
NVIDIA CUDA TOOLKIT 8.0.61

RN-06722-001 _v8.0 | June 2017

Release Notes for Windows, Linux, and Mac OS

www.nvidia.com
NVIDIA CUDA Toolkit 8.0.61 RN-06722-001 _v8.0 | ii

TABLE OF CONTENTS

Errata... iii
New Features... iii
Resolved Issues... iii
Known Issues.. iv

Chapter 1. CUDA Toolkit Major Components... 1
Chapter 2. New Features...3

2.1. General CUDA... 3
2.2. CUDA Tools...3

2.2.1. CUDA Compilers... 3
2.2.2. CUDA Profiler...5
2.2.3. CUDA Profiling Tools Interface (CUPTI).. 6

2.3. CUDA Libraries.. 8
2.3.1. cuBLAS Library... 8
2.3.2. cuFFT Library.. 8
2.3.3. CUDA Math Library.. 8
2.3.4. CUDA nvGRAPH Library...8

2.4. CUDA Samples... 9
Chapter 3. Unsupported Features...10
Chapter 4. Deprecated Features.. 11
Chapter 5. Performance Improvements..12

5.1. CUDA Tools... 12
5.1.1. CUDA Compilers.. 12

5.2. CUDA Libraries... 12
5.2.1. cuBLAS Library..12
5.2.2. CUDA Math Library...12

Chapter 6. Resolved Issues... 13
6.1. General CUDA.. 13
6.2. CUDA Tools... 13

6.2.1. CUDA Compilers.. 13
6.2.2. CUDA Profiler... 14
6.2.3. cuSOLVER Library...14
6.2.4. NVIDIA Tools Extension (NVTX).. 14

6.3. CUDA Libraries... 14
6.3.1. cuBLAS Library..14

Chapter 7. Known Issues..16
7.1. General CUDA.. 16
7.2. CUDA Tools... 17

7.2.1. CUDA Compiler... 17
7.2.2. CUDA Profiler... 17
7.2.3. CUDA Profiling Tools Interface (CUPTI)...17

www.nvidia.com
NVIDIA CUDA Toolkit 8.0.61 RN-06722-001 _v8.0 | iii

ERRATA

New Features
CUDA Tools

‣ CUDA Compilers. The CUDA compiler now supports Xcode 8.2.1.
‣ NVRTC. NVRTC is no longer considered a preview feature.

CUDA Libraries

‣ cuBLAS. The cuBLAS library added a new function cublasGemmEx(), which is
an extension of cublas<t/>gemm(). It allows the user to specify the algorithm,
as well as the precision of the computation and of the input and output matrices.
The function can be used to perform matrix-matrix multiplication at lower
precision.

Resolved Issues
General CUDA

‣ CUDA Installer. On some SLES or openSUSE system configurations, the
NVIDIA GL library package may need to be locked before the steps for a GL-less
installation are performed. The NVIDIA GL library package can be locked with
this command:

sudo zypper addlock nvidia-glG04
‣ Unified memory. On GP10x systems, applications that use

cudaMallocManaged() and attempt to use cuda-gdb will incur random
spurious MMU faults that will take down the application.

‣ Unified memory. Functions cudaMallocHost() and cudaHostRegister()
don't work correctly on multi-GPU systems with the IOMMU enabled on
Linux. The only workaround is to disable unified memory support with the
CUDA_DISABLE_UNIFIED_MEMORY=1 environment variable.

‣ Unified memory. Fixed an issue where cuda-gdb or cuda-memcheck would
crash when used on an application that calls cudaMemPrefetchAsync().

‣ Unified memory. Fixed a potential issue that can cause an application to hang
when using cudaMemPrefetchAsync().

Errata

www.nvidia.com
NVIDIA CUDA Toolkit 8.0.61 RN-06722-001 _v8.0 | iv

CUDA Tools

‣ CUDA Compilers. Fixed an issue with wrong code generation for computing the
address of an array when using a 64-bit index.

‣ CUDA Compilers. When a program is compiled with whole program
optimization, applying launch bounds to recursive functions or to indirect
function calls may have unpredictable results.

‣ CUDA Profiler. The PC sampling warp state counts were incorrect in some cases.
‣ CUDA Profiler. Profiling applications using nvprof or Visual Profiler on

systems without an NVIDIA driver resulted in an error. This is now reported as a
warning.

‣ cuSOLVER. Fixed an issue with the cuSOLVER library where some of its
functions were not exposed, resulting in link errors.

‣ NVTX. The NVIDIA Tools Extension SDK (NVTX) function
nvtxGetExportTable() was missing from the export table list.

CUDA Libraries

‣ cuBLAS. Fixed GEMM performance issues on Kepler and Pascal for different
matrix sizes, including small batches. Note that this fix is available only in the
cuBLAS packages on the CUDA network repository.

‣ cuBLAS. Updated the cuBLAS headers to use comments that are in compliance
with ANSI C standards.

‣ cuBLAS. Made optimizations for mixed-precision (FP16, INT8) matrix-matrix
multiplication of matrices with a small number of columns (n).

