
Profiler
Release 12.9

NVIDIA Corporation

Apr 18, 2025

Contents

1 Focused Profiling 3

2 Marking Regions of CPU Activity 5

3 Naming CPU and CUDA Resources 7

4 Flush Profile Data 9

5 Profiling CUDA Fortran Applications 11

6 Visual Profiler 13
6.1 Getting Started . 13

6.1.1 Setting up Java Runtime Environment . 13
6.1.2 Installing JRE . 14
6.1.3 Modify Your Application For Profiling . 15
6.1.4 Creating a Session . 16
6.1.5 Analyzing Your Application . 17
6.1.6 Exploring the Timeline . 17
6.1.7 Looking at the Details . 17
6.1.8 Improve Loading of Large Profiles . 18

6.2 Sessions . 19
6.2.1 Executable Session . 19
6.2.2 Import Session . 19

6.2.2.1 Import Single-Process nvprof Session . 19
6.2.2.2 Import Multi-Process nvprof Session . 20
6.2.2.3 Import Command-Line Profiler Session . 20

6.3 Application Requirements . 21
6.4 Visual Profiler Views . 21

6.4.1 Timeline View . 21
6.4.1.1 Timeline Controls . 24
6.4.1.2 Navigating the Timeline . 26
6.4.1.3 Timeline Refreshing . 27
6.4.1.4 Dependency Analysis Controls . 27

6.4.2 Analysis View . 28
6.4.2.1 Guided Application Analysis . 28
6.4.2.2 Unguided Application Analysis . 29
6.4.2.3 PC Sampling View . 29
6.4.2.4 Memory Statistics . 31
6.4.2.5 NVLink view . 31

6.4.3 Source-Disassembly View . 32
6.4.4 GPU Details View . 34
6.4.5 CPU Details View . 35
6.4.6 OpenACC Details View . 37
6.4.7 OpenMP Details View . 38

i

6.4.8 Properties View . 38
6.4.9 Console View . 38
6.4.10 Settings View . 38
6.4.11 CPU Source View . 40

6.5 Customizing the Profiler . 40
6.5.1 Resizing a View . 41
6.5.2 Reordering a View . 41
6.5.3 Moving a View . 41
6.5.4 Undocking a View . 41
6.5.5 Opening and Closing a View . 41

6.6 Command Line Arguments . 41

7 nvprof 43
7.1 Command Line Options . 43

7.1.1 CUDA Profiling Options . 43
7.1.2 CPU Profiling Options . 56
7.1.3 Print Options . 58
7.1.4 IO Options . 59

7.2 Profiling Modes . 60
7.2.1 Summary Mode . 60
7.2.2 GPU-Trace and API-Trace Modes . 61
7.2.3 Event/metric Summary Mode . 64
7.2.4 Event/metric Trace Mode . 66

7.3 Profiling Controls . 66
7.3.1 Timeout . 66
7.3.2 Concurrent Kernels . 67
7.3.3 Profiling Scope . 67
7.3.4 Multiprocess Profiling . 68
7.3.5 System Profiling . 68
7.3.6 Unified Memory Profiling . 68
7.3.7 CPU Thread Tracing . 68

7.4 Output . 69
7.4.1 Adjust Units . 69
7.4.2 CSV . 69
7.4.3 Export/Import . 69
7.4.4 Demangling . 70
7.4.5 Redirecting Output . 70
7.4.6 Dependency Analysis . 70

7.5 CPU Sampling . 71
7.5.1 CPU Sampling Limitations . 72

7.6 OpenACC . 72
7.6.1 OpenACC Options . 73
7.6.2 OpenACC Summary Modes . 74

7.7 OpenMP . 74
7.7.1 OpenMP Options . 75

8 Remote Profiling 77
8.1 Remote Profiling With Visual Profiler . 77

8.1.1 One-hop remote profiling . 77
8.2 Remote Profiling With nvprof . 79

8.2.1 Collect Data On Remote System . 79
8.2.2 View And Analyze Data . 80

9 NVIDIA Tools Extension 83

ii

9.1 NVTX API Overview . 83
9.2 NVTX API Events . 84

9.2.1 NVTX Markers . 84
9.2.2 NVTX Range Start/Stop . 85
9.2.3 NVTX Range Push/Pop . 85
9.2.4 Event Attributes Structure . 86
9.2.5 NVTX Synchronization Markers . 87

9.3 NVTX Domains . 88
9.4 NVTX Resource Naming . 89
9.5 NVTX String Registration . 90

10 MPI Profiling 91
10.1 Automatic MPI Annotation with NVTX . 91
10.2 Manual MPI Profiling . 92
10.3 Further Reading . 93

11 MPS Profiling 95
11.1 MPS profiling with Visual Profiler . 95
11.2 MPS profiling with nvprof . 95
11.3 Viewing nvprof MPS timeline in Visual Profiler . 96

12 Dependency Analysis 97
12.1 Background . 97
12.2 Metrics . 97
12.3 Support . 98
12.4 Limitations . 99

13 Metrics Reference 101
13.1 Metrics for Capability 5.x . 101
13.2 Metrics for Capability 6.x . 106
13.3 Metrics for Capability 7.x . 112

14 Warp State 119

15 Migrating to Nsight Tools from Visual Profiler and nvprof 123

16 Profiler Known Issues 125

17 Changelog 133

18 Notices 141
18.1 Notice . 141
18.2 OpenCL . 142
18.3 Trademarks . 142

iii

iv

Profiler, Release 12.9

Profiler User’s Guide

The user manual for NVIDIA profiling tools for optimizing performance of CUDA applications.

Profiling Overview

This document describes NVIDIA profiling tools that enable you to understand and optimize the per-
formance of your CUDA, OpenACC or OpenMP applications. The Visual Profiler is a graphical profiling
tool that displays a timeline of your application’s CPU and GPU activity, and that includes an auto-
mated analysis engine to identify optimization opportunities. The nvprof profiling tool enables you to
collect and view profiling data from the command-line.

Note that Visual Profiler and nvprof are deprecated and will be removed in a future CUDA release.
The NVIDIA Volta platform is the last architecture on which these tools are fully supported. It is recom-
mended to use next-generation tools NVIDIA Nsight Systems for GPU and CPU sampling and tracing
and NVIDIA Nsight Compute for GPU kernel profiling.

Refer the Migrating to Nsight Tools from Visual Profiler and nvprof section for more details.

Terminology

An event is a countable activity, action, or occurrence on a device. It corresponds to a single hard-
ware counter value which is collected during kernel execution. To see a list of all available events on a
particular NVIDIA GPU, type nvprof --query-events.

A metric is a characteristic of an application that is calculated from one or more event values. To see a
list of all available metrics on a particular NVIDIA GPU, type nvprof --query-metrics. You can also
refer to the metrics reference .

The CUDA profiling tools do not require any application changes to enable profiling; however, by mak-
ing some simple modifications and additions, you can greatly increase the usability and effectiveness
profiling. This section describes these modifications and how they can improve your profiling results.

Contents 1

index.html#visual-profiler
index.html#nvprof
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-compute
index.html#migrating-to-nsight-tools-from-visual-profiler-and-nvprof
index.html#metrics-reference

Profiler, Release 12.9

2 Contents

Chapter 1. Focused Profiling

By default, the profiling tools collect profile data over the entire run of your application. But, as ex-
plained below, you typically only want to profile the region(s) of your application containing some or
all of the performance-critical code. Limiting profiling to performance-critical regions reduces the
amount of profile data that both you and the tools must process, and focuses attention on the code
where optimization will result in the greatest performance gains.

There are several common situations where profiling a region of the application is helpful.

1. The application is a test harness that contains a CUDA implementation of all or part of your algo-
rithm. The test harness initializes the data, invokes the CUDA functions to perform the algorithm,
and then checks the results for correctness. Using a test harness is a common and productive
way to quickly iterate and test algorithm changes. When profiling, you want to collect profile
data for the CUDA functions implementing the algorithm, but not for the test harness code that
initializes the data or checks the results.

2. The application operates in phases, where a different set of algorithms is active in each phase.
When the performance of each phase of the application can be optimized independently of the
others, you want to profile each phase separately to focus your optimization efforts.

3. The application contains algorithms that operate over a large number of iterations, but the per-
formance of the algorithm does not vary significantly across those iterations. In this case you
can collect profile data from a subset of the iterations.

To limit profiling to a region of your application, CUDA provides functions to start and stop pro-
file data collection. cudaProfilerStart() is used to start profiling and cudaProfilerStop() is
used to stop profiling (using the CUDA driver API, you get the same functionality with cuProfiler-
Start() and cuProfilerStop()). To use these functions you must include cuda_profiler_api.h
(or cudaProfiler.h for the driver API).

When using the start and stop functions, you also need to instruct the profiling tool to disable profiling
at the start of the application. For nvprof you do this with the --profile-from-start off flag.
For the Visual Profiler you use the Start execution with profiling enabled checkbox in the Settings View.

3

index.html#settings-view

Profiler, Release 12.9

4 Chapter 1. Focused Profiling

Chapter 2. Marking Regions of CPU
Activity

The Visual Profiler can collect a trace of the CUDA function calls made by your application. The Visual
Profiler shows these calls in the Timeline View, allowing you to see where each CPU thread in the
application is invoking CUDA functions. To understand what the application’s CPU threads are doing
outside of CUDA function calls, you can use the NVIDIA Tools Extension API (NVTX). When you add
NVTX markers and ranges to your application, the Timeline View shows when your CPU threads are
executing within those regions.

nvprof also supports NVTX markers and ranges. Markers and ranges are shown in the API trace
output in the timeline. In summary mode, each range is shown with CUDA activities associated with
that range.

5

index.html#timeline-view
index.html#nvidia-tools-extension
index.html#timeline-view

Profiler, Release 12.9

6 Chapter 2. Marking Regions of CPU Activity

Chapter 3. Naming CPU and CUDA
Resources

The Visual Profiler Timeline View shows default naming for CPU thread and GPU devices, context and
streams. Using custom names for these resources can improve understanding of the application be-
havior, especially for CUDA applications that have many host threads, devices, contexts, or streams.
You can use the NVIDIA Tools Extension API to assign custom names for your CPU and GPU resources.
Your custom names will then be displayed in the Timeline View.

nvprof also supports NVTX naming. Names of CUDA devices, contexts and streams are displayed in
summary and trace mode. Thread names are displayed in summary mode.

7

index.html#timeline-view
index.html#nvidia-tools-extension
index.html#timeline-view

Profiler, Release 12.9

8 Chapter 3. Naming CPU and CUDA Resources

Chapter 4. Flush Profile Data

To reduce profiling overhead, the profiling tools collect and record profile information into internal
buffers. These buffers are then flushed asynchronously to disk with low priority to avoid perturbing
application behavior. To avoid losing profile information that has not yet been flushed, the application
being profiled should make sure, before exiting, that all GPU work is done (using CUDA synchronization
calls), and then call cudaProfilerStop() or cuProfilerStop(). Doing so forces buffered profile
information on corresponding context(s) to be flushed.

If your CUDA application includes graphics that operate using a display or main loop, care must be
taken to call cudaProfilerStop() or cuProfilerStop() before the thread executing that loop
calls exit(). Failure to call one of these APIs may result in the loss of some or all of the collected
profile data.

For some graphics applications like the ones use OpenGL, the application exits when the escape key
is pressed. In those cases where calling the above functions before exit is not feasible, use nvprof
option --timeout or set the “Execution timeout” in the Visual Profiler. The profiler will force a data
flush just before the timeout.

9

Profiler, Release 12.9

10 Chapter 4. Flush Profile Data

Chapter 5. Profiling CUDA Fortran
Applications

CUDA Fortran applications compiled with the PGI CUDA Fortran compiler can be profiled by nvprof
and the Visual Profiler. In cases where the profiler needs source file and line information (kernel
profile analysis, global memory access pattern analysis, divergent execution analysis, etc.), use the “-
Mcuda=lineinfo” option when compiling. This option is supported on Linux 64-bit targets in PGI 2019
version 19.1 or later.

11

Profiler, Release 12.9

12 Chapter 5. Profiling CUDA Fortran Applications

Chapter 6. Visual Profiler

The NVIDIA Visual Profiler allows you to visualize and optimize the performance of your application. The
Visual Profiler displays a timeline of your application’s activity on both the CPU and GPU so that you
can identify opportunities for performance improvement. In addition, the Visual Profiler will analyze
your application to detect potential performance bottlenecks and direct you on how to take action to
eliminate or reduce those bottlenecks.

The Visual Profiler is available as both a standalone application and as part of Nsight Eclipse Edition.
The standalone version of the Visual Profiler, nvvp, is included in the CUDA Toolkit for all supported
OSes. Within Nsight Eclipse Edition, the Visual Profiler is located in the Profile Perspective and is
activated when an application is run in profile mode.

6.1. Getting Started

This section describes steps you might take as you begin profiling.

6.1.1. Setting up Java Runtime Environment

Visual Profiler requires Java Runtime Environment (JRE) 1.8 to be available on the local system. How-
ever, starting with CUDA Toolkit version 10.1 Update 2, the JRE is no longer included in the CUDA
Toolkit due to Oracle upgrade licensing changes. The user must install the required version of JRE 1.8
in order to use Visual Profiler. See Installing JRE.

▶ To run Visual Profiler on OpenSUSE15 or SLES15:

▶ Make sure that you invoke Visual Profiler with the command-line option included as shown
below:

nvvp -vm ∕usr∕lib64∕jvm∕jre-1.8.0∕bin∕java

Note: The -vm option is only required when JRE 1.8 is not in the default path.

▶ To run Visual Profiler on Ubuntu 18.04 or Ubuntu 18.10:

▶ Make sure that you invoke Visual Profiler with the command-line option included as shown
below:

13

index.html#installing-jre

Profiler, Release 12.9

nvvp -vm ∕usr∕lib∕jvm∕java-8-openjdk-amd64∕jre∕bin∕java

Note: The -vm option is only required when JRE 1.8 is not in the default path.

▶ On Ubuntu 18.10, if you get error “no swt-pi-gtk in java.library.path” when running
Visual Profiler, then you need to install GTK2. Type the below command to install the required
GTK2.

apt-get install libgtk2.0-0

▶ To run Visual Profiler on Fedora 29:

▶ Make sure that you invoke Visual Profiler with the command-line option included as shown
below:

nvvp -vm ∕usr∕bin∕java

Note: The -vm option is only required when JRE 1.8 is not in the default path.

▶ To run Visual Profiler on Windows:

▶ Make sure that you invoke Visual Profiler with the command-line option included as shown
below:

nvvp -vm "C:\Program Files\Java\jdk1.8.0_77\jre\bin\java"

Note: The -vm option is only required when JRE 1.8 is not in the default path.

6.1.2. Installing JRE

Visual Profiler require Java Runtime Environment (JRE) 1.8 to be available on the local system. However,
as of CUDA Toolkit version 10.1 Update 2, the JRE is no longer included in the CUDA Toolkit due to
Oracle upgrade licensing changes. The user must install JRE 1.8 in order to use Visual Profiler. See
below for available options. Also see Java Platform, Standard Edition 8 Names and Versions.

Windows

▶ Oracle JRE 1.8 (may require paid updates)

▶ OpenJDK JRE 1.8

14 Chapter 6. Visual Profiler

https://www.oracle.com/technetwork/java/javase/jdk8-naming-2157130.html

Profiler, Release 12.9

Linux

▶ Oracle JRE 1.8 (may require paid updates)

▶ OpenJDK JRE 1.8

Note: JRE 1.8u152 or later is not supported for Visual Profiler. You can find the JRE update
151 on the Oracle Download Archive site here: https://www.oracle.com/technetwork/java/javase/
downloads/java-archive-javase8-2177648.html?printOnly=1.

6.1.3. Modify Your Application For Profiling

The Visual Profiler does not require any application changes; however, by making some simple modi-
fications and additions, you can greatly increase its usability and effectiveness. Section Preparing An
Application For Profiling describes how you can focus your profiling efforts and add extra annotations
to your application that will greatly improve your profiling experience.

6.1. Getting Started 15

https://www.oracle.com/technetwork/java/javase/downloads/java-archive-javase8-2177648.html?printOnly=1
https://www.oracle.com/technetwork/java/javase/downloads/java-archive-javase8-2177648.html?printOnly=1
index.html#preparing-an-application-for-profiling
index.html#preparing-an-application-for-profiling

Profiler, Release 12.9

6.1.4. Creating a Session

The first step in using the Visual Profiler to profile your application is to create a new profiling session. A
session contains the settings, data, and results associated with your application. The Sessions section
gives more information on working with sessions.

You can create a new session by selecting the Profile An Application link on the Welcome page, or by
selecting New Session from the File menu. In the Create New Session dialog enter the executable
for your application. Optionally, you can also specify the working directory, arguments, multi-process
profiling option and environment.

The muti-process profiling options are:

▶ Profile child processes - If selected, profile all processes launched by the specified application.

▶ Profile all processes - If selected, profile every CUDA process launched on the same system by
the same user who launched nvprof. In this mode the Visual Profiler will launch nvprof and user
needs to run his application in another terminal outside the Visual Profiler. User can exit this
mode by pressing “Cancel” button on progress dialog in Visual Profiler to load the profile data

▶ Profile current process only - If selected, only profile specified application.

Press Next to choose some additional profiling options.

CUDA options:

▶ Start execution with profiling enabled - If selected profile data is collected from the start of ap-
plication execution. If not selected profile data is not collected until cudaProfilerStart()
is called in the application. See Focused Profiling for more information about cudaProfiler-
Start().

▶ Enable concurrent kernel profiling - This option should be selected for an application that uses
CUDA streams to launch kernels that can execute concurrently. If the application uses only a
single stream (and therefore cannot have concurrent kernel execution), deselecting this option
may decrease profiling overhead.

▶ Enable CUDA API tracing in the timeline - If selected, the CUDA driver and runtime API call trace
is collected and displayed on timeline.

▶ Enable power, clock, and thermal profiling - If selected, power, clock, and thermal conditions on
the GPUs will be sampled and displayed on the timeline. Collection of this data is not supported
on all GPUs. See the description of the Device timeline in Timeline View for more information.

▶ Enable unified memory profiling - If selected for the GPU that supports Unified Memory, the
Unified Memory related memory traffic to and from each GPU is collected on your system and
displayed on timeline.

▶ Replay application to collect events and metrics - If selected, the whole application is re-run
instead of replaying each kernel, in order to collect all events/metrics.

▶ Run guided analysis - If selected, the guided analysis is run immediately after the creation of a
new session. Uncheck this option to disable this behavior.

CPU (host) options:

▶ Profile execution on the CPU - If selected the CPU threads are sampled and data collected about
the CPU performance is shown in the CPU Details View.

▶ Enable OpenACC profiling - If selected and an OpenACC application is profiled, OpenACC activ-
ities will be recorded and displayed on a new OpenACC timeline. Collection of this data is only
supported on Linux and PGI 19.1 or later. See the description of the OpenACC timeline in Timeline
View for more information.

16 Chapter 6. Visual Profiler

index.html#sessions
index.html#focused-profiling
index.html#timeline-view
index.html#cpu-details-view
index.html#timeline-view
index.html#timeline-view

Profiler, Release 12.9

▶ Enable CPU thread tracing - If enabled, selected CPU thread API calls will be recorded and dis-
played on a new thread API timeline. This currently includes the Pthread API, mutexes and condi-
tion variables. For performance reasons, only those API calls that influence concurrent execution
are recorded and collection of this data is not supported on Windows. See the description of the
thread timeline in Timeline View for more information. This option should be selected for depen-
dency analysis of applications with multiple CPU threads using CUDA.

Timeline Options:

▶ Load data for time range - If selected the start and end time stamps for the range of data to be
loaded can be specified. This option is useful to select a subset of a large data.

▶ Enable timelines in the session - By default all timelines are enabled. If a timeline is un-checked,
the data associated with that timeline will not be loaded and it will not be displayed.

Note: If some timelines are disabled by un-checking the option the analyses results which use this
timeline data will be incorrect.

Press Finish.

6.1.5. Analyzing Your Application

If the Don’t run guided analysis option was not selected when you created your session, the Visual
Profiler will immediately run your application to collect the data needed for the first stage of guided
analysis. As described in the Analysis View section, you can use the guided analysis system to get
recommendations on performance limiting behavior in your application.

6.1.6. Exploring the Timeline

In addition to the guided analysis results, you will see a timeline for your application showing the CPU
and GPU activity that occurred as your application executed. Read Timeline View and Properties View
to learn how to explore the profiling information that is available in the timeline. Navigating the Time-
line describes how you can zoom and scroll the timeline to focus on specific areas of your application.

6.1.7. Looking at the Details

In addition to the results provided in the Analysis View, you can also look at the specific metric and
event values collected as part of the analysis. Metric and event values are displayed in the GPU Details
View. You can collect specific metric and event values that reveal how the kernels in your application
are behaving. You collect metrics and events as described in the GPU Details View section.

6.1. Getting Started 17

index.html#timeline-view
index.html#analysis-view
index.html#timeline-view
index.html#properties-view
index.html#navigating-the-timeline
index.html#navigating-the-timeline
index.html#analysis-view
index.html#gpu-details-view
index.html#gpu-details-view
index.html#gpu-details-view

Profiler, Release 12.9

6.1.8. Improve Loading of Large Profiles

Some applications launch many tiny kernels, making them prone to very large (100s of megabytes or
larger) output, even for application runs of only a few seconds. The Visual Profiler needs roughly the
same amount of memory as the size of the profile it is opening/importing. The Java virtual machine
may use a fraction of the main memory if no “max heap size” setting is specified. So depending on the
size of main memory, the Visual Profiler may fail to load some large files.

If the Visual Profiler fails to load a large profile, try setting the max heap size that JVM is allowed to
use according to main memory size. You can modify the config file libnvvp∕nvvp.ini in the toolkit
installation directory. The nvvp.ini configuration file looks like this:

-startup
plugins∕org.eclipse.equinox.launcher_1.3.0.v20140415-2008.jar
--launcher.library
plugins∕org.eclipse.equinox.launcher.gtk.linux.x86_64_1.1.200.v20140603-1326
-data
@user.home∕nvvp_workspace
-vm
..∕jre∕bin∕java
-vmargs
-Dorg.eclipse.swt.browser.DefaultType=mozilla

To force the JVM to use 3 gigabytes of memory, for example, add a new line with �Xmx3G after
�vmargs. The -Xmx setting should be tailored to the available system memory and input size. For
example, if your system has 24GB of system memory, and you happen to know that you won’t need
to run any other memory-intensive applications at the same time as the Visual Profiler, so it’s okay for
the profiler to take up the vast majority of that space. So you might pick, say, 22GB as the maximum
heap size, leaving a few gigabytes for the OS, GUI, and any other programs that might be running.

Some other nvvp.ini configuration settings can also be modified:

▶ Increase the default heap size (the one Java automatically starts up with) to, say, 2GB. (-Xms)

▶ Tell Java to run in 64-bit mode instead of the default 32-bit mode (only works on 64-bit systems);
this is required if you want heap sizes >4GB. (-d64)

▶ Enable Javas parallel garbage collection system, which helps both to decrease the required
memory space for a given input size as well as to catch out of memory errors more gracefully.
(-XX:+UseConcMarkSweepGC -XX:+CMSIncrementalMode)

Note: most installations require administrator/root-level access to modify this file.

The modified nvvp.ini file as per examples given above is as follows:

-data
@user.home∕nvvp_workspace
-vm
..∕jre∕bin∕java
-d64
-vmargs
-Xms2g
-Xmx22g
-XX:+UseConcMarkSweepGC
-XX:+CMSIncrementalMode
-Dorg.eclipse.swt.browser.DefaultType=Mozilla

For more details on JVM settings, consult the Java virtual machine manual.

18 Chapter 6. Visual Profiler

Profiler, Release 12.9

In addition to this you can use timeline options Load data for time range and Enable timelines in the
session mentioned in the Creating a Session section to limit the data which is loaded and displayed.

6.2. Sessions

A session contains the settings, data, and profiling results associated with your application. Each
session is saved in a separate file; so you can delete, move, copy, or share a session by simply deleting,
moving, copying, or sharing the session file. By convention, the file extension .nvvp is used for Visual
Profiler session files.

There are two types of sessions: an executable session that is associated with an application that is
executed and profiled from within the Visual Profiler, and an import session that is created by importing
data generated by nvprof.

6.2.1. Executable Session

You can create a new executable session for your application by selecting the Profile An Application
link on the Welcome page, or by selecting New Session from the File menu. Once a session is created,
you can edit the session’s settings as described in the Settings View.

You can open and save existing sessions using the open and save options in the File menu.

To analyze your application and to collect metric and event values, the Visual Profiler will execute your
application multiple times. To get accurate profiling results, it is important that your application con-
form to the requirements detailed in Application Requirements.

6.2.2. Import Session

You create an import session from the output of nvprof by using the Import… option in the File menu.
Selecting this option opens the import dialog which guides you through the import process.

Because an executable application is not associated with an import session, the Visual Profiler cannot
execute the application to collect additional profile data. As a result, analysis can only be performed
with the data that is imported. Also, the GPU Details View will show any imported event and metrics
values but new metrics and events cannot be selected and collected for the import session.

6.2.2.1 Import Single-Process nvprof Session

Using the import dialog you can select one or more nvprof data files for import into the new session.

You must have one nvprof data file that contains the timeline information for the session. This data
file should be collected by running nvprof with the --export-profile option. You can optionally
enable other options such as --system-profiling on, but you should not collect any events or
metrics as that will distort the timeline so that it is not representative of the applications true behavior.

You may optionally specify one or more event/metric data files that contain event and metric values
for the application. These data files should be collected by running nvprof with one or both of the

6.2. Sessions 19

index.html#creating-a-session
index.html#nvprof
index.html#settings-view
index.html#application-requirements
index.html#gpu-details-view

Profiler, Release 12.9

--events and --metrics options. To collect all the events and metrics that are needed for the anal-
ysis system, you can simply use the --analysis-metrics option along with the --kernels option
to select the kernel(s) to collect events and metrics for. See Remote Profiling for more information.

If you are importing multiple nvprof output files into the session, it is important that your application
conform to the requirements detailed in Application Requirements.

6.2.2.2 Import Multi-Process nvprof Session

Using the import wizard you can select multiple nvprof data files for import into the new multi-
process session.

Each nvprof data file must contain the timeline information for one of the processes. This data file
should be collected by running nvprof with the --export-profile option. You can optionally enable
other options such as --system-profiling on, but you should not collect any events or metrics as
that will distort the timeline so that it is not representative of the applications true behavior.

Select the Multiple Processes option in the Import nvprof Data dialog as shown in the figure below.

When importing timeline data from multiple processes you may not specify any event/metric data files
for those processes. Multi-processes profiling is only supported for timeline data.

6.2.2.3 Import Command-Line Profiler Session

Support for command-line profiler (using the environment variable COMPUTE_PROFILE) has been
dropped, but CSV files generated using earlier versions can still be imported.

Using the import wizard you can select one or more command-line profiler generated CSV files for
import into the new session. When you import multiple CSV files, their contents are combined and
displayed in a single timeline.

The command-line profiler CSV file must be generated with the gpustarttimestamp and streamid con-
figuration parameters. It is fine to include other configuration parameters, including events.

20 Chapter 6. Visual Profiler

index.html#remote-profiling
index.html#application-requirements

Profiler, Release 12.9

6.3. Application Requirements

To collect performance data about your application, the Visual Profiler must be able to execute your
application repeatedly in a deterministic manner. Due to software and hardware limitations, it is not
possible to collect all the necessary profile data in a single execution of your application. Each time
your application is run, it must operate on the same data and perform the same kernel and memory
copy invocations in the same order. Specifically,

▶ For a device, the order of context creation must be the same each time the application exe-
cutes. For a multi-threaded application where each thread creates its own context(s), care must
be taken to ensure that the order of those context creations is consistent across multiple runs.
For example, it may be necessary to create the contexts on a single thread and then pass the
contexts to the other threads. Alternatively, the NVIDIA Tools Extension API can be used to pro-
vide a custom name for each context. As long as the same custom name is applied to the same
context on each execution of the application, the Visual Profiler will be able to correctly associate
those contexts across multiple runs.

▶ For a context, the order of stream creation must be the same each time the application executes.
Alternatively, the NVIDIA Tools Extension API can be used to provide a custom name for each
stream. As long as the same custom name is applied to the same stream on each execution
of the application, the Visual Profiler will be able to correctly associate those streams across
multiple runs.

▶ Within a stream, the order of kernel and memcpy invocations must be the same each time the
application executes.

6.4. Visual Profiler Views

The Visual Profiler is organized into views. Together, the views allow you to analyze and visualize the
performance of your application. This section describes each view and how you use it while profiling
your application.

6.4.1. Timeline View

The Timeline View shows CPU and GPU activity that occurred while your application was being profiled.
Multiple timelines can be opened in the Visual Profiler at the same time in different tabs. The following
figure shows a Timeline View for a CUDA application.

Along the top of the view is a horizontal ruler that shows elapsed time from the start of application
profiling. Along the left of the view is a vertical ruler that describes what is being shown for each
horizontal row of the timeline, and that contains various controls for the timeline. These controls are
described in Timeline Controls

The timeline view is composed of timeline rows. Each row shows intervals that represent the start
and end times of the activities that correspond to the type of the row. For example, timeline rows
representing kernels have intervals representing the start and end times of executions of that kernel.
In some cases (as noted below) a timeline row can display multiple sub-rows of activity. Sub-rows
are used when there is overlapping activity. These sub-rows are created dynamically as necessary
depending on how much activity overlap there is. The placement of intervals within certain sub-rows
does not convey any particular meaning. Intervals are just packed into sub-rows using a heuristic that

6.3. Application Requirements 21

index.html#nvidia-tools-extension
index.html#nvidia-tools-extension
index.html#timeline-controls

Profiler, Release 12.9

attempts to minimize the number of needed sub-rows. The height of the sub-rows is scaled to keep
vertical space reasonable.

The types of timeline rows that are displayed in the Timeline View are:

Process
A timeline will contain a Process row for each application profiled. The process identifier repre-
sents the pid of the process. The timeline row for a process does not contain any intervals of
activity. Threads within the process are shown as children of the process.

Thread
A timeline will contain a Thread row for each CPU thread in the profiled application that per-
formed either a CUDA driver or CUDA runtime API call. The thread identifier is a unique id for
that CPU thread. The timeline row for a thread is does not contain any intervals of activity.

Runtime API
A timeline will contain a Runtime API row for each CPU thread that performs a CUDA Runtime
API call. Each interval in the row represents the duration of the call on the corresponding thread.

