PTX Interoperability
Release 12.8

NVIDIA Corporation

Feb 27,2025

Contents

1 Data Representation

1.1 Fundamental Types
1.2 Aggregatesand Unions L
1.3 Bit Fields
1.4 Texture, Sampler,and Surface Types

2 Function Calling Sequence

2.1 Registers e
2.2 Stack Frame
2.3 Parameter Passing
3 System Calls
4 Atomics Application Binary Interface
5 Debug Information
5.1 Generation of Debug Information
5.2 CUDA-Specific DWARF Definitions
6 Example
7 C++
8 Notices
8.1 NOtiCe . . . e
8.2 OpenCL
83 Trademarks

11

13

15
15
15

17

21

PTX Interoperability, Release 12.8

The guide to writing ABI-compliant PTX.

This document defines the Application Binary Interface (ABI) for the CUDA® architecture when gen-
erating PTX. By following the ABI, external developers can generate compliant PTX code that can be
linked with other code.

PTX is a low-level parallel-thread-execution virtual machine and ISA (Instruction Set Architecture).
PTX can be output from multiple tools or written directly by developers. PTX is meant to be GPU-
architecture independent, so that the same code can be reused for different GPU architectures. For
more information on PTX, refer to the latest version of the

There are multiple CUDA architecture families, each with their own ISA; e.g. SM 5.x is the Maxwell
family, SM 6.x is the Pascal family. This document describes the high-level ABI for all architectures.
Programs conforming to an ABI are expected to be executed on the appropriate architecture GPU, and
can assume that instructions from that ISA are available.

Contents 1

https://docs.nvidia.com/cuda/parallel-thread-execution/index.html

PTX Interoperability, Release 12.8

2 Contents

Chapter 1. Data Representation

The below table shows the native scalar PTX types that are supported. Any PTX producer must use
these sizes and alignments in order for its PTX to be compatible with PTX generated by other produc-

ers. PTX also supports native vector types, which are discussed in

The sizes of types are defined by the host. For example, pointer size and long int size are dictated
by the hosts ABI. PTX has an .address_size directive that specifies the address size used throughout
the PTX code. The size of pointers is 32 bits on a 32-bit host or 64 bits on a 64-bit host. However,

addresses of the local and shared memory spaces are always 32 bits in size.

During separate compilation we store info about the host platform in each object file. The linker will

fail to link object files generated for incompatible host platforms.

PTX Type | Size (bytes) | Align (bytes) | Hardware Representation
.b8 1 1 untyped byte

b16 2 2 untyped halfword

.b32 4 4 untyped word

.b64 8 8 untyped doubleword

.s8 1 1 signed integral byte

516 2 2 signed integral halfword
832 4 4 signed integral word

.s64 8 8 signed integral doubleword
.usg 1 1 unsigned integral byte
.ul6 2 2 unsigned integral halfword
.u32 4 4 unsigned integral word
.ub4 8 8 unsigned integral doubleword
f16 2 2 IEEE half precision

f32 4 4 IEEE single precision

f64 8 8 IEEE double precision

index.html#aggregates-unions

PTX Interoperability, Release 12.8

Beyond the scalar types, PTX also supports native-vector types of these scalar types, with both its
vector syntax and its byte-array syntax. For scalar types with a size no greater than four bytes, vector
types with 1, 2, 3, and 4 elements exist; for all other types, only 1 and 2 element vector types exist.

All aggregates and unions can be supported in PTX with its byte-array syntax.
The following are the size-and-alignment rules for all aggregates and unions.

For a non-native-vector type, an entire aggregate or union is aligned on the same boundary as its
most strictly aligned member. This rule is not followed if the alignments are defined by the input
language. For example, in OpenCL built-in vector data types have their alignment set to the size
of the built-in data type in bytes.

For a native vector type — discussed at the start of this section - the alignment is defined as
follows. (For the definitions below, the native vector has n elements and has an element type t.)

For a vector with an odd number of elements, its alignment is the same as its member:
alignof(t).

For a vector with an even number of elements, its alignment is set to number of elements
times the alignment of its member: n*alignof(t).

Each member is assigned to the lowest available offset with the appropriate alignment. This may
require internal padding, depending on the previous member.