‣ cuBLAS. Fixed an issue with the trsm() function for large-sized matrices.

Known Issues
General CUDA

‣ CUDA library. Function cuDeviceGetP2PAttribute() was not published in
the cuda library (libcuda.so). Until a new build of the toolkit is issued, users
can either use the driver version, cudaDeviceGetP2PAttribute(), or perform
the link to use libcuda directly instead of the stub (usually it can be done by
adding -L/usr/lib64).

CUDA Tools

‣ CUDA Profiler. When a device is in the "exclusive" process compute mode, the
profiler may fail to collect events or metrics in "application replay" mode. In this
case, use "kernel replay" mode.

‣ CUDA Profiler. In the Visual Profiler, the Run > Configure Metrics and Events...
dialog does not work for the device that has NVLink support. It's suggested to
collect all metrics and events using nvprof and then import into nvvp.

‣ CUDA Profiler, CUPTI. Some devices with compute capability 6.1 don't support
multi-context scope collection for metrics. This issue affects nvprof, Visual
Profiler, and CUPTI.

www.nvidia.com
NVIDIA CUDA Toolkit 8.0.61 RN-06722-001 _v8.0 | 1

Chapter 1.
CUDA TOOLKIT MAJOR COMPONENTS

This section provides an overview of the major components of the CUDA Toolkit and
points to their locations after installation.
Compiler

The CUDA-C and CUDA-C++ compiler, nvcc, is found in the bin/ directory. It is
built on top of the NVVM optimizer, which is itself built on top of the LLVM compiler
infrastructure. Developers who want to target NVVM directly can do so using the
Compiler SDK, which is available in the nvvm/ directory.

Tools
The following development tools are available in the bin/ directory (except for
Nsight Visual Studio Edition (VSE) which is installed as a plug-in to Microsoft Visual
Studio).

‣ IDEs: nsight (Linux, Mac), Nsight VSE (Windows)
‣ Debuggers: cuda-memcheck, cuda-gdb (Linux, Mac), Nsight VSE (Windows)
‣ Profilers: nvprof, nvvp, Nsight VSE (Windows)
‣ Utilities: cuobjdump, nvdisasm, gwiz

Libraries
The scientific and utility libraries listed below are available in the lib/ directory
(DLLs on Windows are in bin/), and their interfaces are available in the include/
directory.

‣ cublas (BLAS)
‣ cublas_device (BLAS Kernel Interface)
‣ cuda_occupancy (Kernel Occupancy Calculation [header file implementation])
‣ cudadevrt (CUDA Device Runtime)
‣ cudart (CUDA Runtime)
‣ cufft (Fast Fourier Transform [FFT])
‣ cupti (Profiling Tools Interface)
‣ curand (Random Number Generation)
‣ cusolver (Dense and Sparse Direct Linear Solvers and Eigen Solvers)
‣ cusparse (Sparse Matrix)
‣ npp (NVIDIA Performance Primitives [image and signal processing])
‣ nvblas ("Drop-in" BLAS)

CUDA Toolkit Major Components

www.nvidia.com
NVIDIA CUDA Toolkit 8.0.61 RN-06722-001 _v8.0 | 2

‣ nvcuvid (CUDA Video Decoder [Windows, Linux])
‣ nvgraph (CUDA nvGRAPH [accelerated graph analytics])
‣ nvml (NVIDIA Management Library)
‣ nvrtc (CUDA Runtime Compilation)
‣ nvtx (NVIDIA Tools Extension)
‣ thrust (Parallel Algorithm Library [header file implementation])

CUDA Samples
Code samples that illustrate how to use various CUDA and library APIs are available
in the samples/ directory on Linux and Mac, and are installed to C:\ProgramData
\NVIDIA Corporation\CUDA Samples on Windows. On Linux and Mac, the
samples/ directory is read-only and the samples must be copied to another location
if they are to be modified. Further instructions can be found in the Getting Started
Guides for Linux and Mac.

Documentation
The most current version of these release notes can be found online at http://
docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html. Also, the version.txt
file in the root directory of the toolkit will contain the version and build number of
the installed toolkit.
Documentation can be found in PDF form in the doc/pdf/ directory, or in HTML
form at doc/html/index.html and online at http://docs.nvidia.com/cuda/
index.html.

CUDA-GDB Sources
CUDA-GDB sources are available as follows:

‣ For CUDA Toolkit 7.0 and newer, in the installation directory extras/. The
directory is created by default during the toolkit installation unless the .rpm or
.deb package installer is used. In this case, the cuda-gdb-src package must be
manually installed.

‣ For CUDA Toolkit 6.5, 6.0, and 5.5, at https://github.com/NVIDIA/cuda-gdb.
‣ For CUDA Toolkit 5.0 and earlier, at ftp://download.nvidia.com/CUDAOpen64/.
‣ Upon request by sending an e-mail to mailto:oss-requests@nvidia.com.

http://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
http://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
http://docs.nvidia.com/cuda/index.html
http://docs.nvidia.com/cuda/index.html
https://github.com/NVIDIA/cuda-gdb
ftp://download.nvidia.com/CUDAOpen64/
mailto:oss-requests@nvidia.com

www.nvidia.com
NVIDIA CUDA Toolkit 8.0.61 RN-06722-001 _v8.0 | 3

Chapter 2.
NEW FEATURES

2.1. General CUDA
‣ CUDA 8.0 adds support for GPUDirect Async, which improves application

throughput by eliminating the CPU as the critical path in GPU-initiated data
transfers. The GPU now directly triggers data transfers without CPU coordination,
unblocking the CPU to perform other tasks.

