfwords are reserved, for a total of 722 bytes.

When declared with an initializer, the first dimension of the array may be omitted. The size of the first
array dimension is determined by the number of elements in the array initializer.

Examples

.global .u32 index[] = { 0, 1, 2, 3, 4, 5, 6, 7 };

.global .s32 offset[][2] = { {-1, 0}, {0, -1}, {1, 0}, {0, 1} };

Array index has eight elements, and array offset is a 4x2 array.

5.4.4. Initializers

Declared variablesmay specify an initial value using a syntax similar to C/C++, where the variable name
is followed by an equals sign and the initial value or values for the variable. A scalar takes a single value,
while vectors and arrays take nested lists of values inside of curly braces (the nesting matches the
dimensionality of the declaration).

As in C, array initializersmay be incomplete, i.e., the number of initializer elementsmay be less than the
extent of the corresponding array dimension, with remaining array locations initialized to the default
value for the specified array type.

Examples

42 Chapter 5. State Spaces, Types, and Variables

PTX ISA, Release 8.1

.const .f32 vals[8] = { 0.33, 0.25, 0.125 };

.global .s32 x[3][2] = { {1,2}, {3} };

is equivalent to

.const .f32 vals[8] = { 0.33, 0.25, 0.125, 0.0, 0.0, 0.0, 0.0, 0.0 };

.global .s32 x[3][2] = { {1,2}, {3,0}, {0,0} };

Currently, variable initialization is supported only for constant and global state spaces. Variables in
constant and global state spaces with no explicit initializer are initialized to zero by default. Initializers
are not allowed in external variable declarations.

Variable names appearing in initializers represent the address of the variable; this can be used to stat-
ically initialize a pointer to a variable. Initializers may also contain var+offset expressions, where offset
is a byte offset added to the address of var. Only variables in .global or .const state spaces may
be used in initializers. By default, the resulting address is the offset in the variable’s state space (as
is the case when taking the address of a variable with a mov instruction). An operator, generic(), is
provided to create a generic address for variables used in initializers.

Starting PTX ISA version 7.1, an operator mask() is provided, where mask is an integer immediate.
The only allowed expressions in the mask() operator are integer constant expression and symbol ex-
pression representing address of variable. The mask() operator extracts n consecutive bits from the
expression used in initializers and inserts these bits at the lowest position of the initialized variable.
The number n and the starting position of the bits to be extracted is specified by the integer imme-
diate mask. PTX ISA version 7.1 only supports extracting a single byte starting at byte boundary from
the address of the variable. PTX ISA version 7.3 supports Integer constant expression as an operand
in the mask() operator.

Supported values for mask are: 0xFF, 0xFF00, 0XFF0000, 0xFF000000, 0xFF00000000,
0xFF0000000000, 0xFF000000000000, 0xFF00000000000000.

Examples

.const .u32 foo = 42;

.global .u32 bar[] = { 2, 3, 5 };

.global .u32 p1 = foo; ∕∕ offset of foo in .const space

.global .u32 p2 = generic(foo); ∕∕ generic address of foo

∕∕ array of generic-address pointers to elements of bar
.global .u32 parr[] = { generic(bar), generic(bar)+4,
generic(bar)+8 };

∕∕ examples using mask() operator are pruned for brevity
.global .u8 addr[] = {0xff(foo), 0xff00(foo), 0xff0000(foo), ...};

.global .u8 addr2[] = {0xff(foo+4), 0xff00(foo+4), 0xff0000(foo+4),...}

.global .u8 addr3[] = {0xff(generic(foo)), 0xff00(generic(foo)),...}

.global .u8 addr4[] = {0xff(generic(foo)+4), 0xff00(generic(foo)+4),...}

∕∕ mask() operator with integer const expression
.global .u8 addr5[] = { 0xFF(1000 + 546), 0xFF00(131187), ...};

Note: PTX 3.1 redefines the default addressing for global variables in initializers, from generic
addresses to offsets in the global state space. Legacy PTX code is treated as having an implicit
generic() operator for each global variable used in an initializer. PTX 3.1 code should either include

5.4. Variables 43

PTX ISA, Release 8.1

explicit generic() operators in initializers, use cvta.global to form generic addresses at runtime,
or load from the non-generic address using ld.global.

Device function names appearing in initializers represent the address of the first instruction in the
function; this can be used to initialize a table of function pointers to be used with indirect calls. Begin-
ning in PTX ISA version 3.1, kernel function names can be used as initializers e.g. to initialize a table of
kernel function pointers, to be used with CUDA Dynamic Parallelism to launch kernels from GPU. See
the CUDA Dynamic Parallelism Programming Guide for details.

Labels cannot be used in initializers.

Variables that hold addresses of variables or functions should be of type .u8 or .u32 or .u64.

Type .u8 is allowed only if the mask() operator is used.

Initializers are allowed for all types except .f16, .f16x2 and .pred.

Examples

.global .s32 n = 10;

.global .f32 blur_kernel[][3]
= {{.05,.1,.05},{.1,.4,.1},{.05,.1,.05}};

.global .u32 foo[] = { 2, 3, 5, 7, 9, 11 };

.global .u64 ptr = generic(foo); ∕∕ generic address of foo[0]

.global .u64 ptr = generic(foo)+8; ∕∕ generic address of foo[2]

5.4.5. Alignment

Byte alignment of storage for all addressable variables can be specified in the variable declaration.
Alignment is specified using an optional .alignbyte-count specifier immediately following the state-
space specifier. The variable will be aligned to an address which is an integer multiple of byte-count.
The alignment value byte-count must be a power of two. For arrays, alignment specifies the address
alignment for the starting address of the entire array, not for individual elements.

The default alignment for scalar and array variables is to a multiple of the base-type size. The default
alignment for vector variables is to a multiple of the overall vector size.

Examples

∕∕ allocate array at 4-byte aligned address. Elements are bytes.
.const .align 4 .b8 bar[8] = {0,0,0,0,2,0,0,0};

Note that all PTX instructions that access memory require that the address be aligned to a multiple
of the access size. The access size of a memory instruction is the total number of bytes accessed in
memory. For example, the access size of ld.v4.b32 is 16 bytes, while the access size of atom.f16x2
is 4 bytes.

44 Chapter 5. State Spaces, Types, and Variables

PTX ISA, Release 8.1

5.4.6. Parameterized Variable Names

Since PTX supports virtual registers, it is quite common for a compiler frontend to generate a large
number of register names. Rather than require explicit declaration of every name, PTX supports a
syntax for creating a set of variables having a common prefix string appended with integer suffixes.

For example, suppose a program uses a large number, say one hundred, of .b32 variables, named %r0,
%r1, …, %r99. These 100 register variables can be declared as follows:

.reg .b32 %r<100>; ∕∕ declare %r0, %r1, ..., %r99

This shorthand syntax may be used with any of the fundamental types and with any state space,
and may be preceded by an alignment specifier. Array variables cannot be declared this way, nor are
initializers permitted.

5.4.7. Variable Attributes

Variables may be declared with an optional .attribute directive which allows specifying special at-
tributes of variables. Keyword .attribute is followed by attribute specification inside parenthesis.
Multiple attributes are separated by comma.

Variable and Function Attribute Directive: .attribute describes the .attribute directive.

5.4.8. Variable and Function Attribute Directive: .attribute

.attribute

Variable and function attributes

Description

Used to specify special attributes of a variable or a function.

The following attributes are supported.

.managed .managed attribute specifies that variable will be allocated at a location in unified virtual
memory environment where host and other devices in the system can reference the variable
directly. This attribute can only be used with variables in .global state space. See the CUDA UVM-
Lite Programming Guide for details.

.unified .unified attribute specifies that function has the same memory address on the host
and on other devices in the system. Integer constants uuid1 and uuid2 respectively specify
upper and lower 64 bits of the unique identifier associated with the function or the variable.
This attribute can only be used on device functions or on variables in the .global state space.
Variables with .unified attribute are read-only and must be loaded by specifying .unified
qualifier on the address operand of ld instruction, otherwise the behavior is undefined.

PTX ISA Notes

▶ Introduced in PTX ISA version 4.0.

▶ Support for function attributes introduced in PTX ISA version 8.0.

Target ISA Notes

▶ .managed attribute requires sm_30 or higher.

5.4. Variables 45

PTX ISA, Release 8.1

▶ .unified attribute requires sm_90 or higher.

Examples

.global .attribute(.managed) .s32 g;

.global .attribute(.managed) .u64 x;

.global .attribute(.unified(19,95)) .f32 f;

.func .attribute(.unified(0xAB, 0xCD)) bar() { ... }

5.5. Tensors

A tensor is a multi-dimensional matrix structure in the memory. Tensor is defined by the following
properties:

▶ Dimensionality

▶ Dimension sizes across each dimension

▶ Individual element types

▶ Tensor stride across each dimension

PTX supports instructions which can operate on the tensor data. PTX Tensor instructions include:

▶ Copying data between global and shared memories

▶ Reducing the destination tensor data with the source.

The Tensor data can be operated on by various wmma.mma, mma and wgmma.mma_async instructions.

PTX Tensor instructions treat the tensor data in the global memory as a multi-dimensional structure
and treat the data in the shared memory as a linear data.

5.5.1. Tensor Dimension, size and format

Tensors can have dimensions: 1D, 2D, 3D, 4D or 5D.

Each dimension has a size which represents the number of elements along the dimension. The ele-
ments can have one the following types:

▶ Bit-sized type: .b32, .b64

▶ Integer: .u8, .u16, .u32, .s32, .u64, .s64

▶ Floating point and alternate floating point: .f16, .bf16, .tf32, .f32, .f64 (rounded to nearest
even).

Tensor can have padding at the end in each of the dimensions to provide alignment for the data in
the subsequent dimensions. Tensor stride can be used to specify the amount of padding in each
dimension.

46 Chapter 5. State Spaces, Types, and Variables

PTX ISA, Release 8.1

5.5.2. Tensor Access Modes

Tensor data can be accessed in two modes:

▶ Tiled mode:

In tiled mode, the source multi-dimensional tensor layout is preserved at the destination.

▶ Im2col mode:

In im2col mode, the elements in the Bounding Box of the source tensor are rearranged into
columns at the destination. Refer here for more details.

5.5.3. Tiled Mode

This section talks about how Tensor and Tensor access work in tiled mode.

5.5.3.1 Bounding Box

A tensor can be accessed in chunks known as Bounding Box. The Bounding Box has the same dimen-
sionality as the tensor they are accessing into. Size of each bounding Box must be a multiple of 16
bytes. The address of the bounding Box must also be aligned to 16 bytes.

Bounding Box has the following access properties:

▶ Bounding Box dimension sizes

▶ Out of boundary access mode

▶ Traversal strides

The tensor-coordinates, specified in the PTX tensor instructions, specify the starting offset of the
bounding box. Starting offset of the bounding box alongwith the rest of the bounding box information
together are used to determine the elements which are to be accessed.

5.5.3.2 Traversal-Stride

While the Bounding Box is iterating the tensor across a dimension, the traversal stride specifies the
exact number of elements to be skipped. If no jump over is required, default value of 1 must be spec-
ified.

The traversal stride in dimension 0 can be used for the Interleave layout. For non-interleaved layout,
the traversal stride in dimension 0 must always be 1.

Figure 5 illustrates tensor, tensor size, tensor stride, Bounding Box size and traversal stride.

5.5. Tensors 47

https://in.mathworks.com/help/images/ref/im2col.html

PTX ISA, Release 8.1

Figure 5: Tiled mode bounding box, tensor size and traversal stride

48 Chapter 5. State Spaces, Types, and Variables

PTX ISA, Release 8.1

5.5.3.3 Out of Boundary Access

PTX Tensor operation can detect and handle the case when the Bounding Box crosses the tensor
boundary in any dimension. There are 2 modes:

▶ Zero fill mode:

Elements in the Bounding Box which fall outside of the tensor boundary are set to 0.

▶ OOB-NaN fill mode:

Elements in the Bounding Box which fall outside of the tensor boundary are set to a special NaN
called OOB-NaN.

Figure 6 shows an example of the out of boundary access.

Figure 6: Out of boundary access

5.5. Tensors 49

PTX ISA, Release 8.1

5.5.4. Im2col mode

Im2col mode supports the following tensor dimensions : 3D, 4D and 5D. In this mode, the tensor data
is treated as a batch of images with the following properties:

▶ N : number of images in the batch

▶ D, H, W : size of a 3D image (depth, height and width)

▶ C: channels per image element

The above properties are associated with 3D, 4D and 5D tensors as follows:

Dimension N/D/H/W/C applicability

3D NWC

4D NHWC

5D NDHWC

5.5.4.1 Bounding Box

In im2col mode, the Bounding Box is defined in DHW space. Boundaries along other dimensions are
specified by Pixels-per-Column and Channels-per-Pixel parameters as described below.

The dimensionality of the Bounding Box is two less than the tensor dimensionality.

The following properties describe how to access of the elements in im2col mode:

▶ Bounding-Box Lower-Corner

▶ Bounding-Box Upper-Corner

▶ Pixels-per-Column

▶ Channels-per-Pixel

Bounding-box Lower-Corner and Bounding-box Upper-Corner specify the two opposite corners of the
Bounding Box in the DHW space. Bounding-box Lower-Corner specifies the corner with the smallest
coordinate and Bounding-box Upper-Corner specifies the corner with the largest coordinate.

Bounding-boxUpper- and Lower-Corners are 16-bit signed values whose limits varies across the dimen-
sions and are as shown below:

3D 4D 5D

Upper- / Lower- Corner sizes [-215, 215-1] [-27, 27-1] [-23, 23-1]

Figure 7 and Figure 8 show the Upper-Corners and Lower-Corners.

The Bounding-box Upper- and Lower- Corners specify only the boundaries and not the number of el-
ements to be accessed. Pixels-per-Column specifies the number of elements to be accessed in the
NDHW space.

Channels-per-Pixel specifies the number of elements to access across the C dimension.

The tensor coordinates, specified in the PTX tensor instructions, behaves differently in different di-
mensions:

50 Chapter 5. State Spaces, Types, and Variables

PTX ISA, Release 8.1

Figure 7: im2col mode bounding box example 1

5.5. Tensors 51

PTX ISA, Release 8.1

Figure 8: im2col mode bounding box example 2

52 Chapter 5. State Spaces, Types, and Variables

PTX ISA, Release 8.1

▶ Across N and C dimensions: specify the starting offsets along the dimension, similar to the tiled
mode.

▶ Across DHW dimensions: specify the location of the convolution filter base in the tensor space.
The filter corner location must be within the bounding box.

The im2col offsets, specified in the PTX tensor instructions in im2col mode, are added to the filter
base coordinates to determine the starting location in the tensor space from where the elements are
accessed.

The size of the im2col offsets varies across the dimensions and their valid ranges are as shown below:

3D 4D 5D

im2col offsets range [0, 216-1] [0, 28-1] [0, 24-1]

Following are some examples of the im2col mode accesses:

▶ Example 1 (Figure 9):

Tensor Size[0] = 64
Tensor Size[1] = 9
Tensor Size[2] = 14
Tensor Size[3] = 64
Pixels-per-Column = 64
channels-per-pixel = 8
Bounding-Box Lower-Corner W = -1
Bounding-Box Lower-Corner H = -1
Bounding-Box Upper-Corner W = -1
Bounding-Box Upper-Corner H = -1.

tensor coordinates = (7, 7, 4, 0)
im2col offsets : (0, 0)

▶ Example 2 (Figure 10):

Tensor Size[0] = 64
Tensor Size[1] = 9
Tensor Size[2] = 14
Tensor Size[3] = 64
Pixels-per-Column = 64
channels-per-pixel = 8
Bounding-Box Lower-Corner W = 0
Bounding-Box Lower-Corner H = 0
Bounding-Box Upper-Corner W = -2
Bounding-Box Upper-Corner H = -2

tensor coordinates = (7, 7, 4, 0)
im2col offsets: (2, 2)

5.5. Tensors 53

PTX ISA, Release 8.1

Figure 9: im2col mode example 1

54 Chapter 5. State Spaces, Types, and Variables

PTX ISA, Release 8.1

Figure 10: im2col mode example 2

5.5. Tensors 55

PTX ISA, Release 8.1

5.5.4.2 Traversal Stride

The traversal stride, in im2col mode, does not impact the total number of elements (or pixels) being
accessed unlike the tiled mode. Pixels-per-Column determines the total number of elements being
accessed, in im2col mode.

The number of elements traversed along the D, H and W dimensions is strided by the traversal stride
for that dimension.

The following example with Figure 11 illustrates accesse with traversal-strides:

Tensor Size[0] = 64
Tensor Size[1] = 8
Tensor Size[2] = 14
Tensor Size[3] = 64
Traversal Stride = 2
Pixels-per-Column = 32
channels-per-pixel = 16
Bounding-Box Lower-Corner W = -1
Bounding-Box Lower-Corner H = -1
Bounding-Box Upper-Corner W = -1
Bounding-Box Upper-Corner H = -1.
Tensor coordinates in the instruction = (7, 7, 5, 0)
Im2col offsets in the instruction : (1, 1)

Figure 11: im2col mode traversal stride example

56 Chapter 5. State Spaces, Types, and Variables

PTX ISA, Release 8.1

5.5.4.3 Out of Boundary Access

In im2col mode, when the number of requested pixels in NDHW space specified by Pixels-per-Column
exceeds the number of available pixels in the image batch then out-of-bounds access is performed.

Similar to tiled mode, zero fill or OOB-NaN fill can be performed based on the Fill-Mode specified.

5.5.5. Interleave layout

Tensor can be interleaved and the following interleave layouts are supported:

▶ No interleave (NDHWC)

▶ 8 byte interleave (NC/8DHWC8) : C8 utilizes 16 bytes in memory assuming 2B per channel.

▶ 16 byte interleave (NC/16HWC16) : C16 utilizes 32 bytes in memory assuming 4B per channel.

The C information is organized in slices where sequential C elements are grouped in 16 byte or 32 byte
quantities.

If the total number of channels is not a multiple of the number of channels per slice, then the last slice
must be padded with zeros to make it complete 16B or 32B slice.

Interleaved layouts are supported only for the dimensionalities : 3D, 4D and 5D.

5.5.6. Swizzling Modes

The layout of the data in the shared memory can be different to that of global memory, for access
performance reasons. The following describes various swizzling modes:

▶ No swizzle mode:

There is no swizzling in this mode and the destination data layout is exactly similar to the source
data layout.

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

… Pattern repeats …

▶ 32 byte swizzle mode:

The following table, where each elements (numbered cell) is 16 byte and the starting address is
256 bytes aligned, shows the pattern of the destination data layout:

0 1 2 3 4 5 6 7

1 0 3 2 5 4 7 6

… Pattern repeats …

Anexample of the 32byte swizzlemode forNC/(32B)HWC(32B) tensor of 1x2x10x10xC16dimen-
sion, with the innermost dimension holding slice of 16 channels with 2 byte/channel, is shown in
Figure 12.

5.5. Tensors 57

PTX ISA, Release 8.1

Figure 12: 32-byte swizzle mode example

Figure 13 shows the two fragments of the tensor : one for C/(32B) = 0 and another for C/(32B) =
1.

Figure 14 shows the destination data layout with 32 byte swizzling.

▶ 64 byte swizzle mode:

The following table, where each elements (numbered cell) is 16 byte and the starting address is
512 bytes aligned, shows the pattern of the destination data layout:

0 1 2 3 4 5 6 7

1 0 3 2 5 4 7 6

2 3 0 1 6 7 4 5

3 2 1 0 7 6 5 4

… Pattern repeats …

An example of the 64 byte swizzlemode for NHWC tensor of 1x10x10x64 dimension, with 2 bytes
/ channel and 32 channels, is shown in Figure 15.

Each colored cell represents 8 channels. Figure 16 shows the source data layout.

Figure 17 shows the destination data layout with 64 byte swizzling.

▶ 128 byte swizzle mode:

The following table, where each elements (numbered cell) is 16 byte and the starting address is
1024 bytes aligned, shows the pattern of the destination data layout:

58 Chapter 5. State Spaces, Types, and Variables

PTX ISA, Release 8.1

Figure 13: 32-byte swizzle mode fragments

5.5. Tensors 59

PTX ISA, Release 8.1

Figure 14: 32-byte swizzle mode destination data layout

60 Chapter 5. State Spaces, Types, and Variables

PTX ISA, Release 8.1

Figure 15: 64-byte swizzle mode example

0 1 2 3 4 5 6 7

1 0 3 2 5 4 7 6

2 3 0 1 6 7 4 5

3 2 1 0 7 6 5 4

4 5 6 7 0 1 2 3

5 4 7 6 1 0 3 2

6 7 4 5 2 3 0 1

… Pattern repeats …

An example of the 128 byte swizzle mode for NHWC tensor of 1x10x10x64 dimension, with 2
bytes / channel and 64 channels, is shown in Figure 18.

Each colored cell represents 8 channels. Figure 19 shows the source data layout.

Figure 20 shows the destination data layout with 128 byte swizzling.

5.5. Tensors 61

PTX ISA, Release 8.1

Figure 16: 64-byte swizzle mode source data layout

62 Chapter 5. State Spaces, Types, and Variables

PTX ISA, Release 8.1

Figure 17: 64-byte swizzle mode destination data layout

5.5. Tensors 63

PTX ISA, Release 8.1

Figure 18: 128-byte swizzle mode example

5.5.7. Tensor-map

The tensor-map is a 128-byte opaque object either in .const space or .param (kernel function pa-
rameter) space which describes the tensor properties and the access properties of the tensor data
described in previous sections.

Tensor-Map can be created using CUDA APIs. Refer to CUDA programming guide for more details.

64 Chapter 5. State Spaces, Types, and Variables

PTX ISA, Release 8.1

Figure 19: 128-byte swizzle mode source data layout

5.5. Tensors 65

PTX ISA, Release 8.1

Figure 20: 128-byte swizzle mode destination data layout

66 Chapter 5. State Spaces, Types, and Variables

Chapter 6. Instruction Operands

6.1. Operand Type Information

All operands in instructions have a known type from their declarations. Each operand type must be
compatible with the type determined by the instruction template and instruction type. There is no
automatic conversion between types.

The bit-size type is compatible with every type having the same size. Integer types of a common
size are compatible with each other. Operands having type different from but compatible with the
instruction type are silently cast to the instruction type.

6.2. Source Operands

The source operands are denoted in the instruction descriptions by the names a, b, and c. PTX de-
scribes a load-store machine, so operands for ALU instructions must all be in variables declared in the
.reg register state space. For most operations, the sizes of the operands must be consistent.

The cvt (convert) instruction takes a variety of operand types and sizes, as its job is to convert from
nearly any data type to any other data type (and size).

The ld, st, mov, and cvt instructions copy data from one location to another. Instructions ld and
st move data from/to addressable state spaces to/from registers. The mov instruction copies data
between registers.

Most instructions have an optional predicate guard that controls conditional execution, and a few
instructions have additional predicate source operands. Predicate operands are denoted by the names
p, q, r, s.

6.3. Destination Operands

PTX instructions that produce a single result store the result in the field denoted by d (for destination)
in the instruction descriptions. The result operand is a scalar or vector variable in the register state
space.

67

PTX ISA, Release 8.1

6.4. Using Addresses, Arrays, and Vectors

Using scalar variables as operands is straightforward. The interesting capabilities begin with ad-
dresses, arrays, and vectors.

6.4.1. Addresses as Operands

All the memory instructions take an address operand that specifies the memory location being ac-
cessed. This addressable operand is one of:

[var] the name of an addressable variable var.

[reg] an integer or bit-size type register reg containing a byte address.

[reg+immOff] a sum of register reg containing a byte address plus a constant integer byte offset
(signed, 32-bit).

[var+immOff] a sum of address of addressable variable var containing a byte address plus a con-
stant integer byte offset (signed, 32-bit).

[immAddr] an immediate absolute byte address (unsigned, 32-bit).

var[immOff] an array element as described in Arrays as Operands.

The register containing an address may be declared as a bit-size type or integer type.

The access size of amemory instruction is the total number of bytes accessed inmemory. For example,
the access size of ld.v4.b32 is 16 bytes, while the access size of atom.f16x2 is 4 bytes.

The address must be naturally aligned to a multiple of the access size. If an address is not properly
aligned, the resulting behavior is undefined. For example, among other things, the accessmay proceed
by silently masking off low-order address bits to achieve proper rounding, or the instruction may fault.

The address size may be either 32-bit or 64-bit. Addresses are zero-extended to the specified width
as needed, and truncated if the register width exceeds the state space address width for the target
architecture.

Address arithmetic is performed using integer arithmetic and logical instructions. Examples include
pointer arithmetic and pointer comparisons. All addresses and address computations are byte-based;
there is no support for C-style pointer arithmetic.

The mov instruction can be used to move the address of a variable into a pointer. The address is an
offset in the state space in which the variable is declared. Load and store operations move data be-
tween registers and locations in addressable state spaces. The syntax is similar to that used in many
assembly languages, where scalar variables are simply named and addresses are de-referenced by
enclosing the address expression in square brackets. Address expressions include variable names, ad-
dress registers, address register plus byte offset, and immediate address expressions which evaluate
at compile-time to a constant address.

Here are a few examples:

.shared .u16 x;

.reg .u16 r0;

.global .v4 .f32 V;

.reg .v4 .f32 W;

.const .s32 tbl[256];

.reg .b32 p;
(continues on next page)

68 Chapter 6. Instruction Operands

PTX ISA, Release 8.1

(continued from previous page)

.reg .s32 q;

ld.shared.u16 r0,[x];
ld.global.v4.f32 W, [V];
ld.const.s32 q, [tbl+12];
mov.u32 p, tbl;

6.4.1.1 Generic Addressing

If a memory instruction does not specify a state space, the operation is performed using generic ad-
dressing. The state spaces .const, Kernel Function Parameters (.param), .local and .shared are
modeled as windows within the generic address space. Each window is defined by a window base and
a window size that is equal to the size of the corresponding state space. A generic address maps to
global memory unless it falls within the window for const, local, or shared memory. The Kernel
Function Parameters (.param) window is contained within the .global window. Within each window,
a generic address maps to an address in the underlying state space by subtracting the window base
from the generic address.

6.4.2. Arrays as Operands

Arrays of all types can be declared, and the identifier becomes an address constant in the space where
the array is declared. The size of the array is a constant in the program.

Array elements can be accessed using an explicitly calculated byte address, or by indexing into the ar-
ray using square-bracket notation. The expression within square brackets is either a constant integer,
a register variable, or a simple register with constant offset expression, where the offset is a constant
expression that is either added or subtracted from a register variable. If more complicated indexing is
desired, it must be written as an address calculation prior to use. Examples are:

ld.global.u32 s, a[0];
ld.global.u32 s, a[N-1];
mov.u32 s, a[1]; ∕∕ move address of a[1] into s

6.4.3. Vectors as Operands

Vector operands are supported by a limited subset of instructions, which include mov, ld, st, atom,
red and tex. Vectors may also be passed as arguments to called functions.

Vector elements can be extracted from the vector with the suffixes .x, .y, .z and .w, as well as the
typical color fields .r, .g, .b and .a.

A brace-enclosed list is used for pattern matching to pull apart vectors.

.reg .v4 .f32 V;

.reg .f32 a, b, c, d;

mov.v4.f32 {a,b,c,d}, V;

6.4. Using Addresses, Arrays, and Vectors 69

PTX ISA, Release 8.1

Vector loads and stores can be used to implement wide loads and stores, which may improve memory
performance. The registers in the load/store operations can be a vector, or a brace-enclosed list of
similarly typed scalars. Here are examples:

ld.global.v4.f32 {a,b,c,d}, [addr+16];
ld.global.v2.u32 V2, [addr+8];

Elements in a brace-enclosed vector, say {Ra, Rb, Rc, Rd}, correspond to extracted elements as follows:

Ra = V.x = V.r
Rb = V.y = V.g
Rc = V.z = V.b
Rd = V.w = V.a

6.4.4. Labels and Function Names as Operands

Labels and function names can be used only in bra/brx.idx and call instructions respectively. Func-
tion names can be used in mov instruction to get the address of the function into a register, for use in
an indirect call.

Beginning in PTX ISA version 3.1, the mov instruction may be used to take the address of kernel func-
tions, to be passed to a system call that initiates a kernel launch from the GPU. This feature is part of
the support for CUDA Dynamic Parallelism. See the CUDA Dynamic Parallelism Programming Guide for
details.

6.5. Type Conversion

All operands to all arithmetic, logic, and datamovement instructionmust be of the same type and size,
except for operations where changing the size and/or type is part of the definition of the instruction.
Operands of different sizes or types must be converted prior to the operation.

6.5.1. Scalar Conversions

Table 13 shows what precision and format the cvt instruction uses given operands of differing types.
For example, if a cvt.s32.u16 instruction is given a u16 source operand and s32 as a destination
operand, the u16 is zero-extended to s32.

Conversions to floating-point that are beyond the range of floating-point numbers are represented
with the maximum floating-point value (IEEE 754 Inf for f32 and f64, and ~131,000 for f16).

70 Chapter 6. Instruction Operands

PTX ISA, Release 8.1

Table 13: Convert Instruction Precision and Format

Destination Format

s8 s16 s32 s64 u8 u16 u32 u64 f16 f32 f64

Source
For-
mat

s8 – sext sext sext – sext sext sext s2f s2f s2f

s16 chop1 – sext sext chop1 – sext sext s2f s2f s2f

s32 chop1 chop1 – sext chop1 chop1 – sext s2f s2f s2f

s64 chop1 chop1 chop – chop1 chop1 chop – s2f s2f s2f

u8 – zext zext zext – zext zext zext u2f u2f u2f

u16 chop1 – zext zext chop1 – zext zext u2f u2f u2f

u32 chop1 chop1 – zext chop1 chop1 – zext u2f u2f u2f

u64 chop1 chop1 chop – chop1 chop1 chop – u2f u2f u2f

f16 f2s f2s f2s f2s f2u f2u f2u f2u – f2f f2f

f32 f2s f2s f2s f2s f2u f2u f2u f2u f2f – f2f

f64 f2s f2s f2s f2s f2u f2u f2u f2u f2f f2f –

Notes sext = sign-extend; zext = zero-extend; chop = keep only low bits that fit;
s2f = signed-to-float; f2s = float-to-signed; u2f = unsigned-to-float;
f2u = float-to-unsigned; f2f = float-to-float.
1 If the destination register is wider than the destination format, the result is ex-
tended to the destination register width after chopping. The type of extension (sign
or zero) is based on the destination format. For example, cvt.s16.u32 targeting a
32-bit register first chops to 16-bit, then sign-extends to 32-bit.

6.5.2. Rounding Modifiers

Conversion instructions may specify a roundingmodifier. In PTX, there are four integer roundingmod-
ifiers and four floating-point rounding modifiers. Table 14 and Table 15 summarize the rounding mod-
ifiers.

Table 14: Floating-Point Rounding Modifiers

Modifier Description

.rn mantissa LSB rounds to nearest even

.rna mantissa LSB rounds to nearest, ties away from zero

.rz mantissa LSB rounds towards zero

.rm mantissa LSB rounds towards negative infinity

.rp mantissa LSB rounds towards positive infinity

6.5. Type Conversion 71

PTX ISA, Release 8.1

Table 15: Integer Rounding Modifiers

Modifier Description

.rni round to nearest integer, choosing even integer if source is equidistant between
two integers.

.rzi round to nearest integer in the direction of zero

.rmi round to nearest integer in direction of negative infinity

.rpi round to nearest integer in direction of positive infinity

6.6. Operand Costs

Operands from different state spaces affect the speed of an operation. Registers are fastest, while
global memory is slowest. Much of the delay to memory can be hidden in a number of ways. The first
is to have multiple threads of execution so that the hardware can issue a memory operation and then
switch to other execution. Another way to hide latency is to issue the load instructions as early as pos-
sible, as execution is not blocked until the desired result is used in a subsequent (in time) instruction.
The register in a store operation is available much more quickly. Table 16 gives estimates of the costs
of using different kinds of memory.

Table 16: Cost Estimates for Accessing State-Spaces

Space Time Notes

Register 0

Shared 0

Constant 0 Amortized cost is low, first access is high

Local > 100 clocks

Parameter 0

Immediate 0

Global > 100 clocks

Texture > 100 clocks

Surface > 100 clocks

72 Chapter 6. Instruction Operands

Chapter 7. Abstracting the ABI

Rather than expose details of a particular calling convention, stack layout, and Application Binary In-
terface (ABI), PTX provides a slightly higher-level abstraction and supports multiple ABI implemen-
tations. In this section, we describe the features of PTX needed to achieve this hiding of the ABI.
These include syntax for function definitions, function calls, parameter passing, support for variadic
functions (varargs), and memory allocated on the stack (alloca).

Refer to PTXWriters Guide to Interoperability for details on generating PTX compliant with Application
Binary Interface (ABI) for the CUDA® architeture.

7.1. Function Declarations and Definitions

In PTX, functions are declared and defined using the .func directive. A function declaration specifies
an optional list of return parameters, the function name, and an optional list of input parameters;
together these specify the function’s interface, or prototype. A function definition specifies both the
interface and the body of the function. A function must be declared or defined prior to being called.

The simplest function has no parameters or return values, and is represented in PTX as follows:

.func foo
{

...
ret;

}

...
call foo;
...

Here, execution of the call instruction transfers control to foo, implicitly saving the return address.
Execution of the ret instruction within foo transfers control to the instruction following the call.

Scalar and vector base-type input and return parameters may be represented simply as register vari-
ables. At the call, arguments may be register variables or constants, and return values may be placed
directly into register variables. The arguments and return variables at the call must have type and size
that match the callee’s corresponding formal parameters.

Example

.func (.reg .u32 %res) inc_ptr (.reg .u32 %ptr, .reg .u32 %inc)
{

add.u32 %res, %ptr, %inc;
(continues on next page)

73

PTX ISA, Release 8.1

(continued from previous page)

ret;
}

...
call (%r1), inc_ptr, (%r1,4);
...

When using the ABI, .reg state space parameters must be at least 32-bits in size. Subword scalar
objects in the source language should be promoted to 32-bit registers in PTX, or use .param state
space byte arrays described next.

Objects such as C structures and unions are flattened into registers or byte arrays in PTX and are
represented using .param space memory. For example, consider the following C structure, passed by
value to a function:

struct {
double dbl;
char c[4];

};

In PTX, this structure will be flattened into a byte array. Since memory accesses are required to be
aligned to amultiple of the access size, the structure in this example will be a 12 byte array with 8 byte
alignment so that accesses to the .f64 field are aligned. The .param state space is used to pass the
structure by value:

Example

.func (.reg .s32 out) bar (.reg .s32 x, .param .align 8 .b8 y[12])
{

.reg .f64 f1;

.reg .b32 c1, c2, c3, c4;

...
ld.param.f64 f1, [y+0];
ld.param.b8 c1, [y+8];
ld.param.b8 c2, [y+9];
ld.param.b8 c3, [y+10];
ld.param.b8 c4, [y+11];
...
... ∕∕ computation using x,f1,c1,c2,c3,c4;

}

{
.param .b8 .align 8 py[12];
...
st.param.b64 [py+ 0], %rd;
st.param.b8 [py+ 8], %rc1;
st.param.b8 [py+ 9], %rc2;
st.param.b8 [py+10], %rc1;
st.param.b8 [py+11], %rc2;
∕∕ scalar args in .reg space, byte array in .param space
call (%out), bar, (%x, py);
...

In this example, note that .param space variables are used in two ways. First, a .param variable y
is used in function definition bar to represent a formal parameter. Second, a .param variable py is
declared in the body of the calling function and used to set up the structure being passed to bar.

The following is a conceptual way to think about the .param state space use in device functions.

74 Chapter 7. Abstracting the ABI

PTX ISA, Release 8.1

For a caller,

▶ The .param state space is used to set values that will be passed to a called function and/or to
receive return values from a called function. Typically, a .param byte array is used to collect
together fields of a structure being passed by value.

For a callee,

▶ The .param state space is used to receive parameter values and/or pass return values back to
the caller.

The following restrictions apply to parameter passing.

For a caller,

▶ Arguments may be .param variables, .reg variables, or constants.

▶ In the case of .param space formal parameters that are byte arrays, the argument must also be
a .param space byte array with matching type, size, and alignment. A .param argument must
be declared within the local scope of the caller.

▶ In the case of .param space formal parameters that are base-type scalar or vector variables, the
corresponding argument may be either a .param or .reg space variable with matching type and
size, or a constant that can be represented in the type of the formal parameter.

▶ In the case of .reg space formal parameters, the corresponding argument may be either a .
param or .reg space variable of matching type and size, or a constant that can be represented
in the type of the formal parameter.

▶ In the case of .reg space formal parameters, the register must be at least 32-bits in size.

▶ All st.param instructions used for passing arguments to function call must immediately precede
the corresponding call instruction and ld.param instruction used for collecting return value
must immediately follow the call instruction without any control flow alteration. st.param and
ld.param instructions used for argument passing cannot be predicated. This enables compiler
optimization and ensures that the .param variable does not consume extra space in the caller’s
frame beyond that needed by the ABI. The .param variable simply allows a mapping to be made
at the call site between data that may be in multiple locations (e.g., structure being manipulated
by caller is located in registers and memory) to something that can be passed as a parameter or
return value to the callee.

For a callee,

▶ Input and return parameters may be .param variables or .reg variables.

▶ Parameters in .parammemory must be aligned to a multiple of 1, 2, 4, 8, or 16 bytes.

▶ Parameters in the .reg state space must be at least 32-bits in size.

▶ The .reg state space can be used to receive and return base-type scalar and vector values, in-
cluding sub-word size objectswhen compiling in non-ABImode. Supporting the .reg state space
provides legacy support.

Note that the choice of .reg or .param state space for parameter passing has no impact on whether
the parameter is ultimately passed in physical registers or on the stack. Themapping of parameters to
physical registers and stack locations depends on the ABI definition and the order, size, and alignment
of parameters.

7.1. Function Declarations and Definitions 75

PTX ISA, Release 8.1

7.1.1. Changes from PTX ISA Version 1.x

In PTX ISA version 1.x, formal parameters were restricted to .reg state space, and there was no sup-
port for array parameters. Objects such as C structures were flattened and passed or returned using
multiple registers. PTX ISA version 1.x supports multiple return values for this purpose.

Beginning with PTX ISA version 2.0, formal parameters may be in either .reg or .param state space,
and .param space parameters support arrays. For targets sm_20 or higher, PTX restricts functions to
a single return value, and a .param byte array should be used to return objects that do not fit into a
register. PTX continues to support multiple return registers for sm_1x targets.

Note: PTX implements a stack-based ABI only for targets sm_20 or higher.

PTX ISA versions prior to 3.0 permitted variables in .reg and .local state spaces to be defined at
module scope. When compiling to use the ABI, PTX ISA version 3.0 and later disallows module-scoped
.reg and .local variables and restricts their use to within function scope. When compiling without
use of the ABI, module-scoped .reg and .local variables are supported as before. When compiling
legacy PTX code (ISA versions prior to 3.0) containing module-scoped .reg or .local variables, the
compiler silently disables use of the ABI.

7.2. Variadic Functions

Note: Support for variadic functions which was unimplemented has been removed from the spec.

PTX version 6.0 supports passing unsized array parameter to a function which can be used to imple-
ment variadic functions.

Refer to Kernel and Function Directives: .func for details

7.3. Alloca

PTX provides alloca instruction for allocating storage at runtime on the per-thread local memory
stack. The allocated stack memory can be accessed with ld.local and st.local instructions using
the pointer returned by alloca.

In order to facilitate deallocation of memory allocated with alloca, PTX provides two additional in-
structions: stacksave which allows reading the value of stack pointer in a local variable, and stack-
restore which can restore the stack pointer with the saved value.

alloca, stacksave, and stackrestore instructions are described in StackManipulation Instructions.

Preview Feature: Stack manipulation instructions alloca, stacksave and stackrestore are pre-
view features in PTX ISA version 7.3. All details are subject to change with no guarantees of
backward compatibility on future PTX ISA versions or SM architectures.

76 Chapter 7. Abstracting the ABI

Chapter 8. Memory Consistency Model

In multi-threaded executions, the side-effects of memory operations performed by each thread be-
come visible to other threads in a partial and non-identical order. This means that any two operations
may appear to happen in no order, or in different orders, to different threads. The axioms introduced
by the memory consistency model specify exactly which contradictions are forbidden between the
orders observed by different threads.

In the absence of any constraint, each read operation returns the value committed by some write op-
eration to the same memory location, including the initial write to that memory location. The memory
consistencymodel effectively constrains the set of such candidate writes fromwhich a read operation
can return a value.

8.1. Scope and applicability of the model

The constraints specified under this model apply to PTX programs with any PTX ISA version number,
running on sm_70 or later architectures.

The memory consistency model does not apply to texture (including ld.global.nc) and surface ac-
cesses.

8.1.1. Limitations on atomicity at system scope

When communicating with the host CPU, the 64-bit strong operations with system scope may not be
performed atomically on some systems. For more details on atomicity guarantees to host memory,
see the CUDA Programming Guide.

8.2. Memory operations

The fundamental storage unit in the PTX memory model is a byte, consisting of 8 bits. Each state
space available to a PTX program is a sequence of contiguous bytes in memory. Every byte in a PTX
state space has a unique address relative to all threads that have access to the same state space.

Each PTXmemory instruction specifies an address operand and a data type. The address operand con-
tains a virtual address that gets converted to a physical address during memory access. The physical
address and the size of the data type together define a physical memory location, which is the range
of bytes starting from the physical address and extending up to the size of the data type in bytes.

77

PTX ISA, Release 8.1

The memory consistency model specification uses the terms “address” or “memory address” to indi-
cate a virtual address, and the term “memory location” to indicate a physical memory location.

Each PTX memory instruction also specifies the operation — either a read, a write or an atomic read-
modify-write — to be performed on all the bytes in the corresponding memory location.

8.2.1. Overlap

Twomemory locations are said to overlap when the starting address of one location is within the range
of bytes constituting the other location. Twomemory operations are said to overlap when they specify
the same virtual address and the corresponding memory locations overlap. The overlap is said to be
complete when both memory locations are identical, and it is said to be partial otherwise.

8.2.2. Aliases

Two distinct virtual addresses are said to be aliases if they map to the same memory location.

8.2.3. Multimem Addresses

A multimem address is a virtual address which points to multiple distinct memory locations across
devices.

Only multimem.* operations are valid on multimem addresses. That is, the behavior of accessing a
multimem address in any other memory operation is undefined.

8.2.4. Memory Operations on Vector Data Types

The memory consistency model relates operations executed on memory locations with scalar data
types, which have a maximum size and alignment of 64 bits. Memory operations with a vector data
type are modelled as a set of equivalent memory operations with a scalar data type, executed in an
unspecified order on the elements in the vector.

8.2.5. Memory Operations on Packed Data Types

A packed data type consists of two values of the same scalar data type, as described in Packed Data
Types. These values are accessed in adjacent memory locations. A memory operation on a packed
data type is modelled as a pair of equivalent memory operations on the scalar data type, executed in
an unspecified order on each element of the packed data.

78 Chapter 8. Memory Consistency Model

PTX ISA, Release 8.1

8.2.6. Initialization

Each byte in memory is initialized by a hypothetical write W0 executed before starting any thread in
the program. If the byte is included in a program variable, and that variable has an initial value, thenW0
writes the corresponding initial value for that byte; else W0 is assumed to have written an unknown
but constant value to the byte.

8.3. State spaces

The relations defined in thememory consistencymodel are independent of state spaces. In particular,
causality order closes over all memory operations across all the state spaces. But the side-effect of a
memory operation in one state space can be observed directly only by operations that also have access
to the same state space. This further constrains the synchronizing effect of a memory operation in
addition to scope. For example, the synchronizing effect of the PTX instruction ld.relaxed.shared.
sys is identical to that of ld.relaxed.shared.cluster, since no thread outside the same cluster
can execute an operation that accesses the same memory location.

8.4. Operation types

For simplicity, the rest of the document refers to the following operation types, instead of mentioning
specific instructions that give rise to them.

Table 17: Operation Types

Operation Type Instruction/Operation

atomic operation atom or red instruction.

read operation All variants of ld instruction and atom instruction (but not red instruc-
tion).

write operation All variants of st instruction, and atomic operations if they result in a write.

memory operation A read or write operation.

volatile operation An instruction with .volatile qualifier.

acquire operation Amemory operation with .acquire or .acq_rel qualifier.

release operation Amemory operation with .release or .acq_rel qualifier.

memory fence opera-
tion

A membar, fence.sc or fence.acq_rel instruction.

proxy fence operation A fence.proxy or a membar.proxy instruction.

strong operation A memory fence operation, or a memory operation with a .relaxed, .
acquire, .release, .acq_rel or .volatile qualifier.

weak operation An ld or st instruction with a .weak qualifier.

synchronizing opera-
tion

A barrier instruction, fence operation, release operation or acquire oper-
ation.

8.3. State spaces 79

PTX ISA, Release 8.1

8.5. Scope

Each strong operation must specify a scope, which is the set of threads that may interact directly with
that operation and establish any of the relations described in the memory consistency model. There
are four scopes:

Table 18: Scopes

Scope Description

.cta The set of all threads executing in the same CTA as the current thread.

.cluster The set of all threads executing in the same cluster as the current thread.

.gpu The set of all threads in the current program executing on the same compute
device as the current thread. This also includes other kernel grids invoked by
the host program on the same compute device.

.sys The set of all threads in the current program, including all kernel grids invoked
by the host program on all compute devices, and all threads constituting the
host program itself.

Note that the warp is not a scope; the CTA is the smallest collection of threads that qualifies as a scope
in the memory consistency model.

8.6. Proxies

A memory proxy, or a proxy is an abstract label applied to a method of memory access. When two
memory operations use distinct methods of memory access, they are said to be different proxies.

Memory operations as defined in Operation types use genericmethod of memory access, i.e. a generic
proxy. Other operations such as textures and surfaces all use distinct methods of memory access,
also distinct from the genericmethod.

A proxy fence is required to synchronize memory operations across different proxies. Although virtual
aliases use the genericmethod of memory access, since using distinct virtual addresses behaves as if
using different proxies, they require a proxy fence to establish memory ordering.

8.7. Morally strong operations

Two operations are said to be morally strong relative to each other if they satisfy all of the following
conditions:

1. The operations are related in program order (i.e, they are both executed by the same thread),
or each operation is strong and specifies a scope that includes the thread executing the other
operation.

2. Both operations are performed via the same proxy.

3. If both are memory operations, then they overlap completely.

80 Chapter 8. Memory Consistency Model

PTX ISA, Release 8.1

Most (but not all) of the axioms in thememory consistencymodel depend on relations betweenmorally
strong operations.

8.7.1. Conflict and Data-races

Two overlappingmemory operations are said to conflict when at least one of them is a write.

Two conflictingmemory operations are said to be in a data-race if they are not related in causality order
and they are notmorally strong.

8.7.2. Limitations on Mixed-size Data-races

A data-race between operations that overlap completely is called a uniform-size data-race, while a data-
race between operations that overlap partially is called amixed-size data-race.

The axioms in the memory consistency model do not apply if a PTX program contains one or more
mixed-size data-races. But these axioms are sufficient to describe the behavior of a PTX program with
only uniform-size data-races.

Atomicity of mixed-size RMW operations

In any program with or without mixed-size data-races, the following property holds for every pair of
overlapping atomic operations A1 and A2 such that each specifies a scope that includes the other: Ei-
ther the read-modify-write operation specified by A1 is performed completely before A2 is initiated, or
vice versa. This property holds irrespective of whether the two operations A1 and A2 overlap partially
or completely.

8.8. Release and Acquire Patterns

Some sequences of instructions give rise to patterns that participate in memory synchronization as
described later. The release pattern makes prior operations from the current thread1 visible to some
operations from other threads. The acquire patternmakes some operations from other threads visible
to later operations from the current thread.

A release pattern on a location M consists of one of the following:

1. A release operation on M

E.g.: st.release [M]; or atom.acq_rel [M]; or mbarrier.arrive.release [M];

2. Or a release operation on M followed by a strong write on M in program order

E.g.: st.release [M]; st.relaxed [M];

3. Or amemory fence followed by a strong write on M in program order

E.g.: fence; st.relaxed [M];

Anymemory synchronization established by a release pattern only affects operations occurring in pro-
gram order before the first instruction in that pattern.

An acquire pattern on a location M consists of one of the following:

8.8. Release and Acquire Patterns 81

PTX ISA, Release 8.1

1. An acquire operation on M

E.g.: ld.acquire [M]; or atom.acq_rel [M]; or mbarrier.test_wait.acquire [M];

2. Or a strong read on M followed by an acquire operation on M in program order

E.g.: ld.relaxed [M]; ld.acquire [M];

3. Or a strong read on M followed by amemory fence in program order

E.g.: ld.relaxed [M]; fence;

Any memory synchronization established by an acquire pattern only affects operations occurring in
program order after the last instruction in that pattern.
1 For both release and acquire patterns, this effect is further extended to operations in other threads
through the transitive nature of causality order.

8.9. Ordering of memory operations

The sequence of operations performed by each thread is captured as programorderwhilememory syn-
chronization across threads is captured as causality order. The visibility of the side-effects of memory
operations to other memory operations is captured as communication order. The memory consistency
model defines contradictions that are disallowed between communication order on the one hand, and
causality order and program order on the other.

8.9.1. Program Order

The program order relates all operations performed by a thread to the order in which a sequential
processor will execute instructions in the corresponding PTX source. It is a transitive relation that
forms a total order over the operations performed by the thread, but does not relate operations from
different threads.

8.9.1.1 Asynchronous Operations

Some PTX instructions (all variants of cp.async, cp.async.bulk, cp.reduce.async.bulk, wgmma.
mma_async) perform operations that are asynchronous to the thread that executed the instruction.
These asynchronous operations are ordered after prior instructions in the same thread (except in the
case of wgmma.mma_async), but they are not part of the program order for that thread. Instead, they
provide weaker ordering guarantees as documented in the instruction description.

For example, the loads and stores performed as part of a cp.async are ordered with respect to each
other, but not to those of any other cp.async instructions initiated by the same thread, nor any other
instruction subsequently issued by the thread with the exception of cp.async.commit_group or
cp.async.mbarrier.arrive. The asynchronous mbarrier arrive-on operation performed by a cp.
async.mbarrier.arrive instruction is ordered with respect to the memory operations performed
by all prior cp.async operations initiated by the same thread, but not to those of any other instruction
issued by the thread. The implicit mbarrier complete-tx operation that is part of all variants of cp.
async.bulk and cp.reduce.async.bulk instructions is ordered only with respect to the memory
operations performed by the same asynchronous instruction, and in particular it does not transitively
establish ordering with respect to prior instructions from the issuing thread.

82 Chapter 8. Memory Consistency Model

PTX ISA, Release 8.1

8.9.2. Observation Order

Observation order relates a write W to a read R through an optional sequence of atomic read-modify-
write operations.

A write W precedes a read R in observation order if:

1. R and W aremorally strong and R reads the value written by W, or

2. For some atomic operation Z, W precedes Z and Z precedes R in observation order.

8.9.3. Fence-SC Order

The Fence-SC order is an acyclic partial order, determined at runtime, that relates every pair ofmorally
strong fence.sc operations.

8.9.4. Memory synchronization

Synchronizing operations performed by different threads synchronize with each other at runtime as
described here. The effect of such synchronization is to establish causality order across threads.

1. A fence.sc operation X synchronizes with a fence.sc operation Y if X precedes Y in the Fence-SC
order.

2. A bar{.cta}.sync or bar{.cta}.red or bar{.cta}.arrive operation synchronizes with a bar{.cta}.sync or
bar{.cta}.red operation executed on the same barrier.

3. A barrier.cluster.arrive operation synchronizes with a barrier.cluster.wait opera-
tion.

4. A release pattern X synchronizes with an acquire pattern Y, if a write operation in X precedes a
read operation in Y in observation order, and the first operation in X and the last operation in Y
aremorally strong.

API synchronization

A synchronizes relation can also be established by certain CUDA APIs.

1. Completion of a task enqueued in a CUDA stream synchronizes with the start of the following
task in the same stream, if any.

2. For purposes of the above, recording or waiting on a CUDA event in a stream, or causing a cross-
stream barrier to be inserted due to cudaStreamLegacy, enqueues tasks in the associated
streams even if there are no direct side effects. An event record task synchronizeswithmatching
event wait tasks, and a barrier arrival task synchronizes with matching barrier wait tasks.

3. Start of a CUDA kernel synchronizes with start of all threads in the kernel. End of all threads in a
kernel synchronize with end of the kernel.

4. Start of a CUDA graph synchronizes with start of all source nodes in the graph. Completion of all
sink nodes in a CUDA graph synchronizes with completion of the graph. Completion of a graph
node synchronizes with start of all nodes with a direct dependency.

5. Start of a CUDA API call to enqueue a task synchronizes with start of the task.

8.9. Ordering of memory operations 83

PTX ISA, Release 8.1

6. Completion of the last task queued to a stream, if any, synchronizes with return from cudaS-
treamSynchronize. Completion of the most recently queued matching event record task, if
any, synchronizes with return from cudaEventSynchronize. Synchronizing a CUDA device or
context behaves as if synchronizing all streams in the context, including ones that have been
destroyed.

7. Returning cudaSuccess from an API to query a CUDA handle, such as a stream or event, behaves
the same as return from the matching synchronization API.

In addition to establishing a synchronizes relation, the CUDA API synchronization mechanisms above
also participate in proxy-preserved base causality order.

8.9.5. Causality Order

Causality order captures howmemory operations become visible across threads through synchronizing
operations. The axiom “Causality” uses this order to constrain the set of write operations from which
a read operation may read a value.

Relations in the causality order primarily consist of relations in Base causality order1 , which is a transi-
tive order, determined at runtime.

Base causality order

An operation X precedes an operation Y in base causality order if:

1. X precedes Y in program order, or

2. X synchronizes with Y, or

3. For some operation Z,

a. X precedes Z in program order and Z precedes Y in base causality order, or

b. X precedes Z in base causality order and Z precedes Y in program order, or

c. X precedes Z in base causality order and Z precedes Y in base causality order.

Proxy-preserved base causality order

A memory operation X precedes a memory operation Y in proxy-preserved base causality order if X
precedes Y in base causality order, and:

1. X and Y are performed to the same address, using the generic proxy, or

2. X and Y are performed to the same address, using the same proxy, and by the same thread block,
or

3. X and Y are aliases and there is an alias proxy fence along the base causality path from X to Y.

Causality order

Causality order combines base causality order with some non-transitive relations as follows:

An operation X precedes an operation Y in causality order if:

1. X precedes Y in proxy-preserved base causality order, or

2. For some operation Z, X precedes Z in observation order, and Z precedes Y in proxy-preserved
base causality order.

1 The transitivity of base causality order accounts for the “cumulativity” of synchronizing operations.

84 Chapter 8. Memory Consistency Model

PTX ISA, Release 8.1

8.9.6. Coherence Order

There exists a partial transitive order that relates overlappingwrite operations, determined at runtime,
called the coherence order1. Two overlappingwrite operations are related in coherence order if they are
morally strong or if they are related in causality order. Two overlappingwrites are unrelated in coherence
order if they are in a data-race, which gives rise to the partial nature of coherence order.
1 Coherence order cannot be observed directly since it consists entirely of write operations. It may be
observed indirectly by its use in constraining the set of candidate writes that a read operation may
read from.

8.9.7. Communication Order

The communication order is a non-transitive order, determined at runtime, that relateswrite operations
to other overlappingmemory operations.

1. A write W precedes an overlapping read R in communication order if R returns the value of any
byte that was written by W.

2. A write W precedes a write W’ in communication order if W precedes W’ in coherence order.

3. A read R precedes an overlapping write W in communication order if, for any byte accessed by
both R and W, R returns the value written by a write W’ that precedes W in coherence order.

Communication order captures the visibility of memory operations — when a memory operation X1
precedes a memory operation X2 in communication order, X1 is said to be visible to X2.

8.10. Axioms

8.10.1. Coherence

If a write W precedes an overlapping write W’ in causality order, then Wmust precede W’ in coherence
order.

8.10.2. Fence-SC

Fence-SC order cannot contradict causality order. For a pair of morally strong fence.sc operations F1
and F2, if F1 precedes F2 in causality order, then F1 must precede F2 in Fence-SC order.

8.10. Axioms 85

PTX ISA, Release 8.1

8.10.3. Atomicity

Single-Copy Atomicity

Conflicting morally strong operations are performed with single-copy atomicity. When a read R and
a write W are morally strong, then the following two communications cannot both exist in the same
execution, for the set of bytes accessed by both R and W:

1. R reads any byte from W.

2. R reads any byte from any write W’ which precedes W in coherence order.

Atomicity of read-modify-write (RMW) operations

When an atomic operation A and a write W overlap and are morally strong, then the following two
communications cannot both exist in the same execution, for the set of bytes accessed by both A and
W:

1. A reads any byte from a write W’ that precedes W in coherence order.

2. A follows W in coherence order.

Litmus Test 1:

.global .u32 x = 0;

T1 T2

A1: atom.sys.inc.u32 %r0, [x]; A2: atom.sys.inc.u32 %r0, [x];

FINAL STATE: x == 2

Atomicity is guaranteed when the operations are morally strong.

Litmus Test 2:

.global .u32 x = 0;

T1 T2 (In a different CTA)

A1: atom.cta.inc.u32 %r0, [x]; A2: atom.gpu.inc.u32 %r0, [x];

FINAL STATE: x == 1 OR x == 2

Atomicity is not guaranteed if the operations are not morally strong.

86 Chapter 8. Memory Consistency Model

PTX ISA, Release 8.1

8.10.4. No Thin Air

Values may not appear “out of thin air”: an execution cannot speculatively produce a value in such
a way that the speculation becomes self-satisfying through chains of instruction dependencies and
inter-thread communication. This matches both programmer intuition and hardware reality, but is
necessary to state explicitly when performing formal analysis.

Litmus Test: Load Buffering

.global .u32 x = 0;

.global .u32 y = 0;

T1 T2

A1: ld.global.u32 %r0, [x];
B1: st.global.u32 [y], %r0;

A2: ld.global.u32 %r1, [y];
B2: st.global.u32 [x], %r1;

FINAL STATE: x == 0 AND y == 0

The litmus test known as “LB” (Load Buffering) checks such forbidden values that may arise out of thin
air. Two threads T1 and T2 each read from a first variable and copy the observed result into a second
variable, with the first and second variable exchanged between the threads. If each variable is initially
zero, the final result shall also be zero. If A1 reads from B2 and A2 reads from B1, then values passing
through the memory operations in this example form a cycle: A1->B1->A2->B2->A1. Only the values
x == 0 and y == 0 are allowed to satisfy this cycle. If any of the memory operations in this example
were to speculatively associate a different value with the corresponding memory location, then such
a speculation would become self-fulfilling, and hence forbidden.

8.10.5. Sequential Consistency Per Location

Within any set of overlappingmemory operations that are pairwise morally strong, communication or-
der cannot contradict program order, i.e., a concatenation of program order between overlapping oper-
ations and morally strong relations in communication order cannot result in a cycle. This ensures that
each program slice of overlapping pairwise morally strong operations is strictly sequentially-consistent.

Litmus Test: CoRR

.global .u32 x = 0;

T1 T2

W1: st.global.relaxed.sys.u32 [x], 1; R1: ld.global.relaxed.u32 %r0, [x];
R2: ld.global.relaxed.u32 %r1, [x];

IF %r0 == 1 THEN %r1 == 1

8.10. Axioms 87

PTX ISA, Release 8.1

The litmus test “CoRR” (Coherent Read-Read), demonstrates one consequence of this guarantee. A
thread T1 executes awriteW1 on a location x, and a thread T2 executes two (or an infinite sequence of)
reads R1 and R2 on the same location x. No other writes are executed on x, except the one modelling
the initial value. The operations W1, R1 and R2 are pairwise morally strong. If R1 reads from W1, then
the subsequent read R2must also observe the same value. If R2 observed the initial value of x instead,
then this would form a sequence ofmorally-strong relations R2->W1->R1 in communication order that
contradicts the program order R1->R2 in thread T2. Hence R2 cannot read the initial value of x in such
an execution.

8.10.6. Causality

Relations in communication order cannot contradict causality order. This constrains the set of candi-
date write operations that a read operation may read from:

1. If a read R precedes an overlapping write W in causality order, then R cannot read from W.

2. If a write W precedes an overlapping read R in causality order, then for any byte accessed by both
R and W, R cannot read from any write W’ that precedes W in coherence order.

Litmus Test: Message Passing

.global .u32 data = 0;

.global .u32 flag = 0;

T1 T2

W1: st.global.u32 [data], 1;
F1: fence.sys;
W2: st.global.relaxed.sys.u32 [flag], 1;

R1: ld.global.relaxed.sys.u32 %r0,�
↪→[flag];
F2: fence.sys;
R2: ld.global.u32 %r1, [data];

IF %r0 == 1 THEN %r1 == 1

The litmus test known as “MP” (Message Passing) represents the essence of typical synchronization
algorithms. A vast majority of useful programs can be reduced to sequenced applications of this pat-
tern.

Thread T1 first writes to a data variable and then to a flag variable while a second thread T2 first reads
from the flag variable and then from the data variable. The operations on the flag are morally strong
and the memory operations in each thread are separated by a fence, and these fences are morally
strong.

If R1 observes W2, then the release pattern “F1; W2” synchronizes with the acquire pattern “R1; F2”.
This establishes the causality orderW1 -> F1 ->W2 -> R1 -> F2 -> R2. Then axiom causality guarantees
that R2 cannot read from any write that precedes W1 in coherence order. In the absence of any other
writes in this example, R2 must read from W1.

Litmus Test: CoWR

88 Chapter 8. Memory Consistency Model

PTX ISA, Release 8.1

∕∕ These addresses are aliases
.global .u32 data_alias_1;
.global .u32 data_alias_2;

T1

W1: st.global.u32 [data_alias_1], 1;
F1: fence.proxy.alias;
R1: ld.global.u32 %r1, [data_alias_2];

%r1 == 1

Virtual aliases require an alias proxy fence along the synchronization path.

Litmus Test: Store Buffering

The litmus test known as “SB” (Store Buffering) demonstrates the sequential consistency enforced by
the fence.sc. A thread T1 writes to a first variable, and then reads the value of a second variable,
while a second thread T2 writes to the second variable and then reads the value of the first variable.
The memory operations in each thread are separated by fence.sc instructions, and these fences are
morally strong.

.global .u32 x = 0;

.global .u32 y = 0;

T1 T2

W1: st.global.u32 [x], 1;
F1: fence.sc.sys;
R1: ld.global.u32 %r0, [y];

W2: st.global.u32 [y], 1;
F2: fence.sc.sys;
R2: ld.global.u32 %r1, [x];

%r0 == 1 OR %r1 == 1

In any execution, either F1 precedes F2 in Fence-SC order, or vice versa. If F1 precedes F2 in Fence-
SC order, then F1 synchronizes with F2. This establishes the causality order in W1 -> F1 -> F2 -> R2.
Axiom causality ensures that R2 cannot read from any write that precedes W1 in coherence order. In
the absence of any other write to that variable, R2 must read fromW1. Similarly, in the case where F2
precedes F1 in Fence-SC order, R1must read fromW2. If each fence.sc in this example were replaced
by a fence.acq_rel instruction, then this outcome is not guaranteed. There may be an execution
where the write from each thread remains unobserved from the other thread, i.e., an execution is
possible, where both R1 and R2 return the initial value “0” for variables y and x respectively.

8.10. Axioms 89

PTX ISA, Release 8.1

90 Chapter 8. Memory Consistency Model

Chapter 9. Instruction Set

9.1. Format and Semantics of Instruction
Descriptions

This section describes each PTX instruction. In addition to the name and the format of the instruc-
tion, the semantics are described, followed by some examples that attempt to show several possible
instantiations of the instruction.

9.2. PTX Instructions

PTX instructions generally have from zero to four operands, plus an optional guard predicate appearing
after an @ symbol to the left of the opcode:

▶ @p opcode;

▶ @p opcode a;

▶ @p opcode d, a;

▶ @p opcode d, a, b;

▶ @p opcode d, a, b, c;

For instructions that create a result value, the d operand is the destination operand, while a, b, and c
are source operands.

The setp instruction writes two destination registers. We use a | symbol to separate multiple desti-
nation registers.

setp.lt.s32 p|q, a, b; ∕∕ p = (a < b); q = !(a < b);

For some instructions the destination operand is optional. A bit bucket operand denoted with an un-
derscore (_) may be used in place of a destination register.

91

PTX ISA, Release 8.1

9.3. Predicated Execution

In PTX, predicate registers are virtual and have .pred as the type specifier. So, predicate registers can
be declared as

.reg .pred p, q, r;

All instructions have an optional guard predicate which controls conditional execution of the instruc-
tion. The syntax to specify conditional execution is to prefix an instruction with @{!}p, where p is a
predicate variable, optionally negated. Instructions without a guard predicate are executed uncondi-
tionally.

Predicates are most commonly set as the result of a comparison performed by the setp instruction.

As an example, consider the high-level code

if (i < n)
j = j + 1;

This can be written in PTX as

setp.lt.s32 p, i, n; ∕∕ p = (i < n)
@p add.s32 j, j, 1; ∕∕ if i < n, add 1 to j

To get a conditional branch or conditional function call, use a predicate to control the execution of the
branch or call instructions. To implement the above example as a true conditional branch, the following
PTX instruction sequence might be used:

setp.lt.s32 p, i, n; ∕∕ compare i to n
@!p bra L1; ∕∕ if False, branch over

add.s32 j, j, 1;
L1: ...

9.3.1. Comparisons

9.3.1.1 Integer and Bit-Size Comparisons

The signed integer comparisons are the traditional eq (equal), ne (not-equal), lt (less-than), le (less-
than-or-equal), gt (greater-than), and ge (greater-than-or-equal). The unsigned comparisons are eq,
ne, lo (lower), ls (lower-or-same), hi (higher), and hs (higher-or-same). The bit-size comparisons are
eq and ne; ordering comparisons are not defined for bit-size types.

Table 19 shows the operators for signed integer, unsigned integer, and bit-size types.

92 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Table 19: Operators for Signed Integer, Unsigned Integer, and
Bit-Size Types

Meaning Signed Operator Unsigned Operator Bit-Size Operator

a == b eq eq eq

a != b ne ne ne

a < b lt lo n/a

a <= b le ls n/a

a > b gt hi n/a

a >= b ge hs n/a

9.3.1.2 Floating Point Comparisons

The ordered floating-point comparisons are eq, ne, lt, le, gt, and ge. If either operand is NaN, the
result is False. Table 20 lists the floating-point comparison operators.

Table 20: Floating-Point Comparison Operators

Meaning Floating-Point Operator

a == b && !isNaN(a) && !isNaN(b) eq

a != b && !isNaN(a) && !isNaN(b) ne

a < b && !isNaN(a) && !isNaN(b) lt

a <= b && !isNaN(a) && !isNaN(b) le

a > b && !isNaN(a) && !isNaN(b) gt

a >= b && !isNaN(a) && !isNaN(b) ge

To aid comparison operations in the presence of NaN values, unordered floating-point comparisons are
provided: equ, neu, ltu, leu, gtu, and geu. If both operands are numeric values (not NaN), then the
comparison has the same result as its ordered counterpart. If either operand is NaN, then the result
of the comparison is True.

Table 21 lists the floating-point comparison operators accepting NaN values.

Table 21: Floating-Point Comparison Operators Accepting NaN

Meaning Floating-Point Operator

a == b || isNaN(a) || isNaN(b) equ

a != b || isNaN(a) || isNaN(b) neu

a < b || isNaN(a) || isNaN(b) ltu

a <= b || isNaN(a) || isNaN(b) leu

a > b || isNaN(a) || isNaN(b) gtu

a >= b || isNaN(a) || isNaN(b) geu

9.3. Predicated Execution 93

PTX ISA, Release 8.1

To test for NaN values, two operators num (numeric) and nan (isNaN) are provided. num returns True
if both operands are numeric values (not NaN), and nan returns True if either operand is NaN. Table 22
lists the floating-point comparison operators testing for NaN values.

Table 22: Floating-Point Comparison Operators Testing for
NaN

Meaning Floating-Point Operator

!isNaN(a) && !isNaN(b) num

isNaN(a) || isNaN(b) nan

9.3.2. Manipulating Predicates

Predicate values may be computed and manipulated using the following instructions: and, or, xor,
not, and mov.

There is no direct conversion between predicates and integer values, and no direct way to load or store
predicate register values. However, setp can be used to generate a predicate from an integer, and the
predicate-based select (selp) instruction can be used to generate an integer value based on the value
of a predicate; for example:

selp.u32 %r1,1,0,%p; ∕∕ convert predicate to 32-bit value

9.4. Type Information for Instructions and
Operands

Typed instructions must have a type-size modifier. For example, the add instruction requires type and
size information to properly perform the addition operation (signed, unsigned, float, different sizes),
and this information must be specified as a suffix to the opcode.

Example

.reg .u16 d, a, b;

add.u16 d, a, b; ∕∕ perform a 16-bit unsigned add

Some instructions require multiple type-size modifiers, most notably the data conversion instruction
cvt. It requires separate type-size modifiers for the result and source, and these are placed in the
same order as the operands. For example:

.reg .u16 a;

.reg .f32 d;

cvt.f32.u16 d, a; ∕∕ convert 16-bit unsigned to 32-bit float

In general, an operand’s type must agree with the corresponding instruction-type modifier. The rules
for operand and instruction type conformance are as follows:

▶ Bit-size types agree with any type of the same size.

94 Chapter 9. Instruction Set

PTX ISA, Release 8.1

▶ Signed and unsigned integer types agree provided they have the same size, and integer operands
are silently cast to the instruction type if needed. For example, an unsigned integer operand used
in a signed integer instruction will be treated as a signed integer by the instruction.

▶ Floating-point types agree only if they have the same size; i.e., they must match exactly.

Table 23 summarizes these type checking rules.

Table 23: Type Checking Rules

Operand Type

.bX .sX .uX .fX

Instruction Type .bX okay okay okay okay

.sX okay okay okay invalid

.uX okay okay okay invalid

.fX okay invalid invalid okay

Note: Some operands have their type and size defined independently from the instruction type-size.
For example, the shift amount operand for left and right shift instructions always has type .u32, while
the remaining operands have their type and size determined by the instruction type.

Example

∕∕ 64-bit arithmetic right shift; shift amount 'b' is .u32
shr.s64 d,a,b;

9.4.1. Operand Size Exceeding Instruction-Type Size

For convenience, ld, st, and cvt instructions permit source and destination data operands to be
wider than the instruction-type size, so that narrow values may be loaded, stored, and converted us-
ing regular-width registers. For example, 8-bit or 16-bit values may be held directly in 32-bit or 64-bit
registers when being loaded, stored, or converted to other types and sizes. The operand type check-
ing rules are relaxed for bit-size and integer (signed and unsigned) instruction types; floating-point
instruction types still require that the operand type-size matches exactly, unless the operand is of
bit-size type.

When a source operand has a size that exceeds the instruction-type size, the source data is truncated
(chopped) to the appropriate number of bits specified by the instruction type-size.

Table 24 summarizes the relaxed type-checking rules for source operands. Note that some combina-
tions may still be invalid for a particular instruction; for example, the cvt instruction does not support
.bX instruction types, so those rows are invalid for cvt.

9.4. Type Information for Instructions and Operands 95

PTX ISA, Release 8.1

Table 24: Relaxed Type-checking Rules for Source Operands

Source Operand Type

b8 b16 b32 b64 s8 s16 s32 s64 u8 u16 u32 u64 f16 f32 f64

In-
struc-
tion
Type

b8 – chop chop chop – chop chop chop – chop chop chop chop chop chop

b16 inv – chop chop inv – chop chop inv – chop chop – chop chop

b32 inv inv – chop inv inv – chop inv inv – chop inv – chop

b64 inv inv inv – inv inv inv – inv inv inv – inv inv –

s8 – chop chop chop – chop chop chop – chop chop chop inv inv inv

s16 inv – chop chop inv – chop chop inv – chop chop inv inv inv

s32 inv inv – chop inv inv – chop inv inv – chop inv inv inv

s64 inv inv inv – inv inv inv – inv inv inv – inv inv inv

u8 – chop chop chop – chop chop chop – chop chop chop inv inv inv

u16 inv – chop chop inv – chop chop inv – chop chop inv inv inv

u32 inv inv – chop inv inv – chop inv inv – chop inv inv inv

u64 inv inv inv – inv inv inv – inv inv inv – inv inv inv

f16 inv – chop chop inv inv inv inv inv inv inv inv – inv inv

f32 inv inv – chop inv inv inv inv inv inv inv inv inv – inv

f64 inv inv inv – inv inv inv inv inv inv inv inv inv inv –

Notes chop = keep only low bits that fit; “–” = allowed, but no conversion needed;
inv = invalid, parse error.
1. Source register size must be of equal or greater size than the instruction-type

size.
2. Bit-size source registers may be used with any appropriately-sized instruction

type. The data are truncated (“chopped”) to the instruction-type size and inter-
preted according to the instruction type.

3. Integer source registers may be used with any appropriately-sized bit-size or in-
teger instruction type. The data are truncated to the instruction-type size and
interpreted according to the instruction type.

4. Floating-point source registers can only be used with bit-size or floating-point
instruction types. When used with a narrower bit-size instruction type, the data
are truncated. When used with a floating-point instruction type, the size must
match exactly.

When a destination operand has a size that exceeds the instruction-type size, the destination data is
zero- or sign-extended to the size of the destination register. If the corresponding instruction type is
signed integer, the data is sign-extended; otherwise, the data is zero-extended.

Table 25 summarizes the relaxed type-checking rules for destination operands.

96 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Table 25: Relaxed Type-checking Rules for Destination
Operands

Destination Operand Type

b8 b16 b32 b64 s8 s16 s32 s64 u8 u16 u32 u64 f16 f32 f64

In-
struc-
tion
Type

b8 – zext zext zext – zext zext zext – zext zext zext zext zext zext

b16 inv – zext zext inv – zext zext inv – zext zext – zext zext

b32 inv inv – zext inv inv – zext inv inv – zext inv – zext

b64 inv inv inv – inv inv inv – inv inv inv – inv inv –

s8 – sext sext sext – sext sext sext – sext sext sext inv inv inv

s16 inv – sext sext inv – sext sext inv – sext sext inv inv inv

s32 inv inv – sext inv inv – sext inv inv – sext inv inv inv

s64 inv inv inv – inv inv inv – inv inv inv – inv inv inv

u8 – zext zext zext – zext zext zext – zext zext zext inv inv inv

u16 inv – zext zext inv – zext zext inv – zext zext inv inv inv

u32 inv inv – zext inv inv – zext inv inv – zext inv inv inv

u64 inv inv inv – inv inv inv – inv inv inv – inv inv inv

f16 inv – zext zext inv inv inv inv inv inv inv inv – inv inv

f32 inv inv – zext inv inv inv inv inv inv inv inv inv – inv

f64 inv inv inv – inv inv inv inv inv inv inv inv inv inv –

Notes sext = sign-extend; zext = zero-extend; “–” = allowed, but no conversion needed;
inv = invalid, parse error.
1. Destination register size must be of equal or greater size than the instruction-

type size.
2. Bit-size destination registers may be used with any appropriately-sized instruc-

tion type. The data are sign-extended to the destination register width for signed
integer instruction types, and are zero-extended to the destination register width
otherwise.

3. Integer destination registers may be used with any appropriately-sized bit-size or
integer instruction type. The data are sign-extended to the destination register
width for signed integer instruction types, and are zero-extended to the destina-
tion register width for bit-size an d unsigned integer instruction types.

4. Floating-point destination registers can only be used with bit-size or floating-
point instruction types. When used with a narrower bit-size instruction type, the
data are zero-extended. When used with a floating-point instruction type, the
size must match exactly.

9.4. Type Information for Instructions and Operands 97

PTX ISA, Release 8.1

9.5. Divergence of Threads in Control
Constructs

Threads in a CTA execute together, at least in appearance, until they come to a conditional control con-
struct such as a conditional branch, conditional function call, or conditional return. If threads execute
down different control flow paths, the threads are called divergent. If all of the threads act in unison
and follow a single control flow path, the threads are called uniform. Both situations occur often in
programs.

A CTA with divergent threads may have lower performance than a CTA with uniformly executing
threads, so it is important to have divergent threads re-converge as soon as possible. All control con-
structs are assumed to be divergent points unless the control-flow instruction is marked as uniform,
using the .uni suffix. For divergent control flow, the optimizing code generator automatically deter-
mines points of re-convergence. Therefore, a compiler or code author targeting PTX can ignore the
issue of divergent threads, but has the opportunity to improve performance by marking branch points
as uniform when the compiler or author can guarantee that the branch point is non-divergent.

9.6. Semantics

The goal of the semantic description of an instruction is to describe the results in all cases in as simple
language as possible. The semantics are described using C, until C is not expressive enough.

9.6.1. Machine-Specific Semantics of 16-bit Code

A PTX program may execute on a GPU with either a 16-bit or a 32-bit data path. When executing on a
32-bit data path, 16-bit registers in PTX are mapped to 32-bit physical registers, and 16-bit computa-
tions are promoted to 32-bit computations. This can lead to computational differences between code
run on a 16-bit machine versus the same code run on a 32-bit machine, since the promoted compu-
tation may have bits in the high-order half-word of registers that are not present in 16-bit physical
registers. These extra precision bits can become visible at the application level, for example, by a
right-shift instruction.

At the PTX language level, one solution would be to define semantics for 16-bit code that is consistent
with execution on a 16-bit data path. This approach introduces a performance penalty for 16-bit code
executing on a 32-bit data path, since the translated code would require many additional masking
instructions to suppress extra precision bits in the high-order half-word of 32-bit registers.

Rather than introduce a performance penalty for 16-bit code running on 32-bit GPUs, the seman-
tics of 16-bit instructions in PTX is machine-specific. A compiler or programmer may chose to en-
force portable, machine-independent 16-bit semantics by adding explicit conversions to 16-bit val-
ues at appropriate points in the program to guarantee portability of the code. However, for many
performance-critical applications, this is not desirable, and for many applications the difference in
execution is preferable to limiting performance.

98 Chapter 9. Instruction Set

PTX ISA, Release 8.1

9.7. Instructions

All PTX instructions may be predicated. In the following descriptions, the optional guard predicate is
omitted from the syntax.

9.7.1. Integer Arithmetic Instructions

Integer arithmetic instructions operate on the integer types in register and constant immediate forms.
The integer arithmetic instructions are:

▶ add

▶ sub

▶ mul

▶ mad

▶ mul24

▶ mad24

▶ sad

▶ div

▶ rem

▶ abs

▶ neg

▶ min

▶ max

▶ popc

▶ clz

▶ bfind

▶ fns

▶ brev

▶ bfe

▶ bfi

▶ bmsk

▶ szext

▶ dp4a

▶ dp2a

9.7. Instructions 99

PTX ISA, Release 8.1

9.7.1.1 Integer Arithmetic Instructions: add

add

Add two values.

Syntax

add.type d, a, b;
add{.sat}.s32 d, a, b; ∕∕ .sat applies only to .s32

.type = { .u16, .u32, .u64,
.s16, .s32, .s64,
.u16x2, .s16x2 };

Description

Performs addition and writes the resulting value into a destination register.

For .u16x2, .s16x2 instruction types, forms input vectors by half word values from source operands.
Half-word operands are then added in parallel to produce .u16x2, .s16x2 result in destination.

Operands d, a and b have type .type. For instruction types .u16x2, .s16x2, operands d, a and b have
type .b32.

Semantics

if (type == u16x2 || type == s16x2) {
iA[0] = a[0:15];
iA[1] = a[16:31];
iB[0] = b[0:15];
iB[1] = b[16:31];
for (i = 0; i < 2; i++) {

d[i] = iA[i] + iB[i];
}

} else {
d = a + b;

}

Notes

Saturation modifier:

.sat limits result to MININT..MAXINT (no overflow) for the size of the operation. Applies only to .s32
type.

PTX ISA Notes

Introduced in PTX ISA version 1.0.

add.u16x2 and add.s16x2 introduced in PTX ISA version 8.0.

Target ISA Notes

Supported on all target architectures.

add.u16x2 and add.s16x2 require sm_90 or higher.

Examples

@p add.u32 x,y,z;
add.sat.s32 c,c,1;
add.u16x2 u,v,w;

100 Chapter 9. Instruction Set

PTX ISA, Release 8.1

9.7.1.2 Integer Arithmetic Instructions: sub

sub

Subtract one value from another.

Syntax

sub.type d, a, b;
sub{.sat}.s32 d, a, b; ∕∕ .sat applies only to .s32

.type = { .u16, .u32, .u64,
.s16, .s32, .s64 };

Description

Performs subtraction and writes the resulting value into a destination register.

Semantics

d = a - b;

Notes

Saturation modifier:

.sat limits result to MININT..MAXINT (no overflow) for the size of the operation. Applies only to
.s32 type.

PTX ISA Notes

Introduced in PTX ISA version 1.0.

Target ISA Notes

Supported on all target architectures.

Examples

sub.s32 c,a,b;

9.7.1.3 Integer Arithmetic Instructions: mul

mul

Multiply two values.

Syntax

mul.mode.type d, a, b;

.mode = { .hi, .lo, .wide };

.type = { .u16, .u32, .u64,
.s16, .s32, .s64 };

Description

Compute the product of two values.

Semantics

9.7. Instructions 101

PTX ISA, Release 8.1

t = a * b;
n = bitwidth of type;
d = t; ∕∕ for .wide
d = t<2n-1..n>; ∕∕ for .hi variant
d = t<n-1..0>; ∕∕ for .lo variant

Notes

The type of the operation represents the types of the a and b operands. If .hi or .lo is specified,
then d is the same size as a and b, and either the upper or lower half of the result is written to the
destination register. If .wide is specified, then d is twice as wide as a and b to receive the full result
of the multiplication.

The .wide suffix is supported only for 16- and 32-bit integer types.

PTX ISA Notes

Introduced in PTX ISA version 1.0.

Target ISA Notes

Supported on all target architectures.

Examples

mul.wide.s16 fa,fxs,fys; ∕∕ 16*16 bits yields 32 bits
mul.lo.s16 fa,fxs,fys; ∕∕ 16*16 bits, save only the low 16 bits
mul.wide.s32 z,x,y; ∕∕ 32*32 bits, creates 64 bit result

9.7.1.4 Integer Arithmetic Instructions: mad

mad

Multiply two values, optionally extract the high or low half of the intermediate result, and add a third
value.

Syntax

mad.mode.type d, a, b, c;
mad.hi.sat.s32 d, a, b, c;

.mode = { .hi, .lo, .wide };

.type = { .u16, .u32, .u64,
.s16, .s32, .s64 };

Description

Multiplies two values, optionally extracts the high or low half of the intermediate result, and adds a
third value. Writes the result into a destination register.

Semantics

t = a * b;
n = bitwidth of type;
d = t + c; ∕∕ for .wide
d = t<2n-1..n> + c; ∕∕ for .hi variant
d = t<n-1..0> + c; ∕∕ for .lo variant

Notes

102 Chapter 9. Instruction Set

PTX ISA, Release 8.1

The type of the operation represents the types of the a and b operands. If .hi or .lo is specified, then
d and c are the same size as a and b, and either the upper or lower half of the result is written to the
destination register. If .wide is specified, then d and c are twice as wide as a and b to receive the
result of the multiplication.

The .wide suffix is supported only for 16-bit and 32-bit integer types.

Saturation modifier:

.sat limits result to MININT..MAXINT (no overflow) for the size of the operation.

Applies only to .s32 type in .himode.

PTX ISA Notes

Introduced in PTX ISA version 1.0.

Target ISA Notes

Supported on all target architectures.

Examples

@p mad.lo.s32 d,a,b,c;
mad.lo.s32 r,p,q,r;

9.7.1.5 Integer Arithmetic Instructions: mul24

mul24

Multiply two 24-bit integer values.

Syntax

mul24.mode.type d, a, b;

.mode = { .hi, .lo };

.type = { .u32, .s32 };

Description

Compute the product of two 24-bit integer values held in 32-bit source registers, and return either the
high or low 32-bits of the 48-bit result.

Semantics

t = a * b;
d = t<47..16>; ∕∕ for .hi variant
d = t<31..0>; ∕∕ for .lo variant

Notes

Integer multiplication yields a result that is twice the size of the input operands, i.e., 48-bits.

mul24.hi performs a 24x24-bit multiply and returns the high 32 bits of the 48-bit result.

mul24.lo performs a 24x24-bit multiply and returns the low 32 bits of the 48-bit result.

All operands are of the same type and size.

mul24.himay be less efficient on machines without hardware support for 24-bit multiply.

PTX ISA Notes

9.7. Instructions 103

PTX ISA, Release 8.1

Introduced in PTX ISA version 1.0.

Target ISA Notes

Supported on all target architectures.

Examples

mul24.lo.s32 d,a,b; ∕∕ low 32-bits of 24x24-bit signed multiply.

9.7.1.6 Integer Arithmetic Instructions: mad24

mad24

Multiply two 24-bit integer values and add a third value.

Syntax

mad24.mode.type d, a, b, c;
mad24.hi.sat.s32 d, a, b, c;

.mode = { .hi, .lo };

.type = { .u32, .s32 };

Description

Compute the product of two 24-bit integer values held in 32-bit source registers, and add a third, 32-
bit value to either the high or low 32-bits of the 48-bit result. Return either the high or low 32-bits of
the 48-bit result.

Semantics

t = a * b;
d = t<47..16> + c; ∕∕ for .hi variant
d = t<31..0> + c; ∕∕ for .lo variant

Notes

Integer multiplication yields a result that is twice the size of the input operands, i.e., 48-bits.

mad24.hi performs a 24x24-bit multiply and adds the high 32 bits of the 48-bit result to a third value.

mad24.lo performs a 24x24-bit multiply and adds the low 32 bits of the 48-bit result to a third value.

All operands are of the same type and size.

Saturation modifier:

.sat limits result of 32-bit signed addition to MININT..MAXINT (no overflow). Applies only to .s32
type in .hi mode.

mad24.himay be less efficient on machines without hardware support for 24-bit multiply.

PTX ISA Notes

Introduced in PTX ISA version 1.0.

Target ISA Notes

Supported on all target architectures.

Examples

104 Chapter 9. Instruction Set

PTX ISA, Release 8.1

mad24.lo.s32 d,a,b,c; ∕∕ low 32-bits of 24x24-bit signed multiply.

9.7.1.7 Integer Arithmetic Instructions: sad

sad

Sum of absolute differences.

Syntax

sad.type d, a, b, c;

.type = { .u16, .u32, .u64,
.s16, .s32, .s64 };

Description

Adds the absolute value of a-b to c and writes the resulting value into d.

Semantics

d = c + ((a<b) ? b-a : a-b);

PTX ISA Notes

Introduced in PTX ISA version 1.0.

Target ISA Notes

Supported on all target architectures.

Examples

sad.s32 d,a,b,c;
sad.u32 d,a,b,d; ∕∕ running sum

9.7.1.8 Integer Arithmetic Instructions: div

div

Divide one value by another.

Syntax

div.type d, a, b;

.type = { .u16, .u32, .u64,
.s16, .s32, .s64 };

Description

Divides a by b, stores result in d.

Semantics

d = a ∕ b;

9.7. Instructions 105

PTX ISA, Release 8.1

Notes

Division by zero yields an unspecified, machine-specific value.

PTX ISA Notes

Introduced in PTX ISA version 1.0.

Target ISA Notes

Supported on all target architectures.

Examples

div.s32 b,n,i;

9.7.1.9 Integer Arithmetic Instructions: rem

rem

The remainder of integer division.

Syntax

rem.type d, a, b;

.type = { .u16, .u32, .u64,
.s16, .s32, .s64 };

Description

Divides a by b, store the remainder in d.

Semantics

d = a % b;

Notes

The behavior for negative numbers is machine-dependent and depends on whether divide rounds to-
wards zero or negative infinity.

PTX ISA Notes

Introduced in PTX ISA version 1.0.

Target ISA Notes

Supported on all target architectures.

Examples

rem.s32 x,x,8; ∕∕ x = x%8;

106 Chapter 9. Instruction Set

PTX ISA, Release 8.1

9.7.1.10 Integer Arithmetic Instructions: abs

abs

Absolute value.

Syntax

abs.type d, a;

.type = { .s16, .s32, .s64 };

Description

Take the absolute value of a and store it in d.

Semantics

d = |a|;

Notes

Only for signed integers.

PTX ISA Notes

Introduced in PTX ISA version 1.0.

Target ISA Notes

Supported on all target architectures.

Examples

abs.s32 r0,a;

9.7.1.11 Integer Arithmetic Instructions: neg

neg

Arithmetic negate.

Syntax

neg.type d, a;

.type = { .s16, .s32, .s64 };

Description

Negate the sign of a and store the result in d.

Semantics

d = -a;

Notes

Only for signed integers.

PTX ISA Notes

Introduced in PTX ISA version 1.0.

9.7. Instructions 107

PTX ISA, Release 8.1

Target ISA Notes

Supported on all target architectures.

Examples

neg.s32 r0,a;

9.7.1.12 Integer Arithmetic Instructions: min

min

Find the minimum of two values.

Syntax

min.atype d, a, b;
min{.relu}.btype d, a, b;

.atype = { .u16, .u32, .u64,
.u16x2, .s16, .s64 };

.btype = { .s16x2, .s32 };

Description

Store the minimum of a and b in d.

For .u16x2, .s16x2 instruction types, forms input vectors by half word values from source operands.
Half-word operands are then processed in parallel to produce .u16x2, .s16x2 result in destination.

Operands d, a and b have the same type as the instruction type. For instruction types .u16x2, .s16x2,
operands d, a and b have type .b32.

Semantics

if (type == u16x2 || type == s16x2) {
iA[0] = a[0:15];
iA[1] = a[16:31];
iB[0] = b[0:15];
iB[1] = b[16:31];
for (i = 0; i < 2; i++) {

d[i] = (iA[i] < iB[i]) ? iA[i] : iB[i];
}

} else {
d = (a < b) ? a : b; ∕∕ Integer (signed and unsigned)

}

Notes

Signed and unsigned differ.

Saturation modifier: min.relu.{s16x2, s32} clamps the result to 0 if negative.

PTX ISA Notes

Introduced in PTX ISA version 1.0.

min.u16x2, min{.relu}.s16x2 and min.relu.s32 introduced in PTX ISA version 8.0.

Target ISA Notes

Supported on all target architectures.

108 Chapter 9. Instruction Set

PTX ISA, Release 8.1

min.u16x2, min{.relu}.s16x2 and min.relu.s32 require sm_90 or higher.

Examples

min.s32 r0,a,b;
@p min.u16 h,i,j;

min.s16x2.relu u,v,w;

9.7.1.13 Integer Arithmetic Instructions: max

max

Find the maximum of two values.

Syntax

max.atype d, a, b;
max{.relu}.btype d, a, b;

.atype = { .u16, .u32, .u64,
.u16x2, .s16, .s64 };

.btype = { .s16x2, .s32 };

Description

Store the maximum of a and b in d.

For .u16x2, .s16x2 instruction types, forms input vectors by half word values from source operands.
Half-word operands are then processed in parallel to produce .u16x2, .s16x2 result in destination.

Operands d, a and b have the same type as the instruction type. For instruction types .u16x2, .s16x2,
operands d, a and b have type .b32.

Semantics

if (type == u16x2 || type == s16x2) {
iA[0] = a[0:15];
iA[1] = a[16:31];
iB[0] = b[0:15];
iB[1] = b[16:31];
for (i = 0; i < 2; i++) {

d[i] = (iA[i] > iB[i]) ? iA[i] : iB[i];
}

} else {
d = (a > b) ? a : b; ∕∕ Integer (signed and unsigned)

}

Notes

Signed and unsigned differ.

Saturation modifier: max.relu.{s16x2, s32} clamps the result to 0 if negative.

PTX ISA Notes

Introduced in PTX ISA version 1.0.

max.u16x2, max{.relu}.s16x2 and max.relu.s32 introduced in PTX ISA version 8.0.

Target ISA Notes

Supported on all target architectures.

9.7. Instructions 109

PTX ISA, Release 8.1

max.u16x2, max{.relu}.s16x2 and max.relu.s32 require sm_90 or higher.

Examples

max.u32 d,a,b;
max.s32 q,q,0;
max.relu.s16x2 t,t,u;

9.7.1.14 Integer Arithmetic Instructions: popc

popc

Population count.

Syntax

popc.type d, a;

.type = { .b32, .b64 };

Description

Count the number of one bits in a and place the resulting population count in 32-bit destination register
d. Operand a has the instruction type and destination d has type .u32.

Semantics

.u32 d = 0;
while (a != 0) {

if (a & 0x1) d++;
a = a >> 1;

}

PTX ISA Notes

Introduced in PTX ISA version 2.0.

Target ISA Notes

popc requires sm_20 or higher.

Examples

popc.b32 d, a;
popc.b64 cnt, X; ∕∕ cnt is .u32

9.7.1.15 Integer Arithmetic Instructions: clz

clz

Count leading zeros.

Syntax

clz.type d, a;

.type = { .b32, .b64 };

110 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Description

Count the number of leading zeros in a starting with the most-significant bit and place the result in
32-bit destination register d. Operand a has the instruction type, and destination d has type .u32. For
.b32 type, the number of leading zeros is between 0 and 32, inclusively. For.b64 type, the number of
leading zeros is between 0 and 64, inclusively.

Semantics

.u32 d = 0;
if (.type == .b32) { max = 32; mask = 0x80000000; }
else { max = 64; mask = 0x8000000000000000; }

while (d < max && (a&mask == 0)) {
d++;
a = a << 1;

}

PTX ISA Notes

Introduced in PTX ISA version 2.0.

Target ISA Notes

clz requires sm_20 or higher.

Examples

clz.b32 d, a;
clz.b64 cnt, X; ∕∕ cnt is .u32

9.7.1.16 Integer Arithmetic Instructions: bfind

bfind

Find most significant non-sign bit.

Syntax

bfind.type d, a;
bfind.shiftamt.type d, a;

.type = { .u32, .u64,
.s32, .s64 };

Description

Find the bit position of the most significant non-sign bit in a and place the result in d. Operand a has
the instruction type, and destination d has type .u32. For unsigned integers, bfind returns the bit
position of the most significant 1. For signed integers, bfind returns the bit position of the most
significant 0 for negative inputs and the most significant 1 for non-negative inputs.

If .shiftamt is specified, bfind returns the shift amount needed to left-shift the found bit into the
most-significant bit position.

bfind returns 0xffffffff if no non-sign bit is found.

Semantics

9.7. Instructions 111

PTX ISA, Release 8.1

msb = (.type==.u32 || .type==.s32) ? 31 : 63;
∕∕ negate negative signed inputs
if ((.type==.s32 || .type==.s64) && (a & (1<<msb))) {

a = ~a;
}
.u32 d = 0xffffffff;
for (.s32 i=msb; i>=0; i--) {

if (a & (1<<i)) { d = i; break; }
}
if (.shiftamt && d != 0xffffffff) { d = msb - d; }

PTX ISA Notes

Introduced in PTX ISA version 2.0.

Target ISA Notes

bfind requires sm_20 or higher.

Examples

bfind.u32 d, a;
bfind.shiftamt.s64 cnt, X; ∕∕ cnt is .u32

9.7.1.17 Integer Arithmetic Instructions: fns

fns

Find the n-th set bit

Syntax

fns.b32 d, mask, base, offset;

Description

Given a 32-bit value mask and an integer value base (between 0 and 31), find the n-th (given by offset)
set bit in mask from the base bit, and store the bit position in d. If not found, store 0xffffffff in d.

Operand mask has a 32-bit type. Operand base has .b32, .u32 or .s32 type. Operand offset has
.s32 type. Destination d has type .b32.

Operand basemust be <= 31, otherwise behavior is undefined.

Semantics

d = 0xffffffff;
if (offset == 0) {

if (mask[base] == 1) {
d = base;

}
} else {

pos = base;
count = |offset| - 1;
inc = (offset > 0) ? 1 : -1;

while ((pos >= 0) && (pos < 32)) {
if (mask[pos] == 1) {

if (count == 0) {
(continues on next page)

112 Chapter 9. Instruction Set

PTX ISA, Release 8.1

(continued from previous page)

d = pos;
break;

} else {
count = count – 1;

}
}
pos = pos + inc;

}
}

PTX ISA Notes

Introduced in PTX ISA version 6.0.

Target ISA Notes

fns requires sm_30 or higher.

Examples

fns.b32 d, 0xaaaaaaaa, 3, 1; ∕∕ d = 3
fns.b32 d, 0xaaaaaaaa, 3, -1; ∕∕ d = 3
fns.b32 d, 0xaaaaaaaa, 2, 1; ∕∕ d = 3
fns.b32 d, 0xaaaaaaaa, 2, -1; ∕∕ d = 1

9.7.1.18 Integer Arithmetic Instructions: brev

brev

Bit reverse.

Syntax

brev.type d, a;

.type = { .b32, .b64 };

Description

Perform bitwise reversal of input.

Semantics

msb = (.type==.b32) ? 31 : 63;

for (i=0; i<=msb; i++) {
d[i] = a[msb-i];

}

PTX ISA Notes

Introduced in PTX ISA version 2.0.

Target ISA Notes

brev requires sm_20 or higher.

Examples

9.7. Instructions 113

PTX ISA, Release 8.1

brev.b32 d, a;

9.7.1.19 Integer Arithmetic Instructions: bfe

bfe

Bit Field Extract.

Syntax

bfe.type d, a, b, c;

.type = { .u32, .u64,
.s32, .s64 };

Description

Extract bit field from a and place the zero or sign-extended result in d. Source b gives the bit field
starting bit position, and source c gives the bit field length in bits.

Operands a and d have the same type as the instruction type. Operands b and c are type .u32, but
are restricted to the 8-bit value range 0..255.

The sign bit of the extracted field is defined as:

.u32, .u64: zero

.s32, .s64: msb of input a if the extracted field extends beyond the msb of a msb of extracted field,
otherwise

If the bit field length is zero, the result is zero.

The destination d is padded with the sign bit of the extracted field. If the start position is beyond the
msb of the input, the destination d is filled with the replicated sign bit of the extracted field.

Semantics

msb = (.type==.u32 || .type==.s32) ? 31 : 63;
pos = b & 0xff; ∕∕ pos restricted to 0..255 range
len = c & 0xff; ∕∕ len restricted to 0..255 range

if (.type==.u32 || .type==.u64 || len==0)
sbit = 0;

else
sbit = a[min(pos+len-1,msb)];

d = 0;
for (i=0; i<=msb; i++) {

d[i] = (i<len && pos+i<=msb) ? a[pos+i] : sbit;
}

PTX ISA Notes

Introduced in PTX ISA version 2.0.

Target ISA Notes

bfe requires sm_20 or higher.

Examples

114 Chapter 9. Instruction Set

PTX ISA, Release 8.1

bfe.b32 d,a,start,len;

9.7.1.20 Integer Arithmetic Instructions: bfi

bfi

Bit Field Insert.

Syntax

bfi.type f, a, b, c, d;

.type = { .b32, .b64 };

Description

Align and insert a bit field from a into b, and place the result in f. Source c gives the starting bit
position for the insertion, and source d gives the bit field length in bits.

Operands a, b, and f have the same type as the instruction type. Operands c and d are type .u32, but
are restricted to the 8-bit value range 0..255.

If the bit field length is zero, the result is b.

If the start position is beyond the msb of the input, the result is b.

Semantics

msb = (.type==.b32) ? 31 : 63;
pos = c & 0xff; ∕∕ pos restricted to 0..255 range
len = d & 0xff; ∕∕ len restricted to 0..255 range

f = b;
for (i=0; i<len && pos+i<=msb; i++) {

f[pos+i] = a[i];
}

PTX ISA Notes

Introduced in PTX ISA version 2.0.

Target ISA Notes

bfi requires sm_20 or higher.

Examples

bfi.b32 d,a,b,start,len;

9.7. Instructions 115

PTX ISA, Release 8.1

9.7.1.21 Integer Arithmetic Instructions: szext

szext

Sign-extend or Zero-extend.

Syntax

szext.mode.type d, a, b;

.mode = { .clamp, .wrap };

.type = { .u32, .s32 };

Description

Sign-extends or zero-extends an N-bit value from operand a where N is specified in operand b. The
resulting value is stored in the destination operand d.

For the .s32 instruction type, the value in a is treated as anN-bit signed value and themost significant
bit of this N-bit value is replicated up to bit 31. For the .u32 instruction type, the value in a is treated
as an N-bit unsigned number and is zero-extended to 32 bits. Operand b is an unsigned 32-bit value.

If the value of N is 0, then the result of szext is 0. If the value of N is 32 or higher, then the result of
szext depends upon the value of the .mode qualifier as follows:

▶ If .mode is .clamp, then the result is the same as the source operand a.

▶ If .mode is .wrap, then the result is computed using the wrapped value of N.

Semantics

b1 = b & 0x1f;
too_large = (b >= 32 && .mode == .clamp) ? true : false;
mask = too_large ? 0 : (~0) << b1;
sign_pos = (b1 - 1) & 0x1f;

if (b1 == 0 || too_large || .type != .s32) {
sign_bit = false;

} else {
sign_bit = (a >> sign_pos) & 1;

}
d = (a & ~mask) | (sign_bit ? mask | 0);

PTX ISA Notes

Introduced in PTX ISA version 7.6.

Target ISA Notes

szext requires sm_70 or higher.

Examples

szext.clamp.s32 rd, ra, rb;
szext.wrap.u32 rd, 0xffffffff, 0; ∕∕ Result is 0.

116 Chapter 9. Instruction Set

PTX ISA, Release 8.1

9.7.1.22 Integer Arithmetic Instructions: bmsk

bmsk

Bit Field Mask.

Syntax

bmsk.mode.b32 d, a, b;

.mode = { .clamp, .wrap };

Description

Generates a 32-bit mask starting from the bit position specified in operand a, and of the width speci-
fied in operand b. The generated bitmask is stored in the destination operand d.

The resulting bitmask is 0 in the following cases:

▶ When the value of a is 32 or higher and .mode is .clamp.

▶ When either the specified value of b or thewrapped value of b (when .mode is specified as .wrap)
is 0.

