
cuSOLVER
Release 12.8

NVIDIA Corporation

Feb 04, 2025

Contents

1 cuSolverDN: Dense LAPACK 3

2 cuSolverSP: Sparse LAPACK 5

3 cuSolverRF: Refactorization 7

4 Naming Conventions 9

5 Asynchronous Execution 11

6 Library Property 13

7 High Precision Package 15

8 Using the CUSOLVER API 17
8.1 General Description . 17
8.1.1 Thread Safety . 17
8.1.2 Scalar Parameters . 17
8.1.3 Parallelism with Streams . 17
8.1.4 How to Link cusolver Library . 18
8.1.5 Link Third-party LAPACK Library . 18
8.1.6 Convention of info . 18
8.1.7 Usage of _bufferSize . 18
8.1.8 cuSOLVERDn Logging . 19
8.1.9 Deterministic Results . 19

8.2 cuSolver Types Reference . 20
8.2.1 cuSolverDN Types . 20
8.2.1.1 cusolverDnHandle_t . 20
8.2.1.2 cublasFillMode_t . 20
8.2.1.3 cublasOperation_t . 20
8.2.1.4 cusolverEigType_t . 21
8.2.1.5 cusolverEigMode_t . 21
8.2.1.6 cusolverIRSRefinement_t . 21
8.2.1.7 cusolverDnIRSParams_t . 22
8.2.1.8 cusolverDnIRSInfos_t . 22
8.2.1.9 cusolverDnFunction_t . 22
8.2.1.10 cusolverAlgMode_t . 23
8.2.1.11 cusolverStatus_t . 23
8.2.1.12 cusolverDnLoggerCallback_t . 23
8.2.1.13 cusolverDeterministicMode_t . 23
8.2.1.14 cusolverStorevMode_t . 24
8.2.1.15 cusolverDirectMode_t . 24

8.2.2 cuSolverSP Types . 24
8.2.2.1 cusolverSpHandle_t . 24

i

8.2.2.2 cusparseMatDescr_t . 24
8.2.2.3 cusolverStatus_t . 25

8.2.3 cuSolverRF Types . 26
8.2.3.1 cusolverRfHandle_t . 26
8.2.3.2 cusolverRfMatrixFormat_t . 26
8.2.3.3 cusolverRfNumericBoostReport_t . 26
8.2.3.4 cusolverRfResetValuesFastMode_t . 26
8.2.3.5 cusolverRfFactorization_t . 27
8.2.3.6 cusolverRfTriangularSolve_t . 27
8.2.3.7 cusolverRfUnitDiagonal_t . 27
8.2.3.8 cusolverStatus_t . 28

8.3 cuSolver Formats Reference . 28
8.3.1 Index Base Format . 28
8.3.2 Vector (Dense) Format . 28
8.3.3 Matrix (Dense) Format . 28
8.3.4 Matrix (CSR) Format . 29
8.3.5 Matrix (CSC) Format . 30

8.4 cuSolverDN: dense LAPACK Function Reference . 31
8.4.1 cuSolverDN Helper Function Reference . 31
8.4.1.1 cusolverDnCreate() . 31
8.4.1.2 cusolverDnDestroy() . 31
8.4.1.3 cusolverDnSetStream() . 32
8.4.1.4 cusolverDnGetStream() . 32
8.4.1.5 cusolverDnLoggerSetCallback() . 33
8.4.1.6 cusolverDnLoggerSetFile() . 33
8.4.1.7 cusolverDnLoggerOpenFile() . 33
8.4.1.8 cusolverDnLoggerSetLevel() . 34
8.4.1.9 cusolverDnLoggerSetMask() . 34
8.4.1.10 cusolverDnLoggerForceDisable() . 35
8.4.1.11 cusolverDnSetDeterministicMode() . 35
8.4.1.12 cusolverDnGetDeterministicMode() . 35
8.4.1.13 cusolverDnCreateSyevjInfo() . 36
8.4.1.14 cusolverDnDestroySyevjInfo() . 36
8.4.1.15 cusolverDnXsyevjSetTolerance() . 37
8.4.1.16 cusolverDnXsyevjSetMaxSweeps() . 37
8.4.1.17 cusolverDnXsyevjSetSortEig() . 37
8.4.1.18 cusolverDnXsyevjGetResidual() . 38
8.4.1.19 cusolverDnXsyevjGetSweeps() . 38
8.4.1.20 cusolverDnCreateGesvdjInfo() . 39
8.4.1.21 cusolverDnDestroyGesvdjInfo() . 39
8.4.1.22 cusolverDnXgesvdjSetTolerance() . 40
8.4.1.23 cusolverDnXgesvdjSetMaxSweeps() . 40
8.4.1.24 cusolverDnXgesvdjSetSortEig() . 40
8.4.1.25 cusolverDnXgesvdjGetResidual() . 41
8.4.1.26 cusolverDnXgesvdjGetSweeps() . 41
8.4.1.27 cusolverDnIRSParamsCreate() . 42
8.4.1.28 cusolverDnIRSParamsDestroy() . 42
8.4.1.29 cusolverDnIRSParamsSetSolverPrecisions() . 43
8.4.1.30 cusolverDnIRSParamsSetSolverMainPrecision() . 44
8.4.1.31 cusolverDnIRSParamsSetSolverLowestPrecision() 45
8.4.1.32 cusolverDnIRSParamsSetRefinementSolver() . 45
8.4.1.33 cusolverDnIRSParamsSetTol() . 47
8.4.1.34 cusolverDnIRSParamsSetTolInner() . 47
8.4.1.35 cusolverDnIRSParamsSetMaxIters() . 48

ii

8.4.1.36 cusolverDnIRSParamsSetMaxItersInner() . 49
8.4.1.37 cusolverDnIRSParamsEnableFallback() . 49
8.4.1.38 cusolverDnIRSParamsDisableFallback() . 50
8.4.1.39 cusolverDnIRSParamsGetMaxIters() . 50
8.4.1.40 cusolverDnIRSInfosCreate() . 51
8.4.1.41 cusolverDnIRSInfosDestroy() . 52
8.4.1.42 cusolverDnIRSInfosGetMaxIters() . 52
8.4.1.43 cusolverDnIRSInfosGetNiters() . 53
8.4.1.44 cusolverDnIRSInfosGetOuterNiters() . 53
8.4.1.45 cusolverDnIRSInfosRequestResidual() . 54
8.4.1.46 cusolverDnIRSInfosGetResidualHistory() . 54
8.4.1.47 cusolverDnCreateParams() . 55
8.4.1.48 cusolverDnDestroyParams() . 56
8.4.1.49 cusolverDnSetAdvOptions() . 56

8.4.2 Dense Linear Solver Reference (legacy) . 56
8.4.2.1 cusolverDn<t>potrf() . 57
8.4.2.2 cusolverDnPotrf() [DEPRECATED] . 59
8.4.2.3 cusolverDn<t>potrs() . 62
8.4.2.4 cusolverDnPotrs() [DEPRECATED] . 63
8.4.2.5 cusolverDn<t>potri() . 66
8.4.2.6 cusolverDn<t>getrf() . 68
8.4.2.7 cusolverDnGetrf() [DEPRECATED] . 71
8.4.2.8 cusolverDn<t>getrs() . 73
8.4.2.9 cusolverDnGetrs() [DEPRECATED] . 75
8.4.2.10 cusolverDn<t1><t2>gesv() . 78
8.4.2.11 cusolverDnIRSXgesv() . 92
8.4.2.12 cusolverDn<t>geqrf() . 97
8.4.2.13 cusolverDnGeqrf() [DEPRECATED] . 100
8.4.2.14 cusolverDn<t1><t2>gels() . 102
8.4.2.15 cusolverDnIRSXgels() . 116
8.4.2.16 cusolverDn<t>ormqr() . 121
8.4.2.17 cusolverDn<t>orgqr() . 125
8.4.2.18 cusolverDn<t>sytrf() . 128
8.4.2.19 cusolverDn<t>potrfBatched() . 131
8.4.2.20 cusolverDn<t>potrsBatched() . 133

8.4.3 Dense Eigenvalue Solver Reference (legacy) . 135
8.4.3.1 cusolverDn<t>gebrd() . 136
8.4.3.2 cusolverDn<t>orgbr() . 139
8.4.3.3 cusolverDn<t>sytrd() . 142
8.4.3.4 cusolverDn<t>ormtr() . 145
8.4.3.5 cusolverDn<t>orgtr() . 149
8.4.3.6 cusolverDn<t>gesvd() . 152
8.4.3.7 cusolverDnGesvd() [DEPRECATED] . 156
8.4.3.8 cusolverDn<t>gesvdj() . 160
8.4.3.9 cusolverDn<t>gesvdjBatched() . 165
8.4.3.10 cusolverDn<t>gesvdaStridedBatched() . 169
8.4.3.11 cusolverDn<t>syevd() . 176
8.4.3.12 cusolverDnSyevd() [DEPRECATED] . 179
8.4.3.13 cusolverDn<t>syevdx() . 182
8.4.3.14 cusolverDnSyevdx() [DEPRECATED] . 188
8.4.3.15 cusolverDn<t>sygvd() . 192
8.4.3.16 cusolverDn<t>sygvdx() . 197
8.4.3.17 cusolverDn<t>syevj() . 203
8.4.3.18 cusolverDn<t>sygvj() . 208

iii

8.4.3.19 cusolverDn<t>syevjBatched() . 213
8.4.4 Dense Linear Solver Reference (64-bit API) . 217
8.4.4.1 cusolverDnXpotrf() . 217
8.4.4.2 cusolverDnXpotrs() . 220
8.4.4.3 cusolverDnXgetrf() . 222
8.4.4.4 cusolverDnXgetrs() . 224
8.4.4.5 cusolverDnXgeqrf() . 226
8.4.4.6 cusolverDnXsytrs() . 229
8.4.4.7 cusolverDnXtrtri() . 231
8.4.4.8 cusolverDnXlarft() . 233

8.4.5 Dense Eigenvalue Solver Reference (64-bit API) . 236
8.4.5.1 cusolverDnXgesvd() . 236
8.4.5.2 cusolverDnXgesvdp() . 240
8.4.5.3 cusolverDnXgesvdr() . 243
8.4.5.4 cusolverDnXsyevd() . 247
8.4.5.5 cusolverDnXsyevdx() . 250
8.4.5.6 cusolverDnXsyevBatched() . 255
8.4.5.7 cusolverDnXgeev() . 258

8.5 cuSolverSP: sparse LAPACK Function Reference . 263
8.5.1 Helper Function Reference . 263
8.5.1.1 cusolverSpCreate() . 263
8.5.1.2 cusolverSpDestroy() . 263
8.5.1.3 cusolverSpSetStream() . 264
8.5.1.4 cusolverSpXcsrissym() . 264

8.5.2 High Level Function Reference . 266
8.5.2.1 cusolverSp<t>csrlsvlu() [DEPRECATED] . 266
8.5.2.2 cusolverSp<t>csrlsvqr() . 269
8.5.2.3 cusolverSp<t>csrlsvchol() [[DEPRECATED]] . 272
8.5.2.4 cusolverSp<t>csrlsqvqr() . 275
8.5.2.5 cusolverSp<t>csreigvsi() . 278
8.5.2.6 cusolverSp<t>csreigs() . 282

8.5.3 Low Level Function Reference . 284
8.5.3.1 cusolverSpXcsrsymrcm() . 284
8.5.3.2 cusolverSpXcsrsymmdq() . 286
8.5.3.3 cusolverSpXcsrsymamd() . 288
8.5.3.4 cusolverSpXcsrmetisnd() . 289
8.5.3.5 cusolverSpXcsrzfd() . 291
8.5.3.6 cusolverSpXcsrperm() . 293
8.5.3.7 cusolverSpXcsrqrBatched() . 295

8.6 cuSolverRF: Refactorization Reference . 301
8.6.1 cusolverRfAccessBundledFactorsDevice() [[DEPRECATED]] 301
8.6.2 cusolverRfAnalyze() [[DEPRECATED]] . 302
8.6.3 cusolverRfSetupHost() . 306
8.6.4 cusolverRfCreate() . 308
8.6.5 cusolverRfExtractBundledFactorsHost() [[DEPRECATED]] 308
8.6.6 cusolverRfExtractSplitFactorsHost() [[DEPRECATED]] 310
8.6.7 cusolverRfDestroy() . 311
8.6.8 cusolverRfGetMatrixFormat() . 312
8.6.9 cusolverRfGetNumericProperties() . 312
8.6.10 cusolverRfGetNumericBoostReport() . 313
8.6.11 cusolverRfGetResetValuesFastMode() . 313
8.6.12 cusolverRfGetAlgs() . 314
8.6.13 cusolverRfRefactor() [[DEPRECATED]] . 314
8.6.14 cusolverRfResetValues() [[DEPRECATED]] . 315

iv

8.6.15 cusolverRfSetMatrixFormat() . 316
8.6.16 cusolverRfSetNumericProperties() . 317
8.6.17 cusolverRfSetResetValuesFastMode() . 318
8.6.18 cusolverRfSetAlgs() . 318
8.6.19 cusolverRfSolve() [[DEPRECATED]] . 319
8.6.20 cusolverRfBatchSetupHost() . 320
8.6.21 cusolverRfBatchAnalyze() . 323
8.6.22 cusolverRfBatchResetValues() . 324
8.6.23 cusolverRfBatchRefactor() . 325
8.6.24 cusolverRfBatchSolve() . 326
8.6.25 cusolverRfBatchZeroPivot() . 327

9 Using the CUSOLVERMG API 329
9.1 General Description . 329
9.1.1 Thread Safety . 329
9.1.2 Determinism . 329
9.1.3 Tile Strategy . 329
9.1.4 Global Matrix Versus Local Matrix . 330
9.1.5 Usage of _bufferSize . 331
9.1.6 Synchronization . 331
9.1.7 Context Switch . 332
9.1.8 NVLINK . 332

9.2 cuSolverMG Types Reference . 332
9.2.1 cuSolverMG Types . 332
9.2.2 cusolverMgHandle_t . 332
9.2.3 cusolverMgGridMapping_t . 332
9.2.4 cudaLibMgGrid_t . 333
9.2.5 cudaLibMgMatrixDesc_t . 333

9.3 Helper Function Reference . 333
9.3.1 cusolverMgCreate() . 333
9.3.2 cusolverMgDestroy() . 333
9.3.3 cusolverMgDeviceSelect() . 334
9.3.4 cusolverMgCreateDeviceGrid() . 334
9.3.5 cusolverMgDestroyGrid() . 335
9.3.6 cusolverMgCreateMatrixDesc() . 335
9.3.7 cusolverMgDestroyMatrixDesc() . 336

9.4 Dense Linear Solver Reference . 337
9.4.1 cusolverMgPotrf() . 337
9.4.2 cusolverMgPotrs() . 339
9.4.3 cusolverMgPotri() . 343
9.4.4 cusolverMgGetrf() . 345
9.4.5 cusolverMgGetrs() . 348

9.5 Dense Eigenvalue Solver Reference . 351
9.5.1 cusolverMgSyevd() . 351

10 Acknowledgements 355

11 Bibliography 357

12 Notices 359
12.1 Notice . 359
12.2 OpenCL . 360
12.3 Trademarks . 360

v

vi

cuSOLVER, Release 12.8

cuSOLVER API Reference

The API reference guide for cuSOLVER, a GPU accelerated library for decompositions and linear system
solutions for both dense and sparse matrices.

The cuSolver library is a high-level package based on the cuBLAS and cuSPARSE libraries. It consists
of two modules corresponding to two sets of API:

1. The cuSolver API on a single GPU

2. The cuSolverMG API on a single node multiGPU

Each of these can be used independently or in concert with other toolkit libraries. To simplify the
notation, cuSolver denotes single GPU API and cuSolverMg denotes multiGPU API.

The intent of cuSolver is to provide useful LAPACK-like features, such as common matrix factorization
and triangular solve routines for densematrices, a sparse least-squares solver and an eigenvalue solver.
In addition cuSolver provides a new refactorization library useful for solving sequences ofmatriceswith
a shared sparsity pattern.

cuSolver combines three separate components under a single umbrella. The first part of cuSolver is
called cuSolverDN, and deals with dense matrix factorization and solve routines such as LU, QR, SVD
and LDLT, as well as useful utilities such as matrix and vector permutations.

Next, cuSolverSP provides a new set of sparse routines based on a sparse QR factorization. Not all
matrices have a good sparsity pattern for parallelism in factorization, so the cuSolverSP library also
provides a CPU path to handle those sequential-like matrices. For those matrices with abundant par-
allelism, the GPU path will deliver higher performance. The library is designed to be called from C and
C++.

The final part is cuSolverRF, a sparse re-factorization package that can provide very good performance
when solving a sequence of matrices where only the coefficients are changed but the sparsity pattern
remains the same.

The GPU path of the cuSolver library assumes data is already in the device memory. It is the responsi-
bility of the developer to allocate memory and to copy data between GPU memory and CPU memory
using standard CUDA runtimeAPI routines, such as cudaMalloc(), cudaFree(), cudaMemcpy(), and
cudaMemcpyAsync().

cuSolverMg is GPU-accelerated ScaLAPACK. By now, cuSolverMg supports 1-D column block cyclic
layout and provides symmetric eigenvalue solver.

Note: The cuSolver library requires hardware with a CUDA Compute Capability (CC) of 5.0 or higher.
Please see the CUDA C++ Programming Guide for a list of the Compute Capabilities corresponding to
all NVIDIA GPUs.

Contents 1

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities

cuSOLVER, Release 12.8

2 Contents

Chapter 1. cuSolverDN: Dense LAPACK

The cuSolverDN library was designed to solve dense linear systems of the form

Ax = b

where the coefficient matrix A ∈ Rnxn , right-hand-side vector b ∈ Rn and solution vector x ∈ Rn

The cuSolverDN library provides QR factorization and LU with partial pivoting to handle a general ma-
trix A, which may be non-symmetric. Cholesky factorization is also provided for symmetric/Hermitian
matrices. For symmetric indefinite matrices, we provide Bunch-Kaufman (LDL) factorization.

The cuSolverDN library also provides a helpful bidiagonalization routine and singular value decompo-
sition (SVD).

The cuSolverDN library targets computationally-intensive and popular routines in LAPACK, and pro-
vides an API compatible with LAPACK. The user can accelerate these time-consuming routines with
cuSolverDN and keep others in LAPACK without a major change to existing code.

3

cuSOLVER, Release 12.8

4 Chapter 1. cuSolverDN: Dense LAPACK

Chapter 2. cuSolverSP: Sparse LAPACK

The cuSolverSP library was mainly designed to a solve sparse linear system

Ax = b

and the least-squares problem

x = argmin||A ∗ z − b||

where sparse matrix A ∈ Rmxn , right-hand-side vector b ∈ Rm and solution vector x ∈ Rn . For a linear
system, we require m=n.

The core algorithm is based on sparse QR factorization. The matrix A is accepted in CSR format. If
matrix A is symmetric/Hermitian, the user has to provide a full matrix, ie fill missing lower or upper
part.

If matrix A is symmetric positive definite and the user only needs to solve Ax = b , Cholesky factoriza-
tion can work and the user only needs to provide the lower triangular part of A.

On top of the linear and least-squares solvers, the cuSolverSP library provides a simple eigenvalue
solver based on shift-inverse power method, and a function to count the number of eigenvalues con-
tained in a box in the complex plane.

Note: cuSolverSp is deprecated and will be removed in a future major release. It is recommended
migrating to a new sparse direct solver package, cuDSS, and you can find a transition example in CU-
DALibrarySamples/cuSOLVERSp2cuDSS for reference.

5

https://developer.nvidia.com/cudss
https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVERSp2cuDSS
https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVERSp2cuDSS

cuSOLVER, Release 12.8

6 Chapter 2. cuSolverSP: Sparse LAPACK

Chapter 3. cuSolverRF: Refactorization

The cuSolverRF library was designed to accelerate solution of sets of linear systems by fast re-
factorization when given new coefficients in the same sparsity pattern

Aixi = fi

where a sequence of coefficient matrices Ai ∈ Rnxn , right-hand-sides fi ∈ Rn and solutions xi ∈ Rn

are given for i=1,...,k.

The cuSolverRF library is applicable when the sparsity pattern of the coefficient matrices Ai as well as
the reordering to minimize fill-in and the pivoting used during the LU factorization remain the same
across these linear systems. In that case, the first linear system (i=1) requires a full LU factorization,
while the subsequent linear systems (i=2,...,k) require only the LU re-factorization. The later can
be performed using the cuSolverRF library.

Notice that because the sparsity pattern of the coefficient matrices, the reordering and pivoting re-
main the same, the sparsity pattern of the resulting triangular factors Li and Ui also remains the
same. Therefore, the real difference between the full LU factorization and LU re-factorization is that
the required memory is known ahead of time.

Note: cuSolverRf is deprecated and will be removed in a future major release. It is recommended
migrating to a new sparse direct solver package, cuDSS, and you can find a transition example in CU-
DALibrarySamples/cuSOLVERSp2cuDSS for reference.

7

https://developer.nvidia.com/cudss
https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVERSp2cuDSS
https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVERSp2cuDSS

cuSOLVER, Release 12.8

8 Chapter 3. cuSolverRF: Refactorization

Chapter 4. Naming Conventions

The cuSolverDN library provides two different APIs; legacy and generic.

The functions in the legacy API are available for data types float, double, cuComplex, and cuDou-
bleComplex. The naming convention for the legacy API is as follows:

cusolverDn<t><operation>

where <t> can be S, D, C, Z, or X, corresponding to the data types float, double, cuComplex, cuDou-
bleComplex, and the generic type, respectively. <operation> can be Cholesky factorization (potrf),
LU with partial pivoting (getrf), QR factorization (geqrf) and Bunch-Kaufman factorization (sytrf).

The functions in the generic API provide a single entry point for each routine and support for 64-bit
integers to define matrix and vector dimensions. The naming convention for the generic API is data-
agnostic and is as follows:

cusolverDn<operation>

where <operation> can be Cholesky factorization (potrf), LU with partial pivoting (getrf) and QR
factorization (geqrf).

The cuSolverSP library functions are available for data types float, double, cuComplex, and cuDou-
bleComplex. The naming convention is as follows:

cusolverSp[Host]<t>[<matrix data format>]<operation>[<output matrix data for-
mat>]<based on>

where cuSolverSp is the GPU path and cusolverSpHost is the corresponding CPU path. <t> can
be S, D, C, Z, or X, corresponding to the data types float, double, cuComplex, cuDoubleComplex,
and the generic type, respectively.

The <matrix data format> is csr, compressed sparse row format.

The <operation> can be ls, lsq, eig, eigs, corresponding to linear solver, least-square solver, eigen-
value solver and number of eigenvalues in a box, respectively.

The <output matrix data format> can be v or m, corresponding to a vector or a matrix.

<based on> describes which algorithm is used. For example, qr (sparse QR factorization) is used in
linear solver and least-square solver.

All of the functions have the return type cusolverStatus_t and are explained in more detail in the
chapters that follow.

9

cuSOLVER, Release 12.8

Table 1: cuSolverSP API

Routine Data
format

Operation Output
format

Based on

csrlsvlu csr linear solver (ls) vector
(v)

LU (lu) with partial
pivoting

csrlsvqr csr linear solver (ls) vector
(v)

QR factorization
(qr)

csrlsv-
chol

csr linear solver (ls) vector
(v)

Cholesky factoriza-
tion (chol)

csrl-
sqvqr

csr least-square solver (lsq) vector
(v)

QR factorization
(qr)

csreigvsicsr eigenvalue solver (eig) vector
(v)

shift-inverse

csreigs csr number of eigenvalues in a
box (eigs)

csrsym-
rcm

csr Symmetric Reverse
Cuthill-McKee (symrcm)

The cuSolverRF library routines are available for data type double. Most of the routines follow the
naming convention:

cusolverRf_<operation>_[[Host]](…)

where the trailing optional Host qualifier indicates the data is accessed on the host versus on the
device, which is the default. The <operation> can be Setup, Analyze, Refactor, Solve, Reset-
Values, AccessBundledFactors and ExtractSplitFactors.

Finally, the return type of the cuSolverRF library routines is cusolverStatus_t.

10 Chapter 4. Naming Conventions

Chapter 5. Asynchronous Execution

The cuSolver library functions prefer to keep asynchronous execution asmuch as possible. Developers
can always use the cudaDeviceSynchronize() function to ensure that the execution of a particular
cuSolver library routine has completed.

A developer can also use the cudaMemcpy() routine to copy data from the device to the host and
vice versa, using the cudaMemcpyDeviceToHost and cudaMemcpyHostToDevice parameters, re-
spectively. In this case there is no need to add a call to cudaDeviceSynchronize() because the
call to cudaMemcpy()with the above parameters is blocking and completes only when the results are
ready on the host.

11

cuSOLVER, Release 12.8

12 Chapter 5. Asynchronous Execution

Chapter 6. Library Property

The libraryPropertyType data type is an enumeration of library property types (that is, CUDA ver-
sion X.Y.Z would yield MAJOR_VERSION=X, MINOR_VERSION=Y, PATCH_LEVEL=Z).

typedef enum libraryPropertyType_t
{

MAJOR_VERSION,
MINOR_VERSION,
PATCH_LEVEL

} libraryPropertyType;

The following code can show the version of cusolver library.

int major=-1,minor=-1,patch=-1;
cusolverGetProperty(MAJOR_VERSION, &major);
cusolverGetProperty(MINOR_VERSION, &minor);
cusolverGetProperty(PATCH_LEVEL, &patch);
printf("CUSOLVER Version (Major,Minor,PatchLevel): %d.%d.%d\n", major,minor,patch);

13

cuSOLVER, Release 12.8

14 Chapter 6. Library Property

Chapter 7. High Precision Package

The cusolver library uses high precision for iterative refinement when necessary.

15

cuSOLVER, Release 12.8

16 Chapter 7. High Precision Package

Chapter 8. Using the CUSOLVER API

8.1. General Description

This chapter describes how to use the cuSolver library API. It is not a reference for the cuSolver API
data types and functions; that is provided in subsequent chapters.

8.1.1. Thread Safety

The library is thread-safe, and its functions can be called frommultiple host threads.

8.1.2. Scalar Parameters

In the cuSolver API, the scalar parameters can be passed by reference on the host.

8.1.3. Parallelism with Streams

If the application performs several small independent computations, or if it makes data transfers in
parallel with the computation, then CUDA streams can be used to overlap these tasks.

The application can conceptually associate a stream with each task. To achieve the overlap of compu-
tation between the tasks, the developer should:

1. Create CUDA streams using the function cudaStreamCreate(), and

2. Set the stream to be used by each individual cuSolver library routine by calling, for example,
cusolverDnSetStream(), just prior to calling the actual cuSolverDN routine.

The computations performed in separate streamswould then be overlapped automatically on the GPU,
when possible. This approach is especially useful when the computation performed by a single task is
relatively small, and is not enough to fill the GPU with work, or when there is a data transfer that can
be performed in parallel with the computation.

17

cuSOLVER, Release 12.8

8.1.4. How to Link cusolver Library

cusolver library provides dynamic library libcusolver.so and static library
libcusolver_static.a. If the user links the application with libcusolver.so, libcublas.
so, libcublasLt.so and libcusparse.so are also required. If the user links the application
with libcusolver_static.a, the following libraries are also needed, libcudart_static.
a, libculibos.a, libcusolver_lapack_static.a, libcusolver_metis_static.a,
libcublas_static.a and libcusparse_static.a.

8.1.5. Link Third-party LAPACK Library

Starting with CUDA 10.1 update 2, NVIDIA LAPACK library libcusolver_lapack_static.a is a
subset of LAPACK and only contains GPU accelerated stedc and bdsqr. The user has to link
libcusolver_static.a with libcusolver_lapack_static.a in order to build the application
successfully. Prior to CUDA 10.1 update 2, the user can replace libcusolver_lapack_static.a
with a third-party LAPACK library, for example, MKL. In CUDA 10.1 update 2, the third-party LAPACK
library no longer affects the behavior of cusolver library, neither functionality nor performance. Fur-
thermore the user cannot use libcusolver_lapack_static.a as a standalone LAPACK library be-
cause it is only a subset of LAPACK.

▶ If you use libcusolver_static.a, then you must link with libcusolver_lapack_static.a
explicitly, otherwise the linker will reportmissing symbols. There are no symbol conflicts between
libcusolver_lapack_static.a and other third-party LAPACK libraries, which allows linking
the same application to libcusolver_lapack_static.a and another third-party LAPACK li-
brary.

▶ The libcusolver_lapack_static.a is built inside libcusolver.so. Hence, if you use
libcusolver.so, then you don’t need to specify a LAPACK library. The libcusolver.so will
not pick up any routines from the third-party LAPACK library even if you link the application with
it.

8.1.6. Convention of info

Each LAPACK routine returns an infowhich indicates the position of invalid parameter. If info = -i,
then i-th parameter is invalid. To be consistent with base-1 in LAPACK, cusolver does not report in-
valid handle into info. Instead, cusolver returns CUSOLVER_STATUS_NOT_INITIALIZED for invalid
handle.

8.1.7. Usage of _bufferSize

There is no cudaMalloc inside cuSolver library, the user must allocate the device workspace explic-
itly. The routine xyz_bufferSize is to query the size of workspace of the routine xyz, for example
xyz = potrf. To make the API simple, xyz_bufferSize follows almost the same signature of xyz
even it only depends on some parameters, for example, device pointer is not used to decide the size
of workspace. In most cases, xyz_bufferSize is called in the beginning before actual device data
(pointing by a device pointer) is prepared or before the device pointer is allocated. In such case, the
user can pass null pointer to xyz_bufferSize without breaking the functionality.

18 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

8.1.8. cuSOLVERDn Logging

cuSOLVERDn loggingmechanismcan be enabled by setting the following environment variables before
launching the target application:

▶ CUSOLVERDN_LOG_LEVEL=<level> - where <level> is one of the following levels:

▶ 0 - Off - logging is disabled (default)

▶ 1 - Error - only errors will be logged

▶ 2 - Trace - API calls that launch CUDA kernels will log their parameters and important infor-
mation

▶ 3 - Hints - hints that can potentially improve the application’s performance

▶ 4 - Info - provides general information about the library execution, may contain details about
heuristic status

▶ 5 - API Trace - API calls will log their parameter and important information

▶ CUSOLVERDN_LOG_MASK=<mask> - where mask is a combination of the following masks:

▶ 0 - Off

▶ 1 - Error

▶ 2 - Trace

▶ 4 - Hints

▶ 8 - Info

▶ 16 - API Trace

▶ CUSOLVERDN_LOG_FILE=<file_name> - where file name is a path to a log file. File name may
contain %i, that will be replaced with the process ID, for example <file_name>_%i.log. If CU-
SOLVERDN_LOG_FILE is not defined, the log messages are printed to stdout.

Another option is to use the experimental cusolverDn logging API. See: cusolverDnLoggerSetCallback(),
cusolverDnLoggerSetFile(), cusolverDnLoggerOpenFile(), cusolverDnLoggerSetLevel(), cusolverDnLog-
gerSetMask(), cusolverDnLoggerForceDisable().

8.1.9. Deterministic Results

Throughout this documentation, a function is declared as deterministic if it computes the exact same
bitwise results for every execution with the same input parameters, hard- and software environment.
Conversely, a non-deterministic functionmight compute bitwise different results due to a varying order
of floating point operations, e.g., a sum s of four values a, b, c, d can be computed in different orders:

1. s = (a + b) + (c + d)

2. s = (a + (b + c)) + d

3. s = a + (b + (c + d))

4. …

Due to the non-associativity of floating point arithmetic, all results might be bitwise different.

By default, cuSolverDN computes deterministic results. For improved performance of some functions,
it is possible to allow non-deterministic results with cusolverDnSetDeterministicMode().

8.1. General Description 19

cuSOLVER, Release 12.8

8.2. cuSolver Types Reference

8.2.1. cuSolverDN Types

The float, double, cuComplex, and cuDoubleComplex data types are supported. The first two are
standard C data types, while the last two are exported from cuComplex.h. In addition, cuSolverDN
uses some familiar types from cuBLAS.

8.2.1.1 cusolverDnHandle_t

This is a pointer type to an opaque cuSolverDN context, which the user must initialize by calling cu-
solverDnCreate() prior to calling any other library function. An un-initialized Handle object will lead to
unexpected behavior, including crashes of cuSolverDN. The handle created and returned by cusolverD-
nCreate()must be passed to every cuSolverDN function.

8.2.1.2 cublasFillMode_t

The type indicates which part (lower or upper) of the dense matrix was filled and consequently should
be used by the function.

Value Meaning

CUBLAS_FILL_MODE_LOWER The lower part of the matrix is filled.

CUBLAS_FILL_MODE_UPPER The upper part of the matrix is filled.

CUBLAS_FILL_MODE_FULL The full matrix is filled.

Notice that BLAS implementations often use Fortran characters ‘L’ or ‘l’ (lower) and ‘U’ or ‘u’
(upper) to describe which part of the matrix is filled.

8.2.1.3 cublasOperation_t

The cublasOperation_t type indicates which operation needs to be performed with the dense ma-
trix.

Value Meaning

CUBLAS_OP_N The non-transpose operation is selected.

CUBLAS_OP_T The transpose operation is selected.

CUBLAS_OP_C The conjugate transpose operation is selected.

Notice that BLAS implementations often use Fortran characters ‘N’ or ‘n’ (non-transpose), ‘T’ or
‘t’ (transpose) and ‘C’ or ‘c’ (conjugate transpose) to describe which operations needs to be per-
formed with the dense matrix.

20 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

8.2.1.4 cusolverEigType_t

The cusolverEigType_t type indicates which type of eigenvalue the solver is.

Value Meaning

CUSOLVER_EIG_TYPE_1 A*x = lambda*B*x

CUSOLVER_EIG_TYPE_2 A*B*x = lambda*x

CUSOLVER_EIG_TYPE_3 B*A*x = lambda*x

Notice that LAPACK implementations often use Fortran integer 1 (A*x = lambda*B*x), 2 (A*B*x =
lambda*x), 3 (B*A*x = lambda*x) to indicate which type of eigenvalue the solver is.

8.2.1.5 cusolverEigMode_t

The cusolverEigMode_t type indicates whether or not eigenvectors are computed.

Value Meaning

CUSOLVER_EIG_MODE_NOVECTOR Only eigenvalues are computed.

CUSOLVER_EIG_MODE_VECTOR Both eigenvalues and eigenvectors are computed.

Notice that LAPACK implementations often use Fortran character 'N' (only eigenvalues are com-
puted), 'V' (both eigenvalues and eigenvectors are computed) to indicate whether or not eigenvectors
are computed.

8.2.1.6 cusolverIRSRefinement_t

The cusolverIRSRefinement_t type indicates which solver type would be used for the specific cu-
solver function. Most of our experimentation shows that CUSOLVER_IRS_REFINE_GMRES is the best
option.

More details about the refinement process can be found in Azzam Haidar, Stanimire Tomov, Jack Don-
garra, and Nicholas J. Higham. 2018. Harnessing GPU tensor cores for fast FP16 arithmetic to speed
up mixed-precision iterative refinement solvers. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage, and Analysis (SC ‘18). IEEE Press, Piscataway, NJ, USA,
Article 47, 11 pages.

CUSOLVER_IRS_REFINE_NOT_SET
Solver is not set; this value is what is set when creating the params structure. IRS solver will
return an error.

CUSOLVER_IRS_REFINE_NONE
No refinement solver, the IRS solver performs a factorization followed by a solve without any
refinement. For example if the IRS solver was cusolverDnIRSXgesv(), this is equivalent to
a Xgesv routine without refinement and where the factorization is carried out in the lowest
precision. If for example the main precision was CUSOLVER_R_64F and the lowest was CU-
SOLVER_R_64F as well, then this is equivalent to a call to cusolverDnDgesv().

CUSOLVER_IRS_REFINE_CLASSICAL
Classical iterative refinement solver. Similar to the one used in LAPACK routines.

8.2. cuSolver Types Reference 21

cuSOLVER, Release 12.8

CUSOLVER_IRS_REFINE_GMRES
GMRES (Generalized Minimal Residual) based iterative refinement solver. In recent study, the
GMRESmethod has drawn the scientific community attention for its ability to be used as refine-
ment solver that outperforms the classical iterative refinement method. Based on our experi-
mentation, we recommend this setting.

CUSOLVER_IRS_REFINE_CLASSICAL_GMRES
Classical iterative refinement solver that uses the GMRES (Generalized Minimal Residual) in-
ternally to solve the correction equation at each iteration. We call the classical refinement it-
eration the outer iteration while the GMRES is called inner iteration. Note that if the toler-
ance of the inner GMRES is set very low, lets say to machine precision, then the outer classical
refinement iteration will performs only one iteration and thus this option will behave like CU-
SOLVER_IRS_REFINE_GMRES.

CUSOLVER_IRS_REFINE_GMRES_GMRES
Similar to CUSOLVER_IRS_REFINE_CLASSICAL_GMRES which consists of classical refinement
process that uses GMRES to solve the inner correction system; here it is a GMRES (Generalized
Minimal Residual) based iterative refinement solver that uses another GMRES internally to solve
the preconditioned system.

8.2.1.7 cusolverDnIRSParams_t

This is a pointer type to an opaque cusolverDnIRSParams_t structure, which holds parameters for
the iterative refinement linear solvers such as cusolverDnXgesv(). Use corresponding helper func-
tions described below to either Create/Destroy this structure or Set/Get solver parameters.

8.2.1.8 cusolverDnIRSInfos_t

This is a pointer type to an opaque cusolverDnIRSInfos_t structure, which holds information about
the performed call to an iterative refinement linear solver (such as cusolverDnXgesv()). Use corre-
sponding helper functions described below to either Create/Destroy this structure or retrieve solve
information.

8.2.1.9 cusolverDnFunction_t

ThecusolverDnFunction_t type indicateswhich routine needs to be configuredbycusolverDnSe-
tAdvOptions(). The value CUSOLVERDN_GETRF corresponds to the routine Getrf.

Value Meaning

CUSOLVERDN_GETRF Corresponds to Getrf.

22 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

8.2.1.10 cusolverAlgMode_t

The cusolverAlgMode_t type indicates which algorithm is selected by cusolverDnSetAdvOp-
tions(). The set of algorithms supported for each routine is described in detail along with the rou-
tine’s documentation.

The default algorithm is CUSOLVER_ALG_0. The user can also provide NULL to use the default algo-
rithm.

8.2.1.11 cusolverStatus_t

This is the same as cusolverStatus_t in the sparse LAPACK section.

8.2.1.12 cusolverDnLoggerCallback_t

cusolverDnLoggerCallback_t is a callback function pointer type.

Parameters

Parameter Memory In/out Description

logLevel output See cuSOLVERDn Logging

functionName output The name of the API that logged this message.

message output The log message.

Use the below function to set the callback function: cusolverDnLoggerSetCallback().

8.2.1.13 cusolverDeterministicMode_t

The cusolverDeterministicMode_t type indicates whether multiple cuSolver function executions
with the same input have the same bitwise equal result (deterministic) or might have bitwise different
results (non-deterministic). In comparison to cublasAtomicsMode_t, which only includes the usage of
atomic functions, cusolverDeterministicMode_t includes all non-deterministic programming pat-
terns. The deterministic mode can be set and queried using cusolverDnSetDeterministicMode()
and cusolverDnGetDeterministicMode() routines, respectively.

Value Meaning

CUSOLVER_DETERMINISTIC_RESULTS Compute deterministic results.

CUSOLVER_ALLOW_NON_DETERMINISTIC_RESULTS Allow non-deterministic results.

8.2. cuSolver Types Reference 23

https://docs.nvidia.com/cuda/cublas/#cublasatomicsmode-t

cuSOLVER, Release 12.8

8.2.1.14 cusolverStorevMode_t

Specifies how the vectors which define the elementary reflectors are stored.

Value Meaning

CUBLAS_STOREV_COLUMNWISE Columnwise.

CUBLAS_STOREV_ROWWISE Rowwise.

8.2.1.15 cusolverDirectMode_t

Specifies the order in which the elementary reflectors are multiplied to form the block reflector.

Value Meaning

CUBLAS_DIRECT_FORWARD Forward.

CUBLAS_DIRECT_BACKWARD Backward.

8.2.2. cuSolverSP Types

The float, double, cuComplex, and cuDoubleComplex data types are supported. The first two are
standard C data types, while the last two are exported from cuComplex.h.

8.2.2.1 cusolverSpHandle_t

This is a pointer type to an opaque cuSolverSP context, which the user must initialize by calling cu-
solverSpCreate() prior to calling any other library function. An un-initialized Handle object will lead
to unexpected behavior, including crashes of cuSolverSP. The handle created and returned by cu-
solverSpCreate()must be passed to every cuSolverSP function.

8.2.2.2 cusparseMatDescr_t

We have chosen to keep the same structure as exists in cuSPARSE to describe the shape and proper-
ties of amatrix. This enables calls to either cuSPARSE or cuSOLVER using the samematrix description.

typedef struct {
cusparseMatrixType_t MatrixType;
cusparseFillMode_t FillMode;
cusparseDiagType_t DiagType;
cusparseIndexBase_t IndexBase;

} cusparseMatDescr_t;

Please read documentation of the cuSPARSE Library to understand each field of cusparseMatDe-
scr_t.

24 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

8.2.2.3 cusolverStatus_t

This is a status type returned by the library functions and it can have the following values.

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The cuSolver library was not initialized. This is usually caused by the lack of a prior call, an error
in the CUDA Runtime API called by the cuSolver routine, or an error in the hardware setup.

To correct: call cusolverDnCreate() prior to the function call; and check that the hardware,
an appropriate version of the driver, and the cuSolver library are correctly installed.

CUSOLVER_STATUS_ALLOC_FAILED
Resource allocation failed inside the cuSolver library. This is usually caused by a cudaMalloc()
failure.

To correct: prior to the function call, deallocate previously allocatedmemory asmuch as possible.

CUSOLVER_STATUS_INVALID_VALUE
An unsupported value or parameter was passed to the function (a negative vector size, for ex-
ample).

To correct: ensure that all the parameters being passed have valid values.

CUSOLVER_STATUS_ARCH_MISMATCH
The function requires a feature absent from the device architecture; usually caused by the lack
of support for atomic operations or double precision.

To correct: compile and run the application on a device with compute capability 5.0 or above.

CUSOLVER_STATUS_EXECUTION_FAILED
The GPU program failed to execute. This is often caused by a launch failure of the kernel on the
GPU, which can be caused by multiple reasons.

To correct: check that the hardware, an appropriate version of the driver, and the cuSolver library
are correctly installed.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal cuSolver operation failed. This error is usually caused by a cudaMemcpyAsync() fail-
ure.

To correct: check that the hardware, an appropriate version of the driver, and the cuSolver library
are correctly installed. Also, check that the memory passed as a parameter to the routine is not
being deallocated prior to the routine’s completion.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED
The matrix type is not supported by this function. This is usually caused by passing an invalid
matrix descriptor to the function.

To correct: check that the fields in descrA were set correctly.

CUSOLVER_STATUS_NOT_SUPPORTED
The parameter combination is not supported, for example batched version is not supported or M
< N is not supported.

To correct: consult the documentation, and use a supported configuration.

8.2. cuSolver Types Reference 25

cuSOLVER, Release 12.8

8.2.3. cuSolverRF Types

cuSolverRF only supports double.

8.2.3.1 cusolverRfHandle_t

The cusolverRfHandle_t is a pointer to an opaque data structure that contains the cuSolverRF
library handle. The user must initialize the handle by calling cusolverRfCreate() prior to any other
cuSolverRF library calls. The handle is passed to all other cuSolverRF library calls.

8.2.3.2 cusolverRfMatrixFormat_t

The cusolverRfMatrixFormat_t is an enum that indicates the input/outputmatrix format assumed
by the cusolverRfSetupDevice(), cusolverRfSetupHost(), cusolverRfResetValues(), cu-
solveRfExtractBundledFactorsHost() and cusolverRfExtractSplitFactorsHost() rou-
tines.

Value Meaning

CUSOLVER_MATRIX_FORMAT_CSR Matrix format CSR is assumed. (default)

CUSOLVER_MATRIX_FORMAT_CSC Matrix format CSC is assumed.

8.2.3.3 cusolverRfNumericBoostReport_t

The cusolverRfNumericBoostReport_t is an enum that indicates whether numeric boosting (of
the pivot) was used during the cusolverRfRefactor() and cusolverRfSolve() routines. The nu-
meric boosting is disabled by default.

Value Meaning

CUSOLVER_NUMERIC_BOOST_NOT_USED Numeric boosting not used. (default)

CUSOLVER_NUMERIC_BOOST_USED Numeric boosting used.

8.2.3.4 cusolverRfResetValuesFastMode_t

The cusolverRfResetValuesFastMode_t is an enum that indicates the mode used for the cu-
solverRfResetValues() routine. The fast mode requires extra memory and is recommended only
if very fast calls to cusolverRfResetValues() are needed.

Value Meaning

CUSOLVER_RESET_VALUES_FAST_MODE_OFF Fast mode disabled. (default)

CUSOLVER_RESET_VALUES_FAST_MODE_ON Fast mode enabled.

26 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

8.2.3.5 cusolverRfFactorization_t

The cusolverRfFactorization_t is an enum that indicates which (internal) algorithm is used for
refactorization in the cusolverRfRefactor() routine.

Value Meaning

CUSOLVER_FACTORIZATION_ALG0 Algorithm 0. (default)

CUSOLVER_FACTORIZATION_ALG1 Algorithm 1.

CUSOLVER_FACTORIZATION_ALG2 Algorithm 2. Domino-based scheme.

8.2.3.6 cusolverRfTriangularSolve_t

The cusolverRfTriangularSolve_t is an enum that indicates which (internal) algorithm is used for
triangular solve in the cusolverRfSolve() routine.

Value Meaning

CUSOLVER_TRIANGULAR_SOLVE_ALG1 Algorithm 1. (default)

CUSOLVER_TRIANGULAR_SOLVE_ALG2 Algorithm 2. Domino-based scheme.

CUSOLVER_TRIANGULAR_SOLVE_ALG3 Algorithm 3. Domino-based scheme.

8.2.3.7 cusolverRfUnitDiagonal_t

The cusolverRfUnitDiagonal_t is an enum that indicates whether and where the unit diagonal
is stored in the input/output triangular factors in the cusolverRfSetupDevice(), cusolverRfSe-
tupHost() and cusolverRfExtractSplitFactorsHost() routines.

Value Meaning

CUSOLVER_UNIT_DIAGONAL_STORED_L Unit diagonal is stored in lower triangular factor
(default).

CUSOLVER_UNIT_DIAGONAL_STORED_U Unit diagonal is stored in upper triangular factor.

CUSOLVER_UNIT_DIAGONAL_ASSUMED_L Unit diagonal is assumed in lower triangular fac-
tor.

CUSOLVER_UNIT_DIAGONAL_ASSUMED_U Unit diagonal is assumed in upper triangular fac-
tor.

8.2. cuSolver Types Reference 27

cuSOLVER, Release 12.8

8.2.3.8 cusolverStatus_t

The cusolverStatus_t is an enum that indicates success or failure of the cuSolverRF library call. It
is returned by all the cuSolver library routines, and it uses the same enumerated values as the sparse
and dense Lapack routines.

8.3. cuSolver Formats Reference

8.3.1. Index Base Format

Both one-based and zero-based indexing are supported in cuSolver.

8.3.2. Vector (Dense) Format

The vectors are assumed to be stored linearly in memory. For example, the vector

x =


x1

x1

...

xn


is represented as (

x1 x2 . . . xn

)

8.3.3. Matrix (Dense) Format

The dense matrices are assumed to be stored in column-major order in memory. The sub-matrix can
be accessed using the leading dimension of the original matrix. For example, the m*n (sub-)matrix

a1,1 · · · a1,n

a2,1 · · · a2,n
...

am,1 · · · am,n



28 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

is represented as 

a1,1 . . . a1,n

a2,1 . . . a2,n
...

. . .
...

am,1 . . . am,n

...
. . .

...

alda,1 . . . alda,n


with its elements arranged linearly in memory as(

a1,1 a2,1 . . . am,1 . . . alda,1 . . . a1,n a2,n . . . am,n . . . alda,n

)
where lda ≥ m is the leading dimension of A.

8.3.4. Matrix (CSR) Format

In CSR format the matrix is represented by the following parameters:

Param-
eter

Type Size Meaning

n (int) The number of rows (and columns) in the matrix.

nnz (int) The number of non-zero elements in the matrix.

csr-
RowPtr

(int *) n+1 The array of offsets corresponding to the start of each row in the arrays
csrColInd and csrVal. This array has also an extra entry at the end
that stores the number of non-zero elements in the matrix.

csr-
ColInd

(int *) nnz The array of column indices corresponding to the non-zero elements
in the matrix. It is assumed that this array is sorted by row and by
column within each row.

csrVal (S|D|C|Z)*nnz The array of values corresponding to the non-zero elements in the ma-
trix. It is assumed that this array is sorted by row and by column
within each row.

Note that in our CSR format, sparse matrices are assumed to be stored in row-major order, in other
words, the index arrays are first sorted by row indices and then within each row by column indices.
Also it is assumed that each pair of row and column indices appears only once.

For example, the 4x4matrix

A =


1.0 3.0 0.0 0.0

0.0 4.0 6.0 0.0

2.0 5.0 7.0 8.0

0.0 0.0 0.0 9.0



8.3. cuSolver Formats Reference 29

cuSOLVER, Release 12.8

is represented as

csrRowPtr =
(
0 2 4 8 9

)
csrColInd =

(
0 1 1 2 0 1 2 3 3

)
csrV al =

(
1.0 3.0 4.0 6.0 2.0 5.0 7.0 8.0 9.0

)

8.3.5. Matrix (CSC) Format

In CSC format the matrix is represented by the following parameters:

Parameter Type Size Meaning

n (int) The number of rows (and columns) in the
matrix.

nnz (int) The number of non-zero elements in the
matrix.

cscColPtr (int *) n+1 The array of offsets corresponding to
the start of each column in the arrays
cscRowInd and cscVal. This array has also
an extra entry at the end that stores the
number of non-zero elements in the matrix.

cscRowInd (int *) nnz The array of row indices corresponding to
the non-zero elements in the matrix. It is
assumed that this array is sorted by col-
umn and by row within each column.

cscVal (S|D|C|Z)* nnz The array of values corresponding to the
non-zero elements in the matrix. It is as-
sumed that this array is sorted by column
and by row within each column.

Note that in our CSC format, sparsematrices are assumed to be stored in column-major order, in other
words, the index arrays are first sorted by column indices and then within each column by row indices.
Also it is assumed that each pair of row and column indices appears only once.

For example, the 4x4matrix

A =


1.0 3.0 0.0 0.0

0.0 4.0 6.0 0.0

2.0 5.0 7.0 8.0

0.0 0.0 0.0 9.0


is represented as

cscColP tr =
(
0 2 5 7 9

)
cscRowInd =

(
0 2 0 1 2 1 2 2 3

)
cscV al =

(
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

)
30 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

8.4. cuSolverDN: dense LAPACK Function
Reference

This section describes the API of cuSolverDN, which provides a subset of dense LAPACK functions.

8.4.1. cuSolverDN Helper Function Reference

The cuSolverDN helper functions are described in this section.

8.4.1.1 cusolverDnCreate()

cusolverStatus_t
cusolverDnCreate(cusolverDnHandle_t *handle);

This function initializes the cuSolverDN library and creates a handle on the cuSolverDN context. It
must be called before any other cuSolverDN API function is invoked. It allocates hardware resources
necessary for accessing the GPU. This function allocates 4 MiB or 32 MiB of memory (for GPUs with
Compute Capability of 9.0 and higher), which will be used as the cuBLAS workspace for the first user-
defined stream on which cusolverDnSetStream() is called. For the default stream and in all the other
cases, cuBLAS will manage its own workspace.

Parameter Memory In/out Meaning

handle host output The pointer to the handle to the cuSolverDN context.

Status Returned

CUSOLVER_STATUS_SUCCESS
The initialization succeeded.

CUSOLVER_STATUS_NOT_INITIALIZED
The CUDA Runtime initialization failed.

CUSOLVER_STATUS_ALLOC_FAILED
The resources could not be allocated.

CUSOLVER_STATUS_ARCH_MISMATCH
The device only supports compute capability 5.0 and above.

8.4.1.2 cusolverDnDestroy()

cusolverStatus_t
cusolverDnDestroy(cusolverDnHandle_t handle);

This function releases CPU-side resources used by the cuSolverDN library.

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

8.4. cuSolverDN: dense LAPACK Function Reference 31

cuSOLVER, Release 12.8

Status Returned

CUSOLVER_STATUS_SUCCESS
The shutdown succeeded.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

8.4.1.3 cusolverDnSetStream()

cusolverStatus_t
cusolverDnSetStream(cusolverDnHandle_t handle, cudaStream_t streamId)

This function sets the stream to be used by the cuSolverDN library to execute its routines.

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

streamId host input The stream to be used by the library.

Status Returned

CUSOLVER_STATUS_SUCCESS
The stream was set successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

8.4.1.4 cusolverDnGetStream()

cusolverStatus_t
cusolverDnGetStream(cusolverDnHandle_t handle, cudaStream_t *streamId)

This function queries the stream to be used by the cuSolverDN library to execute its routines.

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

streamId host output The stream which is used by handle.

Status Returned

CUSOLVER_STATUS_SUCCESS
The stream was set successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

32 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

8.4.1.5 cusolverDnLoggerSetCallback()

cusolverStatus_t cusolverDnLoggerSetCallback(cusolverDnLoggerCallback_t callback);

This function sets the logging callback function.

Parameters

Parameter Memory In/out Meaning

callback input Pointer to a callback function. See cusolverDnLoggerCallback_t.

Status Returned

CUSOLVER_STATUS_SUCCESS
If the callback function was successfully set.

See cusolverStatus_t for a complete list of valid return codes.

8.4.1.6 cusolverDnLoggerSetFile()

cusolverStatus_t cusolverDnLoggerSetFile(FILE* file);

This function sets the logging output file. Note: once registered using this function call, the provided
file handle must not be closed unless the function is called again to switch to a different file handle.

Parameters

Parameter Memory In/out Meaning

file input Pointer to an open file. File should have write permission.

Status Returned

CUSOLVER_STATUS_SUCCESS
If logging file was successfully set.

See cusolverStatus_t for a complete list of valid return codes.

8.4.1.7 cusolverDnLoggerOpenFile()

cusolverStatus_t cusolverDnLoggerOpenFile(const char* logFile);

This function opens a logging output file in the given path.

Parameters

Parameter Memory In/out Meaning

logFile input Path of the logging output file.

Status Returned

8.4. cuSolverDN: dense LAPACK Function Reference 33

cuSOLVER, Release 12.8

CUSOLVER_STATUS_SUCCESS
If the logging file was successfully opened.

See cusolverStatus_t for a complete list of valid return codes.

8.4.1.8 cusolverDnLoggerSetLevel()

cusolverStatus_t cusolverDnLoggerSetLevel(int level);

This function sets the value of the logging level.

Parameters

Parameter Memory In/out Meaning

level input Value of the logging level. See cuSOLVERDn Logging.

Status Returned

CUSOLVER_STATUS_INVALID_VALUE
If the value was not a valid logging level. See cuSOLVERDn Logging.

CUSOLVER_STATUS_SUCCESS
If the logging level was successfully set.

See cusolverStatus_t for a complete list of valid return codes.

8.4.1.9 cusolverDnLoggerSetMask()

cusolverStatus_t cusolverDnLoggerSetMask(int mask);

This function sets the value of the logging mask.

Parameters

Parameter Memory In/out Meaning

mask input Value of the logging mask. See cuSOLVERDn Logging.

Status Returned

CUSOLVER_STATUS_SUCCESS
If the logging mask was successfully set.

See cusolverStatus_t for a complete list of valid return codes.

34 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

8.4.1.10 cusolverDnLoggerForceDisable()

cusolverStatus_t cusolverDnLoggerForceDisable();

This function disables logging for the entire run.

Status Returned

CUSOLVER_STATUS_SUCCESS
If logging was successfully disabled.

See cusolverStatus_t for a complete list of valid return codes.

8.4.1.11 cusolverDnSetDeterministicMode()

cusolverStatus_t
cusolverDnSetDeterministicMode(cusolverDnHandle_t handle, cusolverDeterministicMode_t�
↪→mode)

This function sets the deterministic mode of all cuSolverDN functions for handle. For improved per-
formance, non-deterministic results can be allowed. Affected functions are cusolverDn<t>geqrf(),
cusolverDn<t>syevd(), cusolverDn<t>syevdx(), cusolverDn<t>gesvd() (if m > n), cu-
solverDn<t>gesvdj(), cusolverDnXgeqrf(), cusolverDnXsyevd(), cusolverDnXsyevdx(),
cusolverDnXgesvd() (if m > n), cusolverDnXgesvdr() and cusolverDnXgesvdp().

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

mode host input The deterministic mode to be used with handle.

Status Returned

CUSOLVER_STATUS_SUCCESS
The mode was set successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal error occurred.

8.4.1.12 cusolverDnGetDeterministicMode()

cusolverStatus_t
cusolverDnGetDeterministicMode(cusolverDnHandle_t handle, cusolverDeterministicMode_
↪→t* mode)

This function queries the deterministic mode which is set for handle.

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

mode host output The deterministic mode of handle.

8.4. cuSolverDN: dense LAPACK Function Reference 35

cuSOLVER, Release 12.8

Status Returned

CUSOLVER_STATUS_SUCCESS
The mode was set successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
mode is a NULL pointer.

8.4.1.13 cusolverDnCreateSyevjInfo()

cusolverStatus_t
cusolverDnCreateSyevjInfo(

syevjInfo_t *info);

This function creates and initializes the structure of syevj, syevjBatched and sygvj to default val-
ues.

Parameter Memory In/out Meaning

info host output The pointer to the structure of syevj.

Status Returned

CUSOLVER_STATUS_SUCCESS
The structure was initialized successfully.

CUSOLVER_STATUS_ALLOC_FAILED
The resources could not be allocated.

8.4.1.14 cusolverDnDestroySyevjInfo()

cusolverStatus_t
cusolverDnDestroySyevjInfo(

syevjInfo_t info);

This function destroys and releases any memory required by the structure.

Parameter Memory In/out Meaning

info host input The structure of syevj.

Status Returned

CUSOLVER_STATUS_SUCCESS
The resources were released successfully.

36 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

8.4.1.15 cusolverDnXsyevjSetTolerance()

cusolverStatus_t
cusolverDnXsyevjSetTolerance(

syevjInfo_t info,
double tolerance)

This function configures tolerance of syevj.

Parameter Memory In/out Meaning

info host in∕out The pointer to the structure of syevj.

tolerance host input Accuracy of numerical eigenvalues.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

8.4.1.16 cusolverDnXsyevjSetMaxSweeps()

cusolverStatus_t
cusolverDnXsyevjSetMaxSweeps(

syevjInfo_t info,
int max_sweeps)

This function configures maximum number of sweeps in syevj. The default value is 100.

Parameter Memory In/out Meaning

info host in∕out The pointer to the structure of syevj.

max_sweeps host input Maximum number of sweeps.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

8.4.1.17 cusolverDnXsyevjSetSortEig()

cusolverStatus_t
cusolverDnXsyevjSetSortEig(

syevjInfo_t info,
int sort_eig)

If sort_eig is zero, the eigenvalues are not sorted. This function only works for syevjBatched.
syevj and sygvj always sort eigenvalues in ascending order. By default, eigenvalues are always sorted
in ascending order.

8.4. cuSolverDN: dense LAPACK Function Reference 37

cuSOLVER, Release 12.8

Parameter Memory In/out Meaning

info host in∕out The pointer to the structure of syevj.

sort_eig host input If sort_eig is zero, the eigenvalues are not sorted.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

8.4.1.18 cusolverDnXsyevjGetResidual()

cusolverStatus_t
cusolverDnXsyevjGetResidual(

cusolverDnHandle_t handle,
syevjInfo_t info,
double *residual)

This function reports residual of syevj or sygvj. It does not support syevjBatched. If the user calls
this function after syevjBatched, the error CUSOLVER_STATUS_NOT_SUPPORTED is returned.

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

info host input The pointer to the structure of syevj.

residual host output Residual of syevj.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_SUPPORTED
Does not support batched version.

8.4.1.19 cusolverDnXsyevjGetSweeps()

cusolverStatus_t
cusolverDnXsyevjGetSweeps(

cusolverDnHandle_t handle,
syevjInfo_t info,
int *executed_sweeps)

This function reports number of executed sweeps of syevj or sygvj. It does not sup-
port syevjBatched. If the user calls this function after syevjBatched, the error CU-
SOLVER_STATUS_NOT_SUPPORTED is returned.

38 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

info host input The pointer to the structure of syevj.

executed_sweeps host output Number of executed sweeps.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_SUPPORTED
Does not support batched version.

8.4.1.20 cusolverDnCreateGesvdjInfo()

cusolverStatus_t
cusolverDnCreateGesvdjInfo(

gesvdjInfo_t *info);

This function creates and initializes the structure of gesvdj and gesvdjBatched to default values.

Parameter Memory In/out Meaning

info host output The pointer to the structure of gesvdj.

Status Returned

CUSOLVER_STATUS_SUCCESS
The structure was initialized successfully.

CUSOLVER_STATUS_ALLOC_FAILED
The resources could not be allocated.

8.4.1.21 cusolverDnDestroyGesvdjInfo()

cusolverStatus_t
cusolverDnDestroyGesvdjInfo(

gesvdjInfo_t info);

This function destroys and releases any memory required by the structure.

Parameter Memory In/out Meaning

info host input The structure of gesvdj.

Status Returned

CUSOLVER_STATUS_SUCCESS
The resources were released successfully.

8.4. cuSolverDN: dense LAPACK Function Reference 39

cuSOLVER, Release 12.8

8.4.1.22 cusolverDnXgesvdjSetTolerance()

cusolverStatus_t
cusolverDnXgesvdjSetTolerance(

gesvdjInfo_t info,
double tolerance)

This function configures tolerance of gesvdj.

Parameter Memory In/out Meaning

info host in∕out The pointer to the structure of gesvdj.

tolerance host input Accuracy of numerical singular values.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

8.4.1.23 cusolverDnXgesvdjSetMaxSweeps()

cusolverStatus_t
cusolverDnXgesvdjSetMaxSweeps(

gesvdjInfo_t info,
int max_sweeps)

This function configures the maximum number of sweeps in gesvdj. The default value is 100.

Parameter Memory In/out Meaning

info host in∕out The pointer to the structure of gesvdj.

max_sweeps host input Maximum number of sweeps.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

8.4.1.24 cusolverDnXgesvdjSetSortEig()

cusolverStatus_t
cusolverDnXgesvdjSetSortEig(

gesvdjInfo_t info,
int sort_svd)

If sort_svd is zero, the singular values are not sorted. This function only works for gesvdjBatched.
gesvdj always sorts singular values in descending order. By default, singular values are always sorted
in descending order.

40 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

Parameter Memory In/out Meaning

info host in∕out The pointer to the structure of gesvdj.

sort_svd host input If sort_svd is zero, the singular values are not sorted.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

8.4.1.25 cusolverDnXgesvdjGetResidual()

cusolverStatus_t
cusolverDnXgesvdjGetResidual(

cusolverDnHandle_t handle,
gesvdjInfo_t info,
double *residual)

This function reports the Frobenius norm of the internal residual returned by gesvdj. Note that this
is not the Frobenious norm of the exact residual calculated as

∥S − UH ∗A ∗ V ∥F

This function does not support gesvdjBatched. If the user calls this function after gesvdjBatched,
the error CUSOLVER_STATUS_NOT_SUPPORTED is returned.

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

info host input The pointer to the structure of gesvdj.

residual host output Residual of gesvdj.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_SUPPORTED
Does not support batched version

8.4.1.26 cusolverDnXgesvdjGetSweeps()

cusolverStatus_t
cusolverDnXgesvdjGetSweeps(

cusolverDnHandle_t handle,
gesvdjInfo_t info,
int *executed_sweeps)

This function reports number of executed sweeps of gesvdj. It does not support gesvdjBatched. If
the user calls this function after gesvdjBatched, the error CUSOLVER_STATUS_NOT_SUPPORTED is
returned.

8.4. cuSolverDN: dense LAPACK Function Reference 41

cuSOLVER, Release 12.8

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

info host input The pointer to the structure of gesvdj.

executed_sweeps host output Number of executed sweeps.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_SUPPORTED
Does not support batched version

8.4.1.27 cusolverDnIRSParamsCreate()

cusolverStatus_t
cusolverDnIRSParamsCreate(cusolverDnIRSParams_t *params);

This function creates and initializes the structure of parameters for an IRS solver such as the cu-
solverDnIRSXgesv() or the cusolverDnIRSXgels() functions to default values. The params
structure created by this function can be used by one or more call to the same or to a different IRS
solver. Note that in CUDA 10.2, the behavior was different and a new params structure was needed
to be created per each call to an IRS solver. Also note that the user can also change configurations of
the params and then call a new IRS instance, but be careful that the previous call was done because
any change to the configuration before the previous call was done could affect it.

Parameter Memory In/out Meaning

params host output Pointer to the cusolverDnIRSParams_t Params structure

Status Returned

CUSOLVER_STATUS_SUCCESS
The structure was created and initialized successfully.

CUSOLVER_STATUS_ALLOC_FAILED
The resources could not be allocated.

8.4.1.28 cusolverDnIRSParamsDestroy()

cusolverStatus_t
cusolverDnIRSParamsDestroy(cusolverDnIRSParams_t params);

This function destroys and releases any memory required by the Params structure.

Parameter Memory In/out Meaning

params host input The cusolverDnIRSParams_t Params structure.

Status Returned

42 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

CUSOLVER_STATUS_SUCCESS
The resources were released successfully.

CUSOLVER_STATUS_IRS_PARAMS_NOT_INITIALIZED
The Params structure was not created.

CUSOLVER_STATUS_IRS_INFOS_NOT_DESTROYED
Not all the Infos structure associated with this Params structure have been destroyed yet.

8.4.1.29 cusolverDnIRSParamsSetSolverPrecisions()

cusolverStatus_t
cusolverDnIRSParamsSetSolverPrecisions(

cusolverDnIRSParams_t params,
cusolverPrecType_t solver_main_precision,
cusolverPrecType_t solver_lowest_precision);

This function sets both the main and the lowest precision for the Iterative Refinement Solver (IRS).
By main precision, we mean the precision of the Input and Output datatype. By lowest precision, we
mean the solver is allowed to use as lowest computational precision during the LU factorization pro-
cess. Note that the user has to set both the main and lowest precision before the first call to the IRS
solver because they are NOT set by default with the params structure creation, as it depends on the
Input Output data type and user request. It is a wrapper to both cusolverDnIRSParamsSetSolver-
MainPrecision() and cusolverDnIRSParamsSetSolverLowestPrecision(). All possible com-
binations of main/lowest precision are described in the table below. Usually the lowest precision de-
fines the speedup that can be achieved. The ratio of the performance of the lowest precision over the
main precision (e.g., Inputs/Outputs datatype) define the upper bound of the speedup that could be
obtained. More precisely, it depends on many factors, but for large matrices sizes, it is the ratio of
the matrix-matrix rank-k product (e.g., GEMMwhere K is 256 and M=N=size of the matrix) that define
the possible speedup. For instance, if the inout precision is real double precision CUSOLVER_R_64F
and the lowest precision is CUSOLVER_R_32F, then we can expect a speedup of at most 2X for large
problem sizes. If the lowest precision was CUSOLVER_R_16F, then we can expect 3X-4X. A reasonable
strategy should take the number of right-hand sides, the size of the matrix as well as the convergence
rate into account.

Parameter Mem-
ory

In/out Meaning

params host in∕out The cusolverDnIRSParams_t Params
structure.

solver_main_precision host input Allowed Inputs/Outputs datatype (for ex-
ample CUSOLVER_R_FP64 for a real double
precision data). See the table below for the
supported precisions.

solver_lowest_precision host input Allowed lowest compute type (for example
CUSOLVER_R_16F for half precision com-
putation). See the table below for the sup-
ported precisions.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

8.4. cuSolverDN: dense LAPACK Function Reference 43

cuSOLVER, Release 12.8

CUSOLVER_STATUS_IRS_PARAMS_NOT_INITIALIZED
The Params structure was not created.

Table 1: Supported Inputs/Outputs data type and lower pre-
cision for the IRS solver

Inputs/OutputsData Type (e.g.,
main precision)

Supported values for the lowest precision

CUSOLVER_C_64F CUSOLVER_C_64F, CUSOLVER_C_32F, CUSOLVER_C_16F,
CUSOLVER_C_16BF, CUSOLVER_C_TF32

CUSOLVER_C_32F CUSOLVER_C_32F, CUSOLVER_C_16F, CUSOLVER_C_16BF,
CUSOLVER_C_TF32

CUSOLVER_R_64F CUSOLVER_R_64F, CUSOLVER_R_32F, CUSOLVER_R_16F,
CUSOLVER_R_16BF, CUSOLVER_R_TF32

CUSOLVER_R_32F CUSOLVER_R_32F, CUSOLVER_R_16F, CUSOLVER_R_16BF,
CUSOLVER_R_TF32

8.4.1.30 cusolverDnIRSParamsSetSolverMainPrecision()

cusolverStatus_t
cusolverDnIRSParamsSetSolverMainPrecision(

cusolverDnIRSParams_t params,
cusolverPrecType_t solver_main_precision);

This function sets the main precision for the Iterative Refinement Solver (IRS). By main precision, we
mean, the type of the Input and Output data. Note that the user has to set both the main and lowest
precision before a first call to the IRS solver because they are NOT set by default with the params
structure creation, as it depends on the Input Output data type and user request. user can set it by
either calling this function or by calling cusolverDnIRSParamsSetSolverPrecisions() which set
both the main and the lowest precision together. All possible combinations of main/lowest precision
are described in the table in the cusolverDnIRSParamsSetSolverPrecisions() section above.

Parameter Mem-
ory

In/out Meaning

params host in∕out The cusolverDnIRSParams_t Params
structure.

solver_main_precision host input Allowed Inputs/Outputs datatype (for
example CUSOLVER_R_FP64 for a real
double precision data). See the table in the
cusolverDnIRSParamsSetSolverPrecisions()
section above for the supported precisions.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_IRS_PARAMS_NOT_INITIALIZED
The Params structure was not created.

44 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

8.4.1.31 cusolverDnIRSParamsSetSolverLowestPrecision()

cusolverStatus_t
cusolverDnIRSParamsSetSolverLowestPrecision(

cusolverDnIRSParams_t params,
cusolverPrecType_t lowest_precision_type);

This function sets the lowest precision that will be used by Iterative Refinement Solver. By lowest
precision, we mean the solver is allowed to use as lowest computational precision during the LU fac-
torization process. Note that the user has to set both the main and lowest precision before a first
call to the IRS solver because they are NOT set by default with the params structure creation, as it
depends on the Input Output data type and user request. Usually the lowest precision defines the
speedup that can be achieved. The ratio of the performance of the lowest precision over the main
precision (e.g., Inputs/Outputs datatype) define somehow the upper bound of the speedup that could
be obtained. More precisely, it depends on many factors, but for large matrices sizes, it is the ratio of
the matrix-matrix rank-k product (e.g., GEMMwhere K is 256 and M=N=size of the matrix) that define
the possible speedup. For instance, if the inout precision is real double precision CUSOLVER_R_64F
and the lowest precision is CUSOLVER_R_32F, then we can expect a speedup of at most 2X for large
problem sizes. If the lowest precision was CUSOLVER_R_16F, then we can expect 3X-4X. A reasonable
strategy should take the number of right-hand sides, the size of the matrix as well as the convergence
rate into account.

Parameter Mem-
ory

In/out Meaning

params host in∕out The cusolverDnIRSParams_t Params
structure.

lowest_precision_type host input Allowed lowest compute type (for exam-
ple CUSOLVER_R_16F for half precision
computation). See the table in the cu-
solverDnIRSParamsSetSolverPrecisions()
section above for the supported precisions.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_IRS_PARAMS_NOT_INITIALIZED
The Params structure was not created.

8.4.1.32 cusolverDnIRSParamsSetRefinementSolver()

cusolverStatus_t
cusolverDnIRSParamsSetRefinementSolver(

cusolverDnIRSParams_t params,
cusolverIRSRefinement_t solver);

This function sets the refinement solver to be used in the Iterative Refinement Solver functions such
as the cusolverDnIRSXgesv() or the cusolverDnIRSXgels() functions. Note that the user has
to set the refinement algorithm before a first call to the IRS solver because it is NOT set by default
with the creating of params. Details about values that can be set to and theirs meaning are described
in the table below.

8.4. cuSolverDN: dense LAPACK Function Reference 45

cuSOLVER, Release 12.8

Param-
eter

Mem-
ory

In/out Meaning

params host in∕
out

The cusolverDnIRSParams_tParams structure

solver host in-
put

Type of the refinement solver to be used by the IRS solver such as cu-
solverDnIRSXgesv() or cusolverDnIRSXgels().

