
Incomplete-LU and Cholesky
Preconditioned Iterative Methods

Release 12.6

NVIDIA Corporation

Jul 23, 2024

Contents

1 Preconditioned Iterative Methods 3
1.1 Algorithm 1 Conjugate Gradient (CG) . 4
1.2 Algorithm 2 Bi-Conjugate Gradient Stabilized (BiCGStab) 7

2 Numerical Experiments 11

3 Conclusion 19

4 Acknowledgements 21

5 References 23

6 Notices 25
6.1 Notice . 25
6.2 OpenCL . 26
6.3 Trademarks . 26

i

ii

Incomplete-LU and Cholesky Preconditioned Iterative Methods, Release 12.6

Incomplete-LU and Cholesky Preconditioned Iterative Methods Using cuSPARSE and cuBLAS

White paper describing how to use the cuSPARSE and cuBLAS libraries to achieve a 2x speedup over
CPU in the incomplete-LU and Cholesky preconditioned iterative methods.

The solution of large sparse linear systems is an important problem in computational mechanics, at-
mospheric modeling, geophysics, biology, circuit simulation andmany other applications in the field of
computational science and engineering. In general, these linear systems can be solved using direct or
preconditioned iterative methods. Although the direct methods are often more reliable, they usually
have large memory requirements and do not scale well on massively parallel computer platforms.

The iterativemethods aremore amenable to parallelism and therefore can be used to solve larger prob-
lems. Currently, the most popular iterative schemes belong to the Krylov subspace family of methods.
They include Bi-Conjugate Gradient Stabilized (BiCGStab) and Conjugate Gradient (CG) iterative meth-
ods for nonsymmetric and symmetric positive definite (s.p.d.) linear systems, respectively [2], [11]. We
describe these methods in more detail in the next section.

In practice, we often use a variety of preconditioning techniques to improve the convergence of the
iterative methods. In this white paper we focus on the incomplete-LU and Cholesky preconditioning
[11], which is one of the most popular of these preconditioning techniques. It computes an incom-
plete factorization of the coefficient matrix and requires a solution of lower and upper triangular linear
systems in every iteration of the iterative method.

In order to implement the preconditioned BiCGStab and CG we use the sparse matrix-vector multi-
plication [3], [15] and the sparse triangular solve [8], [16] implemented in the cuSPARSE library. We
point out that the underlying implementation of these algorithms takes advantage of the CUDA par-
allel programming paradigm [5], [9], [13], which allows us to explore the computational resources of
the graphical processing unit (GPU). In our numerical experiments the incomplete factorization is per-
formed on the CPU (host) and the resulting lower and upper triangular factors are then transferred
to the GPU (device) memory before starting the iterative method. However, the computation of the
incomplete factorization could also be accelerated on the GPU.

We point out that the parallelism available in these iterative methods depends highly on the spar-
sity pattern of the coefficient matrix at hand. In our numerical experiments the incomplete-LU and
Cholesky preconditioned iterative methods achieve on average more than 2x speedup using the cuS-
PARSE and cuBLAS libraries on the GPU over the MKL [17] implementation on the CPU. For example,
the speedup for the preconditioned iterative methods with the incomplete-LU and Cholesky factor-
ization with 0 fill-in (ilu0) is shown in Figure 1 for matrices resulting from a variety of applications. It
will be described in more detail in the last section.

In the next sections we briefly describe the methods of interest and comment on the role played in
them by the parallel sparse matrix-vector multiplication and triangular solve algorithms.

Contents 1

index.html#references
index.html#references
index.html#references
index.html#references
index.html#references
index.html#references
index.html#references
index.html#references
index.html#references
index.html#references
index.html#references
index.html#introduction-speedup-of-incomplete-lu-cholesky-with-0-fill-in

Incomplete-LU and Cholesky Preconditioned Iterative Methods, Release 12.6

Fig. 1: Speedup of the Incomplete-LU Cholesky (with 0 fill-in) Prec. Iterative Methods

2 Contents

Chapter 1. Preconditioned Iterative
Methods

Let us consider the linear system

Ax = f
(1)

where A ∈ Rn×n is a nonsingular coefficient matrix and x, f ∈ Rn are the solution and right-hand-side
vectors.

In general, the iterativemethods start with an initial guess and perform a series of steps that findmore
accurate approximations to the solution. There are two types of iterative methods: (i) the stationary
iterative methods, such as the splitting-based Jacobi and Gauss-Seidel (GS), and (ii) the nonstationary
iterative methods, such as the Krylov subspace family of methods, which includes CG and BiCGStab.
As we mentioned earlier we focus on the latter in this white paper.

The convergence of the iterative methods depends highly on the spectrum of the coefficient matrix
and can be significantly improved using preconditioning. The preconditioning modifies the spectrum
of the coefficient matrix of the linear system in order to reduce the number of iterative steps re-
quired for convergence. It often involves finding a preconditioning matrixM , such thatM−1 is a good
approximation of A−1 and the systems withM are relatively easy to solve.