Semantics

a1 = a & 0x1f;
mask0 = (~0) << a1;
b1 = b & 0x1f;
sum = a1 + b1;
mask1 = (~0) << sum;

sum-overflow = sum >= 32 ? true : false;
bit-position-overflow = false;
bit-width-overflow = false;

if (.mode == .clamp) {
if (a >= 32) {

bit-position-overflow = true;
mask0 = 0;

}
if (b >= 32) {

bit-width-overflow = true;
}

}

if (sum-overflow || bit-position-overflow || bit-width-overflow) {
mask1 = 0;

} else if (b1 == 0) {
mask1 = ~0;

}
d = mask0 & ~mask1;

Notes

The bitmask width specified by operand b is limited to range 0..32 in .clamp mode and to range
0..31 in .wrapmode.

PTX ISA Notes

Introduced in PTX ISA version 7.6.

9.7. Instructions 117

PTX ISA, Release 8.1

Target ISA Notes

bmsk requires sm_70 or higher.

Examples

bmsk.clamp.b32 rd, ra, rb;
bmsk.wrap.b32 rd, 1, 2; ∕∕ Creates a bitmask of 0x00000006.

9.7.1.23 Integer Arithmetic Instructions: dp4a

dp4a

Four-way byte dot product-accumulate.

Syntax

dp4a.atype.btype d, a, b, c;

.atype = .btype = { .u32, .s32 };

Description

Four-way byte dot product which is accumulated in 32-bit result.

Operand a and b are 32-bit inputs which hold 4 byte inputs in packed form for dot product.

Operand c has type .u32 if both .atype and .btype are .u32 else operand c has type .s32.

Semantics

d = c;

∕∕ Extract 4 bytes from a 32bit input and sign or zero extend
∕∕ based on input type.
Va = extractAndSignOrZeroExt_4(a, .atype);
Vb = extractAndSignOrZeroExt_4(b, .btype);

for (i = 0; i < 4; ++i) {
d += Va[i] * Vb[i];

}

PTX ISA Notes

Introduced in PTX ISA version 5.0.

Target ISA Notes

Requires sm_61 or higher.

Examples

dp4a.u32.u32 d0, a0, b0, c0;
dp4a.u32.s32 d1, a1, b1, c1;

118 Chapter 9. Instruction Set

PTX ISA, Release 8.1

9.7.1.24 Integer Arithmetic Instructions: dp2a

dp2a

Two-way dot product-accumulate.

Syntax

dp2a.mode.atype.btype d, a, b, c;

.atype = .btype = { .u32, .s32 };

.mode = { .lo, .hi };

Description

Two-way 16-bit to 8-bit dot product which is accumulated in 32-bit result.

Operand a and b are 32-bit inputs. Operand a holds two 16-bits inputs in packed form and operand b
holds 4 byte inputs in packed form for dot product.

Depending on the .mode specified, either lower half or upper half of operand b will be used for dot
product.

Operand c has type .u32 if both .atype and .btype are .u32 else operand c has type .s32.

Semantics

d = c;
∕∕ Extract two 16-bit values from a 32-bit input and sign or zero extend
∕∕ based on input type.
Va = extractAndSignOrZeroExt_2(a, .atype);

∕∕ Extract four 8-bit values from a 32-bit input and sign or zer extend
∕∕ based on input type.
Vb = extractAndSignOrZeroExt_4(b, .btype);

b_select = (.mode == .lo) ? 0 : 2;

for (i = 0; i < 2; ++i) {
d += Va[i] * Vb[b_select + i];

}

PTX ISA Notes

Introduced in PTX ISA version 5.0.

Target ISA Notes

Requires sm_61 or higher.

Examples

dp2a.lo.u32.u32 d0, a0, b0, c0;
dp2a.hi.u32.s32 d1, a1, b1, c1;

9.7. Instructions 119

PTX ISA, Release 8.1

9.7.2. Extended-Precision Integer Arithmetic Instructions

Instructions add.cc, addc, sub.cc, subc, mad.cc and madc reference an implicitly specified condition
code register (CC) having a single carry flag bit (CC.CF) holding carry-in/carry-out or borrow-in/borrow-
out. These instructions support extended-precision integer addition, subtraction, and multiplication.
No other instructions access the condition code, and there is no support for setting, clearing, or testing
the condition code. The condition code register is not preserved across calls and is mainly intended for
use in straight-line code sequences for computing extended-precision integer addition, subtraction,
and multiplication.

The extended-precision arithmetic instructions are:

▶ add.cc, addc

▶ sub.cc, subc

▶ mad.cc, madc

9.7.2.1 Extended-Precision Arithmetic Instructions: add.cc

add.cc

Add two values with carry-out.

Syntax

add.cc.type d, a, b;

.type = { .u32, .s32, .u64, .s64 };

Description

Performs integer addition and writes the carry-out value into the condition code register.

Semantics

d = a + b;

carry-out written to CC.CF

Notes

No integer rounding modifiers.

No saturation.

Behavior is the same for unsigned and signed integers.

PTX ISA Notes

32-bit add.cc introduced in PTX ISA version 1.2.

64-bit add.cc introduced in PTX ISA version 4.3.

Target ISA Notes

32-bit add.cc is supported on all target architectures.

64-bit add.cc requires sm_20 or higher.

Examples

120 Chapter 9. Instruction Set

PTX ISA, Release 8.1

@p add.cc.u32 x1,y1,z1; ∕∕ extended-precision addition of
@p addc.cc.u32 x2,y2,z2; ∕∕ two 128-bit values
@p addc.cc.u32 x3,y3,z3;
@p addc.u32 x4,y4,z4;

9.7.2.2 Extended-Precision Arithmetic Instructions: addc

addc

Add two values with carry-in and optional carry-out.

Syntax

addc{.cc}.type d, a, b;

.type = { .u32, .s32, .u64, .s64 };

Description

Performs integer addition with carry-in and optionally writes the carry-out value into the condition
code register.

Semantics

d = a + b + CC.CF;

if .cc specified, carry-out written to CC.CF

Notes

No integer rounding modifiers.

No saturation.

Behavior is the same for unsigned and signed integers.

PTX ISA Notes

32-bit addc introduced in PTX ISA version 1.2.

64-bit addc introduced in PTX ISA version 4.3.

Target ISA Notes

32-bit addc is supported on all target architectures.

64-bit addc requires sm_20 or higher.

Examples

@p add.cc.u32 x1,y1,z1; ∕∕ extended-precision addition of
@p addc.cc.u32 x2,y2,z2; ∕∕ two 128-bit values
@p addc.cc.u32 x3,y3,z3;
@p addc.u32 x4,y4,z4;

9.7. Instructions 121

PTX ISA, Release 8.1

9.7.2.3 Extended-Precision Arithmetic Instructions: sub.cc

sub.cc

Subtract one value from another, with borrow-out.

Syntax

sub.cc.type d, a, b;

.type = { .u32, .s32, .u64, .s64 };

Description

Performs integer subtraction and writes the borrow-out value into the condition code register.

Semantics

d = a - b;

borrow-out written to CC.CF

Notes

No integer rounding modifiers.

No saturation.

Behavior is the same for unsigned and signed integers.

PTX ISA Notes

32-bit sub.cc introduced in PTX ISA version 1.2.

64-bit sub.cc introduced in PTX ISA version 4.3.

Target ISA Notes

32-bit sub.cc is supported on all target architectures.

64-bit sub.cc requires sm_20 or higher.

Examples

@p sub.cc.u32 x1,y1,z1; ∕∕ extended-precision subtraction
@p subc.cc.u32 x2,y2,z2; ∕∕ of two 128-bit values
@p subc.cc.u32 x3,y3,z3;
@p subc.u32 x4,y4,z4;

9.7.2.4 Extended-Precision Arithmetic Instructions: subc

subc

Subtract one value from another, with borrow-in and optional borrow-out.

Syntax

subc{.cc}.type d, a, b;

.type = { .u32, .s32, .u64, .s64 };

122 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Description

Performs integer subtraction with borrow-in and optionally writes the borrow-out value into the con-
dition code register.

Semantics

d = a - (b + CC.CF);

if .cc specified, borrow-out written to CC.CF

Notes

No integer rounding modifiers.

No saturation.

Behavior is the same for unsigned and signed integers.

PTX ISA Notes

32-bit subc introduced in PTX ISA version 1.2.

64-bit subc introduced in PTX ISA version 4.3.

Target ISA Notes

32-bit subc is supported on all target architectures.

64-bit subc requires sm_20 or higher.

Examples

@p sub.cc.u32 x1,y1,z1; ∕∕ extended-precision subtraction
@p subc.cc.u32 x2,y2,z2; ∕∕ of two 128-bit values
@p subc.cc.u32 x3,y3,z3;
@p subc.u32 x4,y4,z4;

9.7.2.5 Extended-Precision Arithmetic Instructions: mad.cc

mad.cc

Multiply two values, extract high or low half of result, and add a third value with carry-out.

Syntax

mad{.hi,.lo}.cc.type d, a, b, c;

.type = { .u32, .s32, .u64, .s64 };

Description

Multiplies two values, extracts either the high or low part of the result, and adds a third value. Writes
the result to the destination register and the carry-out from the addition into the condition code
register.

Semantics

t = a * b;
d = t<63..32> + c; ∕∕ for .hi variant
d = t<31..0> + c; ∕∕ for .lo variant

9.7. Instructions 123

PTX ISA, Release 8.1

carry-out from addition is written to CC.CF

Notes

Generally used in combination with madc and addc to implement extended-precision multi-word mul-
tiplication. See madc for an example.

PTX ISA Notes

32-bit mad.cc introduced in PTX ISA version 3.0.

64-bit mad.cc introduced in PTX ISA version 4.3.

Target ISA Notes

Requires target sm_20 or higher.

Examples

@p mad.lo.cc.u32 d,a,b,c;
mad.lo.cc.u32 r,p,q,r;

9.7.2.6 Extended-Precision Arithmetic Instructions: madc

madc

Multiply two values, extract high or low half of result, and add a third value with carry-in and optional
carry-out.

Syntax

madc{.hi,.lo}{.cc}.type d, a, b, c;

.type = { .u32, .s32, .u64, .s64 };

Description

Multiplies two values, extracts either the high or low part of the result, and adds a third value along
with carry-in. Writes the result to the destination register and optionally writes the carry-out from the
addition into the condition code register.

Semantics

t = a * b;
d = t<63..32> + c + CC.CF; ∕∕ for .hi variant
d = t<31..0> + c + CC.CF; ∕∕ for .lo variant

if .cc specified, carry-out from addition is written to CC.CF

Notes

Generally used in combination with mad.cc and addc to implement extended-precision multi-word
multiplication. See example below.

PTX ISA Notes

32-bit madc introduced in PTX ISA version 3.0.

64-bit madc introduced in PTX ISA version 4.3.

Target ISA Notes

Requires target sm_20 or higher.

124 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Examples

∕∕ extended-precision multiply: [r3,r2,r1,r0] = [r5,r4] * [r7,r6]
mul.lo.u32 r0,r4,r6; ∕∕ r0=(r4*r6).[31:0], no carry-out
mul.hi.u32 r1,r4,r6; ∕∕ r1=(r4*r6).[63:32], no carry-out
mad.lo.cc.u32 r1,r5,r6,r1; ∕∕ r1+=(r5*r6).[31:0], may carry-out
madc.hi.u32 r2,r5,r6,0; ∕∕ r2 =(r5*r6).[63:32]+carry-in,

∕∕ no carry-out
mad.lo.cc.u32 r1,r4,r7,r1; ∕∕ r1+=(r4*r7).[31:0], may carry-out
madc.hi.cc.u32 r2,r4,r7,r2; ∕∕ r2+=(r4*r7).[63:32]+carry-in,

∕∕ may carry-out
addc.u32 r3,0,0; ∕∕ r3 = carry-in, no carry-out
mad.lo.cc.u32 r2,r5,r7,r2; ∕∕ r2+=(r5*r7).[31:0], may carry-out
madc.hi.u32 r3,r5,r7,r3; ∕∕ r3+=(r5*r7).[63:32]+carry-in

9.7.3. Floating-Point Instructions

Floating-point instructions operate on .f32 and .f64 register operands and constant immediate val-
ues. The floating-point instructions are:

▶ testp

▶ copysign

▶ add

▶ sub

▶ mul

▶ fma

▶ mad

▶ div

▶ abs

▶ neg

▶ min

▶ max

▶ rcp

▶ sqrt

▶ rsqrt

▶ sin

▶ cos

▶ lg2

▶ ex2

▶ tanh

Instructions that support rounding modifiers are IEEE-754 compliant. Double-precision instructions
support subnormal inputs and results. Single-precision instructions support subnormal inputs and

9.7. Instructions 125

PTX ISA, Release 8.1

results by default for sm_20 and subsequent targets, and flush subnormal inputs and results to sign-
preserving zero for sm_1x targets. The optional .ftz modifier on single-precision instructions pro-
vides backward compatibility with sm_1x targets by flushing subnormal inputs and results to sign-
preserving zero regardless of the target architecture.

Single-precision add, sub, mul, and mad support saturation of results to the range [0.0, 1.0], with NaNs
being flushed to positive zero. NaN payloads are supported for double-precision instructions (except
for rcp.approx.ftz.f64 and rsqrt.approx.ftz.f64, which maps input NaNs to a canonical NaN).
Single-precision instructions return an unspecified NaN. Note that future implementations may sup-
port NaN payloads for single-precision instructions, so PTX programs should not rely on the specific
single-precision NaNs being generated.

Table 26 summarizes floating-point instructions in PTX.

126 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Table 26: Summary of Floating-Point Instructions

Instruction .rn .rz .rm .rp .ftz .sat Notes

{add,sub,
mul}.rnd.f32

x x x x x x If no rounding modifier is specified, default
is .rn and instructions may be folded into a
multiply-add.

{add,sub,
mul}.rnd.f64

x x x x n/a n/a If no rounding modifier is specified, default
is .rn and instructions may be folded into a
multiply-add.

mad.f32 n/a n/a n/a n/a x x .target sm_1x
No rounding modifier.

{mad,fma}.
rnd.f32

x x x x x x .target sm_20 or higher
mad.f32 and fma.f32 are the same.

{mad,fma}.
rnd.f64

x x x x n/a n/a mad.f64 and fma.f64 are the same.

div.full.f32 n/a n/a n/a n/a x n/a No rounding modifier.

{div,rcp,
sqrt}.
approx.f32

n/a n/a n/a n/a x n/a n/a

rcp.approx.
ftz.f64

n/a n/a n/a n/a x n/a .target sm_20 or higher

{div,rcp,
sqrt}.rnd.
f32

x x x x x n/a .target sm_20 or higher

{div,rcp,
sqrt}.rnd.
f64

x x x x n/a n/a .target sm_20 or higher

{abs,neg,
min,max}.f32

n/a n/a n/a n/a x n/a

{abs,neg,
min,max}.f64

n/a n/a n/a n/a n/a n/a

rsqrt.
approx.f32

n/a n/a n/a n/a x n/a

rsqrt.
approx.f64

n/a n/a n/a n/a n/a n/a

rsqrt.
approx.ftz.
f64

n/a n/a n/a n/a x n/a .target sm_20 or higher

{sin,cos,
lg2,ex2}.
approx.f32

n/a n/a n/a n/a x n/a

tanh.approx.
f32

n/a n/a n/a n/a n/a n/a .target sm_75 or higher

9.7. Instructions 127

PTX ISA, Release 8.1

9.7.3.1 Floating Point Instructions: testp

testp

Test floating-point property.

Syntax

testp.op.type p, a; ∕∕ result is .pred

.op = { .finite, .infinite,
.number, .notanumber,
.normal, .subnormal };

.type = { .f32, .f64 };

Description

testp tests common properties of floating-point numbers and returns a predicate value of 1 if True
and 0 if False.

testp.finite True if the input is not infinite or NaN

testp.infinite True if the input is positive or negative infinity

testp.number True if the input is not NaN

testp.notanumber True if the input is NaN

testp.normal True if the input is a normal number (not NaN, not infinity)

testp.subnormal True if the input is a subnormal number (not NaN, not infinity)

As a special case, positive and negative zero are considered normal numbers.

PTX ISA Notes

Introduced in PTX ISA version 2.0.

Target ISA Notes

Requires sm_20 or higher.

Examples

testp.notanumber.f32 isnan, f0;
testp.infinite.f64 p, X;

9.7.3.2 Floating Point Instructions: copysign

copysign

Copy sign of one input to another.

Syntax

copysign.type d, a, b;

.type = { .f32, .f64 };

Description

Copy sign bit of a into value of b, and return the result as d.

128 Chapter 9. Instruction Set

PTX ISA, Release 8.1

PTX ISA Notes

Introduced in PTX ISA version 2.0.

Target ISA Notes

Requires sm_20 or higher.

Examples

copysign.f32 x, y, z;
copysign.f64 A, B, C;

9.7.3.3 Floating Point Instructions: add

add

Add two values.

Syntax

add{.rnd}{.ftz}{.sat}.f32 d, a, b;
add{.rnd}.f64 d, a, b;

.rnd = { .rn, .rz, .rm, .rp };

Description

Performs addition and writes the resulting value into a destination register.

Semantics

d = a + b;

Notes

Rounding modifiers:

.rn mantissa LSB rounds to nearest even

.rz mantissa LSB rounds towards zero

.rm mantissa LSB rounds towards negative infinity

.rp mantissa LSB rounds towards positive infinity

The default value of rounding modifier is .rn. Note that an add instruction with an explicit rounding
modifier is treated conservatively by the code optimizer. An add instruction with no rounding modifier
defaults to round-to-nearest-even and may be optimized aggressively by the code optimizer. In par-
ticular, mul/add sequences with no rounding modifiers may be optimized to use fused-multiply-add
instructions on the target device.

Subnormal numbers:

sm_20+ By default, subnormal numbers are supported.

add.ftz.f32 flushes subnormal inputs and results to sign-preserving zero.

sm_1x add.f64 supports subnormal numbers.

add.f32 flushes subnormal inputs and results to sign-preserving zero.

9.7. Instructions 129

PTX ISA, Release 8.1

Saturation modifier:

add.sat.f32 clamps the result to [0.0, 1.0]. NaN results are flushed to +0.0f.

PTX ISA Notes

Introduced in PTX ISA version 1.0.

Target ISA Notes

add.f32 supported on all target architectures.

add.f64 requires sm_13 or higher.

Rounding modifiers have the following target requirements:

.rn, .rz available for all targets

.rm, .rp for add.f64, requires sm_13 or higher.

for add.f32, requires sm_20 or higher.

Examples

@p add.rz.ftz.f32 f1,f2,f3;

9.7.3.4 Floating Point Instructions: sub

sub

Subtract one value from another.

Syntax

sub{.rnd}{.ftz}{.sat}.f32 d, a, b;
sub{.rnd}.f64 d, a, b;

.rnd = { .rn, .rz, .rm, .rp };

Description

Performs subtraction and writes the resulting value into a destination register.

Semantics

d = a - b;

Notes

Rounding modifiers:

.rn mantissa LSB rounds to nearest even

.rz mantissa LSB rounds towards zero

.rm mantissa LSB rounds towards negative infinity

.rp mantissa LSB rounds towards positive infinity

The default value of rounding modifier is .rn. Note that a sub instruction with an explicit rounding
modifier is treated conservatively by the code optimizer. A sub instruction with no rounding modifier
defaults to round-to-nearest-even and may be optimized aggressively by the code optimizer. In par-
ticular, mul/sub sequences with no rounding modifiers may be optimized to use fused-multiply-add
instructions on the target device.

130 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Subnormal numbers:

sm_20+ By default, subnormal numbers are supported.

sub.ftz.f32 flushes subnormal inputs and results to sign-preserving zero.

sm_1x sub.f64 supports subnormal numbers.

sub.f32 flushes subnormal inputs and results to sign-preserving zero.

Saturation modifier:

sub.sat.f32 clamps the result to [0.0, 1.0]. NaN results are flushed to +0.0f.

PTX ISA Notes

Introduced in PTX ISA version 1.0.

Target ISA Notes

sub.f32 supported on all target architectures.

sub.f64 requires sm_13 or higher.

Rounding modifiers have the following target requirements:

.rn, .rz available for all targets

.rm, .rp for sub.f64, requires sm_13 or higher.

for sub.f32, requires sm_20 or higher.

Examples

sub.f32 c,a,b;
sub.rn.ftz.f32 f1,f2,f3;

9.7.3.5 Floating Point Instructions: mul

mul

Multiply two values.

Syntax

mul{.rnd}{.ftz}{.sat}.f32 d, a, b;
mul{.rnd}.f64 d, a, b;

.rnd = { .rn, .rz, .rm, .rp };

Description

Compute the product of two values.

Semantics

d = a * b;

Notes

For floating-point multiplication, all operands must be the same size.

Rounding modifiers:

.rn mantissa LSB rounds to nearest even

9.7. Instructions 131

PTX ISA, Release 8.1

.rz mantissa LSB rounds towards zero

.rm mantissa LSB rounds towards negative infinity

.rp mantissa LSB rounds towards positive infinity

The default value of rounding modifier is .rn. Note that a mul instruction with an explicit rounding
modifier is treated conservatively by the code optimizer. A mul instruction with no rounding modi-
fier defaults to round-to-nearest-even and may be optimized aggressively by the code optimizer. In
particular, mul∕add and mul∕sub sequences with no rounding modifiers may be optimized to use
fused-multiply-add instructions on the target device.

Subnormal numbers:

sm_20+ By default, subnormal numbers are supported.

mul.ftz.f32 flushes subnormal inputs and results to sign-preserving zero.

sm_1x mul.f64 supports subnormal numbers.

mul.f32 flushes subnormal inputs and results to sign-preserving zero.

Saturation modifier:

mul.sat.f32 clamps the result to [0.0, 1.0]. NaN results are flushed to +0.0f.

PTX ISA Notes

Introduced in PTX ISA version 1.0.

Target ISA Notes

mul.f32 supported on all target architectures.

mul.f64 requires sm_13 or higher.

Rounding modifiers have the following target requirements:

.rn, .rz available for all targets

.rm, .rp for mul.f64, requires sm_13 or higher.

for mul.f32, requires sm_20 or higher.

Examples

mul.ftz.f32 circumf,radius,pi ∕∕ a single-precision multiply

9.7.3.6 Floating Point Instructions: fma

fma

Fused multiply-add.

Syntax

fma.rnd{.ftz}{.sat}.f32 d, a, b, c;
fma.rnd.f64 d, a, b, c;

.rnd = { .rn, .rz, .rm, .rp };

Description

Performs a fused multiply-add with no loss of precision in the intermediate product and addition.

132 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Semantics

d = a*b + c;

Notes

fma.f32 computes the product of a and b to infinite precision and then adds c to this product, again
in infinite precision. The resulting value is then rounded to single precision using the rounding mode
specified by .rnd.

fma.f64 computes the product of a and b to infinite precision and then adds c to this product, again
in infinite precision. The resulting value is then rounded to double precision using the rounding mode
specified by .rnd.

fma.f64 is the same as mad.f64.

Rounding modifiers (no default):

.rn mantissa LSB rounds to nearest even

.rz mantissa LSB rounds towards zero

.rm mantissa LSB rounds towards negative infinity

.rp mantissa LSB rounds towards positive infinity

Subnormal numbers:

sm_20+ By default, subnormal numbers are supported.

fma.ftz.f32 flushes subnormal inputs and results to sign-preserving zero.

sm_1x fma.f64 supports subnormal numbers.

fma.f32 is unimplemented for sm_1x targets.

Saturation:

fma.sat.f32 clamps the result to [0.0, 1.0]. NaN results are flushed to +0.0f.

PTX ISA Notes

fma.f64 introduced in PTX ISA version 1.4.

fma.f32 introduced in PTX ISA version 2.0.

Target ISA Notes

fma.f32 requires sm_20 or higher.

fma.f64 requires sm_13 or higher.

Examples

fma.rn.ftz.f32 w,x,y,z;
@p fma.rn.f64 d,a,b,c;

9.7. Instructions 133

PTX ISA, Release 8.1

9.7.3.7 Floating Point Instructions: mad

mad

Multiply two values and add a third value.

Syntax

mad{.ftz}{.sat}.f32 d, a, b, c; ∕∕ .target sm_1x
mad.rnd{.ftz}{.sat}.f32 d, a, b, c; ∕∕ .target sm_20
mad.rnd.f64 d, a, b, c; ∕∕ .target sm_13 and higher

.rnd = { .rn, .rz, .rm, .rp };

Description

Multiplies two values and adds a third, and then writes the resulting value into a destination register.

Semantics

d = a*b + c;

Notes

For .target sm_20 and higher:

▶ mad.f32 computes the product of a and b to infinite precision and then adds c to this prod-
uct, again in infinite precision. The resulting value is then rounded to single precision using the
rounding mode specified by .rnd.

▶ mad.f64 computes the product of a and b to infinite precision and then adds c to this prod-
uct, again in infinite precision. The resulting value is then rounded to double precision using the
rounding mode specified by .rnd.

▶ mad.{f32,f64} is the same as fma.{f32,f64}.

For .target sm_1x:

▶ mad.f32 computes the product of a and b at double precision, and then the mantissa is trun-
cated to 23 bits, but the exponent is preserved. Note that this is different from computing the
product with mul, where the mantissa can be rounded and the exponent will be clamped. The
exception for mad.f32 is when c = +∕-0.0, mad.f32 is identical to the result computed us-
ing separate mul and add instructions. When JIT-compiled for SM 2.0 devices, mad.f32 is im-
plemented as a fused multiply-add (i.e., fma.rn.ftz.f32). In this case, mad.f32 can produce
slightly different numeric results and backward compatibility is not guaranteed in this case.

▶ mad.f64 computes the product of a and b to infinite precision and then adds c to this prod-
uct, again in infinite precision. The resulting value is then rounded to double precision using the
rounding mode specified by .rnd. Unlike mad.f32, the treatment of subnormal inputs and out-
put follows IEEE 754 standard.

▶ mad.f64 is the same as fma.f64.

Rounding modifiers (no default):

.rn mantissa LSB rounds to nearest even

.rz mantissa LSB rounds towards zero

.rm mantissa LSB rounds towards negative infinity

.rp mantissa LSB rounds towards positive infinity

Subnormal numbers:

134 Chapter 9. Instruction Set

PTX ISA, Release 8.1

sm_20+ By default, subnormal numbers are supported.

mad.ftz.f32 flushes subnormal inputs and results to sign-preserving zero.

sm_1x mad.f64 supports subnormal numbers.

mad.f32 flushes subnormal inputs and results to sign-preserving zero.

Saturation modifier:

mad.sat.f32 clamps the result to [0.0, 1.0]. NaN results are flushed to +0.0f.

PTX ISA Notes

Introduced in PTX ISA version 1.0.

In PTX ISA versions 1.4 and later, a rounding modifier is required for mad.f64.

Legacy mad.f64 instructions having no rounding modifier will map to mad.rn.f64.

In PTX ISA versions 2.0 and later, a rounding modifier is required for mad.f32 for sm_20 and higher
targets.

Errata

mad.f32 requires a rounding modifier for sm_20 and higher targets. However for PTX ISA version 3.0
and earlier, ptxas does not enforce this requirement and mad.f32 silently defaults to mad.rn.f32.
For PTX ISA version 3.1, ptxas generates a warning and defaults to mad.rn.f32, and in subsequent
releases ptxas will enforce the requirement for PTX ISA version 3.2 and later.

Target ISA Notes

mad.f32 supported on all target architectures.

mad.f64 requires sm_13 or higher.

Rounding modifiers have the following target requirements:

▶ .rn,.rz,.rm,.rp for mad.f64, requires sm_13 or higher.

▶ .rn,.rz,.rm,.rp for mad.f32, requires sm_20 or higher.

Examples

@p mad.f32 d,a,b,c;

9.7.3.8 Floating Point Instructions: div

div

Divide one value by another.

Syntax

div.approx{.ftz}.f32 d, a, b; ∕∕ fast, approximate divide
div.full{.ftz}.f32 d, a, b; ∕∕ full-range approximate divide
div.rnd{.ftz}.f32 d, a, b; ∕∕ IEEE 754 compliant rounding
div.rnd.f64 d, a, b; ∕∕ IEEE 754 compliant rounding

.rnd = { .rn, .rz, .rm, .rp };

Description

Divides a by b, stores result in d.

9.7. Instructions 135

PTX ISA, Release 8.1

Semantics

d = a ∕ b;

Notes

Fast, approximate single-precision divides:

▶ div.approx.f32 implements a fast approximation to divide, computed as d = a * (1∕b).
For |b| in [2-126, 2126], the maximum ulp error is 2. For 2126 < |b| < 2128, if a is infinity, div.
approx.f32 returns NaN, otherwise it returns 0.

▶ div.full.f32 implements a relatively fast, full-range approximation that scales operands to
achieve better accuracy, but is not fully IEEE 754 compliant and does not support rounding mod-
ifiers. The maximum ulp error is 2 across the full range of inputs.

▶ Subnormal inputs and results are flushed to sign-preserving zero. Fast, approximate division by
zero creates a value of infinity (with same sign as a).

Divide with IEEE 754 compliant rounding:

Rounding modifiers (no default):

.rn mantissa LSB rounds to nearest even

.rz mantissa LSB rounds towards zero

.rm mantissa LSB rounds towards negative infinity

.rp mantissa LSB rounds towards positive infinity

Subnormal numbers:

sm_20+ By default, subnormal numbers are supported.

div.ftz.f32 flushes subnormal inputs and results to sign-preserving zero.

sm_1x div.f64 supports subnormal numbers.

div.f32 flushes subnormal inputs and results to sign-preserving zero.

PTX ISA Notes

div.f32 and div.f64 introduced in PTX ISA version 1.0.

Explicit modifiers .approx, .full, .ftz, and rounding introduced in PTX ISA version 1.4.

For PTX ISA version 1.4 and later, one of .approx, .full, or .rnd is required.

For PTX ISA versions 1.0 through 1.3, div.f32 defaults to div.approx.ftz.f32, and div.f64 de-
faults to div.rn.f64.

Target ISA Notes

div.approx.f32 and div.full.f32 supported on all target architectures.

div.rnd.f32 requires sm_20 or higher.

div.rn.f64 requires sm_13 or higher, or .target map_f64_to_f32.

div.{rz,rm,rp}.f64 requires sm_20 or higher.

Examples

div.approx.ftz.f32 diam,circum,3.14159;
div.full.ftz.f32 x, y, z;
div.rn.f64 xd, yd, zd;

136 Chapter 9. Instruction Set

PTX ISA, Release 8.1

9.7.3.9 Floating Point Instructions: abs

abs

Absolute value.

Syntax

abs{.ftz}.f32 d, a;
abs.f64 d, a;

Description

Take the absolute value of a and store the result in d.

Semantics

d = |a|;

Notes

Subnormal numbers:

sm_20+ By default, subnormal numbers are supported.

abs.ftz.f32 flushes subnormal inputs and results to sign-preserving zero.

sm_1x abs.f64 supports subnormal numbers.

abs.f32 flushes subnormal inputs and results to sign-preserving zero.

For abs.f32, NaN input yields unspecified NaN. For abs.f64, NaN input is passed through unchanged.
Future implementations may comply with the IEEE 754 standard by preserving payload and modifying
only the sign bit.

PTX ISA Notes

Introduced in PTX ISA version 1.0.

Target ISA Notes

abs.f32 supported on all target architectures.

abs.f64 requires sm_13 or higher.

Examples

abs.ftz.f32 x,f0;

9.7.3.10 Floating Point Instructions: neg

neg

Arithmetic negate.

Syntax

neg{.ftz}.f32 d, a;
neg.f64 d, a;

9.7. Instructions 137

PTX ISA, Release 8.1

Description

Negate the sign of a and store the result in d.

Semantics

d = -a;

Notes

Subnormal numbers:

sm_20+ By default, subnormal numbers are supported.

neg.ftz.f32 flushes subnormal inputs and results to sign-preserving zero.

sm_1x neg.f64 supports subnormal numbers.

neg.f32 flushes subnormal inputs and results to sign-preserving zero.

NaN inputs yield an unspecified NaN. Future implementations may comply with the IEEE 754 standard
by preserving payload and modifying only the sign bit.

PTX ISA Notes

Introduced in PTX ISA version 1.0.

Target ISA Notes

neg.f32 supported on all target architectures.

neg.f64 requires sm_13 or higher.

Examples

neg.ftz.f32 x,f0;

9.7.3.11 Floating Point Instructions: min

min

Find the minimum of two values.

Syntax

min{.ftz}{.NaN}{.xorsign.abs}.f32 d, a, b;
min.f64 d, a, b;

Description

Store the minimum of a and b in d.

If .NaNmodifier is specified, then the result is canonical NaN if either of the inputs is NaN.

If .abs modifier is specified, the magnitude of destination operand d is the minimum of absolute
values of both the input arguments.

If .xorsign modifier is specified, the sign bit of destination d is equal to the XOR of the sign bits of
both the inputs.

Modifiers .abs and .xorsign must be specified together and .xorsign considers the sign bit of
both inputs before applying .abs operation.

If the result of min is NaN then the .xorsign and .absmodifiers will be ignored.

138 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Semantics

if (.xorsign) {
xorsign = getSignBit(a) ^ getSignBit(b);
if (.abs) {

a = |a|;
b = |b|;

}
}
if (isNaN(a) && isNaN(b)) d = NaN;
else if (.NaN && (isNaN(a) || isNaN(b))) d = NaN;
else if (isNaN(a)) d = b;
else if (isNaN(b)) d = a;
else d = (a < b) ? a : b;
if (.xorsign && !isNaN(d)) {

setSignBit(d, xorsign);
}

Notes

Subnormal numbers:

sm_20+ By default, subnormal numbers are supported.

min.ftz.f32 flushes subnormal inputs and results to sign-preserving zero.

sm_1x min.f64 supports subnormal numbers.

min.f32 flushes subnormal inputs and results to sign-preserving zero.

If values of both inputs are 0.0, then +0.0 > -0.0.

PTX ISA Notes

Introduced in PTX ISA version 1.0.

min.NaNintroduced in PTX ISA version 7.0.

min.xorsign.abs introduced in PTX ISA version 7.2.

Target ISA Notes

min.f32 supported on all target architectures.

min.f64 requires sm_13 or higher.

min.NaNrequires sm_80 or higher.

min.xorsign.abs requires sm_86 or higher.

Examples

@p min.ftz.f32 z,z,x;
min.f64 a,b,c;
∕∕ fp32 min with .NaN
min.NaN.f32 f0,f1,f2;
∕∕ fp32 min with .xorsign.abs
min.xorsign.abs.f32 Rd, Ra, Rb;

9.7. Instructions 139

PTX ISA, Release 8.1

9.7.3.12 Floating Point Instructions: max

max

Find the maximum of two values.

Syntax

max{.ftz}{.NaN}{.xorsign.abs}.f32 d, a, b;
max.f64 d, a, b;

Description

Store the maximum of a and b in d.

If .NaNmodifier is specified, the result is canonical NaN if either of the inputs is NaN.

If .abs modifier is specified, the magnitude of destination operand d is the maximum of absolute
values of both the input arguments.

If .xorsign modifier is specified, the sign bit of destination d is equal to the XOR of the sign bits of
both the inputs.

Modifiers .abs and .xorsign must be specified together and .xorsign considers the sign bit of
both inputs before applying .abs operation.

If the result of max is NaN then the .xorsign and .absmodifiers will be ignored.

Semantics

if (.xorsign) {
xorsign = getSignBit(a) ^ getSignBit(b);
if (.abs) {

a = |a|;
b = |b|;

}
}
if (isNaN(a) && isNaN(b)) d = NaN;
else if (.NaN && (isNaN(a) || isNaN(b))) d = NaN;
else if (isNaN(a)) d = b;
else if (isNaN(b)) d = a;
else d = (a > b) ? a : b;
if (.xorsign && !isNaN(d)) {

setSignBit(d, xorsign);
}

Notes

Subnormal numbers:

sm_20+ By default, subnormal numbers are supported.

max.ftz.f32 flushes subnormal inputs and results to sign-preserving zero.

sm_1x max.f64 supports subnormal numbers.

max.f32 flushes subnormal inputs and results to sign-preserving zero.

If values of both inputs are 0.0, then +0.0 > -0.0.

PTX ISA Notes

Introduced in PTX ISA version 1.0.

max.NaNintroduced in PTX ISA version 7.0.

140 Chapter 9. Instruction Set

PTX ISA, Release 8.1

max.xorsign.abs introduced in PTX ISA version 7.2.

Target ISA Notes

max.f32 supported on all target architectures.

max.f64 requires sm_13 or higher.

max.NaNrequires sm_80 or higher.

max.xorsign.abs requires sm_86 or higher.

Examples

max.ftz.f32 f0,f1,f2;
max.f64 a,b,c;
∕∕ fp32 max with .NaN
max.NaN.f32 f0,f1,f2;
∕∕ fp32 max with .xorsign.abs
max.xorsign.abs.f32 Rd, Ra, Rb;

9.7.3.13 Floating Point Instructions: rcp

rcp

Take the reciprocal of a value.

Syntax

rcp.approx{.ftz}.f32 d, a; ∕∕ fast, approximate reciprocal
rcp.rnd{.ftz}.f32 d, a; ∕∕ IEEE 754 compliant rounding
rcp.rnd.f64 d, a; ∕∕ IEEE 754 compliant rounding

.rnd = { .rn, .rz, .rm, .rp };

Description

Compute 1∕a, store result in d.

Semantics

d = 1 ∕ a;

Notes

Fast, approximate single-precision reciprocal:

rcp.approx.f32 implements a fast approximation to reciprocal. Themaximumabsolute error is 2-23.0

over the range 1.0-2.0.

9.7. Instructions 141

PTX ISA, Release 8.1

Input Result

-Inf -0.0

-subnormal -Inf

-0.0 -Inf

+0.0 +Inf

+subnormal +Inf

+Inf +0.0

NaN NaN

Reciprocal with IEEE 754 compliant rounding:

Rounding modifiers (no default):

.rn mantissa LSB rounds to nearest even

.rz mantissa LSB rounds towards zero

.rm mantissa LSB rounds towards negative infinity

.rp mantissa LSB rounds towards positive infinity

Subnormal numbers:

sm_20+ By default, subnormal numbers are supported.

rcp.ftz.f32 flushes subnormal inputs and results to sign-preserving zero.

sm_1x rcp.f64 supports subnormal numbers.

rcp.f32 flushes subnormal inputs and results to sign-preserving zero.

PTX ISA Notes

rcp.f32 and rcp.f64 introduced in PTX ISA version 1.0. rcp.rn.f64 and explicit modifiers .approx
and .ftz were introduced in PTX ISA version 1.4. General rounding modifiers were added in PTX ISA
version 2.0.

For PTX ISA version 1.4 and later, one of .approx or .rnd is required.

For PTX ISA versions 1.0 through 1.3, rcp.f32 defaults to rcp.approx.ftz.f32, and rcp.f64 de-
faults to rcp.rn.f64.

Target ISA Notes

rcp.approx.f32 supported on all target architectures.

rcp.rnd.f32 requires sm_20 or higher.

rcp.rn.f64 requires sm_13 or higher, or .target map_f64_to_f32.

rcp.{rz,rm,rp}.f64 requires sm_20 or higher.

Examples

rcp.approx.ftz.f32 ri,r;
rcp.rn.ftz.f32 xi,x;
rcp.rn.f64 xi,x;

142 Chapter 9. Instruction Set

PTX ISA, Release 8.1

9.7.3.14 Floating Point Instructions: rcp.approx.ftz.f64

rcp.approx.ftz.f64

Compute a fast, gross approximation to the reciprocal of a value.

Syntax

rcp.approx.ftz.f64 d, a;

Description

Compute a fast, gross approximation to the reciprocal as follows:

1. extract the most-significant 32 bits of .f64 operand a in 1.11.20 IEEE floating-point format (i.e.,
ignore the least-significant 32 bits of a),

2. compute an approximate .f64 reciprocal of this value using the most-significant 20 bits of the
mantissa of operand a,

3. place the resulting 32-bits in 1.11.20 IEEE floating-point format in the most-significant 32-bits
of destination d,and

4. zero the least significant 32 mantissa bits of .f64 destination d.

Semantics

tmp = a[63:32]; ∕∕ upper word of a, 1.11.20 format
d[63:32] = 1.0 ∕ tmp;
d[31:0] = 0x00000000;

Notes

rcp.approx.ftz.f64 implements a fast, gross approximation to reciprocal.

Input a[63:32] Result d[63:32]

-Inf -0.0

-subnormal -Inf

-0.0 -Inf

+0.0 +Inf

+subnormal +Inf

+Inf +0.0

NaN NaN

Input NaNs map to a canonical NaN with encoding 0x7fffffff00000000.

Subnormal inputs and results are flushed to sign-preserving zero.

PTX ISA Notes

rcp.approx.ftz.f64 introduced in PTX ISA version 2.1.

Target ISA Notes

rcp.approx.ftz.f64 requires sm_20 or higher.

Examples

9.7. Instructions 143

PTX ISA, Release 8.1

rcp.ftz.f64 xi,x;

9.7.3.15 Floating Point Instructions: sqrt

sqrt

Take the square root of a value.

Syntax

sqrt.approx{.ftz}.f32 d, a; ∕∕ fast, approximate square root
sqrt.rnd{.ftz}.f32 d, a; ∕∕ IEEE 754 compliant rounding
sqrt.rnd.f64 d, a; ∕∕ IEEE 754 compliant rounding

.rnd = { .rn, .rz, .rm, .rp };

Description

Compute sqrt(a) and store the result in d.

Semantics

d = sqrt(a);

Notes

sqrt.approx.f32 implements a fast approximation to square root.

Input Result

-Inf NaN

-normal NaN

-subnormal -0.0

-0.0 -0.0

+0.0 +0.0

+subnormal +0.0

+Inf +Inf

NaN NaN

Square root with IEEE 754 compliant rounding:

Rounding modifiers (no default):

.rn mantissa LSB rounds to nearest even

.rz mantissa LSB rounds towards zero

.rm mantissa LSB rounds towards negative infinity

.rp mantissa LSB rounds towards positive infinity

Subnormal numbers:

144 Chapter 9. Instruction Set

PTX ISA, Release 8.1

sm_20+ By default, subnormal numbers are supported.

sqrt.ftz.f32 flushes subnormal inputs and results to sign-preserving zero.

sm_1x sqrt.f64 supports subnormal numbers.

sqrt.f32 flushes subnormal inputs and results to sign-preserving zero.

PTX ISA Notes

sqrt.f32 and sqrt.f64 introduced in PTX ISA version 1.0. sqrt.rn.f64 and explicit modifiers .
approx and .ftz were introduced in PTX ISA version 1.4. General rounding modifiers were added in
PTX ISA version 2.0.

For PTX ISA version 1.4 and later, one of .approx or .rnd is required.

For PTX ISA versions 1.0 through 1.3, sqrt.f32 defaults to sqrt.approx.ftz.f32, and sqrt.f64
defaults to sqrt.rn.f64.

Target ISA Notes

sqrt.approx.f32 supported on all target architectures.

sqrt.rnd.f32 requires sm_20 or higher.

sqrt.rn.f64 requires sm_13 or higher, or .target map_f64_to_f32.

sqrt.{rz,rm,rp}.f64 requires sm_20 or higher.

Examples

sqrt.approx.ftz.f32 r,x;
sqrt.rn.ftz.f32 r,x;
sqrt.rn.f64 r,x;

9.7.3.16 Floating Point Instructions: rsqrt

rsqrt

Take the reciprocal of the square root of a value.

Syntax

rsqrt.approx{.ftz}.f32 d, a;
rsqrt.approx.f64 d, a;

Description

Compute 1∕sqrt(a) and store the result in d.

Semantics

d = 1∕sqrt(a);

Notes

rsqrt.approx implements an approximation to the reciprocal square root.

9.7. Instructions 145

PTX ISA, Release 8.1

Input Result

-Inf NaN

-normal NaN

-subnormal -Inf

-0.0 -Inf

+0.0 +Inf

+subnormal +Inf

+Inf +0.0

NaN NaN

The maximum absolute error for rsqrt.f32 is 2-22.4 over the range 1.0-4.0.

Subnormal numbers:

sm_20+ By default, subnormal numbers are supported.

rsqrt.ftz.f32 flushes subnormal inputs and results to sign-preserving zero.

sm_1x rsqrt.f64 supports subnormal numbers.

rsqrt.f32 flushes subnormal inputs and results to sign-preserving zero.

Note that rsqrt.approx.f64 is emulated in software and are relatively slow.

PTX ISA Notes

rsqrt.f32 and rsqrt.f64 were introduced in PTX ISA version 1.0. Explicit modifiers .approx and
.ftz were introduced in PTX ISA version 1.4.

For PTX ISA version 1.4 and later, the .approxmodifier is required.

For PTX ISA versions 1.0 through 1.3, rsqrt.f32 defaults to rsqrt.approx.ftz.f32, and rsqrt.
f64 defaults to rsqrt.approx.f64.

Target ISA Notes

rsqrt.f32 supported on all target architectures.

rsqrt.f64 requires sm_13 or higher.

Examples

rsqrt.approx.ftz.f32 isr, x;
rsqrt.approx.f64 ISR, X;

146 Chapter 9. Instruction Set

PTX ISA, Release 8.1

9.7.3.17 Floating Point Instructions: rsqrt.approx.ftz.f64

rsqrt.approx.ftz.f64

Compute an approximation of the square root reciprocal of a value.

Syntax

rsqrt.approx.ftz.f64 d, a;

Description

Compute a double-precision (.f64) approximation of the square root reciprocal of a value. The least
significant 32 bits of the double-precision (.f64) destination d are all zeros.

Semantics

tmp = a[63:32]; ∕∕ upper word of a, 1.11.20 format
d[63:32] = 1.0 ∕ sqrt(tmp);
d[31:0] = 0x00000000;

Notes

rsqrt.approx.ftz.f64 implements a fast approximation of the square root reciprocal of a value.

Input Result

-Inf NaN

-subnormal -Inf

-0.0 -Inf

+0.0 +Inf

+subnormal +Inf

+Inf +0.0

NaN NaN

Input NaNs map to a canonical NaN with encoding 0x7fffffff00000000.

Subnormal inputs and results are flushed to sign-preserving zero.

PTX ISA Notes

rsqrt.approx.ftz.f64 introduced in PTX ISA version 4.0.

Target ISA Notes

rsqrt.approx.ftz.f64 requires sm_20 or higher.

Examples

rsqrt.approx.ftz.f64 xi,x;

9.7. Instructions 147

PTX ISA, Release 8.1

9.7.3.18 Floating Point Instructions: sin

sin

Find the sine of a value.

Syntax

sin.approx{.ftz}.f32 d, a;

Description

Find the sine of the angle a (in radians).

Semantics

d = sin(a);

Notes

sin.approx.f32 implements a fast approximation to sine.

Input Result

-Inf NaN

-subnormal -0.0

-0.0 -0.0

+0.0 +0.0

+subnormal +0.0

+Inf NaN

NaN NaN

The maximum absolute error is 2-20.9 in quadrant 00.

Subnormal numbers:

sm_20+ By default, subnormal numbers are supported.

sin.ftz.f32 flushes subnormal inputs and results to sign-preserving zero.

sm_1x Subnormal inputs and results to sign-preserving zero.

PTX ISA Notes

sin.f32 introduced in PTX ISA version 1.0. Explicit modifiers .approx and .ftz introduced in PTX
ISA version 1.4.

For PTX ISA version 1.4 and later, the .approx modifier is required.

For PTX ISA versions 1.0 through 1.3, sin.f32 defaults to sin.approx.ftz.f32.

Target ISA Notes

Supported on all target architectures.

Examples

sin.approx.ftz.f32 sa, a;

148 Chapter 9. Instruction Set

PTX ISA, Release 8.1

9.7.3.19 Floating Point Instructions: cos

cos

Find the cosine of a value.

Syntax

cos.approx{.ftz}.f32 d, a;

Description

Find the cosine of the angle a (in radians).

Semantics

d = cos(a);

Notes

cos.approx.f32 implements a fast approximation to cosine.

Input Result

-Inf NaN

-subnormal +1.0

-0.0 +1.0

+0.0 +1.0

+subnormal +1.0

+Inf NaN

NaN NaN

The maximum absolute error is 2-20.9 in quadrant 00.

Subnormal numbers:

sm_20+ By default, subnormal numbers are supported.

cos.ftz.f32 flushes subnormal inputs and results to sign-preserving zero.

sm_1x Subnormal inputs and results to sign-preserving zero.

PTX ISA Notes

cos.f32 introduced in PTX ISA version 1.0. Explicit modifiers .approx and .ftz introduced in PTX
ISA version 1.4.

For PTX ISA version 1.4 and later, the .approxmodifier is required.

For PTX ISA versions 1.0 through 1.3, cos.f32 defaults to cos.approx.ftz.f32.

Target ISA Notes

Supported on all target architectures.

Examples

cos.approx.ftz.f32 ca, a;

9.7. Instructions 149

PTX ISA, Release 8.1

9.7.3.20 Floating Point Instructions: lg2

lg2

Find the base-2 logarithm of a value.

Syntax

lg2.approx{.ftz}.f32 d, a;

Description

Determine the log2 of a.

Semantics

d = log(a) ∕ log(2);

Notes

lg2.approx.f32 implements a fast approximation to log2(a).

Input Result

-Inf NaN

-subnormal -Inf

-0.0 -Inf

+0.0 -Inf

+subnormal -Inf

+Inf +Inf

NaN NaN

The maximum absolute error is 2-22.6 for mantissa.

Subnormal numbers:

sm_20+ By default, subnormal numbers are supported.

lg2.ftz.f32 flushes subnormal inputs and results to sign-preserving zero.

sm_1x Subnormal inputs and results to sign-preserving zero.

PTX ISA Notes

lg2.f32 introduced in PTX ISA version 1.0. Explicit modifiers .approx and .ftz introduced in PTX
ISA version 1.4.

For PTX ISA version 1.4 and later, the .approxmodifier is required.

For PTX ISA versions 1.0 through 1.3, lg2.f32 defaults to lg2.approx.ftz.f32.

Target ISA Notes

Supported on all target architectures.

Examples

lg2.approx.ftz.f32 la, a;

150 Chapter 9. Instruction Set

PTX ISA, Release 8.1

9.7.3.21 Floating Point Instructions: ex2

ex2

Find the base-2 exponential of a value.

Syntax

ex2.approx{.ftz}.f32 d, a;

Description

Raise 2 to the power a.

Semantics

d = 2 ^ a;

Notes

ex2.approx.f32 implements a fast approximation to 2a.

Input Result

-Inf +0.0

-subnormal +1.0

-0.0 +1.0

+0.0 +1.0

+subnormal +1.0

+Inf +Inf

NaN NaN

The maximum absolute error is 2-22.5 for fraction in the primary range.

Subnormal numbers:

sm_20+ By default, subnormal numbers are supported.

ex2.ftz.f32 flushes subnormal inputs and results to sign-preserving zero.

sm_1x Subnormal inputs and results to sign-preserving zero.

PTX ISA Notes

ex2.f32 introduced in PTX ISA version 1.0. Explicit modifiers .approx and .ftz introduced in PTX
ISA version 1.4.

For PTX ISA version 1.4 and later, the .approxmodifier is required.

For PTX ISA versions 1.0 through 1.3, ex2.f32 defaults to ex2.approx.ftz.f32.

Target ISA Notes

Supported on all target architectures.

Examples

ex2.approx.ftz.f32 xa, a;

9.7. Instructions 151

PTX ISA, Release 8.1

9.7.3.22 Floating Point Instructions: tanh

tanh

Find the hyperbolic tangent of a value (in radians)

Syntax

tanh.approx.f32 d, a;

Description

Take hyperbolic tangent value of a.

The operands d and a are of type .f32.

Semantics

d = tanh(a);

Notes

tanh.approx.f32 implements a fast approximation to FP32 hyperbolic-tangent.

Results of tanh for various corner-case inputs are as follows:

Input Result

-Inf -1.0

-subnormal Same as input

-0.0 -0.0

+0.0 +0.0

+subnormal Same as input

+Inf 1.0

NaN NaN

The subnormal numbers are supported.

Note: The subnormal inputs gets passed through to the output since the value of tanh(x) for small
values of x is approximately the same as x.

PTX ISA Notes

Introduced in PTX ISA version 7.0.

Target ISA Notes

Requires sm_75 or higher.

Examples

tanh.approx.f32 sa, a;

152 Chapter 9. Instruction Set

PTX ISA, Release 8.1

9.7.4. Half Precision Floating-Point Instructions

Half precision floating-point instructions operate on .f16 and .f16x2 register operands. The half
precision floating-point instructions are:

▶ add

▶ sub

▶ mul

▶ fma

▶ neg

▶ abs

▶ min

▶ max

▶ tanh

▶ ex2

Half-precision add, sub, mul, and fma support saturation of results to the range [0.0, 1.0], with NaNs
being flushed to positive zero. Half-precision instructions return an unspecified NaN.

9.7.4.1 Half Precision Floating Point Instructions: add

add

Add two values.

Syntax

add{.rnd}{.ftz}{.sat}.f16 d, a, b;
add{.rnd}{.ftz}{.sat}.f16x2 d, a, b;

add{.rnd}.bf16 d, a, b;
add{.rnd}.bf16x2 d, a, b;

.rnd = { .rn };

Description

Performs addition and writes the resulting value into a destination register.

For .f16x2 and .bf16x2 instruction type, forms input vectors by half word values from source
operands. Half-word operands are then added in parallel to produce .f16x2 or .bf16x2 result in
destination.

For .f16 instruction type, operands d, a and b have .f16 or .b16 type. For .f16x2 instruction type,
operands d, a and b have .b32 type. For .bf16 instruction type, operands d, a, b have .b16 type. For
.bf16x2 instruction type, operands d, a, b have .b32 type.

Semantics

if (type == f16 || type == bf16) {
d = a + b;

} else if (type == f16x2 || type == bf16x2) {
(continues on next page)

9.7. Instructions 153

PTX ISA, Release 8.1

(continued from previous page)

fA[0] = a[0:15];
fA[1] = a[16:31];
fB[0] = b[0:15];
fB[1] = b[16:31];
for (i = 0; i < 2; i++) {

d[i] = fA[i] + fB[i];
}

}

Notes

Rounding modifiers:

.rn mantissa LSB rounds to nearest even

The default value of rounding modifier is .rn. Note that an add instruction with an explicit rounding
modifier is treated conservatively by the code optimizer. An add instruction with no rounding modifier
defaults to round-to-nearest-even and may be optimized aggressively by the code optimizer. In par-
ticular, mul/add sequences with no rounding modifiers may be optimized to use fused-multiply-add
instructions on the target device.

Subnormal numbers: By default, subnormal numbers are supported. add.ftz.{f16, f16x2}
flushes subnormal inputs and results to sign-preserving zero.

Saturation modifier: add.sat.{f16, f16x2} clamps the result to [0.0, 1.0]. NaN results are flushed
to +0.0f.

PTX ISA Notes

Introduced in PTX ISA version 4.2.

add{.rnd}.bf16 and add{.rnd}.bf16x2 introduced in PTX ISA version 7.8.

Target ISA Notes

Requires sm_53 or higher.

add{.rnd}.bf16 and add{.rnd}.bf16x2 requires sm_90 or higher.

Examples

∕∕ scalar f16 additions
add.f16 d0, a0, b0;
add.rn.f16 d1, a1, b1;
add.bf16 bd0, ba0, bb0;
add.rn.bf16 bd1, ba1, bb1;

∕∕ SIMD f16 addition
cvt.rn.f16.f32 h0, f0;
cvt.rn.f16.f32 h1, f1;
cvt.rn.f16.f32 h2, f2;
cvt.rn.f16.f32 h3, f3;
mov.b32 p1, {h0, h1}; ∕∕ pack two f16 to 32bit f16x2
mov.b32 p2, {h2, h3}; ∕∕ pack two f16 to 32bit f16x2
add.f16x2 p3, p1, p2; ∕∕ SIMD f16x2 addition

∕∕ SIMD bf16 addition
cvt.rn.bf16x2.f32 p4, f4, f5; ∕∕ Convert two f32 into packed bf16x2
cvt.rn.bf16x2.f32 p5, f6, f7; ∕∕ Convert two f32 into packed bf16x2
add.bf16x2 p6, p4, p5; ∕∕ SIMD bf16x2 addition

(continues on next page)

154 Chapter 9. Instruction Set

PTX ISA, Release 8.1

(continued from previous page)

∕∕ SIMD fp16 addition
ld.global.b32 f0, [addr]; ∕∕ load 32 bit which hold packed f16x2
ld.global.b32 f1, [addr + 4]; ∕∕ load 32 bit which hold packed f16x2
add.f16x2 f2, f0, f1; ∕∕ SIMD f16x2 addition

ld.global.b32 f3, [addr + 8]; ∕∕ load 32 bit which hold packed bf16x2
ld.global.b32 f4, [addr + 12]; ∕∕ load 32 bit which hold packed bf16x2
add.bf16x2 f5, f3, f4; ∕∕ SIMD bf16x2 addition

9.7.4.2 Half Precision Floating Point Instructions: sub

sub

Subtract two values.

Syntax

sub{.rnd}{.ftz}{.sat}.f16 d, a, b;
sub{.rnd}{.ftz}{.sat}.f16x2 d, a, b;

sub{.rnd}.bf16 d, a, b;
sub{.rnd}.bf16x2 d, a, b;

.rnd = { .rn };

Description

Performs subtraction and writes the resulting value into a destination register.

For .f16x2 and .bf16x2 instruction type, forms input vectors by half word values from source
operands. Half-word operands are then subtracted in parallel to produce .f16x2 or .bf16x2 result in
destination.

For .f16 instruction type, operands d, a and b have .f16 or .b16 type. For .f16x2 instruction type,
operands d, a and b have .b32 type. For .bf16 instruction type, operands d, a, b have .b16 type. For
.bf16x2 instruction type, operands d, a, b have .b32 type.

Semantics

if (type == f16 || type == bf16) {
d = a - b;

} else if (type == f16x2 || type == bf16x2) {
fA[0] = a[0:15];
fA[1] = a[16:31];
fB[0] = b[0:15];
fB[1] = b[16:31];
for (i = 0; i < 2; i++) {

d[i] = fA[i] - fB[i];
}

}

Notes

Rounding modifiers:

.rn mantissa LSB rounds to nearest even

9.7. Instructions 155

PTX ISA, Release 8.1

The default value of rounding modifier is .rn. Note that a sub instruction with an explicit rounding
modifier is treated conservatively by the code optimizer. A sub instruction with no rounding modifier
defaults to round-to-nearest-even and may be optimized aggressively by the code optimizer. In par-
ticular, mul/sub sequences with no rounding modifiers may be optimized to use fused-multiply-add
instructions on the target device.

Subnormal numbers: By default, subnormal numbers are supported. sub.ftz.{f16, f16x2}
flushes subnormal inputs and results to sign-preserving zero.

Saturation modifier: sub.sat.{f16, f16x2} clamps the result to [0.0, 1.0]. NaN results are flushed
to +0.0f.

PTX ISA Notes

Introduced in PTX ISA version 4.2.

sub{.rnd}.bf16 and sub{.rnd}.bf16x2 introduced in PTX ISA version 7.8.

Target ISA Notes

Requires sm_53 or higher.

sub{.rnd}.bf16 and sub{.rnd}.bf16x2 requires sm_90 or higher.

Examples

∕∕ scalar f16 subtractions
sub.f16 d0, a0, b0;
sub.rn.f16 d1, a1, b1;
sub.bf16 bd0, ba0, bb0;
sub.rn.bf16 bd1, ba1, bb1;

∕∕ SIMD f16 subtraction
cvt.rn.f16.f32 h0, f0;
cvt.rn.f16.f32 h1, f1;
cvt.rn.f16.f32 h2, f2;
cvt.rn.f16.f32 h3, f3;
mov.b32 p1, {h0, h1}; ∕∕ pack two f16 to 32bit f16x2
mov.b32 p2, {h2, h3}; ∕∕ pack two f16 to 32bit f16x2
sub.f16x2 p3, p1, p2; ∕∕ SIMD f16x2 subtraction

∕∕ SIMD bf16 subtraction
cvt.rn.bf16x2.f32 p4, f4, f5; ∕∕ Convert two f32 into packed bf16x2
cvt.rn.bf16x2.f32 p5, f6, f7; ∕∕ Convert two f32 into packed bf16x2
sub.bf16x2 p6, p4, p5; ∕∕ SIMD bf16x2 subtraction

∕∕ SIMD fp16 subtraction
ld.global.b32 f0, [addr]; ∕∕ load 32 bit which hold packed f16x2
ld.global.b32 f1, [addr + 4]; ∕∕ load 32 bit which hold packed f16x2
sub.f16x2 f2, f0, f1; ∕∕ SIMD f16x2 subtraction

∕∕ SIMD bf16 subtraction
ld.global.b32 f3, [addr + 8]; ∕∕ load 32 bit which hold packed bf16x2
ld.global.b32 f4, [addr + 12]; ∕∕ load 32 bit which hold packed bf16x2
sub.bf16x2 f5, f3, f4; ∕∕ SIMD bf16x2 subtraction

156 Chapter 9. Instruction Set

PTX ISA, Release 8.1

9.7.4.3 Half Precision Floating Point Instructions: mul

mul

Multiply two values.

Syntax

mul{.rnd}{.ftz}{.sat}.f16 d, a, b;
mul{.rnd}{.ftz}{.sat}.f16x2 d, a, b;

mul{.rnd}.bf16 d, a, b;
mul{.rnd}.bf16x2 d, a, b;

.rnd = { .rn };

Description

Performs multiplication and writes the resulting value into a destination register.

For .f16x2 and .bf16x2 instruction type, forms input vectors by half word values from source
operands. Half-word operands are then multiplied in parallel to produce .f16x2 or .bf16x2 result
in destination.

For .f16 instruction type, operands d, a and b have .f16 or .b16 type. For .f16x2 instruction type,
operands d, a and b have .b32 type. For .bf16 instruction type, operands d, a, b have .b16 type. For
.bf16x2 instruction type, operands d, a, b have .b32 type.

Semantics

if (type == f16 || type == bf16) {
d = a * b;

} else if (type == f16x2 || type == bf16x2) {
fA[0] = a[0:15];
fA[1] = a[16:31];
fB[0] = b[0:15];
fB[1] = b[16:31];
for (i = 0; i < 2; i++) {

d[i] = fA[i] * fB[i];
}

}

Notes

Rounding modifiers:

.rn mantissa LSB rounds to nearest even

The default value of rounding modifier is .rn. Note that a mul instruction with an explicit rounding
modifier is treated conservatively by the code optimizer. A mul instruction with no rounding modifier
defaults to round-to-nearest-even and may be optimized aggressively by the code optimizer. In par-
ticular, mul/add and mul∕sub sequences with no rounding modifiers may be optimized to use fused-
multiply-add instructions on the target device.

Subnormal numbers: By default, subnormal numbers are supported. mul.ftz.{f16, f16x2}
flushes subnormal inputs and results to sign-preserving zero.

Saturation modifier: mul.sat.{f16, f16x2} clamps the result to [0.0, 1.0]. NaN results are flushed
to +0.0f.

PTX ISA Notes

9.7. Instructions 157

PTX ISA, Release 8.1

Introduced in PTX ISA version 4.2.

mul{.rnd}.bf16 and mul{.rnd}.bf16x2 introduced in PTX ISA version 7.8.

Target ISA Notes

Requires sm_53 or higher.

mul{.rnd}.bf16 and mul{.rnd}.bf16x2 requires sm_90 or higher.

Examples

∕∕ scalar f16 multiplications
mul.f16 d0, a0, b0;
mul.rn.f16 d1, a1, b1;
mul.bf16 bd0, ba0, bb0;
mul.rn.bf16 bd1, ba1, bb1;

∕∕ SIMD f16 multiplication
cvt.rn.f16.f32 h0, f0;
cvt.rn.f16.f32 h1, f1;
cvt.rn.f16.f32 h2, f2;
cvt.rn.f16.f32 h3, f3;
mov.b32 p1, {h0, h1}; ∕∕ pack two f16 to 32bit f16x2
mov.b32 p2, {h2, h3}; ∕∕ pack two f16 to 32bit f16x2
mul.f16x2 p3, p1, p2; ∕∕ SIMD f16x2 multiplication

∕∕ SIMD bf16 multiplication
cvt.rn.bf16x2.f32 p4, f4, f5; ∕∕ Convert two f32 into packed bf16x2
cvt.rn.bf16x2.f32 p5, f6, f7; ∕∕ Convert two f32 into packed bf16x2
mul.bf16x2 p6, p4, p5; ∕∕ SIMD bf16x2 multiplication

∕∕ SIMD fp16 multiplication
ld.global.b32 f0, [addr]; ∕∕ load 32 bit which hold packed f16x2
ld.global.b32 f1, [addr + 4]; ∕∕ load 32 bit which hold packed f16x2
mul.f16x2 f2, f0, f1; ∕∕ SIMD f16x2 multiplication

∕∕ SIMD bf16 multiplication
ld.global.b32 f3, [addr + 8]; ∕∕ load 32 bit which hold packed bf16x2
ld.global.b32 f4, [addr + 12]; ∕∕ load 32 bit which hold packed bf16x2
mul.bf16x2 f5, f3, f4; ∕∕ SIMD bf16x2 multiplication

9.7.4.4 Half Precision Floating Point Instructions: fma

fma

Fused multiply-add

Syntax

fma.rnd{.ftz}{.sat}.f16 d, a, b, c;
fma.rnd{.ftz}{.sat}.f16x2 d, a, b, c;
fma.rnd{.ftz}.relu.f16 d, a, b, c;
fma.rnd{.ftz}.relu.f16x2 d, a, b, c;
fma.rnd{.relu}.bf16 d, a, b, c;
fma.rnd{.relu}.bf16x2 d, a, b, c;
fma.rnd.oob.{relu}.type d, a, b, c;

.rnd = { .rn };

158 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Description

Performs a fused multiply-add with no loss of precision in the intermediate product and addition.

For .f16x2 and .bf16x2 instruction type, forms input vectors by half word values from source
operands. Half-word operands are then operated in parallel to produce .f16x2 or .bf16x2 result
in destination.

For .f16 instruction type, operands d, a, b and c have .f16 or .b16 type. For .f16x2 instruction type,
operands d, a, b and c have .b32 type. For .bf16 instruction type, operands d, a, b and c have .b16
type. For .bf16x2 instruction type, operands d, a, b and c have .b32 type.

Semantics

if (type == f16 || type == bf16) {
d = a * b + c;

} else if (type == f16x2 || type == bf16x2) {
fA[0] = a[0:15];
fA[1] = a[16:31];
fB[0] = b[0:15];
fB[1] = b[16:31];
fC[0] = c[0:15];
fC[1] = c[16:31];
for (i = 0; i < 2; i++) {

d[i] = fA[i] * fB[i] + fC[i];
}

}

Notes

Rounding modifiers (default is .rn):

.rn mantissa LSB rounds to nearest even

Subnormal numbers: By default, subnormal numbers are supported. fma.ftz.{f16, f16x2}
flushes subnormal inputs and results to sign-preserving zero.

Saturation modifier: fma.sat.{f16, f16x2} clamps the result to [0.0, 1.0]. NaN results are flushed
to +0.0f. fma.relu.{f16, f16x2, bf16, bf16x2} clamps the result to 0 if negative. NaN
result is converted to canonical NaN.

Out Of Bounds modifier: fma.oob.{f16, f16x2, bf16, bf16x2} clamps the result to 0 if either
of the operands is OOB NaN (defined under Tensors) value. The test for the special NaN value
and resultant forcing of the result to +0.0 is performed independently for each of the two SIMD
operations.

PTX ISA Notes

Introduced in PTX ISA version 4.2.

fma.relu.{f16, f16x2} and fma{.relu}.{bf16, bf16x2} introduced in PTX ISA version 7.0.

Support for modifier .oob introduced in PTX ISA version 8.1.

Target ISA Notes

Requires sm_53 or higher.

fma.relu.{f16, f16x2} and fma{.relu}.{bf16, bf16x2} require sm_80 or higher.

fma{.oob}.{f16, f16x2, bf16, bf16x2} requires sm_90 or higher.

Examples

9.7. Instructions 159

PTX ISA, Release 8.1

∕∕ scalar f16 fused multiply-add
fma.rn.f16 d0, a0, b0, c0;
fma.rn.f16 d1, a1, b1, c1;
fma.rn.relu.f16 d1, a1, b1, c1;
fma.rn.oob.f16 d1, a1, b1, c1;
fma.rn.oob.relu.f16 d1, a1, b1, c1;

∕∕ scalar bf16 fused multiply-add
fma.rn.bf16 d1, a1, b1, c1;
fma.rn.relu.bf16 d1, a1, b1, c1;
fma.rn.oob.bf16 d1, a1, b1, c1;
fma.rn.oob.relu.bf16 d1, a1, b1, c1;

∕∕ SIMD f16 fused multiply-add
cvt.rn.f16.f32 h0, f0;
cvt.rn.f16.f32 h1, f1;
cvt.rn.f16.f32 h2, f2;
cvt.rn.f16.f32 h3, f3;
mov.b32 p1, {h0, h1}; ∕∕ pack two f16 to 32bit f16x2
mov.b32 p2, {h2, h3}; ∕∕ pack two f16 to 32bit f16x2
fma.rn.f16x2 p3, p1, p2, p2; ∕∕ SIMD f16x2 fused multiply-add
fma.rn.relu.f16x2 p3, p1, p2, p2; ∕∕ SIMD f16x2 fused multiply-add with relu�
↪→saturation mode
fma.rn.oob.f16x2 p3, p1, p2, p2; ∕∕ SIMD f16x2 fused multiply-add with oob modifier
fma.rn.oob.relu.f16x2 p3, p1, p2, p2; ∕∕ SIMD f16x2 fused multiply-add with oob�
↪→modifier and relu saturation mode

∕∕ SIMD fp16 fused multiply-add
ld.global.b32 f0, [addr]; ∕∕ load 32 bit which hold packed f16x2
ld.global.b32 f1, [addr + 4]; ∕∕ load 32 bit which hold packed f16x2
fma.rn.f16x2 f2, f0, f1, f1; ∕∕ SIMD f16x2 fused multiply-add

∕∕ SIMD bf16 fused multiply-add
fma.rn.bf16x2 f2, f0, f1, f1; ∕∕ SIMD bf16x2 fused multiply-add
fma.rn.relu.bf16x2 f2, f0, f1, f1; ∕∕ SIMD bf16x2 fused multiply-add with relu�
↪→saturation mode
fma.rn.oob.bf16x2 f2, f0, f1, f1; ∕∕ SIMD bf16x2 fused multiply-add with oob modifier
fma.rn.oob.relu.bf16x2 f2, f0, f1, f1; ∕∕ SIMD bf16x2 fused multiply-add with oob�
↪→modifier and relu saturation mode

9.7.4.5 Half Precision Floating Point Instructions: neg

neg

Arithmetic negate.

Syntax

neg{.ftz}.f16 d, a;
neg{.ftz}.f16x2 d, a;
neg.bf16 d, a;
neg.bf16x2 d, a;

Description

Negate the sign of a and store the result in d.

160 Chapter 9. Instruction Set

PTX ISA, Release 8.1

For .f16x2 and .bf16x2 instruction type, forms input vector by extracting half word values from the
source operand. Half-word operands are then negated in parallel to produce .f16x2 or .bf16x2 result
in destination.

For .f16 instruction type, operands d and a have .f16 or .b16 type. For .f16x2 instruction type,
operands d and a have .b32 type. For .bf16 instruction type, operands d and a have .b16 type. For
.bf16x2 instruction type, operands d and a have .b32 type.

Semantics

if (type == f16 || type == bf16) {
d = -a;

} else if (type == f16x2 || type == bf16x2) {
fA[0] = a[0:15];
fA[1] = a[16:31];
for (i = 0; i < 2; i++) {

d[i] = -fA[i];
}

}

Notes

Subnormal numbers: By default, subnormal numbers are supported. neg.ftz.{f16, f16x2}
flushes subnormal inputs and results to sign-preserving zero.

NaN inputs yield an unspecified NaN. Future implementations may comply with the IEEE 754 standard
by preserving payload and modifying only the sign bit.

PTX ISA Notes

Introduced in PTX ISA version 6.0.

neg.bf16 and neg.bf16x2 introduced in PTX ISA 7.0.

Target ISA Notes

Requires sm_53 or higher.

neg.bf16 and neg.bf16x2 requires architecture sm_80 or higher.

Examples

neg.ftz.f16 x,f0;
neg.bf16 x,b0;
neg.bf16x2 x1,b1;

9.7.4.6 Half Precision Floating Point Instructions: abs

abs

Absolute value

Syntax

abs{.ftz}.f16 d, a;
abs{.ftz}.f16x2 d, a;
abs.bf16 d, a;
abs.bf16x2 d, a;

Description

Take absolute value of a and store the result in d.

9.7. Instructions 161

PTX ISA, Release 8.1

For .f16x2 and .bf16x2 instruction type, forms input vector by extracting half word values from
the source operand. Absolute values of half-word operands are then computed in parallel to produce
.f16x2 or .bf16x2 result in destination.

For .f16 instruction type, operands d and a have .f16 or .b16 type. For .f16x2 instruction type,
operands d and a have .f16x2 or .b32 type. For .bf16 instruction type, operands d and a have .b16
type. For .bf16x2 instruction type, operands d and a have .b32 type.

Semantics

if (type == f16 || type == bf16) {
d = |a|;

} else if (type == f16x2 || type == bf16x2) {
fA[0] = a[0:15];
fA[1] = a[16:31];
for (i = 0; i < 2; i++) {

d[i] = |fA[i]|;
}

}

Notes

Subnormal numbers: By default, subnormal numbers are supported. abs.ftz.{f16, f16x2}
flushes subnormal inputs and results to sign-preserving zero.

NaN inputs yield an unspecified NaN. Future implementations may comply with the IEEE 754 standard
by preserving payload and modifying only the sign bit.

PTX ISA Notes

Introduced in PTX ISA version 6.5.

abs.bf16 and abs.bf16x2 introduced in PTX ISA 7.0.

Target ISA Notes

Requires sm_53 or higher.

abs.bf16 and abs.bf16x2 requires architecture sm_80 or higher.

Examples

abs.ftz.f16 x,f0;
abs.bf16 x,b0;
abs.bf16x2 x1,b1;

9.7.4.7 Half Precision Floating Point Instructions: min

min

Find the minimum of two values.

Syntax

min{.ftz}{.NaN}{.xorsign.abs}.f16 d, a, b;
min{.ftz}{.NaN}{.xorsign.abs}.f16x2 d, a, b;
min{.NaN}{.xorsign.abs}.bf16 d, a, b;
min{.NaN}{.xorsign.abs}.bf16x2 d, a, b;

Description

Store the minimum of a and b in d.

162 Chapter 9. Instruction Set

PTX ISA, Release 8.1

For .f16x2 and .bf16x2 instruction types, input vectors are formed with half-word values from
source operands. Half-word operands are then processed in parallel to store .f16x2 or .bf16x2 result
in destination.

For .f16 instruction type, operands d and a have .f16 or .b16 type. For .f16x2 instruction type,
operands d and a have .f16x2 or .b32 type. For .bf16 instruction type, operands d and a have .b16
type. For .bf16x2 instruction type, operands d and a have .b32 type.

If .NaNmodifier is specified, then the result is canonical NaN if either of the inputs is NaN.

If .abs modifier is specified, the magnitude of destination operand d is the minimum of absolute
values of both the input arguments.

If .xorsign modifier is specified, the sign bit of destination d is equal to the XOR of the sign bits of
both the inputs.

Modifiers .abs and .xorsign must be specified together and .xorsign considers the sign bit of
both inputs before applying .abs operation.

If the result of min is NaN then the .xorsign and .absmodifiers will be ignored.

Semantics

if (type == f16 || type == bf16) {
if (.xorsign) {

xorsign = getSignBit(a) ^ getSignBit(b);
if (.abs) {

a = |a|;
b = |b|;

}
}
if (isNaN(a) && isNaN(b)) d = NaN;
if (.NaN && (isNaN(a) || isNaN(b))) d = NaN;
else if (isNaN(a)) d = b;
else if (isNaN(b)) d = a;
else d = (a < b) ? a : b;
if (.xorsign && !isNaN(d)) {

setSignBit(d, xorsign);
}

} else if (type == f16x2 || type == bf16x2) {
fA[0] = a[0:15];
fA[1] = a[16:31];
fB[0] = b[0:15];
fB[1] = b[16:31];
for (i = 0; i < 2; i++) {

if (.xorsign) {
xorsign = getSignBit(fA[i]) ^ getSignBit(fB[i]);
if (.abs) {

fA[i] = |fA[i]|;
fB[i] = |fB[i]|;

}
}
if (isNaN(fA[i]) && isNaN(fB[i])) d[i] = NaN;
if (.NaN && (isNaN(fA[i]) || isNaN(fB[i]))) d[i] = NaN;
else if (isNaN(fA[i])) d[i] = fB[i];
else if (isNaN(fB[i])) d[i] = fA[i];
else d[i] = (fA[i] < fB[i]) ? fA[i]�

↪→: fB[i];
if (.xorsign && !isNaN(d[i])) {

setSignBit(d[i], xorsign);
(continues on next page)

9.7. Instructions 163

PTX ISA, Release 8.1

(continued from previous page)

}
}

}

Notes

Subnormal numbers: By default, subnormal numbers are supported. min.ftz.{f16, f16x2}
flushes subnormal inputs and results to sign-preserving zero.

If values of both inputs are 0.0, then +0.0 > -0.0.

PTX ISA Notes

Introduced in PTX ISA version 7.0.

min.xorsign introduced in PTX ISA version 7.2.

Target ISA Notes

Requires sm_80 or higher.

min.xorsign.abs support requires sm_86 or higher.

Examples

min.ftz.f16 h0,h1,h2;
min.f16x2 b0,b1,b2;
∕∕ SIMD fp16 min with .NaN
min.NaN.f16x2 b0,b1,b2;
min.bf16 h0, h1, h2;
∕∕ SIMD bf16 min with NaN
min.NaN.bf16x2 b0, b1, b2;
∕∕ scalar bf16 min with xorsign.abs
min.xorsign.abs.bf16 Rd, Ra, Rb

9.7.4.8 Half Precision Floating Point Instructions: max

max

Find the maximum of two values.

Syntax

max{.ftz}{.NaN}{.xorsign.abs}.f16 d, a, b;
max{.ftz}{.NaN}{.xorsign.abs}.f16x2 d, a, b;
max{.NaN}{.xorsign.abs}.bf16 d, a, b;
max{.NaN}{.xorsign.abs}.bf16x2 d, a, b;

Description

Store the maximum of a and b in d.

For .f16x2 and .bf16x2 instruction types, input vectors are formed with half-word values from
source operands. Half-word operands are then processed in parallel to store .f16x2 or .bf16x2 result
in destination.

For .f16 instruction type, operands d and a have .f16 or .b16 type. For .f16x2 instruction type,
operands d and a have .f16x2 or .b32 type. For .bf16 instruction type, operands d and a have .b16
type. For .bf16x2 instruction type, operands d and a have .b32 type.

If .NaNmodifier is specified, the result is canonical NaN if either of the inputs is NaN.

164 Chapter 9. Instruction Set

PTX ISA, Release 8.1

If .abs modifier is specified, the magnitude of destination operand d is the maximum of absolute
values of both the input arguments.

If .xorsign modifier is specified, the sign bit of destination d is equal to the XOR of the sign bits of
both the inputs.

Modifiers .abs and .xorsign must be specified together and .xorsign considers the sign bit of
both inputs before applying .abs operation.

If the result of max is NaN then the .xorsign and .absmodifiers will be ignored.

Semantics

if (type == f16 || type == bf16) {
if (.xorsign) {

xorsign = getSignBit(a) ^ getSignBit(b);
if (.abs) {

a = |a|;
b = |b|;

}
}
if (isNaN(a) && isNaN(b)) d = NaN;
if (.NaN && (isNaN(a) || isNaN(b))) d = NaN;
else if (isNaN(a)) d = b;
else if (isNaN(b)) d = a;
else d = (a > b) ? a : b;
if (.xorsign && !isNaN(d)) {

setSignBit(d, xorsign);
}

} else if (type == f16x2 || type == bf16x2) {
fA[0] = a[0:15];
fA[1] = a[16:31];
fB[0] = b[0:15];
fB[1] = b[16:31];
for (i = 0; i < 2; i++) {

if (.xorsign) {
xorsign = getSignBit(fA[i]) ^ getSignBit(fB[i]);
if (.abs) {

fA[i] = |fA[i]|;
fB[i] = |fB[i]|;

}
}
if (isNaN(fA[i]) && isNaN(fB[i])) d[i] = NaN;
if (.NaN && (isNaN(fA[i]) || isNaN(fB[i]))) d[i] = NaN;
else if (isNaN(fA[i])) d[i] = fB[i];
else if (isNaN(fB[i])) d[i] = fA[i];
else d[i] = (fA[i] > fB[i]) ? fA[i]�

↪→: fB[i];
if (.xorsign && !isNaN(fA[i])) {

setSignBit(d[i], xorsign);
}

}
}

Notes

Subnormal numbers: By default, subnormal numbers are supported. max.ftz.{f16, f16x2}
flushes subnormal inputs and results to sign-preserving zero.

If values of both inputs are 0.0, then +0.0 > -0.0.

9.7. Instructions 165

PTX ISA, Release 8.1

PTX ISA Notes

Introduced in PTX ISA version 7.0.

max.xorsign.abs introduced in PTX ISA version 7.2.

Target ISA Notes

Requires sm_80 or higher.

max.xorsign.abs support requires sm_86 or higher.

Examples

max.ftz.f16 h0,h1,h2;
max.f16x2 b0,b1,b2;
∕∕ SIMD fp16 max with NaN
max.NaN.f16x2 b0,b1,b2;
∕∕ scalar f16 max with xorsign.abs
max.xorsign.abs.f16 Rd, Ra, Rb;
max.bf16 h0, h1, h2;
∕∕ scalar bf16 max and NaN
max.NaN.bf16x2 b0, b1, b2;
∕∕ SIMD bf16 max with xorsign.abs
max.xorsign.abs.bf16x2 Rd, Ra, Rb;

9.7.4.9 Half Precision Floating Point Instructions: tanh

tanh

Find the hyperbolic tangent of a value (in radians)

Syntax

tanh.approx.type d, a;

.type = {.f16, .f16x2, .bf16, .bf16x2}

Description

Take hyperbolic tangent value of a.

The type of operands d and a are as specified by .type.

For .f16x2 or .bf16x2 instruction type, each of the half-word operands are operated in parallel and
the results are packed appropriately into a .f16x2 or .bf16x2.

Semantics

if (.type == .f16 || .type == .bf16) {
d = tanh(a)

} else if (.type == .f16x2 || .type == .bf16x2) {
fA[0] = a[0:15];
fA[1] = a[16:31];
d[0] = tanh(fA[0])
d[1] = tanh(fA[1])

}

Notes

tanh.approx.{f16, f16x2, bf16, bf16x2} implements an approximate hyperbolic tangent in
the target format.

166 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Results of tanh for various corner-case inputs are as follows:

Input Result

-Inf -1.0

-0.0 -0.0

+0.0 +0.0

+Inf 1.0

NaN NaN

The maximum absolute error for .f16 type is 2-10.987. The maximum absolute error for .bf16 type
is 2-8.

The subnormal numbers are supported.

PTX ISA Notes

Introduced in PTX ISA version 7.0.

tanh.approx.{bf16∕bf16x2} introduced in PTX ISA version 7.8.

Target ISA Notes

Requires sm_75 or higher.

tanh.approx.{bf16∕bf16x2} requires sm_90 or higher.

Examples

tanh.approx.f16 h1, h0;
tanh.approx.f16x2 hd1, hd0;
tanh.approx.bf16 b1, b0;
tanh.approx.bf16x2 hb1, hb0;

9.7.4.10 Half Precision Floating Point Instructions: ex2

ex2

Find the base-2 exponent of input.

Syntax

ex2.approx.atype d, a;
ex2.approx.ftz.btype d, a;

.atype = { .f16, .f16x2}

.btype = { .bf16, .bf16x2}

Description

Raise 2 to the power a.

The type of operands d and a are as specified by .type.

For .f16x2 or .bf16x2 instruction type, each of the half-word operands are operated in parallel and
the results are packed appropriately into a .f16x2 or .bf16x2.

Semantics

9.7. Instructions 167

PTX ISA, Release 8.1

if (.type == .f16 || .type == .bf16) {
d = 2 ^ a

} else if (.type == .f16x2 || .type == .bf16x2) {
fA[0] = a[0:15];
fA[1] = a[16:31];
d[0] = 2 ^ fA[0]
d[1] = 2 ^ fA[1]

}

Notes

ex2.approx.{f16, f16x2, bf16, bf16x2} implement a fast approximation to 2a.

For the .f16 type, subnormal inputs are supported. ex2.approx.ftz.bf16 flushes subnormal in-
puts and results to sign-preserving zero.

Results of ex2.approx.ftz.bf16 for various corner-case inputs are as follows:

Input Result

-Inf +0.0

-subnormal +1.0

-0.0 +1.0

+0.0 +1.0

+subnormal +1.0

+Inf +Inf

NaN NaN

Results of ex2.approx.f16 for various corner-case inputs are as follows:

Input Result

-Inf +0.0

-0.0 +1.0

+0.0 +1.0

+Inf +Inf

NaN NaN

The maximum relative error for .f16 type is 2-9.9. The maximum relative error for .bf16 type is 2-7.

PTX ISA Notes

Introduced in PTX ISA version 7.0.

ex2.approx.ftz.{bf16∕bf16x2} introduced in PTX ISA version 7.8.

Target ISA Notes

Requires sm_75 or higher.

ex2.approx.ftz.{bf16∕bf16x2} requires sm_90 or higher.

Examples

168 Chapter 9. Instruction Set

PTX ISA, Release 8.1

ex2.approx.f16 h1, h0;
ex2.approx.f16x2 hd1, hd0;
ex2.approx.ftz.bf16 b1, b2;
ex2.approx.ftz.bf16x2 hb1, hb2;

9.7.5. Comparison and Selection Instructions

The comparison select instructions are:

▶ set

▶ setp

▶ selp

▶ slct

Aswith single-precision floating-point instructions, the set, setp, and slct instructions support sub-
normal numbers for sm_20 and higher targets and flush single-precision subnormal inputs to sign-
preserving zero for sm_1x targets. The optional .ftz modifier provides backward compatibility with
sm_1x targets by flushing subnormal inputs and results to sign-preserving zero regardless of the tar-
get architecture.

9.7.5.1 Comparison and Selection Instructions: set

set

Compare two numeric values with a relational operator, and optionally combine this result with a pred-
icate value by applying a Boolean operator.

Syntax

set.CmpOp{.ftz}.dtype.stype d, a, b;
set.CmpOp.BoolOp{.ftz}.dtype.stype d, a, b, {!}c;

.CmpOp = { eq, ne, lt, le, gt, ge, lo, ls, hi, hs,
equ, neu, ltu, leu, gtu, geu, num, nan };

.BoolOp = { and, or, xor };

.dtype = { .u32, .s32, .f32 };

.stype = { .b16, .b32, .b64,
.u16, .u32, .u64,
.s16, .s32, .s64,

.f32, .f64 };

Description

Compares two numeric values and optionally combines the result with another predicate value by ap-
plying a Boolean operator. If this result is True, 1.0f is written for floating-point destination types,
and 0xffffffff is written for integer destination types. Otherwise, 0x00000000 is written.

Operand dhas type .dtype; operands a and b have type .stype; operand c has type .pred.

Semantics

9.7. Instructions 169

PTX ISA, Release 8.1

t = (a CmpOp b) ? 1 : 0;
if (isFloat(dtype))

d = BoolOp(t, c) ? 1.0f : 0x00000000;
else

d = BoolOp(t, c) ? 0xffffffff : 0x00000000;

Integer Notes

The signed and unsigned comparison operators are eq, ne, lt, le, gt, ge.

For unsigned values, the comparison operators lo, ls, hi, and hs for lower, lower-or-same, higher, and
higher-or-same may be used instead of lt, le, gt, ge, respectively.

The untyped, bit-size comparisons are eq and ne.

Floating Point Notes

The ordered comparisons are eq, ne, lt, le, gt, ge. If either operand is NaN, the result is False.

To aid comparison operations in the presence of NaN values, unordered versions are included: equ,
neu, ltu, leu, gtu, geu. If both operands are numeric values (not NaN), then these comparisons have
the same result as their ordered counterparts. If either operand is NaN, then the result of these com-
parisons is True.

num returns True if both operands are numeric values (not NaN), and nan returns True if either operand
is NaN.

Subnormal numbers:

sm_20+ By default, subnormal numbers are supported.

set.ftz.dtype.f32 flushes subnormal inputs to sign-preserving zero.

sm_1x set.dtype.f64 supports subnormal numbers.

set.dtype.f32 flushes subnormal inputs to sign-preserving zero.

Modifier .ftz applies only to .f32 comparisons.

PTX ISA Notes

Introduced in PTX ISA version 1.0.

Target ISA Notes

set with .f64 source type requires sm_13 or higher.

Examples

@p set.lt.and.f32.s32 d,a,b,r;
set.eq.u32.u32 d,i,n;

9.7.5.2 Comparison and Selection Instructions: setp

setp

Compare two numeric values with a relational operator, and (optionally) combine this result with a
predicate value by applying a Boolean operator.

Syntax

170 Chapter 9. Instruction Set

PTX ISA, Release 8.1

setp.CmpOp{.ftz}.type p[|q], a, b;
setp.CmpOp.BoolOp{.ftz}.type p[|q], a, b, {!}c;

.CmpOp = { eq, ne, lt, le, gt, ge, lo, ls, hi, hs,
equ, neu, ltu, leu, gtu, geu, num, nan };

.BoolOp = { and, or, xor };

.type = { .b16, .b32, .b64,
.u16, .u32, .u64,
.s16, .s32, .s64,

.f32, .f64 };

Description

Compares two values and combines the result with another predicate value by applying a Boolean
operator. This result is written to the first destination operand. A related value computed using the
complement of the compare result is written to the second destination operand.

Applies to all numeric types. Operands a and b have type .type; operands p, q, and c have type .pred.
The sink symbol ‘_’ may be used in place of any one of the destination operands.

Semantics

t = (a CmpOp b) ? 1 : 0;
p = BoolOp(t, c);
q = BoolOp(!t, c);

Integer Notes

The signed and unsigned comparison operators are eq, ne, lt, le, gt, ge.

For unsigned values, the comparison operators lo, ls, hi, and hs for lower, lower-or-same, higher, and
higher-or-same may be used instead of lt, le, gt, ge, respectively.

The untyped, bit-size comparisons are eq and ne.

Floating Point Notes

The ordered comparisons are eq, ne, lt, le, gt, ge. If either operand is NaN, the result is False.

To aid comparison operations in the presence of NaN values, unordered versions are included: equ,
neu, ltu, leu, gtu, geu. If both operands are numeric values (not NaN), then these comparisons have
the same result as their ordered counterparts. If either operand is NaN, then the result of these com-
parisons is True.

num returns True if both operands are numeric values (not NaN), and nan returns True if either operand
is NaN.

Subnormal numbers:

sm_20+ By default, subnormal numbers are supported.

setp.ftz.dtype.f32 flushes subnormal inputs to sign-preserving zero.

sm_1x setp.dtype.f64 supports subnormal numbers.

setp.dtype.f32 flushes subnormal inputs to sign-preserving zero.

Modifier .ftz applies only to .f32 comparisons.

PTX ISA Notes

Introduced in PTX ISA version 1.0.

Target ISA Notes

9.7. Instructions 171

PTX ISA, Release 8.1

setp with .f64 source type requires sm_13 or higher.

Examples

setp.lt.and.s32 p|q,a,b,r;
@q setp.eq.u32 p,i,n;

9.7.5.3 Comparison and Selection Instructions: selp

selp

Select between source operands, based on the value of the predicate source operand.

Syntax

selp.type d, a, b, c;

.type = { .b16, .b32, .b64,
.u16, .u32, .u64,
.s16, .s32, .s64,

.f32, .f64 };

Description

Conditional selection. If c is True, a is stored in d, b otherwise. Operands d, a, and b must be of the
same type. Operand c is a predicate.

Semantics

d = (c == 1) ? a : b;

PTX ISA Notes

Introduced in PTX ISA version 1.0.

Target ISA Notes

selp.f64 requires sm_13 or higher.

Examples

selp.s32 r0,r,g,p;
@q selp.f32 f0,t,x,xp;

9.7.5.4 Comparison and Selection Instructions: slct

slct

Select one source operand, based on the sign of the third operand.

Syntax

slct.dtype.s32 d, a, b, c;
slct{.ftz}.dtype.f32 d, a, b, c;

.dtype = { .b16, .b32, .b64,
.u16, .u32, .u64,
.s16, .s32, .s64,

.f32, .f64 };

172 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Description

Conditional selection. If c � 0, a is stored in d, otherwise b is stored in d. Operands d, a, and b are treated
as a bitsize type of the same width as the first instruction type; operand c must match the second
instruction type (.s32 or .f32). The selected input is copied to the output without modification.

Semantics

d = (c >= 0) ? a : b;

Floating Point Notes

For .f32 comparisons, negative zero equals zero.

Subnormal numbers:

sm_20+ By default, subnormal numbers are supported.

slct.ftz.dtype.f32 flushes subnormal values of operand c to sign-preserving zero, and
operand a is selected.

sm_1x slct.dtype.f32 flushes subnormal values of operand c to sign-preserving zero, and operand
a is selected.

Modifier .ftz applies only to .f32 comparisons.

If operand c is NaN, the comparison is unordered and operand b is selected.

PTX ISA Notes

Introduced in PTX ISA version 1.0.

Target ISA Notes

slct.f64 requires sm_13 or higher.

Examples

slct.u32.s32 x, y, z, val;
slct.ftz.u64.f32 A, B, C, fval;

9.7.6. Half Precision Comparison Instructions

The comparison instructions are:

▶ set

▶ setp

9.7.6.1 Half Precision Comparison Instructions: set

set

Compare two numeric values with a relational operator, and optionally combine this result with a pred-
icate value by applying a Boolean operator.

Syntax

9.7. Instructions 173

PTX ISA, Release 8.1

set.CmpOp{.ftz}.f16.stype d, a, b;
set.CmpOp.BoolOp{.ftz}.f16.stype d, a, b, {!}c;

set.CmpOp.bf16.stype d, a, b;
set.CmpOp.BoolOp.bf16.stype d, a, b, {!}c;

set.CmpOp{.ftz}.dtype.f16 d, a, b;
set.CmpOp.BoolOp{.ftz}.dtype.f16 d, a, b, {!}c;
.dtype = { .u16, .s16, .u32, .s32}

set.CmpOp.dtype.bf16 d, a, b;
set.CmpOp.BoolOp.dtype.bf16 d, a, b, {!}c;
.dtype = { .u16, .s16, .u32, .s32}

set.CmpOp{.ftz}.dtype.f16x2 d, a, b;
set.CmpOp.BoolOp{.ftz}.dtype.f16x2 d, a, b, {!}c;
.dtype = { .f16x2, .u32, .s32}

set.CmpOp.dtype.bf16x2 d, a, b;
set.CmpOp.BoolOp.dtype.bf16x2 d, a, b, {!}c;
.dtype = { .bf16x2, .u32, .s32}

.CmpOp = { eq, ne, lt, le, gt, ge,
equ, neu, ltu, leu, gtu, geu, num, nan };

.BoolOp = { and, or, xor };

.stype = { .b16, .b32, .b64,
.u16, .u32, .u64,
.s16, .s32, .s64,
.f16, .f32, .f64};

Description

Compares two numeric values and optionally combines the result with another predicate value by ap-
plying a Boolean operator.

Result of this computation is written in destination register in the following way:

▶ If result is True,

▶ 0xffffffff is written for destination types .u32/.s32.

▶ 0xffff is written for destination types .u16/.s16.

▶ 1.0 in target precision floating point format is written for destination type .f16, .bf16.

▶ If result is False,

▶ 0x0 is written for all integer destination types.

▶ 0.0 in target precision floating point format is written for destination type .f16, .bf16.

If the source type is .f16x2 or .bf16x2 then result of individual operations are packed in the 32-bit
destination operand.

Operand c has type .pred.

Semantics

if (stype == .f16x2 || stype == .bf16x2) {
fA[0] = a[0:15];
fA[1] = a[16:31];
fB[0] = b[0:15];

(continues on next page)

174 Chapter 9. Instruction Set

PTX ISA, Release 8.1

(continued from previous page)

fB[1] = b[16:31];
t[0] = (fA[0] CmpOp fB[0]) ? 1 : 0;
t[1] = (fA[1] CmpOp fB[1]) ? 1 : 0;
if (dtype == .f16x2 || stype == .bf16x2) {

for (i = 0; i < 2; i++) {
d[i] = BoolOp(t[i], c) ? 1.0 : 0.0;

}
} else {

for (i = 0; i < 2; i++) {
d[i] = BoolOp(t[i], c) ? 0xffff : 0;

}
}

} else if (dtype == .f16 || stype == .bf16) {
t = (a CmpOp b) ? 1 : 0;
d = BoolOp(t, c) ? 1.0 : 0.0;

} else { ∕∕ Integer destination type
trueVal = (isU16(dtype) || isS16(dtype)) ? 0xffff : 0xffffffff;
t = (a CmpOp b) ? 1 : 0;
d = BoolOp(t, c) ? trueVal : 0;

}

Floating Point Notes

The ordered comparisons are eq, ne, lt, le, gt, ge. If either operand is NaN, the result is False.

To aid comparison operations in the presence of NaN values, unordered versions are included: equ,
neu, ltu, leu, gtu, geu. If both operands are numeric values (not NaN), then these comparisons have
the same result as their ordered counterparts. If either operand is NaN, then the result of these com-
parisons is True.

num returns True if both operands are numeric values (not NaN), and nan returns True if either operand
is NaN.

Subnormal numbers: By default, subnormal numbers are supported.

When .ftzmodifier is specified then subnormal inputs and results are flushed to sign preserving
zero.

PTX ISA Notes

Introduced in PTX ISA version 4.2.

set.{u16, u32, s16, s32}.f16 and set.{u32, s32}.f16x2 are introduced in PTX ISA version
6.5.

set.{u16, u32, s16, s32}.bf16, set.{u32, s32, bf16x2}.bf16x2, set.bf16.{s16,u16,
f16,b16,s32,u32,f32,b32,s64,u64,f64,b64} are introduced in PTX ISA version 7.8.

Target ISA Notes

Requires sm_53 or higher.

set.{u16, u32, s16, s32}.bf16, set.{u32, s32, bf16x2}.bf16x2, set.bf16.{s16,u16,
f16,b16,s32,u32,f32,b32,s64,u64,f64,b64} require sm_90 or higher.

Examples

set.lt.and.f16.f16 d,a,b,r;
set.eq.f16x2.f16x2 d,i,n;
set.eq.u32.f16x2 d,i,n;
set.lt.and.u16.f16 d,a,b,r;

(continues on next page)

9.7. Instructions 175

PTX ISA, Release 8.1

(continued from previous page)

set.ltu.or.bf16.f16 d,u,v,s;
set.equ.bf16x2.bf16x2 d,j,m;
set.geu.s32.bf16x2 d,j,m;
set.num.xor.s32.bf16 d,u,v,s;

9.7.6.2 Half Precision Comparison Instructions: setp

setp

Compare two numeric values with a relational operator, and optionally combine this result with a pred-
icate value by applying a Boolean operator.

Syntax

setp.CmpOp{.ftz}.f16 p, a, b;
setp.CmpOp.BoolOp{.ftz}.f16 p, a, b, {!}c;

setp.CmpOp{.ftz}.f16x2 p|q, a, b;
setp.CmpOp.BoolOp{.ftz}.f16x2 p|q, a, b, {!}c;

setp.CmpOp.bf16 p, a, b;
setp.CmpOp.BoolOp.bf16 p, a, b, {!}c;

setp.CmpOp.bf16x2 p|q, a, b;
setp.CmpOp.BoolOp.bf16x2 p|q, a, b, {!}c;

.CmpOp = { eq, ne, lt, le, gt, ge,
equ, neu, ltu, leu, gtu, geu, num, nan };

.BoolOp = { and, or, xor };

Description

Compares two values and combines the result with another predicate value by applying a Boolean
operator. This result is written to the destination operand.

Operand c, p and q has type .pred.

For instruction type .f16, operands a and b have type .b16 or .f16.

For instruction type .f16x2, operands a and b have type .b32.

For instruction type .bf16, operands a and b have type .b16.

For instruction type .bf16x2, operands a and b have type .b32.

Semantics

if (type == .f16 || type == .bf16) {
t = (a CmpOp b) ? 1 : 0;
p = BoolOp(t, c);

} else if (type == .f16x2 || type == .bf16x2) {
fA[0] = a[0:15];
fA[1] = a[16:31];
fB[0] = b[0:15];
fB[1] = b[16:31];
t[0] = (fA[0] CmpOp fB[0]) ? 1 : 0;
t[1] = (fA[1] CmpOp fB[1]) ? 1 : 0;
p = BoolOp(t[0], c);

(continues on next page)

176 Chapter 9. Instruction Set

PTX ISA, Release 8.1

(continued from previous page)

q = BoolOp(t[1], c);
}

Floating Point Notes

The ordered comparisons are eq, ne, lt, le, gt, ge. If either operand is NaN, the result is False.

To aid comparison operations in the presence of NaN values, unordered versions are included: equ,
neu, ltu, leu, gtu, geu. If both operands are numeric values (not NaN), then these comparisons have
the same result as their ordered counterparts. If either operand is NaN, then the result of these com-
parisons is True.

num returns True if both operands are numeric values (not NaN), and nan returns True if either operand
is NaN.

Subnormal numbers: By default, subnormal numbers are supported.

setp.ftz.{f16,f16x2} flushes subnormal inputs to sign-preserving zero.

PTX ISA Notes

Introduced in PTX ISA version 4.2.

setp.{bf16∕bf16x2} introduced in PTX ISA version 7.8.

Target ISA Notes

Requires sm_53 or higher.

setp.{bf16∕bf16x2} requires sm_90 or higher.

Examples

setp.lt.and.f16x2 p|q,a,b,r;
@q setp.eq.f16 p,i,n;

setp.gt.or.bf16x2 u|v,c,d,s;
@q setp.eq.bf16 u,j,m;

9.7.7. Logic and Shift Instructions

The logic and shift instructions are fundamentally untyped, performing bit-wise operations on
operands of any type, provided the operands are of the same size. This permits bit-wise operations
on floating point values without having to define a union to access the bits. Instructions and, or, xor,
and not also operate on predicates.

