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Chapter 1. The Benefits of Using GPUs

The Graphics Processing Unit (GPU)' provides much higher instruction throughput and memory band-
width than the CPU within a similar price and power envelope. Many applications leverage these higher
capabilities to run faster on the GPU than on the CPU (see GPU Applications). Other computing de-
vices, like FPGAs, are also very energy efficient, but offer much less programming flexibility than GPUs.

This difference in capabilities between the GPU and the CPU exists because they are designed with
different goals in mind. While the CPU is designed to excel at executing a sequence of operations,
called a thread, as fast as possible and can execute a few tens of these threads in parallel, the GPU
is designed to excel at executing thousands of them in parallel (amortizing the slower single-thread
performance to achieve greater throughput).

The GPU is specialized for highly parallel computations and therefore designed such that more transis-
tors are devoted to data processing rather than data caching and flow control. The schematic Figure
1 shows an example distribution of chip resources for a CPU versus a GPU.

Core Core

L1 Cache L1 Cache

Core Core

L1 Cache L1 Cache

L2 Cache

L2 Cache

L2 Cache

DRAM DRAM

CPU GPU

Figure 1: The GPU Devotes More Transistors to Data Processing

Devoting more transistors to data processing, for example, floating-point computations, is beneficial
for highly parallel computations; the GPU can hide memory access latencies with computation, instead

! The graphics qualifier comes from the fact that when the GPU was originally created, two decades ago, it was designed as
a specialized processor to accelerate graphics rendering. Driven by the insatiable market demand for real-time, high-definition,
3D graphics, it has evolved into a general processor used for many more workloads than just graphics rendering.
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of relying on large data caches and complex flow control to avoid long memory access latencies, both
of which are expensive in terms of transistors.

In general, an application has a mix of parallel parts and sequential parts, so systems are designed with
a mix of GPUs and CPUs in order to maximize overall performance. Applications with a high degree of
parallelism can exploit this massively parallel nature of the GPU to achieve higher performance than
on the CPU.
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Chapter 2. CUDA®: A General-Purpose
Parallel Computing Platform
and Programming Model

In November 2006, NVIDIA® introduced CUDA®, a general purpose parallel computing platform and
programming model that leverages the parallel compute engine in NVIDIA GPUs to solve many complex
computational problems in a more efficient way than on a CPU.

CUDA comes with a software environment that allows developers to use C++ as a high-level program-
ming language. As illustrated by , other languages, application programming interfaces, or
directives-based approaches are supported, such as FORTRAN, DirectCompute, OpenACC.
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GPU Computing Applications

Libraries and Middleware

ali)f VSIPL
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SVM

TensorRT CURAND OpenCurrent

CUSPARSE

Mathematica

Programming Languages

e Directives
hon DirectCompute
WF;;tppers 4 (e.g. OpenACC)

CUDA-Enabled NVIDIA GPUs

NVIDIA Ampere Architecture Tesla A Series
(compute capabilities 8.x)
NVIDIA Turing Architecture GeForce 2000 Series Quadro RTX Series Tesla T Series
(compute capabilities 7.x)

NVIDIA Volta Architecture DRIVE/JETSON Quadro GV Series Tesla V Series
(compute capabilities 7.x) AGX Xavier

NVIDIA Pascal Architecture GeForce 1000 Series Quadro P Series Tesla P Series
(compute capabilities 6.x)

. * -

S PPfessional
BSkEop/Laptop Workstation

Figure 2: GPU Computing Applications. CUDA is designed to support various languages and application
programming interfaces.
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Chapter 3. A Scalable Programming
Model

The advent of multicore CPUs and manycore GPUs means that mainstream processor chips are now
parallel systems. The challenge is to develop application software that transparently scales its paral-
lelism to leverage the increasing number of processor cores, much as 3D graphics applications trans-
parently scale their parallelism to manycore GPUs with widely varying numbers of cores.

The CUDA parallel programming model is designed to overcome this challenge while maintaining a low
learning curve for programmers familiar with standard programming languages such as C.

At its core are three key abstractions — a hierarchy of thread groups, shared memories, and barrier
synchronization —that are simply exposed to the programmer as a minimal set of language extensions.

These abstractions provide fine-grained data parallelism and thread parallelism, nested within coarse-
grained data parallelism and task parallelism. They guide the programmer to partition the problem
into coarse sub-problems that can be solved independently in parallel by blocks of threads, and each
sub-problem into finer pieces that can be solved cooperatively in parallel by all threads within the block.

This decomposition preserves language expressivity by allowing threads to cooperate when solving
each sub-problem, and at the same time enables automatic scalability. Indeed, each block of threads
can be scheduled on any of the available multiprocessors within a GPU, in any order, concurrently or
sequentially, so that a compiled CUDA program can execute on any number of multiprocessors as
illustrated by , and only the runtime system needs to know the physical multiprocessor count.

This scalable programming model allows the GPU architecture to span a wide market range by simply
scaling the number of multiprocessors and memory partitions: from the high-performance enthusiast
GeForce GPUs and professional Quadro and Tesla computing products to a variety of inexpensive,
mainstream GeForce GPUs (see for a list of all CUDA-enabled GPUs).
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Multithreaded QUDA Program

25Ms GPU with 4 5Ms

SM1 SMOD SM1 SM2

5Mz2

EERE :;
EERE

Figure 3: Automatic Scalability

Note: A GPU is built around an array of Streaming Multiprocessors (SMs) (see Hardware Implementation for
more details). A multithreaded program is partitioned into blocks of threads that execute independently from
each other, so that a GPU with more multiprocessors will automatically execute the program in less time than a
GPU with fewer multiprocessors.
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Chapter 4. Document Structure

This document is organized into the following sections:

>

>

vV v v V. V. V. vV VY

vV v v v Y

Introduction is a general introduction to CUDA.

Programming Model outlines the CUDA programming model.

Programming Interface describes the programming interface.

Hardware Implementation describes the hardware implementation.

Performance Guidelines gives some guidance on how to achieve maximum performance.
CUDA-Enabled GPUs lists all CUDA-enabled devices.

C++ Language Extensions is a detailed description of all extensions to the C++ language.
Cooperative Groups describes synchronization primitives for various groups of CUDA threads.
CUDA Dynamic Parallelism describes how to launch and synchronize one kernel from another.
Virtual Memory Management describes how to manage the unified virtual address space.

Stream Ordered Memory Allocator describes how applications can order memory allocation and
deallocation.

Graph Memory Nodes describes how graphs can create and own memory allocations.
Mathematical Functions lists the mathematical functions supported in CUDA.

C++ Language Support lists the C++ features supported in device code.

Texture Fetching gives more details on texture fetching.

Compute Capabilities gives the technical specifications of various devices, as well as more archi-
tectural details.

Driver APl introduces the low-level driver API.
CUDA Environment Variables lists all the CUDA environment variables.

Unified Memory Programming introduces the Unified Memory programming model.
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Chapter 5. Programming Model

This chapter introduces the main concepts behind the CUDA programming model by outlining how
they are exposed in C++,

An extensive description of CUDA C++ is given in

Full code for the vector addition example used in this chapter and the next can be found in the

CUDA C++ extends C++ by allowing the programmer to define C++ functions, called kernels, that, when
called, are executed N times in parallel by N different CUDA threads, as opposed to only once like regular
C++ functions.

A kernel is defined using the __global__ declaration specifier and the number of CUDA threads that
execute that kernel for a given kernel call is specified using a new <<<. . .>>>execution configuration
syntax (see ). Each thread that executes the kernel is given a unique thread
ID that is accessible within the kernel through built-in variables.

As an illustration, the following sample code, using the built-in variable threadIdx, adds two vectors
A and B of size N and stores the result into vector C:

// Kernel definition
__global__ void VecAdd(float* A, float* B, float* C)

{
int i = threadIdx.x;
C[i] = A[i] + B[i];
}
int main()
{
// Kernel invocation with N threads
VecAdd<<<1, N>>>(A, B, C);
}

Here, each of the N threads that execute VecAdd( ) performs one pair-wise addition.
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For convenience, threadIdx is a 3-component vector, so that threads can be identified using a one-
dimensional, two-dimensional, or three-dimensional thread index, forming a one-dimensional, two-
dimensional, or three-dimensional block of threads, called a thread block. This provides a natural way
to invoke computation across the elements in a domain such as a vector, matrix, or volume.

The index of a thread and its thread ID relate to each other in a straightforward way: For a one-
dimensional block, they are the same; for a two-dimensional block of size (Dx, Dy), the thread ID of
a thread of index (x, y) is (x + y Dx); for a three-dimensional block of size (Dx, Dy, Dz), the thread ID of a
thread of index (x, y, z) is (x + y Dx + z Dx Dy).

As an example, the following code adds two matrices A and B of size NxN and stores the result into
matrix C:

// Kernel definition

__global__ void MatAdd(float A[N][N], float B[N][N],
float C[N][N])
{
int i = threadIdx.x;
int j = threadIdx.y;
Cl[il[j] = A[il[3] + B[il[3jl;
}
int main()
{
// Kernel invocation with one block of N * N * 1 threads
int numBlocks = 1;
dim3 threadsPerBlock(N, N);
MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
}

There is a limit to the number of threads per block, since all threads of a block are expected to reside
on the same streaming multiprocessor core and must share the limited memory resources of that
core. On current GPUs, a thread block may contain up to 1024 threads.

However, a kernel can be executed by multiple equally-shaped thread blocks, so that the total number
of threads is equal to the number of threads per block times the number of blocks.

Blocks are organized into a one-dimensional, two-dimensional, or three-dimensional grid of thread
blocks as illustrated by . The number of thread blocks in a grid is usually dictated by the size
of the data being processed, which typically exceeds the number of processors in the system.

The number of threads per block and the number of blocks per grid specified in the <<<. . .>>> syntax
can be of type int or dim3. Two-dimensional blocks or grids can be specified as in the example above.

Each block within the grid can be identified by a one-dimensional, two-dimensional, or three-
dimensional unique index accessible within the kernel through the built-in blockIdx variable. The
dimension of the thread block is accessible within the kernel through the built-in blockDim variable.

Extending the previous MatAdd() example to handle multiple blocks, the code becomes as follows.

// Kernel definition
__global__ void MatAdd(float A[N][N], float B[N][N],
float C[N][N])

(continues on next page)
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Figure 4: Grid of Thread Blocks

(continued from previous page)

{
int i = blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
if (i < N & j < N)
Cl[il[j] = A[il[3] + BI[il[3l;
}
int main()
{
// Kernel invocation
dim3 threadsPerBlock(16, 16);
dim3 numBlocks(N / threadsPerBlock.x, N / threadsPerBlock.y);
MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
}

A thread block size of 16x16 (256 threads), although arbitrary in this case, is a common choice. The
grid is created with enough blocks to have one thread per matrix element as before. For simplicity,
this example assumes that the number of threads per grid in each dimension is evenly divisible by the
number of threads per block in that dimension, although that need not be the case.

Thread blocks are required to execute independently: It must be possible to execute them in any order,
in parallel or in series. This independence requirement allows thread blocks to be scheduled in any order
across any number of cores as illustrated by Figure 3, enabling programmers to write code that scales
with the number of cores.

Threads within a block can cooperate by sharing data through some shared memory and by synchroniz-
ing their execution to coordinate memory accesses. More precisely, one can specify synchronization
points in the kernel by calling the __syncthreads() intrinsic function; __syncthreads() acts as a
barrier at which all threads in the block must wait before any is allowed to proceed. Shared Memory
gives an example of using shared memory. In addition to __syncthreads(), the Cooperative Groups
AP provides a rich set of thread-synchronization primitives.

For efficient cooperation, the shared memory is expected to be a low-latency memory near each pro-
cessor core (much like an L1 cache) and __syncthreads() is expected to be lightweight.
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5.2.1. Thread Block Clusters

With the introduction of NVIDIA Compute Capability 9.0, the CUDA programming model introduces
an optional level of hierarchy called Thread Block Clusters that are made up of thread blocks. Similar
to how threads in a thread block are guaranteed to be co-scheduled on a streaming multiprocessor,
thread blocks in a cluster are also guaranteed to be co-scheduled on a GPU Processing Cluster (GPC)
in the GPU.

Similar to thread blocks, clusters are also organized into a one-dimension, two-dimension, or three-
dimension as illustrated by Figure 5. The number of thread blocks in a cluster can be user-defined, and
amaximum of 8 thread blocks in a cluster is supported as a portable cluster size in CUDA. Note that on
GPU hardware or MIG configurations which are too small to support 8 multiprocessors the maximum
cluster size will be reduced accordingly. Identification of these smaller configurations, as well as of
larger configurations supporting a thread block cluster size beyond 8, is architecture-specific and can
be queried using the cudaOccupancyMaxPotentialClusterSize API.

Grid with Clusters
Thread Block Cluster Thread Block Cluster

Thread Block

Y

Thread Block

HH

Thread Block

U

Thread Block

HU

Thread Block

H

Thread Block

Y

Thread Block

HH

Thread Block
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Figure 5: Grid of Thread Block Clusters

Note: In a kernel launched using cluster support, the gridDim variable still denotes the size in terms
of number of thread blocks, for compatibility purposes. The rank of a block in a cluster can be found
using the Cluster Group API.

A thread block cluster can be enabled in a kernel either using a compiler time kernel attribute using
__cluster_dims__(X,Y, Z) orusing the CUDA kernel launch APl cudaLaunchKernelEx. The exam-
ple below shows how to launch a cluster using compiler time kernel attribute. The cluster size using
kernel attribute is fixed at compile time and then the kernel can be launched using the classical <<<
, >>>.If a kernel uses compile-time cluster size, the cluster size cannot be modified when launching
the kernel.

// Kernel definition

// Compile time cluster size 2 in X-dimension and 1 in Y and Z dimension

__global__ void __cluster_dims__(2, 1, 1) cluster_kernel(float *input, float* output)
{

}

int main()
{

(continues on next page)
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(continued from previous page)
float *input, *output;
// Kernel invocation with compile time cluster size
dim3 threadsPerBlock(16, 16);
dim3 numBlocks(N / threadsPerBlock.x, N / threadsPerBlock.y);

// The grid dimension is not affected by cluster launch, and is still enumerated
// using number of blocks.

// The grid dimension must be a multiple of cluster size.
cluster_kernel<<<numBlocks, threadsPerBlock>>>(input, output);

}

A thread block cluster size can also be set at runtime and the kernel can be launched using the CUDA
kernel launch API cudaLaunchKernelEx. The code example below shows how to launch a cluster
kernel using the extensible API.

// Kernel definition

// No compile time attribute attached to the kernel
__global__ void cluster_kernel(float *input, float* output)
{

}

int main()
{
float *input, *output;
dim3 threadsPerBlock(16, 16);
dim3 numBlocks(N / threadsPerBlock.x, N / threadsPerBlock.y);

// Kernel invocation with runtime cluster size
{
cudalLaunchConfig_t config = {@};
// The grid dimension is not affected by cluster launch, and is still enumerated
// using number of blocks.
// The grid dimension should be a multiple of cluster size.
config.gridDim = numBlocks;
config.blockDim = threadsPerBlock;

cudalLaunchAttribute attribute[1];

attribute[0].id = cudalLaunchAttributeClusterDimension;
attribute[0].val.clusterDim.x = 2; // Cluster size in X-dimension
attribute[0].val.clusterDim.y 1;
attribute[0].val.clusterDim.z 1;
config.attrs = attribute;
config.numAttrs = 1;

cudaLaunchKernelEx(&config, cluster_kernel, input, output);
}

In GPUs with compute capability 9.0, all the thread blocks in the cluster are guaranteed to be co-
scheduled on a single GPU Processing Cluster (GPC) and allow thread blocks in the cluster to perform
hardware-supported synchronization using the Cluster Group API cluster.sync(). Cluster group
also provides member functions to query cluster group size in terms of number of threads or number
of blocks using num_threads() and num_blocks() API respectively. The rank of a thread or block in
the cluster group can be queried using dim_threads() and dim_blocks() API respectively.

Thread blocks that belong to a cluster have access to the Distributed Shared Memory. Thread blocks
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in a cluster have the ability to read, write, and perform atomics to any address in the distributed shared
memory. Distributed Shared Memory gives an example of performing histograms in distributed shared
memory.

5.3. Memory Hierarchy

CUDA threads may access data from multiple memory spaces during their execution as illustrated by
Figure 6. Each thread has private local memory. Each thread block has shared memory visible to all
threads of the block and with the same lifetime as the block. Thread blocks in a thread block cluster
can perform read, write, and atomics operations on each other’s shared memory. All threads have
access to the same global memory.

There are also two additional read-only memory spaces accessible by all threads: the constant and
texture memory spaces. The global, constant, and texture memory spaces are optimized for differ-
ent memory usages (see Device Memory Accesses). Texture memory also offers different addressing
modes, as well as data filtering, for some specific data formats (see Texture and Surface Memory).

The global, constant, and texture memory spaces are persistent across kernel launches by the same
application.

l Per thread registers and
local memory

Thread Block
Shared Memory Per block Shared memory

HH

Thread Block Cluster

Thread Block Thread Block Shared memory of all

thread blocks in a cluster
| shared Memory Shared Memory - ~ form Distributed Shared

Memory

Grid with Clusters

Thread Block Cluster Thread Block Cluster
Thread Block Thread Block Thread Block Thread Block

I Shared Memory Shared Memory I I Shared Memory Shared Memory I

Global Memory shared
between all GPU kernels

Figure 6: Memory Hierarchy
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As illustrated by , the CUDA programming model assumes that the CUDA threads execute on
a physically separate device that operates as a coprocessor to the host running the C++ program. This
is the case, for example, when the kernels execute on a GPU and the rest of the C++ program executes
on a CPU.

The CUDA programming model also assumes that both the host and the device maintain their own sep-
arate memory spaces in DRAM, referred to as host memory and device memory, respectively. Therefore,
a program manages the global, constant, and texture memory spaces visible to kernels through calls
to the CUDA runtime (described in ). This includes device memory allocation
and deallocation as well as data transfer between host and device memory.

Unified Memory provides managed memory to bridge the host and device memory spaces. Managed
memory is accessible from all CPUs and GPUs in the system as a single, coherent memory image with
a common address space. This capability enables oversubscription of device memory and can greatly
simplify the task of porting applications by eliminating the need to explicitly mirror data on host and
device. See for an introduction to Unified Memory.

In the CUDA programming model a thread is the lowest level of abstraction for doing a computation or
a memory operation. Starting with devices based on the NVIDIA Ampere GPU architecture, the CUDA
programming model provides acceleration to memory operations via the asynchronous programming
model. The asynchronous programming model defines the behavior of asynchronous operations with
respect to CUDA threads.

The asynchronous programming model defines the behavior of for synchroniza-
tion between CUDA threads. The model also explains and defines how can be
used to move data asynchronously from global memory while computing in the GPU.

An asynchronous operation is defined as an operation that is initiated by a CUDA thread and is exe-
cuted asynchronously as-if by another thread. In a well formed program one or more CUDA threads
synchronize with the asynchronous operation. The CUDA thread that initiated the asynchronous op-
eration is not required to be among the synchronizing threads.

Such an asynchronous thread (an as-if thread) is always associated with the CUDA thread that ini-
tiated the asynchronous operation. An asynchronous operation uses a synchronization object to
synchronize the completion of the operation. Such a synchronization object can be explicitly man-
aged by a user (e.g.,, cuda: :memcpy_async) or implicitly managed within a library (e.g., coopera-
tive_groups: :memcpy_async).

A synchronization object could be a cuda: :barrier or a cuda: :pipeline. These objects are ex-
plained in detail in and . These
synchronization objects can be used at different thread scopes. A scope defines the set of threads
that may use the synchronization object to synchronize with the asynchronous operation. The follow-
ing table defines the thread scopes available in CUDA C++ and the threads that can be synchronized
with each.
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Figure 7: Heterogeneous Programming

Note: Serial code executes on the host while parallel code executes on the device.
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Thread Scope Description

cuda: :thread_scope: :thread_scope_thread Only the CUDA thread which
initiated asynchronous op-
erations synchronizes.

cuda: :thread_scope: :thread_scope_block All or any CUDA threads
within the same thread
block as the initiating
thread synchronizes.

cuda: :thread_scope::thread_scope_device All or any CUDA threads in
the same GPU device as
the initiating thread syn-
chronizes.

cuda: :thread_scope::thread_scope_system All or any CUDA or CPU
threads in the same system
as the initiating thread syn-
chronizes.

These thread scopes are implemented as extensions to standard C++ in the li-
brary.

The compute capability of a device is represented by a version number, also sometimes called its “SM
version”. This version number identifies the features supported by the GPU hardware and is used by
applications at runtime to determine which hardware features and/or instructions are available on the
present GPU.

The compute capability comprises a major revision number X and a minor revision number Y and is
denoted by X.Y.

Devices with the same major revision number are of the same core architecture. The major revision
number is 9 for devices based on the NVIDIA Hopper GPU architecture, 8 for devices based on the
NVIDIA Ampere GPU architecture, 7 for devices based on the Volta architecture, 6 for devices based on
the Pascal architecture, 5 for devices based on the Maxwell architecture, and 3 for devices based on
the Kepler architecture.

The minor revision number corresponds to an incremental improvement to the core architecture, pos-
sibly including new features.

Turing is the architecture for devices of compute capability 7.5, and is an incremental update based
on the Volta architecture.

lists of all CUDA-enabled devices along with their compute capability.
gives the technical specifications of each compute capability.

Note: The compute capability version of a particular GPU should not be confused with the CUDA
version (for example, CUDA 7.5, CUDA 8, CUDA 9), which is the version of the CUDA software platform.
The CUDA platform is used by application developers to create applications that run on many genera-
tions of GPU architectures, including future GPU architectures yet to be invented. While new versions
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of the CUDA platform often add native support for a new GPU architecture by supporting the com-
pute capability version of that architecture, new versions of the CUDA platform typically also include
software features that are independent of hardware generation.

The Tesla and Fermi architectures are no longer supported starting with CUDA 7.0 and CUDA 9.0, re-
spectively.
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CUDA C++ provides a simple path for users familiar with the C++ programming language to easily write
programs for execution by the device.

It consists of a minimal set of extensions to the C++ language and a runtime library.

The core language extensions have been introduced in . They allow programmers
to define a kernel as a C++ function and use some new syntax to specify the grid and block dimension
each time the functionis called. A complete description of all extensions can be found in

. Any source file that contains some of these extensions must be compiled with nvcc as
outlined in

The runtime is introduced in . It provides C and C++ functions that execute on the host
to allocate and deallocate device memory, transfer data between host memory and device memory,
manage systems with multiple devices, etc. A complete description of the runtime can be found in
the CUDA reference manual.

The runtime is built on top of a lower-level C API, the CUDA driver API, which is also accessible by the
application. The driver API provides an additional level of control by exposing lower-level concepts such
as CUDA contexts - the analogue of host processes for the device - and CUDA modules - the analogue
of dynamically loaded libraries for the device. Most applications do not use the driver API as they do
not need this additional level of control and when using the runtime, context and module management
are implicit, resulting in more concise code. As the runtime is interoperable with the driver API, most
applications that need some driver API features can default to use the runtime API and only use the
driver APl where needed. The driver APl is introduced in and fully described in the reference
manual.

Kernels can be written using the CUDA instruction set architecture, called PTX, which is described
in the PTX reference manual. It is however usually more effective to use a high-level programming
language such as C++. In both cases, kernels must be compiled into binary code by nvcc to execute
on the device.

nvcc is a compiler driver that simplifies the process of compiling C++ or PTX code: It provides simple
and familiar command line options and executes them by invoking the collection of tools that imple-
ment the different compilation stages. This section gives an overview of nvcc workflow and command
options. A complete description can be found in the nvcec user manual.
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Source files compiled with nvcce can include a mix of host code (i.e., code that executes on the host)
and device code (i.e., code that executes on the device). nvcc’s basic workflow consists in separating
device code from host code and then:

compiling the device code into an assembly form (PTX code) and/or binary form (cubin object),

and modifying the host code by replacing the <<<. . .>>> syntax introduced in (and de-
scribed in more details in ) by the necessary CUDA runtime function calls
to load and launch each compiled kernel from the PTX code and/or cubin object.

The modified host code is output either as C++ code that is left to be compiled using another tool or
as object code directly by letting nvcc invoke the host compiler during the last compilation stage.

Applications can then:
Either link to the compiled host code (this is the most common case),

Or ignore the modified host code (if any) and use the CUDA driver API (see ) to load and
execute the PTX code or cubin object.

Any PTX code loaded by an application at runtime is compiled further to binary code by the device
driver. This is called just-in-time compilation. Just-in-time compilation increases application load time,
but allows the application to benefit from any new compiler improvements coming with each new
device driver. It is also the only way for applications to run on devices that did not exist at the time the
application was compiled, as detailed in

When the device driver just-in-time compiles some PTX code for some application, it automatically
caches a copy of the generated binary code in order to avoid repeating the compilation in subsequent
invocations of the application. The cache - referred to as compute cache - is automatically invalidated
when the device driver is upgraded, so that applications can benefit from the improvements in the
new just-in-time compiler built into the device driver.

Environment variables are available to control just-in-time compilation as described in

As an alternative to using nvcc to compile CUDA C++ device code, NVRTC can be used to compile
CUDA C++ device code to PTX at runtime. NVRTC is a runtime compilation library for CUDA C++; more
information can be found in the NVRTC User guide.

Binary code is architecture-specific. A cubin object is generated using the compiler option -code that
specifies the targeted architecture: For example, compiling with ~-code=sm_880 produces binary code
for devices of 8.0. Binary compatibility is guaranteed from one minor revision to
the next one, but not from one minor revision to the previous one or across major revisions. In other
words, a cubin object generated for compute capability X,y will only execute on devices of compute
capability X.z where zlly.
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Note: Binary compatibility is supported only for the desktop. It is not supported for Tegra. Also, the
binary compatibility between desktop and Tegra is not supported.

Some PTX instructions are only supported on devices of higher compute capabilities. For example,

are only supported on devices of compute capability 5.0 and above. The -arch
compiler option specifies the compute capability that is assumed when compiling C++ to PTX code. So,
code that contains warp shuffle, for example, must be compiled with -arch=compute_580 (or higher).

PTX code produced for some specific compute capability can always be compiled to binary code of
greater or equal compute capability. Note that a binary compiled from an earlier PTX version may not
make use of some hardware features. For example, a binary targeting devices of compute capability
7.0 (Volta) compiled from PTX generated for compute capability 6.0 (Pascal) will not make use of Tensor
Core instructions, since these were not available on Pascal. As a result, the final binary may perform
worse than would be possible if the binary were generated using the latest version of PTX.

PTX code compiled to target only run on the exact same physical
architecture and nowhere else. Arch conditional PTX code is not forward and backward compatible.
Example code compiled with sm_90a or compute_90a only runs on devices with compute capability
9.0 and is not backward or forward compatible.

To execute code on devices of specific compute capability, an application must load binary or PTX
code that is compatible with this compute capability as described in and

. In particular, to be able to execute code on future architectures with higher compute
capability (for which no binary code can be generated yet), an application must load PTX code that will
be just-in-time compiled for these devices (see ).

Which PTX and binary code gets embedded in a CUDA C++ application is controlled by the -arch and
-code compiler options or the -gencode compiler option as detailed in the nvcc user manual. For
example,

nvce x.cu
-gencode arch=compute_50, code=sm_50
-gencode arch=compute_60,code=sm_60
-gencode arch=compute_70, code=\"compute_70,sm_70\"

embeds binary code compatible with compute capability 5.0 and 6.0 (first and second -gencode op-
tions) and PTX and binary code compatible with compute capability 7.0 (third -gencode option).

Host code is generated to automatically select at runtime the most appropriate code to load and
execute, which, in the above example, will be:

5.0 binary code for devices with compute capability 5.0 and 5.2,
6.0 binary code for devices with compute capability 6.0 and 6.1,
7.0 binary code for devices with compute capability 7.0 and 7.5,
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PTX code which is compiled to binary code at runtime for devices with compute capability 8.0
and 8.6.

X .cu can have an optimized code path that uses warp reduction operations, for example, which are
only supported in devices of compute capability 8.0 and higher. The __CUDA_ARCH__ macro can be
used to differentiate various code paths based on compute capability. It is only defined for device
code. When compiling with —arch=compute_86 for example, __CUDA_ARCH__ is equal to 800.

If x.cu is compiled for example with sm_90a or compute_90a, the
code can only run on devices with compute capability 9.0.

Applications using the driver APl must compile code to separate files and explicitly load and execute
the most appropriate file at runtime.

The Volta architecture introduces Independent Thread Scheduling which changes the way threads are
scheduled on the GPU. For code relying on specific behavior of in previous architec-
tures, Independent Thread Scheduling may alter the set of participating threads, leading to incorrect
results. To aid migration while implementing the corrective actions detailed in

, Volta developers can opt-in to Pascal’s thread scheduling with the compiler option com-
bination -arch=compute_60 -code=sm_70.

The nvcc user manual lists various shorthands for the -arch, -code, and -gencode compiler op-
tions. For example, —arch=sm_70 is a shorthand for -arch=compute_70 -code=compute_70,
sm_70 (which is the same as -gencode arch=compute_70, code=\"compute_70,sm_70\").

The front end of the compiler processes CUDA source files according to C++ syntax rules. Full C++ is
supported for the host code. However, only a subset of C++ is fully supported for the device code as
described in

The 64-bit version of nvcc compiles device code in 64-bit mode (i.e., pointers are 64-bit). Device code
compiled in 64-bit mode is only supported with host code compiled in 64-bit mode.

The runtime is implemented in the cudart library, which is linked to the application, either statically
via cudart.lib or libcudart.a, or dynamically via cudart.dll or libcudart.so. Applications
that require cudart.dll and/or cudart. so for dynamic linking typically include them as part of the
application installation package. It is only safe to pass the address of CUDA runtime symbols between
components that link to the same instance of the CUDA runtime.

All its entry points are prefixed with cuda.

As mentionedin , the CUDA programming model assumes a system com-
posed of a host and a device, each with their own separate memory. gives an overview
of the runtime functions used to manage device memory.
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illustrates the use of shared memory, introduced in , to maximize
performance.

introduces page-locked host memory that is required to overlap kernel
execution with data transfers between host and device memory.

describes the concepts and API used to enable asynchronous
concurrent execution at various levels in the system.

shows how the programming model extends to a system with multiple devices
attached to the same host.

describes how to properly check the errors generated by the runtime.
mentions the runtime functions used to manage the CUDA C++ call stack.

presents the texture and surface memory spaces that provide another
way to access device memory; they also expose a subset of the GPU texturing hardware.

introduces the various functions the runtime provides to interoperate with
the two main graphics APIs, OpenGL and Direct3D.

As of CUDA 12.0, the cudaInitDevice() and cudaSetDevice() calls initialize the runtime and the
primary context associated with the specified device. Absent these calls, the runtime will implicitly
use device 0 and self-initialize as needed to process other runtime API requests. One needs to keep
this in mind when timing runtime function calls and when interpreting the error code from the first
call into the runtime. Before 12.0, cudaSetDevice () would not initialize the runtime and applications
would often use the no-op runtime call cudaFree(80) to isolate the runtime initialization from other
api activity (both for the sake of timing and error handling).

The runtime creates a CUDA context for each device in the system (see for more details on
CUDA contexts). This context is the primary context for this device and is initialized at the first runtime
function which requires an active context on this device. It is shared among all the host threads of the
application. As part of this context creation, the device code is just-in-time compiled if necessary (see

) and loaded into device memory. This all happens transparently. If needed,
for example, for driver API interoperability, the primary context of a device can be accessed from the
driver APl as described in

When a host thread calls cudaDeviceReset( ), this destroys the primary context of the device the
host thread currently operates on (i.e., the current device as defined in ). The next
runtime function call made by any host thread that has this device as current will create a new primary
context for this device.

Note: The CUDA interfaces use global state that is initialized during host program initiation and
destroyed during host program termination. The CUDA runtime and driver cannot detect if this state is
invalid, so using any of these interfaces (implicitly or explicitly) during program initiation or termination
after main) will result in undefined behavior.

As of CUDA 12.0, cudaSetDevice() will now explicitly initialize the runtime after changing the current
device for the host thread. Previous versions of CUDA delayed runtime initialization on the new device
until the first runtime call was made after cudaSetDevice( ). This change means that it is now very
important to check the return value of cudaSetDevice() for initialization errors.
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The runtime functions from the error handling and version management sections of the reference
manual do not initialize the runtime.

As mentioned in ,the CUDA programming model assumes a system com-
posed of a host and a device, each with their own separate memory. Kernels operate out of device
memory, so the runtime provides functions to allocate, deallocate, and copy device memory, as well
as transfer data between host memory and device memory.

Device memory can be allocated either as linear memory or as CUDA arrays.

CUDA arrays are opaque memory layouts optimized for texture fetching. They are described in

Linear memory is allocated in a single unified address space, which means that separately allocated

entities can reference one another via pointers, for example, in a binary tree or linked list. The size of

the address space depends on the host system (CPU) and the compute capability of the used GPU:
Table 1: Linear Memory Address Space

x86_64 (AMD64) | POWER (ppc64le) | ARM64

up to compute capability 5.3 (Maxwell) 40bit 40bit 40bit

compute capability 6.0 (Pascal) or newer | up to 47bit up to 49bit up to 48bit

Note: On devices of compute capability 5.3 (Maxwell) and earlier, the CUDA driver creates an un-
committed 40bit virtual address reservation to ensure that memory allocations (pointers) fall into the
supported range. This reservation appears as reserved virtual memory, but does not occupy any phys-
ical memory until the program actually allocates memory.

Linear memory is typically allocated using cudaMalloc () and freed using cudaFree( ) and data trans-
fer between host memory and device memory are typically done using cudaMemcpy (). In the vector
addition code sample of , the vectors need to be copied from host memory to device memory:

// Device code
__global__ void VecAdd(float* A, float* B, float* C, int N)

{
int i = blockDim.x * blockIdx.x + threadIdx.x;
if (1 < N)
Cl[i] = A[i] + B[i];
}

// Host code
int main()

int N = ...;
size_t size = N * sizeof(float);

// Allocate input vectors h_A and h_B in host memory
float* h_A = (float*)malloc(size);

(continues on next page)
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float* h_B = (float*)malloc(size);
float* h_C = (float*)malloc(size);

// Initialize input vectors

// Allocate vectors in device memory

float* d_A;
cudaMalloc(&d_A, size);
float* d_B;
cudaMalloc(&d_B, size);
float* d_C;

cudaMalloc(&d_C, size);

// Copy vectors from host memory to device memory
cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);

// Invoke kernel
int threadsPerBlock = 256;
int blocksPerGrid =
(N + threadsPerBlock - 1) / threadsPerBlock;
VecAdd<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, N);

// Copy result from device memory to host memory
// h_C contains the result in host memory
cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);

// Free device memory
cudaFree(d_A);
cudaFree(d_B);
cudaFree(d_C);

// Free host memory

}

Linear memory can also be allocated through cudaMallocPitch() and cudaMalloc3D(). These
functions are recommended for allocations of 2D or 3D arrays as it makes sure that the allocation is ap-
propriately padded to meet the alignment requirements described in , there-
fore ensuring best performance when accessing the row addresses or performing copies between
2D arrays and other regions of device memory (using the cudaMemcpy2D() and cudaMemcpy3D()
functions). The returned pitch (or stride) must be used to access array elements. The following code
sample allocates a width x height 2D array of floating-point values and shows how to loop over the
array elements in device code:

// Host code
int width = 64, height = 64;
float* devPtr;
size_t pitch;
cudaMallocPitch(&devPtr, &pitch,
width * sizeof(float), height);
MyKernel<<<100, 512>>>(devPtr, pitch, width, height);

// Device code
__global__ void MyKernel(float* devPtr,

(continues on next page)
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size_t pitch, int width, int height)

{
for (int r = 0; r < height; ++r) {
float* row = (float*)((char*)devPtr + r * pitch);
for (int ¢ = 0; c < width; ++c) {
float element = row[c];
}
}
}

The following code sample allocates a width x height x depth 3D array of floating-point values and
shows how to loop over the array elements in device code:

// Host code

int width = 64, height = 64, depth = 64;

cudaExtent extent = make_cudaExtent(width * sizeof(float),
height, depth);

cudaPitchedPtr devPitchedPtr;

cudaMalloc3D(&devPitchedPtr, extent);

MyKernel<<<100, 512>>>(devPitchedPtr, width, height, depth);

// Device code
__global__ void MyKernel(cudaPitchedPtr devPitchedPtr,
int width, int height, int depth)

{
char* devPtr = devPitchedPtr.ptr;
size_t pitch = devPitchedPtr.pitch;
size_t slicePitch = pitch * height;
for (int z = 0; z < depth; ++z) {
char* slice = devPtr + z * slicePitch;
for (int y = 0; y < height; ++y) {
float* row = (float*)(slice + y * pitch);
for (int x = 0; x < width; ++x) {
float element = row[x];
}
}
}
}

Note: To avoid allocating too much memory and thus impacting system-wide performance, request
the allocation parameters from the user based on the problem size. If the allocation fails, you can
fallback to other slower memory types (cudaMallocHost (), cudaHostRegister(), etc.), or return
an error telling the user how much memory was needed that was denied. If your application cannot
request the allocation parameters for some reason, we recommend using cudaMallocManaged() for
platforms that support it.

The reference manual lists all the various functions used to copy memory between linear memory allo-
cated with cudaMalloc(), linear memory allocated with cudaMallocPitch() or cudaMalloc3D(),
CUDA arrays, and memory allocated for variables declared in global or constant memory space.

The following code sample illustrates various ways of accessing global variables via the runtime API:

__constant__ float constData[256];
float data[256];

(continues on next page)
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cudaMemcpyToSymbol(constData, data, sizeof(data));
cudaMemcpyFromSymbol(data, constData, sizeof(data));

__device__ float devData;
float value = 3.14f;
cudaMemcpyToSymbol(devData, &value, sizeof(float));

__device__ float* devPointer;

float* ptr;

cudaMalloc(&ptr, 256 * sizeof(float));
cudaMemcpyToSymbol(devPointer, &ptr, sizeof(ptr));

cudaGetSymbolAddress() is used to retrieve the address pointing to the memory allocated for a
variable declared in global memory space. The size of the allocated memory is obtained through cud-
aGetSymbolSize().

When a CUDA kernel accesses a data region in the global memory repeatedly, such data accesses
can be considered to be persisting. On the other hand, if the data is only accessed once, such data
accesses can be considered to be streaming.

Starting with CUDA 11.0, devices of compute capability 8.0 and above have the capability to influence
persistence of datain the L2 cache, potentially providing higher bandwidth and lower latency accesses
to global memory.

A portion of the L2 cache can be set aside to be used for persisting data accesses to global mem-
ory. Persisting accesses have prioritized use of this set-aside portion of L2 cache, whereas normal or
streaming, accesses to global memory can only utilize this portion of L2 when it is unused by persisting
accesses.

The L2 cache set-aside size for persisting accesses may be adjusted, within limits:

cudaGetDeviceProperties(&prop, device_id);

size_t size = min(int(prop.l2CacheSize * 0.75), prop.persistingL2CacheMaxSize);
cudaDeviceSetLimit(cudaLimitPersistinglL2CacheSize, size); /#* set-aside 3/4 of L2 cache
—for persisting accesses or the max allowed*/

When the GPU is configured in Multi-Instance GPU (MIG) mode, the L2 cache set-aside functionality
is disabled.

When using the Multi-Process Service (MPS), the L2 cache set-aside size cannot be changed by cud-
aDeviceSetLimit. Instead, the set-aside size can only be specified at start up of MPS server through
the environment variable CUDA_DEVICE_DEFAULT_PERSISTING_L2_CACHE_PERCENTAGE_LIMIT.
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6.2.3.2 L2 Policy for Persisting Accesses

An access policy window specifies a contiguous region of global memory and a persistence property
in the L2 cache for accesses within that region.

The code example below shows how to set an L2 persisting access window using a CUDA Stream.

CUDA Stream Example

cudaStreamAttrValue stream_attribute; //
—Stream level attributes data structure
stream_attribute.accessPolicyWindow.base_ptr
—Global Memory data pointer

reinterpret_cast<void*>(ptr); //

stream_attribute.accessPolicyWindow.num_bytes = num_bytes; //
—Number of bytes for persistence access.

// (Must
—be less than cudaDeviceProp::accessPolicyMaxWindowSize)
stream_attribute.accessPolicyWindow.hitRatio = 0.6; // Hint
—for cache hit ratio
stream_attribute.accessPolicyWindow.hitProp = cudaAccessPropertyPersisting; // Type
—o0f access property on cache hit
stream_attribute.accessPolicyWindow.missProp = cudaAccessPropertyStreaming; // Type

—of access property on cache miss.

//Set the attributes to a CUDA stream of type cudaStream_t
cudaStreamSetAttribute(stream, cudaStreamAttributeAccessPolicyWindow, &stream_
—attribute);

When a kernel subsequently executes in CUDA stream, memory accesses within the global memory
extent [ptr..ptr+num_bytes) are more likely to persist in the L2 cache than accesses to other
global memory locations.

L2 persistence can also be set for a CUDA Graph Kernel Node as shown in the example below:
CUDA GraphKernelNode Example

cudaKernelNodeAttrValue node_attribute; // Kernel
—level attributes data structure

node_attribute.accessPolicyWindow.base_ptr = reinterpret_cast<void*>(ptr); // Global
—Memory data pointer

node_attribute.accessPolicyWindow.num_bytes = num_bytes; // Number

—of bytes for persistence access.

// (Must
—be less than cudaDeviceProp::accessPolicyMaxWindowSize)
node_attribute.accessPolicyWindow.hitRatio = 0.6; // Hint
—for cache hit ratio
node_attribute.accessPolicyWindow.hitProp
—saccess property on cache hit
node_attribute.accessPolicyWindow.missProp = cudaAccessPropertyStreaming; // Type of
—access property on cache miss.

cudaAccessPropertyPersisting; // Type of

//Set the attributes to a CUDA Graph Kernel node of type cudaGraphNode_t
cudaGraphKernelNodeSetAttribute(node, cudaKernelNodeAttributeAccessPolicyWindow, &
—node_attribute);

The hitRatio parameter can be used to specify the fraction of accesses that receive the hitProp
property. In both of the examples above, 60% of the memory accesses in the global memory region
[ptr..ptr+num_bytes) have the persisting property and 40% of the memory accesses have the
streaming property. Which specific memory accesses are classified as persisting (the hitProp) is
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random with a probability of approximately hitRatio; the probability distribution depends upon the
hardware architecture and the memory extent.

For example, if the L2 set-aside cache size is 16KB and the num_bytes in the accessPolicyWindow
is 32KB:

With a hitRatio of 0.5, the hardware will select, at random, 16KB of the 32KB window to be
designated as persisting and cached in the set-aside L2 cache area.

With a hitRatio of 1.0, the hardware will attempt to cache the whole 32KB window in the set-
aside L2 cache area. Since the set-aside area is smaller than the window, cache lines will be
evicted to keep the most recently used 16KB of the 32KB data in the set-aside portion of the L2
cache.

The hitRatio can therefore be used to avoid thrashing of cache lines and overall reduce the amount
of data moved into and out of the L2 cache.

AhitRatio value below 1.0 can be used to manually control the amount of data different accessPol-
icyWindows from concurrent CUDA streams can cache in L2. For example, let the L2 set-aside cache
size be 16KB; two concurrent kernels in two different CUDA streams, each with a 16KB accessPol-
icyWindow, and both with hitRatio value 1.0, might evict each others’ cache lines when competing
for the shared L2 resource. However, if both accessPolicyWindows have a hitRatio value of 0.5, they
will be less likely to evict their own or each others’ persisting cache lines.

Three types of access properties are defined for different global memory data accesses:

cudaAccessPropertyStreaming: Memory accesses that occur with the streaming property
are less likely to persist in the L2 cache because these accesses are preferentially evicted.

cudaAccessPropertyPersisting: Memory accesses that occur with the persisting property
are more likely to persist in the L2 cache because these accesses are preferentially retained in
the set-aside portion of L2 cache.

cudaAccessPropertyNormal: This access property forcibly resets previously applied persisting
access property to a normal status. Memory accesses with the persisting property from previ-
ous CUDA kernels may be retained in L2 cache long after their intended use. This persistence-
after-use reduces the amount of L2 cache available to subsequent kernels that do not use the
persisting property. Resetting an access property window with the cudaAccessPropertyNor-
mal property removes the persisting (preferential retention) status of the prior access, as if the
prior access had been without an access property.

The following example shows how to set-aside L2 cache for persistent accesses, use the set-aside L2
cache in CUDA kernels via CUDA Stream and then reset the L2 cache.

cudaStream_t stream;
cudaStreamCreate(&stream);
o // Create CUDA stream

cudaDeviceProp prop;
< // CUDA device properties variable
cudaGetDeviceProperties( &prop, device_id);
. // Query GPU properties
(continues on next page)
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size_t size = min( int(prop.l2CacheSize * ©.75) , prop.persistingL2CacheMaxSize );
cudaDeviceSetLimit( cudaLimitPersistinglL2CacheSize, size);
. // set-aside 3/4 of L2 cache for persisting accesses or the max allowed

size_t window_size = min(prop.accessPolicyMaxWindowSize, num_bytes);
. // Select minimum of user defined num_bytes and max window size.

cudaStreamAttrValue stream_attribute;

— // Stream level attributes data structure
stream_attribute.accessPolicyWindow.base_ptr = reinterpret_cast<void*>(datal);
o // Global Memory data pointer
stream_attribute.accessPolicyWindow.num_bytes = window_size;

o // Number of bytes for persistence access
stream_attribute.accessPolicyWindow.hitRatio = 0.6;

— // Hint for cache hit ratio
stream_attribute.accessPolicyWindow.hitProp = cudaAccessPropertyPersisting;
. // Persistence Property

stream_attribute.accessPolicyWindow.missProp = cudaAccessPropertyStreaming;
. // Type of access property on cache miss

cudaStreamSetAttribute(stream, cudaStreamAttributeAccessPolicyWindow, &stream_
—attribute); // Set the attributes to a CUDA Stream

for(int i = 8; i < 10; i++) {
cuda_kernelA<<<grid_size,block_size, 0, stream>>>(datal);

. // This datal is used by a kernel multiple times

}

. // [datal + num_bytes) benefits from L2 persistence
cuda_kernelB<<<grid_size,block_size, 0, stream>>>(datal);

o // A different kernel in the same stream can also benefit
o // from the persistence of datal

stream_attribute.accessPolicyWindow.num_bytes = 0;

- // Setting the window size to O disable it
cudaStreamSetAttribute(stream, cudaStreamAttributeAccessPolicyWindow, &stream_
—attribute); // Overwrite the access policy attribute to a CUDA Stream
cudaCtxResetPersistinglL2Cache();

s // Remove any persistent lines in L2

cuda_kernelC<<<grid_size,block_size, 0, stream>>>(data2);
o // data2 can now benefit from full L2 in normal mode

6.2.3.5 Reset L2 Access to Normal

A persisting L2 cache line from a previous CUDA kernel may persist in L2 long after it has been used.
Hence, a reset to normal for L2 cache is important for streaming or normal memory accesses to utilize
the L2 cache with normal priority. There are three ways a persisting access can be reset to normal
status.

1. Reset a previous persisting memory region with the access property, cudaAccessProper-
tyNormal.

2. Reset all persisting L2 cache lines to normal by calling cudaCtxResetPersistinglL2Cache().

3. Eventually untouched lines are automatically reset to normal. Reliance on automatic reset is
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strongly discouraged because of the undetermined length of time required for automatic reset
to occur.

Multiple CUDA kernels executing concurrently in different CUDA streams may have a different access
policy window assigned to their streams. However, the L2 set-aside cache portion is shared among
all these concurrent CUDA kernels. As a result, the net utilization of this set-aside cache portion is
the sum of all the concurrent kernels’ individual use. The benefits of designating memory accesses as
persisting diminish as the volume of persisting accesses exceeds the set-aside L2 cache capacity.

To manage utilization of the set-aside L2 cache portion, an application must consider the following:
Size of L2 set-aside cache.
CUDA kernels that may concurrently execute.
The access policy window for all the CUDA kernels that may concurrently execute.

When and how L2 reset is required to allow normal or streaming accesses to utilize the previously
set-aside L2 cache with equal priority.

Properties related to L2 cache are a part of cudaDeviceProp struct and can be queried using CUDA
runtime APl cudaGetDeviceProperties

CUDA Device Properties include:
12CacheSize: The amount of available L2 cache on the GPU.

persistinglL2CacheMaxSize: The maximum amount of L2 cache that can be set-aside for per-
sisting memory accesses.

accessPolicyMaxWindowSize: The maximum size of the access policy window.

The L2 set-aside cache size for persisting memory accesses is queried using CUDA runtime API cu-
daDeviceGetLimit and set using CUDA runtime APl cudaDeviceSetLimit as a cudaLimit. The
maximum value for setting this limit is cudaDeviceProp: :persistinglL2CacheMaxSize.

enum cudaLimit {
/* other fields not shown */
cudaLimitPersistinglL2CacheSize

b
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6.2.4. Shared Memory

As detailed in Variable Memory Space Specifiers shared memory is allocated using the __shared__

memory space specifier.

Shared memory is expected to be much faster than global memory as mentioned in Thread Hierarchy
and detailed in Shared Memory. It can be used as scratchpad memory (or software managed cache)
to minimize global memory accesses from a CUDA block as illustrated by the following matrix multi-

plication example.

The following code sample is a straightforward implementation of matrix multiplication that does not
take advantage of shared memory. Each thread reads one row of A and one column of B and computes
the corresponding element of C as illustrated in Figure 8. A is therefore read B.width times from global

memory and B is read A.height times.

