CUDA-GDB
Release 12.6

NVIDIA Corporation

Aug 27, 2024

Contents

1 What is CUDA-GDB?
2 Supported Features

About This Document

W

Release Notes

5 Getting Started
5.1 Setting Up the Debugger Environment
5.1.1 Temporary Directory
5.1.2 Using the CUDA-GDB debugger on Jetson and Drive Tegradevices
5.2 Compiling the Application
5.2.1 Debug Compilation
5.2.2 Compilation With Linenumber Information
523 Compiling For Specific GPU architectures
53 Using the Debugger
5.3.1 Single-GPU Debugging with the Desktop Manager Running
5.3.2 Multi-GPU Debugging
5.3.3 Remote Debugging
534 Multiple Debuggers
5.3.5 Attaching/Detaching

6 CUDA-GDB Extensions
6.1 Command Naming Convention
6.2 Getting Help
6.3 Initialization File e
6.4 GUI Integration
6.5 GPU coredump support e

7 Kernel Focus
7.1 Software Coordinates vs. Hardware Coordinates
7.2 Current Focus e
7.3 Switching Focus

8 Program Execution
8.1 Interrupting the Application
8.2 Single Stepping

9 Breakpoints and Watchpoints
9.1 Symbolic Breakpoints
9.2 Line Breakpoints.
9.3 Address Breakpoints L
94 Kernel Entry Breakpoints e

23
23
23
23
24
24
24
25
25
25
26
26
27
28

29
29
29
30
30
30

37
37
37
38

39
39
39

41
417
42
42
42

9.5
9.6

Conditional Breakpoints
Watchpoints

10 Inspecting Program State
10.1 Memory and Variables
10.2
10.3 Info CUDA Commands

10.3.1 info cuda devices
10.3.2 info cuda sms
10.3.3 info cuda warps
10.3.4
10.3.5
10.3.6
10.3.7
10.3.8
10.3.9
10.3.10
10.3.11
10.4
10.5
10.6

info cuda kernels
info cuda blocks
info cuda threads
info cuda launch trace
info cuda launch children
info cuda contexts
info cuda managed
Disassembly
Registers
Const banks

11 Event Notifications

11.1 Context Events
11.2
12 Automatic Error Checking
12.1 Checking APl Errors.
122 GPUError Reporting
123 Autostep
13 Walk-Through Examples
13.1 Example: bitreverse
13.1.1 Walking throughthe Code
13.2 Example:autostep
13.2.1 Debugging with Autosteps
13.3 Example: MPI CUDA Application
14 Tips and Tricks
14.1 setcudabreak_on_launch.
14.2 setcudalaunch_blocking
143 setcudanotify....................
144 setcudaptx_cache
145 set cuda single_stepping_optimizations
146 setcudathread_selection.
14.7 set cuda value_extrapolation
14.8 Debugging Docker Containers
149 Switching to Classic Debugger Backend
14.10 Thread Block Clusters
14.11 Debugging OptiX/RTCore applications
14.12 Debugging on Windows Subsystem for Linux

15 Supported Platforms

16 Common Issues on Supported Operating Systems

Variable Storage and Accessibility
infocudalanes

Kernel Events

45
45
45
46
47
47
48
48
49
49
50
51
51
51
52
52
53
53

55
55
55

57
57
57
60

63
63
64
66
68
69

71
71
71
72
72
73
73
73
74
74
74
74
74

75

77

17 Known Issues 79

18 Notices 81
18.1 NOtiCE e 81
18.2 0penCL e 82
18.3 Trademarks e 82

CUDA-GDB, Release 12.6

The user manual for CUDA-GDB, the NVIDIA tool for debugging CUDA applications on Linux and QNX
systems.

This document introduces CUDA-GDB, the NVIDIA® CUDA® debugger for Linux and QNX targets.

Contents 1

CUDA-GDB, Release 12.6

2 Contents

Chapter 1. What is CUDA-GDB?

CUDA-GDB is the NVIDIA tool for debugging CUDA applications running on Linux and QNX. CUDA-GDB
is an extension to GDB, the GNU Project debugger. The tool provides developers with a mechanism
for debugging CUDA applications running on actual hardware. This enables developers to debug ap-
plications without the potential variations introduced by simulation and emulation environments.

CUDA-GDB, Release 12.6

4 Chapter 1. What is CUDA-GDB?

Chapter 2. Supported Features

CUDA-GDB is designed to present the user with a seamless debugging environment that allows si-
multaneous debugging of both GPU and CPU code within the same application. Just as programming
in CUDA C is an extension to C programming, debugging with CUDA-GDB is a natural extension to
debugging with GDB. The existing GDB debugging features are inherently present for debugging the
host code, and additional features have been provided to support debugging CUDA device code.

CUDA-GDB supports debugging C/C++ and Fortran CUDA applications. Fortran debugging support is
limited to 64-bit Linux operating system.

CUDA-GDB allows the user to set breakpoints, to single-step CUDA applications, and also to inspect
and modify the memory and variables of any given thread running on the hardware.

CUDA-GDB supports debugging all CUDA applications, whether they use the CUDA driver API, the
CUDA runtime API, or both.

CUDA-GDB supports debugging kernels that have been compiled for specific CUDA architectures, such
as sm_75 or sm_80, but also supports debugging kernels compiled at runtime, referred to as just-in-
time compilation, or JIT compilation for short.

CUDA-GDB, Release 12.6

6 Chapter 2. Supported Features

Chapter 3. About This Document

This document is the main documentation for CUDA-GDB and is organized more as a user manual
than a reference manual. The rest of the document will describe how to install and use CUDA-GDB to
debug CUDA kernels and how to use the new CUDA commands that have been added to GDB. Some
walk-through examples are also provided. It is assumed that the user already knows the basic GDB
commands used to debug host applications.

CUDA-GDB, Release 12.6

8 Chapter 3. About This Document

Chapter 4. Release Notes

12.6 Release

Features

New set/show cuda step_divergent_lanes command to control automatic stepping
of divergent threads when the focused CUDA thread is no longer active. On by default to
match existing behavior.

Improved performance of opening GPU core files containing many cubins.
Allow users to ctrl-c and interrupt loading of GPU core files.
Emit warning when starting to step divergent threads and step_divergent_lanesison.

Emit thread switch notification when switching from CUDA thread back to host thread fo-
cus.

Fixed Issues

Fixed issue with CUDA thread selection when switching to nearest neighbor thread when
current thread focus goes out of scope.

Fixed issues with printing CUDA registers when debugging GPU core files.
Enhanced error handling when encountering cubins with corrupted extended line info.
Fixed errors when receiving out-of-order packets for QNX cuda-gdbserver.

12.5 Release

Updated GDB version

Moved from GDB 13.1 to 13.2. See

Support removal notice

Support for the macOS host client of CUDA-GDB has been removed.
Support for Android has been removed.
Support for Python 3.6 and 3.7 has been removed.

Features

Multi build feature that supports native Python and TUlI mode across all supported plat-
forms. The cuda-gdb program is now a wrapper script that calls the appropriate cuda-gdb

https://sourceware.org/git/gitweb.cgi?p=binutils-gdb.git;a=blob_plain;f=gdb/NEWS;hb=gdb-13.2-release

CUDA-GDB, Release 12.6

binary. If no supported Python or libncurses is detected, the wrapper will fallback to a cuda-
gdb binary with Python and TUI support disabled.

Added support for TUI mode.
Added support for Python 3.10, 3.11, and 3.12.

Added support for detecting and printing exceptions encountered in exited warps. This can
occur when debugging an application with optimizations enabled.

Added new gdb/mi command equivalents for info cuda managed and info cuda line.

Fixed Issues

Fixed issue with printing reference parameter arguments to CUDA functions.
Fixed issues resulting in crashes/errors when reading/writing from/to CUDA generic memory.

Fixed issue where break_on_launch breakpoints were missed for back to back launches of
the same kernel.

Fixed issue with incorrectly reporting breakpoint hit events as SIGTRAP when breakpoint is
hit in divergent thread.

Fixed crash on QNX when cuda-gdbserver packets arrive out-of-order.
Better error handling when encountering an error when reading CUDA disassembly.
Better exit handling when resuming execution from a fatal CUDA exception.

12.4 Release

Updated GDB version

Moved from GDB 12.1 to 13.1. See

Android deprecation notice

Support for Android is deprecated. It will be dropped in an upcoming release.

Python 3.6 and 3.7 deprecation notice

Support for end-of-life Python 3.6 and 3.7 versions is deprecated. It will be dropped in an
upcoming release.

Features

Performance enhancement which reduces the number of overall CUDA Debugger API calls.

Performance enhancement when loading large cubins with device functions using a large
number of GPU registers.

Performance enhancement when single stepping over warp wide barriers.
Added support for printing values contained within constant banks from GPU core dumps.

Fixed Issues

Prevented shell expansion on cloned function names when disassembling.

Fixed crash when setting a conditional breakpoint on an unknown symbol name.

10 Chapter 4. Release Notes

https://sourceware.org/git/gitweb.cgi?p=binutils-gdb.git;a=blob_plain;f=gdb/NEWS;hb=gdb-13.1-release

CUDA-GDB, Release 12.6

Fixed issue with setting a watchpoint on a global pointer.
Fixed assertion in switch_to_thread_1 during inferior teardown.
Fixed attach failures encountered with newer Intel processors.

Refactored the libpython layer to avoid unnecessary gdb code changes.

12.3 Release

macOS host client deprecation notice

Features

Support for the macOS host client of CUDA-GDB is deprecated. It will be dropped in an
upcoming release.

Added support for printing values contained within constant banks. New
S_cuda_const_bank(bank, offset) convenience function to obtain address of
offset in constant bank. See

Performance enhancements added which reduce overhead when running applications with
many CUDA threads.

Added support for CUDA function pointers.

Fixed Issues

Fixed issue when detaching from attached process that can result in a crash.
Fixed thread ordering issues present with several info cuda commands.

Added support for opening of GPU core dumps when no valid warps are present on the
device.

Added missing DWARF operators used by OptiX.
Fixed issue with parsing CUDA Fortran pointer types.

Fixed issue where CUDA Cluster coordinates were being displayed when no CUDA Cluster
was present.

12.2 Release

Features

Enabled printing of extended error messages when a CUDA Debugger API error is encoun-
tered.

Enabled support for debugging with Confidential Compute mode with devtools mode. See
Confidential Computing Deployment Guide <https.//docs.nvidia.com/confidential-computing-
deployment-guide.pdf> for more details on how to enable the mode.

Fixed Issues

Fixed “??” appearing in backtrace in OptiX applications.
Host shadow breakpoints are now handled correctly with CUDA Lazy Loading enabled.
Fixed name mangling issue when debugging LLVM generated cubins.

CUDA Cluster coordinates are now displayed correctly.

11

index.html#const-banks

CUDA-GDB, Release 12.6

Fixed issue with attaching to an application using CUDA Lazy Loading when debugging re-
motely with cuda-gdbserver.

12.1 Release

CUDA Driver API added for controlling core dump behavior

CTK 12.1 and the r530 driver adds new APIs that allow developers to enable/configure core
dump settings programmatically inside their application instead of using environment vari-
ables. See the manual for more information.

Features

Performance improvements for applications using CUDA Lazy Loading.
Added support for ELF cubins with a large number of sections (more than 32767).
Added break_on_launch support for CUDA Graphs.

Fixed Issues

Removed unsupported set/show gpu_busy_check command.
On QNX fixed an issue where info threads incorrectly reported dead host threads.
Performance fixes for stepping/next over inline function calls.
Performance fixes when using the info cuda managed command.
Fixed issue when using set follow-fork-mode child.
Fixed issue when parsing DWARF for self referential structures.
12.0 Release
Updated GDB version

Moved from GDB 10.2 to 12.1. See

Texture and surface reference support removed

CTK 12.0 removed support for the Texture and Surface Reference API. Support for printing
texture and surface references has been removed.

CUDA Memory Checker integration removed

cuda-memcheck has been deprecated in CUDA 11.x and replaced by Compute Sanitizer. The
new memory checking workflow is to use Compute Sanitizer from the CLI. This will support
coredumps when issues are detected which can then be opened and inspected with CUDA-
GDB, similar to other coredumps. Support for cuda-memcheck has been removed with the
CUDA 12.0 release.

Debugging of applications using CUDA Dynamic Parallelism

Support for debugging applications using CUDA Dynamic Parallelism with the classic debug-
ger backend or on Maxwell GPUs has been removed by default for applications compiled with
the CTK 12.0 or newer. Debugging can be accomplished in these situations by recompiling
the application while passing the -DCUDA_FORCE_CDP1_IF_SUPPORTED flag.

12 Chapter 4. Release Notes

https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__COREDUMP.html#group__CUDA__COREDUMP/
https://lists.gnu.org/archive/html/info-gnu/2022-05/msg00000.html

CUDA-GDB, Release 12.6

Features

Moved from base gdb/10.2 to gdb/12.1.
Added initial support for Thread Block Clusters.

Changed the default behavior of --cuda-use-lockfile to 8. Lockfiles are no longer cre-
ated by default.

Fixed Issues

Addressed a hang that could be encountered when stepping through device system calls.
Fixed an overflow issue with displaying active warp masks in info cuda commands.

Changed internal CUDA Dynamic Parallelsim detection breakpoint to be set only when
break_on_launch is enabled.

Removed unsupported gpu_busy_check setting.

11.8 Release

Features

Notes

Uses the new Unified Debugger (UD) debugging backend by default.
Added support for debugging applications using CUDA Lazy Loading.
Debugger is now enabled on Windows Subsystem for Linux (WSL).
Added basic type support for printing FP8 values (E4AM3 and E5M2).

By default, CUDA-GDB will use the new Unified Debugger (UD) backend. This change is trans-
parent to most users using Pascal or newer cards. For Maxwell debugging, or to force the old
classic debugging backend, set CUDBG_USE_LEGACY_DEBUGGER to 1 in your environment.

WSL is not supported on GH100 platforms with this release.

11.7 Release

Features

Major break_on_launch performance enhancements to use new KERNEL_READY notifica-
tion mechanism instead of setting manual breakpoints.

Refactored info cuda command output to be more condensed. Omitted printing of inactive
messages.

Added new --disable-python commandline option to disable Python interpreter dlopen.

Fixed Issues

Fixed follow-fork child to avoid hanging behavior when both parent and child processes use
CUDA.

Added a missing dlsym of a libpython function that was causing errors with some versions
of libpython.

11.6 Release

13

CUDA-GDB, Release 12.6

Updated GDB version

Moved from GDB 10.1 to 10.2. See

Features

Added errorpc instruction prefix to the disassembly view. If an error PC is set, prefix the
instruction with *>,

Fixed Issues

Fixed lineinfo frames to properly display the source filename.
Fixed writing to gpu global memory that was allocated from the host.
Fixed bug that was preventing reading host variables during certain situations.
Fixed cuda-gdbserver init check that prevented QNX from starting.
11.5 Release

Python 3 support on Jetson and Drive Tegra devices

Support for Python 2 has been removed. CUDA-GDB now supports Python 3 on Jetson and
Drive Tegra devices.

Fixed Issues

Added robust version checks when dynamic loading the libpython3 library. The loaded
libpython3 will match the version of the python3 runtime in PATH.

Added support for checking PEP-3149 flag names when loading libpython3 libraries.
Added support for dynamic loading of Python 3.9.
Fixed overriding PYTHONPATH on certain RHEL distributions.