The logical shift instructions are:

▶ and

▶ or

▶ xor

▶ not

▶ cnot

▶ lop3

▶ shf

9.7. Instructions 177

PTX ISA, Release 8.1

▶ shl

▶ shr

9.7.7.1 Logic and Shift Instructions: and

and

Bitwise AND.

Syntax

and.type d, a, b;

.type = { .pred, .b16, .b32, .b64 };

Description

Compute the bit-wise and operation for the bits in a and b.

Semantics

d = a & b;

Notes

The size of the operands must match, but not necessarily the type.

Allowed types include predicate registers.

PTX ISA Notes

Introduced in PTX ISA version 1.0.

Target ISA Notes

Supported on all target architectures.

Examples

and.b32 x,q,r;
and.b32 sign,fpvalue,0x80000000;

9.7.7.2 Logic and Shift Instructions: or

or

Biwise OR.

Syntax

or.type d, a, b;

.type = { .pred, .b16, .b32, .b64 };

Description

Compute the bit-wise or operation for the bits in a and b.

Semantics

178 Chapter 9. Instruction Set

PTX ISA, Release 8.1

d = a | b;

Notes

The size of the operands must match, but not necessarily the type.

Allowed types include predicate registers.

PTX ISA Notes

Introduced in PTX ISA version 1.0.

Target ISA Notes

Supported on all target architectures.

Examples

or.b32 mask mask,0x00010001
or.pred p,q,r;

9.7.7.3 Logic and Shift Instructions: xor

xor

Bitwise exclusive-OR (inequality).

Syntax

xor.type d, a, b;

.type = { .pred, .b16, .b32, .b64 };

Description

Compute the bit-wise exclusive-or operation for the bits in a and b.

Semantics

d = a ^ b;

Notes

The size of the operands must match, but not necessarily the type.

Allowed types include predicate registers.

PTX ISA Notes

Introduced in PTX ISA version 1.0.

Target ISA Notes

Supported on all target architectures.

Examples

xor.b32 d,q,r;
xor.b16 d,x,0x0001;

9.7. Instructions 179

PTX ISA, Release 8.1

9.7.7.4 Logic and Shift Instructions: not

not

Bitwise negation; one’s complement.

Syntax

not.type d, a;

.type = { .pred, .b16, .b32, .b64 };

Description

Invert the bits in a.

Semantics

d = ~a;

Notes

The size of the operands must match, but not necessarily the type.

Allowed types include predicates.

PTX ISA Notes

Introduced in PTX ISA version 1.0.

Target ISA Notes

Supported on all target architectures.

Examples

not.b32 mask,mask;
not.pred p,q;

9.7.7.5 Logic and Shift Instructions: cnot

cnot

C/C++ style logical negation.

Syntax

cnot.type d, a;

.type = { .b16, .b32, .b64 };

Description

Compute the logical negation using C/C++ semantics.

Semantics

d = (a==0) ? 1 : 0;

Notes

The size of the operands must match, but not necessarily the type.

180 Chapter 9. Instruction Set

PTX ISA, Release 8.1

PTX ISA Notes

Introduced in PTX ISA version 1.0.

Target ISA Notes

Supported on all target architectures.

Examples

cnot.b32 d,a;

9.7.7.6 Logic and Shift Instructions: lop3

lop3

Arbitrary logical operation on 3 inputs.

Syntax

lop3.b32 d, a, b, c, immLut;

Description

Compute bitwise logical operation on inputs a, b, c and store the result in destination d.

The logical operation is defined by a look-up table which, for 3 inputs, can be represented as an 8-bit
value specified by operand immLut as described below. immLut is an integer constant that can take
values from 0 to 255, thereby allowing up to 256 distinct logical operations on inputs a, b, c.

For a logical operation F(a, b, c) the value of immLut can be computed by applying the same
operation to three predefined constant values as follows:

ta = 0xF0;
tb = 0xCC;
tc = 0xAA;

immLut = F(ta, tb, tc);

Examples:

If F = (a & b & c);
immLut = 0xF0 & 0xCC & 0xAA = 0x80

If F = (a | b | c);
immLut = 0xF0 | 0xCC | 0xAA = 0xFE

If F = (a & b & ~c);
immLut = 0xF0 & 0xCC & (~0xAA) = 0x40

If F = ((a & b | c) ^ a);
immLut = (0xF0 & 0xCC | 0xAA) ^ 0xF0 = 0x1A

The following table illustrates computation of immLut for various logical operations:

9.7. Instructions 181

PTX ISA, Release 8.1

ta tb tc Oper 0
(False)

Oper 1 (ta & tb
& tc)

Oper 2 (ta& tb&
~tc)

… Oper 254 (ta |
tb | tc)

Oper 255
(True)

0 0 0 0 0 0 … 0 1

0 0 1 0 0 0 1 1

0 1 0 0 0 0 1 1

0 1 1 0 0 0 1 1

1 0 0 0 0 0 1 1

1 0 1 0 0 0 1 1

1 1 0 0 0 1 1 1

1 1 1 0 1 0 1 1

immLut 0x0 0x80 0x40 … 0xFE 0xFF

Semantics

F = GetFunctionFromTable(immLut); ∕∕ returns the function corresponding to immLut�
↪→value
d = F(a, b, c);

PTX ISA Notes

Introduced in PTX ISA version 4.3.

Target ISA Notes

Requires sm_50 or higher.

Examples

lop3.b32 d, a, b, c, 0x40;

9.7.7.7 Logic and Shift Instructions: shf

shf

Funnel shift.

Syntax

shf.l.mode.b32 d, a, b, c; ∕∕ left shift
shf.r.mode.b32 d, a, b, c; ∕∕ right shift

.mode = { .clamp, .wrap };

Description

Shift the 64-bit value formed by concatenating operands a and b left or right by the amount specified
by the unsigned 32-bit value in c. Operand b holds bits 63:32 and operand a holds bits 31:0 of the
64-bit source value. The source is shifted left or right by the clamped or wrapped value in c. For shf.l,
the most-significant 32-bits of the result are written into d; for shf.r, the least-significant 32-bits of
the result are written into d.

Semantics

182 Chapter 9. Instruction Set

PTX ISA, Release 8.1

u32 n = (.mode == .clamp) ? min(c, 32) : c & 0x1f;
switch (shf.dir) { ∕∕ shift concatenation of [b, a]

case shf.l: ∕∕ extract 32 msbs
u32 d = (b << n) | (a >> (32-n));

case shf.r: ∕∕ extract 32 lsbs
u32 d = (b << (32-n)) | (a >> n);

}

Notes

Use funnel shift for multi-word shift operations and for rotate operations. The shift amount is lim-
ited to the range 0..32 in clamp mode and 0..31 in wrap mode, so shifting multi-word values by
distances greater than 32 requires first moving 32-bit words, then using shf to shift the remaining
0..31 distance.

To shift data sizes greater than 64 bits to the right, use repeated shf.r instructions applied to ad-
jacent words, operating from least-significant word towards most-significant word. At each step, a
single word of the shifted result is computed. The most-significant word of the result is computed
using a shr.{u32,s32} instruction, which zero or sign fills based on the instruction type.

To shift data sizes greater than 64 bits to the left, use repeated shf.l instructions applied to adjacent
words, operating from most-significant word towards least-significant word. At each step, a single
word of the shifted result is computed. The least-significant word of the result is computed using a
shl instruction.

Use funnel shift to perform32-bit left or right rotate by supplying the same value for source arguments
a and b.

PTX ISA Notes

Introduced in PTX ISA version 3.1.

Target ISA Notes

Requires sm_32 or higher.

Example

shf.l.clamp.b32 r3,r1,r0,16;

∕∕ 128-bit left shift; n < 32
∕∕ [r7,r6,r5,r4] = [r3,r2,r1,r0] << n
shf.l.clamp.b32 r7,r2,r3,n;
shf.l.clamp.b32 r6,r1,r2,n;
shf.l.clamp.b32 r5,r0,r1,n;
shl.b32 r4,r0,n;

∕∕ 128-bit right shift, arithmetic; n < 32
∕∕ [r7,r6,r5,r4] = [r3,r2,r1,r0] >> n
shf.r.clamp.b32 r4,r0,r1,n;
shf.r.clamp.b32 r5,r1,r2,n;
shf.r.clamp.b32 r6,r2,r3,n;
shr.s32 r7,r3,n; ∕∕ result is sign-extended

shf.r.clamp.b32 r1,r0,r0,n; ∕∕ rotate right by n; n < 32
shf.l.clamp.b32 r1,r0,r0,n; ∕∕ rotate left by n; n < 32

∕∕ extract 32-bits from [r1,r0] starting at position n < 32
shf.r.clamp.b32 r0,r0,r1,n;

9.7. Instructions 183

PTX ISA, Release 8.1

9.7.7.8 Logic and Shift Instructions: shl

shl

Shift bits left, zero-fill on right.

Syntax

shl.type d, a, b;

.type = { .b16, .b32, .b64 };

Description

Shift a left by the amount specified by unsigned 32-bit value in b.

Semantics

d = a << b;

Notes

Shift amounts greater than the register width N are clamped to N.

The sizes of the destination and first source operand must match, but not necessarily the type. The b
operand must be a 32-bit value, regardless of the instruction type.

PTX ISA Notes

Introduced in PTX ISA version 1.0.

Target ISA Notes

Supported on all target architectures.

Example

shl.b32 q,a,2;

9.7.7.9 Logic and Shift Instructions: shr

shr

Shift bits right, sign or zero-fill on left.

Syntax

shr.type d, a, b;

.type = { .b16, .b32, .b64,
.u16, .u32, .u64,
.s16, .s32, .s64 };

Description

Shift a right by the amount specified by unsigned 32-bit value in b. Signed shifts fill with the sign bit,
unsigned and untyped shifts fill with 0.

Semantics

d = a >> b;

184 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Notes

Shift amounts greater than the register width N are clamped to N.

The sizes of the destination and first source operand must match, but not necessarily the type. The b
operand must be a 32-bit value, regardless of the instruction type.

Bit-size types are included for symmetry with shl.

PTX ISA Notes

Introduced in PTX ISA version 1.0.

Target ISA Notes

Supported on all target architectures.

Example

shr.u16 c,a,2;
shr.s32 i,i,1;
shr.b16 k,i,j;

9.7.8. Data Movement and Conversion Instructions

These instructions copy data from place to place, and from state space to state space, possibly con-
verting it from one format to another. mov, ld, ldu, and st operate on both scalar and vector types.
The isspacep instruction is provided to query whether a generic address falls within a particular state
space window. The cvta instruction converts addresses between generic and const, global, lo-
cal, or shared state spaces.

Instructions ld, st, suld, and sust support optional cache operations.

The Data Movement and Conversion Instructions are:

▶ mov

▶ shfl.sync

▶ prmt

▶ ld

▶ ldu

▶ st

▶ st.async

▶ multimen.ld_reduce, multimem.st, multimem.red

▶ prefetch, prefetchu

▶ isspacep

▶ cvta

▶ cvt

▶ cvt.pack

▶ cp.async

▶ cp.async.commit_group

9.7. Instructions 185

PTX ISA, Release 8.1

▶ cp.async.wait_group, cp.async.wait_all

▶ cp.async.bulk

▶ cp.reduce.async.bulk

▶ cp.async.bulk.prefetch

▶ cp.async.bulk.tensor

▶ cp.reduce.async.bulk.tensor

▶ cp.async.bulk.prefetch.tensor

▶ cp.async.bulk.commit_group

▶ cp.async.bulk.wait_group

9.7.8.1 Cache Operators

PTX ISA version 2.0 introduced optional cache operators on load and store instructions. The cache
operators require a target architecture of sm_20 or higher.

Cache operators on load or store instructions are treated as performance hints only. The use of a
cache operator on an ld or st instruction does not change the memory consistency behavior of the
program.

For sm_20 and higher, the cache operators have the following definitions and behavior.

186 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Table 27: Cache Operators for Memory Load Instructions

Operator Meaning

.ca Cache at all levels, likely to be accessed again.
The default load instruction cache operation is ld.ca, which allocates cache lines in
all levels (L1 and L2) with normal eviction policy. Global data is coherent at the L2
level, but multiple L1 caches are not coherent for global data. If one thread stores
to global memory via one L1 cache, and a second thread loads that address via a
second L1 cache with ld.ca, the second thread may get stale L1 cache data, rather
than the data stored by the first thread. The driver must invalidate global L1 cache
lines between dependent grids of parallel threads. Stores by the first grid program
are then correctly fetched by the second grid program issuing default ld.ca loads
cached in L1.

.cg Cache at global level (cache in L2 and below, not L1).
Use ld.cg to cache loads only globally, bypassing the L1 cache, and cache only in
the L2 cache.

.cs Cache streaming, likely to be accessed once.
The ld.cs load cached streaming operation allocates global lines with evict-first
policy in L1 and L2 to limit cache pollution by temporary streaming data that may
be accessed once or twice. When ld.cs is applied to a Local window address, it
performs the ld.lu operation.

.lu Last use.
The compiler/programmer may use ld.lu when restoring spilled registers and pop-
ping function stack frames to avoid needless write-backs of lines that will not be
used again. The ld.lu instruction performs a load cached streaming operation (ld.
cs) on global addresses.

.cv Don’t cache and fetch again (consider cached system memory lines stale, fetch
again).
The ld.cv load operation applied to a global SystemMemory address invalidates (dis-
cards) a matching L2 line and re-fetches the line on each new load.

9.7. Instructions 187

PTX ISA, Release 8.1

Table 28: Cache Operators for Memory Store Instructions

Operator Meaning

.wb Cache write-back all coherent levels.
The default store instruction cache operation is st.wb, whichwrites back cache lines
of coherent cache levels with normal eviction policy.
If one thread stores to global memory, bypassing its L1 cache, and a second thread
in a different SM later loads from that address via a different L1 cache with ld.ca,
the second thread may get a hit on stale L1 cache data, rather than get the data
from L2 or memory stored by the first thread.
The driver must invalidate global L1 cache lines between dependent grids of thread
arrays. Stores by the first grid program are then correctly missed in L1 and fetched
by the second grid program issuing default ld.ca loads.

.cg Cache at global level (cache in L2 and below, not L1).
Usest.cg to cache global store data only globally, bypassing the L1 cache, and cache
only in the L2 cache.

.cs Cache streaming, likely to be accessed once.
The st.cs store cached-streaming operation allocates cache lines with evict-first
policy to limit cache pollution by streaming output data.

.wt Cache write-through (to system memory).
The st.wt store write-through operation applied to a global System Memory ad-
dress writes through the L2 cache.

9.7.8.2 Cache Eviction Priority Hints

PTX ISA version 7.4 adds optional cache eviction priority hints on load and store instructions. Cache
eviction priority requires target architecture sm_70 or higher.

Cache eviction priority on load or store instructions is treated as a performance hint. It is supported
for .global state space and generic addresses where the address points to .global state space.

Table 29: Cache Eviction Priority Hints for Memory Load and
Store Instructions

CacheEvictionPriority Meaning

evict_normal Cache data with normal eviction priority. This is the default eviction prior-
ity.

evict_first Data cached with this priority will be first in the eviction priority order and
will likely be evictedwhen cache eviction is required. This priority is suitable
for streaming data.

evict_last Data cached with this priority will be last in the eviction priority order
and will likely be evicted only after other data with evict_normal or
evict_first eviction priotity is already evicted. This priority is suitable
for data that should remain persistent in cache.

evict_unchanged Do not change eviction priority order as part of this operation.

no_allocate Do not allocate data to cache. This priority is suitable for streaming data.

188 Chapter 9. Instruction Set

PTX ISA, Release 8.1

9.7.8.3 Data Movement and Conversion Instructions: mov

mov

Set a register variable with the value of a register variable or an immediate value. Take the non-generic
address of a variable in global, local, or shared state space.

Syntax

mov.type d, a;
mov.type d, sreg;
mov.type d, avar; ∕∕ get address of variable
mov.type d, avar+imm; ∕∕ get address of variable with offset
mov.u32 d, fname; ∕∕ get address of device function
mov.u64 d, fname; ∕∕ get address of device function
mov.u32 d, kernel; ∕∕ get address of entry function
mov.u64 d, kernel; ∕∕ get address of entry function

.type = { .pred,
.b16, .b32, .b64,
.u16, .u32, .u64,
.s16, .s32, .s64,

.f32, .f64 };

Description

Write register d with the value of a.

Operand a may be a register, special register, variable with optional offset in an addressable memory
space, or function name.

For variables declared in .const, .global, .local, and .shared state spaces, mov places the non-
generic address of the variable (i.e., the address of the variable in its state space) into the destination
register. The generic address of a variable in const, global, local, or shared state space may be
generated by first taking the address within the state space with mov and then converting it to a
generic address using the cvta instruction; alternately, the generic address of a variable declared in
const, global, local, or shared state space may be taken directly using the cvta instruction.

Note that if the address of a device function parameter is moved to a register, the parameter will be
copied onto the stack and the address will be in the local state space.

Semantics

d = a;
d = sreg;
d = &avar; ∕∕ address is non-generic; i.e., within the variable's declared�
↪→state space
d = &avar+imm;

Notes

▶ Although only predicate and bit-size types are required, we include the arithmetic types for the
programmer’s convenience: their use enhances program readability and allows additional type
checking.

▶ When moving address of a kernel or a device function, only .u32 or .u64 instruction types are
allowed. However, if a signed type is used, it is not treated as a compilation error. The compiler
issues a warning in this case.

PTX ISA Notes

9.7. Instructions 189

PTX ISA, Release 8.1

Introduced in PTX ISA version 1.0.

Taking the address of kernel entry functions requires PTX ISA version 3.1 or later. Kernel function
addresses should only be used in the context of CUDA Dynamic Parallelism system calls. See the
CUDA Dynamic Parallelism Programming Guide for details.

Target ISA Notes

mov.f64 requires sm_13 or higher.

Taking the address of kernel entry functions requires sm_35 or higher.

Examples

mov.f32 d,a;
mov.u16 u,v;
mov.f32 k,0.1;
mov.u32 ptr, A; ∕∕ move address of A into ptr
mov.u32 ptr, A[5]; ∕∕ move address of A[5] into ptr
mov.u32 ptr, A+20; ∕∕ move address with offset into ptr
mov.u32 addr, myFunc; ∕∕ get address of device function 'myFunc'
mov.u64 kptr, main; ∕∕ get address of entry function 'main'

9.7.8.4 Data Movement and Conversion Instructions: mov

mov

Move vector-to-scalar (pack) or scalar-to-vector (unpack).

Syntax

mov.type d, a;

.type = { .b16, .b32, .b64 };

Description

Write scalar register d with the packed value of vector register a, or write vector register d with the
unpacked values from scalar register a.

When destination operand d is a vector register, the sink symbol '_' may be used for one or more
elements provided that at least one element is a scalar register.

For bit-size types, movmay be used to pack vector elements into a scalar register or unpack sub-fields
of a scalar register into a vector. Both the overall size of the vector and the size of the scalar must
match the size of the instruction type.

Semantics

∕∕ pack two 8-bit elements into .b16
d = a.x | (a.y << 8)
∕∕ pack four 8-bit elements into .b32
d = a.x | (a.y << 8) | (a.z << 16) | (a.w << 24)
∕∕ pack two 16-bit elements into .b32
d = a.x | (a.y << 16)
∕∕ pack four 16-bit elements into .b64
d = a.x | (a.y << 16) | (a.z << 32) | (a.w << 48)
∕∕ pack two 32-bit elements into .b64
d = a.x | (a.y << 32)

(continues on next page)

190 Chapter 9. Instruction Set

PTX ISA, Release 8.1

(continued from previous page)

∕∕ unpack 8-bit elements from .b16
{ d.x, d.y } = { a[0..7], a[8..15] }
∕∕ unpack 8-bit elements from .b32
{ d.x, d.y, d.z, d.w }

{ a[0..7], a[8..15], a[16..23], a[24..31] }

∕∕ unpack 16-bit elements from .b32
{ d.x, d.y } = { a[0..15], a[16..31] }
∕∕ unpack 16-bit elements from .b64
{ d.x, d.y, d.z, d.w } =

{ a[0..15], a[16..31], a[32..47], a[48..63] }

∕∕ unpack 32-bit elements from .b64
{ d.x, d.y } = { a[0..31], a[32..63] }

PTX ISA Notes

Introduced in PTX ISA version 1.0.

Target ISA Notes

Supported on all target architectures.

Examples

mov.b32 %r1,{a,b}; ∕∕ a,b have type .u16
mov.b64 {lo,hi}, %x; ∕∕ %x is a double; lo,hi are .u32
mov.b32 %r1,{x,y,z,w}; ∕∕ x,y,z,w have type .b8
mov.b32 {r,g,b,a},%r1; ∕∕ r,g,b,a have type .u8
mov.b64 {%r1, _}, %x; ∕∕ %x is.b64, %r1 is .b32

9.7.8.5 Data Movement and Conversion Instructions: shfl (deprecated)

shfl (deprecated)

Register data shuffle within threads of a warp.

Syntax

shfl.mode.b32 d[|p], a, b, c;

.mode = { .up, .down, .bfly, .idx };

Deprecation Note

The shfl instruction without a .sync qualifier is deprecated in PTX ISA version 6.0.

▶ Support for this instruction with .target lower than sm_70may be removed in a future PTX ISA
version.

Removal Note

Support for shfl instruction without a .sync qualifier is removed in PTX ISA version 6.4 for .
targetsm_70 or higher.

Description

Exchange register data between threads of a warp.

9.7. Instructions 191

PTX ISA, Release 8.1

Each thread in the currently executingwarpwill compute a source lane index j based on input operands
b and c and the mode. If the computed source lane index j is in range, the thread will copy the input
operand a from lane j into its own destination register d; otherwise, the thread will simply copy its own
input a to destination d. The optional destination predicate p is set to True if the computed source
lane is in range, and otherwise set to False.

Note that an out of range value of bmay still result in a valid computed source lane index j. In this case,
a data transfer occurs and the destination predicate p is True.

Note that results are undefined in divergent control flow within a warp, if an active thread sources a
register from an inactive thread.

Operand b specifies a source lane or source lane offset, depending on the mode.

Operand c contains two packed values specifying a mask for logically splitting warps into sub-
segments and an upper bound for clamping the source lane index.

Semantics

lane[4:0] = [Thread].laneid; ∕∕ position of thread in warp
bval[4:0] = b[4:0]; ∕∕ source lane or lane offset (0..31)
cval[4:0] = c[4:0]; ∕∕ clamp value
mask[4:0] = c[12:8];

∕∕ get value of source register a if thread is active and
∕∕ guard predicate true, else unpredictable
if (isActive(Thread) && isGuardPredicateTrue(Thread)) {

SourceA[lane] = a;
} else {

∕∕ Value of SourceA[lane] is unpredictable for
∕∕ inactive∕predicated-off threads in warp

}
maxLane = (lane[4:0] & mask[4:0]) | (cval[4:0] & ~mask[4:0]);
minLane = (lane[4:0] & mask[4:0]);

switch (.mode) {
case .up: j = lane - bval; pval = (j >= maxLane); break;
case .down: j = lane + bval; pval = (j <= maxLane); break;
case .bfly: j = lane ^ bval; pval = (j <= maxLane); break;
case .idx: j = minLane | (bval[4:0] & ~mask[4:0]);

pval = (j <= maxLane); break;
}
if (!pval) j = lane; ∕∕ copy from own lane
d = SourceA[j]; ∕∕ copy input a from lane j
if (dest predicate selected)

p = pval;

PTX ISA Notes

Introduced in PTX ISA version 3.0.

Deprecated in PTX ISA version 6.0 in favor of shfl.sync.

Not supported in PTX ISA version 6.4 for .target sm_70 or higher.

Target ISA Notes

shfl requires sm_30 or higher.

shfl is not supported on sm_70 or higher starting PTX ISA version 6.4.

Examples

192 Chapter 9. Instruction Set

PTX ISA, Release 8.1

∕∕ Warp-level INCLUSIVE PLUS SCAN:
∕∕
∕∕ Assumes input in following registers:
∕∕ - Rx = sequence value for this thread
∕∕
shfl.up.b32 Ry|p, Rx, 0x1, 0x0;

@p add.f32 Rx, Ry, Rx;
shfl.up.b32 Ry|p, Rx, 0x2, 0x0;

@p add.f32 Rx, Ry, Rx;
shfl.up.b32 Ry|p, Rx, 0x4, 0x0;

@p add.f32 Rx, Ry, Rx;
shfl.up.b32 Ry|p, Rx, 0x8, 0x0;

@p add.f32 Rx, Ry, Rx;
shfl.up.b32 Ry|p, Rx, 0x10, 0x0;

@p add.f32 Rx, Ry, Rx;

∕∕ Warp-level INCLUSIVE PLUS REVERSE-SCAN:
∕∕
∕∕ Assumes input in following registers:
∕∕ - Rx = sequence value for this thread
∕∕
shfl.down.b32 Ry|p, Rx, 0x1, 0x1f;

@p add.f32 Rx, Ry, Rx;
shfl.down.b32 Ry|p, Rx, 0x2, 0x1f;

@p add.f32 Rx, Ry, Rx;
shfl.down.b32 Ry|p, Rx, 0x4, 0x1f;

@p add.f32 Rx, Ry, Rx;
shfl.down.b32 Ry|p, Rx, 0x8, 0x1f;

@p add.f32 Rx, Ry, Rx;
shfl.down.b32 Ry|p, Rx, 0x10, 0x1f;

@p add.f32 Rx, Ry, Rx;

∕∕ BUTTERFLY REDUCTION:
∕∕
∕∕ Assumes input in following registers:
∕∕ - Rx = sequence value for this thread
∕∕
shfl.bfly.b32 Ry, Rx, 0x10, 0x1f; ∕∕ no predicate dest
add.f32 Rx, Ry, Rx;
shfl.bfly.b32 Ry, Rx, 0x8, 0x1f;
add.f32 Rx, Ry, Rx;
shfl.bfly.b32 Ry, Rx, 0x4, 0x1f;
add.f32 Rx, Ry, Rx;
shfl.bfly.b32 Ry, Rx, 0x2, 0x1f;
add.f32 Rx, Ry, Rx;
shfl.bfly.b32 Ry, Rx, 0x1, 0x1f;
add.f32 Rx, Ry, Rx;
∕∕
∕∕ All threads now hold sum in Rx

9.7. Instructions 193

PTX ISA, Release 8.1

9.7.8.6 Data Movement and Conversion Instructions: shfl.sync

shfl.sync

Register data shuffle within threads of a warp.

Syntax

shfl.sync.mode.b32 d[|p], a, b, c, membermask;

.mode = { .up, .down, .bfly, .idx };

Description

Exchange register data between threads of a warp.

shfl.sync will cause executing thread to wait until all non-exited threads corresponding to member-
mask have executed shfl.sync with the same qualifiers and same membermask value before resum-
ing execution.

Operand membermask specifies a 32-bit integer which is a mask indicating threads participating in
barrier where the bit position corresponds to thread’s laneid.

shfl.sync exchanges register data between threads in membermask.

Each thread in the currently executingwarpwill compute a source lane index j based on input operands
b and c and the mode. If the computed source lane index j is in range, the thread will copy the input
operand a from lane j into its own destination register d; otherwise, the thread will simply copy its own
input a to destination d. The optional destination predicate p is set to True if the computed source
lane is in range, and otherwise set to False.

Note that an out of range value of bmay still result in a valid computed source lane index j. In this case,
a data transfer occurs and the destination predicate p is True.

Note that results are undefined if a thread sources a register from an inactive thread or a thread that
is not in membermask.

Operand b specifies a source lane or source lane offset, depending on the mode.

Operand c contains two packed values specifying a mask for logically splitting warps into sub-
segments and an upper bound for clamping the source lane index.

The behavior of shfl.sync is undefined if the executing thread is not in the membermask.

Note: For .target sm_6x or below, all threads in membermask must execute the same shfl.sync
instruction in convergence, and only threads belonging to some membermask can be active when the
shfl.sync instruction is executed. Otherwise, the behavior is undefined.

Semantics

∕∕ wait for all threads in membermask to arrive
wait_for_specified_threads(membermask);

lane[4:0] = [Thread].laneid; ∕∕ position of thread in warp
bval[4:0] = b[4:0]; ∕∕ source lane or lane offset (0..31)
cval[4:0] = c[4:0]; ∕∕ clamp value
segmask[4:0] = c[12:8];

∕∕ get value of source register a if thread is active and
(continues on next page)

194 Chapter 9. Instruction Set

PTX ISA, Release 8.1

(continued from previous page)

∕∕ guard predicate true, else unpredictable
if (isActive(Thread) && isGuardPredicateTrue(Thread)) {

SourceA[lane] = a;
} else {

∕∕ Value of SourceA[lane] is unpredictable for
∕∕ inactive∕predicated-off threads in warp

}
maxLane = (lane[4:0] & segmask[4:0]) | (cval[4:0] & ~segmask[4:0]);
minLane = (lane[4:0] & segmask[4:0]);

switch (.mode) {
case .up: j = lane - bval; pval = (j >= maxLane); break;
case .down: j = lane + bval; pval = (j <= maxLane); break;
case .bfly: j = lane ^ bval; pval = (j <= maxLane); break;
case .idx: j = minLane | (bval[4:0] & ~segmask[4:0]);

pval = (j <= maxLane); break;
}
if (!pval) j = lane; ∕∕ copy from own lane
d = SourceA[j]; ∕∕ copy input a from lane j
if (dest predicate selected)

p = pval;

PTX ISA Notes

Introduced in PTX ISA version 6.0.

Target ISA Notes

Requires sm_30 or higher.

Examples

shfl.sync.up.b32 Ry|p, Rx, 0x1, 0x0, 0xffffffff;

9.7.8.7 Data Movement and Conversion Instructions: prmt

prmt

Permute bytes from register pair.

Syntax

prmt.b32{.mode} d, a, b, c;

.mode = { .f4e, .b4e, .rc8, .ecl, .ecr, .rc16 };

Description

Pick four arbitrary bytes from two 32-bit registers, and reassemble them into a 32-bit destination
register.

In the generic form (no mode specified), the permute control consists of four 4-bit selection values.
The bytes in the two source registers are numbered from 0 to 7: {b, a} = {{b7, b6, b5, b4},
{b3, b2, b1, b0}}. For each byte in the target register, a 4-bit selection value is defined.

The 3 lsbs of the selection value specify which of the 8 source bytes should be moved into the target
position. The msb defines if the byte value should be copied, or if the sign (msb of the byte) should be
replicated over all 8 bits of the target position (sign extend of the byte value); msb=0means copy the

9.7. Instructions 195

PTX ISA, Release 8.1

literal value; msb=1 means replicate the sign. Note that the sign extension is only performed as part
of generic form.

Thus, the four 4-bit values fully specify an arbitrary byte permute, as a 16b permute code.

defaultmode d.b3
source select

d.b2
source select

d.b1
source select

d.b0
source select

index c[15:12] c[11:8] c[7:4] c[3:0]

The more specialized form of the permute control uses the two lsb’s of operand c (which is typically
an address pointer) to control the byte extraction.

mode selector
c[1:0]

d.b3
source

d.b2
source

d.b1
source

d.b0
source

f4e (forward 4 extract) 0 3 2 1 0

1 4 3 2 1

2 5 4 3 2

3 6 5 4 3

b4e (backward 4 ex-
tract)

0 5 6 7 0

1 6 7 0 1

2 7 0 1 2

3 0 1 2 3

rc8 (replicate 8) 0 0 0 0 0

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

ecl (edge clamp left) 0 3 2 1 0

1 3 2 1 1

2 3 2 2 2

3 3 3 3 3

ecr (edge clamp right) 0 0 0 0 0

1 1 1 1 0

2 2 2 1 0

3 3 2 1 0

rc16 (replicate 16) 0 1 0 1 0

1 3 2 3 2

2 1 0 1 0

3 3 2 3 2

196 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Semantics

tmp64 = (b<<32) | a; ∕∕ create 8 byte source

if (! mode) {
ctl[0] = (c >> 0) & 0xf;
ctl[1] = (c >> 4) & 0xf;
ctl[2] = (c >> 8) & 0xf;
ctl[3] = (c >> 12) & 0xf;

} else {
ctl[0] = ctl[1] = ctl[2] = ctl[3] = (c >> 0) & 0x3;

}

tmp[07:00] = ReadByte(mode, ctl[0], tmp64);
tmp[15:08] = ReadByte(mode, ctl[1], tmp64);
tmp[23:16] = ReadByte(mode, ctl[2], tmp64);
tmp[31:24] = ReadByte(mode, ctl[3], tmp64);

PTX ISA Notes

Introduced in PTX ISA version 2.0.

Target ISA Notes

prmt requires sm_20 or higher.

Examples

prmt.b32 r1, r2, r3, r4;
prmt.b32.f4e r1, r2, r3, r4;

9.7.8.8 Data Movement and Conversion Instructions: ld

ld

Load a register variable from an addressable state space variable.

Syntax

ld{.weak}{.ss}{.cop}{.level::cache_hint}{.level::prefetch_size}{.vec}.type d, [a]{.
↪→unified}{, cache-policy};

ld{.weak}{.ss}{.level::eviction_priority}{.level::cache_hint}{.level::prefetch_size}{.
↪→vec}.type d, [a]{.unified}{, cache-policy};

ld.volatile{.ss}{.level::prefetch_size}{.vec}.type d, [a];

ld.relaxed.scope{.ss}{.level::eviction_priority}{.level::cache_hint}{.level::prefetch_
↪→size}{.vec}.type d, [a]{, cache-policy};

ld.acquire.scope{.ss}{.level::eviction_priority}{.level::cache_hint}{.level::prefetch_
↪→size}{.vec}.type d, [a]{, cache-policy};

.ss = { .const, .global, .local, .param, .shared{::cta,�
↪→::cluster} };
.cop = { .ca, .cg, .cs, .lu, .cv };
.level::eviction_priority = { .L1::evict_normal, .L1::evict_unchanged,

.L1::evict_first, .L1::evict_last, .L1::no_allocate };
(continues on next page)

9.7. Instructions 197

PTX ISA, Release 8.1

(continued from previous page)

.level::cache_hint = { .L2::cache_hint };

.level::prefetch_size = { .L2::64B, .L2::128B, .L2::256B }

.scope = { .cta, .cluster, .gpu, .sys };

.vec = { .v2, .v4 };

.type = { .b8, .b16, .b32, .b64,
.u8, .u16, .u32, .u64,
.s8, .s16, .s32, .s64,
.f32, .f64 };

Description

Load register variable d from the location specified by the source address operand a in specified state
space. If no state space is given, perform the load using Generic Addressing.

If no sub-qualifier is specified with .shared state space, then ::cta is assumed by default.

Supported addressing modes for operand a and alignment requirements are described in Addresses
as Operands

Instruction ld.param used for reading value returned from device function call cannot be predicated.
See Parameter State Space and FunctionDeclarations andDefinitions for descriptions of the proper use
of ld.param.

The .relaxed and .acquire qualifiers indicate memory synchronization as described in theMemory
Consistency Model. The .scope qualifier indicates the set of threads with which an ld.relaxed or
ld.acquire instruction can directly synchronize1. The .weak qualifier indicates amemory instruction
with no synchronization. The effects of this instruction become visible to other threads only when
synchronization is established by other means.

The .weak, .volatile, .relaxed and .acquire qualifiers are mutually exclusive. When none of
these is specified, the .weak qualifier is assumed by default.

An ld.volatile operation is always performed and it will not be reordered with respect to other
volatile operations to the same memory location. volatile and non-volatile load operations to
the same memory location may be reordered. ld.volatile has the same memory synchronization
semantics as ld.relaxed.sys.

The qualifiers .volatile, .relaxed and .acquire may be used only with .global and .shared
spaces and with generic addressing, where the address points to .global or .shared space. Cache
operations are not permitted with these qualifiers.

The optional qualifier .unified must be specified on operand a if a is the address of a variable de-
clared with .unified attribute as described in Variable and Function Attribute Directive: .attribute.

The qualifier .level::eviction_priority specifies the eviction policy that will be used during
memory access.

The .level::prefetch_size qualifier is a hint to fetch additional data of the specified size into
the respective cache level.The sub-qualifier prefetch_size can be set to either of 64B, 128B, 256B
thereby allowing the prefetch size to be 64 Bytes, 128 Bytes or 256 Bytes respectively.

The qualifier .level::prefetch_sizemay only be used with .global state space and with generic
addressing where the address points to .global state space. If the generic address does not fall
within the address window of the global memory, then the prefetching behavior is undefined.

The .level::prefetch_size qualifier is treated as a performance hint only.

When the optional argument cache-policy is specified, the qualifier .level::cache_hint is re-
quired. The 64-bit operand cache-policy specifies the cache eviction policy thatmay be used during
the memory access.

198 Chapter 9. Instruction Set

PTX ISA, Release 8.1

The qualifiers .unified and .level::cache_hint are only supported for .global state space and
for generic addressing where the address points to the .global state space.

cache-policy is a hint to the cache subsystem and may not always be respected. It is treated as a
performance hint only, and does not change the memory consistency behavior of the program.
1 This synchronization is further extended to other threads through the transitive nature of causality
order, as described in the memory consistency model.

Semantics

d = a; ∕∕ named variable a
d = *(&a+immOff) ∕∕ variable-plus-offset
d = *a; ∕∕ register
d = *(a+immOff); ∕∕ register-plus-offset
d = *(immAddr); ∕∕ immediate address

Notes

Destination dmust be in the .reg state space.

A destination register wider than the specified type may be used. The value loaded is sign-extended
to the destination register width for signed integers, and is zero-extended to the destination register
width for unsigned and bit-size types. See Table 25 for a description of these relaxed type-checking
rules.

.f16 data may be loaded using ld.b16, and then converted to .f32 or .f64 using cvt or can be used
in half precision floating point instructions.

.f16x2 data may be loaded using ld.b32 and then used in half precision floating point instructions.

PTX ISA Notes

ld introduced in PTX ISA version 1.0. ld.volatile introduced in PTX ISA version 1.1.

Generic addressing and cache operations introduced in PTX ISA version 2.0.

Support for scope qualifier, .relaxed, .acquire, .weak qualifiers introduced in PTX ISA version 6.0.

Support for generic addressing of .const space added in PTX ISA version 3.1.

Support for .level::eviction_priority, .level::prefetch_size and .level::cache_hint
qualifiers introduced in PTX ISA version 7.4.

Support for .cluster scope qualifier introduced in PTX ISA version 7.8.

Support for ::cta and ::cluster sub-qualifiers introduced in PTX ISA version 7.8.

Support for .unified qualifier introduced in PTX ISA version 8.0.

Target ISA Notes

ld.f64 requires sm_13 or higher.

Support for scope qualifier, .relaxed, .acquire, .weak qualifiers require sm_70 or higher.

Generic addressing requires sm_20 or higher.

Cache operations require sm_20 or higher.

Support for .level::eviction_priority qualifier requires sm_70 or higher.

Support for .level::prefetch_size qualifier requires sm_75 or higher.

Support for .L2::256B and .L2::cache_hint qualifiers requires sm_80 or higher.

Support for .cluster scope qualifier requires sm_90 or higher.

9.7. Instructions 199

PTX ISA, Release 8.1

Sub-qualifier ::cta requires sm_30 or higher.

Sub-qualifier ::cluster requires sm_90 or higher.

Support for .unified qualifier requires sm_90 or higher.

Examples

ld.global.f32 d,[a];
ld.shared.v4.b32 Q,[p];
ld.const.s32 d,[p+4];
ld.local.b32 x,[p+-8]; ∕∕ negative offset
ld.local.b64 x,[240]; ∕∕ immediate address

ld.global.b16 %r,[fs]; ∕∕ load .f16 data into 32-bit reg
cvt.f32.f16 %r,%r; ∕∕ up-convert f16 data to f32

ld.global.b32 %r0, [fs]; ∕∕ load .f16x2 data in 32-bit reg
ld.global.b32 %r1, [fs + 4]; ∕∕ load .f16x2 data in 32-bit reg
add.rn.f16x2 %d0, %r0, %r1; ∕∕ addition of f16x2 data
ld.global.relaxed.gpu.u32 %r0, [gbl];
ld.shared.acquire.gpu.u32 %r1, [sh];
ld.global.relaxed.cluster.u32 %r2, [gbl];
ld.shared::cta.acquire.gpu.u32 %r2, [sh + 4];
ld.shared::cluster.u32 %r3, [sh + 8];

ld.global.f32 d,[ugbl].unified;
ld.b32 %r0, [%r1].unified;

ld.global.L1::evict_last.u32 d, [p];

ld.global.L2::64B.b32 %r0, [gbl]; ∕∕ Prefetch 64B to L2
ld.L2::128B.f64 %r1, [gbl]; ∕∕ Prefetch 128B to L2
ld.global.L2::256B.f64 %r2, [gbl]; ∕∕ Prefetch 256B to L2

createpolicy.fractional.L2::evict_last.L2::evict_unchanged.b64 cache-policy, 1;
ld.global.L2::cache_hint.b64 x, [p], cache-policy;

9.7.8.9 Data Movement and Conversion Instructions: ld.global.nc

ld.global.nc

Load a register variable from global state space via non-coherent cache.

Syntax

ld.global{.cop}.nc{.level::cache_hint}.type d, [a]{, cache-policy};
ld.global{.cop}.nc{.level::cache_hint}.vec.type d, [a]{, cache-policy};

ld.global.nc{.level::eviction_priority}{.level::cache_hint}.type d, [a]{, cache-
↪→policy};
ld.global.nc{.level::eviction_priority}{.level::cache_hint}.vec.type d, [a]{, cache-
↪→policy};

.cop = { .ca, .cg, .cs }; ∕∕ cache operation

.level::eviction_priority = { .L1::evict_normal, .L1::evict_unchanged,
.L1::evict_first, .L1::evict_last, .L1::no_allocate};

.level::cache_hint = { .L2::cache_hint };
(continues on next page)

200 Chapter 9. Instruction Set

PTX ISA, Release 8.1

(continued from previous page)

.vec = { .v2, .v4 };

.type = { .b8, .b16, .b32, .b64,
.u8, .u16, .u32, .u64,
.s8, .s16, .s32, .s64,
.f32, .f64 };

Description

Load register variable d from the location specified by the source address operand a in the global state
space, and optionally cache in non-coherent read-only cache.

Note: On some architectures, the texture cache is larger, has higher bandwidth, and longer latency
than the global memory cache. For applications with sufficient parallelism to cover the longer latency,
ld.global.nc should offer better performance than ld.global on such architectures.

Supported addressing modes for operand a and alignment requirements are described in Addresses
as Operands

The qualifier .level::eviction_priority specifies the eviction policy that will be used during
memory access.

When the optional argument cache-policy is specified, the qualifier .level::cache_hint is re-
quired. The 64-bit operand cache-policy specifies the cache eviction policy thatmay be used during
the memory access.

cache-policy is a hint to the cache subsystem and may not always be respected. It is treated as a
performance hint only, and does not change the memory consistency behavior of the program.

Semantics

d = a; ∕∕ named variable a
d = *(&a+immOff) ∕∕ variable-plus-offset
d = *a; ∕∕ register
d = *(a+immOff); ∕∕ register-plus-offset
d = *(immAddr); ∕∕ immediate address

Notes

Destination dmust be in the .reg state space.

A destination register wider than the specified type may be used. The value loaded is sign-extended
to the destination register width for signed integers, and is zero-extended to the destination register
width for unsigned and bit-size types.

.f16 data may be loaded using ld.b16, and then converted to .f32 or .f64 using cvt.

PTX ISA Notes

Introduced in PTX ISA version 3.1.

Support for .level::eviction_priority and .level::cache_hint qualifiers introduced in PTX
ISA version 7.4.

Target ISA Notes

Requires sm_32 or higher.

Support for .level::eviction_priority qualifier requires sm_70 or higher.

Support for .level::cache_hint qualifier requires sm_80 or higher.

9.7. Instructions 201

PTX ISA, Release 8.1

Examples

ld.global.nc.f32 d, [a];
ld.gloal.nc.L1::evict_last.u32 d, [a];

createpolicy.fractional.L2::evict_last.b64 cache-policy, 0.5;
ld.global.nc.L2::cache_hint.f32 d, [a], cache-policy;

9.7.8.10 Data Movement and Conversion Instructions: ldu

ldu

Load read-only data from an address that is common across threads in the warp.

Syntax

ldu{.ss}.type d, [a]; ∕∕ load from address
ldu{.ss}.vec.type d, [a]; ∕∕ vec load from address

.ss = { .global }; ∕∕ state space

.vec = { .v2, .v4 };

.type = { .b8, .b16, .b32, .b64,
.u8, .u16, .u32, .u64,
.s8, .s16, .s32, .s64,

.f32, .f64 };

Description

Load read-only data into register variable d from the location specified by the source address operand
a in the global state space, where the address is guaranteed to be the same across all threads in the
warp. If no state space is given, perform the load using Generic Addressing.

Supported addressing modes for operand a and alignment requirements are described in Addresses
as Operands

Semantics

d = a; ∕∕ named variable a
d = *(&a+immOff) ∕∕ variable-plus-offset
d = *a; ∕∕ register
d = *(a+immOff); ∕∕ register-plus-offset
d = *(immAddr); ∕∕ immediate address

Notes

Destination dmust be in the .reg state space.

A destination register wider than the specified type may be used. The value loaded is sign-extended
to the destination register width for signed integers, and is zero-extended to the destination register
width for unsigned and bit-size types. See Table 25 for a description of these relaxed type-checking
rules.

.f16 data may be loaded using ldu.b16, and then converted to .f32 or .f64 using cvtor can be
used in half precision floating point instructions.

.f16x2 data may be loaded using ldu.b32 and then used in half precision floating point instructions.

PTX ISA Notes

Introduced in PTX ISA version 2.0.

202 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Target ISA Notes

ldu.f64 requires sm_13 or higher.

Examples

ldu.global.f32 d,[a];
ldu.global.b32 d,[p+4];
ldu.global.v4.f32 Q,[p];

9.7.8.11 Data Movement and Conversion Instructions: st

st

Store a register variable to an addressable state space variable.

Syntax

st{.weak}{.ss}{.cop}{.level::cache_hint}{.vec}.type [a], b{, cache-policy};
st{.weak}{.ss}{.level::eviction_priority}{.level::cache_hint}{.vec}.type

[a], b{, cache-policy};
st.volatile{.ss}{.vec}.type [a], b;
st.relaxed.scope{.ss}{.level::eviction_priority}{.level::cache_hint}{.vec}.type

[a], b{, cache-policy};
st.release.scope{.ss}{.level::eviction_priority}{.level::cache_hint}{.vec}.type

[a], b{, cache-policy};

.ss = { .global, .local, .param, .shared{::cta, ::cluster} };

.level::eviction_priority = { .L1::evict_normal, .L1::evict_unchanged,
.L1::evict_first, .L1::evict_last, .L1::no_allocate };

.level::cache_hint = { .L2::cache_hint };

.cop = { .wb, .cg, .cs, .wt };

.sem = { .relaxed, .release };

.scope = { .cta, .cluster, .gpu, .sys };

.vec = { .v2, .v4 };

.type = { .b8, .b16, .b32, .b64,
.u8, .u16, .u32, .u64,
.s8, .s16, .s32, .s64,
.f32, .f64 };

Description

Store the value of register variable b in the location specified by the destination address operand a in
specified state space. If no state space is given, perform the store using Generic Addressing. Stores
to const memory are illegal.

If no sub-qualifier is specified with .shared state space, then ::cta is assumed by default.

Supported addressing modes for operand a and alignment requirements are described in Addresses
as Operands

Instruction st.param used for passing arguments to device function cannot be predicated. See Pa-
rameter State Space and Function Declarations and Definitions for descriptions of the proper use of
st.param.

The qualifiers .relaxed and .release indicate memory synchronization as described in theMemory
Consistency Model. The .scope qualifier indicates the set of threads with which an st.relaxed or
st.release instruction can directly synchronize1. The .weak qualifier indicates amemory instruction
with no synchronization. The effects of this instruction become visible to other threads only when
synchronization is established by other means.

9.7. Instructions 203

PTX ISA, Release 8.1

The .weak, .volatile, .relaxed and .release qualifiers are mutually exclusive. When none of
these is specified, the .weak qualifier is assumed by default.

An st.volatile operation is always performed and it will not be reordered with respect to other
volatile operations to the same memory location. st.volatile has the same memory synchro-
nization semantics as st.relaxed.sys.

The qualifiers .volatile, .relaxed and .release may be used only with .global and .shared
spaces and with generic addressing, where the address points to .global or .shared space. Cache
operations are not permitted with these qualifiers.

The qualifier .level::eviction_priority specifies the eviction policy that will be used during
memory access.

When the optional argument cache-policy is specified, the qualifier .level::cache_hint is re-
quired. The 64-bit operand cache-policy specifies the cache eviction policy thatmay be used during
the memory access.

The qualifier .level::cache_hint is only supported for .global state space and for generic ad-
dressing where the address points to the .global state space.

cache-policy is a hint to the cache subsystem and may not always be respected. It is treated as a
performance hint only, and does not change the memory consistency behavior of the program.
1 This synchronization is further extended to other threads through the transitive nature of causality
order, as described in the memory consistency model.

Semantics

d = a; ∕∕ named variable d
*(&a+immOffset) = b; ∕∕ variable-plus-offset
*a = b; ∕∕ register
*(a+immOffset) = b; ∕∕ register-plus-offset
*(immAddr) = b; ∕∕ immediate address

Notes

Operand bmust be in the .reg state space.

A source register wider than the specified type may be used. The lower n bits corresponding to the
instruction-type width are stored to memory. See Table 24 for a description of these relaxed type-
checking rules.

.f16 data resulting from a cvt instruction may be stored using st.b16.

.f16x2 data may be stored using st.b32.

PTX ISA Notes

st introduced in PTX ISA version 1.0. st.volatile introduced in PTX ISA version 1.1.

Generic addressing and cache operations introduced in PTX ISA version 2.0.

Support for scope qualifier, .relaxed, .release, .weak qualifiers introduced in PTX ISA version 6.0.

Support for .level::eviction_priority and .level::cache_hint qualifiers introduced in PTX
ISA version 7.4.

Support for .cluster scope qualifier introduced in PTX ISA version 7.8.

Support for ::cta and ::cluster sub-qualifiers introduced in PTX ISA version 7.8.

Target ISA Notes

st.f64 requires sm_13 or higher.

204 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Support for scope qualifier, .relaxed, .release, .weak qualifiers require sm_70 or higher.

Generic addressing requires sm_20 or higher.

Cache operations require sm_20 or higher.

Support for .level::eviction_priority qualifier requires sm_70 or higher.

Support for .level::cache_hint qualifier requires sm_80 or higher.

Support for .cluster scope qualifier requires sm_90 or higher.

Sub-qualifier ::cta requires sm_30 or higher.

Sub-qualifier ::cluster requires sm_90 or higher.

Examples

st.global.f32 [a],b;
st.local.b32 [q+4],a;
st.global.v4.s32 [p],Q;
st.local.b32 [q+-8],a; ∕∕ negative offset
st.local.s32 [100],r7; ∕∕ immediate address

cvt.f16.f32 %r,%r; ∕∕ %r is 32-bit register
st.b16 [fs],%r; ∕∕ store lower
st.global.relaxed.sys.u32 [gbl], %r0;
st.shared.release.cta.u32 [sh], %r1;
st.global.relaxed.cluster.u32 [gbl], %r2;
st.shared::cta.release.cta.u32 [sh + 4], %r1;
st.shared::cluster.u32 [sh + 8], %r1;

st.global.L1::no_allocate.f32 [p], a;

createpolicy.fractional.L2::evict_last.b64 cache-policy, 0.25;
st.global.L2::cache_hint.b32 [a], b, cache-policy;

9.7.8.12 Data Movement and Conversion Instructions: st.async

st.async

Asynchronous store operation on shared memory.

Syntax

st.async{.weak}{.ss}{.completion_mechanism}{.vec}.type [a], b, [mbar];

.ss = { .shared::cluster };

.type = { .b32, .b64,
.u32, .u64,
.s32, .s64,
.f32, .f64 };

.vec = { .v2, .v4 };

.completion_mechanism = { .mbarrier::complete_tx::bytes };

Description

st.async is a non-blocking instruction which initiates an asynchronous store operation that stores
the value specified by source operand register b to the destination memory location specified by
operand a.

9.7. Instructions 205

PTX ISA, Release 8.1

The modifier .completion_mechanism specifies that upon completion of the asynchronous opera-
tion, complete-tx operation, with completeCount argument equal to amount of data stored in bytes,
will be performed on thembarrier object specified by the operand mbar.

Operand a represents destination address andmust be a register or of the form register + immOff
as described in Addresses as Operands.

The shared memory addresses of destination operand a and the mbarrier object mbar, must meet all
of the following conditions:

▶ They belong to the same CTA.

▶ They are different to the CTA of the executing thread but must be within the same cluster.

Otherwise, the behavior is undefined.

The state space of the address {.ss}, if specified, is applicable to both operands a and mbar. If not
specified, then Generic Addressing is used for both a and mbar. If the generic addresses specified do
not fall within the address window of .shared::cluster state space, then the behaviour is unde-
fined.

The store operation in st.async is treated as a weak memory operation and the complete_tx oper-
ation on the mbarrier has .release semantics at the .cluster scope as described in the Memory
Consistency Model.

PTX ISA Notes

Introduced in PTX ISA version 8.1.

Target ISA Notes

Requires sm_90 or higher.

Examples

st.async.shared::cluster.mbarrier::complete_tx::bytes.u32 [addr], b, [mbar_addr]

9.7.8.13 Data Movement and Conversion Instructions: multimem.ld_reduce, multimem.st, multi-
mem.red

The multimem.* operations operate on multimem addresses and accesses all of the multiple memory
locations which the multimem address points to.

Multimem addresses can only be accessed only by multimem.* operations. Accessing a multimem
address with ld, st or any other memory operations results in undefined behavior.

Refer to CUDA programming guide for creation and management of the multimem addresses.

multimem.ld_reduce, multimem.st, multimem.red

Perform memory operations on the multimem address.

Syntax

∕∕ Integer type:

multimem.ld_reduce{.ldsem}{.scope}{.ss}.op.type d, [a];
multimem.st{.stsem}{.scope}{.ss}.type [a], b;
multimem.red{.redsem}{.scope}{.ss}.op.type [a], b;

.ss = { .global }
(continues on next page)

206 Chapter 9. Instruction Set

PTX ISA, Release 8.1

(continued from previous page)

.ldsem = { .weak, .relaxed, .acquire }

.stsem = { .weak, .relaxed, .release }

.redsem = { .relaxed, .release }

.scope = { .cta, .cluster, .gpu, .sys }

.op = { .min, .max, .add, .and, .or, .xor }

.type = { .b32, .b64, .u32, .u64, .s32, .s64 }

∕∕ Floating point type:

multimem.ld_reduce{.ldsem}{.scope}{.ss}.op{.vec}.type d, [a];
multimem.st{.stsem}{.scope}{.ss}{.vec}.type [a], b;
multimem.red{.redsem}{.scope}{.ss}.redop{.vec}.type [a], b;

.ss = { .global }

.ldsem = { .weak, .relaxed, .acquire }

.stsem = { .weak, .relaxed, .release }

.redsem = { .relaxed, .release }

.scope = { .cta, .cluster, .gpu, .sys }

.op = { .min, .max, .add }

.redop = { .add }

.vec = { .v2, .v4, .v8 }

.type= { .f16, .f16x2, .bf16, .bf16x2, .f32, .f64 }

Description

Instruction multimem.ld_reduce performs the following operations:

▶ load operation on themultimem address a, which involves loading of data from all of themultiple
memory locations pointed to by the multimem address a,

▶ reduction operation specified by .op on the multiple data loaded from the multimem address a.

The result of the reduction operation in returned in register d.

Instruction multimem.st performs a store operation of the input operand b to all the memory loca-
tions pointed to by the multimem address a.

Instruction multimem.red performs a reduction operation on all the memory locations pointed to by
the multimem address a, with operand b.

Instruction multimem.ld_reduce performs reduction on the values loaded from all the memory lo-
cations that the multimem address points to. In contrast, the multimem.red perform reduction on
all the memory locations that the multimem address points to.

Address operand a must be a multimem address. Otherwise, the behavior is undefined. Supported
addressing modes for operand a and alignment requirements are described in Addresses as Operands.

If no state space is specified then Generic Addressing is used. If the address specified by a does not
fall within the address window of .global state space then the behavior is undefined.

For floating-point type multi- operations, the size of the specified type along with .vec must equal
either 32-bits or 64-bits or 128-bits. No other combinations of .vec and type are allowed. Type .f64
cannot be used with .vec qualifier.

The following table describes the valid combinations of .op and base type:

9.7. Instructions 207

PTX ISA, Release 8.1

op Base type

.add

.u32, .u64, .s32

.f16, .f16x2, .bf16, .bf16x2

.f32, .f64

.and, .or, .xor .b32, .b64

.min, .max

.u32, .s32, .u64, .s644

.f16, .f16x2, .bf16, .bf16x2

Optional qualifiers .ldsem, .stsem and .redsem specify the memory synchronizing effect of the
multimem.ld_reduce, multimem.st and multimem.red respectively, as described inMemory Con-
sistency Model. If explicit semantics qualifiers are not specified, then multimem.ld_reduce and
multimem.st default to .weak and multimem.red defaults to .relaxed.

The optional .scope qualifier specifies the set of threads that can directly observe the memory syn-
chronizing effect of this operation, as described inMemory Consistency Model. If the .scope qualifier
is not specified for multimem.red then .sys scope is assumed by default.

PTX ISA Notes

Introduced in PTX ISA version 8.1.

Target ISA Notes

Requires sm_90 or higher.

Examples

multimem.ld_reduce.and.b32 val1_b32, [addr1];
multimem.ld_reduce.acquire.gpu.global.add.u32 val2_u32, [addr2];

multimem.st.relaxed.gpu.b32 [addr3], val3_b32;
multimem.st.release.cta.global.u32 [addr4], val4_u32;

multimem.red.relaxed.gpu.max.f64 [addr5], val5_f64;
multimem.red.release.cta.global.add.v4.f32 [addr6], {val6, val7, val8, val9};

9.7.8.14 Data Movement and Conversion Instructions: prefetch, prefetchu

prefetch, prefetchu

Prefetch line containing a generic address at a specified level of memory hierarchy, in specified state
space.

Syntax

prefetch{.space}.level [a]; ∕∕ prefetch to data cache
prefetch.global.level::eviction_priority [a]; ∕∕ prefetch to data cache

(continues on next page)

208 Chapter 9. Instruction Set

PTX ISA, Release 8.1

(continued from previous page)

prefetchu.L1 [a]; ∕∕ prefetch to uniform cache

prefetch{.tensormap_space}.tensormap [a]; ∕∕ prefetch the tensormap

.space = { .global, .local };

.level = { .L1, .L2 };

.level::eviction_priority = { .L2::evict_last, .L2::evict_normal };

.tensormap_space = { .const, .param };

Description

The prefetch instruction brings the cache line containing the specified address in global or local
memory state space into the specified cache level.

If the .tensormap qualifier is specified then the prefetch instruction brings the cache line contain-
ing the specified address in the .const or .param memory state space for subsequent use by the
cp.async.bulk.tensor instruction.

If no state space is given, the prefetch uses Generic Addressing.

Optionally, the eviction priority to be applied on the prefetched cache line can be specified by the
modifier .level::eviction_priority.

Supported addressing modes for operand a and alignment requirements are described in Addresses
as Operands

The prefetchu instruction brings the cache line containing the specified generic address into the
specified uniform cache level.

A prefetch to a shared memory location performs no operation.

A prefetch into the uniform cache requires a generic address, and no operation occurs if the address
maps to a const, local, or sharedmemory location.

PTX ISA Notes

Introduced in PTX ISA version 2.0.

Support for .level::eviction_priority qualifier introduced in PTX ISA version 7.4.

Support for the .tensormap qualifier is introduced in PTX ISA version 8.0.

Target ISA Notes

prefetch and prefetchu require sm_20 or higher.

Support for .level::eviction_priority qualifier requires sm_80 or higher.

Support for the .tensormap qualifier requires sm_90 or higher.

Examples

prefetch.global.L1 [ptr];
prefetch.global.L2::evict_last [ptr];
prefetchu.L1 [addr];
prefetch.global.tensormap [ptr];

9.7. Instructions 209

PTX ISA, Release 8.1

9.7.8.15 Data Movement and Conversion Instructions: applypriority

applypriority

Apply the cache eviction priority to the specified address in the specified cache level.

Syntax

appplypriority{.global}.level::eviction_priority [a], size;

.level::eviction_priority = { .L2::evict_normal };

Description

The applypriority instruction applies the cache eviction priority specified by the .
level::eviction_priority qualifier to the address range [a..a+size) in the specified cache
level.

If no state space is specified then Generic Addressing is used. If the specified address does not fall
within the address window of .global state space then the behavior is undefined.

The operand size is an integer constant that specifies the amount of data, in bytes, in the specified
cache level on which the priority is to be applied. The only supported value for the size operand is
128.

Supported addressingmodes for operand a are described in Addresses asOperands. amust be aligned
to 128 bytes.

If the data pointed to by address a is not already present in the specified cache level, then the data
will be prefetched before applying the specified priority.

PTX ISA Notes

Introduced in PTX ISA version 7.4.

Target ISA Notes

Requires sm_80 or higher.

Examples

applypriority.global.L2::evict_normal [ptr], 128;

9.7.8.16 Data Movement and Conversion Instructions: discard

discard

Invalidate the data in cache at the specified address and cache level.

Syntax

discard{.global}.level [a], size;

.level = { .L2 };

Description

The discard instruction invalidates the data at the address range [a .. a + (size - 1)] in
the cache level specified by the .level qualifier without writing back the data in the cache to the
memory. Therefore after the discard operation, the data at the address range [a .. a+ (size -
1)] has undetermined value.

210 Chapter 9. Instruction Set

PTX ISA, Release 8.1

The operand size is an integer constant that specifies the amount of data, in bytes, in the cache level
specified by the .level qualifier to be discarded. The only supported value for the size operand is
128.

If no state space is specified then Generic Addressing is used. If the specified address does not fall
within the address window of .global state space then the behavior is undefined.

Supported addressing modes for address operand a are described in Addresses as Operands. a must
be aligned to 128 bytes.

PTX ISA Notes

Introduced in PTX ISA version 7.4.

Target ISA Notes

Requires sm_80 or higher.

Examples

discard.global.L2 [ptr], 128;

9.7.8.17 Data Movement and Conversion Instructions: createpolicy

createpolicy

Create a cache eviction policy for the specified cache level.

Syntax

∕∕ Range-based policy
createpolicy.range{.global}.level::primary_priority{.level::secondary_priority}.b64

cache-policy, [a], primary-size, total-size;

∕∕ Fraction-based policy
createpolicy.fractional.level::primary_priority{.level::secondary_priority}.b64

cache-policy{, fraction};

∕∕ Converting the access property from CUDA APIs
createpolicy.cvt.L2.b64 cache-policy, access-property;

.level::primary_priority = { .L2::evict_last, .L2::evict_normal,
.L2::evict_first, .L2::evict_unchanged };

.level::secondary_priority = { .L2::evict_first, .L2::evict_unchanged };

Description

The createpolicy instruction creates a cache eviction policy for the specified cache level in an
opaque 64-bit register specified by the destination operand cache-policy. The cache eviction pol-
icy specifies how cache eviction priorities are applied to global memory addresses used in memory
operations with .level::cache_hint qualifier.

There are two types of cache eviction policies:

▶ Range-based policy

The cache eviction policy created using createpolicy.range specifies the cache eviction be-
haviors for the following three address ranges:

▶ [a .. a + (primary-size - 1)] referred to as primary range.

▶ [a + primary-size .. a + (total-size - 1)] referred to as trailing secondary range.

9.7. Instructions 211

PTX ISA, Release 8.1

▶ [a - (total-size - primary-size) .. (a - 1)] referred to as preceding secondary
range.

When a range-based cache eviction policy is used in a memory operation with .
level::cache_hint qualifier, the eviction priorities are applied as follows:

▶ If the memory address falls in the primary range, the eviction priority specified by .
L2::primary_priority is applied.

▶ If the memory address falls in any of the secondary ranges, the eviction priority specified
by .L2::secondary_priority is applied.

▶ If the memory address does not fall in either of the above ranges, then the applied eviction
priority is unspecified.

The 32-bit operand primary-size specifies the size, in bytes, of the primary range. The 32-
bit operand total-size specifies the combined size, in bytes, of the address range including
primary and secondary ranges. The value of primary-size must be less than or equal to the
value of total-size. Maximum allowed value of total-size is 4GB.

If .L2::secondary_priority is not specified, then it defaults to .L2::evict_unchanged.

If no state space is specified then Generic Addressing is used. If the specified address does not
fall within the address window of .global state space then the behavior is undefined.

▶ Fraction-based policy

A memory operation with .level::cache_hint qualifier can use the fraction-based cache
eviction policy to request the cache eviction priority specified by .L2:primary_priority
to be applied to a fraction of cache accesses specified by the 32-bit floating point operand
fraction. The remainder of the cache accesses get the eviction priority specified by .
L2::secondary_priority. This implies that in a memory operation that uses a fraction-based
cache policy, the memory access has a probability specified by the operand fraction of getting
the cache eviction priority specified by .L2::primary_priority.

The valid range of values for the operand fraction is (0.0,.., 1.0]. If the operand fraction
is not specified, it defaults to 1.0.

If .L2::secondary_priority is not specified, then it defaults to .L2::evict_unchanged.

The access property created using the CUDA APIs can be converted into cache eviction policy by the
instruction createpolicy.cvt. The source operand access-property is a 64-bit opaque register.
Refer to CUDA programming guide for more details.

PTX ISA Notes

Introduced in PTX ISA version 7.4.

Target ISA Notes

Requires sm_80 or higher.

Examples

createpolicy.fractional.L2::evict_last.b64 policy, 1.0;
createpolicy.fractional.L2::evict_last.L2::evict_unchanged.b64 policy, 0.5;

createpolicy.range.L2::evict_last.L2::evict_first.b64
policy, [ptr], 0x100000, 0x200000;

∕∕ access-prop is created by CUDA APIs.
createpolicy.cvt.L2.b64 policy, access-prop;

212 Chapter 9. Instruction Set

PTX ISA, Release 8.1

9.7.8.18 Data Movement and Conversion Instructions: isspacep

isspacep

Query whether a generic address falls within a specified state space window.

Syntax

isspacep.space p, a; ∕∕ result is .pred

.space = { const, .global, .local, .shared{::cta, ::cluster}, .param };

Description

Write predicate register pwith 1 if generic address a falls within the specified state space window and
with 0 otherwise. Destination p has type .pred; the source address operand must be of type .u32 or
.u64.

isspacep.param returns 1 if the generic address falls within the window of Kernel Function Parame-
ters, otherwise returns 0.

isspacep.global returns 1 for Kernel Function Parameters as .param window is contained within
the .global window.

If no sub-qualifier is specified with .shared state space, then ::cta is assumed by default.

Note: ispacep.shared::cluster will return 1 for every shared memory address that is accessible
to the threads in the cluster, whereas ispacep.shared::cta will return 1 only if the address is of a
variable declared in the executing CTA.

PTX ISA Notes

Introduced in PTX ISA version 2.0.

isspacep.const introduced in PTX ISA version 3.1.

isspacep.param introduced in PTX ISA version 7.7.

Support for ::cta and ::cluster sub-qualifiers introduced in PTX ISA version 7.8.

Target ISA Notes

isspacep requires sm_20 or higher.

isspacep.param requires sm_70 or higher.

Sub-qualifier ::cta requires sm_30 or higher.

Sub-qualifier ::cluster requires sm_90 or higher.

Examples

isspacep.const iscnst, cptr;
isspacep.global isglbl, gptr;
isspacep.local islcl, lptr;
isspacep.shared isshrd, sptr;
isspacep.param isparam, pptr;
isspacep.shared::cta isshrdcta, sptr;
isspacep.shared::cluster ishrdany sptr;

9.7. Instructions 213

PTX ISA, Release 8.1

9.7.8.19 Data Movement and Conversion Instructions: cvta

cvta

Convert address from .const, Kernel Function Parameters (.param), .global, .local, or .shared
state space to generic, or vice-versa. Take the generic address of a variable declared in .const, Kernel
Function Parameters (.param), .global, .local, or .shared state space.

Syntax

∕∕ convert const, global, local, or shared address to generic address
cvta.space.size p, a; ∕∕ source address in register a
cvta.space.size p, var; ∕∕ get generic address of var
cvta.space.size p, var+imm; ∕∕ generic address of var+offset

∕∕ convert generic address to const, global, local, or shared address
cvta.to.space.size p, a;

.space = { .const, .global, .local, .shared{::cta, ::cluster}, .param };

.size = { .u32, .u64 };

Description

Convert a const, Kernel FunctionParameters (.param), global, local, or shared address to a generic
address, or vice-versa. The source and destination addresses must be the same size. Use cvt.u32.
u64 or cvt.u64.u32 to truncate or zero-extend addresses.

For variables declared in .const, Kernel Function Parameters (.param), .global, .local, or .shared
state space, the generic address of the variable may be taken using cvta. The source is either a reg-
ister or a variable defined in const, Kernel Function Parameters (.param), global, local, or shared
memory with an optional offset.

When converting a generic address into aconst, Kernel FunctionParameters (.param), global, local,
or shared address, the resulting address is undefined in cases where the generic address does not
fall within the address window of the specified state space. A program may use isspacep to guard
against such incorrect behavior.

For cvta with .shared state space, the address must belong to the space specified by ::cta or
::cluster sub-qualifier, otherwise the behavior is undefined. If no sub-qualifier is specified with
.shared state space, then ::cta is assumed by default.

PTX ISA Notes

Introduced in PTX ISA version 2.0.

cvta.const and cvta.to.const introduced in PTX ISA version 3.1.

cvta.param and cvta.to.param introduced in PTX ISA version 7.7.

Note: The current implementation does not allow generic pointers to const space variables in pro-
grams that contain pointers to constant buffers passed as kernel parameters.

Support for ::cta and ::cluster sub-qualifiers introduced in PTX ISA version 7.8.

Target ISA Notes

cvta requires sm_20 or higher.

cvta.param and cvta.to.param requires sm_70 or higher.

Sub-qualifier ::cta requires sm_30 or higher.

Sub-qualifier ::cluster requires sm_90 or higher.

214 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Examples

cvta.const.u32 ptr,cvar;
cvta.local.u32 ptr,lptr;
cvta.shared::cta.u32 p,As+4;
cvta.shared::cluster.u32 ptr, As;
cvta.to.global.u32 p,gptr;
cvta.param.u64 ptr,pvar;

9.7.8.20 Data Movement and Conversion Instructions: cvt

cvt

Convert a value from one type to another.

Syntax

cvt{.irnd}{.ftz}{.sat}.dtype.atype d, a; ∕∕ integer rounding
cvt{.frnd}{.ftz}{.sat}.dtype.atype d, a; ∕∕ fp rounding
cvt.frnd2{.relu}{.satfinite}.f16.f32 d, a;
cvt.frnd2{.relu}{.satfinite}.f16x2.f32 d, a, b;
cvt.frnd2{.relu}{.satfinite}.bf16.f32 d, a;
cvt.frnd2{.relu}{.satfinite}.bf16x2.f32 d, a, b;
cvt.rna{.satfinite}.tf32.f32 d, a;
cvt.frnd2{.relu}.tf32.f32 d, a;
cvt.rn.satfinite{.relu}.f8x2type.f32 d, a, b;
cvt.rn.satfinite{.relu}.f8x2type.f16x2 d, a;
cvt.rn.{.relu}.f16x2.f8x2type d, a;

.irnd = { .rni, .rzi, .rmi, .rpi };

.frnd = { .rn, .rz, .rm, .rp };

.frnd2 = { .rn, .rz };

.dtype = .atype = { .u8, .u16, .u32, .u64,
.s8, .s16, .s32, .s64,
.bf16, .f16, .f32, .f64 };

.f8x2type = { .e4m3x2, .e5m2x2 };

Description

Convert between different types and sizes.

For .f16x2 and .bf16x2 instruction type, two inputs a and b of .f32 type are converted into .f16
or .bf16 type and the converted values are packed in the destination register d, such that the value
converted from input a is stored in the upper half of d and the value converted from input b is stored
in the lower half of d

For .f16x2 instruction type, destination operand d has .f16x2 or .b32 type. For .bf16 instruction
type, operand d has .b16 type. For .bf16x2 instruction type, operand d has .b32 type. For .tf32
instruction type, operand d has .b32 type.

When converting to .e4m3x2/.e5m2x2 data formats, the destination operand d has .b16 type. When
converting two .f32 inputs to .e4m3x2/.e5m2x2, each input is converted to the specified format,
and the converted values are packed in the destination operand d such that the value converted from
input a is stored in the upper 8 bits of d and the value converted from input b is stored in the lower
8 bits of d. When converting an .f16x2 input to .e4m3x2/ .e5m2x2, each .f16 input from operand
a is converted to the specified format. The converted values are packed in the destination operand d
such that the value converted from the upper 16 bits of input a is stored in the upper 8 bits of d and
the value converted from the lower 16 bits of input a is stored in the lower 8 bits of d.

9.7. Instructions 215

PTX ISA, Release 8.1

When converting from .e4m3x2/.e5m2x2 to .f16x2, source operand a has .b16 type. Each 8-bit
input value in operand a is converted to .f16 type. The converted values are packed in the destination
operand d such that the value converted from the upper 8 bits of a is stored in the upper 16 bits of d
and the value converted from the lower 8 bits of a is stored in the lower 16 bits of d.

Rounding modifier is mandatory in all of the following cases:

▶ float-to-float conversions, when destination type is smaller than source type

▶ All float-to-int conversions

▶ All int-to-float conversions

▶ All conversions involving .f16x2, .e4m3x2, .e5m2x2,.bf16x2 and .tf32 instruction types.

.satfinitemodifier is only supported for conversions involving the following types:

▶ .e4m3x2 and .e5m2x2 destination types. .satfinite modifier is mandatory for such conver-
sions.

▶ .f16, .bf16, .f16x2, .bf16x2 as destination types.

▶ .tf32 as destination typewith roundingmode specified as round to nearest, ties away from zero.

Semantics

if (∕* inst type is .f16x2 or .bf16x2 *∕) {
d[31:16] = convert(a);
d[15:0] = convert(b);

} else {
d = convert(a);

}

Integer Notes

Integer rounding is required for float-to-integer conversions, and for same-size float-to-float conver-
sions where the value is rounded to an integer. Integer rounding is illegal in all other instances.

Integer rounding modifiers:

.rni round to nearest integer, choosing even integer if source is equidistant between two integers

.rzi round to nearest integer in the direction of zero

.rmi round to nearest integer in direction of negative infinity

.rpi round to nearest integer in direction of positive infinity

In float-to-integer conversion, NaN inputs are converted to 0.

Subnormal numbers:

sm_20+ By default, subnormal numbers are supported.

For cvt.ftz.dtype.f32 float-to-integer conversions and cvt.ftz.f32.f32 float-to-float
conversions with integer rounding, subnormal inputs are flushed to sign-preserving zero. Modi-
fier .ftz can only be specified when either .dtype or .atype is .f32 and applies only to single
precision (.f32) inputs and results.

sm_1x For cvt.ftz.dtype.f32 float-to-integer conversions and cvt.ftz.f32.f32 float-to-float
conversions with integer rounding, subnormal inputs are flushed to sign-preserving zero. The
optional .ftzmodifier may be specified in these cases for clarity.

Note: In PTX ISA versions 1.4 and earlier, the cvt instruction did not flush single-precision sub-
normal inputs or results to zero if the destination type sizewas 64-bits. The compiler will preserve
this behavior for legacy PTX code.

216 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Saturation modifier:

.sat For integer destination types, .sat limits the result to MININT..MAXINT for the size of the
operation. Note that saturation applies to both signed and unsigned integer types.

The saturation modifier is allowed only in cases where the destination type’s value range is not a
superset of the source type’s value range; i.e., the .satmodifier is illegal in cases where satura-
tion is not possible based on the source and destination types.

For float-to-integer conversions, the result is clamped to the destination range by default; i.e,
.sat is redundant.

Floating Point Notes

Floating-point rounding is required for float-to-float conversions that result in loss of precision, and
for integer-to-float conversions. Floating-point rounding is illegal in all other instances.

Floating-point rounding modifiers:

.rn mantissa LSB rounds to nearest even

.rna mantissa LSB rounds to nearest, ties away from zero

.rz mantissa LSB rounds towards zero

.rm mantissa LSB rounds towards negative infinity

.rp mantissa LSB rounds towards positive infinity

A floating-point value may be rounded to an integral value using the integer rounding modifiers (see
Integer Notes). The operands must be of the same size. The result is an integral value, stored in
floating-point format.

Subnormal numbers:

sm_20+ By default, subnormal numbers are supported. Modifier .ftz may be specified to flush
single-precision subnormal inputs and results to sign-preserving zero. Modifier .ftz can only
be specified when either .dtype or .atype is .f32 and applies only to single precision (.f32)
inputs and results.

sm_1x Single-precision subnormal inputs and results are flushed to sign-preserving zero. The optional
.ftzmodifier may be specified in these cases for clarity.

Note: In PTX ISA versions 1.4 and earlier, the cvt instruction did not flush single-precision subnormal
inputs or results to zero if either source or destination type was .f64. The compiler will preserve
this behavior for legacy PTX code. Specifically, if the PTX ISA version is 1.4 or earlier, single-precision
subnormal inputs and results are flushed to sign-preserving zero only for cvt.f32.f16, cvt.f16.
f32, and cvt.f32.f32 instructions.

Saturation modifier:

.sat: For floating-point destination types, .sat limits the result to the range [0.0, 1.0]. NaN results
are flushed to positive zero. Applies to .f16, .f32, and .f64 types.

.relu: For .f16, .f16x2, .bf16, .bf16x2, .e4m3x2, .e5m2x2 and .tf32 destination types, .relu
clamps the result to 0 if negative. NaN results are converted to canonical NaN.

.satfinite: For .f16, .f16x2, .bf16, .bf16x2, .e4m3x2, .e5m2x2 and .tf32 destination formats,
if the input value is NaN, then the result is NaN in the specified destination format. If the absolute
value of input (ignoring sign) is greater thanMAX_NORM of the specified destination format, then
the result is sign-preservedMAX_NORM of the destination format.

Notes

9.7. Instructions 217

PTX ISA, Release 8.1

A source register wider than the specified type may be used, except when the source operand has
.bf16 or .bf16x2 format. The lower n bits corresponding to the instruction-type width are used in
the conversion. See Operand Size Exceeding Instruction-Type Size for a description of these relaxed
type-checking rules.

A destination register wider than the specified typemay be used, exceptwhen the destination operand
has .bf16, .bf16x2 or .tf32 format. The result of conversion is sign-extended to the destination
register width for signed integers, and is zero-extended to the destination register width for unsigned,
bit-size, and floating-point types. See Operand Size Exceeding Instruction-Type Size for a description
of these relaxed type-checking rules.

For cvt.f32.bf16, NaN input yields unspecified NaN.

PTX ISA Notes

Introduced in PTX ISA version 1.0.

.relu modifier and {.f16x2, .bf16, .bf16x2, .tf32} destination formats introduced in PTX ISA
version 7.0.

cvt.bf16.{u8∕s8∕u16∕s16∕u32∕s32∕u64∕s64∕f16∕f64∕bf16}, cvt.{u8∕s8∕u16∕s16∕u32∕
s32∕u64∕s64∕f16∕f64}.bf16, and cvt.tf32.f32.{relu}.{rn∕rz} introduced in PTX ISA
7.8.

cvt with .e4m3x2/.e5m2x2 for sm_90 or higher introduced in PTX ISA version 7.8.

cvt.satfinite.{e4m3x2, e5m2x2}.{f32, f16x2} for sm_90 or higher introduced in PTX ISA
version 7.8.

cvt with .e4m3x2/.e5m2x2 for sm_89 introduced in PTX ISA version 8.1.

cvt.satfinite.{e4m3x2, e5m2x2}.{f32, f16x2} for sm_89 introduced in PTX ISA version 8.1.

cvt.satfinite.{f16, bf16, f16x2, bf16x2, tf32}.f32 introduced in PTX ISA version 8.1.

Target ISA Notes

cvt to or from .f64 requires sm_13 or higher.

.relumodifier and {.f16x2, .bf16, .bf16x2, .tf32} destination formats require sm_80 or higher.

cvt.bf16.{u8∕s8∕u16∕s16∕u32∕s32∕u64∕s64∕f16∕f64∕bf16}, cvt.{u8∕s8∕u16∕s16∕u32∕
s32∕u64∕s64∕f16∕f64}.bf16, and cvt.tf32.f32.{relu}.{rn∕rz} require sm_90 or higher.

cvt with .e4m3x2/.e5m2x2 requires sm89 or higher.

cvt.satfinite.{e4m3x2, e5m2x2}.{f32, f16x2} requires sm_89 or higher.

Examples

cvt.f32.s32 f,i;
cvt.s32.f64 j,r; ∕∕ float-to-int saturates by default
cvt.rni.f32.f32 x,y; ∕∕ round to nearest int, result is fp
cvt.f32.f32 x,y; ∕∕ note .ftz behavior for sm_1x targets
cvt.rn.relu.f16.f32 b, f; ∕∕ result is saturated with .relu saturation�
↪→mode
cvt.rz.f16x2.f32 b1, f, f1; ∕∕ convert two fp32 values to packed fp16�
↪→outputs
cvt.rn.relu.satfinite.f16x2.f32 b1, f, f1; ∕∕ convert two fp32 values to packed�
↪→fp16 outputs with .relu saturation on each output
cvt.rn.bf16.f32 b, f; ∕∕ convert fp32 to bf16
cvt.rz.relu.satfinite.bf16.f3 2 b, f; ∕∕ convert fp32 to bf16 with .relu�
↪→and .satfinite saturation

(continues on next page)

218 Chapter 9. Instruction Set

PTX ISA, Release 8.1

(continued from previous page)

cvt.rz.satfinite.bf16x2.f32 b1, f, f1; ∕∕ convert two fp32 values to packed�
↪→bf16 outputs
cvt.rn.relu.bf16x2.f32 b1, f, f1; ∕∕ convert two fp32 values to packed bf16�
↪→outputs with .relu saturation on each output
cvt.rna.satfinite.tf32.f32 b1, f; ∕∕ convert fp32 to tf32 format
cvt.rn.relu.tf32.f32 d, a; ∕∕ convert fp32 to tf32 format
cvt.f64.bf16.rp f, b; ∕∕ convert bf16 to f64 format
cvt.bf16.f16.rz b, f ∕∕ convert f16 to bf16 format
cvt.bf16.u64.rz b, u ∕∕ convert u64 to bf16 format
cvt.s8.bf16.rpi s, b ∕∕ convert bf16 to s8 format
cvt.bf16.bf16.rpi b1, b2 ∕∕ convert bf16 to corresponding int�
↪→represented in bf16 format
cvt.rn.satfinite.e4m3x2.f32 d, a, b; ∕∕ convert a, b to .e4m3 and pack as .e4m3x2�
↪→output
cvt.rn.relu.satfinite.e5m2x2.f16x2 d, a; ∕∕ unpack a and convert the values to .e5m2�
↪→outputs with .relu

∕∕ saturation on each output and pack as .
↪→e5m2x2
cvt.rn.f16x2.e4m3x2 d, a; ∕∕ unpack a, convert two .e4m3 values to packed�
↪→f16x2 output

9.7.8.21 Data Movement and Conversion Instructions: cvt.pack

cvt.pack

Convert two integer values from one integer type to another and pack the results.

Syntax

cvt.pack.sat.convertType.abType d, a, b;
.convertType = { .u16, .s16 }
.abType = { .s32 }

cvt.pack.sat.convertType.abType.cType d, a, b, c;
.convertType = { .u2, .s2, .u4, .s4, .u8, .s8 }
.abType = { .s32 }
.cType = { .b32 }

Description

Convert two 32-bit integers a and b into specified type and pack the results into d.

Destination d is an unsigned 32-bit integer. Source operands a and b are integers of type .abType
and the source operand c is an integer of type .cType.

The inputs a and b are converted to values of type specified by .convertType with saturation and
the results after conversion are packed into lower bits of d.

If operand c is specified then remaining bits of d are copied from lower bits of c.

Semantics

ta = a < MIN(convertType) ? MIN(convertType) : a;
ta = a > MAX(convertType) ? MAX(convertType) : a;
tb = b < MIN(convertType) ? MIN(convertType) : b;
tb = b > MAX(convertType) ? MAX(convertType) : b;

(continues on next page)

9.7. Instructions 219

PTX ISA, Release 8.1

(continued from previous page)

size = sizeInBits(convertType);
td = tb ;
for (i = size; i <= 2 * size - 1; i++) {

td[i] = ta[i - size];
}

if (isU16(convertType) || isS16(convertType)) {
d = td;

} else {
for (i = 0; i < 2 * size; i++) {

d[i] = td[i];
}
for (i = 2 * size; i <= 31; i++) {

d[i] = c[i - 2 * size];
}

}

.sat modifier limits the converted values to MIN(convertType)..MAX(convertedType) (no over-
flow) if the corresponding inputs are not in the range of datatype specified as .convertType.

PTX ISA Notes

Introduced in PTX ISA version 6.5.

Target ISA Notes

Requires sm_72 or higher.

Sub byte types (.u4/.s4 and .u2/.s2) requires sm_75 or higher.

Examples

cvt.pack.sat.s16.s32 %r1, %r2, %r3; ∕∕ 32-bit to 16-bit conversion
cvt.pack.sat.u8.s32.b32 %r4, %r5, %r6, 0; ∕∕ 32-bit to 8-bit conversion
cvt.pack.sat.u8.s32.b32 %r7, %r8, %r9, %r4; ∕∕ %r7 = { %r5, %r6, %r8, %r9 }
cvt.pack.sat.u4.s32.b32 %r10, %r12, %r13, %r14; ∕∕ 32-bit to 4-bit conversion
cvt.pack.sat.s2.s32.b32 %r15, %r16, %r17, %r18; ∕∕ 32-bits to 2-bit conversion

9.7.8.22 Data Movement and Conversion Instructions: mapa

mapa

Map the address of the shared variable in the target CTA.

Syntax

mapa{.space}.type d, a, b;

∕∕ Maps shared memory address in register a into CTA b.
mapa.shared::cluster.type d, a, b;

∕∕ Maps shared memory variable into CTA b.
maps.shared::cluster.type d, sh, b;

∕∕ Maps shared memory variable into CTA b.
maps.shared::cluster.type d, sh + imm, b;

∕∕ Maps generic address in register a into CTA b.
(continues on next page)

220 Chapter 9. Instruction Set

PTX ISA, Release 8.1

(continued from previous page)

mapa.type d, a, b;

.space = { .shared::cluster }

.type = { .u32, .u64 }

Description

Get address in the CTA specified by operand bwhich corresponds to the address specified by operand
a.

Instruction type .type indicates the type of the destination operand d and the source operand a.

When space is .shared::cluster, source a is either a shared memory variable or a register con-
taining a valid shared memory address and register d contains a shared memory address. When the
optional qualifier .space is not specified, both a and d are registers containing generic addresses
pointing to shared memory.

b is a 32-bit integer operand representing the rank of the target CTA.

Destination register d will hold an address in CTA b corresponding to operand a.

PTX ISA Notes

Introduced in PTX ISA version 7.8.

Target ISA Notes

Requires sm_90 or higher.

Examples

mapa.shared::cluster.u64 d1, %reg1, cta;
mapa.shared::cluster.u32 d2, sh, 3;
mapa.u64 d3, %reg2, cta;

9.7.8.23 Data Movement and Conversion Instructions: getctarank

getctarank

Generate the CTA rank of the address.

Syntax

getctarank{.space}.type d, a;

∕∕ Get cta rank from source shared memory address in register a.
getctarank.shared::cluster.type d, a;

∕∕ Get cta rank from shared memory variable.
getctarank.shared::cluster.type d, var;

∕∕ Get cta rank from shared memory variable+offset.
getctarank.shared::cluster.type d, var + imm;

∕∕ Get cta rank from generic address of shared memory variable in register a.
getctarank.type d, a;

.space = { .shared::cluster }

.type = { .u32, .u64 }

9.7. Instructions 221

PTX ISA, Release 8.1

Description

Write the destination register d with the rank of the CTA which contains the address specified in
operand a.

Instruction type .type indicates the type of source operand a.

When space is .shared::cluster, source a is either a shared memory variable or a register contain-
ing a valid shared memory address. When the optional qualifier .space is not specified, a is a register
containing a generic addresses pointing to shared memory. Destination d is always a 32-bit register
which holds the rank of the CTA.

PTX ISA Notes

Introduced in PTX ISA version 7.8.

Target ISA Notes

Requires sm_90 or higher.

Examples

getctarank.shared::cluster.u32 d1, addr;
getctarank.shared::cluster.u64 d2, sh + 4;
getctarank.u64 d3, src;

9.7.8.24 Data Movement and Conversion Instructions: Asynchronous copy

An asynchronous copy operation performs the underlying operation asynchronously in the back-
ground, thus allowing the issuing threads to perform subsequent tasks.

An asynchronous copy operation can be a bulk operation that operates on a large amount of data,
or a non-bulk operation that operates on smaller sized data. The amount of data handled by a bulk
asynchronous operation must be a multiple of 16 bytes.

9.7.8.24.1 Completion Mechanisms for Asynchronous Copy Operations

A thread must explicitly wait for the completion of an asynchronous copy operation in order to access
the result of the operation. Once an asynchronous copy operation is initiated, modifying the source
memory location or reading from the destinationmemory location before the asynchronous operation
completes, will cause unpredictable results.

This section describes two asynchronous copy operation completion mechanisms supported in PTX:
Async-group mechanism and mbarrier-based mechanism.

Async-group mechanism

When using the async-group completion mechanism, the issuing thread specifies a group of asyn-
chronous operations, called async-group, using a commit operation and tracks the completion of this
group using a wait operation. The thread issuing the asynchronous operation must create separate
async-groups for bulk and non-bulk asynchronous operations.

A commit operation creates a per-thread async-group containing all prior asynchronous operations
initiated by the executing thread but none of the asynchronous operations following the commit op-
eration. A committed asynchronous operation belongs to a single async-group.

When an async-group completes, all the asynchronous operations belonging to that group are com-
plete and the executing thread that initiated the asynchronous operations can read the result of the
asynchronous operations. All async-groups committed by an executing thread always complete in the

222 Chapter 9. Instruction Set

PTX ISA, Release 8.1

order in which they were committed. There is no ordering between asynchronous operations within
an async-group.

A typical pattern of using async-group as the completion mechanism is as follows:

▶ Initiate the asynchronous operations.

▶ Group the asynchronous operations into an async-group using a commit operation.

▶ Wait for the completion of the async-group using the wait operation.

▶ Once the async-group completes, access the results of all asynchronous operations in that async-
group.

Mbarrier-based mechanism

A thread can track the completion of one or more asynchronous operations using the current phase
of an mbarrier object. When the current phase of the mbarrier object is complete, it implies that all
asynchronous operations tracked by this phase are complete, and all threads participating in that
mbarrier object can access the result of the asynchronous operations.

Thembarrier object to be used for tracking the completion of an asynchronous operation can be either
specified along with the asynchronous operation as part of its syntax, or as a separate operation. For
a bulk asynchronous operation, the mbarrier object must be specified in the asynchronous operation,
whereas for non-bulk operations, it can be specified after the asynchronous operation.

A typical pattern of using mbarrier-based completion mechanism is as follows:

▶ Initiate the asynchronous operations.

▶ Set up an mbarrier object to track the asynchronous operations in its current phase, either as
part of the asynchronous operation or as a separate operation.

▶ Wait for the mbarrier object to complete its current phase using mbarrier.test_wait or
mbarrier.try_wait.

▶ Once the mbarrier.test_wait or mbarrier.try_wait operation returns True, access the
results of the asynchronous operations tracked by thembarrier object.

9.7.8.24.2 Async Proxy

The cp{.reduce}.async.bulk operations are performed in the asynchronous proxy (or async proxy).

Accessing the samememory location acrossmultiple proxies needs a cross-proxy fence. For the async
proxy, fence.proxy.async should be used to synchronize memory between generic proxy and the
async proxy.

The completion of a cp{.reduce}.async.bulk operation is followed by an implicit generic-async
proxy fence. So the result of the asynchronous operation is made visible to the generic proxy as soon
as its completion is observed. Async-group OR mbarrier-based completion mechanism must be used
to wait for the completion of the cp{.reduce}.async.bulk instructions.

9.7. Instructions 223

PTX ISA, Release 8.1

9.7.8.24.3 Data Movement and Conversion Instructions: cp.async

cp.async

Initiates an asynchronous copy operation from one state space to another.

Syntax

cp.async.ca.shared{::cta}.global{.level::cache_hint}{.level::prefetch_size}
[dst], [src], cp-size{, src-size}{, cache-policy} ;

cp.async.cg.shared{::cta}.global{.level::cache_hint}{.level::prefetch_size}
[dst], [src], 16{, src-size}{, cache-policy} ;

cp.async.ca.shared{::cta}.global{.level::cache_hint}{.level::prefetch_size}
[dst], [src], cp-size{, ignore-src}{, cache-policy} ;

cp.async.cg.shared{::cta}.global{.level::cache_hint}{.level::prefetch_size}
[dst], [src], 16{, ignore-src}{, cache-policy} ;

.level::cache_hint = { .L2::cache_hint }

.level::prefetch_size = { .L2::64B, .L2::128B, .L2::256B }
cp-size = { 4, 8, 16 }

Description

cp.async is a non-blocking instruction which initiates an asynchronous copy operation of data from
the location specified by source address operand src to the location specified by destination address
operand dst. Operand src specifies a location in the global state space and dst specifies a location
in the shared state space.

Operand cp-size is an integer constant which specifies the size of data in bytes to be copied to the
destination dst. cp-size can only be 4, 8 and 16.

Instruction cp.async allows optionally specifying a 32-bit integer operand src-size. Operand
src-size represents the size of the data in bytes to be copied from src to dst andmust be less than
cp-size. In such case, remaining bytes in destination dst are filled with zeros. Specifying src-size
larger than cp-size results in undefined behavior.

The optional and non-immediate predicate argument ignore-src specifies whether the data from
the source location src should be ignored completely. If the source data is ignored then zeros will be
copied to destination dst. If the argument ignore-src is not specified then it defaults to False.

Supported alignment requirements and addressing modes for operand src and dst are described in
Addresses as Operands.

The mandatory .async qualifier indicates that the cp instruction will initiate the memory copy op-
eration asynchronously and control will return to the executing thread before the copy operation is
complete. The executing thread can then use cp.async.wait_all or cp.async.wait_group or
mbarrier instructions to wait for completion of the asynchronous copy operation. No other synchro-
nization mechanisms described in Memory Consistency Model can be used to guarantee the comple-
tion of the asynchronous copy operations.

There is no ordering guarantee between two cp.async operations if they are not explicitly synchro-
nized using cp.async.wait_all or cp.async.wait_group ormbarrier instructions.

As described in Cache Operators, the .cg qualifier indicates caching of data only at global level cache
L2 and not at L1 whereas .ca qualifier indicates caching of data at all levels including L1 cache. Cache
operator are treated as performance hints only.

cp.async is treated as a weak memory operation in theMemory Consistency Model.

The .level::prefetch_size qualifier is a hint to fetch additional data of the specified size into
the respective cache level.The sub-qualifier prefetch_size can be set to either of 64B, 128B, 256B

224 Chapter 9. Instruction Set

PTX ISA, Release 8.1

thereby allowing the prefetch size to be 64 Bytes, 128 Bytes or 256 Bytes respectively.

The qualifier .level::prefetch_sizemay only be used with .global state space and with generic
addressing where the address points to .global state space. If the generic address does not fall
within the address window of the global memory, then the prefetching behavior is undefined.

The .level::prefetch_size qualifier is treated as a performance hint only.

When the optional argument cache-policy is specified, the qualifier .level::cache_hint is re-
quired. The 64-bit operand cache-policy specifies the cache eviction policy thatmay be used during
the memory access.

The qualifier .level::cache_hint is only supported for .global state space and for generic ad-
dressing where the address points to the .global state space.

cache-policy is a hint to the cache subsystem and may not always be respected. It is treated as a
performance hint only, and does not change the memory consistency behavior of the program.

PTX ISA Notes

Introduced in PTX ISA version 7.0.

Support for .level::cache_hint and .level::prefetch_size qualifiers introduced in PTX ISA
version 7.4.

Support for ignore-src operand introduced in PTX ISA version 7.5.

Support for sub-qualifier ::cta introduced in PTX ISA version 7.8.

Target ISA Notes

Requires sm_80 or higher.

Sub-qualifier ::cta requires sm_30 or higher.

Examples

cp.async.ca.shared.global [shrd], [gbl + 4], 4;
cp.async.ca.shared::cta.global [%r0 + 8], [%r1], 8;
cp.async.cg.shared.global [%r2], [%r3], 16;

cp.async.cg.shared.global.L2::64B [%r2], [%r3], 16;
cp.async.cg.shared.global.L2::128B [%r0 + 16], [%r1], 8;
cp.async.cg.shared.global.L2::256B [%r2 + 32], [%r3], 16;

createpolicy.fractional.L2::evict_last.L2::evict_unchanged.b64 cache-policy, 0.25;
cp.async.ca.shared.global.L2::cache_hint [%r2], [%r1], 4, cache-policy;

cp.async.ca.shared.global [shrd], [gbl], 4, p;
cp.async.cg.shared.global.L2::chache_hint [%r0], [%r2], 16, q, cache-policy;

9.7.8.24.4 Data Movement and Conversion Instructions: cp.async.commit_group

cp.async.commit_group

Commits all prior initiated but uncommitted cp.async instructions into a cp.async-group.

Syntax

cp.async.commit_group ;

9.7. Instructions 225

PTX ISA, Release 8.1

Description

cp.async.commit_group instruction creates a new cp.async-group per thread and batches all prior
cp.async instructions initiated by the executing thread but not committed to any cp.async-group
into the new cp.async-group. If there are no uncommitted cp.async instructions then cp.async.
commit_group results in an empty cp.async-group.

An executing thread can wait for the completion of all cp.async operations in a cp.async-group using
cp.async.wait_group.

There is no memory ordering guarantee provided between any two cp.async operations within the
same cp.async-group. So two or more cp.async operations within a cp.async-group copying data to
the same location results in undefined behavior.

PTX ISA Notes

Introduced in PTX ISA version 7.0.

Target ISA Notes

Requires sm_80 or higher.

Examples

∕∕ Example 1:
cp.async.ca.shared.global [shrd], [gbl], 4;
cp.async.commit_group ; ∕∕ Marks the end of a cp.async group

∕∕ Example 2:
cp.async.ca.shared.global [shrd1], [gbl1], 8;
cp.async.cg.shared.global [shrd1+8], [gbl1+8], 8;
cp.async.commit_group ; ∕∕ Marks the end of cp.async group 1

cp.async.ca.shared.global [shrd2], [gbl2], 16;
cp.async.cg.shared.global [shrd2+16], [gbl2+16], 16;
cp.async.commit_group ; ∕∕ Marks the end of cp.async group 2

9.7.8.24.5 Data Movement and Conversion Instructions: cp.async.wait_group / cp.async.wait_all

cp.async.wait_group/cp.async.wait_all

Wait for completion of prior asynchronous copy operations.

Syntax

cp.async.wait_group N;
cp.async.wait_all ;

Description

cp.async.wait_group instruction will cause executing thread to wait till only N or fewer of the most
recent cp.async-groups are pending and all the prior cp.async-groups committed by the executing
threads are complete. For example, when N is 0, the executing thread waits on all the prior cp.async-
groups to complete. Operand N is an integer constant.

cp.async.wait_all is equivalent to :

cp.async.commit_group;
cp.async.wait_group 0;

226 Chapter 9. Instruction Set

PTX ISA, Release 8.1

An empty cp.async-group is considered to be trivially complete.

Writes performed by cp.async operations are made visible to the executing thread only after:

1. The completion of cp.async.wait_all or

2. The completion of cp.async.wait_group on the cp.async-group in which the cp.async be-
longs to or

3. mbarrier.test_wait returns True on an mbarrier object which is tracking the completion of the
cp.async operation.

There is no ordering between two cp.async operations that are not synchronized with cp.async.
wait_all or cp.async.wait_group ormbarrier objects.

cp.async.wait_group and cp.async.wait_all does not provide any ordering and visibility guar-
antees for any other memory operation apart from cp.async.

PTX ISA Notes

Introduced in PTX ISA version 7.0.

Target ISA Notes

Requires sm_80 or higher.

Examples

∕∕ Example of .wait_all:
cp.async.ca.shared.global [shrd1], [gbl1], 4;
cp.async.cg.shared.global [shrd2], [gbl2], 16;
cp.async.wait_all; ∕∕ waits for all prior cp.async to complete

∕∕ Example of .wait_group :
cp.async.ca.shared.global [shrd3], [gbl3], 8;
cp.async.commit_group; ∕∕ End of group 1

cp.async.cg.shared.global [shrd4], [gbl4], 16;
cp.async.commit_group; ∕∕ End of group 2

cp.async.cg.shared.global [shrd5], [gbl5], 16;
cp.async.commit_group; ∕∕ End of group 3

cp.async.wait_group 1; ∕∕ waits for group 1 and group 2 to complete

9.7.8.24.6 Data Movement and Conversion Instructions: cp.async.bulk

cp.async.bulk

Initiates an asynchronous copy operation from one state space to another.

Syntax

cp.async.bulk.dst.src.completion_mechanism{.multicast}{.level::cache_hint}
[dstMem], [srcMem], size, [mbar] {, ctaMask} {, cache-policy}

.dst = { .shared::cluster }

.src = { .global }

.completion_mechanism = { .mbarrier::complete_tx::bytes }

.level::cache_hint = { .L2::cache_hint }
(continues on next page)

9.7. Instructions 227

PTX ISA, Release 8.1

(continued from previous page)

.multicast = { .multicast::cluster }

cp.async.bulk.dst.src.completion_mechanism [dstMem], [srcMem], size, [mbar]

.dst = { .shared::cluster }

.src = { .shared::cta }

.completion_mechanism = { .mbarrier::complete_tx::bytes }

cp.async.bulk.dst.src.completion_mechanism{.level::cache_hint} [dstMem], [srcMem],�
↪→size{, cache-policy}

.dst = { .global }

.src = { .shared::cta }

.completion_mechanism = { .bulk_group }

.level::cache_hint = { .L2::cache_hint }

Description

cp.async.bulk is a non-blocking instruction which initiates an asynchronous bulk-copy operation
from the location specified by source address operand srcMem to the location specified by destination
address operand dstMem.