For the s.p.d. matrix A we can letM be its incomplete-Cholesky factorization, so that A ≈ M = R̃T R̃,
where R̃ is an upper triangular matrix. Let us assume that M is nonsingular, then R̃−TAR̃−1 is s.p.d.
and instead of solving the linear system (1), we can solve the preconditioned linear system

(
R̃−TAR̃−1

)(
R̃x

)
= R̃−T f

(2)

The pseudocode for the preconditioned CG iterative method is shown in Algorithm 1.

3

index.html#preconditioned-iterative-methods-eq-1
index.html#preconditioned-iterative-methods-algorithm-1-conjugate-gradient-cg

Incomplete-LU and Cholesky Preconditioned Iterative Methods, Release 12.6

1.1. Algorithm 1 Conjugate Gradient (CG)

1: Letting initial guess be x0, compute r← f−Ax0

2: for i← 1, 2, ... until convergence do

3: SolveMz← r ▷ Sparse lower and upper triangular solves

4: ρi ← rT z

5: if i == 1 then

6: p← z

7: else

8: β ← ρi

ρi−1

9: p← z+ βp

10: end if

11: Compute q← Ap ▷ Sparse matrix-vector multiplication

12: α← ρi

pT q

13: x← x+ αp

14: r← r− αq

15: end for

Notice that in every iteration of the incomplete-Cholesky preconditioned CG iterativemethod we need
to perform one sparse matrix-vector multiplication and two triangular solves. The corresponding CG
code using the cuSPARSE and cuBLAS libraries in C programming language is shown below.

∕***** CG Code *****∕
∕* ASSUMPTIONS:

1. The cuSPARSE and cuBLAS libraries have been initialized.
2. The appropriate memory has been allocated and set to zero.
3. The matrix A (valA, csrRowPtrA, csrColIndA) and the incomplete-

Cholesky upper triangular factor R (valR, csrRowPtrR, csrColIndR)
have been computed and are present in the device (GPU) memory. *∕

∕∕create the info and analyse the lower and upper triangular factors
cusparseCreateSolveAnalysisInfo(&inforRt);
cusparseCreateSolveAnalysisInfo(&inforR);
cusparseDcsrsv_analysis(handle,CUSPARSE_OPERATION_TRANSPOSE,

n, descrR, valR, csrRowPtrR, csrColIndR, inforRt);
cusparseDcsrsv_analysis(handle,CUSPARSE_OPERATION_NON_TRANSPOSE,

n, descrR, valR, csrRowPtrR, csrColIndR, inforR);

∕∕1: compute initial residual r = f - A x0 (using initial guess in x)
cusparseDcsrmv(handle, CUSPARSE_OPERATION_NON_TRANSPOSE, n, n, 1.0,

descrA, valA, csrRowPtrA, csrColIndA, x, 0.0, r);
cublasDscal(n,-1.0, r, 1);
cublasDaxpy(n, 1.0, f, 1, r, 1);
nrmr0 = cublasDnrm2(n, r, 1);

(continues on next page)

4 Chapter 1. Preconditioned Iterative Methods

Incomplete-LU and Cholesky Preconditioned Iterative Methods, Release 12.6

(continued from previous page)

∕∕2: repeat until convergence (based on max. it. and relative residual)
for (i=0; i<maxit; i++){

∕∕3: Solve M z = r (sparse lower and upper triangular solves)
cusparseDcsrsv_solve(handle, CUSPARSE_OPERATION_TRANSPOSE,

n, 1.0, descrpR, valR, csrRowPtrR, csrColIndR,
inforRt, r, t);

cusparseDcsrsv_solve(handle, CUSPARSE_OPERATION_NON_TRANSPOSE,
n, 1.0, descrpR, valR, csrRowPtrR, csrColIndR,
inforR, t, z);

∕∕4: \rho = r^{T} z
rhop= rho;
rho = cublasDdot(n, r, 1, z, 1);
if (i == 0){

∕∕6: p = z
cublasDcopy(n, z, 1, p, 1);

}
else{

∕∕8: \beta = rho_{i} ∕ \rho_{i-1}
beta= rho∕rhop;
∕∕9: p = z + \beta p
cublasDaxpy(n, beta, p, 1, z, 1);
cublasDcopy(n, z, 1, p, 1);

}

∕∕11: Compute q = A p (sparse matrix-vector multiplication)
cusparseDcsrmv(handle, CUSPARSE_OPERATION_NON_TRANSPOSE, n, n, 1.0,

descrA, valA, csrRowPtrA, csrColIndA, p, 0.0, q);

∕∕12: \alpha = \rho_{i} ∕ (p^{T} q)
temp = cublasDdot(n, p, 1, q, 1);
alpha= rho∕temp;
∕∕13: x = x + \alpha p
cublasDaxpy(n, alpha, p, 1, x, 1);
∕∕14: r = r - \alpha q
cublasDaxpy(n,-alpha, q, 1, r, 1);

∕∕check for convergence
nrmr = cublasDnrm2(n, r, 1);
if (nrmr∕nrmr0 < tol){

break;
}

}

∕∕destroy the analysis info (for lower and upper triangular factors)
cusparseDestroySolveAnalysisInfo(inforRt);
cusparseDestroySolveAnalysisInfo(inforR);

For the nonsymmetric matrix A we can let M be its incomplete-LU factorization, so that A ⊬ M =
L̃Ũ , where L̃ and Ũ are lower and upper triangular matrices, respectively. Let us assume that M is
nonsingular, then M−1A is nonsingular and instead of solving the linear system (1), we can solve the
preconditioned linear system

(
M−1A

)
x = M−1f

(3)

1.1. Algorithm 1 Conjugate Gradient (CG) 5

index.html#preconditioned-iterative-methods-eq-1

Incomplete-LU and Cholesky Preconditioned Iterative Methods, Release 12.6

The pseudocode for the preconditioned BiCGStab iterative method is shown in Algorithm 2.