11.4 Update 1 Release

Known Issues with Fedora 34

CUDA-GDB has known issues with debugging on Fedora 34 and may not be reliable.

Fixed Issues

Enabled python integration for ppc64le and aarch64 SBSA.

Fixed a performance regression when debugging CUDA apps.

Fixed an intermitent hang with remote debugging via cuda-gdbserver.

Fixed bug with set cuda api_failures stop not triggering breakpoints on failure.

Changed python behavior to dlopen libpython libraries that match the version of the
python3 interpreter in PATH.

OpenMP Fortran: Fixed a crash when setting breakpoints inside an OpenMP parallel region.
OpenMP: Better support for printing local variables within a parallel region.

Fortran: Added updated support for printing assumed shape arrays and array slices.

14 Chapter 4. Release Notes

https://lists.gnu.org/archive/html/info-gnu/2021-04/msg00006.html

CUDA-GDB, Release 12.6

Fixed selecting between host and device thread focus in cudacore debugging.
Various fixes for QNX remote debugging.

11.4 Release

Updated GDB version

Moved from GDB 8.3 to 10 (based on GDB 10.1).
Python 3 support

Support for Python 2 has been removed. CUDA-GDB now supports Python 3.
GDB TUI mode disabled

Support for GDB TUI mode has been disabled. This avoids cross platform dependency mis-
matches for OSes that lack ncurses-5.5 support.

Kepler deprecation notice

Support for Kepler devices (sm_35 and sm_37) is deprecated. Kepler support will be dropped
in an upcoming release.

Coredump support

Added support for writing coredumps to named pipe using CUDA_COREDUMP_FILE.

Fixed Issues

Added support for displaying SIGTRAP exception in coredumps.
Disabled ability to enable scheduler-locking when debugging CUDA targets.

Fixed cuda_register_name and cuda_special_register_name to avoid returning old cached
result on error.

Fixed intermitent race condition when creating the CUDA temporary directory.
Various fixes for QNX remote debugging.
11.3 Release

Python 2 deprecation notice

Support for Python 2 is being deprecated. CUDA-GDB will move to build with Python 3
support in an upcoming release.

Fixed Issues

Improvements to late attach for remote debugging.
11.2 Update 1 Release
GDB TUI deprecation notice

15

https://lists.gnu.org/archive/html/info-gnu/2020-10/msg00009.html

CUDA-GDB, Release 12.6

Support for GDB TUI mode is being deprecated. This will avoid cross platform dependency
mismatches for OSes that lack ncurses-5.5 support. GDB TUI mode will be disabled in an
upcoming release.

Fixed Issues

Fixed printing of strings in the global GPU memory while running CPU code.
Fixed a bug with extended debug_line handling.
Fixed truncation with builtin gdb variables such as gridDim.
Fixed a segfault during startup for DWARF dies missing names.
Fixed a segfault when a CUDA kernel calls assert.
Fixed a bug that prevented debugging cubins > 2GB.
Added minor usability enhancements for cubins compiled with --1ineinfo.
Fixed a segfault cause by a pretty printer when using CUDA-GDB within CLion.
11.1 Release
Updated GDB version

Moved from GDB 8.2 to 8.3 (based on gdb 8.3.1).
Support for SM 8.6

CUDA-GDB now supports Devices with Compute Capability 8.6.
Updated DWARF parser

Old binaries might need to be recompiled in order to ensure CUDA-specific DWARF info are
up to date.

Fixed Issues

Fixed an intermittent deadlock when attaching to a running CUDA process.
Fixed a bug when inspecting the value of half registers.

11.0 Release

Updated GDB version

CUDA-GDB has been upgraded from GDB/7.12 to GDB/8.2.
Support for SM8.0

CUDA-GDB now supports Devices with Compute Capability 8.0.
Support for Bfloat16

Support for Bfloat16 (__nv_bfloat16) types have been added.
MIG support

16 Chapter 4. Release Notes

https://lists.gnu.org/archive/html/info-gnu/2019-09/msg00006.html

CUDA-GDB, Release 12.6

CUDA-GDB supports MIG. There can be a separate debugger session on each MIG instance.
Refer to in case multiple debuggers are needed.

Mac support

Debugging on macOS is no longer supported. However, macOS can still be used as the
host system (where CUDA-GDB runs under macOS, using cuda-gdbserver to debug a remote
target). The download for the macOS version of CUDA-GDB can be found at the following
location:

10.1 Release

Enhanced debugging with only linenumber information

Several enhancements were made to CUDA-GDB support for debugging programs compiled
with -1lineinfo but not with -G. This is intended primarily for debugging programs built
with OptiX/RTCore. See also

10.0 Release
Turing Uniform Register Support

Support added for examining and modifying uniform registers on Turing GPUs.
9.2 Release

User induced core dump support

For the devices that support compute preemption, user induced core dump support is
added. New environment variable: CUDA_ENABLE_USER_TRIGGERED_COREDUMP can be
used to enable this feature.

9.1 Release

Volta-MPS core dump support

GPU core dump generation is supported on Volta-MPS.
Lightweight GPU core dump support

CUDA-GDB supports reading lightweight GPU core dump files. New environment variable:
CUDA_ENABLE_LIGHTWEIGHT_COREDUMP can be used to enable this feature.

7.0 Release

GPU core dump support

CUDA-GDB supports reading GPU and GPU+CPU core dump files.
New environment variables: CUDA_ENABLE_COREDUMP_ON_EXCEPTION,
CUDA_ENABLE_CPU_COREDUMP_ON_EXCEPTION and CUDA_COREDUMP_FILE can be used to
enable and configure this feature.

6.5 Release
CUDA Fortran Support

CUDA-GDB supports CUDA Fortran debugging on 64-bit Linux operating systems.

17

index.html#multiple-debuggers
https://developer.nvidia.com/nvidia-cuda-toolkit-developer-tools-mac-hosts
index.html#lineinfo-compilation

CUDA-GDB, Release 12.6

GDB 7.6.2 Code Base

The code base for CUDA-GDB was upgraded to GDB 7.6.2.
6.0 Release

Unified Memory Support

Managed variables can be read and written from either a host thread or a device thread. The
debugger also annotates memory addresses that reside in managed memory with @man-
aged. The list of statically allocated managed variables can be accessed through a new
info cuda managed command.

GDB 7.6 Code Base

The code base for CUDA-GDB was upgraded from GDB 7.2 to GDB 7.6.
Android Support

CUDA-GDB can now be used to debug Android native applications either locally or remotely.

Single-Stepping Optimizations

CUDA-GDB can now use optimized methods to single-step the program, which accelerate
single-stepping most of the time. This feature can be disabled by issuing set cuda sin-
gle_stepping_optimizations off.

Faster Remote Debugging

A lot of effort has gone into making remote debugging considerably faster, up to 2 orders
of magnitude. The effort also made local debugging faster.

Kernel Entry Breakpoints

The set cuda break_on_launch option will now break on kernels launched from the GPU.
Also, enabling this option does not affect kernel launch notifications.

Precise Error Attribution

On Maxwell architecture (SM 5.0), the instruction that triggers an exception will be reported
accurately. The application keeps making forward progress and the PC at which the debug-
ger stops may not match that address but an extra output message identifies the origin of
the exception.

Live Range Optimizations

To mitigate the issue of variables not being accessible at some code addresses, the debugger
offers two new options. With set cuda value_extrapolation, the latest known value is
displayed with (possibly) prefix. With set cuda ptx_cache, the latest known value of
the PTX register associated with a source variable is displayed with the (cached) prefix.

Event Notifications

Kernel event notifications are not displayed by default any more.

18 Chapter 4. Release Notes

CUDA-GDB, Release 12.6

New kernel events verbosity options have been added: set cuda kernel_events, set
cuda kernel_events_depth. Also set cuda defer_kernel_launch_notifications
has been deprecated and has no effect any more.

5.5 Release

Kernel Launch Trace

Two new commands, info cuda launch trace and info cuda launch children, are
introduced to display the kernel launch trace and the children kernel of a given kernel when
Dynamic Parallelism is used.

Single-GPU Debugging (BETA)

CUDA-GDB can now be used to debug a CUDA application on the same GPU that is rendering
the desktop GUI. This feature also enables debugging of long-running or indefinite CUDA
kernels that would otherwise encounter a launch timeout. In addition, multiple CUDA-GDB
sessions can debug CUDA applications context-switching on the same GPU. This feature is
available on Linux with SM3.5 devices. For information on enabling this, please see

and

Remote GPU Debugging

CUDA-GDB in conjunction with CUDA-GDBSERVER can now be used to debug a CUDA appli-
cation running on the remote host.

5.0 Release

Dynamic Parallelism Support

CUDA-GDB fully supports Dynamic Parallelism, a new feature introduced with the 5.0 toolkit.
The debugger is able to track the kernels launched from another kernel and to inspect and
modify variables like any other CPU-launched kernel.

Attach/Detach

It is now possible to attach to a CUDA application that is already running. It is also possi-
ble to detach from the application before letting it run to completion. When attached, all
the usual features of the debugger are available to the user, as if the application had been
launched from the debugger. This feature is also supported with applications using Dynamic
Parallelism.

Attach on exception

Using the environment variable CUDA_DEVICE_WAITS_ON_EXCEPTION, the application will
run normally until a device exception occurs. Then the application will wait for the debugger
to attach itself to it for further debugging.

API Error Reporting

Checking the error code of all the CUDA driver APl and CUDA runtime API function calls is
vital to ensure the correctness of a CUDA application. Now the debugger is able to report,
and even stop, when any API call returns an error. See set cuda api_failures for more
information.

19

index.html#single-gpu-debugging-with-the-desktop-manager-running
index.html#single-gpu-debugging-with-the-desktop-manager-running
index.html#multiple-debuggers

CUDA-GDB, Release 12.6

Inlined Subroutine Support

Inlined subroutines are now accessible from the debugger on SM 2.0 and above. The user
can inspect the local variables of those subroutines and visit the call frame stack as if the
routines were not inlined.

4.2 Release

Kepler Support

The primary change in Release 4.2 of CUDA-GDB is the addition of support for the new Kepler
architecture. There are no other user-visible changes in this release.

4.1 Release
Source Base Upgraded to GDB 7.2

Until now, CUDA-GDB was based on GDB 6.6 on Linux, and GDB 6.3.5 on Darwin (the Apple
branch). Now, both versions of CUDA-GDB are using the same 7.2 source base.

Now CUDA-GDB supports newer versions of GCC (tested up to GCC 4.5), has better support
for DWARF3 debug information, and better C++ debugging support.

Simultaneous Sessions Support

With the 4.1 release, the single CUDA-GDB process restriction is lifted. Now, multiple CUDA-
GDB sessions are allowed to co-exist as long as the GPUs are not shared between the appli-
cations being processed. For instance, one CUDA-GDB process can debug process foo using
GPU 0 while another CUDA-GDB process debugs process bar using GPU 1. The exclusive of
GPUs can be enforced with the CUDA_VISIBLE_DEVICES environment variable.

New Autostep Command

A new ‘autostep’ command was added. The command increases the precision of CUDA ex-
ceptions by automatically single-stepping through portions of code.

Under normal execution, the thread and instruction where an exception occurred may be
imprecisely reported. However, the exact instruction that generates the exception can be
determined if the program is being single-stepped when the exception occurs.

Manually single-stepping through a program is a slow and tedious process. Therefore ‘au-
tostep’ aides the user by allowing them to specify sections of code where they suspect
an exception could occur. These sections are automatically single-stepped through when
the program is running, and any exception that occurs within these sections is precisely
reported.

Type ‘help autostep’ from CUDA-GDB for the syntax and usage of the command.
Multiple Context Support

On GPUs with compute capability of SM20 or higher, debugging multiple contexts on the
same GPU is now supported. It was a known limitation until now.

Device Assertions Support

20 Chapter 4. Release Notes

CUDA-GDB, Release 12.6

The R285 driver released with the 4.1 version of the toolkit supports device assertions.
CUDA_GDB supports the assertion call and stops the execution of the application when the
assertion is hit. Then the variables and memory can be inspected as usual. The application
can also be resumed past the assertion if needed. Use the ‘set cuda hide_internal_frames’
option to expose/hide the system call frames (hidden by default).

Temporary Directory

By default, the debugger API will use /tmp as the directory to store temporary files. To select

adifferent directory, the $TMPDIR environment variable and the API CUDBG_APICLIENT_PID
variable must be set.

21

CUDA-GDB, Release 12.6

22 Chapter 4. Release Notes

Chapter 5. Getting Started

The CUDA toolkit can be installed by following instructions in the Quick Start Guide.

Further steps should be taken to set up the debugger environment, build the application, and run the
debugger.

5.1. Setting Up the Debugger Environment

5.1.1. Temporary Directory

By default, CUDA-GDB uses /tmp as the directory to store temporary files. To select a different direc-
tory, set the STMPDIR environment variable.

Note: The user must have write and execute permission to the temporary directory used by CUDA-
GDB. Otherwise, the debugger will fail with an internal error.

Note: The value of STMPDIR must be the same in the environment of the application and CUDA-GDB.
If they do not match, CUDA-GDB will fail to attach onto the application process.

Note: Since /tmp folder does not exist on Android device, the STMPDIR environment variable must
be set and point to a user-writeable folder before launching cuda-gdb.

5.1.2. Using the CUDA-GDB debugger on Jetson and Drive
Tegra devices

By default, on Jetson and Drive Tegra devices, GPU debugging is supported only if cuda-gdb and
cuda-gdbserver are launched by a user who is a member of the debug group.

To add the current user to the debug group run this command:

sudo usermod -a -G debug SUSER

23

https://docs.nvidia.com/cuda/cuda-quick-start-guide/

CUDA-GDB, Release 12.6

NVCC, the NVIDIA CUDA compiler driver, provides a mechanism for generating the debugging infor-
mation necessary for CUDA-GDB to work properly. The -g -G option pair must be passed to NVCC
when an application is compiled for ease of debugging with CUDA-GDB; for example,

nvcc -g -G foo.cu -o foo

Using this line to compile the CUDA application foo.cu

forces -00 compilation, with the exception of very limited dead-code eliminations and register-
spilling optimizations.

makes the compiler include debug information in the executable

To compile your CUDA Fortran code with debgging information necessary for CUDA-GDB to work prop-
erly, pgfortran, the PGl CUDA Fortran compiler, must be invoked with -g option. Also, for the ease of
debugging and forward compatibility with the future GPU architectures, it is recommended to compile
the code with -Mcuda=nordc option; for example,

pgfortran -g -Mcuda=nordc foo.cuf -o foo

For more information about the available compilation flags, please consult the PGl compiler documen-
tation.

Several enhancements were made to cuda-gdb’s support for debugging programs compiled with
-lineinfo but not with -G. Thisis intended primarily for debugging programs built with OptiX/RTCore.

Note that -1ineinfo can be used when trying to debug optimized code. In this case, debugger step-
ping and breakpoint behavior may appear somewhat erratic.

The PC may jump forward and backward unexpectedly while stepping.

The user may step into code that has no linenumber information, leading to an inability to deter-
mine which source-file/linenumber the code at the PC belongs to.

Breakpoints may break on a different line than they were originally set on.
When debugging OptiX/RTCore code, the following should be kept in mind:
NVIDIA internal code cannot be debugged or examined by the user.