The direction of bulk-copy is from the state space specified by the .src modifier to the state space
specified by the .dstmodifiers.

The 32-bit operand size specifies the amount of memory to be copied, in terms of number of bytes.
sizemust be a multiple of 16. If the value is not a multiple of 16, then the behavior is undefined. The
memory range [dstMem, dstMem + size - 1] must not overflow the destination memory space
and the memory range [srcMem, srcMem + size - 1] must not overflow the source memory
space. Otherwise, the behavior is undefined. The addresses dstMem and srcMem must be aligned to
16 bytes.

When the source of the copy is .shared::cta and the destination is .shared::cluster, the desti-
nation has to be in the shared memory of a different CTA within the cluster.

Themodifier .completion_mechanism specifies the completionmechanism that is supported on the
instruction variant. The completion mechanisms that are supported for different variants are summa-
rized in the following table:

Completion mecha-
nism

.dst .src Description

.mbarrier::... .shared::cluster .global mbarrier based completion
mechanism.shared::cluster .shared::cta

.bulk_group .global .shared::cta Bulk async-group based
completion mechanism

The modifier .mbarrier::complete_tx::bytes specifies that the cp.async.bulk variant uses
mbarrier based completion mechanism. The complete-tx operation, with completeCount argument
equal to amount of data copied in bytes, will be performed on the mbarrier object specified by the
operand mbar.

The modifier .bulk_group specifies that the cp.async.bulk variant uses bulk async-group based
completion mechanism.

228 Chapter 9. Instruction Set

PTX ISA, Release 8.1

The optional modifier .multicast::cluster allows copying of data from global memory to shared
memory ofmultiple CTAs in the cluster. Operand ctaMask specifies the destination CTAs in the cluster
such that each bit position in the 16-bit ctaMask operand corresponds to the %ctaid of the destina-
tion CTA. The source data ismulticast to the same CTA-relative offset as dstMem in the sharedmemory
of each destination CTA. The mbarrier signal is also multicast to the same CTA-relative offset as mbar
in the shared memory of the destination CTA.

When the optional argument cache-policy is specified, the qualifier .level::cache_hint is re-
quired. The 64-bit operand cache-policy specifies the cache eviction policy thatmay be used during
the memory access.

cache-policy is a hint to the cache subsystem and may not always be respected. It is treated as a
performance hint only, and does not change the memory consistency behavior of the program. The
qualifier .level::cache_hint is only supported when at least one of the .src or .dst statespaces
is .global state space.

The copy operation in cp.async.bulk is treated as a weak memory operation and the complete-
tx operation on the mbarrier has .release semantics at the .cluster scope as described in the
Memory Consistency Model.

PTX ISA Notes

Introduced in PTX ISA version 8.0.

Target ISA Notes

Requires sm_90 or higher.

Examples

∕∕ .global -> .shared::cluster:
cp.async.bulk.shared::cluster.global.mbarrier::complete_tx::bytes [dstMem], [srcMem],�
↪→size, [mbar];

cp.async.bulk.shared::cluster.global.mbarrier::complete_tx::bytes.multicast::cluster
[dstMem], [srcMem], size, [mbar],�

↪→ctaMask;

cp.async.bulk.shared::cluster.global.mbarrier::complete_tx::bytes.L2::cache_hint
[dstMem], [srcMem], size, [mbar], cache-

↪→policy;

∕∕ .shared::cta -> .shared::cluster (strictly remote):
cp.async.bulk.shared::cluster.shared::cta.mbarrier::complete_tx::bytes [dstMem],�
↪→[srcMem], size, [mbar];

∕∕ .shared::cta -> .global:
cp.async.bulk.global.shared::cta.bulk_group [dstMem], [srcMem], size;

cp.async.bulk.global.shared::cta.bulk_group.L2::cache_hint} [dstMem], [srcMem], size,�
↪→cache-policy;

9.7. Instructions 229

PTX ISA, Release 8.1

9.7.8.24.7 Data Movement and Conversion Instructions: cp.reduce.async.bulk

cp.reduce.async.bulk

Initiates an asynchronous reduction operation.

Syntax

cp.reduce.async.bulk.dst.src.completion_mechanism.redOp.type
[dstMem], [srcMem], size, [mbar]

.dst = { .shared::cluster }

.src = { .shared::cta }

.completion_mechanism = { .mbarrier::complete_tx::bytes }

.redOp= { .and, .or, .xor,
.add, .inc, .dec,
.min, .max }

.type = { .b32, .u32, .s32, .b64, .u64 }

cp.reduce.async.bulk.dst.src.completion_mechanism{.level::cache_hint}.redOp.type
[dstMem], [srcMem], size{, cache-policy}

.dst = { .global }

.src = { .shared::cta }

.completion_mechanism = { .bulk_group }

.level::cache_hint = { .L2::cache_hint }

.redOp= { .and, .or, .xor,
.add, .inc, .dec,
.min, .max }

.type = { .f16, .bf16, .b32, .u32, .s32, .b64, .u64, .s64, .f32, .f64�
↪→}

cp.reduce.async.bulk.dst.src.completion_mechanism{.level::cache_hint}.add.noftz.type
[dstMem], [srcMem], size{, cache-policy}

.dst = { .global }

.src = { .shared::cta }

.completion_mechanism = { .bulk_group }

.type = { .f16, .bf16 }

Description

cp.reduce.async.bulk is a non-blocking instruction which initiates an asynchronous reduction op-
eration on an array of memory locations specified by the destination address operand dstMem with
the source array whose location is specified by the source address operand srcMem. The size of the
source and the destination array must be the same and is specified by the operand size.

Each data element in the destination array is reduced inline with the corresponding data element in
the source array with the reduction operation specified by themodifier .redOp. The type of each data
element in the source and the destination array is specified by the modifier .type.

The source address operandsrcMem is located in the state space specified by.src and the destination
address operand dstMem is located in the state specified by the .dst.

The 32-bit operand size specifies the amount of memory to be copied from the source location and
used in the reduction operation, in terms of number of bytes. size must be a multiple of 16. If the
value is not a multiple of 16, then the behavior is undefined. The memory range [dstMem, dstMem
+ size - 1] must not overflow the destination memory space and the memory range [srcMem,

230 Chapter 9. Instruction Set

PTX ISA, Release 8.1

srcMem + size - 1] must not overflow the source memory space. Otherwise, the behavior is
undefined. The addresses dstMem and srcMemmust be aligned to 16 bytes.

The operations supported by .redOp are classified as follows:

▶ The bit-size operations are .and, .or, and .xor.

▶ The integer operations are .add, .inc, .dec, .min, and .max. The .inc and .dec operations
return a result in the range [0..x] where x is the value at the source state space.

▶ The floating point operation .add rounds to the nearest even. The current implementation
of cp.reduce.async.bulk.add.f32 flushes subnormal inputs and results to sign-preserving
zero. The cp.reduce.async.bulk.add.f16 and cp.reduce.async.bulk.add.bf16 opera-
tions require .noftz qualifier. It preserves input and result subnormals, and does not flush them
to zero.

The following table describes the valid combinations of .redOp and element type:

.dst .redOp Element type

.shared::cluster .add .u32, .s32, .u64

.min, .max .u32, .s32

.inc, .dec .u32

.and, .or, .xor .b32

.global .add .u32, .s32, .u64, .f32, .f64, .f16, .bf16

.min, .max .u32, .s32, .u64, .s64, .f16, .bf16

.inc, .dec .u32

.and, .or, .xor .b32, .b64

Themodifier .completion_mechanism specifies the completionmechanism that is supported on the
instruction variant. The completion mechanisms that are supported for different variants are summa-
rized in the following table:

Completion mecha-
nism

.dst .src Description

.mbarrier::... .shared::cluster .global mbarrier based completion
mechanism.shared::cluster .shared::cta

.bulk_group .global .shared::cta Bulk async-group based
completion mechanism

The modifier .mbarrier::complete_tx::bytes specifies that the cp.reduce.async.bulk vari-
ant uses mbarrier based completion mechanism. The complete-tx operation, with completeCount
argument equal to amount of data copied in bytes, will be performed on the mbarrier object specified
by the operand mbar.

Themodifier .bulk_group specifies that the cp.reduce.async.bulk variant uses bulk async-group
based completion mechanism.

When the optional argument cache-policy is specified, the qualifier .level::cache_hint is re-
quired. The 64-bit operand cache-policy specifies the cache eviction policy thatmay be used during
the memory access.

9.7. Instructions 231

PTX ISA, Release 8.1

cache-policy is a hint to the cache subsystem and may not always be respected. It is treated as a
performance hint only, and does not change the memory consistency behavior of the program. The
qualifier .level::cache_hint is only supported when at least one of the .src or .dst statespaces
is .global state space.

Each reduction operation performed by the cp.reduce.async.bulk has individually .relaxed.gpu
memory ordering semantics. The load operations in cp.reduce.async.bulk are treated as weak
memory operation and the complete-tx operation on the mbarrier has .release semantics at the
.cluster scope as described in theMemory Consistency Model.

PTX ISA Notes

Introduced in PTX ISA version 8.0.

Target ISA Notes

Requires sm_90 or higher.

Examples

cp.reduce.async.bulk.shared::cluster.shared::cta.mbarrier::complete_tx::bytes.add.u64
[dstMem], [srcMem],�

↪→size, [mbar];

cp.reduce.async.bulk.shared::cluster.shared::cta.mbarrier::complete_tx::bytes.min.s32
[dstMem], [srcMem],�

↪→size, [mbar];

cp.reduce.async.bulk.global.shared::cta.bulk_group.min.f16 [dstMem], [srcMem], size;

cp.reduce.async.bulk.global.shared::cta.bulk_group.L2::cache_hint.xor.s32 [dstMem],�
↪→[srcMem], size, policy;

cp.reduce.async.bulk.global.shared::cta.bulk_group.add.noftz.f16 [dstMem], [srcMem],�
↪→size;

9.7.8.24.8 Data Movement and Conversion Instructions: cp.async.bulk.prefetch

cp.async.bulk.prefetch

Provides a hint to the system to initiate the asynchronous prefetch of data to the cache.

Syntax

cp.async.bulk.prefetch.L2.src{.level::cache_hint} [srcMem], size {, cache-policy}

.src = { .global }

.level::cache_hint = { .L2::cache_hint }

Description

cp.async.bulk.prefetch is a non-blocking instruction which may initiate an asynchronous
prefetch of data from the location specified by source address operand srcMem, in .src statespace,
to the L2 cache.

The 32-bit operand size specifies the amount of memory to be prefetched in terms of number of
bytes. sizemust be amultiple of 16. If the value is not amultiple of 16, then the behavior is undefined.
Thememory range [dstMem, dstMem + size - 1]must not overflow the destinationmemory space

232 Chapter 9. Instruction Set

PTX ISA, Release 8.1

and thememory range [srcMem, srcMem + size - 1]must not overflow the sourcememory space.
Otherwise, the behavior is undefined. The address srcMemmust be aligned to 16 bytes.

When the optional argument cache-policy is specified, the qualifier .level::cache_hint is re-
quired. The 64-bit operand cache-policy specifies the cache eviction policy thatmay be used during
the memory access.

cache-policy is a hint to the cache subsystem and may not always be respected. It is treated as a
performance hint only, and does not change the memory consistency behavior of the program.

PTX ISA Notes

Introduced in PTX ISA version 8.0.

Target ISA Notes

Requires sm_90 or higher.

Examples

cp.async.bulk.prefetch.L2.global [srcMem], size;

cp.async.bulk.prefetch.L2.global.L2::cache_hint [srcMem], size, policy;

9.7.8.24.9 Data Movement and Conversion Instructions: cp.async.bulk.tensor

cp.async.bulk.tensor

Initiates an asynchronous copy operation on the tensor data from one state space to another.

Syntax

∕∕ global -> shared::cluster:
cp.async.bulk.tensor.dim.dst.src{.load_mode}.completion_mechanism{.multicast}{.
↪→level::cache_hint}

[dstMem], [tensorMap, tensorCoords], [mbar]{,�
↪→im2colOffsets}

{, ctaMask} {, cache-policy}

.dst = { .shared::cluster }

.src = { .global }

.dim = { .1d, .2d, .3d, .4d, .5d }

.completion_mechanism = { .mbarrier::complete_tx::bytes }

.load_mode = { .tile, .im2col }

.level::cache_hint = { .L2::cache_hint }

.multicast = { .multicast::cluster }

∕∕ shared::cta -> global:
cp.async.bulk.tensor.dim.dst.src{.load_mode}.completion_mechanism{.level::cache_hint}

[tensorMap, tensorCoords], [srcMem] {, cache-
↪→policy}

.dst = { .global }

.src = { .shared::cta }

.dim = { .1d, .2d, .3d, .4d, .5d }

.completion_mechanism = { .bulk_group }

.load_mode = { .tile, .im2col_no_offs }

.level::cache_hint = { .L2::cache_hint }

9.7. Instructions 233

PTX ISA, Release 8.1

Description

cp.async.bulk.tensor is a non-blocking instruction which initiates an asynchronous copy opera-
tion of tensor data from the location in .src state space to the location in the .dst state space.

The operand dstMem specifies the location in the .dst state space into which the tensor data has to
be copied and srcMem specifies the location in the .src state space from which the tensor data has
to be copied.

The operand tensorMap is the generic address of the opaque tensor-map object which resides either
in .param space or .const space. The operand tensorMap specifies the properties of the tensor
copy operation, as described in Tensor-map. Refer to the CUDA programming guide for creating the
tensor-map objects on the host side.

The dimension of the tensor data is specified by the .dimmodifier.

The vector operand tensorCoords specifies the starting coordinates in the tensor data in the global
memory from or to which the copy operation has to be performed. The number of tensor coordinates
in the vector argument tensorCoords should be equal to the dimension specified by the modifier
.dim. The individual tensor coordinates in tensorCoords are of type .s32.

Themodifier .completion_mechanism specifies the completionmechanism that is supported on the
instruction variant. The completion mechanisms that are supported for different variants are summa-
rized in the following table:

Completion mecha-
nism

.dst .src Description

.mbarrier::... .shared::cluster .global mbarrier based completion
mechanism.shared::cluster .shared::cta

.bulk_group .global .shared::cta Bulk async-group based
completion mechanism

The modifier .mbarrier::complete_tx::bytes specifies that the cp.async.bulk.tensor vari-
ant uses mbarrier based completion mechanism. The complete-tx operation, with completeCount
argument equal to amount of data copied in bytes, will be performed on the mbarrier object specified
by the operand mbar.

Themodifier .bulk_group specifies that the cp.async.bulk.tensor variant uses bulk async-group
based completion mechanism.

The qualifier .load_mode specifies how the data in the source location is copied into the destination
location. If .load_mode is not specified, it defaults to .tile. In .tile mode, the multi-dimensional
layout of the source tensor is preserved at the destination. In .im2colmode, some dimensions of the
source tensors are unrolled in a single dimensional column at the destination. Details of the im2col
mode are described in Im2col mode. In .im2col mode, the tensor has to be at least 3-dimensional.
The vector operand im2colOffsets can be specified only when .load_mode is .im2col. The length
of the vector operand im2colOffsets is two less than the number of dimension .dim of the ten-
sor operation. The modifier .im2col_no_offs is the same as .im2col mode except there is no
im2colOffsets vector involved.

The optional modifier .multicast::cluster allows copying of data from global memory to shared
memory ofmultiple CTAs in the cluster. Operand ctaMask specifies the destination CTAs in the cluster
such that each bit position in the 16-bit ctaMask operand corresponds to the %ctaid of the desti-
nation CTA. The source data is multicast to the same offset as dstMem in the shared memory of each
destination CTA. Thembarrier signal is alsomulticast to the same offset as mbar in the sharedmemory
of the destination CTA.

234 Chapter 9. Instruction Set

PTX ISA, Release 8.1

When the optional argument cache-policy is specified, the qualifier .level::cache_hint is re-
quired. The 64-bit operand cache-policy specifies the cache eviction policy thatmay be used during
the memory access.

cache-policy is a hint to the cache subsystem and may not always be respected. It is treated as a
performance hint only, and does not change the memory consistency behavior of the program. The
qualifier .level::cache_hint is only supported when at least one of the .src or .dst statespaces
is .global state space.

The copy operation in cp.async.bulk.tensor is treated as a weak memory operation and the
complete-tx operation on the mbarrier has .release semantics at the .cluster scope as described
in theMemory Consistency Model.

PTX ISA Notes

Introduced in PTX ISA version 8.0.

Target ISA Notes

Requires sm_90 or higher.

Examples

.reg .b16 ctaMask;

.reg .u16 i2cOffW, i2cOffH, i2cOffD;

.reg .b64 l2CachePolicy;

cp.async.bulk.tensor.1d.shared::cluster.global.tile [sMem0], [tensorMap0, {tc0}],�
↪→[mbar0];

@p cp.async.bulk.tensor.2d.shared::cluster.global.mbarrier::complete_tx::bytes.
↪→multicast::cluster

[sMem1], [tensorMap1, {tc0, tc1}], [mbar2], ctaMask;

@p cp.async.bulk.tensor.5d.shared::cluster.global.im2col.mbarrier::complete_tx::bytes
[sMem2], [tensorMap2, {tc0, tc1, tc2, tc3, tc4}], [mbar2],

↪→{i2cOffW, i2cOffH, i2cOffD};

@p cp.async.bulk.tensor.3d.im2col.shared::cluster.global.mbarrier::complete_tx::bytes.
↪→L2::cache_hint

[sMem3], [tensorMap3, {tc0, tc1, tc2}], [mbar3], {i2cOffW},�
↪→policy;

@p cp.async.bulk.tensor.1d.global.shared::cta.bulk_group [tensorMap3, {tc0}],�
↪→[sMem3];

9.7.8.24.10 Data Movement and Conversion Instructions: cp.reduce.async.bulk.tensor

cp.reduce.async.bulk.tensor

Initiates an asynchronous reduction operation on the tensor data.

Syntax

∕∕ shared::cta -> global:
cp.reduce.async.bulk.tensor.dim.dst.src.redOp{.load_mode}.completion_mechanism{.
↪→level::cache_hint}

[tensorMap, tensorCoords], [srcMem] {,cache-
↪→policy}

(continues on next page)

9.7. Instructions 235

PTX ISA, Release 8.1

(continued from previous page)

.dst = { .global }

.src = { .shared::cta }

.dim = { .1d, .2d, .3d, .4d, .5d }

.completion_mechanism = { .bulk_group }

.load_mode = { .tile, .im2col_no_offs }

.redOp = { .add, .min, .max, .inc, .dec, .and, .or, .xor}

Description

cp.reduce.async.bulk.tensor is a non-blocking instruction which initiates an asynchronous re-
duction operation of tensor data in the .dst state space with tensor data in the .src state space.

The operand srcMem specifies the location of the tensor data in the .src state space using which the
reduction operation has to be performed.

The operand tensorMap is the generic address of the opaque tensor-map object which resides either
in .param space or .const space. The operand tensorMap specifies the properties of the tensor
reduce operation, as described in Tensor-map. Refer to the CUDA programming guide for creating the
tensor-map objects on the host side.

Each element of the tensor data in the .dst state space is reduced inline with the corresponding
element from the tensor data in the .src state space. The modifier .redOp specifies the reduction
operation used for the inline reduction. The type of each tensor data element in the source and the
destination tensor is specified in Tensor-map.

The dimension of the tensor is specified by the .dimmodifier.

The vector operand tensorCoords specifies the starting coordinates of the tensor data in the global
memory on which the reduce operation is to be performed. The number of tensor coordinates in the
vector argument tensorCoords should be equal to the dimension specified by the modifier .dim.
The individual tensor coordinates are of the type .s32.

The following table describes the valid combinations of .redOp and element type:

.redOp Element type

.add .u32, .s32, .u64, .f32, .f16, .bf16

.min, .max .u32, .s32, .u64, .s64, .f16, .bf16

.inc, .dec .u32

.and, .or, .xor .b32, .b64

The modifier .completion_mechanism specifies the completion mechanism that is supported on
the instruction variant. Value .bulk_group of the modifier .completion_mechanism specifies that
cp.reduce.async.bulk.tensor instruction uses bulk async-group based completion mechanism.

The qualifier .load_mode specifies how the data in the source location is copied into the destination
location. If .load_mode is not specified, it defaults to .tile. In .tile mode, the multi-dimensional
layout of the source tensor is preserved at the destination. In .im2col_no_offsmode, some dimen-
sions of the source tensors are unrolled in a single dimensional column at the destination. Details
of the im2col mode are described in Im2col mode. In .im2col mode, the tensor has to be at least
3-dimensional.

When the optional argument cache-policy is specified, the qualifier .level::cache_hint is re-
quired. The 64-bit operand cache-policy specifies the cache eviction policy thatmay be used during
the memory access.

236 Chapter 9. Instruction Set

PTX ISA, Release 8.1

cache-policy is a hint to the cache subsystem and may not always be respected. It is treated as a
performance hint only, and does not change the memory consistency behavior of the program. The
qualifier .level::cache_hint is only supported when at least one of the .src or .dst statespaces
is .global state space.

Each reduction operation performed by cp.reduce.async.bulk.tensor has individually .
relaxed.gpumemory ordering semantics. The load operations in cp.reduce.async.bulk.tensor
are treated as weak memory operations and the complete-tx operation on the mbarrier has .release
semantics at the .cluster scope as described in theMemory Consistency Model.

PTX ISA Notes

Introduced in PTX ISA version 8.0.

Target ISA Notes

Requires sm_90 or higher.

Examples

cp.reduce.async.bulk.tensor.1d.global.shared::cta.add.tile.bulk_group
[tensorMap0, {tc0}], [sMem0];

cp.reduce.async.bulk.tensor.2d.global.shared::cta.and.bulk_group.L2::cache_hint
[tensorMap1, {tc0, tc1}], [sMem1] ,�

↪→policy;

cp.reduce.async.bulk.tensor.3d.global.shared::cta.xor.im2col.bulk_group
[tensorMap2, {tc0, tc1, tc2}], [sMem2]

9.7.8.24.11 Data Movement and Conversion Instructions: cp.async.bulk.prefetch.tensor

cp.async.bulk.prefetch.tensor

Provides a hint to the system to initiate the asynchronous prefetch of tensor data to the cache.

Syntax

∕∕ global -> shared::cluster:
cp.async.bulk.prefetch.tensor.dim.L2.src{.load_mode}{.level::cache_hint} [tensorMap,�
↪→tensorCoords]

{, im2colOffsets } {,�
↪→cache-policy}

.src = { .global }

.dim = { .1d, .2d, .3d, .4d, .5d }

.load_mode = { .tile, .im2col }

.level::cache_hint = { .L2::cache_hint }

Description

cp.async.bulk.prefetch.tensor is a non-blocking instruction which may initiate an asyn-
chronous prefetch of tensor data from the location in .src statespace to the L2 cache.

The operand tensorMap is the generic address of the opaque tensor-map object which resides either
in .param space or .const space. The operand tensorMap specifies the properties of the tensor
copy operation, as described in Tensor-map. Refer to the CUDA programming guide for creating the
tensor-map objects on the host side.

The dimension of the tensor data is specified by the .dimmodifier.

9.7. Instructions 237

PTX ISA, Release 8.1

The vector operand tensorCoords specifies the starting coordinates in the tensor data in the global
memory from or to which the copy operation has to be performed. The number of tensor coordinates
in the vector argument tensorCoords should be equal to the dimension specified by the modifier
.dim. The individual tensor coordinates in tensorCoords are of type .s32.

The qualifier .load_mode specifies how the data in the source location is copied into the destination
location. If .load_mode is not specified, it defaults to .tile. In .tile mode, the multi-dimensional
layout of the source tensor is preserved at the destination. In .im2colmode, some dimensions of the
source tensors are unrolled in a single dimensional column at the destination. Details of the im2col
mode are described in Im2col mode. In .im2col mode, the tensor has to be at least 3-dimensional.
The vector operand im2colOffsets can be specified only when .load_mode is .im2col. The length
of the vector operand im2colOffsets is two less than the number of dimension .dim of the tensor
operation.

When the optional argument cache-policy is specified, the qualifier .level::cache_hint is re-
quired. The 64-bit operand cache-policy specifies the cache eviction policy thatmay be used during
the memory access.

cache-policy is a hint to the cache subsystem and may not always be respected. It is treated as a
performance hint only, and does not change the memory consistency behavior of the program.

cp.async.bulk.prefetch.tensor is treated as a weak memory operation in the Memory Consis-
tency Model.

PTX ISA Notes

Introduced in PTX ISA version 8.0.

Target ISA Notes

Requires sm_90 or higher.

Examples

.reg .b16 ctaMask;

.reg .u16 i2cOffW, i2cOffH, i2cOffD;

.reg .b64 l2CachePolicy;

cp.async.bulk.prefetch.tensor.1d.L2.global.tile [tensorMap0, {tc0}];

@p cp.async.bulk.prefetch.tensor.2d.L2.global [tensorMap1, {tc0, tc1}];

@p cp.async.bulk.prefetch.tensor.5d.L2.global.im2col
[tensorMap2, {tc0, tc1, tc2, tc3, tc4}], {i2cOffW, i2cOffH,�

↪→i2cOffD};

@p cp.async.bulk.prefetch.tensor.3d.L2.global.im2col.L2::cache_hint
[tensorMap3, {tc0, tc1, tc2}], {i2cOffW}, policy;

238 Chapter 9. Instruction Set

PTX ISA, Release 8.1

9.7.8.24.12 Data Movement and Conversion Instructions: cp.async.bulk.commit_group

cp.async.bulk.commit_group

Commits all prior initiated but uncommitted cp.async.bulk instructions into a cp.async.bulk-group.

Syntax

cp.async.bulk.commit_group;

Description

cp.async.bulk.commit_group instruction creates a new per-thread bulk async-group and batches
all prior cp{.reduce}.async.bulk.{.prefetch}{.tensor} instructions satisfying the following
conditions into the new bulk async-group:

▶ The prior cp{.reduce}.async.bulk.{.prefetch}{.tensor} instructions use bulk_group
based completion mechanism, and

▶ They are initiated by the executing thread but not committed to any bulk async-group.

If there are no uncommittedcp{.reduce}.async.bulk.{.prefetch}{.tensor} instructions then
cp.async.bulk.commit_group results in an empty bulk async-group.

An executing thread can wait for the completion of all cp{.reduce}.async.bulk.{.prefetch}{.
tensor} operations in a bulk async-group using cp.async.wait_group.

There is no memory ordering guarantee provided between any two cp{.reduce}.async.bulk.{.
prefetch}{.tensor} operations within the same bulk async-group.

PTX ISA Notes

Introduced in PTX ISA version 8.0.

Target ISA Notes

Requires sm_90 or higher.

Examples

cp.async.bulk.commit_group;

9.7.8.24.13 Data Movement and Conversion Instructions: cp.async.bulk.wait_group

cp.async.bulk.wait_group

Wait for completion of bulk async-groups.

Syntax

cp.async.bulk.wait_group{.read} N;

Description

cp.async.bulk.wait_group instruction will cause the executing thread to wait until only N or fewer
of themost recent bulk async-groups are pending and all the prior bulk async-groups committed by the
executing threads are complete. For example, when N is 0, the executing thread waits on all the prior
bulk async-groups to complete. Operand N is an integer constant.

By default, cp.async.bulk.wait_group instruction will cause the executing thread to wait till all
the bulk async operations in the specified bulk async-group have completed all of the following:

9.7. Instructions 239

PTX ISA, Release 8.1

▶ Reading from the source locations.

▶ Writing to their respective destination locations.

▶ Writes being made visible to the executing thread.

The optional .read modifier indicates that the waiting has to be done until all the bulk async opera-
tions in the specified bulk async-group have completed reading from their source locations.

PTX ISA Notes

Introduced in PTX ISA version 8.0.

Target ISA Notes

Requires sm_90 or higher.

Examples

cp.async.bulk.wait_group.read 0;
cp.async.bulk.wait_group 2;

9.7.9. Texture Instructions

This section describes PTX instructions for accessing textures and samplers. PTX supports the fol-
lowing operations on texture and sampler descriptors:

▶ Static initialization of texture and sampler descriptors.

▶ Module-scope and per-entry scope definitions of texture and sampler descriptors.

▶ Ability to query fields within texture and sampler descriptors.

9.7.9.1 Texturing Modes

For working with textures and samplers, PTX has two modes of operation. In the unified mode, tex-
ture and sampler information is accessed through a single .texref handle. In the independent mode,
texture and sampler information each have their own handle, allowing them to be defined separately
and combined at the site of usage in the program.

The advantage of unified mode is that it allows 256 samplers per kernel (128 for architectures prior to
sm_3x), with the restriction that they correspond 1-to-1with the 256 possible textures per kernel (128
for architectures prior to sm_3x). The advantage of independent mode is that textures and samplers
can be mixed and matched, but the number of samplers is greatly restricted to 32 per kernel (16 for
architectures prior to sm_3x).

Table 30 summarizes the number of textures, samplers and surfaces available in different texturing
modes.

240 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Table 30: Texture, sampler and surface limits

Texturing mode Resource sm_1x, sm_2x sm_3x+

Unified mode Textures 128 256

Samplers 128 256

Surfaces 8 16

Independent mode Textures 128 256

Samplers 16 32

Surfaces 8 16

The texturing mode is selected using .target options texmode_unified and tex-
mode_independent. A PTX module may declare only one texturing mode. If no texturing mode
is declared, the module is assumed to use unified mode.

Example: calculate an element’s power contribution as element’s power/total number of elements.

.target texmode_independent

.global .samplerref tsamp1 = { addr_mode_0 = clamp_to_border,
filter_mode = nearest

};
...
.entry compute_power

(.param .texref tex1)
{

txq.width.b32 r6, [tex1]; ∕∕ get tex1's width
txq.height.b32 r5, [tex1]; ∕∕ get tex1's height
tex.2d.v4.f32.f32 {r1,r2,r3,r4}, [tex1, tsamp1, {f1,f2}];
mul.u32 r5, r5, r6;
add.f32 r1, r1, r2;
add.f32 r3, r3, r4;
add.f32 r1, r1, r3;
cvt.f32.u32 r5, r5;
div.f32 r1, r1, r5;

}

9.7.9.2 Mipmaps

A mipmap is a sequence of textures, each of which is a progressively lower resolution representation
of the same image. The height and width of each image, or level of detail (LOD), in the mipmap is a
power of two smaller than the previous level. Mipmaps are used in graphics applications to improve
rendering speed and reduce aliasing artifacts. For example, a high-resolution mipmap image is used
for objects that are close to the user; lower-resolution images are used as the object appears farther
away. Mipmap filtering modes are provided when switching between two levels of detail (LODs) in
order to avoid abrupt changes in visual fidelity.

Example: If the texture has a basic size of 256 by 256 pixels, then the associated mipmap set may
contain a series of eight images, each one-fourth the total area of the previous one: 128×128 pixels,

9.7. Instructions 241

PTX ISA, Release 8.1

64×64, 32×32, 16×16, 8×8, 4×4, 2×2, 1×1 (a single pixel). If, for example, a scene is rendering this
texture in a space of 40×40 pixels, then either a scaled up version of the 32×32 (without trilinear
interpolation) or an interpolation of the 64×64 and the 32×32 mipmaps (with trilinear interpolation)
would be used.

The total number of LODs in a completemipmap pyramid is calculated through the following equation:

numLODs = 1 + floor(log2(max(w, h, d)))

The finest LOD is called the base level and is the 0th level. The next (coarser) level is the 1st level, and
so on. The coarsest level is the level of size (1 x 1 x 1). Each successively smaller mipmap level has half
the {width, height, depth} of the previous level, but if this half value is a fractional value, it’s rounded
down to the next largest integer. Essentially, the size of a mipmap level can be specified as:

max(1, floor(w_b ∕ 2^i)) x
max(1, floor(h_b ∕ 2^i)) x
max(1, floor(d_b ∕ 2^i))

where i is the ith level beyond the 0th level (the base level). And w_b, h_b and d_b are the width, height
and depth of the base level respectively.

PTX support for mipmaps

The PTX tex instruction supports three modes for specifying the LOD: base, level, and gradient. In
base mode, the instruction always picks level 0. In level mode, an additional argument is provided to
specify the LOD to fetch from. In gradmode, two floating-point vector arguments provide partials (e.g.,
{ds∕dx, dt∕dx} and {ds∕dy, dt∕dy} for a 2d texture), which the tex instruction uses to compute
the LOD.

These instructions provide access to texture memory.

▶ tex

▶ tld4

▶ txq

9.7.9.3 Texture Instructions: tex

tex

Perform a texture memory lookup.

Syntax

tex.geom.v4.dtype.ctype d, [a, c] {, e} {, f};
tex.geom.v4.dtype.ctype d[|p], [a, b, c] {, e} {, f}; ∕∕ explicit sampler

tex.geom.v2.f16x2.ctype d[|p], [a, c] {, e} {, f};
tex.geom.v2.f16x2.ctype d[|p], [a, b, c] {, e} {, f}; ∕∕ explicit sampler

∕∕ mipmaps
tex.base.geom.v4.dtype.ctype d[|p], [a, {b,} c] {, e} {, f};
tex.level.geom.v4.dtype.ctype d[|p], [a, {b,} c], lod {, e} {, f};
tex.grad.geom.v4.dtype.ctype d[|p], [a, {b,} c], dPdx, dPdy {, e} {, f};

tex.base.geom.v2.f16x2.ctype d[|p], [a, {b,} c] {, e} {, f};
tex.level.geom.v2.f16x2.ctype d[|p], [a, {b,} c], lod {, e} {, f};
tex.grad.geom.v2.f16x2.ctype d[|p], [a, {b,} c], dPdx, dPdy {, e} {, f};

(continues on next page)

242 Chapter 9. Instruction Set

PTX ISA, Release 8.1

(continued from previous page)

.geom = { .1d, .2d, .3d, .a1d, .a2d, .cube, .acube, .2dms, .a2dms };

.dtype = { .u32, .s32, .f16, .f32 };

.ctype = { .s32, .f32 }; ∕∕ .cube, .acube require .f32
∕∕ .2dms, .a2dms require .s32

Description

tex.{1d,2d,3d}

Texture lookup using a texture coordinate vector. The instruction loads data from the texture named
by operand a at coordinates given by operand c into destination d. Operand c is a scalar or singleton
tuple for 1d textures; is a two-element vector for 2d textures; and is a four-element vector for 3d
textures, where the fourth element is ignored. An optional texture sampler b may be specified. If no
sampler is specified, the sampler behavior is a property of the named texture. The optional destination
predicate p is set to True if data from texture at specified coordinates is resident in memory, False
otherwise. When optional destination predicate p is set to False, data loadedwill be all zeros. Memory
residency of Texture Data at specified coordinates is dependent on execution environment setup using
Driver API calls, prior to kernel launch. Refer to Driver API documentation for more details including
any system/implementation specific behavior.

An optional operand emay be specified. Operand e is a vector of .s32 values that specifies coordinate
offset. Offset is applied to coordinates before doing texture lookup. Offset value is in the range of -
8 to +7. Operand e is a singleton tuple for 1d textures; is a two element vector 2d textures; and is
four-element vector for 3d textures, where the fourth element is ignored.

An optional operand f may be specified for depth textures. Depth textures are special type of
textures which hold data from the depth buffer. Depth buffer contains depth information of each
pixel. Operand f is .f32 scalar value that specifies depth compare value for depth textures. Each
element fetched from texture is compared against value given in f operand. If comparison passes,
result is 1.0; otherwise result is 0.0. These per-element comparison results are used for the filtering.
When using depth compare operand, the elements in texture coordinate vector c have .f32 type.

Depth compare operand is not supported for 3d textures.

The instruction returns a two-element vector for destination type .f16x2. For all other destination
types, the instruction returns a four-element vector. Coordinates may be given in either signed 32-bit
integer or 32-bit floating point form.

A texture base address is assumed to be aligned to a 16 byte boundary, and the address given by
the coordinate vector must be naturally aligned to a multiple of the access size. If an address is not
properly aligned, the resulting behavior is undefined; i.e., the access may proceed by silently masking
off low-order address bits to achieve proper rounding, or the instruction may fault.

tex.{a1d,a2d}

Texture array selection, followed by texture lookup. The instruction first selects a texture from the tex-
ture array named by operand a using the index given by the first element of the array coordinate vector
c. The instruction then loads data from the selected texture at coordinates given by the remaining
elements of operand c into destination d. Operand c is a bit-size type vector or tuple containing an
index into the array of textures followed by coordinates within the selected texture, as follows:

▶ For 1d texture arrays, operand c has type .v2.b32. The first element is interpreted as an un-
signed integer index (.u32) into the texture array, and the second element is interpreted as a 1d
texture coordinate of type .ctype.

▶ For 2d texture arrays, operand c has type .v4.b32. The first element is interpreted as an un-
signed integer index (.u32) into the texture array, and the next two elements are interpreted as
2d texture coordinates of type .ctype. The fourth element is ignored.

9.7. Instructions 243

PTX ISA, Release 8.1

An optional texture sampler b may be specified. If no sampler is specified, the sampler behavior is a
property of the named texture.

An optional operand emay be specified. Operand e is a vector of .s32 values that specifies coordinate
offset. Offset is applied to coordinates before doing texture lookup. Offset value is in the range of -8
to +7. Operand e is a singleton tuple for 1d texture arrays; and is a two element vector 2d texture
arrays.

An optional operand fmay be specified for depth textures arrays. Operand f is .f32 scalar value that
specifies depth compare value for depth textures. When using depth compare operand, the coordi-
nates in texture coordinate vector c have .f32 type.

The instruction returns a two-element vector for destination type .f16x2. For all other destination
types, the instruction returns a four-element vector. The texture array index is a 32-bit unsigned in-
teger, and texture coordinate elements are 32-bit signed integer or floating point values.

The optional destination predicate p is set to True if data from texture at specified coordinates is resi-
dent in memory, False otherwise. When optional destination predicate p is set to False, data loaded
will be all zeros. Memory residency of Texture Data at specified coordinates is dependent on execution
environment setup using Driver API calls, prior to kernel launch. Refer to Driver API documentation for
more details including any system/implementation specific behavior.

tex.cube

Cubemap texture lookup. The instruction loads data from the cubemap texture named by operand a
at coordinates given by operand c into destination d. Cubemap textures are special two-dimensional
layered textures consisting of six layers that represent the faces of a cube. All layers in a cubemap are
of the same size and are square (i.e., width equals height).

When accessing a cubemap, the texture coordinate vector c has type .v4.f32, and comprises three
floating-point coordinates (s, t, r) and a fourth padding argument which is ignored. Coordinates (s, t,
r) are projected onto one of the six cube faces. The (s, t, r) coordinates can be thought of as a direction
vector emanating from the center of the cube. Of the three coordinates (s, t, r), the coordinate of
the largest magnitude (the major axis) selects the cube face. Then, the other two coordinates (the
minor axes) are divided by the absolute value of the major axis to produce a new (s, t) coordinate pair
to lookup into the selected cube face.

An optional texture sampler b may be specified. If no sampler is specified, the sampler behavior is a
property of the named texture.

Offset vector operand e is not supported for cubemap textures.

an optional operand f may be specified for cubemap depth textures. operand f is .f32 scalar value
that specifies depth compare value for cubemap depth textures.

The optional destination predicate p is set to True if data from texture at specified coordinates is resi-
dent in memory, False otherwise. When optional destination predicate p is set to False, data loaded
will be all zeros. Memory residency of Texture Data at specified coordinates is dependent on execution
environment setup using Driver API calls, prior to kernel launch. Refer to Driver API documentation for
more details including any system/implementation specific behavior.

tex.acube

Cubemap array selection, followed by cubemap lookup. The instruction first selects a cubemap texture
from the cubemap array named by operand a using the index given by the first element of the array
coordinate vectorc. The instruction then loads data from the selected cubemap texture at coordinates
given by the remaining elements of operand c into destination d.

Cubemap array textures consist of an array of cubemaps, i.e., the total number of layers is a multiple
of six. When accessing a cubemap array texture, the coordinate vector c has type .v4.b32. The first
element is interpreted as an unsigned integer index (.u32) into the cubemap array, and the remaining

244 Chapter 9. Instruction Set

PTX ISA, Release 8.1

three elements are interpreted as floating-point cubemap coordinates (s, t, r), used to lookup in the
selected cubemap as described above.

An optional texture sampler b may be specified. If no sampler is specified, the sampler behavior is a
property of the named texture.

Offset vector operand e is not supported for cubemap texture arrays.

An optional operand f may be specified for cubemap depth texture arrays. Operand f is .f32 scalar
value that specifies depth compare value for cubemap depth textures.

The optional destination predicate p is set to True if data from texture at specified coordinates is resi-
dent in memory, False otherwise. When optional destination predicate p is set to False, data loaded
will be all zeros. Memory residency of Texture Data at specified coordinates is dependent on execution
environment setup using Driver API calls, prior to kernel launch. Refer to Driver API documentation for
more details including any system/implementation specific behavior.

tex.2dms

Multi-sample texture lookup using a texture coordinate vector. Multi-sample textures consist of mul-
tiple samples per data element. The instruction loads data from the texture named by operand a from
sample number given by first element of the operand c, at coordinates given by remaining elements of
operand c into destination d. When accessing a multi-sample texture, texture coordinate vector c has
type .v4.b32. The first element in operand c is interpreted as unsigned integer sample number (.
u32), and the next two elements are interpreted as signed integer (.s32) 2d texture coordinates. The
fourth element is ignored. An optional texture sampler bmay be specified. If no sampler is specified,
the sampler behavior is a property of the named texture.

An optional operand emay be specified. Operand e is a vector of type .v2.s32 that specifies coordi-
nate offset. Offset is applied to coordinates before doing texture lookup. Offset value is in the range
of -8 to +7.

Depth compare operand f is not supported for multi-sample textures.

The optional destination predicate p is set to True if data from texture at specified coordinates is resi-
dent in memory, False otherwise. When optional destination predicate p is set to False, data loaded
will be all zeros. Memory residency of Texture Data at specified coordinates is dependent on execution
environment setup using Driver API calls, prior to kernel launch. Refer to Driver API documentation for
more details including any system/implementation specific behavior.

tex.a2dms

Multi-sample texture array selection, followed by multi-sample texture lookup. The instruction first
selects a multi-sample texture from the multi-sample texture array named by operand a using the
index given by the first element of the array coordinate vector c. The instruction then loads data from
the selected multi-sample texture from sample number given by second element of the operand c,
at coordinates given by remaining elements of operand c into destination d. When accessing a multi-
sample texture array, texture coordinate vector c has type .v4.b32. The first element in operand c
is interpreted as unsigned integer sampler number, the second element is interpreted as unsigned
integer index (.u32) into the multi-sample texture array and the next two elements are interpreted as
signed integer (.s32) 2d texture coordinates. An optional texture sampler b may be specified. If no
sampler is specified, the sampler behavior is a property of the named texture.

An optional operand emay be specified. Operand e is a vector of type .v2.s32 values that specifies
coordinate offset. Offset is applied to coordinates before doing texture lookup. Offset value is in the
range of -8 to +7.

Depth compare operand f is not supported for multi-sample texture arrays.

The optional destination predicate p is set to True if data from texture at specified coordinates is resi-
dent in memory, False otherwise. When optional destination predicate p is set to False, data loaded

9.7. Instructions 245

PTX ISA, Release 8.1

will be all zeros. Memory residency of Texture Data at specified coordinates is dependent on execution
environment setup using Driver API calls, prior to kernel launch. Refer to Driver API documentation for
more details including any system/implementation specific behavior.

Mipmaps

.base (lod zero) Pick level 0 (base level). This is the default if no mipmap mode is specified. No addi-
tional arguments.

.level (lod explicit) Requires an additional 32-bit scalar argument, lod, which contains the LOD to
fetch from. The type of lod follows .ctype (either .s32 or .f32). Geometries .2dms and .
a2dms are not supported in this mode.

.grad (lod gradient) Requires two .f32 vectors, dPdx and dPdy, that specify the partials. The vec-
tors are singletons for 1d and a1d textures; are two-element vectors for 2d and a2d textures; and
are four-element vectors for 3d, cube and acube textures, where the fourth element is ignored
for 3d and cube geometries. Geometries .2dms and .a2dms are not supported in this mode.

Formipmap texture lookup, an optional operand emay be specified. Operand e is a vector of .s32 that
specifies coordinate offset. Offset is applied to coordinates before doing texture lookup. Offset value
is in the range of -8 to +7. Offset vector operand is not supported for cube and cubemap geometries.

An optional operand fmay be specified formipmap textures. Operand f is .f32 scalar value that spec-
ifies depth compare value for depth textures. When using depth compare operand, the coordinates in
texture coordinate vector c have .f32 type.

The optional destination predicate p is set to True if data from texture at specified coordinates is resi-
dent in memory, False otherwise. When optional destination predicate p is set to False, data loaded
will be all zeros. Memory residency of Texture Data at specified coordinates is dependent on execution
environment setup using Driver API calls, prior to kernel launch. Refer to Driver API documentation for
more details including any system/implementation specific behavior.

Depth compare operand is not supported for 3d textures.

Indirect texture access

Beginning with PTX ISA version 3.1, indirect texture access is supported in unified mode for target
architecture sm_20 or higher. In indirect access, operand a is a .u64 register holding the address of a
.texref variable.

Notes

For compatibility with prior versions of PTX, the square brackets are not required and .v4 coordinate
vectors are allowed for any geometry, with the extra elements being ignored.

PTX ISA Notes

Unified mode texturing introduced in PTX ISA version 1.0. Extension using opaque .texref and .
samplerref types and independent mode texturing introduced in PTX ISA version 1.5.

Texture arrays tex.{a1d,a2d} introduced in PTX ISA version 2.3.

Cubemaps and cubemap arrays introduced in PTX ISA version 3.0.

Support for mipmaps introduced in PTX ISA version 3.1.

Indirect texture access introduced in PTX ISA version 3.1.

Multi-sample textures and multi-sample texture arrays introduced in PTX ISA version 3.2.

Support for textures returning .f16 and .f16x2 data introduced in PTX ISA version 4.2.

Support for tex.grad.{cube, acube} introduced in PTX ISA version 4.3.

Offset vector operand introduced in PTX ISA version 4.3.

246 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Depth compare operand introduced in PTX ISA version 4.3.

Support for optional destination predicate introduced in PTX ISA version 7.1.

Target ISA Notes

Supported on all target architectures.

The cubemap array geometry (.acube) requires sm_20 or higher.

Mipmaps require sm_20 or higher.

Indirect texture access requires sm_20 or higher.

Multi-sample textures and multi-sample texture arrays require sm_30 or higher.

Texture fetch returning .f16 and .f16x2 data require sm_53 or higher.

tex.grad.{cube, acube} requires sm_20 or higher.

Offset vector operand requires sm_30 or higher.

Depth compare operand requires sm_30 or higher.

Support for optional destination predicate requires sm_60 or higher.

Examples

∕∕ Example of unified mode texturing
∕∕ - f4 is required to pad four-element tuple and is ignored
tex.3d.v4.s32.s32 {r1,r2,r3,r4}, [tex_a,{f1,f2,f3,f4}];

∕∕ Example of independent mode texturing
tex.1d.v4.s32.f32 {r1,r2,r3,r4}, [tex_a,smpl_x,{f1}];

∕∕ Example of 1D texture array, independent texturing mode
tex.a1d.v4.s32.s32 {r1,r2,r3,r4}, [tex_a,smpl_x,{idx,s1}];

∕∕ Example of 2D texture array, unified texturing mode
∕∕ - f3 is required to pad four-element tuple and is ignored
tex.a2d.v4.s32.f32 {r1,r2,r3,r4}, [tex_a,{idx,f1,f2,f3}];

∕∕ Example of cubemap array, unified textureing mode
tex.acube.v4.f32.f32 {r0,r1,r2,r3}, [tex_cuarray,{idx,f1,f2,f3}];

∕∕ Example of multi-sample texture, unified texturing mode
tex.2dms.v4.s32.s32 {r0,r1,r2,r3}, [tex_ms,{sample,r6,r7,r8}];

∕∕ Example of multi-sample texture, independent texturing mode
tex.2dms.v4.s32.s32 {r0,r1,r2,r3}, [tex_ms, smpl_x,{sample,r6,r7,r8}];

∕∕ Example of multi-sample texture array, unified texturing mode
tex.a2dms.v4.s32.s32 {r0,r1,r2,r3}, [tex_ams,{idx,sample,r6,r7}];

∕∕ Example of texture returning .f16 data
tex.1d.v4.f16.f32 {h1,h2,h3,h4}, [tex_a,smpl_x,{f1}];

∕∕ Example of texture returning .f16x2 data
tex.1d.v2.f16x2.f32 {h1,h2}, [tex_a,smpl_x,{f1}];

∕∕ Example of 3d texture array access with tex.grad,unified texturing mode
tex.grad.3d.v4.f32.f32 {%f4,%f5,%f6,%f7},[tex_3d,{%f0,%f0,%f0,%f0}],

{fl0,fl1,fl2,fl3},{fl0,fl1,fl2,fl3};
(continues on next page)

9.7. Instructions 247

PTX ISA, Release 8.1

(continued from previous page)

∕∕ Example of cube texture array access with tex.grad,unified texturing mode
tex.grad.cube.v4.f32.f32{%f4,%f5,%f6,%f7},[tex_cube,{%f0,%f0,%f0,%f0}],

{fl0,fl1,fl2,fl3},{fl0,fl1,fl2,fl3};

∕∕ Example of 1d texture lookup with offset, unified texturing mode
tex.1d.v4.s32.f32 {r1,r2,r3,r4}, [tex_a, {f1}], {r5};

∕∕ Example of 2d texture array lookup with offset, unified texturing mode
tex.a2d.v4.s32.f32 {r1,r2,r3,r4}, [tex_a,{idx,f1,f2}], {f5,f6};

∕∕ Example of 2d mipmap texture lookup with offset, unified texturing mode
tex.level.2d.v4.s32.f32 {r1,r2,r3,r4}, [tex_a,{f1,f2}],

flvl, {r7, r8};

∕∕ Example of 2d depth texture lookup with compare, unified texturing mode
tex.1d.v4.f32.f32 {f1,f2,f3,f4}, [tex_a, {f1}], f0;

∕∕ Example of depth 2d texture array lookup with offset, compare
tex.a2d.v4.s32.f32 {f0,f1,f2,f3}, [tex_a,{idx,f4,f5}], {r5,r6}, f6;

∕∕ Example of destination predicate use
tex.3d.v4.s32.s32 {r1,r2,r3,r4}|p, [tex_a,{f1,f2,f3,f4}];

9.7.9.4 Texture Instructions: tld4

tld4

Perform a texture fetch of the 4-texel bilerp footprint.

Syntax

tld4.comp.2d.v4.dtype.f32 d[|p], [a, c] {, e} {, f};
tld4.comp.geom.v4.dtype.f32 d[|p], [a, b, c] {, e} {, f}; ∕∕ explicit sampler

.comp = { .r, .g, .b, .a };

.geom = { .2d, .a2d, .cube, .acube };

.dtype = { .u32, .s32, .f32 };

Description

Texture fetch of the 4-texel bilerp footprint using a texture coordinate vector. The instruction loads
the bilerp footprint from the texture named by operand a at coordinates given by operand c into vector
destination d. The texture component fetched for each texel sample is specified by .comp. The four
texel samples are placed into destination vector d in counter-clockwise order starting at lower left.

An optional texture sampler b may be specified. If no sampler is specified, the sampler behavior is a
property of the named texture.

The optional destination predicate p is set to True if data from texture at specified coordinates is resi-
dent in memory, False otherwise. When optional destination predicate p is set to False, data loaded
will be all zeros. Memory residency of Texture Data at specified coordinates is dependent on execution
environment setup using Driver API calls, prior to kernel launch. Refer to Driver API documentation for
more details including any system/implementation specific behavior.

An optional operand f may be specified for depth textures. Depth textures are special type of tex-
tures which hold data from the depth buffer. Depth buffer contains depth information of each pixel.

248 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Operand f is .f32 scalar value that specifies depth compare value for depth textures. Each element
fetched from texture is compared against value given in f operand. If comparison passes, result is 1.0;
otherwise result is 0.0. These per-element comparison results are used for the filtering.

A texture base address is assumed to be aligned to a 16 byte boundary, and the address given by
the coordinate vector must be naturally aligned to a multiple of the access size. If an address is not
properly aligned, the resulting behavior is undefined; i.e., the access may proceed by silently masking
off low-order address bits to achieve proper rounding, or the instruction may fault.

tld4.2d

For 2D textures, operand c specifies coordinates as a two-element, 32-bit floating-point vector.

An optional operand e may be specified. Operand e is a vector of type .v2.s32 that specifies coor-
dinate offset. Offset is applied to coordinates before doing texture fetch. Offset value is in the range
of -8 to +7.

tld4.a2d

Texture array selection, followed by tld4 texture fetch of 2d texture. For 2d texture arrays operand c
is a four element, 32-bit vector. The first element in operand c is interpreted as an unsigned integer
index (.u32) into the texture array, and the next two elements are interpreted as 32-bit floating point
coordinates of 2d texture. The fourth element is ignored.

An optional operand e may be specified. Operand e is a vector of type .v2.s32 that specifies coor-
dinate offset. Offset is applied to coordinates before doing texture fetch. Offset value is in the range
of -8 to +7.

tld4.cube

For cubemap textures, operand c specifies four-element vector which comprises three floating-point
coordinates (s, t, r) and a fourth padding argument which is ignored.

Cubemap textures are special two-dimensional layered textures consisting of six layers that represent
the faces of a cube. All layers in a cubemap are of the same size and are square (i.e., width equals
height).

Coordinates (s, t, r) are projected onto one of the six cube faces. The (s, t, r) coordinates can be thought
of as a direction vector emanating from the center of the cube. Of the three coordinates (s, t, r),
the coordinate of the largest magnitude (the major axis) selects the cube face. Then, the other two
coordinates (the minor axes) are divided by the absolute value of the major axis to produce a new (s,
t) coordinate pair to lookup into the selected cube face.

Offset vector operand e is not supported for cubemap textures.

tld4.acube

Cubemap array selection, followed by tld4 texture fetch of cubemap texture. The first element in
operand c is interpreted as an unsigned integer index (.u32) into the cubemap texture array, and
the remaining three elements are interpreted as floating-point cubemap coordinates (s, t, r), used to
lookup in the selected cubemap.

Offset vector operand e is not supported for cubemap texture arrays.

Indirect texture access

Beginning with PTX ISA version 3.1, indirect texture access is supported in unified mode for target
architecture sm_20 or higher. In indirect access, operand a is a .u64 register holding the address of a
.texref variable.

PTX ISA Notes

Introduced in PTX ISA version 2.2.

9.7. Instructions 249

PTX ISA, Release 8.1

Indirect texture access introduced in PTX ISA version 3.1.

tld4.{a2d,cube,acube} introduced in PTX ISA version 4.3.

Offset vector operand introduced in PTX ISA version 4.3.

Depth compare operand introduced in PTX ISA version 4.3.

Support for optional destination predicate introduced in PTX ISA version 7.1.

Target ISA Notes

tld4 requires sm_20 or higher.

Indirect texture access requires sm_20 or higher.

tld4.{a2d,cube,acube} requires sm_30 or higher.

Offset vector operand requires sm_30 or higher.

Depth compare operand requires sm_30 or higher.

Support for optional destination predicate requires sm_60 or higher.

Examples

∕∕Example of unified mode texturing
tld4.r.2d.v4.s32.f32 {r1,r2,r3,r4}, [tex_a,{f1,f2}];

∕∕ Example of independent mode texturing
tld4.r.2d.v4.u32.f32 {u1,u2,u3,u4}, [tex_a,smpl_x,{f1,f2}];

∕∕ Example of unified mode texturing using offset
tld4.r.2d.v4.s32.f32 {r1,r2,r3,r4}, [tex_a,{f1,f2}], {r5, r6};

∕∕ Example of unified mode texturing using compare
tld4.r.2d.v4.f32.f32 {f1,f2,f3,f4}, [tex_a,{f5,f6}], f7;

∕∕ Example of optional destination predicate
tld4.r.2d.v4.f32.f32 {f1,f2,f3,f4}|p, [tex_a,{f5,f6}], f7;

9.7.9.5 Texture Instructions: txq

txq

Query texture and sampler attributes.

Syntax

txq.tquery.b32 d, [a]; ∕∕ texture attributes
txq.level.tlquery.b32 d, [a], lod; ∕∕ texture attributes
txq.squery.b32 d, [a]; ∕∕ sampler attributes

.tquery = { .width, .height, .depth,
.channel_data_type, .channel_order,
.normalized_coords, .array_size,
.num_mipmap_levels, .num_samples};

.tlquery = { .width, .height, .depth };

.squery = { .force_unnormalized_coords, .filter_mode,
.addr_mode_0, addr_mode_1, addr_mode_2 };

250 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Description

Query an attribute of a texture or sampler. Operand a is either a .texref or .samplerref variable,
or a .u64 register.

Query Returns

.width

.height

.depth

value in elements

.channel_data_type Unsigned integer corresponding to source language’s channel
data type enumeration. If the source language combines chan-
nel data type and channel order into a single enumeration type,
that value is returned for both channel_data_type and chan-
nel_order queries.

.channel_order Unsigned integer corresponding to source language’s channel
order enumeration. If the source language combines channel
data type and channel order into a single enumeration type,
that value is returned for both channel_data_type and chan-
nel_order queries.

.normalized_coords 1 (True) or 0 (False).

.force_unnormalized_coords 1 (True) or 0 (False). Defined only for .samplerref vari-
ables in independent texture mode. Overrides the nor-
malized_coords field of a .texref variable used with a .
samplerref in a tex instruction.

.filter_mode Integer from enum { nearest, linear }

.addr_mode_0

.addr_mode_1

.addr_mode_2

Integer from enum { wrap, mirror, clamp_ogl,
clamp_to_edge, clamp_to_border }

.array_size For a texture array, number of textures in array, 0 otherwise.

.num_mipmap_levels For a mipmapped texture, number of levels of details (LOD), 0
otherwise.

.num_samples For a multi-sample texture, number of samples, 0 otherwise.

Texture attributes are queried by supplying a .texref argument to txq. In unified mode, sampler
attributes are also accessed via a .texref argument, and in independent mode sampler attributes
are accessed via a separate .samplerref argument.

txq.level

txq.level requires an additional 32bit integer argument, lod, which specifies LOD and queries re-
quested attribute for the specified LOD.

Indirect texture access

Beginning with PTX ISA version 3.1, indirect texture access is supported in unified mode for target
architecture sm_20 or higher. In indirect access, operand a is a .u64 register holding the address of a
.texref variable.

PTX ISA Notes

Introduced in PTX ISA version 1.5.

9.7. Instructions 251

PTX ISA, Release 8.1

Channel data type and channel order queries were added in PTX ISA version 2.1.

The .force_unnormalized_coords query was added in PTX ISA version 2.2.

Indirect texture access introduced in PTX ISA version 3.1.

.array_size, .num_mipmap_levels, .num_samples samples querieswere added in PTX ISA version
4.1.

txq.level introduced in PTX ISA version 4.3.

Target ISA Notes

Supported on all target architectures.

Indirect texture access requires sm_20 or higher.

Querying the number of mipmap levels requires sm_20 or higher.

Querying the number of samples requires sm_30 or higher.

txq.level requires sm_30 or higher.

Examples

txq.width.b32 %r1, [tex_A];
txq.filter_mode.b32 %r1, [tex_A]; ∕∕ unified mode
txq.addr_mode_0.b32 %r1, [smpl_B]; ∕∕ independent mode
txq.level.width.b32 %r1, [tex_A], %r_lod;

9.7.9.6 Texture Instructions: istypep

istypep

Query whether a register points to an opaque variable of a specified type.

Syntax

istypep.type p, a; ∕∕ result is .pred

.type = { .texref, .samplerref, .surfref };

Description

Write predicate register p with 1 if register a points to an opaque variable of the specified type, and
with 0 otherwise. Destination p has type .pred; the source address operand must be of type .u64.

PTX ISA Notes

Introduced in PTX ISA version 4.0.

Target ISA Notes

istypep requires sm_30 or higher.

Examples

istypep.texref istex, tptr;
istypep.samplerref issampler, sptr;
istypep.surfref issurface, surfptr;

252 Chapter 9. Instruction Set

PTX ISA, Release 8.1

9.7.10. Surface Instructions

This section describes PTX instructions for accessing surfaces. PTX supports the following operations
on surface descriptors:

▶ Static initialization of surface descriptors.

▶ Module-scope and per-entry scope definitions of surface descriptors.

▶ Ability to query fields within surface descriptors.

These instructions provide access to surface memory.

▶ suld

▶ sust

▶ sured

▶ suq

9.7.10.1 Surface Instructions: suld

suld

Load from surface memory.

Syntax

suld.b.geom{.cop}.vec.dtype.clamp d, [a, b]; ∕∕ unformatted

.geom = { .1d, .2d, .3d, .a1d, .a2d };

.cop = { .ca, .cg, .cs, .cv }; ∕∕ cache operation

.vec = { none, .v2, .v4 };

.dtype = { .b8 , .b16, .b32, .b64 };

.clamp = { .trap, .clamp, .zero };

Description

suld.b.{1d,2d,3d}

Load from surface memory using a surface coordinate vector. The instruction loads data from the
surface named by operand a at coordinates given by operand b into destination d. Operand a is a
.surfref variable or .u64 register. Operand b is a scalar or singleton tuple for 1d surfaces; is a two-
element vector for 2d surfaces; and is a four-element vector for 3d surfaces, where the fourth element
is ignored. Coordinate elements are of type .s32.

suld.b performs an unformatted load of binary data. The lowest dimension coordinate represents a
byte offset into the surface and is not scaled, and the size of the data transfer matches the size of
destination operand d.

suld.b.{a1d,a2d}

Surface layer selection, followed by a load from the selected surface. The instruction first selects a
surface layer from the surface array named by operand a using the index given by the first element of
the array coordinate vector b. The instruction then loads data from the selected surface at coordinates
given by the remaining elements of operand b into destination d. Operand a is a .surfref variable or
.u64 register. Operand b is a bit-size type vector or tuple containing an index into the array of surfaces
followed by coordinates within the selected surface, as follows:

9.7. Instructions 253

PTX ISA, Release 8.1

For 1d surface arrays, operand b has type .v2.b32. The first element is interpreted as an unsigned
integer index (.u32) into the surface array, and the second element is interpreted as a 1d surface
coordinate of type .s32.

For 2d surface arrays, operand b has type .v4.b32. The first element is interpreted as an unsigned
integer index (.u32) into the surface array, and the next two elements are interpreted as 2d surface
coordinates of type .s32. The fourth element is ignored.

A surface base address is assumed to be aligned to a 16 byte boundary, and the address given by
the coordinate vector must be naturally aligned to a multiple of the access size. If an address is not
properly aligned, the resulting behavior is undefined; i.e., the access may proceed by silently masking
off low-order address bits to achieve proper rounding, or the instruction may fault.

The .clamp field specifies how to handle out-of-bounds addresses:

.trap causes an execution trap on out-of-bounds addresses

.clamp loads data at the nearest surface location (sized appropriately)

.zero loads zero for out-of-bounds addresses

Indirect surface access

Beginning with PTX ISA version 3.1, indirect surface access is supported for target architecture sm_20
or higher. In indirect access, operand a is a .u64 register holding the address of a .surfref variable.

PTX ISA Notes

suld.b.trap introduced in PTX ISA version 1.5.

Additional clamp modifiers and cache operations introduced in PTX ISA version 2.0.

suld.b.3d andsuld.b.{a1d,a2d} introduced in PTX ISA version 3.0.

Indirect surface access introduced in PTX ISA version 3.1.

Target ISA Notes

suld.b supported on all target architectures.

sm_1x targets support only the .trap clamping modifier.

suld.3d andsuld.{a1d,a2d} require sm_20 or higher.

Indirect surface access requires sm_20 or higher.

Cache operations require sm_20 or higher.

Examples

suld.b.1d.v4.b32.trap {s1,s2,s3,s4}, [surf_B, {x}];
suld.b.3d.v2.b64.trap {r1,r2}, [surf_A, {x,y,z,w}];
suld.b.a1d.v2.b32 {r0,r1}, [surf_C, {idx,x}];
suld.b.a2d.b32 r0, [surf_D, {idx,x,y,z}]; ∕∕ z ignored

254 Chapter 9. Instruction Set

PTX ISA, Release 8.1

9.7.10.2 Surface Instructions: sust

sust

Store to surface memory.

Syntax

sust.b.{1d,2d,3d}{.cop}.vec.ctype.clamp [a, b], c; ∕∕ unformatted
sust.p.{1d,2d,3d}.vec.b32.clamp [a, b], c; ∕∕ formatted

sust.b.{a1d,a2d}{.cop}.vec.ctype.clamp [a, b], c; ∕∕ unformatted

.cop = { .wb, .cg, .cs, .wt }; ∕∕ cache operation

.vec = { none, .v2, .v4 };

.ctype = { .b8 , .b16, .b32, .b64 };

.clamp = { .trap, .clamp, .zero };

Description

sust.{1d,2d,3d}

Store to surface memory using a surface coordinate vector. The instruction stores data from operand
c to the surface named by operand a at coordinates given by operand b. Operand a is a .surfref
variable or .u64 register. Operand b is a scalar or singleton tuple for 1d surfaces; is a two-element
vector for 2d surfaces; and is a four-element vector for 3d surfaces, where the fourth element is
ignored. Coordinate elements are of type .s32.

sust.b performs an unformatted store of binary data. The lowest dimension coordinate represents a
byte offset into the surface and is not scaled. The size of the data transfer matches the size of source
operand c.

sust.p performs a formatted store of a vector of 32-bit data values to a surface sample. The source
vector elements are interpreted left-to-right as R, G, B, and A surface components. These elements are
written to the corresponding surface sample components. Source elements that do not occur in the
surface sample are ignored. Surface sample components that do not occur in the source vector will
be written with an unpredictable value. The lowest dimension coordinate represents a sample offset
rather than a byte offset.

The source data interpretation is based on the surface sample format as follows: If the surface format
contains UNORM, SNORM, or FLOAT data, then .f32 is assumed; if the surface format contains UINT
data, then .u32 is assumed; if the surface format contains SINT data, then .s32 is assumed. The
source data is then converted from this type to the surface sample format.

sust.b.{a1d,a2d}

Surface layer selection, followed by an unformatted store to the selected surface. The instruction first
selects a surface layer from the surface array named by operand a using the index given by the first
element of the array coordinate vector b. The instruction then stores the data in operand c to the
selected surface at coordinates given by the remaining elements of operand b. Operand a is a .surfref
variable or .u64 register. Operand b is a bit-size type vector or tuple containing an index into the array
of surfaces followed by coordinates within the selected surface, as follows:

▶ For 1d surface arrays, operand b has type .v2.b32. The first element is interpreted as an un-
signed integer index (.u32) into the surface array, and the second element is interpreted as a 1d
surface coordinate of type .s32.

▶ For 2d surface arrays, operand b has type .v4.b32. The first element is interpreted as an un-
signed integer index (.u32) into the surface array, and the next two elements are interpreted as
2d surface coordinates of type .s32. The fourth element is ignored.

9.7. Instructions 255

PTX ISA, Release 8.1

A surface base address is assumed to be aligned to a 16 byte boundary, and the address given by
the coordinate vector must be naturally aligned to a multiple of the access size. If an address is not
properly aligned, the resulting behavior is undefined; i.e., the access may proceed by silently masking
off low-order address bits to achieve proper rounding, or the instruction may fault.

The .clamp field specifies how to handle out-of-bounds addresses:

.trap causes an execution trap on out-of-bounds addresses

.clamp stores data at the nearest surface location (sized appropriately)

.zero drops stores to out-of-bounds addresses

Indirect surface access

Beginning with PTX ISA version 3.1, indirect surface access is supported for target architecture sm_20
or higher. In indirect access, operand a is a .u64 register holding the address of a .surfref variable.

PTX ISA Notes

sust.b.trap introduced in PTX ISA version 1.5. sust.p, additional clamp modifiers, and cache op-
erations introduced in PTX ISA version 2.0.

sust.b.3d and sust.b.{a1d,a2d} introduced in PTX ISA version 3.0.

Indirect surface access introduced in PTX ISA version 3.1.

Target ISA Notes

sust.b supported on all target architectures.

sm_1x targets support only the .trap clamping modifier.

sust.3d and sust.{a1d,a2d} require sm_20 or higher.

sust.p requires sm_20 or higher.

Indirect surface access requires sm_20 or higher.

Cache operations require sm_20 or higher.

Examples

sust.p.1d.v4.b32.trap [surf_B, {x}], {f1,f2,f3,f4};
sust.b.3d.v2.b64.trap [surf_A, {x,y,z,w}], {r1,r2};
sust.b.a1d.v2.b64 [surf_C, {idx,x}], {r1,r2};
sust.b.a2d.b32 [surf_D, {idx,x,y,z}], r0; ∕∕ z ignored

9.7.10.3 Surface Instructions: sured

sured

Reduce surface memory.

Syntax

sured.b.op.geom.ctype.clamp [a,b],c; ∕∕ byte addressing
sured.p.op.geom.ctype.clamp [a,b],c; ∕∕ sample addressing

.op = { .add, .min, .max, .and, .or };

.geom = { .1d, .2d, .3d };

.ctype = { .u32, .u64, .s32, .b32, .s64 }; ∕∕ for sured.b

.ctype = { .b32, .b64 }; ∕∕ for sured.p

.clamp = { .trap, .clamp, .zero };

256 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Description

Reduction to surface memory using a surface coordinate vector. The instruction performs a reduc-
tion operation with data from operand c to the surface named by operand a at coordinates given by
operand b. Operand a is a .surfref variable or .u64 register. Operand b is a scalar or singleton tuple
for 1d surfaces; is a two-element vector for 2d surfaces; and is a four-element vector for 3d surfaces,
where the fourth element is ignored. Coordinate elements are of type .s32.

sured.b performs an unformatted reduction on .u32, .s32, .b32, .u64, or .s64 data. The lowest
dimension coordinate represents a byte offset into the surface and is not scaled. Operationadd applies
to .u32, .u64, and .s32 types; min and max apply to .u32, .s32, .u64 and .s64 types; operations
and and or apply to .b32 type.

sured.p performs a reduction on sample-addressed data. The lowest dimension coordinate repre-
sents a sample offset rather than a byte offset. The instruction type .b64 is restricted to min and
max operations. For type .b32, the data is interpreted as .u32 or .s32 based on the surface sample
format as follows: if the surface format contains UINT data, then .u32 is assumed; if the surface for-
mat contains SINT data, then .s32 is assumed. For type .b64, if the surface format contains UINT
data, then .u64 is assumed; if the surface format contains SINT data, then .s64 is assumed.

A surface base address is assumed to be aligned to a 16 byte boundary, and the address given by
the coordinate vector must be naturally aligned to a multiple of the access size. If an address is not
properly aligned, the resulting behavior is undefined; i.e., the access may proceed by silently masking
off low-order address bits to achieve proper rounding, or the instruction may fault.

The .clamp field specifies how to handle out-of-bounds addresses:

.trap causes an execution trap on out-of-bounds addresses

.clamp stores data at the nearest surface location (sized appropriately)

.zero drops stores to out-of-bounds addresses

Indirect surface access

Beginning with PTX ISA version 3.1, indirect surface access is supported for target architecture sm_20
or higher. In indirect access, operand a is a .u64 register holding the address of a .surfref variable.

PTX ISA Notes

Introduced in PTX ISA version 2.0.

Indirect surface access introduced in PTX ISA version 3.1.

.u64/.s64/.b64 types with .min/.max operations introduced in PTX ISA version 8.1.

Target ISA Notes

sured requires sm_20 or higher.

Indirect surface access requires sm_20 or higher.

.u64/.s64/.b64 types with .min/.max operations requires sm_50 or higher.

Examples

sured.b.add.2d.u32.trap [surf_A, {x,y}], r1;
sured.p.min.1d.u32.trap [surf_B, {x}], r1;
sured.b.max.1d.u64.trap [surf_C, {x}], r1;
sured.p.min.1d.b64.trap [surf_D, {x}], r1;

9.7. Instructions 257

PTX ISA, Release 8.1

9.7.10.4 Surface Instructions: suq

suq

Query a surface attribute.

Syntax

suq.query.b32 d, [a];

.query = { .width, .height, .depth,
.channel_data_type, .channel_order,
.array_size, .memory_layout };

Description

Query an attribute of a surface. Operand a is a .surfref variable or a .u64 register.

Query Returns

.width

.height

.depth

value in elements

.channel_data_type Unsigned integer corresponding to source language’s channel
data type enumeration. If the source language combines chan-
nel data type and channel order into a single enumeration type,
that value is returned for both channel_data_type and chan-
nel_order queries.

.channel_order Unsigned integer corresponding to source language’s channel
order enumeration. If the source language combines channel
data type and channel order into a single enumeration type,
that value is returned for both channel_data_type and chan-
nel_order queries.

.array_size For a surface array, number of surfaces in array, 0 otherwise.

.memory_layout 1 for surface with linear memory layout; 0 otherwise

Indirect surface access

Beginning with PTX ISA version 3.1, indirect surface access is supported for target architecture sm_20
or higher. In indirect access, operand a is a .u64 register holding the address of a .surfref variable.

PTX ISA Notes

Introduced in PTX ISA version 1.5.

Channel data type and channel order queries added in PTX ISA version 2.1.

Indirect surface access introduced in PTX ISA version 3.1.

The .array_size query was added in PTX ISA version 4.1.

The .memory_layout query was added in PTX ISA version 4.2.

Target ISA Notes

Supported on all target architectures.

Indirect surface access requires sm_20 or higher.

258 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Examples

suq.width.b32 %r1, [surf_A];

9.7.11. Control Flow Instructions

The following PTX instructions and syntax are for controlling execution in a PTX program:

▶ {}

▶ @

▶ bra

▶ call

▶ ret

▶ exit

9.7.11.1 Control Flow Instructions: {}

{}

Instruction grouping.

Syntax

{ instructionList }

Description

The curly braces create a group of instructions, used primarily for defining a function body. The curly
braces also provide a mechanism for determining the scope of a variable: any variable declared within
a scope is not available outside the scope.

PTX ISA Notes

Introduced in PTX ISA version 1.0.

Target ISA Notes

Supported on all target architectures.

Examples

{ add.s32 a,b,c; mov.s32 d,a; }

9.7. Instructions 259

PTX ISA, Release 8.1

9.7.11.2 Control Flow Instructions: @

@

Predicated execution.

Syntax

@{!}p instruction;

Description

Execute an instruction or instruction block for threads that have the guard predicate True. Threads
with a False guard predicate do nothing.

Semantics

If {!}p then instruction

PTX ISA Notes

Introduced in PTX ISA version 1.0.

Target ISA Notes

Supported on all target architectures.

Examples

setp.eq.f32 p,y,0; ∕∕ is y zero?
@!p div.f32 ratio,x,y ∕∕ avoid division by zero

@q bra L23; ∕∕ conditional branch

9.7.11.3 Control Flow Instructions: bra

bra

Branch to a target and continue execution there.

Syntax

@p bra{.uni} tgt; ∕∕ tgt is a label
bra{.uni} tgt; ∕∕ unconditional branch

Description

Continue execution at the target. Conditional branches are specified by using a guard predicate. The
branch target must be a label.

bra.uni is guaranteed to be non-divergent, i.e. all active threads in awarp that are currently executing
this instruction have identical values for the guard predicate and branch target.

Semantics

if (p) {
pc = tgt;

}

PTX ISA Notes

Introduced in PTX ISA version 1.0.

260 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Unimplemented indirect branch introduced in PTX ISA version 2.1 has been removed from the spec.

Target ISA Notes

Supported on all target architectures.

Examples

bra.uni L_exit; ∕∕ uniform unconditional jump
@q bra L23; ∕∕ conditional branch

9.7.11.4 Control Flow Instructions: brx.idx

brx.idx

Branch to a label indexed from a list of potential branch targets.

Syntax

@p brx.idx{.uni} index, tlist;
brx.idx{.uni} index, tlist;

Description

Index into a list of possible destination labels, and continue execution from the chosen label. Condi-
tional branches are specified by using a guard predicate.

brx.idx.uni guarantees that the branch is non-divergent, i.e. all active threads in a warp that are
currently executing this instruction have identical values for the guard predicate and the index argu-
ment.

The index operand is a .u32 register. The tlist operand must be the label of a .branchtargets
directive. It is accessed as a zero-based sequence using index. Behaviour is undefined if the value of
index is greater than or equal to the length of tlist.

The .branchtargets directive must be defined in the local function scope before it is used. It must
refer to labels within the current function.

Semantics

if (p) {
if (index < length(tlist)) {
pc = tlist[index];

} else {
pc = undefined;

}
}

PTX ISA Notes

Introduced in PTX ISA version 6.0.

Target ISA Notes

Requires sm_30 or higher.

Examples

.function foo () {
.reg .u32 %r0;
...

(continues on next page)

9.7. Instructions 261

PTX ISA, Release 8.1

(continued from previous page)

L1:
...
L2:
...
L3:
...
ts: .branchtargets L1, L2, L3;
@p brx.idx %r0, ts;
...

}

9.7.11.5 Control Flow Instructions: call

call

Call a function, recording the return location.

Syntax

∕∕ direct call to named function, func is a symbol
call{.uni} (ret-param), func, (param-list);
call{.uni} func, (param-list);
call{.uni} func;

∕∕ indirect call via pointer, with full list of call targets
call{.uni} (ret-param), fptr, (param-list), flist;
call{.uni} fptr, (param-list), flist;
call{.uni} fptr, flist;

∕∕ indirect call via pointer, with no knowledge of call targets
call{.uni} (ret-param), fptr, (param-list), fproto;
call{.uni} fptr, (param-list), fproto;
call{.uni} fptr, fproto;

Description

The call instruction stores the address of the next instruction, so execution can resume at that point
after executing a ret instruction. A call is assumed to be divergent unless the .uni suffix is present.
The .uni suffix indicates that the call is guaranteed to be non-divergent, i.e. all active threads in a
warp that are currently executing this instruction have identical values for the guard predicate and
call target.

For direct calls, the called location func must be a symbolic function name; for indirect calls, the
called location fptr must be an address of a function held in a register. Input arguments and return
values are optional. Arguments may be registers, immediate constants, or variables in .param space.
Arguments are pass-by-value.

Indirect calls require an additional operand, flist or fproto, to communicate the list of potential
call targets or the common function prototype of all call targets, respectively. In the first case,
flist gives a complete list of potential call targets and the optimizing backend is free to optimize
the calling convention. In the second case, where the complete list of potential call targets may
not be known, the common function prototype is given and the call must obey the ABI’s calling
convention.

The flist operand is either the name of an array (call table) initialized to a list of function names; or
a label associated with a .calltargets directive, which declares a list of potential call targets. In

262 Chapter 9. Instruction Set

PTX ISA, Release 8.1

both cases the fptr register holds the address of a function listed in the call table or .calltargets
list, and the call operands are type-checked against the type signature of the functions indicated by
flist.

The fproto operand is the name of a label associated with a .callprototype directive. This operand
is used when a complete list of potential targets is not known. The call operands are type-checked
against the prototype, and code generation will follow the ABI calling convention. If a function that
doesn’t match the prototype is called, the behavior is undefined.

Call tables may be declared at module scope or local scope, in either the constant or global state
space. The .calltargets and .callprototype directives must be declared within a function body.
All functions must be declared prior to being referenced in a call table initializer or .calltargets
directive.

PTX ISA Notes

Direct call introduced in PTX ISA version 1.0. Indirect call introduced in PTX ISA version 2.1.

Target ISA Notes

Direct call supported on all target architectures. Indirect call requires sm_20 or higher.

Examples

∕∕ examples of direct call
call init; ∕∕ call function 'init'
call.uni g, (a); ∕∕ call function 'g' with parameter 'a'

@p call (d), h, (a, b); ∕∕ return value into register d

∕∕ call-via-pointer using jump table
.func (.reg .u32 rv) foo (.reg .u32 a, .reg .u32 b) ...
.func (.reg .u32 rv) bar (.reg .u32 a, .reg .u32 b) ...
.func (.reg .u32 rv) baz (.reg .u32 a, .reg .u32 b) ...

.global .u32 jmptbl[5] = { foo, bar, baz };
...

@p ld.global.u32 %r0, [jmptbl+4];
@p ld.global.u32 %r0, [jmptbl+8];

call (retval), %r0, (x, y), jmptbl;

∕∕ call-via-pointer using .calltargets directive
.func (.reg .u32 rv) foo (.reg .u32 a, .reg .u32 b) ...
.func (.reg .u32 rv) bar (.reg .u32 a, .reg .u32 b) ...
.func (.reg .u32 rv) baz (.reg .u32 a, .reg .u32 b) ...

...
@p mov.u32 %r0, foo;
@q mov.u32 %r0, baz;
Ftgt: .calltargets foo, bar, baz;

call (retval), %r0, (x, y), Ftgt;

∕∕ call-via-pointer using .callprototype directive
.func dispatch (.reg .u32 fptr, .reg .u32 idx)
{
...
Fproto: .callprototype _ (.param .u32 _, .param .u32 _);

call %fptr, (x, y), Fproto;
...

9.7. Instructions 263

PTX ISA, Release 8.1

9.7.11.6 Control Flow Instructions: ret

ret

Return from function to instruction after call.

Syntax

ret{.uni};

Description

Return execution to caller’s environment. A divergent return suspends threads until all threads are
ready to return to the caller. This allows multiple divergent ret instructions.

A ret is assumed to be divergent unless the .uni suffix is present, indicating that the return is guar-
anteed to be non-divergent.

Any values returned from a function should be moved into the return parameter variables prior to
executing the ret instruction.

A return instruction executed in a top-level entry routine will terminate thread execution.

PTX ISA Notes

Introduced in PTX ISA version 1.0.

Target ISA Notes

Supported on all target architectures.

Examples

ret;
@p ret;

9.7.11.7 Control Flow Instructions: exit

exit

Terminate a thread.

Syntax

exit;

Description

Ends execution of a thread.

As threads exit, barriers waiting on all threads are checked to see if the exiting threads are the only
threads that have not yet made it to a barrier{.cta} for all threads in the CTA. If the exiting threads are
holding up the barrier, the barrier is released.

PTX ISA Notes

Introduced in PTX ISA version 1.0.

Target ISA Notes

Supported on all target architectures.

Examples

264 Chapter 9. Instruction Set

PTX ISA, Release 8.1

exit;
@p exit;

9.7.12. Parallel Synchronization and Communication
Instructions

These instructions are:

▶ bar{.cta}, barrier{.cta}

▶ barrier.cluster

▶ bar.warp.sync

▶ membar

▶ atom

▶ red

▶ red.async

▶ vote

▶ match.sync

▶ activemask

▶ redux.sync

▶ griddepcontrol

▶ elect.sync

▶ mbarrier.init

▶ mbarrier.inval

▶ mbarrier.arrive

▶ mbarrier.arrive_drop

▶ mbarrier.test_wait

▶ mbarrier.try_wait

▶ mbarrier.pending_count

▶ cp.async.mbarrier.arrive

9.7. Instructions 265

PTX ISA, Release 8.1

9.7.12.1 Parallel Synchronization and Communication Instructions: bar, barrier

bar{.cta}, barrier{.cta}

Barrier synchronization.

Syntax

barrier{.cta}.sync{.aligned} a{, b};
barrier{.cta}.arrive{.aligned} a, b;

barrier{.cta}.red.popc{.aligned}.u32 d, a{, b}, {!}c;
barrier{.cta}.red.op{.aligned}.pred p, a{, b}, {!}c;

bar{.cta}.sync a{, b};
bar{.cta}.arrive a, b;

bar{.cta}.red.popc.u32 d, a{, b}, {!}c;
bar{.cta}.red.op.pred p, a{, b}, {!}c;

.op = { .and, .or };

Description

Performs barrier synchronization and communication within a CTA. Each CTA instance has sixteen
barriers numbered 0..15.

barrier{.cta} instructions can be used by the threads within the CTA for synchronization and com-
munication.

Operands a, b, and d have type .u32; operands p and c are predicates. Source operand a specifies
a logical barrier resource as an immediate constant or register with value 0 through 15. Operand b
specifies the number of threads participating in the barrier. If no thread count is specified, all threads
in the CTA participate in the barrier. When specifying a thread count, the value must be a multiple of
the warp size. Note that a non-zero thread count is required for barrier{.cta}.arrive.

Depending on operand b, either specified number of threads (in multiple of warp size) or all threads
in the CTA participate in barrier{.cta} instruction. The barrier{.cta} instructions signal the
arrival of the executing threads at the named barrier.

barrier{.cta} instruction causes executing thread to wait for all non-exited threads from its warp
and marks warps’ arrival at barrier. In addition to signaling its arrival at the barrier, the barrier{.
cta}.red and barrier{.cta}.sync instructions causes executing thread to wait for non-exited
threads of all other warps participating in the barrier to arrive. barrier{.cta}.arrive does not
cause executing thread to wait for threads of other participating warps.

When a barrier completes, the waiting threads are restarted without delay, and the barrier is reinitial-
ized so that it can be immediately reused.

The barrier{.cta}.sync or barrier{.cta}.red or barrier{.cta}.arrive instruction guaran-
tees that when the barrier completes, prior memory accesses requested by this thread are performed
relative to all threads participating in the barrier. The barrier{.cta}.sync and barrier{.cta}.
red instruction further guarantees that no newmemory access is requested by this thread before the
barrier completes.

A memory read (e.g., by ld or atom) has been performed when the value read has been transmitted
from memory and cannot be modified by another thread participating in the barrier. A memory write
(e.g., by st, red or atom) has been performed when the value written has become visible to other
threads participating in the barrier, that is, when the previous value can no longer be read.

266 Chapter 9. Instruction Set

PTX ISA, Release 8.1

barrier{.cta}.red performs a reduction operation across threads. The c predicate (or its com-
plement) from all threads in the CTA are combined using the specified reduction operator. Once the
barrier count is reached, the final value is written to the destination register in all threads waiting at
the barrier.

The reduction operations for barrier{.cta}.red are population-count (.popc), all-threads-True (.
and), and any-thread-True (.or). The result of .popc is the number of threads with a True predicate,
while .and and .or indicate if all the threads had a True predicate or if any of the threads had a True
predicate.

Instruction barrier{.cta} has optional .aligned modifier. When specified, it indicates that all
threads in CTA will execute the same barrier{.cta} instruction. In conditionally executed code, an
aligned barrier{.cta} instruction should only be used if it is known that all threads in CTA evaluate
the condition identically, otherwise behavior is undefined.

Different warps may execute different forms of the barrier{.cta} instruction using the same bar-
rier name and thread count. One examplemixes barrier{.cta}.sync and barrier{.cta}.arrive
to implement producer/consumer models. The producer threads execute barrier{.cta}.arrive
to announce their arrival at the barrier and continue execution without delay to produce the next
value, while the consumer threads execute the barrier{.cta}.sync to wait for a resource to be
produced. The roles are then reversed, using a different barrier, where the producer threads execute
a barrier{.cta}.sync to wait for a resource to consumed, while the consumer threads announce
that the resource has been consumed with barrier{.cta}.arrive. Care must be taken to keep
a warp from executing more barrier{.cta} instructions than intended (barrier{.cta}.arrive
followed by any other barrier{.cta} instruction to the same barrier) prior to the reset of the bar-
rier. barrier{.cta}.red should not be intermixed with barrier{.cta}.sync or barrier{.cta}.
arrive using the same active barrier. Execution in this case is unpredictable.

The optional .cta qualifier simply indicates CTA-level applicability of the barrier and it doesn’t change
the semantics of the instruction.

bar{.cta}.sync is equivalent to barrier{.cta}.sync.aligned. bar{.cta}.arrive is equiva-
lent to barrier{.cta}.arrive.aligned. bar{.cta}.red is equivalent to barrier{.cta}.red.
aligned.

Note: For .target sm_6x or below,

1. barrier{.cta} instruction without .aligned modifier is equivalent to .aligned variant and
has the same restrictions as of .aligned variant.

2. All threads in warp (except for those have exited) must execute barrier{.cta} instruction in
convergence.

PTX ISA Notes

bar.sync without a thread count introduced in PTX ISA version 1.0.

Register operands, thread count, and bar.{arrive,red} introduced in PTX ISA version 2.0.

barrier instruction introduced in PTX ISA version 6.0.

.cta qualifier introduced in PTX ISA version 7.8.

Target ISA Notes

Register operands, thread count, and bar{.cta}.{arrive,red} require sm_20 or higher.

Only bar{.cta}.sync with an immediate barrier number is supported for sm_1x targets.

barrier{.cta} instruction requires sm_30 or higher.

9.7. Instructions 267

PTX ISA, Release 8.1

Examples

∕∕ Use bar.sync to arrive at a pre-computed barrier number and
∕∕ wait for all threads in CTA to also arrive:

st.shared [r0],r1; ∕∕ write my result to shared memory
bar.cta.sync 1; ∕∕ arrive, wait for others to arrive
ld.shared r2,[r3]; ∕∕ use shared results from other threads

∕∕ Use bar.sync to arrive at a pre-computed barrier number and
∕∕ wait for fixed number of cooperating threads to arrive:

#define CNT1 (8*12) ∕∕ Number of cooperating threads

st.shared [r0],r1; ∕∕ write my result to shared memory
bar.cta.sync 1, CNT1; ∕∕ arrive, wait for others to arrive
ld.shared r2,[r3]; ∕∕ use shared results from other threads

∕∕ Use bar.red.and to compare results across the entire CTA:
setp.eq.u32 p,r1,r2; ∕∕ p is True if r1==r2
bar.cta.red.and.pred r3,1,p; ∕∕ r3=AND(p) forall threads in CTA

∕∕ Use bar.red.popc to compute the size of a group of threads
∕∕ that have a specific condition True:

setp.eq.u32 p,r1,r2; ∕∕ p is True if r1==r2
bar.cta.red.popc.u32 r3,1,p; ∕∕ r3=SUM(p) forall threads in CTA

∕* Producer∕consumer model. The producer deposits a value in
* shared memory, signals that it is complete but does not wait
* using bar.arrive, and begins fetching more data from memory.
* Once the data returns from memory, the producer must wait
* until the consumer signals that it has read the value from
* the shared memory location. In the meantime, a consumer
* thread waits until the data is stored by the producer, reads
* it, and then signals that it is done (without waiting).
*∕

∕∕ Producer code places produced value in shared memory.
st.shared [r0],r1;
bar.arrive 0,64;
ld.global r1,[r2];
bar.sync 1,64;
...

∕∕ Consumer code, reads value from shared memory
bar.sync 0,64;
ld.shared r1,[r0];
bar.arrive 1,64;
...

∕∕ Examples of barrier.cta.sync
st.shared [r0],r1;
barrier.cta.sync 0;
ld.shared r1, [r0];

268 Chapter 9. Instruction Set

PTX ISA, Release 8.1

9.7.12.2 Parallel Synchronization and Communication Instructions: bar.warp.sync

bar.warp.sync

Barrier synchronization for threads in a warp.

Syntax

bar.warp.sync membermask;

Description

bar.warp.sync will cause executing thread to wait until all threads corresponding to membermask
have executed a bar.warp.sync with the same membermask value before resuming execution.

Operand membermask specifies a 32-bit integer which is a mask indicating threads participating in
barrier where the bit position corresponds to thread’s laneid.

The behavior of bar.warp.sync is undefined if the executing thread is not in the membermask.

bar.warp.sync also guarantee memory ordering among threads participating in barrier. Thus,
threads within warp that wish to communicate via memory can store to memory, execute bar.warp.
sync, and then safely read values stored by other threads in warp.

Note: For .target sm_6x or below, all threads in membermaskmust execute the same bar.warp.sync
instruction in convergence, and only threads belonging to some membermask can be active when the
bar.warp.sync instruction is executed. Otherwise, the behavior is undefined.

PTX ISA Notes

Introduced in PTX ISA version 6.0.

Target ISA Notes

Requires sm_30 or higher.

Examples

st.shared.u32 [r0],r1; ∕∕ write my result to shared memory
bar.warp.sync 0xffffffff; ∕∕ arrive, wait for others to arrive
ld.shared.u32 r2,[r3]; ∕∕ read results written by other threads

9.7.12.3 Parallel Synchronization and Communication Instructions: barrier.cluster

barrier.cluster

Barrier synchronization within a cluster.

Syntax

barrier.cluster.arrive{.sem}{.aligned};
barrier.cluster.wait{.acquire}{.aligned};

.sem = {.release, .relaxed}

Description

Performs barrier synchronization and communication within a cluster.

9.7. Instructions 269

PTX ISA, Release 8.1

barrier.cluster instructions can be used by the threads within the cluster for synchronization and
communication.

barrier.cluster.arrive instruction marks warps’ arrival at barrier without causing executing
thread to wait for threads of other participating warps.

barrier.cluster.wait instruction causes the executing thread to wait for all non-exited threads
of the cluster to perform barrier.cluster.arrive.

In addition, barrier.cluster instructions cause the executing thread to wait for all non-exited
threads from its warp.

When all non-exited threads that executed barrier.cluster.arrive have executed barrier.
cluster.wait, the barrier completes and is reinitialized so it can be reused immediately. Each thread
must arrive at the barrier only once before the barrier completes.

The barrier.cluster.wait instruction guarantees that when it completes the execution, mem-
ory accesses (except asynchronous operations) requested, in program order, prior to the preceding
barrier.cluster.arrive by all threads in the cluster are complete and visible to the executing
thread.

There is nomemory ordering and visibility guarantee formemory accesses requested by the executing
thread, in program order, after barrier.cluster.arrive and prior to barrier.cluster.wait.

The optional .relaxed qualifier on barrier.cluster.arrive specifies that there are no memory
ordering and visibility guarantees provided for the memory accesses performed prior to barrier.
cluster.arrive.

The optional .sem and .acquire qualifiers on instructions barrier.cluster.arrive and
barrier.cluster.wait specify the memory synchronization as described in the Memory Consis-
tency Model. If the optional .sem qualifier is absent for barrier.cluster.arrive, .release is
assumed by default. If the optional .acquire qualifier is absent for barrier.cluster.wait, .
acquire is assumed by default.

The optional .aligned qualifier indicates that all threads in the warp must execute the same
barrier.cluster instruction. In conditionally executed code, an aligned barrier.cluster instruc-
tion should only be used if it is known that all threads in the warp evaluate the condition identically,
otherwise behavior is undefined.

PTX ISA Notes

Introduced in PTX ISA version 7.8.

Support for .acquire, .relaxed, .release qualifiers introduced in PTX ISA version 8.0.

Target ISA Notes

Requires sm_90 or higher.

Examples

∕∕ use of arrive followed by wait
ld.shared::cluster.u32 r0, [addr];
barrier.cluster.arrive.aligned;
...
barrier.cluster.wait.aligned;
st.shared::cluster.u32 [addr], r1;

∕∕ use memory fence prior to arrive for relaxed barrier
@cta0 ld.shared::cluster.u32 r0, [addr];
fence.cluster.acq_rel;
barrier.cluster.arrive.relaxed.aligned;

(continues on next page)

270 Chapter 9. Instruction Set

PTX ISA, Release 8.1

(continued from previous page)

...
barrier.cluster.wait.aligned;
@cta1 st.shared::cluster.u32 [addr], r1;

9.7.12.4 Parallel Synchronization and Communication Instructions: membar/fence

membar/fence

Enforce an ordering of memory operations.

Syntax

fence{.sem}.scope;
fence.op_restrict.release.cluster;
fence.proxy.proxykind;
membar.level;
membar.proxy.proxykind;

.sem = { .sc, .acq_rel };

.scope = { .cta, .cluster, .gpu, .sys };

.level = { .cta, .gl, .sys };

.proxykind = { .alias, .async, async.global, .async.shared::{cta, cluster} };

.op_restrict = { .mbarrier_init };

Description

The membar instruction guarantees that priormemory accesses requested by this thread (ld, st, atom
andred instructions) are performed at the specifiedlevel, before latermemory operations requested
by this thread following the membar instruction. The level qualifier specifies the set of threads that
may observe the ordering effect of this operation.

A memory read (e.g., by ld or atom) has been performed when the value read has been transmitted
from memory and cannot be modified by another thread at the indicated level. A memory write (e.g.,
by st, red or atom) has been performed when the value written has become visible to other threads
at the specified level, that is, when the previous value can no longer be read.

The fence instruction establishes an ordering between memory accesses requested by this thread
(ld, st, atom and red instructions) as described in theMemory ConsistencyModel. The scope qualifier
specifies the set of threads that may observe the ordering effect of this operation.

fence.acq_rel is a light-weight fence that is sufficient for memory synchronization in most pro-
grams. Instances of fence.acq_rel synchronize when combined with additional memory operations
as described in acquire and release patterns in theMemory ConsistencyModel. If the optional .sem
qualifier is absent, .acq_rel is assumed by default.

fence.sc is a slower fence that can restore sequential consistency when used in sufficient places, at
the cost of performance. Instances of fence.sc with sufficient scope always synchronize by forming
a total order per scope, determined at runtime. This total order can be constrained further by other
synchronization in the program.

Qualifier .op_restrict restricts the class of prior memory operations for which the fence instruc-
tion provides the memory ordering guarantees. When .op_restrict is .mbarrier_init, the fence
only applies to the prior mbarrier.init operations executed by the same thread onmbarrier objects
in .shared::cta state space.

Qualifier .release indicates memory synchronization as described in theMemory ConsistencyModel.

9.7. Instructions 271

PTX ISA, Release 8.1

On sm_70 and higher membar is a synonym for fence.sc1, and the membar levels cta, gl and sys are
synonymous with the fence scopes cta, gpu and sys respectively.

membar.proxy and fence.proxy instructions establish an ordering between memory accesses that
may happen through different proxies. The type of proxy is indicated using the .proxykind quali-
fier. Value .alias of the .proxykind qualifier refers to memory accesses performed using virtually
aliased addresses to the same memory location. Value .async of the .proxykind qualifier specifies
that the memory ordering is established between the async proxy and the generic proxy. The memory
ordering is limited only to the state space specified. If no state space is specified, then the memory
ordering applies on all state spaces.

On sm_70 and higher, membar.proxy is a synonym for fence.proxy.
1 The semantics of fence.sc introduced with sm_70 is a superset of the semantics of membar and
the two are compatible; when executing on sm_70 or later architectures, membar acquires the full
semantics of fence.sc.

PTX ISA Notes

membar.{cta,gl} introduced in PTX ISA version 1.4.

membar.sys introduced in PTX ISA version 2.0.

fence introduced in PTX ISA version 6.0.

membar.proxy and fence.proxy introduced in PTX ISA version 7.5.

.cluster scope qualifier introduced in PTX ISA version 7.8.

.op_restrict qualifier introduced in PTX ISA version 8.0.

fence.proxy.async is introduced in PTX ISA version 8.0.

Target ISA Notes

membar.{cta,gl} supported on all target architectures.

membar.sys requires sm_20 or higher.

fence requires sm_70 or higher.

membar.proxy requires sm_60 or higher.

fence.proxy requires sm_70 or higher.

.cluster scope qualifier requires sm_90 or higher.

.op_restrict qualifier requires sm_90 or higher.

fence.proxy.async requires sm_90 or higher.

Examples

membar.gl;
membar.cta;
membar.sys;
fence.sc;
fence.sc.cluster;
fence.proxy.alias;
membar.proxy.alias;
fence.mbarrier_init.release.cluster;
fence.proxy.async;
fence.proxy.async.shared::cta;
fence.proxy.async.shared::cluster;
fence.proxy.async.global;

272 Chapter 9. Instruction Set

PTX ISA, Release 8.1

9.7.12.5 Parallel Synchronization and Communication Instructions: atom

atom

Atomic reduction operations for thread-to-thread communication.

Syntax

Atomic operation with scalar type:

atom{.sem}{.scope}{.space}.op{.level::cache_hint}.type d, [a], b{, cache-policy};
atom{.sem}{.scope}{.space}.op.type d, [a], b, c;

atom{.sem}{.scope}{.space}.cas.b16 d, [a], b, c;

atom{.sem}{.scope}{.space}.add.noftz{.level::cache_hint}.f16 d, [a], b{, cache-
↪→policy};
atom{.sem}{.scope}{.space}.add.noftz{.level::cache_hint}.f16x2 d, [a], b{, cache-
↪→policy};

atom{.sem}{.scope}{.space}.add.noftz{.level::cache_hint}.bf16 d, [a], b{, cache-
↪→policy};
atom{.sem}{.scope}{.space}.add.noftz{.level::cache_hint}.bf16x2 d, [a], b{, cache-
↪→policy};

.space = { .global, .shared{::cta, ::cluster} };

.sem = { .relaxed, .acquire, .release, .acq_rel };

.scope = { .cta, .cluster, .gpu, .sys };

.op = { .and, .or, .xor,
.cas, .exch,
.add, .inc, .dec,
.min, .max };

.level::cache_hint = { .L2::cache_hint };

.type = { .b32, .b64, .u32, .u64, .s32, .s64, .f32, .f64 };

Atomic operation with vector type:

atom{.sem}{.scope}{.global}.add{.level::cache_hint}.vec_32_bit.f32 d,
↪→ [a], b{, cache-policy};
atom{.sem}{.scope}{.global}.op.noftz{.level::cache_hint}.vec_16_bit.half_word_type d,
↪→ [a], b{, cache-policy};
atom{.sem}{.scope}{.global}.op.noftz{.level::cache_hint}.vec_32_bit.packed_type d,
↪→ [a], b{, cache-policy};

.sem = { .relaxed, .acquire, .release, .acq_rel };

.scope = { .cta, .gpu, .sys };

.op = { .add, .min, .max };

.half_word_type = { .f16, .bf16 };

.packed_type = { .f16x2, .bf16x2 };

.vec_16_bit = { .v2, .v4, .v8 }

.vec_32_bit = { .v2, .v4 };

.level::cache_hint = { .L2::cache_hint }

Description

Atomically loads the original value at location a into destination register d, performs a reduction op-
eration with operand b and the value in location a, and stores the result of the specified operation at
location a, overwriting the original value. Operand a specifies a location in the specified state space.
If no state space is given, perform the memory accesses using Generic Addressing. atom with scalar

9.7. Instructions 273

PTX ISA, Release 8.1

type may be used only with .global and .shared spaces and with generic addressing, where the
address points to .global or .shared space. atom with vector type may be used only with .global
space and with generic addressing where the address points to .global space.

