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Chapter 1. Introduction

This document describes PTX, a low-level parallel thread execution virtual machine and instruction set
architecture (ISA). PTX exposes the GPU as a data-parallel computing device.

Driven by the insatiable market demand for real-time, high-definition 3D graphics, the programmable
GPU has evolved into a highly parallel, multithreaded, many-core processor with tremendous compu-
tational horsepower and very high memory bandwidth. The GPU is especially well-suited to address
problems that can be expressed as data-parallel computations - the same program is executed on
many data elements in parallel - with high arithmetic intensity - the ratio of arithmetic operations to
memory operations. Because the same program is executed for each data element, there is a lower
requirement for sophisticated flow control; and because it is executed on many data elements and has
high arithmetic intensity, the memory access latency can be hidden with calculations instead of big
data caches.

Data-parallel processing maps data elements to parallel processing threads. Many applications that
process large data sets can use a data-parallel programming model to speed up the computations.
In 3D rendering large sets of pixels and vertices are mapped to parallel threads. Similarly, image and
media processing applications such as post-processing of rendered images, video encoding and de-
coding, image scaling, stereo vision, and pattern recognition can map image blocks and pixels to par-
allel processing threads. In fact, many algorithms outside the field of image rendering and processing
are accelerated by data-parallel processing, from general signal processing or physics simulation to
computational finance or computational biology.

PTX defines a virtual machine and ISA for general purpose parallel thread execution. PTX programs
are translated at install time to the target hardware instruction set. The PTX-to-GPU translator and
driver enable NVIDIA GPUs to be used as programmable parallel computers.
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PTX provides a stable programming model and instruction set for general purpose parallel program-
ming. It is designed to be efficient on NVIDIA GPUs supporting the computation features defined by
the NVIDIA Tesla architecture. High level language compilers for languages such as CUDA and C/C++
generate PTX instructions, which are optimized for and translated to native target-architecture in-
structions.

The goals for PTX include the following:
Provide a stable ISA that spans multiple GPU generations.
Achieve performance in compiled applications comparable to native GPU performance.
Provide a machine-independent ISA for C/C++ and other compilers to target.
Provide a code distribution ISA for application and middleware developers.

Provide a common source-level ISA for optimizing code generators and translators, which map
PTX to specific target machines.

Facilitate hand-coding of libraries, performance kernels, and architecture tests.

Provide a scalable programming model that spans GPU sizes from a single unit to many parallel
units.

PTX ISA version 8.1 introduces the following new features:

Adds support for st.async and red.async instructions for asynchronous store and asyn-
chronous reduction operations respectively on shared memory.

Adds support for .oob modifier on half-precision fma instruction.

Adds support for . satfinite saturation modifer on cvt instruction for .f16, .bf16 and .tf32
formats.

Extends support for cvt with .e4m3/.e5m2 to sm_89.

Extends atom and red instructions to support vector types.

Adds support for special register %aggr_smem_size.

Extends sured instruction with 64-bit min/max operations.

Adds support for increased kernel parameter size of 32764 bytes.
Adds support for multimem addresses in memory consistency model.

Adds support formultimem.ld_reduce,multimem.st and multimem. red instructions to per-
form memory operations on multimem addresses.

6 Chapter 1. Introduction
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1.4. Document Structure

The information in this document is organized into the following Chapters:
» Programming Model outlines the programming model.
PTX Machine Model gives an overview of the PTX virtual machine model.
Syntax describes the basic syntax of the PTX language.
State Spaces, Types, and Variables describes state spaces, types, and variable declarations.

Instruction Operands describes instruction operands.

vV v v v Y

Abstracting the ABI describes the function and call syntax, calling convention, and PTX support
for abstracting the Application Binary Interface (ABI).

Instruction Set describes the instruction set.

Special Registers lists special registers.

vV vy

Directives lists the assembly directives supported in PTX.
» Release Notes provides release notes for PTX ISA versions 2.x and beyond.
References
» 754-2008 IEEE Standard for Floating-Point Arithmetic. ISBN 978-0-7381-5752-8, 2008.
http://ieeexplore.ieee.org/serviet/opac?punumber=4610933
» The OpenCL Specification, Version: 1.1, Document Revision: 44, June 1, 2011.
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
» CUDA Dynamic Parallelism Programming Guide.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#
cuda-dynamic-parallelism

» PTX Writers Guide to Interoperability.

https://docs.nvidia.com/cuda/ptx-writers-guide-to-interoperability/index.html
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Chapter 2. Programming Model

The GPU is a compute device capable of executing a very large number of threads in parallel. It operates
as a coprocessor to the main CPU, or host: In other words, data-parallel, compute-intensive portions
of applications running on the host are off-loaded onto the device.

More precisely, a portion of an application that is executed many times, but independently on different
data, can be isolated into a kernel function that is executed on the GPU as many different threads. To
that effect, such a function is compiled to the PTX instruction set and the resulting kernel is translated
at install time to the target GPU instruction set.

The batch of threads that executes a kernel is organized as a grid. A grid consists of either cooperative
thread arrays or clusters of cooperative thread arrays as described in this section and illustrated in

and . Cooperative thread arrays (CTAs) implement CUDA thread blocks and clusters
implement CUDA thread block clusters.

The Parallel Thread Execution (PTX) programming model is explicitly parallel: a PTX program specifies
the execution of a given thread of a parallel thread array. A cooperative thread array, or CTA, is an array
of threads that execute a kernel concurrently or in parallel.

Threads within a CTA can communicate with each other. To coordinate the communication of the
threads within the CTA, one can specify synchronization points where threads wait until all threads in
the CTA have arrived.

Each thread has a unique thread identifier within the CTA. Programs use a data parallel decomposi-
tion to partition inputs, work, and results across the threads of the CTA. Each CTA thread uses its
thread identifier to determine its assigned role, assign specific input and output positions, compute
addresses, and select work to perform. The thread identifier is a three-element vector tid, (with ele-
ments tid.x, tid.y, and tid. z) that specifies the thread’s position within a 1D, 2D, or 3D CTA. Each
thread identifier component ranges from zero up to the number of thread ids in that CTA dimension.

Each CTA has a 1D, 2D, or 3D shape specified by a three-element vector ntid (with elements ntid. x,
ntid.y, and ntid.z). The vector ntid specifies the number of threads in each CTA dimension.
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Threads within a CTA execute in SIMT (single-instruction, multiple-thread) fashion in groups called
warps. A warp is a maximal subset of threads from a single CTA, such that the threads execute the
same instructions at the same time. Threads within a warp are sequentially numbered. The warp size
is a machine-dependent constant. Typically, a warp has 32 threads. Some applications may be able
to maximize performance with knowledge of the warp size, so PTX includes a run-time immediate
constant, WARP_SZ, which may be used in any instruction where an immediate operand is allowed.

Cluster is a group of CTAs that run concurrently or in parallel and can synchronize and communicate
with each other via shared memory. The executing CTA has to make sure that the shared memory of
the peer CTA exists before communicating with it via shared memory.

Threads within the different CTAs in a cluster can synchronize and communicate with each other via
shared memory. Cluster-wide barriers can be used to synchronize all the threads within the cluster.
Each CTA in a cluster has a unique CTA identifier within its cluster (cluster_ctaid). Each cluster of
CTAs has 1D, 2D or 3D shape specified by the parameter cluster_nctaid. Each CTA in the cluster also
has a unique CTA identifier (cluster_ctarank) across all dimensions. The total number of CTAs across
all the dimensions in the cluster is specified by cluster_nctarank. Threads may read and use these
values through predefined, read-only special registers %cluster_ctaid, %cluster_nctaid, %clus-
ter_ctarank, %cluster_nctarank.

Cluster level is applicable only on target architecture sm_90 or higher. Specifying cluster level during
launch time is optional. If the user specifies the cluster dimensions at launch time then it will be
treated as explicit cluster launch, otherwise it will be treated as implicit cluster launch with default
dimension 1x1x1. PTX provides read-only special register %is_explicit_cluster to differentiate
between explicit and implicit cluster launch.

There is a maximum number of threads that a CTA can contain and a maximum number of CTAs that
a cluster can contain. However, clusters with CTAs that execute the same kernel can be batched to-
gether into a grid of clusters, so that the total number of threads that can be launched in a single
kernel invocation is very large. This comes at the expense of reduced thread communication and syn-
chronization, because threads in different clusters cannot communicate and synchronize with each
other.

Each cluster has a unique cluster identifier (clusterid) within a grid of clusters. Each grid of clusters
hasa 1D, 2D, or 3D shape specified by the parameter nclusterid. Each grid also has a unique temporal
grid identifier (gridid). Threads may read and use these values through predefined, read-only special
registers %tid, %ntid, %clusterid, %nclusterid, and %gridid.

Each CTA has a unique identifier (ctaid) within a grid. Each grid of CTAs has 1D, 2D, or 3D shape
specified by the parameter nctaid. Thread may use and read these values through predefined, read-
only special registers %ctaid and %nctaid.

Each kernel is executed as a batch of threads organized as a grid of clusters consisting of CTAs where
cluster is optional level and is applicable only for target architectures sm_90 and higher. shows
a grid consisting of CTAs and shows a grid consisting of clusters.

Grids may be launched with dependencies between one another - a grid may be a dependent grid
and/or a prerequisite grid. To understand how grid dependencies may be defined, refer to the section
on CUDA Graphs in the Cuda Programming Guide.
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Figure 1: Grid with CTAs

Grid with Clusters

Figure 2: Grid with clusters
A cluster is a set of cooperative thread arrays (CTAs) where a CTA is a set of concurrent threads that execute the
same kernel program. A grid is a set of clusters consisting of CTAs that execute independently.

2.2. Thread Hierarchy 11
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PTX threads may access data from multiple state spaces during their execution as illustrated by

where cluster level is introduced from target architecture sm_90 onwards. Each thread has a private
local memory. Each thread block (CTA) has a shared memory visible to all threads of the block and to
all active blocks in the cluster and with the same lifetime as the block. Finally, all threads have access
to the same global memory.

There are additional state spaces accessible by all threads: the constant, param, texture, and surface
state spaces. Constant and texture memory are read-only; surface memory is readable and writable.
The global, constant, param, texture, and surface state spaces are optimized for different memory
usages. For example, texture memory offers different addressing modes as well as data filtering for
specific data formats. Note that texture and surface memory is cached, and within the same kernel
call, the cache is not kept coherent with respect to global memory writes and surface memory writes,
so any texture fetch or surface read to an address that has been written to via a global or a surface
write in the same kernel call returns undefined data. In other words, a thread can safely read some
texture or surface memory location only if this memory location has been updated by a previous kernel
call or memory copy, but not if it has been previously updated by the same thread or another thread
from the same kernel call.

The global, constant, and texture state spaces are persistent across kernel launches by the same
application.

Both the host and the device maintain their own local memory, referred to as host memory and device
memory, respectively. The device memory may be mapped and read or written by the host, or, for more
efficient transfer, copied from the host memory through optimized API calls that utilize the device’s
high-performance Direct Memory Access (DMA) engine.

12 Chapter 2. Programming Model
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CTA
-

Grid with Clusters

R

Figure 3: Memory Hierarchy

2.3. Memory Hierarchy 13
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Chapter 3. PTX Machine Model

The NVIDIA GPU architecture is built around a scalable array of multithreaded Streaming Multiproces-
sors (SMs). When a host program invokes a kernel grid, the blocks of the grid are enumerated and
distributed to multiprocessors with available execution capacity. The threads of a thread block exe-
cute concurrently on one multiprocessor. As thread blocks terminate, new blocks are launched on the
vacated multiprocessors.

A multiprocessor consists of multiple Scalar Processor (SP) cores, a multithreaded instruction unit,
and on-chip shared memory. The multiprocessor creates, manages, and executes concurrent threads
in hardware with zero scheduling overhead. It implements a single-instruction barrier synchroniza-
tion. Fast barrier synchronization together with lightweight thread creation and zero-overhead thread
scheduling efficiently support very fine-grained parallelism, allowing, for example, a low granularity
decomposition of problems by assigning one thread to each data element (such as a pixel in an image,
a voxel in a volume, a cell in a grid-based computation).

To manage hundreds of threads running several different programs, the multiprocessor employs an
architecture we call SIMT (single-instruction, multiple-thread). The multiprocessor maps each thread
to one scalar processor core, and each scalar thread executes independently with its own instruction
address and register state. The multiprocessor SIMT unit creates, manages, schedules, and executes
threads in groups of parallel threads called warps. (This term originates from weaving, the first parallel
thread technology.) Individual threads composing a SIMT warp start together at the same program
address but are otherwise free to branch and execute independently.

When a multiprocessor is given one or more thread blocks to execute, it splits them into warps that
get scheduled by the SIMT unit. The way a block is split into warps is always the same; each warp
contains threads of consecutive, increasing thread IDs with the first warp containing thread O.

At every instruction issue time, the SIMT unit selects a warp that is ready to execute and issues the
next instruction to the active threads of the warp. A warp executes one common instruction at a time,
so full efficiency is realized when all threads of a warp agree on their execution path. If threads of a
warp diverge via a data-dependent conditional branch, the warp serially executes each branch path
taken, disabling threads that are not on that path, and when all paths complete, the threads converge
back to the same execution path. Branch divergence occurs only within a warp; different warps execute
independently regardless of whether they are executing common or disjointed code paths.

SIMT architecture is akin to SIMD (Single Instruction, Multiple Data) vector organizations in that a
single instruction controls multiple processing elements. A key difference is that SIMD vector organi-
zations expose the SIMD width to the software, whereas SIMT instructions specify the execution and
branching behavior of a single thread. In contrast with SIMD vector machines, SIMT enables program-
mers to write thread-level parallel code for independent, scalar threads, as well as data-parallel code
for coordinated threads. For the purposes of correctness, the programmer can essentially ignore the

15
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SIMT behavior; however, substantial performance improvements can be realized by taking care that
the code seldom requires threads in a warp to diverge. In practice, this is analogous to the role of cache
lines in traditional code: Cache line size can be safely ignored when designing for correctness but must
be considered in the code structure when designing for peak performance. Vector architectures, on
the other hand, require the software to coalesce loads into vectors and manage divergence manually.

How many blocks a multiprocessor can process at once depends on how many registers per thread
and how much shared memory per block are required for a given kernel since the multiprocessor’s
registers and shared memory are split among all the threads of the batch of blocks. If there are not
enough registers or shared memory available per multiprocessor to process at least one block, the
kernel will fail to launch.

Device

Multiprocessor N_
-

-

Multiprocessor 2

Multiprocessor 1

Figure 4: Hardware Model

A set of SIMT multiprocessors with on-chip shared memory.

16 Chapter 3. PTX Machine Model



PTX ISA, Release 8.1

On architectures prior to Volta, warps used a single program counter shared amongst all 32 threads in
the warp together with an active mask specifying the active threads of the warp. As a result, threads
from the same warp in divergent regions or different states of execution cannot signal each other or
exchange data, and algorithms requiring fine-grained sharing of data guarded by locks or mutexes can
easily lead to deadlock, depending on which warp the contending threads come from.

Starting with the Volta architecture, Independent Thread Scheduling allows full concurrency between
threads, regardless of warp. With Independent Thread Scheduling, the GPU maintains execution state
per thread, including a program counter and call stack, and can yield execution at a per-thread gran-
ularity, either to make better use of execution resources or to allow one thread to wait for data to be
produced by another. A schedule optimizer determines how to group active threads from the same
warp together into SIMT units. This retains the high throughput of SIMT execution as in prior NVIDIA
GPUs, but with much more flexibility: threads can now diverge and reconverge at sub-warp granularity.

Independent Thread Scheduling can lead to a rather different set of threads participating in the exe-
cuted code than intended if the developer made assumptions about warp-synchronicity of previous
hardware architectures. In particular, any warp-synchronous code (such as synchronization-free, intra-
warp reductions) should be revisited to ensure compatibility with Volta and beyond. See the section
on Compute Capability 7.x in the Cuda Programming Guide for further details.

As illustrated by , each multiprocessor has on-chip memory of the four following types:
One set of local 32-bit registers per processor,

A parallel data cache or shared memory that is shared by all scalar processor cores and is where
the shared memory space resides,

A read-only constant cache that is shared by all scalar processor cores and speeds up reads from
the constant memory space, which is a read-only region of device memory,

A read-only texture cache that is shared by all scalar processor cores and speeds up reads from
the texture memory space, which is a read-only region of device memory; each multiprocessor
accesses the texture cache via a texture unit that implements the various addressing modes and
data filtering.

The local and global memory spaces are read-write regions of device memory.

3.2. Independent Thread Scheduling 17
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Chapter 4. Syntax

PTX programs are a collection of text source modules (files). PTX source modules have an assembly-
language style syntax with instruction operation codes and operands. Pseudo-operations specify sym-
bol and addressing management. The ptxas optimizing backend compiler optimizes and assembles
PTX source modules to produce corresponding binary object files.

Source modules are ASCII text. Lines are separated by the newline character (\n).

All whitespace characters are equivalent; whitespace is ignored except for its use in separating tokens
in the language.

The C preprocessor cpp may be used to process PTX source modules. Lines beginning with # are
preprocessor directives. The following are common preprocessor directives:

#include, #define, #if, #ifdef, #else, #endif, #1line, #file
C: A Reference Manual by Harbison and Steele provides a good description of the C preprocessor.
PTX is case sensitive and uses lowercase for keywords.

Each PTX module must begin with a . version directive specifying the PTX language version, followed
by a .target directive specifying the target architecture assumed. See for a
more information on these directives.

Comments in PTX follow C/C++ syntax, using non-nested /* and */ for comments that may span
multiple lines, and using // to begin a comment that extends up to the next newline character, which
terminates the current line. Comments cannot occur within character constants, string literals, or
within other comments.

Comments in PTX are treated as whitespace.

19
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A PTX statement is either a directive or an instruction. Statements begin with an optional label and
end with a semicolon.

Examples

.reg .b32 r1, r2;
.global .f32 array[N];

start: mov.b32 r1, %tid.x;

shl.b32 ri, r1, 2; // shift thread id by 2 bits
1d.global.b32 r2, array[r1]; // thread[tid] gets array[tid]
add.f32 r2, r2, 0.5; // add 1/2

Directive keywords begin with a dot, so no conflict is possible with user-defined identifiers. The direc-
tives in PTX are listed in and described in and

Table 1: PTX Directives

.address_size .explicitcluster | .maxnreg .section
.alias .extern .maxntid .shared
.align .file .minnctapersm .sreg
.branchtargets | .func .noreturn .target
.callprototype | .global .param .tex
.calltargets .loc .pragma .version
.common .local .reg .visible
.const .maxclusterrank .reqnctapercluster | .weak
.entry .maxnctapersm .regntid

Instructions are formed from an instruction opcode followed by a comma-separated list of zero or more
operands, and terminated with a semicolon. Operands may be register variables, constant expressions,
address expressions, or label names. Instructions have an optional guard predicate which controls
conditional execution. The guard predicate follows the optional label and precedes the opcode, and is
written as @p, where p is a predicate register. The guard predicate may be optionally negated, written
as@!p.

The destination operand is first, followed by source operands.

Instruction keywords are listed in . All instruction keywords are reserved tokens in PTX.

20 Chapter 4. Syntax



PTX ISA, Release 8.1

Table 2: Reserved Instruction Keywords

abs discard min shf vadd
activemask div mma shfl vadd2
add dp2a mov shl vadd4
addc dp4a movmatrix | shr vavrg2
alloca elect mul sin vavrg4
and ex2 mul24 slct vmad
applypriority | exit multimem sqrt vmax
atom fence nanosleep | st vmax2
bar fma neg stackrestore | vmax4
barrier fns not stacksave vmin
bfe getctarank or stmatrix vmin2
bfi griddepcontrol | pmevent sub vmin4g
bfind isspacep popc subc vote
bmsk istypep prefetch suld vset
bra 1d prefetchu | suq vset2
brev ldmatrix prmt sured vsetd
brkpt ldu rcp sust vshl
brx 1g2 red szext vshr
call lop3 redux tanh vsub
clz mad rem testp vsub2
cnot mad24 ret tex vsub4
copysign madc rsqrt tld4 wgmma
cos mapa sad trap wmma
cp match selp txq Xor
createpolicy | max set vabsdiff

cvt mbarrier setmaxnreg | vabsdiff2

cvta membar setp vabsdiff4

4.3. Statements
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User-defined identifiers follow extended C++ rules: they either start with a letter followed by zero
or more letters, digits, underscore, or dollar characters; or they start with an underscore, dollar, or
percentage character followed by one or more letters, digits, underscore, or dollar characters:

followsym: [a-zA-Z8-9_8]
identifier: [a-zA-Z]{followsym}* | {[_S$%]{followsym}+

PTX does not specify a maximum length for identifiers and suggests that all implementations support
a minimum length of at least 1024 characters.

Many high-level languages such as C and C++ follow similar rules for identifier names, except that the
percentage sign is not allowed. PTX allows the percentage sign as the first character of an identifier.
The percentage sign can be used to avoid name conflicts, e.g., between user-defined variable names
and compiler-generated names.

PTX predefines one constant and a small number of special registers that begin with the percentage
sign, listed in

Table 3: Predefined Identifiers

%clock %laneid %lanemask_gt | %pm@, ..., %pm7
%clock64 %lanemask_eq | %nctaid %smid

%ctaid %lanemask_le | %ntid %tid
%envreg<32> | %lanemask_1t | %nsmid %warpid

%gridid %lanemask_ge | %nwarpid WARP_SZ

PTX supports integer and floating-point constants and constant expressions. These constants may
be used in data initialization and as operands to instructions. Type checking rules remain the same for
integer, floating-point, and bit-size types. For predicate-type data and instructions, integer constants
are allowed and are interpreted as in C, i.e., zero values are False and non-zero values are True.

Integer constants are 64-bits in size and are either signed or unsigned, i.e., every integer constant has
type .s64 or .u64. The signed/unsigned nature of an integer constant is needed to correctly evalu-
ate constant expressions containing operations such as division and ordered comparisons, where the
behavior of the operation depends on the operand types. When used in an instruction or data initial-
ization, each integer constant is converted to the appropriate size based on the data or instruction
type at its use.

Integer literals may be written in decimal, hexadecimal, octal, or binary notation. The syntax follows
that of C. Integer literals may be followed immediately by the letter U to indicate that the literal is
unsigned.
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hexadecimal literal: O[xX]{hexdigit}+U?

octal literal: 0{octal digit}+U?
binary literal: 0[bB]{bit}+U?
decimal literal {nonzero-digit}{digit}*U?

Integer literals are non-negative and have a type determined by their magnitude and optional type
suffix as follows: literals are signed (. s64) unless the value cannot be fully represented in . s64 or the
unsigned suffix is specified, in which case the literal is unsigned (.u64).

The predefined integer constant WARP_SZ specifies the number of threads per warp for the target
platform; to date, all target architectures have a WARP_SZ value of 32.

Floating-point constants are represented as 64-bit double-precision values, and all floating-point con-
stant expressions are evaluated using 64-bit double precision arithmetic. The only exception is the
32-bit hex notation for expressing an exact single-precision floating-point value; such values retain
their exact 32-bit single-precision value and may not be used in constant expressions. Each 64-bit
floating-point constant is converted to the appropriate floating-point size based on the data or in-
struction type at its use.

Floating-point literals may be written with an optional decimal point and an optional signed exponent.
Unlike C and C++, there is no suffix letter to specify size; literals are always represented in 64-bit
double-precision format.

PTX includes a second representation of floating-point constants for specifying the exact machine
representation using a hexadecimal constant. To specify IEEE 754 double-precision floating point val-
ues, the constant begins with 0@d or @D followed by 16 hex digits. To specify IEEE 754 single-precision
floating point values, the constant begins with 8f or OF followed by 8 hex digits.

O[fF]{hexdigit}{8} // single-precision floating point
0[dD] {hexdigit}{16} // double-precision floating point
Example

mov.f32 §f3, OF3f800000; // 1.0

In PTX, integer constants may be used as predicates. For predicate-type data initializers and instruc-
tion operands, integer constants are interpreted as in C, i.e,, zero values are False and non-zero values
are True.

4.5. Constants 23
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In PTX, constant expressions are formed using operators as in C and are evaluated using rules similar
to those in C, but simplified by restricting types and sizes, removing most casts, and defining full
semantics to eliminate cases where expression evaluation in C is implementation dependent.

Constant expressions are formed from constant literals, unary plus and minus, basic arithmetic op-
erators (addition, subtraction, multiplication, division), comparison operators, the conditional ternary
operator ( ?: ), and parentheses. Integer constant expressions also allow unary logical negation (!),
bitwise complement (~), remainder (%), shift operators (<< and >>), bit-type operators (&, |, and *), and
logical operators (&&, | |).

Constant expressions in PTX do not support casts between integer and floating-point.

Constant expressions are evaluated using the same operator precedence asin C. gives operator
precedence and associativity. Operator precedence is highest for unary operators and decreases with
each line in the chart. Operators on the same line have the same precedence and are evaluated right-
to-left for unary operators and left-to-right for binary operators.

Table 4: Operator Precedence

Kind Operator Symbols | Operator Names Associates
Primary | () parenthesis n/a
Unary +- 1~ plus, minus, negation, complement | right
(.s64)(.u64) casts right
Binary | */ % multiplication, division, remainder | left
+- addition, subtraction
>> << shifts
< > <= >= ordered comparisons

== I= equal, not equal

& bitwise AND
A bitwise XOR
| bitwise OR
&& logical AND
[] logical OR
Ternary | ?: conditional right
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Integer constant expressions are evaluated at compile time according to a set of rules that determine
the type (signed .s64 versus unsigned .u64) of each sub-expression. These rules are based on the
rules in C, but they’ve been simplified to apply only to 64-bit integers, and behavior is fully defined in
all cases (specifically, for remainder and shift operators).

Literals are signed unless unsigned is needed to prevent overflow, or unless the literal uses a U
suffix. For example:

42,0x1234, 0123 are signed.
Oxfabc123400000000, 42U, 0x1234U are unsigned.
Unary plus and minus preserve the type of the input operand. For example:
+123, -1, -(-42) are signed.
-1U, -8xfabc123400000000 are unsigned.
Unary logical negation (!) produces a signed result with value @ or 1.

Unary bitwise complement (~) interprets the source operand as unsigned and produces an un-
signed result.

Some binary operators require normalization of source operands. This normalization is known as
the usual arithmetic conversions and simply converts both operands to unsigned type if either
operand is unsigned.

Addition, subtraction, multiplication, and division perform the usual arithmetic conversions and
produce a result with the same type as the converted operands. That is, the operands and result
are unsigned if either source operand is unsigned, and is otherwise signed.

Remainder (%) interprets the operands as unsigned. Note that this differs from C, which allows a
negative divisor but defines the behavior to be implementation dependent.

Left and right shift interpret the second operand as unsigned and produce a result with the same
type as the first operand. Note that the behavior of right-shift is determined by the type of the
first operand: right shift of a signed value is arithmetic and preserves the sign, and right shift of
an unsigned value is logical and shifts in a zero bit.

AND (&), OR (]), and XOR (*) perform the usual arithmetic conversions and produce a result with
the same type as the converted operands.

AND_OP (&&), OR_OP (] |), Equal (==), and Not_Equal (! =) produce a signed result. The result value
isOor 1.

Ordered comparisons (<, <=, >, >=) perform the usual arithmetic conversions on source operands
and produce a signed result. The result value is @ or 1.

Casting of expressions to signed or unsigned is supported using (.s64) and (.u64) casts.

For the conditional operator (? : ), the first operand must be an integer, and the second and
third operands are either both integers or both floating-point. The usual arithmetic conversions
are performed on the second and third operands, and the result type is the same as the converted

type.
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contains a summary of the constant expression evaluation rules.

Table 5: Constant Expression Evaluation Rules

Kind Operator Operand Types Operand Interpretation Result Type
Pri- () any type same as source same as source
mary constant n/a n/a .u64, .s64,or .f64
literal
Unary | +- any type same as source same as source
! integer Zero or non-zero .s64
~ integer .u64 .u64
Cast (.u64) integer .u64 .u64
(.s64) integer .s64 .s64
Binary |+- * / .f64 .f64 .f64
integer use usual conversions converted type
< > <= >= .f64 .fe4 .s64
integer use usual conversions .s64
== I= .f64 .f64 .s64
integer use usual conversions .s64
% integer .u64 .s64
>> << integer 1st unchanged, 2nd is . | same as Ist
u64 operand
& | A integer .u6b4 .ub4
&& || integer Zero or non-zero .s64
Ternary | ?: int ? .f64 : .f64 | same as sources .f64
int ? int int use usual conversions converted type
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Chapter 5. State Spaces, Types, and

Variables

While the specific resources available in a given target GPU will vary, the kinds of resources will be
common across platforms, and these resources are abstracted in PTX through state spaces and data

types.

A state space is a storage area with particular characteristics. All variables reside in some state space.
The characteristics of a state space include its size, addressability, access speed, access rights, and
level of sharing between threads.

The state spaces defined in PTX are a byproduct of parallel programming and graphics programming.
The list of state spaces is shown in ,and properties of state spaces are shown in

Table 6: State Spaces

Name Description

.reg Registers, fast.

.sreg Special registers. Read-only; pre-defined; platform-specific.

.const Shared, read-only memory.

.global Global memory, shared by all threads.

.local Local memory, private to each thread.

.param Kernel parameters, defined per-grid; or
Function or local parameters, defined per-thread.

.shared Addressable memory, defined per CTA, accessible to all threads in the cluster
throughout the lifetime of the CTA that defines it.

.tex Global texture memory (deprecated).
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Table 7: Properties of State Spaces

Name Addressable Initializable Access Sharing

.reg No No R/W per-thread

.sreg No No RO per-CTA

.const Yes Yes' RO per-grid

.global Yes Yes' R/W Context

.local Yes No R/W per-thread
.param (as input | Yes? No RO per-grid

to kernel)

.param (used in | Restricted?® No R/W per-thread
functions)

.shared Yes No R/W per-cluster®

.tex No* Yes, via driver RO Context

Notes:

! Variables in .const and .global state spaces are initialized to zero by default.

2 Accessible only via the 1d . param instruction. Address may be taken via mov instruction.

3 Accessible via 1d.paramand st . paraminstructions. Device function input and return parameters
may have their address taken via mov; the parameter is then located on the stack frame and its
address is in the .local state space.

4 Accessible only via the tex instruction.

> Visible to the owning CTA and other active CTAs in the cluster.

Registers (. reg state space) are fast storage locations. The number of registers is limited, and will
vary from platform to platform. When the limit is exceeded, register variables will be spilled to memory,
causing changes in performance. For each architecture, there is a recommended maximum number
of registers to use (see the CUDA Programming Guide for details).

Registers may be typed (signed integer, unsigned integer, floating point, predicate) or untyped. Regis-
ter size is restricted; aside from predicate registers which are 1-bit, scalar registers have a width of 8-,
16-, 32-, or 64-bits, and vector registers have a width of 16-, 32-, 64-, or 128-bits. The most common
use of 8-bit registers is with 1d, st, and cvt instructions, or as elements of vector tuples.

Registers differ from the other state spaces in that they are not fully addressable, i.e., it is not possible
to refer to the address of a register. When compiling to use the Application Binary Interface (ABI),
register variables are restricted to function scope and may not be declared at module scope. When
compiling legacy PTX code (ISA versions prior to 3.0) containing module-scoped . reg variables, the
compiler silently disables use of the ABI. Registers may have alignment boundaries required by multi-
word loads and stores.
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The special register (.sreg) state space holds predefined, platform-specific registers, such as grid,
cluster, CTA, and thread parameters, clock counters, and performance monitoring registers. All special
registers are predefined.

The constant (.const) state space is a read-only memory initialized by the host. Constant memory
is accessed with a 1d.const instruction. Constant memory is restricted in size, currently limited to
64 KB which can be used to hold statically-sized constant variables. There is an additional 640 KB of
constant memory, organized as ten independent 64 KB regions. The driver may allocate and initialize
constant buffers in these regions and pass pointers to the buffers as kernel function parameters.
Since the ten regions are not contiguous, the driver must ensure that constant buffers are allocated
so that each buffer fits entirely within a 64 KB region and does not span a region boundary.

Statically-sized constant variables have an optional variable initializer; constant variables with no ex-
plicit initializer are initialized to zero by default. Constant buffers allocated by the driver are initialized
by the host, and pointers to such buffers are passed to the kernel as parameters. See the description
of kernel parameter attributes in for more details on passing
pointers to constant buffers as kernel parameters.

Previous versions of PTX exposed constant memory as a set of eleven 64 KB banks, with explicit bank
numbers required for variable declaration and during access.

Prior to PTX ISA version 2.2, the constant memory was organized into fixed size banks. There were
eleven 64 KB banks, and banks were specified using the .const[bank] modifier, where bank ranged
from O to 10. If no bank number was given, bank zero was assumed.

By convention, bank zero was used for all statically-sized constant variables. The remaining banks
were used to declare incomplete constant arrays (as in C, for example), where the size is not known at
compile time. For example, the declaration

.extern .const[2] .b32 const_buffer[];

resulted in const_buffer pointing to the start of constant bank two. This pointer could then be used
to access the entire 64 KB constant bank. Multiple incomplete array variables declared in the same
bank were aliased, with each pointing to the start address of the specified constant bank.

To access data in contant banks 1 through 10, the bank number was required in the state space of the
load instruction. For example, an incomplete array in bank 2 was accessed as follows:

.extern .const[2] .b32 const_buffer[];
1d.const[2].b32 %r1, [const_buffer+4]; // load second word

In PTX ISA version 2.2, we eliminated explicit banks and replaced the incomplete array representation
of driver-allocated constant buffers with kernel parameter attributes that allow pointers to constant
buffers to be passed as kernel parameters.
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The global (.global) state space is memory that is accessible by all threads in a context. It is the
mechanism by which threads in different CTAs, clusters, and grids can communicate. Use 1d.global,
st.global, and atom.global to access global variables.

Global variables have an optional variable initializer; global variables with no explicit initializer are ini-
tialized to zero by default.

The local state space (. local) is private memory for each thread to keep its own data. It is typically
standard memory with cache. The size is limited, as it must be allocated on a per-thread basis. Use
1d.local and st.local to access local variables.

When compiling to use the Application Binary Interface (ABI), .1local state-space variables must be
declared within function scope and are allocated on the stack. In implementations that do not sup-
port a stack, all local memory variables are stored at fixed addresses, recursive function calls are not
supported, and .local variables may be declared at module scope. When compiling legacy PTX code
(ISA versions prior to 3.0) containing module-scoped . local variables, the compiler silently disables
use of the ABI.

The parameter (. param) state space is used (1) to pass input arguments from the host to the kernel,
(2a) to declare formal input and return parameters for device functions called from within kernel ex-
ecution, and (2b) to declare locally-scoped byte array variables that serve as function call arguments,
typically for passing large structures by value to a function. Kernel function parameters differ from
device function parameters in terms of access and sharing (read-only versus read-write, per-kernel
versus per-thread). Note that PTX ISA versions 1.x supports only kernel function parameters in .param
space; device function parameters were previously restricted to the register state space. The use of
parameter state space for device function parameters was introduced in PTX ISA version 2.0 and re-
quires target architecture sm_20 or higher.

Note: The location of parameter space is implementation specific. For example, in some implementa-
tions kernel parameters reside in global memory. No access protection is provided between parameter
and global space in this case. Though the exact location of the kernel parameter space is implemen-
tation specific, the kernel parameter space window is always contained within the global space win-
dow. Similarly, function parameters are mapped to parameter passing registers and/or stack locations
based on the function calling conventions of the Application Binary Interface (ABI). Therefore, PTX code
should make no assumptions about the relative locations or ordering of . param space variables.
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Each kernel function definition includes an optional list of parameters. These parameters are address-
able, read-only variables declared in the . paramstate space. Values passed from the host to the kernel
are accessed through these parameter variables using 1d.param instructions. The kernel parameter
variables are shared across all CTAs from all clusters within a grid.

The address of a kernel parameter may be moved into a register using the mov instruction. The result-
ing address is in the . param state space and is accessed using 1d. param instructions.

Example
.entry foo ( .param .b32 N, .param .align 8 .b8 buffer[64] )
{
.reg .u32 %n;
.reg .f64 %d;
1d.param.u32 %n, [N];
1d.param.f64 %d, [buffer];
Example

.entry bar ( .param .b32 len )
.reg .u32 %ptr, %n;

mov .u32 %ptr, len;
1d.param.u32 %n, [%ptr];

Kernel function parameters may represent normal data values, or they may hold addresses to objects
in constant, global, local, or shared state spaces. In the case of pointers, the compiler and runtime
system need information about which parameters are pointers, and to which state space they point.
Kernel parameter attribute directives are used to provide this information at the PTX level. See

for a description of kernel parameter attribute directives.

Note: The current implementation does not allow creation of generic pointers to constant variables
(cvta.const) in programs that have pointers to constant buffers passed as kernel parameters.
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Kernel function parameters may be declared with an optional .ptr attribute to indicate that a parameter
is a pointer to memory, and also indicate the state space and alignment of the memory being pointed
to. describes the .ptr kernel parameter attribute.

ptr
Kernel parameter alignment attribute.
Syntax

.param .type .ptr .space .align N varname
.param .type .ptr .align N varname

.space = { .const, .global, .local, .shared };

Description

Used to specify the state space and, optionally, the alignment of memory pointed to by a pointer type
kernel parameter. The alignment value N, if present, must be a power of two. If no state space is
specified, the pointer is assumed to be a generic address pointing to one of const, global, local, or
shared memory. If no alignment is specified, the memory pointed to is assumed to be aligned to a 4
byte boundary.

Spaces between .ptr, .space, and .align may be eliminated to improve readability.
PTX ISA Notes

Introduced in PTX ISA version 2.2.

Support for generic addressing of .const space added in PTX ISA version 3.1.
Target ISA Notes

Supported on all target architectures.

Examples

.entry foo ( .param .u32 parami,
.param .u32 .ptr.global.align 16 param2,
.param .u32 .ptr.const.align 8 param3,
.param .u32 .ptr.align 16 param4 // generic address
// pointer

) { ..}

PTX ISA version 2.0 extended the use of parameter space to device function parameters. The most
common use is for passing objects by value that do not fit within a PTX register, such as C structures
larger than 8 bytes. In this case, a byte array in parameter space is used. Typically, the caller will declare
a locally-scoped . param byte array variable that represents a flattened C structure or union. This will
be passed by value to a callee, which declares a .param formal parameter having the same size and
alignment as the passed argument.

Example
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// pass object of type struct { double d; int y; };
.func foo ( .reg .b32 N, .param .align 8 .b8 buffer[12] )

{
.reg .f64 %d;
.reg .s32 %y;
1d.param.f64 %d, [buffer];
1d.param.s32 %y, [buffer+8];
}

// code snippet from the caller
// struct { double d; int y; } mystruct; is flattened, passed to foo

.reg .f64 dbl;
.reg .s32 x;
.param .align 8 .b8 mystruct;

st.param.f64 [mystruct+@], dbl;
st.param.s32 [mystruct+8], x;
call foo, (4, mystruct);

See the section on function call syntax for more details.

Function input parameters may be read via 1d. param and function return parameters may be written
using st.param; it is illegal to write to an input parameter or read from a return parameter.

Aside from passing structures by value, .param space is also required whenever a formal parameter
has its address taken within the called function. In PTX, the address of a function input parameter
may be moved into a register using the mov instruction. Note that the parameter will be copied to the
stack if necessary, and so the address will be in the . local state space and is accessed via 1d. local
and st.local instructions. It is not possible to use mov to get the address of or a locally-scoped .
param space variable. Starting PTX ISA version 6.0, it is possible to use mov instruction to get address
of return parameter of device function.