The size of an aggregate or union, if necessary, is increased to make it a multiple of the alignment
of the aggregate or union. This may require tail padding, depending on the last member.

C structure and union definitions may have bit fields that define integral objects with a specified num-
ber of bits.

Bit Field Type Width w | Range

signed char 1to8 2% to 2W T -1
unsigned char 1to8 Oto2% -1
signed short Tto16 |-2%'"to2%!'-1
unsigned short 1tol16 |Oto2%-1
signed int 1to32 |-2%'to2%'-1
unsigned int 1to32 |0Oto2%-1
signed long long Tto64 |-2%'Tto2%!'-1
unsigned longlong | 1to64 | Oto2%-1

Current GPUs only support little-endian memory, so the below assumes little-endian layout.

The following are rules that apply to bit fields.

4 Chapter 1. Data Representation

PTX Interoperability, Release 12.8

Plain bit fields (neither signed nor unsigned is specified) are treated as signed.
When no type is provided (e.g., signed : 6 is specified), the type defaults to int.

Bit fields obey the same size and alignment rules as other structure and union members, with the
following modifications.

Bit fields are allocated in memory from right to left (least to more significant) for little endian.

A bit field must entirely reside in a storage unit appropriate for its declared type. A bit field should
never cross its unit boundary.

Bit fields may share a storage unit with other structure and union members, including members
that are not bit fields, as long as there is enough space within the storage unit.

Unnamed bit fields do not affect the alignment of a structure or union.

Zero-length bit fields force the alignment of the following member of a structure to the next
alignment boundary corresponding to the bit-field type. An unnamed, zero-length bit field will
not force the external alignment of the structure to that boundary. If an unnamed, zero-length
bit field has a stricter alignment than the external alignment, there is no guarantee that the
stricter alignment will be maintained when the structure or union gets allocated to memory.

The following figures contain examples of bit fields. Figure 1 shows the byte offsets (upper corners)
and the bit numbers (lower corners) that are used in the examples. The remaining figures show differ-
ent bit-field examples.

Little Endian
3 2 1 0
01 02 03 04
0x01020304 31 24123 16| 15 8|7 0

Fig. 1: Bit Numbering

Little Endian, 4-byte aligned, sizeof is 4

struct { 0
int a:06; pad c b a
int b:7; 31 2120 13|12 6|5 0
int c:8;

}s

Fig. 2: Bit-field Allocation

1.3. Bit Fields 5

PTX Interoperability, Release 12.8

Little Endian, 8-byte aligned,
3 0
struct { cl pad 1 sl
shott s1:9: 23 1817 98 0
’ 4
1(1);18 10?_g 1:9; pad s3 pad s2
chat ¢4 15 9 0|15 9|8 0
short s2:9; 9 8
short s3:9; pad c2
char c2;
3 12
pad
Fig. 3: Boundary Alignment
Little Endian, 2-byte aligned, sizeof is 2
struct { 1 0
char c; s c
short s:8; 15 8
}s
Fig. 4: Storage Unit Sharing
Little Endian, 2-byte aligned, sizeof is 2
1 0
union { pad e
char c; -
shotrt s:8;
) pad S
}’ 15 8|7 0

Fig. 5: Union Allocation

Chapter 1. Data Representation

PTX Interoperability, Release 12.8

Little Endian, byte aligned, sizeof is 9
struct { 1 0

char cl1; :0 cl
int :0;
char c2; 6 5 4
short :9; :
char c3;
char :0; 3

15 9(8 0

Fig. 6: Unnamed Bit Fields

Texture, sampler and surface types are used to define references to texture and surface memory. The
CUDA architecture provides hardware and instructions to efficiently read data from texture or surface
memory as opposed to global memory.

References to textures are bound through runtime functions to device read-only regions of memory,
called a texture memory, before they can be used by a kernel. A texture reference has several attributes
e.g. normalized mode, addressing mode, and texture filtering etc. A sampler reference can be used to
sample a texture when read in a kernel. A surface reference is used to read or write data from and to
the surface memory. It also has various attributes similar to a texture.

