
Release Notes
Release 12.8

NVIDIA Corporation

May 05, 2025

Contents

1 CUDA Toolkit Major Component Versions 3

2 New Features 9
2.1 CUDA Compiler . 10
2.2 CUDA Developer Tools . 10

3 Resolved Issues 11
3.1 CUDA Compiler . 11

4 Known Issues and Limitations 13
4.1 CUDA . 13
4.2 CUDA Compiler . 14

5 Deprecated or Dropped Features 15
5.1 Deprecated Architectures . 15
5.2 Deprecated or Dropped Operating Systems . 15
5.3 Deprecated CUDA Tools . 16

6 CUDA Libraries 17
6.1 cuBLAS Library . 17
6.1.1 cuBLAS: Release 12.8 Update 1 . 17
6.1.2 cuBLAS: Release 12.8 . 18
6.1.3 cuBLAS: Release 12.6 Update 2 . 18
6.1.4 cuBLAS: Release 12.6 Update 1 . 19
6.1.5 cuBLAS: Release 12.6 . 19
6.1.6 cuBLAS: Release 12.5 Update 1 . 20
6.1.7 cuBLAS: Release 12.5 . 20
6.1.8 cuBLAS: Release 12.4 Update 1 . 21
6.1.9 cuBLAS: Release 12.4 . 21
6.1.10 cuBLAS: Release 12.3 Update 1 . 22
6.1.11 cuBLAS: Release 12.3 . 23
6.1.12 cuBLAS: Release 12.2 Update 2 . 23
6.1.13 cuBLAS: Release 12.2 . 23
6.1.14 cuBLAS: Release 12.1 Update 1 . 24
6.1.15 cuBLAS: Release 12.0 Update 1 . 24
6.1.16 cuBLAS: Release 12.0 . 25

6.2 cuFFT Library . 26
6.2.1 cuFFT: Release 12.8 Update 1 . 26
6.2.2 cuFFT: Release 12.8 . 26
6.2.3 cuFFT: Release 12.6 Update 2 . 27
6.2.4 cuFFT: Release 12.6 . 27
6.2.5 cuFFT: Release 12.5 . 27
6.2.6 cuFFT: Release 12.4 Update 1 . 27
6.2.7 cuFFT: Release 12.4 . 28

i

6.2.8 cuFFT: Release 12.3 Update 1 . 28
6.2.9 cuFFT: Release 12.3 . 28
6.2.10 cuFFT: Release 12.2 . 29
6.2.11 cuFFT: Release 12.1 Update 1 . 29
6.2.12 cuFFT: Release 12.1 . 29
6.2.13 cuFFT: Release 12.0 Update 1 . 30
6.2.14 cuFFT: Release 12.0 . 30

6.3 cuSOLVER Library . 30
6.3.1 cuSOLVER: Release 12.8 . 30
6.3.2 cuSOLVER: Release 12.6 Update 2 . 31
6.3.3 cuSOLVER: Release 12.6 . 31
6.3.4 cuSOLVER: Release 12.5 Update 1 . 31
6.3.5 cuSOLVER: Release 12.5 . 32
6.3.6 cuSOLVER: Release 12.4 Update 1 . 32
6.3.7 cuSOLVER: Release 12.4 . 33
6.3.8 cuSOLVER: Release 12.2 Update 2 . 33
6.3.9 cuSOLVER: Release 12.2 . 33

6.4 cuSPARSE Library . 34
6.4.1 cuSPARSE: Release 12.8 Update 1 . 34
6.4.2 cuSPARSE: Release 12.8 . 34
6.4.3 cuSPARSE: Release 12.6 Update 2 . 35
6.4.4 cuSPARSE: Release 12.6 . 36
6.4.5 cuSPARSE: Release 12.5 Update 1 . 36
6.4.6 cuSPARSE: Release 12.5 . 36
6.4.7 cuSPARSE: Release 12.4 . 37
6.4.8 cuSPARSE: Release 12.3 Update 1 . 37
6.4.9 cuSPARSE: Release 12.3 . 37
6.4.10 cuSPARSE: Release 12.2 Update 1 . 38
6.4.11 cuSPARSE: Release 12.1 Update 1 . 38
6.4.12 cuSPARSE: Release 12.0 Update 1 . 38
6.4.13 cuSPARSE: Release 12.0 . 39

6.5 Math Library . 39
6.5.1 CUDA Math: Release 12.8 Update 1 . 39
6.5.2 CUDA Math: Release 12.8 . 40
6.5.3 CUDA Math: Release 12.6 Update 1 . 40
6.5.4 CUDA Math: Release 12.6 . 41
6.5.5 CUDA Math: Release 12.5 . 41
6.5.6 CUDA Math: Release 12.4 . 41
6.5.7 CUDA Math: Release 12.3 . 41
6.5.8 CUDA Math: Release 12.2 . 42
6.5.9 CUDA Math: Release 12.1 . 42
6.5.10 CUDA Math: Release 12.0 . 42

6.6 NVIDIA Performance Primitives (NPP) . 43
6.6.1 NPP: Release 12.4 . 43
6.6.2 NPP: Release 12.0 . 43

6.7 nvJPEG Library . 43
6.7.1 nvJPEG: Release 12.8 . 43
6.7.2 nvJPEG: Release 12.4 . 44
6.7.3 nvJPEG: Release 12.3 Update 1 . 44
6.7.4 nvJPEG: Release 12.2 . 44
6.7.5 nvJPEG: Release 12.0 . 44

7 Notices 45
7.1 Notice . 45

ii

7.2 OpenCL . 46
7.3 Trademarks . 46

iii

iv

Release Notes, Release 12.8

NVIDIA CUDA Toolkit Release Notes

The Release Notes for the CUDA Toolkit.

The release notes for the NVIDIA® CUDA® Toolkit can be found online at https://docs.nvidia.com/cuda/
cuda-toolkit-release-notes/index.html.

Note: The release notes have been reorganized into two major sections: the general CUDA release
notes, and the CUDA libraries release notes including historical information for 12.x releases.

Contents 1

https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html

Release Notes, Release 12.8

2 Contents

Chapter 1. CUDA Toolkit Major
Component Versions

CUDA Components
Starting with CUDA 11, the various components in the toolkit are versioned independently.

For CUDA 12.8, the table below indicates the versions:

Table 1: CUDA 12.8 Update 1 Component Versions

Component Name Version Informa-
tion

Supported Archi-
tectures

Supported Plat-
forms

CUDA C++ Core
Compute Li-
braries

Thrust 2.7.0 x86_64, arm64-
sbsa, aarch64-
jetson

Linux, Windows

CUB 2.7.0

libcu++ 2.7.0

Cooperative
Groups

12.8.90

CUDA Compatibility 12.8.39468522 aarch64-jetson Linux

CUDA Runtime (cudart) 12.8.90 x86_64, arm64-
sbsa, aarch64-
jetson

Linux, Windows,
WSL

cuobjdump 12.8.90 x86_64, arm64-
sbsa, aarch64-
jetson

Linux, Windows

CUPTI 12.8.90 x86_64, arm64-
sbsa, aarch64-
jetson

Linux, Windows,
WSL

CUDA cuxxfilt (demangler) 12.8.90 x86_64, arm64-
sbsa, aarch64-
jetson

Linux, Windows

CUDA Demo Suite 12.8.90 x86_64 Linux, Windows

CUDA GDB 12.8.90 x86_64, arm64-
sbsa, aarch64-
jetson

Linux, WSL

continues on next page

3

Release Notes, Release 12.8

Table 1 – continued from previous page

Component Name Version Informa-
tion

Supported Archi-
tectures

Supported Plat-
forms

CUDA Nsight Eclipse Plugin 12.8.90 x86_64 Linux

CUDA NVCC 12.8.90 x86_64, arm64-
sbsa, aarch64-
jetson

Linux, Windows,
WSL

CUDA nvdisasm 12.8.90 x86_64, arm64-
sbsa, aarch64-
jetson

Linux, Windows

CUDA NVML Headers 12.8.90 x86_64, arm64-
sbsa, aarch64-
jetson

Linux, Windows,
WSL

CUDA nvprof 12.8.90 x86_64 Linux, Windows

CUDA nvprune 12.8.90 x86_64, arm64-
sbsa, aarch64-
jetson

Linux, Windows,
WSL

CUDA NVRTC 12.8.93 x86_64, arm64-
sbsa, aarch64-
jetson

Linux, Windows,
WSL

NVTX 12.8.90 x86_64, arm64-
sbsa, aarch64-
jetson

Linux, Windows,
WSL

CUDA NVVP 12.8.93 x86_64 Linux, Windows

CUDA OpenCL 12.8.90 x86_64 Linux, Windows

CUDA Profiler API 12.8.90 x86_64, arm64-
sbsa, aarch64-
jetson

Linux, Windows,
WSL

CUDA Compute Sanitizer API 12.8.93 x86_64, arm64-
sbsa, aarch64-
jetson

Linux, Windows,
WSL

CUDA cuBLAS 12.8.4.1 x86_64, arm64-
sbsa, aarch64-
jetson

Linux, Windows,
WSL

cuDLA 12.8.90 aarch64-jetson Linux

CUDA cuFFT 11.3.3.76 x86_64, arm64-
sbsa, aarch64-
jetson

Linux, Windows,
WSL

CUDA cuFile 1.13.1.3 x86_64, arm64-
sbsa, aarch64-
jetson

Linux

continues on next page

4 Chapter 1. CUDA Toolkit Major Component Versions

Release Notes, Release 12.8

Table 1 – continued from previous page

Component Name Version Informa-
tion

Supported Archi-
tectures

Supported Plat-
forms

CUDA cuRAND 10.3.9.90 x86_64, arm64-
sbsa, aarch64-
jetson

Linux, Windows,
WSL

CUDA cuSOLVER 11.7.3.90 x86_64, arm64-
sbsa, aarch64-
jetson

Linux, Windows,
WSL

CUDA cuSPARSE 12.5.8.88 x86_64, arm64-
sbsa, aarch64-
jetson

Linux, Windows,
WSL

CUDA NPP 12.3.3.100 x86_64, arm64-
sbsa, aarch64-
jetson

Linux, Windows,
WSL

CUDA nvFatbin 12.8.90 x86_64, arm64-
sbsa, aarch64-
jetson

Linux, Windows,
WSL

CUDA nvJitLink 12.8.93 x86_64, arm64-
sbsa, aarch64-
jetson

Linux, Windows,
WSL

CUDA nvJPEG 12.3.5.92 x86_64, arm64-
sbsa, aarch64-
jetson

Linux, Windows,
WSL

Nsight Compute 2025.1.1.2 x86_64, arm64-
sbsa, aarch64-
jetson

Linux, Windows,
WSL (Windows
11)

Nsight Systems 2024.6.2.225 x86_64, arm64-
sbsa

Linux, Windows,
WSL

Nsight Visual Studio Edition (VSE) 2025.1.0.25055 x86_64 (Win-
dows)

Windows

nvidia_fs1 2.24.3 x86_64, arm64-
sbsa, aarch64-
jetson

Linux

Visual Studio Integration 12.8.90 x86_64 (Win-
dows)

Windows

NVIDIA Linux Driver 570.86.10 x86_64, arm64-
sbsa

Linux

NVIDIA Windows Driver 572.61 x86_64 (Win-
dows)

Windows, WSL

CUDA Driver
Running a CUDA application requires the system with at least one CUDA capable GPU and a
driver that is compatible with the CUDA Toolkit. See Table 3. For more information various GPU

1 Only available on select Linux distros

5

index.html#cuda-major-component-versions__table-cuda-toolkit-driver-versions

Release Notes, Release 12.8

products that are CUDA capable, visit https://developer.nvidia.com/cuda-gpus.

Each release of the CUDAToolkit requires aminimumversion of the CUDAdriver. The CUDAdriver
is backward compatible, meaning that applications compiled against a particular version of the
CUDA will continue to work on subsequent (later) driver releases.

More information on compatibility can be found at https://docs.nvidia.com/cuda/
cuda-c-best-practices-guide/index.html#cuda-compatibility-and-upgrades.

Note: Starting with CUDA 11.0, the toolkit components are individually versioned, and the toolkit
itself is versioned as shown in the table below.