‣ The NVLink high-speed interconnect is now supported.
‣ Added new RPM packages that help automate the deployment of CUDA

installations in large-scale cluster environments, using tools such as Puppet.
‣ Added absolute GPU numbering in NVML and NVIDIA-SMI that is based on

the order of the GPUs on the PCI bus, so that the numbering matches the /dev/
nvidiaX indices.

‣ Unified Memory is now supported with OS X 10.11 for Mac.

2.2. CUDA Tools

2.2.1. CUDA Compilers
‣ The CUDA compiler now supports Xcode 8.2.1.
‣ NVRTC is no longer considered a preview feature.
‣ Microsoft Visual Studio 2015 Update 3 (VC14) is now supported.
‣ Intel C++ Compilers 16.0 and 15.0.4 are now supported.
‣ POWER8 IBM XL compiler 13.1.3 is now supported.
‣ The Clang 3.7 and 3.8 LLVM-based C and C++ compilers are now supported as host

compilers by nvcc on Linux operating systems.
‣ The -std=c++11 option for nvcc is now supported when IBM xlC compiler version

13.1 (and above) is used as the host compiler.

New Features

www.nvidia.com
NVIDIA CUDA Toolkit 8.0.61 RN-06722-001 _v8.0 | 4

‣ The -std=c++11 option for nvcc is now supported when Intel ICC compiler 15
(and above) is used as the host compiler. Note that the CUDA extended lambda
feature is not supported with the Intel ICC compiler.

‣ For debug compilations, the compiler now maintains the live ranges of variables
that are in-scope according to C language rules. This feature allows users to inspect
variables they expect to be live and reduces "value optimized out" errors during
debugging.

‣ Improved 32-bit overflow checking when detecting common sub-expressions in
array index operations.

‣ Improved the loop unroller with respect to nested loops. There are cases when the
inner loop's trip count may depend on the outer loop's induction variable; after the
outer loop is fully unrolled, the inner loop's trip count may become compile-time
constants and thus become candidates for complete unrolling.

‣ Improved loop unrolling in the presence of unroll pragma information.
‣ The argument to the unroll pragma is now allowed to be any integral constant

expression (as defined by the C++ standard). This includes integral template
arguments and constexpr function calls (in modes where constexpr is enabled).

‣ The nvcc compiler defines the macros __CUDACC_EXTENDED_LAMBDA__ and
__CUDACC_RELAXED_CONSTEXPR__ when the --expt-extended-lambda and --
expt-relaxed-constexpr flags are specified, respectively.

‣ For the function nvrtcCreateProgram(), the type of the headers and
includeNames parameters has been changed from const char ** to const char
* const *. For the function nvrtcCompileProgram(), the type of the options
parameter has been changed from const char ** to const char * const *.
These changes are intended to facilitate easier use of the NVRTC API, such as using
the pointer returned by the std::initializer_list<const char *>::begin()
function.

‣ To reduce compile time, the compiler may remove unused __device__ functions
before generating PTX in whole-program compilation mode. The unused
__device__ functions are not removed when compiling in debug mode (-G) or in
separate compilation mode. Note that a __device__ function is considered unused
if it has been fully inlined into its callers and has no other references.

‣ Within the body of a __device__, __global__, or __device__ __host__
function, variables without any device memory qualifiers can be declared as static
storage. They have the same restrictions as __device__ variables defined in
namespace scope.

‣ The nvstd::function implementation has been enhanced to allow operator() to
be invoked from __host__ and __host__ __device__ functions as well as from
__device__ functions. The intent is to allow the nvstd::function to be usable in
both host and device code. Please see the "C/C++ Language Support" section of the
CUDA Programming Guide for more information.

‣ The compiler now supports instantiating __global__ function templates with
closure types of extended __host__ __device__ lambdas defined in host code.
This functionality is enabled when the --expt-extended-lambda flag is passed to
nvcc. Please see the "C/C++ Language Support" section of the CUDA Programming
Guide for more information.

New Features

www.nvidia.com
NVIDIA CUDA Toolkit 8.0.61 RN-06722-001 _v8.0 | 5

‣ The compiler now provides the following type traits to detect closure types of
extended __device__ and extended __host__ __device__ lambdas:

‣ __nv_is_extended_device_lambda_closure_type(T)
‣ __nv_is_extended_host_device_lambda_closure_type(T)

Please see the "C/C++ Language Support" section of the CUDA C Programming Guide
for more information.

‣ The NVRTC API has been enhanced for easier integration with templated host code.
The following functions have been added:

‣ nvrtcAddNameExpression() and nvrtcGetLoweredName(). This pair of
functions can be used to extract the mangled (lowered) names of __global__
functions and function template instantiations, given high-level source
expressions denoting the addresses of the functions. This is useful in using the
CUDA Driver API to look up the kernel functions in the generated PTX.

