cuBLAS
Release 12.9

NVIDIA Corporation

May 31, 2025

Contents

1 Introduction 3
1.1 Datalayout. 3
1.2 NewandLegacy cuBLAS APl 4
1.3 Example Code e 5
1.4 Forward Compatibility 8
1.5 Floating Point Emulation. 8
2 Using the cuBLAS API 11
2.1 General Description e 11
2.2 cuBLAS Datatypes Reference 17
2.3 CUDA Datatypes Reference 23
2.4 cuBLAS Helper Function Reference 25
2.5 cuBLAS Level-1 Function Reference 36
2.6 cuBLAS Level-2 Function Reference 48
2.7 cuBLAS Level-3 Function Reference 91
2.8 BLAS-like Extension 127
3 Using the cuBLASLt API 185
3.1 General Description 185
3.2 cuBLASLt Code Examples 197
3.3 cuBLASLt Datatypes Reference 197
3.4 cuBLASLt APIReference. 228
4 Using the cuBLASXt API 263
4.1 Generaldescription e 263
4.2 cuBLASXt APl Datatypes Reference 266
4.3 cuBLASXt APl Helper Function Reference 267
4.4 cuBLASXt APl Math Functions Reference 270
5 Using the cuBLASDx API 293
6 Using the cuBLAS Legacy API 295
6.1 Error Status e 295
6.2 Initialization and Shutdown L 296
6.3 Thread Safety e e 296
6.4 Memory Management e 296
6.5 Scalar Parameters. e 296
6.6 Helper Functions e 297
6.7 Level-1,2,3Functions e 297
6.8 Converting Legacy tothe cuBLAS APl 297
6.9 Examples 298
7 cuBLAS Fortran Bindings 301

8 Interaction with Other Libraries and Tools
8.1 NVPIUNE

9 Acknowledgements

10 Notices
10.T Notice e
10.2 0penCL e
10.3 Trademarks e e e e e e e

cuBLAS, Release 12.9

The API Reference guide for cuBLAS, the CUDA Basic Linear Algebra Subroutine library.

Contents 1

cuBLAS, Release 12.9

2 Contents

Chapter 1

Introduction

The cuBLAS library is an implementation of BLAS (Basic Linear Algebra Subprograms) on top of the
NVIDIA®CUDA™ runtime. It allows the user to access the computational resources of NVIDIA Graphics
Processing Unit (GPU).

The cuBLAS Library exposes four sets of APIs:

The , Which is simply called cuBLAS API in this document (starting with CUDA 6.0),
The (starting with CUDA 6.0), and

The (starting with CUDA 10.1)

The (not shipped with the CUDA Toolkit)

To use the cuBLAS API, the application must allocate the required matrices and vectors in the GPU
memory space, fill them with data, call the sequence of desired cuBLAS functions, and then upload the
results from the GPU memory space back to the host. The cuBLAS API also provides helper functions
for writing and retrieving data from the GPU.

To use the cuBLASXt API, the application may have the data on the Host or any of the devices involved
in the computation, and the Library will take care of dispatching the operation to, and transferring the
data to, one or multiple GPUs present in the system, depending on the user request.

The cuBLASLt is a lightweight library dedicated to GEneral Matrix-to-matrix Multiply (GEMM) opera-
tions with a new flexible API. This library adds flexibility in matrix data layouts, input types, compute
types, and also in choosing the algorithmic implementations and heuristics through parameter pro-
grammability. After a set of options for the intended GEMM operation are identified by the user, these
options can be used repeatedly for different inputs. This is analogous to how cuFFT and FFTW first
create a plan and reuse for same size and type FFTs with different input data.

For maximum compatibility with existing Fortran environments, the cuBLAS library uses column-major
storage, and 1-based indexing. Since C and C++ use row-major storage, applications written in these
languages can not use the native array semantics for two-dimensional arrays. Instead, macros or inline
functions should be defined to implement matrices on top of one-dimensional arrays. For Fortran
code ported to C in mechanical fashion, one may chose to retain 1-based indexing to avoid the need
to transform loops. In this case, the array index of a matrix element in row “”
computed via the following macro

[

and column “” can be

cuBLAS, Release 12.9

#define IDX2F(1i,j,1d) ((((j)-1)*(1d))+((i)-1))

Here, Id refers to the leading dimension of the matrix, which in the case of column-major storage is
the number of rows of the allocated matrix (even if only a submatrix of it is being used). For natively
written C and C++ code, one would most likely choose O-based indexing, in which case the array index

wr e

of a matrix element in row “i” and column “” can be computed via the following macro

#define IDX2C(i,j,1d) (((j)*(1d))+(i))

Starting with version 4.0, the cuBLAS Library provides a new API, in addition to the existing legacy API.
This section discusses why a new API is provided, the advantages of using it, and the differences with
the existing legacy API.

Warning: The legacy cuBLAS APl is deprecated and will be removed in future release.

The new cuBLAS library APl can be used by including the header file cublas_v2 . h. It has the following
features that the legacy cuBLAS API does not have:

The handle to the cuBLAS library context is initialized using the function and is explicitly passed
to every subsequent library function call. This allows the user to have more control over the
library setup when using multiple host threads and multiple GPUs. This also allows the cuBLAS
APIs to be reentrant.

The scalars o and 3 can be passed by reference on the host or the device, instead of only be-
ing allowed to be passed by value on the host. This change allows library functions to execute
asynchronously using streams even when « and 3 are generated by a previous kernel.

When a library routine returns a scalar result, it can be returned by reference on the host or the
device, instead of only being allowed to be returned by value only on the host. This change allows
library routines to be called asynchronously when the scalar result is generated and returned by
reference on the device resulting in maximum parallelism.

The error status cublasStatus_t is returned by all cuBLAS library function calls. This change
facilitates debugging and simplifies software development. Note that cublasStatus was re-
named cublasStatus_t to be more consistent with other types in the cuBLAS library.

The cublasAlloc() and cublasFree() functions have been deprecated. This change removes
these unnecessary wrappers around cudaMalloc() and cudaFree(), respectively.

The function cublasSetKernelStream() was renamed cublasSetStream() to be more con-
sistent with the other CUDA libraries.

The legacy cuBLAS API, explained in more detail in , can be used by in-
cluding the header file cublas.h. Since the legacy APl is identical to the previously released cuBLAS
library API, existing applications will work out of the box and automatically use this legacy API without
any source code changes.

The current and the legacy cuBLAS APIs cannot be used simultaneously in a single translation unit:
including both cublas.h and cublas_v2.h header files will lead to compilation errors due to incom-
patible symbol redeclarations.

4 Chapter 1. Introduction

cuBLAS, Release 12.9

In general, new applications should not use the legacy cuBLAS API, and existing applications should
convert to using the new API if it requires sophisticated and optimal stream parallelism, or if it calls
cuBLAS routines concurrently from multiple threads.

For the rest of the document, the new cuBLAS Library API will simply be referred to as the cuBLAS
Library API.

As mentioned earlier the interfaces to the legacy and the cuBLAS library APIs are the header file
cublas.h and cublas_v2.h, respectively. In addition, applications using the cuBLAS library need
to link against:

» The
» The
» The

DSO cublas. so for Linux,
DLL cublas.d1ll for Windows, or
dynamic library cublas.dylib for Mac OS X.

Note: The same dynamic library implements both the new and legacy cuBLAS APIs.

1.3 Example Code

For sample code references please see the two examples below. They show an application written in
C using the cuBLAS library API with two indexing styles (Example 1. “Application Using C and cuBLAS:
1-based indexing” and Example 2. “Application Using C and cuBLAS: 0-based Indexing”).

//Example 1. Application Using C and cuBLAS: T1-based indexing

#include
#include
#include
#include
#include

<stdio.h>
<stdlib.h>
<math.h>
<cuda_runtime.h>
"cublas_v2.h"

#define M 6
#define N 5
#define IDX2F(1i,j,1d) ((((j)-1)*(1d))+((i)-1))

static __inline__ void modify (cublasHandle_t handle, float *m, int ldm, int n, int p,
— int q, float alpha, float beta){

cublasSscal (handle, n-qg+1, &alpha, &m[IDX2F(p,q,ldm)], 1ldm);

cublasSscal (handle, ldm-p+1, &beta, &m[IDX2F(p,q,ldm)], 1);

}

int main (void){
cudaError_t cudaStat;
cublasStatus_t stat;
cublasHandle_t handle;

int

il j;

float* devPtrA;
float* a = 0;

a =
if (

}

for

(float *)malloc (M * N * sizeof (*a));
ta) {

printf ("host memory allocation failed");
return EXIT_FAILURE;

(3 =715 3 <= N j++) A

(continues on next page)

1.3. Example Code 5

cuBLAS, Release 12.9

(continued from previous page)
for (i = 1; 1 <= M; i++) {
a[IDX2F(i,j,M)] = (float)((i-1) * N + j);

}
}
cudaStat = cudaMalloc ((void**)&devPtrA, M*N*sizeof(*a));
if (cudaStat !'= cudaSuccess) {
printf ("device memory allocation failed");
free (a);
return EXIT_FAILURE;
}

stat = cublasCreate(&handle);
if (stat != CUBLAS_STATUS_SUCCESS) {
printf ("CUBLAS initialization failed\n");
free (a);
cudaFree (devPtrA);
return EXIT_FAILURE;
}
stat = cublasSetMatrix (M, N, sizeof(*a), a, M, devPtrA, M);
if (stat != CUBLAS_STATUS_SUCCESS) {
printf ("data download failed");
free (a);
cudaFree (devPtrA);
cublasDestroy(handle);
return EXIT_FAILURE;

}
modify (handle, devPtrA, M, N, 2, 3, 16.0f, 12.0f);
stat = cublasGetMatrix (M, N, sizeof(*a), devPtrA, M, a, M);
if (stat != CUBLAS_STATUS_SUCCESS) {

printf ("data upload failed");

free (a);

cudaFree (devPtrA);

cublasDestroy(handle);

return EXIT_FAILURE;
}
cudaFree (devPtrA);
cublasDestroy(handle);
for (j = 1; j <= N; j++) {

for (i = 1; 1 <= M; i++) {

printf ("%7.0f", a[IDX2F(i,j,M)]);

}

printf ("\n");
}
free(a);

return EXIT_SUCCESS;

//Example 2. Application Using C and cuBLAS: 6-based indexing

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <cuda_runtime.h>
#include "cublas_v2.h"
#define M 6
#define N 5
(continues on next page)

6 Chapter 1. Introduction

cuBLAS, Release 12.9

(continued from previous page)
#define IDX2C(1i,j,1d) (((j)*(1d))+(1i))

static __inline__ void modify (cublasHandle_t handle, float *m, int 1ldm, int n, int p,
— int q, float alpha, float beta)({

cublasSscal (handle, n-q, &alpha, &m[IDX2C(p,q,ldm)], 1dm);

cublasSscal (handle, ldm-p, &beta, &m[IDX2C(p,q,ldm)], 1);
}

int main (void){
cudaError_t cudaStat;
cublasStatus_t stat;
cublasHandle_t handle;
int i, j;
float* devPtrA;
float* a = 0;
a = (float *)malloc (M * N * sizeof (*a));
if ('a) {
printf ("host memory allocation failed");
return EXIT_FAILURE;
}
for (j = 0; j < N; j++) {
for (i = 0; 1 < M; i++) {
a[IDX2C(i,j,M)] = (float)(i * N + j + 1);

}
}
cudaStat = cudaMalloc ((void**)&devPtrA, M*N*sizeof(*a));
if (cudaStat !'= cudaSuccess) {
printf ("device memory allocation failed");
free (a);
return EXIT_FAILURE;
}

stat = cublasCreate(&handle);
if (stat != CUBLAS_STATUS_SUCCESS) {

printf ("CUBLAS initialization failed\n");

free (a);

cudaFree (devPtrA);

return EXIT_FAILURE;
}
stat = cublasSetMatrix (M, N, sizeof(*a), a, M, devPtrA, M);
if (stat != CUBLAS_STATUS_SUCCESS) {

printf ("data download failed");

free (a);

cudaFree (devPtrA);

cublasDestroy(handle);

return EXIT_FAILURE;
}
modify (handle, devPtrA, M, N, 1, 2, 16.0f, 12.0f);
stat = cublasGetMatrix (M, N, sizeof(*a), devPtrA, M, a, M);
if (stat != CUBLAS_STATUS_SUCCESS) {

printf ("data upload failed");

free (a);

cudaFree (devPtrA);

cublasDestroy(handle);

return EXIT_FAILURE;

}
cudaFree (devPtrA);

(continues on next page)

1.3. Example Code 7

cuBLAS, Release 12.9

(continued from previous page)
cublasDestroy(handle);
for (j = 0; j < N; j++) {
for (i = 0; i < M; i++) {
printf ("%7.ef", a[IDX2C(i,j,M)]);

printf ("\n");
}
free(a);
return EXIT_SUCCESS;

CUBLAS library can work on future GPUs in most cases thanks to PTX JIT. However, there are certain
limitations:

There are no performance guarantees: running on new hardware may be slower despite better
theoretical peaks.

There is limited forward compatibility for narrow precisions (FP4 and FP8) and tiled 8-bit integer
layouts.

Floating point emulation was introduced in CUDA 12.9 and is used to further accelerate matrix mul-
tiplication for higher precision data types. Floating point emulation works by first transforming the
inputs into multiple lower precision values, then leverages lower precision hardware units to compute
partial results, and finally recombines the results back into full precision. These algorithms can provide
a significant performance advantage over native precision arithmetic while maintaining the same or
better accuracy; however, the results are not IEEE-754 compliant.

Table 1: Floating Point Emulation Support Overview

Floating Point Emulation Algorithm | Supported compute capabilities
10.0

To enable floating point emulation without any code changes, the following environment variables can
be used.

Table 2: Floating Point Emulation Environment Variables

Environment Vari- | Description
able
CUBLAS_EMULATIONA&T&M EdBYnent variable for overriding the default emulation strategy. The
valid values are performant and eager, see for
more details.

CUBLAS_EMULATE_SINGEhviPREGESIOMariable for enabling and disabling single precision floating
point emulation using the values 1 and O respectively.

8 Chapter 1. Introduction

cuBLAS, Release 12.9

The BF 16x9 algorithm is used for emulating FP32 arithmetic. An FP32 value can be exactly represented
as three BF 16 values as follows:

a=ag—+ 2_8a1 + 2_16a2

We can fully reconstruct the FP32 value from the BF 16 values without any loss of accuracy. Using this,
we define an FMA operation (d = ab + c) as follows:
d=ab+c
= (ap+278a; +27%ay) - (bg + 2780, +270y) + ¢
= agby + 2 %aoby + 27 0agbs
+ 2*8a1b0 +2700,b; + 272 a1 by
+ 2700500 + 27 asby + 27 2asby + ¢

In practice, the BF 16 tensor cores are utilized rather than FMA units and this idea naturally extends
into complex arithmetic as well.

While BF 16x9 can be supported on all hardware, it only provides a performance advantage when peak
BF 16 throughput is more than nine times greater than peak FP32 throughput. It also requires special
hardware features to apply the additional scaling factors in a performant manner. As a result, BF 16x9
is only supported on select architectures. See the table for
more details.

1.5. Floating Point Emulation 9

cuBLAS, Release 12.9

10 Chapter 1. Introduction

Chapter 2

Using the cuBLAS API

This section describes how to use the cuBLAS library API.
All cuBLAS library function calls return the error status

The application must initialize a handle to the cuBLAS library context by calling the

function. Then, the handle is explicitly passed to every subsequent library function call. Once the
application finishes using the library, it must call the function to release the resources
associated with the cuBLAS library context.

This approach allows the user to explicitly control the library setup when using multiple host threads
and multiple GPUs. For example, the application can use cudaSetDevice() to associate different
devices with different host threads and in each of those host threads it can initialize a unique handle
to the cuBLAS library context, which will use the particular device associated with that host thread.
Then, the cuBLAS library function calls made with different handles will automatically dispatch the
computation to different devices.

The device associated with a particular cuBLAS context is assumed to remain unchanged between
the corresponding and calls. In order for the cuBLAS library to use a
different device in the same host thread, the application must set the new device to be used by calling
cudaSetDevice() and then create another cuBLAS context, which will be associated with the new
device, by calling . When multiple devices are available, applications must ensure that the
device associated with a given cuBLAS context is current (e.g. by calling cudaSetDevice()) before
invoking cuBLAS functions with this context.

A cuBLAS library context is tightly coupled with the CUDA context that is current at the time of the

call. An application that uses multiple CUDA contexts is required to create a cuBLAS
context per CUDA context and make sure the former never outlives the latter. Starting from version
12.8, cuBLAS detects if the underlying CUDA context is tied to a graphics context and follows the
shared memory size limits that are set in such case.

11

cuBLAS, Release 12.9

The library is thread safe and its functions can be called from multiple host threads, even with the
same handle. When multiple threads share the same handle, extreme care needs to be taken when
the handle configuration is changed because that change will affect potentially subsequent cuBLAS
calls in all threads. It is even more true for the destruction of the handle. So it is not recommended
that multiple thread share the same cuBLAS handle.

By design, all cuBLAS API routines from a given toolkit version, generate the same bit-wise results at
every run when executed on GPUs with the same architecture and the same number of SMs. However,
bit-wise reproducibility is not guaranteed across toolkit versions because the implementation might
differ due to some implementation changes.

This guarantee holds when a single CUDA stream is active only. If multiple concurrent streams are
active, the library may optimize total performance by picking different internal implementations.

Note: The non-deterministic behavior of multi-stream execution is due to library optimizations in
selecting internal workspace for the routines running in parallel streams. To avoid this effect user can
either:

provide a separate workspace for each used stream using the function, or
have one cuBLAS handle per stream, or

use instead of GEMM-family of functions and provide user owned workspace,
or

set a debug environment variable CUBLAS_WORKSPACE_CONFIG to :16:8 (may limit overall per-
formance) or :4096 :8 (will increase library footprint in GPU memory by approximately 24MiB).

Any of those settings will allow for deterministic behavior even with multiple concurrent streams shar-
ing a single cuBLAS handle.

This behavior is expected to change in a future release.

For some routines such as and , an alternate significantly faster rou-
tine can be chosen using the routine . In that case, the results are not guar-
anteed to be bit-wise reproducible because atomics are used for the computation.

There are two categories of the functions that use scalar parameters :

Functions that take alpha and/or beta parameters by reference on the host or the device as
scaling factors, such as gemm.

Functions that return a scalar result on the host or the device such as amax(), amin, asum(),
rotg(), rotmg(),dot() and nrm2().

For the functions of the first category, when the pointer mode is set to CUBLAS_POINTER_MODE_HOST,
the scalar parameters alpha and/or beta can be on the stack or allocated on the heap, shouldn’t be
placed in managed memory. Underneath, the CUDA kernels related to those functions will be launched
with the value of alpha and/or beta. Therefore if they were allocated on the heap, they can be freed

12 Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

just after the return of the call even though the kernel launch is asynchronous. When the pointer mode
is set to CUBLAS_POINTER_MODE_DEVICE, alpha and/or beta must be accessible on the device and
their values should not be modified until the kernel is done. Note that since cudaFree() does an
implicit cudaDeviceSynchronize(), cudaFree() can still be called on alpha and/or beta just after
the call but it would defeat the purpose of using this pointer mode in that case.

For the functions of the second category, when the pointer mode is set to CUBLAS_POINTER_MODE_
HOST, these functions block the CPU, until the GPU has completed its computation and the results
have been copied back to the Host. When the pointer mode is set to CUBLAS_POINTER_MODE_DEVICE,
these functions return immediately. In this case, similar to matrix and vector results, the scalar result
is ready only when execution of the routine on the GPU has completed. This requires proper synchro-
nization in order to read the result from the host.

In either case, the pointer mode CUBLAS_POINTER_MODE_DEVICE allows the library functions to ex-
ecute completely asynchronously from the Host even when alpha and/or beta are generated by a
previous kernel. For example, this situation can arise when iterative methods for solution of linear
systems and eigenvalue problems are implemented using the cuBLAS library.

If the application uses the results computed by multiple independent tasks, CUDA™ streams can be
used to overlap the computation performed in these tasks.

The application can conceptually associate each stream with each task. In order to achieve the over-
lap of computation between the tasks, the user should create CUDA™ streams using the function
cudaStreamCreate() and set the stream to be used by each individual cuBLAS library routine by
calling just before calling the actual cuBLAS routine. Note that

resets the user-provided workspace to the default workspace pool; see . Then,
the computation performed in separate streams would be overlapped automatically when possible
on the GPU. This approach is especially useful when the computation performed by a single task is
relatively small and is not enough to fill the GPU with work.

We recommend using the new cuBLAS API with scalar parameters and results passed by reference in
the device memory to achieve maximum overlap of the computation when using streams.

A particular application of streams, batching of multiple small kernels, is described in the following
section.

In this section, we explain how to use streams to batch the execution of small kernels. For instance,
suppose that we have an application where we need to make many small independent matrix-matrix
multiplications with dense matrices.

It is clear that even with millions of small independent matrices we will not be able to achieve the same
GFLOPS rate as with a one large matrix. For example, a single n x n large matrix-matrix multiplication
performs n? operations for n? input size, while 1024 35 X 35 small matrix-matrix multiplications perform

1024 (%)3 = g—; operations for the same input size. However, it is also clear that we can achieve a
significantly better performance with many small independent matrices compared with a single small
matrix.

The architecture family of GPUs allows us to execute multiple kernels simultaneously. Hence, in or-
der to batch the execution of independent kernels, we can run each of them in a separate stream.
In particular, in the above example we could create 1024 CUDA™ streams using the function cud-
aStreamCreate(), then preface each call to with a call to with

2.1. General Description 13

cuBLAS, Release 12.9

a different stream for each of the matrix-matrix multiplications (note that resets
user-provided workspace to the default workspace pool, see). This will ensure
that when possible the different computations will be executed concurrently. Although the user can
create many streams, in practice it is not possible to have more than 32 concurrent kernels executing
at the same time.

On some devices, L1 cache and shared memory use the same hardware resources. The cache config-
uration can be set directly with the CUDA Runtime function cudaDeviceSetCacheConfig. The cache
configuration can also be set specifically for some functions using the routine cudaFuncSetCacheCon-
fig. Please refer to the CUDA Runtime API documentation for details about the cache configuration
settings.

Because switching from one configuration to another can affect kernels concurrency, the cuBLAS
Library does not set any cache configuration preference and relies on the current setting. However,
some cuBLAS routines, especially Level-3 routines, rely heavily on shared memory. Thus the cache
preference setting might affect adversely their performance.

The cuBLAS Library is also delivered in a static form as 1libcublas_static.a on Linux. The static
cuBLAS library and all other static math libraries depend on a common thread abstraction layer library
called 1ibculibos.a.

For example, on Linux, to compile a small application using cuBLAS, against the dynamic library, the
following command can be used:

nvcc myCublasApp.c -lcublas -o myCublasApp

Whereas to compile against the static cuBLAS library, the following command must be used:

nvcc myCublasApp.c -lcublas_static -lculibos -o myCublasApp

It is also possible to use the native Host C++ compiler. Depending on the Host operating system, some
additional libraries like pthread or d1 might be needed on the linking line. The following command on
Linux is suggested :

g++ myCublasApp.c -lcublas_static -lculibos -lcudart_static -lpthread -1d1 -I
—»<cuda-toolkit-path>/include -L <cuda-toolkit-path>/1ib64 -o myCublasApp

Note that in the latter case, the library cuda is not needed. The CUDA Runtime will try to open explicitly
the cuda library if needed. In the case of a system which does not have the CUDA driver installed, this
allows the application to gracefully manage this issue and potentially run if a CPU-only path is available.

Starting with release 11.2, using the typed functions instead of the extension functions (cublas**Ex())
helps in reducing the binary size when linking to static cuBLAS Library.

14 Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

Some GEMM algorithms split the computation along the dimension K to increase the GPU occupancy,
especially when the dimension K is large compared to dimensions M and N. When this type of algo-
rithm is chosen by the cuBLAS heuristics or explicitly by the user, the results of each split is summed
deterministically into the resulting matrix to get the final result.

For the routines and , when the compute type is greater than the
output type, the sum of the split chunks can potentially lead to some intermediate overflows thus
producing a final resulting matrix with some overflows. Those overflows might not have occurred if
all the dot products had been accumulated in the compute type before being converted at the end
in the output type. This computation side-effect can be easily exposed when the computeType is
CUDA_R_32F and Atype, Btype and Ctype are in CUDA_R_16F. This behavior can be controlled us-
ing the compute precision mode CUBLAS_MATH_DISALLOW_REDUCED_PRECISION_REDUCTION with

Tensor cores were first introduced with Volta GPUs (compute capability 7.0 and above) and significantly
accelerate matrix multiplications. Starting with cuBLAS version 11.0.0, the library may automatically
make use of Tensor Core capabilities wherever possible, unless they are explicitly disabled by selecting
pedantic compute modes in cuBLAS (see ,

It should be noted that the library will pick a Tensor Core enabled implementation wherever it deter-
mines that it would provide the best performance.

The best performance when using Tensor Cores can be achieved when the matrix dimensions and
pointers meet certain memory alignment requirements. Specifically, all of the following conditions
must be satisfied to get the most performance out of Tensor Cores:

((op_A == CUBLAS_OP_N ? m : k) * AtypeSize) % 16 ==
((op_B == CUBLAS_OP_N ? k : n) * BtypeSize) % 16 ==
(m * CtypeSize) % 16 == 0

(1da * AtypeSize) % 16
(1db * BtypeSize) % 16
(1dc * CtypeSize) % 16
intptr_t(A) % 16 == 0
intptr_t(B) % 16 == 0
intptr_t(C) % 16 == 0

0
0
0

To conduct matrix multiplication with FP8 types (see), you
must ensure that your matrix dimensions and pointers meet the optimal requirements listed above.
Aside from FP8, there are no longer any restrictions on matrix dimensions and memory alignments to
use Tensor Cores (starting with cuBLAS version 11.0.0).

2.1. General Description 15

cuBLAS, Release 12.9

2.1.12 CUDA Graphs Support

CUBLAS routines can be captured in CUDA Graph stream capture without restrictions in most situa-
tions.

The exception are routines that output results into host buffers (e.g. cublas<t>dot() while pointer mode
CUBLAS_POINTER_MODE_HOST is configured), as it enforces synchronization.

For input coefficients (such as alpha, beta) behavior depends on the pointer mode setting:
» In the case of CUBLAS(LT)_POINTER_MODE_HOST, coefficient values are captured in the graph.

» In the case of pointer modes with device pointers, coefficient value is accessed using the device
pointer at the time of graph execution.

Note: When captured in CUDA Graph stream capture, cuBLAS routines can create memory nodes
through the use of stream-ordered allocation APIs, cudaMallocAsync and cudaFreeAsync. How-
ever, as there is currently no support for memory nodes in child graphs or graphs launched from the
device, attempts to capture cuBLAS routines in such scenarios may fail. To avoid this issue, use the
cublasSetWorkspace() function to provide user-owned workspace memory.

2.1.13 64-bit Integer Interface

cuBLAS version 12 introduced 64-bit integer capable functions. Each 64-bit integer function is equiv-
alent to a 32-bit integer function with the following changes:

» The function name has _64 suffix.

» The dimension (problem size) data type changed from int to int64_t. Examples of dimension:
m, n, and k.

» The leading dimension data type changed from int to int64_t. Examples of leading dimension:
1da, 1db, and 1dc.

» The vector increment data type changed from int to int64_t. Examples of vector increment:
incx and incy.

For example, consider the following 32-bit integer functions:

cublasStatus_t cublasSetMatrix(int rows, int cols, int elemSize, const void *A, int

—1da, void *B, int 1db);

cublasStatus_t cublasIsamax(cublasHandle_t handle, int n, const float *x, int incx,

—int *result);

cublasStatus_t cublasSsyr(cublasHandle_t handle, cublasFillMode_t uplo, int n, const
—float *alpha, const float *x, int incx, float *A, int 1lda);

The equivalent 64-bit integer functions are:

cublasStatus_t cublasSetMatrix_64(int64_t rows, int64_t cols, int64_t elemSize, const
—void *A, int64_t lda, void *B, int64_t 1ldb);

cublasStatus_t cublasIsamax_64(cublasHandle_t handle, int64_t n, const float *x,
—int64_t incx, int64_t *result);

cublasStatus_t cublasSsyr_64(cublasHandle_t handle, cublasFillMode_t uplo, int64_t n,
—const float *alpha, const float *x, int64_t incx, float *A, int64_t 1lda);

16 Chapter 2. Using the cuBLAS API

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#graph-memory-nodes
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#node-types
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#device-graph-launch
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#device-graph-launch

cuBLAS, Release 12.9

Not every function has a 64-bit integer equivalent. For instance, cublasSetMathMode() doesn’t have
any arguments that could meaningfully be int64_t. For documentation brevity, the 64-bit integer
APIs are not explicitly listed, but only mentioned that they exist for the relevant functions.

2.2 cuBLAS Datatypes Reference

2.2.1 cublasHandle_t

The cublasHandle_t type is a pointer type to an opaque structure holding the cuBLAS library context.
The cuBLAS library context must be initialized using cublasCreate() and the returned handle must be

passed to all subsequent library function calls. The context should be destroyed at the end using
cublasDestroy().

2.2.2 cublasStatus_t

The type is used for function status returns. All cuBLAS library functions return their status, which
can have the following values.

2.2. cuBLAS Datatypes Reference 17

cuBLAS, Release 12.9

Value Meaning

CUBLAS_ | The operation completed successfully.

STATUS_

SUCCESS

CUBLAS_ | The cuBLAS library was not initialized. This is usually caused by the lack of a prior

STATUS_ call, an error in the CUDA Runtime API called by the cuBLAS routine, or

NOT_ an error in the hardware setup.

INITIALIZHD correct: call before the function call; and check that the hardware, an
appropriate version of the driver, and the cuBLAS library are correctly installed.

CUBLAS_ | Resource allocation failed inside the cuBLAS library. This is usually caused by a cud-

STATUS_ | aMalloc() failure.

ALLOC_ To correct: prior to the function call, deallocate previously allocated memory as much

FAILED as possible.

CUBLAS_ | An unsupported value or parameter was passed to the function (a negative vector size,

STATUS_ | for example).

INVALID_| To correct: ensure that all the parameters being passed have valid values.

VALUE

CUBLAS_ | The function requires a feature absent from the device architecture; usually caused by

STATUS_ | compute capability lower than 5.0.

ARCH_ To correct: compile and run the application on a device with appropriate compute ca-

MISMATCH| pability.

CUBLAS_ | An access to GPU memory space failed, which is usually caused by a failure to bind a

STATUS_ | texture.

MAPPING_| To correct: before the function call, unbind any previously bound textures.

ERROR

CUBLAS_ | The GPU program failed to execute. This is often caused by a launch failure of the kernel

STATUS_ | on the GPU, which can be caused by multiple reasons.

EXECUTIONTo correct: check that the hardware, an appropriate version of the driver, and the

FAILED cuBLAS library are correctly installed.

CUBLAS_ | An internal cuBLAS operation failed. This error is usually caused by a cudaMem-

STATUS_ | cpyAsync() failure.

INTERNAL| To correct: check that the hardware, an appropriate version of the driver, and the

ERROR CUBLAS library are correctly installed. Also, check that the memory passed as a pa-
rameter to the routine is not being deallocated prior to the routine’s completion.

CUBLAS_ | The functionality requested is not supported.

STATUS_

NOT_

SUPPORTED

CUBLAS_ | The functionality requested requires some license and an error was detected when try-

STATUS_ | ing to check the current licensing. This error can happen if the license is not present or

LICENSE_| is expired or if the environment variable NVIDIA_LICENSE_FILE is not set properly.

ERROR

18 Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

The type indicates which operation needs to be performed with the dense matrix.
Its values correspond to Fortran characters ‘N’ or ‘n’ (non-transpose), ‘T’ or ‘t’ (transpose) and
‘C’ or ‘¢’ (conjugate transpose) that are often used as parameters to legacy BLAS implementations.

Value Meaning

CUBLAS_OP_N | The non-transpose operation is selected.
CUBLAS_OP_T | The transpose operation is selected.
CUBLAS_OP_C | The conjugate transpose operation is selected.

The type indicates which part (lower or upper) of the dense matrix was filled and consequently should
be used by the function. Its values correspond to Fortran characters L or 1 (lower) and U or u (upper)
that are often used as parameters to legacy BLAS implementations.

Value Meaning
CUBLAS_FILL_MODE_LOWER | The lower part of the matrix is filled.
CUBLAS_FILL_MODE_UPPER | The upper part of the matrix is filled.
CUBLAS_FILL_MODE_FULL The full matrix is filled.

The type indicates whether the main diagonal of the dense matrix is unity and consequently should

‘ ’

not be touched or modified by the function. Its values correspond to Fortran characters ‘N’ or ‘n
(non-unit) and ‘U’ or ‘u’ (unit) that are often used as parameters to legacy BLAS implementations.

Value Meaning
CUBLAS_DIAG_NON_UNIT | The matrix diagonal has non-unit elements.
CUBLAS_DIAG_UNIT The matrix diagonal has unit elements.

The type indicates whether the dense matrix is on the left or right side in the matrix equation solved
by a particular function. Its values correspond to Fortran characters ‘L’ or ‘1’ (left)and ‘R’ or ‘r’
(right) that are often used as parameters to legacy BLAS implementations.

Value Meaning
CUBLAS_SIDE_LEFT The matrix is on the left side in the equation.
CUBLAS_SIDE_RIGHT | The matrix is on the right side in the equation.

2.2. cuBLAS Datatypes Reference 19

cuBLAS, Release 12.9

The

type indicates whether the scalar values are passed by reference on the host

or device. It is important to point out that if several scalar values are present in the function call, all
of them must conform to the same single pointer mode. The pointer mode can be set and retrieved

using

and routines, respectively.

Value

Meaning

CUBLAS_POINTER_MODE_HOST

The scalars are passed by reference on the host.

CUBLAS_POINTER_MODE_DEVICE

The scalars are passed by reference on the device.

The type indicates whether cuBLAS routines which has an alternate implementation using atomics

can be used. The atomics mode can be set and queried using

and

and routines, respectively.

Value

Meaning

CUBLAS_ATOMICS_NOT_ALLOWED

The usage of atomics is not allowed.

CUBLAS_ATOMICS_ALLOWED

The usage of atomics is allowed.

cublasGemmAlgo_t type is an enumerant to specify the algorithm for matrix-matrix multiplication on
GPU architectures up to sm_75. On sm_80 and newer GPU architectures, this enumarant has no effect.
cuBLAS has the following algorithm options:

Value Meaning
CUBLAS_GEMM_ Apply Heuristics to select the GEMM algorithm
DEFAULT

CUBLAS_GEMM_

GEMM_ALGO023

ALGO@ to CUBLAS_

Explicitly choose an Algorithm 0. .23. Note: Doesn’t have effect on NVIDIA
Ampere architecture GPUs and newer.

CUBLAS_GEMM_
DEFAULT_TENSOR_
OP[DEPRECATED]

This mode is deprecated and will be removed in a future release. Apply
Heuristics to select the GEMM algorithm, while allowing use of reduced
precision CUBLAS_COMPUTE_32F_FAST_16F kernels (for backward com-
patibility).

CUBLAS_GEMM_
ALGOO@_TENSOR_OP
to CUBLAS_GEMM
ALGOT5_TENSOR_
OP[DEPRECATED]

Those values are deprecated and will be removed in a future release. Explic-
itly choose a Tensor core GEMM Algorithm 0. .15. Allows use of reduced
precision CUBLAS_COMPUTE_32F_FAST_16F kernels (for backward com-
patibility). Note: Doesn’t have effect on NVIDIA Ampere architecture GPUs
and newer.

20

Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

enumerate type is used in

to choose compute precision modes as

defined in the following table. Since this setting does not directly control the use of Tensor Cores, the
mode CUBLAS_TENSOR_OP_MATH is being deprecated, and will be removed in a future release.

Value Meaning

CUBLAS_ This is the default and highest-performance mode that uses compute and in-

DEFAULT_ termediate storage precisions with at least the same number of mantissa and

MATH exponent bits as requested. Tensor Cores will be used whenever possible.

CUBLAS_ This mode uses the prescribed precision and standardized arithmetic for all

PEDANTIC_ phases of calculations and is primarily intended for numerical robustness stud-

MATH ies, testing, and debugging. This mode might not be as performant as the other
modes.

CUBLAS_ Enable acceleration of single-precision routines using TF32 tensor cores.

TF32_

TENSOR_

OP_MATH

CUBLAS_ Enable acceleration of single-precision routines using the BF 16x9 algorithm. See

FP32_ for more details. For single precision GEMM routines

EMULATED_ cuBLAS will use the CUBLAS_COMPUTE_32F_EMULATED_16BFX9 compute type.

BF16X9_MATH

CUBLAS_ Forces any reductions during matrix multiplications to use the accumulator type

MATH_ (thatis, compute type) and not the output type in case of mixed precision routines

DISALLOW_ where output type precision is less than the compute type precision. This is a flag

REDUCED_ that can be set (using a bitwise or operation) alongside any of the other values.

PRECISION_

REDUCTION

CUBLAS_ This mode is deprecated and will be removed in a future release. Allows the library

TENSOR_OP_ to use Tensor Core operations whenever possible. For single precision GEMM rou-

MATH [DEPRE- | tines cuBLAS will use the CUBLAS_COMPUTE_32F_FAST_16F compute type.

CATED]

enumerate type is used in and (including all

batched and strided batched variants) to choose compute precision modes as defined below.

2.2. cuBLAS Datatypes Reference 21

cuBLAS, Release 12.9

Value Meaning

CUBLAS_ This is the default and highest-performance mode for 16-bit half precision floating
COMPUTE_ point and all compute and intermediate storage precisions with at least 16-bit half
16F precision. Tensor Cores will be used whenever possible.

CUBLAS_ This mode uses 16-bit half precision floating point standardized arithmetic for all
COMPUTE_ phases of calculations and is primarily intended for numerical robustness studies,
16F_ testing, and debugging. This mode might not be as performant as the other modes
PEDANTIC since it disables use of tensor cores.

CUBLAS_ This is the default 32-bit single precision floating point and uses compute and in-
COMPUTE_ termediate storage precisions of at least 32-bits.

32F

CUBLAS_ Uses 32-bit single precision floatin point arithmetic for all phases of calculations
COMPUTE_ and also disables algorithmic optimizations such as Gaussian complexity reduction
32F_ (3M).

PEDANTIC

CUBLAS_ Allows the library to use Tensor Cores with automatic down-conversion and 16-bit
COMPUTE_ half-precision compute for 32-bit input and output matrices.

32F_FAST_

16F

CUBLAS_ Allows the library to use Tensor Cores with automatic down-convesion and bfloat16
COMPUTE_ compute for 32-bit input and output matrices. See section
32F_FAST_ for more details on bfloat16.

16BF

CUBLAS_ Allows the library to use Tensor Cores with TF32 compute for 32-bit input and output
COMPUTE_ matrices. See section for more details on TF32 compute.
32F_FAST_

TF32

CUBLAS_ Allows the library to use the BF16x9 floating point emulation algorithm for 32-bit
COMPUTE_ floating point arithmetic. See for more details.

32F_

EMULATED_

16BFX9

CUBLAS_ This is the default 64-bit double precision floating point and uses compute and in-
COMPUTE_ termediate storage precisions of at least 64-bits.

64F

CUBLAS_ Uses 64-bit double precision floatin point arithmetic for all phases of calculations
COMPUTE_ and also disables algorithmic optimizations such as Gaussian complexity reduction
64F_ (3M).

PEDANTIC

CUBLAS_ This is the default 32-bit integer mode and uses compute and intermediate storage
COMPUTE_ precisions of at least 32-bits.

321

CUBLAS_ Uses 32-bit integer arithmetic for all phases of calculations.

COMPUTE_

32I_

PEDANTIC

Note: Setting the environment variable NVIDIA_TF32_OVERRIDE = @ will override any defaults or
programmatic configuration of NVIDIA libraries, and consequently, cuBLAS will not accelerate single-
precision computations with TF32 tensor cores.

22 Chapter 2. Using the cuBLAS API

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#wmma-altfp
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#wmma-altfp

cuBLAS, Release 12.9

2.2.12 cublasEmulationStrategy_t

cublasEmulationStrategy_t enumerate type is used in cublasSetEmulationStrategy() to choose how to
leverage floating point emulation algorithms.

Value Meaning

CUBLAS_ This is the default emulation strategy and is equivalent to CUBLAS_
EMULATION_ EMULATION_STRATEGY_PERFORMANT unless the CUBLAS_EMULATION_
STRATEGY_ STRATEGY environment variable is set.

DEFAULT

CUBLAS_ A strategy which utilizes emulation whenever it provides a performance ben-
EMULATION_ efit.

STRATEGY_

PERFORMANT

CUBLAS_ A strategy which utilizes emulation whenever possible.

EMULATION_

STRATEGY_EAGER

Note: In general, the cublasSetEmulationStrategy() function takes precedence over the environment
variable setting. However, setting the environment variable CUBLAS_EMULATION_STRATEGY to per-
formant or eager will override the default emulation strategy with the corresponding emulation strat-
egy, even if the default strategy was set by the function call.

2.3 CUDA Datatypes Reference

The chapter describes types shared by multiple CUDA Libraries and defined in the header file

library_types.h.

2.3.1 cudaDataType_t

The cudaDataType_t type is an enumerant to specify the data precision. It is used when the data
reference does not carry the type itself (e.g void *)

For example, it is used in the routine cublasSgemmEx().

2.3. CUDA Datatypes Reference 23

cuBLAS, Release 12.9

Value Meaning

CUDA_R_ The data type is a 16-bit real half precision floating-point

16F

CUDA_C_ The data type is a 32-bit structure comprised of two half precision floating-points
16F representing a complex number.

CUDA_R_ The data type is a 16-bit real bfloat16 floating-point

16BF

CUDA_C_ The data type is a 32-bit structure comprised of two bfloat16 floating-points repre-
16BF senting a complex number.

CUDA_R_ The data type is a 32-bit real single precision floating-point

32F

CUDA_C_ The data type is a 64-bit structure comprised of two single precision floating-points
32F representing a complex number.

CUDA_R_ The data type is a 64-bit real double precision floating-point

64F

CUDA_C_ The data type is a 128-bit structure comprised of two double precision floating-
64F points representing a complex number.

CUDA_R_8I | The data type is a 8-bit real signed integer

CUDA_C_8I | The data type is a 16-bit structure comprised of two 8-bit signed integers repre-
senting a complex number.

CUDA_R_8U | The data type is a 8-bit real unsigned integer

CUDA_C_8U | The data type is a 16-bit structure comprised of two 8-bit unsigned integers repre-
senting a complex number.

CUDA_R_ The data type is a 32-bit real signed integer

32I

CUDA_C_ The data type is a 64-bit structure comprised of two 32-bit signed integers repre-
321 senting a complex number.

CUDA_R_ The data type is an 8-bit real floating point in E4AM3 format

8F_E4M3

CUDA_R_ The data type is an 8-bit real floating point in ESM2 format

8F _E5M2

CUDA_R_ The data type is a 4-bit real floating point in E2M1 format

4F _E2M1

The libraryPropertyType_t is used as a parameter to specify which property is requested when
using the routine

Value Meaning

MAJOR_VERSION | enumerant to query the major version
MINOR_VERSION | enumerant to query the minor version
PATCH_LEVEL number to identify the patch level

24 Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

cublasStatus_t
cublasCreate(cublasHandle_t *handle)

This function initializes the cuBLAS library and creates a handle to an opaque structure holding the
CUuBLAS library context. It allocates hardware resources on the host and device and must be called
prior to making any other cuBLAS library calls.

The cuBLAS library context is tied to the current CUDA device. To use the library on multiple devices,
one cuBLAS handle needs to be created for each device. See also

For a given device, multiple cuBLAS handles with different configurations can be created. For multi-
threaded applications that use the same device from different threads, the recommended program-
ming model is to create one cuBLAS handle per thread and use that cuBLAS handle for the entire life
of the thread.

Because allocates some internal resources and the release of those resources by calling
will implicitly call cudaDeviceSynchronize(), it is recommended to minimize the
number of times these functions are called.

Return Value Meaning

CUBLAS_STATUS_SUCCESS The initialization succeeded
CUBLAS_STATUS_NOT_INITIALIZED | The CUDA™ Runtime initialization failed
CUBLAS_STATUS_ALLOC_FAILED The resources could not be allocated
CUBLAS_STATUS_INVALID_VALUE handle is NULL

cublasStatus_t
cublasDestroy(cublasHandle_t handle)

This function releases hardware resources used by the cuBLAS library. This function is usually the
last call with a particular handle to the cuBLAS library. Because allocates some internal
resources and the release of those resources by calling will implicitly call cudaDe-
viceSynchronize(), it is recommended to minimize the number of times these functions are called.

Return Value Meaning
CUBLAS_STATUS_SUCCESS the shut down succeeded
CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized

2.4. cuBLAS Helper Function Reference 25

cuBLAS, Release 12.9

cublasStatus_t

cublasGetVersion(cublasHandle_t handle, int *version)

This function returns the version number of the cuBLAS library.

Return Value

Meaning

CUBLAS_STATUS_SUCCESS

The operation completed successfully

CUBLAS_STATUS_INVALID_VALUE | versionis NULL

Note: This function can be safely called with handle set to NULL. This allows users to get the version
of the library without a handle. Another way to do this is with

cublasStatus_t

cublasGetProperty(libraryPropertyType type, int *value)

This function returns the value of the requested property in memory pointed to by value. Refer to
libraryPropertyType for supported types.

Return Value

Meaning

CUBLAS_STATUS_SUCCESS

The operation completed successfully

CUBLAS_STATUS_INVALID_VALUE

Invalid type or value
If type has an invalid value, or
if value is NULL

const char* cublasGetStatusName(cublasStatus_t status)

This function returns the string representation of a given status.

Return Value

Meaning

NULL-terminated string

The string representation of the status

26

Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

const char* cublasGetStatusString(cublasStatus_t status)

This function returns the description string for a given status.

Return Value Meaning
NULL-terminated string | The description of the status

cublasStatus_t
cublasSetStream(cublasHandle_t handle, cudaStream_t streamId)

This function sets the cuBLAS library stream, which will be used to execute all subsequent calls to
the cuBLAS library functions. If the cuBLAS library stream is not set, all kernels use the default NULL
stream. In particular, this routine can be used to change the stream between kernel launches and then
to reset the cuBLAS library stream back to NULL. Additionally this function unconditionally resets the

cuBLAS library workspace back to the default workspace pool (see).
Return Value Meaning
CUBLAS_STATUS_SUCCESS the stream was set successfully
CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized

cublasStatus_t
cublasSetWorkspace(cublasHandle_t handle, void *workspace, size_t
—workspaceSizeInBytes)

This function sets the cuBLAS library workspace to a user-owned device buffer, which will be used
to execute all subsequent calls to the cuBLAS library functions (on the currently set stream). If the
cuBLAS library workspace is not set, all kernels will use the default workspace pool allocated during
the cuBLAS context creation. In particular, this routine can be used to change the workspace be-
tween kernel launches. The workspace pointer has to be aligned to at least 256 bytes, otherwise
CUBLAS_STATUS_INVALID_VALUE error is returned. The function unconditionally
resets the cuBLAS library workspace back to the default workspace pool. Calling this function, includ-
ing withworkspaceSizeInBytes equal to O, will prevent the cuBLAS library from utilizing the default
workspace. Too small value of workspaceSizeInBytes may cause some routines to fail with CUBLAS_
STATUS_ALLOC_FAILED error returned or cause large regressions in performance. Workspace size
equal to or larger than 16KiB is enough to prevent CUBLAS_STATUS_ALLOC_FAILED error, while a
larger workspace can provide performance benefits for some routines.

Note: If the stream set by is cudaStreamPerThread and there are multiple
threads using the same cuBLAS library handle, then users must manually manage synchronization
to avoid possible race conditions in the user provided workspace. Alternatively, users may rely on the
default workspace pool which safely guards against race conditions.

2.4. cuBLAS Helper Function Reference 27

cuBLAS, Release 12.9

The table below shows the recommended size of user-provided workspace. This is based on the
cuBLAS default workspace pool size which is GPU architecture dependent.

GPU Architecture

Recommended workspace size

NVIDIA Hopper Architecture (sm90) 32 MiB

NVIDIA Blackwell Architecture (sm10x) | 32 MiB

NVIDIA Blackwell Architecture (sm12x) | 12 MiB

Other

4 MiB

The possible error values returned by this function and their meanings are listed below.

Return Value

Meaning

CUBLAS_STATUS_SUCCESS

The stream was set successfully

CUBLAS_STATUS_NOT_
INITIALIZED

The library was not initialized

CUBLAS_STATUS_INVALID_VALUE

The workspace pointer wasn’t aligned to at least 256 bytes

cublasStatus_t

cublasGetStream(cublasHandle_t handle, cudaStream_t *streamId)

This function gets the cuBLAS library stream, which is being used to execute all calls to the cuBLAS
library functions. If the cuBLAS library stream is not set, all kernels use the default NULL stream.

Return Value

Meaning

CUBLAS_STATUS_SUCCESS

the stream was returned successfully

CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized

CUBLAS_STATUS_INVALID_VALUE streamIdis NULL

cublasStatus_t

cublasGetPointerMode(cublasHandle_t handle, cublasPointerMode_t *mode)

This function obtains the pointer mode used by the cuBLAS library. Please see the section on the
type for more details.

Return Value

Meaning

CUBLAS_STATUS_SUCCESS

The pointer mode was obtained successfully

CUBLAS_STATUS_NOT_INITIALIZED | The library was not initialized

CUBLAS_STATUS_INVALID_VALUE mode is NULL

28

Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

cublasStatus_t
cublasSetPointerMode(cublasHandle_t handle, cublasPointerMode_t mode)

This function sets the pointer mode used by the cuBLAS library. The default is for the values to be

passed by reference on the host. Please see the section on the type for more
details.

Return Value Meaning

CUBLAS_STATUS_SUCCESS The pointer mode was set successfully

CUBLAS_STATUS_NOT_ The library was not initialized

INITIALIZED

CUBLAS_STATUS_INVALID_ mode is not CUBLAS_POINTER_MODE_HOST or CUBLAS_POINTER_

VALUE MODE _DEVICE

cublasStatus_t
cublasSetVector(int n, int elemSize,
const void *x, int incx, void *y, int incy)

This function supports the

This function copies n elements from a vector x in host memory space to a vector y in GPU memory
space. Elements in both vectors are assumed to have a size of elemSize bytes. The storage spacing
between consecutive elements is given by incx for the source vector x and by incy for the destination
vectory.

Since column-major format for two-dimensional matrices is assumed, if a vector is part of a matrix, a
vector increment equal to 1 accesses a (partial) column of that matrix. Similarly, using an increment
equal to the leading dimension of the matrix results in accesses to a (partial) row of that matrix.

Return Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully
CUBLAS_STATUS_INVALID_VALUE | The parameters incx, incy, or elemSize are not positive
CUBLAS_STATUS_MAPPING_ERROR | There was an error accessing GPU memory

cublasStatus_t
cublasGetVector(int n, int elemSize,
const void *x, int incx, void *y, int incy)

This function supports the

This function copies n elements from a vector x in GPU memory space to a vector y in host memory
space. Elements in both vectors are assumed to have a size of elemSize bytes. The storage spacing
between consecutive elements is given by incx for the source vector and incy for the destination
vectory.

2.4. cuBLAS Helper Function Reference 29

cuBLAS, Release 12.9

Since column-major format for two-dimensional matrices is assumed, if a vector is part of a matrix, a
vector increment equal to 1 accesses a (partial) column of that matrix. Similarly, using an increment
equal to the leading dimension of the matrix results in accesses to a (partial) row of that matrix.

Return Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully
CUBLAS_STATUS_INVALID_VALUE | The parameters incx, incy, or elemSize are not positive
CUBLAS_STATUS_MAPPING_ERROR | There was an error accessing GPU memory

cublasStatus_t
cublasSetMatrix(int rows, int cols, int elemSize,
const void *A, int 1lda, void *B, int 1db)

This function supports the

This function copies a tile of rows x cols elements from a matrix A in host memory space to a
matrix B in GPU memory space. It is assumed that each element requires storage of elemSize bytes
and that both matrices are stored in column-major format, with the leading dimension of the source
matrix A and destination matrix B given in 1da and 1db, respectively. The leading dimension indicates
the number of rows of the allocated matrix, even if only a submatrix of it is being used.

Return Value Meaning
CUBLAS_STATUS_SUCCESS The operation completed successfully
CUBLAS_STATUS_INVALID_ | The parameters rows or cols are negative, or elemSize, 1da 1db

VALUE are not positive.
CUBLAS_STATUS_MAPPING_ | There was an error accessing GPU memory
ERROR

cublasStatus_t
cublasGetMatrix(int rows, int cols, int elemSize,
const void *A, int lda, void *B, int 1ldb)

This function supports the

This function copies a tile of rows x cols elements from a matrix A in GPU memory space to a
matrix B in host memory space. It is assumed that each element requires storage of elemSize bytes
and that both matrices are stored in column-major format, with the leading dimension of the source
matrix A and destination matrix B given in 1da and 1db, respectively. The leading dimension indicates
the number of rows of the allocated matrix, even if only a submatrix of it is being used.

Return Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully

CUBLAS_STATUS_INVALID_ | The parameters rows or cols are negative, or elemSize, 1da 1db
VALUE are not positive.

CUBLAS_STATUS_MAPPING_ | There was an error accessing GPU memory

ERROR

30 Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

cublasStatus_t
cublasSetVectorAsync(int n, int elemSize, const void *hostPtr, int incx,
void *devicePtr, int incy, cudaStream_t stream)

This function supports the

This function has the same functionality as , with the exception that the data transfer
is done asynchronously (with respect to the host) using the given CUDA™ stream parameter.

Return Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully
CUBLAS_STATUS_INVALID_VALUE | The parameters incx, incy, or elemSize are not positive
CUBLAS_STATUS_MAPPING_ERROR | There was an error accessing GPU memory

cublasStatus_t
cublasGetVectorAsync(int n, int elemSize, const void *devicePtr, int incx,
void *hostPtr, int incy, cudaStream_t stream)

This function supports the

This function has the same functionality as , with the exception that the data trans-
fer is done asynchronously (with respect to the host) using the given CUDA™ stream parameter.

Return Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully
CUBLAS_STATUS_INVALID_VALUE | The parameters incx, incy, or elemSize are not positive
CUBLAS_STATUS_MAPPING_ERROR | There was an error accessing GPU memory

cublasStatus_t
cublasSetMatrixAsync(int rows, int cols, int elemSize, const void *A,
int 1lda, void *B, int 1db, cudaStream_t stream)

This function supports the

This function has the same functionality as , with the exception that the data transfer
is done asynchronously (with respect to the host) using the given CUDA™ stream parameter.

Return Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully

CUBLAS_STATUS_INVALID_ | The parameters rows or cols are negative, or elemSize, 1da 1db
VALUE are not positive.

CUBLAS_STATUS_MAPPING_ | There was an error accessing GPU memory

ERROR

2.4. cuBLAS Helper Function Reference 31

cuBLAS, Release 12.9

cublasStatus_t
cublasGetMatrixAsync(int rows, int cols, int elemSize, const void *A,
int 1lda, void *B, int 1db, cudaStream_t stream)

This function supports the

This function has the same functionality as , with the exception that the data trans-
fer is done asynchronously (with respect to the host) using the given CUDA™ stream parameter.

Return Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully

CUBLAS_STATUS_INVALID_ | The parameters rows or cols are negative, or elemSize, 1da 1db
VALUE are not positive.

CUBLAS_STATUS_MAPPING_ | There was an error accessing GPU memory

ERROR

cublasStatus_t cublasSetAtomicsMode(cublasHandlet handle, cublasAtomicsMode_t mode)

Some routines like and have an alternate implementation that use
atomics to cumulate results. This implementation is generally significantly faster but can generate
results that are not strictly identical from one run to the others. Mathematically, those different results
are not significant but when debugging those differences can be prejudicial.

This function allows or disallows the usage of atomics in the cuBLAS library for all routines which
have an alternate implementation. When not explicitly specified in the documentation of any cuBLAS
routine, it means that this routine does not have an alternate implementation that use atomics. When
atomics mode is disabled, each cuBLAS routine should produce the same results from one run to the
other when called with identical parameters on the same Hardware.

The default atomics mode of default initialized object is CUBLAS_ATOMICS_NOT_
ALLOWED. Please see the section on the type for more details.

Return Value Meaning
CUBLAS_STATUS_SUCCESS the atomics mode was set successfully
CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized

cublasStatus_t cublasGetAtomicsMode(cublasHandle_t handle, cublasAtomicsMode_t *mode)

This function queries the atomic mode of a specific cuBLAS context.

The default atomics mode of default initialized object is CUBLAS_ATOMICS_NOT_
ALLOWED. Please see the section on the type for more details.

32 Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

Return Value Meaning

CUBLAS_STATUS_SUCCESS The atomics mode was queried successfully
CUBLAS_STATUS_NOT_INITIALIZED | The library was not initialized
CUBLAS_STATUS_INVALID_VALUE The argument mode is a NULL pointer

cublasStatus_t cublasSetMathMode(cublasHandle_t handle, cublasMath_t mode)

The function enables you to choose the compute precision modes as defined by

. Users are allowed to set the compute precision mode as a logical combination of them
(except the deprecated CUBLAS_TENSOR_OP_MATH). For example, cublasSetMathMode (handle,
CUBLAS_DEFAULT_MATH | CUBLAS_MATH_DISALLOW_REDUCED_PRECISION_REDUCTION). Please
note that the default math mode is CUBLAS_DEFAULT_MATH.

For matrix and compute precisions allowed for and APls and their
strided variants please refer to: , ,
,and
Return Value Meaning
CUBLAS_STATUS_SUCCESS The math mode was set successfully.

CUBLAS_STATUS_INVALID_VALUE An invalid value for mode was specified.
CUBLAS_STATUS_NOT_INITIALIZED | The library was not initialized.

cublasStatus_t cublasGetMathMode(cublasHandle_t handle, cublasMath_t *mode)

This function returns the math mode used by the library routines.

Return Value Meaning

CUBLAS_STATUS_SUCCESS The math type was returned successfully.
CUBLAS_STATUS_INVALID_VALUE If mode is NULL.
CUBLAS_STATUS_NOT_INITIALIZED | The library was not initialized.

cublasStatus_t cublasSetSmCountTarget(cublasHandle_t handle, int smCountTarget)

The function allows overriding the number of multiprocessors available to
the library during kernels execution.

This option can be used to improve the library performance when cuBLAS routines are known to run
concurrently with other work on different CUDA streams. For example, on an NVIDIA A100 GPU, which
has 108 multiprocessors, when there is a concurrent kenrel running with grid size of 8, one can use

with smCountTarget set to 100 to override the library heuristics to opti-
mize for running on the remaining 100 multiprocessors.

2.4. cuBLAS Helper Function Reference 33

cuBLAS, Release 12.9

When set to 0, the library returns to its default behavior. The input value should not exceed the device’s
multiprocessor count, which can be obtained using cudaDeviceGetAttribute. Negative values are

not accepted.

The user must ensure thread safety when modifying the library handle with this routine similar to when
using , etc.

Return Value Meaning

CUBLAS_STATUS_SUCCESS SM count target was set successfully.
CUBLAS_STATUS_INVALID_VALUE The value of smCountTarget outside of the allowed range.
CUBLAS_STATUS_NOT_ The library was not initialized.

INITIALIZED

cublasStatus_t cublasGetSmCountTarget(cublasHandle_t handle, int *smCountTarget)

This function obtains the value previously programmed to the library handle.

Return Value Meaning

CUBLAS_STATUS_SUCCESS SM count target was returned successfully.
CUBLAS_STATUS_INVALID_VALUE smCountTarget is NULL.
CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized.

cublasStatus_t cublasSetEmulationStrategy(cublasHandle_t handle,
—.cublasEmulationStrategy_t emulationStrategy)

The function enables you to select how the library should make use of
. For more details, please see

Return Value Meaning
CUBLAS_STATUS_SUCCESS The emulation strategy was set successfully.

CUBLAS_STATUS_INVALID_VALUE An invalid value for emulation strategy was specified.
CUBLAS_STATUS_NOT_INITIALIZED | The library was not initialized.

cublasStatus_t cublasGetEmulationStrategy(cublasHandle_t handle,
—.cublasEmulationStrategy_t *emulationStrategy)

This function obtains the value previously programmed to the library handle.

Return Value Meaning

CUBLAS_STATUS_SUCCESS emulation strategy was returned successfully.
CUBLAS_STATUS_INVALID_VALUE emulationStrategy is NULL.
CUBLAS_STATUS_NOT_INITIALIZED | the library was not initialized.

34 Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

cublasStatus_t cublasLoggerConfigure(

int logIsOn,

int logToStdOut,
int logToStdErr,
const charx* logFileName)

This function configures logging during runtime. Besides this type of configuration, it is possible to
configure logging with special environment variables which will be checked by libcublas:

CUBLAS_LOGINFO_DBG - setting this environment variable to 1 means turning logging on (by
default logging is off).

CUBLAS_LOGDEST_DBG - this environment variable encodes where to write the log to: stdout,
stderr mean to write log messages to standard output or error streams, respectively. Other
values are interpreted as file names.

Parameters
Param. Memr In/out Meaning
ory
logl- | host| in- | Turn on/off logging completely. By default is off, but is turned on by calling
sOn put to user defined callback function.
log- | host| in- Turn on/off logging to standard output I/O stream. By default is off.
ToStdr put
Out
log- | host| in- | Turn on/off logging to standard error 1/O stream. By default is off.
ToSt- put
dErr
log- | host| in- | Turn on/off logging to file in filesystem specified by it's name.
File- put copies the content of 1logFileName. You should provide null
Name pointer if you are not interested in this type of logging.

Error Value Meaning
CUBLAS_STATUS_SUCCESS | The operation completed successfully

cublasStatus_t cublasGetLoggerCallback(
cublasLogCallback* userCallback)

This function retrieves function pointer to previously installed custom user defined callback function
via or zero otherwise.

Param. Memory | Infout | Meaning
userCallback | host output | Pointer to user defined callback function.

The possible error values returned by this function and their meanings are listed below.

2.4. cuBLAS Helper Function Reference 35

cuBLAS, Release 12.9

Error Value

Meaning

CUBLAS_STATUS_SUCCESS

the operation completed successfully

CUBLAS_STATUS_INVALID_VALUE | userCallback is NULL

cublasStatus_t cublasSetLoggerCallback(
cublaslLogCallback

userCallback)

This function installs a custom user defined callback function via cublas C public API.

Param.

Memory

In/out

Meaning

userCallback | host

input

Pointer to user defined callback function.

Error Value

Meaning

CUBLAS_STATUS_SUCCESS

The operation completed successfully

In this chapter we describe the Level-1 Basic Linear Algebra Subprograms (BLAS1) functions that per-
form scalar and vector based operations. We will use abbreviations <type> for type and <t> for the
corresponding short type to make a more concise and clear presentation of the implemented func-
tions. Unless otherwise specified <type> and <t> have the following meanings:

<type> <t> Meaning

float s or S | real single-precision
double d or D | real double-precision
cuComplex c or C | complex single-precision
cuDoubleComplex | zorZ | complex double-precision

When the parameters and returned values of the function differ, which sometimes happens for com-
plex input, the <t> can also be Sc, Cs, Dz and Zd.

The abbreviation Re(-) and Im(-) will stand for the real and imaginary part of a number, respectively.
Since imaginary part of areal number does not exist, we will consider it to be zero and can usually simply
discard it from the equation where it is being used. Also, the & will denote the complex conjugate of a

In general throughout the documentation, the lower case Greek symbols « and g will denote scalars,
lower case English letters in bold type x and y will denote vectors and capital English letters A, B and
C will denote matrices.

36

Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

cublasStatus_t cublasIsamax(cublasHandle_t handle, int n,

const float *x, int incx, int *result)
cublasStatus_t cublasIdamax(cublasHandle_t handle, int n,

const double *x, int incx, int *result)
cublasStatus_t cublasIcamax(cublasHandle_t handle, int n,

const cuComplex *x, int incx, int *result)
cublasStatus_t cublasIzamax(cublasHandle_t handle, int n,

const cuDoubleComplex *x, int incx, int *result)

This function supports the

This function finds the (smallest) index of the element of the maximum magnitude. Hence, the result
is the first i such that [Im (z[j])|+|Re (z[j])| is maximum fori =1,...,nand j = 1+ (i — 1)* incx. Notice
that the last equation reflects 1-based indexing used for compatibility with Fortran.

Param. | Memory Infout | Meaning

handle input Handle to the cuBLAS library context.

n input Number of elements in the vector x.

X device input <type> vector with elements.

incx input Stride between consecutive elements of x.

result | hostor device | out- The resulting index, whichissetto@if n <= @or incx <= 0.
put

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized
CUBLAS_STATUS_ALLOC_FAILED The reduction buffer could not be allocated
CUBLAS_STATUS_EXECUTION_FAILED | The function failed to launch on the GPU
CUBLAS_STATUS_INVALID_VALUE resultis NULL

For references please refer to NETLIB documentation:

’ 3)

cublasStatus_t cublasIsamin(cublasHandle_t handle, int n,

const float *x, int incx, int *result)
cublasStatus_t cublasIdamin(cublasHandle_t handle, int n,

const double *x, int incx, int *result)
cublasStatus_t cublasIcamin(cublasHandle_t handle, int n,

const cuComplex *x, int incx, int *result)
cublasStatus_t cublasIzamin(cublasHandle_t handle, int n,

const cuDoubleComplex *x, int incx, int *result)

This function supports the

This function finds the (smallest) index of the element of the minimum magnitude. Hence, the result
is the first ¢ such that |Im (z[j])|+|Re (z[j])| is minimum for ¢ =1,...,nand j = 1+ (i — 1) = incx Notice
that the last equation reflects 1-based indexing used for compatibility with Fortran.

2.5. cuBLAS Level-1 Function Reference 37

http://www.netlib.org/blas/isamax.f
http://www.netlib.org/blas/idamax.f
http://www.netlib.org/blas/icamax.f
http://www.netlib.org/blas/izamax.f

cuBLAS, Release 12.9

Param. | Memory Infout | Meaning

handle input Handle to the cuBLAS library context.

n input Number of elements in the vector x.

X device input <type> vector with elements.

incx input Stride between consecutive elements of x.

result | host or device | out- The resulting index, whichissetto@if n <= @or incx <= 0.
put

The possible error values returned by this function and their meanings are listed below.

Error Value

Meaning

CUBLAS_STATUS_SUCCESS

The operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized

CUBLAS_STATUS_ALLOC_FAILED The reduction buffer could not be allocated
CUBLAS_STATUS_EXECUTION_FAILED | The function failed to launch on the GPU
CUBLAS_STATUS_INVALID_VALUE resultis NULL

For references please refer to NETLIB documentation:

cublasStatus_t

cublasSasum(cublasHandle_t handle, int n,

const float *x, int incx, float *result)
cublasStatus_t cublasDasum(cublasHandle_t handle, int n,

const double *x, int incx, double *result)
cublasStatus_t cublasScasum(cublasHandle_t handle, int n,

const cuComplex *x, int incx, float *result)

cublasStatus_t cublasDzasum(cublasHandle_t handle, int n,
const cuDoubleComplex *x, int incx, double *result)

This function supports the

This function computes the sum of the absolute values of the elements of vector x. Hence, the result
is >, [Im (z[5])|+|Re (z[5])| where j = 1+ (i — 1) xincx . Notice that the last equation reflects 1-based
indexing used for compatibility with Fortran.

Param. Memory Infout | Meaning

handle input Handle to the cuBLAS library context.

n input Number of elements in the vector x.

X device input <type> vector with elements.

incx input Stride between consecutive elements of x.

result | host or device | output | The resulting sum, whichis setto@if n <= @ or incx <= 0.

The possible error values returned by this function and their meanings are listed below.

38

Chapter 2. Using the cuBLAS API

http://www.netlib.org/scilib/blass.f

cuBLAS, Release 12.9

Error Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized
CUBLAS_STATUS_ALLOC_FAILED The reduction buffer could not be allocated
CUBLAS_STATUS_EXECUTION_FAILED | The function failed to launch on the GPU
CUBLAS_STATUS_INVALID_VALUE resultis NULL

For references please refer to NETLIB documentation:

3 3 3

cublasStatus_t cublasSaxpy(cublasHandle_t handle, int n,

const float *alpha,

const float *x, int incx,

float *y, int incy)
cublasStatus_t cublasDaxpy(cublasHandle_t handle, int n,

const double *alpha,

const double *x, int incx,

double *y, int incy)
cublasStatus_t cublasCaxpy(cublasHandle_t handle, int n,

const cuComplex *alpha,

const cuComplex *x, int incx,

cuComplex *y, int incy)

cublasStatus_t cublasZaxpy(cublasHandle_t handle, int n,
const cuDoubleComplex *alpha,
const cuDoubleComplex *x, int incx,
cuDoubleComplex *y, int incy)

This function supports the

This function multiplies the vector x by the scalar a and adds it to the vector y overwriting the latest
vector with the result. Hence, the performed operation is y[j] = a x x[k] + y[j] fori =1,...,n, k =
14+ (i—1)xincxand j = 1+ (¢ — 1) xincy . Notice that the last two equations reflect 1-based indexing
used for compatibility with Fortran.

Param. Memory Infout | Meaning

handle input | Handle to the cuBLAS library context.
alpha host or device | input | <type> scalar used for multiplication.

n input | Number of elements in the vector x and y.
X device input | <type> vector with n elements.

incx input | Stride between consecutive elements of x.
y device infout | <type> vector with n elements.

incy input | Stride between consecutive elements of y.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized
CUBLAS_STATUS_EXECUTION_FAILED | The function failed to launch on the GPU

2.5. cuBLAS Level-1 Function Reference 39

http://www.netlib.org/blas/sasum.f
http://www.netlib.org/blas/dasum.f
http://www.netlib.org/blas/scasum.f
http://www.netlib.org/blas/dzasum.f

cuBLAS, Release 12.9

For references please refer to NETLIB documentation:

) 3 3

cublasStatus_t cublasScopy(cublasHandle_t handle, int n,

const float *x, int incx,

float *y, int incy)
cublasStatus_t cublasDcopy(cublasHandle_t handle, int n,

const double *x, int incx,

double *y, int incy)
cublasStatus_t cublasCcopy(cublasHandle_t handle, int n,

const cuComplex *x, int incx,

cuComplex *y, int incy)

cublasStatus_t cublasZcopy(cublasHandle_t handle, int n,
const cuDoubleComplex *x, int incx,
cuDoubleComplex *y, int incy)

This function supports the

This function copies the vector x into the vector y. Hence, the performed operation is y[j] = x[k] for
i=1,...,n,k=1+(i—1)*xincxand j = 1+ (i — 1) x incy . Notice that the last two equations reflect
1-based indexing used for compatibility with Fortran.

