
Hopper Compatibility Guide
Release 12.8

NVIDIA Corporation

Feb 27, 2025

Contents

1 About this Document 3

2 Application Compatibility on Hopper Architecture 5

3 Verifying Hopper Compatibility for Existing Applications 7
3.1 Applications Built Using CUDA Toolkit 11.7 or Earlier . 7
3.2 Applications Built Using CUDA Toolkit 11.8 . 8

4 Building Applications with Hopper Architecture Support 9
4.1 Building Applications Using CUDA Toolkit 11.7 or Earlier . 9
4.2 Building Applications Using CUDA Toolkit 11.8 . 11
4.3 Independent Thread Scheduling Compatibility . 12

5 Revision History 13

6 Notices 15
6.1 Notice . 15
6.2 OpenCL . 16
6.3 Trademarks . 16

i

ii

Hopper Compatibility Guide, Release 12.8

Hopper Compatibility Guide for CUDA Applications

The guide to building CUDA applications for Hopper GPUs

Contents 1

Hopper Compatibility Guide, Release 12.8

2 Contents

Chapter 1. About this Document

This application note, Hopper Architecture Compatibility Guide for CUDA Applications, is intended to
help developers ensure that their NVIDIA® CUDA® applications will run on the NVIDIA® Hopper architec-
ture based GPUs. This document provides guidance to developers who are familiar with programming
in CUDA C++ and want to make sure that their software applications are compatible with Hopper ar-
chitecture.

3

Hopper Compatibility Guide, Release 12.8

4 Chapter 1. About this Document

Chapter 2. Application Compatibility on
Hopper Architecture

A CUDA application binary (with one or more GPU kernels) can contain the compiled GPU code in two
forms, binary cubin objects and forward-compatible PTX assembly for each kernel. Both cubin and
PTX are generated for a certain target compute capability. A cubin generated for a certain compute
capability is supported to run on any GPU with the same major revision and same or higher minor
revision of compute capability. For example, a cubin generated for compute capability 8.0 is supported
to run on a GPU with compute capability 8.6, however a cubin generated for compute capability 8.6
is not supported to run on a GPU with compute capability 8.0, and a cubin generated with compute
capability 8.x is not supported to run on a GPU with compute capability 9.0.

Kernel can also be compiled to a PTX form. At the application load time, PTX is compiled to cubin
and the cubin is used for kernel execution. Unlike cubin, PTX is forward-compatible. Meaning PTX is
supported to run on any GPU with compute capability higher than the compute capability assumed
for generation of that PTX. For example, PTX code generated for compute capability 8.x is supported
to run on compute capability 8.x or any higher revision (major or minor), including compute capability
9.0. Therefore although it is optional, it is recommended that all applications should include PTX of
the kernels to ensure forward-compatibility. To read more about cubin and PTX compatibilities see
Compilation with NVCC from the CUDA C++ Programming Guide.

When a CUDA application launches a kernel on a GPU, the CUDA Runtime determines the compute
capability of the GPU in the system and uses this information to find the best matching cubin or PTX
version of the kernel. If a cubin compatible with that GPU is present in the binary, the cubin is used
as-is for execution. Otherwise, the CUDA Runtime first generates compatible cubin by JIT-compiling1

the PTX and then the cubin is used for the execution. If neither compatible cubin nor PTX is available,
kernel launch results in a failure.

Application binaries that include PTX version of kernels, shouldwork as-is on theHopper GPUs. In such
cases, rebuilding the application is not required. However application binaries which do not include
PTX (only include cubins), need to be rebuilt to run on the Hopper GPUs. To know more about building
compatible applications read Building Applications with Hopper Architecture Support.

Application binaries that include PTX version of kernels with architecture conditional features using
sm_90a or compute_90a in order to take full advantage of Hopper GPU architecture, are not forward
or backward compatible.