Driver API
A timeline will contain a Driver API row for each CPU thread that performs a CUDA Driver API call.
Each interval in the row represents the duration of the call on the corresponding thread.

OpenACC
A timeline will contain one or multiple OpenACC rows for each CPU thread that calls OpenACC
directives. Each interval in the row represents the duration of the call on the corresponding
thread. Each OpenACC timeline may consist of multiple rows. Within one timeline, OpenACC
activities on rows further down are called from within activities on the rows above.

OpenMP
A timeline will contain one OpenMP row for each CPU thread that calls OpenMP. Each interval
in the row represents how long the application spends in a given OpenMP region or state. The
application may be in multiple states at the same time, this is shown by drawing multiple rows
where some intervals overlap.

Pthread
A timeline will contain one Pthread row for each CPU thread that performs Pthread API calls,
given that host thread API calls have been recorded during measurement. Each interval in the
row represents the duration of the call. Note that for performance reasons, only selected Pthread
API calls may have been recorded.

22 Chapter 6. Visual Profiler

Profiler, Release 12.9

Markers and Ranges
A timeline will contain a single Markers and Ranges row for each CPU thread that uses the NVIDIA
Tools Extension API to annotate a time range or marker. Each interval in the row represents the
duration of a time range, or the instantaneous point of a marker. This row will have sub-rows if
there are overlapping ranges.

Profiling Overhead
A timeline will contain a single Profiling Overhead row for each process. Each interval in the
row represents the duration of execution of some activity required for profiling. These intervals
represent activity that does not occur when the application is not being profiled.

Device
A timeline will contain a Device row for each GPU device utilized by the application being profiled.
The name of the timeline row indicates the device ID in square brackets followed by the name of
the device. After running the Compute Utilization analysis, the row will contain an estimate of
the compute utilization of the device over time. If power, clock, and thermal profiling are enabled,
the row will also contain points representing those readings.

Unified Memory
A timeline will contain a Unified Memory row for each CPU thread and device that uses unified
memory. The Unified memory may contain CPU Page Faults, GPU Page Faults, Data Migration
(DtoH) and Data Migration (HtoD) rows. When creating a session user can select segment mode
or non-segment mode for Unified Memory timelines. In the segment mode the timeline is split
into equal width segments and only aggregated data values for each time segment are shown.
The number of segments can be changed. In non-segment mode each interval on the timeline
will represent the actual data collected and the properties for each interval can be viewed. The
segments are colored using a heat-map color scheme. Under properties for the timeline the
property which is used for selecting the color is given and also a legend displays the mapping of
colors to different range of property values.

CPU Page Faults
This will contain a CPU Page Faults row for each CPU thread. In the non-segment mode each
interval on the timeline corresponds to one CPU page fault.

Data Migration (DtoH)
A timeline will contain Data Migration (DtoH) row for each device. In the non-segment mode each
interval on the timeline corresponds to one data migration from device to host.

GPU Page Faults
A timeline will contain GPU Page Faults. row for each CPU thread. In the non-segment mode
each interval on the timeline corresponds to one GPU page fault group.

Data Migration (DtoH)
A timeline will contain Data Migration (HtoD) row for each device. In the non-segment mode each
interval on the timeline corresponds to one data migration from host to device.

Context
A timeline will contains a Context row for each CUDA context on a GPU device. The name of the
timeline row indicates the context ID or the custom context name if the NVIDIA Tools Extension
API was used to name the context. The row for a context does not contain any intervals of activity.

Memcpy
A timeline will contain memory copy row(s) for each context that performs memcpys. A con-
text may contain up to four memcpy rows for device-to-host, host-to-device, device-to-device,
and peer-to-peer memory copies. Each interval in a row represents the duration of a memcpy
executing on the GPU.

Compute
A timeline will contain a Compute row for each context that performs computation on the GPU.

6.4. Visual Profiler Views 23

index.html#nvidia-tools-extension
index.html#nvidia-tools-extension
index.html#nvidia-tools-extension
index.html#nvidia-tools-extension

Profiler, Release 12.9

Each interval in a row represents the duration of a kernel on the GPU device. The Compute row
indicates all the compute activity for the context. Sub-rows are used when concurrent kernels
are executed on the context. All kernel activity, including kernels launched using CUDA Dynamic
Parallelism, is shown on the Compute row. The Kernel rows following the Compute row show
activity of each individual application kernel.

Kernel
A timeline will contain a Kernel row for each kernel executed by the application. Each interval
in a row represents the duration of execution of an instance of that kernel in the containing
context. Each row is labeled with a percentage that indicates the total execution time of all
instances of that kernel compared to the total execution time of all kernels. For each context,
the kernels are ordered top to bottom by this execution time percentage. Sub-rows are used to
show concurrent kernel execution. For CUDA Dynamic Parallelism applications, the kernels are
organized in a hierarchy that represents the parent/child relationship between the kernels. Host-
launched kernels are shown as direct children of the Context row. Kernels that use CUDA Dynamic
Parallelism to launch other kernels can be expanded using the ‘+’ icon to show the kernel rows
representing those child kernels. For kernels that don’t launch child kernels, the kernel execution
is represented by a solid interval, showing the time that that instance of the kernel was executing
on the GPU. For kernels that launch child kernels, the interval can also include a hollow part at
the end. The hollow part represents the time after the kernel has finished executing where it
is waiting for child kernels to finish executing. The CUDA Dynamic Parallelism execution model
requires that a parent kernel not complete until all child kernels complete and this is what the
hollow part is showing. The Focus control described in Timeline Controls can be used to control
display of the parent/child timelines.

Stream
A timeline will contain a Stream row for each stream used by the application (including both the
default stream and any application created streams). Each interval in a Stream row represents
the duration of a memcpy or kernel execution performed on that stream.

6.4.1.1 Timeline Controls

The Timeline View has several controls that you use to control how the timeline is displayed. Some of
these controls also influence the presentation of data in the GPU Details View and the Analysis View.

Resizing the Vertical Timeline Ruler

The width of the vertical ruler can be adjusted by placing the mouse pointer over the right edge of the
ruler. When the double arrow pointer appears, click and hold the left mouse button while dragging.
The vertical ruler width is saved with your session.

Reordering Timelines

The Kernel and Stream timeline rows can be reordered. You may want to reorder these rows to aid in
visualizing related kernels and streams, or to move unimportant kernels and streams to the bottom of
the timeline. To reorder a row, left-click and hold onto the row label. When the double arrow pointer
appears, drag up or down to position the row. The timeline ordering is saved with your session.

Filtering Timelines

Memcpy and Kernel rows can be filtered to exclude their activities from presentation in the GPU Details
View and the Analysis View. To filter out a row, left-click on the filter icon just to the left of the row
label. To filter all Kernel or Memcpy rows, Shift-left-click one of the rows. When a row is filtered, any
intervals on that row are dimmed to indicate their filtered status.

Expanding and Collapsing Timelines

24 Chapter 6. Visual Profiler

index.html#timeline-controls
index.html#timeline-view
index.html#gpu-details-view
index.html#analysis-view
index.html#gpu-details-view
index.html#gpu-details-view
index.html#analysis-view

Profiler, Release 12.9

Groups of timeline rows can be expanded and collapsed using the [+] and [-] controls just to the left
of the row labels. There are three expand/collapse states:

Collapsed
No timeline rows contained in the collapsed row are shown.

Expanded
All non-filtered timeline rows are shown.

All-Expanded
All timeline rows, filtered and non-filtered, are shown.

Intervals associated with collapsed rows may not be shown in the GPU Details View and the Analysis
View, depending on the filtering mode set for those views (see view documentation for more informa-
tion). For example, if you collapse a device row, then all memcpys, memsets, and kernels associated
with that device are excluded from the results shown in those views.

Coloring Timelines

There are three modes for timeline coloring. The coloring mode can be selected in the View menu, in
the timeline context menu (accessed by right-clicking in the timeline view), and on the profiler toolbar.
In kernel coloring mode, each type of kernel is assigned a unique color (that is, all activity intervals in
a kernel row have the same color). In stream coloring mode, each stream is assigned a unique color
(that is, all memcpy and kernel activity occurring on a stream are assigned the same color). In process
coloring mode, each process is assigned a unique color (that is, all memcpy and kernel activity occurring
in a process are assigned the same color).

Focusing Kernel Timelines

For applications using CUDA Dynamic Parallelism, the Timeline View displays a hierarchy of kernel activ-
ity that shows the parent/child relationship between kernels. By default all parent/child relationships
are shown simultaneously. The focus timeline control can be used to focus the displayed parent/child
relationships to a specific, limited set of “family trees”. The focus timeline mode can be selected and
deselected in the timeline context menu (accessed by right-clicking in the timeline view), and on the
profiler toolbar.

To see the “family tree” of a particular kernel, select a kernel and then enable Focus mode. All kernels
except those that are ancestors or descendants of the selected kernel will be hidden. Ctrl-select can
be used to select multiple kernels before enabling Focus mode. Use the “Don’t Focus” option to disable
focus mode and restore all kernels to the Timeline view.

Dependency Analysis Controls

There are two modes for visualizing dependency analysis results in the timeline: Focus Critical Path
and Highlight Execution Dependencies. These modes can be selected in the View menu, in the timeline
context menu (accessed by right-clicking in the timeline view), and on the Visual Profiler toolbar.

These options become available after the Dependency Analysis application analysis stage has been
run (see Unguided Application Analysis). A detailed explanation of these modes is given in Dependency
Analysis Controls

6.4. Visual Profiler Views 25

index.html#gpu-details-view
index.html#analysis-view
index.html#analysis-view
index.html#timeline-view
index.html#unguided-application-analysis
index.html#dependency-analysis-controls
index.html#dependency-analysis-controls

Profiler, Release 12.9

6.4.1.2 Navigating the Timeline

The timeline can be scrolled, zoomed, and focused in several ways to help you better understand and
visualize your application’s performance.

Zooming

The zoom controls are available in the View menu, in the timeline context menu (accessed by right-
clicking in the timeline view), and on the profiler toolbar. Zoom-in reduces the timespan displayed in
the view, zoom-out increases the timespan displayed in the view, and zoom-to-fit scales the view so
that the entire timeline is visible.

You can also zoom-in and zoom-out with the mouse wheel while holding the Ctrl key.

Another useful zoom mode is zoom-to-region. Select a region of the timeline by holding Ctrl while
left-clicking and dragging the mouse. The highlighted region will be expanded to occupy the entire
view when the mouse button is released.

Scrolling

The timeline can be scrolled vertically with the scrollbar of the mouse wheel. The timeline can be
scrolled horizontally with the scrollbar or by using the mouse wheel while holding the Shift key.

Highlighting/Correlation

When you move the mouse pointer over an activity interval on the timeline, that interval is highlighted
in all places where the corresponding activity is shown. For example, if you move the mouse pointer
over an interval representing a kernel execution, that kernel execution is also highlighted in the Stream
and in the Compute timeline row. When a kernel or memcpy interval is highlighted, the corresponding
driver or runtime API interval will also highlight. This allows you to see the correlation between the
invocation of a driver or runtime API or OpenACC directive on the CPU and the corresponding activity
on the GPU. Information about the highlighted interval is shown in the Properties View.

Selecting

You can left-click on a timeline interval or row to select it. Multi-select is done using Ctrl-left-click. To
unselect an interval or row simply Ctrl-left-click on it again. When a single interval or row is selected,
the information about that interval or row is pinned in the Properties View. In the GPU Details View,
the detailed information for the selected interval is shown in the table.

Measuring Time Deltas

Measurement rulers can be created by left-click dragging in the horizontal ruler at the top of the
timeline. Once a ruler is created it can be activated and deactivated by left-clicking. Multiple rulers
can be activated by Ctrl-left-click. Any number of rulers can be created. Active rulers are deleted with
the Delete or Backspace keys. After a ruler is created, it can be resized by dragging the vertical guide
lines that appear over the timeline. If the mouse is dragged over a timeline interval, the guideline will
snap to the nearest edge of that interval.

26 Chapter 6. Visual Profiler

index.html#properties-view
index.html#properties-view
index.html#gpu-details-view

Profiler, Release 12.9

6.4.1.3 Timeline Refreshing

The profiler loads the timeline gradually as it reads the data. This is more apparent if the data file being
loaded is big, or the application has generated a lot of data. In such cases, the timeline may be partially
rendered. At the same time, a spinning circle replaces the icon of the current session tab, indicating
the timeline is not fully loaded. Loading is finished when the icon changes back.

To reduce its memory footprint, the profiler may skip loading some timeline contents if they are not
visible at the current zoom level. These contents will be automatically loaded when they become visible
on a new zoom level.

6.4.1.4 Dependency Analysis Controls

The profiler allows the visualization of dependency analysis results in the timeline once the respec-
tive analysis stage has been run. For a detailed description on how dependency analysis works, see
Dependency Analysis.

Focus Critical Path visualizes the critical path through the application by focusing on all intervals on
the critical path and fading others. When the mode is enabled and any timeline interval is selected
(by left-clicking it), the selected interval will have focus. However, the critical path will still be visible
as hollow intervals. This allows you to “follow” the critical path through the execution and to inspect
individual intervals.

Highlight Execution Dependencies allows you to analyze the execution dependencies for each interval
(Note that for certain intervals, no dependency information is collected). When this mode is enabled,
the highlighting color changes from yellow (representing correlated intervals) to red (representing de-
pendencies). Both the selected interval as well as all incoming and outgoing dependencies are high-
lighted.

6.4. Visual Profiler Views 27

index.html#dependency-analysis

Profiler, Release 12.9

6.4.2. Analysis View

The Analysis View is used to control application analysis and to display the analysis results. There are
two analysis modes: guided and unguided. In guided mode the analysis system will guide you through
multiple analysis stages to help you understand the likely performance limiters and optimization op-
portunities in your application. In unguided mode you can manually explore all the analysis results
collected for your application. The following figure shows the analysis view in guided analysis mode.
The left part of the view provides step-by-step directions to help you analyze and optimize your ap-
plication. The right part of the view shows detailed analysis results appropriate for each part of the
analysis.

6.4.2.1 Guided Application Analysis

In guided mode, the analysis view will guide you step-by-step through analysis of your entire application
with specific analysis guidance provided for each kernel within your application. Guided analysis starts
with CUDA Application Analysis and from there will guide you to optimization opportunities within your
application.

28 Chapter 6. Visual Profiler

Profiler, Release 12.9

6.4.2.2 Unguided Application Analysis

In unguided analysis mode each application analysis stage has a Run analysis button that can be used
to generate the analysis results for that stage. When the Run analysis button is selected, the profiler
will execute the application to collect the profiling data needed to perform the analysis. The green
check-mark next to an analysis stage indicates that the analysis results for that stage are available.
Each analysis result contains a brief description of the analysis and a More… link to detailed documen-
tation on the analysis. When you select an analysis result, the timeline rows or intervals associated
with that result are highlighted in the Timeline View.

When a single kernel instance is selected in the timeline, additional kernel-specific analysis stages
are available. Each kernel-specific analysis stage has a Run analysis button that operates in the same
manner as for the application analysis stages. The following figure shows the analysis results for the
Divergent Execution analysis stage. Some kernel instance analysis results, like Divergent Execution,
are associated with specific source-lines within the kernel. To see the source associated with each
result, select an entry from the table. The source file associated with that entry will open.

6.4.2.3 PC Sampling View

Devices with compute capability 5.2 and higher, excluding mobile devices, have a feature for PC sam-
pling. In this feature PC and state of warp are sampled at regular interval for one of the active warps
per SM. The warp state indicates if that warp issued an instruction in a cycle or why it was stalled and
could not issue an instruction. When a warp that is sampled is stalled, there is a possibility that in
the same cycle some other warp is issuing an instruction. Hence the stall for the sampled warp need
not necessarily indicate that there is a hole in the instruction issue pipeline. Refer to the Warp State
section for a description of different states.

Devices with compute capability 6.0 and higher have a new feature that gives latency reasons. The
latency samples indicate the reasons for holes in the issue pipeline. While collecting these samples,
there is no instruction issued in the respective warp scheduler and hence these give the latency rea-
sons. The latency reasons will be one of the stall reasons in Warp State section except ‘not selected’
stall reason.

The profiler collects this information and presents it in the Kernel Profile - PC Sampling view. In this

6.4. Visual Profiler Views 29

index.html#timeline-view
index.html#warp-state
index.html#warp-state

Profiler, Release 12.9

view, the sample distribution for all functions and kernels is given in a table. A pie chart shows the dis-
tribution of stall reasons collected for each kernel. After clicking on the source file or device function
the Kernel Profile - PC Sampling view is opened. The hotspots shown next to the vertical scroll bar are
determined by the number of samples collected for each source and assembly line. The distribution of
the stall reasons is shown as a stacked bar for each source and assembly line. This helps in pinpointing
the latency reasons at the source code level.

For devices with compute capability 6.0 and higher, Visual Profiler show two views: ‘Kernel Profile -
PC Sampling’ which gives the warp state view and ‘Kernel Profile - PC Sampling - Latency’ which gives
the latency reasons. Hotspots can be seleted to point to hotspot of ‘Warp State’ or ‘Latency Reasons’.
The tables in result section give percentage distribution for total latency samples, issue pipeline busy
samples and instruction issued samples.

The blog post Pinpoint Performance Problems with Instruction-Level Profiling shows how PC Sampling
can be used to optimize a CUDA kernel.

30 Chapter 6. Visual Profiler

https://devblogs.nvidia.com/parallelforall/cuda-7-5-pinpoint-performance-problems-instruction-level-profiling

Profiler, Release 12.9

6.4.2.4 Memory Statistics

Devices with compute capability 5.0 and higher have a feature to show usage of the memory sub-
system during kernel execution. The chart shows a summary view of the memory hierarchy of the
CUDA programming model. The green nodes in the diagram depict logical memory space whereas
blue nodes depicts actual hardware unit on the chip. For the various caches the reported percentage
number states the cache hit rate; that is the ratio of requests that could be served with data locally
available to the cache over all requests made.

The links between the nodes in the diagram depict the data paths between the SMs to the memory
spaces into the memory system. Different metrics are shown per data path. The data paths from
the SMs to the memory spaces (Global, Local, Texture, Surface and Shared) report the total number
of memory instructions executed, it includes both read and write operations. The data path between
memory spaces and “Unified Cache” or “Shared Memory” reports the total amount of memory requests
made. All other data paths report the total amount of transferred memory in bytes. The arrow pointing
to right direction indicates WRITE operation whereas the arrow pointing to left direction indicates the
READ operations.

6.4.2.5 NVLink view

NVIDIA NVLink is a high-bandwidth, energy-efficient interconnect that enables fast communication
between the CPU and GPU, and between GPUs.

Visual Profiler collects NVLink topology and NVLink transmit/receive throughput metrics and maps the
metrics on to the topology. The topology is collected by default along with the timeline. Throughput/
utilization metrics are generated only when NVLink option is chosen.

NVLink information is presented in the Results section of Examine GPU Usage in CUDA Application
Analysis in Guided Analysis. NVLink Analysis shows topology that shows the logical NVLink connec-
tions between different devices. A logical link comprises of 1 to 4 physical NVLinks of same properties
connected between two devices. Visual profiler lists the properties and achieved utilization for logi-

6.4. Visual Profiler Views 31

Profiler, Release 12.9

cal NVLinks in ‘Logical NVLink Properties’ table. It also lists the transmit and receive throughputs for
logical NVLink in ‘Logical NVLink Throughput’ table.

6.4.3. Source-Disassembly View

The Source-Disassembly View is used to display the analysis results for a kernel at the source and
assembly instruction level. To be able to view the kernel source you need to compile the code using
the -lineinfo option. If this compiler option is not used, only the disassembly view will be shown.

This view is displayed for the following types of analysis:

▶ Global Memory Access Pattern Analysis

▶ Shared Memory Access Pattern Analysis

▶ Divergent Execution Analysis

▶ Kernel Profile - Instruction Execution Analysis

▶ Kernel Profile - PC Sampling Analysis

As part of the Guided Analysis or Unguided Analysis for a kernel the analysis results are displayed
under the Analysis view. After clicking on the source file or device function the Source-Disassembly
view is opened. If the source file is not found a dialog is opened to select and point to the new location
of the source file. This can happen for example when the profiling is done on a different system.

The Source-Disassembly view contains:

▶ High level source

▶ Assembly instructions

▶ Hotspots at the source level

▶ Hotspots at the assembly instruction level

▶ Columns for profiling data aggregated to the source level

32 Chapter 6. Visual Profiler

Profiler, Release 12.9

▶ Columns for profiling data collected at the assembly instruction level

The information shown in the Source-Disassembly view can be customized by the following toolbar
options:

▶ View menu - Select one or more out of the available profiler data columns to display. This is
chosen by default based on the analysis type.

▶ Hot Spot menu - Select which profiler data to use for hot spots. This is chosen by default based
on the analysis type.

▶ Show the source and disassembly views side by side.

▶ Show the source and disassembly views top to bottom.

▶ Maximize the source view

▶ Maximize the disassembly view

Hotspots are colored based on level of importance - low, medium or high. Hovering the mouse over the
hotspot displays the value of the profiler data, the level of importance and the source or disassembly
line. You can click on a hotspot at the source level or assembly instruction level to view the source or
disassembly line corresponding to the hotspot.

In the disassembly view the assembly instructions corresponding to the selected source line are high-
lighted. You can click on the up and down arrow buttons displayed at the right of the disassembly
column header to navigate to the next or previous instruction block.

6.4. Visual Profiler Views 33

Profiler, Release 12.9

6.4.4. GPU Details View

The GPU Details View displays a table of information for each memory copy and kernel execution in
the profiled application. The following figure shows the table containing several memcpy and kernel
executions. Each row of the table contains general information for a kernel execution or memory copy.
For kernels, the table will also contain a column for each metric or event value collected for that kernel.
In the figure, the Achieved Occupancy column shows the value of that metric for each of the kernel
executions.

You can sort the data by column by left clicking on the column header, and you can rearrange the
columns by left clicking on a column header and dragging it to its new location. If you select a row
in the table, the corresponding interval will be selected in the Timeline View. Similarly, if you select a
kernel or memcpy interval in the Timeline View the table will be scrolled to show the corresponding
data.

If you hover the mouse over a column header, a tooltip will display the data shown in that column. For
a column containing event or metric data, the tooltip will describe the corresponding event or metric.
The Metrics Reference section contains more detailed information about each metric.

The information shown in the GPU Details View can be filtered in various ways using the menu acces-
sible from the Details View toolbar. The following modes are available:

▶ Filter By Selection - If selected, the GPU Details View shows data only for the selected kernel and
memcpy intervals.

▶ Show Hidden Timeline Data - If not selected, data is shown only for kernels and memcpys that are
visible in the timeline. Kernels and memcpys that are not visible because they are inside collapsed
parts of the timeline are not shown.

▶ Show Filtered Timeline Data - If not selected, data is shown only for kernels and memcpys that
are in timeline rows that are not filtered.

Collecting Events and Metrics

Specific event and metric values can be collected for each kernel and displayed in the details table. Use
the toolbar icon in the upper right corner of the view to configure the events and metrics to collect
for each device, and to run the application to collect those events and metrics.

Show Summary Data

By default the table shows one row for each memcpy and kernel invocation. Alternatively, the table
can show summary results for each kernel function. Use the toolbar icon in the upper right corner of
the view to select or deselect summary format.

Formatting Table Contents

The numbers in the table can be displayed either with or without grouping separators. Use the toolbar
icon in the upper right corner of the view to select or deselect grouping separators.

34 Chapter 6. Visual Profiler

index.html#timeline-view
index.html#timeline-view
index.html#metrics-reference

Profiler, Release 12.9

Exporting Details

The contents of the table can be exported in CSV format using the toolbar icon in the upper right
corner of the view.

6.4.5. CPU Details View

CPU Details view

This view details the amount of time your application spends executing functions on the CPU. Each
thread is sampled periodically to capture its callstack and the summary of these measurements are
displayed in this view. You can manipulate the view by selecting different orientations for organizing
the callstack: Top-down, Bottom-up, Code Structure (3), choosing which thread to view (1), and by
sorting or highlighting a specific thread (7, 8).

1. All the threads profiled are shown in one view when the ‘all threads’ option is selected (default).
You can use this drop-down menu to instead select an individual thread.

2. This column displays a tree of events representing the structure of the application’s execution on
the CPU. Each of the remaining columns show the measurements collected for this event. The
events shown here are determined by which tree orientation mode is selected (3).

3. The tree is organized to show the calling hierarchy among functions. The following modes are
available:

▶ Top-down (callers first) call tree view - The CPU details tree is organized as a call tree with
each function shown as a child of its caller. In this mode you can see the callstack starting
at the ‘main’ function.

▶ Bottom-up (callees first) call tree view - The CPU details tree is organized in such a way that
each function is shown as a child of any functions it calls. In this mode you can quickly
identify the call path that contributes the most time to the application’s execution.

▶ Code structure (file and line) tree view - The CPU details tree shows which functions belong
to each source file and library as well as how much of the application’s execution is attributed
to a given line of source code.

6.4. Visual Profiler Views 35

Profiler, Release 12.9

In every mode the time listed for each function is ‘inclusive’ and includes time spent both in this
function and any functions that it calls. For the code structure view the region of code is inclusive
(i.e. the file entry lists the time spent in every function contained within a file).

4. This column displays the total amount of time spent by all threads in this event as a percentage
of the total amount of time spent in all events.

5. This column displays a bar denoting a range where the amount of time spent in an event by any
thread is always within this this range. On the left the minimum value is written, and on the right
the maximum value is written. Also, if there is space, a small ‘diamond’ is drawn in the middle of
the bar where the mean time is spent in this event across all threads.

6. These columns display a distinct chart for each event. On the left is a vertical scale showing the
same minimum and maximum values as shown on the range chart. The following columns each
show the amount of time spent in this event by thread. If the cell for the given event / thread
combination is greyed out then no time was spent by this thread in this event (for this example
both threads 1 and 2 spent no time in the event ‘x_solve’). Furthermore, the thread(s) with the
minimum or maximum amount of time spent in the event across all threads are annotated with
the ‘triangle / line’. In this example thread 3 spent the most and thread 6 the least amount of
time in the event ‘x_solve’.

7. To reorder the rows by the time spent on a given thread click on the thread column header.

8. To highlight a given thread click on one of its bars in this chart.

This change to the view is the result of sorting by thread 3 (7) and highlighting it (8).

1. Having highlighted thread 3 we now see a vertical line on the range chart showing the amount
of time this thread spent in this event compared to the range across all thread.

2. This thread is also highlighted on each row.

CPU Threads

CPU Source Code

You can open the CPU Source View for any function by double-clicking on it in the tree. To be displayed
the source files must be on the local file system. By default the directory containing the executable or
profile file is searched. If the source file cannot be found a prompt will appear asking for its location.
Sometimes a file within a specific directory is being sought, in this case you should give the path to
where this directory resides.

Tip: The CPU profile is gathered by periodically sampling the state of the running application. For

36 Chapter 6. Visual Profiler

index.html#cpu-source-view

Profiler, Release 12.9

this reason a function will only appear in this view if it was sampled during execution. Short-running
or very infrequently called functions are less likely to be sampled. If a function was not sampled the
time it was running is accounted to the function that called it. In order to gather a CPU profile that
is representative of the application’s performance the code of interest must execute for enough to
gather enough samples. Usually a minute of runtime is sufficient.

Tip: The file and line information is gathered from the application’s debug information obtained by
the compiler. To ensure that this information is available it is recommended that you compile with ‘-g’
or a similar option.

6.4.6. OpenACC Details View

OpenACC table view

The OpenACC Details View displays each OpenACC runtime activity executed by the profiled applica-
tion. Each activity is grouped by source location: each activity which occurs at the same file and line
number in the application’s source code is placed under a node labeled with the source location. Each
activity shows the amount of time spent by the profiled application as both a unit of time and as a
percentage of the total time this application was executing any OpenACC activity. Also the number
of times this activity was called is shown. There are two ways to count how much time is spent in a
particular OpenACC activity:

▶ Show the Inclusive durations (counting any other OpenACC activities running at the same time)
in the OpenACC details view - The OpenACC details view shows the total time spent in each
activity including any activities that were executed as the result of this activity. In this case the
amount of time spent in each activity occurring at a given application source location is totaled
and displayed on the row displaying the source location.

▶ Show the Exclusive durations (excluding any other OpenACC activities running at the same time)
in the OpenACC details view - The OpenACC details view shows the time spent only in a given
activity. In this case the amount of time spent at a given source location is always zero—time is
attributed solely to each activity occurring at this source location.

6.4. Visual Profiler Views 37

Profiler, Release 12.9

6.4.7. OpenMP Details View

OpenMP table view

The OpenMP Details view displays the activity of the OpenMP runtime on the CPU. The time your
application spends in a parallel region or idling is shown both on the timeline and is summarized in this
view. The reference for the percentage of time spent in each type of activity is the time from the start
of the first parallel region to the end of the last parallel region. The sum of the percentages of each
activity type often exceeds 100% because the OpenMP runtime can be in multiple states at the same
time.

6.4.8. Properties View

The Properties View shows information about the row or interval highlighted or selected in the Timeline
View. If a row or interval is not selected, the displayed information tracks the motion of the mouse
pointer. If a row or interval is selected, the displayed information is pinned to that row or interval.

When an OpenACC interval with an associated source file is selected, this filename is shown in the
Source File table entry. Double-clicking on the filename opens the respective source file if it is available
on the file-system.

6.4.9. Console View

The Console View shows stdout and stderr output of the application each time it executes. If you need
to provide stdin input to your application, do so by typing into the console view.

6.4.10. Settings View

The Settings View allows you to specify execution settings for the application being profiled. As shown
in the following figure, the Executable settings tab allows you to specify the executable file, the work-
ing directory, the command-line arguments, and the environment for the application. Only the exe-
cutable file is required, all other fields are optional.

Exection Timeout

The Executable settings tab also allows you to specify an optional execution timeout. If the execution
timeout is specified, the application execution will be terminated after that number of seconds. If
the execution timeout is not specified, the application will be allowed to continue execution until it
terminates normally.

38 Chapter 6. Visual Profiler

index.html#timeline-view
index.html#timeline-view

Profiler, Release 12.9

Note: The timer starts counting from the moment the CUDA driver is initialized. If the application
doesn’t call any CUDA APIs, a timeout won’t be triggered.

Start execution with profiling enabled

The Start execution with profiling enabled checkbox is set by default to indicate that application pro-
filing begins at the start of application execution. If you are using cudaProfilerStart() and cud-
aProfilerStop() to control profiling within your application as described in Focused Profiling, then
you should uncheck this box.

