
Hopper Tuning Guide
Release 12.8

NVIDIA Corporation

Feb 27, 2025





Contents

1 NVIDIA Hopper GPU Architecture 3

2 CUDA Best Practices 5

3 Application Compatibility 7

4 NVIDIA Hopper Tuning 9
4.1 Streaming Multiprocessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.1.1 Occupancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.1.2 Tensor Memory Accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.1.3 Thread Block Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.1.4 Improved FP32 Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.1.5 Dynamic Programming Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.2 Memory System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2.1 High-Bandwidth Memory HBM3 Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2.2 Increased L2 Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2.3 Inline Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2.4 Unified Shared Memory/L1/Texture Cache . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.3 Fourth-Generation NVLink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Revision History 15

6 Notices 17
6.1 Notice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.2 OpenCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.3 Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

i



ii



Hopper Tuning Guide, Release 12.8

Tuning CUDA Applications for Hopper GPU Architecture

The programming guide for tuning CUDA Applications for GPUs based on the Hopper GPU Architec-
ture.

Contents 1



Hopper Tuning Guide, Release 12.8

2 Contents



Chapter 1. NVIDIA Hopper GPU
Architecture

The NVIDIA® Hopper GPU architecture is NVIDIA’s latest architecture for CUDA® compute applications.
The NVIDIA Hopper GPU architecture retains and extends the same CUDA programming model pro-
vided by previous NVIDIA GPU architectures such as NVIDIA Ampere GPU architecture and NVIDIA
Turing, and applications that follow the best practices for those architectures should typically see
speedups on the NVIDIA H100 GPU without any code changes. This guide summarizes the ways that
an application can be fine-tuned to gain additional speedups by leveraging the NVIDIA Hopper GPU
architecture’s features.1

For further details on the programming features discussed in this guide, refer to the CUDA C++ Pro-
gramming Guide.

1 Throughout this guide, NVIDIA Volta refers to devices of compute capability 7.0, NVIDIA Turing refers to devices of compute
capability 7.5, NVIDIA Ampere GPUArchitecture refers to devices of compute capability 8.x, and NVIDIA Hopper refers to devices
of compute capability 9.0.

3

https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/


Hopper Tuning Guide, Release 12.8

4 Chapter 1. NVIDIA Hopper GPU Architecture



Chapter 2. CUDA Best Practices

The performance guidelines and best practices described in the CUDA C++ Programming Guide and
the CUDA C++ Best Practices Guide apply to all CUDA-capable GPU architectures. Programmers must
primarily focus on following those recommendations to achieve the best performance.

The high-priority recommendations from those guides are as follows:

▶ Find ways to parallelize sequential code.

▶ Minimize data transfers between the host and the device.

▶ Adjust kernel launch configuration to maximize device utilization.

▶ Ensure that global memory accesses are coalesced.

▶ Minimize redundant accesses to global memory whenever possible.

▶ Avoid long sequences of diverged execution by threads within the same warp.

5

https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/


Hopper Tuning Guide, Release 12.8

6 Chapter 2. CUDA Best Practices



Chapter 3. Application Compatibility

Before addressing specific performance tuning issues covered in this guide, refer to the Hopper Com-
patibility Guide for CUDA Applications to ensure that your application is compiled in a way that is
compatible with NVIDIA Hopper.

7

https://docs.nvidia.com/cuda/hopper-compatibility-guide/
https://docs.nvidia.com/cuda/hopper-compatibility-guide/


Hopper Tuning Guide, Release 12.8

8 Chapter 3. Application Compatibility



Chapter 4. NVIDIA Hopper Tuning

4.1. Streaming Multiprocessor

The NVIDIA Hopper Streaming Multiprocessor (SM) provides the following improvements over Turing
and NVIDIA Ampere GPU architectures.

4.1.1. Occupancy

The maximum number of concurrent warps per SM remains the same as in NVIDIA Ampere GPU archi-
tecture (that is, 64), and other factors influencing warp occupancy are:

▶ The register file size is 64K 32-bit registers per SM.

▶ The maximum number of registers per thread is 255.

▶ The maximum number of thread blocks per SM is 32 for devices of compute capability 9.0 (that
is, H100 GPUs).

