Release Notes
Release 12.6

NVIDIA Corporation

Aug 27, 2024

Contents

1 CUDA Toolkit Major Component Versions 3
2 New Features 9
2.1 General CUDA 9
2.2 CUDA Compiler 9
2.3 CUDA Developer Tools e 10

3 Resolved Issues 11
3.1 CUDA Compiler 11

4 Known Issues and Limitations 13
5 Deprecated or Dropped Features 15
5.1 Deprecated or Dropped Operating Systems 15
5.2 Deprecated Toolchains e 15
53 CUDA TOOIS . . . e 15

6 CUDA Libraries 17
6.1 CUBLAS Library e 17
6.1.1 CUBLAS: Release 126 Update 1 17
6.1.2 CUBLAS: Release 12.6 17
6.1.3 CUBLAS: Release 125 Update 1 e 18
6.1.4 cuBLAS:Release 12.5 e 18
6.1.5 cuBLAS:Release 124 Update 1 19
6.1.6 CUBLAS: Release 12.4 e 19
6.1.7 cuBLAS:Release 123 Update 1 20
6.1.8 CUBLAS: Release 12.3 e 21
6.1.9 cuBLAS:Release 122 Update2 21
6.1.10 cuBLAS:Release 12.2 21
6.1.11 cuBLAS:Release 12.1Update 1 22
6.1.12 cuBLAS:Release 120Update 1 22
6.1.13 cuBLAS:Release 12.0 e 23

6.2 CUFFT Library e 24
6.2.1 CUFFT:Release 12.6 24
6.2.2 cuFFT:Release 12.5 e 24
6.2.3 cuFFT:Release 124 Update 1 24
6.24 cuFFT:Release 12.4 e 24
6.2.5 CUFFT:Release 123 Update 1 e 25
6.2.6 cuFFT:Release 12.3 e 25
6.2.7 cuFFT:Release 12.2 e 25
6.2.8 cuFFT:Release 12.1 Update 1 e 26
6.2.9 CUFFT: Release 12.1 e 26
6.2.10 cuFFT:Release 12.0Update 1 i 26
6.2.11 cuFFT:Release 12.0 26

6.3 CUSOLVER Library e e 27

6.3.1 CUSOLVER: Release 12.6 o i e e e e 27
6.3.2 cuSOLVER:Release 125Update 1. 27
6.3.3 CUSOLVER: Release 12.5 e 27
6.3.4 cuSOLVER:Release 124 Update 1. 28
6.3.5 CUSOLVER: Release 12.4 e 28
6.3.6 cuSOLVER:Release 122 Update2 i 28
6.3.7 CUSOLVER: Release 12.2 e e e e e e 29
6.4 CUSPARSE Library e 29
6.4.1 CUSPARSE: Release 12.6 e 29
6.4.2 CcuSPARSE:Release 125Update 1. 29
6.4.3 CUSPARSE: Release 12.5 e 30
6.4.4 CUSPARSE: Release 12.4 e 30
6.4.5 CUSPARSE: Release 123 Update 1. 30
6.4.6 CUSPARSE: Release 12.3 e 30
6.47 CcuSPARSE:Release 122 Update 1. 31
6.48 CcuSPARSE:Release 12.1Update 1. 31
6.4.9 cuSPARSE:Release 120Update 1. 32
6.4.10 CcuSPARSE:Release 12.0 o i i 32
6.5 Math Library 33
6.5.1 CUDA Math: Release 126 Update 1. 33
6.5.2 CUDA Math: Release 12.6 e 33
6.5.3 CUDA Math: Release 12.5 33
6.5.4 CUDA Math: Release 12.4 33
6.5.5 CUDA Math: Release 12.3 34
6.5.6 CUDA Math: Release 12.2 e 34
6.5.7 CUDA Math: Release 12.1 e e 35
6.5.8 CUDA Math: Release 12.0 s e 35
6.6 NVIDIA Performance Primitives (NPP) 35
6.6.1 NPP: Release 12.4 e 35
6.6.2 NPP: Release 12.0 e 35
6.7 NVJPEG Library e 36
6.7.1 NVJPEG: Release 12.4 e 36
6.7.2 nvJPEG: Release 12.3 Update 1 36
6.7.3 NVJPEG: Release 12.2 e 36
6.7.4 NVvJPEG: Release 12.0 e 36

7 Notices 37
7.1 Notice e 37
7.2 OpenCL . . . 38
7.3 Trademarks e 38

Release Notes, Release 12.6

NVIDIA CUDA Toolkit Release Notes

The Release Notes for the CUDA Toolkit.

The release notes for the NVIDIA® CUDA® Toolkit can be found online at https://docs.nvidia.com/cuda/
cuda-toolkit-release-notes/index.html.

Note: The release notes have been reorganized into two major sections: the general CUDA release
notes, and the CUDA libraries release notes including historical information for 12.x releases.

Contents 1

https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html

Release Notes, Release 12.6

2 Contents

Chapter 1. CUDA Toolkit Major

CUDA Components

Component Versions

Starting with CUDA 11, the various components in the toolkit are versioned independently.
For CUDA 12.6 Update 1, the table below indicates the versions:

Table 1: CUDA 12.6 Update 1 Component Versions

Component Name

Version Informa-
tion

Supported Archi-
tectures

Supported Plat-
forms

CUDA C++ Core Thrust 250 x86_64, arm64- Linux, Windows
Compute Li- CUB 550 gbsa, aarch64-
braries jetson
libcu++ 2.5.0
Cooperative 12.6.68
Groups
CUDA Compatibility 12.6.36890662 aarch64-jetson Linux
CUDA Runtime (cudart) 12.6.68 x86_64, arm64- | Linux, Windows,
sbsa, aarch64- | WSL
jetson
cuobjdump 12.6.68 x86_64, arm64- | Linux, Windows
sbsa, aarch64-
jetson
CUPTI 12.6.68 x86_64, arm64- | Linux, Windows,
sbsa, aarch64- | WSL
jetson
CUDA cuxxfilt (demangler) 12.6.68 x86_64, arm64- | Linux, Windows
sbsa, aarch64-
jetson
CUDA Demo Suite 12.6.68 x86_64 Linux, Windows
CUDA GDB 12.6.68 x86_64, arm64- | Linux, WSL
sbsa, aarch64-
jetson

continues on next page

Release Notes, Release 12.6

Table 1 -continued from previous page

Component Name Version Informa- | Supported Archi- | Supported Plat-
tion tectures forms
CUDA Nsight Eclipse Plugin 12.6.68 x86_64 Linux
CUDA NVCC 12.6.68 x86_64, arm64- | Linux, Windows,
sbsa, aarch64- | WSL
jetson
CUDA nvdisasm 12.6.68 x86_64, arm64- | Linux, Windows
sbsa, aarch64-
jetson
CUDA NVML Headers 12.6.68 x86_64, arm64- | Linux, Windows,
sbsa, aarch64- | WSL
jetson
CUDA nvprof 12.6.68 x86_64 Linux, Windows
CUDA nvprune 12.6.68 x86_64, arm64- | Linux, Windows,
sbsa, aarch64- | WSL
jetson
CUDA NVRTC 12.6.68 x86_64, arm64- | Linux, Windows,
sbsa, aarch64- | WSL
jetson
NVTX 12.6.68 x86_64, arm64- | Linux, Windows,
sbsa, aarch64- | WSL
jetson
CUDA NVVP 12.6.68 x86_64 Linux, Windows
CUDA OpenCL 12.6.68 x86_64 Linux, Windows
CUDA Profiler API 12.6.68 x86_64, arm64- | Linux, Windows,
sbsa, aarch64- | WSL
jetson
CUDA Compute Sanitizer API 12.6.68 x86_64, arm64- | Linux, Windows,
sbsa, aarch64- | WSL
jetson
CUDA cuBLAS 12.6.1.4 x86_64, arm64- | Linux, Windows,
sbsa, aarch64- | WSL
jetson
cuDLA 12.6.68 aarch64-jetson Linux
CUDA cuFFT 11.2.6.59 x86_64, arm64- | Linux, Windows,
sbsa, aarch64- | WSL
jetson
CUDA cufFile 1.11.1.6 x86_64, arm64- | Linux
sbsa, aarch64-
jetson
continues on next page
4 Chapter 1. CUDA Toolkit Major Component Versions

Release Notes, Release 12.6

Table 1 -continued from previous page

Component Name Version Informa- | Supported Archi- | Supported Plat-
tion tectures forms

CUDA cuRAND 10.3.7.68 x86_64, arm64- | Linux, Windows,
sbsa, aarch64- | WSL
jetson

CUDA cuSOLVER 11.6.4.69 x86_64, arm64- | Linux, Windows,
sbsa, aarch64- | WSL
jetson