OptiX/RTCode debugging is limited to -1ineinfo, and building this code with full debug info-
mation (-G) is not supported.

OptiX/RTCode code is highly optimized, and as such the notes above about debugging optimized
code apply.

24 Chapter 5. Getting Started

CUDA-GDB, Release 12.6

5.2.3. Compiling For Specific GPU architectures

By default, the compiler will only generate code for the compute_52 PTX and sm_52 cubins. For later
GPUs, the kernels are recompiled at runtime from the PTX for the architecture of the target GPU(s).
Compiling for a specific virtual architecture guarantees that the application will work for any GPU
architecture after that, for a trade-off in performance. This is done for forward-compatibility.

It is highly recommended to compile the application once and for all for the GPU architectures tar-
geted by the application, and to generate the PTX code for the latest virtual architecture for forward
compatibility.

A GPU architecture is defined by its compute capability. The list of GPUs and their respective com-
pute capability, see https://developer.nvidia.com/cuda-gpus. The same application can be compiled
for multiple GPU architectures. Use the -gencode compilation option to dictate which GPU architec-
ture to compile for. The option can be specified multiple times.

For instance, to compile an application for a GPU with compute capability 7.0, add the following flag
to the compilation command:

-gencode arch=compute_70,code=sm_70

To compile PTX code for any future architecture past the compute capability 7.0, add the following
flag to the compilation command:

-gencode arch=compute_70, code=compute_70

For additional information, please consult the compiler documentation at https://docs.nvidia.com/
cuda/cuda-compiler-driver-nvcc/index.html#extended-notation

5.3. Using the Debugger

CUDA-GDB can be used in the following system configurations:

5.3.1. Single-GPU Debugging with the Desktop Manager
Running

For devices with compute capability 6.0 and higher CUDA-GDB can be used to debug CUDA applica-
tions on the same GPU that is running the desktop GUI.

Additionally for devices with compute capability less than 6.0 software preemption can be used to
debug CUDA applications on the same GPU that is running the desktop GUI. There are two ways to
enable this functionality:

Note: This is a BETA feature available on Linux and is only supported on Maxwell. The options listed
below are ignored for GPUs with SM6.0 compute capability and higher.

» Use the following command:

5.3. Using the Debugger 25

https://developer.nvidia.com/cuda-gpus
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#extended-notation
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#extended-notation

CUDA-GDB, Release 12.6

set cuda software_preemption on

Export the following environment variable:

CUDA_DEBUGGER_SOFTWARE _PREEMPTION=1

Either of the options above will activate software preemption. These options must be set prior to
running the application. When the GPU hits a breakpoint or any other event that would normally cause
the GPU to freeze, CUDA-GDB releases the GPU for use by the desktop or other applications. This
enables CUDA-GDB to debug a CUDA application on the same GPU that is running the desktop GUI,
and also enables debugging of multiple CUDA applications context-switching on the same GPU.

Multi-GPU debugging designates the scenario where the application is running on more than one
CUDA-capable device. Multi-GPU debugging is not much different than single-GPU debugging except
for a few additional CUDA-GDB commands that let you switch between the GPUs.

Any GPU hitting a breakpoint will pause all the GPUs running CUDA on that system. Once paused, you
canuse info cuda kernels to view all the active kernels and the GPUs they are running on. When
any GPU is resumed, all the GPUs are resumed.

Note: If the CUDA_VISIBLE_DEVICES environment is used, only the specified devices are suspended
and resumed.

All CUDA-capable GPUs may run one or more kernels. To switch to an active kernel, use cuda kernel
<n>, where nis the ID of the kernel retrieved from info cuda kernels.

Note: The same kernel can be loaded and used by different contexts and devices at the same time.
When a breakpoint is set in such a kernel, by either name or file name and line number, it will be resolved
arbitrarily to only one instance of that kernel. With the runtime API, the exact instance to which the
breakpoint will be resolved cannot be controlled. With the driver API, the user can control the instance
to which the breakpoint will be resolved to by setting the breakpoint right after its module is loaded.

There are multiple methods to remote debug an application with CUDA-GDB. In addition to using SSH
or VNC from the host system to connect to the target system, it is also possible to use the target
remote GDB feature. Using this option, the local cuda-gdb (client) connects to the cuda-gdbserver
process (the server) running on the target system. This option is supported with a Linux client and a
Linux or QNX server.

Setting remote debugging that way is a 2-step process:
Launch the cuda-gdbserver on the remote host

cuda-gdbserver can be launched on the remote host in different operation modes.

26 Chapter 5. Getting Started

CUDA-GDB, Release 12.6

Option 1: Launch a new application in debug mode.

To launch a new application in debug mode, invoke cuda-gdb server as follows:

$ cuda-gdbserver :1234 app_invocation

Where 1234 is the TCP port number that cuda-gdbserver will listen to for incoming connec-
tions from cuda-gdb, and app-invocation is the invocation command to launch the applica-
tion, arguments included.

Option 2: Attach cuda-gdbserver to the running process

To attach cuda-gdbserver to an already running process, the --attach option followed by pro-
cess identification number (PID) must be used:

$ cuda-gdbserver :1234 --attach 5678
Where 1234 is the TCP port number and 5678 is process identifier of the application cuda-
gdbserver must be attached to.
Attaching to an already running process is not supported on QNX platforms.
Launch cuda-gdb on the client

Configure cuda-gdb to connect to the remote target using either:

(cuda-gdb) target remote

or

(cuda-gdb) target extended-remote

Itisrecommended touse set sysroot command if libraries installed on the debug target might differ
from the ones installed on the debug host. For example, cuda-gdb could be configured to connect to
remote target as follows:

(cuda-gdb) set sysroot remote://
(cuda-gdb) target remote 192.168.0.2:1234

Where 192.168.0.2 is the IP address or domain name of the remote target, and 1234 is the TCP port
previously previously opened by cuda-gdbserver.

For devices with compute capability 6.0 and higher several debugging sessions may take place simul-
taneously.

For devices with compute capability less than 6.0, several debugging sessions may take place simul-
taneously as long as the CUDA devices are used exclusively. For instance, one instance of CUDA-GDB
can debug a first application that uses the first GPU while another instance of CUDA-GDB debugs a
second application that uses the second GPU. The exclusive use of a GPU is achieved by specifying
which GPU is visible to the application by using the CUDA_VISIBLE_DEVICES environment variable.

$ CUDA_VISIBLE_DEVICES=1 cuda-gdb my_app

Additionally for devices with compute capability less than 6.0, with software preemption enabled (set
cuda software_preemption on), multiple CUDA-GDB instances can be used to debug CUDA appli-
cations context-switching on the same GPU.

5.3. Using the Debugger 27

CUDA-GDB, Release 12.6

CUDA-GDB can attach to and detach from a CUDA application running on GPUs with compute capa-
bility 2.0 and beyond, using GDB’s built-in commands for attaching to or detaching from a process.

Additionally, if the environment variable CUDA_DEVICE_WAITS_ON_EXCEPTION is set to 1 prior to run-
ning the CUDA application, the application will run normally until a device exception occurs. The ap-
plication will then wait for CUDA-GDB to attach itself to it for further debugging. This feature is not
supported on WSL.

Note: By default on some Linux distributions, the debugger cannot attach to an already running
processes due to security settings. In order to enable the attach feature of the CUDA debugger, either
cuda-gdb should be launched as root, or /proc/sys/kernel/yama/ptrace_scope should be set to
zero, using the following command:

$ sudo sh -c "echo @ >/proc/sys/kernel/yama/ptrace_scope"

To make the change permanent, edit /etc/sysctl.d/10-ptrace.conf.

28 Chapter 5. Getting Started

Chapter 6. CUDA-GDB Extensions

The existing GDB commands are unchanged. Every new CUDA command or option is prefixed with
the CUDA keyword. As much as possible, CUDA-GDB command names will be similar to the equivalent
GDB commands used for debugging host code. For instance, the GDB command to display the host
threads and switch to host thread 1 are, respectively:

(cuda-gdb) info threads
(cuda-gdb) thread 1
To display the CUDA threads and switch to cuda thread 1, the user only has to type:

(cuda-gdb) info cuda threads
(cuda-gdb) cuda thread 1

As with GDB commands, the built-in help for the CUDA commands is accessible from the cuda-gdb
command line by using the help command:

(cuda-gdb) help cuda name_of_the_cuda_command
(cuda-gdb) help set cuda name_of_the_cuda_option
(cuda-gdb) help info cuda name_of_the_info_cuda_command

Moreover, all the CUDA commands can be auto-completed by pressing the TAB key, as with any other
GDB command.

CUDA commands can also be queried using the apropos command.

29

CUDA-GDB, Release 12.6

The initialization file for CUDA-GDB is named .cuda-gdbinit and follows the same rules as the stan-
dard .gdbinit file used by GDB. The initialization file may contain any CUDA- GDB command. Those
commands will be processed in order when CUDA-GDB is launched.

Emacs

CUDA-GDB works with GUD in Emacs and XEmacs. No extra step is required other than pointing to
the right binary.

To use CUDA-GDB, the gud-gdb-command-name variable must be set to cuda-gdb annotate=3. Use
M-x customize-variable to set the variable.

Ensure that cuda-gdb is present in the Emacs/XEmacs SPATH.
DDD
CUDA-GDB works with DDD. To use DDD with CUDA-GDB, launch DDD with the following command:

ddd --debugger cuda-gdb

cuda-gdb must be in your SPATH.

There are two ways to configure the core dump options for CUDA applications. Environment variables
set in the application environment or programmatically from the application with the

Compilation for GPU core dump generation

GPU core dumps will be generated regardless of compilation flags used to generate the GPU applica-
tion. For the best debugging experience, it is recommended to compile the application with the -g -G
or the -1lineinfo option with NVCC. See for more information on passing
compilation flags for debugging.

Enabling GPU core dump generation on exception with environment variables

Set the CUDA_ENABLE_COREDUMP_ON_EXCEPTION environment variable to 1 in order to enable gen-
erating a GPU core dump when a GPU exception is encountered. This option is disabled by default.

Set the CUDA_ENABLE_CPU_COREDUMP_ON_EXCEPTION environment variable to 0 in order to disable
generating a CPU core dump when a GPU exception is encountered. This option is enabled by default
when GPU core dump generation is enabled.

Set the CUDA_ENABLE_LIGHTWEIGHT_COREDUMP environment variable to 1 in order to enable gener-
ating lightweight corefiles instead of full corefiles. When enabled, GPU core dumps will not contain
the memory dumps (local, shared, global) of the application. This option is disabled by default.

Controlling behavior of GPU core dump generation

30 Chapter 6. CUDA-GDB Extensions

https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__COREDUMP.html#group__CUDA__COREDUMP/
index.html#compiling-the-application

CUDA-GDB, Release 12.6

The CUDA_COREDUMP_GENERATION_FLAGS environment variable can be used when generating GPU
core dumps to deviate from default generation behavior. Multiple flags can be provided to this envi-
ronment variable and are delimited by , . These flags can be used to accomplish tasks such as reducing
the size of the generated GPU core dump or other desired behaviors that deviate from the defaults.
The table below lists each flag and the behavior when present.

Table 1: GPU core dump CUDA_COREDUMP_GENERATION_FLAGS

Environment Variable flag Description

skip_nonrelocated_elf_images Disables including copies of nonrelocated elf im-
ages in the GPU core dump. Only the relocated
images will be present.

skip_global_memory Disables dumping of GPU global and constbank
memory segments.

skip_shared_memory Disables dumping of GPU shared memory seg-
ments.

skip_local_memory Disables dumping of GPU local memory seg-
ments.

skip_abort Disables calling abort() at the end of the GPU

core dump generation process.

Note: Setting the CUDA_ENABLE_LIGHTWEIGHT_COREDUMP environment variable to 1 is
equivalent to CUDA_COREDUMP_GENERATION_FLAGS="skip_nonrelocated_elf_images,
skip_global_memory, skip_shared_memory, skip_local_memory".

Note: Setting the CUDA_ENABLE_CPU_COREDUMP_ON_EXCEPTION environment variable to @ is equiv-
alent to CUDA_COREDUMP_GENERATION_FLAGS="skip_abort".

Limitations and notes for core dump generation
The following limitations apply to core dump support:

For Windows WDDM, GPU core dump is only supported on a GPU with compute capability 6.0 or
higher. Windows TCC supports GPU core dump on all supported compute capabilities.

GPU core dump is unsupported for the Windows Subsystem for Linux on GPUs running in SLI
mode. Multi-GPU setups are supported, but SLI mode cannot be enabled in the Driver Control
Panel.

GPU core dump is supported for the Windows Subsystem for Linux only when the
is enabled.

Generating a CPU core dump with CUDA_ENABLE_CPU_COREDUMP_ON_EXCEPTION is currently
unsupported on the QNX platform.

GPU core dump is unsupported for the NVIDIA CMP product line.

Per-context core dump can only be enabled on a GPU with compute capability 6.0 or higher. GPUs
with compute capability less than 6.0 will return CUDA_ERROR_NOT_SUPPORTED when using the
Coredump Attributes Control APL.

6.5. GPU core dump support 31

https://devblogs.microsoft.com/directx/hardware-accelerated-gpu-scheduling/
https://devblogs.microsoft.com/directx/hardware-accelerated-gpu-scheduling/

CUDA-GDB, Release 12.6

» If an MPS client triggers a core dump, every other client running on the same MPS server will fault.
The indirectly faulting clients will also generate a core dump if they have core dump generation
enabled.

» GPU core dump is unsupported when other developer tools, including CUDA-GDB, are in-
teracting with the application. Unless explicitly documented as a supported use case (e.g
generate-cuda-core-file command).

» When generating a coredump on exception, if the kernel exits before the exception has been
recognized it may result in failure to generate the corefile. See the note in GPU Error Reporting
for strategies on how to work around this issue.

Note: The user should not send the application process a signal and ensure that the application
process does not automatically terminate while the coredump generation is in process. Doing so may
cause GPU coredump generation to abort.

Note: Starting from CUDA 11.6, the compute-sanitizer tool can generate a GPU core dump when an
error is detected by using the --generate-coredump yes option. Once the core dump is generated,
the target application will abort. See the compute-sanitizer documentation for more information:
https://docs.nvidia.com/compute-sanitizer/ComputeSanitizer/index.html#coredump

Note: CPU core dumps will be located in a distribution specific location. Examining the /proc/sys/
kernel/core_pattern file will typically hint at the name/location of the CPU core dump.

Note: NVIDIA vGPU platforms must explicitly enable debugging support to perform GPU core dump
generation. Please reference the Virtual GPU Software User Guide for information on how to enable
debugging on vGPU.

Note: NVIDIA Jetson and Drive Tegra devices must explicitly enable debugging support to perform
GPU core dump generation. Refer to the Using the CUDA-GDB debugger on Jetson and Drive Tegra
devices section.

Note: When generating core dumps on NVIDIA Drive Tegra devices running QNX, core
dump generation may hang when generating CPU core dumps. If a hang is encountered, set
CUDA_ENABLE_CPU_COREDUMP_EXCEPTION to O.

Note: If core dumps are not generated when running programs built with OptiX/RTCore, try setting
the environment variable OPTIX_FORCE_DEPRECATED_LAUNCHER to 1. Refer to the Debugging Op-
tiX/RTCore applications section.