Param. Memory | Infout | Meaning

handle input | Handle to the cuBLAS library context.

n input | Number of elements in the vector x and y.
X device input | <type> vector with n elements.

incx input | Stride between consecutive elements of x.
y device infout | <type> vector with n elements.

incy input | Stride between consecutive elements of y.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized
CUBLAS_STATUS_EXECUTION_FAILED | The function failed to launch on the GPU

For references please refer to NETLIB documentation:

)) 3

40 Chapter 2. Using the cuBLAS API

http://www.netlib.org/blas/saxpy.f
http://www.netlib.org/blas/daxpy.f
http://www.netlib.org/blas/caxpy.f
http://www.netlib.org/blas/zaxpy.f
http://www.netlib.org/blas/scopy.f
http://www.netlib.org/blas/dcopy.f
http://www.netlib.org/blas/ccopy.f
http://www.netlib.org/blas/zcopy.f

cuBLAS, Release 12.9

cublasStatus_t cublasSdot (cublasHandle_t handle, int n,

const float *x, int incx,

const float *y, int incy,

float *result)
cublasStatus_t cublasDdot (cublasHandle_t handle, int n,

const double *x, int incx,

const double *y, int incy,

double *result)
cublasStatus_t cublasCdotu(cublasHandle_t handle, int n,

const cuComplex *x, int incx,

const cuComplex *y, int incy,

cuComplex *result)
cublasStatus_t cublasCdotc(cublasHandle_t handle, int n,

const cuComplex *x, int incx,

const cuComplex *y, int incy,

cuComplex *result)

cublasStatus_t cublasZdotu(cublasHandle_t handle, int n,
const cuDoubleComplex *x, int incx,
const cuDoubleComplex *y, int incy,
cuDoubleComplex *result)
cublasStatus_t cublasZdotc(cublasHandle_t handle, int n,
const cuDoubleComplex *x, int incx,
const cuDoubleComplex *y, int incy,
cuboubleComplex *result)

This function supports the

This function computes the dot product of vectors x and y. Hence, theresultis .7, (x[k] x y[j]) where
k=1+(i—1)xincxand j =1+ (: — 1) xincy . Notice that in the first equation the conjugate of the
element of vector x should be used if the function name ends in character ‘c’ and that the last two
equations reflect 1-based indexing used for compatibility with Fortran.

Param. Memory Infout | Meaning

handle input Handle to the cuBLAS library context.

n input Number of elements in the vectors x and y.

X device input <type> vector with n elements.

incx input Stride between consecutive elements of x.

y device input <type> vector with n elements.

incy input Stride between consecutive elements of y.

result | host or device | output | The resulting dot product, whichissetto@ifn <= 0

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized
CUBLAS_STATUS_ALLOC_FAILED The reduction buffer could not be allocated
CUBLAS_STATUS_EXECUTION_FAILED | The function failed to launch on the GPU

For references please refer to NETLIB documentation:

3 3 3 3 3

2.5. cuBLAS Level-1 Function Reference 41

http://www.netlib.org/blas/sdot.f
http://www.netlib.org/blas/ddot.f
http://www.netlib.org/blas/cdotu.f
http://www.netlib.org/blas/cdotc.f
http://www.netlib.org/blas/zdotu.f
http://www.netlib.org/blas/zdotc.f

cuBLAS, Release 12.9

cublasStatus_t cublasSnrm2(cublasHandle_t handle, int n,

const float *x, int incx, float *result)
cublasStatus_t cublasDnrm2(cublasHandle_t handle, int n,

const double *x, int incx, double *result)
cublasStatus_t cublasScnrm2(cublasHandle_t handle, int n,

const cuComplex *x, int incx, float *result)

cublasStatus_t cublasDznrm2(cublasHandle_t handle, int n,
const cuDoubleComplex *x, int incx, double *result)

This function supports the

This function computes the Euclidean norm of the vector x. The code uses a multiphase model
of accumulation to avoid intermediate underflow and overflow, with the result being equivalent to
Vi, (X[5] x x[5]) where j = 1 + (i — 1) = incx in exact arithmetic. Notice that the last equation re-
flects 1-based indexing used for compatibility with Fortran.

Param. | Memory Infout | Meaning

handle input Handle to the cuBLAS library context.

n input Number of elements in the vector x.

X device input <type> vector with n elements.

incx input Stride between consecutive elements of x.

result | hostor device | out- The resulting norm, whichissetto@if n <= @orincx <= 0.
put

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized
CUBLAS_STATUS_ALLOC_FAILED The reduction buffer could not be allocated
CUBLAS_STATUS_EXECUTION_FAILED | The function failed to launch on the GPU
CUBLAS_STATUS_INVALID_VALUE resultis NULL

For references please refer to NETLIB documentation:

3 3)

cublasStatus_t cublasSrot(cublasHandle_t handle, int n,

float *x, int incx,

float *y, int incy,

const float *c, const float *s)
cublasStatus_t cublasDrot(cublasHandle_t handle, int n,

double *x, int incx,

double *y, int incy,

const double *c, const double *s)
cublasStatus_t cublasCrot(cublasHandle_t handle, int n,

cuComplex *x, int incx,

cuComplex *y, int incy,

const float *c, const cuComplex *s)

(continues on next page)

42 Chapter 2. Using the cuBLAS API

http://www.netlib.org/blas/snrm2.f90
http://www.netlib.org/blas/dnrm2.f90
http://www.netlib.org/blas/scnrm2.f90
http://www.netlib.org/blas/dznrm2.f90

cuBLAS, Release 12.9

(continued from previous page)
cublasStatus_t cublasCsrot(cublasHandle_t handle, int n,

cuComplex *x, int incx,
cuComplex *y, int incy,
const float *c, const float *s)

cublasStatus_t cublasZrot(cublasHandle_t handle, int n,
cuDoubleComplex *x, int incx,
cuDoubleComplex *y, int incy,
const double *c, const cuDoubleComplex *s)

cublasStatus_t cublasZdrot(cublasHandle_t handle, int n,
cuDoubleComplex *x, int incx,
cuDoubleComplex *y, int incy,
const double *c, const double *s)

This function supports the

This function applies Givens rotation matrix (i.e., rotation in the x,y plane counter-clockwise by angle
defined by cos(alpha)=c, sin(alpha)=s):

G (c s>
—S C
to vectors x and y.

Hence, the result is x[k] = ¢ x X[k] + s x y[j] and y[j] = —s x x[k] + ¢ x y[j] where k = 1+ (¢ — 1) xincx and
j =14(i — 1)*incy . Notice that the last two equations reflect 1-based indexing used for compatibility
with Fortran.

Param. Memory Infout | Meaning

handle input | Handle to the cuBLAS library context.

n input | Number of elements in the vectors x and y.
X device infout | <type> vector with n elements.

incx input | Stride between consecutive elements of x.
y device infout | <type> vector with n elements.

incy input | Stride between consecutive elements of y.
c host or device | input | Cosine element of the rotation matrix.

S host or device | input | Sine element of the rotation matrix.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized
CUBLAS_STATUS_EXECUTION_FAILED | The function failed to launch on the GPU

For references please refer to NETLIB documentation:

3 3 3 3 3

2.5. cuBLAS Level-1 Function Reference 43

http://www.netlib.org/blas/srot.f
http://www.netlib.org/blas/drot.f
http://www.netlib.org/lapack/lapack_routine/crot.f
http://www.netlib.org/blas/csrot.f
http://www.netlib.org/lapack/lapack_routine/zrot.f
http://www.netlib.org/blas/zdrot.f

cuBLAS, Release 12.9

cublasStatus_t cublasSrotg(cublasHandle_t handle,

float *a, float *b,

float *c, float *s)
cublasStatus_t cublasDrotg(cublasHandle_t handle,

double *a, double *b,

double *c, double *s)
cublasStatus_t cublasCrotg(cublasHandle_t handle,

cuComplex *a, cuComplex *b,

float *c, cuComplex *s)

cublasStatus_t cublasZrotg(cublasHandle_t handle,
cuDoubleComplex *a, cuDoubleComplex *b,
double *c, cuDoubleComplex *s)

This function supports the

This function constructs the Givens rotation matrix

G (c s>
—S C
that zeros out the second entry of a 2 x 1 vector (a,b)” .

Then, for real numbers we can write

(6=

where ¢+ s%2 = 1and r = £v/a2 + b2. The parameters a and b are overwritten with r and z, respectively.
The value of z is such that ¢ and s may be recovered using the following rules:

(V1—=22%,2) if |z|<1
(¢,5) = ¢ (0.0,1.0) if |z|I=1
(1/2,V1=22) if |2[>1

For complex numbers we can write

(52 6= 6)

where ¢ + (5 x s) = Land r = & || (a,b)"]2 with || (a,0)" 2= \/]aPP+[BJ? for a # 0 and r = b for
a = 0. Finally, the parameter a is overwritten with r on exit.

Param. Memory Infout | Meaning

handle input Handle to the cuBLAS library context.

a host or device | infout | <type> scalar that is overwritten with r .
b host or device | infout | <type> scalar that is overwritten with z .
c host or device | output | Cosine element of the rotation matrix.

S host or device | output | Sine element of the rotation matrix.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized
CUBLAS_STATUS_EXECUTION_FAILED | The function failed to launch on the GPU

44 Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

For references please refer to NETLIB documentation:

’

cublasStatus_t cublasSrotm(cublasHandle_t handle, int n, float
y, int incy, const float

3

float

*X,

param)

int incx,

cublasStatus_t cublasDrotm(cublasHandle_t handle, int n, double *x, int incx,

double *y, int incy, const double* param)

This function supports the

This function applies the modified Givens transformation

his
H:
<h21

h12
h22

to vectors x and y.

Hence, the result is x[k] = h11 X X[k] + hi2 x Y[j] and y[j] = ha1 x X[k] + haa x y[j] where k =1+ (i — 1) *
incxand j = 1+ (i — 1) x incy . Notice that the last two equations reflect 1-based indexing used for
compatibility with Fortran.

The elements, , and of matrix H are stored in param[1], param[2], param[3] and param[4], respec-
tively. The flag=param[@] defines the following predefined values for the matrix H entries

flag=-1.0

flag= 0.0

flag= 1.0

flag=-2.0

hii hio
ho1 hao

1.0 hio
h21 1.0

hy1 1.0
—1.0 hao

1.0 0.0
0.0 1.0

Notice that the values -1.0, 0.0 and 1.0 implied by the flag are not stored in param.

Param.| Memory Infout Meaning

han- in- Handle to the cuBLAS library context.

dle put

n in- Number of elements in the vectors x and y.
put

X device infout <type> vector with n elements.

incx in- Stride between consecutive elements of x.
put

y device infout <type> vector with n elements.

incy in- Stride between consecutive elements of .
put

param| host or | in- <type> vector of 5 elements, where param[0] and param[1..4] con-

device put | tain the flag and matrix H.

The possible error values returned by this function and their meanings are listed below.

Error Value

Meaning

CUBLAS_STATUS_SUCCESS

The operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED

The library was not initialized

CUBLAS_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU

2.5. cuBLAS Level-1 Function Reference

45

http://www.netlib.org/blas/srotg.f90
http://www.netlib.org/blas/drotg.f90
http://www.netlib.org/blas/crotg.f90
http://www.netlib.org/blas/zrotg.f90

cuBLAS, Release 12.9

For references please refer to NETLIB documentation:

cublasStatus_t cublasSrotmg(cublasHandle_t handle, float *d1, float *d2,
float *x1, const float *y1, float *param)

cublasStatus_t cublasDrotmg(cublasHandle_t handle, double *d1, double *d2,
double #*x1, const double *y1, double *param)

This function supports the

This function constructs the modified Givens transformation
hit hio
H =
<h21 h22>
T
that zeros out the second entry of a 2 x 1 vector (\/dl xxl,V/d2 * yl) .

The flag=param[0] defines the following predefined values for the matrix H entries

flag=-1.0 | flag= 0.0 | flag= 1.0 | flag=-2.0
hll h12 1.0 h12 hll 1.0 1.0 0.0
]’L21 h22 h21 1.0 —1.0 h22 0.0 1.0

Notice that the values -1.0, 0.0 and 1.0 implied by the flag are not stored in param.

Param.| Memory Infout| Meaning

han- in- Handle to the cuBLAS library context.

dle put

d1 host or | infout| <type> scalar that is overwritten on exit.
device

d2 host or | infout| <type> scalar that is overwritten on exit.
device

X1 host or | infout| <type> scalar that is overwritten on exit.
device

y1 host or | in- <type> scalar.
device put

param| host or | out- | <type> vector of 5 elements, where param[0] and param[1-4] con-
device put tain the flag and matrix H.

The possible error values returned by this function and their meanings are listed below.

Error Value

Meaning

CUBLAS_STATUS_SUCCESS

The operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED

The library was not initialized

CUBLAS_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU

For references please refer to NETLIB documentation:

46

Chapter 2. Using the cuBLAS API

http://www.netlib.org/blas/srotm.f
http://www.netlib.org/blas/drotm.f
http://www.netlib.org/blas/srotmg.f
http://www.netlib.org/blas/drotmg.f

cuBLAS, Release 12.9

cublasStatus_t cublasSscal(cublasHandle_t handle, int n,

const float
float

*alpha,
*x, int incx)

cublasStatus_t cublasDscal(cublasHandle_t handle, int n,

const double

*alpha,

double *x, int incx)
cublasStatus_t cublasCscal(cublasHandle_t handle, int n,
const cuComplex *alpha,
cuComplex *x, int incx)

cublasStatus_t cublasCsscal(cublasHandle_t handle, int n,

const float
cuComplex

*alpha,
*x, int incx)

cublasStatus_t cublasZscal(cublasHandle_t handle, int n,
const cuDoubleComplex #*alpha,
cuDoubleComplex *x, int incx)

cublasStatus_t cublasZdscal(cublasHandle_t handle, int n,

const double

*alpha,

cuDoubleComplex *x, int incx)

This function supports the

This function scales the vector x by the scalar o and overwrites it with the result. Hence, the performed
operation is x[j] = a x x[j] fori =1,...,nand j = 1+ (i — 1) xincx . Notice that the last two equations

reflect 1-based indexing used for compatibility

with Fortran.

Param. Memory Infout | Meaning

handle input | Handle to the cuBLAS library context.
alpha host or device | input | <type> scalar used for multiplication.

n input | Number of elements in the vector x.

X device infout | <type> vector with n elements.

incx input | Stride between consecutive elements of x.

The possible error values returned by this function and their meanings are listed below.

Table 1: :class: table-no-stripes

Error Value

Meaning

CUBLAS_STATUS_SUCCESS

The operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED

The library was not initialized

CUBLAS_STATUS_EXECUTION_FAILED | The function failed to launch on the GPU

For references please refer to NETLIB documentation:

)) ’) ’

2.5. cuBLAS Level-1 Function Reference

47

http://www.netlib.org/blas/sscal.f
http://www.netlib.org/blas/dscal.f
http://www.netlib.org/blas/csscal.f
http://www.netlib.org/blas/cscal.f
http://www.netlib.org/blas/zdscal.f
http://www.netlib.org/blas/zscal.f

cuBLAS, Release 12.9

cublasStatus_t cublasSswap(cublasHandle_t handle, int n, float *X,
int incx, float *y, int incy)

cublasStatus_t cublasDswap(cublasHandle_t handle, int n, double *X,
int incx, double *y, int incy)

cublasStatus_t cublasCswap(cublasHandle_t handle, int n, cuComplex *X,
int incx, cuComplex *y, int incy)

cublasStatus_t cublasZswap(cublasHandle_t handle, int n, cuDoubleComplex *x,
int incx, cuDoubleComplex *y, int incy)

This function supports the

This function interchanges the elements of vector x and y. Hence, the performed operation is
yjjl]exk] fori = 1,...,n,k =14+ (i—1)*xincxand j = 1 + (i — 1) xincy . Notice that the last
two equations reflect 1-based indexing used for compatibility with Fortran.

Param. Memory | Infout | Meaning

handle input | Handle to the cuBLAS library context.

n input | Number of elements in the vectors x and y.
X device infout | <type> vector with n elements.

incx input | Stride between consecutive elements of x.
y device infout | <type> vector with n elements.

incy input | Stride between consecutive elements of y.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized
CUBLAS_STATUS_EXECUTION_FAILED | The function failed to launch on the GPU

For references please refer to NETLIB documentation:

)) 3

In this chapter we describe the Level-2 Basic Linear Algebra Subprograms (BLAS2) functions that per-
form matrix-vector operations.

cublasStatus_t cublasSgbmv(cublasHandle_t handle, cublasOperation_t trans,
int m, int n, int k1, int ku,

const float *alpha,

const float *A, int lda,
const float *x, int incx,
const float *beta,

float *y, int incy)

(continues on next page)

48 Chapter 2. Using the cuBLAS API

http://www.netlib.org/blas/sswap.f
http://www.netlib.org/blas/dswap.f
http://www.netlib.org/blas/cswap.f
http://www.netlib.org/blas/zswap.f

cuBLAS, Release 12.9

(continued from previous page)

cublasStatus_t cublasDgbmv(cublasHandle_t handle, cublasOperation_t trans,
int m, int n, int kl, int ku,

const double *alpha,

const double *A, int 1lda,
const double *x, int incx,
const double *beta,

double *y, int incy)

cublasStatus_t cublasCgbmv(cublasHandle_t handle, cublasOperation_t trans,
int m, int n, int k1, int ku,

const cuComplex *alpha,
const cuComplex *A, int lda,
const cuComplex *x, int incx,
const cuComplex *beta,
cuComplex *y, int incy)

cublasStatus_t cublasZgbmv(cublasHandle_t handle, cublasOperation_t trans,
int m, int n, int k1, int ku,
const cuDoubleComplex *alpha,
const cuDoubleComplex *A, int lda,
const cuDoubleComplex *x, int incx,
const cuDoubleComplex *beta,
cuDoubleComplex *y, int incy)

This function supports the

This function performs the banded matrix-vector multiplication

y = aop(A)x + By

where A is a banded matrix with ki subdiagonals and ku superdiagonals, x and y are vectors, and « and
(3 are scalars. Also, for matrix A

A if trans == CUBLAS_OP_N
op(A) = ¢ AT if trans == CUBLAS_OP_T
AH if trans == CUBLAS_OP_C

The banded matrix A is stored column by column, with the main diagonal stored in row ku + 1 (starting
in first position), the first superdiagonal stored in row ku (starting in second position), the first sub-
diagonal stored in row ku + 2 (starting in first position), etc. So that in general, the element A (i,) is
stored in the memory location A(ku+1+i-j,j) forj=1,...,nandi € [max (1,j — ku),min (m, j + kl)]
. Also, the elements in the array A that do not conceptually correspond to the elements in the banded
matrix (the top left ku x ku and bottom right kI x kI triangles) are not referenced.

2.6. cuBLAS Level-2 Function Reference 49

cuBLAS, Release 12.9

Param.| Memory Infout Meaning
han- in- Handle to the cuBLAS library context.
dle put
trans in- Operation op(A) that is non- or (conj.) transpose.
put
m in- Number of rows of matrix A.
put
n in- Number of columns of matrix A.
put
kl in- Number of subdiagonals of matrix A.
put
ku in- Number of superdiagonals of matrix A.
put
al- hostorde- | in- <type> scalar used for multiplication.
pha vice put
A device in- <type> array of dimension 1da x n with 1da >= k1 + ku + 1.
put
lda in- Leading dimension of two-dimensional array used to store matrix A.
put
X device in- <type> vector with n elements if trans == CUBLAS_OP_Nand m ele-
put | ments otherwise.
incx in- Stride between consecutive elements of x.
put
beta | hostorde- | in- <type> scalar used for multiplication. If beta == 0 then y does not
vice put | have to be a valid input.
y device infout <type> vector with m elements if trans == CUBLAS_OP_N and n ele-
ments otherwise.
incy in- Stride between consecutive elements of y.
put

The possible error values returned by this function and their meanings are listed below.

Error Value

Meaning

CUBLAS_STATUS_SUCCESS

The operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED

The library was not initialized

CUBLAS_STATUS_INVALID_VALUE

Ifm < 06,n < 9,kl < Borku < 0,0r

if lda < (k1 + ku + 1),or

if incx == @orincy == 0,or

if trans is not one of CUBLAS_OP_N,
CUBLAS_OP_T, CUBLAS_OP_C, or

if alpha or beta are NULL

CUBLAS_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU

For references please refer to NETLIB documentation:

3

50

Chapter 2. Using the cuBLAS API

http://www.netlib.org/blas/sgbmv.f
http://www.netlib.org/blas/dgbmv.f
http://www.netlib.org/blas/cgbmv.f
http://www.netlib.org/blas/zgbmv.f

cuBLAS, Release 12.9

2.6.2 cublas<t>gemv()

cublasStatus_t cublasSgemv(cublasHandle_t handle, cublasOperation_t trans,
int m, int n,

const float *alpha,

const float *A, int lda,
const float *x, int incx,
const float *beta,

float *y, int incy)

cublasStatus_t cublasDgemv(cublasHandle_t handle, cublasOperation_t trans,
int m, int n,

const double *alpha,

const double *A, int 1lda,
const double *x, int incx,
const double *beta,

double *y, int incy)

cublasStatus_t cublasCgemv(cublasHandle_t handle, cublasOperation_t trans,
int m, int n,

const cuComplex *alpha,
const cuComplex *A, int 1lda,
const cuComplex *x, int incx,
const cuComplex *beta,
cuComplex *y, int incy)

cublasStatus_t cublasZgemv(cublasHandle_t handle, cublasOperation_t trans,
int m, int n,
const cuDoubleComplex *alpha,
const cuDoubleComplex *A, int lda,
const cuDoubleComplex *x, int incx,
const cuDoubleComplex *beta,
cuDoubleComplex *y, int incy)

This function supports the 64-bit Integer Interface.
This function performs the matrix-vector multiplication

y =aop(A)x+ By
where A is a m x n matrix stored in column-major format, x and y are vectors, and « and 3 are scalars.
Also, for matrix A
A if trans == CUBLAS_OP_N
op(A) =< AT if trans == CUBLAS_OP_T
AH if trans == CUBLAS_OP_C

2.6. cuBLAS Level-2 Function Reference 51

cuBLAS, Release 12.9

ParamMem- | In/out Meaning
ory
han- in- Handle to the cuBLAS library context.
dle put
trans in- | Operation op(A) that is non- or (conj.) transpose.
put
m in- Number of rows of matrix A.
put
n in- Number of columns of matrix A.
put
al- | host in- <type> scalar used for multiplication.
pha | or de- | put
vice
A de- in- <type> array of dimension 1da x nwith 1da >= max(1, m). Before entry,
vice put | theleading m by n part of the array A must contain the matrix of coefficients.
Unchanged on exit.
lda in- | Leading dimension of two-dimensional array used to store matrix A. Lda must
put | be atleastmax(1, m).
X de- in- | <type> vector atleast (1 + (n - 1) * abs(incx)) elements if trans
vice put | == CUBLAS_OP_Nand atleast (1 + (m - 1) * abs(incx)) elements
otherwise.
incx in- Stride between consecutive elements of x.
put
betal host in- <type> scalar used for multiplication. If beta == 0 then y does not have to
or de- | put | beavalid input.
vice
y de- infout <type> vector at least (1 + (m - 1) * abs(incy)) elements if trans
vice == CUBLAS_OP_Nandatleast (1 + (n - 1) * abs(incy)) elements
otherwise.
incy| in- | Stride between consecutive elements of y
put

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully

CUBLAS_STATUS_NOT_ The library was not initialized

INITIALIZED

CUBLAS_STATUS_INVALID_VALUE The parametersm < Born < @,orincx == Bor incy ==
0

CUBLAS_STATUS_EXECUTION_ The function failed to launch on the GPU

FAILED

For references please refer to NETLIB documentation:

3 3)

52 Chapter 2. Using the cuBLAS API

http://www.netlib.org/blas/sgemv.f
http://www.netlib.org/blas/dgemv.f
http://www.netlib.org/blas/cgemv.f
http://www.netlib.org/blas/zgemv.f

cuBLAS, Release 12.9

cublasStatus_t

cublasStatus_t

cublasStatus_t

cublasStatus_t

cublasStatus_t

cublasStatus_t

cublasSger(cublasHandle_t handle, int m,
const float *alpha,
const float *x, int
const float *y, int
float *A, int lda)

cublasDger(cublasHandle_t handle, int m,

const double *alpha,
const double *x, int
const double *y, int
double *A, int lda)
cublasCgeru(cublasHandle_t handle, int m,
const cuComplex *alpha,
const cuComplex *x, int
const cuComplex *y, int
cuComplex *A, int lda)

cublasCgerc(cublasHandle_t handle, int m,

const cuComplex *alpha,
const cuComplex *x, int
const cuComplex *y, int
cuComplex *A, int lda)

cublasZgeru(cublasHandle_t handle, int m,
const cuDoubleComplex *alpha,
const cuDoubleComplex *x, int
const cuDoubleComplex *y, int
cuDoubleComplex *A, int 1lda)

cublasZgerc(cublasHandle_t handle, int m,
const cuDoubleComplex *alpha,
const cuDoubleComplex *x, int
const cuDoubleComplex *y, int
cuDoubleComplex *A, int 1lda)

This function supports the

This function performs the rank-1 update

{axyT4—A
A= "
axy” + A

if ger(),geru() is called
if gerc() is called

int n,

incx,
incy,

int n,

incx,
incy,

int n,

incx,
incy,

int n,

incx,
incy,

int n,

incx,
incy,

int n,

incx,
incy,

where A is a m x n matrix stored in column-major format, x and y are vectors, and « is a scalar.

Param. | Memory Infout | Meaning
han- input | Handle to the cuBLAS library context.
dle
m input | Number of rows of matrix A.
n input | Number of columns of matrix A.
alpha | host or de- | input | <type> scalar used for multiplication.
vice
X device input | <type> vector with m elements.
incx input | Stride between consecutive elements of x.
y device input | <type> vector with n elements.
incy input | Stride between consecutive elements of .
A device infout | <type> array of dimension 1da x nwith 1da >= max(1, m).
lda input | Leading dimension of two-dimensional array used to store matrix
A

2.6. cuBLAS Level-2 Function Reference

53

cuBLAS, Release 12.9

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning
CUBLAS_STATUS_SUCCESS The operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized

CUBLAS_STATUS_INVALID_VALUE
Ifm < Born < 6,o0r

if incx == @or incy == 0,or
if alphais NULL, or
if 1da < max(1, m)

CUBLAS_STATUS_EXECUTION_FAILED The function failed to launch on the GPU

For references please refer to NETLIB documentation:

cublasStatus_t cublasSsbmv(cublasHandle_t handle, cublasFillMode_t uplo,
int n, int k, const float *alpha,
const float *A, int lda,
const float *x, int incx,
const float *beta, float *y, int incy)
cublasStatus_t cublasDsbmv(cublasHandle_t handle, cublasFillMode_t uplo,
int n, int k, const double *alpha,
const double *A, int lda,
const double *x, int incx,
const double *beta, double *y, int incy)

This function supports the
This function performs the symmetric banded matrix-vector multiplication
y = aAX + 5y

where A is a n x n symmetric banded matrix with k& subdiagonals and superdiagonals, x and y are
vectors, and « and 3 are scalars.

If uplo == CUBLAS_FILL_MODE_LOWER then the symmetric banded matrix A is stored column by
column, with the main diagonal of the matrix stored in row 1, the first subdiagonal in row 2 (starting at
first position), the second subdiagonal in row 3 (starting at first position), etc. So that in general, the
element A(i, j) is stored in the memory location A(1+i-j,j) forj =1,...,nandi € [j, min(m,j + k)]
. Also, the elements in the array A that do not conceptually correspond to the elements in the banded
matrix (the bottom right k x k triangle) are not referenced.

If uplo == CUBLAS_FILL_MODE_UPPER then the symmetric banded matrix A is stored column by
column, with the main diagonal of the matrix stored in row k + 1, the first superdiagonal in row k
(starting at second position), the second superdiagonal in row k-1 (starting at third position), etc. So
that in general, the element A(i, j) is stored in the memory location A(1+k+i-j,j) forj =1,...,n
andi € [max(1,;5 — k), j] . Also, the elements in the array A that do not conceptually correspond to the
elements in the banded matrix (the top left k x k triangle) are not referenced.

54 Chapter 2. Using the cuBLAS API

http://www.netlib.org/blas/sger.f
http://www.netlib.org/blas/dger.f
http://www.netlib.org/blas/cgeru.f
http://www.netlib.org/blas/cgerc.f
http://www.netlib.org/blas/zgeru.f
http://www.netlib.org/blas/zgerc.f

cuBLAS, Release 12.9

Paranm.Mem- In/oult Meaning
ory

han- in- Handle to the cuBLAS library context.

dle put

uplo in- Indicates if matrix A lower or upper part is stored, the other symmetric part
put | is not referenced and is inferred from the stored elements.

n in- Number of rows and columns of matrix A.
put

k in- Number of sub- and super-diagonals of matrix A.
put

al- | host or | in- <type> scalar used for multiplication.

pha | device put

A device in- <type> array of dimension 1da x n with 1da >= k + 1.
put

lda in- Leading dimension of two-dimensional array used to store matrix A.
put

X device in- <type> vector with n elements.
put

incx in- Stride between consecutive elements of x.
put

beta| host or | in- <type> scalar used for multiplication. If beta == 0 then y does not have

device put | to be avalid input.

y device infout <type> vector with n elements.

incy in- | Stride between consecutive elements of y.
put

The possible error values returned by this function and their meanings are listed below.

Error Value

Meaning

CUBLAS_STATUS_SUCCESS

The operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED

The library was not initialized

CUBLAS_STATUS_INVALID_VALUE

Ifn < B@ork < 0,or

if incx == @ or incy == 0,or

if uplois not one of CUBLAS_FILL_MODE_
LOWER and CUBLAS_FILL_MODE_UPPER,or
if alpha or beta are NULL, or

if lda < (1 + k)

CUBLAS_STATUS_EXECUTION_FAILED The function failed to launch on the GPU

For references please refer to NETLIB documentation:

3

2.6. cuBLAS Level-2 Function Reference 55

http://www.netlib.org/blas/ssbmv.f
http://www.netlib.org/blas/dsbmv.f

cuBLAS, Release 12.9

cublasStatus_t cublasSspmv(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const float *alpha, const float *AP,
const float *x, int incx, const float *beta,
float *y, int incy)

cublasStatus_t cublasDspmv(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const double *alpha, const double *AP,
const double *x, int incx, const double *beta,
double *y, int incy)

This function supports the
This function performs the symmetric packed matrix-vector multiplication
y = aAx + By

where A is a n x n symmetric matrix stored in packed format, x and y are vectors, and « and 3 are
scalars.

If uplo == CUBLAS_FILL_MODE_LOWER then the elements in the lower triangular part of the sym-
metric matrix A are packed together column by column without gaps, so that the element A(i, j) is
stored in the memory location AP[i+((2*n-j+1)*j)/2] for j = 1,...,nand i > j . Consequently,
the packed format requires only % elements for storage.

If uplo == CUBLAS_FILL_MODE_UPPER then the elements in the upper triangular part of the sym-

metric matrix A are packed together column by column without gaps, so that the element A(i, j) is
stored in the memory location AP[i+(j*(j+1))/2] for j = 1,...,nand i < j. Consequently, the

packed format requires only % elements for storage.
Param.Mem- In/out Meaning
ory
han- in- Handle to the cuBLAS library context.
dle put
uplo in- Indicates if matrix A lower or upper partis stored, the other symmetric part
put | is not referenced and is inferred from the stored elements.
n in- Number of rows and columns of matrix A .
put
al- | host or | in- <type> scalar used for multiplication.
pha | device put
AP device in- <type> array with A stored in packed format.
put
X device in- <type> vector with n elements.
put
incx in- Stride between consecutive elements of x.
put
beta| host or | in- <type> scalar used for multiplication. If beta == 0 then y does not have
device put | to be a valid input.
y device in- <type> vector with n elements.
put
incy in- | Stride between consecutive elements of y.
put

The possible error values returned by this function and their meanings are listed below.

56 Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

Error Value Meaning
CUBLAS_STATUS_SUCCESS The operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized
CUBLAS_STATUS_INVALID_VALUE

Ifn < 0, o0r

if incx == @orincy == 0,or

if uplois not one of CUBLAS_FILL_MODE_
LOWER and CUBLAS_FILL_MODE_UPPER,or
if alpha or beta are NULL

CUBLAS_STATUS_EXECUTION_FAILED The function failed to launch on the GPU

For references please refer to NETLIB documentation:

3

cublasStatus_t cublasSspr(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const float *alpha,
const float *x, int incx, float *AP)
cublasStatus_t cublasDspr(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const double *alpha,
const double *x, int incx, double *AP)

This function supports the

This function performs the packed symmetric rank-1 update

A=axxT + A

where A is a n x n symmetric matrix stored in packed format, x is a vector, and « is a scalar.

If uplo == CUBLAS_FILL_MODE_LOWER then the elements in the lower triangular part of the sym-
metric matrix A are packed together column by column without gaps, so that the element A(i, j) is
stored in the memory location AP[i+((2*n-j+1)*j)/2] forj = 1,...,nand i > j . Consequently,
the packed format requires only "("T“) elements for storage.

If uplo == CUBLAS_FILL_MODE_UPPER then the elements in the upper triangular part of the sym-
metric matrix A are packed together column by column without gaps, so that the element A(i, j) is
stored in the memory location AP[i+(j*(j+1))/2] for j = 1,...,nand i < j. Consequently, the

: 1
packed format requires only ”("TJ” elements for storage.

2.6. cuBLAS Level-2 Function Reference 57

http://www.netlib.org/blas/sspmv.f
http://www.netlib.org/blas/dspmv.f

cuBLAS, Release 12.9

Param.Mem- In/out Meaning
ory
han- in- Handle to the cuBLAS library context.
dle put
uplo in- Indicates if matrix A lower or upper part is stored, the other symmetric part
put | is not referenced and is inferred from the stored elements.
n in- Number of rows and columns of matrix A .
put
al- | host or | in- <type> scalar used for multiplication.
pha | device put
X device in- <type> vector with n elements.
put
incx in- | Stride between consecutive elements of x.
put
AP device infout <type> array with A stored in packed format.

The possible error values returned by this function and their meanings are listed below.

Error

Value

Meaning

CUBLAS_STATUS_SUCCESS

The operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED

The library was not initialized

CUBLAS_STATUS_INVALID_VALUE

Ifn < 0,0r

if incx == 0, or

if uplois not one of CUBLAS_FILL_MODE_
LOWER and CUBLAS_FILL_MODE_UPPER,or
if alphais NULL

CUBLAS_STATUS_EXECUTION_FAILED The function failed to launch on the GPU

For references please refer to NETLIB documentation:

cublasStatus_t cublasSspr2(cublasHandle_t handle, cublasFillMode_t uplo,

int n, const float *alpha,
const float *x, int incx,
const float *y, int incy, float *AP)

cublasStatus_t cublasDspr2(cublasHandle_t handle, cublasFillMode_t uplo,

int n, const double *alpha,
const double *x, int incx,
const double *y, int incy, double *AP)

This function supports the

This function performs the packed symmetric rank-2 update

A=a(xy" +yxT)+ A

where A is a n x n symmetric matrix stored in packed format, x is a vector, and « is a scalar.

58

Chapter 2. Using the cuBLAS API

http://www.netlib.org/blas/sspr.f
http://www.netlib.org/blas/dspr.f

cuBLAS, Release 12.9

If uplo == CUBLAS_FILL_MODE_LOWER then the elements in the lower triangular part of the sym-
metric matrix A are packed together column by column without gaps, so that the element A(3, j) is
stored in the memory location AP[i+((2*n-j+1)*j)/2] forj = 1,...,nand i > j. Consequently,

the packed format requires only % elements for storage.

If uplo == CUBLAS_FILL_MODE_UPPER then the elements in the upper triangular part of the sym-
metric matrix A are packed together column by column without gaps, so that the element A(3, j) is
stored in the memory location AP[i+(j*(j+1))/2] forj = 1,...,nand i < j . Consequently, the

packed format requires only w elements for storage.
Param.Mem- In/out Meaning
ory
han- in- Handle to the cuBLAS library context.
dle put
uplo in- Indicates if matrix A lower or upper partis stored, the other symmetric part
put | is not referenced and is inferred from the stored elements.
n in- Number of rows and columns of matrix A .
put
al- | host or | in- <type> scalar used for multiplication.
pha | device put
X device in- <type> vector with n elements.
put
incx in- Stride between consecutive elements of x.
put
y device in- <type> vector with n elements.
put
incy in- Stride between consecutive elements of y.
put
AP device infout <type> array with A stored in packed format.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning
CUBLAS_STATUS_SUCCESS The operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized
CUBLAS_STATUS_INVALID_VALUE

Ifn < @,or

if incx == @orincy == 0,or

if uplo is not one of CUBLAS_FILL_MODE_
LOWER and CUBLAS_FILL_MODE_UPPER, or
if alphais NULL

CUBLAS_STATUS_EXECUTION_FAILED The function failed to launch on the GPU

For references please refer to NETLIB documentation:

2.6. cuBLAS Level-2 Function Reference 59

http://www.netlib.org/blas/sspr2.f
http://www.netlib.org/blas/dspr2.f

cuBLAS, Release 12.9

2.6.8 cublas<t>symv()

cublasStatus_t cublasSsymv(cublasHandle_t handle, cublasFillMode_t uplo,

int n, const float *alpha,

const float *A, int 1lda,

const float *x, int incx, const float
. *beta,

float *y, int incy)
cublasStatus_t cublasDsymv(cublasHandle_t handle, cublasFillMode_t uplo,

int n, const double *alpha,

const double *A, int 1lda,

const double *x, int incx, const double
- *beta,

double *y, int incy)
cublasStatus_t cublasCsymv(cublasHandle_t handle, cublasFillMode_t uplo,

int n, const cuComplex *alpha, /* host or device
—pointer */

const cuComplex *A, int 1da,

const cuComplex *x, int incx, const cuComplex
—*beta,

cuComplex *y, int incy)

cublasStatus_t cublasZsymv(cublasHandle_t handle, cublasFillMode_t uplo,

int n, const cuDoubleComplex *alpha,

const cuDoubleComplex *A, int lda,

const cuDoubleComplex *x, int incx, const cuDoubleComplex
—*beta,

cuDoubleComplex *y, int incy)

This function supports the 64-bit Integer Interface.

This function performs the symmetric matrix-vector multiplication.

y = aAx + Sy where A is a n x n symmetric matrix stored in lower or upper mode, x and y are vectors,
and « and 3 are scalars.

This function has an alternate faster implementation using atomics that can be enabled with cublas-
SetAtomicsMode().

Please see the section on the function cublasSetAtomicsMode() for more details about the usage of
atomics.

60 Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

Param.Mem- In/oult Meaning
ory

han- in- Handle to the cuBLAS library context.

dle put

uplo in- Indicates if matrix lower or upper part is stored, the other symmetric part
put | is not referenced and is inferred from the stored elements.

n in- Number of rows and columns of matrix A.
put

al- | host or | in- <type> scalar used for multiplication.

pha | device put

A device in- | <type> array of dimension 1da x nwith 1da >= max(1, n).
put

lda in- Leading dimension of two-dimensional array used to store matrix A.
put

X device in- <type> vector with n elements.
put

incx in- | Stride between consecutive elements of x.
put

beta| host or | in- <type> scalar used for multiplication. If beta == 0 then y does not have

device put | to be avalid input.

y device infout <type> vector with n elements.

incy in- | Stride between consecutive elements of y.
put

The possible error values returned by this function and their meanings are listed below.

Error Value

Meaning

CUBLAS_STATUS_SUCCESS

The operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED

The library was not initialized

CUBLAS_STATUS_INVALID_VALUE

Ifn < @,or

if incx == @orincy == 0,or

if uplo is not one of CUBLAS_FILL_MODE_
LOWER and CUBLAS_FILL_MODE_UPPER,or
iflda < n

CUBLAS_STATUS_EXECUTION_FAILED The function failed to launch on the GPU

For references please refer to NETLIB documentation:

’

cublasStatus_t cublasSsyr(cublasHandle_t handle, cublasFillMode_t uplo,

—1da)

int n, const float *alpha,
const float *x, int incx, float *A, int

cublasStatus_t cublasDsyr(cublasHandle_t handle, cublasFillMode_t uplo,

—1da)

int n, const double *alpha,
const double *x, int incx, double *A, int

(continues on next page)

2.6. cuBLAS Level-2 Function Reference 61

http://www.netlib.org/blas/ssymv.f
http://www.netlib.org/blas/dsymv.f

cuBLAS, Release 12.9

(continued from previous page)

cublasStatus_t cublasCsyr(cublasHandle_t handle, cublasFillMode_t uplo,

int n, const cuComplex *alpha,

const cuComplex *x, int incx, cuComplex *A, int
—1da)
cublasStatus_t cublasZsyr(cublasHandle_t handle, cublasFillMode_t uplo,

int n, const cuDoubleComplex *alpha,

const cuDoubleComplex *x, int incx, cuDoubleComplex *A, int
—1da)

This function supports the
This function performs the symmetric rank-1 update
A=oaxxT + A

where A is an x n symmetric matrix stored in column-major format, x is a vector, and « is a scalar.

Param.Mem- In/oult Meaning
ory

han- in- Handle to the cuBLAS library context.

dle put

uplo in- Indicates if matrix A lower or upper part is stored, the other symmetric part
put | is not referenced and is inferred from the stored elements.

n in- Number of rows and columns of matrix A.
put

al- | host or | in- <type> scalar used for multiplication.

pha | device put

X device in- <type> vector with n elements.
put

incx in- | Stride between consecutive elements of x.
put

A device infout <type> array of dimensions 1da x n, with 1da >= max(1, n).

lda in- | Leading dimension of two-dimensional array used to store matrix A.
put

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning
CUBLAS_STATUS_SUCCESS The operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized
CUBLAS_STATUS_INVALID_VALUE

Ifn < 0, o0r

if incx == 0, or

if uplois not one of CUBLAS_FILL_MODE_
LOWER and CUBLAS_FILL_MODE_UPPER,or
if 1da < max(1, n),or

if alphais NULL

CUBLAS_STATUS_EXECUTION_FAILED The function failed to launch on the GPU

For references please refer to NETLIB documentation:

62 Chapter 2. Using the cuBLAS API

http://www.netlib.org/blas/ssyr.f
http://www.netlib.org/blas/dsyr.f

cuBLAS, Release 12.9

cublasStatus_t cublasSsyr2(cublasHandle_t handle, cublasFillMode_t uplo, int n,

const float *alpha, const float *X,
—int incx,

const float *y, int incy, float *A,
—int lda
cublasStatus_t cublasDsyr2(cublasHandle_t handle, cublasFillMode_t uplo, int n,

const double *alpha, const double *X,
—int incx,

const double *y, int incy, double *A,
—int lda
cublasStatus_t cublasCsyr2(cublasHandle_t handle, cublasFillMode_t uplo, int n,

const cuComplex *alpha, const cuComplex *X,
—int incx,

const cuComplex *y, int incy, cuComplex *A,
—int lda

cublasStatus_t cublasZsyr2(cublasHandle_t handle, cublasFillMode_t uplo, int n,
const cuDoubleComplex *alpha, const cuDoubleComplex *x,
—int incx,
const cuDoubleComplex *y, int incy, cuDoubleComplex *A,
—int lda

This function supports the
This function performs the symmetric rank-2 update
A=a(xy" +yxT)+ A

where A is a n x n symmetric matrix stored in column-major format, x and y are vectors, and a is a
scalar.

Param.Mem- In/oult Meaning
ory
han- in- Handle to the cuBLAS library context.
dle put
uplo in- Indicates if matrix A lower or upper part is stored, the other symmetric part
put | is not referenced and is inferred from the stored elements.
n in- Number of rows and columns of matrix A.
put
al- | host or | in- <type> scalar used for multiplication.
pha | device put
X device in- <type> vector with n elements.
put
incx in- Stride between consecutive elements of x.
put
y device in- <type> vector with n elements.
put
incy in- Stride between consecutive elements of y.
put
A device infout <type> array of dimensions 1da x n, with 1da >= max(1,n).
lda in- | Leading dimension of two-dimensional array used to store matrix A.
put

The possible error values returned by this function and their meanings are listed below.

2.6. cuBLAS Level-2 Function Reference 63

cuBLAS, Release 12.9

Error Value Meaning
CUBLAS_STATUS_SUCCESS The operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized
CUBLAS_STATUS_INVALID_VALUE

Ifn < 0, o0r

if incx == @orincy == 0,or

if uplois not one of CUBLAS_FILL_MODE_
LOWER and CUBLAS_FILL_MODE_UPPER,or
if alphais NULL, or

if 1da < max(1, n)

CUBLAS_STATUS_EXECUTION_FAILED The function failed to launch on the GPU

For references please refer to NETLIB documentation:

cublasStatus_t cublasStbmv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, int k, const float *A, int lda,
float *x, int incx)

cublasStatus_t cublasDtbmv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, int k, const double *A, int 1lda,
double *x, int incx)

cublasStatus_t cublasCtbmv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, int k, const cuComplex *A, int lda,
cuComplex *x, int incx)

cublasStatus_t cublasZtbmv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, int k, const cuDoubleComplex *A, int lda,
cuDoubleComplex *x, int incx)

This function supports the

This function performs the triangular banded matrix-vector multiplication
x = op(4)x

where A is a triangular banded matrix, and x is a vector. Also, for matrix A

A iftrans == CUBLAS_OP_N
op(A) =< AT if trans == CUBLAS_OP_T
AH if trans == CUBLAS_OP_C

If uplo == CUBLAS_FILL_MODE_LOWER then the triangular banded matrix A is stored column by
column, with the main diagonal of the matrix stored in row 1, the first subdiagonal in row 2 (starting at
first position), the second subdiagonal in row 3 (starting at first position), etc. So that in general, the
element A(i, j) is stored in the memory location A(1+i-j,j) forj =1,...,nandi € [j, min(m,j + k)]
. Also, the elements in the array A that do not conceptually correspond to the elements in the banded
matrix (the bottom right k x k triangle) are not referenced.

If uplo == CUBLAS_FILL_MODE_UPPER then the triangular banded matrix A is stored column by
column, with the main diagonal of the matrix stored in row k + 1, the first superdiagonal in row k

64 Chapter 2. Using the cuBLAS API

http://www.netlib.org/lapack/explore-html/db/d99/ssyr2_8f_source.html
http://www.netlib.org/lapack/explore-html/de/d41/dsyr2_8f_source.html

cuBLAS, Release 12.9

(starting at second position), the second superdiagonal in row k-1 (starting at third position), etc. So
that in general, the element A(3, j) is stored in the memory location A(1+k+i-j,j) forj =1,...,n
andi € [max(1,5 —k, j)] . Also, the elements in the array A that do not conceptually correspond to the
elements in the banded matrix (the top left k& x k triangle) are not referenced.

Param. Mem-| In/out Meaning
ory
han- in- Handle to the cuBLAS library context.
dle put
uplo in- Indicates if matrix A lower or upper part is stored, the other part is not refer-
put | enced and is inferred from the stored elements.
trang in- | Operation op(A) that is non- or (conj.) transpose.
put
diag in- Indicates if the elements on the main diagonal of matrix A are unity and should
put | not be accessed.
n in- Number of rows and columns of matrix A.
put
k in- Number of sub- and super-diagonals of matrix .
put
A de- in- | <type> array of dimension 1da x n,with 1da >= k + 1.
vice put
lda in- Leading dimension of two-dimensional array used to store matrix A.
put
X de- infout <type> vector with n elements.
vice
incx in- Stride between consecutive elements of x.
put

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning
CUBLAS_STATUS_SUCCESS The operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized

CUBLAS_STATUS_INVALID_VALUE
Ifn < Bork < 0,o0r

if incx == 0, or

if trans is not one of CUBLAS_OP_N,
CUBLAS_OP_T and CUBLAS_OP_C, or

if uplo is not one of CUBLAS_FILL_MODE_
LOWER and CUBLAS_FILL_MODE_UPPER,or
if diag is not one of CUBLAS_DIAG_UNIT
and CUBLAS_DIAG_NON_UNIT, or

if lda < (1 + k)

CUBLAS_STATUS_ALLOC_FAILED The allocation of internal scratch memory failed
CUBLAS_STATUS_EXECUTION_FAILED The function failed to launch on the GPU

For references please refer to NETLIB documentation:

3 3 3

2.6. cuBLAS Level-2 Function Reference 65

http://www.netlib.org/blas/stbmv.f
http://www.netlib.org/blas/dtbmv.f
http://www.netlib.org/blas/ctbmv.f
http://www.netlib.org/blas/ztbmv.f

cuBLAS, Release 12.9

cublasStatus_t cublasStbsv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, int k, const float *A, int lda,
float *x, int incx)

cublasStatus_t cublasDtbsv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, int k, const double *A, int 1lda,
double *x, int incx)

cublasStatus_t cublasCtbsv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, int k, const cuComplex *A, int 1lda,
cuComplex *x, int incx)

cublasStatus_t cublasZtbsv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, int k, const cuDoubleComplex *A, int lda,
cuDoubleComplex *x, int incx)

This function supports the

This function solves the triangular banded linear system with a single right-hand-side
op(A)x=Db

where A is a triangular banded matrix, and x and b are vectors. Also, for matrix A

A if trans == CUBLAS_OP_N
op(A) = ¢ AT if trans == CUBLAS_OP_T
AH if trans == CUBLAS_OP_C

The solution x overwrites the right-hand-sides b on exit.
No test for singularity or near-singularity is included in this function.

If uplo == CUBLAS_FILL_MODE_LOWER then the triangular banded matrix A is stored column by
column, with the main diagonal of the matrix stored in row 1, the first subdiagonal in row 2 (starting at
first position), the second subdiagonal in row 3 (starting at first position), etc. So that in general, the
element A(i, j) is stored in the memory location A(1+i-j,j) forj =1,...,nandi € [j, min(m,j + k)]
. Also, the elements in the array A that do not conceptually correspond to the elements in the banded
matrix (the bottom right & x k triangle) are not referenced.

If uplo == CUBLAS_FILL_MODE_UPPER then the triangular banded matrix A is stored column by
column, with the main diagonal of the matrix stored in row k + 1, the first superdiagonal in row k
(starting at second position), the second superdiagonal in row k-1 (starting at third position), etc. So
that in general, the element A(i, j) is stored in the memory location A(1+k+i-j,j) forj =1,...,n
andi € [max(1,5 —k,j)] . Also, the elements in the array A that do not conceptually correspond to the
elements in the banded matrix (the top left k x k triangle) are not referenced.

66 Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

Param. Mem-| In/oult Meaning
ory
han- in- Handle to the cuBLAS library context.
dle put
uplo in- Indicates if matrix A lower or upper part is stored, the other part is not refer-
put | enced and is inferred from the stored elements.
trans in- Operation op(A) that is non- or (conj.) transpose.
put
diag in- Indicates if the elements on the main diagonal of matrix A are unity and should
put | not be accessed.
n in- Number of rows and columns of matrix A.
put
k in- Number of sub- and super-diagonals of matrix A.
put
A de- in- | <type> array of dimension 1da x n, with 1da >= k+1.
vice put
lda in- Leading dimension of two-dimensional array used to store matrix A.
put
X de- infout <type> vector with n elements.
vice
incx in- Stride between consecutive elements of x.
put

The possible error values returned by this function and their meanings are listed below.

Error Value

Meaning

CUBLAS_STATUS_SUCCESS

The operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED

The library was not initialized

CUBLAS_STATUS_INVALID_VALUE

Ifn < Bork < 0,or

if incx == 0, or

if trans is not one of CUBLAS_OP_N,
CUBLAS_OP_T and CUBLAS_OP_C, or

if uplo is not one of CUBLAS_FILL_MODE_
LOWER and CUBLAS_FILL_MODE_UPPER, or
if diag is not one of CUBLAS_DIAG_UNIT
and CUBLAS_DIAG_NON_UNIT, or

if lda < (1 + k)

CUBLAS_STATUS_EXECUTION_FAILED The function failed to launch on the GPU

For references please refer to NETLIB documentation:

3

’

’

2.6. cuBLAS Level-2 Function Reference 67

http://www.netlib.org/blas/stbsv.f
http://www.netlib.org/blas/dtbsv.f
http://www.netlib.org/blas/ctbsv.f
http://www.netlib.org/blas/ztbsv.f

cuBLAS, Release 12.9

cublasStatus_t cublasStpmv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const float *AP,
float *x, int incx)

cublasStatus_t cublasDtpmv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const double *AP,
double *x, int incx)

cublasStatus_t cublasCtpmv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const cuComplex *AP,
cuComplex *x, int incx)

cublasStatus_t cublasZtpmv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const cuDoubleComplex *AP,
cuDoubleComplex *x, int incx)

This function supports the

This function performs the triangular packed matrix-vector multiplication

x = op(4)x

where A is a triangular matrix stored in packed format, and x is a vector. Also, for matrix A

A if trans == CUBLAS_OP_N
op(A) = ¢ AT if trans == CUBLAS_OP_T
AH if trans == CUBLAS_OP_C

If uplo == CUBLAS_FILL_MODE_LOWER then the elements in the lower triangular part of the tri-
angular matrix A are packed together column by column without gaps, so that the element A(i, j) is
stored in the memory location AP[i+((2*n-j+1)*j)/2] forj = 1,...,nand i > j. Consequently,

the packed format requires only @ elements for storage.

If uplo == CUBLAS_FILL_MODE_UPPER then the elements in the upper triangular part of the triangu-
lar matrix A are packed together column by column without gaps, so that the element A(i, j) is stored
in the memory location AP[i+(j*(j+1))/2] for A(i,j) and i < j . Consequently, the packed format
requires only w elements for storage.

68 Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

Param. Mem-| In/oult Meaning
ory
han- in- Handle to the cuBLAS library context.
dle put
uplo in- Indicates if matrix A lower or upper part is stored, the other part is not refer-
put | enced and is inferred from the stored elements.
trans in- Operation op(A) that is non- or (conj.) transpose.
put
diag in- Indicates if the elements on the main diagonal of matrix A are unity and should
put | not be accessed.
n in- Number of rows and columns of matrix A.
put
AP de- in- <type> array with A stored in packed format.
vice put
X de- infout <type> vector with n elements.
vice
incx in- Stride between consecutive elements of x.
put

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning
CUBLAS_STATUS_SUCCESS The operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized
CUBLAS_STATUS_INVALID_VALUE

Ifn < 0, o0r

if incx == 0, or

if trans is not one of CUBLAS_OP_N,
CUBLAS_OP_T and CUBLAS_OP_C, or

if uplo is not one of CUBLAS_FILL_MODE_
LOWER and CUBLAS_FILL_MODE_UPPER,or
if diag is not one of CUBLAS_DIAG_UNIT
and CUBLAS_DIAG_NON_UNIT

CUBLAS_STATUS_ALLOC_FAILED The allocation of internal scratch memory failed
CUBLAS_STATUS_EXECUTION_FAILED The function failed to launch on the GPU

For references please refer to NETLIB documentation:

cublasStatus_t cublasStpsv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const float *AP,
float *x, int incx)
cublasStatus_t cublasDtpsv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const double *AP,
double *x, int incx)
(continues on next page)

2.6. cuBLAS Level-2 Function Reference 69

http://www.netlib.org/blas/stpmv.f
http://www.netlib.org/blas/dtpmv.f
http://www.netlib.org/blas/ctpmv.f
http://www.netlib.org/blas/ztpmv.f

cuBLAS, Release 12.9

(continued from previous page)

cublasStatus_t cublasCtpsv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const cuComplex *AP,
cuComplex *x, int incx)

cublasStatus_t cublasZtpsv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const cuDoubleComplex *AP,
cuDoubleComplex *x, int incx)

This function supports the

This function solves the packed triangular linear system with a single right-hand-side

op(A)x=Db

where A is a triangular matrix stored in packed format, and x and b are vectors. Also, for matrix A

A if trans == CUBLAS_OP_N
op(A) = { AT if trans == CUBLAS_OP_T
AH if trans == CUBLAS_OP_C

The solution x overwrites the right-hand-sides b on exit.
No test for singularity or near-singularity is included in this function.

If uplo == CUBLAS_FILL_MODE_LOWER then the elements in the lower triangular part of the tri-
angular matrix A are packed together column by column without gaps, so that the element A(i, j) is
stored in the memory location AP[i+((2*n-j+1)*j)/2] for j = 1,...,nand i > j . Consequently,

the packed format requires only w elements for storage.

If uplo == CUBLAS_FILL_MODE_UPPER then the elementsinthe upper triangular part of the triangu-
lar matrix A are packed together column by column without gaps, so that the element A(i, j) is stored
in the memory location AP[i+(j*(j+1))/2] forj = 1,...,nand i < j . Consequently, the packed

format requires only % elements for storage.

Param. Mem-| In/oult Meaning
ory
han- in- Handle to the cuBLAS library context.
dle put
uplo in- Indicates if matrix A lower or upper part is stored, the other part is not refer-
put | enced and is inferred from the stored elements.
trang in- | Operation op(A) that is non- or (conj.) transpose.
put
diag in- Indicates if the elements on the main diagonal of matrix are unity and should
put | not be accessed.
n in- Number of rows and columns of matrix A.
put
AP de- in- <type> array with A stored in packed format.
vice put
X de- infout <type> vector with n elements.
vice
incx in- Stride between consecutive elements of x.
put

The possible error values returned by this function and their meanings are listed below.

70 Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

Error Value Meaning
CUBLAS_STATUS_SUCCESS The operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized
CUBLAS_STATUS_INVALID_VALUE

Ifn < 0, o0r

if incx == 0, or

if trans is not one of CUBLAS_OP_N,
CUBLAS_OP_T and CUBLAS_OP_C, or

if uplo is not one of CUBLAS_FILL_MODE_
LOWER and CUBLAS_FILL_MODE_UPPER, or
if diag is not one of CUBLAS_DIAG_UNIT
and CUBLAS_DIAG_NON_UNIT

CUBLAS_STATUS_EXECUTION_FAILED The function failed to launch on the GPU

For references please refer to NETLIB documentation:

’) 3

cublasStatus_t cublasStrmv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const float *A, int lda,
float *x, int incx)

cublasStatus_t cublasDtrmv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const double *A, int 1lda,
double *x, int incx)

cublasStatus_t cublasCtrmv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const cuComplex *A, int 1lda,
cuComplex *x, int incx)

cublasStatus_t cublasZtrmv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const cuDoubleComplex *A, int lda,
cuDoubleComplex *x, int incx)

This function supports the
This function performs the triangular matrix-vector multiplication
x = op(A)x

where A is a triangular matrix stored in lower or upper mode with or without the main diagonal, and x
is a vector. Also, for matrix A

A if trans == CUBLAS_OP_N
op(A) = ¢ AT if trans == CUBLAS_OP_T
A" if trans == CUBLAS_OP_C

2.6. cuBLAS Level-2 Function Reference 71

http://www.netlib.org/blas/stpsv.f
http://www.netlib.org/blas/dtpsv.f
http://www.netlib.org/blas/ctpsv.f
http://www.netlib.org/blas/ztpsv.f

cuBLAS, Release 12.9

Param. Mem-| In/oult Meaning
ory
han- in- Handle to the cuBLAS library context.
dle put
uplo in- Indicates if matrix A lower or upper part is stored, the other part is not refer-
put | enced and is inferred from the stored elements.
trans in- Operation op(A) that is non- or (conj.) transpose.
put
diag in- Indicates if the elements on the main diagonal of matrix A are unity and should
put | not be accessed.
n in- Number of rows and columns of matrix A.
put
A de- in- | <type> array of dimensions 1da x n,with 1da >= max(1, n).
vice put
lda in- Leading dimension of two-dimensional array used to store matrix A.
put
X de- infout <type> vector with n elements.
vice
incx in- Stride between consecutive elements of x.
put

The possible error values returned by this function and their meanings are listed below.

Error Value

Meaning

CUBLAS_STATUS_SUCCESS

The operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED

The library was not initialized

CUBLAS_STATUS_INVALID_VALUE

Ifn < 0,o0r

if incx == 0, or

if trans is not one of CUBLAS_OP_N,
CUBLAS_OP_T and CUBLAS_OP_C, or

if uplo is not one of CUBLAS_FILL_MODE_
LOWER and CUBLAS_FILL_MODE_UPPER,or
if diag is not one of CUBLAS_DIAG_UNIT
and CUBLAS_DIAG_NON_UNIT, or

if lda < max(1, n)

CUBLAS_STATUS_ALLOC_FAILED

The allocation of internal scratch memory failed

CUBLAS_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU

For references please refer to NETLIB documentation:

3 3)

72

Chapter 2. Using the cuBLAS API

http://www.netlib.org/blas/strmv.f
http://www.netlib.org/blas/dtrmv.f
http://www.netlib.org/blas/ctrmv.f
http://www.netlib.org/blas/ztrmv.f

cuBLAS, Release 12.9

cublasStatus_t cublasStrsv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const float *A, int 1lda,
float *x, int incx)

cublasStatus_t cublasDtrsv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const double *A, int 1lda,
double *x, int incx)

cublasStatus_t cublasCtrsv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const cuComplex *A, int 1lda,
cuComplex *x, int incx)

cublasStatus_t cublasZtrsv(cublasHandle_t handle, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int n, const cuDoubleComplex *A, int lda,
cuDoubleComplex *x, int incx)

This function supports the
This function solves the triangular linear system with a single right-hand-side
op(A)x=Db

where A is a triangular matrix stored in lower or upper mode with or without the main diagonal, and x
and b are vectors. Also, for matrix A

A if transa == CUBLAS_OP_N
op(A) =< AT if transa == CUBLAS_OP_T
AH if transa == CUBLAS_OP_C

The solution x overwrites the right-hand-sides b on exit.

No test for singularity or near-singularity is included in this function.

Parar. Mem-| In/out Meaning
ory
han- in- Handle to the cuBLAS library context.
dle put
uplo in- Indicates if matrix A lower or upper part is stored, the other part is not refer-
put | enced and is inferred from the stored elements.
trans in- | Operation op(A) that is non- or (conj.) transpose.
put
diag in- Indicates if the elements on the main diagonal of matrix A are unity and should
put | not be accessed.
n in- Number of rows and columns of matrix A.
put
A de- in- | <type> array of dimension 1da x n, with 1da >= max(1, n).
vice put
lda in- Leading dimension of two-dimensional array used to store matrix A.
put
X de- infout <type> vector with n elements.
vice
incx in- Stride between consecutive elements of x.
put

2.6. cuBLAS Level-2 Function Reference 73

cuBLAS, Release 12.9

The possible error values returned by this function and their meanings are listed below.

Error Value

Meaning

CUBLAS_STATUS_SUCCESS

The operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED

The library was not initialized

CUBLAS_STATUS_INVALID_VALUE

Ifn < 06, o0r

if incx == 0, or

if trans is not one of CUBLAS_OP_N,
CUBLAS_OP_T and CUBLAS_OP_C, or

if uplo is not one of CUBLAS_FILL_MODE_
LOWER and CUBLAS_FILL_MODE_UPPER, or
if diag is not one of CUBLAS_DIAG_UNIT
and CUBLAS_DIAG_NON_UNIT, or

if lda < max(1, n)

CUBLAS_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU

For references please refer to NETLIB documentation:

3 3 3

cublasStatus_t cublasChemv(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const cuComplex *alpha,

const cuComplex
const cuComplex
const cuComplex
cuComplex

*A, int 1lda,
*x, int incx,
*beta,

*y, int incy)

cublasStatus_t cublasZhemv(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const cuDoubleComplex *alpha,
const cuDoubleComplex *A, int lda,
const cuDoubleComplex *x, int incx,
const cuDoubleComplex *beta,
cuDoubleComplex *y, int incy)

This function supports the

This function performs the Hermitian matrix-vector multiplication

y = aAx + By

where A is a n x n Hermitian matrix stored in lower or upper mode, x and y are vectors, and a and

are scalars.

This function has an alternate faster implementation using atomics that can be enabled with

Please see the section on the for more details about the usage of atomics

74

Chapter 2. Using the cuBLAS API

http://www.netlib.org/blas/strsv.f
http://www.netlib.org/blas/dtrsv.f
http://www.netlib.org/blas/ctrsv.f
http://www.netlib.org/blas/ztrsv.f

cuBLAS, Release 12.9

Paranm.Mem- In/out Meaning
ory

han- in- Handle to the cuBLAS library context.

dle put

uplo in- Indicates if matrix A lower or upper part is stored, the other Hermitian part
put | is not referenced and is inferred from the stored elements.

n in- Number of rows and columns of matrix A.
put

al- | host or | in- <type> scalar used for multiplication.

pha | device put

A device in- | <type> array of dimension 1da x n,with 1da >= max(1, n). The imagi-
put | nary parts of the diagonal elements are assumed to be zero.

lda in- Leading dimension of two-dimensional array used to store matrix A.
put

X device in- <type> vector with n elements.
put

incx in- Stride between consecutive elements of x.
put

beta| host or | in- <type> scalar used for multiplication. If beta == 0 then y does not have

device put | to be a valid input.

y device infout <type> vector with n elements.

incy in- | Stride between consecutive elements of y.
put

The possible error values returned by this function and their meanings are listed below.

Error

Value

Meaning

CUBLAS_STATUS_SUCCESS

The operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED

The library was not initialized

CUBLAS_STATUS_INVALID_VALUE

Ifn < 0, o0r

if incx == B@orincy == 0,or

if uplo!=CUBLAS_FILL_MODE_LOWER and
uplo !'= CUBLAS_FILL_MODE_UPPER, or
if lda < n

CUBLAS_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU

For references please refer to NETLIB documentation:

cublasStatus_t cublasChbmv(cublasHandle_t handle, cublasFillMode_t uplo,

int n, int k, const cuComplex
const cuComplex
const cuComplex
const cuComplex
cuComplex

*alpha,
*A, int lda,
*x, int incx,
*beta,

*y, int incy)

cublasStatus_t cublasZhbmv(cublasHandle_t handle, cublasFillMode_t uplo,

(continues on next page)

2.6. cuBLAS Level-2 Function Reference

75

http://www.netlib.org/blas/chemv.f
http://www.netlib.org/blas/zhemv.f

cuBLAS, Release 12.9

(continued from previous page)
int n, int k, const cuDoubleComplex *alpha,
const cuDoubleComplex *A, int lda,
const cuDoubleComplex *x, int incx,
const cuDoubleComplex *beta,
cuDoubleComplex *y, int incy)

This function supports the
This function performs the Hermitian banded matrix-vector multiplication
y = aAx + By

where A is anxn Hermitian banded matrix with k£ subdiagonals and superdiagonals, xand y are vectors,
and « and 3 are scalars.

If uplo == CUBLAS_FILL_MODE_LOWER then the Hermitian banded matrix A is stored column by
column, with the main diagonal of the matrix stored in row 1, the first subdiagonal in row 2 (starting at
first position), the second subdiagonal in row 3 (starting at first position), etc. So that in general, the
element A(i, j) is stored in the memory location A(1+i-j,j) forj =1,...,nandi € [j, min(m,j + k)]
. Also, the elements in the array A that do not conceptually correspond to the elements in the banded
matrix (the bottom right k x k triangle) are not referenced.

If uplo == CUBLAS_FILL_MODE_UPPER then the Hermitian banded matrix A is stored column by
column, with the main diagonal of the matrix stored in row k + 1, the first superdiagonal in row k
(starting at second position), the second superdiagonal in row k-1 (starting at third position), etc. So
that in general, the element A(i,) is stored in the memory location A(1+k+i-j,j) forj =1,...,n
andi € [max(1,5 — k), j] . Also, the elements in the array A that do not conceptually correspond to the
elements in the banded matrix (the top left k x k triangle) are not referenced.

Param.Mem- Infout Meaning
ory

han- in- Handle to the cuBLAS library context.

dle put

uplo in- Indicates if matrix A lower or upper part is stored, the other Hermitian part
put | is not referenced and is inferred from the stored elements.

n in- Number of rows and columns of matrix A.
put

k in- | Number of sub- and super-diagonals of matrix A.
put

al- | host or | in- <type> scalar used for multiplication.

pha | device put

A device in- | <type> array of dimensions 1da x n, with 1da >= k + 1. The imaginary
put | parts of the diagonal elements are assumed to be zero.

lda in- Leading dimension of two-dimensional array used to store matrix A.
put

X device in- <type> vector with n elements.
put

incx in- | Stride between consecutive elements of x.
put

beta| host or | in- <type> scalar used for multiplication. If beta == 0 then does not have to

device put | be avalid input.

y device infout <type> vector with n elements.

incy in- Stride between consecutive elements of y.
put

76 Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning
CUBLAS_STATUS_SUCCESS The operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized

CUBLAS_STATUS_INVALID_VALUE
Ifn < Bork < ©,o0r

if incx == @orincy == 0,or

if uplo is not one of CUBLAS_FILL_MODE_
LOWER and CUBLAS_FILL_MODE_UPPER,or
if lda < (1 + k), or

if alpha or beta are NULL

CUBLAS_STATUS_EXECUTION_FAILED The function failed to launch on the GPU

For references please refer to NETLIB documentation:

’

cublasStatus_t cublasChpmv(cublasHandle_t handle, cublasFillMode_t uplo,

int n, const cuComplex *alpha,
const cuComplex *AP,

const cuComplex *x, int incx,
const cuComplex *beta,
cuComplex *y, int incy)

cublasStatus_t cublasZhpmv(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const cuDoubleComplex *alpha,
const cuDoubleComplex *AP,
const cuDoubleComplex *x, int incx,
const cuDoubleComplex *beta,
cuDoubleComplex *y, int incy)

This function supports the
This function performs the Hermitian packed matrix-vector multiplication
y = aAx + By

where A is a n x n Hermitian matrix stored in packed format, x and y are vectors, and « and § are
scalars.

If uplo == CUBLAS_FILL_MODE_LOWER then the elements in the lower triangular part of the Her-
mitian matrix A are packed together column by column without gaps, so that the element A(i, j) is
stored in the memory location AP[i+((2*n-j+1)*j)/2] forj = 1,...,nand i > j . Consequently,

the packed format requires only "(%“) elements for storage.

If uplo == CUBLAS_FILL_MODE_UPPER then the elements in the upper triangular part of the Her-
mitian matrix A are packed together column by column without gaps, so that the element A(3, j) is
stored in the memory location AP[i+(j*(j+1))/2] forj = 1,...,nand i < j . Consequently, the
packed format requires only % elements for storage.

2.6. cuBLAS Level-2 Function Reference 77

http://www.netlib.org/blas/chbmv.f
http://www.netlib.org/blas/zhbmv.f

cuBLAS, Release 12.9

Paranm.Mem- In/out Meaning
ory

han- in- Handle to the cuBLAS library context.

dle put

uplo in- Indicates if matrix A lower or upper part is stored, the other Hermitian part
put | is not referenced and is inferred from the stored elements.

n in- Number of rows and columns of matrix A.
put

al- | host or | in- <type> scalar used for multiplication.

pha | device put
AP device in- <type> array with A stored in packed format. The imaginary parts of the
put | diagonal elements are assumed to be zero.

X device in- <type> vector with n elements.
put
incx in- Stride between consecutive elements of x.
put
beta| host or | in- <type> scalar used for multiplication. If beta == 0 then y does not have
device put | to be a valid input.
y device infout <type> vector with n elements.
incy in- Stride between consecutive elements of y.
put

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning
CUBLAS_STATUS_SUCCESS The operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized
CUBLAS_STATUS_INVALID_VALUE

Ifn < 06,o0r

if incx == @or incy == 0,or

if uplo!=CUBLAS_FILL_MODE_LOWER and
uplo != CUBLAS_FILL_MODE_UPPER, or
if alpha or beta are NULL

CUBLAS_STATUS_EXECUTION_FAILED The function failed to launch on the GPU

For references please refer to NETLIB documentation:

3

cublasStatus_t cublasCher(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const float *alpha,
const cuComplex *x, int incx,
cuComplex *A, int lda)

cublasStatus_t cublasZher(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const double *alpha,
const cuDoubleComplex *x, int incx,
cuDoubleComplex *A, int lda)

This function supports the

78 Chapter 2. Using the cuBLAS API

http://www.netlib.org/blas/chpmv.f
http://www.netlib.org/blas/zhpmv.f

cuBLAS, Release 12.9

This function performs the Hermitian rank-1 update
A=axxf + A

where A is a n x n Hermitian matrix stored in column-major format, x is a vector, and « is a scalar.

