Installation Guide for Linux
Release 13.0

NVIDIA Corporation

Aug 13, 2025

Contents

1 Overview

2 Introduction
System Requirements e
OS Support Policy
Host Compiler Support Policy
Host Compiler Compatibility Packages
Supported C++ Dialects
About This Document
Administrative Privileges

2.1

2.2

2.3
2.3.1
2.3.2

2.4
2.4.1

3 Pre-installation Actions

Verify You Have a CUDA-Capable GPU
Verify You Have a Supported Versionof Linux
Verify the System Has gcclinstalled
Choose an InstallationMethod
Download the NVIDIA CUDA Toolkit e
Handle Conflicting Installation Methods,

3.1
3.2
3.3
3.4
35
3.6

4 Package Manager Installation

4.1

4.2
4.2.1
422
423
4.2.4

4.3
4.3.1
432
433
434

4.4
4.4.1
442
4.4.3
4.4.4
445

4.5
4.5.1
452
453
454

4.6

Overview

Red Hat Enterprise Linux / Rocky Linux /Oracle Linux

Preparation .

Local Repository Installation
Network Repository Installation
Common Instructions

KylinOS
Preparation .

Local Repository Installation
Network Repository Installation
Common Instructions

Fedora
Preparation .

Local Repository Installation
Network Repository Installation
Common Installation Instructions
GCC Compatibility Package for Fedora
SUSE Linux Enterprise Server e

Preparation .

Local Repository Installation
Network Repository Installation L
Common Installation Instructions

OpenSUSE Leap

46.1 Preparation e

4.6.2 Local Repository Installation
4.6.3 Network Repository Installation L
46.4 Common Installation Instructions
4.7 Windows Subsystem for Linux
4.7.1 Preparation e
4.7.2 Local Repository Installation
4.7.3 Network Repository Installation
474 Common Installation Instructions L o
4.8 Ubuntu. . ..
4.8.1 Prepare Ubuntu e
4.8.2 Local Repository Installation
48.3 Network Repository Installation
484 Common Installation Instructions
4.9 Debian e
49.1 Preparation e
49.2 Local Repository Installation
493 Network Repository Installation
494 Common Installation Instructions
410 Amazon LinUX e
4.10.1 Prepare Amazon Linux e
4.10.2 Local Repository Installation
4.10.3 Network Repository Installation
4.10.4 Common Installation Instructions
411 Azure LinuX L
4.11.1 Prepare Azure LinUX e
4.11.2 Local Repository Installation
4.11.3 Network Repository Installation,
4.11.4 Common Installation Instructions
4.12 Additional Package Manager Capabilities
4.12.1 Available Packages
4122 MetaPackages
4.12.3 Package Upgrades
4.12.3.1T Amazon LiNUX. o o e e
4.12.3.2 Fedora e
4.12.3.3 KylinOS / Red Hat Enterprise Linux / Rocky Linux / Oracle Linux
41234 Azure LiNUX o e
4.12.3.5 OpenSUSE /SUSE Linux EnterpriseServer.
4.12.3.6 Debian/Ubuntu
4.12.3.7 OtherPackage Notes

5 Driver Installation

6 Runfile Installation

6.1 Runfile Overview e
6.2 Installation e
6.3 Advanced Oplions
6.4 Uninstallation

7 Conda Installation

7.1 Conda OVerview o e
7.2 Installing CUDAUsingConda
7.3 Uninstalling CUDA UsingConda i
7.4 Installing Previous CUDA Releases. i e

7.5 Upgrading from cudatoolkit Package 36

8 Pip Wheels 37
8.1 Prerequisites e 37
8.2 Procedure 37
8.3 Metapackages 38
9 CUDA Cross-Platform Environment 41
9.1 CUDA Cross-Platform Installation 41
9.1.1 Ubuntu . . . e 41
9.1.1.1 Local Cross Repository Installation 42
9.1.1.2 Network Cross Repository Installation 42
9.1.1.3 Common Installation Instructions 42
9.1.2 Red Hat Enterprise Linux / Rocky Linux / Oracle Linux 42
9.1.2.1 Local Cross Repository Installation 43
9.1.2.2 Network Cross Repository Installation 43
9.1.2.3 Common Installation Instructions L. 43
9.1.3 SUSE Linux Enterprise Server e 43
9.1.3.1 Local Cross Repository Installation 43
9.1.3.2 Network Cross Repository Installation 43
9.1.3.3 Common Installation Instructions 44
10 Tarball and Zip Archive Deliverables 45
10.1 Parsing Redistrib JSSON 46
10.2 Importing Tarballsinto CMake 47
10.3 Importing TarballsintoBazel 47
11 Post-installation Actions 49
11.1 Mandatory Actions e 49
11.1.1 EnvironmentSetup e 49
11.2 Recommended Actions 50
11.2.1 Install Writable Samples 50
11.2.2 Verifythelnstallation 50
11.22.1 RunningtheBinaries 50
11.2.3 Install Nsight Eclipse Plugins 52
11.24 LocalRepoRemoval. e 52
11.3 Optional Actions e 52
11.3.1 Install Third-party Libraries 52
11.3.2 Install the Source Code forcuda-gdb 53

11.3.3 Select the Active Version of CUDA 53

12 Removing CUDA Toolkit 55

13 Advanced Setup 57

14 Additional Considerations 59

15 Frequently Asked Questions 61
15.1 How do |l install the Toolkit in a different location? 61

15.2 Why do | see “nvcc: No such file or directory” when | try to build a CUDA application? . 61
15.3 Why do | see “error while loading shared libraries: <lib name>: cannot open shared
object file: No such file or directory” when | try to run a CUDA application that uses a

CUDA library? . . e 62
15.4 Why do | see multiple “404 Not Found” errors when updating my repository meta-data
onUbUNtU? 62

155 How canl tell X toignore a GPU for compute-onlyuse? 62

15.6 Why doesn’t the cuda-repo package install the CUDA Toolkit? 63
15.7 How do | install an older CUDA version using a network repo? 63
15.8 How do | handle “Errors were encountered while processing: glx-diversions™?. 63
16 Notices 65
16.1 Notice 65
16.2 0penCL e 66
16.3 Trademarks o 66
17 Copyright 67

Chapter 1. Overview

The NVIDIA CUDA Installation Guide for Linux provides comprehensive instructions for installing the
CUDA Toolkit across multiple Linux distributions and architectures. CUDA® is NVIDIA’s parallel com-
puting platform that enables dramatic performance increases by harnessing GPU power for computa-
tional workloads. This guide covers four primary installation methods: package manager installation
(recommended for most users, supporting RPM and DEB packages with native package management
integration), runfile installation (distribution-independent standalone installer), Conda installation (for
environment management), and pip wheels (Python-focused runtime installation). The guide supports
major Linux distributions including Ubuntu, Red Hat Enterprise Linux, SUSE, Debian, Fedora, and spe-
cialized distributions like Amazon Linux and Azure Linux, across x86_64, ARM64-SBSA, and ARM64-
Jetson architectures. Each installation method includes detailed pre-installation requirements (CUDA-
capable GPU, supported OS version, GCC compiler), step-by-step procedures, and post-installation
configuration including environment setup, sample verification, and integration with development
tools like Nsight and CUDA-GDB.

Installation Guide for Linux, Release 13.0

2 1. Overview

Chapter 2. Introduction

CUDA’ is a parallel computing platform and programming model invented by NVIDIA®. It enables dra-
matic increases in computing performance by harnessing the power of the graphics processing unit
(GPU).

CUDA was developed with several design goals in mind:

Provide a small set of extensions to standard programming languages, like C, that enable a
straightforward implementation of parallel algorithms. With CUDA C/C++, programmers can fo-
cus on the task of parallelization of the algorithms rather than spending time on their implemen-
tation.

Support heterogeneous computation where applications use both the CPU and GPU. Serial por-
tions of applications are run on the CPU, and parallel portions are offloaded to the GPU. As such,
CUDA can be incrementally applied to existing applications. The CPU and GPU are treated as sep-
arate devices that have their own memory spaces. This configuration also allows simultaneous
computation on the CPU and GPU without contention for memory resources.

CUDA-capable GPUs have hundreds of cores that can collectively run thousands of computing threads.
These cores have shared resources including a register file and a shared memory. The on-chip shared
memory allows parallel tasks running on these cores to share data without sending it over the system
memory bus.

This guide will show you how to install and check the correct operation of the CUDA development tools.

Note: Instructions for installing NVIDIA Drivers are now in the

To use NVIDIA CUDA on your system, you will need the following installed:
CUDA-capable GPU
A supported version of Linux with a gcc compiler and toolchain
CUDA Toolkit (available at)

The CUDA development environment relies on tight integration with the host development environ-
ment, including the host compiler and C runtime libraries, and is therefore only supported on distribu-
tion versions that have been qualified for this CUDA Toolkit release.

The following table lists the supported Linux distributions. Please review the footnotes associated
with the table.

https://docs.nvidia.com/datacenter/tesla/driver-installation-guide/index.html
https://developer.nvidia.com/cuda-downloads

Installation Guide for Linux, Release 13.0

Note: The value of the columns “Codename” and the architecture in parenthesis should be used to
replace occurrences of the <distro> and the <arch> references across this document.

