
NVBLAS
Release 12.5

NVIDIA

May 09, 2024

Contents

1 NVBLAS Overview 3

2 GPU Accelerated Routines 5

3 BLAS Symbols Interception 7

4 Device Memory Support 9

5 Security Precaution 11

6 Configuration 13
6.1 NVBLAS_CONFIG_FILE Environment Variable . 13
6.2 Configuration Keywords . 13
6.2.1 NVBLAS_LOGFILE . 13
6.2.2 NVBLAS_TRACE_LOG_ENABLED . 14
6.2.3 NVBLAS_CPU_BLAS_LIB . 14
6.2.4 NVBLAS_GPU_LIST . 14
6.2.5 NVBLAS_TILE_DIM . 15
6.2.6 NVBLAS_GPU_DISABLED_<BLAS_FUNC_NAME> . 15
6.2.7 NVBLAS_CPU_RATIO_<BLAS_FUNC_NAME> . 15
6.2.8 NVBLAS_AUTOPIN_MEM_ENABLED . 15
6.2.9 Configuration File Example . 15

7 NVBLAS Installation 17

8 Usage 19

9 Notices 21
9.1 Notice . 21
9.2 OpenCL . 22
9.3 Trademarks . 22

i

ii

NVBLAS, Release 12.5

NVBLAS

The User guide for NVBLAS, drop-in BLAS replacement, multi-GPUs accelerated

The NVBLAS Library is a GPU-accelerated Libary that implements BLAS (Basic Linear Algebra Subpro-
grams). It can accelerate most BLAS Level-3 routines by dynamically routing BLAS calls to one or more
NVIDIA GPUs present in the system, when the charateristics of the call make it speed up on a GPU.

Contents 1

NVBLAS, Release 12.5

2 Contents

Chapter 1. NVBLAS Overview

The NVBLAS Library is built on top of the cuBLAS Library using only the CUBLASXT API (refer to the
CUBLASXT API section of the cuBLAS Documentation for more details). NVBLAS also requires the
presence of a CPU BLAS lirbary on the system. Currently NVBLAS intercepts only compute intensive
BLAS Level-3 calls (see table below). Depending on the charateristics of those BLAS calls, NVBLAS
will redirect the calls to the GPUs present in the system or to CPU. That decision is based on a simple
heuristic that estimates if the BLAS call will execute for long enough to amortize the PCI transfers of
the input and output data to the GPU.BecauseNVBLAS does not support all standard BLAS routines,
it might be necessary to associate it with an existing full BLAS Library. Please refer to the Usage
section for more details.

3

NVBLAS, Release 12.5

4 Chapter 1. NVBLAS Overview

Chapter 2. GPU Accelerated Routines

NVBLAS offloads only the compute-intensive BLAS3 routines which have the best potential for accel-
eration on GPUs.

The following table shows the currently supported routines:

Routine Types Operation

gemm S,D,C,Z Multiplication of 2 matrices

syrk S,D,C,Z Symmetric rank-k update

herk C,Z Hermitian rank-k update

syr2k S,D,C,Z Symmetric rank-2k update

her2k C,Z Hermitian rank-2k update

trsm S,D,C,Z Triangular solve with multiple right-hand sides

trmm S,D,C,Z Triangular matrix-matrix multiplication

symm S,D,C,Z Symmetric matrix-matrix multiplication

hemm C,Z Hermitian matrix-matrix multiplication

5

NVBLAS, Release 12.5

6 Chapter 2. GPU Accelerated Routines

Chapter 3. BLAS Symbols Interception

Standard BLAS Library implementations usually expose multiple symbols for the same routines. Let’s
sayfunc is a BLAS routine name, func_ or/andfunc are usually defined as extern symbols. SomeBLAS
Librariesmight also expose some symbols with a proprietary appended prefix. NVBLAS intercepts only
the symbols func_ and func. The user needs to make sure that the application intended to be GPU-
accelerated byNVBLAS actually calls those defined symbols. Any other symbols will not be intercepted
and the original BLAS routine will be executed for those cases.

7

NVBLAS, Release 12.5

8 Chapter 3. BLAS Symbols Interception

Chapter 4. Device Memory Support

Starting with Release 8.0, data can be located on any GPU device, even on GPU devices that are not
configured to be part of the computation. When any of the data is located on a GPU, the computation
will be exclusively done on GPUwhatever the size of the problem. Also, this feature has to be used with
caution: the user has to be sure that the BLAS call will indeed be intercepted by NVBLAS, otherwise it
will result in a crash when the CPU BLAS tries to execute it.

