
cuFFT
Release 12.8

NVIDIA Corporation

Feb 27, 2025

Contents

1 Using the cuFFT API 3
1.1 Accessing cuFFT . 4
1.2 Fourier Transform Setup . 4
1.2.1 Free Memory Requirement . 5
1.2.2 Plan Initialization Time . 5

1.3 Fourier Transform Types . 6
1.3.1 Half-precision cuFFT Transforms . 6
1.3.2 Bfloat16-precision cuFFT Transforms . 7

1.4 Data Layout . 7
1.5 Multidimensional Transforms . 8
1.6 Advanced Data Layout . 9
1.7 Streamed cuFFT Transforms . 10
1.8 Multiple GPU cuFFT Transforms . 10
1.8.1 Plan Specification and Work Areas . 11
1.8.2 Helper Functions . 12
1.8.3 Multiple GPU 2D and 3D Transforms on Permuted Input 12
1.8.4 Supported Functionality . 13

1.9 cuFFT Callback Routines . 15
1.9.1 Overview of the cuFFT Callback Routine Feature . 15
1.9.2 LTO Load and Store Callback Routines . 16
1.9.2.1 Specifying LTO Load and Store Callback Routines 17
1.9.2.2 LTO Callback Routine Function Details . 18

1.9.3 Legacy Load and Store Callback Routines . 19
1.9.3.1 Specifying Legacy Load and Store Callback Routines 19
1.9.3.2 Legacy Callback Routine Function Details . 20

1.9.4 Coding Considerations for the cuFFT Callback Routine Feature 22
1.9.4.1 Coding Considerations for LTO Callback Routines 22
1.9.4.2 Coding Considerations for Legacy Callback Routines 23

1.10 Thread Safety . 23
1.11 CUDA Graphs Support . 23
1.12 Static Library and Callback Support . 23
1.12.1 Static library without legacy callback support . 25

1.13 Accuracy and Performance . 25
1.14 Caller Allocated Work Area Support . 26
1.15 cuFFT Link-Time Optimized Kernels . 27

2 cuFFT API Reference 29
2.1 Return value cufftResult . 29
2.2 cuFFT Basic Plans . 30
2.2.1 cufftPlan1d() . 30
2.2.2 cufftPlan2d() . 31
2.2.3 cufftPlan3d() . 31
2.2.4 cufftPlanMany() . 32

i

2.3 cuFFT Extensible Plans . 34
2.3.1 cufftCreate() . 34
2.3.2 cufftDestroy() . 34
2.3.3 cufftMakePlan1d() . 35
2.3.4 cufftMakePlan2d() . 36
2.3.5 cufftMakePlan3d() . 37
2.3.6 cufftMakePlanMany() . 38
2.3.7 cufftMakePlanMany64() . 39
2.3.8 cufftXtMakePlanMany() . 41

2.4 cuFFT Plan Properties . 42
2.4.1 cufftSetPlanPropertyInt64() . 43
2.4.2 cufftGetPlanPropertyInt64() . 44
2.4.3 cufftResetPlanProperty() . 44

2.5 cuFFT Estimated Size of Work Area . 45
2.5.1 cufftEstimate1d() . 45
2.5.2 cufftEstimate2d() . 46
2.5.3 cufftEstimate3d() . 46
2.5.4 cufftEstimateMany() . 47

2.6 cuFFT Refined Estimated Size of Work Area . 48
2.6.1 cufftGetSize1d() . 48
2.6.2 cufftGetSize2d() . 49
2.6.3 cufftGetSize3d() . 50
2.6.4 cufftGetSizeMany() . 50
2.6.5 cufftGetSizeMany64() . 51
2.6.6 cufftXtGetSizeMany() . 53

2.7 cufftGetSize() . 54
2.8 cuFFT Caller Allocated Work Area Support . 54
2.8.1 cufftSetAutoAllocation() . 54
2.8.2 cufftSetWorkArea() . 55
2.8.3 cufftXtSetWorkAreaPolicy() . 56

2.9 cuFFT Execution . 56
2.9.1 cufftExecC2C() and cufftExecZ2Z() . 56
2.9.2 cufftExecR2C() and cufftExecD2Z() . 57
2.9.3 cufftExecC2R() and cufftExecZ2D() . 58
2.9.4 cufftXtExec() . 59
2.9.5 cufftXtExecDescriptor() . 59

2.10 cuFFT and Multiple GPUs . 60
2.10.1 cufftXtSetGPUs() . 60
2.10.2 cufftXtSetWorkArea() . 61
2.10.3 cuFFT Multiple GPU Execution . 61
2.10.3.1 cufftXtExecDescriptorC2C() and cufftXtExecDescriptorZ2Z() 61
2.10.3.2 cufftXtExecDescriptorR2C() and cufftXtExecDescriptorD2Z() 62
2.10.3.3 cufftXtExecDescriptorC2R() and cufftXtExecDescriptorZ2D() 63

2.10.4 Memory Allocation and Data Movement Functions . 63
2.10.4.1 cufftXtMalloc() . 64
2.10.4.2 cufftXtFree() . 65
2.10.4.3 cufftXtMemcpy() . 65

2.10.5 General Multiple GPU Descriptor Types . 66
2.10.5.1 cudaXtDesc . 66
2.10.5.2 cudaLibXtDesc . 66

2.11 cuFFT Callbacks . 67
2.11.1 cufftXtSetJITCallback() . 67
2.11.2 cufftXtSetCallback() . 68
2.11.3 cufftXtClearCallback() . 68

ii

2.11.4 cufftXtSetCallbackSharedSize() . 69
2.12 cufftSetStream() . 70
2.13 cufftGetVersion() . 70
2.14 cufftGetProperty() . 71
2.15 cuFFT Types . 71
2.15.1 Parameter cufftType . 71
2.15.2 Parameters for Transform Direction . 71
2.15.3 Type definitions for callbacks . 72
2.15.3.1 Type definitions for LTO callbacks . 72
2.15.3.2 Type definitions for legacy callbacks . 73

2.15.4 Other cuFFT Types . 73
2.15.4.1 cufftHandle . 73
2.15.4.2 cufftReal . 73
2.15.4.3 cufftDoubleReal . 74
2.15.4.4 cufftComplex . 74
2.15.4.5 cufftDoubleComplex . 74

2.16 Common types . 74
2.16.1 cudaDataType . 74
2.16.2 libraryPropertyType . 75

3 Multiple GPU Data Organization 77
3.1 Multiple GPU Data Organization for Batched Transforms 77
3.2 Multiple GPU Data Organization for Single 2D and 3D Transforms 77
3.3 Multiple-GPU Data Organization for Single 1D Transforms 78

4 FFTW Conversion Guide 83

5 FFTW Interface to cuFFT 85

6 Deprecated Functionality 87

7 Notices 89
7.1 Notice . 89
7.2 OpenCL . 90
7.3 Trademarks . 90

Index 91

iii

iv

cuFFT, Release 12.8

cuFFT API Reference

The API reference guide for cuFFT, the CUDA Fast Fourier Transform library.

cuFFT Release Notes: CUDA Toolkit Release Notes

cuFFT GitHub Samples: CUDA Library Samples

Nvidia Developer Forum: GPU-Accelerated Libraries

Provide Feedback: Math-Libs-Feedback@nvidia.com

Related FFT Libraries:

▶ cuFFTMP

▶ cuFFTDx

▶ cuFFT LTO EA (DEPRECATED)

▶ NVPL FFT

Relevant cuFFT Blog Posts and GTC presentations:

▶ Accelerating GPU Applications with NVIDIA Math Libraries

▶ Multinode Multi-GPU: Using NVIDIA cuFFTMp FFTs at Scale

▶ New Asynchronous Programming Model Library Now Available with NVIDIA HPC SDK v22.11

▶ Just-In-Time Link-Time Optimization Adoption in cuSPARSE/cuFFT: Use Case Overview

This document describes cuFFT, the NVIDIA® CUDA® Fast Fourier Transform (FFT) product. It consists
of two separate libraries: cuFFT and cuFFTW. The cuFFT library is designed to provide high perfor-
mance on NVIDIA GPUs. The cuFFTW library is provided as a porting tool to enable users of FFTW to
start using NVIDIA GPUs with a minimum amount of effort.

The FFT is a divide-and-conquer algorithm for efficiently computing discrete Fourier transforms of
complex or real-valued data sets. It is one of themost important andwidely used numerical algorithms
in computational physics and general signal processing. The cuFFT library provides a simple interface
for computing FFTs on an NVIDIA GPU, which allows users to quickly leverage the floating-point power
and parallelism of the GPU in a highly optimized and tested FFT library.

The cuFFT product supports a wide range of FFT inputs and options efficiently on NVIDIA GPUs. This
version of the cuFFT library supports the following features:

▶ Algorithms highly optimized for input sizes that can be written in the form 2a × 3b × 5c × 7d. In
general the smaller the prime factor, the better the performance, i.e., powers of two are fastest.

▶ An O (n logn) algorithm for every input data size

▶ Half-precision (16-bit floating point), single-precision (32-bit floating point) and double-precision
(64-bit floating point). Transforms of lower precision have higher performance.

▶ Complex and real-valued input and output. Real valued input or output require less computations
and data than complex values and often have faster time to solution. Types supported are:

▶ C2C - Complex input to complex output

▶ R2C - Real input to complex output

▶ C2R - Symmetric complex input to real output

▶ 1D, 2D and 3D transforms

▶ Execution of multiple 1D, 2D and 3D transforms simultaneously. These batched transforms have
higher performance than single transforms.

Contents 1

https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cufft-library
https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuFFT
https://forums.developer.nvidia.com/c/accelerated-computing/gpu-accelerated-libraries/
mailto:Math-Libs-Feedback@nvidia.com?subject=cuFFT-Feedback
https://docs.nvidia.com/hpc-sdk/cufftmp/
https://docs.nvidia.com/cuda/cufftdx/index.html
https://docs.nvidia.com/cuda/cufft/ltoea/index.html
https://docs.nvidia.com/nvpl/_static/fft/index.html
https://developer.nvidia.com/blog/accelerating-gpu-applications-with-nvidia-math-libraries/
https://developer.nvidia.com/blog/multinode-multi-gpu-using-nvidia-cufftmp-ffts-at-scale/
https://developer.nvidia.com/blog/building-high-performance-applications-in-the-era-of-accelerated-computing/
https://www.nvidia.com/en-us/on-demand/session/gtcfall21-a31155/?playlistId=playList-ead11304-9931-4e91-9d5a-fb0e1ef27014

cuFFT, Release 12.8

▶ In-place and out-of-place transforms

▶ Arbitrary intra- and inter-dimension element strides (strided layout)

▶ FFTW compatible data layout

▶ Execution of transforms across multiple GPUs

▶ Streamed execution, enabling asynchronous computation and data movement

The cuFFTW library provides the FFTW3 API to facilitate porting of existing FFTW applications.

Please note that starting from CUDA 11.0, the minimum supported GPU architecture is SM35. See
Deprecated Functionality.

2 Contents

index.html#deprecated-functionality

Chapter 1. Using the cuFFT API

This chapter provides a general overview of the cuFFT library API. For more complete information on
specific functions, see cuFFT API Reference. Users are encouraged to read this chapter before con-
tinuing with more detailed descriptions.

The Discrete Fourier transform (DFT)maps a complex-valued vector xk (time domain) into its frequency
domain representation given by:

Xk =
N−1∑
n=0

xne
−2πi kn

N

where Xk is a complex-valued vector of the same size. This is known as a forward DFT. If the sign on
the exponent of e is changed to be positive, the transform is an inverse transform. Depending on N ,
different algorithms are deployed for the best performance.

The cuFFT API is modeled after FFTW, which is one of the most popular and efficient CPU-based FFT
libraries. cuFFT provides a simple configuration mechanism called a plan that uses internal building
blocks to optimize the transform for the given configuration and the particular GPUhardware selected.
Then, when the execution function is called, the actual transform takes place following the plan of
execution. The advantage of this approach is that once the user creates a plan, the library retains
whatever state is needed to execute the planmultiple timeswithout recalculation of the configuration.
Thismodel workswell for cuFFT because different kinds of FFTs require different thread configurations
and GPU resources, and the plan interface provides a simple way of reusing configurations.

Computing a number BATCH of one-dimensional DFTs of size NX using cuFFT will typically look like this:

#define NX 256
#define BATCH 10
#define RANK 1
...
{

cufftHandle plan;
cufftComplex *data;
...
cudaMalloc((void**)&data, sizeof(cufftComplex)*NX*BATCH);
cufftPlanMany(&plan, RANK, NX, &iembed, istride, idist,

&oembed, ostride, odist, CUFFT_C2C, BATCH);
...
cufftExecC2C(plan, data, data, CUFFT_FORWARD);
cudaDeviceSynchronize();
...
cufftDestroy(plan);
cudaFree(data);

}

3

index.html#cufft-api-reference
http://www.fftw.org

cuFFT, Release 12.8

1.1. Accessing cuFFT

The cuFFT and cuFFTW libraries are available as shared libraries. They consist of compiled programs
ready for users to incorporate into applications with the compiler and linker. cuFFT can be downloaded
from https://developer.nvidia.com/cufft. By selecting Download CUDA Production Release users are
all able to install the package containing theCUDAToolkit, SDK code samples and development drivers.
The CUDA Toolkit contains cuFFT and the samples include simplecuFFT.

The Linux release for simplecuFFT assumes that the root install directory is ∕usr∕local∕cuda and
that the locations of the products are contained there as follows. Modify the Makefile as appropriate
for your system.

Product Location and name Include file

nvcc compiler ∕bin∕nvcc

cuFFT library {lib, lib64}∕libcufft.so inc∕cufft.h

cuFFT library with Xt functionality {lib, lib64}∕libcufft.so inc∕cufftXt.h

cuFFTW library {lib, lib64}∕libcufftw.so inc∕cufftw.h

Themost common case is for developers tomodify an existing CUDA routine (for example, filename.
cu) to call cuFFT routines. In this case the include file cufft.h or cufftXt.h should be inserted into
filename.cu file and the library included in the link line. A single compile and link line might appear
as

▶ ∕usr∕local∕cuda∕bin∕nvcc [options] filename.cu … -I∕usr∕local∕cuda∕inc -L∕
usr∕local∕cuda∕lib -lcufft

Of course there will typically be many compile lines and the compiler g++ may be used for linking so
long as the library path is set correctly.

Users of the FFTW interface (see FFTW Interface to cuFFT) should include cufftw.h and link with
both cuFFT and cuFFTW libraries.

Functions in the cuFFT and cuFFTW library assume that the data is in GPU visible memory. This means
anymemory allocated bycudaMalloc, cudaMallocHost andcudaMallocManaged or registeredwith
cudaHostRegister can be used as input, output or plan work area with cuFFT and cuFFTW functions.
For the best performance input data, output data and plan work area should reside in device memory.

cuFFTW library also supports input data and output data that is not GPU visible.

1.2. Fourier Transform Setup

The first step in using the cuFFT Library is to create a plan using one of the following:

▶ cufftPlan1D() ∕ cufftPlan2D() ∕ cufftPlan3D() - Create a simple plan for a 1D/2D/3D
transform respectively.

▶ cufftPlanMany() - Creates a plan supporting batched input and strided data layouts.

▶ cufftXtMakePlanMany() - Creates a plan supporting batched input and strided data layouts
for any supported precision.

4 Chapter 1. Using the cuFFT API

https://developer.nvidia.com/cufft
index.html#fftw-supported-interface

cuFFT, Release 12.8

Among the plan creation functions, cufftPlanMany() allows use of more complicated data layouts
and batched executions. Execution of a transform of a particular size and typemay take several stages
of processing. When a plan for the transform is generated, cuFFT derives the internal steps that need
to be taken. These steps may include multiple kernel launches, memory copies, and so on. In addition,
all the intermediate buffer allocations (onCPU/GPUmemory) take place during planning. These buffers
are released when the plan is destroyed. In the worst case, the cuFFT Library allocates space for
8*batch*n[0]*..*n[rank-1] cufftComplex or cufftDoubleComplex elements (where batch
denotes the number of transforms that will be executed in parallel, rank is the number of dimensions
of the input data (see Multidimensional Transforms) and n[] is the array of transform dimensions)
for single and double-precision transforms respectively. Depending on the configuration of the plan,
less memory may be used. In some specific cases, the temporary space allocations can be as low as
1*batch*n[0]*..*n[rank-1] cufftComplex or cufftDoubleComplex elements. This temporary
space is allocated separately for each individual plan when it is created (i.e., temporary space is not
shared between the plans).

The next step in using the library is to call an execution function such as cufftExecC2C() (see Pa-
rameter cufftType) which will perform the transform with the specifications defined at planning.

One can create a cuFFT plan and perform multiple transforms on different data sets by providing
different input and output pointers. Once the plan is no longer needed, the cufftDestroy() function
should be called to release the resources allocated for the plan.

1.2.1. Free Memory Requirement

The first program call to any cuFFT function causes the initialization of the cuFFT kernels. This can fail
if there is not enough free memory on the GPU. It is advisable to initialize cufft first (e.g. by creating a
plan) and then allocating memory.

1.2.2. Plan Initialization Time

During plan initialization, cuFFT conducts a series of steps, including heuristics to determine which
kernels to be used as well as kernel module loads. Starting from CUDA 12.0, cuFFT delivers a larger
portion of kernels using the CUDA Parallel Thread eXecution assembly form (PTX code), instead of
the binary form (cubin object). The PTX code of cuFFT kernels are loaded and compiled further to
the binary code by the CUDA device driver at runtime when a cuFFT plan is initialized. This is called
just-in-time (JIT) compilation.

JIT compilation slightly increases cuFFT plan initialization time, depending on the transform size and
the speed of the host CPU (seeModule load driver API) . But the JIT overhead occurs only when a binary
code is generated for the first time during plan initialization using one of the plan creation functions.
The device driver automatically caches a copy of the generated binary code to avoid repeating the
compilation in subsequent invocations. If necessary, CUDA_CACHE_PATH or CUDA_CACHE_MAXSIZE
can be customized to set the cache folder and max size (see detail in CUDA Environmental Variables),
but the default settings are fine in general.

1.2. Fourier Transform Setup 5

index.html#multi-dimensional
index.html#cufft-transform-types
index.html#cufft-transform-types
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#just-in-time-compilation
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#module
https://docs.nvidia.com/cuda/cufft/index.html#cufft-setup
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars

cuFFT, Release 12.8

1.3. Fourier Transform Types

Apart from the general complex-to-complex (C2C) transform, cuFFT implements efficiently two other
types: real-to-complex (R2C) and complex-to-real (C2R). Inmany practical applications the input vector
is real-valued. It can be easily shown that in this case the output satisfies Hermitian symmetry (Xk =
X∗

N−k, where the star denotes complex conjugation). The converse is also true: for complex-Hermitian
input the inverse transform will be purely real-valued. cuFFT takes advantage of this redundancy and
works only on the first half of the Hermitian vector.

Transform execution functions for single and double-precision are defined separately as:

▶ cufftExecC2C() ∕ cufftExecZ2Z() - complex-to-complex transforms for single/double pre-
cision.

▶ cufftExecR2C() ∕ cufftExecD2Z() - real-to-complex forward transform for single/double
precision.

▶ cufftExecC2R() ∕ cufftExecZ2D() - complex-to-real inverse transform for single/double
precision.

Each of those functions demands different input data layout (see Data Layout for details).

Note: Complex-to-real (C2R) transforms accept complex-Hermitian input. For one-dimensional sig-
nals, this requires the 0th element (and the N

2 th input if N is even) to be real-valued, i.e. its imaginary
part should be zero. For d-dimension signals, this means x(n1,n2,...,nd) = x∗

(N1−n1,N2−n2,...,Nd−nd)
. Oth-

erwise, the behavior of the transform is undefined. Also see Multidimensional Transforms.

Functions cufftXtExec() and cufftXtExecDescriptor() can perform transforms on any of the
supported types.

1.3.1. Half-precision cuFFT Transforms

Half-precision transforms have the following limitations:

▶ Minimum GPU architecture is SM_53

▶ Sizes are restricted to powers of two only

▶ Strides on the real part of real-to-complex and complex-to-real transforms are not supported

▶ More than one GPU is not supported

▶ Transforms spanning more than 4 billion elements are not supported

Please refer to cufftXtMakePlanMany function for plan creation details.

The CUDA Toolkit provides the cuda_fp16.h header with types and intrinsic functions for handling
half-precision arithmetic.

6 Chapter 1. Using the cuFFT API

index.html#data-layout
index.html#multidimensional-transforms

cuFFT, Release 12.8

1.3.2. Bfloat16-precision cuFFT Transforms

cuFFT supports bfloat16 precision using the nv_bfloat16 data type. Please note that cuFFT utilizes
a combination of single- and bfloat16-precision arithmetic operations when computing the FFT in
bfloat16 precision. Bfloat16-precision transforms have similar limitations to half-precision transforms:

▶ Minimum GPU architecture is SM_80

▶ Sizes are restricted to powers of two only

▶ Strides on the real part of real-to-complex and complex-to-real transforms are not supported

▶ More than one GPU is not supported

▶ Transforms spanning more than 4 billion elements are not supported

Please refer to cufftXtMakePlanMany function for plan creation details.

The CUDA Toolkit provides the cuda_bf16.h header with types and intrinsic functions for handling
bfloat16-precision arithmetic.

1.4. Data Layout

In the cuFFT Library, data layout depends strictly on the configuration and the transform type. In the
case of general complex-to-complex transform both the input and output data shall be a cufftCom-
plex/cufftDoubleComplex array in single- and double-precisionmodes respectively. In C2Rmode an
input array (x1, x2, . . . , x⌊N

2 ⌋+1) of only non-redundant complex elements is required. The output array
(X1, X2, . . . , XN) consists of cufftReal/cufftDouble elements in this mode. Finally, R2C demands
an input array (X1, X2, . . . , XN) of real values and returns an array (x1, x2, . . . , x⌊N

2 ⌋+1) of non-redundant
complex elements.

In real-to-complex and complex-to-real transforms the size of input data and the size of output data
differ. For out-of-place transforms a separate array of appropriate size is created. For in-place trans-
forms the user should use padded data layout. This layout is FFTW compatibile.

In the padded layout output signals begin at the samememory addresses as the input data. Therefore
input data for real-to-complex and output data for complex-to-real must be padded.

Expected sizes of input/output data for 1-d transforms are summarized in the table below:

FFT type input data size output data size

C2C xcufftComplex xcufftComplex

C2R
⌊
x
2

⌋
+ 1cufftComplex xcufftReal

R2C* xcufftReal
⌊
x
2

⌋
+ 1cufftComplex

The real-to-complex transform is implicitly a forward transform. For an in-place real-to-complex trans-
form where FFTW compatible output is desired, the input size must be padded to

(
⌊N

2 ⌋+ 1
)
complex

elements. For out-of-place transforms, input and output sizes match the logical transform sizeN and
the non-redundant size ⌊N

2 ⌋+ 1, respectively.

The complex-to-real transform is implicitly inverse. For in-place complex-to-real FFTs where FFTW
compatible output is selected (default padding mode), the input size is assumed to be ⌊N

2 ⌋ +
1cufftComplex elements. Note that in-place complex-to-real FFTsmay overwrite arbitrary imaginary

1.4. Data Layout 7

cuFFT, Release 12.8

input point values when non-unit input and output strides are chosen. Out-of-place complex-to-real
FFT will always overwrite input buffer. For out-of-place transforms, input and output sizes match the
logical transform non-redundant size ⌊N

2 ⌋+ 1 and size N , respectively.

1.5. Multidimensional Transforms

Multidimensional DFT map a d-dimensional array xn, where n = (n1, n2, . . . , nd) into its frequency do-
main array given by:

Xk =
N−1∑
n=0

xne
−2πi knN

where n
N = (n1

N1
, n2

N2
, . . . , nd

Nd
), and the summation denotes the set of nested summations

N1−1∑
n1=0

N2−1∑
n2=0

. . .
Nd−1∑
nd=0

cuFFT supports one-dimensional, two-dimensional and three-dimensional transforms, which can all
be called by the same cufftExec* functions (see Fourier Transform Types).

Similar to the one-dimensional case, the frequency domain representation of real-valued input data
satisfies Hermitian symmetry, defined as: x(n1,n2,...,nd) = x∗

(N1−n1,N2−n2,...,Nd−nd)
.

C2R and R2C algorithms take advantage of this fact by operating only on half of the elements of signal
array, namely on: xn for n ∈ {1, . . . , N1} × . . .× {1, . . . , Nd−1} × {1, . . . , ⌊Nd

2 ⌋+ 1}.