Enable concurrent kernel profiling

The Enable concurrent kernel profiling checkbox is set by default to enable profiling of applications
that exploit concurrent kernel execution. If this checkbox is unset, the profiler will disable concurrent
kernel execution. Disabling concurrent kernel execution can reduce profiling overhead in some cases
and so may be appropriate for applications that do not exploit concurrent kernels.

Enable power, clock, and thermal profiling

The Enable power, clock, and thermal profiling checkbox can be set to enable low frequency sampling
of the power, clock, and thermal behavior of each GPU used by the application.

6.4. Visual Profiler Views 39

index.html#focused-profiling

Profiler, Release 12.9

6.4.11. CPU Source View

The CPU source code view allows you to inspect the files that comprise the profiled application’s CPU
source. This view can be opened in the CPU Details View by double-clicking on a function in the tree–
the source file that corresponds to this function is then opened. Line numbers can be enabled by
right-clicking left side ruler.

When compiling using the PGI® compilers annotations can be added to this view (see Common Com-
piler Feedback Format for more information). These annotation are notes about how a given line of
code is compiled. PGI compilers save information about how your program was optimized, or why a
particular optimization was not made. This can be combined with the CPU Details View to help identify
why certain lines of code performed the way they did. For example, the message may tell you about
the following:

▶ vector instructions generated by the compiler.

▶ compute-intensity of a loop, a ratio computation to memory operations–higher numbers mean
that there is more computation than memory loads and stores.

▶ information about parallelization, with a hint for how it might be possible to make the loop run in
parallel if the compiler could not auto-parallelize it.

6.5. Customizing the Profiler

When you first start the Visual Profiler, and after closing the Welcome page, you will be
presented with a default placement of the views. By moving and resizing the views, you can customize
the profiler to meet your development needs. Any changes you make are restored the next time you
start the profiler.

40 Chapter 6. Visual Profiler

index.html#cpu-details-view
http://www.pgroup.com/resources/ccff.htm
http://www.pgroup.com/resources/ccff.htm
index.html#cpu-details-view

Profiler, Release 12.9

6.5.1. Resizing a View

To resize a view, simply left click and drag on the dividing area between the views. All views stacked
together in one area are resized at the same time.

6.5.2. Reordering a View

To reorder a view in a stacked set of views, left click and drag the view tab to the new location within
the view stack.

6.5.3. Moving a View

to move a view, left click the view tab and drag it to its new location. As you drag the view, an outline
will show the target location for the view. You can place the view in a new location, or stack it in the
same location as other views.

6.5.4. Undocking a View

You can undock a view from the profiler window so that the view occupies its own stand-alone window.
You may want to do this to take advantage of multiple monitors or to maximum the size of an individual
view. To undock a view, left click the view tab and drag it outside of the profiler window. To dock a view,
left click the view tab (not the window decoration) and drag it into the profiler window.

6.5.5. Opening and Closing a View

Use the X icon on a view tab to close a view. To open a view, use the View menu.

6.6. Command Line Arguments

When the Visual Profiler is started from the command line, it is possible, using command line argu-
ments, to specify executable to start new session with or import profile files exported from nvprof
using one of the following patterns:

▶ Start new executable session by launching nvvp with name of executable followed, optionally, by
its arguments:

nvvp executableName
[[executableArguments]...]

▶ Import single-process nvprof session by launching nvvp with single .nvprof file as argument(see
nvprof’s export/import options section for more details):

6.6. Command Line Arguments 41

index.html#export-import

Profiler, Release 12.9

nvvp
data.nvprof

▶ Import multi-process nvprof session, by launching nvvp with multiple .nvprof files as arguments:

nvvp
data1.nvprof data2.nvprof ...

42 Chapter 6. Visual Profiler

Chapter 7. nvprof

The nvprof profiling tool enables you to collect and view profiling data from the command-line.
nvprof enables the collection of a timeline of CUDA-related activities on both CPU and GPU, including
kernel execution, memory transfers, memory set and CUDA API calls and events or metrics for CUDA
kernels. Profiling options are provided to nvprof through command-line options. Profiling results are
displayed in the console after the profiling data is collected, and may also be saved for laterviewing by
either nvprof or the Visual Profiler.

Note: The textual output of the profiler is redirected to stderr by default. Use --log-file to
redirect the output to another file. See Redirecting Output.

To profile an application from the command-line:

nvprof [options] [application]
[application-arguments]

To view the full help page, type nvprof --help.

7.1. Command Line Options

7.1.1. CUDA Profiling Options

43

index.html#redirecting-output

Profiler, Release 12.9

Option Values Default Description

aggregate-mode on, off on Turn on/off ag-
gregate mode for
events and metrics
specified by subse-
quent --events and
--metrics options.
Those event/metric
values will be collected
for each domain in-
stance, instead of the
whole device.
See Event/metric Trace
Mode for more infor-
mation.

analysis-metrics N/A N/A Collect profiling
data that can be
imported to Visual
Profiler’s “analysis”
mode. Note: Use
--export-profile
to specify an export
file.

annotate-mpi off, openmpi, mpich off Automatically an-
notate MPI calls with
NVTX markers. Specify
the MPI implementa-
tion installed on your
machine. Currently,
Open MPI and MPICH
implementations are
supported.
See Automatic MPI An-
notation with NVTX for
more information.

concurrent-kernels on, off on Turn on/off concurrent
kernel execution. If
concurrent kernel exe-
cution is off, all kernels
running on one device
will be serialized.

continuous-sampling-
interval

{interval in millisec-
onds}

2 milliseconds Set the continuous
mode sampling in-
terval in milliseconds.
Minimum is 1 ms.

continues on next page

44 Chapter 7. nvprof

index.html#event-metric-trace-mode
index.html#event-metric-trace-mode
index.html#automatic-mpi-annotation-with-nvtx
index.html#automatic-mpi-annotation-with-nvtx

Profiler, Release 12.9

Table 1 – continued from previous page

Option Values Default Description

cpu-thread-tracing on, off off Collect information
about CPU thread API
activity.
See CPU Thread Trac-
ing for more informa-
tion.

dependency-analysis N/A N/A Generate event depen-
dency graph for host
and device activities
and run dependency
analysis.
See Dependency Anal-
ysis for more informa-
tion.

device-buffer-size {size in MBs} 8 MB Set the device mem-
ory size (in MBs) re-
served for storing pro-
filing data for non-CDP
operations, especially
for concurrent kernel
tracing, for each buffer
on a context. The size
should be a positive in-
teger.

device-cdp-buffer-size {size in MBs} 8 MB Set the device memory
size (in MBs) reserved
for storing profiling
data for CDP opera-
tions for each buffer
on a context. The size
should be a positive
integer.

devices {comma-separated de-
vice IDs}, all

N/A Change the
scope of subse-
quent --events,
--metrics,
--query-events and
--query-metrics
options.
See Profiling Scope for
more information.

continues on next page

7.1. Command Line Options 45

index.html#cpu-thread-tracing
index.html#cpu-thread-tracing
index.html#dependency-analysis
index.html#dependency-analysis
index.html#profiling-scope

Profiler, Release 12.9

Table 1 – continued from previous page

Option Values Default Description

event-collection-mode kernel, continuous kernel Choose event col-
lection mode for all
events/metrics.

▶ kernel:
Events/metrics
are collected only
for durations of
kernel executions

▶ continuous:
Events/metrics
are collected
for duration of
application. This
is not applicable
for non-Tesla de-
vices. This mode
is compatible
only with NVLink
events/metrics.
This mode is in-
compatible with
--profile-all-processes
or
--profile-child-processes
or
--replay-mode
kernel or
--replay-mode
application.

continues on next page

46 Chapter 7. nvprof

Profiler, Release 12.9

Table 1 – continued from previous page

Option Values Default Description

events (e) {comma-separated
event names}, all

N/A Specify the events to
be profiled on certain
device(s). Multiple
event names sepa-
rated by comma can
be specified. Which
device(s) are profiled
is controlled by the
--devices option.
Otherwise events will
be collected on all
devices. For a list of
available events, use
--query-events.
Use --events all
to profile all events
available for each de-
vice. Use --devices
and --kernels to
select a specific kernel
invocation.

kernel-latency-
timestamps

on, off off Turn on/off collec-
tion of kernel latency
timestamps, namely
queued and submitted.
The queued timestamp
is captured when a ker-
nel launch command
was queued into the
CPU command buffer.
The submitted times-
tamp denotes when
the CPU command
buffer containing this
kernel launch was
submitted to the GPU.
Turning this option on
may incur an overhead
during profiling.

continues on next page

7.1. Command Line Options 47

Profiler, Release 12.9

Table 1 – continued from previous page

Option Values Default Description

kernels {kernel name}, {[con-
text id/name]:[stream
id/name]:[kernel
name]:[invocation]}

N/A Change the scope
of subsequent
--events, --metrics
options. The syntax is
as follows:

▶ {kernel name}:
Limit scope to
given kernel
name.

▶ {[context
id/name]:[stream
id/name]:[kernel
name]:[invocation]}:
The con-
text/stream
IDs, names,
kernel name
and invocation
can be regular
expressions.
Empty string
matches any
number or char-
acters. If [con-
text id/name] or
[stream id/name]
is a positive num-
ber, it’s strictly
matched against
the CUDA con-
text/stream ID.
Otherwise it’s
treated as a reg-
ular expression
and matched
against the
context/stream
name specified
by the NVTX
library. If the
invocation count
is a positive num-
ber, it’s strictly
matched against
the invocation
of the kernel.
Otherwise it’s
treated as a reg-
ular expression.

Example: --kernels
"1:foo:bar:2" will
profile any kernel
whose name contains
“bar” and is the 2nd
instance on context 1
and on stream named
“foo”.
See Profiling Scope for
more information.

continues on next page

48 Chapter 7. nvprof

index.html#profiling-scope

Profiler, Release 12.9

Table 1 – continued from previous page

Option Values Default Description

metrics (m) {comma-separated
metric names}, all

N/A Specify the metrics to
be profiled on certain
device(s). Multiple
metric names sepa-
rated by comma can
be specified. Which
device(s) are profiled
is controlled by the
--devices option.
Otherwise metrics
will be collected on all
devices. For a list of
available metrics, use
--query-metrics.
Use --metrics all
to profile all metrics
available for each de-
vice. Use --devices
and --kernels to
select a specific ker-
nel invocation. Note:
--metrics all does
not include some
metrics which are
needed for Visual
Profiler’s source level
analysis. For that, use
--analysis-metrics.

pc-sampling-period {period in cycles} Between 5 and 12
based on the setup

Specify PC Sam-
pling period in cycles,
at which the sam-
pling records will be
dumped. Allowed val-
ues for the period are
integers between 5 to
31 both inclusive. This
will set the sampling
period to (2^period)
cycles Note: Only
available for GM20X+.

continues on next page

7.1. Command Line Options 49

Profiler, Release 12.9

Table 1 – continued from previous page

Option Values Default Description

profile-all-processes N/A N/A Profile all processes
launched by the same
user who launched this
nvprof instance. Note:
Only one instance of
nvprof can run with
this option at the same
time. Under this mode,
there’s no need to
specify an application
to run.
See Multiprocess Pro-
filing for more informa-
tion.

profile-api-trace none, runtime, driver,
all

all Turn on/off CUDA run-
time/driver API tracing.

▶ none: turn off API
tracing

▶ runtime: only
turn on CUDA
runtime API
tracing

▶ driver: only turn
on CUDA driver
API tracing

▶ all: turn on all API
tracing

profile-child-
processes

N/A N/A Profile the application
and all child processes
launched by it.
See Multiprocess Pro-
filing for more informa-
tion.

profile-from-start on, off on Enable/disable pro-
filing from the start
of the application.
If it’s disabled, the
application can use
{cu,cuda}Profiler{Start,Stop}
to turn on/off profiling.
See Focused Profiling
for more information.

continues on next page

50 Chapter 7. nvprof

index.html#multiprocess-profiling
index.html#multiprocess-profiling
index.html#multiprocess-profiling
index.html#multiprocess-profiling
index.html#focused-profiling

Profiler, Release 12.9

Table 1 – continued from previous page

Option Values Default Description

profiling-semaphore-
pool-size

{count} 65536 Set the profiling
semaphore pool size
reserved for stor-
ing profiling data for
serialized kernels and
memory operations for
each context. The size
should be a positive
integer.

query-events N/A N/A List all the events avail-
able on the device(s).
Device(s) queried can
be controlled by the
--devices option.

query-metrics N/A N/A List all the met-
rics available on
the device(s). De-
vice(s) queried can
be controlled by the
--devices option.

replay-mode disabled, kernel, appli-
cation

kernel Choose replay mode
used when not all
events/metrics can be
collected in a single
run.

▶ disabled: re-
play is disabled,
events/metrics
couldn’t be
profiled will be
dropped

▶ kernel: each ker-
nel invocation is
replayed

▶ application: the
entire applica-
tion is replayed.
This mode is in-
compatible with
--profile-all-processes
or
profile-child-processes.

continues on next page

7.1. Command Line Options 51

Profiler, Release 12.9

Table 1 – continued from previous page

Option Values Default Description

skip-kernel-replay-
save-restore

on, off off If enabled, this option
can vastly improve
kernel replay speed,
as save and restore of
the mutable state for
each kernel pass will
be skipped. Skipping
of save/restore of
input/output buffers
allows you to specify
that all profiled kernels
on the context do not
change the contents
of their input buffers
during execution, or
call device malloc/free
or new/delete, that
leave the device heap
in a different state.
Specifically, a kernel
can malloc and free
a buffer in the same
launch, but it cannot
call an unmatched mal-
loc or an unmatched
free. Note: incorrectly
using this mode while
one of the kernels
does modify the input
buffer or uses un-
matched malloc/free
will result in undefined
behavior, including
kernel execution fail-
ure and/or corrupted
device data.

▶ on: skip
save/restore of
the input/output
buffers

▶ off: save/restore
input/output
buffers for each
kernel replay
pass

continues on next page

52 Chapter 7. nvprof

Profiler, Release 12.9

Table 1 – continued from previous page

Option Values Default Description

source-level-analysis
(a)

global_access,
shared_access,
branch, instruc-
tion_execution,
pc_sampling

N/A Specify the source
level metrics to be
profiled on a certain
kernel invocation.
Use --devices and
--kernels to se-
lect a specific kernel
invocation. One or
more of these may be
specified, separated by
commas

▶ global_access:
global access

▶ shared_access:
shared access

▶ branch: divergent
branch

▶ instruc-
tion_execution:
instruction exe-
cution

▶ pc_sampling:
pc sampling,
available only for
GM20X+

Note: Use
--export-profile
to specify an export
file.
See Source-
Disassembly View
for more information.

system-profiling on, off off Turn on/off power,
clock, and thermal
profiling.
See System Profiling
for more information.

continues on next page

7.1. Command Line Options 53

index.html#source-disassembly-view
index.html#source-disassembly-view
index.html#system-profiling

Profiler, Release 12.9

Table 1 – continued from previous page

Option Values Default Description

timeout (t) {seconds} N/A Set an execution time-
out (in seconds) for
the CUDA application.
Note: Timeout starts
counting from the mo-
ment the CUDA driver
is initialized. If the
application doesn’t call
any CUDA APIs, time-
out won’t be triggered.
See Timeout and Flush
Profile Data for more
information.

track-memory-
allocations

on, off off Turn on/off tracking
of memory opera-
tions, which involves
recording timestamps,
memory size, memory
type and program
counters of the mem-
ory allocations and
frees. Turning this
option on may incur
an overhead during
profiling.

unified-memory-
profiling

per-process-device, off per-process-device Configure unified
memory profiling.

▶ per-process-
device: collect
counts for each
process and each
device

▶ off: turn off uni-
fied memory pro-
filing

See Unified Memory
Profiling for more
information.

54 Chapter 7. nvprof

index.html#timeout
index.html#flush-profile-data
index.html#flush-profile-data
index.html#unified-memory-profiling
index.html#unified-memory-profiling

Profiler, Release 12.9

7.1. Command Line Options 55

Profiler, Release 12.9

7.1.2. CPU Profiling Options

Option Values Default Description

cpu-profiling on, off off Turn on CPU profiling.
Note: CPU profiling is
not supported in multi-
process mode.

cpu-profiling-explain-
ccff

{filename} N/A Set the path to a PGI
pgexplain.xml file that
should be used to in-
terpret Common Com-
piler Feedback Format
(CCFF) messages.

cpu-profiling-
frequency

{frequency} 100Hz Set the CPU profiling
frequency in samples
per second. Maximum
is 500Hz.

cpu-profiling-max-
depth

{depth} 0 (i.e. unlimited) Set the maximum
depth of each call
stack.

cpu-profiling-mode flat, top-down,
bottom-up

bottom-up Set the output mode of
CPU profiling.

▶ flat: Show flat
profile

▶ top-down: Show
parent functions
at the top

▶ bottom-up: Show
parent functions
at the bottom

cpu-profiling-
percentage-threshold

{threshold} 0 (i.e. unlimited) Filter out the entries
that are below the set
percentage threshold.
The limit should be an
integer between 0 and
100, inclusive.

cpu-profiling-scope function, instruction function Choose the profiling
scope.

▶ function: Each
level in the stack
trace represents
a distinct func-
tion

▶ instruction: Each
level in the stack
trace represents
a distinct instruc-
tion address

cpu-profiling-show-
ccff

on, off off Choose whether
to print Common
Compiler Feedback
Format (CCFF) mes-
sages embedded in
the binary. Note:
this option implies
--cpu-profiling-scope
instruction.

cpu-profiling-show-
library

on, off off Choose whether to
print the library name
for each sample.

cpu-profiling-thread-
mode

separated, aggregated aggregated Set the thread mode of
CPU profiling.

▶ separated: Show
separate profile
for each thread

▶ aggregated: Ag-
gregate data
from all threads

cpu-profiling-unwind-
stack

on, off on Choose whether to
unwind the CPU call-
stack at each sample
point.

openacc-profiling on, off on Enable/disable record-
ing information from
the OpenACC profiling
interface. Note: if the
OpenACC profiling in-
terface is available de-
pends on the OpenACC
runtime.
See OpenACC for more
information.

openmp-profiling on, off off Enable/disable record-
ing information from
the OpenMP profiling
interface. Note: if the
OpenMP profiling in-
terface is available de-
pends on the OpenMP
runtime.
See OpenMP for more
information.

56 Chapter 7. nvprof

index.html#openacc
index.html#openmp

Profiler, Release 12.9

7.1. Command Line Options 57

Profiler, Release 12.9

7.1.3. Print Options

Option Values Default Description

context-name {name} N/A Name of the CUDA
context.
%i in the context name
string is replaced with
the ID of the context.
%p in the context name
string is replaced with
the process ID of the
application being pro-
filed.
%q{<ENV>} in the
context name string is
replaced with the value
of the environment
variable <ENV>. If the
environment variable
is not set it’s an error.
%h in the context name
string is replaced with
the hostname of the
system.
%% in the context name
string is replaced with
%. Any other character
following % is illegal.

csv N/A N/A Use comma-separated
values in the output.
See CSV for more in-
formation.

demangling on, off on Turn on/off C++ name
demangling of func-
tion names.
See Demangling for
more information.

normalized-time-unit
(u)

s, ms, us, ns, col, auto auto Specify the unit of
time that will be used
in the output.

▶ s: second
▶ ms: millisecond
▶ us: microsecond
▶ ns: nanosecond
▶ col: a fixed unit

for each column
▶ auto: the scale is

chosen for each
value based on its
length.

See Adjust Units for
more information.

openacc-summary-
mode

exclusive, inclusive exclusive Set how durations are
computed in the Ope-
nACC summary.
See OpenACC Sum-
mary Modes for more
information.

trace api, gpu N/A Specify the option (or
options separated by
commas) to be traced.

▶ api - only turn on
CUDA runtime
and driver API
tracing

▶ gpu - only turn on
CUDA GPU trac-
ing

print-api-summary N/A N/A Print a summary of
CUDA runtime/driver
API calls.

print-api-trace N/A N/A Print CUDA run-
time/driver API trace.
See GPU-Trace and
API-Trace Modes for
more information.

print-dependency-
analysis-trace

N/A N/A Print dependency anal-
ysis trace.
See Dependency Anal-
ysis for more informa-
tion.

print-gpu-summary N/A N/A Print a summary of
the activities on the
GPU (including CUDA
kernels and mem-
cpy’s/memset’s).
See Summary Mode
for more information.

print-gpu-trace N/A N/A Print individual ker-
nel invocations (in-
cluding CUDA mem-
cpy’s/memset’s) and
sort them in chrono-
logical order. In
event/metric pro-
filing mode, show
events/metrics for
each kernel invocation.
See GPU-Trace and
API-Trace Modes for
more information.

print-openacc-
constructs

N/A N/A Include parent con-
struct names in Ope-
nACC profile.
See OpenACC Options
for more information.

print-openacc-
summary

N/A N/A Print a summary of the
OpenACC profile.

print-openacc-trace N/A N/A Print a trace of the
OpenACC profile.

print-openmp-
summary

N/A N/A Print a summary of the
OpenMP profile.

print-summary (s) N/A N/A Print a summary of
the profiling result on
screen. Note: This
is the default unless
--export-profile
or other print options
are used.

print-summary-per-
gpu

N/A N/A Print a summary of the
profiling result for each
GPU.

process-name {name} N/A Name of the process.
%p in the process name
string is replaced with
the process ID of the
application being pro-
filed.
%q{<ENV>} in the
process name string is
replaced with the value
of the environment
variable <ENV>. If the
environment variable
is not set it’s an error.
%h in the process name
string is replaced with
the hostname of the
system.
%% in the process name
string is replaced with
%. Any other character
following % is illegal.

quiet N/A N/A Suppress all nvprof
output.

stream-name {name} N/A Name of the CUDA
stream.
%i in the stream name
string is replaced with
the ID of the stream.
%p in the stream name
string is replaced with
the process ID of the
application being pro-
filed.
%q{<ENV>} in the
stream name string is
replaced with the value
of the environment
variable <ENV>. If the
environment variable
is not set it’s an error.
%h in the stream name
string is replaced with
the hostname of the
system.
%% in the stream name
string is replaced with
%. Any other character
following % is illegal.

58 Chapter 7. nvprof

index.html#csv
index.html#demangling
index.html#adjust-units
index.html#openacc-summary-modes
index.html#openacc-summary-modes
index.html#gpu-trace-and-api-trace-modes
index.html#gpu-trace-and-api-trace-modes
index.html#dependency-analysis
index.html#dependency-analysis
index.html#summary-mode
index.html#gpu-trace-and-api-trace-modes
index.html#gpu-trace-and-api-trace-modes
index.html#openacc-options

Profiler, Release 12.9

7.1.4. IO Options

Option Values De-
fault

Description

export-profile
(o)

{file-
name}

N/A Export the result file which can be imported later or opened by the
NVIDIA Visual Profiler.
%p in the file name string is replaced with the process ID of the
application being profiled.
%q{<ENV>} in the file name string is replaced with the value of the
environment variable <ENV>. If the environment variable is not set
it’s an error.
%h in the file name string is replaced with the hostname of the
system.
%% in the file name string is replaced with %. Any other character
following % is illegal.
By default, this option disables the summary output. Note:
If the application being profiled creates child processes, or if
--profile-all-processes is used, the %p format is needed to
get correct export files for each process.
See Export/Import for more information.

force-
overwrite
(f)

N/A N/A Force overwriting all output files (any existing files will be overwrit-
ten).

import-profile
(i)

{file-
name}

N/A Import a result profile from a previous run.
See Export/Import for more information.

log-file {file-
name}

N/A Make nvprof send all its output to the specified file, or one of the
standard channels. The file will be overwritten. If the file doesn’t
exist, a new one will be created.
%1 as the whole file name indicates standard output channel (std-
out).
%2 as the whole file name indicates standard error channel (stderr).
Note: This is the default.
%p in the file name string is replaced with the process ID of the
application being profiled.
%q{<ENV>} in the file name string is replaced with the value of the
environment variable <ENV>. If the environment variable is not set
it’s an error.
%h in the file name string is replaced with the hostname of the
system.
%% in the file name is replaced with %. Any other character following
% is illegal.
See Redirecting Output for more information.

print-nvlink-
topology

N/A N/A Print nvlink topology

print-pci-
topology

N/A N/A Print PCI topology

help (h) N/A N/A Print help information.

version (V) N/A N/A Print version information of this tool.

7.1. Command Line Options 59

index.html#export-import
index.html#export-import
index.html#redirecting-output

Profiler, Release 12.9

7.2. Profiling Modes

nvprof operates in one of the modes listed below.

7.2.1. Summary Mode

Summary mode is the default operating mode for nvprof. In this mode, nvprof outputs a single result
line for each kernel function and each type of CUDA memory copy/set performed by the application.
For each kernel, nvprof outputs the total time of all instances of the kernel or type of memory copy
as well as the average, minimum, and maximum time. The time for a kernel is the kernel execution
time on the device. By default, nvprof also prints a summary of all the CUDA runtime/driver API calls.
Output of nvprof (except for tables) are prefixed with ==<pid>==, <pid> being the process ID of the
application being profiled.

Here’s a simple example of running nvprof on the CUDA sample matrixMul:

$ nvprof matrixMul
[Matrix Multiply Using CUDA] - Starting...
==27694== NVPROF is profiling process 27694, command: matrixMul
GPU Device 0: "GeForce GT 640M LE" with compute capability 3.0

MatrixA(320,320), MatrixB(640,320)
Computing result using CUDA Kernel...
done
Performance= 35.35 GFlop∕s, Time= 3.708 msec, Size= 131072000 Ops, WorkgroupSize=�
↪→1024 threads∕block
Checking computed result for correctness: OK

Note: For peak performance, please refer to the matrixMulCUBLAS example.
==27694== Profiling application: matrixMul
==27694== Profiling result:
Time(%) Time Calls Avg Min Max Name
99.94% 1.11524s 301 3.7051ms 3.6928ms 3.7174ms void matrixMulCUDA<int=32>
↪→(float*, float*, float*, int, int)
0.04% 406.30us 2 203.15us 136.13us 270.18us [CUDA memcpy HtoD]
0.02% 248.29us 1 248.29us 248.29us 248.29us [CUDA memcpy DtoH]

==27964== API calls:
Time(%) Time Calls Avg Min Max Name
49.81% 285.17ms 3 95.055ms 153.32us 284.86ms cudaMalloc
25.95% 148.57ms 1 148.57ms 148.57ms 148.57ms cudaEventSynchronize
22.23% 127.28ms 1 127.28ms 127.28ms 127.28ms cudaDeviceReset
1.33% 7.6314ms 301 25.353us 23.551us 143.98us cudaLaunch
0.25% 1.4343ms 3 478.09us 155.84us 984.38us cudaMemcpy
0.11% 601.45us 1 601.45us 601.45us 601.45us cudaDeviceSynchronize
0.10% 564.48us 1505 375ns 313ns 3.6790us cudaSetupArgument
0.09% 490.44us 76 6.4530us 307ns 221.93us cuDeviceGetAttribute
0.07% 406.61us 3 135.54us 115.07us 169.99us cudaFree
0.02% 143.00us 301 475ns 431ns 2.4370us cudaConfigureCall
0.01% 42.321us 1 42.321us 42.321us 42.321us cuDeviceTotalMem
0.01% 33.655us 1 33.655us 33.655us 33.655us cudaGetDeviceProperties
0.01% 31.900us 1 31.900us 31.900us 31.900us cuDeviceGetName
0.00% 21.874us 2 10.937us 8.5850us 13.289us cudaEventRecord

(continues on next page)

60 Chapter 7. nvprof

Profiler, Release 12.9

(continued from previous page)

0.00% 16.513us 2 8.2560us 2.6240us 13.889us cudaEventCreate
0.00% 13.091us 1 13.091us 13.091us 13.091us cudaEventElapsedTime
0.00% 8.1410us 1 8.1410us 8.1410us 8.1410us cudaGetDevice
0.00% 2.6290us 2 1.3140us 509ns 2.1200us cuDeviceGetCount
0.00% 1.9970us 2 998ns 520ns 1.4770us cuDeviceGet

Note: API trace can be turned off, if not needed, by using --profile-api-trace none. This reduces
some of the profiling overhead, especially when the kernels are short.

If multiple CUDA capable devices are profiled, nvprof --print-summary-per-gpu can be used to
print one summary per GPU.

nvprof supports CUDA Dynamic Parallelism in summary mode. If your application uses Dynamic Par-
allelism, the output will contain one column for the number of host-launched kernels and one for the
number of device-launched kernels. Here’s an example of running nvprof on the CUDA Dynamic Par-
allelism sample cdpSimpleQuicksort:

$ nvprof cdpSimpleQuicksort
==27325== NVPROF is profiling process 27325, command: cdpSimpleQuicksort

Running on GPU 0 (Tesla K20c)
Initializing data:
Running quicksort on 128 elements
Launching kernel on the GPU
Validating results: OK
==27325== Profiling application: cdpSimpleQuicksort
==27325== Profiling result:
Time(%) Time Calls (host) Calls (device) Avg Min Max Name
99.71% 1.2114ms 1 14 80.761us 5.1200us 145.66us cdp_
↪→simple_quicksort(unsigned int*, int, int, int)
0.18% 2.2080us 1 - 2.2080us 2.2080us 2.2080us [CUDA�

↪→memcpy DtoH]
0.11% 1.2800us 1 - 1.2800us 1.2800us 1.2800us [CUDA�

↪→memcpy HtoD]

7.2.2. GPU-Trace and API-Trace Modes

GPU-Trace and API-Trace modes can be enabled individually or together. GPU-Trace mode provides
a timeline of all activities taking place on the GPU in chronological order. Each kernel execution and
memory copy/set instance is shown in the output. For each kernel or memory copy, detailed informa-
tion such as kernel parameters, shared memory usage and memory transfer throughput are shown.
The number shown in the square brackets after the kernel name correlates to the CUDA API that
launched that kernel.

Here’s an example:

$ nvprof --print-gpu-trace matrixMul
==27706== NVPROF is profiling process 27706, command: matrixMul

==27706== Profiling application: matrixMul
[Matrix Multiply Using CUDA] - Starting...