9

NVBLAS, Release 12.5

10 Chapter 4. Device Memory Support

Chapter 5. Security Precaution

Because the NVBLAS Library relies on a symbols interception mechanism, it is essential to make sure
it has not been compromised. In that regard, NVBLAS should never be used from a process running at
elevated privileges, such as Administrator on Windows or root on Linux.

11

NVBLAS, Release 12.5

12 Chapter 5. Security Precaution

Chapter 6. Configuration

Because NVBLAS is a drop-in replacement of BLAS, it must be configured through an ASCII text file
that describes how many and which GPUs can participate in the intercepted BLAS calls. The config-
uration file is parsed at the time of the loading of the library. The format of the configuration file is
based on keywords optionally followed by one or more user-defined parameters. At most one keyword
per line is allowed. Blank lines or lines beginning with the character # are ignored.

6.1. NVBLAS_CONFIG_FILE Environment
Variable

The location and name of the configuration file must be defined by the environment variable
NVBLAS_CONFIG_FILE. By default, if NVBLAS_CONFIG_FILE is not defined, NVBLAS will try to open
the file nvblas.conf in the current directory. For a safe use of NVBLAS, the configuration file should
have have restricted write permissions.

6.2. Configuration Keywords

The configuration keywords syntax is described in the following subsections.

6.2.1. NVBLAS_LOGFILE

This keyword defines the file where NVBLAS should print status and error messages. By default, if not
defined, the standard error output file (eg. stderr) will be used. It is advised to define this keyword
early in the configuration to capture errors in parsing that file itself.

13

NVBLAS, Release 12.5

6.2.2. NVBLAS_TRACE_LOG_ENABLED

When this keyword is defined, every intercepted BLAS calls will be logged into the NVBLAS_LOGFILE.
This feature, even though intrusive, can be useful for debugging purposes.

6.2.3. NVBLAS_CPU_BLAS_LIB

This keyword defines the CPU BLAS dynamic library file (for example, .so file on Linux or .dll on
Windows) that NVBLAS should open to find the CPU BLAS symbols definitions. This keyword must be
defined for NVBLAS to work. Because CPU Blas libraries are often composed of multiple files, even
though this keyword is set to the full path to themain file of the CPU library, it might still be necessary
to define the right path to find the rest of the library files in the environment of your system. On Linux,
this can be done by setting the environment variable LD_LIBRARY_PATH whereas on Windows, this
can be done by setting the environment variable PATH.

For a safe use of NVBLAS, the following precautions are strongly advised:

▶ The CPU BLAS Library should be located where ordinary users do not have write permissions.

▶ The path specified should be absolute, not relative.

6.2.4. NVBLAS_GPU_LIST

This keyword defines the list of GPUs that should participate in the computation of the intercepted
BLAS calls. If not defined, only GPU device 0 is used, since that is normally the most compute-capable
GPU installed in the system. This keyword can be set to a list of device numbers separated by blank
characters. Also the following wildcard keywords are also accepted for simplicity :

Key-
word

Meaning

ALL All compute-capable GPUs detected on the system will be used by NVBLAS

ALL0 GPU device 0, AND all others GPUs detected that have the same compute-capabilities as
device 0 will be used by NVBLAS

Note: In the current release of CUBLAS, the CUBLASXT API supports two GPUs if they are on the
same board such as Tesla K10 or GeForce GTX690 and one GPU otherwise. Because NVBLAS is built
on top of the CUBLASXT API, NVBLAS has the same restriction. If access to more GPUs devices is
needed, details of the licensing are described at cublasXt.

14 Chapter 6. Configuration

https://developer.nvidia.com/cublasxt

NVBLAS, Release 12.5

6.2.5. NVBLAS_TILE_DIM

This keyword defines the tile dimension that should be used to divide thematrices involved in the com-
putation. This definition maps directly to a call of the cublasXt API routine cublasXtSetBlockDim.
Refer to cuBLAS documentation to understand the tradeoffs associated with setting this to a larger
or a smaller value.

6.2.6. NVBLAS_GPU_DISABLED_<BLAS_FUNC_NAME>

This keyword, appended with the name of a BLAS routine disables NVBLAS from running a specified
routine on the GPU. This feature is intended mainly for debugging purposes. By default, all supported
BLAS routines are enabled.