Note: If core dumps are not generated when running programs on Windows Subsystem for Linux, en-
sure the debug interface is enabled via setting the registry key >HKEY _LOCAL_MACHINE\SOFTWARE\
NVIDIA Corporation\GPUDebugger\EnableInterface to (DWORD) 1. Refer tothe Debugging on

32 Chapter 6. CUDA-GDB Extensions

index.html#gpu-error-reporting
https://docs.nvidia.com/compute-sanitizer/ComputeSanitizer/index.html#coredump
https://docs.nvidia.com/grid/latest/grid-vgpu-user-guide/index.html#enabling-cuda-toolkit-development-tools-vgpu/

CUDA-GDB, Release 12.6

section.

Note: GPU core dump is supported on GPUs running with Confidential Compute mode only with
devtools mode. See Confidential Computing Deployment Guide <https://docs.nvidia.com/confidential-
computing-deployment-guide.pdf> for more details on how to enable the mode.

Naming of GPU core dump files

By default, a GPU core dump is created in the current working directory. It is named
core_TIME_HOSTNAME_PID.nvcudmp where TIME is the number of seconds since the Epoch, HOST-
NAME is the host name of the machine running the CUDA application and PID is the process identifier
of the CUDA application.

The CUDA_COREDUMP_FILE environment variable can be used to define a template that is used to
change the name of a GPU core dump file. The template can either be an absolute path or a relative
path to the current working directory. The template can contain % specifiers which are substituted by
the following patterns when a GPU core dump is created:

Speci- Description

fier

%h Host name of the machine running the CUDA application

%p Process identifier of the CUDA application

%t Time as the number of seconds since the Epoch, 1970-01-061 00:00:00 +0000 (UTC)

As an example, setting CUDA_COREDUMP_FILE to:

export CUDA_COREDUMP_FILE=newName.%h.%p

Would result in GPU core dumps being written to newName .myhost . 1234 relative to the current work-
ing directory. Here myhost and 1234 are replaced with the real host name and pid respectively.

Setting CUDA_COREDUMP_FILE to:

export CUDA_COREDUMP_FILE="/home/SUSER/newName.%h.%p"

Would result in GPU core dumps being written to the user’'s home directory with the same name logic
as in the above example.

If CUDA_COREDUMP_FILE points to an existing file of FIFO type (e.g named pipe), the core dump will
be streamed to it.

Coredumps may be piped to shell commands via CUDA_COREDUMP_FILE with the following format:

export CUDA_COREDUMP_FILE='| cmd > file'

For example, to pipe a coredump to gzip use:

export CUDA_COREDUMP_FILE='| gzip -9 > cuda-coredump.gz'

Note: When piping a coredump, the % specifiers will not be recognized.

Enabling user induced GPU core dump generation

6.5. GPU core dump support 33

CUDA-GDB, Release 12.6

For the devices that support compute preemption, the user can interrupt a running CUDA process to
generate the GPU core dump.

Set the CUDA_ENABLE_USER_TRIGGERED_COREDUMP environment variable to 1 in order to enable gen-
erating a user induced GPU core dump. This option is disabled by default. Setting this environment
variable will open a communication pipe for each subsequently running CUDA process. To induce the
GPU core dump, the user simply writes to the pipe.

To change the default pipe file name, set the CUDA_COREDUMP_PIPE environment variable to a spe-
cific pipe name. The default pipe name is in the following format: corepipe.cuda.HOSTNAME.PID
where HOSTNAME is the host name of machine running the CUDA application and PID is the process
identifier of the CUDA application. This environment variable can take % specifiers as decribed in the
above section.

Displaying core dump generation progress

By default, when an application crashes and generates a GPU core dump, the application may appear
to be unresponsive or frozen until fully generated.

Set the CUDA_COREDUMP_SHOW_PROGRESS environment variable to 1 in order to print core dump gen-
eration progress messages to stderr. This can be used to determine how far along the coredump
generation is:

coredump: SM 1/14 has finished state collection
coredump: SM 2/14 has finished state collection
coredump: SM 3/14 has finished state collection
coredump: SM 4/14 has finished state collection
coredump: SM 5/14 has finished state collection
coredump: SM 6/14 has finished state collection
coredump: SM 7/14 has finished state collection
coredump: SM 8/14 has finished state collection
coredump: SM 9/14 has finished state collection
coredump: SM 10/14 has finished state collection
coredump: SM 11/14 has finished state collection
coredump: SM 12/14 has finished state collection
coredump: SM 13/14 has finished state collection
coredump: SM 14/14 has finished state collection
coredump: Device 1/1 has finished state collection
coredump: Calculating ELF file layout

coredump: ELF file layout calculated

coredump: Writing ELF file to core_TIME_HOSTNAME_PID.nvcudmp
coredump: Writing out global memory (1073741824 bytes)
coredump: 5%. ..

coredump: 10%. ..

coredump: 15%...

coredump: 20%. ..

coredump: 25%...

coredump: 30%...

coredump: 35%...

coredump: 40%. ..

coredump: 45%...

coredump: 50%. ..

coredump: 55%...

coredump: 60%. ..

coredump: 65%. ..

coredump: 70%. ..

coredump: 75%...

coredump: 80%. ..

coredump: 85%...

(continues on next page)

34 Chapter 6. CUDA-GDB Extensions

CUDA-GDB, Release 12.6

(continued from previous page)
coredump: 90%. ..
coredump: 95%. ..
coredump: 100%. ..
coredump: Writing out device table
coredump: Finalizing
coredump: All done

Enabling GPU core dump generation with the CUDA Driver API

The Driver API has equivalent settings for all of the environment variables, with the added feature
of being able to set different core dump settings per-context instead of globally. This API can be
called directly inside your application. Use cuCoredumpGetAttributeGlobal and cuCoredumpSe-
tAttributeGlobal to fetch or set the global attribute. Use cuCoredumpGetAttribute and cu-
CoredumpSetAttribute to fetch or set the per context attribute. See the

manual for more information.

The table below lists the environment variables and the equivalent CUcoredumpSettings flags that
are available to manage core dump settings with the Coredump Attributes Control API.

Note: The CU_COREDUMP_ENABLE_USER_TRIGGER setting can only be set globally in the driver API
and CU_COREDUMP_PIPE must be set (if desired) before user-triggered core dumps are enabled.

Table 2: GPU core dump configuration parameters

Environment Variable Description
Environment Variable: Enables GPU core dump generation for excep-
CUDA_ENABLE_COREDUMP_ON_EXCEPTION tions. Disabled by default.

CUcoredumpSettings Flag:
CU_COREDUMP_ENABLE_ON_EXCEPTION

Environment Variable: Triggers host (CPU) core dump after GPU core
CUDA_ENABLE_CPU_COREDUMP_ON_EXCEPTION | dump is complete. Enabled by default.
CUcoredumpSettings Flag:
CU_COREDUMP_TRIGGER_HOST

Environment Variable: When enabled, GPU core dumps will not contain
CUDA_ENABLE_LIGHTWEIGHT_COREDUMP the memory dumps (local, shared, global) of the
CUcoredumpSettings Flag: application. Disabled by default.
CU_COREDUMP_LIGHTWEIGHT

Environment Variable: Enables user triggerable core dumps by writing
CUDA_ENABLE_USER_TRIGGERED_COREDUMP to a pipe defined in the COREDUMP_PIPE setting.
CUcoredumpSettings Flag: Disabled by default.

CU_COREDUMP_ENABLE_USER_TRIGGER

Environment Variable: Filename template for the GPU core dump.
CUDA_COREDUMP_FILE
CUcoredumpSettings Flag:
CU_COREDUMP_FILE

Environment Variable: Filename template for the user pipe trigger.
CUDA_COREDUMP_PIPE
CUcoredumpSettings Flag:
CU_COREDUMP_PIPE

6.5. GPU core dump support 35

https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__COREDUMP.html#group__CUDA__COREDUMP/
https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__COREDUMP.html#group__CUDA__COREDUMP/

CUDA-GDB, Release 12.6

Inspecting GPU and GPU+CPU core dumps in cuda-gdb
Use the following command to load the GPU core dump into the debugger
(cuda-gdb) target cudacore core.cuda.localhost.1234
This will open the core dump file and print the exception encountered during program execution.

Then, issue standard cuda-gdb commands to further investigate application state on the device
at the moment it was aborted.

Use the following command to load CPU and GPU core dumps into the debugger

(cuda-gdb) target core core.cpu core.cuda

This will open the core dump file and print the exception encountered during program execution.
Then, issue standard cuda-gdb commands to further investigate application state on the host
and the device at the moment it was aborted.

Note: Coredump inspection does not require that a GPU be installed on the system

36 Chapter 6. CUDA-GDB Extensions

Chapter 7. Kernel Focus

A CUDA application may be running several host threads and many device threads. To simplify the
visualization of information about the state of application, commands are applied to the entity in focus.

When the focus is set to a host thread, the commands will apply only to that host thread (unless the
application is fully resumed, for instance). On the device side, the focus is always set to the lowest
granularity level-the device thread.

7.1. Software Coordinates vs. Hardware
Coordinates

A device thread belongs to a block, which in turn belongs to a kernel. Thread, block, and kernel are
the software coordinates of the focus. A device thread runs on a lane. A lane belongs to a warp,
which belongs to an SM, which in turn belongs to a device. Lane, warp, SM, and device are the hard-
ware coordinates of the focus. Software and hardware coordinates can be used interchangeably and
simultaneously as long as they remain coherent.

Another software coordinate is sometimes used: the grid. The difference between a grid and a kernel
is the scope. The grid ID is unique per GPU whereas the kernel ID is unique across all GPUs. Therefore
there is a 1:1 mapping between a kernel and a (grid,device) tuple.

Note: If software preemption is enabled (set cuda software_preemption on), hardware coordi-
nates corresponding to a device thread are likely to change upon resuming execution on the device.
However, software coordinates will remain intact and will not change for the lifetime of the device
thread.

7.2. Current Focus

To inspect the current focus, use the cuda command followed by the coordinates of interest:

(cuda-gdb) cuda device sm warp lane block thread

block (0,0,0), thread (0,0,0), device @, sm @, warp 0, lane ©
(cuda-gdb) cuda kernel block thread

kernel 1, block (0,0,0), thread (0,0,0)

(continues on next page)

37

CUDA-GDB, Release 12.6

(continued from previous page)

(cuda-gdb) cuda kernel
kernel 1

To switch the current focus, use the cuda command followed by the coordinates to be changed:

(cuda-gdb) cuda device @ sm 1 warp 2 lane 3

[Switching focus to CUDA kernel 1, grid 2, block (8,0,0), thread
(67,0,0), device @, sm 1, warp 2, lane 3]

374 int totalThreads = gridDim.x * blockDim.x;

If the specified focus is not fully defined by the command, the debugger will assume that the omitted
coordinates are set to the coordinates in the current focus, including the subcoordinates of the block
and thread.

(cuda-gdb) cuda thread (15)

[Switching focus to CUDA kernel 1, grid 2, block (8,0,8), thread
(15,0,0), device @, sm 1, warp @, lane 15]

374 int totalThreads = gridDim.x * blockDim.Xx;

The parentheses for the block and thread arguments are optional.

(cuda-gdb) cuda block 1 thread 3

[Switching focus to CUDA kernel 1, grid 2, block (1,0,8), thread (3,0,0),
device 0, sm 3, warp 9, lane 3]

374 int totalThreads = gridDim.x * blockDim.

38 Chapter 7. Kernel Focus

Chapter 8. Program Execution

Applications are launched the same way in CUDA-GDB as they are with GDB by using the run command.
This chapter describes how to interrupt and single-step CUDA applications

If the CUDA application appears to be hanging or stuck in an infinite loop, it is possible to manually
interrupt the application by pressing CTRL+C. When the signal is received, the GPUs are suspended
and the cuda-gdb prompt will appear.

At that point, the program can be inspected, modified, single-stepped, resumed, or terminated at the
user’s discretion.

This feature is limited to applications running within the debugger. It is not possible to break into and
debug applications that have been launched outside the debugger.

Single-stepping device code is supported. However, unlike host code single-stepping, device code
single-stepping works at the warp level. This means that single-stepping a device kernel advances all
the active threads in the warp currently in focus. The divergent threads in the warp are not single-
stepped. When the CUDA thread in focus becomes divergent, behavior depends on the value of set
cuda step_divergent_lanes. When on (default), the warp in focus will be continuously single-
stepped until the CUDA thread in focus becomes active. When off, the warp in focus will be stepped
and the focused CUDA thread will be changed to the nearest active lane in the warp.

In order to advance the execution of more than one warp, a breakpoint must be set at the desired
location and then the application must be fully resumed.

A special case is single-stepping over thread barrier calls like: __syncthreads() or cluster-wide bar-
riers. In this case, an implicit temporary breakpoint is set immediately after the barrier and all threads
are resumed until the temporary breakpoint is hit.

You can stepin, over, or out of the device functions as long as they are not inlined. To force a function to
not be inlined by the compiler, the __noinline__ keyword must be added to the function declaration.

Asynchronous SASS instructions executed on the device, such as the warpgroup instructions, at prior
PCs are not guaranteed to be complete.

39

CUDA-GDB, Release 12.6

With Dynamic Parallelism, several CUDA APIs can be called directly from device code. The following
list defines single-step behavior when encountering these APIs:

When encountering device side kernel launches (denoted by the <<<>>> launch syntax), the step
and next commands will have the same behavior, and both will step over the launch call.

On devices prior to Hopper (SM 9.0), stepping into the deprecated cudaDeviceSynchronize()
results in undefined behavior. Users shall step over this call instead.

When stepping a device grid launch to completion, focus will automatically switch back to the
CPU. The cuda kernel focus switching command must be used to switch to another grid of
interest (if one is still resident).

Note: Itis not possible to step into a device launch call (nor the routine launched by the call).

40

Chapter 8. Program Execution

Chapter 9. Breakpoints and
Watchpoints

There are multiple ways to set a breakpoint on a CUDA application. These methods are described
below. The commands used to set a breakpoint on device code are the same as the commands used
to set a breakpoint on host code.

If a breakpoint is set on device code, the breakpoint will be marked pending until the ELF image of the
kernel is loaded. At that point, the breakpoint will be resolved and its address will be updated.

When a breakpoint is set, it forces all resident GPU threads to stop at this location when it reaches
the corresponding PC.

When a breakpoint is hit by one thread, there is no guarantee that the other threads will hit the break-
point at the same time. Therefore the same breakpoint may be hit several times, and the user must
be careful with checking which thread(s) actually hit(s) the breakpoint. The disable command can
be used to prevent hitting the breakpoint by additional threads.

To set a breakpoint at the entry of a function, use the break command followed by the name of the
function or method:

(cuda-gdb) break my_function
(cuda-gdb) break my_class::my_method

For templatized functions and methods, the full signature must be given:

(cuda-gdb) break int my_templatized_function<int>(int)

The mangled name of the function can also be used. To find the mangled name of a function, you can
use the following command:

(cuda-gdb) set demangle-style none
(cuda-gdb) info function my_function_name
(cuda-gdb) set demangle-style auto

41

CUDA-GDB, Release 12.6

To set a breakpoint on a specific line number, use the following syntax:

(cuda-gdb) break my_file.cu:185

If the specified line corresponds to an instruction within templatized code, multiple breakpoints will
be created, one for each instance of the templatized code.

