
GPUDirect RDMA
Release 12.6

NVIDIA Corporation

Jul 23, 2024

Contents

1 How GPUDirect RDMAWorks 3

2 Standard DMA Transfer 5

3 GPUDirect RDMA Transfers 7

4 Changes in CUDA 6.0 9

5 Changes in CUDA 7.0 11

6 Changes in CUDA 8.0 13

7 Changes in CUDA 10.1 15

8 Changes in CUDA 11.2 17

9 Changes in CUDA 11.4 19

10 Changes in CUDA 12.2 21

11 Design Considerations 23
11.1 Lazy Unpinning Optimization . 23
11.2 Registration Cache . 23
11.3 Unpin Callback . 24
11.4 Supported Systems . 25
11.5 PCI BAR sizes . 25
11.6 Tokens Usage . 26
11.7 Synchronization and Memory Ordering . 27

12 How to Perform Specific Tasks 29
12.1 Displaying GPU BAR space . 29
12.2 Pinning GPU memory . 29
12.3 Unpinning GPU memory . 30
12.4 Handling the free callback . 31
12.5 Buffer ID Tag Check for A Registration Cache . 31
12.6 Linking a Kernel Module against nvidia.ko . 32
12.7 Using nvidia-peermem . 33

13 References 35
13.1 Basics of UVA CUDA Memory Management . 35
13.2 Userspace API . 36
13.3 Kernel API . 38
13.4 Porting to Tegra . 40
13.4.1 Changing the allocator . 41
13.4.2 Modification to Kernel API . 41

i

13.4.3 Other highlights . 42

14 Notices 43
14.1 Notice . 43
14.2 OpenCL . 44
14.3 Trademarks . 44

ii

GPUDirect RDMA, Release 12.6

Developing a Linux Kernel Module using GPUDirect RDMA

The API reference guide for enabling GPUDirect RDMA connections to NVIDIA GPUs.

GPUDirect RDMA is a technology introduced in Kepler-class GPUs and CUDA 5.0 that enables a direct
path for data exchange between the GPU and a third-party peer device using standard features of PCI
Express. Examples of third-party devices are: network interfaces, video acquisition devices, storage
adapters.

GPUDirect RDMA is available on both Tesla and Quadro GPUs.

A number of limitations can apply, the most important being that the two devices must share the
same upstream PCI Express root complex. Some of the limitations depend on the platform used and
could be lifted in current/future products.

A few straightforward changes must be made to device drivers to enable this functionality with a
wide range of hardware devices. This document introduces the technology and describes the steps
necessary to enable an GPUDirect RDMA connection to NVIDIA GPUs on Linux.

Fig. 1: GPUDirect RDMA within the Linux Device Driver Model

Contents 1

GPUDirect RDMA, Release 12.6

2 Contents

Chapter 1. How GPUDirect RDMA
Works

When setting up GPUDirect RDMA communication between two peers, all physical addresses are the
same from thePCI Express devices’ point of view. Within this physical address space are linearwindows
called PCI BARs. Each device has six BAR registers at most, so it can have up to six active 32bit BAR
regions. 64bit BARs consume two BAR registers. The PCI Express device issues reads and writes to a
peer device’s BAR addresses in the same way that they are issued to system memory.

Traditionally, resources like BAR windows are mapped to user or kernel address space using the CPU’s
MMU as memory mapped I/O (MMIO) addresses. However, because current operating systems don’t
have sufficient mechanisms for exchanging MMIO regions between drivers, the NVIDIA kernel driver
exports functions to perform the necessary address translations and mappings.

To addGPUDirect RDMAsupport to a device driver, a small amount of addressmapping codewithin the
kernel driver must be modified. This code typically resides near existing calls to get_user_pages().

The APIs and control flow involved with GPUDirect RDMA are very similar to those used with standard
DMA transfers.

Refer to Supported Systems and PCI BAR sizes for more hardware details.

3

GPUDirect RDMA, Release 12.6

4 Chapter 1. How GPUDirect RDMAWorks

Chapter 2. Standard DMA Transfer

First, we outline a standard DMA Transfer initiated from userspace. In this scenario, the following
components are present:

▶ Userspace program

▶ Userspace communication library

▶ Kernel driver for the device interested in doing DMA transfers

The general sequence is as follows:

1. The userspace program requests a transfer via the userspace communication library. This oper-
ation takes a pointer to data (a virtual address) and a size in bytes.

2. The communication library must make sure the memory region corresponding to the virtual ad-
dress and size is ready for the transfer. If this is not the case already, it has to be handled by the
kernel driver (next step).

3. The kernel driver receives the virtual address and size from the userspace communication library.
It then asks the kernel to translate the virtual address range to a list of physical pages and make
sure they are ready to be transferred to or from. We will refer to this operation as pinning the
memory.

4. The kernel driver uses the list of pages to program the physical device’s DMA engine(s).

5. The communication library initiates the transfer.

6. After the transfer is done, the communication library should eventually clean up any resources
used to pin the memory. We will refer to this operation as unpinning the memory.

5

GPUDirect RDMA, Release 12.6

6 Chapter 2. Standard DMA Transfer

Chapter 3. GPUDirect RDMA Transfers

For the communication to support GPUDirect RDMA transfers some changes to the sequence above
have to be introduced. First of all, two new components are present:

▶ Userspace CUDA library

▶ NVIDIA kernel driver

As described in Basics of UVA CUDAMemoryManagement, programs using the CUDA library have their
address space split between GPU and CPU virtual addresses, and the communication library has to
implement two separate paths for them.

The userspace CUDA library provides a function that lets the communication library distinguish be-
tween CPU and GPU addresses. Moreover, for GPU addresses it returns additional metadata that is
required to uniquely identify the GPU memory represented by the address. Refer to Userspace API for
details.

The difference between the paths for CPU and GPU addresses is in how the memory is pinned and
unpinned. For CPU memory this is handled by built-in Linux Kernel functions (get_user_pages()
and put_page()). However, in the GPU memory case the pinning and unpinning has to be handled by
functions provided by the NVIDIA Kernel driver. See Pinning GPU memory and Unpinning GPU memory
for details.

Some hardware caveats are explained in Supported Systems and PCI BAR sizes.

7

GPUDirect RDMA, Release 12.6

8 Chapter 3. GPUDirect RDMA Transfers

Chapter 4. Changes in CUDA 6.0

In this section we briefly list the changes that are available in CUDA 6.0:

▶ CUDA peer-to-peer tokens are no longer mandatory. For memory buffers owned by the call-
ing process (which is typical) tokens can be replaced by zero (0) in the kernel-mode function
nvidia_p2p_get_pages(). This new feature is meant to make it easier for existing third party
software stacks to adopt RDMA for GPUDirect.

▶ As a consequence of the change above, a new API cuPointerSetAttribute() has been intro-
duced. This API must be used to register any buffer for which no peer-to-peer tokens are used.
It is necessary to ensure correct synchronization behavior of the CUDA API when operation on
memory which may be read by RDMA for GPUDirect. Failing to use it in these cases may cause
data corruption. See changes in Tokens Usage.