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_IRS_PARAMS_NOT_INITIALIZED
The Params structure was not created.

CUSOLVER_IRS_REFINE_NOT_SET
Solver is not set, this value is what is set when creating the params structure. IRS solver will
return an error.

CUSOLVER_IRS_REFINE_NONE
No refinement solver; the IRS solver performs a factorization followed by a solve without any
refinement. For example, if the IRS solver was cusolverDnIRSXgesv(), this is equivalent to
a Xgesv routine without refinement and where the factorization is carried out in the lowest
precision. If for example the main precision was CUSOLVER_R_64F and the lowest was CU-
SOLVER_R_64F as well, then this is equivalent to a call to cusolverDnDgesv().

CUSOLVER_IRS_REFINE_CLASSICAL
Classical iterative refinement solver. Similar to the one used in LAPACK routines.

CUSOLVER_IRS_REFINE_GMRES
GMRES (Generalized Minimal Residual) based iterative refinement solver. In recent study, the
GMRESmethod has drawn the scientific community attention for its ability to be used as refine-
ment solver that outperforms the classical iterative refinement method. Based on our experi-
mentation, we recommend this setting.

CUSOLVER_IRS_REFINE_CLASSICAL_GMRES
Classical iterative refinement solver that uses the GMRES (Generalized Minimal Residual) inter-
nally to solve the correction equation at each iteration. We call the classical refinement itera-
tion the outer iteration while the GMRES is called inner iteration. Note that if the tolerance
of the inner GMRES is set very low, let say to machine precision, then the outer classical re-
finement iteration will performs only one iteration and thus this option will behaves like CU-
SOLVER_IRS_REFINE_GMRES.

CUSOLVER_IRS_REFINE_GMRES_GMRES
Similar to CUSOLVER_IRS_REFINE_CLASSICAL_GMRES which consists of classical refinement
process that uses GMRES to solve the inner correction system, here it is a GMRES (Generalized
Minimal Residual) based iterative refinement solver that uses another GMRES internally to solve
the preconditioned system.

46 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

8.4.1.33 cusolverDnIRSParamsSetTol()

cusolverStatus_t
cusolverDnIRSParamsSetTol(

cusolverDnIRSParams_t params,
double val);

This function sets the tolerance for the refinement solver. By default it is such that all the RHS satisfy:

RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX where

▶ RNRM is the infinity-norm of the residual

▶ XNRM is the infinity-norm of the solution

▶ ANRM is the infinity-operator-norm of the matrix A

▶ EPS is the machine epsilon for the Inputs/Outputs datatype that matches LAPACK
<X>LAMCH(‘Epsilon’)

▶ BWDMAX, the value BWDMAX is fixed to 1.0

The user can use this function to change the tolerance to a lower or higher value. Our goal is to give
the user more control such a way he can investigate and control every detail of the IRS solver. Note
that the tolerance value is always in real double precision whatever the Inputs/Outputs datatype is.

Parame-
ter

Mem-
ory

In/out Meaning

params host in∕
out

The cusolverDnIRSParams_t Params structure.

val host input Double precision real value to which the refinement tolerance will
be set.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_IRS_PARAMS_NOT_INITIALIZED
The Params structure was not created.

8.4.1.34 cusolverDnIRSParamsSetTolInner()

cusolverStatus_t
cusolverDnIRSParamsSetTolInner(

cusolverDnIRSParams_t params,
double val);

This function sets the tolerance for the inner refinement solver when the refinement solver
consists of two-levels solver (for example, CUSOLVER_IRS_REFINE_CLASSICAL_GMRES or CU-
SOLVER_IRS_REFINE_GMRES_GMRES cases). It is not referenced in case of one level refinement solver
such as CUSOLVER_IRS_REFINE_CLASSICAL or CUSOLVER_IRS_REFINE_GMRES. It is set to 1e-4 by
default. This function set the tolerance for the inner solver (e.g. the inner GMRES). For example, if
the Refinement Solver was set to CUSOLVER_IRS_REFINE_CLASSICAL_GMRES, setting this tolerance
mean that the inner GMRES solver will converge to that tolerance at each outer iteration of the clas-
sical refinement solver. Our goal is to give the user more control such a way he can investigate and

8.4. cuSolverDN: dense LAPACK Function Reference 47

cuSOLVER, Release 12.8

control every detail of the IRS solver. Note the, the tolerance value is always in real double precision
whatever the Inputs/Outputs datatype is.

Param-
eter

Mem-
ory

In/out Meaning

params host in∕
out

The cusolverDnIRSParams_t Params structure.

val host in-
put

Double precision real value to which the tolerance of the inner refine-
ment solver will be set.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_IRS_PARAMS_NOT_INITIALIZED
The Params structure was not created.

8.4.1.35 cusolverDnIRSParamsSetMaxIters()

cusolverStatus_t
cusolverDnIRSParamsSetMaxIters(

cusolverDnIRSParams_t params,
int max_iters);

This function sets the total number of allowed refinement iterations after which the solver will stop.
Total means any iteration which means the sum of the outer and the inner iterations (inner is mean-
ingful when two-levels refinement solver is set). Default value is set to 50. Our goal is to give the user
more control such a way he can investigate and control every detail of the IRS solver.

Parameter Mem-
ory

In/out Meaning

params host in∕
out

The cusolverDnIRSParams_t Params structure.

max_iters host input Maximum total number of iterations allowed for the refinement
solver.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_IRS_PARAMS_NOT_INITIALIZED
The Params structure was not created.

48 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

8.4.1.36 cusolverDnIRSParamsSetMaxItersInner()

cusolverStatus_t
cusolverDnIRSParamsSetMaxItersInner(

cusolverDnIRSParams_t params,
cusolver_int_t maxiters_inner);

This function sets the maximal number of iterations allowed for the inner refinement solver. It is
not referenced in case of one level refinement solver such as CUSOLVER_IRS_REFINE_CLASSICAL or
CUSOLVER_IRS_REFINE_GMRES. The inner refinement solver will stop after reaching either the inner
tolerance or the MaxItersInner value. By default, it is set to 50. Note that this value could not be larger
than the MaxIters since MaxIters is the total number of allowed iterations. Note that if the user calls
cusolverDnIRSParamsSetMaxIters after calling this function, SetMaxIters has priority and will
overwrite MaxItersInner to the minimum value of (MaxIters, MaxItersInner).

Parameter Mem-
ory

In/out Meaning

params host in∕
out

The cusolverDnIRSParams_t Params structure

max-
iters_inner

host in-
put

Maximum number of allowed inner iterations for the inner refine-
ment solver. Meaningful when the refinement solver is a two-levels
solver such as CUSOLVER_IRS_REFINE_CLASSICAL_GMRES or CU-
SOLVER_IRS_REFINE_GMRES_GMRES. Value should be less or equal
to MaxIters.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_IRS_PARAMS_NOT_INITIALIZED
The Params structure was not created.

CUSOLVER_STATUS_IRS_PARAMS_INVALID
If the value was larger than MaxIters.

8.4.1.37 cusolverDnIRSParamsEnableFallback()

cusolverStatus_t
cusolverDnIRSParamsEnableFallback(

cusolverDnIRSParams_t params);

This function enable the fallback to the main precision in case the Iterative Refinement Solver (IRS)
failed to converge. In other term, if the IRS solver failed to converge, the solver will return a no con-
vergence code (e.g., niter < 0), but can either return the non-convergent solution as it is (e.g., disable
fallback) or can fallback (e.g., enable fallback) to the main precision (which is the precision of the In-
puts/Outputs data) and solve the problem from scratch returning the good solution. This is the behav-
ior by default, and it will guarantee that the IRS solver always provide the good solution. This function
is provided because we provided cusolverDnIRSParamsDisableFallback which allows the user to
disable the fallback and thus this function allow the user to re-enable it.

8.4. cuSolverDN: dense LAPACK Function Reference 49

cuSOLVER, Release 12.8

Parameter Memory In/out Meaning

params host in∕out The cusolverDnIRSParams_t Params structure

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_IRS_PARAMS_NOT_INITIALIZED
The Params structure was not created.

8.4.1.38 cusolverDnIRSParamsDisableFallback()

cusolverStatus_t
cusolverDnIRSParamsDisableFallback(

cusolverDnIRSParams_t params);

This function disables the fallback to the main precision in case the Iterative Refinement Solver (IRS)
failed to converge. In other term, if the IRS solver failed to converge, the solver will return a no con-
vergence code (e.g., niter < 0), but can either return the non-convergent solution as it is (e.g., disable
fallback) or can fallback (e.g., enable fallback) to the main precision (which is the precision of the In-
puts/Outputs data) and solve the problem from scratch returning the good solution. This function
disables the fallback and the returned solution is whatever the refinement solver was able to reach
before it returns. Disabling fallback does not guarantee that the solution is the good one. However, if
users want to keep getting the solution of the lower precision in case the IRS did not converge after
certain number of iterations, they need to disable the fallback. The user can re-enable it by calling
cusolverDnIRSParamsEnableFallback.

Parameter Memory In/out Meaning

params host in∕out The cusolverDnIRSParams_t Params structure

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_IRS_PARAMS_NOT_INITIALIZED
The Params structure was not created.

8.4.1.39 cusolverDnIRSParamsGetMaxIters()

cusolverStatus_t
cusolverDnIRSParamsGetMaxIters(

cusolverDnIRSParams_t params,
cusolver_int_t *maxiters);

This function returns the current setting in the params structure for the maximal allowed number of
iterations (for example, either the default MaxIters, or the one set by the user in case he set it us-
ing cusolverDnIRSParamsSetMaxIters). Note that this function returns the current setting in the
params configuration and not to be confused with the cusolverDnIRSInfosGetMaxIters which

50 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

return the maximal allowed number of iterations for a particular call to an IRS solver. To be clearer, the
params structure can be used formany calls to an IRS solver. A user can change the allowed MaxIters
between calls while the Infos structure in cusolverDnIRSInfosGetMaxIters contains information
about a particular call and cannot be reused for different calls, and thus, cusolverDnIRSInfosGet-
MaxIters returns the allowed MaxIters for that call.

Parameter Memory In/out Meaning

params host in The cusolverDnIRSParams_t Params structure.

maxiters host output The maximal number of iterations that is currently set.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_IRS_PARAMS_NOT_INITIALIZED
The Params structure was not created.

8.4.1.40 cusolverDnIRSInfosCreate()

cusolverStatus_t
cusolverDnIRSInfosCreate(

cusolverDnIRSInfos_t* infos)

This function creates and initializes the Infos structure that will hold the refinement information of
an Iterative Refinement Solver (IRS) call. Such information includes the total number of iterations
that was needed to converge (Niters), the outer number of iterations (meaningful when two-levels
preconditioner such as CUSOLVER_IRS_REFINE_CLASSICAL_GMRES is used), the maximal number of
iterations that was allowed for that call, and a pointer to thematrix of the convergence history residual
norms. The Infos structure needs to be created before a call to an IRS solver. The Infos structure
is valid for only one call to an IRS solver, since it holds info about that solve and thus each solve will
requires its own Infos structure.

Parameter Memory In/out Meaning

info host output Pointer to the cusolverDnIRSInfos_t Infos structure.

Status Returned

CUSOLVER_STATUS_SUCCESS
The structure was initialized successfully.

CUSOLVER_STATUS_ALLOC_FAILED
The resources could not be allocated.

8.4. cuSolverDN: dense LAPACK Function Reference 51

cuSOLVER, Release 12.8

8.4.1.41 cusolverDnIRSInfosDestroy()

cusolverStatus_t
cusolverDnIRSInfosDestroy(

cusolverDnIRSInfos_t infos);

This function destroys and releases any memory required by the Infos structure. This function de-
stroys all the information (for example, Niters performed, OuterNiters performed, residual history etc.)
about a solver call; thus, this function should only be called after the user is finished with the informa-
tion.

Parameter Memory In/out Meaning

info host in∕out The cusolverDnIRSInfos_t Infos structure.

Status Returned

CUSOLVER_STATUS_SUCCESS
The resources were released successfully.

CUSOLVER_STATUS_IRS_INFOS_NOT_INITIALIZED
The Infos structure was not created.

8.4.1.42 cusolverDnIRSInfosGetMaxIters()

cusolverStatus_t
cusolverDnIRSInfosGetMaxIters(

cusolverDnIRSInfos_t infos,
cusolver_int_t *maxiters);

This function returns themaximal allowed number of iterations that was set for the corresponding call
to the IRS solver. Note that this function returns the setting that was set when that call happened and
is not to be confused with the cusolverDnIRSParamsGetMaxIters which returns the current set-
ting in the params configuration structure. To be clearer, the params structure can be used for many
calls to an IRS solver. A user can change the allowed MaxIters between calls while the Infos struc-
ture in cusolverDnIRSInfosGetMaxIters contains information about a particular call and cannot
be reused for different calls, thus cusolverDnIRSInfosGetMaxIters returns the allowed MaxIters
for that call.

Parameter Memory In/out Meaning

infos host in The cusolverDnIRSInfos_t Infos structure.

maxiters host output The maximal number of iterations that is currently set.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_IRS_INFOS_NOT_INITIALIZED
The Infos structure was not created.

52 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

8.4.1.43 cusolverDnIRSInfosGetNiters()

cusolverStatus_t cusolverDnIRSInfosGetNiters(
cusolverDnIRSInfos_t infos,
cusolver_int_t *niters);

This function returns the total number of iterations performed by the IRS solver. If it was negative,
it means that the IRS solver did not converge and if the user did not disable the fallback to full pre-
cision, then the fallback to a full precision solution happened and solution is good. Please refer to
the description of negative niters values in the corresponding IRS linear solver functions such as
cusolverDnXgesv() or cusolverDnXgels().

Parameter Memory In/out Meaning

infos host in The cusolverDnIRSInfos_t Infos structure.

niters host output The total number of iterations performed by the IRS solver.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_IRS_INFOS_NOT_INITIALIZED
The Infos structure was not created.

8.4.1.44 cusolverDnIRSInfosGetOuterNiters()

cusolverStatus_t
cusolverDnIRSInfosGetOuterNiters(

cusolverDnIRSInfos_t infos,
cusolver_int_t *outer_niters);

This function returns the number of iterations performed by the outer refinement loop
of the IRS solver. When the refinement solver consists of a one-level solver such as
CUSOLVER_IRS_REFINE_CLASSICAL or CUSOLVER_IRS_REFINE_GMRES, it is the same
as Niters. When the refinement solver consists of a two-levels solver such as CU-
SOLVER_IRS_REFINE_CLASSICAL_GMRES or CUSOLVER_IRS_REFINE_GMRES_GMRES, it is the
number of iterations of the outer loop. Refer to the description of the cusolverIRSRefinement_t for
more details.

Parameter Mem-
ory

In/out Meaning

infos host in The cusolverDnIRSInfos_t Infos structure.

outer_niters host out-
put

The number of iterations of the outer refinement loop of the IRS
solver.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

8.4. cuSolverDN: dense LAPACK Function Reference 53

cuSOLVER, Release 12.8

CUSOLVER_STATUS_IRS_INFOS_NOT_INITIALIZED
The Infos structure was not created.

8.4.1.45 cusolverDnIRSInfosRequestResidual()

cusolverStatus_t cusolverDnIRSInfosRequestResidual(
cusolverDnIRSInfos_t infos);

This function tells the IRS solver to store the convergence history (residual norms) of the refinement
phase in amatrix that can be accessed via a pointer returnedby thecusolverDnIRSInfosGetResid-
ualHistory() function.

Parameter Memory In/out Meaning

infos host in The cusolverDnIRSInfos_t Infos structure

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_IRS_INFOS_NOT_INITIALIZED
The Infos structure was not created.

8.4.1.46 cusolverDnIRSInfosGetResidualHistory()

cusolverStatus_t
cusolverDnIRSInfosGetResidualHistory(

cusolverDnIRSInfos_t infos,
void **residual_history);

If the user called cusolverDnIRSInfosRequestResidual() before the call to the IRS function, then
the IRS solver will store the convergence history (residual norms) of the refinement phase in a matrix
that can be accessed via a pointer returned by this function. The datatype of the residual norms de-
pends on the input and output data type. If the Inputs/Outputs datatype is double precision real or
complex (CUSOLVER_R_FP64 or CUSOLVER_C_FP64), this residual will be of type real double preci-
sion (FP64) double, otherwise if the Inputs/Outputs datatype is single precision real or complex (CU-
SOLVER_R_FP32 or CUSOLVER_C_FP32), this residual will be real single precision FP32 float.

The residual history matrix consists of two columns (even for the multiple right-hand side case NRHS)
of MaxIters+1 row, thus a matrix of size (MaxIters+1,2). Only the first OuterNiters+1 rows con-
tains the residual norms the other (e.g., OuterNiters+2:Maxiters+1) are garbage. On the first column,
each row “i” specify the total number of iterations happened till this outer iteration “i” and on the sec-
ond columns the residual norm corresponding to this outer iteration “i”. Thus, the first row (e.g., outer
iteration “0”) consists of the initial residual (e.g., the residual before the refinement loop start) then
the consecutive rows are the residual obtained at each outer iteration of the refinement loop. Note, it
only consists of the history of the outer loop.

If the refinement solver was CUSOLVER_IRS_REFINE_CLASSICAL or CUSOLVER_IRS_REFINE_GMRES,
thenOuterNiters=Niters (Niters is the total number of iterations performed) and there is Niters+1 rows
of norms that correspond to the Niters outer iterations.

If the refinement solver was CUSOLVER_IRS_REFINE_CLASSICAL_GMRES or CU-
SOLVER_IRS_REFINE_GMRES_GMRES, then OuterNiters <= Niters corresponds to the outer iterations

54 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

performed by the outer refinement loop. Thus, there is OuterNiters+1 residual norms where row “i”
correspond to the outer iteration “i” and the first column specify the total number of iterations (outer
and inner) that were performed till this step the second columns correspond to the residual norm at
this step.

For example, let’s say the user specifies CUSOLVER_IRS_REFINE_CLASSICAL_GMRES as a refinement
solver and say it needed 3 outer iterations to converge and 4,3,3 inner iterations at each outer, re-
spectively. This consists of 10 total iterations. Row 0 corresponds to the first residual before the
refinement start, so it has 0 in its first column. On row 1 which corresponds to the outer iteration 1,
it will be 4 (4 is the total number of iterations that were performed till now), on row 2 it will be 7, and
on row 3 it will be 10.

In summary, let’s define ldh=Maxiters+1, the leading dimension of the residual matrix. then resid-
ual_history[i] shows the total number of iterations performed at the outer iteration “i” and
residual_history[i+ldh] corresponds to the norm of the residual at this outer iteration.

Parameter Mem-
ory

In/out Meaning

infos host in The cusolverDnIRSInfos_t Infos structure.

resid-
ual_history

host out-
put

Returns a void pointer to the matrix of the convergence history
residual norms. See the description above for the relation between
the residual norm datatype and the inout datatype.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_IRS_INFOS_NOT_INITIALIZED
The Infos structure was not created

CUSOLVER_STATUS_INVALID_VALUE
This functionwas calledwithout calling cusolverDnIRSInfosRequestResidual() in advance.

8.4.1.47 cusolverDnCreateParams()

cusolverStatus_t
cusolverDnCreateParams(

cusolverDnParams_t *params);

This function creates and initializes the structure of 64-bit API to default values.

Parameter Memory In/out Meaning

params host output The pointer to the structure of 64-bit API.

Status Returned

CUSOLVER_STATUS_SUCCESS
The structure was initialized successfully.

CUSOLVER_STATUS_ALLOC_FAILED
The resources could not be allocated.

8.4. cuSolverDN: dense LAPACK Function Reference 55

cuSOLVER, Release 12.8

8.4.1.48 cusolverDnDestroyParams()

cusolverStatus_t
cusolverDnDestroyParams(

cusolverDnParams_t params);

This function destroys and releases any memory required by the structure.

Parameter Memory In/out Meaning

params host input The structure of 64-bit API.

Status Returned

CUSOLVER_STATUS_SUCCESS
The resources were released successfully.

8.4.1.49 cusolverDnSetAdvOptions()

cusolverStatus_t
cusolverDnSetAdvOptions (

cusolverDnParams_t params,
cusolverDnFunction_t function,
cusolverAlgMode_t algo);

This function configures algorithm algo of function, a 64-bit API routine.

Parameter Memory In/out Meaning

params host in∕out The pointer to the structure of 64-bit API.

function host input The routine to be configured.

algo host input The algorithm to be configured.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_INVALID_VALUE
Wrong combination of function and algo.

8.4.2. Dense Linear Solver Reference (legacy)

This section describes linear solver API of cuSolverDN, including Cholesky factorization, LUwith partial
pivoting, QR factorization and Bunch-Kaufman (LDLT) factorization.

56 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

8.4.2.1 cusolverDn<t>potrf()

These helper functions calculate the necessary size of work buffers.

cusolverStatus_t
cusolverDnSpotrf_bufferSize(cusolverDnHandle_t handle,

cublasFillMode_t uplo,
int n,
float *A,
int lda,
int *Lwork);

cusolverStatus_t
cusolverDnDpotrf_bufferSize(cusolverDnHandle_t handle,

cublasFillMode_t uplo,
int n,
double *A,
int lda,
int *Lwork);

cusolverStatus_t
cusolverDnCpotrf_bufferSize(cusolverDnHandle_t handle,

cublasFillMode_t uplo,
int n,
cuComplex *A,
int lda,
int *Lwork);

cusolverStatus_t
cusolverDnZpotrf_bufferSize(cusolverDnHandle_t handle,

cublasFillMode_t uplo,
int n,
cuDoubleComplex *A,
int lda,
int *Lwork);

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSpotrf(cusolverDnHandle_t handle,

cublasFillMode_t uplo,
int n,
float *A,
int lda,
float *Workspace,
int Lwork,
int *devInfo);

cusolverStatus_t
cusolverDnDpotrf(cusolverDnHandle_t handle,

cublasFillMode_t uplo,
int n,
double *A,
int lda,
double *Workspace,
int Lwork,
int *devInfo);

The C and Z data types are complex valued single and double precision, respectively.

8.4. cuSolverDN: dense LAPACK Function Reference 57

cuSOLVER, Release 12.8

cusolverStatus_t
cusolverDnCpotrf(cusolverDnHandle_t handle,

cublasFillMode_t uplo,
int n,
cuComplex *A,
int lda,
cuComplex *Workspace,
int Lwork,
int *devInfo);

cusolverStatus_t
cusolverDnZpotrf(cusolverDnHandle_t handle,

cublasFillMode_t uplo,
int n,
cuDoubleComplex *A,
int lda,
cuDoubleComplex *Workspace,
int Lwork,
int *devInfo);

This function computes the Cholesky factorization of a Hermitian positive-definite matrix.

A is an n × n Hermitian matrix, only the lower or upper part is meaningful. The input parameter uplo
indicates which part of the matrix is used. The function would leave other parts untouched.

If input parameteruplo isCUBLAS_FILL_MODE_LOWER, only the lower triangular part ofA is processed,
and replaced by the lower triangular Cholesky factor L.

A = L ∗ LH

If input parameter uplo is CUBLAS_FILL_MODE_UPPER, only upper triangular part of A is processed,
and replaced by upper triangular Cholesky factor U.

A = UH ∗ U

The user has to provide working space which is pointed by input parameter Workspace. The input
parameter Lwork is size of the working space, and it is returned by potrf_bufferSize().

If Cholesky factorization failed, i.e. some leading minor of A is not positive definite, or equivalently
some diagonal elements of L or U is not a real number. The output parameter devInfo would indicate
smallest leading minor of A which is not positive definite.

If output parameterdevInfo = -i (less than zero), thei-thparameter iswrong (not counting handle).

Table 2: API of potrf

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

uplo host input Indicates ifmatrix A lower or upper part is stored;
the other part is not referenced.

n host input Number of rows and columns of matrix A.

A device in∕out <type> array of dimension lda * n with lda is
not less than max(1,n).

continues on next page

58 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

Table 2 – continued from previous page

Parameter Memory In/out Meaning

lda host input Leading dimension of two-dimensional array
used to store matrix A.

Workspace device in∕out Working space, <type> array of size Lwork.

Lwork host input Size of Workspace, returned by
potrf_bufferSize.

devInfo device output If devInfo = 0, the Cholesky factorization is
successful. if devInfo = -i, the i-th param-
eter is wrong (not counting handle). if devInfo
= i, the leading minor of order i is not positive
definite.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (n<0 or lda<max(1,n)).

CUSOLVER_STATUS_ARCH_MISMATCH
The device only supports compute capability 5.0 and above.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.4.2.2 cusolverDnPotrf() [DEPRECATED]

[[DEPRECATED]] use cusolverDnXpotrf() instead. The routine will be removed in the next major
release.

The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnPotrf_bufferSize(

cusolverDnHandle_t handle,
cusolverDnParams_t params,
cublasFillMode_t uplo,
int64_t n,
cudaDataType dataTypeA,
const void *A,
int64_t lda,
cudaDataType computeType,
size_t *workspaceInBytes)

The routine below

cusolverStatus_t
cusolverDnPotrf(

(continues on next page)

8.4. cuSolverDN: dense LAPACK Function Reference 59

cuSOLVER, Release 12.8

(continued from previous page)

cusolverDnHandle_t handle,
cusolverDnParams_t params,
cublasFillMode_t uplo,
int64_t n,
cudaDataType dataTypeA,
void *A,
int64_t lda,
cudaDataType computeType,
void *pBuffer,
size_t workspaceInBytes,
int *info)

Computes the Cholesky factorization of a Hermitian positive-definite matrix using the generic API
interface.

A is an n × n Hermitian matrix, only lower or upper part is meaningful. The input parameter uplo
indicates which part of the matrix is used. The function would leave other part untouched.

If input parameter uplo is CUBLAS_FILL_MODE_LOWER, only lower triangular part of A is processed,
and replaced by lower triangular Cholesky factor L.

A = L ∗ LH

If input parameter uplo is CUBLAS_FILL_MODE_UPPER, only upper triangular part of A is processed,
and replaced by upper triangular Cholesky factor U.

A = UH ∗ U

The user has to provide working space which is pointed by input parameter pBuffer. The input pa-
rameter workspaceInBytes is size in bytes of the working space, and it is returned by cusolverD-
nPotrf_bufferSize().

If Cholesky factorization failed, i.e. some leading minor of A is not positive definite, or equivalently
some diagonal elements of L or U is not a real number. The output parameter info would indicate
smallest leading minor of A which is not positive definite.

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting handle).

Currently, cusolverDnPotrf supports only the default algorithm.

Table 3: Algorithms supported by cusolverDnPotrf

CUSOLVER_ALG_0 or NULL Default algorithm.

List of input arguments for cusolverDnPotrf_bufferSize and cusolverDnPotrf:

Table 4: API of potrf

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

params host input Structure with information collected by cu-
solverDnSetAdvOptions.

continues on next page

60 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

Table 4 – continued from previous page

Parameter Memory In/out Meaning

uplo host input Indicates ifmatrix A lower or upper part is stored,
the other part is not referenced.

n host input Number of rows and columns of matrix A.

dataTypeA host in Data type of array A.

A device in∕out Array of dimension lda * n with lda is not less
than max(1,n).

lda host input Leading dimension of two-dimensional array
used to store matrix A.

computeType host in Data type of computation.

pBuffer device in∕out Working space. Array of type void of size
workspaceInBytes bytes.

workspaceIn-
Bytes

host input Size in bytes of pBuffer, returned by cu-
solverDnPotrf_bufferSize.

info device output If info = 0, the Cholesky factorization is suc-
cessful. if info = -i, the i-th parameter is
wrong (not counting handle). if info = i, the
leading minor of order i is not positive definite.

The generic API has two different types, dataTypeA is data type of the matrix A, computeType is
compute type of the operation. cusolverDnPotrf only supports the following four combinations.

Valid combination of data type and compute type

DataTypeA ComputeType Meaning

CUDA_R_32F CUDA_R_32F SPOTRF

CUDA_R_64F CUDA_R_64F DPOTRF

CUDA_C_32F CUDA_C_32F CPOTRF

CUDA_C_64F CUDA_C_64F ZPOTRF

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (n<0 or lda<max(1,n)).

CUSOLVER_STATUS_ARCH_MISMATCH
The device only supports compute capability 5.0 and above.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.4. cuSolverDN: dense LAPACK Function Reference 61

cuSOLVER, Release 12.8

8.4.2.3 cusolverDn<t>potrs()

cusolverStatus_t
cusolverDnSpotrs(cusolverDnHandle_t handle,

cublasFillMode_t uplo,
int n,
int nrhs,
const float *A,
int lda,
float *B,
int ldb,
int *devInfo);

cusolverStatus_t
cusolverDnDpotrs(cusolverDnHandle_t handle,

cublasFillMode_t uplo,
int n,
int nrhs,
const double *A,
int lda,
double *B,
int ldb,
int *devInfo);

cusolverStatus_t
cusolverDnCpotrs(cusolverDnHandle_t handle,

cublasFillMode_t uplo,
int n,
int nrhs,
const cuComplex *A,
int lda,
cuComplex *B,
int ldb,
int *devInfo);

cusolverStatus_t
cusolverDnZpotrs(cusolverDnHandle_t handle,

cublasFillMode_t uplo,
int n,
int nrhs,
const cuDoubleComplex *A,
int lda,
cuDoubleComplex *B,
int ldb,
int *devInfo);

This function solves a system of linear equations

A ∗X = B

where A is an n×nHermitianmatrix, only lower or upper part is meaningful. The input parameter uplo
indicates which part of the matrix is used. The function would leave other part untouched.

The user has to call potrf first to factorize matrix A. If input parameter uplo is
CUBLAS_FILL_MODE_LOWER, A is lower triangular Cholesky factor L corresponding to A = L ∗ LH

. If input parameter uplo is CUBLAS_FILL_MODE_UPPER, A is upper triangular Cholesky factor U
corresponding to A = UH ∗ U .

The operation is in-place, i.e. matrix X overwrites matrix B with the same leading dimension ldb.

62 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

If output parameterdevInfo = -i (less than zero), thei-thparameter iswrong (not counting handle).

Table 5: API of potrs

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

uplo host input Indicates ifmatrix A lower or upper part is stored,
the other part is not referenced.

n host input Number of rows and columns of matrix A.

nrhs host input Number of columns of matrix X and B.

A device input <type> array of dimension lda * n with lda
is not less than max(1,n). A is either lower
Cholesky factor L or upper Cholesky factor U.

lda host input Leading dimension of two-dimensional array
used to store matrix A.

B device in∕out <type> array of dimension ldb * nrhs. ldb is
not less than max(1,n). As an input, B is right
hand side matrix. As an output, B is the solution
matrix.

devInfo device output If devInfo = 0, the Cholesky factorization is
successful. if devInfo = -i, the i-th parame-
ter is wrong (not counting handle).

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (n<0, nrhs<0, lda<max(1,n) or ldb<max(1,n)).

CUSOLVER_STATUS_ARCH_MISMATCH
The device only supports compute capability 5.0 and above.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.4.2.4 cusolverDnPotrs() [DEPRECATED]

[[DEPRECATED]] use cusolverDnXpotrs() instead. The routine will be removed in the next major
release.

cusolverStatus_t
cusolverDnPotrs(

cusolverDnHandle_t handle,
cusolverDnParams_t params,
cublasFillMode_t uplo,

(continues on next page)

8.4. cuSolverDN: dense LAPACK Function Reference 63

cuSOLVER, Release 12.8

(continued from previous page)

int64_t n,
int64_t nrhs,
cudaDataType dataTypeA,
const void *A,
int64_t lda,
cudaDataType dataTypeB,
void *B,
int64_t ldb,
int *info)

This function solves a system of linear equations

A ∗X = B

where A is a n × n Hermitian matrix, only lower or upper part is meaningful using the generic API
interface. The input parameter uplo indicates which part of the matrix is used. The function would
leave other part untouched.

The user has to call cusolverDnPotrf first to factorize matrix A. If input parameter uplo is
CUBLAS_FILL_MODE_LOWER, A is lower triangular Cholesky factor L corresponding to A = L ∗ LH .
If input parameter uplo is CUBLAS_FILL_MODE_UPPER, A is upper triangular Cholesky factor U corre-
sponding to A = UH ∗ U .

The operation is in-place, i.e. matrix X overwrites matrix B with the same leading dimension ldb.

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting handle).

Currently, cusolverDnPotrs supports only the default algorithm.

Table 6: Algorithms supported by cusolverDnPotrs

CUSOLVER_ALG_0 or NULL Default algorithm.

List of input arguments for cusolverDnPotrs:

Table 7: API of potrs (deprecated)

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

params host input Structure with information collected by cu-
solverDnSetAdvOptions.

uplo host input Indicates ifmatrix A lower or upper part is stored,
the other part is not referenced.

n host input Number of rows and columns of matrix A.

nrhs host input Number of columns of matrix X and B.

dataTypeA host in Data type of array A.

A device input Array of dimension lda * n with lda is not less
than max(1,n). A is either lower Cholesky factor
L or upper Cholesky factor U.

continues on next page

64 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

Table 7 – continued from previous page

Parameter Memory In/out Meaning

lda host input Leading dimension of two-dimensional array
used to store matrix A.

dataTypeB host in Data type of array B.

B device in∕out Array of dimension ldb * nrhs. ldb is not less
than max(1,n). As an input, B is right hand side
matrix. As an output, B is the solution matrix.

info device output If info = 0, the Cholesky factorization is suc-
cessful. if info = -i, the i-th parameter is
wrong (not counting handle).

The generic API has two different types, dataTypeA is data type of the matrix A, dataTypeB is data
type of the matrix B. cusolverDnPotrs only supports the following four combinations.

Valid combination of data type and compute type

dataTypeA dataTypeB Meaning

CUDA_R_32F CUDA_R_32F SPOTRS

CUDA_R_64F CUDA_R_64F DPOTRS

CUDA_C_32F CUDA_C_32F CPOTRS

CUDA_C_64F CUDA_C_64F ZPOTRS

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (n<0, nrhs<0, lda<max(1,n) or ldb<max(1,n)).

CUSOLVER_STATUS_ARCH_MISMATCH
The device only supports compute capability 5.0 and above.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.4. cuSolverDN: dense LAPACK Function Reference 65

cuSOLVER, Release 12.8

8.4.2.5 cusolverDn<t>potri()

These helper functions calculate the necessary size of work buffers.

cusolverStatus_t
cusolverDnSpotri_bufferSize(cusolverDnHandle_t handle,

cublasFillMode_t uplo,
int n,
float *A,
int lda,
int *Lwork);

cusolverStatus_t
cusolverDnDpotri_bufferSize(cusolverDnHandle_t handle,

cublasFillMode_t uplo,
int n,
double *A,
int lda,
int *Lwork);

cusolverStatus_t
cusolverDnCpotri_bufferSize(cusolverDnHandle_t handle,

cublasFillMode_t uplo,
int n,
cuComplex *A,
int lda,
int *Lwork);

cusolverStatus_t
cusolverDnZpotri_bufferSize(cusolverDnHandle_t handle,

cublasFillMode_t uplo,
int n,
cuDoubleComplex *A,
int lda,
int *Lwork);

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSpotri(cusolverDnHandle_t handle,

cublasFillMode_t uplo,
int n,
float *A,
int lda,
float *Workspace,
int Lwork,
int *devInfo);

cusolverStatus_t
cusolverDnDpotri(cusolverDnHandle_t handle,

cublasFillMode_t uplo,
int n,
double *A,
int lda,
double *Workspace,
int Lwork,
int *devInfo);

The C and Z data types are complex valued single and double precision, respectively.

66 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

cusolverStatus_t
cusolverDnCpotri(cusolverDnHandle_t handle,

cublasFillMode_t uplo,
int n,
cuComplex *A,
int lda,
cuComplex *Workspace,
int Lwork,
int *devInfo);

cusolverStatus_t
cusolverDnZpotri(cusolverDnHandle_t handle,

cublasFillMode_t uplo,
int n,
cuDoubleComplex *A,
int lda,
cuDoubleComplex *Workspace,
int Lwork,
int *devInfo);

This function computes the inverse of a positive-definite matrix A using the Cholesky factorization

A = L ∗ LH = UH ∗ U

computed by potrf().

A is an n×nmatrix containing the triangular factor L or U computed by the Cholesky factorization. Only
lower or upper part is meaningful and the input parameter uplo indicates which part of the matrix is
used. The function would leave the other part untouched.

If the input parameteruplo isCUBLAS_FILL_MODE_LOWER, only lower triangular part ofA is processed,
and replaced the by lower triangular part of the inverse of A.

If the input parameter uplo is CUBLAS_FILL_MODE_UPPER, only upper triangular part of A is pro-
cessed, and replaced by the upper triangular part of the inverse of A.

The user has to provide the working space which is pointed to by input parameter Workspace. The
input parameter Lwork is the size of the working space, returned by potri_bufferSize().

If the computation of the inverse fails, i.e. some leading minor of L or U, is null, the output parameter
devInfo would indicate the smallest leading minor of L or U which is not positive definite.

If the output parameter devInfo = -i (less than zero), the i-th parameter is wrong (not counting
the handle).

Table 8: API of potri

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

uplo host input Indicates ifmatrix A lower or upper part is stored,
the other part is not referenced.

n host input Number of rows and columns of matrix A.

A device in∕out <type> array of dimension lda * nwhere lda is
not less than max(1,n).

continues on next page

8.4. cuSolverDN: dense LAPACK Function Reference 67

cuSOLVER, Release 12.8

Table 8 – continued from previous page

Parameter Memory In/out Meaning

lda host input Leading dimension of two-dimensional array
used to store matrix A.

Workspace device in∕out Working space, <type> array of size Lwork.

Lwork host input Size of Workspace, returned by
potri_bufferSize.

devInfo device output If devInfo = 0, the computation of the inverse
is successful. if devInfo = -i, the i-th param-
eter is wrong (not counting handle). if devInfo
= i, the leading minor of order i is zero.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (n<0 or lda<max(1,n)).

CUSOLVER_STATUS_ARCH_MISMATCH
The device only supports compute capability 5.0 and above.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.4.2.6 cusolverDn<t>getrf()

These helper functions calculate the size of work buffers needed.

Please visit cuSOLVER Library Samples - getrf for a code example.

cusolverStatus_t
cusolverDnSgetrf_bufferSize(cusolverDnHandle_t handle,

int m,
int n,
float *A,
int lda,
int *Lwork);

cusolverStatus_t
cusolverDnDgetrf_bufferSize(cusolverDnHandle_t handle,

int m,
int n,
double *A,
int lda,
int *Lwork);

cusolverStatus_t
cusolverDnCgetrf_bufferSize(cusolverDnHandle_t handle,

int m,
(continues on next page)

68 Chapter 8. Using the CUSOLVER API

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/getrf

cuSOLVER, Release 12.8

(continued from previous page)

int n,
cuComplex *A,
int lda,
int *Lwork);

cusolverStatus_t
cusolverDnZgetrf_bufferSize(cusolverDnHandle_t handle,

int m,
int n,
cuDoubleComplex *A,
int lda,
int *Lwork);

The S and D data types are real single and double precision, respectively.

cusolverStatus_t
cusolverDnSgetrf(cusolverDnHandle_t handle,

int m,
int n,
float *A,
int lda,
float *Workspace,
int *devIpiv,
int *devInfo);

cusolverStatus_t
cusolverDnDgetrf(cusolverDnHandle_t handle,

int m,
int n,
double *A,
int lda,
double *Workspace,
int *devIpiv,
int *devInfo);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCgetrf(cusolverDnHandle_t handle,

int m,
int n,
cuComplex *A,
int lda,
cuComplex *Workspace,
int *devIpiv,
int *devInfo);

cusolverStatus_t
cusolverDnZgetrf(cusolverDnHandle_t handle,

int m,
int n,
cuDoubleComplex *A,
int lda,
cuDoubleComplex *Workspace,
int *devIpiv,
int *devInfo);

8.4. cuSolverDN: dense LAPACK Function Reference 69

cuSOLVER, Release 12.8

This function computes the LU factorization of anm× nmatrix

P ∗A = L ∗ U

where A is anm× nmatrix, P is a permutation matrix, L is a lower triangular matrix with unit diagonal,
and U is an upper triangular matrix.

The user has to provide working space which is pointed by input parameter Workspace. The input
parameter Lwork is size of the working space, and it is returned by getrf_bufferSize().

If LU factorization failed, i.e. matrix A (U) is singular, The output parameter devInfo=i indicates U(i,
i) = 0.

If output parameterdevInfo = -i (less than zero), thei-thparameter iswrong (not counting handle).

If devIpiv is null, no pivoting is performed. The factorization is A=L*U, which is not numerically stable.

No matter LU factorization failed or not, the output parameter devIpiv contains pivoting sequence,
row i is interchanged with row devIpiv(i).

The user can combine getrf and getrs to complete a linear solver.

Remark: getrf uses fastest implementation with large workspace of size m*n. The
user can choose the legacy implementation with minimal workspace by Getrf and
cusolverDnSetAdvOptions(params, CUSOLVERDN_GETRF, CUSOLVER_ALG_1).

Table 9: API of getrf

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

m host input Number of rows of matrix A.

n host input Number of columns of matrix A.

A device in∕out <type> array of dimension lda * n with lda is
not less than max(1,m).

lda host input Leading dimension of two-dimensional array
used to store matrix A.

Workspace device in∕out Working space, <type> array of size Lwork.

devIpiv device output Array of size at least min(m,n), containing pivot
indices.

devInfo device output If devInfo = 0, the LU factorization is success-
ful. if devInfo = -i, the i-th parameter is
wrong (not counting handle). if devInfo = i,
the U(i,i) = 0.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (m,n<0 or lda<max(1,m)).

70 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

CUSOLVER_STATUS_ARCH_MISMATCH
The device only supports compute capability 5.0 and above.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.4.2.7 cusolverDnGetrf() [DEPRECATED]

[[DEPRECATED]] use cusolverDnXgetrf() instead. The routine will be removed in the next major
release.

The helper function below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnGetrf_bufferSize(

cusolverDnHandle_t handle,
cusolverDnParams_t params,
int64_t m,
int64_t n,
cudaDataType dataTypeA,
const void *A,
int64_t lda,
cudaDataType computeType,
size_t *workspaceInBytes)

The following function:

cusolverStatus_t
cusolverDnGetrf(

cusolverDnHandle_t handle,
cusolverDnParams_t params,
int64_t m,
int64_t n,
cudaDataType dataTypeA,
void *A,
int64_t lda,
int64_t *ipiv,
cudaDataType computeType,
void *pBuffer,
size_t workspaceInBytes,
int *info)

computes the LU factorization of am× nmatrix

P ∗A = L ∗ U

where A is anm× nmatrix, P is a permutation matrix, L is a lower triangular matrix with unit diagonal,
and U is an upper triangular matrix using the generic API interface.

If LU factorization failed, i.e. matrix A (U) is singular, The output parameter info=i indicates U(i,i)
= 0.

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting handle).

If ipiv is null, no pivoting is performed. The factorization is A=L*U, which is not numerically stable.

No matter LU factorization failed or not, the output parameter ipiv contains pivoting sequence, row
i is interchanged with row ipiv(i).

8.4. cuSolverDN: dense LAPACK Function Reference 71

cuSOLVER, Release 12.8

The user has to provide working space which is pointed by input parameter pBuffer. The input pa-
rameter workspaceInBytes is size in bytes of the working space, and it is returned by cusolverD-
nGetrf_bufferSize().

The user can combine cusolverDnGetrf and cusolverDnGetrs to complete a linear solver.

Currently, cusolverDnGetrf supports two algorithms. To select legacy implementation, the user has
to call cusolverDnSetAdvOptions.

Table 10: Algorithms supported by cusolverDnGetrf

CUSOLVER_ALG_0 or
NULL

Default algorithm. The fastest, requires a large workspace of m*n ele-
ments.

CUSOLVER_ALG_1 Legacy implementation

List of input arguments for cusolverDnGetrf_bufferSize and cusolverDnGetrf:

Table 11: API of cusolverDnGetrf

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

params host input Structure with information collected by cu-
solverDnSetAdvOptions.

m host input Number of rows of matrix A.

n host input Number of columns of matrix A.

dataTypeA host in Data type of array A.

A device in∕out <type> array of dimension lda * n with lda is
not less than max(1,m).

lda host input Leading dimension of two-dimensional array
used to store matrix A.

ipiv device output Array of size at least min(m,n), containing pivot
indices.

computeType host in Data type of computation.

pBuffer device in∕out Working space. Array of type void of size
workspaceInBytes bytes.

workspaceIn-
Bytes

host input Size in bytes of pBuffer, returned by cu-
solverDnGetrf_bufferSize.

info device output If info = 0, the LU factorization is successful.
if info = -i, the i-th parameter is wrong (not
counting handle). if info = i, the U(i,i) = 0.

The generic API has two different types, dataTypeA is data type of the matrix A, computeType is
compute type of the operation. cusolverDnGetrf only supports the following four combinations.

valid combination of data type and compute type

72 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

DataTypeA ComputeType Meaning

CUDA_R_32F CUDA_R_32F SGETRF

CUDA_R_64F CUDA_R_64F DGETRF

CUDA_C_32F CUDA_C_32F CGETRF

CUDA_C_64F CUDA_C_64F ZGETRF

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (m,n<0 or lda<max(1,m)).

CUSOLVER_STATUS_ARCH_MISMATCH
The device only supports compute capability 5.0 and above.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.4.2.8 cusolverDn<t>getrs()

Please visit cuSOLVER Library Samples - getrf for a code example.

cusolverStatus_t
cusolverDnSgetrs(cusolverDnHandle_t handle,

cublasOperation_t trans,
int n,
int nrhs,
const float *A,
int lda,
const int *devIpiv,
float *B,
int ldb,
int *devInfo);

cusolverStatus_t
cusolverDnDgetrs(cusolverDnHandle_t handle,

cublasOperation_t trans,
int n,
int nrhs,
const double *A,
int lda,
const int *devIpiv,
double *B,
int ldb,
int *devInfo);

cusolverStatus_t
cusolverDnCgetrs(cusolverDnHandle_t handle,

(continues on next page)

8.4. cuSolverDN: dense LAPACK Function Reference 73

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/getrf

cuSOLVER, Release 12.8

(continued from previous page)

cublasOperation_t trans,
int n,
int nrhs,
const cuComplex *A,
int lda,
const int *devIpiv,
cuComplex *B,
int ldb,
int *devInfo);

cusolverStatus_t
cusolverDnZgetrs(cusolverDnHandle_t handle,

cublasOperation_t trans,
int n,
int nrhs,
const cuDoubleComplex *A,
int lda,
const int *devIpiv,
cuDoubleComplex *B,
int ldb,
int *devInfo);

This function solves a linear system of multiple right-hand sides

op(A) ∗X = B

where A is an n × n matrix, and was LU-factored by getrf, that is, lower triangular part of A is L, and
upper triangular part (including diagonal elements) of A is U. B is an n× nrhs right-hand side matrix.

The input parameter trans is defined by

The input parameter devIpiv is an output of getrf. It contains pivot indices, which are used to
permutate right-hand sides.

If output parameterdevInfo = -i (less than zero), thei-thparameter iswrong (not counting handle).

The user can combine getrf and getrs to complete a linear solver.

74 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

trans host input Operation op(A) that is non- or (conj.) transpose.

n host input Number of rows and columns of matrix A.

nrhs host input Number of right-hand sides.

A device input <type> array of dimension lda * n with lda is not
less than max(1,n).

lda host input Leading dimension of two-dimensional array used to
store matrix A.

devIpiv device input Array of size at least n, containing pivot indices.

B device output <type> array of dimension ldb * nrhs with ldb is
not less than max(1,n).

ldb host input Leading dimension of two-dimensional array used to
store matrix B.

devInfo device output If devInfo = 0, the operation is successful. if dev-
Info = -i, the i-th parameter is wrong (not count-
ing handle).

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (n<0 or lda<max(1,n) or ldb<max(1,n)).

CUSOLVER_STATUS_ARCH_MISMATCH
The device only supports compute capability 5.0 and above.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.4.2.9 cusolverDnGetrs() [DEPRECATED]

[[DEPRECATED]] use cusolverDnXgetrs() instead. The routine will be removed in the next major
release.

cusolverStatus_t
cusolverDnGetrs(

cusolverDnHandle_t handle,
cusolverDnParams_t params,
cublasOperation_t trans,
int64_t n,
int64_t nrhs,
cudaDataType dataTypeA,
const void *A,

(continues on next page)

8.4. cuSolverDN: dense LAPACK Function Reference 75

cuSOLVER, Release 12.8

(continued from previous page)

int64_t lda,
const int64_t *ipiv,
cudaDataType dataTypeB,
void *B,
int64_t ldb,
int *info)

This function solves a linear system of multiple right-hand sides

op(A) ∗X = B

where A is an n × n matrix, and was LU-factored by cusolverDnGetrf, that is, lower triangular part
of A is L, and upper triangular part (including diagonal elements) of A is U. B is a n×nrhs :math:` times
nrhs` right-hand side matrix using the generic API interface.

The input parameter trans is defined by

The input parameter ipiv is an output of cusolverDnGetrf. It contains pivot indices, which are used
to permutate right-hand sides.

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting handle).

The user can combine cusolverDnGetrf and cusolverDnGetrs to complete a linear solver.

Currently, cusolverDnGetrs supports only the default algorithm.

Algorithms supported by cusolverDnGetrs

CUSOLVER_ALG_0 or NULL Default algorithm.

List of input arguments for cusolverDnGetrs:

76 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

params host input Structure with information collected by cu-
solverDnSetAdvOptions.

trans host input Operation op(A) that is non- or (conj.) trans-
pose.

n host input Number of rows and columns of matrix A.

nrhs host input Number of right-hand sides.

dataTypeA host in Data type of array A.

A device input Array of dimension lda * n with lda is not less
than max(1,n).

lda host input Leading dimension of two-dimensional array
used to store matrix A.

ipiv device input Array of size at least n, containing pivot indices.

dataTypeB host in Data type of array B.

B device output <type> array of dimension ldb * nrhswith ldb
is not less than max(1,n).

ldb host input Leading dimension of two-dimensional array
used to store matrix B.

info device output If info = 0, the operation is successful. if info
= -i, the i-th parameter is wrong (not counting
handle).

The generic API has two different types, dataTypeA is data type of the matrix A and dataTypeB is
data type of the matrix B. cusolverDnGetrs only supports the following four combinations.

Valid combination of data type and compute type

DataTypeA dataTypeB Meaning

CUDA_R_32F CUDA_R_32F SGETRS

CUDA_R_64F CUDA_R_64F DGETRS

CUDA_C_32F CUDA_C_32F CGETRS

CUDA_C_64F CUDA_C_64F ZGETRS

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (n<0 or lda<max(1,n) or ldb<max(1,n)).

8.4. cuSolverDN: dense LAPACK Function Reference 77

cuSOLVER, Release 12.8

CUSOLVER_STATUS_ARCH_MISMATCH
The device only supports compute capability 5.0 and above.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.4.2.10 cusolverDn<t1><t2>gesv()

These functions are modelled after functions DSGESV and ZCGESV from LAPACK. They compute the
solution of a system of linear equations with one or multiple right hand sides using mixed precision
iterative refinement techniques based on the LU factorization Xgesv. These functions are similar in
term of functionalities to the full precision LU solver (Xgesv, where X denotes Z,C,D,S) but it uses
lower precision internally in order to provide faster time to solution, from here comes the name mixed
precision. Mixed precision iterative refinement techniques means that the solver compute an LU fac-
torization in lower precision and then iteratively refine the solution to achieve the accuracy of the
Inputs/Outputs datatype precision. The <t1> corresponds to the Inputs/Outputs datatype precision
while <t2> represent the internal lower precision at which the factorization will be carried on.

A×X = B

Where A is n-by-nmatrix and X and B are n-by-nrhsmatrices.

Functions API are designed to be as close as possible to LAPACK API to be considered as a quick and
easy drop-in replacement. Parameters and behavior are mostly the same as LAPACK counterparts.
Description of these functions and differences from LAPACK is given below. <t1><t2>gesv() func-
tions are designated by two floating point precisions The <t1> corresponds to the main precision (e.g.,
Inputs/Outputs datatype precision) and the <t2> represent the internal lower precision at which the
factorization will be carried on. cusolver<t1><t2>gesv() first attempts to factorize the matrix in
lower precision and use this factorization within an iterative refinement procedure to obtain a solution
with same normwise backward error as the main precision <t1>. If the approach fails to converge,
then the method fallback to the main precision factorization and solve (Xgesv) such a way that there
is always a good solution at the output of these functions. If <t2> is equal to <t1>, then it is not a
mixed precision process but rather a full one precision factorization, solve and refinement within the
same main precision.

The iterative refinement process is stopped if

ITER > ITERMAX

or for all the RHS we have:

RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX

where

▶ ITER is the number of the current iteration in the iterative refinement process

▶ RNRM is the infinity-norm of the residual

▶ XNRM is the infinity-norm of the solution

▶ ANRM is the infinity-operator-norm of the matrix A

▶ EPS is the machine epsilon that matches LAPACK <t1>LAMCH(‘Epsilon’)

The value ITERMAX and BWDMAX are fixed to 50 and 1.0 respectively.

The function returns value describes the results of the solving process. A CU-
SOLVER_STATUS_SUCCESS indicates that the function finished with success otherwise, it indicates
if one of the API arguments is incorrect, or if the function did not finish with success. More details

78 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

about the error will be in the niters and the dinfo API parameters. See their description below for
more details. User should provide the required workspace allocated on device memory. The amount
of bytes required can be queried by calling the respective function <t1><t2>gesv_bufferSize().

Note that in addition to the two mixed precision functions available in LAPACK (for example, dsgesv
and zcgesv), we provide a large set of mixed precision functions that include half, bfloat and tensor-
float as a lower precision as well as same precision functions (, main and lowest precision are equal
<t2> is equal to <t1>). The following table specifies which precisions will be used for which interface
function.

Tensor Float (TF32), introducedwith NVIDIA Ampere Architecture GPUs, is themost robust tensor core
accelerated compute mode for the iterative refinement solver. It is able to solve the widest range of
problems in HPC arising from different applications and provides up to 4X and 5X speedup for real
and complex systems, respectively. On Volta and Turing architecture GPUs, half precision tensor core
acceleration is recommended. In cases where the iterative refinement solver fails to converge to the
desired accuracy (main precision, INOUT data precision), it is recommended to use main precision as
internal lowest precision (i.e., cusolverDn[DD,ZZ]gesv for the FP64 case).

Table 12: Supported combinations offloatingpoint precisions
for cusolver <t1><t2>gesv() functions

Interface function Main precision
(matrix, rhs and solution
datatype)

Lowest precision allowed
to be used internally

cusolverDnZZgesv cuDoubleComplex double complex

cusolverDnZCgesv* cuDoubleComplex single complex

cusolverDnZKgesv cuDoubleComplex half complex

cusolverDnZEgesv cuDoubleComplex bfloat complex

cusolverDnZYgesv cuDoubleComplex tensorfloat complex

cusolverDnCCgesv cuComplex single complex

cusolverDnCKgesv cuComplex half complex

cusolverDnCEgesv cuComplex bfloat complex

cusolverDnCYgesv cuComplex tensorfloat complex

cusolverDnDDgesv double double

cusolverDnDSgesv* double single

cusolverDnDHgesv double half

cusolverDnDBgesv double bfloat

cusolverDnDXgesv double tensorfloat

cusolverDnSSgesv float single

cusolverDnSHgesv float half

cusolverDnSBgesv float bfloat

cusolverDnSXgesv float tensorfloat

* Has LAPACK counterparts

8.4. cuSolverDN: dense LAPACK Function Reference 79

cuSOLVER, Release 12.8

cusolverDn<t1><t2>gesv_bufferSize() functions will return workspace buffer size in bytes re-
quired for the corresponding cusolverDn<t1><t2>gesv() function.

cusolverStatus_t
cusolverDnZZgesv_bufferSize(

cusolverHandle_t handle,
int n,
int nrhs,
cuDoubleComplex * dA,
int ldda,
int * dipiv,
cuDoubleComplex * dB,
int lddb,
cuDoubleComplex * dX,
int lddx,
void * dwork,
size_t * lwork_bytes);

cusolverStatus_t
cusolverDnZCgesv_bufferSize(

cusolverHandle_t handle,
int n,
int nrhs,
cuDoubleComplex * dA,
int ldda,
int * dipiv,
cuDoubleComplex * dB,
int lddb,
cuDoubleComplex * dX,
int lddx,
void * dwork,
size_t * lwork_bytes);

cusolverStatus_t
cusolverDnZKgesv_bufferSize(

cusolverHandle_t handle,
int n,
int nrhs,
cuDoubleComplex * dA,
int ldda,
int * dipiv,
cuDoubleComplex * dB,
int lddb,
cuDoubleComplex * dX,
int lddx,
void * dwork,
size_t * lwork_bytes);

cusolverStatus_t
cusolverDnZEgesv_bufferSize(

cusolverHandle_t handle,
int n,
int nrhs,
cuDoubleComplex * dA,
int ldda,
int * dipiv,
cuDoubleComplex * dB,
int lddb,

(continues on next page)

80 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

(continued from previous page)

cuDoubleComplex * dX,
int lddx,
void * dwork,
size_t * lwork_bytes);

cusolverStatus_t
cusolverDnZYgesv_bufferSize(

cusolverHandle_t handle,
int n,
int nrhs,
cuDoubleComplex * dA,
int ldda,
int * dipiv,
cuDoubleComplex * dB,
int lddb,
cuDoubleComplex * dX,
int lddx,
void * dwork,
size_t * lwork_bytes);

cusolverStatus_t
cusolverDnCCgesv_bufferSize(

cusolverHandle_t handle,
int n,
int nrhs,
cuComplex * dA,
int ldda,
int * dipiv,
cuComplex * dB,
int lddb,
cuComplex * dX,
int lddx,
void * dwork,
size_t * lwork_bytes);

cusolverStatus_t
cusolverDnCKgesv_bufferSize(

cusolverHandle_t handle,
int n,
int nrhs,
cuComplex * dA,
int ldda,
int * dipiv,
cuComplex * dB,
int lddb,
cuComplex * dX,
int lddx,
void * dwork,
size_t * lwork_bytes);

cusolverStatus_t
cusolverDnCEgesv_bufferSize(

cusolverHandle_t handle,
int n,
int nrhs,
cuComplex * dA,

(continues on next page)

8.4. cuSolverDN: dense LAPACK Function Reference 81

cuSOLVER, Release 12.8

(continued from previous page)

int ldda,
int * dipiv,
cuComplex * dB,
int lddb,
cuComplex * dX,
int lddx,
void * dwork,
size_t * lwork_bytes);

cusolverStatus_t
cusolverDnCYgesv_bufferSize(

cusolverHandle_t handle,
int n,
int nrhs,
cuComplex * dA,
int ldda,
int * dipiv,
cuComplex * dB,
int lddb,
cuComplex * dX,
int lddx,
void * dwork,
size_t * lwork_bytes);

cusolverStatus_t
cusolverDnDDgesv_bufferSize(

cusolverHandle_t handle,
int n,
int nrhs,
double * dA,
int ldda,
int * dipiv,
double * dB,
int lddb,
double * dX,
int lddx,
void * dwork,
size_t * lwork_bytes);

cusolverStatus_t
cusolverDnDSgesv_bufferSize(

cusolverHandle_t handle,
int n,
int nrhs,
double * dA,
int ldda,
int * dipiv,
double * dB,
int lddb,
double * dX,
int lddx,
void * dwork,
size_t * lwork_bytes);

cusolverStatus_t
cusolverDnDHgesv_bufferSize(

(continues on next page)

82 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

(continued from previous page)

cusolverHandle_t handle,
int n,
int nrhs,
double * dA,
int ldda,
int * dipiv,
double * dB,
int lddb,
double * dX,
int lddx,
void * dwork,
size_t * lwork_bytes);

cusolverStatus_t
cusolverDnDBgesv_bufferSize(

cusolverHandle_t handle,
int n,
int nrhs,
double * dA,
int ldda,
int * dipiv,
double * dB,
int lddb,
double * dX,
int lddx,
void * dwork,
size_t * lwork_bytes);

cusolverStatus_t
cusolverDnDXgesv_bufferSize(

cusolverHandle_t handle,
int n,
int nrhs,
double * dA,
int ldda,
int * dipiv,
double * dB,
int lddb,
double * dX,
int lddx,
void * dwork,
size_t * lwork_bytes);

cusolverStatus_t
cusolverDnSSgesv_bufferSize(

cusolverHandle_t handle,
int n,
int nrhs,
float * dA,
int ldda,
int * dipiv,
float * dB,
int lddb,
float * dX,
int lddx,
void * dwork,

(continues on next page)

8.4. cuSolverDN: dense LAPACK Function Reference 83

cuSOLVER, Release 12.8

(continued from previous page)

size_t * lwork_bytes);

cusolverStatus_t
cusolverDnSHgesv_bufferSize(

cusolverHandle_t handle,
int n,
int nrhs,
float * dA,
int ldda,
int * dipiv,
float * dB,
int lddb,
float * dX,
int lddx,
void * dwork,
size_t * lwork_bytes);

cusolverStatus_t
cusolverDnSBgesv_bufferSize(

cusolverHandle_t handle,
int n,
int nrhs,
float * dA,
int ldda,
int * dipiv,
float * dB,
int lddb,
float * dX,
int lddx,
void * dwork,
size_t * lwork_bytes);

cusolverStatus_t
cusolverDnSXgesv_bufferSize(

cusolverHandle_t handle,
int n,
int nrhs,
float * dA,
int ldda,
int * dipiv,
float * dB,
int lddb,
float * dX,
int lddx,
void * dwork,
size_t * lwork_bytes);

84 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

Table 13: Parameters of cusolverDn<T1><T2>gesv_bufferSize()
functions

Parameter Memory In/out Meaning

handle host input Handle to the cusolverDN library context.

n host input Number of rows and columns of square matrix A.
Should be non-negative.

nrhs host input Number of right hand sides to solve. Should be
non-negative.

dA device None Matrix A with size n-by-n. Can be NULL.

ldda host input Leading dimension of two-dimensional array
used to store matrix A. lda >= n.

dipiv device None Pivoting sequence. Not used and can be NULL.

dB device None Set of right hand sides B of size n-by-nrhs. Can
be NULL.

lddb host input Leading dimension of two-dimensional array
used to store matrix of right hand sides B. ldb
>= n.

dX device None Set of solution vectors X of size n-by-nrhs. Can
be NULL.

lddx host input Leading dimension of two-dimensional array
used to store matrix of solution vectors X. ldx
>= n.

dwork device none Pointer to device workspace. Not used and can
be NULL.

lwork_bytes host output Pointer to a variable where required size of tem-
porary workspace in bytes will be stored. Can’t
be NULL.

cusolverStatus_t cusolverDnZZgesv(
cusolverDnHandle_t handle,
int n,
int nrhs,
cuDoubleComplex * dA,
int ldda,
int * dipiv,
cuDoubleComplex * dB,
int lddb,
cuDoubleComplex * dX,
int lddx,
void * dWorkspace,
size_t lwork_bytes,
int * niter,
int * dinfo);

cusolverStatus_t cusolverDnZCgesv(
cusolverDnHandle_t handle,

(continues on next page)

8.4. cuSolverDN: dense LAPACK Function Reference 85

cuSOLVER, Release 12.8

(continued from previous page)

int n,
int nrhs,
cuDoubleComplex * dA,
int ldda,
int * dipiv,
cuDoubleComplex * dB,
int lddb,
cuDoubleComplex * dX,
int lddx,
void * dWorkspace,
size_t lwork_bytes,
int * niter,
int * dinfo);

cusolverStatus_t cusolverDnZKgesv(
cusolverDnHandle_t handle,
int n,
int nrhs,
cuDoubleComplex * dA,
int ldda,
int * dipiv,
cuDoubleComplex * dB,
int lddb,
cuDoubleComplex * dX,
int lddx,
void * dWorkspace,
size_t lwork_bytes,
int * niter,
int * dinfo);

cusolverStatus_t cusolverDnZEgesv(
cusolverDnHandle_t handle,
int n,
int nrhs,
cuDoubleComplex * dA,
int ldda,
int * dipiv,
cuDoubleComplex * dB,
int lddb,
cuDoubleComplex * dX,
int lddx,
void * dWorkspace,
size_t lwork_bytes,
int * niter,
int * dinfo);

cusolverStatus_t cusolverDnZYgesv(
cusolverDnHandle_t handle,
int n,
int nrhs,
cuDoubleComplex * dA,
int ldda,
int * dipiv,
cuDoubleComplex * dB,
int lddb,
cuDoubleComplex * dX,

(continues on next page)

86 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

(continued from previous page)

int lddx,
void * dWorkspace,
size_t lwork_bytes,
int * niter,
int * dinfo);

cusolverStatus_t cusolverDnCCgesv(
cusolverDnHandle_t handle,
int n,
int nrhs,
cuComplex * dA,
int ldda,
int * dipiv,
cuComplex * dB,
int lddb,
cuComplex * dX,
int lddx,
void * dWorkspace,
size_t lwork_bytes,
int * niter,
int * dinfo);

cusolverStatus_t cusolverDnCKgesv(
cusolverDnHandle_t handle,
int n,
int nrhs,
cuComplex * dA,
int ldda,
int * dipiv,
cuComplex * dB,
int lddb,
cuComplex * dX,
int lddx,
void * dWorkspace,
size_t lwork_bytes,
int * niter,
int * dinfo);

cusolverStatus_t cusolverDnCEgesv(
cusolverDnHandle_t handle,
int n,
int nrhs,
cuComplex * dA,
int ldda,
int * dipiv,
cuComplex * dB,
int lddb,
cuComplex * dX,
int lddx,
void * dWorkspace,
size_t lwork_bytes,
int * niter,
int * dinfo);

cusolverStatus_t cusolverDnCYgesv(
cusolverDnHandle_t handle,

(continues on next page)

8.4. cuSolverDN: dense LAPACK Function Reference 87

cuSOLVER, Release 12.8

(continued from previous page)

int n,
int nrhs,
cuComplex * dA,
int ldda,
int * dipiv,
cuComplex * dB,
int lddb,
cuComplex * dX,
int lddx,
void * dWorkspace,
size_t lwork_bytes,
int * niter,
int * dinfo);

cusolverStatus_t cusolverDnDDgesv(
cusolverDnHandle_t handle,
int n,
int nrhs,
double * dA,
int ldda,
int * dipiv,
double * dB,
int lddb,
double * dX,
int lddx,
void * dWorkspace,
size_t lwork_bytes,
int * niter,
int * dinfo);

cusolverStatus_t cusolverDnDSgesv(
cusolverDnHandle_t handle,
int n,
int nrhs,
double * dA,
int ldda,
int * dipiv,
double * dB,
int lddb,
double * dX,
int lddx,
void * dWorkspace,
size_t lwork_bytes,
int * niter,
int * dinfo);

cusolverStatus_t cusolverDnDHgesv(
cusolverDnHandle_t handle,
int n,
int nrhs,
double * dA,
int ldda,
int * dipiv,
double * dB,
int lddb,
double * dX,

(continues on next page)

88 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

(continued from previous page)

int lddx,
void * dWorkspace,
size_t lwork_bytes,
int * niter,
int * dinfo);

cusolverStatus_t cusolverDnDBgesv(
cusolverDnHandle_t handle,
int n,
int nrhs,
double * dA,
int ldda,
int * dipiv,
double * dB,
int lddb,
double * dX,
int lddx,
void * dWorkspace,
size_t lwork_bytes,
int * niter,
int * dinfo);

cusolverStatus_t cusolverDnDXgesv(
cusolverDnHandle_t handle,
int n,
int nrhs,
double * dA,
int ldda,
int * dipiv,
double * dB,
int lddb,
double * dX,
int lddx,
void * dWorkspace,
size_t lwork_bytes,
int * niter,
int * dinfo);

cusolverStatus_t cusolverDnSSgesv(
cusolverDnHandle_t handle,
int n,
int nrhs,
float * dA,
int ldda,
int * dipiv,
float * dB,
int lddb,
float * dX,
int lddx,
void * dWorkspace,
size_t lwork_bytes,
int * niter,
int * dinfo);

cusolverStatus_t cusolverDnSHgesv(
cusolverDnHandle_t handle,

(continues on next page)

8.4. cuSolverDN: dense LAPACK Function Reference 89

cuSOLVER, Release 12.8

(continued from previous page)

int n,
int nrhs,
float * dA,
int ldda,
int * dipiv,
float * dB,
int lddb,
float * dX,
int lddx,
void * dWorkspace,
size_t lwork_bytes,
int * niter,
int * dinfo);

cusolverStatus_t cusolverDnSBgesv(
cusolverDnHandle_t handle,
int n,
int nrhs,
float * dA,
int ldda,
int * dipiv,
float * dB,
int lddb,
float * dX,
int lddx,
void * dWorkspace,
size_t lwork_bytes,
int * niter,
int * dinfo);

cusolverStatus_t cusolverDnSXgesv(
cusolverDnHandle_t handle,
int n,
int nrhs,
float * dA,
int ldda,
int * dipiv,
float * dB,
int lddb,
float * dX,
int lddx,
void * dWorkspace,
size_t lwork_bytes,
int * niter,
int * dinfo);

Table 14: Parameters of cusolverDn<T1><T2>gesv() func-
tions

Parameter Memory In/out Meaning

handle host input Handle to the cusolverDN library context.

n host input Number of rows and columns of square matrix A.
Should be non-negative.

continues on next page

90 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

Table 14 – continued from previous page

Parameter Memory In/out Meaning

nrhs host input Number of right hand sides to solve. Should be non-
negative.

dA device in∕out Matrix A with size n-by-n. Can’t be NULL. On return
- unchanged if the iterative refinement process con-
verged. If not - will contains the factorization of the
matrix A in the main precision <T1> (A = P * L * U,
where P - permutation matrix defined by vector ipiv, L
and U - lower and upper triangular matrices).

ldda host input Leading dimension of two-dimensional array used to
store matrix A. lda >= n.

dipiv device output Vector that defines permutation for the factorization
- row i was interchanged with row ipiv[i]

dB device input Set of right hand sides B of size n-by-nrhs. Can’t be
NULL.

lddb host input Leading dimension of two-dimensional array used to
store matrix of right hand sides B. ldb >= n.

dX device output Set of solution vectors X of size n-by-nrhs. Can’t be
NULL.

lddx host input Leading dimension of two-dimensional array used to
store matrix of solution vectors X. ldx >= n.

dWorkspace device input Pointer to an allocated workspace in device memory
of size lwork_bytes.

lwork_bytes host input Size of the allocated device workspace.
Should be at least what was returned by cu-
solverDn<T1><T2>gesv_bufferSize() function.

niters host output If iter is
▶ <0 : iterative refinement has failed, main preci-

sion (Inputs/Outputs precision) factorization has
been performed

▶ -1 : taking into account machine parameters, n,
nrhs, it is a priori not worth working in lower pre-
cision

▶ -2 : overflow of an entry whenmoving frommain
to lower precision

▶ -3 : failure during the factorization
▶ -5 : overflow occurred during computation
▶ -50: solver stopped the iterative refinement af-

ter reaching maximum allowed iterations
▶ >0 : iter is a number of iterations solver per-

formed to reach convergence criteria

continues on next page

8.4. cuSolverDN: dense LAPACK Function Reference 91

cuSOLVER, Release 12.8

Table 14 – continued from previous page

Parameter Memory In/out Meaning

dinfo device output Status of the IRS solver on the return. If 0 - solve was
successful. If dinfo = -i then i-th argument is not
valid. If dinfo = i, then U(i,i) computed in main
precision is exactly zero. The factorization has been
completed, but the factor U is exactly singular, so the
solution could not be computed.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed, for example:

▶ n<0

▶ lda<max(1,n)

▶ ldb<max(1,n)

▶ ldx<max(1,n)

CUSOLVER_STATUS_ARCH_MISMATCH
The IRS solver supports compute capability 7.0 and above. The lowest precision options CU-
SOLVER_[CR]_16BF and CUSOLVER_[CR]_TF32 are only available on compute capability 8.0 and
above.

CUSOLVER_STATUS_INVALID_WORKSPACE
lwork_bytes is smaller than the required workspace.

CUSOLVER_STATUS_IRS_OUT_OF_RANGE
Numerical error related to niters <0, see niters description for more details.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal error occurred, check the dinfo and the niters arguments for more details.