Table 1: Native Linux Distribution Support in CUDA 13.0

Distribution Codename Kernel GCC glibc
Generic amd64 systems (x86_64)
Red Hat Enterprise Linux 10 rhel10 6.12.0-55 14.2.1 2.39
Red Hat Enterprise Linux 9 rhel9 5.14.0-570.12.1 11.5.0 2.34
Red Hat Enterprise Linux 8 rhel8 4.18.0-553 85.0 2.28
OpenSUSE Leap 15 SP6 opensusel5 6.4.0-150600.21 7.5.0 2.38
Rocky Linux 10 rhel10 6.12.0-55.21.1 14.2.1 2.39
Rocky Linux 9 rhel9 5.14.0-570.12.1 11.5.0 2.34
Rocky Linux 8 rhel8 4.18.0-553 8.5.0 2.28
SUSE Linux Enterprise Server 15 SP6 | sles15 6.4.0-150600.21 7.5.0 2.38
Ubuntu 24.04 LTS ubuntu2404 6.11.0-17 13.3.0 2.39
Ubuntu 22.04 LTS ubuntu2204 6.5.0-45 12.3.0 2.35
Debian 12 debiani2 6.1.0-32 12.2.0 2.36
Fedora 42 fedora42 6.14.0-63 15.1.1 2.41
KylinOS V10 SP3 2403 kylin10 4.19.90-89.11.v2401 10.x 2.28
Azure Linux 2.0 (CBL Mariner 2.0) cm2 5.15.158.2-1 11.2.0 2.35
Azure Linux 3.0 azl3 6.6.64.2-9.azI3 13.2.0 2.38-8
Amazon Linux 2023 amzn2023 6.1.82-99.168 11.4.1 2.34
Oracle Linux 9 rhel9 4.18.0-553 11.4.1 2.34
Oracle Linux 8 rhel8 5.14.0-427 8.5.0 2.28
Generic arm64 systems (sbsa)
Red Hat Enterprise Linux 10 rhel10 6.12.0-55.7.1.el10_0 14.2.1 2.39
Red Hat Enterprise Linux 9 rhel9 5.14.0-570.17.1 11.5.0 2.35.2-63
Red Hat Enterprise Linux 8 rhel8 4.18.0-553 8.5.0 2.28
SUSE Linux Enterprise Server 15 SP6 | sles15 6.4.0-150600.21 7.5.0 2.38
Kylin V10 SP3 2403 kylin10 4.19.90-52 7.3.0 2.28
Ubuntu 24.04 LTS ubuntu2404 6.8.0-55 13.3.0 2.39
Ubuntu 22.04 LTS ubuntu2204 6.5.0-1019 11.4.0 2.35
GRACE only arm64 systems (sbsa)
Azure Linux 3.0 azl3 6.6.64.2-9.azI3 13.2.0 2.38-8

continues on next page

2. Introduction

Installation Guide for Linux, Release 13.0

Table 1 -continued from previous page

Distribution Codename Kernel GCC glibc
Amazon Linux 2023 amzn2023 6.12.16-18 11.4.1 2.34
Red Hat Enterprise Linux 10 rhel10 6.12.0-55.9.1.el10_0 14.2.1 2.39
Red Hat Enterprise Linux 9.4 rhel9 5.14.0-427 11.4.1 2.34
Red Hat Enterprise Linux 9.5 rhel9 5.14.0-494 11.5.0 2.34
Red Hat Enterprise Linux 9.6 rhel9 5.14.0-570.28.1 11.5.0 2.34
SUSE Linux Enterprise Server 15 SP6 | sles15 6.4.0-150600.21-64kb | 7.5.0 2.38
Ubuntu 24.04 LTS ubuntu2404 6.8.0-1031-nvidia-64k | 13.2.0 2.39
Ubuntu 22.04 LTS ubuntu2204 6.8.0-1030-nvidia-64k | 11.4.0 2.35
arm64 sbsa Jetson (dGPU)
Ubuntu 22.04 LTS - Rel36 - JP6.x ubuntu2204 5.15.136-tegra 11.4.0 2.35
arm64 sbsa Jetson (dGPU + iGPU with OpenRM)
Ubuntu 24.04 LTS Rel37 - JP7.x native 6.8.12-tegra 13.3.0 2.39
Ubuntu 24.04 LTS Rel37 - JP7.x Cross 6.11.0-28-generic 13.3.0 2.39

For specific kernel versions supported on Red Hat Enterprise Linux (RHEL), visit https://access.redhat.
com/articles/3078.

Alist of kernel versions including the release dates for SUSE Linux Enterprise Server (SLES) is available
at https://www.suse.com/support/kb/doc/?id=000019587.

2.2. OS Support Policy

Support for the different operating systems will be until the standard EOSS/EOL date as defined for
each operating system. Please refer to the support lifecycle for these operating systems to know their
support timelines and plan to move to newer releases accordingly.

CUDA supports the latest Fedora release version. The version supported might require a specific
GCC compatibility package. For Fedora release timelines, visit https://docs.fedoraproject.org/en-US/
releases/.

CUDA supports a single KylinOS release version. For details, visit https://www.kylinos.cn/.

Refer to the support lifecycle for these supported OSes to know their support timelines and plan to
move to newer releases accordingly.

2.2. OS Support Policy 5

https://access.redhat.com/articles/3078
https://access.redhat.com/articles/3078
https://www.suse.com/support/kb/doc/?id=000019587
https://docs.fedoraproject.org/en-US/releases/
https://docs.fedoraproject.org/en-US/releases/
https://www.kylinos.cn/

Installation Guide for Linux, Release 13.0

In order to compile the CPU “Host” code in the CUDA source, the CUDA compiler NVCC requires a
compatible host compiler to be installed on the system. The version of the host compiler supported
on Linux platforms is tabulated as below. NVCC performs a version check on the host compiler’s major
version and so newer minor versions of the compilers listed below will be supported, but major versions
falling outside the range will not be supported.

Table 2: Supported Compilers
Distribution | GCC Clang NVHPC XLC | ArmC/C++

x86_64 6.x-15x | 7.x-20.x | 24.9-25.5 | No No
Arm64 sbsa | 6.x- 15.x | 7.x-20.x | 24.9-25.5 | No 24.04-24.10

For GCC and Clang, the preceding table indicates the minimum version and the latest version sup-
ported. If you are on a Linux distribution that may use an older version of GCC toolchain as default
than what s listed above, it is recommended to upgrade to a newer toolchain CUDA 11.0 or later toolkit.
Newer GCC toolchains are available with the Red Hat Developer Toolset for example. For platforms
that ship a compiler version older than GCC 6 by default, linking to static or dynamic libraries that are
shipped with the CUDA Toolkit is not supported. We only support libstdc++ (GCC’s implementation)
for all the supported host compilers for the platforms listed above.

Really up to date distributions might ship with a newer compiler than what is covered by the Supported
Compilers table above. Usually, those distribution also provide a GCC compatibility package that can
be used instead of the default one.

Depending on the distribution, the package that needs to be installed is different, but the logic for
configuring it is the same. If required, configuration steps are described in the relevant section for
the specific Linux distribution, but they always end up with configuring the NVCC_BIN environment
variable as described in the .

NVCC and NVRTC (CUDA Runtime Compiler) support the following C++ dialect: C++11, C++14, C++17,
C++20 on supported host compilers. The default C++ dialect of NVCC is determined by the default
dialect of the host compiler used for compilation. Refer to host compiler documentation and the
CUDA Programming Guide for more details on language support.

C++20 is supported with the following flavors of host compiler in both host and device code.

GCC Clang | NVHPC | Arm C/C++
>=10x | >=11.x | >=22.x | >=22.X

6 2. Introduction

https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/#nvcc-environment-variables

Installation Guide for Linux, Release 13.0

This document is intended for readers familiar with the Linux environment and the compilation of C
programs from the command line. You do not need previous experience with CUDA or experience with
parallel computation.

Commands which can be executed as a normal user will be prefixed by a $ at the beginning of
the line

Commands which require administrative privilege (root) will be prefixed by a # at the beginning
of the line

Many commands in this document might require superuser privileges. On most distributions of Linux,
this will require you to log in as root. For systems that have enabled the sudo package, use the sudo
prefix or a sudo shell (sudo -1i) for all the necessary commands.

2.4. About This Document 7

Installation Guide for Linux, Release 13.0

8 2. Introduction

Chapter 3. Pre-installation Actions

Some actions must be taken before the CUDA Toolkit can be installed on Linux:

Verify the system has a CUDA-capable GPU.

\4

Verify the system is running a supported version of Linux.

>

» Verify the system has gcc installed.
» Download the NVIDIA CUDA Toolkit.
>

Handle conflicting installation methods.

Note: You can override the install-time prerequisite checks by running the installer with the
-override flag. Remember that the prerequisites will still be required to use the NVIDIA CUDA Toolkit.

3.1. Verify You Have a CUDA-Capable GPU

To verify that your GPU is CUDA-capable, go to your distribution’s equivalent of System Properties, or,
from the command line, enter:

$ 1lspci | grep -i nvidia
If you do not see any settings, update the PCl hardware database that Linux maintains by entering

update-pciids (generally found in /sbin) at the command line and rerun the previous 1spci com-
mand.

If your graphics card is from NVIDIA and it is listed in https://developer.nvidia.com/cuda-gpus, your GPU
is CUDA-capable. The Release Notes for the CUDA Toolkit also contain a list of supported products.

3.2. Verify You Have a Supported Version of
Linux

The CUDA Development Tools are only supported on some specific distributions of Linux. These are
listed in the CUDA Toolkit release notes.

To determine which distribution and release number you’re running, type the following at the command
line:

https://developer.nvidia.com/cuda-gpus

Installation Guide for Linux, Release 13.0

$ hostnamectl

3.3. Verify the System Has gcc Installed

The gcc compiler is required for development using the CUDA Toolkit. It is not required for running
CUDA applications. It is generally installed as part of the Linux installation, and in most cases the
version of gcc installed with a supported version of Linux will work correctly.

To verify the version of gcc installed on your system, type the following on the command line:
gcc --version

If an error message displays, you need to install the development tools from your Linux distribution or
obtain a version of gcc and its accompanying toolchain from the Web.

3.4. Choose an Installation Method

The CUDA Toolkit can be installed using either of two different installation mechanisms: distribution-
specific packages (RPM and Deb packages), or a distribution-independent package (runfile packages).

The distribution-independent package has the advantage of working across a wider set of Linux distri-
butions, but does not update the distribution’s native package management system. The distribution-
specific packages interface with the distribution’s native package management system. It is recom-
mended to use the distribution-specific packages, where possible.

Note: For both native as well as cross development, the toolkit must be installed using the
distribution-specific installer. See the CUDA Cross-Platform Installation section for more details.

3.5. Download the NVIDIA CUDA Toolkit

The NVIDIA CUDA Toolkit is available at https://developer.nvidia.com/cuda-downloads.

Choose the platform you are using and download the NVIDIA CUDA Toolkit. The CUDA Toolkit contains
the tools needed to create, build and run a CUDA application as well as libraries, header files, and other
resources.

Download Verification

If you are using the local stand alone or run file installer, the download can be verified by comparing the
MD5 checksum posted at https://developer.download.nvidia.com/compute/cuda/13.0.0/docs/sidebar/
md5sum.txt with that of the downloaded file. If either of the checksums differ, the downloaded file is
corrupt and needs to be downloaded again.