▶ cuPointerGetAttribute() has been extended to return a globally unique numeric identifier,
which in turn can be used by lower-level libraries to detect buffer reallocations happening in user-
level code (Refer toUserspaceAPI). It provides an alternativemethod to detect reallocationswhen
intercepting CUDA allocation and deallocation APIs is not possible.

▶ The kernel-mode memory pinning feature has been extended to work in combination with Multi-
Process Service (MPS).

Caveats as of CUDA 6.0:

▶ CUDA Unified Memory is not explicitly supported in combination with GPUDirect RDMA. While
the page table returned by nvidia_p2p_get_pages() is valid formanagedmemory buffers and
provides a mapping of GPU memory at any given moment in time, the GPU device copy of that
memorymay be incoherent with the writable copy of the page which is not on the GPU. Using the
page table in this circumstancemay result in accessing stale data, or data loss, because of a DMA
write access to devicememory that is subsequently overwritten by the UnifiedMemory run-time.
cuPointerGetAttribute() may be used to determine if an address is being managed by the
Unified Memory runtime.

▶ Every time a device memory region is pinned, new GPU BAR space is allocated unconditionally,
even when pinning overlapping or duplicate device memory ranges, i.e. there is no attempt at
reusing mappings. This behavior has been changed since CUDA 7.0.

9

GPUDirect RDMA, Release 12.6

10 Chapter 4. Changes in CUDA 6.0

Chapter 5. Changes in CUDA 7.0

In this section we briefly list the changes that are available in CUDA 7.0:

▶ On the IBM POWER8 platform, GPUDirect RDMA is not supported, though it is not explicitly dis-
abled.

▶ GPUDirect RDMA is not guaranteed to work on any given ARM64 platform.

▶ Management of GPU BAR mappings has been improved with respect to CUDA 6.0. Now when a
device memory region is pinned, GPU BAR space might be shared with pre-existing mappings.
This is the case for example when pinning overlapping or duplicate device memory ranges. As a
consequence, when unpinning a region, its whole BAR space will not be returned if even only a
subset of its BAR space is shared.

▶ ThenewcuPointerGetAttributes()API has been introduced. It canbeusefulwhen retrieving
multiple attributes for the same buffer, e.g. in MPI when examining a new buffer.

▶ cudaPointerGetAttributes() is now faster since it leverages cuPointerGetAttributes()
internally.

▶ A new sample code, samples∕7_CUDALibraries∕cuHook, has been added in CUDA 6.5. It
can be used as a template for implementing an interception framework for CUDA memory
de/allocation APIs.

11

GPUDirect RDMA, Release 12.6

12 Chapter 5. Changes in CUDA 7.0

Chapter 6. Changes in CUDA 8.0

In this section we briefly list the changes that are available in CUDA 8.0:

▶ The nvidia_p2p_page_table struct has been extended to include a new member, without break-
ing binary compatibility. The minor version in the NVIDIA_P2P_PAGE_TABLE_VERSIONmacro has
been updated accordingly.

▶ The nvidia_p2p_dma_mapping structure, the nvidia_p2p_dma_map_pages() and
nvidia_p2p_dma_unmap_pages() APIs, the NVIDIA_P2P_DMA_MAPPING_VERSION macro
have been introduced. These APIs can be used by third party device drivers to map and unmap
the GPU BAR pages into their device’s I/O address space. The main use case is on platforms
where the I/O addresses of PCIe resources, used for PCIe peer-to-peer transactions, are different
from the physical addresses used by the CPU to access those same resources. See this link for
an example of code using these new APIs.

▶ TheNVIDIA_P2P_PAGE_TABLE_VERSION_COMPATIBLE andNVIDIA_P2P_DMA_MAPPING_VERSION_COMPATIBLE
macros have been introduced. These are meant to be called by third-party device drivers to
check for runtime binary compatibility, for example in case of changes to the data structure’s
layout.

▶ On the IBM POWER8 platform, when using the above APIs, GPUDirect RDMA is reported to work
correctly restricted to the case where the GPU and the third party device are connected through
a supported PCIe switch.

13

https://github.com/Mellanox/nv_peer_memory/commit/a313b8beab5403339c0740afa3bea720b92dc2b7

GPUDirect RDMA, Release 12.6

14 Chapter 6. Changes in CUDA 8.0

Chapter 7. Changes in CUDA 10.1

GPUDirect RDMA is supported on Jetson AGX Xavier platform. Refer to the Porting to Tegra section
for details.

15

GPUDirect RDMA, Release 12.6

16 Chapter 7. Changes in CUDA 10.1

Chapter 8. Changes in CUDA 11.2

GPUDirect RDMA is supported on Drive AGX Xavier Linux based platform. Refer to the Porting to Tegra
section for details.

17

GPUDirect RDMA, Release 12.6

18 Chapter 8. Changes in CUDA 11.2

Chapter 9. Changes in CUDA 11.4

Added a new a kernel module, nvidia-peermem, which provides Mellanox InfiniBand-based HCAs
(Host Channel Adapters) direct peer-to-peer read and write access to the NVIDIA GPU’s video mem-
ory. Refer to Using nvidia-peermem for details.

GPUDirect RDMA is supported on Jetson Orin platform. Refer to the Porting to Tegra section for de-
tails.

Known Issue:

Currently, there is no service to automatically load nvidia-peermem. Users need to load the module
manually.

19

GPUDirect RDMA, Release 12.6

20 Chapter 9. Changes in CUDA 11.4

Chapter 10. Changes in CUDA 12.2

In drivers released from the R515 up to the R535 branches, except for newer R525 and R535 releases
mentioned below, there is a race bug which may show up as a kernel null-pointer dereference. This
happens when the GPU invokes the (hereby I/O) kernel driver invalidation callback, the one which
was registered during the call to nvidia_p2p_get_pages, concurrently with the I/O driver calling
nvidia_p2p_put_pages. The race bug does not affect the persistent mapping case, as in that case
an invalidation callback is not supported nor needed.

The bug fix required the following API change:

▶ nvidia_p2p_get_pages no longer accepts a NULL callback pointer.

▶ Instead, nvidia_p2p_put_pages_persistent and nvidia_p2p_get_pages_persistent
have been introduced and should be used instead when requesting a persistent mapping.

▶ The use of those new persistent APIs can be guarded by the
NVIDIA_P2P_CAP_GET_PAGES_PERSISTENT_API preprocessor macro, for example when
writing portable drivers.

▶ The nvidia-peermem kernel module has been updated accordingly.

▶ Although deprecated when running GPU drivers from the R470 branch and newer, customers
still using the off-tree nv_peer_mem module (https://github.com/Mellanox/nv_peer_memory)
and needing the persistent mapping feature will have to switch to nvidia-peermem.

Note that I/O drivers, which do not need persistent mappings, do not require source code changes.

The API changes described above are deployed in the R535 branch, specifically in release 535.14 and
later, and have also been back-ported to the R525 branch, for TeslaRD3 (525.105.17) and later.

21

https://github.com/Mellanox/nv_peer_memory

GPUDirect RDMA, Release 12.6

22 Chapter 10. Changes in CUDA 12.2

Chapter 11. Design Considerations

When designing a system to utilize GPUDirect RDMA, there a number of considerations which should
be taken into account.