The minimum required driver version for CUDA minor version compatibility is shown be-
low. CUDA minor version compatibility is described in detail in https://docs.nvidia.com/deploy/
cuda-compatibility/index.html

Table 2: CUDA Toolkit andMinimumRequired Driver Version for
CUDA Minor Version Compatibility

CUDA Toolkit Minimum Required Driver Version for
CUDA Minor Version Compatibility*

Linux x86_64 Driver
Version

Windows x86_64
Driver Version

CUDA 12.x >=525.60.13 >=528.33

CUDA 11.8.x CUDA 11.7.x CUDA 11.6.x CUDA 11.5.x
CUDA 11.4.x CUDA 11.3.x CUDA 11.2.x CUDA 11.1.x

>=450.80.02 >=452.39

CUDA 11.0 (11.0.3) >=450.36.06** >=451.22**

* Using a Minimum Required Version that is different from Toolkit Driver Version could be allowed in
compatibility mode – please read the CUDA Compatibility Guide for details.

** CUDA 11.0 was released with an earlier driver version, but by upgrading to Tesla Recommended
Drivers 450.80.02 (Linux) / 452.39 (Windows), minor version compatibility is possible across the CUDA
11.x family of toolkits.

The version of the development NVIDIA GPU Driver packaged in each CUDA Toolkit release is shown
below.

Table 3: CUDA Toolkit and Corresponding Driver Versions

CUDA Toolkit Toolkit Driver Version

Linux x86_64 Driver Version Windows x86_64 Driver Ver-
sion

CUDA 12.8 Update 1 >=570.124.06 >=572.61

CUDA 12.8 GA >=570.117 >=572.30

CUDA 12.6 Update 3 >=560.35.05 >=561.17

CUDA 12.6 Update 2 >=560.35.03 >=560.94

CUDA 12.6 Update 1 >=560.35.03 >=560.94

CUDA 12.6 GA >=560.28.03 >=560.76

continues on next page

6 Chapter 1. CUDA Toolkit Major Component Versions

https://developer.nvidia.com/cuda-gpus
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#cuda-compatibility-and-upgrades
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#cuda-compatibility-and-upgrades
https://docs.nvidia.com/deploy/cuda-compatibility/index.html
https://docs.nvidia.com/deploy/cuda-compatibility/index.html

Release Notes, Release 12.8

Table 3 – continued from previous page

CUDA Toolkit Toolkit Driver Version

CUDA 12.5 Update 1 >=555.42.06 >=555.85

CUDA 12.5 GA >=555.42.02 >=555.85

CUDA 12.4 Update 1 >=550.54.15 >=551.78

CUDA 12.4 GA >=550.54.14 >=551.61

CUDA 12.3 Update 1 >=545.23.08 >=546.12

CUDA 12.3 GA >=545.23.06 >=545.84

CUDA 12.2 Update 2 >=535.104.05 >=537.13

CUDA 12.2 Update 1 >=535.86.09 >=536.67

CUDA 12.2 GA >=535.54.03 >=536.25

CUDA 12.1 Update 1 >=530.30.02 >=531.14

CUDA 12.1 GA >=530.30.02 >=531.14

CUDA 12.0 Update 1 >=525.85.12 >=528.33

CUDA 12.0 GA >=525.60.13 >=527.41

CUDA 11.8 GA >=520.61.05 >=520.06

CUDA 11.7 Update 1 >=515.48.07 >=516.31

CUDA 11.7 GA >=515.43.04 >=516.01

CUDA 11.6 Update 2 >=510.47.03 >=511.65

CUDA 11.6 Update 1 >=510.47.03 >=511.65

CUDA 11.6 GA >=510.39.01 >=511.23

CUDA 11.5 Update 2 >=495.29.05 >=496.13

CUDA 11.5 Update 1 >=495.29.05 >=496.13

CUDA 11.5 GA >=495.29.05 >=496.04

CUDA 11.4 Update 4 >=470.82.01 >=472.50

CUDA 11.4 Update 3 >=470.82.01 >=472.50

CUDA 11.4 Update 2 >=470.57.02 >=471.41

CUDA 11.4 Update 1 >=470.57.02 >=471.41

CUDA 11.4.0 GA >=470.42.01 >=471.11

CUDA 11.3.1 Update 1 >=465.19.01 >=465.89

CUDA 11.3.0 GA >=465.19.01 >=465.89

CUDA 11.2.2 Update 2 >=460.32.03 >=461.33

CUDA 11.2.1 Update 1 >=460.32.03 >=461.09

CUDA 11.2.0 GA >=460.27.03 >=460.82

continues on next page

7

Release Notes, Release 12.8

Table 3 – continued from previous page

CUDA Toolkit Toolkit Driver Version

CUDA 11.1.1 Update 1 >=455.32 >=456.81

CUDA 11.1 GA >=455.23 >=456.38

CUDA 11.0.3 Update 1 >= 450.51.06 >= 451.82

CUDA 11.0.2 GA >= 450.51.05 >= 451.48

CUDA 11.0.1 RC >= 450.36.06 >= 451.22

CUDA 10.2.89 >= 440.33 >= 441.22

CUDA 10.1 (10.1.105 general release,
and updates)

>= 418.39 >= 418.96

CUDA 10.0.130 >= 410.48 >= 411.31

CUDA 9.2 (9.2.148 Update 1) >= 396.37 >= 398.26

CUDA 9.2 (9.2.88) >= 396.26 >= 397.44

CUDA 9.1 (9.1.85) >= 390.46 >= 391.29

CUDA 9.0 (9.0.76) >= 384.81 >= 385.54

CUDA 8.0 (8.0.61 GA2) >= 375.26 >= 376.51

CUDA 8.0 (8.0.44) >= 367.48 >= 369.30

CUDA 7.5 (7.5.16) >= 352.31 >= 353.66

CUDA 7.0 (7.0.28) >= 346.46 >= 347.62

For convenience, the NVIDIA driver is installed as part of the CUDA Toolkit installation. Note that this
driver is for development purposes and is not recommended for use in production with Tesla GPUs.

For running CUDA applications in production with Tesla GPUs, it is recommended to download the
latest driver for Tesla GPUs from the NVIDIA driver downloads site at https://www.nvidia.com/drivers.

During the installation of the CUDA Toolkit, the installation of the NVIDIA driver may be skipped on
Windows (when using the interactive or silent installation) or on Linux (by using meta packages).

For more information on customizing the install process on Windows, see https://docs.nvidia.com/
cuda/cuda-installation-guide-microsoft-windows/index.html#install-cuda-software.

For meta packages on Linux, see https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.
html#package-manager-metas.

8 Chapter 1. CUDA Toolkit Major Component Versions

https://www.nvidia.com/drivers
https://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html#install-cuda-software
https://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html#install-cuda-software
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#package-manager-metas
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#package-manager-metas

Chapter 2. New Features

▶ This release adds compiler support for the following Nvidia Blackwell GPU architectures:

▶ SM_100

▶ SM_101

▶ SM_120

▶ Tegra-Specific:

▶ Added MPS support for DRIVE OS QNX

▶ Added support for GCC 13.2.0

▶ Added support for Unified Virtual Memory (UVM) with Extended GPU Memory (EGM) arrays

▶ Hopper Confidential Computing:

▶ Added multi-GPU support for protected PCIe mode

▶ Added key rotation capability for single GPU passthrough mode

▶ NVML Updates:

▶ Fixed per-process memory usage reporting for Docker containers using Open GPU Kernel
Module drivers

▶ Added support for DRAM encryption query and control (Blackwell)

▶ Added checkpoint/restore functionality for userspace applications

▶ Added support for Blackwell reduced bandwidth mode (RBM)

▶ CUDA Graphs:

▶ Added conditional execution features for CUDA Graphs:

▶ ELSE graph support for IF nodes

▶ SWITCH node support

▶ Introduced additional performance optimizations

▶ CUDA Usermode Driver (UMD):

▶ Added PCIe device ID to CUDA device properties

▶ Added cudaStreamGetDevice and cuStreamGetDevice APIs to retrieve the device associ-
ated with a CUDA stream

▶ Added CUDA support for INT101010 texture/surface format

9

Release Notes, Release 12.8

▶ Added batch CUDA asynchronous memory copy APIs (cuMemcpyBatchAsync and cuMem-
cpyBatch3DAsync) for variable-sized transfers between multiple source and destination
buffers

▶ Userspace Checkpoint and Restore:

▶ Added new driver API for checkpoint/restore operations

2.1. CUDA Compiler

▶ For changes to PTX, refer to https://docs.nvidia.com/cuda/parallel-thread-execution/
#ptx-isa-version-8-7.

▶ Added two new nvcc flags:

▶ static-global-template-stub {true|false}: Controls host side linkage for
global/device/constant/managed templates in whole program mode

▶ device-entity-has-hidden-visibility {true|false}: Controls ELF visibility of
global/device/constant/managed symbols

The current default value for both flags is false. These defaults will change to true in our future
release. For detailed information about these flags and their impact on existing programs, refer
to the nvcc --help command or the online CUDA documentation.

▶ libNVVM

libNVVM now supports compilation for the Blackwell family of architectures. Compilation of
compute capabilities compute_100 and greater (Blackwell and future architectures) uses an up-
dated NVVM IR dialect, based on LLVM 18.1.8 IR (the “modern” dialect) that differs from the
older dialect used for pre-Blackwell architectures (a compute capability less than compute_100).
NVVM IR bitcode using the older dialect generated for pre-Blackwell architectures can be used
to target Blackwell and later architectures, with the exception of debug metadata.

▶ nvdisasm

Nvdisasm now supports emitting JSON formatted SASS disassembly.

2.2. CUDA Developer Tools

▶ For changes to nvprof and Visual Profiler, see the changelog.

▶ For new features, improvements, and bug fixes in Nsight Systems, see the changelog.

▶ For new features, improvements, and bug fixes in Nsight Visual Studio Edition, see the changelog.

▶ For new features, improvements, and bug fixes in CUPTI, see the changelog.

▶ For new features, improvements, and bug fixes in Nsight Compute, see the changelog.

▶ For new features, improvements, and bug fixes in Compute Sanitizer, see the changelog.

▶ For new features, improvements, and bug fixes in CUDA-GDB, see the changelog.

10 Chapter 2. New Features

https://docs.nvidia.com/cuda/parallel-thread-execution/#ptx-isa-version-8-7
https://docs.nvidia.com/cuda/parallel-thread-execution/#ptx-isa-version-8-7
https://docs.nvidia.com/cuda/profiler-users-guide/index.html#changelog
https://docs.nvidia.com/nsight-systems/ReleaseNotes/index.html
https://docs.nvidia.com/nsight-visual-studio-edition/release-notes/index.html
https://docs.nvidia.com/cupti//release-notes/release-notes.html
https://docs.nvidia.com/nsight-compute/ReleaseNotes/index.html#whats-new
https://docs.nvidia.com/compute-sanitizer/ReleaseNotes/index.html
https://docs.nvidia.com/cuda/cuda-gdb/index.html#release-notes

Chapter 3. Resolved Issues

3.1. CUDA Compiler

▶ Resolved compilation issues where code that successfully built with GCC would fail to compile
with NVCC on Ubuntu 24.04. This improves cross-compiler compatibility and ensures consistent
behavior between GCC and NVIDIA’s CUDA compiler toolchain. [4893699]

▶ Fixed incorrect handling of C++20 requires expressions, restoring proper functionality and stan-
dard compliance. This ensures that compile-time requirements on template parameters now
evaluate correctly. [4843353]

▶ Fixed an issue where NVCC (NVIDIA Compiler Driver) was ignoring the global namespace prefix
of a type and thus incorrectly resolving it to a local type that shares the same name. [4804685]

▶ Fixed a compilation error in NVCC that occurred when code contained three or more nested
lambda expressions with variadic arguments. The compiler now properly handles deeply nested
variadic lambdas. [4782817]

▶ Fixed a limitation in NVRTC that caused compilation failures when kernel functions had long iden-
tifiers. The runtime compiler now properly handles kernel functionswith extended name lengths.
[4781023]

▶ Resolved an issue where template alias resolution could produce incorrect template instances.
Previously, when an alias template and its underlying type-id template had different default ar-
guments, the compiler would sometimes incorrectly omit the differing default argument when
substituting the alias with its underlying type. This resulted in references to incorrect template
instances. The template argument resolution now properly preserves all necessary default argu-
ments during alias substitution. [4721362]