CUDA cuSPARSE 12.5.3.3 x86_64, arm64- | Linux, Windows,
sbsa, aarch64- | WSL
jetson

CUDA NPP 12.3.1.54 x86_64, arm64- | Linux, Windows,
sbsa, aarch64- | WSL
jetson

CUDA nvFatbin 12.6.68 x86_64, arm64- | Linux, Windows,
sbsa, aarch64- | WSL
jetson

CUDA nvJitLink 12.6.68 x86_64, arm64- | Linux, Windows,
sbsa, aarch64- | WSL
jetson

CUDA nvJPEG 12.3.3.54 x86_64, arm64- | Linux, Windows,
sbsa, aarch64- | WSL
jetson

Nsight Compute 2024.3.1.2 x86_64, arm64- | Linux, Windows,
sbsa, aarch64- | WSL (Windows
jetson 11)

Nsight Systems 2024.4.2.133 x86_64, arm64- | Linux, Windows,
sbsa WSL

Nsight Visual Studio Edition (VSE) 2024.3.0.24164 x86_64 (Win- | Windows
dows)

nvidia_fs' 2.22.3 x86_64, arm64- | Linux
sbsa, aarch64-
jetson

Visual Studio Integration 12.6.68 x86_64 (Win- | Windows
dows)

NVIDIA Linux Driver 560.35.03 x86_64, arm64- | Linux
sbsa

NVIDIA Windows Driver 560.94 x86_64 (Win- | Windows, WSL
dows)

CUDA Driver

Running a CUDA application requires the system with at least one CUDA capable GPU and a
driver that is compatible with the CUDA Toolkit. See Table 3. For more information various GPU

! Only available on select Linux distros

index.html#cuda-major-component-versions__table-cuda-toolkit-driver-versions

Release Notes, Release 12.6

products that are CUDA capable, visit

Each release of the CUDA Toolkit requires a minimum version of the CUDA driver. The CUDA driver
is backward compatible, meaning that applications compiled against a particular version of the
CUDA will continue to work on subsequent (later) driver releases.

More information on compatibility can be found at

Note: Starting with CUDA 11.0, the toolkit components are individually versioned, and the toolkit
itself is versioned as shown in the table below.

The minimum required driver version for CUDA minor version compatibility is shown be-
low. CUDA minor version compatibility is described in detail in

Table 2: CUDA Toolkit and Minimum Required Driver Version for
CUDA Minor Version Compatibility

CUDA Toolkit Minimum Required Driver Version for
CUDA Minor Version Compatibility*

Linux x86_64 Driver | Windows x86_64
Version Driver Version
CUDA 12.x >=525.60.13 >=528.33
CUDA 11.8.x CUDA 11.7.x CUDA 11.6.x CUDA 11.5.x | >=450.80.02 >=452.39
CUDA 11.4.x CUDA 11.3.x CUDA 11.2x CUDA 11.1.x
CUDA 11.0(11.0.3) >=450.36.06** >=451.22**

* Using a Minimum Required Version that is different from Toolkit Driver Version could be allowed in
compatibility mode - please read the CUDA Compatibility Guide for details.

** CUDA 11.0 was released with an earlier driver version, but by upgrading to Tesla Recommended
Drivers 450.80.02 (Linux) / 452.39 (Windows), minor version compatibility is possible across the CUDA
11.x family of toolkits.

The version of the development NVIDIA GPU Driver packaged in each CUDA Toolkit release is shown
below.

Table 3: CUDA Toolkit and Corresponding Driver Versions

CUDA Toolkit Toolkit Driver Version
Linux x86_64 Driver Version | Windows x86_64 Driver Ver-
sion

CUDA 12.6 Update 1 >=560.35.03 >=560.94
CUDA 12.6 GA >=560.28.03 >=560.76
CUDA 12.5 Update 1 >=555.42.06 >=555.85
CUDA 12.5 GA >=555.42.02 >=555.85
CUDA 12.4 Update 1 >=550.54.15 >=551.78
CUDA 12.4 GA >=550.54.14 >=551.61

continues on next page

6 Chapter 1. CUDA Toolkit Major Component Versions

https://developer.nvidia.com/cuda-gpus
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#cuda-compatibility-and-upgrades
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#cuda-compatibility-and-upgrades
https://docs.nvidia.com/deploy/cuda-compatibility/index.html
https://docs.nvidia.com/deploy/cuda-compatibility/index.html

Release Notes, Release 12.6

Table 3 - continued from previous page

CUDA Toolkit Toolkit Driver Version

CUDA 12.3 Update 1 >=545.23.08 >=546.12
CUDA 12.3 GA >=545.23.06 >=545.84
CUDA 12.2 Update 2 >=535.104.05 >=537.13
CUDA 12.2 Update 1 >=535.86.09 >=536.67
CUDA 12.2 GA >=535.54.03 >=536.25
CUDA 12.1 Update 1 >=530.30.02 >=531.14
CUDA 12.1 GA >=530.30.02 >=531.14
CUDA 12.0 Update 1 >=525.85.12 >=528.33
CUDA 12.0 GA >=525.60.13 >=527.41

CUDA 11.8 GA >=520.61.05 >=520.06
CUDA 11.7 Update 1 >=515.48.07 >=516.31

CUDA 11.7 GA >=515.43.04 >=516.01

CUDA 11.6 Update 2 >=510.47.03 >=511.65
CUDA 11.6 Update 1 >=510.47.03 >=511.65
CUDA 11.6 GA >=510.39.01 >=511.23
CUDA 11.5 Update 2 >=495.29.05 >=496.13
CUDA 11.5 Update 1 >=495.29.05 >=496.13
CUDA 11.5GA >=495.29.05 >=496.04
CUDA 11.4 Update 4 >=470.82.01 >=472.50
CUDA 11.4 Update 3 >=470.82.01 >=472.50
CUDA 11.4 Update 2 >=470.57.02 >=471.41

CUDA 11.4 Update 1 >=470.57.02 >=471.41

CUDA 11.4.0 GA >=470.42.01 >=471.11

CUDA 11.3.1 Update 1 >=465.19.01 >=465.89
CUDA 11.3.0 GA >=465.19.01 >=465.89
CUDA 11.2.2 Update 2 >=460.32.03 >=461.33
CUDA 11.2.1 Update 1 >=460.32.03 >=461.09
CUDA 11.2.0GA >=460.27.03 >=460.82
CUDA 11.1.1 Update 1 >=455.32 >=456.81

CUDA 11.1 GA >=455.23 >=456.38
CUDA 11.0.3 Update 1 >= 450.51.06 >=451.82
CUDA 11.0.2 GA >= 450.51.05 >=451.48

continues on next page

Release Notes, Release 12.6

Table 3 - continued from previous page

CUDA Toolkit Toolkit Driver Version

CUDA 11.0.1 RC >= 450.36.06 >=451.22
CUDA 10.2.89 >= 440.33 >=441.22
CUDA 10.1 (10.1.105 general release, | >= 418.39 >=418.96
and updates)

CUDA 10.0.130 >=410.48 >=411.31
CUDA 9.2 (9.2.148 Update 1) >= 396.37 >=398.26
CUDA 9.2 (9.2.88) >= 396.26 >=397.44
CUDA 9.1 (9.1.85) >= 390.46 >=391.29
CUDA 9.0 (9.0.76) >=384.81 >=385.54
CUDA 8.0 (8.0.61 GA2) >= 375.26 >=376.51
CUDA 8.0 (8.0.44) >=367.48 >=369.30
CUDA 7.5 (7.5.16) >=352.31 >=353.66
CUDA 7.0 (7.0.28) >= 346.46 >=347.62

For convenience, the NVIDIA driver is installed as part of the CUDA Toolkit installation. Note that this
driver is for development purposes and is not recommended for use in production with Tesla GPUs.

For running CUDA applications in production with Tesla GPUs, it is recommended to download the
latest driver for Tesla GPUs from the NVIDIA driver downloads site at https://www.nvidia.com/drivers.

During the installation of the CUDA Toolkit, the installation of the NVIDIA driver may be skipped on
Windows (when using the interactive or silent installation) or on Linux (by using meta packages).

For more information on customizing the install process on Windows, see https://docs.nvidia.com/

cuda/cuda-installation-guide-microsoft-windows/index.html#install-cuda-software.

For meta packages on Linux, see https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.

html#package-manager-metas.

Chapter 1. CUDA Toolkit Major Component Versions

https://www.nvidia.com/drivers
https://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html#install-cuda-software
https://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html#install-cuda-software
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#package-manager-metas
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#package-manager-metas

Chapter 2. New Features

This section lists new general CUDA and CUDA compilers features.

2.1. General CUDA

» The default Linux driver installation changes in this release, preferring NVIDIA GPU Open Kernel
Modules to proprietary drivers. The open source drivers are now the default and recommended
installation option.