11.1. Lazy Unpinning Optimization

Pinning GPU device memory in BAR is an expensive operation, taking up tomilliseconds. Therefore the
application should be designed in a way to minimize that overhead.

The most straightforward implementation using GPUDirect RDMA would pin memory before each
transfer and unpin it right after the transfer is complete. Unfortunately, this would perform poorly
in general, as pinning and unpinning memory are expensive operations. The rest of the steps required
to perform an RDMA transfer, however, can be performed quickly without entering the kernel (the
DMA list can be cached and replayed using MMIO registers/command lists).

Hence, lazily unpinning memory is key to a high performance RDMA implementation. What it implies,
is keeping the memory pinned even after the transfer has finished. This takes advantage of the fact
that it is likely that the samememory region will be used for future DMA transfers thus lazy unpinning
saves pin/unpin operations.

An example implementation of lazy unpinning would keep a set of pinned memory regions and only
unpin some of them (for example the least recently used one) if the total size of the regions reached
some threshold, or if pinning a new region failed because of BAR space exhaustion (refer to PCI BAR
sizes).

11.2. Registration Cache

Communication middleware often employs an optimization called a registration cache, or pin-down
cache, to minimize pinning overhead. Typically it already exists for host memory, implementing lazy
unpinning, LRU de-registration, etc. For networking middleware, such caches are usually implemented
in user-space, as they are used in combination with hardware capable of user-modemessage injection.
CUDA UVA memory address layout enables GPU memory pinning to work with these caches by taking
into account just a few design considerations. In the CUDA environment, this is even more important
as the amount of memory which can be pinned may be significantly more constrained than for host
memory.

As the GPU BAR space is typically mapped using 64KB pages, it is more resource efficient to maintain
a cache of regions rounded to the 64KB boundary. Even more so, as two memory areas which are in
the same 64KB boundary would allocate and return the same BAR mapping.

23

GPUDirect RDMA, Release 12.6

Registration caches usually rely on the ability to intercept deallocation events happening in the user
application, so that they can unpin the memory and free important HW resources, e.g. on the network
card. To implement a similar mechanism for GPU memory, an implementation has two options:

▶ Instrument all CUDA allocation and deallocation APIs.

▶ Use a tag check function to track deallocation and reallocation. Refer to Buffer ID Tag Check for
A Registration Cache.

There is a sample application, 7_CUDALibraries∕cuHook, showing how to intercept calls to CUDA
APIs at run-time, which can be used to detect GPU memory de/allocations.

While intercepting CUDA APIs is beyond the scope of this document, an approach to per-
forming tag checks is available starting with CUDA 6.0. It involves the usage of the
CU_POINTER_ATTRIBUTE_BUFFER_ID attribute in cuPointerGetAttribute() (or cuPointerGe-
tAttributes() if more attributes are needed) to detect memory buffer deallocations or realloca-
tions. The API will return a different ID value in case of reallocation or an error if the buffer address is
no longer valid. Refer to Userspace API for API usage.

Note: Using tag checks introduces an extra call into the CUDA API on each memory buffer use, so
this approach is most appropriate when the additional latency is not a concern.

11.3. Unpin Callback

When a third party device driver pins the GPU pages with nvidia_p2p_get_pages() it must also
provide a callback function that the NVIDIA driver will call if it needs to revoke access to the mapping.
This callback occurs synchronously, giving the third party driver the opportunity to clean up and re-
move any references to the pages in question (i.e., wait for outstanding DMAs to complete). The user
callback function may block for a few milliseconds, although it is recommended that the callback
complete as quickly as possible. Care has to be taken not to introduce deadlocks as waiting within the
callback for the GPU to do anything is not safe.

The callback must call nvidia_p2p_free_page_table() (not nvidia_p2p_put_pages()) to free
the memory pointed to by page_table. The corresponding mapped memory areas will only be un-
mapped by the NVIDIA driver after returning from the callback.

Note that the callback will be invoked in two scenarios:

▶ If the userspace program explicitly deallocates the corresponding GPUmemory, e.g. cuMemFree,
cuCtxDestroy, etc. before the third party kernel driver has a chance to unpin the memory with
nvidia_p2p_put_pages().

▶ As a consequence of an early exit of the process.

In the latter case there can be tear-down ordering issues between closing the file descriptor of the
third party kernel driver and that of the NVIDIA kernel driver. In the case the file descriptor for the
NVIDIA kernel driver is closed first, the nvidia_p2p_put_pages() callback will be invoked.

A proper software design is important as the NVIDIA kernel driver will protect itself from reentrancy
issues with locks before invoking the callback. The third party kernel driver will almost certainly take
similar actions, so dead-locking or live-locking scenariosmay arise if careful consideration is not taken.

24 Chapter 11. Design Considerations

GPUDirect RDMA, Release 12.6

11.4. Supported Systems

General remarks

Even though the only theoretical requirement for GPUDirect RDMA to work between a third-party de-
vice and an NVIDIA GPU is that they share the same root complex, there exist bugs (mostly in chipsets)
causing it to perform badly, or not work at all in certain setups.

We can distinguish between three situations, depending on what is on the path between the GPU and
the third-party device:

▶ PCIe switches only

▶ single CPU/IOH

▶ CPU/IOH <-> QPI/HT <-> CPU/IOH

The first situation, where there are only PCIe switches on the path, is optimal and yields the best
performance. The secondone, where a singleCPU/IOH is involved, works, but yieldsworse performance
(especially peer-to-peer read bandwidth has been shown to be severely limited on some processor
architectures). Finally, the third situation, where the path traverses a QPI/HT link, may be extremely
performance-limited or even not work reliably.

Tip: lspci can be used to check the PCI topology:

$ lspci -t

Platform support

For IBMPOWER8platform, GPUDirect RDMAandP2P are not supported, but are not explicitly disabled.
They may not work at run-time.

GPUDirect RDMA is supported on Jetson AGX Xavier platform starting from CUDA 10.1 and on Drive
AGXXavier Linux based platforms fromCUDA11.2. Refer toPorting toTegra for details. OnARM64, the
necessary peer-to-peer functionality depends on both the hardware and the software of the particular
platform. So while GPUDirect RDMA is not explicitly disabled on non-Jetson and non-Drive platforms,
there are no guarantees that it will be fully functional.

IOMMUs

GPUDirect RDMA currently relies upon all physical addresses being the same from the different PCI
devices’ point of view. This makes it incompatible with IOMMUs performing any form of translation
other than 1:1, hence they must be disabled or configured for pass-through translation for GPUDirect
RDMA to work.

11.5. PCI BAR sizes

PCI devices can ask the OS/BIOS tomap a region of physical address space to them. These regions are
commonly called BARs. NVIDIA GPUs currently exposemultiple BARs, and some of them can back arbi-
trary device memory, making GPUDirect RDMA possible. The maximum BAR size available for GPUDi-
rect RDMA differs from GPU to GPU. For example, currently the smallest available BAR size on Kepler
class GPUs is 256 MB. Of that, 32MB are currently reserved for internal use. These sizes may change.