At the PTX level objects that access texture or surface memory are referred to as opaque objects. Tex-
tures are expressed by either a .texref or .samplerref type and surfaces are expressed by the .surfref
type. The data of opaque objects can be accessed by specific instructions (TEX for .texref/.samplerref
and SULD/SUST for .surfref). The attributes of opaque objects are implemented by allocating a de-
scriptor in memory which is populated by the driver. PTX TXQ/SUQ instructions get translated into
memory reads of fields of the descriptor. The internal format of the descriptor varies with each ar-
chitecture and should not be relied on by the user. The data and the attributes of an opaque object
may be accessed directly if the texture or surface reference is known at compile time or indirectly. If
the reference is not known during compile time all information required to read data and attributes is
contained in a .b64 value called the handle. The handle can be used to pass and return ogaque object
references to and from functions as well as to reference external textures, samplers and surfaces.

1.4. Texture, Sampler, and Surface Types 7

PTX Interoperability, Release 12.8

8 Chapter 1. Data Representation

Chapter 2. Function Calling Sequence

This section describes the PTX-level function calling sequence, including register usage, stack-frame
layout, and parameter passing. The PTX-level function calling sequence describes what gets repre-
sented in PTX to enable function calls. There is an abstraction at this level. Most of the details asso-
ciated with the function calling sequence are handled at the SASS level.

PTX versions earlier than 2.0 do not conform to the ABI defined in this document, and cannot perform
ABI compatible function calls. For the calling convention to work PTX version 2.0 or greater must be
used.

At the PTX level, the registers that are specified are virtual. Register allocation occurs during PTX-to-
SASS translation. The PTX-to-SASS translation also converts parameters and return values to physical
registers or stack locations.

The PTX level has no concept of the software stack. Manipulation of the stack is completely defined
at the SASS level, and gets allocated during the PTX-to-SASS translation process.

At the PTX level, all parameters and return values present in a device function use the parameter state
space (.param). The below table contains the rules for handling parameters and return values that are
defined at the source level. For each source-level type, the corresponding PTX-level type that should
be used is provided.

PTX Interoperability, Release 12.8

Source Type Size in | PTX Type
Bits
Integral types 8 to 32 | .u32 (if unsigned) or .s32 (if signed)
(A)
Integral types 64 .u64 (if unsigned) or .s64 (if signed)
Pointers (B) 32 .u32
Pointers (B) 64 .ub4
Floating-point 32 f32
types (C)
Floating-point 64 f64
types (C)
Aggregates or | Any .align align .b8 name[size]
unions size Where align is overall aggregate-or-union alignment in bytes (D),
name is variable name associated with aggregate or union, and sizeis
the aggregate-or-union size in bytes.
Handles (E) 64 .b64 (assigned from .texref, .sampleref, .surfref)
NOTES:

Values shorter than 32-bits are sign extended or zero extended, depending on whether they are
signed or unsigned types.

Unless the memory type is specified in the function declaration, all pointers passed at the PTX
level must use a generic address.

16-bit floating-point types are only used for storage. Therefore, they cannot be used for param-
eters or return values.

The alignment must be 1, 2, 4, 8, 16, 32, 64, or 128 bytes.

The PTX built-in opaque types such as texture, sampler, and surface types are can be passed into
functions as parameters and be returned by them through 64-bit handles. The handle contains
the necessary information to access the actual data from the texture or surface memory as well
as the attributes of the object stored in its type descriptor. See section

for more information on handles.

10

Chapter 2. Function Calling Sequence

index.html#textures-surfaces-samplers
index.html#textures-surfaces-samplers

Chapter 3. System Calls

System calls are calls into the driver operating system code. In PTX they look like regular calls, but the
function definition is not given. A prototype must be provided in the PTX file, but the implementation
of the function is provided by the driver.

The prototype for the vprintf system call is:

.extern .func (.param .s32 status) vprintf (.param t1 format, .param t2 valist)

The following are the definitions for the vprintf parameters and return value.
status : The status value that is returned by vprintf.

format : A pointer to the format specifier input. For 32-bit addresses, type t1 is .b32. For 64-bit
addresses, type t1 is .b64.

valist : A pointer to the valist input. For 32-bit addresses, type t2 is .b32. For 64-bit addresses,
type t2 is .b64.