To set a breakpoint at a specific address, use the break command with the address as argument:

(cuda-gdb) break *@x1afe34do

The address can be any address on the device or the host.

To break on the first instruction of every launched kernel, set the break_on_launch option to appli-
cation:

(cuda-gdb) set cuda break_on_launch application

See for more information.

To make the breakpoint conditional, use the optional if keyword or the cond command.

(cuda-gdb) break foo.cu:23 if threadIdx.x == 1 & i < 5
<

(cuda-gdb) cond 3 threadIdx.x == 1 & i < 5
Conditional expressions may refer any variable, including built-in variables such as threadIdx and
blockIdx. Function calls are not allowed in conditional expressions.

Note that conditional breakpoints are always hit and evaluated, but the debugger reports the break-
point as being hit only if the conditional statement is evaluated to TRUE. The process of hitting the
breakpoint and evaluating the corresponding conditional statement is time-consuming. Therefore,
running applications while using conditional breakpoints may slow down the debugging session. More-
over, if the conditional statement is always evaluated to FALSE, the debugger may appear to be hang-
ing or stuck, although it is not the case. You can interrupt the application with CTRL-C to verify that
progress is being made.

Conditional breakpoints can be set on code from CUDA modules that are not already loaded. The
verification of the condition will then only take place when the ELF image of that module is loaded.

42 Chapter 9. Breakpoints and Watchpoints

index.html#set-cuda-break-on-launch

CUDA-GDB, Release 12.6

Therefore any error in the conditional expression will be deferred until the CUDA module is loaded. To
double check the desired conditional expression, first set an unconditional breakpoint at the desired
location and continue. When the breakpoint is hit, evaluate the desired conditional statement by using
the cond command.

Watchpoints on CUDA code are not supported.

Watchpoints on host code are supported. The user is invited to read the GDB documentation for a
tutorial on how to set watchpoints on host code.

9.6. Watchpoints 43

CUDA-GDB, Release 12.6

44 Chapter 9. Breakpoints and Watchpoints

Chapter 10. Inspecting Program State

The GDB print command has been extended to decipher the location of any program variable and can
be used to display the contents of any CUDA program variable including:

data allocated via cudaMalloc()
data that resides in various GPU memory regions, such as shared, local, and global memory

special CUDA runtime variables, such as threadIdx

Depending on the variable type and usage, variables can be stored either in registers or in local,
shared, const or global memory. You can print the address of any variable to find out where it is
stored and directly access the associated memory.

The example below shows how the variable array, which is of type shared int *, can be directly
accessed in order to see what the stored values are in the array.

(cuda-gdb) print &array

$1 = (@shared int (*)[0]) ©x20
(cuda-gdb) print array[@]@4

$2 = {0, 128, 64, 192}

You can also access the shared memory indexed into the starting offset to see what the stored values
are:

(cuda-gdb) print *(@shared int*)0x20
$3 =0

(cuda-gdb) print *(@shared int*)0x24
$4 = 128

(cuda-gdb) print *(@shared int*)0x28
$5 = 64

The example below shows how to access the starting address of the input parameter to the kernel.

(cuda-gdb) print &data
$6 = (const @global void * const @parameter *) 0x10
(continues on next page)

45

CUDA-GDB, Release 12.6

(continued from previous page)

(cuda-gdb) print *(@global void * const @parameter *) 0x10
$7 = (@global void * const @parameter) ©0x110000</>

These are commands that display information about the GPU and the application’s CUDA state. The
available options are:

devices
information about all the devices

sms information about all the active SMs in the current device

warps
information about all the active warps in the current SM

lanes
information about all the active lanes in the current warp

kernels
information about all the active kernels

blocks
information about all the active blocks in the current kernel

threads
information about all the active threads in the current kernel

launch trace
information about the parent kernels of the kernel in focus

launch children
information about the kernels launched by the kernels in focus

contexts
information about all the contexts

A filter can be applied to every info cuda command. The filter restricts the scope of the command.
A filter is composed of one or more restrictions. A restriction can be any of the following:

device n

sm n

warp n

lane n

kernel n

grid n

block x[,y] orblock (x[,yl])

thread x[,y[,z]]orthread (x[,y[,z]])

breakpoint all and breakpoint n

46 Chapter 10. Inspecting Program State

CUDA-GDB, Release 12.6

where n, X, y, z are integers, or one of the following special keywords: current, any,and all. current
indicates that the corresponding value in the current focus should be used. any and all indicate that
any value is acceptable.

Note: The breakpoint all andbreakpoint n filter are only effective for the info cuda threads
command.

This command enumerates all the GPUs in the system sorted by device index. A * indicates the device
currently in focus. This command supports filters. The default is device all. This command prints
No CUDA Devices if no active GPUs are found. A device is not considered active until the first kernel
launch has been encountered.

(cuda-gdb) info cuda devices

Dev PCI Bus/Dev ID Name Description SM Type SMs Warps/SM Lanes/Warp
—Max Regs/Lane Active SMs Mask
0 06:00.0 GeForce GTX TITAN Z GK110B sm_35 15 64 32
. 256 0x00000000
1 07:00.0 GeForce GTX TITAN Z GK110B sm_35 15 64 32
. 256 0x00000000

This command shows all the SMs for the device and the associated active warps on the SMs. This
command supports filters and the defaultis device current sm all. A * indicates the SMis focus.
The results are grouped per device.

(cuda-gdb) info cuda sms
SM Active Warps Mask
Device ©

* @ OxFfffffffffffffff
oxffffffffffffffff
oxffffffffffffffff
oxffffffffffffffff
oxffffffffffffffff
oxffffffffffffffff
oxffffffffffffffff
oxffffffffffffffff
oxffffffffffffffff

oONOoO UG WN =

10.3. Info CUDA Commands 47

CUDA-GDB, Release 12.6

This command takes you one level deeper and prints all the warps information for the SM in focus.
This command supports filters and the default is device current sm current warp all. The
command can be used to display which warp executes what block.

(cuda-gdb) info cuda warps
Wp /Active Lanes Mask/ Divergent Lanes Mask/Active Physical PC/Kernel/BlockIdx
Device © SM ©

*

NooabhwN-2 o

OxXFFFFFFFf
OxXFFFFFFFf
OXFFFFFFFf
OXFFFFFFFf
OxXFFFFFFFf
OXFFFFFFFf
OXFFFFFFFF
OxFFFFFFFf

0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000
0x00000000

0x000000000000001C
0x0000000000000000
0x0000000000000000
0x0000000000000000
0x0000000000000000
0x0000000000000000
0x0000000000000000
0x0000000000000000

O OO0
O OO0 ODOO
O OO ODODO
— N N N

OO OGO
A~ AN AN~~~

This command displays all the lanes (threads) for the warp in focus. This command supports filters
and the defaultis device current sm current warp current lane all. Inthe example below
you can see that all the lanes are at the same physical PC. The command can be used to display which
lane executes what thread.

(cuda-gdb) info cuda lanes

Ln State Physical PC ThreadIdx
Device © SM @ Warp ©
* 0 active Ox000000000000008c (0,0,0)
1 active Ox000000000000008c (1,0,0)
2 active Ox000000000000008c (2,0,0)
3 active Ox000000000000008c (3,0,0)
4 active Ox000000000000008c (4,0,0)
5 active 0x000000000000008c (5,0,0)
6 active 0x000000000000008c (6,0,0)
7 active Ox000000000000008c (7,0,0)
8 active 0x000000000000008c (8,0,0)
9 active 0x000000000000008c (9,0,0)
10 active 0x000000000000008c (10,0,0)
11 active 0x000000000000008c (11,0,0)
12 active 0x000000000000008c (12,0,0)
13 active 0x000000000000008c (13,0,0)
14 active 0x000000000000008c (14,0,0)
15 active 0x000000000000008c (15,0,0)
16 active 0x000000000000008c (16,0,0)
48 Chapter 10. Inspecting Program State

CUDA-GDB, Release 12.6

This command displays on all the active kernels on the GPU in focus. It prints the SM mask, kernel ID,
and the grid ID for each kernel with the associated dimensions and arguments. The kernel ID is unique
across all GPUs whereas the grid ID is unique per GPU. The Parent column shows the kernel ID of the
parent grid. This command supports filters and the default is kernel all.

(cuda-gdb) info cuda kernels
Kernel Parent Dev Grid Status SMs Mask GridDim BlockDim Name Args
* 1 - 0 2 Active oxeeffffff (240,1,1) (128,1,1) acos_main parms=...

This command will also show grids that have been launched on the GPU with Dynamic Parallelism.
Kernels with a negative grid ID have been launched from the GPU, while kernels with a positive grid ID
have been launched from the CPU.

This command displays all the active or running blocks for the kernel in focus. The results are grouped
per kernel. This command supports filters and the default is kernel current block all. The
outputs are coalesced by default.

(cuda-gdb) info cuda blocks

BlockIdx To BlockIdx Count State
Kernel 1
* (0,0,0) (191,0,0) 192 running

Coalescing can be turned off as follows in which case more information on the Device and the SM get
displayed:

(cuda-gdb) set cuda coalescing off

The following is the output of the same command when coalescing is turned off.

(cuda-gdb) info cuda blocks
BlockIdx State Dev SM

Kernel 1

* (0,0,0) running © ©
(1,0,0) running © 3
(2,0,0) running @ 6
(3,0,0) running @ 9
(4,0,0) running 0 12
(5,0,0) running @ 15
(6,0,0) running © 18
(7,0,0) running 0 21
(8,0,0) running @ 1

10.3. Info CUDA Commands 49

CUDA-GDB, Release 12.6

This command displays the application’s active CUDA blocks and threads with the total count of
threads in those blocks. Also displayed are the virtual PC and the associated source file and the line
number information. The results are grouped per kernel. The command supports filters with default
being kernel current block all thread all. The outputs are coalesced by default as follows:

(cuda-gdb) info cuda threads
BlockIdx ThreadIdx To BlockIdx ThreadIdx Count Virtual PC Filename Line
Device 0 SM ©
* (0,0,0 (0,0,0) (0,0,0) (31,0,0) 32 0x00000000VB88T88C acos.cu 376
(0,0,0)(32,0,0) (191,0,0) (127,0,0) 24544 ©x000000000088f800 acos.cu 374

Coalescing can be turned off as follows in which case more information is displayed with the output.

(cuda-gdb) info cuda threads

BlockIdx ThreadIdx Virtual PC Dev SM Wp Ln Filename Line

Kernel 1

* (0,0,0) (0,0,0) 0x000000000088T88cC 0 0 0 0 acos.cu 376
(0,0,0) (1,0,0) 0x000000000088f88c 0 0 0 1 acos.cu 376
(0,0,0) (2,0,0) 0x000000000088T88C 0 0 0 2 acos.cu 376
(0,0,0) (3,0,0) 0x000000000088T88cC 0 06 0 3 acos.cu 376
(0,0,0) (4,0,0) 0x00000000008888c 0 06 0 4 acos.cu 376
(0,0,0) (5,0,0) 0x0000000V0OOO88T88C 0 0 0 5 acos.cu 376
(0,0,0) (6,0,0) 0x000000000088T88cC 0 0 0 6 acos.cu 376
(0,0,0) (7,0,0) 0x00000000008888c 0 0 0 7 acos.cu 376
(0,0,0) (8,0,0) 0x000000V0OOO88T88C 0 0 0 8 acos.cu 376
(0,0,0) (9,0,0) 0x000000000088T88c 0 0 0 9 acos.cu 376

Note: In coalesced form, threads must be contiguous in order to be coalesced. If some threads are
not currently running on the hardware, they will create holes in the thread ranges. For instance, if a
kernel consist of 2 blocks of 16 threads, and only the 8 lowest threads are active, then 2 coalesced
ranges will be printed: one range for block O thread O to 7, and one range for block 1 thread O to 7.
Because threads 8-15 in block O are not running, the 2 ranges cannot be coalesced.

The command also supports breakpoint all and breakpoint breakpoint_number as filters.
The former displays the threads that hit all CUDA breakpoints set by the user. The latter displays the
threads that hit the CUDA breakpoint breakpoint_number.

(cuda-gdb) info cuda threads breakpoint all

BlockIdx ThreadIdx Virtual PC Dev SM Wp Ln Filename Line
Kernel 0
(1,0,0) (0,0,0) 0x0000000000O948e58 © 11 O O infoCommands.cu 12
(1,0,0) (1,0,0) 0x0000000000948e58 © 11 © 1 infoCommands.cu 12
(1,0,0) (2,0,0) 0x0000000000948e58 © 11 © 2 infoCommands.cu 12
(1,0,0) (3,0,0) 0x0000000000948e58 © 11 O 3 infoCommands.cu 12
(1,0,0) (4,0,0) 0x0000000000948e58 © 11 © 4 infoCommands.cu 12
(1,0,0) (5,0,0) 0x0000000000948e58 @ 11 © 5 infoCommands.cu 12
(cuda-gdb) info cuda threads breakpoint 2 lane 1
BlockIdx ThreadIdx Virtual PC Dev SM Wp Ln Filename Line
Kernel ©

(1,0,0) (1,0,0) 0x000000OOOO948e58 © 11 O 1 infoCommands.cu 12

50 Chapter 10. Inspecting Program State

CUDA-GDB, Release 12.6

This command displays the kernel launch trace for the kernel in focus. The first element in the trace
is the kernel in focus. The next element is the kernel that launched this kernel. The trace continues
until there is no parent kernel. In that case, the kernel is CPU-launched.

For each kernel in the trace, the command prints the level of the kernel in the trace, the kernel ID, the
device ID, the grid Id, the status, the kernel dimensions, the kernel name, and the kernel arguments.

(cuda-gdb) info cuda launch trace

Lvl Kernel Dev Grid Status GridDim BlockDim Invocation
* 0 3 o -7 Active (32,1,1) (16,1,1) kernel3(c=5)
1 2 © -5 Terminated (246,1,1) (128,1,1) kernel2(b=3)
2 1 0 2 Active (240,1,1) (128,1,1) kernell(a=1)

A kernel that has been launched but that is not running on the GPU will have a Pending status. A
kernel currently running on the GPU will be marked as Active. A kernel waiting to become active
again will be displayed as Sleeping. When a kernel has terminated, it is marked as Terminated. For
the few cases, when the debugger cannot determine if a kernel is pending or terminated, the status
is set to Undetermined.

This command supports filters and the default is kernel all.

Note: With set cuda software_preemption on, no kernel will be reported as active.

This command displays the list of non-terminated kernels launched by the kernel in focus. For each
kernel, the kernel ID, the device ID, the grid Id, the kernel dimensions, the kernel name, and the kernel
parameters are displayed.

(cuda-gdb) info cuda launch children
Kernel Dev Grid GridDim BlockDim Invocation
* 3 0 -7 (1,1,1) (1,1,1) kernel5(a=3)
18 © -8 (1,1,1) (32,1,1) kernel4(b=5)

This command supports filters and the default is kernel all.

This command enumerates all the CUDA contexts running on all GPUs. A * indicates the context
currently in focus. This command shows whether a context is currently active on a device or not.

(cuda-gdb) info cuda contexts
Context Dev State
0x080b9518 0 inactive
* Ox08067948 0 active

10.3. Info CUDA Commands 51

CUDA-GDB, Release 12.6

This command shows all the static managed variables on the device or on the host depending on the
focus.