The general rules of data alignment described in Data Layout apply to higher-dimensional transforms.
The following table summarizes input and output data sizes for multidimensional DFTs:

Dims FFT type Input data size Output data size

1D C2C N1cufftComplex N1cufftComplex

1D C2R ⌊N1

2 ⌋+ 1cufftComplex N1cufftReal

1D R2C N1cufftReal ⌊N1

2 ⌋+ 1cufftComplex

2D C2C N1N2cufftComplex N1N2cufftComplex

2D C2R N1(⌊N2

2 ⌋+ 1)cufftComplex N1N2cufftReal

2D R2C N1N2cufftReal N1(⌊N2

2 ⌋+ 1)cufftComplex

3D C2C N1N2N3cufftComplex N1N2N3cufftComplex

3D C2R N1N2(⌊N3

2 ⌋+ 1)cufftComplex N1N2N3cufftReal

3D R2C N1N2N3cufftReal N1N2(⌊N3

2 ⌋+ 1)cufftComplex

For example, static declaration of a three-dimensional array for the output of an out-of-place real-to-
complex transform will look like this:

cufftComplex odata[N1][N2][N3∕2+1];

8 Chapter 1. Using the cuFFT API

index.html#fft-types
index.html#data-layout

cuFFT, Release 12.8

1.6. Advanced Data Layout

The advanced data layout feature allows transforming only a subset of an input array, or outputting to
only a portion of a larger data structure. It can be set by calling function:

cufftResult cufftPlanMany(cufftHandle *plan, int rank, int *n, int *inembed,
int istride, int idist, int *onembed, int ostride,
int odist, cufftType type, int batch);

Passing inembed or onembed set to NULL is a special case and is equivalent to passing n for each. This
is same as the basic data layout and other advanced parameters such as istride are ignored.

If the advanced parameters are to be used, then all of the advanced interface parameters must be
specified correctly. Advanced parameters are defined in units of the relevant data type (cufftReal,
cufftDoubleReal, cufftComplex, or cufftDoubleComplex).

Advanced layout can be perceived as an additional layer of abstraction above the access to in-
put/output data arrays. An element of coordinates [z][y][x] in signal number b in the batch will
be associated with the following addresses in the memory:

▶ 1D

input[b * idist + x * istride]

output[b * odist + x * ostride]

▶ 2D

input[b * idist` + (x * inembed[1] + y) * istride]

output[b * odist + (x * onembed[1] + y) * ostride]

▶ 3D

input[b * idist + ((x * inembed[1] + y) * inembed[2] + z) * istride]

output[b * odist + ((x * onembed[1] + y) * onembed[2] + z) * ostride]

The istride and ostride parameters denote the distance between two successive input and output
elements in the least significant (that is, the innermost) dimension respectively. In a single 1D trans-
form, if every input element is to be used in the transform, istride should be set to 1; if every other
input element is to be used in the transform, then istride should be set to 2. Similarly, in a single
1D transform, if it is desired to output final elements one after another compactly, ostride should
be set to 1; if spacing is desired between the least significant dimension output data, ostride should
be set to the distance between the elements.

The inembed and onembed parameters define the number of elements in each dimension in the
input array and the output array respectively. The inembed[rank-1] contains the number of el-
ements in the least significant (innermost) dimension of the input data excluding the istride el-
ements; the number of total elements in the least significant dimension of the input array is then
istride*inembed[rank-1]. The inembed[0] or onembed[0] corresponds to the most significant
(that is, the outermost) dimension and is effectively ignored since the idist or odist parameter pro-
vides this information instead. Note that the size of each dimension of the transform should be less
than or equal to the inembed and onembed values for the corresponding dimension, that is n[i] �
inembed[i], n[i] � onembed[i], where i ∈ {0, . . . , rank − 1}.

The idist and odist parameters indicate the distance between the first element of two consecutive
batches in the input and output data.

1.6. Advanced Data Layout 9

cuFFT, Release 12.8

1.7. Streamed cuFFT Transforms

Every cuFFT plan may be associated with a CUDA stream. Once so associated, all launches of the
internal stages of that plan take place through the specified stream. Streaming of cuFFT execution
allows for potential overlap between transforms and memory copies. (See the NVIDIA CUDA Program-
ming Guide for more information on streams.) If no stream is associated with a plan, launches take
place in stream(0), the default CUDA stream. Note that many plan executions require multiple ker-
nel launches.

cuFFT uses private streams internally to sort operations, including event syncrhonization. cuFFT does
not guarantee ordering of internal operations, and the order is only preserved with respect to the
streams set by the user.

As of CUDA 11.2 (cuFFT 10.4.0), cufftSetStream() is supported in multiple GPU cases. However,
calls to cufftXtMemcpy() are still synchronous across multiple GPUs when using streams. In previ-
ous versions of cuFFT, cufftSetStream() returns an error in the multiple GPU case. Likewise, calling
certainmulti-GPU functions such as cufftXtSetCallback() after setting a streamwith cufftSet-
Stream() will result in an error (see API functions for more details).

Please note that in order to overlap plans using single plan handle user needs to manage work area
buffers. Each concurrent plan execution needs it’s exclusivework area. Work area can be set bycufft-
SetWorkArea function.

1.8. Multiple GPU cuFFT Transforms

cuFFT supports using up to sixteen GPUs connected to a CPU to perform Fourier Transforms whose
calculations are distributed across the GPUs. An API has been defined to allow users to write new code
or modify existing code to use this functionality.

Some existing functions such as the creation of a plan using cufftCreate() also apply in themultiple
GPU case. Multiple GPU routines contain Xt in their name.

The memory on the GPUs is managed by helper functions cufftXtMalloc()∕cufftXtFree() and
cufftXtMemcpy() using the cudaLibXtDesc descriptor.

Performance is a function of the bandwidth between the GPUs, the computational ability of the indi-
vidual GPUs, and the type and number of FFT to be performed. The highest performance is obtained
using NVLink interconnect (https://www.nvidia.com/object/nvlink.html). The second best option is us-
ing PCI Express 3.0 between the GPUs and ensuring that both GPUs are on the same switch. Note that
multiple GPU execution is not guaranteed to solve a given size problem in a shorter time than single
GPU execution.

The multiple GPU extensions to cuFFT are built on the extensible cuFFT API. The general steps in
defining and executing a transform with this API are:

▶ cufftCreate() - create an empty plan, as in the single GPU case

▶ cufftXtSetGPUs() - define which GPUs are to be used

▶ Optional: cufftEstimate{1d,2d,3d,Many}() - estimate the sizes of the work areas required.
These are the same functions used in the single GPU case although the definition of the argu-
ment workSize reflects the number of GPUs used.

10 Chapter 1. Using the cuFFT API

https://www.nvidia.com/object/nvlink.html

cuFFT, Release 12.8

▶ cufftMakePlan{1d,2d,3d,Many}() - create the plan. These are the same functions used in
the single GPU case although the definition of the argument workSize reflects the number of
GPUs used.

▶ Optional: cufftGetSize{1d,2d,3d,Many}() - refined estimate of the sizes of the work areas
required. These are the same functions used in the single GPU case although the definition of
the argument workSize reflects the number of GPUs used.

▶ Optional: cufftGetSize() - check workspace size. This is the same function used in the single
GPU case although the definition of the argument workSize reflects the number of GPUs used.

▶ Optional: cufftXtSetWorkArea() - do your own workspace allocation.

▶ cufftXtMalloc() - allocate descriptor and data on the GPUs

▶ cufftXtMemcpy() - copy data to the GPUs

▶ cufftXtExecDescriptorC2C()∕cufftXtExecDescriptorZ2Z() - execute the plan

▶ cufftXtMemcpy() - copy data from the GPUs

▶ cufftXtFree() - free any memory allocated with cufftXtMalloc()

▶ cufftDestroy() - free cuFFT plan resources

1.8.1. Plan Specification and Work Areas

In the single GPU case a plan is created by a call to cufftCreate() followed by a call to cufftMake-
Plan*(). For multiple GPUs, the GPUs to use for execution are identified by a call to cufftXtSet-
GPUs() and this must occur after the call to cufftCreate() and prior to the call to cufftMake-
Plan*().

Note that when cufftMakePlan*() is called for a single GPU, the work area is on that GPU. In a
multiple GPU plan, the returned work area has multiple entries; one value per GPU. That is workSize
points to a size_t array, one entry per GPU. Also the strides and batches apply to the entire plan
across all GPUs associated with the plan.

Once a plan is locked by a call to cufftMakePlan*(), different descriptors may be specified in calls
to cufftXtExecDescriptor*() to execute the plan on different data sets, but the new descriptors
must use the same GPUs in the same order.

As in the single GPU case, cufftEstimateSize{Many,1d,2d,3d}() and cufftGetSize{Many,1d,
2d,3d}() give estimates of the work area sizes required for a multiple GPU plan and in this case
workSize points to a size_t array, one entry per GPU.

Similarly the actual work size returned by cufftGetSize() is a size_t array, one entry per GPU in
the multiple GPU case.

1.8. Multiple GPU cuFFT Transforms 11

cuFFT, Release 12.8

1.8.2. Helper Functions

Multiple GPU cuFFT execution functions assume a certain data layout in terms of what input data
has been copied to which GPUs prior to execution, and what output data resides in which GPUs post
execution. cuFFT provides functions to assist users in manipulating data on multiple GPUs. These
must be called after the call to cufftMakePlan*().

On a single GPU users may call cudaMalloc() and cudaFree() to allocate and free GPU mem-
ory. To provide similar functionality in the multiple GPU case, cuFFT includes cufftXtMalloc() and
cufftXtFree() functions. The function cufftXtMalloc() returns a descriptor which specifies the
location of these memories.

On a single GPU users may call cudaMemcpy() to transfer data between host and GPU memory. To
provide similar functionality in the multiple GPU case, cuFFT includes cufftXtMemcpy()which allows
users to copy between host and multiple GPU memories or even between the GPU memories.

All single GPU cuFFT FFTs return output the data in natural order, that is the ordering of the result
is the same as if a DFT had been performed on the data. Some Fast Fourier Transforms produce
intermediate results where the data is left in a permutation of the natural output. When batch is one,
data is left in the GPU memory in a permutation of the natural output.

When cufftXtMemcpy() is used to copy data from GPU memory back to host memory, the results
are in natural order regardless of whether the data on the GPUs is in natural order or permuted. Us-
ing CUFFT_COPY_DEVICE_TO_DEVICE allows users to copy data from the permuted data format pro-
duced after a single transform to the natural order on GPUs.

1.8.3. Multiple GPU 2D and 3D Transforms on Permuted
Input

For single 2D or 3D transforms onmultiple GPUs, when cufftXtMemcpy() distributes the data to the
GPUs, the array is divided on the X axis. E.G. for two GPUs half of the X dimenson points, for all Y (and
Z) values, are copied to each of the GPUs. When the transform is computed, the data are permuted
such that they are divided on the Y axis. I.E. half of the Y dimension points, for all X (and Z) values are
on each of the GPUs.

When cuFFT creates a 2D or 3D plan for a single transform on multiple GPUs, it actually creates two
plans. One plan expects input to be divided on the X axis. The other plan expects data to be divided on
the Y axis. This is done because many algorithms compute a forward FFT, then perform some point-
wise operation on the result, and then compute the inverse FFT. A memory copy to restore the data
to the original order would be expensive. To avoid this, cufftXtMemcpy and cufftXtExecDescrip-
tor() keep track of the data ordering so that the correct operation is used.

The ability of cuFFT to process data in either order makes the following sequence possible.

▶ cufftCreate() - create an empty plan, as in the single GPU case

▶ cufftXtSetGPUs() - define which GPUs are to be used

▶ cufftMakePlan{1d,2d,3d,Many}() - create the plan.

▶ cufftXtMalloc() - allocate descriptor and data on the GPUs

▶ cufftXtMemcpy() - copy data to the GPUs

▶ cufftXtExecDescriptorC2C()∕cufftXtExecDescriptorZ2Z() - compute the forward FFT

▶ userFunction() - modify the data in the frequency domain

12 Chapter 1. Using the cuFFT API

cuFFT, Release 12.8

▶ cufftXtExecDescriptorC2C()∕cufftXtExecDescriptorZ2Z() - compute the inverse FFT

▶ Note that it was not necessary to copy/permute the data between execute calls

▶ cufftXtMemcpy() - copy data to the host

▶ cufftXtFree() - free any memory allocated with cufftXtMalloc()

▶ cufftDestroy() - free cuFFT plan resources

1.8.4. Supported Functionality

Starting with cuFFT version 7.0, a subset of single GPU functionality is supported for multiple GPU
execution.

Requirements and limitations:

▶ All GPUsmust have the same CUDA architecture level and support Unified Virtual Address Space.

▶ On Windows, the GPU boards must be operating in Tesla Compute Cluster (TCC) mode.

▶ For an application that uses the CUDA Driver API, running cuFFT on multiple GPUs is only com-
patible with applications using the primary context on each GPU.

▶ Strided input and output are not supported.

▶ Running cuFFT on more than 8 GPUs (16 GPUs is max) is supported on machines with NVLink
only.

While transformswith batch count greater than one do not impose additional constraints, thosewith a
single batch have some restrictions. Single-batch FFTs support only in-placemode, and have additional
constraints depending on the FFT type. This behavior is summarized in the following table:

batch=1 1D 2D 3D

C2C/Z2Z
▶ 2,4,8,16 GPUs
▶ power of 2 sizes

only
▶ Minimum size for

2-4 GPUs is 64
▶ Minimum size for

8 GPUs is 128
▶ Minimum size for

16 GPUs is 1024

▶ 2-16 GPUs
▶ One of the following conditions is met for

each dimension:
▶ Dimension must factor into primes

less than or equal to 127
▶ Maximum dimension size is 4096 for

single precision
▶ Maximum dimension size is 2048 for

double precision
▶ Minimum size is 32
▶ No LTO callback support

continues on next page

1.8. Multiple GPU cuFFT Transforms 13

cuFFT, Release 12.8

Table 1 – continued from previous page

batch=1 1D 2D 3D

R2C/D2Z not supported ▶ 2-16 GPUs
▶ One of the following conditions is met for

each dimension:
▶ Dimension must factor into primes

less than or equal to 127
▶ Maximum dimension size is 4096 for

single precision
▶ Maximum dimension size is 2048 for

double precision
▶ Minimum size is 32
▶ Fastest changing dimension size needs to

be even
▶ Supports only

CUFFT_XT_FORMAT_INPLACE input de-
scriptor format

▶ No legacy callback / LTO callback support

C2R/Z2D not supported ▶ 2-16 GPUs
▶ One of the following conditions is met for

each dimension:
▶ Dimension must factor into primes

less than or equal to 127
▶ Maximum dimension size is 4096 for

single precision
▶ Maximum dimension size is 2048 for

double precision
▶ Minimum size is 32
▶ Fastest changing dimension size needs to

be even
▶ Supports only

CUFFT_XT_FORMAT_INPLACE_SHUFFLED
input descriptor format

▶ No legacy callback / LTO callback support

General guidelines are:

▶ Parameter whichGPUs of cufftXtSetGPUs() function determines ordering of the GPUs with
respect to data decomposition (first data chunk is placed on GPU denoted by first element of
whichGPUs)

▶ The data for the entire transform must fit within the memory of the GPUs assigned to it.

▶ For batch size m on n GPUs :

▶ The first m % n GPUs execute
⌊
m
n

⌋
+ 1 transforms.

▶ The remaining GPUs execute
⌊
m
n

⌋
transforms.

Batch size output differences:

Single GPU cuFFT results are always returned in natural order. Whenmultiple GPUs are used to perform
more than one transform, the results are also returned in natural order. When multiple GPUs are used
to perform a single transform the results are returned in a permutation of the normal results to reduce
communication time. This behavior is summarized in the following table:

14 Chapter 1. Using the cuFFT API

cuFFT, Release 12.8

Number of GPUs Number of transforms Output Order on GPUs

One One or multiple transforms Natural order

Multiple One Permuted results

Multiple Multiple Natural order

To produce natural order results in GPU memory for multi-GPU runs in the 1D single transform case,
requires calling cufftXtMemcpy() with CUFFT_COPY_DEVICE_TO_DEVICE.

2D and 3D multi-GPU transforms support execution of a transform given permuted order results
as input. After execution in this case, the output will be in natural order. It is also possible to use
cufftXtMemcpy() with CUFFT_COPY_DEVICE_TO_DEVICE to return 2D or 3D data to natural order.

See the cuFFT Code Examples section for single GPU and multiple GPU examples.

1.9. cuFFT Callback Routines

Callback routines are user-supplied kernel routines that cuFFT will call when loading or storing data.
They allow the user to do data pre- or post- processing without additional kernel calls.

Note: In CUDA 12.6 Update 2, we introduced support for Link-Time Optimized (LTO) callbacks as a
replacement for the deprecated (legacy) callbacks. See more in LTO Load and Store Callback Routines.

Starting from CUDA 11.4, support for callback functionality using separately compiled device code
(i.e. legacy callbacks) is deprecated on all GPU architectures. Callback functionality will continue to be
supported for all GPU architectures.

1.9.1. Overview of the cuFFT Callback Routine Feature

cuFFT provides a set of APIs that allow the cuFFT user to provide CUDA functions that re-direct or
manipulate the data as it is loaded prior to processing the FFT, or stored once the FFT has been done.
For the load callback, cuFFT calls the callback routine the address of the input data and the offset to
the value to be loaded from device memory, and the callback routine returns the value it wishes cuFFT
to use instead. For the store callback, cuFFT calls the callback routine the value it has computed, along
with the address of the output data and the offset to the value to be written to device memory, and
the callback routine modifies the value and stores the modified result.

In order to provide a callback to cuFFT, a plan is created using the extensible plan APIs. After the call
to cufftCreate, the user may associate a load callback routine, or a store callback routine, or both,
with the plan, by:

▶ Calling cufftXtSetJITCallback before cufftMakePlan, for LTO callbacks

▶ Calling cufftXtSetCallback after cufftMakePlan, for legacy callbacks

The caller also has the option to specify a device pointer to an opaque structure they wish to associate
with the plan. This pointer will be passed to the callback routine by the cuFFT library. The caller may
use this structure to remember plan dimensions and strides, or have a pointer to auxiliary data, etc.

1.9. cuFFT Callback Routines 15

index.html#lto-load-and-store-callback-routines

cuFFT, Release 12.8

With some restrictions, the callback routine is allowed to request shared memory for its own use. If
the requested amount of shared memory is available, cufft will pass a pointer to it when it calls the
callback routine.

CUFFT allows for 8 types of callback routines, one for each possible combination of: load or store, real
or complex, single precision or double:

▶ For LTO callbacks, the user must provide an LTO routine that matches the function prototype for
the type of routine specified. Otherwise, the planning function cufftMakePlan will fail.

▶ For legacy callbacks, it is the caller’s responsibility to provide a routine that matches the function
prototype for the type of routine specified.

If there is already a callback of the specified type associated with the plan handle, the set callback
functions will replace it with the new one.

The callback routine extensions to cuFFT are built on the extensible cuFFT API. The general steps in
defining and executing a transform with callbacks are:

▶ cufftCreate() - create an empty plan, as in the single GPU case.

▶ (For LTO callbacks) cufftXtSetJITCallback() - set a load and/or store LTO callback for this
plan.

▶ cufftMakePlan{1d,2d,3d,Many}() - create the plan. These are the same functions used in
the single GPU case.

▶ (For legacy callbacks) cufftXtSetCallback() - set a load and/or store legacy callback for this
plan.

▶ cufftExecC2C() etc. - execute the plan.

▶ cufftDestroy() - free cuFFT plan resources.

Callback functions are not supported on transforms with a dimension size that does not factor into
primes smaller than 127. Callback functions on plans whose dimensions’ prime factors are limited to
2, 3, 5, and 7 can safely call __syncthreads(). On other plans, results are not defined.

Note: The LTO callback API is available in the dynamic and static cuFFT libraries on 64 bit Windows
and LINUX operating systems. The LTO callback API requires compatible nvJitLink and NVRTC libraries
present in the dynamic library path. See more details in LTO Load and Store Callback Routines.

The legacy callback API is available only in the static cuFFT library on 64 bit LINUX operating systems.

1.9.2. LTO Load and Store Callback Routines

LTO callbacks in cuFFT for a given toolkit version require using the nvJitLink library from the same
toolkit or greater, but within the same toolkit major.

Additionally, in order to specify custom names for the LTO callback routines, cuFFT requires using the
NVRTC library. cuFFT uses NVRTC to compile a minimal wrapper around the user callback with custom
symbol name. The custom symbol name provided to the cuFFT API must be a valid, null-terminated
C-string containing the unmangled name; currently, keywords that alter the scope of the symbol name
(such as namespace) or the mangling (such as extern "C") are not supported.

The NVRTC library used must be from a toolkit that is either the same version or older than the
nvJitLink library, and both must be from the same toolkit major.

16 Chapter 1. Using the cuFFT API

index.html#lto-load-and-store-callback-routines
https://docs.nvidia.com/cuda/nvjitlink/index.html
https://docs.nvidia.com/cuda/nvrtc/index.html

cuFFT, Release 12.8

For example, in toolkit version 12.6 cuFFT requires nvJitLink to be from toolkit version 12.X, where X
>= 6, and NVRTC to be from toolkit version 12.Y, where 0 <= Y <= X.

Both the nvJitLink and the NVRTC libraries are loaded dynamically, and should be present in the sys-
tem’s dynamic linking path (e.g. LD_LIBRARY_PATH on Unix systems, or PATH on Windows systems).

Code samples for LTO callbacks are available in the public CUDA Library Samples github repository.

1.9.2.1 Specifying LTO Load and Store Callback Routines

Usage of LTO callbacks in cuFFT is divided in two parts:

▶ Generating the LTO callback (i.e. compiling the callback routine to LTO-IR).

▶ Associating the LTO callback with the cuFFT plan.

To generate the LTO callback, users can compile the callback device function to LTO-IR using nvcc with
any of the supported flags (such as -dlto or -gencode=arch=compute_XX,code=lto_XX, with XX
indicating the target GPU architecture); alternatively, users can generate the LTO callback usingNVRTC
to do runtime compilation via the -dlto flag.

Notice that PTX JIT is part of the JIT LTO kernel finalization trajectory, so architectures older than
the current system architecture are supported; users can compile their callback function to LTO-IR for
target arch XX and and execute plans which use the callback functions on GPUs with arch YY, where
XX <= YY. Please see Compiler Support for Runtime LTO Using nvJitLink Library and Just-in-Time
(JIT) Compilation for more details.

As an example, if a user wants to specify a load callback for a R2C transform, they could write the
following code

__device__ cufftReal myOwnLTOCallback(void *dataIn,
unsigned long long offset,
void *callerInfo,
void *sharedPtr) {

cufftReal ret;
∕∕ use offset, dataIn, and optionally callerInfo to
∕∕ compute the return value
return ret;

}

To compile the callback to LTO-IR, the user could do

Compile the code to SM60 LTO-IR into a fatbin file
nvcc -gencode=arch=compute_60,code=lto_60 -dc -fatbin callback.cu -o callback.fatbin
#Turn the fatbin data into a C array inside a header, for easy inclusion in host code
bin2c --name my_lto_callback_fatbin --type longlong callback.fatbin > callback_fatbin.
↪→h

To associate the LTO callback with the cuFFT plan, users can leverage the new API call
cufftXtSetJITCallback(), which works similarly to cufftXtSetCallback(), with a few caveats.

First, cufftXtSetJITCallback() must be called after plan creation with cufftCreate(), and be-
fore calling the plan initialization function with cufftMakePlan*() and similar routines.

Second, removing the LTO callback from the plan (using cufftXtClearCallback()) is currently not
supported. A new plan must be created.

1.9. cuFFT Callback Routines 17

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuFFT
https://developer.nvidia.com/blog/cuda-12-0-compiler-support-for-runtime-lto-using-nvjitlink-library/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#just-in-time-compilation
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#just-in-time-compilation

cuFFT, Release 12.8

#include <cufftXt.h>
#include "callback_fatbin.h"

int main() {
cufftResult status;
cufftHandle fft_plan;
...

status = cufftCreate(&fft_plan);

∕∕ NOTE: LTO callbacks must be set before plan creation and cannot be unset (yet)
size_t lto_callback_fatbin_size = sizeof(my_lto_callback_fatbin);
status = cufftXtSetJITCallback(fft_plan, "myOwnLTOCallback", (void*)my_lto_

↪→callback_fatbin, lto_callback_fatbin_size, CUFFT_CB_LD_REAL, (void **)&device_
↪→params));

status = cufftMakePlan1d(fft_plan, signal_size, CUFFT_C2R, batches, &work_size);
...