▶ Fixed invalid error reporting when using variables as template arguments from outside their vis-
ible scope. This resolves incorrect diagnostic messages particularly affecting cases involving
braced initializers. The compiler now properly validates scope accessibility for template argu-
ments. [4717351]

▶ Added the ability to cancel ongoing NVRTC compilations through callbackmechanisms. This new
feature allows developers to safely interrupt and terminate compilation processes programmat-
ically. [4082060]

▶ The semantics of the -expt-relaxed-constexpr nvcc flag are now documented in the “C++
Language Support” section of the CUDA Programming Guide. [3288543]

11

Release Notes, Release 12.8

12 Chapter 3. Resolved Issues

Chapter 4. Known Issues and
Limitations

4.1. CUDA

▶ Certain Linux kernelswith KASLR enabled have a known issue inHMM initialization, causingCUDA
initialization to fail. This issue is indicated by the following debug message:

[64689.125237] nvidia-uvm: uvm_pmm_gpu.c:3176 devmem_alloc_
↪→pagemap[pid:92821] request_free_mem_region() err -34

Fixes to this issue are being handled in upstream kernels. In the meantime, you can use one
of the following workarounds:

▶ Option 1: Disable KASLR (Preferred option)

If using GRUB, edit /etc/default/grub and add nokaslr to
GRUB_CMDLINE_LINUX_DEFAULT:

GRUB_CMDLINE_LINUX_DEFAULT="quiet splash nokaslr"

Then, update GRUB and reboot:

sudo update-grub
sudo reboot

▶ Option 2: Disable HMM for UVM

1. Create or edit /etc/modprobe.d/uvm.conf.

2. Add or update the following line:

options nvidia_uvm uvm_disable_hmm=1

3. Unload and reload the nvidia_uvm kernel module or reboot the system:

sudo modprobe -r nvidia_uvm
sudo modprobe nvidia_uvm

13

Release Notes, Release 12.8

4.2. CUDA Compiler

▶ Some GPUs may experience higher-than-normal context creation times with driver version
570.xx.yyy. For many applications this will likely be unnoticeable, as context creation is usually
done at initialization and amortized over the application lifetime. However, applications that cre-
ate and destroy CUDA contexts frequently may see higher impact. NVIDIA will address this issue
in an upcoming driver 570 release. [4886848]

14 Chapter 4. Known Issues and Limitations

Chapter 5. Deprecated or Dropped
Features

Features deprecated in the current release of the CUDA software still work in the current release,
but their documentation may have been removed, and they will become officially unsupported in a
future release. We recommend that developers employ alternative solutions to these features in their
software.

5.1. Deprecated Architectures

▶ Architecture support for Maxwell, Pascal, and Volta is considered feature-complete and will be
frozen in an upcoming release.

5.2. Deprecated or Dropped Operating Systems

▶ Support for Microsoft Windows 10 21H2 has been dropped.

▶ Support for Debian 11 has been dropped.

▶ Support for versions prior to SLES 15 Service Pack 4 / OpenSUSE 15.4 has been dropped.

▶ NVTX v2 is deprecated. To migrate to NVTX v3. Change your code from:

#include <nvtoolsext.h> to #include "nvtx3∕nvtoolsext.h". This header is included
in the toolkit.

For the latest NVTX version and extensions, visit NVIDIA NVTX.

15

https://github.com/NVIDIA/NVTX

Release Notes, Release 12.8

5.3. Deprecated CUDA Tools

▶ Profiling tools supporting pre-turing architectures, Visual Profiler and nvprof, are nowdeprecated
will be dropped in an upcoming release.

▶ The CUPTI Event API (from header cupti_events.h) and CUPTI Metric API (from
cupti_metrics.h) are now deprecated and will be dropped in an upcoming release.

▶ Nsight Eclipse plugins will no longer be included in Tegra (SOC) packages, such as DriveOS or
Jetson. Users of these packages are encouraged to use Nsight Visual Studio Code, available in
the VSCode Extension Gallery or from the Microsoft VSCode Marketplace.

▶ Support for the macOS host client of CUDA-GDB has been dropped.

16 Chapter 5. Deprecated or Dropped Features

Chapter 6. CUDA Libraries

This section covers CUDA Libraries release notes for 12.x releases.

▶ CUDA Math Libraries toolchain uses C++11 features, and a C++11-compatible standard library
(libstdc++ >= 20150422) is required on the host.

6.1. cuBLAS Library

6.1.1. cuBLAS: Release 12.8 Update 1

▶ New Features

▶ Performance Improvements on Nvidia Blackwell GPU Architecure:

▶ Matrix Multiplication (Matmuls): Enhanced performance for FP8 (both block-scaled and
tensor-wide scaled), FP4, and FP16/BF16.

▶ BLAS Level 3: Optimized SSYRK, CSYRK, and CHERK operations, especially for unaligned
problems.

▶ Batched Operations: Improved efficiency for batched GEMMs and batched GEMVs.

▶ Added support for block-scaled FP8 and FP4 datatypes on Blackwell GeForce-class GPUs.

▶ Improved performance on Blackwell GeForce-class GPUs.

▶ Resolved Issues

▶ Using cublasLtMatmulwith m or n equal to 1 and leading dimensions that cause the input
or output matrices to exceed 2^31 elementsmay result in illegal memory access. [5113092,
4959900]

▶ UsingcublasLtMatmulwithmor n equal to 1 and theCUBLASLT_EPILOGUE_BIAS epilogue
may produce incorrect results. [5104822]

▶ Under rare circumstances, cublasLtMatmul running FP8, FP16, or BF16 on a Blackwell GPU
may result in a “CUDA Exception: Cluster target block not present” or a “CUDA Error 719:
Unspecified launch failure”. [5124406]

17

Release Notes, Release 12.8

6.1.2. cuBLAS: Release 12.8

▶ New Features

▶ Added support for NVIDIA Blackwell GPU architecture.

▶ Extended the cuBLASLt API to support micro-scaled 4-bit and 8-bit floating-point mixed-
precision tensor core-accelerated matrix multiplication for compute capability 10.0 (Black-
well) and higher. Extensions include:

▶ CUDA_R_4F_E2M1: Integration with CUDA_R_UE4M3 scales and 16-element scaling
blocks.

▶ CUDA_R_8F variants: Compatibility with CUDA_R_UE8 scales and 32-element scaling
blocks.

▶ FP8 Matmul Attribute extensions

▶ Support for block-scaled use cases with scaling factor tensors instead of scalars.

▶ Ability to compute scaling factors dynamically for output tensors when the output
is a 4-bit or 8-bit floating-point data type.

▶ Introduced initial support for CUDA in Graphics (CIG) on Windows x64 for NVIDIA Ampere
GPU architecture and Blackwell GeForce-class GPUs. CIG contexts are now auto-detected,
and cuBLAS selects kernels that comply with CIG shared memory usage limits.

▶ Performance improvement on all Hopper GPUs for non-aligned INT8 matmuls.

▶ Resolved Issues

▶ The use of cublasLtMatmulwith CUBLASLT_EPILOGUE_BGRAD{A,B} epilogue allowed the
outputmatrix to be in CUBLASLT_ORDER_ROW layout, which led to incorrectly computed bias
gradients. This layout is nowdisallowedwhenusingCUBLASLT_EPILOGUE_BGRAD{A,B} epi-
logue. [4910924]

▶ Deprecations

▶ The experimental feature for Atomics Synchronization along rows
(CUBLASLT_MATMUL_DESC_ATOMIC_SYNC_NUM_CHUNKS_D_ROWS) or columns
(CUBLASLT_MATMUL_DESC_ATOMIC_SYNC_NUM_CHUNKS_D_COLS) of the output matrix
is now deprecated. The functional implementation is still available but not performant and
will be removed in a future release.

6.1.3. cuBLAS: Release 12.6 Update 2

▶ New Features

▶ Broad performance improvement on all Hopper GPUs for FP8, FP16
and BF16 matmuls. This improvement also includes the following
fused epilogues CUBLASLT_EPILOGUE_BIAS, CUBLASLT_EPILOGUE_RELU,
CUBLASLT_EPILOGUE_RELU_BIAS, CUBLASLT_EPILOGUE_RELU_AUX,
CUBLASLT_EPILOGUE_RELU_AUX_BIAS, CUBLASLT_EPILOGUE_GELU, and
CUBLASLT_EPILOGUE_GELU_BIAS.

▶ Known Issues

▶ cuBLAS in multi context scenarios may hang with R535 Driver for version below <535.91.
[CUB-7024]

18 Chapter 6. CUDA Libraries

https://docs.nvidia.com/cuda/cublas/index.html#d-block-scaling-for-fp8-and-fp4-data-types
https://docs.nvidia.com/cuda/cublas/#atomics-synchronization

Release Notes, Release 12.8

▶ Users may observe suboptimal performance on Hopper GPUs for FP64 GEMMs.
A potential workaround is to conditionally turn on swizzling. To do this, users
can take the algo returned via cublasLtMatmulAlgoGetHeuristic and query if
swizzling can be enabled by calling cublasLtMatmulAlgoCapGetAttribute with
CUBLASLT_ALGO_CAP_CTA_SWIZZLING_SUPPORT. If swizzling is supported, you
can enable swizzling by calling cublasLtMatmulAlgoConfigSetAttribute with
CUBLASLT_ALGO_CONFIG_CTA_SWIZZLING. [4872420]

▶ Resolved Issues

▶ cublasLtMatmul could ignore the user specified Bias or
Aux data types (CUBLASLT_MATMUL_DESC_BIAS_DATA_TYPE and
CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_DATA_TYPE) for FP8matmul operations if these
data types do not match the documented limitations in cublasLtMatmulDescAttributes_t
<https://docs.nvidia.com/cuda/cublas/#cublasltmatmuldescattributes-t>__. [44750343,
4801528]

▶ Setting CUDA_MODULE_LOADING to EAGER could lead to longer library load times on Hopper
GPUs due to JIT compilation of PTX kernels. This can be mitigated by setting this environ-
ment variable to LAZY. [4720601]

▶ cublasLtMatmul with INT8 inputs, INT32 accumulation, INT8 outputs, and FP32 scaling
factors could have produced numerical inaccuracies when a splitk reduction was used.
[4751576]

6.1.4. cuBLAS: Release 12.6 Update 1

▶ Known Issues

▶ cublasLtMatmul could ignore the user specified Bias or
Aux data types (CUBLASLT_MATMUL_DESC_BIAS_DATA_TYPE and
CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_DATA_TYPE) for FP8 matmul operations if
these data types do not match the documented limitations in cublasLtMatmulDescAt-
tributes_t. [4750343]

▶ Setting CUDA_MODULE_LOADING to EAGER could lead to longer library load times on Hopper
GPUs due to JIT compilation of PTX kernels. This can be mitigated by setting this environ-
ment variable to LAZY. [4720601]

▶ cublasLtMatmul with INT8 inputs, INT32 accumulation, INT8 outputs, and FP32 scaling
factors may produce accuracy issues when a splitk reduction is used. To workaround
this issue, you can use cublasLtMatmulAlgoConfigSetAttribute to set the reduction
scheme to none and set the splitk value to 1. [4751576]

6.1.5. cuBLAS: Release 12.6

▶ Known Issues

▶ Computing matrix multiplication and an epilogue with INT8 inputs, INT8 outputs, and FP32
scaling factors can have numerical errors in cases when a second kernel is used to compute
the epilogue. This happens because the first GEMM kernel converts the intermediate result
from FP32 into INT8 and stores it for the subsequent epilogue kernel to use. If a value is
outside of the range of INT8 before the epilogue and the epilogue would bring it into the

6.1. cuBLAS Library 19

https://docs.nvidia.com/cuda/cublas/#cublasltmatmuldescattributes-t
https://docs.nvidia.com/cuda/cublas/#cublasltmatmuldescattributes-t

Release Notes, Release 12.8

range of INT8, there will be numerical errors. This issue has existed since before CUDA 12
and there is no known workaround. [CUB-6831]

▶ cublasLtMatmul could ignore the user specified Bias or
Aux data types (CUBLASLT_MATMUL_DESC_BIAS_DATA_TYPE and
CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_DATA_TYPE) for FP8 matmul operations if
these data types do not match the documented limitations in cublasLtMatmulDescAt-
tributes_t. [4750343]

▶ Resolved Issues

▶ cublasLtMatmul produced incorrect results when data types of matrices A and B were
different FP8 (for example, A is CUDA_R_8F_E4M3 and B is CUDA_R_8F_E5M2) and matrix D
layout was CUBLASLT_ORDER_ROW. [4640468]

▶ cublasLtmay return not supported on Hopper GPUs in some cases when A, B, and C are of
type CUDA_R_8I and the compute type is CUBLAS_COMPUTE_32I. [4381102]

▶ cuBLAS could produce floating point exceptions when running GEMM with K equal to 0.
[4614629]

6.1.6. cuBLAS: Release 12.5 Update 1

▶ New Features

▶ Performance improvement tomatrix multiplication targeting large languagemodels, specif-
ically for small batch sizes on Hopper GPUs.