Param.Mem- In/out Meaning
ory
han- in- Handle to the cuBLAS library context.
dle put
uplo in- Indicates if matrix A lower or upper part is stored, the other Hermitian part
put | is not referenced and is inferred from the stored elements.
n in- Number of rows and columns of matrix A.
put
al- | host or | in- <type> scalar used for multiplication.
pha | device | put
X device in- <type> vector with n elements.
put
incx in- Stride between consecutive elements of x.
put
A device | infout <type> array of dimensions 1da x n, with 1da >= max(1, n). Theimagi-
nary parts of the diagonal elements are assumed and set to zero.
lda in- Leading dimension of two-dimensional array used to store matrix A.
put

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning
CUBLAS_STATUS_SUCCESS The operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized
CUBLAS_STATUS_INVALID_VALUE

Ifn < 0, or

if incx == 0, or

if uplo is not one of CUBLAS_FILL_MODE_
LOWER and CUBLAS_FILL_MODE_UPPER, or
if lda < max(1, n),or

if alphais NULL

CUBLAS_STATUS_EXECUTION_FAILED The function failed to launch on the GPU

For references please refer to NETLIB documentation:

2.6. cuBLAS Level-2 Function Reference 79

http://www.netlib.org/blas/cher.f
http://www.netlib.org/blas/zher.f

cuBLAS, Release 12.9

cublasStatus_t cublasCher2(cublasHandle_t handle, cublasFillMode_t uplo,

int n, const cuComplex *alpha,
const cuComplex *x, int incx,
const cuComplex *y, int incy,
cuComplex *A, int lda)

cublasStatus_t cublasZher2(cublasHandle_t handle, cublasFillMode_t uplo,

int n, const cuDoubleComplex *alpha,
const cuDoubleComplex *x, int incx,
const cuDoubleComplex *y, int incy,
cuDoubleComplex *A, int 1lda)

This function supports the

This function performs the Hermitian rank-2 update

A = axy + ayx? + A

where A is a n x n Hermitian matrix stored in column-major format, x and y are vectors, and «a is a

scalar.
Param.Mem- In/out Meaning
ory

han- in- Handle to the cuBLAS library context.

dle put

uplo in- Indicates if matrix A lower or upper part is stored, the other Hermitian part
put | is not referenced and is inferred from the stored elements.

n in- Number of rows and columns of matrix A.
put

al- | host or | in- <type> scalar used for multiplication.

pha | device put

X device in- <type> vector with n elements.
put

incx in- | Stride between consecutive elements of x.
put

y device in- <type> vector with n elements.
put

incy in- | Stride between consecutive elements of y.
put

A device infout <type> array of dimension 1da x nwith 1da >= max(1, n). Theimaginary

parts of the diagonal elements are assumed and set to zero.

lda in- Leading dimension of two-dimensional array used to store matrix A.

put

The possible error values returned by this function and their meanings are listed below.

80

Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

Error Value Meaning
CUBLAS_STATUS_SUCCESS The operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized
CUBLAS_STATUS_INVALID_VALUE

Ifn < 0, o0r

if incx == 0, or

if uplois not one of CUBLAS_FILL_MODE_
LOWER and CUBLAS_FILL_MODE_UPPER,or
if lda < max(1, n),or

if alphais NULL

CUBLAS_STATUS_EXECUTION_FAILED The function failed to launch on the GPU

For references please refer to NETLIB documentation:

cublasStatus_t cublasChpr(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const float *alpha,
const cuComplex *x, int incx,
cuComplex *AP)

cublasStatus_t cublasZhpr(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const double *alpha,
const cuDoubleComplex *x, int incx,
cubDoubleComplex *AP)

This function supports the

This function performs the packed Hermitian rank-1 update

A=axxf + A

where A is a n x n Hermitian matrix stored in packed format, x is a vector, and « is a scalar.

If uplo == CUBLAS_FILL_MODE_LOWER then the elements in the lower triangular part of the Her-
mitian matrix A are packed together column by column without gaps, so that the element A(i, j) is
stored in the memory location AP[i+((2*n-j+1)*j)/2] forj = 1,...,nand ¢ > j . Consequently,
the packed format requires only % elements for storage.

If uplo == CUBLAS_FILL_MODE_UPPER then the elements in the upper triangular part of the Her-
mitian matrix A are packed together column by column without gaps, so that the element A(i, j) is
stored in the memory location AP[i+(j*(j+1))/2] for j = 1,...,nand i < j. Consequently, the

packed format requires only % elements for storage.

2.6. cuBLAS Level-2 Function Reference 81

http://www.netlib.org/blas/cher2.f
http://www.netlib.org/blas/zher2.f

cuBLAS, Release 12.9

Paranm.Mem- In/out Meaning
ory

han- in- Handle to the cuBLAS library context.

dle put

uplo in- Indicates if matrix A lower or upper part is stored, the other Hermitian part
put | is not referenced and is inferred from the stored elements.

n in- Number of rows and columns of matrix A.
put

al- | host or | in- <type> scalar used for multiplication.

pha | device put

X device in- <type> vector with n elements.
put

incx in- | Stride between consecutive elements of x.
put

AP device infout <type> array with A stored in packed format. The imaginary parts of the

diagonal elements are assumed and set to zero.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning
CUBLAS_STATUS_SUCCESS The operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized
CUBLAS_STATUS_INVALID_VALUE

Ifn < @,or

if incx == 0, or

if uplo is not one of CUBLAS_FILL_MODE_
LOWER and CUBLAS_FILL_MODE_UPPER,or
if alphais NULL

CUBLAS_STATUS_EXECUTION_FAILED The function failed to launch on the GPU

For references please refer to NETLIB documentation:

cublasStatus_t cublasChpr2(cublasHandle_t handle, cublasFillMode_t uplo,

int n, const cuComplex *alpha,
const cuComplex *x, int incx,
const cuComplex *y, int incy,
cuComplex *AP)

cublasStatus_t cublasZhpr2(cublasHandle_t handle, cublasFillMode_t uplo,
int n, const cuDoubleComplex *alpha,
const cuDoubleComplex *x, int incx,
const cuDoubleComplex *y, int incy,
cuDoubleComplex *AP)

This function supports the
This function performs the packed Hermitian rank-2 update

A= axy? +ayxf + A

82 Chapter 2. Using the cuBLAS API

http://www.netlib.org/blas/chpr.f
http://www.netlib.org/blas/zhpr.f

cuBLAS, Release 12.9

where A is an x n Hermitian matrix stored in packed format, x and y are vectors, and « is a scalar.

If uplo == CUBLAS_FILL_MODE_LOWER then the elements in the lower triangular part of the Her-
mitian matrix A are packed together column by column without gaps, so that the element A(i, j) is
stored in the memory location AP[i+((2*n-j+1)*j)/2] forj = 1,...,nand i > j . Consequently,
the packed format requires only W elements for storage.

If uplo == CUBLAS_FILL_MODE_UPPER then the elements in the upper triangular part of the Her-
mitian matrix A are packed together column by column without gaps, so that the element A(i, j) is
stored in the memory location AP[i+(j*(j+1))/2] forj = 1,...,nand i < j. Consequently, the

packed format requires only w elements for storage.

Paranm.Mem- In/out Meaning
ory
han- in- Handle to the cuBLAS library context.
dle put
uplo in- Indicates if matrix A lower or upper part is stored, the other Hermitian part
put | is not referenced and is inferred from the stored elements.
n in- Number of rows and columns of matrix A.
put
al- | host or | in- <type> scalar used for multiplication.
pha | device put
X device in- <type> vector with n elements.
put
incx in- Stride between consecutive elements of x.
put
y device in- <type> vector with n elements.
put
incy in- Stride between consecutive elements of y.
put
AP device infout <type> array with A stored in packed format. The imaginary parts of the
diagonal elements are assumed and set to zero.

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning
CUBLAS_STATUS_SUCCESS The operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized
CUBLAS_STATUS_INVALID_VALUE

Ifn < 0, o0r

if incx == 0, or

if uplois not one of CUBLAS_FILL_MODE_
LOWER and CUBLAS_FILL_MODE_UPPER,or
if alphais NULL

CUBLAS_STATUS_EXECUTION_FAILED The function failed to launch on the GPU

For references please refer to NETLIB documentation:

chprz, zhpr2

2.6. cuBLAS Level-2 Function Reference 83

cuBLAS, Release 12.9

2.6.24 cublas<t>gemvBatched()

cublasStatus_t cublasSgemvBatched(cublasHandle_t handle,

int m, int n,

cublasOperation_t trans,

const float *alpha,

const float *const Aarray[], int lda,
const float *const xarray[], int incx,
const float *beta,

float *const yarray[], int incy,

int batchCount)

cublasStatus_t cublasDgemvBatched(cublasHandle_t handle,

int m, int n,

cublasOperation_t trans,

const double *alpha,

const double *const Aarray[], int lda,
const double *const xarray[], int incx,
const double *beta,

double *const yarray[], int incy,

int batchCount)

cublasStatus_t cublasCgemvBatched(cublasHandle_t handle,

int m, int n,

cublasOperation_t trans,

const cuComplex *alpha,

const cuComplex *const Aarray[], int lda,
const cuComplex *const xarray[], int incx,
const cuComplex *beta,

cuComplex *const yarray[], int incy,

int batchCount)

cublasStatus_t cublasZgemvBatched(cublasHandle_t handle,

int m, int n,

const cuDoubleComplex
const cuDoubleComplex
const cuDoubleComplex
const cuDoubleComplex

cublasOperation_t trans,

*alpha,

*const Aarray[], int lda,
*const xarray[], int incx,
*beta,

cuDoubleComplex *const yarray[], int incy,

int batchCount)

#if defined(__cplusplus)

cublasStatus_t cublasHSHgemvBatched(cublasHandle_t handle, cublasOperation_t trans,

int m, int n,
const float
const __half
const __half
const float
__half

int batchCount)

*alpha,

*const Aarray[], int lda,
*const xarray[], int incx,
*beta,
*const yarray[], int incy,

cublasStatus_t cublasHSSgemvBatched(cublasHandle_t handle, cublasOperation_t trans,

int m, int n,
const float
const __half
const __half
const float
float

int batchCount)

*alpha,

*const Aarray[], int 1lda,
*const xarray[], int incx,
*beta,
*const yarray[], int incy,

cublasStatus_t cublasTSTgemvBatched(cublasHandle_t handle, cublasOperation_t trans,

int m, int n,
const float
const __nv_bfloat16

*alpha,
*const Aarray[], int lda,

const __nv_bfloat16 *const xarray[], int incx,
(continues on next page)

84 Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

(continued from previous page)

const float *beta,
__nv_bfloat16 *const yarray[], int incy,
int batchCount)

cublasStatus_t cublasTSSgemvBatched(cublasHandle_t handle, cublasOperation_t trans,
int m, int n,

const float *alpha,

const __nv_bfloat16 *const Aarray[], int 1lda,
const __nv_bfloat16 *const xarray[], int incx,
const float *beta,

float *const yarray[], int incy,

int batchCount)
#endif

This function supports the

This function performs the matrix-vector multiplication of a batch of matrices and vectors. The batch
is considered to be “uniform”, i.e. all instances have the same dimensions (m, n), leading dimension
(Ida), increments (incx, incy) and transposition (trans) for their respective A matrix, x and y vectors.
The address of the input matrix and vector, and the output vector of each instance of the batch are
read from arrays of pointers passed to the function by the caller.

y[i] = aop(A[i])x[i] + By[i], fori € [0, batchCount — 1]

where o and f are scalars, and A is an array of pointers to matrice A[i] stored in column-major format
with dimension m x n, and x and y are arrays of pointers to vectors. Also, for matrix A[i],

Ali] if trans == CUBLAS_OP_N
op(Ali]) = { A[i]" if trans == CUBLAS_OP_T
A[i]" if trans == CUBLAS_OP_C

Note: yJi] vectors must not overlap, i.e. the individual gemv operations must be computable indepen-
dently; otherwise, undefined behavior is expected.

On certain problem sizes, it might be advantageous to make multiple calls to in dif-
ferent CUDA streams, rather than use this APL.

2.6. cuBLAS Level-2 Function Reference 85

cuBLAS, Release 12.9

Param.Mem-+ In/out Meaning
ory
han- in- Handle to the cuBLAS library context.
dle put
trans in- | Operation op(A[i]) that is non- or (conj.) transpose.
put
m in- | Number of rows of matrix A[i].
put
n in- Number of columns of matrix A[1].
put
al- | host | in- <type> scalar used for multiplication.
pha | or put
de-
vice
Aar-| de- | in- | Array of pointers to <type> array, with each array of dim. 1da x nwith 1lda >=
ray | vice | put | max(1, m).
All pointers must meet certain alignment criteria. Please see below for details.
1da in- Leading dimension of two-dimensional array used to store each matrix A[i].
put
xar-| de- | in- Array of pointers to <type> array, with each dimension n if trans==CUBLAS_
ray | vice | put | OP_Nand m otherwise.
All pointers must meet certain alignment criteria. Please see below for details.
incx in- Stride of each one-dimensional array x[i].
put
beta| host | in- <type> scalar used for multiplication. If beta == 0, y does not have to be a
or put | valid input.
de-
vice
yarrage- | infout Array of pointers to <type> array. It has dimensions mif trans==CUBLAS_OP_N
vice and n otherwise. Vectors y[i] should not overlap; otherwise, undefined behav-
ior is expected.
All pointers must meet certain alignment criteria. Please see below for details.
incy in- | Stride of each one-dimensional array y[il.
put
batch- in- Number of pointers contained in Aarray, xarray and yarray.
Count put

If math mode enables fast math modes when using

, pointers (not the pointer

arrays) placed in the GPU memory must be properly aligned to avoid misaligned memory access errors.
Ideally all pointers are aligned to at least 18 Bytes. Otherwise it is recommended that they meet the

following rule:

ifk % 4==0then ensure intptr_t(ptr) % 16 == 9,

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS

The operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized

CUBLAS_STATUS_INVALID_VALUE m < @,n < @,or batchCount < 0

CUBLAS_STATUS_EXECUTION_FAILED | The function failed to launch on the GPU

86

Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

2.6.25 cublas<t>gemvStridedBatched()

cublasStatus_t cublasSgemvStridedBatched(cublasHandle_t handle,

cublasStatus_t cublasDgemvStridedBatched(cublasHandle_t handle,

cublasStatus_t cublasCgemvStridedBatched(cublasHandle_t handle,

cublasStatus_t cublasZgemvStridedBatched(cublasHandle_t handle,

cublasOperation_t trans,

int m, int n,

const float *alpha,

const float *A, int lda,
long long int strideA,
const float *x, int incx,
long long int stridex,
const float *beta,

float *y, int incy,
long long int stridey,

int batchCount)

cublasOperation_t trans,

int m, int n,

const double *alpha,

const double *A, int lda,
long long int strideA,
const double *x, int incx,
long long int stridex,
const double *beta,

double *y, int incy,
long long int stridey,

int batchCount)

cublasOperation_t trans,

int m, int n,

const cuComplex *alpha,

const cuComplex *A, int lda,
long long int strideA,
const cuComplex *x, int incx,
long long int stridex,
const cuComplex *beta,
cuComplex *y, int incy,
long long int stridey,

int batchCount)

cublasOperation_t trans,

int m, int n,

const cuDoubleComplex
const cuDoubleComplex
long long int

const cuDoubleComplex
long long int

const cuDoubleComplex
cuDoubleComplex

long long int

int batchCount)

*alpha,

*A, int lda,
strideA,

*x, int incx,
stridex,
*beta,

*y, int incy,
stridey,

cublasStatus_t cublasHSHgemvStridedBatched(cublasHandle_t handle,
cublasOperation_t trans,

int m, int n,

const float *alpha,

const __half *A, int lda,
long long int strideA,
const __half *x, int incx,

(continues on next page)

2.6. cuBLAS Level-2 Function Reference

87

cuBLAS, Release 12.9

(continued from previous page)

long long int stridex,
const float *beta,

__half *y, int incy,
long long int stridey,

int batchCount)
cublasStatus_t cublasHSSgemvStridedBatched(cublasHandle_t handle,
cublasOperation_t trans,

int m, int n,

const float *alpha,

const __half *A, int lda,
long long int strideA,
const __half *x, int incx,
long long int stridex,
const float *beta,

float *y, int incy,
long long int stridey,

int batchCount)
cublasStatus_t cublasTSTgemvStridedBatched(cublasHandle_t handle,
cublasOperation_t trans,

int m, int n,

const float *alpha,

const __nv_bfloat16 *A, int lda,
long long int strideA,
const __nv_bfloat16 *x, int incx,
long long int stridex,
const float *beta,
__nv_bfloat16 *y, int incy,
long long int stridey,

int batchCount)
cublasStatus_t cublasTSSgemvStridedBatched(cublasHandle_t handle,
cublasOperation_t trans,

int m, int n,

const float *alpha,

const __nv_bfloat16 *A, int lda,
long long int strideA,
const __nv_bfloat16 *x, int incx,
long long int stridex,
const float *beta,

float *y, int incy,
long long int stridey,

int batchCount)

This function supports the

This function performs the matrix-vector multiplication of a batch of matrices and vectors. The batch
is considered to be “uniform”, i.e. all instances have the same dimensions (m, n), leading dimension
(Ida), increments (incx, incy) and transposition (trans) for their respective A matrix, x and y vectors.
Input matrix A and vector x, and output vector y for each instance of the batch are located at fixed
offsets in number of elements from their locations in the previous instance. Pointers to A matrix, x
and y vectors for the first instance are passed to the function by the user along with offsets in number
of elements - strideA, stridex and stridey that determine the locations of input matrices and vectors,
and output vectors in future instances

Y + i * stridey = aop(A + i * strideA)(X + i x stridex) + S(Y + i * stridey), fori € [0, batchCount — 1]

where o and 3 are scalars, and A is an array of pointers to matrix stored in column-major format with
dimension A[i] m x n,and x and y are arrays of pointers to vectors. Also, for matrix A[i

88 Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

Ali] if trans == CUBLAS_OP_N
op(Ali]) = { A[i]" if trans == CUBLAS_OP_T
A[i)" if trans == CUBLAS_OP_C

Note: y[i] matrices must not overlap, i.e. the individual gemv operations must be computable inde-
pendently; otherwise, undefined behavior is expected.

On certain problem sizes, it might be advantageous to make multiple calls to cublas<t>gemv() in dif-
ferent CUDA streams, rather than use this API.

Note: In the table below, weuse A[i], x[i], y[i] as notation for A matrix, and x and y vectors in
the ith instance of the batch, implicitly assuming they are respectively offsets in number of elements
strideA, stridex, stridey away from A[i-1], x[i-1], y[i-1]. The unit for the offset is
number of elements and must not be zero .

2.6. cuBLAS Level-2 Function Reference 89

cuBLAS, Release 12.9

Param.Mem-| Infout Meaning
ory
han- in- Handle to the cuBLAS library context.
dle put
trans in- | Operation op(A[i]) that is non- or (conj.) transpose.
put
m in- | Number of rows of matrix A[i].
put
n in- Number of columns of matrix A[1].
put
al- | host | in- <type> scalar used for multiplication.
pha | or put
de-
vice
A de- in- <type>* pointer to the A matrix corresponding to the first instance of the
vice | put | batch, with dimensions 1da x n with 1da >= max(1, m).
1da in- Leading dimension of two-dimensional array used to store each matrix A[i].
put
strideA in- | Value of type long long int that gives the offset in number of elements be-
put | tween A[i] and A[i+1]
X de- in- <type>* pointer to the x vector corresponding to the first instance of the
vice | put | batch, with each dimension n if trans==CUBLAS_OP_N and m otherwise.
incx in- | Stride of each one-dimensional array x[i].
put
stridex in- | Value of type long long int that gives the offset in number of elements be-
put | tween x[i] and x[i+1]
beta| host | in- <type> scalar used for multiplication. If beta == 0, y does not have to be a
or put | valid input.
de-
vice
y de- infout <type>* pointer to the y vector corresponding to the first instance of the
vice batch, with each dimension m if trans==CUBLAS_OP_N and n otherwise. Vec-
tors y[1i] should not overlap; otherwise, undefined behavior is expected.
incy in- | Stride of each one-dimensional array y[i].
put
stridey in- | Value of type long long int that gives the offset in number of elements be-
put | tweeny[i] andy[i+1]
batch- in- Number of GEMVs to perform in the batch.
Count put

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized
CUBLAS_STATUS_INVALID_VALUE m < 0,n < @,orbatchCount < ©
CUBLAS_STATUS_EXECUTION_FAILED | The function failed to launch on the GPU

90 Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

2.7 cuBLAS Level-3 Function Reference

In this chapter we describe the Level-3 Basic Linear Algebra Subprograms (BLAS3) functions that per-
form matrix-matrix operations.

2.7.1 cublas<t>gemm()

cublasStatus_t cublasSgemm(cublasHandle_t handle,
cublasOperation_t transa, cublasOperation_t transb,

int m, int n, int k,

const float *alpha,
const float *A, int lda,
const float *B, int 1db,
const float *beta,

float *C, int ldc)

cublasStatus_t cublasDgemm(cublasHandle_t handle,

cublasOperation_t transa, cublasOperation_t transb,

int m, int n, int Kk,

const double *alpha,
const double *A, int 1lda,
const double *B, int 1db,
const double *beta,
double *C, int 1ldc)

cublasStatus_t cublasCgemm(cublasHandle_t handle,

cublasOperation_t transa, cublasOperation_t transb,

int m, int n, int Kk,

const cuComplex *alpha,
const cuComplex *A, int lda,
const cuComplex *B, int 1db,
const cuComplex *beta,
cuComplex *C, int ldc)

cublasStatus_t cublasZgemm(cublasHandle_t handle,

cublasOperation_t transa, cublasOperation_t transb,

int m, int n,

int k,

const
const
const
const

cuDoubleComplex
cuDoubleComplex
cuDoubleComplex
cuDoubleComplex

*alpha,
*A, int 1lda,
*B, int 1ldb,
*beta,

cuDoubleComplex *C, int 1ldc)
cublasHgemm(cublasHandle_t handle,
cublasOperation_t transa, cublasOperation_t transb,

cublasStatus_t

int m, int n, int Kk,
const __half *alpha,
const __half *A, int 1lda,
const __half *B, int 1ldb,
const half *beta,

__half *C, int 1ldc)

This function supports the 64-bit Integer Interface.
This function performs the matrix-matrix multiplication
C = aop(A)op(B) + 8C

where aand § are scalars,and A, B and C are matrices stored in column-major format with dimensions
op(4) m x k,op(B) k x nand C m x n, respectively. Also, for matrix A

2.7. cuBLAS Level-3 Function Reference 91

cuBLAS, Release 12.9

AT if transa == CUBLAS_OP_T

A if transa == CUBLAS_OP_N
op(A) =
AH if transa == CUBLAS_OP_C

and op(B) is defined similarly for matrix B .

Param.Mem- In/oult Meaning
ory

han- in- Handle to the cuBLAS library context.

dle put

transa in- | Operation op(A) that is non- or (conj.) transpose.
put

transb in- Operation op(B) that is non- or (conj.) transpose.
put

m in- | Number of rows of matrix op(A) and C.
put

n in- | Number of columns of matrix op(B) and C.
put

k in- | Number of columns of op(A) and rows of op(B).
put

al- | host or | in- <type> scalar used for multiplication.

pha | device | put

A device | in- | <type> array of dimensions 1da x k with 1da >= max(1, m) if transa
put | == CUBLAS_OP_Nand lda x mwith 1da >= max(1, k) otherwise.

lda in- | Leading dimension of two-dimensional array used to store the matrix A.
put

B device | in- | <type> array of dimension 1db x nwith 1db >= max(1, k) iftransb ==
put | CUBLAS_OP_Nand 1db x k with 1db>=max (1, n) otherwise.

1db in- Leading dimension of two-dimensional array used to store matrix B.
put

beta| host or | in- <type> scalar used for multiplication. If beta == 0, C does not have to be

device | put | avalidinput.

C device | infout <type> array of dimensions 1dc x nwith 1dc >= max(1, m).

ldc in- Leading dimension of a two-dimensional array used to store the matrix C.
put

The possible error values returned by this function and their meanings are listed below.

92 Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

Error Value

Meaning

CUBLAS_STATUS_SUCCESS

The operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED

The library was not initialized

CUBLAS_STATUS_INVALID_VALUE

Ifm < Born < Bork < 0,o0r

if transa and transb are not one of
CUBLAS_OP_N, CUBLAS_OP_C, CUBLAS_
OP_T, or

if lda < max(1, m) when transa ==
CUBLAS_OP_Nand lda < max(1, k) oth-
erwise, or

if 1db < max(1, k) when transb ==
CUBLAS_OP_Nand 1db < max(1, n) oth-
erwise, or

if 1dc < max(1, m),or

if alpha or beta are NULL, or

if Cis NULL when beta is not zero

CUBLAS_STATUS_ARCH_MISMATCH

In the case of the device does
not support math in half precision.

CUBLAS_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU

For references please refer to NETLIB documentation:

3))

cublasStatus_t cublasCgemm3m(cublasHandle_t handle,
cublasOperation_t transa, cublasOperation_t transb,

int m, int n,
const cuComplex
const cuComplex
const cuComplex
const cuComplex
cuComplex

int k,

*alpha,

*A, int 1lda,
*B, int 1ldb,
*beta,

*C, int 1ldc)

cublasStatus_t cublasZgemm3m(cublasHandle_t handle,

cublasOperation_t transa, cublasOperation_t transb,

int m, int n, int Kk,

const cuDoubleComplex
const cuDoubleComplex
const cuDoubleComplex
const cuDoubleComplex

*alpha,
*A, int lda,
*B, int 1db,
*beta,

cuDoubleComplex *C, int 1ldc)

This function supports the

This function performs the complex matrix-matrix multiplication, using Gauss complexity reduction
algorithm. This can lead to an increase in performance up to 25%

C = aop(A)op(B) + BC

where aand § are scalars,and A, B and C are matrices stored in column-major format with dimensions
op(4) m x k,op(B) k x nand C m x n, respectively. Also, for matrix A

2.7. cuBLAS Level-3 Function Reference

93

http://www.netlib.org/blas/sgemm.f
http://www.netlib.org/blas/dgemm.f
http://www.netlib.org/blas/cgemm.f
http://www.netlib.org/blas/zgemm.f

cuBLAS, Release 12.9

AT if transa == CUBLAS_OP_T

A if transa == CUBLAS_OP_N
op(A) =
A" if transa == CUBLAS_OP_C

and op(B) is defined similarly for matrix B .

Note: These 2 routines are only supported on GPUs with architecture capabilities equal to or greater
than 5.0

Param.Mem- In/out Meaning
ory

han- in- Handle to the cuBLAS library context.

dle put

transa in- | Operation op(A) that is non- or (conj.) transpose.
put

transb in- | Operation op(B) that is non- or (conj.) transpose.
put

m in- | Number of rows of matrix op(A) and C.
put

n in- | Number of columns of matrix op(B) and C.
put

k in- | Number of columns of op(A) and rows of op(B).
put

al- | host or | in- <type> scalar used for multiplication.

pha | device | put

A device | in- | <type> array of dimensions 1da x k with 1da >= max(1, m) if transa
put | == CUBLAS_OP_Nand lda x mwith 1da >= max(1, k) otherwise.

lda in- Leading dimension of two-dimensional array used to store the matrix A.
put

B device | in- | <type> array of dimension 1db x nwith 1db >= max(1, k) iftransb ==
put | CUBLAS_OP_Nand 1db x k with 1db>=max (1, n) otherwise.

1db in- | Leading dimension of two-dimensional array used to store matrix B.
put

beta| host or | in- <type> scalar used for multiplication. If beta == 9, C does not have to be

device | put | avalid input.

C device | infout <type> array of dimensions 1dc x nwith 1dc >= max(1, m).

ldc in- | Leading dimension of a two-dimensional array used to store the matrix C.
put

The possible error values returned by this function and their meanings are listed in the following table:

94 Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

Error Value

Meaning

CUBLAS_STATUS_SUCCESS

The operation completed successfully.

CUBLAS_STATUS_NOT_INITIALIZED

The library was not initialized.

CUBLAS_STATUS_INVALID_VALUE

Ifm < Born < Bork < 0,o0r

if transa and transb are not one of
CUBLAS_OP_N, CUBLAS_OP_C, CUBLAS_
OP_T, or

if lda < max(1, m) when transa
CUBLAS_OP_Nand lda < max(1, k) oth-
erwise, or

if 1db < max(1, k) when transb
CUBLAS_OP_Nand 1db < max(1, n) oth-
erwise, or

if 1dc < max(1, m),or

if alpha or beta are NULL, or

if Cis NULL when beta is not zero

CUBLAS_STATUS_ARCH_MISMATCH

The device has a compute capabilites lower than
5.0.

CUBLAS_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

For references please refer to NETLIB documentation:

3

cublasStatus_t cublasHgemmBatched(cublasHandle_t handle,

cublasOperation_t transa,
cublasOperation_t transb,

int m, int n, int Kk,

const __half *alpha,

const __half *const Aarray[], int lda,
const __half *const Barray[], int ldb,
const __half *beta,

__half *const Carray[], int 1ldc,

int batchCount)

cublasStatus_t cublasSgemmBatched(cublasHandle_t handle,

cublasOperation_t transa,
cublasOperation_t transb,

int m,

int n,

const float
const float
const float
const float
float

int k,
*alpha,
*const Aarray[], int lda,
*const Barray[], int 1ldb,
*beta,

*const Carray[], int ldc,

int batchCount)
cublasStatus_t cublasDgemmBatched(cublasHandle_t handle,

cublasOperation_t transa,
cublasOperation_t transb,

int m,

int n,

int k,

const double
const double

*alpha,
*const Aarray[], int lda,
(continues on next page)

2.7. cuBLAS Level-3 Function Reference

95

http://www.netlib.org/blas/cgemm.f
http://www.netlib.org/blas/zgemm.f

cuBLAS, Release 12.9

(continued from previous page)

const double *const Barray[], int ldb,
const double *beta,
double *const Carray[], int 1ldc,

int batchCount)

cublasStatus_t cublasCgemmBatched(cublasHandle_t handle,
cublasOperation_t transa,
cublasOperation_t transb,
int m, int n, int Kk,

const cuComplex *alpha,

const cuComplex *const Aarray[], int lda,
const cuComplex *const Barray[], int ldb,
const cuComplex *beta,

cuComplex *const Carray[], int ldc,

int batchCount)
cublasStatus_t cublasZgemmBatched(cublasHandle_t handle,
cublasOperation_t transa,
cublasOperation_t transb,
int m, int n, int Kk,
const cuDoubleComplex *alpha,
const cuDoubleComplex *const Aarray[], int 1lda,
const cuDoubleComplex *const Barray[], int 1db,
const cuDoubleComplex *beta,
cuDoubleComplex *const Carray[], int ldc,
int batchCount)

This function supports the

This function performs the matrix-matrix multiplication of a batch of matrices. The batchis considered
to be “uniform”, i.e. all instances have the same dimensions (m, n, k), leading dimensions (lda, Idb, Idc)
and transpositions (transa, transb) for their respective A, B and C matrices. The address of the input
matrices and the output matrix of each instance of the batch are read from arrays of pointers passed
to the function by the caller.

Cli] = aop(A[i])op(Bli]) + AC[i], fori € [0, batchCount — 1]

where « and 3 are scalars, and A, B and C are arrays of pointers to matrices stored in column-major
format with dimensions op(A[i]) m x k, op(B]i]) k x n and C[i] m x n , respectively. Also, for matrix A

A if transa == CUBLAS_OP_N
op(A) =< AT if transa == CUBLAS_OP_T
AH if transa == CUBLAS_OP_C

and op(BJi]) is defined similarly for matrix B[] .

Note: C[i] matrices must not overlap, that is, the individual gemm operations must be computable
independently; otherwise, undefined behavior is expected.

On certain problem sizes, it might be advantageous to make multiple calls to in dif-
ferent CUDA streams, rather than use this API.

96 Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

PararhMem{ In/oult Meaning

ory
han- in- Handle to the cuBLAS library context.
dle put
transa in- | Operation op(A[i]) that is non- or (conj.) transpose.
put
tranisb in- Operation op(B[1]) that is non- or (conj.) transpose.
put
m in- | Number of rows of matrix op(A[i]) and C[i].
put
n in- | Number of columns of op(B[i]) and C[i].
put
k in- | Number of columns of op(A[i]) and rows of op(B[1i]).
put
al- | host | in- <type> scalar used for multiplication.
pha | or put
de-
vice
Aar-| de- | in- | Array of pointers to <type> array, with each array of dim. 1da x k with 1da >=
ray | vice | put | max(1, m) if transa==CUBLAS_OP_N and 1da x mwith 1da >= max(1, k)
otherwise.
All pointers must meet certain alignment criteria. Please see below for details.
lda in- Leading dimension of two-dimensional array used to store each matrix A[i].
put

Bar-| de- | in- | Array of pointers to <type> array, with each array of dim. 1db x n with 1db
ray | vice | put | >= max(1, k) if transb==CUBLAS_OP_Nand 1db x k with 1db>=max(1,n)
max(1,) otherwise.

All pointers must meet certain alignment criteria. Please see below for details.

1db in- Leading dimension of two-dimensional array used to store each matrix B[i].
put
beta| host | in- <type> scalar used for multiplication. If beta == 0, C does not have to be a
or put | valid input.
de-
vice
Car-| de- | infout Array of pointers to <type> array. It has dimensions 1dc x n with 1dc >=
ray | vice max(1, m). Matrices C[1i] should not overlap; otherwise, undefined behavior
is expected.
All pointers must meet certain alignment criteria. Please see below for details.
1dc in- Leading dimension of two-dimensional array used to store each matrix C[i].
put
batch- in- Number of pointers contained in Aarray, Barray and Carray.
Count put
If math mode enables fast math modes when using , pointers (not the pointer

arrays) placed in the GPU memory must be properly aligned to avoid misaligned memory access errors.
Ideally all pointers are aligned to at least 16 Bytes. Otherwise it is recommended that they meet the
following rule:

if k%4==0 then ensure intptr_t(ptr) % 16 == 0,

The possible error values returned by this function and their meanings are listed below.

2.7. cuBLAS Level-3 Function Reference 97

cuBLAS, Release 12.9

Error Value Meaning

CUBLAS_STATUS_SUCCESS

The operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED

The library was not initialized

CUBLAS_STATUS_INVALID_VALUE

Ifm < Born < Bork < 0,o0r

if transa and transb are not one of
CUBLAS_OP_N, CUBLAS_OP_C, CUBLAS_
OP_T, or

if lda < max(1, m) when transa ==
CUBLAS_OP_Nand lda < max(1, k) oth-
erwise, or

if 1db < max(1, k) when transb ==
CUBLAS_OP_Nand 1db < max(1, n) oth-
erwise, or

if 1dc < max(1, m)

CUBLAS_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU

CUBLAS_STATUS_ARCH_MISMATCH

is only supported for
GPU with architecture capabilities equal or
greater than 5.3

cublasStatus_t cublasHgemmStridedBatched(cublasHandle_t handle,

cublasOperation_t transa,
cublasOperation_t transb,

int m, int n, int Kk,

const __half *alpha,
const __half *A, int 1lda,
long long int strideA,
const __half *B, int 1db,
long long int strideB,
const __half *beta,
__half *C, int ldc,
long long int strideC,

int batchCount)

cublasStatus_t cublasSgemmStridedBatched(cublasHandle_t handle,
cublasOperation_t transa,
cublasOperation_t transb,

int m, int n, int k,

const float *alpha,
const float *A, int lda,
long long int strideA,
const float *B, int 1db,
long long int strideB,
const float *beta,

float *C, int 1ldc,
long long int strideC,

int batchCount)

cublasStatus_t cublasDgemmStridedBatched(cublasHandle_t handle,
cublasOperation_t transa,
cublasOperation_t transb,

int m, int n, int k,

(continues on next page)

98

Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

const double
const double
long long int
const double
long long int
const double
double

long long int
int batchCount)

(continued from previous page)
*alpha,
*A, int lda,
strideA,
*B, int 1db,
strideB,
*beta,
*C, int 1ldc,
strideC,

cublasStatus_t cublasCgemmStridedBatched(cublasHandle_t handle,
cublasOperation_t transa,
cublasOperation_t transb,

int m, int n, int k,
const cuComplex
const cuComplex
long long int

const cuComplex
long long int

const cuComplex
cuComplex

long long int

int batchCount)

*alpha,

*A, int lda,
strideA,
*B, int 1ldb,
strideB,

*beta,

*C, int 1ldc,
strideC,

cublasStatus_t cublasCgemm3mStridedBatched(cublasHandle_t handle,
cublasOperation_t transa,
cublasOperation_t transb,

int m, int n, int Kk,
const cuComplex
const cuComplex
long long int

const cuComplex
long long int

const cuComplex
cuComplex

long long int

int batchCount)

*alpha,

*A, int 1lda,
strideA,
*B, int 1db,
strideB,
*beta,

*C, int 1ldc,
strideC,

cublasStatus_t cublasZgemmStridedBatched(cublasHandle_t handle,
cublasOperation_t transa,
cublasOperation_t transb,

This function supports the

int m, int n, int Kk,
const cuDoubleComplex
const cuDoubleComplex
long long int

const cuDoubleComplex
long long int

const cuDoubleComplex
cuDoubleComplex

long long int

int batchCount)

*alpha,

*A, int lda,
strideA,
*B, int 1ldb,
strideB,
*beta,

*C, int ldc,
strideC,

This function performs the matrix-matrix multiplication of a batch of matrices. The batchis considered
to be “uniform”, i.e. all instances have the same dimensions (m, n, k), leading dimensions (lda, Idb, Idc)
and transpositions (transa, transb) for their respective A, B and C matrices. Input matrices A, B and
output matrix C for each instance of the batch are located at fixed offsets in number of elements
from their locations in the previous instance. Pointers to A, B and C matrices for the first instance are
passed to the function by the user along with offsets in number of elements - strideA, strideB and

2.7. cuBLAS Level-3 Function Reference

99

cuBLAS, Release 12.9

strideC that determine the locations of input and output matrices in future instances.
C + i strideC = aop(A + i * strideA)op(B + i * strideB) 4+ S(C + i * strideC), fori € [0, batchCount — 1]

where « and 3 are scalars, and A, B and C are arrays of pointers to matrices stored in column-major
format with dimensions op(A[i]) m x k, op(BJi]) k x n and C[i] m x n, respectively. Also, for matrix A
A if transa == CUBLAS_OP_N
op(A) = { AT if transa == CUBLAS_OP_T
AH if transa == CUBLAS_OP_C

and op(BJi]) is defined similarly for matrix BJi] .

Note: C[i] matrices must not overlap, i.e. the individual gemm operations must be computable inde-
pendently; otherwise, undefined behavior is expected.

On certain problem sizes, it might be advantageous to make multiple calls to in dif-
ferent CUDA streams, rather than use this API.

Note: In the table below, we use A[i], B[i], C[i] as notation for A, B and C matrices in the
ith instance of the batch, implicitly assuming they are respectively offsets in number of elements
strideA, strideB, strideC away from A[i-1], B[i-1], C[i-1]. The unit for the offset is
number of elements and must not be zero .

100 Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

Param. Mem-| In/out Meaning

ory
han- in- Handle to the cuBLAS library context.
dle put
transa in- | Operation op(A[1]) that is non- or (conj.) transpose.
put
transb in- Operation op(B[1]) that is non- or (conj.) transpose.
put
m in- | Number of rows of matrix op(A[i])and C[i].
put
n in- | Number of columns of op(B[i])and C[1i].
put
k in- | Number of columns of op(A[i]) and rows of op(B[i]).
put
al- | host | in- <type> scalar used for multiplication.
pha | or put
de-
vice
A de- in- | <type>* pointer to the A matrix corresponding to the first instance of

vice | put | the batch, with dimensions 1da x k with 1da >= max(1, m) if
transa==CUBLAS_OP_N and 1da x mwith 1da >= max(1, k) otherwise.

lda in- Leading dimension of two-dimensional array used to store each matrix A[i].
put

strideA in- | Value of type long long int that gives the offset in number of elements be-
put | tween A[i] and A[i+1]

B de- in- <type>* pointer to the B matrix corresponding to the first instance of

vice | put | the batch, with dimensions 1db x n with 1db >= max(1, k) if
transb==CUBLAS_OP_N and 1db x k with 1db>=max(1,n) max(1,) other-

wise.
1db in- Leading dimension of two-dimensional array used to store each matrix B[i].
put
strideB in- | Value of type long long int that gives the offset in number of elements be-
put | tweenB[i] and B[i+1]
beta| host | in- <type> scalar used for multiplication. If beta == 0, C does not have to be a
or put | valid input.
de-
vice
C de- infout <type>* pointer to the C matrix corresponding to the first instance of the
vice batch, with dimensions 1dc x n with 1dc >= max(1, m). Matrices C[1i]
should not overlap; otherwise, undefined behavior is expected.
1dc in- Leading dimension of two-dimensional array used to store each matrix C[i].
put
strideC in- | Value of type long long int that gives the offset in number of elements be-
put | tweenC[i] and C[i+1]
batch- in- Number of GEMMs to perform in the batch.
Count put

The possible error values returned by this function and their meanings are listed below.

2.7. cuBLAS Level-3 Function Reference 101

cuBLAS, Release 12.9

Error Value

Meaning

CUBLAS_STATUS_SUCCESS

The operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED

The library was not initialized

CUBLAS_STATUS_INVALID_VALUE

Ifm < Born < Bork < 0,o0r

if transa and transb are not one of
CUBLAS_OP_N, CUBLAS_OP_C, CUBLAS_
OP_T, or

if lda < max(1, m) when transa ==
CUBLAS_OP_Nand lda < max(1, k) oth-
erwise, or

if 1db < max(1, k) when transb ==
CUBLAS_OP_Nand 1db < max(1, n) oth-
erwise, or

if 1dc < max(1, m)

CUBLAS_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU

CUBLAS_STATUS_ARCH_MISMATCH

is only sup-

ported for GPU with architecture capabilities
equal or greater than 5.3

cublasStatus_t cublasSgemmGroupedBatched(cublasHandle_t handle,

const
const
const
const
const
const
const
const
const
const
const
float
const

cublasOperation_t transa_array|[],
cublasOperation_t transb_array[],
int m_array[],

int n_array[],

int k_array[],

float alpha_array[],

float *const Aarray[],

int lda_array[],

float *const Barray[],

int 1ldb_array[],

float beta_array[],

*const Carray[],

int ldc_arrayl[],

int group_count,

const

int group_size[])

cublasStatus_t cublasDgemmGroupedBatched(cublasHandle_t handle,

const
const
const
const
const
const
const
const
const
const
const

cublasOperation_t transa_array[],
cublasOperation_t transb_array[],
int m_array[],

int n_array[],

int k_array[],

double alpha_array[],

double *const Aarrayl[],

int lda_array[],

double *const Barray[],

int ldb_array[],

double beta_array|[],

double *const Carray[],

const

int ldc_array[],
(continues on next page)

102

Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

(continued from previous page)

int group_count,
const int group_size[])

This function supports the

This function performs the matrix-matrix multiplication on groups of matrices. A given group is con-
sidered to be “uniform”, i.e. all instances have the same dimensions (m, n, k), leading dimensions (Ida,
Idb, Idc) and transpositions (transa, transb) for their respective A, B and C matrices. However, the
dimensions, leading dimensions, transpositions, and scaling factors (alpha, beta) may vary between
groups. The address of the input matrices and the output matrix of each instance of the batch are
read from arrays of pointers passed to the function by the caller. This is functionally equivalent to the
following:

idx = 0;
for i = @:group_count - 1
for j = @:group_size[i] - 1
gemm(transa_array[i], transb_array[i], m_array[i], n_array[i], k_array[i],
alpha_array[i], Aarray[idx], lda_array[i], Barray[idx], ldb_array[i],
beta_array[i], Carray[idx], ldc_array[i]);
idx += 1;
end
end

where alpha_array and beta_array are arrays of scaling factors, and Aarray, Barray and Carray are arrays
of pointers to matrices stored in column-major format. For a given index, idx, that is part of group 1,
the dimensions are:

op(Aarraylidx]): m_array[i] x k_array][i]
op(Barraylidx]): k_array[i] x n_array][i]

Carraylidx]: m_array[:] x n_array|i]

Note: This API takes arrays of two different lengths. The arrays of dimensions, leading dimensions,

transpositions, and scaling factors are of length group_count and the arrays of matrices are of length

problem_count where problem_count = " 9"%P-*""" group_size[i]

For matrix A[idx] in group ¢

Afidx] if transa_array[i] == CUBLAS_OP_N
op(Afidx]) = { Afidx]T if transa_array[i] == CUBLAS_OP_T
Alidx]® if transa_arrayli] == CUBLAS_OP_C

and op(BJidx]) is defined similarly for matrix Bidx] in group i.

Note: CJidx] matrices must not overlap, that is, the individual gemm operations must be computable
independently; otherwise, undefined behavior is expected.

On certain problem sizes, it might be advantageous to make multiple calls to
in different CUDA streams, rather than use this API.

2.7. cuBLAS Level-3 Function Reference 103

cuBLAS, Release 12.9

Pararh.Mem} In/out Meaning Ar-
ory ray
Length
han- in- Handle to the cuBLAS library context.
dle put
transéost| in- | Operation op(A[idx]) that is non- or (conj.) transpose for each group. group_count
array put
tranghost| in- | Operation op(B[idx]) that is non- or (conj.) transpose for each group. group_count
array put
m_ host| in- | Array containing the number of rows of matrix op(A[idx]) and C[idx] | group_count
array put | for each group.
n_ host| in- | Array containing the number of columns of op(B[idx]) and C[idx] for | group_count
array put | each group.
k_ host| in- | Array containing the number of columns of op(A[idx]) and rows of | group_count
array put | op(B[idx]) for each group.
alphahost| in- | Array containing the <type> scalar used for multiplication for each group. | group_count
array put
Aar-| de- | in- | Array of pointers to <type> array, with each array of dim. lda[i] x | prob-
ray | vice | put | k[i] with 1da[i]>=max(1,m[i]) if transa[i]==CUBLAS_OP_N and | lem_g¢ount
lda[i] x m[i] with 1da[i]>=max(1,k[i]) otherwise.
All pointers must meet certain alignment criteria. Please see below for
details.
lda_| host| in- | Array containing the leading dimensions of two-dimensional arrays used | group_count
array put | to store each matrix A[idx] for each group.
Bar-| de- | in- | Array of pointers to <type> array, with each array of dim. 1db[i] x | probA
ray | vice | put | n[i] with 1db[i]>=max(1,k[i]) if transb[i]==CUBLAS_OP_N and | lem_g¢ount
1db[i] x k[i] with 1db[i]>=max(1,n[i]) otherwise.
All pointers must meet certain alignment criteria. Please see below for
details.
1db_| host| in- | Array containing the leading dimensions of two-dimensional arrays used | group_count
array put | to store each matrix B[idx] for each group.
betal host| in- | Array containing the <type> scalar used for multiplication for each group. | group_count
array put
Car-| de- | infout Array of pointers to <type> array. It has dimensions 1dc[i] x n[i] | prob
ray | vice with 1dc[i]>=max(1,m[i]). Matrices C[idx] should not overlap; oth- | lem_g¢ount
erwise, undefined behavior is expected.
All pointers must meet certain alignment criteria. Please see below for
details.
ldc_| host| in- | Array containing the leading dimensions of two-dimensional arrays used | group_count
array put | to store each matrix C[idx] for each group.
grouphost| in- Number of groups
counft put
grouphost| in- Array containing the number of pointers contained in Aarray, Barray and | group_count
size put | Carray for each group.

If math mode enables fast math modes when using

, pointers (not the

pointer arrays) placed in the GPU memory must be properly aligned to avoid misaligned memory access
errors. Ideally all pointers are aligned to at least 16 Bytes. Otherwise it is required that they meet the
following rule:

if k%4==0 then ensure intptr_t(ptr) % 16 == 0,

The possible error values returned by this function and their meanings are listed below.

104

Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

Error Value Meaning
CUBLAS_STATUS_SUCCESS The operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized

CUBLAS_STATUS_INVALID_VALUE
If transa_array, transb_array, m_

array, n_array, k_array, alpha_array
lda_array, 1ldb_array, beta_array
ldc_array, or group_size are NULL, or

if group_count < 0, or

ifm_array[i] < ©,n_array[i] < 0,k_
array[i] < @,group_size[i] < ©,or
if transa_array[i] and transb_
array[i] are not one of CUBLAS_OP_N
CUBLAS_OP_C, CUBLAS_OP_T, or

if lda_array[i] < max (1, m
array[i]) if transa_array[i] =
CUBLAS_OP_N and lda_array[i]
max(1, k_array[i]) otherwise, or
if 1ldb_array[i] < max (1,

array[i]) if transb_array[i]

CUBLAS_OP_N and 1ldb_array[i]
max(1, n_array[i]) otherwise, or
if ldc_array[il < max(1, m
array[i])

n x
A

Al

CUBLAS_STATUS_EXECUTION_FAILED The function failed to launch on the GPU

CUBLAS_STATUS_NOT_SUPPORTED The pointer mode is set to CUBLAS_POINTER_
MODE_DEVICE

cublasStatus_t cublasSsymm(cublasHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
int m, int n,

const float *alpha,
const float *A, int lda,
const float *B, int 1db,
const float *beta,

float *C, int ldc)

cublasStatus_t cublasDsymm(cublasHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
int m, int n,

const double *alpha,
const double *A, int 1lda,
const double *B, int 1db,
const double *beta,
double *C, int 1ldc)

cublasStatus_t cublasCsymm(cublasHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
int m, int n,

const cuComplex *alpha,
const cuComplex *A, int 1lda,
const cuComplex *B, int 1db,

(continues on next page)

2.7. cuBLAS Level-3 Function Reference 105

cuBLAS, Release 12.9

(continued from previous page)
const cuComplex *beta,
cuComplex *C, int ldc)
cublasStatus_t cublasZsymm(cublasHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
int m, int n,
const cuDoubleComplex *alpha,
const cuDoubleComplex *A, int lda,
const cuDoubleComplex *B, int 1ldb,
const cuDoubleComplex *beta,
cuDoubleComplex *C, int 1ldc)

This function supports the

This function performs the symmetric matrix-matrix multiplication

- aAB + gC if side == CUBLAS_SIDE_LEFT
~ \aBA+BC if side == CUBLAS_SIDE_RIGHT

where A is a symmetric matrix stored in lower or upper mode, B and C are m x n matrices, and « and
3 are scalars.

ParamMem- In/oult Meaning
ory
han- in- Handle to the cuBLAS library context.
dle put
side in- | Indicates if matrix A is on the left or right of B.
put
uplo in- Indicates if matrix A lower or upper part is stored, the other symmetric part
put | is not referenced and is inferred from the stored elements.
m in- Number of rows of matrix C and B, with matrix A sized accordingly.
put
n in- | Number of columns of matrix C and B, with matrix A sized accordingly.
put
al- | hostor | in- <type> scalar used for multiplication.
pha | device | put
A device | in- | <type> array of dimension 1da x mwith 1da >= max(1, m) if side ==
put | CUBLAS_SIDE_LEFT and 1da x nwith 1da >= max(1, n) otherwise.
lda in- Leading dimension of two-dimensional array used to store matrix A.
put
B device | in- | <type> array of dimension 1db x nwith 1db >= max(1, m).
put
1db in- | Leading dimension of two-dimensional array used to store matrix B.
put
beta| host or | in- <type> scalar used for multiplication. If beta == 0 then C does not have to
device | put | beavalid input.
C device | infout <type> array of dimension 1dc x nwith 1dc >= max(1, m).
ldc in- Leading dimension of two-dimensional array used to store matrix C.
put

The possible error values returned by this function and their meanings are listed below.

106 Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

Error Value

Meaning

CUBLAS_STATUS_SUCCESS

The operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED

The library was not initialized

CUBLAS_STATUS_INVALID_VALUE

if 1da < max(1,

n) otherwise, or

Ifm < Born < 0,0r

if side is not one of CUBLAS_SIDE_LEFT
and CUBLAS_SIDE_RIGHT, or
if uplois not one of CUBLAS_FILL_MODE_
LOWER and CUBLAS_FILL_MODE_UPPER, or

m) when side

CUBLAS_SIDE_LEFT, and 1da < max(1,

if ldb < max(1, m),or

if ldc < max(1, m),or

if alpha or beta are NULL, or

if Cis NULL when beta is not zero

CUBLAS_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU

For references please refer to NETLIB documentation:

) ’ 3

cublasStatus_t cublasSsyrk(cublasHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,

int n, int k,

const float *alpha,
const float *A, int lda,
const float *beta,

float *C, int 1ldc)

cublasStatus_t cublasDsyrk(cublasHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,

int n, int Kk,

const double *alpha,
const double *A, int lda,
const double *beta,
double *C, int ldc)

cublasStatus_t cublasCsyrk(cublasHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,

int n, int Kk,

const cuComplex *alpha,
const cuComplex *A, int 1lda,
const cuComplex *beta,
cuComplex *C, int ldc)

cublasStatus_t cublasZsyrk(cublasHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,

This function supports the

int n, int k,

const cuDoubleComplex *alpha,
const cuDoubleComplex *A, int lda,
const cuDoubleComplex *beta,
cuDoubleComplex *C, int 1ldc)

2.7. cuBLAS Level-3 Function Reference

107

http://www.netlib.org/blas/ssymm.f
http://www.netlib.org/blas/dsymm.f
http://www.netlib.org/blas/csymm.f
http://www.netlib.org/blas/zsymm.f

cuBLAS, Release 12.9

This function performs the symmetric rank- k update
C = aop(A)op(A)T + pC

where a and 5 are scalars, C is a symmetric matrix stored in lower or upper mode, and A is a matrix
with dimensions op(A) n x k. Also, for matrix A

op(A) = { A if transa == CUBLAS_OP_N
AT if transa == CUBLAS_OP_T
Param.Mem- In/oult Meaning
ory

han- in- Handle to the cuBLAS library context.

dle put

uplo in- Indicates if matrix C lower or upper part is stored, the other symmetric part
put | is not referenced and is inferred from the stored elements.

trang in- | Operation op(A) that is non- or transpose.
put

n in- Number of rows of matrix op(A) and C.
put

k in- Number of columns of matrix op(A).
put

al- | host or | in- <type> scalar used for multiplication.

pha | device | put

A device | in- | <type> array of dimension 1da x k with 1da >= max(1, n) if trans ==
put | CUBLAS_OP_Nand lda x nwith 1da >= max(1, k) otherwise.

lda in- Leading dimension of two-dimensional array used to store matrix A.
put

beta| host or | in- <type> scalar used for multiplication. If beta == 0 then C does not have to

device | put | be avalid input.

C device | infout <type> array of dimension 1dc x n, with 1dc >= max(1, n).

ldc in- | Leading dimension of two-dimensional array used to store matrix C.
put

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning
CUBLAS_STATUS_SUCCESS The operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized

CUBLAS_STATUS_INVALID_VALUE

Ifn < B@ork < 0,or

if trans is not one of CUBLAS_OP_N,
CUBLAS_OP_T and CUBLAS_OP_C, or

if uplo is not one of CUBLAS_FILL_MODE_
LOWER and CUBLAS_FILL_MODE_UPPER, or
if lda < max(1, n) when trans ==
CUBLAS_OP_N,and 1da < max(1, k) oth-
erwise, or

if 1dc < max(1, n),or

if alpha or beta are NULL, or

if Cis NULL when beta is not zero

CUBLAS_STATUS_EXECUTION_FAILED The function failed to launch on the GPU

For references please refer to NETLIB documentation:

108

Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

cublasStatus_t

cublasStatus_t

cublasStatus_t

cublasStatus_t

cublasSsyr2k(cublasHandle_t handle,

cublasFillMode_t uplo, cublasOperation_t trans,

int n, int k,

const float *alpha,
const float *A, int lda,
const float *B, int 1db,
const float *beta,

float *C, int 1ldc)

cublasDsyr2k(cublasHandle_t handle,
cublasFillMode_t uplo,
int n, int Kk,

cublasOperation_t trans,

const double *alpha,
const double *A, int lda,
const double *B, int 1ldb,
const double *beta,
double *C, int ldc)

cublasCsyr2k(cublasHandle_t handle,

cublasFillMode_t uplo, cublasOperation_t trans,

int n, int k,

const cuComplex *alpha,
const cuComplex *A, int 1lda,
const cuComplex *B, int 1db,
const cuComplex *beta,
cuComplex *C, int 1ldc)

cublasZsyr2k(cublasHandle_t handle,

cublasFillMode_t uplo, cublasOperation_t trans,

int n, int k,

const cuDoubleComplex
const cuDoubleComplex
const cuDoubleComplex
const cuDoubleComplex

*alpha,
*A, int lda,
*B, int 1db,
*beta,

cuDoubleComplex *C, int ldc)

This function supports the

This function performs the symmetric rank- 2k update
C = a(op(4)op(B)" + op(B)op(4)T) + BC

where a and 3 are scalars, C is a symmetric matrix stored in lower or upper mode, and A and B are
matrices with dimensions op(A) n x k and op(B) n x k, respectively. Also, for matrix A and B

op(4) and op(B) =

Aand B
AT and BT

if trans == CUBLAS_OP_
if trans == CUBLAS_OP_

N
T

2.7. cuBLAS Level-3 Function Reference

109

http://www.netlib.org/blas/ssyrk.f
http://www.netlib.org/blas/dsyrk.f
http://www.netlib.org/blas/csyrk.f
http://www.netlib.org/blas/zsyrk.f

cuBLAS, Release 12.9

Param.Mem- In/oult Meaning
ory

han- in- Handle to the cuBLAS library context.

dle put

uplo in- Indicates if matrix C lower or upper part, is stored, the other symmetric part
put | is not referenced and is inferred from the stored elements.

trangs in- | Operation op(A) that is non- or transpose.
put

n in- Number of rows of matrix op(A), op(B) and C.
put

k in- Number of columns of matrix op(A) and op(B).
put

al- | host or | in- <type> scalar used for multiplication.

pha | device | put

A device | in- | <type> array of dimension 1da x k with 1da >= max(1, n)if transa ==
put | CUBLAS_OP_Nand lda x nwith 1da >= max(1, k) otherwise.

lda in- Leading dimension of two-dimensional array used to store matrix A.
put

B device | in- <type> array of dimensions 1db x k with 1db >= max(1, n) if transb
put | == CUBLAS_OP_Nand 1db x n with 1db>=max(1, k) otherwise.

1db in- Leading dimension of two-dimensional array used to store matrix B.
put

beta| host or | in- <type> scalar used for multiplication. If beta == 8, then C does not have

device | put | to be avalid input.

C device | infout <type> array of dimensions 1dc x nwith 1dc >= max(1, n).

ldc in- Leading dimension of two-dimensional array used to store matrix C.
put

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning
CUBLAS_STATUS_SUCCESS The operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized

CUBLAS_STATUS_INVALID_VALUE
Ifn < Bork < ©,o0r

if trans is not one of CUBLAS_OP_N,
CUBLAS_OP_T and CUBLAS_OP_C, or

if uplois not one of CUBLAS_FILL_MODE_
LOWER and CUBLAS_FILL_MODE_UPPER, or
if lda < max(1, n) when trans ==
CUBLAS_OP_N,and 1da < max(1, k) oth-
erwise, or

if 1db < max(1, n) when trans ==
CUBLAS_OP_N,and 1db < max(1, k) oth-
erwise, or

if 1dc < max(1, n),or

if alpha or beta are NULL, or

if Cis NULL when beta is not zero

CUBLAS_STATUS_EXECUTION_FAILED The function failed to launch on the GPU

For references please refer to NETLIB documentation:

110 Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

cublasStatus_t cublasSsyrkx(cublasHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
int n, int k,

const float *alpha,
const float *A, int lda,
const float *B, int 1db,
const float *beta,
float *C, int 1ldc)

cublasStatus_t cublasDsyrkx(cublasHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
int n, int Kk,

const double *alpha,
const double *A, int lda,
const double *B, int 1ldb,
const double *beta,
double *C, int ldc)

cublasStatus_t cublasCsyrkx(cublasHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
int n, int k,

const cuComplex *alpha,
const cuComplex *A, int 1lda,
const cuComplex *B, int 1db,
const cuComplex *beta,
cuComplex *C, int 1ldc)

cublasStatus_t cublasZsyrkx(cublasHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
int n, int k,
const cuDoubleComplex *alpha,
const cuDoubleComplex *A, int lda,
const cuDoubleComplex *B, int 1ldb,
const cuDoubleComplex *beta,
cuDoubleComplex *C, int ldc)

This function supports the
This function performs a variation of the symmetric rank- k£ update
C = aop(A)op(B)T + BC

where a and 3 are scalars, C is a symmetric matrix stored in lower or upper mode, and A and B are
matrices with dimensions op(A) n x k and op(B) n x k , respectively. Also, for matrices A and B

op(4) and op(p) = | Aand B if trans == CUBLAS_OP_N
P PYBI= 1 AT and BT if trans == CUBLAS_OP_T

This routine can be used when B is in such way that the result is guaranteed to be symmetric. A usual
example is when the matrix B is a scaled form of the matrix A: this is equivalent to B being the product
of the matrix A and a diagonal matrix. For an efficient computation of the product of a regular matrix
with a diagonal matrix, refer to the routine

2.7. cuBLAS Level-3 Function Reference 111

http://www.netlib.org/blas/ssyr2k.f
http://www.netlib.org/blas/dsyr2k.f
http://www.netlib.org/blas/csyr2k.f
http://www.netlib.org/blas/zsyr2k.f

cuBLAS, Release 12.9

Param.Mem- In/oult Meaning
ory

han- in- Handle to the cuBLAS library context.

dle put

uplo in- Indicates if matrix C lower or upper part, is stored, the other symmetric part
put | is not referenced and is inferred from the stored elements.

trangs in- | Operation op(A) that is non- or transpose.
put

n in- Number of rows of matrix op(A), op(B) and C.
put

k in- Number of columns of matrix op(A) and op(B).
put

al- | host or | in- <type> scalar used for multiplication.

pha | device | put

A device | in- | <type> array of dimension 1da x k with 1da >= max(1, n)if transa ==
put | CUBLAS_OP_Nand lda x nwith 1da >= max(1, k) otherwise.

lda in- Leading dimension of two-dimensional array used to store matrix A.
put

B device | in- <type> array of dimensions 1db x k with 1db >= max(1, n) if transb
put | == CUBLAS_OP_Nand 1db x n with 1db>=max(1, k) otherwise.

1db in- Leading dimension of two-dimensional array used to store matrix B.
put

beta| host or | in- <type> scalar used for multiplication. If beta == 8, then C does not have

device | put | to be avalid input.

C device | infout <type> array of dimensions 1dc x nwith 1dc >= max(1, n).

ldc in- Leading dimension of two-dimensional array used to store matrix C.
put

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning
CUBLAS_STATUS_SUCCESS The operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized

CUBLAS_STATUS_INVALID_VALUE
Ifn < Bork < ©,o0r

if trans is not one of CUBLAS_OP_N,
CUBLAS_OP_T and CUBLAS_OP_C, or

if uplois not one of CUBLAS_FILL_MODE_
LOWER and CUBLAS_FILL_MODE_UPPER, or
if lda < max(1, n) when trans ==
CUBLAS_OP_N,and 1da < max(1, k) oth-
erwise, or

if 1db < max(1, n) when trans ==
CUBLAS_OP_N,and 1db < max(1, k) oth-
erwise, or

if 1dc < max(1, n),or

if alpha or beta are NULL, or

if Cis NULL when beta is not zero

CUBLAS_STATUS_EXECUTION_FAILED The function failed to launch on the GPU

For references please refer to NETLIB documentation:

112 Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

) , , and

cublasStatus_t cublasStrmm(cublasHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int m, int n,

const float *alpha,

const float *A, int lda,
const float *B, int 1db,
float *C, int 1ldc)

cublasStatus_t cublasDtrmm(cublasHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int m, int n,

const double *alpha,

const double *A, int 1da,
const double *B, int 1db,
double *C, int 1ldc)

cublasStatus_t cublasCtrmm(cublasHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int m, int n,

const cuComplex *alpha,

const cuComplex *A, int 1lda,
const cuComplex *B, int 1db,
cuComplex *C, int 1ldc)

cublasStatus_t cublasZtrmm(cublasHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int m, int n,
const cuDoubleComplex *alpha,
const cuDoubleComplex *A, int lda,
const cuDoubleComplex *B, int ldb,
cuDoubleComplex *C, int 1ldc)

This function supports the
This function performs the triangular matrix-matrix multiplication

aop(A)B if side == CUBLAS_SIDE_LEFT
aBop(A) if side == CUBLAS_SIDE_RIGHT

where A is a triangular matrix stored in lower or upper mode with or without the main diagonal, B and
C are m x n matrix, and « is a scalar. Also, for matrix A

A if transa == CUBLAS_OP_N
op(A) = { AT if transa == CUBLAS_OP_T
A if transa == CUBLAS_OP_C

Notice thatin order to achieve better parallelism cuBLAS differs from the BLAS APl only for this routine.
The BLAS APl assumes an in-place implementation (with results written back to B), while the cuBLAS
APl assumes an out-of-place implementation (with results written into C). The application can obtain
the in-place functionality of BLAS in the cuBLAS API by passing the address of the matrix B in place
of the matrix C. No other overlapping in the input parameters is supported.

2.7. cuBLAS Level-3 Function Reference 113

http://www.netlib.org/blas/ssyrk.f
http://www.netlib.org/blas/dsyrk.f
http://www.netlib.org/blas/csyrk.f
http://www.netlib.org/blas/zsyrk.f
http://www.netlib.org/blas/ssyr2k.f
http://www.netlib.org/blas/dsyr2k.f
http://www.netlib.org/blas/csyr2k.f
http://www.netlib.org/blas/zsyr2k.f

cuBLAS, Release 12.9

ParamMem- In/out Meaning
ory
han- in- Handle to the cuBLAS library context.
dle put
side in- | Indicates if matrix A is on the left or right of B.
put
uplo in- Indicates if matrix A lower or upper part is stored, the other part is not ref-
put | erenced and is inferred from the stored elements.
trans in- | Operation op(A) that is non- or (conj.) transpose.
put
diag in- Indicates if the elements on the main diagonal of matrix A are unity and
put | should not be accessed.
m in- Number of rows of matrix B, with matrix A sized accordingly.
put
n in- Number of columns of matrix B, with matrix A sized accordingly.
put
al- | hostor | in- <type> scalar used for multiplication, if alpha == 8 then Ais not referenced
pha | device | put | and B does not have to be a valid input.
A device | in- <type> array of dimension 1da x mwith 1da >= max(1, m) if side ==
put | CUBLAS_SIDE_LEFT and 1da x nwith 1da >= max(1, n) otherwise.
lda in- Leading dimension of two-dimensional array used to store matrix A.
put
B device | in- | <type> array of dimension 1db x nwith 1db >= max(1, m).
put
1db in- | Leading dimension of two-dimensional array used to store matrix B.
put
C device | infout <type> array of dimension 1dc x nwith 1dc >= max(1, m).
ldc in- | Leading dimension of two-dimensional array used to store matrix C.
put

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning
CUBLAS_STATUS_SUCCESS The operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized

CUBLAS_STATUS_INVALID_VALUE
Ifm < @,n < 0,0r

if trans is not one of CUBLAS_OP_N,
CUBLAS_OP_T and CUBLAS_OP_C, or

if uplo is not one of CUBLAS_FILL_MODE_
LOWER and CUBLAS_FILL_MODE_UPPER,or
if side is not one of CUBLAS_SIDE_LEFT
and CUBLAS_SIDE_RIGHT, or

if lda < max(1, m) if side == CUBLAS_
SIDE_LEFT,and 1da < max(1, n) other-
wise, or

if 1db < max(1, m),or

if 1dc < max(1, m),or

if alphais NULL

CUBLAS_STATUS_EXECUTION_FAILED The function failed to launch on the GPU

114 Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

For references please refer to NETLIB documentation:

cublasStatus_t cublasStrsm(cublasHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int m, int n,

const float *alpha,
const float *A, int lda,
float *B, int 1ldb)

cublasStatus_t cublasDtrsm(cublasHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int m, int n,

const double *alpha,
const double *A, int 1lda,
double *B, int 1db)

cublasStatus_t cublasCtrsm(cublasHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int m, int n,

const cuComplex *alpha,
const cuComplex *A, int 1da,
cuComplex *B, int ldb)

cublasStatus_t cublasZtrsm(cublasHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
int m, int n,
const cuDoubleComplex *alpha,
const cuDoubleComplex *A, int lda,
cuDoubleComplex *B, int 1db)

This function supports the

This function solves the triangular linear system with multiple right-hand-sides

op(A)X = aB if side == CUBLAS_SIDE_LEFT
Xop(A) =aB if side == CUBLAS_SIDE_RIGHT

where A is a triangular matrix stored in lower or upper mode with or without the main diagonal, X and

B are m x n matrices, and « is a scalar. Also, for matrix A

A if transa == CUBLAS_OP_N
op(A) = { AT if transa == CUBLAS_OP_T
A" if transa == CUBLAS_OP_C

The solution X overwrites the right-hand-sides B on exit.

No test for singularity or near-singularity is included in this function.