6 Chapter 1. Preconditioned Iterative Methods

index.html#preconditioned-iterative-methods__algorithm-2-bi-conjugate-gradient-stabilized-bicgstab

Incomplete-LU and Cholesky Preconditioned Iterative Methods, Release 12.6

1.2. Algorithm 2 Bi-Conjugate Gradient
Stabilized (BiCGStab)

1: Letting initial guess be x0, compute r← f−Ax0

2: Set p← r and choose r̃, for example you can set r̃←
r

3: for i← 1, 2, ... until convergence do

4: ρi ← r̃T r

5: if ρi == 0.0 then

6: method failed

7: end if

8: if i > 1 then

9: if ω == 0.0 then

10: method failed

11: end if

12: β ← ρi

ρi−1
timesα

ω

13: p← r+ β (p− ωv)

14: end if

15: SolveM p̂← p ▷ Sparse lower and upper triangular solves

16: Compute q← Ap̂ ▷ Sparse matrix-vector multiplication

17: α← ρi

r̃T q

18: s← r− αq

19: x← x+ αp̂

20: if ∥s∥2 ≤ tol then

21: method converged

22: end if

23: SolveM ŝ← s ▷ Sparse lower and upper triangular solves

24: Compute t← Aŝ ▷ Sparse matrix-vector multiplication

25: ω ← tT s
tT t

26: x← x+ ωŝ

27: r← s− ωt

28: end for

Notice that in every iteration of the incomplete-LU preconditioned BiCGStab iterativemethodwe need

1.2. Algorithm 2 Bi-Conjugate Gradient Stabilized (BiCGStab) 7

Incomplete-LU and Cholesky Preconditioned Iterative Methods, Release 12.6

to perform two sparse matrix-vector multiplications and four triangular solves. The corresponding
BiCGStab code using the cuSPARSE and cuBLAS libraries in C programming language is shown below.

∕***** BiCGStab Code *****∕
∕* ASSUMPTIONS:

1. The cuSPARSE and cuBLAS libraries have been initialized.
2. The appropriate memory has been allocated and set to zero.
3. The matrix A (valA, csrRowPtrA, csrColIndA) and the incomplete-

LU lower L (valL, csrRowPtrL, csrColIndL) and upper U (valU,
csrRowPtrU, csrColIndU) triangular factors have been
computed and are present in the device (GPU) memory. *∕

∕∕create the info and analyse the lower and upper triangular factors
cusparseCreateSolveAnalysisInfo(&infoL);
cusparseCreateSolveAnalysisInfo(&infoU);
cusparseDcsrsv_analysis(handle, CUSPARSE_OPERATION_NON_TRANSPOSE,

n, descrL, valL, csrRowPtrL, csrColIndL, infoL);
cusparseDcsrsv_analysis(handle, CUSPARSE_OPERATION_NON_TRANSPOSE,

n, descrU, valU, csrRowPtrU, csrColIndU, infoU);

∕∕1: compute initial residual r = b - A x0 (using initial guess in x)
cusparseDcsrmv(handle, CUSPARSE_OPERATION_NON_TRANSPOSE, n, n, 1.0,

descrA, valA, csrRowPtrA, csrColIndA, x, 0.0, r);
cublasDscal(n,-1.0, r, 1);
cublasDaxpy(n, 1.0, f, 1, r, 1);
∕∕2: Set p=r and \tilde{r}=r
cublasDcopy(n, r, 1, p, 1);
cublasDcopy(n, r, 1, rw,1);
nrmr0 = cublasDnrm2(n, r, 1);

∕∕3: repeat until convergence (based on max. it. and relative residual)
for (i=0; i<maxit; i++){

∕∕4: \rho = \tilde{r}^{T} r
rhop= rho;
rho = cublasDdot(n, rw, 1, r, 1);
if (i > 0){

∕∕12: \beta = (\rho_{i} ∕ \rho_{i-1}) (\alpha ∕ \omega)
beta= (rho∕rhop)*(alpha∕omega);
∕∕13: p = r + \beta (p - \omega v)
cublasDaxpy(n,-omega,q, 1, p, 1);
cublasDscal(n, beta, p, 1);
cublasDaxpy(n, 1.0, r, 1, p, 1);

}
∕∕15: M \hat{p} = p (sparse lower and upper triangular solves)
cusparseDcsrsv_solve(handle, CUSPARSE_OPERATION_NON_TRANSPOSE,

n, 1.0, descrL, valL, csrRowPtrL, csrColIndL,
infoL, p, t);

cusparseDcsrsv_solve(handle, CUSPARSE_OPERATION_NON_TRANSPOSE,
n, 1.0, descrU, valU, csrRowPtrU, csrColIndU,
infoU, t, ph);

