IIIIIII

Chapter 1. INtrodUCHION....ciiiiiitiiiiiientttieiieneeeeeresnneseceesennsssccsssnnssssesassnnsssecsssnnnnes 1

Chapter 2. NVGRAPH APl REfEIrENCE.....ciiiiiiiettteiirrnnereeeeraneeeeeecesssnssececsssnnsesecessnnasscces 3
2.1. Return value nvgraphStatus_t....c..eeiiiiiiiiiiiiiiiiiiiieieiiieeerererneeeeeeesnneeeesennnnnnes 3
2.2. NVGRAPH graph t0POl0gY LY PES. . ceuuutieittieitteeiteeeeteeaeeeenneeeeneeeeaneeeesneeesnaeeeannens 4
2.3. NVGRAPH topology StrUCtUMe LY PeS. . ueeiireiiitttteeiiiteereeennneeeeeeesneneeeessnnnneeessannnns 4
1V T =T ol aTONY R[] o o] Lo 1Y K /A [N PPN 5
(01770l aTONY @R o] sTo] (o]=4 VX I 1R P 5
111101 16{0 10 N Lo oTo] Vo]= 1V /C 7 I PP PP 6
2.4, FUNCLION NVEIaPhCrEate()..eeeeuutereietieittiiiteiaieeteieetereeeeeneeeenneeseneeeesneeessneeeennens 6
2.5, FUNCLION NVGraphDESTIOY () uuueeeeteeeiuteeeeeeiieeeeeeeeiaeeeeeeesnnseeeeeessnssseeesesnnsesseeenns 7
2.6. Function nvgraphCreateGraphDESCI()....ceeeuteeerutieretieiteeeieeeeneeeenneeesnseeeeneeeanneennn 7
2.7. Function nvgraphDestroyGraphDeSCI(). .. uueeeeeeerireeeeeereiereeeeeerrneeeeeessrnaseeeesonnnneees 8
2.8. Function nvgraphSetGraphStruCtUre (). . oueeeerueeieiiteiitiiiteiiteiiteiiteeiteentieeeeneraaeanns 8
2.9. Function nvgraphGetGraphStrUCTUrE()...uueeeeeerieetereeriieeeeeeeireeeeeeeerrneeeeesensnnseeeenes 9
2.10. Function nvgraphConvertToPology (). .. cveeutiintiiuiiieiiieiiiiiieeiiteiieiieiiteiieeeneeeneees 10
2.11. Function nvgraphConvertGraph().eeeeeueeeeeeeeireeeeererineeeeresenneeeeeessrnneeeesessnnesessenns 11
2.12. Function nvgraphAllocateEdGEData(). . .uueeeireiinteeeiiiiiieeiiiiiieeeeieeiineeeeeeeennnneens 12
2.13. Function nvgraphSetEAZEData()..ceuuueeeerrerneretrerriueeeeeeenrneeeeeeessnareeessosnneesesanns 13
2.14. Function nvgraphGetEAGEDatal)..ceeeuueetiiiiiiiitiiiiiiieeeeeiiiteeeeeeiieeeeeeeennnaeeeeeanns 13
2.15. Function nvgraphAllocateVertexData()....ovueeeereeeeiueiriieeriieeeeieereieereieeeenneeeenneen 14
2.16. Function nvgraphSetVerteXData()...ceeeeeeeereiiieteereeiieeeeeeeiineeeeeesenseeeeeeeennsaeeenns 15
2.17. Function nvgraphGetVerteXData()...oueeeeeeeerueererueeenieerenneeeeneeeeeieeeesneeeenneeesnaeenns 15
2.18. Function nvgraphExtractSubgraphByVerteX()...oooeeeiiiiiiiiiiiiiiiiiiiieiiieeeeeennnneneens 16
2.19. Function nvgraphExtractSubgraphByEAZE().....eveutirreiieintiriitieiieereneerenneeenneeeanns 17
2.20. Function nvgraphWidestPath().....ceveiiriiiiiiiiiiiiiiiiiiiiiiii it eeiire e rennneaeees 17
2.21. FUNCEION NVGraphSSSP (). ueenueetutetnteinteinteitiitiittettantiieerreeraeerieetieeaneeaneecnnenns 18
2.22. FUNCEION NVEIraPRSISPMV(). e uutetteeeiueeeteeeireeeeeeeennaneeeesesnneeeesessnnsesessssnnnesessanns 19
2.23. Function nvgraphPagerank().....eeeeeeeerueerineterneereneeereneereaneereneeeeaneesesneesenneeennees 21
2.24. Function nvgraphStatusGetString()..ceeeeueeeirreiiieeeeirrerinneeeerenrneeeereenrnneeeesessnnnnes 22

Chapter 3. NVGRAPH Code EXampPles.....ciiiiuiiiiieiiiineiiiinieiientesinescnenscosenscosassssnssonensss 24
3.1. NVGRAPH convert topology eXample....ooeeeeiiiriiiiiieieiinetereenneeeerseennnneeeseennnnes 25
3.2. nvGRAPH convert graph @Xample......cciiiiiiiiiiiiiiiiiiii ittt eeiiieeeeeeeiieeeeeaannnes 26
3.3. NVGRAPH pagerank @XampPle.....ceeuuiieiuiiiiittieiitteieeeeieeeaieeeaneeeenaeeesneeessneeeennees 27
3.4. NVGRAPH SSSP @XamPle. .o iiiiiiiiiiiiiiii it te ettt et eeeeiaeeeeeeennnneeeeesennnneees 28
3.5. NnVGRAPH Semi-Ring SPMV @XamPle. .. .c.uiiiiiiiiiiiiiiiiiiiiiteeeieeeeaeeeenneeeeneeeannees 29
www.nvidia.com
nvGRAPH Library User's Guide DU-08010-001_v8.0 | ii

Chapter 1.
INTRODUCTION

Data analytics is a growing application of high-performance computing. Many advanced
data analytics problems can be couched as graph problems. In turn, many of the
common graph problems today can be couched as sparse linear algebra. This is the
motivation for nvGRAPH, new in NVIDIA® CUDA™ 8.0, which harnesses the power

of GPUs for linear algebra to handle the largest graph analytics and big data analytics
problems.

This release provides graph construction and manipulation primitives, and a set of
useful graph algorithms optimized for the GPU. The core functionality is a SPMV
(sparse matrix vector product) using a semi-ring model with automatic load balancing
for any sparsity pattern. For more information on semi-rings and their uses, we
recommend the book "Graph Algorithms in the Language of Linear Algebra", by Jeremy
Kepner and John Gilbert.

To use nvGRAPH you should be sure the nvGRAPH library is in the environment
(PATH on Windows, LD_LIBRARY_PATH on Linux), "#include nvgraph.h" to your
source files referencing the nvGRAPH API, and link your code using -Invgraph on
the command line, or add libnvgraph to your library dependencies. We have tested
nvGRAPH using GCC 4.8 and higher on Linux, Visual Studio 2012 and Visual Studio
2014 on Windows.

A typical workflow for using nvGRAPH is to begin by calling nvgraphCreate() to
initialize the library. Next the user can proceed to upload graph data to the library
through nvGRAPH's API if there is already a graph loaded in device memory then
you just need a pointer to the data arrays for the graph. Graphs may be uploaded
using the CSR (compressed sparse row) format and the CSC(compressed column
storage) format, using nvgraphCreateGraphDescr(). This creates an opaque handle to
the graph object, called the "graph descriptor", which represents the graph topology
and its data. Graph data can be attached to vertices and/or edges of the graph, using
nvgraphSetVertexData() and nvgraphSetEdgeData() respectively. Multiple values for
data can co-exist on each edge or vertex at the same time, each is accessed by an index
into the array of data sets. Then the user can execute graph algorithms on the data,
extract a subgraph from the data, or reformat the data using the nvGRAPH API. The
user can download the results back to host, or copy them to another location on the
device, and once all calculations are done the user should call nvgraphDestroy() to free
resources used by nvGRAPH.

www.nvidia.com
nvGRAPH Library User's Guide DU-08010-001_v8.0 | 1

Introduction

nvGRAPH depends on features only present in CUDA capability 3.0 and higher
architectures. This means that nvGRAPH will only run on Kepler generation or newer
cards. This choice was made to provide the best performance possible.