2.7. cuBLAS Level-3 Function Reference

115

http://www.netlib.org/blas/strmm.f
http://www.netlib.org/blas/dtrmm.f
http://www.netlib.org/blas/ctrmm.f
http://www.netlib.org/blas/ztrmm.f

cuBLAS, Release 12.9

ParamMem- In/out Meaning
ory
han- in- Handle to the cuBLAS library context.
dle put
side in- | Indicates if matrix A is on the left or right of X.
put
uplo in- Indicates if matrix A lower or upper part is stored, the other part is not ref-
put | erenced and is inferred from the stored elements.
trans in- | Operation op(A) that is non- or (conj.) transpose.
put
diag in- Indicates if the elements on the main diagonal of matrix A are unity and
put | should not be accessed.
m in- Number of rows of matrix B, with matrix A sized accordingly.
put
n in- Number of columns of matrix B, with matrix A is sized accordingly.
put
al- | hostor | in- <type> scalar used for multiplication, if alpha == 8 then Ais not referenced
pha | device | put | and B does not have to be a valid input.
A device | in- <type> array of dimension 1da x mwith 1da >= max(1, m) if side ==
put | CUBLAS_SIDE_LEFT and 1da x nwith 1da >= max(1, n) otherwise.
lda in- Leading dimension of two-dimensional array used to store matrix A.
put
B device | infout <type> array. It has dimensions 1db x n with 1db >= max(1, m).
1db in- | Leading dimension of two-dimensional array used to store matrix B.
put

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning
CUBLAS_STATUS_SUCCESS The operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized

CUBLAS_STATUS_INVALID_VALUE
Ifm < B,n < 0,o0r

if trans is not one of CUBLAS_OP_N,
CUBLAS_OP_T and CUBLAS_OP_C, or

if uplo is not one of CUBLAS_FILL_MODE_
LOWER and CUBLAS_FILL_MODE_UPPER, or
if side is not one of CUBLAS_SIDE_LEFT
and CUBLAS_SIDE_RIGHT, or

if diag is not one of CUBLAS_DIAG_UNIT
and CUBLAS_DIAG_NON_UNIT, or

if lda < max(1, m) if side == CUBLAS_
SIDE_LEFT,and 1da < max(1, n) other-
wise, or

if 1db < max(1, m),or

if alphais NULL

CUBLAS_STATUS_EXECUTION_FAILED The function failed to launch on the GPU

For references please refer to NETLIB documentation:

) 3)

116 Chapter 2. Using the cuBLAS API

http://www.netlib.org/blas/strsm.f
http://www.netlib.org/blas/dtrsm.f
http://www.netlib.org/blas/ctrsm.f
http://www.netlib.org/blas/ztrsm.f

cuBLAS, Release 12.9

cublasStatus_t cublasStrsmBatched(

cublasStatus_t cublasDtrsmBatched(

cublasStatus_t cublasCtrsmBatched(

cublasStatus_t cublasZtrsmBatched(

This function supports the

cublasHandle_t
cublasSideMode_t
cublasFillMode_t
cublasOperation_t
cublasDiagType_t
int m,

int n,

handle,
side,
uplo,
trans,
diag,

const float *alpha,
const float *const A[],

int 1lda,

float *const B[],
int 1db,

int batchCount);
cublasHandle_t
cublasSideMode_t
cublasFillMode_t
cublasOperation_t
cublasDiagType_t
int m,

int n,

handle,
side,
uplo,
trans,
diag,

const double *alpha,
const double *const A[],

int lda,

double *const B[],

int 1ldb,

int batchCount);
cublasHandle_t
cublasSideMode_t
cublasFillMode_t
cublasOperation_t
cublasDiagType_t
int m,

int n,

handle,
side,
uplo,
trans,
diag,

const cuComplex *alpha,
const cuComplex *const A[],

int 1lda,
cuComplex *const
int 1db,

int batchCount);
cublasHandle_t
cublasSideMode_t
cublasFillMode_t
cublasOperation_t
cublasDiagType_t
int m,

int n,

B[],

handle,
side,
uplo,
trans,
diag,

const cuDoubleComplex *alpha,
const cuDoubleComplex *const A[],

int 1lda,

cuDoubleComplex *const B[],

int 1db,
int batchCount);

This function solves an array of triangular linear systems with multiple right-hand-sides

2.7. cuBLAS Level-3 Function Reference

117

cuBLAS, Release 12.9

{op(A[i)X[i] = aB[i] if side == CUBLAS_SIDE_LEFT
X[iJop(A[i]) = aBli] if side == CUBLAS_SIDE_RIGHT

where A[i] is a triangular matrix stored in lower or upper mode with or without the main diagonal, X|i]
and BJi| are m x n matrices, and « is a scalar. Also, for matrix A

[z] if transa == CUBLAS_OP_N
op(A[i]) = [z} if transa == CUBLAS_OP_T
AH[{] if transa == CUBLAS_OP_C

The solution X[i] overwrites the right-hand-sides BJ[i] on exit.
No test for singularity or near-singularity is included in this function.

This function works for any sizes but is intended to be used for matrices of small sizes where the
launch overhead is a significant factor. For bigger sizes, it might be advantageous to call batchCount
times the regular within a set of CUDA streams.

The current implementation is limited to devices with compute capability above or equal 2.0.

Param| Mem- | In/out Meaning
ory
han- in- Handle to the cuBLAS library context.
dle put
side in- Indicates if matrix A[1] is on the left or right of X[1].
put
uplo in- Indicates if matrix A[1] lower or upper part is stored, the other part is not
put | referenced and is inferred from the stored elements.
trans in- | Operation op(A[i]) thatis non- or (conj.) transpose.
put
diag in- Indicates if the elements on the main diagonal of matrix A[1] are unity and
put | should not be accessed.
m in- Number of rows of matrix B[1], with matrix A[i] sized accordingly.
put
n in- | Number of columns of matrix B[1], with matrix A[i] is sized accordingly.
put
al- host in- | <type> scalar used for multiplication, if alpha == 0 then A[i] is not ref-
pha orde- | put | erenced and B[i] does not have to be a valid input.
vice
A de- in- | Array of pointers to <type> array, with each array of dim. 1da x mwith 1da
vice put | >= max(1, m) if side == CUBLAS_SIDE_LEFT and lda x nwith lda >=
max(1, n) otherwise.
1da in- Leading dimension of two-dimensional array used to store matrix A[i].
put
B de- infout Array of pointers to <type> array, with each array of dim. 1db x n with 1db
vice >= max(1, m). Matrices B[i] should not overlap; otherwise, undefined
behavior is expected.
1db in- Leading dimension of two-dimensional array used to store matrix B[1].
put
batchr in- | Number of pointers contained in A and B.
Count put

The possible error values returned by this function and their meanings are listed below.

118 Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

Error Value Meaning
CUBLAS_STATUS_SUCCESS The operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized

CUBLAS_STATUS_INVALID_VALUE
Ifm < @,n < 6,0r

if trans is not one of CUBLAS_OP_N,
CUBLAS_OP_T and CUBLAS_OP_C, or

if uplois not one of CUBLAS_FILL_MODE_
LOWER and CUBLAS_FILL_MODE_UPPER, or
if side is not one of CUBLAS_SIDE_LEFT
and CUBLAS_SIDE_RIGHT, or

if diag is not one of CUBLAS_DIAG_UNIT
and CUBLAS_DIAG_NON_UNIT, or

if lda < max(1, m) if side == CUBLAS_
SIDE_LEFT,and 1da < max(1, n) other-
wise, or

if 1db < max(1, m)

CUBLAS_STATUS_EXECUTION_FAILED The function failed to launch on the GPU

For references please refer to NETLIB documentation:

) ’)

cublasStatus_t cublasChemm(cublasHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
int m, int n,

const cuComplex *alpha,
const cuComplex *A, int 1lda,
const cuComplex *B, int 1db,
const cuComplex *beta,
cuComplex *C, int ldc)

cublasStatus_t cublasZhemm(cublasHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
int m, int n,
const cuDoubleComplex *alpha,
const cuDoubleComplex *A, int lda,
const cuDoubleComplex *B, int ldb,
const cuDoubleComplex *beta,
cuDoubleComplex *C, int 1ldc)

This function supports the

This function performs the Hermitian matrix-matrix multiplication

- aAB + pC if side == CUBLAS_SIDE_LEFT
" \aBA+ BC if side == CUBLAS_SIDE_RIGHT

where A is a Hermitian matrix stored in lower or upper mode, B and C are m x n matrices, and « and
(3 are scalars.

2.7. cuBLAS Level-3 Function Reference 119

http://www.netlib.org/blas/strsm.f
http://www.netlib.org/blas/dtrsm.f
http://www.netlib.org/blas/ctrsm.f
http://www.netlib.org/blas/ztrsm.f

cuBLAS, Release 12.9

ParamMem-| Infout Meaning

ory
han- in- Handle to the cuBLAS library context.
dle put
side in- Indicates if matrix A is on the left or right of B.
put
uplo in- Indicates if matrix A lower or upper part is stored, the other Hermitian part is
put | not referenced and is inferred from the stored elements.
m in- Number of rows of matrix C and B, with matrix A sized accordingly.
put
n in- Number of columns of matrix C and B, with matrix A sized accordingly.
put
al- | host | in- <type> scalar used for multiplication.
pha | or put
de-
vice
A de- in- | <type> array of dimension 1da x m with 1da >= max(1, m) if

vice | put | side==CUBLAS_SIDE_LEFT and 1da x n with 1da >= max(1, n) oth-
erwise. The imaginary parts of the diagonal elements are assumed to be zero.

lda in- Leading dimension of two-dimensional array used to store matrix A.
put
B de- in- | <type> array of dimension 1db x nwith 1db >= max(1, m).
vice put
1db in- Leading dimension of two-dimensional array used to store matrix B.
put
beta in- <type> scalar used for multiplication. If beta == 0 then C does not have to
put | be avalid input.
C de- infout <type> array of dimensions 1dc x nwith 1dc >= max(1, m).
vice
ldc in- Leading dimension of two-dimensional array used to store matrix C.
put

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning
CUBLAS_STATUS_SUCCESS The operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized

CUBLAS_STATUS_INVALID_VALUE
Ifm < Qorn < 0,or

if side is not one of CUBLAS_SIDE_LEFT
and CUBLAS_SIDE_RIGHT, or

if uplo is not one of CUBLAS_FILL_MODE_
LOWER and CUBLAS_FILL_MODE_UPPER,or
if 1da < max(1, m) when side ==
CUBLAS_SIDE_LEFT, and 1da < max(1,
n) otherwise, or

if ldb < max(1, m),or

if 1dc < max(1, m),or

if alpha or beta are NULL, or

if Cis NULL when beta is not zero

CUBLAS_STATUS_EXECUTION_FAILED The function failed to launch on the GPU

120 Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

For references please refer to NETLIB documentation:

3

cublasStatus_t cublasCherk(cublasHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
int n, int Kk,
const float *alpha,

const cuComplex *A, int 1da,
const float *beta,
cuComplex *C, int ldc)

cublasStatus_t cublasZherk(cublasHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
int n, int k,
const double *alpha,
const cuDoubleComplex *A, int lda,
const double *beta,
cuDoubleComplex *C, int 1ldc)

This function supports the
This function performs the Hermitian rank- k update
C = aop(A)op(A)H 4 BC

where a and g are scalars, C is a Hermitian matrix stored in lower or upper mode, and A is a matrix
with dimensions op(A) n x k. Also, for matrix A

on(A) — A if transa == CUBLAS_OP_N
P(A) =1 AH iftransa == CUBLAS_OP_C

2.7. cuBLAS Level-3 Function Reference 121

http://www.netlib.org/blas/chemm.f
http://www.netlib.org/blas/zhemm.f

cuBLAS, Release 12.9

Param.Mem- In/oult Meaning
ory

han- in- Handle to the cuBLAS library context.

dle put

uplo in- Indicates if matrix C lower or upper part is stored, the other Hermitian part
put | is not referenced.

trans in- Operation op(A) that is non- or (conj.) transpose.
put

n in- Number of rows of matrix op(A) and C.
put

k in- Number of columns of matrix op(A).
put

al- | host or | in- <type> scalar used for multiplication.

pha | device | put

A device | in- | <type> array of dimension 1da x k with 1da >= max(1, n)if transa ==
put | CUBLAS_OP_Nand lda x nwith 1da >= max(1, k) otherwise.

lda in- Leading dimension of two-dimensional array used to store matrix A.
put

beta in- <type> scalar used for multiplication. If beta == 0 then C does not have to
put | be avalid input.

C device | infout <type> array of dimension 1dc x n,with 1dc >= max(1, n). Theimaginary

parts of the diagonal elements are assumed and set to zero.

ldc in- Leading dimension of two-dimensional array used to store matrix C.

put

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning
CUBLAS_STATUS_SUCCESS The operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized

CUBLAS_STATUS_INVALID_VALUE

Ifn < Bork < 0,0r

if trans is not one of CUBLAS_OP_N,
CUBLAS_OP_T and CUBLAS_OP_C, or

if uplo is not one of CUBLAS_FILL_MODE_
LOWER and CUBLAS_FILL_MODE_UPPER, or
if lda < max(1, n) when trans ==
CUBLAS_OP_N,and 1da < max(1, k) oth-
erwise, or

if 1dc < max(1, n),or

if alpha or beta are NULL, or

if Cis NULL when beta is not zero

CUBLAS_STATUS_EXECUTION_FAILED The function failed to launch on the GPU

For references please refer to NETLIB documentation:

3

122

Chapter 2. Using the cuBLAS API

http://www.netlib.org/blas/cherk.f
http://www.netlib.org/blas/zherk.f

cuBLAS, Release 12.9

cublasStatus_t cublasCher2k(cublasHandle_t handle,
cublasFillMode_t uplo,

int n, int k,
const cuComplex
const cuComplex

cublasOperation_t trans,

*alpha,

int lda,

const cuComplex int 1ldb,
const float *beta,
cuComplex *C, int 1ldc)

cublasStatus_t cublasZher2k(cublasHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,

int n, int k,

const cuDoubleComplex *alpha,

const cuDoubleComplex *A,
const cuDoubleComplex *B,

const double *beta,

int 1lda,
int 1db,

cuDoubleComplex *C, int 1ldc)

This function supports the
This function performs the Hermitian rank- 2k update

C = aop(A)op(B)" + aop(B)op(4)" + AC

where « and § are scalars, C is a Hermitian matrix stored in lower or upper mode, and A and B are

matrices with dimensions op(A) n x k and op(B) n x k , respectively. Also, for matrix A and B

op(A) and op(B) = Aand B if trans == CUBLAS_OP_N
P PYBI =1 AH and BE if trans == CUBLAS_OP_C

2.7. cuBLAS Level-3 Function Reference

123

cuBLAS, Release 12.9

Param.Mem- In/oult Meaning
ory

han- in- Handle to the cuBLAS library context.

dle put

uplo in- Indicates if matrix C lower or upper part is stored, the other Hermitian part
put | is not referenced.

trans in- Operation op(A) that is non- or (conj.) transpose.
put

n in- Number of rows of matrix op(A), op(B) and C.
put

k in- Number of columns of matrix op(A) and op(B).
put

al- | host or | in- <type> scalar used for multiplication.

pha | device | put

A device | in- | <type> array of dimension 1da x k with 1da >= max(1, n)if transa ==
put | CUBLAS_OP_Nand lda x nwith 1da >= max(1, k) otherwise.

lda in- Leading dimension of two-dimensional array used to store matrix A.
put

B device | in- | <type> array of dimension 1db x k with 1db >= max(1, n)if transb ==
put | CUBLAS_OP_Nand 1db x n with 1db>=max(1, k) otherwise.

1db in- Leading dimension of two-dimensional array used to store matrix B.
put

beta| host or | in- <type> scalar used for multiplication. If beta == 0 then C does not have to

device | put | be avalid input.
C device | in/out <type> array of dimension 1dc x n,with 1dc >= max(1, n). Theimaginary
parts of the diagonal elements are assumed and set to zero.

ldc in- Leading dimension of two-dimensional array used to store matrix C.

put

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning
CUBLAS_STATUS_SUCCESS The operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized

CUBLAS_STATUS_INVALID_VALUE
Ifn < Bork < 0,o0r

if trans is not one of CUBLAS_OP_N,
CUBLAS_OP_T and CUBLAS_OP_C, or

if uplois not one of CUBLAS_FILL_MODE_
LOWER and CUBLAS_FILL_MODE_UPPER,or
if 1da < max(1, n) when trans ==
CUBLAS_OP_N,and 1da < max(1, k) oth-
erwise, or

if ldc < max(1, n),or

if alpha or beta are NULL, or

if Cis NULL when beta is not zero

CUBLAS_STATUS_EXECUTION_FAILED The function failed to launch on the GPU

For references please refer to NETLIB documentation:

3

124 Chapter 2. Using the cuBLAS API

http://www.netlib.org/blas/cher2k.f
http://www.netlib.org/blas/zher2k.f

cuBLAS, Release 12.9

cublasStatus_t cublasCherkx(cublasHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
int n, int k,

const cuComplex *alpha,
const cuComplex *A, int lda,
const cuComplex *B, int 1ldb,
const float *beta,

cuComplex *C, int 1ldc)

cublasStatus_t cublasZherkx(cublasHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
int n, int k,
const cuDoubleComplex *alpha,
const cuDoubleComplex *A, int lda,
const cuDoubleComplex #*B, int ldb,
const double *beta,
cuDoubleComplex *C, int 1ldc)

This function supports the
This function performs a variation of the Hermitian rank- k update
C = aop(A)op(B)" + pC

where « and § are scalars, C is a Hermitian matrix stored in lower or upper mode, and A and B are
matrices with dimensions op(A) n x k and op(B) n x k , respectively. Also, for matrix A and B

op(A) and op(B) = Aand B if trans == CUBLAS_OP_N
P PYBI =1 AH and BE if trans == CUBLAS_OP_C

This routine can be used when the matrix B is in such way that the result is guaranteed to be hermitian.
An usual example is when the matrix B is a scaled form of the matrix A: this is equivalent to B being
the product of the matrix A and a diagonal matrix. For an efficient computation of the product of a
regular matrix with a diagonal matrix, refer to the routine

2.7. cuBLAS Level-3 Function Reference 125

cuBLAS, Release 12.9

Param.Mem- In/oult Meaning
ory

han- in- Handle to the cuBLAS library context.

dle put

uplo in- Indicates if matrix C lower or upper part is stored, the other Hermitian part
put | is not referenced.

trans in- Operation op(A) that is non- or (conj.) transpose.
put

n in- Number of rows of matrix op(A), op(B) and C.
put

k in- Number of columns of matrix op(A) and op(B).
put

al- | host or | in- <type> scalar used for multiplication.

pha | device | put

A device | in- | <type> array of dimension 1da x k with 1da >= max(1, n)if transa ==
put | CUBLAS_OP_Nand lda x nwith 1da >= max(1, k) otherwise.

lda in- Leading dimension of two-dimensional array used to store matrix A.
put

B device | in- | <type> array of dimension 1db x k with 1db >= max(1, n)if transb ==
put | CUBLAS_OP_Nand 1db x n with 1db>=max(1, k) otherwise.

1db in- Leading dimension of two-dimensional array used to store matrix B.
put

beta| host or | in- Real scalar used for multiplication. If beta == 0 then C does not have to

device | put | be avalid input.
C device | in/out <type> array of dimension 1dc x n,with 1dc >= max(1, n). Theimaginary
parts of the diagonal elements are assumed and set to zero.

ldc in- Leading dimension of two-dimensional array used to store matrix C.

put

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning
CUBLAS_STATUS_SUCCESS The operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized

CUBLAS_STATUS_INVALID_VALUE
Ifn < Bork < 0,o0r

if trans is not one of CUBLAS_OP_N,
CUBLAS_OP_T and CUBLAS_OP_C, or

if uplois not one of CUBLAS_FILL_MODE_
LOWER and CUBLAS_FILL_MODE_UPPER,or
if 1da < max(1, n) when trans ==
CUBLAS_OP_N,and 1da < max(1, k) oth-
erwise, or

if ldc < max(1, n),or

if alpha or beta are NULL, or

if Cis NULL when beta is not zero

CUBLAS_STATUS_EXECUTION_FAILED The function failed to launch on the GPU

For references please refer to NETLIB documentation:

, and

126 Chapter 2. Using the cuBLAS API

http://www.netlib.org/blas/cherk.f
http://www.netlib.org/blas/zherk.f

cuBLAS, Release 12.9

This section describes the BLAS-extension functions that perform matrix-matrix operations.

cublasStatus_t

cublasSgeam(cublasHandle_t handle,

cublasOperation_t transa, cublasOperation_t transb,

int m, int n,

const float *alpha,
const float *A, int lda,
const float *beta,

const float *B, int 1db,
float *C, int 1ldc)

cublasStatus_t

cublasDgeam(cublasHandle_t handle,

cublasOperation_t transa, cublasOperation_t transb,

int m, int n,

const double *alpha,
const double *A, int lda,
const double *beta,

const double *B, int 1db,
double *C, int 1ldc)

cublasStatus_t

cublasCgeam(cublasHandle_t handle,

cublasOperation_t transa, cublasOperation_t transb,

int m, int n,

const cuComplex *alpha,
const cuComplex *A, int lda,
const cuComplex *beta ,
const cuComplex *B, int 1db,
cuComplex *C, int 1ldc)

cublasStatus_t

cublasZgeam(cublasHandle_t handle,

cublasOperation_t transa, cublasOperation_t transb,

int m,
const
const
const
const

int n,
cuDoubleComplex
cuDoubleComplex
cuDoubleComplex
cuDoubleComplex

*alpha,
*A, int 1lda,
*beta,
*B, int 1ldb,

cuDoubleComplex *C, int 1ldc)

This function supports the

This function performs the matrix-matrix addition/transposition

C = aop(4) + Bop(B)

where aand § are scalars,and A, B and C are matrices stored in column-major format with dimensions
op(A) m x n,op(B)m xnand Cm x n, respectively. Also, for matrix A

A if transa == CUBLAS_OP_N
op(A) =< AT if transa == CUBLAS_OP_T
AH if transa == CUBLAS_OP_C

and op(B) is defined similarly for matrix B .

2.8. BLAS-like Extension

127

http://www.netlib.org/blas/cher2k.f
http://www.netlib.org/blas/zher2k.f

cuBLAS, Release 12.9

The operation is out-of-place if C does not overlap A or B.

The in-place mode supports the following two operations,

C = o*C + Bop(B)
C = aop(A) + g*C

For in-place mode, if C = A,1dc = 1daand transa = CUBLAS_OP_N.IfC = B,1dc = 1dband transb
= CUBLAS_OP_N. If the user does not meet above requirements, CUBLAS_STATUS_INVALID_VALUE is
returned.

The operation includes the following special cases:

the user can reset matrix C to zero by setting *alpha=*beta=0.

the user can transpose matrix A by setting *alpha=1 and *beta=0.

Param.Mem- In/out Meaning
ory

han- in- Handle to the cuBLAS library context.

dle put

transa in- | Operation op(A) that is non- or (conj.) transpose.
put

transb in- | Operation op(B) that is non- or (conj.) transpose.
put

m in- | Number of rows of matrix op(A) and C.
put

n in- Number of columns of matrix op(B) and C.
put

al- | host or | in- | <type> scalar used for multiplication. If *alpha == 0, A does not have to

pha | device | put | be avalid input.

A device | in- | <type> array of dimensions 1da x n with 1da >= max(1, m) if transa
put | == CUBLAS_OP_Nand lda x mwith 1da >= max(1, n) otherwise.

lda in- | Leading dimension of two-dimensional array used to store the matrix A.
put

B device | in- | <type> array of dimension 1db x nwith 1db >= max(1, m) if transb ==
put | CUBLAS_OP_Nand 1db x mwith 1db>=max (1, n) otherwise.

1db in- | Leading dimension of two-dimensional array used to store matrix B.
put

beta| host or | in- <type> scalar used for multiplication. If *beta == 0, B does not have to be

device | put | avalidinput.

C device | out- | <type> array of dimensions 1dc x nwith 1dc >= max(1, m).
put

ldc in- Leading dimension of a two-dimensional array used to store the matrix C.
put

The possible error values returned by this function and their meanings are listed below.

128

Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

Error Value

Meaning

CUBLAS_STATUS_SUCCESS

The operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED

The library was not initialized

CUBLAS_STATUS_INVALID_VALUE

Ifm < Born < 0,or

if transa is not one of CUBLAS_OP_N,
CUBLAS_OP_T and CUBLAS_OP_C, or

if transb is not one of CUBLAS_OP_N,
CUBLAS_OP_T and CUBLAS_OP_C, or

if 1da < max(1, m) when transa ==
CUBLAS_OP_N,and 1da < max(1, n) oth-

erwise, or
if 1db < max(1, m) if transb
erwise, or

if 1dc < max(1, m),or

N) || (lda !'= 1ldc),or

N) || (1db !'= 1dc),or
if alpha or beta are NULL

CUBLAS_OP_N,and 1db < max(1, n) oth-

if A == Cand (transa != CUBLAS_OP_

ifB == Cand (transb != CUBLAS_OP_

CUBLAS_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU

cublasStatus_t cublasSdgmm(cublasHandle_t

int m, int n,
const float
const float
float

cublasStatus_t cublasDdgmm(cublasHandle_t

int m, int n,
const double
const double
double

cublasStatus_t cublasCdgmm(cublasHandle_t

int m, int n,

const cuComplex
const cuComplex

cuComplex

cublasStatus_t cublasZdgmm(cublasHandle_t

int m, int n,

handle, cublasSideMode_t mode,

*A, int lda,
*x, int incx,

*C, int 1ldc)

handle, cublasSideMode_t mode,
*A, int lda,
*x, int incx,

*C, int 1ldc)

handle, cublasSideMode_t mode,
*A, int 1lda,
*x, int incx,

*C, int 1ldc)

handle, cublasSideMode_t mode,

const cuDoubleComplex *A, int lda,
const cuDoubleComplex *x, int incx,
cuDoubleComplex *C, int 1ldc)

This function supports the

This function performs the matrix-matrix multiplication

_ {A x diag(X)
| diag(X) x A

if mode == CUBLAS_SIDE_RIGHT
if mode == CUBLAS_SIDE_LEFT

where A and C are matrices stored in column-major format with dimensions m x n. X is a vector of

2.8. BLAS-like Extension

129

cuBLAS, Release 12.9

size nif mode == CUBLAS_SIDE_RIGHT and of size m if mode == CUBLAS_SIDE_LEFT. X is gathered
from one-dimensional array x with stride incx. The absolute value of incx is the stride and the sign of
incxis direction of the stride. If incx is positive, then we forward x from the first element. Otherwise,
we backward x from the last element. The formula of X is

x[j X incx] if incx >0
{m[(x — 1) X lincx| — j X |incz|] if incx <0

where x = m if mode == CUBLAS_SIDE_LEFT and xy = n if mode == CUBLAS_SIDE_RIGHT.

Example 1: if the user wants to perform diag(diag(B)) x A, then incx = Idb + 1 where [db is leading
dimension of matrix B, either row-major or column-major.

X[l =

Example 2: if the user wants to perform a x A, then there are two choices, either
with *beta=0 and transa == CUBLAS_OP_N or with incx=0 and x[@]=alpha.

The operation is out-of-place. The in-place only works if 1da = 1dc.

Pararh.Mem{ In/out Meaning
ory
han- in- Handle to the cuBLAS library context.
dle put
mode in- Left multiply if mode == CUBLAS_SIDE_LEFT or right multiply if mode ==
put | CUBLAS_SIDE_RIGHT
m in- Number of rows of matrix A and C.
put
n in- Number of columns of matrix A and C.
put
A de- | in- | <type> array of dimensions 1da x nwith 1da >= max(1, m)
vice | put
lda in- Leading dimension of two-dimensional array used to store the matrix A.
put
X de- | in- | One-dimensional <type> array of size abs(incx) x mif mode == CUBLAS_
vice | put | SIDE_LEFT and abs(incx) x nifmode == CUBLAS_SIDE_RIGHT
incx in- Stride of one-dimensional array x.
put
C de- | infout <type> array of dimensions 1dc x n with 1dc >= max(1, m).
vice
ldc in- Leading dimension of a two-dimensional array used to store the matrix C.
put

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning
CUBLAS_STATUS_SUCCESS The operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized

CUBLAS_STATUS_INVALID_VALUE
Ifm < Born < 0,or

if mode is not one of CUBLAS_SIDE_LEFT
and CUBLAS_SIDE_RIGHT, or

if lda < max(1, m),or

if 1dc < max(1, m)

CUBLAS_STATUS_EXECUTION_FAILED The function failed to launch on the GPU

130 Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

cublasStatus_t cublasSgetrfBatched(cublasHandle_t handle,
int n,
float *const Aarray[],
int 1lda,
int *PivotArray,
int *infoArray,
int batchSize);

cublasStatus_t cublasDgetrfBatched(cublasHandle_t handle,
int n,
double *const Aarray[],
int lda,
int *PivotArray,
int *infoArray,
int batchSize);

cublasStatus_t cublasCgetrfBatched(cublasHandle_t handle,
int n,
cuComplex *const Aarray[],
int lda,
int *PivotArray,
int *infoArray,
int batchSize);

cublasStatus_t cublasZgetrfBatched(cublasHandle_t handle,
int n,
cuDoubleComplex *const Aarray|],
int 1lda,
int *PivotArray,
int *infoArray,
int batchSize);

Aarray is an array of pointers to matrices stored in column-major format with dimensions nxn and
leading dimension 1da.

This function performs the LU factorization of each Aarray[i] fori =0, .., batchSize-1 by the
following equation

P*Aarrayli] = L*U

where P is a permutation matrix which represents partial pivoting with row interchanges. L is a lower
triangular matrix with unit diagonal and U is an upper triangular matrix.

Formally P is written by a product of permutation matrices Pj, forj = 1,2,...,n,sayP = P1 *
P2 * P3 * * Pn. Pjisapermutation matrix which interchanges two rows of vector x when
performing Pj*x. Pj can be constructed by j element of PivotArray[i] by the following Matlab
code

// In Matlab PivotArray[i] is an array of base-1.
// In C, PivotArray[i] is base-0.

Pj = eye(n);

swap Pj(j,:) and Pj(PivotArray[i][j] ,:)

L and U are written back to original matrix A, and diagonal elements of L are discarded. The L and U
can be constructed by the following Matlab code

2.8. BLAS-like Extension 131

cuBLAS, Release 12.9

// A is a matrix of nxn after getrf.
L = eye(n);
for j = 1:n
L(j+1:n,3) = A(j+1:n,3)
end
U = zeros(n);
for i = 1:n
U(i,i:n) = A(i,i:n)
end

If matrix A(=Aarray[i]) is singular, getrf still works and the value of info(=infoArray[i]) reports
first row index that LU factorization cannot proceed. If infois k, U(k, k) is zero. The equation P*A=L*U
still holds, however L and U reconstruction needs different Matlab code as follows:

// A is a matrix of nxn after getrf.
// info is k, which means U(k,k) is zero.
L = eye(n);
for j = 1:k-1
L(j+1:n,j) = A(j+1:n,73)
end
U = zeros(n);
for i = 1:k-1
U(i,i:n) = A(i,i:n)
end
for i = k:n
U(i,k:n) = A(i,k:n)
end

This function is intended to be used for matrices of small sizes where the launch overhead is a signif-
icant factor.

cublas<t>getrfBatched supports non-pivot LU factorization if PivotArray is NULL.
cublas<t>getrfBatched supports arbitrary dimension.

cublas<t>getrfBatched only supports compute capability 2.0 or above.

132 Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

ParamMemF In/oult Meaning

ory
han- in- Handle to the cuBLAS library context.
dle put
n in- | Number of rows and columns of Aarray[i].
put
Aar-| de- | in- | Array of pointers to <type> array, with each array of dim. n x n with 1da >=

ray | vice | put/quipxt(1, n). Matrices Aarray[i] should not overlap; otherwise, undefined be-
havior is expected.

lda in- | Leading dimension of two-dimensional array used to store each matrix Aar-
put | ray[i].

Piv-| de- | out- | Array of size n x batchSize that contains the pivoting sequence of each fac-
otAr-vice | put | torization of Aarray[i] stored in a linear fashion. If PivotArray is NULL, piv-
ray oting is disabled.

in- | de- | out- | Array of size batchSize thatinfo(=infoArray[i]) contains the information of fac-
foAr-vice | put | torization of Aarray[i].

ray If info=0, the execution is successful.

If info = -j, the j-th parameter had an illegal value.

If info = k, U(k,k) is 0. The factorization has been completed, but U is exactly
singular.

batch- in- | Number of pointers contained in A

Size put

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized
CUBLAS_STATUS_INVALID_VALUE The parametersn < @ or batchSize < @or 1da <9
CUBLAS_STATUS_EXECUTION_FAILED | The function failed to launch on the GPU

For references please refer to NETLIB documentation:

’))

cublasStatus_t cublasSgetrsBatched(cublasHandle_t handle,
cublasOperation_t trans,
int n,
int nrhs,
const float *const Aarrayl[],
int lda,
const int *devIpiv,
float *const Barray|[],
int 1ldb,
int *info,
int batchSize);

cublasStatus_t cublasDgetrsBatched(cublasHandle_t handle,
cublasOperation_t trans,
int n,
(continues on next page)

2.8. BLAS-like Extension 133

http://www.netlib.org/lapack/single/sgetrf.f
http://www.netlib.org/lapack/double/dgetrf.f
http://www.netlib.org/lapack/complex/cgetrf.f
http://www.netlib.org/lapack/complex16/zgetrf.f

cuBLAS, Release 12.9

(continued from previous page)
int nrhs,
const double *const Aarray|[],
int lda,
const int *devIpiv,
double *const Barray|[],
int 1db,
int *info,
int batchSize);

cublasStatus_t cublasCgetrsBatched(cublasHandle_t handle,
cublasOperation_t trans,
int n,
int nrhs,
const cuComplex *const Aarray][],
int lda,
const int *devIpiv,
cuComplex *const Barray][],
int 1db,
int *info,
int batchSize);

cublasStatus_t cublasZgetrsBatched(cublasHandle_t handle,
cublasOperation_t trans,
int n,
int nrhs,
const cuDoubleComplex *const Aarrayl[],
int 1lda,
const int *devIpiv,
cuDoubleComplex *const Barray][],
int 1db,
int *info,
int batchSize);

This function solves an array of systems of linear equations of the form
op(Ali]) X[i] = Bl

where A[7] is a matrix which has been LU factorized with pivoting, X[i] and B[i] are n x nrhs matrices.
Also, for matrix A

Ali] if trans == CUBLAS_OP_N
[¢] if trans == CUBLAS_OP_T

op(Ali]) = { A”
AHJj] if trans == CUBLAS_OP_C

This function is intended to be used for matrices of small sizes where the launch overhead is a signif-
icant factor.

supports non-pivot LU factorization if devIpiv is NULL.
supports arbitrary dimension.

only supports compute capability 2.0 or above.

134 Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

Param. Memt Infout| Meaning
ory
han- in- Handle to the cuBLAS library context.
dle put
trans in- Operation op(A) that is non- or (conj.) transpose.
put
n in- Number of rows and columns of Aarray[i].
put
nrhs in- Number of columns of Barray[i].
put
Aar- | de- | in- Array of pointers to <type> array, with each array of dim. n x n with 1da >=
ray | vice | put max(1, n).
lda in- Leading dimension of two-dimensional array used to store each matrix Aar-
put ray[i].
de- | de- | in- Array of size n x batchSize that contains the pivoting sequence of each
vIpiy vice | put factorization of Aarray[i] stored in a linear fashion. If devIpiv is NULL,
pivoting for all Aarray[i] is ignored.
Bar- | de- | in- Array of pointers to <type> array, with each array of dim. n x nrhs with
ray | vice | put/foutdatb >= max(1, n). Matrices Barray[i] should not overlap; otherwise,
undefined behavior is expected.
1db in- Leading dimension of two-dimensional array used to store each solution ma-
put trix Barray[i].
info | host| out- | If info=0, the execution is successful.
put If info = -j, the j-th parameter had an illegal value.
batch- in- Number of pointers contained in A
Size put

The possible error values returned by this function and their meanings are listed below.

Error Value

Meaning

CUBLAS_STATUS_SUCCESS

The operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED

The library was not initialized

CUBLAS_STATUS_INVALID_VALUE

Ifn < Bornrhs < 0, or

if trans is not one of CUBLAS_OP_N,
CUBLAS_OP_T and CUBLAS_OP_C, or

if lda < max(1, n),or

if ldb < max(1, n)

CUBLAS_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU

For references please refer to NETLIB documentation:

3

2.8. BLAS-like Extension 135

http://www.netlib.org/lapack/single/sgetrs.f
http://www.netlib.org/lapack/double/dgetrs.f
http://www.netlib.org/lapack/complex/cgetrs.f
http://www.netlib.org/lapack/complex16/zgetrs.f

cuBLAS, Release 12.9

cublasStatus_t cublasSgetriBatched(cublasHandle_t handle,
int n,
const float *const Aarray|[],
int 1lda,
int *PivotArray,
float *const Carray[],
int 1ldc,
int *infoArray,
int batchSize);

cublasStatus_t cublasDgetriBatched(cublasHandle_t handle,
int n,
const double *const Aarray[],
int 1lda,
int *PivotArray,
double *const Carray[],
int ldc,
int *infoArray,
int batchSize);

cublasStatus_t cublasCgetriBatched(cublasHandle_t handle,
int n,
const cuComplex *const Aarrayl[],
int lda,
int *PivotArray,
cuComplex *const Carray[],
int ldc,
int *infoArray,
int batchSize);

cublasStatus_t cublasZgetriBatched(cublasHandle_t handle,
int n,
const cuDoubleComplex *const Aarray[],
int 1lda,
int *PivotArray,
cuDoubleComplex *const Carray|],
int 1ldc,
int *infoArray,
int batchSize);

Aarray and Carray are arrays of pointers to matrices stored in column-major format with dimensions
n*n and leading dimension 1da and 1ldc respectively.

This function performs the inversion of matrices A[i] fori =0, .., batchSize-1.

Prior to calling cublas<t>getriBatched, the matrix A[i] must be factorized first using the routine
cublas<t>getrfBatched. After the call of cublas<t>getrfBatched, the matrix pointing by Aarray[1i]
will contain the LU factors of the matrix A[1] and the vector pointing by (PivotArray+i) will contain
the pivoting sequence.

Following the LU factorization, cublas<t>getriBatched uses forward and backward triangular solvers
to complete inversion of matrices A[i] fori=0, .., batchSize-1. The inversion is out-of-place, so
memory space of Carrayl[i] cannot overlap memory space of Array[i].

Typically all parameters in cublas<t>getrfBatched would be passed into cublas<t>getriBatched. For
example,

136 Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

// step 1: perform in-place LU decomposition, P*A = L*U.

// Aarray[i] is n*n matrix A[i]

cublasDgetrfBatched(handle, n, Aarray, lda, PivotArray, infoArray, batchSize);
// check infoArray[i] to see if factorization of A[i] is successful or not.
// Array[i] contains LU factorization of A[i]

// step 2: perform out-of-place inversion, Carray[i] = inv(A[i])
cublasDgetriBatched(handle, n, Aarray, lda, PivotArray, Carray, ldc, infoArray,

—batchSize);

// check infoArray[i] to see if inversion of A[i] is successful or not.

The user can check singularity from either cublas<t>getrfBatched or cublas<t>getriBatched.

This function is intended to be used for matrices of small sizes where the launch overhead is a signif-
icant factor.

If cublas<t>getrfBatched is performed by non-pivoting, PivotArray of cublas<t>getriBatched
should be NULL.

cublas<t>getriBatched supports arbitrary dimension.

cublas<t>getriBatched only supports compute capability 2.0 or above.

Param. Mem} In/out Meaning

ory
han- in- Handle to the cuBLAS library context.
dle put
n in- | Number of rows and columns of Aarray[i].
put
Aar- | de- | in- | Array of pointers to <type> array, with each array of dimension n*n with 1da
ray | vice | put | >= max(1, n).
lda in- Leading dimension of two-dimensional array used to store each matrix Aar-
put | ray[i].

Piv- | de- | out- | Array of size n*batchSize that contains the pivoting sequence of each fac-
otAr- vice | put | torization of Aarray[i] stored in a linear fashion. If PivotArray is NULL,
ray pivoting is disabled.

Car- | de- | out- | Array of pointers to <type> array, with each array of dimension n*n with ldc
ray | vice | put | >= max(1, n). Matrices Carray[i] should not overlap; otherwise, undefined
behavior is expected.

ldc in- | Leading dimension of two-dimensional array used to store each matrix Car-

put | ray[i].
in- | de- | out- | Array of size batchSize that info(=infoArrayl[i]) contains the information of
foAr- vice | put | inversion of A[i].
ray If info=0, the execution is successful.

If info = k, U(k,k) is 0. The U is exactly singular and the inversion failed.

batch- in- Number of pointers contained in A
Size put

The possible error values returned by this function and their meanings are listed below.

2.8. BLAS-like Extension 137

cuBLAS, Release 12.9

Error Value Meaning
CUBLAS_STATUS_SUCCESS The operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized

CUBLAS_STATUS_INVALID_VALUE
- - B Ifn < Borlda < Borldc < Borbatch-

Size < 9,0r
if lda < norldc < n

CUBLAS_STATUS_EXECUTION_FAILED The function failed to launch on the GPU

cublasStatus_t cublasSmatinvBatched(cublasHandle_t handle,
int n,
const float *const A[],
int 1lda,
float *const Ainv([],
int lda_inv,
int *info,
int batchSize);

cublasStatus_t cublasDmatinvBatched(cublasHandle_t handle,
int n,
const double *const A[],
int 1lda,
double *const Ainv[],
int lda_inv,
int *info,
int batchSize);

cublasStatus_t cublasCmatinvBatched(cublasHandle_t handle,
int n,
const cuComplex *const A[],
int lda,
cuComplex *const Ainv[],
int lda_inv,
int *info,
int batchSize);

cublasStatus_t cublasZmatinvBatched(cublasHandle_t handle,
int n,
const cuDoubleComplex *const A[],
int 1lda,
cuDoubleComplex *const Ainv|[],
int lda_inv,
int *info,
int batchSize);

A and Ainv are arrays of pointers to matrices stored in column-major format with dimensions n*n and
leading dimension 1da and 1da_inv respectively.
This function performs the inversion of matrices A[i] fori =0, .., batchSize-1.

This function is a short cut of plus . However it
doesn’t work if n is greater than 32. If not, the user has to go through and

138 Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

If the matrix A[i] is singular, then info[i] reports singularity, the same as

Param.Memf In/out Meaning
ory
han- in- Handle to the cuBLAS library context.
dle put
n in- | Number of rows and columns of A[1].
put
A de- | in- | Array of pointers to <type> array, with each array of dimension n*n with 1da
vice | put | >= max(1, n).
lda in- Leading dimension of two-dimensional array used to store each matrix A[i].
put
Ainv| de- | out- | Array of pointers to <type> array, with each array of dimension n*n with lda_
vice | put | inv >= max(1, n). Matrices Ainv[i] should not overlap; otherwise, unde-
fined behavior is expected.
lda_ in- | Leading dimension of two-dimensional array used to store each matrix
inv put | Ainv[i].
info| de- | out- | Array of size batchSize that info[i] contains the information of inversion of
vice | put | A[i].
If info[1i] == 0, the execution is successful.
If info[i] == k, thenU(k, k) == 0. The U is exactly singular and the
inversion failed.
batch- in- Number of pointers contained in A.
Size put

The possible error values returned by this function and their meanings are listed below.

Error

Value

Meaning

CUBLAS_STATUS_SUCCESS

The operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED

The library was not initialized

CUBLAS_STATUS_INVALID_VALUE

Ifn < Borlda < Borlda_inv < @or
batchSize < 9, or

if lda < norlda_inv < n,or

ifn > 32

CUBLAS_STATUS_EXECUTION_FAILED The function failed to launch on the GPU

cublasStatus_t cublasSgeqrfBatched(cublasHandle_t handle,

int m,

int n,

float *const Aarray|[],
int 1lda,

float *const TauArrayl[],
int *info,

int batchSize);

cublasStatus_t cublasDgeqrfBatched(cublasHandle_t handle,

int m,
int n,
(continues on next page)

2.8. BLAS-like Extension 139

cuBLAS, Release 12.9

(continued from previous page)
double *const Aarray[],
int 1lda,
double *const TauArray|[],
int *info,
int batchSize);

cublasStatus_t cublasCgeqrfBatched(cublasHandle_t handle,
int m,
int n,
cuComplex *const Aarray[],
int 1lda,
cuComplex *const TauArrayl[],
int *info,
int batchSize);

cublasStatus_t cublasZgeqrfBatched(cublasHandle_t handle,
int m,
int n,
cuDoubleComplex *const Aarray[],
int lda,
cuDoubleComplex *const TauArrayl[],
int *info,
int batchSize);

Aarray is an array of pointers to matrices stored in column-major format with dimensionsm x nand
leading dimension 1da. TauArray is an array of pointers to vectors of dimension of at least max (1,
min(m, n).

This function performs the QR factorization of each Aarray[i] fori = @, ...,batchSize-1 using
Householder reflections. Each matrix Q[1] is represented as a product of elementary reflectors and
is stored in the lower part of each Aarray[i] as follows :

Q[j] = H[jI[1] H[j1[2] . . . H[j]l(k), where k = min(m,n).

Each HI[j][i] has the form

H[31[i] = T - tau[j] * v * v’

where tau[j] is a real scalar, and v is a real vector with v(1:1-1) = @andv(i) = 1;,v(i+1:m)is
stored on exitin Aarray[j][i+1:m,i], and tauin TauArray[j][i].

This function is intended to be used for matrices of small sizes where the launch overhead is a signif-
icant factor.

cublas<t>geqrfBatched supports arbitrary dimension.

cublas<t>geqrfBatched only supports compute capability 2.0 or above.

140 Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

Param. | Mem-| In/out Meaning
ory
han- in- Handle to the cuBLAS library context.
dle put
m in- Number of rows Aarray[i].
put
n in- Number of columns of Aarray[i].
put
Aar- de- in- Array of pointers to <type> array, with each array of dim. m x n with 1da
ray vice | put | >= max(1, m).
lda in- Leading dimension of two-dimensional array used to store each matrix
put | Aarray[i].
TauAr- | de- out- | Array of pointers to <type> vector, with each vector of dim. max(1 ,
ray vice | put | min(m, n)).
info host | out- | If info == 0, the parameters passed to the function are valid
put | Ifinfo < 0, the parameter in postion -info is invalid
batch- in- Number of pointers contained in Aarray
Size put

The possible error values returned by this function and their meanings are listed below.

Error Value

Meaning

CUBLAS_STATUS_SUCCESS

The operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED

The library was not initialized

CUBLAS_STATUS_INVALID_VALUE

Ifm < Born < BorbatchSize < 0,or
if lda < max(1, m)

CUBLAS_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU

For references please refer to NETLIB documentation:

’) 3

cublasStatus_t cublasSgelsBatched(

cublasStatus_t cublasDgelsBatched(

cublasHandle_t handle,
cublasOperation_t trans,
int m,

int n,

int nrhs,

float *const Aarray[],
int 1lda,

float *const Carray|[],
int 1ldc,

int *info,

int *devInfoArray,

int batchSize);

cublasHandle_t handle,
cublasOperation_t trans,
int m,
(continues on next page)

2.8. BLAS-like Extension

141

http://www.netlib.org/lapack/single/sgeqrf.f
http://www.netlib.org/lapack/double/dgeqrf.f
http://www.netlib.org/lapack/complex/cgeqrf.f
http://www.netlib.org/lapack/complex16/zgeqrf.f

cuBLAS, Release 12.9

(continued from previous page)
int n,
int nrhs,
double *const Aarrayl[],
int 1lda,
double *const Carray|[],
int 1ldc,
int *info,
int *devInfoArray,
int batchSize);

cublasStatus_t cublasCgelsBatched(cublasHandle_t handle,
cublasOperation_t trans,
int m,
int n,
int nrhs,
cuComplex *const Aarray[],
int lda,
cuComplex *const Carray][],
int 1ldc,
int *info,
int *devInfoArray,
int batchSize);

cublasStatus_t cublasZgelsBatched(cublasHandle_t handle,
cublasOperation_t trans,
int m,
int n,
int nrhs,
cuDoubleComplex *const Aarray][],
int 1lda,
cuDoubleComplex *const Carrayl[],
int 1ldc,
int *info,
int *devInfoArray,
int batchSize);

Aarray is an array of pointers to matrices stored in column-major format. Carray is an array of point-
ers to matrices stored in column-major format.

This function find the least squares solution of a batch of overdetermined systems: it solves the least
squares problem described as follows :

minimize || Carray[i] - Aarray[il*Xarray[i] || , with i = 0, ..., batchSize-1
On exit, each Aarray|[i] is overwritten with their QR factorization and each Carray[i] is overwritten
with the least square solution

cublas<t>gelsBatched supports only the non-transpose operation and only solves over-determined
systems (m >=n).

cublas<t>gelsBatched only supports compute capability 2.0 or above.

This function is intended to be used for matrices of small sizes where the launch overhead is a signif-
icant factor.

142 Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

Paranmh.MemF In/outt Meaning
ory
han- in- Handle to the cuBLAS library context.
dle put
trans in- | Operation op(Aarray[i])thatis non- or (conj.) transpose. Only non-transpose
put | operation is currently supported.
m in- | Number of rows of each Aarray[i] andCarray[i] if trans == CUBLAS_OP_
put | N,numbers of columns of each Aarray[i] otherwise (not supported currently).
n in- | Number of columns of each Aarray[i] if trans == CUBLAS_OP_N, and num-
put | ber of rows of each Aarray[i] and Carray[i] otherwise (not supported cur-
rently).
nrhs in- | Number of columns of each Carray[i].
put
Aar-| de- | in- | Array of pointers to <type> array, with each array of dim. m x n with 1lda >=
ray | vice | put/quipxt(1, m) if trans == CUBLAS_OP_N,and n x mwith 1da >= max(1, n)
otherwise (not supported currently). Matrices Aarray[i] should not overlap;
otherwise, behavior is undefined.
lda in- | Leading dimension of two-dimensional array used to store each matrix Aar-
put | ray[i].
Car-| de- | in- | Array of pointers to <type> array, with each array of dim. m x nrhs with 1dc >=
ray | vice | put/quiaxt(1, m) if trans == CUBLAS_OP_N,andn x nrhswith 1lda >= max(1, n)
otherwise (not supported currently). Matrices Carray[i] should not overlap;
otherwise, behavior is undefined.
ldc in- | Leading dimension of two-dimensional array used to store each matrix Car-
put | ray[i].
info| host| out- | If info == 0 the parameters passed to the function are valid
put | If info < O the parameter in position -info is invalid
dev-| de- | out- | Optional array of integers of dimension batchsize.
In- | vice | put | If non-null, every element of devInfoArray[i] == V has the following mean-
foArt ing:
ray V == 0: the i-th problem was sucessfully solved
V > 0:the V-th diagonal element of the Aarray[i] is zero. Aarray[i] does
not have full rank.
batch- in- Number of pointers contained in Aarray and Carray
Size put

The possible error values returned by this function and their meanings are listed below.

Error Value

Meaning

CUBLAS_STATUS_SUCCESS

The operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED

The library was not initialized

CUBLAS_STATUS_INVALID_VALUE

Ifm < @orn < Bornrhs < B@orbatch-
Size < Qor
if lda < max (1, m) or1dc < max(1, m)

CUBLAS_STATUS_NOT_SUPPORTED

The parameters m <n or trans is different from
non-transpose.

CUBLAS_STATUS_EXECUTION_FAILED The function failed to launch on the GPU

For references please refer to NETLIB documentation:

3

3

’

2.8. BLAS-like Extension 143

http://www.netlib.org/lapack/single/sgels.f
http://www.netlib.org/lapack/double/dgels.f
http://www.netlib.org/lapack/complex/cgels.f
http://www.netlib.org/lapack/complex16/zgels.f

cuBLAS, Release 12.9

cublasStatus_t cublasStpttr (cublasHandle_t handle,
cublasFillMode_t uplo,
int n,
const float *AP,
float *A,
int 1lda);

cublasStatus_t cublasDtpttr (cublasHandle_t handle,
cublasFillMode_t uplo,
int n,
const double *AP,
double *A,
int 1lda);

cublasStatus_t cublasCtpttr (cublasHandle_t handle,
cublasFillMode_t uplo,
int n,
const cuComplex *AP,
cuComplex *A,
int 1lda);

cublasStatus_t cublasZtpttr (cublasHandle_t handle,
cublasFillMode_t uplo
int n,
const cuDoubleComplex *AP,
cuDoubleComplex *A,
int 1lda);

This function performs the conversion from the triangular packed format to the triangular format

If uplo == CUBLAS_FILL_MODE_LOWER then the elements of AP are copied into the lower triangular
part of the triangular matrix A and the upper part of A is left untouched. If uplo == CUBLAS_FILL_
MODE_UPPER then the elements of AP are copied into the upper triangular part of the triangular matrix
A and the lower part of A is left untouched.

Param| Mem- | Infout| Meaning
ory
han- in- Handle to the cuBLAS library context.
dle put
uplo in- Indicates if matrix AP contains lower or upper part of matrix A.
put
n in- Number of rows and columns of matrix A.
put
AP de- in- <type> array with A stored in packed format.
vice put
A de- out- | <type> array of dimensions 1da x n, with 1da >= max(1, n). The
vice put opposite side of A is left untouched.
lda in- Leading dimension of two-dimensional array used to store matrix A.
put

The possible error values returned by this function and their meanings are listed below.

144 Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

Error Value Meaning
CUBLAS_STATUS_SUCCESS The operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized

CUBLAS_STATUS_INVALID_VALUE
Ifn < 0, o0r

if uplo is not one of CUBLAS_FILL_MODE_
LOWER and CUBLAS_FILL_MODE_UPPER, or
if lda < max(1, n)

CUBLAS_STATUS_EXECUTION_FAILED The function failed to launch on the GPU

For references please refer to NETLIB documentation:

3 ’ ’

cublasStatus_t cublasStrttp (cublasHandle_t handle,
cublasFillMode_t uplo,
int n,
const float *A,
int 1lda,
float *AP);

cublasStatus_t cublasDtrttp (cublasHandle_t handle,
cublasFillMode_t uplo,
int n,
const double *A,
int lda,
double *AP);

cublasStatus_t cublasCtrttp (cublasHandle_t handle,
cublasFillMode_t uplo,
int n,
const cuComplex *A,
int 1lda,
cuComplex *AP);

cublasStatus_t cublasZtrttp (cublasHandle_t handle,
cublasFillMode_t uplo,
int n,
const cuDoubleComplex *A,
int 1lda,
cuDoubleComplex *AP);

This function performs the conversion from the triangular format to the triangular packed format

If uplo == CUBLAS_FILL_MODE_LOWER then the lower triangular part of the triangular matrix A is
copied into the array AP. If uplo == CUBLAS_FILL_MODE_UPPER then then the upper triangular part
of the triangular matrix A is copied into the array AP.

2.8. BLAS-like Extension 145

http://www.netlib.org/lapack/explore-html/d7/d70/stpttr_8f.html
http://www.netlib.org/lapack/explore-html/df/d63/dtpttr_8f.html
http://www.netlib.org/lapack/explore-html/de/d13/ctpttr_8f.html
http://www.netlib.org/lapack/explore-html/d6/dbc/ztpttr_8f.html

cuBLAS, Release 12.9

Param. | Mem- Infout | Meaning

ory
handle input Handle to the cuBLAS library context.
uplo input Indicates which matrix A lower or upper part is referenced.
n input Number of rows and columns of matrix A.
A device input <type> array of dimensions 1da x n, with 1da >= max(1, n).
lda input Leading dimension of two-dimensional array used to store matrix A.
AP device out- <type> array with A stored in packed format.

put

The possible error values returned by this function and their meanings are listed below.

Error Value

Meaning

CUBLAS_STATUS_SUCCESS

The operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED

The library was not initialized

CUBLAS_STATUS_INVALID_VALUE

Ifn < @or

if uplo is not one of CUBLAS_FILL_MODE_
LOWER and CUBLAS_FILL_MODE_UPPER, or
if 1da < max(1, n)

CUBLAS_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU

For references please refer to NETLIB documentation:

3

cublasStatus_t cublasSgemmEx(cublasHandle_t handle,

cublasOperation_t transa,
cublasOperation_t transb,

int m,

int n,

int k,

const float *alpha,
const void *A,
cudaDataType_t Atype,
int 1lda,

const void *B,
cudaDataType_t Btype,
int 1ldb,

const float *beta,
void *C,
cudaDataType_t Ctype,
int 1dc)

cublasStatus_t cublasCgemmEx(cublasHandle_t handle,

cublasOperation_t transa,
cublasOperation_t transb,
int m,
int n,
int k,
const cuComplex *alpha,
(continues on next page)

146

Chapter 2. Using the cuBLAS API

http://www.netlib.org/lapack/explore-html/d9/def/strttp_8f.html
http://www.netlib.org/lapack/explore-html/d0/daf/dtrttp_8f.html
http://www.netlib.org/lapack/explore-html/d7/d56/ctrttp_8f.html
http://www.netlib.org/lapack/explore-html/da/dc2/ztrttp_8f.html

cuBLAS, Release 12.9

(continued from previous page)

const void *A,

cudaDataType_t Atype,

int lda,

const void *B,

cudaDataType_t Btype,

int 1db,

const cuComplex *beta,

void *C,

cudaDataType_t Ctype,

int 1dc)
This function supports the
This function is an extension of . In this function the input matrices and output ma-
trices can have a lower precision but the computation is still done in the type <t>. For example, in the
type float for and in the type cuComplex for

C = aop(A)op(B) + BC

where aand § are scalars,and A, B and C are matrices stored in column-major format with dimensions
op(A) m x k,op(B) k x nand C m x n, respectively. Also, for matrix A

A if transa == CUBLAS_OP_N
op(A) =< AT if transa == CUBLAS_OP_T
AH if transa == CUBLAS_OP_C

and op(B) is defined similarly for matrix B .

2.8. BLAS-like Extension 147

cuBLAS, Release 12.9

Param.Mem- In/oult Meaning
ory

han- in- Handle to the cuBLAS library context.

dle put

transa in- | Operation op(A) that is non- or (conj.) transpose.
put

transb in- Operation op(B) that is non- or (conj.) transpose.
put

m in- | Number of rows of matrix op(A) and C.
put

n in- | Number of columns of matrix op(B) and C.
put

k in- | Number of columns of op(A) and rows of op(B).
put

al- | host or | in- <type> scalar used for multiplication.

pha | device | put

A device | in- | <type> array of dimensions 1da x k with 1da >= max(1, m) if transa
put | == CUBLAS_OP_Nand 1lda x mwith 1da >= max(1, k) otherwise.

Atype in- Enumerant specifying the datatype of matrix A.
put

lda in- Leading dimension of two-dimensional array used to store the matrix A.
put

B device | in- | <type> array of dimension 1db x nwith 1db >= max(1, k) if transb ==
put | CUBLAS_OP_Nand 1db x k with 1db>=max(1,n) otherwise.

Btype in- Enumerant specifying the datatype of matrix B.
put

1db in- | Leading dimension of two-dimensional array used to store matrix B.
put

beta| host or | in- <type> scalar used for multiplication. If beta == 0, C does not have to be

device | put | avalidinput.

C device | infout <type> array of dimensions 1dc x nwith 1dc >= max(1, m).

Ctype in- Enumerant specifying the datatype of matrix C.
put

ldc in- Leading dimension of a two-dimensional array used to store the matrix C.
put

The matrix types combinations supported for

are listed below:

C A/B
CUDA_R_16BF | CUDA_R_16BF
CUDA_R_16F CUDA_R_16F
CUDA_R_32F CUDA_R_8I
CUDA_R_16BF
CUDA_R_16F
CUDA_R_32F

The matrix types combinations supported for

are listed below :

148

Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

C

A/B

CUDA_C_32F

CUDA_C_8I

CUDA_C_32F

The possible error values returned by this function and their meanings are listed below.

Error Value

Meaning

CUBLAS_STATUS_SUCCESS

The operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED

The library was not initialized

CUBLAS_STATUS_ARCH_MISMATCH

is only supported for GPU with
architecture capabilities equal or greater than
5.0

CUBLAS_STATUS_NOT_SUPPORTED

The combination of the parameters Atype,
Btype and Ctype is not supported

CUBLAS_STATUS_INVALID_VALUE

Ifm < Born < Bork < 0,o0r

if transa and transb are not one of
CUBLAS_OP_N, CUBLAS_OP_C, CUBLAS_
OP_T, or

if lda < max(1, m) when transa ==
CUBLAS_OP_Nand 1da < max(1, k) oth-
erwise, or

if 1db < max(1, k) when transb ==
CUBLAS_OP_Nand 1db < max(1, n) oth-
erwise, or

if 1dc < max(1, m),or

if alpha or beta are NULL, or

if Cis NULL when beta is not zero

CUBLAS_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU

For references please refer to NETLIB documentation:

For more information about the numerical behavior of some GEMM algorithms, refer to the

section.

cublasStatus_t cublasGemmEx(cublasHandle_t handle,
cublasOperation_t transa,
cublasOperation_t transb,

int m,

int n,

int k,

const void *alpha,
const void *A,

cudaDataType_t Atype,

int lda,

const void *B,

(continues on next page)

2.8. BLAS-like Extension

149

http://www.netlib.org/blas/sgemm.f

cuBLAS, Release 12.9

(continued from previous page)
cudaDataType_t Btype,

int 1db,

const void *beta,
void *C,
cudaDataType_t Ctype,
int ldc,

cublasComputeType_t computeType,
cublasGemmAlgo_t algo)

#if defined(__cplusplus)

cublasStatus_t cublasGemmEx(cublasHandle_t handle,
cublasOperation_t transa,
cublasOperation_t transb,

int m,

int n,

int k,

const void *alpha,
const void *A,
cudaDataType Atype,
int lda,

const void *B,
cudaDataType Btype,
int 1db,

const void *beta,
void *C,
cudaDataType Ctype,
int ldc,

cudaDataType computeType,
cublasGemmAlgo_t algo)
#endif

This function supports the

This function is an extension of that allows the user to individually specify the data
types for each of the A, B and C matrices, the precision of computation and the GEMM algorithm to
be run. Supported combinations of arguments are listed further down in this section.

Note: The second variant of function is provided for backward compatibility with
C++ applications code, where the computeType parameter is of cudaDataType instead of
. C applications would still compile with the updated function signature.

This function is only supported on devices with compute capability 5.0 or later.
C = aop(A)op(B) + BC

where aand § are scalars,and A, B and C are matrices stored in column-major format with dimensions
op(A) m x k,op(B) k x nand C m x n, respectively. Also, for matrix A

A if transa == CUBLAS_OP_N
op(A) =< AT if transa == CUBLAS_OP_T
AH if transa == CUBLAS_OP_C

and op(B) is defined similarly for matrix B .

150 Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

Param.| Mem- | Infout Meaning
ory

han- in- Handle to the cuBLAS library context.

dle put

transa in- | Operation op(A) that is non- or (conj.) transpose.
put

transb in- Operation op(B) that is non- or (conj.) transpose.
put

m in- Number of rows of matrix op(A) and C.
put

n in- Number of columns of matrix op(B) and C.
put

k in- Number of columns of op(A) and rows of op(B).
put

alpha | host in- Scaling factor for A*B of the type that corresponds to the computeType
or de- | put | and Ctype, see the table below for details.

vice
A de- in- | <type> array of dimensions 1da x k with 1da >= max(1, m) if transa
vice put | == CUBLAS_OP_Nand lda x mwith 1da >= max(1, k) otherwise.
Atype in- Enumerant specifying the datatype of matrix A.
put
lda in- Leading dimension of two-dimensional array used to store the matrix A.
put
B de- in- | <type> array of dimension 1db x n with 1db >= max(1, k) if transb
vice put | == CUBLAS_OP_Nand 1db x k with 1db>=max(1,n) otherwise.
Btype in- Enumerant specifying the datatype of matrix B.
put
1db in- Leading dimension of two-dimensional array used to store matrix B.
put

beta host in- Scaling factor for C of the type that corresponds to the computeType and
or de- | put | Ctype, see the table below for details. If beta == 0, C does not have to be

vice a valid input.
C de- infout <type> array of dimensions 1dc x nwith 1dc >= max(1, m).
vice
Ctype in- Enumerant specifying the datatype of matrix C.
put
ldc in- Leading dimension of a two-dimensional array used to store the matrix C.
put
com- in- Enumerant specifying the computation type.
pute- put
Type
algo in- Enumerant specifying the algorithm. See
put

supports the following Compute Type, Scale Type, Atype/Btype, and Ctype:

2.8. BLAS-like Extension 151

cuBLAS, Release 12.9

Compute Type Scale Type (alphaand | Atype/Btypg Ctype
beta)
CUBLAS_COMPUTE_16F or CUDA_R_16F CUDA_R_ CUDA_R_
CUBLAS_COMPUTE_16F _PEDANTIC 16F 16F
CUBLAS_COMPUTE_32I or CUDA_R_32I CUDA_R_ CUDA_R_
CUBLAS_COMPUTE_32I_PEDANTIC 8I 321
CUBLAS_COMPUTE_32F or CUDA_R_32F CUDA_R_ CUDA_R_
CUBLAS_COMPUTE_32F_PEDANTIC 16BF 16BF
CUDA_R_ CUDA_R_
16F 16F
CUDA_R_ CUDA_R_
8I 32F
CUDA_R_ CUDA_R_
16BF 32F
CUDA_R_ CUDA_R_
16F 32F
CUDA_R_ CUDA_R_
32F 32F
CUDA_C_32F CUDA_C_ CUDA_C_
8I 32F
CUDA_C_ CUDA_C_
32F 32F
CUBLAS_COMPUTE_32F_FAST_16F or CUDA_R_32F CUDA_R_ CUDA_R_
CUBLAS_COMPUTE_32F _FAST_16BF or 32F 32F
CUBLAS_COMPUTE_32F _FAST_TF32 or CUDA_C_32F CUDA_C_ CUDA_C_
CUBLAS_COMPUTE_32F_EMULATED_16BFX9 32F 32F
CUBLAS_COMPUTE_64F or CUDA_R_64F CUDA_R_ CUDA_R_
CUBLAS_COMPUTE_64F _PEDANTIC 64F 64F
CUDA_C_64F CUDA_C_ CUDA_C_
64F 64F

Note: CUBLAS_COMPUTE_32TI and CUBLAS_COMPUTE_32I_PEDANTIC compute types are only sup-
ported with A, B being 4-byte aligned and Ida, |db being multiples of 4. For better performance, it is
also recommended that IMMA kernels requirements for a regular data ordering listed are met.

The possible error values returned by this function and their meanings are listed in the following table.

152 Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

Error Value

Meaning

CUBLAS_STATUS_SUCCESS

The operation completed successfully.

CUBLAS_STATUS_NOT_INITIALIZED

The library was not initialized.

CUBLAS_STATUS_ARCH_MISMATCH

is only supported for GPU with
architecture capabilities equal or greater than
5.0.

CUBLAS_STATUS_NOT_SUPPORTED

The combination of the parameters Atype,
Btype and Ctype or the algorithm, algo is not
supported.

CUBLAS_STATUS_INVALID_VALUE

Ifm < Born < Bork < 0,o0r

if transa and transb are not one of
CUBLAS_OP_N, CUBLAS_OP_C, CUBLAS_
OP_T, or

if 1da < max(1, m) when transa ==
CUBLAS_OP_Nand lda < max(1, k) oth-
erwise, or

if 1db < max(1, k) when transb ==
CUBLAS_OP_Nand 1db < max(1, n) oth-
erwise, or

if 1dc < max(1, m),or

if alpha or beta are NULL, or

if Cis NULL when beta is not zero

if Atype or Btype or Ctype oralgo are not
supported

CUBLAS_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

Starting with release 11.2, using the typed functions instead of the extension functions (cublas**Ex())
helps in reducing the binary size when linking to static cuBLAS Library.

Also refer to:

For more information about the numerical behavior of some GEMM algorithms, refer to the

section.

cublasStatus_t cublasGemmBatchedEx(cublasHandle_t handle,
cublasOperation_t transa,
cublasOperation_t transb,

int m,
int n,
int k,

const void
const void

*alpha,
*const Aarrayl[],

cudaDataType_t Atype,

int lda,
const void

*const Barrayl[],

cudaDataType_t Btype,

int 1db,
const void

void

*beta,
*const Carrayl[],

(continues on next page)

2.8. BLAS-like Extension

153

http://www.netlib.org/blas/sgemm.f

cuBLAS, Release 12.9

(continued from previous page)

cudaDataType_t Ctype,

int ldc,

int batchCount,
cublasComputeType_t computeType,
cublasGemmAlgo_t algo)

#if defined(__cplusplus)

cublasStatus_t cublasGemmBatchedEx(cublasHandle_t handle,
cublasOperation_t transa,
cublasOperation_t transb,

int m,

int n,

int kK,

const void *alpha,

const void *const Aarrayl[],
cudaDataType Atype,

int lda,

const void *const Barrayl[],
cudaDataType Btype,

int 1db,

const void *beta,

void *const Carrayl[],
cudaDataType Ctype,

int ldc,

int batchCount,

cudaDataType computeType,

cublasGemmAlgo_t algo)
#endif

This function supports the

This function is an extension of that performs the matrix-matrix multipli-
cation of a batch of matrices and allows the user to individually specify the data types for each of
the A, B and C matrix arrays, the precision of computation and the GEMM algorithm to be run. Like

, the batch is considered to be “uniform”, i.e. all instances have the same
dimensions (m, n, k), leading dimensions (Ida, Idb, Idc) and transpositions (transa, transb) for their
respective A, B and C matrices. The address of the input matrices and the output matrix of each in-
stance of the batch are read from arrays of pointers passed to the function by the caller. Supported
combinations of arguments are listed further down in this section.

Note: The second variant of function is provided for backward compatibil-
ity with C++ applications code, where the computeType parameter is of cudaDataType instead of
. C applications would still compile with the updated function signature.

Cli] = aop(Afi])op(B[i]) + BCi], fori € [0, batchCount — 1]

where « and 3 are scalars, and A, B and C are arrays of pointers to matrices stored in column-major
format with dimensions op(A[i]) m x k, op(BJi]) k x n and C[i] m x n , respectively. Also, for matrix A

A if transa == CUBLAS_OP_N
op(A) =< AT if transa == CUBLAS_OP_T
AH if transa == CUBLAS_OP_C

and op(BJi]) is defined similarly for matrix BJi] .

154 Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

Note: C[i] matrices must not overlap, i.e. the individual gemm operations must be computable inde-
pendently; otherwise, behavior is undefined.

On certain problem sizes, it might be advantageous to make multiple calls to cublas<t>gemm() in dif-
ferent CUDA streams, rather than use this API.

2.8. BLAS-like Extension 155

cuBLAS, Release 12.9

Param.Mem+ Infout Meaning
ory
han- in- Handle to the cuBLAS library context.
dle put
transa in- | Operation op(Aarray[i]) that is non- or (conj.) transpose.
put
transb in- Operation op(Barray[i]) that is non- or (conj.) transpose.
put
m in- Number of rows of matrix op(Aarray[i]) and Carray[i].
put
n in- Number of columns of matrix op(Barray[i])and Carray[i].
put
k in- | Number of columns of op(Aarray[i]) and rows of op(Barray[i]).
put
al- | host | in- Scaling factor for matrix products of the type that corresponds to the com-
pha | or put | puteType and Ctype, see the table below for details.
de-
vice
Aar-| de- | in- | Array of pointers to <Atype> array, with each array of dim. 1da x k with 1da
ray | vice | put | >= max(1, m)if transa == CUBLAS_OP_Nand lda x mwith 1da >= max(1,
k) otherwise.
All pointers must meet certain alignment criteria. Please see below for details.
Atype in- Enumerant specifying the datatype of Aarray.
put
lda in- Leading dimension of two-dimensional array used to store the matrix Aar-
put | ray[i].
Bar-| de- | in- | Array of pointers to <Btype> array, with each array of dim. 1db x n with 1db
ray | vice | put | >= max(1, k) if transb == CUBLAS_OP_Nand 1ldb x k with 1db>=max(1,
n) otherwise.
All pointers must meet certain alignment criteria. Please see below for details.
Btype in- Enumerant specifying the datatype of Barray.
put
1db in- Leading dimension of two-dimensional array used to store matrix Barray[i].
put
beta| host | in- Scaling factor for Carray of the type that corresponds to the computeType
or put | and Ctype, see the table below for details. If beta == 0, Carray[i] does not
de- have to be a valid input.
vice
Car-| de- | infout Array of pointers to <Ctype> array. It has dimensions 1dc x n with 1dc >=
ray | vice max (1, m). Matrices Carray[i] should not overlap; otherwise, the behavior
is undefined.
All pointers must meet certain alignment criteria. Please see below for details.
Ctype in- Enumerant specifying the datatype of Carray.
put
ldc in- Leading dimension of a two-dimensional array used to store each matrix Car -
put | ray[i].
batch- in- | Number of pointers contained in Aarray, Barray and Carray.
Count put
com- in- Enumerant specifying the computation type.
puter put
Type
algo in- Enumerant specifying the algorithm. See
put
156 Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

supports the following Compute Type, Scale Type, Atype/Btype, and Ctype:

Compute Type Scale Type (alphaand | Atype/Btypg Ctype
beta)
CUBLAS_COMPUTE_16F or CUDA_R_16F CUDA_R_ CUDA_R_
CUBLAS_COMPUTE_16F_PEDANTIC 16F 16F
CUBLAS_COMPUTE_32T or CUDA_R_32I CUDA_R_ CUDA_R_
CUBLAS_COMPUTE_32I_PEDANTIC 8I 321
CUBLAS_COMPUTE_32F or CUDA_R_32F CUDA_R_ CUDA_R_
CUBLAS_COMPUTE_32F _PEDANTIC 16BF 16BF
CUDA_R_ CUDA_R_
16F 16F
CUDA_R_ CUDA_R_
8I 32F
CUDA_R_ CUDA_R_
16BF 32F
CUDA_R_ CUDA_R_
16F 32F
CUDA_R_ CUDA_R_
32F 32F
CUDA_C_32F CUDA_C_ CUDA_C_
8I 32F
CUDA_C_ CUDA_C_
32F 32F
CUBLAS_COMPUTE_32F_FAST_16F or CUDA_R_32F CUDA_R_ CUDA_R_
CUBLAS_COMPUTE_32F_FAST_16BF or 32F 32F
CUBLAS_COMPUTE_32F_FAST_TF32 or CUDA_C_32F CUDA_C_ CUDA_C_
CUBLAS_COMPUTE_32F _EMULATED_16BFX9 32F 32F
CUBLAS_COMPUTE_64F or CUDA_R_64F CUDA_R_ CUDA_R_
CUBLAS_COMPUTE_64F _PEDANTIC 64F 64F
CUDA_C_64F CUDA_C_ CUDA_C_
64F 64F

If Atype is CUDA_R_16F or CUDA_R_16BF, or computeType is any of the FAST options, or when math
mode or algo enable fast math modes, pointers (not the pointer arrays) placed in the GPU memory
must be properly aligned to avoid misaligned memory access errors. Ideally all pointers are aligned to
at least 16 Bytes. Otherwise it is recommended that they meet the following rule:

if k%8==0 then ensure intptr_t(ptr) % 16 == 0,
if k%2==0 then ensure intptr_t(ptr) % 4 == 0.