11.4. Supported Systems 25

GPUDirect RDMA, Release 12.6

On some Tesla-class GPUs a large BAR feature is enabled, e.g. BAR1 size is set to 16GB or larger.
Large BARs can pose a problem for the BIOS, especially on older motherbords, related to compatibility
support for 32bit operating systems. On those motherboards the bootstrap can stop during the early
POST phase, or the GPUmay bemisconfigured and so unusable. If this appears to be occuring it might
be necessary to enable some special BIOS feature to deal with the large BAR issue. Please consult your
system vendor for more details regarding large BAR support.

11.6. Tokens Usage

Warning: Starting in CUDA 6.0, tokens should be considered deprecated, though they are still
supported.

As can be seen inUserspaceAPI andKernel API, onemethod for pinning and unpinningmemory requires
two tokens in addition to the GPU virtual address.

These tokens, p2pToken and vaSpaceToken, are necessary to uniquely identify a GPU VA space. A
process identifier alone does not identify a GPU VA space.

The tokens are consistent within a single CUDA context (i.e., all memory obtained through cudaMal-
loc() within the same CUDA context will have the same p2pToken and vaSpaceToken). However, a
given GPU virtual address need not map to the same context/GPU for its entire lifetime. As a concrete
example:

cudaSetDevice(0)
ptr0 = cudaMalloc();
cuPointerGetAttribute(&return_data, CU_POINTER_ATTRIBUTE_P2P_TOKENS, ptr0);
∕∕ Returns [p2pToken = 0xabcd, vaSpaceToken = 0x1]
cudaFree(ptr0);
cudaSetDevice(1);
ptr1 = cudaMalloc();
assert(ptr0 == ptr1);
∕∕ The CUDA driver is free (although not guaranteed) to reuse the VA,
∕∕ even on a different GPU
cuPointerGetAttribute(&return_data, CU_POINTER_ATTRIBUTE_P2P_TOKENS, ptr0);
∕∕ Returns [p2pToken = 0x0123, vaSpaceToken = 0x2]

That is, the same address, when passed to cuPointerGetAttribute, may return different tokens at
different times during the program’s execution. Therefore, the third party communication librarymust
call cuPointerGetAttribute() for every pointer it operates on.

Security implications

The two tokens act as an authentication mechanism for the NVIDIA kernel driver. If you know the
tokens, you can map the address space corresponding to them, and the NVIDIA kernel driver doesn’t
perform any additional checks. The 64bit p2pToken is randomized to prevent it from being guessed
by an adversary.

When no tokens are used, the NVIDIA driver limits the Kernel API to the process which owns the mem-
ory allocation.

26 Chapter 11. Design Considerations

GPUDirect RDMA, Release 12.6

11.7. Synchronization and Memory Ordering

GPUDirect RDMA introduces a new independent GPU data flow path exposed to third party devices
and it is important to understand how these devices interact with the GPU’s relaxed memory model.

▶ Properly registering a BAR mapping of CUDA memory is required for that mapping to remain
consistent with CUDA APIs operations on that memory.

▶ Only CUDA synchronization and work submission APIs provide memory ordering of GPUDirect
RDMA operations.

Registration for CUDA API Consistency

Registration is necessary to ensure the CUDAAPImemory operations visible to a BARmapping happen
before the API call returns control to the calling CPU thread. This provides a consistent view ofmemory
to a device using GPUDirect RDMA mappings when invoked after a CUDA API in the thread. This is a
strictly more conservative mode of operation for the CUDA API and disables optimizations, thus it may
negatively impact performance.

This behavior is enabled on a per-allocation granularity either by calling cuPointerSetAttribute()
with the CU_POINTER_ATTRIBUTE_SYNC_MEMOPS attribute, or p2p tokens are retrieved for a buffer
when using the legacy path. Refer to Userspace API for more details.

An example situation would be Read-after-Write dependency between a cuMemcpyDtoD() and subse-
quent GPUDirect RDMA read operation on the destination of the copy. As an optimization the device-
to-device memory copy typically returns asynchronously to the calling thread after queuing the copy
to the GPU scheduler. However, in this circumstance that will lead to inconsistent data read via the
BAR mapping, so this optimization is disabled an the copy completed before the CUDA API returns.

CUDA APIs for Memory Ordering

Only CPU initiated CUDA APIs provide ordering of GPUDirect memory operations as observed by the
GPU. That is, despite a third party device having issued all PCIE transactions, a running GPU kernel
or copy operation may observe stale data or data that arrives out-of-order until a subsequent CPU
initiated CUDA work submission or synchronization API. To ensure that memory updates are visible
to CUDA kernels or copies, an implementation should ensure that all writes to the GPU BAR happen
before control is returned to the CPU thread which will invoke the dependent CUDA API.

An example situation for a network communication scenario is when a network RDMA write operation
is completed by the third party network device and the data is written to the GPU BAR mapping.
Though reading back the written data either through GPU BAR or a CUDAmemory copy operation, will
return the newly written data, a concurrently running GPU kernel to that network write might observe
stale data, the data partially written, or the data written out-of-order.

In short, a GPU kernel is wholly inconsistent with concurrent RDMA for GPUDirect operations and
accessing the memory overwritten by the third party device in such a situation would be considered
a data race. To resolve this inconsistency and remove the data race the DMA write operation must
complete with respect to the CPU thread which will launch the dependent GPU kernel.

11.7. Synchronization and Memory Ordering 27

GPUDirect RDMA, Release 12.6

28 Chapter 11. Design Considerations

Chapter 12. How to Perform Specific
Tasks

12.1. Displaying GPU BAR space

Starting in CUDA 6.0 the NVIDIA SMI utility provides the capability to dump BAR1 memory usage. It
can be used to understand the application usage of BAR space, the primary resource consumed by
GPUDirect RDMA mappings.

$ nvidia-smi -q
...

BAR1 Memory Usage
Total : 256 MiB
Used : 2 MiB
Free : 254 MiB

...

GPU memory is pinned in fixed size chunks, so the amount of space reflected here might be unex-
pected. In addition, a certain amount of BAR space is reserved by the driver for internal use, so not all
available memory may be usable via GPUDirect RDMA. Note that the same ability is offered program-
matically through the nvmlDeviceGetBAR1MemoryInfo() NVML API.

12.2. Pinning GPU memory

1. Correct behavior requires using cuPointerSetAttribute() on the memory address to enable
proper synchronization behavior in the CUDA driver. Refer to Synchronization andMemory Order-
ing.

void pin_buffer(void *address, size_t size)
{

unsigned int flag = 1;
CUresult status = cuPointerSetAttribute(&flag, CU_POINTER_ATTRIBUTE_SYNC_

↪→MEMOPS, address);
if (CUDA_SUCCESS == status) {

∕∕ GPU path
pass_to_kernel_driver(address, size);

} else {
∕∕ CPU path

(continues on next page)

29

GPUDirect RDMA, Release 12.6

(continued from previous page)

∕∕ ...
}

}

This is required so that the GPU memory buffer is treated in a special way by the CUDA driver, so
that CUDAmemory transfers are guaranteed to always be synchronous with respect to the host.
Refer to Userspace API for details on cuPointerSetAttribute().