A call to vprintf using 32-bit addresses looks like:

cvta.global.b32 %r2, _fmt;
st.param.b32 [param@], %r2;
cvta.local.b32 %r3, _valist_array;
st.param.b32 [paraml], %r3;

call.uni (_), vprintf, (param@, paraml);

For this code, _fmt is the format string in global memory, and _valist_array is the valist of arguments.
Note that any pointers must be converted to generic space. The vprintf syscall is emitted as part of
the printf function defined in “stdio.h”.

The prototype for the malloc system call is:

.extern .func (.param t1 ptr) malloc (.param t2 size)

The following are the definitions for the malloc parameters and return value.

ptr : The pointer to the memory that was allocated by malloc. For 32-bit addresses, type t1 is
.b32. For 64-bit addresses, type t1 is .b64.

size : The size of memory needed from malloc. This size is defined by the type size_t. When size_t
is 32 bits, type t2 is .b32. When size_t is 64 bits, type t2 is .b64.

The prototype for the free system call is:

.extern .func free (.param t1 ptr)

The following is the definition for the free parameter.

11

PTX Interoperability, Release 12.8

ptr: The pointer to the memory that should be freed. For 32-bit addresses, type t1 is .b32. For
64-bit addresses, type t1 is .b64.

The malloc and free system calls are emitted as part of the malloc and free functions defined in “mal-
loc.h”.

In order to support assert, the PTX function call __assertfail is used whenever the assert expression
produces a false value. The prototype for the __assertfail system call is:

.extern .func __assertfail (.param t1 message, .param t1 file, .param .b32 line,
—param t1 function, .param t2 charSize)

The following are the definitions for the __assertfail parameters.

message : The pointer to the string that should be output. For 32-bit addresses, type t1 is .b32.
For 64-bit addresses, type t1 is .b64.

file : The pointer to the file name string associated with the assert. For 32-bit addresses, type
t1is .b32. For 64-bit addresses, type t1 is .b64.

line : The line number associated with the assert.

function : The pointer to the function name string associated with the assert. For 32-bit ad-
dresses, type t1 is .b32. For 64-bit addresses, type t1 is .b64.

charSize: The size in bytes of the characters contained in the __assertfail parameter strings. The
only supported character size is 1. The character size is defined by the type size_t. When size_t
is 32 bits, type t2 is .b32. When size_t is 64 bits, type t2 is .b64.

The __assertfail system call is emitted as part of the assert macro defined in “assert.h”.

12 Chapter 3. System Calls

Chapter 4. Atomics Application Binary

Interface

The mappings of programming languages’ atomic operations to the PTX ISA need to be implemented in
a consistent manner across all programming languages that may concurrently access shared memory.
The mapping from C++11 atomics for the CUDA architecture are proven correct in

. The PTX ISA provides atomic memory operations and
fences for acquire, release, acquire-release, and relaxed C++ memory ordering semantics. The PTX ABI
for C++ sequentially consistent atomic operations is the following

C or C++ or CUDA C++ API

PTX ABI ISA mapping

atomic_thread_fence(memory_order_seq_cst,
thread_scope_<scope>)

fence.sc.<scope>;

atomic_load(memory_order_seq_cst, fence.sc.<scope>; ld.acquire.
thread_scope_<scope>) <scope>;
atomic_store(memory_order_seq_cst, fence.sc.<scope>; st.release.
thread_scope_<scope>) <scope>;

atomic_<rmw op>(memory_order_seq_cst,
thread_scope_<scope>)

fence.sc.<scope>; atom.acq_rel
<scope>.<rmw op>;

13

https://dl.acm.org/doi/10.1145/3297858.3304043
https://dl.acm.org/doi/10.1145/3297858.3304043

PTX Interoperability, Release 12.8

14 Chapter 4. Atomics Application Binary Interface

Chapter 5. Debug Information

Debug information is encoded in DWARF (Debug With Arbitrary Record Format).

5.1. Generation of Debug Information

The responsibility for generating debug information is split between the PTX producer and the PTX-
to-SASS backend. The PTX producer is responsible for emitting binary DWARF into the PTX file, using
the .section and .b8-.b16-.b32-and-.b64 directives in PTX. This should contain the .debug_info and
.debug_abbrev sections, and possibly optional sections .debug_pubnames and .debug_aranges. These
sections are standard DWARF2 sections that refer to labels and registers in the PTX.

