cuquantum.OptimizerOptions¶
- class cuquantum.OptimizerOptions(samples: Optional[int] = None, threads: Optional[int] = None, path: Optional[Union[types.PathFinderOptions, Iterable[Tuple[int, int]]]] = None, slicing: Optional[Union[types.SlicerOptions, Iterable[Hashable], Iterable[Tuple[Hashable, int]]]] = None, reconfiguration: Optional[types.ReconfigOptions] = None, seed: Optional[int] = None, cost_function: Optional[int] = None)[source]¶
A data class for providing options to the cuTensorNet optimizer.
- samples¶
Number of samples for hyperoptimization. See
CUTENSORNET_CONTRACTION_OPTIMIZER_CONFIG_HYPER_NUM_SAMPLES.- Type
Optional[int]
- threads¶
Number of threads for the hyperoptimizer. See
CUTENSORNET_CONTRACTION_OPTIMIZER_CONFIG_HYPER_NUM_THREADS.- Type
Optional[int]
- path¶
Options for the path finder (
PathFinderOptionsobject or dict containing the(parameter, value)items forPathFinderOptions). Alternatively, the path can be provided as a sequence of pairs in thenumpy.einsum_path()format.- Type
Optional[Union[types.PathFinderOptions, Iterable[Tuple[int, int]]]]
- slicing¶
Options for the slicer (
SlicerOptionsobject or dict containing the(parameter, value)items forSlicerOptions). Alternatively, a sequence of sliced modes or sequence of(sliced mode, sliced extent)pairs can be directly provided.- Type
Optional[Union[types.SlicerOptions, Iterable[Hashable], Iterable[Tuple[Hashable, int]]]]
- reconfiguration¶
Options for the reconfiguration algorithm as a
ReconfigOptionsobject or dict containing the(parameter, value)items forReconfigOptions.- Type
Optional[types.ReconfigOptions]
- seed¶
Optional seed for the random number generator. See
CUTENSORNET_CONTRACTION_OPTIMIZER_CONFIG_SEED.- Type
Optional[int]
- cost_function¶
The objective function to use for finding the optimal contraction path. See
CUTENSORNET_CONTRACTION_OPTIMIZER_CONFIG_COST_FUNCTION_OBJECTIVE.- Type
Optional[int]