‣ template <typename T> nvrtcResult nvrtcGetTypeName(). This
function uses host platform mechanisms such as abi::__cxa_demangle() to
extract the string name corresponding to the type argument T. The type name
string can be incorporated into a __global__ template instantiationin the
NVRTC source string, thus allowing templated host code functions to create
customized __global__ template instantiations at run time.

Please see the NVRTC documentation for details and runnable examples.
‣ The limit on the number of variables that can be captured by extended lambdas has

been increased from 30 to 1023.
‣ The CUDA compiler now implements the C++17 *this capture specification for

extended __device__ lambdas and lambdas defined in device code. The support
is enabled with the experimental --expt-extended-lambda flag in nvcc. Further
information about extended lambdas can be found the CUDA C Programming Guide.

‣ The new nvcc flag --ftemplate-depth <limit> has been added to set the
maximum instantiation depth for template classes to <limit>. This value is also
passed to the host compiler if it provides an equivalent flag.

2.2.2. CUDA Profiler
‣ CUDA 8.0 provides CPU profiling to identify hot-spot regions in the code, along

with call-graph and source-level drill-down.
‣ The dependency analysis feature enables optimization of the program runtime and

the concurrency of applications using multiple CPU threads and CUDA streams. It
allows computing the critical path of a specific execution, detecting waiting time,
and inspecting dependencies among activities executing in different threads or
streams.

‣ Enabled support for mixed precision (FP16) in the CUDA debugger and profiler.
‣ Enabled profiling of NVLink, including topology, bandwidth, and throughput.
‣ Visual Profiler and nvprof now support NVLink analysis for devices with compute

capability 6.0.
‣ Visual Profiler and nvprof now support dependency analysis, which enables

optimization of the program runtime and concurrency of applications utilizing

New Features

www.nvidia.com
NVIDIA CUDA Toolkit 8.0.61 RN-06722-001 _v8.0 | 6

multiple CPU threads and CUDA streams. It allows computing the critical path of
a specific execution, detecting waiting time, and inspecting dependencies between
functions executing in different threads or streams.

‣ Visual Profiler and nvprof now support OpenACC profiling.
‣ Visual Profiler now supports CPU profiling.
‣ Unified Memory profiling now provides GPU page fault information on devices

with compute capability 6.0 on supported platforms.
‣ Unified Memory profiling now provides CPU page fault information.
‣ Unified Memory profiling support is extended to the Mac OS platform.
‣ The Visual Profiler source-disassembly view now has a single integrated view for

the different source level analysis results collected for a kernel instance, and results
of different analysis steps can be viewed together.

‣ The PC sampling feature has been enhanced to point out the true latency issues for
devices with compute capability 6.0 and higher.

‣ Support has been added for 16-bit floating point (FP16) data format profiling.
‣ If the new NVIDIA Tools Extension API(NVTX) feature of domains is used, then

Visual Profiler and nvprof will show the NVTX markers and ranges grouped by
domain. The Visual Profiler now adds a default file extension .nvvp if an extension
is not specified when saving or opening a session file.

2.2.3. CUDA Profiling Tools Interface (CUPTI)
‣ Sampling of the program counter (PC) was enhanced to point out true latency

issues: it indicates if the stall reasons for warps are actually causing stalls
in the issue pipeline. Field latencySamples of the new activity record
CUpti_ActivityPCSampling2 provides true latency samples. This field is valid for
devices with compute capability 6.0 and higher.

‣ Support for NVLink topology information—such as the pair of devices connected
via NVLink, peak bandwidth, memory access permissions, and so on—is provided
through the new activity record CUpti_ActivityNvLink. NVLink performance
metrics for data transmitted and received, throughput for transmit and receive, and
header overhead for each physical link is provided.

‣ CUPTI now supports profiling of OpenACC applications. OpenACC
profiling information is provided in the form of the new activity records
CUpti_ActivityOpenAccData, CUpti_ActivityOpenAccLaunch, and
CUpti_ActivityOpenAccOther. This aids in correlating OpenACC constructs
on the CPU with the corresponding activity taking place on the GPU and mapping
it back to the source code. New routine cuptiOpenACCInitialize() is used to
initialize profiling for supported OpenACC runtimes.

‣ Unified memory profiling now provides GPU page fault events on devices with
compute capability 6.0 on supported platforms.

‣ Unified Memory profiling support is extended to the Mac OS platform.
‣ Support for 16-bit floating point (FP16) data format profiling was added.

New metrics inst_fp_16, flop_count_hp_add, flop_count_hp_mul,
flop_count_hp_fma, flop_count_hp, flop_hp_efficiency, and
half_precision_fu_utilization are supported. Peak FP16 flops per cycle for

New Features

www.nvidia.com
NVIDIA CUDA Toolkit 8.0.61 RN-06722-001 _v8.0 | 7

device can be queried using the enum CUPTI_DEVICE_ATTR_FLOP_HP_PER_CYCLE
added to CUpti_DeviceAttribute.