// Matrices are stored in row-major order:
// M(row, col) = *(M.elements + row * M.width + col)
typedef struct {
int width;
int height;
float* elements;
} Matrix;

// Thread block size
#define BLOCK_SIZE 16

// Forward declaration of the matrix multiplication kernel
__global__ void MatMulKernel(const Matrix, const Matrix, Matrix);

// Matrix multiplication - Host code
// Matrix dimensions are assumed to be multiples of BLOCK_SIZE
void MatMul(const Matrix A, const Matrix B, Matrix C)
{
// Load A and B to device memory
Matrix d_A;
d_A.width = A.width; d_A.height = A.height;
size_t size = A.width * A.height * sizeof(float);
cudaMalloc(&d_A.elements, size);
cudaMemcpy(d_A.elements, A.elements, size,
cudaMemcpyHostToDevice) ;
Matrix d_B;
d_B.width = B.width; d_B.height = B.height;
size = B.width * B.height * sizeof(float);
cudaMalloc(&d_B.elements, size);
cudaMemcpy(d_B.elements, B.elements, size,
cudaMemcpyHostToDevice) ;

// Allocate C in device memory

Matrix d_C;

d_C.width = C.width; d_C.height = C.height;
size = C.width * C.height * sizeof(float);
cudaMalloc(&d_C.elements, size);

// Invoke kernel

dim3 dimBlock (BLOCK_SIZE, BLOCK_SIZE);

dim3 dimGrid(B.width / dimBlock.x, A.height / dimBlock.y);
MatMulKernel<<<dimGrid, dimBlock>>>(d_A, d_B, d_C);

(continues on next page)
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// Read C from device memory
cudaMemcpy(C.elements, d_C.elements, size,
cudaMemcpyDeviceToHost) ;

// Free device memory

cudaFree(d_A.elements);
cudaFree(d_B.elements);
cudaFree(d_C.elements);

}

// Matrix multiplication kernel called by MatMul()
__global__ void MatMulKernel(Matrix A, Matrix B, Matrix C)
{

// Each thread computes one element of C
// by accumulating results into Cvalue
float Cvalue = 0;
int row = blockIdx.y * blockDim.y + threadIdx.y;
int col = blockIdx.x * blockDim.x + threadIdx.x;
for (int e = 0; e < A.width; ++e)

Cvalue += A.elements[row * A.width + e]

* B.elements[e * B.width + col];

C.elements[row * C.width + col] = Cvalue;

}

The following code sample is an implementation of matrix multiplication that does take advantage of
shared memory. In this implementation, each thread block is responsible for computing one square
sub-matrix Csub of C and each thread within the block is responsible for computing one element of
Csub. As illustrated in , Csub is equal to the product of two rectangular matrices: the sub-
matrix of A of dimension (A.width, block_size) that has the same row indices as Csub, and the sub-
matrix of B of dimension (block_size, A.width )that has the same column indices as Csub. In order to fit
into the device’s resources, these two rectangular matrices are divided into as many square matrices of
dimension block_size as necessary and Csub is computed as the sum of the products of these square
matrices. Each of these products is performed by first loading the two corresponding square matrices
from global memory to shared memory with one thread loading one element of each matrix, and then
by having each thread compute one element of the product. Each thread accumulates the result of
each of these products into a register and once done writes the result to global memory.

By blocking the computation this way, we take advantage of fast shared memory and save a lot of
global memory bandwidth since A is only read (B.width / block_size) times from global memory and B
is read (A.height / block_size) times.

The Matrix type from the previous code sample is augmented with a stride field, so that sub-matrices
can be efficiently represented with the same type. functions are used to get and set ele-
ments and build any sub-matrix from a matrix.

// Matrices are stored in row-major order:
// M(row, col) = *(M.elements + row * M.stride + col)
typedef struct {
int width;
int height;
int stride;
float* elements;
} Matrix;
// Get a matrix element
__device__ float GetElement(const Matrix A, int row, int col)

(continues on next page)

6.2. CUDA Runtime 35


index.html#shared-memory-matrix-multiplication-shared-memory
index.html#device-function-specifier

CUDA C++ Programming Guide, Release 12.4

B.width-1

=
p—
=
=
—
—

Figure 8: Matrix Multiplication without Shared Memory
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{
}

// Set a matrix element

__device__ void SetElement(Matrix A, int row, int col,
float value)

{

}
// Get the BLOCK_SIZExBLOCK_SIZE sub-matrix Asub of A that is

// located col sub-matrices to the right and row sub-matrices down
// from the upper-left corner of A

return A.elements[row * A.stride + col];

A.elements[row * A.stride + col] = value;

__device__ Matrix GetSubMatrix(Matrix A, int row, int col)
{
Matrix Asub;
Asub.width = BLOCK_SIZE;
Asub.height = BLOCK_SIZE;
Asub.stride = A.stride;
Asub.elements = &A.elements[A.stride * BLOCK_SIZE * row
+ BLOCK_SIZE * col];
return Asub;
}

// Thread block size
#define BLOCK_SIZE 16
// Forward declaration of the matrix multiplication kernel
__global__ void MatMulKernel(const Matrix, const Matrix, Matrix);
// Matrix multiplication - Host code
// Matrix dimensions are assumed to be multiples of BLOCK_SIZE
void MatMul(const Matrix A, const Matrix B, Matrix C)
{
// Load A and B to device memory
Matrix d_A;
d_A.width = d_A.stride = A.width; d_A.height = A.height;
size_t size = A.width * A.height * sizeof(float);
cudaMalloc(&d_A.elements, size);
cudaMemcpy(d_A.elements, A.elements, size,
cudaMemcpyHostToDevice) ;
Matrix d_B;
d_B.width = d_B.stride = B.width; d_B.height = B.height;
size = B.width * B.height * sizeof(float);
cudaMalloc(&d_B.elements, size);
cudaMemcpy(d_B.elements, B.elements, size,
cudaMemcpyHostToDevice) ;
// Allocate C in device memory
Matrix d_C;
d_C.width = d_C.stride = C.width; d_C.height = C.height;
size = C.width * C.height * sizeof(float);
cudaMalloc(&d_C.elements, size);
// Invoke kernel
dim3 dimBlock (BLOCK_SIZE, BLOCK_SIZE);
dim3 dimGrid(B.width / dimBlock.x, A.height / dimBlock.y);
MatMulKernel<<<dimGrid, dimBlock>>>(d_A, d_B, d_C);
// Read C from device memory
cudaMemcpy(C.elements, d_C.elements, size,
cudaMemcpyDeviceToHost) ;
// Free device memory

(continues on next page)
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}

cudaFree(d_A.elements);
cudaFree(d_B.elements);
cudaFree(d_C.elements);

// Matrix multiplication kernel called by MatMul()
__global__ void MatMulKernel(Matrix A, Matrix B, Matrix C)

(continued from previous page)

{
// Block row and column
int blockRow = blockIdx.y;
int blockCol = blockIdx.x;
// Each thread block computes one sub-matrix Csub of C
Matrix Csub = GetSubMatrix(C, blockRow, blockCol);
// Each thread computes one element of Csub
// by accumulating results into Cvalue
float Cvalue = 0;
// Thread row and column within Csub
int row = threadIdx.y;
int col = threadIdx.x;
// Loop over all the sub-matrices of A and B that are
// required to compute Csub
// Multiply each pair of sub-matrices together
// and accumulate the results
for (int m = 0; m < (A.width / BLOCK_SIZE); ++m) {
// Get sub-matrix Asub of A
Matrix Asub = GetSubMatrix(A, blockRow, m);
// Get sub-matrix Bsub of B
Matrix Bsub = GetSubMatrix(B, m, blockCol);
// Shared memory used to store Asub and Bsub respectively
__shared__ float As[BLOCK_SIZE][BLOCK_SIZE];
__shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];
// Load Asub and Bsub from device memory to shared memory
// Each thread loads one element of each sub-matrix
As[row][col] = GetElement(Asub, row, col);
Bs[row][col] = GetElement(Bsub, row, col);
// Synchronize to make sure the sub-matrices are loaded
// before starting the computation
__syncthreads();
// Multiply Asub and Bsub together
for (int e = 0; e < BLOCK_SIZE; ++e)
Cvalue += As[row][e] * Bs[e][col];
// Synchronize to make sure that the preceding
// computation is done before loading two new
// sub-matrices of A and B in the next iteration
__syncthreads();
}
// Write Csub to device memory
// Each thread writes one element
SetElement(Csub, row, col, Cvalue);
}
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Figure 9: Matrix Multiplication with Shared Memory
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Thread block clusters introduced in compute capability 9.0 provide the ability for threads in a thread
block cluster to access shared memory of all the participating thread blocks in a cluster. This parti-
tioned shared memory is called Distributed Shared Memory, and the corresponding address space is
called Distributed shared memory address space. Threads that belong to a thread block cluster, can
read, write or perform atomics in the distributed address space, regardless whether the address be-
longs to the local thread block or a remote thread block. Whether a kernel uses distributed shared
memory or not, the shared memory size specifications, static or dynamic is still per thread block. The
size of distributed shared memory is just the number of thread blocks per cluster multiplied by the
size of shared memory per thread block.

Accessing data in distributed shared memory requires all the thread blocks to exist. A user can guar-
antee that all thread blocks have started executing using cluster.sync() from API.
The user also needs to ensure that all distributed shared memory operations happen before the exit
of a thread block, e.g., if a remote thread block is trying to read a given thread block’s shared memory,
user needs to ensure that the shared memory read by remote thread block is completed before it can
exit.

CUDA provides a mechanism to access to distributed shared memory, and applications can benefit
from leveraging its capabilities. Lets look at a simple histogram computation and how to optimize it
on the GPU using thread block cluster. A standard way of computing histograms is do the computa-
tion in the shared memory of each thread block and then perform global memory atomics. A limitation
of this approach is the shared memory capacity. Once the histogram bins no longer fit in the shared
memory, a user needs to directly compute histograms and hence the atomics in the global memory.
With distributed shared memory, CUDA provides an intermediate step, where a depending on the his-
togram bins size, histogram can be computed in shared memory, distributed shared memory or global
memory directly.

The CUDA kernel example below shows how to compute histograms in shared memory or distributed
shared memory, depending on the number of histogram bins.

#include <cooperative_groups.h>

// Distributed Shared memory histogram kernel
__global__ void clusterHist_kernel(int *bins, const int nbins, const int bins_per_
—block, const int *__restrict__ input,
size_t array_size)
{

extern __shared__ int smem[];

namespace cg = cooperative_groups;
int tid = cg::this_grid().thread_rank();

// Cluster initialization, size and calculating local bin offsets.
cg::cluster_group cluster = cg::this_cluster();

unsigned int clusterBlockRank = cluster.block_rank();

int cluster_size = cluster.dim_blocks().x;

for (int i = threadIdx.x; i < bins_per_block; i += blockDim.x)

{

smem[i] = @; //Initialize shared memory histogram to zeros

}

// cluster synchronization ensures that shared memory is initialized to zero in
// all thread blocks in the cluster. It also ensures that all thread blocks
// have started executing and they exist concurrently.

(continues on next page)
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cluster.sync();

for (int i = tid; i < array_size; i += blockDim.x * gridDim.x)

{
int ldata = input[i];

//Find the right histogram bin.
int binid = ldata;
if (ldata < 0)
binid = 0;
else if (ldata >= nbins)
binid = nbins - 1;

//Find destination block rank and offset for computing
//distributed shared memory histogram

int dst_block_rank = (int)(binid / bins_per_block);
int dst_offset = binid % bins_per_block;

//Pointer to target block shared memory
int *dst_smem = cluster.map_shared_rank(smem, dst_block_rank);

//Perform atomic update of the histogram bin
atomicAdd(dst_smem + dst_offset, 1);

}

// cluster synchronization is required to ensure all distributed shared
// memory operations are completed and no thread block exits while

// other thread blocks are still accessing distributed shared memory
cluster.sync();

// Perform global memory histogram, using the local distributed memory histogram
int *1lbins = bins + cluster.block_rank() * bins_per_block;
for (int i = threadIdx.x; i < bins_per_block; i += blockDim.x)

atomicAdd(&lbins[i], smem[i]);
}
}

The above kernel can be launched at runtime with a cluster size depending on the amount of dis-
tributed shared memory required. If histogram is small enough to fit in shared memory of just one
block, user can launch kernel with cluster size 1. The code snippet below shows how to launch a clus-
ter kernel dynamically based depending on shared memory requirements.

// Launch via extensible launch

{
cudalLaunchConfig_t config = {0};
config.gridDim = array_size / threads_per_block;
config.blockDim = threads_per_block;

// cluster_size depends on the histogram size.

// ( cluster_size == 1 ) implies no distributed shared memory, just thread block
—local shared memory

int cluster_size = 2; // size 2 is an example here

int nbins_per_block = nbins / cluster_size;

//dynamic shared memory size is per block.
(continues on next page)
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//Distributed shared memory size = cluster_size * nbins_per_block * sizeof(int)
config.dynamicSmemBytes = nbins_per_block * sizeof(int);

CUDA_CHECK( : :cudaFuncSetAttribute((void *)clusterHist_kernel,
—.cudaFuncAttributeMaxDynamicSharedMemorySize, config.dynamicSmemBytes));

cudalLaunchAttribute attribute[1];

attribute[0].id = cudaLaunchAttributeClusterDimension;
attribute[0].val.clusterDim.x = cluster_size;
attribute[0].val.clusterDim.y = 1;
attribute[0].val.clusterDim.z 1;

config.numAttrs = 1;
config.attrs = attribute;

cudaLaunchKernelEx(&config, clusterHist_kernel, bins, nbins, nbins_per_block, input,
— array_size);

}

The runtime provides functions to allow the use of page-locked (also known as pinned) host memory
(as opposed to regular pageable host memory allocated by malloc()):

cudaHostAlloc() and cudaFreeHost() allocate and free page-locked host memory;

cudaHostRegister() page-locks a range of memory allocated by malloc() (see reference
manual for limitations).

Using page-locked host memory has several benefits:

Copies between page-locked host memory and device memory can be performed concurrently
with kernel execution for some devices as mentioned in

On some devices, page-locked host memory can be mapped into the address space of the device,
eliminating the need to copy it to or from device memory as detailed in

On systems with a front-side bus, bandwidth between host memory and device memory is higher
if host memory is allocated as page-locked and even higher if in addition it is allocated as write-
combining as described in

Note: Page-locked host memory is not cached on non I/O coherent Tegra devices. Also, cuda-
HostRegister() is not supported on non I/O coherent Tegra devices.

The simple zero-copy CUDA sample comes with a detailed document on the page-locked memory APIs.
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A block of page-locked memory can be used in conjunction with any device in the system (see

for more details on multi-device systems), but by default, the benefits of using page-
locked memory described above are only available in conjunction with the device that was current
when the block was allocated (and with all devices sharing the same unified address space, if any, as
described in ). To make these advantages available to all devices, the
block needs to be allocated by passing the flag cudaHostAllocPortable to cudaHostAlloc() or
page-locked by passing the flag cudaHostRegisterPortable to cudaHostRegister ().

By default page-locked host memory is allocated as cacheable. It can optionally be allocated as write-
combining instead by passing flag cudaHostAllocWriteCombined to cudaHostAlloc(). Write-
combining memory frees up the host’'s L1 and L2 cache resources, making more cache available to the
rest of the application. In addition, write-combining memory is not snooped during transfers across
the PCI Express bus, which can improve transfer performance by up to 40%.

Reading from write-combining memory from the host is prohibitively slow, so write-combining memory
should in general be used for memory that the host only writes to.

Using CPU atomic instructions on WC memory should be avoided because not all CPU implementations
guarantee that functionality.

A block of page-locked host memory can also be mapped into the address space of the device by pass-
ing flag cudaHostAllocMapped to cudaHostAlloc () or by passing flag cudaHostRegisterMapped
to cudaHostRegister (). Such a block has therefore in general two addresses: one in host memory
that is returned by cudaHostAlloc() or malloc( ), and one in device memory that can be retrieved
using cudaHostGetDevicePointer () and then used to access the block from within a kernel. The
only exception is for pointers allocated with cudaHostAlloc() and when a unified address space is
used for the host and the device as mentioned in

Accessing host memory directly from within a kernel does not provide the same bandwidth as device
memory, but does have some advantages:

There is no need to allocate a block in device memory and copy data between this block and the
block in host memory; data transfers are implicitly performed as needed by the kernel;

There is no need to use streams (see ) to overlap data transfers with
kernel execution; the kernel-originated data transfers automatically overlap with kernel execu-
tion.

Since mapped page-locked memory is shared between host and device however, the application must
synchronize memory accesses using streams or events (see ) to
avoid any potential read-after-write, write-after-read, or write-after-write hazards.

To be able to retrieve the device pointer to any mapped page-locked memory, page-locked memory
mapping must be enabled by calling cudaSetDeviceFlags () with the cudaDeviceMapHost flag be-
fore any other CUDA call is performed. Otherwise, cudaHostGetDevicePointer () will return an
error.

cudaHostGetDevicePointer () also returns an error if the device does not support mapped page-
locked host memory. Applications may query this capability by checking the canMapHostMemory de-
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vice property (see ), which is equal to 1 for devices that support mapped page-
locked host memory.

Note that atomic functions (see ) operating on mapped page-locked memory are not
atomic from the point of view of the host or other devices.

Also note that CUDA runtime requires that 1-byte, 2-byte, 4-byte, 8-byte, and 16-byte naturally aligned
loads and stores to host memory initiated from the device are preserved as single accesses from the
point of view of the host and other devices. On some platforms, atomics to memory may be broken
by the hardware into separate load and store operations. These component load and store operations
have the same requirements on preservation of naturally aligned accesses. The CUDA runtime does
not support a PCl Express bus topology where a PCl Express bridge splits 8-byte naturally aligned
operations and NVIDIA is not aware of any topology that splits 16-byte naturally aligned operations.

Some CUDA applications may see degraded performance due to memory fence/flush operations wait-
ing on more transactions than those necessitated by the CUDA memory consistency model.

__managed__ int x = 0;
__device__ cuda::atomic
—<int, cuda::thread_scope_
—device> a(0);

__managed__ cuda: :atomic
—.<int, cuda::thread_scope_
—system> b(0);

Thread 1 (SM) Thread 2 (SM) Thread 3 (CPU)

X =1; while (a !'= 1) ; while (b '= 1) ;

a=1; assert(x == 1); assert(x == 1);
b =1;

Consider the example above. The CUDA memory consistency model guarantees that the asserted
condition will be true, so the write to x from thread 1 must be visible to thread 3, before the write to
b from thread 2.

The memory ordering provided by the release and acquire of a is only sufficient to make x visible to
thread 2, not thread 3, as it is a device-scope operation. The system-scope ordering provided by release
and acquire of b, therefore, needs to ensure not only writes issued from thread 2 itself are visible to
thread 3, but also writes from other threads that are visible to thread 2. This is known as cumulativity.
As the GPU cannot know at the time of execution which writes have been guaranteed at the source
level to be visible and which are visible only by chance timing, it must cast a conservatively wide net
for in-flight memory operations.

This sometimes leads to interference: because the GPU is waiting on memory operations it is not
required to at the source level, the fence/flush may take longer than necessary.

Note that fences may occur explicitly as intrinsics or atomics in code, like in the example, or implicitly
to implement synchronizes-with relationships at task boundaries.
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A common example is when a kernel is performing computation in local GPU memory, and a parallel
kernel (e.g. from NCCL) is performing communications with a peer. Upon completion, the local ker-
nel will implicitly flush its writes to satisfy any synchronizes-with relationships to downstream work.
This may unnecessarily wait, fully or partially, on slower nvlink or PCle writes from the communication
kernel.

Beginning with Hopper architecture GPUs and CUDA 12.0, the memory synchronization domains fea-
ture provides a way to alleviate such interference. In exchange for explicit assistance from code, the
GPU can reduce the net cast by a fence operation. Each kernel launch is given a domain ID. Writes
and fences are tagged with the ID, and a fence will only order writes matching the fence’s domain. In
the concurrent compute vs communication example, the communication kernels can be placed in a
different domain.

When using domains, code must abide by the rule that ordering or synchronization between distinct
domains on the same GPU requires system-scope fencing. Within a domain, device-scope fencing
remains sufficient. This is necessary for cumulativity as one kernel’s writes will not be encompassed
by a fence issued from a kernel in another domain. In essence, cumulativity is satisfied by ensuring
that cross-domain traffic is flushed to the system scope ahead of time.

Note that this modifies the definition of thread_scope_device. However, because kernels will de-
fault to domain 0 as described below, backward compatibility is maintained.

Domains are accessible via the new launch attributes cudaLaunchAttributeMemSyncDomain and
cudalLaunchAttributeMemSyncDomainMap. The former selects between logical domains cud-
aLaunchMemSyncDomainDefault and cudaLaunchMemSyncDomainRemote, and the latter provides
a mapping from logical to physical domains. The remote domain is intended for kernels performing
remote memory access in order to isolate their memory traffic from local kernels. Note, however, the
selection of a particular domain does not affect what memory access a kernel may legally perform.

The domain count can be queried via device attribute cudaDevAttrMemSyncDomainCount. Hopper
has 4 domains. To facilitate portable code, domains functionality can be used on all devices and CUDA
will report a count of 1 prior to Hopper.

Having logical domains eases application composition. An individual kernel launch at a low level in the
stack, such as from NCCL, can select a semantic logical domain without concern for the surrounding
application architecture. Higher levels can steer logical domains using the mapping. The default value
for the logical domain if it is not set is the default domain, and the default mapping is to map the
default domain to 0 and the remote domain to 1 (on GPUs with more than 1 domain). Specific libraries
may tag launches with the remote domain in CUDA 12.0 and later; for example, NCCL 2.16 will do so.
Together, this provides a beneficial use pattern for common applications out of the box, with no code
changes needed in other components, frameworks, or at application level. An alternative use pattern,
for example in an application using nvshmem or with no clear separation of kernel types, could be to
partition parallel streams. Stream A may map both logical domains to physical domain O, stream B to
1, and so on.

// Example of launching a kernel with the remote logical domain
cudalLaunchAttribute domainAttr;
domainAttr.id = cudalLaunchAttrMemSyncDomain;
domainAttr.val = cudalLaunchMemSyncDomainRemote;
cudaLaunchConfig_t config;
(continues on next page)
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// Fill out other config fields

config.attrs = &domainAttr;

config.numAttrs = 1;

cudaLaunchKernelEx(&config, myKernel, kernelArgl, kernelArg2...);

// Example of setting a mapping for a stream

// (This mapping is the default for streams starting on Hopper if not

// explicitly set, and provided for illustration)

cudalLaunchAttributeValue mapAttr;

mapAttr.memSyncDomainMap.default_ = 0;

mapAttr.memSyncDomainMap.remote = 1;

cudaStreamSetAttribute(stream, cudalLaunchAttrMemSyncDomainMap, &mapAttr);

// Example of mapping different streams to different physical domains, ignoring
// logical domain settings
cudaLaunchAttributeValue mapAttr;
mapAttr.memSyncDomainMap.default_ =
mapAttr.memSyncDomainMap.remote 0;
cudaStreamSetAttribute(streamA, cuda
mapAttr.memSyncDomainMap.default_ =
mapAttr.memSyncDomainMap.remote = 1;
cudaStreamSetAttribute(streamB, cudaLaunchAttrMemSyncDomainMap, &mapAttr);

0;

LaunchAttrMemSyncDomainMap, &mapAttr);
1

’

As with other launch attributes, these are exposed uniformly on CUDA streams, individual launches us-
ing cudaLaunchKernelEx, and kernel nodes in CUDA graphs. A typical use would set the mapping at
stream level and the logical domain at launch level (or bracketing a section of stream use) as described
above.

Both attributes are copied to graph nodes during stream capture. Graphs take both attributes from
the node itself, essentially an indirect way of specifying a physical domain. Domain-related attributes
set on the stream a graph is launched into are not used in execution of the graph.

CUDA exposes the following operations as independent tasks that can operate concurrently with one
another:

Computation on the host;

Computation on the device;

Memory transfers from the host to the device;
Memory transfers from the device to the host;
Memory transfers within the memory of a given device;
Memory transfers among devices.

The level of concurrency achieved between these operations will depend on the feature set and com-
pute capability of the device as described below.
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Concurrent host execution is facilitated through asynchronous library functions that return control
to the host thread before the device completes the requested task. Using asynchronous calls, many
device operations can be queued up together to be executed by the CUDA driver when appropriate de-
vice resources are available. This relieves the host thread of much of the responsibility to manage the
device, leaving it free for other tasks. The following device operations are asynchronous with respect
to the host:

Kernel launches;

Memory copies within a single device’s memory;

Memory copies from host to device of a memory block of 64 KB or less;
Memory copies performed by functions that are suffixed with Async;
Memory set function calls.

Programmers can globally disable asynchronicity of kernel launches for all CUDA applications running
on a system by setting the CUDA_LAUNCH_BLOCKING environment variable to 1. This feature is pro-
vided for debugging purposes only and should not be used as a way to make production software run
reliably.

Kernel launches are synchronous if hardware counters are collected via a profiler (Nsight, Visual Pro-
filer) unless concurrent kernel profiling is enabled. Async memory copies might also be synchronous
if they involve host memory that is not page-locked.

Some devices of compute capability 2.x and higher can execute multiple kernels concurrently. Appli-
cations may query this capability by checking the concurrentKernels device property (see
), which is equal to 1 for devices that support it.

The maximum number of kernel launches that a device can execute concurrently depends on its com-
pute capability and is listed in

A kernel from one CUDA context cannot execute concurrently with a kernel from another CUDA con-
text. The GPU may time slice to provide forward progress to each context. If a user wants to run
kernels from multiple process simultaneously on the SM, one must enable MPS.

Kernels that use many textures or a large amount of local memory are less likely to execute concur-
rently with other kernels.

Some devices can perform an asynchronous memory copy to or from the GPU concurrently with kernel
execution. Applications may query this capability by checking the asyncEngineCount device property
(see ), which is greater than zero for devices that support it. If host memory is
involved in the copy, it must be page-locked.

It is also possible to perform an intra-device copy simultaneously with kernel execution (on devices
that support the concurrentKernels device property) and/or with copies to or from the device (for
devices that support the asyncEngineCount property). Intra-device copies are initiated using the
standard memory copy functions with destination and source addresses residing on the same device.
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Some devices of compute capability 2.x and higher can overlap copies to and from the device. Ap-
plications may query this capability by checking the asyncEngineCount device property (see

), which is equal to 2 for devices that support it. In order to be overlapped, any host
memory involved in the transfers must be page-locked.

Applications manage the concurrent operations described above through streams. A stream is a se-
quence of commands (possibly issued by different host threads) that execute in order. Different
streams, on the other hand, may execute their commands out of order with respect to one another
or concurrently; this behavior is not guaranteed and should therefore not be relied upon for correct-
ness (for example, inter-kernel communication is undefined). The commands issued on a stream may
execute when all the dependencies of the command are met. The dependencies could be previously
launched commands on same stream or dependencies from other streams. The successful completion
of synchronize call guarantees that all the commands launched are completed.

A stream is defined by creating a stream object and specifying it as the stream parameter to a se-
quence of kernel launches and host <-> device memory copies. The following code sample creates
two streams and allocates an array hostPtr of float in page-locked memory.

cudaStream_t stream[2];

for (int i = 0; i < 2; ++1i)
cudaStreamCreate(&stream[i]);

float* hostPtr;

cudaMallocHost(&hostPtr, 2 * size);

Each of these streams is defined by the following code sample as a sequence of one memory copy
from host to device, one kernel launch, and one memory copy from device to host:

for (int i = 0; i < 2; ++i) {
cudaMemcpyAsync(inputDevPtr + i * size, hostPtr + i * size,
size, cudaMemcpyHostToDevice, stream[i]);
MyKernel <<<100, 512, 0, stream[i]>>>
(outputDevPtr + i * size, inputDevPtr + i * size, size);
cudaMemcpyAsync(hostPtr + i * size, outputDevPtr + i * size,
size, cudaMemcpyDeviceToHost, stream[i]);

}

Each stream copies its portion of input array hostPtr to array inputDevPtr in device memory, pro-
cesses inputDevPtr on the device by calling MyKernel( ), and copies the result outputDevPtr back
to the same portion of hostPtr. describes how the streams overlap in this ex-
ample depending on the capability of the device. Note that hostPtr must point to page-locked host
memory for any overlap to occur.

Streams are released by calling cudaStreamDestroy().

for (int i = 0; i < 2; ++1i)
cudaStreamDestroy(stream[i]);
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In case the device is still doing work in the stream when cudaStreamDestroy () is called, the function
will return immediately and the resources associated with the stream will be released automatically
once the device has completed all work in the stream.

Kernel launches and host <-> device memory copies that do not specify any stream parameter, or
equivalently that set the stream parameter to zero, are issued to the default stream. They are therefore
executed in order.

For code thatis compiled using the --default-stream per-thread compilation flag (or that defines
the CUDA_API_PER_THREAD_DEFAULT_STREAM macro before including CUDA headers (cuda.h and
cuda_runtime.h)), the default stream is a regular stream and each host thread has its own default
stream.

Note: #define CUDA_API_PER_THREAD_DEFAULT_STREAM 1 cannot be used to enable this be-
havior when the code is compiled by nvcc as nvcc implicitly includes cuda_runtime.h at the top
of the translation unit. In this case the --default-stream per-thread compilation flag needs
to be used or the CUDA_API_PER_THREAD_DEFAULT_STREAM macro needs to be defined with the
-DCUDA_API_PER_THREAD_DEFAULT_STREAM=1 compiler flag.

For code that is compiled using the --default-stream legacy compilation flag, the default stream
is a special stream called the NULL stream and each device has a single NULL stream used for all
host threads. The NULL stream is special as it causes implicit synchronization as described in

For code that is compiled without specifying a --default-stream compilation flag,
--default-stream legacy is assumed as the default.

There are various ways to explicitly synchronize streams with each other.

cudaDeviceSynchronize() waits until all preceding commands in all streams of all host threads
have completed.

cudaStreamSynchronize()takes a stream as a parameter and waits until all preceding commands
in the given stream have completed. It can be used to synchronize the host with a specific stream,
allowing other streams to continue executing on the device.

cudaStreamWaitEvent ()takes a stream and an event as parameters (see for a description of
events)and makes all the commands added to the given stream after the call to cudaStreamWait-
Event()delay their execution until the given event has completed.

cudaStreamQuery () provides applications with a way to know if all preceding commands in a stream
have completed.
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Two commands from different streams cannot run concurrently if any one of the following operations
is issued in-between them by the host thread:

a page-locked host memory allocation,

a device memory allocation,

a device memory set,

a memory copy between two addresses to the same device memory,
any CUDA command to the NULL stream,

a switch between the L1/shared memory configurations described in

Operations that require a dependency check include any other commands within the same stream as
the launch being checked and any call to cudaStreamQuery () onthat stream. Therefore, applications
should follow these guidelines to improve their potential for concurrent kernel execution:

All independent operations should be issued before dependent operations,

Synchronization of any kind should be delayed as long as possible.

The amount of execution overlap between two streams depends on the order in which the commands

are issued to each stream and whether or not the device supports overlap of data transfer and ker-

nel execution (see ), concurrent kernel execution (see
), and/or concurrent data transfers (see ).

For example, on devices that do not support concurrent data transfers, the two streams of the code
sample of do not overlap at all because the memory copy from host to device
is issued to stream[ 1] after the memory copy from device to host is issued to stream[0], so it can only
start once the memory copy from device to host issued to stream[0] has completed. If the code is
rewritten the following way (and assuming the device supports overlap of data transfer and kernel
execution)

for (int i = 0; i < 2; ++1i)
cudaMemcpyAsync(inputDevPtr + i * size, hostPtr + i * size,
size, cudaMemcpyHostToDevice, stream[i]);
for (int i = 0; i < 2; ++1i)
MyKernel<<<100, 512, 0, stream[i]>>>
(outputDevPtr + i * size, inputDevPtr + i * size, size);
for (int i = 0; i < 2; ++1i)
cudaMemcpyAsync(hostPtr + i * size, outputDevPtr + i * size,
size, cudaMemcpyDeviceToHost, stream[i]);

then the memory copy from host to device issued to stream[ 1] overlaps with the kernel launch issued
to stream[0].

On devices that do support concurrent data transfers, the two streams of the code sample of

do overlap: The memory copy from host to device issued to stream[1] overlaps with
the memory copy from device to host issued to stream[0] and even with the kernel launch issued to
stream[0] (assuming the device supports overlap of data transfer and kernel execution).
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The runtime provides a way to insert a CPU function call at any point into a stream via cudalLaunch-
HostFunc(). The provided function is executed on the host once all commands issued to the stream
before the callback have completed.

The following code sample adds the host function MyCallback to each of two streams after issuing a
host-to-device memory copy, a kernel launch and a device-to-host memory copy into each stream. The
function will begin execution on the host after each of the device-to-host memory copies completes.

void CUDART_CB MyCallback(void *data){
printf("Inside callback %d\n", (size_t)data);
}

for (size_t i = 0; i < 2; ++1i) {
cudaMemcpyAsync(devPtrIn[i], hostPtr[i], size, cudaMemcpyHostToDevice, stream[i]);
MyKernel<<<100, 512, 0, stream[i]>>>(devPtrOut[i], devPtrIn[i], size);
cudaMemcpyAsync(hostPtr[i], devPtrOut[i], size, cudaMemcpyDeviceToHost,
—stream[i]);
cudalLaunchHostFunc(stream[i], MyCallback, (void*)i);
}

The commands that are issued in a stream after a host function do not start executing before the
function has completed.

A host function enqueued into a stream must not make CUDA API calls (directly or indirectly), as it
might end up waiting on itself if it makes such a call leading to a deadlock.

The relative priorities of streams can be specified at creation using cudaStreamCreateWithPrior-
ity(). The range of allowable priorities, ordered as [ highest priority, lowest priority ] can be obtained
using the cudaDeviceGetStreamPriorityRange() function. At runtime, pending work in higher-
priority streams takes preference over pending work in low-priority streams.

The following code sample obtains the allowable range of priorities for the current device, and creates
streams with the highest and lowest available priorities.

// get the range of stream priorities for this device

int priority_high, priority_low;
cudaDeviceGetStreamPriorityRange(&priority_low, &priority_high);

// create streams with highest and lowest available priorities

cudaStream_t st_high, st_low;

cudaStreamCreateWithPriority(&st_high, cudaStreamNonBlocking, priority_high);
cudaStreamCreateWithPriority(&st_low, cudaStreamNonBlocking, priority_low);
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6.2.8.6 Programmatic Dependent Launch and Synchronization

The Programmatic Dependent Launch mechanism allows for a dependent secondary kernel to launch
before the primary kernel it depends on in the same CUDA stream has finished executing. Available
starting with devices of compute capability 9.0, this technique can provide performance benefits when
the secondary kernel can complete significant work that does not depend on the results of the primary
kernel.

6.2.8.6.1 Background

A CUDA application utilizes the GPU by launching and executing multiple kernels on it. A typical GPU
activity timeline is shown in Figure 10.

Figure 10: GPU activity timeline

Here, secondary_kernel is launched after primary_kernel finishes its execution. Serialized exe-
cution is usually necessary because secondary_kernel depends on result data produced by pri-
mary_kernel. If secondary_kernel has no dependency on primary_kernel, both of them can
be launched concurrently by using CUDA streams. Even if secondary_kernel is dependent on pri-
mary_kernel, there is some potential for concurrent execution. For example, almost all the kernels
have some sort of preamble section during which tasks such as zeroing buffers or loading constant

values are performed.
‘ ‘ I} ‘ill .

‘ preamble‘

Figure 11: Preamble section of secondary_kernel

Figure 11 demonstrates the portion of secondary_kernel that could be executed concurrently with-
out impacting the application. Note that concurrent launch also allows us to hide the launch latency
of secondary_kernel behind the execution of primary_kernel.

The concurrent launch and execution of secondary_kernel shown in Figure 12 is achievable using
Programmatic Dependent Launch.

Programmatic Dependent Launch introduces changes to the CUDA kernel launch APIs as explained in
following section. These APIs require at least compute capability 9.0 to provide overlapping execution.
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| preamble|

Figure 12: Concurrent execution of primary_kernel and secondary_kernel

6.2.8.6.2 API Description

In Programmatic Dependent Launch, a primary and a secondary kernel are launched in the same CUDA
stream. The primary kernel should execute cudaTriggerProgrammaticLaunchCompletion with
all thread blocks when it’s ready for the secondary kernel to launch. The secondary kernel must be
launched using the extensible launch API as shown.

__global__ void primary_kernel() {
// Initial work that should finish before starting secondary kernel

// Trigger the secondary kernel
cudaTriggerProgrammaticLaunchCompletion();

// Work that can coincide with the secondary kernel

}

__global__ void secondary_kernel()

{
// Independent work

// Will block until all primary kernels the secondary kernel is dependent on have
—completed and flushed results to global memory
cudaGridDependencySynchronize();

// Dependent work
}

cudaLaunchAttribute attribute[1];

attribute[0].id = cudalLaunchAttributeProgrammaticStreamSerialization;
attribute[0].val.programmaticStreamSerializationAllowed = 1;
configSecondary.attrs = attribute;

configSecondary.numAttrs = 1;

primary_kernel<<<grid_dim, block_dim, 0, stream>>>();
cudaLaunchKernelEx(&configSecondary, secondary_kernel);

When the secondary kernel is launched using the cudaLaunchAttributeProgrammaticStreamSe-
rialization attribute, the CUDA driver is safe to launch the secondary kernel early and not wait on
the completion and memory flush of the primary before launching the secondary.

The CUDA driver can launch the secondary kernel when all primary thread blocks have launched and
executed cudaTriggerProgrammaticLaunchCompletion. If the primary kernel doesn’t execute the
trigger, it implicitly occurs after all thread blocks in the primary kernel exit.
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In either case, the secondary thread blocks might launch before data written by the primary kernel
is visible. As such, when the secondary kernel is configured with Programmatic Dependent Launch, it
must always use cudaGridDependencySynchronize or other means to verify that the result data
from the primary is available.

Please note that these methods provide the opportunity for the primary and secondary kernels to
execute concurrently, however this behavior is opportunistic and not guaranteed to lead to concurrent
kernel execution. Reliance on concurrent execution in this manner is unsafe and can lead to deadlock.

Programmatic Dependent Launch can be used in via or directly via

. To program this feature in a CUDA Graph with edge data, use a cudaGraphDependencyType
value of cudaGraphDependencyTypeProgrammatic on an edge connecting two kernel nodes. This
edge type makes the upstream kernel visible to a cudaGridDependencySynchronize() in the down-
stream kernel. This type must be used with an outgoing port of either cudaGraphKernelNodePort-
LaunchCompletion or cudaGraphKernelNodePortProgrammatic.

The resulting graph equivalents for stream capture are as follows:

Stream code (abbreviated) Resulting graph edge
cudaLaunchAttribute attribute; cudaGraphEdgeData edgeData;
attribute.id = edgeData.type =
—cudaLaunchAttributeProgrammaticStreamSeri -—.cudaGraphDependencyTypeProgrammatic;
o edgeData.from_port =

attribute.val. —~cudaGraphKernelNodePortProgrammatic;
—programmaticStreamSerializationAllowed

=1 )

cudaLaunchAttribute attribute; cudaGraphEdgeData edgeData;
attribute.id = edgeData.type =
—cudalLaunchAttributeProgrammaticEvent; —cudaGraphDependencyTypeProgrammatic;
attribute.val.programmaticEvent. edgeData.from_port =
—triggerAtBlockStart = 0; —.cudaGraphKernelNodePortProgrammatic;
cudaLaunchAttribute attribute; cudaGraphEdgeData edgeData;
attribute.id = edgeData.type =
—cudaLaunchAttributeProgrammaticEvent; —cudaGraphDependencyTypeProgrammatic;
attribute.val.programmaticEvent. edgeData.from_port =
—triggerAtBlockStart = 1; —cudaGraphKernelNodePortLaunchCompletion;

54 Chapter 6. Programming Interface


index.html#cuda-graphs
index.html#creating-a-graph-using-stream-capture
index.html#edge-data
index.html#edge-data

CUDA C++ Programming Guide, Release 12.4

CUDA Graphs present a new model for work submission in CUDA. A graph is a series of operations,
such as kernel launches, connected by dependencies, which is defined separately from its execution.
This allows a graph to be defined once and then launched repeatedly. Separating out the definition
of a graph from its execution enables a number of optimizations: first, CPU launch costs are reduced
compared to streams, because much of the setup is done in advance; second, presenting the whole
workflow to CUDA enables optimizations which might not be possible with the piecewise work sub-
mission mechanism of streams.

To see the optimizations possible with graphs, consider what happens in a stream: when you place a
kernel into a stream, the host driver performs a sequence of operations in preparation for the execu-
tion of the kernel on the GPU. These operations, necessary for setting up and launching the kernel,
are an overhead cost which must be paid for each kernel that is issued. For a GPU kernel with a short
execution time, this overhead cost can be a significant fraction of the overall end-to-end execution
time.

Work submission using graphs is separated into three distinct stages: definition, instantiation, and
execution.

During the definition phase, a program creates a description of the operations in the graph along
with the dependencies between them.

Instantiation takes a snapshot of the graph template, validates it, and performs much of the
setup and initialization of work with the aim of minimizing what needs to be done at launch. The
resulting instance is known as an executable graph.

An executable graph may be launched into a stream, similar to any other CUDA work. It may be
launched any number of times without repeating the instantiation.

An operation forms a node in a graph. The dependencies between the operations are the edges. These
dependencies constrain the execution sequence of the operations.

An operation may be scheduled at any time once the nodes on which it depends are complete. Schedul-
ing is left up to the CUDA system.

A graph node can be one of:
kernel
CPU function call
memory copy
memset
empty node
waiting on an
recording an
signalling an

waiting on an
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child graph: To execute a separate nested graph, as shown in the following figure.

Figure 13: Child Graph Example

CUDA 12.3 introduced edge data on CUDA Graphs. Edge data modifies a dependency specified by an
edge and consists of three parts: an outgoing port, an incoming port, and a type. An outgoing port
specifies when an associated edge is triggered. An incoming port specifies what portion of a node is
dependent on an associated edge. A type modifies the relation between the endpoints.

Port values are specific to node type and direction, and edge types may be restricted to specific node
types. In all cases, zero-initialized edge data represents default behavior. Outgoing port O waits on an
entire task, incoming port 0 blocks an entire task, and edge type O is associated with a full dependency
with memory synchronizing behavior.

Edge data is optionally specified in various graph APIs via a parallel array to the associated nodes. If
it is omitted as an input parameter, zero-initialized data is used. If it is omitted as an output (query)
parameter, the APl accepts this if the edge data being ignored is all zero-initialized, and returns cud-
aErrorLossyQuery if the call would discard information.

Edge data is also available in some stream capture APIs: cudaStreamBeginCaptureToGraph(), cu-
daStreamGetCaptureInfo(), and cudaStreamUpdateCaptureDependencies(). In these cases,
there is not yet a downstream node. The data is associated with a dangling edge (half edge) which
will either be connected to a future captured node or discarded at termination of stream capture.
Note that some edge types do not wait on full completion of the upstream node. These edges are
ignored when considering if a stream capture has been fully rejoined to the origin stream, and cannot
be discarded at the end of capture. See

Currently, no node types define additional incoming ports, and only kernel nodes define additional out-
going ports. There is one non-default dependency type, cudaGraphDependencyTypeProgrammatic,
which enables between two kernel nodes.
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6.2.8.7.2 Creating a Graph Using Graph APIs

Graphs can be created via two mechanisms: explicit APl and stream capture. The following is an ex-
ample of creating and executing the below graph.

Figure 14: Creating a Graph Using Graph APIs Example

// Create the graph - it starts out empty
cudaGraphCreate(&graph, 0);

// For the purpose of this example, we'll create

// the nodes separately from the dependencies to

// demonstrate that it can be done in two stages.

// Note that dependencies can also be specified

// at node creation.

cudaGraphAddKernelNode(&a, graph, NULL, ©, &nodeParams);

cudaGraphAddKernelNode (&b, graph, NULL, 0, &nodeParams);
cudaGraphAddKernelNode(&c, graph, NULL, ©, &nodeParams);
cudaGraphAddKernelNode(&d, graph, NULL, ©, &nodeParams);

// Now set up dependencies on each node

cudaGraphAddDependencies(graph, &a, &b, 1) // A->B
cudaGraphAddDependencies(graph, &a, &c, 1) // A->C
cudaGraphAddDependencies(graph, &b, &d, 1); // B->D
cudaGraphAddDependencies(graph, &c, &d, 1); // C->D
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Stream capture provides a mechanism to create a graph from existing stream-based APIs. A section
of code which launches work into streams, including existing code, can be bracketed with calls to
cudaStreamBeginCapture() and cudaStreamEndCapture(). See below.

cudaGraph_t graph;

cudaStreamBeginCapture(stream);

kernel_A<<< ..., stream >>>(...);
kernel_B<<< ..., stream >>>(...);
libraryCall(stream);

kernel_C<<< ..., stream >>>(...);

cudaStreamEndCapture(stream, &graph);

A call to cudaStreamBeginCapture() places a stream in capture mode. When a stream is being
captured, work launched into the stream is not enqueued for execution. It is instead appended to
an internal graph that is progressively being built up. This graph is then returned by calling cudaS-
treamEndCapture( ), which also ends capture mode for the stream. A graph which is actively being
constructed by stream capture is referred to as a capture graph.

Stream capture can be used on any CUDA stream except cudaStreamlLegacy (the “NULL stream”).
Note that it can be used on cudaStreamPerThread. If a program is using the legacy stream, it may
be possible to redefine stream O to be the per-thread stream with no functional change. See

Whether a stream is being captured can be queried with cudaStreamIsCapturing().

Work can be captured to an existing graph using cudaStreamBeginCaptureToGraph(). Instead of
capturing to an internal graph, work is captured to a graph provided by the user.

Stream capture can handle cross-stream dependencies expressed with cudaEventRecord() and cu-
daStreamWaitEvent(), provided the event being waited upon was recorded into the same capture
graph.

When an event is recorded in a stream that is in capture mode, it results in a captured event. A captured
event represents a set of nodes in a capture graph.

When a captured event is waited on by a stream, it places the stream in capture mode if it is not already,
and the next item in the stream will have additional dependencies on the nodes in the captured event.
The two streams are then being captured to the same capture graph.

When cross-stream dependencies are present in stream capture, cudaStreamEndCapture() must
still be called in the same stream where cudaStreamBeginCapture() was called; this is the origin
stream. Any other streams which are being captured to the same capture graph, due to event-based
dependencies, must also be joined back to the origin stream. This s illustrated below. All streams being
captured to the same capture graph are taken out of capture mode upon cudaStreamEndCapture().
Failure to rejoin to the origin stream will result in failure of the overall capture operation.

// streaml is the origin stream
cudaStreamBeginCapture(streaml);

(continues on next page)
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(continued from previous page)
kernel_A<<< ..., streaml >>>(...);
// Fork into stream2
cudaEventRecord(event1, streaml);
cudaStreamWaitEvent(stream2, eventl);

kernel_B<<< ..., streaml >>>(...);
kernel_C<<< ..., stream2 >>>(...);

// Join stream2 back to origin stream (stream)
cudaEventRecord(event2, stream2);
cudaStreamWaitEvent(streaml, event2);

kernel_D<<< ..., streaml >>>(...);

// End capture in the origin stream
cudaStreamEndCapture(streaml1, &graph);

// streaml and stream2 no longer in capture mode

Graph returned by the above code is shown in

Note: When a stream is taken out of capture mode, the next non-captured item in the stream (if any)
will still have a dependency on the most recent prior non-captured item, despite intermediate items
having been removed.

It is invalid to synchronize or query the execution status of a stream which is being captured or a
captured event, because they do not represent items scheduled for execution. It is also invalid to
query the execution status of or synchronize a broader handle which encompasses an active stream
capture, such as a device or context handle when any associated stream is in capture mode.

When any stream in the same context is being captured, and it was not created with cudaStream-
NonBlocking, any attempted use of the legacy stream is invalid. This is because the legacy stream
handle at all times encompasses these other streams; enqueueing to the legacy stream would cre-
ate a dependency on the streams being captured, and querying it or synchronizing it would query or
synchronize the streams being captured.

It is therefore also invalid to call synchronous APlIs in this case. Synchronous APIs, such as cudaMem-
cpy (), enqueue work to the legacy stream and synchronize it before returning.

Note: As a general rule, when a dependency relation would connect something that is captured with
something that was not captured and instead enqueued for execution, CUDA prefers to return an error
rather than ignore the dependency. An exception is made for placing a stream into or out of capture
mode; this severs a dependency relation between items added to the stream immediately before and
after the mode transition.

Itis invalid to merge two separate capture graphs by waiting on a captured event from a stream which
is being captured and is associated with a different capture graph than the event. It is invalid to wait
on a non-captured event from a stream which is being captured without specifying the cudaEventWai-
tExternal flag.
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A small number of APIs that enqueue asynchronous operations into streams are not currently sup-
ported in graphs and will return an error if called with a stream which is being captured, such as cud-
aStreamAttachMemAsync ().

When an invalid operation is attempted during stream capture, any associated capture graphs are
invalidated. When a capture graph is invalidated, further use of any streams which are being captured
or captured events associated with the graph is invalid and will return an error, until stream capture
is ended with cudaStreamEndCapture(). This call will take the associated streams out of capture
mode, but will also return an error value and a NULL graph.

CUDA User Objects can be used to help manage the lifetime of resources used by asynchronous work
in CUDA. In particular, this feature is useful for and

Various resource management schemes are not compatible with CUDA graphs. Consider for example
an event-based pool or a synchronous-create, asynchronous-destroy scheme.

// Library API with pool allocation

void libraryWork(cudaStream_t stream) {
auto &resource = pool.claimTemporaryResource();
resource.waitOnReadyEventInStream(stream);
launchWork(stream, resource);
resource.recordReadyEvent(stream);

// Library API with asynchronous resource deletion
void libraryWork(cudaStream_t stream) {
Resource *resource = new Resource(...);
launchWork(stream, resource);
cudaStreamAddCallback (
stream,
[1(cudaStream_t, cudaError_t, void *resource) {
delete static_cast<Resource *>(resource);

}l
resource,
0);
// Error handling considerations not shown

}

These schemes are difficult with CUDA graphs because of the non-fixed pointer or handle for the
resource which requires indirection or graph update, and the synchronous CPU code needed each time
the work is submitted. They also do not work with stream capture if these considerations are hidden
from the caller of the library, and because of use of disallowed APIs during capture. Various solutions
exist such as exposing the resource to the caller. CUDA user objects present another approach.