Note: Compute types CUBLAS_COMPUTE_32I and CUBLAS_COMPUTE_32I_PEDANTIC are only sup-
ported with all pointers A[1], B[1] being 4-byte aligned and Ida, Idb being multiples of 4. For a better
performance, it is also recommended that IMMA kernels requirements for the regular data ordering
listed are met.

The possible error values returned by this function and their meanings are listed below.

2.8. BLAS-like Extension 157

cuBLAS, Release 12.9

Error Value

Meaning

CUBLAS_STATUS_SUCCESS

The operation completed successfully.

CUBLAS_STATUS_NOT_INITIALIZED

The library was not initialized.

CUBLAS_STATUS_ARCH_MISMATCH

is only supported for
GPU with architecture capabilities equal to or
greater than 5.0.

CUBLAS_STATUS_NOT_SUPPORTED

The combination of the parameters Atype,
Btype and Ctype or the algorithm, algo is not
supported.

CUBLAS_STATUS_INVALID_VALUE

Ifm < Born < Bork < 0,o0r

if transa and transb are not one of
CUBLAS_OP_N, CUBLAS_OP_C, CUBLAS_
OP_T, or

if 1da < max(1, m) when transa ==
CUBLAS_OP_Nand lda < max(1, k) oth-
erwise, or

if 1db < max(1, k) when transb ==
CUBLAS_OP_Nand 1db < max(1, n) oth-
erwise, or

if 1dc < max(1, m),or

if alpha or beta are NULL, or

if Atype or Btype or Ctype or algo or
computeType is not supported

CUBLAS_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

Also refer to:

cublasStatus_t cublasGemmStridedBatchedEx(cublasHandle_t handle,
cublasOperation_t transa,
cublasOperation_t transb,

int m,

int n,

int k,

const void *alpha,
const void *A,
cudaDataType_t Atype,
int lda,

long long int strideA,
const void *B,
cudaDataType_t Btype,
int 1ldb,

long long int strideB,
const void *beta,
void *C,
cudaDataType_t Ctype,
int 1ldc,

long long int strideC,
int batchCount,
cublasComputeType_t computeType,

(continues on next page)

158

Chapter 2. Using the cuBLAS API

http://www.netlib.org/blas/sgemm.f

cuBLAS, Release 12.9

(continued from previous page)
cublasGemmAlgo_t algo)

#if defined(__cplusplus)

cublasStatus_t cublasGemmStridedBatchedEx(cublasHandle_t handle,
cublasOperation_t transa,
cublasOperation_t transb,

int m,

int n,

int k,

const void *alpha,
const void *A,
cudaDataType Atype,
int 1lda,

long long int strideA,
const void *B,
cudaDataType Btype,
int 1ldb,

long long int strideB,
const void *beta,
void *C,
cudaDataType Ctype,
int 1ldc,

long long int strideC,

int batchCount,

cudaDataType computeType,

cublasGemmAlgo_t algo)
#endif

This function supports the

This function is an extension of that performs the matrix-matrix mul-
tiplication of a batch of matrices and allows the user to individually specify the data types for each
of the A, B and C matrices, the precision of computation and the GEMM algorithm to be run. Like

, the batch is considered to be “uniform”, i.e. all instances have the
same dimensions (m, n, k), leading dimensions (Ida, Idb, Idc) and transpositions (transa, transb) for
their respective A, B and C matrices. Input matrices A, B and output matrix C for each instance of the
batch are located at fixed offsets in number of elements from their locations in the previous instance.
Pointers to A, B and C matrices for the first instance are passed to the function by the user along with
the offsets in number of elements - strideA, strideB and strideC that determine the locations of input
and output matrices in future instances.

Note: The second variant of function is provided for backward com-
patibility with C++ applications code, where the computeType parameter is of instead
of . C applications would still compile with the updated function signature.

C + i strideC = aop(A + i * stride A)op(B + i * strideB) + S(C + i * strideC), fori € [0, batchCount — 1]

where « and 3 are scalars, and A, B and C are arrays of pointers to matrices stored in column-major
format with dimensions op(A[i]) m x k, op(BJi]) k x n and C[i] m x n , respectively. Also, for matrix A

A if transa == CUBLAS_OP_N
op(A) =< AT if transa == CUBLAS_OP_T
AH if transa == CUBLAS_OP_C

and op(B]Ji]) is defined similarly for matrix BJi] .

2.8. BLAS-like Extension 159

cuBLAS, Release 12.9

Note: C[i] matrices must not overlap, i.e. the individual gemm operations must be computable inde-
pendently; otherwise, the behavior is undefined.

On certain problem sizes, it might be advantageous to make multiple calls to cublas<t>gemm() in dif-
ferent CUDA streams, rather than use this API.

Note: In the table below, we use A[1i], B[i], C[i] as notation for A, B and C matrices in the
ith instance of the batch, implicitly assuming they are respectively offsets in number of elements
strideA, strideB, strideC away from A[i-1], B[i-1], C[i-1]. The unit for the offset is
number of elements and must not be zero .

160 Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

Param| Mem-| In/out Meaning
ory
han- in- Handle to the cuBLAS library context.
dle put
transja in- | Operation op(A[i]) that is non- or (conj.) transpose.
put
transp in- Operation op(B[1]) that is non- or (conj.) transpose.
put
m in- | Number of rows of matrix op(A[i]) and C[i].
put
n in- | Number of columns of matrix op(B[i]) and C[i].
put
k in- | Number of columns of op(A[i]) and rows of op(B[1]).
put
al- host | in- | Scaling factor for A*B of the <Scale Type> that corresponds to the compute-
pha or put | Type and Ctype, see the table below for details.
de-
vice
A de- in- Pointer to <Atype> matrix, A, corresponds to the first instance of the batch,
vice | put | with dimensions 1da x k with 1da >= max(1, m) if transa == CUBLAS_
OP_Nand lda x mwith 1da >= max(1, k) otherwise.
Atype in- Enumerant specifying the datatype of A.
put
1da in- Leading dimension of two-dimensional array used to store the matrix A[i].
put
strideA in- | Value of type long long int that gives the offset in number of elements be-
put | tween A[i] and A[i+1].
B de- in- Pointer to <Btype> matrix, B, corresponds to the first instance of the batch,
vice | put | with dimensions 1db x nwith 1db >= max(1, k) if transb == CUBLAS_
OP_Nand 1ldb x k with 1db>=max (1, n) otherwise.
Btype in- Enumerant specifying the datatype of B.
put
1db in- Leading dimension of two-dimensional array used to store matrix B[i].
put
strideB in- | Value of type long long int that gives the offset in number of elements be-
put | tweenB[i] and B[i+1].
beta | host | in- | Scaling factor for C of the <Scale Type> that corresponds to the compute-
or put | Type and Ctype, see the table below for details. If beta == 0, C[i] does not
de- have to be a valid input.
vice
C de- infout Pointer to <Ctype> matrix, C, corresponds to the first instance of the batch,
vice with dimensions 1dc x nwith 1dc >= max(1, m). Matrices C[i] should
not overlap; otherwise, undefined behavior is expected.
Ctype in- Enumerant specifying the datatype of C.
put
ldc in- Leading dimension of a two-dimensional array used to store each matrix
put | C[i].
strideC in- | Value of type long long int that gives the offset in number of elements be-
put | tweenC[i] and C[i+1].
batch- in- | Number of GEMMs to perform in the batch.
Count put
com- in- Enumerant specifying the computation type.
pute- put
Type
2.%].'98Lr\8-like Emécm’igﬁ\umerant specifying the algorithm. See . 161
pu

cuBLAS, Release 12.9

supports the following Compute Type, Scale Type, Atype/Btype, and

Ctype:
Compute Type Scale Type (alphaand | Atype/Btype Ctype
beta)
CUBLAS_COMPUTE_16F or CUDA_R_16F CUDA_R_ CUDA_R_
CUBLAS_COMPUTE_16F_PEDANTIC 16F 16F
CUBLAS_COMPUTE_32TI or CUDA_R_32I CUDA_R_ CUDA_R_
CUBLAS_COMPUTE_32I_PEDANTIC 8I 321
CUBLAS_COMPUTE_32F or CUDA_R_32F CUDA_R_ CUDA_R_
CUBLAS_COMPUTE_32F _PEDANTIC 16BF 16BF
CUDA_R_ CUDA_R_
16F 16F
CUDA_R_ CUDA_R_
8I 32F
CUDA_R_ CUDA_R_
16BF 32F
CUDA_R_ CUDA_R_
16F 32F
CUDA_R_ CUDA_R_
32F 32F
CUDA_C_32F CUDA_C_ CUDA_C_
8I 32F
CUDA_C_ CUDA_C_
32F 32F
CUBLAS_COMPUTE_32F _FAST_16F or CUDA_R_32F CUDA_R_ CUDA_R_
CUBLAS_COMPUTE_32F_FAST_16BF or 32F 32F
CUBLAS_COMPUTE_32F _FAST_TF32 or CUDA_C_32F CUDA_C_ CUDA_C_
CUBLAS_COMPUTE_32F _EMULATED_16BFX9 32F 32F
CUBLAS_COMPUTE_64F or CUDA_R_64F CUDA_R_ CUDA_R_
CUBLAS_COMPUTE_64F _PEDANTIC 64F 64F
CUDA_C_64F CUDA_C_ CUDA_C_
64F 64F

Note: Compute types CUBLAS_COMPUTE_32I and CUBLAS_COMPUTE_32I_PEDANTIC are only sup-
ported with all pointers A[i], B[1] being 4-byte aligned and Ida, Idb being multiples of 4. For a better
performance, it is also recommended that IMMA kernels requirements for the regular data ordering
listed are met.

The possible error values returned by this function and their meanings are listed below.

162 Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

Error Value

Meaning

CUBLAS_STATUS_SUCCESS

The operation completed successfully.

CUBLAS_STATUS_NOT_INITIALIZED

The library was not initialized.

CUBLAS_STATUS_ARCH_MISMATCH

is only supported for
GPU with architecture capabilities equal or
greater than 5.0.

CUBLAS_STATUS_NOT_SUPPORTED

The combination of the parameters Atype,
Btype and Ctype or the algorithm, algo is not
supported.

CUBLAS_STATUS_INVALID_VALUE

Ifm < Born < Bork < 0,o0r

if transa and transb are not one of
CUBLAS_OP_N, CUBLAS_OP_C, CUBLAS_
OP_T, or

if 1da < max(1, m) when transa ==
CUBLAS_OP_Nand lda < max(1, k) oth-
erwise, or

if 1db < max(1, k) when transb ==
CUBLAS_OP_Nand 1db < max(1, n) oth-
erwise, or

if 1dc < max(1, m),or

if alpha or beta are NULL, or

if Atype or Btype or Ctype or algo or
computeType is not supported

CUBLAS_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU

Also refer to:

cublasStatus_t cublasGemmGroupedBatchedEx(cublasHandle_t handle,
const cublasOperation_t transa_array][],
const cublasOperation_t transb_array[],
const int m_array[],
const int n_array[],
const int k_array[],

const void
const void

*alpha_array,
*const Aarray|[],

cudaDataType_t Atype,
const int lda_array[],

const void

*const Barray|[],

cudaDataType_t Btype,
const int ldb_array[],

const void

void

*beta_array,
*const Carrayl[],

cudaDataType_t Ctype,
const int ldc_arrayl[],

int group_count,

const int group_size[],
cublasComputeType_t computeType)

This function supports the

2.8. BLAS-like Extension

163

http://www.netlib.org/blas/sgemm.f

cuBLAS, Release 12.9

This function performs the matrix-matrix multiplication on groups of matrices. A given group is con-
sidered to be “uniform”, i.e. all instances have the same dimensions (m, n, k), leading dimensions (Ida,
Idb, Idc) and transpositions (transa, transb) for their respective A, B and C matrices. However, the
dimensions, leading dimensions, transpositions, and scaling factors (alpha, beta) may vary between
groups. The address of the input matrices and the output matrix of each instance of the batch are
read from arrays of pointers passed to the function by the caller. This is functionally equivalent to the
following:

idx = 0;
for i = @:group_count - 1
for j = @:group_size[i] - 1
gemmEx(transa_array[i], transb_array[i], m_array[i], n_array[i], k_array[i],
alpha_array[i], Aarray[idx], Atype, lda_array[i], Barray[idx], Btype,
ldb_array[i], beta_array[i], Carray[idx], Ctype, ldc_array[i],
computeType, CUBLAS_GEMM_DEFAULT);
idx += 1;
end
end

where alpha_array and beta_array are arrays of scaling factors, and Aarray, Barray and Carray are arrays
of pointers to matrices stored in column-major format. For a given index, idx, that is part of group 1,
the dimensions are:

op(Aarraylidx]): m_array[i] x k_array][i]
op(Barraylidx]): k_array[i] x n_array][i]

Carraylidx|: m_array[:] x n_array|i]

Note: This API takes arrays of two different lengths. The arrays of dimensions, leading dimensions,

transpositions, and scaling factors are of length group_count and the arrays of matrices are of length

problem_count where problem_count = "9 %P-*"""I group_size[i]

For matrix A[idx] in group ¢

Afidx] if transa_array[i] == CUBLAS_OP_N
op(Afidx]) = { Afidx]T if transa_array[i] == CUBLAS_OP_T
Alidx]* if transa_array|i] == CUBLAS_OP_C

and op(BJidx]) is defined similarly for matrix Blidx] in group i.

Note: C[idx] matrices must not overlap, that is, the individual gemm operations must be computable
independently; otherwise, undefined behavior is expected.

On certain problem sizes, it might be advantageous to make multiple calls to
in different CUDA streams, rather than use this API.

164 Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

Pararh.Mem} In/outt Meaning Ar-
ory ray
Length
han- in- Handle to the cuBLAS library context.
dle put
transéost| in- | Array containing the operations, op(A[idx]), thatis non- or (conj.) trans- | group_count
array put | pose for each group.
tranghost| in- | Array containing the operations, op(B[idx]), thatis non- or (conj.) trans- | group_count
array put | pose for each group.
m_ host| in- | Array containing the number of rows of matrix op(A[idx]) and C[idx] | group_count
array put | for each group.
n_ host| in- | Array containing the number of columns of op(B[idx]) and C[idx] for | group_count
array put | each group.
k_ host| in- | Array containing the number of columns of op(A[idx]) and rows of | group_count
array put | op(B[idx]) for each group.
alphahost| in- | Array containing the <Scale Type> scalar used for multiplication for each | group_count
array put | group.
Aar-| de- | in- | Array of pointers to <Atype> array, with each array of dim. 1da[i] x | prob-
ray | vice | put | k[i] with 1da[i]>=max(1,m[1]) if transa[i]==CUBLAS_OP_N and | lem_count
lda[i] x m[i] with 1da[i]>=max(1,k[i]) otherwise.
All pointers must meet certain alignment criteria. Please see below for
details.
Atype in- Enumerant specifying the datatype of A.
put
lda_| host| in- | Array containing the leading dimensions of two-dimensional arrays used | group_count
array put | to store each matrix A[idx] for each group.
Bar-| de- | in- | Array of pointers to <Btype> array, with each array of dim. 1db[i] x | probA
ray | vice | put | n[i] with 1db[i]>=max(1,k[i]) if transb[i]==CUBLAS_OP_N and | lem_count
ldb[i] x k[i] with 1db[i]>=max(1,n[i]) otherwise.
All pointers must meet certain alignment criteria. Please see below for
details.
Btype in- Enumerant specifying the datatype of B.
put
1db_| host| in- | Array containing the leading dimensions of two-dimensional arrays used | group_count
array put | to store each matrix B[idx] for each group.
betal host| in- Array containing the <Scale Type> scalar used for multiplication for each | group_count
array put | group.
Car-| de- | infout Array of pointers to <Ctype> array. It has dimensions 1dc[i] x n[i] | prob-
ray | vice with 1dc[i]>=max(1,m[i]). Matrices C[idx] should not overlap; oth- | lem_g¢ount
erwise, undefined behavior is expected.
All pointers must meet certain alignment criteria. Please see below for
details.
Ctype in- Enumerant specifying the datatype of C.
put
ldc_| host| in- | Array containing the leading dimensions of two-dimensional arrays used | group_count
array put | to store each matrix C[idx] for each group.
grouphost| in- Number of groups
counft put
grouphost| in- | Array containing the number of pointers contained in Aarray, Barray and | group_count
size put | Carray for each group.
com- in- Enumerant specifying the computation type.
puter put
Type
2.8. BLAS-like Extension 165

cuBLAS, Release 12.9

supports the following Compute Type, Scale Type, Atype/Btype, and

Ctype:
Compute Type Scale Type (alphaand | Atype/Btype Ctype
beta)

CUBLAS_COMPUTE_32F CUDA_R_32F CUDA_R_ CUDA_R_
16BF 16BF
CUDA_R_ CUDA_R_
16F 16F
CUDA_R_ CUDA_R_
32F 32F

CUBLAS_COMPUTE_32F_PEDANTIC CUDA_R_32F CUDA_R_ CUDA_R_
32F 32F

CUBLAS_COMPUTE_32F _FAST_TF32 CUDA_R_32F CUDA_R_ CUDA_R_
32F 32F

CUBLAS_COMPUTE_64F or CUDA_R_64F CUDA_R_ CUDA_R_

CUBLAS_COMPUTE_64F _PEDANTIC 64F 64F

If Atype is CUDA_R_16F or CUDA_R_16BF or if the computeType is any of the FAST options, pointers
(not the pointer arrays) placed in the GPU memory must be properly aligned to avoid misaligned mem-
ory access errors. Ideally all pointers are aligned to at least 16 Bytes. Otherwise it is required that they
meet the following rule:

if (k * AtypeSize) % 16 == @thenensure intptr_t(ptr) % 16 == 0,
if (k * AtypeSize) % 4 == @thenensure intptr_t(ptr) % 4 ==

The possible error values returned by this function and their meanings are listed below.

166 Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

Error Value

Meaning

CUBLAS_STATUS_SUCCESS

The operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED

The library was not initialized

CUBLAS_STATUS_INVALID_VALUE

If transa_array, transb_array, m_
array, n_array, k_array, alpha_array
lda_array, 1ldb_array, beta_array
ldc_array, or group_size are NULL, or
if group_count < 0, or

ifm_array[i] < ©,n_array[i] < 0,k_
array[i] < @,group_size[i] < ©,or
if transa_array[i] and transb_
array[i] are not one of CUBLAS_OP_N
CUBLAS_OP_C, CUBLAS_OP_T, or

if lda_array[i] < max (1, m
array[i]) if transa_array[i] =
CUBLAS_OP_N and lda_array[i]
max(1, k_array[i]) otherwise, or

A1

if 1ldb_array[i] < max (1, k_
array[i]) if transb_array[i] ==
CUBLAS_OP_N and 1ldb_array[i] <
max(1, n_array[i]) otherwise, or

if ldc_array[il < max (1, m_

array[i])

CUBLAS_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU

CUBLAS_STATUS_NOT_SUPPORTED

the pointer mode is set to CUBLAS_
POINTER_MODE_DEVICE

Atype or Btype or Ctype or computeType
are not supported

cublasStatus_t cublasCsyrkEx(cublasHandle_t handle,
cublasFillMode_t uplo,
cublasOperation_t trans,

This function supports the

This function is an extension of

int n,
int k,

const cuComplex *alpha,

const void *A,
cudaDataType Atype,
int 1lda,

const cuComplex *beta,
cuComplex *C,
cudaDataType Ctype,
int 1dc)

where the input matrix and output matrix can have a
lower precision but the computation is still done in the type cuComplex

2.8. BLAS-like Extension

167

cuBLAS, Release 12.9

This function performs the symmetric rank- k update
C = aop(A)op(A)T + BC

where a and 5 are scalars, C is a symmetric matrix stored in lower or upper mode, and A is a matrix
with dimensions op(A) n x k. Also, for matrix A

op(4) = A if transa == CUBLAS_OP_N
PU=1AT if transa == CUBLAS_OP_T

Note: This routine is only supported on GPUs with architecture capabilities equal to or greater than

5.0
Param.Mem- | In/oult Meaning
ory
han- in- Handle to the cuBLAS library context.
dle put
uplo in- Indicates if matrix C lower or upper part is stored, the other symmetric part
put | is not referenced and is inferred from the stored elements.
trans in- | Operation op(A) that is non- or transpose.
put
n in- Number of rows of matrix op(A) and C.
put
k in- | Number of columns of matrix op(A).
put
al- | host or | in- <type> scalar used for multiplication.
pha | device | put
A device | in- | <type> array of dimension 1da x k with 1da >= max(1, n) if trans ==
put | CUBLAS_OP_Nand 1lda x nwith 1da >= max(1, k) otherwise.
Atype in- Enumerant specifying the datatype of matrix A.
put
lda in- | Leading dimension of two-dimensional array used to store matrix A.
put
beta| host or | in- <type> scalar used for multiplication. If beta == 0 then C does not have to
device | put | be avalid input.
C device | infout <type> array of dimension 1dc x n, with 1dc >= max(1, n).
Ctype in- Enumerant specifying the datatype of matrix C.
put
ldc in- Leading dimension of two-dimensional array used to store matrix C.
put
The matrix types combinations supported for are listed below:
A C

CUDA_C_8I CUDA_C_32F
CUDA_C_32F | CUDA_C_32F

The possible error values returned by this function and their meanings are listed below.

168 Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

Error Value Meaning
CUBLAS_STATUS_SUCCESS The operation completed successfully.
CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized.

CUBLAS_STATUS_INVALID_VALUE
Ifn < Bork < 0,o0r

if uplois not one of CUBLAS_FILL_MODE_
LOWER and CUBLAS_FILL_MODE_UPPER,or
if trans is not one of CUBLAS_OP_N,
CUBLAS_OP_T and CUBLAS_OP_C, or

if lda < max(1, n)iftrans == CUBLAS_
OP_Nand lda < max(1, k) otherwise, or
if ldc < max(1, n),or

if Atype or Ctype are not supported

CUBLAS_STATUS_NOT_SUPPORTED The combination of the parameters Atype and
Ctype is not supported.

CUBLAS_STATUS_ARCH_MISMATCH The device has a compute capability lower than
5.0.

CUBLAS_STATUS_EXECUTION_FAILED The function failed to launch on the GPU.

For references please refer to NETLIB documentation:

3))

cublasStatus_t cublasCsyrk3mEx(cublasHandle_t handle,
cublasFillMode_t uplo,
cublasOperation_t trans,

int n,
int k,
const cuComplex *alpha,
const void *A,
cudaDataType Atype,
int 1lda,
const cuComplex *beta,
cuComplex *C,
cudaDataType Ctype,
int 1dc)

This function supports the

This function is an extension of where the input matrix and output matrix can have a

lower precision but the computation is still done in the type cuComplex. This routine is implemented
using the Gauss complexity reduction algorithm which can lead to an increase in performance up to
25%

This function performs the symmetric rank- k update
C = aop(A)op(A)T + BC

where o« and 3 are scalars, C is a symmetric matrix stored in lower or upper mode, and A is a matrix
with dimensions op(4) n x k . Also, for matrix A

op(A) = A if transa == CUBLAS_OP_N
P =1 AT if transa == CUBLAS_OP_T

2.8. BLAS-like Extension 169

http://www.netlib.org/blas/ssyrk.f
http://www.netlib.org/blas/dsyrk.f
http://www.netlib.org/blas/csyrk.f
http://www.netlib.org/blas/zsyrk.f

cuBLAS, Release 12.9

Note: This routine is only supported on GPUs with architecture capabilities equal to or greater than

5.0
Param.Mem- In/out Meaning
ory
han- in- Handle to the cuBLAS library context.
dle put
uplo in- Indicates if matrix C lower or upper part is stored, the other symmetric part
put | is not referenced and is inferred from the stored elements.
trans in- | Operation op(A) that is non- or transpose.
put
n in- | Number of rows of matrix op(A) and C.
put
k in- | Number of columns of matrix op(A).
put
al- | host or | in- <type> scalar used for multiplication.
pha | device | put
A device | in- | <type> array of dimension 1da x k with 1da >= max(1, n)if trans ==
put | CUBLAS_OP_Nand lda x nwith 1da >= max(1, k) otherwise.
Atype in- Enumerant specifying the datatype of matrix A.
put
lda in- Leading dimension of two-dimensional array used to store matrix A.
put
beta| host or | in- <type> scalar used for multiplication. If beta == 0 then C does not have to
device | put | be avalid input.
C device | infout <type> array of dimension 1dc x n, with 1dc >= max(1, n).
Ctype in- Enumerant specifying the datatype of matrix C.
put
ldc in- Leading dimension of two-dimensional array used to store matrix C.
put
The matrix types combinations supported for are listed below :
A C

CUDA_C_8I CUDA_C_32F
CUDA_C_32F | CUDA_C_32F

The possible error values returned by this function and their meanings are listed below.

170 Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

Error Value Meaning
CUBLAS_STATUS_SUCCESS The operation completed successfully.
CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized.

CUBLAS_STATUS_INVALID_VALUE
Ifn < Bork < 0,o0r

if uplois not one of CUBLAS_FILL_MODE_
LOWER and CUBLAS_FILL_MODE_UPPER,or
if trans is not one of CUBLAS_OP_N,
CUBLAS_OP_T and CUBLAS_OP_C, or

if lda < max(1, n)iftrans == CUBLAS_
OP_Nand lda < max(1, k) otherwise, or
if ldc < max(1, n),or

if Atype or Ctype are not supported

CUBLAS_STATUS_NOT_SUPPORTED The combination of the parameters Atype and
Ctype is not supported.

CUBLAS_STATUS_ARCH_MISMATCH The device has a compute capability lower than
5.0.

CUBLAS_STATUS_EXECUTION_FAILED The function failed to launch on the GPU.

For references please refer to NETLIB documentation:

3))

cublasStatus_t cublasCherkEx(cublasHandle_t handle,
cublasFillMode_t uplo,
cublasOperation_t trans,

int n,
int k,
const float *alpha,
const void *A,
cudaDataType Atype,
int 1lda,
const float *beta,
cuComplex *C,
cudaDataType Ctype,
int 1dc)

This function supports the

This function is an extension of where the input matrix and output matrix can have a

lower precision but the computation is still done in the type cuComplex
This function performs the Hermitian rank- k update
C = aop(A)op(A)H + pC

where a and g are scalars, C is a Hermitian matrix stored in lower or upper mode, and A is a matrix
with dimensions op(A) n x k. Also, for matrix A

op(4) = A if transa == CUBLAS_OP_N
PLUA= 1 4% if transa == CUBLAS_OP_C

2.8. BLAS-like Extension 171

http://www.netlib.org/blas/ssyrk.f
http://www.netlib.org/blas/dsyrk.f
http://www.netlib.org/blas/csyrk.f
http://www.netlib.org/blas/zsyrk.f

cuBLAS, Release 12.9

Note: This routine is only supported on GPUs with architecture capabilities equal to or greater than

5.0
Param.Mem- In/out Meaning
ory

han- in- Handle to the cuBLAS library context.

dle put

uplo in- Indicates if matrix C lower or upper part is stored, the other Hermitian part
put | is not referenced.

trans in- | Operation op(A) that is non- or (conj.) transpose.
put

n in- Number of rows of matrix op(A) and C.
put

k in- Number of columns of matrix op(A).
put

al- | host or | in- <type> scalar used for multiplication.

pha | device | put

A device | in- | <type> array of dimension 1da x k with 1da >= max(1, n)if transa ==
put | CUBLAS_OP_Nand 1da x nwith 1da >= max(1, k) otherwise.

Atype in- Enumerant specifying the datatype of matrix A.
put

lda in- Leading dimension of two-dimensional array used to store matrix A.
put

beta in- <type> scalar used for multiplication. If beta == 0 then C does not have to
put | be avalid input.

C device | infout <type> array of dimension 1dc x n,with 1dc >= max (1, n). Theimaginary

parts of the diagonal elements are assumed and set to zero.

Ctype in- Enumerant specifying the datatype of matrix C.
put

ldc in- Leading dimension of two-dimensional array used to store matrix C.
put

The matrix types combinations supported for are listed in the following table:

A C
CUDA_C_8I CUDA_C_32F
CUDA_C_32F | CUDA_C_32F

The possible error values returned by this function and their meanings are listed below.

172

Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

Error Value Meaning
CUBLAS_STATUS_SUCCESS The operation completed successfully.
CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized.

CUBLAS_STATUS_INVALID_VALUE
Ifn < Bork < 0,o0r

if uplois not one of CUBLAS_FILL_MODE_
LOWER and CUBLAS_FILL_MODE_UPPER,or
if trans is not one of CUBLAS_OP_N,
CUBLAS_OP_T and CUBLAS_OP_C, or

if lda < max(1, n)iftrans == CUBLAS_
OP_Nand lda < max(1, k) otherwise, or
if ldc < max(1, n),or

if Atype or Ctype are not supported

CUBLAS_STATUS_NOT_SUPPORTED The combination of the parameters Atype and
Ctype is not supported.

CUBLAS_STATUS_ARCH_MISMATCH The device has a compute capability lower than
5.0.

CUBLAS_STATUS_EXECUTION_FAILED The function failed to launch on the GPU.

For references please refer to NETLIB documentation:

cublasStatus_t cublasCherk3mEx(cublasHandle_t handle,
cublasFillMode_t uplo,
cublasOperation_t trans,

int n,
int k,
const float *alpha,
const void *A,
cudaDataType Atype,
int 1lda,
const float *beta,
cuComplex *C,
cudaDataType Ctype,
int 1dc)

This function supports the

This function is an extension of where the input matrix and output matrix can have a

lower precision but the computation is still done in the type cuComplex. This routine is implemented
using the Gauss complexity reduction algorithm which can lead to an increase in performance up to
25%

This function performs the Hermitian rank- k update
C = aop(A)op(A)H + BC

where a and 8 are scalars, C is a Hermitian matrix stored in lower or upper mode, and A is a matrix
with dimensions op(4) n x k . Also, for matrix A

op(A) = A if transa == CUBLAS_OP_N
PIA) =13 A% if transa == CUBLAS_OP_C

2.8. BLAS-like Extension 173

http://www.netlib.org/blas/cherk.f

cuBLAS, Release 12.9

Note: This routine is only supported on GPUs with architecture capabilities equal to or greater than

5.0
Param.Mem- In/out Meaning
ory

han- in- Handle to the cuBLAS library context.

dle put

uplo in- Indicates if matrix C lower or upper part is stored, the other Hermitian part
put | is not referenced.

trans in- | Operation op(A) that is non- or (conj.) transpose.
put

n in- | Number of rows of matrix op(A) and C.
put

k in- | Number of columns of matrix op(A).
put

al- | host or | in- <type> scalar used for multiplication.

pha | device | put

A device | in- | <type> array of dimension 1da x k with 1da >= max(1, n)if trans ==
put | CUBLAS_OP_Nand lda x nwith 1da >= max(1, k) otherwise.

Atype in- Enumerant specifying the datatype of matrix A.
put

lda in- Leading dimension of two-dimensional array used to store matrix A.
put

beta in- <type> scalar used for multiplication. If beta == 0 then C does not have to
put | be avalid input.

C device | infout <type>array of dimension 1dc x n,with 1dc >= max (1, n). Theimaginary

parts of the diagonal elements are assumed and set to zero.

Ctype in- Enumerant specifying the datatype of matrix C.
put

ldc in- Leading dimension of two-dimensional array used to store matrix C.
put

The matrix types combinations supported for are listed in the following table:

A C
CUDA_C_8I CUDA_C_32F
CUDA_C_32F | CUDA_C_32F

The possible error values returned by this function and their meanings are listed below.

174

Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

Error Value Meaning
CUBLAS_STATUS_SUCCESS The operation completed successfully.
CUBLAS_STATUS_NOT_INITIALIZED The library was not initialized.

CUBLAS_STATUS_INVALID_VALUE
Ifn < Bork < 0,o0r

if uplois not one of CUBLAS_FILL_MODE_
LOWER and CUBLAS_FILL_MODE_UPPER,or
if trans is not one of CUBLAS_OP_N,
CUBLAS_OP_T and CUBLAS_OP_C, or

if lda < max(1, n)iftrans == CUBLAS_
OP_Nand lda < max(1, k) otherwise, or
if ldc < max(1, n),or

if Atype or Ctype are not supported

CUBLAS_STATUS_NOT_SUPPORTED The combination of the parameters Atype and
Ctype is not supported.

CUBLAS_STATUS_ARCH_MISMATCH The device has a compute capability lower than
5.0.

CUBLAS_STATUS_EXECUTION_FAILED The function failed to launch on the GPU.

For references please refer to NETLIB documentation:

cublasStatus_t cublasNrm2Ex(cublasHandle_t handle,
int n,
const void *x,
cudaDataType xType,
int incx,
void *result,
cudaDataType resultType,
cudaDataType executionType)

This function supports the

This function is an API generalization of the routine where input data, output data
and compute type can be specified independently.

This function computes the Euclidean norm of the vector x. The code uses a multiphase model
of accumulation to avoid intermediate underflow and overflow, with the result being equivalent to
VY, (x[4] x x[j]) where j = 1+ (i — 1) = incx in exact arithmetic. Notice that the last equation re-
flects 1-based indexing used for compatibility with Fortran.

2.8. BLAS-like Extension 175

http://www.netlib.org/blas/cherk.f

cuBLAS, Release 12.9

Param. Memory Infout | Meaning

handle input | Handle to the cuBLAS library context.

n input | Number of elements in the vector x.

X device input | <type> vector with n elements.

xType input | Enumerant specifying the datatype of vector x.

incx input | Stride between consecutive elements of x.

result host or de- | out- | The resulting norm, which issetto@ifn <= @ orincx <=
vice put 0.

resultType input | Enumerant specifying the datatype of the result.

execution- input | Enumerant specifying the datatype in which the computa-

Type tion is executed.

The datatypes combinations currently supported for

are listed below :

X result execution

CUDA_R_16F CUDA_R_16F CUDA_R_32F
CUDA_R_16BF | CUDA_R_16BF | CUDA_R_32F
CUDA_R_32F CUDA_R_32F CUDA_R_32F
CUDA_C_32F CUDA_R_32F CUDA_R_32F
CUDA_R_64F CUDA_R_64F CUDA_R_64F
CUDA_C_64F CUDA_R_64F CUDA_R_64F

The possible error values returned by this function and their meanings are listed below.

Error Value

Meaning

CUBLAS_STATUS_SUCCESS

The operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED

The library was not initialized

CUBLAS_STATUS_ALLOC_FAILED

The reduction buffer could not be allocated

CUBLAS_STATUS_NOT_SUPPORTED

The combination of the parameters xType,
resultType and executionType is not sup-
ported

CUBLAS_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU

CUBLAS_STATUS_INVALID_VALUE

If xType or resultType or execution-
Type is not supported, or
if resultis NULL

For references please refer to NETLIB documentation:

3

’

176

Chapter 2. Using the cuBLAS API

http://www.netlib.org/blas/snrm2.f90
http://www.netlib.org/blas/dnrm2.f90
http://www.netlib.org/blas/scnrm2.f90
http://www.netlib.org/blas/dznrm2.f90

cuBLAS, Release 12.9

cublasStatus_t cublasAxpyEx (cublasHandle_t handle,
int n,

const void *alpha,
cudaDataType alphaType,
const void *x,
cudaDataType xType,

int incx,

void *y,

cudaDataType yType,

int incy,

cudaDataType executiontype);

This function supports the

This function is an API generalization of the routine

where input data, output data and

compute type can be specified independently.

This function multiplies the vector x by the scalar o and adds it to the vector y overwriting the latest
vector with the result. Hence, the performed operation is y[j] = a x x[k] + y[j] fori =1,...,n, k =
14+ (i—1)*incxand j =1+ (i — 1) xincy . Notice that the last two equations reflect 1-based indexing
used for compatibility with Fortran.

Param. Memory Infout| Meaning
handle in- Handle to the cuBLAS library context.
put
n in- Number of elements in the vector x and y.
put
alpha host or de- | in- <type> scalar used for multiplication.
vice put
alphaType in- Enumerant specifying the datatype of scalar alpha.
put
X device in- <type> vector with n elements.
put
xType in- Enumerant specifying the datatype of vector x.
put
incx in- Stride between consecutive elements of x.
put
y device infout| <type> vector with n elements.
yType in- Enumerant specifying the datatype of vectory.
put
incy in- Stride between consecutive elements of y.
put
execution- in- Enumerant specifying the datatype in which the computa-
Type put tion is executed.

The datatypes combinations currently supported for

are listed in the following table:

2.8. BLAS-like Extension

177

cuBLAS, Release 12.9

alpha X y execution

CUDA_R_32F | CUDA_R_16F CUDA_R_16F | CUDA_R_32F
CUDA_R_32F | CUDA_R_16BF | CUDA_R_16BF | CUDA_R_32F
CUDA_R_32F | CUDA_R_32F CUDA_R_32F | CUDA_R_32F
CUDA_R_64F | CUDA_R_64F CUDA_R_64F | CUDA_R_64F
CUDA_C_32F | CUDA_C_32F CUDA_C_32F | CUDA_C_32F
CUDA_C_64F | CUDA_C_64F CUDA_C_64F | CUDA_C_64F

The possible error values returned by this function and their meanings are listed below.

Error Value

Meaning

CUBLAS_STATUS_SUCCESS

The operation completed successfully.

CUBLAS_STATUS_NOT_

The library was not initialized.

INITIALIZED
CUBLAS_STATUS_NOT_ The combination of the parameters xType, yType, and execu-
SUPPORTED tionType is not supported.

CUBLAS_STATUS_
EXECUTION_FAILED

The function failed to launch on the GPU.

CUBLAS_STATUS_INVALID_
VALUE

alphaType or xType or yType or executionType is not sup-
ported.

For references please refer to NETLIB documentation:

cublasStatus_t cublasDotEx (cublasHandle_t handle,

cublasStatus_t cublasDotcEx

These functions support the

int n,

const void *x,

cudaDataType xType,

int incx,

const void *y,

cudaDataType yType,

int incy,

void *result,

cudaDataType resultType,
cudaDataType executionType);

(cublasHandle_t handle,
int n,

const void *x,
cudaDataType xType,

int incx,

const void *y,
cudaDataType yType,

int incy,

void *result,
cudaDataType resultType,
cudaDataType executionType);

178

Chapter 2. Using the cuBLAS API

http://www.netlib.org/blas/saxpy.f
http://www.netlib.org/blas/daxpy.f
http://www.netlib.org/blas/caxpy.f
http://www.netlib.org/blas/zaxpy.f

cuBLAS, Release 12.9

These functions are an API generalization of the routines

and where

input data, output data and compute type can be specified independently. Note: is

dot product conjugated,

is dot product unconjugated.

This function computes the dot product of vectors x and y. Hence, theresultis .7, (x[k] x y[j]) where
k=1+(i—1)xincxand j =1+ (: — 1) xincy . Notice that in the first equation the conjugate of the
element of vector x should be used if the function name ends in character ‘c’ and that the last two
equations reflect 1-based indexing used for compatibility with Fortran.

Param. Memory Infout | Meaning

handle input | Handle to the cuBLAS library context.

n input | Number of elements in the vectors x and y.

X device input | <type> vector with n elements.

xType input | Enumerant specifying the datatype of vector x.

incx input | Stride between consecutive elements of x.

y device input | <type> vector with n elements.

yType input | Enumerant specifying the datatype of vectory.

incy input | Stride between consecutive elements of y.

result host or de- | out- The resulting dot product, whichissetto@ifn <= @

vice put

resultType input | Enumerant specifying the datatype of the result.

execution- input | Enumerant specifying the datatype in which the computa-

Type tion is executed.

The datatypes combinations currently supported for and are listed be-
low:

X y result execution
CUDA_R_16F CUDA_R_16F | CUDA_R_16F CUDA_R_32F
CUDA_R_16BF | CUDA_R_16BF | CUDA_R_16BF | CUDA_R_32F
CUDA_R_32F CUDA_R_32F | CUDA_R_32F CUDA_R_32F
CUDA_R_64F CUDA_R_64F | CUDA_R_64F CUDA_R_64F
CUDA_C_32F CUDA_C_32F | CUDA_C_32F CUDA_C_32F
CUDA_C_64F CUDA_C_64F | CUDA_C_64F CUDA_C_64F

The possible error values returned by this function and their meanings are listed in the following table:

Error Value Meaning

CUBLAS_STATUS_ The operation completed successfully.
SUCCESS

CUBLAS_STATUS_NOT_ The library was not initialized.
INITIALIZED

CUBLAS_STATUS_ALLOC_
FAILED

The reduction buffer could not be allocated.

CUBLAS_STATUS_NOT_
SUPPORTED

The combination of the parameters xType, yType, resultType and
executionType is not supported.

CUBLAS_STATUS_
EXECUTION_FAILED

The function failed to launch on the GPU.

CUBLAS_STATUS_
INVALID_VALUE

xType or yType or resultType or executionType is not supported.

For references please refer to NETLIB documentation:

2.8. BLAS-like Extension

179

cuBLAS, Release 12.9

sdot(), ddot(), cdotu(), cdotc(), zdotu(), zdotc()

2.8.23 cublasRotEXx()

cublasStatus_t cublasRotEx(cublasHandle_t handle,
int n,
void *x,
cudaDataType xType,
int incx,
void *y,
cudaDataType yType,
int incy,
const void *c, /* host or device pointer */
const void *s,
cudaDataType csType,
cudaDataType executiontype);

This function supports the 64-bit Integer Interface.

This function is an extension to the routine cublas<t>rot() where input data, output data, cosine/sine
type, and compute type can be specified independently.

This function applies Givens rotation matrix (i.e., rotation in the x,y plane counter-clockwise by angle
defined by cos(alpha)=c, sin(alpha)=s):

G- (c s>
—S C
to vectors x and y.

Hence, the result is x[k] = ¢ x x[k] + s x y[j] and y[j] = —s x x[k] + ¢ x y[j] where k = 1+ (i — 1) xincx and
j=14(i — 1)xincy. Notice that the last two equations reflect 1-based indexing used for compatibility
with Fortran.

180 Chapter 2. Using the cuBLAS API

http://www.netlib.org/blas/sdot.f
http://www.netlib.org/blas/ddot.f
http://www.netlib.org/blas/cdotu.f
http://www.netlib.org/blas/cdotc.f
http://www.netlib.org/blas/zdotu.f
http://www.netlib.org/blas/zdotc.f

cuBLAS, Release 12.9

Param. Memory Infout| Meaning
handle in- Handle to the cuBLAS library context.
put
n in- Number of elements in the vectors x and y.
put
X device infout| <type> vector with n elements.
xType in- Enumerant specifying the datatype of vector x.
put
incx in- Stride between consecutive elements of x.
put
y device infout| <type> vector with n elements.
yType in- Enumerant specifying the datatype of vector y.
put
incy in- Stride between consecutive elements of y.
put
C host or de- | in- Cosine element of the rotation matrix.
vice put
S host or de- | in- Sine element of the rotation matrix.
vice put
csType in- Enumerant specifying the datatype of c and s.
put
execution- in- Enumerant specifying the datatype in which the computa-
Type put tion is executed.

The datatypes combinations currently supported for

are listed below :

execution- xType [yType csType

Type

CUDA_R_32F CUDA_R_16BF CUDA_R_16BF
CUDA_R_16F CUDA_R_16F
CUDA_R_32F CUDA_R_32F

CUDA_R_64F CUDA_R_64F CUDA_R_64F

CUDA_C_32F CUDA_C_32F CUDA_R_32F
CUDA_C_32F CUDA_C_32F

CUDA_C_64F CUDA_C_64F CUDA_R_64F
CUDA_C_64F CUDA_C_64F

The possible error values returned by this function and their meanings are listed below.

Error Value

Meaning

CUBLAS_STATUS_SUCCESS

The operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED

The library was not initialized

CUBLAS_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU

For references please refer to NETLIB documentation:

3 ’

))

3

2.8. BLAS-like Extension

181

http://www.netlib.org/blas/srot.f
http://www.netlib.org/blas/drot.f
http://www.netlib.org/lapack/lapack_routine/crot.f
http://www.netlib.org/blas/csrot.f
http://www.netlib.org/lapack/lapack_routine/zrot.f
http://www.netlib.org/blas/zdrot.f

cuBLAS, Release 12.9

cublasStatus_t cublasScalEx(cublasHandle_t handle,
int n,
const void *alpha,
cudaDataType alphaType,
void *x,
cudaDataType xType,
int incx,
cudaDataType executionType);

This function supports the

This function scales the vector x by the scalar a and overwrites it with the result. Hence, the performed
operationis x[j] = a x x[j]fori=1,...,nand j =1+ (i — 1) xincx . Notice that the last two equations
reflect 1-based indexing used for compatibility with Fortran.

Param. Memory Infout| Meaning
handle in- Handle to the cuBLAS library context.
put
n in- Number of elements in the vector x.
put
alpha host or de- | in- <type> scalar used for multiplication.
vice put
alphaType in- Enumerant specifying the datatype of scalar alpha.
put
X device infout| <type> vector with n elements.
xType in- Enumerant specifying the datatype of vector x.
put
incx in- Stride between consecutive elements of x.
put
execution- in- Enumerant specifying the datatype in which the computa-
Type put tion is executed.

The datatypes combinations currently supported for are listed below :

The possible error values returned by this function and their meanings are listed below.

alpha X execution

CUDA_R_32F | CUDA_R_16F | CUDA_R_32F
CUDA_R_32F | CUDA_R_16BF | CUDA_R_32F
CUDA_R_32F | CUDA_R_32F | CUDA_R_32F
CUDA_R_64F | CUDA_R_64F | CUDA_R_64F
CUDA_C_32F | CUDA_C_32F | CUDA_C_32F
CUDA_C_64F | CUDA_C_64F | CUDA_C_64F

182

Chapter 2. Using the cuBLAS API

cuBLAS, Release 12.9

Error Value Meaning

CUBLAS_STATUS_SUCCESS The operation completed successfully

CUBLAS_STATUS_NOT_ The library was not initialized

INITIALIZED

CUBLAS_STATUS_NOT_ The combination of the parameters xType and executionType
SUPPORTED is not supported

CUBLAS_STATUS_ The function failed to launch on the GPU

EXECUTION_FAILED

CUBLAS_STATUS_INVALID_ alphaType or xType or executionType is not supported
VALUE

For references please refer to NETLIB documentation:

) ’) ’

2.8. BLAS-like Extension 183

http://www.netlib.org/blas/sscal.f
http://www.netlib.org/blas/dscal.f
http://www.netlib.org/blas/csscal.f
http://www.netlib.org/blas/cscal.f
http://www.netlib.org/blas/zdscal.f
http://www.netlib.org/blas/zscal.f

cuBLAS, Release 12.9

184 Chapter 2. Using the cuBLAS API

Chapter 3

Using the cuBLASLt API

The cuBLASLt library is a new lightweight library dedicated to GEneral Matrix-to-matrix Multiply
(GEMM) operations with a new flexible API. This new library adds flexibility in matrix data layouts, input
types, compute types, and also in choosing the algorithmic implementations and heuristics through
parameter programmability.

Once a set of options for the intended GEMM operation are identified by the user, these options can
be used repeatedly for different inputs. This is analogous to how cuFFT and FFTW first create a plan
and reuse for same size and type FFTs with different input data.

Note: The cuBLASLt library does not guarantee the support of all possible sizes and configurations,
however, since CUDA 12.2 update 2, the problem size limitations on m, n, and batch size have been
largely resolved. The main focus of the library is to provide the most performant kernels, which might
have some implied limitations. Some non-standard configurations may require a user to handle them
manually, typically by decomposing the problem into smaller parts (see).

There are inherent problem size limitations that are a result of limitations in CUDA grid dimensions.
For example, many kernels do not support batch sizes greater than 65535 due to a limitation on the z
dimension of a grid. There are similar restriction on the m and n values for a given problem.

In cases where a problem cannot be run by a single kernel, cuBLASLt will attempt to decompose the
problem into multiple sub-problems and solve it by running the kernel on each sub-problem.

There are some restrictions on cuBLASLt internal problem decomposition which are summarized
below:

Amax computations are not supported. This means that CUBLASLT_MATMUL_DESC_AMAX_
D_POINTER and CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_AMAX_POINTER must be left

unset (see)
All matrix layouts must have CUBLASLT _MATRIX_LAYOUT_ORDER set to CUBLASLT_ORDER_
COL (see)

185

cuBLAS, Release 12.9

cuBLASLt will not partition along the n dimension when CUBLASLT_MATMUL_DESC_
EPILOGUE is set to CUBLASLT_EPILOGUE_DRELU_BGRAD or CUBLASLT_EPILOGUE_DGELU_
BGRAD (see)

To overcome these limitations, a user may want to partition the problem themself, launch kernels for
each sub-problem, and compute any necessary reductions to combine the results.

cuBLASLt uses heuristics to pick the most suitable matmul kernel for execution based on the problem
sizes, GPU configuration, and other parameters. This requires performing some computations on the
host CPU, which could take tens of microseconds. To overcome this overhead, it is recommended
to query the heuristics once using and then reuse the result for
subsequent computations using

For the cases where querying heuristics once and then reusing them is not feasible, cuBLASLt imple-
ments a heuristics cache that maps matmul problems to kernels previously selected by heuristics. The
heuristics cache uses an LRU-like eviction policy and is thread-safe.

The user can control the heuristics cache capacity with the CUBLASLT_HEURISTICS_CACHE_
CAPACITY environment variable or with the function which has
higher precedence. The capacity is measured in number of entries and might be rounded up to the
nearest multiple of some factor for performance reasons. Each entry takes about 360 bytes but is
subject to change. The default capacity is 8192 entries.

Note: Setting capacity to zero disables the cache completely. This can be useful for workloads that
do not have a steady state and for which cache operations may have higher overhead than regular
heuristics computations.

Note: The cache is not ideal for performance reasons, so it is sometimes necessary to increase its
capacity 1.5x-2.x over the anticipated number of unique matmul problems to achieve a nearly perfect
hit rate.

See also:)

cuBLASLt logging mechanism can be enabled by setting the following environment variables before
launching the target application:

CUBLASLT_LOG_LEVEL=<level> where <level> is one of the following levels:
0 - Off - logging is disabled (default)
1 - Error - only errors will be logged

2 - Trace - API calls that launch CUDA kernels will log their parameters and important infor-
mation

3 - Hints - hints that can potentially improve the application’s performance

4 - Info - provides general information about the library execution, may contain details about
heuristic status

186 Chapter 3. Using the cuBLASLt API

cuBLAS, Release 12.9

5 - API Trace - API calls will log their parameter and important information
CUBLASLT_LOG_MASK=<mask>, where <mask> is a combination of the following flags:
0 - Off
1-Error
2 - Trace
4 - Hints
8 - Info
16 - APl Trace
For example, use CUBLASLT_LOG_MASK=5 to enable Error and Hints messages.

CUBLASLT_LOG_FILE=<file_name>, where <file_name> is a path to a logging file. The file
name may contain %1i, which will be replaced with the process ID. For example file_name_%i.
log.

If CUBLASLT_LOG_FILE is not set, the log messages are printed to stdout.
Another option is to use the experimental cuBLASLt logging API. See:

What we call here narrow precision data types were first introduced as 8-bit floating point data types
(FP8) with Ada and Hopper GPUs (compute capability 8.9 and above), and were designed to further
accelerate matrix multiplications. There are two types of FP8 available:

CUDA_R_8F_E4M3 is designed to be accurate at a smaller dynamic range than half precision. The
E4 and M3 indicate a 4-bit exponent and a 3-bit mantissa respectively. For more details, see

CUDA_R_BF_ES5M2 is designed to be accurate at a similar dynamic range as half precision. The
E5 and M2 indicate a 5-bit exponent and a 2-bit mantissa respectively. For more information see

Note: Unless otherwise stated, FP8 refers to both CUDA_R_8F_E4M3 and CUDA_R_8F_E5M2.

With the Blackwell GPUs (compute capability 10.0 and above), cuBLAS adds support for 4-bit floating
data type (FP4) CUDA_R_4F_E2M1. The E2 and M1 indicate a 2-bit exponent and a 1-bit mantissa
respectively. For more details, see

In order to maintain accuracy, data in narrow precisions needs to be scaled or dequantized before
and potentially quantized after computations. cuBLAS provides several modes how the scaling fac-
tors are applied, defined in and configured via the CUBLASLT_MATMUL _
DESC_X_SCALE_MODE attributes (here X stands for A, B, C, D, D_OUT, or EPILOGUE_AUX; see

). The scaling modes overview is given in the next table, and more details are
available in the subsequent sections.

3.1. General Description 187

https://docs.nvidia.com/cuda/cuda-math-api/cuda_math_api/struct____nv__fp8__e4m3.html
https://docs.nvidia.com/cuda/cuda-math-api/cuda_math_api/struct____nv__fp8__e5m2.html
https://docs.nvidia.com/cuda/cuda-math-api/cuda_math_api/struct____nv__fp4__e2m1.html

cuBLAS, Release 12.9

Table 1: Scaling Mode Support Overview

Mode Supported com- | Tensor values data | Scaling fac- | Scaling fac-
pute capabilities type tors data type | tor layout
8.9+ CUDA_R_8F_E4M3 /| CUDA_R_32F Scalar
CUDA_R_8F_E5M2

9.0 CUDA_R_8F_E4M3 /| CUDA_R_32F Vector
CUDA_R_8F_E5M2

9.0 CUDA_R_8F_E4M3 /| CUDA_R_32F Tensor
CUDA_R_8F_E5M2

9.0 CUDA_R_8F_E4M3 /| CUDA_R_32F Tensor
CUDA_R_8F_E5M2

10.0+ CUDA_R_8F_E4M3 /| CUDA_R_8F_ Tiled ten-
CUDA_R_8F_E5M2 UE8MO sor

10.0+ CUDA_R_4F_E2M1 CUDA_R_8F_ Tiled ten-

UE4M3 sor
NOTES:

Note: Scales are only applicable to narrow precisions matmuls. If any scale is set for a non-narrow
precisions matmul, cuBLAS will return an error. Furthermore, scales are generally only supported for
narrow precision tensors. If the corresponding scale is set for a non-narrow precisions tensor, it will be
ignored. The one exception is that the tensor C is allowed to have a scale for non-narrow data types
on Ada and Hopper GPUs.

Note: Only Tensorwide scaling is supported when cublasLtBatchMode_t of any matrix is set to
CUBLASLT_BATCH_MODE_POINTER_ARRAY.

Tensorwide scaling is enabled when CUBLASLT_MATMUL_DESC_X_SCALE_MODE attributes (here X
stands for A, B, C, D, or EPTLOGUE_AUX; see) for all FP8-precision ten-
sors is set to CUBLASLT_MATMUL _MATRIX_SCALE_SCALAR_32F (this is the default value for FP8 ten-
sors). In such case, the matmul operation in cuBLAS is defined in the following way (assuming, for
exposition, that all tensors are using an FP8 precision):

D = scalep - (- scaley - scalep - op(A)op(B) + B - scalec - C).

Here A, B, and C are input tensors, and scale 4, scalep, scalec, scalep, o, and 3 are input scalars. This
differs from the other matrix multiplication routines because of this addition of scaling factors for each
matrix. The scale 4, scalep, and scalec are used for de-quantization, and scalep is used for quantization.
Note that all the scaling factors are applied multiplicatively. This means that sometimes it is necessary
to use a scaling factor or its reciprocal depending on the context in which it is applied. For more
information on FP8, see and

1 CUDA_R_8F_UE8M@ is an 8-bit unsigned exponent-only floating data type. For more information see

3 See for more details.

2 CUDA_R_8F_UE4M3 is an unsigned version of CUDA_R_E4M3. The sign bit is ignored, so this enumerant is provided for
convenience.

188 Chapter 3. Using the cuBLASLt API

https://docs.nvidia.com/cuda/cuda-math-api/cuda_math_api/struct____nv__fp8__e8m0.html

cuBLAS, Release 12.9

For such matrix multiplications, epilogues and the absolute maximums of intermediate values are com-
puted as follows:

Auiemp = a - scaley - scalep - op(A)op(B) + B - scalec - C,
Diemyp = Epilogue(Auziemp),
amazp = absmaz(Diemp),
amaz aug = absmaz(AuTiemp),
D = scalep * Diemp,

Auz = scale gy * AUTiemp.

Here Aux is an auxiliary output of matmul consisting of the values that are passed to an epilogue
function like GELU, scale 4., is an optional scaling factor that can be applied to Aux, and amax 4, IS
the maximum absolute value in Aux before scaling. For more information, see attributes CUBLASLT_
MATMUL _DESC_AMAX_D_POINTER and CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_AMAX_POINTER in

This scaling mode (also known as channelwise or rowwise scaling) is a refinement of the tensorwide
scaling. Instead of multiplying a matrix by a single scalar, a scaling factor is associated with each row
of A and each column of B:

k
Dij=a- scalei‘ - scaley Z ai - by + B - scalec - Cyj.
=1

Notably, scalep is not supported because the only supported precisions for D are CUDA_R_16F, CUDA_
R_16BF, and CUDA_R_32F.

To enable outer vector scaling, the CUBLASLT_MATMUL_DESC_A_SCALE_MODE and CUBLASLT_
MATMUL_DESC_B_SCALE_MODE attributes, must be set to CUBLASLT_MATMUL_MATRIX_SCALE_
OUTER_VEC_32F, while all the other scaling modes must not be modified.

When using this scaling mode, the scale 4 and scaleg must be vectors of length M and N respectively.

1D block scaling aims to overcome limitations of having a single scalar to scale a whole tensor. It is
described in more details in the specification, so we give just a brief overview here. Block
scaling means that elements within the same 16- or 32-element block of adjacent values are assigned
a shared scaling factor.

Currently, block scaling is supported for FP8-precision and FP4-precision tensors and mixing pre-
cisions is not supported. To enable block scaling, the CUBLASLT_MATMUL_DESC_X_SCALE_MODE
attributes (here X stands for A, B, C, D, or EPILOGUE_AUX; see)
must be set to CUBLASLT_MATMUL _MATRIX_SCALE_VEC32_UEB8M®@ for all FP8-precision tensors or to
CUBLASLT_MATMUL_MATRIX_SCALE_VEC16_UE4MS3 for all FP4-precision tensors.

With block scaling, the matmul operation in cuBLAS is defined in the following way (assuming, for
exposition, that all tensors are using a narrow precision). We loosely follow the OCP MXFP specification
notation.

First, a scaled block (or an MX-compliant format vector in the OCP MXFP specification) is a tuple z =
(S’”, [aﬁ]f:l) where S is a shared scaling factor, and each = is stored using an FP8 or FP4 data type.

3.1. General Description 189

https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf

cuBLAS, Release 12.9

A dot product of two scaled blocks = = (S”D, [27] f=1> andy = (Sy, [y'] f=1> is defined as follows:
k . .
Dot(z,y) = S*SY - Z;v’yl.
i=1
For a sequence of n blocks X = {z;}7_, and Y = {y;}}_,, the generalized dot product is defined as:
DotGeneral(X,Y) = Z Dot(z;,y;)-
j=1

The generalized dot product can be used to define the matrix multiplication by combining together
one scaling factor per k elements of A and B in the K dimension (assuming, for simplicity, that K is
divisible by k without a remainder):

K
L=—
k b
K L
A = {ScaleAi,ba [Ai7(b—1)k+l]l:1}b:1 7
i L
Bj = {scaleBi,ln [B(b—l)k+lvj]l:1}b:1’

({scalea, A} x {scaleg, B}); j = DotGeneral(A;, B;).
Now, the full matmul can be written as:
{scale%“, D} = Quantize (scale’f} (- {scales,0p(A)} x {scaleg,op(B)} + B - Dequantize({scalec, C}))))
The Quantize is explained in the section, and Dequantize is defined as:

Dequantize ({scalec, C})), ; = scaleciy, j - Ci,j.

i,

Note: Inaddition to scaley* that is computed during quantization, there is also an input scalar tensor-
wide scaling factor scale® for D that is available only when scaling factors use the CUDA_R_8F _UE4M3
data type. It is used to ‘compress’ computed values prior to quantization.

o qk
Consider a single block of elements of D in the M dimension: Db ., = [d}p&} . Quantization of
’ i=1

partial blocks is performed as if the missing values are zero. Let Amaz(DType) be the maximal value
representable in the destination precision.

The following computations steps are common to all combinations of output and scaling factors data
types.

1. Compute the block absolute maximum value Amaz(DY,3,) = maz({|d[};,)-

Amaw(D;pgz)

2. Compute the block scaling factor in single precision as % 3, = Tmar(DTape) -

Computing scaling and conversion factors for FP8 with UEBMO scales

Note: RNE rounding is assumed unless noted otherwise.

Computations consist of the following steps:

190 Chapter 3. Using the cuBLASLt API

cuBLAS, Release 12.9

1. Extract the block scaling factor exponent without bias adjustment as an integer E? , and man-
tissa as a fixed point number MJ‘Z from S}p& (the actual implementation operates on bit repre-
sentation directly).

TP
2. Round the block exponent up keeping it within the range of values representable in UEBMO:
E}, +1, if 8%, isanormal number and E},, < 254 and M}, >0

Ep, +1, if S} sisadenormal number and M3, > 0.5,

int fizp
E? otherwise.

nt?

Eb

int —

3. Compute the block scaling factor as S8 g0 = 2E%... Note that UEBMO data type has exponent
bias of 127.

4. Compute the block conversion factor R} 4, = m

Note: The algorithm above differs from the OCP MXFP suggested rounding scheme.

Computing scaling and conversion factors for FP4 with UE4M3 scales

Here we assume that the algorithm is provided with a precomputed input tensorwide scaling factor
scale’™ which in general case is computed as

Amaz(e2ml) - Amax(edm3)
Amaz(Diemyp) ’

m
scalepy =

where Amaz(Dyemyp) is a global absolute maximum of matmul results before quantization. Since com-
puting this value requires knowing the result of the whole computation, an approximate value from
e.g. the previous iteration is used in practice.

Computations consist of the following steps:
1. Compute the narrow precision value of the block scaling factor S?,,,; = e4m3(S% 4, - scalel).

b _ scalegl
fp32 7 fp32(Sy,s)°

e

2. Compute the block conversion factor R

Applying conversion factors
For each i = 1...k, compute d’ = DType(d},q, - R},3,)- The resulting quantized block is (Sb, [di]f:1>,
where S% is S? for FP8 with UEBMO scaling factors, and S?,_,,..; for FP4 with UE4M3 scaling factors.

ue8m0

Scaling factors are stored using a tiled layout. The following figure shows how each 128x4 tile is laid
out in memory. The offset in memory is increasing from left to right, and then from top to bottom.

The following pseudocode can be used to translate from inner (K for A and B, and M for C or D) and
outer (M for A, and N for B, C and D) indices to linear of fset within a tile and back:

// Indices -> offset
offset = (outer % 32) * 16 + (outer / 32) * 4 + inner

// Offset -> Indices
outer ((offset % 16) / 4) * 32 + (offset / 16)
inner (offset % 4)

A single tile of scaling factors is applied to a 128x64 block when the scaling mode is CUBLASLT_
MATMUL _MATRIX_SCALE_VEC16_UE4M3 and to a 128x128 block when it is CUBLASLT_MATMUL_
MATRIX_SCALE_VEC32_UE8M®.

3.1. General Description 191

cuBLAS, Release 12.9

Scaling factors 128x4 tile memory layout
Byte offset within the tile row

00 ol 02 03 04 05 06 o7 08 09 10 1 12 13 14 15
ooo 000, 0) T (000, 1) | (000, 2) | (000,3) | (032,00 | (032,1) | (032,2) | (032,3) | (064,0) | (064,1) (064,2) | (064,3) [(096,0) | (096,1) (096,2) | (096, 3)
016 [(001,00 (001, 1) | (001, 2] | (001,3) | (033,00 (033, 1) (033,2) | (033,3) | (065,0) | (065, 1) (065 2) | (065 3] [(097,0) | (097,1) (097,2) (097, 3)
032 [(002,0) | (002, 1) | (002, 2) | (002,3) | (034,0) | (034.1) | (034.2) | (034,3) | (066,0) | (066,1) | (066,2) | (066, 3) [(098.0) | (098, 1) | (098,2) (098, 3)
048 [(003 0) (003, 1) | (003, 2) | (003, 3) | (035,00 (035 1) (035 2) | (035 3) | (067,0) (067,1) (067,2) | (067,3) [(099,0) (099,1) (099, 2) (099, 3)
064 | (004,0) | (004,1) (004,2) | (004,3) | (036,00 (036,1) [036,2) | (036,3) | (068,0) ' (068,1) (068,2) | (068, 3} [(100,0) | (100,1) (100,2) ' (100,3)
080 [1005,0) T (005, 1) (005, 2) | (005,3) | (037,00 (037,1) [037,2) | (037,3) | (069,0) (069,1) (069,2) | (069,3) [(101,0) (101,1) (101,2) (101,3)
096 [(006,00 (006, 1) | (006, 2] | (006,3) | (038,0) (038 1) (038 2) | (038 3) | (070,0) (070,1) (070,2) (070, 3] [(102,0) (102,1) (102,2) (102 3)
(007,0) (007.1) (007.2) (007.3) [(039.0) (039, 1) (039.2) (039.3) |(©71.00 (071.1) (071.2) (071.3) | (103,00 (103,1) (103,2) (103 3)

(016,0) (016,1) (016,2) | (016,3) | (048,0) (048,1) | (048,2) | (048,3) | (080,0) ' (080,1) (080,2) | (080,3) | (112,0) (112,1) (112,2) (112,3)
272 | (017,0) (017,1) (017.2) | (017,3) | (049,0) (049,1) (049,2) | (049,3) | (081,0) | (081,1) (081,2) | (081,3) | (113,0) | (113, 1) (113,2) (113,3)
288 (018,0) | (018,1) (018,2) | (018,3) | (050.0) | (050, 1) | (050.2) | (050,3) | (082,0) | (082,1) (082,2) | (082,3) | (114.0) | (114,1) (114,2) (114,3)
3041(019,0) (019,1) (019,2) | (019,3) | (051,0) (051,1) (051,2) (051,3) | (083,0) | (083,1) (083,2) (083,3) | (1150 | (1151) (1152) (115 3)
320 (020,0) | (020,1) (020,2) | (020,3) | (052,0) (052, 1) (052,2) (052,3) | (084,0) | (084,1) (084,2) (084,3)|(116,0) | (116,1) (116,2) (1186, 3)
336(021,0) (021,1) (021,2) (021,3) | (053,0) (053,1) (053,2) (053,3) | (085,0) | (085,1) (085,2) (085 3) | (117,00 | (117,1) (117,2) (117, 3)
3521(022,0) (022, 1) | (022,2) (022,3) | (054,0) (054,1) (054,2) (054,3) |(086,0) | (086,1) (086,2) (086,3)|(118,0) (118,1) (118,2) (118 3)

Byte offset within the tile
)
w
[5:]

368|(023,0) (023,1) (023,2) | (023,3) | (055,0) (0S5,1) | (055,2) | (055,3) | (087,0) | (087.1) A (087,2) | (087.3) | (119,0) | (119,1) (119,2) (119,3)

Multiple blocks are arranged in the row-major manner. The next picture shows an example. The offset
in memory is increasing from left to right, and then from top to bottom.

Example tile ordering for 768x12 scaling factors tensor

Byte offset within the tensor row
1024

0 (000, 00) (000, 04) (000, 08) (outer, inner)
B 128x4 tile 128x4 tile 128x4 tile e t:p.lfft
2
G 1536 (128,00) (128,04) (128,08)
z 128x4 tile 128x4 tile 128x4 tile
<
t 3072 (256, 00) (256, 04) (256, 08)
c 128x4 tile 128x4 tile 128x4 tile
E=]
2 4508 (384, 00) (384, 04) (384, 08)
-
ﬂ 128x4 tile 128x4 tile 128x4 tile
&
O 6144
Q
2
>
[}

7680

In general, for a scaling factors tensor with sf_inner_dim scaling factors per row, offset of a block
with top left coordinate (sf_outer, sf_inner) (using the same correspondence to matrix coordi-
nates as noted above) can be computed using the following pseudocode:

// Indices -> offset
// note that sf_inner is a multiple of 4 due to the tiling layout
offset = (sf_inner + sf_outer * sf_inner_dim) * 128

Note: Starting addresses of scaling factors must be 16B aligned.

Note: Note that the layout described above does not allow transposition. This means that even

192 Chapter 3. Using the cuBLASLt API

cuBLAS, Release 12.9

though the input tensors can be transposed, the layout of scaling factors does not change.

Note: Note that when tensor dimensions are not multiples of the tile size above, it is necessary to still
allocate full tile for storage and fill out of bounds values with zeroes. Moreover, when writing output
scaling factors, kernels may write additional zeroes, so it is best to not make any assuptions regarding
the persistence of out of bounds values.

These two scaling modes apply principles of the scaling approach described

to the Hopper GPU architecture. However, here the scaling data
type is CUDA_R_32F, and different scaling modes can be used for A and B, and the only supported
precisions for D are CUDA_R_16F, CUDA_R_16BF, and CUDA_R_32F.

To enable this scaling mode, the CUBLASLT_MATMUL _DESC_X_SCALE_MODE attributes (here X stands
for A or B), must be set to CUBLASLT_MATMUL_MATRIX_SCALE_VEC128_32F or CUBLASLT_MATMUL _
MATRIX_SCALE_BLK128x128_32F, while all the other scaling modes must not be modified. The fol-
lowing table shows supported combinations:

CUBLASLT_MATMUL_DESC_A_SCALE_MODECUBLASLT_MATMUL_DESC_B_SCALE_MODEup-
ported?