(continues on next page)

7.2. Profiling Modes 61

Profiler, Release 12.9

(continued from previous page)

GPU Device 0: "GeForce GT 640M LE" with compute capability 3.0

MatrixA(320,320), MatrixB(640,320)
Computing result using CUDA Kernel...
done
Performance= 35.36 GFlop∕s, Time= 3.707 msec, Size= 131072000 Ops, WorkgroupSize=�
↪→1024 threads∕block
Checking computed result for correctness: OK

Note: For peak performance, please refer to the matrixMulCUBLAS example.
==27706== Profiling result:

Start Duration Grid Size Block Size Regs* SSMem* DSMem*�
↪→ Size Throughput Device Context Stream Name
133.81ms 135.78us - - - - -�
↪→ 409.60KB 3.0167GB∕s GeForce GT 640M 1 2 [CUDA memcpy HtoD]
134.62ms 270.66us - - - - -�
↪→ 819.20KB 3.0267GB∕s GeForce GT 640M 1 2 [CUDA memcpy HtoD]
134.90ms 3.7037ms (20 10 1) (32 32 1) 29 8.1920KB 0B�
↪→ - - GeForce GT 640M 1 2 void matrixMulCUDA
↪→<int=32>(float*, float*, float*, int, int) [94]
138.71ms 3.7011ms (20 10 1) (32 32 1) 29 8.1920KB 0B�
↪→ - - GeForce GT 640M 1 2 void matrixMulCUDA
↪→<int=32>(float*, float*, float*, int, int) [105]
<...more output...>
1.24341s 3.7011ms (20 10 1) (32 32 1) 29 8.1920KB 0B�
↪→ - - GeForce GT 640M 1 2 void matrixMulCUDA
↪→<int=32>(float*, float*, float*, int, int) [2191]
1.24711s 3.7046ms (20 10 1) (32 32 1) 29 8.1920KB 0B�
↪→ - - GeForce GT 640M 1 2 void matrixMulCUDA
↪→<int=32>(float*, float*, float*, int, int) [2198]
1.25089s 248.13us - - - - -�
↪→ 819.20KB 3.3015GB∕s GeForce GT 640M 1 2 [CUDA memcpy DtoH]

Regs: Number of registers used per CUDA thread. This number includes registers used�
↪→internally by the CUDA driver and∕or tools and can be more than what the compiler�
↪→shows.
SSMem: Static shared memory allocated per CUDA block.
DSMem: Dynamic shared memory allocated per CUDA block.

nvprof supports CUDA Dynamic Parallelism in GPU-Trace mode. For host kernel launch, the kernel ID
will be shown. For device kernel launch, the kernel ID, parent kernel ID and parent block will be shown.
Here’s an example:

$nvprof --print-gpu-trace cdpSimpleQuicksort
==28128== NVPROF is profiling process 28128, command: cdpSimpleQuicksort

Running on GPU 0 (Tesla K20c)
Initializing data:
Running quicksort on 128 elements
Launching kernel on the GPU
Validating results: OK
==28128== Profiling application: cdpSimpleQuicksort
==28128== Profiling result:

Start Duration Grid Size Block Size Regs* SSMem* DSMem*�
↪→ Size Throughput Device Context Stream ID Parent ID �
↪→ Parent Block Name

(continues on next page)

62 Chapter 7. nvprof

Profiler, Release 12.9

(continued from previous page)

192.76ms 1.2800us - - - - -�
↪→ 512B 400.00MB∕s Tesla K20c (0) 1 2 - - �
↪→ - [CUDA memcpy HtoD]
193.31ms 146.02us (1 1 1) (1 1 1) 32 0B 0B�
↪→ - - Tesla K20c (0) 1 2 2 - �
↪→ - cdp_simple_quicksort(unsigned int*, int, int, int) [171]
193.41ms 110.53us (1 1 1) (1 1 1) 32 0B 256B�
↪→ - - Tesla K20c (0) 1 2 -5 2 �
↪→ (0 0 0) cdp_simple_quicksort(unsigned int*, int, int, int)
193.45ms 125.57us (1 1 1) (1 1 1) 32 0B 256B�
↪→ - - Tesla K20c (0) 1 2 -6 2 �
↪→ (0 0 0) cdp_simple_quicksort(unsigned int*, int, int, int)
193.48ms 9.2480us (1 1 1) (1 1 1) 32 0B 256B�
↪→ - - Tesla K20c (0) 1 2 -7 -5 �
↪→ (0 0 0) cdp_simple_quicksort(unsigned int*, int, int, int)
193.52ms 107.23us (1 1 1) (1 1 1) 32 0B 256B�
↪→ - - Tesla K20c (0) 1 2 -8 -5 �
↪→ (0 0 0) cdp_simple_quicksort(unsigned int*, int, int, int)
193.53ms 93.824us (1 1 1) (1 1 1) 32 0B 256B�
↪→ - - Tesla K20c (0) 1 2 -9 -6 �
↪→ (0 0 0) cdp_simple_quicksort(unsigned int*, int, int, int)
193.57ms 117.47us (1 1 1) (1 1 1) 32 0B 256B�
↪→ - - Tesla K20c (0) 1 2 -10 -6 �
↪→ (0 0 0) cdp_simple_quicksort(unsigned int*, int, int, int)
193.58ms 5.0560us (1 1 1) (1 1 1) 32 0B 256B�
↪→ - - Tesla K20c (0) 1 2 -11 -8 �
↪→ (0 0 0) cdp_simple_quicksort(unsigned int*, int, int, int)
193.62ms 108.06us (1 1 1) (1 1 1) 32 0B 256B�
↪→ - - Tesla K20c (0) 1 2 -12 -8 �
↪→ (0 0 0) cdp_simple_quicksort(unsigned int*, int, int, int)
193.65ms 113.34us (1 1 1) (1 1 1) 32 0B 256B�
↪→ - - Tesla K20c (0) 1 2 -13 -10 �
↪→ (0 0 0) cdp_simple_quicksort(unsigned int*, int, int, int)
193.68ms 29.536us (1 1 1) (1 1 1) 32 0B 256B�
↪→ - - Tesla K20c (0) 1 2 -14 -12 �
↪→ (0 0 0) cdp_simple_quicksort(unsigned int*, int, int, int)
193.69ms 22.848us (1 1 1) (1 1 1) 32 0B 256B�
↪→ - - Tesla K20c (0) 1 2 -15 -10 �
↪→ (0 0 0) cdp_simple_quicksort(unsigned int*, int, int, int)
193.71ms 130.85us (1 1 1) (1 1 1) 32 0B 256B�
↪→ - - Tesla K20c (0) 1 2 -16 -13 �
↪→ (0 0 0) cdp_simple_quicksort(unsigned int*, int, int, int)
193.73ms 62.432us (1 1 1) (1 1 1) 32 0B 256B�
↪→ - - Tesla K20c (0) 1 2 -17 -12 �
↪→ (0 0 0) cdp_simple_quicksort(unsigned int*, int, int, int)
193.76ms 41.024us (1 1 1) (1 1 1) 32 0B 256B�
↪→ - - Tesla K20c (0) 1 2 -18 -13 �
↪→ (0 0 0) cdp_simple_quicksort(unsigned int*, int, int, int)
193.92ms 2.1760us - - - - -�
↪→ 512B 235.29MB∕s Tesla K20c (0) 1 2 - - �
↪→ - [CUDA memcpy DtoH]

Regs: Number of registers used per CUDA thread. This number includes registers used�
↪→internally by the CUDA driver and∕or tools and can be more than what the compiler�
↪→shows.
SSMem: Static shared memory allocated per CUDA block.
DSMem: Dynamic shared memory allocated per CUDA block.

7.2. Profiling Modes 63

Profiler, Release 12.9

API-trace mode shows the timeline of all CUDA runtime and driver API calls invoked on the host in
chronological order. Here’s an example:

$nvprof --print-api-trace matrixMul
==27722== NVPROF is profiling process 27722, command: matrixMul

==27722== Profiling application: matrixMul
[Matrix Multiply Using CUDA] - Starting...
GPU Device 0: "GeForce GT 640M LE" with compute capability 3.0

MatrixA(320,320), MatrixB(640,320)
Computing result using CUDA Kernel...
done
Performance= 35.35 GFlop∕s, Time= 3.708 msec, Size= 131072000 Ops, WorkgroupSize=�
↪→1024 threads∕block
Checking computed result for correctness: OK

Note: For peak performance, please refer to the matrixMulCUBLAS example.
==27722== Profiling result:

Start Duration Name
108.38ms 6.2130us cuDeviceGetCount
108.42ms 840ns cuDeviceGet
108.42ms 22.459us cuDeviceGetName
108.45ms 11.782us cuDeviceTotalMem
108.46ms 945ns cuDeviceGetAttribute
149.37ms 23.737us cudaLaunch (void matrixMulCUDA<int=32>(float*, float*, float*,�
↪→int, int) [2198])
149.39ms 6.6290us cudaEventRecord
149.40ms 1.10156s cudaEventSynchronize
<...more output...>
1.25096s 21.543us cudaEventElapsedTime
1.25103s 1.5462ms cudaMemcpy
1.25467s 153.93us cudaFree
1.25483s 75.373us cudaFree
1.25491s 75.564us cudaFree
1.25693s 10.901ms cudaDeviceReset

Note: Due to the way the profiler is setup, the first “cuInit()” driver API call is never traced.

7.2.3. Event/metric Summary Mode

To see a list of all available events on a particular NVIDIA GPU, use the --query-events option. To see
a list of all available metrics on a particular NVIDIA GPU, use the --query-metrics option. nvprof is
able to collect multiple events/metrics at the same time. Here’s an example:

$ nvprof --events warps_launched,local_load --metrics ipc matrixMul
[Matrix Multiply Using CUDA] - Starting...
==6461== NVPROF is profiling process 6461, command: matrixMul

GPU Device 0: "GeForce GTX TITAN" with compute capability 3.5

MatrixA(320,320), MatrixB(640,320)
(continues on next page)

64 Chapter 7. nvprof

Profiler, Release 12.9

(continued from previous page)

Computing result using CUDA Kernel...
==6461== Warning: Some kernel(s) will be replayed on device 0 in order to collect all�
↪→events∕metrics.
done
Performance= 6.39 GFlop∕s, Time= 20.511 msec, Size= 131072000 Ops, WorkgroupSize=�
↪→1024 threads∕block
Checking computed result for correctness: Result = PASS

NOTE: The CUDA Samples are not meant for performance measurements. Results may vary�
↪→when GPU Boost is enabled.
==6461== Profiling application: matrixMul
==6461== Profiling result:
==6461== Event result:
Invocations Event Name Min Max �
↪→Avg
Device "GeForce GTX TITAN (0)"

Kernel: void matrixMulCUDA<int=32>(float*, float*, float*, int, int)
301 warps_launched 6400 6400 �

↪→6400
301 local_load 0 0 �

↪→ 0

==6461== Metric result:
Invocations Metric Name Metric�
↪→Description Min Max Avg
Device "GeForce GTX TITAN (0)"

Kernel: void matrixMulCUDA<int=32>(float*, float*, float*, int, int)
301 ipc �

↪→Executed IPC 1.282576 1.299736 1.291500

If the specified events/metrics can’t be profiled in a single run of the application, nvprof by default
replays each kernel multiple times until all the events/metrics are collected.

The --replay-mode <mode> option can be used to change the replay mode. In “application replay”
mode, nvprof re-runs the whole application instead of replaying each kernel, in order to collect all
events/metrics. In some cases this mode can be faster than kernel replay mode if the application
allocates large amount of device memory. Replay can also be turned off entirely, in which case the
profiler will not collect some events/metrics.

To collect all events available on each device, use the option --events all.

To collect all metrics available on each device, use the option --metrics all.

Note: Events or metrics collection may significantly change the overall performance characteristics
of the application because all kernel executions are serialized on the GPU.

Note: If a large number of events or metrics are requested, no matter which replay mode is chosen,
the overall application execution time may increase significantly.

7.2. Profiling Modes 65

Profiler, Release 12.9

7.2.4. Event/metric Trace Mode

In event/metric trace mode, event and metric values are shown for each kernel execution. By de-
fault, event and metric values are aggregated across all units in the GPU. For example, multiprocessor
specific events are aggregated across all multiprocessors on the GPU. If --aggregate-mode off is
specified, values of each unit are shown. For example, in the following example, the “branch” event
value is shown for each multiprocessor on the GPU:

$ nvprof --aggregate-mode off --events local_load --print-gpu-trace matrixMul
[Matrix Multiply Using CUDA] - Starting...
==6740== NVPROF is profiling process 6740, command: matrixMul

GPU Device 0: "GeForce GTX TITAN" with compute capability 3.5

MatrixA(320,320), MatrixB(640,320)
Computing result using CUDA Kernel...
done
Performance= 16.76 GFlop∕s, Time= 7.822 msec, Size= 131072000 Ops, WorkgroupSize=�
↪→1024 threads∕block
Checking computed result for correctness: Result = PASS

NOTE: The CUDA Samples are not meant for performance measurements. Results may vary�
↪→when GPU Boost is enabled.
==6740== Profiling application: matrixMul
==6740== Profiling result:

Device Context Stream Kernel local_load�
↪→(0) local_load (1) ...
GeForce GTX TIT 1 7 void matrixMulCUDA<i �
↪→0 0 ...
GeForce GTX TIT 1 7 void matrixMulCUDA<i �
↪→0 0 ...
<...more output...>

Note: Although --aggregate-mode applies to metrics, some metrics are only available in aggregate
mode and some are only available in non-aggregate mode.

7.3. Profiling Controls

7.3.1. Timeout

A timeout (in seconds) can be provided to nvprof. The CUDA application being profiled will be killed
by nvprof after the timeout. Profiling result collected before the timeout will be shown.

Note: Timeout starts counting from the moment the CUDA driver is initialized. If the application
doesn’t call any CUDA APIs, timeout won’t be triggered.

66 Chapter 7. nvprof

Profiler, Release 12.9

7.3.2. Concurrent Kernels

Concurrent-kernel profiling is supported, and is turned on by default. To turn the feature off, use the
option --concurrent-kernels off. This forces concurrent kernel executions to be serialized when
a CUDA application is run with nvprof.

7.3.3. Profiling Scope

When collecting events/metrics, nvprof profiles all kernels launched on all visible CUDA devices by
default. This profiling scope can be limited by the following options.

--devices <device IDs> applies to --events, --metrics, --query-events and
--query-metrics options that follows it. It limits these options to collect events/metrics
only on the devices specified by <device IDs>, which can be a list of device ID numbers separated
by comma.

--kernels <kernel filter> applies to --events and --metrics options that follows it. It limits
these options to collect events/metrics only on the kernels specified by <kernel filter>, which has
the following syntax:

<kernel name>

or

<context id∕name>:<stream id∕name>:<kernel
name>:<invocation>

Each string in the angle brackets can be a standard Perl regular expression. Empty string matches any
number or character combination.

Invocation number n indicates the nth invocation of the kernel. If invocation is a positive number, it’s
strictly matched against the invocation of the kernel. Otherwise it’s treated as a regular expression.
Invocation number is counted separately for each kernel. So for instance :::3 will match the 3rd
invocation of every kernel.

If the context/stream string is a positive number, it’s strictly matched against the cuda context/stream
ID. Otherwise it’s treated as a regular expression and matched against the context/stream name pro-
vided by the NVIDIA Tools Extension.

Both --devices and --kernels can be specified multiple times, with distinct events/metrics asso-
ciated.

--events, --metrics, --query-events and --query-metrics are controlled by the nearest scope
options before them.

As an example, the following command,

nvprof --devices 0 --metrics ipc
--kernels "1:foo:bar:2" --events local_load a.out

collects metric ipc on all kernels launched on device 0. It also collects event local_load for any
kernel whose name contains bar and is the 2nd instance launched on context 1 and on stream named
foo on device 0.

7.3. Profiling Controls 67

Profiler, Release 12.9

7.3.4. Multiprocess Profiling

By default, nvprof only profiles the application specified by the command-line argument. It doesn’t
trace child processes launched by that process. To profile all processes launched by an application,
use the --profile-child-processes option.

Note: nvprof cannot profile processes that fork() but do not then exec().

nvprof also has a “profile all processes” mode, in which it profiles every CUDA process launched on
the same system by the same user who launched nvprof. Exit this mode by typing “Ctrl-c”.

Note: CPU profiling is not supported in multi-process mode.

7.3.5. System Profiling

For devices that support system profiling, nvprof can enable low frequency sampling of the power,
clock, and thermal behavior of each GPU used by the application. This feature is turned off by default.
To turn on this feature, use --system-profiling on. To see the detail of each sample point, combine
the above option with --print-gpu-trace.

7.3.6. Unified Memory Profiling

For GPUs that support Unified Memory, nvprof collects the Unified Memory related memory traffic
to and from each GPU on your system. This feature is enabled by default. This feature can be disabled
with --unified-memory-profiling off. To see the detail of each memory transfer while this
feature is enabled, use --print-gpu-trace.

On multi-GPU configurations without P2P support between any pair of devices that sup-
port Unified Memory, managed memory allocations are placed in zero-copy memory. In this
case Unified Memory profiling is not supported. In certain cases, the environment variable
CUDA_MANAGED_FORCE_DEVICE_ALLOC can be set to force managed allocations to be in device mem-
ory and to enable migration on these hardware configurations. In this case Unified Memory profiling
is supported. Normally, using the environment variable CUDA_VISIBLE_DEVICES is recommended to
restrict CUDA to only use those GPUs that have P2P support. Please refer to the environment variables
section in the CUDA C++ Programming Guide for further details.

7.3.7. CPU Thread Tracing

In order to allow a correct Dependency Analysis, nvprof can collect information about CPU-side
threading APIs. This can be enabled by specifying --cpu-thread-tracing on during measurement.
Recording this information is necessary if

▶ the application uses multiple CPU threads and

▶ at least two of these threads call the CUDA API.

68 Chapter 7. nvprof

index.html#dependency-analysis

Profiler, Release 12.9

Currently, only POSIX threads (Pthreads) are supported. For performance reasons, only se-
lected Pthread API calls may be recorded. nvprof tries to detect which calls are necessary to
model the execution behavior and filters others. Filtered calls include pthread_mutex_lock and
pthread_mutex_unlock when those do not cause any concurrent thread to block.

Note: CPU thread tracing is not available on Windows.

Note: CPU thread tracing starts after the first CUDA API call, from the thread issuing this call. There-
fore, the application must call e.g. cuInit from its main thread before spawning any other user
threads that call the CUDA API.

7.4. Output

7.4.1. Adjust Units

By default, nvprof adjusts the time units automatically to get the most precise time values. The
--normalized-time-unit options can be used to get fixed time units throughout the results.

7.4.2. CSV

For each profiling mode, option --csv can be used to generate output in comma-separated values
(CSV) format. The result can be directly imported to spreadsheet software such as Excel.

7.4.3. Export/Import

For each profiling mode, option --export-profile can be used to generate a result file. This file is
not human-readable, but can be imported back to nvprof using the option --import-profile, or
into the Visual Profiler.

Note: The profilers use SQLite as the format of the export profiles. Writing files in such format may
require more disk operations than writing a plain file. Thus, exporting profiles to slower devices such
as a network drive may slow down the execution of the application.

7.4. Output 69

Profiler, Release 12.9

7.4.4. Demangling

By default, nvprof demangles C++ function names. Use option --demangling off to turn this
feature off.

7.4.5. Redirecting Output

By default, nvprof sends most of its output to stderr. To redirect the output, use --log-file.
--log-file %1 tells nvprof to redirect all output to stdout. --log-file <filename> redirects
output to a file. Use %p in the filename to be replaced by the process ID of nvprof, %h by the hostname
, %q{ENV} by the value of environment variable ENV, and %% by %.

7.4.6. Dependency Analysis

nvprof can run a Dependency Analysis after the application has been profiled, using the
--dependency-analysis option. This analysis can also be applied to imported profiles. It requires to
collect the full CUDA API and GPU activity trace during measurement. This is the default for nvprof
if not disabled using --profile-api-trace none.

For applications using CUDA from multiple CPU threads, CPU Thread Tracing should be enabled, too.
The option --print-dependency-analysis-trace can be specified to change from a summary
output to a trace output, showing computed metrics such as time on the critical path per function
instance rather than per function type.

An example for dependency analysis summary output with all computed metrics aggregated per func-
tion type is shown below. The table is sorted first by time on the critical path and second by waiting
time. The summary contains an entry named Other, referring to all CPU activity that is not tracked
by nvprof (e.g. the application’s main function).

==20704== Dependency Analysis:
==20704== Analysis progress: 100%
Critical path(%) Critical path Waiting time Name

% s s
92.06 4.061817 0.000000 clock_block(long*, long)
4.54 0.200511 0.000000 cudaMalloc
3.25 0.143326 0.000000 cudaDeviceReset
0.13 5.7273280e-03 0.000000 <Other>
0.01 2.7200900e-04 0.000000 cudaFree
0.00 0.000000 4.062506 pthread_join
0.00 0.000000 4.061790 cudaStreamSynchronize
0.00 0.000000 1.015485 pthread_mutex_lock
0.00 0.000000 1.013711 pthread_cond_wait
0.00 0.000000 0.000000 pthread_mutex_unlock
0.00 0.000000 0.000000 pthread_exit
0.00 0.000000 0.000000 pthread_enter
0.00 0.000000 0.000000 pthread_create
0.00 0.000000 0.000000 pthread_cond_signal
0.00 0.000000 0.000000 cudaLaunch

70 Chapter 7. nvprof

index.html#dependency-analysis
index.html#cpu-thread-tracing

Profiler, Release 12.9

7.5. CPU Sampling

Sometimes it’s useful to profile the CPU portion of your application, in order to better understand the
bottlenecks and identify potential hotspots for the entire CUDA application. For the CPU portion of
the application, nvprof is able to sample the program counter and call stacks at a certain frequency.
The data is then used to construct a graph, with nodes being frames in each call stack. Function and
library symbols are also extracted if available. A sample graph is shown below:

======== CPU profiling result (bottom up):
45.45% cuInit
| 45.45% cudart::globalState::loadDriverInternal(void)
| 45.45% cudart::__loadDriverInternalUtil(void)
| 45.45% pthread_once
| 45.45% cudart::cuosOnce(int*, void (*) (void))
| 45.45% cudart::globalState::loadDriver(void)
| 45.45% cudart::globalState::initializeDriver(void)
| 45.45% cudaMalloc
| 45.45% main
33.33% cuDevicePrimaryCtxRetain
| 33.33% cudart::contextStateManager::initPrimaryContext(cudart::device*)
| 33.33% cudart::contextStateManager::tryInitPrimaryContext(cudart::device*)
| 33.33% cudart::contextStateManager::initDriverContext(void)
| 33.33%�
↪→cudart::contextStateManager::getRuntimeContextState(cudart::contextState**, bool)
| 33.33% cudart::getLazyInitContextState(cudart::contextState**)
| 33.33% cudart::doLazyInitContextState(void)
| 33.33% cudart::cudaApiMalloc(void**, unsigned long)
| 33.33% cudaMalloc
| 33.33% main
18.18% cuDevicePrimaryCtxReset
| 18.18% cudart::device::resetPrimaryContext(void)
| 18.18% cudart::cudaApiThreadExit(void)
| 18.18% cudaThreadExit
| 18.18% main
3.03% cudbgGetAPIVersion

3.03% start_thread
3.03% clone

The graph can be presented in different “views” (top-down, bottom-up or flat), allowing the user
to analyze the sampling data from different perspectives. For instance, the bottom-up view (shown
above) can be useful in identifying the “hot” functions in which the application is spending most of
its time. The top-down view gives a break-down of the application execution time, starting from the
main function, allowing you to find “call paths” which are executed frequently.

By default the CPU sampling feature is disabled. To enable it, use the option --cpu-profiling on.
The next section describes all the options controlling the CPU sampling behavior.

CPU sampling is supported on Linux and Windows for Intel x86/x86_64 architecture.

Note: When using the CPU profiling feature on POSIX systems, the profiler samples the applica-
tion by sending periodic signals. Applications should therefore ensure that system calls are handled
appropriately when interrupted.

Note: On Windows, nvprof requires Visual Studio installation (2010 or later) and compiler-generated

7.5. CPU Sampling 71

Profiler, Release 12.9

.PDB (program database) files to resolve symbol information. When building your application, ensure
that .PDB files are created and placed next to the profiled executable and libraries.

7.5.1. CPU Sampling Limitations

The following are known issues with the current release.

▶ CPU sampling is not supported on the mobile devices.

▶ CPU sampling is currently not supported in multi-process profiling mode.

▶ The result stack traces might not be complete under some compiler optimizations, notably frame
pointer omission and function inlining.

▶ The CPU sampling result does not support CSV mode.

7.6. OpenACC

On 64bit Linux platforms, nvprof supports recording OpenACC activities using the CUPTI Activity
API. This allows to investigate the performance on the level of OpenACC constructs in addition to the
underlying, compiler-generated CUDA API calls.

OpenACC profiling in nvprof requires the targeted application to use PGI OpenACC runtime 19.1 or
later.

Even though recording OpenACC activities is only supported on x86_64 Linux systems, importing and
viewing previously generated profile data is available on all platforms supported by nvprof.

An example for OpenACC summary output is shown below. The CUPTI OpenACC activities are
mapped to the original OpenACC constructs using their source file and line information. For
acc_enqueue_launch activities, it will furthermore show the launched CUDA kernel name which is
generated by the OpenACC compiler. By default, nvprof will demangle kernel names generated by the
OpenACC compiler. You can pass --demangling off to disable this behavior.

==20854== NVPROF is profiling process 20854, command: .∕acc_saxpy

==20854== Profiling application: .∕acc_saxpy
==20854== Profiling result:
==20854== OpenACC (excl):
Time(%) Time Calls Avg Min Max Name
33.16% 1.27944s 200 6.3972ms 24.946us 12.770ms acc_implicit_wait@acc_
↪→saxpy.cpp:42
33.12% 1.27825s 100 12.783ms 12.693ms 12.787ms acc_wait@acc_saxpy.cpp:54
33.12% 1.27816s 100 12.782ms 12.720ms 12.786ms acc_wait@acc_saxpy.cpp:61
0.14% 5.4550ms 100 54.549us 51.858us 71.461us acc_enqueue_download@acc_

↪→saxpy.cpp:43
0.07% 2.5190ms 100 25.189us 23.877us 60.269us acc_enqueue_launch@acc_

↪→saxpy.cpp:50 (kernel2(int, float, float*, float*)_50_gpu)
0.06% 2.4988ms 100 24.987us 24.161us 29.453us acc_enqueue_launch@acc_

↪→saxpy.cpp:60 (kernel3(int, float, float*, float*)_60_gpu)
0.06% 2.2799ms 100 22.798us 21.654us 56.674us acc_enqueue_launch@acc_

↪→saxpy.cpp:42 (kernel1(int, float, float*, float*)_42_gpu)
(continues on next page)

72 Chapter 7. nvprof

Profiler, Release 12.9

(continued from previous page)

0.05% 2.1068ms 100 21.068us 20.444us 33.159us acc_enqueue_download@acc_
↪→saxpy.cpp:51
0.05% 2.0854ms 100 20.853us 19.453us 23.697us acc_enqueue_download@acc_

↪→saxpy.cpp:61
0.04% 1.6265ms 100 16.265us 15.284us 49.632us acc_enqueue_upload@acc_

↪→saxpy.cpp:50
0.04% 1.5963ms 100 15.962us 15.052us 19.749us acc_enqueue_upload@acc_

↪→saxpy.cpp:60
0.04% 1.5393ms 100 15.393us 14.592us 56.414us acc_enqueue_upload@acc_

↪→saxpy.cpp:42
0.01% 558.54us 100 5.5850us 5.3700us 6.2090us acc_implicit_wait@acc_

↪→saxpy.cpp:43
0.01% 266.13us 100 2.6610us 2.4630us 4.7590us acc_compute_construct@acc_

↪→saxpy.cpp:42
0.01% 211.77us 100 2.1170us 1.9980us 4.1770us acc_compute_construct@acc_

↪→saxpy.cpp:50
0.01% 209.14us 100 2.0910us 1.9880us 2.2500us acc_compute_construct@acc_

↪→saxpy.cpp:60
0.00% 55.066us 1 55.066us 55.066us 55.066us acc_enqueue_launch@acc_

↪→saxpy.cpp:70 (initVec(int, float, float*)_70_gpu)
0.00% 13.209us 1 13.209us 13.209us 13.209us acc_compute_construct@acc_

↪→saxpy.cpp:70
0.00% 10.901us 1 10.901us 10.901us 10.901us acc_implicit_wait@acc_

↪→saxpy.cpp:70
0.00% 0ns 200 0ns 0ns 0ns acc_delete@acc_saxpy.cpp:61
0.00% 0ns 200 0ns 0ns 0ns acc_delete@acc_saxpy.cpp:43
0.00% 0ns 200 0ns 0ns 0ns acc_create@acc_saxpy.cpp:60
0.00% 0ns 200 0ns 0ns 0ns acc_create@acc_saxpy.cpp:42
0.00% 0ns 200 0ns 0ns 0ns acc_delete@acc_saxpy.cpp:51
0.00% 0ns 200 0ns 0ns 0ns acc_create@acc_saxpy.cpp:50
0.00% 0ns 2 0ns 0ns 0ns acc_alloc@acc_saxpy.cpp:42

7.6.1. OpenACC Options

Table 1 contains OpenACC profiling related command-line options of nvprof.

7.6. OpenACC 73

Profiler, Release 12.9

Table 2: Table 1. OpenACC Options

Option Description

--openacc-profiling
<on|off>

Turn on/off OpenACC profiling. Note: OpenACC profiling is
only supported on x86_64 Linux. Default is on.

--print-openacc-summary Print a summary of all recorded OpenACC activities.

--print-openacc-trace Print a detailed trace of all recorded OpenACC activities, in-
cluding each activity’s timestamp and duration.

--print-openacc-constructs Include the name of the OpenACC parent construct that
caused an OpenACC activity to be emitted. Note that for ap-
plications using PGI OpenACC runtime before 19.1, this value
will always be unknown.

--openacc-summary-mode
<exclusive|inclusive>

Specify how activity durations are presented in the OpenACC
summary. Allowed values: “exclusive” - exclusive durations
(default). “inclusive” - inclusive durations. See OpenACC Sum-
mary Modes for more information.

7.6.2. OpenACC Summary Modes

nvprof supports two modes for presenting OpenACC activity durations in the OpenACC summary
mode (enabled with --print-openacc-summary): “exclusive” and “inclusive”.

▶ Inclusive: In this mode, all durations represent the actual runtime of an activity. This includes the
time spent in this activity as well as in all its children (callees).

▶ Exclusive: In this mode, all durations represent the time spent solely in this activity. This includes
the time spent in this activity but excludes the runtime of all of its children (callees).

As an example, consider the OpenACC acc_compute_construct which itself calls
acc_enqueue_launch to launch a kernel to the device and acc_implicit_wait, which waits
on the completion of this kernel. In “inclusive” mode, the duration for acc_compute_construct
will include the time spent in acc_enqueue_launch and acc_implicit_wait. In “exclusive” mode,
those two durations are subtracted. In the summary profile, this is helpful to identify if a long
acc_compute_construct represents a high launch overhead or rather a long wait (synchronization)
time.