8.4.2.11 cusolverDnIRSXgesv()

This function is designed to perform same functionality as cusolverDn<T1><T2>gesv() functions,
but wrapped in a more generic and expert interface that gives user more control to parametrize the
function as well as it providesmore information on output. cusolverDnIRSXgesv() allows additional
control of the solver parameters such as setting:

▶ the main precision (Inputs/Outputs precision) of the solver

▶ the lowest precision to be used internally by the solver

▶ the refinement solver type

▶ the maximum allowed number of iterations in the refinement phase

▶ the tolerance of the refinement solver

▶ the fallback to main precision

92 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

▶ and more

through the configuration parameters structuregesv_irs_params and its helper functions. Formore
details about what configuration can be set and its meaning please refer to all the functions in the
cuSolverDN Helper Function Section that start with cusolverDnIRSParamsxxxx(). Moreover, cu-
solverDnIRSXgesv() provides additional information on the output such as the convergence history
(e.g., the residual norms) at each iteration and the number of iterations needed to converge. For more
details about what information can be retrieved and its meaning please refer to all the functions in
the cuSolverDN Helper Function Section that start with cusolverDnIRSInfosxxxx()

The function returns value describes the results of the solving process. A CU-
SOLVER_STATUS_SUCCESS indicates that the function finished with success otherwise, it indi-
cates if one of the API arguments is incorrect, or if the configurations of params/infos structure
is incorrect or if the function did not finish with success. More details about the error can be
found by checking the niters and the dinfo API parameters. See their description below for
further details. User should provide the required workspace allocated on device for the cusolverD-
nIRSXgesv() function. The amount of bytes required for the function can be queried by calling
the respective function cusolverDnIRSXgesv_bufferSize(). Note that, if the user would like
a particular configuration to be set via the params structure, it should be set before the call to
cusolverDnIRSXgesv_bufferSize() to get the size of the required workspace.

Tensor Float (TF32), introduced with NVIDIA Ampere architecture GPUs, is themost robust tensor core
accelerated compute mode for the iterative refinement solver. It is able to solve the widest range of
problems in HPC arising from different applications and provides up to 4X and 5X speedup for real
and complex systems, respectively. On Volta and Turing architecture GPUs, half precision tensor core
acceleration is recommended. In cases where the iterative refinement solver fails to converge to the
desired accuracy (main precision, INOUT data precision), it is recommended to use main precision as
internal lowest precision.

The following table provides all possible combinations values for the lowest precision corresponding to
the Inputs/Outputs data type. Note that if the lowest precisionmatches the Inputs/Outputs datatype,
then the main precision factorization will be used.

Table 15: Supported Inputs/Outputs data type and lower pre-
cision for the IRS solver

Inputs/OutputsData Type (e.g.,
main precision)

Supported values for the lowest precision

CUSOLVER_C_64F CUSOLVER_C_64F, CUSOLVER_C_32F, CUSOLVER_C_16F,
CUSOLVER_C_16BF, CUSOLVER_C_TF32

CUSOLVER_C_32F CUSOLVER_C_32F, CUSOLVER_C_16F, CUSOLVER_C_16BF,
CUSOLVER_C_TF32

CUSOLVER_R_64F CUSOLVER_R_64F, CUSOLVER_R_32F, CUSOLVER_R_16F,
CUSOLVER_R_16BF, CUSOLVER_R_TF32

CUSOLVER_R_32F CUSOLVER_R_32F, CUSOLVER_R_16F, CUSOLVER_R_16BF,
CUSOLVER_R_TF32

The cusolverDnIRSXgesv_bufferSize() function returns the required workspace buffer size in
bytes for the corresponding cusolverDnXgesv() call with the given gesv_irs_params configura-
tion.

cusolverStatus_t
cusolverDnIRSXgesv_bufferSize(

(continues on next page)

8.4. cuSolverDN: dense LAPACK Function Reference 93

cuSOLVER, Release 12.8

(continued from previous page)

cusolverDnHandle_t handle,
cusolverDnIRSParams_t gesv_irs_params,
cusolver_int_t n,
cusolver_int_t nrhs,
size_t * lwork_bytes);

Table 16: Parameters of cusolverDnIRSXgesv_bufferSize()
functions

Parameter Memory In/out Meaning

handle host input Handle to the cusolverDn library context.

params host input Xgesv configuration parameters

n host input Number of rows and columns of the square matrix A.
Should be non-negative.

nrhs host input Number of right hand sides to solve. Should
be non-negative. Note that nrhs is lim-
ited to 1 if the selected IRS refinement
solver is CUSOLVER_IRS_REFINE_GMRES, CU-
SOLVER_IRS_REFINE_GMRES_GMRES, CU-
SOLVER_IRS_REFINE_CLASSICAL_GMRES.

lwork_bytes host out Pointer to a variable, where the required size in bytes,
of the workspace will be stored after a call to cu-
solverDnIRSXgesv_bufferSize. Can’t be NULL.

cusolverStatus_t cusolverDnIRSXgesv(
cusolverDnHandle_t handle,
cusolverDnIRSParams_t gesv_irs_params,
cusolverDnIRSInfos_t gesv_irs_infos,
int n,
int nrhs,
void * dA,
int ldda,
void * dB,
int lddb,
void * dX,
int lddx,
void * dWorkspace,
size_t lwork_bytes,
int * dinfo);

Table 17: Parameters of cusolverDnIRSXgesv() functions

Parameter Memory In/out Meaning

handle host input Handle to the cusolverDn library context.

gesv_irs_paramshost input Configuration parameters structure, can serve one or
more calls to any IRS solver

continues on next page

94 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

Table 17 – continued from previous page

Parameter Memory In/out Meaning

gesv_irs_infoshost in∕out Info structure, where information about a particular
solve will be stored. The gesv_irs_infos structure
correspond to a particular call. Thus different calls
requires different gesv_irs_infos structure other-
wise, it will be overwritten.

n host input Number of rows and columns of square matrix A.
Should be non-negative.

nrhs host input Number of right hand sides to solve. Should
be non-negative. Note that, nrhs is lim-
ited to 1 if the selected IRS refinement
solver is CUSOLVER_IRS_REFINE_GMRES, CU-
SOLVER_IRS_REFINE_GMRES_GMRES, CU-
SOLVER_IRS_REFINE_CLASSICAL_GMRES.

dA device in∕out Matrix A with size n-by-n. Can’t be NULL. On return
- will contain the factorization of the matrix A in the
main precision (A = P * L * U, where P - permuta-
tion matrix defined by vector ipiv, L and U - lower and
upper triangular matrices) if the iterative refinement
solver was set to CUSOLVER_IRS_REFINE_NONE and
the lowest precision is equal to the main precision (In-
puts/Outputs datatype), or if the iterative refinement
solver did not converge and the fallback tomain preci-
sion was enabled (fallback enabled is the default set-
ting); unchanged otherwise.

ldda host input Leading dimension of two-dimensional array used to
store matrix A. lda >= n.

dB device input Set of right hand sides B of size n-by-nrhs. Can’t be
NULL.

lddb host input Leading dimension of two-dimensional array used to
store matrix of right hand sides B. ldb >= n.

dX device output Set of solution vectors X of size n-by-nrhs. Can’t be
NULL.

lddx host input Leading dimension of two-dimensional array used to
store matrix of solution vectors X. ldx >= n.

dWorkspace device input Pointer to an allocated workspace in device memory
of size lwork_bytes.

lwork_bytes host input Size of the allocated device workspace. Should
be at least what was returned by cusolverD-
nIRSXgesv_bufferSize() function

continues on next page

8.4. cuSolverDN: dense LAPACK Function Reference 95

cuSOLVER, Release 12.8

Table 17 – continued from previous page

Parameter Memory In/out Meaning

niters host output If iter is
▶ <0 : iterative refinement has failed, main preci-

sion (Inputs/Outputs precision) factorization has
been performed if fallback is enabled.

▶ -1 : taking into account machine parameters, n,
nrhs, it is a priori not worth working in lower pre-
cision

▶ -2 : overflow of an entry whenmoving frommain
to lower precision

▶ -3 : failure during the factorization
▶ -5 : overflow occurred during computation
▶ -maxiter: solver stopped the iterative refine-

ment after reaching maximum allowed itera-
tions.

▶ >0 : iter is a number of iterations solver per-
formed to reach convergence criteria

dinfo device output Status of the IRS solver on the return. If 0 - solve
was successful. If dinfo = -i then i-th argument is
not valid. If dinfo = i, then U(i,i) computed in main
precision is exactly zero. The factorization has been
completed, but the factor U is exactly singular, so the
solution could not be computed.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed, for example:

▶ n<0

▶ lda<max(1,n)

▶ ldb<max(1,n)

▶ ldx<max(1,n)

CUSOLVER_STATUS_ARCH_MISMATCH
The IRS solver supports compute capability 7.0 and above. The lowest precision options CU-
SOLVER_[CR]_16BF and CUSOLVER_[CR]_TF32 are only available on compute capability 8.0 and
above.

CUSOLVER_STATUS_INVALID_WORKSPACE
lwork_bytes is smaller than the required workspace. Could happen if the users called cu-
solverDnIRSXgesv_bufferSize() function, then changed some of the configurations set-
ting such as the lowest precision.

CUSOLVER_STATUS_IRS_OUT_OF_RANGE
Numerical error related to niters <0, see niters description for more details.

96 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

CUSOLVER_STATUS_INTERNAL_ERROR
An internal error occurred, check the dinfo and the niters arguments for more details.

CUSOLVER_STATUS_IRS_PARAMS_NOT_INITIALIZED
The configuration parameter gesv_irs_params structure was not created.

CUSOLVER_STATUS_IRS_PARAMS_INVALID
One of the configuration parameter in the gesv_irs_params structure is not valid.

CUSOLVER_STATUS_IRS_PARAMS_INVALID_PREC
The main and/or the lowest precision configuration parameter in the gesv_irs_params struc-
ture is not valid, check the table above for the supported combinations.

CUSOLVER_STATUS_IRS_PARAMS_INVALID_MAXITER
The maxiter configuration parameter in the gesv_irs_params structure is not valid.

CUSOLVER_STATUS_IRS_PARAMS_INVALID_REFINE
The refinement solver configuration parameter in the gesv_irs_params structure is not valid.

CUSOLVER_STATUS_IRS_NOT_SUPPORTED
One of the configuration parameter in the gesv_irs_params structure is not supported. For
example if nrhs >1, and refinement solver was set to CUSOLVER_IRS_REFINE_GMRES.

CUSOLVER_STATUS_IRS_INFOS_NOT_INITIALIZED
The information structure gesv_irs_infos was not created.

CUSOLVER_STATUS_ALLOC_FAILED
CPU memory allocation failed, most likely during the allocation of the residual array that store
the residual norms.

8.4.2.12 cusolverDn<t>geqrf()

These helper functions calculate the size of work buffers needed.

cusolverStatus_t
cusolverDnSgeqrf_bufferSize(cusolverDnHandle_t handle,

int m,
int n,
float *A,
int lda,
int *Lwork);

cusolverStatus_t
cusolverDnDgeqrf_bufferSize(cusolverDnHandle_t handle,

int m,
int n,
double *A,
int lda,
int *Lwork);

cusolverStatus_t
cusolverDnCgeqrf_bufferSize(cusolverDnHandle_t handle,

int m,
int n,
cuComplex *A,
int lda,
int *Lwork);

(continues on next page)

8.4. cuSolverDN: dense LAPACK Function Reference 97

cuSOLVER, Release 12.8

(continued from previous page)

cusolverStatus_t
cusolverDnZgeqrf_bufferSize(cusolverDnHandle_t handle,

int m,
int n,
cuDoubleComplex *A,
int lda,
int *Lwork);

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSgeqrf(cusolverDnHandle_t handle,

int m,
int n,
float *A,
int lda,
float *TAU,
float *Workspace,
int Lwork,
int *devInfo);

cusolverStatus_t
cusolverDnDgeqrf(cusolverDnHandle_t handle,

int m,
int n,
double *A,
int lda,
double *TAU,
double *Workspace,
int Lwork,
int *devInfo);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCgeqrf(cusolverDnHandle_t handle,

int m,
int n,
cuComplex *A,
int lda,
cuComplex *TAU,
cuComplex *Workspace,
int Lwork,
int *devInfo);

cusolverStatus_t
cusolverDnZgeqrf(cusolverDnHandle_t handle,

int m,
int n,
cuDoubleComplex *A,
int lda,
cuDoubleComplex *TAU,
cuDoubleComplex *Workspace,
int Lwork,
int *devInfo);

98 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

This function computes the QR factorization of anm× nmatrix

A = Q ∗R

where A is anm× nmatrix, Q is anm× nmatrix, and R is a n× n upper triangular matrix.

The user has to provide working space which is pointed by input parameter Workspace. The input
parameter Lwork is size of the working space, and it is returned by geqrf_bufferSize().

The matrix R is overwritten in upper triangular part of A, including diagonal elements.

The matrix Q is not formed explicitly, instead, a sequence of householder vectors are stored in lower
triangular part of A. The leading nonzero element of householder vector is assumed to be 1 such that
output parameter TAU contains the scaling factor τ. If v is original householder vector, q is the new
householder vector corresponding to τ, satisfying the following relation

I − 2 ∗ v ∗ vH = I − τ ∗ q ∗ qH

If output parameterdevInfo = -i (less than zero), thei-thparameter iswrong (not counting handle).

Table 18: API of geqrf

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

m host input Number of rows of matrix A.

n host input Number of columns of matrix A.

A device in∕out <type> array of dimension lda * n with lda is
not less than max(1,m).

lda host input Leading dimension of two-dimensional array
used to store matrix A.

TAU device output <type> array of dimension at least min(m,n).

Workspace device in∕out Working space, <type> array of size Lwork.

Lwork host input Size of working array Workspace.

devInfo device output If devInfo = 0, the LU factorization is success-
ful. if devInfo = -i, the i-th parameter is
wrong (not counting handle).

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (m,n<0 or lda<max(1,m)).

CUSOLVER_STATUS_ARCH_MISMATCH
The device only supports compute capability 5.0 and above.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.4. cuSolverDN: dense LAPACK Function Reference 99

cuSOLVER, Release 12.8

8.4.2.13 cusolverDnGeqrf() [DEPRECATED]

[[DEPRECATED]] use cusolverDnXgeqrf() instead. The routine will be removed in the next major
release.

The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnGeqrf_bufferSize(

cusolverDnHandle_t handle,
cusolverDnParams_t params,
int64_t m,
int64_t n,
cudaDataType dataTypeA,
const void *A,
int64_t lda,
cudaDataType dataTypeTau,
const void *tau,
cudaDataType computeType,
size_t *workspaceInBytes)

The following routine:

cusolverStatus_t
cusolverDnGeqrf(

cusolverDnHandle_t handle,
cusolverDnParams_t params,
int64_t m,
int64_t n,
cudaDataType dataTypeA,
void *A,
int64_t lda,
cudaDataType dataTypeTau,
void *tau,
cudaDataType computeType,
void *pBuffer,
size_t workspaceInBytes,
int *info)

computes the QR factorization of anm× nmatrix

A = Q ∗R

where A is an m × n matrix, Q is an m × n matrix, and R is an n × n upper triangular matrix using the
generic API interface.

The user has to provide working space which is pointed by input parameter pBuffer. The input pa-
rameter workspaceInBytes is size in bytes of the working space, and it is returned by cusolverD-
nGeqrf_bufferSize().

The matrix R is overwritten in upper triangular part of A, including diagonal elements.

The matrix Q is not formed explicitly, instead, a sequence of householder vectors are stored in lower
triangular part of A. The leading nonzero element of householder vector is assumed to be 1 such that
output parameter TAU contains the scaling factor τ. If v is original householder vector, q is the new
householder vector corresponding to τ, satisfying the following relation:

I − 2 ∗ v ∗ vH = I − τ ∗ q ∗ qH

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting handle).

100 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

Currently, cusolverDnGeqrf supports only the default algorithm.

Algorithms supported by cusolverDnGeqrf

CUSOLVER_ALG_0 or NULL Default algorithm.

List of input arguments for cusolverDnGeqrf_bufferSize and cusolverDnGeqrf:

Table 19: API of geqrf

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

params host input Structure with information collected by cu-
solverDnSetAdvOptions.

m host input Number of rows of matrix A.

n host input Number of columns of matrix A.

dataTypeA host in Data type of array A.

A device in∕out Array of dimension lda * n with lda is not less
than max(1,m).

lda host input Leading dimension of two-dimensional array
used to store matrix A.

TAU device output Array of dimension at least min(m,n).

computeType host in Data type of computation.

pBuffer device in∕out Working space. Array of type void of size
workspaceInBytes bytes.

workspaceIn-
Bytes

host input Size in bytes of working array pBuffer.

info device output If info = 0, the LU factorization is successful.
if info = -i, the i-th parameter is wrong (not
counting handle).

The generic API has two different types, dataTypeA is data type of the matrix A and array tau and
computeType is compute type of the operation. cusolverDnGeqrf only supports the following four
combinations.

Valid combination of data type and compute type

DataTypeA ComputeType Meaning

CUDA_R_32F CUDA_R_32F SGEQRF

CUDA_R_64F CUDA_R_64F DGEQRF

CUDA_C_32F CUDA_C_32F CGEQRF

CUDA_C_64F CUDA_C_64F ZGEQRF

Status Returned

8.4. cuSolverDN: dense LAPACK Function Reference 101

cuSOLVER, Release 12.8

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (m,n<0 or lda<max(1,m)).

CUSOLVER_STATUS_ARCH_MISMATCH
The device only supports compute capability 5.0 and above.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.4.2.14 cusolverDn<t1><t2>gels()

These functions compute the solution of a system of linear equations with one or multiple right
hand sides usingmixed precision iterative refinement techniques based on the QR factorization Xgels.
These functions are similar in term of functionalities to the full precision LAPACK QR (least squares)
solver (Xgels, where X denotes Z,C,D,S) but it uses lower precision internally in order to provide faster
time to solution, from here comes the name mixed precision. Mixed precision iterative refinement
techniques means that the solver compute an QR factorization in lower precision and then iteratively
refine the solution to achieve the accuracy of the Inputs/Outputs datatype precision. The <t1> corre-
sponds to the Inputs/Outputs datatype precision while <t2> represent the internal lower precision at
which the factorization will be carried on.

A×X = B

Where A is m-by-nmatrix and X is n-by-nrhs and B is m-by-nrhsmatrices.

Functions API are designed to be as close as possible to LAPACK API to be considered as a quick and
easy drop-in replacement. Description of these functions is given below. <t1><t2>gels() functions
are designated by two floating point precisions The <t1> corresponds to the main precision (e.g., In-
puts/Outputs datatype precision) and the <t2> represent the internal lower precision at which the
factorization will be carried on. cusolver<t1><t2>gels() first attempts to factorize the matrix in
lower precision and use this factorization within an iterative refinement procedure to obtain a solution
with same normwise backward error as the main precision <t1>. If the approach fails to converge,
then the method fallback to the main precision factorization and solve (Xgels) such a way that there
is always a good solution at the output of these functions. If <t2> is equal to <t1>, then it is not a
mixed precision process but rather a full one precision factorization, solve and refinement within the
same main precision.

The iterative refinement process is stopped if:

ITER > ITERMAX

or for all the RHS we have:

RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX

where

▶ ITER is the number of the current iteration in the iterative refinement process

▶ RNRM is the infinity-norm of the residual

▶ XNRM is the infinity-norm of the solution

▶ ANRM is the infinity-operator-norm of the matrix A

102 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

▶ EPS is the machine epsilon that matches LAPACK<t1>LAMCH('Epsilon')

The values ITERMAX and BWDMAX are fixed to 50 and 1.0 respectively.

The function returns value describes the results of the solving process. A CU-
SOLVER_STATUS_SUCCESS indicates that the function finished with success otherwise, it indicates
if one of the API arguments is incorrect, or if the function did not finish with success. More details
about the error will be in the niters and the dinfo API parameters. See their description below for
more details. User should provide the required workspace allocated on device memory. The amount
of bytes required can be queried by calling the respective function <t1><t2>gels_bufferSize().

We provide a large set of mixed precision functions that include half, bfloat and tensorfloat as a lower
precision as well as same precision functions (e.g., main and lowest precision are equal <t2> is equal
to <t1>). The following table specifies which precisions will be used for which interface function:

Tensor Float (TF32), introducedwith NVIDIA Ampere Architecture GPUs, is themost robust tensor core
accelerated compute mode for the iterative refinement solver. It is able to solve the widest range of
problems in HPC arising from different applications and provides up to 4X and 5X speedup for real
and complex systems, respectively. On Volta and Turing architecture GPUs, half precision tensor core
acceleration is recommended. In cases where the iterative refinement solver fails to converge to the
desired accuracy (main precision, INOUT data precision), it is recommended to use main precision as
internal lowest precision (i.e., cusolverDn[DD,ZZ]gels for the FP64 case).

Table 20: Supported combinations offloatingpoint precisions
for cusolver <t1><t2>gels() functions

Interface function Main precision (matrix, rhs and solu-
tion datatype)

Lowest precision
allowed to be
used internally

cusolverDnZZgels cuDoubleComplex double complex

cusolverDnZCgels cuDoubleComplex single complex

cusolverDnZKgels cuDoubleComplex half complex

cusolverDnZEgels cuDoubleComplex bfloat complex

cusolverDnZYgels cuDoubleComplex tensorfloat
complex

cusolverDnCCgels cuComplex single complex

cusolverDnCKgels cuComplex half complex

cusolverDnCEgels cuComplex bfloat complex

cusolverDnCYgels cuComplex tensorfloat
complex

cusolverDnDDgels double double

cusolverDnDSgels double single

cusolverDnDHgels double half

cusolverDnDBgels double bfloat

cusolverDnDXgels double tensorfloat

cusolverDnSSgels float single

continues on next page

8.4. cuSolverDN: dense LAPACK Function Reference 103

cuSOLVER, Release 12.8

Table 20 – continued from previous page

Interface function Main precision (matrix, rhs and solu-
tion datatype)

Lowest precision
allowed to be
used internally

cusolverDnSHgels float half

cusolverDnSBgels float bfloat

cusolverDnSXgels float tensorfloat

cusolverDn<t1><t2>gels_bufferSize() functions will return workspace buffer size in bytes re-
quired for the corresponding cusolverDn<t1><t2>gels() function.

cusolverStatus_t
cusolverDnZZgels_bufferSize(

cusolverHandle_t handle,
int m,
int n,
int nrhs,
cuDoubleComplex * dA,
int ldda,
cuDoubleComplex * dB,
int lddb,
cuDoubleComplex * dX,
int lddx,
void * dwork,
size_t * lwork_bytes);

cusolverStatus_t
cusolverDnZCgels_bufferSize(

cusolverHandle_t handle,
int m,
int n,
int nrhs,
cuDoubleComplex * dA,
int ldda,
cuDoubleComplex * dB,
int lddb,
cuDoubleComplex * dX,
int lddx,
void * dwork,
size_t * lwork_bytes);

cusolverStatus_t
cusolverDnZKgels_bufferSize(

cusolverHandle_t handle,
int m,
int n,
int nrhs,
cuDoubleComplex * dA,
int ldda,
cuDoubleComplex * dB,
int lddb,
cuDoubleComplex * dX,
int lddx,
void * dwork,

(continues on next page)

104 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

(continued from previous page)

size_t * lwork_bytes);

cusolverStatus_t
cusolverDnZEgels_bufferSize(

cusolverHandle_t handle,
int m,
int n,
int nrhs,
cuDoubleComplex * dA,
int ldda,
cuDoubleComplex * dB,
int lddb,
cuDoubleComplex * dX,
int lddx,
void * dwork,
size_t * lwork_bytes);

cusolverStatus_t
cusolverDnZYgels_bufferSize(

cusolverHandle_t handle,
int m,
int n,
int nrhs,
cuDoubleComplex * dA,
int ldda,
cuDoubleComplex * dB,
int lddb,
cuDoubleComplex * dX,
int lddx,
void * dwork,
size_t * lwork_bytes);

cusolverStatus_t
cusolverDnCCgels_bufferSize(

cusolverHandle_t handle,
int m,
int n,
int nrhs,
cuComplex * dA,
int ldda,
cuComplex * dB,
int lddb,
cuComplex * dX,
int lddx,
void * dwork,
size_t * lwork_bytes);

cusolverStatus_t
cusolverDnCKgels_bufferSize(

cusolverHandle_t handle,
int m,
int n,
int nrhs,
cuComplex * dA,
int ldda,
cuComplex * dB,

(continues on next page)

8.4. cuSolverDN: dense LAPACK Function Reference 105

cuSOLVER, Release 12.8

(continued from previous page)

int lddb,
cuComplex * dX,
int lddx,
void * dwork,
size_t * lwork_bytes);

cusolverStatus_t
cusolverDnCEgels_bufferSize(

cusolverHandle_t handle,
int m,
int n,
int nrhs,
cuComplex * dA,
int ldda,
cuComplex * dB,
int lddb,
cuComplex * dX,
int lddx,
void * dwork,
size_t * lwork_bytes);

cusolverStatus_t
cusolverDnCYgels_bufferSize(

cusolverHandle_t handle,
int m,
int n,
int nrhs,
cuComplex * dA,
int ldda,
cuComplex * dB,
int lddb,
cuComplex * dX,
int lddx,
void * dwork,
size_t * lwork_bytes);

cusolverStatus_t
cusolverDnDDgels_bufferSize(

cusolverHandle_t handle,
int m,
int n,
int nrhs,
double * dA,
int ldda,
double * dB,
int lddb,
double * dX,
int lddx,
void * dwork,
size_t * lwork_bytes);

cusolverStatus_t
cusolverDnDSgels_bufferSize(

cusolverHandle_t handle,
int m,
int n,

(continues on next page)

106 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

(continued from previous page)

int nrhs,
double * dA,
int ldda,
double * dB,
int lddb,
double * dX,
int lddx,
void * dwork,
size_t * lwork_bytes);

cusolverStatus_t
cusolverDnDHgels_bufferSize(

cusolverHandle_t handle,
int m,
int n,
int nrhs,
double * dA,
int ldda,
double * dB,
int lddb,
double * dX,
int lddx,
void * dwork,
size_t * lwork_bytes);

cusolverStatus_t
cusolverDnDBgels_bufferSize(

cusolverHandle_t handle,
int m,
int n,
int nrhs,
double * dA,
int ldda,
double * dB,
int lddb,
double * dX,
int lddx,
void * dwork,
size_t * lwork_bytes);

cusolverStatus_t
cusolverDnDXgels_bufferSize(

cusolverHandle_t handle,
int m,
int n,
int nrhs,
double * dA,
int ldda,
double * dB,
int lddb,
double * dX,
int lddx,
void * dwork,
size_t * lwork_bytes);

cusolverStatus_t

(continues on next page)

8.4. cuSolverDN: dense LAPACK Function Reference 107

cuSOLVER, Release 12.8

(continued from previous page)

cusolverDnSSgels_bufferSize(
cusolverHandle_t handle,
int m,
int n,
int nrhs,
float * dA,
int ldda,
float * dB,
int lddb,
float * dX,
int lddx,
void * dwork,
size_t * lwork_bytes);

cusolverStatus_t
cusolverDnSHgels_bufferSize(

cusolverHandle_t handle,
int m,
int n,
int nrhs,
float * dA,
int ldda,
float * dB,
int lddb,
float * dX,
int lddx,
void * dwork,
size_t * lwork_bytes);

cusolverStatus_t
cusolverDnSBgels_bufferSize(

cusolverHandle_t handle,
int m,
int n,
int nrhs,
float * dA,
int ldda,
float * dB,
int lddb,
float * dX,
int lddx,
void * dwork,
size_t * lwork_bytes);

cusolverStatus_t
cusolverDnSXgels_bufferSize(

cusolverHandle_t handle,
int m,
int n,
int nrhs,
float * dA,
int ldda,
float * dB,
int lddb,
float * dX,
int lddx,

(continues on next page)

108 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

(continued from previous page)

void * dwork,
size_t * lwork_bytes);

Table 21: Parameters of cusolverDn<T1><T2>gels_bufferSize()
functions

Parameter Memory In/out Meaning

handle host input Handle to the cusolverDN library context.

m host input Number of rows of the matrix A. Should be non-
negative and n<=m

n host input Number of columns of the matrix A. Should be non-
negative and n<=m.

nrhs host input Number of right hand sides to solve. Should be non-
negative.

dA device None Matrix A with size m-by-n. Can be NULL.

ldda host input Leading dimension of two-dimensional array used to
store matrix A. ldda >= m.

dB device None Set of right hand sides B of size m-by-nrhs. Can be
NULL.

lddb host input Leading dimension of two-dimensional array used to
store matrix of right hand sides B. lddb >= max(1,
m).

dX device None Set of solution vectors X of size n-by-nrhs. Can be
NULL.

lddx host input Leading dimension of two-dimensional array used to
store matrix of solution vectors X. lddx >= max(1,
n).

dwork device none Pointer to device workspace. Not used and can be
NULL.

lwork_bytes host output Pointer to a variable where required size of temporary
workspace in bytes will be stored. Can’t be NULL.

cusolverStatus_t cusolverDnZZgels(
cusolverDnHandle_t handle,
int m,
int n,
int nrhs,
cuDoubleComplex * dA,
int ldda,
cuDoubleComplex * dB,
int lddb,
cuDoubleComplex * dX,
int lddx,
void * dWorkspace,
size_t lwork_bytes,
int * niter,

(continues on next page)

8.4. cuSolverDN: dense LAPACK Function Reference 109

cuSOLVER, Release 12.8

(continued from previous page)

int * dinfo);

cusolverStatus_t cusolverDnZCgels(
cusolverDnHandle_t handle,
int m,
int n,
int nrhs,
cuDoubleComplex * dA,
int ldda,
cuDoubleComplex * dB,
int lddb,
cuDoubleComplex * dX,
int lddx,
void * dWorkspace,
size_t lwork_bytes,
int * niter,
int * dinfo);

cusolverStatus_t cusolverDnZKgels(
cusolverDnHandle_t handle,
int m,
int n,
int nrhs,
cuDoubleComplex * dA,
int ldda,
cuDoubleComplex * dB,
int lddb,
cuDoubleComplex * dX,
int lddx,
void * dWorkspace,
size_t lwork_bytes,
int * niter,
int * dinfo);

cusolverStatus_t cusolverDnZEgels(
cusolverDnHandle_t handle,
int m,
int n,
int nrhs,
cuDoubleComplex * dA,
int ldda,
cuDoubleComplex * dB,
int lddb,
cuDoubleComplex * dX,
int lddx,
void * dWorkspace,
size_t lwork_bytes,
int * niter,
int * dinfo);

cusolverStatus_t cusolverDnZYgels(
cusolverDnHandle_t handle,
int m,
int n,
int nrhs,
cuDoubleComplex * dA,

(continues on next page)

110 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

(continued from previous page)

int ldda,
cuDoubleComplex * dB,
int lddb,
cuDoubleComplex * dX,
int lddx,
void * dWorkspace,
size_t lwork_bytes,
int * niter,
int * dinfo);

cusolverStatus_t cusolverDnCCgels(
cusolverDnHandle_t handle,
int m,
int n,
int nrhs,
cuComplex * dA,
int ldda,
cuComplex * dB,
int lddb,
cuComplex * dX,
int lddx,
void * dWorkspace,
size_t lwork_bytes,
int * niter,
int * dinfo);

cusolverStatus_t cusolverDnCKgels(
cusolverDnHandle_t handle,
int m,
int n,
int nrhs,
cuComplex * dA,
int ldda,
cuComplex * dB,
int lddb,
cuComplex * dX,
int lddx,
void * dWorkspace,
size_t lwork_bytes,
int * niter,
int * dinfo);

cusolverStatus_t cusolverDnCEgels(
cusolverDnHandle_t handle,
int m,
int n,
int nrhs,
cuComplex * dA,
int ldda,
cuComplex * dB,
int lddb,
cuComplex * dX,
int lddx,
void * dWorkspace,
size_t lwork_bytes,
int * niter,

(continues on next page)

8.4. cuSolverDN: dense LAPACK Function Reference 111

cuSOLVER, Release 12.8

(continued from previous page)

int * dinfo);

cusolverStatus_t cusolverDnCYgels(
cusolverDnHandle_t handle,
int m,
int n,
int nrhs,
cuComplex * dA,
int ldda,
cuComplex * dB,
int lddb,
cuComplex * dX,
int lddx,
void * dWorkspace,
size_t lwork_bytes,
int * niter,
int * dinfo);

cusolverStatus_t cusolverDnDDgels(
cusolverDnHandle_t handle,
int m,
int n,
int nrhs,
double * dA,
int ldda,
double * dB,
int lddb,
double * dX,
int lddx,
void * dWorkspace,
size_t lwork_bytes,
int * niter,
int * dinfo);

cusolverStatus_t cusolverDnDSgels(
cusolverDnHandle_t handle,
int m,
int n,
int nrhs,
double * dA,
int ldda,
double * dB,
int lddb,
double * dX,
int lddx,
void * dWorkspace,
size_t lwork_bytes,
int * niter,
int * dinfo);

cusolverStatus_t cusolverDnDHgels(
cusolverDnHandle_t handle,
int m,
int n,
int nrhs,
double * dA,

(continues on next page)

112 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

(continued from previous page)

int ldda,
double * dB,
int lddb,
double * dX,
int lddx,
void * dWorkspace,
size_t lwork_bytes,
int * niter,
int * dinfo);

cusolverStatus_t cusolverDnDBgels(
cusolverDnHandle_t handle,
int m,
int n,
int nrhs,
double * dA,
int ldda,
double * dB,
int lddb,
double * dX,
int lddx,
void * dWorkspace,
size_t lwork_bytes,
int * niter,
int * dinfo);

cusolverStatus_t cusolverDnDXgels(
cusolverDnHandle_t handle,
int m,
int n,
int nrhs,
double * dA,
int ldda,
double * dB,
int lddb,
double * dX,
int lddx,
void * dWorkspace,
size_t lwork_bytes,
int * niter,
int * dinfo);

cusolverStatus_t cusolverDnSSgels(
cusolverDnHandle_t handle,
int m,
int n,
int nrhs,
float * dA,
int ldda,
float * dB,
int lddb,
float * dX,
int lddx,
void * dWorkspace,
size_t lwork_bytes,
int * niter,

(continues on next page)

8.4. cuSolverDN: dense LAPACK Function Reference 113

cuSOLVER, Release 12.8

(continued from previous page)

int * dinfo);

cusolverStatus_t cusolverDnSHgels(
cusolverDnHandle_t handle,
int m,
int n,
int nrhs,
float * dA,
int ldda,
float * dB,
int lddb,
float * dX,
int lddx,
void * dWorkspace,
size_t lwork_bytes,
int * niter,
int * dinfo);

cusolverStatus_t cusolverDnSBgels(
cusolverDnHandle_t handle,
int m,
int n,
int nrhs,
float * dA,
int ldda,
float * dB,
int lddb,
float * dX,
int lddx,
void * dWorkspace,
size_t lwork_bytes,
int * niter,
int * dinfo);

cusolverStatus_t cusolverDnSXgels(
cusolverDnHandle_t handle,
int m,
int n,
int nrhs,
float * dA,
int ldda,
float * dB,
int lddb,
float * dX,
int lddx,
void * dWorkspace,
size_t lwork_bytes,
int * niter,
int * dinfo);

Table 22: Parameters of cusolverDn<T1><T2>gels() functions

Parameter Memory In/out Meaning

handle host input Handle to the cusolverDN library context.

continues on next page

114 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

Table 22 – continued from previous page

Parameter Memory In/out Meaning

m host input Number of rows of the matrix A. Should be non-
negative and n<=m

n host input Number of columns of the matrix A. Should be non-
negative and n<=m.

nrhs host input Number of right hand sides to solve. Should be non-
negative.

dA device in∕out Matrix A with size m-by-n. Can’t be NULL. On return
- unchanged if the lowest precision is not equal to
the main precision and the iterative refinement solver
converged, - garbage otherwise.

ldda host input Leading dimension of two-dimensional array used to
store matrix A. ldda >= m.

dB device input Set of right hand sides B of size m-by-nrhs. Can’t be
NULL.

lddb host input Leading dimension of two-dimensional array used to
store matrix of right hand sides B. lddb >= max(1,
m).

dX device output Set of solution vectors X of size n-by-nrhs. Can’t be
NULL.

lddx host input Leading dimension of two-dimensional array used to
store matrix of solution vectors X. lddx >= max(1,
n).

dWorkspace device input Pointer to an allocated workspace in device memory
of size lwork_bytes.

lwork_bytes host input Size of the allocated device workspace.
Should be at least what was returned by cu-
solverDn<T1><T2>gels_bufferSize() function

niters host output If iter is
▶ <0 : iterative refinement has failed, main preci-

sion (Inputs/Outputs precision) factorization has
been performed.

▶ -1 : taking into account machine parameters, n,
nrhs, it is a priori not worth working in lower pre-
cision

▶ -2 : overflow of an entry whenmoving frommain
to lower precision

▶ -3 : failure during the factorization
▶ -5 : overflow occurred during computation
▶ -50: solver stopped the iterative refinement af-

ter reaching maximum allowed iterations.
▶ >0 : iter is a number of iterations solver per-

formed to reach convergence criteria

continues on next page

8.4. cuSolverDN: dense LAPACK Function Reference 115

cuSOLVER, Release 12.8

Table 22 – continued from previous page

Parameter Memory In/out Meaning

dinfo device output Status of the IRS solver on the return. If 0 - solve was
successful. If dinfo = -i then i-th argument is not
valid.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed, for example:

▶ n<0

▶ ldda<max(1,m)

▶ lddb<max(1,m)

▶ lddx<max(1,n)

CUSOLVER_STATUS_ARCH_MISMATCH
The IRS solver supports compute capability 7.0 and above. The lowest precision options CU-
SOLVER_[CR]_16BF and CUSOLVER_[CR]_TF32 are only available on compute capability 8.0 and
above.

CUSOLVER_STATUS_INVALID_WORKSPACE
lwork_bytes is smaller than the required workspace.

CUSOLVER_STATUS_IRS_OUT_OF_RANGE
Numerical error related to niters <0, see niters description for more details.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal error occurred; check the dinfo and the niters arguments for more details.

8.4.2.15 cusolverDnIRSXgels()

This function is designed to perform same functionality as cusolverDn<T1><T2>gels() functions,
but wrapped in a more generic and expert interface that gives user more control to parametrize the
function as well as it providesmore information on output. cusolverDnIRSXgels() allows additional
control of the solver parameters such as setting:

▶ the main precision (Inputs/Outputs precision) of the solver,

▶ the lowest precision to be used internally by the solver,

▶ the refinement solver type

▶ the maximum allowed number of iterations in the refinement phase

▶ the tolerance of the refinement solver

▶ the fallback to main precision

▶ and others

116 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

through the configuration parameters structuregels_irs_params and its helper functions. Formore
details about what configuration can be set and its meaning please refer to all the functions in the
cuSolverDN Helper Function Section that start with cusolverDnIRSParamsxxxx(). Moreover, cu-
solverDnIRSXgels() provides additional information on the output such as the convergence history
(e.g., the residual norms) at each iteration and the number of iterations needed to converge. For more
details about what information can be retrieved and its meaning please refer to all the functions in
the cuSolverDN Helper Function Section that start with cusolverDnIRSInfosxxxx().

The function returns value describes the results of the solving process. A CU-
SOLVER_STATUS_SUCCESS indicates that the function finished with success otherwise, it indicates
if one of the API arguments is incorrect, or if the configurations of params/infos structure is in-
correct or if the function did not finish with success. More details about the error can be found
by checking the niters and the dinfo API parameters. See their description below for further
details. Users should provide the required workspace allocated on device for the cusolverD-
nIRSXgels() function. The amount of bytes required for the function can be queried by calling
the respective function cusolverDnIRSXgels_bufferSize(). Note that, if the user would like
a particular configuration to be set via the params structure, it should be set before the call to
cusolverDnIRSXgels_bufferSize() to get the size of the required workspace.

The following table provides all possible combinations values for the lowest precision corresponding to
the Inputs/Outputs data type. Note that if the lowest precisionmatches the Inputs/Outputs datatype,
then main precision factorization will be used

Tensor Float (TF32), introducedwith NVIDIA Ampere Architecture GPUs, is themost robust tensor core
accelerated compute mode for the iterative refinement solver. It is able to solve the widest range of
problems in HPC arising from different applications and provides up to 4X and 5X speedup for real
and complex systems, respectively. On Volta and Turing architecture GPUs, half precision tensor core
acceleration is recommended. In cases where the iterative refinement solver fails to converge to the
desired accuracy (main precision, INOUT data precision), it is recommended to use main precision as
internal lowest precision.

Table 23: Supported Inputs/Outputs data type and lower pre-
cision for the IRS solver

Inputs/OutputsData Type (e.g.,
main precision)

Supported values for the lowest precision

CUSOLVER_C_64F CUSOLVER_C_64F, CUSOLVER_C_32F, CUSOLVER_C_16F,
CUSOLVER_C_16BF, CUSOLVER_C_TF32

CUSOLVER_C_32F CUSOLVER_C_32F, CUSOLVER_C_16F, CUSOLVER_C_16BF,
CUSOLVER_C_TF32

CUSOLVER_R_64F CUSOLVER_R_64F, CUSOLVER_R_32F, CUSOLVER_R_16F,
CUSOLVER_R_16BF, CUSOLVER_R_TF32

CUSOLVER_R_32F CUSOLVER_R_32F, CUSOLVER_R_16F, CUSOLVER_R_16BF,
CUSOLVER_R_TF32

The cusolverDnIRSXgels_bufferSize() function return the required workspace buffer size in
bytes for the corresponding cusolverDnXgels() call with given gels_irs_params configuration.

cusolverStatus_t
cusolverDnIRSXgels_bufferSize(

cusolverDnHandle_t handle,
cusolverDnIRSParams_t gels_irs_params,
cusolver_int_t m,

(continues on next page)

8.4. cuSolverDN: dense LAPACK Function Reference 117

cuSOLVER, Release 12.8

(continued from previous page)

cusolver_int_t n,
cusolver_int_t nrhs,
size_t * lwork_bytes);

Table 24: Parameters of cusolverDnIRSXgels_bufferSize()
functions

Parameter Memory In/out Meaning

handle host input Handle to the cusolverDn library context.

params host input Xgels configuration parameters

m host input Number of rows of the matrix A. Should be non-
negative and n<=m

n host input Number of columns of the matrix A. Should be
non-negative and n<=m.

nrhs host input Number of right hand sides to solve. Should
be non-negative. Note that, nrhs is lim-
ited to 1 if the selected IRS refinement
solver is CUSOLVER_IRS_REFINE_GMRES,
CUSOLVER_IRS_REFINE_GMRES_GMRES, CU-
SOLVER_IRS_REFINE_CLASSICAL_GMRES.

lwork_bytes host out Pointer to a variable, where the required size in
bytes, of the workspace will be stored after a call
to cusolverDnIRSXgels_bufferSize. Can’t
be NULL.

cusolverStatus_t cusolverDnIRSXgels(
cusolverDnHandle_t handle,
cusolverDnIRSParams_t gels_irs_params,
cusolverDnIRSInfos_t gels_irs_infos,
int m,
int n,
int nrhs,
void * dA,
int ldda,
void * dB,
int lddb,
void * dX,
int lddx,
void * dWorkspace,
size_t lwork_bytes,
int * dinfo);

Table 25: Parameters of cusolverDnIRSXgels() functions

Parameter Memory In/out Meaning

handle host input Handle to the cusolverDn library context.

continues on next page

118 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

Table 25 – continued from previous page

Parameter Memory In/out Meaning

gels_irs_paramshost input Configuration parameters structure, can serve one or
more calls to any IRS solver

gels_irs_infoshost in∕out Info structure, where information about a particular
solve will be stored. The gels_irs_infos structure
correspond to a particular call. Thus different calls
requires different gels_irs_infos structure other-
wise, it will be overwritten.

m host input Number of rows of the matrix A. Should be non-
negative and n<=m

n host input Number of columns of the matrix A. Should be non-
negative and n<=m.

nrhs host input Number of right hand sides to solve. Should
be non-negative. Note that, nrhs is lim-
ited to 1 if the selected IRS refinement
solver is CUSOLVER_IRS_REFINE_GMRES, CU-
SOLVER_IRS_REFINE_GMRES_GMRES, CU-
SOLVER_IRS_REFINE_CLASSICAL_GMRES.

dA device in∕out Matrix A with size m-by-n. Can’t be NULL. On return
- unchanged if the lowest precision is not equal to
the main precision and the iterative refinement solver
converged, - garbage otherwise.

ldda host input Leading dimension of two-dimensional array used to
store matrix A. ldda >= m.

dB device input Set of right hand sides B of size m-by-nrhs. Can’t be
NULL.

lddb host input Leading dimension of two-dimensional array used to
store matrix of right hand sides B. lddb >= max(1,
m).

dX device output Set of solution vectors X of size n-by-nrhs. Can’t be
NULL.

lddx host input Leading dimension of two-dimensional array used to
store matrix of solution vectors X. lddx >= max(1,
n).

dWorkspace device input Pointer to an allocated workspace in device memory
of size lwork_bytes.

lwork_bytes host input Size of the allocated device workspace. Should
be at least what was returned by cusolverD-
nIRSXgels_bufferSize() function.

continues on next page

8.4. cuSolverDN: dense LAPACK Function Reference 119

cuSOLVER, Release 12.8

Table 25 – continued from previous page

Parameter Memory In/out Meaning

niters host output If iter is
▶ <0 : iterative refinement has failed, main preci-

sion (Inputs/Outputs precision) factorization has
been performed if fallback is enabled

▶ -1 : taking into account machine parameters, n,
nrhs, it is a priori not worth working in lower pre-
cision

▶ -2 : overflow of an entry whenmoving frommain
to lower precision

▶ -3 : failure during the factorization
▶ -5 : overflow occurred during computation
▶ -maxiter: solver stopped the iterative refine-

ment after reaching maximum allowed itera-
tions

▶ >0 : iter is a number of iterations solver per-
formed to reach convergence criteria

dinfo device output Status of the IRS solver on the return. If 0 - solve was
successful. If dinfo = -i then i-th argument is not
valid.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed, for example:

▶ n<0

▶ ldda<max(1,m)

▶ lddb<max(1,m)

▶ lddx<max(1,n)

CUSOLVER_STATUS_ARCH_MISMATCH
The IRS solver supports compute capability 7.0 and above. The lowest precision options CU-
SOLVER_[CR]_16BF and CUSOLVER_[CR]_TF32 are only available on compute capability 8.0 and
above.

CUSOLVER_STATUS_INVALID_WORKSPACE
lwork_bytes is smaller than the required workspace. Could happen if the users called cu-
solverDnIRSXgels_bufferSize() function, then changed some of the configurations set-
ting such as the lowest precision.

CUSOLVER_STATUS_IRS_OUT_OF_RANGE
Numerical error related to niters <0; see niters description for more details.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal error occurred, check the dinfo and the niters arguments for more details.

120 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

CUSOLVER_STATUS_IRS_PARAMS_NOT_INITIALIZED
The configuration parameter gels_irs_params structure was not created.

CUSOLVER_STATUS_IRS_PARAMS_INVALID
One of the configuration parameter in the gels_irs_params structure is not valid.

CUSOLVER_STATUS_IRS_PARAMS_INVALID_PREC
The main and/or the lowest precision configuration parameter in the gels_irs_params struc-
ture is not valid, check the table above for the supported combinations.

CUSOLVER_STATUS_IRS_PARAMS_INVALID_MAXITER
The maxiter configuration parameter in the gels_irs_params structure is not valid.

CUSOLVER_STATUS_IRS_PARAMS_INVALID_REFINE
The refinement solver configuration parameter in the gels_irs_params structure is not valid.

CUSOLVER_STATUS_IRS_NOT_SUPPORTED
One of the configuration parameter in the gels_irs_params structure is not supported. For
example if nrhs >1, and refinement solver was set to CUSOLVER_IRS_REFINE_GMRES.

CUSOLVER_STATUS_IRS_INFOS_NOT_INITIALIZED
The information structure gels_irs_infos was not created.

CUSOLVER_STATUS_ALLOC_FAILED
CPU memory allocation failed, most likely during the allocation of the residual array that store
the residual norms.

8.4.2.16 cusolverDn<t>ormqr()

These helper functions calculate the size of work buffers needed. Please visit cuSOLVER Library Sam-
ples - ormqr for a code example.

cusolverStatus_t
cusolverDnSormqr_bufferSize(

cusolverDnHandle_t handle,
cublasSideMode_t side,
cublasOperation_t trans,
int m,
int n,
int k,
const float *A,
int lda,
const float *tau,
const float *C,
int ldc,
int *lwork);

cusolverStatus_t
cusolverDnDormqr_bufferSize(

cusolverDnHandle_t handle,
cublasSideMode_t side,
cublasOperation_t trans,
int m,
int n,
int k,
const double *A,
int lda,
const double *tau,

(continues on next page)

8.4. cuSolverDN: dense LAPACK Function Reference 121

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/ormqr
https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/ormqr

cuSOLVER, Release 12.8

(continued from previous page)

const double *C,
int ldc,
int *lwork);

cusolverStatus_t
cusolverDnCunmqr_bufferSize(

cusolverDnHandle_t handle,
cublasSideMode_t side,
cublasOperation_t trans,
int m,
int n,
int k,
const cuComplex *A,
int lda,
const cuComplex *tau,
const cuComplex *C,
int ldc,
int *lwork);

cusolverStatus_t
cusolverDnZunmqr_bufferSize(

cusolverDnHandle_t handle,
cublasSideMode_t side,
cublasOperation_t trans,
int m,
int n,
int k,
const cuDoubleComplex *A,
int lda,
const cuDoubleComplex *tau,
const cuDoubleComplex *C,
int ldc,
int *lwork);

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSormqr(

cusolverDnHandle_t handle,
cublasSideMode_t side,
cublasOperation_t trans,
int m,
int n,
int k,
const float *A,
int lda,
const float *tau,
float *C,
int ldc,
float *work,
int lwork,
int *devInfo);

cusolverStatus_t
cusolverDnDormqr(

cusolverDnHandle_t handle,
cublasSideMode_t side,

(continues on next page)

122 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

(continued from previous page)

cublasOperation_t trans,
int m,
int n,
int k,
const double *A,
int lda,
const double *tau,
double *C,
int ldc,
double *work,
int lwork,
int *devInfo);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCunmqr(

cusolverDnHandle_t handle,
cublasSideMode_t side,
cublasOperation_t trans,
int m,
int n,
int k,
const cuComplex *A,
int lda,
const cuComplex *tau,
cuComplex *C,
int ldc,
cuComplex *work,
int lwork,
int *devInfo);

cusolverStatus_t
cusolverDnZunmqr(

cusolverDnHandle_t handle,
cublasSideMode_t side,
cublasOperation_t trans,
int m,
int n,
int k,
const cuDoubleComplex *A,
int lda,
const cuDoubleComplex *tau,
cuDoubleComplex *C,
int ldc,
cuDoubleComplex *work,
int lwork,
int *devInfo);

This function overwritesm× nmatrix C by

The operation of Q is defined by

8.4. cuSolverDN: dense LAPACK Function Reference 123

cuSOLVER, Release 12.8

Q is a unitary matrix formed by a sequence of elementary reflection vectors from QR factorization
(geqrf) of A.

Q=H(1)H(2) … H(k)

Q is of order m if side = CUBLAS_SIDE_LEFT and of order n if side = CUBLAS_SIDE_RIGHT.

The user has to provide working space which is pointed by input parameter work. The input
parameter lwork is size of the working space, and it is returned by geqrf_bufferSize() or
ormqr_bufferSize(). Please note that the size in bytes of the working space is equal to
sizeof(<type>) * lwork.

If output parameterdevInfo = -i (less than zero), thei-thparameter iswrong (not counting handle).

The user can combine geqrf, ormqr and trsm to complete a linear solver or a least-square solver.

Table 26: API of ormqr

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDn library context.

side host input Indicates if matrix Q is on the left or right of C.

trans host input Operation op(Q) that is non- or (conj.) trans-
pose.

m host input Number of rows of matrix C.

n host input Number of columns of matrix C.

k host input Number of elementary reflections whose prod-
uct defines the matrix Q.

A device in∕out <type> array of dimension lda * k with lda is
not less than max(1,m). The matrix A is from
geqrf, so i-th column contains elementary re-
flection vector.

lda host input Leading dimension of two-dimensional ar-
ray used to store matrix A. if side is
CUBLAS_SIDE_LEFT, lda >= max(1,m); if side is
CUBLAS_SIDE_RIGHT, lda >= max(1,n).

tau device input <type> array of dimension at least min(m,n).
The vector tau is from geqrf, so tau(i) is the
scalar of i-th elementary reflection vector.

C device in∕out <type> array of size ldc * n. On exit, C is over-
written by op(Q)*C.

ldc host input Leading dimension of two-dimensional array of
matrix C. ldc >= max(1,m).

continues on next page

124 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

Table 26 – continued from previous page

Parameter Memory In/out Meaning

work device in∕out Working space, <type> array of size lwork.

lwork host input Size of working array work.

devInfo device output If devInfo = 0, the ormqr is successful. If dev-
Info = -i, the i-th parameter is wrong (not
counting handle).

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (m,n<0 or wrong lda or ldc).

CUSOLVER_STATUS_ARCH_MISMATCH
The device only supports compute capability 5.0 and above.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.4.2.17 cusolverDn<t>orgqr()

These helper functions calculate the size of work buffers needed. Please visit cuSOLVER Library Sam-
ples - orgqr for a code example.

cusolverStatus_t
cusolverDnSorgqr_bufferSize(

cusolverDnHandle_t handle,
int m,
int n,
int k,
const float *A,
int lda,
const float *tau,
int *lwork);

cusolverStatus_t
cusolverDnDorgqr_bufferSize(

cusolverDnHandle_t handle,
int m,
int n,
int k,
const double *A,
int lda,
const double *tau,
int *lwork);

cusolverStatus_t
cusolverDnCungqr_bufferSize(

(continues on next page)

8.4. cuSolverDN: dense LAPACK Function Reference 125

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/orgqr
https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/orgqr

cuSOLVER, Release 12.8

(continued from previous page)

cusolverDnHandle_t handle,
int m,
int n,
int k,
const cuComplex *A,
int lda,
const cuComplex *tau,
int *lwork);

cusolverStatus_t
cusolverDnZungqr_bufferSize(

cusolverDnHandle_t handle,
int m,
int n,
int k,
const cuDoubleComplex *A,
int lda,
const cuDoubleComplex *tau,
int *lwork);

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSorgqr(

cusolverDnHandle_t handle,
int m,
int n,
int k,
float *A,
int lda,
const float *tau,
float *work,
int lwork,
int *devInfo);

cusolverStatus_t
cusolverDnDorgqr(

cusolverDnHandle_t handle,
int m,
int n,
int k,
double *A,
int lda,
const double *tau,
double *work,
int lwork,
int *devInfo);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCungqr(

cusolverDnHandle_t handle,
int m,
int n,
int k,
cuComplex *A,

(continues on next page)

126 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

(continued from previous page)

int lda,
const cuComplex *tau,
cuComplex *work,
int lwork,
int *devInfo);

cusolverStatus_t
cusolverDnZungqr(

cusolverDnHandle_t handle,
int m,
int n,
int k,
cuDoubleComplex *A,
int lda,
const cuDoubleComplex *tau,
cuDoubleComplex *work,
int lwork,
int *devInfo);

This function overwritesm× nmatrix A by

Q = H(1) ∗H(2) ∗ ... ∗H(k)

where Q is a unitary matrix formed by a sequence of elementary reflection vectors stored in A.

The user has to provide working space which is pointed by input parameter work. The input parameter
lwork is size of the working space, and it is returned by orgqr_bufferSize(). Please note that the
size in bytes of the working space is equal to sizeof(<type>) * lwork.

If output parameterdevInfo = -i (less than zero), thei-thparameter iswrong (not counting handle).

The user can combine geqrf, orgqr to complete orthogonalization.

Table 27: API of orgqr

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

m host input Number of rows of matrix Q. m >= 0;

n host input Number of columns of matrix Q. m >= n >= 0;

k host input Number of elementary reflections whose prod-
uct defines the matrix Q. n >= k >= 0;

A device in∕out <type> array of dimension lda * n with lda is
not less than max(1,m). i-th column of A con-
tains elementary reflection vector.

lda host input Leading dimension of two-dimensional array
used to store matrix A. lda >= max(1,m).

tau device input <type> array of dimension k. tau(i) is the
scalar of i-th elementary reflection vector.

work device in∕out Working space, <type> array of size lwork.

continues on next page

8.4. cuSolverDN: dense LAPACK Function Reference 127

cuSOLVER, Release 12.8

Table 27 – continued from previous page

Parameter Memory In/out Meaning

lwork host input Size of working array work.

devInfo device output If info = 0, the orgqr is successful. if info =
-i, the i-th parameter is wrong (not counting
handle).

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (m,n,k<0, n>m, k>n or lda<m).

CUSOLVER_STATUS_ARCH_MISMATCH
The device only supports compute capability 5.0 and above.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.4.2.18 cusolverDn<t>sytrf()

These helper functions calculate the size of the needed buffers.

cusolverStatus_t
cusolverDnSsytrf_bufferSize(cusolverDnHandle_t handle,

int n,
float *A,
int lda,
int *lwork);

cusolverStatus_t
cusolverDnDsytrf_bufferSize(cusolverDnHandle_t handle,

int n,
double *A,
int lda,
int *lwork);

cusolverStatus_t
cusolverDnCsytrf_bufferSize(cusolverDnHandle_t handle,

int n,
cuComplex *A,
int lda,
int *lwork);

cusolverStatus_t
cusolverDnZsytrf_bufferSize(cusolverDnHandle_t handle,

int n,
cuDoubleComplex *A,
int lda,
int *lwork);

128 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSsytrf(cusolverDnHandle_t handle,

cublasFillMode_t uplo,
int n,
float *A,
int lda,
int *devIpiv,
float *work,
int lwork,
int *devInfo);

cusolverStatus_t
cusolverDnDsytrf(cusolverDnHandle_t handle,

cublasFillMode_t uplo,
int n,
double *A,
int lda,
int *devIpiv,
double *work,
int lwork,
int *devInfo);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCsytrf(cusolverDnHandle_t handle,

cublasFillMode_t uplo,
int n,
cuComplex *A,
int lda,
int *devIpiv,
cuComplex *work,
int lwork,
int *devInfo);

cusolverStatus_t
cusolverDnZsytrf(cusolverDnHandle_t handle,

cublasFillMode_t uplo,
int n,
cuDoubleComplex *A,
int lda,
int *devIpiv,
cuDoubleComplex *work,
int lwork,
int *devInfo);

This function computes the factorization of a symmetric indefinite matrix using the Bunch-Kaufman
diagonal pivoting.

A is a n × n symmetric matrix, only lower or upper part is meaningful. The input parameter uplo
indicates which part of the matrix is used. If devIpiv is null, no pivoting is performed, which is not
numerically stable.

If input parameter uplo is CUBLAS_FILL_MODE_LOWER, only lower triangular part of A is processed,
and replaced by lower triangular factor L and block diagonal matrix D. Each block of D is either 1x1 or

8.4. cuSolverDN: dense LAPACK Function Reference 129

cuSOLVER, Release 12.8

2x2 block, depending on pivoting.

P ∗A ∗ PT = L ∗D ∗ LT

If input parameter uplo is CUBLAS_FILL_MODE_UPPER, only upper triangular part of A is processed,
and replaced by upper triangular factor U and block diagonal matrix D.

P ∗A ∗ PT = U ∗D ∗ UT

The user has to provide working space which is pointed by input parameter work. The input parameter
lwork is size of the working space, and it is returned by sytrf_bufferSize(). Please note that
the size in bytes of the working space is equal to sizeof(<type>) * lwork. When no pivoting is
performed, the other triangular part of the input matrix A is used as workspace.

If Bunch-Kaufman factorization failed, i.e. A is singular. The output parameter devInfo = i would
indicate D(i,i)=0.

If output parameterdevInfo = -i (less than zero), thei-thparameter iswrong (not counting handle).

The output parameter devIpiv contains pivoting sequence. If devIpiv(i) = k > 0, D(i,
i) is 1x1 block, and i-th row/column of A is interchanged with k-th row/column of A. If uplo
is CUBLAS_FILL_MODE_UPPER and devIpiv(i-1) = devIpiv(i) = -m < 0, D(i-1:i,
i-1:i) is a 2x2 block, and (i-1)-th row/column is interchanged with m-th row/column. If uplo
is CUBLAS_FILL_MODE_LOWER and devIpiv(i+1) = devIpiv(i) = -m < 0, D(i:i+1,i:i+1) is
a 2x2 block, and (i+1)-th row/column is interchanged with m-th row/column.

Table 28: API of sytrf

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

uplo host input Indicates ifmatrix A lower or upper part is stored,
the other part is not referenced.

n host input Number of rows and columns of matrix A.

A device in∕out <type> array of dimension lda * n with lda is
not less than max(1,n).

lda host input Leading dimension of two-dimensional array
used to store matrix A.

devIpiv device output Array of size at least n, containing pivot indices.
To perform no pivoting, set the argument NULL.

work device in∕out Working space, <type> array of size lwork.

lwork host input Size of working space work.

devInfo device output If devInfo = 0, the LU factorization is success-
ful. if devInfo = -i, the i-th parameter is
wrong (not counting handle). if devInfo = i,
the D(i,i) = 0.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

130 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (n<0 or lda<max(1,n)).

CUSOLVER_STATUS_ARCH_MISMATCH
The device only supports compute capability 5.0 and above.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.4.2.19 cusolverDn<t>potrfBatched()

The S and D data types are real valued single and double precision, respectively. Please visit cuSOLVER
Library Samples - potrfBatched for a code example.

cusolverStatus_t
cusolverDnSpotrfBatched(

cusolverDnHandle_t handle,
cublasFillMode_t uplo,
int n,
float *Aarray[],
int lda,
int *infoArray,
int batchSize);

cusolverStatus_t
cusolverDnDpotrfBatched(

cusolverDnHandle_t handle,
cublasFillMode_t uplo,
int n,
double *Aarray[],
int lda,
int *infoArray,
int batchSize);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCpotrfBatched(

cusolverDnHandle_t handle,
cublasFillMode_t uplo,
int n,
cuComplex *Aarray[],
int lda,
int *infoArray,
int batchSize);

cusolverStatus_t
cusolverDnZpotrfBatched(

cusolverDnHandle_t handle,
cublasFillMode_t uplo,
int n,
cuDoubleComplex *Aarray[],
int lda,
int *infoArray,
int batchSize);

8.4. cuSolverDN: dense LAPACK Function Reference 131

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/potrfBatched
https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/potrfBatched

cuSOLVER, Release 12.8

This function computes the Cholesky factorization of a sequence of Hermitian positive-definite ma-
trices.

Each Aarray[i] for i=0,1,..., batchSize-1 is a n × n Hermitian matrix, only lower or upper
part is meaningful. The input parameter uplo indicates which part of the matrix is used.

If input parameter uplo is CUBLAS_FILL_MODE_LOWER, only lower triangular part of A is processed,
and replaced by lower triangular Cholesky factor L.

A = L ∗ LH

If input parameter uplo is CUBLAS_FILL_MODE_UPPER, only upper triangular part of A is processed,
and replaced by upper triangular Cholesky factor U.

A = UH ∗ U

If Cholesky factorization failed, i.e. some leadingminor ofA is not positive definite, or equivalently some
diagonal elements of L or U is not a real number. The output parameter infoArray would indicate
smallest leading minor of A which is not positive definite.

infoArray is an integer array of size batchsize. If potrfBatched returns CU-
SOLVER_STATUS_INVALID_VALUE, infoArray[0] = -i (less than zero), meaning that the i-th
parameter is wrong (not counting handle). If potrfBatched returns CUSOLVER_STATUS_SUCCESS
but infoArray[i] = k is positive, then i-th matrix is not positive definite and the Cholesky
factorization failed at row k.

Remark: the other part of A is used as a workspace. For example, if uplo is
CUBLAS_FILL_MODE_UPPER, upper triangle of A contains Cholesky factor U and lower triangle
of A is destroyed after potrfBatched.

Table 29: API of potrfBatched

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

uplo host input Indicates if lower or upper part is stored; the
other part is used as a workspace.

n host input Number of rows and columns of matrix A.

Aarray device in∕out Array of pointers to <type> array of dimension
lda * n with lda is not less than max(1,n).

lda host input Leading dimension of two-dimensional array
used to store each matrix Aarray[i].

continues on next page

132 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

Table 29 – continued from previous page

Parameter Memory In/out Meaning

infoArray device output Array of size batchSize. infoArray[i]
contains information of factorization of
Aarray[i]. if potrfBatched returns
CUSOLVER_STATUS_INVALID_VALUE, in-
foArray[0] = -i (less than zero) means
the i-th parameter is wrong (not count-
ing handle). if potrfBatched returns CU-
SOLVER_STATUS_SUCCESS, infoArray[i] =
0 means the Cholesky factorization of i-th
matrix is successful, and infoArray[i] = k
means the leading submatrix of order k of i-th
matrix is not positive definite.

batchSize host input Number of pointers in Aarray.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (n<0 or lda<max(1,n) or batchSize<1).

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.4.2.20 cusolverDn<t>potrsBatched()

cusolverStatus_t
cusolverDnSpotrsBatched(

cusolverDnHandle_t handle,
cublasFillMode_t uplo,
int n,
int nrhs,
float *Aarray[],
int lda,
float *Barray[],
int ldb,
int *info,
int batchSize);

cusolverStatus_t
cusolverDnDpotrsBatched(

cusolverDnHandle_t handle,
cublasFillMode_t uplo,
int n,
int nrhs,
double *Aarray[],
int lda,

(continues on next page)

8.4. cuSolverDN: dense LAPACK Function Reference 133

cuSOLVER, Release 12.8

(continued from previous page)

double *Barray[],
int ldb,
int *info,
int batchSize);

cusolverStatus_t
cusolverDnCpotrsBatched(

cusolverDnHandle_t handle,
cublasFillMode_t uplo,
int n,
int nrhs,
cuComplex *Aarray[],
int lda,
cuComplex *Barray[],
int ldb,
int *info,
int batchSize);

cusolverStatus_t
cusolverDnZpotrsBatched(

cusolverDnHandle_t handle,
cublasFillMode_t uplo,
int n,
int nrhs,
cuDoubleComplex *Aarray[],
int lda,
cuDoubleComplex *Barray[],
int ldb,
int *info,
int batchSize);

This function solves a sequence of linear systems

A[i] ∗X[i] = B[i]

where each Aarray[i] for i=0,1,..., batchSize-1 is a n × n Hermitian matrix, only lower or
upper part is meaningful. The input parameter uplo indicates which part of the matrix is used.

The user has to call potrfBatched first to factorize matrix Aarray[i]. If input parameter uplo is
CUBLAS_FILL_MODE_LOWER, A is lower triangular Cholesky factor L corresponding to A = L ∗ LH . If
input parameter uplo is CUBLAS_FILL_MODE_UPPER, A is upper triangular Cholesky factor U corre-
sponding to A = UH ∗ U .

The operation is in-place, i.e. matrix X overwrites matrix B with the same leading dimension ldb.

The output parameter info is a scalar. If info = -i (less than zero), the i-th parameter is wrong
(not counting handle).

Remark 1: only nrhs=1 is supported.

Remark 2: infoArray from potrfBatched indicates if the matrix is positive definite. info from
potrsBatched only shows which input parameter is wrong (not counting handle).

Remark 3: the other part of A is used as a workspace. For example, if uplo is
CUBLAS_FILL_MODE_UPPER, upper triangle of A contains Cholesky factor U and lower triangle
of A is destroyed after potrsBatched.

Please visit cuSOLVER Library Samples - potrfBatched for a code example.

134 Chapter 8. Using the CUSOLVER API

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/potrfBatched

cuSOLVER, Release 12.8

Table 30: API of potrsBatched

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

uplo host input Indicates ifmatrix A lower or upper part is stored.

n host input Number of rows and columns of matrix A.

nrhs host input Number of columns of matrix X and B.

Aarray device in∕out Array of pointers to <type> array of dimension
lda * n with lda is not less than max(1,n).
Aarray[i] is either lower Cholesky factor L or
upper Cholesky factor U.

lda host input Leading dimension of two-dimensional array
used to store each matrix Aarray[i].

Barray device in∕out Array of pointers to <type> array of dimension
ldb * nrhs. ldb is not less than max(1,n). As
an input, Barray[i] is right hand sidematrix. As
an output, Barray[i] is the solution matrix.

ldb host input Leading dimension of two-dimensional array
used to store each matrix Barray[i].

info device output If info = 0, all parameters are correct. if info
= -i, the i-th parameter is wrong (not counting
handle).

batchSize host input Number of pointers in Aarray.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameterswere passed (n<0, nrhs<0, lda<max(1,n), ldb<max(1,n) or batchSize<0).

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.4.3. Dense Eigenvalue Solver Reference (legacy)

This chapter describes eigenvalue solver API of cuSolverDN, including bidiagonalization and SVD.

8.4. cuSolverDN: dense LAPACK Function Reference 135

cuSOLVER, Release 12.8

8.4.3.1 cusolverDn<t>gebrd()

These helper functions calculate the size of work buffers needed.

cusolverStatus_t
cusolverDnSgebrd_bufferSize(

cusolverDnHandle_t handle,
int m,
int n,
int *Lwork);

cusolverStatus_t
cusolverDnDgebrd_bufferSize(

cusolverDnHandle_t handle,
int m,
int n,
int *Lwork);

cusolverStatus_t
cusolverDnCgebrd_bufferSize(

cusolverDnHandle_t handle,
int m,
int n,
int *Lwork);

cusolverStatus_t
cusolverDnZgebrd_bufferSize(

cusolverDnHandle_t handle,
int m,
int n,
int *Lwork);

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSgebrd(cusolverDnHandle_t handle,

int m,
int n,
float *A,
int lda,
float *D,
float *E,
float *TAUQ,
float *TAUP,
float *Work,
int Lwork,
int *devInfo);

cusolverStatus_t
cusolverDnDgebrd(cusolverDnHandle_t handle,

int m,
int n,
double *A,
int lda,
double *D,
double *E,
double *TAUQ,
double *TAUP,

(continues on next page)

136 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

(continued from previous page)

double *Work,
int Lwork,
int *devInfo);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCgebrd(cusolverDnHandle_t handle,

int m,
int n,
cuComplex *A,
int lda,
float *D,
float *E,
cuComplex *TAUQ,
cuComplex *TAUP,
cuComplex *Work,
int Lwork,
int *devInfo);

cusolverStatus_t
cusolverDnZgebrd(cusolverDnHandle_t handle,

int m,
int n,
cuDoubleComplex *A,
int lda,
double *D,
double *E,
cuDoubleComplex *TAUQ,
cuDoubleComplex *TAUP,
cuDoubleComplex *Work,
int Lwork,
int *devInfo);

This function reduces a generalm×nmatrix A to a real upper or lower bidiagonal form B by an orthog-
onal transformation: QH ∗A ∗ P = B

If m>=n, B is upper bidiagonal; if m<n, B is lower bidiagonal.

The matrix Q and P are overwritten into matrix A in the following sense:

▶ if m>=n, the diagonal and the first superdiagonal are overwritten with the upper bidiagonal matrix
B; the elements below the diagonal, with the array TAUQ, represent the orthogonal matrix Q as a
product of elementary reflectors, and the elements above the first superdiagonal, with the array
TAUP, represent the orthogonal matrix P as a product of elementary reflectors.

▶ if m<n, the diagonal and the first subdiagonal are overwritten with the lower bidiagonal matrix B;
the elements below the first subdiagonal, with the array TAUQ, represent the orthogonal matrix Q
as a product of elementary reflectors, and the elements above the diagonal, with the array TAUP,
represent the orthogonal matrix P as a product of elementary reflectors.

The user has to provide working space which is pointed by input parameter Work. The input parameter
Lwork is size of the working space, and it is returned by gebrd_bufferSize().

If output parameterdevInfo = -i (less than zero), thei-thparameter iswrong (not counting handle).

Remark: gebrd only supports m>=n.

8.4. cuSolverDN: dense LAPACK Function Reference 137

cuSOLVER, Release 12.8

Table 31: API of gebrd

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

m host input Number of rows of matrix A.

n host input Number of columns of matrix A.

A device in∕out <type> array of dimension lda * n with lda is
not less than max(1,n).

lda host input Leading dimension of two-dimensional array
used to store matrix A.

D device output Real array of dimension min(m,n). The diago-
nal elements of the bidiagonal matrix B: D(i) =
A(i,i).

E device output Real array of dimension min(m,n). The off-
diagonal elements of the bidiagonal matrix B: if
m>=n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
if m<n, E(i) = A(i+1,i) for i = 1,2,...,m-1.

TAUQ device output <type> array of dimension min(m,n). The scalar
factors of the elementary reflectors which rep-
resent the orthogonal matrix Q.

TAUP device output <type> array of dimension min(m,n). The scalar
factors of the elementary reflectors which rep-
resent the orthogonal matrix P.

Work device in∕out Working space, <type> array of size Lwork.