}

1.9.2.2 LTO Callback Routine Function Details

Below are the function prototypes for the user-supplied LTO callback routines that cuFFT calls to load
data prior to the transform.

typedef cufftComplex (*cufftJITCallbackLoadC)(void *dataIn,
unsigned long long offset,
void *callerInfo,
void *sharedPointer);

typedef cufftDoubleComplex (*cufftJITCallbackLoadZ)(void *dataIn,
unsigned long long offset,
void *callerInfo,
void *sharedPointer);

typedef cufftReal (*cufftJITCallbackLoadR)(void *dataIn,
unsigned long long offset,
void *callerInfo,
void *sharedPointer);

typedef cufftDoubleReal (*cufftJITCallbackLoadD)(void *dataIn,
unsigned long long offset,
void *callerInfo,
void *sharedPointer);

Parameters for all of the LTO load callbacks are defined as below:

▶ offset: offset of the input element from the start of input data. This is not a byte offset, rather
it is the number of elements from start of data.

▶ dataIn: device pointer to the start of the input array that was passed in the cufftExecute call.

▶ callerInfo: device pointer to the optional caller specified data passed in the cufftXtSet-
Callback call.

▶ sharedPointer: pointer to shared memory, valid only if the user has called cufftXtSetCall-
backSharedSize().

18 Chapter 1. Using the cuFFT API

cuFFT, Release 12.8

Below are the function prototypes, and typedefs for pointers to the user supplied LTO callback routines
that cuFFT calls to store data after completion of the transform. Note that the store callback functions
do not return a value. This is because a store callback function is responsible not only for transforming
the data as desired, but also for writing the data to the desired location. This allows the store callback
to rearrange the data, for example to shift the zero frequency result to the center of the ouput.

typedef void (*cufftJITCallbackStoreC)(void *dataOut,
unsigned long long offset,
cufftComplex element,
void *callerInfo,
void *sharedPointer);

typedef void (*cufftJITCallbackStoreZ)(void *dataOut,
unsigned long long offset,
cufftDoubleComplex element,
void *callerInfo,
void *sharedPointer);

typedef void (*cufftJITCallbackStoreR)(void *dataOut,
unsigned long long offset,
cufftReal element,
void *callerInfo,
void *sharedPointer);

typedef void (*cufftJITCallbackStoreD)(void *dataOut,
unsigned long long offset,
cufftDoubleReal element,
void *callerInfo,
void *sharedPointer);

Parameters for all of the LTO store callbacks are defined as below:

▶ offset: offset of the output element from the start of output data. This is not a byte offset,
rather it is the number of elements from start of data.

▶ dataOut: device pointer to the start of the output array that was passed in the cufftExecute
call.

▶ element: the real or complex result computed by CUFFT for the element specified by the offset
argument.

▶ callerInfo: device pointer to the optional caller specified data passed in the cufftXtSet-
Callback call.

▶ sharedPointer: pointer to shared memory, valid only if the user has called cufftXtSetCall-
backSharedSize().

1.9.3. Legacy Load and Store Callback Routines

1.9.3.1 Specifying Legacy Load and Store Callback Routines

In order to associate a legacy callback routine with a plan, it is necessary to obtain a device pointer to
the callback routine.

As an example, if the user wants to specify a load callback for an R2C transform, they would write the
device code for the callback function, and define a global device variable that contains a pointer to the
function:

1.9. cuFFT Callback Routines 19

cuFFT, Release 12.8

__device__ cufftReal myOwnCallback(void *dataIn,
size_t offset,
void *callerInfo,
void *sharedPtr) {

cufftReal ret;
∕∕ use offset, dataIn, and optionally callerInfo to
∕∕ compute the return value
return ret;

}
__device__ cufftCallbackLoadR myOwnCallbackPtr = myOwnCallback;

From the host side, the user then has to get the address of the legacy callback routine, which is stored
in myOwnCallbackPtr. This is done with cudaMemcpyFromSymbol, as follows:

cufftCallbackLoadR hostCopyOfCallbackPtr;

cudaMemcpyFromSymbol(&hostCopyOfCallbackPtr,
myOwnCallbackPtr,
sizeof(hostCopyOfCallbackPtr));

hostCopyOfCallbackPtr then contains the device address of the callback routine, that should be
passed to cufftXtSetCallback. Note that, for multi-GPU transforms, hostCopyOfCallbackPtr
will need to be an array of pointers, and the cudaMemcpyFromSymbol will have to be invoked for each
GPU. Please note that __managed__ variables are not suitable to pass to cufftSetCallback due to
restrictions on variable usage (See the NVIDIA CUDA Programming Guide for more information about
__managed__ variables).

1.9.3.2 Legacy Callback Routine Function Details

Below are the function prototypes, and typedefs for pointers to the user supplied legacy callback
routines that cuFFT calls to load data prior to the transform.

typedef cufftComplex (*cufftCallbackLoadC)(void *dataIn,
size_t offset,
void *callerInfo,
void *sharedPointer);

typedef cufftDoubleComplex (*cufftCallbackLoadZ)(void *dataIn,
size_t offset,
void *callerInfo,
void *sharedPointer);

typedef cufftReal (*cufftCallbackLoadR)(void *dataIn,
size_t offset,
void *callerInfo,
void *sharedPointer);

typedef cufftDoubleReal (*cufftCallbackLoadD)(void *dataIn,
size_t offset,
void *callerInfo,
void *sharedPointer);

Parameters for all of the legacy load callbacks are defined as below:

▶ offset: offset of the input element from the start of input data. This is not a byte offset, rather
it is the number of elements from start of data.

20 Chapter 1. Using the cuFFT API

cuFFT, Release 12.8

▶ dataIn: device pointer to the start of the input array that was passed in the cufftExecute call.

▶ callerInfo: device pointer to the optional caller specified data passed in the cufftXtSet-
Callback call.

▶ sharedPointer: pointer to shared memory, valid only if the user has called cufftXtSetCall-
backSharedSize().

Below are the function prototypes, and typedefs for pointers to the user supplied legacy callback
routines that cuFFT calls to store data after completion of the transform. Note that the store callback
functions do not return a value. This is because a store callback function is responsible not only for
transforming the data as desired, but also for writing the data to the desired location. This allows the
store callback to rearrange the data, for example to shift the zero frequency result to the center of
the ouput.

typedef void (*cufftCallbackStoreC)(void *dataOut,
size_t offset,
cufftComplex element,
void *callerInfo,
void *sharedPointer);

typedef void (*cufftCallbackStoreZ)(void *dataOut,
size_t offset,
cufftDoubleComplex element,
void *callerInfo,
void *sharedPointer);

typedef void (*cufftCallbackStoreR)(void *dataOut,
size_t offset,
cufftReal element,
void *callerInfo,
void *sharedPointer);

typedef void (*cufftCallbackStoreD)(void *dataOut,
size_t offset,
cufftDoubleReal element,
void *callerInfo,
void *sharedPointer);

Parameters for all of the legacy store callbacks are defined as below:

▶ offset: offset of the output element from the start of output data. This is not a byte offset,
rather it is the number of elements from start of data.

▶ dataOut: device pointer to the start of the output array that was passed in the cufftExecute
call.

▶ element: the real or complex result computed by CUFFT for the element specified by the offset
argument.

▶ callerInfo: device pointer to the optional caller specified data passed in the cufftXtSet-
Callback call.

▶ sharedPointer: pointer to shared memory, valid only if the user has called cufftXtSetCall-
backSharedSize().

1.9. cuFFT Callback Routines 21

cuFFT, Release 12.8

1.9.4. Coding Considerations for the cuFFT Callback
Routine Feature

cuFFT supports callbacks on all types of transforms, dimension, batch, or stride between elements.
Callbacks are supported for transforms of single and double precision.

cuFFT supports a wide range of parameters, and based on those for a given plan, it attempts to op-
timize performance. The number of kernels launched, and for each of those, the number of blocks
launched and the number of threads per block, will vary depending on how cuFFT decomposes the
transform. For some configurations, cuFFT will load or store (and process) multiple inputs or outputs
per thread. For some configurations, threads may load or store inputs or outputs in any order, and
cuFFT does not guarantee that the inputs or outputs handled by a given thread will be contiguous.
These characteristics may vary with transform size, transform type (e.g. C2C vs C2R), number of di-
mensions, and GPU architecture. These variations may also change from one library version to the
next.

When more than one kernel are used to implement a transform, the thread and block structure of the
first kernel (the one that does the load) is often different from the thread and block structure of the
last kernel (the one that does the store).

One common use of callbacks is to reduce the amount of data read or written to memory, either by
selective filtering or via type conversions. When more than one kernel are used to implement a trans-
form, cuFFT alternates using the workspace and the output buffer to write intermediate results. This
means that the output buffer must always be large enough to accommodate the entire transform.

For transforms whose dimensions can be factored into powers of 2, 3, 5, or 7, cuFFT guarantees that
it will call the load and store callback routines from points in the kernel where it is safe to call the
__syncthreads function from within the callback routine. The caller is responsible for guaranteeing
that the callback routine is at a point where the callback code has converged, to avoid deadlock. For
plans whose dimensions are factored into higher primes, results of a callback routine calling __sync-
threads are not defined.

Note that there are no guarantees on the relative order of execution of blocks within a grid. As such,
callbacks should not rely on any particular ordering within a kernel. For instance, reordering data (such
as an FFT-shift) could rely on the order of execution of the blocks. Results in this case would be unde-
fined.

1.9.4.1 Coding Considerations for LTO Callback Routines

cuFFT will call the LTO load callback routine, for each point in the input, once and only once for real-to-
complex (R2C, D2Z) and complex-to-complex (C2C, Z2Z) transforms. Unlike with legacy callbacks, LTO
load callbacksmay be calledmore than once per element for complex-to-real (C2R, Z2D) transforms.
The input value will not be updated twice (i.e. the transformed value will be stored in register and not
memory, even for in-place transforms), but users should not rely on the amount of calls per element
in their callback device functions.

Similarly to legacy callbacks, LTO store callbacks will be called once and only once for each point in the
output. If the transform is being done in-place (i.e. the input and output data are in the samememory
location) the store callback for a given element cannot overwrite other elements. It can either overwrite
the given element, or write in a completely distinct output buffer.

cuFFT does not support LTO callbacks for multi-GPU transforms (yet).

22 Chapter 1. Using the cuFFT API

cuFFT, Release 12.8

1.9.4.2 Coding Considerations for Legacy Callback Routines

cuFFT supports legacy callbacks on any number of GPUs.

cuFFT will call the load callback routine, for each point in the input, once and only once. Similarly it
will call the store callback routine, for each point in the output, once and only once. If the transform is
being done in-place (i.e. the input and output data are in the samememory location) the store callback
for a given element cannot overwrite other elements. It can either overwrite the given element, or write
in a completely distinct output buffer.

Formulti-GPU transforms, the index passed to the callback routine is the element index from the start
of data on that GPU, not from the start of the entire input or output data array.

1.10. Thread Safety

cuFFT APIs are thread safe as long as different host threads execute FFTs using different plans and
the output data are disjoint.

1.11. CUDA Graphs Support

Using CUDA Graphs with cuFFT is supported on single GPU plans. It is also supported on multiple GPU
plans starting with cuFFT version 10.4.0. The stream associated with a cuFFT plan must meet the
requirements stated in Creating a Graph Using Stream Capture.

Note: Starting from CUDA 11.8 (including CUDA 12.0 onward), CUDA Graphs are no longer supported
for legacy callback routines that load data in out-of-place mode transforms. Starting from CUDA 12.6
Update 2, LTO callbacks can be used as a replacement for legacy callbacks without this limitation.
cuFFT deprecated callback functionality based on separate compiled device code (legacy callbacks) in
cuFFT 11.4.

1.12. Static Library and Callback Support

Starting with release 6.5, the cuFFT libraries are also delivered in a static form as libcufft_static.a and
libcufftw_static.a on Linux and Mac. Static libraries are not supported on Windows. The static cufft
and cufftw libraries depend on thread abstraction layer library libculibos.a.

For example, on linux, to compile a small application using cuFFT against the dynamic library, the fol-
lowing command can be used:

nvcc mCufftApp.c -lcufft -o myCufftApp

For cufftw on Linux, to compile a small application against the dynamic library, the following command
can be used:

nvcc mCufftwApp.c -lcufftw -lcufft -o myCufftwApp

1.10. Thread Safety 23

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cuda-graphs
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#creating-a-graph-using-stream-capture

cuFFT, Release 12.8

Whereas to compile against the static cuFFT library, extra steps need to be taken. The library needs
to be device linked. It may happen during building and linking of a simple program, or as a separate
step. The entire process is described in Using Separarate Compilation in CUDA.

For cuFFT and cufftw in version 9.0 or later any supported architecture can be used to do the device
linking:

Static cuFFT compilation command:

nvcc mCufftApp.c -lcufft_static -lculibos -o myCufftApp

Static cufftw compilation command:

nvcc mCufftwApp.c -lcufftw_static -lcufft_static -lculibos -o myCufftwApp

Prior to version 9.0 proper linking required specifying a subset of supported architectures, as shown
in the following commands:

Static cuFFT compilation command:

nvcc mCufftApp.c -lcufft_static -lculibos -o myCufftApp\
-gencode arch=compute_20,\"code=sm_20\"\
-gencode arch=compute_30,\"code=sm_30\"\
-gencode arch=compute_35,\"code=sm_35\"\
-gencode arch=compute_50,\"code=sm_50\"\
-gencode arch=compute_60,\"code=sm_60\"\
-gencode arch=compute_60,\"code=compute_60\"

Static cufftw compilation command:

nvcc mCufftwApp.c -lcufftw_static -lcufft_static -lculibos -o myCufftwApp\
-gencode arch=compute_20,\"code=sm_20\"\
-gencode arch=compute_30,\"code=sm_30\"\
-gencode arch=compute_35,\"code=sm_35\"\
-gencode arch=compute_50,\"code=sm_50\"\
-gencode arch=compute_60,\"code=sm_60\"\
-gencode arch=compute_60,\"code=compute_60\"

Please note that the cuFFT library might not contain code for certain architectures as long as there
is code for a lower architecture that is binary compatibile (e.g. SM52, SM61). This is reflected in link
commands above and significant when using versions prior r9.0. To determine if a specific SM is in-
cluded in the cuFFT library, one may use cuobjdump utility. For example, if you wish to know if SM_50
is included, the command to run is cuobjdump -arch sm_50 libcufft_static.a. Some kernels
are built only on select architectures (e.g. kernels with half precision arithmetics are present only for
SM53 and above). This can cause warnings at link time that architectures are missing from these
kernels. These warnings can be safely ignored.

It is also possible to use the native Host C++ compiler and perform device link as a separate step.
Please consult NVCC documentation formore details. Depending on theHost Operating system, some
additional libraries like pthread or dlmight be needed on the linking line.

Note that in this case, the library cuda is not needed. The CUDA Runtime will try to open explicitly
the cuda library if needed. In the case of a system which does not have the CUDA driver installed, this
allows the application to gracefullymanage this issue and potentially run if a CPU-only path is available.

The cuFFT static library supports user supplied legacy callback routines. The legacy callback routines
are CUDA device code, and must be separately compiled with NVCC and linked with the cuFFT library.
Please refer to the NVCC documentation regarding separate compilation for details. If you specify an
SM when compiling your callback functions, you must specify one of the SM’s cuFFT includes.

24 Chapter 1. Using the cuFFT API

https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#using-separate-compilation-in-cuda

cuFFT, Release 12.8

1.12.1. Static library without legacy callback support

Starting with cuFFT version 9.2, a new variant of the cuFTT static library,
libcufft_static_nocallback.a, was added. This new version does not contain legacy call-
back functionality and can be linked using the host compiler only.

Note: Starting from CUDA 12.8, support for the cuFFT binary with no callback support,
libcufft_static_nocallback.a, is deprecated and will be removed in a future release. Users are
encouraged to update their build to use libcufft_static.a instead, as the two binaries are nearly
identical after the release of LTO callbacks as part of cuFFT in CUDA Toolkit 12.6 Update 2.

1.13. Accuracy and Performance

A DFT can be implemented as a matrix vector multiplication that requires O(N2) operations. However,
the cuFFT Library employs the Cooley-Tukey algorithm to reduce the number of required operations
to optimize the performance of particular transform sizes. This algorithm expresses the DFT matrix
as a product of sparse building block matrices. The cuFFT Library implements the following building
blocks: radix-2, radix-3, radix-5, and radix-7. Hence the performance of any transform size that can be
factored as 2a × 3b × 5c × 7d (where a, b, c, and d are non-negative integers) is optimized in the cuFFT
library. There are also radix-m building blocks for other primes, m, whose value is < 128. When the
length cannot be decomposed as multiples of powers of primes from 2 to 127, Bluestein’s algorithm
is used. Since the Bluestein implementation requires more computations per output point than the
Cooley-Tukey implementation, the accuracy of the Cooley-Tukey algorithm is better. The pure Cooley-
Tukey implementation has excellent accuracy, with the relative error growing proportionally to log2(N)
, where N is the transform size in points.

For sizes handled by the Cooley-Tukey code path, the most efficient implementation is obtained by
applying the following constraints (listed in order from the most generic to the most specialized con-
straint, with each subsequent constraint providing the potential of an additional performance improve-
ment).

Half precision transforms might not be suitable for all kinds of problems due to limited range repre-
sented by half precision floating point arithmetics. Please note that the first element of FFT result is
the sum of all input elements and it is likely to overflow for certain inputs.

Results produced by the cuFFT library are deterministic (ie, bitwise reproducible) as long as the follow-
ing are kept constant between runs: plan input parameters, cuFFT version, and GPU model.

cuFFT batched plans require that input data includes valid signal for all batches. Performance opti-
mizations in batched mode can combine signal from different batches for processing. Optimizations
used in cuFFT can vary from version to version.

1.13. Accuracy and Performance 25

http://en.wikipedia.org/wiki/Cooley-Tukey_FFT_algorithm
http://en.wikipedia.org/wiki/Bluestein's_FFT_algorithm

cuFFT, Release 12.8

Applies to Recommendation Comment

All Use single precision transforms. Single precision transforms require
less bandwidth per computation
than double precision transforms.

All Restrict the size along all dimensions
to be representable as 2a×3b×5c×7d.

The cuFFT library has highly opti-
mized kernels for transforms whose
dimensions have these prime fac-
tors. In general the best perfor-
mance occurs when using powers of
2, followed by powers of 3, then 5, 7.

All Restrict the size along each dimen-
sion to use fewer distinct prime fac-
tors.

A transform of size 2n or 3n will usu-
ally be faster than one of size 2i × 3j

even if the latter is slightly smaller,
due to the composition of special-
ized paths.

All Restrict the data to be contiguous
in memory when performing a single
transform. When performing multi-
ple transforms make the individual
datasets contiguous

The cuFFT library has been opti-
mized for this data layout.

All Perform multiple (i.e., batched)
transforms.

Additional optimizations are per-
formed in batched mode.

real-to-complex
transforms or
complex-to-real
transforms

Ensure problem size of x dimension
is a multiple of 4.

This scheme usesmore efficient ker-
nels to implement conjugate sym-
metry property.

real-to-complex
transforms or
complex-to-real
transforms

Use out-of-placemode. This scheme usesmore efficient ker-
nels than in-placemode.

Multiple GPU trans-
forms

Use PCI Express 3.0 between GPUs
and ensure the GPUs are on the
same switch.

The faster the interconnect between
the GPUs, the faster the perfor-
mance.

1.14. Caller Allocated Work Area Support

cuFFT plans may use additional memory to store intermediate results. The cuFFT library offers several
functions to manage this temporary memory utilization behavior:

▶ cufftSetAutoAllocation

▶ cufftEstimate1d, cufftEstimate2d, cufftEstimate3d and cufftEstimateMany

▶ cufftGetSize

▶ cufftXtSetWorkAreaPolicy

26 Chapter 1. Using the cuFFT API

cuFFT, Release 12.8

The first two functions manage allocation and ownership of temporary memory. By default cuFFT
always allocates its own work area in GPU memory. Each cuFFT handle allocates data separately. If
multiple cuFFT plans are to be launched sequentially it is possible to assign the same memory chunk
as work area to all those plans and reduce memory overhead.

Thememory assigned aswork area needs to beGPU visible. In addition to the regularmemory acquired
with cudaMalloc, usage of CUDA Unified Virtual Addressing enables cuFFT to use the following types
of memory as work area memory: pinned host memory, managed memory, memory on GPU other
than the one performing the calculations. While this provides flexibility, it comes with a performance
penalty whose magnitude depends on the available memory bandwidth.

The cufftEstimateNd, cufftEstimateMany, and cufftGetSize functions provide information
about the required memory size for cases where the user is allocating the work space buffer.

In version 9.2 cuFFT also introduced the cufftXtSetWorkAreaPolicy function. This function
allows fine tuning of work area memory usage.
cuFFT 9.2 version supports only the CUFFT_WORKAREA_MINIMAL policy, which instructs cuFFT to
re-plan the existing plan without the need to use work area memory.

Also as of cuFFT 9.2, supported FFT transforms that allow for CUFFT_WORKAREA_MINIMAL policy are
as follows:

▶ Transforms of type C2C are supported with sizes up to 4096 in any dimension.

▶ Transforms of type Z2Z are supported with sizes up to 2048 in any dimension.

▶ Only single GPU transforms are supported.

Depending on the FFT transform size, a different FFT algorithm may be used when the
CUFFT_WORKAREA_MINIMAL policy is set.

1.15. cuFFT Link-Time Optimized Kernels

Starting fromCUDA 12.4, cuFFT ships Link-Time Optimized (LTO) kernels. These kernels are linked and
finalized at runtime as part of the cuFFT planning routines. This enables the cuFFT library to generate
kernels optimized for the underlying architecture and the specific problem to solve.

The current LTO kernel coverage includes:

▶ Kernels for 64-bit addressing (with FFTs spanning addresses greater than 2^(32)-1 elements).

▶ Some single- and double-precision R2C and C2R sizes.

The number and coverage of LTO kernels will grow with future releases of cuFFT. We encourage our
users to test whether LTO kernels improve the performance for their use case.

Users can opt-in into LTO kernels by setting the NVFFT_PLAN_PROPERTY_INT64_PATIENT_JIT plan
property using the cufftSetPlanProperty routine.

In order to finalize LTO kernels, cuFFT relies on the nvJitLink library that ships as part of the CUDA
Toolkit. Finalizing the kernels at runtime can cause an increase in planning time (which could be in
the order of hundreds of milliseconds, depending on the cuFFT plan and hardware characteristics of
the host system), in exchange for faster execution time of the optimized kernels. Note that nvJitLink
caches kernels linked at runtime to speed-up subsequent kernel finalizations in repeated planning
routines.

1.15. cuFFT Link-Time Optimized Kernels 27

cuFFT, Release 12.8

If for any reason the runtime linking of the kernel fails, cuFFT will fall back to offline-compiled kernels
to compute the FFT.

Note: cuFFT LTO kernels for a given toolkit version require using the nvJitLink library from the same
toolkit or greater, but within the same toolkit major. For example, cuFFT in 12.4 requires nvJitLink to
be from a CUDA Toolkit 12.X, with X >= 4.

The nvJitLink library is loaded dynamically, and should be present in the system’s dynamic linking path
(e.g. LD_LIBRARY_PATH on Unix systems, or PATH on Windows systems).

28 Chapter 1. Using the cuFFT API

Chapter 2. cuFFT API Reference

This chapter specifies the behavior of the cuFFT library functions by describing their input/output
parameters, data types, and error codes. The cuFFT library is initialized upon the first invocation of an
API function, and cuFFT shuts down automatically when all user-created FFT plans are destroyed.