For atom with vector type, operands d and b are brace-enclosed vector expressions, size of which is
equal to the size of vector qualifier.

If no sub-qualifier is specified with .shared state space, then ::cta is assumed by default.

The optional .sem qualifier specifies a memory synchronizing effect as described in theMemory Con-
sistency Model. If the .sem qualifier is absent, .relaxed is assumed by default.

The optional .scope qualifier specifies the set of threads that can directly observe the memory syn-
chronizing effect of this operation, as described in the Memory Consistency Model. If the .scope
qualifier is absent, .gpu scope is assumed by default.

For atom with vector type, the supported combinations of vector qualifier and types, and atomic op-
erations supported on these combinations are depicted in the following table:

Vector qualifier Types

.f16/ bf16 .f16x2/ bf16x2 .f32

.v2 .add, .min, .max .add, .min, .max .add

.v4 .add, .min, .max .add, .min, .max .add

.v8 .add, .min, .max Not supported Not Supported

Two atomic operations {atom or red} are performed atomically with respect to each other only if each
operation specifies a scope that includes the other. When this condition is not met, each operation
observes the other operation being performed as if it were split into a read followed by a dependent
write.

atom instruction on packed type or vector type, accesses adjacent scalar elements in memory. In such
cases, the atomicity is guaranteed separately for each of the individual scalar elements; the entireatom
is not guaranteed to be atomic as a single access.

For sm_6x and earlier architectures, atom operations on .shared state space do not guarantee atom-
icity with respect to normal store instructions to the same address. It is the programmer’s respon-
sibility to guarantee correctness of programs that use shared memory atomic instructions, e.g., by
inserting barriers between normal stores and atomic operations to a common address, or by using
atom.exch to store to locations accessed by other atomic operations.

Supported addressing modes for operand a and alignment requirements are described in Addresses
as Operands

The bit-size operations are .and, .or, .xor, .cas (compare-and-swap), and .exch (exchange).

The integer operations are .add, .inc, .dec, .min, .max. The .inc and .dec operations return a
result in the range [0..b].

The floating-point operation.add operation rounds to nearest even. Current implementation ofatom.
add.f32 on global memory flushes subnormal inputs and results to sign-preserving zero; whereas
atom.add.f32 on shared memory supports subnormal inputs and results and doesn’t flush them to
zero.

atom.add.f16, atom.add.f16x2, atom.add.bf16 and atom.add.bf16x2 operation requires the
.noftz qualifier; it preserves subnormal inputs and results, and does not flush them to zero.

274 Chapter 9. Instruction Set

PTX ISA, Release 8.1

When the optional argument cache-policy is specified, the qualifier .level::cache_hint is re-
quired. The 64-bit operand cache-policy specifies the cache eviction policy thatmay be used during
the memory access.

The qualifier .level::cache_hint is only supported for .global state space and for generic ad-
dressing where the address points to the .global state space.

cache-policy is a hint to the cache subsystem and may not always be respected. It is treated as a
performance hint only, and does not change the memory consistency behavior of the program.

Semantics

atomic {
d = *a;
*a = (operation == cas) ? operation(*a, b, c)

: operation(*a, b);
}
where

inc(r, s) = (r >= s) ? 0 : r+1;
dec(r, s) = (r==0 || r > s) ? s : r-1;
exch(r, s) = s;
cas(r,s,t) = (r == s) ? t : r;

Notes

Simple reductions may be specified by using the bit bucket destination operand _.

PTX ISA Notes

32-bit atom.global introduced in PTX ISA version 1.1.

atom.shared and 64-bitatom.global.{add,cas,exch} introduced in PTX ISA 1.2.

atom.add.f32 and 64-bitatom.shared.{add,cas,exch} introduced in PTX ISA 2.0.

64-bit atom.{and,or,xor,min,max} introduced in PTX ISA 3.1.

atom.add.f64 introduced in PTX ISA 5.0.

.scope qualifier introduced in PTX ISA 5.0.

.sem qualifier introduced in PTX ISA version 6.0.

atom.add.noftz.f16x2 introduced in PTX ISA 6.2.

atom.add.noftz.f16 and atom.cas.b16 introduced in PTX ISA 6.3.

Per-element atomicity of atom.f16x2 clarified in PTX ISA version 6.3, with retrospective effect from
PTX ISA version 6.2.

Support for .level::cache_hint qualifier introduced in PTX ISA version 7.4.

atom.add.noftz.bf16 and atom.add.noftz.bf16x2 introduced in PTX ISA 7.8.

Support for .cluster scope qualifier introduced in PTX ISA version 7.8.

Support for ::cta and ::cluster sub-qualifiers introduced in PTX ISA version 7.8.

Support for vector types introduced in PTX ISA version 8.1.

Target ISA Notes

atom.global requires sm_11 or higher.

atom.shared requires sm_12 or higher.

64-bit atom.global.{add,cas,exch} require sm_12 or higher.

9.7. Instructions 275

PTX ISA, Release 8.1

64-bit atom.shared.{add,cas,exch} require sm_20 or higher.

64-bit atom.{and,or,xor,min,max} require sm_32 or higher.

atom.add.f32 requires sm_20 or higher.

atom.add.f64 requires sm_60 or higher.

.scope qualifier requires sm_60 or higher.

.sem qualifier requires sm_70 or higher.

Use of generic addressing requires sm_20 or higher.

atom.add.noftz.f16x2 requires sm_60 or higher.

atom.add.noftz.f16 and atom.cas.b16 requires sm_70 or higher.

Support for .level::cache_hint qualifier requires sm_80 or higher.

atom.add.noftz.bf16 and atom.add.noftz.bf16x2 require sm_90 or higher.

Support for .cluster scope qualifier requires sm_90 or higher.

Sub-qualifier ::cta requires sm_30 or higher.

Sub-qualifier ::cluster requires sm_90 or higher.

Support for vector types requires sm_90 or higher.

Examples

atom.global.add.s32 d,[a],1;
atom.shared::cta.max.u32 d,[x+4],0;
@p atom.global.cas.b32 d,[p],my_val,my_new_val;
atom.global.sys.add.u32 d, [a], 1;
atom.global.acquire.sys.inc.u32 ans, [gbl], %r0;
atom.add.noftz.f16x2 d, [a], b;
atom.add.noftz.f16 hd, [ha], hb;
atom.global.cas.b16 hd, [ha], hb, hc;
atom.add.noftz.bf16 hd, [a], hb;
atom.add.noftz.bf16x2 bd, [b], bb;
atom.add.shared::cluster.noftz.f16 hd, [ha], hb;

atom.global.cluster.relaxed.add.u32 d, [a], 1;

createpolicy.fractional.L2::evict_last.b64 cache-policy, 0.25;
atom.global.add.L2::cache_hint.s32 d, [a], 1, cache-policy;

atom.global.v8.f16.max.noftz {%hd0, %hd1, %hd2, %hd3, %hd4, %hd5, %hd6, %hd7}, [gbl],
{%h0, %h1, %h2, %h3, %h4, %h5, %h6, %h7}

↪→;
atom.global.v8.bf16.add.noftz {%hd0, %hd1, %hd2, %hd3, %hd4, %hd5, %hd6, %hd7},�
↪→[gbl],

{%h0, %h1, %h2, %h3, %h4, %h5, %h6, %h7}
↪→;
atom.global.v2.f16.add.noftz {%hd0, %hd1}, [gbl], {%h0, %h1};
atom.global.v2.bf16.add.noftz {%hd0, %hd1}, [gbl], {%h0, %h1};
atom.global.v4.b16x2.min.noftz {%hd0, %hd1, %hd2, %hd3}, [gbl], {%h0, %h1, %h2, %h3};
atom.global.v4.f32.add {%f0, %f1, %f2, %f3}, [gbl], {%f0, %f1, %f2, %f3};
atom.global.v2.f16x2.min.noftz {%bd0, %bd1}, [g], {%b0, %b1};
atom.global.v2.bf16x2.max.noftz {%bd0, %bd1}, [g], {%b0, %b1};
atom.global.v2.f32.add {%f0, %f1}, [g], {%f0, %f1};

276 Chapter 9. Instruction Set

PTX ISA, Release 8.1

9.7.12.6 Parallel Synchronization and Communication Instructions: red

red

Reduction operations on global and shared memory.

Syntax

Reduction operation with scalar type:

red{.sem}{.scope}{.space}.op{.level::cache_hint}.type [a], b{, cache-policy};

red{.sem}{.scope}{.space}.add.noftz{.level::cache_hint}.f16 [a], b{, cache-policy};

red{.sem}{.scope}{.space}.add.noftz{.level::cache_hint}.f16x2 [a], b{, cache-policy};

red{.sem}{.scope}{.space}.add.noftz{.level::cache_hint}.bf16
[a], b {, cache-policy};

red{.sem}{.scope}{.space}.add.noftz{.level::cache_hint}.bf16x2
[a], b {, cache-policy};

.space = { .global, .shared{::cta, ::cluster} };

.sem = {.relaxed, .release};

.scope = {.cta, .cluster, .gpu, .sys};

.op = { .and, .or, .xor,
.add, .inc, .dec,
.min, .max };

.level::cache_hint = { .L2::cache_hint };

.type = { .b32, .b64, .u32, .u64, .s32, .s64, .f32, .f64 };

Reduction operation with vector type:

red{.sem}{.scope}{.global}.add{.level::cache_hint}.vec_32_bit.f32 [a], b{, cache-
↪→policy};
red{.sem}{.scope}{.global}.op.noftz{.level::cache_hint}. vec_16_bit.half_word_type�
↪→[a], b{, cache-policy};
red{.sem}{.scope}{.global}.op.noftz{.level::cache_hint}.vec_32_bit.packed_type [a], b
↪→{, cache-policy};

.sem = { .relaxed, .release };

.scope = { .cta, .gpu, .sys };

.op = { .add, .min, .max };

.half_word_type = { .f16, .bf16 };

.packed_type = { .f16x2,.bf16x2 };

.vec_16_bit = { .v2, .v4, .v8 }

.vec_32_bit = { .v2, .v4 };

.level::cache_hint = { .L2::cache_hint }

Description

Performs a reduction operation with operand b and the value in location a, and stores the result of
the specified operation at location a, overwriting the original value. Operand a specifies a location
in the specified state space. If no state space is given, perform the memory accesses using Generic
Addressing. redwith scalar typemay be used onlywith .global and .shared spaces andwith generic
addressing, where the address points to.global or.shared space. redwith vector typemay be used
only with .global space and with generic addressing where the address points to .global space.

9.7. Instructions 277

PTX ISA, Release 8.1

For redwith vector type, operand b is brace-enclosed vector expressions, size of which is equal to the
size of vector qualifier.

If no sub-qualifier is specified with .shared state space, then ::cta is assumed by default.

The optional .sem qualifier specifies a memory synchronizing effect as described in theMemory Con-
sistency Model. If the .sem qualifier is absent, .relaxed is assumed by default.

The optional .scope qualifier specifies the set of threads that can directly observe the memory syn-
chronizing effect of this operation, as described in the Memory Consistency Model. If the .scope
qualifier is absent, .gpu scope is assumed by default.

For red with vector type, the supported combinations of vector qualifier, types and reduction opera-
tions supported on these combinations are depicted in following table:

Vector qualifier Types

.f16/ bf16 .f16x2/ bf16x2 .f32

.v2 .add, .min, .max .add, .min, .max .add

.v4 .add, .min, .max .add, .min, .max .add

.v8 .add, .min, .max Not supported Not Supported

Two atomic operations {atom or red} are performed atomically with respect to each other only if each
operation specifies a scope that includes the other. When this condition is not met, each operation
observes the other operation being performed as if it were split into a read followed by a dependent
write.

red instruction on packed type or vector type, accesses adjacent scalar elements in memory. In such
case, the atomicity is guaranteed separately for each of the individual scalar elements; the entire red
is not guaranteed to be atomic as a single access.

For sm_6x and earlier architectures, red operations on .shared state space do not guarantee atom-
icity with respect to normal store instructions to the same address. It is the programmer’s responsi-
bility to guarantee correctness of programs that use shared memory reduction instructions, e.g., by
inserting barriers between normal stores and reduction operations to a common address, or by using
atom.exch to store to locations accessed by other reduction operations.

Supported addressing modes for operand a and alignment requirements are described in Addresses
as Operands

The bit-size operations are .and, .or, and .xor.

The integer operations are .add, .inc, .dec, .min, .max. The .inc and .dec operations return a
result in the range [0..b].

The floating-point operation .add operation rounds to nearest even. Current implementation of red.
add.f32 on global memory flushes subnormal inputs and results to sign-preserving zero; whereas
red.add.f32 on shared memory supports subnormal inputs and results and doesn’t flush them to
zero.

red.add.f16, red.add.f16x2, red.add.bf16 and red.add.bf16x2 operation requires the .
noftz qualifier; it preserves subnormal inputs and results, and does not flush them to zero.

When the optional argument cache-policy is specified, the qualifier .level::cache_hint is re-
quired. The 64-bit operand cache-policy specifies the cache eviction policy thatmay be used during
the memory access.

278 Chapter 9. Instruction Set

PTX ISA, Release 8.1

The qualifier .level::cache_hint is only supported for .global state space and for generic ad-
dressing where the address points to the .global state space.

cache-policy is a hint to the cache subsystem and may not always be respected. It is treated as a
performance hint only, and does not change the memory consistency behavior of the program.

Semantics

*a = operation(*a, b);

where
inc(r, s) = (r >= s) ? 0 : r+1;
dec(r, s) = (r==0 || r > s) ? s : r-1;

PTX ISA Notes

Introduced in PTX ISA version 1.2.

red.add.f32 and red.shared.add.u64 introduced in PTX ISA 2.0.

64-bit red.{and,or,xor,min,max} introduced in PTX ISA 3.1.

red.add.f64 introduced in PTX ISA 5.0.

.scope qualifier introduced in PTX ISA 5.0.

.sem qualifier introduced in PTX ISA version 6.0.

red.add.noftz.f16x2 introduced in PTX ISA 6.2.

red.add.noftz.f16 introduced in PTX ISA 6.3.

Per-element atomicity of red.f16x2 clarified in PTX ISA version 6.3, with retrospective effect from
PTX ISA version 6.2

Support for .level::cache_hint qualifier introduced in PTX ISA version 7.4.

red.add.noftz.bf16 and red.add.noftz.bf16x2 introduced in PTX ISA 7.8.

Support for .cluster scope qualifier introduced in PTX ISA version 7.8.

Support for ::cta and ::cluster sub-qualifiers introduced in PTX ISA version 7.8.

Support for vector types introduced in PTX ISA version 8.1.

Target ISA Notes

red.global requires sm_11 or higher

red.shared requires sm_12 or higher.

red.global.add.u64 requires sm_12 or higher.

red.shared.add.u64 requires sm_20 or higher.

64-bit red.{and,or,xor,min,max} require sm_32 or higher.

red.add.f32 requires sm_20 or higher.

red.add.f64 requires sm_60 or higher.

.scope qualifier requires sm_60 or higher.

.sem qualifier requires sm_70 or higher.

Use of generic addressing requires sm_20 or higher.

red.add.noftz.f16x2 requires sm_60 or higher.

9.7. Instructions 279

PTX ISA, Release 8.1

red.add.ftz.f16 requires sm_70 or higher.

Support for .level::cache_hint qualifier requires sm_80 or higher.

red.add.noftz.bf16 and red.add.noftz.bf16x2 require sm_90 or higher.

Support for .cluster scope qualifier requires sm_90 or higher.

Sub-qualifier ::cta requires sm_30 or higher.

Sub-qualifier ::cluster requires sm_90 or higher.

Support for vector types requires sm_90 or higher.

Examples

red.global.add.s32 [a],1;
red.shared::cluster.max.u32 [x+4],0;
@p red.global.and.b32 [p],my_val;
red.global.sys.add.u32 [a], 1;
red.global.acquire.sys.add.u32 [gbl], 1;
red.add.noftz.f16x2 [a], b;
red.add.noftz.bf16 [a], hb;
red.add.noftz.bf16x2 [b], bb;
red.global.cluster.relaxed.add.u32 [a], 1;
red.shared::cta.min.u32 [x+4],0;

createpolicy.fractional.L2::evict_last.b64 cache-policy, 0.25;
red.global.and.L2::cache_hint.b32 [a], 1, cache-policy;

red.global.v8.f16.add.noftz [gbl], {%h0, %h1, %h2, %h3, %h4, %h5, %h6, %h7};
red.global.v8.bf16.min.noftz [gbl], {%h0, %h1, %h2, %h3, %h4, %h5, %h6, %h7};
red.global.v2.f16.add.noftz [gbl], {%h0, %h1};
red.global.v2.bf16.add.noftz [gbl], {%h0, %h1};
red.global.v4.f16x2.max.noftz [gbl], {%h0, %h1, %h2, %h3};
red.global.v4.f32.add [gbl], {%f0, %f1, %f2, %f3};
red.global.v2.f16x2.max.noftz {%bd0, %bd1}, [g], {%b0, %b1};
red.global.v2.bf16x2.add.noftz {%bd0, %bd1}, [g], {%b0, %b1};
red.global.v2.f32.add {%f0, %f1}, [g], {%f0, %f1};

9.7.12.7 Parallel Synchronization and Communication Instructions: red.async

red.async

Asynchronous reduction operation on shared memory.

Syntax

∕∕ Increment and Decrement reductions
red.async.relaxed.cluster{.ss}.completion_mechanism.op.type [a], b, [mbar];

.ss = { .shared::cluster };

.op = { .inc, .dec };

.type = { .u32 };

.completion_mechanism = { .mbarrier::complete_tx::bytes };

∕∕ MIN and MAX reductions
red.async.relaxed.cluster{.ss}.completion_mechanism.op.type [a], b, [mbar];

(continues on next page)

280 Chapter 9. Instruction Set

PTX ISA, Release 8.1

(continued from previous page)

.ss = { .shared::cluster };

.op = { .min, .max };

.type = { .u32, .s32 };

.completion_mechanism = { .mbarrier::complete_tx::bytes };

∕∕ Bitwise AND, OR and XOR reductions
red.async.relaxed.cluster{.ss}.completion_mechanism.op.type [a], b, [mbar];

.ss = { .shared::cluster };

.op = { .and, .or, .xor };

.type = { .b32 };

.completion_mechanism = { .mbarrier::complete_tx::bytes };

∕∕ ADD reductions
red.async.relaxed.cluster{.ss}.completion_mechanism.add.type [a], b, [mbar];

.ss = { .shared::cluster };

.type = { .u32, .s32, .u64 };

.completion_mechanism = { .mbarrier::complete_tx::bytes };

Description

red.async is a non-blocking instruction which initiates an asynchronous reduction operation spec-
ified by .op, with the operand b and the value at destination shared memory location specified by
operand a.

The .inc and .dec operations return a result in the range [0..b].

The modifier .completion_mechanism specifies that upon completion of the asynchronous opera-
tion, complete-tx operation, with completeCount argument equal to amount of data stored in bytes,
will be performed on thembarrier object specified by the operand mbar.

Operand a represents destination address andmust be a register or of the form register + immOff
as described in Addresses as Operands.

The shared memory addresses of destination operand a and the mbarrier object mbar, must meet all
of the following conditions:

▶ They Belong to the same CTA.

▶ They are different to the CTA of the executing thread but must be within the same cluster.

Otherwise, the behavior is undefined.

The state space of the address {.ss}, if specified, is applicable to both operands a and mbar. If not
specified, then Generic Addressing is used for both a and mbar.

With .shared::cluster, if the addresses specified do not fall within the address window of .
shared::cluster state space, then the behaviour is undefined.

The reduce operation in red.async is treated as a relaxed memory operation and the complete_tx
operation on the mbarrier has .release semantics at the .cluster scope as described in theMemory
Consistency Model.

PTX ISA Notes

Introduced in PTX ISA version 8.1.

Target ISA Notes

Requires sm_90 or higher.

9.7. Instructions 281

PTX ISA, Release 8.1

Examples

red.async.relaxed.cluster.shared::cluster.mbarrier::complete_tx::bytes.min.u32 [addr],
↪→ b, [mbar_addr];

9.7.12.8 Parallel Synchronization and Communication Instructions: vote (deprecated)

vote (deprecated)

Vote across thread group.

Syntax

vote.mode.pred d, {!}a;
vote.ballot.b32 d, {!}a; ∕∕ 'ballot' form, returns bitmask

.mode = { .all, .any, .uni };

Deprecation Note

The vote instruction without a .sync qualifier is deprecated in PTX ISA version 6.0.

▶ Support for this instruction with .target lower than sm_70may be removed in a future PTX ISA
version.

Removal Note

Support for vote instruction without a .sync qualifier is removed in PTX ISA version 6.4 for .
targetsm_70 or higher.

Description

Performs a reduction of the source predicate across all active threads in a warp. The destination pred-
icate value is the same across all threads in the warp.

The reduction modes are:

.all True if source predicate is True for all active threads in warp. Negate the source predicate to
compute .none.

.any True if source predicate is True for some active thread in warp. Negate the source predicate to
compute .not_all.

.uni True if source predicate has the same value in all active threads in warp. Negating the source
predicate also computes .uni.

In the ballot form, vote.ballot.b32 simply copies the predicate from each thread in a warp into the
corresponding bit position of destination register d, where the bit position corresponds to the thread’s
lane id.

An inactive thread in warp will contribute a 0 for its entry when participating in vote.ballot.b32.

PTX ISA Notes

Introduced in PTX ISA version 1.2.

Deprecated in PTX ISA version 6.0 in favor of vote.sync.

Not supported in PTX ISA version 6.4 for .target sm_70 or higher.

Target ISA Notes

vote requires sm_12 or higher.

282 Chapter 9. Instruction Set

PTX ISA, Release 8.1

vote.ballot.b32 requires sm_20 or higher.

vote is not supported on sm_70 or higher starting PTX ISA version 6.4.

Release Notes

Note that vote applies to threads in a single warp, not across an entire CTA.

Examples

vote.all.pred p,q;
vote.uni.pred p,q;
vote.ballot.b32 r1,p; ∕∕ get 'ballot' across warp

9.7.12.9 Parallel Synchronization and Communication Instructions: vote.sync

vote.sync

Vote across thread group.

Syntax

vote.sync.mode.pred d, {!}a, membermask;
vote.sync.ballot.b32 d, {!}a, membermask; ∕∕ 'ballot' form, returns bitmask

.mode = { .all, .any, .uni };

Description

vote.sync will cause executing thread to wait until all non-exited threads corresponding to member-
mask have executed vote.sync with the same qualifiers and same membermask value before resum-
ing execution.

Operand membermask specifies a 32-bit integer which is amask indicating threads participating in this
instruction where the bit position corresponds to thread’s laneid. Operand a is a predicate register.

In the mode form, vote.sync performs a reduction of the source predicate across all non-exited
threads in membermask. The destination operand d is a predicate register and its value is the same
across all threads in membermask.

The reduction modes are:

.all True if source predicate is True for all non-exited threads in membermask. Negate the source
predicate to compute .none.

.any True if source predicate is True for some thread in membermask. Negate the source predicate
to compute .not_all.

.uni True if source predicate has the same value in all non-exited threads in membermask. Negating
the source predicate also computes .uni.

In the ballot form, the destination operand d is a .b32 register. In this form, vote.sync.ballot.b32
simply copies the predicate from each thread in membermask into the corresponding bit position of
destination register d, where the bit position corresponds to the thread’s lane id.

A thread not specified in membermask will contribute a 0 for its entry in vote.sync.ballot.b32.

The behavior of vote.sync is undefined if the executing thread is not in the membermask.

9.7. Instructions 283

PTX ISA, Release 8.1

Note: For .target sm_6x or below, all threads in membermask must execute the same vote.sync
instruction in convergence, and only threads belonging to some membermask can be active when the
vote.sync instruction is executed. Otherwise, the behavior is undefined.

PTX ISA Notes

Introduced in PTX ISA version 6.0.

Target ISA Notes

Requires sm_30 or higher.

Examples

vote.sync.all.pred p,q,0xffffffff;
vote.sync.ballot.b32 r1,p,0xffffffff; ∕∕ get 'ballot' across warp

9.7.12.10 Parallel Synchronization and Communication Instructions: match.sync

match.sync

Broadcast and compare a value across threads in warp.

Syntax

match.any.sync.type d, a, membermask;
match.all.sync.type d[|p], a, membermask;

.type = { .b32, .b64 };

Description

match.sync will cause executing thread to wait until all non-exited threads from membermask have
executed match.sync with the same qualifiers and same membermask value before resuming execu-
tion.

Operand membermask specifies a 32-bit integer which is amask indicating threads participating in this
instruction where the bit position corresponds to thread’s laneid.

match.sync performs broadcast and compare of operand a across all non-exited threads in member-
mask and sets destination d and optional predicate p based on mode.

Operand a has instruction type and d has .b32 type.

Destination d is a 32-bit mask where bit position in mask corresponds to thread’s laneid.

The matching operation modes are:

.all d is set to mask corresponding to non-exited threads in membermask if all non-exited threads
in membermask have same value of operand a; otherwise d is set to 0. Optionally predicate p is
set to true if all non-exited threads in membermask have same value of operand a; otherwise p is
set to false. The sink symbol ‘_’ may be used in place of any one of the destination operands.

.any d is set to mask of non-exited threads in membermask that have same value of operand a.

The behavior of match.sync is undefined if the executing thread is not in the membermask.

PTX ISA Notes

Introduced in PTX ISA version 6.0.

284 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Target ISA Notes

Requires sm_70 or higher.

Release Notes

Note that match.sync applies to threads in a single warp, not across an entire CTA.

Examples

match.any.sync.b32 d, a, 0xffffffff;
match.all.sync.b64 d|p, a, mask;

9.7.12.11 Parallel Synchronization and Communication Instructions: activemask

activemask

Queries the active threads within a warp.

Syntax

activemask.b32 d;

Description

activemask queries predicated-on active threads from the executing warp and sets the destination
d with 32-bit integer mask where bit position in the mask corresponds to the thread’s laneid.

Destination d is a 32-bit destination register.

An active thread will contribute 1 for its entry in the result and exited or inactive or predicated-off
thread will contribute 0 for its entry in the result.

PTX ISA Notes

Introduced in PTX ISA version 6.2.

Target ISA Notes

Requires sm_30 or higher.

Examples

activemask.b32 %r1;

9.7.12.12 Parallel Synchronization and Communication Instructions: redux.sync

redux.sync

Perform reduction operation on the data from each predicated active thread in the thread group.

Syntax

redux.sync.op.type dst, src, membermask;
.op = {.add, .min, .max}
.type = {.u32, .s32}

redux.sync.op.b32 dst, src, membermask;
.op = {.and, .or, .xor}

9.7. Instructions 285

PTX ISA, Release 8.1

Description

redux.sync will cause the executing thread to wait until all non-exited threads corresponding to
membermask have executed redux.sync with the same qualifiers and same membermask value be-
fore resuming execution.

Operand membermask specifies a 32-bit integer which is amask indicating threads participating in this
instruction where the bit position corresponds to thread’s laneid.

redux.syncperforms a reduction operation.op of the 32bit source registersrc across all non-exited
threads in the membermask. The result of the reduction operation is written to the 32 bit destination
register dst.

Reduction operation can be one of the bitwise operation in .and, .or, .xor or arithmetic operation in
.add, .min , .max.

For the .add operation result is truncated to 32 bits.

The behavior of redux.sync is undefined if the executing thread is not in the membermask.

PTX ISA Notes

Introduced in PTX ISA version 7.0.

Target ISA Notes

Requires sm_80 or higher.

Release Notes

Note that redux.sync applies to threads in a single warp, not across an entire CTA.

Examples

.reg .b32 dst, src, init, mask;
redux.sync.add.s32 dst, src, 0xff;
redux.sync.xor.b32 dst, src, mask;

9.7.12.13 Parallel Synchronization and Communication Instructions: griddepcontrol

griddepcontrol

Control execution of dependent grids.

Syntax

griddepcontrol.action;

.action = { .launch_dependents, .wait }

Description

The griddepcontrol instruction allows the dependent grids and prerequisite grids as defined by the
runtime, to control execution in the following way:

.launch_dependents modifier signals that specific dependents the runtime system designated to
react to this instruction can be scheduled as soon as all other CTAs in the grid issue the same instruc-
tion or have completed. The dependent may launch before the completion of the current grid. There
is no guarantee that the dependent will launch before the completion of the current grid. Repeated
invocations of this instruction by threads in the current CTA will have no additional side effects past
that of the first invocation.

286 Chapter 9. Instruction Set

PTX ISA, Release 8.1

.waitmodifier causes the executing thread to wait until all prerequisite grids in flight have completed
and all the memory operations from the prerequisite grids are performed and made visible to the
current grid.

Note: If the prerequisite grid is using griddepcontrol.launch_dependents, then the dependent
grid must use griddepcontrol.wait to ensure correct functional execution.

PTX ISA Notes

Introduced in PTX ISA version 7.8.

Target ISA Notes

Requires sm_90 or higher.

Examples

griddepcontrol.launch_dependents;
griddepcontrol.wait;

9.7.12.14 Parallel Synchronization and Communication Instructions: elect.sync

elect.sync

Elect a leader thread from a set of threads.

Syntax

elect.sync d|p, membermask;

Description

elect.sync elects one predicated active leader thread from among a set of threads specified by
membermask. laneid of the elected thread is returned in the 32-bit destination operand d. The sink
symbol ‘_’ can be used for destination operand d. The predicate destination p is set to True for the
leader thread, and False for all other threads.

Operand membermask specifies a 32-bit integer indicating the set of threads from which a leader is to
be elected. The behavior is undefined if the executing thread is not in membermask.

Election of a leader thread happens deterministically, i.e. the same leader thread is elected for the
same membermask every time.

The mandatory .sync qualifier indicates that elect causes the executing thread to wait until all
threads in the membermask execute the elect instruction before resuming execution.

PTX ISA Notes

Introduced in PTX ISA version 8.0.

Target ISA Notes

Requires sm_90 or higher.

Examples

elect.sync %r0|%p0, 0xffffffff;

9.7. Instructions 287

PTX ISA, Release 8.1

9.7.12.15 Parallel Synchronization and Communication Instructions: mbarrier

mbarrier is a barrier created in shared memory that supports :

▶ Synchronizing any subset of threads within a CTA

▶ One-way synchronization of threads across CTAs of a cluster. As noted in mbarrier support with
sharedmemory, threads can perform only arrive operations but not *_wait on anmbarrier located
in shared::cluster space.

▶ Waiting for completion of asynchronous memory operations initiated by a thread and making
them visible to other threads.

Anmbarrier object is an opaque object in memory which can be initialized and invalidated using :

▶ mbarrier.init

▶ mbarrier.inval

Operations supported onmbarrier objects are :

▶ mbarrier.expect_tx

▶ mbarrier.complete_tx

▶ mbarrier.arrive

▶ mbarrier.arrive_drop

▶ mbarrier.test_wait

▶ mbarrier.try_wait

▶ mbarrier.pending_count

▶ cp.async.mbarrier.arrive

Performing any mbarrier operation except mbarrier.init on an uninitialized mbarrier object results
in undefined behavior.

Unlike bar{.cta}/barrier{.cta} instructions which can access a limited number of barriers per
CTA,mbarrier objects are used defined and are only limited by the total shared memory size available.

mbarrier operations enable threads to perform useful work after the arrival at thembarrier and before
waiting for thembarrier to complete.

9.7.12.15.1 Size and alignment of mbarrier object

An mbarrier object is an opaque object with the following type and alignment requirements :

Type Alignment (bytes) Memory space

.b64 8 .shared

288 Chapter 9. Instruction Set

PTX ISA, Release 8.1

9.7.12.15.2 Contents of the mbarrier object

An opaquembarrier object keeps track of the following information :

▶ Current phase of thembarrier object

▶ Count of pending arrivals for the current phase of thembarrier object

▶ Count of expected arrivals for the next phase of thembarrier object

▶ Count of pending asynchronous memory operations (or transactions) tracked by the current
phase of thembarrier object. This is also referred to as tx-count.

Anmbarrier object progresses through a sequence of phases where each phase is defined by threads
performing an expected number of arrive-on operations.

The valid range of each of the counts is as shown below:

Count name Minimum value Maximum value

Expected arrival count 1 220 - 1

Pending arrival count 0 220 - 1

tx-count -(220 - 1) 220 - 1

9.7.12.15.3 Lifecycle of the mbarrier object

Thembarrier objectmust be initialized prior to use.

Anmbarrier object is used to synchronize threads and asynchronous memory operations.

Anmbarrier objectmay be used to perform a sequence of such synchronizations.

Anmbarrier objectmust be invalidated to repurpose its memory.

9.7.12.15.4 Phase of the mbarrier object

The phase of anmbarrier object is the number of times thembarrier object has been used to synchro-
nize threads and cp.async operations. In each phase {0, 1, 2, …}, threads perform in program order
:

▶ arrive-on operations to complete the current phase and

▶ test_wait / try_wait operations to check for the completion of the current phase.

An mbarrier object is automatically reinitialized upon completion of the current phase for immediate
use in the next phase. The current phase is incomplete and all prior phases are complete.

For each phase of the mbarrier object, at least one test_wait or try_wait operation must be performed
which returns True for waitComplete before an arrive-on operation in the subsequent phase.

9.7. Instructions 289

PTX ISA, Release 8.1

9.7.12.15.5 Tracking asynchronous operations by the mbarrier object

Starting with the Hopper architecture (sm_9x),mbarrier object supports a new count, called tx-count,
which is used for tracking the completion of asynchronous memory operations or transactions. tx-
count tracks the number of asynchronous transactions, in units specified by the asynchronous mem-
ory operation, that are outstanding and yet to be complete.

The tx-count of an mbarrier object must be set to the total amount of asynchronous memory opera-
tions, in units as specified by the asynchronous operations, to be tracked by the current phase. Upon
completion of each of the asynchronous operations, the complete-tx operation will be performed on
thembarrier object and thus progress the mbarrier towards the completion of the current phase.

9.7.12.15.5.1 expect-tx operation

The expect-tx operation, with an expectCount argument, increases the tx-count of anmbarrier object
by the value specified by expectCount. This makes the current phase of thembarrier object to expect
and track the completion of additional asynchronous transactions.

9.7.12.15.5.2 complete-tx operation

The complete-tx operation, with an completeCount argument, on an mbarrier object consists of the
following:

mbarrier signaling Signals the completion of asynchronous transactions that were tracked by the
current phase. As a result of this, tx-count is decremented by completeCount.

mbarrier potentially completing the current phase If the current phase has been completed then
the mbarrier transitions to the next phase. Refer to Phase Completion of the mbarrier object
for details on phase completion requirements and phase transition process.

9.7.12.15.6 Phase Completion of the mbarrier object

The requirements for completion of the current phase are described below. Upon completion of the
current phase, the phase transitions to the subsequent phase as described below.

Current phase completion requirements Anmbarrier object completes the current phase when all of
the following conditions are met:

▶ The count of the pending arrivals has reached zero.

▶ The tx-count has reached zero.

Phase transition When an mbarrier object completes the current phase, the following actions are
performed atomically:

▶ Thembarrier object transitions to the next phase.

▶ The pending arrival count is reinitialized to the expected arrival count.

290 Chapter 9. Instruction Set

PTX ISA, Release 8.1

9.7.12.15.7 Arrive-on operation on mbarrier object

An arrive-on operation, with an optional count argument, on anmbarrier object consists of the following
2 steps :

▶ mbarrier signalling:

Signals the arrival of the executing thread OR completion of the cp.async instruction which
signals the arrive-on operation initiated by the executing thread on the mbarrier object. As a
result of this, the pending arrival count is decremented by count. If the count argument is not
specified, then it defaults to 1.

▶ mbarrier potentially completing the current phase:

If the current phase has been completed then the mbarrier transitions to the next phase. Refer
to Phase Completion of the mbarrier object for details on phase completion requirements and
phase transition process.

9.7.12.15.8 mbarrier support with shared memory

The following table summarizes the support of variousmbarrier operations onmbarrier objects located
at different shared memory locations:

mbarrier operations .shared::cta .shared::cluster

mbarrier.arrive Supported Supported, cannot return result

mbarrier.expect_tx Supported Supported

mbarrier.complete_tx Supported Supported

Other mbarrier operations Supported Not supported

9.7.12.15.9 Parallel Synchronization and Communication Instructions: mbarrier.init

mbarrier.init

Initialize thembarrier object.

Syntax

mbarrier.init{.shared{::cta}}.b64 [addr], count;

Description

mbarrier.init initializes the mbarrier object at the location specified by the address operand addr
with the unsigned 32-bit integer count. The value of operand count must be in the range as specified
in Contents of the mbarrier object.

Initialization of thembarrier object involves :

▶ Initializing the current phase to 0.

▶ Initializing the expected arrival count to count.

▶ Initializing the pending arrival count to count.

▶ Initializing the tx-count to 0.

9.7. Instructions 291

PTX ISA, Release 8.1

If no state space is specified then Generic Addressing is used. If the address specified by addr does
not fall within the address window of .shared::cta state space then the behavior is undefined.

Supported addressing modes for operand addr is as described in Addresses as Operands. Alignment
for operand addr is as described in the Size and alignment of mbarrier object.

PTX ISA Notes

Introduced in PTX ISA version 7.0.

Support for sub-qualifier ::cta on .shared introduced in PTX ISA version 7.8.

Target ISA Notes

Requires sm_80 or higher.

Examples

.shared .b64 shMem, shMem2;

.reg .b64 addr;

.reg .b32 %r1;

cvta.shared.u64 addr, shMem2;
mbarrier.init.b64 [addr], %r1;
bar.cta.sync 0;
∕∕ ... other mbarrier operations on addr

mbarrier.init.shared::cta.b64 [shMem], 12;
bar.sync 0;
∕∕ ... other mbarrier operations on shMem

9.7.12.15.10 Parallel Synchronization and Communication Instructions: mbarrier.inval

mbarrier.inval

Invalidates thembarrier object.

Syntax

mbarrier.inval{.shared{::cta}}.b64 [addr];

Description

mbarrier.inval invalidates the mbarrier object at the location specified by the address operand
addr.

Anmbarrier objectmust be invalidated before using its memory location for any other purpose.

Performing any mbarrier operation except mbarrier.init on an invalidated mbarrier object results
in undefined behaviour.

If no state space is specified then Generic Addressing is used. If the address specified by addr does
not fall within the address window of .shared::cta state space then the behavior is undefined.

Supported addressing modes for operand addr is as described in Addresses as Operands. Alignment
for operand addr is as described in the Size and alignment of mbarrier object.

PTX ISA Notes

Introduced in PTX ISA version 7.0.

Support for sub-qualifier ::cta on .shared introduced in PTX ISA version 7.8.

292 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Target ISA Notes

Requires sm_80 or higher.

Examples

.shared .b64 shmem;

.reg .b64 addr;

.reg .b32 %r1;

.reg .pred t0;

∕∕ Example 1 :
bar.sync 0;
@t0 mbarrier.init.b64 [addr], %r1;
∕∕ ... other mbarrier operations on addr
bar.sync 0;
@t0 mbarrier.inval.b64 [addr];

∕∕ Example 2 :
bar.cta.sync 0;
mbarrier.init.shared.b64 [shmem], 12;
∕∕ ... other mbarrier operations on shmem
bar.cta.sync 0;
@t0 mbarrier.inval.shared.b64 [shmem];

∕∕ shmem can be reused here for unrelated use :
bar.cta.sync 0;
st.shared.b64 [shmem], ...;

∕∕ shmem can be re-initialized as mbarrier object :
bar.cta.sync 0;
@t0 mbarrier.init.shared.b64 [shmem], 24;
∕∕ ... other mbarrier operations on shmem
bar.cta.sync 0;
@t0 mbarrier.inval.shared::cta.b64 [shmem];

9.7.12.15.11 Parallel Synchronization and Communication Instructions: mbarrier.expect_tx

mbarrier.expect_tx

Perfoms expect-tx operation on thembarrier object.

Syntax

mbarrier.expect_tx{.sem}{.scope}{.space}.b64 [addr], txCount;

.sem = { .relaxed }

.scope = { .cta, .cluster }

.space = { .shared{::cta}, .shared::cluster }

Description

A thread executing mbarrier.expect_tx performs an expect-tx operation on thembarrier object at
the location specified by the address operand addr. The 32-bit unsigned integer operand txCount
specifies the expectCount argument to the expect-tx operation.

If no state space is specified then Generic Addressing is used. If the address specified by addr does
not fall within the address window of .shared::cta or .shared::cluster state space then the

9.7. Instructions 293

PTX ISA, Release 8.1

behavior is undefined.

Supported addressing modes for operand addr are as described in Addresses as Operands. Alignment
for operand addr is as described in the Size and alignment of mbarrier object.

This operation does not provide any memory ordering semantics and thus is a relaxed operation.

PTX ISA Notes

Introduced in PTX ISA version 8.0.

Target ISA Notes

Requires sm_90 or higher.

Examples

mbarrier.expect_tx.b64 [addr], 32;
mbarrier.expect_tx.relaxed.cta.shared.b64 [mbarObj1], 512;
mbarrier.expect_tx.relaxed.cta.shared.b64 [mbarObj2], 512;

9.7.12.15.12 Parallel Synchronization and Communication Instructions: mbarrier.complete_tx

mbarrier.complete_tx

Perfoms complete-tx operation on thembarrier object.

Syntax

mbarrier.complete_tx{.sem}{.scope}{.space}.b64 [addr], txCount;

.sem = { .relaxed }

.scope = { .cta, .cluster }

.space = { .shared{::cta}, .shared::cluster }

Description

A thread executing mbarrier.complete_tx performs a complete-tx operation on thembarrier object
at the location specified by the address operand addr. The 32-bit unsigned integer operand txCount
specifies the completeCount argument to the complete-tx operation.

mbarrier.complete_tx does not involve any asynchronous memory operations and only simulates
the completion of an asynchronous memory operation and its side effect of signaling to thembarrier
object.

If no state space is specified then Generic Addressing is used. If the address specified by addr does
not fall within the address window of .shared::cta or .shared::cluster state space then the
behavior is undefined.

Supported addressing modes for operand addr are as described in Addresses as Operands. Alignment
for operand addr is as described in the Size and alignment of mbarrier object.

This operation does not provide any memory ordering semantics and thus is a relaxed operation.

PTX ISA Notes

Introduced in PTX ISA version 8.0.

Target ISA Notes

Requires sm_90 or higher.

Examples

294 Chapter 9. Instruction Set

PTX ISA, Release 8.1

mbarrier.complete_tx.b64 [addr], 32;
mbarrier.complete_tx.shared.b64 [mbarObj1], 512;
mbarrier.complete_tx.relaxed.cta.b64 [addr2], 32;

9.7.12.15.13 Parallel Synchronization and Communication Instructions: mbarrier.arrive

mbarrier.arrive

Performs arrive-on operation on thembarrier object.

Syntax

mbarrier.arrive{.sem}{.scope}{.shared{::cta}}.b64 state, [addr]{, count};
mbarrier.arrive{.sem}{.scope}{.shared::cluster}.b64 _, [addr] {,count}
mbarrier.arrive.expect_tx{.sem}{.scope}{.shared{::cta}}.b64 state, [addr], txCount;
mbarrier.arrive.expect_tx{.sem}{.scope}{.shared::cluster}.b64 _, [addr], txCount;
mbarrier.arrive.noComplete{.sem}{.cta}{.shared{::cta}}.b64 state, [addr], count;

.sem = { .release }

.scope = { .cta, .cluster }

Description

A thread executing mbarrier.arrive performs an arrive-on operation on the mbarrier object at the
location specified by the address operand addr. The 32-bit unsigned integer operand count specifies
the count argument to the arrive-on operation.

If no state space is specified then Generic Addressing is used. If the address specified by addr does
not fall within the address window of .shared::cta state space then the behavior is undefined.

Supported addressing modes for operand addr is as described in Addresses as Operands. Alignment
for operand addr is as described in the Size and alignment of mbarrier object.

The optional qualifier .expect_tx specifies that an expect-tx operation is performed prior to the
arrive-on operation. The 32-bit unsigned integer operand txCount specifies the expectCount argu-
ment to the expect-tx operation. When both qualifiers .arrive and .expect_tx are specified, then
the count argument of the arrive-on operation is assumed to be 1.

A mbarrier.arrive operation with .noComplete qualifier must not cause the mbarrier to com-
plete its current phase, otherwise the behavior is undefined.

The value of the operand countmust be in the range as specified in Contents of the mbarrier object.

Note: for sm_8x, when the argument count is specified, the modifier .noComplete is required.

mbarrier.arrive operation on an mbarrier object located in .shared::cta returns an opaque 64-
bit register capturing the phase of thembarrier object prior to the arrive-onoperation in the destination
operand state. Contents of the state operand are implementation specific. Optionally, sink symbol
'_' can be used for the state argument.

mbarrier.arrive operation on an mbarrier object located in .shared::cluster but not in .
shared::cta cannot return a value. Sink symbol ‘_’ is mandatory for the destination operand for
such cases.

The optional .sem qualifier specifies a memory synchronizing effect as described in theMemory Con-
sistency Model. If the .sem qualifier is absent, .release is assumed by default.

The optional .scope qualifier indicates the set of threads that directly observe the memory synchro-
nizing effect of this operation, as described in theMemoryConsistencyModel. If the .scope qualifier is

9.7. Instructions 295

PTX ISA, Release 8.1

not specified then it defaults to .cta. In contrast, the .shared::<scope> indicates the state space
where the mbarrier resides.

PTX ISA Notes

Introduced in PTX ISA version 7.0.

Support for sink symbol ‘_’ as the destination operand is introduced in PTX ISA version 7.1.

Support for sub-qualifier ::cta on .shared introduced in PTX ISA version 7.8.

Support for count argument without the modifier .noComplete introduced in PTX ISA version 7.8.

Support for sub-qualifier ::cluster introduced in PTX ISA version 8.0.

Support for qualifier .expect_tx is introduced in PTX ISA version 8.0.

Support for .scope and .sem qualifiers introduced in PTX ISA version 8.0

Target ISA Notes

Requires sm_80 or higher.

Support for count argument without the modifier .noComplete requires sm_90 or higher.

Qualifier .expect_tx requires sm_90 or higher.

Sub-qualifier ::cluster requires sm_90 or higher.

Support for .cluster scope requires sm_90 or higher.

Examples

.reg .b32 cnt, remoteAddr32, remoteCTAId, addr32;

.reg .b64 %r<3>, addr, remoteAddr64;

.shared .b64 shMem, shMem2;

cvta.shared.u64 addr, shMem2;
mov.b32 addr32, shMem2;
mapa.shared::cluster.u32 remoteAddr32, addr32, remoteCTAId;
mapa.u64 remoteAddr64, addr, remoteCTAId;

cvta.shared.u64 addr, shMem2;

mbarrier.arrive.shared.b64 %r0, [shMem];
mbarrier.arrive.shared::cta.b64 %r0, [shMem2];
mbarrier.arrive.release.cta.shared::cluster.b64 _, [remoteAddr32];
mbarrier.arrive.release.cluster.b64 _, [remoteAddr64], cnt;
mbarrier.arrive.expect_tx.release.cluster.b64 _, [remoteAddr64], tx_count;
mbarrier.arrive.noComplete.b64 %r1, [addr], 2;
mbarrier.arrive.b64 %r2, [addr], cnt;

9.7.12.15.14 Parallel Synchronization and Communication Instructions: mbarrier.arrive_drop

mbarrier.arrive_drop

Decrements the expected count of thembarrier object and performs arrive-on operation.

Syntax

296 Chapter 9. Instruction Set

PTX ISA, Release 8.1

mbarrier.arrive_drop{.sem}{.scope}{.shared{::cta}}.b64 state, [addr]{,�
↪→count};
mbarrier.arrive_drop{.sem}{.scope}{.shared::cluster}.b64 _, [addr] {,
↪→count};
mbarrier.arrive_drop.expect_tx{.shared{::cta}}{.sem}{.scope}.b64 state, [addr], tx_
↪→count;
mbarrier.arrive_drop.expect_tx{.shared::cluster}{.sem}{.scope}.b64 _, [addr], tx_
↪→count;
mbarrier.arrive_drop.noComplete{.sem}{.cta}{.shared{::cta}}.b64 state, [addr], count;

.sem = { .release }

.scope = { .cta, .cluster }

Description

A thread executing mbarrier.arrive_drop on the mbarrier object at the location specified by the
address operand addr performs the following steps:

▶ Decrements the expected arrival count of thembarrier object by the value specified by the 32-bit
integer operand count. If count operand is not specified, it defaults to 1.

▶ Performs an arrive-on operation on the mbarrier object. The operand count specifies the count
argument to the arrive-on operation.

The decrement done in the expected arrivals count of thembarrier objectwill be for all the subsequent
phases of thembarrier object.

If no state space is specified then Generic Addressing is used. If the address specified by addr does
not fall within the address window of .shared::cta or .shared::cluster state space then the
behavior is undefined.

Supported addressing modes for operand addr is as described in Addresses as Operands. Alignment
for operand addr is as described in the Size and alignment of mbarrier object.

The optional qualifier .expect_tx specifies that an expect-tx operation is performed prior to the
arrive-on operation. The 32-bit unsigned integer operand txCount specifies the expectCount argu-
ment to the expect-tx operation. When both qualifiers .arrive and .expect_tx are specified, then
the count argument of the arrive-on operation is assumed to be 1.

mbarrier.arrive_drop operation forms the release pattern as described in the Memory Consis-
tency Model and synchronizes with the acquire patterns.

The optional .scope qualifier indicates the set of threads that an mbarrier.arrive_drop instruc-
tion can directly synchronize. If the .scope qualifier is not specified then it defaults to .cta. In
contrast, the .shared::<scope> indicates the state space where the mbarrier resides.

A mbarrier.arrive_dropwith .noComplete qualifiermust not complete the mbarrier, otherwise
the behavior is undefined.

The value of the operand countmust be in the range as specified in Contents of the mbarrier object.

Note: for sm_8x, when the argument count is specified, the modifier .noComplete is required.

A thread that wants to either exit or opt out of participating in the arrive-on operation can use
mbarrier.arrive_drop to drop itself from the mbarrier.

mbarrier.arrive_drop operation on an mbarrier object located in .shared::cta returns an
opaque 64-bit register capturing the phase of thembarrier object prior to the arrive-on operation in the
destination operand state. Contents of the returned state are implementation specific. Optionally,
sink symbol '_' can be used for the state argument.

9.7. Instructions 297

PTX ISA, Release 8.1

mbarrier.arrive_drop operation on an mbarrier object located in .shared::cluster but not in
.shared::cta cannot return a value. Sink symbol ‘_’ is mandatory for the destination operand for
such cases.

PTX ISA Notes

Introduced in PTX ISA version 7.0.

Support for sub-qualifier ::cta on .shared introduced in PTX ISA version 7.8.

Support for count argument without the modifier .noComplete introduced in PTX ISA version 7.8.

Support for qualifier .expect_tx is introduced in PTX ISA version 8.0.

Support for sub-qualifier ::cluster introduced in PTX ISA version 8.0.

Support for .scope and .sem qualifiers introduced in PTX ISA version 8.0

Target ISA Notes

Requires sm_80 or higher.

Support for count argument without the modifier .noComplete requires sm_90 or higher.

Qualifier .expect_tx requires sm_90 or higher.

Sub-qualifier ::cluster requires sm_90 or higher.

Support for .cluster scope requires sm_90 or higher.

Examples

.reg .b32 cnt;

.reg .b64 %r1;

.shared .b64 shMem;

∕∕ Example 1
@p mbarrier.arrive_drop.shared.b64 _, [shMem];
@p exit;
@p2 mbarrier.arrive_drop.noComplete.shared.b64 _, [shMem], %a;
@p2 exit;
..
@!p mbarrier.arrive.shared.b64 %r1, [shMem];
@!p mbarrier.test_wait.shared.b64 q, [shMem], %r1;

∕∕ Example 2
mbarrier.arrive_drop.shared::cluster.b64 _, [addr];
mbarrier.arrive_drop.shared::cta.release.cluster.b64 _, [addr], cnt;

∕∕ Example 3
mbarrier.arrive_drop.expect_tx.shared::cta.release.cta.b64 state, [addr], tx_count;

298 Chapter 9. Instruction Set

PTX ISA, Release 8.1

9.7.12.15.15 Parallel Synchronization and Communication Instructions: cp.async.mbarrier.arrive

cp.async.mbarrier.arrive

Makes thembarrier object track all prior cp.async operations initiated by the executing thread.

Syntax

cp.async.mbarrier.arrive{.noinc}{.shared{::cta}}.b64 [addr];

Description

Causes an arrive-on operation to be triggered by the system on thembarrier object upon the comple-
tion of all prior cp.async operations initiated by the executing thread. The mbarrier object is at the
location specified by the operand addr. The arrive-on operation is asynchronous to execution of cp.
async.mbarrier.arrive.

When .noinc modifier is not specified, the pending count of the mbarrier object is incremented by
1 prior to the asynchronous arrive-on operation. This results in a zero-net change for the pending
count from the asynchronous arrive-on operation during the current phase. The pending count of
the mbarrier object after the increment should not exceed the limit as mentioned in Contents of the
mbarrier object. Otherwise, the behavior is undefined.

When the .noinc modifier is specified, the increment to the pending count of the mbarrier object
is not performed. Hence the decrement of the pending count done by the asynchronous arrive-on
operationmust be accounted for in the initialization of thembarrier object.

If no state space is specified then Generic Addressing is used. If the address specified by addr does
not fall within the address window of .shared::cta state space then the behavior is undefined.

Supported addressing modes for operand addr is as described in Addresses as Operands. Alignment
for operand addr is as described in the Size and alignment of mbarrier object.

PTX ISA Notes

Introduced in PTX ISA version 7.0.

Support for sub-qualifier ::cta on .shared introduced in PTX ISA version 7.8.

Target ISA Notes

Requires sm_80 or higher.

Examples

∕∕ Example 1: no .noinc
mbarrier.init.shared.b64 [shMem], threadCount;
....
cp.async.ca.shared.global [shard1], [gbl1], 4;
cp.async.cg.shared.global [shard2], [gbl2], 16;
....
∕∕ Absence of .noinc accounts for arrive-on from completion of prior cp.async�
↪→operations.
∕∕ So mbarrier.init must only account for arrive-on from mbarrier.arrive.
cp.async.mbarrier.arrive.shared.b64 [shMem];
....
mbarrier.arrive.shared.b64 state, [shMem];

waitLoop:
mbarrier.test_wait.shared.b64 p, [shMem], state;
@!p bra waitLoop;

(continues on next page)

9.7. Instructions 299

PTX ISA, Release 8.1

(continued from previous page)

∕∕ Example 2: with .noinc

∕∕ Tracks arrive-on from mbarrier.arrive and cp.async.mbarrier.arrive.

∕∕ All threads participating in the mbarrier perform cp.async
mov.b32 copyOperationCnt, threadCount;

∕∕ 3 arrive-on operations will be triggered per-thread
mul.lo.u32 copyArrivalCnt, copyOperationCnt, 3;

add.u32 totalCount, threadCount, copyArrivalCnt;

mbarrier.init.shared.b64 [shMem], totalCount;
....
cp.async.ca.shared.global [shard1], [gbl1], 4;
cp.async.cg.shared.global [shard2], [gbl2], 16;
...
∕∕ Presence of .noinc requires mbarrier initalization to have accounted for arrive-on�
↪→from cp.async
cp.async.mbarrier.arrive.noinc.shared.b64 [shMem]; ∕∕ 1st instance
....
cp.async.ca.shared.global [shard3], [gbl3], 4;
cp.async.ca.shared.global [shard4], [gbl4], 16;
cp.async.mbarrier.arrive.noinc.shared::cta.b64 [shMem]; ∕∕ 2nd instance
....
cp.async.ca.shared.global [shard5], [gbl5], 4;
cp.async.cg.shared.global [shard6], [gbl6], 16;
cp.async.mbarrier.arrive.noinc.shared.b64 [shMem]; ∕∕ 3rd and last instance
....
mbarrier.arrive.shared.b64 state, [shMem];

waitLoop:
mbarrier.test_wait.shared.b64 p, [shMem], state;
@!p bra waitLoop;

9.7.12.15.16 Parallel Synchronization and Communication Instructions: mbar-
rier.test_wait/mbarrier.try_wait

mbarrier.test_wait/mbarrier.try_wait

Checks whether thembarrier object has completed the phase.

Syntax

mbarrier.test_wait{.sem}{.scope}{.shared{::cta}}.b64 waitComplete, [addr],�
↪→state;
mbarrier.test_wait.parity{.sem}{.scope}{.shared{::cta}}.b64 waitComplete, [addr],�
↪→phaseParity;

mbarrier.try_wait{.sem}{.scope}{.shared{::cta}}.b64 waitComplete, [addr],�
↪→state

{, suspendTimeHint};
(continues on next page)

300 Chapter 9. Instruction Set

PTX ISA, Release 8.1

(continued from previous page)

mbarrier.try_wait{.sem}{.scope}.parity{.shared{::cta}}.b64 waitComplete, [addr],�
↪→phaseParity

{, suspendTimeHint};

.sem = { .acquire }

.scope = { .cta, .cluster }

Description

The test_wait and try_wait operations test for the completion of the current or the immediately pre-
ceding phase of anmbarrier object at the location specified by the operand addr.

mbarrier.test_wait is a non-blocking instruction which tests for the completion of the phase.

mbarrier.try_wait is a potentially blocking instruction which tests for the completion of the phase.
If the phase is not complete, the executing thread may be suspended. Suspended thread resumes
execution when the specified phase completes OR before the phase completes following a system-
dependent time limit. The optional 32-bit unsigned integer operand suspendTimeHint specifies the
time limit, in nanoseconds, that may be used for the time limit instead of the system-dependent limit.

mbarrier.test_wait and mbarrier.try_wait test for completion of the phase :

▶ Specified by the operand state, which was returned by an mbarrier.arrive instruction on the
samembarrier object during the current or the immediately preceding phase. Or

▶ Indicated by the operand phaseParity, which is the integer parity of either the current phase
or the immediately preceding phase of thembarrier object.

The .parity variant of the instructions test for the completion of the phase indicated by the operand
phaseParity, which is the integer parity of either the current phase or the immediately preceding
phase of the mbarrier object. An even phase has integer parity 0 and an odd phase has integer parity
of 1. So the valid values of phaseParity operand are 0 and 1.

Note: the use of the .parity variants of the instructions requires tracking the phase of an mbarrier
object throughout its lifetime.

The test_wait and try_wait operations are valid only for :

▶ the current incomplete phase, for which waitComplete returns False.

▶ the immediately preceding phase, for which waitComplete returns True.

If no state space is specified then Generic Addressing is used. If the address specified by addr does
not fall within the address window of .shared::cta state space then the behavior is undefined.

Supported addressing modes for operand addr is as described in Addresses as Operands. Alignment
for operand addr is as described in the Size and alignment of mbarrier object.

When mbarrier.test_wait and mbarrier.try_wait operations return True, they form the ac-
quire pattern as described in theMemory Consistency Model.

The optional .scope qualifier indicates the set of threads that the mbarrier.test_wait and
mbarrier.try_wait instructions can directly synchronize. If the .scope qualifier is not specified
then it defaults to .cta. In contrast, the .shared::<scope> indicates the state space where the
mbarrier resides.

The following ordering of memory operations hold for the executing thread when mbarrier.
test_wait or mbarrier.try_wait returns True :

9.7. Instructions 301

PTX ISA, Release 8.1

1. All memory accesses (except async operations) requested prior, in program order, to mbarrier.
arrive during the completed phase by the participating threads of the CTA are performed and
are visible to the executing thread.

2. All cp.async operations requested prior, in program order, to cp.async.mbarrier.arrive dur-
ing the completed phase by the participating threads of the CTA are performed andmade visible
to the executing thread.

3. All cp.async.bulk asynchronous operations using the samembarrier object requested prior, in
program order, to mbarrier.arrive during the completed phase by the participating threads
of the CTA are performed and made visible to the executing thread.

4. All memory accesses requested after the mbarrier.test_wait or mbarrier.try_wait, in
program order, are not performed and not visible to memory accesses performed prior to
mbarrier.arrive, in program order, by other threads participating in the mbarrier.

5. There is no ordering and visibility guarantee for memory accesses requested by the thread after
mbarrier.arrive and prior to mbarrier.test_wait, in program order.

PTX ISA Notes

mbarrier.test_wait introduced in PTX ISA version 7.0.

Modifier .parity is introduced in PTX ISA version 7.1.

mbarrier.try_wait introduced in PTX ISA version 7.8.

Support for sub-qualifier ::cta on .shared introduced in PTX ISA version 7.8.

Support for .scope and .sem qualifiers introduced in PTX ISA version 8.0

Target ISA Notes

mbarrier.test_wait requires sm_80 or higher.

mbarrier.try_wait requires sm_90 or higher.

Support for .cluster scope requires sm_90 or higher.

Examples

∕∕ Example 1a, thread synchronization with test_wait:

.reg .b64 %r1;

.shared .b64 shMem;

mbarrier.init.shared.b64 [shMem], N; ∕∕ N threads participating in the mbarrier.
...
mbarrier.arrive.shared.b64 %r1, [shMem]; ∕∕ N threads executing mbarrier.arrive

∕∕ computation not requiring mbarrier synchronization...

waitLoop:
mbarrier.test_wait.shared.b64 complete, [shMem], %r1;
@!complete nanosleep.u32 20;
@!complete bra waitLoop;

∕∕ Example 1b, thread synchronization with try_wait :

.reg .b64 %r1;

.shared .b64 shMem;

mbarrier.init.shared.b64 [shMem], N; ∕∕ N threads participating in the mbarrier.
(continues on next page)

302 Chapter 9. Instruction Set

PTX ISA, Release 8.1

(continued from previous page)

...
mbarrier.arrive.shared.b64 %r1, [shMem]; ∕∕ N threads executing mbarrier.arrive

∕∕ computation not requiring mbarrier synchronization...

waitLoop:
mbarrier.try_wait.shared.b64 complete, [shMem], %r1;
@!complete bra waitLoop;

∕∕ Example 2, thread synchronization using phase parity :

.reg .b32 i, parArg;

.reg .b64 %r1;

.shared .b64 shMem;

mov.b32 i, 0;
mbarrier.init.shared.b64 [shMem], N; ∕∕ N threads participating in the mbarrier.
...
loopStart : ∕∕ One phase per loop iteration

...
mbarrier.arrive.shared.b64 %r1, [shMem]; ∕∕ N threads
...
and.b32 parArg, i, 1;
waitLoop:
mbarrier.test_wait.parity.shared.b64 complete, [shMem], parArg;
@!complete nanosleep.u32 20;
@!complete bra waitLoop;
...
add.u32 i, i, 1;
setp.lt.u32 p, i, IterMax;

@p bra loopStart;

∕∕ Example 3, Asynchronous copy completion waiting :

.reg .b64 state;

.shared .b64 shMem2;

.shared .b64 shard1, shard2;

.global .b64 gbl1, gbl2;

mbarrier.init.shared.b64 [shMem2], threadCount;
...
cp.async.ca.shared.global [shard1], [gbl1], 4;
cp.async.cg.shared.global [shard2], [gbl2], 16;

∕∕ Absence of .noinc accounts for arrive-on from prior cp.async operation
cp.async.mbarrier.arrive.shared.b64 [shMem2];
...
mbarrier.arrive.shared.b64 state, [shMem2];

waitLoop:
mbarrier.test_wait.shared::cta.b64 p, [shMem2], state;
@!p bra waitLoop;

∕∕ Example 4, Synchronizing the CTA0 threads with cluster threads

(continues on next page)

9.7. Instructions 303

PTX ISA, Release 8.1

(continued from previous page)

.reg .b64 %r1, addr, remAddr;

.shared .b64 shMem;

cvta.shared.u64 addr, shMem;
mapa.u64 remAddr, addr, 0; ∕∕ CTA0’s shMem instance

∕∕ One thread from CTA0 executing the below initialization operation
@p0 mbarrier.init.shared::cta.b64 [shMem], N; ∕∕ N = no of cluster threads

barrier.cluster.arrive;
barrier.cluster.wait;

∕∕ Entire cluster executing the below arrive operation
mbarrier.arrive.release.cluster.b64 _, [remAddr];

∕∕ computation not requiring mbarrier synchronization ...

∕∕ Only CTA0 threads executing the below wait operation
waitLoop:
mbarrier.try_wait.parity.acquire.cluser.shared::cta.b64 complete, [shMem], 0;
@!complete bra waitLoop;

9.7.12.15.17 Parallel Synchronization and Communication Instructions: mbarrier.pending_count

mbarrier.pending_count

Query the pending arrival count from the opaque mbarrier state.

Syntax

mbarrier.pending_count.b64 count, state;

Description

The pending count can be queried from the opaquembarrier state using mbarrier.pending_count.

The state operand is a 64-bit register that must be the result of a prior mbarrier.arrive.
noComplete or mbarrier.arrive_drop.noComplete instruction. Otherwise, the behavior is un-
defined.

The destination register count is a 32-bit unsigned integer representing the pending count of the
mbarrier object prior to the arrive-on operation from which the state register was obtained.

PTX ISA Notes

Introduced in PTX ISA version 7.0.

Target ISA Notes

Requires sm_80 or higher.

Examples

.reg .b32 %r1;

.reg .b64 state;

.shared .b64 shMem;

(continues on next page)

304 Chapter 9. Instruction Set

PTX ISA, Release 8.1

(continued from previous page)

mbarrier.arrive.noComplete.b64 state, [shMem], 1;
mbarrier.pending_count.b64 %r1, state;

9.7.13. Warp Level Matrix Multiply-Accumulate
Instructions

The matrix multiply and accumulate operation has the following form:

D = A * B + C

where D and C are called accumulators and may refer to the same matrix.

PTX provides two ways to perform matrix multiply-and-accumulate computation:

▶ Using wmma instructions:

▶ This warp-level computation is performed collectively by all threads in the warp as follows:

▶ Load matrices A, B and C from memory into registers using the wmma.load operation.
When the operation completes, the destination registers in each thread hold a fragment
of the loaded matrix.

▶ Perform thematrixmultiply and accumulate operation using the wmma.mma operation on
the loaded matrices. When the operation completes, the destination registers in each
thread hold a fragment of the result matrix returned by the wmma.mma operation.

▶ Store result Matrix D back to memory using the wmma.store operation. Alternately,
result matrix D can also be used as argument C for a subsequent wmma.mma operation.

The wmma.load and wmma.store instructions implicitly handle the organization of matrix
elements when loading the input matrices from memory for the wmma.mma operation and
when storing the result back to memory.

▶ Using mma instruction:

▶ Similar to wmma, mma also requires computation to be performed collectively by all threads
in the warp however distribution of matrix elements across different threads in warp needs
to be done explicitly before invoking the mma operation. The mma instruction supports both
dense as well as sparse matrix A. The sparse variant can be used when A is a structured
sparse matrix as described in Sparse matrix storage.

9.7.13.1 Matrix Shape

The matrix multiply and accumulate operations support a limited set of shapes for the operand matri-
ces A, B and C. The shapes of all three matrix operands are collectively described by the tuple MxNxK,
where A is an MxKmatrix, B is a KxNmatrix, while C and D are MxNmatrices.

The following matrix shapes are supported for the specified types:

9.7. Instructions 305

PTX ISA, Release 8.1

In-
struc-
tion

Sparsity Multiplicand Data-type Shape PTX ISA version

wmma Dense Floating-point - .f16 .m16n16k16, .m8n32k16,
and .m32n8k16

PTX ISA version 6.0

wmma Dense Alternate floating-point
format - .bf16

.m16n16k16, .m8n32k16,
and .m32n8k16

PTX ISA version 7.0

wmma Dense Alternate floating-point
format - .tf32

.m16n16k8 PTX ISA version 7.0

wmma Dense Integer - .u8/.s8 .m16n16k16, .m8n32k16,
and .m32n8k16

PTX ISA version 6.3

wmma Dense Sub-byte integer -
.u4/.s4

.m8n8k32 PTX ISA version 6.3
(preview feature)

wmma Dense Single-bit - .b1 .m8n8k128 PTX ISA version 6.3
(preview feature)

mma Dense Floating-point - .f64 .m8n8k4 PTX ISA version 7.0

.m16n8k4, .m16n8k8, and .
m16n8k16

PTX ISA version 7.8

mma Dense Floating-point - .f16 .m8n8k4 PTX ISA version 6.4

.m16n8k8 PTX ISA version 6.5

.m16n8k16 PTX ISA version 7.0

mma Dense Alternate floating-point
format - .bf16

.m16n8k8 and .m16n8k16 PTX ISA version 7.0

mma Dense Alternate floating-point
format - .tf32

.m16n8k4 and .m16n8k8 PTX ISA version 7.0

mma Dense Integer - .u8/.s8 .m8n8k16 PTX ISA version 6.5

.m16n8k16 and .m16n8k32 PTX ISA version 7.0

mma Dense Sub-byte integer -
.u4/.s4

.m8n8k32 PTX ISA version 6.5

.m16n8k32 and .m16n8k64 PTX ISA version 7.0

mma Dense Single-bit - .b1 .m8n8k128, .m16n8k128,
and .m16n8k256

PTX ISA version 7.0

mma Sparse Floating-point - .f16 .m16n8k16 and .m16n8k32 PTX ISA version 7.1

mma Sparse Alternate floating-point
format - .bf16

.m16n8k16 and .m16n8k32 PTX ISA version 7.1

mma Sparse Alternate floating-point
format - .tf32

.m16n8k8 and .m16n8k16 PTX ISA version 7.1

mma Sparse Integer - .u8/.s8 .m16n8k32 and .m16n8k64 PTX ISA version 7.1

mma Sparse Sub-byte integer -
.u4/.s4

.m16n8k64 and .
m16n8k128

PTX ISA version 7.1

306 Chapter 9. Instruction Set

PTX ISA, Release 8.1

9.7.13.2 Matrix Data-types

The matrix multiply and accumulate operation is supported separately on integer, floating-point, sub-
byte integer and single bit data-types. All operandsmust contain the same basic type kind, i.e., integer
or floating-point.

For floating-point matrix multiply and accumulate operation, different matrix operands may have dif-
ferent precision, as described later.

For integer matrix multiply and accumulate operation, both multiplicand matrices (A and B) must have
elements of the same data-type, e.g. both signed integer or both unsigned integer.

Data-type Multiplicands (A or B) Accumulators (C or D)

Integer both .u8 or both .s8 .s32

Floating Point .f16 .f16,.f32

Alternate floating Point .bf16 .f32

Alternate floating Point .tf32 .f32

Floating Point .f64 .f64

Sub-byte integer both .u4 or both .s4 .s32

Single-bit integer .b1 .s32

9.7.13.3 Matrix multiply-accumulate operation using wmma instructions

This section describes warp level wmma.load, wmma.mma and wmma.store instructions and the or-
ganization of various matrices invovled in these instruction.

9.7.13.3.1 Matrix Fragments for WMMA

Each thread in the warp holds a fragment of the matrix. The distribution of fragments loaded by
the threads in a warp is unspecified and is target architecture dependent, and hence the identity of
the fragment within thematrix is also unspecified and is target architecture dependent. The fragment
returned by a wmma operation can be used as an operand for another wmma operation if the shape, layout
and element type of the underlying matrix matches. Since fragment layout is architecture dependent,
using the fragment returned by a wmma operation in one function as an operand for a wmma operation
in a different function may not work as expected if the two functions are linked together but were
compiled for different link-compatible SM architectures. Note passing wmma fragment to a function
having .weak linkage is unsafe since at link time references to such function may get resolved to a
function in different compilation module.

Each fragment is a vector expression whose contents are determined as follows. The identity of indi-
vidual matrix elements in the fragment is unspecified.

Integer fragments Multiplicands (A or B):

9.7. Instructions 307

PTX ISA, Release 8.1

Data-type Shape Matrix Fragment

.u8 or .s8 .m16n16k16 A A vector expression of two .b32 registers, with
each register containing four elements from the
matrix.

B A vector expression of two .b32 registers, with
each register containing four elements from the
matrix.

.m8n32k16 A A vector expression containing a single .b32 reg-
ister containing four elements from the matrix.

B A vector expression of four .b32 registers, with
each register containing four elements from the
matrix.

.m32n8k16 A A vector expression of four .b32 registers, with
each register containing four elements from the
matrix.

B A vector expression containing single .b32 regis-
ter, with each containing four elements from the
matrix.

Accumulators (C or D):

Data-type Shape Fragment

.s32 .m16n16k16 A vector expression of eight .s32 registers.

.m8n32k16

.m32n8k16

Floating point fragments

Data-type Matrix Fragment

.f16 A or B A vector expression of eight .f16x2 registers.

.f16 C or D A vector expression of four .f16x2 registers.

.f32 A vector expression of eight .f32 registers.

Floating point fragments for .bf16 data format

Multiplicands (A or B):

308 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Data-type Shape Matrix Fragment

.bf16 .m16n16k16 A A vector expression of four .b32 registers, with
each register containing two elements from the
matrix.

B

.m8n32k16 A A vector expression containing a two .b32 reg-
isters, with containing two elements from the
matrix.

B A vector expression of eight .b32 registers,
with each register containing two elements
from the matrix.

.m32n8k16 A A vector expression of eight .b32 registers,
with each register containing two elements
from the matrix.

B A vector expression containing two .b32 regis-
ters, with each containing two elements from
the matrix.

Accumulators (C or D):

Data-type Matrix Fragment

.f32 C or D A vector expression containing eight .f32 registers.

Floating point fragments for .tf32 data format

Multiplicands (A or B):

Data-type Shape Matrix Fragment

.tf32 .m16n16k8 A A vector expression of four .b32 registers.

B A vector expression of four .b32 registers.

Accumulators (C or D):

Data-type Shape Matrix Fragment

.f32 .m16n16k8 C or D A vector expression containing eight .f32 reg-
isters.

Double precision floating point fragments

Multiplicands (A or B):

Data-type Shape Matrix Fragment

.f64 .m8n8k4 A or B A vector expression of single .f64 register.

Accumulators (C or D):

9.7. Instructions 309

PTX ISA, Release 8.1

Data-type Shape Matrix Fragment

.f64 .m8n8k4 C or D A vector expression containing single .f64 register.

Sub-byte integer and single-bit fragments

Multiplicands (A or B):

Data-type Shape Fragment

.u4 or .s4 .m8n8k32 A vector expression containing a single .b32 regis-
ter, containing eight elements from the matrix.

.b1 .m8n8k128 A vector expression containing a single .b32 regis-
ter, containing 32 elements from the matrix.

Accumulators (C or D):

Data-type Shape Fragment

.s32 .m8n8k32 A vector expression of two .s32 registers.

.m8n8k128 A vector expression of two .s32 registers.

Manipulating fragment contents

The contents of a matrix fragment can be manipulated by reading and writing to individual
registers in the fragment, provided the following conditions are satisfied:

▶ All matrix element in the fragment are operated on uniformly across threads, using the
same parameters.

▶ The order of the matrix elements is not changed.

For example, if each register corresponding to a given matrix is multiplied by a uniform
constant value, then the resulting matrix is simply the scaled version of the original matrix.

Note that type conversion between.f16 and.f32 accumulator fragments is not supported
in either direction. The result is undefined even if the order of elements in the fragment
remains unchanged.

9.7.13.3.2 Matrix Storage for WMMA

Each matrix can be stored in memory with a row-major or column-major layout. In a row-major format,
consecutive elements of each row are stored in contiguousmemory locations, and the row is called the
leading dimension of the matrix. In a column-major format, consecutive elements of each column are
stored in contiguous memory locations and the column is called the leading dimension of the matrix.

Consecutive instances of the leading dimension (rows or columns) need not be stored contiguously
in memory. The wmma.load and wmma.store operations accept an optional argument stride that
specifies the offset from thebeginning of each row (or column) to the next, in termsofmatrix elements
(and not bytes). For example, the matrix being accessed by a wmma operation may be a submatrix from
a larger matrix stored in memory. This allows the programmer to compose a multiply-and-accumulate
operation on matrices that are larger than the shapes supported by the wmma operation.

Address Alignment:

310 Chapter 9. Instruction Set

PTX ISA, Release 8.1

The starting address of each instance of the leading dimension (row or column) must be
aligned with the size of the corresponding fragment in bytes. Note that the starting ad-
dress is determined by the base pointer and the optional stride.

Consider the following instruction as an example:

wmma.load.a.sync.aligned.row.m16n16k16.f16 {x0,...,x7}, [p], s;

▶ Fragment size in bytes = 32 (eight elements of type .f16x2)

▶ Actual stride in bytes = 2 * s (since stride is specified in terms of .f16 elements, not bytes)

▶ For each row of this matrix to be aligned at fragment size the following must be true:

1. p is a multiple of 32.

2. 2*s is a multiple of 32.

Default value for stride:

The default value of the stride is the size of the leading dimension of the matrix. For
example, for an MxKmatrix, the stride is K for a row-major layout and M for a column-major
layout. In particular, the default strides for the supported matrix shapes are as follows:

Shape A (row) A (column) B (row) B (column) Accu-
mulator
(row)

Accumulator
(column)

16x16x16 16 16 16 16 16 16

8x32x16 16 8 32 16 32 8

32x8x16 16 32 8 16 8 32

8x8x32 32 8 8 32 8 8

8x8x128 128 8 8 128 8 8

16x16x8 8 16 16 8 16 16

8x8x4 4 8 8 4 8 8

9.7.13.3.3 Warp-level Matrix Load Instruction: wmma.load

wmma.load

Collectively load a matrix from memory for WMMA

Syntax

Floating point format .f16 loads:

wmma.load.a.sync.aligned.layout.shape{.ss}.atype r, [p] {, stride};
wmma.load.b.sync.aligned.layout.shape{.ss}.btype r, [p] {, stride};
wmma.load.c.sync.aligned.layout.shape{.ss}.ctype r, [p] {, stride};

.layout = {.row, .col};

.shape = {.m16n16k16, .m8n32k16, .m32n8k16};

.ss = {.global, .shared{::cta}};

.atype = {.f16, .s8, .u8};
(continues on next page)

9.7. Instructions 311

PTX ISA, Release 8.1

(continued from previous page)

.btype = {.f16, .s8, .u8};

.ctype = {.f16, .f32, .s32};

Alternate floating point format .bf16 loads:

wmma.load.a.sync.aligned.layout.shape{.ss}.atype r, [p] {, stride}
wmma.load.b.sync.aligned.layout.shape{.ss}.btype r, [p] {, stride}
wmma.load.c.sync.aligned.layout.shape{.ss}.ctype r, [p] {, stride}
.layout = {.row, .col};
.shape = {.m16n16k16, .m8n32k16, .m32n8k16};
.ss = {.global, .shared{::cta}};
.atype = {.bf16 };
.btype = {.bf16 };
.ctype = {.f32 };

Alternate floating point format .tf32 loads:

wmma.load.a.sync.aligned.layout.shape{.ss}.atype r, [p] {, stride}
wmma.load.b.sync.aligned.layout.shape{.ss}.btype r, [p] {, stride}
wmma.load.c.sync.aligned.layout.shape{.ss}.ctype r, [p] {, stride}
.layout = {.row, .col};
.shape = {.m16n16k8 };
.ss = {.global, .shared{::cta}};
.atype = {.tf32 };
.btype = {.tf32 };
.ctype = {.f32 };

Double precision Floating point .f64 loads:

wmma.load.a.sync.aligned.layout.shape{.ss}.atype r, [p] {, stride}
wmma.load.b.sync.aligned.layout.shape{.ss}.btype r, [p] {, stride}
wmma.load.c.sync.aligned.layout.shape{.ss}.ctype r, [p] {, stride}
.layout = {.row, .col};
.shape = {.m8n8k4 };
.ss = {.global, .shared{::cta}};
.atype = {.f64 };
.btype = {.f64 };
.ctype = {.f64 };

Sub-byte loads:

wmma.load.a.sync.aligned.row.shape{.ss}.atype r, [p] {, stride}
wmma.load.b.sync.aligned.col.shape{.ss}.btype r, [p] {, stride}
wmma.load.c.sync.aligned.layout.shape{.ss}.ctype r, [p] {, stride}
.layout = {.row, .col};
.shape = {.m8n8k32};
.ss = {.global, .shared{::cta}};
.atype = {.s4, .u4};
.btype = {.s4, .u4};
.ctype = {.s32};

Single-bit loads:

wmma.load.a.sync.aligned.row.shape{.ss}.atype r, [p] {, stride}
wmma.load.b.sync.aligned.col.shape{.ss}.btype r, [p] {, stride}
wmma.load.c.sync.aligned.layout.shape{.ss}.ctype r, [p] {, stride}
.layout = {.row, .col};

(continues on next page)

312 Chapter 9. Instruction Set

PTX ISA, Release 8.1

(continued from previous page)

.shape = {.m8n8k128};

.ss = {.global, .shared{::cta}};

.atype = {.b1};

.btype = {.b1};

.ctype = {.s32};

Description

Collectively load a matrix across all threads in a warp from the location indicated by address operand
p in the specified state space into destination register r.

If no state space is given, perform the memory accesses using Generic Addressing. wmma.load op-
eration may be used only with .global and .shared spaces and with generic addressing, where the
address points to .global or .shared space.

The mutually exclusive qualifiers .a, .b and .c indicate whether matrix A, B or C is being loaded re-
spectively for the wmma computation.

The destination operand r is a brace-enclosed vector expression that can hold the fragment returned
by the load operation, as described inMatrix Fragments for WMMA.

The .shape qualifier indicates the dimensions of all the matrix arguments involved in the intended
wmma computation.

The.layoutqualifier indicateswhether thematrix to be loaded is stored in row-major or column-major
format.

stride is an optional 32-bit integer operand that provides an offset in terms of matrix elements be-
tween the start of consecutive instances of the leading dimension (rows or columns). The default value
of stride is described inMatrix Storage for WMMA and must be specified if the actual value is larger
than the default. For example, if the matrix is a sub-matrix of a larger matrix, then the value of stride
is the leading dimension of the larger matrix. Specifying a value lower than the default value results
in undefined behavior.

The required alignment for address p and stride is described in theMatrix Storage for WMMA.

The mandatory .sync qualifier indicates that wmma.load causes the executing thread to wait until all
threads in the warp execute the same wmma.load instruction before resuming execution.

Themandatory .aligned qualifier indicates that all threads in thewarpmust execute the same wmma.
load instruction. In conditionally executed code, a wmma.load instruction should only be used if it is
known that all threads in the warp evaluate the condition identically, otherwise behavior is undefined.

The behavior of wmma.load is undefined if all threads do not use the same qualifiers and the same
values of p and stride, or if any thread in the warp has exited.

wmma.load is treated as a weakmemory operation in theMemory Consistency Model.

PTX ISA Notes

Introduced in PTX ISA version 6.0.

.m8n32k16 and .m32n8k16 introduced in PTX ISA version 6.1.

Integer, sub-byte integer and single-bit wmma introduced in PTX ISA version 6.3.

.m8n8k4 and .m16n16k8 on wmma introduced in PTX ISA version 7.0.

Double precision and alternate floating point precision wmma introduced in PTX ISA version 7.0.

Modifier .aligned is required from PTX ISA version 6.3 onwards, and considered implicit in PTX ISA
versions less than 6.3.

9.7. Instructions 313

PTX ISA, Release 8.1

Support for ::cta sub-qualifier introduced in PTX ISA version 7.8.

Preview Feature: Sub-byte wmma and single-bit wmma are preview features in PTX ISA version 6.3. All
details are subject to change with no guarantees of backward compatibility on future PTX ISA
versions or SM architectures.

Target ISA Notes

Floating point wmma requires sm_70 or higher.

Integer wmma requires sm_72 or higher.

Sub-byte and single-bit wmma requires sm_75 or higher.

Double precision and alternate floating point precision wmma requires sm_80 or higher.

Examples

∕∕ Load elements from f16 row-major matrix B
.reg .b32 x<8>;

wmma.load.b.sync.aligned.m16n16k16.row.f16 {x0,x1,x2,x3,x4,x5,x,x7}, [ptr];
∕∕ Now use {x0, ..., x7} for the actual wmma.mma

∕∕ Load elements from f32 column-major matrix C and scale the values:
.reg .b32 x<8>;

wmma.load.c.sync.aligned.m16n16k16.col.f32
{x0,x1,x2,x3,x4,x5,x6,x7}, [ptr];

mul.f32 x0, x0, 0.1;
∕∕ repeat for all registers x<8>;
...
mul.f32 x7, x7, 0.1;
∕∕ Now use {x0, ..., x7} for the actual wmma.mma

∕∕ Load elements from integer matrix A:
.reg .b32 x<4>
∕∕ destination registers x<4> contain four packed .u8 values each
wmma.load.a.sync.aligned.m32n8k16.row.u8 {x0,x1,x2,x3}, [ptr];

∕∕ Load elements from sub-byte integer matrix A:
.reg .b32 x0;
∕∕ destination register x0 contains eight packed .s4 values
wmma.load.a.sync.aligned.m8n8k32.row.s4 {x0}, [ptr];

∕∕ Load elements from .bf16 matrix A:
.reg .b32 x<4>;
wmma.load.a.sync.aligned.m16n16k16.row.bf16

{x0,x1,x2,x3}, [ptr];

∕∕ Load elements from .tf32 matrix A:
.reg .b32 x<4>;
wmma.load.a.sync.aligned.m16n16k8.row.tf32

{x0,x1,x2,x3}, [ptr];

∕∕ Load elements from .f64 matrix A:
.reg .b32 x<4>;
wmma.load.a.sync.aligned.m8n8k4.row.f64

{x0}, [ptr];

314 Chapter 9. Instruction Set

PTX ISA, Release 8.1

9.7.13.3.4 Warp-level Matrix Store Instruction: wmma.store

wmma.store

Collectively store a matrix into memory for WMMA

Syntax

wmma.store.d.sync.aligned.layout.shape{.ss}.type [p], r {, stride};

.layout = {.row, .col};

.shape = {.m16n16k16, .m8n32k16, .m32n8k16};

.ss = {.global, .shared{::cta}};

.type = {.f16, .f32, .s32};

wmma.store.d.sync.aligned.layout.shape{.ss}.type [p], r {, stride}
.layout = {.row, .col};
.shape = {.m8n8k32, .m8n8k128};
.ss = {.global, .shared{::cta}};
.type = {.s32};

wmma.store.d.sync.aligned.layout.shape{.ss}.type [p], r {, stride}
.layout = {.row, .col};
.shape = {.m16n16k8};
.ss = {.global, .shared{::cta}};
.type = {.f32};

wmma.store.d.sync.aligned.layout.shape{.ss}.type [p], r {, stride}
.layout = {.row, .col};
.shape = {.m8n8k4 };
.ss = {.global, .shared{::cta}};
.type = {.f64};

Description

Collectively store a matrix across all threads in a warp at the location indicated by address operand p
in the specified state space from source register r.

If no state space is given, perform the memory accesses using Generic Addressing. wmma.load op-
eration may be used only with .global and .shared spaces and with generic addressing, where the
address points to .global or .shared space.

The source operand r is a brace-enclosed vector expression that matches the shape of the fragment
expected by the store operation, as described inMatrix Fragments for WMMA.

The .shape qualifier indicates the dimensions of all the matrix arguments involved in the intended
wmma computation. It must match the .shape qualifier specified on the wmma.mma instruction that
produced the D matrix being stored.

The.layoutqualifier indicateswhether thematrix to be loaded is stored in row-major or column-major
format.

stride is an optional 32-bit integer operand that provides an offset in terms of matrix elements be-
tween the start of consecutive instances of the leading dimension (rows or columns). The default value
of stride is described inMatrix Storage for WMMA and must be specified if the actual value is larger
than the default. For example, if the matrix is a sub-matrix of a larger matrix, then the value of stride
is the leading dimension of the larger matrix. Specifying a value lower than the default value results
in undefined behavior.

The required alignment for address p and stride is described in theMatrix Storage for WMMA.

9.7. Instructions 315

PTX ISA, Release 8.1

The mandatory .sync qualifier indicates that wmma.store causes the executing thread to wait until
all threads in the warp execute the same wmma.store instruction before resuming execution.

Themandatory .aligned qualifier indicates that all threads in thewarpmust execute the same wmma.
store instruction. In conditionally executed code, a wmma.store instruction should only be used if it is
known that all threads in the warp evaluate the condition identically, otherwise behavior is undefined.

The behavior of wmma.store is undefined if all threads do not use the same qualifiers and the same
values of p and stride, or if any thread in the warp has exited.

wmma.store is treated as a weakmemory operation in theMemory Consistency Model.

PTX ISA Notes

Introduced in PTX ISA version 6.0.

.m8n32k16 and .m32n8k16 introduced in PTX ISA version 6.1.

Integer, sub-byte integer and single-bit wmma introduced in PTX ISA version 6.3.

.m16n16k8 introduced in PTX ISA version 7.0.

Double precision wmma introduced in PTX ISA version 7.0.

Modifier .aligned is required from PTX ISA version 6.3 onwards, and considered implicit in PTX ISA
versions less than 6.3.

Support for ::cta sub-qualifier introduced in PTX ISA version 7.8.

Preview Feature: Sub-byte wmma and single-bit wmma are preview features in PTX ISA version 6.3. All
details are subject to change with no guarantees of backward compatibility on future PTX ISA
versions or SM architectures.

Target ISA Notes

Floating point wmma requires sm_70 or higher.

Integer wmma requires sm_72 or higher.

Sub-byte and single-bit wmma requires sm_75 or higher.

Double precision wmma and shape .m16n16k8 requires sm_80 or higher.

Examples

∕∕ Storing f32 elements computed by a wmma.mma
.reg .b32 x<8>;

wmma.mma.sync.m16n16k16.row.col.f32.f32
{d0, d1, d2, d3, d4, d5, d6, d7}, ...;

wmma.store.d.sync.m16n16k16.row.f32
[ptr], {d0, d1, d2, d3, d4, d5, d6, d7};

∕∕ Store s32 accumulator for m16n16k16 shape:
.reg .b32 d<8>;
wmma.store.d.sync.aligned.m16n16k16.row.s32

[ptr], {d0, d1, d2, d3, d4, d5, d6, d7};

∕∕ Store s32 accumulator for m8n8k128 shape:
.reg .b32 d<2>
wmma.store.d.sync.aligned.m8n8k128.row.s32
[ptr], {d0, d1};

∕∕ Store f64 accumulator for m8n8k4 shape:
(continues on next page)

316 Chapter 9. Instruction Set

PTX ISA, Release 8.1

(continued from previous page)

.reg .f64 d<2>;
wmma.store.d.sync.aligned.m8n8k4.row.f64

[ptr], {d0, d1};

9.7.13.3.5 Warp-level Matrix Multiply-and-Accumulate Instruction: wmma.mma

wmma.mma

Perform a single matrix multiply-and-accumulate operation across a warp

Syntax

∕∕ Floating point (.f16 multiplicands) wmma.mma
wmma.mma.sync.aligned.alayout.blayout.shape.dtype.ctype d, a, b, c;

∕∕ Integer (.u8∕.s8 multiplicands) wmma.mma
wmma.mma.sync.aligned.alayout.blayout.shape.s32.atype.btype.s32{.satfinite} d, a, b,�
↪→c;

.alayout = {.row, .col};

.blayout = {.row, .col};

.shape = {.m16n16k16, .m8n32k16, .m32n8k16};

.dtype = {.f16, .f32};

.atype = {.s8, .u8};

.btype = {.s8, .u8};

.ctype = {.f16, .f32};

Floating point format .bf16wmma.mma:

wmma.mma.sync.aligned.alayout.blayout.shape.f32.atype.btype.f32 d, a, b, c;
.alayout = {.row, .col};
.blayout = {.row, .col};
.shape = {.m16n16k16, .m8n32k16, .m32n8k16};
.atype = {.bf16 };
.btype = {.bf16};

Floating point format .tf32wmma.mma:

wmma.mma.sync.aligned.alayout.blayout.shape.f32.atype.btype.f32 d, a, b, c;
.alayout = {.row, .col};
.blayout = {.row, .col};
.shape = {.m16n16k8 };
.atype = {.tf32 };
.btype = {.tf32};

Floating point Double precision wmma.mma:

wmma.mma.sync.aligned.alayout.blayout.shape{.rnd}.f64.f64.f64.f64 d, a, b, c;
.alayout = {.row, .col};
.blayout = {.row, .col};
.shape = {.m8n8k4 };
.rnd = { .rn, .rz, .rm, .rp };

Sub-byte (.u4/.s4multiplicands) wmma.mma:

9.7. Instructions 317

PTX ISA, Release 8.1

wmma.mma.sync.aligned.row.col.shape.s32.atype.btype.s32{.satfinite} d, a, b, c;
.shape = {.m8n8k32};
.atype = {.s4, .u4};
.btype = {.s4, .u4};

Single-bit (.b1multiplicands) wmma.mma:

wmma.mma.op.popc.sync.aligned.row.col.shape.s32.atype.btype.s32 d, a, b, c;
.shape = {.m8n8k128};
.atype = {.b1};
.btype = {.b1};
.op = {.xor, .and}

Description

Perform awarp-level matrixmultiply-and-accumulate computation D = A * B + C usingmatrices A, B
and C loaded in registers a, b and c respectively, and store the result matrix in register d. The register
arguments a, b, c and d hold unspecified fragments of the corresponding matrices as described in
Matrix Fragments for WMMA

The qualifiers .dtype, .atype, .btype and .ctype indicate the data-type of the elements in the
matrices D, A, B and C respectively.

For wmma.mma without explicit .atype and .btype: .atype and .btype are implicitly set to .f16.

For integer wmma, .ctype and .dtype must be specified as .s32. Also, the values for .atype and
.btypemust be the same, i.e., either both are .s8 or both are .u8.

For sub-byte single-bit wmma, .ctype and .dtype must be specified as .s32. Also, the values for
.atype and .btypemust be the same; i.e., either both are .s4, both are .u4, or both are .b1.

For single-bit wmma, multiplication is replaced by a sequence of logical operations; specifically, wmma.
xor.popc and wmma.and.popc computes the XOR, AND respectively of a 128-bit row of A with a
128-bit column of B, then counts the number of set bits in the result (popc). This result is added to
the corresponding element of C and written into D.

The qualifiers .alayout and .blayout must match the layout specified on the wmma.load instruc-
tions that produce the contents of operands a and b respectively. Similarly, the qualifiers .atype,
.btype and .ctype must match the corresponding qualifiers on the wmma.load instructions that
produce the contents of operands a, b and c respectively.

The .shape qualifier must match the .shape qualifier used on the wmma.load instructions that pro-
duce the contents of all three input operands a, b and c respectively.

The destination operand d is a brace-enclosed vector expression that matches the .shape of the
fragment computed by the wmma.mma instruction.

Saturation at the output: The optional qualifier.satfinite indicates that thefinal values in the des-
tination register are saturated as follows:

▶ The output is clamped to the minimum or maximum 32-bit signed integer value. Otherwise,
if the accumulation would overflow, the value wraps.

Precision and rounding for .f16 floating point operations: Element-wise multiplication of matrix A
and B is performed with at least single precision. When .ctype or .dtype is .f32, accumulation
of the intermediate values is performed with at least single precision. When both .ctype and
.dtype are specified as .f16, the accumulation is performed with at least half precision.

The accumulation order, rounding and handling of subnormal inputs is unspecified.

318 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Precision and rounding for .bf16, .tf32 floating point operations: Element-wise multiplication of
matrix A and B is performed with specified precision. Accumulation of the intermediate values
is performed with at least single precision.

The accumulation order, rounding and handling of subnormal inputs is unspecified.

Rounding modifiers on double precision wmma.mma (default is .rn):

.rn mantissa LSB rounds to nearest even

.rz mantissa LSB rounds towards zero

.rm mantissa LSB rounds towards negative infinity

.rp mantissa LSB rounds towards positive infinity

The mandatory .sync qualifier indicates that wmma.mma causes the executing thread to wait until all
threads in the warp execute the same wmma.mma instruction before resuming execution.

Themandatory .aligned qualifier indicates that all threads in thewarpmust execute the same wmma.
mma instruction. In conditionally executed code, a wmma.mma instruction should only be used if it is
known that all threads in the warp evaluate the condition identically, otherwise behavior is undefined.

The behavior of wmma.mma is undefined if all threads in the same warp do not use the same qualifiers,
or if any thread in the warp has exited.

PTX ISA Notes

Introduced in PTX ISA version 6.0.

.m8n32k16 and .m32n8k16 introduced in PTX ISA version 6.1.

Integer, sub-byte integer and single-bit wmma introduced in PTX ISA version 6.3.

Double precision and alternate floating point precision wmma introduced in PTX ISA version 7.0.

Support for .and operation in single-bit wmma introduced in PTX ISA version 7.1.

Modifier .aligned is required from PTX ISA version 6.3 onwards, and considered implicit in PTX ISA
versions less than 6.3.

Support for .satfinite on floating point wmma.mma is deprecated in PTX ISA version 6.4 and is re-
moved from PTX ISA version 6.5.

Preview Feature: Sub-byte wmma and single-bit wmma are preview features in PTX ISA. All details are
subject to change with no guarantees of backward compatibility on future PTX ISA versions or
SM architectures.

Target ISA Notes

Floating point wmma requires sm_70 or higher.

Integer wmma requires sm_72 or higher.

Sub-byte and single-bit wmma requires sm_75 or higher.

Double precision, alternate floating point precision wmma require sm_80 or higher.

.and operation in single-bit wmma requires sm_80 or higher.

Examples

.global .align 32 .f16 A[256], B[256];

.global .align 32 .f32 C[256], D[256];

.reg .b32 a<8> b<8> c<8> d<8>;

(continues on next page)

9.7. Instructions 319

PTX ISA, Release 8.1

(continued from previous page)

wmma.load.a.sync.aligned.m16n16k16.global.row.f16
{a0, a1, a2, a3, a4, a5, a6, a7}, [A];

wmma.load.b.sync.aligned.m16n16k16.global.col.f16
{b0, b1, b2, b3, b4, b5, b6, b7}, [B];

wmma.load.c.sync.aligned.m16n16k16.global.row.f32
{c0, c1, c2, c3, c4, c5, c6, c7}, [C];

wmma.mma.sync.aligned.m16n16k16.row.col.f32.f32
{d0, d1, d2, d3, d4, d5, d6, d7},
{a0, a1, a2, a3, a4, a5, a6, a7},
{b0, b1, b2, b3, b4, b5, b6, b7},
{c0, c1, c2, c3, c4, c5, c6, c7};

wmma.store.d.sync.aligned.m16n16k16.global.col.f32
[D], {d0, d1, d2, d3, d4, d5, d6, d7};

∕∕ Compute an integer WMMA:
.reg .b32 a, b<4>;
.reg .b32 c<8>, d<8>;
wmma.mma.sync.aligned.m8n32k16.row.col.s32.s8.s8.s32

{d0, d1, d2, d3, d4, d5, d6, d7},
{a}, {b0, b1, b2, b3},
{c0, c1, c2, c3, c4, c5, c6, c7};

∕∕ Compute sub-byte WMMA:
.reg .b32 a, b, c<2> d<2>
wmma.mma.sync.aligned.m8n8k32.row.col.s32.s4.s4.s32

{d0, d1}, {a}, {b}, {c0, c1};

∕∕ Compute single-bit type WMMA:
.reg .b32 a, b, c<2> d<2>
wmma.mma.xor.popc.sync.aligned.m8n8k128.row.col.s32.b1.b1.s32

{d0, d1}, {a}, {b}, {c0, c1};

∕∕ Compute double precision wmma
.reg .f64 a, b, c<2>, d<2>;
wmma.mma.sync.aligned.m8n8k4.row.col.f64.f64.f64.f64

{d0, d1}, {a}, {b}, {c0, c1};

∕∕ Compute alternate floating point precision wmma
.reg .b32 a<2>, b<2>, c<8>, d<8>;
wmma.mma.sync.aligned.m16n16k8.row.col.f32.tf32.tf32.f32

{d0, d1, d2, d3, d4, d5, d6, d7},
{a0, a1, a2, a3}, {b0, b1, b2, b3},
{c0, c1, c2, c3, c4, c5, c6, c7};

320 Chapter 9. Instruction Set

PTX ISA, Release 8.1

9.7.13.4 Matrix multiply-accumulate operation using mma instruction

This section describes warp-level mma, ldmatrix, stmatrix, and movmatrix instructions and the
organization of various matrices involved in these instructions.

9.7.13.4.1 Matrix Fragments for mma.m8n8k4 with .f16 floating point type

A warp executing mma.m8n8k4 with .f16 floating point type will compute 4 MMA operations of shape
.m8n8k4.

Elements of 4 matrices need to be distributed across the threads in a warp. The following table shows
distribution of matrices for MMA operations.

MMA Computation Threads participating in MMA computation

MMA computation 1 Threads with %laneid 0-3 (low group) and 16-19 (high group)

MMA computation 2 Threads with %laneid 4-7 (low group) and 20-23 (high group)

MMA computation 3 Threads with %laneid 8-11 (low group) and 24-27 (high group)

MMA computation 4 Threads with %laneid 12-15 (low group) and 28-31 (high group)

For each of the individual MMA computation shown above, each of the required thread holds a frag-
ment of the matrix for performing mma operation as follows:

▶ Multiplicand A:

.atype Fragment Elements (low
to high)

.f16 A vector expression containing two .f16x2 registers, with each
register containing two .f16 elements from the matrix A.

a0, a1, a2, a3

The layout of the fragments held by different threads is shown below:

▶ Fragment layout for Row Major matrix A is shown in Figure 21.

The row and column of a matrix fragment can be computed as:

row = %laneid % 4 if %laneid < 16
(%laneid % 4) + 4 otherwise

col = i for ai where i = {0,..,3}

▶ Fragment layout for Column Major matrix A is shown in Figure 22.

The layout of the fragments held by different threads is shown below:

The row and column of a matrix fragment can be computed as:

row = i % 4 for ai where i = {0,..,3} if %laneid < 16
(i % 4) + 4 for ai where i = {0,..,3} otherwise

col = %laneid % 4

9.7. Instructions 321

PTX ISA, Release 8.1

Figure 21: MMA .m8n8k4 fragment layout for row-major matrix A with .f16 type

Figure 22: MMA .m8n8k4 fragment layout for column-major matrix A with .f16 type

322 Chapter 9. Instruction Set

PTX ISA, Release 8.1

▶ Multiplicand B:

.btype Fragment Elements (low
to high)

.f16 A vector expression containing two .f16x2 registers, with each
register containing two .f16 elements from the matrix B.

b0, b1, b2, b3

The layout of the fragments held by different threads is shown below:

▶ Fragment layout for Row Major matrix B is shown in Figure 23.