2. In the kernel driver, invoke nvidia_p2p_get_pages().

∕∕ for boundary alignment requirement
#define GPU_BOUND_SHIFT 16
#define GPU_BOUND_SIZE ((u64)1 << GPU_BOUND_SHIFT)
#define GPU_BOUND_OFFSET (GPU_BOUND_SIZE-1)
#define GPU_BOUND_MASK (~GPU_BOUND_OFFSET)

struct kmd_state {
nvidia_p2p_page_table_t *page_table;
∕∕ ...

};

void kmd_pin_memory(struct kmd_state *my_state, void *address, size_t size)
{

∕∕ do proper alignment, as required by NVIDIA kernel driver
u64 virt_start = address & GPU_BOUND_MASK;
size_t pin_size = address + size - virt_start;
if (!size)

return -EINVAL;
int ret = nvidia_p2p_get_pages(0, 0, virt_start, pin_size, &my_state->page_

↪→table, free_callback, &my_state);
if (ret == 0) {

∕∕ Succesfully pinned, page_table can be accessed
} else {

∕∕ Pinning failed
}

}

Note how the start address is aligned to a 64KB boundary before calling the pinning functions.

If the function succeeds the memory has been pinned and the page_table entries
can be used to program the device’s DMA engine. Refer to Kernel API for details on
nvidia_p2p_get_pages().

12.3. Unpinning GPU memory

In the kernel driver, invoke nvidia_p2p_put_pages().

void unpin_memory(void *address, size_t size, nvidia_p2p_page_table_t *page_table)
{

nvidia_p2p_put_pages(0, 0, address, size, page_table);
}

Refer to Kernel API for details on nvidia_p2p_put_pages().

30 Chapter 12. How to Perform Specific Tasks

GPUDirect RDMA, Release 12.6

Starting CUDA 6.0 zeros should be used as the token parameters. Note that
nvidia_p2p_put_pages() must be called from within the same process context as the one
from which the corresponding nvidia_p2p_get_pages() has been issued.

12.4. Handling the free callback

1. The NVIDIA kernel driver invokes free_callback(data) as specified in the
nvidia_p2p_get_pages() call if it needs to revoke the mapping. Refer to Kernel API and
Unpin Callback for details.

2. The callback waits for pending transfers and then cleans up the page table allocation.

void free_callback(void *data)
{

my_state *state = data;
wait_for_pending_transfers(state);
nvidia_p2p_free_pages(state->page_table);

}

3. The NVIDIA kernel driver handles the unmapping so nvidia_p2p_put_pages() should not be
called.

12.5. Buffer ID Tag Check for A Registration
Cache

Remember that a solution built around Buffer ID tag checking is not recommended for latency sensi-
tive implementations. Instead, instrumentation of CUDA allocation and deallocation APIs to provide
callbacks to the registration cache is recommended, removing tag checking overhead from the critical
path.

1. The first time a device memory buffer is encountered and recognized as not yet pinned,
the pinned mapping is created and the associated buffer ID is retrieved and stored together
in the cache entry. The cuMemGetAddressRange() function can be used to obtain the
size and starting address for the whole allocation, which can then be used to pin it. As
nvidia_p2p_get_pages() will need a pointer aligned to 64K, it is useful to directly align the
cached address. Also, as the BAR space is currently mapped in chunks of 64KB, it is more re-
source efficient to round the whole pinning to 64KB.

∕∕ struct buf represents an entry of the registration cache
struct buf {

CUdeviceptr pointer;
size_t size;
CUdeviceptr aligned_pointer;
size_t aligned_size;
int is_pinned;
uint64_t id; ∕∕ buffer id obtained right after pinning

};

12.4. Handling the free callback 31

GPUDirect RDMA, Release 12.6

2. Once created, every time a registration cache entry will be used it must be first checked for valid-
ity. One way to do this is to use the Buffer ID provided by CUDA as a tag to check for deallocation
or reallocation.

int buf_is_gpu_pinning_valid(struct buf* buf) {
uint64_t buffer_id;
int retcode;
assert(buf->is_pinned);
∕∕ get the current buffer id
retcode = cuPointerGetAttribute(&buffer_id, CU_POINTER_ATTRIBUTE_BUFFER_ID,�

↪→buf->pointer);
if (CUDA_ERROR_INVALID_VALUE == retcode) {

∕∕ the device pointer is no longer valid
∕∕ it could have been deallocated
return ERROR_INVALIDATED;

} else if (CUDA_SUCCESS != retcode) {
∕∕ handle more serious errors here
return ERROR_SERIOUS;

}
if (buf->id != buffer_id)

∕∕ the original buffer has been deallocated and the cached mapping should�
↪→be invalidated and the buffer re-pinned

return ERROR_INVALIDATED;
return 0;

}

When the buffer identifier changes the corresponding memory buffer has been reallocated so
the corresponding kernel-space page table will not be valid anymore. In this case the kernel-
space nvidia_p2p_get_pages() callback would have been invoked. Thus the Buffer IDs pro-
vide a tag to keep the pin-down cache consistent with the kernel-space page table without re-
quiring the kernel driver to up-call into the user-space.

If CUDA_ERROR_INVALID_VALUE is returned from cuPointerGetAttribute(), the program
should assume that the memory buffer has been deallocated or is otherwise not a valid GPU
memory buffer.

3. In both cases, the corresponding cache entry must be invalidated.

∕∕ in the registration cache code
if (buf->is_pinned && !buf_is_gpu_pinning_valid(buf)) {

regcache_invalidate_entry(buf);
pin_buffer(buf);

}

12.6. Linking a Kernel Module against nvidia.ko

1. Run the extraction script:

.∕NVIDIA-Linux-x86_64-<version>.run -x

This extracts the NVIDA driver and kernel wrapper.

2. Navigate to the output directory:

32 Chapter 12. How to Perform Specific Tasks

GPUDirect RDMA, Release 12.6

cd <output directory>∕kernel∕

3. Within this directory, build the NVIDIA module for your kernel:

make module

After this is done, the Module.symvers file under your kernel build directory contains symbol
information for nvidia.ko.

4. Modify your kernel module build process with the following line:

KBUILD_EXTRA_SYMBOLS := <path to kernel build directory>∕Module.symvers

12.7. Using nvidia-peermem

TheNVIDIAGPUdriver package provides a kernelmodule, nvidia-peermem, which providesNVIDIA In-
finiBand based HCAs (Host Channel Adapters) direct peer-to-peer read andwrite access to the NVIDIA
GPU’s videomemory. It allows GPUDirect RDMA-based applications to use GPU computing power with
the RDMA interconnect without needing to copy data to host memory.

This capability is supported with NVIDIA ConnectX®-3 VPI or newer adapters. It works with both Infini-
Band and RoCE (RDMA over Converged Ethernet) technologies.

NVIDIA OFED (Open Fabrics Enterprise Distribution), or MLNX_OFED, introduces an API between the
InfiniBand Core and peer memory clients such as NVIDIA GPUs. The nvidia-peermemmodule regis-
ters the NVIDIA GPUwith the InfiniBand subsystemby using peer-to-peer APIs provided by the NVIDIA
GPU driver.