∕∕16: q = A \hat{p} (sparse matrix-vector multiplication)
cusparseDcsrmv(handle, CUSPARSE_OPERATION_NON_TRANSPOSE, n, n, 1.0,

descrA, valA, csrRowPtrA, csrColIndA, ph, 0.0, q);

∕∕17: \alpha = \rho_{i} ∕ (\tilde{r}^{T} q)
temp = cublasDdot(n, rw, 1, q, 1);
alpha= rho∕temp;

(continues on next page)

8 Chapter 1. Preconditioned Iterative Methods

Incomplete-LU and Cholesky Preconditioned Iterative Methods, Release 12.6

(continued from previous page)

∕∕18: s = r - \alpha q
cublasDaxpy(n,-alpha, q, 1, r, 1);
∕∕19: x = x + \alpha \hat{p}
cublasDaxpy(n, alpha, ph,1, x, 1);

∕∕20: check for convergence
nrmr = cublasDnrm2(n, r, 1);
if (nrmr∕nrmr0 < tol){

break;
}

∕∕23: M \hat{s} = r (sparse lower and upper triangular solves)
cusparseDcsrsv_solve(handle, CUSPARSE_OPERATION_NON_TRANSPOSE,

n, 1.0, descrL, valL, csrRowPtrL, csrColIndL,
infoL, r, t);

cusparseDcsrsv_solve(handle, CUSPARSE_OPERATION_NON_TRANSPOSE,
n, 1.0, descrU, valU, csrRowPtrU, csrColIndU,
infoU, t, s);

∕∕24: t = A \hat{s} (sparse matrix-vector multiplication)
cusparseDcsrmv(handle, CUSPARSE_OPERATION_NON_TRANSPOSE, n, n, 1.0,

descrA, valA, csrRowPtrA, csrColIndA, s, 0.0, t);

∕∕25: \omega = (t^{T} s) ∕ (t^{T} t)
temp = cublasDdot(n, t, 1, r, 1);
temp2= cublasDdot(n, t, 1, t, 1);
omega= temp∕temp2;
∕∕26: x = x + \omega \hat{s}
cublasDaxpy(n, omega, s, 1, x, 1);
∕∕27: r = s - \omega t
cublasDaxpy(n,-omega, t, 1, r, 1);

∕∕check for convergence
nrmr = cublasDnrm2(n, r, 1);
if (nrmr∕nrmr0 < tol){

break;
}

}

∕∕destroy the analysis info (for lower and upper triangular factors)
cusparseDestroySolveAnalysisInfo(infoL);
cusparseDestroySolveAnalysisInfo(infoU);

As shown in Figure 2 the majority of time in each iteration of the incomplete-LU and Cholesky precon-
ditioned iterative methods is spent in the sparsematrix-vector multiplication and triangular solve. The
sparse matrix-vector multiplication has already been extensively studied in the following references
[3], [15]. The sparse triangular solve is not as well known, so we briefly point out the strategy used to
explore parallelism in it and refer the reader to the NVIDIA technical report [8] for further details.

To understand themain ideas behind the sparse triangular solve, notice that although the forward and
back substitution is an inherently sequential algorithm for dense triangular systems, the dependencies
on the previously obtained elements of the solution do not necessarily exist for the sparse triangular
systems. We pursue the strategy that takes advantage of the lack of these dependencies and split
the solution process into two phases as mentioned in [1], [4], [6], [7], [8], [10], [12], [14].

The analysis phase builds the data dependency graph that groups independent rows into levels based
on the matrix sparsity pattern. The solve phase iterates across the constructed levels one-by-one and

1.2. Algorithm 2 Bi-Conjugate Gradient Stabilized (BiCGStab) 9

index.html#preconditioned-iterative-methods-splitting-of-total-time-taken-on-gpu-by-preconditioned-iterative-method
index.html#references
index.html#references
index.html#references
index.html#references
index.html#references
index.html#references
index.html#references
index.html#references
index.html#references
index.html#references
index.html#references

Incomplete-LU and Cholesky Preconditioned Iterative Methods, Release 12.6

Fig. 1: The Splitting of Total Time Taken on the GPU by the Preconditioned Iterative Method

computes all elements of the solution corresponding to the rows at a single level in parallel. Notice
that by construction the rows within each level are independent of each other, but are dependent on
at least one row from the previous level.

The analysis phase needs to be performed only once and is usually significantly slower than the solve
phase, which can be performed multiple times. This arrangement is ideally suited for the incomplete-
LU and Cholesky preconditioned iterative methods.

10 Chapter 1. Preconditioned Iterative Methods

Chapter 2. Numerical Experiments

In this sectionwe study the performance of the incomplete-LU and Cholesky preconditionedBiCGStab
and CG iterative methods. We use twelve matrices selected from The University of Florida Sparse
Matrix Collection [18] in our numerical experiments. The seven s.p.d. and five nonsymmetric matrices
with the respective number of rows (m), columns (n=m) and non-zero elements (nnz) are grouped and
shown according to their increasing order in Table 1.