2.1. Return value cufftResult

All cuFFT Library return values except for CUFFT_SUCCESS indicate that the current API call failed and
the user should reconfigure to correct the problem. The possible return values are defined as follows:

typedef enum cufftResult_t {
CUFFT_SUCCESS = 0, ∕∕ The cuFFT operation was successful
CUFFT_INVALID_PLAN = 1, ∕∕ cuFFT was passed an invalid plan handle
CUFFT_ALLOC_FAILED = 2, ∕∕ cuFFT failed to allocate GPU or CPU memory
CUFFT_INVALID_TYPE = 3, ∕∕ No longer used
CUFFT_INVALID_VALUE = 4, ∕∕ User specified an invalid pointer or parameter
CUFFT_INTERNAL_ERROR = 5, ∕∕ Driver or internal cuFFT library error
CUFFT_EXEC_FAILED = 6, ∕∕ Failed to execute an FFT on the GPU
CUFFT_SETUP_FAILED = 7, ∕∕ The cuFFT library failed to initialize
CUFFT_INVALID_SIZE = 8, ∕∕ User specified an invalid transform size
CUFFT_UNALIGNED_DATA = 9, ∕∕ No longer used
CUFFT_INCOMPLETE_PARAMETER_LIST = 10, ∕∕ Missing parameters in call
CUFFT_INVALID_DEVICE = 11, ∕∕ Execution of a plan was on different GPU than plan�

↪→creation
CUFFT_PARSE_ERROR = 12, ∕∕ Internal plan database error
CUFFT_NO_WORKSPACE = 13 ∕∕ No workspace has been provided prior to plan�

↪→execution
CUFFT_NOT_IMPLEMENTED = 14, ∕∕ Function does not implement functionality for�

↪→parameters given.
CUFFT_LICENSE_ERROR = 15, ∕∕ Used in previous versions.
CUFFT_NOT_SUPPORTED = 16 ∕∕ Operation is not supported for parameters given.

} cufftResult;

Users are encouraged to check return values from cuFFT functions for errors as shown in cuFFT Code
Examples.

29

index.html#cufft-code-examples
index.html#cufft-code-examples

cuFFT, Release 12.8

2.2. cuFFT Basic Plans

These API routines take care of initializing the cufftHandle. Any already-initialized handle attributes
passed to the planning functions will be ignored.

2.2.1. cufftPlan1d()

cufftResult cufftPlan1d(cufftHandle *plan, int nx, cufftType type, int batch);
Creates a 1D FFT plan configuration for a specified signal size and data type. The batch input
parameter tells cuFFT how many 1D transforms to configure.

This call can only be used once for a given handle. It will fail and return CUFFT_INVALID_PLAN
if the plan is locked, i.e. the handle was previously used with a different cufftPlan or cufft-
MakePlan call.

Parameters

▶ plan[In] – Pointer to an uninitialized cufftHandle object.

▶ nx[In] – The transform size (e.g. 256 for a 256-point FFT).

▶ type[In] – The transform data type (e.g., CUFFT_C2C for single precision com-
plex to complex).

▶ batch[In] – Number of transforms of size nx. Please consider using cufft-
PlanMany for multiple transforms.

▶ plan[Out] – Contains a cuFFT 1D plan handle value.

Return values

▶ CUFFT_SUCCESS – cuFFT successfully created the FFT plan.

▶ CUFFT_INVALID_PLAN – The plan parameter is not a valid handle. Handle is
not valid when the plan is locked.

▶ CUFFT_ALLOC_FAILED – The allocation of GPU resources for the plan failed.

▶ CUFFT_INVALID_VALUE – One or more invalid parameters were passed to the
API.

▶ CUFFT_INTERNAL_ERROR – An internal driver error was detected.

▶ CUFFT_SETUP_FAILED – The cuFFT library failed to initialize.

▶ CUFFT_INVALID_SIZE – The nx or batch parameter is not a supported size.

30 Chapter 2. cuFFT API Reference

cuFFT, Release 12.8

2.2.2. cufftPlan2d()

cufftResult cufftPlan2d(cufftHandle *plan, int nx, int ny, cufftType type);
Creates a 2D FFT plan configuration according to specified signal sizes and data type.

This call can only be used once for a given handle. It will fail and return CUFFT_INVALID_PLAN
if the plan is locked, i.e. the handle was previously used with a different cufftPlan or cufft-
MakePlan call.

Parameters

▶ plan[In] – Pointer to an uninitialized cufftHandle object.

▶ nx[In] – The transform size in the x dimension This is slowest changing dimen-
sion of a transform (strided in memory).

▶ ny[In] – The transform size in the y dimension. This is fastest changing di-
mension of a transform (contiguous in memory).

▶ type[In] – The transform data type (e.g., CUFFT_C2R for single precision com-
plex to real).

▶ plan[Out] – Contains a cuFFT 2D plan handle value.

Return values

▶ CUFFT_SUCCESS – cuFFT successfully created the FFT plan.

▶ CUFFT_INVALID_PLAN – The plan parameter is not a valid handle. Handle is
not valid when the plan is locked.

▶ CUFFT_ALLOC_FAILED – The allocation of GPU resources for the plan failed.

▶ CUFFT_INVALID_VALUE – One or more invalid parameters were passed to the
API.

▶ CUFFT_INTERNAL_ERROR – An internal driver error was detected.

▶ CUFFT_SETUP_FAILED – The cuFFT library failed to initialize.

▶ CUFFT_INVALID_SIZE – Either or both of the nx or ny parameters is not a sup-
ported size.

2.2.3. cufftPlan3d()

cufftResult cufftPlan3d(cufftHandle *plan, int nx, int ny, int nz, cufftType type);
Creates a 3D FFT plan configuration according to specified signal sizes and data type. This func-
tion is the same as cufftPlan2d() except that it takes a third size parameter nz.

This call can only be used once for a given handle. It will fail and return CUFFT_INVALID_PLAN
if the plan is locked, i.e. the handle was previously used with a different cufftPlan or cufft-
MakePlan call.

Parameters

▶ plan[In] – Pointer to an uninitialized cufftHandle object.

2.2. cuFFT Basic Plans 31

cuFFT, Release 12.8

▶ nx[In] – The transform size in the x dimension. This is slowest changing di-
mension of a transform (strided in memory).

▶ ny[In] – The transform size in the y dimension.

▶ nz[In] – The transform size in the z dimension. This is fastest changing dimen-
sion of a transform (contiguous in memory).

▶ type[In] – The transform data type (e.g., CUFFT_R2C for single precision real
to complex).

▶ plan[Out] – Contains a cuFFT 3D plan handle value.

Return values

▶ CUFFT_SUCCESS – cuFFT successfully created the FFT plan.

▶ CUFFT_INVALID_PLAN – The plan parameter is not a valid handle. Handle is
not valid when the plan is locked.

▶ CUFFT_ALLOC_FAILED – The allocation of GPU resources for the plan failed.

▶ CUFFT_INVALID_VALUE – One or more invalid parameters were passed to the
API.

▶ CUFFT_INTERNAL_ERROR – An internal driver error was detected.

▶ CUFFT_SETUP_FAILED – The cuFFT library failed to initialize.

▶ CUFFT_INVALID_SIZE – One or more of the nx, ny, or nz parameters is not a
supported size.

2.2.4. cufftPlanMany()

cufftResult cufftPlanMany(cufftHandle *plan, int rank, int *n, int *inembed, int istride, int idist, int
*onembed, int ostride, int odist, cufftType type, int batch);

Creates a FFT plan configuration of dimension rank, with sizes specified in the arrayn. Thebatch
input parameter tells cuFFThowmany transforms to configure. With this function, batchedplans
of 1, 2, or 3 dimensions may be created.

The cufftPlanMany() API supports more complicated input and output data layouts via the
advanced data layout parameters: inembed, istride, idist, onembed, ostride, and odist.

If inembed and onembed are set to NULL, all other stride information is ignored, and default
strides are used. The default assumes contiguous data arrays.

All arrays are assumed to be in CPU memory.

Please note that behavior of cufftPlanMany function when inembed and onembed is NULL is
different than corresponding function in FFTW library fftw_plan_many_dft.

This call can only be used once for a given handle. It will fail and return CUFFT_INVALID_PLAN
if the plan is locked, i.e. the handle was previously used with a different cufftPlan or cufft-
MakePlan call.

Parameters

▶ plan[In] – Pointer to an uninitialized cufftHandle object.

32 Chapter 2. cuFFT API Reference

cuFFT, Release 12.8

▶ rank[In] – Dimensionality of the transform (1, 2, or 3).

▶ n[In] – Array of size rank, describing the size of each dimension, n[0] being
the size of the outermost and n[rank-1] innermost (contiguous) dimension of
a transform.

▶ inembed[In] – Pointer of size rank that indicates the storage dimensions of
the input data in memory. If set to NULL all other advanced data layout param-
eters are ignored.

▶ istride[In] – Indicates the distance between two successive input elements
in the least significant (i.e., innermost) dimension.

▶ idist[In] – Indicates the distance between the first element of two consec-
utive signals in a batch of the input data.

▶ onembed[In] – Pointer of size rank that indicates the storage dimensions of
the output data in memory. If set to NULL all other advanced data layout pa-
rameters are ignored.

▶ ostride[In] – Indicates the distance between two successive output ele-
ments in the output array in the least significant (i.e., innermost) dimension.

▶ odist[In] – Indicates the distance between the first element of two consec-
utive signals in a batch of the output data.

▶ type[In] – The transform data type (e.g., CUFFT_R2C for single precision real
to complex).

▶ batch[In] – Batch size for this transform.

▶ plan[Out] – Contains a cuFFT plan handle.

Return values

▶ CUFFT_SUCCESS – cuFFT successfully created the FFT plan.

▶ CUFFT_INVALID_PLAN – The plan parameter is not a valid handle. Handle is
not valid when the plan is locked.

▶ CUFFT_ALLOC_FAILED – The allocation of GPU resources for the plan failed.

▶ CUFFT_INVALID_VALUE – One or more invalid parameters were passed to the
API.

▶ CUFFT_INTERNAL_ERROR – An internal driver error was detected.

▶ CUFFT_SETUP_FAILED – The cuFFT library failed to initialize.

▶ CUFFT_INVALID_SIZE – One ormore of the parameters is not a supported size.

2.2. cuFFT Basic Plans 33

cuFFT, Release 12.8

2.3. cuFFT Extensible Plans

These API routines separates handle creation from plan generation. This makes it possible to change
plan settings, which may alter the outcome of the plan generation phase, before the plan is actually
generated.

2.3.1. cufftCreate()

cufftResult cufftCreate(cufftHandle *plan)
Creates only an opaque handle, and allocates small data structures on the host. The cufft-
MakePlan*() calls actually do the plan generation.

Parameters

▶ plan[In] – Pointer to a cufftHandle object.

▶ plan[Out] – Contains a cuFFT plan handle value.

Return values

▶ CUFFT_SUCCESS – cuFFT successfully created the FFT plan.

▶ CUFFT_ALLOC_FAILED – The allocation of resources for the plan failed.

▶ CUFFT_INVALID_VALUE – One or more invalid parameters were passed to the
API.

▶ CUFFT_INTERNAL_ERROR – An internal driver error was detected.

▶ CUFFT_SETUP_FAILED – The cuFFT library failed to initialize.

2.3.2. cufftDestroy()

cufftResult cufftDestroy(cufftHandle plan)
Frees all GPU resources associated with a cuFFT plan and destroys the internal plan data struc-
ture. This function should be called once a plan is no longer needed, to avoid wasting GPU mem-
ory. In the case of multi-GPU plans, the plan created first should be destroyed last.

Parameters

▶ plan[In] – The cufftHandle object of the plan to be destroyed.

Return values

▶ CUFFT_SUCCESS – cuFFT successfully destroyed the FFT plan.

▶ CUFFT_INVALID_PLAN – The plan parameter is not a valid handle.

34 Chapter 2. cuFFT API Reference

cuFFT, Release 12.8

2.3.3. cufftMakePlan1d()

cufftResult cufftMakePlan1d(cufftHandle plan, int nx, cufftType type, int batch, size_t *workSize);
Following a call to cufftCreate()makes a 1D FFT plan configuration for a specified signal size
and data type. The batch input parameter tells cuFFT how many 1D transforms to configure.

This call can only be used once for a given handle. It will fail and return CUFFT_INVALID_PLAN
if the plan is locked, i.e. the handle was previously used with a different cufftPlan or cufft-
MakePlan call.

If cufftXtSetGPUs()was called prior to this call withmultiple GPUs, then workSizewill contain
multiple sizes. See sections on multiple GPUs for more details.

Parameters

▶ plan[In] – cufftHandle returned by cufftCreate.

▶ nx[In] – The transform size (e.g. 256 for a 256-point FFT). For multiple GPUs,
this must be a power of 2.

▶ type[In] – The transform data type (e.g., CUFFT_C2C for single precision com-
plex to complex). For multiple GPUs this must be a complex to complex trans-
form.

▶ batch[In] – Number of transforms of size nx. Please consider using cufft-
MakePlanMany for multiple transforms.

▶ *workSize[In] – Pointer to the size(s), in bytes, of thework areas. For example
for two GPUs worksize must be declared to have two elements.

▶ *workSize[Out] – Pointer to the size(s) of the work areas.

Return values

▶ CUFFT_SUCCESS – cuFFT successfully created the FFT plan.

▶ CUFFT_INVALID_PLAN – The plan parameter is not a valid handle. Handle is
not valid when the plan is locked or multi-GPU restrictions are not met.

▶ CUFFT_ALLOC_FAILED – The allocation of GPU resources for the plan failed.

▶ CUFFT_INVALID_VALUE – One or more invalid parameters were passed to the
API.

▶ CUFFT_INTERNAL_ERROR – An internal driver error was detected.

▶ CUFFT_SETUP_FAILED` – The cuFFT library failed to initialize.

▶ CUFFT_INVALID_SIZE – The nx or batch parameter is not a supported size.

2.3. cuFFT Extensible Plans 35

cuFFT, Release 12.8

2.3.4. cufftMakePlan2d()

cufftResult cufftMakePlan2d(cufftHandle plan, int nx, int ny, cufftType type, size_t *workSize);
Following a call to cufftCreate() makes a 2D FFT plan configuration according to specified
signal sizes and data type.

This call can only be used once for a given handle. It will fail and return CUFFT_INVALID_PLAN
if the plan is locked, i.e. the handle was previously used with a different cufftPlan or cufft-
MakePlan call.

If cufftXtSetGPUs()was called prior to this call withmultiple GPUs, then workSizewill contain
multiple sizes. See sections on multiple GPUs for more details.

Parameters

▶ plan[In] – cufftHandle returned by cufftCreate.

▶ nx[In] – The transform size in the x dimension. This is slowest changing di-
mension of a transform (strided in memory). For multiple GPUs, this must be
factorable into primes less than or equal to 127.

▶ ny[In] – The transform size in the y dimension. This is fastest changing dimen-
sion of a transform (contiguous inmemory). For 2 GPUs, thismust be factorable
into primes less than or equal to 127.

▶ type[In] – The transform data type (e.g., CUFFT_C2R for single precision com-
plex to real).

▶ workSize[In] – Pointer to the size(s), in bytes, of the work areas. For example
for two GPUs worksize must be declared to have two elements.

▶ *workSize[Out] – Pointer to the size(s) of the work areas.

Return values

▶ CUFFT_SUCCESS – cuFFT successfully created the FFT plan.

▶ CUFFT_INVALID_PLAN – The plan parameter is not a valid handle.

▶ CUFFT_ALLOC_FAILED – The allocation of GPU resources for the plan failed.

▶ CUFFT_INVALID_VALUE – One or more invalid parameters were passed to the
API.

▶ CUFFT_INTERNAL_ERROR – An internal driver error was detected.

▶ CUFFT_SETUP_FAILED – The cuFFT library failed to initialize.

▶ CUFFT_INVALID_SIZE – Either or both of the nx or ny parameters is not a sup-
ported size.

36 Chapter 2. cuFFT API Reference

cuFFT, Release 12.8

2.3.5. cufftMakePlan3d()

cufftResult cufftMakePlan3d(cufftHandle plan, int nx, int ny, int nz, cufftType type, size_t
*workSize);

Following a call to cufftCreate() makes a 3D FFT plan configuration according to specified
signal sizes and data type. This function is the same as cufftPlan2d() except that it takes a
third size parameter nz.

This call can only be used once for a given handle. It will fail and return CUFFT_INVALID_PLAN
if the plan is locked, i.e. the handle was previously used with a different cufftPlan or cufft-
MakePlan call.

If cufftXtSetGPUs()was called prior to this call withmultiple GPUs, then workSizewill contain
multiple sizes. See sections on multiple GPUs for more details.

Parameters

▶ plan[In] – cufftHandle returned by cufftCreate.

▶ nx[In] – The transform size in the x dimension. This is slowest changing di-
mension of a transform (strided in memory). For multiple GPUs, this must be
factorable into primes less than or equal to 127.

▶ ny[In] – The transform size in the y dimension. For multiple GPUs, this must
be factorable into primes less than or equal to 127.

▶ nz[In] – The transform size in the z dimension. This is fastest changing di-
mension of a transform (contiguous in memory). For multiple GPUs, this must
be factorable into primes less than or equal to 127.

▶ type[In] – The transform data type (e.g., CUFFT_R2C for single precision real
to complex).

▶ workSize[In] – Pointer to the size(s), in bytes, of the work areas. For example
for two GPUs worksize must be declared to have two elements.

▶ *workSize[Out] – Pointer to the size(s) of the work area(s).

Return values

▶ CUFFT_SUCCESS – cuFFT successfully created the FFT plan.

▶ CUFFT_INVALID_PLAN – The plan parameter is not a valid handle.

▶ CUFFT_ALLOC_FAILED – The allocation of GPU resources for the plan failed.

▶ CUFFT_INVALID_VALUE – One or more invalid parameters were passed to the
API.

▶ CUFFT_INTERNAL_ERROR – An internal driver error was detected.

▶ CUFFT_SETUP_FAILED – The cuFFT library failed to initialize.

▶ CUFFT_INVALID_SIZE – One or more of the nx, ny, or nz parameters is not a
supported size.

2.3. cuFFT Extensible Plans 37

cuFFT, Release 12.8

2.3.6. cufftMakePlanMany()

cufftResult cufftMakePlanMany(cufftHandle plan, int rank, int *n, int *inembed, int istride, int idist,
int *onembed, int ostride, int odist, cufftType type, int batch,
size_t *workSize);

Following a call to cufftCreate()makes a FFT plan configuration of dimension rank, with sizes
specified in the array n. The batch input parameter tells cuFFT how many transforms to config-
ure. With this function, batched plans of 1, 2, or 3 dimensions may be created.

The cufftPlanMany() API supports more complicated input and output data layouts via the
advanced data layout parameters: inembed, istride, idist, onembed, ostride, and odist.

If inembed and onembed are set to NULL, all other stride information is ignored, and default
strides are used. The default assumes contiguous data arrays.

This call can only be used once for a given handle. It will fail and return CUFFT_INVALID_PLAN
if the plan is locked, i.e. the handle was previously used with a different cufftPlan or cufft-
MakePlan call.

If cufftXtSetGPUs()was called prior to this call withmultiple GPUs, then workSizewill contain
multiple sizes. See sections on multiple GPUs for more details.

All arrays are assumed to be in CPU memory.

Parameters

▶ plan[In] – cufftHandle returned by cufftCreate.

▶ rank[In] – Dimensionality of the transform (1, 2, or 3)

▶ n[In] – Array of size rank, describing the size of each dimension, n[0] being
the size of the outermost and n[rank-1] innermost (contiguous) dimension of
a transform. For multiple GPUs and rank equal to 1, the sizes must be a power
of 2. For multiple GPUs and rank equal to 2 or 3, the sizes must be factorable
into primes less than or equal to 127.

▶ inembed[In] – Pointer of size rank that indicates the storage dimensions of
the input data inmemory, inembed[0] being the storage dimension of the out-
ermost dimension. If set to NULL all other advanced data layout parameters are
ignored.

▶ istride[In] – Indicates the distance between two successive input elements
in the least significant (i.e., innermost) dimension

▶ idist[In] – Indicates the distance between the first element of two consec-
utive signals in a batch of the input data

▶ onembed[In] – Pointer of size rank that indicates the storage dimensions of
the output data in memory, onembed[0] being the storage dimension of the
outermost dimension. If set to NULL all other advanced data layout parameters
are ignored.

▶ ostride[In] – Indicates the distance between two successive output ele-
ments in the output array in the least significant (i.e., innermost) dimension

▶ odist[In] – Indicates the distance between the first element of two consec-
utive signals in a batch of the output data

▶ type[In] – The transform data type (e.g., CUFFT_R2C for single precision real
to complex). For 2 GPUs this must be a complex to complex transform.

38 Chapter 2. cuFFT API Reference

cuFFT, Release 12.8

▶ batch[In] – Batch size for this transform.

▶ *workSize[In] – Pointer to the size(s), in bytes, of thework areas. For example
for two GPUs worksize must be declared to have two elements.

▶ *workSize[Out] – Pointer to the size(s) of the work areas.

Return values

▶ CUFFT_SUCCESS – cuFFT successfully created the FFT plan.

▶ CUFFT_INVALID_PLAN – The plan parameter is not a valid handle. Handle is
not valid when the plan is locked or multi-GPU restrictions are not met.

▶ CUFFT_ALLOC_FAILED – The allocation of GPU resources for the plan failed.

▶ CUFFT_INVALID_VALUE – One or more invalid parameters were passed to the
API.

▶ CUFFT_INTERNAL_ERROR – An internal driver error was detected.

▶ CUFFT_SETUP_FAILED – The cuFFT library failed to initialize.

▶ CUFFT_INVALID_SIZE – One ormore of the parameters is not a supported size.

2.3.7. cufftMakePlanMany64()

cufftResult cufftMakePlanMany64(cufftHandle plan, int rank, long long int *n, long long int
*inembed, long long int istride, long long int idist, long long int
*onembed, long long int ostride, long long int odist, cufftType
type, long long int batch, size_t *workSize);

Following a call to cufftCreate()makes a FFT plan configuration of dimension rank, with sizes
specified in the array n. The batch input parameter tells cuFFT how many transforms to config-
ure. With this function, batched plans of 1, 2, or 3 dimensions may be created.

This API is identical to cufftMakePlanMany except that the arguments specifying sizes and
strides are 64 bit integers. This API makes very large transforms possible. cuFFT includes kernels
that use 32 bit indexes, and kernels that use 64 bit indexes. cuFFT planning selects 32 bit kernels
whenever possible to avoid any overhead due to 64 bit arithmetic.

All sizes and types of transform are supported by this interface, with two exceptions. For trans-
forms whose size exceeds 4G elements, the dimensions specified in the array n must be fac-
torable into primes that are less than or equal to 127. For real to complex and complex to real
transforms whose size exceeds 4G elements, the fastest changing dimension must be even.

The cufftPlanMany64() API supports more complicated input and output data layouts via the
advanced data layout parameters: inembed, istride, idist, onembed, ostride, and odist.

If inembed and onembed are set to NULL, all other stride information is ignored, and default
strides are used. The default assumes contiguous data arrays.

This call can only be used once for a given handle. It will fail and return CUFFT_INVALID_PLAN
if the plan is locked, i.e. the handle was previously used with a different cufftPlan or cufft-
MakePlan call.

If cufftXtSetGPUs()was called prior to this call withmultiple GPUs, then workSizewill contain
multiple sizes. See sections on multiple GPUs for more details.

All arrays are assumed to be in CPU memory.

2.3. cuFFT Extensible Plans 39

cuFFT, Release 12.8

Parameters

▶ plan[In] – cufftHandle returned by cufftCreate.

▶ rank[In] – Dimensionality of the transform (1, 2, or 3).

▶ n[In] – Array of size rank, describing the size of each dimension. For multiple
GPUs and rank equal to 1, the sizes must be a power of 2. For multiple GPUs
and rank equal to 2 or 3, the sizes must be factorable into primes less than or
equal to 127.

▶ inembed[In] – Pointer of size rank that indicates the storage dimensions of
the input data in memory. If set to NULL all other advanced data layout param-
eters are ignored.

▶ istride[In] – Indicates the distance between two successive input elements
in the least significant (i.e., innermost) dimension.

▶ idist[In] – Indicates the distance between the first element of two consec-
utive signals in a batch of the input data.

▶ onembed[In] – Pointer of size rank that indicates the storage dimensions of
the output data in memory. If set to NULL all other advanced data layout pa-
rameters are ignored.

▶ ostride[In] – Indicates the distance between two successive output ele-
ments in the output array in the least significant (i.e., innermost) dimension.

▶ odist[In] – Indicates the distance between the first element of two consec-
utive signals in a batch of the output data.

▶ type[In] – The transform data type (e.g., CUFFT_R2C for single precision real
to complex). For 2 GPUs this must be a complex to complex transform.

▶ batch[In] – Batch size for this transform.

▶ *workSize[In] – Pointer to the size(s), in bytes, of thework areas. For example
for two GPUs worksize must be declared to have two elements.

▶ *workSize[Out] – Pointer to the size(s) of the work areas.

Return values

▶ CUFFT_SUCCESS – cuFFT successfully created the FFT plan.

▶ CUFFT_INVALID_PLAN – The plan parameter is not a valid handle. Handle is
not valid when the plan is locked or multi-GPU restrictions are not met.

▶ CUFFT_ALLOC_FAILED – The allocation of GPU resources for the plan failed.