1 Just-in-time compilation.

5

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compilation-with-nvcc

Hopper Compatibility Guide, Release 12.8

6 Chapter 2. Application Compatibility on Hopper Architecture

Chapter 3. Verifying Hopper
Compatibility for Existing
Applications

The first step towards making a CUDA application compatible with Hopper architecture is to check if
the application binary already contains compatible GPU code (at least the PTX). The following sections
explain how to accomplish this for an already built CUDA application.

3.1. Applications Built Using CUDA Toolkit 11.7
or Earlier

CUDA applications built using CUDA Toolkit versions 2.1 through 11.7 are compatible with Hopper
GPUs as long as they are built to include PTX versions of their kernels. This can be tested by forcing
the PTX to JIT-compile at application load time with following the steps:

▶ Download and install the latest driver from https://www.nvidia.com/drivers.

▶ Set the environment variable CUDA_FORCE_PTX_JIT=1.

▶ Launch the application.

WithCUDA_FORCE_PTX_JIT=1, GPUbinary code embedded in an application binary is ignored. Instead
PTX code for each kernel is JIT-compiled to produce GPU binary code. An application fails to execute if
it does not include PTX. Thismeans the application is not Hopper architecture compatible and needs to
be rebuilt for compatibility. On the other hand, if the application works properly with this environment
variable set, then the application is Hopper compatible.

Note: Be sure to unset the CUDA_FORCE_PTX_JIT environment variable after testing is done.

7

https://www.nvidia.com/drivers

Hopper Compatibility Guide, Release 12.8

3.2. Applications Built Using CUDA Toolkit 11.8

CUDA applications built using CUDA Toolkit 11.8 are compatible with Hopper architecture as long as
they are built to include kernels in native cubin (compute capability 9.0) or PTX form or both.

8 Chapter 3. Verifying Hopper Compatibility for Existing Applications

Chapter 4. Building Applications with
Hopper Architecture
Support

Depending on the version of the CUDA Toolkit used for building the application, it can be built to
include PTX and/or native cubin for the Hopper architecture. Although it is enough to just include PTX,
including native cubin also has the following advantages:

▶ It saves the end user the time it takes to JIT-compile kernels that are available only as PTX. All
kernels which do not have native cubins are JIT-compiled from PTX, including kernels from all the
libraries linked to the application, even if those kernels are never launched by the application2.
Especially when using large libraries, this JIT compilation can take a significant amount of time.
The CUDA driver caches the cubins generated as a result of the PTX JIT, so this is mostly a one-
time cost for a user, but it is time best avoided whenever possible.

▶ PTX JIT-compiled kernels often cannot take advantage of architectural features of newer GPUs,
meaning that native-compiled cubins may be faster or of greater accuracy.

▶ PTX code compiled to target architecture conditional features using sm_90a or compute_90a
only runs on devices with compute capability 9.0 and is not backward or forward compatible.

4.1. Building Applications Using CUDA Toolkit
11.7 or Earlier

The nvcc compiler included with version 11.7 or earlier (11.0-11.7) of the CUDA Toolkit can generate
cubins native to the NVIDIA Ampere GPU architectures (compute capability 8.x). When using CUDA
Toolkit 11.7 or earlier, to ensure that nvcc will generate cubin files for all recent GPU architectures as
well as a PTX version for forward compatibility with future GPU architectures, specify the appropriate
-gencode= parameters on the nvcc command line as shown in the examples below.

Windows

nvcc.exe -ccbin "C:\vs2010\VC\bin"
-Xcompiler "∕EHsc ∕W3 ∕nologo ∕O2 ∕Zi ∕MT"
-gencode=arch=compute_52,code=sm_52
-gencode=arch=compute_60,code=sm_60

(continues on next page)

2 Startingwith CUDA toolkit 11.8, this default behavior can be changedwith environment variable CUDA_MODULE_LOADING.
See Environment Variables in the CUDA C++ Programming Guide for details.