The PTX-to-SASS backend is responsible for generating the .debug_line section from the .file and
Joc directives in the PTX file. This section maps source lines to SASS addresses. The backend also
generates the .debug_frame section.

5.2. CUDA-Specific DWARF Definitions

In order to support debugging of multiple memory segments, address class codes are de-
fined to reflect the memory space of variables. The address-class values are emitted as the
DW_AT_address_class attribute for all variable and parameter Debugging Information Entries. The
address class codes are defined in the below table.

15

PTX Interoperability, Release 12.8

Code Value | Description
ADDR_code_space 1 Code storage
ADDR_reg_space 2 Register storage
ADDR_sreg_space 3 Special register storage
ADDR_const_space 4 Constant storage
ADDR_global_space 5 Global storage
ADDR_|ocal_space 6 Local storage
ADDR_param_space 7 Parameter storage
ADDR_shared_space 8 Shared storage
ADDR_surf_space 9 Surface storage
ADDR_tex_space 10 Texture storage
ADDR_tex_sampler_space | 11 Texture sampler storage
ADDR_generic_space 12 Generic-address storage

16

Chapter 5. Debug Information

Chapter 6. Example

The following is example PTX with debug information for implementing the following program that

makes a call:
__device__ __noinline__ int foo (int i, int j)
{
return i+j;
}
__global__ void test (int *p)
{
*p = foo(1, 2);
}
The resulting PTX would be something like:
.version 4.2
.target sm_20, debug
.address_size 64
.file 1 "call_example.cu”
.visible .func (.param .b32 func_retval®) // return value
_23fooii(

.param .b32 _Z3fooii_param_0, // parameter "i"

n_on

.param .b32 _Z3fooii_param_1) // parameter "j

.reg .s32 %r<4>;
.loc 1 11 // following instructions are for line 1

func_begin®d:

1d.param.u32 %r1, [_z3fooii_param_@]; // load 1st param
1d.param.u32 %r2, [_z3fooii_param_1]; // load 2nd param

.loc 131 // following instructions are for line 3
add.s32 %r3, %rl1, %r2;
st.param.b32 [func_retval@+0], %r3; // store return value
ret;

func_endo:

}

.visible .entry _Z4testPi(

{

.param .u64 _Z4testPi_param_0) // parameter *p

.reg .s32 %r<4>;
.reg .s64 %rd<2>;
(continues on next page)

17

PTX Interoperability, Release 12.8

.loc 1 6 1

func_begin1:
1d.param.u64 %rd1,

mov .u32 %r1, 1;
mov .u32 %r2, 2;
.loc 189

.param .b32 param@;

st.param.b32 [parame+0], %r1; // store 1

.param .b32 paraml;

st.param.b32 [param1+0], %r2; // store 2

.param .b32 retval®;

call.uni (retval@), _Z3fooii,
1d.param.b32 %r3, [retvale+@]; // get return value
// *p = return value

st.u32 [%rd1], %r3;

.loc 192
ret;
func_end1:
}
.section .debug_info {
.b32 262
.b8 2, ©

.b32 .debug_abbrev
.b8 8, 1, 108, 163, 101, 1180,

.b8 0, 4, 99, 97, 108, 108, 49, 46,

.b64 0

[_Z4testPi_param_0]; // load *p

58, 32, 69,

(continued from previous page)

(param@, paraml); // call foo

52, 46, 57

.b32 .debug_line // the .debug_line section will be created by ptxas from the .loc

.b8 47, 104, 111, 109, 101, 47,
.b8 101, 115, 116, @, 2, 95, 90, 51,
.b8 51, 102, 111, 111, 185, 105, ©

.b32 1, 1, 164
.b8 1

.b64 func_begin® // start and end location of foo

.b64 func_endod

.b8 1, 156, 3, 105, ©

.b32 1, 1, 164

.b8 5, 144, 177, 228, 149, 1,
.b32 1, 1, 164

.b8 5, 144, 178, 228, 149, 1,
.b32 4

.b8 2, 95, 99, 52, 116, 101,
.b8 115, 116, 80, 105, O

.b32 1, 6, 253

.b8 1

.b64 func_begin1 // start and end location of test

.b64 func_end1

.b8 1, 156, 3, 112, ©
.b32 1, 6, 259

.b8 9, 3

.b64 _Z4testPi_param_0

.b8 7, @, 5, 118, 111, 165, 100, @, 6

.b32 164
.b8 12, @

}

.section .debug_abbrev {

105, @, 95, 96, 52,

121, 47, 116
165, @, 95, 96

116, 101

(continues on next page)