The kernel must have the required support for RDMA peer memory either through additional patches
to the kernel or via MLNX_OFED as a prerequisite for loading and using nvidia-peermem.

It is possible that the nv_peer_mem module from the GitHub project may be installed and loaded
on the system. Installation of nvidia-peermem will not affect the functionality of the existing
nv_peer_mem module. But, to load and use nvidia-peermem, users must disable the nv_peer_mem
service. Additionally, it is encouraged to uninstall the nv_peer_mem package to avoid any conflict with
nvidia-peermem since only one module can be loaded at any time.

To stop the nv_peer_mem service:

service nv_peer_mem stop<∕screen>

Check if nv_peer_mem.ko is still loaded after stopping the service:

lsmod | grep nv_peer_mem

If nv_peer_mem.ko is still loaded, unload it using:

rmmod nv_peer_mem

Uninstall the nv_peer_mem package:

For DEB-based OS:

dpkg -P nvidia-peer-memory

12.7. Using nvidia-peermem 33

GPUDirect RDMA, Release 12.6

dpkg -P nvidia-peer-memory-dkms

For RPM-based OS:

rpm -e nvidia_peer_memory

After ensuring kernel support and installing the GPU driver, nvidia-peermem can be loaded with the
following command with root privileges in a terminal window:

modprobe nvidia-peermem

Note: Note: If the NVIDIA GPU driver is installed before MLNX_OFED, the GPU driver must be unin-
stalled and installed again to make sure nvidia-peermem is compiled with the RDMA APIs that are
provided by MLNX_OFED.

34 Chapter 12. How to Perform Specific Tasks

Chapter 13. References

13.1. Basics of UVA CUDAMemory Management

Unified virtual addressing (UVA) is a memory addressmanagement system enabled by default in CUDA
4.0 and later releases on Fermi and Kepler GPUs running 64-bit processes. The design of UVAmemory
management provides a basis for the operation of GPUDirect RDMA. On UVA-supported configura-
tions, when the CUDA runtime initializes, the virtual address (VA) range of the application is partitioned
into two areas: the CUDA-managed VA range and theOS-managed VA range. All CUDA-managed point-
ers are within this VA range, and the range will always fall within the first 40 bits of the process’s VA
space.

Fig. 1: CUDA VA Space Addressing

Subsequently, within the CUDA VA space, addresses can be subdivided into three types:

GPU
A page backed by GPU memory. This will not be accessible from the host and the VA in question
will never have a physical backing on the host. Dereferencing a pointer to a GPU VA from the CPU
will trigger a segfault.

CPU
A page backed by CPU memory. This will be accessible from both the host and the GPU at the
same VA.

FREE
These VAs are reserved by CUDA for future allocations.

This partitioning allows the CUDA runtime to determine the physical location of a memory object by
its pointer value within the reserved CUDA VA space.

Addresses are subdivided into these categories at page granularity; all memory within a page is of the
same type. Note that GPU pages may not be the same size as CPU pages. The CPU pages are usually

35

GPUDirect RDMA, Release 12.6

4KB and the GPU pages on Kepler-class GPUs are 64KB. GPUDirect RDMA operates exclusively on GPU
pages (created by cudaMalloc()) that are within this CUDA VA space.

13.2. Userspace API

Data structures

typedef struct CUDA_POINTER_ATTRIBUTE_P2P_TOKENS_st {
unsigned long long p2pToken;
unsigned int vaSpaceToken;

} CUDA_POINTER_ATTRIBUTE_P2P_TOKENS;

Function cuPointerSetAttribute()

CUresult cuPointerSetAttribute(void *data, CUpointer_attribute attribute, CUdeviceptr�
↪→pointer);

In GPUDirect RDMA scope, the interesting usage is when CU_POINTER_ATTRIBUTE_SYNC_MEMOPS is
passed as the attribute:

unsigned int flag = 1;
cuPointerSetAttribute(&flag, CU_POINTER_ATTRIBUTE_SYNC_MEMOPS, pointer);

Parameters

data [in]
A pointer to a unsigned int variable containing a boolean value.

attribute [in]
In GPUDirect RDMA scope should always be CU_POINTER_ATTRIBUTE_SYNC_MEMOPS.

pointer [in]
A pointer.

Returns

CUDA_SUCCESS
if pointer points to GPU memory and the CUDA driver was able to set the new behavior for the
whole device memory allocation.

anything else
if pointer points to CPU memory.

It is used to explicitly enable a strictly synchronizing behavior on the whole memory allocation pointed
to by pointer, and by doing so disabling all data transfer optimizations which might create problems
with concurrent RDMAandCUDAmemory copy operations. This API has CUDA synchronizing behavior,
so it should be considered expensive and possibly invoked only once per buffer.

Function cuPointerGetAttribute()

CUresult cuPointerGetAttribute(const void *data, CUpointer_attribute attribute,�
↪→CUdeviceptr pointer);

This function has two different attributes related to GPUDirect RDMA:
CU_POINTER_ATTRIBUTE_P2P_TOKENS and CU_POINTER_ATTRIBUTE_BUFFER_ID.

36 Chapter 13. References

GPUDirect RDMA, Release 12.6

Warning: CU_POINTER_ATTRIBUTE_P2P_TOKENS has been deprecated in CUDA 6.0

When CU_POINTER_ATTRIBUTE_P2P_TOKENS is passed as the attribute, data is a pointer to
CUDA_POINTER_ATTRIBUTE_P2P_TOKENS:

CUDA_POINTER_ATTRIBUTE_P2P_TOKENS tokens;
cuPointerGetAttribute(&tokens, CU_POINTER_ATTRIBUTE_P2P_TOKENS, pointer);

In this case, the function returns two tokens for use with the Kernel API.

Parameters

data [out]
Struct CUDA_POINTER_ATTRIBUTE_P2P_TOKENS with the two tokens.

attribute [in]
In GPUDirect RDMA scope should always be CU_POINTER_ATTRIBUTE_P2P_TOKENS.

pointer [in]
A pointer.

Returns

CUDA_SUCCESS
if pointer points to GPU memory.

anything else
if pointer points to CPU memory.

This function may be called at any time, including before CUDA initialization, and it has CUDA synchro-
nizing behavior, as in CU_POINTER_ATTRIBUTE_SYNC_MEMOPS, so it should be considered expensive
and should be invoked only once per buffer.

Note that values set in tokens can be different for the same pointer value during a lifetime of a
user-space program. Refer to Tokens Usage for a concrete example.

Note that for security reasons the value set in p2pToken will be randomized, to prevent it from being
guessed by an adversary.

In CUDA 6.0, a new attribute has been introduced that is useful to detect memory reallocations.

When CU_POINTER_ATTRIBUTE_BUFFER_ID is passed as the attribute, data is expected to point
to a 64bit unsigned integer variable, like uint64_t.

uint64_t buf_id;
cuPointerGetAttribute(&buf_id, CU_POINTER_ATTRIBUTE_BUFFER_ID, pointer);

Parameters

data [out]
A pointer to a 64 bits variable where the buffer id will be stored.

attribute [in]
The CU_POINTER_ATTRIBUTE_BUFFER_ID enumerator.

pointer [in]
A pointer to GPU memory.