▶ Known Issues

▶ The bias epilogue (without ReLU or GeLU) may be not supported on Hopper GPUs for strided
batch cases. A workaround is to implement batching manually. This will be fixed in a future
release.

▶ cublasGemmGroupedBatchedEx and cublas<t>gemmGroupedBatched have large CPU
overheads. This will be addressed in an upcoming release.

▶ Resolved Issues

▶ Under rare circumstances, executing SYMM/HEMM concurrently with GEMM on Hopper
GPUs might have caused race conditions in the host code, which could lead to an Illegal
Memory Access CUDA error. [4403010]

▶ cublasLtMatmul could produce an Illegal Instruction CUDA error on Pascal GPUs under the
following conditions: batch is greater than 1, and beta is not equal to 0, and the computa-
tions are out-of-place (C != D). [4566993]

6.1.7. cuBLAS: Release 12.5

▶ New Features

▶ cuBLAS adds an experimental API to supportmixed precision grouped batchedGEMMs. This
enables grouped batchedGEMMswith FP16 or BF16 inputs/outputswith the FP32 compute
type. Refer to cublasGemmGroupedBatchedEx for more details.

▶ Known Issues

20 Chapter 6. CUDA Libraries

https://docs.nvidia.com/cuda/cublas/#cublasltmatmuldescattributes-t
https://docs.nvidia.com/cuda/cublas/#cublasltmatmuldescattributes-t
https://docs.nvidia.com/cuda/cublas/index.html#cublasgemmgroupedbatchedex

Release Notes, Release 12.8

▶ cublasLtMatmul ignores inputs to CUBLASLT_MATMUL_DESC_D_SCALE_POINTER and
CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_SCALE_POINTER if the elements of the respec-
tive matrix are not of FP8 types.

▶ Resolved Issues

▶ cublasLtMatmul ignored the mismatch between the provided scale type and the implied
by the documentation, assuming the latter. For instance, an unsupported configuration of
cublasLtMatmul with the scale type being FP32 and all other types being FP16 would run
with the implicit assumption that the scale type is FP16 and produce incorrect results.

▶ cuBLAS SYMV failed for large n dimension: 131072 and above for ssymv, 92673 and above
for csymv and dsymv, and 65536 and above for zsymv.

6.1.8. cuBLAS: Release 12.4 Update 1

▶ Known Issues

▶ Setting a cuBLAS handle stream to cudaStreamPerThread and setting the workspace via
cublasSetWorkspace will cause any subsequent cublasSetWorkspace calls to fail. This
will be fixed in an upcoming release.

▶ cublasLtMatmul ignores mismatches between the provided scale type and the scale type
implied by the documentation and assumes the latter. For example, an unsupported con-
figuration of cublasLtMatmul with the scale type being FP32 and all other types being
FP16 would run with the implicit assumption that the scale type is FP16 which can produce
incorrect results. This will be fixed in an upcoming release.

▶ Resolved Issues

▶ cublasLtMatmul ignored the CUBLASLT_MATMUL_DESC_AMAX_D_POINTER for unsup-
ported configurations instead of returning an error. In particular, computing absolute maxi-
mum of D is currently supported only for FP8Matmul when the output data type is also FP8
(CUDA_R_8F_E4M3 or CUDA_R_8F_E5M2).

▶ Reduced host-side overheads for some of the cuBLASLt APIs: cublasLtMatmul(),
cublasLtMatmulAlgoCheck(), and cublasLtMatmulAlgoGetHeuristic(). The issue
was introduced in CUDA Toolkit 12.4.

▶ cublasLtMatmul() and cublasLtMatmulAlgoGetHeuristic() could have resulted in
floating point exceptions (FPE) on some Hopper-based GPUs, including Multi-Instance GPU
(MIG). The issue was introduced in cuBLAS 11.8.

6.1.9. cuBLAS: Release 12.4

▶ New Features

▶ cuBLAS adds experimental APIs to support grouped batched GEMM for single
precision and double precision. Single precision also supports the math mode,
CUBLAS_TF32_TENSOR_OP_MATH. Grouped batch mode allows you to concurrently solve
GEMMs of different dimensions (m, n, k), leading dimensions (lda, ldb, ldc), transpositions
(transa, transb), and scaling factors (alpha, beta). Please see gemmGroupedBatched for
more details.

▶ Known Issues

6.1. cuBLAS Library 21

https://docs.nvidia.com/cuda/cublas/index.html#cublas-t-gemmgroupedbatched

Release Notes, Release 12.8

▶ When the current context has been created using cuGreenCtxCreate(), cuBLAS does not
properly detect the number of SMs available. The user may provide the corrected SM count
to cuBLAS using an API such as cublasSetSmCountTarget().

▶ BLAS level 2 and 3 functions might not treat alpha in a BLAS compliant manner when alpha
is zero and the pointer mode is set to CUBLAS_POINTER_MODE_DEVICE. This is the same
known issue documented in cuBLAS 12.3 Update 1.

▶ cublasLtMatmul with K equals 1 and epilogue CUBLASLT_EPILOGUE_D{RELU,
GELU}_BGRAD could out-of-bound access the workspace. The issue exists since cuBLAS
11.3 Update 1.

▶ cublasLtMatmul with K equals 1 and epilogue CUBLASLT_EPILOGUE_D{RELU,GELU}
could produce illegal memory access if no workspace is provided. The issue exists since
cuBLAS 11.6.

▶ When captured in CUDA Graph stream capture, cuBLAS routines can create memory
nodes through the use of stream-ordered allocation APIs, cudaMallocAsync and cud-
aFreeAsync. However, as there is currently no support for memory nodes in child graphs
or graphs launched from the device, attempts to capture cuBLAS routines in such scenarios
may fail. To avoid this issue, use the cublasSetWorkspace() function to provide user-owned
workspace memory.

6.1.10. cuBLAS: Release 12.3 Update 1

▶ New Features

▶ Improved performance of heuristics cache for workloads that have a high eviction rate.

▶ Known Issues

▶ BLAS level 2 and 3 functions might not treat alpha in a BLAS compliant manner when al-
pha is zero and the pointer mode is set to CUBLAS_POINTER_MODE_DEVICE. The expected
behavior is that the corresponding computations would be skipped. You may encounter
the following issues: (1) HER{,2,X,K,2K} may zero the imaginary part on the diagonal ele-
ments of the output matrix; and (2) HER{,2,X,K,2K}, SYR{,2,X,K,2K} and others may produce
NaN resulting from performing computation on matrices A and B which would otherwise be
skipped. If strict compliance with BLAS is required, the user may manually check for alpha
value before invoking the functions or switch to CUBLAS_POINTER_MODE_HOST.

▶ Resolved Issues

▶ cuBLASLt matmul operations might have computed the output incorrectly under the fol-
lowing conditions: the data type of matrices A and B is FP8, the data type of matrices C
and D is FP32, FP16, or BF16, the beta value is 1.0, the C and D matrices are the same, the
epilogue contains GELU activation function.

▶ When an application compiled with cuBLASLt from CUDA Toolkit 12.2 update 1 or earlier
runs with cuBLASLt from CUDA Toolkit 12.2 update 2 or CUDA Toolkit 12.3, matrix multi-
ply descriptors initialized using cublasLtMatmulDescInit() sometimes did not respect
attribute changes using cublasLtMatmulDescSetAttribute().

▶ Fixed creation of cuBLAS or cuBLASLt handles on Hopper GPUs under the Multi-Process
Service (MPS).

▶ cublasLtMatmul with K equals 1 and epilogue CUBLASLT_EPILOGUE_BGRAD{A,B} might
have returned incorrect results for the bias gradient.

22 Chapter 6. CUDA Libraries

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#graph-memory-nodes
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#graph-memory-nodes
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#node-types
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#device-graph-launch
https://docs.nvidia.com/cuda/cublas/index.html#cublassetworkspace

Release Notes, Release 12.8

6.1.11. cuBLAS: Release 12.3

▶ New Features

▶ Improved performance on NVIDIA L40S Ada GPUs.

▶ Known Issues

▶ cuBLASLt matmul operations may compute the output incorrectly under the following con-
ditions: the data type of matrices A and B is FP8, the data type of matrices C and D is FP32,
FP16, or BF16, the beta value is 1.0, the C andDmatrices are the same, the epilogue contains
GELU activation function.

▶ When an application compiled with cuBLASLt from CUDA Toolkit 12.2 update 1 or earlier
runs with cuBLASLt from CUDA Toolkit 12.2 update 2 or later, matrix multiply descriptors
initialized using cublasLtMatmulDescInit() may not respect attribute changes using
cublasLtMatmulDescSetAttribute(). To workaround this issue, create the matrix mul-
tiply descriptor using cublasLtMatmulDescCreate() instead of cublasLtMatmulDe-
scInit(). This will be fixed in an upcoming release.

6.1.12. cuBLAS: Release 12.2 Update 2

▶ New Features

▶ cuBLASLt will now attempt to decompose problems that cannot be run by a single gemm
kernel. It does this by partitioning the problem into smaller chunks and executing the gemm
kernel multiple times. This improves functional coverage for very large m, n, or batch size
cases and makes the transition from the cuBLAS API to the cuBLASLt API more reliable.

▶ Known Issues

▶ cuBLASLt matmul operations may compute the output incorrectly under the following con-
ditions: the data type of matrices A and B is FP8, the data type of matrices C and D is FP32,
FP16, or BF16, the beta value is 1.0, the C andDmatrices are the same, the epilogue contains
GELU activation function.

6.1.13. cuBLAS: Release 12.2

▶ Known Issues

▶ cuBLAS initialization fails on Hopper architecture GPUs when MPS is in use with
CUDA_MPS_ACTIVE_THREAD_PERCENTAGE set to a value less than 100%. There is currently
no workaround for this issue.

▶ Some Hopper kernels produce incorrect results for batched matmuls with
CUBLASLT_EPILOGUE_RELU_BIAS or CUBLASLT_EPILOGUE_GELU_BIAS and a non-
zero CUBLASLT_MATMUL_DESC_BIAS_BATCH_STRIDE. The kernels apply the first batch’s
bias vector to all batches. This will be fixed in a future release.

6.1. cuBLAS Library 23

Release Notes, Release 12.8

6.1.14. cuBLAS: Release 12.1 Update 1

▶ New Features

▶ Support for FP8 on NVIDIA Ada GPUs.

▶ Improved performance on NVIDIA L4 Ada GPUs.

▶ Introduced anAPI that instructs the cuBLASLt library to not use someCPU instructions. This
is useful in some rare cases where certain CPU instructions used by cuBLASLt heuristics
negatively impact CPU performance. Refer to https://docs.nvidia.com/cuda/cublas/index.
html#disabling-cpu-instructions.

▶ Known Issues

▶ When creating a matrix layout using the cublasLtMatrixLayoutCreate() function, the
object pointed at by cublasLtMatrixLayout_t is smaller than cublasLtMatrixLay-
outOpaque_t (but enough to hold the internal structure). As a result, the object should
not be dereferenced or copied explicitly, as this might lead to out of bound accesses.
If one needs to serialize the layout or copy it, it is recommended to manually allo-
cate an object of size sizeof(cublasLtMatrixLayoutOpaque_t) bytes, and initial-
ize it using cublasLtMatrixLayoutInit() function. The same applies to cublasLt-
MatmulDesc_t and cublasLtMatrixTransformDesc_t. The issue will be fixed in
future releases by ensuring that cublasLtMatrixLayoutCreate() allocates at least
sizeof(cublasLtMatrixLayoutOpaque_t) bytes.