Figure 23: MMA .m8n8k4 fragment layout for row-major matrix B with .f16 type

The row and column of a matrix fragment can be computed as:

row = %laneid % 4

col = i for bi where i = {0,..,3} if %laneid < 16
i+4 for bi where i = {0,..,3} otherwise

▶ Fragment layout for Column Major matrix B is shown in Figure 24.

The row and column of a matrix fragment can be computed as:

row = i for bi where i = {0,..,3}

col = %laneid % 4 if %laneid < 16
(%laneid % 4) + 4 otherwise

▶ Accumulators C (or D):

.ctype /

.dtype
Fragment Elements (low

to high)

.f16 A vector expression containing four .f16x2 registers, with each
register containing two .f16 elements from the matrix C (or D).

c0, c1, c2, c3,
c4, c5, c6, c7

.f32 A vector expression of eight .f32 registers.

The layout of the fragments held by different threads is shown below:

9.7. Instructions 323

PTX ISA, Release 8.1

Figure 24: MMA .m8n8k4 fragment layout for column-major matrix B with .f16 type

▶ Fragment layout for accumulator matrix when .ctype is .f16 is shown in Figure 25.

The row and column of a matrix fragment can be computed as:

row = %laneid % 4 if %laneid < 16
(%laneid % 4) + 4 otherwise

col = i for ci where i = {0,..,7}

▶ Fragment layout for accumulator matrix when .ctype is .f32 is shown in Figure 26 and
Figure 27.

The row and column of a matrix fragment can be computed as:

row = X if %laneid < 16
X + 4 otherwise

where X = (%laneid & 0b1) + (i & 0b10) for ci where i = {0,..,7}

col = (i & 0b100) + (%laneid & 0b10) + (i & 0b1) for ci where i = {0,..,7}

9.7.13.4.2 Matrix Fragments for mma.m8n8k4 with .f64 floating point type

A warp executing mma.m8n8k4with .f64 floating point type will compute anMMA operation of shape
.m8n8k4.

Elements of the matrix are distributed across the threads in a warp so each thread of the warp holds
a fragment of the matrix.

▶ Multiplicand A:

.atype Fragment Elements (low
to high)

.f64 A vector expression containing a single .f64 register, containing
single .f64 element from the matrix A.

a0

324 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Figure 25: MMA .m8n8k4 fragment layout for matrix C/D with .ctype = .f16

Figure 26: MMA .m8n8k4 computation 1 and 2 fragment layout for matrix C/D with .ctype = .f32

9.7. Instructions 325

PTX ISA, Release 8.1

Figure 27: MMA .m8n8k4 computation 3 and 4 fragment layout for matrix C/D with .ctype = .f32

The layout of the fragments held by different threads is shown in Figure 28.

Figure 28: MMA .m8n8k4 fragment layout for matrix A with .f64 type

The row and column of a matrix fragment can be computed as:

row = %laneid >> 2

col = %laneid % 4

▶ Multiplicand B:

326 Chapter 9. Instruction Set

PTX ISA, Release 8.1

.btype Fragment Elements (low
to high)

.f64 A vector expression containing a single .f64 register, containing
a single .f64 element from the matrix B.

b0

The layout of the fragments held by different threads is shown in Figure 29.

Figure 29: MMA .m8n8k4 fragment layout for matrix B with .f64 type

The row and column of a matrix fragment can be computed as:

row = %laneid % 4

col = %laneid >> 2

▶ Accumulators (C or D):

.ctype /

.dtype
Fragment Elements (low

to high)

.f64 A vector expression containing of two .f64 registers containing
two .f64 elements from the matrix C.

c0, c1

The layout of the fragments held by different threads is shown in Figure 30.

The row and column of a matrix fragment can be computed as:

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

row = groupID

col = (threadID_in_group * 2) + (i & 0x1) for ci where i = {0, 1}

9.7. Instructions 327

PTX ISA, Release 8.1

Figure 30: MMA .m8n8k4 fragment layout for accumulator matrix C/D with .f64 type

9.7.13.4.3 Matrix Fragments for mma.m8n8k16

A warp executing mma.m8n8k16 will compute an MMA operation of shape .m8n8k16.

Elements of the matrix are distributed across the threads in a warp so each thread of the warp holds
a fragment of the matrix.

▶ Multiplicand A:

.atype Fragment Elements (low
to high)

.s8 / .u8 A vector expression containing a single .b32 register, contain-
ing four .s8 or .u8 elements from the matrix A.

a0, a1, a2, a3

The layout of the fragments held by different threads is shown in Figure 31.

The row and column of a matrix fragment can be computed as:

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

row = groupID

col = (threadID_in_group * 4) + i for ai where i = {0,..,3}

▶ Multiplicand B:

328 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Figure 31: MMA .m8n8k16 fragment layout for matrix A with .u8/.s8 type

.btype Fragment Elements (low
to high)

.s8 / .u8 A vector expression containing a single .b32 register, contain-
ing four .s8 or .u8 elements from the matrix B.

b0, b1, b2, b3

The layout of the fragments held by different threads is shown in Figure 32.

The row and column of a matrix fragment can be computed as:

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

row = (threadID_in_group * 4) + i for bi where i = {0,..,3}

col = groupID

▶ Accumulators (C or D):

.ctype /

.dtype
Fragment Elements (low

to high)

.s32 A vector expression containing of two .s32 registers. c0, c1

The layout of the fragments held by different threads is shown in Figure 33.

The row and column of a matrix fragment can be computed as:

9.7. Instructions 329

PTX ISA, Release 8.1

Figure 32: MMA .m8n8k16 fragment layout for matrix B with .u8/.s8 type

330 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Figure 33: MMA .m8n8k16 fragment layout for accumulator matrix C/D with .s32 type

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

row = groupID

col = (threadID_in_group * 2) + i for ci where i = {0, 1}

9.7.13.4.4 Matrix Fragments for mma.m8n8k32

A warp executing mma.m8n8k32 will compute an MMA operation of shape .m8n8k32.

Elements of the matrix are distributed across the threads in a warp so each thread of the warp holds
a fragment of the matrix.

▶ Multiplicand A:

.atype Fragment Elements (low
to high)

.s4 / .u4 A vector expression containing a single .b32 register, contain-
ing eight .s4 or .u4 elements from the matrix A.

a0, a1, a2, a3,
a4, a5, a6, a7

The layout of the fragments held by different threads is shown in Figure 34.

The row and column of a matrix fragment can be computed as:

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

row = groupID
(continues on next page)

9.7. Instructions 331

PTX ISA, Release 8.1

Figure 34: MMA .m8n8k32 fragment layout for matrix A with .u4/.s4 type

(continued from previous page)

col = (threadID_in_group * 8) + i for ai where i = {0,..,7}

▶ Multiplicand B:

.btype Fragment Elements (low
to high)

.s4 / .u4 A vector expression containing a single .b32 register, contain-
ing eight .s4 or .u4 elements from the matrix B.

b0, b1, b2, b3,
b4, b5, b6, b7

The layout of the fragments held by different threads is shown in Figure 35.

The row and column of a matrix fragment can be computed as:

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

row = (threadID_in_group * 8) + i for bi where i = {0,..,7}

col = groupID

▶ Accumulators (C or D):

.ctype /

.dtype
Fragment Elements (low

to high)

.s32 A vector expression of two .s32 registers. c0, c1

The layout of the fragments held by different threads is shown in Figure 36:

The row and column of a matrix fragment can be computed as:

332 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Figure 35: MMA .m8n8k32 fragment layout for matrix B with .u4/.s4 type

9.7. Instructions 333

PTX ISA, Release 8.1

Figure 36: MMA .m8n8k32 fragment layout for accumulator matrix C/D with .s32 type

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

row = groupID
col = (threadID_in_group * 2) + i for ci where i = {0, 1}

9.7.13.4.5 Matrix Fragments for mma.m8n8k128

A warp executing mma.m8n8k128 will compute an MMA operation of shape .m8n8k128.

Elements of the matrix are distributed across the threads in a warp so each thread of the warp holds
a fragment of the matrix.

▶ Multiplicand A:

.atype Fragment Elements (low
to high)

.b1 A vector expression containing a single .b32 register, containing
thirty two .b1 elements from the matrix A.

a0, a1, … a30,
a31

The layout of the fragments held by different threads is shown in Figure 37.

The row and column of a matrix fragment can be computed as:

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

row = groupID

col = (threadID_in_group * 32) + i for ai where i = {0,..,31}

▶ Multiplicand B:

334 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Figure 37: MMA .m8n8k128 fragment layout for matrix A with .b1 type.

.btype Fragment Elements (low
to high)

.b1 A vector expression containing a single .b32 register, containing
thirty two .b1 elements from the matrix B.

b0, b1, …, b30,
b31

The layout of the fragments held by different threads is shown in Figure 38.

The row and column of a matrix fragment can be computed as:

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

row = (threadID_in_group * 32) + i for bi where i = {0,..,31}

col = groupID

▶ Accumulators (C or D):

.ctype /

.dtype
Fragment Elements (low

to high)

.s32 A vector expression containing two .s32 registers, containing
two .s32 elements from the matrix C (or D).

c0, c1

The layout of the fragments held by different threads is shown in Figure 39.

The row and column of a matrix fragment can be computed as:

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

(continues on next page)

9.7. Instructions 335

PTX ISA, Release 8.1

Figure 38: MMA .m8n8k128 fragment layout for matrix B with .b1 type.

336 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Figure 39: MMA .m8n8k128 fragment layout for accumulator matrix C/D with .s32 type

(continued from previous page)

row = groupID

col = (threadID_in_group * 2) + i for ci where i = {0, 1}

9.7.13.4.6 Matrix Fragments for mma.m16n8k4

A warp executing mma.m16n8k4 will compute an MMA operation of shape .m16n8k4.

Elements of the matrix are distributed across the threads in a warp so each thread of the warp holds
a fragment of the matrix.

▶ Multiplicand A:

▶ .tf32:

.atype Fragment Elements (low
to high)

.tf32 A vector expression containing two .b32 registers, containing
two .tf32 elements from the matrix A.

a0, a1

The layout of the fragments held by different threads is shown in Figure 40.

The row and column of a matrix fragment can be computed as:

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

(continues on next page)

9.7. Instructions 337

PTX ISA, Release 8.1

Figure 40: MMA .m16n8k4 fragment layout for matrix A with .tf32 type.

338 Chapter 9. Instruction Set

PTX ISA, Release 8.1

(continued from previous page)

row = groupID for a0
groupID + 8 for a1

col = threadID_in_group

▶ .f64:

.atype Fragment Elements
(low to high)

.f64 A vector expression containing two .f64 registers, con-
taining two .f64 elements from the matrix A.

a0, a1

The layout of the fragments held by different threads is shown in Figure 41.

The row and column of a matrix fragment can be computed as:

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

row = groupID for a0
groupID + 8 for a1

col = threadID_in_group

▶ Multiplicand B:

▶ .tf32:

.btype Fragment Elements
(low to high)

.tf32 A vector expression of a single .b32 register, containing
a single .tf32 element from the matrix B.

b0

The layout of the fragments held by different threads is shown in Figure 42.

The row and column of a matrix fragment can be computed as:

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

row = threadID_in_group

col = groupID

▶ .f64:

.btype Fragment Elements
(low to high)

.f64 A vector expression of a single .f64 register, containing
a single .f64 element from the matrix B.

b0

The layout of the fragments held by different threads is shown in Figure 43.

9.7. Instructions 339

PTX ISA, Release 8.1

Figure 41: MMA .m16n8k4 fragment layout for matrix A with .f64 type.

340 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Figure 42: MMA .m16n8k4 fragment layout for matrix B with .tf32 type.

Figure 43: MMA .m16n8k4 fragment layout for matrix B with .f64 type.

9.7. Instructions 341

PTX ISA, Release 8.1

The row and column of a matrix fragment can be computed as:

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

row = threadID_in_group

col = groupID

▶ Accumulators (C or D):

▶ .tf32:

.ctype /

.dtype
Fragment Elements

(low to high)

.f32 A vector expression containing four .f32 registers,
containing four .f32 elements from the matrix C (or
D).

c0, c1, c2, c3

The layout of the fragments held by different threads is shown in Figure 44.

Figure 44: MMA .m16n8k4 fragment layout for accumulator matrix C/D with .f32 type.

The row and column of a matrix fragment can be computed as:

342 Chapter 9. Instruction Set

PTX ISA, Release 8.1

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

row = groupID for c0 and c1
groupID + 8 for c2 and c3

col = (threadID_in_group * 2) + (i & 0x1) for ci where i = {0,..,
↪→3}

▶ .f64:

.ctype /

.dtype
Fragment Elements

(low to high)

.f64 A vector expression containing four .f64 registers,
containing four .f64 elements from the matrix C (or
D).

c0, c1, c2, c3

The layout of the fragments held by different threads is shown in Figure 45.

Figure 45: MMA .m16n8k4 fragment layout for accumulator matrix C/D with .f64 type.

The row and column of a matrix fragment can be computed as:

9.7. Instructions 343

PTX ISA, Release 8.1

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

row = groupID for c0 and c1
groupID + 8 for c2 and c3

col = (threadID_in_group * 2) + (i & 0x1) for ci where i = {0,..,
↪→3}

9.7.13.4.7 Matrix Fragments for mma.m16n8k8

A warp executing mma.m16n8k8 will compute an MMA operation of shape .m16n8k8.

Elements of the matrix are distributed across the threads in a warp so each thread of the warp holds
a fragment of the matrix.

▶ Multiplicand A:

▶ .f16 and .bf16 :

.atype Fragment Elements
(low to high)

.f16 /

.bf16
A vector expression containing two .f16x2 registers,
with each register containing two .f16 / .bf16 ele-
ments from the matrix A.

a0, a1, a2, a3

The layout of the fragments held by different threads is shown in Figure 46.

The row and column of a matrix fragment can be computed as:

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

row = groupID for a0 and a1
groupID + 8 for a2 and a3

col = threadID_in_group * 2 + (i & 0x1) for ai where i = {0,..,
↪→3}

▶ .tf32 :

.atype Fragment Elements
(low to high)

.tf32 A vector expression containing four .b32 registers, con-
taining four .tf32 elements from the matrix A.

a0, a1, a2, a3

The layout of the fragments held by different threads is shown in Figure 47.

The row and column of a matrix fragment can be computed as:

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

(continues on next page)

344 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Figure 46: MMA .m16n8k8 fragment layout for matrix A with .f16 / .bf16 type.

9.7. Instructions 345

PTX ISA, Release 8.1

Figure 47: MMA .m16n8k8 fragment layout for matrix A with .tf32 type.

346 Chapter 9. Instruction Set

PTX ISA, Release 8.1

(continued from previous page)

row = groupID for a0 and a2
groupID + 8 for a1 and a3

col = threadID_in_group for a0 and a1
threadID_in_group + 4 for a2 and a3

▶ .f64 :

.atype Fragment Elements (low
to high)

.f64 A vector expression containing four .f64 registers, containing
four .f64 elements from the matrix A.

a0, a1, a2, a3

The layout of the fragments held by different threads is shown in Figure 48.

Figure 48: MMA .m16n8k8 fragment layout for matrix A with .f64 type.

The row and column of a matrix fragment can be computed as:

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

(continues on next page)

9.7. Instructions 347

PTX ISA, Release 8.1

(continued from previous page)

row = groupID for a0 and a2
groupID + 8 for a1 and a3

col = threadID_in_group for a0 and a1
threadID_in_group + 4 for a2 and a3

▶ Multiplicand B:

▶ .f16 and .bf16 :

.btype Fragment Elements
(low to high)

.f16 /

.bf16
A vector expression containing a single .f16x2 register,
containing two .f16 / .bf16 elements from the matrix
B.

b0, b1

The layout of the fragments held by different threads is shown in Figure 49.

Figure 49: MMA .m16n8k8 fragment layout for matrix B with .f16 / .bf16 type.

The row and column of a matrix fragment can be computed as:

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

(continues on next page)

348 Chapter 9. Instruction Set

PTX ISA, Release 8.1

(continued from previous page)

row = (threadID_in_group * 2) + i for bi where i = {0, 1}

col = groupID

▶ .tf32 :

.btype Fragment Elements
(low to high)

.tf32 A vector expression containing two .b32 registers, con-
taining two .tf32 elements from the matrix B.

b0, b1

The layout of the fragments held by different threads is shown in Figure 50.

Figure 50: MMA .m16n8k8 fragment layout for matrix B with .tf32 type.

The row and column of a matrix fragment can be computed as:

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

row = threadID_in_group for b0
threadID_in_group + 4 for b1

col = groupID

9.7. Instructions 349

PTX ISA, Release 8.1

▶ .f64 :

.btype Fragment Elements
(low to high)

.f64 A vector expression containing two .f64 registers, con-
taining two .f64 elements from the matrix B.

b0, b1

The layout of the fragments held by different threads is shown in Figure 51.

Figure 51: MMA .m16n8k8 fragment layout for matrix B with .f64 type.

The row and column of a matrix fragment can be computed as:

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

row = threadID_in_group for b0
threadID_in_group + 4 for b1

col = groupID

▶ Accumulators (C or D):

▶ .f16, .bf16 and .tf32:

350 Chapter 9. Instruction Set

PTX ISA, Release 8.1

.ctype /

.dtype
Fragment Elements

(low to high)

.f16 A vector expression containing two .f16x2 registers,
with each register containing two .f16 elements from
the matrix C (or D).

c0, c1, c2, c3

.f32 A vector expression of four .f32 registers.

The layout of the fragments held by different threads is shown in Figure 52.

Figure 52: MMA .m16n8k8 fragment layout for accumulator matrix C/D with .f16x2/.f32 type.

The row and column of a matrix fragment can be computed as:

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

row = groupID for c0 and c1
groupID + 8 for c2 and c3

col = (threadID_in_group * 2) + (i & 0x1) for ci where i = {0,..,
↪→3}

▶ .f64 :

9.7. Instructions 351

PTX ISA, Release 8.1

.ctype /

.dtype
Fragment Elements

(low to high)

.f64 A vector expression of four .f64 registers containing
four .f64 elements from the matrix C (or D).

c0, c1, c2, c3

The layout of the fragments held by different threads is shown in Figure 53.

Figure 53: MMA .m16n8k8 fragment layout for accumulator matrix C/D with .f64 type.

The row and column of a matrix fragment can be computed as:

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

row = groupID for c0 and c1
groupID + 8 for c2 and c3

col = (threadID_in_group * 2) + (i & 0x1) for ci where i = {0,..,
↪→3}

352 Chapter 9. Instruction Set

PTX ISA, Release 8.1

9.7.13.4.8 Matrix Fragments for mma.m16n8k16 with floating point type

A warp executing mma.m16n8k16 floating point types will compute an MMA operation of shape .
m16n8k16.

Elements of the matrix are distributed across the threads in a warp so each thread of the warp holds
a fragment of the matrix.

▶ Multiplicand A:

▶ .f16 and .bf16 :

.atype Fragment Elements
(low to high)

.f16 /

.bf16
A vector expression containing four .f16x2 registers,
with each register containing two .f16 / .bf16 ele-
ments from the matrix A.

a0, a1, a2, a3,
a4, a5, a6, a7

The layout of the fragments held by different threads is shown in Figure 54.

Figure 54: MMA .m16n8k16 fragment layout for matrix A with .f16 / .bf16 type.

9.7. Instructions 353

PTX ISA, Release 8.1

The row and column of a matrix fragment can be computed as:

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

row = groupID for ai where 0 <= i < 2 || 4 <= i < 6
groupID + 8 Otherwise

col = (threadID_in_group * 2) + (i & 0x1) for ai where i < 4
(threadID_in_group * 2) + (i & 0x1) + 8 for ai where i >= 4

▶ .f64 :

.atype Fragment Elements
(low to high)

.f64 A vector expression containing eight .f64 registers,
with each register containing one .f64 element from
the matrix A.

a0, a1, a2, a3,
a4, a5, a6, a7

The layout of the fragments held by different threads is shown in Figure 55.

Figure 55: MMA .m16n8k16 fragment layout for matrix A with .f64 type.

The row and column of a matrix fragment can be computed as:

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

row = groupID for ai where i % 2 = 0
groupID + 8 Otherwise

(continues on next page)

354 Chapter 9. Instruction Set

PTX ISA, Release 8.1

(continued from previous page)

col = (i * 2) + threadID_in_group for ai where i % 2 = 0
(i * 2) - 2 + (threadID_in_group Otherwise

▶ Multiplicand B:

▶ .f16 and .bf16 :

.btype Fragment Elements
(low to high)

.f16 /

.bf16
A vector expression containing two .f16x2 registers,
with each register containing two .f16 / .bf16 ele-
ments from the matrix B.

b0, b1, b2, b3

The layout of the fragments held by different threads is shown in Figure 56.

Figure 56: MMA .m16n8k16 fragment layout for matrix B with .f16 / .bf16 type.

where the row and column of a matrix fragment can be computed as:

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

row = (threadID_in_group * 2) + (i & 0x1) for bi where i < �
↪→2

(threadID_in_group * 2) + (i & 0x1) + 8 for bi where i >=�
↪→2 (continues on next page)

9.7. Instructions 355

PTX ISA, Release 8.1

(continued from previous page)

col = groupID

▶ .f64 :

.atype Fragment Elements
(low to high)

.f64 A vector expression containing four .f64 registers, with
each register containing one .f64 element from thema-
trix B.

b0, b1, b2, b3

The layout of the fragments held by different threads is shown in Figure 57.

Figure 57: MMA .m16n8k16 fragment layout for matrix B with .f64 type.

The row and column of a matrix fragment can be computed as:

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

row = threadID_in_group + (i * 4) for bi where i < 4

col = groupID

356 Chapter 9. Instruction Set

PTX ISA, Release 8.1

▶ Accumulators (C or D):

.ctype /

.dtype
Fragment Elements (low

to high)

.f64 A vector expression containing four .f64 registers containing .
f64 elements from the matrix C (or D).

c0, c1, c2, c3

.f32 A vector expression containing four .f32 registers containing
four .f32 elements from the matrix C (or D).

.f16 A vector expression containing two .f16x2 registers, with each
register containing two .f16 elements from the matrix C (or D).

The layout of the fragments held by different threads is shown in Figure 58.

Figure 58: MMA .m16n8k16 fragment layout for accumulator matrix matrix C/D.

The row and column of a matrix fragment can be computed as:

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

row = groupID for ci where i < 2
groupID + 8 for ci where i >= 2

col = (threadID_in_group * 2) + (i & 0x1) for ci where i = {0,..,3}

9.7. Instructions 357

PTX ISA, Release 8.1

9.7.13.4.9 Matrix Fragments for mma.m16n8k16 with integer type

A warp executing mma.m16n8k16 with .u8 or .s8 integer type will compute an MMA operation of
shape .m16n8k16.

Elements of the matrix are distributed across the threads in a warp so each thread of the warp holds
a fragment of the matrix.

▶ Multiplicand A:

.atype Fragment Elements (low
to high)

.u8 / .s8 A vector expression containing two .b32 registers, with each
register containing four .u8 / .s8 elements from the matrix A.

a0, a1, a2, a3,
a4, a5, a6, a7

The layout of the fragments held by different threads is shown in Figure 59.

Figure 59: MMA .m16n8k16 fragment layout for matrix A with .u8 / .s8 type.

The row and column of a matrix fragment can be computed as:

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

row = groupID for ai where i < 4
groupID + 8 for ai where i >= 4

col = (threadID_in_group * 4) + (i & 0x3) for ai where i = {0,..,7}

▶ Multiplicand B:

358 Chapter 9. Instruction Set

PTX ISA, Release 8.1

.btype Fragment Elements (low
to high)

.u8 / .s8 A vector expression containing a single .b32 register, contain-
ing four .u8 / .s8 elements from the matrix B.

b0, b1, b2, b3

The layout of the fragments held by different threads is shown in Figure 60.

The row and column of a matrix fragment can be computed as:

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

row = (threadID_in_group * 4) + i for bi where i = {0,..,3}

col = groupID

▶ Accumulators (C or D):

.ctype /

.dtype
Fragment Elements (low

to high)

.s32 A vector expression containing four .s32 registers, containing
four .s32 elements from the matrix C (or D).

c0, c1, c2, c3

The layout of the fragments held by different threads is shown in Figure 61.

The row and column of a matrix fragment can be computed as:

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

row = groupID for ci where i < 2
groupID + 8 for ci where i >= 2

col = (threadID_in_group * 2) + (i & 0x1) for ci where i = {0,..,3}

9.7.13.4.10 Matrix Fragments for mma.m16n8k32

A warp executing mma.m16n8k32 will compute an MMA operation of shape .m16n8k32.

Elements of the matrix are distributed across the threads in a warp so each thread of the warp holds
a fragment of the matrix.

▶ Multiplicand A:

▶ .s4 or .u4 :

.atype Fragment Elements
(low to high)

.s4 / .u4 A vector expression containing two .b32 registers,
with each register containing eight .u4 / .s4 ele-
ments from the matrix A.

a0, a1, …, a14,
a15

9.7. Instructions 359

PTX ISA, Release 8.1

Figure 60: MMA .m16n8k16 fragment layout for matrix B with .u8 / .s8 type.

360 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Figure 61: MMA .m16n8k16 fragment layout for accumulator matrix C/D with .s32 type.

The layout of the fragments held by different threads is shown in Figure 62.

The row and column of a matrix fragment can be computed as:

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

row = groupID for ai where i < 8
groupID + 8 for ai where i >= 8

col = (threadID_in_group * 8) + (i & 0x7) for ai where i = {0,..,
↪→15}

▶ .s8 or .u8 :

.atype Fragment Elements
(low to high)

.s8 / .u8 A vector expression containing four .b32 registers,
with each register containing four .s8 / .u8 ele-
ments from the matrix A.

a0, a1, .., a14,
a15

The layout of the fragments held by different threads is shown in Figure 63.

The row and column of a matrix fragment can be computed as:

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

(continues on next page)

9.7. Instructions 361

PTX ISA, Release 8.1

Figure 62: MMA .m16n8k32 fragment layout for matrix A with .u4 / .s4 type.

Figure 63: MMA .m16n8k32 fragment layout for matrix A with .u8 / .s8 type.

362 Chapter 9. Instruction Set

PTX ISA, Release 8.1

(continued from previous page)

row = groupID for ai where 0
↪→<= i < 4 || 8 <= i < 12

groupID + 8 otherwise

col = (threadID_in_group * 4) + (i & 0x3) for ai where i
↪→< 8

(threadID_in_group * 4) + (i & 0x3) + 16 for ai where i >
↪→= 8

▶ Multiplicand B:

▶ .s4 or .u4 :

.btype Fragment Elements
(low to high)

.s4 / .u4 A vector expression containing a single .b32 register,
containing eight .s4 / .u4 elements from the matrix
B.

b0, b1, b2,
b3, b4, b5,
b6, b7

The layout of the fragments held by different threads is shown in Figure 64.

The row and column of a matrix fragment can be computed as:

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

row = (threadID_in_group * 8) + (i & 0x7) for bi where i = {0,..,7}
col = groupID

▶ .s8 or .u8 :

.btype Fragment Elements
(low to high)

.s8 / .u8 A vector expression containing two .b32 registers,
with each register containing four .s8 / .u8 ele-
ments from the matrix B.

b0, b1, b2,
b3, b4, b5,
b6, b7

The layout of the fragments held by different threads is shown in Figure 65 and
Figure 66.

The row and column of a matrix fragment can be computed as:

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

row = (threadID_in_group * 4) + (i & 0x3) for bi where�
↪→i < 4

(threadID_in_group * 4) + (i & 0x3) + 16 for bi where�
↪→i >= 4

col = groupID

▶ Accumulators (C or D):

9.7. Instructions 363

PTX ISA, Release 8.1

Figure 64: MMA .m16n8k32 fragment layout for matrix B with .u4 / .s4 type.

364 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Figure 65: MMA .m16n8k32 fragment layout for rows 0–15 of matrix B with .u8 / .s8 type.

9.7. Instructions 365

PTX ISA, Release 8.1

Figure 66: MMA .m16n8k32 fragment layout for rows 16–31 of matrix B with .u8 / .s8 type.

366 Chapter 9. Instruction Set

PTX ISA, Release 8.1

.ctype /

.dtype
Fragment Elements (low

to high)

.s32 A vector expression containing four .s32 registers, containing
four .s32 elements from the matrix C (or D).

c0, c1, c2, c3

The layout of the fragments held by different threads is shown in Figure 67.

Figure 67: MMA .m16n8k32 fragment layout for accumulator matrix C/D with .s32 type.

The row and column of a matrix fragment can be computed as:

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

row = groupID for ci where i < 2
groupID + 8 for ci where i >= 2

col = (threadID_in_group * 2) + (i & 0x1) for ci where i = {0,..,3}

9.7.13.4.11 Matrix Fragments for mma.m16n8k64

A warp executing mma.m16n8k64 will compute an MMA operation of shape .m16n8k64.

Elements of the matrix are distributed across the threads in a warp so each thread of the warp holds
a fragment of the matrix.

▶ Multiplicand A:

9.7. Instructions 367

PTX ISA, Release 8.1

.atype Fragment Elements (low
to high)

.s4 / .u4 A vector expression containing four .b32 registers, with each
register containing eight .s4 / .u4 elements from the matrix
A.

a0, a1, …, a30,
a31

The layout of the fragments held by different threads is shown in Figure 68.

Figure 68: MMA .m16n8k64 fragment layout for matrix A with .u4 / .s4 type.

The row and column of a matrix fragment can be computed as:

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

row = groupID for ai where 0 <= i < 8 ||�
↪→16 <= i < 24

groupID + 8 otherwise

col = (threadID_in_group * 8) + (i & 0x7) for ai where i < 16
(threadID_in_group * 8) + (i & 0x7) + 32 for ai where i >= 16

▶ Multiplicand B:

.btype Fragment Elements (low
to high)

.s4 / .u4 A vector expression containing two .b32 registers, with each
register containing eight .s4 / .u4 elements from thematrix B.

b0, b1, …, b14,
b15

368 Chapter 9. Instruction Set

PTX ISA, Release 8.1

The layout of the fragments held by different threads is shown in Figure 69 and Figure 70.

The row and column of a matrix fragment can be computed as:

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

row = (threadID_in_group * 8) + (i & 0x7) for bi where i < 8
(threadID_in_group * 8) + (i & 0x7) + 32 for bi where i >= 8

col = groupID

▶ Accumulators (C or D):

.ctype /

.dtype
Fragment Elements (low

to high)

.s32 A vector expression containing four .s32 registers, containing
four .s32 elements from the matrix C (or D).

c0, c1, c2, c3

The layout of the fragments held by different threads is shown in Figure 71.

The row and column of a matrix fragment can be computed as:

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

row = groupID for ci where i < 2
groupID + 8 for ci where i >= 2

col = (threadID_in_group * 2) + (i & 0x1) for ci where i = {0,..,3}

9.7.13.4.12 Matrix Fragments for mma.m16n8k128

A warp executing mma.m16n8k128 will compute an MMA operation of shape .m16n8k128.

Elements of the matrix are distributed across the threads in a warp so each thread of the warp holds
a fragment of the matrix.

▶ Multiplicand A:

.atype Fragment Elements (low
to high)

.b1 A vector expression containing two .b32 registers, with each reg-
ister containing thirty two .b1 elements from the matrix A.

a0, a1, …, a62,
a63

The layout of the fragments held by different threads is shown in Figure 72.

The row and column of a matrix fragment can be computed as:

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

row = groupID for ai where i < 32
(continues on next page)

9.7. Instructions 369

PTX ISA, Release 8.1

Figure 69: MMA .m16n8k64 fragment layout for rows 0–31 of matrix B with .u4 / .s4 type.

370 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Figure 70: MMA .m16n8k64 fragment layout for rows 32–63 of matrix B with .u4 / .s4 type.

9.7. Instructions 371

PTX ISA, Release 8.1

Figure 71: MMA .m16n8k64 fragment layout for accumulator matrix C/D with .s32 type.

Figure 72: MMA .m16n8k128 fragment layout for matrix A with .b1 type.

372 Chapter 9. Instruction Set

PTX ISA, Release 8.1

(continued from previous page)

groupID + 8 for ai where i >= 32

col = (threadID_in_group * 32) + (i & 0x1F) for ai where i = {0, ...,63}

▶ Multiplicand B:

.btype Fragment Elements (low
to high)

.b1 A vector expression containing a single .b32 register containing
thirty two .b1 elements from the matrix B.

b0, b1, … , b30,
b31

The layout of the fragments held by different threads is shown in Figure 73.

The row and column of a matrix fragment can be computed as:

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

row = (threadID_in_group * 32) + i for bi where i = {0,...,31}
col = groupID

▶ Accumulators (C or D):

.ctype /

.dtype
Fragment Elements (low

to high)

.s32 A vector expression containing four .s32 registers, containing
four .s32 elements from the matrix C (or D).

c0, c1, c2, c3

The layout of the fragments held by different threads is shown in Figure 74.

The row and column of a matrix fragment can be computed as:

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

row = groupID for ci where i < 2
groupID + 8 for ci where i >= 2

col = (threadID_in_group * 2) + (i & 0x1) for ci where i = {0, 1, 2, 3}

9.7.13.4.13 Matrix Fragments for mma.m16n8k256

A warp executing mma.m16n8k256 will compute an MMA operation of shape .m16n8k256.

Elements of the matrix are distributed across the threads in a warp so each thread of the warp holds
a fragment of the matrix.

▶ Multiplicand A:

9.7. Instructions 373

PTX ISA, Release 8.1

Figure 73: MMA .m16n8k128 fragment layout for matrix B with .b1 type.

374 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Figure 74: MMA .m16n8k128 fragment layout for accumulator matrix C/D with .s32 type.

.atype Fragment Elements (low
to high)

.b1 Avector expression containing four.b32 registers, with each reg-
ister containing thirty two .b1 elements from the matrix A.

a0, a1, …, a126,
a127

The layout of the fragments held by different threads is shown in Figure 75.

The row and column of a matrix fragment can be computed as:

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

row = groupID for ai where 0 <= i <�
↪→32 || 64 <= i < 96

groupID + 8 otherwise

col = (threadID_in_group * 32) + i for ai where i < 64
(threadID_in_group * 32) + (i & 0x1F) + 128 for ai where i >= 64

▶ Multiplicand B:

.btype Fragment Elements (low
to high)

.b1 A vector expression containing two .b32 registers, with each reg-
ister containing thirty two .b1 elements from the matrix B.

b0, b1, …, b62,
b63

9.7. Instructions 375

PTX ISA, Release 8.1

Figure 75: MMA .m16n8k256 fragment layout for matrix A with .b1 type.

The layout of the fragments held by different threads is shown in Figure 76 and Figure 77.

The row and column of a matrix fragment can be computed as:

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

row = (threadID_in_group * 32) + (i & 0x1F) for bi where i < 32
(threadID_in_group * 32) + (i & 0x1F) + 128 for bi where i >= 32

col = groupID

▶ Accumulators (C or D):

.ctype /

.dtype
Fragment Elements (low

to high)

.s32 A vector expression containing four .s32 registers, containing
four .s32 elements from the matrix C (or D).

c0, c1, c2, c3

The layout of the fragments held by different threads is shown in Figure 78.

The row and column of a matrix fragment can be computed as:

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

row = groupID for ci where i < 2
groupID + 8 for ci where i >= 2

(continues on next page)

376 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Figure 76: MMA .m16n8k256 fragment layout for rows 0–127 of matrix B with .b1 type.

9.7. Instructions 377

PTX ISA, Release 8.1

Figure 77: MMA .m16n8k256 fragment layout for rows 128–255 of matrix B with .b1 type.

378 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Figure 78: MMA .m16n8k256 fragment layout for accumulator matrix C/D with .s32 type.

(continued from previous page)

col = (threadID_in_group * 2) + (i & 0x1) for ci where i = {0, 1, 2, 3}

9.7.13.4.14 Multiply-and-Accumulate Instruction: mma

mma

Perform matrix multiply-and-accumulate operation

Syntax

Half precision floating point type:

mma.sync.aligned.m8n8k4.alayout.blayout.dtype.f16.f16.ctype d, a, b, c;
mma.sync.aligned.m16n8k8.row.col.dtype.f16.f16.ctype d, a, b, c;
mma.sync.aligned.m16n8k16.row.col.dtype.f16.f16.ctype d, a, b, c;

.alayout = {.row, .col};

.blayout = {.row, .col};

.ctype = {.f16, .f32};

.dtype = {.f16, .f32};

Alternate floating point type :

mma.sync.aligned.m16n8k4.row.col.f32.tf32.tf32.f32 d, a, b, c;
mma.sync.aligned.m16n8k8.row.col.f32.atype.btype.f32 d, a, b, c;
mma.sync.aligned.m16n8k16.row.col.f32.bf16.bf16.f32 d, a, b, c;

(continues on next page)

9.7. Instructions 379

PTX ISA, Release 8.1

(continued from previous page)

.atype = {.bf16, .tf32};

.btype = {.bf16, .tf32};

Double precision floating point type:

mma.sync.aligned.shape.row.col.f64.f64.f64.f64 d, a, b, c;

.shape = {.m8n84, .m16n8k4, .m16n8k8, .m16n8k16};

Integer type:

mma.sync.aligned.shape.row.col{.satfinite}.s32.atype.btype.s32 d, a, b, c;

.shape = {.m8n8k16, .m16n8k16, .m16n8k32}

.atype = {.u8, .s8};

.btype = {.u8, .s8};

mma.sync.aligned.shape.row.col{.satfinite}.s32.atype.btype.s32 d, a, b, c;

.shape = {.m8n8k32, .m16n8k32, .m16n8k64}

.atype = {.u4, .s4};

.btype = {.u4, .s4};

Single bit:

mma.sync.aligned.shape.row.col.s32.b1.b1.s32.bitOp.popc d, a, b, c;

.bitOp = {.xor, .and}

.shape = {.m8n8k128, .m16n8k128, .m16n8k256}

Description

Perform a MxNxK matrix multiply and accumulate operation, D = A*B+C, where the A matrix is MxK,
the B matrix is KxN, and the C and D matrices are MxN.

A warp executing mma.sync.m8n8k4 instruction computes 4 matrix multiply and accumulate opera-
tions. Rest of the mma.sync operations compute a single matrix mutliply and accumulate operation
per warp.

For single-bit mma.sync, multiplication is replaced by a sequence of logical operations; specifically,
mma.xor.popcand mma.and.popc computes the XOR, AND respectively of a k-bit row of A with a
k-bit column of B, then counts the number of set bits in the result (popc). This result is added to the
corresponding element of C and written into D.

Operands a and b represent two multiplicand matrices A and B, while c and d represent the accumu-
lator and destination matrices, distributed across the threads in warp.

The registers in each thread hold a fragment of matrix as described in Matrix multiply-accumulate
operation using mma instruction.

The qualifiers .dtype, .atype, .btype and .ctype indicate the data-type of the elements in the
matrices D, A, B and C respectively. Specific shapes have type restrictions :

▶ .m8n8k4 : When .ctype is .f32, .dtypemust also be .f32.

▶ .m16n8k8 :

▶ .dtypemust be the same as .ctype.

▶ .atypemust be the same as .btype.

380 Chapter 9. Instruction Set

PTX ISA, Release 8.1

The qualifiers .alayout and .blayout indicate the row-major or column-major layouts of matrices A
and B respectively.

Precision and rounding :

▶ .f16 floating point operations:

Element-wise multiplication of matrix A and B is performed with at least single precision.
When .ctype or .dtype is .f32, accumulation of the intermediate values is performed
with at least single precision. When both .ctype and .dtype are specified as .f16, the
accumulation is performed with at least half precision.

The accumulation order, rounding and handling of subnormal inputs is unspecified.

▶ .bf16 and .tf32 floating point operations :

Element-wise multiplication of matrix A and B is performed with specified precision. Accu-
mulation of the intermediate values is performed with at least single precision.

The accumulation order, rounding, and handling of subnormal inputs are unspecified.

▶ .f64 floating point operations :

Precision of the element-wise multiplication and addition operation is identical to that of .f64 preci-
sion fused multiply-add. Supported rounding modifiers are :

▶ .rn : mantissa LSB rounds to nearest even. This is the default.

▶ .rz : mantissa LSB rounds towards zero.

▶ .rm : mantissa LSB rounds towards negative infinity.

▶ .rp : mantissa LSB rounds towards positive infinity.

▶ Integer operations :

The integer mma operation is performed with .s32 accumulators. The .satfinite
qualifier indicates that on overflow, the accumulated value is limited to the range
MIN_INT32..MAX_INT32 (where the bounds are defined as the minimum negative signed 32-
bit integer and the maximum positive signed 32-bit integer respectively).

If .satfinite is not specified, the accumulated value is wrapped instead.

Themandatory .sync qualifier indicates that mma instruction causes the executing thread towait until
all threads in the warp execute the same mma instruction before resuming execution.

The mandatory .aligned qualifier indicates that all threads in the warp must execute the same mma
instruction. In conditionally executed code, a mma instruction should only be used if it is known that all
threads in the warp evaluate the condition identically, otherwise behavior is undefined.

The behavior of mma instruction is undefined if all threads in the same warp do not use the same
qualifiers, or if any thread in the warp has exited.

Notes

Programs using double precision floating point mma instruction with shapes .m16n8k4, .m16n8k8, and
.m16n8k16 require at least 64 registers for compilation.

PTX ISA Notes

Introduced in PTX ISA version 6.4.

.f16 floating point type mma operation with .m8n8k4 shape introduced in PTX ISA version 6.4.

.f16 floating point type mma operation with .m16n8k8 shape introduced in PTX ISA version 6.5.

.u8∕.s8 integer type mma operation with .m8n8k16 shape introduced in PTX ISA version 6.5.

9.7. Instructions 381

PTX ISA, Release 8.1

.u4∕.s4 integer type mma operation with .m8n8k32 shape introduced in PTX ISA version 6.5.

.f64 floating point type mma operation with .m8n8k4 shape introduced in PTX ISA version 7.0.

.f16 floating point type mma operation with .m16n8k16 shape introduced in PTX ISA version 7.0.

.bf16 alternate floating point type mma operation with .m16n8k8 and .m16n8k16 shapes introduced
in PTX ISA version 7.0.

.tf32 alternate floating point type mma operation with .m16n8k4 and .m16n8k8 shapes introduced
in PTX ISA version 7.0.

.u8∕.s8 integer type mma operation with .m16n8k16 and .m16n8k32 shapes introduced in PTX ISA
version 7.0.

.u4∕.s4 integer type mma operation with .m16n8k32 and .m16n8k64 shapes introduced in PTX ISA
version 7.0.

.b1 single-bit integer type mma operation with .m8n8k128, .m16n8k128 and .m16n8k256 shapes in-
troduced in PTX ISA version 7.0.

Support for .and operation in single-bit mma introduced in PTX ISA version 7.1.

.f64 floating point typemma operation with .m16n8k4, .m16n8k8, and .m16n8k16 shapes introduced
in PTX ISA version 7.8.

Target ISA Notes

Requires sm_70 or higher.

.f16 floating point type mma operation with .m8n8k4 shape requires sm_70 or higher.

Note: mma.sync.m8n8k4 is optimized for target architecture sm_70 and may have substantially re-
duced performance on other target architectures.

.f16 floating point type mma operation with .m16n8k8 shape requires sm_75 or higher.

.u8∕.s8 integer type mma operation with .m8n8k16 shape requires sm_75 or higher.

.u4∕.s4 integer type mma operation with .m8n8k32 shape sm_75 or higher.

.b1 single-bit integer type mma operation with .m8n8k128 shape sm_75 or higher.

.f64 floating point type mma operation with .m8n8k4 shape requires sm_80 or higher.

.f16 floating point type mma operation with .m16n8k16 shape requires sm_80 or higher.

.bf16 alternate floating point type mma operation with .m16n8k8 and .m16n8k16 shapes requires
sm_80 or higher.

.tf32 alternate floating point type mma operation with .m16n8k4 and .m16n8k8 shapes requires
sm_80 or higher.

.u8∕.s8 integer typemma operationwith.m16n8k16 and.m16n8k32 shapes requiressm_80 or higher.

.u4∕.s4 integer typemma operationwith.m16n8k32 and.m16n8k64 shapes requiressm_80 or higher.

.b1 single-bit integer type mma operation with .m16n8k128 and .m16n8k256 shapes requires sm_80
or higher.

.and operation in single-bit mma requires sm_80 or higher.

.f64 floating point type mma operation with .m16n8k4, .m16n8k8, and .m16n8k16 shapes require
sm_90 or higher.

382 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Examples of half precision floating point type

∕∕ f16 elements in C and D matrix
.reg .f16x2 %Ra<2> %Rb<2> %Rc<4> %Rd<4>
mma.sync.aligned.m8n8k4.row.col.f16.f16.f16.f16
{%Rd0, %Rd1, %Rd2, %Rd3},
{%Ra0, %Ra1},
{%Rb0, %Rb1},
{%Rc0, %Rc1, %Rc2, %Rc3};

∕∕ f16 elements in C and f32 elements in D
.reg .f16x2 %Ra<2> %Rb<2> %Rc<4>
.reg .f32 %Rd<8>
mma.sync.aligned.m8n8k4.row.col.f32.f16.f16.f16
{%Rd0, %Rd1, %Rd2, %Rd3, %Rd4, %Rd5, %Rd6, %Rd7},
{%Ra0, %Ra1},
{%Rb0, %Rb1},
{%Rc0, %Rc1, %Rc2, %Rc3};

∕∕ f32 elements in C and D
.reg .f16x2 %Ra<2>, %Rb<1>;
.reg .f32 %Rc<4>, %Rd<4>;
mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32

{%Rd0, %Rd1, %Rd2, %Rd3},
{%Ra0, %Ra1},
{%Rb0},
{%Rc0, %Rc1, %Rc2, %Rc3};

.reg .f16x2 %Ra<4>, %Rb<2>, %Rc<2>, %Rd<2>;
mma.sync.aligned.m16n8k16.row.col.f16.f16.f16.f16

{%Rd0, %Rd1},
{%Ra0, %Ra1, %Ra2, %Ra3},
{%Rb0, %Rb1},
{%Rc0, %Rc1};

.reg .f16 %Ra<4>, %Rb<2>;

.reg .f32 %Rc<2>, %Rd<2>;
mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32

{%Rd0, %Rd1, %Rd2, %Rd3},
{%Ra0, %Ra1, %Ra2, %Ra3},
{%Rb0, %Rb1},
{%Rc0, %Rc1, %Rc2, %Rc3};

Examples of alternate floating point type

.reg .b32 %Ra<2>, %Rb<1>;

.reg .f32 %Rc<4>, %Rd<4>;
mma.sync.aligned.m16n8k4.row.col.f32.tf32.tf32.f32

{%Rd0, %Rd1, %Rd2, %Rd3},
{%Ra0, %Ra1},
{%Rb0},
{%Rc0, %Rc1, %Rc2, %Rc3};

.reg .f16x2 %Ra<2>, %Rb<1>;

.reg .f32 %Rc<4>, %Rd<4>;
mma.sync.aligned.m16n8k8.row.col.f32.bf16.bf16.f32

{%Rd0, %Rd1, %Rd2, %Rd3},
(continues on next page)

9.7. Instructions 383

PTX ISA, Release 8.1

(continued from previous page)

{%Ra0, %Ra1},
{%Rb0},
{%Rc0, %Rc1, %Rc2, %Rc3};

.reg .b32 %Ra<2>, %Rb<1>;

.reg .f32 %Rc<4>, %Rd<4>;
mma.sync.aligned.m16n8k8.row.col.f32.tf32.tf32.f32

{%Rd0, %Rd1, %Rd2, %Rd3},
{%Ra0, %Ra1, %Rb2, %Rb3},
{%Rb0, %Rb1},
{%Rc0, %Rc1, %Rc2, %Rc3};

.reg .f16x2 %Ra<2>, %Rb<1>;

.reg .f32 %Rc<4>, %Rd<4>;
mma.sync.aligned.m16n8k16.row.col.f32.bf16.bf16.f32

{%Rd0, %Rd1, %Rd2, %Rd3},
{%Ra0, %Ra1, %Ra2, %Ra3},
{%Rb0, %Rb1},
{%Rc0, %Rc1, %Rc2, %Rc3};

Examples of integer type

.reg .b32 %Ra, %Rb, %Rc<2>, %Rd<2>;

∕∕ s8 elements in A and u8 elements in B
mma.sync.aligned.m8n8k16.row.col.satfinite.s32.s8.u8.s32

{%Rd0, %Rd1},
{%Ra},
{%Rb},
{%Rc0, %Rc1};

∕∕ u4 elements in A and B matrix
mma.sync.aligned.m8n8k32.row.col.satfinite.s32.u4.u4.s32

{%Rd0, %Rd1},
{%Ra},
{%Rb},
{%Rc0, %Rc1};

∕∕ s8 elements in A and u8 elements in B
.reg .b32 %Ra<2>, %Rb, %Rc<4>, %Rd<4>;
mma.sync.aligned.m16n8k16.row.col.satfinite.s32.s8.u8.s32

{%Rd0, %Rd1, %Rd2, %Rd3},
{%Ra0, %Ra1},
{%Rb},
{%Rc0, %Rc1, %Rc2, %Rc3};

∕∕ u4 elements in A and s4 elements in B
.reg .b32 %Ra<2>, %Rb, %Rc<4>, %Rd<4>;
mma.sync.aligned.m16n8k32.row.col.satfinite.s32.u4.s4.s32

{%Rd0, %Rd1, %Rd2, %Rd3},
{%Ra0, %Ra1},
{%Rb},
{%Rc0, %Rc1, %Rc2, %Rc3};

∕∕ s8 elements in A and s8 elements in B
.reg .b32 %Ra<4>, %Rb<2>, %Rc<4>, %Rd<4>;
mma.sync.aligned.m16n8k32.row.col.satfinite.s32.s8.s8.s32

(continues on next page)

384 Chapter 9. Instruction Set

PTX ISA, Release 8.1

(continued from previous page)

{%Rd0, %Rd1, %Rd2, %Rd3},
{%Ra0, %Ra1, %Ra2, %Ra3},
{%Rb0, %Rb1},
{%Rc0, %Rc1, %Rc2, %Rc3};

∕∕ u8 elements in A and u8 elements in B
.reg .b32 %Ra<4>, %Rb<2>, %Rc<4>, %Rd<4>;
mma.sync.aligned.m16n8k64.row.col.satfinite.s32.u4.u4.s32

{%Rd0, %Rd1, %Rd2, %Rd3},
{%Ra0, %Ra1, %Ra2, %Ra3},
{%Rb0, %Rb1 },
{%Rc0, %Rc1, %Rc2, %Rc3};

Examples of single bit type

∕∕ b1 elements in A and B
.reg .b32 %Ra, %Rb, %Rc<2>, %Rd<2>;
mma.sync.aligned.m8n8k128.row.col.s32.b1.b1.s32.and.popc

{%Rd0, %Rd1},
{%Ra},
{%Rb},
{%Rc0, %Rc1};

∕∕ b1 elements in A and B
.reg .b32 %Ra, %Rb, %Rc<2>, %Rd<2>;
mma.sync.aligned.m8n8k128.row.col.s32.b1.b1.s32.xor.popc

{%Rd0, %Rd1},
{%Ra},
{%Rb},
{%Rc0, %Rc1};

.reg .b32 %Ra<2>, %Rb, %Rc<4>, %Rd<4>;
mma.sync.aligned.m16n8k128.row.col.s32.b1.b1.s32.xor.popc

{%Rd0, %Rd1, %Rd2, %Rd3},
{%Ra0, %Ra1},
{%Rb},
{%Rc0, %Rc1, %Rc2, %Rc3};

.reg .b32 %Ra<2>, %Rb, %Rc<4>, %Rd<4>;
mma.sync.aligned.m16n8k128.row.col.s32.b1.b1.s32.and.popc

{%Rd0, %Rd1, %Rd2, %Rd3},
{%Ra0, %Ra1},
{%Rb},
{%Rc0, %Rc1, %Rc2, %Rc3};

.reg .b32 %Ra<4>, %Rb<2>, %Rc<4>, %Rd<4>;
mma.sync.aligned.m16n8k256.row.col.s32.b1.b1.s32.xor.popc

{%Rd0, %Rd1, %Rd2, %Rd3},
{%Ra0, %Ra1, %Ra2, %Ra3},
{%Rb0, %Rb1},
{%Rc0, %Rc1, %Rc2, %Rc3};

.reg .b32 %Ra<4>, %Rb<2>, %Rc<4>, %Rd<4>;
mma.sync.aligned.m16n8k256.row.col.s32.b1.b1.s32.and.popc

{%Rd0, %Rd1, %Rd2, %Rd3},
{%Ra0, %Ra1, %Ra2, %Ra3},
{%Rb0, %Rb1},

(continues on next page)

9.7. Instructions 385

PTX ISA, Release 8.1

(continued from previous page)

{%Rc0, %Rc1, %Rc2, %Rc3};

Examples of .f64 floating point type

.reg .f64 %Ra, %Rb, %Rc<2>, %Rd<2>;
mma.sync.aligned.m8n8k4.row.col.f64.f64.f64.f64

{%Rd0, %Rd1},
{%Ra},
{%Rb},
{%Rc0, %Rc1};

.reg .f64 %Ra<8>, %Rb<4>, %Rc<4>, %Rd<4>;
mma.sync.aligned.m16n8k4.row.col.f64.f64.f64.f64.rn

{%Rd0, %Rd1, %Rd2, %Rd3},
{%Ra0, %Ra1},
{%Rb0},
{%Rc0, %Rc1, %Rc2, %Rc3};

mma.sync.aligned.m16n8k8.row.col.f64.f64.f64.f64.rn
{%Rd0, %Rd1, %Rd2, %Rd3},
{%Ra0, %Ra1, %Ra2, %Ra3},
{%Rb0, %Rb1},
{%Rc0, %Rc1, %Rc2, %Rc3};

mma.sync.aligned.m16n8k16.row.col.f64.f64.f64.f64.rn
{%Rd0, %Rd1, %Rd2, %Rd3},
{%Ra0, %Ra1, %Ra2, %Ra3, %Ra4, %Ra5, %Ra6, %Ra7},
{%Rb0, %Rb1, %Rb2, %Rb3},
{%Rc0, %Rc1, %Rc2, %Rc3};

9.7.13.4.15 Warp-level matrix load instruction: ldmatrix

ldmatrix

Collectively load one or more matrices from shared memory for mma instruction

Syntax

ldmatrix.sync.aligned.shape.num{.trans}{.ss}.type r, [p];

.shape = {.m8n8};

.num = {.x1, .x2, .x4};

.ss = {.shared{::cta}};

.type = {.b16};

Description

Collectively load one or more matrices across all threads in a warp from the location indicated by the
address operand p, from .shared state space into destination register r. If no state space is pro-
vided, generic addressing is used, such that the address in p points into .shared space. If the generic
address doesn’t fall in .shared state space, then the behavior is undefined.

The .shape qualifier indicates the dimensions of the matrices being loaded. Each matrix element
holds 16-bit data as indicated by the .type qualifier.

The values .x1, .x2 and .x4 for .num indicate one, two or four matrices respectively.

386 Chapter 9. Instruction Set

PTX ISA, Release 8.1

The mandatory .sync qualifier indicates that ldmatrix causes the executing thread to wait until all
threads in the warp execute the same ldmatrix instruction before resuming execution.

The mandatory .aligned qualifier indicates that all threads in the warp must execute the same ld-
matrix instruction. In conditionally executed code, an ldmatrix instruction should only be used if
it is known that all threads in the warp evaluate the condition identically, otherwise the behavior is
undefined.

The behavior of ldmatrix is undefined if all threads do not use the same qualifiers, or if any thread in
the warp has exited.

The destination operand r is a brace-enclosed vector expression consisting of 1, 2, or 4 32-bit regis-
ters as per the value of .num. Each component of the vector expression holds a fragment from the
corresponding matrix.

Supported addressing modes for p are described in Addresses as Operands.

Consecutive instances of row need not be stored contiguously in memory. The eight addresses re-
quired for each matrix are provided by eight threads, depending upon the value of .num as shown in
the following table. Each address corresponds to the start of a matrix row. Addresses addr0–addr7
correspond to the rows of the first matrix, addresses addr8–addr15 correspond to the rows of the
second matrix, and so on.

.num Threads 0–7 Threads 8–15 Threads 16–23 Threads 24–31

.x1 addr0–addr7 – – –

.x2 addr0–addr7 addr8–addr15 – –

.x4 addr0–addr7 addr8–addr15 addr16–addr23 addr24–addr31

Note: For .target sm_75 or below, all threads must contain valid addresses. Otherwise, the behavior
is undefined. For .num = .x1 and .num = .x2, addresses contained in lower threads can be copied
to higher threads to achieve the expected behavior.

When reading 8x8matrices, a group of four consecutive threads loads 16 bytes. Thematrix addresses
must be naturally aligned accordingly.

Each thread in awarp loads fragments of a row, with thread 0 receiving the first fragment in its register
r, and so on. A group of four threads loads an entire row of the matrix as shown in Figure 79.

When .num = .x2, the elements of the second matrix are loaded in the next destination register in
each thread as per the layout in above table. Similarly, when .num = .x4, elements of the third and
fourth matrices are loaded in the subsequent destination registers in each thread.

Optional qualifier .trans indicates that the matrix is loaded in column-major format.

The ldmatrix instruction is treated as a weak memory operation in theMemory Consistency Model.

PTX ISA Notes

Introduced in PTX ISA version 6.5.

Support for ::cta sub-qualifier introduced in PTX ISA version 7.8.

Target ISA Notes

Requires sm_75 or higher.

Examples

9.7. Instructions 387

PTX ISA, Release 8.1

Figure 79: ldmatrix fragment layout

∕∕ Load a single 8x8 matrix using 64-bit addressing
.reg .b64 addr;
.reg .b32 d;
ldmatrix.sync.aligned.m8n8.x1.shared::cta.b16 {d}, [addr];

∕∕ Load two 8x8 matrices in column-major format
.reg .b64 addr;
.reg .b32 d<2>;
ldmatrix.sync.aligned.m8n8.x2.trans.shared.b16 {d0, d1}, [addr];

∕∕ Load four 8x8 matrices
.reg .b64 addr;
.reg .b32 d<4>;
ldmatrix.sync.aligned.m8n8.x4.b16 {d0, d1, d2, d3}, [addr];

9.7.13.4.16 Warp-level matrix store instruction: stmatrix

stmatrix

Collectively store one or more matrices to shared memory.

Syntax

stmatrix.sync.aligned.shape.num{.trans}{.ss}.type [p], r;

.shape = {.m8n8};

.num = {.x1, .x2, .x4};

.ss = {.shared{::cta}};

.type = {.b16};

Description

388 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Collectively store one or more matrices across all threads in a warp to the location indicated by the
address operand p, in .shared state space. If no state space is provided, generic addressing is used,
such that the address in p points into .shared space. If the generic address doesn’t fall in .shared
state space, then the behavior is undefined.

The .shape qualifier indicates the dimensions of the matrices being loaded. Each matrix element
holds 16-bit data as indicated by the .type qualifier.

The values .x1, .x2 and .x4 for .num indicate one, two or four matrices respectively.

The mandatory .sync qualifier indicates that stmatrix causes the executing thread to wait until all
threads in the warp execute the same stmatrix instruction before resuming execution.

Themandatory .aligned qualifier indicates that all threads in thewarpmust execute the same stma-
trix instruction. In conditionally executed code, an stmatrix instruction should only be used if it is
known that all threads in the warp evaluate the condition identically, otherwise the behavior is unde-
fined.

The behavior of stmatrix is undefined if all threads do not use the same qualifiers, or if any thread in
the warp has exited.

The source operand r is a brace-enclosed vector expression consisting of 1, 2, or 4 32-bit registers
as per the value of .num. Each component of the vector expression holds a fragment from the corre-
sponding matrix.

Supported addressing modes for p are described in Addresses as Operands.

Consecutive instances of row need not be stored contiguously in memory. The eight addresses re-
quired for each matrix are provided by eight threads, depending upon the value of .num as shown in
the following table. Each address corresponds to the start of a matrix row. Addresses addr0–addr7
correspond to the rows of the first matrix, addresses addr8–addr15 correspond to the rows of the
second matrix, and so on.

.num Threads 0–7 Threads 8–15 Threads 16–23 Threads 24–31

.x1 addr0–addr7 – – –

.x2 addr0–addr7 addr8–addr15 – –

.x4 addr0–addr7 addr8–addr15 addr16–addr23 addr24–addr31

When storing 8x8matrices, a group of four consecutive threads stores 16 bytes. Thematrix addresses
must be naturally aligned accordingly.

Each thread in a warp stores fragments of a row, with thread 0 storing the first fragment from its
register r, and so on. A group of four threads stores an entire row of the matrix as shown in Figure 80.

When .num = .x2, the elements of the second matrix are storedd from the next source register in
each thread as per the layout in above table. Similarly, when .num = .x4, elements of the third and
fourth matrices are stored from the subsequent source registers in each thread.

Optional qualifier .trans indicates that the matrix is stored in column-major format.

The stmatrix instruction is treated as a weak memory operation in theMemory Consistency Model.

PTX ISA Notes

Introduced in PTX ISA version 7.8.

Target ISA Notes

Requires sm_90 or higher.

9.7. Instructions 389

PTX ISA, Release 8.1

Figure 80: stmatrix fragment layout

Examples

∕∕ Store a single 8x8 matrix using 64-bit addressing
.reg .b64 addr;
.reg .b32 r;
stmatrix.sync.aligned.m8n8.x1.shared.b16 [addr], {r};

∕∕ Store two 8x8 matrices in column-major format
.reg .b64 addr;
.reg .b32 r<2>;
stmatrix.sync.aligned.m8n8.x2.trans.shared::cta.b16 [addr], {r0, r1};

∕∕ Store four 8x8 matrices
.reg .b64 addr;
.reg .b32 r<4>;
stmatrix.sync.aligned.m8n8.x4.b16 [addr], {r0, r1, r2, r3};

9.7.13.4.17 Warp-level matrix transpose instruction: movmatrix

movmatrix

Transpose a matrix in registers across the warp.

Syntax

movmatrix.sync.aligned.shape.trans.type d, a;

.shape = {.m8n8};

.type = {.b16};

390 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Description

Move a row-major matrix across all threads in a warp, reading elements from source a, and writing the
transposed elements to destination d.

The .shape qualifier indicates the dimensions of the matrix being transposed. Each matrix element
holds 16-bit data as indicated by the .type qualifier.

The mandatory .sync qualifier indicates that movmatrix causes the executing thread to wait until all
threads in the warp execute the same movmatrix instruction before resuming execution.

The mandatory .aligned qualifier indicates that all threads in the warp must execute the same mov-
matrix instruction. In conditionally executed code, a movmatrix instruction should only be used if
it is known that all threads in the warp evaluate the condition identically, otherwise the behavior is
undefined.

Operandsa andd are 32-bit registers containing fragments of the inputmatrix and the resultingmatrix
respectively. The mandatory qualifier .trans indicates that the resulting matrix in d is a transpose of
the input matrix specified by a.

Each thread in a warp holds a fragment of a row of the input matrix, with thread 0 holding the first
fragment in register a, and so on. A group of four threads holds an entire row of the input matrix as
shown in Figure 81.

Figure 81: movmatrix source matrix fragment layout

Each thread in a warp holds a fragment of a column of the result matrix, with thread 0 holding the first
fragment in register d, and so on. A group of four threads holds an entire column of the result matrix
as shown in Figure 82.

PTX ISA Notes

Introduced in PTX ISA version 7.8.

Target ISA Notes

9.7. Instructions 391

PTX ISA, Release 8.1

Figure 82: movmatrix result matrix fragment layout

Requires sm_75 or higher.

Examples

.reg .b32 d, a;
movmatrix.sync.aligned.m8n8.trans.b16 d, a;

9.7.13.5 Matrix multiply-accumulate operation using mma.sp instruction with sparse matrix A

This section describes warp-level mma.sp instruction with sparse matrix A. This variant of the mma
operation can be used when A is a structured sparse matrix with 50% zeros in each row distributed in
a shape-specific granularity. For an MxNxK sparse mma.sp operation, the MxK matrix A is packed into
MxK∕2 elements. For each K-wide row of matrix A, 50% elements are zeros and the remaining K/2 non-
zero elements are packed in the operand representing matrix A. The mapping of these K/2 elements
to the corresponding K-wide row is provided explicitly as metadata.

9.7.13.5.1 Sparse matrix storage

Granularity of sparse matrix A is defined as the ratio of the number of non-zero elements in a sub-
chunk of the matrix row to the total number of elements in that sub-chunk where the size of the sub-
chunk is shape-specific. For example, in a 16x16matrix A, sparsity is expected to be at 2:4 granularity,
i.e. each 4-element vector (i.e. a sub-chunk of 4 consecutive elements) of a matrix row contains 2
zeros. Index of each non-zero element in a sub-chunk is stored in the metadata operand. In a group
of four consecutive threads, one or more threads store the metadata for the whole group depending
upon the matrix shape. These threads are specified using an additional sparsity selector operand.

392 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Figure 83 shows an example of a 16x16 matrix A represented in sparse format and sparsity selector
indicating which thread in a group of four consecutive threads stores the metadata.

Figure 83: Sparse MMA storage example

Granularities for different matrix shapes and data types are described below.

Sparse mma.sp with half-precision and .bf16 type

For the .m16n8k16 and .m16n8k32mma.sp operations, matrix A is structured sparse at a granularity
of 2:4. In other words, each chunk of four adjacent elements in a row ofmatrix A has two zeros and two
non-zero elements. Only the two non-zero elements are stored in the operand representing matrix A
and their positions in the four-wide chunk inmatrix A are indicated by two 2-bit indices in themetadata
operand.

The sparsity selector indicates the threads which contribute metadata as listed below:

▶ m16n8k16: One thread within a group of four consecutive threads contributes the metadata for
the entire group. This thread is indicated by a value in {0, 1, 2, 3}.

▶ m16n8k32: A thread-pair within a group of four consecutive threads contributes the sparsity
metadata. Hence, the sparsity selector must be either 0 (threads T0, T1) or 1 (threads T2, T3);
any other value results in an undefined behavior.

Sparse mma.sp with .tf32 type

When matrix A has .tf32 elements, matrix A is structured sparse at a granularity of 1:2. In other
words, each chunk of two adjacent elements in a row of matrix A has one zero and one non-zero el-
ement. Only the non-zero elements are stored in the operand for matrix A and their positions in a
two-wide chunk in matrix A are indicated by the 4-bit index in the metadata. 0b1110 and 0b0100 are
the only meaningful index values; any other values result in an undefined behavior.

The sparsity selector indicates the threads which contribute metadata as listed below:

▶ m16n8k8: One thread within a group of four consecutive threads contributes the metadata for
the entire group. This thread is indicated by a value in {0, 1, 2, 3}.

9.7. Instructions 393

PTX ISA, Release 8.1

Figure 84: Sparse MMA metadata example for .f16/.bf16 type.

Figure 85: Sparse MMA metadata example for .tf32 type.

394 Chapter 9. Instruction Set

PTX ISA, Release 8.1

▶ m16n8k16: A thread-pair within a group of four consecutive threads contributes the sparsity
metadata. Hence, the sparsity selector must be either 0 (threads T0, T1) or 1 (threads T2, T3);
any other value results in an undefined behavior.

Sparse mma.sp with integer type

When matrices A and B have .u8/.s8 elements, matrix A is structured sparse at a granularity of 2:4.
In other words, each chunk of four adjacent elements in a row of matrix A have two zeroes and two
non-zero elements. Only the two non-zero elements are stored in sparse matrix and their positions in
the four-wide chunk are indicated by two 2-bit indices in the metadata.

Figure 86: Sparse MMA metadata example for .u8/.s8 type.

whenmatrices A and B have .u4/.s4 elements, matrix A is pair-wise structured sparse at a granularity
of 4:8. In other words, each chunk of eight adjacent elements in a row of matrix A has four zeroes
and four non-zero values. Further, the zero and non-zero values are clustered in sub-chunks of two
elements eachwithin the eight-wide chunk. i.e., each two-wide sub-chunkwithin the eight-wide chunk
must be all zeroes or all non-zeros. Only the four non-zero values are stored in sparse matrix and the
positions of the two two-wide sub-chunks with non-zero values in the eight-wide chunk of a row of
matrix A are indicated by two 2-bit indices in the metadata.

The sparsity selector indicates the threads which contribute metadata as listed below:

▶ m16n8k32 with .u8/.s8 type and m16n8k64 with .u4/.s4 type: A thread-pair within a group of
four consecutive threads contributes the sparsity metadata. Hence, the sparsity selector must
be either 0 (threads T0, T1) or 1 (threads T2, T3); any other value results in an undefined behavior.

▶ m16n8k64 with .u8/.s8 type and m16n8k128 with .u4/.s4 type: All threads within a group of
four consecutive threads contribute the sparsity metadata. Hence, the sparsity selector in this
case must be 0. Any other value of sparsity selector results in an undefined behavior.

9.7. Instructions 395

PTX ISA, Release 8.1

Figure 87: Sparse MMA metadata example for .u4/.s4 type.

9.7.13.5.2 Matrix fragments for multiply-accumulate operation with sparse matrix A

In this section we describe how the contents of thread registers are associated with fragments of var-
ious matrices and the sparsity metadata. The following conventions are used throughout this section:

▶ For matrix A, only the layout of a fragment is described in terms of register vector sizes and their
association with the matrix data.

▶ For matrix B, when the combination of matrix dimension and the supported data type is not
already covered in Matrix multiply-accumulate operation using mma instruction, a pictorial repre-
sentation of matrix fragments is provided.

▶ For matrices C and D, since the matrix dimension - data type combination is the same for all
supported shapes, and is already covered in Matrix multiply-accumulate operation using mma in-
struction, the pictorial representations of matrix fragments are not included in this section.

▶ For the metadata operand, pictorial representations of the association between indices of the
elements of matrix A and the contents of the metadata operand are included. Tk: [m..n]
present in cell [x][y..z] indicates that bits m through n (with m being higher) in the metadata
operand of threadwith%laneid=k contains the indices of the non-zero elements from the chunk
[x][y]..[x][z] of matrix A.

396 Chapter 9. Instruction Set

PTX ISA, Release 8.1

9.7.13.5.2.1 Matrix Fragments for sparse mma.m16n8k16 with .f16 and .bf16 types

A warp executing sparse mma.m16n8k16 with .f16 / .bf16 floating point type will compute an MMA
operation of shape .m16n8k16.

Elements of the matrix are distributed across the threads in a warp so each thread of the warp holds
a fragment of the matrix.

▶ Multiplicand A:

.atype Fragment Elements

.f16 / .bf16 A vector expression containing two .b32 registers,
with each register containing two non-zero .f16 / .
bf16 elements out of 4 consecutive elements from
matrix A.

Mapping of the non-
zero elements is as
described in Sparse
matrix storage.

The layout of the fragments held by different threads is shown in Figure 88.

Figure 88: Sparse MMA .m16n8k16 fragment layout for matrix A with .f16/.bf16 type.

The row and column of a matrix fragment can be computed as:

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

row = groupID for a0 and a1
groupID + 8 for a2 and a3

col = [firstcol ... lastcol] ∕∕ As per the mapping of non-zero elements
∕∕ as described in Sparse matrix storage

(continues on next page)

9.7. Instructions 397

PTX ISA, Release 8.1

(continued from previous page)

Where
firstcol = threadID_in_group * 4
lastcol = firstcol + 3

▶ Matrix fragments for multiplicand B and accumulators C and D are the same as in case ofMatrix
Fragments for mma.m16n8k16 with floating point type for .f16/.b16 formats.

▶ Metadata: A .b32 register containing 16 2-bit vectors each storing the index of a non-zero ele-
ment of a 4-wide chunk of matrix A as shown in Figure 89.

Figure 89: Sparse MMA .m16n8k16 metadata layout for .f16/.bf16 type.

9.7.13.5.2.2 Matrix Fragments for sparse mma.m16n8k32 with .f16 and .bf16 types

A warp executing sparse mma.m16n8k32 with .f16 / .bf16 floating point type will compute an MMA
operation of shape .m16n8k32.

Elements of the matrix are distributed across the threads in a warp so each thread of the warp holds
a fragment of the matrix.

▶ Multiplicand A:

398 Chapter 9. Instruction Set

PTX ISA, Release 8.1

.atype Fragment Elements

.f16 / .bf16 A vector expression containing four .b32 registers,
with each register containing two non-zero .f16 / .
bf16 elements out of 4 consecutive elements from
matrix A.

Mapping of the non-
zero elements is as
described in Sparse
matrix storage.

The layout of the fragments held by different threads is shown in Figure 90.

Figure 90: Sparse MMA .m16n8k32 fragment layout for matrix A with .f16/.bf16 type.

The row and column of a matrix fragment can be computed as:

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

row = groupID for ai where 0 <= i < 2 || 4 <= i < 6
groupID + 8 Otherwise

col = [firstcol ... lastcol] ∕∕ As per the mapping of non-zero elements
∕∕ as described in Sparse matrix storage

Where
firstcol = threadID_in_group * 4 For ai where i < 4

(threadID_in_group * 4) + 16 for ai where i >= 4
lastcol = firstcol + 3

▶ Multiplicand B:

9.7. Instructions 399

PTX ISA, Release 8.1

.atype Fragment Elements
(low to high)

.f16 / .bf16 A vector expression containing four .b32 registers, each con-
taining two .f16 / .bf16 elements from matrix B.

b0, b1, b2, b3

The layout of the fragments held by different threads is shown in Figure 91.

Figure 91: Sparse MMA .m16n8k32 fragment layout for matrix B with .f16/.bf16 type.

▶ Matrix fragments for accumulators C and D are the same as in case of Matrix Fragments for
mma.m16n8k16 with floating point type for .f16/.b16 formats.

▶ Metadata: A .b32 register containing 16 2-bit vectors with each pair of 2-bit vectors storing the
indices of two non-zero element from a 4-wide chunk of matrix A as shown in Figure 92.

9.7.13.5.2.3 Matrix Fragments for sparse mma.m16n8k16 with .tf32 floating point type

A warp executing sparse mma.m16n8k16 with .tf32 floating point type will compute an MMA opera-
tion of shape .m16n8k16.

Elements of the matrix are distributed across the threads in a warp so each thread of the warp holds
a fragment of the matrix.

▶ Multiplicand A:

400 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Figure 92: Sparse MMA .m16n8k32 metadata layout for .f16/.bf16 type.

.atype Fragment Elements

.tf32 A vector expression containing four .b32 registers,
with each register containing one non-zero .tf32 el-
ement out of 2 consecutive elements from matrix A.

Mapping of the non-zero
elements is as described
in Sparse matrix storage.

The layout of the fragments held by different threads is shown in Figure 93.

The row and column of a matrix fragment can be computed as:

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

row = groupID for a0 and a2
groupID + 8 for a1 and a3

col = [firstcol ... lastcol] ∕∕ As per the mapping of non-zero elements
∕∕ as described in Sparse matrix storage

Where
firstcol = threadID_in_group * 2 for a0 and a1

(threadID_in_group * 2) + 8 for a2 and a3
lastcol = firstcol + 1

▶ Multiplicand B:

9.7. Instructions 401

PTX ISA, Release 8.1

Figure 93: Sparse MMA .m16n8k16 fragment layout for matrix A with .tf32 type.

.atype Fragment Elements
(low to high)

.tf32 A vector expression containing four .b32 registers, each con-
taining four .tf32 elements from matrix B.

b0, b1, b2, b3

The layout of the fragments held by different threads is shown in Figure 94.

▶ Matrix fragments for accumulators C and D are the same as in case of Matrix Fragments for
mma.m16n8k16 with floating point type.

▶ Metadata: A .b32 register containing 8 4-bit vectors each storing the index of a non-zero ele-
ment of a 2-wide chunk of matrix A as shown in Figure 95.

9.7.13.5.2.4 Matrix Fragments for sparse mma.m16n8k8 with .tf32 floating point type

Awarp executing sparse mma.m16n8k8with .tf32 floating point typewill compute anMMA operation
of shape .m16n8k8.

Elements of the matrix are distributed across the threads in a warp so each thread of the warp holds
a fragment of the matrix.

▶ Multiplicand A:

402 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Figure 94: Sparse MMA .m16n8k16 fragment layout for matrix B with .tf32 type.

9.7. Instructions 403

PTX ISA, Release 8.1

Figure 95: Sparse MMA .m16n8k16 metadata layout for .tf32 type.

.atype Fragment Elements

.tf32 A vector expression containing two .b32 registers,
each containing one non-zero .tf32 element out of 2
consecutive elements from matrix A.

Mapping of the non-zero
elements is as described
in Sparse matrix storage.

The layout of the fragments held by different threads is shown in Figure 96.

The row and column of a matrix fragment can be computed as:

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

row = groupID for a0
groupID + 8 for a1

col = [firstcol ... lastcol] ∕∕ As per the mapping of non-zero elements
∕∕ as described in Sparse matrix storage

Where
firstcol = threadID_in_group * 2
lastcol = firstcol + 1

▶ Matrix fragments for multiplicand B and accumulators C and D are the same as in case ofMatrix
Fragments for mma.m16n8k8 for .tf32 format.

▶ Metadata: A .b32 register containing 8 4-bit vectors each storing the index of a non-zero ele-
ment of a 2-wide chunk of matrix A as shown in Figure 97.

404 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Figure 96: Sparse MMA .m16n8k8 fragment layout for matrix A with .tf32 type.

Figure 97: Sparse MMA .m16n8k8 metadata layout for .tf32 type.

9.7. Instructions 405

PTX ISA, Release 8.1

9.7.13.5.2.5 Matrix Fragments for sparse mma.m16n8k32 with .u8/.s8 integer type

A warp executing sparse mma.m16n8k32 with .u8 / .s8 integer type will compute an MMA operation
of shape .m16n8k32.

Elements of the matrix are distributed across the threads in a warp so each thread of the warp holds
a fragment of the matrix.

▶ Multiplicand A:

.atype Fragment Elements

.u8 / .s8 A vector expression containing two .b32 registers, with
each register containing four non-zero .u8 / .s8 ele-
ments out of 8 consecutive elements from matrix A.

Mapping of the non-
zero elements is as
described in Sparse
matrix storage.

The layout of the fragments held by different threads is shown in Figure 98.

Figure 98: Sparse MMA .m16n8k32 fragment layout for matrix A with .u8/.s8 type.

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

row = groupID for ai where 0 <= i < 4
groupID + 8 Otherwise

col = [firstcol ... lastcol] ∕∕ As per the mapping of non-zero elements
∕∕ as described in Sparse matrix storage

Where
(continues on next page)

406 Chapter 9. Instruction Set

PTX ISA, Release 8.1

(continued from previous page)

firstcol = threadID_in_group * 8
lastcol = firstcol + 7

▶ Matrix fragments for multiplicand B and accumulators C and D are the same as in case ofMatrix
Fragments for mma.m16n8k32.

▶ Metadata: A .b32 register containing 16 2-bit vectors with each pair of 2-bit vectors storing the
indices of two non-zero elements from a 4-wide chunk of matrix A as shown in Figure 99.

Figure 99: Sparse MMA .m16n8k32 metadata layout for .u8/.s8 type.

9.7.13.5.2.6 Matrix Fragments for sparse mma.m16n8k64 with .u8/.s8 integer type

A warp executing sparse mma.m16n8k64 with .u8 / .s8 integer type will compute an MMA operation
of shape .m16n8k64.

Elements of the matrix are distributed across the threads in a warp so each thread of the warp holds
a fragment of the matrix.

▶ Multiplicand A:

.atype Fragment Elements

.u8 / .s8 A vector expression containing four.b32 registers, with
each register containing four non-zero .u8 / .s8 ele-
ments out of 8 consecutive elements from matrix A.

Mapping of the non-
zero elements is as
described in Sparse
matrix storage.

9.7. Instructions 407

PTX ISA, Release 8.1

The layout of the fragments held by different threads is shown in Figure 100 and Figure 101.

Figure 100: SparseMMA .m16n8k64 fragment layout for columns 0–31 ofmatrix A with .u8/.s8 type.

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

row = groupID for ai where 0 <= i < 4 || 8 <= i < 12
groupID + 8 Otherwise

col = [firstcol ... lastcol] ∕∕ As per the mapping of non-zero elements
∕∕ as described in Sparse matrix storage

Where
firstcol = threadID_in_group * 8 For ai where i < 8

(threadID_in_group * 8) + 32 For ai where i >= 8
lastcol = firstcol + 7

▶ Multiplicand B:

.atype Fragment Elements (low
to high)

.u8 / .s8 A vector expression containing four .b32 registers, each
containing sixteen .u8 / .s8 elements from matrix B.

b0, b1, b2, b3, …,
b15

The layout of the fragments held by different threads is shown in Figure 102, Figure 103, Figure
104 and Figure 105.

▶ Matrix fragments for accumulators C and D are the same as in case of Matrix Fragments for
mma.m16n8k16 with integer type.

408 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Figure 101: Sparse MMA .m16n8k64 fragment layout for columns 32–63 of matrix A with .u8/.s8
type.

Figure 102: Sparse MMA .m16n8k64 fragment layout for rows 0–15 of matrix B with .u8/.s8 type.

9.7. Instructions 409

PTX ISA, Release 8.1

Figure 103: Sparse MMA .m16n8k64 fragment layout for rows 16–31 of matrix B with .u8/.s8 type.

Figure 104: Sparse MMA .m16n8k64 fragment layout for rows 32–47 of matrix B with .u8/.s8 type.

410 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Figure 105: Sparse MMA .m16n8k64 fragment layout for rows 48–63 of matrix B with .u8/.s8 type.

▶ Metadata: A .b32 register containing 16 2-bit vectors with each pair of 2-bit vectors storing the
indices of two non-zero elements from a 4-wide chunk of matrix A as shown in Figure 106 and
Figure 107.

9.7.13.5.2.7 Matrix Fragments for sparse mma.m16n8k64 with .u4/.s4 integer type

A warp executing sparse mma.m16n8k64 with .u4 / .s4 integer type will compute an MMA operation
of shape .m16n8k64.

Elements of the matrix are distributed across the threads in a warp so each thread of the warp holds
a fragment of the matrix.

▶ Multiplicand A:

.atype Fragment Elements

.u4 / .s4 A vector expression containing two .b32 registers, with
each register containing eight non-zero .u4 / .s4 ele-
ments out of 16 consecutive elements from matrix A.

Mapping of the non-
zero elements is as
described in Sparse
matrix storage.

The layout of the fragments held by different threads is shown in Figure 108.

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

(continues on next page)

9.7. Instructions 411

PTX ISA, Release 8.1

Figure 106: Sparse MMA .m16n8k64 metadata layout for columns 0–31 for .u8/.s8 type.

Figure 107: Sparse MMA .m16n8k64 metadata layout for columns 32–63 for .u8/.s8 type.

412 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Figure 108: Sparse MMA .m16n8k64 fragment layout for matrix A with .u4/.s4 type.

(continued from previous page)

row = groupID for ai where 0 <= i < 8
groupID + 8 Otherwise

col = [firstcol ... lastcol] ∕∕ As per the mapping of non-zero elements
∕∕ as described in Sparse matrix storage

Where
firstcol = threadID_in_group * 16
lastcol = firstcol + 15

▶ Matrix fragments for multiplicand B and accumulators C and D are the same as in case ofMatrix
Fragments for mma.m16n8k64.

▶ Metadata: A .b32 register containing 16 2-bit vectors with each pair of 2-bit vectors storing the
indices of four non-zero elements from a 8-wide chunk of matrix A as shown in Figure 109.

9.7.13.5.2.8 Matrix Fragments for sparse mma.m16n8k128 with .u4/.s4 integer type

A warp executing sparse mma.m16n8k128with .u4 / .s4 integer type will compute an MMA operation
of shape .m16n8k128.

Elements of the matrix are distributed across the threads in a warp so each thread of the warp holds
a fragment of the matrix.

▶ Multiplicand A:

9.7. Instructions 413

PTX ISA, Release 8.1

Figure 109: Sparse MMA .m16n8k64 metadata layout for .u4/.s4 type.

.atype Fragment Elements

.u4 / .s4 A vector expression containing four.b32 registers, with
each register containing eight non-zero .u4 / .s4 ele-
ments out of 16 consecutive elements from matrix A.

Mapping of the non-
zero elements is as
described in Sparse
matrix storage.

The layout of the fragments held by different threads is shown in Figure 110 and Figure 111.

groupID = %laneid >> 2
threadID_in_group = %laneid % 4

row = groupID for ai where 0 <= i < 8 || 16 <= i < 24
groupID + 8 Otherwise

col = [firstcol ... lastcol] ∕∕ As per the mapping of non-zero elements
∕∕ as described in Sparse matrix storage

Where
firstcol = threadID_in_group * 16 For ai where i < 16

(threadID_in_group * 16) + 64 For ai where i >= 16
lastcol = firstcol + 15

▶ Multiplicand B:

414 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Figure 110: Sparse MMA .m16n8k128 fragment layout for columns 0–63 of matrix A with .u4/.s4
type.

Figure 111: Sparse MMA .m16n8k128 fragment layout for columns 64–127 of matrix A with .u4/.s4
type.

9.7. Instructions 415

PTX ISA, Release 8.1

.atype Fragment Elements (low
to high)

.u4 / .s4 A vector expression containing four .b32 registers, each
containing eight .u4 / .s4 elements from matrix B.

b0, b1, b2, b3, …,
b31

The layout of the fragments held by different threads is shown in Figure 112, Figure 113, Figure
114, Figure 115.

Figure 112: Sparse MMA .m16n8k128 fragment layout for rows 0–31 of matrix B with .u4/.s4 type.

▶ Matrix fragments for accumulators C and D are the same as in case of Matrix Fragments for
mma.m16n8k64.

▶ Metadata: A .b32 register containing 16 2-bit vectors with each pair of 2-bit vectors storing the
indices of four non-zero elements from a 8-wide chunk of matrix A as shown in Figure 116 and
Figure 117.

9.7.13.5.3 Multiply-and-Accumulate Instruction: mma.sp

mma.sp

Perform matrix multiply-and-accumulate operation with sparse matrix A

Syntax

Half precision floating point type:

416 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Figure 113: Sparse MMA .m16n8k128 fragment layout for rows 31–63 of matrix B with .u4/.s4 type.

Figure 114: Sparse MMA .m16n8k128 fragment layout for rows 64–95 of matrix B with .u4/.s4 type.

9.7. Instructions 417

PTX ISA, Release 8.1

Figure 115: SparseMMA .m16n8k128 fragment layout for rows 96–127 ofmatrix B with .u4/.s4 type.

Figure 116: Sparse MMA .m16n8k128 metadata layout for columns 0–63 for .u4/.s4 type.

418 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Figure 117: Sparse MMA .m16n8k128 metadata layout for columns 64–127 for .u4/.s4 type.

mma.sp.sync.aligned.m16n8k16.row.col.dtype.f16.f16.ctype d, a, b, c, e, f;
mma.sp.sync.aligned.m16n8k32.row.col.dtype.f16.f16.ctype d, a, b, c, e, f;

.ctype = {.f16, .f32};

.dtype = {.f16, .f32};

Alternate floating point type :

mma.sp.sync.aligned.m16n8k16.row.col.f32.bf16.bf16.f32 d, a, b, c, e, f;
mma.sp.sync.aligned.m16n8k32.row.col.f32.bf16.bf16.f32 d, a, b, c, e, f;
mma.sp.sync.aligned.m16n8k8.row.col.f32.tf32.tf32.f32 d, a, b, c, e, f;
mma.sp.sync.aligned.m16n8k16.row.col.f32.tf32.tf32.f32 d, a, b, c, e, f;

Integer type:

mma.sp.sync.aligned.shape.row.col{.satfinite}.s32.atype.btype.s32 d, a, b, c, e, f;

.shape = {.m16n8k32, .m16n8k64}

.atype = {.u8, .s8};

.btype = {.u8, .s8};

mma.sp.sync.aligned.shape.row.col{.satfinite}.s32.atype.btype.s32 d, a, b, c, e, f;

.shape = {.m16n8k64, .m16n8k128}

.atype = {.u4, .s4};

.btype = {.u4, .s4};

Description

Perform a MxNxK matrix multiply and accumulate operation, D = A*B+C, where the A matrix is MxK,
the B matrix is KxN, and the C and D matrices are MxN.

9.7. Instructions 419

PTX ISA, Release 8.1

A warp executing mma.sp.sync instruction compute a single matrix mutliply and accumulate opera-
tion.

Operands a and b represent twomultiplicand matrices A and B, while c and d represent the accumula-
tor and destination matrices, distributed across the threads in warp. Matrix A is structured sparse as
described in Sparse matrix storage Operands e and f represent sparsity metadata and sparsity selec-
tor respectively. Operand e is a 32-bit integer and operand f is a 32-bit integer constant with values
in the range 0..3

The registers in each thread hold a fragment of matrix as described in Matrix fragments for multiply-
accumulate operation with sparse matrix A.

The qualifiers .dtype, .atype, .btype and .ctype indicate the data-type of the elements in the
matrices D, A, B and C respectively. In case of shapes .m16n8k16 and .m16n8k32, .dtype must be
the same as .ctype

Precision and rounding :

▶ .f16 floating point operations:

Element-wise multiplication of matrix A and B is performed with at least single precision.
When .ctype or .dtype is .f32, accumulation of the intermediate values is performed
with at least single precision. When both .ctype and .dtype are specified as .f16, the
accumulation is performed with at least half precision.

The accumulation order, rounding and handling of subnormal inputs is unspecified.

▶ .bf16 and .tf32 floating point operations :

Element-wise multiplication of matrix A and B is performed with specified precision. Accu-
mulation of the intermediate values is performed with at least single precision.

The accumulation order, rounding, and handling of subnormal inputs are unspecified.

▶ Integer operations :

The integer mma.sp operation is performed with .s32 accumulators. The .satfinite
qualifier indicates that on overflow, the accumulated value is limited to the range
MIN_INT32..MAX_INT32 (where the bounds are defined as the minimum negative signed 32-
bit integer and the maximum positive signed 32-bit integer respectively).

If .satfinite is not specified, the accumulated value is wrapped instead.

The mandatory .sync qualifier indicates that mma.sp instruction causes the executing thread to wait
until all threads in the warp execute the same mma.sp instruction before resuming execution.

The mandatory .aligned qualifier indicates that all threads in the warp must execute the same mma.
sp instruction. In conditionally executed code, a mma.sp instruction should only be used if it is known
that all threads in the warp evaluate the condition identically, otherwise behavior is undefined.

The behavior of mma.sp instruction is undefined if all threads in the same warp do not use the same
qualifiers, or if any thread in the warp has exited.

PTX ISA Notes

Introduced in PTX ISA version 7.1.

Target ISA Notes

Requires sm_80 or higher.

Examples of half precision floating point type

420 Chapter 9. Instruction Set

PTX ISA, Release 8.1

∕∕ f16 elements in C and D matrix
.reg .f16x2 %Ra<2> %Rb<2> %Rc<2> %Rd<2>
.reg .b32 %Re;
mma.sp.sync.aligned.m16n8k16.row.col.f16.f16.f16.f16

{%Rd0, %Rd1},
{%Ra0, %Ra1},
{%Rb0, %Rb1},
{%Rc0, %Rc1}, %Re, 0x1;

Examples of alternate floating point type

.reg .b32 %Ra<2>, %Rb<2>;

.reg .f32 %Rc<4>, %Rd<4>;

.reg .b32 %Re;
mma.sp.sync.aligned.m16n8k8.row.col.f32.tf32.tf32.f32

{%Rd0, %Rd1, %Rd2, %Rd3},
{%Ra0, %Ra1},
{%Rb0, %Rb1},
{%Rc0, %Rc1, %Rc2, %Rc3}, %Re, 0x1;

.reg .b32 %Ra<2>, %Rb<2>;

.reg .f32 %Rc<4>, %Rd<4>;

.reg .b32 %Re;
mma.sp.sync.aligned.m16n8k16.row.col.f32.bf16.bf16.f32

{%Rd0, %Rd1, %Rd2, %Rd3},
{%Ra0, %Ra1},
{%Rb0, %Rb1},
{%Rc0, %Rc1, %Rc2, %Rc3}, %Re, 0x1;

.reg .b32 %Ra<4>, %Rb<4>;

.reg .f32 %Rc<4>, %Rd<4>;

.reg .b32 %Re;
mma.sp.sync.aligned.m16n8k32.row.col.f32.bf16.bf16.f32

{%Rd0, %Rd1, %Rd2, %Rd3},
{%Ra0, %Ra1, %Ra2, %Ra3},
{%Rb0, %Rb1, %Rb2, %Rb3},
{%Rc0, %Rc1, %Rc2, %Rc3}, %Re, 0x1;

Examples of integer type

.reg .b32 %Ra<4>, %Rb<4>, %Rc<4>, %Rd<4>;

.reg .u32 %Re;

∕∕ u8 elements in A and B matrix
mma.sp.sync.aligned.m16n8k32.row.col.satfinite.s32.u8.u8.s32

{%Rd0, %Rd1, %Rd2, %Rd3},
{%Ra0, %Ra1},
{%Rb0, %Rb1},
{%Rc0, %Rc1, %Rc2, %Rc3}, %Re, 0x1;

∕∕ s8 elements in A and B matrix
mma.sp.sync.aligned.m16n8k64.row.col.satfinite.s32.s8.s8.s32

{%Rd0, %Rd1, %Rd2, %Rd3},
{%Ra0, %Ra1, %Ra2, %Ra3},
{%Rb0, %Rb1, %Rb2, %Rb3},
{%Rc0, %Rc1, %Rc2, %Rc3}, %Re, 0x0;

(continues on next page)

9.7. Instructions 421

PTX ISA, Release 8.1

(continued from previous page)

∕∕ u4 elements in A and B matrix
mma.sp.sync.aligned.m16n8k64.row.col.s32.s4.s4.s32

{%Rd0, %Rd1, %Rd2, %Rd3},
{%Ra0, %Ra1},
{%Rb0, %Rb1},
{%Rc0, %Rc1, %Rc2, %Rc3}, %Re, 0x1;

∕∕ u4 elements in A and B matrix
mma.sp.sync.aligned.m16n8k128.row.col.satfinite.s32.u4.u4.s32

{%Rd0, %Rd1, %Rd2, %Rd3},
{%Ra0, %Ra1, %Ra2, %Ra3},
{%Rb0, %Rb1, %Rb2, %Rb3},
{%Rc0, %Rc1, %Rc2, %Rc3}, %Re, 0x0;

9.7.14. Asynchronous Warpgroup Level Matrix
Multiply-Accumulate Instructions

Thewarpgroup levelmatrixmultiply and accumulate operation has either of the following forms, where
matrix D is called accumulator:

▶ D = A * B + D

▶ D = A * B, where the input from accumulator D is disabled.

The wgmma instructions perform warpgroup level matrix multiply-and-accumulate operation by having
all threads in a warpgroup collectively perform the following actions:

1. Load matrices A, B and D into registers or into shared memory.

2. Perform the following fence operations:

▶ wgmma.fence operations to indicate that the register/shared-memory across the warp-
group have been written into.

▶ fence.proxy.async operation to make the generic proxy operations visible to the async
proxy.

3. Issue the asynchronousmatrixmultiply and accumulate operations using the wgmma.mma_async
operation on the input matrices. The wgmma.mma_async operation is performed in the async
proxy.

4. Create a wgmma-group and commit all the prior outstanding wgmma.mma_async operations into
the group, by using wgmma.commit_group operation.

5. Wait for the completion of the required wgmma-group.

6. Once the wgmma-group completes, all the wgmma.mma_async operations have been performed
and completed.

422 Chapter 9. Instruction Set

PTX ISA, Release 8.1

9.7.14.1 Warpgroup

A warpgroup is a set of four contiguous warps such that the warp-rank of the first warp is a multiple
of 4.

warp-rank of a warp is defined as:

(%tid.x + %tid.y * %ntid.x + %tid.z * %ntid.x * %ntid.y) ∕ 32

9.7.14.2 Matrix Shape

The matrix multiply and accumulate operations support a limited set of shapes for the operand matri-
ces A, B and D. The shapes of all three matrix operands are collectively described by the tuple MxNxK,
where A is an MxKmatrix, B is a KxNmatrix, while D is a MxNmatrix.

The following matrix shapes are supported for the specified types for the wgmma.mma_async opera-
tion:

Multiplicand
Data type

Shape

Floating-point - .
f16

.m64n8k16, .m64n16k16, .m64n24k16, .m64n32k16, .m64n40k16, .
m64n48k16, .m64n56k16, .m64n64k16, .m64n72k16, .m64n80k16, .
m64n88k16, .m64n96k16, .m64n104k16, .m64n112k16, .m64n120k16,
.m64n128k16, .m64n136k16, .m64n144k16, .m64n152k16, .m64n160k16,
.m64n168k16, .m64n176k16, .m64n184k16, .m64n192k16, .m64n200k16,
.m64n208k16, .m64n216k16, .m64n224k16, .m64n232k16, .m64n240k16,
.m64n248k16, .m64n256k16

Alternate
floating-point
format - .bf16

Alternate
floating-point
format - .tf32

.m64n8k8, .m64n16k8, .m64n24k8, .m64n32k8, .m64n40k8, .m64n48k8, .
m64n56k8, .m64n64k8, .m64n72k8, .m64n80k8, .m64n88k8, .m64n96k8,
.m64n104k8, .m64n112k8, .m64n120k8, .m64n128k8, .m64n136k8,
.m64n144k8, .m64n152k8, .m64n160k8, .m64n168k8, .m64n176k8,
.m64n184k8, .m64n192k8, .m64n200k8, .m64n208k8, .m64n216k8, .
m64n224k8, .m64n232k8, .m64n240k8, .m64n248k8, .m64n256k8

Alternate
floating-point
format - .e4m3∕.
e5m2

.m64n8k32, .m64n16k32, .m64n24k32, .m64n32k32, .m64n40k32, .
m64n48k32, .m64n56k32, .m64n64k32, .m64n72k32, .m64n80k32, .
m64n88k32, .m64n96k32, .m64n104k32, .m64n112k32, .m64n120k32,
.m64n128k32, .m64n136k32, .m64n144k32, .m64n152k32, .m64n160k32,
.m64n168k32, .m64n176k32, .m64n184k32, .m64n192k32, .m64n200k32,
.m64n208k32, .m64n216k32, .m64n224k32, .m64n232k32, .m64n240k32,
.m64n248k32, .m64n256k32

Integer - .u8/.s8 .m64n8k32, .m64n16k32, .m64n24k32, .m64n32k32, .m64n48k32, .
m64n64k32, .m64n80k32, .m64n96k32, .m64n112k32, .m64n128k32, .
m64n144k32, .m64n160k32, .m64n176k32, .m64n192k32, .m64n208k32,
.m64n224k32, .m64n240k32, .m64n256k32

Single-bit - .b1 .m64n8k256, .m64n16k256, .m64n24k256, .m64n32k256, .m64n48k256,
.m64n64k256, .m64n80k256, .m64n96k256, .m64n112k256, .m64n128k256,
.m64n144k256, .m64n160k256, .m64n176k256, .m64n192k256, .
m64n208k256, .m64n224k256, .m64n240k256, .m64n256k256

9.7. Instructions 423

PTX ISA, Release 8.1

9.7.14.3 Matrix Data-types

The matrix multiply and accumulate operation is supported separately on integer, floating-point, sub-
byte integer and single bit data-types. All operandsmust contain the same basic type kind, i.e., integer
or floating-point.

For floating-point matrix multiply and accumulate operation, different matrix operands may have dif-
ferent precision, as described later.

For integer matrix multiply and accumulate operation, both multiplicand matrices (A and B) must have
elements of the same data-type, e.g. both signed integer or both unsigned integer.

Data-type Multiplicands (A or B) Accumulator (D)

Integer both .u8 or both .s8 .s32

Floating Point .f16 .f16,.f32

Alternate floating Point .bf16 .f32

Alternate floating Point .tf32 .f32

Alternate floating Point .e4m3,.e5m2 .f16,.f32

Single-bit integer .b1 .s32

9.7.14.4 Register Fragments and Shared Memory Matrix Layouts

The input matrix A of the warpgroup wide MMA operations can be either in registers or in the shared
memory. The input matrix B of the warpgroup wide MMA operations must be in the shared mem-
ory. This section describes the layouts of register fragments and shared memory expected by the
warpgroup MMA instructions.

When the matrices are in shared memory, their starting addresses must be aligned to 16 bytes.

9.7.14.4.1 Register Fragments

This section describes the organization of variousmatrices located in register operands of the wgmma.
mma_async instruction.

9.7.14.4.1.1 Matrix Fragments for wgmma.mma_async.m64nNk16

A warpgroup executing wgmma.mma_async.m64nNk16 will compute an MMA operation of shape .
m64nNk16 where N is a valid n dimension as listed inMatrix Shape.

Elements of the matrix are distributed across the threads in a warpgroup so each thread of the warp-
group holds a fragment of the matrix.

▶ Multiplicand A in registers:

424 Chapter 9. Instruction Set

PTX ISA, Release 8.1

.atype Fragment Elements
(low to high)

.f16/.bf16 A vector expression containing four .f16x2 registers, with
each register containing two .f16/ .bf16 elements from
matrix A.

a0, a1, a2, a3,
a4, a5, a6, a7

The layout of the fragments held by different threads is shown in Figure 118.

Figure 118: WGMMA .m64nNk16 register fragment layout for matrix A.

▶ Accumulator D:

.dtype Fragment Elements (low to
high)

.f16 A vector expression containing N/4 number of .f16x2
registers, with each register containing two .f16 ele-
ments from matrix D.

d0, d1, d2, d3, …, dX,
dY, dZ, dW
where X = N∕2 - 4
Y = N∕2 - 3
Z = N∕2 - 2
W = N∕2 - 1
N = 8*i where i =
{1, 2, ... , 32}

.f32 A vector expression containing N/2 number of .f32 reg-
isters.

The layout of the fragments held by different threads is shown in Figure 119.

9.7. Instructions 425

PTX ISA, Release 8.1

Figure 119: WGMMA .m64nNk16 register fragment layout for accumulator matrix D.