(cuda-gdb) info cuda managed

Static managed variables on device @ are:

managed_var = 3

managed_consts = {one = 1, e = 2.71000004, pi = 3.1400000000000001}

The device SASS code can be disassembled using the standard GDB disassembly instructions such as
x/iand display/i.

(cuda-gdb) x/4i $pc-32
0xa689a8 <acos_main
0xa689b8 <acos_main
0xa689cO <acos_main

=> Oxab689c8 <acos_main

+824>: MOV RO, c[0x0][0x34]
+840>: MOV R3, c[0x0][0x28]
+848>: IMUL R2, RO, R3

+856>: MOV RO, c[0x0][0x28]

acosParams
acosParams
acosParams
acosParams

,\,-\,\,\
— — — —

Note: For disassembly instruction to work properly, cuobjdump must be installed and present in your
SPATH.

In the disassembly view, the current pc is prefixed with =>. For Maxwell (SM 5.0) and newer architec-
tures, if an instruction triggers an exception it will be prefixed with *>. If the pc and errorpc are the
same instruction it will be prefixed with *=>,

For example, consider the following exception:

CUDA Exception: Warp Illegal Address
The exception was triggered at PC 0x555555c08620 (memexceptions_kernel.cu:17)

Thread 1 "memexceptions"” received signal CUDA_EXCEPTION_14, Warp Illegal Address.
[Switching focus to CUDA kernel @, grid 1, block (0,0,8), thread (0,0,0), device 0,
—sm @, warp 0, lane 0]

0x0000555555c08fb0 in exception_kernel<<<(1,1,1),(1,1,1)>>> (data=ex7fffcccoo000,
—.exception=MMU_FAULT) at memexceptions_kernel.cu:50

50 }

(cuda-gdb)

The disas command can be used to view both the PC and the error PC that triggered the exception.

(cuda-gdb) disas S$pc,+16

Dump of assembler code from 6x555555c08fb@ to 0x555555c08fcH:

=> Bx0000555555c08fb0 <_Z16exception_kernelPviiexception_t+35604>: ERRBAR
End of assembler dump.

(cuda-gdb) disas Serrorpc,+16
Dump of assembler code from 6x555555c08620 to 0x555555c08630:

(continues on next page)

52 Chapter 10. Inspecting Program State

CUDA-GDB, Release 12.6

(continued from previous page)

*> 0x0000555555c08620 <_Z16exception_kernelPvllexception_t+1056>: ST.E.U8.STRONG.SYS
—[R6.64], R5
End of assembler dump.

The device registers code can be inspected/modified using the standard GDB commands such as info
registers.

(cuda-gdb) info registers $RO SR1 SR2 $R3

RO oxfo 240

R1 Oxfffc48 16776264
R2 0x7800 30720

R3 0x80 128

The registers are also accessible as SR<regnum> built-in variables, for example:

(cuda-gdb) printf "%d %d\n", SRO*$R3, $R2
307260 30720

Values of predicate and CC registers can be inspecting by printing system registers group or by using
their respective pseudo-names: $P0..SP6 and SCC.

(cuda-gdb) info registers system

Po ox1 1
P1 ox1 1
P2 0x0 ©
P3 0x0 0
P4 0x0 ©
P5 0x0 0
P6 ox1 1
cc 0x0 ©

Memory allocated in the constant address space of GPU memory resides in two dimensional arrays
called constant banks. Constant banks are noted c[X][Y] where X is the bank number and Y the
offset. The memory address of a given bank/offset pair is obtained via the convenience function
$_cuda_const_bank(bank, offset).

(cuda-gdb) disass $pc,+16

Dump of assembler code from 0x7fffd5043d40 to Ox7fffd5043d50:

=> DxPPPO7fffd5043d46 <_7Z9acos_mainl@acosParams+1856>: MOV RO, c[0x0][0xc]
End of assembler dump.

(cuda-gdb) p *S_cuda_const_bank(0x8,0xc)

$1 =38

10.5. Registers 53

CUDA-GDB, Release 12.6

54 Chapter 10. Inspecting Program State

Chapter 11. Event Notifications

As the application is making forward progress, CUDA-GDB notifies the users about kernel events and
context events. Within CUDA-GDB, kernel refers to the device code that executes on the GPU, while
context refers to the virtual address space on the GPU for the kernel. You can enable output of CUDA
context and kernel events to review the flow of the active contexts and kernels. By default, only con-
text event messages are displayed.

Any time a CUDA context is created, pushed, popped, or destroyed by the application, CUDA-GDB can
optionally display a notification message. The message includes the context id and the device id to
which the context belongs.

[Context Create of context Oxad2fe60 on Device 0]
[Context Destroy of context ©xad2fe60 on Device 0]

By default, context event notification is disabled. The context event notification policy is controlled
with the context_events option.

(cuda-gdb) set cuda context_events off

CUDA-GDB does not display the context event notification messages (default).

(cuda-gdb) set cuda context_events on

CUDA-GDB displays the context event notification messages.

Any time CUDA-GDB is made aware of the launch or the termination of a CUDA kernel, a notification
message can be displayed. The message includes the kernel id, the kernel name, and the device to
which the kernel belongs.

[Launch of CUDA Kernel 1 (kernel3) on Device 0]
[Termination of CUDA Kernel 1 (kernel3) on Device 0]

The kernel event notification policy is controlled with kernel_events and kernel_events_depth
options.

55

CUDA-GDB, Release 12.6

(cuda-gdb) set cuda kernel_events none

Possible options are:

none
no kernel, application or system (default)

application
kernel launched by the user application

system
any kernel launched by the driver, such as memset

all any kernel, application and system

(cuda-gdb) set cuda kernel_events_depth ©

Controls the maximum depth of the kernels after which no kernel event notifications will be
displayed. A value of zero means that there is no maximum and that all the kernel notifications
are displayed. A value of one means that the debugger will display kernel event notifications only
for kernels launched from the CPU (default).

56 Chapter 11. Event Notifications

Chapter 12. Automatic Error Checking

12.1. Checking API Errors

CUDA-GDB can automatically check the return code of any driver APl or runtime API call. If the return
code indicates an error, the debugger will stop or warn the user.

The behavior is controlled with the set cuda api_failures option. Three modes are supported:
» hide CUDA API call failures are not reported

ignore Warning message is printed for every fatal CUDA API call failure (default)

stop The application is stopped when a CUDA API call returns a fatal error

ignore_all Warning message is printed for every CUDA API call failure

vV v. v Vv

stop_all The application is stopped when a CUDA API call returns any error

Note: The success return code and other non-error return codes are ignored. For the driver API, those
are: CUDA_SUCCESS and CUDA_ERROR_NOT_READY. For the runtime API, they are cudaSuccess and
cudaErrorNotReady.

12.2. GPU Error Reporting

With improved GPU error reporting in CUDA-GDB, application bugs are now easier to identify and easy
to fix. The following table shows the new errors that are reported on GPUs with compute capability
sm_20 and higher.

Note: Continuing the execution of your application after these errors are found can lead to appli-
cation termination or indeterminate results.

Note: Warp errors may result in instructions to continue executing before the exception is recognized
and reported. The reported Serrorpc shall contain the precise address of the instruction that caused
the exception. If the warp exits after the instruction causing exception has executed, but before the
exception has been recognized and reported, it may result in the exception not being reported. CUDA-
GDB relies on an active warp present on the device in order to report exceptions. To help avoid this
scenario of unreported exceptions:

57

CUDA-GDB, Release 12

.6

For Volta+ architectures, compile the application with -G. See

information.

for more

Add while (1) ; before kernel exit. This shall ensure the exception is recognized and reported.

Rely on the compute-sanitizer memcheck tool to catch accesses that can lead to an exception.

Table 1: CUDA Exception Codes

Exception Code Pre- Scope | Description
cision | of the
of the | Error
Error
CUDA_EXCEPTION_O: “Device Unknown Ex- | Un- Global | This is a global GPU error caused
ception” known | error by the application which does not
on the | match any of the listed error codes
GPU below. This should be a rare occur-
rence. Potentially, this may be due
toDevice Hardware Stack over-
flows or a kernel generating an ex-
ception very close to its termina-
tion.
CUDA_EXCEPTION_1 : “Deprecated” Depre- | Depre- | This exception is deprecated
cated |cated |and should be treated as
CUDA_EXCEPTION_®@.
CUDA_EXCEPTION_2 : “Lane User Stack | Pre- Per This occurs when a thread exceeds
Overflow” cise lane/thredad stack memory limit.
error
CUDA_EXCEPTION_3 : “Device Hardware | Pre- Global | This occurs when the application
Stack Overflow” cise error triggers a global hardware stack
on the | overflow. The main cause of this
GPU error is large amounts of diver-
gence in the presence of function
calls.
CUDA_EXCEPTION_4 : “Warp lllegal Instruc- | Pre- Warp | This occurs when any thread
tion” cise error within a warp has executed an
illegal instruction.
CUDA_EXCEPTION_5 : “Warp Out-of-range | Pre- Warp | This occurs when any thread
Address” cise error within a warp accesses an address
that is outside the valid range of
local or shared memory regions.
CUDA_EXCEPTION_6 : “Warp Misaligned | Pre- Warp | This occurs when any thread
Address” cise error within a warp accesses an address
in the local or shared memory
segments that is not correctly
aligned.
continues on next page
58 Chapter 12. Automatic Error Checking

index.html#compiling-the-application

CUDA-GDB, Release 12.6

Table 1 -continued from previous page

Exception Code Pre- Scope | Description
cision | of the
of the | Error
Error
CUDA_EXCEPTION_7 : “Warp Invalid Ad- | Pre- Warp | This occurs when any thread
dress Space” cise error within a warp executes an in-
struction that accesses a memory
space not permitted for that
instruction.
CUDA_EXCEPTION_8: “Warp Invalid PC” Pre- Warp | This occurs when any thread
cise error within a warp advances its PC
beyond the 40-bit address space.
CUDA_EXCEPTION_9 “Warp Hardware | Pre- Warp This occurs when any thread in
Stack Overflow” cise error a warp triggers a hardware stack
overflow. This should be a rare oc-
currence.
CUDA_EXCEPTION_10 : “Device lllegal Ad- | Pre- Global | This occurs when a thread ac-
dress” cise error cesses an illegal(out of bounds)
global address.
CUDA_EXCEPTION_11 : “Deprecated” Depre- | Depre- | This exception is deprecated
cated |cated |and should be treated as
CUDA_EXCEPTION_®@.
CUDA_EXCEPTION_12 : “Warp Assert” Pre- Per This occurs when any thread in the
cise warp warp hits a device side assertion.
CUDA_EXCEPTION_13: “Deprecated” Depre- | Depre- | This exception is deprecated
cated |cated |and should be treated as
CUDA_EXCEPTION_®@.
CUDA_EXCEPTION_14 : “Warp lllegal Ad- | Pre- Per This occurs when a thread ac-
dress” cise warp cesses an illegal(out of bounds)
global/local/shared address.
CUDA_EXCEPTION_15 : “Invalid Managed | Pre- Per This occurs when a host thread at-
Memory Access” cise host tempts to access managed mem-
thread | ory currently used by the GPU.
CUDA_EXCEPTION_13: “Deprecated” Depre- | Depre- | This exception is deprecated
cated |cated |and should be treated as
CUDA_EXCEPTION_®@.
CUDA_EXCEPTION_17 : “Cluster Out-of- | Not Per This occurs when any thread
range Address” pre- Cuda within a block accesses an ad-
cise Clus- dress that is outside the valid
ter range of shared memory regions

belonging to the cluster.

continues on next page

12.2. GPU Error Reporting

59

CUDA-GDB, Release 12.6

Table 1 -continued from previous page

Exception Code Pre- Scope | Description
cision | of the
of the | Error

Error
CUDA_EXCEPTION_18 : “Cluster Target | Not Per This occurs when any thread
Block Not Present” pre- Cuda within a block accesses another
cise Clus- block that is outside the valid
ter range of blocks belonging to the
cluster.

Autostep isa command to increase the precision of CUDA exceptions to the exact lane and instruction,
when they would not have been otherwise.

Under normal execution, an exception may be reported several instructions after the exception oc-
curred, or the exact thread where an exception occurred may not be known unless the exception is
a lane error. However, the precise origin of the exception can be determined if the program is being
single-stepped when the exception occurs. Single- stepping manually is a slow and tedious process;
stepping takes much longer than normal execution and the user has to single-step each warp individ-
ually.

Autostep aides the user by allowing them to specify sections of code where they suspect an exception
could occur, and these sections are automatically and transparently single- stepped the program is
running. The rest of the program is executed normally to minimize the slow-down caused by single-
stepping. The precise origin of an exception will be reported if the exception occurs within these
sections. Thus the exact instruction and thread where an exception occurred can be found quickly
and with much less effort by using autostep.

Autostep Usage

autostep [LOCATION]
autostep [LOCATION] for LENGTH [lines|instructions]

LOCATION may be anything that you use to specify the location of a breakpoint, such as a line
number, function name, or an instruction address preceded by an asterisk. If no LOCATION is
specified, then the current instruction address is used.

LENGTH specifies the size of the autostep window in number of lines or instructions (/ines and
instructions can be shortened, e.g., / or i). If the length type is not specified, then lines is the
default. If the for clause is omitted, then the default is 1 line.

astep can be used as an alias for the autostep command.
Calls to functions made during an autostep will be stepped over.

In case of divergence, the length of the autostep window is determined by the number of lines or
instructions the first active lane in each warp executes. Divergent lanes are also single stepped,
but the instructions they execute do not count towards the length of the autostep window.

If a breakpoint occurs while inside an autostep window, the warp where the breakpoint was hit will
not continue autostepping when the program is resumed. However, other warps may continue
autostepping.

60 Chapter 12. Automatic Error Checking

CUDA-GDB, Release 12.6

Overlapping autosteps are not supported.

If an autostep is encountered while another autostep is being executed, then the second autostep is
ignored.

If an autostep is set before the location of a memory error and no memory error is hit, then it is possible
that the chosen window is too small. This may be caused by the presence of function calls between the
address of the autostep location and the instruction that triggers the memory error. In that situation,
either increase the size of the window to make sure that the faulty instruction is included, or move to
the autostep location to an instruction that will be executed closer in time to the faulty instruction.

Related Commands

Autosteps and breakpoints share the same numbering so most commands that work with breakpoints
will also work with autosteps.

info autosteps shows all breakpoints and autosteps. It is similar to info breakpoints.

(cuda-gdb) info autosteps

Num Type Disp Enb Address What

1 autostep keep y 0x0000000000401234 in merge at sort.cu:30 for 49 instructions
3 autostep keep y 0x0000000000489913 in bubble at sort.cu:94 for 11 lines

disable autosteps disables an autostep. It is equivalent to disable breakpoints n.

delete autosteps ndeletes an autostep. It is quivalent to delete breakpoints n.

ignore n 1 tells the debugger to not single-step the next i times the debugger enters the window
for autostep n. This command already exists for breakpoints.

12.3. Autostep 61

CUDA-GDB, Release 12.6

62 Chapter 12. Automatic Error Checking

Chapter 13. Walk-Through Examples

The chapter contains two CUDA-GDB walk-through examples:

This section presents a walk-through of CUDA-GDB by debugging a sample application-called bitre-
verse-that performs a simple 8 bit reversal on a data set.