7.7. OpenMP

On 64bit Linux platforms, nvprof supports recording OpenMP activities

OpenMP profiling in nvprof requires the targeted application to use a runtime supporting the
OpenMP Tools interface (OMPT). (PGI version 19.1 or greater using the LLVM code generator supports
OMPT).

Even though recording OpenMP activities is only supported on x86_64 Linux systems, importing and
viewing previously generated profile data is available on all platforms supported by nvprof.

An example for the OpenMP summary output is shown below:

74 Chapter 7. nvprof

index.html#openacc-summary-modes
index.html#openacc-summary-modes

Profiler, Release 12.9

==20854== NVPROF is profiling process 20854, command: .∕openmp

==20854== Profiling application: .∕openmp
==20854== Profiling result:
No kernels were profiled.
No API activities were profiled.

Type Time(%) Time Calls Avg Min Max Name
OpenMP (incl): 99.97% 277.10ms 20 13.855ms 13.131ms 18.151ms omp_

↪→parallel
0.03% 72.728us 19 3.8270us 2.9840us 9.5610us omp_idle
0.00% 7.9170us 7 1.1310us 1.0360us 1.5330us omp_wait_

↪→barrier

7.7.1. OpenMP Options

Table 2 contains OpenMP profiling related command-line options of nvprof.

Table 3: Table 2. OpenMP Options

Option Description

--print-openmp-summary Print a summary of all recorded OpenMP activities.

7.7. OpenMP 75

Profiler, Release 12.9

76 Chapter 7. nvprof

Chapter 8. Remote Profiling

Remote profiling is the process of collecting profile data from a remote system that is different than
the host system at which that profile data will be viewed and analyzed. There are two ways to perform
remote profiling. You can profile your remote application directly from nsight orthe Visual Profiler. Or
you can use nvprof to collect the profile data on the remote system and then use nvvp on the host
system to view and analyze the data.

8.1. Remote Profiling With Visual Profiler

This section describes how to perform remote profiling by using the remote capabilities of nsight and
the Visual Profiler.

Nsight Eclipse Edition supports full remote development including remote building, debugging, and
profiling. Using these capabilities you can create a project and launch configuration that allows you to
remotely profile your application. See the Nsight Eclipse Edition documentation for more information.

The Visual Profiler also enables remote profiling. As shown in the following figure, when creating
a new session or editing an existing session you can specify that the application being profiled resides
on a remote system. Once you have configured your session to use a remote application, you can
perform all profiler functions in the same way as you would with a local application, including timeline
generation, guided analysis, and event and metric collection.

To use the Visual Profiler remote profiling you must install the same version of the CUDA Toolkit on
both the host and remote systems. It is not necessary for the host system to have an NVIDIA GPU,
but ensure that the CUDA Toolkit installed on the host system supports the target device. The host
and remote systems may run different operating systems or have different CPU architectures. Only a
remote system running Linux is supported. The remote system must be accessible via SSH.

8.1.1. One-hop remote profiling

In certain remote profiling setups, the machine running the actual CUDA program is not accessible
from the machine running the Visual Profiler. These two machines are connected via an intermediate
machine, which we refer to as the login node.

The host machine is the one which is running the Visual Profiler.

The login node is where the one-hop profiling script will run. We only need ssh, scp and perl on this
machine.

77

Profiler, Release 12.9

78 Chapter 8. Remote Profiling

Profiler, Release 12.9

The compute node is where the actual CUDA application will run and profiled. The profiling data gen-
erated will be copied over to the login node, so that it can be used by the Visual Profiler on the host.

To configure one-hop profiling, you need to do the following one-time setup:

1. Copy the one-hop profiling Perl script onto the login node.

2. In Visual Profiler, add the login node as a new remote connection.

3. In Visual Profiler’s New Session wizard, use the Configure button to open the toolkit configuration
window. Here, use the radio button to select the custom script option, and browse to point to
the Perl script on the login node.

Once this setup is complete, you can profile the application as you would on any remote machine.
Copying all data to and from the login and compute nodes happens transparently and automatically.

8.2. Remote Profiling With nvprof
This section describes how to perform remote profiling by running nvprof manually on the remote
system and then importing the collected profile data into the Visual Profiler.

8.2.1. Collect Data On Remote System

There are three common remote profiling use cases that can be addressed by using nvprof and the
Visual Profiler.

Timeline

The first use case is to collect a timeline of the application executing on the remote system. The
timeline should be collected in a way that most accurately reflects the behavior of the application. To
collect the timeline execute the following on the remote system. See nvprof for more information on
nvprof options.

$ nvprof --export-profile timeline.prof <app> <app args>

8.2. Remote Profiling With nvprof 79

https://github.com/NVIDIA/cuda-profiler/tree/master/one_hop_profiling
index.html#nvprof

Profiler, Release 12.9

The profile data will be collected in timeline.prof. You should copy this file back to the host system and
then import it into the Visual Profiler as described in the next section.

Metrics And Events

The second use case is to collect events or metrics for all kernels in an application for which you have
already collected a timeline. Collecting events or metrics for all kernels will significantly change the
overall performance characteristics of the application because all kernel executions will be serialized
on the GPU. Even though overall application performance is changed, the event or metric values for
individual kernels will be correct and so you can merge the collected event and metric values onto a
previously collected timeline to get an accurate picture of the applications behavior. To collect events
or metrics you use the --events or --metrics flag. The following shows an example using just the
--metrics flag to collect two metrics.

$ nvprof --metrics achieved_occupancy,ipc -o metrics.prof <app> <app args>

You can collect any number of events and metrics for each nvprof invocation, and you can invoke
nvprof multiple times to collect multiple metrics.prof files. To get accurate profiling results, it is
important that your application conform to the requirements detailed in Application Requirements.

The profile data will be collected in the metrics.prof file(s). You should copy these files back to the
host system and then import it into the Visual Profiler as described in the next section.

Analysis For Individual Kernel

The third common remote profiling use case is to collect the metrics needed by the analysis system for
an individual kernel. When imported into the Visual Profiler this data will enable the analysis system
to analyze the kernel and report optimization opportunities for that kernel. To collect the analysis
data execute the following on the remote system. It is important that the --kernels option appear
before the --analysis-metrics option so that metrics are collected only for the kernel(s) specified
by kernel specifier. See Profiling Scope for more information on the --kernels option.

$ nvprof --kernels <kernel specifier> --analysis-metrics -o analysis.prof <app> <app�
↪→args>

The profile data will be collected in analysis.prof. You should copy this file back to the host system and
then import it into the Visual Profiler as described in the next section.

8.2.2. View And Analyze Data

The collected profile data is viewed and analyzed by importing it into the Visual Profiler on the host
system. See Import Session for more information about importing.

Timeline, Metrics And Events

To view collected timeline data, the timeline.prof file can be imported into the Visual Profiler as de-
scribed in Import Single-Process nvprof Session. If metric or event data was also collected for the
application, the corresponding metrics.prof file(s) can be imported into the Visual Profiler along with
the timeline so that the events and metrics collected for each kernel are associated with the corre-
sponding kernel in the timeline.

Guided Analysis For Individual Kernel

To view collected analysis data for an individual kernel, the analysis.prof file can be imported into the
Visual Profiler as described in Import Single-Process nvprof Session. The analysis.prof must
be imported by itself. The timeline will show just the individual kernel that we specified during data

80 Chapter 8. Remote Profiling

index.html#application-requirements
index.html#profiling-scope
index.html#import-session
index.html#import-single-process-nvprof-session
index.html#import-single-process-nvprof-session

Profiler, Release 12.9

collection. After importing, the guided analysis system can be used to explore the optimization op-
portunities for the kernel.

8.2. Remote Profiling With nvprof 81

Profiler, Release 12.9

82 Chapter 8. Remote Profiling

Chapter 9. NVIDIA Tools Extension

NVIDIA Tools Extension (NVTX) is a C-based Application Programming Interface (API) for annotating
events, code ranges, and resources in your applications. Applications which integrate NVTX can use
the Visual Profiler to capture and visualize these events and ranges. The NVTX API provides two core
services:

1. Tracing of CPU events and time ranges.

2. Naming of OS and CUDA resources.

NVTX can be quickly integrated into an application. The sample program below shows the use of
marker events, range events, and resource naming.

void Wait(int waitMilliseconds) {
nvtxNameOsThread(“MAIN”);
nvtxRangePush(__FUNCTION__);
nvtxMark("Waiting...");
Sleep(waitMilliseconds);
nvtxRangePop();

}

int main(void) {
nvtxNameOsThread("MAIN");
nvtxRangePush(__FUNCTION__);
Wait();
nvtxRangePop();

}

9.1. NVTX API Overview

Files

The core NVTX API is defined in file nvToolsExt.h, whereas CUDA-specific extensions to
the NVTX interface are defined in nvToolsExtCuda.h and nvToolsExtCudaRt.h. On Linux the
NVTX shared library is called libnvToolsExt.so and on macOS the shared library is called
libnvToolsExt.dylib. On Windows the library (.lib) and runtime components (.dll) are named
nvToolsExt[bitness=32|64]_[version].{dll|lib}.

Function Calls

All NVTX API functions start with an nvtx name prefix and may end with one of the three suffixes: A, W,
or Ex. NVTX functions with these suffixes exist in multiple variants, performing the same core func-

83

Profiler, Release 12.9

tionality with different parameter encodings. Depending on the version of the NVTX library, available
encodings may include ASCII (A), Unicode (W), or event structure (Ex).

The CUDA implementation of NVTX only implements the ASCII (A) and event structure (Ex) variants of
the API, the Unicode (W) versions are not supported and have no effect when called.

Return Values

Some of the NVTX functions are defined to have return values. For example, the nvtxRangeStart()
function returns a unique range identifier and nvtxRangePush() function outputs the current stack
level. It is recommended not to use the returned values as part of conditional code in the instrumented
application. The returned values can differ between various implementations of the NVTX library and,
consequently, having added dependencies on the return values might work with one tool, but may fail
with another.

9.2. NVTX API Events

Markers are used to describe events that occur at a specific time during the execution of an applica-
tion, while ranges detail the time span in which they occur. This information is presented alongside all
of the other captured data, which makes it easier to understand the collected information. All markers
and ranges are identified by a message string. The Ex version of the marker and range APIs also al-
lows category, color, and payload attributes to be associated with the event using the event attributes
structure.

9.2.1. NVTX Markers

A marker is used to describe an instantaneous event. A marker can contain a text message or spec-
ify additional information using the event attributes structure. Use nvtxMarkA to create a marker
containing an ASCII message. Use nvtxMarkEx() to create a marker containing additional attributes
specified by the event attribute structure. The nvtxMarkW() function is not supported in the CUDA
implementation of NVTX and has no effect if called.

Code Example

nvtxMarkA("My mark");

nvtxEventAttributes_t eventAttrib = {0};
eventAttrib.version = NVTX_VERSION;
eventAttrib.size = NVTX_EVENT_ATTRIB_STRUCT_SIZE;
eventAttrib.colorType = NVTX_COLOR_ARGB;
eventAttrib.color = COLOR_RED;
eventAttrib.messageType = NVTX_MESSAGE_TYPE_ASCII;
eventAttrib.message.ascii = "my mark with attributes";
nvtxMarkEx(&eventAttrib);

84 Chapter 9. NVIDIA Tools Extension

index.html#event-attributes-structure

Profiler, Release 12.9

9.2.2. NVTX Range Start/Stop

A start/end range is used to denote an arbitrary, potentially non-nested, time span. The start of a
range can occur on a different thread than the end of the range. A range can contain a text message
or specify additional information using the event attributes structure. Use nvtxRangeStartA() to
create a marker containing an ASCII message. Use nvtxRangeStartEx() to create a range containing
additional attributes specified by the event attribute structure. The nvtxRangeStartW() function is
not supported in the CUDA implementation of NVTX and has no effect if called. For the correlation
of a start/end pair, a unique correlation ID is created that is returned from nvtxRangeStartA() or
nvtxRangeStartEx(), and is then passed into nvtxRangeEnd().

Code Example

∕∕ non-overlapping range
nvtxRangeId_t id1 = nvtxRangeStartA("My range");
nvtxRangeEnd(id1);

nvtxEventAttributes_t eventAttrib = {0};
eventAttrib.version = NVTX_VERSION;
eventAttrib.size = NVTX_EVENT_ATTRIB_STRUCT_SIZE;
eventAttrib.colorType = NVTX_COLOR_ARGB;
eventAttrib.color = COLOR_BLUE;
eventAttrib.messageType = NVTX_MESSAGE_TYPE_ASCII;
eventAttrib.message.ascii = "my start∕stop range";
nvtxRangeId_t id2 = nvtxRangeStartEx(&eventAttrib);
nvtxRangeEnd(id2);

∕∕ overlapping ranges
nvtxRangeId_t r1 = nvtxRangeStartA("My range 0");
nvtxRangeId_t r2 = nvtxRangeStartA("My range 1");
nvtxRangeEnd(r1);
nvtxRangeEnd(r2);

9.2.3. NVTX Range Push/Pop

A push/pop range is used to denote nested time span. The start of a range must occur on the same
thread as the end of the range. A range can contain a text message or specify additional information
using the event attributes structure. Use nvtxRangePushA() to create a marker containing an ASCII
message. Use nvtxRangePushEx() to create a range containing additional attributes specified by
the event attribute structure. The nvtxRangePushW() function is not supported in the CUDA imple-
mentation of NVTX and has no effect if called. Each push function returns the zero-based depth of the
range being started. The nvtxRangePop() function is used to end the most recently pushed range
for the thread. nvtxRangePop() returns the zero-based depth of the range being ended. If the pop
does not have a matching push, a negative value is returned to indicate an error.

Code Example

nvtxRangePushA("outer");
nvtxRangePushA("inner");
nvtxRangePop(); ∕∕ end "inner" range
nvtxRangePop(); ∕∕ end "outer" range

nvtxEventAttributes_t eventAttrib = {0};
(continues on next page)

9.2. NVTX API Events 85

index.html#event-attributes-structure
index.html#event-attributes-structure

Profiler, Release 12.9

(continued from previous page)

eventAttrib.version = NVTX_VERSION;
eventAttrib.size = NVTX_EVENT_ATTRIB_STRUCT_SIZE;
eventAttrib.colorType = NVTX_COLOR_ARGB;
eventAttrib.color = COLOR_GREEN;
eventAttrib.messageType = NVTX_MESSAGE_TYPE_ASCII;
eventAttrib.message.ascii = "my push∕pop range";
nvtxRangePushEx(&eventAttrib);
nvtxRangePop();

9.2.4. Event Attributes Structure

The events attributes structure, nvtxEventAttributes_t, is used to describe the attributes of an
event. The layout of the structure is defined by a specific version of NVTX and can change between
different versions of the Tools Extension library.

Attributes

Markers and ranges can use attributes to provide additional information for an event or to guide the
tool’s visualization of the data. Each of the attributes is optional and if left unspecified, the attributes
fall back to a default value.

Message
The message field can be used to specify an optional string. The caller must set both the mes-
sageType and message fields. The default value is NVTX_MESSAGE_UNKNOWN. The CUDA imple-
mentation of NVTX only supports ASCII type messages.

Category
The category attribute is a user-controlled ID that can be used to group events. The tool may use
category IDs to improve filtering, or for grouping events. The default value is 0.

Color
The color attribute is used to help visually identify events in the tool. The caller must set both
the colorType and color fields.

Payload
The payload attribute can be used to provide additional data for markers and ranges. Range
events can only specify values at the beginning of a range. The caller must specify valid values
for both the payloadType and payload fields.

Initialization

The caller should always perform the following three tasks when using attributes:

▶ Zero the structure

▶ Set the version field

▶ Set the size field

Zeroing the structure sets all the event attributes types and values to the default value. The version
and size field are used by NVTX to handle multiple versions of the attributes structure.

It is recommended that the caller use the following method to initialize the event attributes structure.

nvtxEventAttributes_t eventAttrib = {0};
eventAttrib.version = NVTX_VERSION;
eventAttrib.size = NVTX_EVENT_ATTRIB_STRUCT_SIZE;

(continues on next page)

86 Chapter 9. NVIDIA Tools Extension

Profiler, Release 12.9

(continued from previous page)

eventAttrib.colorType = NVTX_COLOR_ARGB;
eventAttrib.color = ::COLOR_YELLOW;
eventAttrib.messageType = NVTX_MESSAGE_TYPE_ASCII;
eventAttrib.message.ascii = "My event";
nvtxMarkEx(&eventAttrib);

9.2.5. NVTX Synchronization Markers

The NVTX synchronization module provides functions to support tracking additional synchronization
details of the target application. Naming OS synchronization primitives may allow users to better un-
derstand the data collected by traced synchronization APIs. Additionally, annotating a user-defined
synchronization object can allow the user to tell the tools when the user is building their own synchro-
nization system that does not rely on the OS to provide behaviors, and instead uses techniques like
atomic operations and spinlocks.

Note: Synchronization marker support is not available on Windows.

Code Example

class MyMutex
{

volatile long bLocked;
nvtxSyncUser_t hSync;

public:
MyMutex(const char* name, nvtxDomainHandle_t d) {

bLocked = 0;
nvtxSyncUserAttributes_t attribs = { 0 };
attribs.version = NVTX_VERSION;
attribs.size = NVTX_SYNCUSER_ATTRIB_STRUCT_SIZE;
attribs.messageType = NVTX_MESSAGE_TYPE_ASCII;
attribs.message.ascii = name;
hSync = nvtxDomainSyncUserCreate(d, &attribs);

}

~MyMutex() {
nvtxDomainSyncUserDestroy(hSync);

}

bool Lock() {
nvtxDomainSyncUserAcquireStart(hSync);

∕∕atomic compiler intrinsic
bool acquired = __sync_bool_compare_and_swap(&bLocked, 0, 1);

if (acquired) {
nvtxDomainSyncUserAcquireSuccess(hSync);

}
else {

nvtxDomainSyncUserAcquireFailed(hSync);
}
return acquired;

(continues on next page)

9.2. NVTX API Events 87

Profiler, Release 12.9

(continued from previous page)

}

void Unlock() {
nvtxDomainSyncUserReleasing(hSync);
bLocked = false;

}
};

9.3. NVTX Domains

Domains enable developers to scope annotations. By default all events and annotations are in the
default domain. Additional domains can be registered. This allows developers to scope markers and
ranges to avoid conflicts.

The function nvtxDomainCreateA() or nvtxDomainCreateW() is used to create a named domain.

Each domain maintains its own

▶ categories

▶ thread range stacks

▶ registered strings

The function nvtxDomainDestroy() marks the end of the domain. Destroying a domain unregis-
ters and destroys all objects associated with it such as registered strings, resource objects, named
categories, and started ranges.

Note: Domain support is not available on Windows.

Code Example

nvtxDomainHandle_t domain = nvtxDomainCreateA("Domain_A");

nvtxMarkA("Mark_A");
nvtxEventAttributes_t attrib = {0};
attrib.version = NVTX_VERSION;
attrib.size = NVTX_EVENT_ATTRIB_STRUCT_SIZE;
attrib.message.ascii = "Mark A Message";
nvtxDomainMarkEx(NULL, &attrib);

nvtxDomainDestroy(domain);

88 Chapter 9. NVIDIA Tools Extension

Profiler, Release 12.9

9.4. NVTX Resource Naming

NVTX resource naming allows custom names to be associated with host OS threads and CUDA re-
sources such as devices, contexts, and streams. The names assigned using NVTX are displayed by the
Visual Profiler.

OS Thread

The nvtxNameOsThreadA() function is used to name a host OS thread. The nvtxNameOsThreadW()
function is not supported in the CUDA implementation of NVTX and has no effect if called. The fol-
lowing example shows how the current host OS thread can be named.

∕∕ Windows
nvtxNameOsThread(GetCurrentThreadId(), "MAIN_THREAD");

∕∕ Linux∕Mac
nvtxNameOsThread(pthread_self(), "MAIN_THREAD");

CUDA Runtime Resources

The nvtxNameCudaDeviceA() and nvtxNameCudaStreamA() functions are used to name CUDA de-
vice and stream objects, respectively. The nvtxNameCudaDeviceW() and nvtxNameCudaStreamW()
functions are not supported in the CUDA implementation of NVTX and have no effect if called. The
nvtxNameCudaEventA() and nvtxNameCudaEventW() functions are also not supported. The fol-
lowing example shows how a CUDA device and stream can be named.

nvtxNameCudaDeviceA(0, "my cuda device 0");

cudaStream_t cudastream;
cudaStreamCreate(&cudastream);
nvtxNameCudaStreamA(cudastream, "my cuda stream");

CUDA Driver Resources

The nvtxNameCuDeviceA(), nvtxNameCuContextA() and nvtxNameCuStreamA() functions are
used to name CUDA driver device, context and stream objects, respectively. The nvtxNameCuDe-
viceW(), nvtxNameCuContextW() and nvtxNameCuStreamW() functions are not supported in the
CUDA implementation of NVTX and have no effect if called. The nvtxNameCuEventA() and nvtx-
NameCuEventW() functions are also not supported. The following example shows how a CUDA device,
context and stream can be named.

CUdevice device;
cuDeviceGet(&device, 0);
nvtxNameCuDeviceA(device, "my device 0");

CUcontext context;
cuCtxCreate(&context, 0, device);
nvtxNameCuContextA(context, "my context");

cuStream stream;
cuStreamCreate(&stream, 0);
nvtxNameCuStreamA(stream, "my stream");

9.4. NVTX Resource Naming 89

Profiler, Release 12.9

9.5. NVTX String Registration

Registered strings are intended to increase performance by lowering instrumentation overhead. String
may be registered once and the handle may be passed in place of a string where an the APIs may allow.

The nvtxDomainRegisterStringA() function is used to register a string. The nvtxDomainRegis-
terStringW() function is not supported in the CUDA implementation of NVTX and has no effect if
called.

nvtxDomainHandle_t domain = nvtxDomainCreateA("Domain_A");
nvtxStringHandle_t message = nvtxDomainRegisterStringA(domain, "registered string");
nvtxEventAttributes_t eventAttrib = {0};
eventAttrib.version = NVTX_VERSION;
eventAttrib.size = NVTX_EVENT_ATTRIB_STRUCT_SIZE;
eventAttrib.messageType = NVTX_MESSAGE_TYPE_REGISTERED;
eventAttrib.message.registered = message;

90 Chapter 9. NVIDIA Tools Extension

Chapter 10. MPI Profiling

10.1. Automatic MPI Annotation with NVTX

You can annotate MPI calls with NVTX markers to profile, trace and visualize them. It can get tedious
to wrap every MPI call with NVTX markers, but there are two ways to do this automatically:

Built-in annotation

nvprof has a built-in option that supports two MPI implementations - OpenMPI and MPICH. If you have
either of these installed on your system, you can use the --annotate-mpi option and specify your
installed MPI implementation.

If you use this option, nvprof will generate NVTX markers every time your application makes MPI calls.
Only synchronous MPI calls are annotated using this built-in option. Additionally, we use NVTX to
rename the current thread and current device object to indicate the MPI rank.

For example if you have OpenMPI installed, you can annotate your application using the command:

$ mpirun -np 2 nvprof --annotate-mpi openmpi .∕my_mpi_app

This will give you output that looks something like this:

NVTX result:
Thread "MPI Rank 0" (id = 583411584)

Domain "<unnamed>"
Range "MPI_Reduce"

Type Time(%) Time Calls Avg Min Max Name
Range: 100.00% 16.652us 1 16.652us 16.652us 16.652us MPI_Reduce
...

Range "MPI_Scatter"
Type Time(%) Time Calls Avg Min Max Name

Range: 100.00% 3.0320ms 1 3.0320ms 3.0320ms 3.0320ms MPI_Scatter
...

NVTX result:
Thread "MPI Rank 1" (id = 199923584)

Domain "<unnamed>"
Range "MPI_Reduce"

Type Time(%) Time Calls Avg Min Max Name
Range: 100.00% 21.062us 1 21.062us 21.062us 21.062us MPI_Reduce
...

Range "MPI_Scatter"
(continues on next page)

91

index.html#nvidia-tools-extension

Profiler, Release 12.9

(continued from previous page)

Type Time(%) Time Calls Avg Min Max Name
Range: 100.00% 85.296ms 1 85.296ms 85.296ms 85.296ms MPI_Scatter
...

Custom annotation

If your system has a version of MPI that is not supported by nvprof, or if you want more control over
which MPI functions are annotated and how the NVTX markers are generated, you can create your
own annotation library, and use the environment variable LD_PRELOAD to intercept MPI calls and wrap
them with NVTX markers.

You can create this annotation library conveniently using the documentation and open-source scripts
located here.

10.2. Manual MPI Profiling

To use nvprof to collect the profiles of the individual MPI processes, you must tell nvprof to send its
output to unique files. In CUDA 5.0 and earlier versions, it was recommended to use a script for this.
However, you can now easily do it utilizing the %h , %p and %q{ENV} features of the --export-profile
argument to the nvprof command. Below is example run using Open MPI.

$ mpirun -np 2 -host c0-0,c0-1 nvprof -o output.%h.%p.%q{OMPI_COMM_WORLD_RANK} .∕my_
↪→mpi_app

Alternatively, one can make use of the new feature to turn on profiling on the nodes of interest using
the --profile-all-processes argument to nvprof. To do this, you first log into the node you want
to profile and start up nvprof there.

$ nvprof --profile-all-processes -o output.%h.%p

Then you can just run the MPI job as your normally would.

$ mpirun -np 2 -host c0-0,c0-1 .∕my_mpi_app

Any processes that run on the node where the --profile-all-processes is running will au-
tomatically get profiled. The profiling data will be written to the output files. Note that the
%q{OMPI_COMM_WORLD_RANK} option will not work here, because this environment variable will not
be available in the shell where nvprof is running.

Starting CUDA 7.5, you can name threads and CUDA contexts just as you name output files
with the options –process-name and –context-name, by passing a string like "MPI Rank
%q{OMPI_COMM_WORLD_RANK}" as a parameter. This feature is useful to spot resources associated
with a specific rank when user imports multiple files into the same time-line in the Visual Profiler.

$ mpirun -np 2 -host c0-0,c0-1 nvprof --process-name "MPI Rank %q{OMPI_COMM_WORLD_
↪→RANK}" --context-name "MPI Rank %q{OMPI_COMM_WORLD_RANK}" -o output.%h.%p.%q{OMPI_
↪→COMM_WORLD_RANK} .∕my_mpi_app

92 Chapter 10. MPI Profiling

https://github.com/NVIDIA/cuda-profiler/tree/master/nvtx_pmpi_wrappers
index.html#nvprof

Profiler, Release 12.9

10.3. Further Reading

Details about what types of additional arguments to use with nvprof can be found in the Multiprocess
Profiling and Redirecting Output section. Additional information about how to view the data with the
Visual Profiler can be found in the Import Single-Process nvprof Session and Import Multi-Process
nvprof Session sections.

The blog post Profiling MPI Applications shows how to use new output file naming of nvprof intro-
duced in CUDA 6.5 and NVTX library to name various resources to analyze the performance of a MPI
application.

The blog post Track MPI Calls in the Visual Profiler shows how Visual Profiler, combined with PMPI and
NVTX can give interesting insights into how the MPI calls in your application interact with the GPU.

10.3. Further Reading 93

index.html#multiprocess-profiling
index.html#multiprocess-profiling
index.html#redirecting-output
index.html#import-single-process-nvprof-session
index.html#import-multi-process-nvprof-session
index.html#import-multi-process-nvprof-session
http://devblogs.nvidia.com/parallelforall/cuda-pro-tip-profiling-mpi-applications
http://devblogs.nvidia.com/parallelforall/gpu-pro-tip-track-mpi-calls-nvidia-visual-profiler

Profiler, Release 12.9

94 Chapter 10. MPI Profiling

Chapter 11. MPS Profiling

You can collect profiling data for a CUDA application using Multi-Process Service(MPS) with nvprof
and then view the timeline by importing the data in the Visual Profiler.

11.1. MPS profiling with Visual Profiler

Visual Profiler can be run on a particular MPS client or for all MPS clients. Timeline profiling can be
done for all MPS clients on the same server. Event or metric profiling results in serialization - only one
MPS client will execute at a time.

To profile a CUDA application using MPS:

1) Launch the MPS daemon. Refer the MPS document for details.

nvidia-cuda-mps-control -d

2) In Visual Profiler open “New Session” wizard using main menu “File->New Session”. Select “Profile
all processes” option from drop down, press “Next” and then “Finish”.

3) Run the application in a separate terminal

4) To end profiling press the “Cancel” button on progress dialog in Visual Profiler.

Note that the profiling output also includes data for the CUDA MPS server processes which have pro-
cess name nvidia-cuda-mps-server.

11.2. MPS profiling with nvprof

nvprof can be run on a particular MPS client or for all MPS clients. Timeline profiling can be done
for all MPS clients on the same server. Event or metric profiling results in serialization - only one MPS
client will execute at a time.

To profile a CUDA application using MPS:

1) Launch the MPS daemon. Refer to the MPS document for details.

nvidia-cuda-mps-control -d

2) Run nvprof with --profile-all-processes argument and to generate separate output files
for each process use the %p feature of the --export-profile argument. Note that %p will be
replaced by the process id.

95

Profiler, Release 12.9

nvprof --profile-all-processes -o output_%p

3) Run the application in a separate terminal

4) Exit nvprof by typing “Ctrl-c”.

Note that the profiling output also includes data for the CUDA MPS server processes which have pro-
cess name nvidia-cuda-mps-server.

11.3. Viewing nvprof MPS timeline in Visual
Profiler

Import the nvprof generated data files for each process using the multi-process import option. Refer
the Import Multi-Process Session section.

The figure below shows the MPS timeline view for three processes. The MPS context is identified in
the timeline row label as Context MPS. Note that the Compute and kernel timeline row shows three
kernels overlapping.

96 Chapter 11. MPS Profiling

index.html#import-multi-process-nvprof-session

Chapter 12. Dependency Analysis

The dependency analysis feature enables optimization of the program runtime and concurrency of
applications utilizing multiple CPU threads and CUDA streams. It allows to compute the critical path
of a specific execution, detect waiting time and inspect dependencies between functions executing
in different threads or streams.

12.1. Background

The dependency analysis in nvprof and the Visual Profiler is based on execution traces of ap-
plications. A trace captures all relevant activities such as API function calls or CUDA kernels along
with their timestamps and durations. Given this execution trace and a model of the dependencies be-
tween those activities on different threads/streams, a dependency graph can be constructed. Typical
dependencies modelled in this graph would be that a CUDA kernel can not start before its respective
launch API call or that a blocking CUDA stream synchronization call can not return before all previously
enqueued work in this stream has been completed. These dependencies are defined by the CUDA API
contract.

