Performing gate split operation using cuTensorNet adopts a very similar workflow as QR example and SVD example. Here, we here highlight the notable differences between the two APIs. The full code can be found in the NVIDIA/cuQuantum repository (here).

Define tensor operands

As with QR/SVD decomposition, we first define all the tensor operands by specifying the data type, modes partition, and the extents. In this process, we choose to perform fixed extent truncation to a size of 16.

 90   /************************************************************************************
 91   * Gate Split: A_{i,j,k,l} B_{k,o,p,q} G_{m,n,l,o}-> A'_{i,j,x,m} S_{x} B'_{x,n,p,q}  
 92   *************************************************************************************/
 93   typedef float floatType;
 94   cudaDataType_t typeData = CUDA_R_32F;
 95   cutensornetComputeType_t typeCompute = CUTENSORNET_COMPUTE_32F;
 96
 97   // Create vector of modes
 98   std::vector<int32_t> modesAIn{'i','j','k','l'};
 99   std::vector<int32_t> modesBIn{'k','o','p','q'};
100   std::vector<int32_t> modesGIn{'m','n','l','o'}; // input, G is the gate operator
101
102   std::vector<int32_t> modesAOut{'i','j','x','m'}; 
103   std::vector<int32_t> modesBOut{'x','n','p','q'}; // SVD output
104
105   // Extents
106   std::unordered_map<int32_t, int64_t> extent;
107   extent['i'] = 16;
108   extent['j'] = 16;
109   extent['k'] = 16;
110   extent['l'] = 2;
111   extent['m'] = 2;
112   extent['n'] = 2;
113   extent['o'] = 2;
114   extent['p'] = 16;
115   extent['q'] = 16;
116   
117   const int64_t maxExtent = 16; //truncate to a maximal extent of 16
118   extent['x'] = maxExtent;
119
120   // Create a vector of extents for each tensor
121   std::vector<int64_t> extentAIn;
122   for (auto mode : modesAIn)
123      extentAIn.push_back(extent[mode]);
124   std::vector<int64_t> extentBIn;
125   for (auto mode : modesBIn)
126      extentBIn.push_back(extent[mode]);
127   std::vector<int64_t> extentGIn;
128   for (auto mode : modesGIn)
129      extentGIn.push_back(extent[mode]);
130   std::vector<int64_t> extentAOut;
131   for (auto mode : modesAOut)
132      extentAOut.push_back(extent[mode]);
133   std::vector<int64_t> extentBOut;
134   for (auto mode : modesBOut)
135      extentBOut.push_back(extent[mode]);
136   

Execution

Similar to SVD example, we can specify the SVD options in cutensornetTensorSVDConfig_t. Workspace size query can be achieved by calling cutensornetWorkspaceComputeGateSplitSizes() with the provided cutensornetGateSplitAlgo_t. Finally, we can execute the gate split computation by calling cutensornetGateSplit().

305   /**********************
306   * Execution
307   **********************/
308
309   GPUTimer timer{stream};
310   double minTimeCUTENSOR = 1e100;
311   const int numRuns = 3; // to get stable perf results
312   for (int i=0; i < numRuns; ++i)
313   {  
314      // restore output
315      cudaMemsetAsync(D_AOut, 0, sizeAOut, stream);
316      cudaMemsetAsync(D_S, 0, sizeS, stream);
317      cudaMemsetAsync(D_BOut, 0, sizeBOut, stream);
318
319      // With value-based truncation, `cutensornetGateSplit` can potentially update the shared extent in descTensorA/BOut.
320      // We here restore descTensorA/BOut to the original problem.
321      HANDLE_ERROR( cutensornetDestroyTensorDescriptor(descTensorAOut) );
322      HANDLE_ERROR( cutensornetDestroyTensorDescriptor(descTensorBOut) );
323      HANDLE_ERROR( cutensornetCreateTensorDescriptor(handle, numModesAOut, extentAOut.data(), strides, modesAOut.data(), typeData, &descTensorAOut) );
324      HANDLE_ERROR( cutensornetCreateTensorDescriptor(handle, numModesBOut, extentBOut.data(), strides, modesBOut.data(), typeData, &descTensorBOut) );
325
326      cudaDeviceSynchronize();
327      timer.start();
328      HANDLE_ERROR( cutensornetGateSplit(handle, 
329                                         descTensorAIn, D_AIn,
330                                         descTensorBIn, D_BIn,
331                                         descTensorGIn, D_GIn,
332                                         descTensorAOut, D_AOut,
333                                         D_S,
334                                         descTensorBOut, D_BOut,
335                                         gateAlgo,
336                                         svdConfig, typeCompute, svdInfo, 
337                                         workDesc, stream) );
338      // Synchronize and measure timing
339      auto time = timer.seconds();
340      minTimeCUTENSOR = (minTimeCUTENSOR < time) ? minTimeCUTENSOR : time;
341   }
342
343   printf("Performing Gate Split\n");

Note

Like in cutensornetTensorSVD(), since we turned on weighted truncation options in this example, the tensor descriptors for outputs A and B need to be restored if we wish to perform the same computation multiple times.

After the computation, we always need to free up all resources.