CUBLASLT_MATMUL_MATRIX_SCALE_ CUBLASLT_MATMUL_MATRIX_SCALE_ Yes
VEC128_32F VEC128_32F
CUBLASLT_MATMUL_MATRIX_SCALE_ CUBLASLT_MATMUL_ _MATRIX_SCALE_ Yes
VEC128_32F BLK128x128_32F
CUBLASLT_MATMUL_MATRIX_SCALE_ CUBLASLT_MATMUL_MATRIX_SCALE_ Yes
BLK128x128_32F VEC128_32F
CUBLASLT_MATMUL_MATRIX_SCALE_ CUBLASLT_MATMUL_MATRIX_SCALE_ No
BLK128x128_32F BLK128x128_32F

Using the notation from the , we can define

sequences of scaled blocks for the i-th row of A in the following way:

K
’Vm“)
128

L
Al28 {scaleAi’b, [Ai7(b71)128+l]l=1}b:1 , (this is the 128-element 1D block scaling)

L

)
p= ’Vm“)
128

L
AP — {scaleAp,b, [Ai,(b,l)lzgﬂ]l:l}) (this is the 128x128-element 2D block scaling)
Definitions for B are similar. The matmul is then defined as in

with the notable difference that when using the 2D block scaling a single scaling
factor is used for the whole 128x128 block of elements.

3.1. General Description 193

cuBLAS, Release 12.9

Note: Starting addresses of scaling factors must be 16B aligned.

Note: M and N must be multiples of 4.

Then for the CUBLASLT_MATMUL _MATRIX_SCALE_VEC128_32F scaling mode, the scaling factors are:

M-major for A with shape M x L (M-major means that elements along the M dimension are
contiguous in memory),

N-major for B with shape N x L.

For the CUBLASLT_MATMUL _MATRIX_SCALE_BLK128x128_32F scaling mode, the scaling factors are
K-major and the stride between the consecutive columns must be a multiple of 4. Let Ly = [L]4,
where the [-]4 denotes rounding up to the nearest multiple of 4. Then

for A, the shape of the scaling factors is Ly x [%L

for B, the shape of the scaling factors is Ly x [5].

As mentioned in the section, cuBLASLt heuristics perform some compute-intensive
operations on the host CPU. To speed-up the operations, the implementation detects CPU capabilities
and may use special instructions, such as Advanced Vector Extensions (AVX) on x86-64 CPUs. However,
in some rare cases this might be not desirable. For instance, using advanced instructions may result
in CPU running at a lower frequency, which would affect performance of the other host code.

The user can optionally instruct the cuBLASLt library to not use some CPU instructions with
the CUBLASLT_DISABLE_CPU_INSTRUCTIONS_MASK environment variable or with the

function which has higher precedence. The default mask is O, meaning
that there are no restrictions.

Please check for more information.

Atomics synchronization allows optimizing matmul workloads by enabling to have a
producer or consumer relationship with another concurrently running kernel. This allows overlapping
computation and communication with a finer granularity. Conceptually, matmul is provided with an
array containing 32-bit integer counters, and then:

In the consumer mode, either matrix A is partitioned into chunks by rows, or matrix B is parti-
tioned into chunks by columns®. A chunk can be read from memory and used in computations
only when the corresponding atomic counter reaches value of 0. The producer should execute
a memory fence to ensure that the written value is visible to the concurrently running matmul
kernel>.

4 The current implementation allows partitioning either the rows or the columns of the matrixes, but not both. Batched cases
are not supported.

5 One possible implementation of a memory fence is cuda: :atomic_thread_fence(cuda: :memory_order_seq_cst,
cuda: :thread_scope: :thread_scope_device) (see for more details).

194 Chapter 3. Using the cuBLASLt API

https://nvidia.github.io/libcudacxx/extended_api/synchronization_primitives/atomic/atomic_thread_fence.html

cuBLAS, Release 12.9

» Inthe producer mode, the output matrix C (or D in the out-of-place mode), is partitioned by rows
or columns, and after a chunk is computed, the corresponding atomic counter is set to 0. Each
counter must be initialized to 1 before the matmul kernel runs.

The array of counters are passed to matmuls via the CUBLASLT_MATMUL_DESC_ATOMIC_SYNC_IN_
COUNTERS_POINTER and CUBLASLT_MATMUL_DESC_ATOMIC_SYNC_OUT_COUNTERS_POINTER com-
pute descriptor attributes for the consumer and producer modes respectively®. The arrays must have
a sufficient number of elements for all the chunks.

The number of chunks is controlled by CUBLASLT_MATMUL_DESC_ATOMIC_SYNC_NUM_CHUNKS_D_
ROWS and CUBLASLT_MATMUL_DESC_ATOMIC_SYNC_NUM_CHUNKS_D_COLS compute descriptor at-
tributes. Both of these attributes must be set to a value greater than zero for the feature to be enabled.
For the column-major layout, the number of chunks must satisfy:

M
< <
0'< NUM_CHUNKS_ROWS < floor (TILE_SIZE_M x CLUSTER_SHAPE_M)

N
< <
0 < NUM_CHUNKS_COLS < floor (TILE_SIZE_N " CLUSTER_SHAPE_N)

For row-major layout, M and N in tile size and cluster shape must be swapped. These restrictions mean
that it is required to first query heuristic via cublasLtMatmulAlgoGetHeuristic() and inspect the result
for tile and cluster shapes, and only then set the number of chunks.

The pseudocode below shows the principles of operation:

// The code below shows operation when partitioning over
// rows assuming column-major layout and TN case.

//

// The case when partitioning is done over columns or
// row-major case are handled in a similar fashion,
// with the main difference being the offsets

// computations.

//

// Note that the actual implementation does not

// guarantee in which order the chunks are computed,
// and may employ various optimizations to improve

// overall performance.

//

// Here:

// - A, B, C -- input matrices in the column-major layout
// - lda -- leading dimension of matrix A

// - M, N, K -- the original problem dimensions

// - counters_in[] and counters_out[] -- the arrays of
// input and output atomic counters

//

for (int i = 0; i < NUM_CHUNKS_ROWS; i++) {
// Consumer: wait for the input counter to become 0
if (consumer) {
while (counters_in[i] !'= @); // spin

}

// compute chunk dimensions
chunk_m_begin = floor((double)M / NUM_CHUNKS_ROWS * i);
chunk_m_end = floor((double)M / NUM_CHUNKS_ROWS * (i + 1));
chunk_m = chunk_m_end - chunk_m_begin;
(continues on next page)

6 The current implementation allows to only enable either the producer or the consumer mode, but not both. Matmul will
return an error if both input and output counter pointers to a non-NULL value.

3.1. General Description 195

cuBLAS, Release 12.9

(continued from previous page)

// Compute the current chunk

matmul(chunk_m, N, K,
Alchunk_m_begin * 1lda], // A is col-major transposed
B, // B is not partitioned
C[chunk_m_begin] // C is col-major non-transposed

)

// Producer: set the counter to 6 when done

if (producer) {
counters_out[i] = 0;
// make the written value visible to the consumer kernel
memory_fence() ;

}
}

It should be noted that, in general, CUDA programming model provides few kernel co-scheduling guar-
antees. Thus, use of this feature requires careful orchestration of producer and consumer kernels
launch order and resource availability, as it easy to create a deadlock situation. A deadlock may occur
in the following cases (this is not an exhaustive list):

» If a producer kernel cannot start because consumer kernel was launched first and is occupying
some of SMs that are needed by the producer kernel to launch. It is strongly recommended to set
CUBLASLT_MATMUL_DESC_SM_COUNT_TARGET to carve out some SMs for non-matmul (typically
communication) kernels to execute on.

» If cudaDeviceSynchronize() is called after consumer kernel starts but before the producer kernel
does.

» When lazy module loading is enabled, and producer kernel cannot be loaded while the consumer
kernel is running due to locking in the CUDA runtime library. Both kernels also must be loaded
before they are run together to avoid this situation. Using CUDA Graphs is another way to avoid
deadlocks due to lazy loading.

Note: This feature is aimed at advanced users and is only available on Hopper architecture for FP8
non-batched cases with fast accumulation mode enabled, and is considered to have beta quality due
to the large number of restrictions on its use.

196 Chapter 3. Using the cuBLASLt API

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__DEVICE.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#lazy-loading
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cuda-graphs

cuBLAS, Release 12.9

3.2 cuBLASLt Code Examples

Please visit https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuBLASLt for updated code
examples.

3.3 cuBLASLt Datatypes Reference

3.3.1 cublasLtClusterShape_t

cublaslLtClusterShape_t is an enumerated type used to configure thread block cluster dimensions.
Thread block clusters add an optional hierarchical level and are made up of thread blocks. Similar
to thread blocks, these can be one, two, or three-dimensional. See also Thread Block Clusters.

Value

Description

CUBLASLT_CLUSTER_SHAPE_AUTO

Cluster shape is automatically selected.

CUBLASLT_CLUSTER_SHAPE_1x1x1

Cluster shapeis 1 x 1 x 1.

CUBLASLT_CLUSTER_SHAPE_1x2x1

Cluster shapeis 1 x2 x 1.

CUBLASLT_CLUSTER_SHAPE_1x4x1

Cluster shapeis 1 x4 x 1.

CUBLASLT_CLUSTER_SHAPE_2x1x1

Cluster shapeis2x 1 x 1.

CUBLASLT_CLUSTER_SHAPE_2x2x1

Cluster shapeis2x2 x 1.

CUBLASLT_CLUSTER_SHAPE_2x4x1

Cluster shapeis2 x4 x 1.

CUBLASLT_CLUSTER_SHAPE_4x1x1

Cluster shapeis4 x 1 x 1.

CUBLASLT_CLUSTER_SHAPE _4x2x1

Cluster shapeis4x 2 x 1.

CUBLASLT_CLUSTER_SHAPE_4x4x1

Cluster shapeis4 x4 x 1.

CUBLASLT_CLUSTER_SHAPE _1x8x1

Cluster shapeis 1 x8x 1.

CUBLASLT_CLUSTER_SHAPE _8x1x1

Cluster shapeis8x 1 x 1.

CUBLASLT_CLUSTER_SHAPE_2x8x1

Cluster shapeis2x8x 1.

CUBLASLT_CLUSTER_SHAPE_8x2x1

Cluster shapeis 8 x 2 x 1.

CUBLASLT_CLUSTER_SHAPE_1x16x1

Cluster shapeis 1 x 16 x 1.

CUBLASLT_CLUSTER_SHAPE_16x1x1

Cluster shapeis 16 x 1 x 1.

CUBLASLT_CLUSTER_SHAPE_1x3x1

Cluster shapeis 1 x 3 x 1.

CUBLASLT_CLUSTER_SHAPE_1x5x1

Cluster shapeis 1 x5x 1.

CUBLASLT_CLUSTER_SHAPE_1x6x1

Cluster shapeis 1 x6 x 1.

CUBLASLT_CLUSTER_SHAPE_1x7x1

Cluster shapeis 1 x 7 x 1.

CUBLASLT_CLUSTER_SHAPE_1x9x1

Cluster shapeis 1 x9x 1.

CUBLASLT_CLUSTER_SHAPE_1x10x1

Cluster shapeis 1 x 10x 1.

CUBLASLT_CLUSTER_SHAPE_1x11x1

Cluster shapeis 1x 11 x 1.

CUBLASLT_CLUSTER_SHAPE_1x12x1

Cluster shapeis 1 x 12 x 1.

CUBLASLT_CLUSTER_SHAPE_1x13x1

Cluster shapeis 1 x 13 x 1.

CUBLASLT_CLUSTER_SHAPE_1x14x1

Cluster shapeis 1 x 14 x 1.

CUBLASLT_CLUSTER_SHAPE_1x15x1

Cluster shapeis 1 x 15x 1.

CUBLASLT_CLUSTER_SHAPE_2x3x1

Cluster shapeis2x3 x 1.

CUBLASLT_CLUSTER_SHAPE_2x5x1

Cluster shapeis2 x5 x 1.

CUBLASLT_CLUSTER_SHAPE_2x6x1

Cluster shapeis2x6 x 1.

CUBLASLT_CLUSTER_SHAPE _2x7x1

Cluster shapeis2 x 7 x 1.

CUBLASLT_CLUSTER_SHAPE_3x1x1

Cluster shapeis3x 1 x 1.

CUBLASLT_CLUSTER_SHAPE_3x2x1

Cluster shapeis3x2x 1.

CUBLASLT_CLUSTER_SHAPE_3x3x1

Cluster shapeis3x3x 1.

continues on next page

3.2. cuBLASLt Code Examples

197

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuBLASLt
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#thread-block-clusters

cuBLAS, Release 12.9

Table 2 - continued from previous page

Value

Description

CUBLASLT_CLUSTER_SHAPE_3x4x1

Cluster shapeis3 x4 x 1.

CUBLASLT_CLUSTER_SHAPE_3x5x1

Cluster shapeis 3 x5x 1.

CUBLASLT_CLUSTER_SHAPE_4x3x1

Cluster shapeis 4 x 3 x 1.

CUBLASLT_CLUSTER_SHAPE_5x1x1

Cluster shapeis5x 1 x 1.

CUBLASLT_CLUSTER_SHAPE_5x2x1

Cluster shapeis5x2 x 1.

CUBLASLT_CLUSTER_SHAPE _5x3x1

Cluster shapeis5x 3 x 1.

CUBLASLT_CLUSTER_SHAPE_6x1x1

Cluster shapeis6x 1 x 1.

CUBLASLT_CLUSTER_SHAPE_6x2x1

Cluster shapeis6x 2 x 1.

CUBLASLT_CLUSTER_SHAPE_7x1x1

Cluster shapeis 7 x 1 x 1.

CUBLASLT_CLUSTER_SHAPE_7x2x1

Cluster shapeis 7 x 2 x 1.

CUBLASLT_CLUSTER_SHAPE_9x1x1

Cluster shapeis9x 1 x 1.

CUBLASLT_CLUSTER_SHAPE_10x1x1

Cluster shapeis 10x 1 x 1.

CUBLASLT_CLUSTER_SHAPE_11x1x1

Cluster shapeis 11 x 1 x 1.

CUBLASLT_CLUSTER_SHAPE_12x1x1

Cluster shapeis 12x 1 x 1.

CUBLASLT_CLUSTER_SHAPE _13x1x1

Cluster shapeis 13 x 1 x 1.

CUBLASLT_CLUSTER_SHAPE_14x1x1

Cluster shapeis 14 x 1 x 1.

CUBLASLT_CLUSTER_SHAPE_15x1x1

Cluster shapeis 15x 1 x 1.

3.3.2 cublasLtEpilogue_t

The cublasLtEpilogue_tis an enum type to set the postprocessing options for the epilogue.

198

Chapter 3. Using the cuBLASLt API

cuBLAS, Release 12.9

Value Description

CUBLASLT_EPILOGUE_ | No special postprocessing, just scale and quantize the results if neces-
DEFAULT = 1 sary.

CUBLASLT_EPILOGUE_ | Apply ReLU point-wise transform to the results (x := max(x, 9)).
RELU = 2

CUBLASLT_ EPILOGUE Apply ReLU point-wise transform to the results (x := max(x, 0)).

RELU_AUX
CUBLASLT_ EPILOGUE
RELU | 128

This epilogue mode produces an extra output, see CUBLASLT_MATMUL _
DESC_EPILOGUE_AUX_POINTER of :

CUBLASLT_EPILOGUE_
BIAS =

Apply (broadcast) bias from the bias vector. Bias vector length must
match matrix D rows, and it must be packed (such as stride between
vector elements is 1). Bias vector is broadcast to all columns and added
before applying the final postprocessing.

CUBLASLT_EPILOGUE_
RELU_BIAS =
CUBLASLT_EPILOGUE_
RELU = CUBLASLT_
EPILOGUE_BIAS

Apply bias and then ReLU transform.

CUBLASLT_EPILOGUE_
RELU_AUX_BIAS

= CUBLASLT_
EPILOGUE_RELU_
AUX = CUBLASLT_

EPILOGUE_BIAS

Apply bias and then ReLU transform. This epilogue mode produces an ex-
tra output, see CUBLASLT_MATMUL _DESC_EPILOGUE_AUX_POINTER of

CUBLASLT_EPILOGUE_
DRELU = 8 | 128

Apply RelLu gradient to matmul output. Store RelLu gradient in
the output matrix. This epilogue mode requires an extra input,
see CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER of

CUBLASLT_EPILOGUE_
DRELU_BGRAD =
CUBLASLT_EPILOGUE_
DRELU | 16

Apply independently ReLu and Bias gradient to matmul output. Store
RelLu gradient in the output matrix, and Bias gradient in the bias buffer
(see CUBLASLT_MATMUL _DESC_BIAS_POINTER). This epilogue mode re-
quires an extra input, see CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_
POINTER of

CUBLASLT_EPILOGUE_
GELU = 32

Apply GELU point-wise transform to the results (x := GELU(x)).

CUBLASLT_ EPILOGUE
GELU_AUX
CUBLASLT_ EPILOGUE
GELU | 128

Apply GELU point-wise transform to the results (x := GELU(x)). This
epilogue mode outputs GELU input as a separate matrix (useful for
training). See CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER of

CUBLASLT_EPILOGUE_
GELU_BIAS =
CUBLASLT_EPILOGUE_
GELU = CUBLASLT_
EPILOGUE_BIAS

Apply Bias and then GELU transform’.

CUBLASLT_EPILOGUE_
GELU_AUX_BIAS

= CUBLASLT_
EPILOGUE_GELU_
AUX = CUBLASLT_

EPILOGUE_BIAS

Apply Bias and then GELU transform This epilogue mode
outputs GELU input as a separate matrix (useful for training).
See CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER of

CUBLASLT_EPILOGUE_

Apply GELU gradient to matmul output. Store GELU gradient in

DGELU = 64 | 128 the output matrix. This epilogue mode requires an extra input,
see CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_POINTER of
Unl I T_EPTI OGUE }le ”luUpelluellLly GELU d”u Dldb yldUIUIIL LU l”dLl”Ul UULIJUL OLUIU
B&Eq_ltplaﬁﬁkaatatypes RGE?."@Q)‘?%dlent in the output matrix, and Bias gradient in the bias bufft?9

CUBLASLT_EPILOGUE_
DGELU | 16

(see CUBLASLT_MATMUL _DESC_BIAS_POINTER). This epilogue mode re-
quires an extra input, see CUBLASLT_MATMUL_DESC_EPILOGUE_AUX_
POINTER of .

cuBLAS, Release 12.9

NOTES:

Note: Only CUBLASLT_EPILOGUE_DEFAULT is supported when cublasLtBatchMode_t of any matrix is
set to CUBLASLT_BATCH_MODE_POINTER_ARRAY.

3.3.3 cublasLtHandle_t

The cublasLtHandle_t type is a pointer type to an opaque structure holding the cuBLASLt library con-
text. Use cublasltCreate() to initialize the cuBLASLt library context and return a handle to an opaque
structure holding the cuBLASLt library context, and use cublasltDestroy() to destroy a previously cre-
ated cuBLASLt library context descriptor and release the resources.

Note: cuBLAS handle (cublasHandle_t) encapsulates a cuBLASLt handle. Any valid cublasHandle_t can
be used in place of cublasltHandle_t with a simple cast. However, unlike a cuBLAS handle, a cuBLASLt
handle is not tied to any particular CUDA context with the exception of CUDA contexts tied to a graph-
ics context (starting from CUDA 12.8). If a cuBLASLt handle is created when the current CUDA context
is tied to a graphics context, then cuBLASLt detects the corresponding shared memory limitations and
records it in the handle.

3.3.4 cublasLtLoggerCallback_t

cublaslLtlLoggerCallback_t is a callback function pointer type. A callback function can be set using
cublasLtLoggerSetCallback().

Parameters:
Parameter Memory | Input / Output | Description
loglLevel Output See cuBLASLt Logging.
functionName Output The name of the API that logged this message.
message Output The log message.

3.3.5 cublasLtMatmulAlgo_t

cublasLtMatmulAlgo_t is an opaque structure holding the description of the matrix multiplication al-
gorithm. This structure can be trivially serialized and later restored for use with the same version of
cuBLAS library to save on selecting the right configuration again.

7 GELU (Gaussian Error Linear Unit) is approximated by: 0.5z (1 + tanh (\/2/7r (z+ 0.044715z3)>>

200 Chapter 3. Using the cuBLASLt API

cuBLAS, Release 12.9

3.3.6 cublasLtMatmulAlgoCapAttributes_t

cublasLtMatmulAlgoCapAttributes_t enumerates matrix multiplication algorithm capability attributes
that can be retrieved from an initialized cublasLtMatmulAlgo_t descriptor using cublasLtMatmulAlgo-

CapGetAttribute().

3.3. cuBLASLt Datatypes Reference 201

cuBLAS, Release 12.9

Value Description Data
Type
CUBLASLT_ Support for split-K. Boolean (0 or 1) to express if split-K implementation is | int32_
ALGO_CAP_ supported. O means no support, and supported otherwise. See CUBLASLT_ | t
SPLITK_ ALGO_CONFIG_SPLITK_NUM of .
SUPPORT
CUBLASLT_ Mask to express the types of reduction schemes supported, see uintB2_
ALGO_CAP_ . If the reduction scheme is not masked out then it is sup- | t
REDUCTION_ | ported. For example: int isReductionSchemeComputeTypeSupported
SCHEME _ ? (reductionSchemeMask & CUBLASLT_REDUCTION_SCHEME_COMPUTE_
MASK TYPE) == CUBLASLT_REDUCTION_SCHEME_COMPUTE_TYPE ? 1 9;
CUBLASLT_ Support for CTA-swizzling. Boolean (O or 1) to express if CTA-swizzling im- | uint{32
ALGO_ plementation is supported. O means no support, and 1 means supported | t
CAP_CTA_ value of 1; other values are reserved. See also CUBLASLT_ALGO_CONFIG_
SWIZZLING_ | CTA_SWIZZLING of
SUPPORT
CUBLASLT_ Support strided batch. 0 means no support, supported otherwise. int32_
ALGO_CAP_ t
STRIDED_
BATCH_
SUPPORT
CUBLASLT_ Support pointer array batch. O means no support, supported otherwise. int3p_
ALGO_CAP_ t
POINTER_
ARRAY_
BATCH_
SUPPORT
CUBLASLT_ Support results out of place (D != C in D = alpha.A.B + beta.C). 0 means no | int32_
ALGO_CAP_ support, supported otherwise. t
OUT_OF_
PLACE_
RESULT_
SUPPORT
CUBLASLT_ Syrk (symmetric rank k update)/herk (Hermitian rank k update) support (on | int32_
ALGO_ top of regular gemm). O means no support, supported otherwise. t
CAP_UPLO_
SUPPORT
CUBLASLT_ The tile ids possible to use. See . If no tile ids are sup- | uintB2_
ALGO_CAP_ ported then use CUBLASLT_MATMUL_TILE_UNDEFINED.Use t[]
TILE_IDS with sizeInBytes = 0 to query the actual count.
CUBLASLT_ The stages ids possible to use. See . If no stages | uintB2_
ALGO_CAP_ ids are supported then use CUBLASLT_MATMUL_STAGES_UNDEFINED. Use | t[]
STAGES_IDS with sizeInBytes = 0 to query the
actual count.

CUBLASLT_ Custom option range is from O to CUBLASLT_ALGO_CAP_CUSTOM_OPTION_ | int32_
ALGO_CAP_ MAX (inclusive). See CUBLASLT_ALGO_CONFIG_CUSTOM_OPTION of t
CUSTOM_
OPTION_MAX
CUBLASLT_ Indicates whether the algorithm is using regular compute or tensor opera- | int32_
ALGO_CAP_ tions. 0 means regular compute, 1 means tensor operations. DEPRECATED t
MATHMODE _
IMPL
CUBLASLT_ Indicate whether the algorithm implements the Gaussian optimization of | int32_
ALGO_CAP_ complex matrix multiplication. 0 means regular compute; 1 means Gaussian. | t
GAUSSTAN See —DEPRECATED

20RpPL B Chapter 3. Using the cuBLASLt API
CUBLASLT_ Indicates whether the algorithm supports custom (not COL or ROW memory | int32_
ALGO_CAP_ order). 0 means only COL and ROW memory order is allowed, non-zero means | t
CUSTOM_ that algo might have different requirements. See

cuBLAS, Release 12.9

is an enumerated type that contains the configuration at-
tributes for cuBLASLt matrix multiply algorithms. The configuration attributes are algorithm-specific,
and can be set. The attributes configuration of a given algorithm should agree with its capability at-

tributes. Use and to
get and set the attribute value of a matmul algorithm descriptor.
Value Description Data
Type
CUBLASLT_ Read-only attribute. Algorithm index. See . Set | int32_
ALGO_ by . t
CONFIG_ID
CUBLASLT_ Tile id. See Default: CUBLASLT_MATMUL_TILE_ | uintB2_
ALGO_ UNDEFINED. t
CONFIG_
TILE_ID
CUBLASLT_ stages id, see Default: CUBLASLT_MATMUL_ | uintB32_
ALGO_ STAGES_UNDEFINED. t
CONFIG_
STAGES_ID
CUBLASLT_ Number of K splits. If the number of K splitsis greater than one, SPLITK_NUM | uintB2_
ALGO_ parts of matrix multiplication will be computed in parallel. The results willbe | t
CONFIG_ accumulated according to CUBLASLT_ALGO_CONFIG_REDUCTION_SCHEME.
SPLITK_NUM
CUBLASLT_ Reduction scheme to use when splitK value > 1. Default: CUBLASLT_ | uint32_
ALGO_ REDUCTION_SCHEME_NONE. See t
CONFIG_
REDUCTION_
SCHEME
CUBLASLT_ Enable/Disable CTA swizzling. Change mapping from CUDA grid coordinates | uint{82_
ALGO_ to parts of the matrices. Possible values: O and 1; other values reserved. t
CONFIG_
CTA_
SWIZZLING
CUBLASLT_ Custom option value. Each algorithm can support some custom options | uintB32_
ALGO_ that don't fit the description of the other configuration attributes. See the | t
CONFIG_ CUBLASLT_ALGO_CAP_CUSTOM_OPTION_MAX of
CUSTOM_ for the accepted range for a specific case.
OPTION
CUBLASLT_ Inner shape ID. Refer to cublasLtMatmulInnerShape_t. Default: | uintf16_
ALGO_ CUBLASLT_MATMUL _INNER_SHAPE_UNDEFINED. t
CONFIG_
INNER_
SHAPE_ID
CUBLASLT_ Cluster shape ID. Refer to cublasLtClusterShape_t. Default: CUBLASLT_ | uint{16_
ALGO_ CLUSTER_SHAPE_AUTO. t
CONFIG_
CLUSTER_
SHAPE_ID
3.3. cuBLASLt Datatypes Reference 203

cuBLAS, Release 12.9

3.3.8 cublasLtMatmulDesc_t

The cublasLtMatmulDesc_t is a pointer to an opaque structure holding the description of the matrix
multiplication operation cublasLtMatmul(). A descriptor can be created by calling cublasLtMatmulDe-
scCreate() and destroyed by calling cublasltMatmulDescDestroy().

3.3.9 cublasLtMatmulDescAttributes_t

cublasLtMatmulDescAttributes_t is a descriptor structure containing the attributes that define the
specifics of the matrix multiply operation. Use cublasLtMatmulDescGetAttribute() and cublasLtMat-
mulDescSetAttribute() to get and set the attribute value of a matmul descriptor.

Value

Description

Data Type

CUBLASLT_MATMUL_DESC
COMPUTE_TYPE

Compute type. Defines the
data type used for multiply
and accumulate operations,
and the accumulator during
the matrix multiplication. See
cublasComputeType_t.

int32_t

CUBLASLT_MATMUL _DESC_
SCALE_TYPE

Scale type. Defines the data
type of the scaling factors
alpha and beta. The accu-
mulator value and the value
from matrix C are typically
converted to scale type before
final scaling. The value is then
converted from scale type to
the type of matrix D before
storing in memory. The default
value depends on CUBLASLT_
MATMUL _DESC_COMPUTE_

TYPE. See cudaDataType_t.

int32_t

CUBLASLT_MATMUL_DESC
POINTER_MODE

Specifies alpha and beta are
passed by reference, whether
they are scalars on the host
or on the device, or device
vectors. Default value is:
CUBLASLT_POINTER_MODE_
HOST (i.e.,, on the host). See
cublasLtPointerMode_t.

int32_t

CUBLASLT_MATMUL_DESC
TRANSA

Specifies the type of transfor-
mation operation that should
be performed on matrix A. De-
fault value is: CUBLAS_OP_N
(i.e., non-transpose operation).
See cublasOperation_t.

int32_t

continues on next page

204

Chapter 3. Using the cuBLASLt API

cuBLAS, Release 12.9

Table 3 - continued from previous page

Value

Description

Data Type

CUBLASLT_MATMUL_DESC_
TRANSB

Specifies the type of transfor-
mation operation that should
be performed on matrix B. De-
fault value is: CUBLAS_OP_N
(i.e., non-transpose operation).
See

int32_t

CUBLASLT_MATMUL_DESC_
TRANSC

Specifies the type of transfor-
mation operation that should
be performed on matrix C.
Currently only CUBLAS_OP_N
is supported. Default value
is: CUBLAS_OP_N (i.e., non-
transpose operation). See

int32_t

CUBLASLT_MATMUL_DESC_
FILL_MODE

Indicates whether the lower or
upper part of the dense matrix
was filled, and consequently
should be used by the function.
Currently this flag is not sup-
ported for bfloat16 or FP8 data
types and is not supported
on the following GPUs: Hop-
per, Blackwell. Default value
is: CUBLAS_FILL_MODE_FULL.
See

int32_t

CUBLASLT_MATMUL_DESC
EPILOGUE

Epilogue function. See
. De-

fault value is: CUBLASLT_

EPILOGUE_DEFAULT.

uint32_t

continues on next page

3.3. cuBLASLt Datatypes Reference

205

cuBLAS, Release 12.9

Table 3 - continued from previous page

Value

Description

Data Type

CUBLASLT_MATMUL_DESC_
BIAS_POINTER

Bias or Bias gradient vector

pointer in the device memory.
Input vector with length
that matches the num-
ber of rows of matrix D
when one of the follow-
ing epilogues is used:
CUBLASLT_EPILOGUE_
BIAS, CUBLASLT_
EPILOGUE_RELU_BIAS,
CUBLASLT_EPILOGUE_
RELU_AUX_BIAS,
CUBLASLT_EPILOGUE_
GELU_BIAS, CUBLASLT_
EPILOGUE_GELU_AUX_

BIAS.
Output vector with
length that matches

the number of rows of
matrix D when one of
the following epilogues
is used: CUBLASLT_
EPILOGUE_DRELU_
BGRAD, CUBLASLT_
EPILOGUE_DGELU_
BGRAD, CUBLASLT_
EPILOGUE_BGRADA.
Output vector with
length that matches the
number of columns of
matrix D when one of
the following epilogues
is used: CUBLASLT_
EPILOGUE_BGRADB.
Bias vector elements are the
same type as alpha and beta
(see CUBLASLT_MATMUL _
DESC_SCALE_TYPE in this
table) when matrix D datatype
is CUDA_R_8I and same as
matrix D datatype otherwise.
See the datatypes table under
for detailed
mapping. Default value is:
NULL.

void */const void *

CUBLASLT_MATMUL_DESC_
BIAS_BATCH_STRIDE

Stride (in elements) to the next
bias or bias gradient vector for
strided batch operations. The
default value is O.

int64_t

continues on next page

206

Chapter 3. Using the cuBLASLt API

cuBLAS, Release 12.9

Table 3 - continued from previous page

Value

Description

Data Type

CUBLASLT_MATMUL_DESC_
EPILOGUE_AUX_POINTER

Pointer for epilogue auxiliary

buffer.
Output vector for Relu
bit-mask in forward
pass when CUBLASLT_
EPILOGUE_RELU_AUX or
CUBLASLT_EPILOGUE_
RELU_AUX_BIAS epi-
logue is used.
Input vector for Relu
bit-mask in backward
pass when CUBLASLT_
EPILOGUE_DRELU or
CUBLASLT_EPILOGUE_
DRELU_BGRAD epilogue is
used.
Output of GELU input ma-
trix in forward pass when
CUBLASLT_EPILOGUE_
GELU_AUX_BIAS epi-

logue is used.
Input of GELU input
matrix for backward

pass when CUBLASLT_
EPILOGUE_DGELU or
CUBLASLT_EPILOGUE_
DGELU_BGRAD epilogue is
used.
For aux data type, see
CUBLASLT_MATMUL _DESC_
EPILOGUE_AUX_DATA_TYPE.
Routines that don't deref-
erence this pointer, like

depend on its value
to determine expected pointer
alignment. Requires setting
the CUBLASLT_MATMUL _DESC_
EPILOGUE_AUX_LD attribute.

void */const void *

continues on next page

3.3. cuBLASLt Datatypes Reference

207

cuBLAS, Release 12.9

Table 3 - continued from previous page

Value Description Data Type
CUBLASLT_MATMUL_DESC_ Leading dimension for epilogue | int64_t
EPILOGUE_AUX_LD auxiliary buffer.

ReLu bit-mask matrix
leading dimension in
elements (i.e. bits) when
CUBLASLT_EPILOGUE_
RELU_AUX, CUBLASLT_
EPILOGUE_RELU_AUX_
BIAS, CUBLASLT_
EPILOGUE_DRELU_
BGRAD, or CUBLASLT_
EPILOGUE_DRELU_
BGRAD epilogue is used.
Must be divisible by 128
and be no less than the
number of rows in the
output matrix.

GELU input matrix lead-
ing dimension in ele-
ments when CUBLASLT_
EPILOGUE_GELU_AUX_
BIAS, CUBLASLT_
EPILOGUE_DGELU, or
CUBLASLT_EPILOGUE_
DGELU_BGRAD epilogue
used. Must be divisible by
8 and be no less than the
number of rows in the
output matrix.

continues on next page

208 Chapter 3. Using the cuBLASLt API

cuBLAS, Release 12.9

Table 3 - continued from previous page

Value

Description

Data Type

CUBLASLT_MATMUL_DESC_
EPILOGUE_AUX_BATCH_
STRIDE

Batch stride for epilogue auxil-

iary buffer.
ReLu bit-mask matrix
batch stride in ele-
ments (i.e. bits) when
CUBLASLT_EPILOGUE_
RELU_AUX, CUBLASLT_
EPILOGUE_RELU_AUX_
BIAS or CUBLASLT_
EPILOGUE_DRELU_
BGRAD epilogue is used.
Must be divisible by 128.
GELU input matrix batch
stride in elements when
CUBLASLT_EPILOGUE_
GELU_AUX_BIAS,
CUBLASLT_EPILOGUE_
DRELU, or CUBLASLT_
EPILOGUE_DGELU_
BGRAD epilogue used.
Must be divisible by 8.

Default value: 0.

int64_t

CUBLASLT_MATMUL_DESC_
ALPHA_VECTOR_BATCH_
STRIDE

Batch stride for alpha vec-
tor. Used together with
CUBLASLT_POINTER_MODE_
ALPHA_DEVICE_VECTOR_
BETA_HOST when matrix D’s
CUBLASLT_MATRIX_LAYOUT_
BATCH_COUNT is greater than
1. If CUBLASLT_POINTER_
MODE_ALPHA_DEVICE_
VECTOR_BETA_ZERO is set
then CUBLASLT_MATMUL _
DESC_ALPHA_VECTOR_BATCH_
STRIDE must be set to O as this
mode doesn’t support batched
alpha vector. If cublasLtBatch-
Mode_t of any matrix is set to
CUBLASLT_BATCH_MODE_POINT
then CUBLASLT_MATMUL _
DESC_ALPHA_VECTOR_BATCH_
STRIDE must be set to O.
Default value: O.

int64_t

ER_ARRAY

CUBLASLT_MATMUL_DESC_SM_
COUNT_TARGET

Number of SMs to target for
parallel execution. Optimizes
heuristics for execution on a
different number of SMs when
user expects a concurrent
stream to be using some of
the device resources. Default
value: O.

int32_t

continues on next page

3.3. cuBLASLt Datatypes Reference

209

cuBLAS, Release 12.9

Table 3 - continued from previous page

Value

Description

Data Type

CUBLASLT_MATMUL_DESC_A_
SCALE_POINTER

Device pointer to the scale fac-
tor value that converts data in
matrix A to the compute data
type range. The scaling fac-
tor must have the same type
as the compute type. If not
specified, or set to NULL, the
scaling factor is assumed to be
1. If set for an unsupported
matrix data, scale, and com-
pute type combination, call-
ing will return
CUBLAS_INVALID_VALUE. De-
fault value: NULL

const void *

CUBLASLT_MATMUL_DESC_B_
SCALE_POINTER

Equivalent to CUBLASLT_
MATMUL _DESC_A_SCALE_
POINTER for matrix B. Default
value: NULL

const void *

CUBLASLT_MATMUL_DESC_C_
SCALE_POINTER

Equivalent to CUBLASLT_
MATMUL _DESC_A_SCALE_
POINTER for matrix C. Default
value: NULL

const void *

CUBLASLT_MATMUL _DESC_D_
SCALE_POINTER

Equivalent to CUBLASLT_
MATMUL _DESC_A_SCALE_
POINTER for matrix D. Default
value: NULL

const void *

CUBLASLT_MATMUL_DESC_
AMAX_D_POINTER

Device pointer to the mem-
ory location that on comple-
tion will be set to the max-
imum of absolute values in
the output matrix. The com-
puted value has the same type
as the compute type. If not
specified, or set to NULL, the
maximum absolute value is not
computed. If set for an un-
supported matrix data, scale,
and compute type combina-
tion, calling

will return CUBLAS_INVALID_
VALUE. Default value: NULL

void *

continues on next page

210

Chapter 3. Using the cuBLASLt API

cuBLAS, Release 12.9

Table 3 - continued from previous page

Value

Description

Data Type

CUBLASLT_MATMUL_DESC_
EPILOGUE_AUX_DATA_TYPE

The type of the data that
will be stored in CUBLASLT_
MATMUL _DESC_EPILOGUE_
AUX_POINTER. If unset (or set
to the default value of -1), the
data type is set to be the out-
put matrix element data type
(DType) with some exceptions:
RelLu uses a bit-mask.
For FP8 kernels with an
output type (DType) of
CUDA_R_8F_E4M3, the
data type can be set to a
non-default value if:
1. AType and BType are
CUDA_R_8F_E4M3.
2. Bias Type is CUDA_R_16F.
3. CType is CUDA_R_T6BF or
CUDA_R_16F
4, CUBLASLT_MATMUL_
DESC_EPILOGUE is set to
CUBLASLT_EPILOGUE_
GELU_AUX
When CType is CUDA_R_16F,
the data type may be set to
CUDA_R_16F or CUDA_R_8F_
E4M3. When CType is CUDA_
R_16BF, the data type may be
set to CUDA_R_16BF. Other-
wise, the data type should be
left unset or set to the default
value of -1.
If set for an unsupported
matrix data, scale, and com-
pute type combination, calling
will - return
CUBLAS_INVALID_VALUE.
Default value: -1

int32_t ()

continues on next page

3.3. cuBLASLt Datatypes Reference

211

cuBLAS, Release 12.9

Table 3 - continued from previous page

Value

Description

Data Type

CUBLASLT_MATMUL_DESC
EPILOGUE_AUX_SCALE_
POINTER

Device pointer to the scal-
ing factor value to convert re-
sults from compute type data
range to storage data range in
the auxiliary matrix that is set
via CUBLASLT_MATMUL_DESC_
EPILOGUE_AUX_POINTER. The
scaling factor value must have
the same type as the compute
type. If not specified, or set to
NULL, the scaling factor is as-
sumed to be 1. If set for an un-
supported matrix data, scale,
and compute type combina-
tion, calling

will return CUBLAS_INVALID_
VALUE. Default value: NULL

void *

CUBLASLT_MATMUL_DESC
EPILOGUE_AUX_AMAX_
POINTER

Device pointer to the memory
location that on completion
will be set to the maximum of
absolute values in the buffer
that is set via CUBLASLT_
MATMUL _DESC_EPILOGUE_
AUX_POINTER. The computed
value has the same type as
the compute type. If not
specified, or set to NULL, the
maximum absolute value is not
computed. If set for an unsup-
ported matrix data, scale, and
compute type combination,
calling will re-
turn CUBLAS_INVALID_VALUE.
Default value: NULL

void *

CUBLASLT_MATMUL_DESC
FAST_ACCUM

Flag for managing FP8 fast ac-
cumulation mode. When en-
abled, on some GPUs prob-
lem execution might be faster
but at the cost of lower accu-
racy because intermediate re-
sults will not periodically be
promoted to a higher preci-
sion. Currently this flag has an
effect on the following GPUs:
Ada, Hopper. Default value: O -
fast accumulation mode is dis-
abled

int8_t

continues on next page

212

Chapter 3. Using the cuBLASLt API

cuBLAS, Release 12.9

Table 3 - continued from previous page

Value Description Data Type
CUBLASLT_MATMUL_DESC_ Type of the bias or bias gradi- | int32_t ()
BIAS_DATA_TYPE ent vector in the device mem-
ory. Bias case: see CUBLASLT_
EPILOGUE_BIAS. If unset (or
set to the default value of -
1), the bias vector elements are
the same type as the elements
of the output matrix (Dtype)
with the following exceptions:
IMMA kernels with com-
puteType=CUDA_R_32T
and Ctype=CUDA_R_
8I where the bias
vector elements are
the same type as al-
pha, beta (CUBLASLT_
MATMUL _DESC_SCALE_
TYPE=CUDA_R_32F)
For FP8 kernels with an
output type of CUDA_R_
32F, CUDA_R_8F_E4M3
or CUDA_R_8F_E5M2.
See for
more details.
Default value: -1
CUBLASLT_MATMUL_DESC_ Pointer to a device array of in- | int32_t *
ATOMIC_SYNC_IN_COUNTERS_ | putatomic counters consumed
POINTER by a matmul. When a counter
reaches zero, computation of
the corresponding chunk of
the output tensor is allowed
to start. Default: NULL. See
CUBLASLT_MATMUL _ Pointer to a device array of out- | int32_t *

DESC_ATOMIC_SYNC_OUT_
COUNTERS_POINTER

put atomic counters produced
by a matmul. A matmul ker-
nel sets a counter to zero when
the computations of the cor-
responding chunk of the out-
put tensor have completed. All
the counters must be initialized
to 1 before a matmul kernel is
run. Default: NULL. See

continues on next page

3.3. cuBLASLt Datatypes Reference

213

cuBLAS, Release 12.9

Table 3 - continued from previous page

Value

Description

Data Type

CUBLASLT_MATMUL_DESC_
ATOMIC_SYNC_NUM_CHUNKS_
D_ROWS [DEPRECATED]

This mode is deprecated and
will be removed in a future re-
lease. Number of atomic syn-
chronization chunks in the row
dimension of the output matrix
D. Each chunk corresponds to a
single atomic counter. Default:
0 (atomics synchronization dis-
abled). See

int32_t

CUBLASLT_MATMUL_DESC_
ATOMIC_SYNC_NUM_CHUNKS
D_COLS [DEPRECATED]

This mode is deprecated and
will be removed in a future
release. Number of atomic
synchronization chunks in the
column dimension of the out-
put matrix D. Each chunk cor-
responds to a single atomic
counter. Default: O (atomics
synchronization disabled). See

int32_t

CUBLASLT_MATMUL _DESC_A_
SCALE_MODE

Scaling mode that defines how
the matrix scaling factor for
matrix A is interpreted. Default
value: 0. See

int32_t

CUBLASLT_MATMUL_DESC_B_
SCALE_MODE

Scaling mode that defines how
the matrix scaling factor for
matrix B is interpreted. Default
value: 0. See

int32_t

CUBLASLT_MATMUL_DESC_C_
SCALE_MODE

Scaling mode that defines how
the matrix scaling factor for
matrix C is interpreted. Default
value: 0. See

int32_t

CUBLASLT_MATMUL _DESC_D_
SCALE_MODE

Scaling mode that defines how
the matrix scaling factor for
matrix D is interpreted. Default
value: 0. See

int32_t

CUBLASLT_MATMUL_DESC_
EPILOGUE_AUX_SCALE_MODE

Scaling mode that defines how
the matrix scaling factor for
the auxiliary matrix is inter-
preted. Default value: 0. See

int32_t

continues on next page

214

Chapter 3. Using the cuBLASLt API

cuBLAS, Release 12.9

Table 3 - continued from previous page

Value

Description

Data Type

CUBLASLT_MATMUL_DESC_D_
OUT_SCALE_POINTER

Device pointer to the scale
factors that are used to con-

void *

vert data in matrix D to the
compute data type range. The
scaling factor value type is de-
fined by the scaling mode (see
CUBLASLT_MATMUL _DESC_
D_OUT_SCALE_MODE). If set
for an unsupported matrix
data, scale, scale mode, and
compute type combination,
or missing for a supported
combination, then calling

will - return
CUBLAS_INVALID_VALUE.
Default value: NULL.

CUBLASLT_MATMUL _DESC_D_
OUT_SCALE_MODE

Scaling mode that defines how | int32_t
the output matrix scaling fac-
tor for matrix D is interpreted.

Default value: 0. See

is a descriptor that holds the configured matrix multiplication algo-

rithm descriptor and its runtime properties.

Member Description
Must be initialized with if the pref-
erence CUBLASLT_MATMUL_PERF_SEARCH_MODE is set to

algo | CUBLASLT_SEARCH_LIMITED_BY_ALGO_ID. See

size_t Actual size of workspace memory required.

workspace-

Size;
Result status. Other fields are valid only if, after call to

state; , this member is set to CUBLAS_STATUS_SUCCESS.

float Waves count is a device utilization metric. AwavesCount value of 1.0f suggests that

wavesCount;| when the kernel is launched it will fully occupy the GPU.

int re- | Reserved.

served[4];

3.3. cuBLASLt Datatypes Reference

215

cuBLAS, Release 12.9

3.3.11 cublasLtMatmullnnerShape_t

cublasLtMatmullnnerShape_t is an enumerated type used to configure various aspects of the internal
kernel design. This does not impact the CUDA grid size.

Value Description
CUBLASLT_MATMUL_INNER_SHAPE_UNDEFINED | Inner shape is undefined.
CUBLASLT_MATMUL_INNER_SHAPE_MMA884 Inner shape is MMA884.

CUBLASLT_MATMUL_INNER_SHAPE_MMA1684 Inner shape is MMA1684.
CUBLASLT_MATMUL _INNER_SHAPE_MMA1688 Inner shape is MMA1688.
CUBLASLT_MATMUL_INNER_SHAPE_MMA16816 Inner shape is MMA16816.

3.3.12 cublasLtMatmulPreference_t

The cublaslLtMatmulPreference_t is a pointer to an opaque structure holding the description of the
preferences for cublasLtMatmulAlgoGetHeuristic() configuration. Use cublasLtMatmulPreferenceCre-
ate() to create one instance of the descriptor and cublasLtMatmulPreferenceDestroy() to destroy a
previously created descriptor and release the resources.

3.3.13 cublasLtMatmulPreferenceAttributes_t

cublasLtMatmulPreferenceAttributes_t is an enumerated type used to apply algorithm search pref-
erences while fine-tuning the heuristic function. Use cublasLtMatmulPreferenceGetAttribute() and
cublasLtMatmulPreferenceSetAttribute() to get and set the attribute value of a matmul preference
descriptor.

216 Chapter 3. Using the cuBLASLt API

cuBLAS, Release 12.9

Value Description Data
Type
CUBLASLT_ | Search mode. See . Default is CUBLASLT_SEARCH_ | uintfB2_
MATMUL _ BEST_FIT. t
PREF _
SEARCH_
MODE
CUBLASLT_ | Maximum allowed workspace memory. Default is O (no workspace memory al- | uint64
MATMUL _ lowed). t
PREF _
MAX_
WORKSPACE |
BYTES
CUBLASLT_ | Reduction scheme mask. See) Only al- | uintB2_
MATMUL _ gorithm configurations specifying CUBLASLT_ALGO_CONFIG_REDUCTION_ | t
PREF_ SCHEME that is not masked out by this attribute are allowed. For example,
REDUCTION/ a mask value of 0x03 will allow only INPLACE and COMPUTE_TYPE reduction
SCHEME _ schemes. Default is CUBLASLT_REDUCTION_SCHEME_MASK (i.e., allows all re-
MASK duction schemes).
CUBLASLT_ | Minimum buffer alignment for matrix A (in bytes). Selecting a smaller value | uint32_
MATMUL _ will exclude algorithms that can not work with matrix A, which is not as strictly | t
PREF _ aligned as the algorithms need. Default is 256 bytes.
MIN_
ALIGNMENT]
A_BYTES
CUBLASLT_| Minimum buffer alignment for matrix B (in bytes). Selecting a smaller value | uint{82_
MATMUL _ will exclude algorithms that can not work with matrix B, which is not as strictly | t
PREF _ aligned as the algorithms need. Default is 256 bytes.
MIN_
ALIGNMENT]
B_BYTES
CUBLASLT_ | Minimum buffer alignment for matrix C (in bytes). Selecting a smaller value | uintB2_
MATMUL _ will exclude algorithms that can not work with matrix C, which is not as strictly | t
PREF _ aligned as the algorithms need. Default is 256 bytes.
MIN_
ALIGNMENT |
C_BYTES
CUBLASLT_ | Minimum buffer alignment for matrix D (in bytes). Selecting a smaller value | uint32
MATMUL _ will exclude algorithms that can not work with matrix D, which is not as strictly | t
PREF _ aligned as the algorithms need. Default is 256 bytes.
MIN_
ALIGNMENT]
D_BYTES
CUBLASLT_ | Maximum wave count. See ::wavesCount. | float
MATMUL _ Selecting a non-zero value will exclude algorithms that report device utilization
PREF _ higher than specified. Default is 0. 0f.
MAX_
WAVES_
COUNT
CUBLASLT_ | Numerical implementation details mask. See uintp4._
MATMUL _ Filters heuristic result to only include algorithms that use the allowed |mple— t
PREF_ mentations. default: uint64_t(-1) (allow everything)
IMPL_
MASK
3.3. cuBLASLt Datatypes Reference 217

cuBLAS, Release 12.9

3.3.14 cublasLtMatmulSearch_t

cublasLtMatmulSearch_t is an enumerated type that contains the attributes for heuristics search type.

Value Description Data

Type

CUBLASLT_SEARCH_BEST_FIT Request heuristics for the best algorithm for the

given use case.

CUBLASLT_SEARCH_LIMITED_ Request heuristics only for the pre-configured algo
BY_ALGO_ID id.

3.3.15 cublasLtMatmulTile_t

cublasLtMatmulTile_t is an enumerated type used to set the tile size in rows x columns. See also

CUTLASS: Fast Linear Algebra in CUDA C++.

Value

Description

CUBLASLT_MATMUL_TILE_UNDEFINED

Tile size is undefined.

CUBLASLT_MATMUL_TILE_8x8

Tile size is 8 rows x 8 columns.

CUBLASLT_MATMUL_TILE_8x16

Tile size is 8 rows x 16 columns.

CUBLASLT_MATMUL_TILE_16x8

Tile size is 16 rows x 8 columns.

CUBLASLT_MATMUL_TILE_8x32

Tile size is 8 rows x 32 columns.

CUBLASLT_MATMUL_TILE_16x16

Tile size is 16 rows x 16 columns.

CUBLASLT_MATMUL_TILE_32x8

Tile size is 32 rows x 8 columns.

CUBLASLT_MATMUL_TILE_8x64

Tile size is 8 rows x 64 columns.

CUBLASLT_MATMUL_TILE_16x32

Tile size is 16 rows x 32 columns.

CUBLASLT_MATMUL_TILE_32x16

Tile size is 32 rows x 16 columns.

CUBLASLT_MATMUL_TILE_64x8

Tile size is 64 rows x 8 columns.

CUBLASLT_MATMUL_TILE_32x32

Tile size is 32 rows x 32 columns.

CUBLASLT_MATMUL_TILE_32x64

Tile size is 32 rows x 64 columns.

CUBLASLT_MATMUL_TILE_64x32

Tile size is 64 rows x 32 columns.

CUBLASLT_MATMUL_TILE_32x128

Tile size is 32 rows x 128 columns.

CUBLASLT_MATMUL_TILE_64x64

Tile size is 64 rows x 64 columns.

CUBLASLT_MATMUL_TILE_128x32

Tile size is 128 rows x 32 columns.

CUBLASLT_MATMUL_TILE_64x128

Tile size is 64 rows x 128 columns.

CUBLASLT_MATMUL_TILE_128x64

Tile size is 128 rows x 64 columns.

CUBLASLT_MATMUL_TILE_64x256

Tile size is 64 rows x 256 columns.

CUBLASLT_MATMUL_TILE_128x128

Tile size is 128 rows x 128 columns.

CUBLASLT_MATMUL_TILE_256x64

Tile size is 256 rows x 64 columns.

CUBLASLT_MATMUL_TILE_64x512

Tile size is 64 rows x 512 columns.

CUBLASLT_MATMUL_TILE_128x256

Tile size is 128 rows x 256 columns.

CUBLASLT_MATMUL_TILE_256x128

Tile size is 256 rows x 128 columns.

CUBLASLT_MATMUL_TILE_512x64

Tile size is 512 rows x 64 columns.

CUBLASLT_MATMUL_TILE_64x96

Tile size is 64 rows x 96 columns.

CUBLASLT_MATMUL_TILE_96x64

Tile size is 96 rows x 64 columns.

CUBLASLT_MATMUL_TILE_96x128

Tile size is 96 rows x 128 columns.

CUBLASLT_MATMUL_TILE_128x160

Tile size is 128 rows x 160 columns.

CUBLASLT_MATMUL_TILE_160x128

Tile size is 160 rows x 128 columns.

CUBLASLT_MATMUL_TILE_192x128

Tile size is 192 rows x 128 columns.

CUBLASLT_MATMUL_TILE_128x192

Tile size is 128 rows x 192 columns.

continues on next page

218

Chapter 3. Using the cuBLASLt API

https://www.google.com/url?q=https://devblogs.nvidia.com/cutlass-linear-algebra-cuda/&sa=D&ust=1543610995532000&usg=AFQjCNE3tHlNsXDOnOhbVeeH1uXWQFLzLA

cuBLAS, Release 12.9

Table 4 - continued from previous page
Value Description
CUBLASLT_MATMUL_TILE_128x96 Tile size is 128 rows x 96 columns.

3.3.16 cublasLtMatmulStages_t

cublasLtMatmulStages_tisan enumerated type used to configure the size and number of shared mem-
ory buffers where input elements are staged. Number of staging buffers defines kernel's pipeline
depth.

Value

Description

CUBLASLT_MATMUL _STAGES_UNDEFINED

Stage size is undefined.

CUBLASLT_MATMUL_STAGES_16x1

Stage size is 16, number of stagesis 1.

CUBLASLT_MATMUL_STAGES_16x2

Stage size is 16, number of stages is 2.

CUBLASLT_MATMUL_STAGES_16x3

Stage size is 16, number of stages is 3.

CUBLASLT_MATMUL_STAGES_16x4

Stage size is 16, number of stages is 4.

CUBLASLT_MATMUL_STAGES_16x5

Stage size is 16, number of stages is 5.

CUBLASLT_MATMUL_STAGES_16x6

Stage size is 16, number of stages is 6.

CUBLASLT_MATMUL_STAGES_32x1

Stage size is 32, number of stagesiis 1.

CUBLASLT_MATMUL_STAGES_32x2

Stage size is 32, number of stages is 2.

CUBLASLT_MATMUL_STAGES_32x3

Stage size is 32, number of stages is 3.

CUBLASLT_MATMUL_STAGES_32x4

Stage size is 32, number of stages is 4.

CUBLASLT_MATMUL_STAGES_32x5

Stage size is 32, number of stages is 5.

CUBLASLT_MATMUL_STAGES_32x6

Stage size is 32, number of stages is 6.

CUBLASLT_MATMUL_STAGES_64x1

Stage size is 64, number of stages is 1.

CUBLASLT_MATMUL_STAGES_64x2

Stage size is 64, number of stages is 2.

CUBLASLT_MATMUL_STAGES_64x3

Stage size is 64, number of stages is 3.

CUBLASLT_MATMUL _STAGES_64x4

Stage size is 64, number of stages is 4.

CUBLASLT_MATMUL_STAGES_64x5

Stage size is 64, number of stages is 5.

CUBLASLT_MATMUL_STAGES_64x6

Stage size is 64, number of stages is 6.

CUBLASLT_MATMUL_STAGES_128x1

Stage size is 128, number of stages is 1.

CUBLASLT_MATMUL_STAGES_128x2

Stage size is 128, number of stages is 2.

CUBLASLT_MATMUL_STAGES_128x3

Stage size is 128, number of stages is 3.

CUBLASLT_MATMUL_STAGES_128x4

Stage size is 128, number of stages is 4.

CUBLASLT_MATMUL_STAGES_128x5

Stage size is 128, number of stages is 5.

CUBLASLT_MATMUL_STAGES_128x6

Stage size is 128, number of stages is 6.

CUBLASLT_MATMUL_STAGES_32x10

Stage size is 32, number of stages is 10.

CUBLASLT_MATMUL_STAGES_8x4

Stage size is 8, number of stages is 4.

CUBLASLT_MATMUL_STAGES_16x10

Stage size is 16, number of stages is 10.

CUBLASLT_MATMUL_STAGES_8x5

Stage size is 8, number of stages is 5.

CUBLASLT_MATMUL_STAGES_8x3

Stage size is 8, number of stages is 3.

CUBLASLT_MATMUL_STAGES_8xAUTO

Stage size is 8, number of stages is selected automatically.

CUBLASLT_MATMUL_STAGES_16xAUTO

Stage size is 16, number of stages is selected automatically.

CUBLASLT_MATMUL_STAGES_32xAUTO

Stage size is 32, number of stages is selected automatically.

CUBLASLT_MATMUL_STAGES_64xAUTO

Stage size is 64, number of stages is selected automatically.

CUBLASLT_MATMUL_STAGES_128xAUTO

Stage size is 128, number of stages is selected automatically.

CUBLASLT_MATMUL _STAGES_256xAUTO

Stage size is 256, number of stages is selected automatically.

3.3. cuBLASLt Datatypes Reference

219

cuBLAS, Release 12.9

3.3.17 cublasLtNumericallmplFlags_t

cublasLtNumericallmplFlags_t: a set of bit-flags that can be specified to select implementation details
that may affect numerical behavior of algorithms.

Flags below can be combined using the bit OR operator “|”.

220 Chapter 3. Using the cuBLASLt API

cuBLAS, Release 12.9

Value

Description

CUBLASLT_NUMERICAL_
IMPL_FLAGS_FMA

Specify that the implementation is based on [H,F,D]JFMA (fused
multiply-add) family instructions.

CUBLASLT_NUMERICAL_
IMPL_FLAGS_HMMA

Specify that the implementation is based on HMMA (tensor opera-
tion) family instructions.

CUBLASLT_NUMERICAL_
IMPL_FLAGS_IMMA

Specify that the implementation is based on IMMA (integer tensor
operation) family instructions.

CUBLASLT_NUMERICAL_
IMPL_FLAGS_DMMA

Specify that the implementation is based on DMMA (double preci-
sion tensor operation) family instructions.

CUBLASLT_NUMERICAL_
IMPL_FLAGS_TENSOR_OP_
MASK

Mask to filter implementations using any of the above kinds of ten-
sor operations.

CUBLASLT_NUMERICAL_
IMPL_FLAGS_OP_TYPE_
MASK

Mask to filter implementation details about multiply-accumulate in-
structions used.

CUBLASLT_NUMERICAL_
IMPL_FLAGS_
ACCUMULATOR_16F

Specify that the implementation’s inner dot product is using half
precision accumulator.

CUBLASLT_NUMERICAL_
IMPL_FLAGS_
ACCUMULATOR_32F

Specify that the implementation’s inner dot product is using single
precision accumulator.

CUBLASLT_NUMERICAL_
IMPL_FLAGS_
ACCUMULATOR_64F

Specify that the implementation’s inner dot product is using double
precision accumulator.

CUBLASLT_NUMERICAL_
IMPL_FLAGS_
ACCUMULATOR_321

Specify that the implementation’s inner dot product is using 32 bit
signed integer precision accumulator.

CUBLASLT_NUMERICAL_
IMPL_FLAGS_
ACCUMULATOR_TYPE_MASK

Mask to filter implementation details about accumulator used.

CUBLASLT_NUMERICAL_
IMPL_FLAGS_INPUT_16F

Specify that the implementation’s inner dot product multiply-
accumulate instruction is using half-precision inputs.

CUBLASLT_NUMERICAL_
IMPL_FLAGS_INPUT_16BF

Specify that the implementation’s inner dot product multiply-
accumulate instruction is using bfloat 16 inputs.

CUBLASLT_NUMERICAL_
IMPL_FLAGS_INPUT_TF32

Specify that the implementation’s inner dot product multiply-
accumulate instruction is using TF32 inputs.

CUBLASLT_NUMERICAL_
IMPL_FLAGS_INPUT_32F

Specify that the implementation’s inner dot product multiply-
accumulate instruction is using single-precision inputs.

CUBLASLT_NUMERICAL_
IMPL_FLAGS_INPUT_64F

Specify that the implementation’s inner dot product multiply-
accumulate instruction is using double-precision inputs.

CUBLASLT_NUMERICAL_
IMPL_FLAGS_INPUT_8I

Specify that the implementation’s inner dot product multiply-
accumulate instruction is using 8-bit integer inputs.

CUBLASLT_NUMERICAL_
IMPL_FLAGS_OP_INPUT_
TYPE_MASK

Mask to filter implementation details about accumulator input used.

CUBLASLT_NUMERICAL_
IMPL_FLAGS_GAUSSIAN

Specify that the implementation applies Gauss complexity reduc-
tion algorithm to reduce arithmetic complexity of the complex ma-
trix multiplication problem

3.3. cuBLASLt Datatypes Reference 221

cuBLAS, Release 12.9

3.3.18 cublasLtMatrixLayout_t

The cublasLtMatrixLayout_t is a pointer to an opaque structure holding the description of a matrix
layout. Use cublasltMatrixLayoutCreate() to create one instance of the descriptor and cublasltMa-
trixLayoutDestroy() to destroy a previously created descriptor and release the resources.

3.3.19 cublasLtMatrixLayoutAttribute_t

cublasLtMatrixLayoutAttribute_t is a descriptor structure containing the attributes that define the
details of the matrix operation. Use cublasltMatrixLayoutGetAttribute() and cublasLtMatrixLayoutSe-
tAttribute() to get and set the attribute value of a matrix layout descriptor.

222 Chapter 3. Using the cuBLASLt API

cuBLAS, Release 12.9

Value

Description

Data Type

CUBLASLT_MATRIX_LAYOUT_
TYPE

Specifies the data precision
type. See

uint32_t

CUBLASLT_MATRIX_LAYOUT_
ORDER

Specifies the memory order of
the data of the matrix. Default
value is CUBLASLT_ORDER_
COL. See

int32_t

CUBLASLT_MATRIX_LAYOUT_
ROWS

Describes the number of rows
in the matrix. Normally only val-
ues that can be expressed as
int32_t are supported.

uinté64_t

CUBLASLT_MATRIX_LAYOUT_
COoLS

Describes the number of
columns in the matrix. Nor-
mally only values that can be
expressed as 1int32_t are
supported.

uinté64_t

CUBLASLT_MATRIX_LAYOUT_
LD

The leading dimension of the
matrix. For CUBLASLT_ORDER_
COL this is the stride (in ele-
ments) of matrix column. See
also .
only
values

Currently

negative

supported.
Must be large enough so
that matrix memory loca-
tions are not overlapping
(e.g., greater or equal
to CUBLASLT_MATRIX_
LAYOUT_ROWS in case of
CUBLASLT_ORDER_COL).

non-
are

int64_t

CUBLASLT_MATRIX_LAYOUT_
BATCH_COUNT

Number of matmul oper-
ations to perform in the
batch. Default value is 1. See
also CUBLASLT_ALGO_CAP_
STRIDED_BATCH_SUPPORT
and CUBLASLT_ALGO_CAP_
POINTER_ARRAY_BATCH_
SUPPORT in

int32_t

CUBLASLT_MATRIX_LAYOUT_
STRIDED_BATCH_OFFSET

Stride (in elements) to the next
matrix for the strided batch
operation. Default value is O.
When matrix type is planar-
complex (CUBLASLT_MATRIX_
LAYOUT_PLANE_OFFSET != 0),
batch stride is interpreted by

in number of
real valued sub-elements. E.g.
for data of type CUDA_C_16F,
offset of 1024B is encoded
as a stride of value 512 (since
each element of the real and

int64_t

3.3. cuBLASLt Datatypes Refere

imnginnry matrices is _a 2B
n¢edbit) floating point type).
NOTE: A bug in

causes it to
interpret the batch stride for

223

cuBLAS, Release 12.9

3.3.20 cublasLtMatrixTransformDesc_t

The cublasLtMatrixTransformDesc_t is a pointer to an opaque structure holding the description of a
matrix transformation operation. Use cublasltMatrixTransformDescCreate() to create one instance of
the descriptor and cublasLtMatrixTransformDescDestroy() to destroy a previously created descriptor
and release the resources.

3.3.21 cublasLtMatrixTransformDescAttributes_t

cublaslLtMatrixTransformDescAttributes_t is a descriptor structure containing the attributes that de-
fine the specifics of the matrix transform operation. Use cublasLtMatrixTransformDescGetAttribute()
and cublasl.tMatrixTransformDescSetAttribute() to set the attribute value of a matrix transform de-
scriptor.

Value Description Data
Type

CUBLASLT_ Scale type. Inputs are converted to the scale type for scaling and sum- | int3

MATRIX_ mation, and results are then converted to the output type to storein | t

TRANSFORM_ the memory. For the supported data types see cudaDataType t.

DESC_SCALE_

TYPE

CUBLASLT_ Specifies the scalars alpha and beta are passed by refer- | int3

MATRIX_ ence whether on the host or on the device. Default value is: | t

TRANSFORM_ CUBLASLT_POINTER_MODE_HOST (i.e., on the host). See cublaslt-

DESC_POINTER_ PointerMode_t.

MODE

CUBLASLT_ Specifies the type of operation that should be performed on the matrix | int3

MATRIX_ A. Default value is: CUBLAS_OP_N (i.e., non-transpose operation). See | t

TRANSFORM_ cublasOperation_t.

DESC_TRANSA

CUBLASLT_ Specifies the type of operation that should be performed on the matrix | int3

MATRIX_ B. Default value is: CUBLAS_OP_N (i.e., non-transpose operation). See | t

TRANSFORM_ cublasOperation_t.

DESC_TRANSB

224

Chapter 3. Using the cuBLASLt API

cuBLAS, Release 12.9

is an enumerated type used to indicate the data ordering of the matrix.

Value

Description

CUBLASLT_ORDER_COL

Data is ordered in column-major format. The leading dimension
is the stride (in elements) to the beginning of next column in
memory.

CUBLASLT_ORDER_ROW

Data is ordered in row-major format. The leading dimension is
the stride (in elements) to the beginning of next row in memory.

CUBLASLT_ORDER_COL32

Data is ordered in column-major ordered tiles of 32 columns.
The leading dimension is the stride (in elements) to the begin-
ning of next group of 32-columns. For example, if the matrix
has 33 columns and 2 rows, then the leading dimension must
be atleast32 * 2 = 64.

CUBLASLT_ORDER_COL4_4R2_
8C

Datais ordered in column-major ordered tiles of composite tiles
with total 32 columns and 8 rows. A tile is composed of inter-
leaved inner tiles of 4 columns within 4 even or odd rows in an
alternating pattern. The leading dimension is the stride (in ele-
ments) to the beginning of the first 32 column x 8 row tile for
the next 32-wide group of columns. For example, if the matrix
has 33 columns and 1 row, the leading dimension must be at
least (32 * 8) * 1 = 256.

CUBLASLT_ORDER_COL32_2R_
4R4

Data is ordered in column-major ordered tiles of composite tiles
with total 32 columns ands 32 rows. Element offset within the
tile is calculated as (((row % 8) / 2 * 4 + row / 8) *
2 + row % 2) * 32 + col. Leading dimension is the stride
(in elements) to the beginning of the first 32 column x 32 row
tile for the next 32-wide group of columns. E.g. if matrix has
33 columns and 1 row, then its leading dimensions must be at
least (32 * 32) * 1 = 1024.

is an enumerated type used to set the pointer mode for the scaling factors

alphaand beta.

Value Description

CUBLASLT_POINTER_MODE_ Matches CUBLAS_POINTER_MODE_HOST, and the pointer tar-
HOST = CUBLAS_POINTER_ | gets a single value host memory.

MODE _HOST

CUBLASLT_POINTER_MODE_ Matches CUBLAS_POINTER_MODE_DEVICE, and the pointer tar-
DEVICE = CUBLAS_POINTER_ | gets a single value device memory.

MODE_DEVICE

CUBLASLT_POINTER_MODE_
DEVICE_VECTOR =2

Pointers target device memory vectors of length equal to the
number of rows of matrix D.

CUBLASLT_POINTER_MODE_

ALPHA_DEVICE_VECTOR_BETA_

ZERO =3

alpha pointer targets a device memory vector of length equal
to the number of rows of matrix D, and beta is zero.

CUBLASLT_POINTER_MODE_

ALPHA_DEVICE_VECTOR_BETA_

HOST =4

alpha pointer targets a device memory vector of length equal
to the number of rows of matrix D, and beta is a single value in
host memory.

3.3. cuBLASLt Datatypes Reference

225

cuBLAS, Release 12.9

Note: Only pointer modes CUBLASLT_POINTER_MODE_HOST and CUBLASLT_POINTER_MODE_DEVICE
are supported when cublasLtBatchMode_t of any matrix is set to
CUBLASLT_BATCH_MODE_POINTER_ARRAY.

is an enumerated type used to define and query the pointer mode capa-
bility.

Value Description
CUBLASLT_POINTER_MODE_MASK_HOST = | See CUBLASLT_POINTER_MODE_HOST in
1

CUBLASLT_POINTER_MODE _MASK_DEVICE
=2

CUBLASLT_POINTER_MODE_MASK_
DEVICE_VECTOR = 4
CUBLASLT_POINTER_MODE_MASK_ALPHA_ | See

See CUBLASLT_POINTER_MODE_DEVICE in

See CUBLASLT_POINTER_MODE_DEVICE_VECTOR in

CUBLASLT_POINTER_MODE_ALPHA_DEVICE_

DEVICE_VECTOR_BETA_ZERO = 8

VECTOR_BETA_ZERO in

CUBLASLT_POINTER_MODE _MASK_ALPHA_
DEVICE_VECTOR_BETA_HOST = 16

See CUBLASLT_POINTER_MODE_ALPHA_DEVICE_

VECTOR_BETA_HOST in

is an enumerated type used to specify a reduction scheme for the por-

tions of the dot-product calculated in parallel (i.e., “split - K”).

Value Description

CUBLASLT_ Do not apply reduction. The dot-product will be performed in one sequence.
REDUCTION_

SCHEME_NONE

CUBLASLT_ Reduction is performed “in place” using the output buffer, parts are added
REDUCTION_ up in the output data type. Workspace is only used for counters that guar-
SCHEME _INPLACE antee sequentiality.

CUBLASLT_ Reduction done out of place in a user-provided workspace. The intermedi-
REDUCTION_ ate results are stored in the compute type in the workspace and reduced
SCHEME_COMPUTE _ in a separate step.

TYPE

CUBLASLT_ Reduction done out of place in a user-provided workspace. The intermedi-
REDUCTION_ ate results are stored in the output type in the workspace and reduced in

SCHEME_OUTPUT_
TYPE

a separate step.

CUBLASLT_
REDUCTION_
SCHEME_MASK

Allows all reduction schemes.

226

Chapter 3. Using the cuBLASLt API

cuBLAS, Release 12.9

is an enumerated type used to specify scaling mode that defines how

scaling factor pointers are interpreted.