From this dependency graph and the API model(s), wait states can be computed. A wait state is the
duration for which an activity such as an API function call is blocked waiting on an event in another
thread or stream. Given the previous stream synchronization example, the synchronizing API call is
blocked for the time it has to wait on any GPU activity in the respective CUDA stream. Knowledge
about where wait states occur and how long functions are blocked is helpful to identify optimization
opportunities for more high-level concurrency in the application.

In addition to individual wait states, the critical path through the captured event graph enables to
pinpoint those function calls, kernel and memory copies that are responsible for the total application
runtime. The critical path is the longest path through an event graph that does not contain wait states,
i.e. optimizing activities on this path can directly improve the execution time.

12.2. Metrics

Waiting Time

A wait state is the duration for which an activity such as an API function call is blocked waiting on an
event in another thread or stream. Waiting time is an inidicator for load-imbalances between execu-
tion streams. In the example below, the blocking CUDA synchronization API calls are waiting on their
respective kernels to finish executing on the GPU. Instead of waiting immediately, one should attempt

97

Profiler, Release 12.9

to overlap the kernel executions with concurrent CPU work with a similar runtime, thereby reducing
the time that any computing device (CPU or GPU) is blocked.

Time on Critical Path

The critical path is the longest path through an event graph that does not contain wait states, i.e.
optimizing activities on this path can directly improve the execution time. Activities with a high time
on the critical path have a high direct impact on the application runtime. In the example pictured
below, copy_kernel is on the critical path since the CPU is blocked waiting for it to finish in cud-
eDeviceSynchronize. Reducing the kernel runtime allows the CPU to return earlier from the API call
and continue program execution. On the other hand, jacobi_kernel is fully overlapped with CPU
work, i.e. the synchronizing API call is triggered after the kernel is already finished. Since no execu-
tion stream is waiting on this kernel to finish, reducing its duration will likely not improve the overall
application runtime.

12.3. Support

The following programming APIs are currently supported for dependency analysis

▶ CUDA runtime and driver API

▶ POSIX threads (Pthreads), POSIX mutexes and condition variables

Dependency analysis is available in Visual Profiler and nvprof. A Dependency Analysis stage can be
selected in the Unguided Application Analysis and new Dependency Analysis Controls are available for
the timeline. See section Dependency Analysis on how to use this feature in nvprof.

98 Chapter 12. Dependency Analysis

index.html#unguided-application-analysis
index.html#dependency-analysis-controls
index.html#dependency-analysis-controls

Profiler, Release 12.9

12.4. Limitations

The dependency and wait time analysis between different threads and CUDA streams only takes into
account execution dependencies stated in the respective supported API contracts. This especially
does not include synchronization as a result of resource contention. For example, asynchronous mem-
ory copies enqueued into independent CUDA streams will not be marked dependent even if the con-
crete GPU has only a single copy engine. Furthermore, the analysis does not account for synchroniza-
tion using a not-supported API. For example, a CPU thread actively polling for a value at some memory
location (busy-waiting) will not be considered blocked on another concurrent activity.

The dependency analysis has only limited support for applications using CUDA Dynamic Parallelism
(CDP). CDP kernels can use CUDA API calls from the GPU which are not tracked via the CUPTI Activity
API. Therefore, the analysis cannot determine the full dependencies and waiting time for CDP kernels.
However, it utilizes the parent-child launch dependencies between CDP kernels. As a result the critical
path will always include the last CDP kernel of each host-launched kernel.

The POSIX semaphores API is currently not supported.

The dependency analysis does not support API functions cudaLaunchCooperativeKernelMulti-
Device or cuLaunchCooperativeKernelMultiDevice. Kernel launched by either of these API
functions might not be tracked correctly.

12.4. Limitations 99

Profiler, Release 12.9

100 Chapter 12. Dependency Analysis

Chapter 13. Metrics Reference

This section contains detailed descriptions of the metrics that can be collected by nvprof and the
Visual Profiler. A scope value of “Single-context” indicates that the metric can only be accurately
collected when a single context (CUDA or graphic) is executing on the GPU. A scope value of “Multi-
context” indicates that the metric can be accurately collected when multiple contexts are executing
on the GPU. A scope value of “Device” indicates that the metric will be collected at device level, that is
it will include values for all the contexts executing on the GPU. Note that, NVLink metrics collected
for kernel mode exhibit the behavior of “Single-context”.

13.1. Metrics for Capability 5.x

Devices with compute capability 5.x implement the metrics shown in the following table. Note that
for some metrics the “Multi-context” scope is supported only for specific devices. Such metrics are
marked with “Multi-context*” under the “Scope” column. Refer to the note at the bottom of the table.

Table 1: Table 4. Capability 5.x Metrics

Metric Name Description Scope

achieved_occupancy Ratio of the average active warps per active cycle to the maximum number of warps supported on a multiprocessor Multi-context

atomic_transactions Global memory atomic and reduction transactions Multi-context

atomic_transactions_per_request Average number of global memory atomic and reduction transactions performed for each atomic and reduction instruction Multi-context

branch_efficiency Ratio of non-divergent branches to total branches expressed as percentage Multi-context

cf_executed Number of executed control-flow instructions Multi-context

cf_fu_utilization The utilization level of the multiprocessor function units that execute control-flow instructions on a scale of 0 to 10 Multi-context

cf_issued Number of issued control-flow instructions Multi-context

double_precision_fu_utilization The utilization level of the multiprocessor function units that execute double-precision floating-point instructions on a scale of 0 to 10 Multi-context

dram_read_bytes Total bytes read from DRAM to L2 cache. This is available for compute capability 5.0 and 5.2. Multi-context*

dram_read_throughput Device memory read throughput. This is available for compute capability 5.0 and 5.2. Multi-context*

dram_read_transactions Device memory read transactions. This is available for compute capability 5.0 and 5.2. Multi-context*

dram_utilization The utilization level of the device memory relative to the peak utilization on a scale of 0 to 10 Multi-context*

dram_write_bytes Total bytes written from L2 cache to DRAM. This is available for compute capability 5.0 and 5.2. Multi-context*

continues on next page

101

Profiler, Release 12.9

Table 1 – continued from previous page

Metric Name Description Scope

dram_write_throughput Device memory write throughput. This is available for compute capability 5.0 and 5.2. Multi-context*

dram_write_transactions Device memory write transactions. This is available for compute capability 5.0 and 5.2. Multi-context*

ecc_throughput ECC throughput from L2 to DRAM. This is available for compute capability 5.0 and 5.2. Multi-context*

ecc_transactions Number of ECC transactions between L2 and DRAM. This is available for compute capability 5.0 and 5.2. Multi-context*

eligible_warps_per_cycle Average number of warps that are eligible to issue per active cycle Multi-context

flop_count_dp Number of double-precision floating-point operations executed by non-predicated threads (add, multiply, and multiply-accumulate). Each multiply-accumulate operation contributes 2 to the count. Multi-context

flop_count_dp_add Number of double-precision floating-point add operations executed by non-predicated threads. Multi-context

flop_count_dp_fma Number of double-precision floating-point multiply-accumulate operations executed by non-predicated threads. Each multiply-accumulate operation contributes 1 to the count. Multi-context

flop_count_dp_mul Number of double-precision floating-point multiply operations executed by non-predicated threads. Multi-context

flop_count_hp Number of half-precision floating-point operations executed by non-predicated threads (add, multiply and multiply-accumulate). Each multiply-accumulate operation contributes 2 to the count. This is available for compute capability 5.3. Multi-context*

flop_count_hp_add Number of half-precision floating-point add operations executed by non-predicated threads. This is available for compute capability 5.3. Multi-context*

flop_count_hp_fma Number of half-precision floating-point multiply-accumulate operations executed by non-predicated threads. Each multiply-accumulate operation contributes 1 to the count. This is available for compute capability 5.3. Multi-context*

flop_count_hp_mul Number of half-precision floating-point multiply operations executed by non-predicated threads. This is available for compute capability 5.3. Multi-context*

flop_count_sp Number of single-precision floating-point operations executed by non-predicated threads (add, multiply, and multiply-accumulate). Each multiply-accumulate operation contributes 2 to the count. The count does not include special operations. Multi-context

flop_count_sp_add Number of single-precision floating-point add operations executed by non-predicated threads. Multi-context

flop_count_sp_fma Number of single-precision floating-point multiply-accumulate operations executed by non-predicated threads. Each multiply-accumulate operation contributes 1 to the count. Multi-context

flop_count_sp_mul Number of single-precision floating-point multiply operations executed by non-predicated threads. Multi-context

flop_count_sp_special Number of single-precision floating-point special operations executed by non-predicated threads. Multi-context

flop_dp_efficiency Ratio of achieved to peak double-precision floating-point operations Multi-context

flop_hp_efficiency Ratio of achieved to peak half-precision floating-point operations. This is available for compute capability 5.3. Multi-context*

flop_sp_efficiency Ratio of achieved to peak single-precision floating-point operations Multi-context

gld_efficiency Ratio of requested global memory load throughput to required global memory load throughput expressed as percentage. Multi-context*

gld_requested_throughput Requested global memory load throughput Multi-context

gld_throughput Global memory load throughput Multi-context*

gld_transactions Number of global memory load transactions Multi-context*

gld_transactions_per_request Average number of global memory load transactions performed for each global memory load. Multi-context*

global_atomic_requests Total number of global atomic(Atom and Atom CAS) requests from Multiprocessor Multi-context

global_hit_rate Hit rate for global loads in unified l1/tex cache. Metric value maybe wrong if malloc is used in kernel. Multi-context*

global_load_requests Total number of global load requests from Multiprocessor Multi-context

global_reduction_requests Total number of global reduction requests from Multiprocessor Multi-context

global_store_requests Total number of global store requests from Multiprocessor. This does not include atomic requests. Multi-context

gst_efficiency Ratio of requested global memory store throughput to required global memory store throughput expressed as percentage. Multi-context*

continues on next page

102 Chapter 13. Metrics Reference

Profiler, Release 12.9

Table 1 – continued from previous page

Metric Name Description Scope

gst_requested_throughput Requested global memory store throughput Multi-context

gst_throughput Global memory store throughput Multi-context*

gst_transactions Number of global memory store transactions Multi-context*

gst_transactions_per_request Average number of global memory store transactions performed for each global memory store Multi-context*

half_precision_fu_utilization The utilization level of the multiprocessor function units that execute 16 bit floating-point instructions and integer instructions on a scale of 0 to 10. This is available for compute capability 5.3. Multi-context*

inst_bit_convert Number of bit-conversion instructions executed by non-predicated threads Multi-context

inst_compute_ld_st Number of compute load/store instructions executed by non-predicated threads Multi-context

inst_control Number of control-flow instructions executed by non-predicated threads (jump, branch, etc.) Multi-context

inst_executed The number of instructions executed Multi-context

inst_executed_global_atomics Warp level instructions for global atom and atom cas Multi-context

inst_executed_global_loads Warp level instructions for global loads Multi-context

inst_executed_global_reductions Warp level instructions for global reductions Multi-context

inst_executed_global_stores Warp level instructions for global stores Multi-context

inst_executed_local_loads Warp level instructions for local loads Multi-context

inst_executed_local_stores Warp level instructions for local stores Multi-context

inst_executed_shared_atomics Warp level shared instructions for atom and atom CAS Multi-context

inst_executed_shared_loads Warp level instructions for shared loads Multi-context

inst_executed_shared_stores Warp level instructions for shared stores Multi-context

inst_executed_surface_atomics Warp level instructions for surface atom and atom cas Multi-context

inst_executed_surface_loads Warp level instructions for surface loads Multi-context

inst_executed_surface_reductions Warp level instructions for surface reductions Multi-context

inst_executed_surface_stores Warp level instructions for surface stores Multi-context

inst_executed_tex_ops Warp level instructions for texture Multi-context

inst_fp_16 Number of half-precision floating-point instructions executed by non-predicated threads (arithmetic, compare, etc.) This is available for compute capability 5.3. Multi-context*

inst_fp_32 Number of single-precision floating-point instructions executed by non-predicated threads (arithmetic, compare, etc.) Multi-context

inst_fp_64 Number of double-precision floating-point instructions executed by non-predicated threads (arithmetic, compare, etc.) Multi-context

inst_integer Number of integer instructions executed by non-predicated threads Multi-context

inst_inter_thread_communication Number of inter-thread communication instructions executed by non-predicated threads Multi-context

inst_issued The number of instructions issued Multi-context

inst_misc Number of miscellaneous instructions executed by non-predicated threads Multi-context

inst_per_warp Average number of instructions executed by each warp Multi-context

inst_replay_overhead Average number of replays for each instruction executed Multi-context

continues on next page

13.1. Metrics for Capability 5.x 103

Profiler, Release 12.9

Table 1 – continued from previous page

Metric Name Description Scope

ipc Instructions executed per cycle Multi-context

issue_slot_utilization Percentage of issue slots that issued at least one instruction, averaged across all cycles Multi-context

issue_slots The number of issue slots used Multi-context

issued_ipc Instructions issued per cycle Multi-context

l2_atomic_throughput Memory read throughput seen at L2 cache for atomic and reduction requests Multi-context

l2_atomic_transactions Memory read transactions seen at L2 cache for atomic and reduction requests Multi-context*

l2_global_atomic_store_bytes Bytes written to L2 from Unified cache for global atomics (ATOM and ATOM CAS) Multi-context*

l2_global_load_bytes Bytes read from L2 for misses in Unified Cache for global loads Multi-context*

l2_global_reduction_bytes Bytes written to L2 from Unified cache for global reductions Multi-context*

l2_local_global_store_bytes Bytes written to L2 from Unified Cache for local and global stores. This does not include global atomics. Multi-context*

l2_local_load_bytes Bytes read from L2 for misses in Unified Cache for local loads Multi-context*

l2_read_throughput Memory read throughput seen at L2 cache for all read requests Multi-context*

l2_read_transactions Memory read transactions seen at L2 cache for all read requests Multi-context*

l2_surface_atomic_store_bytes Bytes transferred between Unified Cache and L2 for surface atomics (ATOM and ATOM CAS) Multi-context*

l2_surface_load_bytes Bytes read from L2 for misses in Unified Cache for surface loads Multi-context*

l2_surface_reduction_bytes Bytes written to L2 from Unified Cache for surface reductions Multi-context*

l2_surface_store_bytes Bytes written to L2 from Unified Cache for surface stores. This does not include surface atomics. Multi-context*

l2_tex_hit_rate Hit rate at L2 cache for all requests from texture cache Multi-context*

l2_tex_read_hit_rate Hit rate at L2 cache for all read requests from texture cache. This is available for compute capability 5.0 and 5.2. Multi-context*

l2_tex_read_throughput Memory read throughput seen at L2 cache for read requests from the texture cache Multi-context*

l2_tex_read_transactions Memory read transactions seen at L2 cache for read requests from the texture cache Multi-context*

l2_tex_write_hit_rate Hit Rate at L2 cache for all write requests from texture cache. This is available for compute capability 5.0 and 5.2. Multi-context*

l2_tex_write_throughput Memory write throughput seen at L2 cache for write requests from the texture cache Multi-context*

l2_tex_write_transactions Memory write transactions seen at L2 cache for write requests from the texture cache Multi-context*

l2_utilization The utilization level of the L2 cache relative to the peak utilization on a scale of 0 to 10 Multi-context*

l2_write_throughput Memory write throughput seen at L2 cache for all write requests Multi-context*

l2_write_transactions Memory write transactions seen at L2 cache for all write requests Multi-context*

ldst_executed Number of executed local, global, shared and texture memory load and store instructions Multi-context

ldst_fu_utilization The utilization level of the multiprocessor function units that execute shared load, shared store and constant load instructions on a scale of 0 to 10 Multi-context

ldst_issued Number of issued local, global, shared and texture memory load and store instructions Multi-context

local_hit_rate Hit rate for local loads and stores Multi-context*

local_load_requests Total number of local load requests from Multiprocessor Multi-context*

continues on next page

104 Chapter 13. Metrics Reference

Profiler, Release 12.9

Table 1 – continued from previous page

Metric Name Description Scope

local_load_throughput Local memory load throughput Multi-context*

local_load_transactions Number of local memory load transactions Multi-context*

local_load_transactions_per_request Average number of local memory load transactions performed for each local memory load Multi-context*

local_memory_overhead Ratio of local memory traffic to total memory traffic between the L1 and L2 caches expressed as percentage Multi-context*

local_store_requests Total number of local store requests from Multiprocessor Multi-context*

local_store_throughput Local memory store throughput Multi-context*

local_store_transactions Number of local memory store transactions Multi-context*

local_store_transactions_per_request Average number of local memory store transactions performed for each local memory store Multi-context*

pcie_total_data_received Total data bytes received through PCIe Device

pcie_total_data_transmitted Total data bytes transmitted through PCIe Device

shared_efficiency Ratio of requested shared memory throughput to required shared memory throughput expressed as percentage Multi-context*

shared_load_throughput Shared memory load throughput Multi-context*

shared_load_transactions Number of shared memory load transactions Multi-context*

shared_load_transactions_per_request Average number of shared memory load transactions performed for each shared memory load Multi-context*

shared_store_throughput Shared memory store throughput Multi-context*

shared_store_transactions Number of shared memory store transactions Multi-context*

shared_store_transactions_per_request Average number of shared memory store transactions performed for each shared memory store Multi-context*

shared_utilization The utilization level of the shared memory relative to peak utilization on a scale of 0 to 10 Multi-context*

single_precision_fu_utilization The utilization level of the multiprocessor function units that execute single-precision floating-point instructions and integer instructions on a scale of 0 to 10 Multi-context

sm_efficiency The percentage of time at least one warp is active on a specific multiprocessor Multi-context*

special_fu_utilization The utilization level of the multiprocessor function units that execute sin, cos, ex2, popc, flo, and similar instructions on a scale of 0 to 10 Multi-context

stall_constant_memory_dependency Percentage of stalls occurring because of immediate constant cache miss Multi-context

stall_exec_dependency Percentage of stalls occurring because an input required by the instruction is not yet available Multi-context

stall_inst_fetch Percentage of stalls occurring because the next assembly instruction has not yet been fetched Multi-context

stall_memory_dependency Percentage of stalls occurring because a memory operation cannot be performed due to the required resources not being available or fully utilized, or because too many requests of a given type are outstanding Multi-context

stall_memory_throttle Percentage of stalls occurring because of memory throttle Multi-context

stall_not_selected Percentage of stalls occurring because warp was not selected Multi-context

stall_other Percentage of stalls occurring due to miscellaneous reasons Multi-context

stall_pipe_busy Percentage of stalls occurring because a compute operation cannot be performed because the compute pipeline is busy Multi-context

stall_sync Percentage of stalls occurring because the warp is blocked at a __syncthreads() call Multi-context

stall_texture Percentage of stalls occurring because the texture sub-system is fully utilized or has too many outstanding requests Multi-context

surface_atomic_requests Total number of surface atomic(Atom and Atom CAS) requests from Multiprocessor Multi-context

continues on next page

13.1. Metrics for Capability 5.x 105

Profiler, Release 12.9

Table 1 – continued from previous page

Metric Name Description Scope

surface_load_requests Total number of surface load requests from Multiprocessor Multi-context

surface_reduction_requests Total number of surface reduction requests from Multiprocessor Multi-context

surface_store_requests Total number of surface store requests from Multiprocessor Multi-context

sysmem_read_bytes Number of bytes read from system memory Multi-context*

sysmem_read_throughput System memory read throughput Multi-context*

sysmem_read_transactions Number of system memory read transactions Multi-context*

sysmem_read_utilization The read utilization level of the system memory relative to the peak utilization on a scale of 0 to 10. This is available for compute capability 5.0 and 5.2. Multi-context

sysmem_utilization The utilization level of the system memory relative to the peak utilization on a scale of 0 to 10. This is available for compute capability 5.0 and 5.2. Multi-context*

sysmem_write_bytes Number of bytes written to system memory Multi-context*

sysmem_write_throughput System memory write throughput Multi-context*

sysmem_write_transactions Number of system memory write transactions Multi-context*

sysmem_write_utilization The write utilization level of the system memory relative to the peak utilization on a scale of 0 to 10. This is available for compute capability 5.0 and 5.2. Multi-context*

tex_cache_hit_rate Unified cache hit rate Multi-context*

tex_cache_throughput Unified cache throughput Multi-context*

tex_cache_transactions Unified cache read transactions Multi-context*

tex_fu_utilization The utilization level of the multiprocessor function units that execute global, local and texture memory instructions on a scale of 0 to 10 Multi-context

tex_utilization The utilization level of the unified cache relative to the peak utilization on a scale of 0 to 10 Multi-context*

texture_load_requests Total number of texture Load requests from Multiprocessor Multi-context

warp_execution_efficiency Ratio of the average active threads per warp to the maximum number of threads per warp supported on a multiprocessor Multi-context

warp_nonpred_execution_efficiency Ratio of the average active threads per warp executing non-predicated instructions to the maximum number of threads per warp supported on a multiprocessor Multi-context

* The “Multi-context” scope for this metric is supported only for devices with compute capability
5.0 and 5.2.

13.2. Metrics for Capability 6.x

Devices with compute capability 6.x implement the metrics shown in the following table.

Table 2: Table 5. Capability 6.x Metrics

Metric Name Description Scope

achieved_occupancy Ratio of the average active warps per active cycle to the maximum number of warps supported on a multiprocessor Multi-context

atomic_transactions Global memory atomic and reduction transactions Multi-context

atomic_transactions_per_request Average number of global memory atomic and reduction transactions performed for each atomic and reduction instruction Multi-context

continues on next page

106 Chapter 13. Metrics Reference

Profiler, Release 12.9

Table 2 – continued from previous page

Metric Name Description Scope

branch_efficiency Ratio of non-divergent branches to total branches expressed as percentage Multi-context

cf_executed Number of executed control-flow instructions Multi-context

cf_fu_utilization The utilization level of the multiprocessor function units that execute control-flow instructions on a scale of 0 to 10 Multi-context

cf_issued Number of issued control-flow instructions Multi-context

double_precision_fu_utilization The utilization level of the multiprocessor function units that execute double-precision floating-point instructions on a scale of 0 to 10 Multi-context

dram_read_bytes Total bytes read from DRAM to L2 cache Multi-context

dram_read_throughput Device memory read throughput. This is available for compute capability 6.0 and 6.1. Multi-context

dram_read_transactions Device memory read transactions. This is available for compute capability 6.0 and 6.1. Multi-context

dram_utilization The utilization level of the device memory relative to the peak utilization on a scale of 0 to 10 Multi-context

dram_write_bytes Total bytes written from L2 cache to DRAM Multi-context

dram_write_throughput Device memory write throughput. This is available for compute capability 6.0 and 6.1. Multi-context

dram_write_transactions Device memory write transactions. This is available for compute capability 6.0 and 6.1. Multi-context

ecc_throughput ECC throughput from L2 to DRAM. This is available for compute capability 6.1. Multi-context

ecc_transactions Number of ECC transactions between L2 and DRAM. This is available for compute capability 6.1. Multi-context

eligible_warps_per_cycle Average number of warps that are eligible to issue per active cycle Multi-context

flop_count_dp Number of double-precision floating-point operations executed by non-predicated threads (add, multiply, and multiply-accumulate). Each multiply-accumulate operation contributes 2 to the count. Multi-context

flop_count_dp_add Number of double-precision floating-point add operations executed by non-predicated threads. Multi-context

flop_count_dp_fma Number of double-precision floating-point multiply-accumulate operations executed by non-predicated threads. Each multiply-accumulate operation contributes 1 to the count. Multi-context

flop_count_dp_mul Number of double-precision floating-point multiply operations executed by non-predicated threads. Multi-context

flop_count_hp Number of half-precision floating-point operations executed by non-predicated threads (add, multiply, and multiply-accumulate). Each multiply-accumulate operation contributes 2 to the count. Multi-context

flop_count_hp_add Number of half-precision floating-point add operations executed by non-predicated threads. Multi-context

flop_count_hp_fma Number of half-precision floating-point multiply-accumulate operations executed by non-predicated threads. Each multiply-accumulate operation contributes 1 to the count. Multi-context

flop_count_hp_mul Number of half-precision floating-point multiply operations executed by non-predicated threads. Multi-context

flop_count_sp Number of single-precision floating-point operations executed by non-predicated threads (add, multiply, and multiply-accumulate). Each multiply-accumulate operation contributes 2 to the count. The count does not include special operations. Multi-context

flop_count_sp_add Number of single-precision floating-point add operations executed by non-predicated threads. Multi-context

flop_count_sp_fma Number of single-precision floating-point multiply-accumulate operations executed by non-predicated threads. Each multiply-accumulate operation contributes 1 to the count. Multi-context

flop_count_sp_mul Number of single-precision floating-point multiply operations executed by non-predicated threads. Multi-context

flop_count_sp_special Number of single-precision floating-point special operations executed by non-predicated threads. Multi-context

flop_dp_efficiency Ratio of achieved to peak double-precision floating-point operations Multi-context

flop_hp_efficiency Ratio of achieved to peak half-precision floating-point operations Multi-context

flop_sp_efficiency Ratio of achieved to peak single-precision floating-point operations Multi-context

gld_efficiency Ratio of requested global memory load throughput to required global memory load throughput expressed as percentage. Multi-context

continues on next page

13.2. Metrics for Capability 6.x 107

Profiler, Release 12.9

Table 2 – continued from previous page

Metric Name Description Scope

gld_requested_throughput Requested global memory load throughput Multi-context

gld_throughput Global memory load throughput Multi-context

gld_transactions Number of global memory load transactions Multi-context

gld_transactions_per_request Average number of global memory load transactions performed for each global memory load. Multi-context

global_atomic_requests Total number of global atomic(Atom and Atom CAS) requests from Multiprocessor Multi-context

global_hit_rate Hit rate for global loads in unified l1/tex cache. Metric value maybe wrong if malloc is used in kernel. Multi-context

global_load_requests Total number of global load requests from Multiprocessor Multi-context

global_reduction_requests Total number of global reduction requests from Multiprocessor Multi-context

global_store_requests Total number of global store requests from Multiprocessor. This does not include atomic requests. Multi-context

gst_efficiency Ratio of requested global memory store throughput to required global memory store throughput expressed as percentage. Multi-context

gst_requested_throughput Requested global memory store throughput Multi-context

gst_throughput Global memory store throughput Multi-context

gst_transactions Number of global memory store transactions Multi-context

gst_transactions_per_request Average number of global memory store transactions performed for each global memory store Multi-context

half_precision_fu_utilization The utilization level of the multiprocessor function units that execute 16 bit floating-point instructions on a scale of 0 to 10 Multi-context

inst_bit_convert Number of bit-conversion instructions executed by non-predicated threads Multi-context

inst_compute_ld_st Number of compute load/store instructions executed by non-predicated threads Multi-context

inst_control Number of control-flow instructions executed by non-predicated threads (jump, branch, etc.) Multi-context

inst_executed The number of instructions executed Multi-context

inst_executed_global_atomics Warp level instructions for global atom and atom cas Multi-context

inst_executed_global_loads Warp level instructions for global loads Multi-context

inst_executed_global_reductions Warp level instructions for global reductions Multi-context

inst_executed_global_stores Warp level instructions for global stores Multi-context

inst_executed_local_loads Warp level instructions for local loads Multi-context

inst_executed_local_stores Warp level instructions for local stores Multi-context

inst_executed_shared_atomics Warp level shared instructions for atom and atom CAS Multi-context

inst_executed_shared_loads Warp level instructions for shared loads Multi-context

inst_executed_shared_stores Warp level instructions for shared stores Multi-context

inst_executed_surface_atomics Warp level instructions for surface atom and atom cas Multi-context

inst_executed_surface_loads Warp level instructions for surface loads Multi-context

inst_executed_surface_reductions Warp level instructions for surface reductions Multi-context

inst_executed_surface_stores Warp level instructions for surface stores Multi-context

continues on next page

108 Chapter 13. Metrics Reference

Profiler, Release 12.9

Table 2 – continued from previous page

Metric Name Description Scope

inst_executed_tex_ops Warp level instructions for texture Multi-context

inst_fp_16 Number of half-precision floating-point instructions executed by non-predicated threads (arithmetic, compare, etc.) Multi-context

inst_fp_32 Number of single-precision floating-point instructions executed by non-predicated threads (arithmetic, compare, etc.) Multi-context

inst_fp_64 Number of double-precision floating-point instructions executed by non-predicated threads (arithmetic, compare, etc.) Multi-context

inst_integer Number of integer instructions executed by non-predicated threads Multi-context

inst_inter_thread_communication Number of inter-thread communication instructions executed by non-predicated threads Multi-context

inst_issued The number of instructions issued Multi-context

inst_misc Number of miscellaneous instructions executed by non-predicated threads Multi-context

inst_per_warp Average number of instructions executed by each warp Multi-context

inst_replay_overhead Average number of replays for each instruction executed Multi-context

ipc Instructions executed per cycle Multi-context

issue_slot_utilization Percentage of issue slots that issued at least one instruction, averaged across all cycles Multi-context

issue_slots The number of issue slots used Multi-context

issued_ipc Instructions issued per cycle Multi-context

l2_atomic_throughput Memory read throughput seen at L2 cache for atomic and reduction requests Multi-context

l2_atomic_transactions Memory read transactions seen at L2 cache for atomic and reduction requests Multi-context

l2_global_atomic_store_bytes Bytes written to L2 from Unified cache for global atomics (ATOM and ATOM CAS) Multi-context

l2_global_load_bytes Bytes read from L2 for misses in Unified Cache for global loads Multi-context

l2_global_reduction_bytes Bytes written to L2 from Unified cache for global reductions Multi-context

l2_local_global_store_bytes Bytes written to L2 from Unified Cache for local and global stores. This does not include global atomics. Multi-context

l2_local_load_bytes Bytes read from L2 for misses in Unified Cache for local loads Multi-context

l2_read_throughput Memory read throughput seen at L2 cache for all read requests Multi-context

l2_read_transactions Memory read transactions seen at L2 cache for all read requests Multi-context

l2_surface_atomic_store_bytes Bytes transferred between Unified Cache and L2 for surface atomics (ATOM and ATOM CAS) Multi-context

l2_surface_load_bytes Bytes read from L2 for misses in Unified Cache for surface loads Multi-context

l2_surface_reduction_bytes Bytes written to L2 from Unified Cache for surface reductions Multi-context

l2_surface_store_bytes Bytes written to L2 from Unified Cache for surface stores. This does not include surface atomics. Multi-context