A CUDA user object associates a user-specified destructor callback with an internal refcount, similar to
C++ shared_ptr. References may be owned by user code on the CPU and by CUDA graphs. Note that
for user-owned references, unlike C++ smart pointers, there is no object representing the reference;
users must track user-owned references manually. A typical use case would be to immediately move
the sole user-owned reference to a CUDA graph after the user object is created.
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When a reference is associated to a CUDA graph, CUDA will manage the graph operations automat-
ically. A cloned cudaGraph_t retains a copy of every reference owned by the source cudaGraph_t,
with the same multiplicity. An instantiated cudaGraphExec_t retains a copy of every reference in
the source cudaGraph_t. When a cudaGraphExec_t is destroyed without being synchronized, the
references are retained until the execution is completed.

Here is an example use.

cudaGraph_t graph; // Preexisting graph

Object *object = new Object; // C++ object with possibly nontrivial destructor
cudaUserObject_t cuObject;
cudaUserObjectCreate(

&culbject,

object, // Here we use a CUDA-provided template wrapper for this API,

// which supplies a callback to delete the C++ object pointer
1, // Initial refcount
cudaUserObjectNoDestructorSync // Acknowledge that the callback cannot be
// waited on via CUDA

)
cudaGraphRetainUserObject (
graph,
cuObject,
1, // Number of references
cudaGraphUserObjectMove // Transfer a reference owned by the caller (do
// not modify the total reference count)
5

// No more references owned by this thread; no need to call release API
cudaGraphExec_t graphExec;
cudaGraphInstantiate(&graphExec, graph, nullptr, nullptr, 0); // Will retain a
// new reference
cudaGraphDestroy(graph); // graphExec still owns a reference
cudaGraphLaunch(graphExec, 0); // Async launch has access to the user objects
cudaGraphExecDestroy(graphExec); // Launch is not synchronized,; the release
// will be deferred if needed

cudaStreamSynchronize(0); // After the launch is synchronized, the remaining

// reference is released and the destructor will

// execute. Note this happens asynchronously.
// If the destructor callback had signaled a synchronization object, it would
// be safe to wait on it at this point.

References owned by graphs in child graph nodes are associated to the child graphs, not the parents. If
a child graph is updated or deleted, the references change accordingly. If an executable graph or child
graph is updated with cudaGraphExecUpdate or cudaGraphExecChildGraphNodeSetParams, the
references in the new source graph are cloned and replace the references in the target graph. In either
case, if previous launches are not synchronized, any references which would be released are held until
the launches have finished executing.

There is not currently a mechanism to wait on user object destructors via a CUDA API. Users may signal
a synchronization object manually from the destructor code. In addition, it is not legal to call CUDA
APIs from the destructor, similar to the restriction on cudaLaunchHostFunc. This is to avoid blocking
a CUDA internal shared thread and preventing forward progress. It is legal to signal another thread to
perform an API call, if the dependency is one way and the thread doing the call cannot block forward
progress of CUDA work.

User objects are created with cudaUserObjectCreate, which is a good starting point to browse re-
lated APIs.
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Work submission using graphs is separated into three distinct stages: definition, instantiation, and ex-
ecution. In situations where the workflow is not changing, the overhead of definition and instantiation
can be amortized over many executions, and graphs provide a clear advantage over streams.

A graphis asnapshot of a workflow, including kernels, parameters, and dependencies, in order to replay
it as rapidly and efficiently as possible. In situations where the workflow changes the graph becomes
out of date and must be modified. Major changes to graph structure such as topology or types of
nodes will require re-instantiation of the source graph because various topology-related optimization
techniques must be re-applied.

The cost of repeated instantiation can reduce the overall performance benefit from graph execution,
but it is common for only node parameters, such as kernel parameters and cudaMemcpy addresses,
to change while graph topology remains the same. For this case, CUDA provides a lightweight mecha-
nism known as “Graph Update,” which allows certain node parameters to be modified in-place without
having to rebuild the entire graph. This is much more efficient than re-instantiation.

Updates will take effect the next time the graph is launched, so they will not impact previous graph
launches, even if they are running at the time of the update. A graph may be updated and relaunched
repeatedly, so multiple updates/launches can be queued on a stream.

CUDA provides two mechanisms for updating instantiated graph parameters, whole graph update and
individual node update. Whole graph update allows the user to supply a topologically identical cud-
aGraph_t object whose nodes contain updated parameters. Individual node update allows the user
to explicitly update the parameters of individual nodes. Using an updated cudaGraph_t is more con-
venient when a large number of nodes are being updated, or when the graph topology is unknown to
the caller (i.e., The graph resulted from stream capture of a library call). Using individual node update
is preferred when the number of changes is small and the user has the handles to the nodes requiring
updates. Individual node update skips the topology checks and comparisons for unchanged nodes, so
it can be more efficient in many cases.

CUDA also provides a mechanism for enabling and disabling individual nodes without affecting their
current parameters.

The following sections explain each approach in more detail.

Kernel nodes:
The owning context of the function cannot change.

A node whose function originally did not use CUDA dynamic parallelism cannot be updated to a
function which uses CUDA dynamic parallelism.

cudaMemset and cudaMemcpy nodes:
The CUDA device(s) to which the operand(s) was allocated/mapped cannot change.

The source/destination memory must be allocated from the same context as the original
source/destination memory.

Only 1D cudaMemset/cudaMemcpy nodes can be changed.
Additional memcpy node restrictions:

Changing either the source or destination memory type (i.e., cudaPitchedPtr, cudaArray_t,
etc.), or the type of transfer (i.e., cudaMemcpyKind) is not supported.

62 Chapter 6. Programming Interface



CUDA C++ Programming Guide, Release 12.4

External semaphore wait nodes and record nodes:
Changing the number of semaphores is not supported.
Conditional nodes:
The order of handle creation and assignment must match between the graphs.

Changing node parameters is not supported (i.e. number of graphs in the conditional, node con-
text, etc).

Changing parameters of nodes within the conditional body graph is subject to the rules above.

There are no restrictions on updates to host nodes, event record nodes, or event wait nodes.

cudaGraphExecUpdate() allows an instantiated graph (the “original graph”) to be updated with the
parameters from a topologically identical graph (the “updating” graph). The topology of the updating
graph must be identical to the original graph used to instantiate the cudaGraphExec_t. In addition,
the order in which the dependencies are specified must match. Finally, CUDA needs to consistently
order the sink nodes (nodes with no dependencies). CUDA relies on the order of specific api calls to
achieve consistent sink node ordering.

More explicitly, following the following rules will cause cudaGraphExecUpdate() to pair the nodes in
the original graph and the updating graph deterministically:

For any capturing stream, the API calls operating on that stream must be made in the same order,
including event wait and other api calls not directly corresponding to node creation.

The API calls which directly manipulate a given graph node’s incoming edges (including captured
stream APIs, node add APIs, and edge addition / removal APIs) must be made in the same or-
der. Moreover, when dependencies are specified in arrays to these APlIs, the order in which the
dependencies are specified inside those arrays must match.

Sink nodes must be consistently ordered. Sink nodes are nodes without dependent nodes / out-
going edges in the final graph at the time of the cudaGraphExecUpdate() invocation. The fol-
lowing operations affect sink node ordering (if present) and must (as a combined set) be made
in the same order:

Node add APIs resulting in a sink node.
Edge removal resulting in a node becoming a sink node.

cudaStreamUpdateCaptureDependencies(), if it removes a sink node from a capturing
stream’s dependency set.

cudaStreamEndCapture().

The following example shows how the API could be used to update an instantiated graph:

cudaGraphExec_t graphExec = NULL;

for (int i = 0; i < 10; i++) {
cudaGraph_t graph;
cudaGraphExecUpdateResult updateResult;
cudaGraphNode_t errorNode;

// In this example we use stream capture to create the graph.
// You can also use the Graph API to produce a graph.

(continues on next page)
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(continued from previous page)
cudaStreamBeginCapture(stream, cudaStreamCaptureModeGlobal);

// Call a user-defined, stream based workload, for example
do_cuda_work(stream) ;

cudaStreamEndCapture(stream, &graph);

// If we've already instantiated the graph, try to update it directly
// and avoid the instantiation overhead
if (graphExec '= NULL) {

// If the graph fails to update, errorNode will be set to the

// node causing the failure and updateResult will be set to a

// reason code.

cudaGraphExecUpdate(graphExec, graph, &errorNode, &updateResult);
}

// Instantiate during the first iteration or whenever the update
// fails for any reason
if (graphExec == NULL || updateResult !'= cudaGraphExecUpdateSuccess) {

// If a previous update failed, destroy the cudaGraphExec_t
// before re-instantiating it
if (graphExec != NULL) {
cudaGraphExecDestroy(graphExec) ;
}

// Instantiate graphExec from graph. The error node and

// error message parameters are unused here.

cudaGraphInstantiate(&graphExec, graph, NULL, NULL, ©);
}

cudaGraphDestroy(graph) ;
cudaGraphLaunch(graphExec, stream);
cudaStreamSynchronize(stream);

}

A typical workflow is to create the initial cudaGraph_t using either the stream capture or graph API.
The cudaGraph_t is then instantiated and launched as normal. After the initial launch, a new cud-
aGraph_t is created using the same method as the initial graph and cudaGraphExecUpdate() is
called. If the graph update is successful, indicated by the updateResult parameter in the above
example, the updated cudaGraphExec_t is launched. If the update fails for any reason, the cud-
aGraphExecDestroy() and cudaGraphInstantiate() are called to destroy the original cuda-
GraphExec_t and instantiate a new one.

It is also possible to update the cudaGraph_t nodes directly (i.e., Using cudaGraphKernelNodeSet-
Params()) and subsequently update the cudaGraphExec_t, however it is more efficient to use the
explicit node update APIs covered in the next section.

Conditional handle flags and default values are updated as part of the graph update.

Please see the Graph API for more information on usage and current limitations.
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Instantiated graph node parameters can be updated directly. This eliminates the overhead of instanti-
ation as well as the overhead of creating a new cudaGraph_t. If the number of nodes requiring update
is small relative to the total number of nodes in the graph, it is better to update the nodes individually.
The following methods are available for updating cudaGraphExec_t nodes:

cudaGraphExecKernelNodeSetParams()
cudaGraphExecMemcpyNodeSetParams()
cudaGraphExecMemsetNodeSetParams()
cudaGraphExecHostNodeSetParams()
cudaGraphExecChildGraphNodeSetParams()
cudaGraphExecEventRecordNodeSetEvent ()
cudaGraphExecEventWaitNodeSetEvent ()
cudaGraphExecExternalSemaphoresSignalNodeSetParams()
cudaGraphExecExternalSemaphoresWaitNodeSetParams()

Please see the for more information on usage and current limitations.

Kernel, memset and memcpy nodes in an instantiated graph can be enabled or disabled using the
cudaGraphNodeSetEnabled() API. This allows the creation of a graph which contains a superset of the
desired functionality which can be customized for each launch. The enable state of a node can be
queried using the cudaGraphNodeGetEnabled() API.

A disabled node is functionally equivalent to empty node until it is reenabled. Node parameters are not
affected by enabling/disabling a node. Enable state is unaffected by individual node update or whole
graph update with cudaGraphExecUpdate(). Parameter updates while the node is disabled will take
effect when the node is reenabled.

The following methods are available for enabling/disabling cudaGraphExec_t nodes, as well as query-
ing their status:

cudaGraphNodeSetEnabled()
cudaGraphNodeGetEnabled()

Please see the for more information on usage and current limitations.

cudaGraph_t objects are not thread-safe. It is the responsibility of the user to ensure that multiple
threads do not concurrently access the same cudaGraph_t.

A cudaGraphExec_t cannot run concurrently with itself. A launch of a cudaGraphExec_t will be
ordered after previous launches of the same executable graph.

Graph execution is done in streams for ordering with other asynchronous work. However, the stream
is for ordering only; it does not constrain the internal parallelism of the graph, nor does it affect where
graph nodes execute.
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See

There are many workflows which need to make data-dependent decisions during runtime and execute
different operations depending on those decisions. Rather than offloading this decision-making pro-
cess to the host, which may require a round-trip from the device, users may prefer to perform it on
the device. To that end, CUDA provides a mechanism to launch graphs from the device.

Device graph launch provides a convenient way to perform dynamic control flow from the device, be
it something as simple as a loop or as complex as a device-side work scheduler. This functionality is
only available on systems which support

Graphs which can be launched from the device will henceforth be referred to as device graphs, and
graphs which cannot be launched from the device will be referred to as host graphs.

Device graphs can be launched from both the host and device, whereas host graphs can only be
launched from the host. Unlike host launches, launching a device graph from the device while a previ-
ous launch of the graph is running will result in an error, returning cudaErrorInvalidValue; there-
fore, a device graph cannot be launched twice from the device at the same time. Launching a device
graph from the host and device simultaneously will result in undefined behavior.

In order for a graph to be launched from the device, it must be instantiated explicitly for device
launch. This is achieved by passing the cudaGraphInstantiateFlagDevicelaunch flagtothe cud-
aGraphInstantiate() call. Asis the case for host graphs, device graph structure is fixed at time
of instantiation and cannot be updated without re-instantiation, and instantiation can only be per-
formed on the host. In order for a graph to be able to be instantiated for device launch, it must adhere
to various requirements.

General requirements:
The graph’s nodes must all reside on a single device.
The graph can only contain kernel nodes, memcpy nodes, memset nodes, and child graph nodes.
Kernel nodes:
Use of CUDA Dynamic Parallelism by kernels in the graph is not permitted.
Cooperative launches are permitted so long as MPS is not in use.
Memcpy nodes:
Only copies involving device memory and/or pinned device-mapped host memory are permitted.
Copies involving CUDA arrays are not permitted.

Both operands must be accessible from the current device at time of instantiation. Note that
the copy operation will be performed from the device on which the graph resides, even if it is
targeting memory on another device.
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In order to launch a graph on the device, it must first be uploaded to the device to populate the nec-
essary device resources. This can be achieved in one of two ways.

Firstly, the graph can be uploaded explicitly, either via cudaGraphUpload( ) or by requesting an upload
as part of instantiation via cudaGraphInstantiateWithParams().

Alternatively, the graph can first be launched from the host, which will perform this upload step im-
plicitly as part of the launch.

Examples of all three methods can be seen below:

// Explicit upload after instantiation
cudaGraphInstantiate(&deviceGraphExec1, deviceGraphi,
—cudaGraphInstantiateFlagDevicelaunch);
cudaGraphUpload(deviceGraphExec1, stream);

// Explicit upload as part of instantiation

cudaGraphInstantiateParams instantiateParams = {0};

instantiateParams.flags = cudaGraphInstantiateFlagDevicelLaunch |
—~cudaGraphInstantiateFlagUpload;

instantiateParams.uploadStream = stream;
cudaGraphInstantiateWithParams(&deviceGraphExec2, deviceGraph2, &instantiateParams);

// Implicit upload via host launch
cudaGraphInstantiate(&deviceGraphExec3, deviceGraph3,
—cudaGraphInstantiateFlagDevicelLaunch);
cudaGraphLaunch(deviceGraphExec3, stream);

Device graphs can only be updated from the host, and must be re-uploaded to the device upon exe-
cutable graph update in order for the changes to take effect. This can be achieved using the same
methods outlined in the previous section. Unlike host graphs, launching a device graph from the device
while an update is being applied will result in undefined behavior.

Device graphs can be launched from both the host and the device via cudaGraphLaunch(), which
has the same signature on the device as on the host. Device graphs are launched via the same handle
on the host and the device. Device graphs must be launched from another graph when launched from
the device.

Device-side graph launch is per-thread and multiple launches may occur from different threads at the
same time, so the user will need to select a single thread from which to launch a given graph.
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6.2.8.7.7.6 Device Launch Modes

Unlike host launch, device graphs cannot be launched into regular CUDA streams, and can only be
launched into distinct named streams, which each denote a specific launch mode:

Table 2: Device-only Graph Launch Streams

Stream Launch Mode
cudaStreamGraphFireAndForget Fire and forget launch
cudaStreamGraphTaillLaunch Tail launch
cudaStreamGraphFireAndForgetAsSibling | Sibling launch

6.2.8.7.7.7 Fire and Forget Launch

As the name suggests, a fire and forget launch is submitted to the GPU immediately, and it runs in-
dependently of the launching graph. In a fire-and-forget scenario, the launching graph is the parent,
and the launched graph is the child.

fireAndForgetLaunch(X)

Figure 15: Fire and forget launch

The above diagram can be generated by the sample code below:

__global__ void launchFireAndForgetGraph(cudaGraphExec_t graph) {
cudaGraphLaunch(graph, cudaStreamGraphFireAndForget);
}

void graphSetup() {
cudaGraphExec_t gExec1, gExec2;
cudaGraph_t g1, g2;

// Create, instantiate, and upload the device graph.
(continues on next page)
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(continued from previous page)
create_graph(&g2);
cudaGraphInstantiate(&gExec2, g2, cudaGraphInstantiateFlagDevicelLaunch);
cudaGraphUpload(gExec2, stream);

// Create and instantiate the launching graph.
cudaStreamBeginCapture(stream, cudaStreamCaptureModeGlobal);
launchFireAndForgetGraph<<<1, 1, 0, stream>>>(gExec2);
cudaStreamEndCapture(stream, &g1);
cudaGraphInstantiate(&gExec1, g1);

// Launch the host graph, which will in turn launch the device graph.
cudaGraphLaunch(gExec1, stream);

}

A graph can have up to 120 total fire-and-forget graphs during the course of its execution. This total
resets between launches of the same parent graph.

In order to fully understand the device-side synchronization model, it is first necessary to understand
the concept of an execution environment.

When a graph is launched from the device, it is launched into its own execution environment. The
execution environment of a given graph encapsulates all work in the graph as well as all generated fire
and forget work. The graph can be considered complete when it has completed execution and when
all generated child work is complete.

The below diagram shows the environment encapsulation that would be generated by the fire-and-
forget sample code in the previous section.

These environments are also hierarchical, so a graph environment can include multiple levels of child-
environments from fire and forget launches.

When a graphis launched from the host, there exists a stream environment that parents the execution
environment of the launched graph. The stream environment encapsulates all work generated as part
of the overall launch. The stream launch is complete (i.e. downstream dependent work may now run)
when the overall stream environment is marked as complete.

Unlike on the host, it is not possible to synchronize with device graphs from the GPU via traditional
methods such as cudaDeviceSynchronize() or cudaStreamSynchronize(). Rather, in order to
enable serial work dependencies, a different launch mode - tail launch - is offered, to provide similar
functionality.

A tail launch executes when a graph’s environment is considered complete - ie, when the graph and
all its children are complete. When a graph completes, the environment of the next graph in the tail
launch list will replace the completed environment as a child of the parent environment. Like fire-and-
forget launches, a graph can have multiple graphs enqueued for tail launch.

The above execution flow can be generated by the code below:

__global__ void launchTailGraph(cudaGraphExec_t graph) {
cudaGraphLaunch(graph, cudaStreamGraphTaillaunch);

(continues on next page)
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Figure 16: Fire and forget launch, with execution environments
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Figure 17: Nested fire and forget environments
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Figure 18: The stream environment, visualized

6.2. CUDA Runtime 71



CUDA C++ Programming Guide, Release 12.4

}

Stream
Environment
& (= ti 1
1 _xecu ion G, Execution
Environment j
Environment
ﬁ
tailLaunch(G;)

Figure 19: A simple tail launch

(continued from previous page)

void graphSetup() {

}

cudaGraphExec_t gExec1, gExec2;
cudaGraph_t g1, g2;

// Create, instantiate, and upload the device graph.

create_graph(&g2);

cudaGraphInstantiate(&gExec2, g2, cudaGraphInstantiateFlagDevicelLaunch);
cudaGraphUpload(gExec2, stream);

// Create and instantiate the launching graph.
cudaStreamBeginCapture(stream, cudaStreamCaptureModeGlobal);
launchTailGraph<<<1, 1, 0, stream>>>(gExec2);
cudaStreamEndCapture(stream, &g1);
cudaGraphInstantiate(&gExec1, g1);

// Launch the host graph, which will in turn launch the device graph.
cudaGraphLaunch(gExec1, stream);

Tail launches enqueued by a given graph will execute one at a time, in order of when they were en-
queued. So the first enqueued graph will run first, and then the second, and so on.

Tail launches enqueued by a tail graph will execute before tail launches enqueued by previous graphs
in the tail launch list. These new tail launches will execute in the order they are enqueued.

A graph can have up to 255 pending tail launches.
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Figure 20: Tail launch ordering
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Figure 21: Tail launch ordering when enqueued from multiple graphs

6.2.8.7.7.10 Tail Self-launch

It is possible for a device graph to enqueue itself for a tail launch, although a given graph can only have
one self-launch enqueued at a time. In order to query the currently running device graph so that it can
be relaunched, a new device-side function is added:

cudaGraphExec_t cudaGetCurrentGraphExec();

This function returns the handle of the currently running graph if it is a device graph. If the currently
executing kernel is not a node within a device graph, this function will return NULL.
Below is sample code showing usage of this function for a relaunch loop:

__device__ int relaunchCount = 0;

__global__ void relaunchSelf() {
int relaunchMax = 100;

if (threadIdx.x == 0) {

if (relaunchCount < relaunchMax) {
cudaGraphLaunch(cudaGetCurrentGraphExec(), cudaStreamGraphTaillLaunch);
}

relaunchCount++;
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6.2.8.7.7.11 Sibling Launch

Sibling launch is a variation of fire-and-forget launch in which the graph is launched not as a child
of the launching graph’s execution environment, but rather as a child of the launching graph’s parent

environment. Sibling launch is equivalent to a fire-and-forget launch from the launching graph’s parent
environment.

Stream
Environment

& Execution
Environment

X Execution
Environment

-ﬂﬁ'ﬂnﬁ‘, m

Figure 22: A simple sibling launch

The above diagram can be generated by the sample code below:

__global__ void launchSiblingGraph(cudaGraphExec_t graph) {
cudaGraphLaunch(graph, cudaStreamGraphFireAndForgetAsSibling);
}

void graphSetup() {
cudaGraphExec_t gExec1, gExec2;
cudaGraph_t g1, g2;

// Create, instantiate, and upload the device graph.

create_graph(&g2);

cudaGraphInstantiate(&gExec2, g2, cudaGraphInstantiateFlagDevicelLaunch);
cudaGraphUpload(gExec2, stream);

(continues on next page)
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(continued from previous page)

// Create and instantiate the launching graph.
cudaStreamBeginCapture(stream, cudaStreamCaptureModeGlobal);
launchSiblingGraph<<<1, 1, 0, stream>>>(gExec2);
cudaStreamEndCapture(stream, &g1);
cudaGraphInstantiate(&gExec1, g1);

// Launch the host graph, which will in turn launch the device graph.
cudaGraphLaunch(gExec1, stream);

}

Since sibling launches are not launched into the launching graph’s execution environment, they will
not gate tail launches enqueued by the launching graph.

Conditional nodes allow conditional execution and looping of a graph contained within the conditional
node. This allows dynamic and iterative workflows to be represented completely within a graph and
frees up the host CPU to perform other work in parallel.

Evaluation of the condition value is performed on the device when the dependencies of the conditional
node have been met. Conditional nodes can be one of the following types:

Conditional execute their body graph once if the condition value is non-zero when the
node is executed.

Conditional execute their body graph if the condition value is non-zero when the
node is executed and will continue to execute their body graph until the condition value is zero.

A condition value is accessed by a , which must be created before the node. The
condition value can be set by device code using cudaGraphSetConditional(). A default value, ap-
plied on each graph launch, can also be specified when the handle is created.

When the conditional node is created, an empty graph is created and the handle is returned to the
user so that the graph can be populated. This conditional body graph can be populated using either
the or

Conditional nodes can be nested.

A condition value is represented by cudaGraphConditionalHandle and is created by cudaGraph-
ConditionalHandleCreate().

The handle must be associated with a single conditional node. Handles cannot be destroyed.

If cudaGraphCondAssignDefault is specified when the handle is created, the condition value will be
initialized to the specified default before every graph launch. If this flag is not provided, it is up to the
user to initialize the condition value in a kernel upstream of the conditional node which tests it. If the
condition value is not initialized by one of these methods, its value is undefined.

The default value and flags associated with a handle will be updated during
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General requirements:
The graph’s nodes must all reside on a single device.

The graph can only contain kernel nodes, empty nodes, memcpy nodes, memset nodes, child
graph nodes, and conditional nodes.

Kernel nodes:
Use of CUDA Dynamic Parallelism by kernels in the graph is not permitted.
Cooperative launches are permitted so long as MPS is not in use.
Memcpy/Memset nodes:

Only copies/memsets involving device memory and/or pinned device-mapped host memory are
permitted.

Copies/memsets involving CUDA arrays are not permitted.

Both operands must be accessible from the current device at time of instantiation. Note that
the copy operation will be performed from the device on which the graph resides, even if it is
targeting memory on another device.

The body graph of an IF node will be executed once if the condition is non-zero when the node is
executed. The following diagram depicts a 3 node graph where the middle node, B, is a conditional
node:

Figure 23: Conditional IF Node

The following code illustrates the creation of a graph containing an IF conditional node. The default
value of the condition is set using an upstream kernel. The body of the conditional is populated using
the

__global_
{

_ void setHandle(cudaGraphConditionalHandle handle)

cudaGraphSetConditional(handle, value);

(continues on next page)
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(continued from previous page)

void graphSetup() {
cudaGraph_t graph;
cudaGraphExec_t graphExec;
cudaGraphNode_t node;
void *kernelArgs[1];
int value = 1;

cudaGraphCreate(&graph, 0);

cudaGraphConditionalHandle handle;
cudaGraphConditionalHandleCreate(&handle, graph);

// Use a kernel upstream of the conditional to set the handle value

cudaGraphNodeParams params = { cudaGraphNodeTypeKernel };

params.kernel.func = (void *)setHandle;

params.kernel.gridDim.x = params.kernel.gridDim.y = params.kernel.gridDim.z = 1;

params.kernel.blockDim.x = params.kernel.blockDim.y = params.kernel.blockDim.z =
-

params.kernel.kernelParams = kernelArgs;

kernelArgs[0] = &handle;

cudaGraphAddNode (&node, graph, NULL, ©, &params);

cudaGraphNodeParams cParams = { cudaGraphNodeTypeConditional };
cParams.conditional.handle handle;

cParams.conditional. type cudaGraphCondTypeIf;
cParams.conditional.size = ¢

cudaGraphAddNode(&node, graph, &node, 1, &cParams);

cudaGraph_t bodyGraph = cParams.conditional.phGraph_out[0];
// Populate the body of the conditional node
cudaGraphAddNode(&node, bodyGraph, NULL, ©, &params);

cudaGraphInstantiate(&graphExec, graph, NULL, NULL, 0);
cudaGraphLaunch(graphExec, 9);
cudaDeviceSynchronize();

cudaGraphExecDestroy(graphExec) ;
cudaGraphDestroy(graph) ;

The body graph of a WHILE node will be executed until the condition is non-zero. The condition will be
evaluated when the node is executed and after completion of the body graph. The following diagram
depicts a 3 node graph where the middle node, B, is a conditional node:

The following code illustrates the creation of a graph containing a WHILE conditional node. The handle
is created using cudaGraphCondAssignDefault to avoid the need for an upstream kernel. The body of
the conditional is populated using the

__global__ void loopKernel(cudaGraphConditionalHandle handle)
{

static int count = 10;
(continues on next page)
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Figure 24: Conditional WHILE Node

(continued from previous page)
cudaGraphSetConditional(handle, --count ? 1 : 0);
}

void graphSetup() {
cudaGraph_t graph;
cudaGraphExec_t graphExec;
cudaGraphNode_t node;
void *kernelArgs[1];

cuGraphCreate(&graph, 0);

cudaGraphConditionalHandle handle;
cudaGraphConditionalHandleCreate(&handle, graph, 1, cudaGraphCondAssignDefault);

cudaGraphNodeParams cParams = { cudaGraphNodeTypeConditional };
cParams.conditional.handle = handle;

cParams.conditional. type = cudaGraphCondTypeWhile;
cParams.conditional.size = ¢

cudaGraphAddNode (&node, graph, NULL, ©, &cParams);

cudaGraph_t bodyGraph = cParams.conditional.phGraph_out[0];

cudaGraphNodeParams params = { cudaGraphNodeTypeKernel };

params.kernel.func = (void *)loopKernel;

params.kernel.gridDim.x = params.kernel.gridDim.y = params.kernel.gridDim.z = 1;
params.kernel.blockDim.x = params.kernel.blockDim.y = params.kernel.blockDim.z =

params.kernel.kernelParams = kernelArgs;
kernelArgs[0] = &handle;
cudaGraphAddNode (&node, bodyGraph, NULL, ©, &params);

cudaGraphInstantiate(&graphExec, graph, NULL, NULL, 0);
cudaGraphLaunch(graphExec, 9);
cudaDeviceSynchronize();

cudaGraphExecDestroy(graphExec) ;
cudaGraphDestroy(graph) ;
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The runtime also provides a way to closely monitor the device’s progress, as well as perform accurate
timing, by letting the application asynchronously record events at any point in the program, and query
when these events are completed. An event has completed when all tasks - or optionally, all commands
in a given stream - preceding the event have completed. Events in stream zero are completed after all
preceding tasks and commands in all streams are completed.

The following code sample creates two events:

cudaEvent_t start, stop;
cudaEventCreate(&start);
cudaEventCreate(&stop);

They are destroyed this way:

cudaEventDestroy(start);
cudaEventDestroy(stop);

The events created in can be used to time the code sample of
the following way:

cudaEventRecord(start, 0);
for (int i = 0; i < 2; ++i) {
cudaMemcpyAsync(inputDev + i * size, inputHost + i * size,
size, cudaMemcpyHostToDevice, stream[i]);
MyKernel<<<100, 512, 0, stream[i]>>>
(outputDev + i * size, inputDev + i * size, size);
cudaMemcpyAsync(outputHost + i * size, outputDev + i * size,
size, cudaMemcpyDeviceToHost, stream[i]);
}
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
float elapsedTime;
cudaEventElapsedTime(&elapsedTime, start, stop);

When a synchronous function is called, control is not returned to the host thread before the device has
completed the requested task. Whether the host thread will then yield, block, or spin can be specified
by calling cudaSetDeviceFlags()with some specific flags (see reference manual for details) before
any other CUDA call is performed by the host thread.
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6.2.9. Multi-Device System

6.2.9.1 Device Enumeration

A host system can have multiple devices. The following code sample shows how to enumerate these
devices, query their properties, and determine the number of CUDA-enabled devices.

int deviceCount;
cudaGetDeviceCount(&deviceCount) ;
int device;

for (device = 0; device < deviceCount; ++device) {

cudaDeviceProp deviceProp;

cudaGetDeviceProperties(&deviceProp, device);
printf("Device %d has compute capability %d.%d.\n",
device, deviceProp.major, deviceProp.minor);

6.2.9.2 Device Selection

A host thread can set the device it operates on at any time by calling cudaSetDevice(). Device
memory allocations and kernel launches are made on the currently set device; streams and events
are created in association with the currently set device. If no call to cudaSetDevice() is made, the

current device is device O.

The following code sample illustrates how setting the current device affects memory allocation and

kernel execution.

size_t size = 1024 * sizeof(float);

cudaSetDevice(9); // Set device @ as current
float* po;

cudaMalloc(&p@, size); // Allocate memory on device @
MyKernel<<<1000, 128>>>(p@); // Launch kernel on device @
cudaSetDevice(1); // Set device 1 as current
float* p1;

cudaMalloc(&p1, size); // Allocate memory on device 1

MyKernel<<<1000, 128>>>(p1); // Launch kernel on device 1

6.2.9.3 Stream and Event Behavior

A kernel launch will fail if it is issued to a stream that is not associated to the current device as illus-

trated in the following code sample.

cudaSetDevice(9); //
cudaStream_t sO;

cudaStreamCreate(&s0) ; //
MyKernel<<<108, 64, 0, s@>>>(); //
cudaSetDevice(1); //
cudaStream_t s1;

cudaStreamCreate(&s1); //

MyKernel<<<100, 64, 0, s1>>>(); //

// This kernel launch will fail:
MyKernel<<<100, 64, 0, s0>>>(); //

Set device 0 as current

Create stream s@ on device @
Launch kernel on device 6 in s@
Set device 1 as current

Create stream s1 on device 1

Launch kernel on device 1 in s1

Launch kernel on device 1 in s@
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A memory copy will succeed even if it is issued to a stream that is not associated to the current device.
cudaEventRecord() will fail if the input event and input stream are associated to different devices.
cudaEventElapsedTime () will fail if the two input events are associated to different devices.

cudaEventSynchronize() and cudaEventQuery() will succeed even if the input event is associ-
ated to a device that is different from the current device.

cudaStreamWaitEvent () will succeed even if the input stream and input event are associated to
different devices. cudaStreamWaitEvent() can therefore be used to synchronize multiple devices
with each other.

Each device has its own default stream (see ), so commands issued to the default
stream of a device may execute out of order or concurrently with respect to commands issued to
the default stream of any other device.

Depending on the system properties, specifically the PCle and/or NVLINK topology, devices are able
to address each other’'s memory (i.e., a kernel executing on one device can dereference a pointer to
the memory of the other device). This peer-to-peer memory access feature is supported between two
devices if cudaDeviceCanAccessPeer () returns true for these two devices.

Peer-to-peer memory access is only supported in 64-bit applications and must be enabled between
two devices by calling cudaDeviceEnablePeerAccess() as illustrated in the following code sample.
On non-NVSwitch enabled systems, each device can support a system-wide maximum of eight peer
connections.

A unified address space is used for both devices (see ), so the same
pointer can be used to address memory from both devices as shown in the code sample below.

cudaSetDevice(9); // Set device @ as current
float* po;

size_t size = 1024 * sizeof(float);

cudaMalloc(&p@, size); // Allocate memory on device @
MyKernel<<<1000, 128>>>(p@); // Launch kernel on device 6
cudaSetDevice(1); // Set device 1 as current
cudaDeviceEnablePeerAccess(0, 0); // Enable peer-to-peer access

// with device 0

// Launch kernel on device 1
// This kernel launch can access memory on device O at address p@
MyKernel<<<1000, 128>>>(p@);

On Linux only, CUDA and the display driver does not support IOMMU-enabled bare-metal PCle peer to
peer memory copy. However, CUDA and the display driver does support IOMMU via VM pass through.
As a consequence, users on Linux, when running on a native bare metal system, should disable the
IOMMU. The IOMMU should be enabled and the VFIO driver be used as a PCle pass through for virtual
machines.

On Windows the above limitation does not exist.

See also
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Memory copies can be performed between the memories of two different devices.

When a unified address space is used for both devices (see ), this is done
using the regular memory copy functions mentioned in

Otherwise, this is done using cudaMemcpyPeer(), cudaMemcpyPeerAsync(), cudaMem-
cpy3DPeer (), or cudaMemcpy3DPeerAsync() as illustrated in the following code sample.

cudaSetDevice(9); // Set device @ as current
float* po;

size_t size = 1024 * sizeof(float);

cudaMalloc(&p@, size); // Allocate memory on device @
cudaSetDevice(1); // Set device 1 as current
float* p1;

cudaMalloc(&p1, size); // Allocate memory on device 1
cudaSetDevice(9); // Set device @ as current
MyKernel<<<1000, 128>>>(p@); // Launch kernel on device 0
cudaSetDevice(1); // Set device 1 as current
cudaMemcpyPeer(p1, 1, p@, 0, size); // Copy pé to pl
MyKernel<<<1000, 128>>>(p1); // Launch kernel on device 1

A copy (in the implicit NULL stream) between the memories of two different devices:
does not start until all commands previously issued to either device have completed and

runs to completion before any commands (see ) issued after
the copy to either device can start.

Consistent with the normal behavior of streams, an asynchronous copy between the memories of two
devices may overlap with copies or kernels in another stream.

Note that if peer-to-peer access is enabled between two devices via cudaDeviceEnablePeerAc-
cess() as described in , peer-to-peer memory copy between these two
devices no longer needs to be staged through the host and is therefore faster.

When the application is run as a 64-bit process, a single address space is used for the host and all the
devices of compute capability 2.0 and higher. All host memory allocations made via CUDA API calls
and all device memory allocations on supported devices are within this virtual address range. As a
consequence:

The location of any memory on the host allocated through CUDA, or on any of the devices which
use the unified address space, can be determined from the value of the pointer using cuda-
PointerGetAttributes().

When copying to or from the memory of any device which uses the unified address space, the
cudaMemcpyKind parameter of cudaMemcpy* () can be set to cudaMemcpyDefault to deter-
mine locations from the pointers. This also works for host pointers not allocated through CUDA,
as long as the current device uses unified addressing.

Allocations via cudaHostAlloc() are automatically portable (see ) across all
the devices for which the unified address space is used, and pointers returned by cudaHostAl-
loc() can be used directly from within kernels running on these devices (i.e., there is no need to
obtain a device pointer via cudaHostGetDevicePointer () as described in
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Applications may query if the unified address space is used for a particular device by checking that
the unifiedAddressing device property (see ) is equal to 1.

Any device memory pointer or event handle created by a host thread can be directly referenced by
any other thread within the same process. It is not valid outside this process however, and therefore
cannot be directly referenced by threads belonging to a different process.

To share device memory pointers and events across processes, an application must use the Inter Pro-
cess Communication API, which is described in detail in the reference manual. The IPC API is only
supported for 64-bit processes on Linux and for devices of compute capability 2.0 and higher. Note
that the IPC APl is not supported for cudaMallocManaged allocations.

Using this API, an application can get the IPC handle for a given device memory pointer using cud-
aIpcGetMemHandle(), pass it to another process using standard IPC mechanisms (for example, in-
terprocess shared memory or files), and use cudaIpcOpenMemHandle () to retrieve a device pointer
from the IPC handle that is a valid pointer within this other process. Event handles can be shared using
similar entry points.

Note that allocations made by cudaMalloc () may be sub-allocated from a larger block of memory for
performance reasons. In such case, CUDA IPC APIs will share the entire underlying memory block which
may cause other sub-allocations to be shared, which can potentially lead to information disclosure
between processes. To prevent this behavior, it is recommended to only share allocations with a 2MiB
aligned size.

An example of using the IPC API is where a single primary process generates a batch of input data,
making the data available to multiple secondary processes without requiring regeneration or copying.

Applications using CUDA IPC to communicate with each other should be compiled, linked, and run with
the same CUDA driver and runtime.

Note: Since CUDA 11.5, only events-sharing IPC APIs are supported on L4T and embedded Linux Tegra
devices with compute capability 7.x and higher. The memory-sharing IPC APIs are still not supported
on Tegra platforms.

All runtime functions return an error code, but for an asynchronous function (see

), this error code cannot possibly report any of the asynchronous errors that could
occur on the device since the function returns before the device has completed the task; the error
code only reports errors that occur on the host prior to executing the task, typically related to pa-
rameter validation; if an asynchronous error occurs, it will be reported by some subsequent unrelated
runtime function call.

The only way to check for asynchronous errors just after some asynchronous function call is therefore
to synchronize just after the call by calling cudaDeviceSynchronize() (or by using any other syn-
chronization mechanisms described in ) and checking the error
code returned by cudaDeviceSynchronize().

The runtime maintains an error variable for each host thread that is initialized to cudaSuccess and
is overwritten by the error code every time an error occurs (be it a parameter validation error or an
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asynchronous error). cudaPeekAtLastError () returns this variable. cudaGetLastError() returns
this variable and resets it to cudaSuccess.

Kernel launches do not return any error code, so cudaPeekAtLastError() or cudaGetLastError()
must be called just after the kernel launch to retrieve any pre-launch errors. To ensure that any error
returned by cudaPeekAtLastError() or cudaGetLastError() does not originate from calls prior
to the kernel launch, one has to make sure that the runtime error variable is set to cudaSuccess just
before the kernel launch, for example, by calling cudaGetLastError () just before the kernel launch.
Kernel launches are asynchronous, so to check for asynchronous errors, the application must syn-
chronize in-between the kernel launch and the call to cudaPeekAtLastError() or cudaGetLastEr-
ror().

Note that cudaErrorNotReady that may be returned by cudaStreamQuery() and cudaEvent-
Query() is not considered an error and is therefore not reported by cudaPeekAtLastError() or
cudaGetLastError().

On devices of compute capability 2.x and higher, the size of the call stack can be queried us-
ingcudaDeviceGetLimit () and set using cudaDeviceSetLimit().

When the call stack overflows, the kernel call fails with a stack overflow error if the applicationis run via
a CUDA debugger (CUDA-GDB, Nsight) or an unspecified launch error, otherwise. When the compiler
cannot determine the stack size, it issues a warning saying Stack size cannot be statically determined.
This is usually the case with recursive functions. Once this warning is issued, user will need to set stack
size manually if default stack size is not sufficient.

CUDA supports a subset of the texturing hardware that the GPU uses for graphics to access texture
and surface memory. Reading data from texture or surface memory instead of global memory can
have several performance benefits as described in

Texture memory is read from kernels using the device functions described in . The
process of reading a texture calling one of these functions is called a texture fetch. Each texture fetch
specifies a parameter called a texture object for the texture object API.

The texture object specifies:

The texture, which is the piece of texture memory that is fetched. Texture objects are created
at runtime and the texture is specified when creating the texture object as described in

Its dimensionality that specifies whether the texture is addressed as a one dimensional array
using one texture coordinate, a two-dimensional array using two texture coordinates, or a three-
dimensional array using three texture coordinates. Elements of the array are called texels, short
for texture elements. The texture width, height, and depth refer to the size of the array in each
dimension. lists the maximum texture width, height, and depth depending on the com-
pute capability of the device.
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The type of a texel, which is restricted to the basic integer and single-precision floating-point
types and any of the 1-, 2-, and 4-component vector types defined in that
are derived from the basic integer and single-precision floating-point types.

The read mode, which is equal to cudaReadModeNormalizedFloat or cudaReadModeElement-
Type. Ifitis cudaReadModeNormalizedFloat and the type of the texel is a 16-bit or 8-bit inte-
ger type, the value returned by the texture fetch is actually returned as floating-point type and
the full range of the integer type is mapped to [0.0, 1.0] for unsigned integer type and [-1.0, 1.0]
for signed integer type; for example, an unsigned 8-bit texture element with the value Oxff reads
as 1. If it is cudaReadModeElementType, no conversion is performed.

Whether texture coordinates are normalized or not. By default, textures are referenced (by the
functions of ) using floating-point coordinates in the range [0, N-1] where N
is the size of the texture in the dimension corresponding to the coordinate. For example, a tex-
ture that is 64x32 in size will be referenced with coordinates in the range [0, 63] and [0, 31] for
the x and y dimensions, respectively. Normalized texture coordinates cause the coordinates to
be specified in the range [0.0, 1.0-1/N] instead of [0, N-1], so the same 64x32 texture would be
addressed by normalized coordinates in the range [0, 1-1/N] in both the x and y dimensions. Nor-
malized texture coordinates are a natural fit to some applications’ requirements, if it is preferable
for the texture coordinates to be independent of the texture size.

The addressing mode. It is valid to call the device functions of Section B.8 with coordinates that
are out of range. The addressing mode defines what happens in that case. The default address-
ing mode is to clamp the coordinates to the valid range: [0, N) for non-normalized coordinates
and [0.0, 1.0) for normalized coordinates. If the border mode is specified instead, texture fetches
with out-of-range texture coordinates return zero. For normalized coordinates, the wrap mode
and the mirror mode are also available. When using the wrap mode, each coordinate x is con-
verted to frac(x)=x - floor(x) where floor(x) is the largest integer not greater than x. When us-
ing the mirror mode, each coordinate x is converted to frac(x) if floor(x) is even and 1-frac(x) if
floor(x) is odd. The addressing mode is specified as an array of size three whose first, second,
and third elements specify the addressing mode for the first, second, and third texture coor-
dinates, respectively; the addressing mode are cudaAddressModeBorder, cudaAddressMod-
eClamp, cudaAddressModeWrap, and cudaAddressModeMirror; cudaAddressModeWrap and
cudaAddressModeMirror are only supported for normalized texture coordinates

The filtering mode which specifies how the value returned when fetching the texture is com-
puted based on the input texture coordinates. Linear texture filtering may be done only for tex-
tures that are configured to return floating-point data. It performs low-precision interpolation
between neighboring texels. When enabled, the texels surrounding a texture fetch location are
read and the return value of the texture fetch is interpolated based on where the texture co-
ordinates fell between the texels. Simple linear interpolation is performed for one-dimensional
textures, bilinear interpolation for two-dimensional textures, and trilinear interpolation for three-
dimensional textures. gives more details on texture fetching. The filtering mode
isequal to cudaFilterModePoint or cudaFilterModelLinear. Ifitis cudaFilterModePoint,
the returned value is the texel whose texture coordinates are the closest to the input texture co-
ordinates. If it is cudaFilterModelLinear, the returned value is the linear interpolation of the
two (for a one-dimensional texture), four (for a two dimensional texture), or eight (for a three
dimensional texture) texels whose texture coordinates are the closest to the input texture coor-
dinates. cudaFilterModelLinear is only valid for returned values of floating-point type.

introduces the texture object API.
explains how to deal with 16-bit floating-point textures.
Textures can also be layered as described in

and describe a special type of texture, the cubemap
texture.
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Texture Gather describes a special texture fetch, texture gather.

6.2.14.1.1 Texture Object API

A texture object is created using cudaCreateTextureObject() from a resource description of type
struct cudaResourceDesc, which specifies the texture, and from a texture description defined as
such:

struct cudaTextureDesc

{
enum cudaTextureAddressMode addressMode[3];
enum cudaTextureFilterMode filterMode;
enum cudaTextureReadMode readMode;
int sRGB;
int normalizedCoords;
unsigned int maxAnisotropy;
enum cudaTextureFilterMode mipmapFilterMode;
float mipmaplLevelBias;
float minMipmapLevelClamp;
float maxMipmapLevelClamp;
o

addressMode specifies the addressing mode;
filterMode specifies the filter mode;
readMode specifies the read mode;

normalizedCoords specifies whether texture coordinates are normalized or not;

vV v.v. v Y

See reference manual for sRGB, maxAnisotropy, mipmapFilterMode, mipmaplLevelBias,
minMipmaplLevelClamp, and maxMipmapLevelClamp.

The following code sample applies some simple transformation kernel to a texture.

// Simple transformation kernel

__global__ void transformKernel(float* output,
cudaTextureObject_t texObj,
int width, int height,
float theta)

{
// Calculate normalized texture coordinates
unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;
float u = x / (float)width;
float v = y / (float)height;
// Transform coordinates
u -= 0.5f;
v -= 0.5f;
float tu = u * cosf(theta) - v * sinf(theta) + 0.5f;
float tv = v * cosf(theta) + u * sinf(theta) + 0.5f;
// Read from texture and write to global memory
output[y * width + x] = tex2D<float>(texObj, tu, tv);

}
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// Host code

int main()

{
const int height = 1024;
const int width = 1024;
float angle = 0.5;

// Allocate and set some host data
float *h_data = (float *)std::malloc(sizeof(float) * width * height);
for (int i = 0; i < height * width; ++i)

h_data[i] = 1i;

// Allocate CUDA array in device memory
cudaChannelFormatDesc channelDesc =
cudaCreateChannelDesc(32, 0, 8, 0, cudaChannelFormatKindFloat);
cudaArray_t cuArray;
cudaMallocArray(&cuArray, &channelDesc, width, height);

// Set pitch of the source (the width in memory in bytes of the 2D array pointed

// to by src, including padding), we dont have any padding

const size_t spitch = width * sizeof(float);

// Copy data located at address h_data in host memory to device memory

cudaMemcpy2DToArray(cuArray, 0, 0, h_data, spitch, width * sizeof(float),
height, cudaMemcpyHostToDevice);

// Specify texture

struct cudaResourceDesc resDesc;

memset (&resDesc, 0, sizeof(resDesc));
resDesc.resType = cudaResourceTypeArray;
resDesc.res.array.array = cuArray;

// Specify texture object parameters

struct cudaTextureDesc texDesc;

memset (&texDesc, 0, sizeof(texDesc));
texDesc.addressMode[0] = cudaAddressModeWrap;
texDesc.addressMode[1] = cudaAddressModeWrap;
texDesc.filterMode = cudaFilterModelinear;
texDesc.readMode = cudaReadModeElementType;
texDesc.normalizedCoords = 1;

// Create texture object
cudaTextureObject_t texObj = 0;
cudaCreateTextureObject(&texObj, &resDesc, &texDesc, NULL);

// Allocate result of transformation in device memory
float *output;
cudaMalloc(&output, width * height * sizeof(float));

// Invoke kernel
dim3 threadsperBlock(16, 16);
dim3 numBlocks((width + threadsperBlock.x - 1) / threadsperBlock.x,
(height + threadsperBlock.y - 1) / threadsperBlock.y);
transformKernel<<<numBlocks, threadsperBlock>>>(output, tex0bj, width, height,
angle);
// Copy data from device back to host
cudaMemcpy(h_data, output, width * height * sizeof(float),
cudaMemcpyDeviceToHost) ;

(continues on next page)
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// Destroy texture object
cudaDestroyTextureObject(tex0bj);

// Free device memory
cudaFreeArray(cuArray);
cudaFree(output);

// Free host memory
free(h_data);

return 0;

The 16-bit floating-point or half format supported by CUDA arrays is the same as the IEEE 754-2008
binary2 format.

CUDA C++ does not support a matching data type, but provides intrinsic functions to convert to and
from the 32-bit floating-point format via the unsigned short type: __float2half_rn(float) and
__half2float(unsigned short). These functions are only supported in device code. Equivalent
functions for the host code can be found in the OpenEXR library, for example.

16-bit floating-point components are promoted to 32 bit float during texture fetching before any fil-
tering is performed.

A channel description for the 16-bit floating-point format can be created by calling one of the cud-
aCreateChannelDescHalf*() functions.

A one-dimensional or two-dimensional layered texture (also known as texture array in Direct3D and
array texture in OpenGL) is a texture made up of a sequence of layers, all of which are regular textures
of same dimensionality, size, and data type.