Important: The GPU Open Kernel Modules drivers are only compatible with Turing and newer
GPUs. If your GPU is from an older family (Maxwell, Pascal, or Volta) you must continue to use the
proprietary drivers.

For additional information, refer to this blog post: https://developer.nvidia.com/blog/
nvidia-transitions-fully-towards-open-source-gpu-kernel-modules/.

And, for full details, the CUDA Installation Guide for Linux: https://docs.nvidia.com/cuda/
cuda-installation-guide-linux/index.html

» New nvidia-open meta-packages are available to improve driver installation of NVIDIA Open
GPU kernel modules. [4752203]

2.2. CUDA Compiler

» For changes to PTX, refer to https://docs.nvidia.com/cuda/parallel-thread-execution/
#ptx-isa-version-8-5.

» Latest host compiler Clang-18 support.

» Support for Stack Canaries in device code. CUDA compilers can now insert stack canaries in
device code. The NVCC flag --device-stack-protector=true enables this feature. Stack
canaries make it more difficult to exploit certain types of memory safety bugs involving stack-
local variables. The compiler uses heuristics to assess the risk of such a bug in each function.
Only those functions which are deemed high-risk make use of a stack canary.

» Added a new compiler option -forward-slash-prefix-opts (Windows only).

If this flag is specified, and forwarding unknown options to host toolchain is
enabled (-forward-unknown-opts or -forward-unknown-to-host-linker or
-forward-unknown-to-host-compiler), then a command line argument beginning with
‘I’ is forwarded to the host toolchain. For example:

https://developer.nvidia.com/blog/nvidia-transitions-fully-towards-open-source-gpu-kernel-modules/
https://developer.nvidia.com/blog/nvidia-transitions-fully-towards-open-source-gpu-kernel-modules/
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html
https://docs.nvidia.com/cuda/parallel-thread-execution/#ptx-isa-version-8-5
https://docs.nvidia.com/cuda/parallel-thread-execution/#ptx-isa-version-8-5

Release Notes, Release 12.6

nvcc -forward-slash-prefix-opts -forward-unknown-opts /T foo.cu

will forward the flag /T to the host compiler and linker. When this flag is not specified, a com-
mand line argument beginning with / is treated as an input file. For example, nvcc /T foo.cu
will treat /T as an input file, and the Windows API function GetFullPathName () is used to de-
termine the full path name.

Note: This flag is only supported on Windows.
For more details, refer to nvcc-help.

An environment variable NVCC_CCBIN is introduced for NVCC: Users can set NVCC_CCBIN to
specify the host compiler, but it has lower priority than command-line option -ccbin. If
NVCC_CCBIN and -ccbin are both set, NVCC uses the host compiler specified by -ccbin.

For changes to nvprof and Visual Profiler, see the

For new features, improvements, and bug fixes in Nsight Systems, see the

For new features, improvements, and bug fixes in Nsight Visual Studio Edition, see the
For new features, improvements, and bug fixes in CUPTI, see the

For new features, improvements, and bug fixes in Nsight Compute, see the

For new features, improvements, and bug fixes in Compute Sanitizer, see the

For new features, improvements, and bug fixes in CUDA-GDB, see the

10

Chapter 2. New Features

https://docs.nvidia.com/cuda/profiler-users-guide/index.html#changelog
https://docs.nvidia.com/nsight-systems/ReleaseNotes/index.html
https://docs.nvidia.com/nsight-visual-studio-edition/release-notes/index.html
https://docs.nvidia.com/cupti//release-notes/release-notes.html
https://docs.nvidia.com/nsight-compute/ReleaseNotes/index.html#whats-new
https://docs.nvidia.com/compute-sanitizer/ReleaseNotes/index.html
https://docs.nvidia.com/cuda/cuda-gdb/index.html#release-notes

Chapter 3. Resolved Issues

3.1. CUDA Compiler

» Added NVCC_CCBIN environment variable to allow system admins to globally specify the host
compiler.

If NVCC_CCBIN is set by a system admin and -ccbin is set by a user, nvcc will choose the host
compiler specified by -ccbin. If NVCC_CCBIN is set and -ccbin is not set, nvcc will choose
the host compiler specified by NVCC_CCBIN. If neither of them are set, nvcc will use the default
compiler.

For more details, refer to nvcc-help.

11

Release Notes, Release 12.6

12 Chapter 3. Resolved Issues

Chapter 4. Known Issues and
Limitations

There is a possibility of a hang happening when invoking a CUDA Dynamic Parallelism (CDP) tail
launch from within a graph launch. [4718251]

To upgrade using the cuda metapackage: [4752050]

On Ubuntu 20.04, first switch to open kernel modules:

$ sudo apt-get install -V nvidia-kernel-source-open
$ sudo apt-get install nvidia-open

On dnf-based distros, module streams must be disabled:

$ echo "module_hotfixes=1" | tee -a /etc/yum.repos.d/cuda*.repo
$ sudo dnf install --allowerasing nvidia-open
$ sudo dnf module reset nvidia-driver

On Azure Linux, to load NVIDIA kernel modules, the kernel_lockdown boot parameter must be
disabled by removing lockdown=integrity from the GRUB bootloader entry. [4721469]

When installing Arm SBSA drivers on SLES 15.6, for installation to complete correctly the system
must be rebooted immediately. This will allow modprobe to set permissions for /dev/nvidia*
device nodes correctly. [4775942]

If this is not done, and nvidia-smi is run as root, device nodes may be created with incorrect
permissions. If this happens, it can be fixed with:

$ sudo chown -R :video /dev/nvidia*

Users may experience build failures with the error LNK2001: unresolved external sym-
bol guard_check_icallfo when usingthe recently released Windows SDK 10.0.26100 (May
2024). This issue affects projects(including CUDA samples) built with Visual Studio 2019 and
toolset v142. And users can fix this issue by below workarounds before Microsoft provides an
official solution.

Workarounds:
Use Visual Studio 2022 with toolset v143;

Select previous Windows SDK version when building with Visual Studio 2019 and toolset
vi42.

13

Release Notes, Release 12.6

14 Chapter 4. Known Issues and Limitations

Chapter 5. Deprecated or Dropped
Features

Features deprecated in the current release of the CUDA software still work in the current release,
but their documentation may have been removed, and they will become officially unsupported in a
future release. We recommend that developers employ alternative solutions to these features in their
software.

5.1. Deprecated or Dropped Operating Systems

» Support for Microsoft Windows 10 21H2 is dropped in 12.6.
» Support for Microsoft Windows 10 21H2 (SV1) is deprecated.
» Support for Debian 11.9 is deprecated.

5.2. Deprecated Toolchains

CUDA Toolkit 12.6 deprecated support for the following host compilers:
» Microsoft Visual C/C++ (MSVC) 2017
» All GCC versions prior to GCC 7.3

5.3. CUDA Tools

» Support for the macOS host client of CUDA-GDB is deprecated. It will be dropped in an upcoming
release.

15

Release Notes, Release 12.6

16 Chapter 5. Deprecated or Dropped Features

Chapter 6. CUDA Libraries

This section covers CUDA Libraries release notes for 12.x releases.

CUDA Math Libraries toolchain uses C++11 features, and a C++11-compatible standard library
(libstdc++ >= 20150422) is required on the host.

Known Issues

cublasLtMatmul could ignore the user specified Bias or
Aux data types (CUBLASLT_MATMUL _DESC_BIAS_DATA_TYPE and
CUBLASLT_MATMUL _DESC_EPILOGUE_AUX_DATA_TYPE) for FP8 matmul operations if
these data types do not match the documented limitations in

. [4750343]

Setting CUDA_MODULE_LOADING to EAGER could lead to longer library load times on Hopper
GPUs due to JIT compilation of PTX kernels. This can be mitigated by setting this environ-
ment variable to LAZY. [4720601]

cublasLtMatmul with INT8 inputs, INT32 accumulation, INT8 outputs, and FP32 scaling
factors may produce accuracy issues when a splitk reduction is used. To workaround
this issue, you can use cublasLtMatmulAlgoConfigSetAttribute to set the reduction
scheme to none and set the splitk value to 1. [4751576]

Known Issues

Computing matrix multiplication and an epilogue with INT8 inputs, INT8 outputs, and FP32
scaling factors can have numerical errors in cases when a second kernel is used to compute
the epilogue. This happens because the first GEMM kernel converts the intermediate result
from FP32 into INT8 and stores it for the subsequent epilogue kernel to use. If a value is
outside of the range of INT8 before the epilogue and the epilogue would bring it into the
range of INT8, there will be numerical errors. This issue has existed since before CUDA 12
and there is no known workaround. [CUB-6831]

17

https://docs.nvidia.com/cuda/cublas/#cublasltmatmuldescattributes-t
https://docs.nvidia.com/cuda/cublas/#cublasltmatmuldescattributes-t

Release Notes, Release 12.6

cublasLtMatmul could ignore the user specified Bias or
Aux data types (CUBLASLT_MATMUL _DESC_BIAS_DATA_TYPE and
CUBLASLT_MATMUL _DESC_EPILOGUE_AUX_DATA_TYPE) for FP8 matmul operations if
these data types do not match the documented limitations in

. [4750343]

Resolved Issues

cublasLtMatmul produced incorrect results when data types of matrices A and B were
different FP8 (for example, A is CUDA_R_8F_E4M3 and B is CUDA_R_8F_E5M2) and matrix D
layout was CUBLASLT_ORDER_ROW. [4640468]

cublasLt may return not supported on Hopper GPUs in some cases when A, B, and C are of
type CUDA_R_8I and the compute type is CUBLAS_COMPUTE_321I.[4381102]

CuBLAS could produce floating point exceptions when running GEMM with K equal to O.
[4614629]

New Features

Performance improvement to matrix multiplication targeting large language models, specif-
ically for small batch sizes on Hopper GPUs.