We recommend the user start by inspecting the example codes provided, and adapt from
there for their own use.

www.nvidia.com
nvGRAPH Library User's Guide DU-08010-001_v8.0 | 2

Chapter 2.
NVGRAPH API REFERENCE

This chapter specifies the behavior of the nvGRAPH library functions by describing their
input/output parameters, data types, and error codes.

2.1. Return value nvgraphStatus_t

All nvGRAPH Library return values except for NVGRAPH_STATUS_SUCCESS indicate that
the current API call failed and the user should reconﬁgure to correct the problem. The
possible return values are defined as follows:

Return Values

NVGRAPH_STATUS_SUCCESS nvGRAPH operation was successful

NVGRAPH_STATUS_NOT_INITIALIZED [The nvGRAPH library was not initialized. This is usually
caused by the lack of a prior call, an error in the CUDA
Runtime API called by the nvGRAPH routine, or an error in
the hardware setup.

To correct: call nvgraphCreate () prior to the function call;
and check that the hardware, an appropriate version of the
driver, and the nvGRAPH library are correctly installed.

NVGRAPH_STATUS_ALLOC_FAILED Resource allocation failed inside the nvGRAPH library. This is
usually caused by a cudaMalloc () failure.

NVGRAPH_STATUS_INVALID_VALUE An unsupported value or parameter was passed to the
function

To correct: ensure that all the parameters being passed have
valid values.

NVGRAPH_STATUS_ARCH MISMATCH The function requires a feature absent from the device
architecture.

To correct: compile and run the application on a device with
appropriate compute capability.

NVGRAPH_STATUS_MAPPING_ERROR An access to GPU memory space failed.

NVGRAPH_STATUS_EXECUTION_FAILED | The GPU program failed to execute. This is often caused by a
launch failure of the kernel on the GPU, which can be caused
by multiple reasons.

www.nvidia.com
nvGRAPH Library User's Guide DU-08010-001_v8.0 | 3

nvGRAPH API Reference

To correct: check that the hardware, an appropriate version
of the driver, and the nvGRAPH library are correctly installed.

NVGRAPH_STATUS_INTERNAL ERROR An internal nvGRAPH operation failed.

To correct: check that the hardware, an appropriate version
of the driver, and the nvGRAPH library are correctly installed.
Also, check that the memory passed as a parameter to

the routine is not being deallocated prior to the routine’s
completion.

NVGRAPH_STATUS_TYPE_NOT_SUPPORTELD The type is not supported by this function. This is usually
caused by passing an invalid graph descriptor to the function.

NVGRAPH_STATUS_NOT_CONVERGED An algorithm failed to converge.

To correct: ensure that all the parameters being passed
have valid values for this algorithm, increase the maximum
number of iteration and/or the tolerance.

2.2. nvGRAPH graph topology types

nvGRAPH separates the topology (connectivity) of a graph from the values. To make
specifying a topology easier, " vGRAPH supports three topology types. Each topology
type defines its own storage format, which have benefits for some operations but
detriments for others. Some algorithms can work only with specific topology types, see
the algorithms descriptions for the list of supported topologies.

typedef enum
{

NVGRAPH CSR 32 = 0,
NVGRAPH CSC_32 = 1,
NVGRAPH COO 32 = 2

} nvgraphTopologyType t;

Topology types

NVGRAPH_CSR_32 Compressed Sparse Row format (row major format). Used
in SrSPMV algorithm. Use nvgraphCSRTopology32I_t topology
structure for this format.

NVGRAPH_CSC_32 Compressed Sparse Column format (column major format).
Used in SSSP, WidestPath and Pagerank algorithms. Use
nvgraphCSCTopology32I_t topology structure for this format.

NVGRAPH_COO_32 Coordinate list format with source or destination major. Not
used in any algorithm and provided for data storage only. Use
nvgraphCOOTopology32I_t topology structure for this format.

2.3. nvGRAPH topology structure types

Graph topology structures are used to set or retrieve topology data. Users should use the
structure that corresponds to the chosen topology type.

www.nvidia.com
nvGRAPH Library User's Guide DU-08010-001_v8.0 | 4

nvGRAPH API Reference

nvgraphCSRTopology32|_t

Used for NVGRAPH_CSR_32 topology type

struct nvgraphCSRTopology32I st ({
int nvertices;
int nedges;
int *source offsets;
int *destination indices;
}i
typedef struct nvgraphCSRTopology32I st *nvgraphCSRTopology32I t;

Structure fields

nvertices Number of vertices in the graph.
nedges Number of edges in the graph.
source_offsets Array of size nvertices+1, where i element equals to the

number of the first edge for this vertex in the list of all
outgoing edges in the destination_indices array. Last
element stores total number of edges

destination_indices Array of size nedges, where each value designates
destanation vertex for an edge.

nvgraphCSCTopology321_t

Used for NVGRAPH_CSC_32 topology type

struct nvgraphCsCTopology32I st ({
int nvertices;
int nedges;
int *destination offsets;
int *source indices;
}i
typedef struct nvgraphCSCTopology32I st *nvgraphCSCTopology32I t;

Structure fields

nvertices Number of vertices in the graph.
nedges Number of edges in the graph.
destination_offsets Array of size nvertices+1, where i element equals to the

number of the first edge for this vertex in the list of all
incoming edges in the source_indices array. Last element
stores total number of edges

source_indices Array of size nedges, where each value designates source
vertex for an edge.

www.nvidia.com
nvGRAPH Library User's Guide DU-08010-001_v8.0 | 5

nvGRAPH API Reference

nvgraphCOOTopology321_t

Used for NVGRAPH_COO_32 topology type

struct nvgraphCOOTopology32I st {

int nvertices;
int nedges;
int *source indices;
int *destination indices;
nvgraphTag t tag;
b

typedef struct nvgraphCOOTopology32I st *nvgraphCOOTopology32I t;

Structure fields

nvertices

Number of vertices in the graph.

nedges

Number of edges in the graph.

source_indices

Array of size nedges, where each value designates the source
vertex for an edge.

destination indices

Array of size nedges, where each value designates the
destination vertex for an edge.

tag

One of the values of NVGRAPH_UNSORTED,
NVGRAPH_SORT_BY_SOURCE Or
NVGRAPH_SORT_BY_ DESTINATION to indicate topology order.

2.4. Function nvgraphCreate()

nvgraphStatus t

nvgraphCreate (nvgraphHandle t *handle);

Creates only an opaque handle, and allocates small data structures on the host. This
handle is used in all of the nvGRAPH functions, so this function should be called first,
before any other calls are made to the library.

Input/Output

handle

Pointer to a nvgraphHandle_t object

Return Values

NVGRAPH_STATUS_SUCCESS

nvGRAPH successfully created the handle.

NVGRAPH_STATUS_ALLOC_FAILED

The allocation of resources for the handle failed.

NVGRAPH_STATUS_INTERNAL ERROR

An internal driver error was detected.

www.nvidia.com
nvGRAPH Library User's Guide

DU-08010-001_v8.0 | 6

nvGRAPH API Reference

2.5. Function nvgraphDestroy()

nvgraphStatus t
nvgraphDestroy (nvgraphHandle t handle);

Destroys a handle created with nvgraphCreate () . This will automatically release
any allocated memory objects created with this handle, for example any graphs
and their vertices' and edges' data. Any subsequent usage of this handle after
calling nvgraphDestroy() will be invalid. Any calls to the nvGRAPH API after
nvgraphDestroy() is called will return 'NVGRAPH_UNINITIALIZED' errors.

Input

handle The nvgraphHandle_t object of the handle to be destroyed.

Return Values

NVGRAPH_STATUS_SUCCESS nvGRAPH successfully destroyed the handle.

NVGRAPH_STATUS_INVALID VALUE The handle parameter is not a valid handle.

2.6. Function nvgraphCreateGraphDescr()

nvgraphStatus t
nvgraphCreateGraphDescr (nvgraphHandle t handle, nvgraphGraphDescr t *descrG);

Creates opaque handle for a graph structure. This handle is required for any operation
on the graph.