A one-dimensional layered texture is addressed using an integer index and a floating-point texture
coordinate; the index denotes a layer within the sequence and the coordinate addresses a texel within
that layer. A two-dimensional layered texture is addressed using an integer index and two floating-
point texture coordinates; the index denotes a layer within the sequence and the coordinates address
a texel within that layer.

A layered texture can only be a CUDA array by calling cudaMalloc3DArray() with the cudaArray-
Layered flag (and a height of zero for one-dimensional layered texture).

Layered textures are fetched using the device functions described in and
. Texture filtering (see ) is done only within a layer, not across layers.

Layered textures are only supported on devices of compute capability 2.0 and higher.
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A cubemap texture is a special type of two-dimensional layered texture that has six layers representing
the faces of a cube:

The width of a layer is equal to its height.

The cubemap is addressed using three texture coordinates x, y, and z that are interpreted as a
direction vector emanating from the center of the cube and pointing to one face of the cube and
a texel within the layer corresponding to that face. More specifically, the face is selected by the
coordinate with largest magnitude m and the corresponding layer is addressed using coordinates
(s/m+1)/2 and (t/m+1)/2 where s and t are defined in

Table 3: Cubemap Fetch

face  m|s |t

x| > |y|land|x| > |z| |x00 |0 X |-z |-y
x<0|1 X |z |-y
lyl > Ix]and|y| > |z| |yDO |2 y |x |z
y<0|3 y|x |-z
|z|] > |x|and |z| > |y| |z0OO0 | 4 zZ | X |-y
z<0 |5 -z | x| -y

A cubemap texture can only be a CUDA array by calling cudaMalloc3DArray () with the cudaArray-
Cubemap flag.

Cubemap textures are fetched using the device function described in

Cubemap textures are only supported on devices of compute capability 2.0 and higher.

A cubemap layered texture is a layered texture whose layers are cubemaps of same dimension.

A cubemap layered texture is addressed using an integer index and three floating-point texture coor-
dinates; the index denotes a cubemap within the sequence and the coordinates address a texel within
that cubemap.

A cubemap layered texture can only be a CUDA array by calling cudaMalloc3DArray() with the cu-
daArraylLayered and cudaArrayCubemap flags.

Cubemap layered textures are fetched using the device function described in
Texture filtering (see ) is done only within a layer, not across layers.

Cubemap layered textures are only supported on devices of compute capability 2.0 and higher.
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Texture gather is a special texture fetch that is available for two-dimensional textures only. It is per-
formed by the tex2Dgather () function, which has the same parameters as tex2D(), plus an addi-
tional comp parameter equal to 0, 1, 2, or 3 (see ). It returns four 32-bit numbers that
correspond to the value of the component comp of each of the four texels that would have been used
for bilinear filtering during a regular texture fetch. For example, if these texels are of values (253,
20, 31, 255), (250, 25, 29, 254), (249, 16, 37, 253), (251, 22, 30, 250), and comp is 2, tex2Dgather ()
returns (31, 29, 37, 30).

Note that texture coordinates are computed with only 8 bits of fractional precision. tex2Dgather ()
may therefore return unexpected results for cases where tex2D () would use 1.0 for one of its weights
(0or 0, see ). For example, with an x texture coordinate of 2.49805: xB=x-0.5=1.99805,
however the fractional part of xB is stored in an 8-bit fixed-point format. Since 0.99805 is closer to
256.f/256.f than it is to 255.f/256.f, xB has the value 2. A tex2Dgather () in this case would therefore
return indices 2 and 3 in x, instead of indices 1 and 2.

Texture gather is only supported for CUDA arrays created with the cudaArrayTextureGather flag
and of width and height less than the maximum specified in for texture gather, which is
smaller than for regular texture fetch.

Texture gather is only supported on devices of compute capability 2.0 and higher.

For devices of compute capability 2.0 and higher, a CUDA array (described in ), cre-
ated with the cudaArraySurfacelLoadStore flag, can be read and written via a surface object using
the functions described in

lists the maximum surface width, height, and depth depending on the compute capability of
the device.

A surface object is created using cudaCreateSurfaceObject() from a resource description of type
struct cudaResourceDesc. Unlike texture memory, surface memory uses byte addressing. This
means that the x-coordinate used to access a texture element via texture functions needs to be mul-
tiplied by the byte size of the element to access the same element via a surface function. For example,
the element at texture coordinate x of a one-dimensional floating-point CUDA array bound to a tex-
ture object tex0bj and a surface object surfObj is read using tex1d(tex0bj, x) via texObj, but
surf1Dread(surfObj, 4*x) via surfObj. Similarly, the element at texture coordinate x and y of
a two-dimensional floating-point CUDA array bound to a texture object tex0Obj and a surface object
surfObj is accessed using tex2d(tex0bj, x, y) via texObj, but surf2Dread(surfObj, 4*x,
y) via surObj (the byte offset of the y-coordinate is internally calculated from the underlying line
pitch of the CUDA array).

The following code sample applies some simple transformation kernel to a surface.

// Simple copy kernel

__global__ void copyKernel(cudaSurfaceObject_t inputSurfObj,
cudaSurfaceObject_t outputSurfObj,
int width, int height)

// Calculate surface coordinates
(continues on next page)
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(continued from previous page)

unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x < width && y < height) {

uchar4 data;

// Read from input surface

surf2Dread(&data, dinputSurfObj, x * 4, y);

// Write to output surface

surf2Dwrite(data, outputSurfObj, x * 4, y);

}

// Host code
int main()

const int height = 1024;
const int width = 1024;

// Allocate and set some host data
unsigned char *h_data =

(unsigned char *)std::malloc(sizeof(unsigned char) * width * height * 4);
for (int i = 0; i < height * width * 4; ++1i)

h_data[i] = 1i;

// Allocate CUDA arrays in device memory
cudaChannelFormatDesc channelDesc =
cudaCreateChannelDesc(8, 8, 8, 8, cudaChannelFormatKindUnsigned);

cudaArray_t culnputArray;

cudaMallocArray(&culnputArray, &channelDesc, width, height,
cudaArraySurfacelLoadStore) ;

cudaArray_t cuOutputArray;

cudaMallocArray(&cuOutputArray, &channelDesc, width, height,
cudaArraySurfacelLoadStore) ;

// Set pitch of the source (the width in memory in bytes of the 2D array
// pointed to by src, including padding), we dont have any padding
const size_t spitch = 4 * width * sizeof(unsigned char);
// Copy data located at address h_data in host memory to device memory
cudaMemcpy2DToArray(cuInputArray, 0, 0, h_data, spitch,
4 * width * sizeof(unsigned char), height,
cudaMemcpyHostToDevice) ;

// Specify surface

struct cudaResourceDesc resDesc;

memset (&resDesc, 0, sizeof(resDesc));
resDesc.resType = cudaResourceTypeArray;

// Create the surface objects
resDesc.res.array.array = culnputArray;
cudaSurfaceObject_t inputSurfObj = 0;
cudaCreateSurfaceObject(&inputSurfObj, &resDesc);
resDesc.res.array.array = cuOutputArray;
cudaSurfaceObject_t outputSurfObj = 0;
cudaCreateSurfaceObject(&outputSurfObj, &resDesc);

// Invoke kernel
dim3 threadsperBlock (16, 16);

(continues on next page)
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dim3 numBlocks((width + threadsperBlock.x - 1) / threadsperBlock.x,
(height + threadsperBlock.y - 1) / threadsperBlock.y);
copyKernel<<<numBlocks, threadsperBlock>>>(inputSurfObj, outputSurfObj, width,
height) ;

// Copy data from device back to host

cudaMemcpy2DFromArray(h_data, spitch, cuOutputArray, 0, 0,
4 * width * sizeof(unsigned char), height,
cudaMemcpyDeviceToHost) ;

// Destroy surface objects
cudaDestroySurfaceObject(inputSurfObj);
cudaDestroySurfaceObject(outputSurfObj);

// Free device memory
cudaFreeArray(culnputArray);
cudaFreeArray(cuOutputArray);

// Free host memory
free(h_data);

return 0;

}

Cubemap surfaces are accessed usingsurfCubemapread() and surfCubemapwrite() (

and ) as a two-dimensional layered surface, i.e.,, using an integer index
denoting a face and two floating-point texture coordinates addressing a texel within the layer corre-
sponding to this face. Faces are ordered as indicated in

Cubemap layered surfaces are accessed using surfCubemaplLayeredread() and surfCubemaplLay-
eredwrite() ( and ) as a two-dimensional lay-
ered surface, i.e., using an integer index denoting a face of one of the cubemaps and two floating-point
texture coordinates addressing a texel within the layer corresponding to this face. Faces are ordered
asindicatedin ,soindex ((2 *6) + 3), for example, accesses the fourth face of the third cubemap.

CUDA arrays are opaque memory layouts optimized for texture fetching. They are one dimensional, two
dimensional, or three-dimensional and composed of elements, each of which has 1, 2 or 4 components
that may be signed or unsigned 8-, 16-, or 32-bit integers, 16-bit floats, or 32-bit floats. CUDA arrays
are only accessible by kernels through texture fetching as described in or surface
reading and writing as described in
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The texture and surface memory is cached (see ) and within the same kernel
call, the cache is not kept coherent with respect to global memory writes and surface memory writes,
so any texture fetch or surface read to an address that has been written to via a global write or a
surface write in the same kernel call returns undefined data. In other words, a thread can safely read
some texture or surface memory location only if this memory location has been updated by a previous
kernel call or memory copy, but not if it has been previously updated by the same thread or another
thread from the same kernel call.

Some resources from OpenGL and Direct3D may be mapped into the address space of CUDA, either
to enable CUDA to read data written by OpenGL or Direct3D, or to enable CUDA to write data for
consumption by OpenGL or Direct3D.

A resource must be registered to CUDA before it can be mapped using the functions mentioned in

and . These functions return a pointer to a CUDA
graphics resource of type struct cudaGraphicsResource. Registering a resource is potentially
high-overhead and therefore typically called only once per resource. A CUDA graphics resource is un-
registered using cudaGraphicsUnregisterResource(). Each CUDA context which intends to use
the resource is required to register it separately.

Once a resource is registered to CUDA, it can be mapped and unmapped as many times as necessary
using cudaGraphicsMapResources() and cudaGraphicsUnmapResources(). cudaGraphicsRe-
sourceSetMapFlags() can be called to specify usage hints (write-only, read-only) that the CUDA
driver can use to optimize resource management.

A mapped resource can be read from or written to by kernels using the device mem-
ory address returned by cudaGraphicsResourceGetMappedPointer() for buffers
andcudaGraphicsSubResourceGetMappedArray () for CUDA arrays.

Accessing a resource through OpenGL, Direct3D, or another CUDA context while it is mapped pro-

duces undefined results. and give specifics for each
graphics APl and some code samples. gives specifics for when the system is in SLI
mode.

The OpenGL resources that may be mapped into the address space of CUDA are OpenGL buffer, tex-
ture, and renderbuffer objects.

A buffer object is registered using cudaGraphicsGLRegisterBuffer(). In CUDA, it appears as a
device pointer and can therefore be read and written by kernels or via cudaMemcpy () calls.

A texture or renderbuffer object is registered using cudaGraphicsGLRegisterImage(). In CUDA, it
appears as a CUDA array. Kernels can read from the array by binding it to a texture or surface reference.
They can also write to it via the surface write functions if the resource has been registered with the
cudaGraphicsRegisterFlagsSurfacelLoadStore flag. The array can also be read and written via
cudaMemcpy2D() calls. cudaGraphicsGLRegisterImage() supports all texture formats with 1, 2,
or 4 components and an internal type of float (for example, GL_RGBA_FLOAT32), normalized integer
(for example, GL_RGBA8, GL_INTENSITY16), and unnormalized integer (for example, GL_RGBA8UI)
(please note that since unnormalized integer formats require OpenGL 3.0, they can only be written by
shaders, not the fixed function pipeline).
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The OpenGL context whose resources are being shared has to be current to the host thread making
any OpenGL interoperability API calls.

Please note: When an OpenGL texture is made bindless (say for example by requesting an image or
texture handle using the glGetTextureHandle*/glGetImageHandle* APIs) it cannot be registered
with CUDA. The application needs to register the texture for interop before requesting an image or
texture handle.

The following code sample uses a kernel to dynamically modify a 2D width x height grid of vertices
stored in a vertex buffer object:

GLuint positionsVBO;
struct cudaGraphicsResource* positionsVBO_CUDA;

int main()

{
// Initialize OpenGL and GLUT for device @
// and make the OpenGL context current

glutDisplayFunc(display);

// Explicitly set device @
cudaSetDevice(9);

// Create buffer object and register it with CUDA
glGenBuffers(1, &positionsVBO);
glBindBuffer (GL_ARRAY_BUFFER, positionsVBO);
unsigned int size = width * height * 4 * sizeof(float);
glBufferData(GL_ARRAY_BUFFER, size, 0, GL_DYNAMIC_DRAW);
glBindBuffer (GL_ARRAY_BUFFER, 0);
cudaGraphicsGLRegisterBuffer(&positionsVBO_CUDA,
positionsVBO,
cudaGraphicsMapFlagsWriteDiscard);

// Launch rendering loop
glutMainLoop();

}
void display()
{

// Map buffer object for writing from CUDA

float4* positions;

cudaGraphicsMapResources(1, &positionsVBO_CUDA, 0);

size_t num_bytes;

cudaGraphicsResourceGetMappedPointer((void**)&positions,
&num_bytes,
positionsVBO_CUDA));

// Execute kernel

dim3 dimBlock(16, 16, 1);

dim3 dimGrid(width / dimBlock.x, height / dimBlock.y, 1);

createVertices<<<dimGrid, dimBlock>>>(positions, time,
width, height);

// Unmap buffer object
cudaGraphicsUnmapResources(1, &positionsVBO_CUDA, 0);

(continues on next page)
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// Render from buffer object
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glBindBuffer (GL_ARRAY_BUFFER, positionsVBO);
glVertexPointer(4, GL_FLOAT, 0, 0);
glEnableClientState(GL_VERTEX_ARRAY) ;
glDrawArrays(GL_POINTS, @, width * height);
glDisableClientState(GL_VERTEX_ARRAY);

// Swap buffers

glutSwapBuffers();
glutPostRedisplay();
}
void deleteVBO()
{
cudaGraphicsUnregisterResource(positionsVBO_CUDA) ;
glDeleteBuffers(1, &positionsVBO);
}

__global__ void createVertices(float4* positions, float time,
unsigned int width, unsigned int height)
{

blockIdx.x * blockDim.x + threadIdx.x;
blockIdx.y * blockDim.y + threadIdx.y;

unsigned int x
unsigned int y

// Calculate uv coordinates

float u = x / (float)width;

float v = y / (float)height;
u u* 2.ef - 1.0f;

v v * 2.0f - 1.0f;

NN 1l

// calculate simple sine wave pattern
float freq = 4.0f;
float w = sinf(u * freq + time)

* cosf(v * freq + time) * 0.5f;

// Write positions
positions[y * width + x] = make_float4(u, w, v, 1.6f);

}

On Windows and for Quadro GPUs, cudaWGLGetDevice() can be used to retrieve the CUDA device
associated to the handle returned by wglEnumGpusNV (). Quadro GPUs offer higher performance
OpenGL interoperability than GeForce and Tesla GPUs in a multi-GPU configuration where OpenGL
rendering is performed on the Quadro GPU and CUDA computations are performed on other GPUs in
the system.
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Direct3D interoperability is supported for Direct3D 9EXx, Direct3D 10, and Direct3D 11.

A CUDA context may interoperate only with Direct3D devices that fulfill the following criteria: Direct3D
9Ex devices must be created with DeviceType set to D3DDEVTYPE_HAL and BehaviorFlags with
the D3DCREATE_HARDWARE _VERTEXPROCESSING flag; Direct3D 10 and Direct3D 11 devices must be
created with DriverType set to D3D_DRIVER_TYPE_HARDWARE.

The Direct3D resources that may be mapped into the address space of CUDA are Direct3D buffers, tex-
tures, and surfaces. These resources are registered using cudaGraphicsD3D9RegisterResource(),
cudaGraphicsD3D10RegisterResource(), and cudaGraphicsD3D11RegisterResource().

The following code sample uses a kernel to dynamically modify a 2D width x height grid of vertices
stored in a vertex buffer object.

IDirect3D9* D3D;
IDirect3DDevice9* device;
struct CUSTOMVERTEX {
FLOAT x, vy, z;
DWORD color;
I
IDirect3DVertexBuffer9* positionsVB;
struct cudaGraphicsResource* positionsVB_CUDA;

int main()
{
int dev;
// Initialize Direct3D
D3D = Direct3DCreate9Ex(D3D_SDK_VERSION);

// Get a CUDA-enabled adapter
unsigned int adapter = 0;
for (; adapter < g_pD3D->GetAdapterCount(); adapter++) {
D3DADAPTER_IDENTIFIER9 adapterId;
g_pD3D->GetAdapterIdentifier(adapter, 0, &adapterId);
if (cudaD3D9GetDevice(&dev, adapterId.DeviceName)
== cudaSuccess)
break;

¥

// Create device

D3D->CreateDeviceEx(adapter, D3DDEVTYPE_HAL, hWnd,
D3DCREATE _HARDWARE _VERTEXPROCESSING,
&params, NULL, &device);

// Use the same device
cudaSetDevice(dev);

// Create vertex buffer and register it with CUDA

unsigned int size = width * height * sizeof(CUSTOMVERTEX) ;

device->CreateVertexBuffer(size, 6, D3DFVF_CUSTOMVERTEX,
D3DPOOL_DEFAULT, &positionsVB, 0);

(continues on next page)
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cudaGraphicsD3D9RegisterResource(&positionsVB_CUDA,
positionsVB,
cudaGraphicsRegisterFlagsNone);
cudaGraphicsResourceSetMapFlags(positionsVB_CUDA,
cudaGraphicsMapFlagsWriteDiscard);

// Launch rendering loop
while (...) {

Render();

void Render()

{

}

// Map vertex buffer for writing from CUDA

float4* positions;

cudaGraphicsMapResources(1, &positionsVB_CUDA, 0);

size_t num_bytes;

cudaGraphicsResourceGetMappedPointer((void**)&positions,
&num_bytes,
positionsVB_CUDA));

// Execute kernel

dim3 dimBlock (16, 16, 1);

dim3 dimGrid(width / dimBlock.x, height / dimBlock.y, 1);

createVertices<<<dimGrid, dimBlock>>>(positions, time,
width, height);

// Unmap vertex buffer
cudaGraphicsUnmapResources(1, &positionsVB_CUDA, 0);

// Draw and present

void releaseVB()

{

}

cudaGraphicsUnregisterResource(positionsVB_CUDA) ;
positionsVB->Release();

__global__ void createVertices(float4* positions, float time,

{

unsigned int width, unsigned int height)

unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;

// Calculate uv coordinates

float u = x / (float)width;
float v = y / (float)height;
u=u*2.0f - 1.0f;
v =v *¥ 2.0f - 1.0f;

(continues on next page)
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// Calculate simple sine wave pattern
float freq = 4.0f;
float w = sinf(u * freq + time)

* cosf(v * freq + time) * 0.5f;

// Write positions
positions[y * width + x] =
make_float4(u, w, v, __int_as_float(6xffeeffee));

6.2.15.2.2 Direct3D 10 Version

ID3D1@Device* device;
struct CUSTOMVERTEX {
FLOAT x, vy, z;
DWORD color;
}i
ID3D1@Buffer* positionsVB;
struct cudaGraphicsResource* positionsVB_CUDA;

int main()
{
int dev;
// Get a CUDA-enabled adapter
IDXGIFactory* factory;
CreateDXGIFactory(__uuidof (IDXGIFactory), (void**)&factory);
IDXGIAdapter* adapter = 0;
for (unsigned int i = 0; !adapter; ++i) {
if (FAILED(factory->EnumAdapters(i, &adapter))
break;
if (cudaD3D10GetDevice(&dev, adapter) == cudaSuccess)
break;
adapter->Release();

}

factory->Release();
// Create swap chain and device

D3D10CreateDeviceAndSwapChain(adapter,
D3D10_DRIVER_TYPE_HARDWARE, ©,
D3D10_CREATE_DEVICE_DEBUG,
D3D10_SDK_VERSION,
&swapChainDesc, &swapChain,
&device);

adapter->Release();

// Use the same device
cudaSetDevice(dev);

// Create vertex buffer and register it with CUDA

unsigned int size = width * height * sizeof (CUSTOMVERTEX);
D3D10_BUFFER_DESC bufferDesc;

bufferDesc.Usage D3D10_USAGE_DEFAULT;
bufferDesc.ByteWidth = size;

(continued from previous page)
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bufferDesc.BindFlags D3D10_BIND_VERTEX_BUFFER;
bufferDesc.CPUAccessFlags 0;
bufferDesc.MiscFlags = 0;
device->CreateBuffer(&bufferDesc, 0, &positionsVB);
cudaGraphicsD3D10RegisterResource(&positionsVB_CUDA,
positionsVB,
cudaGraphicsRegisterFlagsNone) ;
cudaGraphicsResourceSetMapFlags(positionsVB_

—CUDA,

cudaGraphicsMapFlagsWriteDiscard);

// Launch rendering loop
while (...) {

ﬁéﬁder();

void Render()

{

}

// Map vertex buffer for writing from CUDA

float4* positions;

cudaGraphicsMapResources(1, &positionsVB_CUDA, 0);

size_t num_bytes;

cudaGraphicsResourceGetMappedPointer((void**)&positions,
&num_bytes,
positionsVB_CUDA));

// Execute kernel

dim3 dimBlock(16, 16, 1);

dim3 dimGrid(width / dimBlock.x, height / dimBlock.y, 1);

createVertices<<<dimGrid, dimBlock>>>(positions, time,
width, height);

// Unmap vertex buffer
cudaGraphicsUnmapResources(1, &positionsVB_CUDA, 0);

// Draw and present

void releaseVB()

{

}

cudaGraphicsUnregisterResource(positionsVB_CUDA) ;
positionsVB->Release();

__global__ void createVertices(float4* positions, float time,

{

unsigned int width, unsigned int height)

unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;

// Calculate uv coordinates
(continues on next page)
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float u = x / (float)width;
float v = y / (float)height;
u=u*2.0f - 1.0f;
v=v *2.0f - 1.0f;

// Calculate simple sine wave pattern
float freq = 4.0f;
float w = sinf(u * freq + time)

* cosf(v * freq + time) * 0.5f;

// Write positions
positions[y * width + x] =
make_float4(u, w, v, __int_as_float(6xffeoffee));

6.2.15.2.3 Direct3D 11 Version

ID3D11Device* device;
struct CUSTOMVERTEX {
FLOAT x, vy, z;
DWORD color;
I
ID3D11Buffer* positionsVB;
struct cudaGraphicsResource* positionsVB_CUDA;

int main()
{
int dev;
// Get a CUDA-enabled adapter
IDXGIFactory* factory;
CreateDXGIFactory(__uuidof (IDXGIFactory), (void**)&factory);
IDXGIAdapter* adapter = 0;
for (unsigned int i = 0; !adapter; ++i) {
if (FAILED(factory->EnumAdapters(i, &adapter))
break;
if (cudaD3D11GetDevice(&dev, adapter) == cudaSuccess)
break;
adapter->Release();

}

factory->Release();
// Create swap chain and device

sFnPtr_D3D11CreateDeviceAndSwapChain(adapter,

(continued from previous page)

D3D11_DRIVER_TYPE_HARDWARE,

0

D3D11_CREATE_DEVICE_DEBUG,

featurelLevels, 3,
D3D11_SDK_VERSION,

&swapChainDesc, &swapChain,

&device,

&featurelLevel,

&deviceContext) ;
adapter->Release();

(continues on next page)
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// Use the same device
cudaSetDevice(dev);

// Create vertex buffer and register it with CUDA
unsigned int size = width * height * sizeof(CUSTOMVERTEX) ;
D3D11_BUFFER_DESC bufferDesc

bufferDesc.Usage = D3D11 USAGE_DEFAULT;
bufferDesc.ByteWidth = size;
bufferDesc.BindFlags = D3D11_BIND_VERTEX_BUFFER;
bufferDesc.CPUAccessFlags = 0;

bufferDesc.MiscFlags = 0;

device->CreateBuffer(&bufferDesc, 0, &positionsVB);
cudaGraphicsD3D11RegisterResource(&positionsVB_CUDA,
positionsVB,
cudaGraphicsRegisterFlagsNone);
cudaGraphicsResourceSetMapFlags(positionsVB_CUDA,
cudaGraphicsMapFlagsWriteDiscard);

// Launch rendering loop
while (...) {

ﬁéﬁder();

void Render()

{

}

// Map vertex buffer for writing from CUDA

float4* positions;

cudaGraphicsMapResources(1, &positionsVB_CUDA, 0);

size_t num_bytes;

cudaGraphicsResourceGetMappedPointer((void**)&positions,
&num_bytes,
positionsVB_CUDA));

// Execute kernel

dim3 dimBlock(16, 16, 1);

dim3 dimGrid(width / dimBlock.x, height / dimBlock.y, 1);

createVertices<<<dimGrid, dimBlock>>>(positions, time,
width, height);

// Unmap vertex buffer
cudaGraphicsUnmapResources(1, &positionsVB_CUDA, 0);

// Draw and present

void releaseVB()

{

cudaGraphicsUnregisterResource(positionsVB_CUDA) ;
positionsVB->Release();

(continues on next page)
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__global__ void createVertices(float4* positions, float time,
unsigned int width, unsigned int height)

blockIdx.x * blockDim.x + threadIdx.x;
blockIdx.y * blockDim.y + threadIdx.y;

unsigned int Xx
unsigned int y

// Calculate uv coordinates

float u = x / (float)width;
float v = y / (float)height;
u=u*2.0f - 1.0f;
v =v *¥ 2.0f - 1.0f;

// Calculate simple sine wave pattern
float freq = 4.0f;
float w = sinf(u * freq + time)

* cosf(v * freq + time) * 0.5f;

// Write positions
positions[y * width + x] =

make_float4(u, w, v int_as_float(6xffeeffee));

p ==

In a system with multiple GPUs, all CUDA-enabled GPUs are accessible via the CUDA driver and runtime
as separate devices. There are however special considerations as described below when the system is
in SLI mode.

First, an allocation in one CUDA device on one GPU will consume memory on other GPUs that are part
of the SLI configuration of the Direct3D or OpenGL device. Because of this, allocations may fail earlier
than otherwise expected.

Second, applications should create multiple CUDA contexts, one for each GPU in the SLI configura-
tion. While this is not a strict requirement, it avoids unnecessary data transfers between devices. The
application can use the cudaD3D[9]10|11]GetDevices() for Direct3D and cudaGLGetDevices()
for OpenGL set of calls to identify the CUDA device handle(s) for the device(s) that are performing the
rendering in the current and next frame. Given this information the application will typically choose
the appropriate device and map Direct3D or OpenGL resources to the CUDA device returned by cu-
daD3D[9|10|11]GetDevices() or cudaGLGetDevices() when the devicelist parameter is set
to cudaD3D[9|10|11]DeviceListCurrentFrame or cudaGLDevicelListCurrentFrame.

Please note that resource returned from cudaGraphicsD9D[9]16]|11]RegisterResource and
cudaGraphicsGLRegister[Buffer|Image] mustbe only used on device the registration happened.
Therefore on SLI configurations when data for different frames is computed on different CUDA de-
vices it is necessary to register the resources for each separately.

See and for details on how the CUDA runtime inter-
operate with Direct3D and OpenGL, respectively.
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External resource interoperability allows CUDA to import certain resources that are explicitly exported
by other APIs. These objects are typically exported by other APIs using handles native to the Operating
System, like file descriptors on Linux or NT handles on Windows. They could also be exported using
other unified interfaces such as the NVIDIA Software Communication Interface. There are two types
of resources that can be imported: memory objects and synchronization objects.

Memory objects can be imported into CUDA using cudaImportExternalMemory(). An imported
memory object can be accessed from within kernels using device pointers mapped onto the memory
object via cudaExternalMemoryGetMappedBuffer()or CUDA mipmapped arrays mapped via cud-
aExternalMemoryGetMappedMipmappedArray (). Depending on the type of memory object, it may
be possible for more than one mapping to be setup on a single memory object. The mappings must
match the mappings setup in the exporting API. Any mismatched mappings result in undefined be-
havior. Imported memory objects must be freed using cudaDestroyExternalMemory(). Freeing
a memory object does not free any mappings to that object. Therefore, any device pointers mapped
onto that object must be explicitly freed using cudaFree () and any CUDA mipmapped arrays mapped
onto that object must be explicitly freed using cudaFreeMipmappedArray(). Itis illegal to access
mappings to an object after it has been destroyed.

Synchronization objects can be imported into CUDA using cudaImportExternalSemaphore(). An
imported synchronization object can then be signaled using cudaSignalExternalSemaphore-
sAsync() and waited on using cudaWaitExternalSemaphoresAsync(). Itis illegal to issue a wait
before the corresponding signal has been issued. Also, depending on the type of the imported syn-
chronization object, there may be additional constraints imposed on how they can be signaled and
waited on, as described in subsequent sections. Imported semaphore objects must be freed using
cudaDestroyExternalSemaphore(). All outstanding signals and waits must have completed be-
fore the semaphore object is destroyed.

When importing memory and synchronization objects exported by Vulkan, they must be imported
and mapped on the same device as they were created on. The CUDA device that corresponds to the
Vulkan physical device on which the objects were created can be determined by comparing the UUID
of a CUDA device with that of the Vulkan physical device, as shown in the following code sample. Note
that the Vulkan physical device should not be part of a device group that contains more than one
Vulkan physical device. The device group as returned by vkEnumeratePhysicalDeviceGroups that
contains the given Vulkan physical device must have a physical device count of 1.

int getCudaDeviceForVulkanPhysicalDevice(VkPhysicalDevice vkPhysicalDevice) {
VkPhysicalDeviceIDProperties vkPhysicalDeviceIDProperties = {};
vkPhysicalDeviceIDProperties.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_
—PROPERTIES;
vkPhysicalDeviceIDProperties.pNext = NULL;

VkPhysicalDeviceProperties2 vkPhysicalDeviceProperties2 = {};

vkPhysicalDeviceProperties2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_
—2;

vkPhysicalDeviceProperties2.pNext = &vkPhysicalDeviceIDProperties;

vkGetPhysicalDeviceProperties2(vkPhysicalDevice, &vkPhysicalDeviceProperties2);
(continues on next page)
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int cudaDeviceCount;
cudaGetDeviceCount (&cudaDeviceCount) ;

for (int cudaDevice = 0; cudaDevice < cudaDeviceCount; cudaDevice++) {
cudaDeviceProp deviceProp;
cudaGetDeviceProperties(&deviceProp, cudaDevice);
if (!memcmp(&deviceProp.uuid, vkPhysicalDeviceIDProperties.deviceUUID, VK_
—UUID_SIZE)) {
return cudaDevice;
}

}

return cudaInvalidDeviceld;

On Linux and Windows 10, both dedicated and non-dedicated memory objects exported by Vulkan
can be imported into CUDA. On Windows 7, only dedicated memory objects can be imported. When
importing a Vulkan dedicated memory object, the flag cudaExternalMemoryDedicated must be set.

A Vulkan memory object exported using VK_EXTERNAL _MEMORY _HANDLE_TYPE_OPAQUE_FD_BIT can
be imported into CUDA using the file descriptor associated with that object as shown below. Note that
CUDA assumes ownership of the file descriptor once it is imported. Using the file descriptor after a
successful import results in undefined behavior.

cudaExternalMemory_t importVulkanMemoryObjectFromFileDescriptor(int fd, unsigned long
—long size, bool isDedicated) {

cudaExternalMemory_t extMem = NULL;

cudaExternalMemoryHandleDesc desc = {};

memset (&desc, 0, sizeof(desc));

desc.type = cudaExternalMemoryHandleTypeOpaqueFd;
desc.handle.fd = fd;
desc.size = size;
if (isDedicated) {
desc.flags |= cudaExternalMemoryDedicated;

}
cudaImportExternalMemory(&extMem, &desc);

// Input parameter 'fd' should not be used beyond this point as CUDA has assumed
—ownership of it

return extMem;

}

A Vulkan memory object exported using VK_EXTERNAL _MEMORY _HANDLE_TYPE_OPAQUE_WIN32_BIT
can be imported into CUDA using the NT handle associated with that object as shown below. Note
that CUDA does not assume ownership of the NT handle and it is the application’s responsibility to
close the handle when it is not required anymore. The NT handle holds a reference to the resource, so
it must be explicitly freed before the underlying memory can be freed.
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cudaExternalMemory_t importVulkanMemoryObjectFromNTHandle (HANDLE handle, unsigned
—long long size, bool isDedicated) {

cudaExternalMemory_t extMem = NULL;

cudaExternalMemoryHandleDesc desc = {};

memset(&desc, 0, sizeof(desc));

desc.type = cudaExternalMemoryHandleTypeOpaqueWin32;
desc.handle.win32.handle = handle;
desc.size = size;
if (isDedicated) {
desc.flags |= cudaExternalMemoryDedicated;
}

cudaImportExternalMemory(&extMem, &desc);

// Input parameter 'handle' should be closed if it's not needed anymore
CloseHandle(handle);

return extMem;

}

A Vulkan memory object exported using VK_EXTERNAL_MEMORY _HANDLE _TYPE_OPAQUE_WIN32_BIT
can also be imported using a named handle if one exists as shown below.

cudaExternalMemory_t importVulkanMemoryObjectFromNamedNTHandle (LPCWSTR name, unsigned
—long long size, bool isDedicated) {

cudaExternalMemory_t extMem = NULL;

cudaExternalMemoryHandleDesc desc = {};

memset (&desc, 0, sizeof(desc));

desc.type = cudaExternalMemoryHandleTypeOpaqueWin32;
desc.handle.win32.name = (void *)name;
desc.size = size;
if (isDedicated) {
desc.flags |= cudaExternalMemoryDedicated;

}
cudaImportExternalMemory(&extMem, &desc);

return extMem;

}

AVulkan memory object exported using VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT
can be imported into CUDA using the globally shared D3DKMT handle associated with that object as
shown below. Since a globally shared D3DKMT handle does not hold a reference to the underlying
memory it is automatically destroyed when all other references to the resource are destroyed.

cudaExternalMemory_t importVulkanMemoryObjectFromKMTHandle (HANDLE handle, unsigned
—long long size, bool isDedicated) {

cudaExternalMemory_t extMem = NULL;

cudaExternalMemoryHandleDesc desc = {};

memset(&desc, 0, sizeof(desc));

desc.type = cudaExternalMemoryHandleTypeOpaqueWin32Kmt;
(continues on next page)
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desc.handle.win32.handle = (void *)handle;
desc.size = size;
if (isDedicated) {

desc.flags |= cudaExternalMemoryDedicated;
}

cudaImportExternalMemory(&extMem, &desc);

return extMem;

(continued from previous page)

A device pointer can be mapped onto an imported memory object as shown below. The offset and
size of the mapping must match that specified when creating the mapping using the corresponding
Vulkan API. All mapped device pointers must be freed using cudaFree().

void * mapBufferOntoExternalMemory(cudaExternalMemory_t extMem, unsigned long long

—offset, unsigned long long size) {
void *ptr = NULL;

cudaExternalMemoryBufferDesc desc = {};

memset(&desc, 0, sizeof(desc));

desc.offset = offset;

desc.size = size;

cudaExternalMemoryGetMappedBuffer(&ptr, extMem, &desc);

// Note: ‘ptr’ must eventually be freed using cudaFree()

return ptr;
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A CUDA mipmapped array can be mapped onto an imported memory object as shown below. The
offset, dimensions, format and number of mip levels must match that specified when creating the
mapping using the corresponding Vulkan API. Additionally, if the mipmapped array is bound as a color
target in Vulkan, the flagcudaArrayColorAttachment must be set. All mapped mipmapped arrays
must be freed using cudaFreeMipmappedArray(). The following code sample shows how to convert
Vulkan parameters into the corresponding CUDA parameters when mapping mipmapped arrays onto

imported memory objects.

cudaMipmappedArray_t mapMipmappedArrayOntoExternalMemory(cudaExternalMemory_t extMem,
—unsigned long long offset, cudaChannelFormatDesc *formatDesc, cudaExtent *extent,
—unsigned int flags, unsigned int numLevels) {

cudaMipmappedArray_t mipmap

cudaExternalMemoryMipmappedArrayDesc desc

NULL;

memset(&desc, 0, sizeof(desc));

desc.offset = offset;

desc.formatDesc = *formatDesc;

desc.extent = *extent;
desc.flags = flags;
desc.numLevels = numLevels;

= {};

// Note: 'mipmap' must eventually be freed using cudaFreeMipmappedArray()

cudaExternalMemoryGetMappedMipmappedArray(&mipmap, extMem, &desc);

return mipmap;

}

cudaChannelFormatDesc getCudaChannelFormatDescForVulkanFormat(VkFormat format)

{

cudaChannelFormatDesc d;
memset(&d, 0, sizeof(d));

switch (format) {
case :
—cudaChannelFormatKindUnsigned;
case :
—cudaChannelFormatKindSigned;
case :
—~cudaChannelFormatKindUnsigned;
case :
—cudaChannelFormatKindSigned;
case
—cudaChannelFormatKindUnsigned;
case
—~cudaChannelFormatKindSigned;
case :
—.cudaChannelFormatKindUnsigned;
case :
—cudaChannelFormatKindSigned;
case :
—~cudaChannelFormatKindUnsigned;
case :
—cudaChannelFormatKindSigned;

break;
break;
break;

break;

break;

break;

break;
break;
break;

break;

0; d
0; d
8; d
8; d
8; d
8; d
0; d
0; d
16; d
16; d

(continues on next page)
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case : d.x = 16; d.y = 16; d.z = 16; d.w = 16; d.f =
-~cudaChannelFormatKindUnsigned; break;
case :
—cudaChannelFormatKindSigned; break;

case : d.x = 32; d.y =0; d.z=0; dw=20; d.f=
—cudaChannelFormatKindUnsigned; break;

case : d.x =32; d.y =0; d.z=0; dw=20; d.f=
-~cudaChannelFormatKindSigned; break;

case : d.x =32; d.y =0; d.z=06; dw=20; d.f-=
—.cudaChannelFormatKindFloat; break;

case : d.x =32; d.y =32; d.z =0; dw=20; d.f =
—~cudaChannelFormatKindUnsigned; break;

case : d.x = 32; d.y =32; d.z=0; dw=20; d.f=
—~cudaChannelFormatKindSigned; break;

case : d.x = 32; d.y =32; d.z=0; dw=20; d.f-=
—~cudaChannelFormatKindFloat; break;

case :
—.cudaChannelFormatKindUnsigned; break;

case :
—~cudaChannelFormatKindSigned; break;

case :d.x =32; d.y =32; d.z = 32; d.w = 32; d.f =
—~cudaChannelFormatKindFloat; break;

default: assert(9);

}

f =

1l
=
(o))
o

d.x = 16; d.y = 16; d.z = 16; d.w

d.x = 32; d.y = 32; d.z = 32; d.w = 32; d.f =

return d;

}
cudaExtent getCudaExtentForVulkanExtent(VkExtent3D vkExt, uint32_t arraylayers,
—VkImageViewType vkImageViewType) {

cudaExtent e = { 0, 0, 0 };

switch (vkImageViewType) {

case : e.width = vkExt.width; e.height = 0;
— e.depth = 0; break;

case : e.width = vkExt.width; e.height = vkExt.
—height; e.depth = 0; break;

case : e.width = vkExt.width; e.height = vkExt.
—height; e.depth = vkExt.depth; break;

case : e.width = vkExt.width; e.height = vkExt.
—height; e.depth = arraylLayers; break;

case : e.width = vkExt.width; e.height = 0;
- e.depth = arraylLayers; break;

case : e.width = vkExt.width; e.height = vkExt.
—height; e.depth = arraylLayers; break;

case : e.width = vkExt.width; e.height = vkExt.

—height; e.depth = arraylLayers; break;
default: assert(9);
}

return e;

}

unsigned int getCudaMipmappedArrayFlagsForVulkanImage(VkImageViewType vkImageViewType,
- VkImageUsageFlags vkImageUsageFlags, bool allowSurfacelLoadStore) {
unsigned int flags = 0;
(continues on next page)
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switch (vkImageViewType) {
case : flags |= cudaArrayCubemap;

—break;
case : flags |= cudaArrayCubemap | cudaArraylLayered;

—break;
case : flags |= cudaArraylLayered;

—break;
case : flags |= cudaArraylLayered;

—break;
default: break;

}

if (vkImageUsageFlags & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) {
flags |= cudaArrayColorAttachment;

}
if (allowSurfacelLoadStore) {

flags |= cudaArraySurfacelLoadStore;
}

return flags;

A Vulkan semaphore object exported using VK_EXTERNAL _SEMAPHORE _HANDLE _TYPE_OPAQUE_FD_BITcan
be imported into CUDA using the file descriptor associated with that object as shown below. Note

that CUDA assumes ownership of the file descriptor once it is imported. Using the file descriptor
after a successful import results in undefined behavior.

cudaExternalSemaphore_t importVulkanSemaphoreObjectFromFileDescriptor(int fd) {
cudaExternalSemaphore_t extSem = NULL;
cudaExternalSemaphoreHandleDesc desc = {};

memset(&desc, 0, sizeof(desc));

desc.type = cudaExternalSemaphoreHandleTypeOpaqueFd;
desc.handle.fd = fd;

cudaImportExternalSemaphore(&extSem, &desc);

// Input parameter 'fd' should not be used beyond this point as CUDA has assumed
—sownership of it

return extSem;

}

AVulkan semaphore object exported using VK_EXTERNAL _SEMAPHORE _HANDLE _TYPE_OPAQUE_WIN32_BIT
can be imported into CUDA using the NT handle associated with that object as shown below. Note

that CUDA does not assume ownership of the NT handle and it is the application’s responsibility to
close the handle when it is not required anymore. The NT handle holds a reference to the resource, so

it must be explicitly freed before the underlying semaphore can be freed.
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cudaExternalSemaphore_t importVulkanSemaphoreObjectFromNTHandle (HANDLE handle) {
cudaExternalSemaphore_t extSem = NULL;
cudaExternalSemaphoreHandleDesc desc = {};

memset (&desc, 0, sizeof(desc));

desc.type = cudaExternalSemaphoreHandleTypeOpaqueWin32;
desc.handle.win32.handle = handle;

cudaImportExternalSemaphore(&extSem, &desc);

// Input parameter 'handle' should be closed if it's not needed anymore
CloseHandle(handle);

return extSem;

}

AVulkan semaphore object exported using VK_EXTERNAL _SEMAPHORE _HANDLE _TYPE_OPAQUE_WIN32_BIT
can also be imported using a named handle if one exists as shown below.

cudaExternalSemaphore_t importVulkanSemaphoreObjectFromNamedNTHandle (LPCWSTR name) {
cudaExternalSemaphore_t extSem = NULL;
cudaExternalSemaphoreHandleDesc desc = {};

memset (&desc, 0, sizeof(desc));

desc.type = cudaExternalSemaphoreHandleTypeOpaqueWin32;
desc.handle.win32.name = (void *)name;

cudaImportExternalSemaphore(&extSem, &desc);

return extSem;

}

AVulkan semaphore object exported using VK_EXTERNAL _SEMAPHORE _HANDLE _TYPE_OPAQUE_WIN32_KMT_BIT
can be imported into CUDA using the globally shared D3DKMT handle associated with that object as

shown below. Since a globally shared D3DKMT handle does not hold a reference to the underlying
semaphore it is automatically destroyed when all other references to the resource are destroyed.

cudaExternalSemaphore_t importVulkanSemaphoreObjectFromKMTHandle (HANDLE handle) {
cudaExternalSemaphore_t extSem = NULL;
cudaExternalSemaphoreHandleDesc desc = {};
memset (&desc, 0, sizeof(desc));

desc.type = cudaExternalSemaphoreHandleTypeOpaqueWin32Kmt ;
desc.handle.win32.handle = (void *)handle;

cudaImportExternalSemaphore(&extSem, &desc);

return extSem;
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An imported Vulkan semaphore object can be signaled as shown below. Signaling such a semaphore
object sets it to the signaled state. The corresponding wait that waits on this signal must be issued in
Vulkan. Additionally, the wait that waits on this signal must be issued after this signal has been issued.

void signalExternalSemaphore(cudaExternalSemaphore_t extSem, cudaStream_t stream) ({
cudaExternalSemaphoreSignalParams params = {};

memset (&params, 0, sizeof(params));

cudaSignalExternalSemaphoresAsync(&extSem, &params, 1, stream);

}

Animported Vulkan semaphore object can be waited on as shown below. Waiting on such a semaphore
object waits until it reaches the signaled state and then resets it back to the unsignaled state. The
corresponding signal that this wait is waiting on must be issued in Vulkan. Additionally, the signal must
be issued before this wait can be issued.

void waitExternalSemaphore(cudaExternalSemaphore_t extSem, cudaStream_t stream) {
cudaExternalSemaphoreWaitParams params = {};

memset(&params, 0, sizeof(params));

cudaWaitExternalSemaphoresAsync(&extSem, &params, 1, stream);

Traditional OpenGL-CUDA interop as outlined in works by CUDA directly con-
suming handles created in OpenGL. However, since OpenGL can also consume memory and synchro-
nization objects created in Vulkan, there exists an alternative approach to doing OpenGL-CUDA in-
terop. Essentially, memory and synchronization objects exported by Vulkan could be imported into
both, OpenGL and CUDA, and then used to coordinate memory accesses between OpenGL and CUDA.
Please refer to the following OpenGL extensions for further details on how to import memory and
synchronization objects exported by Vulkan:

GL_EXT_memory_object
GL_EXT_memory_object_fd
GL_EXT_memory_object_win32
GL_EXT_semaphore
GL_EXT_semaphore_fd
GL_EXT_semaphore_win32
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When importing memory and synchronization objects exported by Direct3D 12, they must be imported
and mapped on the same device as they were created on. The CUDA device that corresponds to the
Direct3D 12 device on which the objects were created can be determined by comparing the LUID of
a CUDA device with that of the Direct3D 12 device, as shown in the following code sample. Note that
the Direct3D 12 device must not be created on a linked node adapter. l.e. the node count as returned
by ID3D12Device: :GetNodeCount must be 1.

int getCudaDeviceForD3D12Device(ID3D12Device *d3d12Device) {
LUID d3d12Luid = d3d12Device->GetAdapterlLuid();

int cudaDeviceCount;
cudaGetDeviceCount (&cudaDeviceCount) ;

for (int cudaDevice = 0; cudaDevice < cudaDeviceCount; cudaDevice++)
cudaDeviceProp deviceProp;
cudaGetDeviceProperties(&deviceProp, cudaDevice);
char *cudalLuid = deviceProp.luid;

if (!memcmp(&d3d12Luid.LowPart, cudalLuid, sizeof(d3d12Luid.LowPart)) &&
Imemcmp (&d3d12Luid.HighPart, cudalLuid + sizeof(d3d12Luid.LowPart),
—.sizeof(d3d12Luid.HighPart))) {
return cudaDevice;
}
}

return cudaInvalidDeviceld;

A shareable Direct3D 12 heap memory object, created by setting the flag D3D12 _HEAP_FLAG_SHARED
in the call to ID3D12Device: :CreateHeap, can be imported into CUDA using the NT handle associ-
ated with that object as shown below. Note that it is the application’s responsibility to close the NT
handle when it is not required anymore. The NT handle holds a reference to the resource, so it must
be explicitly freed before the underlying memory can be freed.

cudaExternalMemory_t importD3D12HeapFromNTHandle (HANDLE handle, unsigned long long
—size) |

cudaExternalMemory_t extMem = NULL;

cudaExternalMemoryHandleDesc desc = {};

memset (&desc, 0, sizeof(desc));

desc.type = cudaExternalMemoryHandleTypeD3D12Heap;
desc.handle.win32.handle = (void *)handle;
desc.size = size;

cudaImportExternalMemory(&extMem, &desc);

// Input parameter 'handle' should be closed if it's not needed anymore
CloseHandle(handle);
(continues on next page)
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return extMem;

}

A shareable Direct3D 12 heap memory object can also be imported using a named handle if one exists
as shown below.

cudaExternalMemory_t importD3D12HeapFromNamedNTHandle (LPCWSTR name, unsigned long
—long size) {

cudaExternalMemory_t extMem = NULL;

cudaExternalMemoryHandleDesc desc = {};

memset (&desc, 0, sizeof(desc));

desc.type = cudaExternalMemoryHandleTypeD3D12Heap;
desc.handle.win32.name = (void *)name;
desc.size = size;

cudaImportExternalMemory(&extMem, &desc);

return extMem;

}

A shareable Direct3D 12 committed resource, created by setting the flag D3D12 _HEAP_FLAG_SHARED
in the call to D3D12Device: :CreateCommittedResource, can be imported into CUDA using the NT
handle associated with that object as shown below. When importing a Direct3D 12 committed re-
source, the flag cudaExternalMemoryDedicated must be set. Note that it is the application’s re-
sponsibility to close the NT handle when it is not required anymore. The NT handle holds a reference
to the resource, so it must be explicitly freed before the underlying memory can be freed.

cudaExternalMemory_t importD3D12CommittedResourceFromNTHandle (HANDLE handle, unsigned
—long long size) {

cudaExternalMemory_t extMem = NULL;

cudaExternalMemoryHandleDesc desc = {};

memset(&desc, 0, sizeof(desc));

desc.type = cudaExternalMemoryHandleTypeD3D12Resource;
desc.handle.win32.handle = (void *)handle;

desc.size = size;

desc.flags |= cudaExternalMemoryDedicated;

cudaImportExternalMemory(&extMem, &desc);

// Input parameter 'handle' should be closed if it's not needed anymore
CloseHandle(handle);

return extMem;

}

A shareable Direct3D 12 committed resource can also be imported using a named handle if one exists
as shown below.

cudaExternalMemory_t importD3D12CommittedResourceFromNamedNTHandle (LPCWSTR name,
—unsigned long long size) {
cudaExternalMemory_t extMem = NULL;

(continues on next page)
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cudaExternalMemoryHandleDesc desc = {};

memset(&desc, 0, sizeof(desc));

desc.type = cudaExternalMemoryHandleTypeD3D12Resource;
desc.handle.win32.name = (void *)name;

desc.size = size;

desc.flags |= cudaExternalMemoryDedicated;

cudaImportExternalMemory(&extMem, &desc);

return extMem;

A device pointer can be mapped onto an imported memory object as shown below. The offset and
size of the mapping must match that specified when creating the mapping using the corresponding
Direct3D 12 API. All mapped device pointers must be freed using cudaFree().

void * mapBufferOntoExternalMemory(cudaExternalMemory_t extMem, unsigned long long
—offset, unsigned long long size) {

void *ptr = NULL;

cudaExternalMemoryBufferDesc desc = {};

memset(&desc, 0, sizeof(desc));

desc.offset = offset;
desc.size = size;

cudaExternalMemoryGetMappedBuffer(&ptr, extMem, &desc);

// Note: 'ptr' must eventually be freed using cudaFree()
return ptr;

A CUDA mipmapped array can be mapped onto an imported memory object as shown below. The
offset, dimensions, format and number of mip levels must match that specified when creating the
mapping using the corresponding Direct3D 12 API. Additionally, if the mipmapped array can be bound
as a render target in Direct3D 12, the flag cudaArrayColorAttachment must be set. All mapped
mipmapped arrays must be freed using cudaFreeMipmappedArray(). The following code sample
shows how to convert Vulkan parameters into the corresponding CUDA parameters when mapping
mipmapped arrays onto imported memory objects.

cudaMipmappedArray_t mapMipmappedArrayOntoExternalMemory(cudaExternalMemory_t extMem,
—.unsigned long long offset, cudaChannelFormatDesc *formatDesc, cudaExtent *extent,
—unsigned int flags, unsigned int numLevels) {

cudaMipmappedArray_t mipmap = NULL;

cudaExternalMemoryMipmappedArrayDesc desc = {};

(continues on next page)
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}

cudaChannelFormatDesc getCudaChannelFormatDescForDxgiFormat(DXGI_FORMAT dxgiFormat)

{

memset (&desc, 0, sizeof(desc));

desc.offset = offset;
desc.formatDesc = *formatDesc;
desc.extent = *extent;
desc.flags = flags;
desc.numLevels = numlLevels;

// Note: 'mipmap' must eventually be freed using cudaFreeMipmappedArray()

cudaExternalMemoryGetMappedMipmappedArray(&mipmap, extMem,

return mipmap;

cudaChannelFormatDesc d;
memset (&d, 0, sizeof(d));

switch (dxgiFormat) {

case
cudaChannelFormatKlndUn31gned
case
cudaChannelFormatKlnd81gned
case
cudaChannelFormatKlndUn31gned
case
cudaChannelFormatK1nd81gned
case
cudaChannelFormatKindUnsigned;
case
cudaChannelFormatKlnd81gned
case
cudaChannelFormatK1ndUn31gned
case
cudaChannelFormatKlnd81gned
case :
cudaChannelFormatKlndUn31gned
case
cudaChannelFormatKindSigned;
case
cudaChannelFormatKindUnsigned;
case
cudaChannelFormatKlnd81gned
case
cudaChannelFormatKlndUn31gned
case
cudaChannelFormatK1nd81gned
case
cudaChannelFormatKlndFloat
case :
cudaChannelFormatKlndUn31gned
case
cudaChannelFormatKindSigned;
case
cudaChannelFormatKindFloat;

break;
break;
break;
break;
.break;
.break;
break;
break;
break;
break;
breék;
breék;
break;
break;
break;
break;
break;

break;

d.

d.

d.

d.

d.

d.

d.

d.

d.

d.

d.

d.

d.

d.

d.

d.

d.

d.