Known Issues

The bias epilogue (without ReLU or GeLU) may be not supported on Hopper GPUs for strided
batch cases. A workaround is to implement batching manually. This will be fixed in a future
release.

cublasGemmGroupedBatchedEx and cublas<t>gemmGroupedBatched have large CPU
overheads. This will be addressed in an upcoming release.

Resolved Issues

Under rare circumstances, executing SYMM/HEMM concurrently with GEMM on Hopper
GPUs might have caused race conditions in the host code, which could lead to an lIllegal
Memory Access CUDA error. [4403010]

cublasLtMatmul could produce an lllegal Instruction CUDA error on Pascal GPUs under the
following conditions: batch is greater than 1, and beta is not equal to O, and the computa-
tions are out-of-place (C I= D). [4566993]

New Features

CUBLAS adds an experimental API to support mixed precision grouped batched GEMMs. This
enables grouped batched GEMMs with FP16 or BF 16 inputs/outputs with the FP32 compute
type. Refer to for more details.

Known Issues

cublasLtMatmul ignores inputs to CUBLASLT_MATMUL_DESC_D_SCALE_POINTER and
CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_SCALE_POINTER if the elements of the respec-
tive matrix are not of FP8 types.

18 Chapter 6. CUDA Libraries

https://docs.nvidia.com/cuda/cublas/#cublasltmatmuldescattributes-t
https://docs.nvidia.com/cuda/cublas/#cublasltmatmuldescattributes-t
https://docs.nvidia.com/cuda/cublas/index.html#cublasgemmgroupedbatchedex

Release Notes, Release 12.6

Resolved Issues

cublasLtMatmul ignored the mismatch between the provided scale type and the implied
by the documentation, assuming the latter. For instance, an unsupported configuration of
cublasLtMatmul with the scale type being FP32 and all other types being FP16 would run
with the implicit assumption that the scale type is FP16 and produce incorrect results.

cuBLAS SYMV failed for large n dimension: 131072 and above for ssymv, 92673 and above
for csymv and dsymyv, and 65536 and above for zsymv.

Known Issues

Setting a cuBLAS handle stream to cudaStreamPerThread and setting the workspace via
cublasSetWorkspace will cause any subsequent cublasSetWorkspace calls to fail. This
will be fixed in an upcoming release.

cublasLtMatmul ignores mismatches between the provided scale type and the scale type
implied by the documentation and assumes the latter. For example, an unsupported con-
figuration of cublasLtMatmul with the scale type being FP32 and all other types being
FP16 would run with the implicit assumption that the scale type is FP16 which can produce
incorrect results. This will be fixed in an upcoming release.

Resolved Issues

cublasLtMatmul ignored the CUBLASLT_MATMUL_DESC_AMAX_D_POINTER for unsup-
ported configurations instead of returning an error. In particular, computing absolute maxi-
mum of D is currently supported only for FP8 Matmul when the output data type is also FP8
(CUDA_R_8F_E4M3 or CUDA_R_8F_E5M2).

Reduced host-side overheads for some of the cuBLASLt APIs: cublasLtMatmul(),
cublasLtMatmulAlgoCheck(), and cublasLtMatmulAlgoGetHeuristic(). The issue
was introduced in CUDA Toolkit 12.4.

cublasLtMatmul() and cublasLtMatmulAlgoGetHeuristic() could have resulted in
floating point exceptions (FPE) on some Hopper-based GPUs, including Multi-Instance GPU
(MIG). The issue was introduced in cuBLAS 11.8.

New Features

CcUBLAS adds experimental APIs to support grouped batched GEMM for single
precision and double precision. Single precision also supports the math mode,
CUBLAS_TF32_TENSOR_OP_MATH. Grouped batch mode allows you to concurrently solve
GEMMs of different dimensions (m, n, k), leading dimensions (Ida, Idb, Idc), transpositions
(transa, transb), and scaling factors (alpha, beta). Please see for
more details.

Known Issues

When the current context has been created using cuGreenCtxCreate (), cuBLAS does not
properly detect the number of SMs available. The user may provide the corrected SM count
to cuBLAS using an API such as cublasSetSmCountTarget().

6.1. cuBLAS Library 19

https://docs.nvidia.com/cuda/cublas/index.html#cublas-t-gemmgroupedbatched

Release Notes, Release 12.6

BLAS level 2 and 3 functions might not treat alpha in a BLAS compliant manner when alpha
is zero and the pointer mode is set to CUBLAS_POINTER_MODE_DEVICE. This is the same
known issue documented in cuBLAS 12.3 Update 1.

cublasLtMatmul with K equals 1 and epilogue CUBLASLT_EPILOGUE_D{RELU,
GELU} _BGRAD could out-of-bound access the workspace. The issue exists since cuBLAS
11.3 Update 1.

cublasLtMatmul with K equals 1 and epilogue CUBLASLT_EPILOGUE_D{RELU,GELU}
could produce illegal memory access if no workspace is provided. The issue exists since
cuBLAS 11.6.

When captured in CUDA Graph stream capture, cuBLAS routines can create

through the use of stream-ordered allocation APIs, cudaMallocAsync and cud-
aFreeAsync. However, as there is currently no support for memory nodes in
or graphs launched , attempts to capture cuBLAS routines in such scenarios
may fail. To avoid this issue, use the function to provide user-owned
workspace memory.

New Features

Improved performance of heuristics cache for workloads that have a high eviction rate.

Known Issues

BLAS level 2 and 3 functions might not treat alpha in a BLAS compliant manner when al-
pha is zero and the pointer mode is set to CUBLAS_POINTER_MODE_DEVICE. The expected
behavior is that the corresponding computations would be skipped. You may encounter
the following issues: (1) HER{,2,X,K,2K} may zero the imaginary part on the diagonal ele-
ments of the output matrix; and (2) HER{,2,X,K,2K}, SYR{,2,X,K,2K} and others may produce
NaN resulting from performing computation on matrices A and B which would otherwise be
skipped. If strict compliance with BLAS is required, the user may manually check for alpha
value before invoking the functions or switch to CUBLAS_POINTER_MODE_HOST.

Resolved Issues

cuBLASLt matmul operations might have computed the output incorrectly under the fol-
lowing conditions: the data type of matrices A and B is FP8, the data type of matrices C
and D is FP32, FP16, or BF 16, the beta value is 1.0, the C and D matrices are the same, the
epilogue contains GELU activation function.

When an application compiled with cuBLASLt from CUDA Toolkit 12.2 update 1 or earlier
runs with cuBLASLt from CUDA Toolkit 12.2 update 2 or CUDA Toolkit 12.3, matrix multi-
ply descriptors initialized using cublasLtMatmulDescInit() sometimes did not respect
attribute changes using cublasLtMatmulDescSetAttribute().

Fixed creation of cuBLAS or cuBLASLt handles on Hopper GPUs under the Multi-Process
Service (MPS).

cublasLtMatmul with K equals 1 and epilogue CUBLASLT_EPILOGUE_BGRAD{A, B} might
have returned incorrect results for the bias gradient.

20

Chapter 6. CUDA Libraries

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#graph-memory-nodes
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#graph-memory-nodes
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#node-types
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#device-graph-launch
https://docs.nvidia.com/cuda/cublas/index.html#cublassetworkspace

Release Notes, Release 12.6

New Features
Improved performance on NVIDIA L40S Ada GPUs.
Known Issues

cuBLASLt matmul operations may compute the output incorrectly under the following con-
ditions: the data type of matrices A and B is FP8, the data type of matrices C and D is FP32,
FP16, or BF 16, the beta valueis 1.0, the C and D matrices are the same, the epilogue contains
GELU activation function.