Example

// pass array of up to eight floating-point values in buffer
.func foo ( .param .b32 N, .param .b32 buffer[32] )

{
.reg .u32 %n, %r;
.reg .f32 %f;
.reg .pred %p;
1d.param.u32 %n, [N];
mov.u32 %r, buffer; // forces buffer to .local state space
Loop:
setp.eq.u32 %p, %n, 0;
@%p: bra Done;
1d.local.f32 %f, [%r];
add.u32 %r, %r, 4;
sub.u32 %n, %n, 1;
bra Loop;
Done:
}
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The shared (. shared) state space is a memory that is owned by an executing CTA and is accessible to
the threads of all the CTAs within a cluster. An address in shared memory can be read and written by
any thread in a CTA cluster.

Additional sub-qualifiers : :cta or ::cluster can be specified on instructions with .shared state
space to indicate whether the address belongs to the shared memory window of the executing CTA
or of any CTA in the cluster respectively. The addresses in the .shared: :cta window also fall within
the .shared: :cluster window. If no sub-qualifier is specified with the .shared state space, then
it defaults to : :cta. For example, 1d. shared is equivalent to 1d.shared: :cta.

Variables declared in . shared state space refer to the memory addresses in the current CTA. Instruc-
tion mapa gives the .shared: :cluster address of the corresponding variable in another CTA in the
cluster.

Shared memory typically has some optimizations to support the sharing. One example is broadcast;
where all threads read from the same address. Another is sequential access from sequential threads.

The texture (. tex) state space is global memory accessed via the texture instruction. It is shared by
all threads in a context. Texture memory is read-only and cached, so accesses to texture memory are
not coherent with global memory stores to the texture image.

The GPU hardware has a fixed number of texture bindings that can be accessed within a single kernel
(typically 128). The .tex directive will bind the named texture memory variable to a hardware texture
identifier, where texture identifiers are allocated sequentially beginning with zero. Multiple names
may be bound to the same physical texture identifier. An error is generated if the maximum number
of physical resources is exceeded. The texture name must be of type .u32 or .u64.

Physical texture resources are allocated on a per-kernel granularity, and . tex variables are required to
be defined in the global scope.

Texture memory is read-only. A texture’s base address is assumed to be aligned to a 16 byte boundary.

Example

.tex .u32 tex_a; // bound to physical texture ©

.tex .u32 tex_c, tex_d; // both bound to physical texture 1
.tex .u32 tex_d; // bound to physical texture 2
.tex .u32 tex_f; // bound to physical texture 3

Note: Explicit declarations of variables in the texture state space is deprecated, and programs should
instead reference texture memory through variables of type .texref. The .tex directive is retained
for backward compatibility, and variables declared in the . tex state space are equivalent to module-
scoped . texref variables in the .global state space.

For example, a legacy PTX definitions such as

.tex .u32 tex_a;

is equivalent to:
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.global .texref tex_a;

See for the description of the .texref type and
for its use in texture instructions.

In PTX, the fundamental types reflect the native data types supported by the target architectures. A
fundamental type specifies both a basic type and a size. Register variables are always of a fundamental
type, and instructions operate on these types. The same type-size specifiers are used for both variable
definitions and for typing instructions, so their names are intentionally short.

lists the fundamental type specifiers for each basic type:

Table 8: Fundamental Type Specifiers

Basic Type Fundamental Type Specifiers
Signed integer .88, .s16, .s32, .s64
Unsigned integer | .u8, .u16, .u32, .u64
Floating-point .f16, .f16x2, .32, .f64
Bits (untyped) .b8, .b16, .b32, .b64
Predicate .pred

Most instructions have one or more type specifiers, needed to fully specify instruction behavior.
Operand types and sizes are checked against instruction types for compatibility.

Two fundamental types are compatible if they have the same basic type and are the same size. Signed
and unsigned integer types are compatible if they have the same size. The bit-size type is compatible
with any fundamental type having the same size.

In principle, all variables (aside from predicates) could be declared using only bit-size types, but typed
variables enhance program readability and allow for better operand type checking.

The .u8, .s8, and .b8 instruction types are restricted to 1d, st, and cvt instructions. The .f16
floating-point type is allowed only in conversions to and from .32, . f64 types, in half precision float-
ing point instructions and texture fetch instructions. The . f16x2 floating point type is allowed only
in half precision floating point arithmetic instructions and texture fetch instructions.

For convenience, 1d, st, and cvt instructions permit source and destination data operands to be
wider than the instruction-type size, so that narrow values may be loaded, stored, and converted us-
ing regular-width registers. For example, 8-bit or 16-bit values may be held directly in 32-bit or 64-bit
registers when being loaded, stored, or converted to other types and sizes.
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The fundamental floating-point types supported in PTX have implicit bit representations that indicate
the number of bits used to store exponent and mantissa. For example, the .f16 type indicates 5
bits reserved for exponent and 10 bits reserved for mantissa. In addition to the floating-point repre-
sentations assumed by the fundamental types, PTX allows the following alternate floating-point data
formats:

bf16 data format: This data format is a 16-bit floating point format with 8 bits for exponent and 7
bits for mantissa. A register variable containing bf16 data must be declared with .b16 type.

e4m3 data format: This data format is an 8-bit floating point format with 4 bits for exponent and 3
bits for mantissa. The e4m3 encoding does not support infinity and NaN values are limited to
0x7f and Oxff. e4m3 values must be used in a packed format specified as e4m3x2. A register
variable containing two e4m3 values must be declared with .b16 type.

e5m2 data format: This data format is an 8-bit floating point format with 5 bits for exponent and 2
bits for mantissa. e5m2 values must be used in a packed format specified as e5m2x2. A register
variable containing two e5m2 values must be declared with .b16 type.

tf32 data format: This data format is a special 32-bit floating point format supported by the matrix
multiply-and-accumulate instructions, with the same range as . 32 and reduced precision (>=10
bits). The internal layout of tf32 format is implementation defined. PTX facilitates conversion
from single precision .32 type to tf32 format. A register variable containing tf32 data must
be declared with .b32 type.

Alternate data formats cannot be used as fundamental types. They are supported as source or desti-
nation formats by certain instructions.

Certain PTX instructions operate on two sets of inputs in parallel, and produce two outputs. Such
instructions can use the data stored in a packed format. PTX supports packing two values of the
same scalar data type into a single, larger value. The packed value is considered as a value of a packed
data type. In this section we describe the packed data types supported in PTX.

PTX supports the following four variants of packed floating point data types:
.f16x2 packed type containing two . f16 floating point values.
.bf16x2 packed type containing two .bf16 alternate floating point values.
.e4m3x2 packed type containing two .e4m3 alternate floating point values.
.e5m2x2 packed type containing two .e5m2 alternate floating point values.

.f16x2 is supported as a fundamental type. .bf16x2, .e4m3x2 and .e5m2x2 cannot be used as
fundamental types - they are supported asinstruction types on certain instructions. A register variable
containing .bf16x2 data must be declared with .b32 type. A register variable containing .e4m3x2 or
.e5m2x2 data must be declared with .b16 type.
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PTX supports two variants of packed integer data types: .u16x2 and .s16x2. The packed data type
consists of two .u16 or .s16 values. A register variable containing .u16x2 or .s16x2 data must be
declared with .b32 type. Packed integer data types cannot be used as fundamental types. They are
supported as instruction types on certain instructions.

PTX includes built-in opaque types for defining texture, sampler, and surface descriptor variables.
These types have named fields similar to structures, but all information about layout, field ordering,
base address, and overall size is hidden to a PTX program, hence the term opaque. The use of these
opaque types is limited to:

Variable definition within global (module) scope and in kernel entry parameter lists.

Static initialization of module-scope variables using comma-delimited static assignment expres-
sions for the named members of the type.

Referencing textures, samplers, or surfaces via texture and surface load/store instructions (tex,
suld, sust, sured).

Retrieving the value of a named member via query instructions (txq, suq).

Creating pointers to opaque variables using mov, e.g., mov.u64 reg, opaque_var ;. Theresult-
ing pointer may be stored to and loaded from memory, passed as a parameter to functions, and
de-referenced by texture and surface load, store, and query instructions, but the pointer cannot
otherwise be treated as an address, i.e., accessing the pointer with 1d and st instructions, or
performing pointer arithmetic will result in undefined results.

Opaque variables may not appear in initializers, e.g., to initialize a pointer to an opaque variable.

Note: Indirect access to textures and surfaces using pointers to opaque variables is supported be-
ginning with PTX ISA version 3.1 and requires target sm_20 or later.

Indirect access to textures is supported only in unified texture mode (see below).

The three built-in types are .texref, .samplerref, and .surfref. For working with textures and
samplers, PTX has two modes of operation. In the unified mode, texture and sampler information is
accessed through a single . texref handle. In the independent mode, texture and sampler information
each have their own handle, allowing them to be defined separately and combined at the site of usage
in the program. Inindependent mode, the fields of the . texref type that describe sampler properties
are ignored, since these properties are defined by .samplerref variables.

and list the named members of each type for unified and independent texture modes.
These members and their values have precise mappings to methods and values defined in the texture
HW class as well as exposed values via the APL.
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Table 9: Opaque Type Fields in Unified Texture Mode

Member .texref values .surfref values
width in elements
height in elements
depth in elements
channel_data_type enum type corresponding to source language API
channel_order enum type corresponding to source language API
normalized_coords 0,1 N/A
filter_mode nearest, linear N/A
addr_mode_9, wrap,mirror, clamp_ogl, | N/A
addr_mode_1, clamp_to_edge, clamp_to_border
addr_mode_2
array_size as number of textures in a texture array | as number of surfaces in
a surface array
num_mipmap_levels as number of levels in a mipmapped tex- | N/A
ture
num_samples as number of samples in a multi-sample | N/A
texture
memory_layout N/A 1 for linear memory lay-
out; @ otherwise

Fields width, height, and depth specify the size of the texture or surface in number of elements in
each dimension.

The channel_data_type and channel_order fields specify these properties of the texture or sur-
face using enumeration types corresponding to the source language API. For example, see
for the OpenCL enumeration types currently supported in PTX.

The normalized_coords field indicates whether the texture or surface uses normalized coordinates
in the range [0.0, 1.0) instead of unnormalized coordinates in the range [0, N). If no value is specified,
the default is set by the runtime system based on the source language.

The filter_mode field specifies how the values returned by texture reads are computed based on
the input texture coordinates.

The addr_mode_{0, 1, 2} fields define the addressing mode in each dimension, which determine how
out-of-range coordinates are handled.

See the CUDA C++ Programming Guide for more details of these properties.

38 Chapter 5. State Spaces, Types, and Variables



PTX ISA, Release 8.1

Table 10: Opaque Type Fields in Independent Texture Mode

Member .samplerref values .texref values .surfref values

width N/A in elements

height N/A in elements

depth N/A in elements

channel_data_type N/A enum type corresponding to source
language API

channel_order N/A enum type corresponding to source
language AP

normalized_coords N/A 0,1 N/A

force_unnormalized_coords | 9,1 N/A N/A

filter_mode nearest, linear ignored N/A

addr_mode_0, addr_mode_1, | wrap,mirror, N/A N/A

addr_mode_2 clamp_ogl,

clamp_to_edge,
clamp_to_border

array_size

N/A

as number of tex-
tures in a texture
array

as number of sur-
faces in a surface
array

num_mipmap_levels N/A as number | N/A
of levels in a
mipmapped tex-
ture
num_samples N/A as number of | N/A
samples in a
multi-sample
texture
memory_layout N/A N/A 1 for linear mem-

ory layout; 0 oth-
erwise

In independent texture mode, the sampler properties are carried in an independent .samplerref
variable, and these fields are disabled in the .texref variables. One additional sampler property,
force_unnormalized_coords, is available in independent texture mode.

The force_unnormalized_coords field is a property of . samplerref variables that allows the sam-
pler to override the texture header normalized_coords property. This field is defined only in inde-
pendent texture mode. When True, the texture header setting is overridden and unnormalized coor-
dinates are used; when False, the texture header setting is used.

The force_unnormalized_coords property is used in compiling OpenCL; in OpenCL, the property
of normalized coordinates is carried in sampler headers. To compile OpenCL to PTX, texture headers
are always initialized with normalized_coords set to True, and the OpenCL sampler-based normal-
ized_coords flag maps (negated) to the PTX-level force_unnormalized_coords flag.

Variables using these types may be declared at module scope or within kernel entry parameter lists.
At module scope, these variables must be in the .global state space. As kernel parameters, these
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variables are declared in the .param state space.

Example

.global .texref my_texture_name;
.global .samplerref my_sampler_name;
.global .surfref my_surface_name;

When declared at module scope, the types may be initialized using a list of static expressions assigning
values to the named members.

Example

.global .texref tex1;
.global .samplerref tsampl = { addr_mode_0
filter_mode

b

clamp_to_border,
nearest

The channel_data_type and channel_order fields have enumeration types corresponding to the
source language API. Currently, OpenCL is the only source language that defines these fields.

and show the enumeration values defined in OpenCL version 1.0 for channel data type and
channel order.

Table 11: OpenCL 1.0 Channel Data Type Definition

CL_SNORM_INTS8 0x10D0o
CL_SNORM_INT16 0x10D1
CL_UNORM_INTS8 0x16D2
CL_UNORM_INT16 0x10D3

CL_UNORM_SHORT_565 | 9x10D4
CL_UNORM_SHORT_555 | x16D5
CL_UNORM_INT_101010 | 9x10D6

CL_SIGNED_INTS8 0x16D7
CL_SIGNED_INT16 0x10D8
CL_SIGNED_INT32 0x10D9
CL_UNSIGNED_INT8 Ox10DA

CL_UNSIGNED_INT16 Ox10DB
CL_UNSIGNED_INT32 0x16DC
CL_HALF_FLOAT 0x10DD
CL_FLOAT Ox10DE
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Table 12: OpenCL 1.0 Channel Order Definition

CL_R 0x10B0O
CL_A 0x106B1
CL_RG 0x10B2
CL_RA 0x10B3
CL_RGB Ox10B4
CL_RGBA 0x10B5
CL_BGRA 0x10B6
CL_ARGB 0x10B7
CL_INTENSITY | 0x10B8
CL_LUMINANCE | 6x10B9

In PTX, a variable declaration describes both the variable’s type and its state space. In addition to
fundamental types, PTX supports types for simple aggregate objects such as vectors and arrays.

All storage for data is specified with variable declarations. Every variable must reside in one of the
state spaces enumerated in the previous section.

A variable declaration names the space in which the variable resides, its type and size, its name, an
optional array size, an optional initializer, and an optional fixed address for the variable.

Predicate variables may only be declared in the register state space.

Examples

.global .u32 loc;

.reg .s32 1i;

.const .f32 bias[] = {-1.0, 1.0};
.global .u8 bg[4] = {0, @, 0, 0};
.reg .v4 .f32 accel;

.reg .pred p, q, r;

5.4. Variables 41



PTX ISA, Release 8.1

Limited-length vector types are supported. Vectors of length 2 and 4 of any non-predicate fundamen-
tal type can be declared by prefixing the type with .v2 or . v4. Vectors must be based on a fundamental
type, and they may reside in the register space. Vectors cannot exceed 128-bits in length; for exam-
ple, .v4 .f64 is not allowed. Three-element vectors may be handled by using a . v4 vector, where the
fourth element provides padding. This is a common case for three-dimensional grids, textures, etc.

Examples

.global .v4 .f32 V; // a length-4 vector of floats
.shared .v2 .u16 uv; // a length-2 vector of unsigned ints
.global .v4 .b8 v; // a length-4 vector of bytes

By default, vector variables are aligned to a multiple of their overall size (vector length times base-type
size), to enable vector load and store instructions which require addresses aligned to a multiple of the
access size.

Array declarations are provided to allow the programmer to reserve space. To declare an array, the
variable name is followed with dimensional declarations similar to fixed-size array declarations in C.
The size of each dimension is a constant expression.

Examples

.local .ul16 kernel[19][19];
.shared .u8 mailbox[128];

The size of the array specifies how many elements should be reserved. For the declaration of array
kernel above, 1919 = 361 halfwords are reserved, for a total of 722 bytes.

When declared with an initializer, the first dimension of the array may be omitted. The size of the first
array dimension is determined by the number of elements in the array initializer.

Examples

.global .u32 index|[]

={9, 1, 2, 3
.global .s32 offset[][2] = -1, @

, , 4,5 6, 7};
{ {-1, 6}, {6, -1}, {1

» 0}, {6, 1} };

Array index has eight elements, and array offset is a 4x2 array.

Declared variables may specify an initial value using a syntax similar to C/C++, where the variable name
is followed by an equals sign and the initial value or values for the variable. A scalar takes a single value,
while vectors and arrays take nested lists of values inside of curly braces (the nesting matches the
dimensionality of the declaration).

Asin C, array initializers may be incomplete, i.e., the number of initializer elements may be less than the
extent of the corresponding array dimension, with remaining array locations initialized to the default
value for the specified array type.

Examples
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.const .f32 vals[8]
.global .s32 x[3][2]

{ .33, 0.25, 8.125 };
{ 1,2}, {3} }:

is equivalent to

.const .f32 vals[8]
.global .s32 x[3][2]

{ ©.33, 8.25, 8.125, 0.0, 0.0, 0.8, 0.6, 8.0 };
{ {1,2}, {3,0}, {0,0} };

Currently, variable initialization is supported only for constant and global state spaces. Variables in
constant and global state spaces with no explicit initializer are initialized to zero by default. Initializers
are not allowed in external variable declarations.

Variable names appearing in initializers represent the address of the variable; this can be used to stat-
ically initialize a pointer to a variable. Initializers may also contain var+offset expressions, where offset
is a byte offset added to the address of var. Only variables in .global or .const state spaces may
be used in initializers. By default, the resulting address is the offset in the variable’s state space (as
is the case when taking the address of a variable with a mov instruction). An operator, generic(), is
provided to create a generic address for variables used in initializers.

Starting PTX ISA version 7.1, an operator mask () is provided, where mask is an integer immediate.
The only allowed expressions in the mask () operator are integer constant expression and symbol ex-
pression representing address of variable. The mask () operator extracts n consecutive bits from the
expression used in initializers and inserts these bits at the lowest position of the initialized variable.
The number n and the starting position of the bits to be extracted is specified by the integer imme-
diate mask. PTX ISA version 7.1 only supports extracting a single byte starting at byte boundary from
the address of the variable. PTX ISA version 7.3 supports Integer constant expression as an operand
in the mask () operator.

Supported values for mask are: OxFF, OxFFOO, OXFFO00O, OxFFOO0000, OxFFO0O000000,
OxFFO000000000, 0xFFOO0000000000, 0XxFFOOO00000000000.

Examples

.const .u32 foo = 42;

.global .u32 bar[] = {2, 3, 5 };

.global .u32 p1 = foo; // offset of foo in .const space

.global .u32 p2 = generic(foo); // generic address of foo

// array of generic-address pointers to elements of bar
.global .u32 parr[] = { generic(bar), generic(bar)+4,
generic(bar)+8 };

// examples using mask() operator are pruned for brevity
.global .u8 addr[] = {@xff(foo), @xffee(foo), @xffeeee(foo), ...};

.global .u8 addr2[]

{exff(foo+4), Oxffee(foo+4), Oxffeeeo(foo+4), ...}

.global .u8 addr3[] {6xff(generic(foo)), 6xffeo(generic(foo)),...}

.global .u8 addr4[]

{6xff(generic(foo)+4), Oxffee(generic(foo)+4),...}

// mask() operator with integer const expression
.global .u8 addr5[] = { OxFF(1000 + 546), OxFFe0(131187), ...};

Note: PTX 3.1 redefines the default addressing for global variables in initializers, from generic
addresses to offsets in the global state space. Legacy PTX code is treated as having an implicit
generic() operator for each global variable used in an initializer. PTX 3.1 code should either include
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explicit generic () operators in initializers, use cvta.global to form generic addresses at runtime,
or load from the non-generic address using 1d.global.

Device function names appearing in initializers represent the address of the first instruction in the
function; this can be used to initialize a table of function pointers to be used with indirect calls. Begin-
ning in PTX ISA version 3.1, kernel function names can be used as initializers e.g. to initialize a table of
kernel function pointers, to be used with CUDA Dynamic Parallelism to launch kernels from GPU. See
the CUDA Dynamic Parallelism Programming Guide for details.

Labels cannot be used in initializers.

Variables that hold addresses of variables or functions should be of type .u8 or .u32 or .u64.
Type .u8 is allowed only if the mask () operator is used.

Initializers are allowed for all types except .16, .f16x2 and .pred.

Examples

.global .s32 n = 10;
.global .f32 blur_kernel[][3]
= {{.05,.1,.65},{.1, .4,.1},{.085,.1,.05}};

= { 2' 3' 5’ 7' 9' 11 };
generic(foo); // generic address of foo[0]
generic(foo)+8; // generic address of foo[2]

.global .u64 ptr

.global .u32 fool]
.global .u64 ptr =

Byte alignment of storage for all addressable variables can be specified in the variable declaration.
Alignment is specified using an optional .alignbyte-count specifier immediately following the state-
space specifier. The variable will be aligned to an address which is an integer multiple of byte-count.
The alignment value byte-count must be a power of two. For arrays, alignment specifies the address
alignment for the starting address of the entire array, not for individual elements.

The default alignment for scalar and array variables is to a multiple of the base-type size. The default
alignment for vector variables is to a multiple of the overall vector size.

Examples

// allocate array at 4-byte aligned address. Elements are bytes.
.const .align 4 .b8 bar[8] = {0,0,0,0,2,0,0,0};

Note that all PTX instructions that access memory require that the address be aligned to a multiple
of the access size. The access size of a memory instruction is the total number of bytes accessed in
memory. For example, the access size of 1d.v4.b32 is 16 bytes, while the access size of atom. f16x2
is 4 bytes.
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Since PTX supports virtual registers, it is quite common for a compiler frontend to generate a large
number of register names. Rather than require explicit declaration of every name, PTX supports a
syntax for creating a set of variables having a common prefix string appended with integer suffixes.

For example, suppose a program uses a large number, say one hundred, of .b32 variables, named %r®,
%r1, .., %r99. These 100 register variables can be declared as follows:

.reg .b32 %r<100>; // declare %r@, %ri1, ..., %ro9

This shorthand syntax may be used with any of the fundamental types and with any state space,
and may be preceded by an alignment specifier. Array variables cannot be declared this way, nor are
initializers permitted.

Variables may be declared with an optional .attribute directive which allows specifying special at-
tributes of variables. Keyword .attribute is followed by attribute specification inside parenthesis.
Multiple attributes are separated by comma.

describes the .attribute directive.

.attribute

Variable and function attributes

Description

Used to specify special attributes of a variable or a function.
The following attributes are supported.

.managed .managed attribute specifies that variable will be allocated at a location in unified virtual
memory environment where host and other devices in the system can reference the variable
directly. This attribute can only be used with variables in .global state space. See the CUDA UVM-
Lite Programming Guide for details.

.unified .unified attribute specifies that function has the same memory address on the host
and on other devices in the system. Integer constants uuid1 and uuid2 respectively specify
upper and lower 64 bits of the unique identifier associated with the function or the variable.
This attribute can only be used on device functions or on variables in the .global state space.
Variables with .unified attribute are read-only and must be loaded by specifying .unified
qualifier on the address operand of 1d instruction, otherwise the behavior is undefined.

PTX ISA Notes

Introduced in PTX ISA version 4.0.

Support for function attributes introduced in PTX ISA version 8.0.
Target ISA Notes

.managed attribute requires sm_30 or higher.
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.unified attribute requires sm_90 or higher.
Examples

.global .attribute(.managed) .s32 g;
.global .attribute(.managed) .u64 x;

.global .attribute(.unified(19,95)) .f32 f;

.func .attribute(.unified(@xAB, BxCD)) bar() { ... }

A tensor is a multi-dimensional matrix structure in the memory. Tensor is defined by the following
properties:

Dimensionality
Dimension sizes across each dimension
Individual element types
Tensor stride across each dimension
PTX supports instructions which can operate on the tensor data. PTX Tensor instructions include:
Copying data between global and shared memories
Reducing the destination tensor data with the source.
The Tensor data can be operated on by various wmma . mma, mma and wgmma .mma_async instructions.

PTX Tensor instructions treat the tensor data in the global memory as a multi-dimensional structure
and treat the data in the shared memory as a linear data.

Tensors can have dimensions: 1D, 2D, 3D, 4D or 5D.

Each dimension has a size which represents the number of elements along the dimension. The ele-
ments can have one the following types:

Bit-sized type: .b32, .b64
Integer: .u8, .u16, .u32, .s32, .u64, .s64

Floating point and alternate floating point: .f16, .bf16, .tf32, .32, . f64 (rounded to nearest
even).

Tensor can have padding at the end in each of the dimensions to provide alignment for the data in
the subsequent dimensions. Tensor stride can be used to specify the amount of padding in each
dimension.
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Tensor data can be accessed in two modes:
Tiled mode:
In tiled mode, the source multi-dimensional tensor layout is preserved at the destination.
Im2col mode:

In im2col mode, the elements in the Bounding Box of the source tensor are rearranged into
columns at the destination. Refer for more details.

This section talks about how Tensor and Tensor access work in tiled mode.

A tensor can be accessed in chunks known as Bounding Box. The Bounding Box has the same dimen-
sionality as the tensor they are accessing into. Size of each bounding Box must be a multiple of 16
bytes. The address of the bounding Box must also be aligned to 16 bytes.

Bounding Box has the following access properties:
Bounding Box dimension sizes
Out of boundary access mode
Traversal strides

The tensor-coordinates, specified in the PTX tensor instructions, specify the starting offset of the
bounding box. Starting offset of the bounding box along with the rest of the bounding box information
together are used to determine the elements which are to be accessed.

While the Bounding Box is iterating the tensor across a dimension, the traversal stride specifies the
exact number of elements to be skipped. If no jump over is required, default value of 1 must be spec-
ified.

The traversal stride in dimension O can be used for the . For non-interleaved layout,
the traversal stride in dimension O must always be 1.

illustrates tensor, tensor size, tensor stride, Bounding Box size and traversal stride.
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Tens orStride(1]

Tens orSizd1]

Access Bowsize[1]

Traversal
Stride[1]
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AccessBoxsize[0]

TraversalStride0]

Tensorsize[0] .

TensorStride[0]

Figure 5: Tiled mode bounding box, tensor size and traversal stride
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5.5.3.3 Out of Boundary Access
PTX Tensor operation can detect and handle the case when the Bounding Box crosses the tensor
boundary in any dimension. There are 2 modes:
» Zero fill mode:
Elements in the Bounding Box which fall outside of the tensor boundary are set to O.
» 00B-NaN fill mode:

Elements in the Bounding Box which fall outside of the tensor boundary are set to a special NaN
called O0OB-NaN.

Figure 6 shows an example of the out of boundary access.

access block

out-of-bound fill

Figure 6: Out of boundary access
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Im2col mode supports the following tensor dimensions : 3D, 4D and 5D. In this mode, the tensor data
is treated as a batch of images with the following properties:

N : number of images in the batch
D, H, W : size of a 3D image (depth, height and width)
C: channels per image element

The above properties are associated with 3D, 4D and 5D tensors as follows:

Dimension | N/D/H/W/C applicability

3D NWC
4D NHWC
5D NDHWC

In im2col mode, the Bounding Box is defined in DHW space. Boundaries along other dimensions are
specified by Pixels-per-Column and Channels-per-Pixel parameters as described below.

The dimensionality of the Bounding Box is two less than the tensor dimensionality.
The following properties describe how to access of the elements in im2col mode:
Bounding-Box Lower-Corner
Bounding-Box Upper-Corner
Pixels-per-Column
Channels-per-Pixel

Bounding-box Lower-Corner and Bounding-box Upper-Corner specify the two opposite corners of the
Bounding Box in the DHW space. Bounding-box Lower-Corner specifies the corner with the smallest
coordinate and Bounding-box Upper-Corner specifies the corner with the largest coordinate.

Bounding-box Upper- and Lower-Corners are 16-bit signed values whose limits varies across the dimen-
sions and are as shown below:

3D 4D 5D
Upper- / Lower- Corner sizes | [-2'%,2'5-1] | [-27,27-1] | [-23, 23-1]

and show the Upper-Corners and Lower-Corners.

The Bounding-box Upper- and Lower- Corners specify only the boundaries and not the number of el-
ements to be accessed. Pixels-per-Column specifies the number of elements to be accessed in the
NDHW space.

Channels-per-Pixel specifies the number of elements to access across the C dimension.

The tensor coordinates, specified in the PTX tensor instructions, behaves differently in different di-
mensions:
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LowerCornerH=0
LowerCornerWW=0

|

padding UpperCornerH=0
UpperCornerW=0

Figure 7: im2col mode bounding box example 1
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LowerCornerH=-1
LowerCorneriW=-1

padding

UpperCornerH=0
UpperCornerW=-1

Figure 8: im2col mode bounding box example 2
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Across N and C dimensions: specify the starting offsets along the dimension, similar to the tiled
mode.

Across DHW dimensions: specify the location of the convolution filter base in the tensor space.
The filter corner location must be within the bounding box.

The im2col offsets, specified in the PTX tensor instructions in im2col mode, are added to the filter
base coordinates to determine the starting location in the tensor space from where the elements are
accessed.

The size of the im2col offsets varies across the dimensions and their valid ranges are as shown below:

3D 4D 5D
im2col offsets range | [0, 2'6-1] | [0, 28-1] | [0, 24-1]

Following are some examples of the im2col mode accesses:

Example 1 ( ):
Tensor Size[0] = 64
Tensor Size[1] = 9

Tensor Size[2] = 14
Tensor Size[3] = 64
Pixels-per-Column = 64
channels-per-pixel = 8
Bounding-Box Lower-Corner W
Bounding-Box Lower-Corner H
Bounding-Box Upper-Corner W = -1
Bounding-Box Upper-Corner H =

tensor coordinates = (7, 7, 4, 0)
im2col offsets : (0, ©)

Example 2 ( ):
Tensor Size[0] = 64
Tensor Size[1] = 9
Tensor Size[2] = 14
Tensor Size[3] = 64

Pixels-per-Column = 64
channels-per-pixel = 8

Bounding-Box Lower-Corner W = 0
Bounding-Box Lower-Corner H = 0
Bounding-Box Upper-Corner W = -2
Bounding-Box Upper-Corner H = -2

tensor coordinates = (7, 7, 4, 0)
im2col offsets: (2, 2)
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Image7 Image8
LowerCornerH=-1 H=7 im2Col offW=0
LowerCornerW=-1 W=4 im2col offH=0

_/4'//7

Pixels/channel=8 \ Pixels-per-Column=64

UpperCornerH=-1

load 8 channels for each UpperCorneriW=-1
green cell

Total 64 pixels (green
cells) accessed

Figure 9: im2col mode example 1
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Image7 Image8
LowerCornerH=0 H=7 im2Col offw=2
LowerCornerW=0 w=4 imZcol offH=2

Pixels/channel=8 Pixels-Per-Column=64
UpperCornerH=0

load 8 channels for each UpperCornerW=0
green cell

Total 64 pixels (green
cells) accessed

Figure 10: im2col mode example 2
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5.5.4.2 Traversal Stride

The traversal stride, in im2col mode, does not impact the total number of elements (or pixels) being
accessed unlike the tiled mode. Pixels-per-Column determines the total number of elements being
accessed, in im2col mode.

The number of elements traversed along the D, H and W dimensions is strided by the traversal stride
for that dimension.

The following example with Figure 11 illustrates accesse with traversal-strides:

Tensor Size[0] = 64
Tensor Size[1] = 8
Tensor Size[2] = 14
Tensor Size[3] = 64

Traversal Stride = 2
Pixels-per-Column = 32
channels-per-pixel = 16
Bounding-Box Lower-Corner
Bounding-Box Lower-Corner =
Bounding-Box Upper-Corner = -1
Bounding-Box Upper-Corner = -1.

Tensor coordinates in the instruction = (7, 7, 5, 0)
Im2col offsets in the instruction : (1, 1)

I =I=

Image7 Image8

LowerCornerH=-1 H=7 im2Col offw=1
LowerCorner\WW=-1 W=5 im2col offH=1

_——]

I

| \ I

Pixels/channel=16 Pixels-Per-Column=32

UpperCornerH=-1
load 16 channels for UpperCorneriW=-1
each green cell

Total 32 pixels (green
cells) accessed

Figure 11: im2col mode traversal stride example
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In im2col mode, when the number of requested pixels in NDHW space specified by Pixels-per-Column
exceeds the number of available pixels in the image batch then out-of-bounds access is performed.

Similar to tiled mode, zero fill or 00B-NaN fill can be performed based on the Fill-Mode specified.

Tensor can be interleaved and the following interleave layouts are supported:
No interleave (NDHWC)
8 byte interleave (NC/8DHWCS) : C8 utilizes 16 bytes in memory assuming 2B per channel.
16 byte interleave (NC/16HWC16) : C16 utilizes 32 bytes in memory assuming 4B per channel.

The Cinformation is organized in slices where sequential C elements are grouped in 16 byte or 32 byte
quantities.

If the total number of channels is not a multiple of the number of channels per slice, then the last slice
must be padded with zeros to make it complete 16B or 32B slice.

Interleaved layouts are supported only for the dimensionalities : 3D, 4D and 5D.

The layout of the data in the shared memory can be different to that of global memory, for access
performance reasons. The following describes various swizzling modes:

No swizzle mode:

There is no swizzling in this mode and the destination data layout is exactly similar to the source
data layout.

1 12 |3 |4 |5 |6 |7
1 12 |3 |4 |5 |6 |7

... Pattern repeats ...

32 byte swizzle mode:

The following table, where each elements (numbered cell) is 16 byte and the starting address is
256 bytes aligned, shows the pattern of the destination data layout:

O |1 |2 |3 |4 |5 |6 |7
1 |0 |3 |2 |5 |4 |7 |6

... Pattern repeats ...

An example of the 32 byte swizzle mode for NC/(32B)HWC(32B) tensor of 1x2x10x10xC 16 dimen-
sion, with the innermost dimension holding slice of 16 channels with 2 byte/channel, is shown in
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10

3|215217|219 Crange

e E
= 203 209|211
C/(32B)=0, C=0:7

200|202|204|206|208|210(212(214(216(218

0|24 |6 |8 [10]12]14([16] 18

halo pixels

R=0, 5=2

W=10

F Y
Y

W=10

Figure 12: 32-byte swizzle mode example

Figure 13 shows the two fragments of the tensor : one for C/(32B) = 0 and another for C/(32B) =
1.

Figure 14 shows the destination data layout with 32 byte swizzling.
64 byte swizzle mode:

The following table, where each elements (numbered cell) is 16 byte and the starting address is
512 bytes aligned, shows the pattern of the destination data layout:

O |1 |2 |3 |4 |5 |6 |7
1 |0 |3 |2 |5 |4 |7 |6
2 |3 |0 |1 |6 |7 |4 |5
3 /2 |1 |0 |7 |6 |5 |4
... Pattern repeats ...

An example of the 64 byte swizzle mode for NHWC tensor of 1x10x10x64 dimension, with 2 bytes
/ channel and 32 channels, is shown in Figure 15.

Each colored cell represents 8 channels. Figure 16 shows the source data layout.
Figure 17 shows the destination data layout with 64 byte swizzling.
128 byte swizzle mode:

The following table, where each elements (numbered cell) is 16 byte and the starting address is
1024 bytes aligned, shows the pattern of the destination data layout:
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C/(32B)

H C(32B)x4

C/(32B)

H C(32B)x4

Figure 13: 32-byte swizzle mode fragments
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C/(328)

C(32B)x4

C/(328)

C(32B)x4

Figure 14: 32-byte swizzle mode destination data layout
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36

H=10

W=10

&

Figure 15: 64-byte swizzle mode example

Y

H=10

O |1 |2 |3 |4 |5 |6 |7
1 |0 |3 |2 |5 |4 |7 |6
2 |3 |0 |1 |6 |7 |4 |5
3 /2 (1|0 |7 |6 |5 |4
4 |5 (6 (7 |0 |1 |2 |3
514 |7 |6 |1 |0 |3 |2
6 |7 |4 |5 |2 0 |1
... Pattern repeats ...

C range

C=0:7

R=0, 5=2 halo pixels

An example of the 128 byte swizzle mode for NHWC tensor of 1x10x10x64 dimension, with 2
bytes / channel and 64 channels, is shown in Figure 18.

Each colored cell represents 8 channels. Figure 19 shows the source data layout.

Figure 20 shows the destination data layout with 128 byte swizzling.
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0,1

2,3

4,5

6,7

8,9

0,1

2,3

4,5

6,7

8,9

C=0-63

Figure 16: 64-byte swizzle mode source data layout
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W | H C=0-63
0,1
2,3
45 0
6,7
8,9
0,1
2,3
45| 1
6,7
8,9

Figure 17: 64-byte swizzle mode destination data layout
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7 115|23[31|39|47|55|63|71|79 C range
C=0:7

4 112|20|28|36|44|52|60|68|76

R=0, $=2 halo pixels

T T [

10

H=

Ww=10 ¥

&
L

W=10

Figure 18: 128-byte swizzle mode example

5.5.7. Tensor-map

The tensor-map is a 128-byte opaque object either in .const space or .param (kernel function pa-
rameter) space which describes the tensor properties and the access properties of the tensor data
described in previous sections.

Tensor-Map can be created using CUDA APIs. Refer to CUDA programming guide for more details.
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SEEE BB EIEEE

112

120

128

136

144

Wiw|lN|ja|lulslwivirlo|lo|lo|N|lou|s|lw vk oS

152

Figure 19: 128-byte swizzle mode source data layout
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23
31
39
47
55
63
71
79
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111
119
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W lw|[w|lo|u|s|lwiv|ikr|lo|lo|o|N|o|ulbs|lw| vk oS

Figure 20: 128-byte swizzle mode destination data layout
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6.1. Operand Type Information

All operands in instructions have a known type from their declarations. Each operand type must be
compatible with the type determined by the instruction template and instruction type. There is no
automatic conversion between types.

The bit-size type is compatible with every type having the same size. Integer types of a common
size are compatible with each other. Operands having type different from but compatible with the
instruction type are silently cast to the instruction type.

6.2. Source Operands

The source operands are denoted in the instruction descriptions by the names a, b, and c. PTX de-
scribes a load-store machine, so operands for ALU instructions must all be in variables declared in the
.reg register state space. For most operations, the sizes of the operands must be consistent.

The cvt (convert) instruction takes a variety of operand types and sizes, as its job is to convert from
nearly any data type to any other data type (and size).

The 1d, st, mov, and cvt instructions copy data from one location to another. Instructions 1d and
st move data from/to addressable state spaces to/from registers. The mov instruction copies data
between registers.

Most instructions have an optional predicate guard that controls conditional execution, and a few
instructions have additional predicate source operands. Predicate operands are denoted by the names

p,q, r,s.

6.3. Destination Operands

PTX instructions that produce a single result store the result in the field denoted by d (for destination)
in the instruction descriptions. The result operand is a scalar or vector variable in the register state
space.
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Using scalar variables as operands is straightforward. The interesting capabilities begin with ad-
dresses, arrays, and vectors.

All the memory instructions take an address operand that specifies the memory location being ac-
cessed. This addressable operand is one of:

[var] the name of an addressable variable var.
[reg] aninteger or bit-size type register reg containing a byte address.

[reg+immOff] a sum of register reg containing a byte address plus a constant integer byte offset
(signed, 32-bit).

[var+immOff] a sum of address of addressable variable var containing a byte address plus a con-
stant integer byte offset (signed, 32-bit).

[immAddr] animmediate absolute byte address (unsigned, 32-bit).
var[immOff] an array element as described in
The register containing an address may be declared as a bit-size type or integer type.

The access size of a memory instruction is the total number of bytes accessed in memory. For example,
the access size of 1d.v4.b32 is 16 bytes, while the access size of atom.f16x2 is 4 bytes.