▶ CUFFT_INVALID_VALUE – One or more invalid parameters were passed to the
API.

▶ CUFFT_INTERNAL_ERROR – An internal driver error was detected.

▶ CUFFT_SETUP_FAILED – The cuFFT library failed to initialize.

▶ CUFFT_INVALID_SIZE – One ormore of the parameters is not a supported size.

40 Chapter 2. cuFFT API Reference

cuFFT, Release 12.8

2.3.8. cufftXtMakePlanMany()

cufftResult cufftXtMakePlanMany(cufftHandle plan, int rank, long long int *n, long long int
*inembed, long long int istride, long long int idist,
cudaDataType inputtype, long long int *onembed, long long int
ostride, long long int odist, cudaDataType outputtype, long
long int batch, size_t *workSize, cudaDataType executiontype);

Following a call to cufftCreate() makes an FFT plan configuration of dimension rank, with
sizes specified in the array n. The batch input parameter tells cuFFT how many transforms to
configure. With this function, batched plans of 1, 2, or 3 dimensions may be created.

Type specifiers inputtype, outputtype and executiontype dictate type and precision of
transform to be performed. Not all combinations of parameters are supported. Currently all
three parameters need to match precision. Parameters inputtype and outputtype need to
match transform type complex-to-complex, real-to-complex or complex-to-real. Parameter ex-
ecutiontype needs to match precision and be of a complex type. Example: for a half-precision
real-to-complex transform, parameters inputtype, outputtype and executiontype would
have values of CUDA_R_16F, CUDA_C_16F and CUDA_C_16F respectively. Similarly, a bfloat16
complex-to-real transform would use CUDA_C_16BF for inputtype and executiontype, and
CUDA_R_16BF for outputtype.

The cufftXtMakePlanMany() API supports more complicated input and output data layouts
via the advanced data layout parameters: inembed, istride, idist, onembed, ostride, and
odist.

If inembed and onembed are set to NULL, all other stride information is ignored, and default
strides are used. The default assumes contiguous data arrays.

If cufftXtSetGPUs()was called prior to this call withmultiple GPUs, then workSizewill contain
multiple sizes. See sections on multiple GPUs for more details.

All arrays are assumed to be in CPU memory.

Parameters

▶ plan[In] – cufftHandle returned by cufftCreate.

▶ rank[In] – Dimensionality of the transform (1, 2, or 3).

▶ n[In] – Array of size rank, describing the size of each dimension, n[0] being
the size of the outermost and n[rank-1] innermost (contiguous) dimension of
a transform. For multiple GPUs and rank equal to 1, the sizes must be a power
of 2. For multiple GPUs and rank equal to 2 or 3, the sizes must be factorable
into primes less than or equal to 127.

▶ inembed[In] – Pointer of size rank that indicates the storage dimensions of
the input data inmemory, inembed[0] being the storage dimension of the out-
ermost dimension. If set to NULL all other advanced data layout parameters are
ignored.

▶ istride[In] – Indicates the distance between two successive input elements
in the least significant (i.e., innermost) dimension.

▶ idist[In] – Indicates the distance between the first element of two consec-
utive signals in a batch of the input data.

▶ inputtype[In] – Type of input data.

2.3. cuFFT Extensible Plans 41

cuFFT, Release 12.8

▶ onembed[In] – Pointer of size rank that indicates the storage dimensions of
the output data in memory, onembed[0] being the storage dimension of the
outermost dimension. If set to NULL all other advanced data layout parameters
are ignored.

▶ ostride[In] – Indicates the distance between two successive output ele-
ments in the output array in the least significant (i.e., innermost) dimension.

▶ odist[In] – Indicates the distance between the first element of two consec-
utive signals in a batch of the output data.

▶ outputtype[In] – Type of output data.

▶ batch[In] – Batch size for this transform.

▶ *workSize[In] – Pointer to the size(s), in bytes, of thework areas. For example
for two GPUs worksize must be declared to have two elements.

▶ executiontype[In] – Type of data to be used for computations.

▶ *workSize[Out] – Pointer to the size(s) of the work areas.

Return values

▶ CUFFT_SUCCESS – cuFFT successfully created the FFT plan.

▶ CUFFT_INVALID_PLAN – The plan parameter is not a valid handle. Handle is
not valid when multi-GPU restrictions are not met.

▶ CUFFT_ALLOC_FAILED – The allocation of GPU resources for the plan failed.

▶ CUFFT_INVALID_VALUE – One or more invalid parameters were passed to the
API.

▶ CUFFT_INTERNAL_ERROR – An internal driver error was detected.

▶ CUFFT_SETUP_FAILED – The cuFFT library failed to initialize.

▶ CUFFT_INVALID_SIZE – One ormore of the parameters is not a supported size.

2.4. cuFFT Plan Properties

Users can further customize cuFFT plans using plan properties. These properties can be set, queried
and reset on a per-plan basis as needed, using the routines listed in this section.

The current supported properties are listed below:

42 Chapter 2. cuFFT API Reference

cuFFT, Release 12.8

Property Underlying Type Description Behavior

NVFFT_PLAN_PROPERTY_INT64_PATIENT_JITlong long int ▶ Runtime LTO ker-
nels are enabled
when set to not-
zero value. See
Link-Time Opti-
mized Kernels

▶ Runtime LTO
kernles are dis-
abled when set
to zero (default)

▶ Can be set / reset
before planning

▶ Cannot be set /
reset after plan-
ning

2.4.1. cufftSetPlanPropertyInt64()

cufftResult cufftSetPlanPropertyInt64(cufftHandle plan, cufftProperty property, const long
long int propertyValueInt64);

Associates a cuFFT plan with a property identified by the key property. The value for the prop-
erty is given by value propertyValueInt64, which is a signed long long integer.

Parameters

▶ plan[In] – cufftHandle returned by cufftCreate.

▶ property[In] – The property identifier, of type cufftPlanProperty.

▶ propertyValueInt64[In] – Value to set for the property, a long long signed
integer.

Return values

▶ CUFFT_SUCCESS – cuFFT successfully set the property.

▶ CUFFT_INVALID_PLAN – The plan parameter is not a valid handle.

▶ CUFFT_NOT_SUPPORTED – The property is not supported, or it cannot be set at
the time (e.g. some properties cannot be set after calling a planning routine for
the plan, see cuFFT Plan Properties).

▶ CUFFT_INVALID_VALUE – Invalid property or value with which to set the prop-
erty

2.4. cuFFT Plan Properties 43

index.html#cufft-link-time-optimized-kernels
index.html#cufft-link-time-optimized-kernels
index.html#cufft-plan-properties

cuFFT, Release 12.8

2.4.2. cufftGetPlanPropertyInt64()

cufftResult cufftGetPlanPropertyInt64(cufftHandle plan, cufftProperty property, long long int
*propertyValueInt64);

Retrieves the property value identified by the keyproperty associatedwith the cuFFTplanplan.
The value for the property, which is a signed long long integer, is set in the address space pointed
by propertyValueInt64.

Parameters

▶ plan[In] – cufftHandle returned by cufftCreate.

▶ property[In] – The property identifier, of type cufftPlanProperty.

▶ propertyValueInt64[In] – Pointer to the value to be set with the value of
the property.

Return values

▶ CUFFT_SUCCESS – cuFFT successfully retrieved the property value.

▶ CUFFT_INVALID_PLAN – The plan parameter is not a valid handle.

▶ CUFFT_NOT_SUPPORTED – The property is not supported.

▶ CUFFT_INVALID_VALUE – Invalid property, or pointer propertyValueInt64 is
null

2.4.3. cufftResetPlanProperty()

cufftResult cufftResetPlanProperty(cufftHandle plan, cufftProperty property);
Resets the value of the property identified by the key property, associated with the cuFFT plan
plan, to its default value.

Parameters

▶ plan[In] – cufftHandle returned by cufftCreate.

▶ property[In] – The property identifier, of type cufftPlanProperty.

Return values

▶ CUFFT_SUCCESS – cuFFT successfully reset the property value.

▶ CUFFT_INVALID_PLAN – The plan parameter is not a valid handle.

▶ CUFFT_NOT_SUPPORTED – The property is not supported for plan, or cannot be
reset at present time (see Behavior column on cuFFT Plan Properties).

▶ CUFFT_INVALID_VALUE – Invalid property

44 Chapter 2. cuFFT API Reference

index.html#cufft-plan-properties

cuFFT, Release 12.8

2.5. cuFFT Estimated Size of Work Area

During plan execution, cuFFT requires a work area for temporary storage of intermediate results. The
cufftEstimate*() calls return an estimate for the size of the work area required, given the specified
parameters, and assuming default plan settings. Some problem sizes require muchmore storage than
others. In particular powers of 2 are very efficient in terms of temporary storage. Large primenumbers,
however, use different algorithms andmay need up to the eight times that of a similarly sized power of
2. These routines return estimated workSize values which may still be smaller than the actual values
needed especially for values of n that are not multiples of powers of 2, 3, 5 and 7. More refined values
are given by the cufftGetSize*() routines, but these values may still be conservative.

2.5.1. cufftEstimate1d()

cufftResult cufftEstimate1d(int nx, cufftType type, int batch, size_t *workSize);
During plan execution, cuFFT requires a work area for temporary storage of intermediate results.
This call returns an estimate for the size of the work area required, given the specified parame-
ters, and assuming default plan settings.

Parameters

▶ nx[In] – The transform size (e.g. 256 for a 256-point FFT).

▶ type[In] – The transform data type (e.g., CUFFT_C2C for single precision com-
plex to complex).

▶ batch[In] – Number of transforms of size nx. Please consider using cufftEs-
timateMany for multiple transforms.

▶ *workSize[In] – Pointer to the size, in bytes, of the work space.

▶ *workSize[Out] – Pointer to the size of the work space.

Return values

▶ CUFFT_SUCCESS – cuFFT successfully returned the size of the work space.

▶ CUFFT_ALLOC_FAILED – The allocation of GPU resources for the plan failed.

▶ CUFFT_INVALID_VALUE – One or more invalid parameters were passed to the
API.

▶ CUFFT_INTERNAL_ERROR – An internal driver error was detected.

▶ CUFFT_SETUP_FAILED – The cuFFT library failed to initialize.

▶ CUFFT_INVALID_SIZE – The nx parameter is not a supported size.

2.5. cuFFT Estimated Size of Work Area 45

cuFFT, Release 12.8

2.5.2. cufftEstimate2d()

cufftResult cufftEstimate2d(int nx, int ny, cufftType type, size_t *workSize);
During plan execution, cuFFT requires a work area for temporary storage of intermediate results.
This call returns an estimate for the size of the work area required, given the specified parame-
ters, and assuming default plan settings.

Parameters

▶ nx[In] – The transform size in the x dimension (number of rows).

▶ ny[In] – The transform size in the y dimension (number of columns).

▶ type[In] – The transform data type (e.g., CUFFT_C2R for single precision com-
plex to real).

▶ *workSize[In] – Pointer to the size, in bytes, of the work space.

▶ *workSize[Out] – Pointer to the size of the work space.

Return values

▶ CUFFT_SUCCESS – cuFFT successfully returned the size of the work space.

▶ CUFFT_ALLOC_FAILED – The allocation of GPU resources for the plan failed.

▶ CUFFT_INVALID_VALUE – One or more invalid parameters were passed to the
API.

▶ CUFFT_INTERNAL_ERROR – An internal driver error was detected.

▶ CUFFT_SETUP_FAILED – The cuFFT library failed to initialize.

▶ CUFFT_INVALID_SIZE – Either or both of the nx or ny parameters is not a sup-
ported size.

2.5.3. cufftEstimate3d()

cufftResult cufftEstimate3d(int nx, int ny, int nz, cufftType type, size_t *workSize);
During plan execution, cuFFT requires a work area for temporary storage of intermediate results.
This call returns an estimate for the size of the work area required, given the specified parame-
ters, and assuming default plan settings.

Parameters

▶ nx[In] – The transform size in the x dimension.

▶ ny[In] – The transform size in the y dimension.

▶ nz[In] – The transform size in the z dimension.

▶ type[In] – The transform data type (e.g., CUFFT_R2C for single precision real
to complex).

▶ *workSize[In] – Pointer to the size, in bytes, of the work space.

▶ *workSize[Out] – Pointer to the size of the work space.

46 Chapter 2. cuFFT API Reference

cuFFT, Release 12.8

Return values

▶ CUFFT_SUCCESS – cuFFT successfully returned the size of the work space.

▶ CUFFT_ALLOC_FAILED – The allocation of GPU resources for the plan failed.

▶ CUFFT_INVALID_VALUE – One or more invalid parameters were passed to the
API.

▶ CUFFT_INTERNAL_ERROR – An internal driver error was detected.

▶ CUFFT_SETUP_FAILED – The cuFFT library failed to initialize.

▶ CUFFT_INVALID_SIZE – One or more of the nx, ny, or nz parameters is not a
supported size.

2.5.4. cufftEstimateMany()

cufftResult cufftEstimateMany(int rank, int *n, int *inembed, int istride, int idist, int *onembed, int
ostride, int odist, cufftType type, int batch, size_t *workSize);

During plan execution, cuFFT requires a work area for temporary storage of intermediate results.
This call returns an estimate for the size of the work area required, given the specified parame-
ters, and assuming default plan settings.

The cufftEstimateMany() API supports more complicated input and output data layouts
via the advanced data layout parameters: inembed, istride, idist, onembed, ostride, and
odist.

All arrays are assumed to be in CPU memory.

Parameters

▶ rank[In] – Dimensionality of the transform (1, 2, or 3).

▶ n[In] – Array of size rank, describing the size of each dimension.

▶ inembed[In] – Pointer of size rank that indicates the storage dimensions of
the input data in memory. If set to NULL all other advanced data layout param-
eters are ignored.

▶ istride[In] – Indicates the distance between two successive input elements
in the least significant (i.e., innermost) dimension.

▶ idist[In] – Indicates the distance between the first element of two consec-
utive signals in a batch of the input data.

▶ onembed[In] – Pointer of size rank that indicates the storage dimensions of
the output data in memory. If set to NULL all other advanced data layout pa-
rameters are ignored.

▶ ostride[In] – Indicates the distance between two successive output ele-
ments in the output array in the least significant (i.e., innermost) dimension.

▶ odist[In] – Indicates the distance between the first element of two consec-
utive signals in a batch of the output data.

▶ type[In] – The transform data type (e.g., CUFFT_R2C for single precision real
to complex).

2.5. cuFFT Estimated Size of Work Area 47

cuFFT, Release 12.8

▶ batch[In] – Batch size for this transform.

▶ *workSize[In] – Pointer to the size, in bytes, of the work space.

▶ *workSize[Out] – Pointer to the size of the work space

Return values

▶ CUFFT_SUCCESS – cuFFT successfully returned the size of the work space.

▶ CUFFT_ALLOC_FAILED – The allocation of GPU resources for the plan failed.

▶ CUFFT_INVALID_VALUE – One or more invalid parameters were passed to the
API.

▶ CUFFT_INTERNAL_ERROR – An internal driver error was detected.

▶ CUFFT_SETUP_FAILED – The cuFFT library failed to initialize.

▶ CUFFT_INVALID_SIZE – One ormore of the parameters is not a supported size.

2.6. cuFFT Refined Estimated Size of Work Area

The cufftGetSize*() routines give a more accurate estimate of the work area size required for a
plan than the cufftEstimate*() routines as they take into account any plan settings that may have
been made. As discussed in the section cuFFT Estimated Size of Work Area, the workSize value(s)
returned may be conservative especially for values of n that are not multiples of powers of 2, 3, 5 and
7.

2.6.1. cufftGetSize1d()

cufftResult cufftGetSize1d(cufftHandle plan, int nx, cufftType type, int batch, size_t *workSize);
This call gives a more accurate estimate of the work area size required for a plan than cufftEs-
timate1d(), given the specified parameters, and taking into account any plan settings thatmay
have been made.

Parameters

▶ plan[In] – cufftHandle returned by cufftCreate.

▶ nx[In] – The transform size (e.g. 256 for a 256-point FFT).

▶ type[In] – The transform data type (e.g., CUFFT_C2C for single precision com-
plex to complex).

▶ batch[In] – Number of transforms of size nx. Please consider using cufft-
GetSizeMany for multiple transforms.

▶ *workSize[In] – Pointer to the size(s), in bytes, of thework areas. For example
for two GPUs worksize must be declared to have two elements.

▶ *workSize[Out] – Pointer to the size of the work space.

Return values

48 Chapter 2. cuFFT API Reference

index.html#work-estimate

cuFFT, Release 12.8

▶ CUFFT_SUCCESS – cuFFT successfully returned the size of the work space.

▶ CUFFT_INVALID_PLAN – The plan parameter is not a valid handle.

▶ CUFFT_ALLOC_FAILED – The allocation of GPU resources for the plan failed.

▶ CUFFT_INVALID_VALUE – One or more invalid parameters were passed to the
API.

▶ CUFFT_INTERNAL_ERROR – An internal driver error was detected.

▶ CUFFT_SETUP_FAILED – The cuFFT library failed to initialize.

▶ CUFFT_INVALID_SIZE – The nx parameter is not a supported size.

2.6.2. cufftGetSize2d()

cufftResult cufftGetSize2d(cufftHandle plan, int nx, int ny, cufftType type, size_t *workSize);
This call gives a more accurate estimate of the work area size required for a plan than cufftEs-
timate2d(), given the specified parameters, and taking into account any plan settings thatmay
have been made.

Parameters

▶ plan[In] – cufftHandle returned by cufftCreate.

▶ nx[In] – The transform size in the x dimension (number of rows).

▶ ny[In] – The transform size in the y dimension (number of columns).

▶ type[In] – The transform data type (e.g., CUFFT_C2R for single precision com-
plex to real).

▶ *workSize[In] – Pointer to the size(s), in bytes, of thework areas. For example
for two GPUs worksize must be declared to have two elements.

▶ *workSize[Out] – Pointer to the size of the work space.

Return values

▶ CUFFT_SUCCESS – cuFFT successfully returned the size of the work space.

▶ CUFFT_INVALID_PLAN – The plan parameter is not a valid handle.

▶ CUFFT_ALLOC_FAILED – The allocation of GPU resources for the plan failed.

▶ CUFFT_INVALID_VALUE – One or more invalid parameters were passed to the
API.

▶ CUFFT_INTERNAL_ERROR – An internal driver error was detected.

▶ CUFFT_SETUP_FAILED – The cuFFT library failed to initialize.

▶ CUFFT_INVALID_SIZE – Either or both of the nx or ny parameters is not a sup-
ported size.

2.6. cuFFT Refined Estimated Size of Work Area 49

cuFFT, Release 12.8

2.6.3. cufftGetSize3d()

cufftResult cufftGetSize3d(cufftHandle plan, int nx, int ny, int nz, cufftType type, size_t
*workSize);

This call gives a more accurate estimate of the work area size required for a plan than cufftEs-
timate3d(), given the specified parameters, and taking into account any plan settings thatmay
have been made.

Parameters

▶ plan[In] – cufftHandle returned by cufftCreate.

▶ nx[In] – The transform size in the x dimension.

▶ ny[In] – The transform size in the y dimension.

▶ nz[In] – The transform size in the z dimension.

▶ type[In] – The transform data type (e.g., CUFFT_R2C for single precision real
to complex).

▶ *workSize[In] – Pointer to the size(s), in bytes, of thework areas. For example
for two GPUs worksize must be declared to have two elements.

▶ *workSize[Out] – Pointer to the size of the work space.

Return values

▶ CUFFT_SUCCESS – cuFFT successfully returned the size of the work space.

▶ CUFFT_INVALID_PLAN – The plan parameter is not a valid handle.

▶ CUFFT_ALLOC_FAILED – The allocation of GPU resources for the plan failed.

▶ CUFFT_INVALID_VALUE – One or more invalid parameters were passed to the
API.

▶ CUFFT_INTERNAL_ERROR – An internal driver error was detected.

▶ CUFFT_SETUP_FAILED – The cuFFT library failed to initialize.

▶ CUFFT_INVALID_SIZE – One or more of the nx, ny, or nz parameters is not a
supported size.

2.6.4. cufftGetSizeMany()

cufftResult cufftGetSizeMany(cufftHandle plan, int rank, int *n, int *inembed, int istride, int idist,
int *onembed, int ostride, int odist, cufftType type, int batch, size_t
*workSize);

This call gives a more accurate estimate of the work area size required for a plan than cufftEs-
timateSizeMany(), given the specified parameters, and taking into account any plan settings
that may have been made.

Parameters

▶ plan[In] – cufftHandle returned by cufftCreate.

50 Chapter 2. cuFFT API Reference

cuFFT, Release 12.8

▶ rank[In] – Dimensionality of the transform (1, 2, or 3).

▶ n[In] – Array of size rank, describing the size of each dimension.

▶ inembed[In] – Pointer of size rank that indicates the storage dimensions of
the input data in memory. If set to NULL all other advanced data layout param-
eters are ignored.

▶ istride[In] – Indicates the distance between two successive input elements
in the least significant (i.e., innermost) dimension.

▶ idist[In] – Indicates the distance between the first element of two consec-
utive signals in a batch of the input data.

▶ onembed[In] – Pointer of size rank that indicates the storage dimensions of
the output data in memory. If set to NULL all other advanced data layout pa-
rameters are ignored.

▶ ostride[In] – Indicates the distance between two successive output ele-
ments in the output array in the least significant (i.e., innermost) dimension.

▶ odist[In] – Indicates the distance between the first element of two consec-
utive signals in a batch of the output data.

▶ type[In] – The transform data type (e.g., CUFFT_R2C for single precision real
to complex).

▶ batch[In] – Batch size for this transform.

▶ *workSize[In] – Pointer to the size(s), in bytes, of thework areas. For example
for two GPUs worksize must be declared to have two elements.

▶ *workSize[Out] – Pointer to the size of the work area.

Return values

▶ CUFFT_SUCCESS – cuFFT successfully returned the size of the work space.

▶ CUFFT_INVALID_PLAN – The plan parameter is not a valid handle.

▶ CUFFT_ALLOC_FAILED – The allocation of GPU resources for the plan failed.

▶ CUFFT_INVALID_VALUE – One or more invalid parameters were passed to the
API.

▶ CUFFT_INTERNAL_ERROR – An internal driver error was detected.

▶ CUFFT_SETUP_FAILED – The cuFFT library failed to initialize.

▶ CUFFT_INVALID_SIZE – One ormore of the parameters is not a supported size.

2.6.5. cufftGetSizeMany64()

cufftResult cufftGetSizeMany64(cufftHandle plan, int rank, long long int *n, long long int
*inembed, long long int istride, long long int idist, long long int
*onembed, long long int ostride, long long int odist, cufftType
type, long long int batch, size_t *workSize);

This call gives a more accurate estimate of the work area size required for a plan than cufftEs-
timateSizeMany(), given the specified parameters, and taking into account any plan settings
that may have been made.

2.6. cuFFT Refined Estimated Size of Work Area 51

cuFFT, Release 12.8

This API is identical to cufftMakePlanMany except that the arguments specifying sizes and
strides are 64 bit integers. This API makes very large transforms possible. cuFFT includes kernels
that use 32 bit indexes, and kernels that use 64 bit indexes. cuFFT planning selects 32 bit kernels
whenever possible to avoid any overhead due to 64 bit arithmetic.

All sizes and types of transform are supported by this interface, with two exceptions. For trans-
forms whose total size exceeds 4G elements, the dimensions specified in the array n must be
factorable into primes that are less than or equal to 127. For real to complex and complex to
real transforms whose total size exceeds 4G elements, the fastest changing dimension must be
even.

Parameters

▶ plan[In] – cufftHandle returned by cufftCreate.

▶ rank[In] – Dimensionality of the transform (1, 2, or 3).

▶ n[In] – Array of size rank, describing the size of each dimension.

▶ inembed[In] – Pointer of size rank that indicates the storage dimensions of
the input data in memory. If set to NULL all other advanced data layout param-
eters are ignored.

▶ istride[In] – Indicates the distance between two successive input elements
in the least significant (i.e., innermost) dimension.

▶ idist[In] – Indicates the distance between the first element of two consec-
utive signals in a batch of the input data.

▶ onembed[In] – Pointer of size rank that indicates the storage dimensions of
the output data in memory. If set to NULL all other advanced data layout pa-
rameters are ignored.

▶ ostride[In] – Indicates the distance between two successive output ele-
ments in the output array in the least significant (i.e., innermost) dimension.

▶ odist[In] – Indicates the distance between the first element of two consec-
utive signals in a batch of the output data.

▶ type[In] – The transform data type (e.g., CUFFT_R2C for single precision real
to complex).

▶ batch[In] – Batch size for this transform.