When an application compiled with cuBLASLt from CUDA Toolkit 12.2 update 1 or earlier
runs with cuBLASLt from CUDA Toolkit 12.2 update 2 or later, matrix multiply descriptors
initialized using cublasLtMatmulDescInit() may not respect attribute changes using
cublasLtMatmulDescSetAttribute(). To workaround this issue, create the matrix mul-
tiply descriptor using cublasLtMatmulDescCreate() instead of cublasLtMatmulDe-
scInit(). This will be fixed in an upcoming release.

New Features

cuBLASLt will now attempt to decompose problems that cannot be run by a single gemm
kernel. It does this by partitioning the problem into smaller chunks and executing the gemm
kernel multiple times. This improves functional coverage for very large m, n, or batch size
cases and makes the transition from the cuBLAS API to the cuBLASLt APl more reliable.

Known Issues

cuBLASLt matmul operations may compute the output incorrectly under the following con-
ditions: the data type of matrices A and B is FP8, the data type of matrices C and D is FP32,
FP16, or BF 16, the beta valueis 1.0, the C and D matrices are the same, the epilogue contains
GELU activation function.

Known Issues

CUBLAS initialization fails on Hopper architecture GPUs when MPS is in use with
CUDA_MPS_ACTIVE_THREAD_PERCENTAGE set to a value less than 100%. There is currently
no workaround for this issue.

Some Hopper kernels produce incorrect results for batched matmuls with
CUBLASLT_EPILOGUE_RELU_BIAS or CUBLASLT_EPILOGUE_GELU_BIAS and a non-
zero CUBLASLT_MATMUL_DESC_BIAS_BATCH_STRIDE. The kernels apply the first batch’s
bias vector to all batches. This will be fixed in a future release.

6.1. cuBLAS Library 21

Release Notes, Release 12.6

New Features

Support for FP8 on NVIDIA Ada GPUs.
Improved performance on NVIDIA L4 Ada GPUs.

Introduced an APl that instructs the cuBLASLt library to not use some CPU instructions. This
is useful in some rare cases where certain CPU instructions used by cuBLASLt heuristics
negatively impact CPU performance. Refer to

Known Issues

When creating a matrix layout using the cublasLtMatrixLayoutCreate() function, the
object pointed at by cublasLtMatrixLayout_t is smaller than cublasLtMatrixlLay-
outOpaque_t (but enough to hold the internal structure). As a result, the object should
not be dereferenced or copied explicitly, as this might lead to out of bound accesses.
If one needs to serialize the layout or copy it, it is recommended to manually allo-
cate an object of size sizeof(cublasLtMatrixLayoutOpaque_t) bytes, and initial-
ize it using cublasLtMatrixLayoutInit() function. The same applies to cublaslLt-
MatmulDesc_t and cublasLtMatrixTransformDesc_t. The issue will be fixed in
future releases by ensuring that cublasLtMatrixLayoutCreate() allocates at least
sizeof(cublasLtMatrixLayoutOpaque_t) bytes.

New Features

Improved performance on NVIDIA H100 SXM and NVIDIA H100 PCle GPUs.

Known Issues

For optimal performance on NVIDIA Hopper architecture, cuBLAS needs to allocate a big-
ger internal workspace (64 MiB) than on the previous architectures (8 MiB). In the current
and previous releases, cuBLAS allocates 256 MiB. This will be addressed in a future release.
A possible workaround is to set the CUBLAS_WORKSPACE _CONFIG environment variable to
:32768:2 when running cuBLAS on NVIDIA Hopper architecture.

Resolved Issues

Reduced cuBLAS host-side overheads caused by not using the cublasLt heuristics cache.
This began in the CUDA Toolkit 12.0 release.

Added forward compatible single precision complex GEMM that does not require workspace.

22

Chapter 6. CUDA Libraries

https://docs.nvidia.com/cuda/cublas/index.html#disabling-cpu-instructions
https://docs.nvidia.com/cuda/cublas/index.html#disabling-cpu-instructions

Release Notes, Release 12.6

New Features
cublasLtMatmul now supports FP8 with a non-zero beta.
Added int64 APIs to enable larger problem sizes; refer to
Added more Hopper-specific kernels for cublasLtMatmul with epilogues:
CUBLASLT_EPILOGUE_BGRAD{A,B}
CUBLASLT_EPILOGUE_{RELU, GELU}_AUX
CUBLASLT_EPILOGUE_D{RELU, GELU}

Improved Hopper performance on arm64-sbsa by adding Hopper kernels that were previ-
ously supported only on the x86_64 architecture for Windows and Linux.

Known Issues

There are no forward compatible kernels for single precision complex gemms that do not
require workspace. Support will be added in a later release.

Resolved Issues

Fixed an issue on NVIDIA Ampere architecture and newer GPUs where cublasLtMatmul
with epilogue CUBLASLT_EPILOGUE_BGRAD{A, B} and a nontrivial reduction scheme (that
is, not CUBLASLT_REDUCTION_SCHEME_NONE) could returnincorrect results for the bias gra-
dient.

cublasLtMatmul for gemv-like cases (that is, m or n equals 1) might ignore bias with the
CUBLASLT_EPILOGUE_RELU_BIAS and CUBLASLT_EPILOGUE_BIAS epilogues.

Deprecations
Disallow including cublas.h and cublas_v2.h in the same translation unit.
Removed:

CUBLAS_MATMUL_STAGES_16x80 and CUBLAS_MATMUL_STAGES_64x88 from
cublasLtMatmulStages_t. No kernels utilize these stages anymore.

cublaslLt3mMode_t, CUBLASLT_MATMUL _PREF_MATH_MODE _MASK, and
CUBLASLT_MATMUL _PREF_GAUSSIAN_MODE_MASK from cublasLtMatmulPref-
erenceAttributes_t. Instead, use the corresponding flags from cublasLtNumeri-
calImplFlags_t.

CUBLASLT_MATMUL_PREF_POINTER_MODE_MASK, CUBLASLT _MATMUL_PREF_EPILOGUE_MASK,
and CUBLASLT_MATMUL_PREF_SM_COUNT_TARGET from cublasLtMatmulPref-
erenceAttributes_t. The corresponding parameters are taken directly from
cublasLtMatmulDesc_t.

CUBLASLT_POINTER_MODE_MASK_NO_FILTERING from cublasLtPointerMode-
Mask_t. This mask was only applicable to CUBLASLT_MATMUL _PREF _MATH_MODE _MASK
which was removed.

6.1. cuBLAS Library 23

https://docs.nvidia.com/cuda/cublas/index.html#int64-interface

Release Notes, Release 12.6

6.2. cuFFT Library

6.2.1. cuFFT: Release 12.6

» Known Issues

» FFT of size 1 with istride/ostride > 1 is currently not supported for FP16. There is a
known memory issue for this use case in CTK 12.1 or before. ACUFFT_INVALID_SIZE error
is thrown in CTK 12.2 or after. [4662222]

6.2.2. cUFFT: Release 12.5

» New Features

» Added Just-In-Time Link-Time Optimized (JIT LTO) kernels for improved performance in R2C
and C2R FFTs for many sizes.

» We recommend testing your R2C / C2R use cases with and without JIT LTO kernels and
comparing the resulting performance. You can enable JIT LTO kernels using the per-plan
properties cuFFT API.

6.2.3. cuFFT: Release 12.4 Update 1

» Resolved Issues

» A routine from the cuFFT LTO EA library was added by mistake to the cuFFT Advanced API
header (cufftXt.h)in CUDA 12.4. This routine has now been removed from the header.

6.2.4. cUFFT: Release 12.4

» New Features

» Added Just-In-Time Link-Time Optimized (JIT LTO) kernels forimproved performance in FFTs
with 64-bit indexing.

» Added per-plan properties to the cuFFT APIL. These new routines can be leveraged to give
users more control over the behavior of cuFFT. Currently they can be used to enable JIT LTO
kernels for 64-bit FFTs.

» Improved accuracy for certain single-precision (fp32) FFT cases, especially involving FFTs for
larger sizes.

» Known Issues

» A routine from the cuFFT LTO EA library was added by mistake to the cuFFT Advanced API
header (cufftXt.h). This routine is not supported by cuFFT, and will be removed from the
header in a future release.

» Resolved Issues

24 Chapter 6. CUDA Libraries

https://docs.nvidia.com/cuda/cufft/index.html#cufft-link-time-optimized-kernels
https://docs.nvidia.com/cuda/cufft/index.html#cufft-link-time-optimized-kernels
https://docs.nvidia.com/cuda/cufft/index.html#cufft-plan-properties
https://docs.nvidia.com/cuda/cufft/index.html#cufft-plan-properties
https://docs.nvidia.com/cuda/cufft/ltoea/api/index.html#associating-lto-callbacks-with-cufft-plan
https://docs.nvidia.com/cuda/cufft/index.html#cufft-link-time-optimized-kernels
https://docs.nvidia.com/cuda/cufft/index.html#cufft-plan-properties

Release Notes, Release 12.6

Fixed an issue that could cause overwriting of user data when performing out-of-place real-
to-complex (R2C) transforms with user-specified output strides (i.e. using the ostride
component of the).