To calculate the MD5 checksum of the downloaded file, run the following:

10 3. Pre-installation Actions

https://developer.nvidia.com/cuda-downloads
https://developer.download.nvidia.com/compute/cuda/13.0.0/docs/sidebar/md5sum.txt
https://developer.download.nvidia.com/compute/cuda/13.0.0/docs/sidebar/md5sum.txt

Installation Guide for Linux, Release 13.0

md5sum <file>

Before installing CUDA, any previous installations that could conflict should be uninstalled. This will
not affect systems which have not had CUDA installed previously, or systems where the installation
method has been preserved (RPM/Deb vs. Runfile). See the following charts for specifics.

Table 3: CUDA Toolkit Installation Compatibility Matrix

Installed Toolkit Version == XY

Installed Toolkit Version !=

XY
RPM/deb run RPM/deb run
Installing Toolkit Version | RPM/deb No Action Uninstall Run | No Action No Action
XY run Uninstall Uninstall Run | No Action No Action
RPM/deb

Use the following command to uninstall a Toolkit runfile installation:

/usr/local/cuda-X.Y/bin/cuda-uninstaller

Use the following commands to uninstall an RPM/Deb installation:

Red Hat Enterprise Linux, Rocky Linux, Oracle Linux, Fedora, KylinOS, Amazon Linux:

dnf remove <package_name>

Azure Linux:

tdnf remove <package_name>

OpenSUSE Leap, SUSE Linux Enterprise Server:

zypper remove <package_name>

Debian / Ubuntu:

apt --purge remove <package_name>

3.6. Handle Conflicting Installation Methods

11

Installation Guide for Linux, Release 13.0

12 3. Pre-installation Actions

Chapter 4. Package Manager
Installation

Basic instructions can be found in the Quick Start Guide. Read on for more detailed instructions.

4.1. Overview

Installation using RPM or Debian packages interfaces with your system’s package management sys-
tem. When using RPM or Debian local repo installers, the downloaded package contains a repository
snapshot stored on the local filesystem in /var/. Such a package only informs the package manager
where to find the actual installation packages, but will not install them.

If the online network repository is enabled, RPM or Debian packages will be automatically downloaded
at installation time using the package manager: apt-get, dnf, tdnf, or zypper.

Distribution-specific instructions detail how to install CUDA:
» Red Hat Enterprise Linux /Rocky Linux / Oracle Linux

KylinOS

Fedora

SUSE Linux Enterprise Server

OpenSUSE Leap

Windows Subsystem for Linux

Ubuntu

Debian

vV v v vV V. vV VY

Amazon Linux
» Azure Linux
Finally, some helpful package manager capabilities are detailed.

These instructions are for native development only. For cross-platform development, see the CUDA
Cross-Platform Environment section.

Note: Optional components such as nvidia-fs, libnvidia-nscq, and fabricmanager are not
installed by default and will have to be installed separately as needed.

13

https://docs.nvidia.com/cuda/cuda-quick-start-guide/index.html#linux

Installation Guide for Linux, Release 13.0

Perform the
Satisfy third-party package dependencies by enabling optional repositories:
Red Hat Enterprise Linux 10:

subscription-manager repos --enable=rhel-10-for-<arch>-appstream-rpms

subscription-manager repos --enable=rhel-16-for-<arch>-baseos-rpms

subscription-manager repos --enable=codeready-builder-for-rhel-10-<arch>-
<, rpms

Red Hat Enterprise Linux 9:

subscription-manager repos --enable=rhel-9-for-<arch>-appstream-rpms
subscription-manager repos --enable=rhel-9-for-<arch>-baseos-rpms
subscription-manager repos --enable=codeready-builder-for-rhel-9-<arch>-rpms

Red Hat Enterprise Linux 8:
subscription-manager repos --enable=rhel-8-for-<arch>-appstream-rpms

subscription-manager repos --enable=rhel-8-for-<arch>-baseos-rpms
subscription-manager repos --enable=codeready-builder-for-rhel-8-<arch>-rpms

Rocky Linux 9/10:

dnf config-manager --set-enabled crb

Rocky Linux 8:

dnf config-manager --set-enabled powertools

Oracle Linux 9:

dnf config-manager --set-enabled 0l9_codeready_builder

Oracle Linux 8:

dnf config-manager --set-enabled 0l8_codeready_builder

Choose an installation method: or

14 4. Package Manager Installation

Installation Guide for Linux, Release 13.0

4.2.2. Local Repository Installation

Install local repository on file system:

rpm --install cuda-repo-<distro>-X-Y-local-<version>*.<arch>.rpm

4.2.3. Network Repository Installation

Enable the network repository:

dnf config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/
—repos/<distro>/<arch>/cuda-<distro>.repo

4.2.4. Common Instructions

These instructions apply to both local and network installations.
1. Install CUDA SDK:

dnf install cuda-toolkit

2. Install GPUDirect Filesystem:

dnf install nvidia-gds

3. Reboot the system:

reboot

4. Perform the post-installation actions.

4.3. KylinOS

4.3.1. Preparation

1. Perform the pre-installation actions.

2. Choose an installation method: Local Repository Installation or Network Repository Installation.

4.3. KylinOS 15

Installation Guide for Linux, Release 13.0

4.3.2. Local Repository Installation

Install local repository on file system:

rpm --install cuda-repo-<distro>-X-Y-local-<version>*.<arch>.rpm

4.3.3. Network Repository Installation

Enable the network repository:

dnf config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/
—repos/<distro>/<arch>/cuda-<distro>.repo

4.3.4. Common Instructions

These instructions apply to both local and network installation.
1. Install CUDA SDK:

dnf install cuda-toolkit

2. Install GPUDirect Filesystem:

dnf install nvidia-gds

3. Reboot the system:

reboot

4. Perform the post-installation actions.

4.4. Fedora

4.4.1. Preparation

1. Perform the pre-installation actions.

2. Choose an installation method: Local Repository Installation or Network Repository Installation.

16 4. Package Manager Installation

Installation Guide for Linux, Release 13.0

4.4.2. Local Repository Installation

Install local repository on file system:

rpm --install cuda-repo-<distro>-X-Y-local-<version>*.x86_64.rpm

4.4.3. Network Repository Installation

Enable the network repository:

dnf config-manager addrepo --from-repofile=https://developer.download.nvidia.com/
—compute/cuda/repos/<distro>/x86_64/cuda-<distro>.repo

4.4.4. Common Installation Instructions

These instructions apply to both local and network installation for Fedora.
1. Install CUDA SDK:

dnf install cuda-toolkit

2. Reboot the system:

reboot

3. Perform the Post-installation Actions.

4.4.5. GCC Compatibility Package for Fedora

The Fedora version supported might ship with a newer compiler than what is actually supported by
NVCC. This can be overcome by installing the GCC compatibility package and setting a few environ-
ment variables.

As an example, Fedora 41 ships with GCC 14 and also with a compatible GCC 13 version, which can be
used for NVCC. To install and configure the local NVCC binary to use that version, proceed as follows.

1. Install the packages required:

dnf install gcc13-c++

The binaries then appear on the system in the following way:

/usr/bin/gcc-13
/usr/bin/g++-13

2. Override the default g++ compiler. Refer to the documentation for NVCC regarding the environ-
ment variables. For example:

$ export NVCC_CCBIN='g++-13'

4.4. Fedora 17

https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/#nvcc-environment-variables
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/#nvcc-environment-variables

Installation Guide for Linux, Release 13.0

4.5. SUSE Linux Enterprise Server

4.5.1. Preparation

1. Perform the Pre-installation Actions.

2. Choose an installation method: Local Repository Installation or Network Repository Installation.

4.5.2. Local Repository Installation

Install local repository on file system:

rpm --install cuda-repo-<distro>-X-Y-local-<version>*.<arch>.rpm

4.5.3. Network Repository Installation

1. Enable the network repository:

zypper addrepo https://developer.download.nvidia.com/compute/cuda/repos/<distro>
- /<arch>/cuda-<distro>.repo

2. Refresh Zypper repository cache:

SUSEConnect --product PackageHub/<SLES version number>/<arch>
zypper refresh

4.5.4. Common Installation Instructions

These instructions apply to both local and network installation for SUSE Linux Enterprise Server.
1. Install CUDA SDK:

zypper install cuda-toolkit

2. Reboot the system:

reboot

3. Perform the Post-installation Actions.

18 4. Package Manager Installation

Installation Guide for Linux, Release 13.0

4.6. OpenSUSE Leap

4.6.1. Preparation

1. Perform the Pre-installation Actions.

2. Choose an installation method: Local Repository Installation or Network Repository Installation.

4.6.2. Local Repository Installation

Install local repository on file system:

rpm --install cuda-repo-<distro>-X-Y-local-<version>*.x86_64.rpm

4.6.3. Network Repository Installation

1. Enable the network repository:

zypper addrepo https://developer.download.nvidia.com/compute/cuda/repos/<distro>
—/x86_64/cuda-<distro>.repo

2. Refresh Zypper repository cache:

zypper refresh

4.6.4. Common Installation Instructions

These instructions apply to both local and network installation for OpenSUSE Leap.

1. Install CUDA SDK:

zypper install cuda-toolkit

2. Reboot the system:

reboot

3. Perform the Post-installation Actions.

4.6. OpenSUSE Leap 19

Installation Guide for Linux, Release 13.0

4.7. Windows Subsystem for Linux

These instructions must be used if you are installing in a WSL environment.

4.7.1. Preparation

1. Perform the Pre-installation Actions.

2. Choose an installation method: Local Repository Installation or Network Repository Installation.

4.7.2. Local Repository Installation

1. Install local repository on file system:

dpkg -i cuda-repo-<distro>-X-Y-local_<version>*_amd64.deb

2. Enroll ephemeral public GPG key:

cp /var/cuda-repo-<distro>-X-Y-local/cuda-*-keyring.gpg /usr/share/keyrings/

3. Add pin file to prioritize CUDA repository:
$ wget https://developer.download.nvidia.com/compute/cuda/repos/<distro>/x86_64/

—~cuda-<distro>.pin
mv cuda-<distro>.pin /etc/apt/preferences.d/cuda-repository-pin-600

4.7.3. Network Repository Installation

Install the cuda-keyring package:

$ wget https://developer.download.nvidia.com/compute/cuda/repos/<distro>/x86_64/cuda-
—keyring_1.1-1_all.deb
dpkg -i cuda-keyring_1.1-1_all.deb

4.7.4. Common Installation Instructions

These instructions apply to both local and network installation for WSL.