Input
handle nvGRAPH library handle
Input/Output
descrG Pointer to the empty nvgraphGraphDescr_t structure
object.
Return Values
NVGRAPH_STATUS_SUCCESS Success
NVGRAPH_STATUS_INVALID VALUE Bad library handle is provided
NVGRAPH STATUS_ALLOC_FAILED Cannot allocate graph descriptor.

www.nvidia.com
nvGRAPH Library User's Guide DU-08010-001_v8.0 | 7

nvGRAPH API Reference

2.7. Function nvgraphDestroyGraphDescr()

nvgraphStatus t
nvgraphDestroyGraphDescr (nvgraphHandle t handle, nvgraphGraphDescr t descrG);

Destroys a graph handle created with nvgraphCreateGraphDescr(). This
won't release any memory allocated for this graph until the nvGRAPH
library handle is destroyed. Calls to manipulate destroyed graphs will return
NVGRAPH_STATUS_INVALID_VALUE.

Input
handle nvGRAPH library handle
descrG Graph descriptor to be released

Return Values

NVGRAPH_STATUS_SUCCESS Successful release of the graph descriptor

NVGRAPH_STATUS_TYPE NOT SUPPORTEQ Graph is stored with unknown type of data

NVGRAPH_STATUS_INVALID VALUE Invalid library handle or graph descriptor handle

2.8. Function nvgraphSetGraphStructure()

nvgraphStatus t
nvgraphSetGraphStructure (nvgraphHandle t handle, nvgraphGraphDescr t descrG,
void* topologyData, nvgraphTopologyType t TType);

This call sets both topology data and topology type for the given graph descriptor.
Graph topology should be set only once. Users should choose one of the supported
topologies, fill in the corresponding structure for the graph structure initialization and
provide a pointer to this structure. The topology data and type are given in parameters
topologyData and TType. Typically graph topology data includes a number of
vertices, number of edges and connectivity information. Look at the description of the
corresponding topology structures for details.

Input

handle nvGRAPH library handle

topologyData Pointer to a filled structure of one of the

types {nvgraphCSRTopology32I t,
nvgraphCSCTopology32I_t}. The particular type to be
used is defined by parameter TType.

TType Graph topology type. This value should be equal to one of
the possible values of the enum nvgraphTopologyType t.
This defines what data structure should be provided by the
topologyData parameter.

www.nvidia.com
nvGRAPH Library User's Guide DU-08010-001_v8.0 | 8

Input/Output

nvGRAPH API Reference

descrG

Graph descriptor. Must not have topology previously defined.

Return Values

NVGRAPH_STATUS_SUCCESS

Success

NVGRAPH_STATUS_INVALID VALUE

Invalid library handle, topology data structure pointer or
topology values, or graph topology was already set

NVGRAPH_STATUS_TYPE NOT_SUPPORTED

Provided topology type is not supported

NVGRAPH_STATUS_INTERNAL ERROR

Unknown internal error was caught

2.9. Function nvgraphGetGraphStructure()

nvgraphStatus t

nvgraphGetGraphStructure (nvgraphHandle t handle, nvgraphGraphDescr t descrG,
void* topologyData, nvgraphTopologyType t* TType);

This function allows users to retrieve a given graph's topology and topology data such
as the number of vertices and edges in the graph. Users must provide a graph descriptor
as well as an empty topology structure, where this information will be stored.

Input
handle nvGRAPH library handle
descrG Graph descriptor. This graph should have its topology
structure previously set.
Input/Output
topologyData Pointer to a structure of one of the
types {nvgraphCSRTopology32I t,
nvgraphCSCTopology32I_t} matching the graph topology.
If the field is NULL it will be ignored and only graph topology
will be returned. The user can point source and destination
fields in the structure to a host or device memory to retrive
connectivity information, if one of the fields is NULL it will
be ignored.
TType Pointer to nvgraphTopologyType_t where graph topology

will be returned. If the field is NULL it will be ignored and
only topology data will be returned.

Return Values

NVGRAPH_STATUS_SUCCESS

Success

NVGRAPH_STATUS_INVALID VALUE

Invalid library handle, graph descriptor or topology for the
graph is not set.

NVGRAPH_STATUS_TYPE NOT_SUPPORTED

Unsupported topology or graph's topology doesn't match
provided parameter.

www.nvidia.com
nvGRAPH Library User's Guide

DU-08010-001_v8.0 | 9

nvGRAPH API Reference

2.10. Function nvgraphConvertTopology()

nvgraphStatus t
nvgraphConvertTopology (nvgraphHandle t handle,
nvgraphTopologyType t srcTType, void *srcTopology, void *srcEdgeData,
cudaDataType t *dataType,
nvgraphTopologyType t dstTType, void *dstTopology, void *dstEdgeData) ;

Convert one of the supported topologys to another. In case the source and destination
topologies are the same, the function will perform a straight memory copy.

This function assumes that source and destination arrays within the topologies and
edge data reside in GPU (device) memory. It is the user's responsibility to allocate
memory and copy data between GPU memory and CPU memory using standard CUDA
runtime API routines, such as cudaMalloc (), cudaFree (), cudaMemcpy (), and
cudaMemcpyAsync ().

If the destination topology is nvgraphCOOTopology32I_st, the tag field needs to

be set to one of the values of NVGRAPH_UNSORTED, NVGRAPH_SORT_BY SOURCE Or
NVGRAPH_SORT_ BY DESTINATION to tell the library how the user wants entries sorted
(or not).

The function requires extra buffer storage in the device memory for some of the
conversion operations, the extra storage is proportional to the topology size. The
function is executed asynchronously with respect to the host and may return control to
the application on the host before the result is ready.

Input

handle nvGRAPH library handle.

srcTType Source topology type. This value should be equal to one of
the possible values of the enum nvgraphTopologyType t.
This defines what data structure type should be provided by
the srcTopology parameter.

srcTopology Pointer to a structure of one of the

types {nvgraphCSRTopology32I t,
nvgraphCSCTopology32I_t,
nvgraphCOOTopology32I_st}. The particular type to
be used is defined by parameter srcTType. The function
assumes that source and destination arrays within the
structure reside in device memory.

srcEdgeData Pointer to the user memoryspace where edge data are
stored. Must be device memory.

dataType Edge data type. This value should be equal to one of
CUDA R _32F or CUDA_R_64F. This defines what data type is
provided by the srcEdgeData and dstEdgeData parameters.

dstTType Destination topology type. This value should be
equal to one of the possible values of the enum
nvgraphTopologyType_t. This defines what data structure
type should be provided by the dstTopology and parameter.

www.nvidia.com
nvGRAPH Library User's Guide DU-08010-001_v8.0 | 10

Input/Output

nvGRAPH API Reference

dstTopology

Pointer to a structure of one of the

types {nvgraphCSRTopology32I_t,
nvgraphCSCTopology32I_t,
nvgraphCOOTopology32I_st} where conversion results

will be stored. The particular type to be used is defined by
parameter dstTType. The function assumes that source and
destination arrays within the structure are pre-allocated by
the user with at least the number of bytes needed by the
topology. Source and destination arrays are assumed to reside
in device memory.

dstEdgeData

Pointer to the user memoryspace where converted edge data
will be stored. Must be device memory and have at least
number_of vertices*sizeof (dataType) bytes.

Return Values

NVGRAPH_STATUS_SUCCESS

Success.

NVGRAPH_STATUS_ INVALID VALUE

Bad parameter(s).

NVGRAPH_STATUS_TYPE NOT_SUPPORTED

An internal operation failed.

NVGRAPH_STATUS_INTERNAL ERROR

The type of at least one topology or edge set is not
supported. Currently we support float and double type
values.

2.11. Function nvgraphConvertGraph()

nvgraphStatus t

nvgraphConvertGraph (nvgraphHandle t handle,
nvgraphGraphDescr t srcDescrG, nvgraphGraphDescr t dstDescrG,
nvgraphTopologyType t dstTType) ;

Convert one of the supported graph types to another. The function will allocate the
necessary memory for the destination graph. It is recommended to use this function over
nvgraphConvertTopology when converting a large data set.