Fixed inconsistent behavior between 1ibcufftwand when both inembed and onem-
bedare nullptr / NULL.From now on,asin FFTW, passing nullptr / NULL as inembed/
onembed parameter is equivalent to passing n, that is, the logical size for that dimension.

Known Issues

Executing a real-to-complex (R2C) or complex-to-real (C2R) plan in a context different to
the one used to create the plan could cause undefined behavior. This issue will be fixed in
an upcoming release of cuFFT.

Resolved Issues

Complex-to-complex (C2C) execution functions (cuf ftExec and similar) now properly error-
out in case of error during kernel launch, for example due to a missing CUDA context.

New Features
Callback kernels are more relaxed in terms of resource usage, and will use fewer registers.

Improved accuracy for double precision prime and composite FFT sizes with factors larger
than 127.

Slightly improved planning times for some FFT sizes.

New Features

cufftSetStream can be used in multi-GPU plans with a stream from any GPU context,
instead of from the primary context of the first GPU listed in cufftXtSetGPUs.

Improved performance of 1000+ of FFTs of sizes ranging from 62 to 16380. The improved
performance spans hundreds of single precision and double precision cases for FFTs with
contiguous data layout, across multiple GPU architectures (from Maxwell to Hopper GPUs)
via PTX JIT.

Reduced the size of the static libraries when compared to cuFFT in the 12.1 release.
Resolved Issues

cuFFT no longer exhibits a race condition when threads simultaneously create and access
plans with more than 1023 plans alive.

cUFFT no longer exhibits a race condition when multiple threads call cuf ftXtSetGPUs con-
currently.

6.2. cuFFT Library 25

https://docs.nvidia.com/cuda/cufft/index.html#advanced-data-layout
https://cluster.earlham.edu/bccd-ng/testing/mobeen/GALAXSEEHPC/fftw-3.3/doc/html/Advanced-Complex-DFTs.html

Release Notes, Release 12.6

Known Issues

CcUFFT exhibits a race condition when one thread calls cufftCreate (or cufftDestroy) and
another thread calls any API (except cufftCreate or cufftDestroy), and when the total
number of plans alive exceeds 1023.

cUFFT exhibits a race condition when multiple threads call cufftXtSetGPUs concurrently
on different plans.

New Features

Improved performance on Hopper GPUs for hundreds of FFTs of sizes ranging from 14 to
28800. The improved performance spans over 542 cases across single and double precision
for FFTs with contiguous data layout.

Known Issues

Starting from CUDA 11.8, CUDA Graphs are no longer supported for callback routines that
load data in out-of-place mode transforms. An upcoming release will update the cuFFT
callback implementation, removing this limitation. cuFFT deprecated callback functional-
ity based on separate compiled device code in cuFFT 11.4.

Resolved Issues

cuFFT nolonger produces errors with compute-sanitizer at program exit if the CUDA context
used at plan creation was destroyed prior to program exit.

Resolved Issues

Scratch space requirements for multi-GPU, single-batch, 1D FFTs were reduced.

New Features

PTX JIT kernel compilation allowed the addition of many new accelerated cases for Maxwell,
Pascal, Volta and Turing architectures.

Known Issues

cUFFT plan generation time increases due to PTX JIT compiling. Refer to

Resolved Issues

CUFFT plans had an unintentional small memory overhead (of a few kB) per plan. This is
resolved.

26

Chapter 6. CUDA Libraries

http://docs.nvidia.com/cuda/cufft/index.html#plan-initialization-time
http://docs.nvidia.com/cuda/cufft/index.html#plan-initialization-time

Release Notes, Release 12.6

6.3. cuSOLVER Library

6.3.1. cuSOLVER: Release 12.6

» New Features

» Performance improvements of cusolverDnXgesvdp().

6.3.2. cuSOLVER: Release 12.5 Update 1

» Resolved Issues

» The potential out-of-bound accesses on bufferOnDevice by calls of cusolverDnXlarft
have been resolved.

6.3.3. cuSOLVER: Release 12.5

» New Features

» Performance improvements of cusolverDnXgesvd and cusolverDn<t>gesvdif jobu !=
"N' or jobvt != 'N'.

» Performance improvements of cusolverDnXgesvdp if jobz = CU-
SOLVER_EIG_MODE_NOVECTOR.

» Lower workspace requirement of cusolverbDnXgesvdp for tall-and-skinny-matrices.
» Known Issues

» With CUDA Toolkit 12.4 Update 1, values 1dt > k in calls of cusolverDnXlarft can
result in out-of-bound memory accesses on bufferOnDevice. As a workaround it is
possible to allocate a larger device workspace buffer of size workspaceInBytesOnDe-
vice=ALIGN_32((1ldt*k + n*k)*sizeofCudaDataType(dataTypeT)), with

auto ALIGN_32=[](int64_t val) {
return ((val + 31)/32)*32;

b
and

auto sizeofCudaDataType=[](cudaDataType dt) {
if (dt == CUDA_R_32F) return sizeof(float);
if (dt == CUDA_R_64F) return sizeof(double);
if (dt == CUDA_C_32F) return sizeof(cuComplex);
if (dt == CUDA_C_64F) return sizeof(cuDoubleComplex);

6.3. cuSOLVER Library 27

Release Notes, Release 12.6

New Features

The performance of cusolverDnXlarft has been improved. For large matrices, the
speedup might exceed 100x. The performance on H100 is now consistently better than
on A100. The change in cusolverDnXlarft also results in a modest speedup in cu-
solverDn<t>ormgr, cusolverDn<t>ormtr, and cusolverDnXsyevd.

The performance of cusolverDnXgesvd when singular vectors are sought has been im-
proved. The job configuration that computes both left and right singular vectors is up to
1.5x faster.

Resolved Issues
cusolverDnXtrtri_bufferSize now returns the correct workspace size in bytes.
Deprecations

Using long-deprecated cusolverDnPotrf, cusolverDnPotrs, cusolverDnGeqrf,
cusolverDnGetrf, cusolverDnGetrs, cusolverDnSyevd, cusolverDnSyevdx, cu-
solverDnGesvd, and their accompanying bufferSize functions will result in a deprecation
warning. The warning can be turned off by using the ~-DDISABLE_CUSOLVER_DEPRECATED
flag while compiling; however, users should use cusolverDnXpotrf, cusolverDnXpotrs,
cusolverDnXgeqrf, cusolverDnXgetrf, cusolverDnXgetrs, cusolverDnXsyevd,
cusolverDnXsyevdx, cusolverDnXgesvd, and the corresponding bufferSize functions
instead.

New Features

cusolverDnXlarft and cusolverDnXlarft_bufferSize APIs were introduced. cu-
solverDnXlarft forms the triangular factor of a real block reflector, while cusolverD-
nXlarft_bufferSize returns its required workspace sizes in bytes.

Known Issues

cusolverDnXtrtri_bufferSize = returns an incorrect required device workspace size. As a
workaround the returned size can be multiplied by the size of the data type (for example, 8
bytes if matrix A is of type double) to obtain the correct workspace size.

Resolved Issues

Fixed an issue with cusolverDn<t>gesvd(), cusolverDnGesvd(), and cusolverD-
nXgesvd(), which could cause wrong results for matrices larger than 18918 if jobu or
jobvt was unequal to ‘N’

28 Chapter 6. CUDA Libraries

Release Notes, Release 12.6

New Features

A new API to ensure deterministic results or allow non-deterministic results for im-
proved performance. See cusolverDnSetDeterministicMode() and cusolverD-
nGetDeterministicMode(). Affected functions are: cusolverDn<t>geqrf(),
cusolverDn<t>syevd(), cusolverDn<t>syevdx(), cusolverDn<t>gesvdj(), cu-
solverDnXgeqrf(), cusolverDnXsyevd(), cusolverDnXsyevdx(), cusolverD-
nXgesvdr (), and cusolverDnXgesvdp().

Known Issues

Concurrent executions of cusolverDn<t>getrf() or cusolverDnXgetrf() in different
non-blocking CUDA streams on the same device might result in a deadlock.