l2_tex_hit_rate Hit rate at L2 cache for all requests from texture cache Multi-context

l2_tex_read_hit_rate Hit rate at L2 cache for all read requests from texture cache. This is available for compute capability 6.0 and 6.1. Multi-context

l2_tex_read_throughput Memory read throughput seen at L2 cache for read requests from the texture cache Multi-context

l2_tex_read_transactions Memory read transactions seen at L2 cache for read requests from the texture cache Multi-context

l2_tex_write_hit_rate Hit Rate at L2 cache for all write requests from texture cache. This is available for compute capability 6.0 and 6.1. Multi-context

continues on next page

13.2. Metrics for Capability 6.x 109

Profiler, Release 12.9

Table 2 – continued from previous page

Metric Name Description Scope

l2_tex_write_throughput Memory write throughput seen at L2 cache for write requests from the texture cache Multi-context

l2_tex_write_transactions Memory write transactions seen at L2 cache for write requests from the texture cache Multi-context

l2_utilization The utilization level of the L2 cache relative to the peak utilization on a scale of 0 to 10 Multi-context

l2_write_throughput Memory write throughput seen at L2 cache for all write requests Multi-context

l2_write_transactions Memory write transactions seen at L2 cache for all write requests Multi-context

ldst_executed Number of executed local, global, shared and texture memory load and store instructions Multi-context

ldst_fu_utilization The utilization level of the multiprocessor function units that execute shared load, shared store and constant load instructions on a scale of 0 to 10 Multi-context

ldst_issued Number of issued local, global, shared and texture memory load and store instructions Multi-context

local_hit_rate Hit rate for local loads and stores Multi-context

local_load_requests Total number of local load requests from Multiprocessor Multi-context

local_load_throughput Local memory load throughput Multi-context

local_load_transactions Number of local memory load transactions Multi-context

local_load_transactions_per_request Average number of local memory load transactions performed for each local memory load Multi-context

local_memory_overhead Ratio of local memory traffic to total memory traffic between the L1 and L2 caches expressed as percentage Multi-context

local_store_requests Total number of local store requests from Multiprocessor Multi-context

local_store_throughput Local memory store throughput Multi-context

local_store_transactions Number of local memory store transactions Multi-context

local_store_transactions_per_request Average number of local memory store transactions performed for each local memory store Multi-context

nvlink_overhead_data_received Ratio of overhead data to the total data, received through NVLink. This is available for compute capability 6.0. Device

nvlink_overhead_data_transmitted Ratio of overhead data to the total data, transmitted through NVLink. This is available for compute capability 6.0. Device

nvlink_receive_throughput Number of bytes received per second through NVLinks. This is available for compute capability 6.0. Device

nvlink_total_data_received Total data bytes received through NVLinks including headers. This is available for compute capability 6.0. Device

nvlink_total_data_transmitted Total data bytes transmitted through NVLinks including headers. This is available for compute capability 6.0. Device

nvlink_total_nratom_data_transmitted Total non-reduction atomic data bytes transmitted through NVLinks. This is available for compute capability 6.0. Device

nvlink_total_ratom_data_transmitted Total reduction atomic data bytes transmitted through NVLinks This is available for compute capability 6.0. Device

nvlink_total_response_data_received Total response data bytes received through NVLink, response data includes data for read requests and result of non-reduction atomic requests. This is available for compute capability 6.0. Device

nvlink_total_write_data_transmitted Total write data bytes transmitted through NVLinks. This is available for compute capability 6.0. Device

nvlink_transmit_throughput Number of Bytes Transmitted per second through NVLinks. This is available for compute capability 6.0. Device

nvlink_user_data_received User data bytes received through NVLinks, doesn’t include headers. This is available for compute capability 6.0. Device

nvlink_user_data_transmitted User data bytes transmitted through NVLinks, doesn’t include headers. This is available for compute capability 6.0. Device

nvlink_user_nratom_data_transmitted Total non-reduction atomic user data bytes transmitted through NVLinks. This is available for compute capability 6.0. Device

nvlink_user_ratom_data_transmitted Total reduction atomic user data bytes transmitted through NVLinks. This is available for compute capability 6.0. Device

continues on next page

110 Chapter 13. Metrics Reference

Profiler, Release 12.9

Table 2 – continued from previous page

Metric Name Description Scope

nvlink_user_response_data_received Total user response data bytes received through NVLink, response data includes data for read requests and result of non-reduction atomic requests. This is available for compute capability 6.0. Device

nvlink_user_write_data_transmitted User write data bytes transmitted through NVLinks. This is available for compute capability 6.0. Device

pcie_total_data_received Total data bytes received through PCIe Device

pcie_total_data_transmitted Total data bytes transmitted through PCIe Device

shared_efficiency Ratio of requested shared memory throughput to required shared memory throughput expressed as percentage Multi-context

shared_load_throughput Shared memory load throughput Multi-context

shared_load_transactions Number of shared memory load transactions Multi-context

shared_load_transactions_per_request Average number of shared memory load transactions performed for each shared memory load Multi-context

shared_store_throughput Shared memory store throughput Multi-context

shared_store_transactions Number of shared memory store transactions Multi-context

shared_store_transactions_per_request Average number of shared memory store transactions performed for each shared memory store Multi-context

shared_utilization The utilization level of the shared memory relative to peak utilization on a scale of 0 to 10 Multi-context

single_precision_fu_utilization The utilization level of the multiprocessor function units that execute single-precision floating-point instructions and integer instructions on a scale of 0 to 10 Multi-context

sm_efficiency The percentage of time at least one warp is active on a specific multiprocessor Multi-context

special_fu_utilization The utilization level of the multiprocessor function units that execute sin, cos, ex2, popc, flo, and similar instructions on a scale of 0 to 10 Multi-context

stall_constant_memory_dependency Percentage of stalls occurring because of immediate constant cache miss Multi-context

stall_exec_dependency Percentage of stalls occurring because an input required by the instruction is not yet available Multi-context

stall_inst_fetch Percentage of stalls occurring because the next assembly instruction has not yet been fetched Multi-context

stall_memory_dependency Percentage of stalls occurring because a memory operation cannot be performed due to the required resources not being available or fully utilized, or because too many requests of a given type are outstanding Multi-context

stall_memory_throttle Percentage of stalls occurring because of memory throttle Multi-context

stall_not_selected Percentage of stalls occurring because warp was not selected Multi-context

stall_other Percentage of stalls occurring due to miscellaneous reasons Multi-context

stall_pipe_busy Percentage of stalls occurring because a compute operation cannot be performed because the compute pipeline is busy Multi-context

stall_sync Percentage of stalls occurring because the warp is blocked at a __syncthreads() call Multi-context

stall_texture Percentage of stalls occurring because the texture sub-system is fully utilized or has too many outstanding requests Multi-context

surface_atomic_requests Total number of surface atomic(Atom and Atom CAS) requests from Multiprocessor Multi-context

surface_load_requests Total number of surface load requests from Multiprocessor Multi-context

surface_reduction_requests Total number of surface reduction requests from Multiprocessor Multi-context

surface_store_requests Total number of surface store requests from Multiprocessor Multi-context

sysmem_read_bytes Number of bytes read from system memory Multi-context

sysmem_read_throughput System memory read throughput Multi-context

sysmem_read_transactions Number of system memory read transactions Multi-context

continues on next page

13.2. Metrics for Capability 6.x 111

Profiler, Release 12.9

Table 2 – continued from previous page

Metric Name Description Scope

sysmem_read_utilization The read utilization level of the system memory relative to the peak utilization on a scale of 0 to 10. This is available for compute capability 6.0 and 6.1. Multi-context

sysmem_utilization The utilization level of the system memory relative to the peak utilization on a scale of 0 to 10. This is available for compute capability 6.0 and 6.1. Multi-context

sysmem_write_bytes Number of bytes written to system memory Multi-context

sysmem_write_throughput System memory write throughput Multi-context

sysmem_write_transactions Number of system memory write transactions Multi-context

sysmem_write_utilization The write utilization level of the system memory relative to the peak utilization on a scale of 0 to 10. This is available for compute capability 6.0 and 6.1. Multi-context

tex_cache_hit_rate Unified cache hit rate Multi-context

tex_cache_throughput Unified cache throughput Multi-context

tex_cache_transactions Unified cache read transactions Multi-context

tex_fu_utilization The utilization level of the multiprocessor function units that execute global, local and texture memory instructions on a scale of 0 to 10 Multi-context

tex_utilization The utilization level of the unified cache relative to the peak utilization on a scale of 0 to 10 Multi-context

texture_load_requests Total number of texture Load requests from Multiprocessor Multi-context

unique_warps_launched Number of warps launched. Value is unaffected by compute preemption. Multi-context

warp_execution_efficiency Ratio of the average active threads per warp to the maximum number of threads per warp supported on a multiprocessor Multi-context

warp_nonpred_execution_efficiency Ratio of the average active threads per warp executing non-predicated instructions to the maximum number of threads per warp supported on a multiprocessor Multi-context

13.3. Metrics for Capability 7.x

Devices with compute capability 7.x implement the metrics shown in the following table. (7.x refers to
7.0 and 7.2 here.)

Table 3: Table 6. Capability 7.x (7.0 and 7.2) Metrics

Metric Name Description Scope

achieved_occupancy Ratio of the average active warps per active cycle to the maximum number of warps supported on a multiprocessor Multi-context

atomic_transactions Global memory atomic and reduction transactions Multi-context

atomic_transactions_per_request Average number of global memory atomic and reduction transactions performed for each atomic and reduction instruction Multi-context

branch_efficiency Ratio of branch instruction to sum of branch and divergent branch instruction Multi-context

cf_executed Number of executed control-flow instructions Multi-context

cf_fu_utilization The utilization level of the multiprocessor function units that execute control-flow instructions on a scale of 0 to 10 Multi-context

cf_issued Number of issued control-flow instructions Multi-context

double_precision_fu_utilization The utilization level of the multiprocessor function units that execute double-precision floating-point instructions on a scale of 0 to 10 Multi-context

dram_read_bytes Total bytes read from DRAM to L2 cache Multi-context

continues on next page

112 Chapter 13. Metrics Reference

Profiler, Release 12.9

Table 3 – continued from previous page

Metric Name Description Scope

dram_read_throughput Device memory read throughput Multi-context

dram_read_transactions Device memory read transactions Multi-context

dram_utilization The utilization level of the device memory relative to the peak utilization on a scale of 0 to 10 Multi-context

dram_write_bytes Total bytes written from L2 cache to DRAM Multi-context

dram_write_throughput Device memory write throughput Multi-context

dram_write_transactions Device memory write transactions Multi-context

eligible_warps_per_cycle Average number of warps that are eligible to issue per active cycle Multi-context

flop_count_dp Number of double-precision floating-point operations executed by non-predicated threads (add, multiply, and multiply-accumulate). Each multiply-accumulate operation contributes 2 to the count. Multi-context

flop_count_dp_add Number of double-precision floating-point add operations executed by non-predicated threads. Multi-context

flop_count_dp_fma Number of double-precision floating-point multiply-accumulate operations executed by non-predicated threads. Each multiply-accumulate operation contributes 1 to the count. Multi-context

flop_count_dp_mul Number of double-precision floating-point multiply operations executed by non-predicated threads. Multi-context

flop_count_hp Number of half-precision floating-point operations executed by non-predicated threads (add, multiply, and multiply-accumulate). Each multiply-accumulate contributes 2 or 4 to the count based on the number of inputs. Multi-context

flop_count_hp_add Number of half-precision floating-point add operations executed by non-predicated threads. Multi-context

flop_count_hp_fma Number of half-precision floating-point multiply-accumulate operations executed by non-predicated threads. Each multiply-accumulate contributes 2 or 4 to the count based on the number of inputs. Multi-context

flop_count_hp_mul Number of half-precision floating-point multiply operations executed by non-predicated threads. Multi-context

flop_count_sp Number of single-precision floating-point operations executed by non-predicated threads (add, multiply, and multiply-accumulate). Each multiply-accumulate operation contributes 2 to the count. The count does not include special operations. Multi-context

flop_count_sp_add Number of single-precision floating-point add operations executed by non-predicated threads. Multi-context

flop_count_sp_fma Number of single-precision floating-point multiply-accumulate operations executed by non-predicated threads. Each multiply-accumulate operation contributes 1 to the count. Multi-context

flop_count_sp_mul Number of single-precision floating-point multiply operations executed by non-predicated threads. Multi-context

flop_count_sp_special Number of single-precision floating-point special operations executed by non-predicated threads. Multi-context

flop_dp_efficiency Ratio of achieved to peak double-precision floating-point operations Multi-context

flop_hp_efficiency Ratio of achieved to peak half-precision floating-point operations Multi-context

flop_sp_efficiency Ratio of achieved to peak single-precision floating-point operations Multi-context

gld_efficiency Ratio of requested global memory load throughput to required global memory load throughput expressed as percentage. Multi-context

gld_requested_throughput Requested global memory load throughput Multi-context

gld_throughput Global memory load throughput Multi-context

gld_transactions Number of global memory load transactions Multi-context

gld_transactions_per_request Average number of global memory load transactions performed for each global memory load. Multi-context

global_atomic_requests Total number of global atomic(Atom and Atom CAS) requests from Multiprocessor Multi-context

global_hit_rate Hit rate for global load and store in unified l1/tex cache Multi-context

global_load_requests Total number of global load requests from Multiprocessor Multi-context

global_reduction_requests Total number of global reduction requests from Multiprocessor Multi-context

continues on next page

13.3. Metrics for Capability 7.x 113

Profiler, Release 12.9

Table 3 – continued from previous page

Metric Name Description Scope

global_store_requests Total number of global store requests from Multiprocessor. This does not include atomic requests. Multi-context

gst_efficiency Ratio of requested global memory store throughput to required global memory store throughput expressed as percentage. Multi-context

gst_requested_throughput Requested global memory store throughput Multi-context

gst_throughput Global memory store throughput Multi-context

gst_transactions Number of global memory store transactions Multi-context

gst_transactions_per_request Average number of global memory store transactions performed for each global memory store Multi-context

half_precision_fu_utilization The utilization level of the multiprocessor function units that execute 16 bit floating-point instructions on a scale of 0 to 10. Note that this doesn’t specify the utilization level of tensor core unit Multi-context

inst_bit_convert Number of bit-conversion instructions executed by non-predicated threads Multi-context

inst_compute_ld_st Number of compute load/store instructions executed by non-predicated threads Multi-context

inst_control Number of control-flow instructions executed by non-predicated threads (jump, branch, etc.) Multi-context

inst_executed The number of instructions executed Multi-context

inst_executed_global_atomics Warp level instructions for global atom and atom cas Multi-context

inst_executed_global_loads Warp level instructions for global loads Multi-context

inst_executed_global_reductions Warp level instructions for global reductions Multi-context

inst_executed_global_stores Warp level instructions for global stores Multi-context

inst_executed_local_loads Warp level instructions for local loads Multi-context

inst_executed_local_stores Warp level instructions for local stores Multi-context

inst_executed_shared_atomics Warp level shared instructions for atom and atom CAS Multi-context

inst_executed_shared_loads Warp level instructions for shared loads Multi-context

inst_executed_shared_stores Warp level instructions for shared stores Multi-context

inst_executed_surface_atomics Warp level instructions for surface atom and atom cas Multi-context

inst_executed_surface_loads Warp level instructions for surface loads Multi-context

inst_executed_surface_reductions Warp level instructions for surface reductions Multi-context

inst_executed_surface_stores Warp level instructions for surface stores Multi-context

inst_executed_tex_ops Warp level instructions for texture Multi-context

inst_fp_16 Number of half-precision floating-point instructions executed by non-predicated threads (arithmetic, compare, etc.) Multi-context

inst_fp_32 Number of single-precision floating-point instructions executed by non-predicated threads (arithmetic, compare, etc.) Multi-context

inst_fp_64 Number of double-precision floating-point instructions executed by non-predicated threads (arithmetic, compare, etc.) Multi-context

inst_integer Number of integer instructions executed by non-predicated threads Multi-context

inst_inter_thread_communication Number of inter-thread communication instructions executed by non-predicated threads Multi-context

inst_issued The number of instructions issued Multi-context

inst_misc Number of miscellaneous instructions executed by non-predicated threads Multi-context

continues on next page

114 Chapter 13. Metrics Reference

Profiler, Release 12.9

Table 3 – continued from previous page

Metric Name Description Scope

inst_per_warp Average number of instructions executed by each warp Multi-context

inst_replay_overhead Average number of replays for each instruction executed Multi-context

ipc Instructions executed per cycle Multi-context

issue_slot_utilization Percentage of issue slots that issued at least one instruction, averaged across all cycles Multi-context

issue_slots The number of issue slots used Multi-context

issued_ipc Instructions issued per cycle Multi-context

l2_atomic_throughput Memory read throughput seen at L2 cache for atomic and reduction requests Multi-context

l2_atomic_transactions Memory read transactions seen at L2 cache for atomic and reduction requests Multi-context

l2_global_atomic_store_bytes Bytes written to L2 from L1 for global atomics (ATOM and ATOM CAS) Multi-context

l2_global_load_bytes Bytes read from L2 for misses in L1 for global loads Multi-context

l2_local_global_store_bytes Bytes written to L2 from L1 for local and global stores. This does not include global atomics. Multi-context

l2_local_load_bytes Bytes read from L2 for misses in L1 for local loads Multi-context

l2_read_throughput Memory read throughput seen at L2 cache for all read requests Multi-context

l2_read_transactions Memory read transactions seen at L2 cache for all read requests Multi-context

l2_surface_load_bytes Bytes read from L2 for misses in L1 for surface loads Multi-context

l2_surface_store_bytes Bytes read from L2 for misses in L1 for surface stores Multi-context

l2_tex_hit_rate Hit rate at L2 cache for all requests from texture cache Multi-context

l2_tex_read_hit_rate Hit rate at L2 cache for all read requests from texture cache Multi-context

l2_tex_read_throughput Memory read throughput seen at L2 cache for read requests from the texture cache Multi-context

l2_tex_read_transactions Memory read transactions seen at L2 cache for read requests from the texture cache Multi-context

l2_tex_write_hit_rate Hit Rate at L2 cache for all write requests from texture cache Multi-context

l2_tex_write_throughput Memory write throughput seen at L2 cache for write requests from the texture cache Multi-context

l2_tex_write_transactions Memory write transactions seen at L2 cache for write requests from the texture cache Multi-context

l2_utilization The utilization level of the L2 cache relative to the peak utilization on a scale of 0 to 10 Multi-context

l2_write_throughput Memory write throughput seen at L2 cache for all write requests Multi-context

l2_write_transactions Memory write transactions seen at L2 cache for all write requests Multi-context

ldst_executed Number of executed local, global, shared and texture memory load and store instructions Multi-context

ldst_fu_utilization The utilization level of the multiprocessor function units that execute shared load, shared store and constant load instructions on a scale of 0 to 10 Multi-context

ldst_issued Number of issued local, global, shared and texture memory load and store instructions Multi-context

local_hit_rate Hit rate for local loads and stores Multi-context

local_load_requests Total number of local load requests from Multiprocessor Multi-context

local_load_throughput Local memory load throughput Multi-context

continues on next page

13.3. Metrics for Capability 7.x 115

Profiler, Release 12.9

Table 3 – continued from previous page

Metric Name Description Scope

local_load_transactions Number of local memory load transactions Multi-context

local_load_transactions_per_request Average number of local memory load transactions performed for each local memory load Multi-context

local_memory_overhead Ratio of local memory traffic to total memory traffic between the L1 and L2 caches expressed as percentage Multi-context

local_store_requests Total number of local store requests from Multiprocessor Multi-context

local_store_throughput Local memory store throughput Multi-context

local_store_transactions Number of local memory store transactions Multi-context

local_store_transactions_per_request Average number of local memory store transactions performed for each local memory store Multi-context

nvlink_overhead_data_received Ratio of overhead data to the total data, received through NVLink. Device

nvlink_overhead_data_transmitted Ratio of overhead data to the total data, transmitted through NVLink. Device

nvlink_receive_throughput Number of bytes received per second through NVLinks. Device

nvlink_total_data_received Total data bytes received through NVLinks including headers. Device

nvlink_total_data_transmitted Total data bytes transmitted through NVLinks including headers. Device

nvlink_total_nratom_data_transmitted Total non-reduction atomic data bytes transmitted through NVLinks. Device

nvlink_total_ratom_data_transmitted Total reduction atomic data bytes transmitted through NVLinks. Device

nvlink_total_response_data_received Total response data bytes received through NVLink, response data includes data for read requests and result of non-reduction atomic requests. Device

nvlink_total_write_data_transmitted Total write data bytes transmitted through NVLinks. Device

nvlink_transmit_throughput Number of Bytes Transmitted per second through NVLinks. Device

nvlink_user_data_received User data bytes received through NVLinks, doesn’t include headers. Device

nvlink_user_data_transmitted User data bytes transmitted through NVLinks, doesn’t include headers. Device

nvlink_user_nratom_data_transmitted Total non-reduction atomic user data bytes transmitted through NVLinks. Device

nvlink_user_ratom_data_transmitted Total reduction atomic user data bytes transmitted through NVLinks. Device

nvlink_user_response_data_received Total user response data bytes received through NVLink, response data includes data for read requests and result of non-reduction atomic requests. Device

nvlink_user_write_data_transmitted User write data bytes transmitted through NVLinks. Device

pcie_total_data_received Total data bytes received through PCIe Device

pcie_total_data_transmitted Total data bytes transmitted through PCIe Device

shared_efficiency Ratio of requested shared memory throughput to required shared memory throughput expressed as percentage Multi-context

shared_load_throughput Shared memory load throughput Multi-context

shared_load_transactions Number of shared memory load transactions Multi-context

shared_load_transactions_per_request Average number of shared memory load transactions performed for each shared memory load Multi-context

shared_store_throughput Shared memory store throughput Multi-context

shared_store_transactions Number of shared memory store transactions Multi-context

shared_store_transactions_per_request Average number of shared memory store transactions performed for each shared memory store Multi-context

continues on next page

116 Chapter 13. Metrics Reference

Profiler, Release 12.9

Table 3 – continued from previous page

Metric Name Description Scope

shared_utilization The utilization level of the shared memory relative to peak utilization on a scale of 0 to 10 Multi-context

single_precision_fu_utilization The utilization level of the multiprocessor function units that execute single-precision floating-point instructions on a scale of 0 to 10 Multi-context

sm_efficiency The percentage of time at least one warp is active on a specific multiprocessor Multi-context

special_fu_utilization The utilization level of the multiprocessor function units that execute sin, cos, ex2, popc, flo, and similar instructions on a scale of 0 to 10 Multi-context

stall_constant_memory_dependency Percentage of stalls occurring because of immediate constant cache miss Multi-context

stall_exec_dependency Percentage of stalls occurring because an input required by the instruction is not yet available Multi-context

stall_inst_fetch Percentage of stalls occurring because the next assembly instruction has not yet been fetched Multi-context

stall_memory_dependency Percentage of stalls occurring because a memory operation cannot be performed due to the required resources not being available or fully utilized, or because too many requests of a given type are outstanding Multi-context

stall_memory_throttle Percentage of stalls occurring because of memory throttle Multi-context

stall_not_selected Percentage of stalls occurring because warp was not selected Multi-context

stall_other Percentage of stalls occurring due to miscellaneous reasons Multi-context

stall_pipe_busy Percentage of stalls occurring because a compute operation cannot be performed because the compute pipeline is busy Multi-context

stall_sleeping Percentage of stalls occurring because warp was sleeping Multi-context

stall_sync Percentage of stalls occurring because the warp is blocked at a __syncthreads() call Multi-context

stall_texture Percentage of stalls occurring because the texture sub-system is fully utilized or has too many outstanding requests Multi-context

surface_atomic_requests Total number of surface atomic(Atom and Atom CAS) requests from Multiprocessor Multi-context

surface_load_requests Total number of surface load requests from Multiprocessor Multi-context

surface_reduction_requests Total number of surface reduction requests from Multiprocessor Multi-context

surface_store_requests Total number of surface store requests from Multiprocessor Multi-context

sysmem_read_bytes Number of bytes read from system memory Multi-context

sysmem_read_throughput System memory read throughput Multi-context

sysmem_read_transactions Number of system memory read transactions Multi-context

sysmem_read_utilization The read utilization level of the system memory relative to the peak utilization on a scale of 0 to 10 Multi-context

sysmem_utilization The utilization level of the system memory relative to the peak utilization on a scale of 0 to 10 Multi-context

sysmem_write_bytes Number of bytes written to system memory Multi-context

sysmem_write_throughput System memory write throughput Multi-context

sysmem_write_transactions Number of system memory write transactions Multi-context

sysmem_write_utilization The write utilization level of the system memory relative to the peak utilization on a scale of 0 to 10 Multi-context

tensor_precision_fu_utilization The utilization level of the multiprocessor function units that execute tensor core instructions on a scale of 0 to 10 Multi-context

tensor_int_fu_utilization The utilization level of the multiprocessor function units that execute tensor core int8 instructions on a scale of 0 to 10. This metric is only available for device with compute capability 7.2. Multi-context

tex_cache_hit_rate Unified cache hit rate Multi-context

tex_cache_throughput Unified cache to Multiprocessor read throughput Multi-context

continues on next page

13.3. Metrics for Capability 7.x 117

Profiler, Release 12.9

Table 3 – continued from previous page

Metric Name Description Scope

tex_cache_transactions Unified cache to Multiprocessor read transactions Multi-context

tex_fu_utilization The utilization level of the multiprocessor function units that execute global, local and texture memory instructions on a scale of 0 to 10 Multi-context

tex_utilization The utilization level of the unified cache relative to the peak utilization on a scale of 0 to 10 Multi-context

texture_load_requests Total number of texture Load requests from Multiprocessor Multi-context

warp_execution_efficiency Ratio of the average active threads per warp to the maximum number of threads per warp supported on a multiprocessor Multi-context

warp_nonpred_execution_efficiency Ratio of the average active threads per warp executing non-predicated instructions to the maximum number of threads per warp supported on a multiprocessor Multi-context

118 Chapter 13. Metrics Reference

Chapter 14. Warp State

This section contains a description of each warp state. The warp can have following states:

▶ Instruction issued - An instruction or a pair of independent instructions was issued from a warp.

▶ Stalled - Warp can be stalled for one of the following reasons. The stall reason distribution can
be seen at source level in PC Sampling View or at kernel level in Latency analysis using ‘Examine
Stall Reasons’

▶ Stalled for instruction fetch - The next instruction was not yet available.

To reduce instruction fetch stalls:

▶ If large loop have been unrolled in kernel, try reducing them.

▶ If the kernel contains many calls to small function, try inlining more of
them with the __inline__ or __forceinline__ qualifiers. Conversely, if inlin-
ing many functions or large functions, try __noinline__ to disable inlining
of those functions.

▶ For very short kernels, consider fusing into a single kernels.

▶ If blocks with fewer threads are used, consider using fewer blocks of more
threads. Occasional calls to __syncthreads() will then keep the warps in
sync which may improve instruction cache hit rate.

▶ Stalled for execution dependency - The next instruction is waiting for one or more
of its inputs to be computed by earlier instruction(s).

To reduce execution dependency stalls, try to increase instruction-level par-
allelism (ILP). This can be done by, for example, increasing loop unrolling
or processing several elements per thread. This prevents the thread from
idling through the full latency of each instruction.

▶ Stalled for memory dependency - The next instruction is waiting for a previous
memory accesses to complete.

To reduce the memory dependency stalls

▶ Try to improve memory coalescing and/or efficiency of bytes fetched
(alignment, etc.). Look at the source level analysis ‘Global Memory Access
Pattern’ and/or the metrics gld_efficiency and gst_efficiency.

▶ Try to increase memory-level parallelism (MLP): the number of indepen-
dent memory operations in flight per thread. Loop unrolling, loading vec-
tor types such as float4, and processing multiple elements per thread are
all ways to increase memory-level parallelism.

▶ Consider moving frequently-accessed data closer to SM, such as by use
of shared memory or read-only data cache.

119

index.html#pc-sampling-view

Profiler, Release 12.9

▶ Consider re-computing data where possible instead of loading it from de-
vice memory.

▶ If local memory accesses are high, consider increasing register count per
thread to reduce spilling, even at the expense of occupancy since local
memory accesses are cached only in L2 for GPUs with compute capability
major = 5.

▶ Stalled for memory throttle - A large number of outstanding memory requests
prevents forward progress. On GPUs with compute capability major = 3, memory
throttle indicates high number of memory replays.

To reduce memory throttle stalls:

▶ Try to find ways to combine several memory transactions into one (e.g.,
use 64-bit memory requests instead of two 32-bit requests).

▶ Check for un-coalesced memory accesses using the source level analysis
‘Global Memory Access Pattern’ and/or the profiler metrics gld_efficiency
and gst_efficiency; minimize them wherever possible.

▶ On GPUs with compute capability major >= 3, consider using read-only
data cache using LDG for un-coalesced global reads

▶ Stalled for texture - The texture sub-system is fully utilized or has too many out-
standing requests.

To reduce texture stalls:

▶ Consider combining several texture fetch operations into one (e.g., pack-
ing data in texture and unpacking in SM or using vector loads).

▶ Consider moving frequently-accessed data closer to SM by use of shared
memory.

▶ Consider re-computing data where possible instead of fetching it from
memory.

▶ On GPUs with compute capability major < 5: Consider changing some tex-
ture accesses into regular global loads to reduce pressure on the texture
unit, especially if you do not use texture-specific features such as inter-
polation.

▶ On GPUs with compute capability major = 3: If global loads through the
read-only data cache (LDG) are the source of texture accesses for this ker-
nel, consider changing some of them back to regular global loads. Note
that if LDG is being generated due to use of the __ldg() intrinsic, this sim-
ply means changing back to a normal pointer dereference, but if LDG is
being generated automatically by the compiler due to the use of the const
and __restrict__ qualifiers, this may be more difficult.

▶ Stalled for sync - The warp is waiting for all threads to synchronize after a barrier
instruction.

To reduce sync stalls:

▶ Try to improve load balancing i.e. try to increase work done between syn-
chronization points; consider reducing thread block size.

▶ Minimize use of threadfence_*().

120 Chapter 14. Warp State

Profiler, Release 12.9

▶ On GPUs with compute capability major >= 3: If __syncthreads() is being
used because of data exchange through shared memory within a thread-
block, consider whether warp shuffle operations can be used in place of
some of these exchange/synchronize sequences.

▶ Stalled for constant memory dependency - The warp is stalled on a miss in the
cache for __constant__ memory and immediate.