In addition to the destination graph memory, the function requires extra buffer storage
in the device memory for some of the conversion operation, the extra storage is
proportional to the topology size. The function is executed asynchronously with respect
to the host and may return control to the application on the host before the result is

ready.
Input
handle nvGRAPH library handle.
srcDescrG Source graph descriptor. This graph should have its topology
structure previously set, and optionally vertex and edge data
set.
dstTType Destination topology type. This value should be equal to one
of the possible values of {nvgraphCSRTopology32I_t,
nvgraphCSCTopology32I_t,
nvgraphCOOTopology32I_t}. This defines what data

www.nvidia.com
nvGRAPH Library User's Guide

DU-08010-001_v8.0 | 11

nvGRAPH API Reference

structure type should be provided by the dstTopology and
parameter.

Input/Output

dstDescrG Destination graph descriptor. Must be an empty descriptor
created with nvgraphCreateGraphDescr and not have a
topology set.

Return Values

NVGRAPH_STATUS_SUCCESS Success.

NVGRAPH_STATUS_INVALID VALUE Bad parameter(s).

NVGRAPH_STATUS_TYPE_NOT SUPPORTELQ An internal operation failed.

NVGRAPH_STATUS_INTERNAL ERROR The type of at least one topology or edge set is not
supported. Currently we support float and double type
values.

2.12. Function nvgraphAllocateEdgeData()

nvgraphStatus t
nvgraphAllocateEdgeData (nvgraphHandle t handle, nvgraphGraphDescr t descrG,
size t numsets, cudaDataType t *settypes);

Allocates one or more storages for the data associated with graph edges. Number of
allocated storages is specified by the numsets parameter. Types for each of the allocated
storages should be provided in the array settypes of size numsets. Right now nvGRAPH
graphs are limited to have data storages to have same type and same size - all elements
of settypes array should be the same and all of those storages will have number of
elements equal to the number of edges in the graph. Vertices data allocated with
nvgraphAllocateVerticesData() function should have the same datatype as edge data.
These storages could later be used in other functions by indices from 0 to numsets-1.
This function could be called successfully only once for each graph.

Input
handle nvGRAPH library handle
numsets Number of datasets to allocate for the edges. Should be more
than 0.
settypes Array of size numsets that specifies types of allocated
datasets. All values in this array should be the same and
match graph's datasets data type, if exists.
Input/Output
descrG Descriptor of the graph for which edge data is allocated.
Should not have previously allocated edge data and have it's
topology properly initialized.

Return Values

www.nvidia.com
nvGRAPH Library User's Guide DU-08010-001_v8.0 | 12

nvGRAPH API Reference

NVGRAPH_STATUS_SUCCESS Success.

NVGRAPH_STATUS_INVALID VALUE Invalid function parameters, inconsistent types in the type
array, types doesn't match graph's type or graph is not
initialized for data allocation.

NVGRAPH_STATUS_TYPE NOT_SUPPORTEL Types provided in parameter are not supported.

2.13. Function nvgraphSetEdgeData()

nvgraphStatus t
nvgraphSetEdgeData (nvgraphHandle t handle, nvgraphGraphDescr t descrG,
void *edgeData, size t setnum);

Update a specific edge value set (weights) of the graph with the user's provided values.

Input

handle nvGRAPH library handle.

descrG nvGRAPH graph descriptor, should contain the connectivity
information and the edge set setnum

*edgeData Pointer to the data to load into the edge value set.
This entry expects to read one value for each edge.
Conversions are not supported so the user's type before
the void* cast should be equivalent to the one specified in
nvgraphAllocateEdgeData

setnum The identifier of the set to update. This assumes that

setnum is one of the the edge set allocated in the past using
nvgraphAllocateEdgeData. Sets have 0-based index

Return Values

NVGRAPH_STATUS_SUCCESS Success.
NVGRAPH_STATUS_INVALID_ VALUE Bad parameter(s).
NVGRAPH_STATUS_INTERNAL ERROR An internal operation failed.

2.14. Function nvgraphGetEdgeData()

nvgraphStatus t
nvgraphGetEdgeData (nvgraphHandle t handle, nvgraphGraphDescr t descrG,
void *edgeData, size t setnum);

Downloads one dataset associated with graph edges using setnum index to the user
memoryspace. edgeData could point to either host or device memoryspace. Size of the
data transfer depends on the edges number of the graph and graph's data type.

Input

handle nvGRAPH library handle.

www.nvidia.com
nvGRAPH Library User's Guide DU-08010-001_v8.0 | 13

nvGRAPH API Reference

descrG Graph descriptor. Graph should contain at least one data set
associated with it's vertices
setnum Index of the source data set of the graph edge data. Value
should be between 0 and edge_dataset number-1
Output
edgeData Pointer to the user memoryspace where edge data will be

stored. Could be either host or device memory and have at
least number of edges*sizeof (graph_data_type) bytes.

Return Values

NVGRAPH_STATUS_SUCCESS

Success.

NVGRAPH_STATUS_INVALID VALUE

Incorrect function parameter, graph has no associated edge
data sets or topology type doesn't match.

NVGRAPH_STATUS_TYPE NOT_SUPPORTED

Graph datatype or topology type is not supported.

NVGRAPH_STATUS_INTERNAL ERROR

Memory copy failed.

2.15. Function nvgraphAllocateVertexData()

nvgraphStatus t

nvgraphAllgcateVertexData(nvgrathandle_t handle, nvgraphGraphDescr t descrG,
size t numsets, cudaDataType t *settypes);

Allocates one or more storages for the data associated with graph vertices. Number

of allocated storages is specified by the numsets parameter. Types for each of the
allocated storages should be provided in the array settypes of size numsets. Right now
nvGRAPH graphs are limited to have data storages to have same type and same size

- all elements of settypes array should be the same and all of those storages will have
number of elements equal to the number of vertices in the graph. Edge data allocated
with nvgraphAllocateEdgeData() function should have the same datatype as vertex data.
These storages could later be used in other functions by indices from 0 to numsets-1.
This function could be called successfully only once for each graph.

Input
handle nvGRAPH library handle
numsets Number of datasets to allocate for the vertices. Should be
more than 0.
settypes Array of size numsets that specifies types of allocated
datasets. All values in this array should be the same and
match graph's datasets data type, if exists.
Input/Output
descrG Descriptor of the graph for which edge data is allocated.
Should not have previously allocated edge data and have it's
topology properly initialized.

www.nvidia.com
nvGRAPH Library User's Guide

DU-08010-001_v8.0 | 14

nvGRAPH API Reference

Return Values

NVGRAPH_STATUS_SUCCESS Success.

NVGRAPH_STATUS_INVALID VALUE Invalid function parameters, inconsistent types in the type
array, types doesn't match graph's type or graph is not
initialized for data allocation.

NVGRAPH_STATUS_TYPE NOT_SUPPORTEL Types provided in parameter are not supported.

2.16. Function nvgraphSetVertexData()

nvgraphStatus t
nvgraphSetVertexData (nvgraphHandle t handle, nvgraphGraphDescr t descrG,
void *vertexData, size t setnum);

Update a specific vertex value set of the graph with the user's provided values.

Input

handle nvGRAPH library handle.

descrG nvGRAPH graph descriptor, should contain the connectivity
information and vertex set setnum.

*vertexData Pointer to the data to load into the vertex value set.
This entry expects to read one value for each vertex.
Conversions are not supported so the user's type before
the void* cast should be equivalent to the one specified in
nvgraphAllocateVertexData

setnum The identifier of the set to update. This assumes that setnum
is one of the the vertex set allocated in the past using
nvgraphAllocateVertexData. Sets have 0-based index

Return Values

NVGRAPH_STATUS_SUCCESS Success.
NVGRAPH_STATUS_INVALID_ VALUE Bad parameter(s).
NVGRAPH_STATUS_INTERNAL ERROR An internal operation failed.

2.17. Function nvgraphGetVertexData()

nvgraphStatus t
nvgraphGetVertexData (nvgraphHandle t handle, nvgraphGraphDescr t descrG,
void *vertexData, size t setnum);

Downloads one dataset associated with graph vertices using setnum index to the user
memoryspace. vertexData could point to either host or device memoryspace. Size of
the data transfer depends on the vertex number of the graph and graph's data type.

