
Maxwell Tuning Guide
Release 12.6

NVIDIA Corporation

Sep 24, 2024

Contents

1 NVIDIA Maxwell Compute Architecture 3

2 CUDA Best Practices 5

3 Application Compatibility 7

4 Maxwell Tuning 9
4.1 SMM . 9
4.1.1 Occupancy . 9
4.1.2 Instruction Scheduling . 9
4.1.3 Instruction Latencies . 10
4.1.4 Instruction Throughput . 10

4.2 Memory Throughput . 10
4.2.1 Unified L1/Texture Cache . 10

4.3 Shared Memory . 11
4.3.1 Shared Memory Capacity . 11
4.3.2 Shared Memory Bandwidth . 12
4.3.3 Fast Shared Memory Atomics . 12

4.4 Dynamic Parallelism . 12

5 Revision History 13

6 Notices 15
6.1 Notice . 15
6.2 OpenCL . 16
6.3 Trademarks . 16

i

ii

Maxwell Tuning Guide, Release 12.6

Tuning CUDA Applications for Maxwell

The programming guide to tuning CUDA Applications for GPUs based on the NVIDIA Maxwell Archi-
tecture.

Contents 1

Maxwell Tuning Guide, Release 12.6

2 Contents

Chapter 1. NVIDIA Maxwell Compute
Architecture

Maxwell is NVIDIA’s next-generation architecture for CUDA compute applications. Maxwell retains and
extends the same CUDA programming model as in previous NVIDIA architectures such as Fermi and
Kepler, and applications that follow the best practices for those architectures should typically see
speedups on the Maxwell architecture without any code changes. This guide summarizes the ways
that an application can be fine-tuned to gain additional speedups by leveraging Maxwell architectural
features.1

Maxwell introduces an all-new design for the Streaming Multiprocessor (SM) that dramatically im-
proves energy efficiency. Although the Kepler SMX design was extremely efficient for its generation,
through its development, NVIDIA’s GPU architects saw an opportunity for another big leap forward
in architectural efficiency; the Maxwell SM is the realization of that vision. Improvements to control
logic partitioning, workload balancing, clock-gating granularity, compiler-based scheduling, number of
instructions issued per clock cycle, and many other enhancements allow the Maxwell SM (also called
SMM) to far exceed Kepler SMX efficiency.

The first Maxwell-based GPU is codenamed GM107 and is designed for use in power-limited environ-
ments like notebooks and small form factor (SFF) PCs. GM107 is described in a whitepaper entitled
NVIDIA GeForce GTX 750 Ti: Featuring First-Generation Maxwell GPU Technology, Designed for Ex-
treme Performance per Watt.2

The first GPU using the second-generation Maxwell architecture is codenamed GM204. Second-
generation Maxwell GPUs retain the power efficiency of the earlier generation while delivering sig-
nificantly higher performance. GM204 is described in a whitepaper entitled NVIDIA GeForce GTX 980:
Featuring Maxwell, The Most Advanced GPU Ever Made.

Compute programming features of GM204 are similar to those of GM107, except where explicitly
noted in this guide. For details on the programming features discussed in this guide, please refer to
the CUDA C++ Programming Guide.

1 Throughout this guide, Fermi refers to devices of compute capability 2.x, Kepler refers to devices of compute capability 3.x,
andMaxwell refers to devices of compute capability 5.x.

2 The features of GM108 are similar to those of GM107.

3

http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce-GTX-750-Ti-Whitepaper.pdf
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce-GTX-750-Ti-Whitepaper.pdf
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_980_Whitepaper_FINAL.PDF
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_980_Whitepaper_FINAL.PDF
https://docs.nvidia.com/cuda/cuda-c-programming-guide/

Maxwell Tuning Guide, Release 12.6

4 Chapter 1. NVIDIA Maxwell Compute Architecture

Chapter 2. CUDA Best Practices

The performance guidelines and best practices described in the CUDA C++ Programming Guide and
the CUDA C++ Best Practices Guide apply to all CUDA-capable GPU architectures. Programmers must
primarily focus on following those recommendations to achieve the best performance.

The high-priority recommendations from those guides are as follows:

▶ Find ways to parallelize sequential code,

▶ Minimize data transfers between the host and the device,

▶ Adjust kernel launch configuration to maximize device utilization,

▶ Ensure global memory accesses are coalesced,

▶ Minimize redundant accesses to global memory whenever possible,

▶ Avoid long sequences of diverged execution by threads within the same warp.