Lwork host input Size of Work, returned by gebrd_bufferSize.

devInfo device output If devInfo = 0, the operation is successful. if
devInfo = -i, the i-th parameter is wrong
(not counting handle).

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (m,n<0, or lda<max(1,m)).

CUSOLVER_STATUS_ARCH_MISMATCH
The device only supports compute capability 5.0 and above.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

138 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

8.4.3.2 cusolverDn<t>orgbr()

These helper functions calculate the size of work buffers needed.

cusolverStatus_t
cusolverDnSorgbr_bufferSize(

cusolverDnHandle_t handle,
cublasSideMode_t side,
int m,
int n,
int k,
const float *A,
int lda,
const float *tau,
int *lwork);

cusolverStatus_t
cusolverDnDorgbr_bufferSize(

cusolverDnHandle_t handle,
cublasSideMode_t side,
int m,
int n,
int k,
const double *A,
int lda,
const double *tau,
int *lwork);

cusolverStatus_t
cusolverDnCungbr_bufferSize(

cusolverDnHandle_t handle,
cublasSideMode_t side,
int m,
int n,
int k,
const cuComplex *A,
int lda,
const cuComplex *tau,
int *lwork);

cusolverStatus_t
cusolverDnZungbr_bufferSize(

cusolverDnHandle_t handle,
cublasSideMode_t side,
int m,
int n,
int k,
const cuDoubleComplex *A,
int lda,
const cuDoubleComplex *tau,
int *lwork);

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSorgbr(

cusolverDnHandle_t handle,
cublasSideMode_t side,

(continues on next page)

8.4. cuSolverDN: dense LAPACK Function Reference 139

cuSOLVER, Release 12.8

(continued from previous page)

int m,
int n,
int k,
float *A,
int lda,
const float *tau,
float *work,
int lwork,
int *devInfo);

cusolverStatus_t
cusolverDnDorgbr(

cusolverDnHandle_t handle,
cublasSideMode_t side,
int m,
int n,
int k,
double *A,
int lda,
const double *tau,
double *work,
int lwork,
int *devInfo);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCungbr(

cusolverDnHandle_t handle,
cublasSideMode_t side,
int m,
int n,
int k,
cuComplex *A,
int lda,
const cuComplex *tau,
cuComplex *work,
int lwork,
int *devInfo);

cusolverStatus_t
cusolverDnZungbr(

cusolverDnHandle_t handle,
cublasSideMode_t side,
int m,
int n,
int k,
cuDoubleComplex *A,
int lda,
const cuDoubleComplex *tau,
cuDoubleComplex *work,
int lwork,
int *devInfo);

This function generates one of the unitary matrices Q or P**H determined by gebrd when reducing a
matrix A to bidiagonal form: QH ∗A ∗ P = B

Q and P**H are defined as products of elementary reflectors H(i) or G(i) respectively.

140 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

The user has to provide working space which is pointed by input parameter work. The input parameter
lwork is size of the working space, and it is returned by orgbr_bufferSize(). Please note that the
size in bytes of the working space is equal to sizeof(<type>) * lwork.

If output parameterdevInfo = -i (less than zero), thei-thparameter iswrong (not counting handle).

Table 32: API of orgbr

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

side host input If side = CUBLAS_SIDE_LEFT, generate Q. if
side = CUBLAS_SIDE_RIGHT, generate P**T.

m host input Number of rows of matrix Q or P**T.

n host input If side = CUBLAS_SIDE_LEFT, m>= n>=
min(m,k). if side = CUBLAS_SIDE_RIGHT,
n>= m>= min(n,k).

k host input If side = CUBLAS_SIDE_LEFT, the number of
columns in the original m-by-k matrix reduced
by gebrd. if side = CUBLAS_SIDE_RIGHT, the
number of rows in the original k-by-n matrix re-
duced by gebrd.

A device in∕out <type> array of dimension lda * nOn entry, the
vectors which define the elementary reflectors,
as returned by gebrd. On exit, them-by-nmatrix
Q or P**T.

lda host input Leading dimension of two-dimensional array
used to store matrix A. lda >= max(1,m);

tau device input <type> array of dimension min(m,k) if side is
CUBLAS_SIDE_LEFT; of dimension min(n,k) if
side is CUBLAS_SIDE_RIGHT; tau(i) must con-
tain the scalar factor of the elementary reflec-
tor H(i) or G(i), which determines Q or P**T, as re-
turned by gebrd in its array argument TAUQ or
TAUP.

work device in∕out Working space, <type> array of size lwork.

lwork host input Size of working array work.

devInfo device output If info = 0, the ormqr is successful. if info =
-i, the i-th parameter is wrong (not counting
handle).

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

8.4. cuSolverDN: dense LAPACK Function Reference 141

cuSOLVER, Release 12.8

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (m,n<0 or wrong lda).

CUSOLVER_STATUS_ARCH_MISMATCH
The device only supports compute capability 5.0 and above.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.4.3.3 cusolverDn<t>sytrd()

These helper functions calculate the size of work buffers needed.

cusolverStatus_t
cusolverDnSsytrd_bufferSize(

cusolverDnHandle_t handle,
cublasFillMode_t uplo,
int n,
const float *A,
int lda,
const float *d,
const float *e,
const float *tau,
int *lwork);

cusolverStatus_t
cusolverDnDsytrd_bufferSize(

cusolverDnHandle_t handle,
cublasFillMode_t uplo,
int n,
const double *A,
int lda,
const double *d,
const double *e,
const double *tau,
int *lwork);

cusolverStatus_t
cusolverDnChetrd_bufferSize(

cusolverDnHandle_t handle,
cublasFillMode_t uplo,
int n,
const cuComplex *A,
int lda,
const float *d,
const float *e,
const cuComplex *tau,
int *lwork);

cusolverStatus_t
cusolverDnZhetrd_bufferSize(

cusolverDnHandle_t handle,
cublasFillMode_t uplo,
int n,
const cuDoubleComplex *A,
int lda,
const double *d,

(continues on next page)

142 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

(continued from previous page)

const double *e,
const cuDoubleComplex *tau,
int *lwork);

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSsytrd(

cusolverDnHandle_t handle,
cublasFillMode_t uplo,
int n,
float *A,
int lda,
float *d,
float *e,
float *tau,
float *work,
int lwork,
int *devInfo);

cusolverStatus_t
cusolverDnDsytrd(

cusolverDnHandle_t handle,
cublasFillMode_t uplo,
int n,
double *A,
int lda,
double *d,
double *e,
double *tau,
double *work,
int lwork,
int *devInfo);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnChetrd(

cusolverDnHandle_t handle,
cublasFillMode_t uplo,
int n,
cuComplex *A,
int lda,
float *d,
float *e,
cuComplex *tau,
cuComplex *work,
int lwork,
int *devInfo);

cusolverStatus_t CUDENSEAPI cusolverDnZhetrd(
cusolverDnHandle_t handle,
cublasFillMode_t uplo,
int n,
cuDoubleComplex *A,
int lda,
double *d,

(continues on next page)

8.4. cuSolverDN: dense LAPACK Function Reference 143

cuSOLVER, Release 12.8

(continued from previous page)

double *e,
cuDoubleComplex *tau,
cuDoubleComplex *work,
int lwork,
int *devInfo);

This function reduces a general symmetric (Hermitian) n × n matrix A to real symmetric tridiagonal
form T by an orthogonal transformation: QH ∗A ∗Q = T

As an output, A contains T and householder reflection vectors. If uplo = CUBLAS_FILL_MODE_UPPER,
the diagonal and first superdiagonal of A are overwritten by the corresponding elements of the tridi-
agonal matrix T, and the elements above the first superdiagonal, with the array tau, represent the
orthogonal matrix Q as a product of elementary reflectors; If uplo = CUBLAS_FILL_MODE_LOWER, the
diagonal and first subdiagonal of A are overwritten by the corresponding elements of the tridiagonal
matrix T, and the elements below the first subdiagonal, with the array tau, represent the orthogonal
matrix Q as a product of elementary reflectors.

The user has to provide working space which is pointed by input parameter work. The input parameter
lwork is size of the working space, and it is returned by sytrd_bufferSize(). Please note that the
size in bytes of the working space is equal to sizeof(<type>) * lwork.

If output parameterdevInfo = -i (less than zero), thei-thparameter iswrong (not counting handle).

Table 33: API of sytrd

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

uplo host input Specifies which part of A is stored. uplo =
CUBLAS_FILL_MODE_LOWER: Lower triangle of A
is stored. uplo = CUBLAS_FILL_MODE_UPPER:
Upper triangle of A is stored.

n host input Number of rows (columns) of matrix A.

A device in∕out <type> array of dimension lda * n with
lda is not less than max(1,n). If uplo =
CUBLAS_FILL_MODE_UPPER, the leading n-by-n
upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly
lower triangular part of A is not referenced. If
uplo = CUBLAS_FILL_MODE_LOWER, the leading
n-by-n lower triangular part of A contains the
lower triangular part of the matrix A, and the
strictly upper triangular part of A is not refer-
enced. On exit, A is overwritten by T and house-
holder reflection vectors.

lda host input Leading dimension of two-dimensional array
used to store matrix A. lda >= max(1,n).

D device output Real array of dimension n. The diagonal elements
of the tridiagonal matrix T: D(i) = A(i,i).

continues on next page

144 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

Table 33 – continued from previous page

Parameter Memory In/out Meaning

E device output Real array of dimension (n-1). The off-diagonal
elements of the tridiagonal matrix T: if uplo =
CUBLAS_FILL_MODE_UPPER,E(i) = A(i,i+1).
if uplo = CUBLAS_FILL_MODE_LOWERE(i) =
A(i+1,i).

tau device output <type> array of dimension (n-1). The scalar fac-
tors of the elementary reflectors which repre-
sent the orthogonal matrix Q.

work device in∕out Working space, <type> array of size lwork.

lwork host input Size of work, returned by sytrd_bufferSize.

devInfo device output If devInfo = 0, the operation is successful. if
devInfo = -i, the i-th parameter is wrong
(not counting handle).

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (n<0, or lda<max(1,n), or uplo is not
CUBLAS_FILL_MODE_LOWER or CUBLAS_FILL_MODE_UPPER).

CUSOLVER_STATUS_ARCH_MISMATCH
The device only supports compute capability 5.0 and above.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.4.3.4 cusolverDn<t>ormtr()

These helper functions calculate the size of work buffers needed.

cusolverStatus_t
cusolverDnSormtr_bufferSize(

cusolverDnHandle_t handle,
cublasSideMode_t side,
cublasFillMode_t uplo,
cublasOperation_t trans,
int m,
int n,
const float *A,
int lda,
const float *tau,
const float *C,
int ldc,
int *lwork);

(continues on next page)

8.4. cuSolverDN: dense LAPACK Function Reference 145

cuSOLVER, Release 12.8

(continued from previous page)

cusolverStatus_t
cusolverDnDormtr_bufferSize(

cusolverDnHandle_t handle,
cublasSideMode_t side,
cublasFillMode_t uplo,
cublasOperation_t trans,
int m,
int n,
const double *A,
int lda,
const double *tau,
const double *C,
int ldc,
int *lwork);

cusolverStatus_t
cusolverDnCunmtr_bufferSize(

cusolverDnHandle_t handle,
cublasSideMode_t side,
cublasFillMode_t uplo,
cublasOperation_t trans,
int m,
int n,
const cuComplex *A,
int lda,
const cuComplex *tau,
const cuComplex *C,
int ldc,
int *lwork);

cusolverStatus_t
cusolverDnZunmtr_bufferSize(

cusolverDnHandle_t handle,
cublasSideMode_t side,
cublasFillMode_t uplo,
cublasOperation_t trans,
int m,
int n,
const cuDoubleComplex *A,
int lda,
const cuDoubleComplex *tau,
const cuDoubleComplex *C,
int ldc,
int *lwork);

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSormtr(

cusolverDnHandle_t handle,
cublasSideMode_t side,
cublasFillMode_t uplo,
cublasOperation_t trans,
int m,
int n,
float *A,

(continues on next page)

146 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

(continued from previous page)

int lda,
float *tau,
float *C,
int ldc,
float *work,
int lwork,
int *devInfo);

cusolverStatus_t
cusolverDnDormtr(

cusolverDnHandle_t handle,
cublasSideMode_t side,
cublasFillMode_t uplo,
cublasOperation_t trans,
int m,
int n,
double *A,
int lda,
double *tau,
double *C,
int ldc,
double *work,
int lwork,
int *devInfo);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCunmtr(

cusolverDnHandle_t handle,
cublasSideMode_t side,
cublasFillMode_t uplo,
cublasOperation_t trans,
int m,
int n,
cuComplex *A,
int lda,
cuComplex *tau,
cuComplex *C,
int ldc,
cuComplex *work,
int lwork,
int *devInfo);

cusolverStatus_t
cusolverDnZunmtr(

cusolverDnHandle_t handle,
cublasSideMode_t side,
cublasFillMode_t uplo,
cublasOperation_t trans,
int m,
int n,
cuDoubleComplex *A,
int lda,
cuDoubleComplex *tau,
cuDoubleComplex *C,
int ldc,

(continues on next page)

8.4. cuSolverDN: dense LAPACK Function Reference 147

cuSOLVER, Release 12.8

(continued from previous page)

cuDoubleComplex *work,
int lwork,
int *devInfo);

This function overwritesm× nmatrix C by

where Q is a unitary matrix formed by a sequence of elementary reflection vectors from sytrd.

The operation on Q is defined by

The user has to provide working space which is pointed by input parameter work. The input parameter
lwork is size of the working space, and it is returned by ormtr_bufferSize(). Please note that the
size in bytes of the working space is equal to sizeof(<type>) * lwork.

If output parameterdevInfo = -i (less than zero), thei-thparameter iswrong (not counting handle).

Table 34: API of ormtr

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

side host input side = CUBLAS_SIDE_LEFT, apply Q or Q**T
from the Left; side = CUBLAS_SIDE_RIGHT, ap-
ply Q or Q**T from the Right.

uplo host input uplo = CUBLAS_FILL_MODE_LOWER: Lower tri-
angle of A contains elementary reflectors from
sytrd. uplo = CUBLAS_FILL_MODE_UPPER: Up-
per triangle of A contains elementary reflectors
from sytrd.

trans host input Operation op(Q) that is non- or (conj.) trans-
pose.

m host input Number of rows of matrix C.

n host input Number of columns of matrix C.

A device in∕out <type> array of dimension lda * m if side
= CUBLAS_SIDE_LEFT; lda * n if side =
CUBLAS_SIDE_RIGHT. The matrix A from sytrd
contains the elementary reflectors.

continues on next page

148 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

Table 34 – continued from previous page

Parameter Memory In/out Meaning

lda host input Leading dimension of two-dimensional ar-
ray used to store matrix A. if side is
CUBLAS_SIDE_LEFT, lda >= max(1,m); if side is
CUBLAS_SIDE_RIGHT, lda >= max(1,n).

tau device output <type> array of dimension (m-1) if side is
CUBLAS_SIDE_LEFT; of dimension (n-1) if
side is CUBLAS_SIDE_RIGHT; The vector tau is
from sytrd, so tau(i) is the scalar of i-th ele-
mentary reflection vector.

C device in∕out <type> array of size ldc * n. On exit, C is over-
written by op(Q)*C or C*op(Q).

ldc host input Leading dimension of two-dimensional array of
matrix C. ldc >= max(1,m).

work device in∕out Working space, <type> array of size lwork.

lwork host input Size of working array work.

devInfo device output If devInfo = 0, the ormqr is successful. if dev-
Info = -i, the i-th parameter is wrong (not
counting handle).

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (m,n<0 or wrong lda or ldc).

CUSOLVER_STATUS_ARCH_MISMATCH
The device only supports compute capability 5.0 and above.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.4.3.5 cusolverDn<t>orgtr()

These helper functions calculate the size of work buffers needed.

cusolverStatus_t
cusolverDnSorgtr_bufferSize(

cusolverDnHandle_t handle,
cublasFillMode_t uplo,
int n,
const float *A,
int lda,
const float *tau,
int *lwork);

(continues on next page)

8.4. cuSolverDN: dense LAPACK Function Reference 149

cuSOLVER, Release 12.8

(continued from previous page)

cusolverStatus_t
cusolverDnDorgtr_bufferSize(

cusolverDnHandle_t handle,
cublasFillMode_t uplo,
int n,
const double *A,
int lda,
const double *tau,
int *lwork);

cusolverStatus_t
cusolverDnCungtr_bufferSize(

cusolverDnHandle_t handle,
cublasFillMode_t uplo,
int n,
const cuComplex *A,
int lda,
const cuComplex *tau,
int *lwork);

cusolverStatus_t
cusolverDnZungtr_bufferSize(

cusolverDnHandle_t handle,
cublasFillMode_t uplo,
int n,
const cuDoubleComplex *A,
int lda,
const cuDoubleComplex *tau,
int *lwork);

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSorgtr(

cusolverDnHandle_t handle,
cublasFillMode_t uplo,
int n,
float *A,
int lda,
const float *tau,
float *work,
int lwork,
int *devInfo);

cusolverStatus_t
cusolverDnDorgtr(

cusolverDnHandle_t handle,
cublasFillMode_t uplo,
int n,
double *A,
int lda,
const double *tau,
double *work,
int lwork,
int *devInfo);

150 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCungtr(

cusolverDnHandle_t handle,
cublasFillMode_t uplo,
int n,
cuComplex *A,
int lda,
const cuComplex *tau,
cuComplex *work,
int lwork,
int *devInfo);

cusolverStatus_t
cusolverDnZungtr(

cusolverDnHandle_t handle,
cublasFillMode_t uplo,
int n,
cuDoubleComplex *A,
int lda,
const cuDoubleComplex *tau,
cuDoubleComplex *work,
int lwork,
int *devInfo);

This function generates a unitarymatrix Qwhich is defined as the product of n-1 elementary reflectors
of order n, as returned by sytrd:

The user has to provide working space which is pointed by input parameter work. The input parameter
lwork is size of the working space, and it is returned by orgtr_bufferSize(). Please note that the
size in bytes of the working space is equal to sizeof(<type>) * lwork.

If output parameterdevInfo = -i (less than zero), thei-thparameter iswrong (not counting handle).

Table 35: API of orgtr

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

uplo host input uplo = CUBLAS_FILL_MODE_LOWER: Lower tri-
angle of A contains elementary reflectors from
sytrd. uplo = CUBLAS_FILL_MODE_UPPER: Up-
per triangle of A contains elementary reflectors
from sytrd.

n host input Number of rows (columns) of matrix Q.

A device in∕out <type> array of dimension lda * n On entry,
matrix A from sytrd contains the elementary re-
flectors. On exit, matrix A contains the n-by-n
orthogonal matrix Q.

lda host input Leading dimension of two-dimensional array
used to store matrix A. lda >= max(1,n).

continues on next page

8.4. cuSolverDN: dense LAPACK Function Reference 151

cuSOLVER, Release 12.8

Table 35 – continued from previous page

Parameter Memory In/out Meaning

tau device input <type> array of dimension (n-1)tau(i) is the
scalar of i-th elementary reflection vector.

work device in∕out Working space, <type> array of size lwork.

lwork host input Size of working array work.

devInfo device output If devInfo = 0, the orgtr is successful. if dev-
Info = -i, the i-th parameter is wrong (not
counting handle).

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (n<0 or wrong lda).

CUSOLVER_STATUS_ARCH_MISMATCH
The device only supports compute capability 5.0 and above.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.4.3.6 cusolverDn<t>gesvd()

The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnSgesvd_bufferSize(

cusolverDnHandle_t handle,
int m,
int n,
int *lwork);

cusolverStatus_t
cusolverDnDgesvd_bufferSize(

cusolverDnHandle_t handle,
int m,
int n,
int *lwork);

cusolverStatus_t
cusolverDnCgesvd_bufferSize(

cusolverDnHandle_t handle,
int m,
int n,
int *lwork);

cusolverStatus_t
(continues on next page)

152 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

(continued from previous page)

cusolverDnZgesvd_bufferSize(
cusolverDnHandle_t handle,
int m,
int n,
int *lwork);

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSgesvd (

cusolverDnHandle_t handle,
signed char jobu,
signed char jobvt,
int m,
int n,
float *A,
int lda,
float *S,
float *U,
int ldu,
float *VT,
int ldvt,
float *work,
int lwork,
float *rwork,
int *devInfo);

cusolverStatus_t
cusolverDnDgesvd (

cusolverDnHandle_t handle,
signed char jobu,
signed char jobvt,
int m,
int n,
double *A,
int lda,
double *S,
double *U,
int ldu,
double *VT,
int ldvt,
double *work,
int lwork,
double *rwork,
int *devInfo);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCgesvd (

cusolverDnHandle_t handle,
signed char jobu,
signed char jobvt,
int m,
int n,
cuComplex *A,
int lda,

(continues on next page)

8.4. cuSolverDN: dense LAPACK Function Reference 153

cuSOLVER, Release 12.8

(continued from previous page)

float *S,
cuComplex *U,
int ldu,
cuComplex *VT,
int ldvt,
cuComplex *work,
int lwork,
float *rwork,
int *devInfo);

cusolverStatus_t
cusolverDnZgesvd (

cusolverDnHandle_t handle,
signed char jobu,
signed char jobvt,
int m,
int n,
cuDoubleComplex *A,
int lda,
double *S,
cuDoubleComplex *U,
int ldu,
cuDoubleComplex *VT,
int ldvt,
cuDoubleComplex *work,
int lwork,
double *rwork,
int *devInfo);

This function computes the singular value decomposition (SVD) of anm×nmatrix A and corresponding
the left and/or right singular vectors. The SVD is written

A = U ∗ Σ ∗ V H

where Σ is an m × n matrix which is zero except for its min(m,n) diagonal elements, U is an m × m
unitary matrix, and V is an n× n unitary matrix. The diagonal elements of Σ are the singular values of
A; they are real and non-negative, and are returned in descending order. The first min(m,n) columns
of U and V are the left and right singular vectors of A.

The user has to provide working space which is pointed by input parameter work. The input parameter
lwork is size of the working space, and it is returned by gesvd_bufferSize(). Please note that the
size in bytes of the working space is equal to sizeof(<type>) * lwork.

If output parameterdevInfo = -i (less than zero), thei-thparameter iswrong (not counting handle).
if bdsqr did not converge, devInfo specifies howmany superdiagonals of an intermediate bidiagonal
form did not converge to zero.

The rwork is real array of dimension (min(m,n)-1). If devInfo>0 and rwork is not NULL, rwork con-
tains the unconverged superdiagonal elements of an upper bidiagonal matrix. This is slightly different
from LAPACKwhich puts unconverged superdiagonal elements in work if type is real; in rwork if type
is complex. rwork can be a NULL pointer if the user does not want the information from superdiag-
onal.

Please visit cuSOLVER Library Samples - gesvd for a code example.

Remark 1: gesvd only supports m>=n.

Remark 2: the routine returns V H , not V.

154 Chapter 8. Using the CUSOLVER API

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/gesvd

cuSOLVER, Release 12.8

Table 36: API of gesvd

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

jobu host input Specifies options for computing all or part of the
matrix U: = ‘A’: all m columns of U are returned in
array U: = ‘S’: the first min(m,n) columns of U (the
left singular vectors) are returned in the array U;
= ‘O’: the firstmin(m,n) columns of U (the left sin-
gular vectors) are overwritten on the array A; =
‘N’: no columns of U (no left singular vectors) are
computed.

jobvt host input Specifies options for computing all or part of the
matrix V**T: = ‘A’: all N rows of V**T are returned in
the array VT; = ‘S’: the first min(m,n) rows of V**T
(the right singular vectors) are returned in the ar-
ray VT; = ‘O’: the first min(m,n) rows of V**T (the
right singular vectors) are overwritten on the ar-
ray A; = ‘N’: no rows of V**T (no right singular vec-
tors) are computed.

m host input Number of rows of matrix A.

n host input Number of columns of matrix A.

A device in∕out <type> array of dimension lda * n with lda is
not less than max(1,m). On exit, the contents of
A are destroyed.

lda host input Leading dimension of two-dimensional array
used to store matrix A.

S device output Real array of dimension min(m,n). The singular
values of A, sorted so that S(i) >= S(i+1).

U device output <type> array of dimension ldu * m with ldu is
not less than max(1,m). U contains the m × m
unitary matrix U.

ldu host input Leading dimension of two-dimensional array
used to store matrix U.

VT device output <type> array of dimension ldvt * n with ldvt
is not less than max(1,n). VT contains the n×n
unitary matrix V**T.

ldvt host input Leading dimension of two-dimensional array
used to store matrix Vt.

work device in∕out Working space, <type> array of size lwork.

lwork host input Size of work, returned by gesvd_bufferSize.

rwork device input Real array of dimension min(m,n)-1. It contains
the unconverged superdiagonal elements of an
upper bidiagonal matrix if devInfo > 0.

continues on next page

8.4. cuSolverDN: dense LAPACK Function Reference 155

cuSOLVER, Release 12.8

Table 36 – continued from previous page

Parameter Memory In/out Meaning

devInfo device output If devInfo = 0, the operation is successful. if
devInfo = -i, the i-th parameter is wrong
(not counting handle). If devInfo > 0, dev-
Info indicates how many superdiagonals of an
intermediate bidiagonal formdid not converge to
zero.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (m,n<0 or lda<max(1,m) or ldu<max(1,m) or ldvt<max(1,
n)).

CUSOLVER_STATUS_ARCH_MISMATCH
The device only supports compute capability 5.0 and above.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.4.3.7 cusolverDnGesvd() [DEPRECATED]

[[DEPRECATED]] use cusolverDnXgesvd() instead. The routine will be removed in the next major
release.

The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t cusolverDnGesvd_bufferSize(
cusolverDnHandle_t handle,
cusolverDnParams_t params,
signed char jobu,
signed char jobvt,
int64_t m,
int64_t n,
cudaDataType dataTypeA,
const void *A,
int64_t lda,
cudaDataType dataTypeS,
const void *S,
cudaDataType dataTypeU,
const void *U,
int64_t ldu,
cudaDataType dataTypeVT,
const void *VT,
int64_t ldvt,
cudaDataType computeType,
size_t *workspaceInBytes);

The routine below:

156 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

cusolverStatus_t cusolverDnGesvd(
cusolverDnHandle_t handle,
cusolverDnParams_t params,
signed char jobu,
signed char jobvt,
int64_t m,
int64_t n,
cudaDataType dataTypeA,
void *A,
int64_t lda,
cudaDataType dataTypeS,
void *S,
cudaDataType dataTypeU,
void *U,
int64_t ldu,
cudaDataType dataTypeVT,
void *VT,
int64_t ldvt,
cudaDataType computeType,
void *pBuffer,
size_t workspaceInBytes,
int *info);

This function computes the singular value decomposition (SVD) of anm×nmatrix A and corresponding
the left and/or right singular vectors. The SVD is written

A = U ∗ Σ ∗ V H

where Σ is an m × n matrix which is zero except for its min(m,n) diagonal elements, U is an m × m
unitary matrix, and V is an n× n unitary matrix. The diagonal elements of Σ are the singular values of
A; they are real and non-negative, and are returned in descending order. The first min(m,n) columns
of U and V are the left and right singular vectors of A.

The user has to provide working space which is pointed by input parameter pBuffer. The input pa-
rameter workspaceInBytes is size in bytes of the working space, and it is returned by cusolverD-
nGesvd_bufferSize().

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting handle). if
bdsqr did not converge, info specifies how many superdiagonals of an intermediate bidiagonal form
did not converge to zero.

Currently, cusolverDnGesvd supports only the default algorithm.

Algorithms supported by cusolverDnGesvd

CUSOLVER_ALG_0 or NULL Default algorithm.

Remark 1: gesvd only supports m>=n.

Remark 2: the routine returns V H , not V.

List of input arguments for cusolverDnGesvd_bufferSize and cusolverDnGesvd:

8.4. cuSolverDN: dense LAPACK Function Reference 157

cuSOLVER, Release 12.8

Table 37: API of cusolverDnGesvd

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

params host input Structure with information collected by cu-
solverDnSetAdvOptions.

jobu host input Specifies options for computing all or part of the
matrix U: = ‘A’: all m columns of U are returned in
array U: = ‘S’: the first min(m,n) columns of U (the
left singular vectors) are returned in the array U;
= ‘O’: the firstmin(m,n) columns of U (the left sin-
gular vectors) are overwritten on the array A; =
‘N’: no columns of U (no left singular vectors) are
computed.

jobvt host input Specifies options for computing all or part of the
matrix V**T: = ‘A’: all N rows of V**T are returned in
the array VT; = ‘S’: the first min(m,n) rows of V**T
(the right singular vectors) are returned in the ar-
ray VT; = ‘O’: the first min(m,n) rows of V**T (the
right singular vectors) are overwritten on the ar-
ray A; = ‘N’: no rows of V**T (no right singular vec-
tors) are computed.

m host input Number of rows of matrix A.

n host input Number of columns of matrix A.

dataTypeA host input Data type of array A.

A device in∕out Array of dimension lda * n with lda is not less
than max(1,m). On exit, the contents of A are
destroyed.

lda host input Leading dimension of two-dimensional array
used to store matrix A.

dataTypeS host input Data type of array S.

S device output Real array of dimension min(m,n). The singular
values of A, sorted so that S(i) >= S(i+1).

dataTypeU host input Data type of array U.

U device output Array of dimension ldu * m with ldu is not less
than max(1,m). U contains the m × m unitary
matrix U.

ldu host input Leading dimension of two-dimensional array
used to store matrix U.

dataTypeVT host input Data type of array VT.

VT device output Array of dimension ldvt * n with ldvt is not
less thanmax(1,n). VT contains then×nunitary
matrix V**T.

continues on next page

158 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

Table 37 – continued from previous page

Parameter Memory In/out Meaning

ldvt host input Leading dimension of two-dimensional array
used to store matrix Vt.

computeType host input Data type of computation.

pBuffer device in∕out Working space. Array of type void of size
workspaceInBytes bytes.

workspaceIn-
Bytes

host input Size in bytes of pBuffer, returned by cu-
solverDnGesvd_bufferSize.

info device output If info = 0, the operation is successful. if info
= -i, the i-th parameter is wrong (not count-
ing handle). if info > 0, info indicates how
many superdiagonals of an intermediate bidiag-
onal form did not converge to zero.

The generic API has three different types, dataTypeA is data type of the matrix A, dataTypeS is data
type of the vector S and dataTypeU is data type of thematrix U, dataTypeVT is data type of thematrix
VT, computeType is compute type of the operation. cusolverDnGesvd only supports the following
four combinations.

Valid combination of data type and compute type

DataTypeA DataTypeS DataTypeU DataTypeVT ComputeType Meaning

CUDA_R_32F CUDA_R_32F CUDA_R_32F CUDA_R_32F CUDA_R_32F SGESVD

CUDA_R_64F CUDA_R_64F CUDA_R_64F CUDA_R_64F CUDA_R_64F DGESVD

CUDA_C_32F CUDA_R_32F CUDA_C_32F CUDA_C_32F CUDA_C_32F CGESVD

CUDA_C_64F CUDA_R_64F CUDA_C_64F CUDA_C_64F CUDA_C_64F ZGESVD

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (m,n<0 or lda<max(1,m) or ldu<max(1,m) or ldvt<max(1,
n)).

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.4. cuSolverDN: dense LAPACK Function Reference 159

cuSOLVER, Release 12.8

8.4.3.8 cusolverDn<t>gesvdj()

The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnSgesvdj_bufferSize(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
int econ,
int m,
int n,
const float *A,
int lda,
const float *S,
const float *U,
int ldu,
const float *V,
int ldv,
int *lwork,
gesvdjInfo_t params);

cusolverStatus_t
cusolverDnDgesvdj_bufferSize(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
int econ,
int m,
int n,
const double *A,
int lda,
const double *S,
const double *U,
int ldu,
const double *V,
int ldv,
int *lwork,
gesvdjInfo_t params);

cusolverStatus_t
cusolverDnCgesvdj_bufferSize(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
int econ,
int m,
int n,
const cuComplex *A,
int lda,
const float *S,
const cuComplex *U,
int ldu,
const cuComplex *V,
int ldv,
int *lwork,
gesvdjInfo_t params);

cusolverStatus_t
cusolverDnZgesvdj_bufferSize(

cusolverDnHandle_t handle,
(continues on next page)

160 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

(continued from previous page)

cusolverEigMode_t jobz,
int econ,
int m,
int n,
const cuDoubleComplex *A,
int lda,
const double *S,
const cuDoubleComplex *U,
int ldu,
const cuDoubleComplex *V,
int ldv,
int *lwork,
gesvdjInfo_t params);

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSgesvdj(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
int econ,
int m,
int n,
float *A,
int lda,
float *S,
float *U,
int ldu,
float *V,
int ldv,
float *work,
int lwork,
int *info,
gesvdjInfo_t params);

cusolverStatus_t
cusolverDnDgesvdj(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
int econ,
int m,
int n,
double *A,
int lda,
double *S,
double *U,
int ldu,
double *V,
int ldv,
double *work,
int lwork,
int *info,
gesvdjInfo_t params);

The C and Z data types are complex valued single and double precision, respectively.

8.4. cuSolverDN: dense LAPACK Function Reference 161

cuSOLVER, Release 12.8

cusolverStatus_t
cusolverDnCgesvdj(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
int econ,
int m,
int n,
cuComplex *A,
int lda,
float *S,
cuComplex *U,
int ldu,
cuComplex *V,
int ldv,
cuComplex *work,
int lwork,
int *info,
gesvdjInfo_t params);

cusolverStatus_t
cusolverDnZgesvdj(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
int econ,
int m,
int n,
cuDoubleComplex *A,
int lda,
double *S,
cuDoubleComplex *U,
int ldu,
cuDoubleComplex *V,
int ldv,
cuDoubleComplex *work,
int lwork,
int *info,
gesvdjInfo_t params);

This function computes the singular value decomposition (SVD) of anm×nmatrix A and corresponding
the left and/or right singular vectors. The SVD is written:

A = U ∗ Σ ∗ V H

where Σ is an m × n matrix which is zero except for its min(m,n) diagonal elements, U is an m × m
unitary matrix, and V is an n× n unitary matrix. The diagonal elements of Σ are the singular values of
A; they are real and non-negative, and are returned in descending order. The first min(m,n) columns
of U and V are the left and right singular vectors of A.

gesvdj has the same functionality as gesvd. The difference is that gesvd uses QR algorithm and
gesvdj uses Jacobi method. The parallelism of Jacobi method gives GPU better performance on
small and medium size matrices. Moreover the user can configure gesvdj to perform approximation
up to certain accuracy.

gesvdj iteratively generates a sequence of unitary matrices to transform matrix A to the following
form

UH ∗A ∗ V = S + E

where S is diagonal and diagonal of E is zero.

162 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

During the iterations, the Frobenius norm of E decreases monotonically. As E goes down to zero, S is
the set of singular values. In practice, Jacobi method stops if

∥E∥F ≤ eps ∗∥A∥F

where eps is given tolerance. Note that if the real residual norm

∥S − UH ∗A ∗ V ∥F

is computed, it will differ from ∥E∥F up to roundoff errors of order N = max(m,n), to still have the
standard SVD accuracy expectation

∥S − UH ∗A ∗ V ∥F
O(N) ∗ ∥A∥F

≤ ∥E∥F
∥A∥F

≤ eps

O(N) is typicallyN , but the constant depends on the number of sweeps, which gives an upper roundoff
error bound of sweeps ∗N .

gesvdj has two parameters to control the accuracy. First parameter is tolerance (eps). The default
value is machine accuracy but The user can use function cusolverDnXgesvdjSetTolerance to set
a priori tolerance. The second parameter is maximum number of sweeps which controls number of
iterations of Jacobi method. The default value is 100 but the user can use function cusolverD-
nXgesvdjSetMaxSweeps to set a proper bound. The experiments show15 sweeps are good enough to
converge to machine accuracy. gesvdj stops either tolerance is met or maximum number of sweeps
is met.

Jacobi method has quadratic convergence, so the accuracy is not proportional to number of sweeps.
To guarantee certain accuracy, the user should configure tolerance only.

The user has to provide working space which is pointed by input parameter work. The input parameter
lwork is the size of the working space, and it is returned by gesvdj_bufferSize(). Please note that
the size in bytes of the working space is equal to sizeof(<type>) * lwork.

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting handle).
If info = min(m,n)+1, gesvdj does not converge under given tolerance and maximum sweeps.

If the user sets an improper tolerance, gesvdj may not converge. For example, tolerance should not
be smaller than machine accuracy.

Please visit cuSOLVER Library Samples - gesvdj for a code example.

Remark 1: gesvdj supports any combination of m and n.

Remark 2: the routine returns V, not V H . This is different from gesvd.

Table 38: API of gesvdj

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

jobz host input Specifies options to either compute singu-
lar value only or singular vectors as well:
jobz = CUSOLVER_EIG_MODE_NOVECTOR :
Compute singular values only; jobz = CU-
SOLVER_EIG_MODE_VECTOR : Compute singular
values and singular vectors.

continues on next page

8.4. cuSolverDN: dense LAPACK Function Reference 163

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/gesvdj

cuSOLVER, Release 12.8

Table 38 – continued from previous page

Parameter Memory In/out Meaning

econ host input econ = 1 for economy size for U and V.

m host input Number of rows of matrix A.

n host input Number of columns of matrix A.

A device in∕out <type> array of dimension lda * n with lda is
not less than max(1,m). On exit, the contents of
A are destroyed.

lda host input Leading dimension of two-dimensional array
used to store matrix A.

S device output Real array of dimension min(m,n). The singular
values of A, sorted so that S(i) >= S(i+1).

U device output <type> array of dimension ldu * m if econ is
zero. If econ is nonzero, the dimension is ldu *
min(m,n). U contains the left singular vectors.

ldu host input Leading dimension of two-dimensional array
used to store matrix U. ldu is not less than
max(1,m).

V device output <type> array of dimension ldv * n if econ is
zero. If econ is nonzero, the dimension is ldv *
min(m,n). V contains the right singular vectors.

ldv host input Leading dimension of two-dimensional array
used to store matrix V. ldv is not less than
max(1,n).

work device in∕out <type> array of size lwork, working space.

lwork host input Size of work, returned by gesvdj_bufferSize.

info device output If info = 0, the operation is successful. if info
= -i, the i-th parameter is wrong (not counting
handle). if info = min(m,n)+1, gesvdj dose
not converge under given tolerance and maxi-
mum sweeps.

params host input Structure filled with parameters of Jacobi algo-
rithm and results of gesvdj. params can be de-
stroyed after the host thread exits the routine.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (m,n<0 or lda<max(1,m) or ldu<max(1,m) or ldv<max(1,n)
or jobz is not CUSOLVER_EIG_MODE_NOVECTOR or CUSOLVER_EIG_MODE_VECTOR).

164 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.4.3.9 cusolverDn<t>gesvdjBatched()

The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnSgesvdjBatched_bufferSize(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
int m,
int n,
const float *A,
int lda,
const float *S,
const float *U,
int ldu,
const float *V,
int ldv,
int *lwork,
gesvdjInfo_t params,
int batchSize);

cusolverStatus_t
cusolverDnDgesvdjBatched_bufferSize(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
int m,
int n,
const double *A,
int lda,
const double *S,
const double *U,
int ldu,
const double *V,
int ldv,
int *lwork,
gesvdjInfo_t params,
int batchSize);

cusolverStatus_t
cusolverDnCgesvdjBatched_bufferSize(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
int m,
int n,
const cuComplex *A,
int lda,
const float *S,
const cuComplex *U,
int ldu,
const cuComplex *V,
int ldv,
int *lwork,
gesvdjInfo_t params,
int batchSize);

(continues on next page)

8.4. cuSolverDN: dense LAPACK Function Reference 165

cuSOLVER, Release 12.8

(continued from previous page)

cusolverStatus_t
cusolverDnZgesvdjBatched_bufferSize(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
int m,
int n,
const cuDoubleComplex *A,
int lda,
const double *S,
const cuDoubleComplex *U,
int ldu,
const cuDoubleComplex *V,
int ldv,
int *lwork,
gesvdjInfo_t params,
int batchSize);

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSgesvdjBatched(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
int m,
int n,
float *A,
int lda,
float *S,
float *U,
int ldu,
float *V,
int ldv,
float *work,
int lwork,
int *info,
gesvdjInfo_t params,
int batchSize);

cusolverStatus_t
cusolverDnDgesvdjBatched(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
int m,
int n,
double *A,
int lda,
double *S,
double *U,
int ldu,
double *V,
int ldv,
double *work,
int lwork,
int *info,
gesvdjInfo_t params,
int batchSize);

166 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCgesvdjBatched(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
int m,
int n,
cuComplex *A,
int lda,
float *S,
cuComplex *U,
int ldu,
cuComplex *V,
int ldv,
cuComplex *work,
int lwork,
int *info,
gesvdjInfo_t params,
int batchSize);

cusolverStatus_t
cusolverDnZgesvdjBatched(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
int m,
int n,
cuDoubleComplex *A,
int lda,
double *S,
cuDoubleComplex *U,
int ldu,
cuDoubleComplex *V,
int ldv,
cuDoubleComplex *work,
int lwork,
int *info,
gesvdjInfo_t params,
int batchSize);

This function computes singular values and singular vectors of a sequence of generalm× nmatrices

Aj = Uj ∗ Σj ∗ V H
j

where Σj is a real m × n diagonal matrix which is zero except for its min(m,n) diagonal elements. Uj

(left singular vectors) is anm×m unitary matrix and Vj (right singular vectors) is a n×n unitary matrix.
The diagonal elements of Σj are the singular values of Aj in either descending order or non-sorting
order.

gesvdjBatched performs gesvdj on each matrix. It requires that all matrices are of the same size
m,n no greater than 32 and are packed in contiguous way,

A =
(
A0 A1 · · ·

)
Eachmatrix is column-major with leading dimension lda, so the formula for randomaccess isAk (i, j) =
A[i + lda ∗ j + lda ∗ n ∗ k] .

The parameter S also contains singular values of each matrix in contiguous way,

S =
(
S0 S1 · · ·

)
8.4. cuSolverDN: dense LAPACK Function Reference 167

cuSOLVER, Release 12.8

The formula for random access of S is Sk (j) = S[j + min(m,n) ∗ k] .

Except for tolerance and maximum sweeps, gesvdjBatched can either sort the singular values in de-
scending order (default) or chose as-is (without sorting) by the function cusolverDnXgesvdjSet-
SortEig. If the user packs several tinymatrices into diagonal blocks of onematrix, non-sorting option
can separate singular values of those tiny matrices.

gesvdjBatched cannot report residual and executed sweeps by function cusolverDnXgesvd-
jGetResidual and cusolverDnXgesvdjGetSweeps. Any call of the above two returns CU-
SOLVER_STATUS_NOT_SUPPORTED. The user needs to compute residual explicitly.

The user has to provide working space pointed by input parameter work. The input parameter lwork
is the size of the working space, and it is returned by gesvdjBatched_bufferSize(). Please note
that the size in bytes of the working space is equal to sizeof(<type>) * lwork.

The output parameter info is an integer array of size batchSize. If the function returns CU-
SOLVER_STATUS_INVALID_VALUE, the first element info[0] = -i (less than zero) indicates i-th
parameter is wrong (not counting handle). Otherwise, if info[i] = min(m,n)+1, gesvdjBatched
does not converge on i-thmatrix under given tolerance and maximum sweeps.

Please visit cuSOLVER Library Samples - gesvdjBatched for a code example.

Table 39: API of gesvdjBatched

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

jobz host input Specifies options to either compute singu-
lar value only or singular vectors as well:
jobz = CUSOLVER_EIG_MODE_NOVECTOR :
Compute singular values only; jobz = CU-
SOLVER_EIG_MODE_VECTOR : Compute singular
values and singular vectors.

m host input Number of rows ofmatrixAj. m is no greater than
32.

n host input Number of columns of matrix Aj. n is no greater
than 32.

A device in∕out <type> array of dimension lda * n * batch-
Size with lda is not less than max(1,n). on
Exit: the contents of Aj are destroyed.

lda host input Lading dimension of two-dimensional array used
to store matrix Aj.

S device output Areal array of dimension min(m,n)*batchSize.
It stores the singular values of Aj in descending
order or non-sorting order.

U device output <type> array of dimension ldu * m * batch-
Size. Uj contains the left singular vectors of Aj.

ldu host input Leading dimension of two-dimensional array
used to store matrix Uj. ldu is not less than
max(1,m).

continues on next page

168 Chapter 8. Using the CUSOLVER API

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/gesvdjBatched

cuSOLVER, Release 12.8

Table 39 – continued from previous page

Parameter Memory In/out Meaning

V device output <type> array of dimension ldv * n * batch-
Size. Vj contains the right singular vectors of
Aj.

ldv host input Leading dimension of two-dimensional array
used to store matrix Vj. ldv is not less than
max(1,n).

work device in∕out <type> array of size lwork, working space.

lwork host input Size of work, returned by gesvdj-
Batched_bufferSize.

info device output An integer array of dimension batchSize. If CU-
SOLVER_STATUS_INVALID_VALUE is returned,
info[0] = -i (less than zero) indicates i-th
parameter is wrong (not counting handle). Oth-
erwise, if info[i] = 0, the operation is success-
ful. ifinfo[i] = min(m,n)+1, gesvdjBatched
dose not converge on i-th matrix under given
tolerance and maximum sweeps.

params host input Structure filled with parameters of Jacobi algo-
rithm. params can be destroyed after the host
thread exits the routine.

batchSize host input Number of matrices.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (m,n<0 or lda<max(1,m) or ldu<max(1,m) or ldv<max(1,n)
or jobz is not CUSOLVER_EIG_MODE_NOVECTOR or CUSOLVER_EIG_MODE_VECTOR , or batch-
Size<0).

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.4.3.10 cusolverDn<t>gesvdaStridedBatched()

The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnSgesvdaStridedBatched_bufferSize(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
int rank,
int m,

(continues on next page)

8.4. cuSolverDN: dense LAPACK Function Reference 169

cuSOLVER, Release 12.8

(continued from previous page)

int n,
const float *A,
int lda,
long long int strideA,
const float *S,
long long int strideS,
const float *U,
int ldu,
long long int strideU,
const float *V,
int ldv,
long long int strideV,
int *lwork,
int batchSize);

cusolverStatus_t
cusolverDnDgesvdaStridedBatched_bufferSize(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
int rank,
int m,
int n,
const double *A,
int lda,
long long int strideA,
const double *S,
long long int strideS,
const double *U,
int ldu,
long long int strideU,
const double *V,
int ldv,
long long int strideV,
int *lwork,
int batchSize);

cusolverStatus_t
cusolverDnCgesvdaStridedBatched_bufferSize(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
int rank,
int m,
int n,
const cuComplex *A,
int lda,
long long int strideA,
const float *S,
long long int strideS,
const cuComplex *U,
int ldu,
long long int strideU,
const cuComplex *V,
int ldv,
long long int strideV,
int *lwork,
int batchSize);

(continues on next page)

170 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

(continued from previous page)

cusolverStatus_t
cusolverDnZgesvdaStridedBatched_bufferSize(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
int rank,
int m,
int n,
const cuDoubleComplex *A,
int lda,
long long int strideA,
const double *S,
long long int strideS,
const cuDoubleComplex *U,
int ldu,
long long int strideU,
const cuDoubleComplex *V,
int ldv,
long long int strideV,
int *lwork,
int batchSize);

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSgesvdaStridedBatched(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
int rank,
int m,
int n,
const float *A,
int lda,
long long int strideA,
float *S,
long long int strideS,
float *U,
int ldu,
long long int strideU,
float *V,
int ldv,
long long int strideV,
float *work,
int lwork,
int *info,
double *h_R_nrmF,
int batchSize);

cusolverStatus_t
cusolverDnDgesvdaStridedBatched(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
int rank,
int m,
int n,
const double *A,
int lda,

(continues on next page)

8.4. cuSolverDN: dense LAPACK Function Reference 171

cuSOLVER, Release 12.8

(continued from previous page)

long long int strideA,
double *S,
long long int strideS,
double *U,
int ldu,
long long int strideU,
double *V,
int ldv,
long long int strideV,
double *work,
int lwork,
int *info,
double *h_R_nrmF,
int batchSize);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCgesvdaStridedBatched(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
int rank,
int m,
int n,
const cuComplex *A,
int lda,
long long int strideA,
float *S,
long long int strideS,
cuComplex *U,
int ldu,
long long int strideU,
cuComplex *V,
int ldv,
long long int strideV,
cuComplex *work,
int lwork,
int *info,
double *h_R_nrmF,
int batchSize);

cusolverStatus_t
cusolverDnZgesvdaStridedBatched(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
int rank,
int m,
int n,
const cuDoubleComplex *A,
int lda,
long long int strideA,
double *S,
long long int strideS,
cuDoubleComplex *U,
int ldu,
long long int strideU,
cuDoubleComplex *V,

(continues on next page)

172 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

(continued from previous page)

int ldv,
long long int strideV,
cuDoubleComplex *work,
int lwork,
int *info,
double *h_R_nrmF,
int batchSize);

This function gesvda (a stands for approximate) approximates the singular value decomposition of a
tall skinnym× nmatrix A and corresponding the left and right singular vectors. The economy form of
SVD is written by

A = U ∗ Σ ∗ V H

where Σ is an n × n matrix. U is an m × n unitary matrix, and V is an n × n unitary matrix. The diag-
onal elements of Σ are the singular values of A; they are real and non-negative, and are returned in
descending order. U and V are the left and right singular vectors of A.

gesvda computes eigenvalues of A**T*A, or A**H*A (if A is complex), to approximate singular values
and singular vectors. It generates matrices U and V and transforms the matrix A to the following form

UH ∗A ∗ V = S + E

where S is diagonal and E depends on rounding errors. To certain conditions, U, V and S approximate
singular values and singular vectors up to machine zero of single precision. In general, V is unitary,
S is more accurate than U. If singular value is far from zero, then left singular vector U is accurate. In
other words, the accuracy of singular values and left singular vectors depend on the distance between
singular value and zero. Since the computation of A**T*A, or A**H*A can greatly amplify errors, it is
recommended to use gesvda only with well-conditioned data.

The input parameter rank decides the number of singular values and singular vectors are computed
in parameter S, U and V.

The output parameter h_RnrmF computes Frobenius norm of residual. To compute h_RnrmF, info !=
NULL is required.

A− U ∗ S ∗ V H

if the parameter rank is equal n. Otherwise, h_RnrmF reports

∥U ∗ S ∗ V H∥ − ∥S∥

in Frobenius norm sense, that is, how far U is from unitary.

gesvdaStridedBatched performs gesvda on each matrix. It requires that all matrices are of the
same size m,n and are packed in a contiguous way,

A =
(
A0 A1 · · ·

)
Each matrix is column-major with leading dimension lda, so the formula for random access is
Ak (i, j) = A[i + lda ∗ j + strideA ∗ k] . Similarly, the formula for random access of S is Sk (j) =
S[j + StrideS ∗ k] , the formula for random access of U is Uk (i, j) = U [i + ldu ∗ j + strideU ∗ k] and
the formula for random access of V is Vk (i, j) = V [i + ldv ∗ j + strideV ∗ k] .

The user has to provide working space which is pointed by input parameter work. The input parameter
lwork is the size of theworking space, and it is returnedbygesvdaStridedBatched_bufferSize().
Please note that the size in bytes of the working space is equal to sizeof(<type>) * lwork.

8.4. cuSolverDN: dense LAPACK Function Reference 173

cuSOLVER, Release 12.8

The output parameter info is an integer array of size batchSize. If the function returns CU-
SOLVER_STATUS_INVALID_VALUE, the first element info[0] = -i (less than zero) indicates i-th
parameter is wrong (not counting handle). Otherwise, if info[i] = min(m,n)+1, gesvdaStrided-
Batched did not converge on the i-th matrix. If 0 < info[i] < min(m,n)+1, gesvdaStrided-
Batched could not compute an SVD of the i-thmatrix fully; the leading singular values Si[k], 0 <=
k <= info[i]-1, and corresponding singular vectors may still be useful. In this case, if h_RnrmF is
requested, h_RnrmF reports the residual as if rank was set to info[i]-1.

Please visit cuSOLVER Library Samples - gesvdaStridedBatched for a code example.

Remark 1: The routine returns V, not V H . This is different from gesvd.

Remark 2: The routine only supports m >=n.

Remark 3: It is recommended to use an FP64 data type, that is DgesvdaStridedBatched or Zgesv-
daStridedBatched.

Remark 4: If the user is confident on the accuracy of singular values and singular vectors, for example,
certain conditions hold (required singular value is far from zero), then the performance canbe improved
by passing a null pointer to h_RnrmF, i.e. no computation of the residual norm.

Table 40: API of gesvdaStridedBatched

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

jobz host input Specifies options to either compute singu-
lar value only or singular vectors as well:
jobz = CUSOLVER_EIG_MODE_NOVECTOR :
Compute singular values only; jobz = CU-
SOLVER_EIG_MODE_VECTOR : Compute singular
values and singular vectors.

rank host input Number of singular values (from largest to small-
est).

m host input Number of rows of matrix Aj.

n host input Number of columns of matrix Aj.

A device input <type> array of dimension strideA * batch-
Size with lda is not less than max(1,m). Aj is
of dimension m * n.

lda host input Leading dimension of two-dimensional array
used to store matrix Aj.

strideA host input Value of type long long int that gives the address
offset between A[i] and A[i+1]. strideA is
not less than lda*n.

S device output A real array of dimension strideS*batchSize.
It stores the singular values of Aj in descending
order. Sj is of dimension rank * 1

strideS host input Value of type long long int that gives the address
offset between S[i] and S[i+1]. strideS is
not less than rank.

continues on next page

174 Chapter 8. Using the CUSOLVER API

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/gesvdaStridedBatched

cuSOLVER, Release 12.8

Table 40 – continued from previous page

Parameter Memory In/out Meaning

U device output <type> array of dimension strideU * batch-
Size. Uj contains the left singular vectors of Aj.
Uj is of dimension m * rank.

ldu host input Leading dimension of two-dimensional array
used to store matrix Uj. ldu is not less than
max(1,m).

strideU host input Value of type long long int that gives the address
offset between U[i] and U[i+1]. strideU is
not less than ldu*rank.

V device output <type> array of dimension strideV * batch-
Size. Vj contains the right singular vectors of
Aj. Vj is of dimension n * rank.

ldv host input Leading dimension of two-dimensional array
used to store matrix Vj. ldv is not less than
max(1,n).

strideV host input Value of type long long int that gives the address
offset between V[i] and V[i+1]. strideV is
not less than ldv*rank.

work device in∕out <type> array of size lwork, working space.

lwork host input Size of work, returned by gesvdaStrided-
Batched_bufferSize.

info device output An integer array of dimension batchSize. If CU-
SOLVER_STATUS_INVALID_VALUE is returned,
info[0] = -i (less than zero) indicates i-th
parameter is wrong (not counting handle). Oth-
erwise, if info[i] = 0, the operation is success-
ful. If info[i] = min(m,n)+1, gesvdaStrid-
edBatched did not converge on the i-thmatrix.
If 0 < info[i] < min(m,n)+1, gesvdaStrid-
edBatched computed only a partial SVD of the
i-thmatrix.

h_RnrmF host output <double> array of size batchSize. h_RnrmF[i]
is norm of residual of i-th matrix. If 0 <
info[i] < min(m,n)+1, h_RnrmF[i] reports
the residual as if rank of the i-th matrix had
been set to info[i]-1.

batchSize host input Number of matrices. batchSize is not less than
1.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

8.4. cuSolverDN: dense LAPACK Function Reference 175

cuSOLVER, Release 12.8

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (m,n<0 or lda<max(1,m) or ldu<max(1,m) or ldv<max(1,n)
or strideA<lda*n or strideS<rank or strideU<ldu*rank or strideV<ldv*rank or batch-
Size<1 or jobz is not CUSOLVER_EIG_MODE_NOVECTOR or CUSOLVER_EIG_MODE_VECTOR).

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.4.3.11 cusolverDn<t>syevd()

The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnSsyevd_bufferSize(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
cublasFillMode_t uplo,
int n,
const float *A,
int lda,
const float *W,
int *lwork);

cusolverStatus_t
cusolverDnDsyevd_bufferSize(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
cublasFillMode_t uplo,
int n,
const double *A,
int lda,
const double *W,
int *lwork);

cusolverStatus_t
cusolverDnCheevd_bufferSize(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
cublasFillMode_t uplo,
int n,
const cuComplex *A,
int lda,
const float *W,
int *lwork);

cusolverStatus_t
cusolverDnZheevd_bufferSize(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
cublasFillMode_t uplo,
int n,
const cuDoubleComplex *A,
int lda,
const double *W,
int *lwork);

The S and D data types are real valued single and double precision, respectively.

176 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

cusolverStatus_t
cusolverDnSsyevd(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
cublasFillMode_t uplo,
int n,
float *A,
int lda,
float *W,
float *work,
int lwork,
int *devInfo);

cusolverStatus_t
cusolverDnDsyevd(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
cublasFillMode_t uplo,
int n,
double *A,
int lda,
double *W,
double *work,
int lwork,
int *devInfo);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCheevd(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
cublasFillMode_t uplo,
int n,
cuComplex *A,
int lda,
float *W,
cuComplex *work,
int lwork,
int *devInfo);

cusolverStatus_t
cusolverDnZheevd(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
cublasFillMode_t uplo,
int n,
cuDoubleComplex *A,
int lda,
double *W,
cuDoubleComplex *work,
int lwork,
int *devInfo);

This function computes eigenvalues and eigenvectors of a symmetric (Hermitian) n× nmatrix A. The
standard symmetric eigenvalue problem is

A ∗ V = V ∗ Λ

8.4. cuSolverDN: dense LAPACK Function Reference 177

cuSOLVER, Release 12.8

where Λ is a real n×n diagonal matrix. V is an n×n unitary matrix. The diagonal elements of Λ are the
eigenvalues of A in ascending order.

The user has to provide working space which is pointed by input parameter work. The input parameter
lwork is size of the working space, and it is returned by syevd_bufferSize(). Please note that the
size in bytes of the working space is equal to sizeof(<type>) * lwork.

If output parameterdevInfo = -i (less than zero), thei-thparameter iswrong (not counting handle).
If devInfo = i (greater than zero), i off-diagonal elements of an intermediate tridiagonal form did
not converge to zero.

If jobz = CUSOLVER_EIG_MODE_VECTOR, A contains the orthonormal eigenvectors of the matrix A.
The eigenvectors are computed by a divide and conquer algorithm.

Please visit cuSOLVER Library Samples - syevd for a code example.

Table 41: API of syevd

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

jobz host input Specifies options to either compute
eigenvalue only or compute eigen-pair:
jobz = CUSOLVER_EIG_MODE_NOVECTOR
: Compute eigenvalues only; jobz = CU-
SOLVER_EIG_MODE_VECTOR : Compute eigen-
values and eigenvectors.

uplo host input Specifies which part of A is stored. uplo =
CUBLAS_FILL_MODE_LOWER: Lower triangle of A
is stored. uplo = CUBLAS_FILL_MODE_UPPER:
Upper triangle of A is stored.

n host input Number of rows (or columns) of matrix A.

A device in∕out <type> array of dimension lda * n with
lda is not less than max(1,n). If uplo =
CUBLAS_FILL_MODE_UPPER, the leading n-by-
n upper triangular part of A contains the up-
per triangular part of the matrix A. If uplo
= CUBLAS_FILL_MODE_LOWER, the leading n-
by-n lower triangular part of A contains the
lower triangular part of the matrix A. On exit,
if jobz = CUSOLVER_EIG_MODE_VECTOR, and
devInfo = 0, A contains the orthonormal
eigenvectors of the matrix A. If jobz = CU-
SOLVER_EIG_MODE_NOVECTOR, the contents of
A are destroyed.

lda host input Leading dimension of two-dimensional array
used to store matrix A.

W device output A real array of dimension n. The eigenvalue val-
ues of A, in ascending order ie, sorted so that
W(i) <= W(i+1).

work device in∕out Working space, <type> array of size lwork.

continues on next page

178 Chapter 8. Using the CUSOLVER API

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/syevd

cuSOLVER, Release 12.8

Table 41 – continued from previous page

Parameter Memory In/out Meaning

Lwork host input Size of work, returned by syevd_bufferSize.

devInfo device output If devInfo = 0, the operation is successful. If
devInfo = -i, the i-th parameter is wrong
(not counting handle). If devInfo = i (> 0),
devInfo indicates i off-diagonal elements of an
intermediate tridiagonal form did not converge
to zero;

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (n<0, or lda<max(1,n), or jobz is not CU-
SOLVER_EIG_MODE_NOVECTOR or CUSOLVER_EIG_MODE_VECTOR, or uplo is not
CUBLAS_FILL_MODE_LOWER or CUBLAS_FILL_MODE_UPPER).

CUSOLVER_STATUS_ARCH_MISMATCH
The device only supports compute capability 5.0 and above.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.4.3.12 cusolverDnSyevd() [DEPRECATED]

[[DEPRECATED]] use cusolverDnXsyevd() instead. The routine will be removed in the next major
release.

The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnSyevd_bufferSize(
cusolverDnHandle_t handle,
cusolverParams_t params,
cusolverEigMode_t jobz,
cublasFillMode_t uplo,
int n,
cudaDataType dataTypeA,
const void *A,
int64_t lda,
cudaDataType dataTypeW,
const void *W,
cudaDataType computeType,
size_t *workspaceInBytes);

The routine below

8.4. cuSolverDN: dense LAPACK Function Reference 179

cuSOLVER, Release 12.8

cusolverStatus_t
cusolverDnSyevd(
cusolverDnHandle_t handle,
cusolverParams_t params,
cusolverEigMode_t jobz,
cublasFillMode_t uplo,
int n,
cudaDataType dataTypeA,
const void *A,
int64_t lda,
cudaDataType dataTypeW,
const void *W,
cudaDataType computeType,
void *pBuffer,
size_t workspaceInBytes,
int *info);

computes eigenvalues and eigenvectors of a symmetric (Hermitian) n × n matrix A using the generic
API interface. The standard symmetric eigenvalue problem is

A ∗ V = V ∗ Λ

where Λ is a real n×n diagonal matrix. V is an n×n unitary matrix. The diagonal elements of Λ are the
eigenvalues of A in ascending order.

The user has to provide working space which is pointed by input parameter pBuffer. The input
parameter workspaceInBytes is size in bytes of the working space, and it is returned by cu-
solverDnSyevd_bufferSize().

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting handle).
If info = i (greater than zero), i off-diagonal elements of an intermediate tridiagonal form did not
converge to zero.

if jobz = CUSOLVER_EIG_MODE_VECTOR, A contains the orthonormal eigenvectors of the matrix A.
The eigenvectors are computed by a divide and conquer algorithm.

Currently, cusolverDnSyevd supports only the default algorithm.

Algorithms supported by cusolverDnSyevd

CUSOLVER_ALG_0 or NULL Default algorithm.

List of input arguments for cusolverDnSyevd_bufferSize and cusolverDnSyevd:

Table 42: API of cusolverDnSyevd

parameter Memory In∕out Meaning

handle host input Handle to the cuSolverDN library context.

params host input Structure with information collected by cu-
solverDnSetAdvOptions.

continues on next page

180 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

Table 42 – continued from previous page

jobz host input Specifies options to either compute
eigenvalue only or compute eigen-pair:
jobz = CUSOLVER_EIG_MODE_NOVECTOR
: Compute eigenvalues only; jobz = CU-
SOLVER_EIG_MODE_VECTOR : Compute eigen-
values and eigenvectors.

uplo host input Specifies which part of A is stored. uplo =
CUBLAS_FILL_MODE_LOWER: Lower triangle of A
is stored. uplo = CUBLAS_FILL_MODE_UPPER:
Upper triangle of A is stored.

n host input Number of rows (or columns) of matrix A.

dataTypeA host in Data type of array A.

A device in∕out Array of dimension lda * n with lda
is not less than max(1,n). If uplo =
CUBLAS_FILL_MODE_UPPER, the leading n-
by-n upper triangular part of A contains the
upper triangular part of the matrix A. If uplo
= CUBLAS_FILL_MODE_LOWER, the leading
n-by-n lower triangular part of A contains
the lower triangular part of the matrix A. On
exit, if jobz = CUSOLVER_EIG_MODE_VECTOR,
and info = 0, A contains the orthonormal
eigenvectors of the matrix A. If jobz = CU-
SOLVER_EIG_MODE_NOVECTOR, the contents of
A are destroyed.

lda host input Leading dimension of two-dimensional array
used to store matrix A.

dataTypeW host in Data type of array W.

W device output A real array of dimension n. The eigenvalue val-
ues of A, in ascending order ie, sorted so that
W(i) <= W(i+1).

computeType host in Data type of computation.

pBuffer device in∕out Working space. Array of type void of size
workspaceInBytes bytes.

workspaceIn-
Bytes

host input Size in bytes of pBuffer, returned by cu-
solverDnSyevd_bufferSize.

info device output If info = 0, the operation is successful. if info
= -i, the i-th parameter is wrong (not counting
handle). if info = i (> 0), info indicates i off-
diagonal elements of an intermediate tridiagonal
form did not converge to zero;

The generic API has three different types, dataTypeA is data type of the matrix A, dataTypeW is data
type of the matrix W and computeType is compute type of the operation. cusolverDnSyevd only
supports the following four combinations.

8.4. cuSolverDN: dense LAPACK Function Reference 181

cuSOLVER, Release 12.8

Valid combination of data type and compute type

DataTypeA DataTypeW ComputeType Meaning

CUDA_R_32F CUDA_R_32F CUDA_R_32F SSYEVD

CUDA_R_64F CUDA_R_64F CUDA_R_64F DSYEVD

CUDA_C_32F CUDA_R_32F CUDA_C_32F CHEEVD

CUDA_C_64F CUDA_R_64F CUDA_C_64F ZHEEVD

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (n<0, or lda<max(1,n), or jobz is not CU-
SOLVER_EIG_MODE_NOVECTOR or CUSOLVER_EIG_MODE_VECTOR, or uplo is not
CUBLAS_FILL_MODE_LOWER or CUBLAS_FILL_MODE_UPPER).

CUSOLVER_STATUS_ARCH_MISMATCH
The device only supports compute capability 5.0 and above.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.4.3.13 cusolverDn<t>syevdx()

The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnSsyevdx_bufferSize(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
cusolverEigRange_t range,
cublasFillMode_t uplo,
int n,
const float *A,
int lda,
float vl,
float vu,
int il,
int iu,
int *h_meig,
const float *W,
int *lwork);

cusolverStatus_t
cusolverDnDsyevdx_bufferSize(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
cusolverEigRange_t range,
cublasFillMode_t uplo,

(continues on next page)

182 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

(continued from previous page)

int n,
const double *A,
int lda,
double vl,
double vu,
int il,
int iu,
int *h_meig,
const double *W,
int *lwork);

cusolverStatus_t
cusolverDnCheevdx_bufferSize(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
cusolverEigRange_t range,
cublasFillMode_t uplo,
int n,
const cuComplex *A,
int lda,
float vl,
float vu,
int il,
int iu,
int *h_meig,
const float *W,
int *lwork);

cusolverStatus_t
cusolverDnZheevdx_bufferSize(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
cusolverEigRange_t range,
cublasFillMode_t uplo,
int n,
const cuDoubleComplex *A,
int lda,
double vl,
double vu,
int il,
int iu,
int *h_meig,
const double *W,
int *lwork);

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSsyevdx(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
cusolverEigRange_t range,
cublasFillMode_t uplo,
int n,
float *A,
int lda,
float vl,

(continues on next page)

8.4. cuSolverDN: dense LAPACK Function Reference 183

cuSOLVER, Release 12.8

(continued from previous page)

float vu,
int il,
int iu,
int *h_meig,
float *W,
float *work,
int lwork,
int *devInfo);

cusolverStatus_t
cusolverDnDsyevdx(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
cusolverEigRange_t range,
cublasFillMode_t uplo,
int n,
double *A,
int lda,
double vl,
double vu,
int il,
int iu,
int *h_meig,
double *W,
double *work,
int lwork,
int *devInfo);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCheevdx(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
cusolverEigRange_t range,
cublasFillMode_t uplo,
int n,
cuComplex *A,
int lda,
float vl,
float vu,
int il,
int iu,
int *h_meig,
float *W,
cuComplex *work,
int lwork,
int *devInfo);

cusolverStatus_t
cusolverDnZheevdx(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
cusolverEigRange_t range,
cublasFillMode_t uplo,
int n,
cuDoubleComplex *A,

(continues on next page)

184 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

(continued from previous page)

int lda,
double vl,
double vu,
int il,
int iu,
int *h_meig,
double *W,
cuDoubleComplex *work,
int lwork,
int *devInfo);

This function computes all or selection of the eigenvalues and optionally eigenvectors of a symmetric
(Hermitian) n× nmatrix A. The standard symmetric eigenvalue problem is:

A ∗ V = V ∗ Λ

where Λ is a real n×h_meig diagonal matrix. V is an n×h_meig unitary matrix. h_meig is the number
of eigenvalues/eigenvectors computed by the routine, h_meig is equal to n when the whole spectrum
(e.g., range = CUSOLVER_EIG_RANGE_ALL) is requested. The diagonal elements of Λ are the eigenval-
ues of A in ascending order.

The user has to provide working space which is pointed by input parameter work. The input parameter
lwork is size of the working space, and it is returned by syevdx_bufferSize(). Please note that the
size in bytes of the working space is equal to sizeof(<type>) * lwork.

If output parameterdevInfo = -i (less than zero), thei-thparameter iswrong (not counting handle).
If devInfo = i (greater than zero), i off-diagonal elements of an intermediate tridiagonal form did
not converge to zero.

If jobz = CUSOLVER_EIG_MODE_VECTOR, A contains the orthonormal eigenvectors of the matrix A.
The eigenvectors are computed by a divide and conquer algorithm.

Please visit cuSOLVER Library Samples - syevdx for a code example.

Table 43: API of syevdx

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

jobz host input Specifies options to either compute
eigenvalue only or compute eigen-pair:
jobz = CUSOLVER_EIG_MODE_NOVECTOR
: Compute eigenvalues only; jobz = CU-
SOLVER_EIG_MODE_VECTOR : Compute eigen-
values and eigenvectors.

continues on next page

8.4. cuSolverDN: dense LAPACK Function Reference 185

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/syevdx

cuSOLVER, Release 12.8

Table 43 – continued from previous page

Parameter Memory In/out Meaning

range host input Specifies options to which selection of
eigenvalues and optionally eigenvectors
that need to be computed: range = CU-
SOLVER_EIG_RANGE_ALL : all eigenval-
ues/eigenvectors will be found, will becomes
the classical syevd/heevd routine; range
= CUSOLVER_EIG_RANGE_V : all eigenval-
ues/eigenvectors in the half-open interval (vl,vu]
will be found; range = CUSOLVER_EIG_RANGE_I
: the il-th through iu-th eigenvalues/eigenvectors
will be found;

uplo host input Specifies which part of A is stored. uplo =
CUBLAS_FILL_MODE_LOWER: Lower triangle of A
is stored. uplo = CUBLAS_FILL_MODE_UPPER:
Upper triangle of A is stored.

n host input Number of rows (or columns) of matrix A.

A device in∕out <type> array of dimension lda * n with
lda is not less than max(1,n). If uplo =
CUBLAS_FILL_MODE_UPPER, the leading n-by-
n upper triangular part of A contains the up-
per triangular part of the matrix A. If uplo
= CUBLAS_FILL_MODE_LOWER, the leading n-
by-n lower triangular part of A contains the
lower triangular part of the matrix A. On exit,
if jobz = CUSOLVER_EIG_MODE_VECTOR, and
devInfo = 0, A contains the orthonormal
eigenvectors of the matrix A. If jobz = CU-
SOLVER_EIG_MODE_NOVECTOR, the contents of
A are destroyed.

lda host input Leading dimension of two-dimensional ar-
ray used to store matrix A.lda is not less
thanmax(1,n).

continues on next page

186 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

Table 43 – continued from previous page

Parameter Memory In/out Meaning

vl,vu host input Real values float or double for (C, S) or (Z,
D) precision respectively. If range = CU-
SOLVER_EIG_RANGE_V, the lower and upper
bounds of the interval to be searched for eigen-
values. vl > vu. Not referenced if range
= CUSOLVER_EIG_RANGE_ALL or range = CU-
SOLVER_EIG_RANGE_I. Note that, if eigenvalues
are very close to each other, it is well known that
two different eigenvalues routines might find
slightly different number of eigenvalues inside
the same interval. This is due to the fact that
different eigenvalue algorithms, or even same al-
gorithm but different run might find eigenvalues
within some rounding error close to the machine
precision. Thus, if the user wants to be sure not
to miss any eigenvalue within the interval bound,
we suggest that the user subtract/add epsilon
(machine precision) to the interval bound such as
(vl=vl-eps, vu=vu+eps]. This suggestion is
valid for any selective routine from cuSolver or
LAPACK.

il,iu host input Integer. If range = CUSOLVER_EIG_RANGE_I,
the indices (in ascending order) of the smallest
and largest eigenvalues to be returned. 1 <= il <=
iu <= n, if n > 0; il = 1 and iu = 0 if n = 0. Not ref-
erenced if range = CUSOLVER_EIG_RANGE_ALL
or range = CUSOLVER_EIG_RANGE_V.

h_meig host output Integer. The total number of eigenvalues
found. 0 <= h_meig <= n. If range = CU-
SOLVER_EIG_RANGE_ALL, h_meig = n, and if
range = CUSOLVER_EIG_RANGE_I, h_meig =
iu-il+1.