Input

www.nvidia.com
nvGRAPH Library User's Guide DU-08010-001_v8.0 | 15

nvGRAPH API Reference

handle nvGRAPH library handle.
descrG Graph descriptor. Graph should contain at least one data set
associated with it's vertices
setnum Index of the source data set of the graph vertex data. Value
should be between 0 and vertex_dataset number-1
Output
edgeData Pointer to the user memoryspace where vertex data will be

stored. Could be either host or device memory and have at
least number_of vertices*sizeof (graph_data_type)
bytes.

Return Values

NVGRAPH_STATUS_SUCCESS

Success.

NVGRAPH_STATUS_INVALID VALUE

Incorrect function parameter, graph has no associated vertex
data sets or topology type doesn't match.

NVGRAPH_STATUS_TYPE NOT_SUPPORTED

Graph datatype or topology type is not supported.

NVGRAPH_STATUS_INTERNAL ERROR

Memory copy failed.

2.18. Function nvgraphExtractSubgraphByVertex()

nvgraphStatus t

nvgraphExtractSubgraphByVertex (nvgraphHandle t handle,

nvgraphGraphDescr t descrgG,

nvgraphGraphDescr t subdescrgG,

int *subvertices, size t numvertices);

Create a new graph by extracting a subgraph given an array of vertices, consisting
of row indices in the graph incidence matrix; array must be: (i) free of duplicates;
(i) sorted in ascending order; (iii) must consist of indices with values between 0 and

graph nvertices-1.

Input
handle nvGRAPH handle of the source graph (original graph)
descrG nvGRAPH descriptor of the source graph (original graph)
subvertices array containing vertex indices (row indices in graph
incidence matrix) of the subgraph to be extracted; array
must be: (i) free of duplicates; (ii) sorted in ascending
order; (iii) must consist of indices with values between 0 and
graph_nvertices-1.
numvertices the size of subvertices[] array. Should be more than 0 and
less or equal to the number of graph'’s vertices.
Output
subdescrG nvGRAPH graph descriptor of the target graph (subgraph)

www.nvidia.com
nvGRAPH Library User's Guide

DU-08010-001_v8.0 | 16

Return Values

nvGRAPH API Reference

NVGRAPH_STATUS_SUCCESS

nvGRAPH target (subgraph) was created succesfully.

NVGRAPH_STATUS_ INVALID VALUE

Bad parameter(s).

NVGRAPH_STATUS_TYPE NOT_SUPPORTED

The type of specified nvGRAPH is not supported.

2.19. Function nvgraphExtractSubgraphByEdge()

nvgraphStatus t

nvgraphExtractSubgraphByEdge (nvgraphHandle t handle,
nvgraphGraphDescr t descrG, nvgraphGraphDescr t subdescrG,
int *subedges, size t numedges);

Create a new graph by extracting a subgraph given an array of edges, consisting of
indices in the col_ind[] array of the the graph incidence matrix CSR representation); the
array of edges must be: (i) free of duplicates; (ii) sorted in ascending order; (iii) must
consist of indices with values between 0 and graph_nedges-1.

Input
handle nvGRAPH handle of the source graph (original graph)
descrG nvGRAPH descriptor of the source graph (original graph)
subedges array containing edge indices (indices in the col_ind[] array
of the the graph incidence matrix CSR representation) of
the subgraph to be extracted; array must be: (i) free of
duplicates; (ii) sorted in ascending order; (iii) must consist of
indices with values between 0 and graph_nedges-1
numedges the size of subedges[] array, should be more than 0 and less
or equal to number of graph's edges
Output
subdescrG nvGRAPH graph descriptor of the target graph (subgraph)

Return Values

NVGRAPH_STATUS_SUCCESS

nvGRAPH target (subgraph) was created succesfully.

NVGRAPH_STATUS_INVALID VALUE

Bad parameter(s).

NVGRAPH_STATUS_TYPE_ NOT_SUPPORTED

The type of specified nvGRAPH is not supported.

2.20. Function nvgraphWidestPath()

nvgraphStatus t

nvgraphwidgstPath(nvgrathandle_t handle, const nvgraphGraphDescr t descrG,

const size t weight index,

const int *source vert,

const size t widest path index);

www.nvidia.com
nvGRAPH Library User's Guide

DU-08010-001_v8.0 | 17

nvGRAPH API Reference

Find the widest path from the vertex at source_index to every other vertex; this problem
is also known as 'the bottleneck path problem' or 'the maximum capacity path problem'.

If some vertices are unreachable, the widest path to those vertices is -c. In limited-
precision arithmetic, this corresponds to -FLT_MAX or -DBL_MAX depending on the
value type of the set (CUDA_R_32F or CUDA_R_64F respectively).

Input
handle nvGRAPH library handle.
descrG nvGRAPH graph descriptor, should contain the connectivity
information in NVGRAPH_CSC_32, at least 1 edge set (the
capacity) and 1 vertex set (to store the result).
weight_index Index of the edge set for the weights.
*source_vert Index of the source, using 0-based indexes.
Output
widest path_index The values strored inside the vertex set at widest_path_index

(VertexData[widest_path_index]) are the widest path values.
VertexData[widest_path_index][i] is the length of the widest
path between source_vert and vertex i. If vertex i is not

reachable from source_vert, VertexData[widest_path_index]

[i] = -

Users can get a copy of the result using
nvgraphGetVertexData

Return Values

NVGRAPH_STATUS_SUCCESS Success.

NVGRAPH_STATUS_INVALID VALUE Bad parameter(s).

NVGRAPH_STATUS_TYPE NOT_SUPPORTEI The type of at least one vetex or edge set is not supported.

NVGRAPH_STATUS_INTERNAL ERROR An internal operation failed.

2.21. Function nvgraphSssp()

nvgraphStatus t
nvgraphSssp (nvgraphHandle t handle, const nvgraphGraphDescr t descrG,
const size t weight index, const int *source vert,
const size t sssp index);

The Single Source Shortest Path (SSSP) algorithm calculates the shortest path distance
from a single vertex in the graph to all other vertices.

If some vertices are unreachable, the shortest path to those vertices is . In limited-
precision arithmetic, that corresponds to FLT_MAX or DBL_MAX depending on the
value type of the set (CUDA_R_32F or CUDA_R_64F respectively).

Input

www.nvidia.com
nvGRAPH Library User's Guide DU-08010-001_v8.0 | 18

nvGRAPH API Reference

handle nvGRAPH library handle.

descrG nvGRAPH graph descriptor, should contain the connectivity
information in NVGRAPH_CSC_32, at least 1 edge set
(distances) and 1 vertex set (the shortest path lengths).

weight index Index of the edge set for the weights. The default value is 0,
meaning the first edge set.
*source_vert Index of the source, using 0-based indexes.
Output
sssp_index The values stored inside the vertex set at sssp_index

(VertexData[sssp_index]) are the shortest path values.
VertexData[sssp_index][i] is the length of the shortest path
between source_vert and vertex i. If vertex i is not reachable
from source_vert, VertexData[sssp_index][i] = «=.

User can get a copy of the result using
nvgraphGetVertexData

Return Values

NVGRAPH_STATUS_SUCCESS Success.

NVGRAPH_STATUS_INVALID VALUE Bad parameter(s).

NVGRAPH_STATUS_TYPE_NOT SUPPORTEL The type of at least one vetex or edge set is not supported.

NVGRAPH_STATUS_INTERNAL ERROR An internal operation failed.