5

https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/

Maxwell Tuning Guide, Release 12.6

6 Chapter 2. CUDA Best Practices

Chapter 3. Application Compatibility

Before addressing specific performance tuning issues covered in this guide, refer to theMaxwell Com-
patibility Guide for CUDA Applications to ensure that your application is compiled in a way that is com-
patible with Maxwell.

7

https://docs.nvidia.com/cuda/maxwell-compatibility-guide/
https://docs.nvidia.com/cuda/maxwell-compatibility-guide/

Maxwell Tuning Guide, Release 12.6

8 Chapter 3. Application Compatibility

Chapter 4. Maxwell Tuning

4.1. SMM

The Maxwell Streaming Multiprocessor, SMM, is similar in many respects to the Kepler architecture’s
SMX. The key enhancements of SMM over SMX are geared toward improving efficiency without re-
quiring significant increases in available parallelism per SM from the application.

4.1.1. Occupancy

Themaximum number of concurrent warps per SMM remains the same as in SMX (i.e., 64), and factors
influencing warp occupancy remain similar or improved over SMX:

▶ The register file size (64k 32-bit registers) is the same as that of SMX.

▶ The maximum registers per thread, 255, matches that of Kepler GK110. As with Kepler, experi-
mentation should be used to determine the optimum balance of register spilling vs. occupancy,
however.

▶ The maximum number of thread blocks per SM has been increased from 16 to 32. This should
result in an automatic occupancy improvement for kernelswith small thread blocks of 64 or fewer
threads (sharedmemory and register file resource requirements permitting). Such kernels would
have tended to under-utilize SMX, but less so SMM.

▶ Shared memory capacity is increased (see Shared Memory Capacity).

As such, developers can expect similar or improved occupancy on SMMwithout changes to their appli-
cation. At the same time, warp occupancy requirements (i.e., available parallelism) for maximum device
utilization are similar to or less than those of SMX (see Instruction Latencies).

4.1.2. Instruction Scheduling

The number of CUDA Cores per SM has been reduced to a power of two, however with Maxwell’s im-
proved execution efficiency, performance per SM is usually within 10% of Kepler performance, and
the improved area efficiency of SMMmeans CUDA Cores per GPU will be substantially higher vs. com-
parable Fermi or Kepler chips. SMM retains the same number of instruction issue slots per clock and
reduces arithmetic latencies compared to the Kepler design.

As with SMX, each SMMhas four warp schedulers. Unlike SMX, however, all SMM core functional units
are assigned to a particular scheduler, with no shared units. Alongwith the selection of a power-of-two

9

https://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
https://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
index.html#shared-memory-capacity
index.html#smm-latencies

Maxwell Tuning Guide, Release 12.6

number of CUDA Cores per SM, which simplifies scheduling and reduces stall cycles, this partitioning
of SM computational resources in SMM is a major component of the streamlined efficiency of SMM.

The power-of-two number of CUDA Cores per partition simplifies scheduling, as each of SMM’s warp
schedulers issue to a dedicated set of CUDA Cores equal to the warp width. Each warp scheduler still
has the flexibility to dual-issue (such as issuing a math operation to a CUDA Core in the same cycle
as a memory operation to a load/store unit), but single-issue is now sufficient to fully utilize all CUDA
Cores.

4.1.3. Instruction Latencies

Anothermajor improvement of SMM is that dependentmath latencies have been significantly reduced;
a consequence of this is a further reduction of stall cycles, as the available warp-level parallelism (i.e.,
occupancy) on SMM should be equal to or greater than that of SMX (see Occupancy), while at the
same time each math operation takes less time to complete, improving utilization and throughput.

4.1.4. Instruction Throughput

The most significant changes to peak instruction throughputs in SMM are as follows:

▶ The change in number of CUDA Cores per SM brings with it a corresponding change in peak
single-precision floating point operations per clock per SM. However, since the number of SMs
is typically increased, the result is an increase in aggregate peak throughput; furthermore, the
scheduling and latency improvements also discussed above make this peak easier to approach.