&desc) ;

dw=20; d
dw=20; d
dw=20; d
dw=20; d
dw=28; d
dw=28; d
dw=20; d
dw=20; d
dw=20; d
dw=20; d
d.w=16; d
dw=16; d
dw=20; d
dw=20; d
dw=20; d
dw=20; d
d.w=0; d.
d.w=10; d.

(continued from previous page)
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case ;o d.x
—.= cudaChannelFormatKindUnsigned; break;

case o d.x
—= cudaChannelFormatKindSigned; break;

case :d.x
<= cudaChannelFormatKindFloat; break;

default: assert(9);

}

return d;

}

cudaExtent getCudaExtentForD3D12Extent(UINT64 width, UINT height,

(continued from previous page)

—.depthOrArraySize, D3D12_SRV_DIMENSION d3d12SRVDimension) {

cudaExtent e = { 9, 0, 0 };

switch (d3d12SRVDimension) {

case

—depth = 0; break;
case

—.depth = 0; break;
case

—depth = depthOrArraySize; break;
case

—depth = depthOrArraySize; break;
case

—.depth = depthOrArraySize; break;
case

—depth = depthOrArraySize; break;
case

—depth = depthOrArraySize; break;

default: assert(9);

}

return e;

}

32; d.y = 32; d.z = 32; d.w = 32; d.f
32; d.y = 32; d.z = 32; d.w = 32; d.f
32; d.y = 32; d.z = 32; d.w = 32; d.f
UINT16
e.width = width; e.height = 0; e
e.width = width; e.height = height; e.
e.width = width; e.height = height; e.
e.width = width; e.height = height; e.
e.width = width; e.height = 0; e.
e.width = width; e.height = height; e.
: e.width = width; e.height = height; e.

unsigned int getCudaMipmappedArrayFlagsForD3D12Resource(D3D12_SRV_DIMENSION
-.d3d12SRVDimension, D3D12_RESOURCE_FLAGS d3d12ResourceFlags, bool

—allowSurfacelLoadStore) {
unsigned int flags = 0;

switch (d3d12SRVDimension) {

case
. break;
case
—cudaArraylLayered; break;
case
. break;
case
. break;
default: break;
}

flags |

: flags |

flags |

flags |

cudaArrayCubemap;
cudaArrayCubemap |
cudaArraylLayered;

cudaArraylayered;

if (d3d12ResourceFlags & D3D12_RESOURCE_FLAG_ALLOW_RENDER_TARGET) {

(continues on next page)
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flags |= cudaArrayColorAttachment;

if (allowSurfacelLoadStore) {
flags |= cudaArraySurfacelLoadStore;
}

return flags;

A shareable Direct3D 12 fence object, created by setting the flag D3D12_FENCE_FLAG_SHARED in the
call to ID3D12Device: :CreateFence, can be imported into CUDA using the NT handle associated
with that object as shown below. Note thatitis the application’s responsibility to close the handle when
it is not required anymore. The NT handle holds a reference to the resource, so it must be explicitly
freed before the underlying semaphore can be freed.

cudaExternalSemaphore_t importD3D12FenceFromNTHandle(HANDLE handle) {
cudaExternalSemaphore_t extSem = NULL;
cudaExternalSemaphoreHandleDesc desc = {};

memset(&desc, 0, sizeof(desc));

desc.type = cudaExternalSemaphoreHandleTypeD3D12Fence;
desc.handle.win32.handle = handle;

cudaImportExternalSemaphore(&extSem, &desc);

// Input parameter 'handle' should be closed if it's not needed anymore
CloseHandle(handle);

return extSem;

}

A shareable Direct3D 12 fence object can also be imported using a named handle if one exists as
shown below.

cudaExternalSemaphore_t importD3D12FenceFromNamedNTHandle (LPCWSTR name) {
cudaExternalSemaphore_t extSem = NULL;
cudaExternalSemaphoreHandleDesc desc = {};
memset(&desc, 0, sizeof(desc));

desc.type = cudaExternalSemaphoreHandleTypeD3D12Fence;
desc.handle.win32.name = (void *)name;

cudaImportExternalSemaphore(&extSem, &desc);

return extSem;
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An imported Direct3D 12 fence object can be signaled as shown below. Signaling such a fence object
sets its value to the one specified. The corresponding wait that waits on this signal must be issued in
Direct3D 12. Additionally, the wait that waits on this signal must be issued after this signal has been
issued.

void signalExternalSemaphore(cudaExternalSemaphore_t extSem, unsigned long long value,
- cudaStream_t stream) {
cudaExternalSemaphoreSignalParams params = {};

memset (&params, 0, sizeof(params));
params.params.fence.value = value;

cudaSignalExternalSemaphoresAsync(&extSem, &params, 1, stream);

}

An imported Direct3D 12 fence object can be waited on as shown below. Waiting on such a fence
object waits until its value becomes greater than or equal to the specified value. The corresponding
signal that this wait is waiting on must be issued in Direct3D 12. Additionally, the signal must be issued
before this wait can be issued.

void waitExternalSemaphore(cudaExternalSemaphore_t extSem, unsigned long long value,
—.cudaStream_t stream) {
cudaExternalSemaphoreWaitParams params = {};

memset (&params, 0, sizeof(params));
params.params.fence.value = value;

cudaWaitExternalSemaphoresAsync(&extSem, &params, 1, stream);

When importing memory and synchronization objects exported by Direct3D 11, they must be imported
and mapped on the same device as they were created on. The CUDA device that corresponds to the
Direct3D 11 device on which the objects were created can be determined by comparing the LUID of a
CUDA device with that of the Direct3D 11 device, as shown in the following code sample.

int getCudaDeviceForD3D11Device(ID3D11Device *d3d11Device) {
IDXGIDevice *dxgiDevice;
d3d11Device->QueryInterface(__uuidof(IDXGIDevice), (void **)&dxgiDevice);

IDXGIAdapter *dxgiAdapter;
dxgiDevice->GetAdapter (&dxgiAdapter);

DXGI_ADAPTER_DESC dxgiAdapterDesc;
dxgiAdapter->GetDesc(&dxgiAdapterDesc) ;

LUID d3d11Luid = dxgiAdapterDesc.AdapterlLuid;
(continues on next page)
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int cudaDeviceCount;
cudaGetDeviceCount (&cudaDeviceCount) ;

for (int cudaDevice = 0; cudaDevice < cudaDeviceCount; cudaDevice++) {
cudaDeviceProp deviceProp;
cudaGetDeviceProperties(&deviceProp, cudaDevice);
char *cudalLuid = deviceProp.luid;

if (!memcmp(&d3d11Luid.LowPart, cudalLuid, sizeof(d3d11Luid.LowPart)) &&
Imemcmp (&d3d11Luid.HighPart, cudalLuid + sizeof(d3d11Luid.LowPart),
—sizeof(d3d11Luid.HighPart))) {
return cudaDevice;

}
}
return cudaInvalidDeviceld;
}
A shareable Direct3D 11 texture resource, viz, ID3D11TexturelD,

ID3D11Texture2D or ID3D11Texture3D, can be created by setting either the
D3D11_RESOURCE_MISC_SHARED or D3D11_RESOURCE_MISC_SHARED_KEYEDMUTEX (on
Windows 7) or D3D11_RESOURCE_MISC_SHARED_NTHANDLE (on Windows 10) when
calling ID3D11Device:CreateTexturelD, ID3D11Device:CreateTexture2D or
ID3D11Device:CreateTexture3D respectively. A shareable Direct3D 11 buffer re-
source, ID3D11Buffer, can be created by specifying either of the above flags when call-
ing ID3D11Device::CreateBuffer. A shareable resource created by specifying the
D3D11_RESOURCE_MISC_SHARED_NTHANDLE can be imported into CUDA using the NT handle
associated with that object as shown below. Note that it is the application’s responsibility to close
the NT handle when it is not required anymore. The NT handle holds a reference to the resource, so it
must be explicitly freed before the underlying memory can be freed. When importing a Direct3D 11
resource, the flag cudakExternalMemoryDedicated must be set.

cudaExternalMemory_t importD3D11ResourceFromNTHandle (HANDLE handle, unsigned long
—long size) {

cudaExternalMemory_t extMem = NULL;

cudaExternalMemoryHandleDesc desc = {};

memset(&desc, 0, sizeof(desc));

desc.type = cudaExternalMemoryHandleTypeD3D11Resource;
desc.handle.win32.handle = (void *)handle;

desc.size = size;

desc.flags |= cudaExternalMemoryDedicated;

cudaImportExternalMemory(&extMem, &desc);

// Input parameter 'handle' should be closed if it's not needed anymore
CloseHandle(handle);

return extMem;
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A shareable Direct3D 11 resource can also be imported using a named handle if one exists as shown
below.

cudaExternalMemory_t importD3D11ResourceFromNamedNTHandle (LPCWSTR name, unsigned long
—long size) {

cudaExternalMemory_t extMem = NULL;

cudaExternalMemoryHandleDesc desc = {};

memset (&desc, 0, sizeof(desc));

desc.type = cudaExternalMemoryHandleTypeD3D11Resource;
desc.handle.win32.name = (void *)name;

desc.size = size;

desc.flags |= cudaExternalMemoryDedicated;

cudaImportExternalMemory(&extMem, &desc);

return extMem;

}

A shareable Direct3D 11 resource, created by specifying the D3D11_RESOURCE_MISC_SHARED or
D3D11_RESOURCE_MISC_SHARED_KEYEDMUTEX, can be imported into CUDA using the globally shared
D3DKMT handle associated with that object as shown below. Since a globally shared D3DKMT handle
does not hold a reference to the underlying memory it is automatically destroyed when all other ref-
erences to the resource are destroyed.

cudaExternalMemory_t importD3D11ResourceFromKMTHandle (HANDLE handle, unsigned long
—long size) {

cudaExternalMemory_t extMem = NULL;

cudaExternalMemoryHandleDesc desc = {};

memset(&desc, 0, sizeof(desc));

desc.type = cudaExternalMemoryHandleTypeD3D11ResourceKmt;
desc.handle.win32.handle = (void *)handle;

desc.size = size;

desc.flags |= cudaExternalMemoryDedicated;

cudaImportExternalMemory(&extMem, &desc);

return extMem;

A device pointer can be mapped onto an imported memory object as shown below. The offset and
size of the mapping must match that specified when creating the mapping using the corresponding
Direct3D 11 API. All mapped device pointers must be freed using cudaFree().

void * mapBufferOntoExternalMemory(cudaExternalMemory_t extMem, unsigned long long
—offset, unsigned long long size) {

void *ptr = NULL;

cudaExternalMemoryBufferDesc desc = {};

memset(&desc, 0, sizeof(desc));
(continues on next page)
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desc.offset = offset;
desc.size = size;

cudaExternalMemoryGetMappedBuffer (&ptr, extMem, &desc);

// Note: ‘ptr’ must eventually be freed using cudaFree()
return ptr;

A CUDA mipmapped array can be mapped onto an imported memory object as shown below. The
offset, dimensions, format and number of mip levels must match that specified when creating the
mapping using the corresponding Direct3D 11 API. Additionally, if the mipmapped array can be bound
as a render target in Direct3D 12, the flag cudaArrayColorAttachment must be set. All mapped
mipmapped arrays must be freed using cudaFreeMipmappedArray(). The following code sample
shows how to convert Direct3D 11 parameters into the corresponding CUDA parameters when map-
ping mipmapped arrays onto imported memory objects.

cudaMipmappedArray_t mapMipmappedArrayOntoExternalMemory(cudaExternalMemory_t extMem,
—unsigned long long offset, cudaChannelFormatDesc *formatDesc, cudaExtent *extent,
—unsigned int flags, unsigned int numLevels) {

cudaMipmappedArray_t mipmap = NULL;

cudaExternalMemoryMipmappedArrayDesc desc = {};

memset (&desc, 0, sizeof(desc));

desc.offset = offset;
desc.formatDesc = *formatDesc;
desc.extent = *extent;
desc.flags = flags;
desc.numLevels = numlLevels;

// Note: 'mipmap' must eventually be freed using cudaFreeMipmappedArray()
cudaExternalMemoryGetMappedMipmappedArray(&mipmap, extMem, &desc);

return mipmap;

}

cudaChannelFormatDesc getCudaChannelFormatDescForDxgiFormat(DXGI_FORMAT dxgiFormat)
{

cudaChannelFormatDesc d;

memset(&d, 0, sizeof(d));

switch (dxgiFormat) {

case : d.x =8; d.y=0; d.z=90; dw=290; d.f
—= cudaChannelFormatKindUnsigned; break;

case : d.x =8; diy=0; d.z=06; dw=20; d.f
—.= cudaChannelFormatKindSigned; break;

case : d.x =8; diy=8; d.z=06; dw=20; d.f
—= cudaChannelFormatKindUnsigned; break;

case : d.x =8; d.y=8; d.z=90; dw=290; d.f
—= cudaChannelFormatKindSigned; break;

case : d.x =8; dy=8; d.z=28; dw=238; d.f

—»= cudaChannelFormatKindUnsigned; break; [continues on next page)

6.2. CUDA Runtime 121



CUDA C++ Programming Guide, Release 12.4

(continued from previous page)

case : d.x =8; dy=8; d.z=28; dw=238; d.f
—.= cudaChannelFormatKindSigned; break;

case : d.x =16; d.y =0; d.z=0; dw=20; d.f
—= cudaChannelFormatKindUnsigned; break;

case : d.x = 16; d.y =0; d.z=0; d.w=20; d.f
—= cudaChannelFormatKindSigned; break;

case : d.x = 16; d.y = 16; d.z = 0; d.w =0; d.f
—.= cudaChannelFormatKindUnsigned; break;

case : d.x = 16; d.y = 16; d.z = 0; d.w=10; d.f
—= cudaChannelFormatKindSigned; break;

case : d.x =16; d.y = 16; d.z = 16; d.w = 16; d.f
—= cudaChannelFormatKindUnsigned; break;

case : d.x =16; d.y = 16; d.z = 16; d.w = 16; d.f
—.= cudaChannelFormatKindSigned; break;

case : d.x =32; d.y =0; d.z=06; dw=20; d.f
—= cudaChannelFormatKindUnsigned; break;

case : d.x =32; d.y =0; d.z=90; dw=290; d.f
—= cudaChannelFormatKindSigned; break;

case : d.x =32; dy =0; d.z=06; dw=20; d.f
—= cudaChannelFormatKindFloat; break;

case : d.x =32; d.y =32; d.z=0; dw=20; d.f
—= cudaChannelFormatKindUnsigned; break;

case : d.x = 32; d.y = 32; d.z =0; dw=20; d.f
—= cudaChannelFormatKindSigned; break;

case : d.x = 32; d.y =32; d.z=0; dw=20; d.f
—= cudaChannelFormatKindFloat; break;

case : d.x =32; d.y =32; d.z = 32; d.w = 32; d.f
—= cudaChannelFormatKindUnsigned; break;

case : d.x =32; d.y =32; d.z = 32; d.w = 32; d.f
—= cudaChannelFormatKindSigned; break;

case :d.x =32; d.y =32; d.z = 32; d.w = 32; d.f
—= cudaChannelFormatKindFloat; break;

default: assert(9);

}

return d;

}
cudaExtent getCudaExtentForD3D11Extent(UINT64 width, UINT height, UINT16
—.depthOrArraySize, D3D12_SRV_DIMENSION d3d11SRVDimension) {

cudaExtent e = { 0, 0, 0 };

switch (d3d11SRVDimension) {

case : e.width = width; e.height = ©; e.
—.depth = 0; break;

case : e.width = width; e.height = height; e.
—depth = 0; break;

case : e.width = width; e.height = height; e.
—depth = depthOrArraySize; break;

case : e.width = width; e.height = height; e.
—.depth = depthOrArraySize; break;

case : e.width = width; e.height = 0; e.
—depth = depthOrArraySize; break;

case : e.width = width; e.height = height; e.
—depth = depthOrArraySize; break;

case : e.width = width; e.height = height; e.

—.depth = depthOrArraySize; break;
(continues on next page)
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default: assert(9);
}

return e;

}

unsigned int getCudaMipmappedArrayFlagsForD3D12Resource(D3D11_SRV_DIMENSION

—.d3d11SRVDimension, D3D11_BIND_FLAG d3d11BindFlags, bool allowSurfacelLoadStore) {
unsigned int flags = 0;

switch (d3d11SRVDimension) {

case : flags |= cudaArrayCubemap;
. break;

case : flags |= cudaArrayCubemap |
—~cudaArraylLayered; break;

case : flags |= cudaArraylLayered;
. break;

case : flags |= cudaArraylLayered;
. break;

default: break;

}

if (d3d11BindFlags & D3D11_BIND_RENDER_TARGET) {
flags |= cudaArrayColorAttachment;

}
if (allowSurfacelLoadStore) {

flags |= cudaArraySurfacelLoadStore;
}

return flags;

A shareable Direct3D 11 fence object, created by setting the flag D3D11_FENCE_FLAG_SHARED in the
call to ID3D11Device5: :CreateFence, can be imported into CUDA using the NT handle associated
with that object as shown below. Note that it is the application’s responsibility to close the handle when
it is not required anymore. The NT handle holds a reference to the resource, so it must be explicitly
freed before the underlying semaphore can be freed.

cudaExternalSemaphore_t importD3D11FenceFromNTHandle(HANDLE handle) {
cudaExternalSemaphore_t extSem = NULL;
cudaExternalSemaphoreHandleDesc desc = {};
memset(&desc, 0, sizeof(desc));

desc.type = cudaExternalSemaphoreHandleTypeD3D11Fence;
desc.handle.win32.handle = handle;

cudaImportExternalSemaphore(&extSem, &desc);

// Input parameter 'handle' should be closed if it's not needed anymore
CloseHandle(handle);

(continues on next page)
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return extSem;

}

A shareable Direct3D 11 fence object can also be imported using a named handle if one exists as
shown below.

cudaExternalSemaphore_t importD3D11FenceFromNamedNTHandle (LPCWSTR name) {
cudaExternalSemaphore_t extSem = NULL;
cudaExternalSemaphoreHandleDesc desc = {};

memset(&desc, 0, sizeof(desc));

desc.type = cudaExternalSemaphoreHandleTypeD3D11Fence;
desc.handle.win32.name = (void *)name;

cudaImportExternalSemaphore(&extSem, &desc);

return extSem;

}

A shareable Direct3D 11 keyed mutex object associated with a shareable Direct3D 11 resource, viz,
IDXGIKeyedMutex, created by setting the flag D3D11_RESOURCE_MISC_SHARED_KEYEDMUTEX, can
be imported into CUDA using the NT handle associated with that object as shown below. Note that it
is the application’s responsibility to close the handle when it is not required anymore. The NT handle
holds a reference to the resource, so it must be explicitly freed before the underlying semaphore can
be freed.

cudaExternalSemaphore_t importD3D11KeyedMutexFromNTHandle (HANDLE handle) {
cudaExternalSemaphore_t extSem = NULL;
cudaExternalSemaphoreHandleDesc desc = {};

memset(&desc, 0, sizeof(desc));

desc.type = cudaExternalSemaphoreHandleTypeKeyedMutex;
desc.handle.win32.handle = handle;

cudaImportExternalSemaphore(&extSem, &desc);

// Input parameter 'handle' should be closed if it's not needed anymore
CloseHandle(handle);

return extSem;

}

A shareable Direct3D 11 keyed mutex object can also be imported using a named handle if one exists
as shown below.

cudaExternalSemaphore_t importD3D11KeyedMutexFromNamedNTHandle(LPCWSTR name) {
cudaExternalSemaphore_t extSem = NULL;
cudaExternalSemaphoreHandleDesc desc = {};
memset(&desc, 0, sizeof(desc));

desc.type = cudaExternalSemaphoreHandleTypeKeyedMutex;
desc.handle.win32.name = (void *)name;

(continues on next page)
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cudaImportExternalSemaphore(&extSem, &desc);

return extSem;

}

A shareable Direct3D 11 keyed mutex object can be imported into CUDA using the globally shared
D3DKMT handle associated with that object as shown below. Since a globally shared D3DKMT han-
dle does not hold a reference to the underlying memory it is automatically destroyed when all other
references to the resource are destroyed.

cudaExternalSemaphore_t importD3D11FenceFromKMTHandle (HANDLE handle)
cudaExternalSemaphore_t extSem = NULL;
cudaExternalSemaphoreHandleDesc desc = {};

memset(&desc, 0, sizeof(desc));

desc.type = cudaExternalSemaphoreHandleTypeKeyedMutexKmt;
desc.handle.win32.handle = handle;

cudaImportExternalSemaphore(&extSem, &desc);

// Input parameter 'handle' should be closed if it's not needed anymore
CloseHandle(handle);

return extSem;

An imported Direct3D 11 fence object can be signaled as shown below. Signaling such a fence object
sets its value to the one specified. The corresponding wait that waits on this signal must be issued in
Direct3D 11. Additionally, the wait that waits on this signal must be issued after this signal has been
issued.

void signalExternalSemaphore(cudaExternalSemaphore_t extSem, unsigned long long value,
— cudaStream_t stream) {
cudaExternalSemaphoreSignalParams params = {};

memset (&params, 0, sizeof(params));
params.params.fence.value = value;

cudaSignalExternalSemaphoresAsync(&extSem, &params, 1, stream);

}

An imported Direct3D 11 fence object can be waited on as shown below. Waiting on such a fence
object waits until its value becomes greater than or equal to the specified value. The corresponding
signal that this wait is waiting on must be issued in Direct3D 11. Additionally, the signal must be issued
before this wait can be issued.

void waitExternalSemaphore(cudaExternalSemaphore_t extSem, unsigned long long value,
—.cudaStream_t stream) {
cudaExternalSemaphoreWaitParams params = {};

(continues on next page)
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memset (&params, 0, sizeof(params));

params.params.fence.value = value;

cudaWaitExternalSemaphoresAsync(&extSem, &params, 1, stream);

}

An imported Direct3D 11 keyed mutex object can be signaled as shown below. Signaling such a keyed
mutex object by specifying a key value releases the keyed mutex for that value. The corresponding
wait that waits on this signal must be issued in Direct3D 11 with the same key value. Additionally, the
Direct3D 11 wait must be issued after this signal has been issued.

void signalExternalSemaphore(cudaExternalSemaphore_t extSem, unsigned long long key,
—.cudaStream_t stream) {
cudaExternalSemaphoreSignalParams params = {};

memset (&params, 0, sizeof(params));
params.params.keyedmutex.key = key;

cudaSignalExternalSemaphoresAsync(&extSem, &params, 1, stream);

}

An imported Direct3D 11 keyed mutex object can be waited on as shown below. A timeout value in
milliseconds is needed when waiting on such a keyed mutex. The wait operation waits until the keyed
mutex value is equal to the specified key value or until the timeout has elapsed. The timeout interval
can also be an infinite value. In case an infinite value is specified the timeout never elapses. The
windows INFINITE macro must be used to specify an infinite timeout. The corresponding signal that
this wait is waiting on must be issued in Direct3D 11. Additionally, the Direct3D 11 signal must be
issued before this wait can be issued.

void waitExternalSemaphore(cudaExternalSemaphore_t extSem, unsigned long long key,
—unsigned int timeoutMs, cudaStream_t stream) {
cudaExternalSemaphoreWaitParams params = {};

memset (&params, 0, sizeof(params));

params.params.keyedmutex.key = key;
params.params.keyedmutex.timeoutMs = timeoutMs;

cudaWaitExternalSemaphoresAsync(&extSem, &params, 1, stream);

NvSciBuf and NvSciSync are interfaces developed for serving the following purposes:
NvSciBuf: Allows applications to allocate and exchange buffers in memory
NvSciSync: Allows applications to manage synchronization objects at operation boundaries

More details on these interfaces are available at:
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For allocating an NvSciBuf object compatible with a given CUDA device, the corresponding GPU id
must be set with NvSciBufGeneralAttrKey_Gpuld in the NvSciBuf attribute list as shown below.
Optionally, applications can specify the following attributes -

NvSciBufGeneralAttrKey_NeedCpuAccess: Specifies if CPU access is required for the buffer

NvSciBufRawBufferAttrKey_Align: Specifies the alignment requirement of NvS-
ciBufType_RawBuffer

NvSciBufGeneralAttrKey_RequiredPerm: Different access permissions can be configured
for different UMDs per NvSciBuf memory object instance. For example, to provide the GPU with
read-only access permissions to the buffer, create a duplicate NvSciBuf object using NvSciBu-
fObjDupWithReducePerm() with NvSciBufAccessPerm_Readonly as the input parameter.
Then import this newly created duplicate object with reduced permission into CUDA as shown

NvSciBufGeneralAttrKey_EnableGpuCache: To control GPU L2 cacheability

NvSciBufGeneralAttrKey_EnableGpuCompression: To specify GPU compression

Note: For more details on these attributes and their valid input options, refer to NvSciBuf Documen-
tation.

The following code snippet illustrates their sample usage.

NvSciBufObj createNvSciBufObject()
// Raw Buffer Attributes for CUDA
NvSciBufType bufType = NvSciBufType_RawBuffer;
uint64_t rawsize = SIZE;
uint64_t align = 0;
bool cpuaccess_flag = true;
NvSciBufAttrValAccessPerm perm = NvSciBufAccessPerm_ReadWrite;

NvSciRmGpuId gpuid[] ={};
CUuuid uuid;
cuDeviceGetUuid(&uuid, dev));

memcpy (&gpuid[0].bytes, &uuid.bytes, sizeof(uuid.bytes));

// Disable cache on dev

NvSciBufAttrValGpuCache gpuCache[] = {{gpuid[@], false}};

NvSciBufAttrValGpuCompression gpuCompression[] = {{gpuid[@],
—NvSciBufCompressionType_GenericCompressible}};

// Fill in values

NvSciBufAttrKeyValuePair rawbuffattrs[] = {
NvSciBufGeneralAttrKey_Types, &bufType, sizeof(bufType) },
NvSciBufRawBufferAttrKey_Size, &rawsize, sizeof(rawsize) },
NvSciBufRawBufferAttrKey_Align, &align, sizeof(align) },
NvSciBufGeneralAttrKey_NeedCpuAccess, &cpuaccess_flag, sizeof(cpuaccess_
—flag) }
NvSciBufGeneralAttrKey_RequiredPerm, &perm, sizeof(perm) },
NvSciBufGeneralAttrKey_Gpuld, &gpuid, sizeof(gpuid) },
NvSciBufGeneralAttrKey_EnableGpuCache &gpuCache, sizeof(gpuCache) },
NvSciBufGeneralAttrKey_EnableGpuCompression &gpuCompression,
puCompression) }

Q A A A A s A A A A

—sizeof(

}s

(continues on next page)
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// Create list by setting attributes
err = NvSciBufAttrListSetAttrs(attrListBuffer, rawbuffattrs,
sizeof(rawbuffattrs)/sizeof (NvSciBufAttrKeyValuePair));

NvSciBufAttrListCreate(NvSciBufModule, &attrListBuffer);

// Reconcile And Allocate

NvSciBufAttrListReconcile(&attrListBuffer, 1, &attrListReconciledBuffer,
&attrListConflictBuffer)

NvSciBufObjAlloc(attrListReconciledBuffer, &bufferObjRaw);

return bufferObjRaw;

}

NvSciBufObj bufferObjRo; // Readonly NvSciBuf memory obj

// Create a duplicate handle to the same memory buffer with reduced permissions
NvSciBufObjDupWithReducePerm(bufferObjRaw, NvSciBufAccessPerm_Readonly, &bufferObjRo);
return bufferObjRo;

The allocated NvSciBuf memory object can be imported in CUDA using the NvSciBufObj handle as
shown below. Application should query the allocated NvSciBufObj for attributes required for filling
CUDA External Memory Descriptor. Note that the attribute list and NvSciBuf objects should be main-
tained by the application. If the NvSciBuf object imported into CUDA is also mapped by other drivers,
then based on NvSciBufGeneralAttrKey_GpuSwNeedCacheCoherency output attribute value the
application must use NvSciSync objects (Refer Importing Synchronization Objects) as appropriate bar-
riers to maintain coherence between CUDA and the other drivers.

Note: For more details on how to allocate and maintain NvSciBuf objects refer to NvSciBuf API Doc-
umentation.

cudaExternalMemory_t importNvSciBufObject (NvSciBufObj bufferObjRaw) {

JFERFERARRERAAR, Query NvSciBuf Object **#*kkkkkkktk*/
NvSciBufAttrKeyValuePair bufattrs[] = {
{ NvSciBufRawBufferAttrKey_Size, NULL, 0 },
{ NvSciBufGeneralAttrKey_GpuSwNeedCacheCoherency, NULL, 0 },
{ NvSciBufGeneralAttrKey_EnableGpuCompression, NULL, © }
%
NvSciBufAttrListGetAttrs(retList, bufattrs,
sizeof (bufattrs)/sizeof(NvSciBufAttrKeyValuePair)));
ret_size = *(static_cast<const uint64_t*>(bufattrs[0].value));

// Note cache and compression are per GPU attributes, so read values for specific
—gpu by comparing UUID

// Read cacheability granted by NvSciBuf
int numGpus = bufattrs[1].len / sizeof(NvSciBufAttrValGpuCache);
NvSciBufAttrValGpuCache[] cacheVal = (NvSciBufAttrValGpuCache *)bufattrs[1].value;
bool ret_cacheVal;
for (int i = 0; i < numGpus; i++) {

if (memcmp(gpuid[0].bytes, cacheVal[i].gpuld.bytes, sizeof(CUuuid)) == 0) {

ret_cacheVal = cacheVal[i].cacheability);
}

¥

// Read compression granted by NvSciBuf
(continues on next page)
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numGpus = bufattrs[2].len / sizeof(NvSciBufAttrValGpuCompression);
NvSciBufAttrValGpuCompression[] compVal = (NvSciBufAttrValGpuCompression

~*)bufattrs[2].value;
NvSciBufCompressionType ret_compVal;
for (int i = 0; i < numGpus; i++) {
if (memcmp(gpuid[0].bytes, compVal[i].gpuIld.bytes, sizeof(CUuuid)) == 0) {
ret_compVal = compVal[i].compressionType);
}

}

JREFF IR R KRR NyScIBUF Registration With CUDA ***#*xkkkkkxxx/

// Fill up CUDA_EXTERNAL_MEMORY_HANDLE_DESC
cudaExternalMemoryHandleDesc memHandleDesc;

memset (&memHandleDesc, 0, sizeof(memHandleDesc));

memHandleDesc.type = cudaExternalMemoryHandleTypeNvSciBuf;
memHandleDesc.handle.nvSciBufObject = bufferObjRaw;

// Set the NvSciBuf object with required access permissions in this step
memHandleDesc.handle.nvSciBufObject = bufferObjRo;

memHandleDesc.size = ret_size;

cudaImportExternalMemory(&extMemBuffer, &memHandleDesc);

return extMemBuffer;

6.2.16.5.2 Mapping Buffers onto Imported Memory Objects

A device pointer can be mapped onto an imported memory object as shown below. The offset and size
of the mapping can be filled as per the attributes of the allocated NvSciBufObj. All mapped device
pointers must be freed using cudaFree().

void * mapBufferOntoExternalMemory(cudaExternalMemory_t extMem, unsigned long long
—offset, unsigned long long size) {

void *ptr = NULL;

cudaExternalMemoryBufferDesc desc = {};

memset (&desc, 0, sizeof(desc));

desc.offset = offset;
desc.size = size;

cudaExternalMemoryGetMappedBuffer(&ptr, extMem, &desc);

// Note: 'ptr' must eventually be freed using cudaFree()
return ptr;

6.2. CUDA Runtime 129



CUDA C++ Programming Guide, Release 12.4

A CUDA mipmapped array can be mapped onto an imported memory object as shown below. The
offset, dimensions and format can be filled as per the attributes of the allocated NvSciBufObj. All
mapped mipmapped arrays must be freed using cudaFreeMipmappedArray(). The following code
sample shows how to convert NvSciBuf attributes into the corresponding CUDA parameters when
mapping mipmapped arrays onto imported memory objects.

Note: The number of mip levels must be 1.

cudaMipmappedArray_t mapMipmappedArrayOntoExternalMemory(cudaExternalMemory_t extMem,
—unsigned long long offset, cudaChannelFormatDesc *formatDesc, cudaExtent *extent,
—unsigned int flags, unsigned int numLevels) {

cudaMipmappedArray_t mipmap = NULL;

cudaExternalMemoryMipmappedArrayDesc desc = {};

memset (&desc, 0, sizeof(desc));

desc.offset = offset;
desc.formatDesc = *formatDesc;
desc.extent = *extent;
desc.flags = flags;
desc.numLevels = numlLevels;

// Note: 'mipmap' must eventually be freed using cudaFreeMipmappedArray()
cudaExternalMemoryGetMappedMipmappedArray(&mipmap, extMem, &desc);

return mipmap;

NvSciSync attributes that are compatible with a given CUDA device can be generated using cudaDe-
viceGetNvSciSyncAttributes(). The returned attribute list can be used to create a NvSciSyn-
cObj that is guaranteed compatibility with a given CUDA device.

NvSciSyncObj createNvSciSyncObject()
NvSciSyncObj nvSciSyncObj
int cudaDev@ = 0;
int cudaDevl = 1;

NvSciSyncAttrList signalerAttrList = NULL;
NvSciSyncAttrList waiterAttrList = NULL;
NvSciSyncAttrList reconciledlList = NULL;

NvSciSyncAttrList newConflictlList = NULL;

NvSciSyncAttrListCreate(module, &signalerAttrList);
NvSciSyncAttrListCreate(module, &waiterAttrList);
NvSciSyncAttrList unreconciledList[2] = {NULL, NULL};
unreconciledList[0] = signalerAttrList;
unreconciledList[1] = waiterAttrList;

cudaDeviceGetNvSciSyncAttributes(signalerAttrList, cudaDev®, CUDA_NVSCISYNC_ATTR_
. SIGNAL) ;

(continues on next page)
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cudaDeviceGetNvSciSyncAttributes(waiterAttrList, cudaDev1, CUDA_NVSCISYNC_ATTR_
<WAIT);

NvSciSyncAttrListReconcile(unreconciledlList, 2, &reconciledlList, &
—newConflictlList);

NvSciSyncObjAlloc(reconciledList, &nvSciSyncObj);

return nvSciSyncObj;

}

An NvSciSync object (created as above) can be imported into CUDA using the NvSciSyncObj handle as
shown below. Note that ownership of the NvSciSyncObj handle continues to lie with the application
even after it is imported.

cudaExternalSemaphore_t importNvSciSyncObject(void* nvSciSyncObj) {
cudaExternalSemaphore_t extSem = NULL;
cudaExternalSemaphoreHandleDesc desc = {};

memset (&desc, 0, sizeof(desc));

desc.type = cudaExternalSemaphoreHandleTypeNvSciSync;
desc.handle.nvSciSyncObj = nvSciSyncObj;

cudaImportExternalSemaphore(&extSem, &desc);

// Deleting/Freeing the nvSciSyncObj beyond this point will lead to undefined
—behavior in CUDA

return extSem;

An imported NvSciSyncObj object can be signaled as outlined below. Signaling NvSciSync backed
semaphore object initializes the fence parameter passed as input. This fence parameter is waited
upon by a wait operation that corresponds to the aforementioned signal. Additionally, the wait that
waits on this signal must be issued after this signal has been issued. If the flags are set to cudaExter-
nalSemaphoreSignalSkipNvSciBufMemSync then memory synchronization operations (over all the
imported NvSciBuf in this process) that are executed as a part of the signal operation by default are
skipped. When NvsciBufGeneralAttrKey_GpuSwNeedCacheCoherency is FALSE, this flag should
be set.

void signalExternalSemaphore(cudaExternalSemaphore_t extSem, cudaStream_t stream,
—void *fence) {
cudaExternalSemaphoreSignalParams signalParams = {};

memset (&signalParams, 0, sizeof(signalParams));

signalParams.params.nvSciSync.fence = (void*)fence;
signalParams.flags = ©; //OR cudaExternalSemaphoreSignalSkipNvSciBufMemSync

cudaSignalExternalSemaphoresAsync(&extSem, &signalParams, 1, stream);
(continues on next page)
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}

An imported NvSciSyncObj object can be waited upon as outlined below. Waiting on NvSciSync
backed semaphore object waits until the input fence parameter is signaled by the corresponding sig-
naler. Additionally, the signal must be issued before the wait can be issued. If the flags are set to cud-
aExternalSemaphoreWaitSkipNvSciBufMemSync then memory synchronization operations (over
all the imported NvSciBuf in this process) that are executed as a part of the signal operation by de-
fault are skipped. When NvsciBufGeneralAttrKey_GpuSwNeedCacheCoherency is FALSE, this flag
should be set.

void waitExternalSemaphore(cudaExternalSemaphore_t extSem, cudaStream_t stream, void
~*fence) {
cudaExternalSemaphoreWaitParams waitParams = {};

memset (&waitParams, 0, sizeof(waitParams));

waitParams.params.nvSciSync.fence = (void*)fence;
waitParams.flags = 0; //0OR cudaExternalSemaphoreWaitSkipNvSciBufMemSync

cudaWaitExternalSemaphoresAsync(&extSem, &waitParams, 1, stream);

There are two version numbers that developers should care about when developing a CUDA application:
The compute capability that describes the general specifications and features of the compute device
(see ) and the version of the CUDA driver APl that describes the features supported
by the driver APl and runtime.

The version of the driver APl is defined in the driver header file as CUDA_VERSION. It allows developers
to check whether their application requires a newer device driver than the one currently installed.
This is important, because the driver APl is backward compatible, meaning that applications, plug-ins,
and libraries (including the CUDA runtime) compiled against a particular version of the driver API will
continue to work on subsequent device driver releases as illustrated in . The driver API is
not forward compatible, which means that applications, plug-ins, and libraries (including the CUDA
runtime) compiled against a particular version of the driver API will not work on previous versions of
the device driver.

It is important to note that there are limitations on the mixing and matching of versions that is sup-
ported:

Since only one version of the CUDA Driver can be installed at a time on a system, the installed
driver must be of the same or higher version than the maximum Driver API version against which
any application, plug-ins, or libraries that must run on that system were built.

All plug-ins and libraries used by an application must use the same version of the CUDA Runtime
unless they statically link to the Runtime, in which case multiple versions of the runtime can
coexist in the same process space. Note that if nvcc is used to link the application, the static
version of the CUDA Runtime library will be used by default, and all CUDA Toolkit libraries are
statically linked against the CUDA Runtime.
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» All plug-ins and libraries used by an application must use the same version of any libraries that
use the runtime (such as cuFFT, cuBLAS, ...) unless statically linking to those libraries.

Apps, Apps, Apps,
Libs & Libs & Libs &
Plug-ins Plug-ins Plug-ins .
1.0 1.10river 20
Driver Driver .
Compatible Incompatible

_..._

Figure 25: The Driver API Is Backward but Not Forward Compatible

For Tesla GPU products, CUDA 10 introduced a new forward-compatible upgrade path for the user-
mode components of the CUDA Driver. This feature is described in CUDA Compatibility. The require-
ments on the CUDA Driver version described here apply to the version of the user-mode components.

6.4. Compute Modes

On Tesla solutions running Windows Server 2008 and later or Linux, one can set any device in a system
in one of the three following modes using NVIDIA’s System Management Interface (nvidia-smi), which
is a tool distributed as part of the driver:

» Default compute mode: Multiple host threads can use the device (by calling cudaSetDevice()
on this device, when using the runtime API, or by making current a context associated to the
device, when using the driver API) at the same time.

» Exclusive-process compute mode: Only one CUDA context may be created on the device across
all processes in the system. The context may be current to as many threads as desired within
the process that created that context.

» Prohibited compute mode: No CUDA context can be created on the device.

This means, in particular, that a host thread using the runtime API without explicitly calling cudaSet-
Device() might be associated with a device other than device Oif device O turns out to be in prohibited
mode or in exclusive-process mode and used by another process. cudaSetValidDevices() can be
used to set a device from a prioritized list of devices.

Note also that, for devices featuring the Pascal architecture onwards (compute capability with major
revision number 6 and higher), there exists support for Compute Preemption. This allows compute
tasks to be preempted at instruction-level granularity, rather than thread block granularity as in prior
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Maxwell and Kepler GPU architecture, with the benefit that applications with long-running kernels can
be prevented from either monopolizing the system or timing out. However, there will be context switch
overheads associated with Compute Preemption, which is automatically enabled on those devices for
which support exists. The individual attribute query function cudaDeviceGetAttribute() with the
attribute cudaDevAttrComputePreemptionSupported canbe usedto determineif the device in use
supports Compute Preemption. Users wishing to avoid context switch overheads associated with dif-
ferent processes can ensure that only one process is active on the GPU by selecting exclusive-process
mode.

Applications may query the compute mode of a device by checking the computeMode device property
(see ).

GPUs that have a display output dedicate some DRAM memory to the so-called primary surface, which
is used to refresh the display device whose output is viewed by the user. When users initiate a mode
switch of the display by changing the resolution or bit depth of the display (using NVIDIA control
panel or the Display control panel on Windows), the amount of memory needed for the primary sur-
face changes. For example, if the user changes the display resolution from 1280x1024x32-bit to
1600x1200x32-bit, the system must dedicate 7.68 MB to the primary surface rather than 5.24 MB.
(Full-screen graphics applications running with anti-aliasing enabled may require much more display
memory for the primary surface.) On Windows, other events that may initiate display mode switches
include launching a full-screen DirectX application, hitting Alt+Tab to task switch away from a full-
screen DirectX application, or hitting Ctrl+Alt+Del to lock the computer.

If a mode switch increases the amount of memory needed for the primary surface, the system may
have to cannibalize memory allocations dedicated to CUDA applications. Therefore, a mode switch
results in any call to the CUDA runtime to fail and return an invalid context error.

Using NVIDIA’s System Management Interface (nvidia-smi), the Windows device driver can be put in
TCC (Tesla Compute Cluster) mode for devices of the Tesla and Quadro Series.

TCC mode removes support for any graphics functionality.
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The NVIDIA GPU architecture is built around a scalable array of multithreaded Streaming Multipro-
cessors (SMs). When a CUDA program on the host CPU invokes a kernel grid, the blocks of the grid
are enumerated and distributed to multiprocessors with available execution capacity. The threads of a
thread block execute concurrently on one multiprocessor, and multiple thread blocks can execute con-
currently on one multiprocessor. As thread blocks terminate, new blocks are launched on the vacated
multiprocessors.

A multiprocessor is designed to execute hundreds of threads concurrently. To manage such a large
number of threads, it employs a unique architecture called SIMT (Single-Instruction, Multiple-Thread)
that is described in . The instructions are pipelined, leveraging instruction-level par-
allelism within a single thread, as well as extensive thread-level parallelism through simultaneous hard-
ware multithreading as detailed in . Unlike CPU cores, they are issued in order
and there is no branch prediction or speculative execution.

and describe the architecture features of the streaming
multiprocessor that are common to all devices. , ,and
provide the specifics for devices of compute capabilities 5.x, 6.x, and 7.x re-

spectively.

The NVIDIA GPU architecture uses a little-endian representation.

The multiprocessor creates, manages, schedules, and executes threads in groups of 32 parallel threads
called warps. Individual threads composing a warp start together at the same program address, but
they have their own instruction address counter and register state and are therefore free to branch and
execute independently. The term warp originates from weaving, the first parallel thread technology. A
half-warp is either the first or second half of a warp. A quarter-warp is either the first, second, third,
or fourth quarter of a warp.

When a multiprocessor is given one or more thread blocks to execute, it partitions them into warps
and each warp gets scheduled by a warp scheduler for execution. The way a block is partitioned into
warps is always the same; each warp contains threads of consecutive, increasing thread IDs with the
first warp containing thread 0. describes how thread IDs relate to thread indices in
the block.

A warp executes one common instruction at a time, so full efficiency is realized when all 32 threads of
a warp agree on their execution path. If threads of a warp diverge via a data-dependent conditional
branch, the warp executes each branch path taken, disabling threads that are not on that path. Branch
divergence occurs only within a warp; different warps execute independently regardless of whether
they are executing common or disjoint code paths.
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The SIMT architecture is akin to SIMD (Single Instruction, Multiple Data) vector organizations in that a
single instruction controls multiple processing elements. A key difference is that SIMD vector organi-
zations expose the SIMD width to the software, whereas SIMT instructions specify the execution and
branching behavior of a single thread. In contrast with SIMD vector machines, SIMT enables program-
mers to write thread-level parallel code for independent, scalar threads, as well as data-parallel code
for coordinated threads. For the purposes of correctness, the programmer can essentially ignore the
SIMT behavior; however, substantial performance improvements can be realized by taking care that
the code seldom requires threads in a warp to diverge. In practice, this is analogous to the role of cache
lines in traditional code: Cache line size can be safely ignored when designing for correctness but must
be considered in the code structure when designing for peak performance. Vector architectures, on
the other hand, require the software to coalesce loads into vectors and manage divergence manually.

Prior to NVIDIA Volta, warps used a single program counter shared amongst all 32 threads in the warp
together with an active mask specifying the active threads of the warp. As a result, threads from the
same warp in divergent regions or different states of execution cannot signal each other or exchange
data, and algorithms requiring fine-grained sharing of data guarded by locks or mutexes can easily
lead to deadlock, depending on which warp the contending threads come from.

Starting with the NVIDIA Volta architecture, Independent Thread Scheduling allows full concurrency
between threads, regardless of warp. With Independent Thread Scheduling, the GPU maintains ex-
ecution state per thread, including a program counter and call stack, and can yield execution at a
per-thread granularity, either to make better use of execution resources or to allow one thread to wait
for data to be produced by another. A schedule optimizer determines how to group active threads
from the same warp together into SIMT units. This retains the high throughput of SIMT execution
as in prior NVIDIA GPUs, but with much more flexibility: threads can now diverge and reconverge at
sub-warp granularity.

Independent Thread Scheduling can lead to a rather different set of threads participating in the ex-

ecuted code than intended if the developer made assumptions about warp-synchronicity of previ-

ous hardware architectures. In particular, any warp-synchronous code (such as synchronization-free,

intra-warp reductions) should be revisited to ensure compatibility with NVIDIA Volta and beyond. See
for further details.

Note: The threads of a warp that are participating in the current instruction are called the active
threads, whereas threads not on the current instruction are inactive (disabled). Threads can be inactive
for a variety of reasons including having exited earlier than other threads of their warp, having taken a
different branch path than the branch path currently executed by the warp, or being the last threads
of a block whose number of threads is not a multiple of the warp size.

If a non-atomic instruction executed by a warp writes to the same location in global or shared memory
for more than one of the threads of the warp, the number of serialized writes that occur to that loca-
tion varies depending on the compute capability of the device (see ,

,and ), and which thread performs the final write is undefined.