6.1.15. cuBLAS: Release 12.0 Update 1

▶ New Features

▶ Improved performance on NVIDIA H100 SXM and NVIDIA H100 PCIe GPUs.

▶ Known Issues

▶ For optimal performance on NVIDIA Hopper architecture, cuBLAS needs to allocate a big-
ger internal workspace (64 MiB) than on the previous architectures (8 MiB). In the current
and previous releases, cuBLAS allocates 256 MiB. This will be addressed in a future release.
A possible workaround is to set the CUBLAS_WORKSPACE_CONFIG environment variable to
:32768:2 when running cuBLAS on NVIDIA Hopper architecture.

▶ Resolved Issues

▶ Reduced cuBLAS host-side overheads caused by not using the cublasLt heuristics cache.
This began in the CUDA Toolkit 12.0 release.

▶ Added forward compatible single precision complex GEMM that does not require workspace.

24 Chapter 6. CUDA Libraries

https://docs.nvidia.com/cuda/cublas/index.html#disabling-cpu-instructions
https://docs.nvidia.com/cuda/cublas/index.html#disabling-cpu-instructions

Release Notes, Release 12.8

6.1.16. cuBLAS: Release 12.0

▶ New Features

▶ cublasLtMatmul now supports FP8 with a non-zero beta.

▶ Added int64 APIs to enable larger problem sizes; refer to 64-bit integer interface.

▶ Added more Hopper-specific kernels for cublasLtMatmul with epilogues:

▶ CUBLASLT_EPILOGUE_BGRAD{A,B}

▶ CUBLASLT_EPILOGUE_{RELU,GELU}_AUX

▶ CUBLASLT_EPILOGUE_D{RELU,GELU}

▶ Improved Hopper performance on arm64-sbsa by adding Hopper kernels that were previ-
ously supported only on the x86_64 architecture for Windows and Linux.

▶ Known Issues

▶ There are no forward compatible kernels for single precision complex gemms that do not
require workspace. Support will be added in a later release.

▶ Resolved Issues

▶ Fixed an issue on NVIDIA Ampere architecture and newer GPUs where cublasLtMatmul
with epilogue CUBLASLT_EPILOGUE_BGRAD{A,B} and a nontrivial reduction scheme (that
is, not CUBLASLT_REDUCTION_SCHEME_NONE) could return incorrect results for the bias gra-
dient.

▶ cublasLtMatmul for gemv-like cases (that is, m or n equals 1) might ignore bias with the
CUBLASLT_EPILOGUE_RELU_BIAS and CUBLASLT_EPILOGUE_BIAS epilogues.

Deprecations

▶ Disallow including cublas.h and cublas_v2.h in the same translation unit.

▶ Removed:

▶ CUBLAS_MATMUL_STAGES_16x80 and CUBLAS_MATMUL_STAGES_64x80 from
cublasLtMatmulStages_t. No kernels utilize these stages anymore.

▶ cublasLt3mMode_t, CUBLASLT_MATMUL_PREF_MATH_MODE_MASK, and
CUBLASLT_MATMUL_PREF_GAUSSIAN_MODE_MASK from cublasLtMatmulPref-
erenceAttributes_t. Instead, use the corresponding flags from cublasLtNumeri-
calImplFlags_t.

▶ CUBLASLT_MATMUL_PREF_POINTER_MODE_MASK,CUBLASLT_MATMUL_PREF_EPILOGUE_MASK,
and CUBLASLT_MATMUL_PREF_SM_COUNT_TARGET from cublasLtMatmulPref-
erenceAttributes_t. The corresponding parameters are taken directly from
cublasLtMatmulDesc_t.

▶ CUBLASLT_POINTER_MODE_MASK_NO_FILTERING from cublasLtPointerMode-
Mask_t. This mask was only applicable to CUBLASLT_MATMUL_PREF_MATH_MODE_MASK
which was removed.

6.1. cuBLAS Library 25

https://docs.nvidia.com/cuda/cublas/index.html#int64-interface

Release Notes, Release 12.8

6.2. cuFFT Library

6.2.1. cuFFT: Release 12.8 Update 1

▶ Resolved Issues

▶ Fixed an issue where SM120 was only supported via PTX JIT for legacy callback kernels.
SASS support is now available.

▶ Fixed an issue where large applications (over 2 GB in total binary size) linking against
the static cuFFT libraries (libcufft_static.a, libcufft_static_nocallback.a) on
x86_64 systems without using the -mcmodel=medium flag would run into linking errors.

6.2.2. cuFFT: Release 12.8

▶ New Features

▶ Added support for the NVIDIA Blackwell GPU architecture.

▶ Deprecations

▶ The static library libcufft_static_nocallback.a is deprecated and scheduled for re-
moval in a future release. Users should migrate to libcufft_static.a, as both libraries
provide equivalent functionality following the introduction of LTO callbacks in cuFFT with
CUDA Toolkit 12.6 Update 2.

▶ Known Issues

▶ SM120 is only supported via PTX JIT for legacy callback kernels. As a result, non-LTO device
callback code intended to be linked with libcufft_static.a must be compiled to PTX,
not SASS.

▶ Large applications (over 2 GB in total binary size) linking against the static cuFFT li-
braries (libcufft_static.a, libcufft_static_nocallback.a) in x86_64 systems
without using the -mcmodel=medium flag will run into linking errors (For example: .
gcc_except_table relocation R_X86_64_PC32 out of range; references DW.
ref._ZTI13cufftResult_t) This issue will be fixed in an upcoming release.

Existing workarounds include:

▶ Building or linking the application with -mcmodel=medium flag

▶ Using readelf to analyze the libcufft_static.a symbols, it is possible to
move the reference ref._ZTI13cufftResult_t from the large data section .
ldata.DW.ref._ZTI13cufftResult_t to the non-large data section .data.DW.
ref._ZTI13cufftResult_t

26 Chapter 6. CUDA Libraries

Release Notes, Release 12.8

6.2.3. cuFFT: Release 12.6 Update 2

▶ New Features

▶ Introduced LTO callbacks as a replacement for the deprecated legacy callbacks. LTO call-
backs offer:

▶ Additional performance vs. legacy callbacks

▶ Support for callbacks on Windows and on dynamic (shared) libraries

See the cuFFT documentation page for more information.

▶ Resolved Issues

▶ Several issues present in our cuFFT LTO EA preview binary have been addressed.

▶ Deprecations

▶ cuFFT LTOEA, our preview binary for LTO callback support, is deprecated andwill be removed
in the future.

6.2.4. cuFFT: Release 12.6

▶ Known Issues

▶ FFT of size 1 with istride∕ostride > 1 is currently not supported for FP16. There is a
knownmemory issue for this use case in CTK 12.1 or before. A CUFFT_INVALID_SIZE error
is thrown in CTK 12.2 or after. [4662222]

6.2.5. cuFFT: Release 12.5

▶ New Features

▶ Added Just-In-Time Link-TimeOptimized (JIT LTO) kernels for improved performance in R2C
and C2R FFTs for many sizes.

▶ We recommend testing your R2C / C2R use cases with and without JIT LTO kernels and
comparing the resulting performance. You can enable JIT LTO kernels using the per-plan
properties cuFFT API.

6.2.6. cuFFT: Release 12.4 Update 1

▶ Resolved Issues

▶ A routine from the cuFFT LTO EA library was added by mistake to the cuFFT Advanced API
header (cufftXt.h) in CUDA 12.4. This routine has now been removed from the header.

6.2. cuFFT Library 27

https://docs.nvidia.com/cuda/cufft/index.html
https://docs.nvidia.com/cuda/cufft/ltoea/index.html
https://docs.nvidia.com/cuda/cufft/ltoea/index.html
https://docs.nvidia.com/cuda/cufft/index.html#cufft-link-time-optimized-kernels
https://docs.nvidia.com/cuda/cufft/index.html#cufft-link-time-optimized-kernels
https://docs.nvidia.com/cuda/cufft/index.html#cufft-plan-properties
https://docs.nvidia.com/cuda/cufft/index.html#cufft-plan-properties
https://docs.nvidia.com/cuda/cufft/ltoea/api/index.html#associating-lto-callbacks-with-cufft-plan

Release Notes, Release 12.8

6.2.7. cuFFT: Release 12.4

▶ New Features

▶ Added Just-In-Time Link-TimeOptimized (JIT LTO) kernels for improvedperformance in FFTs
with 64-bit indexing.

▶ Added per-plan properties to the cuFFT API. These new routines can be leveraged to give
users more control over the behavior of cuFFT. Currently they can be used to enable JIT LTO
kernels for 64-bit FFTs.

▶ Improved accuracy for certain single-precision (fp32) FFT cases, especially involving FFTs for
larger sizes.

▶ Known Issues

▶ A routine from the cuFFT LTO EA library was added by mistake to the cuFFT Advanced API
header (cufftXt.h). This routine is not supported by cuFFT, and will be removed from the
header in a future release.

▶ Resolved Issues

▶ Fixed an issue that could cause overwriting of user data when performing out-of-place real-
to-complex (R2C) transforms with user-specified output strides (i.e. using the ostride
component of the Advanced Data Layout API).

▶ Fixed inconsistent behavior between libcufftw and FFTWwhen both inembed and onem-
bed are nullptr ∕ NULL. From now on, as in FFTW, passing nullptr ∕ NULL as inembed∕
onembed parameter is equivalent to passing n, that is, the logical size for that dimension.

6.2.8. cuFFT: Release 12.3 Update 1

▶ Known Issues

▶ Executing a real-to-complex (R2C) or complex-to-real (C2R) plan in a context different to
the one used to create the plan could cause undefined behavior. This issue will be fixed in
an upcoming release of cuFFT.

▶ Resolved Issues

▶ Complex-to-complex (C2C) execution functions (cufftExec and similar) nowproperly error-
out in case of error during kernel launch, for example due to a missing CUDA context.

6.2.9. cuFFT: Release 12.3

▶ New Features

▶ Callback kernels are more relaxed in terms of resource usage, and will use fewer registers.

▶ Improved accuracy for double precision prime and composite FFT sizes with factors larger
than 127.

▶ Slightly improved planning times for some FFT sizes.

28 Chapter 6. CUDA Libraries

https://docs.nvidia.com/cuda/cufft/index.html#cufft-link-time-optimized-kernels
https://docs.nvidia.com/cuda/cufft/index.html#cufft-plan-properties
https://docs.nvidia.com/cuda/cufft/index.html#advanced-data-layout
https://cluster.earlham.edu/bccd-ng/testing/mobeen/GALAXSEEHPC/fftw-3.3/doc/html/Advanced-Complex-DFTs.html

Release Notes, Release 12.8

6.2.10. cuFFT: Release 12.2

▶ New Features

▶ cufftSetStream can be used in multi-GPU plans with a stream from any GPU context,
instead of from the primary context of the first GPU listed in cufftXtSetGPUs.

▶ Improved performance of 1000+ of FFTs of sizes ranging from 62 to 16380. The improved
performance spans hundreds of single precision and double precision cases for FFTs with
contiguous data layout, across multiple GPU architectures (from Maxwell to Hopper GPUs)
via PTX JIT.

▶ Reduced the size of the static libraries when compared to cuFFT in the 12.1 release.

▶ Resolved Issues

▶ cuFFT no longer exhibits a race condition when threads simultaneously create and access
plans with more than 1023 plans alive.

▶ cuFFT no longer exhibits a race condition when multiple threads call cufftXtSetGPUs con-
currently.

6.2.11. cuFFT: Release 12.1 Update 1

▶ Known Issues

▶ cuFFT exhibits a race conditionwhen one thread calls cufftCreate (or cufftDestroy) and
another thread calls any API (except cufftCreate or cufftDestroy), and when the total
number of plans alive exceeds 1023.

▶ cuFFT exhibits a race condition when multiple threads call cufftXtSetGPUs concurrently
on different plans.

6.2.12. cuFFT: Release 12.1

▶ New Features

▶ Improved performance on Hopper GPUs for hundreds of FFTs of sizes ranging from 14 to
28800. The improved performance spans over 542 cases across single and double precision
for FFTs with contiguous data layout.