Value Description

CUBLASLT_ Scaling factors are single-precision scalars applied to the whole tensors (this
MATMUL _ mode is the default for fp8). This is the only value valid for CUBLASLT _MATMUL _
MATRIX_ DESC_D_SCALE_MODE when the D tensor uses a narrow precision data type.
SCALE_

SCALAR_32F

CUBLASLT_ Scaling factors are tensors that contain a dedicated scaling factor stored as an
MATMUL _ 8-bit CUDA_R_8F _UE4M3 value for each 16-element block in the innermost dimen-
MATRIX_ sion of the corresponding data tensor.

SCALE_

VEC16_UE4M3

CUBLASLT_ Scaling factors are tensors that contain a dedicated scaling factor stored as an
MATMUL _ 8-bit CUDA_R_8F _UE8MB@ value for each 32-element block in the innermost dimen-
MATRIX_ sion of the corresponding data tensor.

SCALE_

VEC32_UE8MO

CUBLASLT_ Scaling factors are vectors of CUDA_R_32F values. This mode is only applicable
MATMUL _ to matrices A and B, in which case the vectors are expected to have M and N
MATRIX_ elements respectively, and each (i, j)-th element of product of A and B is multiplied
SCALE_ by i-th element of A scale and j-th element of B scale.

OUTER_VEC_

32F

CUBLASLT_ Scaling factors are tensors that contain a dedicated CUDA_R_32F scaling fac-
MATMUL _ tor for each 128-element block in the innermost dimension of the corresponding
MATRIX_ data tensor.

SCALE_

VEC128_32F

CUBLASLT_ Scaling factors are tensors that contain a dedicated CUDA_R_32F scaling factor
MATMUL _ for each 128x128-element block in the the corresponding data tensor.

MATRIX_

SCALE_

BLK128x128_

32F

Value Description

CUBLASLT_BATCH_

MODE_STRIDED

The matrices of each instance of the batch are located at fixed offsets in
number of elements from their locations in the previous instance.

CUBLASLT_BATCH_
MODE_POINTER_

ARRAY

The address of the matrix of each instance of the batch are read from
arrays of pointers.

3.3. cuBLASLt Datatypes Reference

227

cuBLAS, Release 12.9

cublasStatus_t
cublasLtCreate(cublasLtHandle_t *1lighthandle)

This function initializes the cuBLASLt library and creates a handle to an opaque structure holding the
CuBLASLt library context. It allocates light hardware resources on the host and device, and must be
called prior to making any other cuBLASLt library calls.

The cuBLASLt library context is tied to the current CUDA device. To use the library on multiple devices,
one cuBLASLt handle must be created for each device. Furthermore, the device must be set as the
current before invoking cuBLASLt functions with a handle tied to that device.

See also:
Parameters:
Parameter | Mem- | Input/Out- | Description
ory put
lightHandl Output Pointer to the allocated cuBLASLt handle for the created
CUBLASLt context.
Returns:

Return Value

Description

CUBLAS_STATUS_SUCCESS

The allocation completed successfully.

CUBLAS_STATUS_NOT_INITIALIZED

The cuBLASLt library was not initialized. This
usually happens:
when is not called first
an error in the CUDA Runtime API called by
the cuBLASLLt routine, or
an error in the hardware setup.

CUBLAS_STATUS_ALLOC_FAILED

Resource allocation failed inside the cuBLASLt li-
brary. This is usually caused by a cudaMalloc()
failure.

To correct: prior to the function call, deallo-
cate the previously allocated memory as much
as possible.

CUBLAS_STATUS_INVALID_VALUE

lighthandleis NULL

See

for a complete list of valid return codes.

228

Chapter 3. Using the cuBLASLt API

cuBLAS, Release 12.9

cublasStatus_t
cublasLtDestroy(cublasLtHandle_t lightHandle)

This function releases hardware resources used by the cuBLASLt library. This function is usually the
last call with a particular handle to the cuBLASLt library. Because allocates some
internal resources and the release of those resources by calling will implicitly call
cudaDeviceSynchronize(), it is recommended to minimize the number of times these functions
are called.

Parameters:
Parameter Memory | Input / Output | Description
lightHandle Input Pointer to the cuBLASLt handle to be destroyed.
Returns:
Return Value Meaning
CUBLAS_STATUS_SUCCESS The cuBLASLt context was successfully destroyed.

CUBLAS_STATUS_NOT_INITIALIZED | The cuBLASLt library was not initialized.
CUBLAS_STATUS_INVALID_VALUE lightHandle is NULL

See for a complete list of valid return codes.

unsigned cublaslLtDisableCpuInstructionsSetMask (unsigned mask) ;
Instructs cuBLASLt library to not use specified by the flags in the mask. The function
takes precedence over the CUBLASLT_DISABLE_CPU_INSTRUCTIONS_MASK environment variable.

Parameters: mask - the flags combined with bitwise OR(|) operator that specify which CPU instruc-
tions should not be used.

Supported flags:

Value | Description
0x1 x86-64 AVX512 ISA.

Returns: the previous value of the mask.

3.4. cuBLASLt API Reference 229

cuBLAS, Release 12.9

size_t cublasLtGetCudartVersion(void);

This function returns the version number of the CUDA Runtime library.
Parameters: None.

Returns:size_t - The version number of the CUDA Runtime library.

cublasStatus_t cublaslLtGetProperty(libraryPropertyType type, int *value);

This function returns the value of the requested property by writing it to the memory location pointed
to by the value parameter.

Parameters:
Pa- Mem-| Input / | Description
rame- | ory Output
ter
type Input Of the type libraryPropertyType, whose value is requested from
the property. See .
value Output Pointer to the host memory location where the requested information
should be written.
Returns:
Return Value Meaning
CUBLAS_STATUS_SUCCESS The requested libraryPropertyType infor-
mation is successfully written at the provided
address.

CUBLAS_STATUS_INVALID_VALUE , ,]
If invalid value of the type input argument,

or
if value is NULL

See for a complete list of valid return codes.

const char* cublasLtGetStatusName(cublasStatus_t status);

Returns the string representation of a given status.
Parameters: - the status.

Returns: const char* - the NULL-terminated string.

230 Chapter 3. Using the cuBLASLt API

cuBLAS, Release 12.9

3.4.7 cublasLtGetStatusString()

const char* cublasLtGetStatusString(cublasStatus_t status);

Returns the description string for a given status.
Parameters: cublasStatus_t - the status.

Returns: const char* - the NULL-terminated string.

3.4.8 cublasLtHeuristicsCacheGetCapacity()

cublasStatus_t cublaslLtHeuristicsCacheGetCapacity(size_t* capacity);

Returns the Heuristics Cache capacity.

Parameters:
Parameter | Description
capacity | The pointer to the returned capacity value.
Returns:
Return Value Description
CUBLAS_STATUS_SUCCESS The capacity was successfully written.
CUBLAS_STATUS_INVALID_VALUE | The capacity was successfully set.

3.4.9 cublasLtHeuristicsCacheSetCapacity()

cublasStatus_t cublaslLtHeuristicsCacheSetCapacity(size_t capacity);

Sets the Heuristics Cache capacity. Set the capacity to O to disable the heuristics cache.

This function takes precedence over CUBLASLT_HEURISTICS_CACHE_CAPACITY environment vari-
able.

Parameters:

Parameter | Description
capacity | The desirable heuristics cache capacity.

Returns:

Return Value Description
CUBLAS_STATUS_SUCCESS | The capacity was successfully set.

3.4. cuBLASLt API Reference 231

cuBLAS, Release 12.9

size_t cublasLtGetVersion(void);

This function returns the version number of cuBLASLt library.

Parameters:

None.

Returns:size_t - The version number of cuBLASLt library.

cublasStatus_t cublasLtlLoggerSetCallback(cublasLtLoggerCallback_t callback);

Experimental: This function sets the logging callback function.

Parameters:

Parame- Mem- Input / Out- | Description

ter ory put

call- Input Pointer to a callback function. See
back

Returns:

Return Value

Description

CUBLAS_STATUS_SUCCESS

If the callback function was successfully set.

See cublasStatus_t for a complete list of valid return codes.

cublasStatus_t cublaslLtlLoggerSetFile(FILE* file);

Experimental: This function sets the logging output file. Note: once registered using this function call,
the provided file handle must not be closed unless the function is called again to switch to a different

file handle.
Parameters:
Parameter | Memory | Input/Output | Description
file Input Pointer to an open file. File should have write permission.
Returns:
Return Value Description
CUBLAS_STATUS_SUCCESS | If logging file was successfully set.
See for a complete list of valid return codes.
232 Chapter 3. Using the cuBLASLt API

cuBLAS, Release 12.9

cublasStatus_t cublasLtlLoggerOpenFile(const char* logFile);

Experimental: This function opens a logging output file in the given path.

Parameters:

Parameter | Memory | Input/ Output | Description

logFile Input Path of the logging output file.
Returns:

Return Value Description

CUBLAS_STATUS_SUCCESS | If the logging file was successfully opened.

See

for a complete list of valid return codes.

cublasStatus_t cublaslLtLoggerSetLevel(int level);

Experimental: This function sets the value of the logging level.

Parameters:
Parameter | Memory | Input/ Output | Description
level Input Value of the logging level. See
Returns:
Return Value Description
CUBLAS_STATUS_INVALID_ If the value was not a valid logging level. See
VALUE
CUBLAS_STATUS_SUCCESS If the logging level was successfully set.
See for a complete list of valid return codes.

cublasStatus_t cublasLtlLoggerSetMask(int mask);

Experimental: This function sets the value of the logging mask.

Parameters:

Parameter | Memory | Input/ Output | Description

mask Input Value of the logging mask. See
Returns:

3.4. cuBLASLt API Reference

233

cuBLAS, Release 12.9

Return Value Description
CUBLAS_STATUS_SUCCESS | If the logging mask was successfully set.

See for a complete list of valid return codes.

cublasStatus_t cublaslLtlLoggerForceDisable();

Experimental: This function disables logging for the entire run.

Returns:
Return Value Description
CUBLAS_STATUS_SUCCESS | If logging was successfully disabled.
See for a complete list of valid return codes.

cublasStatus_t cublasLtMatmul(

cublasLtHandle_t lightHandle,
cublasLtMatmulDesc_t computeDesc,
const void *alpha,

const void *A,
cublasLtMatrixLayout_t Adesc,

const void *B,
cublaslLtMatrixLayout_t Bdesc,

const void *beta,

const void *C,
cublaslLtMatrixLayout_t Cdesc,

void *D,
cublasLtMatrixLayout_t Ddesc,

const cublasLtMatmulAlgo_t *algo,

void *workspace,
size_t workspaceSizelInBytes,
cudaStream_t stream);

This function computes the matrix multiplication of matrices A and B to produce the output matrix D,
according to the following operation:

D = alpha*(A*B) + beta*(C),

where A, B, and C are input matrices, and alpha and beta are input scalars.

Note: This function supports both in-place matrix multiplication (C == D and Cdesc == Ddesc)
and out-of-place matrix multiplication (C != D, both matrices must have the same data type, number
of rows, number of columns, batch size, and memory order). In the out-of-place case, the leading
dimension of C can be different from the leading dimension of D. Specifically the leading dimension
of C can be 0 to achieve row or column broadcast. If Cdesc is omitted, this function assumes it to be
equal to Ddesc.

234 Chapter 3. Using the cuBLASLt API

cuBLAS, Release 12.9

The workspace pointer must be aligned to at least a multiple of 256 bytes. The recommendations on
workspaceSizeInBytes are the same as mentioned in the section.

Datatypes Supported:

supports the following computeType, scaleType, Atype/Btype, and Ctype. Footnotes
can be found at the end of this section.

Table 6: Table 1. When A, B, C, and D are Regular Column- or
Row-major Matrices

computeType scale- Atype/BtypeCtype Bias Type
Type
CUBLAS_COMPUTE_16F or CUDA_R_ | CUDA_R_ | CUDA_R_ | CUDA_R_16F
CUBLAS_COMPUTE_16F_PEDANTIC 16F 16F 16F
CUBLAS_COMPUTE_32T or CUDA_R_ | CUDA_R_ | CUDA_R_ | Epilogue is not
CUBLAS_COMPUTE_32I_PEDANTIC 32I 81 32I supported.
CUDA_R_ | CUDA_R_ | CUDA_R_ | Epilogue is not
32F 81 81 supported.
CUBLAS_COMPUTE_32F or CUDA_R_ | CUDA_R_ | CUDA_R_ | CUDA_R_16BF
CUBLAS_COMPUTE_32F_PEDANTIC 32F 16BF 16BF
CUDA_R_ | CUDA_R_ | CUDA_R_16F
16F 16F
CUDA_R_ | CUDA_R_ | Epilogue is not
81 32F supported.
CUDA_R_ | CUDA_R_ | CUDA_R_32F
16BF 32F
CUDA_R_ | CUDA_R_ | CUDA_R_32F
16F 32F
CUDA_R_ | CUDA_R_ | CUDA_R_32F
32F 32F
CUDA_C_ | CUDA_C_ | CUDA_C_ | Epilogue is not
32F 81 32F supported.
CUDA_C_ | CUDA_C_
32F 32F
CUBLAS_COMPUTE_32F_FAST_16F or CUDA_R_ | CUDA_R_ | CUDA_R_ | CUDA_R_32F’
CUBLAS_COMPUTE_32F_FAST_16BF or 32F 32F 32F
CUBLAS_COMPUTE_32F _FAST_TF32 or
CUBLAS_COMPUTE_32F_EMULATED_ CUDA_C_ | CUDA_C_ | CUDA_C_ | Epilogue is not
16BFX9 32F 32F 32F supported.
CUBLAS_COMPUTE_64F or CUDA_R_ | CUDA_R_ | CUDA_R_ | CUDA_R_64F’
CUBLAS_COMPUTE_64F _PEDANTIC 64F 64F 64F
CUDA_C_ | CUDA_C_ | CUDA_C_ | Epilogue is not
64F 64F 64F supported.

To use IMMA kernels, one of the following sets of requirements, with the first being the preferred one,
must be met:

1. Using a regular data ordering:

All matrix pointers must be 4-byte aligned. For even better performance, this condition

8 ReLU, dRelu, GELU, dGELU and Bias epilogue modes (see CUBLASLT_MATMUL _DESC_EPILOGUE in
) are not supported when D matrix memory order is defined as CUBLASLT_ORDER_ROW. For best performance when
using the bias vector, specify zero beta and set pointer mode to CUBLASLT_POINTER_MODE_HOST.
9 Use of CUBLAS_ORDER_ROW together with CUBLAS_OP_C (Hermitian operator) is not supported unless all of A, B, C, and D
matrices use the CUBLAS_ORDER_ROW ordering.

3.4. cuBLASLt API Reference 235

cuBLAS, Release 12.9

should hold with 16 instead of 4.
Leading dimensions of matrices A, B, C must be multiples of 4.
Only the “TN” format is supported - A must be transposed and B non-transposed.

Pointer mode can be CUBLASLT_POINTER_MODE_HOST, CUBLASLT_POINTER_MODE_
DEVICE or CUBLASLT_POINTER_MODE_ALPHA_DEVICE_VECTOR_BETA_HOST. With the
latter mode, the kernels support the CUBLASLT_MATMUL_DESC_ALPHA_VECTOR_BATCH_
STRIDE attribute.

Dimensions m and k must be multiples of 4.

2. Using the IMMA-specific data ordering on Ampere (compute capability 8.0) or Turing (compute
capability 7.5) (but not Hopper, compute capability 9.0, or later) architecture - CUBLASLT_ORDER_
COL32" for matrices A, C, D, and CUBLASLT_ORDER_COL4_4R2_8C (on Turing or Ampere archi-
tecture) or CUBLASLT_ORDER_COL32_2R_4R4 (on Ampere architecture) for matrix B:

Leading dimensions of matrices A, B, C must fulfill conditions specific to the memory order-
ing (see).

Matmul descriptor must specify CUBLAS_OP_T on matrix B and CUBLAS_OP_N (default) on
matrix A and C.

If scaleType CUDA_R_321I is used, the only supported values for alpha and beta are @ or 1.

Pointer mode can be CUBLASLT_POINTER_MODE_HOST, CUBLASLT_POINTER_MODE_
DEVICE, CUBLASLT_POINTER_MODE_DEVICE_VECTOR or CUBLASLT_POINTER_MODE_
ALPHA_DEVICE_VECTOR_BETA_ZERO. These kernels do not support CUBLASLT_MATMUL _
DESC_ALPHA_VECTOR_BATCH_STRIDE.

Only the “NT” format is supported - A must be transposed and B non-transposed.

Table 7: Table 2. When A, B, C, and D Use Layouts for IMMA

computeType scaleType | Atype/BtypeCtype Bias Type

CUBLAS_COMPUTE_32l or CUDA_R_321 CUDA_R_8I CUDA_R_32INon-default epilogue not

CUBLAS_COMPUTE_32I_PEDANTIC supported.
CUDA_R_32FCUDA_R_8I CUDA_R_8I CUDA_R_32F

To use tensor- or block-scaled FP8 kernels, the following set of requirements must be satisfied:

All matrix dimensions must meet the optimal requirements listed in (i.e. point-
ers and matrix dimension must support 16-byte alignment).

Scaling mode must meet the restrictions noted in the table.

A must be transposed and B non-transposed (The “TN” format) on Ada (compute capability 8.9),
Hopper (compute capability 9.0), and Blackwell GeForce (compute capability 12.x) GPUs.

The compute type must be CUBLAS_COMPUTE_32F.
The scale type must be CUDA_R_32F.

See the table below when using FP8 kernels:

236 Chapter 3. Using the cuBLASLt API

cuBLAS, Release 12.9

Table 8: Table 3. When A, B, C, and D Use Layouts for FP8

AType BType CType DType Bias Type
CUDA_R_BF_E4M3 | CUDA_R_8F_E4M3 | CUDA_R_16BF | CUDA_R_16BF CUDA_R_16BF’
CUDA_R_8F_E4M3 CUDA_R_16BF?
CUDA_R_16F CUDA_R_16F CUDA_R_16F
CUDA_R_8F_ CUDA_R_16F"
E4M3
CUDA_R_32F CUDA_R_32F CUDA_R_16BF’
CUDA_R_8F_E5M2 | CUDA_R_16BF | CUDA_R_16BF CUDA_R_16BF’
CUDA_R_8F_ CUDA_R_16BF’
E4M3
CUDA_R_8F_ CUDA_R_16BF?
E5M2
CUDA_R_16F CUDA_R_16F CUDA_R_16F’
CUDA_R_8F_ CUDA_R_16F"
E4M3
CUDA_R_8F_ CUDA_R_16F
E5M2
CUDA_R_32F CUDA_R_32F CUDA_R_16BF?
CUDA_R_8F_E5M2 | CUDA_R_8F_E4M3 | CUDA_R_16BF | CUDA_R_16BF CUDA_R_16BF’
CUDA_R_8F_ CUDA_R_16BF?
E4M3
CUDA_R_8F_ CUDA_R_16BF’
ESM2
CUDA_R_16F CUDA_R_16F CUDA_R_16F’
CUDA_R_8F_ CUDA_R_16F"
E4M3
CUDA_R_8F_ CUDA_R_16F
E5M2
CUDA_R_32F CUDA_R_32F CUDA_R_16BF?

To use block-scaled FP4 kernels, the following set of requirements must be satisfied:

All matrix dimensions must meet the optimal requirements listed in (i.e. point-
ers and matrix dimension must support 16-byte alignment).
Scaling mode must be CUBLASLT_MATMUL _MATRIX_SCALE_VEC16_UE4M3
A must be transposed and B non-transposed (The “TN” format)
The compute type must be CUBLAS_COMPUTE_32F.
The scale type must be CUDA_R_32F.
Table 9: Table 4. When A, B, C, and D Use Layouts for FP4
AType BType CType DType Bias Type
CUDA_R_4F_E2M1 | CUDA_R_4F_E2M1 | CUDA_R_16BF | CUDA_R_16BF CUDA_R_16BF’
CUDA_R_4F_E2M1 | CUDA_R_16BF’
CUDA_R_16F CUDA_R_16F CUDA_R_16F
CUDA_R_4F_E2M1 | CUDA_R_16F’
CUDA_R_32F CUDA_R_32F CUDA_R_16BF’

10 FP8 DType is not supported when scaling modes are one of CUBLASLT_MATMUL_MATRIX_SCALE_OUTER_VEC_32F,
CUBLASLT_MATMUL _MATRIX_SCALE_VEC128_32F, and CUBLASLT_MATMUL_ _MATRIX_SCALE_BLK128x128_32F.

3.4. cuBLASLt API Reference

237

cuBLAS, Release 12.9

And finally, see below table when A,B,C,D are planar-complex matrices (CUBLASLT_MATRIX_LAYOUT_

PLANE_OFFSET

core acceleration.

I= 0, see

) to make use of mixed precision tensor

Table 10: Table 5. When A, B, C, and D are Planar-Complex Ma-

trices
computeType scaleType Atype/Btype Ctype
CUBLAS_COMPUTE_32F | CUDA_C_32F | CUDA_C_16F" CUDA_C_16F’
CUDA_C_32F’
CUDA_C_16BF’ | CUDA_C_16BF’
CUDA_C_32F’
NOTES:
Parameters:
Parame- | Mem-| In- Description
ter ory put /
Out-
put
lightHandle In- Pointer to the allocated cuBLASLt handle for the cuBLASLt context. See
put .
com- In- Handle to a previously created matrix multiplication descriptor of type
put- put
eDesc
alpha, De- In- Pointers to the scalars used in the multiplication.
beta vice | put
or
host
A, B, and | De- In- Pointers to the GPU memory associated with the corresponding descrip-
C vice | put tors Adesc, Bdesc and Cdesc.
Adesc, In- Handles to the previous created descriptors of the type
Bdesc put
and
Cdesc
D De- Out- | Pointer to the GPU memory associated with the descriptor Ddesc.
vice put
Ddesc In- Handle to the previous created descriptor of the type
put .
algo In- Handle for matrix multiplication algorithm to be used. See
put . When NULL, an implicit heuristics query with default search
preferences will be performed to determine actual algorithm to use.
workspaceDe- Pointer to the workspace buffer allocated in the GPU memory. Must be
vice 256B aligned (i.e. lowest 8 bits of address must be 0).
workspace- In- Size of the workspace.
Sizeln- put
Bytes
stream | Host | In- The CUDA stream where all the GPU work will be submitted.
put
Returns:
238 Chapter 3. Using the cuBLASLt API

cuBLAS, Release 12.9

Return Value Description
CUBLAS_ If cuBLASLt handle has not been initialized.
STATUS_NOT_
INITIALIZED
CUBLAS_ If the parameters are unexpectedly NULL, in conflict or in an impossible con-
STATUS_ figuration. For example, when workspaceSizeInBytes is less than workspace
INVALID_ required by the configured algo.
VALUE
CUBLAS_ If the current implementation on the selected device doesn’t support the con-
STATUS_NOT_ figured operation.
SUPPORTED
CUBLAS_ If the configured operation cannot be run using the selected device.
STATUS_ARCH_
MISMATCH
CUBLAS_ If CUDA reported an execution error from the device.
STATUS_
EXECUTION_
FAILED
CUBLAS_ If the operation completed successfully.
STATUS_
SUCCESS
See for a complete list of valid return codes.

cublasStatus_t cublasLtMatmulAlgoCapGetAttribute(
const cublasLtMatmulAlgo_t *algo,
cublasLtMatmulAlgoCapAttributes_t attr,
void *buf,
size_t sizelInBytes,
size_t *sizeWritten);

This function returns the value of the queried capability attribute for an initialized
descriptor structure. The capability attribute value is retrieved from the enumerated type

For example, to get list of supported Tile IDs:

cublasLtMatmulTile_t tiles[CUBLASLT_MATMUL_TILE_END];
size_t num_tiles, size_written;
if (cublasLtMatmulAlgoCapGetAttribute(algo, CUBLASLT_ALGO_CAP_TILE_IDS, tiles,
—sizeof(tiles), &size_written) == CUBLAS_STATUS_SUCCESS) {
num_tiles = size_written / sizeof(tiles[0]);}

Parameters:

3.4. cuBLASLt API Reference 239

cuBLAS, Release 12.9

Pa- Memr- In- Description
ram- | ory | put
eter /
Out-
put
algo In- Pointer to the previously created opaque structure holding the matrix multiply
put | algorithm descriptor. See .
attr In- The capability attribute whose value will be retrieved by this function. See
put .
buf Out- | The attribute value returned by this function.
put
sizeln- In- Size of buf buffer (in bytes) for verification.
Bytes put
sizeWrit-| Out- | Valid only when the return value is CUBLAS_STATUS_SUCCESS. If sizeIn-
ten put | Bytes is non-zero: then sizeWritten is the number of bytes actually writ-
ten; if sizeInBytes is O: then sizeWritten is the number of bytes needed
to write full contents.

Returns:

Return Value Description
CUBLAS_STATUS_INVALID_VALUE

If sizeInBytes is O and sizeWrittenis
NULL, or

if sizeInBytes is non-zero and buf is
NULL, or

if sizeInBytes doesn’t match size of in-
ternal storage for the selected attribute

CUBLAS_STATUS_SUCCESS If attribute’s value was successfully written to
user memory.

See for a complete list of valid return codes.

cublasStatus_t cublasLtMatmulAlgoCheck(
cublasLtHandle_t lightHandle,
cublasLtMatmulDesc_t operationDesc,
cublasLtMatrixLayout_t Adesc,
cublasLtMatrixLayout_t Bdesc,
cublasLtMatrixLayout_t Cdesc,
cublasLtMatrixLayout_t Ddesc,
const cublasLtMatmulAlgo_t *algo,
cublasLtMatmulHeuristicResult_t *result);

This function performs the correctness check on the matrix multiply algorithm descriptor for the ma-
trix multiply operation function with the given input matrices A, B and C, and the
output matrix D. It checks whether the descriptor is supported on the current device, and returns the
result containing the required workspace and the calculated wave count.

Note: CUBLAS_STATUS_SUCCESS doesn’t fully guarantee that the algo will run. The algo will fail if,

240 Chapter 3. Using the cuBLASLt API

cuBLAS, Release 12.9

for example, the buffers are not correctly aligned. However, if fails, the

algo will not run.

Parameters:
Parameter | Memr- In- Description
ory | put/
Out-
put
lightHandle In- Pointer to the allocated cuBLASLt handle for the cuBLASLt context. See
put .
opera- In- Handle to a previously created matrix multiplication descriptor of type
tionDesc put .
Adesc, In- Handles to the previously created matrix layout descriptors of the type
Bdesc, put
Cdesc,
and Ddesc
algo In- Descriptor which specifies which matrix multiplication algorithm should
put | be used. See . May point to result->algo.
result Out- | Pointer to the structure holding the results returned by this function.
put The results comprise of the required workspace and the calculated wave
count. The algo field is never updated. See
Returns:

Return Value

Description

CUBLAS_STATUS_
INVALID_VALUE

If matrix layout descriptors or the operation descriptor do not match
the algo descriptor.

CUBLAS_STATUS_NOT_
SUPPORTED

If the algo configuration or data type combination is not currently sup-
ported on the given device.

CUBLAS_STATUS_ARCH_
MISMATCH

If the algo configuration cannot be run using the selected device.

CUBLAS_STATUS_
SUCCESS

If the check was successful.

See for a complete list of valid return codes.

cublasStatus_t cublasLtMatmulAlgoConfigGetAttribute(
const cublasLtMatmulAlgo_t *algo,
cublasLtMatmulAlgoConfigAttributes_t attr,

void *buf,

size_t sizelInBytes,

size_t *sizeWritten);

This function returns the value of the queried configuration attribute for an initialized
descriptor. The configuration attribute value is retrieved from the enumerated type

Parameters:

3.4. cuBLASLt API Reference 241

cuBLAS, Release 12.9

Pa- Memr- In- Description
ram- | ory | put
eter /
Out-
put
algo In- Pointer to the previously created opaque structure holding the matrix multiply
put | algorithm descriptor. See .
attr In- The configuration attribute whose value will be retrieved by this function. See
put .
buf Out- | The attribute value returned by this function.
put
sizeln- In- Size of buf buffer (in bytes) for verification.
Bytes put
sizeWrit-| Out- | Valid only when the return value is CUBLAS_STATUS_SUCCESS. If sizeIn-
ten put | Bytes is non-zero: then sizeWritten is the number of bytes actually writ-
ten; if sizeInBytes is O: then sizeWritten is the number of bytes needed
to write full contents.

Returns:

Return Value Description
CUBLAS_STATUS_INVALID_VALUE

If sizeInBytes is O and sizeWrittenis
NULL, or

if sizeInBytes is non-zero and buf is
NULL, or

if sizeInBytes doesn't match size of in-
ternal storage for the selected attribute

CUBLAS_STATUS_SUCCESS If attribute’s value was successfully written to
user memory.

See for a complete list of valid return codes.

cublasStatus_t cublasLtMatmulAlgoConfigSetAttribute(
cublasLtMatmulAlgo_t *algo,
cublasLtMatmulAlgoConfigAttributes_t attr,
const void *buf,
size_t sizelInBytes);

This function sets the value of the specified configuration attribute for an initialized
descriptor. The configuration attribute is an enumerant of the type

Parameters:

242 Chapter 3. Using the cuBLASLt API

cuBLAS, Release 12.9

Param- | Mem+ Input / | Description
eter ory Output
algo Input Pointer to the previously created opaque structure holding the matrix
multiply algorithm descriptor. See
attr Input The configuration attribute whose value will be set by thls function.
See
buf Input The value to which the configuration attrlbute should be set.
sizeln- Input Size of buf buffer (in bytes) for verification.
Bytes
Returns:
Return Value Description
CUBLAS_STATUS_ If buf is NULL or sizeInBytes doesn’t match the size of the internal
INVALID_VALUE storage for the selected attribute.
CUBLAS_STATUS_ If the attribute was set successfully.
SUCCESS
See for a complete list of valid return codes.

cublasStatus_t cublasLtMatmulAlgoGetHeuristic(
cublasLtHandle_t lightHandle,
cublasLtMatmulDesc_t operationDesc,
cublasLtMatrixLayout_t Adesc,
cublasLtMatrixLayout_t Bdesc,
cublasLtMatrixLayout_t Cdesc,
cublasLtMatrixLayout_t Ddesc,
cublasLtMatmulPreference_t preference,
int requestedAlgoCount,
cublasLtMatmulHeuristicResult_t heuristicResultsArray|[],
int *returnAlgoCount);

This function retrieves the possible algorithms for the matrix multiply operation
function with the given input matrices A, B and C, and the output matrix D. The output is placed
in heuristicResultsArray|[] in the order of increasing estimated compute time.

Parameters:

3.4. cuBLASLt API Reference 243

cuBLAS, Release 12.9

Parameter Memr Input | Description
ory | [/ Out-
put
lightHandle Input | Pointer to the allocated cuBLASLt handle for the cuBLASLt con-
text. See .
opera- Input | Handle to a previously created matrix multiplication descriptor of
tionDesc type .
Adesc, Input | Handles to the previously created matrix layout descriptors of the
Bdesc, type
Cdesc, and
Ddesc
preference Input | Pointer to the structure holding the heuristic search preferences
descriptor. See .
re- Input | Size of the heuristicResultsArray (in elements). Thisis the re-
questedAl- quested maximum number of algorithms to return.
goCount
heuristi- Out- Array containing the algorithm heuristics and associated runtime
cResult- put characteristics, returned by this function, in the order of increasing
sArray[] estimated compute time.
returnAl- Out- Number of algorithms returned by this function. This is the number
goCount put of heuristicResultsArray elements written.
Returns:
Return Value Description

CUBLAS_STATUS_
INVALID_VALUE

If requestedAlgoCount is less or equal to zero.

CUBLAS_STATUS
NOT_SUPPORTED

If no heuristic function available for current configuration.

SUCCESS

CUBLAS_STATUS

If query was successful. Inspect heuristicResultsArray[@ to (retur-
nAlgoCount -1)].state for the status of the results.

See

for a complete list of valid return codes.

Note: This function may load some kernels using CUDA Driver APl which may fail when there is no
available GPU memory. Do not allocate the entire VRAM before running cublasLtMatmulAlgoGetH-

euristic().

cublasStatus_t cublasLtMatmulAlgoGetIds(
cublasLtHandle_t lightHandle,
cublasComputeType_t computeType,
cudaDataType_t scaleType,

cudaDataType_t Atype,
cudaDataType_t Btype,
cudaDataType_t Ctype,
cudaDataType_t Dtype,

int requestedAlgoCount,

(continues on next page)

244

Chapter 3. Using the cuBLASLt API

cuBLAS, Release 12.9

int algoIdsArrayl[],
int *returnAlgoCount)

’

(continued from previous page)

This function retrieves the IDs of all the matrix multiply algorithms that are valid, and can potentially
function, for given types of the input matrices A, B and C, and of the

be run by the
output matrix D.

Note: The IDs are returned in no particular order. To make sure the best possible algo is contained in
the list, make requestedAlgoCount large enough to receive the full list. The list is guaranteed to be
full if returnAlgoCount < requestedAlgoCount.

Parameters:
Parameter Memr Input Description
ory |/ Out-
put
lightHandle Input Pointer to the allocated cuBLASLt handle for the
CUBLASLt context. See .
computeType, scaleType, Inputs | Data types of the computation type, scaling fac-
Atype, Btype, Ctype, and tors and of the operand matrices. See
Dtype .
requestedAlgoCount Input Number of algorithms requested. Must be > 0.
algoIdsArray|[] Out- Array containing the algorithm IDs returned by
put this function.
returnAlgoCount Out- Number of algorithms actually returned by this
put function.
Returns:
Return Value Description

CUBLAS_STATUS_
INVALID_VALUE

If requestedAlgoCount is less or equal to zero.

CUBLAS_STATUS_
SUCCESS

If query was successful. Inspect returnAlgoCount to get actual
number of IDs available.

See for a complete list of valid return codes.

cublasStatus_t cublasLtMatmulAlgoInit(
cublasLtHandle_t lightHandle,
cublasComputeType_t computeType,
cudaDataType_t scaleType,

cudaDataType_t Atype,
cudaDataType_t Btype,
cudaDataType_t Ctype,
cudaDataType_t Dtype,
int algoId,

cublasLtMatmulAlgo_t *algo);

3.4. cuBLASLt API Reference

245

cuBLAS, Release 12.9

This function initializes the matrix multiply algorithm structure for the , for a speci-
fied matrix multiply algorithm and input matrices A, B and C, and the output matrix D.
Parameters:
Parameter Mem: Input / | Description
ory | Output
lightHandle Input Pointer to the allocated cuBLASLt handle for the cuBLASLt
context. See .
computeType Input Compute type. See CUBLASLT_MATMUL _DESC_COMPUTE_TYPE
of .
scaleType Input Scale type. See CUBLASLT_MATMUL_DESC_SCALE_TYPEof
Usually same as compute-
Type.
Atype, Btype, Input Datatype precision for the input and output matrices. See
Ctype, and .
Dtype
algoId Input Specifies the algorithm being initialized. Should be a valid al-
gold returned by the function.
algo Input Pointer to the opaque structure to be initialized. See
Returns:
Return Value Description
CUBLAS_STATUS_INVALID_ If algo is NULL or algoId is outside the recognized range.
VALUE
CUBLAS_STATUS_NOT_ If algoId is not supported for given combination of data
SUPPORTED types.
CUBLAS_STATUS_SUCCESS If the structure was successfully initialized.
See for a complete list of valid return codes.

cublasStatus_t cublasLtMatmulDescCreate(cublasLtMatmulDesc_t *matmulDesc,
cublasComputeType_t computeType,
cudaDataType_t scaleType);

This function creates a matrix multiply descriptor by allocating the memory needed to hold its opaque
structure.

Parameters:
Param- | Mem+ Input / | Description
eter ory Output
mat- Output | Pointer to the structure holding the matrix multiply descriptor created
mulDesc by this function. See .
com- Input Enumerant that specifies the data precision for the matrix multiply de-
pute- scriptor this function creates. See
Type
scale- Input Enumerant that specifies the data precision for the matrix transform
Type descriptor this function creates. See

246 Chapter 3. Using the cuBLASLt API

cuBLAS, Release 12.9

Returns:
Return Value Description
CUBLAS_STATUS_ALLOC_FAILED | If memory could not be allocated.
CUBLAS_STATUS_SUCCESS If the descriptor was created successfully.
See for a complete list of valid return codes.

cublasStatus_t cublasLtMatmulDescInit(cublasLtMatmulDesc_t matmulDesc,
cublasComputeType_t computeType,
cudaDataType_t scaleType);

This function initializes a matrix multiply descriptor in a previously allocated one.

Parameters:
Param- | Mem- Input / | Description
eter ory Output
mat- Output | Pointer to the structure holding the matrix multiply descriptor initial-
mulDesc ized by this function. See .
com- Input Enumerant that specifies the data precision for the matrix multiply de-
pute- scriptor this function initializes. See
Type
scale- Input Enumerant that specifies the data precision for the matrix transform
Type descriptor this function initializes. See
Returns:
Return Value Description
CUBLAS_STATUS_ALLOC_FAILED | If memory could not be allocated.
CUBLAS_STATUS_SUCCESS If the descriptor was created successfully.
See for a complete list of valid return codes.

cublasStatus_t cublasLtMatmulDescDestroy(
cublasLtMatmulDesc_t matmulDesc) ;

This function destroys a previously created matrix multiply descriptor object.

Parameters:
Pa- Mem-+ Input / | Description
rame- | ory Output
ter
mat- Input Pointer to the structure holding the matrix multiply descriptor that
mulDesc should be destroyed by this function. See .

3.4. cuBLASLt API Reference 247

cuBLAS, Release 12.9

Returns:

See

Return Value Description

CUBLAS_STATUS_SUCCESS | If operation was successful.

for a complete list of valid return codes.

cublasStatus_t cublasLtMatmulDescGetAttribute(
cublasLtMatmulDesc_t matmulDesc,
cublasLtMatmulDescAttributes_t attr,
void *buf,
size_t sizelInBytes,
size_t *sizeWritten);

This function returns the value of the queried attribute belonging to a previously created matrix mul-
tiply descriptor.

Parameters:
Pa- Memr- In- Description
ram- | ory | put
eter /
Out-
put
mat- In- Pointer to the previously created structure holding the matrix multiply descrip-
mulDesc put | tor queried by this function. See .
attr In- The attribute that will be retrieved by this function. See
put .
buf Out- | Memory address containing the attribute value retrieved by this function.
put
sizeln- In- Size of buf buffer (in bytes) for verification.
Bytes put
sizeWrit-| Out- | Valid only when the return value is CUBLAS_STATUS_SUCCESS. If sizeIn-
ten put Bytes is non-zero: then sizeWritten is the number of bytes actually writ-
ten; if sizeInBytes is O: then sizeWritten is the number of bytes needed
to write full contents.
Returns:

Return Value

Description

CUBLAS_STATUS_INVALID_VALUE

If sizeInBytes is O and sizeWrittenis
NULL, or

if sizeInBytes is non-zero and buf is
NULL, or

sizeInBytes doesn’t match size of inter-
nal storage for the selected attribute

CUBLAS_STATUS_SUCCESS If attribute’s value was successfully written to

user memory.

248

Chapter 3. Using the cuBLASLt API

cuBLAS, Release 12.9

See for a complete list of valid return codes.

cublasStatus_t cublasLtMatmulDescSetAttribute(
cublasLtMatmulDesc_t matmulDesc,
cublasLtMatmulDescAttributes_t attr,
const void *buf,
size_t sizeInBytes);

This function sets the value of the specified attribute belonging to a previously created matrix multiply
descriptor.

Parameters:
Param- | Mem+ Input / | Description
eter ory Output
mat- Input Pointer to the previously created structure holding the matrix multiply
mulDesc descriptor queried by this function. See
attr Input The attribute that will be set by this function. See
buf Input The value to which the specified attribute should be set.
sizeln- Input Size of buf buffer (in bytes) for verification.
Bytes
Returns:
Return Value Description
CUBLAS_STATUS_ If buf is NULL or sizeInBytes doesn’t match the size of the internal
INVALID_VALUE storage for the selected attribute.
CUBLAS_STATUS_ If the attribute was set successfully.
SUCCESS
See for a complete list of valid return codes.

cublasStatus_t cublasLtMatmulPreferenceCreate(
cublasLtMatmulPreference_t *pref);

This function creates a matrix multiply heuristic search preferences descriptor by allocating the mem-
ory needed to hold its opaque structure.

Parameters:
Pa- Mem- Input / | Description
rame- | ory Output
ter
pref Output | Pointer to the structure holding the matrix multiply preferences descrip-
tor created by this function. See

3.4. cuBLASLt API Reference 249

cuBLAS, Release 12.9

Returns:

See

Return Value

Description

CUBLAS_STATUS_ALLOC_FAILED | If memory could not be allocated.

CUBLAS_STATUS_SUCCESS If the descriptor was created successfully.

for a complete list of valid return codes.

cublasStatus_t cublasLtMatmulPreferenceInit(
cublasLtMatmulPreference_t pref);

This function initializes a matrix multiply heuristic search preferences descriptor in a previously allo-

cated one.
Parameters:
Pa- Mem- Input / | Description
rame- | ory Output
ter
pref Output | Pointer to the structure holding the matrix multiply preferences descrip-
tor created by this function. See
Returns:
Return Value Description
CUBLAS_STATUS_ALLOC_FAILED | If memory could not be allocated.
CUBLAS_STATUS_SUCCESS If the descriptor was created successfully.
See for a complete list of valid return codes.

cublasStatus_t cublasLtMatmulPreferenceDestroy (
cublasLtMatmulPreference_t pref);

This function destroys a previously created matrix multiply preferences descriptor object.

Parameters:
Pa- Memr Input Description
ram- | ory |/ Out-
eter put
pref Input Pointer to the structure holding the matrix multiply preferences descrip-
tor that should be destroyed by this function. See
Returns:
250 Chapter 3. Using the cuBLASLt API

cuBLAS, Release 12.9

See

Return Value

Description

CUBLAS_STATUS_SUCCESS

If the operation was successful.

for a complete list of valid return codes.

cublasStatus_t cublasLtMatmulPreferenceGetAttribute(
cublasLtMatmulPreference_t pref,
cublasLtMatmulPreferenceAttributes_t attr,
void *buf,
size_t sizelInBytes,
size_t *sizeWritten);

This function returns the value of the queried attribute belonging to a previously created matrix mul-
tiply heuristic search preferences descriptor.

Parameters:
Pa- Memr In- Description
ram- | ory | put
eter /
Out-
put
pref In- Pointer to the previously created structure holding the matrix multiply heuris-
put | tic search preferences descriptor queried by this function. See
attr In- The attribute that will be queried by this function. See
put .
buf Out- | Memory address containing the attribute value retrieved by this function.
put
sizeln- In- Size of buf buffer (in bytes) for verification.
Bytes put
sizeWrit-| Out- | Valid only when the return value is CUBLAS_STATUS_SUCCESS. If sizeIn-
ten put Bytes is non-zero: then sizeWritten is the number of bytes actually writ-
ten; if sizeInBytes is O: then sizeWritten is the number of bytes needed
to write full contents.
Returns:

Return Value

Description

CUBLAS_STATUS_INVALID_VALUE

If sizeInBytes is O and sizeWrittenis
NULL, or

if sizeInBytes is non-zero and buf is
NULL, or

sizeInBytes doesn’t match size of inter-
nal storage for the selected attribute

CUBLAS_STATUS_SUCCESS

If attribute’s value was successfully written to
user memory.

3.4. cuBLASLt API Reference

251

cuBLAS, Release 12.9

See for a complete list of valid return codes.

cublasStatus_t cublasLtMatmulPreferenceSetAttribute(
cublasLtMatmulPreference_t pref,
cublasLtMatmulPreferenceAttributes_t attr,
const void *buf,
size_t sizeInBytes);

This function sets the value of the specified attribute belonging to a previously created matrix multiply
preferences descriptor.

Parameters:
Pa- Memr Input Description
rame- | ory |/ Out-
ter put
pref Input Pointer to the previously created structure holding the matrix multiply
preferences descriptor queried by this function. See
attr Input The attribute that will be set by this function. See
buf Input The value to which the specified attribute should be set.
sizeInt Input Size of buf buffer (in bytes) for verification.
Bytes
Returns:
Return Value Description
CUBLAS_STATUS_ If buf is NULL or sizeInBytes doesn’t match the size of the internal
INVALID_VALUE storage for the selected attribute.
CUBLAS_STATUS_ If the attribute was set successfully.
SUCCESS
See for a complete list of valid return codes.

cublasStatus_t cublasLtMatrixLayoutCreate(cublasLtMatrixLayout_t *matLayout,
cudaDataType type,
uint64_t rows,
uint64_t cols,
int64_t 1d);

This function creates a matrix layout descriptor by allocating the memory needed to hold its opaque
structure.

Parameters:

252 Chapter 3. Using the cuBLASLt API

cuBLAS, Release 12.9

Pa- Memr Input Description
ram- | ory |/ Out-
eter put
mat- Out- Pointer to the structure holding the matrix layout descriptor created by this
Lay- put function. See
out
type Input Enumerant that specifies the data precision for the matrix layout descriptor
this function creates. See .
rows, Input Number of rows and columns of the matrix.
cols
1d Input The leading dimension of the matrix. In column major layout, this is the
number of elements to jump to reach the next column. Thus 1d >= m
(number of rows).
Returns:
Return Value Description
CUBLAS_STATUS_ALLOC_FAILED | If the memory could not be allocated.
CUBLAS_STATUS_SUCCESS If the descriptor was created successfully.
See for a complete list of valid return codes.

cublasStatus_t cublasLtMatrixLayoutInit(cublasLtMatrixLayout_t matlLayout,

cudaDataType type,
uint64_t rows,
uint64_t cols,
int64_t 1d);

This function initializes a matrix layout descriptor in a previously allocated one.

Parameters:
Pa- Memr Input Description
ram- | ory |/ Out-
eter put
mat- Out- Pointer to the structure holding the matrix layout descriptor initialized by
Lay- put this function. See
out
type Input Enumerant that specifies the data precision for the matrix layout descriptor
this function initializes. See .
rows, Input Number of rows and columns of the matrix.
cols
1d Input The leading dimension of the matrix. In column major layout, this is the
number of elements to jump to reach the next column. Thus 1d >= m
(number of rows).
Returns:

3.4. cuBLASLt API Reference 253

cuBLAS, Release 12.9

Return Value Description

CUBLAS_STATUS_ALLOC_FAILED | If the memory could not be allocated.

CUBLAS_STATUS_SUCCESS If the descriptor was created successfully.
See for a complete list of valid return codes.

cublasStatus_t cublasLtMatrixLayoutDestroy(
cublasLtMatrixLayout_t matLayout);

This function destroys a previously created matrix layout descriptor object.

Parameters:
Pa- Mem+ Input / | Description
rame- | ory Output
ter
mat- Input Pointer to the structure holding the matrix layout descriptor that should
Lay- be destroyed by this function. See
out
Returns:
Return Value Description
CUBLAS_STATUS_SUCCESS | If the operation was successful.
See for a complete list of valid return codes.

cublasStatus_t cublasLtMatrixLayoutGetAttribute(
cublasLtMatrixLayout_t matlLayout,
cublasLtMatrixLayoutAttribute_t attr,
void *buf,
size_t sizelInBytes,
size_t *sizeWritten);

This function returns the value of the queried attribute belonging to the specified matrix layout de-
scriptor.

Parameters:

254 Chapter 3. Using the cuBLASLt API

cuBLAS, Release 12.9

Pa- Memr- In- Description
ram- | ory | put
eter /
Out-
put
mat- In- Pointer to the previously created structure holding the matrix layout descriptor
Lay- put | queried by this function. See
out
attr In- The attribute being queried for. See
put
buf Out- | The attribute value returned by this function.
put
sizeln- In- Size of buf buffer (in bytes) for verification.
Bytes put
sizeWrit-| Out- | Valid only when the return value is CUBLAS_STATUS_SUCCESS. If sizeln-
ten put Bytes is non-zero: then sizeWritten is the number of bytes actually writ-
ten; if sizeInBytes is O: then sizeWritten is the number of bytes needed
to write full contents.
Returns:

Return Value

Description

CUBLAS_STATUS_INVALID_VALUE

If sizeInBytes is O and sizeWrittenis
NULL, or

if sizeInBytes is non-zero and buf is
NULL, or

sizeInBytes doesn’t match size of inter-
nal storage for the selected attribute

CUBLAS_STATUS_SUCCESS If attribute’s value was successfully written to

user memory.

See

for a complete list of valid return codes.

cublasStatus_t cublasLtMatrixLayoutSetAttribute(
cublasLtMatrixLayout_t matLayout,
cublasLtMatrixLayoutAttribute_t attr,
const void *buf,
size_t sizelInBytes);

This function sets the value of the specified attribute belonging to a previously created matrix layout

descriptor.

Parameters:

3.4. cuBLASLt API Reference 255

cuBLAS, Release 12.9

Param- | Mem+ Input / | Description
eter ory Output
mat- Input Pointer to the previously created structure holding the matrix layout
Lay- descriptor queried by this function. See
out
attr Input The attribute that will be set by this function. See
buf Input The value to which the specified attribute should be set.
sizeln- Input Size of buf, the attribute buffer.
Bytes
Returns:

Return Value

Description

CUBLAS_STATUS_

INVALID_VALUE

If buf is NULL or sizeInBytes doesn’'t match size of internal storage
for the selected attribute.

CUBLAS_STATUS_

SUCCESS

If attribute was set successfully.

See

for a complete list of valid return codes.

cublasStatus_t cublasLtMatrixTransform(
cublasLtHandle_t lightHandle,
cublasLtMatrixTransformDesc_t transformDesc,

const void *alpha,

const void *A,
cublasLtMatrixLayout_t Adesc,
const void *beta,
const void *B,

cublasLtMatrixLayout_t Bdesc,

void *C,

cublasLtMatrixLayout_t Cdesc,
cudaStream_t stream);

This function computes the matrix transformation operation on the input matrices A and B, to produce
the output matrix C, according to the below operation:

C = alpha*transformation(A) + beta*transformation(B),

where A, B are input matrices, and alpha and beta are input scalars. The transformation operation
is defined by the transformDesc pointer. This function can be used to change the memory order of
data or to scale and shift the values.

Parameters:

256

Chapter 3. Using the cuBLASLt API

cuBLAS, Release 12.9

Parame- Mem- | Input | Description
ter ory /
Out-
put
lightHandle Input | Pointer to the allocated cuBLASLt handle for the cuBLASLt context.
See :
trans- Input | Pointer to the opaque descriptor holding the matrix transformation
for- operation. See
mDesc
alpha, De- Input | Pointers to the scalars used in the multiplication.
beta vice
or
host
A B De- Input | Pointers to the GPU memory associated with the corresponding de-
vice scriptors Adesc and Bdesc.
C De- Out- | Pointer to the GPU memory associated with the Cdesc descriptor.
vice put
Adesc, Input | Handles to the previous created descriptors of the type
Bdesc .
and Adesc or Bdesc can be NULL if the corresponding pointer is NULL and
Cdesc the corresponding scalar is zero.
stream Host | Input | The CUDA stream where all the GPU work will be submitted.
Returns:
Return Value Description

CUBLAS_STATUS_NOT_
INITIALIZED

If cuBLASLt handle has not been initialized.

CUBLAS_STATUS_
INVALID_VALUE

If the parameters are in conflict or in an impossible configuration. For
example, when A is not NULL, but Adesc is NULL.

CUBLAS_STATUS_NOT_
SUPPORTED

If the current implementation on the selected device does not support
the configured operation.

CUBLAS_STATUS_
ARCH_MISMATCH

If the configured operation cannot be run using the selected device.

CUBLAS_STATUS_
EXECUTION_FAILED

If CUDA reported an execution error from the device.

CUBLAS_STATUS_
SUCCESS

If the operation completed successfully.

See

for a complete list of valid return codes.

cublasStatus_t cublasLtMatrixTransformDescCreate(
cublasLtMatrixTransformDesc_t *transformDesc,
cudaDataType scaleType);

This function creates a matrix transform descriptor by allocating the memory needed to hold its

opaque stru

Parameters:

cture.

3.4. cuBLASLt API Reference 257

cuBLAS, Release 12.9

Parame- | Mem- Input / | Description
ter ory Output
trans- Output | Pointer to the structure holding the matrix transform descriptor cre-
for- ated by this function. See
mDesc
scale- Input Enumerant that specifies the data precision for the matrix transform
Type descriptor this function creates. See
Returns:
Return Value Description
CUBLAS_STATUS_ALLOC_FAILED | If memory could not be allocated.
CUBLAS_STATUS_SUCCESS If the descriptor was created successfully.
See for a complete list of valid return codes.

cublasStatus_t cublasLtMatrixTransformDescInit(
cublasLtMatrixTransformDesc_t transformDesc,
cudaDataType scaleType);

This function initializes a matrix transform descriptor in a previously allocated one.

Parameters:
Parame- | Mem+ Input / | Description
ter ory Output
trans- Output | Pointer to the structure holding the matrix transform descriptor ini-
for- tialized by this function. See
mDesc
scale- Input Enumerant that specifies the data precision for the matrix transform
Type descriptor this function initializes. See
Returns:

Return Value Description
CUBLAS_STATUS_ALLOC_FAILED | If memory could not be allocated.
CUBLAS_STATUS_SUCCESS If the descriptor was created successfully.

See for a complete list of valid return codes.

258 Chapter 3. Using the cuBLASLt API

cuBLAS, Release 12.9

3.4.43 cublasLtMatrixTransformDescDestroy()

cublasStatus_t cublasLtMatrixTransformDescDestroy (
cublasLtMatrixTransformDesc_t transformDesc);

This function destroys a previously created matrix transform descriptor object.

Parameters:
Param- Memr Input Description
eter ory |/ Out-
put
trans- Input Pointer to the structure holding the matrix transform descriptor that
for- should be destroyed by this function. See cublaslLtMatrixTransfor-
mDesc mDesc_t.
Returns:
Return Value Description

CUBLAS_STATUS_SUCCESS | If the operation was successful.

See cublasStatus_t for a complete list of valid return codes.

3.4.44 cublasLtMatrixTransformDescGetAttribute()

cublasStatus_t cublasLtMatrixTransformDescGetAttribute(
cublasLtMatrixTransformDesc_t transformDesc,
cublasLtMatrixTransformDescAttributes_t attr,
void *buf,

size_t sizelInBytes,

size_t *sizeWritten);

This function returns the value of the queried attribute belonging to a previously created matrix trans-
form descriptor.

Parameters:

3.4. cuBLASLt API Reference 259

cuBLAS, Release 12.9

Pa- Memr In- Description
ram- | ory | put
eter /
Out-
put
transr- In- Pointer to the previously created structure holding the matrix transform de-
for- put | scriptor queried by this function. See
mDesc
attr In- The attribute that will be retrieved by this function. See
put .
buf Out- | Memory address containing the attribute value retrieved by this function.
put
sizeln- In- Size of buf buffer (in bytes) for verification.
Bytes put
sizeWrit- | Out- | Valid only when the return value is CUBLAS_STATUS_SUCCESS. If sizeIn-
ten put Bytes is non-zero: then sizeWritten is the number of bytes actually writ-
ten; if sizeInBytesis O: then sizeWritten is the number of bytes needed
to write full contents.

Returns:

Return Value Description
CUBLAS_STATUS_INVALID_VALUE

If sizeInBytes is zero and sizeWritten
is NULL, or

if sizeInBytes is non-zero and buf is
NULL, or

if sizeInBytes doesn’t match size of in-
ternal storage for the selected attribute

CUBLAS_STATUS_SUCCESS If attribute’s value was successfully written to
user memory.

See for a complete list of valid return codes.

cublasStatus_t cublasLtMatrixTransformDescSetAttribute(
cublasLtMatrixTransformDesc_t transformDesc,
cublasLtMatrixTransformDescAttributes_t attr,
const void *buf,
size_t sizelInBytes);

This function sets the value of the specified attribute belonging to a previously created matrix trans-
form descriptor.

Parameters:

260 Chapter 3. Using the cuBLASLt API

cuBLAS, Release 12.9

Param- Memrt Input Description
eter ory |/ Out-
put
trans- Input Pointer to the previously created structure holding the matrix trans-
for- form descriptor queried by this function. See
mDesc .
attr Input The attribute that will be set by this function. See
buf Input The value to which the specified attribute should be set.
sizeln- Input Size of buf buffer (in bytes) for verification.
Bytes
Returns:

Return Value

Description

CUBLAS_STATUS_
INVALID_VALUE

If buf is NULL or sizeInBytes does not match size of the internal stor-
age for the selected attribute.

CUBLAS_STATUS_
SUCCESS

If the attribute was set successfully.

See for a complete list of valid return codes.

3.4. cuBLASLt API Reference 261

cuBLAS, Release 12.9

262 Chapter 3. Using the cuBLASLt API

Chapter 4

Using the cuBLASXt API

The cuBLASXt API of cuBLAS exposes a multi-GPU capable host interface: when using this API the
application only needs to allocate the required matrices on the host memory space. Additionally, the
current implementation supports managed memory on Linux with GPU devices that have compute
capability 6.x or greater but treats it as host memory. Managed memory is not supported on Windows.
There are no restriction on the sizes of the matrices as long as they can fit into the host memory. The
cuBLASXt API takes care of allocating the memory across the designated GPUs and dispatched the
workload between them and finally retrieves the results back to the host. The cuBLASXt API supports
only the compute-intensive BLAS3 routines (e.g matrix-matrix operations) where the PCI transfers
back and forth from the GPU can be amortized. The cuBLASXt API has its own header file cublasXt.
h.

Starting with release 8.0, cuBLASXt API allows any of the matrices to be located on a GPU device.

Note: When providing matrices allocated on the GPU using the Stream Ordered Memory Allocator,
ensure visibility across all devices by using

Note: The cuBLASXt API is only supported on 64-bit platforms.

To be able to share the workload between multiple GPUs, the cuBLASXt APl uses a tiling strategy : ev-
ery matrix is divided in square tiles of user-controllable dimension BlockDim x BlockDim. The resulting
matrix tiling defines the static scheduling policy : each resulting tile is affected to a GPU in a round
robin fashion One CPU thread is created per GPU and is responsible to do the proper memory transfers
and cuBLAS operations to compute all the tiles that it is responsible for. From a performance point of
view, due to this static scheduling strategy, it is better that compute capabilities and PCI bandwidth
are the same for every GPU. The figure below illustrates the tiles distribution between 3 GPUs. To com-
pute the first tile GO from C, the CPU thread O responsible of GPUO, have to load 3 tiles from the first
row of A and tiles from the first column of B in a pipeline fashion in order to overlap memory transfer
and computations and sum the results into the first tile GO of C before to move on to the next tile GO.

263

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__MEMORY__POOLS.html#group__CUDART__MEMORY__POOLS_1g4210da54ee5a810945da586e00cb3019

cuBLAS, Release 12.9

B
G0 G1 G2 GO
C
A G1 G2 GO G1
G2 G0 G1 G2

Fig. 1: Example of cublasXt<t>gemm() tiling for 3 Gpus

264 Chapter 4. Using the cuBLASXt API

cuBLAS, Release 12.9

When the tile dimension is not an exact multiple of the dimensions of C, some tiles are partially filled on
the right border or/and the bottom border. The current implementation does not pad the incomplete
tiles but simply keep track of those incomplete tiles by doing the right reduced cuBLAS operations:
this way, no extra computation is done. However it still can lead to some load unbalance when all GPUS
do not have the same number of incomplete tiles to work on.

When one or more matrices are located on some GPU devices, the same tiling approach and workload
sharing is applied. The memory transfers are in this case done between devices. However, when the
computation of a tile and some data are located on the same GPU device, the memory transfer to/from
the local data into tiles is bypassed and the GPU operates directly on the local data. This can lead to a
significant performance increase, especially when only one GPU is used for the computation.

The matrices can be located on any GPU device, and do not have to be located on the same GPU
device. Furthermore, the matrices can even be located on a GPU device that do not participate to the
computation.

On the contrary of the cuBLAS API, even if all matrices are located on the same device, the cuBLASXt
APl is still a blocking API from the host point of view : the data results wherever located will be valid
on the call return and no device synchronization is required.

In the case of very large problems, the cuBLASXt API offers the possibility to offload some of the
computation to the host CPU. This feature can be setup with the routines

and The workload affected to the CPU is put aside : it is simply a percentage
of the resulting matrix taken from the bottom and the right side whichever dimension is bigger. The
GPU tiling is done after that on the reduced resulting matrix.

If any of the matrices is located on a GPU device, the feature is ignored and all computation will be
done only on the GPUs

This feature should be used with caution because it could interfere with the CPU threads responsible
of feeding the GPUs.

Currently, only the routine supports this feature.

Currently all cuBLASXt API routines from a given toolkit version, generate the same bit-wise results
when the following conditions are respected :

all GPUs participating to the computation have the same compute capabilities and the same
number of SMs.

the tiles size is kept the same between run.

either the CPU hybrid computation is not used or the CPU Blas provided is also guaranteed to
produce reproducible results.

4.1. General description 265

cuBLAS, Release 12.9

The cublasXtHandle_t type is a pointer type to an opaque structure holding the cuBLASXt API con-
text. The cuBLASXt API context must be initialized using
must be passed to all subsequent cuBLASXt API function calls. The context should be destroyed at

the end using

and the returned handle

The cublasOpType_t enumerates the four possible types supported by BLAS routines. This enum is
used as parameters of the routines cublasXtSetCpuRoutine and cublasXtSetCpuRatio to setup
the hybrid configuration.

The cublasXtBlasOp_t type enumerates the BLAS3 or

Value

Meaning

CUBLASXT_FLOAT

float or single precision type

CUBLASXT _DOUBLE

double precision type

CUBLASXT_COMPLEX

single precision complex

CUBLASXT_DOUBLECOMPLEX

double precision complex

BLAS-like

routine supported by

cuBLASXt API. This enum is used as parameters of the routines cublasXtSetCpuRoutine and
cublasXtSetCpuRatio to setup the hybrid configuration.

Value

Meaning

CUBLASXT _GEMM

GEMM routine

CUBLASXT_SYRK

SYRK routine

CUBLASXT_HERK

HERK routine

CUBLASXT_SYMM

SYMM routine

CUBLASXT_HEMM

HEMM routine

CUBLASXT_TRSM

TRSM routine

CUBLASXT_SYR2K

SYRZ2K routine

CUBLASXT_HER2K

HERZ2K routine

CUBLASXT_SPMM

SPMM routine

CUBLASXT _SYRKX

SYRKX routine

CUBLASXT _HERKX

HERKX routine

266

Chapter 4. Using the cuBLASXt API

cuBLAS, Release 12.9

The type is used to enable or disable the Pinning Memory mode through the routine cubasMgSet-

PinningMemMode

Value

Meaning

CUBLASXT_PINNING_DISABLED

the Pinning Memory mode is disabled

CUBLASXT_PINNING_ENABLED

the Pinning Memory mode is enabled

cublasStatus_t

cublasXtCreate(cublasXtHandle_t *handle)

This function initializes the cuBLASXt API and creates a handle to an opaque structure holding the
CuBLASXt API context. It allocates hardware resources on the host and device and must be called
prior to making any other cuBLASXt API calls.

Return Value

Meaning

CUBLAS_STATUS_SUCCESS

the initialization succeeded

CUBLAS_STATUS_ALLOC_FAILED

the resources could not be allocated

CUBLAS_STATUS_NOT_SUPPORTED

cuBLASXt APl is only supported on 64-bit platform

cublasStatus_t

cublasXtDestroy(cublasXtHandle_t handle)

This function releases hardware resources used by the cuBLASXt API context. The release of GPU re-
sources may be deferred until the application exits. This function is usually the last call with a particular

handle to the cuBLASXt API.

Return Value

Meaning

CUBLAS_STATUS_SUCCESS

the shut down succeeded

CUBLAS_STATUS_NOT_INITIALIZED

the library was not initialized

4.3. cuBLASXt API Helper Function Reference

267

cuBLAS, Release 12.9

cublasXtDeviceSelect(cublasXtHandle_t handle, int nbDevices, int deviceld[])

This function allows the user to provide the number of GPU devices and their respective Ids that will
participate to the subsequent cuBLASXt API Math function calls. This function will create a cuBLAS
context for every GPU provided in that list. Currently the device configuration is static and cannot be
changed between Math function calls. In that regard, this function should be called only once after
cublasXtCreate. To be able to run multiple configurations, multiple cuBLASXt API contexts should
be created.

Return Value Meaning

CUBLAS_STATUS_ User call was successful

SUCCESS

CUBLAS_STATUS_ Access to at least one of the device could not be done or a cuBLAS context
INVALID_VALUE could not be created on at least one of the device

CUBLAS_STATUS_ Some resources could not be allocated.

ALLOC_FAILED

cublasXtSetBlockDim(cublasXtHandle_t handle, int blockDim)

This function allows the user to set the block dimension used for the tiling of the matrices for the
subsequent Math function calls. Matrices are split in square tiles of blockDim x blockDim dimension.
This function can be called anytime and will take effect for the following Math function calls. The block
dimension should be chosen in a way to optimize the math operation and to make sure that the PCI
transfers are well overlapped with the computation.

Return Value Meaning
CUBLAS_STATUS_SUCCESS the call has been successful
CUBLAS_STATUS_INVALID_VALUE | blockDim <=0

cublasXtGetBlockDim(cublasXtHandle_t handle, int *blockDim)

This function allows the user to query the block dimension used for the tiling of the matrices.

Return Value Meaning
CUBLAS_STATUS_SUCCESS | the call has been successful

268 Chapter 4. Using the cuBLASXt API

cuBLAS, Release 12.9

cublasXtSetCpuRoutine(cublasXtHandle_t handle, cublasXtBlasOp_t blasOp,
—.cublasXtOpType_t type, void *blasFunctor)

This function allows the user to provide a CPU implementation of the corresponding BLAS routine.
This function can be used with the function to define an hybrid computation
between the CPU and the GPUs. Currently the hybrid feature is only supported for the xGEMM rou-
tines.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the call has been successful
CUBLAS_STATUS_INVALID_VALUE | blasOp or type define an invalid combination
CUBLAS_STATUS_NOT_SUPPORTED | CPU-GPU Hybridization for that routine is not supported

cublasXtSetCpuRatio(cublasXtHandle_t handle, cublasXtBlasOp_t blasOp, cublasXtOpType_
—t type, float ratio)

This function allows the user to define the percentage of workload that should be done ona CPU in the
context of an hybrid computation. This function can be used with the function

to define an hybrid computation between the CPU and the GPUs. Currently the hybrid feature
is only supported for the xGEMM routines.

Return Value Meaning

CUBLAS_STATUS_SUCCESS the call has been successful
CUBLAS_STATUS_INVALID_VALUE | blasOp or type define an invalid combination
CUBLAS_STATUS_NOT_SUPPORTED | CPU-GPU Hybridization for that routine is not supported

cublasXtSetPinningMemMode (cublasXtHandle_t handle, cublasXtPinningMemMode_t mode)

This function allows the user to enable or disable the Pinning Memory mode. When enabled, the matri-
ces passed in subsequent cuBLASXt API calls will be pinned/unpinned using the CUDART routine cud-
aHostRegister () and cudaHostUnregister () respectively if the matrices are not already pinned.
If a matrix happened to be pinned partially, it will also not be pinned. Pinning the memory improve
PCI transfer performance and allows to overlap PCI memory transfer with computation. However pin-
ning/unpinning the memory take some time which might not be amortized. It is advised that the user
pins the memory on its own using cudaMallocHost () or cudaHostRegister () and unpin it when
the computation sequence is completed. By default, the Pinning Memory mode is disabled.

Note: The Pinning Memory mode should not be enabled when matrices used for different calls to
cuBLASXt API overlap. cuBLASXt determines that a matrix is pinned or not if the first address of
that matrix is pinned using cudaHostGetFlags(), thus cannot know if the matrix is already partially
pinned or not. This is especially true in multi-threaded application where memory could be partially or
totally pinned or unpinned while another thread is accessing that memory.

4.3. cuBLASXt API Helper Function Reference 269

cuBLAS, Release 12.9

Return Value Meaning

CUBLAS_STATUS_ the call has been successful

SUCCESS

CUBLAS_STATUS_ the mode value is different fromm CUBLASXT_PINNING_DISABLED and
INVALID_VALUE CUBLASXT_PINNING_ENABLED

cublasXtGetPinningMemMode (cublasXtHandle_t handle, cublasXtPinningMemMode_t *mode)

This function allows the user to query the Pinning Memory mode. By default, the Pinning Memory
mode is disabled.

Return Value Meaning
CUBLAS_STATUS_SUCCESS | the call has been successful

In this chapter we describe the actual Linear Algebra routines that cuBLASXt API supports. We will
use abbreviations <type> for type and <t> for the corresponding short type to make a more concise
and clear presentation of the implemented functions. Unless otherwise specified <type> and <t> have
the following meanings:

<type> <t> Meaning

float ‘s’or ‘S’ | real single-precision
double ‘d’or ‘D’ | real double-precision
cuComplex ‘c or ‘C’ | complex single-precision
cuDoubleComplex | Z’or ‘Z° | complex double-precision

The abbreviation Re(-) and Im(-) will stand for the real and imaginary part of a number, respectively.
Since imaginary part of areal number does not exist, we will consider it to be zero and can usually simply
discard it from the equation where it is being used. Also, the & will denote the complex conjugate of a

In general throughout the documentation, the lower case Greek symbols « and g will denote scalars,
lower case English letters in bold type x and y will denote vectors and capital English letters A, B and
C will denote matrices.

cublasStatus_t cublasXtSgemm(cublasXtHandle_t handle,
cublasOperation_t transa, cublasOperation_t transb,
size_t m, size_t n, size_t Kk,

const float *alpha,
const float *A, int lda,
const float *B, int 1db,
const float *beta,

(continues on next page)

270 Chapter 4. Using the cuBLASXt API

cuBLAS, Release 12.9

(continued from previous page)
float *C, int ldc)
cublasStatus_t cublasXtDgemm(cublasXtHandle_t handle,
cublasOperation_t transa, cublasOperation_t transb,
int m, int n, int Kk,

const double *alpha,
const double *A, int lda,
const double *B, int 1db,
const double *beta,
double *C, int 1ldc)

cublasStatus_t cublasXtCgemm(cublasXtHandle_t handle,
cublasOperation_t transa, cublasOperation_t transb,
int m, int n, int Kk,

const cuComplex *alpha,
const cuComplex *A, int 1lda,
const cuComplex *B, int 1db,
const cuComplex *beta,
cuComplex *C, int ldc)

cublasStatus_t cublasXtZgemm(cublasXtHandle_t handle,
cublasOperation_t transa, cublasOperation_t transb,
int m, int n, int Kk,
const cuDoubleComplex *alpha,
const cuDoubleComplex *A, int lda,
const cuDoubleComplex *B, int ldb,
const cuDoubleComplex *beta,
cuDoubleComplex *C, int 1ldc)

This function performs the matrix-matrix multiplication

C = aop(A)op(B) + 8C

where a.and 3 are scalars,and A, B and C are matrices stored in column-major format with dimensions
op(A) m x k,op(B) k x nand C m x n, respectively. Also, for matrix A

A if transa == CUBLAS_OP_N
op(A) = { AT if transa == CUBLAS_OP_T
A" if transa == CUBLAS_OP_C

and op(B) is defined similarly for matrix B .