Table 1: Table 1. Symmetric Positive Definite (s.p.d.) and Non-
symmetric Test Matrices

Matrix m,n nnz s.p.d. Application

1 offshore 259,789 4,242,673 yes Geophysics

2 af_shell3 504,855 17,562,051 yes Mechanics

3 parabolic_fem 525,825 3,674,625 yes General

4 apache2 715,176 4,817,870 yes Mechanics

5 ecology2 999,999 4,995,991 yes Biology

6 thermal2 1,228,045 8,580,313 yes Thermal Simulation

7 G3_circuit 1,585,478 7,660,826 yes Circuit Simulation

8 FEM_3D_thermal2 147,900 3,489,300 no Mechanics

9 thermomech_dK 204,316 2,846,228 no Mechanics

10 ASIC_320ks 321,671 1,316,08511 no Circuit Simulation

11 cage13 445,315 7,479,343 no Biology

12 atmosmodd 1,270,432 8,814,880 no Atmospheric Model

In the following experiments we use the hardware system with NVIDIA C2050 (ECC on) GPU and Intel
Core i7 CPU 950 @ 3.07GHz, using the 64-bit Linux operating system Ubuntu 10.04 LTS, cuSPARSE
library 4.0 and MKL 10.2.3.029. The MKL_NUM_THREADS and MKL_DYNAMIC environment variables
are left unset to allow MKL to use the optimal number of threads.

We compute the incomplete-LU and Cholesky factorizations using the MKL routines csrilu0 and
csrilut with 0 and threshold fill-in, respectively. In the csrilut routine we allow three different
levels of fill-in denoted by (5,10-3), (10,10-5) and (20,10-7). In general, the (k, tol) fill-in is based on
nnz/n+kmaximumallowed number of elements per row and the dropping of elementswithmagnitude∣∣lij∣∣, ∣∣uij

∣∣< tol×
∥∥aTi ∥∥2 , where lij , uij and aTi are the elements of the lowerL, upperU triangular factors

and the i-th row of the coefficient matrix A, respectively.

We compare the implementation of the BiCGStab and CG iterative methods using the cuSPARSE and

11

index.html#references
index.html#numerical-experiments-symmetric-positive-definite-spd-and-nonsymmetric-test-matrices

Incomplete-LU and Cholesky Preconditioned Iterative Methods, Release 12.6

cuBLAS libraries on the GPU and MKL on the CPU. In our experiments we let the initial guess be zero,
the right-hand-side f = Ae where eT= (1, . . . , 1)

T , and the stopping criteria be the maximum number
of iterations 2000 or relative residual ∥ri∥2 / ∥r0∥2 < 10−7, where ri = f − Axi is the residual at i-th
iteration.

Table 2: Table 2. csrilu0 Preconditioned CG and BiCGStab
Methods

ilu0 CPU GPU Speedup

fact.
time(s)

copy
time(s)

solve
time(s)

∥ri∥2

∥r0∥2
it. solve

time(s)

∥ri∥2

∥r0∥2
it. vs. ilu0

1 0.38 0.02 0.72 8.83E-
08

25 1.52 8.83E-
08

25 0.57

2 1.62 0.04 38.5 1.00E-
07

569 33.9 9.69E-
08

571 1.13

3 0.13 0.01 39.2 9.84E-
08

1044 6.91 9.84E-
08

1044 5.59

4 0.12 0.01 35.0 9.97E-
08

713 12.8 9.97E-
08

713 2.72

5 0.09 0.01 107 9.98E-
08

1746 55.3 9.98E-
08

1746 1.92

6 0.40 0.02 155 9.96E-
08

1656 54.4 9.79E-
08

1656 2.83

7 0.16 0.02 20.2 8.70E-
08

183 8.61 8.22E-
08

183 2.32

8 0.32 0.02 0.13 5.25E-
08

4 0.52 5.25E-
08

4 0.53

9 0.20 0.01 72.7 1.96E-
04

2000 40.0 2.08E-
04

2000 1.80

10 0.11 0.01 0.27 6.33E-
08

6 0.12 6.33E-
08

6 1.59

11 0.70 0.03 0.28 2.52E-
08

2.5 0.15 2.52E-
08

2.5 1.10

12 0.25 0.04 12.5 7.33E-
08

76.5 4.30 9.69E-
08

74.5 2.79

12 Chapter 2. Numerical Experiments

Incomplete-LU and Cholesky Preconditioned Iterative Methods, Release 12.6

Table 3: Table 3. csrilut(5,10-3) Preconditioned CG and
BiCGStab Methods

ilut(5,10-3) CPU GPU Speedup

fact.
time(s)

copy
time(s)

solve
time(s)

∥ri∥2

∥r0∥2
it. solve

time(s)