9

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#env-vars

Hopper Compatibility Guide, Release 12.8

(continued from previous page)

-gencode=arch=compute_61,code=sm_61
-gencode=arch=compute_70,code=sm_70
-gencode=arch=compute_75,code=sm_75
-gencode=arch=compute_80,code=sm_80
-gencode=arch=compute_80,code=compute_80
--compile -o "Release\mykernel.cu.obj" "mykernel.cu"

Mac/Linux

∕usr∕local∕cuda∕bin∕nvcc
-gencode=arch=compute_52,code=sm_52
-gencode=arch=compute_60,code=sm_60
-gencode=arch=compute_61,code=sm_61
-gencode=arch=compute_70,code=sm_70
-gencode=arch=compute_75,code=sm_75
-gencode=arch=compute_80,code=sm_80
-gencode=arch=compute_80,code=compute_80
-O2 -o mykernel.o -c mykernel.cu

Alternatively, the simplified nvcc command-line option -arch=sm_XX can be used. It is a shorthand
equivalent to the followingmore explicit -gencode= command-line options used above. -arch=sm_XX
expands to the following:

-gencode=arch=compute_XX,code=sm_XX
-gencode=arch=compute_XX,code=compute_XX

However, while the -arch=sm_XX command-line option does result in inclusion of a PTX back-end
target binary by default, it can only specify a single target cubin architecture at a time, and it is not
possible to use multiple -arch= options on the same nvcc command line, which is why the examples
above use -gencode= explicitly.

For CUDA toolkits prior to 11.0, one or more of the -gencode options need to be removed according
to the architectures supported by the specific toolkit version (for example, CUDA toolkit 10.x supports
architectures up to sm_72 and sm_75). The final -gencode to generate PTX also needs to be updated.
For further information and examples see the documentation for the specific CUDA toolkit version.

Note: compute_XX refers to a PTX version and sm_XX refers to a cubin version. The arch= clause
of the -gencode= command-line option to nvcc specifies the front-end compilation target and must
always be a PTX version. The code= clause specifies the back-end compilation target and can either
be cubin or PTX or both. Only the back-end target version(s) specified by the code= clause will be
retained in the resulting binary; at least one should be PTX to provide compatibility with future
architectures.

10 Chapter 4. Building Applications with Hopper Architecture Support

Hopper Compatibility Guide, Release 12.8

4.2. Building Applications Using CUDA Toolkit
11.8

With versions 11.8 of the CUDA Toolkit, nvcc can generate cubin native to the Hopper architecture
(compute capability 9.0). When using CUDA Toolkit 11.8, to ensure that nvcc will generate cubin files
for all recent GPU architectures as well as a PTX version for forward compatibility with future GPU
architectures, specify the appropriate -gencode= parameters on the nvcc command line as shown in
the examples below.

Windows

nvcc.exe -ccbin "C:\vs2010\VC\bin"
-Xcompiler "∕EHsc ∕W3 ∕nologo ∕O2 ∕Zi ∕MT"
-gencode=arch=compute_52,code=sm_52
-gencode=arch=compute_60,code=sm_60
-gencode=arch=compute_61,code=sm_61
-gencode=arch=compute_70,code=sm_70
-gencode=arch=compute_75,code=sm_75
-gencode=arch=compute_75,code=sm_75
-gencode=arch=compute_90,code=sm_90
-gencode=arch=compute_90,code=compute_90
--compile -o "Release\mykernel.cu.obj" "mykernel.cu"

Mac/Linux

∕usr∕local∕cuda∕bin∕nvcc
-gencode=arch=compute_52,code=sm_52
-gencode=arch=compute_60,code=sm_60
-gencode=arch=compute_61,code=sm_61
-gencode=arch=compute_70,code=sm_70
-gencode=arch=compute_75,code=sm_75
-gencode=arch=compute_80,code=sm_80
-gencode=arch=compute_90,code=sm_90
-gencode=arch=compute_90,code=compute_90
-O2 -o mykernel.o -c mykernel.cu

Note: compute_XX refers to a PTX version and sm_XX refers to a cubin version. The arch= clause
of the -gencode= command-line option to nvcc specifies the front-end compilation target and must
always be a PTX version. The code= clause specifies the back-end compilation target and can either
be cubin or PTX or both. Only the back-end target version(s) specified by the code= clause will be
retained in the resulting binary; at least one should be PTX to provide compatibility with future
architectures.