If an instruction executed by a warp reads, modifies, and writes to the same location in global
memory for more than one of the threads of the warp, each read/modify/write to that location occurs
and they are all serialized, but the order in which they occur is undefined.

2 The term warp-synchronous refers to code that implicitly assumes threads in the same warp are synchronized at every
instruction.

136 Chapter 7. Hardware Implementation


index.html#compute-capability-7-x
index.html#compute-capability-5-x
index.html#compute-capability-6-x
index.html#compute-capability-6-x
index.html#compute-capability-7-x
index.html#atomic-functions

CUDA C++ Programming Guide, Release 12.4

The execution context (program counters, registers, and so on) for each warp processed by a mul-
tiprocessor is maintained on-chip during the entire lifetime of the warp. Therefore, switching from
one execution context to another has no cost, and at every instruction issue time, a warp scheduler
selects a warp that has threads ready to execute its next instruction (the of the warp)
and issues the instruction to those threads.

In particular, each multiprocessor has a set of 32-bit registers that are partitioned among the warps,
and a parallel data cache or shared memory that is partitioned among the thread blocks.

The number of blocks and warps that can reside and be processed together on the multiprocessor
for a given kernel depends on the amount of registers and shared memory used by the kernel and the
amount of registers and shared memory available on the multiprocessor. There are also a maximum
number of resident blocks and a maximum number of resident warps per multiprocessor. These limits
as well the amount of registers and shared memory available on the multiprocessor are a function of
the compute capability of the device and are given in . If there are not enough
registers or shared memory available per multiprocessor to process at least one block, the kernel will
fail to launch.

The total number of warps in a block is as follows:

H T
ceil (W—, 1)

T is the number of threads per block,
Wsize is the warp size, which is equal to 32,
ceil(x, y) is equal to x rounded up to the nearest multiple of y.

The total number of registers and total amount of shared memory allocated for a block are docu-
mented in the CUDA Occupancy Calculator provided in the CUDA Toolkit.
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Chapter 8. Performance Guidelines

8.1. Overall Performance Optimization
Strategies

Performance optimization revolves around four basic strategies:
» Maximize parallel execution to achieve maximum utilization;
» Optimize memory usage to achieve maximum memory throughput;
» Optimize instruction usage to achieve maximum instruction throughput;
» Minimize memory thrashing.

Which strategies will yield the best performance gain for a particular portion of an application depends
on the performance limiters for that portion; optimizing instruction usage of a kernel that is mostly
limited by memory accesses will not yield any significant performance gain, for example. Optimization
efforts should therefore be constantly directed by measuring and monitoring the performance lim-
iters, for example using the CUDA profiler. Also, comparing the floating-point operation throughput
or memory throughput—whichever makes more sense—of a particular kernel to the corresponding
peak theoretical throughput of the device indicates how much room for improvement there is for the
kernel.

8.2. Maximize Utilization

To maximize utilization the application should be structured in a way that it exposes as much paral-
lelism as possible and efficiently maps this parallelism to the various components of the system to
keep them busy most of the time.
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At a high level, the application should maximize parallel execution between the host, the devices, and
the bus connecting the host to the devices, by using asynchronous functions calls and streams as
described in . It should assign to each processor the type of work
it does best: serial workloads to the host; parallel workloads to the devices.

For the parallel workloads, at points in the algorithm where parallelism is broken because some threads
need to synchronize in order to share data with each other, there are two cases: Either these threads
belong to the same block, in which case they should use __syncthreads() and share data through
shared memory within the same kernel invocation, or they belong to different blocks, in which case
they must share data through global memory using two separate kernel invocations, one for writing
to and one for reading from global memory. The second case is much less optimal since it adds the
overhead of extra kernel invocations and global memory traffic. Its occurrence should therefore be
minimized by mapping the algorithm to the CUDA programming model in such a way that the compu-
tations that require inter-thread communication are performed within a single thread block as much
as possible.

At a lower level, the application should maximize parallel execution between the multiprocessors of a
device.

Multiple kernels can execute concurrently on a device, so maximum utilization can also be achieved
by using streams to enable enough kernels to execute concurrently as described in

At an even lower level, the application should maximize parallel execution between the various func-
tional units within a multiprocessor.

As described in , @ GPU multiprocessor primarily relies on thread-level par-
allelism to maximize utilization of its functional units. Utilization is therefore directly linked to the
number of resident warps. At every instruction issue time, a warp scheduler selects an instruction
that is ready to execute. This instruction can be another independent instruction of the same warp,
exploiting instruction-level parallelism, or more commonly an instruction of another warp, exploiting
thread-level parallelism. If a ready to execute instruction is selected it is issued to the threads
of the warp. The number of clock cycles it takes for a warp to be ready to execute its next instruction
is called the latency, and full utilization is achieved when all warp schedulers always have some instruc-
tion to issue for some warp at every clock cycle during that latency period, or in other words, when
latency is completely “hidden”. The number of instructions required to hide a latency of L clock cy-
cles depends on the respective throughputs of these instructions (see for the
throughputs of various arithmetic instructions). If we assume instructions with maximum throughput,
it is equal to:

4l for devices of compute capability 5.x, 6.1, 6.2, 7.x and 8.x since for these devices, a multipro-
cessor issues one instruction per warp over one clock cycle for four warps at a time, as mentioned
in

2L for devices of compute capability 6.0 since for these devices, the two instructions issued every
cycle are one instruction for two different warps.
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The most common reason a warp is not ready to execute its next instruction is that the instruction’s
input operands are not available yet.

If all input operands are registers, latency is caused by register dependencies, i.e., some of the input
operands are written by some previous instruction(s) whose execution has not completed yet. In this
case, the latency is equal to the execution time of the previous instruction and the warp schedulers
must schedule instructions of other warps during that time. Execution time varies depending on the
instruction. On devices of compute capability 7.x, for most arithmetic instructions, it is typically 4
clock cycles. This means that 16 active warps per multiprocessor (4 cycles, 4 warp schedulers) are
required to hide arithmetic instruction latencies (assuming that warps execute instructions with max-
imum throughput, otherwise fewer warps are needed). If the individual warps exhibit instruction-level
parallelism, i.e. have multiple independent instructions in their instruction stream, fewer warps are
needed because multiple independent instructions from a single warp can be issued back to back.

If some input operand resides in off-chip memory, the latency is much higher: typically hundreds of
clock cycles. The number of warps required to keep the warp schedulers busy during such high la-
tency periods depends on the kernel code and its degree of instruction-level parallelism. In general,
more warps are required if the ratio of the number of instructions with no off-chip memory operands
(i.e., arithmetic instructions most of the time) to the number of instructions with off-chip memory
operands is low (this ratio is commonly called the arithmetic intensity of the program).

Another reason a warp is not ready to execute its next instruction is that it is waiting at some memory
fence ( ) or synchronization point ( ). A synchro-
nization point can force the multiprocessor to idle as more and more warps wait for other warps in the
same block to complete execution of instructions prior to the synchronization point. Having multiple
resident blocks per multiprocessor can help reduce idling in this case, as warps from different blocks
do not need to wait for each other at synchronization points.

The number of blocks and warps residing on each multiprocessor for a given kernel call depends
on the execution configuration of the call ( ), the memory resources of the
multiprocessor, and the resource requirements of the kernel as described in

Register and shared memory usage are reported by the compiler when compiling with the
--ptxas-options=-v option.

The total amount of shared memory required for a block is equal to the sum of the amount of statically
allocated shared memory and the amount of dynamically allocated shared memory.

The number of registers used by a kernel can have a significant impact on the number of resident
warps. For example, for devices of compute capability 6.x, if a kernel uses 64 registers and each block
has 512 threads and requires very little shared memory, then two blocks (i.e., 32 warps) can reside
on the multiprocessor since they require 2x512x64 registers, which exactly matches the number of
registers available on the multiprocessor. But as soon as the kernel uses one more register, only one
block (i.e., 16 warps) can be resident since two blocks would require 2x512x65 registers, which are
more registers than are available on the multiprocessor. Therefore, the compiler attempts to min-

imize register usage while keeping register spilling (see ) and the number
of instructions to a minimum. Register usage can be controlled using the maxrregcount compiler
option, the __launch_bounds__() qualifier as described in ,or the __maxnreg__()

qualifier as described in

The register file is organized as 32-bit registers. So, each variable stored in a register needs at least
one 32-bit register, for example, a double variable uses two 32-bit registers.

The effect of execution configuration on performance for a given kernel call generally depends on the
kernel code. Experimentation is therefore recommended. Applications can also parametrize execution
configurations based on register file size and shared memory size, which depends on the compute
capability of the device, as well as on the number of multiprocessors and memory bandwidth of the
device, all of which can be queried using the runtime (see reference manual).
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The number of threads per block should be chosen as a multiple of the warp size to avoid wasting
computing resources with under-populated warps as much as possible.

Several API functions exist to assist programmers in choosing thread block size and cluster size based
on register and shared memory requirements.

The occupancy calculator API, cudaOccupancyMaxActiveBlocksPerMultiprocessor, can
provide an occupancy prediction based on the block size and shared memory usage of a ker-
nel. This function reports occupancy in terms of the number of concurrent thread blocks per
multiprocessor.

Note that this value can be converted to other metrics. Multiplying by the number of warps
per block yields the number of concurrent warps per multiprocessor; further dividing con-
current warps by max warps per multiprocessor gives the occupancy as a percentage.

The occupancy-based launch configurator APIs, cudaOccupancyMaxPotentialBlockSize and
cudaOccupancyMaxPotentialBlockSizeVariableSMem, heuristically calculate an execution
configuration that achieves the maximum multiprocessor-level occupancy.

The occupancy calculator API, cudaOccupancyMaxActiveClusters, can provided occupancy
prediction based on the cluster size, block size and shared memory usage of a kernel. This func-
tion reports occupancy in terms of number of max active clusters of a given size on the GPU
present in the system.

The following code sample calculates the occupancy of MyKernel. It then reports the occupancy level
with the ratio between concurrent warps versus maximum warps per multiprocessor.

// Device code
__global__ void MyKernel(int *d, int *a, int *b)

{

}

int idx = threadIdx.x + blockIdx.x * blockDim.Xx;
d[idx] = a[idx] * b[idx];

// Host code

int

{

main()

int numBlocks; // Occupancy in terms of active blocks
int blockSize = 32;

// These variables are used to convert occupancy to warps
int device;

cudaDeviceProp prop;

int activeWarps;

int maxWarps;

cudaGetDevice(&device);
cudaGetDeviceProperties(&prop, device);

cudaOccupancyMaxActiveBlocksPerMultiprocessor (
&numBlocks,
MyKernel,
blockSize,
0);

(continues on next page)
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(continued from previous page)

activeWarps = numBlocks * blockSize / prop.warpSize;
maxWarps = prop.maxThreadsPerMultiProcessor / prop.warpSize;

std::cout << "Occupancy: " << (double)activeWarps / maxWarps * 100 << "%" <<
—std::endl;

return 0;

}

The following code sample configures an occupancy-based kernel launch of MyKernel according to
the user input.

// Device code
__global__ void MyKernel(int *array, int arrayCount)

{
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < arrayCount) {
array[idx] *= array[idx];
}
}

// Host code
int launchMyKernel(int *array, int arrayCount)

{
int blockSize; // The launch configurator returned block size
int minGridSize; // The minimum grid size needed to achieve the
// maximum occupancy for a full device
// launch
int gridSize; // The actual grid size needed, based on input
// size
cudaOccupancyMaxPotentialBlockSize(
&minGridSize,
&blockSize,
(void*)MyKernel,
0!
arrayCount) ;
// Round up according to array size
gridSize = (arrayCount + blockSize - 1) / blockSize;
MyKernel<<<gridSize, blockSize>>>(array, arrayCount);
cudaDeviceSynchronize();
// If interested, the occupancy can be calculated with
// cudaOccupancyMaxActiveBlocksPerMultiprocessor
return 0;
}

The following code sample shows how to use the cluster occupancy API to find the max number of
active clusters of a given size. Example code below calucaltes occupancy for cluster of size 2 and 128
threads per block.

Cluster size of 8 is forward compatible starting compute capability 9.0, except on GPU hardware or MIG
configurations which are too small to support 8 multiprocessors in which case the maximum cluster
size will be reduced. But it is recommended that the users query the maximum cluster size before
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launching a cluster kernel. Max cluster size can be queried using cudaOccupancyMaxPotential-
ClusterSize API.

{
cudalLaunchConfig_t config = {0};
config.gridDim = number_of_blocks;
config.blockDim = 128; // threads_per_block = 128
config.dynamicSmemBytes = dynamic_shared_memory_size;

cudaLaunchAttribute attribute[1];

attribute[0].id = cudalLaunchAttributeClusterDimension;
attribute[0].val.clusterDim.x = 2; // cluster_size = 2
attribute[0].val.clusterDim.y 1;
attribute[0].val.clusterDim.z = 1;

config.attrs = attribute;

config.numAttrs = 1;

int max_cluster_size = 0;
cudaOccupancyMaxPotentialClusterSize(&max_cluster_size, (void *)kernel, &config);

int max_active_clusters = 0;
cudaOccupancyMaxActiveClusters(&max_active_clusters, (void *)kernel, &config);

std::cout << "Max Active Clusters of size 2: " << max_active_clusters << std::endl;

}

The CUDA Nsight Compute User Interface also provides a standalone occupancy calculator and launch
configurator implementation in <CUDA_Toolkit_Path>/include/cuda_occupancy.h for any use
cases that cannot depend on the CUDA software stack. The Nsight Compute version of the occu-
pancy calculator is particularly useful as a learning tool that visualizes the impact of changes to the
parameters that affect occupancy (block size, registers per thread, and shared memory per thread).

The first step in maximizing overall memory throughput for the application is to minimize data trans-
fers with low bandwidth.

That means minimizing data transfers between the host and the device, as detailed in
, since these have much lower bandwidth than data transfers between global
memory and the device.

That also means minimizing data transfers between global memory and the device by maximizing use
of on-chip memory: shared memory and caches (i.e., L1 cache and L2 cache available on devices of
compute capability 2.x and higher, texture cache and constant cache available on all devices).

Shared memory is equivalent to a user-managed cache: The application explicitly allocates and ac-
cesses it. As illustrated in , a typical programming pattern is to stage data coming from
device memory into shared memory; in other words, to have each thread of a block:

Load data from device memory to shared memory,

Synchronize with all the other threads of the block so that each thread can safely read shared
memory locations that were populated by different threads,

Process the data in shared memory,
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Synchronize again if necessary to make sure that shared memory has been updated with the
results,

Write the results back to device memory.

For some applications (for example, for which global memory access patterns are data-dependent),
a traditional hardware-managed cache is more appropriate to exploit data locality. As mentioned in

, and , for devices of compute
capability 7.x, 8.x and 9.0, the same on-chip memory is used for both L1 and shared memory, and how
much of it is dedicated to L1 versus shared memory is configurable for each kernel call.

The throughput of memory accesses by a kernel can vary by an order of magnitude depending on ac-
cess pattern for each type of memory. The next step in maximizing memory throughput is therefore
to organize memory accesses as optimally as possible based on the optimal memory access patterns
described in . This optimization is especially important for global memory
accesses as global memory bandwidth is low compared to available on-chip bandwidths and arith-
metic instruction throughput, so non-optimal global memory accesses generally have a high impact
on performance.

Applications should strive to minimize data transfer between the host and the device. One way to
accomplish this is to move more code from the host to the device, even if that means running kernels
that do not expose enough parallelism to execute on the device with full efficiency. Intermediate data
structures may be created in device memory, operated on by the device, and destroyed without ever
being mapped by the host or copied to host memory.

Also, because of the overhead associated with each transfer, batching many small transfers into a
single large transfer always performs better than making each transfer separately.

On systems with a front-side bus, higher performance for data transfers between host and device is
achieved by using page-locked host memory as described in

In addition, when using mapped page-locked memory ( ), there is no need to allocate
any device memory and explicitly copy data between device and host memory. Data transfers are
implicitly performed each time the kernel accesses the mapped memory. For maximum performance,
these memory accesses must be coalesced as with accesses to global memory (see

). Assuming that they are and that the mapped memory is read or written only once, using
mapped page-locked memory instead of explicit copies between device and host memory can be a
win for performance.

On integrated systems where device memory and host memory are physically the same, any copy
between host and device memory is superfluous and mapped page-locked memory should be used
instead. Applications may query a device is integrated by checking that the integrated device prop-
erty (see )is equal to 1.
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Aninstruction that accesses addressable memory (i.e., global, local, shared, constant, or texture mem-
ory) might need to be re-issued multiple times depending on the distribution of the memory addresses
across the threads within the warp. How the distribution affects the instruction throughput this way
is specific to each type of memory and described in the following sections. For example, for global
memory, as a general rule, the more scattered the addresses are, the more reduced the throughput is.

Global Memory

Global memory resides in device memory and device memory is accessed via 32-, 64-, or 128-byte
memory transactions. These memory transactions must be naturally aligned: Only the 32-, 64-, or 128-
byte segments of device memory that are aligned to their size (i.e., whose first address is a multiple
of their size) can be read or written by memory transactions.

When a warp executes an instruction that accesses global memory, it coalesces the memory accesses
of the threads within the warp into one or more of these memory transactions depending on the size
of the word accessed by each thread and the distribution of the memory addresses across the threads.
In general, the more transactions are necessary, the more unused words are transferred in addition to
the words accessed by the threads, reducing the instruction throughput accordingly. For example, if a
32-byte memory transaction is generated for each thread’s 4-byte access, throughput is divided by 8.

How many transactions are necessary and how much throughput is ultimately affected varies with the
compute capability of the device. , ,

, and give more details on how global memory
accesses are handled for various compute capabilities.

To maximize global memory throughput, it is therefore important to maximize coalescing by:

Following the most optimal access patterns based on ,
) , and

Using data types that meet the size and alignment requirement detailed in the section Size and
Alignment Requirement below,

Padding data in some cases, for example, when accessing a two-dimensional array as described
in the section Two-Dimensional Arrays below.

Size and Alignment Requirement

Global memory instructions support reading or writing words of size equal to 1, 2, 4, 8, or 16 bytes.
Any access (via a variable or a pointer) to data residing in global memory compiles to a single global
memory instruction if and only if the size of the data type is 1, 2, 4, 8, or 16 bytes and the data is
naturally aligned (i.e., its address is a multiple of that size).

If this size and alignment requirement is not fulfilled, the access compiles to multiple instructions
with interleaved access patterns that prevent these instructions from fully coalescing. It is therefore
recommended to use types that meet this requirement for data that resides in global memory.

The alignment requirement is automatically fulfilled for the

For structures, the size and alignment requirements can be enforced by the compiler using the align-
ment specifiers__align__(8) or __align__(16), suchas

struct __align__(8) {
float x;
float y;

%

or

146 Chapter 8. Performance Guidelines


index.html#compute-capability-5-x
index.html#compute-capability-6-x
index.html#compute-capability-7-x
index.html#compute-capability-7-x
index.html#compute-capability-8-x
index.html#compute-capability-9-0
index.html#compute-capability-5-x
index.html#compute-capability-6-x
index.html#compute-capability-6-x
index.html#compute-capability-7-x
index.html#compute-capability-8-x
index.html#compute-capability-9-0
index.html#built-in-vector-types

CUDA C++ Programming Guide, Release 12.4

struct __align__(16) {

float x;

float y;

float z;
b

Any address of a variable residing in global memory or returned by one of the memory allocation rou-
tines from the driver or runtime API is always aligned to at least 256 bytes.

Reading non-naturally aligned 8-byte or 16-byte words produces incorrect results (off by a few words),
so special care must be taken to maintain alignment of the starting address of any value or array of
values of these types. A typical case where this might be easily overlooked is when using some cus-
tom global memory allocation scheme, whereby the allocations of multiple arrays (with multiple calls
to cudaMalloc() or cuMemAlloc()) is replaced by the allocation of a single large block of memory
partitioned into multiple arrays, in which case the starting address of each array is offset from the
block’s starting address.

Two-Dimensional Arrays

A common global memory access pattern is when each thread of index (tx, ty) uses the following
address to access one element of a 2D array of width width, located at address BaseAddress of type
type* (where type meets the requirement described in ):

BaseAddress + width * ty + tx

For these accesses to be fully coalesced, both the width of the thread block and the width of the array
must be a multiple of the warp size.

In particular, this means that an array whose width is not a multiple of this size will be accessed much
more efficiently if it is actually allocated with a width rounded up to the closest multiple of this size
and its rows padded accordingly. The cudaMallocPitch() and cuMemAllocPitch() functions and
associated memory copy functions described in the reference manual enable programmers to write
non-hardware-dependent code to allocate arrays that conform to these constraints.

Local Memory

Local memory accesses only occur for some automatic variables as mentioned in
. Automatic variables that the compiler is likely to place in local memory are:

Arrays for which it cannot determine that they are indexed with constant quantities,
Large structures or arrays that would consume too much register space,
Any variable if the kernel uses more registers than available (this is also known as register spilling).

Inspection of the PTX assembly code (obtained by compiling with the -ptx or-keep option) will tell if a
variable has been placed in local memory during the first compilation phases as it will be declared using
the . local mnemonic and accessed using the 1d.local and st.local mnemonics. Evenifit has not,
subsequent compilation phases might still decide otherwise though if they find it consumes too much
register space for the targeted architecture: Inspection of the cubin object using cuob jdump will tell if
this is the case. Also, the compiler reports total local memory usage per kernel (Imem) when compiling
with the --ptxas-options=-v option. Note that some mathematical functions have implementation
paths that might access local memory.

The local memory space resides in device memory, so local memory accesses have the same high
latency and low bandwidth as global memory accesses and are subject to the same requirements for
memory coalescing as described in . Local memory is however organized
such that consecutive 32-bit words are accessed by consecutive thread IDs. Accesses are therefore
fully coalesced as long as all threads in a warp access the same relative address (for example, same
index in an array variable, same member in a structure variable).
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On devices of compute capability 5.x onwards, local memory accesses are always cached in L2 in the
same way as global memory accesses (see and ).

Shared Memory

Because it is on-chip, shared memory has much higher bandwidth and much lower latency than local
or global memory.

To achieve high bandwidth, shared memory is divided into equally-sized memory modules, called banks,
which can be accessed simultaneously. Any memory read or write request made of n addresses that
fall in n distinct memory banks can therefore be serviced simultaneously, yielding an overall bandwidth
that is n times as high as the bandwidth of a single module.

However, if two addresses of a memory request fall in the same memory bank, there is a bank conflict
and the access has to be serialized. The hardware splits a memory request with bank conflicts into
as many separate conflict-free requests as necessary, decreasing throughput by a factor equal to the
number of separate memory requests. If the number of separate memory requests is n, the initial
memory request is said to cause n-way bank conflicts.

To get maximum performance, it is therefore important to understand how memory addresses map
to memory banks in order to schedule the memory requests so as to minimize bank conflicts. This
is described in , , ,

, and for devices of compute capability 5.x, 6.x, 7.x, 8.x, and 9.0
respectively.

Constant Memory
The constant memory space resides in device memory and is cached in the constant cache.

A request is then split into as many separate requests as there are different memory addresses in the
initial request, decreasing throughput by a factor equal to the number of separate requests.

The resulting requests are then serviced at the throughput of the constant cache in case of a cache
hit, or at the throughput of device memory otherwise.

Texture and Surface Memory

The texture and surface memory spaces reside in device memory and are cached in texture cache, so
a texture fetch or surface read costs one memory read from device memory only on a cache miss,
otherwise it just costs one read from texture cache. The texture cache is optimized for 2D spatial
locality, so threads of the same warp that read texture or surface addresses that are close together in
2D will achieve best performance. Also, it is designed for streaming fetches with a constant latency;
a cache hit reduces DRAM bandwidth demand but not fetch latency.

Reading device memory through texture or surface fetching present some benefits that can make it
an advantageous alternative to reading device memory from global or constant memory:

If the memory reads do not follow the access patterns that global or constant memory reads
must follow to get good performance, higher bandwidth can be achieved providing that there is
locality in the texture fetches or surface reads;

Addressing calculations are performed outside the kernel by dedicated units;
Packed data may be broadcast to separate variables in a single operation;

8-bit and 16-bit integer input data may be optionally converted to 32 bit floating-point values in
the range [0.0, 1.0] or [-1.0, 1.0] (see ).
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To maximize instruction throughput the application should:

Minimize the use of arithmetic instructions with low throughput; this includes trading preci-
sion for speed when it does not affect the end result, such as using intrinsic instead of regular

functions (intrinsic functions are listed in

precision, or flushing denormalized numbers to zero;

Minimize divergent warps caused by control flow instructions as detailed in

), single-precision instead of double-

Reduce the number of instructions, for example, by optimizing out synchronization points when-

ever possible as described in
scribed in

or by using restricted pointers as de-

In this section, throughputs are given in number of operations per clock cycle per multiprocessor. For
a warp size of 32, one instruction corresponds to 32 operations, so if N is the number of operations
per clock cycle, the instruction throughput is N/32 instructions per clock cycle.

All throughputs are for one multiprocessor. They must be multiplied by the number of multiprocessors

in the device to get throughput for the whole device.

The following table gives the throughputs of the arithmetic instructions that are natively supported

in hardware for devices of various compute capabilities.

Table 4: Throughput of Native Arithmetic Instructions. (Num-

ber of Results per Clock Cycle per Multiprocessor)

Com-
pute
Capa-
bility

5.0,
5.2

5.3

6.0

6.1

6.2

7.x

8.0

8.6 8.9

9.0

16-bit

point
add,

mul-
tiply,
multiply,
add

floatingr

N/A

256

128

256

128

256

128

256

continues on next page
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Table 4 - continued from previous page

Com- | 5.0, 5.3 6.0 6.1 6.2 7.x 8.0 8.6 8.9 9.0
pute 5.2
Capa-
bility
32-bit | 128 64 128 64 128
floatingr
point
add,
mul-
tiply,
multiply,
add

64-bit | 4 32 4 32 32 2 64
floatingr
point
add,
mul-
tiply,
multiply
add

32-bit | 32 16 32 16
floatingr
point
recip-
rocal,
recip-
rocal
square
root,
base-2
loga-
rithm
(__log2f),
base 2
expo-
nential
(exp2f)
sine
(__sinf),
cosine
(__cosf)

continues on next page
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Table 4 - continued from previous page

Com- | 5.0, 5.3 6.0 6.1 6.2 7.x 8.0 8.6 8.9 9.0
pute 5.2
Capa-
bility

32-bit | 128 64 128 64
inte-
ger

add,
extended-
precision
add,

sub-

tract,
extended-
precision
sub-
tract

32-bit | Multiple instruct. 64
inte-
ger

mul-
tiply,
multiply
add,
extended-
precision
multiply,
add

24-bit | Multiple instruct.
inte-
ger
mul-
tiply
(__[ulmul24)

32-bit | 64 32 64
inte-
ger

shift

com- 64 32 64
pare,
mini-
mum,
maxi-
mum

continues on next page
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Table 4 - continued from previous page

Com- | 5.0, 5.3 6.0 6.1 6.2 7.X 8.0 8.6 8.9 9.0
pute 5.2
Capa-
bility
32-bit | 64 32 64 16
inte-
ger

bit re-
verse

Bit 64 32 64 Multiple Instruct. 64
field
ex-

tract/insert

32-bit | 128 64 128 64
bit-
wise
AND,
OR,
XOR

count | 32 16 32 16
of
lead-
ing
Zeros,
most
signif-
icant
non-
sign
bit
popu- | 32 16 32 16
lation
count

warp 32 328 32
shuf-
fle

warp Multiple instruct. 16
reduce

warp 64
vote

sum 64 32 64
of ab-
solute
differ-
ence

continues on next page
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Table 4 - continued from previous page

Com- | 5.0, 5.3 6.0 6.1 6.2 7.x 8.0 8.6 8.9 9.0
pute 5.2
Capa-
bility
SIMD | Multiple instruct.
video
in-

struc-
tions

vabs-
diff2

SIMD | Multiple instruct. 64
video
in-
struc-
tions
vabs-
diff4

All Multiple instruct.
other
SIMD
video
in-
struc-
tions

Type 32 16 32 64
con-
ver-
sions
from
8-bit
and
16-bit
inte-
ger to
32-bit
inte-
ger
types

Type 4 16 4 16 16 2 2 16
con-
ver-
sions
from
and to
64-bit
types

continues on next page
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Table 4 - continued from previous page

Com- | 5.0, 53 6.0 6.1 6.2 7.x 8.0 8.6 8.9 9.0
pute 5.2
Capa-
bility
All 32 16 32 16
other
type
con-
ver-
sions

16-bit | Multiple instruct. 128
DPX

32-bit | Multiple instruct. 64
DPX

Other instructions and functions are implemented on top of the native instructions. The implemen-
tation may be different for devices of different compute capabilities, and the number of native in-
structions after compilation may fluctuate with every compiler version. For complicated functions,
there can be multiple code paths depending on input. cuobjdump can be used to inspect a particular
implementation in a cubin object.

The implementation of some functions are readily available on the CUDA header files
(math_functions.h, device_functions.h,..).

In general, code compiled with -ftz=true (denormalized numbers are flushed to zero) tends to
have higher performance than code compiled with -ftz=false. Similarly, code compiled with
-prec-div=false (less precise division) tends to have higher performance code than code compiled
with -prec-div=true, and code compiled with -prec-sqrt=false (less precise square root) tends
to have higher performance than code compiled with -prec-sqrt=true. The nvcc user manual de-
scribes these compilation flags in more details.

Single-Precision Floating-Point Division

__fdividef(x, vy) (see ) provides faster single-precision floating-point division
than the division operator.

Single-Precision Floating-Point Reciprocal Square Root

To preserve IEEE-754 semantics the compiler can optimize 1.8/sqrtf() into rsqrtf() only
when both reciprocal and square root are approximate, (i.e., with -prec-div=false and
-prec-sqrt=false). It is therefore recommended to invoke rsqrtf() directly where desired.

Single-Precision Floating-Point Square Root

Single-precision floating-point square root is implemented as a reciprocal square root followed by a
reciprocal instead of a reciprocal square root followed by a multiplication so that it gives correct results
for O and infinity.

Sine and Cosine

3 128 for __nv_bfloat16

5 2 for compute capability 7.5 GPUs

6 32 for extended-precision

8 16 for compute capabilities 7.5 GPUs
10 2 for compute capabilities 7.5 GPUs
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sinf(x), cosf(x), tanf(x), sincosf(x), and corresponding double-precision instructions are
much more expensive and even more so if the argument x is large in magnitude.

More precisely, the argument reduction code (see for implementation) com-
prises two code paths referred to as the fast path and the slow path, respectively.

The fast path is used for arguments sufficiently small in magnitude and essentially consists of a few
multiply-add operations. The slow path is used for arguments large in magnitude and consists of
lengthy computations required to achieve correct results over the entire argument range.

At present, the argument reduction code for the trigonometric functions selects the fast path for
arguments whose magnitude is less than 185615 . 8f for the single-precision functions, and less than
2147483648 .0 for the double-precision functions.

As the slow path requires more registers than the fast path, an attempt has been made to reduce
register pressure in the slow path by storing some intermediate variables in local memory, which may
affect performance because of local memory high latency and bandwidth (see

). At present, 28 bytes of local memory are used by single-precision functions, and 44 bytes are
used by double-precision functions. However, the exact amount is subject to change.

Due to the lengthy computations and use of local memory in the slow path, the throughput of these
trigonometric functions is lower by one order of magnitude when the slow path reduction is required
as opposed to the fast path reduction.

Integer Arithmetic

Integer division and modulo operation are costly as they compile to up to 20 instructions. They
can be replaced with bitwise operations in some cases: If n is a power of 2, (i/n) is equivalent to
(i>>1og2(n)) and (i%n) is equivalent to (1&(n-1)); the compiler will perform these conversions if
nis literal.

__brevand __popc map to a single instruction and __brevll and __popc1l1 to a few instructions.
__[u]mul24 are legacy intrinsic functions that no longer have any reason to be used.
Half Precision Arithmetic

In order to achieve good performance for 16-bit precision floating-point add, multiply or multiply-add,
it is recommended that the half2 datatype is used for half precision and __nv_bfloat162 be used
for __nv_bfloat16 precision. Vector intrinsics (for example, __hadd2, __hsub2, __hmul2, __hfma2)
can then be used to do two operations in a single instruction. Using half2 or __nv_bfloat162 in
place of two calls using half or __nv_bfloat16 may also help performance of other intrinsics, such
as warp shuffles.

) —— ) - ) ——

Theintrinsic __halves2half2is provided to convert two half precision values to the half2 datatype.

The intrinsic __halves2bfloat162 is provided to convert two __nv_bfloat precision values to the
__nv_bfloat162 datatype.

Type Conversion

Sometimes, the compiler must insert conversion instructions, introducing additional execution cycles.
This is the case for:

Functions operating on variables of type char or short whose operands generally need to be
converted to int,

Double-precision floating-point constants (i.e., those constants defined without any type suffix)
used as input to single-precision floating-point computations (as mandated by C/C++ standards).

This last case can be avoided by using single-precision floating-point constants, defined with an f
suffix such as 3.141592653589793f, 1.0f, 0.5f.
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Any flow control instruction (if, switch, do, for, while) can significantly impact the effective in-
struction throughput by causing threads of the same warp to diverge (i.e., to follow different execu-
tion paths). If this happens, the different executions paths have to be serialized, increasing the total
number of instructions executed for this warp.

To obtain best performance in cases where the control flow depends on the thread ID, the controlling
condition should be written so as to minimize the number of divergent warps. This is possible because
the distribution of the warps across the block is deterministic as mentioned in A
trivial example is when the controlling condition only depends on (threadIdx / warpSize) where
warpSize is the warp size. In this case, no warp diverges since the controlling condition is perfectly
aligned with the warps.

Sometimes, the compiler may unroll loops or it may optimize out short if or switch blocks by using
branch predication instead, as detailed below. In these cases, no warp can ever diverge. The program-
mer can also control loop unrolling using the #pragma unroll directive (see ).

When using branch predication none of the instructions whose execution depends on the control-
ling condition gets skipped. Instead, each of them is associated with a per-thread condition code or
predicate that is set to true or false based on the controlling condition and although each of these
instructions gets scheduled for execution, only the instructions with a true predicate are actually ex-
ecuted. Instructions with a false predicate do not write results, and also do not evaluate addresses or
read operands.

Throughput for __syncthreads() is 32 operations per clock cycle for devices of compute capability
6.0, 16 operations per clock cycle for devices of compute capability 7.x as well as 8.x and 64 operations
per clock cycle for devices of compute capability 5.x, 6.1 and 6.2.

Note that __syncthreads() canimpact performance by forcing the multiprocessor to idle as detailed
in

Applications that constantly allocate and free memory too often may find that the allocation calls tend
to get slower over time up to a limit. This is typically expected due to the nature of releasing memory
back to the operating system for its own use. For best performance in this regard, we recommend the
following:

Try to size your allocation to the problem at hand. Don'’t try to allocate all available memory with
cudaMalloc / cudaMallocHost / cuMemCreate, as this forces memory to be resident immedi-
ately and prevents other applications from being able to use that memory. This can put more
pressure on operating system schedulers, or just prevent other applications using the same GPU
from running entirely.

Try to allocate memory in appropriately sized allocations early in the application and alloca-
tions only when the application does not have any use for it. Reduce the number of cudaMal-
loc+cudaFree calls in the application, especially in performance-critical regions.
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If an application cannot allocate enough device memory, consider falling back on other memory
types such as cudaMallocHost or cudaMallocManaged, which may not be as performant, but
will enable the application to make progress.

For platforms that support the feature, cudaMallocManaged allows for oversubscription, and
with the correct cudaMemAdvise policies enabled, will allow the application to retain most if not
all the performance of cudaMalloc. cudaMallocManaged also won’t force an allocation to be
resident until it is needed or prefetched, reducing the overall pressure on the operating system
schedulers and better enabling multi-tenet use cases.
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lists all CUDA-enabled devices with their compute capability.

The compute capability, number of multiprocessors, clock frequency, total amount of device memory,
and other properties can be queried using the runtime (see reference manual).
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10.1. Function Execution Space Specifiers

Function execution space specifiers denote whether a function executes on the host or on the device
and whether it is callable from the host or from the device.

10.1.1. __global__

The __global__ execution space specifier declares a function as being a kernel. Such a function is:
» Executed on the device,
» Callable from the host,

» Callable from the device for devices of compute capability 5.0 or higher (see CUDA Dynamic
Parallelism for more details).

A __global__ function must have void return type, and cannot be a member of a class.

Any call to a __global__ function must specify its execution configuration as described in Execution
Configuration.

Acalltoa __global__ function is asynchronous, meaning it returns before the device has completed
its execution.

10.1.2. _ device__

The __device__ execution space specifier declares a function that is:
» Executed on the device,
» Callable from the device only.

The __global__ and __device__ execution space specifiers cannot be used together.
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10.1.3. __host__

The __host__ execution space specifier declares a function that is:
» Executed on the host,
» Callable from the host only.

It is equivalent to declare a function with only the __host__ execution space specifier or to declare it
without any of the __host__, __device__, or __global__ execution space specifier; in either case
the function is compiled for the host only.

The __global__ and __host__ execution space specifiers cannot be used together.

The __device__ and __host__ execution space specifiers can be used together however, in which
case the function is compiled for both the host and the device. The __CUDA_ARCH__ macro introduced
in Application Compatibility can be used to differentiate code paths between host and device:

__host
{
#if __CUDA_ARCH__ >= 800

// Device code path for compute capability 8.x
#elif __CUDA_ARCH__ >= 700

// Device code path for compute capability 7.x
#elif __CUDA_ARCH__ >= 600

// Device code path for compute capability 6.x
#elif __CUDA_ARCH__ >= 500

// Device code path for compute capability 5.x
#elif !defined(__CUDA_ARCH__)

// Host code path
#endif

}

device__ func()

10.1.4. Undefined behavior

A ‘cross-execution space’ call has undefined behavior when:

» __CUDA_ARCH__ is defined, a call from withina __global
vice__ function to a __host__ function.

__device__or __host__ __de-

» __CUDA_ARCH__ is undefined, a call from within a __host__ function to a __device__ func-
tion.?

10.1.5. _ noinline__and _ forceinline__

The compiler inlines any __device__ function when deemed appropriate.

The __noinline__ function qualifier can be used as a hint for the compiler not to inline the function
if possible.

The __forceinline__ function qualifier can be used to force the compiler to inline the function.

The __noinline__and __forceinline__ function qualifiers cannot be used together, and neither
function qualifier can be applied to an inline function.

9 8 for GeForce GPUs, except for Titan GPUs
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The __inline_hint__ qualifier enables more aggressive inlining in the compiler. Unlike __forcein-
line__, it does not imply that the function is inline. It can be used to improve inlining across modules
when using LTO.

Neither the __noinline__ northe __forceinline__ function qualifier can be used with the __in-
line_hint__ function qualifier.

Variable memory space specifiers denote the memory location on the device of a variable.

_ __, __shared__ and
__constant__ memory space specifiers described in this section generally resides in a register. How-
ever in some cases the compiler might choose to place it in local memory, which can have adverse
performance consequences as detailed in

An automatic variable declared in device code without any of the __device

The __device__ memory space specifier declares a variable that resides on the device.

At most one of the other memory space specifiers defined in the next three sections may be used
together with __device__ to further denote which memory space the variable belongs to. If none of
them is present, the variable:

Resides in global memory space,
Has the lifetime of the CUDA context in which it is created,
Has a distinct object per device,

Is accessible from all the threads within the grid and from the host through the runtime library
(cudaGetSymbolAddress() / cudaGetSymbolSize() / cudaMemcpyToSymbol() / cudaMem-
cpyFromSymbol()).

The __constant__ memory space specifier, optionally used together with __device__, declares a
variable that:

Resides in constant memory space,
Has the lifetime of the CUDA context in which it is created,
Has a distinct object per device,

Is accessible from all the threads within the grid and from the host through the runtime library
(cudaGetSymbolAddress() / cudaGetSymbolSize() / cudaMemcpyToSymbol() / cudaMem-
cpyFromSymbol()).
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The __shared__ memory space specifier, optionally used together with __device__, declares a vari-

able that:

Resides in the shared memory space of a thread block,
Has the lifetime of the block,

Has a distinct object per block,

Is only accessible from all the threads within the block,
Does not have a constant address.

When declaring a variable in shared memory as an external array such as

extern shared__ float shared[];

the size of the array is determined at launch time (see ). All variables declared
in this fashion, start at the same address in memory, so that the layout of the variables in the array
must be explicitly managed through offsets. For example, if one wants the equivalent of

short array@[128];
float array1[64];
int array2[256];

in dynamically allocated shared memory, one could declare and initialize the arrays the following way:

extern __shared__ float array[];

__device__ void func() // __device__ or __global__ function
{

short* array@® = (short*)array;

float* arrayl = (float*)&array@[128];

int* array2 = (int*)&arrayl1[64];
}

Note that pointers need to be aligned to the type they point to, so the following code, for example,
does not work since array1 is not aligned to 4 bytes.

extern __shared__ float array[];

__device__ void func() // __device__ or __global__ function
{

short* array@® = (short*)array;

float* arrayl = (float*)&array@[127];

}

Alignment requirements for the built-in vector types are listed in
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The _

_grid_constant__ annotation for compute architectures greater or equal to 7.0 annotates a

const-qualified __global__ function parameter of non-reference type that:

Has the lifetime of the grid,

Is private to the grid, i.e., the object is not accessible to host threads and threads from other
grids, including sub-grids,

Has a distinct object per grid, i.e., all threads in the grid see the same address,

Is read-only, i.e., modifying a __grid_constant__ object or any of its sub-objects is undefined
behavior, including mutable members.

Requirements:

Kernel parameters annotated with __grid_constant__ must have const-qualified non-
reference types.

All function declarations must match with respect to any __grid_constant_ parameters.

A function template specialization must match the primary template declaration with respect to
any __grid_constant__ parameters.

A function template instantiation directive must match the primary template declaration with
respect to any __grid_constant__ parameters.

If the address of a __global__ function parameter is taken, the compiler will ordinarily make a copy of
the kernel parameter in thread local memory and use the address of the copy, to partially support C++
semantics, which allow each thread to modify its own local copy of function parameters. Annotating a
__global__ function parameter with __grid_constant__ ensures that the compiler will not create
a copy of the kernel parameter in thread local memory, but will instead use the generic address of the
parameter itself. Avoiding the local copy may result in improved performance.

__device__ void unknown_function(S const&);
__global__ void kernel(const __grid_constant__ S s) {

}

s.x += threadIdx.x; // Undefined Behavior: tried to modify read-only memory

// Compiler will _not_ create a per-thread thread local copy of "s":
unknown_function(s);

The __managed__ memory space specifier, optionally used together with __device__, declares a
variable that:

See

Can be referenced from both device and host code, for example, its address can be taken or it
can be read or written directly from a device or host function.

Has the lifetime of an application.

for more details.
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nvcc supports restricted pointers via the __restrict__ keyword.

Restricted pointers were introduced in C99 to alleviate the aliasing problem that exists in C-type lan-
guages, and which inhibits all kind of optimization from code re-ordering to common sub-expression
elimination.

Here is an example subject to the aliasing issue, where use of restricted pointer can help the compiler
to reduce the number of instructions:

void foo(const float* a,
const float* b,

float* c)
{
c[o] = a[0] * b[e];
c[1] = a[@] * b[e];
c[2] = a[0] * b[B] * a[1];
c[3] = a[0@] * a[1];
c[4] = a[0] * b[e];
c[5] = b[0];
}

In C-type languages, the pointers a, b, and ¢ may be aliased, so any write through ¢ could modify
elements of a or b. This means that to guarantee functional correctness, the compiler cannot load
a[@] and b[@] into registers, multiply them, and store the result to both c[8] and c[1], because
the results would differ from the abstract execution model if, say, a[@] is really the same location as
c[9]. So the compiler cannot take advantage of the common sub-expression. Likewise, the compiler
cannot just reorder the computation of c[4] into the proximity of the computationof c[8] and c[1]
because the preceding write to ¢c[3] could change the inputs to the computation of c[4].

By making a, b, and c restricted pointers, the programmer asserts to the compiler that the pointers
are in fact not aliased, which in this case means writes through ¢ would never overwrite elements of a
or b. This changes the function prototype as follows:

void foo(const float* __restrict__ a,
const float* __restrict__ b,
float* __restrict__ c);

Note that all pointer arguments need to be made restricted for the compiler optimizer to derive any
benefit. With the __restrict__ keywords added, the compiler can now reorder and do common
sub-expression elimination at will, while retaining functionality identical with the abstract execution
model:

void foo(const float* __restrict__ a,
const float* __restrict__ b,
float* __restrict__ c)

{

float t0 = a[0@];
float t1 = b[0];
float t2 = t0 * t1;
float t3 = a[1];
c[o] = t2;

c[1] = t2;

cl[4] = t2;

c[2] = t2 * t3;

(continues on next page)
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(continued from previous page)

t0 * t3;
t1;

c[3]
c[5]
\

The effects here are a reduced number of memory accesses and reduced number of computa-
tions. This is balanced by an increase in register pressure due to “cached” loads and common sub-
expressions.

Since register pressure is a critical issue in many CUDA codes, use of restricted pointers can have
negative performance impact on CUDA code, due to reduced occupancy.

10.3. Built-in Vector Types

10.3.1. char, short, int, long, longlong, float, double

These are vector types derived from the basic integer and floating-point types. They are structures
and the 1st, 2nd, 3rd, and 4th components are accessible through the fields x, y, z, and w, respectively.
They all come with a constructor function of the form make_<type name>; for example,

int2 make_int2(int x, int y);

which creates a vector of type int2 with value(x, vy).

The alignment requirements of the vector types are detailed in the following table.
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Table 5: Alignment Requirements

Type

Alignment

charl, ucharl

1

char2, uchar2

2

char3, uchar3

pa—

char4, uchar4

short1, ushort1

short2, ushort2

short3, ushort3

short4, ushort4

int1, uint1

int2, uint2

int3, uint3

FESNU o o A SN 0 o B I A O TN IR SN I A ST AN

int4, uint4

16

long1, ulong1

4 if sizeof(long) is equal to sizeof(int) 8, otherwise

long2, ulong?2 8 if sizeof(long) is equal to sizeof(int), 16, otherwise
long3, ulong3 4 if sizeof(long) is equal to sizeof(int), 8, otherwise
long4, ulong4 16

longlong1, ulonglong1 | 8

longlong2, ulonglong2 | 16

longlong3, ulonglong3 | 8

longlong4, ulonglong4 | 16

float1

float2

float3 4

float4 16

doublel 8

double2 16

double3 8

double4 16
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10.3.2. dim3

This type is an integer vector type based on uint3 that is used to specify dimensions. When defining
a variable of type dim3, any component left unspecified is initialized to 1.

10.4. Built-in Variables

Built-in variables specify the grid and block dimensions and the block and thread indices. They are
only valid within functions that are executed on the device.

10.4.1. gridDim

This variable is of type dim3 (see dim3) and contains the dimensions of the grid.

10.4.2. blockldx

This variable is of type uint3 (see char, short, int, long, longlong, float, double) and contains the block
index within the grid.

10.4.3. blockDim

This variable is of type dim3 (see dim3) and contains the dimensions of the block.

10.4.4. threadldx

This variable is of type uint3 (see char, short, int, long, longlong, float, double ) and contains the thread
index within the block.

10.4.5. warpSize

This variable is of type int and contains the warp size in threads (see SIMT Architecture for the defi-
nition of a warp).
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The CUDA programming model assumes a device with a weakly-ordered memory model, that is the
order in which a CUDA thread writes data to shared memory, global memory, page-locked host memory,
or the memory of a peer device is not necessarily the order in which the data is observed being written
by another CUDA or host thread. It is undefined behavior for two threads to read from or write to the
same memory location without synchronization.

In the following example, thread 1 executes writeXY (), while thread 2 executes readXY ().

__device__ int X = 1, Y = 2;

__device__ void writeXY()
{
X =10;
Y = 20;
}
__device__ void readXY()
{
int B = VY;
int A = X;
}

The two threads read and write from the same memory locations X and Y simultaneously. Any data-
race is undefined behavior, and has no defined semantics. The resulting values for A and B can be
anything.

Memory fence functions can be used to enforce a ordering on memory ac-
cesses. The memory fence functions differ in the in which the orderings are enforced but they
are independent of the accessed memory space (shared memory, global memory, page-locked host
memory, and the memory of a peer device).

void __threadfence_block();

is equivalent to
and ensures that:

All writes to all memory made by the calling thread before the call to __threadfence_block()
are observed by all threads in the block of the calling thread as occurring before all writes to all
memory made by the calling thread after the call to __threadfence_block();

All reads from all memory made by the calling thread before the call to __threadfence_block()
are ordered before all reads from all memory made by the calling thread after the call to
__threadfence_block().

void __threadfence();

is equivalent to

and ensures that no writes to all memory made by the calling thread
after the call to __threadfence() are observed by any thread in the device as occurring before any
write to all memory made by the calling thread before the call to __threadfence().

void __threadfence_system();

is equivalent to
and ensures that all writes to all memory made by the calling thread
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before the call to __threadfence_system() are observed by all threads in the device, host threads,
and all threads in peer devices as occurring before all writes to all memory made by the calling thread
after the call to __threadfence_system().

__threadfence_system() is only supported by devices of compute capability 2.x and higher.

In the previous code sample, we can insert fences in the codes as follows:
__device__ int X =1, Y = 2;

__device__ void writeXY()

{
X = 10;
__threadfence();
Y = 20;

}

__device__ void readXY()

{
int B = VY;
__threadfence();
int A = X;

}

For this code, the following outcomes can be observed:
A equal to 1 and B equal to 2,
A equal to 10 and B equal to 2,
A equal to 10 and B equal to 20.

The fourth outcome is not possible, because the first write must be visible before the second write.
If thread 1 and 2 belong to the same block, it is enough to use __threadfence_block(). If thread
1 and 2 do not belong to the same block, __threadfence() must be used if they are CUDA threads
from the same device and __threadfence_system() must be used if they are CUDA threads from
two different devices.