▶ *workSize[In] – Pointer to the size(s), in bytes, of thework areas. For example
for two GPUs worksize must be declared to have two elements.

▶ *workSize[Out] – Pointer to the size of the work area.

Return values

▶ CUFFT_SUCCESS – cuFFT successfully returned the size of the work space.

▶ CUFFT_INVALID_PLAN – The plan parameter is not a valid handle.

▶ CUFFT_ALLOC_FAILED – The allocation of GPU resources for the plan failed.

▶ CUFFT_INVALID_VALUE – One or more invalid parameters were passed to the
API.

▶ CUFFT_INTERNAL_ERROR – An internal driver error was detected.

▶ CUFFT_SETUP_FAILED – The cuFFT library failed to initialize.

52 Chapter 2. cuFFT API Reference

cuFFT, Release 12.8

▶ CUFFT_INVALID_SIZE – One ormore of the parameters is not a supported size.

2.6.6. cufftXtGetSizeMany()

cufftResult cufftXtGetSizeMany(cufftHandle plan, int rank, long long int *n, long long int
*inembed, long long int istride, long long int idist, cudaDataType
inputtype, long long int *onembed, long long int ostride, long
long int odist, cudaDataType outputtype, long long int batch,
size_t *workSize, cudaDataType executiontype);

This call gives a more accurate estimate of the work area size required for a plan than cufftEs-
timateSizeMany(), given the specified parameters that match signature of cufftXtMake-
PlanMany function, and taking into account any plan settings that may have been made.

Formore information about valid combinations ofinputtype, outputtype andexecutiontype
parameters please refer to documentation of cufftXtMakePlanMany function.

Parameters

▶ plan[In] – cufftHandle returned by cufftCreate.

▶ rank[In] – Dimensionality of the transform (1, 2, or 3).

▶ n[In] – Array of size rank, describing the size of each dimension.

▶ inembed[In] – Pointer of size rank that indicates the storage dimensions of
the input data in memory. If set to NULL all other advanced data layout param-
eters are ignored.

▶ istride[In] – Indicates the distance between two successive input elements
in the least significant (i.e., innermost) dimension.

▶ idist[In] – Indicates the distance between the first element of two consec-
utive signals in a batch of the input data.

▶ inputtype[In] (cudaDataType) – Type of input data.

▶ onembed[In] – Pointer of size rank that indicates the storage dimensions of
the output data in memory. If set to NULL all other advanced data layout pa-
rameters are ignored.

▶ ostride[In] – Indicates the distance between two successive output ele-
ments in the output array in the least significant (i.e., innermost) dimension.

▶ odist[In] – Indicates the distance between the first element of two consec-
utive signals in a batch of the output data.

▶ outputtype[In] (cudaDataType) – Type of output data.

▶ batch[In] – Batch size for this transform.

▶ *workSize[In] – Pointer to the size(s), in bytes, of thework areas. For example
for two GPUs worksize must be declared to have two elements.

▶ executiontype[In] (cudaDataType) – Type of data to be used for computa-
tions.

▶ *workSize[Out] – Pointer to the size of the work area.

2.6. cuFFT Refined Estimated Size of Work Area 53

cuFFT, Release 12.8

Return values

▶ CUFFT_SUCCESS – cuFFT successfully returned the size of the work space.

▶ CUFFT_INVALID_PLAN – The plan parameter is not a valid handle.

▶ CUFFT_ALLOC_FAILED – The allocation of GPU resources for the plan failed.

▶ CUFFT_INVALID_VALUE – One or more invalid parameters were passed to the
API.

▶ CUFFT_INTERNAL_ERROR – An internal driver error was detected.

▶ CUFFT_SETUP_FAILED – The cuFFT library failed to initialize.

▶ CUFFT_INVALID_SIZE – One ormore of the parameters is not a supported size.

2.7. cufftGetSize()

cufftResult cufftGetSize(cufftHandle plan, size_t *workSize);
Once plan generation has been done, either with the original API or the extensible API, this call
returns the actual size of the work area required to support the plan. Callers who choose to
manage work area allocation within their application must use this call after plan generation,
and after any cufftSet*() calls subsequent to plan generation, if those calls might alter the
required work space size.

Parameters

▶ plan[In] – cufftHandle returned by cufftCreate.

▶ *workSize[In] – Pointer to the size(s), in bytes, of thework areas. For example
for two GPUs worksize must be declared to have two elements.

▶ *workSize[Out] – Pointer to the size of the work area.

Return values

▶ CUFFT_SUCCESS – cuFFT successfully returned the size of the work space.

▶ CUFFT_INVALID_PLAN – The plan parameter is not a valid handle.

▶ CUFFT_INTERNAL_ERROR – An internal driver error was detected.

2.8. cuFFT Caller Allocated Work Area Support

2.8.1. cufftSetAutoAllocation()

54 Chapter 2. cuFFT API Reference

cuFFT, Release 12.8

cufftResult cufftSetAutoAllocation(cufftHandle plan, int autoAllocate);
cufftSetAutoAllocation() indicates that the caller intends to allocate and manage work
areas for plans that have been generated. cuFFT default behavior is to allocate the work area
at plan generation time. If cufftSetAutoAllocation() has been called with autoAllocate set
to 0 (“false”) prior to one of the cufftMakePlan*() calls, cuFFT does not allocate the work area.
This is the preferred sequence for callers wishing to manage work area allocation.

Parameters

▶ plan[In] – cufftHandle returned by cufftCreate.

▶ autoAllocate[In] – Indicates whether to allocate work area.

Return values

▶ CUFFT_SUCCESS – cuFFT successfully returned the size of the work space.

▶ CUFFT_INVALID_PLAN – The plan parameter is not a valid handle.

▶ CUFFT_INTERNAL_ERROR – An internal driver error was detected.

2.8.2. cufftSetWorkArea()

cufftResult cufftSetWorkArea(cufftHandle plan, void *workArea);
cufftSetWorkArea() overrides the work area pointer associated with a plan. If the work area
was auto-allocated, cuFFT frees the auto-allocated space. The cufftExecute*() calls assume
that the work area pointer is valid and that it points to a contiguous region in device memory
that does not overlap with any other work area. If this is not the case, results are indeterminate.

Parameters

▶ plan[In] – cufftHandle returned by cufftCreate.

▶ *workArea[In] – Pointer to workArea. For multiple GPUs, multiple work area
pointers must be given.

Return values

▶ CUFFT_SUCCESS – cuFFT successfully returned the size of the work space.

▶ CUFFT_INVALID_PLAN – The plan parameter is not a valid handle.

▶ CUFFT_INTERNAL_ERROR – An internal driver error was detected.

▶ CUFFT_SETUP_FAILED – The cuFFT library failed to initialize.

2.8. cuFFT Caller Allocated Work Area Support 55

cuFFT, Release 12.8

2.8.3. cufftXtSetWorkAreaPolicy()

cufftResult cufftXtSetWorkAreaPolicy(cufftHandle plan, cufftXtWorkAreaPolicy policy, size_t
*workSize);

cufftXtSetWorkAreaPolicy() indicates that the caller intends to change work area size
for a given plan handle. cuFFT’s default behavior is to allocate the work area at plan
generation time with a default size that depends on the plan type and other parame-
ters. If cufftXtSetWorkAreaPolicy() has been called with the policy parameter set to
CUFFT_WORKAREA_MINIMAL, cuFFT will attempt to re-plan the handle to use zero bytes of work
area memory. If the cufftXtSetWorkAreaPolicy() call is successful the auto-allocated work
area memory is released.

Currently the policies CUFFT_WORKAREA_PERFORMANCE, CUFFT_WORKAREA_USER and the work-
Size parameter are not supported and reserved for use in future cuFFT releases.

This function can be called once per lifetime of a plan handle.

Parameters

▶ plan[In] – cufftHandle returned by cufftCreate.

▶ policy[In] – Type of work area policy to apply.

▶ *workSize[In] – Reserved for future use.

Return values

▶ CUFFT_SUCCESS – cuFFT successfully returned the size of the work space.

▶ CUFFT_INVALID_PLAN – The plan parameter is not a valid handle.

▶ CUFFT_INVALID_SIZE – FFT size does not allow use of the selected policy.

▶ CUFFT_INTERNAL_ERROR – An internal driver error was detected.

▶ CUFFT_SETUP_FAILED – The cuFFT library failed to initialize.

2.9. cuFFT Execution

2.9.1. cufftExecC2C() and cufftExecZ2Z()

cufftResult cufftExecC2C(cufftHandle plan, cufftComplex *idata, cufftComplex *odata, int
direction);

cufftResult cufftExecZ2Z(cufftHandle plan, cufftDoubleComplex *idata, cufftDoubleComplex
*odata, int direction);

cufftExecC2C() (cufftExecZ2Z()) executes a single-precision (double-precision) complex-
to-complex transform plan in the transform direction as specified by direction parameter.
cuFFT uses the GPU memory pointed to by the idata parameter as input data. This function
stores the Fourier coefficients in the odata array. If idata and odata are the same, this method
does an in-place transform.

56 Chapter 2. cuFFT API Reference

cuFFT, Release 12.8

Parameters

▶ plan[In] – cufftHandle returned by cufftCreate.

▶ idata[In] – Pointer to the complex input data (in GPU memory) to transform.

▶ odata[In] – Pointer to the complex output data (in GPU memory).

▶ direction[In] – The transform direction: CUFFT_FORWARD or
CUFFT_INVERSE.

▶ odata[Out] – ontains the complex Fourier coefficients.

Return values

▶ CUFFT_SUCCESS – cuFFT successfully returned the size of the work space.

▶ CUFFT_INVALID_PLAN – The plan parameter is not a valid handle.

▶ CUFFT_INVALID_VALUE – At least one of the parameters idata, odata, and
direction is not valid.

▶ CUFFT_INTERNAL_ERROR – An internal driver error was detected.

▶ CUFFT_EXEC_FAILED – cuFFT failed to execute the transform on the GPU.

▶ CUFFT_SETUP_FAILED – The cuFFT library failed to initialize.

2.9.2. cufftExecR2C() and cufftExecD2Z()

cufftResult cufftExecR2C(cufftHandle plan, cufftReal *idata, cufftComplex *odata);

cufftResult cufftExecD2Z(cufftHandle plan, cufftDoubleReal *idata, cufftDoubleComplex *odata);
cufftExecR2C() (cufftExecD2Z()) executes a single-precision (double-precision) real-to-
complex, implicitly forward, cuFFT transform plan. cuFFT uses as input data the GPU memory
pointed to by the idata parameter. This function stores the nonredundant Fourier coefficients
in the odata array. Pointers to idata and odata are both required to be aligned to cufftCom-
plex data type in single-precision transforms and cufftDoubleComplex data type in double-
precision transforms. If idata and odata are the same, this method does an in-place transform.
Note the data layout differences between in-place and out-of-place transforms as described in
Parameter cufftType.

Parameters

▶ plan[In] – cufftHandle returned by cufftCreate.

▶ idata[In] – Pointer to the real input data (in GPU memory) to transform.

▶ odata[In] – Pointer to the complex output data (in GPU memory).

▶ odata[Out] – Contains the complex Fourier coefficients.

Return values

▶ CUFFT_SUCCESS – cuFFT successfully returned the size of the work space.

▶ CUFFT_INVALID_PLAN – The plan parameter is not a valid handle.

2.9. cuFFT Execution 57

index.html#cufft-transform-types

cuFFT, Release 12.8

▶ CUFFT_INVALID_VALUE – At least one of the parameters idata and odata is
not valid.

▶ CUFFT_INTERNAL_ERROR – An internal driver error was detected.

▶ CUFFT_EXEC_FAILED – cuFFT failed to execute the transform on the GPU.

▶ CUFFT_SETUP_FAILED – The cuFFT library failed to initialize.

2.9.3. cufftExecC2R() and cufftExecZ2D()

cufftResult cufftExecC2R(cufftHandle plan, cufftComplex *idata, cufftReal *odata);

cufftResult cufftExecZ2D(cufftHandle plan, cufftDoubleComplex *idata, cufftDoubleReal *odata);
cufftExecC2R() (cufftExecZ2D()) executes a single-precision (double-precision) complex-
to-real, implicitly inverse, cuFFT transform plan. cuFFT uses as input data the GPU memory
pointed to by the idata parameter. The input array holds only the nonredundant complex Fourier
coefficients. This function stores the real output values in the odata array. and pointers are both
required to be aligned to cufftComplex data type in single-precision transforms and cufft-
DoubleComplex type in double-precision transforms. If idata and odata are the same, this
method does an in-place transform.

Parameters

▶ plan[In] – cufftHandle returned by cufftCreate.

▶ idata[In] – Pointer to the complex input data (in GPU memory) to transform.

▶ odata[In] – Pointer to the real output data (in GPU memory).

▶ odata[Out] – Contains the real output data.

Return values

▶ CUFFT_SUCCESS – cuFFT successfully executed the FFT plan.

▶ CUFFT_INVALID_PLAN – The plan parameter is not a valid handle.

▶ CUFFT_INVALID_VALUE – At least one of the parameters idata and odata is
not valid.

▶ CUFFT_INTERNAL_ERROR – An internal driver error was detected.

▶ CUFFT_EXEC_FAILED – cuFFT failed to execute the transform on the GPU.

▶ CUFFT_SETUP_FAILED – The cuFFT library failed to initialize.

58 Chapter 2. cuFFT API Reference

cuFFT, Release 12.8

2.9.4. cufftXtExec()

cufftResult cufftXtExec(cufftHandle plan, void *input, void *output, int direction);
FunctioncufftXtExec executes any cuFFT transform regardless of precision and type. In case of
complex-to-real and real-to-complex transforms direction parameter is ignored. cuFFT uses
the GPU memory pointed to by the input parameter as input data. This function stores the
Fourier coefficients in the output array. If input and output are the same, this method does
an in-place transform.

Parameters

▶ plan[In] – cufftHandle returned by cufftCreate.

▶ input[In] – Pointer to the input data (in GPU memory) to transform.

▶ output[In] – Pointer to the output data (in GPU memory).

▶ direction[In] – The transform direction: CUFFT_FORWARD or
CUFFT_INVERSE. Ignored for complex-to-real and real-to-complex trans-
forms.

▶ output[Out] – Contains the complex Fourier coefficients.

Return values

▶ CUFFT_SUCCESS – cuFFT successfully executed the FFT plan.

▶ CUFFT_INVALID_PLAN – The plan parameter is not a valid handle.

▶ CUFFT_INVALID_VALUE – At least one of the parameters idata, odata, and
direction is not valid.

▶ CUFFT_INTERNAL_ERROR – An internal driver error was detected.

▶ CUFFT_EXEC_FAILED – cuFFT failed to execute the transform on the GPU.

▶ CUFFT_SETUP_FAILED – The cuFFT library failed to initialize.

2.9.5. cufftXtExecDescriptor()

cufftResult cufftXtExecDescriptor(cufftHandle plan, cudaLibXtDesc *input, cudaLibXtDesc
*output, int direction);

Function cufftXtExecDescriptor() executes any cuFFT transform regardless of precision
and type. In case of complex-to-real and real-to-complex transforms direction parameter is
ignored. cuFFT uses the GPUmemory pointed to by cudaLibXtDesc *input descriptor as input
data and cudaLibXtDesc *output as output data.

Parameters

▶ plan[In] – cufftHandle returned by cufftCreate.

▶ input[In] – Pointer to the complex input data (in GPU memory) to transform.

▶ output[In] – Pointer to the complex output data (in GPU memory).

2.9. cuFFT Execution 59

cuFFT, Release 12.8

▶ direction[In] – The transform direction: CUFFT_FORWARD or
CUFFT_INVERSE. Ignored for complex-to-real and real-to-complex trans-
forms.

▶ idata[Out] – Contains the complex Fourier coefficients.

Return values

▶ CUFFT_SUCCESS – cuFFT successfully executed the FFT plan.

▶ CUFFT_INVALID_PLAN – The plan parameter is not a valid handle.

▶ CUFFT_INVALID_VALUE – At least one of the parameters idata and direc-
tion is not valid.

▶ CUFFT_INTERNAL_ERROR – An internal driver error was detected.

▶ CUFFT_EXEC_FAILED – cuFFT failed to execute the transform on the GPU.

▶ CUFFT_SETUP_FAILED – The cuFFT library failed to initialize.

▶ CUFFT_INVALID_DEVICE – An invalid GPU index was specified in a descriptor.

2.10. cuFFT and Multiple GPUs

2.10.1. cufftXtSetGPUs()

cufftResult cufftXtSetGPUs(cufftHandle plan, int nGPUs, int *whichGPUs);
cufftXtSetGPUs() identifieswhichGPUs are to be usedwith the plan. As in the single GPU case
cufftCreate() creates a plan and cufftMakePlan*() does the plan generation. In cuFFT prior
to 10.4.0, this call will return an error if a non-default stream has been associated with the plan.

Note that the call to cufftXtSetGPUs()must occur after the call to cufftCreate() and prior
to the call to cufftMakePlan*(). Parameter whichGPUs of cufftXtSetGPUs() function de-
termines ordering of the GPUs with respect to data decomposition (first data chunk is placed on
GPU denoted by first element of whichGPUs).

Parameters

▶ plan[In] – cufftHandle returned by cufftCreate.

▶ nGPUs[In] – Number of GPUs to use.

▶ whichGPUs[In] – The GPUs to use.

Return values

▶ CUFFT_SUCCESS – cuFFT successfully set the GPUs to use.

▶ CUFFT_INVALID_PLAN – The plan parameter is not a valid handle, or a non-
default stream has been associated with the plan in cuFFT prior to 10.4.0.

▶ CUFFT_ALLOC_FAILED – The allocation of GPU resources for the plan failed.

▶ CUFFT_INTERNAL_ERROR – An internal driver error was detected.

▶ CUFFT_SETUP_FAILED – The cuFFT library failed to initialize.

60 Chapter 2. cuFFT API Reference

index.html#streamed-cufft-transforms
index.html#streamed-cufft-transforms

cuFFT, Release 12.8

▶ CUFFT_INVALID_VALUE – The requested number of GPUs was less than 2 or
more than 8.

▶ CUFFT_INVALID_DEVICE – An invalid GPU index was specified.

▶ CUFFT_INVALID_SIZE – Transform size that plan was created for does not
meet minimum size criteria.

2.10.2. cufftXtSetWorkArea()

cufftResult cufftXtSetWorkArea(cufftHandle plan, void **workArea);
cufftXtSetWorkArea() overrides the work areas associated with a plan. If the work area was
auto-allocated, cuFFT frees the auto-allocated space. The cufftXtExec*() calls assume that
the work area is valid and that it points to a contiguous region in each device memory that does
not overlap with any other work area. If this is not the case, results are indeterminate.

Parameters

▶ plan[In] – cufftHandle returned by cufftCreate.

▶ workArea[In] – Pointer to the pointers to workArea.

Return values

▶ CUFFT_SUCCESS – cuFFT successfully set the GPUs to use.

▶ CUFFT_INVALID_PLAN – The plan parameter is not a valid handle.

▶ CUFFT_INTERNAL_ERROR – An internal driver error was detected.

▶ CUFFT_SETUP_FAILED – The cuFFT library failed to initialize.

▶ CUFFT_INVALID_DEVICE – A GPU associated with the plan could not be se-
lected.

2.10.3. cuFFT Multiple GPU Execution

2.10.3.1 cufftXtExecDescriptorC2C() and cufftXtExecDescriptorZ2Z()

cufftResult cufftXtExecDescriptorC2C(cufftHandle plan, cudaLibXtDesc *input, cudaLibXtDesc
*output, int direction);

cufftResult cufftXtExecDescriptorZ2Z(cufftHandle plan, cudaLibXtDesc *input, cudaLibXtDesc
*output, int direction);

cufftXtExecDescriptorC2C() (cufftXtExecDescriptorZ2Z()) executes a single-
precision (double-precision) complex-to-complex transform plan in the transform direction
as specified by direction parameter. cuFFT uses the GPU memory pointed to by cudaL-
ibXtDesc *input as input data. Since only in-place multiple GPU functionality is supported,
this function also stores the result in the cudaLibXtDesc *input arrays.

Parameters

▶ plan[In] – cufftHandle returned by cufftCreate.

2.10. cuFFT and Multiple GPUs 61

cuFFT, Release 12.8

▶ *input[In] – Pointer to the complex input data (in GPUmemory) to transform.

▶ *output[In] – Pointer to the complex output data (in GPU memory).

▶ direction[In] – The transform direction: CUFFT_FORWARD or
CUFFT_INVERSE.

▶ input[Out] – Contains the complex Fourier coefficients.

Return values

▶ CUFFT_SUCCESS – cuFFT successfully executed the FFT plan.

▶ CUFFT_INVALID_PLAN – The plan parameter is not a valid handle.

▶ CUFFT_INVALID_VALUE – At least one of the parameters input and direc-
tion is not valid.

▶ CUFFT_INTERNAL_ERROR – An internal driver error was detected.

▶ CUFFT_EXEC_FAILED – cuFFT failed to execute the transform on the GPU.

▶ CUFFT_SETUP_FAILED – The cuFFT library failed to initialize.

▶ CUFFT_INVALID_DEVICE – An invalid GPU index was specified in a descriptor.

2.10.3.2 cufftXtExecDescriptorR2C() and cufftXtExecDescriptorD2Z()

cufftResult cufftXtExecDescriptorR2C(cufftHandle plan, cudaLibXtDesc *input, cudaLibXtDesc
*output);

cufftResult cufftXtExecDescriptorD2Z(cufftHandle plan, cudaLibXtDesc *input, cudaLibXtDesc
*output);

cufftXtExecDescriptorR2C() (cufftXtExecDescriptorD2Z()) executes a single-
precision (double-precision) real-to-complex transform plan. cuFFT uses the GPU memory
pointed to by cudaLibXtDesc *input as input data. Since only in-place multiple GPU func-
tionality is supported, this function also stores the result in the cudaLibXtDesc *input
arrays.

Parameters

▶ plan[In] – cufftHandle returned by cufftCreate.

▶ *input[In] – Pointer to the complex input data (in GPUmemory) to transform.

▶ *output[In] – Pointer to the complex output data (in GPU memory).

▶ input[Out] – Contains the complex Fourier coefficients

Return values

▶ CUFFT_SUCCESS – cuFFT successfully executed the FFT plan.

▶ CUFFT_INVALID_PLAN – The plan parameter is not a valid handle.

▶ CUFFT_INVALID_VALUE – At least one of the parameters input and direc-
tion is not valid.

▶ CUFFT_INTERNAL_ERROR – An internal driver error was detected.

▶ CUFFT_EXEC_FAILED – cuFFT failed to execute the transform on the GPU.

62 Chapter 2. cuFFT API Reference

cuFFT, Release 12.8

▶ CUFFT_SETUP_FAILED – The cuFFT library failed to initialize.

▶ CUFFT_INVALID_DEVICE – An invalid GPU index was specified in a descriptor.

2.10.3.3 cufftXtExecDescriptorC2R() and cufftXtExecDescriptorZ2D()

cufftResult cufftXtExecDescriptorC2R(cufftHandle plan, cudaLibXtDesc *input, cudaLibXtDesc
*output);

cufftResult cufftXtExecDescriptorZ2D(cufftHandle plan, cudaLibXtDesc *input, cudaLibXtDesc
*output);

cufftXtExecDescriptorC2R() (cufftXtExecDescriptorZ2D()) executes a single-
precision (double-precision) complex-to-real transform plan in the transform direction as
specified by direction parameter. cuFFT uses the GPU memory pointed to by cudaL-
ibXtDesc *input as input data. Since only in-place multiple GPU functionality is supported,
this function also stores the result in the cudaLibXtDesc *input arrays.

Parameters

▶ plan[In] – cufftHandle returned by cufftCreate.

▶ *input[In] – Pointer to the complex input data (in GPUmemory) to transform.

▶ *output[In] – Pointer to the complex output data (in GPU memory).

▶ input[Out] – Contains the complex Fourier coefficients.

Return values

▶ CUFFT_SUCCESS – cuFFT successfully executed the FFT plan.

▶ CUFFT_INVALID_PLAN – The plan parameter is not a valid handle.

▶ CUFFT_INVALID_VALUE – At least one of the parameters input and direc-
tion is not valid.

▶ CUFFT_INTERNAL_ERROR – An internal driver error was detected.

▶ CUFFT_EXEC_FAILED – cuFFT failed to execute the transform on the GPU.

▶ CUFFT_SETUP_FAILED – The cuFFT library failed to initialize.

▶ CUFFT_INVALID_DEVICE – An invalid GPU index was specified in a descriptor.