9.7.14.4.1.2 Matrix Fragments for wgmma.mma_async.m64nNk8

A warpgroup executing wgmma.mma_async.m64nNk8 will compute an MMA operation of shape .
m64nNk8 where N is a valid n dimension as listed inMatrix Shape.

Elements of the matrix are distributed across the threads in a warpgroup so each thread of the warp-
group holds a fragment of the matrix.

▶ Multiplicand A in registers:

.atype Fragment Elements (low to
high)

.tf32 A vector expression containing four .b32 registers contain-
ing four .tf32 elements from matrix A.

a0, a1, a2, a3

The layout of the fragments held by different threads is shown in Figure 120.

▶ Accumulator D:

426 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Figure 120: WGMMA .m64nNk8 register fragment layout for matrix A.

.dtype Fragment Elements (low to high)

.f32 Avector expression containingN/2 number of.f32 reg-
isters.

d0, d1, d2, d3, …, dX, dY,
dZ, dW
where X = N∕2 - 4
Y = N∕2 - 3
Z = N∕2 - 2
W = N∕2 - 1
N = 8*i where i =
{1, 2, ... , 32}

The layout of the fragments held by different threads is shown in Figure 121.

9.7.14.4.1.3 Matrix Fragments for wgmma.mma_async.m64nNk32

A warpgroup executing wgmma.mma_async.m64nNk32 will compute an MMA operation of shape .
m64nNk32 where N is a valid n dimension as listed inMatrix Shape.

Elements of the matrix are distributed across the threads in a warpgroup so each thread of the warp-
group holds a fragment of the matrix.

▶ Multiplicand A in registers:

9.7. Instructions 427

PTX ISA, Release 8.1

Figure 121: WGMMA .m64nNk8 register fragment layout for accumulator matrix D.

.atype Fragment Elements (low
to high)

.s8/.u8 A vector expression containing four .b32 registers, with
each register containing four.u8/.s8 elements fromma-
trix A.

a0, a1, a2, a3, … ,
a14, a15

.e4m3/ .e5m2 A vector expression containing four .b32 registers, with
each register containing four .e4m3/ .e5m2 elements
from matrix A.

The layout of the fragments held by different threads is shown in Figure 122.

▶ Accumulator D:

428 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Figure 122: WGMMA .m64nNk32 register fragment layout for matrix A.

.dtype Fragment Elements (low to
high)

Miscellaneous Infor-
mation

.s32 A vector expression containing
N/2 number of .s32 registers.

d0, d1, d2, d3, …, dX,
dY, dZ, dW
where X = N∕2 - 4
Y = N∕2 - 3
Z = N∕2 - 2
W = N∕2 - 1
N depends on .dtype,
as described in the
next column.

N = 8*i where i =
{1, 2, 3, 4}

= 16*i
where i
= {3, 4,
..., 15,
16}

.f32 A vector expression containing
N/2 number of .f32 registers.

N = 8*i where i =
{1, 2, ... , 32}

.f16 A vector expression containing
N/4 number of .f16x2 registers,
with each register containing two
.f16 elements from matrix D.

The layout of the fragments held by different threads is shown in Figure 123.

9.7. Instructions 429

PTX ISA, Release 8.1

Figure 123: WGMMA .m64nNk32 register fragment layout for accumulator matrix D.

9.7.14.4.1.4 Matrix Fragments for wgmma.mma_async.m64nNk256

A warpgroup executing wgmma.mma_async.m64nNk256 will compute an MMA operation of shape .
m64nNk256 where N is a valid n dimension as listed inMatrix Shape.

Elements of the matrix are distributed across the threads in a warpgroup so each thread of the warp-
group holds a fragment of the matrix.

▶ Multiplicand A in registers:

.atype Fragment Elements (low to
high)

.b1 A vector expression containing four .b32 registers, with
each register containing thirty two .b1 element frommatrix
A.

a0, a1, a2, …, a127

The layout of the fragments held by different threads is shown in Figure 124.

▶ Accumulator D:

430 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Figure 124: WGMMA .m64nNk256 register fragment layout for matrix A.

.dtype Fragment Elements (low to high)

.s32 Avector expression containingN/2 number of.s32 reg-
isters.

d0, d1, d2, d3, …, dX, dY,
dZ, dW
where X = N∕2 - 4
Y = N∕2 - 3
Z = N∕2 - 2
W = N∕2 - 1
N = 8*i where i =
{1, 2, 3, 4}
= 16*i where i = {3,
4, ..., 15, 16}

The layout of the fragments held by different threads is shown in Figure 125.

9.7. Instructions 431

PTX ISA, Release 8.1

Figure 125: WGMMA .m64nNk256 register fragment layout for accumulator matrix D.

9.7.14.4.2 Shared Memory Matrix Layout

Matrices in sharedmemory are organized into a number of smaller matrices called corematrices. Each
core matrix has 8 rows or columns and the size of each row is 16 bytes. The core matrices occupy
contiguous space in shared memory.

Matrix A ismade up of 8x2 corematrices andMatrix B ismade up of 2x(N/8) corematrices. This section
describes the layout of the core matrices for each shape.

9.7.14.4.2.1 Shared Memory Layout for wgmma.mma_async.m64nNk16

Core matrices of A and B are as follows:

Core matrix Matrix description Matrix size

A Each row is made up of eight .f16/ .bf16 elements. 8x8

B Each column is made up of eight .f16/ .bf16 elements. 8x8

Matrices A and B consist of core matrices as shown in Figure 126. Each colored cell represents a core
matrix.

Layout of core matrices of A is shown in Figure 127. Each numbered cell represents an individual
element of the core matrix.

432 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Figure 126: WGMMA .m64nNk16 core matrices for A and B

Figure 127: WGMMA .m64nNk16 core matrix layout for A

9.7. Instructions 433

PTX ISA, Release 8.1

Layout of core matrices of B is shown in Figure 128. Each numbered cell represents an individual
element of the core matrix.

Figure 128: WGMMA .m64nNk16 core matrix layout for B

9.7.14.4.2.2 Shared Memory Layout for wgmma.mma_async.m64nNk8

Core matrices of A and B are as follows:

Core matrix Matrix description Matrix size

A Each row is made up of four .tf32 elements. 8x4

B Each row is made up of four .tf32 elements. 4x8

Matrices A and B consist of core matrices as shown in Figure 129. Each colored cell represents a core
matrix.

Layout of core matrices of A is shown in Figure 130. Each numbered cell represents an individual
element of the core matrix.

Layout of core matrices of B is shown in Figure 131. Each numbered cell represents an individual
element of the core matrix.

434 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Figure 129: WGMMA .m64nNk8 core matrices for A and B

Figure 130: WGMMA .m64nNk8 core matrix layout for A

9.7. Instructions 435

PTX ISA, Release 8.1

Figure 131: WGMMA .m64nNk8 core matrix layout for B

9.7.14.4.2.3 Shared Memory Layout for wgmma.mma_async.m64nNk32

Core matrices of A and B are as follows:

.atype/ .btype Core ma-
trix

Matrix description Matrix size

.s8/.u8 A Each row is made up of sixteen .s8/ .u8 elements. 8x4

.e4m3/ .e5m2 Each row is made up of sixteen .e4m3/ .e5m2 ele-
ments.

.s8/.u8 B Each column ismade up of sixteen .s8/ .u8 elements. 4x8

.e4m3/ .e5m2 Each column is made up of sixteen .e4m3/ .e5m2 ele-
ments.

Matrices A and B consist of core matrices as shown in Figure 132. Each colored cell represents a core
matrix.

Layout of core matrices of A is shown in Figure 133. Each numbered cell represents an individual
element of the core matrix.

Layout of core matrices of B is shown in Figure 134. Each numbered cell represents an individual
element of the core matrix.

436 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Figure 132: WGMMA .m64nNk32 core matrices for A and B

Figure 133: WGMMA .m64nNk32 core matrix layout for A

9.7. Instructions 437

PTX ISA, Release 8.1

Figure 134: WGMMA .m64nNk32 core matrix layout for B

9.7.14.4.2.4 Shared Memory Layout for wgmma.mma_async.m64nNk256

Core matrices of A and B are as follows:

Core matrix Matrix description Matrix size

A Each row is made up of 256 .b1 elements. 8x128

B Each column is made up of 256 .b1 elements. 128x8

Matrices A and B consist of core matrices as shown in Figure 135. Each colored cell represents a core
matrix.

Layout of core matrices of A is shown in Figure 136. Each numbered cell represents an individual
element of the core matrix.

Layout of core matrices of B is shown in Figure 137. Each numbered cell represents an individual
element of the core matrix.

438 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Figure 135: WGMMA .m64nNk256 core matrices for A and B

Figure 136: WGMMA .m64nNk256 core matrix layout for A

9.7. Instructions 439

PTX ISA, Release 8.1

Figure 137: WGMMA .m64nNk256 core matrix layout for B

9.7.14.4.2.5 Strides

Leading dimension byte offset of matrix A or B is the distance, in bytes, between two adjacent core
matrices in the K dimension.

Stride dimension byte offset of matrix A or B is the distance, in bytes, between two adjacent core
matrices in the M or N dimension.

Figure 138 and Figure 139 show the leading dimension byte offset and the stride dimension byte
offsets for A and B matrices.

▶ Matrix A:

▶ Matrix B:

Leading dimension byte offset and stride dimension byte offset must be specified in the matrix de-
scriptor as described inMatrix Descriptor Format.

9.7.14.4.2.6 Swizzling Modes

The core matrices can be swizzled in the shared memory by specifying one of the following swizzling
modes:

1. No swizzling: All the elements of the entire core matrix are adjacent to each other and there is
no swizzling. Figure 140 illustrates this:

2. 32-Byte swizzling: A group of two adjacent core matrices are swizzled as shown in Figure 141.
The swizzling pattern repeats for the remaining core matrices.

3. 64-Byte swizzling: A group of four adjacent core matrices are swizzled as shown in Figure 142.
The swizzling pattern repeats for the remaining core matrices.

440 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Figure 138: WGMMA stride and leading dimension byte offset for matrix A

Figure 139: WGMMA stride and leading dimension byte offset for matrix B

9.7. Instructions 441

PTX ISA, Release 8.1

Figure 140: WGMMA core matrices with no swizzling

Figure 141: WGMMA core matrices with 32-byte swizzling

442 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Figure 142: WGMMA core matrices with 64-byte swizzling

4. 128-Byte swizzling: A group of eight adjacent core matrices are swizzled as shown in Figure 143.
The swizzling pattern repeats for the remaining core matrices.

9.7.14.4.2.7 Matrix Descriptor Format

Matrix descriptor specifies the properties of the matrix in shared memory that is a multiplicand in the
matrix multiply and accumulate operation. It is a 64-bit value contained in a register with the following
layout:

Bit-field Size in bits Description

13–0 14 matrix-descriptor-encode(Matrix start address)

29–16 14 matrix-descriptor-encode(Leading dimension
byte offset)

45–32 14 matrix-descriptor-encode(Stride dimension byte
offset)

51–49 3 Matrix base offset. This is valid for all swizzling
modes except the no-swizzle mode.

63–62 2 Specifies the swizzling mode to be used:
▶ 0: No swizzle
▶ 1: 128-Byte swizzle
▶ 2: 64-Byte swizzle
▶ 3: 32-Byte swizzle

9.7. Instructions 443

PTX ISA, Release 8.1

Figure 143: WGMMA core matrices with 128-byte swizzling

where

matrix-descriptor-encode(x) = (x & 0x3FFFF) >> 0x4

The value of base offset is 0 when the repeating pattern of the specified swizzling mode starts as per
the below table:

Swizzling mode Starting address of the repeating pattern

128-Byte swizzle 1024-Byte boundary

64-Byte swizzle 512-Byte boundary

32-Byte swizzle 256-Byte boundary

Otherwise, the base offset must be a non-zero value, computed using the following formula:

base offset = (pattern start addr >> 0x7) & 0x7

444 Chapter 9. Instruction Set

PTX ISA, Release 8.1

9.7.14.5 Async Proxy

The wgmma.mma_async operations are performed in the asynchronous proxy (or async proxy).

Accessing the samememory location acrossmultiple proxies needs a cross-proxy fence. For the async
proxy, fence.proxy.async should be used to synchronize memory between generic proxy and the
async proxy.

The completion of a wgmma.mma_async operation is followed by an implicit generic-async proxy fence.
So the result of the asynchronous operation is made visible to the generic proxy as soon as its com-
pletion is observed. wgmma.commit_group and wgmma.wait_group operations must be used to wait
for the completion of the wgmma.mma_async instructions.

9.7.14.6 Asynchronous Multiply-and-Accumulate Instruction: wgmma.mma_async

wgmma.mma_async

Perform matrix multiply-and-accumulate operation across warpgroup

Syntax

Half precision floating point type:

wgmma.mma_async.sync.aligned.shape.dtype.f16.f16 d, a-desc, b-desc, scale-d, imm-
↪→scale-a, imme-scale-b, imm-trans-a, imm-trans-b;

wgmma.mma_async.sync.aligned.shape.dtype.f16.f16 d, a, b-desc, scale-d, imm-scale-a,�
↪→imme-scale-b, imm-trans-b;

.shape = {.m64n8k16, .m64n16k16, .m64n24k16, .m64n32k16,
.m64n40k16, .m64n48k16, .m64n56k16, .m64n64k16,
.m64n72k16, .m64n80k16, .m64n88k16, .m64n96k16,
.m64n104k16, .m64n112k16, .m64n120k16, .m64n128k16,
.m64n136k16, .m64n144k16, .m64n152k16, .m64n160k16,
.m64n168k16, .m648176k16, .m64n184k16, .m64n192k16,
.m64n200k16, .m64n208k16, .m64n216k16, .m64n224k16,
.m64n232k16, .m64n240k16, .m64n248k16, .m64n256k16};

.dtype = {.f16, .f32};

Alternate floating point type :

.bf16 floating point type:

wgmma.mma_async.sync.aligned.shape.dtype.bf16.bf16 d, a-desc, b-desc, scale-d, imm-
↪→scale-a, imme-scale-b, imm-trans-a, imm-trans-b;

wgmma.mma_async.sync.aligned.shape.dtype.bf16.bf16 d, a, b-desc, scale-d, imm-scale-
↪→a, imme-scale-b, imm-trans-b;

.shape = {.m64n8k16, .m64n16k16, .m64n24k16, .m64n32k16,
.m64n40k16, .m64n48k16, .m64n56k16, .m64n64k16,
.m64n72k16, .m64n80k16, .m64n88k16, .m64n96k16,
.m64n104k16, .m64n112k16, .m64n120k16, .m64n128k16,
.m64n136k16, .m64n144k16, .m64n152k16, .m64n160k16,
.m64n168k16, .m648176k16, .m64n184k16, .m64n192k16,
.m64n200k16, .m64n208k16, .m64n216k16, .m64n224k16,
.m64n232k16, .m64n240k16, .m64n248k16, .m64n256k16};

.dtype = {.f32};
(continues on next page)

9.7. Instructions 445

PTX ISA, Release 8.1

(continued from previous page)

.tf32 floating point type:

wgmma.mma_async.sync.aligned.shape.dtype.tf32.tf32 d, a-desc, b-desc, scale-d, imm-
↪→scale-a, imme-scale-b;

wgmma.mma_async.sync.aligned.shape.dtype.tf32.tf32 d, a, b-desc, scale-d, imm-scale-
↪→a, imme-scale-b;

.shape = {.m64n8k8, .m64n16k8, .m64n24k8, .m64n32k8,
.m64n40k8, .m64n48k8, .m64n56k8, .m64n64k8,
.m64n72k8, .m64n80k8, .m64n88k8, .m64n96k8,
.m64n104k8, .m64n112k8, .m64n120k8, .m64n128k8,
.m64n136k8, .m64n144k8, .m64n152k8, .m64n160k8,
.m64n168k8, .m648176k8, .m64n184k8, .m64n192k8,
.m64n200k8, .m64n208k8, .m64n216k8, .m64n224k8,
.m64n232k8, .m64n240k8, .m64n248k8, .m64n256k8};

.dtype = {.f32};

FP8 floating point type

wgmma.mma_async.sync.aligned.shape.dtype.atype.btype d, a-desc, b-desc, scale-d, imm-
↪→scale-a, imme-scale-b;

wgmma.mma_async.sync.aligned.shape.dtype.atype.btype d, a, b-desc, scale-d, imm-
↪→scale-a, imme-scale-b;

.shape = {.m64n8k32, .m64n16k32, .m64n24k32, .m64n32k32,
.m64n40k32, .m64n48k32, .m64n56k32, .m64n64k32,
.m64n72k32, .m64n80k32, .m64n88k32, .m64n96k32,
.m64n104k32, .m64n112k32, .m64n120k32, .m64n128k32,
.m64n136k32, .m64n144k32, .m64n152k32, .m64n160k32,
.m64n168k32, .m648176k32, .m64n184k32, .m64n192k32,
.m64n200k32, .m64n208k32, .m64n216k32, .m64n224k32,
.m64n232k32, .m64n240k32, .m64n248k32, .m64n256k32};

.atype = {.e4m3, .e5m2};

.btype = {.e4m3, .e5m2};

.dtype = {.f16, .f32};

Integer type:

wgmma.mma_async.sync.aligned.shape{.satfinite}.s32.atype.btype d, a-desc, b-desc,�
↪→scale-d;

wgmma.mma_async.sync.aligned.shape{.satfinite}.s32.atype.btype d, a, b-desc, scale-d;

.shape = {.m64n8k32, .m64n16k32, .m64n24k32, .m64n32k32,
.m64n48k32, .m64n64k32, .m64n80k32, .m64n96k32,
.m64n112k32, .m64n128k32, .m64n144k32, .m64n160k32,
.m648176k32, .m64n192k32, .m64n208k32, .m64n224k32};

.atype = {.s8, .u8};

.btype = {.s8, .u8};

Single bit:

wgmma.mma_async.sync.aligned.shape.s32.b1.b1.op.popc d, a-desc, b-desc, scale-d;

(continues on next page)

446 Chapter 9. Instruction Set

PTX ISA, Release 8.1

(continued from previous page)

wgmma.mma_async.sync.aligned.shape.s32.b1.b1.op.popc d, a, b-desc, scale-d;

.shape = {.m64n8k256, .m64n16k256, .m64n24k256, .m64n32k256,
.m64n48k256, .m64n64k256, .m64n80k256, .m64n96k256,
.m64n112k256, .m64n128k256, .m64n144k256, .m64n160k256,
.m648176k256, .m64n192k256, .m64n208k256, .m64n224k256};

.op = {.and};

Description

Instruction wgmma.mma_async issues a MxNxKmatrix multiply and accumulate operation, D = A*B+D,
where the A matrix is MxK, the B matrix is KxN, and the D matrix is MxN.

The operation of the form D = A*B is issued when the input predicate argument scale-d is false.

wgmma.fence instruction must be used to fence the register accesses of wgmma.mma_async instruc-
tion from their prior accesses. Otherwise, the behavior is undefined.

wgmma.commit_group and wgmma.wait_group operations must be used to wait for the completion
of the asynchronous matrix multiply and accumulate operations before the results are accessed.

Register operand d represents the accumulator matrix as well as the destination matrix, distributed
across the participating threads. Register operand a represents the multiplicand matrix A in register
distributed across the participating threads. The 64-bit register operands a-desc and b-desc are the
matrix descriptors which represent the multiplicand matrices A and B in shared memory respectively.
The format of the matrix descriptor is described inMatrix Descriptor Format.

Matrices A and B are stored in row-major and column-major format respectively. For certain floating
point variants, the input matrices A and B can be transposed by specifying the value 1 for the imme-
diate integer arguments imm-trans-a and imm-trans-b respectively. A value of 0 can be used to
avoid the transpose operation. The valid values of imm-trans-a and imm-trans-b are 0 and 1. The
transpose operation is only supported for the wgmma.mma_async variants with .f16/ .bf16 types on
matrices accessed from shared memory using matrix descriptors.

For the floating point variants of the wgmma.mma_async operation, each element of the inputmatrices
A and B can be negated by specifying the value -1 for operands imm-scale-a and imm-scale-b
respectively. A value of 1 can be used to avoid the negate operation. The valid values of imm-scale-a
and imm-scale-b are -1 and 1.

The qualifiers .dtype, .atype and .btype indicate the data type of the elements in matrices D, A
and B respectively. .atype and .btype must be the same for all floating point wgmma.mma_async
variants except for the FP8 floating point variants. The sizes of individual data elements of matrices
A and B in alternate floating point variants of the wgmma.mma_async operation are as follows:

▶ Matrices A and B have 8-bit data elements when .atype/ .btype is .e4m3/.e5m2.

▶ Matrices A and B have 16-bit data elements when .atype/ .btype is .bf16.

▶ Matrices A and B have 32-bit data elements when .atype/ .btype is .tf32.

Precision and rounding:

▶ Floating point operations:

Element-wise multiplication of matrix A and B is performed with at least single precision. When
.dtype is .f32, accumulation of the intermediate values is performed with at least single preci-
sion. When .dtype is .f16, the accumulation is performed with at least half precision.

The accumulation order, rounding and handling of subnormal inputs are unspecified.

▶ .bf16 and .tf32 floating point operations:

9.7. Instructions 447

PTX ISA, Release 8.1

Element-wise multiplication of matrix A and B is performed with specified precision. wgmma.
mma_async operation involving type .tf32 will truncate lower 13 bits of the 32-bit input data
before multiplication is issued. Accumulation of the intermediate values is performed with at
least single precision.

The accumulation order, rounding, and handling of subnormal inputs are unspecified.

▶ Integer operations:

The integer wgmma.mma_async operation is performed with .s32 accumulators. The .
satfinite qualifier indicates that on overflow, the accumulated value is limited to the range
MIN_INT32..MAX_INT32 (where the bounds are defined as the minimum negative signed 32-bit
integer and the maximum positive signed 32-bit integer respectively).

If .satfinite is not specified, the accumulated value is wrapped instead.

The mandatory .sync qualifier indicates that wgmma.mma_async instruction causes the executing
thread to wait until all threads in the warp execute the same wgmma.mma_async instruction before
resuming execution.

The mandatory .aligned qualifier indicates that all threads in the warpgroup must execute the
same wgmma.mma_async instruction. In conditionally executed code, a wgmma.mma_async instruction
should only be used if it is known that all threads in the warpgroup evaluate the condition identically,
otherwise behavior is undefined.

PTX ISA Notes

Introduced in PTX ISA version 8.0.

Target ISA Notes

Requires sm_90a.

Examples of half precision floating point type

.reg .f16x2 f16a<40>, f16d<40>;

.reg .f32 f32d<40>;

.reg .b64 descA, descB;

.reg .pred scaleD;
wgmma.mma_async.sync.aligned.m64n8k16.f32.f16.f16

{f32d0, f32d1, f32d2, f32d3},
{f16a0, f16a1, f16a2, f16a3},
descB,
1, -1, -1, 1;

wgmma.mma_async.sync.aligned.m64n72k16.f16.f16.f16
{f16d0, f16d1, f16d2, f16d3, f16d4, f16d5, f16d6, f16d7, f16d8,
f16d9, f16d10, f16d11, f16d12, f16d13, f16d14, f16d15, f16d16, f16d17},

descA,
descB,
scaleD, -1, 1, 1, 0;

Examples of alternate floating point type

.reg .f32 f32d<40>;

.reg .b32 bf16a<40>

.reg .b64 descA, descB;

wgmma.mma_async.sync.aligned.m64n120k16.f32.bf16.bf16
{f32d0, f32d1, f32d2, f32d3, f32d4, f32d5, f32d6, f32d7, f32d8, f32d9,
f32d10, f32d11, f32d12, f32d13, f32d14, f32d15, f32d16, f32d17, f32d18, f32d19,

(continues on next page)

448 Chapter 9. Instruction Set

PTX ISA, Release 8.1

(continued from previous page)

f32d20, f32d21, f32d22, f32d23, f32d24, f32d25, f32d26, f32d27, f32d28, f32d29,
f32d30, f32d31, f32d32, f32d33, f32d34, f32d35, f32d36, f32d37, f32d38, f32d39,
f32d40, f32d41, f32d42, f32d43, f32d44, f32d45, f32d46, f32d47, f32d48, f32d49,
f32d50, f32d51, f32d52, f32d53, f32d54, f32d55, f32d56, f32d57, f32d58, f32d59},

{bf16a0, bf16a1, bf16a2, bf16a3},
descB,
scaleD, -1, -1, 0;

.reg .f32 f32d<40>;

.reg .b64 descA, descB;

wgmma.mma_async.sync.aligned.m64n16k8.f32.tf32.tf32
{f32d0, f32d1, f32d2, f32d3, f32d4, f32d5, f32d6, f32d7},
descA,
descB,
0, -1, -1;

.reg .b32 f16d<8>, f16a<8>;

.reg .f32 f32d<8>;

.reg .b64 descA, descB;

wgmma.mma_async.sync.aligned.m64n8k32.f16.e4m3.e5m2
{f16d0, f16d1},
descA,
descB,
scaleD, -1, 1;

wgmma.mma_async.sync.aligned.m64n8k32.f32.e5m2.e4m3
{f32d0, f32d1, f32d2, f32d3},
{f16a0, f16a1, f16a2, f16a3},
descB,
1, -1, -1;

Examples of integer type

.reg .s32 s32d<8>;

.reg .u32 u32a<8>;

.reg .pred scaleD;

.reg .b64 descA, descB;

wgmma.mma_async.sync.aligned.m64n8k32.s32.s8.s8.satfinite
{s32d0, s32d1, s32d2, s32d3},
{u32a0, u32a1, u32a2, u32a3},
descB,
1;

wgmma.mma_async.sync.aligned.m64n8k32.s32.u8.u8
{s32d0, s32d1, s32d2, s32d3},
descA,
descB,
scaleD;

Examples of single bit type

.reg .s32 s32d<4>;

.reg .b32 b32a<4>;

.reg .pred scaleD;
(continues on next page)

9.7. Instructions 449

PTX ISA, Release 8.1

(continued from previous page)

.reg .b64 descA, descB;

wgmma.mma_async.sync.aligned.m64n8k256.s32.b1.b1.and.popc
{s32d0, s32d1, s32d2, s32d3},
{b32a0, b32a1, b32a2, b32a3},
descB,
scaleD;

9.7.14.7 Asynchronous Multiply-and-Accumulate Instruction: wgmma.fence

wgmma.fence

Enforce an ordering of register accesses between wgmma.mma_async and other operations.

Syntax

wgmma.fence.sync.aligned;

Description

wgmma.fence instruction establishes an ordering between prior accesses to any warpgroup registers
and subsequent accesses to the same registers by a wgmma.mma_async instruction. Only the accu-
mulator register and the input registers containing the fragments of matrix A require this ordering.

The wgmma.fence instructionmust be issued by all warps of the warpgroup at the following locations:

▶ Before the first wgmma.mma_async operation in a warpgroup.

▶ Between a register access by a thread in the warpgroup and any wgmma.mma_async instruc-
tion that accesses the same registers, either as accumulator or input register containing frag-
ments ofmatrix A, except when these are accumulator register accesses acrossmultiple wgmma.
mma_async instructions of the same shape. In the latter case, an ordering guarantee is provided
by default.

Otherwise, the behavior is undefined.

An async proxy fence must be used to establish an ordering between prior writes to shared memory
matrices and subsequent reads of the same matrices in a wgmma.mma_async instruction.

The mandatory .sync qualifier indicates that wgmma.fence instruction causes the executing thread
to wait until all threads in the warp execute the same wgmma.fence instruction before resuming exe-
cution.

Themandatory .aligned qualifier indicates that all threads in the warpgroupmust execute the same
wgmma.fence instruction. In conditionally executed code, an wgmma.fence instruction should only be
used if it is known that all threads in the warpgroup evaluate the condition identically, otherwise the
behavior is undefined.

PTX ISA Notes

Introduced in PTX ISA version 8.0.

Target ISA Notes

Requires sm_90a.

Examples

450 Chapter 9. Instruction Set

PTX ISA, Release 8.1

∕∕ Example 1, first use example:
wgmma.fence.sync.aligned; ∕∕ Establishes an ordering w.r.t. prior accesses to the�
↪→registers s32d<0-3>
wgmma.mma_async.sync.aligned.m64n8k32.s32.u8.u8 {s32d0, s32d1, s32d2, s32d3},

descA, descB, scaleD;
wgmma.commit_group.sync.aligned;
wgmma.wait_group.sync.aligned 0;

∕∕ Example 2, use-case with the input value updated in between:
wgmma.fence.sync.aligned;
wgmma.mma_async.sync.aligned.m64n8k32.s32.u8.u8 {s32d0, s32d1, s32d2, s32d3},

descA, descB, scaleD;
...
mov.b32 s32d0, new_val;
wgmma.fence.sync.aligned;
wgmma.mma_async.sync.aligned.m64n8k32.s32.u8.u8 {s32d4, s32d5, s32d6, s32d7},

{s32d0, s32d1, s32d2, s32d3},
descB, scaleD;

wgmma.commit_group.sync.aligned;
wgmma.wait_group.sync.aligned 0;

9.7.14.8 Asynchronous Multiply-and-Accumulate Instruction: wgmma.commit_group

wgmma.commit_group

Commits all prior uncommitted wgmma.mma_async operations into a wgmma-group.

Syntax

wgmma.commit_group.sync.aligned;

Description

wgmma.commit_group instruction creates a new wgmma-group per warpgroup and batches all prior
wgmma.mma_async instructions initiated by the executing warp but not committed to any wgmma-
group into the new wgmma-group. If there are no uncommitted wgmma.mma_async instructions then
wgmma.commit_group results in an empty wgmma-group.

An executing thread can wait for the completion of all wgmma.mma_async operations in a wgmma-
group by using wgmma.wait_group.

Themandatory .sync qualifier indicates that wgmma.commit_group instruction causes the executing
thread to wait until all threads in the warp execute the same wgmma.commit_group instruction before
resuming execution.

Themandatory .aligned qualifier indicates that all threads in the warpgroupmust execute the same
wgmma.commit_group instruction. In conditionally executed code, an wgmma.commit_group instruc-
tion should only be used if it is known that all threads in the warpgroup evaluate the condition identi-
cally, otherwise the behavior is undefined.

PTX ISA Notes

Introduced in PTX ISA version 8.0.

Target ISA Notes

Requires sm_90a.

Examples

9.7. Instructions 451

PTX ISA, Release 8.1

wgmma.commit_group.sync.aligned;

9.7.14.9 Asynchronous Multiply-and-Accumulate Instruction: wgmma.wait_group

wgmma.wait_group

Signal the completion of a preceding warpgroup operation.

Syntax

wgmma.wait_group.sync.aligned N;

Description

wgmma.wait_group instruction will cause the executing thread to wait until only N or fewer of the
most recent wgmma-groups are pending and all the prior wgmma-groups committed by the executing
threads are complete. For example, when N is 0, the executing thread waits on all the prior wgmma-
groups to complete. Operand N is an integer constant.

Accessing the accumulator register or the input register containing the fragments of matrix A of a
wgmma.mma_async instruction without first performing a wgmma.wait_group instruction that waits
on a wgmma-group including that wgmma.mma_async instruction is undefined behavior.

The mandatory .sync qualifier indicates that wgmma.wait_group instruction causes the executing
thread to wait until all threads in the warp execute the same wgmma.wait_group instruction before
resuming execution.

Themandatory .aligned qualifier indicates that all threads in the warpgroupmust execute the same
wgmma.wait_group instruction. In conditionally executed code, an wgmma.wait_group instruction
should only be used if it is known that all threads in the warpgroup evaluate the condition identically,
otherwise the behavior is undefined.

PTX ISA Notes

Introduced in PTX ISA version 8.0.

Target ISA Notes

Requires sm_90a.

Examples

wgmma.fence.sync.aligned;

wgmma.mma_async.sync.aligned.m64n8k32.s32.u8.u8 {s32d0, s32d1, s32d2, s32d3},
descA, descB, scaleD;

wgmma.commit_group.sync.aligned;

wgmma.mma_async.sync.aligned.m64n8k16.f32.f16.f16 {f32d0, f32d1, f32d2, f32d3},
{f16a0, f16a1, f16a2, f16a3},
descB, 1, -1, -1, 1;

wgmma.commit_group.sync.aligned;

wgmma.wait_group.sync.aligned 0;

452 Chapter 9. Instruction Set

PTX ISA, Release 8.1

9.7.15. Stack Manipulation Instructions

The stack manipulation instructions can be used to dynamically allocate and deallocate memory on
the stack frame of the current function.

The stack manipulation instrucitons are:

▶ stacksave

▶ stackrestore

▶ alloca

9.7.15.1 Stack Manipulation Instructions: stacksave

stacksave

Save the value of stack pointer into a register.

Syntax

stacksave.type d;

.type = { .u32, .u64 };

Description

Copies the current value of stack pointer into the destination register d. Pointer returned by stack-
save can be used in a subsequent stackrestore instruction to restore the stack pointer. If d is
modified prior to use in stackrestore instruction, it may corrupt data in the stack.

Destination operand d has the same type as the instruction type.

Semantics

d = stackptr;

PTX ISA Notes

Introduced in PTX ISA version 7.3.

Preview Feature: stacksave is a preview feature in PTX ISA version 7.3. All details are subject to
change with no guarantees of backward compatibility on future PTX ISA versions or SM archi-
tectures.

Target ISA Notes

stacksave requires sm_52 or higher.

Examples

.reg .u32 rd;
stacksave.u32 rd;

.reg .u64 rd1;
stacksave.u64 rd1;

9.7. Instructions 453

PTX ISA, Release 8.1

9.7.15.2 Stack Manipulation Instructions: stackrestore

stackrestore

Update the stack pointer with a new value.

Syntax

stackrestore.type a;

.type = { .u32, .u64 };

Description

Sets the current stack pointer to source register a.

Whenstackrestore is usedwith operandawritten by a priorstacksave instruction, itwill effectively
restore the state of stack as it was before stacksave was executed. Note that if stackrestore is
used with an arbitrary value of a, it may cause corruption of stack pointer. This implies that the correct
use of this feature requires that stackrestore.type a is used after stacksave.type a without
redefining the value of a between them.

Operand a has the same type as the instruction type.

Semantics

stackptr = a;

PTX ISA Notes

Introduced in PTX ISA version 7.3.

Preview Feature: stackrestore is a preview feature in PTX ISA version 7.3. All details are subject to
change with no guarantees of backward compatibility on future PTX ISA versions or SM archi-
tectures.

Target ISA Notes

stackrestore requires sm_52 or higher.

Examples

.reg .u32 ra;
stacksave.u32 ra;
∕∕ Code that may modify stack pointer
...
stackrestore.u32 ra;

9.7.15.3 Stack Manipulation Instructions: alloca

alloca

Dynamically allocate memory on stack.

Syntax

alloca.type ptr, size{, immAlign};

.type = { .u32, .u64 };

454 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Description

The alloca instruction dynamically allocates memory on the stack frame of the current function and
updates the stack pointer accordingly. The returned pointer ptr points to local memory and can be
used in the address operand of ld.local and st.local instructions.

If sufficient memory is unavailable for allocation on the stack, then execution of alloca may result
in stack overflow. In such cases, attempting to access the allocated memory with ptr will result in
undefined program behavior.

The memory allocated by alloca is deallocated in the following ways:

▶ It is automatically deallocated when the function exits.

▶ It can be explicitly deallocated using stacksave and stackrestore instructions: stacksave
can be used to save the value of stack pointer before executing alloca, and stackrestore
can be used after alloca to restore stack pointer to the original value which was previously
savedwithstacksave. Note that accessing deallocatedmemory after executingstackrestore
results in undefined behavior.

size is an unsigned value which specifies the amount of memory in number of bytes to be allocated
on stack. size = 0may not lead to a valid memory allocation.

Both ptr and size have the same type as the instruction type.

immAlign is a 32-bit value which specifies the alignment requirement in number of bytes for the
memory allocated by alloca. It is an integer constant, must be a power of 2 and must not exceed
2^23. immAlign is an optional argument with default value being 8 which is the minimum guaranteed
alignment.

Semantics

alloca.type ptr, size, immAlign:

a = max(immAlign, frame_align); ∕∕ frame_align is the minimum guaranteed alignment

∕∕ Allocate size bytes of stack memory with alignment a and update the stack pointer.
∕∕ Since the stack grows down, the updated stack pointer contains a lower address.
stackptr = alloc_stack_mem(size, a);

∕∕ Return the new value of stack pointer as ptr. Since ptr is the lowest address of�
↪→the memory
∕∕ allocated by alloca, the memory can be accessed using ptr up to (ptr + size of�
↪→allocated memory).
stacksave ptr;

PTX ISA Notes

Introduced in PTX ISA version 7.3.

Preview Feature: alloca is a preview feature in PTX ISA version 7.3. All details are subject to change
with no guarantees of backward compatibility on future PTX ISA versions or SM architectures.

Target ISA Notes

alloca requires sm_52 or higher.

Examples

.reg .u32 ra, stackptr, ptr, size;

stacksave.u32 stackptr; ∕∕ Save the current stack pointer
(continues on next page)

9.7. Instructions 455

PTX ISA, Release 8.1

(continued from previous page)

alloca ptr, size, 8; ∕∕ Allocate stack memory
st.local.u32 [ptr], ra; ∕∕ Use the allocated stack memory
stackrestore.u32 stackptr; ∕∕ Deallocate memory by restoring the stack pointer

9.7.16. Video Instructions

All video instructions operate on 32-bit register operands. However, the video instructions may be
classified as either scalar or SIMD based on whether their core operation applies to one or multiple
values.

The video instructions are:

▶ vadd, vadd2, vadd4

▶ vsub, vsub2, vsub4

▶ vmad

▶ vavrg2, vavrg4

▶ vabsdiff, vabsdiff2, vabsdiff4

▶ vmin, vmin2, vmin4

▶ vmax, vmax2, vmax4

▶ vshl

▶ vshr

▶ vset, vset2, vset4

9.7.16.1 Scalar Video Instructions

All scalar video instructions operate on 32-bit register operands. The scalar video instructions are:

▶ vadd

▶ vsub

▶ vabsdiff

▶ vmin

▶ vmax

▶ vshl

▶ vshr

▶ vmad

▶ vset

The scalar video instructions execute the following stages:

1. Extract and sign- or zero-extend byte, half-word, or word values from its source operands, to
produce signed 33-bit input values.

2. Perform a scalar arithmetic operation to produce a signed 34-bit result.

456 Chapter 9. Instruction Set

PTX ISA, Release 8.1

3. Optionally clamp the result to the range of the destination type.

4. Optionally perform one of the following:

▶ apply a second operation to the intermediate result and a third operand, or

▶ truncate the intermediate result to a byte or half-word value and merge into a specified
position in the third operand to produce the final result.

The general format of scalar video instructions is as follows:

∕∕ 32-bit scalar operation, with optional secondary operation
vop.dtype.atype.btype{.sat} d, a{.asel}, b{.bsel};
vop.dtype.atype.btype{.sat}.secop d, a{.asel}, b{.bsel}, c;

∕∕ 32-bit scalar operation, with optional data merge
vop.dtype.atype.btype{.sat} d.dsel, a{.asel}, b{.bsel}, c;

.dtype = .atype = .btype = { .u32, .s32 };

.dsel = .asel = .bsel = { .b0, .b1, .b2, .b3, .h0, .h1 };

.secop = { .add, .min, .max };

The source and destination operands are all 32-bit registers. The type of each operand (.u32 or .s32)
is specified in the instruction type; all combinations of dtype, atype, and btype are valid. Using the
atype∕btype and asel∕bsel specifiers, the input values are extracted and sign- or zero-extended
internally to .s33 values. The primary operation is then performed to produce an .s34 intermediate
result. The sign of the intermediate result depends on dtype.

The intermediate result is optionally clamped to the range of the destination type (signed or unsigned),
taking into account the subword destination size in the case of optional data merging.

.s33 optSaturate(.s34 tmp, Bool sat, Bool sign, Modifier dsel) {
if (!sat) return tmp;

switch (dsel) {
case .b0, .b1, .b2, .b3:

if (sign) return CLAMP(tmp, S8_MAX, S8_MIN);
else return CLAMP(tmp, U8_MAX, U8_MIN);

case .h0, .h1:
if (sign) return CLAMP(tmp, S16_MAX, S16_MIN);
else return CLAMP(tmp, U16_MAX, U16_MIN);

default:
if (sign) return CLAMP(tmp, S32_MAX, S32_MIN);
else return CLAMP(tmp, U32_MAX, U32_MIN);

}
}

This intermediate result is then optionally combined with the third source operand using a secondary
arithmetic operation or subword data merge, as shown in the following pseudocode. The sign of the
third operand is based on dtype.

.s33 optSecOp(Modifier secop, .s33 tmp, .s33 c) {
switch (secop) {

.add: return tmp + c;

.min: return MIN(tmp, c);

.max return MAX(tmp, c);
default: return tmp;

}
}

9.7. Instructions 457

PTX ISA, Release 8.1

.s33 optMerge(Modifier dsel, .s33 tmp, .s33 c) {
switch (dsel) {

case .h0: return ((tmp & 0xffff) | (0xffff0000 & c);
case .h1: return ((tmp & 0xffff) << 16) | (0x0000ffff & c);
case .b0: return ((tmp & 0xff) | (0xffffff00 & c);
case .b1: return ((tmp & 0xff) << 8) | (0xffff00ff & c);
case .b2: return ((tmp & 0xff) << 16) | (0xff00ffff & c);
case .b3: return ((tmp & 0xff) << 24) | (0x00ffffff & c);
default: return tmp;

}
}

The lower 32-bits are then written to the destination operand.

9.7.16.1.1 Scalar Video Instructions: vadd, vsub, vabsdiff, vmin, vmax

vadd, vsub

Integer byte/half-word/word addition/subtraction.

vabsdiff

Integer byte/half-word/word absolute value of difference.

vmin, vmax

Integer byte/half-word/word minimum/maximum.

Syntax

∕∕ 32-bit scalar operation, with optional secondary operation
vop.dtype.atype.btype{.sat} d, a{.asel}, b{.bsel};
vop.dtype.atype.btype{.sat}.op2 d, a{.asel}, b{.bsel}, c;

∕∕ 32-bit scalar operation, with optional data merge
vop.dtype.atype.btype{.sat} d.dsel, a{.asel}, b{.bsel}, c;

vop = { vadd, vsub, vabsdiff, vmin, vmax };
.dtype = .atype = .btype = { .u32, .s32 };
.dsel = .asel = .bsel = { .b0, .b1, .b2, .b3, .h0, .h1 };
.op2 = { .add, .min, .max };

Description

Perform scalar arithmetic operation with optional saturate, and optional secondary arithmetic opera-
tion or subword data merge.

Semantics

∕∕ extract byte∕half-word∕word and sign- or zero-extend
∕∕ based on source operand type
ta = partSelectSignExtend(a, atype, asel);
tb = partSelectSignExtend(b, btype, bsel);

switch (vop) {
case vadd: tmp = ta + tb;
case vsub: tmp = ta - tb;
case vabsdiff: tmp = | ta - tb |;
case vmin: tmp = MIN(ta, tb);

(continues on next page)

458 Chapter 9. Instruction Set

PTX ISA, Release 8.1

(continued from previous page)

case vmax: tmp = MAX(ta, tb);
}
∕∕ saturate, taking into account destination type and merge operations
tmp = optSaturate(tmp, sat, isSigned(dtype), dsel);
d = optSecondaryOp(op2, tmp, c); ∕∕ optional secondary operation
d = optMerge(dsel, tmp, c); ∕∕ optional merge with c operand

PTX ISA Notes

Introduced in PTX ISA version 2.0.

Target ISA Notes

vadd, vsub, vabsdiff, vmin, vmax require sm_20 or higher.

Examples

vadd.s32.u32.s32.sat r1, r2.b0, r3.h0;
vsub.s32.s32.u32.sat r1, r2.h1, r3.h1;
vabsdiff.s32.s32.s32.sat r1.h0, r2.b0, r3.b2, c;
vmin.s32.s32.s32.sat.add r1, r2, r3, c;

9.7.16.1.2 Scalar Video Instructions: vshl, vshr

vshl, vshr

Integer byte/half-word/word left/right shift.

Syntax

∕∕ 32-bit scalar operation, with optional secondary operation
vop.dtype.atype.u32{.sat}.mode d, a{.asel}, b{.bsel};
vop.dtype.atype.u32{.sat}.mode.op2 d, a{.asel}, b{.bsel}, c;

∕∕ 32-bit scalar operation, with optional data merge
vop.dtype.atype.u32{.sat}.mode d.dsel, a{.asel}, b{.bsel}, c;

vop = { vshl, vshr };
.dtype = .atype = { .u32, .s32 };
.mode = { .clamp, .wrap };
.dsel = .asel = .bsel = { .b0, .b1, .b2, .b3, .h0, .h1 };
.op2 = { .add, .min, .max };

Description

vshl Shift a left by unsigned amount in b with optional saturate, and optional secondary arithmetic
operation or subword data merge. Left shift fills with zero.

vshr Shift a right by unsigned amount in b with optional saturate, and optional secondary arithmetic
operation or subword datamerge. Signed shift fills with the sign bit, unsigned shift fills with zero.

Semantics

∕∕ extract byte∕half-word∕word and sign- or zero-extend
∕∕ based on source operand type
ta = partSelectSignExtend(a,atype, asel);
tb = partSelectSignExtend(b, .u32, bsel);
if (mode == .clamp && tb > 32) tb = 32;

(continues on next page)

9.7. Instructions 459

PTX ISA, Release 8.1

(continued from previous page)

if (mode == .wrap) tb = tb & 0x1f;
switch (vop){

case vshl: tmp = ta << tb;
case vshr: tmp = ta >> tb;

}
∕∕ saturate, taking into account destination type and merge operations
tmp = optSaturate(tmp, sat, isSigned(dtype), dsel);
d = optSecondaryOp(op2, tmp, c); ∕∕ optional secondary operation
d = optMerge(dsel, tmp, c); ∕∕ optional merge with c operand

PTX ISA Notes

Introduced in PTX ISA version 2.0.

Target ISA Notes

vshl, vshr require sm_20 or higher.

Examples

vshl.s32.u32.u32.clamp r1, r2, r3;
vshr.u32.u32.u32.wrap r1, r2, r3.h1;

9.7.16.1.3 Scalar Video Instructions: vmad

vmad

Integer byte/half-word/word multiply-accumulate.

Syntax

∕∕ 32-bit scalar operation
vmad.dtype.atype.btype{.sat}{.scale} d, {-}a{.asel}, {-}b{.bsel},

{-}c;
vmad.dtype.atype.btype.po{.sat}{.scale} d, a{.asel}, b{.bsel}, c;

.dtype = .atype = .btype = { .u32, .s32 };

.asel = .bsel = { .b0, .b1, .b2, .b3, .h0, .h1 };

.scale = { .shr7, .shr15 };

Description

Calculate (a*b) + c, with optional operand negates, plus onemode, and scaling.

The source operands support optional negation with some restrictions. Although PTX syntax allows
separate negation of the a and b operands, internally this is represented as negation of the product
(a*b). That is, (a*b) is negated if and only if exactly one of a or b is negated. PTX allows negation of
either (a*b) or c.

The plus one mode (.po) computes (a*b) + c + 1, which is used in computing averages. Source
operands may not be negated in .pomode.

The intermediate result of (a*b) is unsigned if atype and btype are unsigned and the product (a*b)
is not negated; otherwise, the intermediate result is signed. Input c has the same sign as the interme-
diate result.

The final result is unsigned if the intermediate result is unsigned and c is not negated.

460 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Depending on the sign of the a and b operands, and the operand negates, the following combinations
of operands are supported for VMAD:

(u32 * u32) + u32 ∕∕ intermediate unsigned; final unsigned
-(u32 * u32) + s32 ∕∕ intermediate signed; final signed
(u32 * u32) - u32 ∕∕ intermediate unsigned; final signed
(u32 * s32) + s32 ∕∕ intermediate signed; final signed

-(u32 * s32) + s32 ∕∕ intermediate signed; final signed
(u32 * s32) - s32 ∕∕ intermediate signed; final signed
(s32 * u32) + s32 ∕∕ intermediate signed; final signed

-(s32 * u32) + s32 ∕∕ intermediate signed; final signed
(s32 * u32) - s32 ∕∕ intermediate signed; final signed
(s32 * s32) + s32 ∕∕ intermediate signed; final signed

-(s32 * s32) + s32 ∕∕ intermediate signed; final signed
(s32 * s32) - s32 ∕∕ intermediate signed; final signed

The intermediate result is optionally scaled via right-shift; this result is sign-extended if the final result
is signed, and zero-extended otherwise.

The final result is optionally saturated to the appropriate 32-bit range based on the type (signed or
unsigned) of the final result.

Semantics

∕∕ extract byte∕half-word∕word and sign- or zero-extend
∕∕ based on source operand type
ta = partSelectSignExtend(a, atype, asel);
tb = partSelectSignExtend(b, btype, bsel);
signedFinal = isSigned(atype) || isSigned(btype) ||

(a.negate ^ b.negate) || c.negate;
tmp[127:0] = ta * tb;

lsb = 0;
if (.po) { lsb = 1; } else
if (a.negate ^ b.negate) { tmp = ~tmp; lsb = 1; } else
if (c.negate) { c = ~c; lsb = 1; }

c128[127:0] = (signedFinal) sext32(c) : zext (c);
tmp = tmp + c128 + lsb;
switch(scale) {

case .shr7: result = (tmp >> 7) & 0xffffffffffffffff;
case .shr15: result = (tmp >> 15) & 0xffffffffffffffff;

}
if (.sat) {

if (signedFinal) result = CLAMP(result, S32_MAX, S32_MIN);
else result = CLAMP(result, U32_MAX, U32_MIN);

}

PTX ISA Notes

Introduced in PTX ISA version 2.0.

Target ISA Notes

vmad requires sm_20 or higher.

Examples

vmad.s32.s32.u32.sat r0, r1, r2, -r3;
vmad.u32.u32.u32.shr15 r0, r1.h0, r2.h0, r3;

9.7. Instructions 461

PTX ISA, Release 8.1

9.7.16.1.4 Scalar Video Instructions: vset

vset

Integer byte/half-word/word comparison.

Syntax

∕∕ 32-bit scalar operation, with optional secondary operation
vset.atype.btype.cmp d, a{.asel}, b{.bsel};
vset.atype.btype.cmp.op2 d, a{.asel}, b{.bsel}, c;

∕∕ 32-bit scalar operation, with optional data merge
vset.atype.btype.cmp d.dsel, a{.asel}, b{.bsel}, c;

.atype = .btype = { .u32, .s32 };

.cmp = { .eq, .ne, .lt, .le, .gt, .ge };

.dsel = .asel = .bsel = { .b0, .b1, .b2, .b3, .h0, .h1 };

.op2 = { .add, .min, .max };

Description

Compare input values using specified comparison, with optional secondary arithmetic operation or
subword data merge.

The intermediate result of the comparison is always unsigned, and therefore destination d and operand
c are also unsigned.

Semantics

∕∕ extract byte∕half-word∕word and sign- or zero-extend
∕∕ based on source operand type
ta = partSelectSignExtend(a, atype, asel);
tb = partSelectSignExtend(b, btype, bsel);
tmp = compare(ta, tb, cmp) ? 1 : 0;
d = optSecondaryOp(op2, tmp, c); ∕∕ optional secondary operation
d = optMerge(dsel, tmp, c); ∕∕ optional merge with c operand

PTX ISA Notes

Introduced in PTX ISA version 2.0.

Target ISA Notes

vset requires sm_20 or higher.

Examples

vset.s32.u32.lt r1, r2, r3;
vset.u32.u32.ne r1, r2, r3.h1;

462 Chapter 9. Instruction Set

PTX ISA, Release 8.1

9.7.16.2 SIMD Video Instructions

The SIMD video instructions operate on pairs of 16-bit values and quads of 8-bit values.

The SIMD video instructions are:

▶ vadd2, vadd4

▶ vsub2, vsub4

▶ vavrg2, vavrg4

▶ vabsdiff2, vabsdiff4

▶ vmin2, vmin4

▶ vmax2, vmax4

▶ vset2, vset4

PTX includes SIMD video instructions for operation on pairs of 16-bit values and quads of 8-bit values.
The SIMD video instructions execute the following stages:

1. Form input vectors by extracting and sign- or zero-extending byte or half-word values from the
source operands, to form pairs of signed 17-bit values.

2. Perform a SIMD arithmetic operation on the input pairs.

3. Optionally clamp the result to the appropriate signed or unsigned range, as determinted by the
destination type.

4. Optionally perform one of the following:

a. perform a second SIMD merge operation, or

b. apply a scalar accumulate operation to reduce the intermediate SIMD results to a single
scalar.

The general format of dual half-word SIMD video instructions is as follows:

∕∕ 2-way SIMD operation, with second SIMD merge or accumulate
vop2.dtype.atype.btype{.sat}{.add} d{.mask}, a{.asel}, b{.bsel}, c;

.dtype = .atype = .btype = { .u32, .s32 };

.mask = { .h0, .h1, .h10 };

.asel = .bsel = { .hxy, where x,y are from { 0, 1, 2, 3 } };

The general format of quad byte SIMD video instructions is as follows:

∕∕ 4-way SIMD operation, with second SIMD merge or accumulate
vop4.dtype.atype.btype{.sat}{.add} d{.mask}, a{.asel}, b{.bsel}, c;

.dtype = .atype = .btype = { .u32, .s32 };

.mask = { .b0,
.b1, .b10
.b2, .b20, .b21, .b210,
.b3, .b30, .b31, .b310, .b32, .b320, .b321, .b3210 };

.asel = .bsel = .bxyzw, where x,y,z,w are from { 0, ..., 7 };

The source and destination operands are all 32-bit registers. The type of each operand (.u32 or .s32)
is specified in the instruction type; all combinations of dtype, atype, and btype are valid. Using the
atype∕btype and asel∕bsel specifiers, the input values are extracted and sign- or zero-extended
internally to .s33 values. The primary operation is then performed to produce an .s34 intermediate
result. The sign of the intermediate result depends on dtype.

9.7. Instructions 463

PTX ISA, Release 8.1

The intermediate result is optionally clamped to the range of the destination type (signed or unsigned),
taking into account the subword destination size in the case of optional data merging.

9.7.16.2.1 SIMD Video Instructions: vadd2, vsub2, vavrg2, vabsdiff2, vmin2, vmax2

vadd2, vsub2

Integer dual half-word SIMD addition/subtraction.

vavrg2

Integer dual half-word SIMD average.

vabsdiff2

Integer dual half-word SIMD absolute value of difference.

vmin2, vmax2

Integer dual half-word SIMD minimum/maximum.

Syntax

∕∕ SIMD instruction with secondary SIMD merge operation
vop2.dtype.atype.btype{.sat} d{.mask}, a{.asel}, b{.bsel}, c;

∕∕ SIMD instruction with secondary accumulate operation
vop2.dtype.atype.btype.add d{.mask}, a{.asel}, b{.bsel}, c;

vop2 = { vadd2, vsub2, vavrg2, vabsdiff2, vmin2, vmax2 };
.dtype = .atype = .btype = { .u32, .s32 };
.mask = { .h0, .h1, .h10 }; ∕∕ defaults to .h10
.asel = .bsel = { .hxy, where x,y are from { 0, 1, 2, 3 } };

.asel defaults to .h10

.bsel defaults to .h32

Description

Two-way SIMD parallel arithmetic operation with secondary operation.

Elements of each dual half-word source to the operation are selected from any of the four half-words
in the two source operands a and b using the asel and bselmodifiers.

The selected half-words are then operated on in parallel.

The results are optionally clamped to the appropriate range determined by the destination type (signed
or unsigned). Saturation cannot be used with the secondary accumulate operation.

For instructions with a secondary SIMD merge operation:

▶ For half-word positions indicated in mask, the selected half-word results are copied into destina-
tion d. For all other positions, the corresponding half-word from source operand c is copied to
d.

For instructions with a secondary accumulate operation:

▶ For half-word positions indicated in mask, the selected half-word results are added to operand
c, producing a result in d.

Semantics

464 Chapter 9. Instruction Set

PTX ISA, Release 8.1

∕∕ extract pairs of half-words and sign- or zero-extend
∕∕ based on operand type
Va = extractAndSignExt_2(a, b, .asel, .atype);
Vb = extractAndSignExt_2(a, b, .bsel, .btype);
Vc = extractAndSignExt_2(c);

for (i=0; i<2; i++) {
switch (vop2) {

case vadd2: t[i] = Va[i] + Vb[i];
case vsub2: t[i] = Va[i] - Vb[i];
case vavrg2: if ((Va[i] + Vb[i]) >= 0) {

t[i] = (Va[i] + Vb[i] + 1) >> 1;
} else {

t[i] = (Va[i] + Vb[i]) >> 1;
}

case vabsdiff2: t[i] = | Va[i] - Vb[i] |;
case vmin2: t[i] = MIN(Va[i], Vb[i]);
case vmax2: t[i] = MAX(Va[i], Vb[i]);

}
if (.sat) {

if (.dtype == .s32) t[i] = CLAMP(t[i], S16_MAX, S16_MIN);
else t[i] = CLAMP(t[i], U16_MAX, U16_MIN);

}
}
∕∕ secondary accumulate or SIMD merge
mask = extractMaskBits(.mask);
if (.add) {

d = c;
for (i=0; i<2; i++) { d += mask[i] ? t[i] : 0; }

} else {
d = 0;
for (i=0; i<2; i++) { d |= mask[i] ? t[i] : Vc[i]; }

}

PTX ISA Notes

Introduced in PTX ISA version 3.0.

Target ISA Notes

vadd2, vsub2, varvg2, vabsdiff2, vmin2, vmax2 require sm_30 or higher.

Examples

vadd2.s32.s32.u32.sat r1, r2, r3, r1;
vsub2.s32.s32.s32.sat r1.h0, r2.h10, r3.h32, r1;
vmin2.s32.u32.u32.add r1.h10, r2.h00, r3.h22, r1;

9.7. Instructions 465

PTX ISA, Release 8.1

9.7.16.2.2 SIMD Video Instructions: vset2

vset2

Integer dual half-word SIMD comparison.

Syntax

∕∕ SIMD instruction with secondary SIMD merge operation
vset2.atype.btype.cmp d{.mask}, a{.asel}, b{.bsel}, c;

∕∕ SIMD instruction with secondary accumulate operation
vset2.atype.btype.cmp.add d{.mask}, a{.asel}, b{.bsel}, c;

.atype = .btype = { .u32, .s32 };

.cmp = { .eq, .ne, .lt, .le, .gt, .ge };

.mask = { .h0, .h1, .h10 }; ∕∕ defaults to .h10

.asel = .bsel = { .hxy, where x,y are from { 0, 1, 2, 3 } };
.asel defaults to .h10
.bsel defaults to .h32

Description

Two-way SIMD parallel comparison with secondary operation.

Elements of each dual half-word source to the operation are selected from any of the four half-words
in the two source operands a and b using the asel and bselmodifiers.

The selected half-words are then compared in parallel.

The intermediate result of the comparison is always unsigned, and therefore the half-words of desti-
nation d and operand c are also unsigned.

For instructions with a secondary SIMD merge operation:

▶ For half-word positions indicated in mask, the selected half-word results are copied into destina-
tion d. For all other positions, the corresponding half-word from source operand b is copied to
d.

For instructions with a secondary accumulate operation:

▶ For half-word positions indicated in mask, the selected half-word results are added to operand
c, producing a result in d.

Semantics

∕∕ extract pairs of half-words and sign- or zero-extend
∕∕ based on operand type
Va = extractAndSignExt_2(a, b, .asel, .atype);
Vb = extractAndSignExt_2(a, b, .bsel, .btype);
Vc = extractAndSignExt_2(c);
for (i=0; i<2; i++) {

t[i] = compare(Va[i], Vb[i], .cmp) ? 1 : 0;
}
∕∕ secondary accumulate or SIMD merge
mask = extractMaskBits(.mask);
if (.add) {

d = c;
for (i=0; i<2; i++) { d += mask[i] ? t[i] : 0; }

} else {
d = 0;

(continues on next page)

466 Chapter 9. Instruction Set

PTX ISA, Release 8.1

(continued from previous page)

for (i=0; i<2; i++) { d |= mask[i] ? t[i] : Vc[i]; }
}

PTX ISA Notes

Introduced in PTX ISA version 3.0.

Target ISA Notes

vset2 requires sm_30 or higher.

Examples

vset2.s32.u32.lt r1, r2, r3, r0;
vset2.u32.u32.ne.add r1, r2, r3, r0;

9.7.16.2.3 SIMD Video Instructions: vadd4, vsub4, vavrg4, vabsdiff4, vmin4, vmax4

vadd4, vsub4

Integer quad byte SIMD addition/subtraction.

vavrg4

Integer quad byte SIMD average.

vabsdiff4

Integer quad byte SIMD absolute value of difference.

vmin4, vmax4

Integer quad byte SIMD minimum/maximum.

Syntax

∕∕ SIMD instruction with secondary SIMD merge operation
vop4.dtype.atype.btype{.sat} d{.mask}, a{.asel}, b{.bsel}, c;

∕∕ SIMD instruction with secondary accumulate operation
vop4.dtype.atype.btype.add d{.mask}, a{.asel}, b{.bsel}, c;
vop4 = { vadd4, vsub4, vavrg4, vabsdiff4, vmin4, vmax4 };

.dtype = .atype = .btype = { .u32, .s32 };

.mask = { .b0,
.b1, .b10
.b2, .b20, .b21, .b210,
.b3, .b30, .b31, .b310, .b32, .b320, .b321, .b3210 };

defaults to .b3210
.asel = .bsel = .bxyzw, where x,y,z,w are from { 0, ..., 7 };

.asel defaults to .b3210

.bsel defaults to .b7654

Description

Four-way SIMD parallel arithmetic operation with secondary operation.

Elements of each quad byte source to the operation are selected from any of the eight bytes in the
two source operands a and b using the asel and bselmodifiers.

The selected bytes are then operated on in parallel.

9.7. Instructions 467

PTX ISA, Release 8.1

The results are optionally clamped to the appropriate range determined by the destination type (signed
or unsigned). Saturation cannot be used with the secondary accumulate operation.

For instructions with a secondary SIMD merge operation:

▶ For byte positions indicated in mask, the selected byte results are copied into destination d. For
all other positions, the corresponding byte from source operand c is copied to d.

For instructions with a secondary accumulate operation:

▶ For byte positions indicated inmask, the selected byte results are added to operand c, producing
a result in d.

Semantics

∕∕ extract quads of bytes and sign- or zero-extend
∕∕ based on operand type
Va = extractAndSignExt_4(a, b, .asel, .atype);
Vb = extractAndSignExt_4(a, b, .bsel, .btype);
Vc = extractAndSignExt_4(c);
for (i=0; i<4; i++) {

switch (vop4) {
case vadd4: t[i] = Va[i] + Vb[i];
case vsub4: t[i] = Va[i] - Vb[i];
case vavrg4: if ((Va[i] + Vb[i]) >= 0) {

t[i] = (Va[i] + Vb[i] + 1) >> 1;
} else {

t[i] = (Va[i] + Vb[i]) >> 1;
}

case vabsdiff4: t[i] = | Va[i] - Vb[i] |;
case vmin4: t[i] = MIN(Va[i], Vb[i]);
case vmax4: t[i] = MAX(Va[i], Vb[i]);

}
if (.sat) {

if (.dtype == .s32) t[i] = CLAMP(t[i], S8_MAX, S8_MIN);
else t[i] = CLAMP(t[i], U8_MAX, U8_MIN);

}
}
∕∕ secondary accumulate or SIMD merge
mask = extractMaskBits(.mask);
if (.add) {

d = c;
for (i=0; i<4; i++) { d += mask[i] ? t[i] : 0; }

} else {
d = 0;
for (i=0; i<4; i++) { d |= mask[i] ? t[i] : Vc[i]; }

}

PTX ISA Notes

Introduced in PTX ISA version 3.0.

Target ISA Notes

vadd4, vsub4, varvg4, vabsdiff4, vmin4, vmax4 require sm_30 or higher.

Examples

vadd4.s32.s32.u32.sat r1, r2, r3, r1;
vsub4.s32.s32.s32.sat r1.b0, r2.b3210, r3.b7654, r1;
vmin4.s32.u32.u32.add r1.b00, r2.b0000, r3.b2222, r1;

468 Chapter 9. Instruction Set

PTX ISA, Release 8.1

9.7.16.2.4 SIMD Video Instructions: vset4

vset4

Integer quad byte SIMD comparison.

Syntax

∕∕ SIMD instruction with secondary SIMD merge operation
vset4.atype.btype.cmp d{.mask}, a{.asel}, b{.bsel}, c;

∕∕ SIMD instruction with secondary accumulate operation
vset4.atype.btype.cmp.add d{.mask}, a{.asel}, b{.bsel}, c;

.atype = .btype = { .u32, .s32 };

.cmp = { .eq, .ne, .lt, .le, .gt, .ge };

.mask = { .b0,
.b1, .b10
.b2, .b20, .b21, .b210,
.b3, .b30, .b31, .b310, .b32, .b320, .b321, .b3210 };

defaults to .b3210
.asel = .bsel = .bxyzw, where x,y,z,w are from { 0, ..., 7 };

.asel defaults to .b3210

.bsel defaults to .b7654

Description

Four-way SIMD parallel comparison with secondary operation.

Elements of each quad byte source to the operation are selected from any of the eight bytes in the
two source operands a and b using the asel and bselmodifiers.

The selected bytes are then compared in parallel.

The intermediate result of the comparison is always unsigned, and therefore the bytes of destination
d and operand c are also unsigned.

For instructions with a secondary SIMD merge operation:

▶ For byte positions indicated in mask, the selected byte results are copied into destination d. For
all other positions, the corresponding byte from source operand b is copied to d.

For instructions with a secondary accumulate operation:

▶ For byte positions indicated inmask, the selected byte results are added to operand c, producing
a result in d.

Semantics

∕∕ extract quads of bytes and sign- or zero-extend
∕∕ based on operand type
Va = extractAndSignExt_4(a, b, .asel, .atype);
Vb = extractAndSignExt_4(a, b, .bsel, .btype);
Vc = extractAndSignExt_4(c);
for (i=0; i<4; i++) {

t[i] = compare(Va[i], Vb[i], cmp) ? 1 : 0;
}
∕∕ secondary accumulate or SIMD merge
mask = extractMaskBits(.mask);
if (.add) {

d = c;
(continues on next page)

9.7. Instructions 469

PTX ISA, Release 8.1

(continued from previous page)

for (i=0; i<4; i++) { d += mask[i] ? t[i] : 0; }
} else {

d = 0;
for (i=0; i<4; i++) { d |= mask[i] ? t[i] : Vc[i]; }

}

PTX ISA Notes

Introduced in PTX ISA version 3.0.

Target ISA Notes

vset4 requires sm_30 or higher.

Examples

vset4.s32.u32.lt r1, r2, r3, r0;
vset4.u32.u32.ne.max r1, r2, r3, r0;

9.7.17. Miscellaneous Instructions

The Miscellaneous instructions are:

▶ brkpt

▶ nanosleep

▶ pmevent

▶ trap

9.7.17.1 Miscellaneous Instructions: brkpt

brkpt

Breakpoint.

Syntax

brkpt;

Description

Suspends execution.

PTX ISA Notes

Introduced in PTX ISA version 1.0.

Target ISA Notes

brkpt requires sm_11 or higher.

Examples

brkpt;
@p brkpt;

470 Chapter 9. Instruction Set

PTX ISA, Release 8.1

9.7.17.2 Miscellaneous Instructions: nanosleep

nanosleep

Suspend the thread for an approximate delay given in nanoseconds.

Syntax

nanosleep.u32 t;

Description

Suspends the thread for a sleep duration approximately close to the delay t, specified in nanoseconds.
tmay be a register or an immediate value.

The sleep duration is approximated, but guaranteed to be in the interval[0, 2*t]. Themaximumsleep
duration is 1 millisecond. The implementation may reduce the sleep duration for individual threads
within a warp such that all sleeping threads in the warp wake up together.

PTX ISA Notes

nanosleep introduced in PTX ISA 6.3.

Target ISA Notes

nanosleep requires sm_70 or higher.

Examples

.reg .b32 r;

.reg .pred p;

nanosleep.u32 r;
nanosleep.u32 42;
@p nanosleep.u32 r;

9.7.17.3 Miscellaneous Instructions: pmevent

pmevent

Trigger one or more Performance Monitor events.

Syntax

pmevent a; ∕∕ trigger a single performance monitor event
pmevent.mask a; ∕∕ trigger one or more performance monitor events

Description

Triggers one or more of a fixed number of performance monitor events, with event index or mask
specified by immediate operand a.

pmevent (without modifier .mask) triggers a single performancemonitor event indexed by immediate
operand a, in the range 0..15.

pmevent.mask triggers one or more of the performance monitor events. Each bit in the 16-bit imme-
diate operand a controls an event.

Programmatic performance moniter events may be combined with other hardware events using
Boolean functions to increment one of the four performance counters. The relationship between
events and counters is programmed via API calls from the host.

9.7. Instructions 471

PTX ISA, Release 8.1

Notes

Currently, there are sixteen performance monitor events, numbered 0 through 15.

PTX ISA Notes

pmevent introduced in PTX ISA version 1.4.

pmevent.mask introduced in PTX ISA version 3.0.

Target ISA Notes

pmevent supported on all target architectures.

pmevent.mask requires sm_20 or higher.

Examples

pmevent 1;
@p pmevent 7;
@q pmevent.mask 0xff;

9.7.17.4 Miscellaneous Instructions: trap

trap

Perform trap operation.

Syntax

trap;

Description

Abort execution and generate an interrupt to the host CPU.

PTX ISA Notes

Introduced in PTX ISA version 1.0.

Target ISA Notes

Supported on all target architectures.

Examples

trap;
@p trap;

9.7.17.5 Miscellaneous Instructions: setmaxnreg

setmaxnreg

Hint to change the number of registers owned by the warp.

Syntax

setmaxnreg.action.sync.aligned.u32 imm-reg-count;

.action = { .inc, .dec };

472 Chapter 9. Instruction Set

PTX ISA, Release 8.1

Description

setmaxnreg provides a hint to the system to update the maximum number of per-thread registers
owned by the executing warp to the value specified by the imm-reg-count operand.

Qualifier .dec is used to release extra registers such that the absolute per-thread maximum register
count is reduced from its current value to imm-reg-count. Qualifier .inc is used to request additional
registers such that the absolute per-threadmaximum register count is increased from its current value
to imm-reg-count.

A pool of available registers is maintained per-CTA. Register adjustments requested by the setmaxn-
reg instructions are handled by supplying extra registers from this pool to the requesting warp or
by releasing extra registers from the requesting warp to this pool, depending upon the value of the
.action qualifier.

The setmaxnreg.inc instruction blocks the execution until enough registers are available in the CTA’s
register pool. After the instruction setmaxnreg.inc obtains new registers from the CTA pool, the
initial contents of the new registers are undefined. The new registers must be initialized before they
are used.

The same setmaxnreg instruction must be executed by all warps in a warpgroup. After executing
a setmaxnreg instruction, all warps in the warpgroup must synchronize explicitly before executing
subsequent setmaxnreg instructions. If a setmaxnreg instruction is not executed by all warps in the
warpgroup, then the behavior is undefined.

Operand imm-reg-count is an integer constant. The value of imm-reg-count must be in the range
24 to 256 (both inclusive) and must be a multiple of 8.

Changes to the register file of the warp always happen at the tail-end of the register file.

The setmaxnreg instruction requires that the kernel has been launchedwith a valid value ofmaximum
number of per-thread registers specified via the appropriate compilation via the appropriate compile-
time option or the appropriate performance tuning directive. Otherwise, the setmaxnreg instruction
may have no effect.

When qualifier .dec is specified, the maximum number of per-thread registers owned by the
warp prior to the execution of setmaxnreg instruction should be greater than or equal to the
imm-reg-count. Otherwise, the behaviour is undefined.

When qualifier .inc is specified, the maximum number of per-thread registers owned by the warp
prior to the execution of setmaxnreg instruction should be less than or equal to the imm-reg-count.
Otherwise, the behaviour is undefined.

Themandatory .sync qualifier indicates that setmaxnreg instruction causes the executing thread to
wait until all threads in thewarp execute the same setmaxnreg instruction before resuming execution.

Themandatory .aligned qualifier indicates that all threads in the warpgroupmust execute the same
setmaxnreg instruction. In conditionally executed code, setmaxnreg instruction should only be used
if it is known that all threads in warpgroup evaluate the condition identically, otherwise the behavior is
undefined.

PTX ISA Notes

Introduced in PTX ISA version 8.0.

Target ISA Notes

Requires sm_90a.

Examples

9.7. Instructions 473

PTX ISA, Release 8.1

setmaxnreg.dec.sync.aligned.u32 64;
setmaxnreg.inc.sync.aligned.u32 192;

474 Chapter 9. Instruction Set

Chapter 10. Special Registers

PTX includes a number of predefined, read-only variables, which are visible as special registers and
accessed through mov or cvt instructions.

The special registers are:

▶ %tid

▶ %ntid

▶ %laneid

▶ %warpid

▶ %nwarpid

▶ %ctaid

▶ %nctaid

▶ %smid

▶ %nsmid

▶ %gridid

▶ %is_explicit_cluster

▶ %clusterid

▶ %nclusterid

▶ %cluster_ctaid

▶ %cluster_nctaid

▶ %cluster_ctarank

▶ %cluster_nctarank

▶ %lanemask_eq, %lanemask_le, %lanemask_lt, %lanemask_ge, %lanemask_gt

▶ %clock, %clock_hi, %clock64

▶ %pm0, ..., %pm7

▶ %pm0_64, ..., %pm7_64

▶ %envreg0, ..., %envreg31

▶ %globaltimer, %globaltimer_lo, %globaltimer_hi

▶ %reserved_smem_offset_begin, %reserved_smem_offset_end, %re-
served_smem_offset_cap, %reserved_smem_offset<2>

475

PTX ISA, Release 8.1

▶ %total_smem_size

▶ %aggr_smem_size

▶ %dynamic_smem_size

▶ %current_graph_exec

10.1. Special Registers: %tid

%tid

Thread identifier within a CTA.

Syntax (predefined)

.sreg .v4 .u32 %tid; ∕∕ thread id vector

.sreg .u32 %tid.x, %tid.y, %tid.z; ∕∕ thread id components

Description

A predefined, read-only, per-thread special register initialized with the thread identifier within the CTA.
The %tid special register contains a 1D, 2D, or 3D vector to match the CTA shape; the %tid value in
unused dimensions is 0. The fourth element is unused and always returns zero. The number of threads
in each dimension are specified by the predefined special register %ntid.

Every thread in the CTA has a unique %tid.

%tid component values range from 0 through %ntid-1 in each CTA dimension.

%tid.y == %tid.z == 0 in 1D CTAs. %tid.z == 0 in 2D CTAs.

It is guaranteed that:

0 <= %tid.x < %ntid.x
0 <= %tid.y < %ntid.y
0 <= %tid.z < %ntid.z

PTX ISA Notes

Introduced in PTX ISA version 1.0 with type .v4.u16.

Redefined as type .v4.u32 in PTX ISA version 2.0. For compatibility with legacy PTX code, 16-bit mov
and cvt instructions may be used to read the lower 16-bits of each component of %tid.

Target ISA Notes

Supported on all target architectures.

Examples

mov.u32 %r1,%tid.x; ∕∕ move tid.x to %rh

∕∕ legacy code accessing 16-bit components of %tid
mov.u16 %rh,%tid.x;
cvt.u32.u16 %r2,%tid.z; ∕∕ zero-extend tid.z to %r2

476 Chapter 10. Special Registers

PTX ISA, Release 8.1

10.2. Special Registers: %ntid

%ntid

Number of thread IDs per CTA.

Syntax (predefined)

.sreg .v4 .u32 %ntid; ∕∕ CTA shape vector

.sreg .u32 %ntid.x, %ntid.y, %ntid.z; ∕∕ CTA dimensions

Description

A predefined, read-only special register initialized with the number of thread ids in each CTA dimen-
sion. The %ntid special register contains a 3D CTA shape vector that holds the CTA dimensions. CTA
dimensions are non-zero; the fourth element is unused and always returns zero. The total number of
threads in a CTA is (%ntid.x * %ntid.y * %ntid.z).

%ntid.y == %ntid.z == 1 in 1D CTAs.
%ntid.z ==1 in 2D CTAs.

Maximum values of %ntid.{x,y,z} are as follows:

.target architecture %ntid.x %ntid.y %ntid.z

sm_1x 512 512 64

sm_20, sm_3x, sm_5x, sm_6x, sm_7x, sm_8x, sm_9x 1024 1024 64

PTX ISA Notes

Introduced in PTX ISA version 1.0 with type .v4.u16.

Redefined as type .v4.u32 in PTX ISA version 2.0. For compatibility with legacy PTX code, 16-bit mov
and cvt instructions may be used to read the lower 16-bits of each component of %ntid.

Target ISA Notes

Supported on all target architectures.

Examples

∕∕ compute unified thread id for 2D CTA
mov.u32 %r0,%tid.x;
mov.u32 %h1,%tid.y;
mov.u32 %h2,%ntid.x;
mad.u32 %r0,%h1,%h2,%r0;

mov.u16 %rh,%ntid.x; ∕∕ legacy code

10.2. Special Registers: %ntid 477

PTX ISA, Release 8.1

10.3. Special Registers: %laneid

%laneid

Lane Identifier.

Syntax (predefined)

.sreg .u32 %laneid;

Description

A predefined, read-only special register that returns the thread’s lane within the warp. The lane iden-
tifier ranges from zero to WARP_SZ-1.

PTX ISA Notes

Introduced in PTX ISA version 1.3.

Target ISA Notes

Supported on all target architectures.

Examples

mov.u32 %r, %laneid;

10.4. Special Registers: %warpid

%warpid

Warp identifier.

Syntax (predefined)

.sreg .u32 %warpid;

Description

A predefined, read-only special register that returns the thread’s warp identifier. The warp identifier
provides a unique warp number within a CTA but not across CTAs within a grid. The warp identifier will
be the same for all threads within a single warp.

Note that %warpid is volatile and returns the location of a thread at the moment when read, but its
valuemay change during execution, e.g., due to rescheduling of threads following preemption. For this
reason, %ctaid and %tid should be used to compute a virtual warp index if such a value is needed in
kernel code; %warpid is intended mainly to enable profiling and diagnostic code to sample and log
information such as work place mapping and load distribution.

PTX ISA Notes

Introduced in PTX ISA version 1.3.

Target ISA Notes

Supported on all target architectures.

Examples

478 Chapter 10. Special Registers

PTX ISA, Release 8.1

mov.u32 %r, %warpid;

10.5. Special Registers: %nwarpid

%nwarpid

Number of warp identifiers.

Syntax (predefined)

.sreg .u32 %nwarpid;

Description

A predefined, read-only special register that returns the maximum number of warp identifiers.

PTX ISA Notes

Introduced in PTX ISA version 2.0.

Target ISA Notes

%nwarpid requires sm_20 or higher.

Examples

mov.u32 %r, %nwarpid;

10.6. Special Registers: %ctaid

%ctaid

CTA identifier within a grid.

Syntax (predefined)

.sreg .v4 .u32 %ctaid; ∕∕ CTA id vector

.sreg .u32 %ctaid.x, %ctaid.y, %ctaid.z; ∕∕ CTA id components

Description

A predefined, read-only special register initialized with the CTA identifier within the CTA grid. The
%ctaid special register contains a 1D, 2D, or 3D vector, depending on the shape and rank of the CTA
grid. The fourth element is unused and always returns zero.

It is guaranteed that:

0 <= %ctaid.x < %nctaid.x
0 <= %ctaid.y < %nctaid.y
0 <= %ctaid.z < %nctaid.z

PTX ISA Notes

Introduced in PTX ISA version 1.0 with type .v4.u16.

10.5. Special Registers: %nwarpid 479

PTX ISA, Release 8.1

Redefined as type .v4.u32 in PTX ISA version 2.0. For compatibility with legacy PTX code, 16-bit mov
and cvt instructions may be used to read the lower 16-bits of each component of %ctaid.

Target ISA Notes

Supported on all target architectures.

Examples

mov.u32 %r0,%ctaid.x;
mov.u16 %rh,%ctaid.y; ∕∕ legacy code

10.7. Special Registers: %nctaid

%nctaid

Number of CTA ids per grid.

Syntax (predefined)

.sreg .v4 .u32 %nctaid ∕∕ Grid shape vector

.sreg .u32 %nctaid.x,%nctaid.y,%nctaid.z; ∕∕ Grid dimensions

Description

A predefined, read-only special register initialized with the number of CTAs in each grid dimension.
The %nctaid special register contains a 3D grid shape vector, with each element having a value of at
least 1. The fourth element is unused and always returns zero.

Maximum values of %nctaid.{x,y,z} are as follows:

.target architecture %nctaid.x %nctaid.y %nctaid.z

sm_1x, sm_20 65535 65535 65535

sm_3x, sm_5x, sm_6x, sm_7x, sm_8x, sm_9x 231 -1 65535 65535

PTX ISA Notes

Introduced in PTX ISA version 1.0 with type .v4.u16.

Redefined as type .v4.u32 in PTX ISA version 2.0. For compatibility with legacy PTX code, 16-bit mov
and cvt instructions may be used to read the lower 16-bits of each component of %nctaid.

Target ISA Notes

Supported on all target architectures.

Examples

mov.u32 %r0,%nctaid.x;
mov.u16 %rh,%nctaid.x; ∕∕ legacy code

480 Chapter 10. Special Registers

PTX ISA, Release 8.1

10.8. Special Registers: %smid

%smid

SM identifier.

Syntax (predefined)

.sreg .u32 %smid;

Description

A predefined, read-only special register that returns the processor (SM) identifier onwhich a particular
thread is executing. The SM identifier ranges from 0 to %nsmid-1. The SM identifier numbering is not
guaranteed to be contiguous.

Notes

Note that %smid is volatile and returns the location of a thread at the moment when read, but its
value may change during execution, e.g. due to rescheduling of threads following preemption. %smid
is intended mainly to enable profiling and diagnostic code to sample and log information such as work
place mapping and load distribution.

PTX ISA Notes

Introduced in PTX ISA version 1.3.

Target ISA Notes

Supported on all target architectures.

Examples

mov.u32 %r, %smid;

10.9. Special Registers: %nsmid

%nsmid

Number of SM identifiers.

Syntax (predefined)

.sreg .u32 %nsmid;

Description

A predefined, read-only special register that returns the maximum number of SM identifiers. The SM
identifier numbering is not guaranteed to be contiguous, so %nsmid may be larger than the physical
number of SMs in the device.

PTX ISA Notes

Introduced in PTX ISA version 2.0.

Target ISA Notes

%nsmid requires sm_20 or higher.

10.8. Special Registers: %smid 481

PTX ISA, Release 8.1

Examples

mov.u32 %r, %nsmid;

10.10. Special Registers: %gridid

%gridid

Grid identifier.

Syntax (predefined)

.sreg .u64 %gridid;

Description

A predefined, read-only special register initialized with the per-grid temporal grid identifier. The %gri-
did is used by debuggers to distinguish CTAs and clusters within concurrent (small) grids.

During execution, repeated launches of programsmay occur, where each launch starts a grid-of-CTAs.
This variable provides the temporal grid launch number for this context.

For sm_1x targets, %gridid is limited to the range [0..216-1]. For sm_20, %gridid is limited to the
range [0..232-1]. sm_30 supports the entire 64-bit range.

PTX ISA Notes

Introduced in PTX ISA version 1.0 as type .u16.

Redefined as type .u32 in PTX ISA version 1.3.

Redefined as type .u64 in PTX ISA version 3.0.

For compatibility with legacy PTX code, 16-bit and 32-bit mov and cvt instructions may be used to
read the lower 16-bits or 32-bits of each component of %gridid.

Target ISA Notes

Supported on all target architectures.

Examples

mov.u64 %s, %gridid; ∕∕ 64-bit read of %gridid
mov.u32 %r, %gridid; ∕∕ legacy code with 32-bit %gridid

10.11. Special Registers: %is_explicit_cluster

%is_explicit_cluster

Checks if user has explicitly specified cluster launch.

Syntax (predefined)

.sreg .pred %is_explicit_cluster;

482 Chapter 10. Special Registers

PTX ISA, Release 8.1

Description

A predefined, read-only special register initialized with the predicate value of whether the cluster
launch is explicitly specified by user.

PTX ISA Notes

Introduced in PTX ISA version 7.8.

Target ISA Notes

Requires sm_90 or higher.

Examples

.reg .pred p;

mov.pred p, %is_explicit_cluster;

10.12. Special Registers: %clusterid

%clusterid

Cluster identifier within a grid.

Syntax (predefined)

.sreg .v4 .u32 %clusterid;

.sreg .u32 %clusterid.x, %clusterid.y, %clusterid.z;

Description

A predefined, read-only special register initializedwith the cluster identifier in a grid in each dimension.
Each cluster in a grid has a unique identifier.

The %clusterid special register contains a 1D, 2D, or 3D vector, depending upon the shape and rank
of the cluster. The fourth element is unused and always returns zero.

It is guaranteed that:

0 <= %clusterid.x < %nclusterid.x
0 <= %clusterid.y < %nclusterid.y
0 <= %clusterid.z < %nclusterid.z

PTX ISA Notes

Introduced in PTX ISA version 7.8.

Target ISA Notes

Requires sm_90 or higher.

Examples

.reg .b32 %r<2>;

.reg .v4 .b32 %rx;

mov.u32 %r0, %clusterid.x;
mov.u32 %r1, %clusterid.z;
mov.v4.u32 %rx, %clusterid;

10.12. Special Registers: %clusterid 483

PTX ISA, Release 8.1

10.13. Special Registers: %nclusterid

%nclusterid

Number of cluster identifiers per grid.

Syntax (predefined)

.sreg .v4 .u32 %nclusterid;

.sreg .u32 %nclusterid.x, %nclusterid.y, %nclusterid.z;

Description

A predefined, read-only special register initialized with the number of clusters in each grid dimension.

The %nclusterid special register contains a 3D grid shape vector that holds the grid dimensions in
terms of clusters. The fourth element is unused and always returns zero.

Refer to the Cuda Programming Guide for details on the maximum values of %nclusterid.{x,y,z}.

PTX ISA Notes

Introduced in PTX ISA version 7.8.

Target ISA Notes

Requires sm_90 or higher.

Examples

.reg .b32 %r<2>;

.reg .v4 .b32 %rx;

mov.u32 %r0, %nclusterid.x;
mov.u32 %r1, %nclusterid.z;
mov.v4.u32 %rx, %nclusterid;

10.14. Special Registers: %cluster_ctaid

%cluster_ctaid

CTA identifier within a cluster.

Syntax (predefined)

.sreg .v4 .u32 %cluster_ctaid;

.sreg .u32 %cluster_ctaid.x, %cluster_ctaid.y, %cluster_ctaid.z;

Description

A predefined, read-only special register initializedwith the CTA identifier in a cluster in each dimension.
Each CTA in a cluster has a unique CTA identifier.

The %cluster_ctaid special register contains a 1D, 2D, or 3D vector, depending upon the shape of
the cluster. The fourth element is unused and always returns zero.

It is guaranteed that:

484 Chapter 10. Special Registers

PTX ISA, Release 8.1

0 <= %cluster_ctaid.x < %cluster_nctaid.x
0 <= %cluster_ctaid.y < %cluster_nctaid.y
0 <= %cluster_ctaid.z < %cluster_nctaid.z

PTX ISA Notes

Introduced in PTX ISA version 7.8.

Target ISA Notes

Requires sm_90 or higher.

Examples

.reg .b32 %r<2>;

.reg .v4 .b32 %rx;

mov.u32 %r0, %cluster_ctaid.x;
mov.u32 %r1, %cluster_ctaid.z;
mov.v4.u32 %rx, %cluster_ctaid;

10.15. Special Registers: %cluster_nctaid

%cluster_nctaid

Number of CTA identifiers per cluster.

Syntax (predefined)

.sreg .v4 .u32 %cluster_nctaid;

.sreg .u32 %cluster_nctaid.x, %cluster_nctaid.y, %cluster_nctaid.z;

Description

A predefined, read-only special register initialized with the number of CTAs in a cluster in each dimen-
sion.

The %cluster_nctaid special register contains a 3D grid shape vector that holds the cluster dimen-
sions in terms of CTAs. The fourth element is unused and always returns zero.

Refer to the Cuda Programming Guide for details on the maximum values of %cluster_nctaid.{x,
y,z}.

PTX ISA Notes

Introduced in PTX ISA version 7.8.

Target ISA Notes

Requires sm_90 or higher.

Examples

.reg .b32 %r<2>;

.reg .v4 .b32 %rx;

mov.u32 %r0, %cluster_nctaid.x;
mov.u32 %r1, %cluster_nctaid.z;
mov.v4.u32 %rx, %cluster_nctaid;

10.15. Special Registers: %cluster_nctaid 485

PTX ISA, Release 8.1

10.16. Special Registers: %cluster_ctarank

%cluster_ctarank

CTA identifier in a cluster across all dimensions.

Syntax (predefined)

.sreg .u32 %cluster_ctarank;

Description

A predefined, read-only special register initialized with the CTA rank within a cluster across all dimen-
sions.

It is guaranteed that:

0 <= %cluster_ctarank < %cluster_nctarank

PTX ISA Notes

Introduced in PTX ISA version 7.8.

Target ISA Notes

Requires sm_90 or higher.

Examples

.reg .b32 %r;

mov.u32 %r, %cluster_ctarank;

10.17. Special Registers: %cluster_nctarank

%cluster_nctarank

Number of CTA identifiers in a cluster across all dimensions.

Syntax (predefined)

.sreg .u32 %cluster_nctarank;

Description

A predefined, read-only special register initialized with the nunber of CTAs within a cluster across all
dimensions.

PTX ISA Notes

Introduced in PTX ISA version 7.8.

Target ISA Notes

Requires sm_90 or higher.

Examples

486 Chapter 10. Special Registers

PTX ISA, Release 8.1

.reg .b32 %r;

mov.u32 %r, %cluster_nctarank;

10.18. Special Registers: %lanemask_eq

%lanemask_eq

32-bit mask with bit set in position equal to the thread’s lane number in the warp.

Syntax (predefined)

.sreg .u32 %lanemask_eq;

Description

A predefined, read-only special register initialized with a 32-bit mask with a bit set in the position equal
to the thread’s lane number in the warp.

PTX ISA Notes

Introduced in PTX ISA version 2.0.

Target ISA Notes

%lanemask_eq requires sm_20 or higher.

Examples

mov.u32 %r, %lanemask_eq;

10.19. Special Registers: %lanemask_le

%lanemask_le

32-bit mask with bits set in positions less than or equal to the thread’s lane number in the warp.

Syntax (predefined)

.sreg .u32 %lanemask_le;

Description

A predefined, read-only special register initialized with a 32-bit mask with bits set in positions less
than or equal to the thread’s lane number in the warp.

PTX ISA Notes

Introduced in PTX ISA version 2.0.

Target ISA Notes

%lanemask_le requires sm_20 or higher.

Examples

10.18. Special Registers: %lanemask_eq 487

PTX ISA, Release 8.1

mov.u32 %r, %lanemask_le

10.20. Special Registers: %lanemask_lt

%lanemask_lt

32-bit mask with bits set in positions less than the thread’s lane number in the warp.

Syntax (predefined)

.sreg .u32 %lanemask_lt;

Description

A predefined, read-only special register initialized with a 32-bit mask with bits set in positions less
than the thread’s lane number in the warp.

PTX ISA Notes

Introduced in PTX ISA version 2.0.

Target ISA Notes

%lanemask_lt requires sm_20 or higher.

Examples

mov.u32 %r, %lanemask_lt;

10.21. Special Registers: %lanemask_ge

%lanemask_ge

32-bit mask with bits set in positions greater than or equal to the thread’s lane number in the warp.

Syntax (predefined)

.sreg .u32 %lanemask_ge;

Description

A predefined, read-only special register initialized with a 32-bit mask with bits set in positions greater
than or equal to the thread’s lane number in the warp.

PTX ISA Notes

Introduced in PTX ISA version 2.0.

Target ISA Notes

%lanemask_ge requires sm_20 or higher.

Examples

mov.u32 %r, %lanemask_ge;

488 Chapter 10. Special Registers

PTX ISA, Release 8.1

10.22. Special Registers: %lanemask_gt

%lanemask_gt

32-bit mask with bits set in positions greater than the thread’s lane number in the warp.

Syntax (predefined)

.sreg .u32 %lanemask_gt;

Description

A predefined, read-only special register initialized with a 32-bit mask with bits set in positions greater
than the thread’s lane number in the warp.

PTX ISA Notes

Introduced in PTX ISA version 2.0.

Target ISA Notes

%lanemask_gt requires sm_20 or higher.

Examples

mov.u32 %r, %lanemask_gt;

10.23. Special Registers: %clock, %clock_hi

%clock, %clock_hi

%clock A predefined, read-only 32-bit unsigned cycle counter.

%clock_hi The upper 32-bits of %clock64 special register.

Syntax (predefined)

.sreg .u32 %clock;

.sreg .u32 %clock_hi;

Description

Special register %clock and %clock_hi are unsigned 32-bit read-only cycle counters that wrap
silently.

PTX ISA Notes

%clock introduced in PTX ISA version 1.0.

%clock_hi introduced in PTX ISA version 5.0.

Target ISA Notes

%clock supported on all target architectures.

%clock_hi requires sm_20 or higher.

Examples

10.22. Special Registers: %lanemask_gt 489

PTX ISA, Release 8.1

mov.u32 r1,%clock;
mov.u32 r2, %clock_hi;

10.24. Special Registers: %clock64

%clock64

A predefined, read-only 64-bit unsigned cycle counter.

Syntax (predefined)

.sreg .u64 %clock64;

Description

Special register %clock64 is an unsigned 64-bit read-only cycle counter that wraps silently.

Notes

The lower 32-bits of %clock64 are identical to %clock.

The upper 32-bits of %clock64 are identical to %clock_hi.

PTX ISA Notes

Introduced in PTX ISA version 2.0.

Target ISA Notes

%clock64 requires sm_20 or higher.

Examples

mov.u64 r1,%clock64;

10.25. Special Registers: %pm0..%pm7

%pm0..%pm7

Performance monitoring counters.

Syntax (predefined)

.sreg .u32 %pm<8>;

Description

Special registers %pm0..%pm7 are unsigned 32-bit read-only performance monitor counters. Their
behavior is currently undefined.

PTX ISA Notes

%pm0..%pm3 introduced in PTX ISA version 1.3.

%pm4..%pm7 introduced in PTX ISA version 3.0.

Target ISA Notes

490 Chapter 10. Special Registers

PTX ISA, Release 8.1

%pm0..%pm3 supported on all target architectures.

%pm4..%pm7 require sm_20 or higher.

Examples

mov.u32 r1,%pm0;
mov.u32 r1,%pm7;

10.26. Special Registers: %pm0_64..%pm7_64

%pm0_64..%pm7_64

64 bit Performance monitoring counters.

Syntax (predefined)

.sreg .u64 %pm0_64;

.sreg .u64 %pm1_64;

.sreg .u64 %pm2_64;

.sreg .u64 %pm3_64;

.sreg .u64 %pm4_64;

.sreg .u64 %pm5_64;

.sreg .u64 %pm6_64;

.sreg .u64 %pm7_64;

Description

Special registers %pm0_64..%pm7_64 are unsigned 64-bit read-only performance monitor counters.
Their behavior is currently undefined.

Notes

The lower 32bits of %pm0_64..%pm7_64 are identical to %pm0..%pm7.

PTX ISA Notes

%pm0_64..%pm7_64 introduced in PTX ISA version 4.0.

Target ISA Notes

%pm0_64..%pm7_64 require sm_50 or higher.

Examples

mov.u32 r1,%pm0_64;
mov.u32 r1,%pm7_64;

10.26. Special Registers: %pm0_64..%pm7_64 491

PTX ISA, Release 8.1

10.27. Special Registers: %envreg<32>

%envreg<32>

Driver-defined read-only registers.

Syntax (predefined)

.sreg .b32 %envreg<32>;

Description

A set of 32 pre-defined read-only registers used to capture execution environment of PTX program
outside of PTX virtual machine. These registers are initialized by the driver prior to kernel launch and
can contain cta-wide or grid-wide values.

Precise semantics of these registers is defined in the driver documentation.

PTX ISA Notes

Introduced in PTX ISA version 2.1.

Target ISA Notes

Supported on all target architectures.

Examples

mov.b32 %r1,%envreg0; ∕∕ move envreg0 to %r1

10.28. Special Registers: %globaltimer,
%globaltimer_lo, %globaltimer_hi

%globaltimer, %globaltimer_lo, %globaltimer_hi

%globaltimer A predefined, 64-bit global nanosecond timer.

%globaltimer_lo The lower 32-bits of %globaltimer.

%globaltimer_hi The upper 32-bits of %globaltimer.

Syntax (predefined)

.sreg .u64 %globaltimer;

.sreg .u32 %globaltimer_lo, %globaltimer_hi;

Description

Special registers intended for use by NVIDIA tools. The behavior is target-specific and may change
or be removed in future GPUs. When JIT-compiled to other targets, the value of these registers is
unspecified.

PTX ISA Notes

Introduced in PTX ISA version 3.1.

Target ISA Notes

492 Chapter 10. Special Registers

PTX ISA, Release 8.1

Requires target sm_30 or higher.

Examples

mov.u64 r1,%globaltimer;

10.29. Special Registers:
%reserved_smem_offset_begin,
%reserved_smem_offset_end,
%reserved_smem_offset_cap,
%reserved_smem_offset_<2>

%reserved_smem_offset_begin, %reserved_smem_offset_end, %reserved_smem_offset_cap, %re-
served_smem_offset_<2>

%reserved_smem_offset_begin Start of the reserved shared memory region.

%reserved_smem_offset_end End of the reserved shared memory region.

%reserved_smem_offset_cap Total size of the reserved shared memory region.

%reserved_smem_offset_<2> Offsets in the reserved shared memory region.

Syntax (predefined)

.sreg .b32 %reserved_smem_offset_begin;

.sreg .b32 %reserved_smem_offset_end;

.sreg .b32 %reserved_smem_offset_cap;

.sreg .b32 %reserved_smem_offset_<2>;

Description

These are predefined, read-only special registers containing information about the shared memory
region which is reserved for the NVIDIA system software use. This region of shared memory is not
available to users, and accessing this region from user code results in undefined behavior. Refer to
CUDA Programming Guide for details.

PTX ISA Notes

Introduced in PTX ISA version 7.6.

Target ISA Notes

Require sm_80 or higher.

Examples

.reg .b32 %reg_begin, %reg_end, %reg_cap, %reg_offset0, %reg_offset1;

mov.b32 %reg_begin, %reserved_smem_offset_begin;
mov.b32 %reg_end, %reserved_smem_offset_end;
mov.b32 %reg_cap, %reserved_smem_offset_cap;
mov.b32 %reg_offset0, %reserved_smem_offset_0;
mov.b32 %reg_offset1, %reserved_smem_offset_1;

10.29. Special Registers: %reserved_smem_offset_begin, %reserved_smem_offset_end,
%reserved_smem_offset_cap, %reserved_smem_offset_<2>

493

PTX ISA, Release 8.1

10.30. Special Registers: %total_smem_size

%total_smem_size

Total size of shared memory used by a CTA of a kernel.

Syntax (predefined)

.sreg .u32 %total_smem_size;

Description

A predefined, read-only special register initialized with total size of sharedmemory allocated (statically
and dynamically, excluding the shared memory reserved for the NVIDIA system software use) for the
CTA of a kernel at launch time.

Size is returned in multiples of shared memory allocation unit size supported by target architecture.

Allocation unit values are as follows:

Target architecture Shared memory allocation unit size

sm_2x 128 bytes

sm_3x, sm_5x, sm_6x, sm_7x 256 bytes

sm_8x, sm_9x 128 bytes

PTX ISA Notes

Introduced in PTX ISA version 4.1.

Target ISA Notes

Requires sm_20 or higher.

Examples

mov.u32 %r, %total_smem_size;

10.31. Special Registers: %aggr_smem_size

%aggr_smem_size

Total size of shared memory used by a CTA of a kernel.

Syntax (predefined)

.sreg .u32 %aggr_smem_size;

Description

A predefined, read-only special register initialized with total aggregated size of shared memory con-
sisting of the size of user shared memory allocated (statically and dynamically) at launch time and the
size of shared memory region which is reserved for the NVIDIA system software use.

PTX ISA Notes

494 Chapter 10. Special Registers

PTX ISA, Release 8.1

Introduced in PTX ISA version 8.1.

Target ISA Notes

Requires sm_90 or higher.

Examples

mov.u32 %r, %aggr_smem_size;

10.32. Special Registers: %dynamic_smem_size

%dynamic_smem_size

Size of shared memory allocated dynamically at kernel launch.

Syntax (predefined)

.sreg .u32 %dynamic_smem_size;

Description

Size of shared memory allocated dynamically at kernel launch.

A predefined, read-only special register initialized with size of shared memory allocated dynamically
for the CTA of a kernel at launch time.

PTX ISA Notes

Introduced in PTX ISA version 4.1.

Target ISA Notes

Requires sm_20 or higher.

Examples

mov.u32 %r, %dynamic_smem_size;

10.33. Special Registers: %current_graph_exec

%current_graph_exec

An Identifier for currently executing CUDA device graph.

Syntax (predefined)

.sreg .u64 %current_graph_exec;

Description

A predefined, read-only special register initialized with the identifier referring to the CUDA device
graph being currently executed. This register is 0 if the executing kernel is not part of a CUDA device
graph.

Refer to the CUDA Programming Guide for more details on CUDA device graphs.

10.32. Special Registers: %dynamic_smem_size 495

PTX ISA, Release 8.1

PTX ISA Notes

Introduced in PTX ISA version 8.0.

Target ISA Notes

Requires sm_50 or higher.

Examples

mov.u64 r1, %current_graph_exec;

496 Chapter 10. Special Registers

Chapter 11. Directives

11.1. PTX Module Directives

The following directives declare the PTX ISA version of the code in the module, the target architecture
for which the code was generated, and the size of addresses within the PTX module.

▶ .version

▶ .target

▶ .address_size

11.1.1. PTX Module Directives: .version

.version

PTX ISA version number.

Syntax

.version major.minor ∕∕ major, minor are integers

Description

Specifies the PTX language version number.

Themajor number is incremented when there are incompatible changes to the PTX language, such as
changes to the syntax or semantics. The version major number is used by the PTX compiler to ensure
correct execution of legacy PTX code.