∥ri∥2

∥r0∥2
it. vs. ilut

(5,10-3)
vs.
ilu0

1 0.14 0.01 1.17 9.70E-
08

32 1.82 9.70E-
08

32 0.67 0.69

2 0.51 0.03 49.1 9.89E-
08

748 33.6 9.89E-
08

748 1.45 1.39

3 1.47 0.02 11.7 9.72E-
08

216 6.93 9.72E-
08

216 1.56 1.86

4 0.17 0.01 67.9 9.96E-
08

1495 26.5 9.96E-
08

1495 2.56 5.27

5 0.55 0.04 59.5 9.22E-
08

653 71.6 9.22E-
08

653 0.83 1.08

6 3.59 0.05 47.0 9.50E-
08

401 90.1 9.64E-
08

401 0.54 0.92

7 1.24 0.05 23.1 8.08E-
08

153 24.8 8.08E-
08

153 0.93 2.77

8 0.82 0.03 0.12 3.97E-
08

2 1.12 3.97E-
08

2 0.48 1.10

9 0.10 0.01 54.3 5.68E-
04

2000 24.5 1.58E-
04

2000 2.21 1.34

10 0.12 0.01 0.16 4.89E-
08

4 0.08 6.45E-
08

4 1.37 1.15

11 4.99 0.07 0.36 1.40E-
08

2.5 0.37 1.40E-
08

2.5 0.99 6.05

12 0.32 0.03 39.2 7.05E-
08

278.5 10.6 8.82E-
08

270.5 3.60 8.60

The results of the numerical experiments are shown in Table 2 through Table 5, where we state the
speedup obtained by the iterative method on the GPU over CPU (speedup), number of iterations re-
quired for convergence (# it.), achieved relative residual (∥ri∥2

∥r0∥2
) and time in seconds taken by the factor-

ization (fact.), iterative solution of the linear system (solve), and cudaMemcpy of the lower and upper
triangular factors to the GPU (copy). We include the time taken to compute the incomplete-LU and
Cholesky factorization as well as to transfer the triangular factors from the CPU to the GPU memory
in the computed speedup.

13

index.html#numerical-experiments-csrilu0-preconditioned-cg-and-bicgstab-methods
index.html#numerical-experiments-csrilut-20-10-preconditioned-cg-and-bicgstab-methods

Incomplete-LU and Cholesky Preconditioned Iterative Methods, Release 12.6

Table 4: Table 4. csrilut(10,10-5) Preconditioned CG and
BiCGStab Methods

ilut(10,10-5) CPU GPU Speedup

fact.
time(s)

copy
time(s)

solve
time(s)

∥ri∥2

∥r0∥2
it. solve

time(s)

∥ri∥2

∥r0∥2
it. vs. ilut

(10,10-5)
vs.
ilu0

1 0.15 0.01 1.06 8.79E-
08

34 1.96 8.79E-
08

34 0.57 0.63

2 0.52 0.03 60.0 9.86E-
08

748 38.7 9.86E-
08

748 1.54 1.70

3 3.89 0.03 9.02 9.79E-
08

147 5.42 9.78E-
08

147 1.38 1.83

4 1.09 0.03 34.5 9.83E-
08

454 38.2 9.83E-
08

454 0.91 2.76

5 3.25 0.06 26.3 9.71E-
08

272 55.2 9.71E-
08

272 0.51 0.53

6 11.0 0.07 44.7 9.42E-
08

263 84.0 9.44E-
08

263 0.59 1.02

7 5.95 0.09 8.84 8.53E-
08

43 17.0 8.53E-
08

43 0.64 1.68

8 2.94 0.04 0.09 2.10E-
08

1.5 1.75 2.10E-
08

1.5 0.64 3.54

9 0.11 0.01 53.2 4.24E-
03

2000 24.4 4.92E-
03

2000 2.18 1.31

10 0.12 0.01 0.16 4.89E-
11

4 0.08 6.45E-
11

4 1.36 1.18

11 2.89 0.09 0.44 6.10E-
09

2.5 0.48 6.10E-
09

2.5 1.00 33.2

12 0.36 0.03 36.6 7.05E-
08

278.5 10.6 8.82E-
08

270.5 3.35 8.04

14 Chapter 2. Numerical Experiments

Incomplete-LU and Cholesky Preconditioned Iterative Methods, Release 12.6

Table 5: Table 5. csrilut(20,10-7) Preconditioned CG and
BiCGStab Methods

ilut(20,10-7) CPU GPU Speedup

fact.
time(s)

copy
time(s)

solve
time(s)

∥ri∥2

∥r0∥2
it. solve

time(s)

∥ri∥2

∥r0∥2
it. vs. ilut

(20,10-7)
vs. ilu0

1 0.82 0.02 47.6 9.90E-
08

1297 159 9.86E-
08

1292 0.30 25.2

2 9.21 0.11 32.1 8.69E-
08

193 84.6 8.67E-
08

193 0.44 1.16

3 10.04 0.04 6.26 9.64E-
08

90 4.75 9.64E-
08

90 1.10 2.36

4 8.12 0.10 15.7 9.02E-
08

148 22.5 9.02E-
08

148 0.78 1.84

5 8.60 0.10 21.2 9.52E-
08

158 53.6 9.52E-
08

158 0.48 0.54

6 35.2 0.11 29.2 9.88E-
08

162 80.5 9.88E-
08

162 0.56 1.18

7 23.1 0.14 3.79 7.50E-
08

14 12.1 7.50E-
08

14 0.76 3.06

8 5.23 0.05 0.14 1.19E-
09

1.5 2.37 1.19E-
09

1.5 0.70 6.28

9 0.12 0.01 55.1 3.91E-
03

2000 24.4 2.27E-
03

2000 2.25 1.36

10 0.14 0.01 0.14 9.35E-
08

3.5 0.07 7.19E-
08

3.5 1.28 1.18

11 218 0.12 0.43 9.80E-
08

2 0.66 9.80E-
08

2 1.00
247.