2.10.4. Memory Allocation and Data Movement Functions

Multiple GPU cuFFT execution functions assume a certain data layout in terms of what input data
has been copied to which GPUs prior to execution, and what output data resides in which GPUs post
execution. The following functions assist in allocation, setup and retrieval of the data. They must be
called after the call to cufftMakePlan*().

2.10. cuFFT and Multiple GPUs 63

cuFFT, Release 12.8

2.10.4.1 cufftXtMalloc()

cufftResult cufftXtMalloc(cufftHandle plan, cudaLibXtDesc **descriptor, cufftXtSubFormat
format);

cufftXtMalloc() allocates a descriptor, and all memory for data in GPUs associated with the
plan, and returns a pointer to the descriptor. Note the descriptor contains an array of device
pointers so that the application may preprocess or postprocess the data on the GPUs. The enu-
merated parameter cufftXtSubFormat_t indicates if the bufferwill be used for input or output.

Parameters

▶ plan[In] – cufftHandle returned by cufftCreate.

▶ **descriptor[In] – Pointer to a pointer to a cudaLibXtDesc object.

▶ format[In] – cufftXtSubFormat`` value.

▶ **descriptor[Out] – Pointer to a pointer to a cudaLibXtDesc object.

Return values

▶ CUFFT_SUCCESS – cuFFT successfully allows user to allocate descriptor and
GPU memory.

▶ CUFFT_INVALID_PLAN – The plan parameter is not a valid handle or it is not a
multiple GPU plan.

▶ CUFFT_ALLOC_FAILED – The allocation of GPU resources for the plan failed.

▶ CUFFT_INTERNAL_ERROR – An internal driver error was detected.

▶ CUFFT_SETUP_FAILED – The cuFFT library failed to initialize.

▶ CUFFT_INVALID_DEVICE – An invalid GPU indexwas specified in the descriptor.

2.10.4.1.1 Parameter cufftXtSubFormat

cufftXtSubFormat_t is an enumerated type that indicates if the buffer will be used for input or
output and the ordering of the data.

typedef enum cufftXtSubFormat_t {
CUFFT_XT_FORMAT_INPUT, ∕∕by default input is in linear order across�

↪→GPUs
CUFFT_XT_FORMAT_OUTPUT, ∕∕by default output is in scrambled order�

↪→depending on transform
CUFFT_XT_FORMAT_INPLACE, ∕∕by default inplace is input order, which is�

↪→linear across GPUs
CUFFT_XT_FORMAT_INPLACE_SHUFFLED, ∕∕shuffled output order after execution of the�

↪→transform
CUFFT_FORMAT_UNDEFINED

} cufftXtSubFormat;

64 Chapter 2. cuFFT API Reference

cuFFT, Release 12.8

2.10.4.2 cufftXtFree()

cufftResult cufftXtFree(cudaLibXtDesc *descriptor);
cufftXtFree() frees the descriptor and all memory associated with it. The descriptor and
memory must have been returned by a previous call to cufftXtMalloc().

Parameters

▶ *descriptor[In] – Pointer to a cudaLibXtDesc object.

Return values

▶ CUFFT_SUCCESS – cuFFT successfully allows user to free descriptor and asso-
ciated GPU memory.

▶ CUFFT_INTERNAL_ERROR – An internal driver error was detected.

2.10.4.3 cufftXtMemcpy()

cufftResult cufftXtMemcpy(cufftHandle plan, void *dstPointer, void *srcPointer, cufftXtCopyType
type);

cufftXtMemcpy() copies data between buffers on the host and GPUs or between
GPUs. The enumerated parameter cufftXtCopyType_t indicates the type and direc-
tion of transfer. Calling cufftXtMemcpy function for multi-GPU batched FFT plans with
CUFFT_COPY_DEVICE_TO_DEVICE transfer type is not supported.

Note that starting from CUDA 11.2 (cuFFT 10.4.0), cufftSetStream() is supported on multi-
GPU plans. When associating a stream with a plan, cufftXtMemcpy() remains synchronous
across the multiple GPUs.

Parameters

▶ plan[In] – cufftHandle returned by cufftCreate.

▶ dstPointer[In] – Pointer to the destination address(es).

▶ srcPointer[In] – Pointer to the source address(es).

▶ type[In] – cufftXtCopyTypevalue.

Return values

▶ CUFFT_SUCCESS – cuFFT successfully allows user to copy memory between
host and GPUs or between GPUs.

▶ CUFFT_INVALID_PLAN – The plan parameter is not a valid handle.

▶ CUFFT_INVALID_VALUE – One or more invalid parameters were passed to the
API.

▶ CUFFT_INTERNAL_ERROR – An internal driver error was detected.

▶ CUFFT_SETUP_FAILED – The cuFFT library failed to initialize.

▶ CUFFT_INVALID_DEVICE – An invalid GPU index was specified in a descriptor.

2.10. cuFFT and Multiple GPUs 65

cuFFT, Release 12.8

2.10.4.3.1 Parameter cufftXtCopyType

cufftXtCopyType_t is an enumerated type for multiple GPU functions that specifies the type of
copy for cufftXtMemcpy().

CUFFT_COPY_HOST_TO_DEVICE copies data from a contiguous host buffer to multiple device buffers,
in the layout cuFFT requires for input data. dstPointer must point to a cudaLibXtDesc structure,
and srcPointermust point to a host memory buffer.

CUFFT_COPY_DEVICE_TO_HOST copies data from multiple device buffers, in the layout cuFFT pro-
duces for output data, to a contiguous host buffer. dstPointermust point to a host memory buffer,
and srcPointermust point to a cudaLibXtDesc structure.

CUFFT_COPY_DEVICE_TO_DEVICE copies data from multiple device buffers, in the layout cuFFT pro-
duces for output data, to multiple device buffers, in the layout cuFFT requires for input data. dst-
Pointer and srcPointer must point to different cudaLibXtDesc structures (and therefore mem-
ory locations). That is, the copy cannot be in-place. Note that device_to_device cufftXtMemcpy()
for 2D and 3D data is not currently supported.

typedef enum cufftXtCopyType_t {
CUFFT_COPY_HOST_TO_DEVICE,
CUFFT_COPY_DEVICE_TO_HOST,
CUFFT_COPY_DEVICE_TO_DEVICE

} cufftXtCopyType;

2.10.5. General Multiple GPU Descriptor Types

2.10.5.1 cudaXtDesc

A descriptor type used in multiple GPU routines that contains information about the GPUs and their
memory locations.

struct cudaXtDesc_t{
int version; ∕∕descriptor version
int nGPUs; ∕∕number of GPUs
int GPUs[MAX_CUDA_DESCRIPTOR_GPUS]; ∕∕array of device IDs
void *data[MAX_CUDA_DESCRIPTOR_GPUS]; ∕∕array of pointers to data, one per GPU
size_t size[MAX_CUDA_DESCRIPTOR_GPUS]; ∕∕array of data sizes, one per GPU
void *cudaXtState; ∕∕opaque CUDA utility structure

};
typedef struct cudaXtDesc_t cudaXtDesc;

2.10.5.2 cudaLibXtDesc

A descriptor type used in multiple GPU routines that contains information about the library used.

struct cudaLibXtDesc_t{
int version; ∕∕descriptor version
cudaXtDesc *descriptor; ∕∕multi-GPU memory descriptor
libFormat library; ∕∕which library recognizes the format
int subFormat; ∕∕library specific enumerator of sub formats
void *libDescriptor; ∕∕library specific descriptor e.g. FFT transform plan�

↪→object
(continues on next page)

66 Chapter 2. cuFFT API Reference

cuFFT, Release 12.8

(continued from previous page)

};
typedef struct cudaLibXtDesc_t cudaLibXtDesc;

2.11. cuFFT Callbacks

2.11.1. cufftXtSetJITCallback()

cufftResult cufftXtSetJITCallback(cufftHandle plan, const char *callbackSymbolName, const
void *callbackFatbin, size_t callbackFatbinSize,
cufftXtCallbackType type, void **caller_info)

cufftXtSetJITCallback() specifies a load or store LTO callback to be used with the plan.

This call is valid only after a call to cufftCreate(), but before calling cufftMakePlan*(), which
does the plan generation.

If there was already an LTO callback of this type associated with the plan, this new callback rou-
tine replaces it. If the new callback requires shared memory, you must call cufftXtSetCall-
backSharedSize with the amount of shared memory the callback function needs. cuFFT will
not retain the amount of shared memory associated with the previous callback if the callback
function is changed.

Parameters

▶ plan[In] – cufftHandle returned by cufftCreate.

▶ callbackSymbolName[In] – null-terminated C string containing the (unman-
gled) callback symbol name (i.e. the name of the LTO callback routine). This
symbol name will be runtime-compiled, and modifiers such as extern "C" or
namespace are not supported.

▶ callbackFatbin[In] – Pointer to the location in host memory where the call-
back device function is located, after being compiled into LTO-IR with nvcc or
NVRTC.

▶ callbackFatbinSize[In] – Size in bytes of the data pointed at by call-
backFatbin.

▶ type[In] – Type of callback routine.

▶ callerInfo[In] – Optional array of device pointers to caller specific informa-
tion, one per GPU.

Return values

▶ CUFFT_SUCCESS – cuFFT successfully associated the callback functionwith the
plan.

▶ CUFFT_INVALID_PLAN – The plan parameter is not valid (e.g. the handle was
already used to make a plan).

▶ CUFFT_INVALID_TYPE – The callback type is not valid.

2.11. cuFFT Callbacks 67

cuFFT, Release 12.8

▶ CUFFT_INVALID_VALUE – The pointer to the callback device function is invalid
or the size is 0.

▶ CUFFT_NOT_SUPPORTED – The functionality is not supported yet (e.g. multi-
GPU with LTO callbacks).

▶ CUFFT_INTERNAL_ERROR – cuFFT encountered an unexpected error, likely in
the runtime linking process; error codes will be expanded in a future release.

▶ CUFFT_SETUP_FAILED – The cuFFT library failed to initialize.

2.11.2. cufftXtSetCallback()

cufftResult cufftXtSetCallback(cufftHandle plan, void **callbackRoutine, cufftXtCallbackType
type, void **callerInfo)

cufftXtSetCallback() specifies a load or store legacy callback to be used with the plan. This
call is valid only after a call to cufftMakePlan*(), which does the plan generation. If there was
already a legacy callback of this type associated with the plan, this new callback routine replaces
it. If the new callback requires sharedmemory, youmust call cufftXtSetCallbackSharedSize
with the amount of sharedmemory it needs. cuFFT will not retain the amount of sharedmemory
associated with the previous callback.

Parameters

▶ plan[In] – cufftHandle returned by cufftCreate.

▶ callbackRoutine[In] – Array of callback routine pointers, one per GPU.

▶ type[In] – Type of callback routine.

▶ callerInfo[In] – Optional array of device pointers to caller specific informa-
tion, one per GPU.

Return values

▶ CUFFT_SUCCESS – cuFFT successfully associated the callback functionwith the
plan.

▶ CUFFT_INVALID_PLAN – The plan parameter is not a valid handle, or a non-
default stream has been associated with the plan in cuFFT prior to 10.4.0.

▶ CUFFT_INTERNAL_ERROR – An internal driver error was detected.

▶ CUFFT_SETUP_FAILED – The cuFFT library failed to initialize.

2.11.3. cufftXtClearCallback()

cufftResult cufftXtClearCallback(cufftHandle plan, cufftXtCallbackType type)
cufftXtClearCallback() instructs cuFFT to stop invoking the specified legacy callback type
when executing the plan. Only the specified callback is cleared. If no callback of this type had
been specified, the return code is CUFFT_SUCCESS.

Note that this method does not work with LTO callbacks.

68 Chapter 2. cuFFT API Reference

index.html#streamed-cufft-transforms
index.html#streamed-cufft-transforms

cuFFT, Release 12.8

Parameters

▶ plan[In] – cufftHandle returned by cufftCreate.

▶ type[In] – Type of callback routine.

Return values

▶ CUFFT_SUCCESS – cuFFT successfully disassociated the callback function with
the plan.

▶ CUFFT_INVALID_PLAN – The plan parameter is not a valid handle, or a non-
default stream has been associated with the plan in cuFFT prior to 10.4.0.

▶ CUFFT_INTERNAL_ERROR – An internal driver error was detected.

2.11.4. cufftXtSetCallbackSharedSize()

cufftResult cufftXtSetCallbackSharedSize(cufftHandle plan, cufftXtCallbackType type, size_t
sharedSize)

cufftXtSetCallbackSharedSize() instructs cuFFT to dynamically allocate shared memory
at launch time, for use by the callback. The maximum allowable amount of shared memory is
16K bytes. cuFFT passes a pointer to this shared memory to the callback routine at execution
time. This shared memory is only valid for the life of the load or store callback operation. During
execution, cuFFT may overwrite shared memory for its own purposes.

Parameters

▶ plan[In] – cufftHandle returned by cufftCreate.

▶ type[In] – Type of callback routine.

▶ sharedSize[In] – Amount of shared memory requested.

Return values

▶ CUFFT_SUCCESS – cuFFT will invoke the callback routine with a pointer to the
requested amount of shared memory.

▶ CUFFT_INVALID_PLAN – The plan parameter is not a valid handle, or a non-
default stream has been associated with the plan in cuFFT prior to 10.4.0.

▶ CUFFT_INTERNAL_ERROR – An internal driver error was detected.

▶ CUFFT_ALLOC_FAILED – cuFFT will not be able to allocate the requested
amount of shared memory.

2.11. cuFFT Callbacks 69

index.html#streamed-cufft-transforms
index.html#streamed-cufft-transforms
index.html#streamed-cufft-transforms
index.html#streamed-cufft-transforms

cuFFT, Release 12.8

2.12. cufftSetStream()

cufftResult cufftSetStream(cufftHandle plan, cudaStream_t stream);
Associates a CUDA streamwith a cuFFT plan. All kernel launches made during plan execution are
now done through the associated stream, enabling overlap with activity in other streams (e.g.
data copying). The association remains until the plan is destroyed or the stream is changed with
another call to cufftSetStream().

Note that starting from CUDA 11.2 (cuFFT 10.4.0), cufftSetStream() is supported on multi-
GPU plans. When associating a stream with a plan, cufftXtMemcpy() remains synchronous
across the multiple GPUs. For previous versions of cuFFT, cufftSetStream() will return an
error in multiple GPU plans.

Note that starting fromCUDA 12.2 (cuFFT 11.0.8), onmulti-GPU plans, stream can be associated
with any context on any GPU. However, repeated calls to cufftSetStream()with streams from
different contexts incur a small time penalty. Optimal performance is obtained when repeated
calls to cufftSetStream use streams from the same CUDA context.

Parameters

▶ plan[In] – The cufftHandle object to associate with the stream.

▶ stream[In] – A valid CUDA stream created with cudaStreamCreate(); 0 for
the default stream.

Return values

▶ CUFFT_SUCCESS – The stream was associated with the plan.

▶ CUFFT_INVALID_PLAN – The plan parameter is not a valid handle, or plan is
multi-gpu in cuFFT version prior to 10.4.0.

2.13. cufftGetVersion()

cufftResult cufftGetVersion(int *version);
Returns the version number of cuFFT.

Parameters

▶ *version[In] – Pointer to the version number.

▶ *version[Out] – Contains the version number.

Return values
CUFFT_SUCCESS – cuFFT successfully returned the version number.

70 Chapter 2. cuFFT API Reference

cuFFT, Release 12.8

2.14. cufftGetProperty()

cufftResult cufftGetProperty(libraryPropertyType type, int *value);
Return in*value the number for the property described bytype of the dynamically linkedCUFFT
library.

Parameters

▶ type[In] – CUDA library property.

▶ value[Out] – Contains the integer value for the requested property.

Return values

▶ CUFFT_SUCCESS – The property value was successfully returned.

▶ CUFFT_INVALID_TYPE – The property type is not recognized.

▶ CUFFT_INVALID_VALUE – value is NULL.

2.15. cuFFT Types

2.15.1. Parameter cufftType

The cuFFT library supports complex- and real-data transforms. The cufftType data type is an enu-
meration of the types of transform data supported by cuFFT.

typedef enum cufftType_t {
CUFFT_R2C = 0x2a, ∕∕ Real to complex (interleaved)
CUFFT_C2R = 0x2c, ∕∕ Complex (interleaved) to real
CUFFT_C2C = 0x29, ∕∕ Complex to complex (interleaved)
CUFFT_D2Z = 0x6a, ∕∕ Double to double-complex (interleaved)
CUFFT_Z2D = 0x6c, ∕∕ Double-complex (interleaved) to double
CUFFT_Z2Z = 0x69 ∕∕ Double-complex to double-complex (interleaved)

} cufftType;

2.15.2. Parameters for Transform Direction

The cuFFT library defines forward and inverse Fast Fourier Transforms according to the sign of the
complex exponential term.

#define CUFFT_FORWARD -1
#define CUFFT_INVERSE 1

cuFFT performs un-normalized FFTs; that is, performing a forward FFT on an input data set followed
by an inverse FFT on the resulting set yields data that is equal to the input, scaled by the number of
elements. Scaling either transform by the reciprocal of the size of the data set is left for the user to
perform as seen fit.

2.14. cufftGetProperty() 71

cuFFT, Release 12.8

2.15.3. Type definitions for callbacks

The cuFFT library supports callback funtions for all combinations of single or double precision, real or
complex data, load or store. These are enumerated in the parameter cufftXtCallbackType.

typedef enum cufftXtCallbackType_t {
CUFFT_CB_LD_COMPLEX = 0x0,
CUFFT_CB_LD_COMPLEX_DOUBLE = 0x1,
CUFFT_CB_LD_REAL = 0x2,
CUFFT_CB_LD_REAL_DOUBLE = 0x3,
CUFFT_CB_ST_COMPLEX = 0x4,
CUFFT_CB_ST_COMPLEX_DOUBLE = 0x5,
CUFFT_CB_ST_REAL = 0x6,
CUFFT_CB_ST_REAL_DOUBLE = 0x7,
CUFFT_CB_UNDEFINED = 0x8

} cufftXtCallbackType;

2.15.3.1 Type definitions for LTO callbacks

The LTO callback function prototypes and pointer type definitions are as follows:

typedef cufftComplex (*cufftJITCallbackLoadC)(void *dataIn, unsigned long long offset,
↪→ void *callerInfo, void *sharedPointer);

typedef cufftDoubleComplex (*cufftJITCallbackLoadZ)(void *dataIn, unsigned long long�
↪→offset, void *callerInfo, void *sharedPointer);

typedef cufftReal (*cufftJITCallbackLoadR)(void *dataIn, unsigned long long offset,�
↪→void *callerInfo, void *sharedPointer);

typedef cufftDoubleReal(*cufftJITCallbackLoadD)(void *dataIn, unsigned long long�
↪→offset, void *callerInfo, void *sharedPointer);

typedef void (*cufftJITCallbackStoreC)(void *dataOut, unsigned long long offset,�
↪→cufftComplex element, void *callerInfo, void *sharedPointer);

typedef void (*cufftJITCallbackStoreZ)(void *dataOut, unsigned long long offset,�
↪→cufftDoubleComplex element, void *callerInfo, void *sharedPointer);

typedef void (*cufftJITCallbackStoreR)(void *dataOut, unsigned long long offset,�
↪→cufftReal element, void *callerInfo, void *sharedPointer);

typedef void (*cufftJITCallbackStoreD)(void *dataOut, unsigned long long offset,�
↪→cufftDoubleReal element, void *callerInfo, void *sharedPointer);

Notice the difference in the type of the offset parameter (unsigned long long) vs. legacy callbacks
(which use size_t).

72 Chapter 2. cuFFT API Reference

cuFFT, Release 12.8

2.15.3.2 Type definitions for legacy callbacks

The legacy callback function prototypes and pointer type definitions are as follows:

typedef cufftComplex (*cufftCallbackLoadC)(void *dataIn, size_t offset, void�
↪→*callerInfo, void *sharedPointer);

typedef cufftDoubleComplex (*cufftCallbackLoadZ)(void *dataIn, size_t offset, void�
↪→*callerInfo, void *sharedPointer);

typedef cufftReal (*cufftCallbackLoadR)(void *dataIn, size_t offset, void *callerInfo,
↪→ void *sharedPointer);

typedef cufftDoubleReal(*cufftCallbackLoadD)(void *dataIn, size_t offset, void�
↪→*callerInfo, void *sharedPointer);

typedef void (*cufftCallbackStoreC)(void *dataOut, size_t offset, cufftComplex�
↪→element, void *callerInfo, void *sharedPointer);

typedef void (*cufftCallbackStoreZ)(void *dataOut, size_t offset, cufftDoubleComplex�
↪→element, void *callerInfo, void *sharedPointer);

typedef void (*cufftCallbackStoreR)(void *dataOut, size_t offset, cufftReal element,�
↪→void *callerInfo, void *sharedPointer);

typedef void (*cufftCallbackStoreD)(void *dataOut, size_t offset, cufftDoubleReal�
↪→element, void *callerInfo, void *sharedPointer);

2.15.4. Other cuFFT Types

2.15.4.1 cufftHandle

type cufftHandle
A handle type used to store and access cuFFT plans. The user receives a handle after creating a
cuFFT plan and uses this handle to execute the plan.

typedef unsigned int cufftHandle;

2.15.4.2 cufftReal

A single-precision, floating-point real data type.

typedef float cufftReal;

2.15. cuFFT Types 73

cuFFT, Release 12.8

2.15.4.3 cufftDoubleReal

A double-precision, floating-point real data type.

typedef double cufftDoubleReal;

2.15.4.4 cufftComplex

A single-precision, floating-point complex data type that consists of interleaved real and imaginary
components.

typedef cuComplex cufftComplex;

2.15.4.5 cufftDoubleComplex

A double-precision, floating-point complex data type that consists of interleaved real and imaginary
components.

typedef cuDoubleComplex cufftDoubleComplex;

2.16. Common types

2.16.1. cudaDataType

The cudaDataType data type is an enumeration of the types supported by CUDA libraries.

typedef enum cudaDataType_t
{

CUDA_R_16F= 2, ∕∕ 16 bit real
CUDA_C_16F= 6, ∕∕ 16 bit complex
CUDA_R_32F= 0, ∕∕ 32 bit real
CUDA_C_32F= 4, ∕∕ 32 bit complex
CUDA_R_64F= 1, ∕∕ 64 bit real
CUDA_C_64F= 5, ∕∕ 64 bit complex
CUDA_R_8I= 3, ∕∕ 8 bit real as a signed integer
CUDA_C_8I= 7, ∕∕ 8 bit complex as a pair of signed integers
CUDA_R_8U= 8, ∕∕ 8 bit real as an unsigned integer
CUDA_C_8U= 9 ∕∕ 8 bit complex as a pair of unsigned integers

} cudaDataType;

74 Chapter 2. cuFFT API Reference

cuFFT, Release 12.8

2.16.2. libraryPropertyType

The libraryPropertyType data type is an enumeration of library property types. (ie. CUDA version
X.Y.Z would yield MAJOR_VERSION=X, MINOR_VERSION=Y, PATCH_LEVEL=Z)

typedef enum libraryPropertyType_t
{

MAJOR_VERSION,
MINOR_VERSION,
PATCH_LEVEL

} libraryPropertyType;

2.16. Common types 75

cuFFT, Release 12.8

76 Chapter 2. cuFFT API Reference

Chapter 3. Multiple GPU Data
Organization

This chapter explains how data are distributed between the GPUs, before and after a multiple GPU
transform. For simplicity, it is assumed in this chapter that the caller has specified GPU 0 and GPU 1
to perform the transform.

3.1. Multiple GPU Data Organization for
Batched Transforms

For batches of transforms, each individual transform is executed on a single GPU. If possible the
batches are evenly distributed among the GPUs. For a batch of size m performed on n GPUs, where
m is not divisible by n, the first m % n GPUs will perform

⌊
m
n

⌋
+ 1 transforms. The remaining GPUs

will perform
⌊
m
n

⌋
transforms. For example, in a batch of 15 transforms performed on 4 GPUs, the first

three GPUs would perform 4 transforms, and the last GPUwould perform 3 transforms. This approach
removes the need for data exchange between the GPUs, and results in nearly perfect scaling for cases
where the batch size is divisible by the number of GPUs.

3.2. Multiple GPU Data Organization for Single
2D and 3D Transforms

Single transforms performed onmultiple GPUs require the data to be divided between the GPUs. Then
execution takes place in phases. For example with 2 GPUs, for 2D and 3D transforms with even sized
dimensions, each GPU does half of the transform in (rank - 1) dimensions. Then data are exchanged
between the GPUs so that the final dimension can be processed.