1. Update the Apt repository cache:

apt update

2. Install CUDA SDK:

apt install cuda-toolkit

3. Perform the Post-installation Actions.

20 4. Package Manager Installation

Installation Guide for Linux, Release 13.0

4.8. Ubuntu

4.8.1. Prepare Ubuntu

1. Perform the Pre-installation Actions.

2. Choose an installation method: Local Repository Installation or Network Repository Installation.

4.8.2. Local Repository Installation

1. Install local repository on file system:

dpkg -i cuda-repo-<distro>-X-Y-local_<version>*_<arch>.deb

2. Enroll ephemeral public GPG key:

cp /var/cuda-repo-<distro>-X-Y-local/cuda-*-keyring.gpg /usr/share/keyrings/

3. Add pin file to prioritize CUDA repository:
$ wget https://developer.download.nvidia.com/compute/cuda/repos/<distro>/<arch>/

—cuda-<distro>.pin
mv cuda-<distro>.pin /etc/apt/preferences.d/cuda-repository-pin-600

4.8.3. Network Repository Installation

Install the cuda-keyring package:

S wget https://developer.download.nvidia.com/compute/cuda/repos/<distro>/<arch>/cuda-
—keyring_1.1-1_all.deb
sudo dpkg -i cuda-keyring_1.1-1_all.deb

dpkg -i cuda-keyring_1.1-1_all.deb

4.8.4. Common Installation Instructions

These instructions apply to both local and network installation for Ubuntu.

1. Update the APT repository cache:

apt update

2. Install CUDA SDK:

Note: These two commands must be executed separately.

4.8. Ubuntu 21

Installation Guide for Linux, Release 13.0

apt install cuda-toolkit

To include all GDS packages:

apt install nvidia-gds

For native armé64-jetson repositories, install the additional packages:

apt install cuda-compat

3. Reboot the system:

reboot

4. Perform the Post-installation Actions.

4.9. Debian

4.9.1. Preparation

1. Perform the Pre-installation Actions.

2. Enable the contrib repository:

add-apt-repository contrib

3. Choose an installation method: Local Repository Installation or Network Repository Installation.

4.9.2. Local Repository Installation

1. Install local repository on file system:
dpkg -i cuda-repo-<distro>-X-Y-local_<version>*_amd64.deb
2. Enroll public GPG key:

cp /var/cuda-repo-<distro>-X-Y-local/cuda-*-keyring.gpg /usr/share/keyrings/

4.9.3. Network Repository Installation

Install the cuda-keyring package:

$ wget https://developer.download.nvidia.com/compute/cuda/repos/<distro>/<arch>/cuda-
—keyring_1.1-1_all.deb
dpkg -i cuda-keyring_1.1-1_all.deb

22 4. Package Manager Installation

Installation Guide for Linux, Release 13.0

4.9.4. Common Installation Instructions

These instructions apply to both local and network installation for Debian.

1. Update the APT repository cache:

apt update

2. Install CUDA SDK:

apt install cuda-toolkit

3. Reboot the system:

reboot

4. Perform the Post-installation Actions.

4.10. Amazon Linux

4.10.1. Prepare Amazon Linux

1. Perform the Pre-installation Actions.

2. Choose an installation method: Local Repository Installation or Network Repository Installation.

4.10.2. Local Repository Installation

Install local repository on file system:

rpm --install cuda-repo-<distro>-X-Y-local-<version>*.x86_64.rpm

4.10.3. Network Repository Installation

Enable the network repository:

dnf config-manager --add-repo https://developer.download.nvidia.com/compute/cuda/
—repos/<distro>/x86_64/cuda-<distro>.repo

4.10. Amazon Linux 23

Installation Guide for Linux, Release 13.0

4.10.4. Common Installation Instructions

These instructions apply to both local and network installation for Amazon Linux.
1. Install CUDA SDK:

dnf install cuda-toolkit

2. Install GPUDirect Filesystem:

dnf install nvidia-gds

3. Reboot the system:

reboot

4. Perform the post-installation actions.

4.11. Azure Linux

4.11.1. Prepare Azure Linux

1. Perform the Pre-installation Actions.

2. Choose an installation method: Local Repository Installation or Network Repository Installation.

4.11.2. Local Repository Installation

Install local repository on file system:

rpm --install cuda-repo-<distro>-X-Y-local-<version>*.x86_64.rpm

4.11.3. Network Repository Installation

Enable the network repository:

curl https://developer.download.nvidia.com/compute/cuda/repos/<distro>/x86_64/cuda-
—.<distro>.repo -o /etc/yum.repos.d/cuda-<distro>.repo

24 4. Package Manager Installation

Installation Guide for Linux, Release 13.0

These instructions apply to both local and network installation for Azure Linux.
Enable the extended repository:
Azure Linux 2 (CBL Mariner 2.0):

tdnf install mariner-repos-extended

Azure Linux 3:

tdnf install azurelinux-repos-extended

Install Cuda SDK:

tdnf install cuda-toolkit

Install GPUDirect Filesystem:

tdnf install nvidia-gds

Reboot the system:

reboot

Perform the post-installation-actions.

Below are some additional capabilities of the package manager that users can take advantage of.

The recommended installation package is the cuda-toolkit package. This package will install the full
set of other CUDA packages required for native development and should cover most scenarios. This
includes the compiler, the debugger, the profiler, the math libraries, and so on. For x86_64 platforms,
this also includes Nsight Eclipse Edition and the visual profilers.

On supported platforms, the cuda-cross-aarch64 and cuda-cross-sbsa packages install all the
packages required for cross-platform development to armé64-jetson and SBSA, respectively.

Note: 32-bit compilation native and cross-compilation is removed from CUDA 12.0 and later Toolkit.
Use the CUDA Toolkit from earlier releases for 32-bit compilation. Hopper does not support 32-bit
applications.

The packages installed by the packages above can also be installed individually by specifying their
names explicitly. The list of available packages be can obtained with:

Amazon Linux / Fedora / KylinOS / Red Hat Enterprise Linux / Rocky Linux / Oracle Linux:

4.12. Additional Package Manager Capabilities 25

Installation Guide for Linux, Release 13.0

dnf --disablerepo="*" --enablerepo="cuda*" list
Azure Linux:
tdnf --disablerepo="*" --enablerepo="cuda-cm2-<cuda X-Y version>-local" list

SUSE Linux Enterprise Server [openSUSE Leap:

zypper packages -r cuda

Debian / Ubuntu:

cat /var/lib/apt/lists/*cuda*Packages | grep "Package:"

Meta packages are RPM/Deb/Conda packages which contain no (or few) files but have multiple de-
pendencies. They are used to install many CUDA packages when you may not know the details of the
packages you want. The following table lists the meta packages.

Table 4: Meta Packages Available for CUDA 13.0

Meta Package

Purpose

cuda Installs all CUDA Toolkit and driver packages with a full desktop experience.
Installs also the next version of the cuda package when it’s released.
cuda-13.0 Installs all CUDA Toolkit and driver packages at the version specified until an

additional version of CUDA is installed.

cuda-toolkit

Installs all CUDA Toolkit packages with a full desktop experience. Installs also
the next version of the cuda-toolkit package when it’s released.

cuda-toolkit-13

Installs all CUDA Toolkit packages with a full desktop experience. Will not up-
grade beyond the 13.x series toolkits.

cuda-toolkit-13

Installs all CUDA Toolkit packages with a full desktop experienc at the version
specified until an additional version of CUDA is installed.

cuda-tools-13.0

Installs all CUDA command line and visual tools. Will not upgrade beyond the
13.x series toolkits.

cuda-runtime-
13.0

Installs all CUDA Toolkit packages required to run CUDA applications and driver,
without any desktop component. Specific for compute nodes

cuda-compiler-
13.0

Installs all CUDA compiler packages.

cuda-libraries-
13.0

Installs all runtime CUDA Library packages.

cuda-libraries-
dev-13.0

Installs all development CUDA Library packages.

26

4. Package Manager Installation

Installation Guide for Linux, Release 13.0

4.12.3. Package Upgrades

The cuda package points to the latest stable release of the CUDA Toolkit. When a new version is
available, use the following commands to upgrade the toolkit:

4.12.3.1 Amazon Linux

dnf upgrade cuda-toolkit

4.12.3.2 Fedora

When upgrading the toolkit to a new major branch:

dnf install cuda-toolkit

When upgrading the toolkit to a new minor branch:

dnf upgrade cuda-toolkit

4.12.3.3 KylinOS / Red Hat Enterprise Linux / Rocky Linux / Oracle Linux

dnf install cuda-toolkit

4.12.3.4 Azure Linux

tdnf install cuda-toolkit

4.12.3.5 OpenSUSE / SUSE Linux Enterprise Server

zypper install cuda-toolkit

4.12.3.6 Debian / Ubuntu

apt install cuda-toolkit

4.12. Additional Package Manager Capabilities 27

Installation Guide for Linux, Release 13.0

The cuda-cross-aarch64, cuda-cross-sbsa and cuda-cross-qnx packages can also be up-
graded in the same manner.

To avoid any automatic upgrade, and lock down the toolkit installation to the XY release, install the
cuda-toolkit-X-Y or cuda-cross-<arch>-X-Y package.

Side-by-side installations are supported. As described in the section, depending on
the package you can avoid the upgrades or get the new version installed automatically.

28 4. Package Manager Installation

Chapter 5. Driver Installation

More information about driver installation can be found in the Driver Installation Guide for Linux

29

https://docs.nvidia.com/datacenter/tesla/driver-installation-guide/index.html

Installation Guide for Linux, Release 13.0

30 5. Driver Installation

Chapter 6. Runfile Installation

Basic instructions can be found in the Quick Start Guide. Read on for more detailed instructions.

This section describes the installation and configuration of CUDA when using the standalone installer.
The standalone installer is a . run file and is completely self-contained.

6.1. Runfile Overview

The Runfile installation installs the CUDA Toolkit via an interactive ncurses-based interface.
The installation steps are listed below.
Finally, advanced options for the installer and uninstallation steps are detailed below.

The Runfile installation does not include support for cross-platform development. For cross-platform
development, see the CUDA Cross-Platform Environment section.

6.2. Installation

1. Perform the pre-installation actions.
2. Reboot into text mode (runlevel 3).

This can usually be accomplished by adding the number “3” to the end of the system’s kernel
boot parameters.