Known Issues

cusparseSpMV_preprocess() runs SpMV computation if it is called two or more times on
the same matrix. [CUSPARSE-1897]

cusparseSpMV_preprocess() will not run if cusparseSpMM_preprocess() was exe-
cuted on the same matrix, and vice versa. [CUSPARSE-1897]

The same external_buffer must be used for all cusparseSpMV calls. [CUSPARSE-1897]

New Features
Added support for BSR format in cusparseSpMM.
Resolved Issues

cusparseSpMM() would sometimes get incorrect results when alpha=0, num_batches>1,
batch_stride indicates that there is padding between batches.

cusparseSpMM_bufferSize() would return the wrong size when the sparse matrix is
Blocked Ellpack and the dense matrices have only a single column (n=1).

cusparseSpMM returned the wrong result when k=0 (for example when A has zero columns).
The correct behavior is doing C *= beta. The bug behavior was not modifying C at all.

cusparseCreateSlicedE1l would return an error when the slice size is greater than the
matrix number of rows.

Sliced-ELLPACK cusparseSpSV produced wrong results for diagonal matrices.

Sliced-ELLPACK cusparseSpSV_analysis() failed due to insufficient resources for some
matrices and some slice sizes.

6.4. cuSPARSE Library 29

Release Notes, Release 12.6

New Features

Added support for mixed input types in SpMV: single precision input matrix, double precision
input vector, double precision output vector.

Resolved Issues

cusparseSpMV () introduces invalid memory accesses when the output vector is not aligned
to 16 bytes.

New Features

Added the preprocessing step for sparse matrix-vector multiplication cuspars-
eSpMV_preprocess().

Added support for mixed real and complex types for cusparseSpMM().

Added a new API cusparseSpSM_updateMatrix() to update the sparse matrix between
the analysis and solving phase of cusparseSpSM().

Known Issues

cusparseSpMV () introduces invalid memory accesses when the output vector is not aligned
to 16 bytes.

Resolved Issues

cusparseSpVV() provided incorrect results when the sparse vector has many non-zeros.

New Features
Added support for block sizes of 64 and 128 in cusparseSDDMM().

Added a preprocessing step cusparseSDDMM_preprocess() for BSR cusparseSDDMM()
that helps improve performance of the main computing stage.

New Features

The cusparseSpSV_bufferSize() and cusparseSpSV_analysis() routines now accept
NULL pointers for the dense vector.

The cusparseSpSM_bufferSize() and cusparseSpSM_analysis() routines now accept
dense matrix descriptors with NULL pointer for values.

Known Issues

30 Chapter 6. CUDA Libraries

Release Notes, Release 12.6

The cusparseSpSV_analysis() and cusparseSpSM_analysis() routines are blocking
calls/not asynchronous.

Wrong results can occur for cusparseSpSV() using sliced ELLPACK format and trans-
pose/transpose conjugate operation on matrix A.

Resolved Issues
cusparseSpSV() provided indeterministic results in some cases.

Fixed an issue that caused cusparseSpSV_analysis() to hang sometimes in a multi-
thread environment.

Fixed an issue with cusparseSpSV() and cusparseSpSV () that sometimes yielded wrong
output when the output vector/matrix or input matrix contained NaN.

New Features

The library now provides the opportunity to dump sparse matrices to files during the cre-
ation of the descriptor for debugging purposes. See logging API

Resolved Issues

Removed CUSPARSE_SPMM_CSR_ALG3 fallback to avoid confusion in the algorithm selection
process.

Clarified the supported operations for cusparseSDDMM().
cusparseCreateConstSlicedE1ll() now uses const pointers.

Fixed wrong results in rare edge cases of cusparseCsr2CscEx2() with base 1 indexing.
cusparseSpSM_bufferSize() could ask slightly less memory than needed.

cusparseSpMV () now checks the validity of the buffer pointer only when it is strictly
needed.

Deprecations

Several legacy APIs have been officially deprecated. A compile-time warning has been added
to all of them.

New Features

Introduced Block Sparse Row (BSR) sparse matrix storage for the Generic APIs with support
for SDDMM routine (cusparseSDDMM).

Introduced Sliced Ellpack (SELL) sparse matrix storage format for the Generic APIs with
support for sparse matrix-vector multiplication (cusparseSpMV) and triangular solver with
a single right-hand side (cusparseSpSV).

Added a new API call (cusparseSpSV_updateMatrix) to update matrix values and/or the
matrix diagonal in the sparse triangular solver with a single right-hand side after the analysis
step.

6.4. cuSPARSE Library 31

https://docs.nvidia.com/cuda/cusparse/index.html#cusparse-logging-api
https://docs.nvidia.com/cuda/cusparse/index.html#cusparse-logging-api

Release Notes, Release 12.6

New Features

cusparseSDDMM() now supports mixed precision computation.

Improved cusparseSpMM() alg2 mixed-precision performance on some matrices on NVIDIA
Ampere architecture GPUs.

Improved cusparseSpMV () performance with a new load balancing algorithm.

cusparseSpSV() and cusparseSpSM() now support in-place computation, namely the
output and input vectors/matrices have the same memory address.

Resolved Issues

cusparseSpSM() could produce wrong results if the leading dimension (Id) of the RHS ma-
trix is greater than the number of columns/rows.

New Features

JIT LTO functionalities (cusparseSpMMOp ()) switched from driver to nvJitLto library. Start-
ing from CUDA 12.0 the user needs to link to 1ibnvJitlLto. so, see
. JIT LTO performance has also been improved for cusparseSpMMOpPlan().

Introduced const descriptors for the Generic APls, for example, cusparseConst-
SpVecGet(). Now the Generic APIs interface clearly declares when a descriptor and its
data are modified by the cuSPARSE functions.

Added two new algorithms to cusparseSpGEMM() with lower memory utilization. The first
algorithm computes a strict bound on the number of intermediate product, while the second
one allows partitioning the computation in chunks.

Added int8_t support to cusparseGather(), cusparseScatter(), and cuspar-
seCsr2cscEx2().

Improved cusparseSpSV () performance for both the analysis and the solving phases.
Improved cusparseSpSM() performance for both the analysis and the solving phases.
Improved cusparseSDDMM() performance and added support for batch computation.

Improved cusparseCsr2cscEx2() performance.

Resolved Issues

cusparseSpSV() and cusparseSpSM() could produce wrong results.

cusparseDnMatGetStridedBatch() did not accept batchStride ==

Deprecations

Removed deprecated CUDA 11.x APIs, enumerators, and descriptors.

32

Chapter 6. CUDA Libraries

https://docs.nvidia.com/cuda/cusparse/index.html
https://docs.nvidia.com/cuda/cusparse/index.html

Release Notes, Release 12.6

6.5. Math Library

6.5.1. CUDA Math: Release 12.6 Update 1

» Resolved Issues

» Issue 4731352 from release 12.6 is resolved.

6.5.2. CUDA Math: Release 12.6

» Known Issues

» As a result of ongoing compatibility testing NVIDIA identified that a number of CUDA Math
Integer SIMD APIs silently produced wrong results if used on the CPU in programs com-
piled with MSVC 17.10. The root cause is found to be the coding error in the header-based
implementation of the APIs exposed to the undefined behavior during narrowing integer
conversion when doing a host-based emulation of the GPU functionality. The issue will be
fixed in a future release of CUDA. Applications affected are those calling __vimax3_s16x2,
__vimin3_s16x2, __vibmax_s16x2, and __vibmin_s16x2 on the CPU and not in CUDA
kernels. [4731352]

6.5.3. CUDA Math: Release 12.5

» Known Issues

» As a result of ongoing testing we updated the interval bounds in which double precision
lgamma() function may experience greater than the documented 4 ulp accuracy loss. New
interval shall read (-23.0001; -2.2637). This finding is applicable to CUDA 12.5 and all previous
versions. [4662420]

6.5.4. CUDA Math: Release 12.4

» Resolved Issues

» Host-specific code in cuda_fp16/bf16 headers is now free from type-punning and shall
work correctly in the presence of optimizations based on strict-aliasing rules. [4311216]

6.5. Math Library 33

Release Notes, Release 12.6

New Features

Performance of SIMD Integer CUDA Math APIs was improved.

Resolved Issues

The __hisinf() Math APIs from cuda_fp16.h and cuda_bf16.h headers were silently
producing wrong results if compiled with the -std=c++20 compiler option because of an
underlying nvcc compiler issue, resolved in version 12.3.

Known Issues

Users of cuda_fp16.h and cuda_bf16.h headers are advised to disable host compilers
strict aliasing rules based optimizations (e.g. pass -fno-strict-aliasing to host GCC
compiler) as these may interfere with the type-punningidioms used inthe __half, __half2,
__nv_bfloat16, __nv_bfloat162 types implementations and expose the user program
to undefined behavior. Note, the headers suppress GCC diagnostics through: #pragma GCC
diagnostic ignored -Wstrict-aliasing. This behavior may improve in future versions of
the headers.

New Features

CUDA Math APIs for __half and __nv_bfloat16 types received usability improvements,
including host side <emulated> support for many of the arithmetic operations and conver-
sions.