The address must be naturally aligned to a multiple of the access size. If an address is not properly
aligned, the resulting behavior is undefined. For example, among other things, the access may proceed
by silently masking off low-order address bits to achieve proper rounding, or the instruction may fault.

The address size may be either 32-bit or 64-bit. Addresses are zero-extended to the specified width
as needed, and truncated if the register width exceeds the state space address width for the target
architecture.

Address arithmetic is performed using integer arithmetic and logical instructions. Examples include
pointer arithmetic and pointer comparisons. All addresses and address computations are byte-based;
there is no support for C-style pointer arithmetic.

The mov instruction can be used to move the address of a variable into a pointer. The address is an
offset in the state space in which the variable is declared. Load and store operations move data be-
tween registers and locations in addressable state spaces. The syntax is similar to that used in many
assembly languages, where scalar variables are simply named and addresses are de-referenced by
enclosing the address expression in square brackets. Address expressions include variable names, ad-
dress registers, address register plus byte offset, and immediate address expressions which evaluate
at compile-time to a constant address.

Here are a few examples:

.shared .u16 x;
.reg .ulé ro;

.global .v4 .f32 V;
.reg .v4 .f32 W;
.const .s32 tbl[256];
.reg .b32 p;

(continues on next page)
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(continued from previous page)
.reg .s32 q;

1d.shared.u16 ro, [x];
1d.global.v4.f32 W, [V];
1d.const.s32 q, [tbl+12];
mov .u32 p, tbl;

If a memory instruction does not specify a state space, the operation is performed using generic ad-
dressing. The state spaces .const, (.param), .local and .shared are
modeled as windows within the generic address space. Each window is defined by a window base and
a window size that is equal to the size of the corresponding state space. A generic address maps to
global memory unless it falls within the window for const, local, or shared memory. The

(.param) window is contained within the .global window. Within each window,
a generic address maps to an address in the underlying state space by subtracting the window base
from the generic address.

Arrays of all types can be declared, and the identifier becomes an address constant in the space where
the array is declared. The size of the array is a constant in the program.

Array elements can be accessed using an explicitly calculated byte address, or by indexing into the ar-
ray using square-bracket notation. The expression within square brackets is either a constant integer,
a register variable, or a simple register with constant offset expression, where the offset is a constant
expression that is either added or subtracted from a register variable. If more complicated indexing is
desired, it must be written as an address calculation prior to use. Examples are:

1d.global.u32 s, a[@];
1d.global.u32 s, a[N-1];
mov .u32 s, a[1]; // move address of a[1] into s

Vector operands are supported by a limited subset of instructions, which include mov, 1d, st, atom,
red and tex. Vectors may also be passed as arguments to called functions.

Vector elements can be extracted from the vector with the suffixes .x, .y, .z and .w, as well as the
typical color fields .r, .g, .band .a.

A brace-enclosed list is used for pattern matching to pull apart vectors.

.reg .v4 .f32 V;
.reg .f32 a, b, c, d;

mov.v4.f32 {a,b,c,d}, V;
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Vector loads and stores can be used to implement wide loads and stores, which may improve memory
performance. The registers in the load/store operations can be a vector, or a brace-enclosed list of
similarly typed scalars. Here are examples:

1d.global.v4.f32 {a,b,c,d}, [addr+16];
1d.global.v2.u32 V2, [addr+8];

Elements in a brace-enclosed vector, say {Ra, Rb, Rc, Rd}, correspond to extracted elements as follows:

Ra = V.x = V.r
Rb = V.y = V.g
Rc =V.z =V.b
Rd = V.w = V.a

Labels and function names can be used onlyinbra/brx.idx and call instructions respectively. Func-
tion names can be used in mov instruction to get the address of the function into a register, for use in
an indirect call.

Beginning in PTX ISA version 3.1, the mov instruction may be used to take the address of kernel func-
tions, to be passed to a system call that initiates a kernel launch from the GPU. This feature is part of
the support for CUDA Dynamic Parallelism. See the CUDA Dynamic Parallelism Programming Guide for
details.

All operands to all arithmetic, logic, and data movement instruction must be of the same type and size,
except for operations where changing the size and/or type is part of the definition of the instruction.
Operands of different sizes or types must be converted prior to the operation.

shows what precision and format the cvt instruction uses given operands of differing types.
For example, if a cvt.s32.u16 instruction is given a u16 source operand and s32 as a destination
operand, the u16 is zero-extended to s32.

Conversions to floating-point that are beyond the range of floating-point numbers are represented
with the maximum floating-point value (IEEE 754 Inf for £32 and f64, and ~131,000 for £16).
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Table 13: Convert Instruction Precision and Format

Destination Format

s8 s16 s32 s64 u8 ulé u32 u64 fi16 | f32 | f64
Source s8 - sext | sext |sext |- sext |sext |sext |s2f |s2f |s2f
rF:;; s16 | chop' | - sext |sext |chop'|- sext |sext |s2f |s2f |sof
s32 | chop' | chop' | - sext | chop' | chop' | - sext |s2f |s2f |sof
s64 | chop' | chop' | chop |- chop' | chop' | chop | - s2f | s2f | s2f
u8 - zext zext zext |- zext | zext | zext u2f | u2f | u2f
ulé | chop'| - zext | zext |chop' |- zext |zext |u2f |u2f |u2f
u32 | chop'| chop' | - zext | chop' | chop' | - zext | u2f |u2f | u2f
u64 | chop' | chop' | chop |- chop' | chop' | chop | - u2f | u2f | u2f
f16 | f2s f2s f2s f2s f2u f2u f2u f2u - f2f fef
f32 | f2s f2s f2s f2s fau f2u f2u f2u fef | - fef
f64 | f2s f2s f2s f2s f2u f2u f2u f2u fef | f2f |-

Notes sext = sign-extend; zext = zero-extend; chop = keep only low bits that fit;

s2f = signed-to-float; f2s = float-to-signed; u2f = unsigned-to-float;

f2u = float-to-unsigned; f2f = float-to-float.

! If the destination register is wider than the destination format, the result is ex-
tended to the destination register width after chopping. The type of extension (sign
or zero) is based on the destination format. For example, cvt.s16.u32 targeting a
32-bit register first chops to 16-bit, then sign-extends to 32-bit.

Conversion instructions may specify a rounding modifier. In PTX, there are four integer rounding mod-
ifiers and four floating-point rounding modifiers. and summarize the rounding mod-
ifiers.

Table 14: Floating-Point Rounding Modifiers

Modifier | Description

.rn mantissa LSB rounds to nearest even

.rna mantissa LSB rounds to nearest, ties away from zero
.rz mantissa LSB rounds towards zero

.rm mantissa LSB rounds towards negative infinity

.rp mantissa LSB rounds towards positive infinity
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Table 15: Integer Rounding Modifiers

Modifier Description

.rni round to nearest integer, choosing even integer if source is equidistant between
two integers.

.rzi round to nearest integer in the direction of zero

.rmi round to nearest integer in direction of negative infinity

.rpi round to nearest integer in direction of positive infinity

Operands from different state spaces affect the speed of an operation. Registers are fastest, while
global memory is slowest. Much of the delay to memory can be hidden in a number of ways. The first
is to have multiple threads of execution so that the hardware can issue a memory operation and then
switch to other execution. Another way to hide latency is to issue the load instructions as early as pos-
sible, as execution is not blocked until the desired result is used in a subsequent (in time) instruction.
The register in a store operation is available much more quickly. gives estimates of the costs
of using different kinds of memory.

Table 16: Cost Estimates for Accessing State-Spaces

Space Time Notes

Register 0

Shared 0

Constant | O Amortized cost is low, first access is high
Local > 100 clocks

Parameter | O

Immediate | O

Global > 100 clocks
Texture > 100 clocks
Surface > 100 clocks
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Rather than expose details of a particular calling convention, stack layout, and Application Binary In-
terface (ABI), PTX provides a slightly higher-level abstraction and supports multiple ABI implemen-
tations. In this section, we describe the features of PTX needed to achieve this hiding of the ABI.
These include syntax for function definitions, function calls, parameter passing, support for variadic
functions (varargs), and memory allocated on the stack (alloca).

Refer to PTX Writers Guide to Interoperability for details on generating PTX compliant with Application
Binary Interface (ABI) for the CUDA® architeture.

In PTX, functions are declared and defined using the . func directive. A function declaration specifies
an optional list of return parameters, the function name, and an optional list of input parameters;
together these specify the function’s interface, or prototype. A function definition specifies both the
interface and the body of the function. A function must be declared or defined prior to being called.

The simplest function has no parameters or return values, and is represented in PTX as follows:

.func foo
{
ret;
}
call foo;

Here, execution of the call instruction transfers control to foo, implicitly saving the return address.
Execution of the ret instruction within foo transfers control to the instruction following the call.

Scalar and vector base-type input and return parameters may be represented simply as register vari-
ables. At the call, arguments may be register variables or constants, and return values may be placed
directly into register variables. The arguments and return variables at the call must have type and size
that match the callee’s corresponding formal parameters.

Example

.func (.reg .u32 %res) inc_ptr ( .reg .u32 %ptr, .reg .u32 %inc )

{

add.u32 %res, %ptr, %inc;
(continues on next page)
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(continued from previous page)
ret;

call (%r1), inc_ptr, (%r1,4);

When using the ABI, . reg state space parameters must be at least 32-bits in size. Subword scalar
objects in the source language should be promoted to 32-bit registers in PTX, or use .param state
space byte arrays described next.

Objects such as C structures and unions are flattened into registers or byte arrays in PTX and are
represented using . param space memory. For example, consider the following C structure, passed by
value to a function:

struct {
double dbl;
char cl[4];
b

In PTX, this structure will be flattened into a byte array. Since memory accesses are required to be
aligned to a multiple of the access size, the structure in this example will be a 12 byte array with 8 byte
alignment so that accesses to the .64 field are aligned. The . param state space is used to pass the
structure by value:

Example

.func (.reg .s32 out) bar (.reg .s32 x, .param .align 8 .b8 y[12])
{

.reg .fe4 f1;

.reg .b32 c1, c2, c3, c4;

ld.param.f64 f1, [y+0];
1d.param.b8 c1, [y+8];
1d.param.b8 c2, [y+9];
ld.param.b8 c3, [y+10];
1ld.param.b8 c4, [y+11];

. // computation using x,f1,c1,c2,c3,c4;

.param .b8 .align 8 py[12];

st.param.b64 [py+ 0], %rd;
st.param.b8 [py+ 8], %rci;
st.param.b8 [py+ 9], %rc2;
st.param.b8 [py+10], %rci;
st.param.b8 [py+11], %rc2;
// scalar args in .reg space, byte array in .param space
call (%out), bar, (%x, py);

In this example, note that .param space variables are used in two ways. First, a .param variable y
is used in function definition bar to represent a formal parameter. Second, a .param variable py is
declared in the body of the calling function and used to set up the structure being passed to bar.

The following is a conceptual way to think about the . param state space use in device functions.
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For a caller,

The .param state space is used to set values that will be passed to a called function and/or to
receive return values from a called function. Typically, a .param byte array is used to collect
together fields of a structure being passed by value.

For a callee,

The .param state space is used to receive parameter values and/or pass return values back to
the caller.

The following restrictions apply to parameter passing.
For a caller,
Arguments may be .param variables, . reg variables, or constants.

In the case of .param space formal parameters that are byte arrays, the argument must also be
a .param space byte array with matching type, size, and alignment. A .param argument must
be declared within the local scope of the caller.

In the case of . param space formal parameters that are base-type scalar or vector variables, the
corresponding argument may be either a .paramor . reg space variable with matching type and
size, or a constant that can be represented in the type of the formal parameter.

In the case of .reg space formal parameters, the corresponding argument may be either a .
param or .reg space variable of matching type and size, or a constant that can be represented
in the type of the formal parameter.

In the case of . reg space formal parameters, the register must be at least 32-bits in size.

All st.paraminstructions used for passing arguments to function call must immediately precede
the corresponding call instruction and 1d.param instruction used for collecting return value
must immediately follow the call instruction without any control flow alteration. st.paramand
1d.paraminstructions used for argument passing cannot be predicated. This enables compiler
optimization and ensures that the . param variable does not consume extra space in the caller’s
frame beyond that needed by the ABI. The . param variable simply allows a mapping to be made
at the call site between data that may be in multiple locations (e.g., structure being manipulated
by caller is located in registers and memory) to something that can be passed as a parameter or
return value to the callee.

For a callee,
Input and return parameters may be . param variables or . reg variables.
Parameters in .param memory must be aligned to a multiple of 1, 2, 4, 8, or 16 bytes.
Parameters in the . reg state space must be at least 32-bits in size.

The . reg state space can be used to receive and return base-type scalar and vector values, in-
cluding sub-word size objects when compiling in non-ABI mode. Supporting the . reg state space
provides legacy support.

Note that the choice of . reg or . param state space for parameter passing has no impact on whether
the parameter is ultimately passed in physical registers or on the stack. The mapping of parameters to
physical registers and stack locations depends on the ABI definition and the order, size, and alignment
of parameters.
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In PTX ISA version 1.x, formal parameters were restricted to .reg state space, and there was no sup-
port for array parameters. Objects such as C structures were flattened and passed or returned using
multiple registers. PTX ISA version 1.x supports multiple return values for this purpose.

Beginning with PTX ISA version 2.0, formal parameters may be in either . reg or .param state space,
and .param space parameters support arrays. For targets sm_20 or higher, PTX restricts functions to
a single return value, and a .param byte array should be used to return objects that do not fit into a
register. PTX continues to support multiple return registers for sm_1x targets.

Note: PTX implements a stack-based ABI only for targets sm_20 or higher.

PTX ISA versions prior to 3.0 permitted variables in .reg and .local state spaces to be defined at
module scope. When compiling to use the ABI, PTX ISA version 3.0 and later disallows module-scoped
.reg and .local variables and restricts their use to within function scope. When compiling without
use of the ABI, module-scoped .reg and . local variables are supported as before. When compiling
legacy PTX code (ISA versions prior to 3.0) containing module-scoped .reg or . local variables, the
compiler silently disables use of the ABI.

Note: Support for variadic functions which was unimplemented has been removed from the spec.

PTX version 6.0 supports passing unsized array parameter to a function which can be used to imple-
ment variadic functions.

Refer to for details

PTX provides alloca instruction for allocating storage at runtime on the per-thread local memory
stack. The allocated stack memory can be accessed with 1d.local and st.local instructions using
the pointer returned by alloca.

In order to facilitate deallocation of memory allocated with alloca, PTX provides two additional in-
structions: stacksave which allows reading the value of stack pointer in a local variable, and stack-
restore which can restore the stack pointer with the saved value.

alloca, stacksave,and stackrestoreinstructions are describedin

Preview Feature: Stack manipulation instructions alloca, stacksave and stackrestore are pre-
view features in PTX ISA version 7.3. All details are subject to change with no guarantees of
backward compatibility on future PTX ISA versions or SM architectures.
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In multi-threaded executions, the side-effects of memory operations performed by each thread be-
come visible to other threads in a partial and non-identical order. This means that any two operations
may appear to happen in no order, or in different orders, to different threads. The axioms introduced
by the memory consistency model specify exactly which contradictions are forbidden between the
orders observed by different threads.

In the absence of any constraint, each read operation returns the value committed by some write op-
eration to the same memory location, including the initial write to that memory location. The memory
consistency model effectively constrains the set of such candidate writes from which a read operation
can return a value.

The constraints specified under this model apply to PTX programs with any PTX ISA version number,
running on sm_70 or later architectures.

The memory consistency model does not apply to texture (including 1d.global.nc) and surface ac-
cesses.

When communicating with the host CPU, the 64-bit strong operations with system scope may not be
performed atomically on some systems. For more details on atomicity guarantees to host memory,
see the CUDA Programming Guide.

The fundamental storage unit in the PTX memory model is a byte, consisting of 8 bits. Each state
space available to a PTX program is a sequence of contiguous bytes in memory. Every byte in a PTX
state space has a unique address relative to all threads that have access to the same state space.

Each PTX memory instruction specifies an address operand and a data type. The address operand con-
tains a virtual address that gets converted to a physical address during memory access. The physical
address and the size of the data type together define a physical memory location, which is the range
of bytes starting from the physical address and extending up to the size of the data type in bytes.
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The memory consistency model specification uses the terms “address” or “memory address” to indi-
cate a virtual address, and the term “memory location” to indicate a physical memory location.

Each PTX memory instruction also specifies the operation — either a read, a write or an atomic read-
modify-write — to be performed on all the bytes in the corresponding memory location.

8.2.1. Overlap

Two memory locations are said to overlap when the starting address of one location is within the range
of bytes constituting the other location. Two memory operations are said to overlap when they specify
the same virtual address and the corresponding memory locations overlap. The overlap is said to be
complete when both memory locations are identical, and it is said to be partial otherwise.

8.2.2. Aliases

Two distinct virtual addresses are said to be aliases if they map to the same memory location.

8.2.3. Multimem Addresses

A multimem address is a virtual address which points to multiple distinct memory locations across
devices.

Only multimem.* operations are valid on multimem addresses. That is, the behavior of accessing a
multimem address in any other memory operation is undefined.

8.2.4. Memory Operations on Vector Data Types

The memory consistency model relates operations executed on memory locations with scalar data
types, which have a maximum size and alignment of 64 bits. Memory operations with a vector data
type are modelled as a set of equivalent memory operations with a scalar data type, executed in an
unspecified order on the elements in the vector.

8.2.5. Memory Operations on Packed Data Types

A packed data type consists of two values of the same scalar data type, as described in Packed Data
Types. These values are accessed in adjacent memory locations. A memory operation on a packed
data type is modelled as a pair of equivalent memory operations on the scalar data type, executed in
an unspecified order on each element of the packed data.
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Each byte in memory is initialized by a hypothetical write WO executed before starting any thread in
the program. If the byte is included in a program variable, and that variable has an initial value, then WO
writes the corresponding initial value for that byte; else WO is assumed to have written an unknown
but constant value to the byte.

The relations defined in the memory consistency model are independent of state spaces. In particular,
causality order closes over all memory operations across all the state spaces. But the side-effect of a
memory operation in one state space can be observed directly only by operations that also have access
to the same state space. This further constrains the synchronizing effect of a memory operation in
addition to scope. For example, the synchronizing effect of the PTX instruction 1d. relaxed.shared.
sys is identical to that of 1d.relaxed.shared.cluster, since no thread outside the same cluster
can execute an operation that accesses the same memory location.

For simplicity, the rest of the document refers to the following operation types, instead of mentioning
specific instructions that give rise to them.

Table 17: Operation Types

Operation Type

Instruction/Operation

atomic operation

atom or red instruction.

read operation

All variants of 1d instruction and atom instruction (but not red instruc-
tion).

write operation

All variants of st instruction, and atomic operations if they result in a write.

memory operation

A read or write operation.

volatile operation

An instruction with .volatile qualifier.

acquire operation

A memory operation with .acquire or .acq_rel qualifier.

release operation

A memory operation with . release or .acq_rel qualifier.

memory fence opera-
tion

A membar, fence.sc or fence.acq_rel instruction.

proxy fence operation

A fence.proxy or amembar.proxy instruction.

strong operation

A memory fence operation, or a memory operation with a .relaxed, .
acquire, .release, .acq_rel or .volatile qualifier.

weak operation

An 1d or st instruction with a .weak qualifier.

synchronizing
tion

opera-

A barrier instruction, fence operation, release operation or acquire oper-
ation.

8.3. State spaces
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Each strong operation must specify a scope, which is the set of threads that may interact directly with
that operation and establish any of the relations described in the memory consistency model. There
are four scopes:

Table 18: Scopes

Scope Description

.cta The set of all threads executing in the same CTA as the current thread.
.cluster The set of all threads executing in the same cluster as the current thread.
.gpu The set of all threads in the current program executing on the same compute

device as the current thread. This also includes other kernel grids invoked by
the host program on the same compute device.

.SYys The set of all threads in the current program, including all kernel grids invoked
by the host program on all compute devices, and all threads constituting the
host program itself.

Note that the warp is not a scope; the CTA is the smallest collection of threads that qualifies as a scope
in the memory consistency model.

A memory proxy, or a proxy is an abstract label applied to a method of memory access. When two
memory operations use distinct methods of memory access, they are said to be different proxies.

Memory operations as defined in use generic method of memory access, i.e. a generic
proxy. Other operations such as textures and surfaces all use distinct methods of memory access,
also distinct from the generic method.

A proxy fence is required to synchronize memory operations across different proxies. Although virtual
aliases use the generic method of memory access, since using distinct virtual addresses behaves as if
using different proxies, they require a proxy fence to establish memory ordering.

Two operations are said to be morally strong relative to each other if they satisfy all of the following
conditions:

The operations are related in program order (i.e, they are both executed by the same thread),
or each operation is strong and specifies a scope that includes the thread executing the other
operation.

Both operations are performed via the same proxy.

If both are memory operations, then they overlap completely.
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Most (but not all) of the axioms in the memory consistency model depend on relations between morally
strong operations.

Two overlapping memory operations are said to conflict when at least one of them is a write.

Two conflicting memory operations are said to be in a data-race if they are not related in causality order
and they are not morally strong.

A data-race between operations that overlap completely is called a uniform-size data-race, while a data-
race between operations that overlap partially is called a mixed-size data-race.

The axioms in the memory consistency model do not apply if a PTX program contains one or more
mixed-size data-races. But these axioms are sufficient to describe the behavior of a PTX program with
only uniform-size data-races.

Atomicity of mixed-size RMW operations

In any program with or without mixed-size data-races, the following property holds for every pair of
overlapping atomic operations A1 and A2 such that each specifies a scope that includes the other: Ei-
ther the read-modify-write operation specified by A1 is performed completely before A2 is initiated, or
vice versa. This property holds irrespective of whether the two operations A1 and A2 overlap partially
or completely.

Some sequences of instructions give rise to patterns that participate in memory synchronization as
described later. The release pattern makes prior operations from the current thread’ visible to some
operations from other threads. The acquire pattern makes some operations from other threads visible
to later operations from the current thread.

A release pattern on a location M consists of one of the following:
A release operation on M
E.g. st.release [M]; oratom.acq_rel [M]; ormbarrier.arrive.release [M];
Or a release operation on M followed by a strong write on M in program order
E.g. st.release [M];st.relaxed [M];
Or a memory fence followed by a strong write on M in program order
E.g.: fence; st.relaxed [M];

Any memory synchronization established by a release pattern only affects operations occurring in pro-
gram order before the first instruction in that pattern.

An acquire pattern on a location M consists of one of the following:
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An acquire operation on M

E.g: 1d.acquire [M]; oratom.acq_rel [M]; ormbarrier.test_wait.acquire [M];
Or a strong read on M followed by an acquire operation on M in program order

E.g.: 1d.relaxed [M]; 1ld.acquire [M];

Or a strong read on M followed by a memory fence in program order

E.g: 1d.relaxed [M]; fence;

Any memory synchronization established by an acquire pattern only affects operations occurring in
program order after the last instruction in that pattern.

! For both release and acquire patterns, this effect is further extended to operations in other threads
through the transitive nature of causality order.

The sequence of operations performed by each thread is captured as program order while memory syn-
chronization across threads is captured as causality order. The visibility of the side-effects of memory
operations to other memory operations is captured as communication order. The memory consistency
model defines contradictions that are disallowed between communication order on the one hand, and
causality order and program order on the other.

The program order relates all operations performed by a thread to the order in which a sequential
processor will execute instructions in the corresponding PTX source. It is a transitive relation that
forms a total order over the operations performed by the thread, but does not relate operations from
different threads.

Some PTX instructions (all variants of cp.async, cp.async.bulk, cp.reduce.async.bulk, wgmma.
mma_async) perform operations that are asynchronous to the thread that executed the instruction.
These asynchronous operations are ordered after prior instructions in the same thread (except in the
case of wgmma.mma_async), but they are not part of the program order for that thread. Instead, they
provide weaker ordering guarantees as documented in the instruction description.

For example, the loads and stores performed as part of a cp.async are ordered with respect to each
other, but not to those of any other cp.async instructions initiated by the same thread, nor any other
instruction subsequently issued by the thread with the exception of cp.async.commit_group or
cp.async.mbarrier.arrive. The asynchronous mbarrier operation performed by a cp.
async.mbarrier.arrive instruction is ordered with respect to the memory operations performed
by all prior cp .async operations initiated by the same thread, but not to those of any other instruction
issued by the thread. The implicit mbarrier operation that is part of all variants of cp.
async.bulk and cp.reduce.async.bulk instructions is ordered only with respect to the memory
operations performed by the same asynchronous instruction, and in particular it does not transitively
establish ordering with respect to prior instructions from the issuing thread.
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Observation order relates a write W to a read R through an optional sequence of atomic read-modify-
write operations.

A write W precedes a read R in observation order if:
R and W are morally strong and R reads the value written by W, or

For some atomic operation Z, W precedes Z and Z precedes R in observation order.

The Fence-SC order is an acyclic partial order, determined at runtime, that relates every pair of morally
strong fence.sc operations.

Synchronizing operations performed by different threads synchronize with each other at runtime as
described here. The effect of such synchronization is to establish causality order across threads.

A fence.sc operation X synchronizes with a fence.sc operation Y if X precedes Y in the Fence-SC
order.

A bar{.cta}.sync or bar{.cta}.red or bar{.ctalarrive operation synchronizes with a bar{.cta}.sync or
bar{.cta}.red operation executed on the same barrier.

A barrier.cluster.arrive operation synchronizes with a barrier.cluster.wait opera-
tion.

A release pattern X synchronizes with an acquire pattern Y, if a write operation in X precedes a
read operation in Y in observation order, and the first operation in X and the last operation in Y
are morally strong.

API synchronization
A synchronizes relation can also be established by certain CUDA APIs.

Completion of a task enqueued in a CUDA stream synchronizes with the start of the following
task in the same stream, if any.

For purposes of the above, recording or waiting on a CUDA event in a stream, or causing a cross-
stream barrier to be inserted due to cudaStreamlLegacy, enqueues tasks in the associated
streams even if there are no direct side effects. An event record task synchronizes with matching
event wait tasks, and a barrier arrival task synchronizes with matching barrier wait tasks.

Start of a CUDA kernel synchronizes with start of all threads in the kernel. End of all threads in a
kernel synchronize with end of the kernel.

Start of a CUDA graph synchronizes with start of all source nodes in the graph. Completion of all
sink nodes in a CUDA graph synchronizes with completion of the graph. Completion of a graph
node synchronizes with start of all nodes with a direct dependency.

Start of a CUDA API call to enqueue a task synchronizes with start of the task.
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Completion of the last task queued to a stream, if any, synchronizes with return from cudaS-
treamSynchronize. Completion of the most recently queued matching event record task, if
any, synchronizes with return from cudaEventSynchronize. Synchronizing a CUDA device or
context behaves as if synchronizing all streams in the context, including ones that have been
destroyed.

Returning cudaSuccess from an APl to query a CUDA handle, such as a stream or event, behaves
the same as return from the matching synchronization API.

In addition to establishing a synchronizes relation, the CUDA API synchronization mechanisms above
also participate in proxy-preserved base causality order.

Causality order captures how memory operations become visible across threads through synchronizing
operations. The axiom “Causality” uses this order to constrain the set of write operations from which
a read operation may read a value.

Relations in the causality order primarily consist of relations in Base causality order' , which is a transi-
tive order, determined at runtime.

Base causality order
An operation X precedes an operation Y in base causality order if:
X precedes Y in program order, or
X synchronizes with Y, or
For some operation Z,
X precedes Z in program order and Z precedes Y in base causality order, or
X precedes Z in base causality order and Z precedes Y in program order, or
X precedes Z in base causality order and Z precedes Y in base causality order.
Proxy-preserved base causality order

A memory operation X precedes a memory operation Y in proxy-preserved base causality order if X
precedes Y in base causality order, and:

Xand Y are performed to the same address, using the generic proxy, or

XandY are performed to the same address, using the same proxy, and by the same thread block,
or

X and Y are aliases and there is an alias proxy fence along the base causality path from X to Y.
Causality order
Causality order combines base causality order with some non-transitive relations as follows:
An operation X precedes an operation Y in causality order if:

X precedes Y in proxy-preserved base causality order, or

For some operation Z, X precedes Z in observation order, and Z precedes Y in proxy-preserved
base causality order.

! The transitivity of base causality order accounts for the “cumulativity” of synchronizing operations.
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There exists a partial transitive order that relates overlapping write operations, determined at runtime,
called the coherence order'. Two overlapping write operations are related in coherence order if they are
morally strong or if they are related in causality order. Two overlapping writes are unrelated in coherence
order if they are in a data-race, which gives rise to the partial nature of coherence order.

! Coherence order cannot be observed directly since it consists entirely of write operations. It may be
observed indirectly by its use in constraining the set of candidate writes that a read operation may
read from.

The communication order is a non-transitive order, determined at runtime, that relates write operations
to other overlapping memory operations.

A write W precedes an overlapping read R in communication order if R returns the value of any
byte that was written by W.

A write W precedes a write W’ in communication order if W precedes W’ in coherence order.

A read R precedes an overlapping write W in communication order if, for any byte accessed by
both R and W, R returns the value written by a write W’ that precedes W in coherence order.

Communication order captures the visibility of memory operations — when a memory operation X1
precedes a memory operation X2 in communication order, X1 is said to be visible to X2.

If a write W precedes an overlapping write W’ in causality order, then W must precede W’ in coherence
order.

Fence-SC order cannot contradict causality order. For a pair of morally strong fence.sc operations F1
and F2, if F1 precedes F2 in causality order, then F1 must precede F2 in Fence-SC order.
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Single-Copy Atomicity

Conflicting morally strong operations are performed with single-copy atomicity. When a read R and
a write W are morally strong, then the following two communications cannot both exist in the same
execution, for the set of bytes accessed by both R and W:

R reads any byte from W.
R reads any byte from any write W’ which precedes W in coherence order.
Atomicity of read-modify-write (RMW) operations

When an atomic operation A and a write W overlap and are morally strong, then the following two
communications cannot both exist in the same execution, for the set of bytes accessed by both A and
W:

A reads any byte from a write W’ that precedes W in coherence order.
A follows W in coherence order.

Litmus Test 1:

.global .u32 x = @;

T1 T2

A1: atom.sys.inc.u32 %r@, [x]; A2: atom.sys.inc.u32 %re, [x];

FINAL STATE: x == 2

Atomicity is guaranteed when the operations are morally strong.

Litmus Test 2:

.global .u32 x = @;

T1 T2 (In a different CTA)

A1: atom.cta.inc.u32 %r@, [x]; A2: atom.gpu.inc.u32 %r@, [x];

FINAL STATE: x == 1 OR x == 2

Atomicity is not guaranteed if the operations are not morally strong.
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Values may not appear “out of thin air”: an execution cannot speculatively produce a value in such
a way that the speculation becomes self-satisfying through chains of instruction dependencies and
inter-thread communication. This matches both programmer intuition and hardware reality, but is
necessary to state explicitly when performing formal analysis.

Litmus Test: Load Buffering

.global .u32 x = 0;

.global .u32 y = 0;

T1 T2

A1: 1d.global.u32 %r@, [x]; A2: 1d.global.u32 %r1, [y];
B1: st.global.u32 [y], %r@; B2: st.global.u32 [x], %r1;

FINAL STATE: x == 0 AND y == 0

The litmus test known as “LB” (Load Buffering) checks such forbidden values that may arise out of thin
air. Two threads T1 and T2 each read from a first variable and copy the observed result into a second
variable, with the first and second variable exchanged between the threads. If each variable is initially
zero, the final result shall also be zero. If A1 reads from B2 and A2 reads from B1, then values passing
through the memory operations in this example form a cycle: A1->B1->A2->B2->A1. Only the values
x == 0 and y == O are allowed to satisfy this cycle. If any of the memory operations in this example
were to speculatively associate a different value with the corresponding memory location, then such
a speculation would become self-fulfilling, and hence forbidden.

Within any set of overlapping memory operations that are pairwise morally strong, communication or-
der cannot contradict program order, i.e., a concatenation of program order between overlapping oper-
ations and morally strong relations in communication order cannot result in a cycle. This ensures that
each program slice of overlapping pairwise morally strong operations is strictly sequentially-consistent.

Litmus Test: CoRR

.global .u32 x = @;

T1 T2
W1: st.global.relaxed.sys.u32 [x], 1; R1: 1d.global.relaxed.u32 %r@, [x];
R2: 1d.global.relaxed.u32 %r1, [x];

IF %r@ == 1 THEN %r1 == 1
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The litmus test “CoRR” (Coherent Read-Read), demonstrates one consequence of this guarantee. A
thread T1 executes a write W1 on a location x, and a thread T2 executes two (or an infinite sequence of)
reads R1 and R2 on the same location x. No other writes are executed on x, except the one modelling
the initial value. The operations W1, R1 and R2 are pairwise morally strong. If R1 reads from W1, then
the subsequent read R2 must also observe the same value. If R2 observed the initial value of x instead,
then this would form a sequence of morally-strong relations R2->W 1->R1 in communication order that
contradicts the program order R1->R2 in thread T2. Hence R2 cannot read the initial value of x in such
an execution.

Relations in communication order cannot contradict causality order. This constrains the set of candi-
date write operations that a read operation may read from:

If a read R precedes an overlapping write W in causality order, then R cannot read from W.

If a write W precedes an overlapping read R in causality order, then for any byte accessed by both
R and W, R cannot read from any write W’ that precedes W in coherence order.

Litmus Test: Message Passing

.global .u32 data = 0;
.global .u32 flag = 0;
T1 T2
W1: st.global.u32 [data], 1; R1: 1d.global.relaxed.sys.u32 %ro,
F1: fence.sys; —[flag];
W2: st.global.relaxed.sys.u32 [flag], 1; F2: fence.sys;
R2: 1d.global.u32 %r1, [data];

IF %r@ == 1 THEN %r1 == 1

The litmus test known as “MP” (Message Passing) represents the essence of typical synchronization
algorithms. A vast majority of useful programs can be reduced to sequenced applications of this pat-
tern.

Thread T1 first writes to a data variable and then to a flag variable while a second thread T2 first reads
from the flag variable and then from the data variable. The operations on the flag are morally strong
and the memory operations in each thread are separated by a fence, and these fences are morally
strong.

If R1 observes W2, then the release pattern “F1; W2” synchronizes with the acquire pattern “R1; F2”.
This establishes the causality order W1 -> F1 -> W2 -> R1 -> F2 -> R2. Then axiom causality guarantees
that R2 cannot read from any write that precedes W1 in coherence order. In the absence of any other
writes in this example, R2 must read from W1.

Litmus Test: CoOWR
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// These addresses are aliases
.global .u32 data_alias_1;
.global .u32 data_alias_2;

T1

W1: st.global.u32 [data_alias_1], 1;
F1: fence.proxy.alias;
R1: 1d.global.u32 %r1, [data_alias_2];

1
1
-

%r

Virtual aliases require an alias proxy fence along the synchronization path.
Litmus Test: Store Buffering

The litmus test known as “SB” (Store Buffering) demonstrates the sequential consistency enforced by
the fence.sc. A thread T1 writes to a first variable, and then reads the value of a second variable,
while a second thread T2 writes to the second variable and then reads the value of the first variable.
The memory operations in each thread are separated by fence.sc instructions, and these fences are
morally strong.

.global .u32 x = 0;

.global .u32 y = 0;

T1 T2

W1: st.global.u32 [x], 1; W2: st.global.u32 [y], 1;
F1: fence.sc.sys; F2: fence.sc.sys;

R1: 1d.global.u32 %re, [y]; R2: 1d.global.u32 %ri1, [x];
%r® == 1 OR %r1 == 1

In any execution, either F1 precedes F2 in Fence-SC order, or vice versa. If F1 precedes F2 in Fence-
SC order, then F1 synchronizes with F2. This establishes the causality order in W1 -> F1 -> F2 -> R2.
Axiom causality ensures that R2 cannot read from any write that precedes W1 in coherence order. In
the absence of any other write to that variable, R2 must read from W1. Similarly, in the case where F2
precedes F1in Fence-SC order, R1 must read from W2. If each fence. sc in this example were replaced
by a fence.acq_rel instruction, then this outcome is not guaranteed. There may be an execution
where the write from each thread remains unobserved from the other thread, i.e., an execution is
possible, where both R1 and R2 return the initial value “O” for variables y and x respectively.
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Chapter 9. Instruction Set

9.1. Format and Semantics of Instruction
Descriptions

This section describes each PTX instruction. In addition to the name and the format of the instruc-
tion, the semantics are described, followed by some examples that attempt to show several possible
instantiations of the instruction.

9.2. PTX Instructions

PTXinstructions generally have from zero to four operands, plus an optional guard predicate appearing
after an @ symbol to the left of the opcode:

» @p opcode;

» @p opcode a;

» @p opcode d, a;

» @p opcode d, a, b;

» @p opcode d, a, b, c;

For instructions that create a result value, the d operand is the destination operand, while a, b, and ¢
are source operands.

The setp instruction writes two destination registers. We use a | symbol to separate multiple desti-
nation registers.

setp.1t.s32 p|q, a, b; // p=(a<b); g=1(a<b);

For some instructions the destination operand is optional. A bit bucket operand denoted with an un-
derscore (_) may be used in place of a destination register.
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In PTX, predicate registers are virtual and have . pred as the type specifier. So, predicate registers can
be declared as

.reg .pred p, q, r;

All instructions have an optional guard predicate which controls conditional execution of the instruc-
tion. The syntax to specify conditional execution is to prefix an instruction with @{! }p, where p is a
predicate variable, optionally negated. Instructions without a guard predicate are executed uncondi-
tionally.

Predicates are most commonly set as the result of a comparison performed by the setp instruction.

As an example, consider the high-level code

This can be written in PTX as

setp.1t.s32 p, i, n; // p=(1i<n)
@p add.s32 i, 3, 1; // if i < n, add 1 to j

To get a conditional branch or conditional function call, use a predicate to control the execution of the
branch or call instructions. To implement the above example as a true conditional branch, the following
PTX instruction sequence might be used:

setp.1lt.s32 p, i, n; // compare i to n
@'p bra L1; // if False, branch over

add.s32 i .1
L1:

The signed integer comparisons are the traditional eq (equal), ne (not-equal), 1t (less-than), 1le (less-
than-or-equal), gt (greater-than), and ge (greater-than-or-equal). The unsigned comparisons are eq,
ne, 1o (lower), 1s (lower-or-same), hi (higher), and hs (higher-or-same). The bit-size comparisons are
eq and ne; ordering comparisons are not defined for bit-size types.

shows the operators for signed integer, unsigned integer, and bit-size types.

92 Chapter 9. Instruction Set



PTX ISA, Release 8.1

Table 19: Operators for Signed Integer, Unsigned Integer, and
Bit-Size Types

Meaning | Signed Operator | Unsigned Operator | Bit-Size Operator
a == eq eq eq
a'!=b |ne ne ne
a<b 1t lo n/a
a<=b |1le 1s n/a
a>bhb gt hi n/a
a>=b |ge hs n/a

The ordered floating-point comparisons are eq, ne, 1t, le, gt, and ge. If either operand is NaN, the
result is False. lists the floating-point comparison operators.

Table 20: Floating-Point Comparison Operators

Meaning Floating-Point Operator
a == b &% 'isNaN(a) && !'isNaN(b) | eq

a !=b &% !'isNaN(a) && 'isNaN(b) | ne

a < b & !isNaN(a) && !isNaN(b) |1t
a <= b && 'isNaN(a) && !'isNaN(b) | le
a > b & 'isNaN(a) && 'isNaN(b) | gt
a >= b &% 'isNaN(a) && !isNaN(b) | ge

To aid comparison operations in the presence of NaN values, unordered floating-point comparisons are
provided: equ, neu, 1tu, leu, gtu, and geu. If both operands are numeric values (not NaN), then the
comparison has the same result as its ordered counterpart. If either operand is NaN, then the result
of the comparisonis True.

lists the floating-point comparison operators accepting NaN values.