‣ Added new activity kinds CUPTI_ACTIVITY_KIND_SYNCHRONIZATION,
CUPTI_ACTIVITY_KIND_STREAM, and CUPTI_ACTIVITY_KIND_CUDA_EVENT
to support the tracing of CUDA synchronization constructs, such as context,
stream and CUDA event synchronization. Synchronization details are provided
in the form of the new activity record CUpti_ActivitySynchronization.
Enum CUpti_ActivitySynchronizationType lists different types of CUDA
synchronization constructs.

‣ Added routines cuptiSetThreadIdType() and cuptiGetThreadIdType() to set
and get the mechanism used to fetch the thread ID used in CUPTI records. Enum
CUpti_ActivityThreadIdType lists all supported mechanisms.

‣ Added routine cuptiComputeCapabilitySupported() to check the support for a
specific compute capability by the CUPTI.

‣ Added support to establish a correlation between an external API
(such as OpenACC or OpenMP) and CUPTI API activity records.
Routines cuptiActivityPushExternalCorrelationId() and
cuptiActivityPopExternalCorrelationId() should be used to push and
pop external correlation IDs for the calling thread. Generated records of type
CUpti_ActivityExternalCorrelation contain both external and CUPTI
assigned correlation IDs.

‣ Added containers to store information of events and metrics in the
form of the activity records CUpti_ActivityInstantaneousEvent,
CUpti_ActivityInstantaneousEventInstance,
CUpti_ActivityInstantaneousMetric, and
CUpti_ActivityInstantaneousMetricInstance. These activity records are
not produced by the CUPTI; they are included for completeness and ease of use.
Profilers built on top of CUPTI that sample events may choose to use these records
to store the collected event data.

‣ Support was added for the domains and annotation of synchronization
objects in NVTX v2. New activity record CUpti_ActivityMarker2
and enums to indicate various stages of a synchronization
object—CUPTI_ACTIVITY_FLAG_MARKER_SYNC_ACQUIRE,
CUPTI_ACTIVITY_FLAG_MARKER_SYNC_ACQUIRE_SUCCESS,
CUPTI_ACTIVITY_FLAG_MARKER_SYNC_ACQUIRE_FAILED, and
CUPTI_ACTIVITY_FLAG_MARKER_SYNC_RELEASE—were added.

‣ Unused field runtimeCorrelationId of the activity record
CUpti_ActivityMemset was broken into two fields, flags and
memoryKind, to indicate the asynchronous behavior and the kind of
the memory used for the memset operation. It is supported by the
new flag CUPTI_ACTIVITY_FLAG_MEMSET_ASYNC added to the enum
CUpti_ActivityFlag.

‣ Added flag CUPTI_ACTIVITY_MEMORY_KIND_MANAGED to the enum
CUpti_ActivityMemoryKind to indicate managed memory.

New Features

www.nvidia.com
NVIDIA CUDA Toolkit 8.0.61 RN-06722-001 _v8.0 | 8

2.3. CUDA Libraries

2.3.1. cuBLAS Library
‣ The cuBLAS library added a new function cublasGemmEx(), which is an extension

of cublas<t/>gemm(). It allows the user to specify the algorithm, as well as the
precision of the computation and of the input and output matrices. The function can
be used to perform matrix-matrix multiplication at lower precision.

‣ The cuBLAS library now supports a Gaussian implementation for the GEMM,
SYRK, and HERK operations on complex matrices.

‣ New routines for batched GEMMs, cublas<T>gemmStridedBatch(), have been
added. These routines implement a new batch API for GEMMs that is easier to set
up. The routines are optimized for performance on GPU architectures sm_5x or
greater.

‣ The cublasXt API now accepts matrices that are resident in GPU memory.

2.3.2. cuFFT Library
‣ The cuFFT library now includes half-precision floating point datatype (FP16) FFT

functions for transform sizes that are powers of two. For FFT size 2, real-to-complex
and complex-to-real transforms in FP16 are currently not supported.

‣ Improvements were made to cuFFT to take advantage of multi-GPU configurations.
The cuFFT library was also optimized for different NVLink topologies.

‣ In cuFFT 8.0, compatibility modes different from
CUFFT_COMPATIBILITY_FFT_PADDING are no longer
supported. Function cufftSetCompatibilityMode() no
longer accepts the following values for the mode parameter:
CUFFT_COMPATIBILITY_NATIVE, CUFFT_COMPATIBILITY_FFTW_ALL, and
CUFFT_COMPATIBILITY_FFT_ASYMMETRIC. The error code CUFFT_NOT_SUPPORTED
is returned in each case.

‣ The cuFFT library now includes multi-GPU support for up to 8 GPUs.

2.3.3. CUDA Math Library
‣ Support for half-precision floating point (FP16) has been added to the CUDA math

library.
‣ CUDA 8.0 introduces a new built-in for fp64 atomicAdd(). Note that this built-in

cannot be overridden with a custom function declared by the user (even if the code
is not specifically being compiled for targets other than sm_60).