__half and __nv_bfloat16 types have implicit conversions to/from integral types, which
are now available with host compilers by default. These may cause build issues due to am-
biguous overloads resolution. Users are advised to update their code to select proper over-
loads. To opt-out user may want to define the following macros (these macros will be re-
moved in the future CUDA release):

__CUDA_FP16_DISABLE_IMPLICIT_INTEGER_CONVERTS_FOR_HOST_COMPILERS__
__CUDA_BF16_DISABLE_IMPLICIT_INTEGER_CONVERTS_FOR_HOST_COMPILERS__

Resolved Issues

During ongoing testing, NVIDIA identified that due to an algorithm error the results of 64-bit
floating-point division in default round-to-nearest-even mode could produce spurious over-
flow to infinity. NVIDIA recommends that all developers requiring strict IEEE754 compliance
update to CUDA Toolkit 12.2 or newer. The affected algorithm was present in both offline
compilation as well as just-in-time (JIT) compilation. As JIT compilation is handled by the
driver, NVIDIA recommends updating to driver version greater than or equal to R535 (R536
on Windows) when IEEE754 compliance is required and when using JIT. This is a software
algorithm fix and is not tied to specific hardware.

Updated the observed worst case error bounds for single precision intrinsic functions
__expf(), __exp10f () and double precision functions asinh(), acosh().

34

Chapter 6. CUDA Libraries

Release Notes, Release 12.6

6.5.7. CUDA Math: Release 12.1

» New Features

» Performance and accuracy improvements in atanf, acosf, asinf, sinpif, cospif, powf,
erff,and tgammaf.

6.5.8. CUDA Math: Release 12.0

» New Features

» Introduced new integer/fp16/bf16 CUDA Math APIs to help expose performance benefits of
new DPX instructions. Refer to https://docs.nvidia.com/cuda/cuda-math-api/index.html.

» Known Issues

» Double precision inputs that cause the double precision division algorithm in the de-
fault ‘round to nearest even mode’ produce spurious overflow: an infinite result is deliv-
ered where DBL_MAX Ox7FEF_FFFF_FFFF_FFFF is expected. Affected CUDA Math APIs:
__ddiv_rn(). Affected CUDA language operation: double precision / operation in the de-
vice code.

» Deprecations

» All previously deprecated undocumented APIs are removed from CUDA 12.0.

6.6. NVIDIA Performance Primitives (NPP)

6.6.1. NPP: Release 12.4

» New Features

» Enhanced large file support with size_t.

6.6.2. NPP: Release 12.0

» Deprecations
» Deprecating non-CTX API support from next release.
» Resolved Issues

» A performance issue with the NPP ResizeSqrPixel API is now fixed and shows improved
performance.

6.6. NVIDIA Performance Primitives (NPP) 35

https://docs.nvidia.com/cuda/cuda-math-api/index.html

Release Notes, Release 12.6

6.7. nvJPEG Library

6.7.1. nvJPEG: Release 12.4

» New Features
» IDCT performance optimizations for single image CUDA decode.

» Zero Copy behavior has been changed: Setting NVJPEG_FLAGS_REDUCED_MEMORY_DECODE_ZERO_COPY
flag will no longer enable NVJPEG_FLAGS_REDUCED_MEMORY _DECODE.

6.7.2. nvJPEG: Release 12.3 Update 1

» New Features

» New APIs: nvjpegBufferPinnedResize and nvjpegBufferDeviceResize which can be
used to resize pinned and device buffers before using them.

6.7.3. nvJPEG: Release 12.2

» New Features
» Added support for JPEG Lossless decode (process 14, FO prediction).
» nvJPEG is now supported on L4T.

6.7.4. nvJPEG: Release 12.0

» New Features
» Immproved the GPU Memory optimisation for the nvJPEG codec.
» Resolved Issues

» An issue that causes runtime failures when nvJPEGDecMultipleInstances was tested
with a large number of threads is resolved.

» Anissue with CMYK four component color conversion is now resolved.
» Known Issues

» Backend NVJPEG_BACKEND_GPU_HYBRID - Unable to handle bistreams with extra scans
lengths.

» Deprecations

» The reuse of Huffman table in Encoder (nvjpegEncoderParamsCopyHuffmanTables).

36 Chapter 6. CUDA Libraries

Chapter 7. Notices

This document is provided for information purposes only and shall not be regarded as a warranty of a
certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no repre-
sentations or warranties, expressed or implied, as to the accuracy or completeness of the information
contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall
have no liability for the consequences or use of such information or for any infringement of patents
or other rights of third parties that may result from its use. This document is not a commitment to
develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any
other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that
such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the
time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by
authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA
product referenced in this document. No contractual obligations are formed either directly or indirectly
by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military,
aircraft, space, or life support equipment, nor in applications where failure or malfunction of the NVIDIA
product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or
applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for
any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA.
It is customer’s sole responsibility to evaluate and determine the applicability of any information con-
tained in this document, ensure the product is suitable and fit for the application planned by customer,
and perform the necessary testing for the application in order to avoid a default of the application or
the product. Weaknesses in customer’s product designs may affect the quality and reliability of the
NVIDIA product and may result in additional or different conditions and/or requirements beyond those
contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or prob-
lem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is
contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other
NVIDIA intellectual property right under this document. Information published by NVIDIA regarding
third-party products or services does not constitute a license from NVIDIA to use such products or

37

Release Notes, Release 12.6

services or a warranty or endorsement thereof. Use of such information may require a license from a
third party under the patents or other intellectual property rights of the third party, or a license from
NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA
in writing, reproduced without alteration and in full compliance with all applicable export laws and
regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE
BEING PROVIDED “AS 1S.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WAR-
RANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CON-
SEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARIS-
ING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES. Notwithstanding any damages that customer might incur for any reason whatso-
ever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein
shall be limited in accordance with the Terms of Sale for the product.

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the
U.S. and other countries. Other company and product names may be trademarks of the respective
companies with which they are associated.

©2007-2024, NVIDIA Corporation & affiliates. All rights reserved

38 Chapter 7. Notices

	CUDA Toolkit Major Component Versions
	New Features
	General CUDA
	CUDA Compiler
	CUDA Developer Tools

	Resolved Issues
	CUDA Compiler

	Known Issues and Limitations
	Deprecated or Dropped Features
	Deprecated or Dropped Operating Systems
	Deprecated Toolchains
	CUDA Tools

	CUDA Libraries
	cuBLAS Library
	cuBLAS: Release 12.6 Update 1
	cuBLAS: Release 12.6
	cuBLAS: Release 12.5 Update 1
	cuBLAS: Release 12.5
	cuBLAS: Release 12.4 Update 1
	cuBLAS: Release 12.4
	cuBLAS: Release 12.3 Update 1
	cuBLAS: Release 12.3
	cuBLAS: Release 12.2 Update 2
	cuBLAS: Release 12.2
	cuBLAS: Release 12.1 Update 1
	cuBLAS: Release 12.0 Update 1
	cuBLAS: Release 12.0

	cuFFT Library
	cuFFT: Release 12.6
	cuFFT: Release 12.5
	cuFFT: Release 12.4 Update 1
	cuFFT: Release 12.4
	cuFFT: Release 12.3 Update 1
	cuFFT: Release 12.3
	cuFFT: Release 12.2
	cuFFT: Release 12.1 Update 1
	cuFFT: Release 12.1
	cuFFT: Release 12.0 Update 1
	cuFFT: Release 12.0

	cuSOLVER Library
	cuSOLVER: Release 12.6
	cuSOLVER: Release 12.5 Update 1
	cuSOLVER: Release 12.5
	cuSOLVER: Release 12.4 Update 1
	cuSOLVER: Release 12.4
	cuSOLVER: Release 12.2 Update 2
	cuSOLVER: Release 12.2

	cuSPARSE Library
	cuSPARSE: Release 12.6
	cuSPARSE: Release 12.5 Update 1
	cuSPARSE: Release 12.5
	cuSPARSE: Release 12.4
	cuSPARSE: Release 12.3 Update 1
	cuSPARSE: Release 12.3
	cuSPARSE: Release 12.2 Update 1
	cuSPARSE: Release 12.1 Update 1
	cuSPARSE: Release 12.0 Update 1
	cuSPARSE: Release 12.0

	Math Library
	CUDA Math: Release 12.6 Update 1
	CUDA Math: Release 12.6
	CUDA Math: Release 12.5
	CUDA Math: Release 12.4
	CUDA Math: Release 12.3
	CUDA Math: Release 12.2
	CUDA Math: Release 12.1
	CUDA Math: Release 12.0

	NVIDIA Performance Primitives (NPP)
	NPP: Release 12.4
	NPP: Release 12.0

	nvJPEG Library
	nvJPEG: Release 12.4
	nvJPEG: Release 12.3 Update 1
	nvJPEG: Release 12.2
	nvJPEG: Release 12.0

	Notices
	Notice
	OpenCL
	Trademarks