4.2. Building Applications Using CUDA Toolkit 11.8 11

Hopper Compatibility Guide, Release 12.8

4.3. Independent Thread Scheduling
Compatibility

NVIDIA GPUs since Volta architecture have Independent Thread Scheduling among threads in a warp.
If the developermade assumptions aboutwarp-synchronicity3, this feature can alter the set of threads
participating in the executed code compared to previous architectures. Please see Compute Capability
7.x in the CUDAC++ProgrammingGuide for details and corrective actions. To aidmigration to the Hop-
per architecture, developers can opt-in to the Pascal scheduling model with the following combination
of compiler options.

nvcc -gencode=arch=compute_60,code=sm_90 ...

3 Warp-synchronous refers to an assumption that threads in the same warp are synchronized at every instruction and can,
for example, communicate values without explicit synchronization.

12 Chapter 4. Building Applications with Hopper Architecture Support

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capability-7-x
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capability-7-x

Chapter 5. Revision History

Version 1.0

▶ Initial public release.

13

Hopper Compatibility Guide, Release 12.8

14 Chapter 5. Revision History

Chapter 6. Notices

6.1. Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a
certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no repre-
sentations or warranties, expressed or implied, as to the accuracy or completeness of the information
contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall
have no liability for the consequences or use of such information or for any infringement of patents
or other rights of third parties that may result from its use. This document is not a commitment to
develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any
other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that
such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the
time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by
authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA
product referenced in this document. No contractual obligations are formed either directly or indirectly
by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military,
aircraft, space, or life support equipment, nor in applicationswhere failure ormalfunction of theNVIDIA
product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or
applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIAmakes no representation or warranty that products based on this document will be suitable for
any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA.
It is customer’s sole responsibility to evaluate and determine the applicability of any information con-
tained in this document, ensure the product is suitable and fit for the application planned by customer,
and perform the necessary testing for the application in order to avoid a default of the application or
the product. Weaknesses in customer’s product designs may affect the quality and reliability of the
NVIDIA product andmay result in additional or different conditions and/or requirements beyond those
contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or prob-
lem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is
contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other
NVIDIA intellectual property right under this document. Information published by NVIDIA regarding
third-party products or services does not constitute a license from NVIDIA to use such products or

15

Hopper Compatibility Guide, Release 12.8

services or a warranty or endorsement thereof. Use of such information may require a license from a
third party under the patents or other intellectual property rights of the third party, or a license from
NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA
in writing, reproduced without alteration and in full compliance with all applicable export laws and
regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENTANDALLNVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE
BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WAR-
RANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENTWILL NVIDIA BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CON-
SEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARIS-
ING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCHDAMAGES. Notwithstanding any damages that customermight incur for any reasonwhatso-
ever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein
shall be limited in accordance with the Terms of Sale for the product.

6.2. OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

6.3. Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the
U.S. and other countries. Other company and product names may be trademarks of the respective
companies with which they are associated.

Copyright

©2022-2025, NVIDIA Corporation & affiliates. All rights reserved

16 Chapter 6. Notices

	About this Document
	Application Compatibility on Hopper Architecture
	Verifying Hopper Compatibility for Existing Applications
	Applications Built Using CUDA Toolkit 11.7 or Earlier
	Applications Built Using CUDA Toolkit 11.8

	Building Applications with Hopper Architecture Support
	Building Applications Using CUDA Toolkit 11.7 or Earlier
	Building Applications Using CUDA Toolkit 11.8
	Independent Thread Scheduling Compatibility

	Revision History
	Notices
	Notice
	OpenCL
	Trademarks