Since the NVIDIA drivers are not yet installed, the text terminals may not display correctly. Tem-
porarily adding “nomodeset” to the system’s kernel boot parameters may fix this issue.

Consult your system’s bootloader documentation for information on how to make the above boot
parameter changes.

3. Run the installer and follow the on-screen prompts:

sh cuda_<version>_linux.run
The installer will prompt for the following:

» EULA Acceptance

» CUDA Toolkit installation, location, and /usr/local/cuda symbolic link

31

https://docs.nvidia.com/cuda/cuda-quick-start-guide/index.html#linux

Installation Guide for Linux, Release 13.0

The default installation location for the toolkit is /usr/local/cuda-13.0:

The /usr/local/cuda symbolic link points to the location where the CUDA Toolkit was installed.
This link allows projects to use the latest CUDA Toolkit without any configuration file update.

The installer must be executed with sufficient privileges to perform some actions. When the cur-
rent privileges are insufficient to perform an action, the installer will ask for the user’s password
to attempt to install with root privileges. Actions that cause the installer to attempt to install
with root privileges are:

installing the CUDA Toolkit to a location the user does not have permission to write to
creating the /usr/local/cuda symbolic link

Running the installer with sudo, as shown above, will give permission to install to directories that
require root permissions. Directories and files created while running the installer with sudo will
have root ownership.

Reboot the system to reload the graphical interface:

reboot

Perform the

32

6. Runfile Installation

Installation Guide for Linux, Release 13.0

Action

Options Used

Explanation

Silent Installation

--silent

Required for any silent installation. Performs
an installation with no further user-input
and minimal command-line output based
on the options provided below. Silent in-
stallations are useful for scripting the in-
stallation of CUDA. Using this option im-
plies acceptance of the EULA. The follow-
ing flags can be used to customize the ac-
tions taken during installation. At least one
of --driver, --uninstall, and --toolkit
must be passed if running with non-root per-
missions.

--driver

Install the CUDA Driver.

--toolkit

Install the CUDA Toolkit.

--toolkitpath=<path>

Install the CUDA Toolkit to the <path> direc-
tory. If not provided, the default path of /
usr/local/cuda-13.0 is used.

--defaultroot=<path>

Install libraries to the <path> directory. If the
<path> is not provided, then the default path
of your distribution is used. This only applies
to the libraries installed outside of the CUDA
Toolkit path.

Extraction

--extract=<path>

Extracts to the <path> the following: the
driver runfile, the raw files of the toolkit to
<path>.

This is especially useful when one wants to
install the driver using one or more of the
command-line options provided by the driver
installer which are not exposed in this in-
staller.

Overriding Instal-
lation Checks

--override

Ignores compiler, third-party library, and
toolkit detection checks which would prevent
the CUDA Toolkit from installing.

No OpenGL Li-
braries

--no-opengl-1ibs

Prevents the driver installation from installing
NVIDIA’'s GL libraries. Useful for systems
where the display is driven by a non-NVIDIA
GPU. In such systems, NVIDIA’s GL libraries
could prevent X from loading properly.

No man pages

--no-man-page

Do not install the man pages under /usr/
share/man.

Overriding Kernel
Source

--kernel-source-path=<pat

heells the driver installation to use <path> as

the kernel source directory when building the
NVIDIA kernel module. Required for systems
where the kernel source is installed to a non-
standard location.

6R.nAhvanced @pti

xconfig

pasrun-nvidia-xconfig

Tells the driver installation to run nvidi&33
xconfig to update the system X configuration
file so that the NVIDIA X driver is used. The
pre-existing X configuration file will be backed

Installation Guide for Linux, Release 13.0

To uninstall the CUDA Toolkit, run the uninstallation script provided in the bin directory of the toolkit.
By default, it is located in /usr/local/cuda-13.0/bin:

/usr/local/cuda-13.0/bin/cuda-uninstaller

34 6. Runfile Installation

Chapter 7. Conda Installation

This section describes the installation and configuration of CUDA when using the Conda installer. The
Conda packages are available at https://anaconda.org/nvidia.

7.1. Conda Overview

The Conda installation installs the CUDA Toolkit. The installation steps are listed below.

7.2. Installing CUDA Using Conda

To perform a basic install of all CUDA Toolkit components using Conda, run the following command:

$ conda install cuda -c nvidia

Note: Install CUDA in a dedicated Conda environment instead of the base environment to avoid in-
stallation issues.

7.3. Uninstalling CUDA Using Conda

To uninstall the CUDA Toolkit using Conda, run the following command:

S conda remove cuda

35

https://anaconda.org/nvidia

Installation Guide for Linux, Release 13.0

7.4. Installing Previous CUDA Releases

All Conda packages released under a specific CUDA version are labeled with that release version. To
install a previous version, include that label in the install command such as:

$ conda install cuda -c nvidia/label/cuda-12.4.0

7.5. Upgrading from cudatoolkit Package

If you had previously installed CUDA using the cudatoolkit package and want to maintain a similar
install footprint, you can limit your installation to the following packages:

» cuda-libraries-dev
» cuda-nvcc

» cuda-nvtx
>

cuda-cupti

Note: Some extra files, such as headers, will be included in this installation which were not
included in the cudatoolkit package. If you need to reduce your installation further, replace
cuda-libraries-dev with the specific libraries you need.

36 7. Conda Installation

Chapter 8. Pip Wheels

NVIDIA provides Python Wheels for installing CUDA through pip, primarily for using CUDA with Python.
These packages are intended for runtime use and do not currently include developer tools (these can
be installed separately).

Please note that with this installation method, CUDA installation environment is managed via pip and
additional care must be taken to set up your host environment to use CUDA outside the pip environ-
ment.

To install Wheels, you must first install the nvidia-pyindex package, which is required in order to
set up your pip installation to fetch additional Python modules from the NVIDIA NGC PyPI repo. If your
pip and setuptools Python modules are not up-to-date, then use the following command to upgrade
these Python modules. If these Python modules are out-of-date then the commands which follow
later in this section may fail.

$ python3 -m pip install --upgrade setuptools pip wheel
You should now be able to install the nvidia-pyindex module.
$ python3 -m pip install nvidia-pyindex

If your project is using a requirements.txt file, then you can add the following line to your
requirements. txt file as an alternative to installing the nvidia-pyindex package:

--extra-index-url https://pypi.org/simple

Install the CUDA runtime package:

$ python3 -m pip install nvidia-cuda-runtime-cul2

Optionally, install additional packages as listed below using the following command:

$ python3 -m pip install nvidia-<library>

37

Installation Guide for Linux, Release 13.0

The following metapackages will install the latest version of the named component on Linux for the
indicated CUDA version. “cul12” should be read as “cudal2”.

nvidia-cublas-cul2
nvidia-cuda-cccl-cul2
nvidia-cuda-cupti-cul2
nvidia-cuda-nvcc-cul2
nvidia-cuda-nvrtc-cul2
nvidia-cuda-opencl-cul2
nvidia-cuda-runtime-cui2
nvidia-cuda-sanitizer-api-cul2
nvidia-cufft-cul2
nvidia-curand-cul2
nvidia-cusolver-cul2
nvidia-cusparse-cul2
nvidia-npp-cul2
nvidia-nvfatbin-cul2
nvidia-nvjitlink-cul12
nvidia-nvjpeg-cul2
nvidia-nvml-dev-cul2
nvidia-nvtx-cul2

These metapackages install the following packages:
nvidia-cublas-cu129
nvidia-cuda-cccl-cul129
nvidia-cuda-cupti-cui129
nvidia-cuda-nvcc-cul129
nvidia-cuda-nvrtc-cul129
nvidia-cuda-opencl-cul129
nvidia-cuda-runtime-cul129
nvidia-cuda-sanitizer-api-cul129
nvidia-cufft-cul129
nvidia-curand-cu129
nvidia-cusolver-cul129
nvidia-cusparse-cul29

nvidia-npp-cul129

38 8. Pip Wheels

Installation Guide for Linux, Release 13.0

nvidia-nvfatbin-cu129
nvidia-nvjitlink-cul129
nvidia-nvjpeg-cul29
nvidia-nvml-dev-cu129

nvidia-nvtx-cul29

8.3. Metapackages 39

Installation Guide for Linux, Release 13.0

40

8. Pip Wheels

Chapter 9. CUDA Cross-Platform
Environment

Cross development for arm64-sbsa is supported on Ubuntu 20.04, Ubuntu 22.04, Ubuntu 24.04, Kyli-
nOS 10, Red Hat Enterprise Linux 8, Red Hat Enterprise Linux 9, and SUSE Linux Enterprise Server
15.

Cross development for armé4-jetson is only supported on Ubuntu 22.04.

We recommend selecting a host development environment that matches the supported cross-target
environment. This selection helps prevent possible host/target incompatibilities, such as gcc or glibc
version mismatches.

9.1. CUDA Cross-Platform Installation

Some of the following steps may have already been performed as part of the native installation sections.
Such steps can safely be skipped.

These steps should be performed on the x86_64 host system, rather than the target system. To
install the native CUDA Toolkit on the target system, refer to the native installation sections in Package
Manager Installation.