2.22. Function nvgraphSrSpmyv()

nvgraphStatus t
nvgraphSrSpmv (nvgraphHandle t handle, const nvgraphGraphDescr t descrG,
const size t weight index, const void *alpha, const size t x index,
const void *beta, const size t y index, const nvgraphSemiring t SR);

The Semi-Ring Sparse Matrix Vector multiplication is an operation of the typey =a * A *
x + B y. Where :

- Ais a weighted graph seen as a compressed sparse matrix in CSR, x and y are vectors,
a and (3 are scalars

- (*,%) is a set of two binary operators operating on real values and satisfying semi-ring
properties.
In nvGRAPH all semi-rings operate on a set (R) with two binary operators: + and * that

satisfies:

- (R, +) is associative, commutative with additive identity (additive_identity + a = a)

www.nvidia.com
nvGRAPH Library User's Guide DU-08010-001_v8.0 | 19

nvGRAPH API Reference

- (R, *) is associative with multiplicative identity (multiplicative_identity * a = a)
- Left and Right multiplication is distributive over addition

- Additive identity = multiplicative null operator (null_operator * a =a * null_operator =
null_operator).

nvGRAPH's approach for sparse matrix vector multiplication on the GPU is based on
the CSRMV merge-path algorithm from Duane Merill. It is designed to handle arbitrary
sparsity patterns in an efficient way by offering a good workload balance. As a result,
this operation delivers consistent good performance even for networks with a power-law
distribution of connections.

nvGRAPH has pre-defined useful semi-ring for graphs in nvgraphSemiring_t, so the
user can select them directly.

Semi rings

Semiring Set Plus Times Add_ident Mult_ident
NVGRAPH PLUS TIMES_ SR |[R + * 0 1
NVGRAPH_MIN PLUS_SR RU {-=,+=} | min + o 0
NVGRAPH_MAX MIN SR R U {-o,+} max min e +oo
NVGRAPH OR_AND_SR {0.0, 1,03 OR AND 0 1

Input
handle nvGRAPH library handle.
descrG nvGRAPH graph descriptor, should contain the connectivity

information in NVGRAPH_CSR_32, at least 1 edge set
(weights) and 2 vertex sets (input vector and output vector).

weight index

Index of the edge set for the weights.

*alpha Scalar used for multiplication

x_index Index of the vertex set for used for multiplication

*beta Scalar used for multiplication. If beta is zero, the vertex set
at y_index does not have to be a valid input.

y_index (optional) Index of the vertex set for used for the addition.

SR The semi-ring type nvgraphSemiring t which can be
NVGRAPH_PLUS_TIMES_ SR, NVGRAPH MIN PLUS_SR,
NVGRAPH_MAX MIN SR, NVGRAPH OR AND_SR.

Output

Values at y_index

The values stored inside the set at y_index
(VertexData[y_index]) are the result of the operation.

User can get a copy of the result using
nvgraphGetVertexData

www.nvidia.com
nvGRAPH Library User's Guide

DU-08010-001_v8.0 | 20

nvGRAPH API Reference

Return Values

NVGRAPH_STATUS_SUCCESS Success.

NVGRAPH_STATUS_INVALID VALUE Bad parameter(s).

NVGRAPH_STATUS_TYPE NOT_SUPPORTEL The type of at least one vetex or edge set is not supported.

NVGRAPH_STATUS_INTERNAL ERROR An internal operation failed.

2.23. Function nvgraphPagerank()

nvgraphStatus t
nvgraphPagerank (nvgraphHandle t handle, const nvgraphGraphDescr t descrG,
const size t weight index, const void *alpha,
const size t bookmark index,
const int has guess, const size t pagerank index,
const float tolerance, const int max iter);

Find the PageRank vertex values for a graph with a given transition matrix (Markov
chain), a bookmark vector of dangling vertices, and the damping factor. The transition
matrix is sub-stochastic (ie. each row sums to 0 or 1) and has to be provided in column
major order (ie. in CSC, which is equivalent to the transposed of the sub-stochastic
matrix in CSR). The bookmark vector flags vertices without outgoing edges (also called
dangling vertices).

This is equivalent to an eigenvalue problem where we compute the dominant eigenpair.
By construction, the maximum eigenvalue is 1, only the eigenvector is interesting.
nvGRAPH computes an approximation of the Pagerank eigenvector using the power
method. The number of iterations depends on the properties of the network itself; it
increases when the tolerance descreases and/or alpha increases toward the limiting value
of 1.

The user is free to use default values or to provide inputs for the initial guess, tolerance
and maximum number of iterations.

Input

handle nvGRAPH library handle.

descrG nvGRAPH graph descriptor, should contain the connectivity
information in NVGRAPH_cCSC_32, at least 1 edge set and 2
vertex sets.

weight index Index of the edge set for the transition probability.

*alpha The damping factor alpha represents the probability to
follow an outgoing edge, standard value is 0.85. Thus 1.0-
alphais the probability to “teleport” to a random node.
alphashould be greater than 0.0 and strictly lower than 1.0.

bookmark_index Index of the vertex set for the bookmark of dangling nodes
(VertexData[bookmark index][i] = 1.0 if i is a dangling
node, 0.0 otherwise).

has_guess This parameter is used to notify nvGRAPH if it should use
a user-provided initial guess. 0 means the user doesn't

www.nvidia.com
nvGRAPH Library User's Guide DU-08010-001_v8.0 | 21

nvGRAPH API Reference

have a guess, in this case nvGRAPH will use a uniform

vector set to 1/v. If the value is 1 nvGRAPH will read
VertexData[pagerank_index] and use this as initial guess. The
initial guess must not be the vector of Os. Any value other
than 1 or O is treated as an invalid value.

pagerank_index

(optional) Index of the vertex set for the initial guess if
has_guess=1

tolerance

Set the tolerance the approximation, this parameter should
be a small magnitude value. The lower the tolerance the
better the approximation. If this value is 0.0£, nvGRAPH
will use the default value which is 1.0E-6. Setting too small
a tolerance (less than 1.0E-6 typically) can lead to non-
convergence due to numerical roundoff. Usually 0.01 and
0.0001 are acceptable.

max_iter

The maximum number of iterations before an answer is
returned. This can be used to limit the execution time and
do an early exit before the solver reaches the convergence
tolerance. If this value is lower or equal to 0 nvGRAPH will
use the default value, which is 500.

Output

Values at pagerank_index

The values stored inside the vertex set at pagerank_index
(VertexData[pagerank_index]) are the PageRank values.
VertexData[pagerank_index][i] is the PageRank of vertex i.

Users can get a copy of the result using
nvgraphGetVertexData

Return Values

NVGRAPH_STATUS_SUCCESS

The Pagerank iteration reached the desired tolerance in
less than max_iter iterations

NVGRAPH_STATUS_NOT_ CONVERGED

The Pagerank iteration did not reach the desired tolerance
after max_iter iterations

NVGRAPH_STATUS_INVALID VALUE

Bad parameter(s).

NVGRAPH_STATUS_TYPE_NOT_ SUPPORTED

The type of at least one vertex or edge set is not supported.
Currently we support float and double type values.

2.24. Function nvgraphStatusGetString()

const char*

nvgraphStatusGetString (nvgraphStatus t status);

Gets string description for the nvGRAPH C API statuses.

Input

status

Status returned from one of the C API functions

Return Values

www.nvidia.com
nvGRAPH Library User's Guide

DU-08010-001_v8.0 | 22

nvGRAPH API Reference

Pointer to the string with the text description of the C API status.

www.nvidia.com
nvGRAPH Library User's Guide DU-08010-001_v8.0 | 23

Chapter 3.
NVGRAPH CODE EXAMPLES

This chapter provides simple examples.

www.nvidia.com
nvGRAPH Library User's Guide DU-08010-001_v8.0 | 24

nvGRAPH Code Examples

3.1. nvGRAPH convert topology example

void check (nvgraphStatus t status) {

if (status !'= NVGRAPH STATUS SUCCESS) {
printf ("ERROR : %d\n",status);
exit (0) ;

}

}

int main(int argc, char **argv) ({
size t n = 6, nnz = 10;
// nvgraph variables
nvgraphHandle t handle;
nvgraphCSCTopology32I t CSC_ input;
nvgraphCSRTopology32I t CSR output;
float *src weights d, *dst weights d;
cudaDataType t edge dimT = CUDA R 32F;
// Allocate source data

CSC_input = (nvgraphCsCTopology32I t) malloc(sizeof (struct
nvgraphCSCTopology32I st));
CSC_input->nvertices = n; CSC_input->nedges = nnz;

cudaMalloc((void**) & (CSC input->destination offsets), (n+l)*sizeof (int));
cudaMalloc((void**) & (CSC_input->source indices), nnz*sizeof (int));
cudaMalloc((void**)é&src weights d, nnz*sizeof (float)):;