2.3.4. CUDA nvGRAPH Library
‣ CUDA 8.0 introduces nvGRAPH, a new library that is a collection of routines to

process graph problems on GPUs. It includes implementations of the semi-ring

New Features

www.nvidia.com
NVIDIA CUDA Toolkit 8.0.61 RN-06722-001 _v8.0 | 9

SPMV, single source shortest path (SSSP), Widest Path, and PageRank algorithms.
The nvGraph library will undergo some changes for the CUDA 8.0 final release:

‣ The naga.h header will be renamed nvgraph.h.
‣ Library names (*.so, *.a, *.dll) will be changed from libnaga* to

libnvgraph*.
‣ The signature of nvgraphGetGraphStructure() will be changed to

nvgraphStatus_t NVGRAPH_API nvgraphGetGraphStructure (
 nvgraphHandle_t handle, nvgraphGraphDescr_t descrG,
 void* topologyData, nvgraphTopologyType_t* TType);

Its functionality will be updated to return more information to the user.

2.4. CUDA Samples
‣ CUDA samples were added to illustrate usage of the cuSOLVER library.

www.nvidia.com
NVIDIA CUDA Toolkit 8.0.61 RN-06722-001 _v8.0 | 10

Chapter 3.
UNSUPPORTED FEATURES

The following features are officially unsupported in the current release. Developers must
employ alternative solutions to these features in their software.
General CUDA

‣ cuFFT Compatibility Modes. Compatibility modes different from
CUFFT_COMPATIBILITY_FFT_PADDING are no longer supported.

CUDA Tools

‣ Legacy Command Line Profiler. The legacy Command Line Profiler was
deprecated in CUDA 7.0 and is now removed in CUDA Toolkit 8.0. This
notice only applies to the legacy Command Line Profiler controlled by the
COMPUTE_PROFILE environment variable; there is no impact on the newer
nvprof profiler, which is also controlled from the command line, or on the Visual
Profiler.

www.nvidia.com
NVIDIA CUDA Toolkit 8.0.61 RN-06722-001 _v8.0 | 11

Chapter 4.
DEPRECATED FEATURES

The following features are deprecated in the current release of the CUDA software.
The features still work in the current release, but their documentation may have
been removed, and they will become officially unsupported in a future release. We
recommend that developers employ alternative solutions to these features in their
software.
General CUDA

‣ Redundant Device Functions. Five redundant device functions
—syncthreads(), trap(), brkpt(), prof_trigger(), and threadfence()—
have been deprecated because their respective functionalites are identical
to __syncthreads(), __trap(), __brkpt(), __prof_trigger(), and
__threadfence().

‣ Fermi Architecture Support. Fermi architecture support is being deprecated
in the CUDA 8.0 Toolkit, which will be the last toolkit release to support it.
Future versions of the CUDA Toolkit will not support the architecture and are
not guaranteed to work on that platform. Note that support for Fermi is being
deprecated in the CUDA Toolkit but not in the driver. Applications compiled
with CUDA 8.0 or older will continue to work on Fermi with newer NVIDIA
drivers.

‣ Windows Server 2008 R2 Support. Support for Windows Server 2008 R2 is now
deprecated and will be removed in a future version of the CUDA Toolkit.

CUDA Tools

‣ Fermi Causes Compiler Warning. The CUDA compiler driver (nvcc) now emits
a warning when Fermi is chosen as a code generation target (compute_2x or
sm_2x).

‣ 32-bit Linux CUDA Applications. CUDA Toolkit support for 32-bit Linux CUDA
applications has been dropped. Existing 32-bit applications will continue to work
with the 64-bit driver, but support is deprecated.

www.nvidia.com
NVIDIA CUDA Toolkit 8.0.61 RN-06722-001 _v8.0 | 12

Chapter 5.
PERFORMANCE IMPROVEMENTS

5.1. CUDA Tools

5.1.1. CUDA Compilers
‣ In CUDA 8.0, some 64-bit integer divisions by zero are converted to 32-bit divisions

to improve performance. A CUDA 8.0 result may now differ from a CUDA 7.5 one
and is still undefined.

‣ The performance of single-precision square root (sqrt), single-precision reciprocal
(rcp), and double-precision division (div) has nearly doubled.

5.2. CUDA Libraries

5.2.1. cuBLAS Library
‣ The cuBLAS library now supports high-performance SGEMM routines on Maxwell

for handling problem sizes where m and n are not necessarily a multiple of
the computation tile size. This leads to much smoother and more predictable
performance.

5.2.2. CUDA Math Library
‣ Performance for more than 15 double-precision instructions was improved, with the

most significant improvements in division, exponents, and logarithms. Performance
and accuracy were improved for following single-precision functions: log1pf(),
log2f(), logf(), acoshf(), asinhf(), and atanhf().

www.nvidia.com
NVIDIA CUDA Toolkit 8.0.61 RN-06722-001 _v8.0 | 13

Chapter 6.
RESOLVED ISSUES

6.1. General CUDA
‣ On some SLES or openSUSE system configurations, the NVIDIA GL library package

may need to be locked before the steps for a GL-less installation are performed. The
NVIDIA GL library package can be locked with this command:

sudo zypper addlock nvidia-glG04
‣ On GP10x systems, applications that use cudaMallocManaged() and attempt to

use cuda-gdb will incur random spurious MMU faults that will take down the
application.