▶ The throughput of many integer operations including multiply, logical operations and shift is im-
proved. In addition, there are now specialized integer instructions that can accelerate pointer
arithmetic. These instructions are most efficient when data structures are a power of two in
size.

Note: As was already the recommended best practice, signed arithmetic should be preferred over
unsigned arithmetic wherever possible for best throughput on SMM. The C language standard places
more restrictions on overflow behavior for unsigned math, limiting compiler optimization opportuni-
ties.

4.2. Memory Throughput

4.2.1. Unified L1/Texture Cache

Maxwell combines the functionality of the L1 and texture caches into a single unit.

As with Kepler, global loads inMaxwell are cached in L2 only, unless using the LDG read-only data cache
mechanism introduced in Kepler.

In a manner similar to Kepler GK110B, GM204 retains this behavior by default but also allows applica-
tions to opt-in to caching of global loads in its unified L1/Texture cache. The opt-in mechanism is the
same as with GK110B: pass the -Xptxas -dlcm=ca flag to nvcc at compile time.

10 Chapter 4. Maxwell Tuning

index.html#smm-occupancy
index.html#smm-scheduling

Maxwell Tuning Guide, Release 12.6

Local loads also are cached in L2 only, which could increase the cost of register spilling if L1 local
load hit rates were high with Kepler. The balance of occupancy versus spilling should therefore be
reevaluated to ensure best performance. Especially given the improvements to arithmetic latencies,
code built for Maxwell may benefit from somewhat lower occupancy (due to increased registers per
thread) in exchange for lower spilling.

The unified L1/texture cache acts as a coalescing buffer for memory accesses, gathering up the data
requested by the threads of a warp prior to delivery of that data to the warp. This function previously
was served by the separate L1 cache in Fermi and Kepler.

Two new device attributes were added in CUDA Toolkit 6.0: globalL1CacheSupported and lo-
calL1CacheSupported. Developers who wish to have separately-tuned paths for various architec-
ture generations can use these fields to simplify the path selection process.

Note: Enabling caching of globals in GM204 can affect occupancy. If per-thread-block SM resource
usage would result in zero occupancy with caching enabled, the CUDA driver will override the caching
selection to allow the kernel launch to succeed. This situation is reported by the profiler.

4.3. Shared Memory

4.3.1. Shared Memory Capacity

With Fermi and Kepler, sharedmemory and the L1 cache shared the same on-chip storage. Maxwell, by
contrast, provides dedicated space to the shared memory of each SMM, since the functionality of the
L1 and texture caches have been merged in SMM. This increases the shared memory space available
per SMM as compared to SMX: GM107 provides 64 KB shared memory per SMM, and GM204 further
increases this to 96 KB shared memory per SMM.

This presents several benefits to application developers:

▶ Algorithms with significant shared memory capacity requirements (e.g., radix sort) see an au-
tomatic 33% to 100% boost in capacity per SM on top of the aggregate boost from higher SM
count.

▶ Applications no longer need to select a preference of the L1/shared split for optimal perfor-
mance. For purposes of backward compatibility with Fermi and Kepler, applications may option-
ally continue to specify such a preference, but the preference will be ignored on Maxwell, with
the full 64 KB per SMM always going to shared memory.

Note: While the per-SM shared memory capacity is increased in SMM, the per-thread-block limit
remains 48 KB. Formaximumflexibility on possible future GPUs, NVIDIA recommends that applications
use at most 32 KB of shared memory in any one thread block, which would for example allow at least
two such thread blocks to fit per SMM.

4.3. Shared Memory 11

Maxwell Tuning Guide, Release 12.6

4.3.2. Shared Memory Bandwidth

Kepler SMX introduced an optional 8-byte shared memory banking mode, which had the potential
to increase shared memory bandwidth per SM over Fermi for shared memory accesses of 8 or 16
bytes. However, applications could only benefit from this when storing these larger elements in shared
memory (i.e., integers and fp32 values saw no benefit), and only when the developer explicitly opted
into the 8-byte bank mode via the API.

To simplify this, Maxwell returns to the Fermi style of sharedmemory banking, where banks are always
four bytes wide. Aggregate shared memory bandwidth across the chip remains comparable to that
of corresponding Kepler chips, given increased SM count. In this way, all applications using shared
memory can now benefit from the higher bandwidth, even when storing only four-byte items into
shared memory and without specifying any particular preference via the API.