Table 21: Floating-Point Comparison Operators Accepting NaN

Meaning Floating-Point Operator
a == b || isNaN(a) || isNaN(b) | equ
a !'=Db || isNaN(a) || isNaN(b) | neu
a < b || isNaN(a) || isNaN(b) | 1ltu
a <= b || isNaN(a) || isNaN(b) | leu

a >b || isNaN(a) || isNaN(b) | gtu
>= b || isNaN(a) || isNaN(b) | geu

[}
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To test for NaN values, two operators num (numeric) and nan (isNaN) are provided. num returns True
if both operands are numeric values (not NaN), and nan returns True if either operand is NaN.
lists the floating-point comparison operators testing for NaN values.

Table 22: Floating-Point Comparison Operators Testing for
NaN

Meaning Floating-Point Operator
IisNaN(a) && !isNaN(b) | num
isNaN(a) || isNaN(b) nan

Predicate values may be computed and manipulated using the following instructions: and, or, xor,
not, and mov.

There is no direct conversion between predicates and integer values, and no direct way to load or store
predicate register values. However, setp can be used to generate a predicate from an integer, and the
predicate-based select (selp) instruction can be used to generate an integer value based on the value
of a predicate; for example:

selp.u32 %r1,1,0,%p; // convert predicate to 32-bit value

Typed instructions must have a type-size modifier. For example, the add instruction requires type and
size information to properly perform the addition operation (signed, unsigned, float, different sizes),
and this information must be specified as a suffix to the opcode.

Example
.reg .u16 d, a, b;

add.u16 d, a, b; // perform a 16-bit unsigned add

Some instructions require multiple type-size modifiers, most notably the data conversion instruction
cvt. It requires separate type-size modifiers for the result and source, and these are placed in the
same order as the operands. For example:

.reg .ul16 a;
.reg .f32 d;

cvt.f32.u16 d, a; // convert 16-bit unsigned to 32-bit float

In general, an operand’s type must agree with the corresponding instruction-type modifier. The rules
for operand and instruction type conformance are as follows:

Bit-size types agree with any type of the same size.
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Signed and unsigned integer types agree provided they have the same size, and integer operands
are silently cast to the instruction type if needed. For example, an unsigned integer operand used
in a signed integer instruction will be treated as a signed integer by the instruction.

Floating-point types agree only if they have the same size; i.e., they must match exactly.

summarizes these type checking rules.

Table 23: Type Checking Rules

Operand Type
.bX | .sX .uX X

Instruction Type | .bX | okay | okay okay okay

.sX | okay | okay okay invalid

.uX | okay | okay okay invalid

X | okay | invalid | invalid | okay

Note: Some operands have their type and size defined independently from the instruction type-size.
For example, the shift amount operand for left and right shift instructions always has type .u32, while
the remaining operands have their type and size determined by the instruction type.

Example

// 64-bit arithmetic right shift; shift amount 'b' is .u32
shr.s64 d,a,b;

For convenience, 1d, st, and cvt instructions permit source and destination data operands to be
wider than the instruction-type size, so that narrow values may be loaded, stored, and converted us-
ing regular-width registers. For example, 8-bit or 16-bit values may be held directly in 32-bit or 64-bit
registers when being loaded, stored, or converted to other types and sizes. The operand type check-
ing rules are relaxed for bit-size and integer (signed and unsigned) instruction types; floating-point
instruction types still require that the operand type-size matches exactly, unless the operand is of
bit-size type.

When a source operand has a size that exceeds the instruction-type size, the source data is truncated
(chopped) to the appropriate number of bits specified by the instruction type-size.

summarizes the relaxed type-checking rules for source operands. Note that some combina-
tions may still be invalid for a particular instruction; for example, the cvt instruction does not support
.bXinstruction types, so those rows are invalid for cvt.
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Table 24: Relaxed Type-checking Rules for Source Operands

Source Operand Type
b8 | b16 | b32 | b64 | s8 | s16 | s32 | s64 | u8 | ul6 | u32 | u64 | f16 | f32 | f64
In- b8 |- chop chop chop - chop chop chop - chop chop chop chop chop chop)
:It(::c b16 | inv | - chop| chop inv | - chop| chop inv | - chop| chop - chop| chop
Type | b32 | inv | inv | - chop inv | inv |- chop inv | inv |- chop inv |- chop
b64 | inv | inv |inv |- inv |inv |inv |- inv |inv |inv |- inv |inv |-
s8 |- chop chop chop - chop chop chop - chop chop chop inv | inv |inv
s16 | inv | - chop chop inv | - chop chop inv | - chop chop inv |inv |inv
s32 |inv|inv |- chop inv | inv |- chop inv | inv |- chop inv | inv | inv
s64 | inv|inv |inv |- inv |inv |inv |- inv |inv |inv |- inv |inv |inv
ug8 | - chop chop chop - chop chop chop - chop chop chop inv |inv | inv
ul6 | inv | - chop chop inv | - chop chop inv | - chop chop inv |inv |inv
u32 | inv|inv |- chop inv | inv |- chop inv | inv |- chop inv | inv |inv
ub4 | inv | inv |inv |- inv |inv |inv |- inv |inv |inv |- inv |inv |inv
f16 | inv | - chop chop inv | inv |inv [inv [inv |inv |inv |inv |- inv |inv
f32 |inv|inv |- chop inv |inv |inv |inv [inv|inv |inv |inv |inv |- inv
f64 | inv|inv |inv |- inv|inv |inv |inv |inv|inv [inv |inv |inv |inv | =
Notes chop = keep only low bits that fit; “-” = allowed, but no conversion needed;

inv = invalid, parse error.
Source register size must be of equal or greater size than the instruction-type
size.
Bit-size source registers may be used with any appropriately-sized instruction
type. The data are truncated (“chopped”) to the instruction-type size and inter-
preted according to the instruction type.
Integer source registers may be used with any appropriately-sized bit-size or in-
teger instruction type. The data are truncated to the instruction-type size and
interpreted according to the instruction type.
Floating-point source registers can only be used with bit-size or floating-point
instruction types. When used with a narrower bit-size instruction type, the data
are truncated. When used with a floating-point instruction type, the size must
match exactly.

When a destination operand has a size that exceeds the instruction-type size, the destination data is
zero- or sign-extended to the size of the destination register. If the corresponding instruction type is
signed integer, the data is sign-extended; otherwise, the data is zero-extended.

summarizes the relaxed type-checking rules for destination operands.
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Table 25: Relaxed Type-checking Rules for Destination
Operands

Destination Operand Type
b8 | b16 | b32 | b64 | s8 | s16 | s32 | s64 | u8 | ul6 | u32 | u64 | f16 | f32 | f64
In- b8 |- zext | zext| zext| - zext | zext| zext| - zext | zext | zext | zext | zext | zext
:itc::c"blﬁ inv | - zext| zext | inv | - zext| zext | inv | - zext | zext | - zext | zext
Type | b32 | inv | inv | - zext|inv |inv |- zext|inv |inv |- zext|inv |- zext
b64 | inv | inv |inv |- inv | inv |inv |- inv | inv |inv |- inv |inv |-
s8 |- sext| sext| sext| - sext| sext| sext| - sext| sext| sext| inv |inv |inv
s16 | inv | - sext| sext| inv | - sext| sext| inv | - sext| sext| inv |inv |inv
s32 | inv | inv |- sext|inv|inv |- sext|inv|inv |- sext| inv |inv |inv
s64 |inv |inv |[inv |- inv | inv |inv |- inv | inv |inv |- inv |inv |inv
ug | - zext | zext | zext | - zext | zext | zext | - zext| zext| zext| inv |inv | inv
ul6 | inv | - zext| zext | inv | - zext| zext | inv | - zext| zext| inv |inv |inv
u3d2 | inv |inv |- zext|inv |inv |- zext|inv |inv |- zext|inv [inv |inv
u4 | inv | inv |inv |- inv | inv |inv |- inv | inv |inv |- inv |inv |inv
f16 | inv | - zext| zext|inv [ inv |inv |inv |inv |inv |inv |inv |- inv |inv
f32 |inv|inv |- zext|inv|inv [inv |inv [inv|inv |inv |inv |inv |- inv
f64 | inv |inv |inv |- inv |inv |inv |[inv |inv|inv |inv |inv |inv |inv |-
Notes sext = sign-extend; zext = zero-extend; “-” = allowed, but no conversion needed;

inv = invalid, parse error.

Destination register size must be of equal or greater size than the instruction-
type size.

Bit-size destination registers may be used with any appropriately-sized instruc-
tion type. The data are sign-extended to the destination register width for signed
integer instruction types, and are zero-extended to the destination register width
otherwise.

Integer destination registers may be used with any appropriately-sized bit-size or
integer instruction type. The data are sign-extended to the destination register
width for signed integer instruction types, and are zero-extended to the destina-
tion register width for bit-size an d unsigned integer instruction types.
Floating-point destination registers can only be used with bit-size or floating-
point instruction types. When used with a narrower bit-size instruction type, the
data are zero-extended. When used with a floating-point instruction type, the
size must match exactly.
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Threads in a CTA execute together, at least in appearance, until they come to a conditional control con-
struct such as a conditional branch, conditional function call, or conditional return. If threads execute
down different control flow paths, the threads are called divergent. If all of the threads act in unison
and follow a single control flow path, the threads are called uniform. Both situations occur often in
programs.

A CTA with divergent threads may have lower performance than a CTA with uniformly executing
threads, so it is important to have divergent threads re-converge as soon as possible. All control con-
structs are assumed to be divergent points unless the control-flow instruction is marked as uniform,
using the .uni suffix. For divergent control flow, the optimizing code generator automatically deter-
mines points of re-convergence. Therefore, a compiler or code author targeting PTX can ignore the
issue of divergent threads, but has the opportunity to improve performance by marking branch points
as uniform when the compiler or author can guarantee that the branch point is non-divergent.

The goal of the semantic description of an instruction is to describe the results in all cases in as simple
language as possible. The semantics are described using C, until C is not expressive enough.

A PTX program may execute on a GPU with either a 16-bit or a 32-bit data path. When executing on a
32-bit data path, 16-bit registers in PTX are mapped to 32-bit physical registers, and 16-bit computa-
tions are promoted to 32-bit computations. This can lead to computational differences between code
run on a 16-bit machine versus the same code run on a 32-bit machine, since the promoted compu-
tation may have bits in the high-order half-word of registers that are not present in 16-bit physical
registers. These extra precision bits can become visible at the application level, for example, by a
right-shift instruction.

At the PTX language level, one solution would be to define semantics for 16-bit code that is consistent
with execution on a 16-bit data path. This approach introduces a performance penalty for 16-bit code
executing on a 32-bit data path, since the translated code would require many additional masking
instructions to suppress extra precision bits in the high-order half-word of 32-bit registers.

Rather than introduce a performance penalty for 16-bit code running on 32-bit GPUs, the seman-
tics of 16-bit instructions in PTX is machine-specific. A compiler or programmer may chose to en-
force portable, machine-independent 16-bit semantics by adding explicit conversions to 16-bit val-
ues at appropriate points in the program to guarantee portability of the code. However, for many
performance-critical applications, this is not desirable, and for many applications the difference in
execution is preferable to limiting performance.
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9.7. Instructions

All PTX instructions may be predicated. In the following descriptions, the optional guard predicate is

omitted from the syntax.

9.7.1. Integer Arithmetic Instructions

Integer arithmetic instructions operate on the integer types in register and constant immediate forms.

The integer arithmetic instructions are:

>

>

>

vV vV v vV vV YV YV Y VY VYV VYV Vv VvV Vv Vv Vv v v VvyYyYy

add
sub
mul
mad
mul24
mad24
sad
div
rem
abs
neg
min
max
popc
clz
bfind
fns
brev
bfe
bfi
bmsk
szext
dp4a
dp2a
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add

Add two values.

Syntax

add.type d, a, b;

add{.sat}.s32 d, a, b; // .sat applies only to .s32

.type = { .u16, .u32, .u64,
.s16, .s32, .s64,
.u16x2, .s16x2 };
Description
Performs addition and writes the resulting value into a destination register.

For .u16x2, .s16x2 instruction types, forms input vectors by half word values from source operands.
Half-word operands are then added in parallel to produce .u16x2, .s16x2 result in destination.

Operands d, a and b have type . type. Forinstruction types .u16x2, .s16x2, operands d, a and b have
type .b32.

Semantics
if (type == ul16x2 || type == s16x2) {
iA[@] = a[@:15];
iA[1] = a[16:31];
iB[@] = b[@:15];
iB[1] = b[16:31];

for (i =0; i < 2; i++) {
d[i] = iA[i] + iB[i];

}
} else {

d =a+ b;
}

Notes
Saturation modifier:

.sat limits result to MININT. .MAXINT (no overflow) for the size of the operation. Applies only to .s32
type.

PTX ISA Notes

Introduced in PTX ISA version 1.0.

add.u16x2 and add.s16x2 introduced in PTX ISA version 8.0.
Target ISA Notes

Supported on all target architectures.

add.u16x2 and add.s16x2 require sm_90 or higher.

Examples

@p add.u32 X,¥,Z;
add.sat.s32 c,c,1;
add.u16x2 u,v,w;
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sub
Subtract one value from another.

Syntax

sub.type d, a

sub{.sat}.s32 d, a, b; // .sat applies only to .s32

.type = { .u16, .u32, .u64,
.s16, .s32, .s64 };

Description

Performs subtraction and writes the resulting value into a destination register.

Semantics
d =a - b;
Notes

Saturation modifier:

.sat limits result to MININT. .MAXINT (no overflow) for the size of the operation. Applies only to
.832 type.

PTX ISA Notes

Introduced in PTX ISA version 1.0.
Target ISA Notes

Supported on all target architectures.

Examples

sub.s32 c,a,b;

mul
Multiply two values.

Syntax

mul.mode.type d, a, b;

.mode = { .hi, .lo, .wide };
.type = { .u16, .u32, .u64,

.s816, .s32, .s64 };
Description

Compute the product of two values.

Semantics
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t=a*b;

n = bitwidth of type;

d =t; // for .wide

d = t<2n-1..n>; // for .hi variant
d = t<n-1..0>; // for .lo variant
Notes

The type of the operation represents the types of the a and b operands. If .hi or .1lo is specified,
then d is the same size as a and b, and either the upper or lower half of the result is written to the
destination register. If .wide is specified, then d is twice as wide as a and b to receive the full result
of the multiplication.

The .wide suffix is supported only for 16- and 32-bit integer types.
PTX ISA Notes

Introduced in PTX ISA version 1.0.

Target ISA Notes

Supported on all target architectures.

Examples

mul.wide.s16 fa, fxs, fys; // 16*16 bits yields 32 bits

mul.lo.s16 fa, fxs, fys; // 16*16 bits, save only the low 16 bits
mul.wide.s32 z,x,y; // 32*32 bits, creates 64 bit result
mad

Multiply two values, optionally extract the high or low half of the intermediate result, and add a third
value.

Syntax

mad.mode.type d, a, b, c;
mad.hi.sat.s32 d, a, b, c;

.mode = { .hi, .lo, .wide };
.type = { .u16, .u32, .u64,
.s16, .s32, .s64 };

Description

Multiplies two values, optionally extracts the high or low half of the intermediate result, and adds a
third value. Writes the result into a destination register.

Semantics

a*b;

bitwidth of type;

t + c; // for .wide
t<2n-1..n> + c¢; // for .hi variant
t<n-1..0> + c; // for .lo variant

0O 0 0 35
n o mnnn

Notes
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The type of the operation represents the types of the a and b operands. If .hi or .lo is specified, then
d and c are the same size as a and b, and either the upper or lower half of the result is written to the
destination register. If .wide is specified, then d and c are twice as wide as a and b to receive the
result of the multiplication.

The .wide suffix is supported only for 16-bit and 32-bit integer types.

Saturation modifier:

.sat limits result to MININT. . MAXINT (no overflow) for the size of the operation.
Applies only to .s32 type in .hi mode.

PTX ISA Notes

Introduced in PTX ISA version 1.0.

Target ISA Notes

Supported on all target architectures.

Examples

@ mad.lo.s32 d,

a,b,c;
mad.lo.s32 r,p,q,r

mul24
Multiply two 24-bit integer values.
Syntax

mul24 .mode.type d, a, b;

.mode = { .hi, .lo };
.type = { .u32, .s32 };
Description

Compute the product of two 24-bit integer values held in 32-bit source registers, and return either the
high or low 32-bits of the 48-bit result.

Semantics

t=a*b;

d = t<47..16>; // for .hi variant
d = t<31..0>; // for .lo variant
Notes

Integer multiplication yields a result that is twice the size of the input operands, i.e., 48-bits.
mul24 . hi performs a 24x24-bit multiply and returns the high 32 bits of the 48-bit result.
mul24.lo performs a 24x24-bit multiply and returns the low 32 bits of the 48-bit result.

All operands are of the same type and size.

mul24.hi may be less efficient on machines without hardware support for 24-bit multiply.
PTX ISA Notes
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Introduced in PTX ISA version 1.0.
Target ISA Notes
Supported on all target architectures.

Examples

mul24.10.s32 d,a,b; // low 32-bits of 24x24-bit signed multiply.

mad24
Multiply two 24-bit integer values and add a third value.

Syntax

mad24 .mode.type d, a, b, c;
mad24 .hi.sat.s32 d, a, b, c;
.mode = { .hi, .lo };

.type = { .u32, .s32 };
Description

Compute the product of two 24-bit integer values held in 32-bit source registers, and add a third, 32-
bit value to either the high or low 32-bits of the 48-bit result. Return either the high or low 32-bits of
the 48-bit result.

Semantics

t=a*b;

d = t<47..16> + c; // for .hi variant
d = t<31..0> + c; // for .lo variant
Notes

Integer multiplication yields a result that is twice the size of the input operands, i.e., 48-bits.

mad24 . hi performs a 24x24-bit multiply and adds the high 32 bits of the 48-bit result to a third value.
mad24 . 1o performs a 24x24-bit multiply and adds the low 32 bits of the 48-bit result to a third value.
All operands are of the same type and size.

Saturation modifier:

.sat limits result of 32-bit signed addition to MININT. .MAXINT (no overflow). Applies only to .s32
type in .hi mode.

mad24 .hi may be less efficient on machines without hardware support for 24-bit multiply.
PTX ISA Notes

Introduced in PTX ISA version 1.0.

Target ISA Notes

Supported on all target architectures.

Examples
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mad24.10.s32 d,a,b,c; // low 32-bits of 24x24-bit signed multiply.

sad

Sum of absolute differences.
Syntax

sad.type d, a, b, c;

.type = { .u16, .u32, .u64,
.s16, .s32, .s64 };

Description
Adds the absolute value of a-b to ¢ and writes the resulting value into d.

Semantics

d =c + ((a<b) ? b-a : a-b);

PTX ISA Notes

Introduced in PTX ISA version 1.0.
Target ISA Notes

Supported on all target architectures.

Examples

sad.s32 d,a,b,c;
sad.u32 d,a,b,d; // running sum

div

Divide one value by another.
Syntax

div.type d, a, b;

.type = { .u16, .u32, .u64,
.s16, .s32, .s64 };

Description

Divides a by b, stores result in d.

Semantics

d=a/b;
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Notes

Division by zero yields an unspecified, machine-specific value.
PTX ISA Notes

Introduced in PTX ISA version 1.0.

Target ISA Notes

Supported on all target architectures.

Examples

div.s32 b,n,i;

rem

The remainder of integer division.
Syntax

rem.type d, a, b;

.type = { .u16, .u32, .ub4,

.s16, .s32, .s64 };
Description
Divides a by b, store the remainder in d.

Semantics

d=a%b;

Notes

The behavior for negative numbers is machine-dependent and depends on whether divide rounds to-
wards zero or negative infinity.

PTX ISA Notes

Introduced in PTX ISA version 1.0.
Target ISA Notes

Supported on all target architectures.

Examples

rem.s32 x,Xx,8; /] x = x%8;
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abs
Absolute value.

Syntax

abs.type d, a;

.type = { .s16, .s32, .s64 };

Description
Take the absolute value of a and store it in d.

Semantics

d = |al;

Notes

Only for signed integers.

PTX ISA Notes

Introduced in PTX ISA version 1.0.
Target ISA Notes

Supported on all target architectures.

Examples

abs.s32 r9,a;

neg
Arithmetic negate.

Syntax
neg.type d, a;

.type = { .s16, .s32, .s64 };

Description

Negate the sign of a and store the result in d.

Semantics

d = -a;

Notes

Only for signed integers.

PTX ISA Notes

Introduced in PTX ISA version 1.0.
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Target ISA Notes
Supported on all target architectures.

Examples

neg.s32 r0,a;

min
Find the minimum of two values.

Syntax

min.atype d, a, b;
min{.relu}.btype d, a, b;

.atype = { .u16, .u32, .u64,
.u16x2, .s16, .s64 };

.btype = { .s16x2, .s32 };

Description

Store the minimum of aand bin d.

For .u16x2, .s16x2 instruction types, forms input vectors by half word values from source operands.
Half-word operands are then processed in parallel to produce .u16x2, .s16x2 result in destination.

Operands d, a and b have the same type as the instruction type. For instruction types .u16x2, .s16x2,
operands d, a and b have type .b32.

Semantics

if (type == ul16x2 || type == s16x2) {

iA[@] = a[@:15];
iA[1] = a[16:31];
iB[@] = b[0©:15];
iB[1] = b[16:31];

for (1 = 0; i < 2; i++) {
d[i] = (iA[i] < iB[i]) ? iA[i] : iB[i];

d=(a<b) ?a:b; // Integer (signed and unsigned)

Notes

Signed and unsigned differ.

Saturation modifier: min.relu. {s16x2, s32} clamps the result to O if negative.

PTX ISA Notes

Introduced in PTX ISA version 1.0.

min.u16x2,min{.relu}.s16x2 andmin.relu.s32 introduced in PTX ISA version 8.0.
Target ISA Notes

Supported on all target architectures.
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min.u16x2,min{.relu}.s16x2 and min.relu.s32 require sm_90 or higher.

Examples

min.s32 r0,a,b;
@ min.ul6 h,i,j;
min.s16x2.relu u,v,w;

max
Find the maximum of two values.

Syntax

max.atype d, a

o o
max{.relu}.btype d, a, b;

.atype = { .ul16, .u32, .u64,
.u16x2, .s16, .s64 };

.btype = { .s16x2, .s32 };

Description

Store the maximum of a and b in d.

For .u16x2, .s16x2 instruction types, forms input vectors by half word values from source operands.
Half-word operands are then processed in parallel to produce .u16x2, .s16x2 result in destination.

Operands d, a and b have the same type as the instruction type. For instruction types .u16x2, .s16x2,
operands d, a and b have type .b32.

Semantics
if (type == ul16x2 || type == s16x2) {
iA[@] = a[@:15];
iA[1] = a[16:31];
iB[@] = b[0©:15];
iB[1] = b[16:31];

for (i =0; i < 2; i++) {
d[i] = (iA[i] > iB[i]) ? iA[i] : iB[i];

}
} else {

d=(a>b) ?2a:b; // Integer (signed and unsigned)
}

Notes

Signed and unsigned differ.

Saturation modifier: max.relu.{s16x2, s32} clamps the result to O if negative.

PTX ISA Notes

Introduced in PTX ISA version 1.0.

max.u16x2, max{.relu}.s16x2 and max.relu.s32 introduced in PTX ISA version 8.0.
Target ISA Notes

Supported on all target architectures.
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max.u16x2, max{.relu}.s16x2 and max.relu.s32 require sm_90 or higher.

Examples

max.u32 d,a,b;
max.s32 q,q,0;
max.relu.s16x2 t,t,u;

popc

Population count.

Syntax

popc.type d, a;

.type = { .b32, .b64 };

Description

Count the number of one bitsin a and place the resulting population count in 32-bit destination register
d. Operand a has the instruction type and destination d has type .u32.

Semantics

.u32 d = 0;
while (a !'= @) {
if (a & Ox1) d++;
a=a>>1;
}
PTX ISA Notes
Introduced in PTX ISA version 2.0.
Target ISA Notes
popc requires sm_20 or higher.
Examples

popc.b32 d, a;
popc.b64 cnt, X; // cnt is .u32

clz
Count leading zeros.

Syntax

clz.type d, a;

.type = { .b32, .b64 };
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Description

Count the number of leading zeros in a starting with the most-significant bit and place the result in
32-bit destination register d. Operand a has the instruction type, and destination d has type .u32. For
.b32 type, the number of leading zeros is between O and 32, inclusively. For .b64 type, the number of
leading zeros is between 0 and 64, inclusively.

Semantics

.u32 d = 0;

if (.type == .b32) { max = 32; mask = 0x80000000; }

else { max = 64; mask = Ox8000000000000000; }

while (d < max && (a&mask == 0) ) {
d++;
a=a << 1;

}

PTX ISA Notes

Introduced in PTX ISA version 2.0.

Target ISA Notes

clz requires sm_20 or higher.

Examples

clz.b32 d, a;
clz.b64 cnt, X; // cnt is .u32

bfind

Find most significant non-sign bit.
Syntax

bfind.type d, a;

bfind.shiftamt.type d, a;

.type = { .u32, .u64,
.s32, .s64 };
Description

Find the bit position of the most significant non-sign bit in a and place the result in d. Operand a has
the instruction type, and destination d has type .u32. For unsigned integers, bfind returns the bit
position of the most significant 1. For signed integers, bfind returns the bit position of the most
significant @ for negative inputs and the most significant 1 for non-negative inputs.

If .shiftamt is specified, bfind returns the shift amount needed to left-shift the found bit into the
most-significant bit position.

bfind returns @xffffffff if no non-sign bit is found.

Semantics
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msb = (.type==.u32 || .type==.s832) ? 31 : 63;

// negate negative signed inputs

if ( (.type==.s832 || .type==.s64) && (a & (1<<msb)) ) {
a = ~a;

}

.u32 d = exffffffff;
for (.s32 i=msb; i>=0; i--) {

if (a & (1<<i)) { d = i; break; }
}

if (.shiftamt && d !'= exffffffff) { d = msb - d; }

PTX ISA Notes

Introduced in PTX ISA version 2.0.
Target ISA Notes

bfind requires sm_20 or higher.

Examples

bfind.u32 d, a;
bfind.shiftamt.s64 c¢nt, X; // cnt is .u32

fns
Find the n-th set bit
Syntax

fns.b32 d, mask, base, offset;

Description

Given a 32-bit value mask and an integer value base (between 0 and 31), find the n-th (given by offset)
set bit in mask from the base bit, and store the bit position in d. If not found, store Oxffffffff in d.

Operand mask has a 32-bit type. Operand base has .b32, .u32 or .s32 type. Operand offset has
.s32 type. Destination d has type .b32.

Operand base must be <= 31, otherwise behavior is undefined.

Semantics

d = exffffffff;
if (offset == 0) {
]

if (mask[base] == 1) {
d = base;
}
} else {
pos = base;
count = |offset| - 1;
inc = (offset >0) 2 1 : -1;
while ((pos >= @) && (pos < 32)) {
if (mask[pos] == 1) {
if (count == 0) {

(continues on next page)
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(continued from previous page)

d = pos;
break;
} else {
count = count — 1;
}
}
pos = pos + inc;
}
}
PTX ISA Notes

Introduced in PTX ISA version 6.0.
Target ISA Notes

fns requires sm_30 or higher.

Examples

fns.b32 d, Oxaaaaaaaa, 3, 1; // d =3
fns.b32 d, Oxaaaaaaaa, 3, -1; // d =3
fns.b32 d, Oxaaaaaaaa, 2, 1; // d =3
fns.b32 d, Oxaaaaaaaa, 2, -1; // d =1

brev
Bit reverse.

Syntax

brev.type d, a;

.type = { .b32, .b64 };

Description
Perform bitwise reversal of input.
Semantics

msb = (.type==.b32) ? 31 : 63;

for (i=0; i<=msb; i++) {
d[i] = a[msb-i];
}
PTX ISA Notes
Introduced in PTX ISA version 2.0.
Target ISA Notes

brev requires sm_20 or higher.

Examples
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brev.b32 d, a;

bfe
Bit Field Extract.
Syntax

bfe.type d, a, b, c;

.type = { .u32, .u64,
.832, .s64 };
Description

Extract bit field from a and place the zero or sign-extended result in d. Source b gives the bit field
starting bit position, and source c gives the bit field length in bits.

Operands a and d have the same type as the instruction type. Operands b and c are type .u32, but
are restricted to the 8-bit value range 0. .255.

The sign bit of the extracted field is defined as:
.u32, .u64: zero

.832, .s64: msb of input a if the extracted field extends beyond the msb of a msb of extracted field,
otherwise

If the bit field length is zero, the result is zero.

The destination d is padded with the sign bit of the extracted field. If the start position is beyond the
msb of the input, the destination d is filled with the replicated sign bit of the extracted field.

Semantics
msb = (.type==.u32 || .type==.s832) ? 31 : 63;
pos = b & oxff; // pos restricted to 0..255 range
len = ¢ & Oxff; // len restricted to 0..255 range
if (.type==.u32 || .type==.u64 || len==0)

sbit = 0;
else

sbit = a[min(pos+len-1,msb)];

d =9;
for (i=0; i<=msb; i++) {

d[i] = (i<len && pos+i<=msb) ? a[pos+i] : sbit;
}

PTX ISA Notes

Introduced in PTX ISA version 2.0.
Target ISA Notes

bfe requires sm_20 or higher.

Examples
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bfe.b32 d,a,start,len;

bfi

Bit Field Insert.

Syntax

bfi.type f, a, b, c, d;
.type = { .b32, .b64 };

Description

Align and insert a bit field from a into b, and place the result in f. Source c gives the starting bit
position for the insertion, and source d gives the bit field length in bits.

Operands a, b, and f have the same type as the instruction type. Operands c and d are type .u32, but
are restricted to the 8-bit value range 6. .255.

If the bit field length is zero, the result is b.
If the start position is beyond the msb of the input, the result is b.

Semantics
msb = (.type==.b32) ? 31 : 63;
pos = ¢ & @xff; // pos restricted to 0..255 range
len = d & Oxff; // len restricted to 0..255 range
f =b;
for (i=0; i<len && pos+i<=msb; i++) {
flpos+i] = a[il;
}

PTX ISA Notes

Introduced in PTX ISA version 2.0.
Target ISA Notes

bfi requires sm_20 or higher.

Examples

bfi.b32 d,a,b,start,len;
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szext
Sign-extend or Zero-extend.

Syntax

szext.mode.type d, a, b;

.mode = { .clamp, .wrap };
.type = { .u32, .s32 };
Description

Sign-extends or zero-extends an N-bit value from operand a where N is specified in operand b. The
resulting value is stored in the destination operand d.

For the .s32 instruction type, the value in a is treated as an N-bit signed value and the most significant
bit of this N-bit value is replicated up to bit 31. For the .u32 instruction type, the value in a is treated
as an N-bit unsigned number and is zero-extended to 32 bits. Operand b is an unsigned 32-bit value.

If the value of N is O, then the result of szext is 0. If the value of N is 32 or higher, then the result of
szext depends upon the value of the .mode qualifier as follows:

If .mode is .clamp, then the result is the same as the source operand a.

If .mode is .wrap, then the result is computed using the wrapped value of N.

Semantics
b1 = b & Ox1f;
too_large = (b >= 32 && .mode == .clamp) ? true : false;
mask = too_large ? @ : (~0) << b1;
sign_pos = (b1 - 1) & @x1f;
if (b1 == @ || too_large || .type !'= .s32) {
sign_bit = false;
} else {

sign_bit = (a >> sign_pos) & 1;
}
d = (a & ~mask) | (sign_bit ? mask | 0);

PTX ISA Notes

Introduced in PTX ISA version 7.6.
Target ISA Notes

szext requires sm_70 or higher.

Examples

szext.clamp.s32 rd, ra, rb;
szext.wrap.u32 rd, oxffffffff, ©; // Result is @.
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bmsk
Bit Field Mask.
Syntax

bmsk .mode.b32 d, a, b;

.mode = { .clamp, .wrap };

Description

Generates a 32-bit mask starting from the bit position specified in operand a, and of the width speci-
fied in operand b. The generated bitmask is stored in the destination operand d.

The resulting bitmask is 0 in the following cases:
When the value of a is 32 or higher and .mode is .clamp.

When either the specified value of b or the wrapped value of b (when .mode is specified as .wrap)

is O.
Semantics
al = a & Ox1f;
mask® = (~B) << al;
b1 = b & Ox1f;
sum = al + b1;
mask1l = (~@) << sum;

sum >= 32 ? true : false;
false;
false;

sum-overflow
bit-position-overflow
bit-width-overflow

if (.mode == .clamp) {
if (a >= 32) {
bit-position-overflow = true;
maskd = 0;
}
if (b >= 32) {
bit-width-overflow = true;

}

}

if (sum-overflow || bit-position-overflow || bit-width-overflow) {
mask1 = 0;

} else if (b1 == 0) {
mask1l = ~0;

}
d = mask® & ~mask1;

Notes

The bitmask width specified by operand b is limited to range 0. .32 in .clamp mode and to range
0..317in .wrap mode.

PTX ISA Notes
Introduced in PTX ISA version 7.6.
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Target ISA Notes
bmsk requires sm_70 or higher.
Examples

bmsk.clamp.b32 rd, ra, rb;
bmsk.wrap.b32 rd, 1, 2; // Creates a bitmask of Ox00000006.

dp4da

Four-way byte dot product-accumulate.
Syntax

dp4a.atype.btype d, a, b, c;
.atype = .btype = { .u32, .s32 };

Description

Four-way byte dot product which is accumulated in 32-bit result.

Operand a and b are 32-bit inputs which hold 4 byte inputs in packed form for dot product.
Operand c has type .u32 if both .atype and .btype are .u32 else operand c has type .s32.

Semantics
d =c;

// Extract 4 bytes from a 32bit input and sign or zero extend
// based on input type.

Va = extractAndSignOrZeroExt_4(a, .atype);

Vb = extractAndSignOrZeroExt_4(b, .btype);

for (1 = 0; i < 4; ++i) {
d += Va[i] * Vb[i];
}

PTX ISA Notes
Introduced in PTX ISA version 5.0.
Target ISA Notes

Requires sm_61 or higher.

Examples
dp4a.u32.u32 do, a6, bo, cO;
dp4a.u32.s32 d1, a1, b1, c1;
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dp2a
Two-way dot product-accumulate.

Syntax
dp2a.mode.atype.btype d, a, b, c;

.atype = .btype = { .u32, .s32 };

.mode = { .lo, .hi };

Description

Two-way 16-bit to 8-bit dot product which is accumulated in 32-bit result.

Operand a and b are 32-bit inputs. Operand a holds two 16-bits inputs in packed form and operand b
holds 4 byte inputs in packed form for dot product.

Depending on the .mode specified, either lower half or upper half of operand b will be used for dot
product.

Operand ¢ has type .u32 if both .atype and .btype are .u32 else operand c has type .s32.
Semantics

d =c;

// Extract two 16-bit values from a 32-bit input and sign or zero extend
// based on input type.

Va = extractAndSignOrZeroExt_2(a, .atype);

// Extract four 8-bit values from a 32-bit input and sign or zer extend
// based on input type.
Vb = extractAndSignOrZeroExt_4(b, .btype);

b_select = (.mode == .1lo) ? @ : 2;

for (1 = 0; i < 2; ++i) {

d += Va[i] * Vb[b_select + i];
}
PTX ISA Notes
Introduced in PTX ISA version 5.0.
Target ISA Notes

Requires sm_61 or higher.

Examples
dp2a.lo.u32.u32 de, a0, beo, co;
dp2a.hi.u32.s32 d1, a1, b1, c1;

9.7. Instructions 119



PTX ISA, Release 8.1

Instructions add. cc, addc, sub.cc, subc, mad. cc and madc reference animplicitly specified condition
code register (CC) having a single carry flag bit (CC . CF) holding carry-in/carry-out or borrow-in/borrow-
out. These instructions support extended-precision integer addition, subtraction, and multiplication.
No other instructions access the condition code, and there is no support for setting, clearing, or testing
the condition code. The condition code register is not preserved across calls and is mainly intended for
use in straight-line code sequences for computing extended-precision integer addition, subtraction,
and multiplication.

The extended-precision arithmetic instructions are:
add.cc, addc
sub.cc, subc

mad . cc, madc

add.cc
Add two values with carry-out.

Syntax
add.cc.type d, a, b;

.type = { .u32, .s32, .u64, .s64 };

Description
Performs integer addition and writes the carry-out value into the condition code register.

Semantics

d =a+ b;

carry-out written to CC.CF

Notes

No integer rounding modifiers.

No saturation.

Behavior is the same for unsigned and signed integers.
PTX ISA Notes

32-bit add. cc introduced in PTX ISA version 1.2.
64-bit add. cc introduced in PTX ISA version 4.3.
Target ISA Notes

32-bit add. cc is supported on all target architectures.
64-bit add.cc requires sm_20 or higher.

Examples
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@ add.cc.u32 x1,y1,z1; // extended-precision addition of
@p addc.cc.u32 x2,y2,z2; // two 128-bit values

@p addc.cc.u32 x3,y3,z3;

@p addc.u32 x4,y4,z4;

addc
Add two values with carry-in and optional carry-out.

Syntax
addc{.cc}.type d, a, b;

.type = { .u32, .s32, .u64, .s64 };

Description

Performs integer addition with carry-in and optionally writes the carry-out value into the condition
code register.

Semantics

d=a+b+ CC.CF;

if .cc specified, carry-out written to CC.CF

Notes

No integer rounding modifiers.

No saturation.

Behavior is the same for unsigned and signed integers.
PTX ISA Notes

32-bit addc introduced in PTX ISA version 1.2.
64-bit addc introduced in PTX ISA version 4.3.
Target ISA Notes

32-bit addc is supported on all target architectures.
64-bit addc requires sm_20 or higher.

Examples

@ add.cc.u32 x1,y1,z1; // extended-precision addition of
@p addc.cc.u32 x2,y2,z2; // two 128-bit values

@p addc.cc.u32 x3,y3,z3;

@p addc.u32 x4,y4,z4;
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sub.cc
Subtract one value from another, with borrow-out.

Syntax

sub.cc.type d, a, b;

.type = { .u32, .s32, .u64, .s64 };

Description

Performs integer subtraction and writes the borrow-out value into the condition code register.

Semantics

d =a - b;

borrow-out written to CC.CF

Notes

No integer rounding modifiers.

No saturation.

Behavior is the same for unsigned and signed integers.
PTX ISA Notes

32-bit sub.cc introduced in PTX ISA version 1.2.
64-bit sub . cc introduced in PTX ISA version 4.3.
Target ISA Notes

32-bit sub.cc is supported on all target architectures.
64-bit sub.cc requires sm_20 or higher.

Examples

@p sub.cc.u32 x1,y1,z1; // extended-precision subtraction
@p subc.cc.u32 x2,y2,z2; // of two 128-bit values

@p subc.cc.u32 x3,y3,z3;

@p subc.u32 x4,y4,z4;

subc
Subtract one value from another, with borrow-in and optional borrow-out.

Syntax

subc{.cc}.type d, a, b;

.type = { .u32, .s32, .u64, .s64 };
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Description

Performs integer subtraction with borrow-in and optionally writes the borrow-out value into the con-
dition code register.

Semantics

d=a - (b+ CC.CF);

if . cc specified, borrow-out written to CC.CF
Notes

No integer rounding modifiers.

No saturation.

Behavior is the same for unsigned and signed integers.
PTX ISA Notes

32-bit subc introduced in PTX ISA version 1.2.
64-bit subc introduced in PTX ISA version 4.3.
Target ISA Notes

32-bit subc is supported on all target architectures.
64-bit subc requires sm_20 or higher.