▶ Known Issues

▶ Starting from CUDA 11.8, CUDA Graphs are no longer supported for callback routines that
load data in out-of-place mode transforms. An upcoming release will update the cuFFT
callback implementation, removing this limitation. cuFFT deprecated callback functional-
ity based on separate compiled device code in cuFFT 11.4.

▶ Resolved Issues

▶ cuFFT no longer produces errorswith compute-sanitizer at programexit if the CUDA context
used at plan creation was destroyed prior to program exit.

6.2. cuFFT Library 29

Release Notes, Release 12.8

6.2.13. cuFFT: Release 12.0 Update 1

▶ Resolved Issues

▶ Scratch space requirements for multi-GPU, single-batch, 1D FFTs were reduced.

6.2.14. cuFFT: Release 12.0

▶ New Features

▶ PTX JIT kernel compilation allowed the addition of many new accelerated cases for Maxwell,
Pascal, Volta and Turing architectures.

▶ Known Issues

▶ cuFFT plan generation time increases due to PTX JIT compiling. Refer to Plan Initialization
TIme.

▶ Resolved Issues

▶ cuFFT plans had an unintentional small memory overhead (of a few kB) per plan. This is
resolved.

6.3. cuSOLVER Library

6.3.1. cuSOLVER: Release 12.8

▶ New Features

▶ cusolverDn{SDCZ}sytrf and cusolverDnXsytrs now support symmetric factorization
without pivoting when the input pivot array devIpiv=NULL, providing improved perfor-
mance.

▶ cusolver{DZ}gesvdaStridedBatched now offers improved accuracy and performance
for a wide range of problems.

▶ cusolver{SDCZ}gesvdaStridedBatched now returns the number of leading valid singu-
lar values and vectors in case of a convergence failure.

▶ Resolved Issues

▶ Fixed an issue with cusolverDnXsyevBatched when using cuComplex or cuDoubleCom-
plex with a batch size of at least two, where an incorrect result could be returned if the
workspace was not initialized to zero upon entry.

▶ Deprecations

▶ The following APIs in cuSOLVERSp and cuSOLVERRf include deprecation warning in 12.8
[4674686]:

▶ cusolverSp{SDCZ}csrlsvluHost

▶ cusolverSp{SDCZ}csrlsvcholHost

▶ cusolverSp{SDCZ}csrlsvchol

30 Chapter 6. CUDA Libraries

http://docs.nvidia.com/cuda/cufft/index.html#plan-initialization-time
http://docs.nvidia.com/cuda/cufft/index.html#plan-initialization-time

Release Notes, Release 12.8

▶ cusolverRfSetupHost

▶ cusolverRfSetupDevice

▶ cusolverRfResetValues

▶ cusolverRfAnalyze

▶ cusolverRfRefactor

▶ cusolverRfAccessBundledFactorsDevice

▶ cusolverRfExtractBundledFactorsHost

▶ cusolverRfExtractSplitFactorsHost

▶ cusolverRfSolve

The deprecation warning can be removed by adding a compiler flag
-DDISABLE_CUSOLVER_DEPRECATED.

Users are encouraged to use the cuDSS library for better performance and ongoing support.
Refer to the cuDSS samples for the transition.

6.3.2. cuSOLVER: Release 12.6 Update 2

▶ New Features

▶ New API cusolverDnXgeev to solve non-Hermitian eigenvalue problems.

▶ New API cusolverDnXsyevBatched to solve uniform batched Hermitian eigenvalue prob-
lems.

6.3.3. cuSOLVER: Release 12.6

▶ New Features

▶ Performance improvements of cusolverDnXgesvdp().

6.3.4. cuSOLVER: Release 12.5 Update 1

▶ Resolved Issues

▶ The potential out-of-bound accesses on bufferOnDevice by calls of cusolverDnXlarft
have been resolved.

6.3. cuSOLVER Library 31

https://developer.nvidia.com/cudss
https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuDSS

Release Notes, Release 12.8

6.3.5. cuSOLVER: Release 12.5

▶ New Features

▶ Performance improvements of cusolverDnXgesvd and cusolverDn<t>gesvd if jobu !=
'N' or jobvt != 'N'.

▶ Performance improvements of cusolverDnXgesvdp if jobz = CU-
SOLVER_EIG_MODE_NOVECTOR.

▶ Lower workspace requirement of cusolverDnXgesvdp for tall-and-skinny-matrices.

▶ Known Issues

▶ With CUDA Toolkit 12.4 Update 1, values ldt > k in calls of cusolverDnXlarft can
result in out-of-bound memory accesses on bufferOnDevice. As a workaround it is
possible to allocate a larger device workspace buffer of size workspaceInBytesOnDe-
vice=ALIGN_32((ldt*k + n*k)*sizeofCudaDataType(dataTypeT)), with

auto ALIGN_32=[](int64_t val) {
return ((val + 31)∕32)*32;

};

and

auto sizeofCudaDataType=[](cudaDataType dt) {
if (dt == CUDA_R_32F) return sizeof(float);
if (dt == CUDA_R_64F) return sizeof(double);
if (dt == CUDA_C_32F) return sizeof(cuComplex);
if (dt == CUDA_C_64F) return sizeof(cuDoubleComplex);

};

6.3.6. cuSOLVER: Release 12.4 Update 1

▶ New Features

▶ The performance of cusolverDnXlarft has been improved. For large matrices, the
speedup might exceed 100x. The performance on H100 is now consistently better than
on A100. The change in cusolverDnXlarft also results in a modest speedup in cu-
solverDn<t>ormqr, cusolverDn<t>ormtr, and cusolverDnXsyevd.

▶ The performance of cusolverDnXgesvd when singular vectors are sought has been im-
proved. The job configuration that computes both left and right singular vectors is up to
1.5x faster.

▶ Resolved Issues

▶ cusolverDnXtrtri_bufferSize now returns the correct workspace size in bytes.

▶ Deprecations

▶ Using long-deprecated cusolverDnPotrf, cusolverDnPotrs, cusolverDnGeqrf,
cusolverDnGetrf, cusolverDnGetrs, cusolverDnSyevd, cusolverDnSyevdx, cu-
solverDnGesvd, and their accompanying bufferSize functionswill result in a deprecation
warning. The warning can be turned off by using the -DDISABLE_CUSOLVER_DEPRECATED
flag while compiling; however, users should use cusolverDnXpotrf, cusolverDnXpotrs,
cusolverDnXgeqrf, cusolverDnXgetrf, cusolverDnXgetrs, cusolverDnXsyevd,

32 Chapter 6. CUDA Libraries

Release Notes, Release 12.8

cusolverDnXsyevdx, cusolverDnXgesvd, and the corresponding bufferSize functions
instead.

6.3.7. cuSOLVER: Release 12.4

▶ New Features

▶ cusolverDnXlarft and cusolverDnXlarft_bufferSize APIs were introduced. cu-
solverDnXlarft forms the triangular factor of a real block reflector, while cusolverD-
nXlarft_bufferSize returns its required workspace sizes in bytes.

▶ Known Issues

▶ cusolverDnXtrtri_bufferSize returns an incorrect required device workspace size. As
a workaround the returned size can be multiplied by the size of the data type (for example,
8 bytes if matrix A is of type double) to obtain the correct workspace size.

6.3.8. cuSOLVER: Release 12.2 Update 2

▶ Resolved Issues

▶ Fixed an issue with cusolverDn<t>gesvd(), cusolverDnGesvd(), and cusolverD-
nXgesvd(), which could cause wrong results for matrices larger than 18918 if jobu or
jobvt was unequal to ‘N’.

6.3.9. cuSOLVER: Release 12.2

▶ New Features

▶ A new API to ensure deterministic results or allow non-deterministic results for im-
proved performance. See cusolverDnSetDeterministicMode() and cusolverD-
nGetDeterministicMode(). Affected functions are: cusolverDn<t>geqrf(),
cusolverDn<t>syevd(), cusolverDn<t>syevdx(), cusolverDn<t>gesvdj(), cu-
solverDnXgeqrf(), cusolverDnXsyevd(), cusolverDnXsyevdx(), cusolverD-
nXgesvdr(), and cusolverDnXgesvdp().

▶ Known Issues

▶ Concurrent executions of cusolverDn<t>getrf() or cusolverDnXgetrf() in different
non-blocking CUDA streams on the same device might result in a deadlock.

6.3. cuSOLVER Library 33

Release Notes, Release 12.8

6.4. cuSPARSE Library

6.4.1. cuSPARSE: Release 12.8 Update 1

▶ Resolved Issues - cusparseSpMM and cusparseSDDMM previously produced incorrect results if
the output matrix had multiple batches with batchStride = 0. This case now returns an error
code instead. [CUSPARSE-2141]

▶ Known Issues

▶ Many cuSPARSE routines may not function correctly with large matrices when nnz ap-
proaches the signed 32-bit integer limit (e.g., nnz = 2^31 - 1), even when using 64-bit
indices. [[4966852]

▶ Some cuSPARSE routines may not function correctly with small matrices, particularly those
with very few elements or a zero dimension. This issue affects at least cusparseDense-
ToSparse and cusparseSpMV with CSR matrices. [CUSPARSE-2263]

▶ Many cuSPARSE routines require 16-byte alignment for data arrays to function correctly.
This applies to matrix values, indices, offsets, and the temporary buffer. [5053391]

▶ CUSPARSE_SPMM_CSR_ALG1 may return incorrect results when the dense matrix has more
than 2^20 - 16 columns.

6.4.2. cuSPARSE: Release 12.8

▶ New Features

▶ Added support for NVIDIA Blackwell GPUs with significant performance improvements in
sparse matrix operations:

▶ SpMV (Sparse Matrix-Vector multiplication): Up to 2.3x faster than Hopper

▶ SpMM (Sparse Matrix-Matrix multiplication): Up to 2.4x faster than Hopper

▶ Resolved Issues

▶ Fixed an issue in cusparseSpMM that caused “misaligned address” errors when using
the CUSPARSE_SPMM_CSR_ALG3 algorithm with CUDA_R_64F data type and mismatched
memory layouts between two dense matrices - op(B) and C. [CUSPARSE-2081]

▶ Fixed an issue where subsequent calls to SpMV preprocess on the same matrix would fail
after the first call. [CUSPARSE-1897]

▶ Fixed an issue where SpMV preprocess would not execute when alpha=0. [CUSPARSE-1897]

▶ Fixed issues to enable preprocessing operations (SpMV, SpMM, SDDMM) with different
memory buffers. [CUSPARSE-1962]

▶ Addressed an issue in SpSV where incorrect results occurred when the matrix was in
SlicedELL format with lower triangular structure and diagonal elements. [CUSPARSE-1996]

▶ Known Issues

▶ SpMM and certain other routines are currently limited when processing matrices approach-
ing 2^31 non-zero elements. [CUSPARSE-2133]

▶ Deprecations

34 Chapter 6. CUDA Libraries

Release Notes, Release 12.8

▶ The following cuSPARSE functions are deprecated and planned for removal in a futuremajor
release [4687069]:

▶ cusparseSpVV()

▶ cusparseAxpby()

▶ cusparseXgemvi()

▶ cusparseSbsr2csr()

▶ cusparseSgebsr2csr()

▶ cusparseSgebsr2gebsr()

▶ cusparseXbsrmm() (use cusparseSpMM instead)

Contact Math-Libs-Feedback@nvidia.com or visit https://forums.developer.nvidia.
com/ with any concerns.