W device output A real array of dimension n. The eigenvalue val-
ues of A, in ascending order ie, sorted so that
W(i) <= W(i+1).

work device in∕out Working space, <type> array of size lwork.

lwork host input Size of work, returned by syevdx_bufferSize.

devInfo device output If devInfo = 0, the operation is successful. If
devInfo = -i, the i-th parameter is wrong
(not counting handle). If devInfo = i (> 0),
devInfo indicates i off-diagonal elements of an
intermediate tridiagonal form did not converge
to zero.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

8.4. cuSolverDN: dense LAPACK Function Reference 187

cuSOLVER, Release 12.8

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (n<0, or lda<max(1,n), or jobz is not CU-
SOLVER_EIG_MODE_NOVECTOR or CUSOLVER_EIG_MODE_VECTOR, or range is not CU-
SOLVER_EIG_RANGE_ALL or CUSOLVER_EIG_RANGE_V or CUSOLVER_EIG_RANGE_I, or uplo is
not CUBLAS_FILL_MODE_LOWER or CUBLAS_FILL_MODE_UPPER).

CUSOLVER_STATUS_ARCH_MISMATCH
The device only supports compute capability 5.0 and above.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.4.3.14 cusolverDnSyevdx() [DEPRECATED]

[[DEPRECATED]] use cusolverDnXsyevdx() instead. The routine will be removed in the next major
release.

The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnSyevdx_bufferSize(
cusolverDnHandle_t handle,
cusolverParams_t params,
cusolverEigMode_t jobz,
cusolverEigRange_t range,
cublasFillMode_t uplo,
int n,
cudaDataType dataTypeA,
const void *A,
int64_t lda,
void *vl,
void *vu,
int64_t il,
int64_t iu,
int64_t *h_meig,
cudaDataType dataTypeW,
const void *W,
cudaDataType computeType,
size_t *workspaceInBytes);

The routine below

cusolverStatus_t
cusolverDnSyevdx (
cusolverDnHandle_t handle,
cusolverParams_t params,
cusolverEigMode_t jobz,
cusolverEigRange_t range,
cublasFillMode_t uplo,
int n,
cudaDataType dataTypeA,
const void *A,
int64_t lda,
void *vl,

(continues on next page)

188 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

(continued from previous page)

void *vu,
int64_t il,
int64_t iu,
int64_t *h_meig,
cudaDataType dataTypeW,
const void *W,
cudaDataType computeType,
void *pBuffer,
size_t workspaceInBytes,
int *info);

computes all or selection of the eigenvalues and optionally eigenvectors of a symmetric (Hermitian)
n× nmatrix A using the generic API interface. The standard symmetric eigenvalue problem is

A ∗ V = V ∗ Λ

where Λ is a real n×h_meig diagonal matrix. V is an n×h_meig unitary matrix. h_meig is the number
of eigenvalues/eigenvectors computed by the routine, h_meig is equal to n when the whole spectrum
(e.g., range = CUSOLVER_EIG_RANGE_ALL) is requested. The diagonal elements of Λ are the eigenval-
ues of A in ascending order.

The user has to provide working space which is pointed by input parameter pBuffer. The input
parameter workspaceInBytes is size in bytes of the working space, and it is returned by cu-
solverDnSyevdx_bufferSize().

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting handle).
If info = i (greater than zero), i off-diagonal elements of an intermediate tridiagonal form did not
converge to zero.

if jobz = CUSOLVER_EIG_MODE_VECTOR, A contains the orthonormal eigenvectors of the matrix A.
The eigenvectors are computed by a divide and conquer algorithm.

Currently, cusolverDnSyevdx supports only the default algorithm.

Algorithms supported by cusolverDnSyevdx

CUSOLVER_ALG_0 or NULL Default algorithm.

List of input arguments for cusolverDnSyevdx_bufferSize and cusolverDnSyevdx:

Table 44: API of cusolverDnSyevdx

parameter Memory In∕out Meaning

handle host input Handle to the cuSolverDN library context.

params host input Structure with information collected by cu-
solverDnSetAdvOptions.

jobz host input Specifies options to either compute
eigenvalue only or compute eigen-pair:
jobz = CUSOLVER_EIG_MODE_NOVECTOR
: Compute eigenvalues only; jobz = CU-
SOLVER_EIG_MODE_VECTOR : Compute eigen-
values and eigenvectors.

continues on next page

8.4. cuSolverDN: dense LAPACK Function Reference 189

cuSOLVER, Release 12.8

Table 44 – continued from previous page

range host input Specifies options to which selection of
eigenvalues and optionally eigenvectors
that need to be computed: range = CU-
SOLVER_EIG_RANGE_ALL : all eigenval-
ues/eigenvectors will be found, will becomes
the classical syevd/heevd routine; range
= CUSOLVER_EIG_RANGE_V : all eigenval-
ues/eigenvectors in the half-open interval (vl,vu]
will be found; range = CUSOLVER_EIG_RANGE_I
: the il-th through iu-th eigenvalues/eigenvectors
will be found;

uplo host input Specifies which part of A is stored. uplo =
CUBLAS_FILL_MODE_LOWER: Lower triangle of A
is stored. uplo = CUBLAS_FILL_MODE_UPPER:
Upper triangle of A is stored.

n host input Number of rows (or columns) of matrix A.

dataTypeA host in Data type of array A.

A device in∕out Array of dimension lda * n with lda
is not less than max(1,n). If uplo =
CUBLAS_FILL_MODE_UPPER, the leading n-
by-n upper triangular part of A contains the
upper triangular part of the matrix A. If uplo
= CUBLAS_FILL_MODE_LOWER, the leading
n-by-n lower triangular part of A contains
the lower triangular part of the matrix A. On
exit, if jobz = CUSOLVER_EIG_MODE_VECTOR,
and info = 0, A contains the orthonormal
eigenvectors of the matrix A. If jobz = CU-
SOLVER_EIG_MODE_NOVECTOR, the contents of
A are destroyed.

lda host input Leading dimension of two-dimensional ar-
ray used to store matrix A.lda is not less
thanmax(1,n).

continues on next page

190 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

Table 44 – continued from previous page

vl,vu host input If range = CUSOLVER_EIG_RANGE_V, the lower
and upper bounds of the interval to be searched
for eigenvalues. vl > vu. Not referenced if range
= CUSOLVER_EIG_RANGE_ALL or range = CU-
SOLVER_EIG_RANGE_I. Note that, if eigenvalues
are very close to each other, it is well known that
two different eigenvalues routines might find
slightly different number of eigenvalues inside
the same interval. This is due to the fact that
different eigenvalue algorithms, or even same al-
gorithm but different run might find eigenvalues
within some rounding error close to the machine
precision. Thus, if the user want to be sure not
to miss any eigenvalue within the interval bound,
we suggest that, the user subtract/add epsilon
(machine precision) to the interval bound such as
(vl=vl-eps, vu=vu+eps]. this suggestion is valid
for any selective routine from cuSolver or LA-
PACK.

il,iu host input Integer. If range = CUSOLVER_EIG_RANGE_I,
the indices (in ascending order) of the smallest
and largest eigenvalues to be returned. 1 <= il <=
iu <= n, if n > 0; il = 1 and iu = 0 if n = 0. Not ref-
erenced if range = CUSOLVER_EIG_RANGE_ALL
or range = CUSOLVER_EIG_RANGE_V.

h_meig host output Integer. The total number of eigenvalues
found. 0 <= h_meig <= n. If range = CU-
SOLVER_EIG_RANGE_ALL, h_meig = n, and if
range = CUSOLVER_EIG_RANGE_I, h_meig = iu-
il+1.

dataTypeW host in Data type of array W.

W device output A real array of dimension n. The eigenvalue val-
ues of A, in ascending order ie, sorted so that
W(i) <= W(i+1).

computeType host in Data type of computation.

pBuffer device in∕out Working space. Array of type void of size
workspaceInBytes bytes.

workspaceIn-
Bytes

host input Size in bytes of pBuffer, returned by cu-
solverDnSyevdx_bufferSize.

info device output If info = 0, the operation is successful. if info
= -i, the i-th parameter is wrong (not counting
handle). if info = i (> 0), info indicates i off-
diagonal elements of an intermediate tridiagonal
form did not converge to zero;

The generic API has three different types, dataTypeA is data type of the matrix A, dataTypeW is data
type of the matrix W and computeType is compute type of the operation. cusolverDnSyevdx only
supports the following four combinations.

8.4. cuSolverDN: dense LAPACK Function Reference 191

cuSOLVER, Release 12.8

Valid combination of data type and compute type

DataTypeA DataTypeW ComputeType Meaning

CUDA_R_32F CUDA_R_32F CUDA_R_32F SSYEVDX

CUDA_R_64F CUDA_R_64F CUDA_R_64F DSYEVDX

CUDA_C_32F CUDA_R_32F CUDA_C_32F CHEEVDX

CUDA_C_64F CUDA_R_64F CUDA_C_64F ZHEEVDX

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully. |

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized. |

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (n<0, or lda<max(1,n), or jobz is not CU-
SOLVER_EIG_MODE_NOVECTOR or CUSOLVER_EIG_MODE_VECTOR, or range is not CU-
SOLVER_EIG_RANGE_ALL or CUSOLVER_EIG_RANGE_V or CUSOLVER_EIG_RANGE_I, or uplo is
not CUBLAS_FILL_MODE_LOWER or CUBLAS_FILL_MODE_UPPER). |

CUSOLVER_STATUS_ARCH_MISMATCH
The device only supports compute capability 5.0 and above. |

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed. |

8.4.3.15 cusolverDn<t>sygvd()

The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnSsygvd_bufferSize(

cusolverDnHandle_t handle,
cusolverEigType_t itype,
cusolverEigMode_t jobz,
cublasFillMode_t uplo,
int n,
const float *A,
int lda,
const float *B,
int ldb,
const float *W,
int *lwork);

cusolverStatus_t
cusolverDnDsygvd_bufferSize(

cusolverDnHandle_t handle,
cusolverEigType_t itype,
cusolverEigMode_t jobz,
cublasFillMode_t uplo,
int n,

(continues on next page)

192 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

(continued from previous page)

const double *A,
int lda,
const double *B,
int ldb,
const double *W,
int *lwork);

cusolverStatus_t
cusolverDnChegvd_bufferSize(

cusolverDnHandle_t handle,
cusolverEigType_t itype,
cusolverEigMode_t jobz,
cublasFillMode_t uplo,
int n,
const cuComplex *A,
int lda,
const cuComplex *B,
int ldb,
const float *W,
int *lwork);

cusolverStatus_t
cusolverDnZhegvd_bufferSize(

cusolverDnHandle_t handle,
cusolverEigType_t itype,
cusolverEigMode_t jobz,
cublasFillMode_t uplo,
int n,
const cuDoubleComplex *A,
int lda,
const cuDoubleComplex *B,
int ldb,
const double *W,
int *lwork);

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSsygvd(

cusolverDnHandle_t handle,
cusolverEigType_t itype,
cusolverEigMode_t jobz,
cublasFillMode_t uplo,
int n,
float *A,
int lda,
float *B,
int ldb,
float *W,
float *work,
int lwork,
int *devInfo);

cusolverStatus_t
cusolverDnDsygvd(

cusolverDnHandle_t handle,
cusolverEigType_t itype,

(continues on next page)

8.4. cuSolverDN: dense LAPACK Function Reference 193

cuSOLVER, Release 12.8

(continued from previous page)

cusolverEigMode_t jobz,
cublasFillMode_t uplo,
int n,
double *A,
int lda,
double *B,
int ldb,
double *W,
double *work,
int lwork,
int *devInfo);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnChegvd(

cusolverDnHandle_t handle,
cusolverEigType_t itype,
cusolverEigMode_t jobz,
cublasFillMode_t uplo,
int n,
cuComplex *A,
int lda,
cuComplex *B,
int ldb,
float *W,
cuComplex *work,
int lwork,
int *devInfo);

cusolverStatus_t
cusolverDnZhegvd(

cusolverDnHandle_t handle,
cusolverEigType_t itype,
cusolverEigMode_t jobz,
cublasFillMode_t uplo,
int n,
cuDoubleComplex *A,
int lda,
cuDoubleComplex *B,
int ldb,
double *W,
cuDoubleComplex *work,
int lwork,
int *devInfo);

This function computes eigenvalues and eigenvectors of a symmetric (Hermitian) n × n matrix-pair
(A,B). The generalized symmetric-definite eigenvalue problem is

where the matrix B is positive definite. Λ is a real n × n diagonal matrix. The diagonal elements of Λ

194 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

are the eigenvalues of (A, B) in ascending order. V is an n× n orthogonal matrix. The eigenvectors are
normalized as follows:

The user has to provide working space which is pointed by input parameter work. The input parameter
lwork is size of the working space, and it is returned by sygvd_bufferSize(). Please note that the
size in bytes of the working space is equal to sizeof(<type>) * lwork.

If output parameterdevInfo = -i (less than zero), thei-thparameter iswrong (not counting handle).
IfdevInfo = i (i > 0 and i<=n) andjobz=CUSOLVER_EIG_MODE_NOVECTOR,i off-diagonal elements
of an intermediate tridiagonal form did not converge to zero. If devInfo = N + i (i > 0), then the
leading minor of order i of B is not positive definite. The factorization of B could not be completed
and no eigenvalues or eigenvectors were computed.

if jobz = CUSOLVER_EIG_MODE_VECTOR, A contains the orthogonal eigenvectors of thematrix A. The
eigenvectors are computed by divide and conquer algorithm.

Please visit cuSOLVER Library Samples - sygvd for a code example.

Table 45: API of sygvd

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

itype host input Specifies the problem type to be solved:
▶ itype=CUSOLVER_EIG_TYPE_1: A*x =

(lambda)*B*x.
▶ itype=CUSOLVER_EIG_TYPE_2: A*B*x =

(lambda)*x.
▶ itype=CUSOLVER_EIG_TYPE_3: B*A*x =

(lambda)*x.

jobz host input Specifies options to either compute
eigenvalue only or compute eigen-pair:
jobz = CUSOLVER_EIG_MODE_NOVECTOR
: Compute eigenvalues only; jobz = CU-
SOLVER_EIG_MODE_VECTOR : Compute eigen-
values and eigenvectors.

uplo host input Specifies which part of A and B are stored.
uplo = CUBLAS_FILL_MODE_LOWER: Lower
triangle of A and B are stored. uplo =
CUBLAS_FILL_MODE_UPPER: Upper triangle
of A and B are stored.

n host input Number of rows (or columns) of matrix A and B.

continues on next page

8.4. cuSolverDN: dense LAPACK Function Reference 195

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/sygvd

cuSOLVER, Release 12.8

Table 45 – continued from previous page

Parameter Memory In/out Meaning

A device in∕out <type> array of dimension lda * n with
lda is not less than max(1,n). If uplo =
CUBLAS_FILL_MODE_UPPER, the leading n-by-
n upper triangular part of A contains the up-
per triangular part of the matrix A. If uplo
= CUBLAS_FILL_MODE_LOWER, the leading n-
by-n lower triangular part of A contains the
lower triangular part of the matrix A. On exit,
if jobz = CUSOLVER_EIG_MODE_VECTOR, and
devInfo = 0, A contains the orthonormal
eigenvectors of the matrix A. If jobz = CU-
SOLVER_EIG_MODE_NOVECTOR, the contents of
A are destroyed.

lda host input Leading dimension of two-dimensional array
used to store matrix A. lda is not less than
max(1,n).

B device in∕out <type> array of dimension ldb * n. If uplo
= CUBLAS_FILL_MODE_UPPER, the leading n-by-
n upper triangular part of B contains the up-
per triangular part of the matrix B. If uplo =
CUBLAS_FILL_MODE_LOWER, the leading n-by-n
lower triangular part of B contains the lower tri-
angular part of the matrix B. On exit, if devInfo
is less than n, B is overwritten by triangular fac-
tor U or L from the Cholesky factorization of B.

ldb host input Leading dimension of two-dimensional array
used to store matrix B. ldb is not less than
max(1,n).

W device output A real array of dimension n. The eigenvalue val-
ues of A, sorted so that W(i) >= W(i+1).

work device in∕out Working space, <type> array of size lwork.

Lwork host input Size of work, returned by sygvd_bufferSize.

devInfo device output If devInfo = 0, the operation is successful. If
devInfo = -i, the i-th parameter is wrong
(not counting handle). If devInfo = i (>
0), devInfo indicates either potrf or syevd is
wrong.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (n<0, or lda<max(1,n), or ldb<max(1,n), or itype is

196 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

not 1, 2 or 3, or jobz is not ‘N’ or ‘V’, or uplo is not CUBLAS_FILL_MODE_LOWER or
CUBLAS_FILL_MODE_UPPER).

CUSOLVER_STATUS_ARCH_MISMATCH
The device only supports compute capability 5.0 and above.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.4.3.16 cusolverDn<t>sygvdx()

The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnSsygvdx_bufferSize(

cusolverDnHandle_t handle,
cusolverEigType_t itype,
cusolverEigMode_t jobz,
cusolverEigRange_t range,
cublasFillMode_t uplo,
int n,
const float *A,
int lda,
const float *B,
int ldb,
float vl,
float vu,
int il,
int iu,
int *h_meig,
const float *W,
int *lwork);

cusolverStatus_t
cusolverDnDsygvdx_bufferSize(

cusolverDnHandle_t handle,
cusolverEigType_t itype,
cusolverEigMode_t jobz,
cusolverEigRange_t range,
cublasFillMode_t uplo,
int n,
const double *A,
int lda,
const double *B,
int ldb,
double vl,
double vu,
int il,
int iu,
int *h_meig,
const double *W,
int *lwork);

cusolverStatus_t
cusolverDnChegvdx_bufferSize(

cusolverDnHandle_t handle,
cusolverEigType_t itype,

(continues on next page)

8.4. cuSolverDN: dense LAPACK Function Reference 197

cuSOLVER, Release 12.8

(continued from previous page)

cusolverEigMode_t jobz,
cusolverEigRange_t range,
cublasFillMode_t uplo,
int n,
const cuComplex *A,
int lda,
const cuComplex *B,
int ldb,
float vl,
float vu,
int il,
int iu,
int *h_meig,
const float *W,
int *lwork);

cusolverStatus_t
cusolverDnZhegvdx_bufferSize(

cusolverDnHandle_t handle,
cusolverEigType_t itype,
cusolverEigMode_t jobz,
cusolverEigRange_t range,
cublasFillMode_t uplo,
int n,
const cuDoubleComplex *A,
int lda,
const cuDoubleComplex *B,
int ldb,
double vl,
double vu,
int il,
int iu,
int *h_meig,
const double *W,
int *lwork);

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSsygvdx(

cusolverDnHandle_t handle,
cusolverEigType_t itype,
cusolverEigMode_t jobz,
cusolverEigRange_t range,
cublasFillMode_t uplo,
int n,
float *A,
int lda,
float *B,
int ldb,
float vl,
float vu,
int il,
int iu,
int *h_meig,
float *W,
float *work,

(continues on next page)

198 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

(continued from previous page)

int lwork,
int *devInfo);

cusolverStatus_t
cusolverDnDsygvdx(

cusolverDnHandle_t handle,
cusolverEigType_t itype,
cusolverEigMode_t jobz,
cusolverEigRange_t range,
cublasFillMode_t uplo,
int n,
double *A,
int lda,
double *B,
int ldb,
double vl,
double vu,
int il,
int iu,
int *h_meig,
double *W,
double *work,
int lwork,
int *devInfo);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnChegvdx(

cusolverDnHandle_t handle,
cusolverEigType_t itype,
cusolverEigMode_t jobz,
cusolverEigRange_t range,
cublasFillMode_t uplo,
int n,
cuComplex *A,
int lda,
cuComplex *B,
int ldb,
float vl,
float vu,
int il,
int iu,
int *h_meig,
float *W,
cuComplex *work,
int lwork,
int *devInfo);

cusolverStatus_t
cusolverDnZhegvdx(

cusolverDnHandle_t handle,
cusolverEigType_t itype,
cusolverEigMode_t jobz,
cusolverEigRange_t range,
cublasFillMode_t uplo,
int n,

(continues on next page)

8.4. cuSolverDN: dense LAPACK Function Reference 199

cuSOLVER, Release 12.8

(continued from previous page)

cuDoubleComplex *A,
int lda,
cuDoubleComplex *B,
int ldb,
double vl,
double vu,
int il,
int iu,
int *h_meig,
double *W,
cuDoubleComplex *work,
int lwork,
int *devInfo);

This function computes all or selection of the eigenvalues and optionally eigenvectors of a symmetric
(Hermitian) n× nmatrix-pair (A,B). The generalized symmetric-definite eigenvalue problem is

where the matrix B is positive definite. Λ is a real n × h_meig diagonal matrix. The diagonal elements
of Λ are the eigenvalues of (A, B) in ascending order. V is an n × h_meig orthogonal matrix. h_meig
is the number of eigenvalues/eigenvectors computed by the routine, h_meig is equal to n when the
whole spectrum (for example, range = CUSOLVER_EIG_RANGE_ALL) is requested. The eigenvectors
are normalized as follows:

The user has to provide working space which is pointed by input parameter work. The input parameter
lwork is size of the working space, and it is returned by sygvdx_bufferSize(). Please note that the
size in bytes of the working space is equal to sizeof(<type>) * lwork.

If output parameterdevInfo = -i (less than zero), thei-thparameter iswrong (not counting handle).
IfdevInfo = i (i > 0 and i<=n) andjobz=CUSOLVER_EIG_MODE_NOVECTOR,i off-diagonal elements
of an intermediate tridiagonal form did not converge to zero. If devInfo = n + i (i > 0), then the
leading minor of order i of B is not positive definite. The factorization of B could not be completed
and no eigenvalues or eigenvectors were computed.

If jobz = CUSOLVER_EIG_MODE_VECTOR, A contains the orthogonal eigenvectors of thematrix A. The
eigenvectors are computed by divide and conquer algorithm.

Please visit cuSOLVER Library Samples - sygvdx for a code example.

Table 46: API of sygvdx

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

continues on next page

200 Chapter 8. Using the CUSOLVER API

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/sygvdx

cuSOLVER, Release 12.8

Table 46 – continued from previous page

Parameter Memory In/out Meaning

itype host input Specifies the problem type to be solved:
▶ itype =CUSOLVER_EIG_TYPE_1: A*x =

(lambda)*B*x
▶ itype =CUSOLVER_EIG_TYPE_2: A*B*x =

(lambda)*x
▶ itype =CUSOLVER_EIG_TYPE_3: B*A*x =

(lambda)*x

jobz host input Specifies options to either compute
eigenvalue only or compute eigen-pair:
jobz = CUSOLVER_EIG_MODE_NOVECTOR
: Compute eigenvalues only; jobz = CU-
SOLVER_EIG_MODE_VECTOR : Compute eigen-
values and eigenvectors.

range host input Specifies options to which selection of
eigenvalues and optionally eigenvectors
that need to be computed: range = CU-
SOLVER_EIG_RANGE_ALL : all eigenval-
ues/eigenvectors will be found, will becomes
the classical syevd/heevd routine; range
= CUSOLVER_EIG_RANGE_V : all eigenval-
ues/eigenvectors in the half-open inter-
val (vl,vu] will be found; range = CU-
SOLVER_EIG_RANGE_I : the il-th through
iu-th eigenvalues/eigenvectors will be found;

uplo host input Specifies which part of A and B are stored.
uplo = CUBLAS_FILL_MODE_LOWER: Lower
triangle of A and B are stored. uplo =
CUBLAS_FILL_MODE_UPPER: Upper triangle
of A and B are stored.

n host input Number of rows (or columns) of matrix A and B.

A device in∕out <type> array of dimension lda * n with
lda is not less than max(1,n). If uplo =
CUBLAS_FILL_MODE_UPPER, the leading n-by-
n upper triangular part of A contains the up-
per triangular part of the matrix A. If uplo
= CUBLAS_FILL_MODE_LOWER, the leading n-
by-n lower triangular part of A contains the
lower triangular part of the matrix A. On exit,
if jobz = CUSOLVER_EIG_MODE_VECTOR, and
devInfo = 0, A contains the orthonormal
eigenvectors of the matrix A. If jobz = CU-
SOLVER_EIG_MODE_NOVECTOR, the contents of
A are destroyed.

continues on next page

8.4. cuSolverDN: dense LAPACK Function Reference 201

cuSOLVER, Release 12.8

Table 46 – continued from previous page

Parameter Memory In/out Meaning

lda host input Leading dimension of two-dimensional array
used to store matrix A. lda is not less than
max(1,n).

B device in∕out <type> array of dimension ldb * n. If uplo
= CUBLAS_FILL_MODE_UPPER, the leading n-by-
n upper triangular part of B contains the up-
per triangular part of the matrix B. If uplo =
CUBLAS_FILL_MODE_LOWER, the leading n-by-n
lower triangular part of B contains the lower tri-
angular part of the matrix B. On exit, if devInfo
is less than n, B is overwritten by triangular fac-
tor U or L from the Cholesky factorization of B.

ldb host input Leading dimension of two-dimensional array
used to store matrix B. ldb is not less than
max(1,n).

vl,vu host input Real values float or double for (C, S) or (Z,
D) precision respectively. If range = CU-
SOLVER_EIG_RANGE_V, the lower and upper
bounds of the interval to be searched for eigen-
values. vl > vu. Not referenced if range
= CUSOLVER_EIG_RANGE_ALL or range = CU-
SOLVER_EIG_RANGE_I. Note that, if eigenvalues
are very close to each other, it is well known that
two different eigenvalues routines might find
slightly different number of eigenvalues inside
the same interval. This is due to the fact that
different eigenvalue algorithms, or even same al-
gorithm but different run might find eigenvalues
within some rounding error close to the machine
precision. Thus, if the user want to be sure not
to miss any eigenvalue within the interval bound,
we suggest that, the user subtract/add epsilon
(machine precision) to the interval bound such
as (vl=vl-eps, vu=vu+eps]. this suggestion is
valid for any selective routine from cuSolver or
LAPACK.

il,iu host input Integer. If range = CUSOLVER_EIG_RANGE_I,
the indices (in ascending order) of the small-
est and largest eigenvalues to be returned. 1
<= il <= iu <= n, if n > 0; il = 1 and
iu = 0 if n = 0. Not referenced if range
= CUSOLVER_EIG_RANGE_ALL or range = CU-
SOLVER_EIG_RANGE_V.

continues on next page

202 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

Table 46 – continued from previous page

Parameter Memory In/out Meaning

h_meig host output Integer. The total number of eigenvalues
found. 0 <= h_meig <= n. If range = CU-
SOLVER_EIG_RANGE_ALL, h_meig = n, and if
range = CUSOLVER_EIG_RANGE_I, h_meig = iu-
il+1.

W device output A real array of dimension n. The eigenvalue val-
ues of A, sorted so that W(i) >= W(i+1).

work device in∕out Working space, <type> array of size lwork.

lwork host input Size of work, returned by sygvdx_bufferSize.

devInfo device output If devInfo = 0, the operation is successful. If
devInfo = -i, the i-th parameter is wrong
(not counting handle). If devInfo = i (>
0), devInfo indicates either potrf or syevd is
wrong.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (n<0, or lda<max(1,n), or ldb<max(1,n), or itype is
not CUSOLVER_EIG_TYPE_1 or CUSOLVER_EIG_TYPE_2 or CUSOLVER_EIG_TYPE_3 or jobz is
not CUSOLVER_EIG_MODE_NOVECTOR or CUSOLVER_EIG_MODE_VECTORL, or range is not CU-
SOLVER_EIG_RANGE_ALL or CUSOLVER_EIG_RANGE_V or CUSOLVER_EIG_RANGE_I, or uplo is
not CUBLAS_FILL_MODE_LOWER or CUBLAS_FILL_MODE_UPPER).

CUSOLVER_STATUS_ARCH_MISMATCH
The device only supports compute capability 5.0 and above.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.4.3.17 cusolverDn<t>syevj()

The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnSsyevj_bufferSize(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
cublasFillMode_t uplo,
int n,
const float *A,
int lda,
const float *W,
int *lwork,

(continues on next page)

8.4. cuSolverDN: dense LAPACK Function Reference 203

cuSOLVER, Release 12.8

(continued from previous page)

syevjInfo_t params);

cusolverStatus_t
cusolverDnDsyevj_bufferSize(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
cublasFillMode_t uplo,
int n,
const double *A,
int lda,
const double *W,
int *lwork,
syevjInfo_t params);

cusolverStatus_t
cusolverDnCheevj_bufferSize(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
cublasFillMode_t uplo,
int n,
const cuComplex *A,
int lda,
const float *W,
int *lwork,
syevjInfo_t params);

cusolverStatus_t
cusolverDnZheevj_bufferSize(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
cublasFillMode_t uplo,
int n,
const cuDoubleComplex *A,
int lda,
const double *W,
int *lwork,
syevjInfo_t params);

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSsyevj(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
cublasFillMode_t uplo,
int n,
float *A,
int lda,
float *W,
float *work,
int lwork,
int *info,
syevjInfo_t params);

cusolverStatus_t
cusolverDnDsyevj(

cusolverDnHandle_t handle,
(continues on next page)

204 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

(continued from previous page)

cusolverEigMode_t jobz,
cublasFillMode_t uplo,
int n,
double *A,
int lda,
double *W,
double *work,
int lwork,
int *info,
syevjInfo_t params);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCheevj(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
cublasFillMode_t uplo,
int n,
cuComplex *A,
int lda,
float *W,
cuComplex *work,
int lwork,
int *info,
syevjInfo_t params);

cusolverStatus_t
cusolverDnZheevj(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
cublasFillMode_t uplo,
int n,
cuDoubleComplex *A,
int lda,
double *W,
cuDoubleComplex *work,
int lwork,
int *info,
syevjInfo_t params);

This function computes eigenvalues and eigenvectors of a symmetric (Hermitian) n× nmatrix A. The
standard symmetric eigenvalue problem is

A ∗Q = Q ∗ Λ

where Λ is a real n×n diagonal matrix. Q is an n×n unitary matrix. The diagonal elements of Λ are the
eigenvalues of A in ascending order.

syevj has the same functionality as syevd. The difference is that syevd usesQR algorithmand syevj
uses Jacobi method. The parallelism of Jacobi method gives GPU better performance on small and
medium sizematrices. Moreover the user can configure syevj to perform approximation up to certain
accuracy.

How does it work?

syevj iteratively generates a sequence of unitarymatrices to transformmatrix A to the following form

V H ∗A ∗ V = W + E

8.4. cuSolverDN: dense LAPACK Function Reference 205

cuSOLVER, Release 12.8

where W is diagonal and E is symmetric without diagonal.

During the iterations, the Frobenius norm of E decreases monotonically. As E goes down to zero, W is
the set of eigenvalues. In practice, Jacobi method stops if

∥E∥F ≤ eps ∗∥A∥F

where eps is the given tolerance.

syevj has two parameters to control the accuracy. First parameter is tolerance (eps). The default
value is machine accuracy but The user can use function cusolverDnXsyevjSetTolerance to set
a priori tolerance. The second parameter is maximum number of sweeps which controls number of
iterations of Jacobi method. The default value is 100 but the user can use function cusolverD-
nXsyevjSetMaxSweeps to set a proper bound. The experiments show 15 sweeps are good enough to
converge to machine accuracy. syevj stops either tolerance is met or maximum number of sweeps
is met.

The Jacobi method has quadratic convergence, so the accuracy is not proportional to number of
sweeps. To guarantee certain accuracy, the user should configure tolerance only.

After syevj, the user can query residual by function cusolverDnXsyevjGetResidual and number
of executed sweeps by function cusolverDnXsyevjGetSweeps. However the user needs to be aware
that residual is the Frobenius norm of E, not accuracy of individual eigenvalue, i.e.

residual = ∥E∥F = ∥Λ−W∥F

The same as syevd, the user has to provide working space pointed by input parameter work. The
input parameter lwork is the size of the working space, and it is returned by syevj_bufferSize().
Please note that the size in bytes of the working space is equal to sizeof(<type>) * lwork.

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting handle).
If info = n+1, syevj does not converge under given tolerance and maximum sweeps.

If the user sets an improper tolerance, syevjmay not converge. For example, tolerance should not be
smaller than machine accuracy.

If jobz = CUSOLVER_EIG_MODE_VECTOR, A contains the orthonormal eigenvectors V.

Please visit cuSOLVER Library Samples - syevj for a code example.

Table 47: API of syevj

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

jobz host input Specifies options to either compute
eigenvalue only or compute eigen-pair:
jobz = CUSOLVER_EIG_MODE_NOVECTOR
: Compute eigenvalues only; jobz = CU-
SOLVER_EIG_MODE_VECTOR : Compute eigen-
values and eigenvectors.

uplo host input Specifies which part of A is stored. uplo =
CUBLAS_FILL_MODE_LOWER: Lower triangle of A
is stored. uplo = CUBLAS_FILL_MODE_UPPER:
Upper triangle of A is stored.

continues on next page

206 Chapter 8. Using the CUSOLVER API

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/syevj

cuSOLVER, Release 12.8

Table 47 – continued from previous page

Parameter Memory In/out Meaning

n host input Number of rows (or columns) of matrix A.

A device in∕out <type> array of dimension lda * n with
lda is not less than max(1,n). If uplo =
CUBLAS_FILL_MODE_UPPER, the leading n-by-
n upper triangular part of A contains the up-
per triangular part of the matrix A. If uplo
= CUBLAS_FILL_MODE_LOWER, the leading n-
by-n lower triangular part of A contains the
lower triangular part of the matrix A. On
exit, if jobz = CUSOLVER_EIG_MODE_VECTOR,
and info = 0, A contains the orthonormal
eigenvectors of the matrix A. If jobz = CU-
SOLVER_EIG_MODE_NOVECTOR, the contents of
A are destroyed.

lda host input Leading dimension of two-dimensional array
used to store matrix A.

W device output A real array of dimension n. The eigenvalue val-
ues of A, in ascending order ie, sorted so that
W(i) <= W(i+1).

work device in∕out Working space, <type> array of size lwork.

lwork host input Size of work, returned by syevj_bufferSize.

info device output If info = 0, the operation is successful. If info
= -i, the i-th parameter is wrong (not counting
handle). Ifinfo = n+1, syevjdoes not converge
under given tolerance and maximum sweeps.

params host in∕out Structure filled with parameters of Jacobi algo-
rithm and results of syevj.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (n<0, or lda<max(1,n), or jobz is not CU-
SOLVER_EIG_MODE_NOVECTOR or CUSOLVER_EIG_MODE_VECTOR, or uplo is not
CUBLAS_FILL_MODE_LOWER or CUBLAS_FILL_MODE_UPPER).

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.4. cuSolverDN: dense LAPACK Function Reference 207

cuSOLVER, Release 12.8

8.4.3.18 cusolverDn<t>sygvj()

The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnSsygvj_bufferSize(

cusolverDnHandle_t handle,
cusolverEigType_t itype,
cusolverEigMode_t jobz,
cublasFillMode_t uplo,
int n,
const float *A,
int lda,
const float *B,
int ldb,
const float *W,
int *lwork,
syevjInfo_t params);

cusolverStatus_t
cusolverDnDsygvj_bufferSize(

cusolverDnHandle_t handle,
cusolverEigType_t itype,
cusolverEigMode_t jobz,
cublasFillMode_t uplo,
int n,
const double *A,
int lda,
const double *B,
int ldb,
const double *W,
int *lwork,
syevjInfo_t params);

cusolverStatus_t
cusolverDnChegvj_bufferSize(

cusolverDnHandle_t handle,
cusolverEigType_t itype,
cusolverEigMode_t jobz,
cublasFillMode_t uplo,
int n,
const cuComplex *A,
int lda,
const cuComplex *B,
int ldb,
const float *W,
int *lwork,
syevjInfo_t params);

cusolverStatus_t
cusolverDnZhegvj_bufferSize(

cusolverDnHandle_t handle,
cusolverEigType_t itype,
cusolverEigMode_t jobz,
cublasFillMode_t uplo,
int n,
const cuDoubleComplex *A,
int lda,

(continues on next page)

208 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

(continued from previous page)

const cuDoubleComplex *B,
int ldb,
const double *W,
int *lwork,
syevjInfo_t params);

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSsygvj(

cusolverDnHandle_t handle,
cusolverEigType_t itype,
cusolverEigMode_t jobz,
cublasFillMode_t uplo,
int n,
float *A,
int lda,
float *B,
int ldb,
float *W,
float *work,
int lwork,
int *info,
syevjInfo_t params);

cusolverStatus_t
cusolverDnDsygvj(

cusolverDnHandle_t handle,
cusolverEigType_t itype,
cusolverEigMode_t jobz,
cublasFillMode_t uplo,
int n,
double *A,
int lda,
double *B,
int ldb,
double *W,
double *work,
int lwork,
int *info,
syevjInfo_t params);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnChegvj(

cusolverDnHandle_t handle,
cusolverEigType_t itype,
cusolverEigMode_t jobz,
cublasFillMode_t uplo,
int n,
cuComplex *A,
int lda,
cuComplex *B,
int ldb,
float *W,
cuComplex *work,

(continues on next page)

8.4. cuSolverDN: dense LAPACK Function Reference 209

cuSOLVER, Release 12.8

(continued from previous page)

int lwork,
int *info,
syevjInfo_t params);

cusolverStatus_t
cusolverDnZhegvj(

cusolverDnHandle_t handle,
cusolverEigType_t itype,
cusolverEigMode_t jobz,
cublasFillMode_t uplo,
int n,
cuDoubleComplex *A,
int lda,
cuDoubleComplex *B,
int ldb,
double *W,
cuDoubleComplex *work,
int lwork,
int *info,
syevjInfo_t params);

This function computes eigenvalues and eigenvectors of a symmetric (Hermitian) n × n matrix-pair
(A,B). The generalized symmetric-definite eigenvalue problem is

where the matrix B is positive definite. Λ is a real n × n diagonal matrix. The diagonal elements of Λ
are the eigenvalues of (A, B) in ascending order. V is an n× n orthogonal matrix. The eigenvectors are
normalized as follows:

This function has the same functionality as sygvd except that syevd in sygvd is replaced by syevj
in sygvj. Therefore, sygvj inherits properties of syevj, the user can use cusolverDnXsyevjSet-
Tolerance and cusolverDnXsyevjSetMaxSweeps to configure tolerance and maximum sweeps.

However themeaning of residual is different from syevj. sygvjfirst computes Cholesky factorization
of matrix B,

B = L ∗ LH

transform the problem to standard eigenvalue problem, then calls syevj.

For example, the standard eigenvalue problem of type I is

M ∗Q = Q ∗ Λ

where matrix M is symmetric

M = L−1 ∗A ∗ L−H

210 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

The residual is the result of syevj on matrix M, not A.

The user has to provide working space which is pointed by input parameter work. The input parameter
lwork is the size of the working space, and it is returned by sygvj_bufferSize(). Please note that
the size in bytes of the working space is equal to sizeof(<type>) * lwork.

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting handle). If
info = i (i > 0 and i<=n), B is not positive definite, the factorization of B could not be completed and
no eigenvalues or eigenvectors were computed. If info = n+1, syevj does not converge under given
tolerance and maximum sweeps. In this case, the eigenvalues and eigenvectors are still computed
because non-convergence comes from improper tolerance of maximum sweeps.

if jobz = CUSOLVER_EIG_MODE_VECTOR, A contains the orthogonal eigenvectors V.

Please visit cuSOLVER Library Samples - sygvj for a code example.

Table 48: API of sygvj

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

itype host input Specifies the problem type to be solved:
itype=CUSOLVER_EIG_TYPE_1: A*x =
(lambda)*B*x. itype=CUSOLVER_EIG_TYPE_2:
A*B*x = (lambda)*x.
itype=CUSOLVER_EIG_TYPE_3: B*A*x =
(lambda)*x.

jobz host input Specifies options to either compute
eigenvalue only or compute eigen-pair:
jobz = CUSOLVER_EIG_MODE_NOVECTOR
: Compute eigenvalues only; jobz = CU-
SOLVER_EIG_MODE_VECTOR : Compute eigen-
values and eigenvectors.

uplo host input Specifies which part of A and B are stored.
uplo = CUBLAS_FILL_MODE_LOWER: Lower
triangle of A and B are stored. uplo =
CUBLAS_FILL_MODE_UPPER: Upper triangle
of A and B are stored.

n host input Number of rows (or columns) of matrix A and B.

A device in∕out <type> array of dimension lda * n with
lda is not less than max(1,n). If uplo =
CUBLAS_FILL_MODE_UPPER, the leading n-by-
n upper triangular part of A contains the up-
per triangular part of the matrix A. If uplo
= CUBLAS_FILL_MODE_LOWER, the leading n-
by-n lower triangular part of A contains the
lower triangular part of the matrix A. On
exit, if jobz = CUSOLVER_EIG_MODE_VECTOR,
and info = 0, A contains the orthonormal
eigenvectors of the matrix A. If jobz = CU-
SOLVER_EIG_MODE_NOVECTOR, the contents of
A are destroyed.

continues on next page

8.4. cuSolverDN: dense LAPACK Function Reference 211

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/sygvj

cuSOLVER, Release 12.8

Table 48 – continued from previous page

Parameter Memory In/out Meaning

lda host input Leading dimension of two-dimensional array
used to store matrix A. lda is not less than
max(1,n).

B device in∕out <type> array of dimension ldb * n. If uplo
= CUBLAS_FILL_MODE_UPPER, the leading n-by-
n upper triangular part of B contains the up-
per triangular part of the matrix B. If uplo =
CUBLAS_FILL_MODE_LOWER, the leading n-by-n
lower triangular part of B contains the lower tri-
angular part of the matrix B. On exit, if info is
less than n, B is overwritten by triangular factor
U or L from the Cholesky factorization of B.

ldb host input Leading dimension of two-dimensional array
used to store matrix B. ldb is not less than
max(1,n).

W device output A real array of dimension n. The eigenvalue val-
ues of A, sorted so that W(i) >= W(i+1).

work device in∕out Working space, <type> array of size lwork.

lwork host input Size of work, returned by sygvj_bufferSize.

info device output If info = 0, the operation is successful. if info
= -i, the i-th parameter is wrong (not counting
handle). If info = i (> 0), info indicates
either B is not positive definite or syevj (called
by sygvj) does not converge.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (n<0, or lda<max(1,n), or ldb<max(1,n), or itype is not 1, 2
or 3, or jobz is not CUSOLVER_EIG_MODE_NOVECTOR or CUSOLVER_EIG_MODE_VECTOR, or uplo
is not CUBLAS_FILL_MODE_LOWER or CUBLAS_FILL_MODE_UPPER).

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

212 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

8.4.3.19 cusolverDn<t>syevjBatched()

The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnSsyevjBatched_bufferSize(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
cublasFillMode_t uplo,
int n,
const float *A,
int lda,
const float *W,
int *lwork,
syevjInfo_t params,
int batchSize
);

cusolverStatus_t
cusolverDnDsyevjBatched_bufferSize(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
cublasFillMode_t uplo,
int n,
const double *A,
int lda,
const double *W,
int *lwork,
syevjInfo_t params,
int batchSize
);

cusolverStatus_t
cusolverDnCheevjBatched_bufferSize(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
cublasFillMode_t uplo,
int n,
const cuComplex *A,
int lda,
const float *W,
int *lwork,
syevjInfo_t params,
int batchSize
);

cusolverStatus_t
cusolverDnZheevjBatched_bufferSize(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
cublasFillMode_t uplo,
int n,
const cuDoubleComplex *A,
int lda,
const double *W,
int *lwork,
syevjInfo_t params,
int batchSize

(continues on next page)

8.4. cuSolverDN: dense LAPACK Function Reference 213

cuSOLVER, Release 12.8

(continued from previous page)

);

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSsyevjBatched(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
cublasFillMode_t uplo,
int n,
float *A,
int lda,
float *W,
float *work,
int lwork,
int *info,
syevjInfo_t params,
int batchSize
);

cusolverStatus_t
cusolverDnDsyevjBatched(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
cublasFillMode_t uplo,
int n,
double *A,
int lda,
double *W,
double *work,
int lwork,
int *info,
syevjInfo_t params,
int batchSize
);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCheevjBatched(

cusolverDnHandle_t handle,
cusolverEigMode_t jobz,
cublasFillMode_t uplo,
int n,
cuComplex *A,
int lda,
float *W,
cuComplex *work,
int lwork,
int *info,
syevjInfo_t params,
int batchSize
);

cusolverStatus_t
cusolverDnZheevjBatched(

cusolverDnHandle_t handle,
(continues on next page)

214 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

(continued from previous page)

cusolverEigMode_t jobz,
cublasFillMode_t uplo,
int n,
cuDoubleComplex *A,
int lda,
double *W,
cuDoubleComplex *work,
int lwork,
int *info,
syevjInfo_t params,
int batchSize
);

This function computes eigenvalues and eigenvectors of a sequence of symmetric (Hermitian) n × n
matrices

Aj ∗Qj = Qj ∗ Λj

where Λj is a real n× n diagonal matrix. Qj is an n× n unitary matrix. The diagonal elements of Λj are
the eigenvalues of Aj in either ascending order or non-sorting order.

syevjBatched performs syevj on each matrix. It requires that all matrices are of the same size n
and are packed in contiguous way,

A =
(
A0 A1 · · ·

)
Eachmatrix is column-major with leading dimension lda, so the formula for randomaccess isAk (i, j) =
A[i + lda ∗ j + lda ∗ n ∗ k] .

The parameter W also contains eigenvalues of each matrix in contiguous way,

W =
(
W0 W1 · · ·

)
The formula for random access of W isWk (j) = W [j + n ∗ k] .

Except for tolerance andmaximum sweeps, syevjBatched can either sort the eigenvalues in ascend-
ing order (default) or chose as-is (without sorting) by the function cusolverDnXsyevjSetSortEig.
If the user packs several tiny matrices into diagonal blocks of one matrix, non-sorting option can sep-
arate spectrum of those tiny matrices.

syevjBatched cannot report residual and executed sweeps by function cusolverDnXsyevjGe-
tResidual and cusolverDnXsyevjGetSweeps. Any call of the above two returns CU-
SOLVER_STATUS_NOT_SUPPORTED. The user needs to compute residual explicitly.

The user has to provide working space pointed by input parameter work. The input parameter lwork
is the size of the working space, and it is returned by syevjBatched_bufferSize(). Please note
that the size in bytes of the working space is equal to sizeof(<type>) * lwork.

The output parameter info is an integer array of size batchSize. If the function returns CU-
SOLVER_STATUS_INVALID_VALUE, the first element info[0] = -i (less than zero) indicates i-th
parameter is wrong (not counting handle). Otherwise, if info[i] = n+1, syevjBatched does not
converge on i-thmatrix under given tolerance and maximum sweeps.

If jobz = CUSOLVER_EIG_MODE_VECTOR, Aj contains the orthonormal eigenvectors Vj .

Please visit cuSOLVER Library Samples - syevjBatched for a code example.

8.4. cuSolverDN: dense LAPACK Function Reference 215

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/syevjBatched

cuSOLVER, Release 12.8

Table 49: API of syevjBatched

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

jobz host input Specifies options to either compute
eigenvalue only or compute eigen-pair:
jobz = CUSOLVER_EIG_MODE_NOVECTOR
: Compute eigenvalues only; jobz = CU-
SOLVER_EIG_MODE_VECTOR : Compute eigen-
values and eigenvectors.

uplo host input Specifies which part of Aj is stored.
uplo = CUBLAS_FILL_MODE_LOWER:
Lower triangle of Aj is stored. uplo =
CUBLAS_FILL_MODE_UPPER: Upper triangle
of Aj is stored.

n host input Number of rows (or columns) of matrix each Aj.

A device in∕out <type> array of dimension lda * n * batch-
Size with lda is not less than max(1,n). If
uplo = CUBLAS_FILL_MODE_UPPER, the lead-
ing n-by-n upper triangular part of Aj contains
the upper triangular part of the matrix Aj. If
uplo = CUBLAS_FILL_MODE_LOWER, the lead-
ing n-by-n lower triangular part of Aj contains
the lower triangular part of the matrix Aj. On
exit, if jobz = CUSOLVER_EIG_MODE_VECTOR,
and info[j] = 0, Aj contains the orthonormal
eigenvectors of the matrix Aj. If jobz = CU-
SOLVER_EIG_MODE_NOVECTOR, the contents of
Aj are destroyed.

lda host input Leading dimension of two-dimensional array
used to store matrix Aj.

W device output A real array of dimension n*batchSize. It stores
the eigenvalues of Aj in ascending order or non-
sorting order.

work device in∕out <type> array of size lwork, workspace.

lwork host input Size of work, returned by syevj-
Batched_bufferSize.

info device output An integer array of dimension batchSize. If CU-
SOLVER_STATUS_INVALID_VALUE is returned,
info[0] = -i (less than zero) indicates i-th
parameter is wrong (not counting handle). Oth-
erwise, if info[i] = 0, the operation is success-
ful. If info[i] = n+1, syevjBatched does not
converge on i-th matrix under given tolerance
and maximum sweeps.

params host in∕out Structure filled with parameters of Jacobi algo-
rithm.

continues on next page

216 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

Table 49 – continued from previous page

Parameter Memory In/out Meaning

batchSize host input Number of matrices.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (n<0, or lda<max(1,n), or jobz is not CU-
SOLVER_EIG_MODE_NOVECTOR or CUSOLVER_EIG_MODE_VECTOR, or uplo is not
CUBLAS_FILL_MODE_LOWER or CUBLAS_FILL_MODE_UPPER), or batchSize<0.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.4.4. Dense Linear Solver Reference (64-bit API)

This section describes linear solver 64-bit API of cuSolverDN, including Cholesky factorization, LU with
partial pivoting and QR factorization.

8.4.4.1 cusolverDnXpotrf()

The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnXpotrf_bufferSize(

cusolverDnHandle_t handle,
cusolverDnParams_t params,
cublasFillMode_t uplo,
int64_t n,
cudaDataType dataTypeA,
const void *A,
int64_t lda,
cudaDataType computeType,
size_t *workspaceInBytesOnDevice,
size_t *workspaceInBytesOnHost)

The following routine:

cusolverStatus_t
cusolverDnXpotrf(

cusolverDnHandle_t handle,
cusolverDnParams_t params,
cublasFillMode_t uplo,
int64_t n,
cudaDataType dataTypeA,
void *A,

(continues on next page)

8.4. cuSolverDN: dense LAPACK Function Reference 217

cuSOLVER, Release 12.8

(continued from previous page)

int64_t lda,
cudaDataType computeType,
void *bufferOnDevice,
size_t workspaceInBytesOnDevice,
void *bufferOnHost,
size_t workspaceInBytesOnHost,
int *info)

computes the Cholesky factorization of a Hermitian positive-definite matrix using the generic API
interface.

A is an×nHermitianmatrix, only lower or upper part ismeaningful. The input parameteruplo indicates
which part of the matrix is used. The function would leave other part untouched.

If input parameter uplo is CUBLAS_FILL_MODE_LOWER, only lower triangular part of A is processed,
and replaced by lower triangular Cholesky factor L.

A = L ∗ LH

If input parameter uplo is CUBLAS_FILL_MODE_UPPER, only upper triangular part of A is processed,
and replaced by upper triangular Cholesky factor U.

A = UH ∗ U

The user has to provide device and host working spaces which are pointed by input parameters
bufferOnDevice and bufferOnHost. The input parameters workspaceInBytesOnDevice (and
workspaceInBytesOnHost) is size in bytes of the device (and host) working space, and it is returned
by cusolverDnXpotrf_bufferSize().

If Cholesky factorization failed, i.e. some leading minor of A is not positive definite, or equivalently
some diagonal elements of L or U is not a real number. The output parameter info would indicate
smallest leading minor of A which is not positive definite.

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting handle).

Currently, cusolverDnXpotrf supports only the default algorithm.

Please visit cuSOLVER Library Samples - Xpotrf for a code example.

Algorithms supported by cusolverDnXpotrf

CUSOLVER_ALG_0 or NULL Default algorithm.

List of input arguments for cusolverDnXpotrf_bufferSize and cusolverDnXpotrf:

Table 50: API of potrf

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

params host input Structure with information collected by cu-
solverDnSetAdvOptions.

uplo host input Indicates ifmatrix A lower or upper part is stored,
the other part is not referenced.

continues on next page

218 Chapter 8. Using the CUSOLVER API

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/Xpotrf

cuSOLVER, Release 12.8

Table 50 – continued from previous page

Parameter Memory In/out Meaning

n host input Number of rows and columns of matrix A.

dataTypeA host in Data type of array A.

A device in∕out Array of dimension lda * n with lda is not less
than max(1,n).

lda host input Leading dimension of two-dimensional array
used to store matrix A.

computeType host in Data type of computation.

bufferOnDe-
vice

device in∕out Device workspace. Array of type void of size
workspaceInBytesOnDevice bytes.

workspaceIn-
BytesOnDe-
vice

host input Size in bytes of bufferOnDevice, returned by
cusolverDnXpotrf_bufferSize.

bufferOn-
Host

host in∕out Host workspace. Array of type void of size
workspaceInBytesOnHost bytes.

workspaceIn-
BytesOnHost

host input Size in bytes of bufferOnHost, returned by cu-
solverDnXpotrf_bufferSize.

info device output If info = 0, the Cholesky factorization is suc-
cessful. If info = -i, the i-th parameter is
wrong (not counting handle). If info = i, the
leading minor of order i is not positive definite.

The generic API has two different types, dataTypeA is data type of the matrix A, computeType is
compute type of the operation. cusolverDnXpotrf only supports the following four combinations.

Valid combination of data type and compute type

DataTypeA ComputeType Meaning

CUDA_R_32F CUDA_R_32F SPOTRF

CUDA_R_64F CUDA_R_64F DPOTRF

CUDA_C_32F CUDA_C_32F CPOTRF

CUDA_C_64F CUDA_C_64F ZPOTRF

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (n<0 or lda<max(1,n)).

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.4. cuSolverDN: dense LAPACK Function Reference 219

cuSOLVER, Release 12.8

8.4.4.2 cusolverDnXpotrs()

cusolverStatus_t
cusolverDnXpotrs(

cusolverDnHandle_t handle,
cusolverDnParams_t params,
cublasFillMode_t uplo,
int64_t n,
int64_t nrhs,
cudaDataType dataTypeA,
const void *A,
int64_t lda,
cudaDataType dataTypeB,
void *B,
int64_t ldb,
int *info)

This function solves a system of linear equations

A ∗X = B

where A is a n × n Hermitian matrix, only lower or upper part is meaningful using the generic API
interface. The input parameter uplo indicates which part of the matrix is used. The function would
leave other part untouched.

The user has to call cusolverDnXpotrf first to factorize matrix A. If input parameter uplo is
CUBLAS_FILL_MODE_LOWER, A is lower triangular Cholesky factor L corresponding to A = L ∗ LH .
If input parameter uplo is CUBLAS_FILL_MODE_UPPER, A is upper triangular Cholesky factor U corre-
sponding to A = UH ∗ U .

The operation is in-place, i.e. matrix X overwrites matrix B with the same leading dimension ldb.

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting handle).

Currently, cusolverDnXpotrs supports only the default algorithm.

Please visit cuSOLVER Library Samples - Xpotrf for a code example.

Algorithms supported by cusolverDnXpotrs

CUSOLVER_ALG_0 or NULL Default algorithm.

List of input arguments for cusolverDnXpotrs:

Table 51: API of potrs

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

params host input Structure with information collected by cu-
solverDnSetAdvOptions.

uplo host input Indicates ifmatrix A lower or upper part is stored,
the other part is not referenced.

n host input Number of rows and columns of matrix A.

continues on next page

220 Chapter 8. Using the CUSOLVER API

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/Xpotrf

cuSOLVER, Release 12.8

Table 51 – continued from previous page

Parameter Memory In/out Meaning

nrhs host input Number of columns of matrix X and B.

dataTypeA host in Data type of array A.

A device input Array of dimension lda * n with lda is not less
than max(1,n). A is either lower Cholesky factor
L or upper Cholesky factor U.

lda host input Leading dimension of two-dimensional array
used to store matrix A.

dataTypeB host in Data type of array B.

B device in∕out Array of dimension ldb * nrhs. ldb is not less
than max(1,n). As an input, B is right hand side
matrix. As an output, B is the solution matrix.

info device output If info = 0, the Cholesky factorization is suc-
cessful. if info = -i, the i-th parameter is
wrong (not counting handle).

The generic API has two different types, dataTypeA is data type of the matrix A, dataTypeB is data
type of the matrix B. cusolverDnXpotrs only supports the following four combinations.

Valid combination of data type and compute type

dataTypeA dataTypeB Meaning

CUDA_R_32F CUDA_R_32F SPOTRS

CUDA_R_64F CUDA_R_64F DPOTRS

CUDA_C_32F CUDA_C_32F CPOTRS

CUDA_C_64F CUDA_C_64F ZPOTRS

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (n<0, nrhs<0, lda<max(1,n) or ldb<max(1,n)).

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.4. cuSolverDN: dense LAPACK Function Reference 221

cuSOLVER, Release 12.8

8.4.4.3 cusolverDnXgetrf()

The helper function below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t cusolverDnXgetrf_bufferSize(
cusolverDnHandle_t handle,
cusolverDnParams_t params,
int64_t m,
int64_t n,
cudaDataType dataTypeA,
const void *A,
int64_t lda,
cudaDataType computeType,
size_t *workspaceInBytesOnDevice,
size_t *workspaceInBytesOnHost)

The function below

cusolverStatus_t
cusolverDnXgetrf(

cusolverDnHandle_t handle,
cusolverDnParams_t params,
int64_t m,
int64_t n,
cudaDataType dataTypeA,
void *A,
int64_t lda,
int64_t *ipiv,
cudaDataType computeType,
void *bufferOnDevice,
size_t workspaceInBytesOnDevice,
void *bufferOnHost,
size_t workspaceInBytesOnHost,
int *info)

computes the LU factorization of am× nmatrix

P ∗A = L ∗ U

where A is a m × n matrix, P is a permutation matrix, L is a lower triangular matrix with unit diagonal,
and U is an upper triangular matrix using the generic API interface.

If LU factorization failed, i.e. matrix A (U) is singular, The output parameter info=i indicates U(i,i)
= 0.

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting handle).

If ipiv is null, no pivoting is performed. The factorization is A=L*U, which is not numerically stable.

No matter LU factorization failed or not, the output parameter ipiv contains pivoting sequence, row
i is interchanged with row ipiv(i).

The user has to provide device and host working spaces which are pointed by input parameters
bufferOnDevice and bufferOnHost. The input parameters workspaceInBytesOnDevice (and
workspaceInBytesOnHost) is size in bytes of the device (and host) working space, and it is returned
by cusolverDnXgetrf_bufferSize().

The user can combine cusolverDnXgetrf and cusolverDnGetrs to complete a linear solver.

Currently, cusolverDnXgetrf supports two algorithms. To select legacy implementation, the user
has to call cusolverDnSetAdvOptions.

222 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

Please visit cuSOLVER Library Samples - Xgetrf for a code example.

Algorithms supported by cusolverDnXgetrf

CUSOLVER_ALG_0 or
NULL

Default algorithm. The fastest, requires a large workspace of m*n ele-
ments.

CUSOLVER_ALG_1 Legacy implementation

List of input arguments for cusolverDnXgetrf_bufferSize and cusolverDnXgetrf:

Table 52: API of cusolverDnXgetrf

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

params host input Structure with information collected by cu-
solverDnSetAdvOptions.

m host input Number of rows of matrix A.

n host input Number of columns of matrix A.

dataTypeA host in Data type of array A.

A device in∕out <type> array of dimension lda * n with lda is
not less than max(1,m).

lda host input Leading dimension of two-dimensional array
used to store matrix A.

ipiv device output Array of size at least min(m,n), containing pivot
indices.

computeType host in Data type of computation.

bufferOnDe-
vice

device in∕out Device workspace. Array of type void of size
workspaceInBytesOnDevice bytes.

workspaceIn-
BytesOnDe-
vice

host input Size in bytes of bufferOnDevice, returned by
cusolverDnXgetrf_bufferSize.

bufferOn-
Host

host in∕out Host workspace. Array of type void of size
workspaceInBytesOnHost bytes.

workspaceIn-
BytesOnHost

host input Size in bytes of bufferOnHost, returned by cu-
solverDnXgetrf_bufferSize.

info device output If info = 0, the LU factorization is successful.
if info = -i, the i-th parameter is wrong (not
counting handle). If info = i, the U(i,i) = 0.

The generic API has two different types, dataTypeA is data type of the matrix A, computeType is
compute type of the operation. cusolverDnXgetrf only supports the following four combinations.

Valid combination of data type and compute type

8.4. cuSolverDN: dense LAPACK Function Reference 223

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/Xgetrf

cuSOLVER, Release 12.8

DataTypeA ComputeType Meaning

CUDA_R_32F CUDA_R_32F SGETRF

CUDA_R_64F CUDA_R_64F DGETRF

CUDA_C_32F CUDA_C_32F CGETRF

CUDA_C_64F CUDA_C_64F ZGETRF

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (m,n<0 or lda<max(1,m)).

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.4.4.4 cusolverDnXgetrs()

cusolverStatus_t
cusolverDnXgetrs(

cusolverDnHandle_t handle,
cusolverDnParams_t params,
cublasOperation_t trans,
int64_t n,
int64_t nrhs,
cudaDataType dataTypeA,
const void *A,
int64_t lda,
const int64_t *ipiv,
cudaDataType dataTypeB,
void *B,
int64_t ldb,
int *info)

This function solves a linear system of multiple right-hand sides

op(A) ∗X = B

where A is an n× nmatrix, and was LU-factored by cusolverDnXgetrf, that is, lower triangular part
of A is L, and upper triangular part (including diagonal elements) of A is U. B is an n× nrhs right-hand
side matrix using the generic API interface.

The input parameter trans is defined by

224 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

The input parameter ipiv is an output of cusolverDnXgetrf. It contains pivot indices, which are
used to permutate right-hand sides.

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting handle).

The user can combine cusolverDnXgetrf and cusolverDnXgetrs to complete a linear solver.

Currently, cusolverDnXgetrs supports only the default algorithm.

Please visit cuSOLVER Library Samples - Xgetrf for a code example.

Algorithms supported by cusolverDnXgetrs

CUSOLVER_ALG_0 or NULL Default algorithm.

List of input arguments for cusolverDnXgetrs:

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

params host input Structure with information collected by cu-
solverDnSetAdvOptions.

trans host input Operation op(A) that is non- or (conj.) trans-
pose.

n host input Number of rows and columns of matrix A.

nrhs host input Number of right-hand sides.

dataTypeA host in Data type of array A.

A device input Array of dimension lda * n with lda is not less
than max(1,n).

lda host input Leading dimension of two-dimensional array
used to store matrix A.

ipiv device input Array of size at least n, containing pivot indices.

dataTypeB host in Data type of array B.

B device output <type> array of dimension ldb * nrhswith ldb
is not less than max(1,n).

ldb host input Leading dimension of two-dimensional array
used to store matrix B.

info device output If info = 0, the operation is successful. If info
= -i, the i-th parameter is wrong (not counting
handle).

The generic API has two different types: dataTypeA is data type of the matrix A and dataTypeB is
data type of the matrix B. cusolverDnXgetrs only supports the following four combinations:

Valid combination of data type and compute type

8.4. cuSolverDN: dense LAPACK Function Reference 225

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/Xgetrf

cuSOLVER, Release 12.8

DataTypeA dataTypeB Meaning

CUDA_R_32F CUDA_R_32F SGETRS

CUDA_R_64F CUDA_R_64F DGETRS

CUDA_C_32F CUDA_C_32F CGETRS

CUDA_C_64F CUDA_C_64F ZGETRS

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (n<0 or lda<max(1,n) or ldb<max(1,n)).

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.4.4.5 cusolverDnXgeqrf()

The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnXgeqrf_bufferSize(

cusolverDnHandle_t handle,
cusolverDnParams_t params,
int64_t m,
int64_t n,
cudaDataType dataTypeA,
const void *A,
int64_t lda,
cudaDataType dataTypeTau,
const void *tau,
cudaDataType computeType,
size_t *workspaceInBytesOnDevice,
size_t *workspaceInBytesOnHost)

The following routine:

cusolverStatus_t cusolverDnXgeqrf(
cusolverDnHandle_t handle,
cusolverDnParams_t params,
int64_t m,
int64_t n,
cudaDataType dataTypeA,
void *A,
int64_t lda,
cudaDataType dataTypeTau,
void *tau,
cudaDataType computeType,
void *bufferOnDevice,

(continues on next page)

226 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

(continued from previous page)

size_t workspaceInBytesOnDevice,
void *bufferOnHost,
size_t workspaceInBytesOnHost,
int *info)

computes the QR factorization of am× nmatrix

A = Q ∗R

where A is an m × n matrix, Q is a m × n matrix, and R is an n × n upper triangular matrix using the
generic API interface.

The user has to provide device and host working spaces which are pointed by input parameters
bufferOnDevice and bufferOnHost. The input parameters workspaceInBytesOnDevice (and
workspaceInBytesOnHost) is size in bytes of the device (and host) working space, and it is returned
by cusolverDnXgeqrf_bufferSize().

The matrix R is overwritten in upper triangular part of A, including diagonal elements.

The matrix Q is not formed explicitly, instead, a sequence of householder vectors are stored in lower
triangular part of A. The leading nonzero element of householder vector is assumed to be 1 such that
output parameter TAU contains the scaling factor τ. If v is original householder vector, q is the new
householder vector corresponding to τ, satisfying the following relation

I − 2 ∗ v ∗ vH = I − τ ∗ q ∗ qH

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting handle).

Currently, cusolverDnXgeqrf supports only the default algorithm.

Please visit cuSOLVER Library Samples - Xgeqrf for a code example.

Algorithms supported by cusolverDnXgeqrf

CUSOLVER_ALG_0 or NULL Default algorithm.

List of input arguments for cusolverDnXgeqrf_bufferSize and cusolverDnXgeqrf:

Table 54: API of geqrf

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

params host input Structure with information collected by cu-
solverDnSetAdvOptions.

m host input Number of rows of matrix A.

n host input Number of columns of matrix A.

dataTypeA host in Data type of array A.

A device in∕out Array of dimension lda * n with lda is not less
than max(1,m).

continues on next page

8.4. cuSolverDN: dense LAPACK Function Reference 227

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/Xgeqrf

cuSOLVER, Release 12.8

Table 54 – continued from previous page

Parameter Memory In/out Meaning

lda host input Leading dimension of two-dimensional array
used to store matrix A.

dataTypeTau host in Data type of array tau.

tau device output Array of dimension at least min(m,n).

computeType host in Data type of computation.

bufferOnDe-
vice

device in∕out Device workspace. Array of type void of size
workspaceInBytesOnDevice bytes.

workspaceIn-
BytesOnDe-
vice

host input Size in bytes of bufferOnDevice, returned by
cusolverDnXgeqrf_bufferSize.

bufferOn-
Host

host in∕out Host workspace. Array of type void of size
workspaceInBytesOnHost bytes.

workspaceIn-
BytesOnHost

host input Size in bytes of bufferOnHost, returned by cu-
solverDnXgeqrf_bufferSize.

info device output If info = 0, the QR factorization is successful.
If info = -i, the i-th parameter is wrong (not
counting handle).

The generic API has two different types, dataTypeA is data type of the matrix A, dataTypeTau is data
type of the array tau and computeType is compute type of the operation. cusolverDnXgeqrf only
supports the following four combinations.

Valid combination of data type and compute type

DataTypeA ComputeType Meaning

CUDA_R_32F CUDA_R_32F SGEQRF

CUDA_R_64F CUDA_R_64F DGEQRF

CUDA_C_32F CUDA_C_32F CGEQRF

CUDA_C_64F CUDA_C_64F ZGEQRF

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (m,n<0 or lda<max(1,m)).

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

228 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

8.4.4.6 cusolverDnXsytrs()

The helper functions below can calculate the sizes needed for pre-allocated buffers.

cusolverStatus_t
cusolverDnXsytrs_bufferSize(

cusolverDnHandle_t handle,
cublasFillMode_t uplo,
int64_t n,
int64_t nrhs,
cudaDataType dataTypeA,
const void *A,
int64_t lda,
const int64_t *devIpiv,
cudaDataType dataTypeB,
void *B,
int64_t ldb,
size_t *workspaceInBytesOnDevice,
size_t *workspaceInBytesOnHost);

The following routine:

cusolverStatus_t cusolverDnXsytrs(
cusolverDnHandle_t handle,
cublasFillMode_t uplo,
int64_t n,
int64_t nrhs,
cudaDataType dataTypeA,
const void *A,
int64_t lda,
const int64_t *devIpiv,
cudaDataType dataTypeB,
void *B,
int64_t ldb,
void *bufferOnDevice,
size_t workspaceInBytesOnDevice,
void *bufferOnHost,
size_t workspaceInBytesOnHost,
int *devInfo);

solves a system of linear equations using the generic API interface.

A contains the factorization from cusolverDnXsytrf(), only lower or upper part is meaningful, the
other part is not touched.

If input parameter uplo is CUBLAS_FILL_MODE_LOWER, the details of the factorization are stores as:

A = L ∗D ∗ LT

If input parameter uplo is CUBLAS_FILL_MODE_UPPER, the details of the factorization are stores as:

A = U ∗D ∗ UT

The user has to provide the pivot indices that can be obtained by cusolverDnXsytrf() as well
as device and host work spaces which are pointed by input parameters bufferOnDevice and
bufferOnHost. The input parameters workspaceInBytesOnDevice and workspaceInBytesOn-
Host are sizes in bytes of the device and host work spaces, and they are returned by cusolverD-
nXsytrs_bufferSize(). To factorize and solve the symmetric system without pivoting, the user
should set devIpiv = NULL when calling cusolverDnXsytrf and cusolverDnXsytrs.

8.4. cuSolverDN: dense LAPACK Function Reference 229

cuSOLVER, Release 12.8

If output parameterdevInfo = -i (less than zero), thei-thparameter iswrong (not counting handle).

List of input arguments for cusolverDnXsytrs_bufferSize and cusolverDnXsytrs:

Table 55: API of sytrs

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

uplo host input Indicates ifmatrix A lower or upper part is stored,
the other part is not referenced.

n host input Number of rows and columns of matrix A.

nrhs host input Number of right-hand sides.

dataTypeA host in Data type of array A.

A device input Array of dimension lda * n with lda is not less
than max(1,n).

lda host input Leading dimension of two-dimensional array
used to store matrix A.

devIpiv device input Array of size at least n, containing pivot indices.
To solve the system without pivoting, set the ar-
gument NULL.

dataTypeB host in Data type of array B.

B device in∕out Array of dimension ldb * nrhs with ldb is not
less than max(1,nrhs).

ldb host input Leading dimension of two-dimensional array
used to store matrix B.

bufferOnDe-
vice

device in∕out Device workspace. Array of type void of size
workspaceInBytesOnDevice bytes.

workspaceIn-
BytesOnDe-
vice

host input Size in bytes of bufferOnDevice, returned by
cusolverDnXsytrs_bufferSize.

bufferOn-
Host

host in∕out Host workspace. Array of type void of size
workspaceInBytesOnHost bytes.

workspaceIn-
BytesOnHost

host input Size in bytes of bufferOnHost, returned by cu-
solverDnXsytrs_bufferSize.

devInfo device output If devInfo = -i, the i-th parameter is wrong
(not counting handle). Otherwise, it sets dev-
Info = 0 indicating all parameters are valid.

The generic API has two different types: dataTypeA is data type of the matrix A, dataTypeB is data
type of the matrix A. cusolverDnXsytrs only supports the following four combinations:

Valid combination of data type and compute type

230 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

DataTypeA DataTypeB Meaning

CUDA_R_32F CUDA_R_32F SSYTRS

CUDA_R_64F CUDA_R_64F DSYTRS

CUDA_C_32F CUDA_C_32F CSYTRS

CUDA_C_64F CUDA_C_64F ZSYTRS

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (n<0 or lda<max(1,n)).