4.4. cuBLASXt API Math Functions Reference 271

cuBLAS, Release 12.9

Param.Mem- In/oult Meaning
ory
han- in- handle to the cuBLASXt API context.
dle put
transa in- | operation op(A) that is non- or (conj.) transpose.
put
transb in- operation op(B) that is non- or (conj.) transpose.
put
m in- | number of rows of matrix op(A) and C.
put
n in- | number of columns of matrix op(B) and C.
put
k in- | number of columns of op(A) and rows of op(B).
put
al- | host in- <type> scalar used for multiplication.
pha put
A host or | in- | <type> array of dimensions 1da x k with 1da >= max(1, m) if transa
device | put | == CUBLAS_OP_Nand lda x mwith 1da >= max(1, k) otherwise.
lda in- | leading dimension of two-dimensional array used to store the matrix A.
put
B host or | in- | <type> array of dimension 1db x nwith 1db >= max(1, k) if transb ==
device | put | CUBLAS_OP_Nand 1db x k with 1db >= max(1, n) otherwise.
1db in- leading dimension of two-dimensional array used to store matrix B.
put
beta| host in- <type> scalar used for multiplication. If beta == 0, C does not have to be
put | avalid input.
C host or | infout <type> array of dimensions 1dc x n with 1dc >= max(1, m).
device
ldc in- | leading dimension of a two-dimensional array used to store the matrix C.
put

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized
CUBLAS_STATUS_INVALID_VALUE the parametersm, n, k<0
CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to NETLIB documentation:

272 Chapter 4. Using the cuBLASXt API

http://www.netlib.org/blas/sgemm.f
http://www.netlib.org/blas/dgemm.f
http://www.netlib.org/blas/cgemm.f
http://www.netlib.org/blas/zgemm.f

cuBLAS, Release 12.9

cublasStatus_t cublasXtChemm(cublasXtHandle_t handle,
cublasFillMode_t uplo,

cublasSideMode_t side,
size_t m, size_t n,
const cuComplex

const cuComplex

const cuComplex

const cuComplex

*alpha,

*A, size_t lda,
*B, size_t 1db,
*beta,

cuComplex *C, size_t 1dc)
cublasStatus_t cublasXtZhemm(cublasXtHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,

size_t m, size_t n,

const cuDoubleComplex
const cuDoubleComplex
const cuDoubleComplex
const cuDoubleComplex

*alpha,
*A, size_t 1lda,
*B, size_t 1ldb,
*beta,

cuDoubleComplex *C, size_t 1ldc)

This function performs the Hermitian matrix-matrix multiplication

= aAB + pC if side == CUBLAS_SIDE_LEFT
" \aBA+BC if side == CUBLAS_SIDE_RIGHT

where A is a Hermitian matrix stored in lower or upper mode, B and C are m x n matrices, and « and

[are scalars.

4.4. cuBLASXt API Math Functions Reference

273

cuBLAS, Release 12.9

ParamMem-| Infout Meaning
ory
han- in- handle to the cuBLASXt API context.
dle put
side in- | indicates if matrix A is on the left or right of B.
put
uplo in- indicates if matrix A lower or upper part is stored, the other Hermitian part is
put | not referenced and is inferred from the stored elements.
m in- number of rows of matrix C and B, with matrix A sized accordingly.
put
n in- | number of columns of matrix C and B, with matrix A sized accordingly.
put
al- | host | in- <type> scalar used for multiplication.
pha put
A host | in- | <type> array of dimension 1da x m with 1da >= max(1, m) if
or put | side==CUBLAS_SIDE_LEFT and 1lda x n with 1da >= max(1, n) oth-
de- erwise. The imaginary parts of the diagonal elements are assumed to be zero.
vice
lda in- leading dimension of two-dimensional array used to store matrix A.
put
B host | in- | <type> array of dimension 1db x nwith 1db >= max(1, m).
or put
de-
vice
1db in- leading dimension of two-dimensional array used to store matrix B.
put
betal host | in- <type> scalar used for multiplication, if beta == 6 then C does not have to be
put | avalid input.
C host | infout <type> array of dimensions 1dc x nwith 1dc >= max(1, m).
or
de-
vice
ldc in- | leading dimension of two-dimensional array used to store matrix C.
put

The possible error values returned by this function and their meanings are listed below.

Error Value

Meaning

CUBLAS_STATUS_SUCCESS

the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parametersm < Born < ©

CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to NETLIB documentation:

3

274

Chapter 4. Using the cuBLASXt API

http://www.netlib.org/blas/chemm.f
http://www.netlib.org/blas/zhemm.f

cuBLAS, Release 12.9

4.4.3 cublasXt<t>symm()

cublasStatus_t cublasXtSsymm(cublasXtHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
size_t m, size_t n,

const float *alpha,

const float *A, size_t lda,
const float *B, size_t 1db,
const float *beta,

float *C, size_t 1dc)

cublasStatus_t cublasXtDsymm(cublasXtHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
size_t m, size_t n,

const double *alpha,

const double *A, size_t 1lda,
const double *B, size_t 1ldb,
const double *beta,

double *C, size_t 1ldc)

cublasStatus_t cublasXtCsymm(cublasXtHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
size_t m, size_t n,

const cuComplex *alpha,

const cuComplex *A, size_t 1lda,
const cuComplex *B, size_t 1db,
const cuComplex *beta,
cuComplex *C, size_t 1ldc)

cublasStatus_t cublasXtZsymm(cublasXtHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
size_t m, size_t n,
const cuDoubleComplex *alpha,
const cuDoubleComplex *A, size_t lda,
const cuDoubleComplex *B, size_t 1ldb,
const cuDoubleComplex *beta,
cuDoubleComplex *C, size_t 1ldc)

This function performs the symmetric matrix-matrix multiplication

- aAB + BC if side == CUBLAS_SIDE_LEFT
~ |aBA+ BC if side == CUBLAS_SIDE_RIGHT

where A is a symmetric matrix stored in lower or upper mode, A and A are m x n matrices, and « and

3 are scalars.

4.4. cuBLASXt API Math Functions Reference

275

cuBLAS, Release 12.9

ParamMem- In/oult Meaning
ory
han- in- handle to the cuBLASXt API context.
dle put
side in- | indicates if matrix A is on the left or right of B.
put
uplo in- indicates if matrix A lower or upper part is stored, the other symmetric part
put | is not referenced and is inferred from the stored elements.
m in- number of rows of matrix A and B, with matrix A sized accordingly.
put
n in- | number of columns of matrix C and A, with matrix A sized accordingly.
put
al- | host in- <type> scalar used for multiplication.
pha put
A host or | in- | <type> array of dimension 1da x mwith 1da >= max(1, m) if side ==
device | put | CUBLAS_SIDE_LEFT and 1da x nwith 1da >= max(1, n) otherwise.
lda in- | leading dimension of two-dimensional array used to store matrix A.
put
B host or | in- | <type> array of dimension 1db x nwith 1db >= max(1, m).
device | put
1db in- leading dimension of two-dimensional array used to store matrix B.
put
beta| host in- <type> scalar used for multiplication, if beta == 0 then C does not have to
put | be a valid input.
C host or | infout <type> array of dimension 1dc x nwith 1dc >= max(1, m).
device
ldc in- leading dimension of two-dimensional array used to store matrix C.
put

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized
CUBLAS_STATUS_INVALID_VALUE the parametersm < @orn < ©
CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to NETLIB documentation:

) 3)

cublasStatus_t cublasXtSsyrk(cublasXtHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
int n, int Kk,

const float *alpha,
const float *A, int 1lda,
const float *beta,
float *C, int ldc)

cublasStatus_t cublasXtDsyrk(cublasXtHandle_t handle,
(continues on next page)

276 Chapter 4. Using the cuBLASXt API

http://www.netlib.org/blas/ssymm.f
http://www.netlib.org/blas/dsymm.f
http://www.netlib.org/blas/csymm.f
http://www.netlib.org/blas/zsymm.f

cuBLAS, Release 12.9

(continued from previous page)

cublasFillMode_t uplo, cublasOperation_t trans,
int n, int k,

const double *alpha,
const double *A, int 1lda,
const double *beta,
double *C, int 1ldc)

cublasStatus_t cublasXtCsyrk(cublasXtHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
int n, int Kk,

const cuComplex *alpha,
const cuComplex *A, int 1lda,
const cuComplex *beta,
cuComplex *C, int ldc)

cublasStatus_t cublasXtZsyrk(cublasXtHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
int n, int Kk,
const cuDoubleComplex *alpha,
const cuDoubleComplex *A, int lda,
const cuDoubleComplex *beta,
cuDoubleComplex *C, int 1ldc)

This function performs the symmetric rank- k£ update

C = aop(A)op(A)T + pC

where a and g are scalars, C is a symmetric matrix stored in lower or upper mode, and A is a matrix
with dimensions op(A) n x k. Also, for matrix A

op(A) = A if transa == CUBLAS_OP_N
PUY= 1 AT if transa == CUBLAS_OP_T

Param.Mem- In/out Meaning
ory
han- in- handle to the cuBLASXt API context.
dle put
uplo in- indicates if matrix C lower or upper part is stored, the other symmetric part
put | is not referenced and is inferred from the stored elements.
trans in- | operation op(A) that is non- or transpose.
put
n in- | number of rows of matrix op(A) and C.
put
k in- number of columns of matrix op(A).
put
al- | host in- <type> scalar used for multiplication.
pha put
A host or | in- | <type> array of dimension 1da x k with 1da >= max(1, n) if trans ==
device | put | CUBLAS_OP_Nand lda x nwith 1da >= max(1, k) otherwise.
lda in- leading dimension of two-dimensional array used to store matrix A.
put
beta| host in- <type> scalar used for multiplication, if beta == 6 then C does not have to
put | be avalid input.
C host or | infout <type> array of dimension 1dc x n, with 1dc >= max(1, n).
device
ldc in- | leading dimension of two-dimensional array used to store matrix C.
put

4.4. cuBLASXt API Math Functions Reference 277

cuBLAS, Release 12.9

The possible error values returned by this function and their meanings are listed below.

Error Value

Meaning

CUBLAS_STATUS_SUCCESS

the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED

the library was not initialized

CUBLAS_STATUS_INVALID_VALUE

the parametersn < Bork < ©

CUBLAS_STATUS_EXECUTION_FAILED

the function failed to launch on the GPU

For references please refer to NETLIB documentation:

3)

cublasStatus_t

cublasStatus_t

cublasStatus_t

cublasStatus_t

cublasXtSsyr2k(cublasXtHandle_t handle,

cublasFillMode_t uplo,
size_t n, size_t Kk,
const float
const float
const float
const float
float

cublasOperation_t trans,

*alpha,
*A, size_t lda,
*B, size_t 1db,
*beta,

*C, size_t ldc)

cublasXtDsyr2k(cublasXtHandle_t handle,

cublasFillMode_t uplo,
size_t n, size_t Kk,
const double
const double
const double
const double
double

cublasOperation_t trans,

*alpha,
*A, size_t 1lda,
*B, size_t 1ldb,
*beta,

*C, size_t 1ldc)

cublasXtCsyr2k(cublasXtHandle_t handle,

cublasFillMode_t uplo,
size_t n, size_t Kk,
const cuComplex
const cuComplex
const cuComplex
const cuComplex
cuComplex

cublasOperation_t trans,

*alpha,
*A, size_t lda,
*B, size_t 1ldb,
*beta,

*C, size_t ldc)

cublasXtZsyr2k(cublasXtHandle_t handle,

cublasFillMode_t uplo,
size_t n, size_t Kk,

const cuDoubleComplex
const cuDoubleComplex
const cuDoubleComplex
const cuDoubleComplex

cublasOperation_t trans,

*alpha,
*A, size_t lda,
*B, size_t 1db,
*beta,

cuDoubleComplex *C, size_t ldc)

This function performs the symmetric rank- 2k update
C = a(op(A)op(B)" +op(B)op(4)") + BC

where a and 3 are scalars, C is a symmetric matrix stored in lower or upper mode, and A and B are
matrices with dimensions op(A) n x k and op(B) n x k , respectively. Also, for matrix A and B

op(A) and op(B) =

if trans == CUBLAS_OP_N

Aand B
if trans == CUBLAS_OP_T

AT and BT

278

Chapter 4. Using the cuBLASXt API

http://www.netlib.org/blas/ssyrk.f
http://www.netlib.org/blas/dsyrk.f
http://www.netlib.org/blas/csyrk.f
http://www.netlib.org/blas/zsyrk.f

cuBLAS, Release 12.9

Param.Mem- In/oult Meaning
ory
han- in- handle to the cuBLASXt API context.
dle put
uplo in- indicates if matrix C lower or upper part, is stored, the other symmetric part
put | is not referenced and is inferred from the stored elements.
trans in- operation op(A) that is non- or transpose.
put
n in- | number of rows of matrix op(A), op(B) and C.
put
k in- | number of columns of matrix op(A) and op(B).
put
al- | host in- <type> scalar used for multiplication.
pha put
A host or | in- | <type> array of dimension 1da x k with 1da >= max(1, n)if transa ==
device | put | CUBLAS_OP_Nand lda x nwith 1da >= max(1, k) otherwise.
lda in- | leading dimension of two-dimensional array used to store matrix A.
put
B host or | in- <type> array of dimensions 1db x k with 1db >= max(1, n) if transb
device | put | == CUBLAS_OP_Nand 1db x nwith 1db >= max(1, k) otherwise.
1db in- leading dimension of two-dimensional array used to store matrix B.
put
beta| host in- <type> scalar used for multiplication, if beta == 0, then C does not have to
put | be avalid input.
C host or | infout <type> array of dimensions 1dc x n with 1dc >= max(1, n).
device
ldc in- leading dimension of two-dimensional array used to store matrix C.
put

The possible error values returned by this function and their meanings are listed below.

Error Value

Meaning

CUBLAS_STATUS_SUCCESS

the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parametersn < Bork < ©

CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to NETLIB documentation:

3

3

cublasStatus_t cublasXtSsyrkx(cublasXtHandle_t handle,

cublasFillMode_t uplo, cublasOperation_t trans,
size_t n, size_t Kk,

const float *alpha,

const float *A, size_t lda,
const float *B, size_t 1db,
const float *beta,

float *C, size_t ldc)

(continues on next page)

4.4. cuBLASXt API Math Functions Reference 279

http://www.netlib.org/blas/ssyr2k.f
http://www.netlib.org/blas/dsyr2k.f
http://www.netlib.org/blas/csyr2k.f
http://www.netlib.org/blas/zsyr2k.f

cuBLAS, Release 12.9

(continued from previous page)
cublasStatus_t cublasXtDsyrkx(cublasXtHandle_t handle,

cublasFillMode_t uplo, cublasOperation_t trans,
size_t n, size_t Kk,

const double *alpha,

const double *A, size_t lda,
const double *B, size_t 1db,
const double *beta,

double *C, size_t ldc)

cublasStatus_t cublasXtCsyrkx(cublasXtHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
size_t n, size_t Kk,

const cuComplex *alpha,

const cuComplex *A, size_t 1lda,
const cuComplex *B, size_t 1ldb,
const cuComplex *beta,
cuComplex *C, size_t ldc)

cublasStatus_t cublasXtZsyrkx(cublasXtHandle_t handle,
cublasFillMode_t uplo, cublasOperation_t trans,
size_t n, size_t Kk,
const cuDoubleComplex *alpha,
const cuDoubleComplex *A, size_t lda,
const cuDoubleComplex *B, size_t 1ldb,
const cuDoubleComplex *beta,
cuDoubleComplex *C, size_t ldc)

This function performs a variation of the symmetric rank- k update
C = a(op(A)op(B)" + BC

where a and 8 are scalars, C is a symmetric matrix stored in lower or upper mode, and A and B are
matrices with dimensions op(A) n x k and op(B) n X k , respectively. Also, for matrix A and B

Aand B if trans == CUBLAS_OP_N

op(4) and op(B) = {AT and BT if trans == CUBLAS_OP_T

This routine can be used when B is in such way that the result is guaranteed to be symmetric. A usual
example is when the matrix B is a scaled form of the matrix A : this is equivalent to B being the product
of the matrix A and a diagonal matrix.

280 Chapter 4. Using the cuBLASXt API

cuBLAS, Release 12.9

Param.Mem- In/oult Meaning
ory
han- in- handle to the cuBLASXt API context.
dle put
uplo in- indicates if matrix C lower or upper part, is stored, the other symmetric part
put | is not referenced and is inferred from the stored elements.
trans in- operation op(A) that is non- or transpose.
put
n in- | number of rows of matrix op(A), op(B) and C.
put
k in- | number of columns of matrix op(A) and op(B).
put
al- | host in- <type> scalar used for multiplication.
pha put
A host or | in- | <type> array of dimension 1da x k with 1da >= max(1, n)if transa ==
device | put | CUBLAS_OP_Nand lda x nwith 1da >= max(1, k) otherwise.
lda in- | leading dimension of two-dimensional array used to store matrix A.
put
B host or | in- <type> array of dimensions 1db x k with 1db >= max(1, n) if transb
device | put | == CUBLAS_OP_Nand 1db x nwith 1db >= max(1, k) otherwise.
1db in- leading dimension of two-dimensional array used to store matrix B.
put
beta| host in- <type> scalar used for multiplication, if beta == 0, then C does not have to
put | be avalid input.
C host or | infout <type> array of dimensions 1dc x n with 1dc >= max(1, n).
device
ldc in- leading dimension of two-dimensional array used to store matrix C.
put

The possible error values returned by this function and their meanings are listed below.

Error Value

Meaning

CUBLAS_STATUS_SUCCESS

the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parametersn < Qork < @

CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to NETLIB documentation:

and

4.4. cuBLASXt API Math Functions Reference 281

http://www.netlib.org/blas/ssyrk.f
http://www.netlib.org/blas/dsyrk.f
http://www.netlib.org/blas/csyrk.f
http://www.netlib.org/blas/zsyrk.f
http://www.netlib.org/blas/ssyr2k.f
http://www.netlib.org/blas/dsyr2k.f
http://www.netlib.org/blas/csyr2k.f
http://www.netlib.org/blas/zsyr2k.f

cuBLAS, Release 12.9

cublasStatus_t cublasXtCherk(cublasXtHandle_t handle,

cublasFillMode_t uplo, cublasOperation_t trans,
int n, int k,
const float *alpha,

const cuComplex *A, int 1lda,
const float *beta,
cuComplex *C, int 1ldc)

cublasStatus_t cublasXtZherk(cublasXtHandle_t handle,

cublasFillMode_t uplo, cublasOperation_t trans,
int n, int Kk,

const double *alpha,

const cuDoubleComplex *A, int lda,

const double *beta,

cuDoubleComplex *C, int 1ldc)

This function performs the Hermitian rank- k& update
C = aop(A)op(A)H + pC

where a and g are scalars, C is a Hermitian matrix stored in lower or upper mode, and A is a matrix
with dimensions op(A) n x k. Also, for matrix A

op(A) = { A if transa == CUBLAS_OP_N
AH if transa == CUBLAS_OP_C
Param.Mem- In/oult Meaning
ory
han- in- handle to the cuBLASXt API context.
dle put
uplo in- indicates if matrix C lower or upper part is stored, the other Hermitian part
put | is not referenced.
trans in- | operation op(A) that is non- or (conj.) transpose.
put
n in- number of rows of matrix op(A) and C.
put
k in- number of columns of matrix op(A).
put
al- | host in- <type> scalar used for multiplication.
pha put
A host or | in- <type> array of dimension 1da x k with 1da >= max(1, n) if transa ==
device | put | CUBLAS_OP_Nand lda x nwith 1da >= max(1, k) otherwise.
lda in- leading dimension of two-dimensional array used to store matrix A.
put
beta| host in- <type> scalar used for multiplication, if beta == 0 then C does not have to
put | be avalid input.
C host or | infout <type> array of dimension 1dc x n,with 1dc >= max(1, n). Theimaginary
device parts of the diagonal elements are assumed and set to zero.
ldc in- leading dimension of two-dimensional array used to store matrix C.
put

The possible error values returned by this function and their meanings are listed below.

282

Chapter 4. Using the cuBLASXt API

cuBLAS, Release 12.9

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized
CUBLAS_STATUS_INVALID_VALUE the parametersn < Bork < ©
CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

op(4) and op(B) = {

AH and BH

For references please refer to NETLIB documentation:

cublasStatus_t cublasXtCher2k(cublasXtHandle_t handle,

cublasFillMode_t uplo, cublasOperation_t trans,
size_t n, size_t Kk,

const cuComplex *alpha,

const cuComplex *A, size_t 1lda,
const cuComplex *B, size_t 1ldb,
const float *beta,

cuComplex *C, size_t ldc)

cublasStatus_t cublasXtZher2k(cublasXtHandle_t handle,

cublasFillMode_t uplo, cublasOperation_t trans,
size_t n, size_t Kk,

const cuDoubleComplex *alpha,

const cuDoubleComplex *A, size_t lda,

const cuDoubleComplex *B, size_t 1db,

const double *beta,

cuDoubleComplex *C, size_t ldc)

This function performs the Hermitian rank- 2k update
C = aop(A)op(B)* + aop(B)op(4)7 + pC

where o and § are scalars, C is a Hermitian matrix stored in lower or upper mode, and A and B are
matrices with dimensions op(A) n x k and op(B) n x k, respectively. Also, for matrix A and B

if trans == CUBLAS_OP_N
if trans == CUBLAS_OP_C

4.4. cuBLASXt API Math Functions Reference 283

http://www.netlib.org/blas/cherk.f
http://www.netlib.org/blas/zherk.f

cuBLAS, Release 12.9

Param.Mem- In/oult Meaning
ory
han- in- handle to the cuBLASXt API context.
dle put
uplo in- indicates if matrix C lower or upper part is stored, the other Hermitian part
put | is not referenced.
trans in- operation op(A) that is non- or (conj.) transpose.
put
n in- | number of rows of matrix op(A), op(B) and C.
put
k in- | number of columns of matrix op(A) and op(B).
put
al- | host in- <type> scalar used for multiplication.
pha put
A host or | in- <type> array of dimension 1da x k with 1da >= max(1, n) iftransa ==
device | put | CUBLAS_OP_Nand lda x nwith 1da >= max(1, k) otherwise.
lda in- | leading dimension of two-dimensional array used to store matrix A.
put
B host or | in- | <type> array of dimension 1db x k with 1db >= max(1, n) if transb ==
device | put | CUBLAS_OP_Nand 1ldb x nwith 1db >= max(1, k) otherwise.
1db in- leading dimension of two-dimensional array used to store matrix B.
put
beta| host in- <type> scalar used for multiplication, if beta == 0 then C does not have to
put | be avalid input.
C host or | infout <type> array of dimension 1dc x n,with 1dc >= max(1, n). Theimaginary
device parts of the diagonal elements are assumed and set to zero.
ldc in- leading dimension of two-dimensional array used to store matrix C.
put

The possible error values returned by this function and their meanings are listed below.

Error Value

Meaning

CUBLAS_STATUS_SUCCESS

the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parametersn < Bork < ©

CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to NETLIB documentation:

3

cublasStatus_t cublasXtCherkx(cublasXtHandle_t handle,

cublasFillMode_t uplo, cublasOperation_t trans,
size_t n, size_t Kk,

const cuComplex *alpha,

const cuComplex *A, size_t lda,
const cuComplex *B, size_t 1db,
const float *beta,

cuComplex *C, size_t ldc)

(continues on next page)

284

Chapter 4. Using the cuBLASXt API

http://www.netlib.org/blas/cher2k.f
http://www.netlib.org/blas/zher2k.f

cuBLAS, Release 12.9

(continued from previous page)

cublasStatus_t cublasXtZherkx(cublasXtHandle_t handle,

cublasFillMode_t uplo, cublasOperation_t trans,

size_t n, size_t Kk,

const cuDoubleComplex *alpha,

const cuDoubleComplex *A, size_t lda,

const cuDoubleComplex *B, size_t 1db,

const double *beta,

cuDoubleComplex *C, size_t ldc)

This function performs a variation of the Hermitian rank- k& update

C = aop(A)op(B)H + pC

where « and 8 are scalars, C is a Hermitian matrix stored in lower or upper mode, and A and B are
matrices with dimensions op(A) n x k and op(B) n x k, respectively. Also, for matrix A and B

op(4) and op(B) = Aand B if trans == CUBLAS_OP_N
P PY)I=19 A" and BY if trans == CUBLAS_OP_C

This routine can be used when the matrix B is in such way that the result is guaranteed to be hermitian.
A usual example is when the matrix B is a scaled form of the matrix A : this is equivalent to B being the
product of the matrix A and a diagonal matrix.

Param.Mem- In/oult Meaning
ory
han- in- handle to the cuBLASXt API context.
dle put
uplo in- indicates if matrix C lower or upper part is stored, the other Hermitian part
put | is not referenced.
trans in- | operation op(A) that is non- or (conj.) transpose.
put
n in- | number of rows of matrix op(A), op(B) and C.
put
k in- | number of columns of matrix op(A) and op(B).
put
al- | host in- <type> scalar used for multiplication.
pha put
A host or | in- | <type> array of dimension 1da x k with 1da >= max(1, n)if transa ==
device | put | CUBLAS_OP_Nand lda x nwith 1da >= max(1, k) otherwise.
lda in- | leading dimension of two-dimensional array used to store matrix A.
put
B host or | in- | <type> array of dimension 1db x k with 1db >= max(1, n) if transb ==
device | put | CUBLAS_OP_Nand 1ldb x nwith 1db >= max(1, k) otherwise.
1db in- | leading dimension of two-dimensional array used to store matrix B.
put
beta| host in- real scalar used for multiplication, if beta == 0 then C does not have to be
put | avalid input.
C host or | infout <type> array of dimension 1dc x n,with 1dc >= max(1, n). Theimaginary
device parts of the diagonal elements are assumed and set to zero.
ldc in- | leading dimension of two-dimensional array used to store matrix C.
put

The possible error values returned by this function and their meanings are listed below.

4.4. cuBLASXt API Math Functions Reference 285

cuBLAS, Release 12.9

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized
CUBLAS_STATUS_INVALID_VALUE the parametersn < Bork < ©
CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to NETLIB documentation:

, and

cublasStatus_t cublasXtStrsm(cublasXtHandle_t handle,

cublasSideMode_t side, cublasFillMode_t uplo,
cublasOperation_t trans, cublasXtDiagType_t diag,
size_t m, size_t n,

const float *alpha,
const float *A, size_t 1lda,
float *B, size_t 1ldb)

cublasStatus_t cublasXtDtrsm(cublasXtHandle_t handle,

cublasSideMode_t side, cublasFillMode_t uplo,
cublasOperation_t trans, cublasXtDiagType_t diag,
size_t m, size_t n,

const double *alpha,
const double *A, size_t 1lda,
double *B, size_t 1db)

cublasStatus_t cublasXtCtrsm(cublasXtHandle_t handle,

cublasSideMode_t side, cublasFillMode_t uplo,
cublasOperation_t trans, cublasXtDiagType_t diag,
size_t m, size_t n,

const cuComplex *alpha,
const cuComplex *A, size_t lda,
cuComplex *B, size_t 1db)

cublasStatus_t cublasXtZtrsm(cublasXtHandle_t handle,

cublasSideMode_t side, cublasFillMode_t uplo,
cublasOperation_t trans, cublasXtDiagType_t diag,
size_t m, size_t n,

const cuDoubleComplex *alpha,

const cuDoubleComplex *A, size_t lda,
cuDoubleComplex *B, size_t 1db)

This function solves the triangular linear system with multiple right-hand-sides

op(A)X = aB if side == CUBLAS_SIDE_LEFT
Xop(A) =aB if side == CUBLAS_SIDE_RIGHT

where A is a triangular matrix stored in lower or upper mode with or without the main diagonal, X and

B are m x n matrices, and « is a scalar. Also, for matrix A

A if transa == CUBLAS_OP_N
op(A) = { AT if transa == CUBLAS_OP_T
A" if transa == CUBLAS_OP_C

The solution X overwrites the right-hand-sides B on exit.

286

Chapter 4. Using the cuBLASXt API

http://www.netlib.org/blas/cherk.f
http://www.netlib.org/blas/zherk.f
http://www.netlib.org/blas/cher2k.f
http://www.netlib.org/blas/zher2k.f

cuBLAS, Release 12.9

No test for singularity or near-singularity is included in this function.

ParamMem- In/oult Meaning
ory
han- in- handle to the cuBLASXt API context.
dle put
side in- | indicates if matrix A is on the left or right of X.
put
uplo in- indicates if matrix A lower or upper part is stored, the other part is not ref-
put | erenced and is inferred from the stored elements.
trans in- operation op(A) that is non- or (conj.) transpose.
put
diag in- indicates if the elements on the main diagonal of matrix A are unity and
put | should not be accessed.
m in- | number of rows of matrix B, with matrix A sized accordingly.
put
n in- number of columns of matrix B, with matrix A is sized accordingly.
put
al- | host in- | <type>scalar used for multiplication, if alpha == @ then Ais not referenced
pha put | and B does not have to be a valid input.
A host or | in- | <type> array of dimension 1da x m with 1da >= max(1, m) if side ==
device | put | CUBLAS_SIDE_LEFT and 1da x nwith 1da >= max(1, n) otherwise.
lda in- | leading dimension of two-dimensional array used to store matrix A.
put
B host or | in/out <type> array. It has dimensions 1db x n with 1db >= max(1, m).
device
1db in- leading dimension of two-dimensional array used to store matrix B.
put

The possible error values returned by this function and their meanings are listed below.

Error Value

Meaning

CUBLAS_STATUS_SUCCESS

the operation completed successfully

CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized

CUBLAS_STATUS_INVALID_VALUE the parametersm < B6orn < ©

CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to NETLIB documentation:

3

cublasStatus_t cublasXtStrmm(cublasXtHandle_t handle,

cublasSideMode_t side, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
size_t m, size_t n,

const float *alpha,

const float *A, size_t 1lda,
const float *B, size_t 1ldb,
float *C, size_t ldc)

(continues on next page)

4.4. cuBLASXt API Math Functions Reference 287

http://www.netlib.org/blas/strsm.f
http://www.netlib.org/blas/dtrsm.f
http://www.netlib.org/blas/ctrsm.f
http://www.netlib.org/blas/ztrsm.f

cuBLAS, Release 12.9

(continued from previous page)
cublasStatus_t cublasXtDtrmm(cublasXtHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
size_t m, size_t n,

const double *alpha,

const double *A, size_t lda,
const double *B, size_t 1db,
double *C, size_t ldc)

cublasStatus_t cublasXtCtrmm(cublasXtHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
size_t m, size_t n,

const cuComplex *alpha,

const cuComplex *A, size_t 1lda,
const cuComplex *B, size_t 1db,
cuComplex *C, size_t ldc)

cublasStatus_t cublasXtZtrmm(cublasXtHandle_t handle,
cublasSideMode_t side, cublasFillMode_t uplo,
cublasOperation_t trans, cublasDiagType_t diag,
size_t m, size_t n,
const cuDoubleComplex *alpha,
const cuDoubleComplex *A, size_t lda,
const cuDoubleComplex *B, size_t ldb,
cuDoubleComplex *C, size_t ldc)

This function performs the triangular matrix-matrix multiplication

_ [aop(A)B if side == CUBLAS_SIDE_LEFT
~ laBop(A) if side == CUBLAS_SIDE_RIGHT

where A is a triangular matrix stored in lower or upper mode with or without the main diagonal, B and
C are m x n matrix, and « is a scalar. Also, for matrix A

A if transa == CUBLAS_OP_N
op(A) =< AT if transa == CUBLAS_OP_T
AH if transa == CUBLAS_OP_C

Notice that in order to achieve better parallelism, similarly to the cublas API, cuBLASXt API differs from
the BLAS API for this routine. The BLAS APl assumes an in-place implementation (with results written
back to B), while the cuBLASXt APl assumes an out-of-place implementation (with results written into
C). The application can still obtain the in-place functionality of BLAS in the cuBLASXt API by passing
the address of the matrix B in place of the matrix C. No other overlapping in the input parameters is
supported.

288 Chapter 4. Using the cuBLASXt API

cuBLAS, Release 12.9

ParamMem- In/out Meaning
ory
han- in- handle to the cuBLASXt API context.
dle put
side in- | indicates if matrix A is on the left or right of B.
put
uplo in- indicates if matrix A lower or upper part is stored, the other part is not ref-
put | erenced and is inferred from the stored elements.
trans in- | operation op(A) that is non- or (conj.) transpose.
put
diag in- indicates if the elements on the main diagonal of matrix A are unity and
put | should not be accessed.
m in- number of rows of matrix B, with matrix A sized accordingly.
put
n in- number of columns of matrix B, with matrix A sized accordingly.
put
al- | host in- <type> scalar used for multiplication, if alpha then A is not referenced and
pha put | B does not have to be a valid input.
A host or | in- <type> array of dimension 1da x mwith 1da >= max(1, m) if side ==
device | put | CUBLAS_SIDE_LEFT and 1da x nwith 1da >= max(1, n) otherwise.
lda in- leading dimension of two-dimensional array used to store matrix A.
put
B host or | in- | <type> array of dimension 1db x nwith 1db >= max(1, m).
device | put
1db in- | leading dimension of two-dimensional array used to store matrix B.
put
C host or | infout <type> array of dimension 1dc x nwith 1dc >= max(1, m).
device
ldc in- | leading dimension of two-dimensional array used to store matrix C.
put

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized
CUBLAS_STATUS_INVALID_VALUE the parametersm < 6orn < ©
CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

For references please refer to NETLIB documentation:

4.4. cuBLASXt API Math Functions Reference 289

http://www.netlib.org/blas/strmm.f
http://www.netlib.org/blas/dtrmm.f
http://www.netlib.org/blas/ctrmm.f
http://www.netlib.org/blas/ztrmm.f

cuBLAS, Release 12.9

cublasStatus_t cublasXtSspmm(cublasXtHandle_t handle,
cublasSideMode_t side,
cublasFillMode_t uplo,
size_t m,
size_t n,
const float *alpha,
const float *AP,
const float *B,
size_t 1db,
const float *beta,
float *C,
size_t ldc);

cublasStatus_t cublasXtDspmm(cublasXtHandle_t handle,
cublasSideMode_t side,
cublasFillMode_t uplo,
size_t m,
size_t n,
const double *alpha,
const double *AP,
const double *B,
size_t 1db,
const double *beta,
double *C,
size_t ldc);

cublasStatus_t cublasXtCspmm(cublasXtHandle_t handle,
cublasSideMode_t side,
cublasFillMode_t uplo,
size_t m,
size_t n,
const cuComplex *alpha,
const cuComplex *AP,
const cuComplex *B,
size_t 1db,
const cuComplex *beta,
cuComplex *C,
size_t ldc);

cublasStatus_t cublasXtZspmm(cublasXtHandle_t handle,
cublasSideMode_t side,
cublasFillMode_t uplo,
size_t m,
size_t n,
const cuDoubleComplex *alpha,
const cuDoubleComplex *AP,
const cuDoubleComplex *B,
size_t 1db,
const cuDoubleComplex *beta,
cuDoubleComplex *C,
size_t 1ldc);

This function performs the symmetric packed matrix-matrix multiplication

- aAB + pC if side == CUBLAS_SIDE_LEFT
" \aBA+ BC if side == CUBLAS_SIDE_RIGHT

290 Chapter 4. Using the cuBLASXt API

cuBLAS, Release 12.9

where A is a n x n symmetric matrix stored in packed format, B and C are m x n matrices, and « and
3 are scalars.

If uplo == CUBLAS_FILL_MODE_LOWER then the elements in the lower triangular part of the sym-
metric matrix A are packed together column by column without gaps, so that the element A(i, j) is
stored in the memory location AP[i+((2*n-j+1)*j)/2] forj = 1,...,nand i > j . Consequently,

the packed format requires only "("TH) elements for storage.

If uplo == CUBLAS_FILL_MODE_UPPER then the elements in the upper triangular part of the sym-
metric matrix A are packed together column by column without gaps, so that the element A(i, j) is
stored in the memory location AP[i+(j*(j+1))/2] for j = 1,...,nand i < j. Consequently, the
packed format requires only ”("TH) elements for storage.

Note: The packed matrix AP must be located on the host or managed memory whereas the other
matrices can be located on the host or any GPU device

Param.Mem- In/oult Meaning
ory
han- in- handle to the cuBLASXt API context.
dle put
side in- indicates if matrix A is on the left or right of B.
put
uplo in- indicates if matrix A lower or upper part is stored, the other symmetric part
put | is not referenced and is inferred from the stored elements.
m in- number of rows of matrix A and B, with matrix A sized accordingly.
put
n in- number of columns of matrix C and A, with matrix A sized accordingly.
put
al- | host in- <type> scalar used for multiplication.
pha put
AP host in- <type> array with A stored in packed format.
put
B host or | in- | <type> array of dimension 1db x n with 1db >= max(1, m).
device put
1db in- leading dimension of two-dimensional array used to store matrix B.
put
beta| host in- <type> scalar used for multiplication, if beta == 0 then C does not have
put | to be avalid input.
C host or | infout <type> array of dimension 1dc x n with 1dc >= max(1, m).
device
ldc in- | leading dimension of two-dimensional array used to store matrix C.
put

The possible error values returned by this function and their meanings are listed below.

Error Value Meaning

CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized
CUBLAS_STATUS_INVALID_VALUE the parametersm < @orn < @
CUBLAS_STATUS_NOT_SUPPORTED the matrix AP is located on a GPU device
CUBLAS_STATUS_EXECUTION_FAILED | the function failed to launch on the GPU

4.4. cuBLASXt API Math Functions Reference 291

cuBLAS, Release 12.9

For references please refer to NETLIB documentation:

) ’)

292 Chapter 4. Using the cuBLASXt API

http://www.netlib.org/blas/ssymm.f
http://www.netlib.org/blas/dsymm.f
http://www.netlib.org/blas/csymm.f
http://www.netlib.org/blas/zsymm.f

Chapter 5

Using the cuBLASDXx API

The cuBLASDx library (preview) is a device side API extension for performing BLAS calculations inside
CUDA kernels. By fusing numerical operations you can decrease latency and further improve perfor-
mance of your applications.

You can access cuBLASDx documentation

cuBLASDx is not a part of the CUDA Toolkit. You can download cuBLASDx separately from

293

https://docs.nvidia.com/cuda/cublasdx
https://developer.nvidia.com/cublasdx-downloads

cuBLAS, Release 12.9

294 Chapter 5. Using the cuBLASDx API

Chapter 6

Using the cuBLAS Legacy API

This section does not provide a full reference of each Legacy API datatype and entry point. Instead, it
describes how to use the API, especially where this is different from the regular cuBLAS API.

Note that in this section, all references to the “cuBLAS Library” refer to the Legacy cuBLAS API only.

Warning: The legacy cuBLAS API is deprecated and will be removed in future release.

The cublasStatus type is used for function status returns. The cuBLAS Library helper functions
return status directly, while the status of core functions can be retrieved using cublasGetError().
Notice that reading the error status via cublasGetError(), resets the internal error state to CUBLAS_
STATUS_SUCCESS. Currently, the following values are defined:

Value Meaning
CUBLAS_STATUS_SUCCESS the operation completed successfully
CUBLAS_STATUS_NOT_INITIALIZED the library was not initialized
CUBLAS_STATUS_ALLOC_FAILED the resource allocation failed
CUBLAS_STATUS_INVALID_VALUE an invalid numerical value was used as an argument
CUBLAS_STATUS_ARCH_MISMATCH an absent device architectural feature is required
CUBLAS_STATUS_MAPPING_ERROR an access to GPU memory space failed
CUBLAS_STATUS_EXECUTION_FAILED | the GPU program failed to execute
CUBLAS_STATUS_INTERNAL_ERROR an internal operation failed
CUBLAS_STATUS_NOT_SUPPORTED the feature required is not supported

This legacy type corresponds to type in the cuBLAS library API.

295

cuBLAS, Release 12.9

The functions cublasInit() and cublasShutdown () are used to initialize and shutdown the cuBLAS
library. It is recommended for cublasInit() to be called before any other function is invoked. It
allocates hardware resources on the GPU device that is currently bound to the host thread from which
it was invoked.

The legacy initialization and shutdown functions are similar to the cuBLAS library API routines
and

The legacy APl is not thread safe when used with multiple host threads and devices. It is recommended
to be used only when utmost compatibility with Fortran is required and when a single host thread is
used to setup the library and make all the functions calls.

The memory used by the legacy cuBLAS library API is allocated and released using functions
cublasAlloc() and cublasFree(), respectively. These functions create and destroy an object in
the GPU memory space capable of holding an array of n elements, where each element requires el-
emSize bytes of storage. Please see the legacy cuBLAS API header file “cublas.h” for the prototypes
of these functions.

The function cublasAlloc() is a wrapper around the function cudaMalloc(), therefore device
pointers returned by cublasAlloc() can be passed to any CUDA™ device kernel functions. How-
ever, these device pointers can not be dereferenced in the host code. The function cublasFree() is
a wrapper around the function cudaFree().

In the legacy cuBLAS API, scalar parameters are passed by value from the host. Also, the few functions
that do return a scalar result, such as dot() and nrm2(), return the resulting value on the host, and hence
these routines will wait for kernel execution on the device to complete before returning, which makes
parallelism with streams impractical. However, the majority of functions do not return any value, in
order to be more compatible with Fortran and the existing BLAS libraries.

296 Chapter 6. Using the cuBLAS Legacy API

cuBLAS, Release 12.9

In this section we list the helper functions provided by the legacy cuBLAS API and their functional-
ity. For the exact prototypes of these functions please refer to the legacy cuBLAS API header file
“cublas.h”.

Helper function Meaning

cublasInit() initialize the library

cublasShutdown() shuts down the library

cublasGetError() retrieves the error status of the library
cublasSetKernelStream() | setsthe stream to be used by the library

cublasAlloc() allocates the device memory for the library

cublasFree() releases the device memory allocated for the library
cublasSetVector() copies a vector x on the host to a vector on the GPU
cublasGetVector() copies a vector x on the GPU to a vector on the host
cublasSetMatrix() copies a m x n tile from a matrix on the host to the GPU
cublasGetMatrix() copies a m x n tile from a matrix on the GPU to the host
cublasSetVectorAsync() similar to cublasSetVector (), but the copy is asynchronous
cublasGetVectorAsync() similar to cublasGetVector(), but the copy is asynchronous
cublasSetMatrixAsync() similar to cublasSetMatrix(), but the copy is asynchronous
cublasGetMatrixAsync() similar to cublasGetMatrix(), but the copy is asynchronous

The Level-1,2,3 cuBLAS functions (also called core functions) have the same name and behavior as the
ones listed in the chapters 3, 4 and 5 in this document. Please refer to the legacy cuBLAS API header
file “cublas.h” for their exact prototype. Also, the next section talks a bit more about the differences
between the legacy and the cuBLAS API prototypes, more specifically how to convert the function
calls from one API to another.

There are a few general rules that can be used to convert from legacy to the cuBLAS API:
Exchange the header file “cublas.h” for “cublas_v2.h".
Exchange the type cublasStatus for
Exchange the function cublasSetKernelStream() for

Exchange the function cublasAlloc() and cublasFree() for cudaMalloc() and cud-
aFree(), respectively. Notice that cudaMalloc() expects the size of the allocated memory
to be provided in bytes (usually simply provide n x elemSize to allocate n elements, each of
size elemSize bytes).

Declare the cublasHandle_t cuBLAS library handle.

Initialize the handle using . Also, release the handle once finished using

Add the handle as the first parameter to all the cuBLAS library function calls.

6.6. Helper Functions 297

cuBLAS, Release 12.9

Change the scalar parameters to be passed by reference, instead of by value (usually simply
adding “&” symbol in C/C++ is enough, because the parameters are passed by reference on the
host by default). However, note that if the routine is running asynchronously, then the variable
holding the scalar parameter cannot be changed until the kernels that the routine dispatches
are completed. See the CUDA C++ Programming Guide for a detailed discussion of how to use
streams.

Change the parameter characters N or n (non-transpose operation), T or t (transpose operation)
and C or ¢ (conjugate transpose operation) to CUBLAS_OP_N, CUBLAS_OP_T and CUBLAS_OP_C,
respectively.

Change the parameter characters L or 1 (lower part filled) and U or u (upper part filled) to CUBLAS_
FILL_MODE_LOWER and CUBLAS_FILL_MODE_UPPER, respectively.

Change the parameter characters N or n (non-unit diagonal) and U or u (unit diagonal) to CUBLAS_
DIAG_NON_UNIT and CUBLAS_DIAG_UNIT, respectively.

Change the parameter characters L or 1 (left side) and R or r (right side) to CUBLAS_SIDE_LEFT
and CUBLAS_SIDE_RIGHT, respectively.

If the legacy API function returns a scalar value, add an extra scalar parameter of the same type
passed by reference, as the last parameter to the same function.

Instead of using cublasGetError(), use the return value of the function itself to check for
errors.

Finally, please use the function prototypes in the header files cublas.h and cublas_v2.h to
check the code for correctness.

For sample code references that use the legacy cuBLAS API please see the two examples below. They
show an application written in C using the legacy cuBLAS library APl with two indexing styles (Example

Al

“Application Using C and cuBLAS: 1-based indexing” and Example A.2. “Application Using C and

cUBLAS: 0-based Indexing”). This application is analogous to the one using the cuBLAS library API that
is shown in the Introduction chapter.

Example A.1. Application Using C and cuBLAS: 1-based indexing

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include "cublas.h"

#define M 6

#define N 5

#define IDX2F(1i,j,1d) ((((j)-1)*(1d))+((i)-1))

static

inline__ void modify (float *m, int 1ldm, int n, int p, int g, float alpha,

—float beta){

}

cublasSscal (n-q+1, alpha, &m[IDX2F(p,q,1ldm)], 1ldm);
cublasSscal (ldm-p+1, beta, &m[IDX2F(p,q,ldm)], 1);

int main (void){

int i, j;
cublasStatus stat;

(continues on next page)

298

Chapter 6. Using the cuBLAS Legacy API

cuBLAS, Release 12.9

}

(continued from previous page)

float* devPtrA;

float* a = 0;

a = (float *)malloc (M * N * sizeof (*a));

if (la) {
printf ("host memory allocation failed");
return EXIT_FAILURE;

}

for (j = 1; j <= N; j++) {
for (i = 1; i <= M; i++) {

a[IDX2F(i,j,M)] = (float)((i-1) * M + j);

}

}

cublasInit();
stat = cublasAlloc (M*N, sizeof(*a), (void**)&devPtrA);
if (stat != CUBLAS_STATUS_SUCCESS) {
printf ("device memory allocation failed");
cublasShutdown();
return EXIT_FAILURE;
}
stat = cublasSetMatrix (M, N, sizeof(*a), a, M, devPtrA, M);
if (stat != CUBLAS_STATUS_SUCCESS) {
printf ("data download failed");
cublasFree (devPtrA);
cublasShutdown() ;
return EXIT_FAILURE;
}
modify (devPtrA, M, N, 2, 3, 16.0f, 12.0f);
stat = cublasGetMatrix (M, N, sizeof(*a), devPtrA, M, a, M);
if (stat != CUBLAS_STATUS_SUCCESS) {
printf ("data upload failed");
cublasFree (devPtrA);
cublasShutdown();
return EXIT_FAILURE;

cublasFree (devPtrA);
cublasShutdown() ;
for (j = 1; j <= N; j++) {
for (i = 1; i <= M; i++) {
printf ("%7.0f", a[IDX2F(i,j,M)]1);

}

printf ("\n");
}
free(a);

return EXIT_SUCCESS;

Example A.2. Application Using C and cuBLAS: O-based indexing

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include "cublas.h"

#define M 6

#define N 5

#define IDX2C(1i,j,1d) (((j)*(1d))+(1i))

(continues on next page)

6.9. Examples 299

cuBLAS, Release 12.9

(continued from previous page)
static inline__ void modify (float *m, int 1ldm, int n, int p, int g, float alpha,

qfloat_Beta){
cublasSscal (n-q, alpha, &m[IDX2C(p,q,1ldm)], 1dm);
cublasSscal (ldm-p, beta, &m[IDX2C(p,q,1ldm)], 1);

}

int main (void){

int i, j;

cublasStatus stat;

float* devPtrA;

float* a = 0;

a = (float *)malloc (M * N * sizeof (*a));

if (la) {
printf ("host memory allocation failed");
return EXIT_FAILURE;

}

for (j = 0; j < N; j++) {
for (i = 0; i < M; i++) {

a[IDX2C(i,j,M)] = (float)(i * M + j + 1);

}

}

cublasInit();
stat = cublasAlloc (M*N, sizeof(*a), (void**)&devPtrA);
if (stat != CUBLAS_STATUS_SUCCESS) {
printf ("device memory allocation failed");
cublasShutdown() ;
return EXIT_FAILURE;
}
stat = cublasSetMatrix (M, N, sizeof(*a), a, M, devPtrA, M);
if (stat != CUBLAS_STATUS_SUCCESS) {
printf ("data download failed");
cublasFree (devPtrA);
cublasShutdown();
return EXIT_FAILURE;
}
modify (devPtrA, M, N, 1, 2, 16.0f, 12.0f);
stat = cublasGetMatrix (M, N, sizeof(*a), devPtrA, M, a, M);
if (stat != CUBLAS_STATUS_SUCCESS) {
printf ("data upload failed");
cublasFree (devPtrA);
cublasShutdown();
return EXIT_FAILURE;

cublasFree (devPtrA);
cublasShutdown() ;
for (j = 0; j < N; j++) {
for (i =0; 1 < M; i++) {
printf ("%7.0f", a[IDX2C(i,j,M)]1);

}

printf ("\n");
}
free(a);

return EXIT_SUCCESS;

300 Chapter 6. Using the cuBLAS Legacy API

Chapter 7

cuBLAS Fortran Bindings

The cuBLAS library is implemented using the C-based CUDA toolchain. Thus, it provides a C-style
API. This makes interfacing to applications written in C and C++ trivial, but the library can also be
used by applications written in Fortran. In particular, the cuBLAS library uses 1-based indexing and
Fortran-style column-major storage for multidimensional data to simplify interfacing to Fortran appli-
cations. Unfortunately, Fortran-to-C calling conventions are not standardized and differ by platform
and toolchain. In particular, differences may exist in the following areas:

symbol names (capitalization, name decoration)

argument passing (by value or reference)

passing of string arguments (length information)

passing of pointer arguments (size of the pointer)

returr;ing floating-point or compound data types (for example single-precision or complex data
types

To provide maximum flexibility in addressing those differences, the cuBLAS Fortran interface is pro-
vided in the form of wrapper functions and is part of the Toolkit delivery. The C source code of those
wrapper functions is located in the src directory and provided in two different forms:

the thunking wrapper interface located in the file fortran_thunking.c
the direct wrapper interface located in the file fortran.c

The code of one of those two files needs to be compiled into an application for it to call the cuBLAS API
functions. Providing source code allows users to make any changes necessary for a particular platform
and toolchain.

The code in those two C files has been used to demonstrate interoperability with the compilers g77
3.2.3 and g95 0.91 on 32-bit Linux, g77 3.4.5 and g95 0.91 on 64-bit Linux, Intel Fortran 9.0 and Intel
Fortran 10.0 on 32-bit and 64-bit Microsoft Windows XP, and g77 3.4.0 and g95 0.92 on Mac OS X.

Note that for g77, use of the compiler flag -fno-second-underscore is required to use these wrap-
pers as provided. Also, the use of the default calling conventions with regard to argument and return
value passing is expected. Using the flag -fno-f2c changes the default calling convention with respect
to these two items.

The thunking wrappers allow interfacing to existing Fortran applications without any changes to the
application. During each call, the wrappers allocate GPU memory, copy source data from CPU memory
space to GPU memory space, call cuBLAS, and finally copy back the results to CPU memory space and
deallocate the GPU memory. As this process causes very significant call overhead, these wrappers

301

cuBLAS, Release 12.9

are intended for light testing, not for production code. To use the thunking wrappers, the application
needs to be compiled with the file fortran_thunking.c.

The direct wrappers, intended for production code, substitute device pointers for vector and matrix
arguments in all BLAS functions. To use these interfaces, existing applications need to be modified
slightly to allocate and deallocate data structures in GPU memory space (using cuBLAS_ALLOC and
CUBLAS_FREE) and to copy data between GPU and CPU memory spaces (using cuBLAS_SET_VECTOR,
CUBLAS_GET_VECTOR, cuBLAS_SET_MATRIX, and cuBLAS_GET_MATRIX). The sample wrappers pro-
vided in fortran.c map device pointers to the OS-dependent type size_t, which is 32-bit wide on
32-bit platforms and 64-bit wide on a 64-bit platforms.

One approach to deal with index arithmetic on device pointers in Fortran code is to use C-style macros,
and use the C preprocessor to expand these, as shown in the example below. On Linux and Mac OS
X, one way of pre-processing is to use the option -E -x f77-cpp-input when using g77 compiler,
or simply the option -cpp when using g95 or gfortran. On Windows platforms with Microsoft Visual
C/C++, using 'cl -EP’ achieves similar results.

I Example B.1. Fortran 77 Application Executing on the Host

subroutine modify (m, ldm, n, p, g, alpha, beta)
implicit none

integer 1ldm, n, p, q

real*4 m (ldm, *) , alpha , beta

external cublas_sscal

call cublas_sscal (n-p+1, alpha , m(p,q), ldm)
call cublas_sscal (ldm-p+1, beta, m(p,q), 1)
return

end

program matrixmod
implicit none

integer M,N

parameter (M=6, N=5)
real*4 a(M,N)

integer i, j

external cublas_init
external cublas_shutdown

do j =1, N
doi=1, M
a(i, j) = (i-1)*M + j
enddo
enddo

call cublas_init
call modify (a, M, N, 2, 3, 16.0, 12.0)
call cublas_shutdown
do j =1, N
doi=1,M
write(*,"(F7.089)") a(i,j)
enddo
write (*,*) ""
enddo
stop
end

When traditional fixed-form Fortran 77 code is ported to use the cuBLAS library, line length often
increases when the BLAS calls are exchanged for cuBLAS calls. Longer function names and possible
macro expansion are contributing factors. Inadvertently exceeding the maximum line length can lead

302 Chapter 7. cuBLAS Fortran Bindings

cuBLAS, Release 12.9

to run-time errors that are difficult to find, so care should be taken not to exceed the 72-column limit
if fixed form is retained.

The examples in this chapter show a small application implemented in Fortran 77 on the host and the
same application with the non-thunking wrappers after it has been ported to use the cuBLAS library.

The second example should be compiled with ARCH_64 defined as 1 on 64-bit OS system and as O on
32-bit OS system. For example for g95 or gfortran, this can be done directly on the command line by
using the option -cpp -DARCH_64=1.

! Example B.2. Same Application Using Non-thunking cuBLAS Calls

#define IDX2F(1i,j,1d) ((((j)-1)*(1d))+((i)-1))
subroutine modify (devPtrM, 1ldm, n, p, q, alpha, beta)
implicit none
integer sizeof_real
parameter (sizeof_real=4)
integer ldm, n, p, q

#if ARCH_64
integer*8 devPtrM

#else
integer*4 devPtrM

#endif
real*4 alpha, beta
call cublas_sscal (n-p+1, alpha,

1 devPtrM+IDX2F(p, g, ldm)*sizeof_real,
2 1dm)

call cublas_sscal(ldm-p+1, beta,

1 devPtrM+IDX2F(p, q, ldm)*sizeof_real,

2 1)

return

end

program matrixmod
implicit none
integer M,N,sizeof_real
#if ARCH_64
integer*8 devPtrA
#else
integer*4 devPtrA
#endif
parameter(M=6,N=5, sizeof_real=4)
real*4 a(M,N)
integer i, j,stat
external cublas_init, cublas_set_matrix, cublas_get_matrix
external cublas_shutdown, cublas_alloc
integer cublas_alloc, cublas_set_matrix, cublas_get_matrix
do j=1,N
do i=1,M
a(i,j)=(i-1)*M+j
enddo
enddo
call cublas_init
stat= cublas_alloc(M*N, sizeof_real, devPtrA)
if (stat.NE.@) then
write(*,*) "device memory allocation failed"
call cublas_shutdown
stop
endif

(continues on next page)

303

cuBLAS, Release 12.9

(continued from previous page)

stat = cublas_set_matrix(M,N,sizeof_real,a,M,devPtrA, M)

if (stat.NE.@) then

call cublas_free(devPtrA)
write(*,*) "data download failed"

call cublas_shutdown
stop
endif

— Code block continues below. Space added for formatting purposes. —

call modify(devPtrA, M, N, 2, 3, 16.0, 12.0)

stat = cublas_get_matrix(M, N, sizeof_real, devPtrA, M, a, M)

if (stat.NE.0) then

call cublas_free (devPtrA)
write(*,*) "data upload failed"
call cublas_shutdown

stop

endif

call cublas_free (devPtrA)
call cublas_shutdown

do j =1, N
doi=1,M
write (*,"(F7.8$)") a(i,j)
enddo
write (*,*) ""
enddo
stop
end
304

Chapter 7. cuBLAS Fortran Bindings

Chapter 8

Interaction with Other Libraries and
Tools

This section describes important requirements and recommendations that ensure correct use of
cuBLAS with other libraries and utilities.

nvprune enables pruning relocatable host objects and static libraries to only contain device code for
the specific target architectures. In case of cuBLAS, particular care must be taken if using nvprune
with compute capabilities, whose minor revision number is different than 0. To reduce binary size,
cuBLAS may only store major revision equivalents of CUDA binary files for kernels reused between
different minor revision versions. Therefore, to ensure that a pruned library does not fail for arbitrary
problems, the user must keep binaries for a selected architecture and all prior minor architectures in
its major architecture.

For example, the following call prunes libcublas_static.a to contain only sm_75 (Turing) and
sm_70 (Volta) cubins:

nvprune --generate-code code=sm_70 --generate-code code=sm_75 libcublaslLt_static.a -o
—libcublasLt_static_sm70_sm75.a

which should be used instead of:

nvprune -arch=sm_75 libcublaslLt_static.a -o libcublaslLt_static_sm75.a

305

cuBLAS, Release 12.9

306 Chapter 8. Interaction with Other Libraries and Tools

Chapter 9

Acknowledgements

NVIDIA would like to thank the following individuals and institutions for their contributions:

Portions of the SGEMM, DGEMM, CGEMM and ZGEMM library routines were written by Vasily
Volkov of the University of California.

Portions of the SGEMM, DGEMM and ZGEMM library routines were written by Davide Barbieri of
the University of Rome Tor Vergata.

Portions of the DGEMM and SGEMM library routines optimized for Fermi architecture were de-
veloped by the University of Tennessee. Subsequently, several other routines that are optimized
for the Fermi architecture have been derived from these initial DGEMM and SGEMM implemen-
tations.

The substantial optimizations of the STRSV, DTRSV, CTRSV and ZTRSV library routines were de-
veloped by Jonathan Hogg of The Science and Technology Facilities Council (STFC). Subsequently,
some optimizations of the STRSM, DTRSM, CTRSM and ZTRSM have been derived from these
TRSV implementations.

Substantial optimizations of the SYMV and HEMYV library routines were developed by Ahmad Ab-
delfattah, David Keyes and Hatem Ltaief of King Abdullah University of Science and Technology
(KAUST).

Substantial optimizations of the TRMM and TRSM library routines were developed by Ali Charara,
David Keyes and Hatem Ltaief of King Abdullah University of Science and Technology (KAUST).

This product includes {fmt} - A modern formatting library Copyright (c) 2012 -
present, Victor Zverovich.

This product includes spdlog - Fast C++ logging library. The
MIT License (MIT).

This product includes SIMD Library for Evaluating Elementary Functions, vectorized libm and DFT
Boost Software License - Version 1.0 - August 17th, 2003.

This product includes Frozen - a header-only, constexpr alternative to gperf for C++14 users.
Apache License - Version 2.0, January 2004.

This product includes Boost C++ Libraries - free peer-reviewed portable C++ source libraries
Boost Software License - Version 1.0 - August 17th, 2003.

This product includes Zstandard - a fast lossless compression algorithm, targeting real-time com-
pression scenarios at zlib-level and better compression ratios.
The BSD License.

307

https://fmt.dev/
https://github.com/gabime/spdlog
https://sleef.org/
https://github.com/serge-sans-paille/frozen
https://www.boost.org/
https://github.com/facebook/zstd

cuBLAS, Release 12.9

308 Chapter 9. Acknowledgements

Chapter 10

Notices

This document is provided for information purposes only and shall not be regarded as a warranty of a
certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no repre-
sentations or warranties, expressed or implied, as to the accuracy or completeness of the information
contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall
have no liability for the consequences or use of such information or for any infringement of patents
or other rights of third parties that may result from its use. This document is not a commitment to
develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any
other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that
such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the
time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by
authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA
product referenced in this document. No contractual obligations are formed either directly or indirectly
by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military,
aircraft, space, or life support equipment, nor in applications where failure or malfunction of the NVIDIA
product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or
applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for
any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA.
It is customer’s sole responsibility to evaluate and determine the applicability of any information con-
tained in this document, ensure the product is suitable and fit for the application planned by customer,
and perform the necessary testing for the application in order to avoid a default of the application or
the product. Weaknesses in customer’s product designs may affect the quality and reliability of the
NVIDIA product and may result in additional or different conditions and/or requirements beyond those
contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or prob-
lem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is
contrary to this document or (ii) customer product designs.

309

cuBLAS, Release 12.9

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other
NVIDIA intellectual property right under this document. Information published by NVIDIA regarding
third-party products or services does not constitute a license from NVIDIA to use such products or
services or a warranty or endorsement thereof. Use of such information may require a license from a
third party under the patents or other intellectual property rights of the third party, or a license from
NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA
in writing, reproduced without alteration and in full compliance with all applicable export laws and
regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE
BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WAR-
RANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CON-
SEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARIS-
ING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES. Notwithstanding any damages that customer might incur for any reason whatso-
ever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein
shall be limited in accordance with the Terms of Sale for the product.

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the
U.S. and other countries. Other company and product names may be trademarks of the respective
companies with which they are associated.

©2012-2025, NVIDIA Corporation & affiliates. All rights reserved

310 Chapter 10. Notices

	Introduction
	Data Layout
	New and Legacy cuBLAS API
	Example Code
	Forward Compatibility
	Floating Point Emulation
	BF16x9

	Using the cuBLAS API
	General Description
	Error Status
	cuBLAS Context
	Thread Safety
	Results Reproducibility
	Scalar Parameters
	Parallelism with Streams
	Batching Kernels
	Cache Configuration
	Static Library Support
	GEMM Algorithms Numerical Behavior
	Tensor Core Usage
	CUDA Graphs Support
	64-bit Integer Interface

	cuBLAS Datatypes Reference
	cublasHandle_t
	cublasStatus_t
	cublasOperation_t
	cublasFillMode_t
	cublasDiagType_t
	cublasSideMode_t
	cublasPointerMode_t
	cublasAtomicsMode_t
	cublasGemmAlgo_t
	cublasMath_t
	cublasComputeType_t
	cublasEmulationStrategy_t

	CUDA Datatypes Reference
	cudaDataType_t
	libraryPropertyType_t

	cuBLAS Helper Function Reference
	cublasCreate()
	cublasDestroy()
	cublasGetVersion()
	cublasGetProperty()
	cublasGetStatusName()
	cublasGetStatusString()
	cublasSetStream()
	cublasSetWorkspace()
	cublasGetStream()
	cublasGetPointerMode()
	cublasSetPointerMode()
	cublasSetVector()
	cublasGetVector()
	cublasSetMatrix()
	cublasGetMatrix()
	cublasSetVectorAsync()
	cublasGetVectorAsync()
	cublasSetMatrixAsync()
	cublasGetMatrixAsync()
	cublasSetAtomicsMode()
	cublasGetAtomicsMode()
	cublasSetMathMode()
	cublasGetMathMode()
	cublasSetSmCountTarget()
	cublasGetSmCountTarget()
	cublasSetEmulationStrategy()
	cublasGetEmulationStrategy()
	cublasLoggerConfigure()
	cublasGetLoggerCallback()
	cublasSetLoggerCallback()

	cuBLAS Level-1 Function Reference
	cublasI<t>amax()
	cublasI<t>amin()
	cublas<t>asum()
	cublas<t>axpy()
	cublas<t>copy()
	cublas<t>dot()
	cublas<t>nrm2()
	cublas<t>rot()
	cublas<t>rotg()
	cublas<t>rotm()
	cublas<t>rotmg()
	cublas<t>scal()
	cublas<t>swap()

	cuBLAS Level-2 Function Reference
	cublas<t>gbmv()
	cublas<t>gemv()
	cublas<t>ger()
	cublas<t>sbmv()
	cublas<t>spmv()
	cublas<t>spr()
	cublas<t>spr2()
	cublas<t>symv()
	cublas<t>syr()
	cublas<t>syr2()
	cublas<t>tbmv()
	cublas<t>tbsv()
	cublas<t>tpmv()
	cublas<t>tpsv()
	cublas<t>trmv()
	cublas<t>trsv()
	cublas<t>hemv()
	cublas<t>hbmv()
	cublas<t>hpmv()
	cublas<t>her()
	cublas<t>her2()
	cublas<t>hpr()
	cublas<t>hpr2()
	cublas<t>gemvBatched()
	cublas<t>gemvStridedBatched()

	cuBLAS Level-3 Function Reference
	cublas<t>gemm()
	cublas<t>gemm3m()
	cublas<t>gemmBatched()
	cublas<t>gemmStridedBatched()
	cublas<t>gemmGroupedBatched()
	cublas<t>symm()
	cublas<t>syrk()
	cublas<t>syr2k()
	cublas<t>syrkx()
	cublas<t>trmm()
	cublas<t>trsm()
	cublas<t>trsmBatched()
	cublas<t>hemm()
	cublas<t>herk()
	cublas<t>her2k()
	cublas<t>herkx()

	BLAS-like Extension
	cublas<t>geam()
	cublas<t>dgmm()
	cublas<t>getrfBatched()
	cublas<t>getrsBatched()
	cublas<t>getriBatched()
	cublas<t>matinvBatched()
	cublas<t>geqrfBatched()
	cublas<t>gelsBatched()
	cublas<t>tpttr()
	cublas<t>trttp()
	cublas<t>gemmEx()
	cublasGemmEx()
	cublasGemmBatchedEx()
	cublasGemmStridedBatchedEx()
	cublasGemmGroupedBatchedEx()
	cublasCsyrkEx()
	cublasCsyrk3mEx()
	cublasCherkEx()
	cublasCherk3mEx()
	cublasNrm2Ex()
	cublasAxpyEx()
	cublasDotEx()
	cublasRotEx()
	cublasScalEx()

	Using the cuBLASLt API
	General Description
	Problem Size Limitations
	Heuristics Cache
	cuBLASLt Logging
	Narrow Precision Data Types Usage
	Tensorwide Scaling For FP8 Data Types
	Outer Vector Scaling for FP8 Data Types
	16/32-Element 1D Block Scaling for FP8 and FP4 Data Types
	1D Block Quantization
	1D Block Scaling Factors Layout

	128-element 1D and 128x128 2D Block Scaling For FP8 Data Types
	Scaling factors layouts

	Disabling CPU Instructions
	Atomics Synchronization

	cuBLASLt Code Examples
	cuBLASLt Datatypes Reference
	cublasLtClusterShape_t
	cublasLtEpilogue_t
	cublasLtHandle_t
	cublasLtLoggerCallback_t
	cublasLtMatmulAlgo_t
	cublasLtMatmulAlgoCapAttributes_t
	cublasLtMatmulAlgoConfigAttributes_t
	cublasLtMatmulDesc_t
	cublasLtMatmulDescAttributes_t
	cublasLtMatmulHeuristicResult_t
	cublasLtMatmulInnerShape_t
	cublasLtMatmulPreference_t
	cublasLtMatmulPreferenceAttributes_t
	cublasLtMatmulSearch_t
	cublasLtMatmulTile_t
	cublasLtMatmulStages_t
	cublasLtNumericalImplFlags_t
	cublasLtMatrixLayout_t
	cublasLtMatrixLayoutAttribute_t
	cublasLtMatrixTransformDesc_t
	cublasLtMatrixTransformDescAttributes_t
	cublasLtOrder_t
	cublasLtPointerMode_t
	cublasLtPointerModeMask_t
	cublasLtReductionScheme_t
	cublasLtMatmulMatrixScale_t
	cublasLtBatchMode_t

	cuBLASLt API Reference
	cublasLtCreate()
	cublasLtDestroy()
	cublasLtDisableCpuInstructionsSetMask()
	cublasLtGetCudartVersion()
	cublasLtGetProperty()
	cublasLtGetStatusName()
	cublasLtGetStatusString()
	cublasLtHeuristicsCacheGetCapacity()
	cublasLtHeuristicsCacheSetCapacity()
	cublasLtGetVersion()
	cublasLtLoggerSetCallback()
	cublasLtLoggerSetFile()
	cublasLtLoggerOpenFile()
	cublasLtLoggerSetLevel()
	cublasLtLoggerSetMask()
	cublasLtLoggerForceDisable()
	cublasLtMatmul()
	cublasLtMatmulAlgoCapGetAttribute()
	cublasLtMatmulAlgoCheck()
	cublasLtMatmulAlgoConfigGetAttribute()
	cublasLtMatmulAlgoConfigSetAttribute()
	cublasLtMatmulAlgoGetHeuristic()
	cublasLtMatmulAlgoGetIds()
	cublasLtMatmulAlgoInit()
	cublasLtMatmulDescCreate()
	cublasLtMatmulDescInit()
	cublasLtMatmulDescDestroy()
	cublasLtMatmulDescGetAttribute()
	cublasLtMatmulDescSetAttribute()
	cublasLtMatmulPreferenceCreate()
	cublasLtMatmulPreferenceInit()
	cublasLtMatmulPreferenceDestroy()
	cublasLtMatmulPreferenceGetAttribute()
	cublasLtMatmulPreferenceSetAttribute()
	cublasLtMatrixLayoutCreate()
	cublasLtMatrixLayoutInit()
	cublasLtMatrixLayoutDestroy()
	cublasLtMatrixLayoutGetAttribute()
	cublasLtMatrixLayoutSetAttribute()
	cublasLtMatrixTransform()
	cublasLtMatrixTransformDescCreate()
	cublasLtMatrixTransformDescInit()
	cublasLtMatrixTransformDescDestroy()
	cublasLtMatrixTransformDescGetAttribute()
	cublasLtMatrixTransformDescSetAttribute()

	Using the cuBLASXt API
	General description
	Tiling design approach
	Hybrid CPU-GPU computation
	Results reproducibility

	cuBLASXt API Datatypes Reference
	cublasXtHandle_t
	cublasXtOpType_t
	cublasXtBlasOp_t
	cublasXtPinningMemMode_t

	cuBLASXt API Helper Function Reference
	cublasXtCreate()
	cublasXtDestroy()
	cublasXtDeviceSelect()
	cublasXtSetBlockDim()
	cublasXtGetBlockDim()
	cublasXtSetCpuRoutine()
	cublasXtSetCpuRatio()
	cublasXtSetPinningMemMode()
	cublasXtGetPinningMemMode()

	cuBLASXt API Math Functions Reference
	cublasXt<t>gemm()
	cublasXt<t>hemm()
	cublasXt<t>symm()
	cublasXt<t>syrk()
	cublasXt<t>syr2k()
	cublasXt<t>syrkx()
	cublasXt<t>herk()
	cublasXt<t>her2k()
	cublasXt<t>herkx()
	cublasXt<t>trsm()
	cublasXt<t>trmm()
	cublasXt<t>spmm()

	Using the cuBLASDx API
	Using the cuBLAS Legacy API
	Error Status
	Initialization and Shutdown
	Thread Safety
	Memory Management
	Scalar Parameters
	Helper Functions
	Level-1,2,3 Functions
	Converting Legacy to the cuBLAS API
	Examples

	cuBLAS Fortran Bindings
	Interaction with Other Libraries and Tools
	nvprune

	Acknowledgements
	Notices
	Notice
	OpenCL
	Trademarks