Theminor number is incremented when new features are added to PTX.

Semantics

Indicates that this module must be compiled with tools that support an equal or greater version num-
ber.

Each PTX module must begin with a .version directive, and no other .version directive is allowed
anywhere else within the module.

PTX ISA Notes

Introduced in PTX ISA version 1.0.

Target ISA Notes

497

PTX ISA, Release 8.1

Supported on all target architectures.

Examples

.version 3.1

.version 3.0

.version 2.3

11.1.2. PTX Module Directives: .target

.target

Architecture and Platform target.

Syntax

.target stringlist ∕∕ comma separated list of target specifiers
string = { sm_90a, sm_90, ∕∕ sm_9x target architectures

sm_80, sm_86, sm_87, sm_89, ∕∕ sm_8x target architectures
sm_70, sm_72, sm_75, ∕∕ sm_7x target architectures
sm_60, sm_61, sm_62, ∕∕ sm_6x target architectures
sm_50, sm_52, sm_53, ∕∕ sm_5x target architectures
sm_30, sm_32, sm_35, sm_37, ∕∕ sm_3x target architectures
sm_20, ∕∕ sm_2x target architectures
sm_10, sm_11, sm_12, sm_13, ∕∕ sm_1x target architectures
texmode_unified, texmode_independent, ∕∕ texturing mode
debug, ∕∕ platform option
map_f64_to_f32 }; ∕∕ platform option

Description

Specifies the set of features in the target architecture for which the current PTX code was generated.
In general, generations of SM architectures follow an onion layer model, where each generation adds
new features and retains all features of previous generations. The onion layer model allows the PTX
code generated for a given target to be run on later generation devices.

Target architectures with suffix “a”, such as sm_90a, include architecture-accelerated features that
are supported on the specified architecture only, hence such targets do not follow the onion layer
model. Therefore, PTX code generated for such targets cannot be run on later generation devices.
Architecture-accelerated features can only be used with targets that support these features.

Semantics

Each PTX module must begin with a .version directive, immediately followed by a .target directive
containing a target architecture and optional platform options. A .target directive specifies a single
target architecture, but subsequent .target directives can be used to change the set of target fea-
tures allowed during parsing. A program with multiple .target directives will compile and run only on
devices that support all features of the highest-numbered architecture listed in the program.

PTX features are checked against the specified target architecture, and an error is generated if an
unsupported feature is used. The following table summarizes the features in PTX that vary according
to target architecture.

Target Description

sm_90 Baseline feature set for sm_90 architecture.

sm_90a Adds support for sm_90a accelerated wgmma and setmaxnreg instructions.

498 Chapter 11. Directives

PTX ISA, Release 8.1

Target Description

sm_80 Baseline feature set for sm_80 architecture.

sm_86 Adds support for .xorsignmodifier on min and max instructions.

sm_87 Baseline feature set for sm_86 architecture.

sm_89 Baseline feature set for sm_86 architecture.

Target Description

sm_70 Baseline feature set for sm_70 architecture.

sm_72 Adds support for integer multiplicand and accumulator matrices in wmma in-
structions.
Adds support for cvt.pack instruction.

sm_75 Adds support for sub-byte integer and single-bit multiplicant matrices in wmma
instructions.
Adds support for ldmatrix instruction.
Adds support for movmatrix instruction.
Adds support for tanh instruction.

Target Description

sm_60 Baseline feature set for sm_60 architecture.

sm_61 Adds support for dp2a and dp4a instructions.

sm_62 Baseline feature set for sm_61 architecture.

Target Description

sm_50 Baseline feature set for sm_50 architecture.

sm_52 Baseline feature set for sm_50 architecture.

sm_53 Adds support for arithmetic, comparsion and texture instructions for .f16 and
.f16x2 types.

Target Description

sm_30 Baseline feature set for sm_30 architecture.

sm_32 Adds 64-bit {atom,red}.{and,or,xor,min,max} instructions.
Adds shf instruction.
Adds ld.global.nc instruction.

sm_35 Adds support for CUDA Dynamic Parallelism.

sm_37 Baseline feature set for sm_35 architecture.

11.1. PTX Module Directives 499

PTX ISA, Release 8.1

Target Description

sm_20 Baseline feature set for sm_20 architecture.

Target Description

sm_10 Baseline feature set for sm_10 architecture.
Requires map_f64_to_f32 if any .f64 instructions used.

sm_11 Adds 64-bit {atom,red}.{and,or,xor,min,max} instructions.
Requires map_f64_to_f32 if any .f64 instructions used.

sm_12 Adds {atom,red}.shared, 64-bit {atom,red}.global, vote instructions.
Requires map_f64_to_f32 if any .f64 instructions used.

sm_13 Adds double-precision support, including expanded rounding modifiers.
Disallows use of map_f64_to_f32.

The texturing mode is specified for an entire module and cannot be changed within the module.

The .target debug option declares that the PTX file contains DWARF debug information, and sub-
sequent compilation of PTX will retain information needed for source-level debugging. If the debug
option is declared, an error message is generated if no DWARF information is found in the file. The
debug option requires PTX ISA version 3.0 or later.

map_f64_to_f32 indicates that all double-precision instructions map to single-precision regardless
of the target architecture. This enables high-level language compilers to compile programs containing
type double to target device that do not support double-precision operations. Note that .f64 storage
remains as 64-bits, with only half being used by instructions converted from .f64 to .f32.

Notes

Targets of the form compute_xx are also accepted as synonyms for sm_xx targets.

PTX ISA Notes

Introduced in PTX ISA version 1.0.

Target strings sm_10 and sm_11 introduced in PTX ISA version 1.0.

Target strings sm_12 and sm_13 introduced in PTX ISA version 1.2.

Texturing mode introduced in PTX ISA version 1.5.

Target string sm_20 introduced in PTX ISA version 2.0.

Target string sm_30 introduced in PTX ISA version 3.0.

Platform option debug introduced in PTX ISA version 3.0.

Target string sm_35 introduced in PTX ISA version 3.1.

Target strings sm_32 and sm_50 introduced in PTX ISA version 4.0.

Target strings sm_37 and sm_52 introduced in PTX ISA version 4.1.

Target string sm_53 introduced in PTX ISA version 4.2.

Target string sm_60, sm_61, sm_62 introduced in PTX ISA version 5.0.

Target string sm_70 introduced in PTX ISA version 6.0.

Target string sm_72 introduced in PTX ISA version 6.1.

500 Chapter 11. Directives

PTX ISA, Release 8.1

Target string sm_75 introduced in PTX ISA version 6.3.

Target string sm_80 introduced in PTX ISA version 7.0.

Target string sm_86 introduced in PTX ISA version 7.1.

Target string sm_87 introduced in PTX ISA version 7.4.

Target string sm_89 introduced in PTX ISA version 7.8.

Target string sm_90 introduced in PTX ISA version 7.8.

Target string sm_90a introduced in PTX ISA version 8.0.

Target ISA Notes

The .target directive is supported on all target architectures.

Examples

.target sm_10 ∕∕ baseline target architecture

.target sm_13 ∕∕ supports double-precision

.target sm_20, texmode_independent

.target sm_90 ∕∕ baseline target architecture

.target sm_90a ∕∕ PTX using arch accelerated features

11.1.3. PTX Module Directives: .address_size

.address_size

Address size used throughout PTX module.

Syntax

.address_size address-size
address-size = { 32, 64 };

Description

Specifies the address size assumed throughout the module by the PTX code and the binary DWARF
information in PTX.

Redefinition of this directive within a module is not allowed. In the presence of separate compilation
all modules must specify (or default to) the same address size.

The .address_size directive is optional, but it must immediately follow the .targetdirective if
present within a module.

Semantics

If the .address_size directive is omitted, the address size defaults to 32.

PTX ISA Notes

Introduced in PTX ISA version 2.3.

Target ISA Notes

Supported on all target architectures.

Examples

11.1. PTX Module Directives 501

PTX ISA, Release 8.1

∕∕ example directives
.address_size 32 ∕∕ addresses are 32 bit
.address_size 64 ∕∕ addresses are 64 bit

∕∕ example of directive placement within a module
.version 2.3
.target sm_20
.address_size 64

...

.entry foo () {

...
}

11.2. Specifying Kernel Entry Points and
Functions

The following directives specify kernel entry points and functions.

▶ .entry

▶ .func

11.2.1. Kernel and Function Directives: .entry

.entry

Kernel entry point and body, with optional parameters.

Syntax

.entry kernel-name (param-list) kernel-body

.entry kernel-name kernel-body

Description

Defines a kernel entry point name, parameters, and body for the kernel function.

Parameters are passed via .param space memory and are listed within an optional parenthesized pa-
rameter list. Parameters may be referenced by name within the kernel body and loaded into registers
using ld.param instructions.

In addition to normal parameters, opaque .texref, .samplerref, and .surfref variables may be
passed as parameters. These parameters can only be referenced by name within texture and surface
load, store, and query instructions and cannot be accessed via ld.param instructions.

The shape and size of the CTA executing the kernel are available in special registers.

Semantics

Specify the entry point for a kernel program.

At kernel launch, the kernel dimensions and properties are established and made available via special
registers, e.g., %ntid, %nctaid, etc.

502 Chapter 11. Directives

PTX ISA, Release 8.1

PTX ISA Notes

For PTX ISA version 1.4 and later, parameter variables are declared in the kernel parameter list. For
PTX ISA versions 1.0 through 1.3, parameter variables are declared in the kernel body.

The maximum memory size supported by PTX for normal (non-opaque type) parameters is 32764
bytes. Depending upon the PTX ISA version, the parameter size limit varies. The following table shows
the allowed parameter size for a PTX ISA version:

PTX ISA Version Maximum parameter size (In bytes)

PTX ISA version 8.1 and above 32764

PTX ISA version 1.5 and above 4352

PTX ISA version 1.4 and above 256

The CUDA and OpenCL drivers support the following limits for parameter memory:

Driver Parameter memory size

CUDA 256 bytes for sm_1x, 4096 bytes for sm_2x and higher, 32764 bytes fo sm_70 and
higher

OpenCL 32764 bytes for sm_70 and higher, 4352 bytes on sm_6x and lower

Target ISA Notes

Supported on all target architectures.

Examples

.entry cta_fft

.entry filter (.param .b32 x, .param .b32 y, .param .b32 z)
{

.reg .b32 %r<99>;
ld.param.b32 %r1, [x];
ld.param.b32 %r2, [y];
ld.param.b32 %r3, [z];
...

}

.entry prefix_sum (.param .align 4 .s32 pitch[8000])
{

.reg .s32 %t;
ld.param.s32 %t, [pitch];
...

}

11.2. Specifying Kernel Entry Points and Functions 503

PTX ISA, Release 8.1

11.2.2. Kernel and Function Directives: .func

.func

Function definition.

Syntax

.func {.attribute(attr-list)} fname {.noreturn} function-body

.func {.attribute(attr-list)} fname (param-list) {.noreturn} function-body

.func {.attribute(attr-list)} (ret-param) fname (param-list) function-body

Description

Defines a function, including input and return parameters and optional function body.

An optional .noreturn directive indicates that the function does not return to the caller function.
.noreturn directive cannot be specified on functions which have return parameters. See the de-
scription of .noreturn directive in Performance-Tuning Directives: .noreturn.

An optional .attribute directive specifies additional information associated with the function. See
the description of Variable and Function Attribute Directive: .attribute for allowed attributes.

A .func definition with no body provides a function prototype.

The parameter lists define locally-scoped variables in the function body. Parameters must be base
types in either the register or parameter state space. Parameters in register state space may be ref-
erenced directly within instructions in the function body. Parameters in .param space are accessed
using ld.param and st.param instructions in the body. Parameter passing is call-by-value.

The last parameter in the parameter list may be a .param array of type .b8 with no size specified. It
is used to pass an arbitrary number of parameters to the function packed into a single array object.

When calling a function with such an unsized last argument, the last argument may be omitted from
the call instruction if no parameter is passed through it. Accesses to this array parameter must be
within the bounds of the array. The result of an access is undefined if no array was passed, or if the
access was outside the bounds of the actual array being passed.

Semantics

The PTX syntax hides all details of the underlying calling convention and ABI.

The implementation of parameter passing is left to the optimizing translator, which may use a combi-
nation of registers and stack locations to pass parameters.

Release Notes

For PTX ISA version 1.x code, parameters must be in the register state space, there is no stack, and
recursion is illegal.

PTX ISA versions 2.0 and later with target sm_20 or higher allow parameters in the .param state space,
implements an ABI with stack, and supports recursion.

PTX ISA versions 2.0 and later with target sm_20 or higher support at most one return value.

PTX ISA Notes

Introduced in PTX ISA version 1.0.

Support for unsized array parameter introduced in PTX ISA version 6.0.

Support for .noreturn directive introduced in PTX ISA version 6.4.

Support for .attribute directive introduced in PTX ISA version 8.0.

504 Chapter 11. Directives

PTX ISA, Release 8.1

Target ISA Notes

Functions without unsized array parameter supported on all target architectures.

Unsized array parameter requires sm_30 or higher.

.noreturn directive requires sm_30 or higher.

.attribute directive requires sm_90 or higher.

Examples

.func (.reg .b32 rval) foo (.reg .b32 N, .reg .f64 dbl)
{
.reg .b32 localVar;

... use N, dbl;
other code;

mov.b32 rval,result;
ret;
}

...
call (fooval), foo, (val0, val1); ∕∕ return value in fooval
...

.func foo (.reg .b32 N, .reg .f64 dbl) .noreturn
{
.reg .b32 localVar;
... use N, dbl;
other code;
mov.b32 rval, result;
ret;
}
...
call foo, (val0, val1);
...

.func (.param .u32 rval) bar(.param .u32 N, .param .align 4 .b8 numbers[])
{

.reg .b32 input0, input1;
ld.param.b32 input0, [numbers + 0];
ld.param.b32 input1, [numbers + 4];
...
other code;
ret;

}
...

.param .u32 N;

.param .align 4 .b8 numbers[8];
st.param.u32 [N], 2;
st.param.b32 [numbers + 0], 5;
st.param.b32 [numbers + 4], 10;
call (rval), bar, (N, numbers);
...

11.2. Specifying Kernel Entry Points and Functions 505

PTX ISA, Release 8.1

11.2.3. Kernel and Function Directives: .alias

.alias

Define an alias to existing function symbol.

Syntax

.alias fAlias, fAliasee;

Description

.alias is a module scope directive that defines identifier fAlias to be an alias to function specified
by fAliasee.

Both fAlias and fAliasee are non-entry function symbols.

Identifier fAlias is a function declaration without body.

Identifier fAliasee is a function symbol which must be defined in the same module as .alias dec-
laration. Function fAliasee cannot have .weak linkage.

Prototype of fAlias and fAliaseemust match.

Program can use either fAlias or fAlisee identifiers to reference function defined with fAliasee.

PTX ISA Notes

.alias directive introduced in PTX ISA 6.3.

Target ISA Notes

.alias directive requires sm_30 or higher.

Examples

.visible .func foo(.param .u32 p) {
...

}
.visible .func bar(.param .u32 p);
.alias bar, foo;
.entry test()
{

.param .u32 p;

...
call foo, (p); ∕∕ call foo directly
...
.param .u32 p;
call bar, (p); ∕∕ call foo through alias

}
.entry filter (.param .b32 x, .param .b32 y, .param .b32 z)
{

.reg .b32 %r1, %r2, %r3;
ld.param.b32 %r1, [x];
ld.param.b32 %r2, [y];
ld.param.b32 %r3, [z];
...

}

506 Chapter 11. Directives

PTX ISA, Release 8.1

11.3. Control Flow Directives

PTX provides directives for specifying potential targets for brx.idx and call instructions. See the
descriptions of brx.idx and call for more information.

▶ .branchtargets

▶ .calltargets

▶ .callprototype

11.3.1. Control Flow Directives: .branchtargets

.branchtargets

Declare a list of potential branch targets.

Syntax

Label: .branchtargets list-of-labels ;

Description

Declares a list of potential branch targets for a subsequent brx.idx, and associates the list with the
label at the start of the line.

All control flow labels in the list must occur within the same function as the declaration.

The list of labels may use the compact, shorthand syntax for enumerating a range of labels having a
common prefix, similar to the syntax described in Parameterized Variable Names.

PTX ISA Notes

Introduced in PTX ISA version 2.1.

Target ISA Notes

Requires sm_20 or higher.

Examples

.function foo () {
.reg .u32 %r0;
...
L1:
...
L2:
...
L3:
...
ts: .branchtargets L1, L2, L3;
@p brx.idx %r0, ts;
...

.function bar() {
.reg .u32 %r0;
...
N0:

(continues on next page)

11.3. Control Flow Directives 507

PTX ISA, Release 8.1

(continued from previous page)

...
N1:
...
N2:
...
N3:
...
N4:
...
ts: .branchtargets N<5>;
@p brx.idx %r0, ts;
...

11.3.2. Control Flow Directives: .calltargets

.calltargets

Declare a list of potential call targets.

Syntax

Label: .calltargets list-of-functions ;

Description

Declares a list of potential call targets for a subsequent indirect call, and associates the list with the
label at the start of the line.

All functions named in the list must be declared prior to the .calltargets directive, and all functions
must have the same type signature.

PTX ISA Notes

Introduced in PTX ISA version 2.1.

Target ISA Notes

Requires sm_20 or higher.

Examples

calltgt: .calltargets fastsin, fastcos;
...
@p call (%f1), %r0, (%x), calltgt;
...

508 Chapter 11. Directives

PTX ISA, Release 8.1

11.3.3. Control Flow Directives: .callprototype

.callprototype

Declare a prototype for use in an indirect call.

Syntax

∕∕ no input or return parameters
label: .callprototype _ .noreturn;
∕∕ input params, no return params
label: .callprototype _ (param-list) .noreturn;
∕∕ no input params, ∕∕ return params
label: .callprototype (ret-param) _ ;
∕∕ input, return parameters
label: .callprototype (ret-param) _ (param-list);

Description

Defines a prototype with no specific function name, and associates the prototype with a label. The
prototype may then be used in indirect call instructions where there is incomplete knowledge of the
possible call targets.

Parameters may have either base types in the register or parameter state spaces, or array types in
parameter state space. The sink symbol '_'may be used to avoid dummy parameter names.

An optional .noreturn directive indicates that the function does not return to the caller function.
.noreturn directive cannot be specified on functions which have return parameters. See the de-
scription of .noreturn directive in Performance-Tuning Directives: .noreturn.

PTX ISA Notes

Introduced in PTX ISA version 2.1.

Support for .noreturn directive introduced in PTX ISA version 6.4.

Target ISA Notes

Requires sm_20 or higher.

.noreturn directive requires sm_30 or higher.

Examples

Fproto1: .callprototype _ ;
Fproto2: .callprototype _ (.param .f32 _);
Fproto3: .callprototype (.param .u32 _) _ ;
Fproto4: .callprototype (.param .u32 _) _ (.param .f32 _);
...
@p call (%val), %r0, (%f1), Fproto4;
...

∕∕ example of array parameter
Fproto5: .callprototype _ (.param .b8 _[12]);

Fproto6: .callprototype _ (.param .f32 _) .noreturn;
...
@p call %r0, (%f1), Fproto6;
...

11.3. Control Flow Directives 509

PTX ISA, Release 8.1

11.4. Performance-Tuning Directives

To provide amechanism for low-level performance tuning, PTX supports the following directives, which
pass information to the backend optimizing compiler.

▶ .maxnreg

▶ .maxntid

▶ .reqntid

▶ .minnctapersm

▶ .maxnctapersm (deprecated)

▶ .pragma

The .maxnreg directive specifies the maximum number of registers to be allocated to a single
thread; the .maxntid directive specifies the maximum number of threads in a thread block (CTA);
the .reqntid directive specifies the required number of threads in a thread block (CTA); and the .
minnctapersm directive specifies a minimum number of thread blocks to be scheduled on a single
multiprocessor (SM). These can be used, for example, to throttle the resource requirements (e.g., reg-
isters) to increase total thread count and provide a greater opportunity to hide memory latency. The
.minnctapersm directive can be used together with either the .maxntid or .reqntid directive to
trade-off registers-per-thread against multiprocessor utilization without needed to directly specify a
maximum number of registers. This may achieve better performance when compiling PTX for multiple
devices having different numbers of registers per SM.

Currently, the .maxnreg, .maxntid, .reqntid, and .minnctapersm directives may be applied per-
entry andmust appear between an .entry directive and its body. The directives take precedence over
any module-level constraints passed to the optimizing backend. A warning message is generated if
the directives’ constraints are inconsistent or cannot be met for the specified target device.

A general .pragma directive is supported for passing information to the PTX backend. The directive
passes a list of strings to the backend, and the strings have no semantics within the PTX virtual ma-
chine model. The interpretation of .pragma values is determined by the backend implementation and
is beyond the scope of the PTX ISA. Note that .pragma directives may appear at module (file) scope,
at entry-scope, or as statements within a kernel or device function body.

11.4.1. Performance-Tuning Directives: .maxnreg
.maxnreg

Maximum number of registers that can be allocated per thread.

Syntax

.maxnreg n

Description

Declare the maximum number of registers per thread in a CTA.

Semantics

The compiler guarantees that this limit will not be exceeded. The actual number of registers used may
be less; for example, the backend may be able to compile to fewer registers, or the maximum number
of registers may be further constrained by .maxntid and .maxctapersm.

510 Chapter 11. Directives

PTX ISA, Release 8.1

PTX ISA Notes

Introduced in PTX ISA version 1.3.

Target ISA Notes

Supported on all target architectures.

Examples

.entry foo .maxnreg 16 { ... } ∕∕ max regs per thread = 16

11.4.2. Performance-Tuning Directives: .maxntid

.maxntid

Maximum number of threads in the thread block (CTA).

Syntax

.maxntid nx

.maxntid nx, ny

.maxntid nx, ny, nz

Description

Declare themaximumnumber of threads in the thread block (CTA). Thismaximum is specified by giving
the maximum extent of each dimension of the 1D, 2D, or 3D CTA. The maximum number of threads
is the product of the maximum extent in each dimension.

Semantics

Themaximumnumber of threads in the threadblock, computed as the product of themaximumextent
specified for each dimension, is guaranteed not to be exceeded in any invocation of the kernel in which
this directive appears. Exceeding the maximum number of threads results in a runtime error or kernel
launch failure.

Note that this directive guarantees that the total number of threads does not exceed the maximum,
but does not guarantee that the limit in any particular dimension is not exceeded.

PTX ISA Notes

Introduced in PTX ISA version 1.3.

Target ISA Notes

Supported on all target architectures.

Examples

.entry foo .maxntid 256 { ... } ∕∕ max threads = 256

.entry bar .maxntid 16,16,4 { ... } ∕∕ max threads = 1024

11.4. Performance-Tuning Directives 511

PTX ISA, Release 8.1

11.4.3. Performance-Tuning Directives: .reqntid

.reqntid

Number of threads in the thread block (CTA).

Syntax

.reqntid nx

.reqntid nx, ny

.reqntid nx, ny, nz

Description

Declare the number of threads in the thread block (CTA) by specifying the extent of each dimension
of the 1D, 2D, or 3D CTA. The total number of threads is the product of the number of threads in each
dimension.

Semantics

The size of each CTA dimension specified in any invocation of the kernel is required to be equal to that
specified in this directive. Specifying a different CTA dimension at launch will result in a runtime error
or kernel launch failure.

Notes

The .reqntid directive cannot be used in conjunction with the .maxntid directive.

PTX ISA Notes

Introduced in PTX ISA version 2.1.

Target ISA Notes

Supported on all target architectures.

Examples

.entry foo .reqntid 256 { ... } ∕∕ num threads = 256

.entry bar .reqntid 16,16,4 { ... } ∕∕ num threads = 1024

11.4.4. Performance-Tuning Directives: .minnctapersm

.minnctapersm

Minimum number of CTAs per SM.

Syntax

.minnctapersm ncta

Description

Declare the minimum number of CTAs from the kernel’s grid to be mapped to a single multiprocessor
(SM).

Notes

Optimizations based on .minnctapersm need either .maxntid or .reqntid to be specified as well.

512 Chapter 11. Directives

PTX ISA, Release 8.1

If the total number of threads on a single SM resulting from .minnctapersm and .maxntid / .
reqntid exceed maximum number of threads supported by an SM then directive .minnctapersm
will be ignored.

In PTX ISA version 2.1 or higher, a warning is generated if .minnctapersm is specified without speci-
fying either .maxntid or .reqntid.

PTX ISA Notes

Introduced in PTX ISA version 2.0 as a replacement for .maxnctapersm.

Target ISA Notes

Supported on all target architectures.

Examples

.entry foo .maxntid 256 .minnctapersm 4 { ... }

11.4.5. Performance-Tuning Directives: .maxnctapersm
(deprecated)

.maxnctapersm

Maximum number of CTAs per SM.

Syntax

.maxnctapersm ncta

Description

Declare the maximum number of CTAs from the kernel’s grid that may be mapped to a single multi-
processor (SM).

Notes

Optimizations based on .maxnctapersm generally need .maxntid to be specified as well. The optimiz-
ing backend compiler uses .maxntid and .maxnctapersm to compute an upper-bound on per-thread
register usage so that the specified number of CTAs can be mapped to a single multiprocessor. How-
ever, if the number of registers used by the backend is sufficiently lower than this bound, additional
CTAs may be mapped to a single multiprocessor. For this reason, .maxnctapersm has been renamed
to .minnctapersm in PTX ISA version 2.0.

PTX ISA Notes

Introduced in PTX ISA version 1.3. Deprecated in PTX ISA version 2.0.

Target ISA Notes

Supported on all target architectures.

Examples

.entry foo .maxntid 256 .maxnctapersm 4 { ... }

11.4. Performance-Tuning Directives 513

PTX ISA, Release 8.1

11.4.6. Performance-Tuning Directives: .noreturn

.noreturn

Indicate that the function does not return to its caller function.

Syntax

.noreturn

Description

Indicate that the function does not return to its caller function.

Semantics

An optional .noreturn directive indicates that the function does not return to caller function. .
noreturn directive can only be specified on device functions and must appear between a .func di-
rective and its body.

The directive cannot be specified on functions which have return parameters.

If a function with .noreturn directive returns to the caller function at runtime, then the behavior is
undefined.

PTX ISA Notes

Introduced in PTX ISA version 6.4.

Target ISA Notes

Requires sm_30 or higher.

Examples

.func foo .noreturn { ... }

11.4.7. Performance-Tuning Directives: .pragma
.pragma

Pass directives to PTX backend compiler.

Syntax

.pragma list-of-strings ;

Description

Pass module-scoped, entry-scoped, or statement-level directives to the PTX backend compiler.

The .pragma directive may occur at module-scope, at entry-scope, or at statement-level.

Semantics

The interpretation of .pragma directive strings is implementation-specific and has no impact on PTX
semantics. See Descriptions of .pragma Strings for descriptions of the pragma strings defined in
ptxas.

PTX ISA Notes

Introduced in PTX ISA version 2.0.

514 Chapter 11. Directives

PTX ISA, Release 8.1

Target ISA Notes

Supported on all target architectures.

Examples

.pragma "nounroll"; ∕∕ disable unrolling in backend

∕∕ disable unrolling for current kernel
.entry foo .pragma "nounroll"; { ... }

11.5. Debugging Directives

DWARF-format debug information is passed through PTX modules using the following directives:

▶ @@DWARF

▶ .section

▶ .file

▶ .loc

The .section directive was introduced in PTX ISA version 2.0 and replaces the @@DWARF syntax. The
@@DWARF syntax was deprecated in PTX ISA version 2.0 but is supported for legacy PTX ISA version 1.x
code.

Beginning with PTX ISA version 3.0, PTX files containing DWARF debug information should include the
.target debug platform option. This forward declaration directs PTX compilation to retainmappings
for source-level debugging.

11.5.1. Debugging Directives: @@dwarf

@@dwarf

DWARF-format information.

Syntax

@@DWARF dwarf-string

dwarf-string may have one of the
.byte byte-list ∕∕ comma-separated hexadecimal byte values
.4byte int32-list ∕∕ comma-separated hexadecimal integers in range [0..2^32-1]
.quad int64-list ∕∕ comma-separated hexadecimal integers in range [0..2^64-1]
.4byte label
.quad label

PTX ISA Notes

Introduced in PTX ISA version 1.2. Deprecated as of PTX ISA version 2.0, replaced by .section direc-
tive.

Target ISA Notes

Supported on all target architectures.

11.5. Debugging Directives 515

PTX ISA, Release 8.1

Examples

@@DWARF .section .debug_pubnames, "", @progbits
@@DWARF .byte 0x2b, 0x00, 0x00, 0x00, 0x02, 0x00
@@DWARF .4byte .debug_info
@@DWARF .4byte 0x000006b5, 0x00000364, 0x61395a5f, 0x5f736f63
@@DWARF .4byte 0x6e69616d, 0x63613031, 0x6150736f, 0x736d6172
@@DWARF .byte 0x00, 0x00, 0x00, 0x00, 0x00

11.5.2. Debugging Directives: .section

.section

PTX section definition.

Syntax

.section section_name { dwarf-lines }

dwarf-lines have the following formats:
.b8 byte-list ∕∕ comma-separated list of integers

∕∕ in range [-128..255]
.b16 int16-list ∕∕ comma-separated list of integers

∕∕ in range [-2^15..2^16-1]
.b32 int32-list ∕∕ comma-separated list of integers

∕∕ in range [-2^31..2^32-1]
label: ∕∕ Define label inside the debug section
.b64 int64-list ∕∕ comma-separated list of integers

∕∕ in range [-2^63..2^64-1]
.b32 label
.b64 label
.b32 label+imm ∕∕ a sum of label address plus a constant integer byte

∕∕ offset(signed, 32bit)
.b64 label+imm ∕∕ a sum of label address plus a constant integer byte

∕∕ offset(signed, 64bit)
.b32 label1-label2 ∕∕ a difference in label addresses between labels in

∕∕ the same dwarf section (32bit)
.b64 label3-label4 ∕∕ a difference in label addresses between labels in

∕∕ the same dwarf section (64bit)

PTX ISA Notes

Introduced in PTX ISA version 2.0, replaces @@DWARF syntax.

label+imm expression introduced in PTX ISA version 3.2.

Support for .b16 integers in dwarf-lines introduced in PTX ISA version 6.0.

Support for defining label inside the DWARF section is introduced in PTX ISA version 7.2.

label1-label2 expression introduced in PTX ISA version 7.5.

Negative numbers in dwarf lines introduced in PTX ISA version 7.5.

Target ISA Notes

Supported on all target architectures.

Examples

516 Chapter 11. Directives

PTX ISA, Release 8.1

.section .debug_pubnames
{

.b32 LpubNames_end0-LpubNames_begin0
LpubNames_begin0:

.b8 0x2b, 0x00, 0x00, 0x00, 0x02, 0x00

.b32 .debug_info
info_label1:

.b32 0x000006b5, 0x00000364, 0x61395a5f, 0x5f736f63

.b32 0x6e69616d, 0x63613031, 0x6150736f, 0x736d6172

.b8 0x00, 0x00, 0x00, 0x00, 0x00
LpubNames_end0:

}

.section .debug_info
{

.b32 11430

.b8 2, 0

.b32 .debug_abbrev

.b8 8, 1, 108, 103, 101, 110, 102, 101, 58, 32, 69, 68, 71, 32, 52, 46, 49

.b8 0

.b32 3, 37, 176, -99

.b32 info_label1

.b32 .debug_loc+0x4

.b8 -11, 11, 112, 97

.b32 info_label1+12

.b64 -1

.b16 -5, -65535
}

11.5.3. Debugging Directives: .file

.file

Source file name.

Syntax

.file file_index "filename" {, timestamp, file_size}

Description

Associates a source filename with an integer index. .loc directives reference source files by index.

.filedirective allows optionally specifying an unsignednumber representing timeof lastmodification
and an unsigned integer representing size in bytes of source file. timestamp and file_size value
can be 0 to indicate this information is not available.

timestamp value is in format of C and C++ data type time_t.

file_size is an unsigned 64-bit integer.

The .file directive is allowed only in the outermost scope, i.e., at the same level as kernel and device
function declarations.

Semantics

If timestamp and file size are not specified, they default to 0.

PTX ISA Notes

11.5. Debugging Directives 517

PTX ISA, Release 8.1

Introduced in PTX ISA version 1.0.

Timestamp and file size introduced in PTX ISA version 3.2.

Target ISA Notes

Supported on all target architectures.

Examples

.file 1 "example.cu"

.file 2 "kernel.cu"

.file 1 “kernel.cu”, 1339013327, 64118

11.5.4. Debugging Directives: .loc

.loc

Source file location.

Syntax

.loc file_index line_number column_position

.loc file_index line_number column_position,function_name label {+ immediate },�
↪→inlined_at file_index2 line_number2 column_position2

Description

Declares the source file location (source file, line number, and column position) to be associated with
lexically subsequent PTX instructions. .loc refers to file_index which is defined by a .file direc-
tive.

To indicate PTX instructions that are generated from a function that got inlined, additional attribute
.inlined_at can be specified as part of the .loc directive. .inlined_at attribute specifies
source location at which the specified function is inlined. file_index2, line_number2, and col-
umn_position2 specify the location at which function is inlined. Source location specified as part of
.inlined_at directive must lexically precede as source location in .loc directive.

The function_name attribute specifies an offset in the DWARF section named .debug_str. Offset
is specified as label expression or label + immediate expression where label is defined in .
debug_str section. DWARF section .debug_str contains ASCII null-terminated strings that specify
the name of the function that is inlined.

Note that a PTX instruction may have a single associated source location, determined by the nearest
lexically preceding .loc directive, or no associated source location if there is no preceding .loc directive.
Labels in PTX inherit the location of the closest lexically following instruction. A label with no following
PTX instruction has no associated source location.

PTX ISA Notes

Introduced in PTX ISA version 1.0.

function_name and inlined_at attributes are introduced in PTX ISA version 7.2.

Target ISA Notes

Supported on all target architectures.

Examples

518 Chapter 11. Directives

PTX ISA, Release 8.1

.loc 2 4237 0
L1: ∕∕ line 4237, col 0 of file #2,

∕∕ inherited from mov
mov.u32 %r1,%r2; ∕∕ line 4237, col 0 of file #2
add.u32 %r2,%r1,%r3; ∕∕ line 4237, col 0 of file #2

...
L2: ∕∕ line 4239, col 5 of file #2,

∕∕ inherited from sub
.loc 2 4239 5
sub.u32 %r2,%r1,%r3; ∕∕ line 4239, col 5 of file #2
.loc 1 21 3
.loc 1 9 3, function_name info_string0, inlined_at 1 21 3
ld.global.u32 %r1, [gg]; ∕∕ Function at line 9
setp.lt.s32 %p1, %r1, 8; ∕∕ inlined at line 21
.loc 1 27 3
.loc 1 10 5, function_name info_string1, inlined_at 1 27 3
.loc 1 15 3, function_name .debug_str+16, inlined_at 1 10 5
setp.ne.s32 %p2, %r1, 18;
@%p2 bra BB2_3;

.section .debug_str {
info_string0:
.b8 95 ∕∕ _
.b8 90 ∕∕ z
.b8 51 ∕∕ 3
.b8 102 ∕∕ f
.b8 111 ∕∕ o
.b8 111 ∕∕ o
.b8 118 ∕∕ v
.b8 0

info_string1:
.b8 95 ∕∕ _
.b8 90 ∕∕ z
.b8 51 ∕∕ 3
.b8 98 ∕∕ b
.b8 97 ∕∕ a
.b8 114 ∕∕ r
.b8 118 ∕∕ v
.b8 0
.b8 95 ∕∕ _
.b8 90 ∕∕ z
.b8 51 ∕∕ 3
.b8 99 ∕∕ c
.b8 97 ∕∕ a
.b8 114 ∕∕ r
.b8 118 ∕∕ v
.b8 0
}

11.5. Debugging Directives 519

PTX ISA, Release 8.1

11.6. Linking Directives

▶ .extern

▶ .visible

▶ .weak

11.6.1. Linking Directives: .extern

.extern

External symbol declaration.

Syntax

.extern identifier

Description

Declares identifier to be defined external to the current module. The identifier must be declared .
visible in the module where it is defined.

PTX ISA Notes

Introduced in PTX ISA version 1.0.

Target ISA Notes

Supported on all target architectures.

Examples

.extern .global .b32 foo; ∕∕ foo is defined in another module

11.6.2. Linking Directives: .visible

.visible

Visible (externally) symbol declaration.

Syntax

.visible identifier

Description

Declares identifier to be globally visible. Unlike C, where identifiers are globally visible unless declared
static, PTX identifiers are visible only within the current module unless declared .visible outside the
current.

PTX ISA Notes

Introduced in PTX ISA version 1.0.

Target ISA Notes

Supported on all target architectures.

520 Chapter 11. Directives

PTX ISA, Release 8.1

Examples

.visible .global .b32 foo; ∕∕ foo will be externally visible

11.6.3. Linking Directives: .weak

.weak

Visible (externally) symbol declaration.

Syntax

.weak identifier

Description

Declares identifier to be globally visible butweak. Weak symbols are similar to globally visible symbols,
except during linking, weak symbols are only chosen after globally visible symbols during symbol res-
olution. Unlike globally visible symbols, multiple object files may declare the same weak symbol, and
references to a symbol get resolved against a weak symbol only if no global symbols have the same
name.

PTX ISA Notes

Introduced in PTX ISA version 3.1.

Target ISA Notes

Supported on all target architectures.

Examples

.weak .func (.reg .b32 val) foo; ∕∕ foo will be externally visible

11.6.4. Linking Directives: .common
.common

Visible (externally) symbol declaration.

Syntax

.common identifier

Description

Declares identifier to be globally visible but “common”.

Common symbols are similar to globally visible symbols. However multiple object files may declare the
same common symbol and they may have different types and sizes and references to a symbol get
resolved against a common symbol with the largest size.

Only one object file can initialize a common symbol and thatmust have the largest size among all other
definitions of that common symbol from different object files.

.common linking directive can be used only on variables with .global storage. It cannot be used on
function symbols or on symbols with opaque type.

11.6. Linking Directives 521

PTX ISA, Release 8.1

PTX ISA Notes

Introduced in PTX ISA version 5.0.

Target ISA Notes

.common directive requires sm_20 or higher.

Examples

.common .global .u32 gbl;

11.7. Cluster Dimension Directives

The following directives specify information about clusters:

▶ .reqnctapercluster

▶ .explicitcluster

▶ .maxclusterrank

The .reqnctapercluster directive specifies the number of CTAs in the cluster. The .
explicitcluster directive specifies that the kernel should be launched with explicit cluster details.
The .maxclusterrank directive specifies the maximum number of CTAs in the cluster.

The cluster dimension directives can be applied only on kernel functions.

11.7.1. Cluster Dimension Directives: .reqnctapercluster

.reqnctapercluster

Declare the number of CTAs in the cluster.

Syntax

.reqnctapercluster nx

.reqnctapercluster nx, ny

.reqnctapercluster nx, ny, nz

Description

Set the number of thread blocks (CTAs) in the cluster by specifying the extent of each dimension of
the 1D, 2D, or 3D cluster. The total number of CTAs is the product of the number of CTAs in each
dimension. For kernels with .reqnctapercluster directive specified, runtime will use the specified
values for configuring the launch if the same are not specified at launch time.

Semantics

If cluster dimension is explicitly specified at launch time, it should be equal to the values specified in
this directive. Specifying a different cluster dimension at launch will result in a runtime error or kernel
launch failure.

PTX ISA Notes

Introduced in PTX ISA version 7.8.

Target ISA Notes

522 Chapter 11. Directives

PTX ISA, Release 8.1

Requires sm_90 or higher.

Examples

.entry foo .reqnctapercluster 2 { . . . }

.entry bar .reqnctapercluster 2, 2, 1 { . . . }

.entry ker .reqnctapercluster 3, 2 { . . . }

11.7.2. Cluster Dimension Directives: .explicitcluster

.explicitcluster

Declare that Kernel must be launched with cluster dimensions explicitly specified.

Syntax

.explicitcluster

Description

Declares that this Kernel should be launched with cluster dimension explicitly specified.

Semantics

Kernels with .explicitcluster directive must be launched with cluster dimension explicitly speci-
fied (either at launch time or via .reqnctapercluster), otherwise programwill fail with runtime error
or kernel launch failure.

PTX ISA Notes

Introduced in PTX ISA version 7.8.

Target ISA Notes

Requires sm_90 or higher.

Examples

.entry foo .explicitcluster { . . . }

11.7.3. Cluster Dimension Directives: .maxclusterrank

.maxclusterrank

Declare the maximum number of CTAs that can be part of the cluster.

Syntax

.maxclusterrank n

Description

Declare the maximum number of thread blocks (CTAs) allowed to be part of the cluster.

Semantics

Product of the number of CTAs in each cluster dimension specified in any invocation of the kernel
is required to be less or equal to that specified in this directive. Otherwise invocation will result in a
runtime error or kernel launch failure.

11.7. Cluster Dimension Directives 523

PTX ISA, Release 8.1

The .maxclusterrank directive cannot be used in conjunction with the .reqnctapercluster di-
rective.

PTX ISA Notes

Introduced in PTX ISA version 7.8.

Target ISA Notes

Requires sm_90 or higher.

Examples

.entry foo ..maxclusterrank 8 { . . . }

524 Chapter 11. Directives

Chapter 12. Release Notes

This section describes the history of change in the PTX ISA and implementation. The first section
describes ISA and implementation changes in the current release of PTX ISA version 8.1, and the re-
maining sections provide a record of changes in previous releases of PTX ISA versions back to PTX ISA
version 2.0.

Table 31 shows the PTX release history.

Table 31: PTX Release History

PTX ISAVer-
sion

CUDA Release Supported Targets

PTX ISA 1.0 CUDA 1.0 sm_{10,11}

PTX ISA 1.1 CUDA 1.1 sm_{10,11}

PTX ISA 1.2 CUDA 2.0 sm_{10,11,12,13}

PTX ISA 1.3 CUDA 2.1 sm_{10,11,12,13}

PTX ISA 1.4 CUDA 2.2 sm_{10,11,12,13}

PTX ISA 1.5 driver r190 sm_{10,11,12,13}

PTX ISA 2.0 CUDA 3.0, driver r195 sm_{10,11,12,13}, sm_20

PTX ISA 2.1 CUDA 3.1, driver r256 sm_{10,11,12,13}, sm_20

PTX ISA 2.2 CUDA 3.2, driver r260 sm_{10,11,12,13}, sm_20

PTX ISA 2.3 CUDA 4.0, driver r270 sm_{10,11,12,13}, sm_20

PTX ISA 3.0 CUDA 4.1, driver r285 sm_{10,11,12,13}, sm_20

CUDA 4.2, driver r295 sm_{10,11,12,13}, sm_20, sm_30

PTX ISA 3.1 CUDA 5.0, driver r302 sm_{10,11,12,13}, sm_20, sm_{30,35}

PTX ISA 3.2 CUDA 5.5, driver r319 sm_{10,11,12,13}, sm_20, sm_{30,35}

PTX ISA 4.0 CUDA 6.0, driver r331 sm_{10,11,12,13}, sm_20, sm_{30,32,35}, sm_50

PTX ISA 4.1 CUDA 6.5, driver r340 sm_{10,11,12,13}, sm_20, sm_{30,32,35,37},
sm_{50,52}

PTX ISA 4.2 CUDA 7.0, driver r346 sm_{10,11,12,13}, sm_20, sm_{30,32,35,37},
sm_{50,52,53}

continues on next page

525

PTX ISA, Release 8.1

Table 31 – continued from previous page

PTX ISAVer-
sion

CUDA Release Supported Targets

PTX ISA 4.3 CUDA 7.5, driver r352 sm_{10,11,12,13}, sm_20, sm_{30,32,35,37},
sm_{50,52,53}

PTX ISA 5.0 CUDA 8.0, driver r361 sm_{10,11,12,13}, sm_20, sm_{30,32,35,37},
sm_{50,52,53}, sm_{60,61,62}

PTX ISA 6.0 CUDA 9.0, driver r384 sm_{10,11,12,13}, sm_20, sm_{30,32,35,37},
sm_{50,52,53}, sm_{60,61,62}, sm_70

PTX ISA 6.1 CUDA 9.1, driver r387 sm_{10,11,12,13}, sm_20, sm_{30,32,35,37},
sm_{50,52,53}, sm_{60,61,62}, sm_70, sm_72

PTX ISA 6.2 CUDA 9.2, driver r396 sm_{10,11,12,13}, sm_20, sm_{30,32,35,37},
sm_{50,52,53}, sm_{60,61,62}, sm_70, sm_72

PTX ISA 6.3 CUDA 10.0, driver r400 sm_{10,11,12,13}, sm_20, sm_{30,32,35,37},
sm_{50,52,53}, sm_{60,61,62}, sm_70, sm_72,
sm_75

PTX ISA 6.4 CUDA 10.1, driver r418 sm_{10,11,12,13}, sm_20, sm_{30,32,35,37},
sm_{50,52,53}, sm_{60,61,62}, sm_70, sm_72,
sm_75

PTX ISA 6.5 CUDA 10.2, driver r440 sm_{10,11,12,13}, sm_20, sm_{30,32,35,37},
sm_{50,52,53}, sm_{60,61,62}, sm_70, sm_72,
sm_75

PTX ISA 7.0 CUDA 11.0, driver r445 sm_{10,11,12,13}, sm_20, sm_{30,32,35,37},
sm_{50,52,53}, sm_{60,61,62}, sm_{70,72,75},
sm_80

PTX ISA 7.1 CUDA 11.1, driver r455 sm_{10,11,12,13}, sm_20, sm_{30,32,35,37},
sm_{50,52,53}, sm_{60,61,62}, sm_{70,72,75},
sm_{80,86}

PTX ISA 7.2 CUDA 11.2, driver r460 sm_{10,11,12,13}, sm_20, sm_{30,32,35,37},
sm_{50,52,53}, sm_{60,61,62}, sm_{70,72,75},
sm_{80,86}

PTX ISA 7.3 CUDA 11.3, driver r465 sm_{10,11,12,13}, sm_20, sm_{30,32,35,37},
sm_{50,52,53}, sm_{60,61,62}, sm_{70,72,75},
sm_{80,86}

PTX ISA 7.4 CUDA 11.4, driver r470 sm_{10,11,12,13}, sm_20, sm_{30,32,35,37},
sm_{50,52,53}, sm_{60,61,62}, sm_{70,72,75},
sm_{80,86,87}

PTX ISA 7.5 CUDA 11.5, driver r495 sm_{10,11,12,13}, sm_20, sm_{30,32,35,37},
sm_{50,52,53}, sm_{60,61,62}, sm_{70,72,75},
sm_{80,86,87}

PTX ISA 7.6 CUDA 11.6, driver r510 sm_{10,11,12,13}, sm_20, sm_{30,32,35,37},
sm_{50,52,53}, sm_{60,61,62}, sm_{70,72,75},
sm_{80,86,87}

continues on next page

526 Chapter 12. Release Notes

PTX ISA, Release 8.1

Table 31 – continued from previous page

PTX ISAVer-
sion

CUDA Release Supported Targets

PTX ISA 7.7 CUDA 11.7, driver r515 sm_{10,11,12,13}, sm_20, sm_{30,32,35,37},
sm_{50,52,53}, sm_{60,61,62}, sm_{70,72,75},
sm_{80,86,87}

PTX ISA 7.8 CUDA 11.8, driver r520 sm_{10,11,12,13}, sm_20, sm_{30,32,35,37},
sm_{50,52,53}, sm_{60,61,62}, sm_{70,72,75},
sm_{80,86,87,89}, sm_90

PTX ISA 8.0 CUDA 12.0, driver r525 sm_{10,11,12,13}, sm_20, sm_{30,32,35,37},
sm_{50,52,53}, sm_{60,61,62}, sm_{70,72,75},
sm_{80,86,87,89}, sm_{90,90a}

PTX ISA 8.1 CUDA 12.1, driver r530 sm_{10,11,12,13}, sm_20, sm_{30,32,35,37},
sm_{50,52,53}, sm_{60,61,62}, sm_{70,72,75},
sm_{80,86,87,89}, sm_{90,90a}

12.1. Changes in PTX ISA Version 8.1

New Features

PTX ISA version 8.1 introduces the following new features:

▶ Adds support for st.async and red.async instructions for asynchronous store and asyn-
chronous reduction operations respectively on shared memory.

▶ Adds support for .oobmodifier on half-precision fma instruction.

▶ Adds support for .satfinite saturationmodifer on cvt instruction for .f16, .bf16 and .tf32
formats.

▶ Extends support for cvt with .e4m3/.e5m2 to sm_89.

▶ Extends atom and red instructions to support vector types.

▶ Adds support for special register %aggr_smem_size.

▶ Extends sured instruction with 64-bit min/max operations.

▶ Adds support for increased kernel parameter size of 32764 bytes.

▶ Adds support for multimem addresses in memory consistency model.

▶ Adds support for multimem.ld_reduce, multimem.st and multimem.red instructions to per-
form memory operations on multimem addresses.

12.1. Changes in PTX ISA Version 8.1 527

PTX ISA, Release 8.1

12.2. Changes in PTX ISA Version 8.0

New Features

PTX ISA version 8.0 introduces the following new features:

▶ Adds support for target sm_90a that supports specialized accelerated features.

▶ Adds support for asynchronous warpgroup-level matrix multiply-and-accumulate operation wg-
mma.

▶ Extends the asynchronous copy operations with bulk operations that operate on large data, in-
cluding tensor data.

▶ Introduces packed integer types .u16x2 and .s16x2.

▶ Extends integer arithmetic instruction add to allow packed integer types .u16x2 and .s16x2.

▶ Extends integer arithmetic instructions min and max to allow packed integer types .u16x2 and
.s16x2, as well as saturation modifier .relu on .s16x2 and .s32 types.

▶ Adds support for special register %current_graph_exec that identifies the currently executing
CUDA device graph.

▶ Adds support for elect.sync instruction.

▶ Adds support for .unified attribute on functions and variables.

▶ Adds support for setmaxnreg instruction.

▶ Adds support for .sem qualifier on barrier.cluster instruction.

▶ Extends the fence instruction to allow opcode-specific synchronizaion using op_restrict
qualifier.

▶ Adds support for.cluster scope onmbarrier.arrive, mbarrier.arrive_drop, mbarrier.
test_wait and mbarrier.try_wait operations.

▶ Adds support for transaction count operations on mbarrier objects, specifiedwith .expect_tx
and .complete_tx qualifiers.

Semantic Changes and Clarifications

None.

12.3. Changes in PTX ISA Version 7.8

New Features

PTX ISA version 7.8 introduces the following new features:

▶ Adds support for sm_89 target architecture.

▶ Adds support for sm_90 target architecture.

▶ Extends bar and barrier instructions to accept optional scope qualifier .cta.

▶ Extends .shared state space qualifier with optional sub-qualifier ::cta.

▶ Adds support for movmatrix instruction which transposes a matrix in registers across a warp.

▶ Adds support for stmatrix instruction which stores one or more matrices to shared memory.

528 Chapter 12. Release Notes

PTX ISA, Release 8.1

▶ Extends the .f64 floating point type mma operation with shapes .m16n8k4, .m16n8k8, and .
m16n8k16.

▶ Extends add, sub, mul, set, setp, cvt, tanh, ex2, atom and red instructionswith bf16 alternate
floating point data format.

▶ Adds support for new alternate floating-point data formats .e4m3 and .e5m2.

▶ Extends cvt instruction to convert .e4m3 and .e5m2 alternate floating point data formats.

▶ Adds support for griddepcontrol instruction as a communication mechanism to control the
execution of dependent grids.

▶ Extends mbarrier instruction to allow a new phase completion check operation try_wait.

▶ Adds support for new thread scope .clusterwhich is a set of Cooperative Thread Arrays (CTAs).

▶ Extends fence/membar, ld, st, atom, and red instructions to accept .cluster scope.

▶ Adds support for extended visibility of shared state space to all threads within a cluster.

▶ Extends .shared state space qualifier with ::cluster sub-qualifier for cluster-level visibility of
shared memory.

▶ Extends isspacep, cvta, ld, st, atom, and red instructions to accept ::cluster sub-qualifier
with .shared state space qualifier.

▶ Adds support for mapa instruction to map a shared memory address to the corresponding ad-
dress in a different CTA within the cluster.

▶ Adds support for getctarank instruction to query the rank of the CTA that contains a given
address.

▶ Adds support for new barrier synchronization instruction barrier.cluster.

▶ Extends the memory consistency model to include the new cluster scope.

▶ Adds support for special registers related to cluster information: %is_explicit_cluster,
%clusterid, %nclusterid, %cluster_ctaid, %cluster_nctaid, %cluster_ctarank,
%cluster_nctarank.

▶ Adds support for cluster dimension directives .reqnctapercluster, .explicitcluster, and
.maxclusterrank.

Semantic Changes and Clarifications

None.

12.4. Changes in PTX ISA Version 7.7

New Features

PTX ISA version 7.7 introduces the following new features:

▶ Extends isspacep and cvta instructions to include the .param state space for kernel function
parameters.

Semantic Changes and Clarifications

None.

12.4. Changes in PTX ISA Version 7.7 529

PTX ISA, Release 8.1

12.5. Changes in PTX ISA Version 7.6

New Features

PTX ISA version 7.6 introduces the following new features:

▶ Support for szext instruction which performs sign-extension or zero-extension on a specified
value.

▶ Support for bmsk instructionwhich creates a bitmask of the specifiedwidth starting at the spec-
ified bit position.

▶ Support for special registers %reserved_smem_offset_begin, %re-
served_smem_offset_end, %reserved_smem_offset_cap, %reserved_smem_offset<2>.

Semantic Changes and Clarifications

None.

12.6. Changes in PTX ISA Version 7.5

New Features

PTX ISA version 7.5 introduces the following new features:

▶ Debug information enhancements to support label difference and negative values in the .
section debugging directive.

▶ Support for ignore-src operand on cp.async instruction.

▶ Extensions to the memory consistency model to introduce the following new concepts:

▶ Amemory proxy as an abstract label for different methods of memory access.

▶ Virtual aliases as distinct memory addresses accessing the same physical memory location.

▶ Support for new fence.proxy and membar.proxy instructions to allow synchronization of
memory accesses performed via virtual aliases.

Semantic Changes and Clarifications

None.

12.7. Changes in PTX ISA Version 7.4

New Features

PTX ISA version 7.4 introduces the following new features:

▶ Support for sm_87 target architecture.

▶ Support for .level::eviction_priority qualifier which allows specifying cache eviction pri-
ority hints on ld, ld.global.nc, st, and prefetch instructions.

▶ Support for .level::prefetch_size qualifier which allows specifying data prefetch hints on
ld and cp.async instructions.

530 Chapter 12. Release Notes

PTX ISA, Release 8.1

▶ Support for createpolicy instruction which allows construction of different types of cache
eviction policies.

▶ Support for .level::cache_hint qualifier which allows the use of cache eviction policies with
ld, ld.global.nc, st, atom, red and cp.async instructions.

▶ Support for applypriority and discard operations on cached data.

Semantic Changes and Clarifications

None.

12.8. Changes in PTX ISA Version 7.3

New Features

PTX ISA version 7.3 introduces the following new features:

▶ Extends mask() operator used in initializers to also support integer constant expression.

▶ Adds support for stackmanpulation instructions that allowmanipulating stack using stacksave
and stackrestore instructions and allocation of per-thread stack using alloca instruction.

Semantic Changes and Clarifications

The unimplemented version of alloca from the older PTX ISA specification has been replaced with
new stack manipulation instructions in PTX ISA version 7.3.

12.9. Changes in PTX ISA Version 7.2

New Features

PTX ISA version 7.2 introduces the following new features:

▶ Enhances .loc directive to represent inline function information.

▶ Adds support to define labels inside the debug sections.

▶ Extends min and max instructions to support .xorsign and .absmodifiers.

Semantic Changes and Clarifications

None.

12.10. Changes in PTX ISA Version 7.1

New Features

PTX ISA version 7.1 introduces the following new features:

▶ Support for sm_86 target architecture.

▶ Adds a newoperator, mask(), to extract a specific byte from variable’s address used in initializers.

12.8. Changes in PTX ISA Version 7.3 531

PTX ISA, Release 8.1

▶ Extends tex and tld4 instructions to return an optional predicate that indicates if data at spec-
ified coordinates is resident in memory.

▶ Extends single-bit wmma and mma instructions to support .and operation.

▶ Extends mma instruction to support .spmodifier that allows matrix multiply-accumulate opera-
tion when input matrix A is sparse.

▶ Extends mbarrier.test_wait instruction to test the completion of specific phase parity.

Semantic Changes and Clarifications

None.

12.11. Changes in PTX ISA Version 7.0

New Features

PTX ISA version 7.0 introduces the following new features:

▶ Support for sm_80 target architecture.

▶ Adds support for asynchronous copy instructions that allow copying of data asynchronously from
one state space to another.

▶ Adds support for mbarrier instructions that allow creation of mbarrier objects in memory and
use of these objects to synchronize threads and asynchronous copy operations initiated by
threads.

▶ Adds support for redux.sync instruction which allows reduction operation across threads in a
warp.

▶ Adds support for new alternate floating-point data formats .bf16 and .tf32.

▶ Extends wmma instruction to support .f64 type with shape .m8n8k4.

▶ Extends wmma instruction to support .bf16 data format.

▶ Extends wmma instruction to support .tf32 data format with shape .m16n16k8.

▶ Extends mma instruction to support .f64 type with shape .m8n8k4.

▶ Extends mma instruction to support .bf16 and .tf32 data formats with shape .m16n8k8.

▶ Extends mma instruction to support new shapes .m8n8k128, .m16n8k4, .m16n8k16, .m16n8k32,
.m16n8k64, .m16n8k128 and .m16n8k256.

▶ Extends abs and neg instructions to support .bf16 and .bf16x2 data formats.

▶ Extends min and max instructions to support .NaN modifier and .f16, .f16x2, .bf16 and .
bf16x2 data formats.

▶ Extends fma instruction to support .relu saturation mode and .bf16 and .bf16x2 data for-
mats.

▶ Extends cvt instruction to support .relu saturation mode and .f16, .f16x2, .bf16, .bf16x2
and .tf32 destination formats.

▶ Adds support for tanh instruction that computes hyperbolic-tangent.

▶ Extends ex2 instruction to support .f16 and .f16x2 types.

532 Chapter 12. Release Notes

PTX ISA, Release 8.1

Semantic Changes and Clarifications

None.

12.12. Changes in PTX ISA Version 6.5

New Features

PTX ISA version 6.5 introduces the following new features:

▶ Adds support for integer destination types for half precision comparison instruction set.

▶ Extends abs instruction to support .f16 and .f16x2 types.

▶ Adds support for cvt.pack instruction which allows converting two integer values and packing
the results together.

▶ Adds new shapes .m16n8k8, .m8n8k16 and .m8n8k32 on the mma instruction.

▶ Adds support for ldmatrix instruction which loads one or more matrices from shared memory
for mma instruction.

Removed Features

PTX ISA version 6.5 removes the following features:

▶ Support for .satfinite qualifier on floating point wmma.mma instruction has been removed.
This support was deprecated since PTX ISA version 6.4.

Semantic Changes and Clarifications

None.

12.13. Changes in PTX ISA Version 6.4

New Features

PTX ISA version 6.4 introduces the following new features:

▶ Adds support for .noreturn directive which can be used to indicate a function does not return
to it’s caller function.

▶ Adds support for mma instruction which allows performing matrix multiply-and-accumulate op-
eration.

Deprecated Features

PTX ISA version 6.4 deprecates the following features:

▶ Support for .satfinite qualifier on floating point wmma.mma instruction.

Removed Features

PTX ISA version 6.4 removes the following features:

▶ Support for shfl and vote instructions without the .sync qualifier has been removed for .
targetsm_70 and higher. This support was deprecated since PTX ISA version 6.0 as documented
in PTX ISA version 6.2.

12.12. Changes in PTX ISA Version 6.5 533

PTX ISA, Release 8.1

Semantic Changes and Clarifications

▶ Clarified that resolving references of a .weak symbol considers only .weak or .visible symbols
with the same name and does not consider local symbols with the same name.

▶ Clarified that in cvt instruction, modifier .ftz can only be specified when either .atype or .
dtype is .f32.

12.14. Changes in PTX ISA Version 6.3

New Features

PTX ISA version 6.3 introduces the following new features:

▶ Support for sm_75 target architecture.

▶ Adds support for a new instruction nanosleep that suspends a thread for a specified duration.

▶ Adds support for .alias directive which allows definining alias to function symbol.

▶ Extends atom instruction to perform .f16 addition operation and .cas.b16 operation.

▶ Extends red instruction to perform .f16 addition operation.

▶ The wmma instructions are extended to support multiplicandmatrices of type .s8, .u8, .s4, .u4,
.b1 and accumulator matrices of type .s32.

Semantic Changes and Clarifications

▶ Introduced the mandatory .aligned qualifier for all wmma instructions.

▶ Specified the alignment required for the base address and stride parameters passed to wmma.
load and wmma.store.

▶ Clarified that layout of fragment returned by wmma operation is architecture dependent and pass-
ing wmma fragments around functions compiled for different link compatible SM architectures
may not work as expected.

▶ Clarified that atomicity for {atom∕red}.f16x2} operations is guranteed separately for each of
the two .f16 elements but not guranteed to be atomic as single 32-bit access.

12.15. Changes in PTX ISA Version 6.2

New Features

PTX ISA version 6.2 introduces the following new features:

▶ A new instruction activemask for querying active threads in a warp.

▶ Extends atomic and reduction instructions to perform .f16x2 addition operation with manda-
tory .noftz qualifier.

Deprecated Features

PTX ISA version 6.2 deprecates the following features:

534 Chapter 12. Release Notes

PTX ISA, Release 8.1

▶ The use of shfl and vote instructionswithout the .sync is deprecated retrospectively fromPTX
ISA version 6.0, which introduced the sm_70 architecture that implements Independent Thread
Scheduling.

Semantic Changes and Clarifications

▶ Clarified that wmma instructions can be used in conditionally executed code only if it is known
that all threads in the warp evaluate the condition identically, otherwise behavior is undefined.

▶ In the memory consistency model, the definition of morally strong operations was updated to
exclude fences from the requirement of complete overlap since fences do not access memory.

12.16. Changes in PTX ISA Version 6.1

New Features

PTX ISA version 6.1 introduces the following new features:

▶ Support for sm_72 target architecture.

▶ Support for new matrix shapes 32x8x16 and 8x32x16 in wmma instruction.

Semantic Changes and Clarifications

None.

12.17. Changes in PTX ISA Version 6.0

New Features

PTX ISA version 6.0 introduces the following new features:

▶ Support for sm_70 target architecture.

▶ Specifies thememory consistencymodel for programs running on sm_70 and later architectures.

▶ Various extensions to memory instructions to specify memory synchronization semantics and
scopes at which such synchronization can be observed.

▶ New instruction wmma for matrix operations which allows loading matrices from memory, per-
forming multiply-and-accumulate on them and storing result in memory.

▶ Support for new barrier instruction.

▶ Extends neg instruction to support .f16 and .f16x2 types.

▶ A new instruction fns which allows finding n-th set bit in integer.

▶ A new instruction bar.warp.sync which allows synchronizing threads in warp.

▶ Extends vote and shfl instructions with .sync modifier which waits for specified threads be-
fore executing the vote and shfl operation respectively.

▶ A new instruction match.syncwhich allows broadcasting and comparing a value across threads
in warp.

▶ A new instruction brx.idx which allows branching to a label indexed from list of potential tar-
gets.

12.16. Changes in PTX ISA Version 6.1 535

PTX ISA, Release 8.1

▶ Support for unsized array parameter for .func which can be used to implement variadic func-
tions.

▶ Support for .b16 integer type in dwarf-lines.

▶ Support for taking address of device function return parameters using mov instruction.

Semantic Changes and Clarifications

▶ Semantics of bar instruction were updated to indicate that executing thread waits for other
non-exited threads from it’s warp.

▶ Support for indirect branch introduced in PTX 2.1 which was unimplemented has been removed
from the spec.

▶ Support for taking address of labels, using labels in initializers which was unimplemented has
been removed from the spec.

▶ Support for variadic functions which was unimplemented has been removed from the spec.

12.18. Changes in PTX ISA Version 5.0

New Features

PTX ISA version 5.0 introduces the following new features:

▶ Support for sm_60, sm_61, sm_62 target architecture.

▶ Extends atomic and reduction instructions to perform double-precision add operation.

▶ Extends atomic and reduction instructions to specify scopemodifier.

▶ A new .common directive to permit linking multiple object files containing declarations of the
same symbol with different size.

▶ A new dp4a instruction which allows 4-way dot product with accumulate operation.

▶ A new dp2a instruction which allows 2-way dot product with accumulate operation.

▶ Support for special register %clock_hi.

Semantic Changes and Clarifications

Semantics of cache modifiers on ld and st instructions were clarified to reflect cache operations are
treated as performance hint only and do not change memory consistency behavior of the program.

Semantics of volatile operations on ld and st instructions were clarified to reflect how volatile
operations are handled by optimizing compiler.

12.19. Changes in PTX ISA Version 4.3

New Features

PTX ISA version 4.3 introduces the following new features:

▶ A new lop3 instruction which allows arbitrary logical operation on 3 inputs.

▶ Adds support for 64-bit computations in extended precision arithmetic instructions.

536 Chapter 12. Release Notes

PTX ISA, Release 8.1

▶ Extends tex.grad instruction to support cube and acube geometries.

▶ Extends tld4 instruction to support a2d, cube and acube geometries.

▶ Extends tex and tld4 instructions to support optional operands for offset vector and depth
compare.

▶ Extends txq instruction to support querying texture fields from specific LOD.

Semantic Changes and Clarifications

None.

12.20. Changes in PTX ISA Version 4.2

New Features

PTX ISA version 4.2 introduces the following new features:

▶ Support for sm_53 target architecture.

▶ Support for arithmetic, comparsion and texture instructions for .f16 and .f16x2 types.

▶ Support for memory_layout field for surfaces and suq instruction support for querying this
field.

Semantic Changes and Clarifications

Semantics for parameter passing under ABI were updated to indicate ld.param and st.param in-
structions used for argument passing cannot be predicated.

Semantics of {atom∕red}.add.f32 were updated to indicate subnormal inputs and results are
flushed to sign-preserving zero for atomic operations on global memory; whereas atomic operations
on shared memory preserve subnormal inputs and results and don’t flush them to zero.

12.21. Changes in PTX ISA Version 4.1

New Features

PTX ISA version 4.1 introduces the following new features:

▶ Support for sm_37 and sm_52 target architectures.

▶ Support for new fields array_size, num_mipmap_levels and num_samples for Textures, and
the txq instruction support for querying these fields.

▶ Support for new field array_size for Surfaces, and the suq instruction support for querying
this field.

▶ Support for special registers %total_smem_size and %dynamic_smem_size.

Semantic Changes and Clarifications

None.

12.20. Changes in PTX ISA Version 4.2 537

PTX ISA, Release 8.1

12.22. Changes in PTX ISA Version 4.0

New Features

PTX ISA version 4.0 introduces the following new features:

▶ Support for sm_32 and sm_50 target architectures.

▶ Support for 64bit performance counter special registers %pm0_64,..,%pm7_64.

▶ A new istypep instruction.

▶ A new instruction, rsqrt.approx.ftz.f64 has been added to compute a fast approximation
of the square root reciprocal of a value.

▶ Support for a new directive .attribute for specifying special attributes of a variable.

▶ Support for .managed variable attribute.

Semantic Changes and Clarifications

The vote instruction semantics were updated to clearly indicate that an inactive thread in a warp
contributes a 0 for its entry when participating in vote.ballot.b32.

12.23. Changes in PTX ISA Version 3.2

New Features

PTX ISA version 3.2 introduces the following new features:

▶ The texture instruction supports reads from multi-sample and multisample array textures.

▶ Extends .section debugging directive to include label + immediate expressions.

▶ Extends .file directive to include timestamp and file size information.

Semantic Changes and Clarifications

The vavrg2 and vavrg4 instruction semantics were updated to indicate that instruction adds 1 only
if Va[i] + Vb[i] is non-negative, and that the addition result is shifted by 1 (rather than being divided by
2).

12.24. Changes in PTX ISA Version 3.1

New Features

PTX ISA version 3.1 introduces the following new features:

▶ Support for sm_35 target architecture.

▶ Support for CUDA Dynamic Parallelism, which enables a kernel to create and synchronize new
work.

▶ ld.global.nc for loading read-only global data though the non-coherent texture cache.

▶ A new funnel shift instruction, shf.

538 Chapter 12. Release Notes

PTX ISA, Release 8.1

▶ Extends atomic and reduction instructions to perform 64-bit {and, or, xor} operations, and
64-bit integer {min, max} operations.

▶ Adds support for mipmaps.

▶ Adds support for indirect access to textures and surfaces.

▶ Extends support for generic addressing to include the .const state space, and adds a new oper-
ator, generic(), to form a generic address for .global or .const variables used in initializers.

▶ A new .weak directive to permit linking multiple object files containing declarations of the same
symbol.

Semantic Changes and Clarifications

PTX 3.1 redefines the default addressing for global variables in initializers, from generic addresses to
offsets in the global state space. Legacy PTX code is treated as having an implicit generic() operator
for each global variable used in an initializer. PTX 3.1 code should either include explicit generic()
operators in initializers, use cvta.global to form generic addresses at runtime, or load from the
non-generic address using ld.global.

Instruction mad.f32 requires a rounding modifier for sm_20 and higher targets. However for PTX
ISA version 3.0 and earlier, ptxas does not enforce this requirement and mad.f32 silently defaults to
mad.rn.f32. For PTX ISA version 3.1, ptxas generates a warning and defaults to mad.rn.f32, and in
subsequent releases ptxas will enforce the requirement for PTX ISA version 3.2 and later.

12.25. Changes in PTX ISA Version 3.0

New Features

PTX ISA version 3.0 introduces the following new features:

▶ Support for sm_30 target architectures.

▶ SIMD video instructions.

▶ A new warp shuffle instruction.

▶ Instructions mad.cc and madc for efficient, extended-precision integer multiplication.

▶ Surface instructions with 3D and array geometries.

▶ The texture instruction supports reads from cubemap and cubemap array textures.

▶ Platformoption .target debug to declare that a PTXmodule contains DWARF debug information.

▶ pmevent.mask, for triggering multiple performance monitor events.

▶ Performance monitor counter special registers %pm4..%pm7.

Semantic Changes and Clarifications

Special register %gridid has been extended from 32-bits to 64-bits.

PTX ISA version 3.0 deprecates module-scoped .reg and .local variables when compiling to the
Application Binary Interface (ABI). When compiling without use of the ABI, module-scoped .reg and
.local variables are supported as before. When compiling legacy PTX code (ISA versions prior to 3.0)
containing module-scoped .reg or .local variables, the compiler silently disables use of the ABI.

The shfl instruction semantics were updated to clearly indicate that value of source operand a is
unpredictable for inactive and predicated-off threads within the warp.

12.25. Changes in PTX ISA Version 3.0 539

PTX ISA, Release 8.1

PTXmodules no longer allowduplicate.version directives. This featurewas unimplemented, so there
is no semantic change.

Unimplemented instructions suld.p and sust.p.{u32,s32,f32} have been removed.

12.26. Changes in PTX ISA Version 2.3

New Features

PTX 2.3 adds support for texture arrays. The texture array feature supports access to an array of 1D or
2D textures, where an integer indexes into the array of textures, and then one or two single-precision
floating point coordinates are used to address within the selected 1D or 2D texture.

PTX 2.3 adds a new directive, .address_size, for specifying the size of addresses.

Variables in .const and .global state spaces are initialized to zero by default.

Semantic Changes and Clarifications

The semantics of the .maxntid directive have been updated to match the current implementation.
Specifically, .maxntid only guarantees that the total number of threads in a thread block does not
exceed themaximum. Previously, the semantics indicated that the maximumwas enforced separately
in each dimension, which is not the case.

Bit field extract and insert instructions BFE and BFI now indicate that the len and pos operands are
restricted to the value range 0..255.

Unimplemented instructions {atom,red}.{min,max}.f32 have been removed.

12.27. Changes in PTX ISA Version 2.2

New Features

PTX 2.2 adds a new directive for specifying kernel parameter attributes; specifically, there is a new
directives for specifying that a kernel parameter is a pointer, for specifying to which state space the
parameter points, and for optionally specifying the alignment of the memory to which the parameter
points.

PTX 2.2 adds a new field named force_unnormalized_coords to the .samplerref opaque type.
This field is used in the independent texturing mode to override the normalized_coords field in
the texture header. This field is needed to support languages such as OpenCL, which represent the
property of normalized/unnormalized coordinates in the sampler header rather than in the texture
header.

PTX 2.2 deprecates explicit constant banks and supports a large, flat address space for the .const
state space. Legacy PTX that uses explicit constant banks is still supported.

PTX 2.2 adds a new tld4 instruction for loading a component (r, g, b, or a) from the four texels com-
pising the bilinear interpolation footprint of a given texture location. This instruction may be used to
compute higher-precision bilerp results in software, or for performing higher-bandwidth texture loads.

Semantic Changes and Clarifications

None.

540 Chapter 12. Release Notes

PTX ISA, Release 8.1

12.28. Changes in PTX ISA Version 2.1

New Features

The underlying, stack-based ABI is supported in PTX ISA version 2.1 for sm_2x targets.

Support for indirect calls has been implemented for sm_2x targets.

New directives, .branchtargets and .calltargets, have been added for specifying potential tar-
gets for indirect branches and indirect function calls. A .callprototype directive has been added
for declaring the type signatures for indirect function calls.

The names of .global and .const variables can now be specified in variable initializers to represent
their addresses.

A set of thirty-two driver-specific execution environment special registers has been added. These are
named %envreg0..%envreg31.

Textures and surfaces have new fields for channel data type and channel order, and the txq and suq
instructions support queries for these fields.

Directive .minnctapersm has replaced the .maxnctapersm directive.

Directive .reqntid has been added to allow specification of exact CTA dimensions.

A new instruction, rcp.approx.ftz.f64, has been added to compute a fast, gross approximate re-
ciprocal.

Semantic Changes and Clarifications

A warning is emitted if .minnctapersm is specified without also specifying .maxntid.

12.29. Changes in PTX ISA Version 2.0

New Features

Floating Point Extensions

This section describes the floating-point changes in PTX ISA version 2.0 for sm_20 targets. The goal
is to achieve IEEE 754 compliance wherever possible, while maximizing backward compatibility with
legacy PTX ISA version 1.x code and sm_1x targets.

The changes from PTX ISA version 1.x are as follows:

▶ Single-precision instructions support subnormal numbers by default for sm_20 targets. The .
ftzmodifier may be used to enforce backward compatibility with sm_1x.

▶ Single-precision add, sub, and mul now support .rm and .rp rounding modifiers for sm_20 tar-
gets.

▶ A single-precision fused multiply-add (fma) instruction has been added, with support for IEEE
754 compliant roundingmodifiers and support for subnormal numbers. The fma.f32 instruction
also supports .ftz and .satmodifiers. fma.f32 requires sm_20. The mad.f32 instruction has
been extendedwith roundingmodifiers so that it’s synonymouswith fma.f32 for sm_20 targets.
Both fma.f32 and mad.f32 require a rounding modifier for sm_20 targets.

▶ The mad.f32 instruction without rounding is retained so that compilers can generate code for
sm_1x targets. When code compiled for sm_1x is executed on sm_20 devices, mad.f32maps to
fma.rn.f32.

12.28. Changes in PTX ISA Version 2.1 541

PTX ISA, Release 8.1

▶ Single- and double-precision div, rcp, and sqrt with IEEE 754 compliant rounding have been
added. These are indicated by the use of a rounding modifier and require sm_20.

▶ Instructions testp and copysign have been added.

New Instructions

A load uniform instruction, ldu, has been added.

Surface instructions support additional .clampmodifiers, .clamp and .zero.

Instruction sust now supports formatted surface stores.

A count leading zeros instruction, clz, has been added.

A find leading non-sign bit instruction, bfind, has been added.

A bit reversal instruction, brev, has been added.

Bit field extract and insert instructions, bfe and bfi, have been added.

A population count instruction, popc, has been added.

A vote ballot instruction, vote.ballot.b32, has been added.

Instructions {atom,red}.add.f32 have been implemented.

Instructions {atom,red}.shared have been extended to handle 64-bit data types for sm_20 targets.

A system-level membar instruction, membar.sys, has been added.

The bar instruction has been extended as follows:

▶ A bar.arrive instruction has been added.

▶ Instructions bar.red.popc.u32 and bar.red.{and,or}.pred have been added.

▶ bar now supports optional thread count and register operands.

Scalar video instructions (includes prmt) have been added.

Instruction isspacep for querying whether a generic address falls within a specified state space win-
dow has been added.

Instruction cvta for converting global, local, and shared addresses to generic address and vice-versa
has been added.

Other New Features

Instructions ld, ldu, st, prefetch, prefetchu, isspacep, cvta, atom, and red now support generic
addressing.

New special registers %nwarpid, %nsmid, %clock64, %lanemask_{eq,le,lt,ge,gt} have been
added.

Cache operations have been added to instructions ld, st, suld, and sust, e.g., for prefetching to
specified level of memory hierarchy. Instructions prefetch and prefetchu have also been added.

The .maxnctapersm directive was deprecated and replaced with .minnctapersm to better match its
behavior and usage.

A new directive, .section, has been added to replace the @@DWARF syntax for passing DWARF-format
debugging information through PTX.

A new directive, .pragma nounroll, has been added to allow users to disable loop unrolling.

Semantic Changes and Clarifications

542 Chapter 12. Release Notes

PTX ISA, Release 8.1

The errata in cvt.ftz for PTX ISA versions 1.4 and earlier, where single-precision subnormal inputs
and results were not flushed to zero if either source or destination type size was 64-bits, has been
fixed. In PTX ISA version 1.5 and later, cvt.ftz (and cvt for .target sm_1x, where .ftz is implied)
instructions flush single-precision subnormal inputs and results to sign-preserving zero for all combi-
nations of floating-point instruction types. To maintain compatibility with legacy PTX code, if .version
is 1.4 or earlier, single-precision subnormal inputs and results are flushed to sign-preserving zero only
when neither source nor destination type size is 64-bits.

Components of special registers %tid, %ntid, %ctaid, and %nctaid have been extended from16-bits
to 32-bits. These registers now have type .v4.u32.

The number of samplers available in independent texturing mode was incorrectly listed as thirty-two
in PTX ISA version 1.5; the correct number is sixteen.

12.29. Changes in PTX ISA Version 2.0 543

PTX ISA, Release 8.1

544 Chapter 12. Release Notes

Chapter 13. Descriptions of .pragma
Strings

This section describes the .pragma strings defined by ptxas.

13.1. Pragma Strings: “nounroll”

“nounroll”

Disable loop unrolling in optimizing the backend compiler.

Syntax

.pragma "nounroll";

Description

The "nounroll" pragma is a directive to disable loop unrolling in the optimizing backend compiler.

The "nounroll" pragma is allowed at module, entry-function, and statement levels, with the follow-
ing meanings:

module scope disables unrolling for all loops in module, including loops preceding the .pragma.

entry-function scope disables unrolling for all loops in the entry function body.

statement-level pragma disables unrolling of the loop for which the current block is the loop header.

Note that in order to have the desired effect at statement level, the "nounroll" directivemust appear
before any instruction statements in the loop header basic block for the desired loop. The loop header
block is defined as the block that dominates all blocks in the loop body and is the target of the loop
backedge. Statement-level "nounroll" directives appearing outside of loop header blocks are silently
ignored.

PTX ISA Notes

Introduced in PTX ISA version 2.0.

Target ISA Notes

Requires sm_20 or higher. Ignored for sm_1x targets.

Examples

545

PTX ISA, Release 8.1

.entry foo (...)

.pragma "nounroll"; ∕∕ do not unroll any loop in this function
{
...
}

.func bar (...)
{
...
L1_head:

.pragma "nounroll"; ∕∕ do not unroll this loop

...
@p bra L1_end;
L1_body:

...
L1_continue:

bra L1_head;
L1_end:

...
}

546 Chapter 13. Descriptions of .pragma Strings

Chapter 14. Notices

14.1. Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a
certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no repre-
sentations or warranties, expressed or implied, as to the accuracy or completeness of the information
contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall
have no liability for the consequences or use of such information or for any infringement of patents
or other rights of third parties that may result from its use. This document is not a commitment to
develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any
other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that
such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the
time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by
authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA
product referenced in this document. No contractual obligations are formed either directly or indirectly
by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military,
aircraft, space, or life support equipment, nor in applicationswhere failure ormalfunction of theNVIDIA
product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or
applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIAmakes no representation or warranty that products based on this document will be suitable for
any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA.
It is customer’s sole responsibility to evaluate and determine the applicability of any information con-
tained in this document, ensure the product is suitable and fit for the application planned by customer,
and perform the necessary testing for the application in order to avoid a default of the application or
the product. Weaknesses in customer’s product designs may affect the quality and reliability of the
NVIDIA product andmay result in additional or different conditions and/or requirements beyond those
contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or prob-
lem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is
contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other
NVIDIA intellectual property right under this document. Information published by NVIDIA regarding
third-party products or services does not constitute a license from NVIDIA to use such products or

547

PTX ISA, Release 8.1

services or a warranty or endorsement thereof. Use of such information may require a license from a
third party under the patents or other intellectual property rights of the third party, or a license from
NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA
in writing, reproduced without alteration and in full compliance with all applicable export laws and
regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENTANDALLNVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE
BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WAR-
RANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENTWILL NVIDIA BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CON-
SEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARIS-
ING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCHDAMAGES. Notwithstanding any damages that customermight incur for any reasonwhatso-
ever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein
shall be limited in accordance with the Terms of Sale for the product.

14.2. OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

14.3. Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the
U.S. and other countries. Other company and product names may be trademarks of the respective
companies with which they are associated.

Copyright

©2007-2023, NVIDIA Corporation & Affiliates. All rights reserved

548 Chapter 14. Notices

	Introduction
	Scalable Data-Parallel Computing using GPUs
	Goals of PTX
	PTX ISA Version 8.1
	Document Structure

	Programming Model
	A Highly Multithreaded Coprocessor
	Thread Hierarchy
	Cooperative Thread Arrays
	Cluster of Cooperative Thread Arrays
	Grid of Clusters

	Memory Hierarchy

	PTX Machine Model
	A Set of SIMT Multiprocessors
	Independent Thread Scheduling
	On-chip Shared Memory

	Syntax
	Source Format
	Comments
	Statements
	Directive Statements
	Instruction Statements

	Identifiers
	Constants
	Integer Constants
	Floating-Point Constants
	Predicate Constants
	Constant Expressions
	Integer Constant Expression Evaluation
	Summary of Constant Expression Evaluation Rules

	State Spaces, Types, and Variables
	State Spaces
	Register State Space
	Special Register State Space
	Constant State Space
	Banked Constant State Space (deprecated)

	Global State Space
	Local State Space
	Parameter State Space
	Kernel Function Parameters
	Kernel Function Parameter Attributes
	Kernel Parameter Attribute: .ptr
	Device Function Parameters

	Shared State Space
	Texture State Space (deprecated)

	Types
	Fundamental Types
	Restricted Use of Sub-Word Sizes
	Alternate Floating-Point Data Formats
	Packed Data Types
	Packed Floating Point Data Types
	Packed Integer Data Types

	Texture Sampler and Surface Types
	Texture and Surface Properties
	Sampler Properties
	Channel Data Type and Channel Order Fields

	Variables
	Variable Declarations
	Vectors
	Array Declarations
	Initializers
	Alignment
	Parameterized Variable Names
	Variable Attributes
	Variable and Function Attribute Directive: .attribute

	Tensors
	Tensor Dimension, size and format
	Tensor Access Modes
	Tiled Mode
	Bounding Box
	Traversal-Stride
	Out of Boundary Access

	Im2col mode
	Bounding Box
	Traversal Stride
	Out of Boundary Access

	Interleave layout
	Swizzling Modes
	Tensor-map

	Instruction Operands
	Operand Type Information
	Source Operands
	Destination Operands
	Using Addresses, Arrays, and Vectors
	Addresses as Operands
	Generic Addressing

	Arrays as Operands
	Vectors as Operands
	Labels and Function Names as Operands

	Type Conversion
	Scalar Conversions
	Rounding Modifiers

	Operand Costs

	Abstracting the ABI
	Function Declarations and Definitions
	Changes from PTX ISA Version 1.x

	Variadic Functions
	Alloca

	Memory Consistency Model
	Scope and applicability of the model
	Limitations on atomicity at system scope

	Memory operations
	Overlap
	Aliases
	Multimem Addresses
	Memory Operations on Vector Data Types
	Memory Operations on Packed Data Types
	Initialization

	State spaces
	Operation types
	Scope
	Proxies
	Morally strong operations
	Conflict and Data-races
	Limitations on Mixed-size Data-races

	Release and Acquire Patterns
	Ordering of memory operations
	Program Order
	Asynchronous Operations

	Observation Order
	Fence-SC Order
	Memory synchronization
	Causality Order
	Coherence Order
	Communication Order

	Axioms
	Coherence
	Fence-SC
	Atomicity
	No Thin Air
	Sequential Consistency Per Location
	Causality

	Instruction Set
	Format and Semantics of Instruction Descriptions
	PTX Instructions
	Predicated Execution
	Comparisons
	Integer and Bit-Size Comparisons
	Floating Point Comparisons

	Manipulating Predicates

	Type Information for Instructions and Operands
	Operand Size Exceeding Instruction-Type Size

	Divergence of Threads in Control Constructs
	Semantics
	Machine-Specific Semantics of 16-bit Code

	Instructions
	Integer Arithmetic Instructions
	Integer Arithmetic Instructions: add
	Integer Arithmetic Instructions: sub
	Integer Arithmetic Instructions: mul
	Integer Arithmetic Instructions: mad
	Integer Arithmetic Instructions: mul24
	Integer Arithmetic Instructions: mad24
	Integer Arithmetic Instructions: sad
	Integer Arithmetic Instructions: div
	Integer Arithmetic Instructions: rem
	Integer Arithmetic Instructions: abs
	Integer Arithmetic Instructions: neg
	Integer Arithmetic Instructions: min
	Integer Arithmetic Instructions: max
	Integer Arithmetic Instructions: popc
	Integer Arithmetic Instructions: clz
	Integer Arithmetic Instructions: bfind
	Integer Arithmetic Instructions: fns
	Integer Arithmetic Instructions: brev
	Integer Arithmetic Instructions: bfe
	Integer Arithmetic Instructions: bfi
	Integer Arithmetic Instructions: szext
	Integer Arithmetic Instructions: bmsk
	Integer Arithmetic Instructions: dp4a
	Integer Arithmetic Instructions: dp2a

	Extended-Precision Integer Arithmetic Instructions
	Extended-Precision Arithmetic Instructions: add.cc
	Extended-Precision Arithmetic Instructions: addc
	Extended-Precision Arithmetic Instructions: sub.cc
	Extended-Precision Arithmetic Instructions: subc
	Extended-Precision Arithmetic Instructions: mad.cc
	Extended-Precision Arithmetic Instructions: madc

	Floating-Point Instructions
	Floating Point Instructions: testp
	Floating Point Instructions: copysign
	Floating Point Instructions: add
	Floating Point Instructions: sub
	Floating Point Instructions: mul
	Floating Point Instructions: fma
	Floating Point Instructions: mad
	Floating Point Instructions: div
	Floating Point Instructions: abs
	Floating Point Instructions: neg
	Floating Point Instructions: min
	Floating Point Instructions: max
	Floating Point Instructions: rcp
	Floating Point Instructions: rcp.approx.ftz.f64
	Floating Point Instructions: sqrt
	Floating Point Instructions: rsqrt
	Floating Point Instructions: rsqrt.approx.ftz.f64
	Floating Point Instructions: sin
	Floating Point Instructions: cos
	Floating Point Instructions: lg2
	Floating Point Instructions: ex2
	Floating Point Instructions: tanh

	Half Precision Floating-Point Instructions
	Half Precision Floating Point Instructions: add
	Half Precision Floating Point Instructions: sub
	Half Precision Floating Point Instructions: mul
	Half Precision Floating Point Instructions: fma
	Half Precision Floating Point Instructions: neg
	Half Precision Floating Point Instructions: abs
	Half Precision Floating Point Instructions: min
	Half Precision Floating Point Instructions: max
	Half Precision Floating Point Instructions: tanh
	Half Precision Floating Point Instructions: ex2

	Comparison and Selection Instructions
	Comparison and Selection Instructions: set
	Comparison and Selection Instructions: setp
	Comparison and Selection Instructions: selp
	Comparison and Selection Instructions: slct

	Half Precision Comparison Instructions
	Half Precision Comparison Instructions: set
	Half Precision Comparison Instructions: setp

	Logic and Shift Instructions
	Logic and Shift Instructions: and
	Logic and Shift Instructions: or
	Logic and Shift Instructions: xor
	Logic and Shift Instructions: not
	Logic and Shift Instructions: cnot
	Logic and Shift Instructions: lop3
	Logic and Shift Instructions: shf
	Logic and Shift Instructions: shl
	Logic and Shift Instructions: shr

	Data Movement and Conversion Instructions
	Cache Operators
	Cache Eviction Priority Hints
	Data Movement and Conversion Instructions: mov
	Data Movement and Conversion Instructions: mov
	Data Movement and Conversion Instructions: shfl (deprecated)
	Data Movement and Conversion Instructions: shfl.sync
	Data Movement and Conversion Instructions: prmt
	Data Movement and Conversion Instructions: ld
	Data Movement and Conversion Instructions: ld.global.nc
	Data Movement and Conversion Instructions: ldu
	Data Movement and Conversion Instructions: st
	Data Movement and Conversion Instructions: st.async
	Data Movement and Conversion Instructions: multimem.ld_reduce, multimem.st, multimem.red
	Data Movement and Conversion Instructions: prefetch, prefetchu
	Data Movement and Conversion Instructions: applypriority
	Data Movement and Conversion Instructions: discard
	Data Movement and Conversion Instructions: createpolicy
	Data Movement and Conversion Instructions: isspacep
	Data Movement and Conversion Instructions: cvta
	Data Movement and Conversion Instructions: cvt
	Data Movement and Conversion Instructions: cvt.pack
	Data Movement and Conversion Instructions: mapa
	Data Movement and Conversion Instructions: getctarank
	Data Movement and Conversion Instructions: Asynchronous copy
	Completion Mechanisms for Asynchronous Copy Operations
	Async Proxy
	Data Movement and Conversion Instructions: cp.async
	Data Movement and Conversion Instructions: cp.async.commit_group
	Data Movement and Conversion Instructions: cp.async.wait_group / cp.async.wait_all
	Data Movement and Conversion Instructions: cp.async.bulk
	Data Movement and Conversion Instructions: cp.reduce.async.bulk
	Data Movement and Conversion Instructions: cp.async.bulk.prefetch
	Data Movement and Conversion Instructions: cp.async.bulk.tensor
	Data Movement and Conversion Instructions: cp.reduce.async.bulk.tensor
	Data Movement and Conversion Instructions: cp.async.bulk.prefetch.tensor
	Data Movement and Conversion Instructions: cp.async.bulk.commit_group
	Data Movement and Conversion Instructions: cp.async.bulk.wait_group

	Texture Instructions
	Texturing Modes
	Mipmaps
	Texture Instructions: tex
	Texture Instructions: tld4
	Texture Instructions: txq
	Texture Instructions: istypep

	Surface Instructions
	Surface Instructions: suld
	Surface Instructions: sust
	Surface Instructions: sured
	Surface Instructions: suq

	Control Flow Instructions
	Control Flow Instructions: {}
	Control Flow Instructions: @
	Control Flow Instructions: bra
	Control Flow Instructions: brx.idx
	Control Flow Instructions: call
	Control Flow Instructions: ret
	Control Flow Instructions: exit

	Parallel Synchronization and Communication Instructions
	Parallel Synchronization and Communication Instructions: bar, barrier
	Parallel Synchronization and Communication Instructions: bar.warp.sync
	Parallel Synchronization and Communication Instructions: barrier.cluster
	Parallel Synchronization and Communication Instructions: membar/fence
	Parallel Synchronization and Communication Instructions: atom
	Parallel Synchronization and Communication Instructions: red
	Parallel Synchronization and Communication Instructions: red.async
	Parallel Synchronization and Communication Instructions: vote (deprecated)
	Parallel Synchronization and Communication Instructions: vote.sync
	Parallel Synchronization and Communication Instructions: match.sync
	Parallel Synchronization and Communication Instructions: activemask
	Parallel Synchronization and Communication Instructions: redux.sync
	Parallel Synchronization and Communication Instructions: griddepcontrol
	Parallel Synchronization and Communication Instructions: elect.sync
	Parallel Synchronization and Communication Instructions: mbarrier
	Size and alignment of mbarrier object
	Contents of the mbarrier object
	Lifecycle of the mbarrier object
	Phase of the mbarrier object
	Tracking asynchronous operations by the mbarrier object
	expect-tx operation
	complete-tx operation

	Phase Completion of the mbarrier object
	Arrive-on operation on mbarrier object
	mbarrier support with shared memory
	Parallel Synchronization and Communication Instructions: mbarrier.init
	Parallel Synchronization and Communication Instructions: mbarrier.inval
	Parallel Synchronization and Communication Instructions: mbarrier.expect_tx
	Parallel Synchronization and Communication Instructions: mbarrier.complete_tx
	Parallel Synchronization and Communication Instructions: mbarrier.arrive
	Parallel Synchronization and Communication Instructions: mbarrier.arrive_drop
	Parallel Synchronization and Communication Instructions: cp.async.mbarrier.arrive
	Parallel Synchronization and Communication Instructions: mbarrier.test_wait/mbarrier.try_wait
	Parallel Synchronization and Communication Instructions: mbarrier.pending_count

	Warp Level Matrix Multiply-Accumulate Instructions
	Matrix Shape
	Matrix Data-types
	Matrix multiply-accumulate operation using wmma instructions
	Matrix Fragments for WMMA
	Matrix Storage for WMMA
	Warp-level Matrix Load Instruction: wmma.load
	Warp-level Matrix Store Instruction: wmma.store
	Warp-level Matrix Multiply-and-Accumulate Instruction: wmma.mma

	Matrix multiply-accumulate operation using mma instruction
	Matrix Fragments for mma.m8n8k4 with .f16 floating point type
	Matrix Fragments for mma.m8n8k4 with .f64 floating point type
	Matrix Fragments for mma.m8n8k16
	Matrix Fragments for mma.m8n8k32
	Matrix Fragments for mma.m8n8k128
	Matrix Fragments for mma.m16n8k4
	Matrix Fragments for mma.m16n8k8
	Matrix Fragments for mma.m16n8k16 with floating point type
	Matrix Fragments for mma.m16n8k16 with integer type
	Matrix Fragments for mma.m16n8k32
	Matrix Fragments for mma.m16n8k64
	Matrix Fragments for mma.m16n8k128
	Matrix Fragments for mma.m16n8k256
	Multiply-and-Accumulate Instruction: mma
	Warp-level matrix load instruction: ldmatrix
	Warp-level matrix store instruction: stmatrix
	Warp-level matrix transpose instruction: movmatrix

	Matrix multiply-accumulate operation using mma.sp instruction with sparse matrix A
	Sparse matrix storage
	Matrix fragments for multiply-accumulate operation with sparse matrix A
	Matrix Fragments for sparse mma.m16n8k16 with .f16 and .bf16 types
	Matrix Fragments for sparse mma.m16n8k32 with .f16 and .bf16 types
	Matrix Fragments for sparse mma.m16n8k16 with .tf32 floating point type
	Matrix Fragments for sparse mma.m16n8k8 with .tf32 floating point type
	Matrix Fragments for sparse mma.m16n8k32 with .u8/.s8 integer type
	Matrix Fragments for sparse mma.m16n8k64 with .u8/.s8 integer type
	Matrix Fragments for sparse mma.m16n8k64 with .u4/.s4 integer type
	Matrix Fragments for sparse mma.m16n8k128 with .u4/.s4 integer type

	Multiply-and-Accumulate Instruction: mma.sp

	Asynchronous Warpgroup Level Matrix Multiply-Accumulate Instructions
	Warpgroup
	Matrix Shape
	Matrix Data-types
	Register Fragments and Shared Memory Matrix Layouts
	Register Fragments
	Matrix Fragments for wgmma.mma_async.m64nNk16
	Matrix Fragments for wgmma.mma_async.m64nNk8
	Matrix Fragments for wgmma.mma_async.m64nNk32
	Matrix Fragments for wgmma.mma_async.m64nNk256

	Shared Memory Matrix Layout
	Shared Memory Layout for wgmma.mma_async.m64nNk16
	Shared Memory Layout for wgmma.mma_async.m64nNk8
	Shared Memory Layout for wgmma.mma_async.m64nNk32
	Shared Memory Layout for wgmma.mma_async.m64nNk256
	Strides
	Swizzling Modes
	Matrix Descriptor Format

	Async Proxy
	Asynchronous Multiply-and-Accumulate Instruction: wgmma.mma_async
	Asynchronous Multiply-and-Accumulate Instruction: wgmma.fence
	Asynchronous Multiply-and-Accumulate Instruction: wgmma.commit_group
	Asynchronous Multiply-and-Accumulate Instruction: wgmma.wait_group

	Stack Manipulation Instructions
	Stack Manipulation Instructions: stacksave
	Stack Manipulation Instructions: stackrestore
	Stack Manipulation Instructions: alloca

	Video Instructions
	Scalar Video Instructions
	Scalar Video Instructions: vadd, vsub, vabsdiff, vmin, vmax
	Scalar Video Instructions: vshl, vshr
	Scalar Video Instructions: vmad
	Scalar Video Instructions: vset

	SIMD Video Instructions
	SIMD Video Instructions: vadd2, vsub2, vavrg2, vabsdiff2, vmin2, vmax2
	SIMD Video Instructions: vset2
	SIMD Video Instructions: vadd4, vsub4, vavrg4, vabsdiff4, vmin4, vmax4
	SIMD Video Instructions: vset4

	Miscellaneous Instructions
	Miscellaneous Instructions: brkpt
	Miscellaneous Instructions: nanosleep
	Miscellaneous Instructions: pmevent
	Miscellaneous Instructions: trap
	Miscellaneous Instructions: setmaxnreg

	Special Registers
	Special Registers: %tid
	Special Registers: %ntid
	Special Registers: %laneid
	Special Registers: %warpid
	Special Registers: %nwarpid
	Special Registers: %ctaid
	Special Registers: %nctaid
	Special Registers: %smid
	Special Registers: %nsmid
	Special Registers: %gridid
	Special Registers: %is_explicit_cluster
	Special Registers: %clusterid
	Special Registers: %nclusterid
	Special Registers: %cluster_ctaid
	Special Registers: %cluster_nctaid
	Special Registers: %cluster_ctarank
	Special Registers: %cluster_nctarank
	Special Registers: %lanemask_eq
	Special Registers: %lanemask_le
	Special Registers: %lanemask_lt
	Special Registers: %lanemask_ge
	Special Registers: %lanemask_gt
	Special Registers: %clock, %clock_hi
	Special Registers: %clock64
	Special Registers: %pm0..%pm7
	Special Registers: %pm0_64..%pm7_64
	Special Registers: %envreg<32>
	Special Registers: %globaltimer, %globaltimer_lo, %globaltimer_hi
	Special Registers: %reserved_smem_offset_begin, %reserved_smem_offset_end, %reserved_smem_offset_cap, %reserved_smem_offset_<2>
	Special Registers: %total_smem_size
	Special Registers: %aggr_smem_size
	Special Registers: %dynamic_smem_size
	Special Registers: %current_graph_exec

	Directives
	PTX Module Directives
	PTX Module Directives: .version
	PTX Module Directives: .target
	PTX Module Directives: .address_size

	Specifying Kernel Entry Points and Functions
	Kernel and Function Directives: .entry
	Kernel and Function Directives: .func
	Kernel and Function Directives: .alias

	Control Flow Directives
	Control Flow Directives: .branchtargets
	Control Flow Directives: .calltargets
	Control Flow Directives: .callprototype

	Performance-Tuning Directives
	Performance-Tuning Directives: .maxnreg
	Performance-Tuning Directives: .maxntid
	Performance-Tuning Directives: .reqntid
	Performance-Tuning Directives: .minnctapersm
	Performance-Tuning Directives: .maxnctapersm (deprecated)
	Performance-Tuning Directives: .noreturn
	Performance-Tuning Directives: .pragma

	Debugging Directives
	Debugging Directives: @@dwarf
	Debugging Directives: .section
	Debugging Directives: .file
	Debugging Directives: .loc

	Linking Directives
	Linking Directives: .extern
	Linking Directives: .visible
	Linking Directives: .weak
	Linking Directives: .common

	Cluster Dimension Directives
	Cluster Dimension Directives: .reqnctapercluster
	Cluster Dimension Directives: .explicitcluster
	Cluster Dimension Directives: .maxclusterrank

	Release Notes
	Changes in PTX ISA Version 8.1
	Changes in PTX ISA Version 8.0
	Changes in PTX ISA Version 7.8
	Changes in PTX ISA Version 7.7
	Changes in PTX ISA Version 7.6
	Changes in PTX ISA Version 7.5
	Changes in PTX ISA Version 7.4
	Changes in PTX ISA Version 7.3
	Changes in PTX ISA Version 7.2
	Changes in PTX ISA Version 7.1
	Changes in PTX ISA Version 7.0
	Changes in PTX ISA Version 6.5
	Changes in PTX ISA Version 6.4
	Changes in PTX ISA Version 6.3
	Changes in PTX ISA Version 6.2
	Changes in PTX ISA Version 6.1
	Changes in PTX ISA Version 6.0
	Changes in PTX ISA Version 5.0
	Changes in PTX ISA Version 4.3
	Changes in PTX ISA Version 4.2
	Changes in PTX ISA Version 4.1
	Changes in PTX ISA Version 4.0
	Changes in PTX ISA Version 3.2
	Changes in PTX ISA Version 3.1
	Changes in PTX ISA Version 3.0
	Changes in PTX ISA Version 2.3
	Changes in PTX ISA Version 2.2
	Changes in PTX ISA Version 2.1
	Changes in PTX ISA Version 2.0

	Descriptions of .pragma Strings
	Pragma Strings: “nounroll”

	Notices
	Notice
	OpenCL
	Trademarks