9.1.1. Ubuntu

1. Perform the Pre-installation Actions.

2. Choose an installation method: Local Cross Repository Installation or Network Cross Repository
Installation.

41

Installation Guide for Linux, Release 13.0

9.1.1.1 Local Cross Repository Installation

1. Install repository meta-data package with:

dpkg -i cuda-repo-cross-<arch>-<distro>-X-Y-local-<version>*_all.deb

9.1.1.2 Network Cross Repository Installation

1. Install the cuda-keyring package:

$ wget https://developer.download.nvidia.com/compute/cuda/repos/<distro>/cross-linux-
—<arch>/cuda-keyring_1.1-1_all.deb
dpkg -i cuda-keyring_1.1-1_all.deb

9.1.1.3 Common Installation Instructions
1. Update the APT repository cache:
apt update

1. Install the appropriate cross-platform CUDA Toolkit:
a. For armé4-sbsa:

apt install cuda-cross-sbsa

b. For armé4-jetson:

apt install cuda-cross-aarch64

c. For QNX:

apt install cuda-cross-gnx

2. Perform the Post-installation Actions.

9.1.2. Red Hat Enterprise Linux / Rocky Linux / Oracle
Linux

1. Perform the Pre-installation Actions

2. Choose an installation method: Local Cross Repository Installation or Network Cross Repository
Installation.

42 9. CUDA Cross-Platform Environment

Installation Guide for Linux, Release 13.0

9.1.2.1 Local Cross Repository Installation

1. Install repository meta-data package with:

rpm -i cuda-repo-cross-<arch>-<distro>-X-Y-local-<version>*.noarch.rpm

9.1.2.2 Network Cross Repository Installation

1. Enable the network repository:

dnf config-manager --add-repo https://developer.download.nvidia.com/compute/
—cuda/repos/<distro>/cross-linux-<arch>/cuda-<distro>-cross-linux-sbsa.repo
9.1.2.3 Common Installation Instructions

1. Install the CUDA SDK:

dnf install cuda-cross-sbsa

9.1.3. SUSE Linux Enterprise Server

1. Perform the Pre-installation Actions

2. Choose an installation method: Local Cross Repository Installation or Network Cross Repository
Installation.

9.1.3.1 Local Cross Repository Installation

1. Install repository meta-data package with:

rpm -i cuda-repo-cross-<arch>-<distro>-X-Y-local-<version>*.noarch.rpm

9.1.3.2 Network Cross Repository Installation

1. Enable the network repo:

zypper addrepo https://developer.download.nvidia.com/compute/cuda/repos/<distro>
—/<arch>/cuda-<distro>-cross-1linux-sbsa.repo

9.1. CUDA Cross-Platform Installation 43

Installation Guide for Linux, Release 13.0

Refresh Zypper repository cache:

zypper refresh

Install CUDA SDK:

zypper install cuda-cross-sbsa

44

9. CUDA Cross-Platform Environment

Chapter 10. Tarball and Zip Archive
Deliverables

In an effort to meet the needs of a growing customer base requiring alternative installer packaging
formats, as well as a means of input into community CI/CD systems, tarball and zip archives are avail-
able for each component.

These tarball and zip archives, known as binary archives, are provided at https://developer.download.
nvidia.com/compute/cuda/redist/.

cuda_cudart-
linux-ppc64le-
11.4.108-
archive.tar.xz

cuda_cudart-
linux-sbsa-
11.4.108-
archive.tar.xz

cuda_cudart-
linux-x86_64-
11.4.108-
archive.tar.xz

cuda_cudart-
windows-x86_64-
11.4.108-
archive.zip

These component .tar.xz and .zip binary archives do not replace existing packages such as .deb, .rpm,
runfile, conda, etc. and are not meant for general consumption, as they are not installers. However
this standardized approach will replace existing .txz archives.

For each release, a JSON manifest is provided such as redistrib_11.4.2.json, which corresponds to the
CUDA 11.4.2 release label (CUDA 11.4 update 2) which includes the release date, the name of each
component, license name, relative URL for each platform and checksums.

Package maintainers are advised to check the provided LICENSE for each component prior to redis-
tribution. Instructions for developers using CMake and Bazel build systems are provided in the next
sections.

45

https://developer.download.nvidia.com/compute/cuda/redist/
https://developer.download.nvidia.com/compute/cuda/redist/

Installation Guide for Linux, Release 13.0

The following example of a JSON manifest contains keys for each component: name, license, version,
and a platform array which includes relative_path, sha256, md5, and size (bytes) for each archive.

{
"release_date": "20621-09-07",

"cuda_cudart": {
“name": "CUDA Runtime (cudart)",
"“license": "CUDA Toolkit",
"version": "11.4.108",
"linux-x86_64": {
"relative_path": "cuda_cudart/linux-x86_64/cuda_cudart-1linux-x86_64-11.4.
—.108-archive.tar.xz",
"sha256" :
—."dB8a1b731e5175aa3ae06a6d1c6b3059dd9ea13836d947018ea5e3ec2cal3d62b”,
"md5" : "da198656b27a3559004c3b7f20e5d074",
"size": "828300"

}

inux-ppc64le": {
"relative_path": "cuda_cudart/linux-ppc64le/cuda_cudart-linux-ppc64le-11.
—4.108-archive.tar.xz",
"sha256" :
—."831dffeB62ae3ebda3d3c4010d0ee4e40a01fd5e6358098a87bb318ea7c79e0c",
"md5": "ca73328e3f8e2bb5b1f2184c98c3a510",
"size": "776840"

by
"linux-sbsa": {
"relative_path": "cuda_cudart/linux-sbsa/cuda_cudart-linux-sbsa-11.4.108-
—archive.tar.xz",
"sha256" :

— "2ab9599bbaebdcf59add73d1f1a352ae619f8cb5ccec254093¢c98efd4c14553¢c",
"md5": "aeb5c19661f06b6398741015ba368102",
"size": "782372"

}l
"windows-x86_64": {
"relative_path": "cuda_cudart/windows-x86_64/cuda_cudart-windows-x86_64-

—11.4.108-archive.zip",
"sha256" :
—"b59756c27658d1ea87a17c06d064d1336576431cd64da5d1790d969e455d06d3 ",
"md5": "7f6837a46b78198402429a3760ab28fc",
"size": "2897751"

}

A JSON schema is provided at

A sample script that parses these JSON manifests is available on
Downloads each archive
Validates SHA256 checksums
Extracts archives

Flattens into a collapsed directory structure

46 10. Tarball and Zip Archive Deliverables

https://developer.download.nvidia.com/compute/redist/redistrib-v2.schema.json
https://developer.download.nvidia.com/compute/redist/redistrib-v2.schema.json
https://github.com/NVIDIA/build-system-archive-import-examples/blob/main/parse_redist.py

Installation Guide for Linux, Release 13.0

Table 5: Available Tarball and Zip Archives

Product Example

CUDA Toolkit ./parse_redist.py --product cuda --label 13.0.0

cuBLASMp ./parse_redist.py --product cublasmp --label 0.2.1

cuDNN ./parse_redist.py --product cudnn --label 9.2.1

cuDSS ./parse_redist.py --product cudss --label 0.3.0

cuQuantum ./parse_redist.py --product cuquantum --label 24.03.0

CUSPARSELt ./parse_redist.py --product cusparselt --label 0.6.2

cuTENSOR ./parse_redist.py --product cutensor --label 2.0.2.1

NVIDIA driver ./parse_redist.py --product nvidia-driver --label 5580.
90.07

nvJPEG2000 ./parse_redist.py --product nvjpeg2000 --label 0.7.5

NVPL ./parse_redist.py --product nvpl --label 24.7

nvTIFF ./parse_redist.py --product nvtiff --label ©0.3.0

10.2. Importing Tarballs into CMake

The recommended module for importing these tarballs into the CMake build system is via FindCUDA-
Toolkit (3.17 and newer).

Note: The FindCUDA module is deprecated.

The path to the extraction location can be specified with the CUDAToolkit_ROOT environmental vari-
able. For example CMakeLists.txt and commands, see cmake/1_FindCUDAToolkit/.

For older versions of CMake, the ExternalProject_Add module is an alternative method. For example
CMakelLists.txt file and commands, see cmake/2_ExternalProject/.

10.3. Importing Tarballs into Bazel

The recommended method of importing these tarballs into the Bazel build system is using
http_archive and pkg_tar.

For an example, see bazel/1_pkg_tar/.

10.2. Importing Tarballs into CMake 47

https://developer.download.nvidia.com/compute/cuda/redist
https://developer.download.nvidia.com/compute/cublasmp/redist/
https://developer.download.nvidia.com/compute/cudnn/redist
https://developer.download.nvidia.com/compute/cudss/redist
https://developer.download.nvidia.com/compute/cuquantum/redist
https://developer.download.nvidia.com/compute/cusparselt/redist
https://developer.download.nvidia.com/compute/cutensor/redist
https://developer.download.nvidia.com/compute/nvidia-driver/redist
https://developer.download.nvidia.com/compute/nvjpeg2000/redist
https://developer.download.nvidia.com/compute/nvpl/redist
https://developer.download.nvidia.com/compute/nvtiff/redist
https://cmake.org/cmake/help/latest/module/FindCUDAToolkit.html
https://cmake.org/cmake/help/latest/module/FindCUDAToolkit.html
https://github.com/NVIDIA/build-system-archive-import-examples/blob/main/cmake/1_FindCUDAToolkit
https://cmake.org/cmake/help/latest/module/ExternalProject.html
https://github.com/NVIDIA/build-system-archive-import-examples/tree/main/cmake/2_ExternalProject
https://docs.bazel.build/versions/main/repo/http.html
https://docs.bazel.build/versions/main/be/pkg.html#pkg_tar
https://github.com/NVIDIA/build-system-archive-import-examples/blob/main/bazel/1_pkg_tar

Installation Guide for Linux, Release 13.0

48

10. Tarball and Zip Archive Deliverables

Chapter 11. Post-installation Actions

The post-installation actions must be manually performed. These actions are split into mandatory,
recommended, and optional sections.

Some actions must be taken after the installation before the CUDA Toolkit can be used.

The PATH variable needs to include export PATH=/usr/local/cuda-13.06/
binS{PATH:+:${PATH}}. Nsight Compute has moved to /opt/nvidia/nsight-compute/ only
in rpm/deb installation method. When using . run installer it is still located under /usr/local/
cuda-13.0/.

To add this path to the PATH variable:

$ export PATH=${PATH}:/usr/local/cuda-13.0/bin

In addition, when using the runfile installation method, the LD_LIBRARY_PATH variable needs to con-
tain /usr/local/cuda-13.0/1ib64 on a 64-bit system and /usr/local/cuda-13.6/1ib for the
32 bit compatibility:

S export LD_LIBRARY_PATH=S${LD_LIBRARY_PATH}:/usr/local/cuda-13.0/1ib64

Note that the above paths change when using a custom install path with the runfile installation
method.

49

Installation Guide for Linux, Release 13.0

11.2. Recommended Actions

Other actions are recommended to verify the integrity of the installation.

11.2.1. Install Writable Samples

CUDA Samples are now located in https://github.com/nvidia/cuda-samples, which includes instruc-
tions for obtaining, building, and running the samples.

11.2.2. Verify the Installation

Before continuing, it is important to verify that the CUDA toolkit can find and communicate correctly
with the CUDA-capable hardware. To do this, you need to compile and run some of the sample pro-
grams, located in https://github.com/nvidia/cuda-samples.

Note: Ensure the PATH and, if using the runfile installation method, LD_LIBRARY_PATH variables are
set correctly.