A common use case is when threads consume some data produced by other threads as illustrated by
the following code sample of a kernel that computes the sum of an array of N numbersin one call. Each
block first sums a subset of the array and stores the result in global memory. When all blocks are done,
the last block done reads each of these partial sums from global memory and sums them to obtain
the final result. In order to determine which block is finished last, each block atomically increments
a counter to signal that it is done with computing and storing its partial sum (see

about atomic functions). The last block is the one that receives the counter value equal to gridDim.
x-1. If no fence is placed between storing the partial sum and incrementing the counter, the counter
might increment before the partial sum is stored and therefore, might reach gridDim.x-1 and let the
last block start reading partial sums before they have been actually updated in memory.

Memory fence functions only affect the ordering of memory operations by a thread; they do not, by
themselves, ensure that these memory operations are visible to other threads (like __syncthreads()
does for threads within a block (see )). In the code sample below, the visi-
bility of memory operations on the result variable is ensured by declaring it as volatile (see

).

__device__ unsigned int count = 0;

__shared__ bool islLastBlockDone;

__global__ void sum(const float* array, unsigned int N,
volatile float* result)

(continues on next page)
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// Each block sums a subset of the input array.
float partialSum = calculatePartialSum(array, N);

if (threadIdx.x == 0) {

}

// Thread @ of each block stores the partial sum
// to global memory. The compiler will use

// a store operation that bypasses the L1 cache
// since the "result" variable is declared as

// volatile. This ensures that the threads of

// the last block will read the correct partial
// sums computed by all other blocks.
result[blockIdx.x] = partialSum;

// Thread 0 makes sure that the incrementation

// of the "count" variable is only performed after
// the partial sum has been written to global memory.
__threadfence();

// Thread @ signals that it is done.
unsigned int value = atomicInc(&count, gridDim.x);

// Thread 6 determines if its block is the last
// block to be done.
isLastBlockDone = (value == (gridDim.x - 1));

// Synchronize to make sure that each thread reads
// the correct value of isLastBlockDone.
__syncthreads();

if (isLastBlockDone) {

// The last block sums the partial sums
// stored in result[6 .. gridDim.x-1]
float totalSum = calculateTotalSum(result);

if (threadIdx.x == 0) {

// Thread @ of last block stores the total sum
// to global memory and resets the count

// varialble, so that the next kernel call

// works properly.

result[0] = totalSum;

count = 0;

(continued from previous page)
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void __syncthreads();

waits until all threads in the thread block have reached this point and all global and shared memory
accesses made by these threads prior to __syncthreads() are visible to all threads in the block.

__syncthreads() is used to coordinate communication between the threads of the same block.
When some threads within a block access the same addresses in shared or global memory, there are
potential read-after-write, write-after-read, or write-after-write hazards for some of these memory
accesses. These data hazards can be avoided by synchronizing threads in-between these accesses.

__syncthreads() is allowed in conditional code but only if the conditional evaluates identically across
the entire thread block, otherwise the code execution is likely to hang or produce unintended side
effects.

Devices of compute capability 2.x and higher support three variations of __syncthreads() described
below.

int __syncthreads_count(int predicate);

is identical to __syncthreads () with the additional feature that it evaluates predicate for all threads
of the block and returns the number of threads for which predicate evaluates to non-zero.

int __syncthreads_and(int predicate);

is identical to __syncthreads() with the additional feature that it evaluates predicate for all threads
of the block and returns non-zero if and only if predicate evaluates to non-zero for all of them.

int __syncthreads_or(int predicate);

is identical to __syncthreads () with the additional feature that it evaluates predicate for all threads
of the block and returns non-zero if and only if predicate evaluates to non-zero for any of them.

void __syncwarp(unsigned mask=0xffffffff);

will cause the executing thread to wait until all warp lanes named in mask have executed a
__syncwarp() (with the same mask) before resuming execution. Each calling thread must have its

own bit set in the mask and all non-exited threads named in mask must execute a corresponding
__syncwarp() with the same mask, or the result is undefined.

Executing __syncwarp() guarantees memory ordering among threads participating in the barrier.
Thus, threads within a warp that wish to communicate via memory can store to memory, execute
__syncwarp( ), and then safely read values stored by other threads in the warp.

Note: For .target sm_6x or below, all threads in mask must execute the same __syncwarp() in
convergence, and the union of all values in mask must be equal to the active mask. Otherwise, the
behavior is undefined.
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10.7. Mathematical Functions

The reference manual lists all C/C++ standard library mathematical functions that are supported in
device code and all intrinsic functions that are only supported in device code.

Mathematical Functions provides accuracy information for some of these functions when relevant.

10.8. Texture Functions

Texture objects are described in Texture Object API

Texture fetching is described in Texture Fetching.

10.8.1. Texture Object API

10.8.1.1 tex1Dfetch()

template<class T>
T tex1Dfetch(cudaTextureObject_t texObj, int x);

fetches from the region of linear memory specified by the one-dimensional texture object tex0bj
using integer texture coordinate x. tex1Dfetch() only works with non-normalized coordinates, so

only the border and clamp addressing modes are supported. It does not perform any texture filtering.
For integer types, it may optionally promote the integer to single-precision floating point.

10.8.1.2 tex1D()

template<class T>
T tex1D(cudaTextureObject_t texObj, float x);

fetches from the CUDA array specified by the one-dimensional texture object tex0bj using texture
coordinate x.

10.8.1.3 tex1DLod()

template<class T>
T tex1DLod(cudaTextureObject_t texObj, float x, float level);

fetches from the CUDA array specified by the one-dimensional texture object tex0bj using texture
coordinate x at the level-of-detail level.
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10.8.1.4 tex1DGrad()

template<class T>
T tex1DGrad(cudaTextureObject_t texObj, float x, float dx, float dy);

fetches from the CUDA array specified by the one-dimensional texture object tex0bj using texture
coordinate x. The level-of-detail is derived from the X-gradient dx and Y-gradient dy.

10.8.1.5 tex2D()

template<class T>
T tex2D(cudaTextureObject_t texObj, float x, float y);

fetches from the CUDA array or the region of linear memory specified by the two-dimensional texture
object tex0bj using texture coordinate (x,y).

10.8.1.6 tex2D() for sparse CUDA arrays

template<class T>
T tex2D(cudaTextureObject_t texObj, float x, float y, bool* isResident);

fetches from the CUDA array specified by the two-dimensional texture object tex0bj using texture
coordinate (x,y). Also returns whether the texel is resident in memory via isResident pointer. If
not, the values fetched will be zeros.

10.8.1.7 tex2Dgather()

template<class T>
T tex2Dgather(cudaTextureObject_t texObj,
float x, float y, int comp = 0);

fetches from the CUDA array specified by the 2D texture object tex0Obj using texture coordinates x
and y and the comp parameter as described in Texture Gather.

10.8.1.8 tex2Dgather() for sparse CUDA arrays

template<class T>
T tex2Dgather(cudaTextureObject_t texObj,
float x, float y, bool* isResident, int comp = 0);

fetches from the CUDA array specified by the 2D texture object tex0Obj using texture coordinates
x and y and the comp parameter as described in Texture Gather. Also returns whether the texel is
resident in memory via isResident pointer. If not, the values fetched will be zeros.
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10.8.1.9 tex2DGrad()

template<class T>
T tex2DGrad(cudaTextureObject_t texObj, float x, float vy,
float2 dx, float2 dy);

fetches from the CUDA array specified by the two-dimensional texture object tex0bj using texture
coordinate (x,y). The level-of-detail is derived from the dx and dy gradients.

10.8.1.10 tex2DGrad() for sparse CUDA arrays

template<class T>
T tex2DGrad(cudaTextureObject_t texObj, float x, float vy,
float2 dx, float2 dy, bool* isResident);

fetches from the CUDA array specified by the two-dimensional texture object tex0bj using texture

coordinate (x,y). The level-of-detail is derived from the dx and dy gradients. Also returns whether
the texel is resident in memory via isResident pointer. If not, the values fetched will be zeros.

10.8.1.11 tex2DLod()

template<class T>
tex2DLod(cudaTextureObject_t texObj, float x, float y, float level);

fetches from the CUDA array or the region of linear memory specified by the two-dimensional texture
object tex0bj using texture coordinate (x,y) at level-of-detail level.

10.8.1.12 tex2DLod() for sparse CUDA arrays

template<class T>
tex2DLod(cudaTextureObject_t texObj, float x, float y, float level, bool* isResident);

fetches from the CUDA array specified by the two-dimensional texture object tex0bj using texture

coordinate (x,y) at level-of-detail level. Also returns whether the texel is resident in memory via
isResident pointer. If not, the values fetched will be zeros.

10.8.1.13 tex3D()

template<class T>
T tex3D(cudaTextureObject_t texObj, float x, float y, float z);

fetches from the CUDA array specified by the three-dimensional texture object tex0bj using texture
coordinate (x,y, z).
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10.8.1.14 tex3D() for sparse CUDA arrays

template<class T>
T tex3D(cudaTextureObject_t texObj, float x, float y, float z, bool* isResident);

fetches from the CUDA array specified by the three-dimensional texture object tex0bj using texture
coordinate (x, Yy, z). Also returns whether the texel is resident in memory via isResident pointer. If
not, the values fetched will be zeros.

10.8.1.15 tex3DLod()

template<class T>
T tex3DLod(cudaTextureObject_t texObj, float x, float y, float z, float level);

fetches from the CUDA array or the region of linear memory specified by the three-dimensional texture
object tex0bj using texture coordinate (x,y, z) at level-of-detail level.

10.8.1.16 tex3DLod() for sparse CUDA arrays

template<class T>
T tex3DLod(cudaTextureObject_t texObj, float x, float y, float z, float level, bool*
—.isResident);

fetches from the CUDA array or the region of linear memory specified by the three-dimensional texture
object tex0bj using texture coordinate (x,y, z) at level-of-detail 1level. Also returns whether the
texel is resident in memory via isResident pointer. If not, the values fetched will be zeros.

10.8.1.17 tex3DGrad()

template<class T>
T tex3DGrad(cudaTextureObject_t texObj, float x, float y, float z,
float4 dx, float4 dy);

fetches from the CUDA array specified by the three-dimensional texture object tex0bj using texture
coordinate (x,y, z) at a level-of-detail derived from the X and Y gradients dx and dy.

10.8.1.18 tex3DGrad() for sparse CUDA arrays

template<class T>
T tex3DGrad(cudaTextureObject_t texObj, float x, float y, float z,
float4 dx, float4 dy, bool* isResident);

fetches from the CUDA array specified by the three-dimensional texture object tex0bj using texture
coordinate (x,y, z) at a level-of-detail derived from the X and Y gradients dx and dy. Also returns
whether the texel is resident in memory via isResident pointer. If not, the values fetched will be
zeros.
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10.8.1.19 tex1DLayered()

template<class T>
T texl1DLayered(cudaTextureObject_t texObj, float x, int layer);

fetches from the CUDA array specified by the one-dimensional texture object tex0bj using texture
coordinate x and index layer, as described in Layered Textures

10.8.1.20 tex1DLayeredLod()

template<class T>
T texl1DLayeredLod(cudaTextureObject_t texObj, float x, int layer, float level);

fetches from the CUDA array specified by the one-dimensional layered texture at layer layer using
texture coordinate x and level-of-detail level.

10.8.1.21 tex1DLayeredGrad()

template<class T>
T tex1DLayeredGrad(cudaTextureObject_t texObj, float x, int layer,
float dx, float dy);

fetches from the CUDA array specified by the one-dimensional layered texture at layer layer using
texture coordinate x and a level-of-detail derived from the dx and dy gradients.

10.8.1.22 tex2DLayered()

template<class T>
T tex2DLayered(cudaTextureObject_t texObj,
float x, float y, int layer);

fetches from the CUDA array specified by the two-dimensional texture object tex0bj using texture
coordinate (x,y) and index layer, as described in Layered Textures.

10.8.1.23 tex2DLayered() for sparse CUDA arrays

template<class T>
T tex2DLayered(cudaTextureObject_t texObj,
float x, float y, int layer, bool* isResident);

fetches from the CUDA array specified by the two-dimensional texture object tex0bj using texture
coordinate (x,y) and index layer, as described in Layered Textures. Also returns whether the texel
is resident in memory via isResident pointer. If not, the values fetched will be zeros.
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10.8.1.24 tex2DLayeredLod()

template<class T>
T tex2DLayeredLod(cudaTextureObject_t texObj, float x, float y, int layer,
float level);

fetches from the CUDA array specified by the two-dimensional layered texture at layer layer using
texture coordinate (x,y).

10.8.1.25 tex2DLayeredLod() for sparse CUDA arrays

template<class T>
T tex2DLayeredLod(cudaTextureObject_t texObj, float x, float y, int layer,
float level, bool* isResident);

fetches from the CUDA array specified by the two-dimensional layered texture at layer layer us-
ing texture coordinate (x,y). Also returns whether the texel is resident in memory via isResident
pointer. If not, the values fetched will be zeros.

10.8.1.26 tex2DLayeredGrad()

template<class T>
T tex2DLayeredGrad(cudaTextureObject_t texObj, float x, float y, int layer,
float2 dx, float2 dy);

fetches from the CUDA array specified by the two-dimensional layered texture at layer layer using
texture coordinate (x,y) and a level-of-detail derived from the dx and dy gradients.

10.8.1.27 tex2DLayeredGrad() for sparse CUDA arrays

template<class T>
T tex2DLayeredGrad(cudaTextureObject_t texObj, float x, float y, int layer,
float2 dx, float2 dy, bool* isResident);

fetches from the CUDA array specified by the two-dimensional layered texture at layer layer using
texture coordinate (x,y) and a level-of-detail derived from the dx and dy gradients. Also returns
whether the texel is resident in memory via isResident pointer. If not, the values fetched will be
zeros.

10.8.1.28 texCubemap()

template<class T>
T texCubemap(cudaTextureObject_t texObj, float x, float y, float z);

fetches the CUDA array specified by the cubemap texture object tex0Obj using texture coordinate
(x,y,z),as described in Cubemap Textures.
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10.8.1.29 texCubemapGrad()

template<class T>
T texCubemapGrad(cudaTextureObject_t texObj, float x, float, y, float z,
float4 dx, float4 dy);

fetches from the CUDA array specified by the cubemap texture object tex0bj using texture coordi-
nate (x,y, z) as described in Cubemap Textures. The level-of-detail used is derived from the dx and
dy gradients.

10.8.1.30 texCubemapLod()

template<class T>
T texCubemaplLod(cudaTextureObject_t texObj, float x, float, y, float z,
float level);

fetches from the CUDA array specified by the cubemap texture object tex0bj using texture coordi-
nate (x,y, z) as described in Cubemap Textures. The level-of-detail used is given by level.

10.8.1.31 texCubemapLayered()

template<class T>
T texCubemaplLayered(cudaTextureObject_t texObj,
float x, float y, float z, int layer);

fetches from the CUDA array specified by the cubemap layered texture object tex0bj using texture
coordinates (x, Yy, z), and index layer, as described in Cubemap Layered Textures.

10.8.1.32 texCubemapLayeredGrad()

template<class T>
T texCubemaplLayeredGrad(cudaTextureObject_t texObj, float x, float y, float z,
int layer, float4 dx, float4 dy);

fetches from the CUDA array specified by the cubemap layered texture object tex0Obj using texture
coordinate (x,y,z) and index layer, as described in Cubemap Layered Textures, at level-of-detail
derived from the dx and dy gradients.

10.8.1.33 texCubemapLayeredLod()

template<class T>
T texCubemaplLayeredLod(cudaTextureObject_t texObj, float x, float y, float z,
int layer, float level);

fetches from the CUDA array specified by the cubemap layered texture object tex0bj using texture
coordinate (x,Yy, z) and index layer, as described in Cubemap Layered Textures, at level-of-detail
level 1level.
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Surface functions are only supported by devices of compute capability 2.0 and higher.
Surface objects are described in described in

In the sections below, boundaryMode specifies the boundary mode, that is how out-of-range surface
coordinates are handled; it is equal to either cudaBoundaryModeClamp, in which case out-of-range
coordinates are clamped to the valid range, or cudaBoundaryModeZero, in which case out-of-range
reads return zero and out-of-range writes are ignored, or cudaBoundaryModeTrap, in which case out-
of-range accesses cause the kernel execution to fail.

template<class T>
T surfiDread(cudaSurfaceObject_t surfObj, int x,
boundaryMode = cudaBoundaryModeTrap);

reads the CUDA array specified by the one-dimensional surface object surf0bj using byte coordinate
X.

template<class T>
void surf1Dwrite(T data,
cudaSurfaceObject_t surfObj,
int x,
boundaryMode = cudaBoundaryModeTrap);

writes value data to the CUDA array specified by the one-dimensional surface object surf0Obj at byte
coordinate x.

template<class T>
T surf2Dread(cudaSurfaceObject_t surfObj,
int x, int vy,
boundaryMode = cudaBoundaryModeTrap);
template<class T>
void surf2Dread(T* data,
cudaSurfaceObject_t surfObj,
int x, int vy,
boundaryMode = cudaBoundaryModeTrap);

reads the CUDA array specified by the two-dimensional surface object surf0bj using byte coordinates
x andy.
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template<class T>
void surf2Dwrite(T data,
cudaSurfaceObject_t surfObj,
int x, int vy,
boundaryMode = cudaBoundaryModeTrap);

writes value data to the CUDA array specified by the two-dimensional surface object surf0Obj at byte
coordinate x and y.

template<class T>
T surf3Dread(cudaSurfaceObject_t surfObj,
int x, int y, int z,
boundaryMode = cudaBoundaryModeTrap);
template<class T>
void surf3Dread(T* data,
cudaSurfaceObject_t surfObj,
int x, int y, int z,
boundaryMode = cudaBoundaryModeTrap);

reads the CUDA array specified by the three-dimensional surface object surf0bj using byte coordi-
nates x, y, and z.

template<class T>
void surf3Dwrite(T data,
cudaSurfaceObject_t surfObj,
int x, int y, int z,
boundaryMode = cudaBoundaryModeTrap);

writes value data to the CUDA array specified by the three-dimensional object surfObj at byte coor-
dinate x, y, and z.

template<class T>
T surfiDLayeredread(
cudaSurfaceObject_t surfObj,
int x, int layer,
boundaryMode = cudaBoundaryModeTrap);
template<class T>
void surfiDLayeredread(T data,
cudaSurfaceObject_t surfObj,
int x, int layer,
boundaryMode = cudaBoundaryModeTrap);

reads the CUDA array specified by the one-dimensional layered surface object surfObj using byte
coordinate x and index layer.
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template<class Type>
void surfiDLayeredwrite(T data,
cudaSurfaceObject_t surfObj,
int x, int layer,
boundaryMode = cudaBoundaryModeTrap);

writes value data to the CUDA array specified by the two-dimensional layered surface object surfObj
at byte coordinate x and index layer.

template<class T>
T surf2DLayeredread(
cudaSurfaceObject_t surfObj,
int x, int y, int layer,
boundaryMode = cudaBoundaryModeTrap);
template<class T>
void surf2DLayeredread(T data,
cudaSurfaceObject_t surfObj,
int x, int y, int layer,
boundaryMode = cudaBoundaryModeTrap);

reads the CUDA array specified by the two-dimensional layered surface object surfObj using byte
coordinate x and y, and index layer.

template<class T>
void surf2DLayeredwrite(T data,
cudaSurfaceObject_t surfObj,
int x, int y, int layer,
boundaryMode = cudaBoundaryModeTrap);

writes value data to the CUDA array specified by the one-dimensional layered surface object surfObj
at byte coordinate x and y, and index layer.

template<class T>
T surfCubemapread(
cudaSurfaceObject_t surfObj,
int x, int y, int face,
boundaryMode = cudaBoundaryModeTrap);
template<class T>
void surfCubemapread(T data,
cudaSurfaceObject_t surfObj,
int x, int y, int face,
boundaryMode = cudaBoundaryModeTrap);

reads the CUDA array specified by the cubemap surface object surf0Obj using byte coordinate x and
y, and face index face.
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template<class T>
void surfCubemapwrite(T data,
cudaSurfaceObject_t surfObj,
int x, int y, int face,
boundaryMode = cudaBoundaryModeTrap);

writes value data to the CUDA array specified by the cubemap object surfObj at byte coordinate x
and y, and face index face.

template<class T>
T surfCubemaplLayeredread(
cudaSurfaceObject_t surfObj,
int x, int y, int layerFace,
boundaryMode = cudaBoundaryModeTrap);
template<class T>
void surfCubemaplLayeredread(T data,
cudaSurfaceObject_t surfObj,
int x, int y, int layerFace,
boundaryMode = cudaBoundaryModeTrap) ;

reads the CUDA array specified by the cubemap layered surface object surf0bj using byte coordinate
x and y, and index layerFace.

template<class T>

void surfCubemaplLayeredwrite(T data,
cudaSurfaceObject_t surfObj,
int x, int y, int layerFace,
boundaryMode = cudaBoundaryModeTrap);

writes value data to the CUDA array specified by the cubemap layered object surf0Obj at byte coordi-
nate x and y, and index layerFace.

The read-only data cache load function is only supported by devices of compute capability 5.0 and
higher.

T __ldg(const T* address);

returns the data of type T located at address address, where T is char, signed char, short,
int, long, long longunsigned char, unsigned short, unsigned int, unsigned long, un-
signed long 1long, char2, char4, short2, short4, int2, int4, longlong2uchar2, uchar4,
ushort?2, ushort4, uint2, uint4, ulonglong2float, float2, float4, double, or double2. With
the cuda_fp16.h header included, T can be __half or __half2. Similarly, with the cuda_bf16.h
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header included, T can also be __nv_bfloat16 or __nv_bfloat162. The operation is cached in the
read-only data cache (see ).

These load functions are only supported by devices of compute capability 5.0 and higher.

__ldcg(const T* address);
__ldca(const T* address);
__ldcs(const T* address);
_ldlu(const T* address);

(

T
T
T
T
T __ldcv(const T* address);

returns the data of type T located at address address, where T is char, signed char, short,
int, long, long longunsigned char, unsigned short, unsigned int, unsigned long, un-
signed long 1long, char2, char4, short2, short4, int2, int4, longlong2uchar2, uchar4,
ushort?2, ushort4, uint2, uint4, ulonglong2float, float2, float4, double, or double2. With
the cuda_fp16.h header included, T can be __half or __half2. Similarly, with the cuda_bf16.h
header included, T can also be __nv_bfloat16 or __nv_bfloat162. The operation is using the cor-
responding cache operator (see )

These store functions are only supported by devices of compute capability 5.0 and higher.

void __stwb(T* address, T value);
void __stcg(T* address, T value);
void __stcs(T* address, T value);
void __stwt(T* address, T value);

stores the value argument of type T to the location at address address, where T is char, signed
char, short, int, long, long longunsigned char, unsigned short, unsigned int, unsigned
long, unsigned 1long 1long, char2, char4, short2, short4, int2, int4, longlong2uchar2,
uchar4, ushort2, ushort4, uint2, uint4, ulonglong2float, float2, float4, double, or dou-
ble2. With the cuda_fp16.h header included, T can be __half or __half2. Similarly, with the
cuda_bf16.h header included, T can also be __nv_bfloat16 or __nv_bfloat162. The operation
is using the corresponding cache operator (see )

clock_t clock();
long long int clock64();

when executed in device code, returns the value of a per-multiprocessor counter that is incremented
every clock cycle. Sampling this counter at the beginning and at the end of a kernel, taking the dif-
ference of the two samples, and recording the result per thread provides a measure for each thread
of the number of clock cycles taken by the device to completely execute the thread, but not of the
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number of clock cycles the device actually spent executing thread instructions. The former number
is greater than the latter since threads are time sliced.

An atomic function performs a read-modify-write atomic operation on one 32-bit, 64-bit, or 128-bit
word residing in global or shared memory. In the case of float2 or float4, the read-modify-write
operation is performed on each element of the vector residing in global memory. For example, atom-
icAdd() reads a word at some address in global or shared memory, adds a number to it, and writes
the result back to the same address. Atomic functions can only be used in device functions.

The atomic functions described in this section have ordering and are only
atomic at a particular

Atomic APIs with _system suffix (example: __atomicAdd_system) are atomic at scope
cuda: :thread_scope_system if they meet particular

Atomic APIs without a suffix (example: __atomicAdd) are atomic at scope
cuda: :thread_scope_device.

Atomic APIs with _block suffix (example: __atomicAdd_block) are atomic at scope
cuda: :thread_scope_block.

In the following example both the CPU and the GPU atomically update an integer value at address
addr:

__global__ void mykernel(int *addr) {

atomicAdd_system(addr, 10); // only available on devices with compute
—capability 6.x
}

void foo() {
int *addr;
cudaMallocManaged(&addr, 4);
*addr = 0;

mykernel<<<...>>>(addr);
__sync_fetch_and_add(addr, 10); // CPU atomic operation
}

Note that any atomic operation can be implemented based on atomicCAS( ) (Compare And Swap). For
example, atomicAdd () for double-precision floating-point numbers is not available on devices with
compute capability lower than 6.0 but it can be implemented as follows:

#if __CUDA_ARCH__ < 6600
__device__ double atomicAdd(double* address, double val)
{
unsigned long long int* address_as_ull =
(unsigned long long int*)address;
unsigned long long int old = *address_as_ull, assumed;

do {
assumed = old;
old = atomicCAS(address_as_ull, assumed,
__double_as_longlong(val +

(continues on next page)
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(continued from previous page)
__longlong_as_double(assumed)));

// Note: uses integer comparison to avoid hang in case of NaN (since NaN != NaN)
} while (assumed !'= old);

return __longlong_as_double(old);

}
#endif

There are system-wide and block-wide variants of the following device-wide atomic APIs, with the
following exceptions:

Devices with compute capability less than 6.0 only support device-wide atomic operations,

Tegra devices with compute capability less than 7.2 do not support system-wide atomic opera-
tions.

int atomicAdd(int* address, int val);
unsigned int atomicAdd(unsigned int* address,

unsigned int val);
unsigned long long int atomicAdd(unsigned long long int* address,

unsigned long long int val);

float atomicAdd(float* address, float val);
double atomicAdd(double* address, double val);
__half2 atomicAdd(__half2 *address, __half2 val);
__half atomicAdd(__half *address, __half val);
__nv_bfloat162 atomicAdd(__nv_bfloat162 *address
__nv_bfloat16 atomicAdd(__nv_bfloat16 *address
float2 atomicAdd(float2* address, float2 val);
float4 atomicAdd(float4* address, float4 val);

, __nv_bfloat162 val);
nv_bfloat16 val);

reads the 16-bit, 32-bit or 64-bit 0ld located at the address address in global or shared memory,
computes (old + val), and stores the result back to memory at the same address. These three
operations are performed in one atomic transaction. The function returns old.

The 32-bit floating-point version of atomicAdd() is only supported by devices of compute capability
2.x and higher.

The 64-bit floating-point version of atomicAdd() is only supported by devices of compute capability
6.x and higher.

The 32-bit __half2 floating-point version of atomicAdd() is only supported by devices of compute
capability 6.x and higher. The atomicity of the __half2 or __nv_bfloat162 add operation is guar-
anteed separately for each of the two __half or __nv_bfloat16 elements; the entire __half2 or
__nv_bfloat162 is not guaranteed to be atomic as a single 32-bit access.

The float2 and float4 floating-point vector versions of atomicAdd() are only supported by devices
of compute capability 9.x and higher. The atomicity of the float2 or float4 add operation is guar-
anteed separately for each of the two or four float elements; the entire float2 or float4 is not
guaranteed to be atomic as a single 64-bit or 128-bit access.
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The 16-bit __half floating-point version of atomicAdd() is only supported by devices of compute
capability 7.x and higher.

The 16-bit __nv_bfloat16 floating-point version of atomicAdd() is only supported by devices of
compute capability 8.x and higher.

The float2 and float4 floating-point vector versions of atomicAdd( ) are only supported by devices
of compute capability 9.x and higher.

The float2 and float4 floating-point vector versions of atomicAdd () are only supported for global
memory addresses.

int atomicSub(int* address, int val);
unsigned int atomicSub(unsigned int* address,
unsigned int val);

reads the 32-bit word old located at the address address in global or shared memory, computes
(old - val), and stores the result back to memory at the same address. These three operations are
performed in one atomic transaction. The function returns old.

int atomicExch(int* address, int val);
unsigned int atomicExch(unsigned int* address,
unsigned int val);
unsigned long long int atomicExch(unsigned long long int* address,
unsigned long long int val);
float atomicExch(float* address, float val);

reads the 32-bit or 64-bit word old located at the address address in global or shared memory and
stores val back to memory at the same address. These two operations are performed in one atomic
transaction. The function returns old.

template<typename T> T atomicExch(T* address, T val);

reads the 128-bit word 01d located at the address address in global or shared memory and stores val
back to memory at the same address. These two operations are performed in one atomic transaction.
The function returns old. The type T must meet the following requirements:

sizeof(T) == 16
alignof(T) >= 16

std::is_trivially_copyable<T>::value == true
// for C++63 and older
std::is_default_constructible<T>::value == true

So, T must be 128-bit and properly aligned, be trivially copyable, and on C++03 or older, it must also be
default constructible.

The 128-bit atomicExch() is only supported by devices of compute capability 9.x and higher.
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10.14.1.4 atomicMin()

int atomicMin(int* address, int val);
unsigned int atomicMin(unsigned int* address,
unsigned int val);
unsigned long long int atomicMin(unsigned long long int* address,
unsigned long long int val);
long long int atomicMin(long long int* address,
long long int val);

reads the 32-bit or 64-bit word 0ld located at the address address in global or shared memory, com-
putes the minimum of o1d and val, and stores the result back to memory at the same address. These
three operations are performed in one atomic transaction. The function returns old.

The 64-bit version of atomicMin( ) is only supported by devices of compute capability 5.0 and higher.

10.14.1.5 atomicMax()

int atomicMax(int* address, int val);
unsigned int atomicMax(unsigned int* address,
unsigned int val);
unsigned long long int atomicMax(unsigned long long int* address,
unsigned long long int val);
long long int atomicMax(long long int* address,
long long int val);

reads the 32-bit or 64-bit word 0ld located at the address address in global or shared memory, com-
putes the maximum of o1d and val, and stores the result back to memory at the same address. These
three operations are performed in one atomic transaction. The function returns old.

The 64-bit version of atomicMax( ) is only supported by devices of compute capability 5.0 and higher.

10.14.1.6 atomicinc()

unsigned int atomicInc(unsigned int* address,
unsigned int val);

reads the 32-bit word 0ld located at the address address in global or shared memory, computes
((old >= val) ? @ : (old+1)), and stores the result back to memory at the same address.
These three operations are performed in one atomic transaction. The function returns old.

10.14.1.7 atomicDec()

unsigned int atomicDec(unsigned int* address,
unsigned int val);

reads the 32-bit word 0ld located at the address address in global or shared memory, computes
(((old == @) || (old > val)) ? val : (old-1)), and stores the result back to memory
at the same address. These three operations are performed in one atomic transaction. The function
returns old.
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10.14.1.8 atomicCAS()

int atomicCAS(int* address, int compare, int val);
unsigned int atomicCAS(unsigned int* address,
unsigned int compare,
unsigned int val);
unsigned long long int atomicCAS(unsigned long long int* address,
unsigned long long int compare,
unsigned long long int val);
unsigned short int atomicCAS(unsigned short int *address,
unsigned short int compare,
unsigned short int val);

reads the 16-bit, 32-bit or 64-bit word old located at the address address in global or shared memory,
computes (old == compare ? val : o0ld), and stores the result back to memory at the same
address. These three operations are performed in one atomic transaction. The function returns old
(Compare And Swap).

template<typename T> T atomicCAS(T* address, T compare, T val);

reads the 128-bit word 0ld located at the address address in global or shared memory, computes
(old == compare ? val : old), and stores the result back to memory at the same address.
These three operations are performed in one atomic transaction. The function returns old (Compare
And Swap). The type T must meet the following requirements:

sizeof (T) == 16
alignof(T) >= 16

std::is_trivially_copyable<T>::value == true
// for C++83 and older
std::is_default_constructible<T>::value == true

So, T must be 128-bit and properly aligned, be trivially copyable, and on C++03 or older, it must also be
default constructible.

The 128-bit atomicCAS() is only supported by devices of compute capability 9.x and higher.

10.14.2. Bitwise Functions

10.14.2.1 atomicAnd()

int atomicAnd(int* address, int val);
unsigned int atomicAnd(unsigned int* address,
unsigned int val);
unsigned long long int atomicAnd(unsigned long long int* address,
unsigned long long int val);

reads the 32-bit or 64-bit word 0ld located at the address address in global or shared memory, com-
putes (old & val), and stores the result back to memory at the same address. These three operations
are performed in one atomic transaction. The function returns old.

The 64-bit version of atomicAnd() is only supported by devices of compute capability 5.0 and higher.
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10.14.2.2 atomicOr()

int atomicOr(int* address, int val);
unsigned int atomicOr(unsigned int* address,
unsigned int val);
unsigned long long int atomicOr(unsigned long long int* address,
unsigned long long int val);

reads the 32-bit or 64-bit word old located at the address address in global or shared memory, com-
putes (old | val), and stores the result back to memory at the same address. These three opera-
tions are performed in one atomic transaction. The function returns old.

The 64-bit version of atomicOr () is only supported by devices of compute capability 5.0 and higher.

10.14.2.3 atomicXor()

int atomicXor(int* address, int val);
unsigned int atomicXor(unsigned int* address,
unsigned int val);
unsigned long long int atomicXor(unsigned long long int* address,
unsigned long long int val);

reads the 32-bit or 64-bit word 01d located at the address address in global or shared memory, com-

putes (old * val), and stores the result back to memory at the same address. These three opera-
tions are performed in one atomic transaction. The function returns old.

The 64-bit version of atomicXor () is only supported by devices of compute capability 5.0 and higher.

10.15. Address Space Predicate Functions

The functions described in this section have unspecified behavior if the argument is a null pointer.

10.15.1. __isGloball)

__device__ unsigned int __isGlobal(const void *ptr);

Returns 1 if ptr contains the generic address of an object in global memory space, otherwise returns
0.
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10.15.2. __isShared()

__device__ unsigned int __isShared(const void *ptr);

Returns 1 if ptr contains the generic address of an object in shared memory space, otherwise returns
0.

10.15.3. __isConstant()

__device__ unsigned int __isConstant(const void *ptr);

Returns 1 if ptr contains the generic address of an object in constant memory space, otherwise re-
turns O.

10.15.4. __isGridConstant()

__device__ unsigned int __isGridConstant(const void *ptr);
Returns 1 if ptr contains the generic address of a kernel parameter annotated with

__grid_constant__, otherwise returns 0. Only supported for compute architectures greater
than or equal to 7.x or later.

10.15.5. __isLocal()

__device__ unsigned int __islocal(const void *ptr);

Returns 1 if ptr contains the generic address of an object in local memory space, otherwise returns
0.

10.16. Address Space Conversion Functions

10.16.1. __cvta_generic_to_globall()

__device__ size_t __cvta_generic_to_global(const void *ptr);

Returns the result of executing the PTXcvta.to.global instruction on the generic address denoted
by ptr.
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10.16.2. __cvta_generic_to_shared()

__device__ size_t __cvta_generic_to_shared(const void *ptr);

Returns the result of executing the PTXcvta.to.shared instruction on the generic address denoted
by ptr.

10.16.3. __cvta_generic_to_constant()

__device__ size_t __cvta_generic_to_constant(const void *ptr);

Returns the result of executing the PTXcvta.to.const instruction on the generic address denoted
by ptr.

10.16.4. __cvta_generic_to_locall()

__device__ size_t __cvta_generic_to_local(const void *ptr);

Returns the result of executing the PTXcvta.to.local instruction on the generic address denoted
by ptr.

10.16.5. __cvta_global_to_generic()

__device__ void * __cvta_global_to_generic(size_t rawbits);

Returns the generic pointer obtained by executing the PTXcvta.global instruction on the value pro-
vided by rawbits.

10.16.6. __cvta_shared_to_generic()

__device__ void * __cvta_shared_to_generic(size_t rawbits);

Returns the generic pointer obtained by executing the PTXcvta.shared instruction on the value pro-
vided by rawbits.
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10.16.7. __cvta_constant_to_generic()

__device__ void * __cvta_constant_to_generic(size_t rawbits);

Returns the generic pointer obtained by executing the PTXcvta.const instruction on the value pro-
vided by rawbits.

10.16.8. __cvta_local_to_generic()

__device__ void * __cvta_local_to_generic(size_t rawbits);

Returns the generic pointer obtained by executing the PTXcvta.local instruction on the value pro-
vided by rawbits.

10.17. Alloca Function

10.17.1. Synopsis

__host__ __device__ void * alloca(size_t size);

10.17.2. Description

The alloca( ) function allocates size bytes of memory in the stack frame of the caller. The returned
value is a pointer to allocated memory, the beginning of the memory is 16 bytes aligned when the
function is invoked from device code. The allocated memory is automatically freed when the caller to
alloca() is returned.

Note: On Windows platform, <malloc.h> must be included before usingalloca(). Usingalloca()
may cause the stack to overflow, user needs to adjust stack size accordingly.

It is supported with compute capability 5.2 or higher.

10.17.3. Example

__device__ void foo(unsigned int num) {
int4 #*ptr = (int4 *)alloca(num * sizeof(int4));
// use of ptr
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10.18. Compiler Optimization Hint Functions

The functions described in this section can be used to provide additional information to the compiler
optimizer.

10.18.1. __builtin_assume_aligned()

void * __builtin_assume_aligned (const void *exp, size_t align)
Allows the compiler to assume that the argument pointer is aligned to at least align bytes, and re-
turns the argument pointer.

Example:

void *res = __builtin_assume_aligned(ptr, 32); // compiler can assume 'res' 1is
// at least 32-byte aligned

Three parameter version:

void * __builtin_assume_aligned (const void *exp, size_t align,
<integral type> offset)

Allows the compiler to assume that (char *)exp - offset isaligned to at least align bytes, and
returns the argument pointer.

Example:

void *res = __builtin_assume_aligned(ptr, 32, 8); // compiler can assume
// '(char *)res - 8' is
// at least 32-byte aligned.

10.18.2. _ builtin_assume()

void __builtin_assume(bool exp)

Allows the compiler to assume that the Boolean argument is true. If the argument is not true at
run time, then the behavior is undefined. Note that if the argument has side effects, the behavior is
unspecified.

Example:

__device__ int get(int *ptr, int idx) {
__builtin_assume(idx <= 2);
return ptr[idx];

}
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10.18.3. __assumel()

void __assume(bool exp)

Allows the compiler to assume that the Boolean argument is true. If the argument is not true at
run time, then the behavior is undefined. Note that if the argument has side effects, the behavior is
unspecified.

Example:

__device__ int get(int *ptr, int idx) {
__assume(idx <= 2);
return ptr[idx];

10.18.4. __ builtin_expect()

long __builtin_expect (long exp, long c)

Indicates to the compiler that it is expected that exp == c¢, and returns the value of exp. Typically
used to indicate branch prediction information to the compiler.

Example:

// indicate to the compiler that likely "var == 8",
// so the body of the if-block is unlikely to be
// executed at run time.
if (__builtin_expect (var, 0))

doit ();

10.18.5. _ builtin_unreachablel()

void __builtin_unreachable(void)

Indicates to the compiler that control flow never reaches the point where this function is being called
from. The program has undefined behavior if the control flow does actually reach this point at run
time.

Example:

// indicates to the compiler that the default case label is never reached.
switch (in) {

case 1: return 4;

case 2: return 10;

default: __builtin_unreachable();

}
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__assume( ) is only supported when using cl.exe host compiler. The other functions are supported
on all platforms, subject to the following restrictions:

If the host compiler supports the function, the function can be invoked from anywhere in trans-
lation unit.

Otherwise, the function must be invoked from within the body of a __device__/
__global__function, or only when the __CUDA_ARCH__ macro is defined

int __all_sync(unsigned mask, int predicate);

int __any_sync(unsigned mask, int predicate);
unsigned __ballot_sync(unsigned mask, int predicate);
unsigned __activemask();

Deprecation notice: __any, __all, and __ballot have been deprecated in CUDA 9.0 for all devices.

Removal notice: When targeting devices with compute capability 7.x or higher, __any, __all, and
__ballot are no longer available and their sync variants should be used instead.

The warp vote functions allow the threads of a given to perform a reduction-and-broadcast op-
eration. These functions take as input an integer predicate from each thread in the warp and com-
pare those values with zero. The results of the comparisons are combined (reduced) across the
threads of the warp in one of the following ways, broadcasting a single return value to each partici-
pating thread:

__all_sync(unsigned mask, predicate):
Evaluate predicate for all non-exited threads in mask and return non-zero if and only if pred-
icate evaluates to non-zero for all of them.

__any_sync(unsigned mask, predicate):
Evaluate predicate for all non-exited threads in mask and return non-zero if and only if pred-
icate evaluates to non-zero for any of them.

__ballot_sync(unsigned mask, predicate):
Evaluate predicate for all non-exited threads in mask and return an integer whose Nth bit is
set if and only if predicate evaluates to non-zero for the Nth thread of the warp and the Nth
thread is active.

__activemask():
Returns a 32-bit integer mask of all currently active threads in the calling warp. The Nth bit
is set if the Nth lane in the warp is active when __activemask() is called. threads
are represented by O bits in the returned mask. Threads which have exited the program are
always marked as inactive. Note that threads that are convergent at an __activemask() call
are not guaranteed to be convergent at subsequent instructions unless those instructions are
synchronizing warp-builtin functions.

For __all_sync, __any_sync, and __ballot_sync, a mask must be passed that specifies the
threads participating in the call. A bit, representing the thread’s lane ID, must be set for each partici-
pating thread to ensure they are properly converged before the intrinsic is executed by the hardware.

12 The intent is to prevent the host compiler from encountering the call to the function if the host compiler does not support
it.
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Each calling thread must have its own bit set in the mask and all non-exited threads named in mask
must execute the same intrinsic with the same mask, or the result is undefined.

These intrinsics do not imply a memory barrier. They do not guarantee any memory ordering.

__match_any_sync and __match_all_sync perform a broadcast-and-compare operation of a vari-
able between threads within a

Supported by devices of compute capability 7.x or higher.

_match_any_sync(unsigned mask, T value);
_match_all_sync(unsigned mask, T value, int *pred);

unsigned int
unsigned int

T can be int, unsigned int, long, unsigned long, long long, unsigned long long, float or
double.

The __match_sync() intrinsics permit a broadcast-and-compare of a value value across threads in
a warp after synchronizing threads named in mask.

__match_any_sync
Returns mask of threads that have same value of value in mask

__match_all_sync
Returns mask if all threads in mask have the same value for value; otherwise O is returned. Pred-
icate pred is set to true if all threads in mask have the same value of value; otherwise the
predicate is set to false.

The new *_sync match intrinsics take in a mask indicating the threads participating in the call. A bit,
representing the thread’s lane id, must be set for each participating thread to ensure they are properly
converged before the intrinsic is executed by the hardware. Each calling thread must have its own bit
set in the mask and all non-exited threads named in mask must execute the same intrinsic with the
same mask, or the result is undefined.

These intrinsics do not imply a memory barrier. They do not guarantee any memory ordering.
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10.21. Warp Reduce Functions

The __reduce_sync(unsigned mask, T value) intrinsics perform a reduction operation on the
data provided in value after synchronizing threads named in mask. T can be unsigned or signed for
{add, min, max} and unsigned only for {and, or, xor} operations.

Supported by devices of compute capability 8.x or higher.

10.21.1. Synopsis

// add/min/max

unsigned __reduce_add_sync(unsigned mask, unsigned value);
unsigned __reduce_min_sync(unsigned mask, unsigned value);
unsigned __reduce_max_sync(unsigned mask, unsigned value);
int __reduce_add_sync(unsigned mask, int value);

int __reduce_min_sync(unsigned mask, int value);

int __reduce_max_sync(unsigned mask, int value);

// and/or/xor

unsigned __reduce_and_sync(unsigned mask, unsigned value);
unsigned __reduce_or_sync(unsigned mask, unsigned value);
unsigned __reduce_xor_sync(unsigned mask, unsigned value);

10.21.2. Description

__reduce_add_sync, __reduce_min_sync, __reduce_max_sync
Returns the result of applying an arithmetic add, min, or max reduction operation on the values
provided in value by each thread named in mask.

__reduce_and_sync, __reduce_or_sync, __reduce_xor_sync
Returns the result of applying a logical AND, OR, or XOR reduction operation on the values pro-
vided in value by each thread named in mask.

The mask indicates the threads participating in the call. A bit, representing the thread’s lane id, must be
set for each participating thread to ensure they are properly converged before the intrinsic is executed
by the hardware. Each calling thread must have its own bit set in the mask and all non-exited threads
named in mask must execute the same intrinsic with the same mask, or the result is undefined.

These intrinsics do not imply a memory barrier. They do not guarantee any memory ordering.
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__shfl_sync, __shfl_up_sync
between threads within a

shfl_down_sync, and __shfl_xor_sync exchange a variable

Supported by devices of compute capability 5.0 or higher.

Deprecation Notice: __shfl, __shfl_up,

CUDA 9.0 for all devices.

shfl_down, and __shfl_xor have been deprecated in

Removal Notice: When targeting devices with compute capability 7.x or higher, __shfl, __shfl_up,
__shfl_down,and __shfl_xor are nolonger available and their sync variants should be used instead.

_shfl_sync(unsigned mask, T var, int srclLane, int width=warpSize);
_shfl_up_sync(unsigned mask, T var, unsigned int delta, int width=warpSize);
__shfl_down_sync(unsigned mask, T var, unsigned int delta, int width=warpSize);
__shfl_xor_sync(unsigned mask, T var, int laneMask, int width=warpSize);

T
T
=
T

T can be int, unsigned int, long, unsigned long, long long, unsigned long long, float or
double. With the cuda_fp16.h header included, T can also be __half or __half2. Similarly, with
the cuda_bf16.h header included, T can also be __nv_bfloat16 or __nv_bfloat162.

The __shfl_sync() intrinsics permit exchanging of a variable between threads within a warp without
use of shared memory. The exchange occurs simultaneously for all threads within the warp (and
named in mask), moving 4 or 8 bytes of data per thread depending on the type.

Threads within a warp are referred to as lanes, and may have an index between O and warpSize-1
(inclusive). Four source-lane addressing modes are supported:

__shfl_sync()
Direct copy from indexed lane

__shfl_up_sync()
Copy from a lane with lower ID relative to caller

__shfl_down_sync()
Copy from a lane with higher ID relative to caller

__shfl_xor_sync()
Copy from a lane based on bitwise XOR of own lane ID

Threads may only read data from another thread which is actively participating in the __shfl_sync()
command. If the target thread is , the retrieved value is undefined.

All of the __shfl_sync() intrinsics take an optional width parameter which alters the behavior of
the intrinsic. width must have a value which is a power of two in the range [1, warpSize] (i.e, 1, 2, 4, 8,
16 or 32). Results are undefined for other values.

__shfl_sync() returns the value of var held by the thread whose ID is given by srcLane. If width
is less than warpSize then each subsection of the warp behaves as a separate entity with a starting
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logical lane ID of 0. If srcLane is outside the range [@:width-1], the value returned corresponds to
the value of var held by the srcLane modulo width (i.e. within the same subsection).

__shfl_up_sync() calculates a source lane ID by subtracting delta from the caller’s lane ID. The
value of var held by the resulting lane ID is returned: in effect, var is shifted up the warp by delta
lanes. If width is less than warpSize then each subsection of the warp behaves as a separate entity
with a starting logical lane ID of 0. The source lane index will not wrap around the value of width, so
effectively the lower delta lanes will be unchanged.

__shfl_down_sync() calculates a source lane ID by adding delta to the caller’s lane ID. The value
of var held by the resulting lane ID is returned: this has the effect of shifting var down the warp by
delta lanes. If width is less than warpSize then each subsection of the warp behaves as a separate
entity with a starting logical lane ID of 0. As for __shfl_up_sync(), the ID number of the source lane
will not wrap around the value of width and so the upper delta lanes will remain unchanged.

__shfl_xor_sync() calculates a source line ID by performing a bitwise XOR of the caller’s lane ID with
laneMask: the value of var held by the resulting lane ID is returned. If width is less than warpSize
then each group of width consecutive threads are able to access elements from earlier groups of
threads, however if they attempt to access elements from later groups of threads their own value of
var will be returned. This mode implements a butterfly addressing pattern such as is used in tree
reduction and broadcast.

The new *_sync shfl intrinsics take in a mask indicating the threads participating in the call. A bit,
representing the thread’s lane id, must be set for each participating thread to ensure they are properly
converged before the intrinsic is executed by the hardware. Each calling thread must have its own bit
set in the mask and all non-exited threads named in mask must execute the same intrinsic with the
same mask, or the result is undefined.

Threads may only read data from another thread which is actively participating in the __shfl_sync()
command. If the target thread is inactive, the retrieved value is undefined.

These intrinsics do not imply a memory barrier. They do not guarantee any memory ordering.

#include <stdio.h>

__global__ void bcast(int arg) {
int laneId = threadIdx.x & 0x1f;

int value;
if (laneld == 0) // Note unused variable for
value = arg; // all threads except lane @
value = __shfl_sync(oxffffffff, value, 0); // Synchronize all threads in warp,

—and get "value" from lane @
if (value != arg)
printf("Thread %d failed.\n", threadIdx.x);
}

int main() {
bcast<<< 1, 32 >>>(1234);
cudaDeviceSynchronize();

return 0;
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10.22.3.2 Inclusive plus-scan across sub-partitions of 8 threads

#include <stdio.h>

__global__ void scan4() {

int

int laneld = threadIdx.x & 0x1f;
// Seed sample starting value (inverse of lane ID)
int value = 31 - laneld;

// Loop to accumulate scan within my partition.