Source Code

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 // Simple 8-bit bit reversal Compute test

5)

6 #define N 256

7

8 __global__ void bitreverse(void *data) {

9 unsigned int *idata = (unsigned int*)data;

10 extern __shared__ int array[];

11

12 array[threadIdx.x] = idata[threadIdx.x];

13

14 array[threadIdx.x] = ((@xfefefefo & array[threadIdx.x]) >> 4) |
15 ((exefefefef & array|[threadIdx.x]) << 4);
16 array[threadIdx.x] = ((®xcccccccc & array[threadIdx.x]) >> 2) |
17 ((8x33333333 & array[threadIdx.x]) << 2);
18 array[threadIdx.x] = ((@xaaaaaaaa & array[threadIdx.x]) >> 1) |
19 ((8x55555555 & array[threadIdx.x]) << 1);
20

21 idata[threadIdx.x] = array[threadIdx.x];

22 }

23

24 int main(void) {

25 void *d = NULL; int i;

26 unsigned int idata[N], odata[N];

27

(continues on next page)

63

index.html#example-bitreverse
index.html#example-autostep
index.html#example-mpi

CUDA-GDB, Release 12.6

(continued from previous page)

28 for (i = @; i < N; i++)
29 idata[i] = (unsigned int)i;
30
31 cudaMalloc((void**)&d, sizeof(int)*N);
32 cudaMemcpy(d, idata, sizeof(int)*N,
33 cudaMemcpyHostToDevice) ;
34
35 bitreverse<<<1, N, N*sizeof(int)>>>(d);
36
37 cudaMemcpy(odata, d, sizeof(int)*N,
38 cudaMemcpyDeviceToHost) ;
39
40 for (1 = 0; 1 < N; i++)
41 printf("%u -> %u\n", idata[i], odata[il);
42
43 cudaFree((void*)d);
44 return 9;
45 }
Begin by compiling the bitreverse.cu CUDA application for debugging by entering the follow-
ing command at a shell prompt:
$ nvcc -g -G bitreverse.cu -o bitreverse
This command assumes that the source file name is bitreverse.cu and that no additional
compiler flags are required for compilation. See also
Start the CUDA debugger by entering the following command at a shell prompt:
$ cuda-gdb bitreverse
Set breakpoints. Set both the host (main) and GPU (bitreverse) breakpoints here. Also, set a
breakpoint at a particular line in the device function (bitreverse.cu:18).
(cuda-gdb) break main
Breakpoint 1 at 0x18e1: file bitreverse.cu, line 25.
(cuda-gdb) break bitreverse
Breakpoint 2 at ©x18al1: file bitreverse.cu, line 8.
(cuda-gdb) break 21
Breakpoint 3 at ©x18ac: file bitreverse.cu, line 21.
Run the CUDA application, and it executes until it reaches the first breakpoint (main) set in
(cuda-gdb) run
Starting program: /Users/CUDA_User1/docs/bitreverse
Reading symbols for shared libraries
PP done
Breakpoint 1, main () at bitreverse.cu:25
25 void *d = NULL; int i;
At this point, commands can be entered to advance execution or to print the program state. For
this walkthrough, let’s continue until the device kernel is launched.
64 Chapter 13. Walk-Through Examples

index.html#debug-compilation
index.html#walking-through-code__set-breakpoints

CUDA-GDB, Release 12.6

(cuda-gdb) continue

Continuing.
Reading symbols for shared libraries .. done
Reading symbols for shared libraries .. done

[Context Create of context 90x80f200 on Device 0]

[Launch of CUDA Kernel @ (bitreverse<<<(1,1,1),(256,1,1)>>>) on Device 0]
Breakpoint 3 at ©x8667b8: file bitreverse.cu, line 21.

[Switching focus to CUDA kernel ©, grid 1, block (9,0,0), thread (0,0,0), device
@, sm @, warp 0, lane 0]

Breakpoint 2, bitreverse<<<(1,1,1),(256,1,1)>>> (data=0x110000) at bitreverse.cu:9
9 unsigned int *idata = (unsigned int*)data;

CUDA-GDB has detected that a CUDA device kernel has been reached. The debugger prints the
current CUDA thread of focus.

Verify the CUDA thread of focus with the info cuda threads command and switch between
host thread and the CUDA threads:

(cuda-gdb) info cuda threads
BlockIdx ThreadIdx To BlockIdx ThreadIdx Count Virtual PC
Filename Line

Kernel 0
* (0,0,0) (0,0,0) (0,0,0) (255,0,0) 256 0x0000DOOVVO866400 bitreverse.
—Cu 9

(cuda-gdb) thread
[Current thread is 1 (process 16738)]
(cuda-gdb) thread 1
[Switching to thread 1 (process 16738)]
#0 0x000019d5 in main () at bitreverse.cu:34
34 bitreverse<<<1, N, N*sizeof(int)>>>(d);
(cuda-gdb) backtrace
#0 0x000019d5 in main () at bitreverse.cu:34
(cuda-gdb) info cuda kernels
Kernel Dev Grid SMs Mask GridDim BlockDim Name Args
0 o 1 6x00000001 (1,1,1) (256,1,1) bitreverse data=0x110000
(cuda-gdb) cuda kernel @
[Switching focus to CUDA kernel ©, grid 1, block (0,0,0), thread (0,0,0), device
@, sm @, warp 0, lane 0]
9 unsigned int *idata = (unsigned int*)data;
(cuda-gdb) backtrace
#0 bitreverse<<<(1,1,1),(256,1,1)>>> (data=0x110000) at bitreverse.cu:9

Corroborate this information by printing the block and thread indexes:

(cuda-gdb) print blockIdx
$1 ={x =90, y =0}

(cuda-gdb) print threadIdx
$2 = {x=09, y=0, z=0)

The grid and block dimensions can also be printed:

(cuda-gdb) print gridDim

$3 = {x =1, y=1}
(cuda-gdb) print blockDim
$4 = {x =256, y =1, z =1)

Advance kernel execution and verify some data:

13.1. Example: bitreverse 65

CUDA-GDB, Release 12.6

(cuda-gdb) next

12 array|[threadIdx.x] = idata[threadIdx.x];

(cuda-gdb) next

14 array[threadIldx.x] = ((exfefefefe & array[threadIdx.x]) >> 4) |
(cuda-gdb) next

16 array[threadIdx.x] = ((®xcccccccc & array[threadIdx.x]) >> 2) |
(cuda-gdb) next

18 array[threadIdx.x] = ((©xaaaaaaaa & array[threadIdx.x]) >> 1) |

(cuda-gdb) next

Breakpoint 3, bitreverse <<<(1,1),(256,1,1)>>> (data=0x100000) at bitreverse.cu:21
21 idata[threadIdx.x] = array[threadIdx.x];

(cuda-gdb) print array[@]@12

§7 = {0, 128, 64, 192, 32, 160, 96, 224, 16, 144, 80, 208}

(cuda-gdb) print/x array[@]@12

88 = {Ox@, Ox80, 0Ox40, OxcO, Ox20, Oxad, Ox60, Oxed, 0x10, 0x90, 0x50,

oxde}

(cuda-gdb) print &data

$§9 = (@global void * @parameter *) 0x10

(cuda-gdb) print *(@global void * @parameter *) 0x10
$10 = (@global void * @parameter) 0x100000

The resulting output depends on the current content of the memory location.

Since thread (9, 8, 0) reverses the value of 8, switch to a different thread to show more interesting
data:

(cuda-gdb) cuda thread 170
[Switching focus to CUDA kernel ©, grid 1, block (90,0,0), thread
(170,0,0), device @, sm @, warp 5, lane 10]

Delete the breakpoints and continue the program to completion:

(cuda-gdb) delete breakpoints
Delete all breakpoints? (y or n) y
(cuda-gdb) continue

Continuing.

Program exited normally.
(cuda-gdb)

This section shows how to use the autostep command and demonstrates how it helps increase the
precision of memory error reporting.

Source Code

1 #define NUM_BLOCKS 8
2 #define THREADS_PER_BLOCK 64
3
4 __global__ void example(int **data)
5 int valuel, value2, value3, value4, value5;
(continues on next page)
66 Chapter 13. Walk-Through Examples

CUDA-GDB, Release 12.6

(continued from previous page)

6 int idx1, idx2, idx3;

7

8 idx1 = blockIdx.x * blockDim.x;
9 idx2 = threadIdx.x;

10 idx3 = idx1 + idx2;

11 valuel *(data[idx1]);

12 value2 = *(data[idx2]);

13 value3 = valuel + value2;

14 value4 valuel * value2;
15 value5 = value3 + value4;
16 *(data[idx3]) = value5;
17 *(data[idx1]) = value3;
18 *(data[idx2]) = value4;

19 idx1 = idx2 = idx3 = 0;

22 int main(int argc, char *argv[]) {

23 int *host_data[NUM_BLOCKS * THREADS_PER_BLOCK];

24 int **dev_data;

25 const int zero = 0;

26

27 /* Allocate an integer for each thread in each block */
28 for (int block = 0; block < NUM_BLOCKS; block++) {

29 for (int thread = 0; thread < THREADS_PER_BLOCK; thread++) {
30 int idx = thread + block * THREADS_PER_BLOCK;

31 cudaMalloc(&host_data[idx], sizeof(int));

32 cudaMemcpy (host_data[idx], &zero, sizeof(int),

33 cudaMemcpyHostToDevice) ;

34 }

35 }

36

37 /* This inserts an error into block 3, thread 39%*/

38 host_data[3*THREADS_PER_BLOCK + 39] = NULL;

39

40 /* Copy the array of pointers to the device */

41 cudaMalloc((void**)&dev_data, sizeof(host_data));

42 cudaMemcpy(dev_data, host_data, sizeof(host_data), cudaMemcpyHostToDevice);
43

44 /* Execute example */

45 example <<< NUM_BLOCKS, THREADS_PER_BLOCK >>> (dev_data);
46 cudaThreadSynchronize() ;

47 }

In this small example, we have an array of pointers to integers, and we want to do some operations on
the integers. Suppose, however, that one of the pointers is NULL as shown in line 38. This will cause
CUDA_EXCEPTION_10 "Device Illegal Address" to be thrown when we try to access the integer
that corresponds with block 3, thread 39. This exception should occur at line 16 when we try to write
to that value.

13.2. Example: autostep 67

CUDA-GDB, Release 12.6

Compile the example and start CUDA-GDB as normal. We begin by running the program:

(cuda-gdb) run

Starting program: /home/jitud/cudagdb_test/autostep_ex/example

[Thread debugging using libthread_db enabled] [New Thread @x7ffff5688700 (LWP
-,9083)]

[Context Create of context 0x617270 on Device 0]

[Launch of CUDA Kernel @ (example<<<(8,1,1),(64,1,1)>>>) on Device 0]

Program received signal CUDA_EXCEPTION_10, Device Illegal Address.

[Switching focus to CUDA kernel ©, grid 1, block (1,0,0), thread (0,0,0), device
@, sm 1, warp 0, lane 0]

0x0000000000796T60 in example (data=0x200300000) at example.cu:17

17 *(data[idx1]) = value3;

As expected, we received a CUDA_EXCEPTION_10. However, the reported threadis block 1, thread
0 and the line is 17. Since CUDA_EXCEPTION_10 is a Global error, there is no thread information
that is reported, so we would manually have to inspect all 512 threads.

Set autosteps. To get more accurate information, we reason that since CUDA_EXCEPTION_10
is @ memory access error, it must occur on code that accesses memory. This happens on lines
11,12,16, 17,and 18, so we set two autostep windows for those areas:

(cuda-gdb) autostep 11 for 2 lines
Breakpoint 1 at 0x796d18: file example.cu, line 11.
Created autostep of length 2 lines
(cuda-gdb) autostep 16 for 3 lines
Breakpoint 2 at 0x796e90: file example.cu, line 16.
Created autostep of length 3 lines

Finally, we run the program again with these autosteps:

(cuda-gdb) run

The program being debugged has been started already.

Start it from the beginning? (y or n) y

[Termination of CUDA Kernel @ (example<<<(8,1,1),(64,1,1)>>>) on Device 0]
Starting program: /home/jitud/cudagdb_test/autostep_ex/example

[Thread debugging using libthread_db enabled]

[New Thread ox7ffff5688700 (LWP 9089)]

[Context Create of context 9x617270 on Device 0]

[Launch of CUDA Kernel 1 (example<<<(8,1,1),(64,1,1)>>>) on Device 0]
[Switching focus to CUDA kernel 1, grid 1, block (0,0,8), thread (0,0,90),
device 0, sm 0, warp 0, lane 0]

Program received signal CUDA_EXCEPTION_10, Device Illegal Address.
[Current focus set to CUDA kernel 1, grid 1, block (3,0,0), thread
(32,0,0), device @, sm 1, warp 3, lane 0]

Autostep precisely caught exception at example.cu:16 (0x796e90)

This time we correctly caught the exception at line 16. Even though CUDA_EXCEPTION_10 is a
global error, we have now narrowed it down to a warp error, so we now know that the thread that
threw the exception must have been in the same warp as block 3, thread 32.

In this example, we have narrowed down the scope of the error from 512 threads down to 32 threads
just by setting two autosteps and re-running the program.

68 Chapter 13. Walk-Through Examples

CUDA-GDB, Release 12.6

For large scale MPI CUDA application debugging, NVIDIA recommends using parallel debuggers sup-
plied by our partners Allinea and Totalview. Both make excellent parallel debuggers with extended
support for CUDA. However, for debugging smaller applications, or for debugging just a few processes
in a large application, CUDA-GDB can be used.

If the cluster nodes have xterm support, launch CUDA-GDB in the same way you would launch gdb
with your job launcher. For example:

S mpirun -np 4 -host nv1,nv2 xterm -e cuda-gdb a.out

You may have to export the DISPLAY variable to make sure that the xterm finds its way back to your
display. For example:

$ mpirun -np 4 -host nv1,nv2 -x DISPLAY=host.nvidia.com:@ xterm -e cuda-gdb a.out

Job launchers have different ways of exporting environment variables to the cluster nodes. Consult
your job launcher documentation for more details.

When xterm is not supported by your cluster environment, you can insert a spin loop inside your pro-
gram, ssh to the compute node(s), and attach onto the MPI processes. Somewhere near the start of
your program, add a code snippet similar to the following:

{
int i = 9;
char host[256];
printf("PID %d on node %s is ready for attach\n",
getpid(), host);
fflush(stdout);
while (0 == i) {
sleep(5);
}

}

Recompile and launch the application. After it starts, ssh to the node(s) of interest and attach to the
process using CUDA-GDB. Set the variable i to 1 to break out of the loop:

$ mpirun -np 2 -host nv1,nv2 a.out
PID 20060 on node nv1l is ready for attach
PID 5488 on node nv2 is ready for attach

$ ssh nvi
[nv1]$ cuda-gdb --pid 5488

S ssh nv2
[nv2]$ cuda-gdb --pid 20060

For larger applications, you can conditionalize the spin loop based on the MPI rank using the
MPI_Comm_rank function.

For devices with compute capability below 6.0, the software preemption workaround described in
does not work with MPI applications. For those GPUs, ensure each MPI rank targets
a unique GPU.

If CUDA_VISIBLE_DEVICES is set, it may cause problems with the GPU selection logic in the MPI ap-
plication. It may also prevent CUDA IPC working between GPUs on a node.