11.2.2.1 Running the Binaries

After compilation, find and run deviceQueryfrom https://github.com/nvidia/cuda-samples. If the
CUDA software is installed and configured correctly, the output for deviceQuery should look sim-
ilar to that shown in Figure 1.

The exact appearance and the output lines might be different on your system. The important out-
comes are that a device was found (the first highlighted line), that the device matches the one on your
system (the second highlighted line), and that the test passed (the final highlighted line).

If a CUDA-capable device is installed but deviceQuery reports that no CUDA-capable devices are
present, this likely means that the /dev/nvidia* files are missing or have the wrong permissions.

On systems where SELinux is enabled, you might need to temporarily disable this security feature to
run deviceQuery. To do this, type:

setenforce 9

from the command line as the superuser.

Running the bandwidthTest program ensures that the system and the CUDA-capable device are able
to communicate correctly. Its output is shown in Figure 2.

Note that the measurements for your CUDA-capable device description will vary from system to sys-
tem. The important point is that you obtain measurements, and that the second-to-last line (in Figure
2) confirms that all necessary tests passed.

Should the tests not pass, make sure you have a CUDA-capable NVIDIA GPU on your system and make
sure it is properly installed.

If you run into difficulties with the link step (such as libraries not being found), consult the Linux Release
Notes found in https://github.com/nvidia/cuda-samples.

50 11. Post-installation Actions

https://github.com/nvidia/cuda-samples
https://github.com/nvidia/cuda-samples
index.html#environment-setup
https://github.com/nvidia/cuda-samples
index.html#running-binaries-valid-results-from-sample-cuda-devicequery-program
https://github.com/nvidia/cuda-samples

Installation Guide for Linux, Release 13.0

- -

. /deviceQuery Starting...
CUDA Device Query (Runtime API) version (CUDART static linking)
Detected 1 CUDA Capable device(s)

Device 6: "Tesla Kz2ec"
CUDA Driver Version / Runtime Version 6.0 [/ 6.0
CUDA Capability Major/Minor version number: 3.5
Total amount of global memory: 4800 MBytes (5032706048 bytes)
(13) Multiprocessors, (192) CUDA Cores/MP: 2496 CUDA Cores
GPU Clock rate: 786 MHz (0.71 GHz)
Memory Clock rate: 2600 Mhz
Memory Bus Width: 320-bit
L2 Cache Size: 1310720 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)
Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 65536
Warp size: 32
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 2 copy engine(s)
Run time limit on kernels: No
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Enabled
Device supports Unified Addressing (UVA): Yes
Device PCI Bus ID / PCI location ID: 2/ 0
Compute Mode:
< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 6.0, CUDA Runtime Version = 6.8, NumDevs = 1, Device® = Tesla K28c
Result = PASS

Figure 1: Valid Results from deviceQuery CUDA Sample

P

[CUDA Bandwidth Test] - Starting...
Running on...

Device ©: Quadro K5000
Quick Mode

Host to Device Bandwidth, 1 Device(s)

PINNED Memory Transfers
Transfer Size (Bytes) Bandwidth(MB/s)
33554432 5798.4

Device to Host Bandwidth, 1 Device(s)

PINNED Memory Transfers
Transfer Size (Bytes) Bandwidth(MB/s)
33554432 6378.4

Device to Device Bandwidth, 1 Device(s)

PINNED Memory Transfers
Transfer Size (Bytes) Bandwidth(MB/s)
33554432 133606.8

Result = PASS

Figure 2: Valid Results from bandwidthTest CUDA Sample

11.2. Recommended Actions

Installation Guide for Linux, Release 13.0

To install Nsight Eclipse plugins, an installation script is provided:

$ /usr/local/cuda-13.0/bin/nsight_ee_plugins_manage.sh install <eclipse-dir>

Refer to for more details.

Removal of the local repo installer is recommended after installation of CUDA SDK.
Debian / Ubuntu

apt-get remove --purge "cuda-repo-<distro>-X-Y-local*"

Amazon Linux / Fedora / KylinOS / RHEL / Rocky Linux / Oracle Linux

dnf remove "cuda-repo-<distro>-X-Y-local*"

Azure Linux

tdnf remove "cuda-repo-<distro>-X-Y-local*"

OpenSUSE / SLES

zypper remove "cuda-repo-<distro>-X-Y-local*"

Other options are not necessary to use the CUDA Toolkit, but are available to provide additional fea-
tures.

Some CUDA samples use third-party libraries which may not be installed by default on your system.
These samples attempt to detect any required libraries when building.

If alibrary is not detected, it waives itself and warns you which library is missing. To build and run these
samples, you must install the missing libraries. In cases where these dependencies are not installed,
follow the instructions below.

Amazon Linux / Fedora / KylinOS / RHEL / Rocky Linux / Oracle Linux

dnf install freeglut-devel 1libX11-devel libXi-devel libXmu-devel make mesa-1ibGLU-
—devel freeimage-devel 1libglfw3-devel

SLES

52 11. Post-installation Actions

https://docs.nvidia.com/cuda/nsightee-plugins-install-guide/index.html

Installation Guide for Linux, Release 13.0

zypper install libglut3 libX11-devel 1ibXi6 libXmu6 1ibGLU1 make

OpenSUSE

zypper install freeglut-devel 1libX11-devel libXi-devel libXmu-devel make Mesa-1ibGL-
—devel freeimage-devel

Debian / Ubuntu

apt-get install g++ freeglut3-dev build-essential libx11-dev libxmu-dev libxi-dev
—~1libglu1-mesa-dev libfreeimage-dev libglfw3-dev

The cuda-gdb source must be explicitly selected for installation with the runfile installation method.
During the installation, in the component selection page, expand the component “CUDA Tools 13.0”
and select cuda-gdb-src for installation. It is unchecked by default.

To obtain a copy of the source code for cuda-gdb using the RPM and Debian installation methods,
the cuda-gdb-src package must be installed.

The source code is installed as a tarball in the /usr/local/cuda-13.0/extras directory.

For applications that rely on the symlinks /usr/local/cudaand /usr/local/cuda-MAJOR, you may
wish to change to a different installed version of CUDA using the provided alternatives.

To show the active version of CUDA and all available versions:

$ update-alternatives --display cuda

To show the active minor version of a given major CUDA release:

$ update-alternatives --display cuda-12

To update the active version of CUDA:

update-alternatives --config cuda

11.3. Optional Actions 53

Installation Guide for Linux, Release 13.0

54 11. Post-installation Actions

Chapter 12. Removing CUDA Toolkit

Follow the below steps to properly uninstall the CUDA Toolkit from your system. These steps will
ensure that the uninstallation will be clean.

Amazon Linux / Fedora / Kylin OS / Red Hat Enterprise Linux / Rocky Linux / Oracle Linux:

dnf remove "cuda*" "*cublas*" "*cufft*" "*cufile*" "*curand*" "*cusolver*"
- "*cusparse*" "*gds-tools*" "*npp*" "*nvjpeg*" "nsight*" "*nvvm*"

Azure Linux:

tdnf remove "cuda*" "*cublas*" "*cufft*" "*cufile*" "*curand*" "*cusolver*"
—"*cusparse*" "*gds-tools*" "*npp*" "*nvjpeg*" "nsight*" "*nvvm*"

And then to clean up the uninstall;

tdnf autoremove

OpenSUSE / SUSE Linux Enterprise Server:

zypper remove "cuda*" "*cublas*" "*cufft*" "*cufile*" "*curand*" "*cusolver*"
- "*cusparse*" "*gds-tools*" "*npp*" "#*nvjpeg*" "nsight*" "*nvvm*"

Debian / Ubuntu:

apt remove --purge "*cuda*" "*cublas*" "*cufft*" "*cufile*" "*curand*" "*cusolver*"
—"*cusparse*" "*gds-tools*" "*npp*" "*nvjpeg*" "nsight*" "*nvvm*"

And then to clean up the uninstall:

apt autoremove --purge

55

Installation Guide for Linux, Release 13.0

56 12. Removing CUDA Toolkit

Chapter 13. Advanced Setup

Below is information on some advanced setup scenarios which are not covered in the basic instructions
above.

57

Installation Guide for Linux, Release 13.0

Table 6: Advanced Setup Scenarios when Installing CUDA

Scenario

Instructions

Install GPUDirect Storage

Refer to .
GDS is supported in two different modes:
GDS (default/full perf mode)
Compatibility mode.
Installation instructions for them differ slightly.
Compatibility mode is the only mode that is sup-
ported on certain distributions due to software
dependency limitations.
Full GDS support is restricted to the following
Linux distros:
Ubuntu 20.04, Ubuntu 22.04, Ubuntu 24.04
RHEL 8y (y <= 10), RHEL 9y (y <= 6), and
RHEL 10.0

Install CUDA to a specific directory using the
Package Manager installation method.

RPM

The RPM packages don’t support custom in-
stall locations through the package managers
(Yum and Zypper), but it is possible to install the
RPM packages to a custom location using rpm’s
--relocate parameter:

sudo rpm --install --relocate /usr/local/
—cuda-13.0=/new/toolkit package.rpm

You will need to install the packages in the cor-
rect dependency order; this task is normally
taken care of by the package managers. For
example, if package “foo” has a dependency on
package “bar”, you should install package “bar”
first, and package “foo” second. You can check
the dependencies of a RPM package as follows:
rpm -gRp package.rpm

Note that the driver packages cannot be relo-
cated.

deb

The Deb packages do not support custom install
locations. It is however possible to extract the
contents of the Deb packages and move the files
to the desired install location. See the next sce-
nario for more details one xtracting Deb pack-
ages.

Extract the contents of the installers.

Runfile

The Runfile can be extracted into the standalone
Toolkit Runfiles by using the --extract param-
eter. The Toolkit standalone Runfiles can be fur-
ther extracted by running:

./runfile.run --tar mxvf

./runfile.run -x

RPM
The RPM packages can be extracted by running:

58

rpm2cpio package.rpm | cpi3 Adianced Setup
deb
The Deb packages can be extracted by running:

doka-deb

-x packaae . deb output dir

https://docs.nvidia.com/gpudirect-storage/troubleshooting-guide/index.html

Chapter 14. Additional Considerations

Now that you have CUDA-capable hardware and the NVIDIA CUDA Toolkit installed, you can examine
and enjoy the numerous included programs. To begin using CUDA to accelerate the performance of
your own applications, consult the CUDA C++ Programming Guide, located in /usr/local/cuda-13.
0/doc.