Returns

CUDA_SUCCESS
if pointer points to GPU memory.

13.2. Userspace API 37

GPUDirect RDMA, Release 12.6

anything else
if pointer points to CPU memory.

Some general remarks follow:

▶ cuPointerGetAttribute() and cuPointerSetAttribute() are CUDA driver API functions
only.

▶ In particular, cuPointerGetAttribute() is not equivalent to cudaPointerGetAt-
tributes(), as the required functionality is only present in the former function. This in
no way limits the scope where GPUDirect RDMA may be used as cuPointerGetAttribute()
is compatible with the CUDA Runtime API.

▶ No runtime API equivalent to cuPointerGetAttribute() is provided. This is so as the addi-
tional overhead associated with the CUDA runtime API to driver API call sequence would intro-
duce unneeded overhead and cuPointerGetAttribute() can be on the critical path, e.g. of
communication libraries.

▶ Whenever possible, we suggest to combine multiple calls to cuPointerGetAttribute by using
cuPointerGetAttributes.

Function ``cuPointerGetAttributes()``

CUresult cuPointerGetAttributes(unsigned int numAttributes, CUpointer_attribute�
↪→*attributes, void **data, CUdeviceptr ptr);

This function can be used to inspect multiple attributes at once. The one most
probably related to GPUDirect RDMA are CU_POINTER_ATTRIBUTE_BUFFER_ID,
CU_POINTER_ATTRIBUTE_MEMORY_TYPE and CU_POINTER_ATTRIBUTE_IS_MANAGED.

13.3. Kernel API

The following declarations can be found in the nv-p2p.h header that is distributed in the NVIDIA
Driver package. Please refer to the inline documentation contained in that header file for a detailed
description of the parameters and the return values of the functions described below.

Preprocessor macros

NVIDIA_P2P_PAGE_TABLE_VERSION_COMPATIBLE() andNVIDIA_P2P_DMA_MAPPING_VERSION_COMPATIBLE()
preprocessor macros are meant to be called by third-party device drivers to check for runtime binary
compatibility.

Structure nvidia_p2p_page

typedef
struct nvidia_p2p_page {

uint64_t physical_address;
union nvidia_p2p_request_registers {

struct {
uint32_t wreqmb_h;
uint32_t rreqmb_h;
uint32_t rreqmb_0;
uint32_t reserved[3];

} fermi;
} registers;

} nvidia_p2p_page_t;

38 Chapter 13. References

GPUDirect RDMA, Release 12.6

In the nvidia_p2p_page structure only the physical_address field is relevant to GPUDirect RDMA.

Structure nvidia_p2p_page_table

typedef
struct nvidia_p2p_page_table {

uint32_t version;
uint32_t page_size;
struct nvidia_p2p_page **pages;
uint32_t entries;
uint8_t *gpu_uuid;

} nvidia_p2p_page_table_t;

The version field of the page table should be checked by using
NVIDIA_P2P_PAGE_TABLE_VERSION_COMPATIBLE() before accessing the other fields.

The page_size field is encoded according to the nvidia_p2p_page_size_type enum.

Structure nvidia_p2p_dma_mapping

typedef
struct nvidia_p2p_dma_mapping {

uint32_t version;
enum nvidia_p2p_page_size_type page_size_type;
uint32_t entries;
uint64_t *dma_addresses;

} nvidia_p2p_dma_mapping_t;

The versionfield of the dmamapping should bepassed toNVIDIA_P2P_DMA_MAPPING_VERSION_COMPATIBLE()
before accessing the other fields.

Function nvidia_p2p_get_pages()

int nvidia_p2p_get_pages(uint64_t p2p_token, uint32_t va_space_token,
uint64_t virtual_address,
uint64_t length,
struct nvidia_p2p_page_table **page_table,
void (*free_callback)(void *data),
void *data);

This function makes the pages underlying a range of GPU virtual memory accessible to a third-party
device.

Warning: This is an expensive operation and should be performed as infrequently as possible -
refer to Lazy Unpinning Optimization.

Function nvidia_p2p_put_pages()

int nvidia_p2p_put_pages(uint64_t p2p_token, uint32_t va_space_token,
uint64_t virtual_address,
struct nvidia_p2p_page_table *page_table);

This function releases a set of pages previously made accessible to a third-party device. Warning: it is
not meant to be called from within the nvidia_p2p_get_pages() callback.

Function nvidia_p2p_free_page_table()

13.3. Kernel API 39

GPUDirect RDMA, Release 12.6

int nvidia_p2p_free_page_table(struct nvidia_p2p_page_table *page_table);

This function frees a third-party P2P page table and is meant to be invoked during the execution of
the nvidia_p2p_get_pages() callback.

Function nvidia_p2p_dma_map_pages()

int nvidia_p2p_dma_map_pages(struct pci_dev *peer,
struct nvidia_p2p_page_table *page_table,
struct nvidia_p2p_dma_mapping **dma_mapping);

This function makes the physical pages retrieved using nvidia_p2p_get_pages() accessible to a
third-party device.

It is required on platformswhere the I/O addresses of PCIe resources, used for PCIe peer-to-peer trans-
actions, are different from the physical addresses used by the CPU to access those same resources.

On some platforms, this function relies on a correct implementation of the dma_map_resource()
Linux kernel function.

Function nvidia_p2p_dma_unmap_pages()

int nvidia_p2p_dma_unmap_pages(struct pci_dev *peer,
struct nvidia_p2p_page_table *page_table,
struct nvidia_p2p_dma_mapping *dma_mapping);

This function unmaps the physical pages previously mapped to the third-party device by
nvidia_p2p_dma_map_pages().

It is not meant to be called from within the nvidia_p2p_get_pages() invalidation callback.

Function nvidia_p2p_free_dma_mapping()

int nvidia_p2p_free_dma_mapping(struct nvidia_p2p_dma_mapping *dma_mapping);

This function is meant to be called from within the nvidia_p2p_get_pages() invalidation callback.

Note that the deallocation of the I/O mappings may be deferred, for example after returning from the
invalidation callback.

13.4. Porting to Tegra

GPUDirect RDMA is supported on Jetson AGX Xavier platform from CUDA 10.1, on DRIVE AGX Xavier
Linux based platforms from CUDA 11.2 and on Jetson Orin platform from CUDA 11.4. From this point
onwards, this document will collectively refer Jetson and Drive as Tegra. Owing to hardware and soft-
ware specific divergence of Tegra vis-a-vis Linux-Desktop, already developed applications needs to be
slightly modified in order to port them to Tegra. The following sub-sections (4.4.1-4.4.3) briefs over
the necessary changes.

40 Chapter 13. References

GPUDirect RDMA, Release 12.6

13.4.1. Changing the allocator

GPUDirect RDMA on Desktop allows applications to operate exclusively on GPU pages allocated using
cudaMalloc(). On Tegra, applications will have to change thememory allocator from cudaMalloc()
to cudaHostAlloc(). Applications can either:

1. Treat the returned pointer as if it is a device pointer, provided that the iGPU supports UVA or cu-
daDevAttrCanUseHostPointerForRegisteredMem device attribute is a non-zero value when
queried using cudaDeviceGetAttribute() for iGPU.