▶ For devices of compute capability 9.0 (H100 GPUs), shared memory capacity per SM is 228 KB, a
39% increase compared to A100’s capacity of 164 KB.

▶ For devices of compute capability 9.0 (H100 GPUs), the maximum shared memory per thread
block is 227 KB.

▶ For applications using Thread Block Clusters, it is always recommended to compute the oc-
cupancy using cudaOccupancyMaxActiveClusters and launch cluster-based kernels accord-
ingly.

Overall, developers can expect similar occupancy as onNVIDIA Ampere GPU architecture GPUswithout
changes to their application.

4.1.2. Tensor Memory Accelerator

The Hopper architecture builds on top of the asynchronous copies introduced by NVIDIA Ampere GPU
architecture and provides a more sophisticated asynchronous copy engine: the Tensor Memory Accel-
erator (TMA).

TMA allows applications to transfer 1D and up to 5D tensors between global memory and shared
memory, in both directions, as well as between the shared memory regions of different SMs in the
same cluster (refer to Thread Block Clusters). Additionally, for writes from shared memory to global

9

https://docs.nvidia.com/cuda/cuda-occupancy-calculator/CUDA_Occupancy_Calculator.xls


Hopper Tuning Guide, Release 12.8

memory, it allows specifying elementwise reduction operations such as add/min/max aswell as bitwise
and/or for most common data types.

This has several advantages:

▶ Avoids using registers for moving data between the different memory spaces.

▶ Avoids using SM instructions for moving data: a single thread can issue large data movement
instructions to the TMA unit. The whole block can then continue working on other instructions
while the data is in flight and only wait for the data to be consumed when actually necessary.

▶ Enables users to write warp specialized codes, where specificwarps specialize on datamovement
between the different memory spaces while other warps only work on local data within the SM.

This feature will be exposed through cuda::memcpy_async along with the cuda::barrier and
cuda::pipeline for synchronizing data movement.

4.1.3. Thread Block Clusters

NVIDIA Hopper Architecture adds a new optional level of hierarchy, Thread Block Clusters, that al-
lows for further possibilities when parallelizing applications. A thread block can read from, write to,
and perform atomics in shared memory of other thread blocks within its cluster. This is known as
Distributed Shared Memory. As demonstrated in the CUDA C++ Programming Guide, there are ap-
plications that cannot fit required data within shared memory and must use global memory instead.
Distributed shared memory can act as an intermediate step between these two options.

Distributed Shared Memory can be used by an SM simultaneously with L2 cache accesses. This can
benefit applications that need to communicate data between SMs by utilizing the combined band-
width of both distributed shared memory and L2.

In order to achieve best performance for accesses to Distributed Shared Memory, access patterns to
those described in the CUDA C++ Best Practices Guide for Global Memory should be used. Specifically,
accesses to Distributed SharedMemory should be coalesced and aligned to 32-byte segments, if pos-
sible. Access patterns with non-unit stride should be avoided if possible, which can be achieved by
using local shared memory, similar to what is shown in the CUDA C++ Best Practices Guide for Shared
Memory.

The maximum portable cluster size supported is 8; however, NVIDIA Hopper H100 GPU allows for a
nonportable cluster size of 16 by opting in. Launching a kernel with a nonportable cluster size requires
setting the cudaFuncAttributeNonPortableClusterSizeAllowed function attribute. Using larger clus-
ter sizes may reduce the maximum number of active blocks across the GPU (refer to Occupancy).

4.1.4. Improved FP32 Throughput

Devices of compute capability 9.0 have 2x more FP32 operations per cycle per SM than devices of
compute capability 8.0.

10 Chapter 4. NVIDIA Hopper Tuning

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#distributed-shared-memory
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/#coalesced-access-to-global-memory
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/#shared-memory
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/#shared-memory


Hopper Tuning Guide, Release 12.8

4.1.5. Dynamic Programming Instructions

The NVIDIA Hopper architecture adds support for new instructions to accelerate dynamic program-
ming algorithms, such as the Smith-Waterman algorithm for sequence alignment in bioinformatics,
and algorithms in graph theory, game theory, ML, and finance problems. The new instructions permit
computation of max and min values among three operands, max and min operations yielding pred-
icates, combined add operation with max or min, operating on signed and unsigned 32-bit int and
16-bit short2 types, and half2. All DPX instructions with 16-bit short types DPX instructions enable
128 operations per cycle per SM.