A number of helpful development tools are included in the CUDA Toolkit to assist you as you develop
your CUDA programs, such as NVIDIA® Nsight™ Eclipse Edition, NVIDIA Visual Profiler, CUDA-GDB, and

CUDA-MEMCHECK.

For technical support on programming questions, consult and participate in the developer forums at

59

https://forums.developer.nvidia.com/c/accelerated-computing/cuda/206

Installation Guide for Linux, Release 13.0

60 14. Additional Considerations

Chapter 15. Frequently Asked
Questions

15.1. How do | install the Toolkit in a different
location?

The Runfile installation asks where you wish to install the Toolkit during an interactive install. If in-
stalling using a non-interactive install, you can use the --toolkitpath parameter to change the in-
stall location:

./runfile.run --silent --toolkit --toolkitpath=/my/new/toolkit
The RPM and Deb packages cannot be installed to a custom install location directly using the pack-

age managers. See the “Install CUDA to a specific directory using the Package Manager installation
method” scenario in the Advanced Setup section for more information.

15.2. Why do | see “nvcc: No such file or
directory” when | try to build a CUDA
application?

Your PATH environment variable is not set up correctly. Ensure that your PATH includes the bin direc-
tory where you installed the Toolkit, usually /usr/local/cuda-13.0/bin.

$ export PATH=/usr/local/cuda-13.08/bin${PATH:+:${PATH}}

61

Installation Guide for Linux, Release 13.0

15.3. Why do | see “error while loading shared
libraries: <lib name>: cannot open shared
object file: No such file or directory” when

| try to run a CUDA application that uses a
CUDA library?

Your LD_LIBRARY_PATH environment variable is not set up correctly. Ensure that your
LD_LIBRARY_PATH includes the lib and/or lib64 directory where you installed the Toolkit, usually /usr/
local/cuda-13.08/1ib{, 64}:

$ export LD_LIBRARY_PATH=/usr/local/cuda-13.8/1ib ${LD_LIBRARY_PATH:+:${LD_LIBRARY_
—PATH}}

15.4. Why do | see multiple “404 Not Found”
errors when updating my repository
meta-data on Ubuntu?

These errors occur after adding a foreign architecture because apt is attempting to query for each
architecture within each repository listed in the system’s sources.list file. Repositories that do not
host packages for the newly added architecture will present this error. While noisy, the error itself

does no harm. Please see the Advanced Setup section for details on how to modify your sources.
list file to prevent these errors.

15.5. How can | tell X to ignore a GPU for
compute-only use?

To make sure X doesn’t use a certain GPU for display, you need to specify which other GPU to use

for display. For more information, please refer to the “Use a specific GPU for rendering the display”
scenario in the Advanced Setup section.

62 15. Frequently Asked Questions

index.html#advanced-setup

Installation Guide for Linux, Release 13.0

15.6. Why doesn’t the cuda-repo package install
the CUDA Toolkit?

When using RPM or Deb, the downloaded package is a repository package. Such a package only in-
forms the package manager where to find the actual installation packages, but will not install them.

See the Package Manager Installation section for more details.

15.7. How do | install an older CUDA version
using a network repo?

Depending on your system configuration, you may not be able to install old versions of CUDA using
the cuda metapackage. In order to install a specific version of CUDA, you may need to specify all of
the packages that would normally be installed by the cuda metapackage at the version you want to
install.

If you are using yum to install certain packages at an older version, the dependencies may not resolve
as expected. In this case you may need to pass “--setopt=obsoletes=0" to yum to allow an install
of packages which are obsoleted at a later version than you are trying to install.

15.8. How do | handle “Errors were encountered
while processing: glx-diversions”?

This sometimes occurs when trying to uninstall CUDA after a clean .deb installation. Run the following
commands:

apt install glx-diversions --reinstall
apt remove nvidia-alternative

Then re-run the commands from Removing CUDA Toolkit.

15.6. Why doesn’t the cuda-repo package install the CUDA Toolkit? 63

Installation Guide for Linux, Release 13.0

64 15. Frequently Asked Questions

Chapter 16. Notices

This document is provided for information purposes only and shall not be regarded as a warranty of a
certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no repre-
sentations or warranties, expressed or implied, as to the accuracy or completeness of the information
contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall
have no liability for the consequences or use of such information or for any infringement of patents
or other rights of third parties that may result from its use. This document is not a commitment to
develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any
other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that
such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the
time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by
authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA
product referenced in this document. No contractual obligations are formed either directly or indirectly
by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military,
aircraft, space, or life support equipment, nor in applications where failure or malfunction of the NVIDIA
product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or
applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for
any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA.
It is customer’s sole responsibility to evaluate and determine the applicability of any information con-
tained in this document, ensure the product is suitable and fit for the application planned by customer,
and perform the necessary testing for the application in order to avoid a default of the application or
the product. Weaknesses in customer’s product designs may affect the quality and reliability of the
NVIDIA product and may result in additional or different conditions and/or requirements beyond those
contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or prob-
lem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is
contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other
NVIDIA intellectual property right under this document. Information published by NVIDIA regarding
third-party products or services does not constitute a license from NVIDIA to use such products or

65

Installation Guide for Linux, Release 13.0

services or a warranty or endorsement thereof. Use of such information may require a license from a
third party under the patents or other intellectual property rights of the third party, or a license from
NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA
in writing, reproduced without alteration and in full compliance with all applicable export laws and
regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE
BEING PROVIDED “AS 1S.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WAR-
RANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CON-
SEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARIS-
ING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES. Notwithstanding any damages that customer might incur for any reason whatso-
ever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein
shall be limited in accordance with the Terms of Sale for the product.

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the
U.S. and other countries. Other company and product names may be trademarks of the respective
companies with which they are associated.

66 16. Notices

Chapter 17. Copyright

© 2009-2024 NVIDIA Corporation & affiliates. All rights reserved.
This product includes software developed by the Syncro Soft SRL (http://www.sync.ro/).

Copyright

©2009-2025, NVIDIA Corporation & affiliates. All rights reserved

67

http://www.sync.ro/

	Overview
	Introduction
	System Requirements
	OS Support Policy
	Host Compiler Support Policy
	Host Compiler Compatibility Packages
	Supported C++ Dialects

	About This Document
	Administrative Privileges

	Pre-installation Actions
	Verify You Have a CUDA-Capable GPU
	Verify You Have a Supported Version of Linux
	Verify the System Has gcc Installed
	Choose an Installation Method
	Download the NVIDIA CUDA Toolkit
	Handle Conflicting Installation Methods

	Package Manager Installation
	Overview
	Red Hat Enterprise Linux / Rocky Linux / Oracle Linux
	Preparation
	Local Repository Installation
	Network Repository Installation
	Common Instructions

	KylinOS
	Preparation
	Local Repository Installation
	Network Repository Installation
	Common Instructions

	Fedora
	Preparation
	Local Repository Installation
	Network Repository Installation
	Common Installation Instructions
	GCC Compatibility Package for Fedora

	SUSE Linux Enterprise Server
	Preparation
	Local Repository Installation
	Network Repository Installation
	Common Installation Instructions

	OpenSUSE Leap
	Preparation
	Local Repository Installation
	Network Repository Installation
	Common Installation Instructions

	Windows Subsystem for Linux
	Preparation
	Local Repository Installation
	Network Repository Installation
	Common Installation Instructions

	Ubuntu
	Prepare Ubuntu
	Local Repository Installation
	Network Repository Installation
	Common Installation Instructions

	Debian
	Preparation
	Local Repository Installation
	Network Repository Installation
	Common Installation Instructions

	Amazon Linux
	Prepare Amazon Linux
	Local Repository Installation
	Network Repository Installation
	Common Installation Instructions

	Azure Linux
	Prepare Azure Linux
	Local Repository Installation
	Network Repository Installation
	Common Installation Instructions

	Additional Package Manager Capabilities
	Available Packages
	Meta Packages
	Package Upgrades
	Amazon Linux
	Fedora
	KylinOS / Red Hat Enterprise Linux / Rocky Linux / Oracle Linux
	Azure Linux
	OpenSUSE / SUSE Linux Enterprise Server
	Debian / Ubuntu
	Other Package Notes

	Driver Installation
	Runfile Installation
	Runfile Overview
	Installation
	Advanced Options
	Uninstallation

	Conda Installation
	Conda Overview
	Installing CUDA Using Conda
	Uninstalling CUDA Using Conda
	Installing Previous CUDA Releases
	Upgrading from cudatoolkit Package

	Pip Wheels
	Prerequisites
	Procedure
	Metapackages

	CUDA Cross-Platform Environment
	CUDA Cross-Platform Installation
	Ubuntu
	Local Cross Repository Installation
	Network Cross Repository Installation
	Common Installation Instructions

	Red Hat Enterprise Linux / Rocky Linux / Oracle Linux
	Local Cross Repository Installation
	Network Cross Repository Installation
	Common Installation Instructions

	SUSE Linux Enterprise Server
	Local Cross Repository Installation
	Network Cross Repository Installation
	Common Installation Instructions

	Tarball and Zip Archive Deliverables
	Parsing Redistrib JSON
	Importing Tarballs into CMake
	Importing Tarballs into Bazel

	Post-installation Actions
	Mandatory Actions
	Environment Setup

	Recommended Actions
	Install Writable Samples
	Verify the Installation
	Running the Binaries

	Install Nsight Eclipse Plugins
	Local Repo Removal

	Optional Actions
	Install Third-party Libraries
	Install the Source Code for cuda-gdb
	Select the Active Version of CUDA

	Removing CUDA Toolkit
	Advanced Setup
	Additional Considerations
	Frequently Asked Questions
	How do I install the Toolkit in a different location?
	Why do I see “nvcc: No such file or directory” when I try to build a CUDA application?
	Why do I see “error while loading shared libraries: <lib name>: cannot open shared object file: No such file or directory” when I try to run a CUDA application that uses a CUDA library?
	Why do I see multiple “404 Not Found” errors when updating my repository meta-data on Ubuntu?
	How can I tell X to ignore a GPU for compute-only use?
	Why doesn’t the cuda-repo package install the CUDA Toolkit?
	How do I install an older CUDA version using a network repo?
	How do I handle “Errors were encountered while processing: glx-diversions”?

	Notices
	Notice
	OpenCL
	Trademarks

	Copyright