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED
Data type is not supported.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.4.4.7 cusolverDnXtrtri()

The helper functions below can calculate the sizes needed for pre-allocated buffers.

cusolverStatus_t
cusolverDnXtrtri_bufferSize(

cusolverDnHandle_t handle,
cublasFillMode_t uplo,
cublasDiagType_t diag,
int64_t n,
cudaDataType dataTypeA,
void *A,
int64_t lda,
size_t *workspaceInBytesOnDevice,
size_t *workspaceInBytesOnHost);

The following routine:

cusolverStatus_t
cusolverDnXtrtri(

cusolverDnHandle_t handle,
cublasFillMode_t uplo,
cublasDiagType_t diag,
int64_t n,
cudaDataType dataTypeA,
void *A,
int64_t lda,
void *bufferOnDevice,
size_t workspaceInBytesOnDevice,
void *bufferOnHost,

(continues on next page)

8.4. cuSolverDN: dense LAPACK Function Reference 231

cuSOLVER, Release 12.8

(continued from previous page)

size_t workspaceInBytesOnHost,
int *info);

computes the inverse of a triangular matrix using the generic API interface.

A is an n × n triangular matrix, only lower or upper part is meaningful. The input parameter uplo
indicates which part of the matrix is used. The function would leave other part untouched.

If input parameter uplo is CUBLAS_FILL_MODE_LOWER, only lower triangular part of A is processed,
and replaced by lower triangular inverse.

If input parameter uplo is CUBLAS_FILL_MODE_UPPER, only upper triangular part of A is processed,
and replaced by upper triangular inverse.

The user has to provide device and host work spaces which are pointed by input parameters
bufferOnDevice and bufferOnHost. The input parameters workspaceInBytesOnDevice and
workspaceInBytesOnHost are sizes in bytes of the device and host work spaces, and they are re-
turned by cusolverDnXtrtri_bufferSize().

If matrix inversion fails, the output parameter info = i shows A(i,i) = 0.

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting handle).

Please visit cuSOLVER Library Samples - Xtrtri for a code example.

List of input arguments for cusolverDnXtrtri_bufferSize and cusolverDnXtrtri:

Table 56: API of trtri

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

uplo host input Indicates ifmatrix A lower or upper part is stored,
the other part is not referenced.

diag host input The enumerated unit diagonal type.

n host input Number of rows and columns of matrix A.

dataTypeA host in Data type of array A.

A device in∕out Array of dimension lda * n with lda is not less
than max(1,n).

lda host input Leading dimension of two-dimensional array
used to store matrix A.

bufferOnDe-
vice

device in∕out Device workspace. Array of type void of size
workspaceInBytesOnDevice bytes.

workspaceIn-
BytesOnDe-
vice

host input Size in bytes of bufferOnDevice, returned by
cusolverDnXtrtri_bufferSize.

bufferOn-
Host

host in∕out Host workspace. Array of type void of size
workspaceInBytesOnHost bytes.

workspaceIn-
BytesOnHost

host input Size in bytes of bufferOnHost, returned by cu-
solverDnXtrtri_bufferSize.

continues on next page

232 Chapter 8. Using the CUSOLVER API

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/Xtrtri

cuSOLVER, Release 12.8

Table 56 – continued from previous page

Parameter Memory In/out Meaning

info device output If info = 0, the matrix inversion succeeded. If
info = -i, the i-th parameter is wrong (not
counting handle). If info = i, A(i,i) = 0.

Valid data types

DataTypeA Meaning

CUDA_R_32F STRTRI

CUDA_R_64F DTRTRI

CUDA_C_32F CTRTRI

CUDA_C_64F ZTRTRI

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_NOT_SUPPORTED
Data type is not supported.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (n<0 or lda<max(1,n)).

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.4.4.8 cusolverDnXlarft()

The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t cusolverDnXlarft_bufferSize(
cusolverDnHandle_t handle,
cusolverDnParams_t params,
cusolverDirectMode_t direct,
cusolverStorevMode_t storev,
int64_t n,
int64_t k,
cudaDataType dataTypeV,
const void *V,
int64_t ldv,
cudaDataType dataTypeTau,
const void *tau,
cudaDataType dataTypeT,
void *T,
int64_t ldt,
cudaDataType computeType,

(continues on next page)

8.4. cuSolverDN: dense LAPACK Function Reference 233

cuSOLVER, Release 12.8

(continued from previous page)

size_t *workspaceInBytesOnDevice,
size_t *workspaceInBytesOnHost)

The following routine:

cusolverStatus_t cusolverDnXlarft(
cusolverDnHandle_t handle,
cusolverDnParams_t params,
cusolverDirectMode_t direct,
cusolverStorevMode_t storev,
int64_t n,
int64_t k,
cudaDataType dataTypeV,
const void *V,
int64_t ldv,
cudaDataType dataTypeTau,
const void *tau,
cudaDataType dataTypeT,
void *T,
int64_t ldt,
cudaDataType computeType,
void *bufferOnDevice,
size_t workspaceInBytesOnDevice,
void *bufferOnHost,
size_t workspaceInBytesOnHost)

forms the triangular factor T of a real block reflector H of order n, which is defined as a product of k
elementary reflectors. If:

▶ direct == CUBLAS_DIRECT_FORWARD: H = H(1)H(2)...H(k) and T is upper triangular;

▶ direct == CUBLAS_DIRECT_BACKWARD: H = H(k)...H(2)H(1) and T is lower triangular.

Only storev == CUBLAS_STOREV_COLUMNWISE is supported, which indicates that the vector defining
the elementary reflector H(i) is stored in the i-th column of the array V, and H = I − V ∗ T ∗ V T

(H = I − V ∗ T ∗ V H for complex types).

The user has to provide device and host working spaces which are pointed by input parameters
bufferOnDevice and bufferOnHost. The input parameters workspaceInBytesOnDevice (and
workspaceInBytesOnHost) is size in bytes of the device (and host) working space, and it is returned
by cusolverDnXlarft_bufferSize().

Currently, only n >= k scenario is supported.

Table 57: API of larft

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

params host input Structure with information collected by cu-
solverDnSetAdvOptions.

direct host input Specifies the order in which the elementary re-
flectors are multiplied to form the block reflec-
tor.

continues on next page

234 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

Table 57 – continued from previous page

Parameter Memory In/out Meaning

storev host input Specifies how the vectors which define the ele-
mentary reflectors are stored.

n host input The order of the block reflector H. n >= 0.

k host input The order of the triangular factor T (= the num-
ber of elementary reflectors). k >= 1.

dataTypeV host input Data type of array V.

V device input The matrix V of dimension lda * k.

ldv host input Leading dimension of the array V. ldv >=
max(1,n).

dataTypeTau host input Data type of array tau.

tau device input Dimension k. tau(i) must contain the scalar
factor of the elementary reflector H(i).

dataTypeT host input Data type of array T.

T device output Dimension ldt * k. The k × k triangular
factor T of the block reflector. If direct ==
CUBLAS_DIRECT_FORWARD, T is upper triangular;
if direct == CUBLAS_DIRECT_BACKWARD, T is
lower triangular.

ldt host input The leading dimension of the array T. ldt >= k.

computeType host input Data type of computation.

bufferOnDe-
vice

device in∕out Device workspace. Array of type void of size
workspaceInBytesOnDevice bytes.

workspaceIn-
BytesOnDe-
vice

host input Size in bytes of bufferOnDevice, returned by
cusolverDnXlarft_bufferSize.

bufferOn-
Host

host in∕out Host workspace. Array of type void of size
workspaceInBytesOnHost bytes.

workspaceIn-
BytesOnHost

host input Size in bytes of bufferOnHost, returned by cu-
solverDnXlarft_bufferSize.

The generic API has four different types:

▶ dataTypeV is data type of the array V

▶ dataTypeTau is data type of the array tau

▶ dataTypeT is data type of the array T

▶ computeType is compute type of the operation

cusolverDnXlarft only supports the following four combinations.

Valid combinations of data types and compute types

8.4. cuSolverDN: dense LAPACK Function Reference 235

cuSOLVER, Release 12.8

DataTypeV DataTypeTau DataTypeT ComputeType Meaning

CUDA_R_32F CUDA_R_32F CUDA_R_32F CUDA_R_32F SLARFT

CUDA_R_64F CUDA_R_64F CUDA_R_64F CUDA_R_64F DLARFT

CUDA_C_32F CUDA_C_32F CUDA_C_32F CUDA_C_32F CLARFT

CUDA_C_64F CUDA_C_64F CUDA_C_64F CUDA_C_64F ZLARFT

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (n == 0, k > n, or storev == CUBLAS_STOREV_ROWWISE).

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.4.5. Dense Eigenvalue Solver Reference (64-bit API)

This section describes eigenvalue solver API of cuSolverDN, including bidiagonalization and SVD.

8.4.5.1 cusolverDnXgesvd()

The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnXgesvd_bufferSize(

cusolverDnHandle_t handle,
cusolverDnParams_t params,
signed char jobu,
signed char jobvt,
int64_t m,
int64_t n,
cudaDataType dataTypeA,
const void *A,
int64_t lda,
cudaDataType dataTypeS,
const void *S,
cudaDataType dataTypeU,
const void *U,
int64_t ldu,
cudaDataType dataTypeVT,
const void *VT,
int64_t ldvt,
cudaDataType computeType,
size_t *workspaceInBytesOnDevice,
size_t *workspaceInBytesOnHost)

236 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

The following routine:

cusolverStatus_t
cusolverDnXgesvd(

cusolverDnHandle_t handle,
cusolverDnParams_t params,
signed char jobu,
signed char jobvt,
int64_t m,
int64_t n,
cudaDataType dataTypeA,
void *A,
int64_t lda,
cudaDataType dataTypeS,
void *S,
cudaDataType dataTypeU,
void *U,
int64_t ldu,
cudaDataType dataTypeVT,
void *VT,
int64_t ldvt,
cudaDataType computeType,
void *bufferOnDevice,
size_t workspaceInBytesOnDevice,
void *bufferOnHost,
size_t workspaceInBytesOnHost,
int *info)

This function computes the singular value decomposition (SVD) of anm×nmatrix A and corresponding
the left and/or right singular vectors. The SVD is written

A = U ∗ Σ ∗ V H

where Σ is an m × n matrix which is zero except for its min(m,n) diagonal elements, U is an m × m
unitary matrix, and V is an n× n unitary matrix. The diagonal elements of Σ are the singular values of
A; they are real and non-negative, and are returned in descending order. The first min(m,n) columns
of U and V are the left and right singular vectors of A.

The user has to provide device and host working spaces which are pointed by input parameters
bufferOnDevice and bufferOnHost. The input parameters workspaceInBytesOnDevice (and
workspaceInBytesOnHost) is size in bytes of the device (and host) working space, and it is returned
by cusolverDnXgesvd_bufferSize().

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting handle). if
bdsqr did not converge, info specifies how many superdiagonals of an intermediate bidiagonal form
did not converge to zero.

Currently, cusolverDnXgesvd supports only the default algorithm.

Algorithms supported by cusolverDnXgesvd

CUSOLVER_ALG_0 or NULL Default algorithm.

Please visit cuSOLVER Library Samples - Xgesvd for a code example.

Remark 1: gesvd only supports m>=n.

Remark 2: the routine returns V H , not V.

8.4. cuSolverDN: dense LAPACK Function Reference 237

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/Xgesvd

cuSOLVER, Release 12.8

List of input arguments for cusolverDnXgesvd_bufferSize and cusolverDnXgesvd:

Table 58: API of cusolverDnXgesvd

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

params host input Structure with information collected by cu-
solverDnSetAdvOptions.

jobu host input Specifies options for computing all or part of the
matrix U: = ‘A’: all m columns of U are returned in
array U: = ‘S’: the first min(m,n) columns of U (the
left singular vectors) are returned in the array U;
= ‘O’: the firstmin(m,n) columns of U (the left sin-
gular vectors) are overwritten on the array A; =
‘N’: no columns of U (no left singular vectors) are
computed.

jobvt host input Specifies options for computing all or part of the
matrix V**T: = ‘A’: all N rows of V**T are returned in
the array VT; = ‘S’: the first min(m,n) rows of V**T
(the right singular vectors) are returned in the ar-
ray VT; = ‘O’: the first min(m,n) rows of V**T (the
right singular vectors) are overwritten on the ar-
ray A; = ‘N’: no rows of V**T (no right singular vec-
tors) are computed.

m host input Number of rows of matrix A.

n host input Number of columns of matrix A.

dataTypeA host input Data type of array A.

A device in∕out Array of dimension lda * n with lda is not less
than max(1,m). On exit, the contents of A are
destroyed.

lda host input Leading dimension of two-dimensional array
used to store matrix A.

dataTypeS host input Data type of array S.

S device output Real array of dimension min(m,n). The singular
values of A, sorted so that S(i) >= S(i+1).

dataTypeU host input Data type of array U.

U device output Array of dimension ldu * m with ldu is not less
than max(1,m). U contains the m × m unitary
matrix U.

ldu host input Leading dimension of two-dimensional array
used to store matrix U.

dataTypeVT host input Data type of array VT.

continues on next page

238 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

Table 58 – continued from previous page

Parameter Memory In/out Meaning

VT device output Array of dimension ldvt * n with ldvt is not
less thanmax(1,n). VT contains then×nunitary
matrix V**T.

ldvt host input Leading dimension of two-dimensional array
used to store matrix Vt.

computeType host input Data type of computation.

bufferOnDe-
vice

device in∕out Device workspace. Array of type void of size
workspaceInBytesOnDevice bytes.

workspaceIn-
BytesOnDe-
vice

host input Size in bytes of bufferOnDevice, returned by
cusolverDnXgesvd_bufferSize.

bufferOn-
Host

host in∕out Host workspace. Array of type void of size
workspaceInBytesOnHost bytes.

workspaceIn-
BytesOnHost

host input Size in bytes of bufferOnHost, returned by cu-
solverDnXgesvd_bufferSize.

info device output If info = 0, the operation is successful. If info
= -i, the i-th parameter is wrong (not count-
ing handle). If info > 0, info indicates how
many superdiagonals of an intermediate bidiag-
onal form did not converge to zero.

The generic API has three different types, dataTypeA is data type of the matrix A, dataTypeS is data
type of the vector S and dataTypeU is data type of the matrix U, dataTypeVT is data type of the
matrix VT, computeType is compute type of the operation. cusolverDnXgesvd only supports the
following four combinations.

Valid combination of data type and compute type

DataTypeA DataTypeS DataTypeU DataTypeVT ComputeType Meaning

CUDA_R_32F CUDA_R_32F CUDA_R_32F CUDA_R_32F CUDA_R_32F SGESVD

CUDA_R_64F CUDA_R_64F CUDA_R_64F CUDA_R_64F CUDA_R_64F DGESVD

CUDA_C_32F CUDA_R_32F CUDA_C_32F CUDA_C_32F CUDA_C_32F CGESVD

CUDA_C_64F CUDA_R_64F CUDA_C_64F CUDA_C_64F CUDA_C_64F ZGESVD

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (m,n<0 or lda<max(1,m) or ldu<max(1,m) or ldvt<max(1,n)
).

8.4. cuSolverDN: dense LAPACK Function Reference 239

cuSOLVER, Release 12.8

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.4.5.2 cusolverDnXgesvdp()

The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnXgesvdp_bufferSize(

cusolverDnHandle_t handle,
cusolverDnParams_t params,
cusolverEigMode_t jobz,
int econ,
int64_t m,
int64_t n,
cudaDataType dataTypeA,
const void *A,
int64_t lda,
cudaDataType dataTypeS,
const void *S,
cudaDataType dataTypeU,
const void *U,
int64_t ldu,
cudaDataType dataTypeV,
const void *V,
int64_t ldv,
cudaDataType computeType,
size_t *workspaceInBytesOnDevice,
size_t *workspaceInBytesOnHost)

The routine below:

cusolverStatus_t
cusolverDnXgesvdp(

cusolverDnHandle_t handle,
cusolverDnParams_t params,
cusolverEigMode_t jobz,
int econ,
int64_t m,
int64_t n,
cudaDataType dataTypeA,
void *A,
int64_t lda,
cudaDataType dataTypeS,
void *S,
cudaDataType dataTypeU,
void *U,
int64_t ldu,
cudaDataType dataTypeV,
void *V,
int64_t ldv,
cudaDataType computeType,
void *bufferOnDevice,
size_t workspaceInBytesOnDevice,
void *bufferOnHost,
size_t workspaceInBytesOnHost,

(continues on next page)

240 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

(continued from previous page)

int *d_info,
double *h_err_sigma)

This function computes the singular value decomposition (SVD) of anm×nmatrix A and corresponding
the left and/or right singular vectors. The SVD is written

A = U ∗ Σ ∗ V H

where Σ is an m × n matrix which is zero except for its min(m,n) diagonal elements, U is an m × m
unitary matrix, and V is an n× n unitary matrix. The diagonal elements of Σ are the singular values of
A; they are real and non-negative, and are returned in descending order. The first min(m,n) columns
of U and V are the left and right singular vectors of A.

cusolverDnXgesvdp combines polar decomposition in [14] and cusolverDnXsyevd to compute
SVD. It is much faster than cusolverDnXgesvd which is based on QR algorithm. However polar de-
composition in [14] may not deliver a full unitary matrix when the matrix A has a singular value close
to zero. To workaround the issue when the singular value is close to zero, we add a small perturbation
so polar decomposition can deliver the correct result. The consequence is inaccurate singular values
shifted by this perturbation. The output parameter h_err_sigma is the magnitude of this perturba-
tion. In other words, h_err_sigma shows the accuracy of SVD.

The user has to provide device and host working spaces which are pointed by input parameters
bufferOnDevice and bufferOnHost. The input parameters workspaceInBytesOnDevice (and
workspaceInBytesOnHost) is size in bytes of the device (and host) working space, and it is returned
by cusolverDnXgesvdp_bufferSize().

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting handle).

Currently, cusolverDnXgesvdp supports only the default algorithm.

Algorithms supported by cusolverDnXgesvdp

CUSOLVER_ALG_0 or NULL Default algorithm.

Please visit cuSOLVER Library Samples - Xgesvdp for a code example.

Remark 1: gesvdp supports n>=m as well.

Remark 2: the routine returns V, not V H

List of input arguments for cusolverDnXgesvdp_bufferSize and cusolverDnXgesvdp:

Table 59: API of cusolverDnXgesvdp

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

params host input Structure with information collected by cu-
solverDnSetAdvOptions.

continues on next page

8.4. cuSolverDN: dense LAPACK Function Reference 241

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/Xgesvdp

cuSOLVER, Release 12.8

Table 59 – continued from previous page

Parameter Memory In/out Meaning

jobz host input Specifies options to either compute singular val-
ues only or compute singular vectors as well:
jobz = CUSOLVER_EIG_MODE_NOVECTOR : Com-
pute singular values only.
jobz = CUSOLVER_EIG_MODE_VECTOR : Com-
pute singular values and singular vectors.

econ host input econ = 1 for economy size for U and V.

m host input Number of rows of matrix A.

n host input Number of columns of matrix A.

dataTypeA host input Data type of array A.

A device in∕out Array of dimension lda * n with lda is not less
than max(1,m). On exit, the contents of A are
destroyed.

lda host input Leading dimension of two-dimensional array
used to store matrix A.

dataTypeS host input Data type of array S.

S device output Real array of dimension min(m,n). The singular
values of A, sorted so that S(i) >= S(i+1).

dataTypeU host input Data type of array U.

U device output Array of dimension ldu * m with ldu is not less
than max(1,m). U contains the m × m unitary
matrix U. If econ=1, only reports first min(m,n)
columns of U.

ldu host input Leading dimension of two-dimensional array
used to store matrix U.

dataTypeV host input Data type of array V.

V device output Array of dimension ldv * n with ldv is not less
than max(1,n). V contains the n × n unitary
matrix V. if econ=1, only reports first min(m,n)
columns of V.

ldv host input Leading dimension of two-dimensional array
used to store matrix V.

computeType host input Data type of computation.

bufferOnDe-
vice

device in∕out Device workspace. Array of type void of size
workspaceInBytesOnDevice bytes.

workspaceIn-
BytesOnDe-
vice

host input Size in bytes of bufferOnDevice, returned by
cusolverDnXgesvdp_bufferSize.

continues on next page

242 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

Table 59 – continued from previous page

Parameter Memory In/out Meaning

bufferOn-
Host

host in∕out Host workspace. Array of type void of size
workspaceInBytesOnHost bytes.

workspaceIn-
BytesOnHost

host input Size in bytes of bufferOnHost, returned by cu-
solverDnXgesvdp_bufferSize.

info device output If info = 0, the operation is successful. If info
= -i, the i-th parameter is wrong (not counting
handle).

h_err_sigma host output Magnitude of the perturbation, showing the ac-
curacy of SVD.

The generic API has three different types, dataTypeA is data type of the matrix A, dataTypeS is data
type of the vector S and dataTypeU is data type of thematrix U, dataTypeV is data type of thematrix
V, computeType is compute type of the operation. cusolverDnXgesvdp only supports the following
four combinations:

Valid combination of data type and compute type

DataTypeA DataTypeS DataTypeU DataTypeV ComputeType Meaning

CUDA_R_32F CUDA_R_32F CUDA_R_32F CUDA_R_32F CUDA_R_32F SGESVDP

CUDA_R_64F CUDA_R_64F CUDA_R_64F CUDA_R_64F CUDA_R_64F DGESVDP

CUDA_C_32F CUDA_R_32F CUDA_C_32F CUDA_C_32F CUDA_C_32F CGESVDP

CUDA_C_64F CUDA_R_64F CUDA_C_64F CUDA_C_64F CUDA_C_64F ZGESVDP

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (m,n<0 or lda<max(1,m) or ldu<max(1,m) or ldv<max(1,n)).

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.4.5.3 cusolverDnXgesvdr()

The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnXgesvdr_bufferSize (

cusolverDnHandle_t handle,
cusolverDnParams_t params,
signed char jobu,
signed char jobv,

(continues on next page)

8.4. cuSolverDN: dense LAPACK Function Reference 243

cuSOLVER, Release 12.8

(continued from previous page)

int64_t m,
int64_t n,
int64_t k,
int64_t p,
int64_t niters,
cudaDataType dataTypeA,
const void *A,
int64_t lda,
cudaDataType dataTypeSrand,
const void *Srand,
cudaDataType dataTypeUrand,
const void *Urand,
int64_t ldUrand,
cudaDataType dataTypeVrand,
const void *Vrand,
int64_t ldVrand,
cudaDataType computeType,
size_t *workspaceInBytesOnDevice,
size_t *workspaceInBytesOnHost)

The routine below

cusolverStatus_t
cusolverDnXgesvdr(

cusolverDnHandle_t handle,
cusolverDnParams_t params,
signed char jobu,
signed char jobv,
int64_t m,
int64_t n,
int64_t k,
int64_t p,
int64_t niters,
cudaDataType dataTypeA,
void *A,
int64_t lda,
cudaDataType dataTypeSrand,
void *Srand,
cudaDataType dataTypeUrand,
void *Urand,
int64_t ldUrand,
cudaDataType dataTypeVrand,
void *Vrand,
int64_t ldVrand,
cudaDataType computeType,
void *bufferOnDevice,
size_t workspaceInBytesOnDevice,
void *bufferOnHost,
size_t workspaceInBytesOnHost,
int *d_info)

This function computes the approximated rank-k singular value decomposition (k-SVD) of an m × n
matrix A and the corresponding left and/or right singular vectors. The k-SVD is written as

Ak ≈ U ∗ Σ ∗ V H

where Σ is a k×kmatrix which is zero except for its diagonal elements, U is anm×k orthonormalmatrix,
and V is an k×n orthonormal matrix. The diagonal elements of Σ are the approximated singular values

244 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

of A; they are real and non-negative, and are returned in descending order. The columns of U and V are
the top-k left and right singular vectors of A.

cusolverDnXgesvdr implements randomized methods described in [15] to compute k-SVD that is
accurate with high probability if the conditions described in [15] hold. cusolverDnXgesvdr is in-
tended to compute a very small portion of the spectrum (meaning that k is very small compared to
min(m,n)). of A fast and with good quality, specially when the dimensions of the matrix are large.

The accuracy of the method depends on the spectrum of A, the number of power iterations niters,
the oversampling parameter p and the ratio between p and the dimensions of the matrix A. Larger
values of oversampling p or larger number of iterations nitersmight produce more accurate approx-
imations, but it will also increase the run time of cusolverDnXgesvdr.

Our recommendation is to use two iterations and set the oversampling to at least 2k. Once the solver
provides enough accuracy, adjust the values of k and niters for better performance.

The user has to provide device and host working spaces which are pointed by input parameters
bufferOnDevice and bufferOnHost. The input parameters workspaceInBytesOnDevice (and
workspaceInBytesOnHost) is size in bytes of the device (and host) working space, and it is returned
by cusolverDnXgesvdr_bufferSize().

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting handle).

Currently, cusolverDnXgesvdr supports only the default algorithm.

Algorithms supported by cusolverDnXgesvdr

CUSOLVER_ALG_0 or NULL Default algorithm.

Please visit cuSOLVER Library Samples - Xgesvdr for a code example.

Remark 1: gesvdr supports n>=m as well.

Remark 2: the routine returns V, not V H

List of input arguments for cusolverDnXgesvdr_bufferSize and cusolverDnXgesvdr:

Table 60: API of cusolverDnXgesvdr

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

params host input Structure with information collected by cu-
solverDnSetAdvOptions.

jobu host input Specifies options for computing all or part of the
matrix U: = ‘S’: the first k columns of U (the left
singular vectors) are returned in the array U; =
‘N’: no columns of U (no left singular vectors) are
computed.

jobv host input Specifies options for computing all or part of the
matrix V: = ‘S’: the first k rows of V (the right sin-
gular vectors) are returned in the array V; = ‘N’:
no rows of V (no right singular vectors) are com-
puted.

continues on next page

8.4. cuSolverDN: dense LAPACK Function Reference 245

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/Xgesvdr

cuSOLVER, Release 12.8

Table 60 – continued from previous page

Parameter Memory In/out Meaning

m host input Number of rows of matrix A.

n host input Number of columns of matrix A.

k host input Rank of the k-SVD decomposition of matrix A.
rank is less than min(m,n).

p host input Oversampling. The size of the subspace will be
(k + p). (k+p) is less than min(m,n).

niters host input Number of iteration of power method.

dataTypeA host input Data type of array A.

A device in∕out Array of dimension lda * n with lda is not less
than max(1,m). On exit, the contents of A are
destroyed.

lda host input Leading dimension of two-dimensional array
used to store matrix A.

dataTypeS host input Data type of array S.

S device output Real array of dimension min(m,n). The singular
values of A, sorted so that S(i) >= S(i+1).

dataTypeU host input Data type of array U.

U device output Array of dimension ldu * m with ldu is not less
than max(1,m). U contains the m × m unitary
matrix U. if jobu=S, only reports first min(m,n)
columns of U.

ldu host input Leading dimension of two-dimensional array
used to store matrix U.

dataTypeV host input Data type of array V.

V device output Array of dimension ldv * n with ldv is not less
than max(1,n). V contains the n × n unitary
matrix V. If jobv=S, only reports first min(m,n)
columns of V.

ldv host input Leading dimension of two-dimensional array
used to store matrix V.

computeType host input Data type of computation.

bufferOnDe-
vice

device in∕out Device workspace. Array of type void of size
workspaceInBytesOnDevice bytes.

workspaceIn-
BytesOnDe-
vice

host input Size in bytes of bufferOnDevice, returned by
cusolverDnXgesvdr_bufferSize.

bufferOn-
Host

host in∕out Host workspace. Array of type void of size
workspaceInBytesOnHost bytes.

continues on next page

246 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

Table 60 – continued from previous page

Parameter Memory In/out Meaning

workspaceIn-
BytesOnHost

host input Size in bytes of bufferOnHost, returned by cu-
solverDnXgesvdr_bufferSize.

d_info device output If info = 0, the operation is successful. If info
= -i, the i-th parameter is wrong (not counting
handle).

The generic API has five different types, dataTypeA is data type of the matrix A, dataTypeS is data
type of the vector S and dataTypeU is data type of thematrix U, dataTypeV is data type of thematrix
V, computeType is compute type of the operation. cusolverDnXgesvdr only supports the following
four combinations.

Valid combination of data type and compute type

DataTypeA DataTypeS DataTypeU DataTypeV ComputeType Meaning

CUDA_R_32F CUDA_R_32F CUDA_R_32F CUDA_R_32F CUDA_R_32F SGESVDR

CUDA_R_64F CUDA_R_64F CUDA_R_64F CUDA_R_64F CUDA_R_64F DGESVDR

CUDA_C_32F CUDA_R_32F CUDA_C_32F CUDA_C_32F CUDA_C_32F CGESVDR

CUDA_C_64F CUDA_R_64F CUDA_C_64F CUDA_C_64F CUDA_C_64F ZGESVDR

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (m,n<0 or lda<max(1,m) or ldu<max(1,m) or ldv<max(1,n)
).

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.4.5.4 cusolverDnXsyevd()

The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnXsyevd_bufferSize(

cusolverDnHandle_t handle,
cusolverDnParams_t params,
cusolverEigMode_t jobz,
cublasFillMode_t uplo,
int64_t n,
cudaDataType dataTypeA,
const void *A,
int64_t lda,

(continues on next page)

8.4. cuSolverDN: dense LAPACK Function Reference 247

cuSOLVER, Release 12.8

(continued from previous page)

cudaDataType dataTypeW,
const void *W,
cudaDataType computeType,
size_t *workspaceInBytesOnDevice,
size_t *workspaceInBytesOnHost)

The following routine:

cusolverStatus_t
cusolverDnXsyevd(

cusolverDnHandle_t handle,
cusolverDnParams_t params,
cusolverEigMode_t jobz,
cublasFillMode_t uplo,
int64_t n,
cudaDataType dataTypeA,
void *A,
int64_t lda,
cudaDataType dataTypeW,
void *W,
cudaDataType computeType,
void *bufferOnDevice,
size_t workspaceInBytesOnDevice,
void *bufferOnHost,
size_t workspaceInBytesOnHost,
int *info)

computes eigenvalues and eigenvectors of a symmetric (Hermitian) n × n matrix A using the generic
API interface. The standard symmetric eigenvalue problem is

A ∗ V = V ∗ Λ

where Λ is a real n×n diagonal matrix. V is an n×n unitary matrix. The diagonal elements of Λ are the
eigenvalues of A in ascending order.

The user has to provide device and host working spaces which are pointed by input parameters
bufferOnDevice and bufferOnHost. The input parameters workspaceInBytesOnDevice (and
workspaceInBytesOnHost) is size in bytes of the device (and host) working space, and it is returned
by cusolverDnXsyevd_bufferSize().

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting handle).
If info = i (greater than zero), i off-diagonal elements of an intermediate tridiagonal form did not
converge to zero.

If jobz = CUSOLVER_EIG_MODE_VECTOR, A contains the orthonormal eigenvectors of the matrix A.
The eigenvectors are computed by a divide and conquer algorithm.

Please visit cuSOLVER Library Samples - Xsyevd for a code example.

Currently, cusolverDnXsyevd supports only the default algorithm.

Algorithms supported by cusolverDnXsyevd

CUSOLVER_ALG_0 or NULL Default algorithm.

List of input arguments for cusolverDnXsyevd_bufferSize and cusolverDnXsyevd:

248 Chapter 8. Using the CUSOLVER API

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/Xsyevd

cuSOLVER, Release 12.8

Table 61: API of cusolverDnXsyevd

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

params host input Structure with information collected by cu-
solverDnSetAdvOptions.

jobz host input Specifies options to either compute
eigenvalue only or compute eigen-pair:
jobz = CUSOLVER_EIG_MODE_NOVECTOR
: Compute eigenvalues only; jobz = CU-
SOLVER_EIG_MODE_VECTOR : Compute eigen-
values and eigenvectors.

uplo host input Specifies which part of A is stored. uplo =
CUBLAS_FILL_MODE_LOWER: Lower triangle of A
is stored. uplo = CUBLAS_FILL_MODE_UPPER:
Upper triangle of A is stored.

n host input Number of rows (or columns) of matrix A.

dataTypeA host in Data type of array A.

A device in∕out Array of dimension lda * n with lda
is not less than max(1,n). If uplo =
CUBLAS_FILL_MODE_UPPER, the leading n-
by-n upper triangular part of A contains the
upper triangular part of the matrix A. If uplo
= CUBLAS_FILL_MODE_LOWER, the leading
n-by-n lower triangular part of A contains
the lower triangular part of the matrix A. On
exit, if jobz = CUSOLVER_EIG_MODE_VECTOR,
and info = 0, A contains the orthonormal
eigenvectors of the matrix A. If jobz = CU-
SOLVER_EIG_MODE_NOVECTOR, the contents of
A are destroyed.

lda host input Leading dimension of two-dimensional array
used to store matrix A.

dataTypeW host in Data type of array W.

W device output A real array of dimension n. The eigenvalue val-
ues of A, in ascending order, i.e., sorted so that
W(i) <= W(i+1).

computeType host in Data type of computation.

bufferOnDe-
vice

device in∕out Device workspace. Array of type void of size
workspaceInBytesOnDevice bytes.

workspaceIn-
BytesOnDe-
vice

host input Size in bytes of bufferOnDevice, returned by
cusolverDnXsyevd_bufferSize.

bufferOn-
Host

host in∕out Host workspace. Array of type void of size
workspaceInBytesOnHost bytes.

continues on next page

8.4. cuSolverDN: dense LAPACK Function Reference 249

cuSOLVER, Release 12.8

Table 61 – continued from previous page

Parameter Memory In/out Meaning

workspaceIn-
BytesOnHost

host input Size in bytes of bufferOnHost, returned by cu-
solverDnXsyevd_bufferSize.

info device output If info = 0, the operation is successful. If info
= -i, the i-th parameter is wrong (not counting
handle). If info = i (> 0), info indicates i off-
diagonal elements of an intermediate tridiagonal
form did not converge to zero.

The generic API has three different types, dataTypeA is data type of the matrix A, dataTypeW is data
type of the matrix W and computeType is compute type of the operation. cusolverDnXsyevd only
supports the following four combinations.

Valid combination of data type and compute type

DataTypeA DataTypeW ComputeType Meaning

CUDA_R_32F CUDA_R_32F CUDA_R_32F SSYEVD

CUDA_R_64F CUDA_R_64F CUDA_R_64F DSYEVD

CUDA_C_32F CUDA_R_32F CUDA_C_32F CHEEVD

CUDA_C_64F CUDA_R_64F CUDA_C_64F ZHEEVD

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (n<0, or lda<max(1,n), or jobz is not CU-
SOLVER_EIG_MODE_NOVECTOR or CUSOLVER_EIG_MODE_VECTOR, or uplo is not
CUBLAS_FILL_MODE_LOWER or CUBLAS_FILL_MODE_UPPER).

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.4.5.5 cusolverDnXsyevdx()

The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnXsyevdx_bufferSize(

cusolverDnHandle_t handle,
cusolverDnParams_t params,
cusolverEigMode_t jobz,
cusolverEigRange_t range,
cublasFillMode_t uplo,
int64_t n,

(continues on next page)

250 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

(continued from previous page)

cudaDataType dataTypeA,
const void *A,
int64_t lda,
void *vl,
void *vu,
int64_t il,
int64_t iu,
int64_t *h_meig,
cudaDataType dataTypeW,
const void *W,
cudaDataType computeType,
size_t *workspaceInBytesOnDevice,
size_t *workspaceInBytesOnHost)

The following routine:

cusolverStatus_t cusolverDnXsyevdx(
cusolverDnHandle_t handle,
cusolverDnParams_t params,
cusolverEigMode_t jobz,
cusolverEigRange_t range,
cublasFillMode_t uplo,
int64_t n,
cudaDataType dataTypeA,
void *A,
int64_t lda,
void * vl,
void * vu,
int64_t il,
int64_t iu,
int64_t *meig64,
cudaDataType dataTypeW,
void *W,
cudaDataType computeType,
void *bufferOnDevice,
size_t workspaceInBytesOnDevice,
void *bufferOnHost,
size_t workspaceInBytesOnHost,
int *info)

computes all or selection of the eigenvalues and optionally eigenvectors of a symmetric (Hermitian)
n× nmatrix A using the generic API interface. The standard symmetric eigenvalue problem is

A ∗ V = V ∗ Λ

where Λ is a real n×h_meig diagonal matrix. V is an n×h_meig unitary matrix. h_meig is the number
of eigenvalues/eigenvectors computed by the routine, h_meig is equal to n when the whole spectrum
(e.g., range = CUSOLVER_EIG_RANGE_ALL) is requested. The diagonal elements of Λ are the eigenval-
ues of A in ascending order.

The user has to provide device and host working spaces which are pointed by input parameters
bufferOnDevice and bufferOnHost. The input parameters workspaceInBytesOnDevice (and
workspaceInBytesOnHost) is size in bytes of the device (and host) working space, and it is returned
by cusolverDnXsyevdx_bufferSize().

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting handle).
If info = i (greater than zero), i off-diagonal elements of an intermediate tridiagonal form did not
converge to zero.

8.4. cuSolverDN: dense LAPACK Function Reference 251

cuSOLVER, Release 12.8

if jobz = CUSOLVER_EIG_MODE_VECTOR, A contains the orthonormal eigenvectors of the matrix A.
The eigenvectors are computed by a divide and conquer algorithm.

Currently, cusolverDnXsyevdx supports only the default algorithm.

Please visit cuSOLVER Library Samples - Xsyevdx for a code example.

Algorithms supported by cusolverDnXsyevdx

CUSOLVER_ALG_0 or NULL Default algorithm.

List of input arguments for cusolverDnXsyevdx_bufferSize and cusolverDnXsyevdx:

Table 62: API of cusolverDnXsyevdx

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

params host input Structure with information collected by cu-
solverDnSetAdvOptions.

jobz host input Specifies options to either compute
eigenvalue only or compute eigen-pair:
jobz = CUSOLVER_EIG_MODE_NOVECTOR
: Compute eigenvalues only; jobz = CU-
SOLVER_EIG_MODE_VECTOR : Compute eigen-
values and eigenvectors.

range host input Specifies options to which selection of
eigenvalues and optionally eigenvectors
that need to be computed: range = CU-
SOLVER_EIG_RANGE_ALL : all eigenval-
ues/eigenvectors will be found, will becomes
the classical syevd/heevd routine; range
= CUSOLVER_EIG_RANGE_V : all eigenval-
ues/eigenvectors in the half-open interval (vl,vu]
will be found; range = CUSOLVER_EIG_RANGE_I
: the il-th through iu-th eigenvalues/eigenvectors
will be found;

uplo host input Specifies which part of A is stored. uplo =
CUBLAS_FILL_MODE_LOWER: Lower triangle of A
is stored. uplo = CUBLAS_FILL_MODE_UPPER:
Upper triangle of A is stored.

n host input Number of rows (or columns) of matrix A.

dataTypeA host in Data type of array A.

continues on next page

252 Chapter 8. Using the CUSOLVER API

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/Xsyevdx

cuSOLVER, Release 12.8

Table 62 – continued from previous page

Parameter Memory In/out Meaning

A device in∕out Array of dimension lda * n with lda
is not less than max(1,n). If uplo =
CUBLAS_FILL_MODE_UPPER, the leading n-
by-n upper triangular part of A contains the
upper triangular part of the matrix A. If uplo
= CUBLAS_FILL_MODE_LOWER, the leading
n-by-n lower triangular part of A contains
the lower triangular part of the matrix A. On
exit, if jobz = CUSOLVER_EIG_MODE_VECTOR,
and info = 0, A contains the orthonormal
eigenvectors of the matrix A. If jobz = CU-
SOLVER_EIG_MODE_NOVECTOR, the contents of
A are destroyed.

lda host input Leading dimension of two-dimensional ar-
ray used to store matrix A.lda is not less
thanmax(1,n).

vl,vu host input If range = CUSOLVER_EIG_RANGE_V, the lower
and upper bounds of the interval to be searched
for eigenvalues. vl > vu. Not referenced if range
= CUSOLVER_EIG_RANGE_ALL or range = CU-
SOLVER_EIG_RANGE_I. Note that, if eigenvalues
are very close to each other, it is well known that
two different eigenvalues routines might find
slightly different number of eigenvalues inside
the same interval. This is due to the fact that
different eigenvalue algorithms, or even same al-
gorithm but different run might find eigenvalues
within some rounding error close to the machine
precision. Thus, if the user want to be sure not
to miss any eigenvalue within the interval bound,
we suggest that, the user subtract/add epsilon
(machine precision) to the interval bound such as
(vl=vl-eps, vu=vu+eps]. this suggestion is valid
for any selective routine from cuSolver or LA-
PACK.

il,iu host input Integer. If range = CUSOLVER_EIG_RANGE_I,
the indices (in ascending order) of the smallest
and largest eigenvalues to be returned. 1 <= il <=
iu <= n, if n > 0; il = 1 and iu = 0 if n = 0. Not ref-
erenced if range = CUSOLVER_EIG_RANGE_ALL
or range = CUSOLVER_EIG_RANGE_V.

h_meig host output Integer. The total number of eigenvalues
found. 0 <= h_meig <= n. If range = CU-
SOLVER_EIG_RANGE_ALL, h_meig = n, and if
range = CUSOLVER_EIG_RANGE_I, h_meig = iu-
il+1.

continues on next page

8.4. cuSolverDN: dense LAPACK Function Reference 253

cuSOLVER, Release 12.8

Table 62 – continued from previous page

Parameter Memory In/out Meaning

dataTypeW host in Data type of array W.

W device output A real array of dimension n. The eigenvalue val-
ues of A, in ascending order, i.e., sorted so that
W(i) <= W(i+1).

computeType host in Data type of computation.

bufferOnDe-
vice

device in∕out Device workspace. Array of type void of size
workspaceInBytesOnDevice bytes.

workspaceIn-
BytesOnDe-
vice

host input Size in bytes of bufferOnDevice, returned by
cusolverDnXsyevdx_bufferSize.

bufferOn-
Host

host in∕out Host workspace. Array of type void of size
workspaceInBytesOnHost bytes.

workspaceIn-
BytesOnHost

host input Size in bytes of bufferOnHost, returned by cu-
solverDnXsyevdx_bufferSize.

info device output If info = 0, the operation is successful. if info
= -i, the i-th parameter is wrong (not counting
handle). If info = i (> 0), info indicates i off-
diagonal elements of an intermediate tridiagonal
form did not converge to zero.

The generic API has three different types, dataTypeA is data type of the matrix A, dataTypeW is data
type of the matrix W and computeType is compute type of the operation. cusolverDnXsyevdx only
supports the following four combinations:

Valid combination of data type and compute type

DataTypeA DataTypeW ComputeType Meaning

CUDA_R_32F CUDA_R_32F CUDA_R_32F SSYEVDX

CUDA_R_64F CUDA_R_64F CUDA_R_64F DSYEVDX

CUDA_C_32F CUDA_R_32F CUDA_C_32F CHEEVDX

CUDA_C_64F CUDA_R_64F CUDA_C_64F ZHEEVDX

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (n<0, or lda<max(1,n), or jobz is not CU-
SOLVER_EIG_MODE_NOVECTOR or CUSOLVER_EIG_MODE_VECTOR, or range is not CU-
SOLVER_EIG_RANGE_ALL or CUSOLVER_EIG_RANGE_V or CUSOLVER_EIG_RANGE_I, or uplo is
not CUBLAS_FILL_MODE_LOWER or CUBLAS_FILL_MODE_UPPER).

254 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.4.5.6 cusolverDnXsyevBatched()

The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnXsyevBatched_bufferSize(

cusolverDnHandle_t handle,
cusolverDnParams_t params,
cusolverEigMode_t jobz,
cublasFillMode_t uplo,
int64_t n,
cudaDataType dataTypeA,
const void *A,
int64_t lda,
cudaDataType dataTypeW,
const void *W,
cudaDataType computeType,
size_t *workspaceInBytesOnDevice,
size_t *workspaceInBytesOnHost,
int64_t batchSize)

The following routine:

cusolverStatus_t
cusolverDnXsyevBatched(

cusolverDnHandle_t handle,
cusolverDnParams_t params,
cusolverEigMode_t jobz,
cublasFillMode_t uplo,
int64_t n,
cudaDataType dataTypeA,
void *A,
int64_t lda,
cudaDataType dataTypeW,
void *W,
cudaDataType computeType,
void *bufferOnDevice,
size_t workspaceInBytesOnDevice,
void *bufferOnHost,
size_t workspaceInBytesOnHost,
int *info,
int64_t batchSize)

computes eigenvalues and eigenvectors of a sequence of symmetric (Hermitian) n× nmatrices

Aj ∗ Vj = Vj ∗ Λj

where Λj is a real n× n diagonal matrix. Vj is an n× n unitary matrix. The diagonal elements of Λj are
the eigenvalues of Aj in ascending order.

syevBatched performs an eigendecomposition on eachmatrix. It requires that all matrices are of the
same size n and are packed in a contiguous way,

A =
(
A0 A1 · · ·

)
8.4. cuSolverDN: dense LAPACK Function Reference 255

cuSOLVER, Release 12.8

Eachmatrix is column-major with leading dimension lda, so the formula for randomaccess isAk (i, j) =
A[i + lda ∗ j + lda ∗ n ∗ k] .

The parameter W also contains the eigenvalues of each matrix in a contiguous way,

W =
(
W0 W1 · · ·

)
The formula for random access of W isWk (j) = W [j + n ∗ k] .

The user has to provide device and host working space which are pointed to by the input parame-
ters bufferOnDevice and bufferOnHost. The input parameters workspaceInBytesOnDevice and
workspaceInBytesOnHost denote the size in bytes of the device and host working space, and re-
turned by cusolverDnXsyevBatched_bufferSize().

The output parameter info is an integer array of size batchSize. If the function returns CU-
SOLVER_STATUS_INVALID_VALUE, the first element info[0] = -i (less than zero) indicates the
i-th parameter is wrong (not counting handle). Otherwise, if info[i] > 0, syevBatched does not
converge on the i-thmatrix.

if jobz = CUSOLVER_EIG_MODE_VECTOR,Aj contains the orthonormal eigenvectors of the matrixAj .

Currently, cusolverDnXsyevBatched supports only the default algorithm.

Algorithms supported by cusolverDnXsyevBatched

CUSOLVER_ALG_0 or NULL Default algorithm.

List of input arguments for cusolverDnXsyevBatched_bufferSize and cusolverDnXsyev-
Batched:

Table 63: API of cusolverDnXsyevBatched

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

params host input Structure with information collected by cu-
solverDnSetAdvOptions.

jobz host input Specifies options to either compute
eigenvalue only or compute eigen-pair:
jobz = CUSOLVER_EIG_MODE_NOVECTOR
: Compute eigenvalues only; jobz = CU-
SOLVER_EIG_MODE_VECTOR : Compute eigen-
values and eigenvectors.

uplo host input Specifies which part of A is stored. uplo =
CUBLAS_FILL_MODE_LOWER: Lower triangle of A
is stored. uplo = CUBLAS_FILL_MODE_UPPER:
Upper triangle of A is stored.

n host input Number of rows (or columns) of matrix A.

dataTypeA host in Data type of array A.

continues on next page

256 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

Table 63 – continued from previous page

Parameter Memory In/out Meaning

A device in∕out Array of dimension lda * n * batch-
Size with lda is not less than max(1,n). If
uplo = CUBLAS_FILL_MODE_UPPER, the lead-
ing n-by-n upper triangular part of Aj contains
the upper triangular part of the matrix Aj. If
uplo = CUBLAS_FILL_MODE_LOWER, the lead-
ing n-by-n lower triangular part of Aj contains
the lower triangular part of the matrix Aj. On
exit, if jobz = CUSOLVER_EIG_MODE_VECTOR,
and info[j] = 0, Aj contains the orthonormal
eigenvectors of the matrix Aj. If jobz = CU-
SOLVER_EIG_MODE_NOVECTOR, the contents of
Aj are destroyed.

lda host input Leading dimension of two-dimensional ar-
ray used to store matrix Aj.lda is not less
thanmax(1,n).

dataTypeW host in Data type of array W.

W device output A real array of dimension n * batchSize. The
eigenvalue values of Aj, in ascending order, i.e.,
sorted so that Wj(i) <= Wj(i+1).

computeType host in Data type of computation.

bufferOnDe-
vice

device in∕out Device workspace. Array of type void of size
workspaceInBytesOnDevice bytes.

workspaceIn-
BytesOnDe-
vice

host input Size in bytes of bufferOnDevice, returned by
cusolverDnXsyevBatched_bufferSize.

bufferOn-
Host

host in∕out Host workspace. Array of type void of size
workspaceInBytesOnHost bytes.

workspaceIn-
BytesOnHost

host input Size in bytes of bufferOnHost, returned by cu-
solverDnXsyevBatched_bufferSize.

info device output An integer array of dimension batchSize. If CU-
SOLVER_STATUS_INVALID_VALUE is returned,
info[0] = -i (less than zero) indicates i-th
parameter is wrong (not counting handle). Oth-
erwise, if info[i] = 0, the operation is suc-
cessful. If info[i] > 0, syevBatched does not
converge on the i-thmatrix.

batchSize host input Number of matrices. batchSize is not less than
1.

The generic API has three different types, dataTypeA is data type of the matrix A, dataTypeW is data
type of the array W and computeType is compute type of the operation. cusolverDnXsyevBatched
only supports the following four combinations:

Valid combination of data type and compute type

8.4. cuSolverDN: dense LAPACK Function Reference 257

cuSOLVER, Release 12.8

DataTypeA DataTypeW ComputeType Meaning

CUDA_R_32F CUDA_R_32F CUDA_R_32F SSYEVBATCHED

CUDA_R_64F CUDA_R_64F CUDA_R_64F DSYEVBATCHED

CUDA_C_32F CUDA_R_32F CUDA_C_32F CSYEVBATCHED

CUDA_C_64F CUDA_R_64F CUDA_C_64F ZSYEVBATCHED

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (n<0, or lda<max(1,n), or jobz is not CU-
SOLVER_EIG_MODE_NOVECTOR or uplo is not CUBLAS_FILL_MODE_LOWER or
CUBLAS_FILL_MODE_UPPER or batchSize<0).

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.4.5.7 cusolverDnXgeev()

The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnXgeev_bufferSize(

cusolverDnHandle_t handle,
cusolverDnParams_t params,
cusolverEigMode_t jobvl,
cusolverEigMode_t jobvr,
int64_t n,
cudaDataType dataTypeA,
const void *A,
int64_t lda,
cudaDataType dataTypeW,
const void *W,
cudaDataType dataTypeVL,
const void *VL,
int64_t ldvl,
cudaDataType dataTypeVR,
const void *VR,
int64_t ldvr,
cudaDataType computeType,
size_t *workspaceInBytesOnDevice,
size_t *workspaceInBytesOnHost)

The following routine:

cusolverStatus_t
cusolverDnXgeev(

cusolverDnHandle_t handle,
(continues on next page)

258 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

(continued from previous page)

cusolverDnParams_t params,
cusolverEigMode_t jobvl,
cusolverEigMode_t jobvr,
int64_t n,
cudaDataType dataTypeA,
void *A,
int64_t lda,
cudaDataType dataTypeW,
void *W,
cudaDataType dataTypeVL,
void *VL,
int64_t ldvl,
cudaDataType dataTypeVR,
void *VR,
int64_t ldvr,
cudaDataType computeType,
void *bufferOnDevice,
size_t workspaceInBytesOnDevice,
void *bufferOnHost,
size_t workspaceInBytesOnHost,
int *info)

computes for an n-by-n real non-symmetric or complex non-Hermitian matrix A the eigenvalues and,
optionally, the left and/or right eigenvectors. The right eigenvector v(j) of A satisfies

A ∗ v(j) = w(j) ∗ v(j)

where w(j) is its eigenvalue. The left eigenvalue u(j) of A satisfies

u(j)H ∗A = w(j) ∗ v(j)H

where u(j)H denotes the conjugate-transpose of u(j).

The computed eigenvectors are normalized to have Euclidean norm equal to 1 and largest component
real.

If A is real-valued, there are two options to return the eigenvalues in W. The first options sets all data
types to real-valued types. Then W holds 2*n entries. The first n entries hold the real parts and the last
n entries hold the imaginary parts. The LAPACK interfacewith separate arrays for the real parts WR and
the imaginary parts WI can be recovered by settings pointers WR = W, WI = W+n. The second option
uses a complex data type for W. Then W is n entries long; each real eigenvalue is stored as a complex
number and for each complex conjugate pair, both eigenvalues are returned. The computation is still
executed fully in real arithmetic.

The user has to provide device and host working space which are pointed to by the input parame-
ters bufferOnDevice and bufferOnHost. The input parameters workspaceInBytesOnDevice and
workspaceInBytesOnHost denote the size in bytes of the device and host working space, and re-
turned by cusolverDnXgeev_bufferSize().

If the output parameter info = -i (less than zero), the i-th parameter is wrong (not counting
handle). If info = 0, the QR algorithm converged and W contains the computed eigenvalues of A
and, if requested, the corresponding left and/or right eigenvectors have been computed. If info = i
(greater than zero), the QR algorithm failed to compute all the eigenvalues and no eigenvectors have
been computed. The elements i+1:n of W contain eigenvalues which have converged.

Remark 1: geev only supports the computation of right eigenvectors. So, jobvl = CU-
SOLVER_EIG_MODE_NOVECTORmust be set.

8.4. cuSolverDN: dense LAPACK Function Reference 259

cuSOLVER, Release 12.8

Remark 2: geev uses balancing to improve the conditioning of the eigenvalues and eigenvectors.

Remark 3: geev is a hybrid CPU-GPU algorithm. Best performance is attained with pinned host mem-
ory.

Remark 4: geev does not support any in- or output matrix with n*ld >= 2^31.

Currently, cusolverDnXgeev supports only the default algorithm.

Please visit cuSOLVER Library Samples - Xgeev for a code example.

Table of algorithms supported by cusolverDnXgeev

CUSOLVER_ALG_0 or NULL Default algorithm.

List of input arguments for cusolverDnXgeev_bufferSize and cusolverDnXgeev:

Table 64: API of cusolverDnXgeev

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverDN library context.

params host input Structure with information collected by cu-
solverDnSetAdvOptions.

jobvl host input Specifies whether or not to com-
pute left eigenvectors. jobvl = CU-
SOLVER_EIG_MODE_NOVECTOR: Do not com-
pute left eigenvectors of A; jobvl = CU-
SOLVER_EIG_MODE_VECTOR: Compute left
eigenvectors of A.

jobvr host input Specifies whether or not to com-
pute right eigenvectors. jobvl = CU-
SOLVER_EIG_MODE_NOVECTOR: Do not com-
pute left eigenvectors of A; jobvl = CU-
SOLVER_EIG_MODE_VECTOR: Compute left
eigenvectors of A.

n host input Number of rows (or columns) of matrix A.

dataTypeA host in Data type of array A.

A device in∕out Array of dimension lda * n with lda is not less
than max(1,n). On entry, the n-by-n matrix A.
On exit, A has been overwritten.

lda host input Leading dimension of two-dimensional array
used to store matrix A.

dataTypeW host in Data type of array W.

continues on next page

260 Chapter 8. Using the CUSOLVER API

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/Xgeev

cuSOLVER, Release 12.8

Table 64 – continued from previous page

Parameter Memory In/out Meaning

W device output Array holding the computed eigenvalues of A.
Its length is 2*n if dataTypeA = CUDA_R_32F
and dataTypeW = CUDA_R_32F or dataTypeA =
CUDA_R_64F and dataTypeW = CUDA_R_64F and
the first n entries of W hold the real parts and the
last n entries of W hold the imaginary parts of the
eigenvalues. Otherwise, the length is n.

dataTypeVL host in Data type of array VL.

VL device output Array of dimension ldvl * n. If jobvl =
CUSOLVER_EIG_MODE_VECTOR, the left eigen-
vectors u(j) are stored one after another in
the columns of VL, in the same order as their
eigenvalues. If datatypeVL is complex or the
j-th eigenvalue is real, then u(j) = VL(:,
j), the j-th column of VL. If dataTypeVL is
real and the j-th and (j+1)-st eigenvalues
form a complex conjugate pair, then u(j) =
VL(:,j) + i*VL(:,j+1) and u(j+1) =
VL(:,j) - i*VL(:,j+1). If jobvl = CU-
SOLVER_EIG_MODE_NOVECTOR, VL is not refer-
enced.

ldvl host input Leading dimension of two-dimensional array
used to storematrixVLwithldvl >= 1. Ifjobvl
= CUSOLVER_EIG_MODE_VECTOR, ldvl >= n.

dataTypeVR host in Data type of array VR.

VR device output Array of dimension ldvr * n. If jobvr =
CUSOLVER_EIG_MODE_VECTOR, the right eigen-
vectors v(j) are stored one after another in
the columns of VR, in the same order as their
eigenvalues. If datatypeVR is complex or the
j-th eigenvalue is real, then v(j) = VR(:,
j), the j-th column of VR. If dataTypeVR is
real and the j-th and (j+1)-st eigenvalues
form a complex conjugate pair, then v(j) =
VR(:,j) + i*VR(:,j+1) and v(j+1) =
VR(:,j) - i*VR(:,j+1). If jobvr = CU-
SOLVER_EIG_MODE_NOVECTOR, VR is not refer-
enced.

ldvr host input Leading dimension of two-dimensional array
used to storematrixVRwithldvr >= 1. Ifjobvr
= CUSOLVER_EIG_MODE_VECTOR, ldvr >= n.

computeType host in Data type of computation.

bufferOnDe-
vice

device in∕out Device workspace. Array of type void of size
workspaceInBytesOnDevice bytes.

continues on next page

8.4. cuSolverDN: dense LAPACK Function Reference 261

cuSOLVER, Release 12.8

Table 64 – continued from previous page

Parameter Memory In/out Meaning

workspaceIn-
BytesOnDe-
vice

host input Size in bytes of bufferOnDevice, returned by
cusolverDnXgeev_bufferSize.

bufferOn-
Host

host in∕out Host workspace. Array of type void of size
workspaceInBytesOnHost bytes.

workspaceIn-
BytesOnHost

host input Size in bytes of bufferOnHost, returned by cu-
solverDnXgeev_bufferSize.

info device output If info = 0, the operation is successful. If info
= -i, the i-th parameter is wrong (not count-
ing handle). If info = i (greater than zero), the
QR algorithm failed to compute all the eigenval-
ues and no eigenvectors have been computed;
elements i+1:n of W contain eigenvalues which
have converged.

The generic API has five different types, dataTypeA is the data type of the matrix A, dataTypeW is
the data type of the array W, dataTypeVL is the data type of the matrix VL, dataTypeVR is the data
type of the matrix VR and computeType is compute type of the operation. cusolverDnXgeev only
supports the following four combinations:

Valid combination of data type and compute type

DataTypeA DataTypeW DataTypeVL DataTypeVR Compute-
Type

Meaning

CUDA_R_32F CUDA_R_32F CUDA_R_32F CUDA_R_32F CUDA_R_32F SGEEV

CUDA_R_32F CUDA_C_32F CUDA_R_32F CUDA_R_32F CUDA_R_32F 32F mixed real-
complex

CUDA_R_64F CUDA_R_64F CUDA_R_64F CUDA_R_64F CUDA_R_64F DGEEV

CUDA_R_64F CUDA_C_64F CUDA_R_64F CUDA_R_64F CUDA_R_64F 64F mixed real-
complex

CUDA_C_32F CUDA_C_32F CUDA_C_32F CUDA_C_32F CUDA_C_32F CGEEV

CUDA_C_64F CUDA_C_64F CUDA_C_64F CUDA_C_64F CUDA_C_64F ZGEEV

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (jobvl is not CUSOLVER_EIG_MODE_NOVECTOR or CU-
SOLVER_EIG_MODE_VECTOR, or jobvr is not CUSOLVER_EIG_MODE_NOVECTOR or CU-
SOLVER_EIG_MODE_VECTOR, n<0, or lda < max(1,n), or ldvl < n if jobvl is CU-
SOLVER_EIG_MODE_VECTOR, or ldvr < n if jobvr is CUSOLVER_EIG_MODE_VECTOR).

262 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.5. cuSolverSP: sparse LAPACK Function
Reference

This section describes the API of cuSolverSP, which provides a subset of LAPACK functions for sparse
matrices in CSR or CSC format.

8.5.1. Helper Function Reference

8.5.1.1 cusolverSpCreate()

cusolverStatus_t
cusolverSpCreate(cusolverSpHandle_t *handle)

This function initializes the cuSolverSP library and creates a handle on the cuSolver context. It must be
called before any other cuSolverSP API function is invoked. It allocates hardware resources necessary
for accessing the GPU.

Output

handle The pointer to the handle to the cuSolverSP context.

Status Returned

CUSOLVER_STATUS_SUCCESS
The initialization succeeded.

CUSOLVER_STATUS_NOT_INITIALIZED
The CUDA Runtime initialization failed.

CUSOLVER_STATUS_ALLOC_FAILED
The resources could not be allocated.

CUSOLVER_STATUS_ARCH_MISMATCH
The device only supports compute capability 5.0 and above.

8.5.1.2 cusolverSpDestroy()

cusolverStatus_t
cusolverSpDestroy(cusolverSpHandle_t handle)

This function releases CPU-side resources used by the cuSolverSP library.

Input

handle The handle to the cuSolverSP context.

8.5. cuSolverSP: sparse LAPACK Function Reference 263

cuSOLVER, Release 12.8

Status Returned

CUSOLVER_STATUS_SUCCESS
The shutdown succeeded.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

8.5.1.3 cusolverSpSetStream()

cusolverStatus_t
cusolverSpSetStream(cusolverSpHandle_t handle, cudaStream_t streamId)

This function sets the stream to be used by the cuSolverSP library to execute its routines.

Input

handle The handle to the cuSolverSP context.

streamId The stream to be used by the library.

Status Returned

CUSOLVER_STATUS_SUCCESS
The stream was set successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

8.5.1.4 cusolverSpXcsrissym()

cusolverStatus_t
cusolverSpXcsrissymHost(cusolverSpHandle_t handle,

int m,
int nnzA,
const cusparseMatDescr_t descrA,
const int *csrRowPtrA,
const int *csrEndPtrA,
const int *csrColIndA,
int *issym);

This function checks if A has symmetric pattern or not. The output parameter issym reports 1 if A is
symmetric; otherwise, it reports 0.

ThematrixA is anm×m sparsematrix that is defined inCSR storage format by the four arrayscsrValA,
csrRowPtrA, csrEndPtrA and csrColIndA.

The supported matrix type is CUSPARSE_MATRIX_TYPE_GENERAL.

The csrlsvlu and csrlsvqr do not accept non-general matrix. the user has to extend the matrix
into its missing upper/lower part, otherwise the result is not expected. The user can use csrissym to
check if the matrix has symmetric pattern or not.

Remark 1: only CPU path is provided.

264 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

Remark 2: the user has to check returned status to get valid information. The function converts A to
CSC format and compare CSR and CSC format. If the CSC failed because of insufficient resources,
issym is undefined, and this state can only be detected by the return status code.

Input

Parameter MemorySpace Description

handle host Handle to the cuSolverSP li-
brary context.

m host Number of rows and columns of
matrix A.

nnzA host Number of nonzeros of matrix
A. It is the size of csrValA and
csrColIndA.

descrA host The descriptor of matrix A. The
supported matrix type is CUS-
PARSE_MATRIX_TYPE_GENERAL.
Also, the supported in-
dex bases are CUS-
PARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrRowPtrA host Integer array of m elements that
contains the start of every row.

csrEndPtrA host Integer array of m elements that
contains the end of the last row
plus one.

csrColIndA host Integer array of nnzAcolumn in-
dices of the nonzero elements
of matrix A.

Output

Parameter MemorySpace Description

issym host 1 if A is symmetric; 0 otherwise.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED
The resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (m,nnzA<=0), base index is not 0 or 1.

CUSOLVER_STATUS_ARCH_MISMATCH
The device only supports compute capability 5.0 and above.

8.5. cuSolverSP: sparse LAPACK Function Reference 265

cuSOLVER, Release 12.8

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED
The matrix type is not supported.

8.5.2. High Level Function Reference

This section describes high level API of cuSolverSP, including linear solver, least-square solver and
eigenvalue solver. The high-level API is designed for ease-of-use, so it allocates any required memory
under the hood automatically. If the host or GPU system memory is not enough, an error is returned.

8.5.2.1 cusolverSp<t>csrlsvlu() [DEPRECATED]

[[DEPRECATED]] This function is deprecated and will be removed in a future major version. Please use
the cuDSS library instead for better performance and support. For the transition, please visit cuDSS
Library Samples for a code example.

cusolverStatus_t
cusolverSpScsrlsvlu[Host](cusolverSpHandle_t handle,

int n,
int nnzA,
const cusparseMatDescr_t descrA,
const float *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
const float *b,
float tol,
int reorder,
float *x,
int *singularity);

cusolverStatus_t
cusolverSpDcsrlsvlu[Host](cusolverSpHandle_t handle,

int n,
int nnzA,
const cusparseMatDescr_t descrA,
const double *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
const double *b,
double tol,
int reorder,
double *x,
int *singularity);

cusolverStatus_t
cusolverSpCcsrlsvlu[Host](cusolverSpHandle_t handle,

int n,
int nnzA,
const cusparseMatDescr_t descrA,
const cuComplex *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,

(continues on next page)

266 Chapter 8. Using the CUSOLVER API

https://developer.nvidia.com/cudss
https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuDSS
https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuDSS

cuSOLVER, Release 12.8

(continued from previous page)

const cuComplex *b,
float tol,
int reorder,
cuComplex *x,
int *singularity);

cusolverStatus_t
cusolverSpZcsrlsvlu[Host](cusolverSpHandle_t handle,

int n,
int nnzA,
const cusparseMatDescr_t descrA,
const cuDoubleComplex *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
const cuDoubleComplex *b,
double tol,
int reorder,
cuDoubleComplex *x,
int *singularity);

This function solves the linear system

A ∗ x = b

where A is an n× n sparse matrix that is defined in CSR storage format by the three arrays csrValA,
csrRowPtrA, and csrColIndA. b is the right-hand-side vector of size n, and x is the solution vector
of size n.

The supported matrix type is CUSPARSE_MATRIX_TYPE_GENERAL. If matrix A is symmetric/Hermitian
and only lower/upper part is used or meaningful, the user has to extend the matrix into its missing
upper/lower part, otherwise the result would be wrong.

The linear system is solved by sparse LU with partial pivoting:

P ∗A = L ∗ U

cusolver library provides three reordering schemes, symrcmsymamd, and csrmetisnd to reduce zero
fill-in which dramatically affects the performance of LU factorization. The input parameter reorder
can enable symrcm (symamd or csrmetisnd) if reorder is 1 (2, or 3), otherwise, no reordering is per-
formed.

If reorder is nonzero, csrlsvlu does

P ∗A ∗QT = L ∗ U

where Q = symrcm(A+AT) .

If A is singular under given tolerance (max(tol,0)), then some diagonal elements of U is zero, i.e.

|U(j, j)| < tol for some j

The output parameter singularity is the smallest index of such j. If A is non-singular, singularity
is -1. The index is base-0, independent of base index of A. For example, if 2nd column of A is the same
as first column, then A is singular and singularity = 1 which means U(1,1)≈0.

Remark 1: csrlsvlu performs traditional LU with partial pivoting, the pivot of k-th column is deter-
mined dynamically based on the k-th column of intermediate matrix. csrlsvlu follows Gilbert and

8.5. cuSolverSP: sparse LAPACK Function Reference 267

cuSOLVER, Release 12.8

Peierls’s algorithm [4] which uses depth-first-search and topological ordering to solve triangular sys-
tem (Davis also describes this algorithm in detail in his book [1]). Since CUDA 10.1, csrlsvlu will
incrementally reallocate the memory to store L and U. This feature can avoid over-estimate size from
QR factorization. In some cases, zero fill-in of QR can be order of magnitude higher than LU.

Remark 2: only CPU (Host) path is provided.

Input

Parameter cusolverSp
MemSpace

*Host
MemSpace

Description

handle host host Handle to the cuSolverSP library context.

n host host Number of rows and columns of matrix A.

nnzA host host Number of nonzeros of matrix A.

descrA host host The descriptor of matrix A. The supported ma-
trix type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are CUS-
PARSE_INDEX_BASE_ZERO and CUS-
PARSE_INDEX_BASE_ONE.

csrValA device host <type> array ofnnzA(=csrRowPtrA(n)−csrRowPtrA(0))
nonzero elements of matrix A.

csrRowPtrA device host Integer array of n+1 elements that contains the
start of every rowand the endof the last rowplus
one.

csrColIndA device host Integer array ofnnzA(=csrRowPtrA(n)−csrRowPtrA(0))
column indices of the nonzero elements of ma-
trix A.

b device host Right hand side vector of size n.

tol host host Tolerance to decide if singular or not.

reorder host host No ordering if reorder=0. Otherwise, symrcm,
symamd, or csrmetisnd is used to reduce zero
fill-in.

Output

Parameter cusolverSp
MemSpace

*Host
MemSpace

Description

x device host Solution vector of size n, x = inv(A)*b.

singu-
larity

host host -1 if A is invertible. Otherwise, first index j such
that U(j,j)≈0

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

268 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

CUSOLVER_STATUS_ALLOC_FAILED
The resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (n,nnzA<=0, base index is not 0 or 1, reorder is not 0,1,2,3).

CUSOLVER_STATUS_ARCH_MISMATCH
The device only supports compute capability 5.0 and above.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED
The matrix type is not supported.

8.5.2.2 cusolverSp<t>csrlsvqr()

cusolverStatus_t
cusolverSpScsrlsvqr[Host](cusolverSpHandle_t handle,

int m,
int nnz,
const cusparseMatDescr_t descrA,
const float *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
const float *b,
float tol,
int reorder,
float *x,
int *singularity);

cusolverStatus_t
cusolverSpDcsrlsvqr[Host](cusolverSpHandle_t handle,

int m,
int nnz,
const cusparseMatDescr_t descrA,
const double *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
const double *b,
double tol,
int reorder,
double *x,
int *singularity);

cusolverStatus_t
cusolverSpCcsrlsvqr[Host](cusolverSpHandle_t handle,

int m,
int nnz,
const cusparseMatDescr_t descrA,
const cuComplex *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
const cuComplex *b,
float tol,
int reorder,
cuComplex *x,

(continues on next page)

8.5. cuSolverSP: sparse LAPACK Function Reference 269

cuSOLVER, Release 12.8

(continued from previous page)

int *singularity);

cusolverStatus_t
cusolverSpZcsrlsvqr[Host](cusolverSpHandle_t handle,

int m,
int nnz,
const cusparseMatDescr_t descrA,
const cuDoubleComplex *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
const cuDoubleComplex *b,
double tol,
int reorder,
cuDoubleComplex *x,
int *singularity);

This function solves the linear system

A ∗ x = b

A is anm×m sparse matrix that is defined in CSR storage format by the three arrays csrValA, csr-
RowPtrA, and csrColIndA. b is the right-hand-side vector of size m, and x is the solution vector of
size m.

The supported matrix type is CUSPARSE_MATRIX_TYPE_GENERAL. If matrix A is symmetric/Hermitian
and only lower/upper part is used or meaningful, the user has to extend the matrix into its missing
upper/lower part, otherwise the result would be wrong.

The linear system is solved by sparse QR factorization,

A = Q ∗R

If A is singular under given tolerance (max(tol,0)), then some diagonal elements of R is zero, i.e.

|R(j, j)| < tol for some j

The output parameter singularity is the smallest index of such j. If A is non-singular, singularity
is -1. The singularity is base-0, independent of base index of A. For example, if 2nd column of A is
the same as first column, then A is singular and singularity = 1 which means R(1,1)≈0.

cusolver library provides three reordering schemes, symrcmsymamd, and csrmetisnd to reduce zero
fill-in which dramatically affects the performance of QR factorization. The input parameter reorder
can enable symrcm (symamd or csrmetisnd) if reorder is 1 (2, or 3), otherwise, no reordering is per-
formed.

Input

Parameter cusolverSp
MemSpace

*Host
MemSpace

Description

handle host host Handle to the cuSolverSP library context.

m host host Number of rows and columns of matrix A.

nnz host host Number of nonzeros of matrix A.

continues on next page

270 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

Table 66 – continued from previous page

Parameter cusolverSp
MemSpace

*Host
MemSpace

Description

descrA host host The descriptor of matrix A. The supported ma-
trix type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are CUS-
PARSE_INDEX_BASE_ZERO and CUS-
PARSE_INDEX_BASE_ONE.

csrValA device host <type> array ofnnz(=csrRowPtrA(m)−csrRowPtrA(0))
nonzero elements of matrix A.

csrRowPtrA device host Integer array of m+1 elements that contains the
start of every rowand the endof the last rowplus
one.

csrColIndA device host Integer array ofnnz(=csrRowPtrA(m)−csrRowPtrA(0))
column indices of the nonzero elements of ma-
trix A.

b device host Right hand side vector of size m.

tol host host Tolerance to decide if singular or not.

reorder host host No ordering if reorder=0. Otherwise, symrcm,
symamd, or csrmetisnd is used to reduce zero
fill-in.