// Copy source data

float src weights h[] = {0.333333f, 0.5f, 0.333333f, 0.5f, 0.5f, 1.0f,
0.333333f, 0.5f, 0.5f, 0.5f};
int destination offsets h[] = {0, 1, 3, 4, 6, 8, 10};

int source indices h[] = {2, 0, 2, O, 4, 5, 2, 3, 3, 4};
cudaMemcpy (CSC_input->destination offsets, destination offsets h, (n
+1) *sizeof (int), cudaMemcpyDefault) ;

cudaMemcpy (CSC_input->source indices, source indices h, nnz*sizeof (int),
cudaMemcpyDefault) ;

cudaMemcpy (src_weights d, src weights h, nnz*sizeof (float),
cudaMemcpyDefault) ;

// Allocate destination data

CSR_output = (nvgraphCSRTopology32I t) malloc (sizeof (struct
nvgraphCSRTopology32I st));

cudaMalloc((void**)& (CSR output->source offsets), (n+l)*sizeof (int));

cudaMalloc((void**) & (CSR output->destination indices), nnz*sizeof (int));

cudaMalloc ((void**)&dst weights d, nnz*sizeof (float)):;

// Starting nvgraph and convert

check (nvgraphCreate (&handle));

check (nvgraphConvertTopology (handle, NVGRAPH CSC 32, CSC input,
src_weights d,

&edge dimT, NVGRAPH CSR 32, CSR output, dst weights d));

// Free memory

check (nvgraphDestroy (handle)) ;

cudaFree (CSC_input->destination offsets);

cudaFree (CSC_input->source_ indices);

cudaFree (CSR output->source offsets);

cudaFree (CSR output->destination indices);

cudaFree (src_weights d);

cudaFree (dst _weights d);

free (CSC_input) ;

free (CSR output) ;

return 0;

www.nvidia.com

nvGRAPH Library User's Guide DU-08010-001_v8.0 | 25

nvGRAPH Code Examples

3.2. nvGRAPH convert graph example

void check (nvgraphStatus t status) {

if (status !'= NVGRAPH STATUS SUCCESS) {
printf ("ERROR : %d\n",status);
exit (0) ;

}
}
int main(int argc, char **argv) ({
size t n = 6, nnz = 10, vert sets = 2, edge sets = 1;
// nvgraph variables
nvgraphHandle t handle; nvgraphGraphDescr t src csc _graph;
nvgraphCSCTopology32I t CSC_ input;
cudaDataType t edge dimT = CUDA R 32F;
cudaDataType t* vertex dimT;
// Allocate host data

float *pr 1 = (float*)malloc(n*sizeof (float));

void **vertex dim = (void**)malloc(vert sets*sizeof (void*));

vertex dimT = (cudaDataType t*)malloc(vert sets*sizeof (cudaDataType t)):;
CSC_input = (nvgraphCSCTopology32I t) malloc(sizeof (struct

nvgraphCSCTopology32I st));
// Initialize host data

float weights h[] = {0.333333f, 0.5f, 0.333333f, 0.5f, 0.5f, 1.0f,
0.333333f, 0.5f, 0.5f, 0.5f};
int destination offsets h[] = {0, 1, 3, 4, 6, 8, 10};

int source indices h[] = {2, O, 2, 0, 4, 5, 2, 3, 3, 4};

float bookmark h[] = {0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f};

vertex dim[0] = (void*)bookmark h; vertex dim[l]= (void*)pr 1;

vertex dimT[0] = CUDA R 32F; vertex dimT[1l]= CUDA R 32F, vertex dimT[2]=
CUDA R 32F;

// Starting nvgraph

check (nvgraphCreate (&handle));

check (nvgraphCreateGraphDescr (handle, &src csc graph));

CSC_input->nvertices = n; CSC_input->nedges = nnz;
CSC_input->destination offsets = destination offsets h;
CSC_input->source indices = source indices h;

// Set graph connectivity and properties (tranfers)

check (nvgraphSetGraphStructure (handle, src _csc graph, (void*)CSC input,
NVGRAPH CSC_32));

check (nvgraphAllocateVertexData (handle, src csc graph, vert sets,
vertex dimT)) ;

check (nvgraphAllocateEdgeData (handle, src csc graph, edge sets,
&edge dimT)) ;

for (int 1 = 0; 1 < 2; ++1i)

check (nvgraphSetVertexData (handle, src csc_graph, vertex dim[i], 1));

check (nvgraphSetEdgeData (handle, src csc _graph, (void*)weights h, 0));

// Convert to CSR graph

nvgraphGraphDescr t dst csr graph;

check (nvgraphCreateGraphDescr (handle, &dst csr graph));

check (nvgraphConvertGraph (handle, src csc graph, dst csr graph,
NVGRAPH CSR_32));

check (nvgraphDestroyGraphDescr (handle, src csc_graph));

check (nvgraphDestroyGraphDescr (handle, dst csr graph));

check (nvgraphDestroy (handle)) ;

free(pr_l); free(vertex_dim); free(vertex_dimT);

free (CSC_input) ;

return O;

www.nvidia.com
nvGRAPH Library User's Guide DU-08010-001_v8.0 | 26

nvGRAPH Code Examples

3.3. nvGRAPH pagerank example

void check (nvgraphStatus t status) {

if (status !'= NVGRAPH STATUS SUCCESS) {
printf ("ERROR : %d\n",status);
exit (0) ;

}

}

int main(int argc, char **argv) ({
size t n = 6, nnz = 10, vert sets = 2, edge sets = 1;
float alphal = 0.9f; void *alphal p = (void *) &alphal;
// nvgraph variables
nvgraphHandle t handle; nvgraphGraphDescr t graph;
nvgraphCSCTopology32I t CSC input;
cudaDataType t edge dimT = CUDA R 32F;
cudaDataType t* vertex dimT;
// Allocate host data

float *pr 1 = (float*)malloc(n*sizeof (float));

void **vertex dim = (void**)malloc(vert sets*sizeof (void*));

vertex dimT = (cudaDataType t*)malloc(vert sets*sizeof (cudaDataType t)):;
CSC_input = (nvgraphCSCTopology32I t) malloc(sizeof (struct

nvgraphCSCTopology32I st));
// Initialize host data

float weights h[] = {0.333333f, 0.5f, 0.333333f, 0.5f, 0.5f, 1.0f,
0.333333f, 0.5f, 0.5f, 0.5f};
int destination offsets h[] = {0, 1, 3, 4, 6, 8, 10};

int source indices hi] = {250, 2,0, 4,5, 203,03, A

float bookmark h[] = {0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f};

vertex dim[0] = (void*)bookmark h; vertex dim[l]= (void*)pr 1;

vertex dimT[0] = CUDA R 32F; vertex dimT[1l]= CUDA R 32F, vertex dimT[2]=
CUDA R 32F;

// Starting nvgraph

check (nvgraphCreate (&handle));

check (nvgraphCreateGraphDescr (handle, &graph)):;

CSC _input->nvertices = n; CSC input->nedges = nnz;

CSC input->destination offsets = destination offsets h;

CSC_input->source indices = source indices h;

// Set graph connectivity and properties (tranfers)

check (nvgraphSetGraphStructure (handle, graph, (void*)CSC input,
NVGRAPH CSC_32));

check (nvgraphAllocateVertexData (handle, graph, vert sets, vertex dimT));

check (nvgraphAllocateEdgeData (handle, graph, edge sets, &edge dimT)) ;

for (int i = 0; i < 2; ++1i)

check (nvgraphSetVertexData (handle, graph, vertex dim[i], 1));
check (nvgraphSetEdgeData (handle, graph, (void*)weights h, 0));

check (nvgraphPagerank (handle, graph, 0, alphal p, 0, 0, 1, 0.0f, 0));
// Get result

check (nvgraphGetVertexData (handle, graph, vertex dim[1], 1));

check (nvgraphDestroyGraphDescr (handle, graph)):;

check (nvgraphDestroy (handle)) ;

free(pr 1); free(vertexidim); free(vertexidimT);

free (CSC_input) ;

return 0O;

www.nvidia.com
nvGRAPH Library User's Guide DU-08010-001_v8.0 | 27

nvGRAPH Code Examples

3.4. nvGRAPH SSSP example

void check (nvgraphStatus t status) {

if (status !'= NVGRAPH STATUS SUCCESS) {
printf ("ERROR : %d\n",status);
exit (0) ;