▶ Support for 16-bit complex floating-point (CUDA_C_16F) and 16-bit complex bfloat floating-
point (CUDA_C_16BF) data types will be removed from cuSPARSE in a future release. These
data types have been marked as deprecated since CUDA 12.2. [CUSPARSE-2225]

6.4.3. cuSPARSE: Release 12.6 Update 2

▶ Resolved Issues

▶ Re-wrote the documentation for cusparseSpMV_preprocess(), cuspars-
eSpMM_preprocess(), and cusparseSDDMM_preprocess(). The documentation
now explains the additional constraints that code must satisfy when using these functions.
[CUSPARSE-1962]

▶ cusparseSpMV() would expect the values in the external buffer to be maintained from
one call to the next. If this was not true, it could compute the incorrect result or crash.
[CUSPARSE-1897]

▶ cusparseSpMV_preprocess() wouldn’t run correctly if cusparseSpMM_preprocess()
was executed on the same matrix, and vice versa. [CUSPARSE-1897]

▶ cusparseSpMV_preprocess() runs SpMV computation if it’s called two or more times on
the same matrix. [CUSPARSE-1897]

▶ cusparseSpMV() could cause subsequent calls to cusparseSpMM() with the same matrix
to produce incorrect results or crash. [CUSPARSE-1897]

▶ With a single sparse matrix A and a dense matrix X that has only a single column, calling
both cusparseSpMM_preprocess(A,X,...) could cause subsequent calls to cuspars-
eSpMV() to crash or produce incorrect results. The same is true with the roles of SpMV and
SpMM swapped. [CUSPARSE-1921]

6.4. cuSPARSE Library 35

mailto:Math-Libs-Feedback@nvidia.com
https://forums.developer.nvidia.com/
https://forums.developer.nvidia.com/

Release Notes, Release 12.8

6.4.4. cuSPARSE: Release 12.6

▶ Known Issues

▶ cusparseSpMV_preprocess() runs SpMV computation if it is called two or more times on
the same matrix. [CUSPARSE-1897]

▶ cusparseSpMV_preprocess() will not run if cusparseSpMM_preprocess() was exe-
cuted on the same matrix, and vice versa. [CUSPARSE-1897]

▶ The same external_buffer must be used for all cusparseSpMV calls. [CUSPARSE-1897]

6.4.5. cuSPARSE: Release 12.5 Update 1

▶ New Features

▶ Added support for BSR format in cusparseSpMM.

▶ Resolved Issues

▶ cusparseSpMM() would sometimes get incorrect results when alpha=0, num_batches>1,
batch_stride indicates that there is padding between batches.

▶ cusparseSpMM_bufferSize() would return the wrong size when the sparse matrix is
Blocked Ellpack and the dense matrices have only a single column (n=1).

▶ cusparseSpMM returned the wrong result when k=0 (for example when A has zero columns).
The correct behavior is doing C *= beta. The bug behavior was not modifying C at all.

▶ cusparseCreateSlicedEll would return an error when the slice size is greater than the
matrix number of rows.

▶ Sliced-ELLPACK cusparseSpSV produced wrong results for diagonal matrices.

▶ Sliced-ELLPACK cusparseSpSV_analysis() failed due to insufficient resources for some
matrices and some slice sizes.

6.4.6. cuSPARSE: Release 12.5

▶ New Features

▶ Added support formixed input types in SpMV: single precision inputmatrix, double precision
input vector, double precision output vector.

▶ Resolved Issues

▶ cusparseSpMV() introduces invalidmemory accesseswhen the output vector is not aligned
to 16 bytes.

36 Chapter 6. CUDA Libraries

Release Notes, Release 12.8

6.4.7. cuSPARSE: Release 12.4

▶ New Features

▶ Added the preprocessing step for sparse matrix-vector multiplication cuspars-
eSpMV_preprocess().

▶ Added support for mixed real and complex types for cusparseSpMM().

▶ Added a new API cusparseSpSM_updateMatrix() to update the sparse matrix between
the analysis and solving phase of cusparseSpSM().

▶ Known Issues

▶ cusparseSpMV() introduces invalidmemory accesseswhen the output vector is not aligned
to 16 bytes.

▶ Resolved Issues

▶ cusparseSpVV() provided incorrect results when the sparse vector has many non-zeros.

6.4.8. cuSPARSE: Release 12.3 Update 1

▶ New Features

▶ Added support for block sizes of 64 and 128 in cusparseSDDMM().

▶ Added a preprocessing step cusparseSDDMM_preprocess() for BSR cusparseSDDMM()
that helps improve performance of the main computing stage.

6.4.9. cuSPARSE: Release 12.3

▶ New Features

▶ ThecusparseSpSV_bufferSize() andcusparseSpSV_analysis() routines nowaccept
NULL pointers for the dense vector.

▶ ThecusparseSpSM_bufferSize() andcusparseSpSM_analysis() routines nowaccept
dense matrix descriptors with NULL pointer for values.

▶ Known Issues

▶ The cusparseSpSV_analysis() and cusparseSpSM_analysis() routines are blocking
calls/not asynchronous.

▶ Wrong results can occur for cusparseSpSV() using sliced ELLPACK format and trans-
pose/transpose conjugate operation on matrix A.

▶ Resolved Issues

▶ cusparseSpSV() provided indeterministic results in some cases.

▶ Fixed an issue that caused cusparseSpSV_analysis() to hang sometimes in a multi-
thread environment.

▶ Fixed an issue with cusparseSpSV() and cusparseSpSV() that sometimes yielded wrong
output when the output vector/matrix or input matrix contained NaN.

6.4. cuSPARSE Library 37

Release Notes, Release 12.8

6.4.10. cuSPARSE: Release 12.2 Update 1

▶ New Features

▶ The library now provides the opportunity to dump sparse matrices to files during the cre-
ation of the descriptor for debugging purposes. See logging API https://docs.nvidia.com/
cuda/cusparse/index.html#cusparse-logging-api.

▶ Resolved Issues

▶ Removed CUSPARSE_SPMM_CSR_ALG3 fallback to avoid confusion in the algorithm selection
process.

▶ Clarified the supported operations for cusparseSDDMM().

▶ cusparseCreateConstSlicedEll() now uses const pointers.

▶ Fixed wrong results in rare edge cases of cusparseCsr2CscEx2() with base 1 indexing.

▶ cusparseSpSM_bufferSize() could ask slightly less memory than needed.

▶ cusparseSpMV() now checks the validity of the buffer pointer only when it is strictly
needed.

▶ Deprecations

▶ Several legacy APIs have been officially deprecated. A compile-timewarning has been added
to all of them.

6.4.11. cuSPARSE: Release 12.1 Update 1

▶ New Features

▶ Introduced Block Sparse Row (BSR) sparse matrix storage for the Generic APIs with support
for SDDMM routine (cusparseSDDMM).

▶ Introduced Sliced Ellpack (SELL) sparse matrix storage format for the Generic APIs with
support for sparse matrix-vector multiplication (cusparseSpMV) and triangular solver with
a single right-hand side (cusparseSpSV).

▶ Added a new API call (cusparseSpSV_updateMatrix) to update matrix values and/or the
matrix diagonal in the sparse triangular solver with a single right-hand side after the analysis
step.

6.4.12. cuSPARSE: Release 12.0 Update 1

▶ New Features

▶ cusparseSDDMM() now supports mixed precision computation.

▶ Improved cusparseSpMM() alg2mixed-precision performance on somematrices on NVIDIA
Ampere architecture GPUs.

▶ Improved cusparseSpMV() performance with a new load balancing algorithm.

▶ cusparseSpSV() and cusparseSpSM() now support in-place computation, namely the
output and input vectors/matrices have the same memory address.

38 Chapter 6. CUDA Libraries

https://docs.nvidia.com/cuda/cusparse/index.html#cusparse-logging-api
https://docs.nvidia.com/cuda/cusparse/index.html#cusparse-logging-api

Release Notes, Release 12.8

▶ Resolved Issues

▶ cusparseSpSM() could produce wrong results if the leading dimension (ld) of the RHS ma-
trix is greater than the number of columns/rows.

6.4.13. cuSPARSE: Release 12.0

▶ New Features

▶ JIT LTO functionalities (cusparseSpMMOp()) switched from driver to nvJitLto library. Start-
ing from CUDA 12.0 the user needs to link to libnvJitLto.so, see cuSPARSE documenta-
tion. JIT LTO performance has also been improved for cusparseSpMMOpPlan().

▶ Introduced const descriptors for the Generic APIs, for example, cusparseConst-
SpVecGet(). Now the Generic APIs interface clearly declares when a descriptor and its
data are modified by the cuSPARSE functions.

▶ Added two new algorithms to cusparseSpGEMM() with lower memory utilization. The first
algorithmcomputes a strict bound on the number of intermediate product, while the second
one allows partitioning the computation in chunks.

▶ Added int8_t support to cusparseGather(), cusparseScatter(), and cuspar-
seCsr2cscEx2().

▶ Improved cusparseSpSV() performance for both the analysis and the solving phases.

▶ Improved cusparseSpSM() performance for both the analysis and the solving phases.

▶ Improved cusparseSDDMM() performance and added support for batch computation.

▶ Improved cusparseCsr2cscEx2() performance.

▶ Resolved Issues

▶ cusparseSpSV() and cusparseSpSM() could produce wrong results.

▶ cusparseDnMatGetStridedBatch() did not accept batchStride == 0.

▶ Deprecations

▶ Removed deprecated CUDA 11.x APIs, enumerators, and descriptors.

6.5. Math Library

6.5.1. CUDA Math: Release 12.8 Update 1

▶ Users of the E8M0 (__nv_fp8_e0m8) types defined in cuda_fp8.h should be aware of a change
in the rounding behavior for the C++ converting constructors when converting from other
floating-point and integer types. The constructors now take the absolute value of the input and
apply round-toward-positive-infinity rounding with saturation to convert to the E8M0 represen-
tation. Previously, the constructors used absolute value with round-toward-zero rounding and
saturation. This previous behavior can now be accessed through specific conversion functions,
such as __nv_cvt_bfloat16raw_to_e8m0. [5066830]

6.5. Math Library 39

https://docs.nvidia.com/cuda/cusparse/index.html
https://docs.nvidia.com/cuda/cusparse/index.html

Release Notes, Release 12.8

6.5.2. CUDA Math: Release 12.8

▶ New Features

▶ Added support for several new floating point datatypes:

▶ E2M1 (2-bit exponent, 1-bit mantissa)

▶ E2M3 (2-bit exponent, 3-bit mantissa)

▶ E3M2 (3-bit exponent, 2-bit mantissa)

▶ E8M0 (8-bit exponent, 0-bit mantissa)

For detailed information about FP4, FP6, and FP8 types, including conversion operators and
intrinsics, refer to the CUDA Math API documentation. [CUMATH-1385]

▶ Conversion operations for these types are natively supported by specific devices (e.g. de-
vices of compute capability 10.0a), other devices use emulation path.

▶ Optimized standard single precision hyperbolic tangent (tanhf()) function, achieving 30-
40% faster performance. [4557267]

▶ Added several new tanh implementations:

▶ __tanhf(float x): New fast reduced-accuracy math intrinsic

▶ htanh() and h2tanh(): tanh functions for half and bfloat16 types in scalar and packed
formats

▶ htanh_approx() and h2tanh_approx(): Fast reduced-accuracy versions

Refer to CUDA Math API documentation for detailed usage information. [CUMATH-6821]

▶ Added support for quad-precision __float128 data type and selectmath library operations
in device computations on GPUs with compute capability 10.0 and above. Refer to CUDA
Math API documentation for details. [CUMATH-5463]

▶ Known Issues

▶ When converting toMXFP4/MXFP6/MXFP8 formats developers should not use the C++ con-
verting constructors, which currently implement only round-toward-zero behavior. Conver-
sions to MXFP formats should use round-toward-positive-infinity, which is implemented as
an option in conversion functions like __nv_cvt_bfloat16raw_to_e8m0. C++ converting
constructors behavior will change in a future update.

6.5.3. CUDA Math: Release 12.6 Update 1

▶ Resolved Issues

▶ Issue 4731352 from release 12.6 is resolved.

40 Chapter 6. CUDA Libraries

Release Notes, Release 12.8

6.5.4. CUDA Math: Release 12.6

▶ Known Issues

▶ As a result of ongoing compatibility testing NVIDIA identified that a number of CUDA Math
Integer SIMD APIs silently produced wrong results if used on the CPU in programs com-
piled with MSVC 17.10. The root cause is found to be the coding error in the header-based
implementation of the APIs exposed to the undefined behavior during narrowing integer
conversion when doing a host-based emulation of the GPU functionality. The issue will be
fixed in a future release of CUDA. Applications affected are those calling __vimax3_s16x2,
__vimin3_s16x2, __vibmax_s16x2, and __vibmin_s16x2 on the CPU and not in CUDA
kernels. [4731352]

6.5.5. CUDA Math: Release 12.5

▶ Known Issues

▶ As a result of ongoing testing we updated the interval bounds in which double precision
lgamma() function may experience greater than the documented 4 ulp accuracy loss. New
interval shall read (-23.0001; -2.2637). This finding is applicable toCUDA12.5 and all previous
versions. [4662420]

6.5.6. CUDA Math: Release 12.4

▶ Resolved Issues

▶ Host-specific code in cuda_fp16∕bf16 headers is now free from type-punning and shall
work correctly in the presence of optimizations based on strict-aliasing rules. [4311216]

6.5.7. CUDA Math: Release 12.3

▶ New Features

▶ Performance of SIMD Integer CUDA Math APIs was improved.