2. Get the device pointer corresponding to the host memory allocated using cudaHostGetDevi-
cePointer(). Once the application has the device pointer, all the rules that are applicable to
the standard GPUDirect solution also apply to Tegra.

13.4.2. Modification to Kernel API

The declarations under Tegra API column of the following table can be found in the nv-p2p.h header
that is distributed in the NVIDIA Driver package. Refer to the inline documentation contained in that
header file for a detailed description of the parameters and the return values. The table below repre-
sents the Kernel API changes on Tegra vis-a-vis Desktop.

Desktop API Tegra API

int nvidia_p2p_get_pages(uint64_t p2p_token,
uint32_t va_space_token, uint64_t vir-
tual_address, uint64_t length, struct
nvidia_p2p_page_table **page_table, void (
*free_callback)(void *data), void *data);

int nvidia_p2p_get_pages(u64 virtual_address,
u64 length, struct nvidia_p2p_page_table
**page_table, void (*free_callback)(void *data),
void *data);

int nvidia_p2p_put_pages(uint64_t p2p_token,
uint32_t va_space_token, uint64_t vir-
tual_address, struct nvidia_p2p_page_table
*page_table);

int nvidia_p2p_put_pages(struct
nvidia_p2p_page_table *page_table);

int nvidia_p2p_dma_map_pages(struct
pci_dev *peer, struct nvidia_p2p_page_table
*page_table, struct nvidia_p2p_dma_mapping
**dma_mapping);

int nvidia_p2p_dma_map_pages(struct de-
vice *dev, struct nvidia_p2p_page_table
*page_table, struct nvidia_p2p_dma_mapping
**dma_mapping, enum dma_data_direction
direction);

int nvidia_p2p_dma_unmap_pages(struct
pci_dev *peer, struct nvidia_p2p_page_table
*page_table, struct nvidia_p2p_dma_mapping
*dma_mapping);

int nvidia_p2p_dma_unmap_pages(struct
nvidia_p2p_dma_mapping *dma_mapping);

int nvidia_p2p_free_page_table(struct
nvidia_p2p_page_table *page_table);

int nvidia_p2p_free_page_table(struct
nvidia_p2p_page_table *page_table);

int nvidia_p2p_free_dma_mapping(struct
nvidia_p2p_dma_mapping *dma_mapping);

int nvidia_p2p_free_dma_mapping(struct
nvidia_p2p_dma_mapping *dma_mapping);

13.4. Porting to Tegra 41

GPUDirect RDMA, Release 12.6

13.4.3. Other highlights

1. The length of the requested mapping and base address must be a multiple of 4KB, failing which
leads to an error.

2. Unlike theDesktop version, callback registered at nvidia_p2p_get_pages()will always be trig-
gered when nvidia_p2p_put_pages() is invoked. It is the reponsibilty of the kernel driver to
free the page_table allocated by calling nvidia_p2p_free_page_table(). Note that, similar
to the Desktop version, the callback will also triggered in scenarios explained in Unpin Callback.

3. Since cudaHostAlloc() can be allocated with cudaHostAllocWriteCombined flag or default
flag, applications are expected to excercise caution whenmapping thememory to userspace, for
example using standard linux mmap(). In this regard:

a. When GPU memory is allocated as writecombined, the userspace mapping should also be
done as writecombined by passing the vm_page_prot member of vm_area_struct to
the standard linux interface: `pgprot_writecombine() <https://elixir.bootlin.com/linux/
latest/source/arch/arm64/include/asm/pgtable.h#L403>`__.

b. When GPU memory is allocated as default, no modifcations to the vm_page_protmember
of vm_area_struct should be done.

Incompatible combination of map and allocation attributes will lead to undefined behavior.

42 Chapter 13. References

https://elixir.bootlin.com/linux/latest/source/arch/arm64/include/asm/pgtable.h#L403
https://elixir.bootlin.com/linux/latest/source/arch/arm64/include/asm/pgtable.h#L403

Chapter 14. Notices

14.1. Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a
certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no repre-
sentations or warranties, expressed or implied, as to the accuracy or completeness of the information
contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall
have no liability for the consequences or use of such information or for any infringement of patents
or other rights of third parties that may result from its use. This document is not a commitment to
develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any
other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that
such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the
time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by
authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA
product referenced in this document. No contractual obligations are formed either directly or indirectly
by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military,
aircraft, space, or life support equipment, nor in applicationswhere failure ormalfunction of theNVIDIA
product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or
applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIAmakes no representation or warranty that products based on this document will be suitable for
any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA.
It is customer’s sole responsibility to evaluate and determine the applicability of any information con-
tained in this document, ensure the product is suitable and fit for the application planned by customer,
and perform the necessary testing for the application in order to avoid a default of the application or
the product. Weaknesses in customer’s product designs may affect the quality and reliability of the
NVIDIA product andmay result in additional or different conditions and/or requirements beyond those
contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or prob-
lem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is
contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other
NVIDIA intellectual property right under this document. Information published by NVIDIA regarding
third-party products or services does not constitute a license from NVIDIA to use such products or

43

GPUDirect RDMA, Release 12.6

services or a warranty or endorsement thereof. Use of such information may require a license from a
third party under the patents or other intellectual property rights of the third party, or a license from
NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA
in writing, reproduced without alteration and in full compliance with all applicable export laws and
regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENTANDALLNVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE
BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WAR-
RANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENTWILL NVIDIA BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CON-
SEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARIS-
ING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCHDAMAGES. Notwithstanding any damages that customermight incur for any reasonwhatso-
ever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein
shall be limited in accordance with the Terms of Sale for the product.

14.2. OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

14.3. Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the
U.S. and other countries. Other company and product names may be trademarks of the respective
companies with which they are associated.

Copyright

©2012-2024, NVIDIA Corporation & affiliates. All rights reserved

44 Chapter 14. Notices

	How GPUDirect RDMA Works
	Standard DMA Transfer
	GPUDirect RDMA Transfers
	Changes in CUDA 6.0
	Changes in CUDA 7.0
	Changes in CUDA 8.0
	Changes in CUDA 10.1
	Changes in CUDA 11.2
	Changes in CUDA 11.4
	Changes in CUDA 12.2
	Design Considerations
	Lazy Unpinning Optimization
	Registration Cache
	Unpin Callback
	Supported Systems
	PCI BAR sizes
	Tokens Usage
	Synchronization and Memory Ordering

	How to Perform Specific Tasks
	Displaying GPU BAR space
	Pinning GPU memory
	Unpinning GPU memory
	Handling the free callback
	Buffer ID Tag Check for A Registration Cache
	Linking a Kernel Module against nvidia.ko
	Using nvidia-peermem

	References
	Basics of UVA CUDA Memory Management
	Userspace API
	Kernel API
	Porting to Tegra
	Changing the allocator
	Modification to Kernel API
	Other highlights

	Notices
	Notice
	OpenCL
	Trademarks