Examples

@p sub.cc.u32 x1,y1,z1; // extended-precision subtraction
@p subc.cc.u32 x2,y2,z2; // of two 128-bit values

@p subc.cc.u32 x3,y3,z3;

@p subc.u32 x4,y4,z4;

mad.cc

Multiply two values, extract high or low half of result, and add a third value with carry-out.
Syntax

mad{.hi, .lo}.cc.type d, a, b, c;

.type = { .u32, .s32, .u64, .s64 };

Description

Multiplies two values, extracts either the high or low part of the result, and adds a third value. Writes
the result to the destination register and the carry-out from the addition into the condition code
register.

Semantics
t =a*b;
d = t<63..32> + c; // for .hi variant
d = t<31..0> + c; // for .lo variant
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carry-out from addition is written to CC.CF
Notes

Generally used in combination with madc and addc to implement extended-precision multi-word mul-
tiplication. See madc for an example.

PTX ISA Notes

32-bit mad. cc introduced in PTX ISA version 3.0.
64-bit mad. cc introduced in PTX ISA version 4.3.
Target ISA Notes

Requires target sm_20 or higher.

Examples

@ mad.lo.cc.u32 d,

a,b,c;
mad.lo.cc.u32 r,p,q,r

madc

Multiply two values, extract high or low half of result, and add a third value with carry-in and optional
carry-out.

Syntax
madc{.hi, .lo}{.cc}.type d, a, b, c;

.type = { .u32, .s32, .u64, .s64 };

Description

Multiplies two values, extracts either the high or low part of the result, and adds a third value along
with carry-in. Writes the result to the destination register and optionally writes the carry-out from the
addition into the condition code register.

Semantics
t=a*b;
d = t<63..32> + ¢ + CC.CF; // for .hi variant
d = t<31..8> + ¢ + CC.CF; // for .lo variant

if . cc specified, carry-out from addition is written to CC.CF
Notes

Generally used in combination with mad.cc and addc to implement extended-precision multi-word
multiplication. See example below.

PTX ISA Notes

32-bit madc introduced in PTX ISA version 3.0.
64-bit madc introduced in PTX ISA version 4.3.
Target ISA Notes

Requires target sm_20 or higher.
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Examples

// extended-precision multiply:

mul.lo.u32 ro,r4,r6; //
mul.hi.u32 ri,r4,r6; //
mad.lo.cc.u32 r1,r5,r6,r1; //
madc.hi.u32 r2,r5,r6,0; //

//

mad.lo.cc.u32
madc.hi.cc.u32

ri,rd,r7,r1; //
r2,r4,r7,r2; //

//
addc.u32 r3,0,0; //
mad.lo.cc.u32 r2,r5,r7,r2; //
madc.hi.u32 r3,r5,r7,r3; //

[r3,r2,r1,r0] = [r5,r4] * [r7,r6]
ro=(r4*r6).[31:0], no carry-out
ri=(r4*r6).[63:32], no carry-out
ri+=(r5*r6).[31:8], may carry-out
r2 =(r5*r6).[63:32]+carry-in,

no carry-out

ri+=(r4*r7).[31:0], may carry-out
r2+=(r4*r7).[63:32]+carry-in,

may carry-out

r3 = carry-in, no carry-out
r2+=(r5*r7).[31:8], may carry-out
r3+=(r5*r7).[63:32]+carry-in

Floating-point instructions operate on .32 and . f64 register operands and constant immediate val-
ues. The floating-point instructions are:

testp
copysign
add
sub
mul
fma
mad
div
abs
neg
min
max
rcp
sqrt
rsqrt
sin
cos
1g2
ex2
tanh

Instructions that support rounding modifiers are IEEE-754 compliant. Double-precision instructions
support subnormal inputs and results. Single-precision instructions support subnormal inputs and
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results by default for sm_20 and subsequent targets, and flush subnormal inputs and results to sign-
preserving zero for sm_1x targets. The optional .ftz modifier on single-precision instructions pro-
vides backward compatibility with sm_1x targets by flushing subnormal inputs and results to sign-
preserving zero regardless of the target architecture.

Single-precision add, sub, mul, and mad support saturation of results to the range [0.0, 1.0], with NaNs
being flushed to positive zero. NaN payloads are supported for double-precision instructions (except
for rcp.approx.ftz.f64and rsqrt.approx.ftz.f64, which maps input NaNs to a canonical NaN).
Single-precision instructions return an unspecified NaN. Note that future implementations may sup-
port NaN payloads for single-precision instructions, so PTX programs should not rely on the specific
single-precision NaNs being generated.

summarizes floating-point instructions in PTX.
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Table 26: Summary of Floating-Point Instructions

Instruction an | rz | .rm | .rp | ftz | .sat | Notes

{add, sub, X X X X X X If no rounding modifier is specified, default

mul}.rnd.f32 is .rn and instructions may be folded into a
multiply-add.

{add, sub, X X X X n/a | nfa | If no rounding modifier is specified, default

mul}.rnd.f64 is .rn and instructions may be folded into a
multiply-add.

mad . f32 nfa|nfa|nfa|nfa|x X .target sm_1x
No rounding modifier.

{mad, fma}. X X X X X X .target sm_20 or higher

rnd.f32 mad.f32 and fma.f32 are the same

{mad, fma}. X X X X n/a | nfa | mad.f64 and fma.f64 are the same

rnd.fé64

div.full.f32 |n/a|nfa|nfa|nfa|x n/a | No rounding modifier.

{div, rcp, nfa|nfa|nfa|nfalx n/a | n/a

sqrt}.

approx.f32

rcp.approx. nfa|nfa|nfa|nfa|x n/a | .target sm_20 or higher

ftz.f64

{div, rcp, X X X X X n/a | .target sm_20 or higher

sqrt}.rnd.

32

{div, rcp, X X X X n/a | nfa | .target sm_20 or higher

sqrt}.rnd.

f64

{abs, neg, nfa|nfa|nfa|nfalx n/a

min,max}.f32

{abs, neg, nfalnf/alnfa|nfalnf/alnfa

min,max}.f64

rsqrt. nfa|nfa|nfa|nfa|x n/a

approx.f32

rsqrt. nfa|nfa|nfa|nfa|n/fa|n/a

approx.fé4

rsqrt. nfa | nfa|nfa|nfa|x n/a | .target sm_20 or higher

approx.ftz.

f64

{sin, cos, nfa|nfa|nfa|nfalx n/a

1g2,ex2}.

approx.f32

tanh.approx. |n/a|nfa|nfa|nfa|nfa|nfa | .target sm_75 or higher

32
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testp
Test floating-point property.
Syntax

testp.op.type p, a; // result is .pred

.op = { .finite, .infinite,
.number, .notanumber,
.normal, .subnormal };

{ .f32, .fe4 };

.type

Description

testp tests common properties of floating-point numbers and returns a predicate value of 1 if True
and @ if False.

testp.finite True if the input is not infinite or NaN

testp.infinite True if the input is positive or negative infinity
testp.number True if the input is not NaN

testp.notanumber True if the input is NaN

testp.normal True if the input is a normal number (not NaN, not infinity)
testp.subnormal True if the input is a subnormal number (not NaN, not infinity)
As a special case, positive and negative zero are considered normal numbers.
PTX ISA Notes

Introduced in PTX ISA version 2.0.

Target ISA Notes

Requires sm_20 or higher.

Examples

testp.notanumber.f32 isnan, f0;
testp.infinite.f64 p, X;

copysign
Copy sign of one input to another.

Syntax
copysign.type d, a, b;
.type = { .f32, .f64 };

Description

Copy sign bit of a into value of b, and return the result as d.
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PTX ISA Notes

Introduced in PTX ISA version 2.0.
Target ISA Notes

Requires sm_20 or higher.

Examples

copysign.f32 x, y, z;
copysign.fé4 A, B, C;

add
Add two values.

Syntax

add{.rnd}{.ftz}{.sat}.f32 d, a, b;
add{.rnd}.f64 d, a, b;

.rnd = { .rn, .rz, .rm, .rp };

Description
Performs addition and writes the resulting value into a destination register.
Semantics

d =a+ b;

Notes

Rounding modifiers:

.rn mantissa LSB rounds to nearest even

. rz mantissa LSB rounds towards zero

.rm mantissa LSB rounds towards negative infinity
. rp mantissa LSB rounds towards positive infinity

The default value of rounding modifier is . rn. Note that an add instruction with an explicit rounding
modifier is treated conservatively by the code optimizer. An add instruction with no rounding modifier
defaults to round-to-nearest-even and may be optimized aggressively by the code optimizer. In par-
ticular, mul/add sequences with no rounding modifiers may be optimized to use fused-multiply-add
instructions on the target device.

Subnormal numbers:
sm_20+ By default, subnormal numbers are supported.

add.ftz.f32 flushes subnormal inputs and results to sign-preserving zero.
sm_1x add.f64 supports subnormal numbers.

add. f32 flushes subnormal inputs and results to sign-preserving zero.
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Saturation modifier:
add.sat.f32 clamps the result to [0.0, 1.0]. NaN results are flushed to +0.0f.
PTX ISA Notes
Introduced in PTX ISA version 1.0.
Target ISA Notes
add. f32 supported on all target architectures.
add. f64 requires sm_13 or higher.
Rounding modifiers have the following target requirements:
.rn, .rz available for all targets
.rm, .rp for add.f64, requires sm_13 or higher.
for add. f32, requires sm_280 or higher.

Examples

@ add.rz.ftz.f32 f1,f2,f3;

sub
Subtract one value from another.

Syntax

sub{.rnd}{.ftz}{.sat}.f32 d, a,
sub{.rnd}.f64 d, a,

O O

.rnd = { .rn, .rz, .rm, .rp };

Description

Performs subtraction and writes the resulting value into a destination register.

Semantics
d =a - b;
Notes

Rounding modifiers:

.rn mantissa LSB rounds to nearest even

. rz mantissa LSB rounds towards zero

.rm mantissa LSB rounds towards negative infinity
.rp mantissa LSB rounds towards positive infinity

The default value of rounding modifier is . rn. Note that a sub instruction with an explicit rounding
modifier is treated conservatively by the code optimizer. A sub instruction with no rounding modifier
defaults to round-to-nearest-even and may be optimized aggressively by the code optimizer. In par-
ticular, mul/sub sequences with no rounding modifiers may be optimized to use fused-multiply-add
instructions on the target device.
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Subnormal numbers:
sm_20+ By default, subnormal numbers are supported.
sub.ftz.f32 flushes subnormal inputs and results to sign-preserving zero.
sm_1x sub.f64 supports subnormal numbers.
sub. f32 flushes subnormal inputs and results to sign-preserving zero.
Saturation modifier:
sub.sat.f32 clamps the result to [0.0, 1.0]. NaN results are flushed to +0.0f.
PTX ISA Notes
Introduced in PTX ISA version 1.0.
Target ISA Notes
sub . f32 supported on all target architectures.
sub.f64 requires sm_13 or higher.
Rounding modifiers have the following target requirements:
.rn, .rz available for all targets
.rm, .rp for sub.f64, requires sm_13 or higher.
for sub.f32, requires sm_20 or higher.

Examples

sub.f32 c,a,b;
sub.rn.ftz.f32 f1,f2,f3;

mul
Multiply two values.

Syntax

mul{.rnd}{.ftz}{.sat}.f32 d, a,
mul{.rnd}.f64 d, a,

o T

.rnd = { .rn, .rz, .rm, .rp };

Description
Compute the product of two values.

Semantics

d =a * b;

Notes
For floating-point multiplication, all operands must be the same size.
Rounding modifiers:

. rn mantissa LSB rounds to nearest even
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. rz mantissa LSB rounds towards zero
.rm mantissa LSB rounds towards negative infinity
. rp mantissa LSB rounds towards positive infinity

The default value of rounding modifier is . rn. Note that a mul instruction with an explicit rounding
modifier is treated conservatively by the code optimizer. A mul instruction with no rounding modi-
fier defaults to round-to-nearest-even and may be optimized aggressively by the code optimizer. In
particular, mul/add and mul/sub sequences with no rounding modifiers may be optimized to use
fused-multiply-add instructions on the target device.

Subnormal numbers:
sm_20+ By default, subnormal numbers are supported.
mul.ftz.f32 flushes subnormal inputs and results to sign-preserving zero.
sm_1x mul.f64 supports subnormal numbers.
mul. f32 flushes subnormal inputs and results to sign-preserving zero.
Saturation modifier:
mul.sat.f32 clamps the result to [0.0, 1.0]. NaN results are flushed to +0.0f.
PTX ISA Notes
Introduced in PTX ISA version 1.0.
Target ISA Notes
mul.f32 supported on all target architectures.
mul.f64 requires sm_13 or higher.
Rounding modifiers have the following target requirements:
.rn, .rz available for all targets
.rm, .rp formul.f64, requires sm_13 or higher.
formul.f32, requires sm_20 or higher.

Examples

mul.ftz.f32 circumf, radius,pi // a single-precision multiply

fma

Fused multiply-add.

Syntax
fma.rnd{.ftz}{.sat}.f32 d, a, b, c;
fma.rnd.f64 d, a, b, c;

.rnd = { .rn, .rz, .rm, .rp };

Description

Performs a fused multiply-add with no loss of precision in the intermediate product and addition.
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Semantics

d = a*b + c;

Notes

fma.f32 computes the product of a and b to infinite precision and then adds c to this product, again
in infinite precision. The resulting value is then rounded to single precision using the rounding mode
specified by . rnd.

fma.f64 computes the product of a and b to infinite precision and then adds c to this product, again
in infinite precision. The resulting value is then rounded to double precision using the rounding mode
specified by . rnd.

fma.f64 is the same as mad. f64.
Rounding modifiers (no default):
. rn mantissa LSB rounds to nearest even
. rz mantissa LSB rounds towards zero
.rm mantissa LSB rounds towards negative infinity
. rp mantissa LSB rounds towards positive infinity
Subnormal numbers:
sm_20+ By default, subnormal numbers are supported.
fma.ftz.f32 flushes subnormal inputs and results to sign-preserving zero.
sm_1x fma.f64 supports subnormal numbers.
fma.f32 is unimplemented for sm_1x targets.
Saturation:
fma.sat.f32 clamps the result to [0.0, 1.0]. NaN results are flushed to +0.0f.
PTX ISA Notes
fma.f64 introduced in PTX ISA version 1.4.
fma.f32 introduced in PTX ISA version 2.0.
Target ISA Notes
fma. 32 requires sm_20 or higher.
fma.f64 requires sm_13 or higher.

Examples
fma.rn.ftz.f32 w,x,y,z;
@p fma.rn.f64 d,a,b,c;
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mad

Multiply two values and add a third value.

Syntax

mad{.ftz}{.sat}.f32 d, a, b, c; // .target sm_1x
mad.rnd{.ftz}{.sat}.f32 d, a, b, c; // .target sm_20
mad.rnd.f64 d, a, b, c; // .target sm_13 and higher

.rnd = { .rn, .rz, .rm, .rp };

Description

Multiplies two values and adds a third, and then writes the resulting value into a destination register.

Semantics

d:

a*b + c;

Notes

For .

For

target sm_20 and higher:

mad . f32 computes the product of a and b to infinite precision and then adds ¢ to this prod-
uct, again in infinite precision. The resulting value is then rounded to single precision using the
rounding mode specified by . rnd.

mad.f64 computes the product of a and b to infinite precision and then adds c to this prod-
uct, again in infinite precision. The resulting value is then rounded to double precision using the
rounding mode specified by . rnd.

mad.{f32, f64} is the same as fma.{f32, f64}.

.target sm_1x:

mad.f32 computes the product of a and b at double precision, and then the mantissa is trun-
cated to 23 bits, but the exponent is preserved. Note that this is different from computing the
product with mul, where the mantissa can be rounded and the exponent will be clamped. The
exception for mad.f32 is whenc = +/-0.0, mad.f32 is identical to the result computed us-
ing separate mul and add instructions. When JIT-compiled for SM 2.0 devices, mad.f32 is im-
plemented as a fused multiply-add (i.e., fma.rn.ftz.f32). In this case, mad.f32 can produce
slightly different numeric results and backward compatibility is not guaranteed in this case.

mad.f64 computes the product of a and b to infinite precision and then adds ¢ to this prod-
uct, again in infinite precision. The resulting value is then rounded to double precision using the
rounding mode specified by . rnd. Unlike mad. 32, the treatment of subnormal inputs and out-
put follows IEEE 754 standard.

mad . f64 is the same as fma.f64.

Rounding modifiers (no default):

.rn mantissa LSB rounds to nearest even

. rz mantissa LSB rounds towards zero

.rm mantissa LSB rounds towards negative infinity

.rp mantissa LSB rounds towards positive infinity

Subnormal numbers:
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sm_20+ By default, subnormal numbers are supported.

mad.ftz.f32 flushes subnormal inputs and results to sign-preserving zero.
sm_1x mad. f64 supports subnormal numbers.

mad . f32 flushes subnormal inputs and results to sign-preserving zero.
Saturation modifier:
mad.sat.f32 clamps the result to [0.0, 1.0]. NaN results are flushed to +0.0f.
PTX ISA Notes
Introduced in PTX ISA version 1.0.
In PTX ISA versions 1.4 and later, a rounding modifier is required for mad. f64.
Legacy mad. f64 instructions having no rounding modifier will map tomad.rn.f64.

In PTX ISA versions 2.0 and later, a rounding modifier is required for mad.f32 for sm_20 and higher
targets.

Errata

mad . f32 requires a rounding modifier for sm_20 and higher targets. However for PTX ISA version 3.0
and earlier, ptxas does not enforce this requirement and mad. f32 silently defaults to mad.rn.f32.
For PTX ISA version 3.1, ptxas generates a warning and defaults to mad.rn.f32, and in subsequent
releases ptxas will enforce the requirement for PTX ISA version 3.2 and later.

Target ISA Notes

mad . f32 supported on all target architectures.

mad . f64 requires sm_13 or higher.

Rounding modifiers have the following target requirements:
.rn,.rz,.rm,.rp for mad. f64, requires sm_13 or higher.
.rn,.rz,.rm,.rp for mad. f32, requires sm_20 or higher.

Examples

@ mad.f32 d,a,b,c;

div

Divide one value by another.

Syntax

div.approx{.ftz}.f32 d, a, b; // fast, approximate divide
div.full{.ftz}.f32 d, a, b; // full-range approximate divide
div.rnd{.ftz}.f32 d, a, b; // IEEE 754 compliant rounding
div.rnd.f64 d, a, b; // IEEE 754 compliant rounding

.rnd = { .rn, .rz, .rm, .rp };

Description

Divides a by b, stores result in d.
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Semantics

d=a/ b;

Notes
Fast, approximate single-precision divides:

div.approx.f32 implements a fast approximation to divide, computedasd = a * (1/b).
For |b]| in [27726, 2126] the maximum ulp erroris 2. For 2'%6 < |b| < 2128 if a is infinity, div.
approx.f32 returns NaN, otherwise it returns O.

div.full.f32 implements a relatively fast, full-range approximation that scales operands to
achieve better accuracy, but is not fully IEEE 754 compliant and does not support rounding mod-
ifiers. The maximum ulp error is 2 across the full range of inputs.

Subnormal inputs and results are flushed to sign-preserving zero. Fast, approximate division by
zero creates a value of infinity (with same sign as a).

Divide with IEEE 754 compliant rounding:
Rounding modifiers (no default):
. rn mantissa LSB rounds to nearest even
. rz mantissa LSB rounds towards zero
.rm mantissa LSB rounds towards negative infinity
. rp mantissa LSB rounds towards positive infinity
Subnormal numbers:
sm_20+ By default, subnormal numbers are supported.
div.ftz.f32 flushes subnormal inputs and results to sign-preserving zero.
sm_1x div.f64 supports subnormal numbers.
div.f32 flushes subnormal inputs and results to sign-preserving zero.
PTX ISA Notes
div.f32 and div.f64 introduced in PTX ISA version 1.0.
Explicit modifiers .approx, .full, . ftz, and rounding introduced in PTX ISA version 1.4.
For PTX ISA version 1.4 and later, one of .approx, .full, or . rnd is required.

For PTX ISA versions 1.0 through 1.3, div.f32 defaults to div.approx.ftz.f32,and div.f64 de-
faults to div.rn.f64.

Target ISA Notes

div.approx.f32 and div.full.f32 supported on all target architectures.
div.rnd.f32 requires sm_20 or higher.

div.rn.f64 requires sm_13 or higher, or .target map_f64_to_f32.
div.{rz,rm, rp}.f64 requires sm_20 or higher.

Examples

div.approx.ftz.f32 diam,circum,3.14159;
div.full.ftz.f32 X, Y, Z;
div.rn.f64 xd, yd, zd;
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abs

Absolute value.

Syntax

abs{.ftz}.f32 d, a;
abs.f64 d, a;
Description

Take the absolute value of a and store the result in d.

Semantics

d = |al;

Notes
Subnormal numbers:
sm_20+ By default, subnormal numbers are supported.
abs.ftz.f32 flushes subnormal inputs and results to sign-preserving zero.
sm_1x abs.f64 supports subnormal numbers.

abs. 32 flushes subnormal inputs and results to sign-preserving zero.

For abs.f32, NaN input yields unspecified NaN. For abs. f64, NaN input is passed through unchanged.
Future implementations may comply with the IEEE 754 standard by preserving payload and modifying

only the sign bit.

PTX ISA Notes

Introduced in PTX ISA version 1.0.

Target ISA Notes

abs.f32 supported on all target architectures.
abs.f64 requires sm_13 or higher.

Examples

abs.ftz.f32 x,f0;

neg
Arithmetic negate.

Syntax

neg{.ftz}.f32 d, a;
neg.f64 d, a;
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Description
Negate the sign of a and store the result in d.

Semantics

d = -a;

Notes
Subnormal numbers:
sm_20+ By default, subnormal numbers are supported.
neg.ftz.f32 flushes subnormal inputs and results to sign-preserving zero.
sm_1x neg.f64 supports subnormal numbers.
neg . f32 flushes subnormal inputs and results to sign-preserving zero.

NaN inputs yield an unspecified NaN. Future implementations may comply with the IEEE 754 standard
by preserving payload and modifying only the sign bit.

PTX ISA Notes

Introduced in PTX ISA version 1.0.

Target ISA Notes

neg.f32 supported on all target architectures.
neg.f64 requires sm_13 or higher.

Examples

neg.ftz.f32 x,f0;

min

Find the minimum of two values.

Syntax

min{.ftz}{.NaN}{.xorsign.abs}.f32 d, a, b;
min.f64 d, a, b;
Description

Store the minimum of aand b in d.
If .NaN modifier is specified, then the result is canonical NaN if either of the inputs is NaN.

If .abs modifier is specified, the magnitude of destination operand d is the minimum of absolute
values of both the input arguments.

If .xorsign modifier is specified, the sign bit of destination d is equal to the XOR of the sign bits of
both the inputs.

Modifiers .abs and .xorsign must be specified together and .xorsign considers the sign bit of
both inputs before applying .abs operation.

If the result of min is NaN then the .xorsign and .abs modifiers will be ignored.
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Semantics

if (.xorsign) {
xorsign = getSignBit(a) * getSignBit(b);

if (.abs) {
a = |al;
b= |bl;
}
}
if (isNaN(a) && isNaN(b)) d = NaN;
else if (.NaN && (isNaN(a) || isNaN(b))) d = NaN;
else if (isNaN(a)) d=b;
else if (isNaN(b)) d = a;
else d=(a<b)?a:b;

if (.xorsign && !isNaN(d)) {
setSignBit(d, xorsign);

}

Notes

Subnormal numbers:

sm_20+ By default, subnormal numbers are supported.

min.ftz.f32 flushes subnormal inputs and results to sign-preserving zero.

sm_1x min.f64 supports subnormal numbers.
min.f32 flushes subnormal inputs and results to sign-preserving zero.

If values of both inputs are 0.0, then +0.0 > -0.0.

PTX ISA Notes

Introduced in PTX ISA version 1.0.

min.NaNintroduced in PTX ISA version 7.0.

min.xorsign.abs introduced in PTX ISA version 7.2.

Target ISA Notes

min.f32 supported on all target architectures.

min.f64 requires sm_13 or higher.

min.NaNrequires sm_880 or higher.

min.xorsign.abs requires sm_86 or higher.

Examples

@ min.ftz.f32 z,z,x;
min.f64 a,b,c;
// fp32 min with .NaN
min.NaN.f32 fo,f1,f2;
// fp32 min with .xorsign.abs
min.xorsign.abs.f32 Rd, Ra, Rb;
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max

Find the maximum of two values.

Syntax

max{.ftz}{.NaN}{.xorsign.abs}.f32 d, a, b;
max.f64 d, a, b;
Description

Store the maximum of aand b in d.

If .NaN modifier is specified, the result is canonical NaN if either of the inputs is NaN.

If .abs modifier is specified, the magnitude of destination operand d is the maxi
values of both the input arguments.

mum of absolute

If .xorsign modifier is specified, the sign bit of destination d is equal to the XOR of the sign bits of

both the inputs.

Modifiers .abs and .xorsign must be specified together and .xorsign conside
both inputs before applying .abs operation.

If the result of max is NaN then the .xorsign and .abs modifiers will be ignored.

Semantics

if (.xorsign) {
xorsign = getSignBit(a) * getSignBit(b);

if (.abs) {
a = |al;
b = |b|;
}
}
if (isNaN(a) && isNaN(b)) d = NaN;
else if (.NaN && (isNaN(a) || isNaN(b))) d = NaN;
else if (isNaN(a)) d = b;
else if (isNaN(b)) d = a;
else d=(a>b) ?2a:b;

if (.xorsign && !isNaN(d)) {
setSignBit(d, xorsign);
}

Notes
Subnormal numbers:
sm_20+ By default, subnormal numbers are supported.
max.ftz.f32 flushes subnormal inputs and results to sign-preserving zero.
sm_1x max.f64 supports subnormal numbers.
max . 32 flushes subnormal inputs and results to sign-preserving zero.
If values of both inputs are 0.0, then +0.0 > -0.0.
PTX ISA Notes
Introduced in PTX ISA version 1.0.
max .NaNintroduced in PTX ISA version 7.0.

rs the sign bit of

140 Chapter 9

. Instruction Set



PTX ISA, Release 8.1

max.xorsign.abs introduced in PTX ISA version 7.2.
Target ISA Notes

max .32 supported on all target architectures.

max . f64 requires sm_13 or higher.

max .NaNrequires sm_880 or higher.
max.xorsign.abs requires sm_86 or higher.

Examples

max.ftz.f32 fo,f1,f2;

max .f64 a,b,c;

// fp32 max with .NaN
max.NaN.f32 fo,f1,f2;

// fp32 max with .xorsign.abs
max.xorsign.abs.f32 Rd, Ra, Rb;

rcp

Take the reciprocal of a value.

Syntax

rcp.approx{.ftz}.f32 d, a; // fast, approximate reciprocal
rcp.rnd{.ftz}.f32 d, a; // IEEE 754 compliant rounding
rcp.rnd.f64 d, a; // IEEE 754 compliant rounding

.rnd = { .rn, .rz, .rm, .rp };

Description
Compute 1/a, store result in d.

Semantics

d=11/ a;

Notes
Fast, approximate single-precision reciprocal:

rcp.approx.f32implements a fast approximation to reciprocal. The maximum absolute error is 2230
over the range 1.0-2.0.
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Input Result
-Inf -0.0
-subnormal | -Inf
-0.0 -Inf
+0.0 +Inf

+subnormal | +Inf
+Inf +0.0
NaN NaN

Reciprocal with IEEE 754 compliant rounding:
Rounding modifiers (no default):
. rn mantissa LSB rounds to nearest even
. rz mantissa LSB rounds towards zero
.rm mantissa LSB rounds towards negative infinity
.rp mantissa LSB rounds towards positive infinity
Subnormal numbers:
sm_20+ By default, subnormal numbers are supported.
rcp.ftz.f32 flushes subnormal inputs and results to sign-preserving zero.
sm_1x rcp.f64 supports subnormal numbers.
rcp .32 flushes subnormal inputs and results to sign-preserving zero.
PTX ISA Notes

rcp.f32and rcp.f64introducedin PTXISA version 1.0. rcp. rn. f64 and explicit modifiers . approx
and . ftz were introduced in PTX ISA version 1.4. General rounding modifiers were added in PTX ISA
version 2.0.

For PTX ISA version 1.4 and later, one of .approx or . rnd is required.

For PTX ISA versions 1.0 through 1.3, rcp.f32 defaults to rcp.approx.ftz.f32,and rcp.f64 de-
faultsto rcp.rn.f64.

Target ISA Notes

rcp.approx.f32 supported on all target architectures.

rcp.rnd.f32 requires sm_20 or higher.

rcp.rn.f64 requires sm_13 or higher, or .target map_fé64_to_f32.
rcp.{rz,rm, rp}.f64 requires sm_20 or higher.

Examples

rcp.approx.ftz.f32 ri,r;
rcp.rn.ftz.f32 Xi, x;
rcp.rn.f64 Xi, x;
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rcp.approx.ftz.f64
Compute a fast, gross approximation to the reciprocal of a value.
Syntax

rcp.approx.ftz.f64 d, a;

Description
Compute a fast, gross approximation to the reciprocal as follows:

extract the most-significant 32 bits of . 64 operand ain 1.11.20 IEEE floating-point format (i.e.,
ignore the least-significant 32 bits of a),

compute an approximate .64 reciprocal of this value using the most-significant 20 bits of the
mantissa of operand a,

place the resulting 32-bits in 1.11.20 IEEE floating-point format in the most-significant 32-bits
of destination d,and

zero the least significant 32 mantissa bits of . f64 destination d.

Semantics

tmp = a[63:32]; // upper word of a, 1.11.20 format
d[63:32] = 1.0 / tmp;

d[31:0] = 0x00000000;

Notes

rcp.approx.ftz.f64 implements a fast, gross approximation to reciprocal.

Input a[63:32] | Result d[63:32]
-Inf -0.0
-subnormal -Inf
-0.0 -Inf
+0.0 +Inf
+subnormal +Inf
+Inf +0.0
NaN NaN

Input NaNs map to a canonical NaN with encoding @x7fffffffooo00000.
Subnormal inputs and results are flushed to sign-preserving zero.

PTX ISA Notes

rcp.approx.ftz.f64 introduced in PTX ISA version 2.1.

Target ISA Notes

rcp.approx.ftz.f64 requires sm_20 or higher.

Examples
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rcp.ftz.f64 xi,x;

sqrt

Take the square root of a value.

Syntax

sqrt.approx{.ftz}.f32 d, a; // fast, approximate square root
sqrt.rnd{.ftz}.f32 d, a; // IEEE 754 compliant rounding
sqrt.rnd.f64 d, a; // IEEE 754 compliant rounding

.rnd = { .rn, .rz, .rm, .rp };

Description
Compute sqrt(a) and store the result in d.

Semantics

d = sqrt(a);

Notes

sqrt.approx.f32 implements a fast approximation to square root.

Input Result
-Inf NaN
-normal NaN

-subnormal | -0.0
-0.0 -0.0
+0.0 +0.0

+subnormal | +0.0

+Inf +Inf

NaN NaN

Square root with IEEE 754 compliant rounding:
Rounding modifiers (no default):

. rn mantissa LSB rounds to nearest even

. rz mantissa LSB rounds towards zero

.rm mantissa LSB rounds towards negative infinity
.rp mantissa LSB rounds towards positive infinity

Subnormal numbers:
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sm_20+ By default, subnormal numbers are supported.

sqrt.ftz.f32 flushes subnormal inputs and results to sign-preserving zero.
sm_1x sqrt.f64 supports subnormal numbers.

sqrt.f32 flushes subnormal inputs and results to sign-preserving zero.
PTX ISA Notes

sqrt.f32 and sqrt.f64 introduced in PTX ISA version 1.0. sqrt.rn.f64 and explicit modifiers .
approx and .ftz were introduced in PTX ISA version 1.4. General rounding modifiers were added in
PTX ISA version 2.0.

For PTX ISA version 1.4 and later, one of .approx or . rnd is required.

For PTX ISA versions 1.0 through 1.3, sqrt.f32 defaults to sqrt.approx.ftz.f32,and sqrt.f64
defaults to sqrt.rn.f64.

Target ISA Notes

sqrt.approx.f32 supported on all target architectures.
sqrt.rnd.f32 requires sm_20 or higher.

sqrt.rn.f64 requires sm_13 or higher, or .target map_f64_to_f32.
sqrt.{rz,rm, rp}.f64 requires sm_20 or higher.

Examples

sqrt.approx.ftz.f32 r,x;

sqrt.rn.ftz.f32 r,Xx;

sqrt.rn.f64 r,x;

rsqrt

Take the reciprocal of the square root of a value.
Syntax

rsqrt.approx{.ftz}.f32 d, a;
rsqrt.approx.f64 d, a;

Description

Compute 1/sqrt(a) and store the result in d.

Semantics

d = 1/sqrt(a);

Notes

rsqrt.approx implements an approximation to the reciprocal square root.
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Input Result
-Inf NaN
-normal NaN
-subnormal | -Inf
-0.0 -Inf
+0.0 +Inf

+subnormal | +Inf
+Inf +0.0
NaN NaN

The maximum absolute error for rsqrt.f32 is 2224 over the range 1.0-4.0.
Subnormal numbers:
sm_20+ By default, subnormal numbers are supported.

rsqrt.ftz.f32 flushes subnormal inputs and results to sign-preserving zero.
sm_1x rsqrt.f64 supports subnormal numbers.

rsqrt.f32 flushes subnormal inputs and results to sign-preserving zero.
Note that rsqrt.approx.f64 is emulated in software and are relatively slow.
PTX ISA Notes

rsqrt.f32 and rsqrt.f64 were introduced in PTX ISA version 1.0. Explicit modifiers .approx and
. ftz were introduced in PTX ISA version 1.4.

For PTX ISA version 1.4 and later, the .approx modifier is required.

For PTX ISA versions 1.0 through 1.3, rsqrt.f32 defaults to rsqrt.approx.ftz.f32,and rsqrt.
64 defaults to rsqrt.approx.f64.

Target ISA Notes
rsqrt.f32 supported on all target architectures.
rsqrt.f64 requires sm_13 or higher.

Examples

rsqrt.approx.ftz.f32 isr, x;
rsqrt.approx.f64 ISR, X;
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rsqrt.approx.ftz.f64
Compute an approximation of the square root reciprocal of a value.

Syntax

rsqrt.approx.ftz.fé64 d, a;

Description

Compute a double-precision (. f64) approximation of the square root reciprocal of a value. The least
significant 32 bits of the double-precision (. f64) destination d are all zeros.

Semantics

tmp = a[63:32]; // upper word of a, 1.11.20 format
d[63:32] = 1.8 / sqrt(tmp);

d[31:0] = ©6x00000000 ;

Notes

rsqrt.approx.ftz.f64 implements a fast approximation of the square root reciprocal of a value.

Input Result
-Inf NaN
-subnormal | -Inf
-0.0 -Inf
+0.0 +Inf

+subnormal | +Inf
+Inf +0.0
NaN NaN

Input NaNs map to a canonical NaN with encoding 8x7fffffff00000000.
Subnormal inputs and results are flushed to sign-preserving zero.

PTX ISA Notes

rsqrt.approx.ftz.f64 introduced in PTX ISA version 4.0.

Target ISA Notes

rsqrt.approx.ftz.f64 requires sm_20 or higher.

Examples

rsqrt.approx.ftz.f64 xi,x;
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sin
Find the sine of a value.

Syntax
sin.approx{.ftz}.f32 d, a;

Description
Find the sine of the angle a (in radians).

Semantics

d = sin(a);

Notes

sin.approx.f32 implements a fast approximation to sine.

Input Result
-Inf NaN

-subnormal | -0.0
-0.0 -0.0
+0.0 +0.0

+subnormal | +0.0
+Inf NaN
NaN NaN

The maximum absolute error is 2299 in quadrant 0O.
Subnormal numbers:
sm_20+ By default, subnormal numbers are supported.
sin.ftz.f32 flushes subnormal inputs and results to sign-preserving zero.
sm_1x Subnormal inputs and results to sign-preserving zero.
PTX ISA Notes

sin.f32 introduced in PTX ISA version 1.0. Explicit modifiers .approx and .ftz introduced in PTX
ISA version 1.4.

For PTX ISA version 1.4 and later, the .approx modifier is required.

For PTX ISA versions 1.0 through 1.3, sin. 32 defaults to sin.approx.ftz.f32.
Target ISA Notes

Supported on all target architectures.

Examples

sin.approx.ftz.f32 sa, a;
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cos

Find the cosine of a value.

Syntax

cos.approx{.ftz}.f32 d, a;

Description

Find the cosine of the angle a (in radians).

Semantics

d = cos(a);

Notes

cos.approx.f32 implements a fast approximation to cosine.

The maximum absolute error is 2299 in quadrant 0O.

Subnormal numbers:

Input Result
-Inf NaN
-subnormal | +1.0
-0.0 +1.0
+0.0 +1.0
+subnormal | +1.0
+Inf NaN
NaN NaN

sm_20+ By default, subnormal numbers are supported.

cos.ftz.f32 flushes subnormal inputs and results to sign-preserving zero.

sm_1x Subnormal inputs and results to sign-preserving zero.

PTX ISA Notes

cos.f32 introduced in PTX ISA version 1.0. Explicit modifiers .approx and .ftz introduced in PTX

ISA version 1.4.

For PTX ISA version 1.4 and later, the .approx modifier is required.

For PTX ISA versions 1.0 through 1.3, cos. f32 defaults to cos.approx.ftz.f32.

Target ISA Notes

Supported on all target architectures.

Examples

cos.approx.ftz.f32

ca,

a;
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g2
Find the base-2 logarithm of a value.

Syntax
1g2.approx{.ftz}.f32 d, a;

Description
Determine the log, of a.

Semantics

d = log(a) / log(2);

Notes

1g2.approx.f32 implements a fast approximation to log.(a).

Input Result
-Inf NaN
-subnormal | -Inf
-0.0 -Inf
+0.0 -Inf

+subnormal | -Inf

+Inf +Inf

NaN NaN

The maximum absolute error is 2-22® for mantissa.
Subnormal numbers:
sm_20+ By default, subnormal numbers are supported.
1g2.ftz.f32 flushes subnormal inputs and results to sign-preserving zero.
sm_1x Subnormal inputs and results to sign-preserving zero.
PTX ISA Notes

1g2.f32 introduced in PTX ISA version 1.0. Explicit modifiers .approx and .ftz introduced in PTX
ISA version 1.4.

For PTX ISA version 1.4 and later, the .approx modifier is required.

For PTX ISA versions 1.0 through 1.3, 1g2. 32 defaults to 1g2.approx.ftz.f32.
Target ISA Notes

Supported on all target architectures.

Examples

1g2.approx.ftz.f32 1la, a;
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ex2
Find the base-2 exponential of a value.

Syntax
ex2.approx{.ftz}.f32 d, a;

Description
Raise 2 to the power a.

Semantics

d=2 " a;

Notes

ex2.approx.f32 implements a fast approximation to 22.

Input Result
-Inf +0.0

-subnormal | +1.0
-0.0 +1.0
+0.0 +1.0

+subnormal | +1.0

+Inf +Inf

NaN NaN

The maximum absolute error is 2722° for fraction in the primary range.
Subnormal numbers:
sm_20+ By default, subnormal numbers are supported.

ex2.ftz.f32 flushes subnormal inputs and results to sign-preserving zero.
sm_1x Subnormal inputs and results to sign-preserving zero.
PTX ISA Notes

ex2.f32 introduced in PTX ISA version 1.0. Explicit modifiers .approx and .ftz introduced in PTX
ISA version 1.4.

For PTX ISA version 1.4 and later, the .approx modifier is required.

For PTX ISA versions 1.0 through 1.3, ex2.f32 defaults to ex2.approx.ftz.f32.
Target ISA Notes

Supported on all target architectures.