12 15.0 0.21 12.2 3.45E-
08

31 4.95 3.45E-
08

31 1.35 5.93

The summary of performance of BiCGStab and CG iterative methods preconditioned with different
incomplete factorizations on the GPU is shown in Figure 3, where “*” indicates that the method did
not converge to the required tolerance. Notice that in general in our numerical experiments the per-
formance for the incomplete factorizations decreases as the threshold parameters are relaxed and
the factorization becomes more dense, thus inhibiting parallelism due to data dependencies between
rows in the sparse triangular solve. For this reason, the best performance on the GPU is obtained for
the incomplete-LU and Cholesky factorization with 0 fill-in, which will be our point of reference.

Although the incomplete factorizations with a more relaxed threshold are often closer to the exact
factorization and thus result in fewer iterative steps, they are also much more expensive to compute.
Moreover, notice that even though the number of iterative steps decreases, each step is more com-
putationally expensive. As a result of these tradeoffs the total time, the sum of the time taken by
the factorization and the iterative solve, for the iterative method does not necessarily decrease with
a more relaxed threshold in our numerical experiments.

The speedup based on the total time taken by the preconditioned iterative method on the GPU with

15

index.html#numerical-experiments-performance-of-bicgstab-and-cg-with-incomplete-lu-cholesky

Incomplete-LU and Cholesky Preconditioned Iterative Methods, Release 12.6

Fig. 1: Performance of BiCGStab and CG with Incomplete-LU Cholesky Preconditioning

csrilu0 preconditioner and CPU with all four preconditioners is shown in Figure 4. Notice that for
majority of matrices in our numerical experiments the implementation of the iterative method using
the cuSPARSE and cuBLAS libraries does indeed outperform the MKL.

Finally, the average of the obtained speedups is shown in Figure 5, where we have excluded the runs
with cage13 matrix for ilut(10,10-5) and runs with offshore and cage13 matrices for ilut(20,10-7)
incomplete factorizations because of their disproportional speedup. However, the speedup includ-
ing these runs is shown in parenthesis on the same plot. Consequently, we can conclude that the
incomplete-LU and Cholesky preconditioned BiCGStab and CG iterative methods obtain on average
more than 2x speedup on the GPU over their CPU implementation.

16 Chapter 2. Numerical Experiments

index.html#numerical-experiments-speedup-of-prec-bicgstab-and-cg-on-gpu-with-csrilu0-vs-cpu-with-all
index.html#numerical-experiments-average-speedup-of-bicgstab-and-cg-on-gpu-with-csrilu0-and-cpu-with-all

Incomplete-LU and Cholesky Preconditioned Iterative Methods, Release 12.6

Fig. 2: Speedup of prec. BiCGStab and CG on GPU (with csrilu0) vs. CPU (with all)

Fig. 3: Average Speedup of BiCGStab and CG on GPU (with csrilu0) and CPU (with all)

17

Incomplete-LU and Cholesky Preconditioned Iterative Methods, Release 12.6

18 Chapter 2. Numerical Experiments

Chapter 3. Conclusion

The performance of the iterative methods depends highly on the sparsity pattern of the coeffi-
cient matrix at hand. In our numerical experiments the incomplete-LU and Cholesky preconditioned
BiCGStab and CG iterative methods implemented on the GPU using the cuSPARSE and cuBLAS li-
braries achieved an average of 2x speedup over their MKL implementation.

The sparse matrix-vector multiplication and triangular solve, which is split into a slower analysis phase
that needs to be performed only once and a faster solve phase that can be performed multiple times,
were the essential building blocks of these iterativemethods. In fact the obtained speedupwas usually
mostly influenced by the time taken by the solve phase of the algorithm.

Finally, we point out that the use of multiple-right-hand-sides would increase the available parallelism
and can result in a significant relative performance improvement in the preconditioned iterative meth-
ods. Also, the development of incomplete-LU and Cholesky factorizations using CUDA parallel pro-
gramming paradigm can further improve the obtained speedup.

19

Incomplete-LU and Cholesky Preconditioned Iterative Methods, Release 12.6

20 Chapter 3. Conclusion

Chapter 4. Acknowledgements

This white paper was authored by Maxim Naumov for NVIDIA Corporation.

Permission to make digital or hard copies of all or part of this work for any use is granted without fee
provided that copies bear this notice and the full citation on the first page.

21

Incomplete-LU and Cholesky Preconditioned Iterative Methods, Release 12.6

22 Chapter 4. Acknowledgements

Chapter 5. References

[1] E. Anderson and Y. Saad Solving Sparse Triangular Linear Systems on Parallel Computers, Int. J.
High Speed Comput., pp. 73-95, 1989.

[2] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine,
H. van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods,
SIAM, Philadelphia, PA, 1994.

[3] N. Bell and M. Garland, Implementing Sparse Matrix-Vector Multiplication on Throughput-Oriented
Processors, Proc. Conf. HPC Networking, Storage and Analysis (SC09), ACM, pp. 1-11, 2009.