Output

Parameter cusolverSp
MemSpace

*Host
MemSpace

Description

x device host Solution vector of size m, x = inv(A)*b.

singu-
larity

host host -1 if A is invertible. Otherwise, first index j such
that R(j,j)≈0

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED
The resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (m,nnz<=0, base index is not 0 or 1, reorder is not 0,1,2,3)

CUSOLVER_STATUS_ARCH_MISMATCH
The device only supports compute capability 5.0 and above.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.5. cuSolverSP: sparse LAPACK Function Reference 271

cuSOLVER, Release 12.8

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED
The matrix type is not supported.

8.5.2.3 cusolverSp<t>csrlsvchol() [[DEPRECATED]]

[[DEPRECATED]] This function is deprecated and will be removed in a future major version. Please use
the cuDSS library instead for better performance and support. For the transition, please visit cuDSS
Library Samples for a code example.

cusolverStatus_t
cusolverSpScsrlsvchol[Host](cusolverSpHandle_t handle,

int m,
int nnz,
const cusparseMatDescr_t descrA,
const float *csrVal,
const int *csrRowPtr,
const int *csrColInd,
const float *b,
float tol,
int reorder,
float *x,
int *singularity);

cusolverStatus_t
cusolverSpDcsrlsvchol[Host](cusolverSpHandle_t handle,

int m,
int nnz,
const cusparseMatDescr_t descrA,
const double *csrVal,
const int *csrRowPtr,
const int *csrColInd,
const double *b,
double tol,
int reorder,
double *x,
int *singularity);

cusolverStatus_t
cusolverSpCcsrlsvchol[Host](cusolverSpHandle_t handle,

int m,
int nnz,
const cusparseMatDescr_t descrA,
const cuComplex *csrVal,
const int *csrRowPtr,
const int *csrColInd,
const cuComplex *b,
float tol,
int reorder,
cuComplex *x,
int *singularity);

cusolverStatus_t
cusolverSpZcsrlsvchol[Host](cusolverSpHandle_t handle,

int m,
int nnz,
const cusparseMatDescr_t descrA,

(continues on next page)

272 Chapter 8. Using the CUSOLVER API

https://developer.nvidia.com/cudss
https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuDSS
https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuDSS

cuSOLVER, Release 12.8

(continued from previous page)

const cuDoubleComplex *csrVal,
const int *csrRowPtr,
const int *csrColInd,
const cuDoubleComplex *b,
double tol,
int reorder,
cuDoubleComplex *x,
int *singularity);

This function solves the linear system

A ∗ x = b

A is an m ×m symmetric positive definite sparse matrix that is defined in CSR storage format by the
three arrays csrValA, csrRowPtrA, and csrColIndA. b is the right-hand-side vector of size m, and x
is the solution vector of size m.

The supported matrix type is CUSPARSE_MATRIX_TYPE_GENERAL and upper triangular part of A is
ignored (if parameter reorder is zero). In other words, suppose input matrix A is decomposed as
A = L+D+U , where L is lower triangular, D is diagonal and U is upper triangular. The function would
ignore U and regard A as a symmetric matrix with the formula A = L+D+LH . If parameter reorder
is nonzero, the user has to extend A to a full matrix, otherwise the solution would be wrong.

The linear system is solved by sparse Cholesky factorization,

A = G ∗GH

where G is the Cholesky factor, a lower triangular matrix.

The output parameter singularity has two meanings:

▶ If A is not positive definite, there exists some integer k such that A(0:k, 0:k) is not positive
definite. singularity is the minimum of such k.

▶ If A is positive definite but near singular under tolerance (max(tol,0)), i.e. there exists some
integer k such that G

(
k, k

)
<= tol . singularity is the minimum of such k.

singularity is base-0. If A is positive definite and not near singular under tolerance, singularity
is -1. If the user wants to know if A is positive definite or not, tol=0 is enough.

cusolver library provides three reordering schemes, symrcmsymamd, and csrmetisnd to reduce zero
fill-in which dramatically affects the performance of Cholesky factorization. The input parameter re-
order can enable symrcm (symamd or csrmetisnd) if reorder is 1 (2, or 3), otherwise, no reordering
is performed.

Remark 1: the function works for in-place (x and b point to the samememory block) and out-of-place.

Remark 2: the function only works on 32-bit index, if matrix G has large zero fill-in such that number
of nonzeros is bigger than 231 , then CUSOLVER_STATUS_ALLOC_FAILED is returned.

Input

Parameter cusolverSp
MemSpace

*Host
MemSpace

Description

handle host host Handle to the cuSolverSP library context.

continues on next page

8.5. cuSolverSP: sparse LAPACK Function Reference 273

cuSOLVER, Release 12.8

Table 67 – continued from previous page

Parameter cusolverSp
MemSpace

*Host
MemSpace

Description

m host host Number of rows and columns of matrix A.

nnz host host Number of nonzeros of matrix A.

descrA host host The descriptor of matrix A. The supported ma-
trix type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are CUS-
PARSE_INDEX_BASE_ZERO and CUS-
PARSE_INDEX_BASE_ONE.

csrValA device host <type> array ofnnz(=csrRowPtrA(m)−csrRowPtrA(0))
nonzero elements of matrix A.

csrRowPtrA device host Integer array of m+1 elements that contains the
start of every rowand the endof the last rowplus
one.

csrColIndA device host Integer array ofnnz(=csrRowPtrA(m)−csrRowPtrA(0))
column indices of the nonzero elements of ma-
trix A.

b device host Right hand side vector of size m.

tol host host Tolerance to decide singularity.

reorder host host No ordering if reorder=0. Otherwise, symrcm,
symamd, or csrmetisnd is used to reduce zero
fill-in.

Output

Parameter cusolverSp MemSpace *Host MemSpace Description

x device host Solution vector of size m, x = inv(A)*b.

singularity host host -1 if A is symmetric positive definite.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED
The resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (m,nnz<=0, base index is not 0 or 1, reorder is not 0,1,2,3).

CUSOLVER_STATUS_ARCH_MISMATCH
The device only supports compute capability 5.0 and above.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

274 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED
The matrix type is not supported.

8.5.2.4 cusolverSp<t>csrlsqvqr()

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverSpScsrlsqvqr[Host](cusolverSpHandle_t handle,

int m,
int n,
int nnz,
const cusparseMatDescr_t descrA,
const float *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
const float *b,
float tol,
int *rankA,
float *x,
int *p,
float *min_norm);

cusolverStatus_t
cusolverSpDcsrlsqvqr[Host](cusolverSpHandle_t handle,

int m,
int n,
int nnz,
const cusparseMatDescr_t descrA,
const double *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
const double *b,
double tol,
int *rankA,
double *x,
int *p,
double *min_norm);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverSpCcsrlsqvqr[Host](cusolverSpHandle_t handle,

int m,
int n,
int nnz,
const cusparseMatDescr_t descrA,
const cuComplex *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
const cuComplex *b,
float tol,
int *rankA,
cuComplex *x,
int *p,
float *min_norm);

(continues on next page)

8.5. cuSolverSP: sparse LAPACK Function Reference 275

cuSOLVER, Release 12.8

(continued from previous page)

cusolverStatus_t
cusolverSpZcsrlsqvqr[Host](cusolverSpHandle_t handle,

int m,
int n,
int nnz,
const cusparseMatDescr_t descrA,
const cuDoubleComplex *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
const cuDoubleComplex *b,
double tol,
int *rankA,
cuDoubleComplex *x,
int *p,
double *min_norm);

This function solves the following least-square problem:

x = argmin∥A ∗ z − b∥

A is an m × n sparse matrix that is defined in CSR storage format by the three arrays csrValA, csr-
RowPtrA, and csrColIndA. b is the right-hand-side vector of size m, and x is the least-square solution
vector of size n.

The supportedmatrix type is CUSPARSE_MATRIX_TYPE_GENERAL. If A is square, symmetric/Hermitian
and only lower/upper part is used or meaningful, the user has to extend the matrix into its missing
upper/lower part, otherwise the result is wrong.

This function only works if m is greater or equal to n, in other words, A is a tall matrix.

The least-square problem is solved by sparse QR factorization with column pivoting,

A ∗ PT = Q ∗R

If A is of full rank (i.e. all columns of A are linear independent), then matrix P is an identity. Suppose
rank of A is k, less than n, the permutation matrix P reorders columns of A in the following sense:

A ∗ PT =
(
A1 A2

)
=

(
Q1 Q2

)R11 R12

R22


whereR11 and A have the same rank, butR22 is almost zero, i.e. every columnofA2 is linear combination
of A1 .

The input parameter tol decides numerical rank. The absolute value of every entry in R22 is less than
or equal to tolerance=max(tol,0).

The output parameter rankA denotes numerical rank of A.

Suppose y = P ∗ x and c = QH ∗ b , the least square problem can be reformed by

min ∥A ∗ x− b∥ = min ∥R ∗ y − c ∥

or in matrix form R11 R12

R22

y1

y2

 =

c1

c2



276 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

The output parameter min_norm is ∥c2 ∥ , which is minimum value of least-square problem.

If A is not of full rank, above equation does not have a unique solution. The least-square problem is
equivalent to

min ∥y ∥

subject toR11 ∗ y1 +R12 ∗ y2 = c1

Or equivalently another least-square problem

min∥

R11\R12

I

 ∗ y2 −

R11\c1
O

 ∥

The output parameter x is PT ∗ y , the solution of least-square problem.

The output parameter p is a vector of size n. It corresponds to a permutation matrix P. p(i)=jmeans
(P*x)(i) = x(j). If A is of full rank, p=0:n-1.

Remark 1: p is always base 0, independent of base index of A.

Remark 2: only CPU (Host) path is provided.

Input

Pa-
ram-
eter

cu-
solverSp
MemSpace

*Host MemSpace Description

han-
dle

host host Handle to the cuSolver library context.

m host host Number of rows of matrix A.

n host host Number of columns of matrix A.

nnz host host Number of nonzeros of matrix A.

de-
scrA

host host The descriptor of matrix A. The supported matrix type is
CUSPARSE_MATRIX_TYPE_GENERAL. Also, the supported
index bases are CUSPARSE_INDEX_BASE_ZERO and CUS-
PARSE_INDEX_BASE_ONE.

csr-
ValA

de-
vice

host <type> array of nnz(=csrRowPtrA(m)−csrRowPtrA(0))
nonzero elements of matrix A.

csr-
Row-
P-
trA

de-
vice

host Integer array of m+1 elements that contains the start of every
row and the end of the last row plus one.

csr-
Col-
IndA

de-
vice

host Integer array of nnz(=csrRowPtrA(m)−csrRowPtrA(0)) col-
umn indices of the nonzero elements of matrix A.

b de-
vice

host Right hand side vector of size m.

tol host host Tolerance to decide rank of A.

8.5. cuSolverSP: sparse LAPACK Function Reference 277

cuSOLVER, Release 12.8

Output

Pa-
rame-
ter

cusolverSp
MemSpace

*Host
MemSpace

Description

rankA host host Numerical rank of A.

x device host Solution vector of size n, x=pinv(A)*b.

p device host A vector of size n, which represents the permutation ma-
trix P satisfying A*P^T=Q*R.

min_normhost host ||A*x-b||, x=pinv(A)*b.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED
The resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (m,n,nnz<=0), base index is not 0 or 1.

CUSOLVER_STATUS_ARCH_MISMATCH
The device only supports compute capability 5.0 and above.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED
The matrix type is not supported.

8.5.2.5 cusolverSp<t>csreigvsi()

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverSpScsreigvsi[Host](cusolverSpHandle_t handle,

int m,
int nnz,
const cusparseMatDescr_t descrA,
const float *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
float mu0,
const float *x0,
int maxite,
float tol,
float *mu,
float *x);

(continues on next page)

278 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

(continued from previous page)

cusolverStatus_t
cusolverSpDcsreigvsi[Host](cusolverSpHandle_t handle,

int m,
int nnz,
const cusparseMatDescr_t descrA,
const double *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
double mu0,
const double *x0,
int maxite,
double tol,
double *mu,
double *x);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverSpCcsreigvsi[Host](cusolverSpHandle_t handle,

int m,
int nnz,
const cusparseMatDescr_t descrA,
const cuComplex *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
cuComplex mu0,
const cuComplex *x0,
int maxite,
float tol,
cuComplex *mu,
cuComplex *x);

cusolverStatus_t
cusolverSpZcsreigvsi(cusolverSpHandle_t handle,

int m,
int nnz,
const cusparseMatDescr_t descrA,
const cuDoubleComplex *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
cuDoubleComplex mu0,
const cuDoubleComplex *x0,
int maxite,
double tol,
cuDoubleComplex *mu,
cuDoubleComplex *x);

This function solves the simple eigenvalue problem A ∗ x = λ ∗ x by shift-inverse method.

A is anm×m sparse matrix that is defined in CSR storage format by the three arrays csrValA, csr-
RowPtrA, and csrColIndA. The output parameter x is the approximated eigenvector of size m,

The following shift-inverse method corrects eigenpair step-by-step until convergence.

It accepts several parameters:

mu0 is an initial guess of eigenvalue. The shift-inverse method will converge to the eigenvalue mu near-
est mu0 if mu is a singleton. Otherwise, the shift-inverse method may not converge.

8.5. cuSolverSP: sparse LAPACK Function Reference 279

cuSOLVER, Release 12.8

x0 is an initial eigenvector. If the user has no preference, just chose x0 randomly. x0must be nonzero.
It can be non-unit length.

tol is the tolerance to decide convergence. If tol is less than zero, it would be treated as zero.

maxite is maximum number of iterations. It is useful when shift-inverse method does not converge
because the tolerance is too small or the desired eigenvalue is not a singleton.

Shift-Inverse Method

Given an initial guess of eigenvalue �0 and initial vector x0

x(0) = x0 of unit length
for j = 0 : maxite

solve (A− µ0 ∗ I) ∗ xk+1 = xk

normalize xk+1 to unit length

compute approx. eigenvalue µ = xH ∗A ∗ x where x = xk+1

if∥A ∗ xk+1 − µ ∗ xk+1∥ < tolerance, then stop
endfor

The supported matrix type is CUSPARSE_MATRIX_TYPE_GENERAL. If A is symmetric/Hermitian and
only lower/upper part is used or meaningful, the user has to extend the matrix into its missing up-
per/lower part, otherwise the result is wrong.

Remark 1: [cu|h]solver[S|D]csreigvsi only allows mu0 as a real number. This works if A is sym-
metric. Otherwise, the non-real eigenvalue has a conjugate counterpart on the complex plan, and
shift-inverse method would not converge to such eigenvalue even the eigenvalue is a singleton. The
user has to extend A to complex numbers and call [cu|h]solver[C|Z]csreigvsi with mu0 not on
real axis.

Remark 2: the tolerance tol should not be smaller than |mu0|*eps, where eps is machine zero. Other-
wise, shift-inverse may not converge because of small tolerance.

Input

Pa-
ram-
eter

cu-
solverSp
MemSpace

*Host MemSpace Description

han-
dle

host host Handle to the cuSolver library context.

m host host Number of rows and columns of matrix A.

nnz host host Number of nonzeros of matrix A.

de-
scrA

host host The descriptor of matrix A. The supported matrix type is
CUSPARSE_MATRIX_TYPE_GENERAL. Also, the supported
index bases are CUSPARSE_INDEX_BASE_ZERO and CUS-
PARSE_INDEX_BASE_ONE.

csr-
ValA

de-
vice

host <type> array of nnz(=csrRowPtrA(m)−csrRowPtrA(0))
nonzero elements of matrix A.

continues on next page

280 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

Table 69 – continued from previous page

Pa-
ram-
eter

cu-
solverSp
MemSpace

*Host MemSpace Description

csr-
Row-
P-
trA

de-
vice

host Integer array of m+1 elements that contains the start of every
row and the end of the last row plus one.

csr-
Col-
IndA

de-
vice

host Integer array of nnz(=csrRowPtrA(m)−csrRowPtrA(0)) col-
umn indices of the nonzero elements of matrix A.

mu0 host host Initial guess of eigenvalue.

x0 de-
vice

host Initial guess of eigenvector, a vector of size m.

max-
ite

host host Maximum iterations in shift-inverse method.

tol host host Tolerance for convergence.

Output

Parame-
ter

cusolverSp
MemSpace

*Host
MemSpace

Description

mu device host Approximated eigenvalue nearest mu0 under
tolerance.

x device host Approximated eigenvector of size m.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED
The resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (m,nnz<=0), base index is not 0 or 1.

CUSOLVER_STATUS_ARCH_MISMATCH
The device only supports compute capability 5.0 and above.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED
The matrix type is not supported.

8.5. cuSolverSP: sparse LAPACK Function Reference 281

cuSOLVER, Release 12.8

8.5.2.6 cusolverSp<t>csreigs()

cusolverStatus_t
solverspScsreigs[Host](cusolverSpHandle_t handle,

int m,
int nnz,
const cusparseMatDescr_t descrA,
const float *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
cuComplex left_bottom_corner,
cuComplex right_upper_corner,
int *num_eigs);

cusolverStatus_t
cusolverSpDcsreigs[Host](cusolverSpHandle_t handle,

int m,
int nnz,
const cusparseMatDescr_t descrA,
const double *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
cuDoubleComplex left_bottom_corner,
cuDoubleComplex right_upper_corner,
int *num_eigs);

cusolverStatus_t
cusolverSpCcsreigs[Host](cusolverSpHandle_t handle,

int m,
int nnz,
const cusparseMatDescr_t descrA,
const cuComplex *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
cuComplex left_bottom_corner,
cuComplex right_upper_corner,
int *num_eigs);

cusolverStatus_t
cusolverSpZcsreigs[Host](cusolverSpHandle_t handle,

int m,
int nnz,
const cusparseMatDescr_t descrA,
const cuDoubleComplex *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
cuDoubleComplex left_bottom_corner,
cuDoubleComplex right_upper_corner,
int *num_eigs);

This function computes number of algebraic eigenvalues in a given box B by contour integral

number of algebraic eigenvalues in box B =
1

2 ∗ π ∗
√
−1

∮
C

P ′(z)

P (z)
dz

where closed line C is boundary of the box B which is a rectangle specified by two points, one is left
bottom corner (input parameter left_bottom_corner) and the other is right upper corner (input
parameter right_upper_corner). P(z)=det(A - z*I) is the characteristic polynomial of A.

282 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

A is anm×m sparse matrix that is defined in CSR storage format by the three arrays csrValA, csr-
RowPtrA, and csrColIndA.

The output parameter num_eigs is number of algebraic eigenvalues in the box B. This number may
not be accurate due to several reasons:

1. The contour C is close to some eigenvalues or even passes through some eigenvalues.

2. The numerical integration is not accurate due to coarse grid size. The default resolution is 1200
grids along contour C uniformly.

Even though csreigsmay not be accurate, it still can give the user some idea how many eigenvalues
in a region where the resolution of disk theorem is bad. For example, standard 3-point stencil of finite
difference of Laplacian operator is a tridiagonal matrix, and disk theorem would show “all eigenvalues
are in the interval [0, 4*N^2]” whereN is number of grids. In this case, csreigs is useful for any interval
inside [0, 4*N^2].

Remark 1: if A is symmetric in real or Hermitian in complex, all eigenvalues are real. The user still needs
to specify a box, not an interval. The height of the box can be much smaller than the width.

Remark 2: only CPU (Host) path is provided.

Input

Parameter cusolverSp
MemSpace

*Host
MemSpace

Description

handle host host Handle to the cuSolverSP library context.

m host host Number of rows and columns of matrix A.

nnz host host Number of nonzeros of matrix A.

descrA host host The descriptor of matrix A. The supported ma-
trix type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and CUS-
PARSE_INDEX_BASE_ONE.

csrValA device host <type> array ofnnz(=csrRowPtrA(m)−csrRowPtrA(0))
nonzero elements of matrix A.

csrRowP-
trA

device host Integer array of m+1 elements that contains the start
of every row and the end of the last row plus one.

csrCol-
IndA

device host Integer array ofnnz(=csrRowPtrA(m)−csrRowPtrA(0))
column indices of the nonzero elements of matrix A.

left_bottom_cornerhost host Left bottom corner of the box.

right_upper_cornerhost host Right upper corner of the box.

Output

Parame-
ter

cusolverSp
MemSpace

*Host
MemSpace

Description

num_eigs host host Number of algebraic eigenvalues in a box.

Status Returned

8.5. cuSolverSP: sparse LAPACK Function Reference 283

cuSOLVER, Release 12.8

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED
The resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (m,nnz<=0), base index is not 0 or 1.

CUSOLVER_STATUS_ARCH_MISMATCH
The device only supports compute capability 5.0 and above.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED
The matrix type is not supported.

8.5.3. Low Level Function Reference

This section describes low level API of cuSolverSP, including symrcm and batched QR.

8.5.3.1 cusolverSpXcsrsymrcm()

cusolverStatus_t
cusolverSpXcsrsymrcmHost(cusolverSpHandle_t handle,

int n,
int nnzA,
const cusparseMatDescr_t descrA,
const int *csrRowPtrA,
const int *csrColIndA,
int *p);

This function implements Symmetric Reverse Cuthill-McKee permutation. It returns a permutation
vector p such that A(p,p) would concentrate nonzeros to diagonal. This is equivalent to symrcm in
MATLAB, however the result may not be the same because of different heuristics in the pseudope-
ripheral finder. The cuSolverSP library implements symrcm based on the following two papers:

▶ E. Cuthill and J. McKee, Reducing the bandwidth of sparse symmetric matrices, ACM ‘69 Pro-
ceedings of the 1969 24th national conference, Pages 157-172

▶ AlanGeorge, JosephW. H. Liu, An Implementation of a Pseudoperipheral Node Finder, ACMTrans-
actions on Mathematical Software (TOMS) Volume 5 Issue 3, Sept. 1979, Pages 284-295

The output parameter p is an integer array of n elements. It represents a permutation array and it
indexed using the base-0 convention. The permutation array p corresponds to a permutation matrix
P, and satisfies the following relation:

A(p, p) = P ∗A ∗ PT

A is an n × n sparse matrix that is defined in CSR storage format by the three arrays csrValA, csr-
RowPtrA, and csrColIndA.

284 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

The supportedmatrix type is CUSPARSE_MATRIX_TYPE_GENERAL. Internally rcmworks onA+AT , the
user does not need to extend the matrix if the matrix is not symmetric.

Remark 1: only CPU (Host) path is provided.

Input

Parameter *Host MemSpace Description

handle host Handle to the cuSolverSP library context.

n host Number of rows and columns of matrix A.

nnzA host Number of nonzeros of matrix A. It is the size of csrValA and
csrColIndA.

descrA host The descriptor of matrix A. The supported matrix type is
CUSPARSE_MATRIX_TYPE_GENERAL. Also, the supported
index bases are CUSPARSE_INDEX_BASE_ZERO and CUS-
PARSE_INDEX_BASE_ONE.

csrRowP-
trA

host Integer array of n+1 elements that contains the start of every
row and the end of the last row plus one.

csrCol-
IndA

host Integer array of nnzAcolumn indices of the nonzero elements of
matrix A.

Output

Parameter hsolver Description

p host Permutation vector of size n.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED
The resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (n,nnzA<=0), base index is not 0 or 1.

CUSOLVER_STATUS_ARCH_MISMATCH
The device only supports compute capability 5.0 and above.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED
The matrix type is not supported.

8.5. cuSolverSP: sparse LAPACK Function Reference 285

cuSOLVER, Release 12.8

8.5.3.2 cusolverSpXcsrsymmdq()

cusolverStatus_t
cusolverSpXcsrsymmdqHost(cusolverSpHandle_t handle,

int n,
int nnzA,
const cusparseMatDescr_t descrA,
const int *csrRowPtrA,
const int *csrColIndA,
int *p);

This function implements Symmetric Minimum Degree Algorithm based on Quotient Graph. It returns
a permutation vector p such that A(p,p) would have less zero fill-in during Cholesky factorization.
The cuSolverSP library implements symmdq based on the following two papers:

Patrick R. Amestoy, Timothy A. Davis, Iain S. Duff, An Approximate Minimum Degree Ordering Algo-
rithm, SIAM J. Matrix Analysis Applic. Vol 17, no 4, pp. 886-905, Dec. 1996.

Alan George, Joseph W. Liu, A Fast Implementation of the Minimum Degree Algorithm Using Quotient
Graphs, ACM Transactions on Mathematical Software, Vol 6, No. 3, September 1980, page 337-358.

The output parameter p is an integer array of n elements. It represents a permutation array with base-
0 index. The permutation array p corresponds to a permutation matrix P, and satisfies the following
relation:

A(p, p) = P ∗A ∗ PT

A is an n × n sparse matrix that is defined in CSR storage format by the three arrays csrValA, csr-
RowPtrA, and csrColIndA.

The supportedmatrix type is CUSPARSE_MATRIX_TYPE_GENERAL. Internally mdqworks onA+AT , the
user does not need to extend the matrix if the matrix is not symmetric.

Remark 1: only CPU (Host) path is provided.

Input

286 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

Parameter *Host MemSpace Description

handle host Handle to the cuSolverSP library con-
text.

n host Number of rows and columns ofmatrix
A.

nnzA host Number of nonzeros of matrix A. It is
the size of csrValA and csrColIndA.

descrA host The descriptor of matrix A. The
supported matrix type is CUS-
PARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrRowPtrA host Integer array of n+1 elements that
contains the start of every row and the
end of the last row plus one.

csrColIndA host Integer array of nnzAcolumn indices of
the nonzero elements of matrix A.

Output

Parameter hsolver Description

p host Permutation vector of size n.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED
The resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (n,nnzA<=0), base index is not 0 or 1.

CUSOLVER_STATUS_ARCH_MISMATCH
The device only supports compute capability 5.0 and above.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED
The matrix type is not supported.

8.5. cuSolverSP: sparse LAPACK Function Reference 287

cuSOLVER, Release 12.8

8.5.3.3 cusolverSpXcsrsymamd()

cusolverStatus_t
cusolverSpXcsrsymamdHost(cusolverSpHandle_t handle,

int n,
int nnzA,
const cusparseMatDescr_t descrA,
const int *csrRowPtrA,
const int *csrColIndA,
int *p);

This function implements Symmetric Approximate Minimum Degree Algorithm based on Quotient
Graph. It returns a permutation vector p such that A(p,p)would have less zero fill-in during Cholesky
factorization. The cuSolverSP library implements symamd based on the following paper:

Patrick R. Amestoy, Timothy A. Davis, Iain S. Duff, An Approximate Minimum Degree Ordering Algo-
rithm, SIAM J. Matrix Analysis Applic. Vol 17, no 4, pp. 886-905, Dec. 1996.

The output parameter p is an integer array of n elements. It represents a permutation array with base-
0 index. The permutation array p corresponds to a permutation matrix P, and satisfies the following
relation:

A(p, p) = P ∗A ∗ PT

A is an n × n sparse matrix that is defined in CSR storage format by the three arrays csrValA, csr-
RowPtrA, and csrColIndA.

The supportedmatrix type is CUSPARSE_MATRIX_TYPE_GENERAL. Internally amdworks onA+AT , the
user does not need to extend the matrix if the matrix is not symmetric.

Remark 1: only CPU (Host) path is provided.

Input

Parameter *Host MemSpace Description

handle host Handle to the cuSolverSP library context.

n host Number of rows and columns of matrix A.

nnzA host Number of nonzeros of matrix A. It is the size of csrValA and
csrColIndA.

descrA host The descriptor of matrix A. The supported matrix type is
CUSPARSE_MATRIX_TYPE_GENERAL. Also, the supported
index bases are CUSPARSE_INDEX_BASE_ZERO and CUS-
PARSE_INDEX_BASE_ONE.

csrRowP-
trA

host Integer array of n+1 elements that contains the start of every
row and the end of the last row plus one.

csrCol-
IndA

host Integer array of nnzAcolumn indices of the nonzero elements of
matrix A.

Output

Parameter hsolver Description

p host Permutation vector of size n.

288 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED
The resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (n,nnzA<=0), base index is not 0 or 1.

CUSOLVER_STATUS_ARCH_MISMATCH
The device only supports compute capability 5.0 and above.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED
The matrix type is not supported.

8.5.3.4 cusolverSpXcsrmetisnd()

cusolverStatus_t
cusolverSpXcsrmetisndHost(

cusolverSpHandle_t handle,
int n,
int nnzA,
const cusparseMatDescr_t descrA,
const int *csrRowPtrA,
const int *csrColIndA,
const int64_t *options,
int *p);

This function is a wrapper of METIS_NodeND. It returns a permutation vector p such that
A(p,p) would have less zero fill-in during nested dissection. The cuSolverSP library links
libcusolver_metis_static.a which is 64-bit metis-5.1.0 .

The parameter options is the configuration of metis. For those who do not have experiences of
metis, set options = NULL for default setting.

The output parameter p is an integer array of n elements. It represents a permutation array with base-
0 index. The permutation array p corresponds to a permutation matrix P, and satisfies the following
relation:

A(p, p) = P ∗A ∗ PT

A is an n × n sparse matrix that is defined in CSR storage format by the three arrays csrValA, csr-
RowPtrA, and csrColIndA.

The supported matrix type is CUSPARSE_MATRIX_TYPE_GENERAL. Internally csrmetisnd works on
A+AT , the user does not need to extend the matrix if the matrix is not symmetric.

Remark 1: only CPU (Host) path is provided.

Input

8.5. cuSolverSP: sparse LAPACK Function Reference 289

cuSOLVER, Release 12.8

Parameter *Host MemSpace Description

handle host Handle to the cuSolverSP library context.

n host Number of rows and columns of matrix A.

nnzA host Number of nonzeros of matrix A. It is the size of csrValA and
csrColIndA.

descrA host The descriptor of matrix A. The supported matrix type is
CUSPARSE_MATRIX_TYPE_GENERAL. Also, the supported
index bases are CUSPARSE_INDEX_BASE_ZERO and CUS-
PARSE_INDEX_BASE_ONE.

csrRowP-
trA

host Integer array of n+1 elements that contains the start of every
row and the end of the last row plus one.

csrCol-
IndA

host Integer array of nnzAcolumn indices of the nonzero elements of
matrix A.

options host Integer array to configure metis.

Output

Parameter *Host MemSpace Description

p host Permutation vector of size n.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED
The resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (n,nnzA<=0), base index is not 0 or 1.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED
The matrix type is not supported.

290 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

8.5.3.5 cusolverSpXcsrzfd()

cusolverStatus_t
cusolverSpScsrzfdHost(

cusolverSpHandle_t handle,
int n,
int nnzA,
const cusparseMatDescr_t descrA,
const float *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
int *P,
int *numnz)

cusolverStatus_t
cusolverSpDcsrzfdHost(

cusolverSpHandle_t handle,
int n,
int nnzA,
const cusparseMatDescr_t descrA,
const double *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
int *P,
int *numnz)

cusolverStatus_t
cusolverSpCcsrzfdHost(

cusolverSpHandle_t handle,
int n,
int nnzA,
const cusparseMatDescr_t descrA,
const cuComplex *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
int *P,
int *numnz)

cusolverStatus_t
cusolverSpZcsrzfdHost(

cusolverSpHandle_t handle,
int n,
int nnzA,
const cusparseMatDescr_t descrA,
const cuDoubleComplex *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
int *P,
int *numnz)

This function implements MC21, zero-free diagonal algorithm. It returns a permutation vector p such
that A(p,:) has no zero diagonal.

A is an n × n sparse matrix that is defined in CSR storage format by the three arrays csrValA, csr-
RowPtrA, and csrColIndA. The supported matrix type is CUSPARSE_MATRIX_TYPE_GENERAL.

The output parameter p is an integer array of n elements. It represents a permutation array with base-
0 index. The permutation array p corresponds to a permutation matrix P, and satisfies the following

8.5. cuSolverSP: sparse LAPACK Function Reference 291

cuSOLVER, Release 12.8

relation:

A(p, :) = P ∗A

The output parameter numnz describes number of nonzero diagonal in permutated matrix A(p,:). If
numnz is less than n, matrix A has structural singularity.

Remark 1: only CPU (Host) path is provided.

Remark 2: this routine does not maximize diagonal value of permuted matrix. The user cannot expect
this routine can make “LU without pivoting” stable.

Input

Parameter *Host MemSpace Description

handle host Handle to the cuSolverSP library context.

n host Number of rows and columns of matrix A.

nnzA host Number of nonzeros of matrix A. It is the size of csrValA and
csrColIndA.

descrA host The descriptor of matrix A. The supported matrix type is
CUSPARSE_MATRIX_TYPE_GENERAL. Also, the supported
index bases are CUSPARSE_INDEX_BASE_ZERO and CUS-
PARSE_INDEX_BASE_ONE.

csrValA host <type> array of nnzA(=csrRowPtrA(m)−csrRowPtrA(0))
nonzero elements of matrix A.

csrRowP-
trA

host Integer array of n+1 elements that contains the start of every
row and the end of the last row plus one.

csrCol-
IndA

host Integer array of nnzAcolumn indices of the nonzero elements of
matrix A.

Output

Parameter *Host MemSpace Description

p host Permutation vector of size n.

numnz host Number of nonzeros on diagonal of permuted matrix.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED
The resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (n,nnzA<=0), base index is not 0 or 1.

CUSOLVER_STATUS_ARCH_MISMATCH
The device only supports compute capability 5.0 and above.

292 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED
The matrix type is not supported.

8.5.3.6 cusolverSpXcsrperm()

cusolverStatus_t
cusolverSpXcsrperm_bufferSizeHost(cusolverSpHandle_t handle,

int m,
int n,
int nnzA,
const cusparseMatDescr_t descrA,
int *csrRowPtrA,
int *csrColIndA,
const int *p,
const int *q,
size_t *bufferSizeInBytes);

cusolverStatus_t
cusolverSpXcsrpermHost(cusolverSpHandle_t handle,

int m,
int n,
int nnzA,
const cusparseMatDescr_t descrA,
int *csrRowPtrA,
int *csrColIndA,
const int *p,
const int *q,
int *map,
void *pBuffer);

Given a left permutation vector pwhich corresponds to permutation matrix P and a right permutation
vector q which corresponds to permutation matrix Q, this function computes permutation of matrix A
by

B = P ∗A ∗QT

A is an m × n sparse matrix that is defined in CSR storage format by the three arrays csrValA, csr-
RowPtrA and csrColIndA.

The operation is in-place, i.e. the matrix A is overwritten by B.

The permutation vector p and q are base 0. p performs row permutation while q performs column
permutation. One can also use MATLAB command B = A(p, q) to permutate matrix A.

This function only computes sparsity pattern of B. The user can use parameter map to get csrValB
as well. The parameter map is an input/output. If the user sets map=0:1:(nnzA-1) before calling
csrperm, csrValB=csrValA(map).

The supported matrix type is CUSPARSE_MATRIX_TYPE_GENERAL. If A is symmetric and only
lower/upper part is provided, the user has to pass A+AT into this function.

This function requires a buffer size returned by csrperm_bufferSize(). The address of pBuffer
must be a multiple of 128 bytes. If it is not, CUSOLVER_STATUS_INVALID_VALUE is returned.

8.5. cuSolverSP: sparse LAPACK Function Reference 293

cuSOLVER, Release 12.8

For example, if matrix A is

A =


1.0 2.0 3.0

4.0 5.0 6.0

7.0 8.0 9.0


and left permutation vector p=(0,2,1), right permutation vector q=(2,1,0), then P ∗A ∗QT is

P ∗A ∗QT =


3.0 2.0 1.0

9.0 8.0 7.0

6.0 5.0 4.0


Remark 1: only CPU (Host) path is provided.

Remark 2: the user can combine csrsymrcm and csrperm to get P ∗A ∗ PT which has less zero fill-in
during QR factorization.

Input

Parameter cusolverSp
MemSpace

Description

handle host Handle to the cuSolver library context.

m host Number of rows of matrix A.

n host Number of columns of matrix A.

nnzA host Number of nonzeros of matrix A. It is the size of csrValA and
csrColIndA.

descrA host The descriptor of matrix A. The supported matrix type is
CUSPARSE_MATRIX_TYPE_GENERAL. Also, the supported
index bases are CUSPARSE_INDEX_BASE_ZERO and CUS-
PARSE_INDEX_BASE_ONE.

csrRowP-
trA

host Integer array of m+1 elements that contains the start of every
row and end of last row plus one of matrix A.

csrCol-
IndA

host Integer array of nnzAcolumn indices of the nonzero elements of
matrix A.

p host Left permutation vector of size m.

q host Right permutation vector of size n.

map host Integer array of nnzA indices. If the user wants to get relation-
ship between A and B, mapmust be set 0:1:(nnzA-1).

pBuffer host Buffer allocated by the user, the size is returned by csr-
perm_bufferSize().

Output

294 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

Parameter hsolverDescription

csrRowPtrA host Integer array of m+1 elements that contains the start of every row and
end of last row plus one of matrix B.

csrColIndA host Integer array of nnzAcolumn indices of the nonzero elements of matrix
B.

map host Integer array of nnzA indices that maps matrix A to matrix B.

pBuffer-
SizeInBytes

host Number of bytes of the buffer.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED
The resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (m,n,nnzA<=0), base index is not 0 or 1.

CUSOLVER_STATUS_ARCH_MISMATCH
The device only supports compute capability 5.0 and above.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED
The matrix type is not supported.

8.5.3.7 cusolverSpXcsrqrBatched()

The create and destroy methods start and end the lifetime of a csrqrInfo object.

cusolverStatus_t
cusolverSpCreateCsrqrInfo(csrqrInfo_t *info);

cusolverStatus_t
cusolverSpDestroyCsrqrInfo(csrqrInfo_t info);

Analysis is the same for all data types, but each data type has a unique buffer size.

cusolverStatus_t
cusolverSpXcsrqrAnalysisBatched(cusolverSpHandle_t handle,

int m,
int n,
int nnzA,
const cusparseMatDescr_t descrA,
const int *csrRowPtrA,
const int *csrColIndA,
csrqrInfo_t info);

(continues on next page)

8.5. cuSolverSP: sparse LAPACK Function Reference 295

cuSOLVER, Release 12.8

(continued from previous page)

cusolverStatus_t
cusolverSpScsrqrBufferInfoBatched(cusolverSpHandle_t handle,

int m,
int n,
int nnzA,
const cusparseMatDescr_t descrA,
const float *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
int batchSize,
csrqrInfo_t info,
size_t *internalDataInBytes,
size_t *workspaceInBytes);

cusolverStatus_t
cusolverSpDcsrqrBufferInfoBatched(cusolverSpHandle_t handle,

int m,
int n,
int nnzA,
const cusparseMatDescr_t descrA,
const double *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
int batchSize,
csrqrInfo_t info,
size_t *internalDataInBytes,
size_t *workspaceInBytes);

Calculate buffer sizes for complex valued data types.

cusolverStatus_t
cusolverSpCcsrqrBufferInfoBatched(cusolverSpHandle_t handle,

int m,
int n,
int nnzA,
const cusparseMatDescr_t descrA,
const cuComplex *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
int batchSize,
csrqrInfo_t info,
size_t *internalDataInBytes,
size_t *workspaceInBytes);

cusolverStatus_t
cusolverSpZcsrqrBufferInfoBatched(cusolverSpHandle_t handle,

int m,
int n,
int nnzA,
const cusparseMatDescr_t descrA,
const cuDoubleComplex *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
int batchSize,
csrqrInfo_t info,
size_t *internalDataInBytes,
size_t *workspaceInBytes);

296 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverSpScsrqrsvBatched(cusolverSpHandle_t handle,

int m,
int n,
int nnzA,
const cusparseMatDescr_t descrA,
const float *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
const float *b,
float *x,
int batchSize,
csrqrInfo_t info,
void *pBuffer);

cusolverStatus_t
cusolverSpDcsrqrsvBatched(cusolverSpHandle_t handle,

int m,
int n,
int nnz,
const cusparseMatDescr_t descrA,
const double *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
const double *b,
double *x,
int batchSize,
csrqrInfo_t info,
void *pBuffer);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverSpCcsrqrsvBatched(cusolverSpHandle_t handle,

int m,
int n,
int nnzA,
const cusparseMatDescr_t descrA,
const cuComplex *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,
const cuComplex *b,
cuComplex *x,
int batchSize,
csrqrInfo_t info,
void *pBuffer);

cusolverStatus_t
cusolverSpZcsrqrsvBatched(cusolverSpHandle_t handle,

int m,
int n,
int nnzA,
const cusparseMatDescr_t descrA,
const cuDoubleComplex *csrValA,
const int *csrRowPtrA,
const int *csrColIndA,

(continues on next page)

8.5. cuSolverSP: sparse LAPACK Function Reference 297

cuSOLVER, Release 12.8

(continued from previous page)

const cuDoubleComplex *b,
cuDoubleComplex *x,
int batchSize,
csrqrInfo_t info,
void *pBuffer);

The batched sparse QR factorization is used to solve either a set of least-squares problems

xj = argmin∥Aj ∗ z − bj∥, j = 1, 2, ..., batchSize

or a set of linear systems

Ajxj = bj , j = 1, 2, ..., batchSize

where each Aj is an m × n sparse matrix that is defined in CSR storage format by the four arrays
csrValA, csrRowPtrA and csrColIndA.

The supported matrix type is CUSPARSE_MATRIX_TYPE_GENERAL. If A is symmetric and only
lower/upper part is provided, the user has to pass A+AH into this function.

The prerequisite to use batched sparse QR has two-folds. First all matrices Aj must have the same
sparsity pattern. Second, no column pivoting is used in least-square problem, so the solution is valid
only ifAj is of full rank for all j = 1,2,..., batchSize. All matrices have the same sparsity pattern,
so only one copy of csrRowPtrA and csrColIndA is used. But the array csrValA stores coefficients
of Aj one after another. In other words, csrValA[k*nnzA : (k+1)*nnzA] is the value of Ak .

The batched QR uses opaque data structure csrqrInfo to keep intermediate data, for example, ma-
trix Q andmatrix R of QR factorization. The user needs to create csrqrInfo first by cusolverSpCre-
ateCsrqrInfo before any function in batched QR operation. The csrqrInfowould not release inter-
nal data until cusolverSpDestroyCsrqrInfo is called.

There are three routines in batched sparse QR, cusolverSpXcsrqrAnalysisBatched, cu-
solverSp[S|D|C|Z]csrqrBufferInfoBatched and cusolverSp[S|D|C|Z]csrqrsvBatched.

First, cusolverSpXcsrqrAnalysisBatched is the analysis phase, used to analyze sparsity pattern
of matrix Q and matrix R of QR factorization. Also parallelism is extracted during analysis phase. Once
analysis phase is done, the size of working space to perform QR is known. However cusolverSpXc-
srqrAnalysisBatched uses CPU to analyze the structure of matrix A, and this may consume a lot of
memory. If host memory is not sufficient to finish the analysis, CUSOLVER_STATUS_ALLOC_FAILED is
returned. The required memory for analysis is proportional to zero fill-in in QR factorization. The user
may need to perform some kind of reordering to minimize zero fill-in, for example, colamd or symrcm
in MATLAB. cuSolverSP library provides symrcm (cusolverSpXcsrsymrcm).

Second, the user needs to choose proper batchSize and to prepare working space for sparse QR.
There are two memory blocks used in batched sparse QR. One is internal memory block used to store
matrix Q and matrix R. The other is working space used to perform numerical factorization. The size of
the former is proportional to batchSize, and the size is specified by returned parameter internal-
DataInBytes of cusolverSp[S|D|C|Z]csrqrBufferInfoBatched. while the size of the latter is
almost independent of batchSize, and the size is specified by returned parameter workspaceIn-
Bytes of cusolverSp[S|D|C|Z]csrqrBufferInfoBatched. The internal memory block is allo-
cated implicitly during first call of cusolverSp[S|D|C|Z]csrqrsvBatched. The user only needs
to allocate working space for cusolverSp[S|D|C|Z]csrqrsvBatched.

Instead of trying all batched matrices, the user can find maximum batchSize by querying cu-
solverSp[S|D|C|Z]csrqrBufferInfoBatched. For example, the user can increase batchSize
till summation of internalDataInBytes and workspaceInBytes is greater than size of available
device memory.

298 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

Suppose that the user needs to perform 253 linear solvers and available device memory is
2GB. if cusolverSp[S|D|C|Z]csrqrsvBatched can only afford batchSize 100, the user has
to call cusolverSp[S|D|C|Z]csrqrsvBatched three times to finish all. The user calls cu-
solverSp[S|D|C|Z]csrqrBufferInfoBatched with batchSize 100. The opaque info would re-
member this batchSize and any subsequent call of cusolverSp[S|D|C|Z]csrqrsvBatched can-
not exceed this value. In this example, the first two calls of cusolverSp[S|D|C|Z]csrqrsvBatched
will use batchSize 100, and last call of cusolverSp[S|D|C|Z]csrqrsvBatchedwill use batchSize
53.

Example: suppose that A0, A1, .., A9 have the same sparsity pattern, the following code solves 10 linear
systems Ajxj = bj , j = 0, 2, ..., 9 by batched sparse QR.

∕∕ Suppose that A0, A1, .., A9 are m x m sparse matrix represented by CSR format,
∕∕ Each matrix Aj has nonzero nnzA, and shares the same csrRowPtrA and csrColIndA.
∕∕ csrValA is aggregation of A0, A1, ..., A9.
int m ; ∕∕ number of rows and columns of each Aj
int nnzA ; ∕∕ number of nonzeros of each Aj
int *csrRowPtrA ; ∕∕ each Aj has the same csrRowPtrA
int *csrColIndA ; ∕∕ each Aj has the same csrColIndA
double *csrValA ; ∕∕ aggregation of A0,A1,...,A9
const int batchSize = 10; ∕∕ 10 linear systems

cusolverSpHandle_t handle; ∕∕ handle to cusolver library
csrqrInfo_t info = NULL;
cusparseMatDescr_t descrA = NULL;
void *pBuffer = NULL; ∕∕ working space for numerical factorization

∕∕ step 1: create a descriptor
cusparseCreateMatDescr(&descrA);
cusparseSetMatIndexBase(descrA, CUSPARSE_INDEX_BASE_ONE); ∕∕ A is base-1
cusparseSetMatType(descrA, CUSPARSE_MATRIX_TYPE_GENERAL); ∕∕ A is a general matrix

∕∕ step 2: create empty info structure
cusolverSpCreateCsrqrInfo(&info);

∕∕ step 3: symbolic analysis
cusolverSpXcsrqrAnalysisBatched(

handle, m, m, nnzA,
descrA, csrRowPtrA, csrColIndA, info);

∕∕ step 4: allocate working space for Aj*xj=bj
cusolverSpDcsrqrBufferInfoBatched(

handle, m, m, nnzA,
descrA,
csrValA, csrRowPtrA, csrColIndA,
batchSize,
info,
&internalDataInBytes,
&workspaceInBytes);

cudaMalloc(&pBuffer, workspaceInBytes);

∕∕ step 5: solve Aj*xj = bj
cusolverSpDcsrqrsvBatched(

handle, m, m, nnzA,
descrA, csrValA, csrRowPtrA, csrColIndA,
b,

(continues on next page)

8.5. cuSolverSP: sparse LAPACK Function Reference 299

cuSOLVER, Release 12.8

(continued from previous page)

x,
batchSize,
info,
pBuffer);

∕∕ step 7: destroy info
cusolverSpDestroyCsrqrInfo(info);

Please refer to cuSOLVER Library Samples - csrqr for a code example.

Remark 1: only GPU (device) path is provided.

Input

Parameter cusolverSp
MemSpace

Description

handle host Handle to the cuSolverSP library context.

m host Number of rows of each matrix Aj.

n host Number of columns of each matrix Aj.

nnzA host Number of nonzeros of each matrix Aj. It is the size csrCol-
IndA.

descrA host The descriptor of each matrix Aj. The supported ma-
trix type is CUSPARSE_MATRIX_TYPE_GENERAL. Also, the sup-
ported index bases areCUSPARSE_INDEX_BASE_ZERO andCUS-
PARSE_INDEX_BASE_ONE.

csrValA device <type> array of nnzA*batchSize nonzero elements ofmatrices
A0, A1, All matrices are aggregated one after another.

csrRowP-
trA

device Integer array of m+1 elements that contains the start of every
row and the end of the last row plus one.

csrCol-
IndA

device Integer array of nnzAcolumn indices of the nonzero elements of
each matrix Aj.

b device <type> array of m*batchSize of right-hand-side vectors b0,
b1, All vectors are aggregated one after another.

batchSize host Number of systems to be solved.

info host Opaque structure for QR factorization.

pBuffer device Buffer allocated by the user, the size is returned by cusolver-
SpXcsrqrBufferInfoBatched().

Output

300 Chapter 8. Using the CUSOLVER API

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/csrqr

cuSOLVER, Release 12.8

Parameter cusolverSp
MemSpace

Description

x device <type> array of m*batchSize of solution vectors x0, x1,
All vectors are aggregated one after another.

internal-
DataInBytes

host Number of bytes of the internal data.

workspaceIn-
Bytes

host Number of bytes of the buffer in numerical factorization.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED
The resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (m,n,nnzA<=0), base index is not 0 or 1.

CUSOLVER_STATUS_ARCH_MISMATCH
The device only supports compute capability 5.0 and above.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED
The matrix type is not supported.

8.6. cuSolverRF: Refactorization Reference

This section describes API of cuSolverRF, a library for fast refactorization.

8.6.1. cusolverRfAccessBundledFactorsDevice()
[[DEPRECATED]]

[[DEPRECATED]] This function is deprecated and will be removed in a future major version. Please use
the cuDSS library instead for better performance and support. For the transition, please visit cuDSS
Library Samples for a code example.

cusolverStatus_t
cusolverRfAccessBundledFactorsDevice(∕* Input *∕

cusolverRfHandle_t handle,
∕* Output (in the host memory) *∕
int* nnzM,

(continues on next page)

8.6. cuSolverRF: Refactorization Reference 301

https://developer.nvidia.com/cudss
https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuDSS
https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuDSS

cuSOLVER, Release 12.8

(continued from previous page)

∕* Output (in the device memory) *∕
int** Mp,
int** Mi,
double** Mx);

This routine allows direct access to the lower L and upper U triangular factors stored in the cuSolverRF
library handle. The factors are compressed into a singlematrix M=(L-I)+U, where the unitary diagonal
of L is not stored. It is assumed that a prior call to the cusolverRfRefactor() was done in order to
generate these triangular factors.

Parameter MemSpace In/out Meaning

handle host input The handle to the cuSolverRF library.

nnzM host output The number of non-zero elements of matrix M.

Mp device output The array of offsets corresponding to the start
of each row in the arrays Mi and Mx. This array
has also an extra entry at the end that stores
the number of non-zero elements in the matrix
M. The array size is n+1.

Mi device output The array of column indices corresponding to the
non-zero elements in the matrix M. It is assumed
that this array is sorted by row and by column
within each row. The array size is nnzM.

Mx device output The array of values corresponding to the non-
zero elements in the matrix M. It is assumed that
this array is sorted by row and by column within
each row. The array size is nnzM.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_EXECUTION_FAILED
A kernel failed to launch on the GPU.

8.6.2. cusolverRfAnalyze() [[DEPRECATED]]

[[DEPRECATED]] This function is deprecated and will be removed in a future major version. Please use
the cuDSS library instead for better performance and support. For the transition, please visit cuDSS
Library Samples for a code example.

cusolverStatus_t
cusolverRfAnalyze(cusolverRfHandle_t handle);

302 Chapter 8. Using the CUSOLVER API

https://developer.nvidia.com/cudss
https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuDSS
https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuDSS

cuSOLVER, Release 12.8

This routine performs the appropriate analysis of parallelism available in the LU re-factorization de-
pending upon the algorithm chosen by the user.

A = L ∗ U

It is assumed that a prior call to the cusolverRfSetup[Host|Device]()was done in order to create
internal data structures needed for the analysis.

This routine needs to be called only once for a single linear system

Aixi = fi

Parameter MemSpace In/out Meaning

handle host in∕out The handle to the cuSolverRF library.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_EXECUTION_FAILED
A kernel failed to launch on the GPU.

CUSOLVER_STATUS_ALLOC_FAILED
An allocation of memory failed.

cusolverRfSetupDevice() [[DEPRECATED]]

[[DEPRECATED]] This function is deprecated and will be removed in a future major version. Please use
the cuDSS library instead for better performance and support. For the transition, please visit cuDSS
Library Samples for a code example.

cusolverStatus_t
cusolverRfSetupDevice(∕* Input (in the device memory) *∕

int n,
int nnzA,
int* csrRowPtrA,
int* csrColIndA,
double* csrValA,
int nnzL,
int* csrRowPtrL,
int* csrColIndL,
double* csrValL,
int nnzU,
int* csrRowPtrU,
int* csrColIndU,
double* csrValU,
int* P,
int* Q,
∕* Output *∕
cusolverRfHandle_t handle);

8.6. cuSolverRF: Refactorization Reference 303

https://developer.nvidia.com/cudss
https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuDSS
https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuDSS

cuSOLVER, Release 12.8

This routine assembles the internal data structures of the cuSolverRF library. It is often thefirst routine
to be called after the call to the cusolverRfCreate() routine.

This routine accepts as input (on the device) the original matrix A, the lower (L) and upper (U) tri-
angular factors, as well as the left (P) and the right (Q) permutations resulting from the full LU
factorization of the first (i=1) linear system

Aixi = fi

The permutations P and Q represent the final composition of all the left and right reorderings applied
to the original matrix A, respectively. However, these permutations are often associated with partial
pivoting and reordering to minimize fill-in, respectively.

This routine needs to be called only once for a single linear system

Aixi = fi

Parameter MemSpace In/out Meaning

n host input The number of rows (and columns) of matrix A.

nnzA host input The number of non-zero elements of matrix A.

csrRowPtrA device input The array of offsets corresponding to the start
of each row in the arrays csrColIndA and csr-
ValA. This array has also an extra entry at the
end that stores the number of non-zero ele-
ments in the matrix. The array size is n+1.

csrColIndA device input The array of column indices corresponding to the
non-zero elements in the matrix. It is assumed
that this array is sorted by row and by column
within each row. The array size is nnzA.

csrValA device input The array of values corresponding to the non-
zero elements in the matrix. It is assumed that
this array is sorted by row and by column within
each row. The array size is nnzA.

nnzL host input The number of non-zero elements of matrix L.

csrRowPtrL device input The array of offsets corresponding to the start
of each row in the arrays csrColIndL and csr-
ValL. This array has also an extra entry at the
end that stores the number of non-zero ele-
ments in the matrix L. The array size is n+1.

csrColIndL device input The array of column indices corresponding to the
non-zero elements in the matrix L. It is assumed
that this array is sorted by row and by column
within each row. The array size is nnzL.

csrValL device input The array of values corresponding to the non-
zero elements in the matrix L. It is assumed that
this array is sorted by row and by column within
each row. The array size is nnzL.

continues on next page

304 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

Table 73 – continued from previous page

Parameter MemSpace In/out Meaning

nnzU host input The number of non-zero elements of matrix U.

csrRowPtrU device input The array of offsets corresponding to the start
of each row in the arrays csrColIndU and csr-
ValU. This array has also an extra entry at the
end that stores the number of non-zero ele-
ments in the matrix U. The array size is n+1.

csrColIndU device input The array of column indices corresponding to the
non-zero elements in the matrix U. It is assumed
that this array is sorted by row and by column
within each row. The array size is nnzU.

csrValU device input The array of values corresponding to the non-
zero elements in the matrix U. It is assumed that
this array is sorted by row and by column within
each row. The array size is nnzU.

P device input The left permutation (often associated with piv-
oting). The array size in n.

Q device input The right permutation (often associated with re-
ordering). The array size in n.

handle host output The handle to the cuSolverRF library.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
An unsupported value or parameter was passed.

CUSOLVER_STATUS_ALLOC_FAILED
An allocation of memory failed.

CUSOLVER_STATUS_EXECUTION_FAILED
A kernel failed to launch on the GPU.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.6. cuSolverRF: Refactorization Reference 305

cuSOLVER, Release 12.8

8.6.3. cusolverRfSetupHost()

cusolverStatus_t
cusolverRfSetupHost(∕* Input (in the host memory) *∕

int n,
int nnzA,
int* h_csrRowPtrA,
int* h_csrColIndA,
double* h_csrValA,
int nnzL,
int* h_csrRowPtrL,
int* h_csrColIndL,
double* h_csrValL,
int nnzU,
int* h_csrRowPtrU,
int* h_csrColIndU,
double* h_csrValU,
int* h_P,
int* h_Q,
∕* Output *∕
cusolverRfHandle_t handle);

This routine assembles the internal data structures of the cuSolverRF library. It is often thefirst routine
to be called after the call to the cusolverRfCreate() routine.

This routine accepts as input (on the host) the originalmatrix A, the lower (L) and upper (U) triangular
factors, as well as the left (P) and the right (Q) permutations resulting from the full LU factorization
of the first (i=1) linear system

Aixi = fi

The permutations P and Q represent the final composition of all the left and right reorderings applied
to the original matrix A, respectively. However, these permutations are often associated with partial
pivoting and reordering to minimize fill-in, respectively.

This routine needs to be called only once for a single linear system

Aixi = fi

Parameter MemSpace In/out Meaning

n host input The number of rows (and columns) of matrix A.

nnzA host input The number of non-zero elements of matrix A.

h_csrRowPtrA host input The array of offsets corresponding to the start
of each row in the arrays h_csrColIndA and
h_csrValA. This array has also an extra entry at
the end that stores the number of non-zero ele-
ments in the matrix. The array size is n+1.

continues on next page

306 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

Table 74 – continued from previous page

Parameter MemSpace In/out Meaning

h_csrColIndA host input The array of column indices corresponding to the
non-zero elements in the matrix. It is assumed
that this array is sorted by row and by column
within each row. The array size is nnzA.

h_csrValA host input The array of values corresponding to the non-
zero elements in the matrix. It is assumed that
this array is sorted by row and by column within
each row. The array size is nnzA.

nnzL host input The number of non-zero elements of matrix L.

h_csrRowPtrL host input The array of offsets corresponding to the start
of each row in the arrays h_csrColIndL and
h_csrValL. This array has also an extra entry at
the end that stores the number of non-zero ele-
ments in the matrix L. The array size is n+1.

h_csrColIndL host input The array of column indices corresponding to the
non-zero elements in the matrix L. It is assumed
that this array is sorted by row and by column
within each row. The array size is nnzL.

h_csrValL host input The array of values corresponding to the non-
zero elements in the matrix L. It is assumed that
this array is sorted by row and by column within
each row. The array size is nnzL.

nnzU host input The number of non-zero elements of matrix U.

h_csrRowPtrU host input The array of offsets corresponding to the start
of each row in the arrays h_csrColIndU and
h_csrValU. This array has also an extra entry at
the end that stores the number of non-zero ele-
ments in the matrix U. The array size is n+1.

h_csrColIndU host input The array of column indices corresponding to the
non-zero elements in the matrix U. It is assumed
that this array is sorted by row and by column
within each row. The array size is nnzU.

h_csrValU host input The array of values corresponding to the non-
zero elements in the matrix U. It is assumed that
this array is sorted by row and by column within
each row. The array size is nnzU.

h_P host input The left permutation (often associated with piv-
oting). The array size in n.

h_Q host input The right permutation (often associated with re-
ordering). The array size in n.

handle host output The handle to the cuSolverRF library.

Status Returned

8.6. cuSolverRF: Refactorization Reference 307

cuSOLVER, Release 12.8

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
An unsupported value or parameter was passed.

CUSOLVER_STATUS_ALLOC_FAILED
An allocation of memory failed.

CUSOLVER_STATUS_EXECUTION_FAILED
A kernel failed to launch on the GPU.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.6.4. cusolverRfCreate()

cusolverStatus_t cusolverRfCreate(cusolverRfHandle_t *handle);

This routine initializes the cuSolverRF library. It allocates required resources and must be called prior
to any other cuSolverRF library routine.

Parameter MemSpace In/out Meaning

handle host output The pointer to the cuSolverRF library handle.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED
An allocation of memory failed.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.6.5. cusolverRfExtractBundledFactorsHost()
[[DEPRECATED]]

[[DEPRECATED]] This function is deprecated and will be removed in a future major version. Please use
the cuDSS library instead for better performance and support. For the transition, please visit cuDSS
Library Samples for a code example.

308 Chapter 8. Using the CUSOLVER API

https://developer.nvidia.com/cudss
https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuDSS
https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuDSS

cuSOLVER, Release 12.8

cusolverStatus_t
cusolverRfExtractBundledFactorsHost(∕* Input *∕

cusolverRfHandle_t handle,
∕* Output (in the host memory) *∕
int* h_nnzM,
int** h_Mp,
int** h_Mi,
double** h_Mx);

This routine extracts lower (L) and upper (U) triangular factors from the cuSolverRF library handle
into the host memory. The factors are compressed into a single matrix M=(L-I)+U, where the unitary
diagonal of (L) is not stored. It is assumed that a prior call to the cusolverRfRefactor()was done
in order to generate these triangular factors.

Parameter MemSpace In/out Meaning

handle host input The handle to the cuSolverRF library.

h_nnzM host output The number of non-zero elements of matrix M.

h_Mp host output The array of offsets corresponding to the start
of each row in the arrays h_Mi and h_Mx. This ar-
ray has also an extra entry at the end that stores
the number of non-zero elements in the matrix
M. The array size is n+1.

h_Mi host output The array of column indices corresponding to the
non-zero elements in the matrix. It is assumed
that this array is sorted by row and by column
within each row. The array size is h_nnzM.

h_Mx host output The array of values corresponding to the non-
zero elements in the matrix. It is assumed that
this array is sorted by row and by column within
each row. The array size is h_nnzM.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED
An allocation of memory failed.

CUSOLVER_STATUS_EXECUTION_FAILED
A kernel failed to launch on the GPU.

8.6. cuSolverRF: Refactorization Reference 309

cuSOLVER, Release 12.8

8.6.6. cusolverRfExtractSplitFactorsHost()
[[DEPRECATED]]

[[DEPRECATED]] This function is deprecated and will be removed in a future major version. Please use
the cuDSS library instead for better performance and support. For the transition, please visit cuDSS
Library Samples for a code example.

cusolverStatus_t
cusolverRfExtractSplitFactorsHost(∕* Input *∕

cusolverRfHandle_t handle,
∕* Output (in the host memory) *∕
int* h_nnzL,
int** h_Lp,
int** h_Li,
double** h_Lx,
int* h_nnzU,
int** h_Up,
int** h_Ui,
double** h_Ux);

This routine extracts lower (L) and upper (U) triangular factors from the cuSolverRF library handle
into the hostmemory. It is assumed that a prior call to the cusolverRfRefactor()was done in order
to generate these triangular factors.

Parameter MemSpace In/out Meaning

handle host input The handle to the cuSolverRF library.

h_nnzL host output The number of non-zero elements of matrix L.

h_Lp host output The array of offsets corresponding to the start
of each row in the arrays h_Li and h_Lx. This ar-
ray has also an extra entry at the end that stores
the number of non-zero elements in the matrix
L. The array size is n+1.

h_Li host output The array of column indices corresponding to the
non-zero elements in the matrix L. It is assumed
that this array is sorted by row and by column
within each row. The array size is h_nnzL.

h_Lx host output The array of values corresponding to the non-
zero elements in the matrix L. It is assumed that
this array is sorted by row and by column within
each row. The array size is h_nnzL.

h_nnzU host output The number of non-zero elements of matrix U.

h_Up host output The array of offsets corresponding to the start
of each row in the arrays h_Ui and h_Ux. This ar-
ray has also an extra entry at the end that stores
the number of non-zero elements in the matrix
U. The array size is n+1.

continues on next page

310 Chapter 8. Using the CUSOLVER API

https://developer.nvidia.com/cudss
https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuDSS
https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuDSS

cuSOLVER, Release 12.8

Table 75 – continued from previous page

Parameter MemSpace In/out Meaning

h_Ui host output The array of column indices corresponding to the
non-zero elements in the matrix U. It is assumed
that this array is sorted by row and by column
within each row. The array size is h_nnzU.

h_Ux host output The array of values corresponding to the non-
zero elements in the matrix U. It is assumed that
this array is sorted by row and by column within
each row. The array size is h_nnzU.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED
An allocation of memory failed.

CUSOLVER_STATUS_EXECUTION_FAILED
A kernel failed to launch on the GPU.

8.6.7. cusolverRfDestroy()

cusolverStatus_t cusolverRfDestroy(cusolverRfHandle_t handle);

This routine shuts down the cuSolverRF library. It releases acquired resources andmust be called after
all the cuSolverRF library routines.

Parameter MemSpace In/out Meaning

handle host input The cuSolverRF library handle.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

8.6. cuSolverRF: Refactorization Reference 311

cuSOLVER, Release 12.8

8.6.8. cusolverRfGetMatrixFormat()

cusolverStatus_t
cusolverRfGetMatrixFormat(cusolverRfHandle_t handle,

cusolverRfMatrixFormat_t *format,
cusolverRfUnitDiagonal_t *diag);

This routine gets the matrix format used in the cusolverRfSetupDevice(), cusolverRfSe-
tupHost(), cusolverRfResetValues(), cusolverRfExtractBundledFactorsHost() and cu-
solverRfExtractSplitFactorsHost() routines.

Parameter MemSpace In/out Meaning

handle host input The handle to the cuSolverRF library.

format host output The enumerated matrix format type.

diag host output The enumerated unit diagonal type.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

8.6.9. cusolverRfGetNumericProperties()

cusolverStatus_t
cusolverRfGetNumericProperties(cusolverRfHandle_t handle,

double *zero,
double *boost);

This routine gets the numeric values used for checking for ‘’zero’’ pivot and for boosting it in the cu-
solverRfRefactor() and cusolverRfSolve() routines. The numeric boosting will be used only if
boost > 0.0.

Parame-
ter

MemSpace In/out Meaning

handle host input The handle to the cuSolverRF library.

zero host out-
put

The value below which zero pivot is flagged.

boost host out-
put

The value which is substituted for zero pivot (if the later is
flagged).

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

312 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

8.6.10. cusolverRfGetNumericBoostReport()

cusolverStatus_t
cusolverRfGetNumericBoostReport(cusolverRfHandle_t handle,

cusolverRfNumericBoostReport_t *report);

This routine gets the report whether numeric boosting was used in the cusolverRfRefactor() and
cusolverRfSolve() routines.

Parameter MemSpace In/out Meaning

handle host input The handle to the cuSolverRF library.

report host output The enumerated boosting report type.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

8.6.11. cusolverRfGetResetValuesFastMode()

cusolverStatus_t
cusolverRfGetResetValuesFastMode(cusolverRfHandle_t handle,

cusolverRfResetValuesFastMode_t *fastMode);

This routine gets the mode used in the cusolverRfResetValues routine.

Parameter MemSpace In/out Meaning

handle host input The handle to the cuSolverRF library.

fastMode host output The enumerated mode type.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

8.6. cuSolverRF: Refactorization Reference 313

cuSOLVER, Release 12.8

8.6.12. cusolverRfGetAlgs()

cusolverStatus_t
cusolverRfGetAlgs(cusolverRfHandle_t handle,

cusolverRfFactorization_t* fact_alg,
cusolverRfTriangularSolve_t* solve_alg);

This routine gets the algorithm used for the refactorization in cusolverRfRefactor() and the tri-
angular solve in cusolverRfSolve().

Parameter MemSpace In/out Meaning

handle host input The handle to the cuSolverRF library.

alg host output The enumerated algorithm type.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

8.6.13. cusolverRfRefactor() [[DEPRECATED]]

[[DEPRECATED]] This function is deprecated and will be removed in a future major version. Please use
the cuDSS library instead for better performance and support. For the transition, please visit cuDSS
Library Samples for a code example.

cusolverStatus_t cusolverRfRefactor(cusolverRfHandle_t handle);

This routine performs the LU re-factorization:

A = L ∗ U

exploring the available parallelism on the GPU. It is assumed that a prior call to the cusolverRfAna-
lyze() was done in order to find the available parallelism.

This routine may be called multiple times, once for each of the linear systems:

Aixi = fi

There are some constraints to the combination of algorithms used for refactorization and solving rou-
tines, cusolverRfRefactor() and cusolverRfSolve(). The wrong combination generates the er-
ror code CUSOLVER_STATUS_INVALID_VALUE. The table below summarizes the supported combina-
tions of algorithms:

Compatible algorithms for solving and refactorization routines.

314 Chapter 8. Using the CUSOLVER API

https://developer.nvidia.com/cudss
https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuDSS
https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuDSS

cuSOLVER, Release 12.8

Factorization Solving

CUSOLVERRF_FACTORIZATION_ALG0 TRIANGULAR_SOLVE_ALG1

CUSOLVERRF_FACTORIZATION_ALG1 TRIANGULAR_SOLVE_ALG2, TRIANGULAR_SOLVE_ALG3

CUSOLVERRF_FACTORIZATION_ALG2 TRIANGULAR_SOLVE_ALG2, TRIANGULAR_SOLVE_ALG3

Parameter MemSpace In/out Meaning

handle host in∕out The handle to the cuSolverRF library.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_EXECUTION_FAILED
A kernel failed to launch on the GPU.

CUSOLVER_STATUS_ZERO_PIVOT
A zero pivot was encountered during the computation.

8.6.14. cusolverRfResetValues() [[DEPRECATED]]

[[DEPRECATED]] This function is deprecated and will be removed in a future major version. Please use
the cuDSS library instead for better performance and support. For the transition, please visit cuDSS
Library Samples for a code example.

cusolverStatus_t
cusolverRfResetValues(∕* Input (in the device memory) *∕

int n,
int nnzA,
int* csrRowPtrA,
int* csrColIndA,
double* csrValA,
int* P,
int* Q,
∕* Output *∕
cusolverRfHandle_t handle);

This routine updates internal data structures with the values of the new coefficient matrix. It is as-
sumed that the arrays csrRowPtrA, csrColIndA, P and Q have not changed since the last call to the
cusolverRfSetup[Host|Device] routine. This assumption reflects the fact that the sparsity pat-
tern of coefficient matrices as well as reordering to minimize fill-in and pivoting remain the same in
the set of linear systems:

Aixi = fi

This routine may be called multiple times, once for each of the linear systems:

Aixi = fi

8.6. cuSolverRF: Refactorization Reference 315

https://developer.nvidia.com/cudss
https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuDSS
https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuDSS

cuSOLVER, Release 12.8

Parameter MemSpace In/out Meaning

n host input The number of rows (and columns) of matrix A.

nnzA host input The number of non-zero elements of matrix A.

csrRowPtrA device input The array of offsets corresponding to the start
of each row in the arrays csrColIndA and csr-
ValA. This array has also an extra entry at the
end that stores the number of non-zero ele-
ments in the matrix. The array size is n+1.

csrColIndA device input The array of column indices corresponding to the
non-zero elements in the matrix. It is assumed
that this array is sorted by row and by column
within each row. The array size is nnzA.

csrValA device input The array of values corresponding to the non-
zero elements in the matrix. It is assumed that
this array is sorted by row and by column within
each row. The array size is nnzA.

P device input The left permutation (often associated with piv-
oting). The array size in n.

Q device input The right permutation (often associated with re-
ordering). The array size in n.

handle host output The handle to the cuSolverRF library.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
An unsupported value or parameter was passed.

CUSOLVER_STATUS_EXECUTION_FAILED
A kernel failed to launch on the GPU.

8.6.15. cusolverRfSetMatrixFormat()

cusolverStatus_t
cusolverRfSetMatrixFormat(cusolverRfHandle_t handle,

cusolverRfMatrixFormat_t format,
cusolverRfUnitDiagonal_t diag);

This routine sets the matrix format used in the cusolverRfSetupDevice(), cusolverRfSe-
tupHost(), cusolverRfResetValues(), cusolverRfExtractBundledFactorsHost() and cu-
solverRfExtractSplitFactorsHost() routines. It may be called once prior to cusolverRfSe-
tupDevice() and cusolverRfSetupHost() routines.

316 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

Parameter MemSpace In/out Meaning

handle host input The handle to the cuSolverRF library.

format host input The enumerated matrix format type.

diag host input The enumerated unit diagonal type.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
An enumerated mode parameter is wrong.

8.6.16. cusolverRfSetNumericProperties()

cusolverStatus_t
cusolverRfSetNumericProperties(cusolverRfHandle_t handle,

double zero,
double boost);

This routine sets the numeric values used for checking for ‘’zero’’ pivot and for boosting it in the cu-
solverRfRefactor() and cusolverRfSolve() routines. It may be called multiple times prior to
cusolverRfRefactor() and cusolverRfSolve() routines. The numeric boosting will be used only
if boost > 0.0.

Parame-
ter

MemSpace In/out Meaning

handle host in-
put

The handle to the cuSolverRF library.

zero host in-
put

The value below which zero pivot is flagged.

boost host in-
put

The value which is substituted for zero pivot (if the later is
flagged).