Examples

ex2.approx.ftz.f32 xa, a;
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tanh

Find the hyperbolic tangent of a value (in radians)

Syntax

tanh.approx.f32 d, a;

Description

Take hyperbolic tangent value of a.

The operands d and a are of type .f32.

Semantics

d = tanh(a);

Notes

tanh.approx.f32 implements a fast approximation to FP32 hyperbolic-tangent.

Results of tanh for various corner-case inputs are as follows:

Input Result

-Inf -1.0
-subnormal | Same as input
-0.0 -0.0

+0.0 +0.0
+subnormal | Same as input
+Inf 1.0

NaN NaN

The subnormal numbers are supported.

Note: The subnormal inputs gets passed through to the output since the value of tanh(x) for small
values of x is approximately the same as x.

PTX ISA Notes

Introduced in PTX ISA version 7.0.
Target ISA Notes

Requires sm_75 or higher.

Examples

tanh.approx.f32 sa, a;

152

Chapter 9. Instruction Set



PTX ISA, Release 8.1

Half precision floating-point instructions operate on .f16 and .f16x2 register operands. The half
precision floating-point instructions are:

add
sub
mul
fma
neg
abs
min
max
tanh
ex2

Half-precision add, sub, mul, and fma support saturation of results to the range [0.0, 1.0], with NaNs
being flushed to positive zero. Half-precision instructions return an unspecified NaN.

add
Add two values.

Syntax

add{.rnd}{.ftz}{.sat}.f16 d, a, b;
add{.rnd}{.ftz}{.sat}.f16x2 d, a, b;

add{.rnd}.bf16 d, a,

b;
add{.rnd}.bf16x2 d, a, b;

.rnd = { .rn };

Description
Performs addition and writes the resulting value into a destination register.

For .f16x2 and .bf16x2 instruction type, forms input vectors by half word values from source
operands. Half-word operands are then added in parallel to produce .f16x2 or .bf16x2 result in
destination.

For .f16 instruction type, operands d, a and b have .f16 or .b16 type. For . f16x2 instruction type,
operands d, a and b have .b32 type. For .bf16 instruction type, operands d, a, b have .b16 type. For
.bf16x2 instruction type, operands d, a, b have .b32 type.

Semantics

if (type == f16 || type == bf16) {
d =a+ b;
} else if (type == f16x2 || type == bf16x2) {
(continues on next page)
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(continued from previous page)

fA[Q] = a[0:15];
fA[1] = a[16:31];
fB[O] = b[0:15];
fB[1] = b[16:31];

for (i = 0; i < 2; i++) {
d[i] = fA[i] + fB[il];
}

}

Notes
Rounding modifiers:
. rn mantissa LSB rounds to nearest even

The default value of rounding modifier is . rn. Note that an add instruction with an explicit rounding
modifier is treated conservatively by the code optimizer. An add instruction with no rounding modifier
defaults to round-to-nearest-even and may be optimized aggressively by the code optimizer. In par-
ticular, mul/add sequences with no rounding modifiers may be optimized to use fused-multiply-add
instructions on the target device.

Subnormal numbers: By default, subnormal numbers are supported. add.ftz.{f16, f16x2}
flushes subnormal inputs and results to sign-preserving zero.

Saturation modifier: add.sat.{f16, f16x2} clamps the result to [0.0, 1.0]. NaN results are flushed
to +0.0f.

PTX ISA Notes

Introduced in PTX ISA version 4.2.

add{.rnd}.bf16 and add{.rnd}.bf16x2 introduced in PTX ISA version 7.8.
Target ISA Notes

Requires sm_53 or higher.

add{.rnd}.bf16 and add{.rnd}.bf16x2 requires sm_90 or higher.

Examples

// scalar f16 additions
add.f16 doe, ae@, be;
add.rn.f16 d1, a1, b1;
add.bf16 bdo, bad, bbo;

add.rn.bf16 bd1, bal, bb1;

// SIMD f16 addition

cvt.rn.f16.f32 ho, f0;

cvt.rn.f16.f32 h1, f1;

cvt.rn.f16.f32 h2, f2;

cvt.rn.f16.f32 h3, f3;

mov.b32 p1, {(h@, h1}; // pack two f16 to 32bit f16x2
mov.b32 p2, {h2, h3}; // pack two f16 to 32bit f16x2
add.f16x2 p3, p1, p2; // SIMD f16x2 addition

// SIMD bf16 addition

cvt.rn.bf16x2.f32 p4, f4, f5; // Convert two f32 into packed bf16x2
cvt.rn.bf16x2.f32 p5, f6, f7; // Convert two f32 into packed bf16x2
add.bf16x2 p6, p4, p5; // SIMD bf16x2 addition

(continues on next page)

154 Chapter 9. Instruction Set



PTX ISA, Release 8.1

(continued from previous page)

// SIMD fp16 addition

1d.global.b32 fO@, [addr]; // load 32 bit which hold packed f16x2
1d.global.b32 f1, [addr + 4]; // load 32 bit which hold packed f16x2
add.f16x2 f2, fo, f1; // SIMD f16x2 addition

1d.global.b32 f3, [addr + 8]; // load 32 bit which hold packed bf16x2
1d.global.b32 f4, [addr + 12]; // load 32 bit which hold packed bf16x2
add.bf16x2 f5, f3, f4; // SIMD bf16x2 addition

sub
Subtract two values.

Syntax

sub{.rnd}{.ftz}{.sat}.f16 d, a

) b ’
sub{.rnd}{.ftz}{.sat}.f16x2 d, a, b

’
’

sub{.rnd}.bf16 d, a, b;
sub{.rnd}.bf16x2 d, a, b;
.rnd = { .rn };
Description

Performs subtraction and writes the resulting value into a destination register.

For .f16x2 and .bf16x2 instruction type, forms input vectors by half word values from source
operands. Half-word operands are then subtracted in parallel to produce .f16x2 or .bf16x2 result in
destination.

For .f16 instruction type, operands d, a and b have .f16 or .b16 type. For . f16x2 instruction type,
operands d, a and b have .b32 type. For .bf16 instruction type, operands d, a, b have .b16 type. For
.bf16x2 instruction type, operands d, a, b have .b32 type.

Semantics

if (type == f16 || type == bf16)

d =a - b;
} else if (type == f16x2 || type == bf16x2) {
fA[@] = a[@:15];
fA[1] = a[16:31];
fB[O] = b[B:15];
fB[1] = b[16:31];

for (i = 0; i < 2; i++) {
d[i] = fA[i] - fB[i];
}

}

Notes
Rounding modifiers:

. rn mantissa LSB rounds to nearest even
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The default value of rounding modifier is . rn. Note that a sub instruction with an explicit rounding
modifier is treated conservatively by the code optimizer. A sub instruction with no rounding modifier
defaults to round-to-nearest-even and may be optimized aggressively by the code optimizer. In par-
ticular, mul/sub sequences with no rounding modifiers may be optimized to use fused-multiply-add
instructions on the target device.

Subnormal numbers: By default, subnormal numbers are supported. sub.ftz.{f16, f16x2}
flushes subnormal inputs and results to sign-preserving zero.

Saturation modifier: sub.sat.{f16, f16x2} clamps the result to [0.0, 1.0]. NaN results are flushed
to +0.0f.

PTX ISA Notes

Introduced in PTX ISA version 4.2.

sub{.rnd}.bf16 and sub{.rnd}.bf16x2 introduced in PTX ISA version 7.8.
Target ISA Notes

Requires sm_53 or higher.

sub{.rnd}.bf16 and sub{.rnd}.bf16x2 requires sm_90 or higher.

Examples

// scalar f16 subtractions
sub.f16 doe, ae@, be;
sub.rn.f16 d1, a1, b1;
sub.bf16 bdo, bad, bbo;

sub.rn.bf16 bd1, bal, bb1;

// SIMD f16 subtraction

cvt.rn.f16.f32 ho, f0;

cvt.rn.f16.f32 h1, f1;

cvt.rn.f16.f32 h2, f2;

cvt.rn.f16.f32 h3, f3;

mov.b32 p1, {(h@, h1}; // pack two f16 to 32bit f16x2
mov.b32 p2, {h2, h3}; // pack two f16 to 32bit f16x2
sub.f16x2 p3, p1, p2; // SIMD f16x2 subtraction

// SIMD bf16 subtraction
cvt.rn.bf16x2.f32 p4, f4, f5; // Convert two f32 into packed bf16x2
cvt.rn.bf16x2.f32 p5, f6, f7; // Convert two f32 into packed bf16x2

sub.bf16x2 p6, p4, p5; // SIMD bf16x2 subtraction

// SIMD fp16 subtraction

1d.global.b32 0, [addr]; // load 32 bit which hold packed f16x2
1d.global.b32 f1, [addr + 4]; // load 32 bit which hold packed f16x2
sub.f16x2 f2, fo, f1; // SIMD f16x2 subtraction

// SIMD bf16 subtraction

1d.global.b32 f3, [addr + 8]; // load 32 bit which hold packed bf16x2
1d.global.b32 f4, [addr + 12]; // load 32 bit which hold packed bf16x2
sub.bf16x2 f5, f3, f4; // SIMD bf16x2 subtraction
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mul
Multiply two values.

Syntax

mul{.rnd}{.ftz}{.sat}.f16 d, a,
mul{.rnd}{.ftz}{.sat}.f16x2 d, a,

mul{.rnd}.bf16 d, a, b;
mul{.rnd}.bf16x2 d, a, b;
.rnd = { .rn };
Description

Performs multiplication and writes the resulting value into a destination register.

For .f16x2 and .bf16x2 instruction type, forms input vectors by half word values from source
operands. Half-word operands are then multiplied in parallel to produce .f16x2 or .bf16x2 result
in destination.

For .f16 instruction type, operands d, a and b have .f16 or .b16 type. For .f16x2 instruction type,
operands d, a and b have .b32 type. For .bf16 instruction type, operands d, a, b have .b16 type. For
.bf16x2 instruction type, operands d, a, b have .b32 type.

Semantics
if (type == f16 || type == bf16)
d=a * b;
} else if (type == f16x2 || type == bf16x2) {
fA[Q] = a[0:15];
fA[1] = a[16:31];
fB[@] = b[6:15];
fB[1] = b[16:31];

for (i = 0; i < 2; i++) {
d[i] = fA[i] * fB[i];
}

}

Notes
Rounding modifiers:
. rn mantissa LSB rounds to nearest even

The default value of rounding modifier is . rn. Note that a mul instruction with an explicit rounding
modifier is treated conservatively by the code optimizer. A mul instruction with no rounding modifier
defaults to round-to-nearest-even and may be optimized aggressively by the code optimizer. In par-
ticular, mul/add and mul/sub sequences with no rounding modifiers may be optimized to use fused-
multiply-add instructions on the target device.

Subnormal numbers: By default, subnormal numbers are supported. mul.ftz.{f16, f16x2}
flushes subnormal inputs and results to sign-preserving zero.

Saturation modifier: mul.sat.{f16, f16x2} clamps the result to [0.0, 1.0]. NaN results are flushed
to +0.0f.

PTX ISA Notes
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Introduced in PTX ISA version 4.2.

mul{.rnd}.bf16 and mul{.rnd}.bf16x2 introduced in PTX ISA version 7.8.
Target ISA Notes

Requires sm_53 or higher.
mul{.rnd}.bf16 and mul{.rnd}.bf16x2 requires sm_90 or higher.

Examples

// scalar f16 multiplications

mul.f16 de, a@, bo;
mul.rn.f16 d1, a1, b1;
mul.bf16 bdo, bad, bbo;

mul.rn.bf16 bd1, bal, bb1;

// SIMD f16 multiplication

cvt.rn.f16.f32 ho, f0;

cvt.rn.f16.f32 h1, f1;

cvt.rn.f16.f32 h2, f2;

cvt.rn.f16.f32 h3, f3;

mov.b32 p1, {(h6, hi1}; // pack two f16 to 32bit f16x2
mov.b32 p2, {h2, h3}; // pack two f16 to 32bit f16x2
mul.f16x2 p3, pl1, p2; // SIMD f16x2 multiplication

// SIMD bf16 multiplication
cvt.rn.bf16x2.f32 p4, f4, f5; // Convert two f32 into packed bf16x2
cvt.rn.bf16x2.f32 p5, f6, f7; // Convert two f32 into packed bf16x2

mul.bf16x2 p6, p4, p5; // SIMD bf16x2 multiplication

// SIMD fp16 multiplication

1d.global.b32 0, [addr]; // load 32 bit which hold packed f16x2
1d.global.b32 f1, [addr + 4]; // load 32 bit which hold packed f16x2
mul.f16x2 f2, fo, f1; // SIMD f16x2 multiplication

// SIMD bf16 multiplication

1d.global.b32 f3, [addr + 8]; // load 32 bit which hold packed bf16x2
1d.global.b32 f4, [addr + 12]; // load 32 bit which hold packed bf16x2
mul.bf16x2 f5, f3, f4; // SIMD bf16x2 multiplication

fma
Fused multiply-add
Syntax

fma.rnd{.ftz}{.sat}.f16 d,
fma.rnd{.ftz}{.sat}.f16x2 d,
fma.rnd{.ftz}.relu.f16 d,
fma.rnd{.ftz}.relu.f16x2 d,
fma.rnd{.relu}.bf16 d,
fma.rnd{.relu}.bf16x2 d,
fma.rnd.oob.{relu}.type d,

[ R R VI O R O R VI o))
O O OTCUTUTUTUT

O00000O0

.rnd = { .rn };
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Description
Performs a fused multiply-add with no loss of precision in the intermediate product and addition.

For .f16x2 and .bf16x2 instruction type, forms input vectors by half word values from source
operands. Half-word operands are then operated in parallel to produce .f16x2 or .bf16x2 result
in destination.

For . f16 instruction type, operands d, a,band c have . f16 or .b16 type. For . f16x2 instruction type,
operands d, a, b and ¢ have .b32 type. For .bf16 instruction type, operands d, a, b and ¢ have .b16
type. For .bf16x2 instruction type, operands d, a, b and ¢ have .b32 type.

Semantics

if (type == f16 || type == bf16) {
d=a*b+c;
} else if (type == f16x2 || type == bf16x2) {

fA[@] = a[0@:15];
fA[1] = a[16:31];
fB[O] = b[0:15];
fB[1] = b[16:31];
fc[o] = c[0:15];
fc[1] = c[16:31];

for (i = 0; i < 2; i++) {
d[i] = fA[i] * fB[i] + fC[i];
}
}

Notes
Rounding modifiers (default is . rn):
. rn mantissa LSB rounds to nearest even

Subnormal numbers: By default, subnormal numbers are supported. fma.ftz.{f16, f16x2}
flushes subnormal inputs and results to sign-preserving zero.

Saturation modifier: fma.sat.{f16, f16x2} clamps the result to [0.0, 1.0]. NaN results are flushed
to +0.0f. fma.relu.{f16, f16x2, bf16, bf16x2} clamps the result to O if negative. NaN
result is converted to canonical NaN.

Out Of Bounds modifier: fma.oob.{f16, f16x2, bf16, bf16x2} clamps the result to O if either

of the operands is 00B NaN (defined under ) value. The test for the special NaN value
and resultant forcing of the result to +0.0 is performed independently for each of the two SIMD
operations.

PTX ISA Notes

Introduced in PTX ISA version 4.2.

fma.relu.{f16, f16x2} and fma{.relu}.{bf16, bf16x2} introduced in PTX ISA version 7.0.
Support for modifier .oob introduced in PTX ISA version 8.1.

Target ISA Notes

Requires sm_53 or higher.

fma.relu.{f16, f16x2}and fma{.relu}.{bf16, bf16x2} require sm_80 or higher.
fma{.oob}.{f16, f16x2, bf16, bf16x2} requires sm_90 or higher.

Examples
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// scalar f16 fused multiply-add

fma.rn.f16 do, a0, beo, cO;
fma.rn.f16 d1, a1, b1, c1;
fma.rn.relu.f16 d1, a1, b1, c1;
fma.rn.oob.f16 d1, a1, b1, c1;

fma.rn.oob.relu.f16 d1, al, b1, c1;

// scalar bf16 fused multiply-add

fma.rn.bf16 d1, a1, b1, c1;
fma.rn.relu.bf16 d1, a1, b1, c1;
fma.rn.oob.bf16 d1, a1, b1, c1;

fma.rn.oob.relu.bf16 d1, al, b1, c1;

// SIMD f16 fused multiply-add

cvt.rn.f16.f32 ho, f0;

cvt.rn.f16.f32 h1, f1;

cvt.rn.f16.f32 h2, f2;

cvt.rn.f16.f32 h3, f3;

mov.b32 p1, {h8, h1}; // pack two f16 to 32bit f16x2

mov.b32 p2, {h2, h3}; // pack two f16 to 32bit f16x2

fma.rn.f16x2 p3, p1, p2, p2; // SIMD f16x2 fused multiply-add
fma.rn.relu.f16x2 p3, p1, p2, p2; // SIMD f16x2 fused multiply-add with relu
—»saturation mode

fma.rn.oob.f16x2 p3, p1, p2, p2; // SIMD f16x2 fused multiply-add with oob modifier
fma.rn.oob.relu.f16x2 p3, p1, p2, p2; // SIMD f16x2 fused multiply-add with oob
—.modifier and relu saturation mode

// SIMD fp16 fused multiply-add

1d.global.b32 0, [addr]; // load 32 bit which hold packed f16x2
1d.global.b32 f1, [addr + 4]; // load 32 bit which hold packed f16x2
fma.rn.f16x2 f2, fo, f1, f1; // SIMD f16x2 fused multiply-add

// SIMD bf16 fused multiply-add

fma.rn.bf16x2 f2, fo, f1, f1; // SIMD bf16x2 fused multiply-add
fma.rn.relu.bf16x2 f2, fe, f1, f1; // SIMD bf16x2 fused multiply-add with relu
—,saturation mode

fma.rn.oob.bf16x2 f2, fe, f1, f1; // SIMD bf16x2 fused multiply-add with oob modifier
fma.rn.oob.relu.bf16x2 f2, fe, f1, f1; // SIMD bf16x2 fused multiply-add with oob
—modifier and relu saturation mode

neg
Arithmetic negate.

Syntax

neg{.ftz}.f16
neg{.ftz}.f16x2
neg.bf16
neg.bf16x2

O 0 0 Qo

Description

Negate the sign of a and store the result in d.
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For .f16x2 and .bf16x2 instruction type, forms input vector by extracting half word values from the
source operand. Half-word operands are then negated in parallel to produce . f16x2 or .bf16x2 result
in destination.

For .f16 instruction type, operands d and a have .f16 or .b16 type. For .f16x2 instruction type,
operands d and a have .b32 type. For .bf16 instruction type, operands d and a have .b16 type. For
.bf16x2 instruction type, operands d and a have .b32 type.

Semantics

if (type == f16 || type == bf16) {
d = -3a;
== f16x2 || type == bf16x2) {
1151 ;
3

Notes

Subnormal numbers: By default, subnormal numbers are supported. neg.ftz.{f16, f16x2}
flushes subnormal inputs and results to sign-preserving zero.

NaN inputs yield an unspecified NaN. Future implementations may comply with the IEEE 754 standard
by preserving payload and modifying only the sign bit.

PTX ISA Notes

Introduced in PTX ISA version 6.0.

neg.bf16 and neg.bf16x2 introduced in PTX ISA 7.0.

Target ISA Notes

Requires sm_53 or higher.

neg.bf16 and neg.bf16x2 requires architecture sm_86 or higher.

Examples

neg.ftz.f16 x,f0;
neg.bf16 X, b0 ;
neg.bf16x2  x1,b1;

abs
Absolute value

Syntax

abs{.ftz}.f16 d, a;
abs{.ftz}.f16x2 d, a;
abs.bf16 d, a;
abs.bf16x2 d, a;
Description

Take absolute value of a and store the result in d.
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For .f16x2 and .bf16x2 instruction type, forms input vector by extracting half word values from
the source operand. Absolute values of half-word operands are then computed in parallel to produce
.f16x2 or .bf16x2 result in destination.

For .f16 instruction type, operands d and a have .f16 or .b16 type. For .f16x2 instruction type,
operands d and a have . f16x2 or .b32 type. For .bf16 instruction type, operands d and a have .b16
type. For .bf16x2 instruction type, operands d and a have .b32 type.

Semantics

if (type == f16 || type == bf16) {

d=|al;
} else if (type == f16x2 || type == bf16x2) {
fA[@] = a[@:15];
fA[1] = a[16:31];
for (i =0; i < 2; i++) {
dli] = [fA[i]];
}
}
Notes

Subnormal numbers: By default, subnormal numbers are supported. abs.ftz.{f16, f16x2}
flushes subnormal inputs and results to sign-preserving zero.

NaN inputs yield an unspecified NaN. Future implementations may comply with the IEEE 754 standard
by preserving payload and modifying only the sign bit.

PTX ISA Notes

Introduced in PTX ISA version 6.5.

abs.bf16 and abs.bf16x2 introduced in PTX ISA 7.0.

Target ISA Notes

Requires sm_53 or higher.

abs.bf16 and abs.bf16x2 requires architecture sm_86 or higher.

Examples

abs.ftz.f16 x,f0;
abs.bf16 X, b0 ;
abs.bf16x2 x1,b1;

min
Find the minimum of two values.
Syntax

min{.ftz}{.NaN}{.xorsign.abs}.f16
min{.ftz}{.NaN}{.xorsign.abs}.f16x2
min{.NaN}{.xorsign.abs}.bf16
min{.NaN}{.xorsign.abs}.bf16x2

[SI I R VI o)
O T OTUT

o0 0 Q

Description

Store the minimum of a and b in d.
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For .f16x2 and .bf16x2 instruction types, input vectors are formed with half-word values from
source operands. Half-word operands are then processed in parallel to store . f16x2 or .bf16x2 result
in destination.

For .f16 instruction type, operands d and a have .f16 or .b16 type. For .f16x2 instruction type,
operands d and a have . f16x2 or .b32 type. For .bf16 instruction type, operands d and a have .b16
type. For .bf16x2 instruction type, operands d and a have .b32 type.

If .NaN modifier is specified, then the result is canonical NaN if either of the inputs is NaN.

If .abs modifier is specified, the magnitude of destination operand d is the minimum of absolute
values of both the input arguments.

If .xorsign modifier is specified, the sign bit of destination d is equal to the XOR of the sign bits of
both the inputs.

Modifiers .abs and .xorsign must be specified together and .xorsign considers the sign bit of
both inputs before applying .abs operation.

If the result of min is NaN then the .xorsign and .abs modifiers will be ignored.

Semantics

if (type == f16 || type == bf16)
if (.xorsign) {

xorsign = getSignBit(a) * getSignBit(b);
if (.abs) {
a = |al;
b= [b|;
}
}
if (isNaN(a) && isNaN(b)) d = NaN;
if (.NaN && (isNaN(a) || isNaN(b))) d = NaN;
else if (isNaN(a)) d=b;
else if (isNaN(b)) d = a;
else d=(a<b)?a:b;

if (.xorsign && !isNaN(d)) {
setSignBit(d, xorsign);

}
} else if (type == f16x2 || type == bf16x2) {
fA[@] = a[0@:15];
fA[1] = a[16:31];
fB[O] = b[0:15];
fB[1] = b[16:31];

for (1 = 0; i < 2; i++) {
if (.xorsign) {
xorsign = getSignBit(fA[i]) * getSignBit(fB[i]);

if (.abs) {

fA[i] = |fA[i]];

fB[i] = |fB[i]];
\ }
if (isNaN(fA[i]) && isNaN(fB[i])) d[i] = NaN;
if (.NaN && (isNaN(fA[i]) || isNaN(fB[il))) d[i] = NaN;
else if (isNaN(fA[i])) d[i] = fB[i];
else if (isNaN(fB[i])) [1] = fA[i];
else d[i] = (fA[i] < fB[i]) ? fA[i]

—: fB[i];

if (.xorsign && !isNaN(d[i])) {
setSignBit(d[i], xorsign);
(continues on next page)
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(continued from previous page)

}

Notes

Subnormal numbers: By default, subnormal numbers are supported. min.ftz.{f16, f16x2}
flushes subnormal inputs and results to sign-preserving zero.

If values of both inputs are 0.0, then +0.0 > -0.0.
PTX ISA Notes

Introduced in PTX ISA version 7.0.
min.xorsign introduced in PTX ISA version 7.2.
Target ISA Notes

Requires sm_886 or higher.

min.xorsign.abs support requires sm_86 or higher.

Examples

min.ftz.f16 ho,h1,h2;
min.f16x2 bo,b1,b2;
// SIMD fp16 min with .NaN
min.NaN.f16x2 b0,b1,b2;
min.bf16 he, h1, h2;

// SIMD bf16 min with NaN
min.NaN.bf16x2 b0, b1, b2;

// scalar bf16 min with xorsign.abs
min.xorsign.abs.bf16 Rd, Ra, Rb

max
Find the maximum of two values.
Syntax

max{.ftz}{.NaN}{.xorsign.abs}.f16 d,
max{.ftz}{.NaN}{.xorsign.abs}.f16x2 d,
max{.NaN}{.xorsign.abs}.bf16 d,
max{.NaN}{.xorsign.abs}.bf16x2 d,

O O T T

[S R <V VI o)

Description
Store the maximum of aand b in d.

For .f16x2 and .bf16x2 instruction types, input vectors are formed with half-word values from
source operands. Half-word operands are then processed in parallel to store . f16x2 or .bf16x2 result
in destination.

For .f16 instruction type, operands d and a have .f16 or .b16 type. For .f16x2 instruction type,
operands d and a have . f16x2 or .b32 type. For .bf16 instruction type, operands d and a have .b16
type. For .bf16x2 instruction type, operands d and a have .b32 type.

If .NaN modifier is specified, the result is canonical NaN if either of the inputs is NaN.
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If .abs modifier is specified, the magnitude of destination operand d is the maximum of absolute
values of both the input arguments.

If .xorsign modifier is specified, the sign bit of destination d is equal to the XOR of the sign bits of
both the inputs.

Modifiers .abs and .xorsign must be specified together and .xorsign considers the sign bit of
both inputs before applying .abs operation.

If the result of max is NaN then the .xorsign and .abs modifiers will be ignored.

Semantics

if (type == f16 || type == bf16)
if (.xorsign)

{
xorsign = getSignBit(a) * getSignBit(b);
if (.abs) {
a = |al;
b= |bl;
}
}
if (isNaN(a) && isNaN(b)) d = NaN;
if (.NaN && (isNaN(a) || isNaN(b))) d = NaN;
else if (isNaN(a)) d = b;
else if (isNaN(b)) d = a;
else d=(a>b) ?2a:b;

if (.xorsign && !isNaN(d)) {
setSignBit(d, xorsign);

}
} else if (type == f16x2 || type == bf16x2) {
fA[Q] = a[0:15];
fA[1] = a[16:31];
fB[@] = b[6:15];
fB[1] = b[16:31];

for (i = 0; i < 2; i++) {
if (.xorsign) {
xorsign = getSignBit(fA[i]) * getSignBit(fB[i]);

if (.abs) {
fA[1] = [fA[i]];
fB[i] = |fB[i]];
}

}
if (isNaN(fA[i]) && isNaN(fB[i]))

d[i] = NaN;
if (.NaN && (isNaN(fA[i]) || isNaN(fB[i]))) d[i] = NaN;
else if (isNaN(fA[i])) d[i] = fB[i];
else if (isNaN(fB[i])) [i] = fA[i];
else dli] = (fA[i] > fB[i]) ? fA[i]
—: fB[i];

if (.xorsign && !isNaN(fA[i])) {
setSignBit(d[i], xorsign);
}

}

Notes

Subnormal numbers: By default, subnormal numbers are supported. max.ftz.{f16, f16x2}
flushes subnormal inputs and results to sign-preserving zero.

If values of both inputs are 0.0, then +0.0 > -0.0.
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PTX ISA Notes

Introduced in PTX ISA version 7.0.
max.xorsign.abs introduced in PTX ISA version 7.2.
Target ISA Notes

Requires sm_80 or higher.

max.xorsign.abs support requires sm_86 or higher.

Examples

max.ftz.f16 ho,h1,h2;
max.f16x2 bo,b1,b2;
// SIMD fp16 max with NaN
max.NaN.f16x2 bo,b1,b2;

// scalar f16 max with xorsign.abs
max.xorsign.abs.f16 Rd, Ra, Rb;
max.bf16 he, h1, h2;

// scalar bf16 max and NaN
max.NaN.bf16x2 b0, b1, b2;

// SIMD bf16 max with xorsign.abs
max.xorsign.abs.bf16x2 Rd, Ra, Rb;

tanh
Find the hyperbolic tangent of a value (in radians)
Syntax

tanh.approx.type d, a;

.type = {.f16, .f16x2, .bf16, .bf16x2}

Description
Take hyperbolic tangent value of a.
The type of operands d and a are as specified by . type.

For .f16x2 or .bf16x2 instruction type, each of the half-word operands are operated in parallel and
the results are packed appropriately intoa .f16x2 or .bf16x2.

Semantics
if (.type == .f16 || .type == .bf16) {
d = tanh(a)
} else if (.type == .f16x2 || .type == .bf16x2) {

fA[@] = a[0:15];
fA[1] = a[16:31];

d[e] = tanh(fA[0])
d[1] = tanh(fA[1])
}
Notes

tanh.approx.{f16, f16x2, bf16, bf16x2} implements an approximate hyperbolic tangent in
the target format.
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Results of tanh for various corner-case inputs are as follows:

Input | Result
-Inf -1.0
-0.0 |-0.0
+0.0 | +0.0
+Inf 1.0
NaN | NaN

The maximum absolute error for . 16 type is 2-10.987. The maximum absolute error for .bf16 type
is 2-8.

The subnormal numbers are supported.

PTX ISA Notes

Introduced in PTX ISA version 7.0.
tanh.approx.{bf16/bf16x2} introduced in PTX ISA version 7.8.
Target ISA Notes

Requires sm_75 or higher.

tanh.approx.{bf16/bf16x2} requires sm_90 or higher.

Examples

tanh.approx.f16 h1, ho;
tanh.approx.f16x2 hd1, hde;
tanh.approx.bf16 b1, be;
tanh.approx.bf16x2 hb1, hbo;

ex2
Find the base-2 exponent of input.

Syntax

ex2.approx.atype d, a;
ex2.approx.ftz.btype d, a;

.atype = { .f16, .f16x2}
.btype = { .bf16, .bf16x2}
Description

Raise 2 to the power a.
The type of operands d and a are as specified by . type.

For .f16x2 or .bf16x2 instruction type, each of the half-word operands are operated in parallel and
the results are packed appropriately intoa .f16x2 or .bf16x2.

Semantics
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if (.type == .f16 || .type == .bf16) {
d=2"a
} else if (.type == .f16x2 || .type == .bf16x2) {

fA[@] = a[0:15];
fA[1] = a[16:31];

d[e] = 2 » fA[9]
d[1] = 2 » fA[1]
}
Notes

ex2.approx.{f16, f16x2, bf16, bf16x2} implement a fast approximation to 2°.

For the .f16 type, subnormal inputs are supported. ex2.approx.ftz.bf16 flushes subnormal in-
puts and results to sign-preserving zero.

Results of ex2 .approx.ftz.bf16 for various corner-case inputs are as follows:

Input Result
-Inf +0.0

-subnormal | +1.0

-0.0 +1.0
+0.0 +1.0
+subnormal | +1.0
+Inf +Inf
NaN NaN

Results of ex2 .approx.f16 for various corner-case inputs are as follows:

Input | Result
-Inf +0.0
-00 | +1.0
+0.0 | +1.0

+Inf +Inf

NaN NaN

The maximum relative error for . 16 type is 2-9.9. The maximum relative error for .bf16 type is 2-7.
PTX ISA Notes

Introduced in PTX ISA version 7.0.

ex2.approx.ftz.{bf16/bf16x2} introduced in PTX ISA version 7.8.

Target ISA Notes

Requires sm_75 or higher.

ex2.approx.ftz.{bf16/bf16x2} requires sm_90 or higher.

Examples
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ex2.approx.f16 h1, ho;
ex2.approx.f16x2 hd1, hde;
ex2.approx.ftz.bf16 b1, b2;
ex2.approx.ftz.bf16x2 hb1, hb2;

The comparison select instructions are:
set
setp
selp
slct

As with single-precision floating-point instructions, the set, setp, and slctinstructions support sub-
normal numbers for sm_20 and higher targets and flush single-precision subnormal inputs to sign-
preserving zero for sm_1x targets. The optional . ftz modifier provides backward compatibility with
sm_1x targets by flushing subnormal inputs and results to sign-preserving zero regardless of the tar-
get architecture.

set

Compare two numeric values with a relational operator, and optionally combine this result with a pred-
icate value by applying a Boolean operator.

Syntax
set.CmpOp{.ftz}.dtype.stype d, a, b;
set.CmpOp.BoolOp{.ftz}.dtype.stype d, a, b, {!}c;

.CmpOp = { eq, ne, 1lt, le, gt, ge, lo, 1ls, hi, hs,
equ, neu, ltu, leu, gtu, geu, num, nan };
.BoolOp = { and, or, xor };
.dtype = { .u32, .s32, .f32 };
.stype = { .b16, .b32, .bé64,
.u16, .u32, .ub4,
.s16, .s32, .s64,
.f32, .f64 };
Description

Compares two numeric values and optionally combines the result with another predicate value by ap-
plying a Boolean operator. If this result is True, 1.0f is written for floating-point destination types,
and exffffffff is written for integer destination types. Otherwise, 0x00000000 is written.

Operand dhas type .dtype; operands a and b have type .stype; operand c has type .pred.

Semantics
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t = (aCmpOp b) 21 : 0;
if (isFloat(dtype))
d = BoolOp(t, c) ? 1.0f : 0x00000000;
else
d = BoolOp(t, c) ? exffffffff : 0x00000000;
Integer Notes
The signed and unsigned comparison operators are eq, ne, 1t, le, gt, ge.

For unsigned values, the comparison operators lo, 1s, hi, and hs for lower, lower-or-same, higher, and
higher-or-same may be used instead of 1t, le, gt, ge, respectively.

The untyped, bit-size comparisons are eq and ne.
Floating Point Notes
The ordered comparisons are eq, ne, 1t, 1le, gt, ge. If either operand is NaN, the result is False.

To aid comparison operations in the presence of NaN values, unordered versions are included: equ,
neu, 1tu, leu, gtu, geu. If both operands are numeric values (not NaN), then these comparisons have
the same result as their ordered counterparts. If either operand is NaN, then the result of these com-
parisons is True.

numreturns True if both operands are numeric values (not NaN), and nan returns True if either operand
is NaN.

Subnormal numbers:
sm_20+ By default, subnormal numbers are supported.
set.ftz.dtype.f32 flushes subnormal inputs to sign-preserving zero.
sm_1x set.dtype.f64 supports subnormal numbers.
set.dtype.f32 flushes subnormal inputs to sign-preserving zero.
Modifier . ftz applies only to . f32 comparisons.
PTX ISA Notes
Introduced in PTX ISA version 1.0.
Target ISA Notes
set with . f64 source type requires sm_13 or higher.

Examples

@p set.lt.and.f32.s32 d,a,b,r;
set.eq.u32.u32 d,i,n;

setp

Compare two numeric values with a relational operator, and (optionally) combine this result with a
predicate value by applying a Boolean operator.

Syntax
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setp.CmpOp{.ftz}.type pllql, a, b;
setp.CmpOp.BoolOp{.ftz}.type pllql, a, b, {!}c;

.CmpOp = { eq, ne, 1t, le, gt, ge, lo, 1ls, hi, hs,
equ, neu, 1ltu, leu, gtu, geu, num, nan };

.BoolOp = { and, or, xor };
.type = { .b16, .b32, .b64,
.ul16, .u32, .u64,
.s16, .s32, .s64,
.f32, .fe4 };
Description

Compares two values and combines the result with another predicate value by applying a Boolean
operator. This result is written to the first destination operand. A related value computed using the
complement of the compare result is written to the second destination operand.

Applies to all numeric types. Operands a and b have type . type; operands p, q, and ¢ have type .pred.
The sink symbol ‘_’ may be used in place of any one of the destination operands.

Semantics
t
p
q

(a CmpOp b) 2 1 : ©;
BoolOp(t, c);
BoolOp(!'t, c¢);

Integer Notes
The signed and unsigned comparison operators are eq, ne, 1t, le, gt, ge.

For unsigned values, the comparison operators lo, 1s, hi, and hs for lower, lower-or-same, higher, and
higher-or-same may be used instead of 1t, le, gt, ge, respectively.

The untyped, bit-size comparisons are eq and ne.
Floating Point Notes
The ordered comparisons are eq, ne, 1t, le, gt, ge. If either operand is NaN, the result is False.

To aid comparison operations in the presence of NaN values, unordered versions are included: equ,
neu, 1tu, leu, gtu, geu. If both operands are numeric values (not NaN), then these comparisons have
the same result as their ordered counterparts. If either operand is NaN, then the result of these com-
parisons is True.

numreturns True if both operands are numeric values (not NaN), and nan returns True if either operand
is NaN.

Subnormal numbers:
sm_20+ By default, subnormal numbers are supported.
setp.ftz.dtype.f32 flushes subnormal inputs to sign-preserving zero.
sm_1x setp.dtype.f64 supports subnormal numbers.
setp.dtype.f32 flushes subnormal inputs to sign-preserving zero.
Modifier . ftz applies only to .32 comparisons.
PTX ISA Notes
Introduced in PTX ISA version 1.0.
Target ISA Notes
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setp with . f64 source type requires sm_13 or higher.

Examples

setp.lt.and.s32 pj|q,a,b,r;
@q setp.eq.u32 p,i,n;
selp

Select between source operands, based on the value of the predicate source operand.

Syntax
selp.type d, a, b, c;

.type = { .b16, .b32, .b64,
.ul16, .u32, .u64,
.s16, .s32, .s64,

.32, .fe4 };

Description

Conditional selection. If ¢ is True, a is stored in d, b otherwise. Operands d, a, and b must be of the

same type. Operand c is a predicate.

Semantics

d=(c==1)?a: b;

PTX ISA Notes

Introduced in PTX ISA version 1.0.
Target ISA Notes

selp.f64 requires sm_13 or higher.

Examples

selp.s32 r@,r,g,p;
@q selp.f32 f0,t,x,xp;

sict

Select one source operand, based on the sign of the third operand.

Syntax
slct.dtype.s32 d, a, b, c;
slct{.ftz}.dtype.f32 d, a, b, c;

.dtype = { .b16, .b32, .bb64,
.ul6, .u32, .u64,
.s816, .s32, .s64,

.f32, .fe4 };
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Description

Conditional selection. If c00, ais stored in d, otherwise b is stored in d. Operands d, a, and b are treated
as a bitsize type of the same width as the first instruction type; operand ¢ must match the second
instruction type (.s32 or .f32). The selected input is copied to the output without modification.

Semantics

d=(c>=0)?a:b;

Floating Point Notes

For .32 comparisons, negative zero equals zero.
Subnormal numbers:

sm_20+ By default, subnormal numbers are supported.

slct.ftz.dtype.f32 flushes subnormal values of operand c to sign-preserving zero, and
operand a is selected.

sm_1x slct.dtype.f32 flushes subnormal values of operand c to sign-preserving zero, and operand
a is selected.

Modifier . ftz applies only to . 32 comparisons.

If operand c is NaN, the comparison is unordered and operand b is selected.
PTX ISA Notes

Introduced in PTX ISA version 1.0.

Target ISA Notes

slct.f64 requires sm_13 or higher.

Examples

slct.u32.s32 x, y, z, val;
slct.ftz.u64.f32 A, B, C, fval;

The comparison instructions are:
set

setp

set

Compare two numeric values with a relational operator, and optionally combine this result with a pred-
icate value by applying a Boolean operator.