18

Chapter 6. Example

PTX Interoperability, Release 12.8

}

(continued from previous page)

.b8 1, 17, 1, 37, 8, 19, 11, 38, 8, 17, 1, 16, 6, 27, 8, 0, @, 2, 46, 1, 135
.b8 64, 8, 3, 8, 58, 6, 59, 6, 73, 19, 63, 12, 17, 1, 18, 1, 64, 10, 0, ©
.b8 3, 5, 0, 3, 8, 58, 6, 59, 6, 73, 19, 2, 1@, 51, 11, 0, @, 4, 36, 0, 3
.b8 8, 62, 11, 11, 6, 0, 6, 5, 59, 0, 3, 8, @, @, 6, 15, @, 73, 19, 51, 11
.b8 0, 0, ©

.section .debug_pubnames {

.b32 41

.b8 2, ©

.b32 .debug_info

.b32 262, 69

.b8 95, 98, 51, 162, 111, 111, 185, 105, ©
.b32 174

.b8 95, 96, 52, 116, 101, 115, 116, 80, 105, O
.b32 ©

19

PTX Interoperability, Release 12.8

20 Chapter 6. Example

Chapter 7. C++

The C++ implementation for device functions follows the Itanium C++ ABI. However, not everything in
C++ is supported. In particular, the following are not supported in device code.

Exceptions and try/catch blocks
RTTI

STL library

Global constructors and destructors

Virtual functions and classes across host and device (i.e., vtables cannot be used across host and
device)

There are also a few C features that are not currently supported:

stdio other than printf

21

PTX Interoperability, Release 12.8

22 Chapter 7. C++

Chapter 8. Notices

This document is provided for information purposes only and shall not be regarded as a warranty of a
certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no repre-
sentations or warranties, expressed or implied, as to the accuracy or completeness of the information
contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall
have no liability for the consequences or use of such information or for any infringement of patents
or other rights of third parties that may result from its use. This document is not a commitment to
develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any
other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that
such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the
time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by
authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA
product referenced in this document. No contractual obligations are formed either directly or indirectly
by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military,
aircraft, space, or life support equipment, nor in applications where failure or malfunction of the NVIDIA
product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or
applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for
any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA.
It is customer’s sole responsibility to evaluate and determine the applicability of any information con-
tained in this document, ensure the product is suitable and fit for the application planned by customer,
and perform the necessary testing for the application in order to avoid a default of the application or
the product. Weaknesses in customer’s product designs may affect the quality and reliability of the
NVIDIA product and may result in additional or different conditions and/or requirements beyond those
contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or prob-
lem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is
contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other
NVIDIA intellectual property right under this document. Information published by NVIDIA regarding
third-party products or services does not constitute a license from NVIDIA to use such products or

23

PTX Interoperability, Release 12.8

services or a warranty or endorsement thereof. Use of such information may require a license from a
third party under the patents or other intellectual property rights of the third party, or a license from
NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA
in writing, reproduced without alteration and in full compliance with all applicable export laws and
regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE
BEING PROVIDED “AS 1S.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WAR-
RANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CON-
SEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARIS-
ING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES. Notwithstanding any damages that customer might incur for any reason whatso-
ever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein
shall be limited in accordance with the Terms of Sale for the product.

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the
U.S. and other countries. Other company and product names may be trademarks of the respective
companies with which they are associated.

©2007-2025, NVIDIA Corporation & affiliates. All rights reserved

24 Chapter 8. Notices

	Data Representation
	Fundamental Types
	Aggregates and Unions
	Bit Fields
	Texture, Sampler, and Surface Types

	Function Calling Sequence
	Registers
	Stack Frame
	Parameter Passing

	System Calls
	Atomics Application Binary Interface
	Debug Information
	Generation of Debug Information
	CUDA-Specific DWARF Definitions

	Example
	C++
	Notices
	Notice
	OpenCL
	Trademarks