[4] A. Greenbaum, Solving Sparse Triangular Linear Systems using Fortran with Parallel Extensions on
the NYU Ultracomputer Prototype, Report 99, NYU Ultracomputer Note, New York University, NY, April,
1986.

[5] D. B. Kirk and W. W. Hwu, Programming Massively Parallel Processors: A Hands-on Approach, Else-
vier, 2010.

[6] J. Mayer, Parallel Algorithms for Solving Linear Systems with Sparse Triangular Matrices, Comput-
ing, pp. 291-312 (86), 2009.

[7] R. Mirchandaney, J. H. Saltz and D. Baxter, Run-Time Parallelization and Scheduling of Loops, IEEE
Transactions on Computers, pp. (40), 1991.

[8] M. Naumov, Parallel Solution of Sparse Triangular Linear Systems in the Preconditioned Iterative
Methods on the GPU, NVIDIA Technical Report, NVR-2011-001, 2011.

[9] J. Nickolls, I. Buck, M. Garland and K. Skadron, Scalable Parallel Programming with CUDA, Queue,
pp. 40-53 (6-2), 2008.

[10] E. Rothberg and A. Gupta, Parallel ICCG on a Hierarchical MemoryMultiprocessor - Addressing the
Triangular Solve Bottleneck, Parallel Comput., pp. 719-741 (18), 1992.

[11] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia, PA, 2nd Ed., 2003.

[12] J. H. Saltz, AggregationMethods for Solving Sparse Triangular Systems onMultiprocessors, SIAM
J. Sci. Statist. Comput., pp. 123-144 (11), 1990.

[13] J. Sanders and E. Kandrot, CUDA by Example: An Introduction to General-Purpose GPU Program-
ming, Addison-Wesley, 2010.

[14] M. Wolf, M. Heroux and E. Boman, Factors Impacting Performance of Multithreaded Sparse Tri-
angular Solve, 9th Int. Meet. HPC Comput. Sci. (VECPAR), 2010.

[15] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick and J. Demmel, Optimization of Sparse Matrix-
Vector Multiplication on Emerging Multicore Platforms, Parallel Comput., pp. 178-194 (35-3), 2009.

[16] NVIDIA cuSPARSE and cuBLAS Libraries,http://www.nvidia.com/object/cuda_develop.html

[17] Intel Math Kernel Library,http://software.intel.com/en-us/articles/intel-mkl

23

http://www.nvidia.com/object/cuda_develop.html
http://software.intel.com/en-us/articles/intel-mkl

Incomplete-LU and Cholesky Preconditioned Iterative Methods, Release 12.6

[18] The University of Florida Sparse Matrix Collection, http://www.cise.ufl.edu/research/sparse/
matrices/.

24 Chapter 5. References

http://www.cise.ufl.edu/research/sparse/matrices/
http://www.cise.ufl.edu/research/sparse/matrices/

Chapter 6. Notices

6.1. Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a
certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no repre-
sentations or warranties, expressed or implied, as to the accuracy or completeness of the information
contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall
have no liability for the consequences or use of such information or for any infringement of patents
or other rights of third parties that may result from its use. This document is not a commitment to
develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any
other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that
such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the
time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by
authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA
product referenced in this document. No contractual obligations are formed either directly or indirectly
by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military,
aircraft, space, or life support equipment, nor in applicationswhere failure ormalfunction of theNVIDIA
product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or
applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIAmakes no representation or warranty that products based on this document will be suitable for
any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA.
It is customer’s sole responsibility to evaluate and determine the applicability of any information con-
tained in this document, ensure the product is suitable and fit for the application planned by customer,
and perform the necessary testing for the application in order to avoid a default of the application or
the product. Weaknesses in customer’s product designs may affect the quality and reliability of the
NVIDIA product andmay result in additional or different conditions and/or requirements beyond those
contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or prob-
lem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is
contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other
NVIDIA intellectual property right under this document. Information published by NVIDIA regarding
third-party products or services does not constitute a license from NVIDIA to use such products or

25

Incomplete-LU and Cholesky Preconditioned Iterative Methods, Release 12.6

services or a warranty or endorsement thereof. Use of such information may require a license from a
third party under the patents or other intellectual property rights of the third party, or a license from
NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA
in writing, reproduced without alteration and in full compliance with all applicable export laws and
regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENTANDALLNVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE
BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WAR-
RANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENTWILL NVIDIA BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CON-
SEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARIS-
ING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCHDAMAGES. Notwithstanding any damages that customermight incur for any reasonwhatso-
ever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein
shall be limited in accordance with the Terms of Sale for the product.

6.2. OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

6.3. Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the
U.S. and other countries. Other company and product names may be trademarks of the respective
companies with which they are associated.

Copyright

©2011-2024, NVIDIA Corporation & affiliates. All rights reserved

26 Chapter 6. Notices

	Preconditioned Iterative Methods
	Algorithm 1 Conjugate Gradient (CG)
	Algorithm 2 Bi-Conjugate Gradient Stabilized (BiCGStab)

	Numerical Experiments
	Conclusion
	Acknowledgements
	References
	Notices
	Notice
	OpenCL
	Trademarks