4.3.3. Fast Shared Memory Atomics

Kepler introduced a dramatically higher throughput for atomic operations to global memory as com-
pared to Fermi. However, atomic operations to sharedmemory remained essentially unchanged: both
architectures implemented shared memory atomics using a lock/update/unlock pattern that could be
expensive in the case of high contention for updates to particular locations in shared memory.

Maxwell improves upon this by implementing native shared memory atomic operations for 32-bit in-
tegers and native shared memory 32-bit and 64-bit compare-and-swap (CAS), which can be used to
implement other atomic functions with reduced overhead compared to the Fermi and Keplermethods.

Note: Refer to the CUDA C++ Programming Guide for an example implementation of an fp64 atom-
icAdd() using atomicCAS().

4.4. Dynamic Parallelism

GK110 introduced a new architectural feature called Dynamic Parallelism, which allows the GPU to
create additional work for itself. A programming model enhancement leveraging this feature was in-
troduced in CUDA 5.0 to enable kernels running on GK110 to launch additional kernels onto the same
GPU.

SMM brings Dynamic Parallelism into the mainstream by supporting it across the product line, even in
lower-power chips such as GM107. This will benefit developers, as it means that applications will no
longer need special-case algorithm implementations for high-end GPUs that differ from those usable
in more power-constrained environments.

12 Chapter 4. Maxwell Tuning

https://docs.nvidia.com/cuda/cuda-c-programming-guide/

Chapter 5. Revision History

Version 1.0

▶ Initial Public Release

Version 1.1

▶ Updated for second-generation Maxwell (compute capability 5.2).

Version 1.2

▶ Updated references to the CUDA C++ Programming Guide and CUDA C++ Best Practices Guide.

13

Maxwell Tuning Guide, Release 12.6

14 Chapter 5. Revision History

Chapter 6. Notices

6.1. Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a
certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no repre-
sentations or warranties, expressed or implied, as to the accuracy or completeness of the information
contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall
have no liability for the consequences or use of such information or for any infringement of patents
or other rights of third parties that may result from its use. This document is not a commitment to
develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any
other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that
such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the
time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by
authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA
product referenced in this document. No contractual obligations are formed either directly or indirectly
by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military,
aircraft, space, or life support equipment, nor in applicationswhere failure ormalfunction of theNVIDIA
product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or
applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIAmakes no representation or warranty that products based on this document will be suitable for
any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA.
It is customer’s sole responsibility to evaluate and determine the applicability of any information con-
tained in this document, ensure the product is suitable and fit for the application planned by customer,
and perform the necessary testing for the application in order to avoid a default of the application or
the product. Weaknesses in customer’s product designs may affect the quality and reliability of the
NVIDIA product andmay result in additional or different conditions and/or requirements beyond those
contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or prob-
lem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is
contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other
NVIDIA intellectual property right under this document. Information published by NVIDIA regarding
third-party products or services does not constitute a license from NVIDIA to use such products or

15

Maxwell Tuning Guide, Release 12.6

services or a warranty or endorsement thereof. Use of such information may require a license from a
third party under the patents or other intellectual property rights of the third party, or a license from
NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA
in writing, reproduced without alteration and in full compliance with all applicable export laws and
regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENTANDALLNVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE
BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WAR-
RANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENTWILL NVIDIA BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CON-
SEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARIS-
ING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCHDAMAGES. Notwithstanding any damages that customermight incur for any reasonwhatso-
ever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein
shall be limited in accordance with the Terms of Sale for the product.

6.2. OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

6.3. Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the
U.S. and other countries. Other company and product names may be trademarks of the respective
companies with which they are associated.

Copyright

©2014-2024, NVIDIA Corporation & affiliates. All rights reserved

16 Chapter 6. Notices

	NVIDIA Maxwell Compute Architecture
	CUDA Best Practices
	Application Compatibility
	Maxwell Tuning
	SMM
	Occupancy
	Instruction Scheduling
	Instruction Latencies
	Instruction Throughput

	Memory Throughput
	Unified L1/Texture Cache

	Shared Memory
	Shared Memory Capacity
	Shared Memory Bandwidth
	Fast Shared Memory Atomics

	Dynamic Parallelism

	Revision History
	Notices
	Notice
	OpenCL
	Trademarks