‣ Functions cudaMallocHost() and cudaHostRegister() don't work correctly on
multi-GPU systems with the IOMMU enabled on Linux. The only workaround is
to disable unified memory support with the CUDA_DISABLE_UNIFIED_MEMORY=1
environment variable.

‣ Fixed an issue where cuda-gdb or cuda-memcheck would crash when used on an
application that calls cudaMemPrefetchAsync().

‣ Fixed a potential issue that can cause an application to hang when using
cudaMemPrefetchAsync().

‣ The device attributes cudaDevAttrComputePreemptionSupported and
cudaDevAttrCanUseHostPointerForRegisteredMem do not have counterparts
in cudaDeviceProp.

6.2. CUDA Tools

6.2.1. CUDA Compilers
‣ Fixed an issue with wrong code generation for computing the address of an array

when using a 64-bit index.

Resolved Issues

www.nvidia.com
NVIDIA CUDA Toolkit 8.0.61 RN-06722-001 _v8.0 | 14

‣ When a program is compiled with whole program optimization, applying launch
bounds to recursive functions or to indirect function calls may have unpredictable
results.

‣ The alignment of the built-in long2 and ulong2 types on 64-bit Linux and Mac
OS X systems has been changed to 16 bytes (from 8 bytes). It now matches the
alignment computed when compiling CUDA code with nvcc on these systems.

‣ When C++11 code (-std=c++11) is compiled on Linux with gcc as the host
compiler, invoking pow() or std::pow() from device code with (float, int) or
(double, int) arguments now compiles successfully.

‣ Because support for Fermi GPUs is deprecated in the CUDA 8.0 Toolkit, the CUDA
compiler driver (nvcc) now emits a warning when Fermi is chosen as a code
generation target (compute_2x or sm_2x).

‣ Dynamic Parallelism is supported with NVRTC when compute >= 35 is specified
as the compilation target. Generated PTX code that uses Dynamic Parallelism needs
to be linked against the CUDA device runtime library (cudadevrt) before being
loaded by the CUDA Driver API. The NVRTC documentation has a simple example
that demonstrates generating PTX code, linking against the CUDA device runtime
library, and executing the linked module.

6.2.2. CUDA Profiler
‣ The PC sampling warp state counts were incorrect in some cases.
‣ Profiling applications using nvprof or Visual Profiler on systems without an

NVIDIA driver resulted in an error. This is now reported as a warning.

6.2.3. cuSOLVER Library
‣ Fixed an issue with the cuSOLVER library where some of its functions were not

exposed, resulting in link errors

6.2.4. NVIDIA Tools Extension (NVTX)
‣ The NVIDIA Tools Extension SDK (NVTX) function nvtxGetExportTable() was

missing from the export table list.

6.3. CUDA Libraries

6.3.1. cuBLAS Library
‣ Fixed GEMM performance issues on Kepler and Pascal for different matrix sizes,

including small batches. Note that this fix is available only in the cuBLAS packages
on the CUDA network repository.

‣ Updated the cuBLAS headers to use comments that are in compliance with ANSI C
standards.

‣ Made optimizations for mixed-precision (FP16, INT8) matrix-matrix multiplication
of matrices with a small number of columns (n).

Resolved Issues

www.nvidia.com
NVIDIA CUDA Toolkit 8.0.61 RN-06722-001 _v8.0 | 15

‣ Fixed an issue with the trsm() function for large-sized matrices.

www.nvidia.com
NVIDIA CUDA Toolkit 8.0.61 RN-06722-001 _v8.0 | 16

Chapter 7.
KNOWN ISSUES

7.1. General CUDA
‣ Function cuDeviceGetP2PAttribute() was not published in the cuda library

(libcuda.so). Until a new build of the toolkit is issued, users can either use the
driver version, cudaDeviceGetP2PAttribute(), or perform the link to use
libcuda directly instead of the stub (usually it can be done by adding -L/usr/
lib64).

‣ Installation of CUDA 8.0 on an Ubuntu 14.04.4 system requires a system reboot to
avoid an nvidia-nvlink error and system sluggishness.

‣ Enabling per-thread synchronization behavior [http://docs.nvidia.com/cuda/
cuda-runtime-api/stream-sync-behavior.html#stream-sync-behavior__per-thread-
default-stream] does not work correctly with the following CUDA runtime routines,
which use the legacy synchronization behavior [http://docs.nvidia.com/cuda/cuda-
runtime-api/stream-sync-behavior.html#stream-sync-behavior__legacy-default-
stream]:

‣ cudaMemcpyPeer()
‣ cudaMemcpyPeerAsync() with a NULL stream argument
‣ cudaGraphicsMapResources() with a NULL stream argument
‣ cudaGraphicsUnmapResources() with a NULL stream argument

To work around this issue, use cudaMemcpyPeerAsync() with the
cudaPerThreadStream stream argument instead of cudaMemcpyPeer(), and pass
the cudaPerThreadStream argument instead of NULL to the other routines.