6.2.7. NVBLAS_CPU_RATIO_<BLAS_FUNC_NAME>

This keyword, appendedwith the name of ta BLAS routine defines the ratio of theworkload that should
remain on the CPU in the event that the NVBLAS decides to offload work for that routine on the GPU.
This functionality is directly mapped to the cublasXt API routine cublasXtSetCpuRatio. By default,
the ratio is defined to zero for all routines. Please refer to the cuBLAS documentation for details and
for the list of routines which support this feature.

6.2.8. NVBLAS_AUTOPIN_MEM_ENABLED

This keyword enables the PinningMemory mode. This functionality is directly mapped to the cublasXt
API routine cublasXtSetPinningMemMode. If this keyowrd is not present in the configuration file,
the Pinning Memory mode will be set to CUBLASXT_PINNING_DISABLED.

Note: There are some restrictions to use this feature as specified in the cuBLAS documenta-
tion of the underlying routine cublasXtSetPinningMemMode. Specifically when NVBLAS is used
in a multi-threaded applications, this option should not be used if there is a chance that matri-
ces used by different threads overlaps while calling NVBLAS. Please refer to the cuBLAS Documen-
tation of the routine `cublasXtSetPinningMemMode <https://docs.nvidia.com/cuda/cublas/index.
html#cublasxt_setPinningMemMode>`__ for details.

6.2.9. Configuration File Example

The following example shows a typical NVBLAS configuration file :

This is the configuration file to use NVBLAS Library
Setup the environment variable NVBLAS_CONFIG_FILE to specify your own config file.
By default, if NVBLAS_CONFIG_FILE is not defined,
NVBLAS Library will try to open the file "nvblas.conf" in its current directory
Example : NVBLAS_CONFIG_FILE ∕home∕cuda_user∕my_nvblas.conf

(continues on next page)

6.2. Configuration Keywords 15

https://docs.nvidia.com/cuda/cublas/index.html
https://docs.nvidia.com/cuda/cublas/index.html
https://docs.nvidia.com/cuda/cublas/index.html#cublasxt_setPinningMemMode
https://docs.nvidia.com/cuda/cublas/index.html#cublasxt_setPinningMemMode

NVBLAS, Release 12.5

(continued from previous page)

The config file should have restricted write permissions accesses

Specify which output log file (default is stderr)
NVBLAS_LOGFILE nvblas.log

Enable trace log of every intercepted BLAS calls
NVBLAS_TRACE_LOG_ENABLED

#Put here the CPU BLAS fallback Library of your choice
#It is strongly advised to use full path to describe the location of the CPU Library
NVBLAS_CPU_BLAS_LIB ∕usr∕lib∕libopenblas.so
#NVBLAS_CPU_BLAS_LIB <mkl_path_installtion>∕libmkl_rt.so

List of GPU devices Id to participate to the computation
Use ALL if you want all your GPUs to contribute
Use ALL0, if you want all your GPUs of the same type as device 0 to contribute
However, NVBLAS consider that all GPU have the same performance and PCI bandwidth
By default if no GPU are listed, only device 0 will be used

#NVBLAS_GPU_LIST 0 2 4
#NVBLAS_GPU_LIST ALL
NVBLAS_GPU_LIST ALL0

Tile Dimension
NVBLAS_TILE_DIM 2048

Autopin Memory
NVBLAS_AUTOPIN_MEM_ENABLED

#List of BLAS routines that are prevented from running on GPU (use for debugging�
↪→purpose
The current list of BLAS routines supported by NVBLAS are
GEMM, SYRK, HERK, TRSM, TRMM, SYMM, HEMM, SYR2K, HER2K

#NVBLAS_GPU_DISABLED_SGEMM
#NVBLAS_GPU_DISABLED_DGEMM
#NVBLAS_GPU_DISABLED_CGEMM
#NVBLAS_GPU_DISABLED_ZGEMM

Computation can be optionally hybridized between CPU and GPU
By default, GPU-supported BLAS routines are ran fully on GPU
The option NVBLAS_CPU_RATIO_<BLAS_ROUTINE> give the ratio [0,1]
of the amount of computation that should be done on CPU
CAUTION : this option should be used wisely because it can actually
significantly reduced the overall performance if too much work is given to CPU

#NVBLAS_CPU_RATIO_CGEMM 0.07

16 Chapter 6. Configuration

Chapter 7. NVBLAS Installation

The NVBLAS Library is part of the CUDA Toolkit, and will be installed along all the other CUDA libraries.
It is available on 64-bit operating systems. NVBLAS Library is built on top of cuBLAS, so the cuBLAS
library needs to be accessible by NVBLAS.