4.2. Memory System

4.2.1. High-Bandwidth Memory HBM3 Subsystem

The NVIDIA H100 GPU has support for HBM3 and HBM2e memory, with capacity up to 80 GB. GPUs
HBM3 memory system supports up to 3 TB/s memory bandwidth, a 93% increase over the 1.55 TB/s
on A100-40GB.

4.2.2. Increased L2 Capacity

The NVIDIA Hopper architecture increases the L2 cache capacity from 40 MB in the A100 GPU to 50
MB in the H100 GPU. Along with the increased capacity, the bandwidth of the L2 cache to the SMs is
also increased. The NVIDIA Hopper architecture allows CUDA users to control the persistence of data
in L2 cache similar to the NVIDIA Ampere GPU Architecture. For more information on the persistence
of data in L2 cache, refer to the section on managing L2 cache in the CUDA C++ Programming Guide.

4.2.3. Inline Compression

The NVIDIA Hopper architecture allows CUDA compute kernels to benefit from the new inline com-
pression (ILC). This feature can be applied to individual memory allocation, and the compressor au-
tomatically chooses between several possible compression algorithms, or none if there is no suitable
pattern.

In case compression can be used, this feature allows accessing global memory at significantly higher
bandwidth than global memory bandwidth, since only compressed data needs to be transferred be-
tween global memory and SMs.

However, the feature does not allow for reducing memory footprint: since compression is automatic,
even if compression is active, the memory region will use the same footprint as if there was no com-
pression. This is because underlying data may be changed by the user application and may not be
compressible during the entire duration of the application.

The feature is available through the CUDA driver API. See the CUDA C++ Programming Guide section
on compressible memory:

4.2. Memory System 11

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#L2_access_intro
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#physical-memory-type-compression
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#physical-memory-type-compression


Hopper Tuning Guide, Release 12.8

CUmemGenericAllocationHandle allocationHandle;
CUmemAllocationProp prop = {};
memset(prop, 0, sizeof(CUmemAllocationProp));
prop->type = CU_MEM_ALLOCATION_TYPE_PINNED;
prop->location.type = CU_MEM_LOCATION_TYPE_DEVICE;
prop->location.id = currentDevice;
prop->allocFlags.compressionType = CU_MEM_ALLOCATION_COMP_GENERIC;
cuMemCreate(&allocationHandle, size, &prop, 0);

One can check whether compressible memory is available on the given device with:

cuDeviceGetAttribute(&compressionAvailable,
CU_DEVICE_ATTRIBUTE_GENERIC_COMPRESSION_SUPPORTED, currentDevice)

Note that this example code does not handle errors and compiling this code requires linking against
the CUDA library (libcuda.so).

4.2.4. Unified Shared Memory/L1/Texture Cache

The NVIDIA H100 GPU based on compute capability 9.0 increases the maximum capacity of the com-
bined L1 cache, texture cache, and shared memory to 256 KB, from 192 KB in NVIDIA Ampere Archi-
tecture, an increase of 33%.

In the NVIDIA Hopper GPU architecture, the portion of the L1 cache dedicated to shared memory
(known as the carveout) can be selected at runtime as in previous architectures such as NVIDIA Am-
pere Architecture and NVIDIA Volta, using cudaFuncSetAttribute() with the attribute cudaFun-
cAttributePreferredSharedMemoryCarveout. The NVIDIA H100 GPU supports shared memory
capacities of 0, 8, 16, 32, 64, 100, 132, 164, 196 and 228 KB per SM.

CUDA reserves 1 KB of sharedmemory per thread block. Hence, the H100 GPU enables a single thread
block to address up to 227 KB of sharedmemory. Tomaintain architectural compatibility, static shared
memory allocations remain limited to 48 KB, and an explicit opt-in is also required to enable dynamic
allocations above this limit. See the CUDA C++ Programming Guide for details.

Like the NVIDIA Ampere Architecture and NVIDIA Volta GPU architectures, the NVIDIA Hopper GPU
architecture combines the functionality of the L1 and texture caches into a unified L1/Texture cache
which acts as a coalescing buffer for memory accesses, gathering up the data requested by the
threads of a warp before delivery of that data to the warp. Another benefit of its union with shared
memory, similar to previous architectures, is improvement in terms of both latency and bandwidth.