Since 2D and 3D transforms support sizes other than powers of 2, it is possible that the data can not
be evenly distributed among the GPUs. In general for the case of n GPUs, a dimension of size m that
is not a multiple of n would be distributed such that the first m % n GPUs would get one extra row for
2D transforms, one extra plane for 3D transforms.

Take for example, a 2D transform on 4 GPUs, using an array declared in C as data[x][y], where x is
65 and y is 99. The surface is distributed prior to the transform such that GPU 0 receives a surface
with dimensions [17][99], and GPUs 1…3 receive surfaces with dimensions [16][99]. After the

77

cuFFT, Release 12.8

transform, each GPU again has a portion of the surface, but divided in the y dimension. GPUs 0…2
have surfaces with dimensions [65][25]. GPU 3 has a surface with dimensions [65][24]

For a 3D transform on 4 GPUs consider an array declared in C as data[x][y][z], where x is 103,
y is 122, and z is 64. The volume is distributed prior to the transform such that each GPUs 0…2
receive volumes with dimensions [26][122][64], and GPU 3 receives a volume with dimensions
[25][122][64]. After the transform, each GPU again has a portion of the surface, but divided in
the y dimension. GPUs 0 and 1 have a volumes with dimensions [103][31][64], and GPUs 2 and 3
have volumes with dimensions [103][30][64].

3.3. Multiple-GPU Data Organization for Single
1D Transforms

By default for 1D transforms, the initial distribution of data to the GPUs is similar to the 2D and 3D
cases. For a transform of dimension x on two GPUs, GPU 0 receives data ranging from 0…(x/2-1). GPU
1 receives data ranging from (x/2)…(x-1). Similarly, with 4 GPUs, the data are evenly distributed among
all 4 GPUs.

Before computation can begin, data are redistributed among the GPUs. It is possible to perform this
redistribution in the copy from host memory, in cases where the application does not need to pre-
process the data prior to the transform. To do this, the application can create the data descriptor
with cufftXtMalloc using the sub-format CUFFT_XT_FORMAT_1D_INPUT_SHUFFLED. This can sig-
nificantly reduce the time it takes to execute the transform.

cuFFT performsmultiple GPU 1D transforms by decomposing the transform size into factors Factor1
and Factor2, and treating the data as a grid of size Factor1 x Factor2. The four steps done to
calculate the 1D FFT are: Factor1 transforms of size Factor2, data exchange between the GPUs, a
pointwise twiddle multiplication, and Factor2 transforms of size Factor1.

To gain efficiency by overlapping computation with data exchange, cuFFT breaks the whole transform
into independent segments or strings, which can be processed while others are in flight. A side effect
of this algorithm is that the output of the transform is not in linear order. The output in GPU memory
is in strings, each of which is composed of Factor2 substrings of equal size. Each substring contains
contiguous results starting Factor1 elements subsequent to start of the previous substring. Each
string starts substring size elements after the start of the previous string. The strings appear in
order, the first half on GPU 0, and the second half on GPU 1. See the example below:

transform size = 1024
number of strings = 8
Factor1 = 64
Factor2 = 16
substrings per string for output layout is Factor2 (16)
string size = 1024∕8 = 128
substring size = 128∕16 = 8
stride between substrings = 1024∕16 = Factor1 (64)

On GPU 0:
string 0 has substrings with indices 0...7 64...71 128...135 ... 960...967
string 1 has substrings with indices 8...15 72...79 136...143 ... 968...975
...
On GPU 1:
string 4 has substrings with indices 32...39 96...103 160...167 ... 992...999

(continues on next page)

78 Chapter 3. Multiple GPU Data Organization

cuFFT, Release 12.8

(continued from previous page)

...
string 7 has substrings with indices 56...63 120...127 184...191 ... 1016...1023

The cufftXtQueryPlan API allows the caller to retrieve a structure containing the number of strings,
the decomposition factors, and (in the case of power of 2 size) some useful mask and shift elements.
The example below shows how cufftXtQueryPlan is invoked. It also shows how to translate from an
index in the host input array to the corresponding index on the device, and vice versa.

∕*
* These routines demonstrate the use of cufftXtQueryPlan to get the 1D
* factorization and convert between permuted and linear indexes.
*∕
∕*
* Set up a 1D plan that will execute on GPU 0 and GPU1, and query
* the decomposition factors
*∕
int main(int argc, char **argv){

cufftHandle plan;
cufftResult stat;
int whichGPUs[2] = { 0, 1 };
cufftXt1dFactors factors;
stat = cufftCreate(&plan);
if (stat != CUFFT_SUCCESS) {

printf("Create error %d\n",stat);
return 1;

}
stat = cufftXtSetGPUs(plan, 2, whichGPUs);
if (stat != CUFFT_SUCCESS) {

printf("SetGPU error %d\n",stat);
return 1;

}
stat = cufftMakePlan1d(plan, size, CUFFT_C2C, 1, workSizes);
if (stat != CUFFT_SUCCESS) {

printf("MakePlan error %d\n",stat);
return 1;

}
stat = cufftXtQueryPlan(plan, (void *) &factors, CUFFT_QUERY_1D_FACTORS);
if (stat != CUFFT_SUCCESS) {

printf("QueryPlan error %d\n",stat);
return 1;

}
printf("Factor 1 %zd, Factor2 %zd\n",factors.factor1,factors.factor2);
cufftDestroy(plan);
return 0;

}

∕*
* Given an index into a permuted array, and the GPU index return the
* corresponding linear index from the beginning of the input buffer.
*
* Parameters:
* factors input: pointer to cufftXt1dFactors as returned by
* cufftXtQueryPlan
* permutedIx input: index of the desired element in the device output
* array
* linearIx output: index of the corresponding input element in the

(continues on next page)

3.3. Multiple-GPU Data Organization for Single 1D Transforms 79

cuFFT, Release 12.8

(continued from previous page)

* host array
* GPUix input: index of the GPU containing the desired element
*∕
cufftResult permuted2Linear(cufftXt1dFactors * factors,

size_t permutedIx,
size_t *linearIx,
int GPUIx) {

size_t indexInSubstring;
size_t whichString;
size_t whichSubstring;
∕∕ the low order bits of the permuted index match those of the linear index
indexInSubstring = permutedIx & factors->substringMask;
∕∕ the next higher bits are the substring index
whichSubstring = (permutedIx >> factors->substringShift) &

factors->factor2Mask;
∕∕ the next higher bits are the string index on this GPU
whichString = (permutedIx >> factors->stringShift) & factors->stringMask;
∕∕ now adjust the index for the second GPU
if (GPUIx) {

whichString += factors->stringCount∕2;
}
∕∕ linear index low order bits are the same
∕∕ next higher linear index bits are the string index
*linearIx = indexInSubstring + (whichString << factors->substringShift);
∕∕ next higher bits of linear address are the substring index
*linearIx += whichSubstring << factors->factor1Shift;
return CUFFT_SUCCESS;

}

∕*
* Given a linear index into a 1D array, return the GPU containing the permuted
* result, and index from the start of the data buffer for that element.
*
* Parameters:
* factors input: pointer to cufftXt1dFactors as returned by
* cufftXtQueryPlan
* linearIx input: index of the desired element in the host input
* array
* permutedIx output: index of the corresponding result in the device
* output array
* GPUix output: index of the GPU containing the result
*∕
cufftResult linear2Permuted(cufftXt1dFactors * factors,

size_t linearIx,
size_t *permutedIx,
int *GPUIx) {

size_t indexInSubstring;
size_t whichString;
size_t whichSubstring;
size_t whichStringMask;
int whichStringShift;
if (linearIx >= factors->size) {

return CUFFT_INVALID_VALUE;
}
∕∕ get a useful additional mask and shift count
whichStringMask = factors->stringCount -1;

(continues on next page)

80 Chapter 3. Multiple GPU Data Organization

cuFFT, Release 12.8

(continued from previous page)

whichStringShift = (factors->factor1Shift + factors->factor2Shift) -
factors->stringShift ;

∕∕ the low order bits identify the index within the substring
indexInSubstring = linearIx & factors->substringMask;
∕∕ first determine which string has our linear index.
∕∕ the low order bits indentify the index within the substring.
∕∕ the next higher order bits identify which string.
whichString = (linearIx >> factors->substringShift) & whichStringMask;
∕∕ the first stringCount∕2 strings are in the first GPU,
∕∕ the rest are in the second.
*GPUIx = whichString∕(factors->stringCount∕2);
∕∕ next determine which substring within the string has our index
∕∕ the substring index is in the next higher order bits of the index
whichSubstring = (linearIx >>(factors->substringShift + whichStringShift)) &

factors->factor2Mask;
∕∕ now we can re-assemble the index
*permutedIx = indexInSubstring;
*permutedIx += whichSubstring << factors->substringShift;
if (!*GPUIx) {

*permutedIx += whichString << factors->stringShift;
} else {

*permutedIx += (whichString - (factors->stringCount∕2)) <<
factors->stringShift;

}
return CUFFT_SUCCESS;

}

3.3. Multiple-GPU Data Organization for Single 1D Transforms 81

cuFFT, Release 12.8

82 Chapter 3. Multiple GPU Data Organization

Chapter 4. FFTW Conversion Guide

cuFFT differs from FFTW in that FFTW has many plans and a single execute function while cuFFT has
fewer plans, but multiple execute functions. The cuFFT execute functions determine the precision
(single or double) and whether the input is complex or real valued. The following table shows the
relationship between the two interfaces.

FFTW function cuFFT function

fftw_plan_dft_1d(),
fftw_plan_dft_r2c_1d(),
fftw_plan_dft_c2r_1d()

cufftPlan1d()

fftw_plan_dft_2d(),
fftw_plan_dft_r2c_2d(),
fftw_plan_dft_c2r_2d()

cufftPlan2d()

fftw_plan_dft_3d(),
fftw_plan_dft_r2c_3d(),
fftw_plan_dft_c2r_3d()

cufftPlan3d()

fftw_plan_dft(),
fftw_plan_dft_r2c(),
fftw_plan_dft_c2r()

cufftPlanMany()

fftw_plan_many_dft(),
fftw_plan_many_dft_r2c(),
fftw_plan_many_dft_c2r()

cufftPlanMany()

fftw_execute() cufftExecC2C(), cufftExecZ2Z(),
cufftExecR2C(), cufftExecD2Z(),
cufftExecC2R(), cufftExecZ2D()

fftw_destroy_plan() cufftDestroy()

83

cuFFT, Release 12.8

84 Chapter 4. FFTW Conversion Guide

Chapter 5. FFTW Interface to cuFFT

NVIDIA provides FFTW3 interfaces to the cuFFT library. This allows applications using FFTW to use
NVIDIA GPUs with minimal modifications to program source code. To use the interface first do the
following two steps

▶ It is recommended that you replace the include file fftw3.h with cufftw.h

▶ Instead of linking with the double/single precision libraries such as fftw3∕fftw3f libraries, link
with both the cuFFT and cuFFTW libraries

▶ Ensure the search path includes the directory containing cuda_runtime_api.h

After an application is working using the FFTW3 interface, users may want to modify their code to
move data to and from the GPU and use the routines documented in the FFTW Conversion Guide for
the best performance.

The following tables show which components and functions of FFTW3 are supported in cuFFT.

Section in FFTW
manual

Supported Unsupported

Complex numbers fftw_complex,
fftwf_complex
types

Precision double fftw3, single
fftwf3

long double fftw3l, quad precision fftw3q are not
supported since CUDA functions operate on double
and single precision floating-point quantities

Memory Allocation fftw_malloc(), fftw_free(),
fftw_alloc_real(), fftw_alloc_complex(),
fftwf_alloc_real(), fftwf_alloc_complex()

Multi-threaded
FFTW

fftw3_threads, fftw3_omp are not supported

Distributed-
memory FFTW
with MPI

fftw3_mpi,fftw3f_mpi are not supported

Note that for each of the double precision functions below there is a corresponding single precision
version with the letters fftw replaced by fftwf.

85

index.html#fftw-conversion-guide

cuFFT, Release 12.8

Section in FFTWmanual Supported Unsupported

Using Plans fftw_execute(), fftw_destroy_plan(), fftw_cleanup() fftw_print_plan(), fftw_cost(), fftw_flops() exist but are not functional

Basic Interface

Complex DFTs fftw_plan_dft_1d(), fftw_plan_dft_2d(), fftw_plan_dft_3d(), fftw_plan_dft()

Planner Flags Planner flags are ignored and the same plan is returned regardless

Real-data DFTs fftw_plan_dft_r2c_1d(), fftw_plan_dft_r2c_2d(), fftw_plan_dft_r2c_3d(), fftw_plan_dft_r2c(), fftw_plan_dft_c2r_1d(), fftw_plan_dft_c2r_2d(), fftw_plan_dft_c2r_3d(), fftw_plan_dft_c2r()

Read-data DFT Array Format Not supported

Read-to-Real Transform Not supported

Read-to-Real Transform Kinds Not supported

Advanced Interface

Advanced Complex DFTs fftw_plan_many_dft() with multiple 1D, 2D, 3D transforms fftw_plan_many_dft() with 4D or higher transforms or a 2D or higher batch of embedded transforms

Advanced Real-data DFTs fftw_plan_many_dft_r2c(), fftw_plan_many_dft_c2r() with multiple 1D, 2D, 3D transforms fftw_plan_many_dft_r2c(), fftw_plan_many_dft_c2r() with 4D or higher transforms or a 2D or higher batch of embedded transforms

Advanced Real-to-Real Transforms Not supported

Guru Interface

Interleaved and split arrays Interleaved format Split format

Guru vector and transform sizes fftw_iodim struct

Guru Complex DFTs fftw_plan_guru_dft(), fftw_plan_guru_dft_r2c(), fftw_plan_guru_dft_c2r() with multiple 1D, 2D, 3D transforms fftw_plan_guru_dft(), fftw_plan_guru_dft_r2c(), fftw_plan_guru_dft_c2r() with 4D or higher transforms or a 2D or higher batch of transforms

Guru Real-data DFTs Not supported

Guru Real-to-real Transforms Not supported

64-bit Guru Interface fftw_plan_guru64_dft(), fftw_plan_guru64_dft_r2c(), fftw_plan_guru64_dft_c2r() with multiple 1D, 2D, 3D transforms fftw_plan_guru64_dft(), fftw_plan_guru64_dft_r2c(), fftw_plan_guru64_dft_c2r() with 4D or higher transforms or a 2D or higher batch of transforms

New-array Execute Functions fftw_execute_dft(), fftw_execute_dft_r2c(), fftw_execute_dft_c2r() with interleaved format Split format and real-to-real functions

Wisdom fftw_export_wisdom_to_file(), fftw_import_wisdom_from_file() exist but are not functional. Other wisdom functions do not have entry points in the library.

86 Chapter 5. FFTW Interface to cuFFT

Chapter 6. Deprecated Functionality

Starting from CUDA 12.8:

▶ The cuFFT binary libcufft_static_nocallback.a is deprecated and will be removed in a fu-
ture release. libcufft_static.a can be used as a replacement.

Starting from CUDA 12.0:

▶ GPU architectures SM35 and SM37 are no longer supported. Theminimum required architecture
is SM50.

Starting from CUDA 11.8:

▶ CUDA Graphs capture is no longer supported for legacy callback routines that load data in out-
of-place mode transforms. Starting from CUDA 12.6 Update 2, LTO callbacks can be used as a
replacement for legacy callbacks without this limitation.

Starting from CUDA 11.4:

▶ Support for callback functionality using separately compiled device code (legacy callbacks) is
deprecated on all GPU architectures. Callback functionality will continue to be supported for all
GPU architectures.

Starting from CUDA 11.0:

▶ GPU architecture SM30 is no longer supported. The minimum required architecture is SM35.

▶ Support for GPU architectures SM35, SM37 (Kepler), and SM50, SM52 (Maxwell) is deprecated.

Function cufftSetCompatibilityMode was removed in version 9.1.

87

cuFFT, Release 12.8

88 Chapter 6. Deprecated Functionality

Chapter 7. Notices

7.1. Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a
certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no repre-
sentations or warranties, expressed or implied, as to the accuracy or completeness of the information
contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall
have no liability for the consequences or use of such information or for any infringement of patents
or other rights of third parties that may result from its use. This document is not a commitment to
develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any
other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that
such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the
time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by
authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA
product referenced in this document. No contractual obligations are formed either directly or indirectly
by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military,
aircraft, space, or life support equipment, nor in applicationswhere failure ormalfunction of theNVIDIA
product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or
applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIAmakes no representation or warranty that products based on this document will be suitable for
any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA.
It is customer’s sole responsibility to evaluate and determine the applicability of any information con-
tained in this document, ensure the product is suitable and fit for the application planned by customer,
and perform the necessary testing for the application in order to avoid a default of the application or
the product. Weaknesses in customer’s product designs may affect the quality and reliability of the
NVIDIA product andmay result in additional or different conditions and/or requirements beyond those
contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or prob-
lem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is
contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other
NVIDIA intellectual property right under this document. Information published by NVIDIA regarding
third-party products or services does not constitute a license from NVIDIA to use such products or

89

cuFFT, Release 12.8

services or a warranty or endorsement thereof. Use of such information may require a license from a
third party under the patents or other intellectual property rights of the third party, or a license from
NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA
in writing, reproduced without alteration and in full compliance with all applicable export laws and
regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENTANDALLNVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE
BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WAR-
RANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENTWILL NVIDIA BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CON-
SEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARIS-
ING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCHDAMAGES. Notwithstanding any damages that customermight incur for any reasonwhatso-
ever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein
shall be limited in accordance with the Terms of Sale for the product.

7.2. OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

7.3. Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the
U.S. and other countries. Other company and product names may be trademarks of the respective
companies with which they are associated.

Copyright

©2007-2025, NVIDIA Corporation & affiliates. All rights reserved

90 Chapter 7. Notices

Index

C
cufftCreate (C function), 34
cufftDestroy (C function), 34
cufftEstimate1d (C function), 45
cufftEstimate2d (C function), 46
cufftEstimate3d (C function), 46
cufftEstimateMany (C function), 47
cufftExecC2C (C function), 56
cufftExecC2R (C function), 58
cufftExecD2Z (C function), 57
cufftExecR2C (C function), 57
cufftExecZ2D (C function), 58
cufftExecZ2Z (C function), 56
cufftGetPlanPropertyInt64 (C function), 44
cufftGetProperty (C function), 71
cufftGetSize (C function), 54
cufftGetSize1d (C function), 48
cufftGetSize2d (C function), 49
cufftGetSize3d (C function), 50
cufftGetSizeMany (C function), 50
cufftGetSizeMany64 (C function), 51
cufftGetVersion (C function), 70
cufftHandle (C type), 73
cufftMakePlan1d (C function), 35
cufftMakePlan2d (C function), 36
cufftMakePlan3d (C function), 37
cufftMakePlanMany (C function), 38
cufftMakePlanMany64 (C function), 39
cufftPlan1d (C function), 30
cufftPlan2d (C function), 31
cufftPlan3d (C function), 31
cufftPlanMany (C function), 32
cufftResetPlanProperty (C function), 44
cufftSetAutoAllocation (C function), 54
cufftSetPlanPropertyInt64 (C function), 43
cufftSetStream (C function), 70
cufftSetWorkArea (C function), 55
cufftXtClearCallback (C function), 68
cufftXtExec (C function), 59
cufftXtExecDescriptor (C function), 59
cufftXtExecDescriptorC2C (C function), 61
cufftXtExecDescriptorC2R (C function), 63
cufftXtExecDescriptorD2Z (C function), 62

cufftXtExecDescriptorR2C (C function), 62
cufftXtExecDescriptorZ2D (C function), 63
cufftXtExecDescriptorZ2Z (C function), 61
cufftXtFree (C function), 65
cufftXtGetSizeMany (C function), 53
cufftXtMakePlanMany (C function), 41
cufftXtMalloc (C function), 64
cufftXtMemcpy (C function), 65
cufftXtSetCallback (C function), 68
cufftXtSetCallbackSharedSize (C function),

69
cufftXtSetGPUs (C function), 60
cufftXtSetJITCallback (C function), 67
cufftXtSetWorkArea (C function), 61
cufftXtSetWorkAreaPolicy (C function), 56

91

	Using the cuFFT API
	Accessing cuFFT
	Fourier Transform Setup
	Free Memory Requirement
	Plan Initialization Time

	Fourier Transform Types
	Half-precision cuFFT Transforms
	Bfloat16-precision cuFFT Transforms

	Data Layout
	Multidimensional Transforms
	Advanced Data Layout
	Streamed cuFFT Transforms
	Multiple GPU cuFFT Transforms
	Plan Specification and Work Areas
	Helper Functions
	Multiple GPU 2D and 3D Transforms on Permuted Input
	Supported Functionality

	cuFFT Callback Routines
	Overview of the cuFFT Callback Routine Feature
	LTO Load and Store Callback Routines
	Specifying LTO Load and Store Callback Routines
	LTO Callback Routine Function Details

	Legacy Load and Store Callback Routines
	Specifying Legacy Load and Store Callback Routines
	Legacy Callback Routine Function Details

	Coding Considerations for the cuFFT Callback Routine Feature
	Coding Considerations for LTO Callback Routines
	Coding Considerations for Legacy Callback Routines

	Thread Safety
	CUDA Graphs Support
	Static Library and Callback Support
	Static library without legacy callback support

	Accuracy and Performance
	Caller Allocated Work Area Support
	cuFFT Link-Time Optimized Kernels

	cuFFT API Reference
	Return value cufftResult
	cuFFT Basic Plans
	cufftPlan1d()
	cufftPlan2d()
	cufftPlan3d()
	cufftPlanMany()

	cuFFT Extensible Plans
	cufftCreate()
	cufftDestroy()
	cufftMakePlan1d()
	cufftMakePlan2d()
	cufftMakePlan3d()
	cufftMakePlanMany()
	cufftMakePlanMany64()
	cufftXtMakePlanMany()

	cuFFT Plan Properties
	cufftSetPlanPropertyInt64()
	cufftGetPlanPropertyInt64()
	cufftResetPlanProperty()

	cuFFT Estimated Size of Work Area
	cufftEstimate1d()
	cufftEstimate2d()
	cufftEstimate3d()
	cufftEstimateMany()

	cuFFT Refined Estimated Size of Work Area
	cufftGetSize1d()
	cufftGetSize2d()
	cufftGetSize3d()
	cufftGetSizeMany()
	cufftGetSizeMany64()
	cufftXtGetSizeMany()

	cufftGetSize()
	cuFFT Caller Allocated Work Area Support
	cufftSetAutoAllocation()
	cufftSetWorkArea()
	cufftXtSetWorkAreaPolicy()

	cuFFT Execution
	cufftExecC2C() and cufftExecZ2Z()
	cufftExecR2C() and cufftExecD2Z()
	cufftExecC2R() and cufftExecZ2D()
	cufftXtExec()
	cufftXtExecDescriptor()

	cuFFT and Multiple GPUs
	cufftXtSetGPUs()
	cufftXtSetWorkArea()
	cuFFT Multiple GPU Execution
	cufftXtExecDescriptorC2C() and cufftXtExecDescriptorZ2Z()
	cufftXtExecDescriptorR2C() and cufftXtExecDescriptorD2Z()
	cufftXtExecDescriptorC2R() and cufftXtExecDescriptorZ2D()

	Memory Allocation and Data Movement Functions
	cufftXtMalloc()
	Parameter cufftXtSubFormat

	cufftXtFree()
	cufftXtMemcpy()
	Parameter cufftXtCopyType

	General Multiple GPU Descriptor Types
	cudaXtDesc
	cudaLibXtDesc

	cuFFT Callbacks
	cufftXtSetJITCallback()
	cufftXtSetCallback()
	cufftXtClearCallback()
	cufftXtSetCallbackSharedSize()

	cufftSetStream()
	cufftGetVersion()
	cufftGetProperty()
	cuFFT Types
	Parameter cufftType
	Parameters for Transform Direction
	Type definitions for callbacks
	Type definitions for LTO callbacks
	Type definitions for legacy callbacks

	Other cuFFT Types
	cufftHandle
	cufftReal
	cufftDoubleReal
	cufftComplex
	cufftDoubleComplex

	Common types
	cudaDataType
	libraryPropertyType

	Multiple GPU Data Organization
	Multiple GPU Data Organization for Batched Transforms
	Multiple GPU Data Organization for Single 2D and 3D Transforms
	Multiple-GPU Data Organization for Single 1D Transforms

	FFTW Conversion Guide
	FFTW Interface to cuFFT
	Deprecated Functionality
	Notices
	Notice
	OpenCL
	Trademarks

	Index