‣ If the Windows toolkit installation fails, it may be because Visual Studio,
Nvda.Launcher.exe, Nsight.Monitor.exe, or Nvda.CrashReporter.exe is
running. Make sure these programs are closed and try to install again.

‣ Peer access is disabled between two devices if either of them is in SLI mode.
‣ Unified memory is not currently supported with IOMMU. The workaround is to

disable IOMMU in the BIOS. Please refer to the vendor documentation for the steps
to disable it in the BIOS.

http://docs.nvidia.com/cuda/cuda-runtime-api/stream-sync-behavior.html#stream-sync-behavior__per-thread-default-stream
http://docs.nvidia.com/cuda/cuda-runtime-api/stream-sync-behavior.html#stream-sync-behavior__per-thread-default-stream
http://docs.nvidia.com/cuda/cuda-runtime-api/stream-sync-behavior.html#stream-sync-behavior__per-thread-default-stream
http://docs.nvidia.com/cuda/cuda-runtime-api/stream-sync-behavior.html#stream-sync-behavior__legacy-default-stream
http://docs.nvidia.com/cuda/cuda-runtime-api/stream-sync-behavior.html#stream-sync-behavior__legacy-default-stream
http://docs.nvidia.com/cuda/cuda-runtime-api/stream-sync-behavior.html#stream-sync-behavior__legacy-default-stream

Known Issues

www.nvidia.com
NVIDIA CUDA Toolkit 8.0.61 RN-06722-001 _v8.0 | 17

7.2. CUDA Tools

7.2.1. CUDA Compiler
‣ Extended __device__ and __host__ __device__ lambdas are enabled by the

experimental compiler flag --expt-extended-lambda. When the closure type of
such a lambda is used in the creating the mangled name for an entity (for example, a
function), the compiler generated mangled name does not conform to the IA64 ABI.
As a result, such names cannot be demangled using tools like c++filt. This issue will
be fixed in a future CUDA Toolkit release.

7.2.2. CUDA Profiler
‣ When a device is in the "exclusive" process compute mode, the profiler may fail

to collect events or metrics in "application replay" mode. In this case, use "kernel
replay" mode.

‣ The timestamp and duration for some memory copies on some devices with
compute capability 6.1 are incorrect. This can result in errors, and dependency
analysis results may not be available. This issue can impact nvprof, nvvp, and
cupti.

‣ In the Visual Profiler, the NVLink Analysis diagram may be incorrect after the
diagram is scrolled. This can be corrected by horizontally resizing the diagram
panel.

‣ In the Visual Profiler, the Run->Configure Metrics and Events... dialog does not
work for the device that has NVLink support. It's suggested to collect all metrics and
events using nvprof and then import into nvvp.

‣ Some devices with compute capability 6.1 don't support multi-context scope
collection for metrics. This issue affects nvprof, Visual Profiler, and CUPTI.

7.2.3. CUDA Profiling Tools Interface (CUPTI)
‣ Some devices with compute capability 6.1 don't support multi-context scope

collection for metrics. This issue affects nvprof, Visual Profiler, and CUPTI.

Acknowledgment

NVIDIA extends thanks to Professor Mike Giles of Oxford University for providing
the initial code for the optimized version of the device implementation of the
double-precision exp() function found in this release of the CUDA toolkit.

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties
that may result from its use. No license is granted by implication of otherwise
under any patent rights of NVIDIA Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and
replaces all other information previously supplied. NVIDIA Corporation products
are not authorized as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names
may be trademarks of the respective companies with which they are associated.

Copyright

© 2007-2017 NVIDIA Corporation. All rights reserved.

www.nvidia.com

	Table of Contents
	Errata
	New Features
	Resolved Issues
	Known Issues

	CUDA Toolkit Major Components
	New Features
	2.1. General CUDA
	2.2. CUDA Tools
	2.2.1. CUDA Compilers
	2.2.2. CUDA Profiler
	2.2.3. CUDA Profiling Tools Interface (CUPTI)

	2.3. CUDA Libraries
	2.3.1. cuBLAS Library
	2.3.2. cuFFT Library
	2.3.3. CUDA Math Library
	2.3.4. CUDA nvGRAPH Library

	2.4. CUDA Samples

	Unsupported Features
	Deprecated Features
	Performance Improvements
	5.1. CUDA Tools
	5.1.1. CUDA Compilers

	5.2. CUDA Libraries
	5.2.1. cuBLAS Library
	5.2.2. CUDA Math Library

	Resolved Issues
	6.1. General CUDA
	6.2. CUDA Tools
	6.2.1. CUDA Compilers
	6.2.2. CUDA Profiler
	6.2.3. cuSOLVER Library
	6.2.4. NVIDIA Tools Extension (NVTX)

	6.3. CUDA Libraries
	6.3.1. cuBLAS Library

	Known Issues
	7.1. General CUDA
	7.2. CUDA Tools
	7.2.1. CUDA Compiler
	7.2.2. CUDA Profiler
	7.2.3. CUDA Profiling Tools Interface (CUPTI)