▶ Resolved Issues

▶ The __hisinf() Math APIs from cuda_fp16.h and cuda_bf16.h headers were silently
producing wrong results if compiled with the -std=c++20 compiler option because of an
underlying nvcc compiler issue, resolved in version 12.3.

▶ Known Issues

▶ Users of cuda_fp16.h and cuda_bf16.h headers are advised to disable host compilers
strict aliasing rules based optimizations (e.g. pass -fno-strict-aliasing to host GCC
compiler) as thesemay interferewith the type-punning idiomsused in the__half, __half2,
__nv_bfloat16, __nv_bfloat162 types implementations and expose the user program
to undefined behavior. Note, the headers suppress GCC diagnostics through: #pragma GCC
diagnostic ignored -Wstrict-aliasing. This behavior may improve in future versions of
the headers.

6.5. Math Library 41

Release Notes, Release 12.8

6.5.8. CUDA Math: Release 12.2

▶ New Features

▶ CUDA Math APIs for __half and __nv_bfloat16 types received usability improvements,
including host side <emulated> support for many of the arithmetic operations and conver-
sions.

▶ __half and __nv_bfloat16 types have implicit conversions to/from integral types, which
are now available with host compilers by default. These may cause build issues due to am-
biguous overloads resolution. Users are advised to update their code to select proper over-
loads. To opt-out user may want to define the following macros (these macros will be re-
moved in the future CUDA release):

▶ __CUDA_FP16_DISABLE_IMPLICIT_INTEGER_CONVERTS_FOR_HOST_COMPILERS__

▶ __CUDA_BF16_DISABLE_IMPLICIT_INTEGER_CONVERTS_FOR_HOST_COMPILERS__

▶ Resolved Issues

▶ During ongoing testing, NVIDIA identified that due to an algorithm error the results of 64-bit
floating-point division in default round-to-nearest-even mode could produce spurious over-
flow to infinity. NVIDIA recommends that all developers requiring strict IEEE754 compliance
update to CUDA Toolkit 12.2 or newer. The affected algorithm was present in both offline
compilation as well as just-in-time (JIT) compilation. As JIT compilation is handled by the
driver, NVIDIA recommends updating to driver version greater than or equal to R535 (R536
on Windows) when IEEE754 compliance is required and when using JIT. This is a software
algorithm fix and is not tied to specific hardware.

▶ Updated the observed worst case error bounds for single precision intrinsic functions
__expf(), __exp10f() and double precision functions asinh(), acosh().

6.5.9. CUDA Math: Release 12.1

▶ New Features

▶ Performance and accuracy improvements in atanf, acosf, asinf, sinpif, cospif, powf,
erff, and tgammaf.

6.5.10. CUDA Math: Release 12.0

▶ New Features

▶ Introduced new integer/fp16/bf16 CUDAMath APIs to help expose performance benefits of
new DPX instructions. Refer to https://docs.nvidia.com/cuda/cuda-math-api/index.html.

▶ Known Issues

▶ Double precision inputs that cause the double precision division algorithm in the de-
fault ‘round to nearest even mode’ produce spurious overflow: an infinite result is deliv-
ered where DBL_MAX 0x7FEF_FFFF_FFFF_FFFF is expected. Affected CUDA Math APIs:
__ddiv_rn(). Affected CUDA language operation: double precision / operation in the de-
vice code.

▶ Deprecations

42 Chapter 6. CUDA Libraries

https://docs.nvidia.com/cuda/cuda-math-api/index.html

Release Notes, Release 12.8

▶ All previously deprecated undocumented APIs are removed from CUDA 12.0.

6.6. NVIDIA Performance Primitives (NPP)

6.6.1. NPP: Release 12.4

▶ New Features

▶ Enhanced large file support with size_t.

6.6.2. NPP: Release 12.0

▶ Deprecations

▶ Deprecating non-CTX API support from next release.

▶ Resolved Issues

▶ A performance issue with the NPP ResizeSqrPixel API is now fixed and shows improved
performance.

6.7. nvJPEG Library

6.7.1. nvJPEG: Release 12.8

▶ New Features

▶ Added hardware-accelerated JPEG decoding support in nvJPEG for NVIDIA Blackwell archi-
tecture GPUs.

▶ The nvJPEG library now uses significantly less GPU memory during encoding, achieving
memory savings of 30% to 50%, depending on image size and chroma subsampling mode.
For images larger than 5MB (approximately 2K x 1K pixels) and popular subsampling modes
such as 4:2:2 and 4:2:0, memory savings are around 50%. Additionally, nvJPEG no longer
artificially runs out of memory when processing large or complex images, enhancing its re-
liability and performance.

▶ Resolved Issues

▶ Resolved an issue in nvJPEG that prevented the correct encoding of very small images with
dimensions less than 25 pixels. [4655922]

▶ Fixed an issue that caused out-of-bound reads when decoding a truncated JPEG file using
nvjpegDecodeJpegHost with the NVJPEG_BACKEND_GPU_HYBRID backend. [4663831]

6.6. NVIDIA Performance Primitives (NPP) 43

Release Notes, Release 12.8

6.7.2. nvJPEG: Release 12.4

▶ New Features

▶ IDCT performance optimizations for single image CUDA decode.

▶ ZeroCopybehavior has been changed: SettingNVJPEG_FLAGS_REDUCED_MEMORY_DECODE_ZERO_COPY
flag will no longer enable NVJPEG_FLAGS_REDUCED_MEMORY_DECODE.

6.7.3. nvJPEG: Release 12.3 Update 1

▶ New Features

▶ New APIs: nvjpegBufferPinnedResize and nvjpegBufferDeviceResize which can be
used to resize pinned and device buffers before using them.

6.7.4. nvJPEG: Release 12.2

▶ New Features

▶ Added support for JPEG Lossless decode (process 14, FO prediction).

▶ nvJPEG is now supported on L4T.

6.7.5. nvJPEG: Release 12.0

▶ New Features

▶ Immproved the GPU Memory optimisation for the nvJPEG codec.

▶ Resolved Issues

▶ An issue that causes runtime failures when nvJPEGDecMultipleInstances was tested
with a large number of threads is resolved.

▶ An issue with CMYK four component color conversion is now resolved.

▶ Known Issues

▶ Backend NVJPEG_BACKEND_GPU_HYBRID - Unable to handle bistreams with extra scans
lengths.

▶ Deprecations

▶ The reuse of Huffman table in Encoder (nvjpegEncoderParamsCopyHuffmanTables).

44 Chapter 6. CUDA Libraries

Chapter 7. Notices

7.1. Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a
certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no repre-
sentations or warranties, expressed or implied, as to the accuracy or completeness of the information
contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall
have no liability for the consequences or use of such information or for any infringement of patents
or other rights of third parties that may result from its use. This document is not a commitment to
develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any
other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that
such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the
time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by
authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA
product referenced in this document. No contractual obligations are formed either directly or indirectly
by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military,
aircraft, space, or life support equipment, nor in applicationswhere failure ormalfunction of theNVIDIA
product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or
applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIAmakes no representation or warranty that products based on this document will be suitable for
any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA.
It is customer’s sole responsibility to evaluate and determine the applicability of any information con-
tained in this document, ensure the product is suitable and fit for the application planned by customer,
and perform the necessary testing for the application in order to avoid a default of the application or
the product. Weaknesses in customer’s product designs may affect the quality and reliability of the
NVIDIA product andmay result in additional or different conditions and/or requirements beyond those
contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or prob-
lem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is
contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other
NVIDIA intellectual property right under this document. Information published by NVIDIA regarding
third-party products or services does not constitute a license from NVIDIA to use such products or

45

Release Notes, Release 12.8

services or a warranty or endorsement thereof. Use of such information may require a license from a
third party under the patents or other intellectual property rights of the third party, or a license from
NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA
in writing, reproduced without alteration and in full compliance with all applicable export laws and
regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENTANDALLNVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE
BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WAR-
RANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENTWILL NVIDIA BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CON-
SEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARIS-
ING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCHDAMAGES. Notwithstanding any damages that customermight incur for any reasonwhatso-
ever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein
shall be limited in accordance with the Terms of Sale for the product.

7.2. OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

7.3. Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the
U.S. and other countries. Other company and product names may be trademarks of the respective
companies with which they are associated.

Copyright

©2007-2025, NVIDIA Corporation & affiliates. All rights reserved

46 Chapter 7. Notices

	CUDA Toolkit Major Component Versions
	New Features
	CUDA Compiler
	CUDA Developer Tools

	Resolved Issues
	CUDA Compiler

	Known Issues and Limitations
	CUDA
	CUDA Compiler

	Deprecated or Dropped Features
	Deprecated Architectures
	Deprecated or Dropped Operating Systems
	Deprecated CUDA Tools

	CUDA Libraries
	cuBLAS Library
	cuBLAS: Release 12.8 Update 1
	cuBLAS: Release 12.8
	cuBLAS: Release 12.6 Update 2
	cuBLAS: Release 12.6 Update 1
	cuBLAS: Release 12.6
	cuBLAS: Release 12.5 Update 1
	cuBLAS: Release 12.5
	cuBLAS: Release 12.4 Update 1
	cuBLAS: Release 12.4
	cuBLAS: Release 12.3 Update 1
	cuBLAS: Release 12.3
	cuBLAS: Release 12.2 Update 2
	cuBLAS: Release 12.2
	cuBLAS: Release 12.1 Update 1
	cuBLAS: Release 12.0 Update 1
	cuBLAS: Release 12.0

	cuFFT Library
	cuFFT: Release 12.8 Update 1
	cuFFT: Release 12.8
	cuFFT: Release 12.6 Update 2
	cuFFT: Release 12.6
	cuFFT: Release 12.5
	cuFFT: Release 12.4 Update 1
	cuFFT: Release 12.4
	cuFFT: Release 12.3 Update 1
	cuFFT: Release 12.3
	cuFFT: Release 12.2
	cuFFT: Release 12.1 Update 1
	cuFFT: Release 12.1
	cuFFT: Release 12.0 Update 1
	cuFFT: Release 12.0

	cuSOLVER Library
	cuSOLVER: Release 12.8
	cuSOLVER: Release 12.6 Update 2
	cuSOLVER: Release 12.6
	cuSOLVER: Release 12.5 Update 1
	cuSOLVER: Release 12.5
	cuSOLVER: Release 12.4 Update 1
	cuSOLVER: Release 12.4
	cuSOLVER: Release 12.2 Update 2
	cuSOLVER: Release 12.2

	cuSPARSE Library
	cuSPARSE: Release 12.8 Update 1
	cuSPARSE: Release 12.8
	cuSPARSE: Release 12.6 Update 2
	cuSPARSE: Release 12.6
	cuSPARSE: Release 12.5 Update 1
	cuSPARSE: Release 12.5
	cuSPARSE: Release 12.4
	cuSPARSE: Release 12.3 Update 1
	cuSPARSE: Release 12.3
	cuSPARSE: Release 12.2 Update 1
	cuSPARSE: Release 12.1 Update 1
	cuSPARSE: Release 12.0 Update 1
	cuSPARSE: Release 12.0

	Math Library
	CUDA Math: Release 12.8 Update 1
	CUDA Math: Release 12.8
	CUDA Math: Release 12.6 Update 1
	CUDA Math: Release 12.6
	CUDA Math: Release 12.5
	CUDA Math: Release 12.4
	CUDA Math: Release 12.3
	CUDA Math: Release 12.2
	CUDA Math: Release 12.1
	CUDA Math: Release 12.0

	NVIDIA Performance Primitives (NPP)
	NPP: Release 12.4
	NPP: Release 12.0

	nvJPEG Library
	nvJPEG: Release 12.8
	nvJPEG: Release 12.4
	nvJPEG: Release 12.3 Update 1
	nvJPEG: Release 12.2
	nvJPEG: Release 12.0

	Notices
	Notice
	OpenCL
	Trademarks