4.3. Fourth-Generation NVLink

The fourth generation of NVIDIA’s high-speed NVLink interconnect is implemented in H100 GPUs,
which significantly enhances multi-GPU scalability, performance, and reliability with more links per
GPU, much faster communication bandwidth, and improved error-detection and recovery features.
The fourth-generation NVLink has the same bidirectional data rate of 50 GB/s per link. The total num-
ber of links available is increased to 18 in H100, compared to 12 in A100, yielding 900 GB/s bidirectional
bandwidth compared to 600 GB/s for A100.

NVLink operates transparently within the existing CUDAmodel. Transfers between NVLink-connected
endpoints are automatically routed through NVLink, rather than PCIe. The cudaDeviceEnablePeer-
Access() API call remains necessary to enable direct transfers (over either PCIe or NVLink) between

12 Chapter 4. NVIDIA Hopper Tuning

https://docs.nvidia.com/cuda/cuda-c-programming-guide/


Hopper Tuning Guide, Release 12.8

GPUs. The cudaDeviceCanAccessPeer() can be used to determine if peer access is possible be-
tween any pair of GPUs.

4.3. Fourth-Generation NVLink 13



Hopper Tuning Guide, Release 12.8

14 Chapter 4. NVIDIA Hopper Tuning



Chapter 5. Revision History

Version 1.0

▶ Initial Public Release

▶ Added support for compute capability 9.0

15



Hopper Tuning Guide, Release 12.8

16 Chapter 5. Revision History



Chapter 6. Notices

6.1. Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a
certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no repre-
sentations or warranties, expressed or implied, as to the accuracy or completeness of the information
contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall
have no liability for the consequences or use of such information or for any infringement of patents
or other rights of third parties that may result from its use. This document is not a commitment to
develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any
other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that
such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the
time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by
authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA
product referenced in this document. No contractual obligations are formed either directly or indirectly
by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military,
aircraft, space, or life support equipment, nor in applicationswhere failure ormalfunction of theNVIDIA
product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or
applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIAmakes no representation or warranty that products based on this document will be suitable for
any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA.
It is customer’s sole responsibility to evaluate and determine the applicability of any information con-
tained in this document, ensure the product is suitable and fit for the application planned by customer,
and perform the necessary testing for the application in order to avoid a default of the application or
the product. Weaknesses in customer’s product designs may affect the quality and reliability of the
NVIDIA product andmay result in additional or different conditions and/or requirements beyond those
contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or prob-
lem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is
contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other
NVIDIA intellectual property right under this document. Information published by NVIDIA regarding
third-party products or services does not constitute a license from NVIDIA to use such products or

17



Hopper Tuning Guide, Release 12.8

services or a warranty or endorsement thereof. Use of such information may require a license from a
third party under the patents or other intellectual property rights of the third party, or a license from
NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA
in writing, reproduced without alteration and in full compliance with all applicable export laws and
regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENTANDALLNVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE
BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WAR-
RANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENTWILL NVIDIA BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CON-
SEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARIS-
ING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCHDAMAGES. Notwithstanding any damages that customermight incur for any reasonwhatso-
ever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein
shall be limited in accordance with the Terms of Sale for the product.

6.2. OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

6.3. Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the
U.S. and other countries. Other company and product names may be trademarks of the respective
companies with which they are associated.

Copyright

©2022-2025, NVIDIA Corporation & affiliates. All rights reserved

18 Chapter 6. Notices


	NVIDIA Hopper GPU Architecture
	CUDA Best Practices
	Application Compatibility
	NVIDIA Hopper Tuning
	Streaming Multiprocessor
	Occupancy
	Tensor Memory Accelerator
	Thread Block Clusters
	Improved FP32 Throughput
	Dynamic Programming Instructions

	Memory System
	High-Bandwidth Memory HBM3 Subsystem
	Increased L2 Capacity
	Inline Compression
	Unified Shared Memory/L1/Texture Cache

	Fourth-Generation NVLink

	Revision History
	Notices
	Notice
	OpenCL
	Trademarks