Syntax
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set.CmpOp{.ftz}.f16.stype d, a, b;
set.CmpOp.BoolOp{.ftz}.f16.stype d, a, b, {'}c;
set.CmpOp.bf16.stype d, a, b;
set.CmpOp.BoolOp.bf16.stype d, a, b, {'}c;
set.CmpOp{.ftz}.dtype.f16 d, a, b;

a, b, {'}c;

set.CmpOp.BoolOp{.ftz}.dtype.f16 d,

.dtype = { .ul16, .s16, .u32, .s32}
set.CmpOp.dtype.bf16 d, a, b;
set.CmpOp.BoolOp.dtype.bf16 d, a, b, {!}c;
.dtype = { .u16, .s16, .u32, .s32}
set.CmpOp{.ftz}.dtype.f16x2 d, a, b;
set.CmpOp.BoolOp{.ftz}.dtype.f16x2 d, a, b, {!}c;
.dtype = { .f16x2, .u32, .s32}
set.CmpOp.dtype.bf16x2 d, a, b;
set.CmpOp.BoolOp.dtype.bf16x2 d, a, b, {!}c;

.dtype = { .bf16x2, .u32, .s32}

.CmpOp = { eq, ne, 1lt, le, gt, ge,
equ, neu, ltu, leu, gtu, geu, num, nan };
.BoolOp = { and, or, xor };
.stype = { .b16, .b32, .b64,
.ul6, .u32, .u64,
.s16, .s32, .s64,
.f16, .f32, .f64};
Description

Compares two numeric values and optionally combines the result with another predicate value by ap-
plying a Boolean operator.

Result of this computation is written in destination register in the following way:
If result is True,
oxffffffff is written for destination types .u32/.s32.
Oxffff is written for destination types .u16/.s16.
1.0 in target precision floating point format is written for destination type .16, .bf16.
If result is False,
0x0 is written for all integer destination types.
0.0 in target precision floating point format is written for destination type .16, .bf16.

If the source typeis .f16x2 or .bf16x2 then result of individual operations are packed in the 32-bit
destination operand.

Operand ¢ has type .pred.

Semantics

if (stype == .f16x2 || stype == .bf16x2) {
fA[Q] = a[0:15];
fA[1] = a[16:31];
fB[@] = b[6:15];

(continues on next page)
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(continued from previous page)
fB[1] = b[16:31];

t[o] = (fA[@] CmpOp fB[B]) ?2 1 : ©;
t[1] = (fA[1] CmpOp fB[1]) ? 1 : O;
if (dtype == .f16x2 || stype == .bf16x2) {

for (i =0; 1 < 2; i++) {
d[i] BoolOp(t[i], c) ? 1.0 : 0.0;

}
} else {
for (i = 0; 1 < 2; i++) {
d[i] BoolOp(t[i], c) ? exffff : o;
}

}
} else if (dtype 16 || stype == .bf16) {
t = (a CmpOp 1:0;
d = BoolOp(t, c) ? 1.0 : 0.90;
} else { // Integer destination type
trueVal = (isU16(dtype) || isS16(dtype)) ? Oxffff : oxffffffff;
t = (aCmpOp b) 21 : 0;
d = BoolOp(t, c) ? truevVal : ©;

= .f
)’)

T

}

Floating Point Notes
The ordered comparisons are eq, ne, 1t, le, gt, ge. If either operand is NaN, the result is False.

To aid comparison operations in the presence of NaN values, unordered versions are included: equ,
neu, 1tu, leu, gtu, geu. If both operands are numeric values (not NaN), then these comparisons have
the same result as their ordered counterparts. If either operand is NaN, then the result of these com-
parisons is True.

numreturns True if both operands are numeric values (not NaN), and nan returns True if either operand
is NaN.

Subnormal numbers: By default, subnormal numbers are supported.

When . ftz modifier is specified then subnormal inputs and results are flushed to sign preserving
zero.

PTX ISA Notes
Introduced in PTX ISA version 4.2.

set.{u16, u32, s16, s32}.f16 and set.{u32, s32}.f16x2 are introduced in PTX ISA version
6.5.

set.{u16, u32, s16, s32}.bf16, set.{u32, s32, bf16x2}.bf16x2, set.bf16.{s16,ul16,
f16,b16,s32,u32,f32,b32, s64,u64, f64,b64} are introduced in PTX ISA version 7.8.

Target ISA Notes
Requires sm_53 or higher.

set.{u16, u32, s16, s32}.bf16, set.{u32, s32, bf16x2}.bf16x2, set.bf16.{s16,ul16,
f16,b16,s32,u32,f32,b32,s64,u64, f64,b64} require sm_90 or higher.

Examples

set.lt.and.f16.f16 d

set.eq.f16x2.f16x2 d,i

set.eq.u32.f16x2 d,i
d

set.lt.and.u16.f16
(continues on next page)
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(continued from previous page)

set.ltu.or.bf16.f16 d,u,v,s;
set.equ.bf16x2.bf16x2 d,j,m;
set.geu.s32.bf16x2 d,j,m;
set.num.xor.s32.bf16 d,u,v,s;

setp

Compare two numeric values with a relational operator, and optionally combine this result with a pred-
icate value by applying a Boolean operator.

Syntax

setp.CmpOp{.ftz}.f16 p, a, b;
setp.CmpOp.BoolOp{.ftz}.f16 p, a, b, {!'}c;

setp.CmpOp{.ftz}.f16x2 plg, a, b;
setp.CmpOp.BoolOp{.ftz}.f16x2 pl|q, a, b, {!}c;
setp.CmpOp.bf16 p, a, b;
setp.CmpOp.Bool0Op.bf16 p, a, b, {!}c;
setp.CmpOp.bf16x2 plg, a, b;
setp.CmpOp.BoolOp.bf16x2 plg, a, b, {!'}c;

.CmpOp = { eq, ne, 1lt, le, gt, ge,
equ, neu, ltu, leu, gtu, geu, num, nan };

.BoolOp { and, or, xor };

Description

Compares two values and combines the result with another predicate value by applying a Boolean
operator. This result is written to the destination operand.

Operand ¢, p and g has type .pred.

For instruction type .f16, operands a and b have type .b16 or . f16.
For instruction type .f16x2, operands a and b have type .b32.

For instruction type .bf16, operands a and b have type .b16.

For instruction type .bf16x2, operands a and b have type .b32.

Semantics
if (type == .f16 || type == .bf16) {
t = (aCmpOp b) 21 : 0;
p = BoolOp(t, c);
} else if (type == .f16x2 || type == .bf16x2) {
fA[@] = a[0@:15];
fA[1] = a[16:31];
fB[@] = b[B:15];
fB[1] = b[16:31];

t[e] = (fA[@] CmpOp fB[B]) ? 1 : O;
t[1] = (fA[1] CmpOp fB[1]) 1 :0;
p = BoolOp(t[@], c);

(continues on next page)
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(continued from previous page)
q = BoolOp(t[1], ¢);
}
Floating Point Notes
The ordered comparisons are eq, ne, 1t, le, gt, ge. If either operand is NaN, the result is False.

To aid comparison operations in the presence of NaN values, unordered versions are included: equ,
neu, 1tu, leu, gtu, geu. If both operands are numeric values (not NaN), then these comparisons have
the same result as their ordered counterparts. If either operand is NaN, then the result of these com-
parisons is True.

numreturns True if both operands are numeric values (not NaN), and nan returns True if either operand
is NaN.

Subnormal numbers: By default, subnormal numbers are supported.
setp.ftz.{f16, f16x2} flushes subnormal inputs to sign-preserving zero.

PTX ISA Notes

Introduced in PTX ISA version 4.2.

setp.{bf16/bf16x2} introduced in PTX ISA version 7.8.

Target ISA Notes

Requires sm_53 or higher.

setp.{bf16/bf16x2} requires sm_90 or higher.

Examples

setp.lt.and.f16x2 pjq,a,b,r;
@q setp.eq.f16 p,i,n;

setp.gt.or.bf16x2 wujv,c,d,s;
@q setp.eq.bf16 u,j,m;

The logic and shift instructions are fundamentally untyped, performing bit-wise operations on
operands of any type, provided the operands are of the same size. This permits bit-wise operations
on floating point values without having to define a union to access the bits. Instructions and, or, xor,
and not also operate on predicates.

The logical shift instructions are:

and
or

xor
not
cnot
lop3
shf
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shl

shr

and
Bitwise AND.
Syntax

and.type d, a, b;

.type = { .pred, .b16, .b32, .b64 };

Description

Compute the bit-wise and operation for the bits in a and b.

Semantics

d =a &b;

Notes

The size of the operands must match, but not necessarily the type.

Allowed types include predicate registers.
PTX ISA Notes

Introduced in PTX ISA version 1.0.

Target ISA Notes

Supported on all target architectures.

Examples

and.b32 x,q,r;
and.b32 sign, fpvalue, 0x80000000;

or

Biwise OR.

Syntax

or.type d, a, b;

.type = { .pred, .b16, .b32, .b64 };

Description
Compute the bit-wise or operation for the bits in a and b.

Semantics
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d=a | b;

Notes

The size of the operands must match, but not necessarily the type.

Allowed types include predicate registers.
PTX ISA Notes

Introduced in PTX ISA version 1.0.

Target ISA Notes

Supported on all target architectures.

Examples

or.b32 mask mask,9x00010001
or.pred p,q,r;

xor

Bitwise exclusive-OR (inequality).
Syntax

xor.type d, a, b;

.type = { .pred, .b16, .b32, .b64 };

Description

Compute the bit-wise exclusive-or operation for the bits in a and b.

Semantics

d =a * b;

Notes

The size of the operands must match, but not necessarily the type.

Allowed types include predicate registers.
PTX ISA Notes

Introduced in PTX ISA version 1.0.

Target ISA Notes

Supported on all target architectures.

Examples

xor.b32 d,q,r;
xor.b16 d, x,0x0001;
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not
Bitwise negation; one’s complement.
Syntax

not.type d, a;

.type = { .pred, .b16, .b32, .b64 };

Description
Invert the bits in a.

Semantics

d = ~a;

Notes

The size of the operands must match, but not necessarily the type.
Allowed types include predicates.

PTX ISA Notes

Introduced in PTX ISA version 1.0.

Target ISA Notes

Supported on all target architectures.

Examples

not.b32 mask,mask;
not.pred p,q;

cnot
C/C++ style logical negation.
Syntax

cnot.type d, a;

.type = { .b16, .b32, .b64 };

Description
Compute the logical negation using C/C++ semantics.

Semantics

d=(a==0) 21 : 0;

Notes

The size of the operands must match, but not necessarily the type.

180 Chapter 9. Instruction Set



PTX ISA, Release 8.1

PTX ISA Notes

Introduced in PTX ISA version 1.0.
Target ISA Notes

Supported on all target architectures.

Examples

cnot.b32 d,a;

lop3
Arbitrary logical operation on 3 inputs.

Syntax

lop3.b32 d, a, b, c, immLut;

Description
Compute bitwise logical operation on inputs a, b, ¢ and store the result in destination d.

The logical operation is defined by a look-up table which, for 3 inputs, can be represented as an 8-bit
value specified by operand immLut as described below. immLut is an integer constant that can take
values from 0 to 255, thereby allowing up to 256 distinct logical operations on inputs a, b, c.

For a logical operation F(a, b, c¢) the value of immLut can be computed by applying the same
operation to three predefined constant values as follows:

ta = OxFO;
tb = OxCC;
tc = OxAA;

immLut = F(ta, tb, tc);

Examples

IfF=(a&b&c);

immLut = OxFO & OxCC & OxAA = Ox80
IfF=(a]| b | c);

immLut = OxFO | OxCC | OxAA = OxFE
IfF=1(a&b&-~c);

immLut = OxFO & OxCC & (~OBxAA) = 0x40
IfF=((a&b | c)*a);

immLut = (OxF@ & OxCC | OxAA) *» OxFO = Ox1A

The following table illustrates computation of immLut for various logical operations:
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ta | tb | tc | Oper O | Oper1(ta&tb | Oper2(ta&th& Oper 254 (ta | | Oper 255
(False) & tc) ~tc) tb | tc) (True)

0] 0 |0 0 0 0 1

0 1 0 0 0 1 1

O |1 |0 |O 0 0 1 1

0 |1 1 |0 0 0 1 1

1 0O |0 |0 0 0 1 1

1 0 1 0 0 0 1 1

1 1 0O |0 0 1 1 1

1 1 1 0 1 0 1 1
immLut 0x0 0x80 0x40 OxFE OxFF

Semantics

F = GetFunctionFromTable(immLut) ;

—value
d = F(a, b, ¢);

PTX ISA Notes

Introduced in PTX ISA version 4.3.

Target ISA Notes
Requires sm_50 or higher.
Examples

lop3.b32 d, a, b, c, 6x40;

shf
Funnel shift.

Syntax

shf.l.mode.b32 d, a, b, c;
shf.r.mode.b32 d, a, b, c;

.mode = { .clamp, .wrap };

Description

// left shift
// right shift

// returns the function corresponding to immLut

Shift the 64-bit value formed by concatenating operands a and b left or right by the amount specified
by the unsigned 32-bit value in c. Operand b holds bits 63 :32 and operand a holds bits 31:0 of the
64-bit source value. The source is shifted left or right by the clamped or wrapped value in c. For shf .1,
the most-significant 32-bits of the result are written into d; for shf. r, the least-significant 32-bits of

the result are written into d.

Semantics
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u32 n = (.mode == .clamp) ? min(c, 32) : c & Ox1f;
switch (shf.dir) { // shift concatenation of [b, a]
case shf.1l: // extract 32 msbs
u32 d = (b << n) | (a >> (32-n));
case shf.r: // extract 32 1lsbs
u32 d = (b << (32-n)) | (a >> n);
}
Notes

Use funnel shift for multi-word shift operations and for rotate operations. The shift amount is lim-
ited to the range 0. .32 in clamp mode and 0. .31 in wrap mode, so shifting multi-word values by
distances greater than 32 requires first moving 32-bit words, then using shf to shift the remaining
0. .31 distance.

To shift data sizes greater than 64 bits to the right, use repeated shf. r instructions applied to ad-
jacent words, operating from least-significant word towards most-significant word. At each step, a
single word of the shifted result is computed. The most-significant word of the result is computed
using a shr. {u32, s32} instruction, which zero or sign fills based on the instruction type.

To shift data sizes greater than 64 bits to the left, use repeated shf . 1 instructions applied to adjacent
words, operating from most-significant word towards least-significant word. At each step, a single
word of the shifted result is computed. The least-significant word of the result is computed using a
shl instruction.

Use funnel shift to perform 32-bit left or right rotate by supplying the same value for source arguments
aandb.

PTX ISA Notes

Introduced in PTX ISA version 3.1.
Target ISA Notes

Requires sm_32 or higher.

Example

shf.l.clamp.b32 r3,r1,r0,16;

// 128-bit left shift; n < 32

// [r7,r6,r5,r4] = [r3,r2,r1,r0] << n
shf.l.clamp.b32 r7,r2,r3,n;
shf.l.clamp.b32 r6,r1,r2,n;
shf.l.clamp.b32 r5,r0@,r1,n;

shl.b32 r4,ro,n;

// 128-bit right shift, arithmetic; n < 32

// [r7,r6,r5,r4] = [r3,r2,r1,r0] >> n

shf.r.clamp.b32 r4,r0,r1,n;

shf.r.clamp.b32 r5,r1,r2,n;

shf.r.clamp.b32 r6,r2,r3,n;

shr.s32 r7,r3,n; // result is sign-extended

shf.r.clamp.b32 r1,r@,r0,n; // rotate right by n; n < 32
shf.l.clamp.b32 r1,r@,r0,n; // rotate left by n; n < 32

// extract 32-bits from [r1,r@] starting at position n < 32
shf.r.clamp.b32 r0,r0,r1,n;
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shl

Shift bits left, zero-fill on right.
Syntax

shl.type d, a, b;

.type = { .b16, .b32, .b64 };

Description
Shift a left by the amount specified by unsigned 32-bit value in b.

Semantics

d = a << b;

Notes
Shift amounts greater than the register width N are clamped to N.

The sizes of the destination and first source operand must match, but not necessarily the type. The b
operand must be a 32-bit value, regardless of the instruction type.

PTX ISA Notes

Introduced in PTX ISA version 1.0.
Target ISA Notes

Supported on all target architectures.

Example

shl.b32 q,a,2;

shr

Shift bits right, sign or zero-fill on left.
Syntax

shr.type d, a, b;

.type = { .b16, .b32, .b64,
.u16, .u32, .u64,
.s16, .s32, .s64 };
Description

Shift a right by the amount specified by unsigned 32-bit value in b. Signed shifts fill with the sign bit,
unsigned and untyped shifts fill with @.

Semantics

d =a > b;
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Notes
Shift amounts greater than the register width N are clamped to N.

The sizes of the destination and first source operand must match, but not necessarily the type. The b
operand must be a 32-bit value, regardless of the instruction type.

Bit-size types are included for symmetry with shl.
PTX ISA Notes

Introduced in PTX ISA version 1.0.

Target ISA Notes

Supported on all target architectures.

Example

shr.ul6 «c,a,2;
shr.s32 1i,i,1;
shr.b16 k,1i,j;

These instructions copy data from place to place, and from state space to state space, possibly con-
verting it from one format to another. mov, 1d, 1du, and st operate on both scalar and vector types.
The isspacep instruction is provided to query whether a generic address falls within a particular state
space window. The cvta instruction converts addresses between generic and const, global, lo-
cal, or shared state spaces.

Instructions 1d, st, suld, and sust support optional cache operations.
The Data Movement and Conversion Instructions are:

mov

shfl.sync

prmt

1d

ldu

st

st.async

multimen.ld_reduce, multimem.st, multimem.red

prefetch, prefetchu

isspacep

cvta

cvt

cvt.pack

cp.async

cp.async.commit_group
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cp.
cp.
cp.
cp.
cp.
cp.
cp.
cp.
cp.

async.wait_group,cp.async.wait_all
async.bulk

reduce.async.bulk
async.bulk.prefetch
async.bulk.tensor
reduce.async.bulk.tensor
async.bulk.prefetch.tensor
async.bulk.commit_group

async.bulk.wait_group

PTX ISA version 2.0 introduced optional cache operators on load and store instructions. The cache

operators require a target architecture of sm_20 or higher.

Cache operators on load or store instructions are treated as performance hints only. The use of a
cache operator on an 1d or st instruction does not change the memory consistency behavior of the

program.

For sm_20 and higher, the cache operators have the following definitions and behavior.
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Table 27: Cache Operators for Memory Load Instructions

Operator

Meaning

.Ca

Cache at all levels, likely to be accessed again.

The default load instruction cache operation is Id.ca, which allocates cache lines in
all levels (L1 and L2) with normal eviction policy. Global data is coherent at the L2
level, but multiple L1 caches are not coherent for global data. If one thread stores
to global memory via one L1 cache, and a second thread loads that address via a
second L1 cache with 1d. ca, the second thread may get stale L1 cache data, rather
than the data stored by the first thread. The driver must invalidate global L1 cache
lines between dependent grids of parallel threads. Stores by the first grid program
are then correctly fetched by the second grid program issuing default 1d. ca loads
cachedin L1.

.cg

Cache at global level (cache in L2 and below, not L1).
Use 1d.cg to cache loads only globally, bypassing the L1 cache, and cache only in
the L2 cache.

.Cs

Cache streaming, likely to be accessed once.

The 1d.cs load cached streaming operation allocates global lines with evict-first
policy in L1 and L2 to limit cache pollution by temporary streaming data that may
be accessed once or twice. When 1d.cs is applied to a Local window address, it
performs the 1d. 1u operation.

.1u

Last use.

The compiler/programmer may use 1d . 1u when restoring spilled registers and pop-
ping function stack frames to avoid needless write-backs of lines that will not be
used again. The 1d. luinstruction performs a load cached streaming operation (1d.
cs) on global addresses.

.Cv

Don’t cache and fetch again (consider cached system memory lines stale, fetch
again).

The Id.cv load operation applied to a global System Memory address invalidates (dis-
cards) a matching L2 line and re-fetches the line on each new load.
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Table 28: Cache Operators for Memory Store Instructions

Operator

Meaning

.wb

Cache write-back all coherent levels.

The default store instruction cache operationis st . wb, which writes back cache lines
of coherent cache levels with normal eviction policy.

If one thread stores to global memory, bypassing its L1 cache, and a second thread
in a different SM later loads from that address via a different L1 cache with 1d.ca,
the second thread may get a hit on stale L1 cache data, rather than get the data
from L2 or memory stored by the first thread.

The driver must invalidate global L1 cache lines between dependent grids of thread
arrays. Stores by the first grid program are then correctly missed in L1 and fetched
by the second grid program issuing default 1d. ca loads.

.cg

Cache at global level (cache in L2 and below, not L1).
Use st.cgto cache global store data only globally, bypassing the L1 cache, and cache
only in the L2 cache.

.Cs

Cache streaming, likely to be accessed once.
The st.cs store cached-streaming operation allocates cache lines with evict-first
policy to limit cache pollution by streaming output data.

.wt

Cache write-through (to system memory).
The st.wt store write-through operation applied to a global System Memory ad-
dress writes through the L2 cache.

PTX ISA version 7.4 adds optional cache eviction priority hints on load and store instructions. Cache
eviction priority requires target architecture sm_70 or higher.

Cache eviction priority on load or store instructions is treated as a performance hint. It is supported
for .global state space and generic addresses where the address points to .global state space.

Table 29: Cache Eviction Priority Hints for Memory Load and
Store Instructions

Cache Eviction Priority | Meaning

evict_normal Cache data with normal eviction priority. This is the default eviction prior-

ity.

evict_first

Data cached with this priority will be first in the eviction priority order and
will likely be evicted when cache eviction is required. This priority is suitable
for streaming data.

evict_last

Data cached with this priority will be last in the eviction priority order
and will likely be evicted only after other data with evict_normal or
evict_first eviction priotity is already evicted. This priority is suitable
for data that should remain persistent in cache.

evict_unchanged Do not change eviction priority order as part of this operation.

no_allocate

Do not allocate data to cache. This priority is suitable for streaming data.
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mov

Set aregister variable with the value of a register variable or an immediate value. Take the non-generic
address of a variable in global, local, or shared state space.

Syntax

mov.type d, a;

mov.type d, sreg;

mov.type d, avar; // get address of variable

mov.type d, avar+imm; // get address of variable with offset
mov.u32 d, fname; // get address of device function

mov .u64 d, fname; // get address of device function
mov.u32 d, kernel; // get address of entry function
mov.u64 d, kernel; // get address of entry function

.type = { .pred,
.b16, .b32, .b64,
.u16, .u32, .u64,
.s16, .s32, .s64,
.32, .f64 };

Description
Write register d with the value of a.

Operand a may be a register, special register, variable with optional offset in an addressable memory
space, or function name.

For variables declared in .const, .global, .1local, and .shared state spaces, mov places the non-
generic address of the variable (i.e., the address of the variable in its state space) into the destination
register. The generic address of a variable in const, global, local, or shared state space may be
generated by first taking the address within the state space with mov and then converting it to a
generic address using the cvta instruction; alternately, the generic address of a variable declared in
const, global, local, or shared state space may be taken directly using the cvta instruction.

Note that if the address of a device function parameter is moved to a register, the parameter will be
copied onto the stack and the address will be in the local state space.

Semantics

d = a;

d = sreg;

d = &avar; // address is non-generic; i.e., within the variable's declared

—,state space
d = &avar+imm;

Notes

Although only predicate and bit-size types are required, we include the arithmetic types for the
programmer’s convenience: their use enhances program readability and allows additional type
checking.

When moving address of a kernel or a device function, only .u32 or .u64 instruction types are
allowed. However, if a signed type is used, it is not treated as a compilation error. The compiler
issues a warning in this case.

PTX ISA Notes
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Introduced in PTX ISA version 1.0.

Taking the address of kernel entry functions requires PTX ISA version 3.1 or later. Kernel function
addresses should only be used in the context of CUDA Dynamic Parallelism system calls. See the
CUDA Dynamic Parallelism Programming Guide for details.

Target ISA Notes
mov . f64 requires sm_13 or higher.

Taking the address of kernel entry functions requires sm_35 or higher.

Examples

mov.f32 d,a;

mov.ulé u,v;

mov.f32 k,0.1;

mov.u32 ptr, A; // move address of A into ptr

mov.u32 ptr, A[5]; // move address of A[5] into ptr

mov.u32 ptr, A+20; // move address with offset into ptr
mov.u32 addr, myFunc; // get address of device function 'myFunc’
mov.u64 kptr, main; // get address of entry function 'main'’
mov

Move vector-to-scalar (pack) or scalar-to-vector (unpack).
Syntax

mov.type d, a;

.type = { .b16, .b32, .b64 };

Description

Write scalar register d with the packed value of vector register a, or write vector register d with the
unpacked values from scalar register a.

When destination operand d is a vector register, the sink symbol ' _' may be used for one or more
elements provided that at least one element is a scalar register.

For bit-size types, mov may be used to pack vector elements into a scalar register or unpack sub-fields
of a scalar register into a vector. Both the overall size of the vector and the size of the scalar must
match the size of the instruction type.

Semantics

// pack two 8-bit elements into .b16

d =a.x | (a.y << 8)

// pack four 8-bit elements into .b32

d =a.x | (a.y << 8) | (a.z << 16) | (a.w << 24)
// pack two 16-bit elements into .b32

d =a.x | (a.y << 16)

// pack four 16-bit elements into .b64

d=a.x | (a.y << 16) | (a.z << 32) | (a.w << 48)
// pack two 32-bit elements into .b64

d =a.x | (a.y << 32)

(continues on next page)
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(continued from previous page)
// unpack 8-bit elements from .b16
{d.x, d.y } = { a[0..7], a[8..15] }
// unpack 8-bit elements from .b32
{d.x, d.y, d.z, d.w }
{ a[0..7], a[8..15], a[16..23], a[24..31] }

// unpack 16-bit elements from .b32
{d.x, d.y } = { a[e..15], a[16..31] }
// unpack 16-bit elements from .b64
{d.x, d.y, d.z, d.w } =
{ a[0..15], a[16..31], a[32..47], a[48..63] }

// unpack 32-bit elements from .b64
{d.x, d.y } = { a[0..31], a[32..63] }
PTX ISA Notes

Introduced in PTX ISA version 1.0.

Target ISA Notes

Supported on all target architectures.

Examples
mov.b32 %r1,{a,b}; // a,b have type .ul16
mov.b64 {lo,hi}, %Xx; // %x is a double; lo,hi are .u32

mov.b32 %r1,{x,y,z,w}; // X,y,z,w have type .b8
mov.b32 {r,g,b,a},%r1; // r,g,b,a have type .u8
mov.b64 {%r1, _}, %X; // %x is.b64, %r1 is .b32

shfl (deprecated)

Register data shuffle within threads of a warp.
Syntax

shfl.mode.b32 d[|p], a, b, c;

.mode = { .up, .down, .bfly, .idx };

Deprecation Note
The shflinstruction without a . sync qualifier is deprecated in PTX ISA version 6.0.

Support for this instruction with . target lower than sm_70 may be removed in a future PTX ISA
version.

Removal Note

Support for shfl instruction without a .sync qualifier is removed in PTX ISA version 6.4 for .
targetsm_70 or higher.

Description

Exchange register data between threads of a warp.
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Each thread in the currently executing warp will compute a source lane index j based on input operands
b and ¢ and the mode. If the computed source lane index j is in range, the thread will copy the input
operand a from lane j into its own destination register d; otherwise, the thread will simply copy its own
input a to destination d. The optional destination predicate p is set to True if the computed source
lane is in range, and otherwise set to False.

Note that an out of range value of b may still result in a valid computed source lane indexj. In this case,
a data transfer occurs and the destination predicate p is True.

Note that results are undefined in divergent control flow within a warp, if an active thread sources a
register from an inactive thread.

Operand b specifies a source lane or source lane offset, depending on the mode.

Operand ¢ contains two packed values specifying a mask for logically splitting warps into sub-
segments and an upper bound for clamping the source lane index.

Semantics

lane[4:8] = [Thread].laneid; // position of thread in warp
bval[4:0] = b[4:0]; // source lane or lane offset (0..31)
cval[4:0] = c[4:0]; // clamp value

mask[4:0] = c[12:8];

// get value of source register a if thread is active and
// guard predicate true, else unpredictable
if (isActive(Thread) && isGuardPredicateTrue(Thread)) {
SourceA[lane] = a;
} else {
// Value of SourceA[lane] is unpredictable for
// inactive/predicated-off threads in warp

}
maxLane = (lane[4:0] & mask[4:0]) | (cval[4:0] & ~mask[4:0]);
minLane = (lane[4:0] & mask[4:0]);

switch (.mode) {

case .up: j = lane - bval; pval = (j >= maxLane); break;
case .down: j = lane + bval; pval = (j <= maxLane); break;
case .bfly: j = lane A bval; pval = (j <= maxLane); break;
case .idx: j = minLane | (bval[4:0] & ~mask[4:0]);
pval = (j <= maxLane); break;
}
if (!pval) j = lane; // copy from own lane
d = SourceAlj]; // copy input a from lane j
if (dest predicate selected)
p = pval;
PTX ISA Notes

Introduced in PTX ISA version 3.0.

Deprecated in PTX ISA version 6.0 in favor of shfl.sync.

Not supported in PTX ISA version 6.4 for .target sm_70 or higher.
Target ISA Notes

shfl requires sm_30 or higher.

shflis not supported on sm_70 or higher starting PTX ISA version 6.4.

Examples
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@p
@p
@p
@p

@p

@p
@p
@p
@p

@p

// Warp-level INCLUSIVE PLUS SCAN:

//

// Assumes input in following registers:
// - Rx = sequence value for this thread
//

shfl.up.b32 Ry|p, Rx, 6x1, 0x0;
add.f32 Rx, Ry, Rx;

shfl.up.b32 Ry|p, Rx, 6x2, 0x0;
add.f32 Rx, Ry, Rx;

shfl.up.b32 Ry|p, Rx, 6x4, 0x0;
add.f32 Rx, Ry, Rx;

shfl.up.b32 Ry|p, Rx, 6x8, 0x0;
add.f32 Rx, Ry, Rx;

shfl.up.b32 Ry|p, Rx, 6x10, 0x0;
add.f32 Rx, Ry, Rx;

// Warp-level INCLUSIVE PLUS REVERSE-SCAN:

//

// Assumes input in following registers:
!/ - Rx = sequence value for this thread
//

shfl.down.b32 Ry|p, Rx, 0x1, ©x1f;
add.f32 Rx, Ry, Rx;

shfl.down.b32 Ry|p, Rx, 6x2, 0x1f;
add.f32 Rx, Ry, Rx;

shfl.down.b32 Ry|p, Rx, 0x4, 0x1f;
add.f32 Rx, Ry, Rx;

shfl.down.b32 Ry|p, Rx, 0x8, 0x1f;
add.f32 Rx, Ry, Rx;

shfl.down.b32 Ry|p, Rx, 0x10, 0x1f;
add.f32 Rx, Ry, Rx;

// BUTTERFLY REDUCTION:

//

// Assumes input in following registers:

// - Rx = sequence value for this thread
//

shfl.bfly.b32 Ry, Rx, 6x10, 0x1f; // no predicate dest
add.f32 Rx, Ry, Rx;

shfl.bfly.b32 Ry, Rx, 6x8, 0xif;

add.f32 Rx, Ry, Rx;

shfl.bfly.b32 Ry, Rx, 0x4, 0xi1f;

add.f32 Rx, Ry, Rx;

shfl.bfly.b32 Ry, Rx, 6x2, 0x1f;

add.f32 Rx, Ry, Rx;

shfl.bfly.b32 Ry, Rx, 6x1, 0xi1f;

add.f32 Rx, Ry, Rx;

//

// All threads now hold sum in Rx
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shfl.sync
Register data shuffle within threads of a warp.

Syntax
shfl.sync.mode.b32 d[|p], a, b, c, membermask;

.mode = { .up, .down, .bfly, .idx };

Description
Exchange register data between threads of a warp.

shfl.sync will cause executing thread to wait until all non-exited threads corresponding to member -
mask have executed shfl. sync with the same qualifiers and same membermask value before resum-
ing execution.

Operand membermask specifies a 32-bit integer which is a mask indicating threads participating in
barrier where the bit position corresponds to thread’s laneid.

shfl.sync exchanges register data between threads in membermask.

Each thread in the currently executing warp will compute a source lane index j based on input operands
b and ¢ and the mode. If the computed source lane index j is in range, the thread will copy the input
operand a from lanej into its own destination register d; otherwise, the thread will simply copy its own
input a to destination d. The optional destination predicate p is set to True if the computed source
lane is in range, and otherwise set to False.

Note that an out of range value of b may still result in a valid computed source lane index . In this case,
a data transfer occurs and the destination predicate p is True.

Note that results are undefined if a thread sources a register from an inactive thread or a thread that
is not in membermask.

Operand b specifies a source lane or source lane offset, depending on the mode.

Operand c contains two packed values specifying a mask for logically splitting warps into sub-
segments and an upper bound for clamping the source lane index.

The behavior of shfl.sync is undefined if the executing thread is not in the membermask.

Note: For .target sm_6x or below, all threads in membermask must execute the same shfl.sync
instruction in convergence, and only threads belonging to some membermask can be active when the
shfl.sync instruction is executed. Otherwise, the behavior is undefined.

Semantics

// wait for all threads in membermask to arrive
wait_for_specified_threads(membermask) ;

lane[4:0] = [Thread].laneid; // position of thread in warp
bval[4:0] = b[4:0]; // source lane or lane offset (0..31)
cval[4:0] = c[4:0]; // clamp value

segmask[4:0] = c[12:8];

// get value of source register a if thread is active and
(continues on next page)
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// guard predicate true, else unpredictable

if (isActive(Thread) && isGuardPredicateTrue(Thread)) {
SourceA[lane] = a;

} else {
// Value of SourceA[lane] is unpredictable for
// inactive/predicated-off threads in warp

}
maxLane = (lane[4:0] & segmask[4:0]) | (cval[4:0] & ~segmask[4:0]);
minLane = (lane[4:0] & segmask[4:0]);

switch (.mode) {

case .up: j = lane - bval; pval = (j >= maxLane); break;
case .down: j = lane + bval; pval = (j <= maxLane); break;
case .bfly: j = lane * bval; pval = (j <= maxLane); break;
case .idx: j = minLane | (bval[4:0] & ~segmask[4:0]);
pval = (j <= maxLane); break;

}

if (!'pval) j = lane; // copy from own lane

d = SourceA[j]; // copy input a from lane j

if (dest predicate selected)
p = pval;

PTX ISA Notes

Introduced in PTX ISA version 6.0.
Target ISA Notes

Requires sm_30 or higher.
Examples

shfl.sync.up.b32 Ry|p, Rx, Ox1, @x0, Oxffffffff;

prmt
Permute bytes from register pair.
Syntax

prmt.b32{.mode} d, a, b, c;
.mode = { .f4e, .bde, .rc8, .ecl, .ecr, .rcl16 };

Description

Pick four arbitrary bytes from two 32-bit registers, and reassemble them into a 32-bit destination
register.

In the generic form (no mode specified), the permute control consists of four 4-bit selection values.
The bytes in the two source registers are numbered fromOto 7: {b, a} = {{b7, b6, b5, b4},
{b3, b2, b1, bB}}. For each byte in the target register, a 4-bit selection value is defined.

The 3 Isbs of the selection value specify which of the 8 source bytes should be moved into the target
position. The msb defines if the byte value should be copied, or if the sign (msb of the byte) should be
replicated over all 8 bits of the target position (sign extend of the byte value); nsb=8 means copy the
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literal value; msb=1 means replicate the sign. Note that the sign extension is only performed as part
of generic form.

Thus, the four 4-bit values fully specify an arbitrary byte permute, as a 16b permute code.

default mode | d.b3 d.b2 d.b1 d.bo
source select source select source select source select
index c[15:12] c[11:8] c[7:4] c[3:0]

The more specialized form of the permute control uses the two Isb’s of operand ¢ (which is typically
an address pointer) to control the byte extraction.

mode selector d.b3 d.b2 d.b1 d.bo
cl[1:0] source source source source
f4e (forward 4 extract) | O 3 2 1 0
1 4 3 2 1
2 5 4 3 2
3 6 5 4 3
bde (backward 4 ex- |0 5 6 7 0
tract)
1 6 7 0 1
2 7 1 2
3 0 1 2 3
rc8 (replicate 8) 0 0 0 0 0
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
ecl (edge clamp left) 0 3 2 1 0
1 3 2 1 1
2 3 2 2 2
3 3 3 3 3
ecr (edge clampright) | O 0] 0 0 0
1 1 1 1 0
2 2 2 1 0
3 3 2 1 0
rc16 (replicate 16) 0 1 0 1 0
1 3 2 3 2
2 1 0 1 0
3 3 2 3 2
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Semantics

tmp64 = (b<<32) | a; // create 8 byte source

if (! mode ) {

ctl[e] = (¢ >> 0) & oxf;

ctl[1] = (c >> 4) & oxf;

ctl[2] = (c >> 8) & oxf;

ctl[3] = (c >> 12) & oxf;
} else {

ctl[@] = ctl[1] = ctl[2] = ctl[3] = (c >> ©) & Bx3;
}
tmp[07:00] = ReadByte( mode, ctl[@], tmp64 );
tmp[15:08] = ReadByte( mode, ctl[1], tmp64 );
tmp[23:16] = ReadByte( mode, ctl[2], tmp64 );
tmp[31:24] = ReadByte( mode, ctl[3], tmp64 );
PTX ISA Notes

Introduced in PTX ISA version 2.0.
Target ISA Notes
prmt requires sm_20 or higher.

Examples

prmt.b32 ri, r2, r3, r4;
prmt.b32.f4e r1, r2, r3, r4;

id
Load a register variable from an addressable state space variable.

Syntax

1d{.weak}{.ss}{.cop}{.level::cache_hint}{.level: :prefetch_size}{.vec}.type d, [al{.
—unified}{, cache-policy};

1d{.weak}{.ss}{.level::eviction_priority}{.level::cache_hint}{.level: :prefetch_size}{.
—vec}.type d, [a]{.unified}{, cache-policy};

1d.volatile{.ss}{.level::prefetch_size}{.vec}.type d, [a];

1d.relaxed.scope{.ss}{.level::eviction_priority}{.level::cache_hint}{.level::prefetch_
—size}{.vec}.type d, [a]{, cache-policy};

ld.acquire.scope{.ss}{.level::eviction_priority}{.level::cache_hint}{.level::prefetch_
—size}{.vec}.type d, [a]{, cache-policy};

.Ss = { .const, .global, .local, .param, .shared{::cta,
< ::cluster} };
.cop = { .ca, .cg, .cs, .lu, .cv };

.level::eviction_priority = { .L1::evict_normal, .L1::evict_unchanged,
.L1::evict_first, .L1::evict_last, .L71::no_allocate };
(continues on next page)
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.level::cache_hint = { .L2::cache_hint };
.level: :prefetch_size = { .L2::64B, .L2::128B, .L2::256B }
.scope = { .cta, .cluster, .gpu, .sys };
.vec = { .v2, .v4 };
.type = { .b8, .b16, .b32, .b64,

.u8, .ul16, .u32, .ub4,

.88, .s16, .s32, .s64,

.f32, .f64 };
Description

Load register variable d from the location specified by the source address operand a in specified state
space. If no state space is given, perform the load using

If no sub-qualifier is specified with .shared state space, then : :ctais assumed by default.

Supported addressing modes for operand a and alignment requirements are described in

Instruction 1d. param used for reading value returned from device function call cannot be predicated.
See and for descriptions of the proper use
of 1d.param.