// Scan requires log2(n) == 3 steps for 8 threads

// It works by an accumulated sum up the warp

// by 1, 2, 4, 8 etc. steps.

for (int i=1; i<=4; i*=2) {
// We do the __shfl_sync unconditionally so that we
// can read even from threads which won't do a
// sum, and then conditionally assign the result.
int n = __shfl_up_sync(oxffffffff, value, i, 8);
if ((laneld & 7) >= i)

value += n;

¥

printf("Thread %d final value = %d\n", threadIdx.x, value);

main() {
scand<<< 1, 32 >>>();
cudaDeviceSynchronize();

return 0;

10.22.3.3 Reduction across a warp

#include <stdio.h>

__global__ void warpReduce() {

int laneld = threadIdx.x & 0x1f;
// Seed starting value as inverse lane ID
int value = 31 - laneld;

// Use XOR mode to perform butterfly reduction
for (int i=16; i>=1; i/=2)
value += __shfl_xor_sync(exffffffff, value, i, 32);

// "value" now contains the sum across all threads
printf("Thread %d final value = %d\n", threadIdx.x, value);

}
int main() {
warpReduce<<< 1, 32 >>>();
cudaDeviceSynchronize();
return 0;
}
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10.23. Nanosleep Function

10.23.1. Synopsis

T __nanosleep(unsigned ns);

10.23.2. Description

__nanosleep(ns) suspends the thread for a sleep duration of approximately ns nanoseconds. The
maximum sleep duration is approximately 1 millisecond.

It is supported with compute capability 7.0 or higher.

10.23.3. Example

The following code implements a mutex with exponential back-off.

__device__ void mutex_lock(unsigned int *mutex) {
unsigned int ns = 8;
while (atomicCAS(mutex, 0, 1) == 1) {
__nanosleep(ns);
if (ns < 256) {
ns *= 2;
}

}

__device__ void mutex_unlock(unsigned int *mutex) {
atomicExch(mutex, 0);
}

10.24. Warp Matrix Functions

C++ warp matrix operations leverage Tensor Cores to accelerate matrix problems of the form D=A*B+C.
These operations are supported on mixed-precision floating point data for devices of compute capabil-
ity 7.0 or higher. This requires co-operation from all threads in a warp. In addition, these operations are
allowed in conditional code only if the condition evaluates identically across the entire warp, otherwise
the code execution is likely to hang.
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All following functions and types are defined in the namespace nvcuda: :wmma. Sub-byte oper-
ations are considered preview, i.e. the data structures and APIs for them are subject to change
and may not be compatible with future releases. This extra functionality is defined in the
nvcuda: :wmma: :experimental namespace.

template<typename Use, int m, int n, int k, typename T, typename Layout=void> class
—fragment;

void load_matrix_sync(fragment<...> &a, const T* mptr, unsigned 1ldm);

void load_matrix_sync(fragment<...> &a, const T* mptr, unsigned 1ldm, layout_t layout);
void store_matrix_sync(T* mptr, const fragment<...> &a, unsigned ldm, layout_t
—layout);

void fill_fragment(fragment<...> &a, const T& Vv);

void mma_sync(fragment<...> &d, const fragment<...> &a, const fragment<...> &b, const
—fragment<...> &c, bool satf=false);

fragment
An overloaded class containing a section of a matrix distributed across all threads in the warp.
The mapping of matrix elements into fragment internal storage is unspecified and subject to
change in future architectures.

Only certain combinations of template arguments are allowed. The first template parameter specifies
how the fragment will participate in the matrix operation. Acceptable values for Use are:

matrix_a when the fragment is used as the first multiplicand, A,
matrix_b when the fragment is used as the second multiplicand, B, or

accumulator when the fragment is used as the source or destination accumulators (C or D,
respectively).

Them, n and k sizes describe the shape of the warp-wide matrix tiles participating in the multiply-
accumulate operation. The dimension of each tile depends onitsrole. Formatrix_a thetile takes
dimensionm x k; formatrix_b the dimensionisk x n,and accumulator tilesarem x n.

The data type, T, may be double, float, __half, __nv_bfloat16, char, or unsigned char
for multiplicands and double, float, int, or __half for accumulators. As documented in

, limited combinations of accumulator and multiplicand types are
supported. The Layout parameter must be specified for matrix_a and matrix_b fragments.
row_major or col_major indicate that elements within a matrix row or column are contiguous
in memory, respectively. The Layout parameter for an accumulator matrix should retain the
default value of void. A row or column layout is specified only when the accumulator is loaded
or stored as described below.

load_matrix_sync

Waits until all warp lanes have arrived at load_matrix_sync and then loads the matrix fragment
a from memory. mptr must be a 256-bit aligned pointer pointing to the first element of the
matrix in memory. 1dm describes the stride in elements between consecutive rows (for row major
layout) or columns (for column major layout) and must be a multiple of 8 for __half element
type or multiple of 4 for float element type. (i.e., multiple of 16 bytes in both cases). If the
fragmentisanaccumulator, the layout argument must be specified as eithermem_row_major
or mem_col_major. For matrix_a and matrix_b fragments, the layout is inferred from the
fragment’s layout parameter. The values of mptr, 1dm, layout and all template parameters for
a must be the same for all threads in the warp. This function must be called by all threads in the
warp, or the result is undefined.
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store_matrix_sync

Waits until all warp lanes have arrived at store_matrix_sync and then stores the matrix fragment
atomemory. mptr must be a 256-bit aligned pointer pointing to the first element of the matrixin
memory. 1dm describes the stride in elements between consecutive rows (for row major layout)
or columns (for column major layout) and must be a multiple of 8 for __half element type or
multiple of 4 for float element type. (i.e., multiple of 16 bytes in both cases). The layout of the
output matrix must be specified as either mem_row_major or mem_col_major. The values of
mptr, 1dm, layout and all template parameters for a must be the same for all threads in the
warp.

fill_fragment
Fill a matrix fragment with a constant value v. Because the mapping of matrix elements to each
fragment is unspecified, this function is ordinarily called by all threads in the warp with a common
value for v.

mma_sync
Waits until all warp lanes have arrived at mma_sync, and then performs the warp-synchronous
matrix multiply-accumulate operation D=A*B+C. The in-place operation, C=A*B+C, is also sup-
ported. The value of satf and template parameters for each matrix fragment must be the same
for all threads in the warp. Also, the template parameters m, n and k must match between frag-
ments A, B, C and D. This function must be called by all threads in the warp, or the result is unde-
fined.

If satf (saturate to finite value) mode is true, the following additional numerical properties apply for
the destination accumulator:

If an element result is +Infinity, the corresponding accumulator will contain +MAX_NORM
If an element result is -Infinity, the corresponding accumulator will contain ~-MAX_NORM
If an element result is NaN, the corresponding accumulator will contain +@

Because the map of matrix elements into each thread’s fragment is unspecified, individual matrix
elements must be accessed from memory (shared or global) after calling store_matrix_sync. In
the special case where all threads in the warp will apply an element-wise operation uniformly to all
fragment elements, direct element access can be implemented using the following fragment class
members.

enum fragment<Use, m, n, k, T, Layout>::num_elements;
T fragment<Use, m, n, k, T, Layout>::x[num_elements];

As an example, the following code scales an accumulator matrix tile by half.

wmma : : fragment<wmma: :accumulator, 16, 16, 16, float> frag;
float alpha = 0.5f; // Same value for all threads in warp
/*... %/

for(int t=0; t<frag.num_elements; t++)

frag.x[t] *= alpha;
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Tensor Cores support alternate types of floating point operations on devices with compute capability
8.0 and higher.

__nhv_bfloat16
This data format is an alternate fp16 format that has the same range as f32 but reduced pre-
cision (7 bits). You can use this data format directly with the __nv_bfloat16 type available in
cuda_bf16.h. Matrix fragments with __nv_bfloat16 data types are required to be composed

with accumulators of float type. The shapes and operations supported are the same as with
__half.

tf32
This data format is a special floating point format supported by Tensor Cores, with the same
range as f32 and reduced precision (>=10 bits). The internal layout of this format is implementa-
tion defined. In order to use this floating point format with WMMA operations, the input matrices
must be manually converted to tf32 precision.

To facilitate conversion, a new intrinsic __float_to_tf32 is provided. While the input and out-
put arguments to the intrinsic are of float type, the output will be tf32 numerically. This new
precision is intended to be used with Tensor Cores only, and if mixed with other floattype op-
erations, the precision and range of the result will be undefined.

Once aninput matrix (matrix_a ormatrix_b)is converted to tf32 precision, the combination of
a fragment with precision: :tf32 precision, and a data type of float to load_matrix_sync
will take advantage of this new capability. Both the accumulator fragments must have float
data types. The only supported matrix size is 16x16x8 (m-n-k).

The elements of the fragment are represented as float, hence the mapping from ele-
ment_type<T>to storage_element_type<T>is:

precision::tf32 -> float

Tensor Cores support double-precision floating point operations on devices with compute capability
8.0 and higher. To use this new functionality, a fragment with the double type must be used. The
mma_sync operation will be performed with the .rn (rounds to nearest even) rounding modifier.

Sub-byte WMMA operations provide a way to access the low-precision capabilities of Tensor Cores.
They are considered a preview feature i.e. the data structures and APIs for them are subject to
change and may not be compatible with future releases. This functionality is available via the
nvcuda: :wmma: :experimental namespace:

namespace experimental {
namespace precision {
struct u4; // 4-bit unsigned
struct s4; // 4-bit signed
struct b1; // 71-bit

(continues on next page)
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}
enum bmmaBitOp {
bmmaBitOpXOR = 1, // compute_75 minimum
bmmaBitOpAND = 2 // compute_86 minimum
i

enum bmmaAccumulateOp { bmmaAccumulateOpPOPC = 1 };
}

For 4 bit precision, the APIs available remain the same, but you must specify experimen-
tal::precision::u4 or experimental: :precision::s4 as the fragment data type. Since
the elements of the fragment are packed together, num_storage_elements will be smaller than
num_elements for that fragment. The num_elements variable for a sub-byte fragment, hence re-
turns the number of elements of sub-byte type element_type<T>. This is true for single bit preci-
sion as well, in which case, the mapping from element_type<T> to storage_element_type<T>is
as follows:

experimental: :precision::u4 -> unsigned (8 elements in 1 storage element)
experimental: :precision::s4 -> int (8 elements in 1 storage element)
experimental: :precision::b1 -> unsigned (32 elements in 1 storage element)
T -> T //all other types

The allowed layouts for sub-byte fragments is always row_major for matrix_a and col_major for
matrix_b.

For sub-byte operations the value of 1dmin load_matrix_sync should be a multiple of 32 for element
type experimental: :precision: :u4 and experimental: :precision: :s4 or a multiple of 128
for element type experimental: :precision: :b1 (i.e,, multiple of 16 bytes in both cases).

Note: Support for the following variants for MMA instructions is deprecated and will be removed in
sm_90:

experimental: :precision: :u4
experimental: :precision::s4

experimental: :precision: :b1 with bmmaBitOp set to bmmaBitOpXOR

bmma_sync
Waits until all warp lanes have executed bmma_sync, and then performs the warp-synchronous
bit matrix multiply-accumulate operationD = (A op B) + C, where op consists of a logical op-
eration bmmaBitOp followed by the accumulation defined by bmmaAccumulateOp. The available
operations are:

bmmaBitOpXOR, a 128-bit XOR of a row in matrix_a with the 128-bit column of matrix_b

bmmaBitOpAND, a 128-bit AND of a row inmatrix_a with the 128-bit column of matrix_b, avail-
able on devices with compute capability 8.0 and higher.

The accumulate op is always bmmaAccumulateOpPOPC which counts the number of set bits.
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The special format required by tensor cores may be different for each major and minor device archi-
tecture. This is further complicated by threads holding only a fragment (opague architecture-specific
ABI data structure) of the overall matrix, with the developer not allowed to make assumptions on how
the individual parameters are mapped to the registers participating in the matrix multiply-accumulate.

Since fragments are architecture-specific, it is unsafe to pass them from function A to function B if
the functions have been compiled for different link-compatible architectures and linked together into
the same device executable. In this case, the size and layout of the fragment will be specific to one
architecture and using WMMA APIs in the other will lead to incorrect results or potentially, corruption.

An example of two link-compatible architectures, where the layout of the fragment differs, is sm_70
and sm_75.

fragA.cu: void foo() { wmma::fragment<...> mat_a; bar(&mat_a); }
fragB.cu: void bar(wmma::fragment<...> *mat_a) { // operate on mat_a }

// sm_70 fragment layout

$> nvcc -dc -arch=compute_70 -code=sm_70 fragA.cu -o fragA.o
// sm_75 fragment layout

$> nvcc -dc -arch=compute_75 -code=sm_75 fragB.cu -o fragB.o
// Linking the two together

$> nvcc -dlink -arch=sm_75 fragA.o fragB.o -o frag.o

This undefined behavior might also be undetectable at compilation time and by tools at runtime, so
extra care is needed to make sure the layout of the fragments is consistent. This linking hazard is
most likely to appear when linking with a legacy library that is both built for a different link-compatible
architecture and expecting to be passed a WMMA fragment.

Note that in the case of weak linkages (for example, a CUDA C++ inline function), the linker may choose
any available function definition which may result in implicit passes between compilation units.

To avoid these sorts of problems, the matrix should always be stored out to memory for transit through
external interfaces (e.g. wmma: :store_matrix_sync(dst, ..);)andthenitcan be safely passed to
bar() as a pointer type [e.g. float *dst].

Note that since sm_70 canrun on sm_75, the above example sm_75 code can be changed tosm_70and
correctly work on sm_75. However, it is recommended to have sm_75 native code in your application
when linking with other sm_75 separately compiled binaries.

Tensor Cores support a variety of element types and matrix sizes. The following table presents the
various combinations of matrix_a, matrix_b and accumulator matrix supported:
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Matrix A Matrix B Accumulator | Matrix Size (m-n-k)
__half _half float 16x16x16
__half __half float 32x8x16
__half __half float 8x32x16
__half _half __half 16x16x16
__half __half __half 32x8x16
__half __half __half 8x32x16
unsigned char | unsigned char | int 16x16x16
unsigned char | unsigned char | int 32x8x16
unsigned char | unsigned char | int 8x32x16
signed char signed char int 16x16x16
signed char signed char int 32x8x16
signed char signed char int 8x32x16

Alternate Floating Point support:

Matrix A Matrix B Accumulator | Matrix Size (m-n-k)
__nv_bfloat16 | __nv_bfloat16 | float 16x16x16
__nv_bfloat16 | __nv_bfloat16 | float 32x8x16
_nv_bfloat16 | __nv_bfloat16 | float 8x32x16
precision:tf32 | precision::tf32 | float 16x16x8

Double Precision Support:

Matrix A

Matrix B

Accumulator

Matrix Size (m-n-k)

double

double

double

8x8x4

Experimental support for sub-byte operations:

Matrix A

Matrix B

Accumulator

Matrix Size (m-n-k)

precision:u4 | precision:u4 | int 8x8x32
precision:s4 | precision:s4 | int 8x8x32
precision:b1 | precision:b1 | int 8x8x128
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The following code implements a 16x16x16 matrix multiplication in a single warp.

#include <mma.h>
using namespace nvcuda;

__global__ void wmma_ker(half *a, half *b, float *c) {
// Declare the fragments
wmma : : fragment<wmma: :matrix_a, 16, 16, 16, half, wmma::col_major> a_frag;
wmma : : fragment<wmma: :matrix_b, 16, 16, 16, half, wmma::row_major> b_frag;
wmma : : fragment<wmma: :accumulator, 16, 16, 16, float> c_frag;

// Initialize the output to zero
wmma: :fill_fragment(c_frag, 0.6f);

// Load the inputs
wmma : :load_matrix_sync(a_frag, a, 16);
wmma : :load_matrix_sync(b_frag, b, 16);

// Perform the matrix multiplication
wmma : :mma_sync(c_frag, a_frag, b_frag, c_frag);

// Store the output
wmma : :store_matrix_sync(c, c_frag, 16, wmma::mem_row_major);

DPXis a set of functions that enable finding min and max values, as well as fused addition and min/max,
for up to three 16 and 32-bit signed or unsigned integer parameters, with optional ReLU (clamping to
zero):

three parameters: __vimax3_s32, __vimax3_s16x2, __vimax3_u32, __vimax3_ul16x2,
__vimin3_s32, __vimin3_s16x2, __vimin3_u32, __vimin3_ul16x2

two parameters, with ReLU: __vimax_s32_relu, __vimax_s16x2_relu

__vimin_s16x2_relu

vimin_s32_relu,

) —— [ J——

three  parameters, with RelLU: __vimax3_s32_relu, __vimax3_s16x2_relu,
__vimin3_s32_relu, __vimin3_s16x2_relu

Pp——

two parameters, also returning which parameter was smaller/larger: __vibmax_s32, __vib-
max_u32, __vibmin_s32, __vibmin_u32, __vibmax_s16x2, __vibmax_u16x2, __vib-
min_s16x2, __vibmin_u16x2

) ——

three parameters, comparing (first + second) with the third: __viaddmax_s32
dmax_s16x2, __viaddmax_u32, __viaddmax_u16x2 viaddmin_s32
__viaddmin_u32, __viaddmin_u16x2

, __viad-
viaddmin_s16x2,

three parameters, with RelLU, comparing (first + second) with the third and a zero:
__viaddmax_s32_relu, __viaddmax_s16x2_relu, __viaddmin_s32_relu, __viad-
dmin_s16x2_relu
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These instructions are hardware-accelerated on devices with compute capability 9 and higher, and
software emulation on older devices.

Full API can be found in CUDA Math APl documentation.

DPX is exceptionally useful when implementing dynamic programming algorithms, such as Smith-
Waterman or Needleman-Wunsch in genomics and Floyd-Warshall in route optimization.

10.25.1. Examples

Max value of three signed 32-bit integers, with ReLU

const int a = -15;

const int b = 8;

const int ¢ = 5;

int max_value_@ = __vimax3_s32_relu(a, b, c); // max(-15, 8, 5, 6) = 8
const int d = -2;

const int e = -4;

int max_value_1 = __vimax3_s32_relu(a, d, e); // max(-15, -2, -4, 8) = 0

Min value of the sum of two 32-bit signed integers, another 32-bit signed integer and a zero (ReLU)

const int a = -5;

const int b = 6;

const int ¢ = -2;

int max_value_0® = __viaddmax_s32_relu(a, b, c); // max(-5 + 6, -2, 6) = max(1, -2, 0)
o= 1

const int d = 4;

int max_value_1 = __viaddmax_s32_relu(a, d, c); // max(-5 + 4, -2, 6) = max(-1, -2, 0)
=0

Min value of two unsigned 32-bit integers and determining which value is smaller

9;
6;

const unsigned int a
const unsigned int b
bool smaller_value;
unsigned int min_value = __vibmin_u32(a, b, &smaller_value); // min_value is 6,
—smaller_value is true

Max values of three pairs of unsigned 16-bit integers

const unsigned a = 0x00050002;
const unsigned b = 0x00070004;
const unsigned c = 0x00020006;

unsigned int max_value = __vimax3_ul6x2(a, b, c); // max(5, 7, 2) and max(2, 4, 6), so
—max_value is 0x00070006

10.25. DPX 211


https://docs.nvidia.com/cuda/cuda-math-api/group__CUDA__MATH__INTRINSIC__SIMD.html

CUDA C++ Programming Guide, Release 12.4

10.26. Asynchronous Barrier

The NVIDIA C++ standard library introduces a GPU implementation of std::barrier. Along with the
implementation of std: :barrier thelibrary provides extensions that allow users to specify the scope
of barrier objects. The barrier APl scopes are documented under Thread Scopes. Devices of compute
capability 8.0 or higher provide hardware acceleration for barrier operations and integration of these
barriers with the memcpy_async feature. On devices with compute capability below 8.0 but starting
7.0, these barriers are available without hardware acceleration.

nvcuda: :experimental: :awbarrier is deprecated in favor of cuda: :barrier.

10.26.1. Simple Synchronization Pattern

Without the arrive/wait barrier, synchronization is achieved using __syncthreads() (to synchronize
all threads in a block) or group . sync () when using Cooperative Groups.

#include <cooperative_groups.h>

__global__ void simple_sync(int iteration_count) {
auto block = cooperative_groups: :this_thread_block();

for (int i = 0; i < iteration_count; ++i) {
/* code before arrive */
block.sync(); /* wait for all threads to arrive here */
/* code after wait */

}

Threads are blocked at the synchronization point (block.sync()) until all threads have reached the
synchronization point. In addition, memory updates that happened before the synchronization point
are guaranteed to be visible to all threads in the block after the synchronization point, i.e., equivalent
toatomic_thread_fence(memory_order_seq_cst, thread_scope_block) as well as the sync.

This pattern has three stages:
» Code before sync performs memory updates that will be read after the sync.
» Synchronization point

» Code after sync point with visibility of memory updates that happened before sync point.

10.26.2. Temporal Splitting and Five Stages of
Synchronization

The temporally-split synchronization pattern with the std: :barrier is as follows.

#include <cuda/barrier>
#include <cooperative_groups.h>

__device__ void compute(float* data, int curr_iteration);

(continues on next page)
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(continued from previous page)
__global__ void split_arrive_wait(int iteration_count, float *data) {
using barrier = cuda::barrier<cuda::thread_scope_block>;

__shared__ barrier bar;
auto block = cooperative_groups: :this_thread_block();

if (block.thread_rank() == 0) {
init(&bar, block.size()); // Initialize the barrier with expected arrival count
}

block.sync();

for (int curr_iter = 0; curr_iter < iteration_count; ++curr_iter) {

/* code before arrive */
barrier::arrival_token token = bar.arrive(); /* this thread arrives. Arrival

—does not block a thread */
compute(data, curr_iter);
bar.wait(std: :move(token)); /* wait for all threads participating in the barrier

—to complete bar.arrive()*/
/* code after wait */

}
}

In this pattern, the synchronization point (block.sync()) is split into an arrive point (bar.
arrive()) and a wait point (bar.wait(std::move(token))). A thread begins participat-
ing in a cuda::barrier with its first call to bar.arrive(). When a thread calls bar.
wait(std::move(token)) it will be blocked until participating threads have completed bar.
arrive() the expected number of times as specified by the expected arrival count argument passed
toinit(). Memory updates that happen before participating threads’ calltobar.arrive() are guar-
anteed to be visible to participating threads after their call to bar .wait(std: :move(token)). Note
that the call to bar.arrive() does not block a thread, it can proceed with other work that does not
depend upon memory updates that happen before other participating threads’ call to bar .arrive().

The arrive and then wait pattern has five stages which may be iteratively repeated:
» Code before arrive performs memory updates that will be read after the wait.

» Arrive point with implicit memory fence (i.e., equivalent to atomic_thread_fence(memory_order_seq_cst,
thread_scope_block)).

» Code between arrive and wait.
» Wait point.
» Code after the wait, with visibility of updates that were performed before the arrive.

10.26.3. Bootstrap Initialization, Expected Arrival Count,
and Participation

Initialization must happen before any thread begins participating in a cuda: :barrier.

#include <cuda/barrier>
#include <cooperative_groups.h>

__global__ void init_barrier() {
__shared__ cuda::barrier<cuda::thread_scope_block> bar;
(continues on next page)
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auto block = cooperative_groups: :this_thread_block();

if (block.thread_rank() == 0) {
init(&bar, block.size()); // Single thread initializes the total expected
—arrival count.

}
block.sync();
}

Before any thread can participate in cuda: :barrier, the barrier must be initialized using init()
with an expected arrival count, block.size() in this example. Initialization must happen before any
thread calls bar.arrive(). This poses a bootstrapping challenge in that threads must synchronize
before participating in the cuda: :barrier, but threads are creating a cuda: :barrier in order to
synchronize. In this example, threads that will participate are part of a cooperative group and use
block.sync() to bootstrap initialization. In this example a whole thread block is participating in
initialization, hence __syncthreads() could also be used.

The second parameter of init() is the expected arrival count, i.e.,, the number of times bar.
arrive() will be called by participating threads before a participating thread is unblocked from its call
to bar.wait(std::move(token)). In the prior example the cuda: :barrier is initialized with the
number of threads in the thread block i.e., cooperative_groups: :this_thread_block().size(),
and all threads within the thread block participate in the barrier.

A cuda::barrier is flexible in specifying how threads participate (split arrive/wait) and which
threads participate. In contrast this_thread_block.sync() from cooperative groups or __sync-
threads() is applicable to whole-thread-block and __syncwarp(mask) is a specified subset of a
warp. If the intention of the user is to synchronize a full thread block or a full warp we recommend
using __syncthreads() and __syncwarp(mask) respectively for performance reasons.

A cuda: :barrier counts down from the expected arrival count to zero as participating threads call
bar.arrive(). When the countdown reaches zero, a cuda: :barrier is complete for the current
phase. When the last call to bar.arrive() causes the countdown to reach zero, the countdown is
automatically and atomically reset. The reset assigns the countdown to the expected arrival count,
and moves the cuda: :barrier to the next phase.

A tokenobjectofclasscuda: :barrier::arrival_token, asreturned from token=bar.arrive(),
is associated with the current phase of the barrier. A call to bar .wait(std: :move(token)) blocks
the calling thread while the cuda: :barrier is in the current phase, i.e., while the phase associated
with the token matches the phase of the cuda: :barrier. If the phase is advanced (because the
countdown reaches zero) before the call to bar.wait(std: :move(token)) then the thread does
not block; if the phase is advanced while the thread is blocked in bar .wait(std: :move(token)),
the thread is unblocked.

It is essential to know when a reset could or could not occur, especially in non-trivial arrive/wait
synchronization patterns.

A thread’s calls to token=bar.arrive() and bar.wait(std::move(token)) must be se-
guenced such that token=bar.arrive() occurs during the cuda: :barrier’s current phase,
and bar.wait(std: :move(token)) occurs during the same or next phase.
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A thread’s call to bar.arrive() must occur when the barrier’s counter is non-zero. After bar-
rier initialization, if a thread’s call to bar.arrive() causes the countdown to reach zero then
a call to bar.wait(std: :move(token)) must happen before the barrier can be reused for a
subsequent call to bar.arrive().

bar.wait() must only be called using a token object of the current phase or the immediately
preceding phase. For any other values of the token object, the behavior is undefined.

For simple arrive/wait synchronization patterns, compliance with these usage rules is straightforward.

A thread block can be spatially partitioned such that warps are specialized to perform independent
computations. Spatial partitioning is used in a producer or consumer pattern, where one subset of
threads produces data that is concurrently consumed by the other (disjoint) subset of threads.

A producer/consumer spatial partitioning pattern requires two one sided synchronizations to manage
a data buffer between the producer and consumer.

Producer Consumer

wait for buffer to be ready to be filled | signal buffer is ready to be filled

produce data and fill the buffer

signal buffer is filled wait for buffer to be filled

consume data in filled buffer

Producer threads wait for consumer threads to signal that the buffer is ready to be filled; how-
ever, consumer threads do not wait for this signal. Consumer threads wait for producer threads to
signal that the buffer is filled; however, producer threads do not wait for this signal. For full pro-
ducer/consumer concurrency this pattern has (at least) double buffering where each buffer requires
two cuda: :barriers.

#include <cuda/barrier>
#include <cooperative_groups.h>

using barrier = cuda::barrier<cuda::thread_scope_block>;

__device__ void producer(barrier ready[], barrier filled[], float* buffer, float* in,
—int N, int buffer_len)
{
for (int i = 9; i < (N/buffer_len); ++i) {
ready[i%2].arrive_and_wait(); /* wait for buffer_(i%2) to be ready to be filled

—*/
/* produce, i.e., fill in, buffer_(i%2) */
barrier::arrival_token token = filled[i%2].arrive(); /* buffer_(i%2) is filled
—*/
}
}
__device__ void consumer(barrier ready[], barrier filled[], float* buffer, float* out,

— int N, int buffer_len)
(continues on next page)
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ready[@].arrive(); /* buffer_6 is ready for

{
barrier::arrival_token token1
—initial fill */
barrier::arrival_token token2 = ready[1].arrive(); /* buffer_1 is ready for
—initial fill */
for (int i = 0; i < (N/buffer_len); ++i) {
filled[i%2].arrive_and_wait(); /* wait for buffer_(i%2) to be filled */
/* consume buffer_(i%2) */
barrier::arrival_token token = ready[i%2].arrive(); /* buffer_(i%2) is ready
—to be re-filled */

}
}

//N is the total number of float elements in arrays in and out
__global__ void producer_consumer_pattern(int N, int buffer_len, float* in, float*
—out)

// Shared memory buffer declared below is of size 2 * buffer_len
// so that we can alternatively work between two buffers.

// buffer_0 = buffer and buffer_1 = buffer + buffer_len
__shared__ extern float buffer[];

// bar[@] and bar[1] track if buffers buffer_6 and buffer_1 are ready to be filled,

// while bar[2] and bar[3] track if buffers buffer_6 and buffer_1 are filled-in
—respectively

__shared__ barrier bar[4];

auto block = cooperative_groups: :this_thread_block();
if (block.thread_rank() < 4)

init(bar + block.thread_rank(), block.size());
block.sync();

if (block.thread_rank() < warpSize)

producer(bar, bar+2, buffer, in, N, buffer_len);
else

consumer(bar, bar+2, buffer, out, N, buffer_len);

}

In this example the first warp is specialized as the producer and the remaining warps are special-
ized as the consumer. All producer and consumer threads participate (call bar.arrive() or bar.
arrive_and_wait()) in each of the four cuda: :barriers so the expected arrival counts are equal
toblock.size().

A producer thread waits for the consumer threads to signal that the shared memory buffer can be
filled. In order to wait for a cuda: :barrier a producer thread must first arrive on that ready[i%2] .
arrive() to get a token and then ready[i%2].wait(token) with that token. For simplicity
ready[i%2].arrive_and_wait() combines these operations.

bar.arrive_and_wait();
/* is equivalent to */
bar.wait(bar.arrive());

Producer threads compute and fill the ready buffer, they then signal that the buffer is filled by arriving
on the filled barrier, filled[i%2] .arrive(). A producer thread does not wait at this point, instead
it waits until the next iteration’s buffer (double buffering) is ready to be filled.
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A consumer thread begins by signaling that both buffers are ready to be filled. A consumer thread
does not wait at this point, instead it waits for this iteration’s buffer to be filled, filled[i%2].
arrive_and_wait(). After the consumer threads consume the buffer they signal that the buffer
is ready to be filled again, ready[i1%2] .arrive(), and then wait for the next iteration’s buffer to be
filled.

When a thread that is participating in a sequence of synchronizations must exit early from that se-
quence, that thread must explicitly drop out of participation before exiting. The remaining participat-
ing threads can proceed normally with subsequent cuda: :barrier arrive and wait operations.

#include <cuda/barrier>
#include <cooperative_groups.h>

__device__ bool condition_check();

__global__ void early_exit_kernel(int N) {
using barrier = cuda::barrier<cuda: :thread_scope_block>;
__shared__ barrier bar;
auto block = cooperative_groups: :this_thread_block();

if (block.thread_rank() == 0)
init(&bar , block.size());
block.sync();

for (int i = 0; i < N; ++i) {
if (condition_check()) {
bar.arrive_and_drop();
return;

}

/* other threads can proceed normally */

barrier::arrival_token token = bar.arrive();

/* code between arrive and wait */

bar.wait(std::move(token)); /* wait for all threads to arrive */
/* code after wait */

}

This operation arrives on the cuda: :barrier to fulfill the participating thread’s obligation to arrive
in the current phase, and then decrements the expected arrival count for the next phase so that this
thread is no longer expected to arrive on the barrier.

The CompletionFunction of cuda: :barrier<Scope, CompletionFunction> is executed once
per phase, after the last thread arrives and before any thread is unblocked from the wait. Memory
operations performed by the threads that arrived at the barrier during the phase are visible to the
thread executing the CompletionFunction, and all memory operations performed within the Com-
pletionFunction are visible to all threads waiting at the barrier once they are unblocked from the
wait.
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#include <cuda/barrier>

#include <cooperative_groups.h>
#include <functional>

namespace cg = cooperative_groups;

__device__ int divergent_compute(int*, int);
__device__ int independent_computation(int*, int);

__global__ void psum(int* data, int n, int* acc) {
auto block = cg::this_thread_block();

constexpr int BlockSize = 128;
__shared__ int smem[BlockSize];
assert(BlockSize == block.size());
assert(n % 128 == 0);

auto completion_fn = [&] {
int sum = 0©;
for (int i = 0; i < 128; ++i) sum += smem[i];
*acc += sum;

}s

// Barrier storage

// Note: the barrier is not default-constructible because

// completion_fn is not default-constructible due

// to the capture.

using completion_fn_t = decltype(completion_fn);

using barrier_t = cuda::barrier<cuda: :thread_scope_block,
completion_fn_t>;

__shared__ std::aligned_storage<sizeof(barrier_t),
alignof(barrier_t)> bar_storage;

// Initialize barrier:
barrier_t* bar = (barrier_t*)&bar_storage;
if (block.thread_rank() == 8) {
assert(*acc == 0);
assert(blockDim.x == blockDim.y == blockDim.y == 1);
new (bar) barrier_t{block.size(), completion_fn};
// equivalent to: init(bar, block.size(), completion_fn);

}
block.sync();

// Main loop

for (int i = 0; i < n; i += block.size()) {
smem[block.thread_rank()] = data[i] + *acc;
auto t = bar->arrive();
// We can do independent computation here
bar->wait(std::move(t));
// shared-memory is safe to re-use in the next iteration
// since all threads are done with it, including the one
// that did the reduction
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10.26.8. Memory Barrier Primitives Interface

Memory barrier primitives are C-like interfaces to cuda: :barrier functionality. These primitives are
available through including the <cuda_awbarrier_primitives.h> header.

10.26.8.1 Data Types

typedef /* implementation defined */ __mbarrier_t;
typedef /* implementation defined */ __mbarrier_token_t;

10.26.8.2 Memory Barrier Primitives API

uint32_t __mbarrier_maximum_count();

void __mbarrier_init(__mbarrier_t* bar, uint32_t expected_count);
» bar must be a pointer to __shared__ memory.
» expected_count <= __mbarrier_maximum_count()

» Initialize *bar expected arrival count for the current and next phase to expected_count.

void __mbarrier_inval(__mbarrier_t* bar);

» bar must be a pointer to the mbarrier object residing in shared memory.

» Invalidation of *bar is required before the corresponding shared memory can be repurposed.

__mbarrier_token_t __mbarrier_arrive(__mbarrier_t* bar);

» Initialization of *bar must happen before this call.
» Pending count must not be zero.
» Atomically decrement the pending count for the current phase of the barrier.

» Return an arrival token associated with the barrier state immediately prior to the decrement.

__mbarrier_token_t __mbarrier_arrive_and_drop(__mbarrier_t* bar);

» Initialization of *bar must happen before this call.
» Pending count must not be zero.

» Atomically decrement the pending count for the current phase and expected count for the next
phase of the barrier.

» Return an arrival token associated with the barrier state immediately prior to the decrement.

bool __mbarrier_test_wait(__mbarrier_t* bar, __mbarrier_token_t token);

» token must be associated with the immediately preceding phase or current phase of *this.

» Returns true if token is associated with the immediately preceding phase of *bar, otherwise
returns false.

//Note: This API has been deprecated in CUDA 11.1
uint32_t __mbarrier_pending_count(__mbarrier_token_t token);
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10.27. Asynchronous Data Copies

CUDA 11 introduces Asynchronous Data operations with memcpy_async API to allow device code to
explicitly manage the asynchronous copying of data. The memcpy_async feature enables CUDA ker-
nels to overlap computation with data movement.

10.27.1. memcpy_async API

The memcpy_async APls are provided in the cuda/barrier, cuda/pipeline, and
cooperative_groups/memcpy_async.h header files.

The cuda::memcpy_async APIs work with cuda::barrier and cuda::pipeline synchro-
nization primitives, while the cooperative_groups: :memcpy_async synchronizes using coop-
ertive_groups: :wait.

These APIs have very similar semantics: copy objects from src to dst as-if performed by an-
other thread which, on completion of the copy, can be synchronized through cuda: :pipeline,
cuda::barrier, or cooperative_groups: :wait.

The complete APl documentation of the cuda: :memcpy_async overloads for cuda: :barrier and
cuda: :pipeline is provided in the libcudacxx APl documentation along with some examples.

The API documentation of cooperative_groups:memcpy_async is provided in the cooperative groups
Section of the documentation.

The memcpy_async APIs that use cuda:barrier and cuda: :pipeline require compute capability 7.0
or higher. On devices with compute capability 8.0 or higher, nemcpy_async operations from global to
shared memory can benefit from hardware acceleration.

10.27.2. Copy and Compute Pattern - Staging Data
Through Shared Memory

CUDA applications often employ a copy and compute pattern that:
» fetches data from global memory,
» stores data to shared memory, and

» performs computations on shared memory data, and potentially writes results back to global
memory.

The following sections illustrate how this pattern can be expressed without and with the mem-
cpy_async feature:

» The section Without memcpy_async introduces an example that does not overlap computation
with data movement and uses an intermediate register to copy data.

» The section With memcpy_async improves the previous example by introducing the cooper-
ative_groups:memcpy_async and the cuda: :memcpy_async APIs to directly copy data from
global to shared memory without using intermediate registers.

» Section Asynchronous Data Copies using cuda:barrier shows memcpy with cooperative groups
and barrier
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» Section Single-Stage Asynchronous Data Copies using cuda:pipeline show memcpy with single
stage pipeline

» Section Multi-Stage Asynchronous Data Copies using cuda:pipeline show memcpy with multi
stage pipeline

10.27.3. Without memcpy_async

Without memcpy_async, the copy phase of the copy and compute pattern is expressed as
shared[local_idx] = global[global_idx]. This global to shared memory copy is expanded
to a read from global memory into a register, followed by a write to shared memory from the register.

When this pattern occurs within an iterative algorithm, each thread block needs to synchronize af-
ter the shared[local_idx] = global[global_idx] assignment, to ensure all writes to shared
memory have completed before the compute phase can begin. The thread block also needs to syn-
chronize again after the compute phase, to prevent overwriting shared memory before all threads have
completed their computations. This pattern is illustrated in the following code snippet.

#include <cooperative_groups.h>

__device__ void compute(int* global_out, int const* shared_in) {
// Computes using all values of current batch from shared memory.
// Stores this thread's result back to global memory.

}

__global__ void without_memcpy_async(int* global_out, int const* global_in, size_t
—.size, size_t batch_sz) {

auto grid = cooperative_groups: :this_grid();

auto block = cooperative_groups: :this_thread_block();

assert(size == batch_sz * grid.size()); // Exposition: input size fits batch_sz *
—grid_size

extern __shared__ int shared[]; // block.size() * sizeof(int) bytes

size_t local_idx = block.thread_rank();

for (size_t batch = 0; batch < batch_sz; ++batch) {
// Compute the index of the current batch for this block in global memory:
size_t block_batch_idx = block.group_index().x * block.size() + grid.size() *
—batch;
size_t global_idx
shared[local_idx]

block_batch_idx + threadIdx.x;
global_in[global_idx];

block.sync(); // Wait for all copies to complete

compute(global_out + block_batch_idx, shared); // Compute and write result to
—global memory

block.sync(); // Wait for compute using shared memory to finish
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10.27.4. With memcpy_async

With memcpy_async, the assignment of shared memory from global memory

shared[local_idx] = global_in[global_idx];

is replaced with an asynchronous copy operation from cooperative groups

cooperative_groups: :memcpy_async(group, shared, global_in + batch_idx, sizeof(int) *
—block.size());

The cooperative_groups:memcpy_async APl copies sizeof(int) * block.size() bytes from
global memory starting at global_in + batch_idx to the shared data. This operation happens
as-if performed by another thread, which synchronizes with the current thread’s call to coopera-
tive_groups:wait after the copy has completed. Until the copy operation completes, modifying the
global data or reading or writing the shared data introduces a data race.

On devices with compute capability 8.0 or higher, memcpy_async transfers from global to shared
memory can benefit from hardware acceleration, which avoids transfering the data through an in-
termediate register.

#include <cooperative_groups.h>
#include <cooperative_groups/memcpy_async.h>

__device__ void compute(int* global_out, int const* shared_in);

__global__ void with_memcpy_async(int* global_out, int const* global_in, size_t size,
—.size_t batch_sz) {

auto grid = cooperative_groups::this_grid();

auto block = cooperative_groups: :this_thread_block();

assert(size == batch_sz * grid.size()); // Exposition: input size fits batch_sz #*
—grid_size

extern __shared__ int shared[]; // block.size() * sizeof(int) bytes

for (size_t batch = 0; batch < batch_sz; ++batch) {
size_t block_batch_idx = block.group_index().x * block.size() + grid.size() *
—batch;
// Whole thread-group cooperatively copies whole batch to shared memory:
cooperative_groups: :memcpy_async(block, shared, global_in + block_batch_idx,
—sizeof(int) * block.size());

cooperative_groups::wait(block); // Joins all threads, waits for all copies to
—complete

compute(global_out + block_batch_idx, shared);
block.sync();

}
Y
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10.27.5. Asynchronous Data Copies using
cuda: :barrier

The cuda: :memcpy_async overload for cuda:barrier enables synchronizing asynchronous data trans-
fers using a barrier. This overloads executes the copy operation as-if performed by another thread
bound to the barrier by: incrementing the expected count of the current phase on creation, and decre-
menting it on completion of the copy operation, such that the phase of the barrier will only advance
when all threads participating in the barrier have arrived, and all memcpy_async bound to the cur-
rent phase of the barrier have completed. The following example uses a block-wide barrier, where
all block threads participate, and swaps the wait operation with a barrier arrive_and_wait, while
providing the same functionality as the previous example:

#include <cooperative_groups.h>
#include <cuda/barrier>
__device__ void compute(int* global_out, int const* shared_in);

__global__ void with_barrier(int* global_out, int const* global_in, size_t size, size_
—t batch_sz) {

auto grid = cooperative_groups: :this_grid();

auto block = cooperative_groups: :this_thread_block();

assert(size == batch_sz * grid.size()); // Assume input size fits batch_sz * grid_
—Ssize
extern __shared__ int shared[]; // block.size() * sizeof(int) bytes

// Create a synchronization object (C++20 barrier)
__shared__ cuda: :barrier<cuda: :thread_scope: :thread_scope_block> barrier;
if (block.thread_rank() == 0) {

init(&barrier, block.size()); // Friend function initializes barrier

}
block.sync();

for (size_t batch = 0; batch < batch_sz; ++batch) {
size_t block_batch_idx = block.group_index().x * block.size() + grid.size() *
—batch;

cuda: :memcpy_async(block, shared, global_in + block_batch_idx, sizeof(int) *
—block.size(), barrier);
barrier.arrive_and_wait(); // Waits for all copies to complete

compute(global_out + block_batch_idx, shared);

block.sync();
}
}
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For compute capability 8.x, the pipeline mechanism is shared among CUDA threads in the same CUDA
warp. This sharing causes batches of memcpy_async to be entangled within a warp, which can impact
performance under certain circumstances.

This section highlights the warp-entanglement effect on commit, wait, and arrive operations. Please

refer to the and the for an overview of the individual
operations.
On devices with compute capability 8.0, the allows copying data from

global to shared memory asynchronously. These instructions support copying 4, 8, and 16 bytes at
a time. If the size provided to memcpy_async is a multiple of 4, 8, or 16, and both pointers passed
to memcpy_async are aligned to a 4, 8, or 16 alignment boundary, then memcpy_async can be imple-
mented using exclusively asynchronous memory operations.

Additionally for achieving best performance when usingmemcpy_async AP, an alignment of 128 Bytes
for both shared memory and global memory is required.

For pointers to values of types with an alignment requirement of 1 or 2, it is often not possible to prove
that the pointers are always aligned to a higher alignment boundary. Determining whether the cp.
async instructions can or cannot be used must be delayed until run-time. Performing such a runtime
alignment check increases code-size and adds runtime overhead.

The can be used to supply a proof that both point-
ers passed to memcpy_async are aligned to an Align alignment boundary and that size is a multiple
of Align, by passing it as an argument where the memcpy_async APIs expect a Shape:

cuda: :memcpy_async(group, dst, src, cuda::aligned_size_t<16>(N * block.size()),
—pipeline);

If the proof is incorrect, the behavior is undefined.

On devices with compute capability 8.0, the allows copying data from
global to shared memory asynchronously. If the pointer types passed to memcpy_async do not point
to types, the copy constructor of each output element needs to be invoked, and these
instructions cannot be used to accelerate memcpy_async.

The sequence of memcpy_async batchesis shared across the warp. The commit operationis coalesced
such that the sequence is incremented once for all converged threads that invoke the commit opera-
tion. If the warp is fully converged, the sequence is incremented by one; if the warp is fully diverged,
the sequence is incremented by 32.

Let PB be the warp-shared pipeline’s actual sequence of batches.
PB = {BPO, BP1, BP2, .., BPL}
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Let TB be a thread’s perceived sequence of batches, as if the sequence were only incremented
by this thread’s invocation of the commit operation.

TB = {BT@, BT1, BT2, .. BTL}
The pipeline: :producer_commit() return value is from the thread’s perceived batch se-
qguence.

An index in a thread’s perceived sequence always aligns to an equal or larger index in the actual
warp-shared sequence. The sequences are equal only when all commit operations are invoked
from converged threads.

BTn BPm wheren <= m

For example, when a warp is fully diverged:

The warp-shared pipeline’s actual sequence would be: PB = {0, 1, 2, 3, ..., 31} (PL=31).
The perceived sequence for each thread of this warp would be:

Thread 0: TB = {0} (TL=0)

Thread 1: TB = {0} (TL=0)

Thread 31: TB = {0} (TL=0)

A CUDA thread invokes either pipeline_consumer_wait_prior<N>() or
pipeline: :consumer_wait() to wait for batches in the perceived sequence TB to complete. Note
that pipeline::consumer_wait() is equivalent to pipeline_consumer_wait_prior<N>(),
where N = PL.

The pipeline_consumer_wait_prior<N>() function waits for batches in the actual sequence at
least up to and including PL-N. Since TL <= PL, waiting for batch up to and including PL-N includes
waiting for batch TL-N. Thus, when TL < PL, the thread will unintentionally wait for additional, more
recent batches.

In the extreme fully-diverged warp example above, each thread could wait for all 32 batches.

Warp-divergence affects the number of times an arrive_on(bar) operation updates the barrier. If
the invoking warp is fully converged, then the barrier is updated once. If the invoking warp is fully
diverged, then 32 individual updates are applied to the barrier.
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10.27.6.6 Keep Commit and Arrive-On Operations Converged

It is recommended that commit and arrive-on invocations are by converged threads:

» to not over-wait, by keeping threads’ perceived sequence of batches aligned with the actual se-
quence, and

» to minimize updates to the barrier object.

When code preceding these operations diverges threads, then the warp should be re-converged, via
__syncwarp before invoking commit or arrive-on operations.

10.28. Asynchronous Data Copies using
cuda: :pipeline

CUDA provides the cuda: :pipeline synchronization object to manage and overlap asynchronous
data movement with computation.

The API documentation for cuda: :pipeline is provided in the libcudacxx API. A pipeline object is a
double-ended N stage queue with a head and a tail, and is used to process work in a first-in first-out
(FIFO) order. The pipeline object has following member functions to manage the stages of the pipeline.

Pipeline Class Member Function Description

producer_acquire Acquires an available stage in the pipeline internal queue.

producer_commit Commits the asynchronous operations issued after the
producer_acquire call on the currently acquired stage of
the pipeline.

consumer_wait Wait for completion of all asynchronous operations on the

oldest stage of the pipeline.

consumer_release Release the oldest stage of the pipeline to the pipeline ob-
ject for reuse. The released stage can be then acquired by
the producer.

10.28.1. Single-Stage Asynchronous Data Copies using
cuda: :pipeline

In previous examples we showed how to use cooperative_groups and cuda:barrier to do asynchronous
data transfers. In this section, we will use the cuda: :pipeline API with a single stage to schedule
asynchronous copies. And later we will expand this example to show multi staged overlapped compute
and copy.

#include <cooperative_groups/memcpy_async.h>
#include <cuda/pipeline>

__device__ void compute(int* global_out, int const* shared_in);
__global__ void with_single_stage(int* global_out, int const* global_in, size_t size,
—.size_t batch_sz) { (continues on next page)
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(continued from previous page)
auto grid = cooperative_groups: :this_grid();
auto block = cooperative_groups: :this_thread_block();
assert(size == batch_sz * grid.size()); // Assume input size fits batch_sz * grid_
—Ssize

constexpr size_t stages_count = 1; // Pipeline with one stage
// One batch must fit in shared memory:
extern __shared__ int shared[]; // block.size() * sizeof(int) bytes

// Allocate shared storage for a single stage cuda::pipeline:
__shared__ cuda: :pipeline_shared_state<
cuda: :thread_scope: :thread_scope_block,
stages_count
> shared_state;
auto pipeline = cuda::make_pipeline(block, &shared_state);

// Each thread processes ‘batch_sz' elements.
// Compute offset of the batch ‘batch" of this thread block in global memory:
auto block_batch = [&](size_t batch) -> int {

return block.group_index().x * block.size() + grid.size() * batch;

b

for (size_t batch = 0; batch < batch_sz; ++batch) {
size_t global_idx = block_batch(batch);

// Collectively acquire the pipeline head stage from all producer threads:
pipeline.producer_acquire();

// Submit async copies to the pipeline's head stage to be

// computed in the next loop iteration

cuda: :memcpy_async(block, shared, global_in + global_idx, sizeof(int) * block.
—size(), pipeline);

// Collectively commit (advance) the pipeline's head stage

pipeline.producer_commit();

// Collectively wait for the operations committed to the
// previous ‘compute’ stage to complete:
pipeline.consumer_wait();

// Computation overlapped with the memcpy_async of the "copy" stage:
compute(global_out + global_idx, shared);

// Collectively release the stage resources
pipeline.consumer_release();
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10.28.2. Multi-Stage Asynchronous Data Copies using
cuda: :pipeline

In the previous examples with cooperative_groups:wait and cuda::barrier, the kernel threads immedi-
ately wait for the data transfer to shared memory to complete. This avoids data transfers from global
memory into registers, but does not hide the latency of the memcpy_async operation by overlapping
computation.

For that we use the CUDA pipeline feature in the following example. It provides a mechanism for
managing a sequence of memcpy_async batches, enabling CUDA kernels to overlap memory transfers
with computation. The following example implements a two-stage pipeline that overlaps data-transfer
with computation. It:

» Initializes the pipeline shared state (more below)
» Kickstarts the pipeline by scheduling a memcpy_async for the first batch.

» Loops over all the batches: it schedules memcpy_async for the next batch, blocks all threads on
the completion of the memcpy_async for the previous bat