13.3. Example: MPI CUDA Application 69

index.html#multiple-debuggers
index.html#multiple-debuggers

CUDA-GDB, Release 12.6

70 Chapter 13. Walk-Through Examples

Chapter 14. Tips and Tricks

This section serves as reference to advanced settings and various tips and tricks users of CUDA-GDB
can utilize which are not documented elsewhere.

14.1. set cuda break_on_launch

To break on the first instruction of every launched kernel, set the break_on_launch option to appli-
cation:

(cuda-gdb) set cuda break_on_launch application

Possible options are:

none
no kernel, application or system (default)

application
kernel launched by the user application

system
any kernel launched by the driver, such as memset

all any kernel, application and system

Those automatic breakpoints are not displayed by the info breakpoints command and are managed
separately from individual breakpoints. Turning off the option will not delete other individual break-
points set to the same address and vice-versa.

14.2. set cuda launch_blocking

When enabled, the kernel launches are synchronous as if the environment variable
CUDA_LAUNCH_BLOCKING had been set to 1. Once blocking, the launches are effectively serial-
ized and may be easier to debug.

» (cuda-gdb) set cuda launch_blocking off

The kernel launches are launched synchronously or asynchronously as dictacted by the applica-
tion. This is the default.

71

CUDA-GDB, Release 12.6

(cuda-gdb) set cuda launch_blocking on

The kernel launches are synchronous. If the application has already started, the change will only
take affect after the current session has terminated.

Any time a CUDA event occurs, the debugger needs to be notified. The notification takes place in
the form of a signal being sent to a host thread. The host thread to receive that special signal is
determined with the set cuda notify option.

(cuda-gdb) set cuda notify youngest

The host thread with the smallest thread id will receive the notification signal (default).

(cuda-gdb) set cuda notify random

An arbitrary host thread will receive the notification signal.

Before accessing the value of a variable, the debugger checks whether the variable is live or not at
the current PC. On CUDA devices, the variables may not be live all the time and will be reported as
“Optimized Out”.

CUDA-GDB offers an option to circumvent this limitation by caching the value of the variable at the
PTX register level. Each source variable is compiled into a PTX register, which is later mapped to one
or more hardware registers. Using the debug information emitted by the compiler, the debugger may
be able cache the value of a PTX register based on the latest hardware register it was mapped to at
an earlier time.

This optimization is always correct. When enabled, the cached value will be displayed as the normal
value read from an actual hardware register and indicated with the (cached) prefix. The optimization
will only kick in while single-stepping the code.

(cuda-gdb) set cuda ptx_cache off

The debugger only read the value of live variables.

(cuda-gdb) set cuda ptx_cache on

The debugger will use the cached value when possible. This setting is the default and is always
safe.

72 Chapter 14. Tips and Tricks

CUDA-GDB, Release 12.6

Single-stepping can take a lot of time. When enabled, this option tells the debugger to use safe tricks
to accelerate single-stepping.

(cuda-gdb) set cuda single_stepping_optimizations off

The debugger will not try to accelerate single-stepping. This is the unique and default behavior
in the 5.5 release and earlier.

(cuda-gdb) set cuda single_stepping_optimizations on

The debugger will use safe techniques to accelerate single-stepping. This is the default starting
with the 6.0 release.

When the debugger must choose an active thread to focus on, the decision is guided by a heuristics.
The set cuda thread_selection guides those heuristics.

(cuda-gdb) set cuda thread_selection logical

The thread with the lowest blockldx/threadldx coordinates is selected.

(cuda-gdb) set cuda thread_selection physical

The thread with the lowest dev/sm/warp/lane coordinates is selected.

Before accessing the value of a variable, the debugger checks whether the variable is live or not at
the current PC. On CUDA devices, the variables may not be live all the time and will be reported as
“Optimized Out”.

CUDA-GDB offers an option to opportunistically circumvent this limitation by extrapolating the value
of a variable when the debugger would otherwise mark it as optimized out. The extrapolation is not
guaranteed to be accurate and must be used carefully. If the register that was used to store the value
of a variable has been reused since the last time the variable was seen as live, then the reported value
will be wrong. Therefore, any value printed using the option will be marked as " (possibly)".

(cuda-gdb) set cuda value_extrapolation off

The debugger only read the value of live variables. This setting is the default and is always safe.

(cuda-gdb) set cuda value_extrapolation on

The debugger will attempt to extrapolate the value of variables beyound their respecitve live
ranges. This setting may report erroneous values.

14.5. set cuda single_stepping_optimizations 73

CUDA-GDB, Release 12.6

14.8. Debugging Docker Containers

When debugging an application within a Docker container, the PTRACE capability needs to be enabled.
The user needs to also ensure that the root file system has both read/write permissions set.

To enable the PTRACE capability, add the following to your Docker run command:
--cap-add=SYS_PTRACE

14.9. Switching to Classic Debugger Backend

A new debugger backend named the Unified Debugger (UD) has been introduced on Linux platforms
with the CTK 11.8 release. UD allows for a unified debugger backend shared with debugging tools
such as cuda-gdb and NVIDIA® Nsight™ VSE. UD is supported across multiple platforms including both
Windows and Linux. The end user experience with UD is transparent to existing tool use.

The previous debugger backend, known as the classic debugger backend, can still be used by setting
CUDBG_USE_LEGACY_DEBUGGER to 1 in the environment before starting CUDA-GDB.

UD is not supported on Maxwell GPUs. Users must switch to the classic debugger backend to debug
their applications on Maxwell GPUs.

14.10. Thread Block Clusters

CUDA applications that make use of Thread Block Clusters will see the cluster index displayed in the
CUDA focus. Both cluster index and cluster dimension can be queried by printing the convenience
variables clusterIdx and clusterDim.

14.11. Debugging OptiX/RTCore applications

When debugging programs built with OptiX/RTCore, it may be necessary to set the environment vari-
able OPTIX_FORCE_DEPRECATED_LAUNCHER to 1. If breakpoints are unable to be hit, try setting this
environment variable before starting your application.

14.12. Debugging on Windows Subsystem for
Linux

If you are unable to use the debugger on Windows Subsystem for Linux, make sure the debug interface
is enabled by setting the registry key >HKEY_LOCAL_MACHINE\SOFTWARE\NVIDIA Corporation\
GPUDebugger\EnableInterface to (DWORD) 1

74 Chapter 14. Tips and Tricks

Chapter 15. Supported Platforms

Host Platform Requirements

CUDA-GDB is supported on all the platforms supported by the CUDA toolkit with which it is shipped.
See the for more information.

GPU Requirements
Debugging is supported on all CUDA-capable GPUs supported by the current CUDA release.
GDB Python integration

GDB Python integration is supported in cuda-gdb with a multiple builds mechanism in order to support
multiple python3 interpreters across different platforms. The cuda-gdb program is a shell script that
selects the associated supported cuda-gdb binary based on the version of python available on the
system. Support exists for the following Python versions: Python 3.8, Python 3.9, Python 3.16,
Python 3.11,and Python 3.12

Windows Subsystem for Linux (WSL)
cuda-gdb supports debugging CUDA application on WSL2.

Make sure this capability is enabled via the registry key >HKEY_LOCAL_MACHINE\SOFTWARE\
NVIDIA Corporation\GPUDebugger\EnableInterface setto (DWORD) 1.

Debugging compute-intensive apps may require to

75

https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
https://learn.microsoft.com/en-us/windows-hardware/drivers/display/tdr-registry-keys

CUDA-GDB, Release 12.6

76 Chapter 15. Supported Platforms

Chapter 16. Common Issues on
Supported Operating
Systems

The following are known issues with the current release on supported operating systems and how to
fix them.

Python not initialized

This happens due to a missing Python 3.x library on the machine, installing it fixes the issue. This can
also be caused by having a mismatched major.minor version of libpython installed with the default
python3 interpreter in PATH. A libpython version matching the default python3 interpreter in PATH
must be available. The libpython version can be determined with the python3 --version command.
For example, the following command would tell us that a libpython3.8.s0* needs to be installed in a
default library search path:

$ python3 --version
Python 3.8.10

Specific commands to install the proper libpython are below.

RHEL 8/9
$ sudo yum -y install python3-libs

Debian 10/11/12
$ sudo apt-get -y install libpython3-stdlib

Fedora 39
$ sudo yum -y install python3-libs

OpenSUSE 15
$ sudo zypper install -y libpython3

Ubuntu 20.04/22.04
$ sudo apt-get -y install python3.8$ sudo apt-get -y install libpython3.8

77

CUDA-GDB, Release 12.6

78 Chapter 16. Common Issues on Supported Operating Systems

Chapter 17. Known Issues

The following are known issues with the current release.
Debugging on Hopper architecture with MCDM enabled is not supported on Windows or WSL.

Setting a breakpoint on a line within a __device__ or __global__ function before its module
is loaded may result in the breakpoint being temporarily set on the first line of a function below
in the source code. As soon as the module for the targeted function is loaded, the breakpoint
will be reset properly. In the meantime, the breakpoint may be hit, depending on the application.
In those situations, the breakpoint can be safely ignored, and the application can be resumed.

The scheduler-locking option cannot be set to on.

Stepping again after stepping out of a kernel results in undetermined behavior. It is recom-
mended to use the ‘continue’ command instead.

When remotely debugging 32-bit applications on a 64-bit server, the cuda-gdbserver binary used
must be 32-bit.

Attaching to a CUDA application with Software Preemption enabled in cuda-gdb is not supported.
Attaching to a CUDA application on QNX is not supported.
Attaching to a CUDA application running in MPS client mode is not supported.

Attaching to the MPS server process (nvidia-cuda-mps-server) using cuda-gdb, or starting the
MPS server with cuda-gdb is not supported.

If a CUDA application is started in the MPS client mode with cuda-gdb, the MPS client will wait
until all other MPS clients have terminated, and will then run as non-MPS application.

Significant performance degradation will occur when the debugger steps over inlined routines.

Because inlined code blocks may have multiple exit points, under the hood, the debugger steps every
single instruction until an exit point is reached, which incurs considerable cost for large routines. The
following actions are recommended to avoid this problem:

Avoid using __forceinline__ when declaring a function. (For code is compiled with debug
information, only routines declared with the __forceinline__ keyword are actually inlined)

Use the until <line#> command to step over inlined subroutines.

On Jetson, calls to the cuda API might result in the debugger jumping to _dI_catch_exception().
A workaround is to continue.

On Jetson and Drive devices GPU debugging works correctly only if the debugger is run with
the root permissions. Changes to devfs node permissions are required for the debugger to work
without running as root.

Debugger can miss reporting an induced trap(__trap()) in case it is the next instruction exe-
cuted after the device resumes from a breakpoint.

79

CUDA-GDB, Release 12.6

Debugger can miss reporting breakpoints or exceptions during resume in case new warps are
launched on a previously empty SM.

Debugger uses the libpython installed on the system. Use of Python scripting functionality will
expose cuda-gdb to the same vulnerabilities as those in the system libpython version. It is rec-
ommended to always keep the system libpython library up-to-date.

Debugger doesn’t support accesses to shared memory allocations that are imported from other
processes using the CUDA IPC APIs. Attempts to access these shared memory allocations by
the debugger will result in an error stating access to memory allocations shared via IPC is not
supported.

break_on_launch will not function with OptiX/RTCore programs unless OP-
TIX_FORCE_DEPRECATED_LAUNCHER is set to 1.

80

Chapter 17. Known Issues

Chapter 18. Notices

This document is provided for information purposes only and shall not be regarded as a warranty of a
certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no repre-
sentations or warranties, expressed or implied, as to the accuracy or completeness of the information
contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall
have no liability for the consequences or use of such information or for any infringement of patents
or other rights of third parties that may result from its use. This document is not a commitment to
develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any
other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that
such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the
time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by
authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA
product referenced in this document. No contractual obligations are formed either directly or indirectly
by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military,
aircraft, space, or life support equipment, nor in applications where failure or malfunction of the NVIDIA
product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or
applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for
any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA.
It is customer’s sole responsibility to evaluate and determine the applicability of any information con-
tained in this document, ensure the product is suitable and fit for the application planned by customer,
and perform the necessary testing for the application in order to avoid a default of the application or
the product. Weaknesses in customer’s product designs may affect the quality and reliability of the
NVIDIA product and may result in additional or different conditions and/or requirements beyond those
contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or prob-
lem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is
contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other
NVIDIA intellectual property right under this document. Information published by NVIDIA regarding
third-party products or services does not constitute a license from NVIDIA to use such products or

81

CUDA-GDB, Release 12.6

services or a warranty or endorsement thereof. Use of such information may require a license from a
third party under the patents or other intellectual property rights of the third party, or a license from
NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA
in writing, reproduced without alteration and in full compliance with all applicable export laws and
regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE
BEING PROVIDED “AS 1S.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WAR-
RANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CON-
SEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARIS-
ING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES. Notwithstanding any damages that customer might incur for any reason whatso-
ever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein
shall be limited in accordance with the Terms of Sale for the product.

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the
U.S. and other countries. Other company and product names may be trademarks of the respective
companies with which they are associated.

©2012-2024, NVIDIA Corporation & affiliates. All rights reserved

82 Chapter 18. Notices

	What is CUDA-GDB?
	Supported Features
	About This Document
	Release Notes
	Getting Started
	Setting Up the Debugger Environment
	Temporary Directory
	Using the CUDA-GDB debugger on Jetson and Drive Tegra devices

	Compiling the Application
	Debug Compilation
	Compilation With Linenumber Information
	Compiling For Specific GPU architectures

	Using the Debugger
	Single-GPU Debugging with the Desktop Manager Running
	Multi-GPU Debugging
	Remote Debugging
	Multiple Debuggers
	Attaching/Detaching

	CUDA-GDB Extensions
	Command Naming Convention
	Getting Help
	Initialization File
	GUI Integration
	GPU core dump support

	Kernel Focus
	Software Coordinates vs. Hardware Coordinates
	Current Focus
	Switching Focus

	Program Execution
	Interrupting the Application
	Single Stepping

	Breakpoints and Watchpoints
	Symbolic Breakpoints
	Line Breakpoints
	Address Breakpoints
	Kernel Entry Breakpoints
	Conditional Breakpoints
	Watchpoints

	Inspecting Program State
	Memory and Variables
	Variable Storage and Accessibility
	Info CUDA Commands
	info cuda devices
	info cuda sms
	info cuda warps
	info cuda lanes
	info cuda kernels
	info cuda blocks
	info cuda threads
	info cuda launch trace
	info cuda launch children
	info cuda contexts
	info cuda managed

	Disassembly
	Registers
	Const banks

	Event Notifications
	Context Events
	Kernel Events

	Automatic Error Checking
	Checking API Errors
	GPU Error Reporting
	Autostep

	Walk-Through Examples
	Example: bitreverse
	Walking through the Code

	Example: autostep
	Debugging with Autosteps

	Example: MPI CUDA Application

	Tips and Tricks
	set cuda break_on_launch
	set cuda launch_blocking
	set cuda notify
	set cuda ptx_cache
	set cuda single_stepping_optimizations
	set cuda thread_selection
	set cuda value_extrapolation
	Debugging Docker Containers
	Switching to Classic Debugger Backend
	Thread Block Clusters
	Debugging OptiX/RTCore applications
	Debugging on Windows Subsystem for Linux

	Supported Platforms
	Common Issues on Supported Operating Systems
	Known Issues
	Notices
	Notice
	OpenCL
	Trademarks