}

}

int main(int argc, char **argv) ({
const size t n = 6, nnz = 10, vertex numsets = 1, edge numsets = 1;
float *sssp 1 h;
void** vertex dim;
// nvgraph variables
nvgraphStatus t status; nvgraphHandle t handle;
nvgraphGraphDescr t graph;
nvgraphCSCTopology32I t CSC_ input;
cudaDataType t edge dimT = CUDA R 32F;
cudaDataType t* vertex dimT;
// Init host data
sssp 1 h = (float*)malloc(n*sizeof (float)):
vertex dim = (void**)malloc (vertex numsets*sizeof (void*));
vertex dimT =

(cudaDataType t*)malloc(vertex numsets*sizeof (cudaDataType t));
CSC_input = (nvgraphCSCTopology32I t) malloc(sizeof (struct
nvgraphCSCTopology32I st));

vertex dim[0]= (void*)sssp 1 h; vertex dimT[0] = CUDA R 32F;

float weights h[] = {0.333333, 0.5, 0.333333, 0.5, 0.5, 1.0, 0.333333, 0.5,
0.5, 0.3}3
int destination offsets h[] = {0, 1, 3, 4, 6, 8, 10};

int source indices h[] = {2, O, 2, 0, 4, 5, 2, 3, 3, 4};

check (nvgraphCreate (&handle)) ;

check (nvgraphCreateGraphDescr (handle, &graph)):;

CSC_input->nvertices = n; CSC_input->nedges = nnz;

CSC_input->destination offsets = destination offsets h;

CSC _input->source indices = source indices h;

// Set graph connectivity and properties (tranfers)

check (nvgraphSetGraphStructure (handle, graph, (void*)CSC input,
NVGRAPH CSC_32));

check (nvgraphAllocateVertexData (handle, graph, vertex numsets,
vertex dimT)) ;

check (nvgraphAllocateEdgeData (handle, graph, edge numsets, &edge dimT));

check (nvgraphSetEdgeData (handle, graph, (void*)weights h, 0));

// Solve

int source vert = 0;

check (nvgraphSssp (handle, graph, 0, &source vert, 0));

// Get and print result

check (nvgraphGetVertexData (handle, graph, (void*)sssp 1 h, 0));

//Clean
free(sssp 1 h); free(vertex dim);
free (vertex dimT); free(CSC input);

check (nvgraphDestroyGraphDescr (handle, graph));
check (nvgraphDestroy (handle)) ;
return O;

www.nvidia.com
nvGRAPH Library User's Guide DU-08010-001_v8.0 | 28

nvGRAPH Code Examples

3.5. nvGRAPH Semi-Ring SPMV example

void check (nvgraphStatus t status) {

if (status != NVGRAPH STATUS SUCCESS) {
printf ("ERROR : %d\n",status);
exit (0) ;

}
}

int main(int argc, char **argv) ({

size t n =5, nnz = 10, vertex numsets = 2, edge numsets = 1;
float alpha = 1.0, beta = 0.0;
void *alpha p = (void *)&alpha, *beta p = (void *)éβ

void** vertex dim;
cudaDataType t edge dimT = CUDA R 32F;
cudaDataType t* vertex dimT;
// nvgraph variables
nvgraphStatus t status; nvgraphHandle t handle;
nvgraphGraphDescr t graph;
nvgraphCSRTopology32I t CSR input;
// Init host data
vertex dim = (void**)malloc (vertex numsets*sizeof (void*));
vertex dimT =
(cudaDataType t*)malloc (vertex numsets*sizeof (cudaDataType t));

CSR_input = (nvgraphCSRTopology32I t) malloc(sizeof (struct
nvgraphCSRTopology32I st));

float x h[] = (1.1f, 2.2f, 3.3f, 4.4f, 5.5f};

float y h[] = {0.0f, 0.0£f, 0.0f, 0.0f, 0.0f};

vertex dim[0]= (void*)x h; vertex dim[l]= (void*)y h;

vertex dimT[0] = CUDA R 32F; vertex dimT[1l]= CUDA R 32F;

float weights h([] = {1.0f, 4.0f, 2.0f, 3.0f, 5.0f, 7.0f, 8.0f, 9.0f, 6.0f,
1.5f};

int source offsets h[] = {0, 2, 4, 7, 9, 10};

int destination indices h[] = (O, 1, 1, 2, O, 3, 4, 2, 4, 2};

check (nvgraphCreate (&handle)) ;
check (nvgraphCreateGraphDescr (handle, &graph));

CSR_input->nvertices = n; CSR input->nedges = nnz;
CSR_input->source offsets = source offsets h;
CSR_input->destination indices = destination indices h;

// Set graph connectivity and properties (tranfers)

check (nvgraphSetGraphStructure (handle, graph, (void*)CSR input,
NVGRAPH CSR 32));

check (nvgraphAllocateVertexData (handle, graph, vertex numsets,
vertex dimT)) ;

for (int i = 0; i < vertex numsets; ++i)

check (nvgraphSetVertexData (handle, graph, vertex dimf[i], 1));

check (nvgraphAllocateEdgeData (handle, graph, edge numsets, &edge dimT));

check (nvgraphSetEdgeData (handle, graph, (void*)weights h, 0));

// Solve

check (nvgraphSrSpmv (handle, graph, 0, alpha p, 0, beta p, 1,
NVGRAPH PLUS TIMES SR));

//Get result

check (nvgraphGetVertexData (handle, graph, (void*)y h, 1));

//Clean

check (nvgraphDestroyGraphDescr (handle, graph)):;

check (nvgraphDestroy (handle)) ;

free(vertex dim); free(vertex dimT); free(CSR input);

return O;

www.nvidia.com
nvGRAPH Library User's Guide DU-08010-001_v8.0 | 29

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties
that may result from its use. No license is granted by implication of otherwise
under any patent rights of NVIDIA Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and
replaces all other information previously supplied. NVIDIA Corporation products
are not authorized as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names
may be trademarks of the respective companies with which they are associated.

Copyright
© 2016-2017 NVIDIA Corporation. All rights reserved.

www.nvidia.com ﬁVIbiA®

	Table of Contents
	Introduction
	nvGRAPH API Reference
	2.1. Return value nvgraphStatus_t
	2.2. nvGRAPH graph topology types
	2.3. nvGRAPH topology structure types
	nvgraphCSRTopology32I_t
	nvgraphCSCTopology32I_t
	nvgraphCOOTopology32I_t
	2.4. Function nvgraphCreate()
	2.5. Function nvgraphDestroy()
	2.6. Function nvgraphCreateGraphDescr()
	2.7. Function nvgraphDestroyGraphDescr()
	2.8. Function nvgraphSetGraphStructure()
	2.9. Function nvgraphGetGraphStructure()
	2.10. Function nvgraphConvertTopology()
	2.11. Function nvgraphConvertGraph()
	2.12. Function nvgraphAllocateEdgeData()
	2.13. Function nvgraphSetEdgeData()
	2.14. Function nvgraphGetEdgeData()
	2.15. Function nvgraphAllocateVertexData()
	2.16. Function nvgraphSetVertexData()
	2.17. Function nvgraphGetVertexData()
	2.18. Function nvgraphExtractSubgraphByVertex()
	2.19. Function nvgraphExtractSubgraphByEdge()
	2.20. Function nvgraphWidestPath()
	2.21. Function nvgraphSssp()
	2.22. Function nvgraphSrSpmv()
	2.23. Function nvgraphPagerank()
	2.24. Function nvgraphStatusGetString()

	nvGRAPH Code Examples
	3.1. nvGRAPH convert topology example
	3.2. nvGRAPH convert graph example
	3.3. nvGRAPH pagerank example
	3.4. nvGRAPH SSSP example
	3.5. nvGRAPH Semi-Ring SPMV example