17

NVBLAS, Release 12.5

18 Chapter 7. NVBLAS Installation

Chapter 8. Usage

To use the NVBLAS Library, the user application must be relinked against NVBLAS in addition to the
original CPU Blas (technically only NVBLAS is needed unless some BLAS routines not supported by
NVBLAS are used by the application). To be sure that the linker links against the exposed symbols of
NVBLAS and not the ones from the CPU BLAS, the NVBLAS Library needs to be put before the CPU
BLAS on the linkage command line.

On Linux, an alternative way to use NVBLAS Library is to use the LD_PRELOAD environment variable;
this technique has the advantage of avoiding the relinkage step. However, the user should avoid defin-
ing that environment variable globally because it will cause the NVBLAS library to be loaded by every
shell command executed on the system, thus leading to a lack of responsiveness of the system.

Finally, mathematical tools and libraries often offer the opportunity to specify the BLAS Library to be
used through an environment variable or a configuration file. Because NVBLAS does not support all
the standard BLAS routines, it might be necessary to pair NVBLASwith a full BLAS library, even though
your application only calls supported NVBLAS routines. Fortunately, those tools and libraries usually
offer a way to specify multiple BLAS Libraries. Please refer to the documentation of the appropriate
tools and libraries for details.

19

NVBLAS, Release 12.5

20 Chapter 8. Usage

Chapter 9. Notices

9.1. Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a
certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no repre-
sentations or warranties, expressed or implied, as to the accuracy or completeness of the information
contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall
have no liability for the consequences or use of such information or for any infringement of patents
or other rights of third parties that may result from its use. This document is not a commitment to
develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any
other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that
such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the
time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by
authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA
product referenced in this document. No contractual obligations are formed either directly or indirectly
by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military,
aircraft, space, or life support equipment, nor in applicationswhere failure ormalfunction of theNVIDIA
product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or
applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIAmakes no representation or warranty that products based on this document will be suitable for
any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA.
It is customer’s sole responsibility to evaluate and determine the applicability of any information con-
tained in this document, ensure the product is suitable and fit for the application planned by customer,
and perform the necessary testing for the application in order to avoid a default of the application or
the product. Weaknesses in customer’s product designs may affect the quality and reliability of the
NVIDIA product andmay result in additional or different conditions and/or requirements beyond those
contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or prob-
lem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is
contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other
NVIDIA intellectual property right under this document. Information published by NVIDIA regarding
third-party products or services does not constitute a license from NVIDIA to use such products or

21

NVBLAS, Release 12.5

services or a warranty or endorsement thereof. Use of such information may require a license from a
third party under the patents or other intellectual property rights of the third party, or a license from
NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA
in writing, reproduced without alteration and in full compliance with all applicable export laws and
regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENTANDALLNVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE
BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WAR-
RANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENTWILL NVIDIA BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CON-
SEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARIS-
ING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCHDAMAGES. Notwithstanding any damages that customermight incur for any reasonwhatso-
ever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein
shall be limited in accordance with the Terms of Sale for the product.

9.2. OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

9.3. Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the
U.S. and other countries. Other company and product names may be trademarks of the respective
companies with which they are associated.

Copyright

©2007-2024, NVIDIA Corporation & affiliates. All rights reserved

22 Chapter 9. Notices

	NVBLAS Overview
	GPU Accelerated Routines
	BLAS Symbols Interception
	Device Memory Support
	Security Precaution
	Configuration
	NVBLAS_CONFIG_FILE Environment Variable
	Configuration Keywords
	NVBLAS_LOGFILE
	NVBLAS_TRACE_LOG_ENABLED
	NVBLAS_CPU_BLAS_LIB
	NVBLAS_GPU_LIST
	NVBLAS_TILE_DIM
	NVBLAS_GPU_DISABLED_<BLAS_FUNC_NAME>
	NVBLAS_CPU_RATIO_<BLAS_FUNC_NAME>
	NVBLAS_AUTOPIN_MEM_ENABLED
	Configuration File Example

	NVBLAS Installation
	Usage
	Notices
	Notice
	OpenCL
	Trademarks