The .relaxed and .acquire qualifiers indicate memory synchronization as described in the

. The .scope qualifier indicates the set of threads with which an 1d.relaxed or
1d.acquireinstruction can directly synchronize'. The .weak qualifier indicates a memory instruction
with no synchronization. The effects of this instruction become visible to other threads only when
synchronization is established by other means.

The .weak, .volatile, .relaxed and .acquire qualifiers are mutually exclusive. When none of
these is specified, the .weak qualifier is assumed by default.

An 1d.volatile operation is always performed and it will not be reordered with respect to other
volatile operations to the same memory location. volatile and non-volatile load operations to
the same memory location may be reordered. 1d.volatile has the same memory synchronization
semantics as 1d.relaxed. sys.

The qualifiers .volatile, .relaxed and .acquire may be used only with .global and .shared
spaces and with generic addressing, where the address points to .global or .shared space. Cache
operations are not permitted with these qualifiers.

The optional qualifier .unified must be specified on operand a if a is the address of a variable de-
clared with .unified attribute as described in

The qualifier .level::eviction_priority specifies the eviction policy that will be used during
memory access.

The .level: :prefetch_size qualifier is a hint to fetch additional data of the specified size into
the respective cache level.The sub-qualifier prefetch_size can be set to either of 64B, 128B, 256B
thereby allowing the prefetch size to be 64 Bytes, 128 Bytes or 256 Bytes respectively.

The qualifier .level: :prefetch_size may only be used with .global state space and with generic
addressing where the address points to .global state space. If the generic address does not fall
within the address window of the global memory, then the prefetching behavior is undefined.

The .level: :prefetch_size qualifier is treated as a performance hint only.

When the optional argument cache-policy is specified, the qualifier .level: :cache_hint is re-
quired. The 64-bit operand cache-policy specifies the cache eviction policy that may be used during
the memory access.
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The qualifiers .unified and .level: :cache_hint are only supported for .global state space and
for generic addressing where the address points to the .global state space.

cache-policy is a hint to the cache subsystem and may not always be respected. It is treated as a
performance hint only, and does not change the memory consistency behavior of the program.

! This synchronization is further extended to other threads through the transitive nature of causality
order, as described in the memory consistency model.

Semantics

d = a; // named variable a

d = *(&a+immOff) // variable-plus-offset
d = *a; // register

d = *(a+immOff); // register-plus-offset
d = *(immAddr); // immediate address
Notes

Destination d must be in the . reg state space.

A destination register wider than the specified type may be used. The value loaded is sign-extended
to the destination register width for signed integers, and is zero-extended to the destination register
width for unsigned and bit-size types. See for a description of these relaxed type-checking
rules.

.16 data may be loaded using 1d .b16, and then converted to . f32 or . f64 using cvt or can be used
in half precision floating point instructions.

.f16x2 data may be loaded using 1d.b32 and then used in half precision floating point instructions.
PTX ISA Notes

Id introduced in PTX ISA version 1.0. 1d.volatile introduced in PTX ISA version 1.1.

Generic addressing and cache operations introduced in PTX ISA version 2.0.

Support for scope qualifier, . relaxed, .acquire, .weak qualifiers introduced in PTX ISA version 6.0.
Support for generic addressing of .const space added in PTX ISA version 3.1.

Support for .level: :eviction_priority, .level::prefetch_size and .level: :cache_hint
qualifiers introduced in PTX ISA version 7.4.

Support for .cluster scope qualifier introduced in PTX ISA version 7.8.

Support for ::ctaand : :cluster sub-qualifiers introduced in PTX ISA version 7.8.
Support for .unified qualifier introduced in PTX ISA version 8.0.

Target ISA Notes

1d.f64 requires sm_13 or higher.

Support for scope qualifier, . relaxed, .acquire, .weak qualifiers require sm_70 or higher.
Generic addressing requires sm_20 or higher.

Cache operations require sm_20 or higher.

Support for .level::eviction_priority qualifier requires sm_70 or higher.
Support for .level: :prefetch_size qualifier requires sm_75 or higher.

Support for .L2::256B and .L2: :cache_hint qualifiers requires sm_80 or higher.

Support for .cluster scope qualifier requires sm_90 or higher.
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Sub-qualifier : :cta requires sm_30 or higher.
Sub-qualifier : :cluster requires sm_90 or higher.
Support for .unified qualifier requires sm_90 or higher.

Examples

1d.global.f32 d, [a];
1d.shared.v4.b32 Q, [p];

1d.const.s32 d, [p+4];

1d.local.b32 x, [p+-8]; // negative offset

1d.local.b64 x,[240]; // immediate address

1d.global.b16 %r,[fs]; // load .f16 data into 32-bit reg
cvt.f32.f16 %r,%r; // up-convert f16 data to f32
1d.global.b32 %re, [fs]; // load .f16x2 data in 32-bit reg
1d.global.b32 %r1, [fs + 4]; // load .f16x2 data in 32-bit reg
add.rn.f16x2 %d0, %re, %ri1; // addition of f16x2 data

1d.global.relaxed.gpu.u32 %r@, [gbl];
1d.shared.acquire.gpu.u32 %r1, [sh];
1d.global.relaxed.cluster.u32 %r2, [gbl];
1ld.shared: :cta.acquire.gpu.u32 %r2, [sh + 4];
1d.shared::cluster.u32 %r3, [sh + 8];

1d.global.f32 d, [ugbl].unified;
1d.b32 %r0, [%r1].unified;

1d.global.L1::evict_last.u32 d, [p];

1d.global.L2::64B.b32 %r@, [gbl]; // Prefetch 64B to L2
1d.L2::128B.f64 %r1, [gbl]; // Prefetch 128B to L2
1d.global.L2::256B.f64 %r2, [gbl]; // Prefetch 256B to L2

createpolicy.fractional.L2::evict_last.L2::evict_unchanged.b64 cache-policy, 1;
1d.global.L2::cache_hint.b64 x, [p], cache-policy;

Id.global.nc

Load a register variable from global state space via non-coherent cache.

Syntax

1ld.global{.cop}.nc{.level::cache_hint}.type d, [al{, cache-policy};
ld.global{.cop}.nc{.level::cache_hint}.vec.type d, [a]{, cache-policy};
1d.gioba%.nc{.level::eviction_priority}{.level::cache_hint}.type d, [al{, cache-
—policy};

1d.global.nc{.level::eviction_priority}{.level::cache_hint}.vec.type d, [a]{, cache-
—policy};

.cop = { .ca, .cg, .cs }; // cache operation
.level::eviction_priority = { .L1::evict_normal, .L1::evict_unchanged,
.L1::evict_first, .L1::evict_last, .L71::no_allocate};
.level::cache_hint = { .L2::cache_hint };
(continues on next page)
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.vec = { .v2, .v4 };

.type = { .b8, .b16, .b32, .b64,
.u8, .ul16, .u32, .ub4,
.s8, .s16, .s32, .s64,
.f32, .f64 };

Description

Load register variable d from the location specified by the source address operand a in the global state
space, and optionally cache in non-coherent read-only cache.

Note: On some architectures, the texture cache is larger, has higher bandwidth, and longer latency
than the global memory cache. For applications with sufficient parallelism to cover the longer latency,
1d.global.nc should offer better performance than 1d.global on such architectures.

Supported addressing modes for operand a and alignment requirements are described in

The qualifier .level::eviction_priority specifies the eviction policy that will be used during
memory access.

When the optional argument cache-policy is specified, the qualifier .level: :cache_hint is re-
quired. The 64-bit operand cache-policy specifies the cache eviction policy that may be used during
the memory access.

cache-policy is a hint to the cache subsystem and may not always be respected. It is treated as a
performance hint only, and does not change the memory consistency behavior of the program.

Semantics

d = a; // named variable a

d = *(&a+immOff) // variable-plus-offset
d = *a; // register

d = *(a+immOff); // register-plus-offset
d = *(immAddr); // immediate address
Notes

Destination d must be in the . reg state space.

A destination register wider than the specified type may be used. The value loaded is sign-extended
to the destination register width for signed integers, and is zero-extended to the destination register
width for unsigned and bit-size types.

.16 data may be loaded using 1d.b16, and then converted to .32 or . f64 using cvt.
PTX ISA Notes
Introduced in PTX ISA version 3.1.

Support for .level::eviction_priority and .level: :cache_hint qualifiers introduced in PTX
ISA version 7.4.

Target ISA Notes
Requires sm_32 or higher.
Support for .level::eviction_priority qualifier requires sm_70 or higher.

Support for .level: :cache_hint qualifier requires sm_86 or higher.
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Examples

1d.global.nc.f32 d, [a];
ld.gloal.nc.L1::evict_last.u32 d, [a];

createpolicy.fractional.L2::evict_last.b64 cache-policy, 0.5;
1d.global.nc.L2::cache_hint.f32 d, [a], cache-policy;

Idu
Load read-only data from an address that is common across threads in the warp.
Syntax
ldu{.ss}.type d, [a]; // load from address
1du{.ss}.vec.type d, [a]; // vec load from address
.SS = { .global }; // state space
.vec = { .v2, .v4 };
.type = { .b8, .b16, .b32, .b64,

.u8, .ul16, .u32, .ub4,

.s8, .s16, .s32, .s64,

.f32, .fe4 };

Description

Load read-only data into register variable d from the location specified by the source address operand
a in the global state space, where the address is guaranteed to be the same across all threads in the
warp. If no state space is given, perform the load using

Supported addressing modes for operand a and alignment requirements are described in

Semantics

d = a; // named variable a

d = *(&a+immOff) // variable-plus-offset
d = *a; // register

d = *(a+immOff); // register-plus-offset
d = *(immAddr); // immediate address
Notes

Destination d must be in the . reg state space.

A destination register wider than the specified type may be used. The value loaded is sign-extended
to the destination register width for signed integers, and is zero-extended to the destination register
width for unsigned and bit-size types. See for a description of these relaxed type-checking
rules.

.16 data may be loaded using 1du.b16, and then converted to .32 or .f64 using cvtor can be
used in half precision floating point instructions.

.f16x2 data may be loaded using 1du.b32 and then used in half precision floating point instructions.
PTX ISA Notes
Introduced in PTX ISA version 2.0.
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Target ISA Notes
1du.f64 requires sm_13 or higher.
Examples

1ldu.global.f32 d,[a];
1du.global.b32 d, [p+4];
1du.global.v4.f32 Q, [p];

st
Store a register variable to an addressable state space variable.
Syntax

st{.weak}{.ss}{.cop}{.level::cache_hint}{.vec}.type [a], b{, cache-policy};
st{.weak}{.ss}{.level::eviction_priority}{.level::cache_hint}{.vec}.type
[a], b{, cache-policy};
st.volatile{.ss}{.vec}.type [a], b;
st.relaxed.scope{.ss}{.level::eviction_priority}{.level::cache_hint}{.vec}.type
[a], b{, cache-policy};
st.release.scope{.ss}{.level::eviction_priority}{.level::cache_hint}{.vec}.type
[a], b{, cache-policy};

.88 = { .global, .local, .param, .shared{::cta, ::cluster} };
.level::eviction_priority = { .L1::evict_normal, .L1::evict_unchanged,
.L1::evict_first, .L1::evict_last, .L1::no_allocate };

.level::cache_hint = { .L2::cache_hint };
.cop = { .wb, .cg, .cs, .wt };
.sem = { .relaxed, .release };
.scope = { .cta, .cluster, .gpu, .sys };
.vec = { .v2, .v4 };
.type = { .b8, .b16, .b32, .b64,
.u8, .ul16, .u32, .ub4,
.88, .s16, .s32, .s64,
.f32, .fe4 };
Description

Store the value of register variable b in the location specified by the destination address operand a in
specified state space. If no state space is given, perform the store using . Stores
to const memory are illegal.

If no sub-qualifier is specified with .shared state space, then : :ctais assumed by default.

Supported addressing modes for operand a and alignment requirements are described in

Instruction st .param used for passing arguments to device function cannot be predicated. See
and for descriptions of the proper use of
st.param.

The qualifiers . relaxed and . release indicate memory synchronization as described in the

. The .scope qualifier indicates the set of threads with which an st.relaxed or
st.releaseinstruction can directly synchronize'. The .weak qualifier indicates a memory instruction
with no synchronization. The effects of this instruction become visible to other threads only when
synchronization is established by other means.
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The .weak, .volatile, .relaxed and .release qualifiers are mutually exclusive. When none of
these is specified, the .weak qualifier is assumed by default.

An st.volatile operation is always performed and it will not be reordered with respect to other
volatile operations to the same memory location. st.volatile has the same memory synchro-
nization semantics as st.relaxed. sys.

The qualifiers .volatile, .relaxed and .release may be used only with .global and .shared
spaces and with generic addressing, where the address points to .global or .shared space. Cache
operations are not permitted with these qualifiers.

The qualifier .level::eviction_priority specifies the eviction policy that will be used during
memory access.

When the optional argument cache-policy is specified, the qualifier .1level: :cache_hint is re-
quired. The 64-bit operand cache-policy specifies the cache eviction policy that may be used during
the memory access.

The qualifier .level: :cache_hint is only supported for .global state space and for generic ad-
dressing where the address points to the .global state space.

cache-policy is a hint to the cache subsystem and may not always be respected. It is treated as a
performance hint only, and does not change the memory consistency behavior of the program.

! This synchronization is further extended to other threads through the transitive nature of causality
order, as described in the memory consistency model.

Semantics

d = a; // named variable d
*(&a+immOffset) = b; // variable-plus-offset
*a = b; // register

*(a+immOffset) = b; // register-plus-offset
*(immAddr) = b; // immediate address

Notes

Operand b must be in the . reg state space.

A source register wider than the specified type may be used. The lower n bits corresponding to the
instruction-type width are stored to memory. See for a description of these relaxed type-
checking rules.

.16 data resulting from a cvt instruction may be stored using st.b16.

.f16x2 data may be stored using st .b32.

PTX ISA Notes

st introduced in PTX ISA version 1.0. st.volatile introduced in PTX ISA version 1.1.

Generic addressing and cache operations introduced in PTX ISA version 2.0.

Support for scope qualifier, . relaxed, .release, .weak qualifiers introduced in PTX ISA version 6.0.

Support for .level::eviction_priority and .level: :cache_hint qualifiers introduced in PTX
ISA version 7.4.

Support for .cluster scope qualifier introduced in PTX ISA version 7.8.

Support for ::ctaand : :cluster sub-qualifiers introduced in PTX ISA version 7.8.
Target ISA Notes

st.f64 requires sm_13 or higher.
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Support for scope qualifier, . relaxed, . release, .weak qualifiers require sm_70 or higher.
Generic addressing requires sm_280 or higher.

Cache operations require sm_20 or higher.

Support for .level::eviction_priority qualifier requires sm_70 or higher.

Support for .level: :cache_hint qualifier requires sm_86 or higher.

Support for .cluster scope qualifier requires sm_90 or higher.

Sub-qualifier : :cta requires sm_30 or higher.

Sub-qualifier : :cluster requires sm_90 or higher.

Examples

st.global.f32 [a],b;

st.local.b32 [g+4],a;

st.global.v4.s32 [p],Q;

st.local.b32 [g+-8],a; // negative offset
st.local.s32 [1e0],r7; // immediate address
cvt.f16.f32 %r,%r; // %r is 32-bit register
st.b16 [fs],%r; // store lower

st.global.relaxed.sys.u32 [gbl], %r@;
st.shared.release.cta.u32 [sh], %r1;
st.global.relaxed.cluster.u32 [gbl], %r2;
st.shared::cta.release.cta.u32 [sh + 4], %r1;
st.shared::cluster.u32 [sh + 8], %r1;

st.global.L1::no_allocate.f32 [p], a;

createpolicy.fractional.L2::evict_last.b64 cache-policy, 0.25;
st.global.L2::cache_hint.b32 [a], b, cache-policy;

st.async
Asynchronous store operation on shared memory.

Syntax

st.async{.weak}{.ss}{.completion_mechanism}{.vec}.type [a], b, [mbar];

.SS = { .shared::cluster };
.type = { .b32, .b64,
.u32, .u64,
.s32, .s64,
.f32, .fe4 };
.vec = { .v2, .v4 };
.completion_mechanism = { .mbarrier::complete_tx::bytes };

Description

st.async is a non-blocking instruction which initiates an asynchronous store operation that stores
the value specified by source operand register b to the destination memory location specified by
operand a.
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The modifier .completion_mechanism specifies that upon completion of the asynchronous opera-
tion, operation, with completeCount argument equal to amount of data stored in bytes,
will be performed on the mbarrier object specified by the operand mbar.

Operand a represents destination address and must be a register or of the form register + immOff
as described in

The shared memory addresses of destination operand a and the mbarrier object mbar, must meet all
of the following conditions:

They belong to the same CTA.
They are different to the CTA of the executing thread but must be within the same cluster.
Otherwise, the behavior is undefined.

The state space of the address {.ss}, if specified, is applicable to both operands a and mbar. If not
specified, then is used for both a and mbar. If the generic addresses specified do
not fall within the address window of .shared: :cluster state space, then the behaviour is unde-
fined.

The store operation in st.async is treated as a weak memory operation and the complete_tx oper-
ation on the mbarrier has .release semantics at the .cluster scope as described in the

PTX ISA Notes

Introduced in PTX ISA version 8.1.
Target ISA Notes

Requires sm_90 or higher.

Examples

st.async.shared::cluster.mbarrier::complete_tx::bytes.u32 [addr], b, [mbar_addr]

The multimem.* operations operate on multimem addresses and accesses all of the multiple memory
locations which the multimem address points to.

Multimem addresses can only be accessed only by multimem.* operations. Accessing a multimem
address with 1d, st or any other memory operations results in undefined behavior.

Refer to CUDA programming guide for creation and management of the multimem addresses.
multimem.ld_reduce, multimem.st, multimem.red
Perform memory operations on the multimem address.

Syntax

// Integer type:

multimem.ld_reduce{.ldsem}{.scope}{.ss}.op.type d, [a];
multimem.st{.stsem}{.scope}{.ss}.type [a], b;
multimem.red{.redsem}{.scope}{.ss}.op.type [a], b;
.8s = { .global }

(continues on next page)
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(continued from previous page)

.ldsem = { .weak, .relaxed, .acquire }

.stsem = { .weak, .relaxed, .release }

.redsem = { .relaxed, .release }

.scope = { .cta, .cluster, .gpu, .sys }

.op = { .min, .max, .add, .and, .or, .xor }
.type = { .b32, .b64, .u32, .u64, .s32, .s64 }

// Floating point type:

multimem.ld_reduce{.ldsem}{.scope}{.ss}.op{.vec}.type d, [a];

multimem.st{.stsem}{.scope}{.ss}{.vec}.type [a]l, b;
multimem.red{.redsem}{.scope}{.ss}.redop{.vec}.type [a], b;
.88 = { .global }

.ldsem = { .weak, .relaxed, .acquire }

.stsem = { .weak, .relaxed, .release }

.redsem = { .relaxed, .release }

.scope = { .cta, .cluster, .gpu, .sys }

.op = { .min, .max, .add }

.redop = { .add }

.vec = { .v2, .v4, .v8 }

.type= { .f16, .f16x2, .bf16, .bf16x2, .f32, .f64 }
Description

Instruction multimem.ld_reduce performs the following operations:

load operation on the multimem address a, which involves loading of data from all of the multiple
memory locations pointed to by the multimem address a,

reduction operation specified by .op on the multiple data loaded from the multimem address a.
The result of the reduction operation in returned in register d.

Instruction multimem. st performs a store operation of the input operand b to all the memory loca-
tions pointed to by the multimem address a.

Instruction multimem. red performs a reduction operation on all the memory locations pointed to by
the multimem address a, with operand b.

Instruction multimem. 1ld_reduce performs reduction on the values loaded from all the memory lo-
cations that the multimem address points to. In contrast, the multimem. red perform reduction on
all the memory locations that the multimem address points to.

Address operand a must be a multimem address. Otherwise, the behavior is undefined. Supported
addressing modes for operand a and alignment requirements are described in

If no state space is specified then is used. If the address specified by a does not
fall within the address window of .global state space then the behavior is undefined.

For floating-point type multi- operations, the size of the specified type along with .vec must equal
either 32-bits or 64-bits or 128-bits. No other combinations of .vec and type are allowed. Type .f64
cannot be used with .vec qualifier.

The following table describes the valid combinations of . op and base type:
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op Base type
.add

.u32, .ub4, .s32
.f16, .f16x2, .bf16, .bf16x2
.32, .f64

.and, .or, .xor .b32, .b64

.min, .max

.u32, .s32, .u64, .s644
.f16, .f16x2, .bf16, .bf16x2

Optional qualifiers .1ldsem, .stsem and .redsem specify the memory synchronizing effect of the
multimem.ld_reduce, multimem.st and multimem. red respectively, as described in

If explicit semantics qualifiers are not specified, then multimem.1ld_reduce and
multimem.st default to .weak and multimem. red defaults to . relaxed.

The optional . scope qualifier specifies the set of threads that can directly observe the memory syn-
chronizing effect of this operation, as described in . If the . scope qualifier
is not specified for multimem. red then . sys scope is assumed by default.

PTX ISA Notes
Introduced in PTX ISA version 8.1.
Target ISA Notes

Requires sm_90 or higher.

Examples

multimem.1ld_reduce.and.b32 vall_b32, [addr1];
multimem.ld_reduce.acquire.gpu.global.add.u32 val2_u32, [addr2];
multimem.st.relaxed.gpu.b32 [addr3], val3_b32;
multimem.st.release.cta.global.u32 [addr4], val4_u32;
multimem.red.relaxed.gpu.max.f64 [addr5], val5_f64;

multimem.red.release.cta.global.add.v4.f32 [addr6], {valé, val7, val8, val9};

prefetch, prefetchu

Prefetch line containing a generic address at a specified level of memory hierarchy, in specified state
space.

Syntax
prefetch{.space}.level [a]; // prefetch to data cache
prefetch.global.level::eviction_priority [a]; // prefetch to data cache

(continues on next page)
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(continued from previous page)

prefetchu.L1 [a]; // prefetch to uniform cache
prefetch{.tensormap_space}.tensormap [a]; // prefetch the tensormap
.space = { .global, .local };

.level = { .L1, .L2 };

.level::eviction_priority = { .L2::evict_last, .L2::evict_normal };
.tensormap_space = { .const, .param };

Description

The prefetch instruction brings the cache line containing the specified address in global or local
memory state space into the specified cache level.

If the . tensormap qualifier is specified then the prefetch instruction brings the cache line contain-
ing the specified address in the .const or .param memory state space for subsequent use by the
cp.async.bulk.tensor instruction.

If no state space is given, the prefetch uses

Optionally, the eviction priority to be applied on the prefetched cache line can be specified by the
modifier .level::eviction_priority.

Supported addressing modes for operand a and alignment requirements are described in

The prefetchu instruction brings the cache line containing the specified generic address into the
specified uniform cache level.

A prefetch to a shared memory location performs no operation.

A prefetchinto the uniform cache requires a generic address, and no operation occurs if the address
maps to a const, local, or shared memory location.

PTX ISA Notes

Introduced in PTX ISA version 2.0.

Support for .level::eviction_priority qualifier introduced in PTX ISA version 7.4.
Support for the .tensormap qualifier is introduced in PTX ISA version 8.0.

Target ISA Notes

prefetch and prefetchu require sm_20 or higher.

Support for .level::eviction_priority qualifier requires sm_880 or higher.
Support for the . tensormap qualifier requires sm_90 or higher.

Examples

prefetch.global.L1 [ptr];
prefetch.global.L2::evict_last [ptr];
prefetchu.L1 [addr];

prefetch.global.tensormap [ptr];

9.7. Instructions 209



PTX ISA, Release 8.1

applypriority

Apply the cache eviction priority to the specified address in the specified cache level.
Syntax

appplypriority{.global}.level: :eviction_priority [a], size;

.level::eviction_priority = { .L2::evict_normal };

Description

The applypriority instruction applies the cache eviction priority specified by the
level::eviction_priority qualifier to the address range [a..a+size) in the specified cache
level.

If no state space is specified then is used. If the specified address does not fall
within the address window of .global state space then the behavior is undefined.

The operand size is an integer constant that specifies the amount of data, in bytes, in the specified
cache level on which the priority is to be applied. The only supported value for the size operand is
128.

Supported addressing modes for operand a are described in . amust be aligned
to 128 bytes.

If the data pointed to by address a is not already present in the specified cache level, then the data
will be prefetched before applying the specified priority.

PTX ISA Notes

Introduced in PTX ISA version 7.4.
Target ISA Notes

Requires sm_80 or higher.

Examples

applypriority.global.L2::evict_normal [ptr], 128;

discard
Invalidate the data in cache at the specified address and cache level.

Syntax

discard{.global}.level [a], size;

.level = { .L2 };

Description

The discard instruction invalidates the data at the address range [a .. a + (size - 1)]in
the cache level specified by the .level qualifier without writing back the data in the cache to the
memory. Therefore after the discard operation, the data at the address range [a .. a+ (size -

1) ] has undetermined value.
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The operand size is an integer constant that specifies the amount of data, in bytes, in the cache level
specified by the .level qualifier to be discarded. The only supported value for the size operand is
128.

If no state space is specified then is used. If the specified address does not fall
within the address window of .global state space then the behavior is undefined.

Supported addressing modes for address operand a are described in . a must
be aligned to 128 bytes.

PTX ISA Notes

Introduced in PTX ISA version 7.4.
Target ISA Notes

Requires sm_80 or higher.

Examples

discard.global.L2 [ptr], 128;

createpolicy
Create a cache eviction policy for the specified cache level.

Syntax

// Range-based policy
createpolicy.range{.global}.level: :primary_priority{.level::secondary_priority}.b64
cache-policy, [a], primary-size, total-size;

// Fraction-based policy
createpolicy.fractional.level: :primary_priority{.level::secondary_priority}.b64
cache-policy{, fraction};

// Converting the access property from CUDA APIs
createpolicy.cvt.L2.b64 cache-policy, access-property;

.level::primary_priority = { .L2::evict_last, .L2::evict_normal,

.L2::evict_first, .L2::evict_unchanged };
.level::secondary_priority = { .L2::evict_first, .L2::evict_unchanged };
Description

The createpolicy instruction creates a cache eviction policy for the specified cache level in an
opaque 64-bit register specified by the destination operand cache-policy. The cache eviction pol-
icy specifies how cache eviction priorities are applied to global memory addresses used in memory
operations with .level: :cache_hint qualifier.

There are two types of cache eviction policies:
Range-based policy

The cache eviction policy created using createpolicy. range specifies the cache eviction be-
haviors for the following three address ranges:

[a .. a + (primary-size - 1)] referred to as primary range.

[a + primary-size .. a + (total-size - 1)] referred to as trailing secondary range.
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[a - (total-size - primary-size) .. (a - 1)] referred to as preceding secondary
range.

When a range-based cache eviction policy is used in a memory operation with
level: :cache_hint qualifier, the eviction priorities are applied as follows:

If the memory address falls in the primary range, the eviction priority specified by .
L2::primary_priority is applied.

If the memory address falls in any of the secondary ranges, the eviction priority specified
by .L2::secondary_priority is applied.

If the memory address does not fall in either of the above ranges, then the applied eviction
priority is unspecified.

The 32-bit operand primary-size specifies the size, in bytes, of the primary range. The 32-
bit operand total-size specifies the combined size, in bytes, of the address range including
primary and secondary ranges. The value of primary-size must be less than or equal to the
value of total-size. Maximum allowed value of total-size is 4GB.

If .L2::secondary_priority is not specified, then it defaults to .L2::evict_unchanged.

If no state space is specified then is used. If the specified address does not
fall within the address window of . global state space then the behavior is undefined.

Fraction-based policy

A memory operation with .level::cache_hint qualifier can use the fraction-based cache
eviction policy to request the cache eviction priority specified by .L2:primary_priority
to be applied to a fraction of cache accesses specified by the 32-bit floating point operand
fraction. The remainder of the cache accesses get the eviction priority specified by .
L2::secondary_priority. Thisimplies thatin a memory operation that uses a fraction-based
cache policy, the memory access has a probability specified by the operand fraction of getting
the cache eviction priority specified by .L2: :primary_priority.

The valid range of values for the operand fractionis (0.0, .., 1.0]. If the operand fraction
is not specified, it defaults to 1.0.

If .L2::secondary_priority is not specified, then it defaults to .L2: :evict_unchanged.

The access property created using the CUDA APIs can be converted into cache eviction policy by the
instruction createpolicy.cvt. The source operand access-property is a 64-bit opaque register.
Refer to CUDA programming guide for more details.

PTX ISA Notes
Introduced in PTX ISA version 7.4.
Target ISA Notes

Requires sm_80 or higher.

Examples

createpolicy.fractional.L2::evict_last.b64 policy, 1.0;
createpolicy.fractional.L2::evict_last.L2::evict_unchanged.b64 policy, 0.5;

createpolicy.range.L2::evict_last.L2::evict_first.b64

policy, [ptr], ©x100000, 0x200000;

// access-prop is created by CUDA APIs.
createpolicy.cvt.L2.b64 policy, access-prop;
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isspacep

Query whether a generic address falls within a specified state space window.

Syntax

isspacep.space p, a; // result is .pred

.space = { const, .global, .local, .shared{::cta, ::cluster}, .param };
Description

Write predicate register p with 1 if generic address a falls within the specified state space window and
with 0 otherwise. Destination p has type .pred; the source address operand must be of type .u32 or
.u64.

isspacep.paramreturns 1 if the generic address falls within the window of
, otherwise returns 0.

isspacep.global returns 1 for as .param window is contained within
the .global window.

If no sub-qualifier is specified with .shared state space, then : :ctais assumed by default.

Note: ispacep.shared: :cluster will return 1 for every shared memory address that is accessible
to the threads in the cluster, whereas ispacep.shared: :cta will return 1 only if the address is of a
variable declared in the executing CTA.

PTX ISA Notes

Introduced in PTX ISA version 2.0.

isspacep.const introduced in PTX ISA version 3.1.

isspacep.paramintroduced in PTX ISA version 7.7.

Support for ::ctaand : :cluster sub-qualifiers introduced in PTX ISA version 7.8.
Target ISA Notes

isspacep requires sm_20 or higher.

isspacep.paramrequires sm_70 or higher.

Sub-qualifier : :cta requires sm_30 or higher.

Sub-qualifier : :cluster requires sm_90 or higher.

Examples

isspacep.const iscnst, cptr;
isspacep.global isglbl, gptr;
isspacep.local islcl, 1lptr;
isspacep.shared isshrd, sptr;
isspacep.param isparam, pptr;
isspacep.shared: :cta isshrdcta, sptr;

isspacep.shared: :cluster ishrdany sptr;
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cvta

Convert address from .const, (.param), .global, .local, or .shared
state space to generic, or vice-versa. Take the generic address of a variable declared in . const,
(.param), .global, .1local, or .shared state space.

Syntax

// convert const, global, local, or shared address to generic address
cvta.space.size p, a; // source address in register a
cvta.space.size p, var; // get generic address of var

cvta.space.size p, var+imm; // generic address of var+offset

// convert generic address to const, global, local, or shared address
cvta.to.space.size p, a;

.space = { .const, .global, .local, .shared{::cta, ::cluster}, .param };
.size = { .u32, .u64 };

Description

Convertaconst, (.param),global, local, or shared addresstoageneric
address, or vice-versa. The source and destination addresses must be the same size. Use cvt.u32.
u64 or cvt.u64.u32 to truncate or zero-extend addresses.

For variables declared in .const, (.param), .global, .1local, or .shared
state space, the generic address of the variable may be taken using cvta. The source is either a reg-
ister or a variable defined in const, (.param), global, local, or shared

memory with an optional offset.

When converting a generic addressintoa const, (.param),global, local,
or shared address, the resulting address is undefined in cases where the generic address does not
fall within the address window of the specified state space. A program may use isspacep to guard
against such incorrect behavior.

For cvta with .shared state space, the address must belong to the space specified by ::cta or
::cluster sub-qualifier, otherwise the behavior is undefined. If no sub-qualifier is specified with
.shared state space, then : :cta is assumed by default.

PTX ISA Notes

Introduced in PTX ISA version 2.0.
cvta.constandcvta.to.const introduced in PTX ISA version 3.1.
cvta.paramandcvta.to.paramintroduced in PTX ISA version 7.7.

Note: The current implementation does not allow generic pointers to const space variables in pro-
grams that contain pointers to constant buffers passed as kernel parameters.

Support for ::ctaand : :cluster sub-qualifiers introduced in PTX ISA version 7.8.
Target ISA Notes

cvta requires sm_20 or higher.

cvta.paramand cvta.to.paramrequires sm_70 or higher.

Sub-qualifier : :cta requires sm_30 or higher.

Sub-qualifier : :cluster requires sm_90 or higher.
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Examples

cvta.const.u32 ptr,cvar;
cvta.local.u32 ptr,lptr;
cvta.shared::cta.u32 p,As+4;
cvta.shared: :cluster.u32 ptr, As;
cvta.to.global.u32 p,gptr;
cvta.param.u64 ptr,pvar;

cvt
Convert a value from one type to another.

Syntax

cvt{.irnd}{.ftz}{.sat}.dtype.atype
cvt{.frnd}{.ftz}{.sat}.dtype.atype
cvt.frnd2{.relu}{.satfinite}.f16.f32
cvt.frnd2{.relu}{.satfinite}.f16x2.f32
cvt.frnd2{.relu}{.satfinite}.bf16.f32
cvt.frnd2{.relu}{.satfinite}.bf16x2.f32
cvt.rna{.satfinite}.tf32.f32
cvt.frnd2{.relu}.tf32.f32
cvt.rn.satfinite{.relu}.f8x2type.f32
cvt.rn.satfinite{.relu}.f8x2type.f16x2
cvt.rn.{.relu}.f16x2.f8x2type

// integer rounding
// fp rounding

0O 0000000000
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(on

.irnd
.frnd
.frnd2
.dtype =

{ .rni, .rzi, .rmi, .rpi };
{ .rn, .rz, .rm, .rp };
{
a

.rn, .rz };
.atype = { .u8, .u16, .u32, .ub64,
.s8, .s16, .s32, .s64,
.bf16, .f16, .f32, .f64 };
.f8x2type = { .e4m3x2, .e5m2x2 };

Description
Convert between different types and sizes.

For .f16x2 and .bf16x2 instruction type, two inputs a and b of .32 type are converted into .16
or .bf16 type and the converted values are packed in the destination register d, such that the value
converted from input a is stored in the upper half of d and the value converted from input b is stored
in the lower half of d

For .f16x2 instruction type, destination operand d has .f16x2 or .b32 type. For .bf16 instruction
type, operand d has .b16 type. For .bf16x2 instruction type, operand d has .b32 type. For .tf32
instruction type, operand d has .b32 type.

When converting to .e4m3x2/.e5m2x2 data formats, the destination operand d has .b16 type. When
converting two .f32 inputs to .e4m3x2/.e5m2x2, each input is converted to the specified format,
and the converted values are packed in the destination operand d such that the value converted from
input a is stored in the upper 8 bits of d and the value converted from input b is stored in the lower
8 bits of d. When converting an . f16x2 input to .e4m3x2/ .e5m2x2, each .f16 input from operand
a is converted to the specified format. The converted values are packed in the destination operand d
such that the value converted from the upper 16 bits of input a is stored in the upper 8 bits of d and
the value converted from the lower 16 bits of input a is stored in the lower 8 bits of d.
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When converting from .e4m3x2/.e5m2x2 to .f16x2, source operand a has .b16 type. Each 8-bit
input value in operand ais converted to . f16 type. The converted values are packed in the destination
operand d such that the value converted from the upper 8 bits of a is stored in the upper 16 bits of d
and the value converted from the lower 8 bits of a is stored in the lower 16 bits of d.

Rounding modifier is mandatory in all of the following cases:

float-to-float conversions, when destination type is smaller than source type

All float-to-int conversions

All int-to-float conversions

All conversions involving . f16x2, .e4m3x2, .e5m2x2, .bf16x2 and .tf32 instruction types.
.satfinite modifier is only supported for conversions involving the following types:

.e4m3x2 and .e5m2x2 destination types. .satfinite modifier is mandatory for such conver-
sions.

.f16, .bf16, .f16x2, .bf16x2 as destination types.
. tf32 as destination type with rounding mode specified as round to nearest, ties away from zero.

Semantics

if (/* inst type is .f16x2 or .bf16x2 */) {

d[31:16] = convert(a);
d[15:8] = convert(b);
} else {

d = convert(a);
}
Integer Notes

Integer rounding is required for float-to-integer conversions, and for same-size float-to-float conver-
sions where the value is rounded to an integer. Integer rounding is illegal in all other instances.

Integer rounding modifiers:

.rni round to nearest integer, choosing even integer if source is equidistant between two integers
.rzi round to nearest integer in the direction of zero

.rmi round to nearest integer in direction of negative infinity

.rpi round to nearest integer in direction of positive infinity

In float-to-integer conversion, NaN inputs are converted to O.

Subnormal numbers:

sm_20+ By default, subnormal numbers are supported.

For cvt.ftz.dtype.f32 float-to-integer conversions and cvt.ftz.f32.f32 float-to-float
conversions with integer rounding, subnormal inputs are flushed to sign-preserving zero. Modi-
fier . ftz can only be specified when either .dtype or .atypeis .f32 and applies only to single
precision (.f32) inputs and results.

sm_1x For cvt.ftz.dtype.f32 float-to-integer conversions and cvt.ftz.f32.f32 float-to-float
conversions with integer rounding, subnormal inputs are flushed to sign-preserving zero. The
optional . ftz modifier may be specified in these cases for clarity.

Note: In PTX ISA versions 1.4 and earlier, the cvt instruction did not flush single-precision sub-
normal inputs or results to zero if the destination type size was 64-bits. The compiler will preserve
this behavior for legacy PTX code.
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Saturation modifier:

.sat For integer destination types, .sat limits the result to MININT. .MAXINT for the size of the
operation. Note that saturation applies to both signed and unsigned integer types.

The saturation modifier is allowed only in cases where the destination type’s value range is not a
superset of the source type’s value range; i.e., the . sat modifier is illegal in cases where satura-
tion is not possible based on the source and destination types.

For float-to-integer conversions, the result is clamped to the destination range by default; i.e,
.sat is redundant.

Floating Point Notes

Floating-point rounding is required for float-to-float conversions that result in loss of precision, and
for integer-to-float conversions. Floating-point rounding is illegal in all other instances.

Floating-point rounding modifiers:

.rn mantissa LSB rounds to nearest even

.rna mantissa LSB rounds to nearest, ties away from zero
. rz mantissa LSB rounds towards zero

.rm mantissa LSB rounds towards negative infinity

.rp mantissa LSB rounds towards positive infinity

A floating-point value may be rounded to an integral value using the integer rounding modifiers (see
Integer Notes). The operands must be of the same size. The result is an integral value, stored in
floating-point format.

Subnormal numbers:

sm_20+ By default, subnormal numbers are supported. Modifier .ftz may be specified to flush
single-precision subnormal inputs and results to sign-preserving zero. Modifier .ftz can only
be specified when either .dtype or .atype is .32 and applies only to single precision (. f32)
inputs and results.

sm_1x Single-precision subnormal inputs and results are flushed to sign-preserving zero. The optional
. ftz modifier may be specified in these cases for clarity.

Note: In PTX ISA versions 1.4 and earlier, the cvt instruction did not flush single-precision subnormal
inputs or results to zero if either source or destination type was .f64. The compiler will preserve
this behavior for legacy PTX code. Specifically, if the PTX ISA version is 1.4 or earlier, single-precision
subnormal inputs and results are flushed to sign-preserving zero only for cvt.f32.f16, cvt.f16.
f32,and cvt.f32.f32 instructions.

Saturation modifier:

.sat: For floating-point destination types, .sat limits the result to the range [0.0, 1.0]. NaN results
are flushed to positive zero. Applies to 