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

8.6. cuSolverRF: Refactorization Reference 317

cuSOLVER, Release 12.8

8.6.17. cusolverRfSetResetValuesFastMode()

cusolverStatus_t
cusolverRfSetResetValuesFastMode(cusolverRfHandle_t handle,

cusolverRfResetValuesFastMode_t fastMode);

This routine sets the mode used in the cusolverRfResetValues routine. The fast mode requires
extra memory and is recommended only if very fast calls to cusolverRfResetValues() are needed.
It may be called once prior to cusolverRfAnalyze() routine.

Parameter MemSpace In/out Meaning

handle host input The handle to the cuSolverRF library.

fastMode host input The enumerated mode type.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
An enumerated mode parameter is wrong.

8.6.18. cusolverRfSetAlgs()

cusolverStatus_t
cusolverRfSetAlgs(cusolverRfHandle_t handle,

cusolverRfFactorization_t fact_alg,
cusolverRfTriangularSolve_t alg);

This routine sets the algorithm used for the refactorization in cusolverRfRefactor() and the tri-
angular solve in cusolverRfSolve(). It may be called once prior to cusolverRfAnalyze() routine.

Parameter MemSpace In/out Meaning

handle host input The handle to the cuSolverRF library.

alg host input The enumerated algorithm type.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

318 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

8.6.19. cusolverRfSolve() [[DEPRECATED]]

[[DEPRECATED]] This function is deprecated and will be removed in a future major version. Please use
the cuDSS library instead for better performance and support. For the transition, please visit cuDSS
Library Samples for a code example.

cusolverStatus_t
cusolverRfSolve(∕* Input (in the device memory) *∕

cusolverRfHandle_t handle,
int *P,
int *Q,
int nrhs,
double *Temp,
int ldt,
∕* Input∕Output (in the device memory) *∕
double *XF,
∕* Input *∕
int ldxf);

This routine performs the forward and backward solve with the lower L ∈ Rnxn and upper U ∈ Rnxn

triangular factors resulting from the LU re-factorization:

A = L ∗ U

which is assumed to have been computed by a prior call to the cusolverRfRefactor() routine.

The routine can solve linear systems with multiple right-hand-sides (RHS):

AX = (LU)X = L(UX) = LY = F where UX = Y

even though currently only a single RHS is supported.

This routine may be called multiple times, once for each of the linear systems:

Aixi = fi

8.6. cuSolverRF: Refactorization Reference 319

https://developer.nvidia.com/cudss
https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuDSS
https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuDSS

cuSOLVER, Release 12.8

Param-
eter

MemSpaceIn/out Meaning

handle host out-
put

The handle to the cuSolverRF library.

P device in-
put

The left permutation (often associated with pivoting). The array size
in n.

Q device in-
put

The right permutation (often associated with reordering). The array
size in n.

nrhs host in-
put

The number right-hand-sides to be solved.

Temp device in-
put

The dense matrix that contains temporary workspace (of size
ldt*nrhs).

ldt host in-
put

The leading dimension of dense matrix Temp (ldt >= n).

XF device in∕
out

The dense matrix that contains the right-hand-sides F and solutions
X (of size ldxf*nrhs).

ldxf host in-
put

The leading dimension of dense matrix XF (ldxf >= n).

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
An unsupported value or parameter was passed.

CUSOLVER_STATUS_EXECUTION_FAILED
A kernel failed to launch on the GPU.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.6.20. cusolverRfBatchSetupHost()

cusolverStatus_t
cusolverRfBatchSetupHost(∕* Input (in the host memory) *∕

int batchSize,
int n,
int nnzA,
int* h_csrRowPtrA,
int* h_csrColIndA,
double *h_csrValA_array[],
int nnzL,
int* h_csrRowPtrL,

(continues on next page)

320 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

(continued from previous page)

int* h_csrColIndL,
double *h_csrValL,
int nnzU,
int* h_csrRowPtrU,
int* h_csrColIndU,
double *h_csrValU,
int* h_P,
int* h_Q,
∕* Output *∕
cusolverRfHandle_t handle);

This routine assembles the internal data structures of the cuSolverRF library for batched operation. It
is called after the call to the cusolverRfCreate() routine, and before any other batched routines.

The batched operation assumes that the user has the following linear systems:

Ajxj = bj , j = 1, 2, ..., batchSize

where each matrix in the set: {Aj} has the same sparsity pattern, and quite similar such that factor-
ization can be done by the same permutation P and Q. In other words, Aj , j > 1 is a small perturbation
of A1 .

This routine accepts as input (on the host) the original matrix A (sparsity pattern and batched values),
the lower (L) and upper (U) triangular factors, as well as the left (P) and the right (Q) permutations
resulting from the full LU factorization of the first (i=1) linear system:

Aixi = fi

The permutations P and Q represent the final composition of all the left and right reorderings applied
to the original matrix A, respectively. However, these permutations are often associated with partial
pivoting and reordering to minimize fill-in, respectively.

Remark 1: the matrices A, L and Umust be CSR format and base-0.

Remark 2: to get best performance, batchSize should be multiple of 32 and greater or equal to
32. The algorithm is memory-bound, once bandwidth limit is reached, there is no room to improve
performance by large batchSize. In practice, batchSize of 32 - 128 is often enough to obtain good
performance, but in some cases larger batchSizemight be beneficial.

The following routine needs to be called only once for a single linear system:

Aixi = fi

Parameter MemSpace In/out Meaning

batchSize host input The number of matrices in the batched mode.

n host input The number of rows (and columns) of matrix A.

nnzA host input The number of non-zero elements of matrix A.

continues on next page

8.6. cuSolverRF: Refactorization Reference 321

cuSOLVER, Release 12.8

Table 77 – continued from previous page

Parameter MemSpace In/out Meaning

h_csrRowPtrA host input The array of offsets corresponding to the start
of each row in the arrays h_csrColIndA and
h_csrValA. This array has also an extra entry at
the end that stores the number of non-zero ele-
ments in the matrix. The array size is n+1.

h_csrColIndA host input The array of column indices corresponding to the
non-zero elements in the matrix. It is assumed
that this array is sorted by row and by column
within each row. The array size is nnzA.

h_csrValA_arrayhost input Array of pointers of size batchSize, each
pointer points to the array of values correspond-
ing to the non-zero elements in the matrix.

nnzL host input The number of non-zero elements of matrix L.

h_csrRowPtrL host input The array of offsets corresponding to the start
of each row in the arrays h_csrColIndL and
h_csrValL. This array has also an extra entry at
the end that stores the number of non-zero ele-
ments in the matrix L. The array size is n+1.

h_csrColIndL host input The array of column indices corresponding to the
non-zero elements in the matrix L. It is assumed
that this array is sorted by row and by column
within each row. The array size is nnzL.

h_csrValL host input The array of values corresponding to the non-
zero elements in the matrix L. It is assumed that
this array is sorted by row and by column within
each row. The array size is nnzL.

nnzU host input The number of non-zero elements of matrix U.

h_csrRowPtrU host input The array of offsets corresponding to the start
of each row in the arrays h_csrColIndU and
h_csrValU. This array has also an extra entry at
the end that stores the number of non-zero ele-
ments in the matrix U. The array size is n+1.

h_csrColIndU host input The array of column indices corresponding to the
non-zero elements in the matrix U. It is assumed
that this array is sorted by row and by column
within each row. The array size is nnzU.

h_csrValU host input The array of values corresponding to the non-
zero elements in the matrix U. It is assumed that
this array is sorted by row and by column within
each row. The array size is nnzU.

h_P host input The left permutation (often associated with piv-
oting). The array size in n.

continues on next page

322 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

Table 77 – continued from previous page

Parameter MemSpace In/out Meaning

h_Q host input The right permutation (often associated with re-
ordering). The array size in n.

handle host output The handle to the cuSolverRF library.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
An unsupported value or parameter was passed.

CUSOLVER_STATUS_ALLOC_FAILED
An allocation of memory failed.

CUSOLVER_STATUS_EXECUTION_FAILED
A kernel failed to launch on the GPU.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.6.21. cusolverRfBatchAnalyze()

cusolverStatus_t cusolverRfBatchAnalyze(cusolverRfHandle_t handle);

This routine performs the appropriate analysis of parallelism available in the batched LU re-
factorization.

It is assumed that a prior call to the cusolverRfBatchSetup[Host]() was done in order to create
internal data structures needed for the analysis.

The following routine needs to be called only once for a single linear system:

Ajxj = bj , j = 1, 2, ..., batchSize

Parameter Memory In/out Meaning

handle host in∕out The handle to the cuSolverRF library.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_EXECUTION_FAILED
A kernel failed to launch on the GPU.

8.6. cuSolverRF: Refactorization Reference 323

cuSOLVER, Release 12.8

CUSOLVER_STATUS_ALLOC_FAILED
An allocation of memory failed.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.6.22. cusolverRfBatchResetValues()

cusolverStatus_t
cusolverRfBatchResetValues(∕* Input (in the device memory) *∕

int batchSize,
int n,
int nnzA,
int* csrRowPtrA,
int* csrColIndA,
double* csrValA_array[],
int *P,
int *Q,
∕* Output *∕
cusolverRfHandle_t handle);

This routine updates internal data structures with the values of the new coefficient matrix. It is as-
sumed that the arrays csrRowPtrA, csrColIndA, P and Q have not changed since the last call to the
cusolverRfbatch_setup_host routine.

This assumption reflects the fact that the sparsity pattern of coefficientmatrices as well as reordering
to minimize fill-in and pivoting remain the same in the set of linear systems:

Ajxj = bj , j = 1, 2, ..., batchSize

The input parameter csrValA_array is an array of pointers on device memory. csrValA_array(j)
points to matrix: Aj which is also on device memory.

324 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

Parameter MemSpace In/out Meaning

batchSize host input The number of matrices in batched mode.

n host input The number of rows (and columns) of matrix A.

nnzA host input The number of non-zero elements of matrix A.

csrRowPtrA device input The array of offsets corresponding to the start
of each row in the arrays csrColIndA and csr-
ValA. This array has also an extra entry at the
end that stores the number of non-zero ele-
ments in the matrix. The array size is n+1.

csrColIndA device input The array of column indices corresponding to the
non-zero elements in the matrix. It is assumed
that this array is sorted by row and by column
within each row. The array size is nnzA.

csr-
ValA_array

device input Array of pointers of size batchSize, each
pointer points to the array of values correspond-
ing to the non-zero elements in the matrix.

P device input The left permutation (often associated with piv-
oting). The array size in n.

Q device input The right permutation (often associated with re-
ordering). The array size in n.

handle host output The handle to the cuSolverRF library.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
An unsupported value or parameter was passed.

CUSOLVER_STATUS_EXECUTION_FAILED
A kernel failed to launch on the GPU.

8.6.23. cusolverRfBatchRefactor()

cusolverStatus_t cusolverRfBatchRefactor(cusolverRfHandle_t handle);

This routine performs the LU re-factorization:

Mj = P ∗Aj ∗QT = Lj ∗ Uj

exploring the available parallelism on theGPU. It is assumed that a prior call to the cusolverRfBatch-
Analyze() was done in order to find the available parallelism.

Remark: cusolverRfBatchRefactor() would not report any failure of LU refactorization. The user
has to call cusolverRfBatchZeroPivot() to know which matrix failed the LU refactorization.

8.6. cuSolverRF: Refactorization Reference 325

cuSOLVER, Release 12.8

Parameter Memory In/out Meaning

handle host in∕out The handle to the cuSolverRF library.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_EXECUTION_FAILED
A kernel failed to launch on the GPU.

8.6.24. cusolverRfBatchSolve()

cusolverStatus_t
cusolverRfBatchSolve(∕* Input (in the device memory) *∕

cusolverRfHandle_t handle,
int *P,
int *Q,
int nrhs,
double *Temp,
int ldt,
∕* Input∕Output (in the device memory) *∕
double *XF_array[],
∕* Input *∕
int ldxf);

To solve Aj ∗ xj = bj , first we reform the equation by Mj ∗ Q ∗ xj = P ∗ bj where Mj = P ∗ Aj ∗ QT

. Then do refactorization Mj = Lj ∗ Uj by cusolverRfBatch_Refactor(). Further cusolverRf-
Batch_Solve() takes over the remaining steps, including:

zj = P ∗ bj
Mj ∗ yj = zj

xj = QT ∗ yj
The input parameter XF_array is an array of pointers on device memory. XF_array(j) points to
matrix xj which is also on device memory.

Remark 1: only a single rhs is supported.

Remark 2: no singularity is reported during backward solve. If somematrixAj failed the refactorization
and Uj has some zero diagonal, backward solve would compute NAN. The user has to call cusolver-
RfBatch_Zero_Pivot to check if refactorization is successful or not.

326 Chapter 8. Using the CUSOLVER API

cuSOLVER, Release 12.8

Parameter MemSpace In/out Meaning

handle host output The handle to the cuSolverRF library.

P device input The left permutation (often associated with piv-
oting). The array size in n.

Q device input The right permutation (often associated with re-
ordering). The array size in n.

nrhs host input The number right-hand-sides to be solved.

Temp device input The dense matrix that contains temporary
workspace (of size ldt*nrhs).

ldt host input The leading dimension of dense matrix Temp
(ldt >= n).

XF_array device in∕out Array of pointers of size batchSize, each
pointer points to the dense matrix that contains
the right-hand-sides F and solutions X (of size
ldxf*nrhs).

ldxf host input The leading dimension of dense matrix XF (ldxf
>= n).

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
An unsupported value or parameter was passed.

CUSOLVER_STATUS_EXECUTION_FAILED
A kernel failed to launch on the GPU.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

8.6.25. cusolverRfBatchZeroPivot()

cusolverStatus_t
cusolverRfBatchZeroPivot(∕* Input *∕

cusolverRfHandle_t handle
∕* Output (in the host memory) *∕
int *position);

Although Aj is close to each other, it does not meanMj = P ∗Aj ∗QT = Lj ∗ Uj exists for every j. The
user can query which matrix failed LU refactorization by checking corresponding value in position
array. The input parameter position is an integer array of size batchSize.

The j-th component denotes the refactorization result of matrix Aj . If position(j) is -1, the LU
refactorization of matrix Aj is successful. If position(j) is k >= 0, matrix Aj is not LU factorizable
and its matrix Uj(j, j) is zero.

8.6. cuSolverRF: Refactorization Reference 327

cuSOLVER, Release 12.8

The return value of cusolverRfBatch_Zero_Pivot is CUSOLVER_STATUS_ZERO_PIVOT if there ex-
ists one Aj which failed LU refactorization. The user can redo LU factorization to get new permutation
P and Q if error code CUSOLVER_STATUS_ZERO_PIVOT is returned.

Parameter MemSpace In/out Meaning

handle host input The handle to the cuSolverRF library.

position host output Integer array of size batchSize. The value of
position(j) reports singularity ofmatrix Aj, -1
if no structural/numerical zero, k >= 0 if Aj(k,
k) is either structural zero or numerical zero.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_ZERO_PIVOT
A zero pivot was encountered during the computation.

328 Chapter 8. Using the CUSOLVER API

Chapter 9. Using the CUSOLVERMG API

9.1. General Description

This section describes how to use the cuSolverMG library API. It is not a reference for the cuSolverMG
API data types and functions; that is provided in subsequent chapters.

9.1.1. Thread Safety

The library is thread-safe only if there is one cuSolverMG context per thread.

9.1.2. Determinism

Currently all cuSolverMG API routines from a given toolkit version generate the same bit-wise results
when the following conditions are respected:

▶ all GPUs participating to the computation have the same compute-capabilities and the same
number of SMs.

▶ the tiles size is kept the same between run.

▶ number of logical GPUs is kept the same. The order of GPUs are not important because all have
the same compute-capabilities.

9.1.3. Tile Strategy

The tiling strategy of cuSolverMG is compatible with ScaLAPACK. The current release only supports
1-D column block cyclic, column-major PACKED format.

Figure 1.a shows a partition of thematrix A of dimension M_A by N_A. Each column tile has T_A columns.
There are seven columns of tiles, labeled as 0,1,2,3,4,5,6, distributed into three GPUs in a cyclic way,
i.e. each GPU takes one column tile in turn. For example, GPU 0 has column tile 0, 3, 6 (yellow tiles) and
GPU 1 takes column tiles next to GPU 0 (blue tiles). Not all GPUs have the same number of tiles; in this
example, GPU 0 has three tiles, others have only two tiles.

Figure 1.b shows two possible formats to store those column tiles locally in each GPU. Left side is
called PACKED format and right side is UNPACKED format. PACKED format aggregates three column
tiles in a contiguous memory block while UNPACKED format distributes these three column tiles into

329

cuSOLVER, Release 12.8

different memory blocks. The only difference between them is that PACKED format can have a big
GEMM call instead of three GEMM calls in UNPACKED format. So theoretically speaking, PACKED
format can deliver better performance than UNPACKED format. cuSolverMG only supports PACKED
format in the API. In order to achieve maximal performance, the user just needs to choose the proper
tile size T_A to partition the matrix, not too small, for example 256 or above is enough.

There is another parameter, called LLD_A, to control the leading dimension of the local matrix in each
GPU.LLD_Amust be greater or equal toM_A. The purpose ofLLD_A is for better performance ofGEMM.
For small problems, GEMM is faster if LLD_A is power of 2. However for big problems, LLD_A does not
show significant improvement. cuSolverMG only supports LLD_A=M_A.

Fig. 1: Example of cuSolverMG tiling for 3 GPUs

The processing grid in cuSolverMG is a list of GPU IDs, similar to the process ID in ScaLAPACK. cu-
SolverMG only supports 1D column block cyclic, so only 1D grid is supported as well. Suppose devi-
ceId is a list of GPU IDs, both deviceId=1,1,1 and deviceId=2,1,0 are valid. The former describes
three logical devices that are selected to run cuSolverMG routines, and all have the same physical ID,
0. The latter still uses three logical devices, but each has a different physical ID. The current design
only accepts 32 logical devices, that is, the length of deviceId is less or equal to 32. Figure 1 uses
deviceId=0,1,2.

In practice, thematrix A is distributed into GPUs listed in deviceId. If the user chooses deviceId=1,
1,1, all columns tile are located in GPU 1, this will limit the size of the problem because of memory
capacity of one GPU. Besides, multiGPU routine adds extra overhead on data communication through
the off-chip bus, which has a big performance impact if NVLINK is not supported or used. It would be
faster to run on a single GPU instead of running multiGPU version with devices of the same GPU ID.

9.1.4. Global Matrix Versus Local Matrix

Operating a submatrix of the matrix A is simple in dense linear algebra, just shift the pointer to the
starting point of the submatrix relative to A. For example, gesvd(10,10, A) is SVD of A(0:9,0:9).
gesvd(10,10, A + 5 + 2*lda) is SVD of 10-by-10 submatrix starting at A(5,2).

However it is not simple to operate on a submatrix of a distributed matrix because different starting
point of the submatrix changes the distribution of the layout of that submatrix. ScaLAPACK introduces
two parameters, IA and JA, to locate the submatrix. Figure 2 shows (global) matrix A of dimension M_A
by N_A. The sub(A) is a M by N submatrix of A, starting at IA and JA. Please be aware that IA and JA
are base-1.

330 Chapter 9. Using the CUSOLVERMG API

cuSOLVER, Release 12.8

Given a distributed matrix A, the user can compute eigenvalues of the submatrix sub(A) by either
calling syevd(A, IA, JA) or gathering sub(A) to another distributedmatrix B and calling syevd(B,
IB=1, JB=1).

Fig. 2: global matrix and local matrix

9.1.5. Usage of _bufferSize

There is no cudaMalloc inside cuSolverMG library, so the user must allocate the device workspace
explicitly. The routine xyz_bufferSize is to query the size of workspace of the routine xyz, for ex-
ample xyz = syevd. To make the API simple, xyz_bufferSize follows almost the same signature of
xyz even it only depends on some parameters, for example, the device pointer is not used to decide
the size of workspace. In most cases, xyz_bufferSize is called in the beginning before actual device
data (pointing by a device pointer) is prepared or before the device pointer is allocated. In such cases,
the user can pass a null pointer to xyz_bufferSize without breaking the functionality.

xyz_bufferSize returns bufferSize for each device. The size is number of elements, not number of
bytes.

9.1.6. Synchronization

All routines are in synchronous (blocking call) manner. The data is ready after the routine. However
the user has to prepare the distributed data before calling the routine. For example, if the user has
multiple streams to set up the matrix, stream synchronization or device synchronization is necessary
to guarantee the distributed matrix is ready.

9.1. General Description 331

cuSOLVER, Release 12.8

9.1.7. Context Switch

The user does not need to restore the device by cudaSetDevice() after each cuSolverMG call. All
routines set the device back to what the caller has.

9.1.8. NVLINK

The peer-to-peer communication via NVLINK can dramatically reduce the overhead of data exchange
among GPUs. cuSolverMG does not enable NVLINK implicitly, instead, it gives this option back to the
user, not to interfere with other libraries. The example code H.1 shows how to enable peer-to-peer
communication.

9.2. cuSolverMG Types Reference

9.2.1. cuSolverMG Types

The float, double, cuComplex, and cuDoubleComplex data types are supported. The first two are
standard C data types, while the last two are exported from cuComplex.h. In addition, cuSolverMG
uses some familiar types from cuBLAS.

9.2.2. cusolverMgHandle_t

This is a pointer type to an opaque cuSolverMG context, which the user must initialize by calling cu-
solverMgCreate() prior to calling any other library function. An un-initialized handle object will lead
to unexpected behavior, including crashes of cuSolverMG. The handle created and returned by cu-
solverMgCreate()must be passed to every cuSolverMG function.

9.2.3. cusolverMgGridMapping_t

The type indicates layout of grids.

Value Meaning

CUDALIBMG_GRID_MAPPING_ROW_MAJOR Row-major ordering.

CUDALIBMG_GRID_MAPPING_COL_MAJOR Column-major ordering.

332 Chapter 9. Using the CUSOLVERMG API

cuSOLVER, Release 12.8

9.2.4. cudaLibMgGrid_t

Opaque structure of the distributed grid.

9.2.5. cudaLibMgMatrixDesc_t

Opaque structure of the distributed matrix descriptor.

9.3. Helper Function Reference

9.3.1. cusolverMgCreate()

cusolverStatus_t
cusolverMgCreate(cusolverMgHandle_t *handle)

This function initializes the cuSolverMG library and creates a handle on the cuSolverMG context. It
must be called before any other cuSolverMG API function is invoked. It allocates hardware resources
necessary for accessing the GPU.

Output

handle The pointer to the handle to the cuSolverMG context.

Status Returned

CUSOLVER_STATUS_SUCCESS
The initialization succeeded.

CUSOLVER_STATUS_ALLOC_FAILED
The resources could not be allocated.

9.3.2. cusolverMgDestroy()

cusolverStatus_t
cusolverMgDestroy(cusolverMgHandle_t handle)

This function releases CPU-side resources used by the cuSolverMG library.

Input

handle The handle to the cuSolverMG context.

Status Returned

CUSOLVER_STATUS_SUCCESS
The shutdown succeeded.

9.3. Helper Function Reference 333

cuSOLVER, Release 12.8

9.3.3. cusolverMgDeviceSelect()

cusolverStatus_t
cusolverMgDeviceSelect(

cusolverMgHandle_t handle,
int nbDevices,
int deviceId[])

This function registers a subset of devices (GPUs) to cuSolverMG handle. Such subset of devices
is used in subsequent API calls. The array deviceId contains a list of logical device ID. The term
logicalmeans repeated device ID are permitted. For example, suppose the user has only one GPU in
the system, say device 0. If the user sets deviceId=0,0,0, then cuSolverMG treats them as three
independent GPUs, one stream each, so concurrent kernel launches still hold. The current design only
supports up to 32 logical devices.

Input

handle The pointer to the handle to the cuSolverMG context.

nbDevices The number of logical devices.

deviceId An integer array of size nbDevices.

Status Returned

CUSOLVER_STATUS_SUCCESS
The initialization succeeded.

CUSOLVER_STATUS_INVALID_VALUE
nbDevicesmust be greater than zero, and less or equal to 32.

CUSOLVER_STATUS_ALLOC_FAILED
The resources could not be allocated.

CUSOLVER_STATUS_INTERNAL_ERROR
Internal error occurred when setting internal streams and events.

9.3.4. cusolverMgCreateDeviceGrid()

cusolverStatus_t
cusolverMgCreateDeviceGrid(

cusolverMgGrid_t* grid,
int32_t numRowDevices,
int32_t numColDevices,
const int32_t deviceId[],
cusolverMgGridMapping_t mapping)

This function sets up a grid of devices.

Only 1-D column block cyclic is supported, so numRowDevicesmust be equal to 1.

Warning: cusolverMgCreateDeviceGrid() must be consistent with cusolverMgDeviceSe-
lect(), i.e. numColDevicesmust be equal to nbDevices in cusolverMgDeviceSelect().

334 Chapter 9. Using the CUSOLVERMG API

cuSOLVER, Release 12.8

Parameter MemSpace In/out Meaning

grid host out-
put

The pointer to the opaque structure.

numRowDe-
vices

host input Number of devices in the row.

numColDe-
vices

host input Number of devices in the column.

deviceId host input Integer array of size numColDevices, containing device
IDs.

mapping host input Row-major or column-major ordering.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_INVALID_VALUE
numColDevices is not greater than 0. numRowDevices is not 1.

9.3.5. cusolverMgDestroyGrid()

cusolverStatus_t
cusolverMgDestroyGrid(

cusolverMgGrid_t grid)

This function releases resources of a grid.

Parameter MemSpace In/out Meaning

grid host input∕output The pointer to the opaque structure.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

9.3.6. cusolverMgCreateMatrixDesc()

cusolverStatus_t
cusolverMgCreateMatrixDesc(

cusolverMgMatrixDesc_t * desc,
int64_t numRows,
int64_t numCols,
int64_t rowBlockSize,
int64_t colBlockSize,
cudaDataType_t dataType,
const cusolverMgGrid_t grid)

9.3. Helper Function Reference 335

cuSOLVER, Release 12.8

This function sets up the matrix descriptor desc.

Only 1-D column block cyclic is supported, so numRowsmust be equal to rowBlockSize.

Parameter Memory In/out Meaning

desc host output The matrix descriptor.

numRows host input The number of rows of global A.

numCols host input The number of columns of global A.

rowBlockSize host input The number of rows per tile.

colBlockSize host input The number of columns per tile.

dataType host input Data type of the matrix.

grid host input The pointer to structure of grid.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_INVALID_VALUE
numRows, numCols, or rowBlockSize or colBlockSize is less than 0. numRows is not equal to
rowBlockSize.

9.3.7. cusolverMgDestroyMatrixDesc()

cusolverStatus_t
cusolverMgDestroyMatrixDesc(

cusolverMgMatrixDesc_t desc)

This function releases the matrix descriptor desc.

Parameter Memory In/out Meaning

desc host input∕output The matrix descriptor.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

336 Chapter 9. Using the CUSOLVERMG API

cuSOLVER, Release 12.8

9.4. Dense Linear Solver Reference

This section describes the linear solver API of cuSolverMG.

9.4.1. cusolverMgPotrf()

The following helper function can calculate the sizes needed for pre-allocated buffer for cusolver-
MgPotrf:

cusolverStatus_t
cusolverMgPotrf_bufferSize(

cusolverMgHandle_t handle,
cublasFillMode_t uplo,
int N,
void *array_d_A[],
int IA,
int JA,
cudaLibMgMatrixDesc_t descrA,
cudaDataType computeType,
int64_t *lwork)

The following routine:

cusolverStatus_t
cusolverMgPotrf(

cusolverMgHandle_t handle,
cublasFillMode_t uplo,
int N,
void *array_d_A[],
int IA,
int JA,
cudaLibMgMatrixDesc_t descrA,
cudaDataType computeType,
void *array_d_work[],
int64_t lwork,
int *info)

computes the Cholesky factorization of a Hermitian positive-definite matrix using the generic API
interface.

A is an n × n Hermitian matrix; only lower or upper part is meaningful. The input parameter uplo
indicates which part of the matrix is used. The function would leave other parts untouched.

If input parameter uplo is CUBLAS_FILL_MODE_LOWER, only lower triangular part of A is processed,
and replaced by lower triangular Cholesky factor L:

A = L ∗ LH

If input parameter uplo is CUBLAS_FILL_MODE_UPPER, only upper triangular part of A is processed,
and replaced by upper triangular Cholesky factor U:

A = UH ∗ U

The user has to provide device working space in array_d_work. array_d_work is a host pointer
array of dimension G, where G is number of devices. array_d_work[j] is a device pointer pointing

9.4. Dense Linear Solver Reference 337

cuSOLVER, Release 12.8

to a device memory in j-th device. The data type of array_d_work[j] is computeType. The size of
array_d_work[j] is lwork which is the number of elements per device, returned by cusolverMg-
Potrf_bufferSize().

If Cholesky factorization failed, i.e. some leading minor of A is not positive definite, or equivalently
some diagonal elements of L or U is not a real number. The output parameter info would indicate
smallest leading minor of A which is not positive definite.

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting handle).

The generic API has two different types, dataTypeA is data type of the matrix A, andcomputeType
is compute type of the operation and data type of the workspace (array_d_work) descrA contains
dataTypeA, so there is no explicit parameter of dataTypeA. cusolverMgPotrf only supports the
following four combinations.

Please visit cuSOLVER Library Samples - MgPotrf for a code example.

Valid combination of data type and compute type

DataTypeA ComputeType Meaning

CUDA_R_32F CUDA_R_32F SPOTRF

CUDA_R_64F CUDA_R_64F DPOTRF

CUDA_C_32F CUDA_C_32F CPOTRF

CUDA_C_64F CUDA_C_64F ZPOTRF

Table 1: API of potrf

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverMg library con-
text.

uplo host input Indicates if matrix A lower or
upper part is stored, the other
part is not referenced. Only
CUBLAS_FILL_MODE_LOWER is sup-
ported.

N host input Number of rows and columns ofmatrix
sub(A).

array_d_A host in∕out A host pointer array of dimension G.
It contains a distributed <type> array
containing sub(A) of dimension N *
N. On exit, sub(A) contains the fac-
tors L or U.

IA host input The row index in the global array A in-
dicating the first row of sub(A).

JA host input The column index in the global array A
indicating the first column of sub(A).

continues on next page

338 Chapter 9. Using the CUSOLVERMG API

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/MgPotrf

cuSOLVER, Release 12.8

Table 1 – continued from previous page

Parameter Memory In/out Meaning

descrA host input Matrix descriptor for the distributed
matrix A.

computeType host input Data type used for computation.

array_d_work host in∕out A host pointer array of dimension G.
array_d_work[j] points to a device
working space in j-th device, <type>
array of size lwork.

lwork host input Sze of array_d_work[j], returned
by cusolverMgPotrf_bufferSize.
lwork denotes number of elements,
not number of bytes.

info host output If info = 0, the Cholesky factoriza-
tion is successful.
If info = -i, the i-th parameter is
wrong (not counting handle).
If info = i, the leadingminor of order
i is not positive definite.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (M,N<0).

CUSOLVER_STATUS_ARCH_MISMATCH
The device only supports compute capability 5.0 and above.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

9.4.2. cusolverMgPotrs()

The helper function below can calculate the sizes needed for pre-allocated buffer for cusolverMg-
Potrs.

cusolverStatus_t
cusolverMgPotrs_bufferSize(

cusolverMgHandle_t handle,
cublasFillMode_t uplo,
int n,
int nrhs,
void *array_d_A[],
int IA,
int JA,

(continues on next page)

9.4. Dense Linear Solver Reference 339

cuSOLVER, Release 12.8

(continued from previous page)

cudaLibMgMatrixDesc_t descrA,
void *array_d_B[],
int IB,
int JB,
cudaLibMgMatrixDesc_t descrB,
cudaDataType computeType,
int64_t *lwork)

The following routine:

cusolverStatus_t
cusolverMgPotrs(

cusolverMgHandle_t handle,
cublasFillMode_t uplo,
int n,
int nrhs,
void *array_d_A[],
int IA,
int JA,
cudaLibMgMatrixDesc_t descrA,
void *array_d_B[],
int IB,
int JB,
cudaLibMgMatrixDesc_t descrB,
cudaDataType computeType,
void *array_d_work[],
int64_t lwork,
int *info)

This function solves a system of linear equations:

A ∗X = B

where A is an n × n Hermitian matrix, only lower or upper part is meaningful using the generic API
interface. The input parameter uplo indicates which part of the matrix is used. The function would
leave other parts untouched.

If input parameter uplo is CUBLAS_FILL_MODE_LOWER, the matrix should A contain the lower trian-
gular factor for Cholesky decomposition previously computed by cusolverMgPotrf routine.

A = L ∗ LH

If input parameter uplo is CUBLAS_FILL_MODE_UPPER, the matrix should A contain the upper trian-
gular factor for Cholesky decomposition previously computed by the cusolverMgPotrf routine.

A = UH ∗ U

The operation is in-place, i.e. matrix B contains the solution of the linear system on exit.

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting handle).

The user has to provide device working space in array_d_work. array_d_work is a host pointer array
of dimension G, where G is the number of devices. array_d_work[j] is a device pointer pointing to
a device memory in the j-th device. The data type of array_d_work[j] is computeType. The size
of array_d_work[j] is lwork which is number of elements per device, returned by cusolverMg-
Potrs_bufferSize().

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting handle).

340 Chapter 9. Using the CUSOLVERMG API

cuSOLVER, Release 12.8

The generic API has four different types: dataTypeA is data type of the matrix A, dataTypeB is data
type of the matrix B, computeType is compute type of the operation and data type of the workspace
(array_d_work) descrA contains dataTypeA and descrB contains dataTypeB and so there is no
explicit parameter of dataTypeA and dataTypeB. cusolverMgPotrs only supports the following four
combinations.

Please visit cuSOLVER Library Samples - MgPotrf for a code example.

Valid combination of data type and compute type

DataTypeA DataTypeB ComputeType Meaning

CUDA_R_32F CUDA_R_32F CUDA_R_32F SPOTRS

CUDA_R_64F CUDA_R_64F CUDA_R_64F DPOTRS

CUDA_C_32F CUDA_C_32F CUDA_C_32F CPOTRS

CUDA_C_64F CUDA_C_64F CUDA_C_64F ZPOTRS

Table 2: API of potrs

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverMg library con-
text.

uplo host input Indicates if matrix A lower or
upper part is stored, the other
part is not referenced. Only
CUBLAS_FILL_MODE_LOWER is sup-
ported.

N host input Number of rows and columns ofmatrix
sub(A).

NRHS host input Number of columns of matrix sub(A)
and sub(B).

array_d_A host in∕out A host pointer array of dimension G.
It contains a distributed <type> array
containing sub(A) of dimension M *
N. On exit, sub(A) contains the fac-
tors L and U.

IA host input The row index in the global array A in-
dicating the first row of sub(A).

JA host input The column index in the global array A
indicating the first column of sub(A).

descrA host input Matrix descriptor for the distributed
matrix A.

continues on next page

9.4. Dense Linear Solver Reference 341

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/MgPotrf

cuSOLVER, Release 12.8

Table 2 – continued from previous page

Parameter Memory In/out Meaning

array_d_B host in∕out A host pointer array of dimension G.
It contains a distributed <type> array
containing sub(B) of dimension N *
NRHS. On exit, sub(A) contains the so-
lution to the linear system.

IB host input The row index in the global array B in-
dicating the first row of sub(B).

JB host input The column index in the global array B
indicating the first column of sub(B).

descrB host input Matrix descriptor for the distributed
matrix B.

computeType host input Data type used for computation.

array_d_work host in∕out A host pointer array of dimension G.
array_d_work[j] points to a device
working space in j-th device, <type>
array of size lwork.

lwork host input Size of array_d_work[j], returned
by cusolverMgPotrs_bufferSize.
lwork denotes number of elements,
not number of bytes.

info host output If info = 0, the routine successful.
If info = -i, the i-th parameter is
wrong (not counting handle).

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (M,N<0).

CUSOLVER_STATUS_ARCH_MISMATCH
The device only supports compute capability 5.0 and above.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

342 Chapter 9. Using the CUSOLVERMG API

cuSOLVER, Release 12.8

9.4.3. cusolverMgPotri()

The helper function below can calculate the sizes needed for pre-allocated buffer for cusolverMg-
Potri.

cusolverStatus_t
cusolverMgPotri_bufferSize(

cusolverMgHandle_t handle,
cublasFillMode_t uplo,
int N,
void *array_d_A[],
int IA,
int JA,
cudaLibMgMatrixDesc_t descrA,
cudaDataType computeType,
int64_t *lwork)

The following routine:

cusolverStatus_t
cusolverMgPotri(

cusolverMgHandle_t handle,
cublasFillMode_t uplo,
int N,
void *array_d_A[],
int IA,
int JA,
cudaLibMgMatrixDesc_t descrA,
cudaDataType computeType,
void *array_d_work[],
int64_t lwork,
int *info)

This function computes the inverse of a Hermitian positive-definite matrix A using the Cholesky fac-
torization

A = L ∗ LH = UH ∗ U

computed by cusolverMgPotrf().

If the input parameter uplo is CUBLAS_FILL_MODE_LOWER, on input, matrix A contains the lower tri-
angular factor of A computed by cusolverMgPotrf. Only lower triangular part of A is processed, and
replaced the by lower triangular part of the inverse of A.

If the input parameter uplo is CUBLAS_FILL_MODE_UPPER, on input, matrix A contains the upper
triangular factor of A computed by cusolverMgPotrf. Only upper triangular part of A is processed,
and replaced the by upper triangular part of the inverse of A.

The user has to provide device working space in array_d_work. array_d_work is a host pointer ar-
ray of dimension G, where G is number of devices. array_d_work[j] is a device pointer pointing to
a device memory in the j-th device. The data type of array_d_work[j] is computeType. The size
of array_d_work[j] is lwork which is number of elements per device, returned by cusolverMg-
Potri_bufferSize().

If the computation of the inverse fails, i.e. some leading minor of L or U, is null, the output parameter
info would indicate the smallest leading minor of L or U which is not positive definite.

If the output parameter info = -i (less than zero), the i-th parameter is wrong (not counting the
handle).

9.4. Dense Linear Solver Reference 343

cuSOLVER, Release 12.8

The generic API has two different types, dataTypeA is data type of the matrix A, computeType is
compute type of the operation and data type of the workspace (array_d_work) descrA contains
dataTypeA, so there is no explicit parameter of dataTypeA. cusolverMgPotri only supports the
following four combinations.

Please visit cuSOLVER Library Samples - MgPotrf for a code example.

Valid combinations of data type and compute type

DataTypeA ComputeType Meaning

CUDA_R_32F CUDA_R_32F SPOTRI

CUDA_R_64F CUDA_R_64F DPOTRI

CUDA_C_32F CUDA_C_32F CPOTRI

CUDA_C_64F CUDA_C_64F ZPOTRI

Table 3: API of potri

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverMg library con-
text.

uplo host input Indicates if matrix A lower or
upper part is stored, the other
part is not referenced. Only
CUBLAS_FILL_MODE_LOWER is sup-
ported.

N host input Number of rows and columns ofmatrix
sub(A).

array_d_A host in∕out A host pointer array of dimension G.
It contains a distributed <type> array
containing sub(A) of dimension N *
N. On exit, sub(A) contains the upper
or lower triangular part of the inverse
of A depending on the value of uplo
argument.

IA host input The row index in the global array A in-
dicating the first row of sub(A).

JA host input The column index in the global array A
indicating the first column of sub(A).

descrA host input Matrix descriptor for the distributed
matrix A.

computeType host input Data type used for computation.

array_d_work host in∕out A host pointer array of dimension G.
array_d_work[j] points to a device
working space in j-th device, <type>
array of size lwork.

continues on next page

344 Chapter 9. Using the CUSOLVERMG API

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/MgPotrf

cuSOLVER, Release 12.8

Table 3 – continued from previous page

Parameter Memory In/out Meaning

lwork host input Size of array_d_work[j], returned
by cusolverMgPotri_bufferSize.
lwork denotes number of elements,
not number of bytes.

info host output If info = 0, the Cholesky factoriza-
tion is successful.
If info = -i, the i-th parameter is
wrong (not counting handle).
If info = i, the leadingminor of order
i is zero.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED
The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (M,N<0).

CUSOLVER_STATUS_ARCH_MISMATCH
The device only supports compute capability 5.0 and above.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

9.4.4. cusolverMgGetrf()

The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverMgGetrf_bufferSize(

cusolverMgHandle_t handle,
int M,
int N,
void *array_d_A[],
int IA,
int JA,
cudaLibMgMatrixDesc_t descrA,
int *array_d_IPIV[],
cudaDataType_t computeType,
int64_t *lwork);

cusolverStatus_t
cusolverMgGetrf(

cusolverMgHandle_t handle,
int M,
int N,
void *array_d_A[],

(continues on next page)

9.4. Dense Linear Solver Reference 345

cuSOLVER, Release 12.8

(continued from previous page)

int IA,
int JA,
cudaLibMgMatrixDesc_t descrA,
int *array_d_IPIV[],
cudaDataType_t computeType,
void *array_d_work[],
int64_t lwork,
int *info);

This function computes the LU factorization of anM ×N matrix

P ∗A = L ∗ U

where A is anM ×N matrix, P is a permutation matrix, L is a lower triangular matrix with unit diagonal,
and U is an upper triangular matrix.

The user has to provide device working space in array_d_work. array_d_work is a host pointer
array of dimension G, where G is number of devices. array_d_work[j] is a device pointer point-
ing to a device memory in j-th device. The data type of array_d_work[j] is computeType. The
size of array_d_work[j] is lwork which is number of elements per device, returned by cusolver-
MgGetrf_bufferSize().

If LU factorization failed, i.e. matrix A (U) is singular, The output parameter info=i indicates U(i,i)
= 0.

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting handle).

If array_d_IPIV is null, no pivoting is performed. The factorization is A=L*U, which is not numerically
stable.

array_d_IPIV must be consistent with array_d_A, i.e. JA is the first column of sub(A), also the
first column of sub(IPIV).

No matter LU factorization failed or not, the output parameter array_d_IPIV contains pivoting se-
quence, row i is interchanged with row array_d_IPIV(i).

The generic API has three different types, dataTypeA is data type of the matrix A, computeType is
compute type of the operation and data type of the workspace (array_d_work) descrA contains
dataTypeA, so there is no explicit parameter of dataTypeA. cusolverMgGetrf only supports the
following four combinations.

Please visit cuSOLVER Library Samples - MgGetrf for a code example.

Valid combinations of data type and compute type

DataTypeA ComputeType Meaning

CUDA_R_32F CUDA_R_32F SGETRF

CUDA_R_64F CUDA_R_64F DGETRF

CUDA_C_32F CUDA_C_32F CGETRF

CUDA_C_64F CUDA_C_64F ZGETRF

Remark 1: tile size TAmust be less or equal to 512.

346 Chapter 9. Using the CUSOLVERMG API

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/MgGetrf

cuSOLVER, Release 12.8

Table 4: API of getrf

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverMg library con-
text.

M host input Number of rows of matrix sub(A).

N host input Number of columns of matrix sub(A).

array_d_A host in∕out A host pointer array of dimension G.
It contains a distributed <type> array
containing sub(A) of dimension M *
N. On exit, sub(A) contains the fac-
tors L and U.

IA host input The row index in the global array A in-
dicating the first row of sub(A).

JA host input The column index in the global array A
indicating the first column of sub(A).

descrA host input Matrix descriptor for the distributed
matrix A.

array_d_IPIV host output A host pointer array of dimension G.
it contains a distributed integer array
containing sub(IPIV) of size min(M,
N). sub(IPIV) contains pivot indices.

computeType host input Data type used for computation.

array_d_work host in∕out A host pointer array of dimension G.
array_d_work[j] points to a device
working space in j-th device, <type>
array of size lwork.

lwork host input Size of array_d_work[j], returned
by cusolverMgGetrf_bufferSize.
lwork denotes number of elements,
not number of bytes.

info host output If info = 0, the LU factorization is
successful.
If info = -i, the i-th parameter is
wrong (not counting handle).
If info = i, the U(i,i) = 0.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (M,N<0).

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

9.4. Dense Linear Solver Reference 347

cuSOLVER, Release 12.8

9.4.5. cusolverMgGetrs()

The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverMgGetrs_bufferSize(

cusolverMgHandle_t handle,
cublasOperation_t TRANS,
int N,
int NRHS,
void *array_d_A[],
int IA,
int JA,
cudaLibMgMatrixDesc_t descrA,
int *array_d_IPIV[],
void *array_d_B[],
int IB,
int JB,
cudaLibMgMatrixDesc_t descrB,
cudaDataType_t computeType,
int64_t *lwork);

cusolverStatus_t
cusolverMgGetrs(

cusolverMgHandle_t handle,
cublasOperation_t TRANS,
int N,
int NRHS,
void *array_d_A[],
int IA,
int JA,
cudaLibMgMatrixDesc_t descrA,
int *array_d_IPIV[],
void *array_d_B[],
int IB,
int JB,
cudaLibMgMatrixDesc_t descrB,
cudaDataType_t computeType,
void *array_d_work[],
int64_t lwork,
int *info);

This function solves a linear system of multiple right-hand sides

op(A) ∗X = B

where A is an N ×N matrix, and was LU-factored by getrf, that is, lower triangular part of A is L, and
upper triangular part (including diagonal elements) of A is U. B is anN ×NRHS right-hand side matrix.
The solution matrix X overwrites the right-hand-side matrix B.

The input parameter TRANS is defined by

348 Chapter 9. Using the CUSOLVERMG API

cuSOLVER, Release 12.8

The user has to provide device working space in array_d_work. array_d_work is a host pointer
array of dimension G, where G is number of devices. array_d_work[j] is a device pointer point-
ing to a device memory in j-th device. The data type of array_d_work[j] is computeType. The
size of array_d_work[j] is lwork which is number of elements per device, returned by cusolver-
MgGetrs_bufferSize().

If array_d_IPIV is null, no pivoting is performed. Otherwise, array_d_IPIV is an output of getrf.
It contains pivot indices, which are used to permutate right-hand sides.

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting handle).

The generic API has three different types, dataTypeA is data type of the matrix A, dataTypeB is
data type of the matrix B, and computeType is compute type of the operation and data type of
the workspace (array_d_work) descrA contains dataTypeA, so there is no explicit parameter of
dataTypeA. descrB contains dataTypeB, so there is no explicit parameter of dataTypeB. cusolver-
MgGetrs only supports the following four combinations.

Valid combinations of data type and compute type

DataTypeA DataTypeB ComputeType Meaning

CUDA_R_32F CUDA_R_32F CUDA_R_32F SGETRS

CUDA_R_64F CUDA_R_64F CUDA_R_64F DGETRS

CUDA_C_32F CUDA_C_32F CUDA_C_32F CGETRS

CUDA_C_64F CUDA_C_64F CUDA_C_64F ZGETRS

Remark 1: tile size TAmust be less or equal to 512.

Remark 2: only support TRANS=CUBLAS_OP_N.

Please visit cuSOLVER Library Samples - MgGetrf for a code example.

Table 5: API of getrs

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverMG library con-
text.

TRANS host input Operation op(A) that is non- or (conj.)
transpose.

N host input Number of rows and columns ofmatrix
sub(A).

NRHS host input Number of columns of matrix sub(B).

array_d_A host input A host pointer array of dimension G.
It contains a distributed <type> array
containing sub(A) of dimension M *
N. sub(A) contains the factors L and
U.

IA host input The row index in the global array A in-
dicating the first row of sub(A).

continues on next page

9.4. Dense Linear Solver Reference 349

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/MgGetrf

cuSOLVER, Release 12.8

Table 5 – continued from previous page

Parameter Memory In/out Meaning

JA host input The column index in the global array A
indicating the first column of sub(A).

descrA host input Matrix descriptor for the distributed
matrix A.

array_d_IPIV host input A host pointer array of dimension G.
it contains a distributed integer array
containing sub(IPIV) of dimension
min(M,N). sub(IPIV) contains pivot
indices.

array_d_B host in∕out A host pointer array of dimension G.
It contains a distributed <type> array
containing sub(B) of dimension N *
NRHS.

IB host input The row index in the global array B in-
dicating the first row of sub(B).

JB host input The column index in the global array B
indicating the first column of sub(B).

descrB host input Matrix descriptor for the distributed
matrix B.

computeType host input Data type used for computation.

array_d_work host in∕out A host pointer array of dimension G.
array_d_work[j] points to a device
working space in j-th device, <type>
array of size lwork.

lwork host input Size of array_d_work[j], returned
by cusolverMgGetrs_bufferSize.
lwork denotes number of elements,
not number of bytes.

info host output If info = 0, the operation is success-
ful.
If info = -i, the i-th parameter is
wrong (not counting handle).

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (N<0 or NRHS<0).

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

350 Chapter 9. Using the CUSOLVERMG API

cuSOLVER, Release 12.8

9.5. Dense Eigenvalue Solver Reference

This section describes the eigenvalue solver API of cuSolverMG.

9.5.1. cusolverMgSyevd()

The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverMgSyevd_bufferSize(

cusolverMgHandle_t handle,
cusolverEigMode_t jobz,
cublasFillMode_t uplo,
int N,
void *array_d_A[],
int IA,
int JA,
cudaLibMgMatrixDesc_t descrA,
void *W,
cudaDataType_t dataTypeW,
cudaDataType_t computeType,
int64_t *lwork
);

cusolverStatus_t
cusolverMgSyevd(

cusolverMgHandle_t handle,
cusolverEigMode_t jobz,
cublasFillMode_t uplo,
int N,
void *array_d_A[],
int IA,
int JA,
cudaLibMgMatrixDesc_t descrA,
void *W,
cudaDataType_t dataTypeW,
cudaDataType_t computeType,
void *array_d_work[],
int64_t lwork,
int *info);

This function computes eigenvalues and eigenvectors of a symmetric (Hermitian)N ×N matrix A. The
standard symmetric eigenvalue problem is:

A ∗ V = V ∗ Λ

where Λ is a real N ×N diagonal matrix. V is an N ×N unitary matrix. The diagonal elements of Λ are
the eigenvalues of A in ascending order.

cusolverMgSyevd returns the eigenvalues in W and overwrites the eigenvectors in A. W is a host 1×N
vector.

The generic API has three different types, dataTypeA is data type of the matrix A, dataTypeW is
data type of the vector W, and computeType is compute type of the operation and data type of

9.5. Dense Eigenvalue Solver Reference 351

cuSOLVER, Release 12.8

the workspace (array_d_work) descrA contains dataTypeA, so there is no explicit parameter of
dataTypeA. cusolverMgSyevd only supports the following four combinations.

Valid combination of data type and compute type

DataTypeA DataTypeW ComputeType Meaning

CUDA_R_32F CUDA_R_32F CUDA_R_32F SSYEVD

CUDA_R_64F CUDA_R_64F CUDA_R_64F DSYEVD

CUDA_C_32F CUDA_R_32F CUDA_C_32F CHEEVD

CUDA_C_64F CUDA_R_64F CUDA_C_64F ZHEEVD

The user has to provide device working space in array_d_work. array_d_work is a host pointer
array of dimension G, where G is number of devices. array_d_work[j] is a device pointer point-
ing to a device memory in j-th device. The data type of array_d_work[j] is computeType. The
size of array_d_work[j] is lwork which is number of elements per device, returned by cusolver-
MgSyevd_bufferSize().

array_d_A is also a host pointer array of dimension G. array_d_A[j] is a device pointer pointing
to a device memory in j-th device. The data type of array_d_A[j] is dataTypeA. The size of ar-
ray_d_A[j] is about N*TA*(blocks per device). The user has to prepare array_d_A manually
(seecuSOLVER Library Samples - MgSyevd for a code example.).

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting handle).
If info = i (greater than zero), the algorithm failed to converge all eigenvalues.

If jobz = CUSOLVER_EIG_MODE_VECTOR, A contains the orthonormal eigenvectors of the matrix A.
The eigenvectors are computed by a divide and conquer algorithm.

Remark 1: only CUBLAS_FILL_MODE_LOWER is supported, so the user has to prepare lower triangle of
A.

Remark 2: only IA=1 and JA=1 are supported.

Remark 3: tile size TA must be less or equal to 1024. To achieve best performance, TA should be 256
or 512.

Please visit cuSOLVER Library Samples - MgSyevd for a code example.

Table 6: API of syevd

Parameter Memory In/out Meaning

handle host input Handle to the cuSolverMG library con-
text.

jobz host input Specifies options to either compute
eigenvalue only or compute eigen-pair:
jobz = CU-
SOLVER_EIG_MODE_NOVECTOR :
Compute eigenvalues only
jobz = CU-
SOLVER_EIG_MODE_VECTOR : Com-
pute eigenvalues and eigenvectors

continues on next page

352 Chapter 9. Using the CUSOLVERMG API

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/MgSyevd
https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/MgSyevd

cuSOLVER, Release 12.8

Table 6 – continued from previous page

Parameter Memory In/out Meaning

uplo host input Specifies which part of A is stored.
uplo = CUBLAS_FILL_MODE_LOWER:
Lower triangle of A is stored.
uplo = CUBLAS_FILL_MODE_UPPER:
Upper triangle of A is stored.
Only CUBLAS_FILL_MODE_LOWER is
supported.

N host input Number of rows (or columns) of matrix
sub(A).

array_d_A host in∕out A host pointer array of dimension G.
It contains a distributed <type> array
containing sub(A) of dimension N *
N.
If uplo = CUBLAS_FILL_MODE_UPPER,
the leading N-by-N upper triangular
part of sub(A) contains the upper tri-
angular part of the matrix sub(A).
If uplo = CUBLAS_FILL_MODE_LOWER,
the leading N-by-N lower triangu-
lar part of sub(A) contains the
lower triangular part of the matrix
sub(A). On exit, if jobz = CU-
SOLVER_EIG_MODE_VECTOR, and
info = 0, sub(A) contains the or-
thonormal eigenvectors of the matrix
sub(A).
If jobz = CU-
SOLVER_EIG_MODE_NOVECTOR, the
contents of A are destroyed.

IA host input The row index in the global array A in-
dicating the first row of sub(A).

JA host input The column index in the global array A
indicating the first column of sub(A).

descrA host input Matrix descriptor for the distributed
matrix A.

W host output A real array of dimension N. The eigen-
value values of sub(A), in ascending
order, that is, sorted so that W(i) <=
W(i+1).

dataTypeW host input Data type of the vector W.

computeType host input Data type used for computation.

continues on next page

9.5. Dense Eigenvalue Solver Reference 353

cuSOLVER, Release 12.8

Table 6 – continued from previous page

Parameter Memory In/out Meaning

array_d_work host in∕out A host pointer array of dimension G.
array_d_work[j] points to a device
working space in j-th device, <type>
array of size lwork.

lwork host input Size of array_d_work[j], returned
by cusolverMgSyevd_bufferSize.
lwork denotes number of elements,
not number of bytes.

info host output If info = 0, the operation is success-
ful.
If info = -i, the i-th parameter is
wrong (not counting handle).
If info = i (> 0), not all eigenvalues
converged.

Status Returned

CUSOLVER_STATUS_SUCCESS
The operation completed successfully.

CUSOLVER_STATUS_INVALID_VALUE
Invalid parameters were passed (N<0, or lda<max(1,N), or jobz is not CU-
SOLVER_EIG_MODE_NOVECTOR or CUSOLVER_EIG_MODE_VECTOR, or uplo is not
CUBLAS_FILL_MODE_LOWER, or IA and JA are not 1, or N is bigger than dimension of global A, or
the combination of dataType and computeType is not valid.

CUSOLVER_STATUS_INTERNAL_ERROR
An internal operation failed.

354 Chapter 9. Using the CUSOLVERMG API

Chapter 10. Acknowledgements

NVIDIA would like to thank the following individuals and institutions for their contributions:

▶ CPU LAPACK routines from netlib, CLAPACK-3.2.1 (http://www.netlib.org/clapack/)

The following is license of CLAPACK-3.2.1.

Copyright (c) 1992-2008 The University of Tennessee. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted pro-
vided that the following conditions are met:

▶ Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

▶ Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer listed in this license in the documentation and/or other materials
provided with the distribution.

▶ Neither the name of the copyright holders nor the names of its contributors may be used to en-
dorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT OWNEROR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDEN-
TAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

▶ METIS-5.1.0 (http://glaros.dtc.umn.edu/gkhome/metis/metis/overview)

The following is license of METIS (Apache 2.0 license).

Copyright 1995-2013, Regents of the University of Minnesota

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in
compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is
distributed on an “AS IS” BASIS,WITHOUTWARRANTIES OR CONDITIONSOF ANY KIND, either express
or implied. See the License for the specific language governing permissions and limitations under the
License.

▶ QD (A C++/fortran-90 double-double and quad-double package) (http://crd-legacy.lbl.gov/
~dhbailey/mpdist/)

355

http://www.netlib.org/clapack/
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
http://www.apache.org/licenses/LICENSE-2.0
http://crd-legacy.lbl.gov/~dhbailey/mpdist/
http://crd-legacy.lbl.gov/~dhbailey/mpdist/

cuSOLVER, Release 12.8

The following is license of QD (modified BSD license).

Copyright (c) 2003-2009, The Regents of the University of California, through Lawrence Berkeley Na-
tional Laboratory (subject to receipt of any required approvals from U.S. Dept. of Energy) All rights
reserved.

1. Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

(1) Redistributions of source code must retain the copyright notice, this list of conditions and the
following disclaimer.

(2) Redistributions in binary formmust reproduce the copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

(3) Neither the name of the University of California, Lawrence Berkeley National Laboratory, U.S.
Dept. of Energy nor the names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.

2. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIEDWARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIEDWAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DI-
RECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENTOF SUBSTITUTE GOODSOR SERVICES; LOSSOF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

3. You are under no obligation whatsoever to provide any bug fixes, patches, or upgrades to the
features, functionality or performance of the source code (“Enhancements”) to anyone; how-
ever, if you choose to make your Enhancements available either publicly, or directly to Lawrence
Berkeley National Laboratory, without imposing a separate written license agreement for such
Enhancements, then you hereby grant the following license: a non-exclusive, royalty-free per-
petual license to install, use, modify, prepare derivative works, incorporate into other computer
software, distribute, and sublicense such enhancements or derivative works thereof, in binary
and source code form.

356 Chapter 10. Acknowledgements

Chapter 11. Bibliography

[1] Timothy A. Davis, Direct Methods for sparse Linear Systems, siam 2006.

[2] E. Chuthill and J. McKee, reducing the bandwidth of sparse symmetric matrices, ACM ‘69 Proceed-
ings of the 1969 24th national conference, Pages 157-172.

[3] Alan George, Joseph W. H. Liu, An Implementation of a Pseudoperipheral Node Finder, ACM Trans-
actions on Mathematical Software (TOMS) Volume 5 Issue 3, Sept. 1979 Pages 284-295.

[4] J. R. Gilbert and T. Peierls, Sparse partial pivoting in time proportional to arithmetic operations,
SIAM J. Sci. Statist. Comput., 9 (1988), pp. 862-874.

[5] Alan George and Esmond Ng, An Implementation of Gaussian Elimination with Partial Pivoting for
Sparse Systems, SIAM J. Sci. and Stat. Comput., 6(2), 390-409.

[6] Alan George and Esmond Ng, Symbolic Factorization for Sparse Gaussian Elimination with Partial
Pivoting, SIAM J. Sci. and Stat. Comput., 8(6), 877-898.

[7] John R. Gilbert, Xiaoye S. Li, Esmond G. Ng, Barry W. Peyton, Computing Row and Column Counts
for Sparse QR and LU Factorization, BIT 2001, Vol. 41, No. 4, pp. 693-711.

[8] Patrick R. Amestoy, Timothy A. Davis, Iain S. Duff, An Approximate Minimum Degree Ordering Al-
gorithm, SIAM J. Matrix Analysis Applic. Vol 17, no 4, pp. 886-905, Dec. 1996.

[9] Alan George, Joseph W. Liu, A Fast Implementation of the Minimum Degree Algorithm Using Quo-
tient Graphs, ACM Transactions on Mathematical Software, Vol 6, No. 3, September 1980, page 337-
358.

[10] Alan George, JosephW. Liu, Computer Solution of Large Sparse Positive Definite Systems, Engle-
wood Cliffs, New Jersey: Prentice-Hall, 1981.

[11] Iain S. Duff, ALGORITHM 575 Permutations for a Zero-Free Diagonal, ACM Transactions on Math-
ematical Software, Vol 7, No 3, September 1981, Page 387-390

[12] Iain S. Duff and Jacko Koster, On algorithms for permuting large entries to the diagonal of a sparse
matrix, SIAM Journal on Matrix Analysis and Applications, 2001, Vol. 22, No. 4 : pp. 973-996

[13] “A Fast and Highly Quality Multilevel Scheme for Partitioning Irregular Graphs”. George Karypis
and Vipin Kumar. SIAM Journal on Scientific Computing, Vol. 20, No. 1, pp. 359-392, 1999.

[14] YUJI NAKATSUKASA, ZHAOJUN BAI, AND FRANC¸OIS GYGI, OPTIMIZING HALLEY’S ITERATION
FOR COMPUTING THE MATRIX POLAR DECOMPOSITION, SIAM J. Matrix Anal. Appl., 31 (5): 2700-
2720,2010

[15] Halko, Nathan, Per-Gunnar Martinsson, and Joel A. Tropp. “Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions.” SIAM review 53.2
(2011): 217-288.

357

cuSOLVER, Release 12.8

358 Chapter 11. Bibliography

Chapter 12. Notices

12.1. Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a
certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no repre-
sentations or warranties, expressed or implied, as to the accuracy or completeness of the information
contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall
have no liability for the consequences or use of such information or for any infringement of patents
or other rights of third parties that may result from its use. This document is not a commitment to
develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any
other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that
such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the
time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by
authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA
product referenced in this document. No contractual obligations are formed either directly or indirectly
by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military,
aircraft, space, or life support equipment, nor in applicationswhere failure ormalfunction of theNVIDIA
product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or
applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIAmakes no representation or warranty that products based on this document will be suitable for
any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA.
It is customer’s sole responsibility to evaluate and determine the applicability of any information con-
tained in this document, ensure the product is suitable and fit for the application planned by customer,
and perform the necessary testing for the application in order to avoid a default of the application or
the product. Weaknesses in customer’s product designs may affect the quality and reliability of the
NVIDIA product andmay result in additional or different conditions and/or requirements beyond those
contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or prob-
lem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is
contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other
NVIDIA intellectual property right under this document. Information published by NVIDIA regarding
third-party products or services does not constitute a license from NVIDIA to use such products or

359

cuSOLVER, Release 12.8

services or a warranty or endorsement thereof. Use of such information may require a license from a
third party under the patents or other intellectual property rights of the third party, or a license from
NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA
in writing, reproduced without alteration and in full compliance with all applicable export laws and
regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENTANDALLNVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE
BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WAR-
RANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENTWILL NVIDIA BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CON-
SEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARIS-
ING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCHDAMAGES. Notwithstanding any damages that customermight incur for any reasonwhatso-
ever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein
shall be limited in accordance with the Terms of Sale for the product.

12.2. OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

12.3. Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the
U.S. and other countries. Other company and product names may be trademarks of the respective
companies with which they are associated.

Copyright

©2014-2025, NVIDIA Corporation & affiliates. All rights reserved

360 Chapter 12. Notices

	cuSolverDN: Dense LAPACK
	cuSolverSP: Sparse LAPACK
	cuSolverRF: Refactorization
	Naming Conventions
	Asynchronous Execution
	Library Property
	High Precision Package
	Using the CUSOLVER API
	General Description
	Thread Safety
	Scalar Parameters
	Parallelism with Streams
	How to Link cusolver Library
	Link Third-party LAPACK Library
	Convention of info
	Usage of _bufferSize
	cuSOLVERDn Logging
	Deterministic Results

	cuSolver Types Reference
	cuSolverDN Types
	cusolverDnHandle_t
	cublasFillMode_t
	cublasOperation_t
	cusolverEigType_t
	cusolverEigMode_t
	cusolverIRSRefinement_t
	cusolverDnIRSParams_t
	cusolverDnIRSInfos_t
	cusolverDnFunction_t
	cusolverAlgMode_t
	cusolverStatus_t
	cusolverDnLoggerCallback_t
	cusolverDeterministicMode_t
	cusolverStorevMode_t
	cusolverDirectMode_t

	cuSolverSP Types
	cusolverSpHandle_t
	cusparseMatDescr_t
	cusolverStatus_t

	cuSolverRF Types
	cusolverRfHandle_t
	cusolverRfMatrixFormat_t
	cusolverRfNumericBoostReport_t
	cusolverRfResetValuesFastMode_t
	cusolverRfFactorization_t
	cusolverRfTriangularSolve_t
	cusolverRfUnitDiagonal_t
	cusolverStatus_t

	cuSolver Formats Reference
	Index Base Format
	Vector (Dense) Format
	Matrix (Dense) Format
	Matrix (CSR) Format
	Matrix (CSC) Format

	cuSolverDN: dense LAPACK Function Reference
	cuSolverDN Helper Function Reference
	cusolverDnCreate()
	cusolverDnDestroy()
	cusolverDnSetStream()
	cusolverDnGetStream()
	cusolverDnLoggerSetCallback()
	cusolverDnLoggerSetFile()
	cusolverDnLoggerOpenFile()
	cusolverDnLoggerSetLevel()
	cusolverDnLoggerSetMask()
	cusolverDnLoggerForceDisable()
	cusolverDnSetDeterministicMode()
	cusolverDnGetDeterministicMode()
	cusolverDnCreateSyevjInfo()
	cusolverDnDestroySyevjInfo()
	cusolverDnXsyevjSetTolerance()
	cusolverDnXsyevjSetMaxSweeps()
	cusolverDnXsyevjSetSortEig()
	cusolverDnXsyevjGetResidual()
	cusolverDnXsyevjGetSweeps()
	cusolverDnCreateGesvdjInfo()
	cusolverDnDestroyGesvdjInfo()
	cusolverDnXgesvdjSetTolerance()
	cusolverDnXgesvdjSetMaxSweeps()
	cusolverDnXgesvdjSetSortEig()
	cusolverDnXgesvdjGetResidual()
	cusolverDnXgesvdjGetSweeps()
	cusolverDnIRSParamsCreate()
	cusolverDnIRSParamsDestroy()
	cusolverDnIRSParamsSetSolverPrecisions()
	cusolverDnIRSParamsSetSolverMainPrecision()
	cusolverDnIRSParamsSetSolverLowestPrecision()
	cusolverDnIRSParamsSetRefinementSolver()
	cusolverDnIRSParamsSetTol()
	cusolverDnIRSParamsSetTolInner()
	cusolverDnIRSParamsSetMaxIters()
	cusolverDnIRSParamsSetMaxItersInner()
	cusolverDnIRSParamsEnableFallback()
	cusolverDnIRSParamsDisableFallback()
	cusolverDnIRSParamsGetMaxIters()
	cusolverDnIRSInfosCreate()
	cusolverDnIRSInfosDestroy()
	cusolverDnIRSInfosGetMaxIters()
	cusolverDnIRSInfosGetNiters()
	cusolverDnIRSInfosGetOuterNiters()
	cusolverDnIRSInfosRequestResidual()
	cusolverDnIRSInfosGetResidualHistory()
	cusolverDnCreateParams()
	cusolverDnDestroyParams()
	cusolverDnSetAdvOptions()

	Dense Linear Solver Reference (legacy)
	cusolverDn<t>potrf()
	cusolverDnPotrf() [DEPRECATED]
	cusolverDn<t>potrs()
	cusolverDnPotrs() [DEPRECATED]
	cusolverDn<t>potri()
	cusolverDn<t>getrf()
	cusolverDnGetrf() [DEPRECATED]
	cusolverDn<t>getrs()
	cusolverDnGetrs() [DEPRECATED]
	cusolverDn<t1><t2>gesv()
	cusolverDnIRSXgesv()
	cusolverDn<t>geqrf()
	cusolverDnGeqrf() [DEPRECATED]
	cusolverDn<t1><t2>gels()
	cusolverDnIRSXgels()
	cusolverDn<t>ormqr()
	cusolverDn<t>orgqr()
	cusolverDn<t>sytrf()
	cusolverDn<t>potrfBatched()
	cusolverDn<t>potrsBatched()

	Dense Eigenvalue Solver Reference (legacy)
	cusolverDn<t>gebrd()
	cusolverDn<t>orgbr()
	cusolverDn<t>sytrd()
	cusolverDn<t>ormtr()
	cusolverDn<t>orgtr()
	cusolverDn<t>gesvd()
	cusolverDnGesvd() [DEPRECATED]
	cusolverDn<t>gesvdj()
	cusolverDn<t>gesvdjBatched()
	cusolverDn<t>gesvdaStridedBatched()
	cusolverDn<t>syevd()
	cusolverDnSyevd() [DEPRECATED]
	cusolverDn<t>syevdx()
	cusolverDnSyevdx() [DEPRECATED]
	cusolverDn<t>sygvd()
	cusolverDn<t>sygvdx()
	cusolverDn<t>syevj()
	cusolverDn<t>sygvj()
	cusolverDn<t>syevjBatched()

	Dense Linear Solver Reference (64-bit API)
	cusolverDnXpotrf()
	cusolverDnXpotrs()
	cusolverDnXgetrf()
	cusolverDnXgetrs()
	cusolverDnXgeqrf()
	cusolverDnXsytrs()
	cusolverDnXtrtri()
	cusolverDnXlarft()

	Dense Eigenvalue Solver Reference (64-bit API)
	cusolverDnXgesvd()
	cusolverDnXgesvdp()
	cusolverDnXgesvdr()
	cusolverDnXsyevd()
	cusolverDnXsyevdx()
	cusolverDnXsyevBatched()
	cusolverDnXgeev()

	cuSolverSP: sparse LAPACK Function Reference
	Helper Function Reference
	cusolverSpCreate()
	cusolverSpDestroy()
	cusolverSpSetStream()
	cusolverSpXcsrissym()

	High Level Function Reference
	cusolverSp<t>csrlsvlu() [DEPRECATED]
	cusolverSp<t>csrlsvqr()
	cusolverSp<t>csrlsvchol() [[DEPRECATED]]
	cusolverSp<t>csrlsqvqr()
	cusolverSp<t>csreigvsi()
	cusolverSp<t>csreigs()

	Low Level Function Reference
	cusolverSpXcsrsymrcm()
	cusolverSpXcsrsymmdq()
	cusolverSpXcsrsymamd()
	cusolverSpXcsrmetisnd()
	cusolverSpXcsrzfd()
	cusolverSpXcsrperm()
	cusolverSpXcsrqrBatched()

	cuSolverRF: Refactorization Reference
	cusolverRfAccessBundledFactorsDevice() [[DEPRECATED]]
	cusolverRfAnalyze() [[DEPRECATED]]
	cusolverRfSetupHost()
	cusolverRfCreate()
	cusolverRfExtractBundledFactorsHost() [[DEPRECATED]]
	cusolverRfExtractSplitFactorsHost() [[DEPRECATED]]
	cusolverRfDestroy()
	cusolverRfGetMatrixFormat()
	cusolverRfGetNumericProperties()
	cusolverRfGetNumericBoostReport()
	cusolverRfGetResetValuesFastMode()
	cusolverRfGetAlgs()
	cusolverRfRefactor() [[DEPRECATED]]
	cusolverRfResetValues() [[DEPRECATED]]
	cusolverRfSetMatrixFormat()
	cusolverRfSetNumericProperties()
	cusolverRfSetResetValuesFastMode()
	cusolverRfSetAlgs()
	cusolverRfSolve() [[DEPRECATED]]
	cusolverRfBatchSetupHost()
	cusolverRfBatchAnalyze()
	cusolverRfBatchResetValues()
	cusolverRfBatchRefactor()
	cusolverRfBatchSolve()
	cusolverRfBatchZeroPivot()

	Using the CUSOLVERMG API
	General Description
	Thread Safety
	Determinism
	Tile Strategy
	Global Matrix Versus Local Matrix
	Usage of _bufferSize
	Synchronization
	Context Switch
	NVLINK

	cuSolverMG Types Reference
	cuSolverMG Types
	cusolverMgHandle_t
	cusolverMgGridMapping_t
	cudaLibMgGrid_t
	cudaLibMgMatrixDesc_t

	Helper Function Reference
	cusolverMgCreate()
	cusolverMgDestroy()
	cusolverMgDeviceSelect()
	cusolverMgCreateDeviceGrid()
	cusolverMgDestroyGrid()
	cusolverMgCreateMatrixDesc()
	cusolverMgDestroyMatrixDesc()

	Dense Linear Solver Reference
	cusolverMgPotrf()
	cusolverMgPotrs()
	cusolverMgPotri()
	cusolverMgGetrf()
	cusolverMgGetrs()

	Dense Eigenvalue Solver Reference
	cusolverMgSyevd()

	Acknowledgements
	Bibliography
	Notices
	Notice
	OpenCL
	Trademarks