This may be high the first time each constant is accessed (e.g., at the be-
ginning of a kernel). To reduce these stalls,

▶ Consider reducing use of __constant__ or increase kernel runtime by in-
creasing block count

▶ Consider increasing number of items processed per thread

▶ Consider merging several kernels that use the same __constant__ data to
amortize the cost of misses in the constant cache.

▶ Try using regular global memory accesses instead of constant memory
accesses.

▶ Stalled for pipe busy - The warp is stalled because the functional unit required to
execute the next instruction is busy.

To reduce stalls due to pipe busy:

▶ Prefer high-throughput operations over low-throughput operations. If
precision doesn’t matter, use float instead of double precision arithmetic.

▶ Look for arithmetic improvements (e.g., order-of-operations changes)
that may be mathematically valid but unsafe for the compiler to do au-
tomatically. Due to e.g. floating-point non-associativity.

▶ Stalled for not selected - Warp was ready but did not get a chance to issue as some
other warp was selected for issue. This reason generally indicates that kernel is
possibly optimized well but in some cases, you may be able to decrease occupancy
without impacting latency hiding, and doing so may help improve cache hit rates.

▶ Stalled for other - Warp is blocked for an uncommon reason like compiler or hard-
ware reasons. Developers do not have control over these stalls.

121

Profiler, Release 12.9

122 Chapter 14. Warp State

Chapter 15. Migrating to Nsight Tools
from Visual Profiler and
nvprof

Visual Profiler and nvprof are deprecated and will be removed in a future CUDA release. It is recom-
mended to use next-generation tools NVIDIA Nsight Systems for GPU and CPU sampling and tracing
and NVIDIA Nsight Compute for GPU kernel profiling. The new tools still offer the same profiling /
optimization / deployment workflow. The type of data you need to look at is the same. The commands
have changed and the output looks a little different. The new tools are powerful, fast, and feature rich,
allowing you to find solutions even more quickly.

NVIDIA Nsight Systems is a system-wide performance analysis tool designed to visualize an applica-
tion’s algorithms, help you identify the largest opportunities to optimize, and tune to scale efficiently
across any quantity or size of CPUs and GPUs; from large servers to our smallest SoC. Refer to the
Migrating from NVIDIA nvprof section section in the NVIDIA Nsight Systems User Guide

NVIDIA Nsight Compute is an interactive kernel profiler for CUDA applications. It provides detailed
performance metrics and API debugging via a user interface and command line tool. In addition, its
baseline feature allows users to compare results within the tool. Nsight Compute provides a customiz-
able and data-driven user interface and metric collection and can be extended with analysis scripts
for post-processing results. Refer to the nvprof Transition Guide section in the Nsight Compute CLI
document. Refer to the Visual Profiler Transition Guide section in the Nsight Compute document.

Also refer to the blog posts on how to move your development to the next-generation tools:

1. Migrating to Nsight Tools from Visual Profiler and nvprof

2. Transitioning to Nsight Systems from Visual Profiler and nvprof

3. Using Nsight Compute to Inspect your Kernels

123

https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-systems
https://docs.nvidia.com/nsight-systems/UserGuide/index.html#migrate-nvprof
https://developer.nvidia.com/nsight-compute
https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html#nvprof-guide
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html#nvvp-guide
https://devblogs.nvidia.com/migrating-nvidia-nsight-tools-nvvp-nvprof
https://devblogs.nvidia.com/transitioning-nsight-systems-nvidia-visual-profiler-nvprof
https://devblogs.nvidia.com/using-nsight-compute-to-inspect-your-kernels

Profiler, Release 12.9

Table 1: Table 7. Which tools are available on which GPU archi-
tectures

GPU architecture Visual Profiler and
nvprof

Nsight Sys-
tems

Nsight Com-
pute

Maxwell Yes No No

Pascal Yes Yes No

Volta Yes Yes Yes

Turing Yes* (only tracing) Yes Yes

Ampere and later GPU architec-
tures

No Yes Yes

* Only Tracing functionality is supported - Timeline, Activity, API. CUDA kernel profiling functionality
i.e. collecting GPU performance metrics is not supported.

The following table maps the key features of Visual Profiler and nvprof to the NVIDIA Nsight tools

Table 2: Table 8. Mapping of key Visual Profiler and nvprof fea-
tures

Visual Profiler/nvprof feature categories Nsight Systems Nsight Compute

Timeline/Activity/API Tracing Yes

CPU Sampling Yes

OpenACC Yes

OpenMP Yes

MPI Yes

MPS Yes

Application Dependency Analysis

Unified Memory Transfers Yes

Unified Memory Page Faults Yes

Application Unified Memory Analysis

Application NVLink Analysis Yes (per kernel)

Events and Metrics (per kernel) Yes

Guided and Unguided Kernel Analysis Yes

Kernel Source-Disassembly View Yes

Kernel PC Sampling Yes

NVTX Yes Yes

Remote Profiling Yes Yes

124 Chapter 15. Migrating to Nsight Tools from Visual Profiler and nvprof

Chapter 16. Profiler Known Issues

The following are known issues with the current release.

▶ Visual Profiler and nvprof don’t support devices with compute capability 8.0 and higher. Next-gen
tools NVIDIA Nsight Compute and NVIDIA Nsight Systems should be used instead.

▶ Starting with the CUDA 11.0, Visual Profiler and nvprof don’t support macOS as the target plat-
form. However Visual Profiler supported remote profiling from the macOS host until CUDA 12.5
release. This support is dropped in the CUDA 12.6 release. Visual Profiler was provided in a sepa-
rate installer package to maintain the remote profiling workflow for CUDA developers on macOS.
See Developer Tools for macOS for download instructions.

▶ Starting with CUDA 10.2, Visual Profiler and nvprof use dynamic/shared CUPTI library. Thus it’s
required to set the path to the CUPTI library before launching Visual Profiler and nvprof on Win-
dows. CUPTI library can be found at "C:\Program Files\NVIDIA GPU Computing Toolkit\
CUDA\<cuda-toolkit>\extras\CUPTI\lib64" for Windows.

▶ A security vulnerability issue required profiling tools to disable features using GPU performance
counters for non-root or non-admin users when using a Windows 419.17 or Linux 418.43 or later
driver. By default, NVIDIA drivers require elevated permissions to access GPU performance coun-
ters. On Tegra platforms, profile as root or using sudo. On other platforms, you can either start
profiling as root or using sudo, or by enabling non-admin profiling. More details about the issue
and the solutions can be found on the ERR_NVGPUCTRPERM web page.

Note: Visual Profiler and nvprof allow tracing features for non-root and non-admin users on
desktop platforms only, Tegra platforms require root or sudo access.

▶ Use of the environment variable LD_PRELOAD to load some versions of MPI libraries may result
in a crash on Linux platforms. The workaround is to start the profiling session as a root user. For
the normal user, the SUID permission for nvprof must be set.

▶ To ensure that all profile data is collected and flushed to a file, cudaDeviceSynchronize() followed
by either cudaProfilerStop() or cuProfilerStop() should be called before the application exits. Re-
fer the section Flush Profile Data.

▶ Concurrent kernel mode can add significant overhead if used on kernels that execute a large
number of blocks and that have short execution durations.

▶ If the kernel launch rate is very high, the device memory used to collect profiling data can run
out. In such a case some profiling data might be dropped. This will be indicated by a warning.

▶ When profiling an application that uses CUDA Dynamic Parallelism (CDP) there are several limi-
tations to the profiling tools.

▶ CDP kernel launch tracing has a limitation for devices with compute capability 7.0 and higher.
Profiler traces all the host launched kernels until it encounters a host launched kernel which

125

https://developer.nvidia.com/nvidia-cuda-toolkit-developer-tools-mac-hosts
https://developer.nvidia.com/ERR_NVGPUCTRPERM
index.html#flush-profile-data

Profiler, Release 12.9

launches child kernels. Subsequent kernels are not traced.

▶ Source level analysis is not supported on devices with compute capability 7.0 and higher.

▶ The Visual Profiler timeline does not display CUDA API calls invoked from within device-
launched kernels.

▶ The Visual Profiler does not display detailed event, metric, and source-level results for
device-launched kernels. Event, metric, and source-level results collected for CPU-launched
kernels will include event, metric, and source-level results for the entire call-tree of kernels
launched from within that kernel.

▶ The nvprof event/metric output does not include results for device-launched kernels.
Events/metrics collected for CPU-launched kernels will include events/metrics for the en-
tire call-tree of kernels launched from within that kernel.

▶ Profiling APK binaries is not supported.

▶ Unified memory profiling is not supported on the ARM architecture (aarch64).

▶ When profiling an application in which a device kernel was stopped due to an assertion the pro-
filing data will be incomplete and a warning or error message is displayed. But the message is
not precise as the exact cause of the failure is not detected.

▶ For dependency analysis, in cases where activity timestamps in the trace are slightly distorted
such that they violate the programming model constraints, no dependencies or waiting times
can be analyzed.

▶ Devices with compute capability 6.0 and higher introduce a new feature, compute preemption,
to give fair chance for all compute contexts while running long tasks. With compute preemption
feature-

▶ If multiple contexts are running in parallel it is possible that long kernels will get preempted.

▶ Some kernels may get preempted occasionally due to timeslice expiry for the context.

If kernel has been preempted, the time the kernel spends preempted is still counted towards
kernel duration. This can affect the kernel optimization priorities given by Visual Profiler as there
is randomness introduced due to preemption.

Compute preemption can affect events and metrics collection. The following are known issues with
the current release:

▶ Events and metrics collection for a MPS client can result in higher counts than expected on de-
vices with compute capability 7.0 and higher, since MPS client may get preempted due to termi-
nation of another MPS client.

▶ Events warps_launched and sm_cta_launched and metric inst_per_warp might provide
higher counts than expected on devices with compute capability 6.0 and 6.1. Metric
unique_warps_launched can be used in place of warps_launched to get correct count of actual
warps launched as it is not affected by compute preemption.

▶ To avoid compute preemption affecting profiler results try to isolate the context being profiled:

▶ Run the application on secondary GPU where display is not connected.

▶ On Linux if the application is running on the primary GPU where the display driver is con-
nected then unload the display driver.

▶ Run only one process that uses GPU at one time.

▶ Devices with compute capability 6.0 and higher support demand paging. When the kernel is
scheduled for the first time, all the pages allocated using cudaMallocManaged and that are re-
quired for execution of the kernel are fetched in the global memory when GPU faults are gen-

126 Chapter 16. Profiler Known Issues

Profiler, Release 12.9

erated. Profiler requires multiple passes to collect all the metrics required for kernel analysis.
The kernel state needs to be saved and restored for each kernel replay pass. For devices with
compute capability 6.0 and higher and platforms supporting Unified memory, in the first kernel
iteration the GPU faults will be generated and all pages will be fetched in the global memory. Sec-
ond iteration onwards GPU page faults will not occur. This will significantly affect the memory
related events and timing. The time taken from trace will include the time required to fetch the
pages but most of the metrics profiled in multiple iterations will not include time/cycles required
to fetch the pages. This causes inconsistency in the profiler results.

▶ CUDA device enumeration and order, typically controlled through environment variables
CUDA_VISIBLE_DEVICES andCUDA_DEVICE_ORDER, should remain the same for the profiler and
the application.

▶ CUDA profiling might not work on systems that contain a mixture of supported and unsupported
GPUs. On such systems, either set option --devices to supported devices in nvprof, or set
environment variable CUDA_VISIBLE_DEVICES before launching nvprof or the Visual Profiler.

▶ Because of the low resolution of the timer on Windows, the start and end timestamps can be
same for activities having short execution duration on Windows. As a result, the nvprof and
Visual Profiler report the following warning: “Found N invalid records in the result.”

▶ Profiler cannot interoperate with other Nvidia tools such as cuda-gdb, cuda-memcheck, Nsight
Systems and Nsight Compute.

▶ OpenACC profiling might fail when OpenACC library is linked statically in the user application.
This happens due to the missing definition of the OpenACC API routines needed for the OpenACC
profiling, as compiler might ignore definitions for the functions not used in the application. This
issue can be mitigated by linking the OpenACC library dynamically.

▶ Visual Profiler and nvprof versions shipped in the CUDA Toolkit 11.7 and CUDA Toolkit 11.8 don’t
support Kepler (sm_35 and sm_37) devices. This issue can be resolved by upgrading the CUPTI
library. Refer to the webpages CUPTI 11.7 and CUPTI 11.8 for location of the CUPTI packages
having the support for these Kepler devices.

▶ Applications using Optix SDK cannot be profiled using Visual Profiler and nvprof starting with the
CUDA 12.4 release.

▶ Profiler is not supported on below system configurations:

▶ 64-bit ARM Server CPU architecture (arm64 SBSA).

▶ Virtual GPUs (vGPU).

▶ Windows Subsystem for Linux (WSL).

▶ NVIDIA Crypto Mining Processors (CMP). For more information, please visit the web page.

Visual Profiler

The following are known issues related to Visual Profiler:

▶ Visual Profiler requires Java Runtime Environment (JRE) 1.8 to be available on the local system.
However, starting with CUDA Toolkit version 10.1 Update 2, the JRE is no longer included in the
CUDA Toolkit due to Oracle upgrade licensing changes. The user must install the required version
of JRE 1.8 in order to use Visual Profiler. Refer to the section Setting up Java Runtime Environ-
ment for more information.

▶ Some analysis results require metrics that are not available on all devices. When these analyses
are attempted on a device where the metric is not available the analysis results will show that
the required data is “not available”.

▶ Using the mouse wheel button to scroll does not work within the Visual Profiler on Windows.

127

https://developer.nvidia.com/cupti-ctk11_7
https://developer.nvidia.com/cupti-ctk11_8
https://developer.nvidia.com/ERR_NVCMPGPU
index.html#setting-up-java-runtime-environment
index.html#setting-up-java-runtime-environment

Profiler, Release 12.9

▶ Since Visual Profiler uses nvprof for collecting profiling data, nvprof limitations also apply to
Visual Profiler.

▶ Visual Profiler cannot load profiler data larger than the memory size limited by JVM or available
memory on the system. Refer Improve Loading of Large Profiles for more information.

▶ Visual Profiler global menus do not show properly or are empty on some versions of Ubuntu.
One workaround is to set environment variable “UBUNTU_MENUPROXY=0” before running Visual
Profiler

▶ In the Visual Profiler the NVLink Analysis diagram can be incorrect after scrolling the diagram.
This can be corrected by horizontally resizing the diagram panel.

▶ Visual Profiler might not be able to show NVLink events on the timeline when large number of
samples are collected. To work around this issue, refresh the timeline by doing zoom-in or zoom-
out. Alternate solution is to save and open the session.

▶ For unified memory profiling on a remote setup having different version of GCC than host ma-
chine, Visual Profiler might not be able to show the source code location for CPU page fault
events.

▶ For unified memory profiling on a remote setup having different architecture than the host ma-
chine (x86 versus POWER), Visual Profiler might not be able to show the source code location for
CPU page fault and allocation tracking events.

▶ Visual Profiler is not supported on the ARM architecture (aarch64). You can use Remote Profiling.
Refer the Remote Profiling section for more information.

▶ Visual Profiler doesn’t support remote profiling for the Android target. The workaround is to run
nvprof on the target and load the nvprof output in the Visual Profiler.

▶ For remote profiling, the CUDA Toolkit installed on the host system must support the target
device on the remote system.

▶ Visual Profiler might show strange symbol fonts on platforms which don’t have required fonts
installed.

▶ When using remote profiling if there is a connection failure due to key exchange failure, then you
will get an error message “Unable to establish shell connection to ‘user@xxx’”. You can follow
these steps to mitigate the issue.

1. Check the SSH daemon config file (default path is /etc/ssh/sshd_config) on the target

2. Comment out lines starting with:

KexAlgorithms

HostbasedAcceptedKeyTypes

Ciphers

HostKey

AuthorizedKeysFile

3. Re-generate keys

sudo ssh-keygen -t rsa -f ∕etc∕ssh∕ssh_host_rsa_key

4. Restart sshd service

128 Chapter 16. Profiler Known Issues

index.html#improve-loading-of-large-profiles
index.html#remote-profiling
mailto:'user@xxx

Profiler, Release 12.9

sudo services sshd restart

▶ Accessing the local help document from Visual Profiler leads to HTTP Error 500. The workaround
is to refer to this document (online document or pdf).

▶ Visual Profiler can’t remote into a target machine running Ubuntu 20.04 and later.

nvprof

The following are known issues related to nvprof:

▶ nvprof cannot profile processes that fork() but do not then exec().

▶ nvprof assumes it has access to the temporary directory on the system, which it uses to store
temporary profiling data. On Linux the default is ∕tmp. On Windows it’s specified by the system
environment variables. To specify a custom location, change $TMPDIR on Linux or %TMP% on
Windows.

▶ When multiple nvprof processes are run simultaneously on the same node, there is an issue of
contention for files under the temporary directory. One workaround is to set a different tempo-
rary directory for each process.

▶ Multiple nvprof processes running concurrently using application replay may generate incorrect
results or no results at all. To work around this issue you need to set a unique temporary directory
per process. Set NVPROF_TMPDIR before launching nvprof.

▶ To profile application on Android $TMPDIR environment variable has to be defined and point to a
user-writable folder.

▶ Profiling results might be inconsistent when auto boost is enabled. nvprof tries to disable auto
boost by default, it might fail to do so in some conditions, but profiling will continue. nvprof will
report a warning when auto boost cannot be disabled. Note that auto boost is supported only on
certain Tesla devices from the Kepler+ family.

▶ Profiling a C++ application which overloads the new operator at the global scope and uses any
CUDA APIs like cudaMalloc() or cudaMallocManaged() inside the overloaded new operator
will result in a hang.

▶ NVTX annotations will not work when profiling all processes using the nvprof op-
tion --profile-all-processes. It is advised to set the environment variable
NVTX_INJECTION64_PATH to point to the profiler injection library, libcuinj64.so on Linux
and cuinj64_*.dll on Windows, before launching the application.

Events and Metrics

The following are known issues related to Events and Metrics profiling:

▶ Profiling features for devices with compute capability 7.5 and higher are supported in the NVIDIA
Nsight Compute. Visual Profiler does not support Guided Analysis, some stages under Unguided
Analysis and events and metrics collection for devices with compute capability 7.5 and higher.
One can launch the NVIDIA Nsight Compute UI for devices with compute capability 7.5 and higher
from Visual Profiler. Also nvprof does not support query and collection of events and metrics,
source level analysis and other options used for profiling on devices with compute capability 7.5
and higher. The NVIDIA Nsight Compute command line interface can be used for these features.

▶ Events or metrics collection may significantly change the overall performance characteristics of
the application because all kernel executions are serialized on the GPU.

▶ In event or metric profiling, kernel launches are blocking. Thus kernels waiting on updates from
host or another kernel may hang. This includes synchronization between the host and the device

129

https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-compute

Profiler, Release 12.9

build upon value-based CUDA stream synchronization APIs such as cuStreamWaitValue32()
and cuStreamWriteValue32().

▶ Event and metric collection requiring multiple passes will not work with the nvprof kernel replay
option for any kernel performing IPC or data communication between the kernel and CPU, kernel
and regular CPU allocated memory, kernel and Peer GPU, or kernel and other Peer devices (e.g.
GPU direct).

▶ For some metrics, the required events can only be collected for a single CUDA context. For an
application that uses multiple CUDA contexts, these metrics will only be collected for one of the
contexts. The metrics that can be collected only for a single CUDA context are indicated in the
metric reference tables.

▶ Some metric values are calculated assuming a kernel is large enough to occupy all device multi-
processors with approximately the same amount of work. If a kernel launch does not have this
characteristic, then those metric values may not be accurate.

▶ Some metrics are not available on all devices. To see a list of all available metrics on a particular
NVIDIA GPU, type nvprof --query-metrics. You can also refer to the metric reference tables.

▶ The profilers may fail to collect events or metrics when “application replay” mode is turned on.
This is most likely to happen if the application is multi-threaded and non-deterministic. Instead
use “kernel replay” mode in this case.

▶ For applications that allocate large amount of device memory, the profiler may take significant
time to collect all events or metrics when “kernel replay” mode is used. Instead use “application
replay” mode in this case.

▶ Here are a couple of reasons why Visual Profiler may fail to gather metric or event information.

▶ More than one tool is trying to access the GPU. To fix this issue please make sure only one
tool is using the GPU at any given point. Tools include Nsight Compute, Nsight Systems,
Nsight Graphics, and applications that use either CUPTI or PerfKit API (NVPM) to read event
values.

▶ More than one application is using the GPU at the same time Visual Profiler is profiling a
CUDA application. To fix this issue please close all applications and just run the one with
Visual Profiler. Interacting with the active desktop should be avoided while the application
is generating event information. Please note that for some types of event Visual Profiler
gathers events for only one context if the application is using multiple contexts within the
same application.

▶ When collecting events or metrics with the --events, --metrics, or --analysis-metrics
options, nvprof will use kernel replay to execute each kernel multiple times as needed to collect
all the requested data. If a large number of events or metrics are requested then a large number
of replays may be required, resulting in a significant increase in application execution time.

▶ Some events are not available on all devices. To see a list of all available events on a particular
device, type nvprof --query-events.

▶ Enabling certain events can cause GPU kernels to run longer than the driver’s watchdog time-out
limit. In these cases the driver will terminate the GPU kernel resulting in an application error and
profiling data will not be available. Please disable the driver watchdog time out before profiling
such long running CUDA kernels

▶ On Linux, setting the X Config option Interactive to false is recommended.

▶ For Windows, detailed information about TDR (Timeout Detection and Recovery) and how
to disable it is available at https://docs.microsoft.com/en-us/windows-hardware/drivers/
display/timeout-detection-and-recovery

130 Chapter 16. Profiler Known Issues

index.html#metrics-reference
index.html#metrics-reference
https://docs.microsoft.com/en-us/windows-hardware/drivers/display/timeout-detection-and-recovery
https://docs.microsoft.com/en-us/windows-hardware/drivers/display/timeout-detection-and-recovery

Profiler, Release 12.9

▶ nvprof can give out of memory error for event and metrics profiling, it could be due to large
number of instructions in the kernel.

▶ Profiling results might be incorrect for CUDA applications compiled with nvcc version older than
9.0 for devices with compute capability 6.0 and 6.1. It is advised to recompile the application with
nvcc version 9.0 or later. Ignore this warning if code is already compiled with the recommended
nvcc version.

▶ PC Sampling is not supported on Tegra platforms.

▶ Profiling is not supported for multidevice cooperative kernels, that is, kernels launched by us-
ing the API functions cudaLaunchCooperativeKernelMultiDevice or cuLaunchCooperativeKernel-
MultiDevice.

▶ Profiling is not supported for CUDA kernel nodes launched by a CUDA Graph.

131

Profiler, Release 12.9

132 Chapter 16. Profiler Known Issues

Chapter 17. Changelog

Profiler changes in CUDA 12.8

List of changes done as part of the CUDA Toolkit 12.8 release.

▶ Visual Profiler and nvprof are deprecated and will be removed in a future CUDA release.

▶ General bug fixes. No new feature is added in this release.

Profiler changes in CUDA 12.6

List of changes done as part of the CUDA Toolkit 12.6 release.

▶ Dropped Visual Profiler’s remote profiling support from the macOS host.

▶ General bug fixes. No new feature is added in this release.

Profiler changes in CUDA 12.5

List of changes done as part of the CUDA Toolkit 12.5 release.

▶ Visual Profiler’s remote profiling support from the macOS host is deprecated. It will be dropped
in an upcoming release.

▶ Support for IBM Power architecture is dropped.

▶ General bug fixes. No new feature is added in this release.

Profiler changes in CUDA 12.4

List of changes done as part of the CUDA Toolkit 12.4 release.

▶ General bug fixes. No new feature is added in this release.

Profiler changes in CUDA 12.3

List of changes done as part of the CUDA Toolkit 12.3 release.

▶ General bug fixes. No new feature is added in this release.

Profiler changes in CUDA 12.2

List of changes done as part of the CUDA Toolkit 12.2 release.

▶ General bug fixes. No new feature is added in this release.

Profiler changes in CUDA 12.1

List of changes done as part of the CUDA Toolkit 12.1 release.

▶ General bug fixes. No new feature is added in this release.

Profiler changes in CUDA 12.0

List of changes done as part of the CUDA Toolkit 12.0 release.

133

Profiler, Release 12.9

▶ General bug fixes. No new feature is added in this release.

Profiler changes in CUDA 11.8

List of changes done as part of the CUDA Toolkit 11.8 release.

▶ General bug fixes. No new feature is added in this release.

Profiler changes in CUDA 11.7

List of changes done as part of the CUDA Toolkit 11.7 release.

▶ General bug fixes. No new feature is added in this release.

Profiler changes in CUDA 11.6

List of changes done as part of the CUDA Toolkit 11.6 release.

▶ General bug fixes. No new feature is added in this release.

Profiler changes in CUDA 11.5

List of changes done as part of the CUDA Toolkit 11.5 release.

▶ General bug fixes. No new feature is added in this release.

Profiler changes in CUDA 11.4

List of changes done as part of the CUDA Toolkit 11.4 release.

▶ General bug fixes. No new feature is added in this release.

Profiler changes in CUDA 11.3

List of changes done as part of the CUDA Toolkit 11.3 release.

▶ Visual Profiler extends remote profiling support to macOS host running version 11 (Big Sur) on
Intel x86_64 architecture.

▶ General bug fixes.

Profiler changes in CUDA 11.2

List of changes done as part of the CUDA Toolkit 11.2 release.

▶ General bug fixes. No new feature is added in this release.

Profiler changes in CUDA 11.1

List of changes done as part of the CUDA Toolkit 11.1 release.

▶ General bug fixes. No new feature is added in this release.

Profiler changes in CUDA 11.0

List of changes done as part of the CUDA Toolkit 11.0 release.

▶ Visual Profiler and nvprof don’t support devices with compute capability 8.0 and higher. Next-gen
tools NVIDIA Nsight Compute and NVIDIA Nsight Systems should be used instead.

▶ Starting with the CUDA 11.0, Visual Profiler and nvprof won’t support Mac as the target plat-
form. However Visual Profiler will continue to support remote profiling from the Mac host. Visual
Profiler will be provided in a separate installer package to maintain the remote profiling workflow
for CUDA developers on Mac.

▶ Added support to trace Optix applications.

▶ Fixed the nvprof option –annotate-mpi which was broken since CUDA 10.0.

134 Chapter 17. Changelog

Profiler, Release 12.9

Profiler changes in CUDA 10.2

List of changes done as part of the CUDA Toolkit 10.2 release.

▶ Visual Profiler and nvprof allow tracing features for non-root and non-admin users on desktop
platforms. Note that events and metrics profiling is still restricted for non-root and non-admin
users. More details about the issue and the solutions can be found on this web page.

▶ Starting with CUDA 10.2, Visual Profiler and nvprof use dynamic/shared CUPTI library. Thus it’s
required to set the path to the CUPTI library before launching Visual Profiler and nvprof. CUPTI li-
brary can be found at ∕usr∕local∕<cuda-toolkit>∕extras∕CUPTI∕lib64 or ∕usr∕local∕
<cuda-toolkit>∕targets∕<arch>∕lib for POSIX platforms and "C:\Program Files\
NVIDIA GPU Computing Toolkit\CUDA\<cuda-toolkit>\extras\CUPTI\lib64" for Win-
dows.

▶ Profilers no longer turn off the performance characteristics of CUDA Graph when tracing the
application.

▶ Added an option to enable/disable the OpenMP profiling in Visual Profiler.

▶ Fixed the incorrect timing issue for the asynchronous cuMemset/cudaMemset activity.

Profiler changes in CUDA 10.1 Update 2

List of changes done as part of the CUDA Toolkit 10.1 Update 2 release.

▶ This release is focused on bug fixes and stability of the profiling tools.

▶ A security vulnerability issue required profiling tools to disable all the features for non-root or
non-admin users. As a result, Visual Profiler and nvprof cannot profile the application when using
a Windows 419.17 or Linux 418.43 or later driver. More details about the issue and the solutions
can be found on this web page.

▶ Visual Profiler requires Java Runtime Environment (JRE) 1.8 to be available on the local system.
However, starting with CUDA Toolkit version 10.1 Update 2, the JRE is no longer included in the
CUDA Toolkit due to Oracle upgrade licensing changes. The user must install the required version
of JRE 1.8 in order to use Visual Profiler. Refer to the section Setting up Java Runtime Environ-
ment for more information.

Profiler changes in CUDA 10.1

List of changes done as part of the CUDA Toolkit 10.1 release.

▶ This release is focused on bug fixes and stability of the profiling tools.

▶ Support for NVTX string registration API nvtxDomainRegisterStringA().

Profiler changes in CUDA 10.0

List of changes done as part of the CUDA Toolkit 10.0 release.

▶ Added tracing support for devices with compute capability 7.5.

▶ Profiling features for devices with compute capability 7.5 and higher are supported in the NVIDIA
Nsight Compute. Visual Profiler does not support Guided Analysis, some stages under Unguided
Analysis and events and metrics collection for devices with compute capability 7.5 and higher.
One can launch the NVIDIA Nsight Compute UI for devices with compute capability 7.5 and higher
from Visual Profiler. Also nvprof does not support query and collection of events and metrics,
source level analysis and other options used for profiling on devices with compute capability 7.5
and higher. The NVIDIA Nsight Compute command line interface can be used for these features.

▶ Visual Profiler and nvprof now support OpenMP profiling where available. See OpenMP for more
information.

135

https://developer.nvidia.com/nvidia-development-tools-solutions-ERR_NVGPUCTRPERM-permission-issue-performance-counters
https://developer.nvidia.com/nvidia-development-tools-solutions-ERR_NVGPUCTRPERM-permission-issue-performance-counters
index.html#setting-up-java-runtime-environment
index.html#setting-up-java-runtime-environment
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-compute
index.html#openmp

Profiler, Release 12.9

▶ Tracing support for CUDA kernels, memcpy and memset nodes launched by a CUDA Graph.

▶ Profiler supports version 3 of NVIDIA Tools Extension API (NVTX). This is a header-only implemen-
tation of NVTX version 2.

Profiler changes in CUDA 9.2

List of changes done as part of the CUDA Toolkit 9.2 release.

▶ The Visual Profiler allows to switch multiple segments to non-segment mode for Unified Memory
profiling on the timeline. Earlier it was restircted to single segment only.

▶ The Visual Profiler shows a summary view of the memory hierarchy of the CUDA programming
model. This is available for devices with compute capability 5.0 and higher. Refer Memory Statis-
tics for more information.

▶ The Visual Profiler can correctly import profiler data generated by nvprof when the option
--kernels kernel-filter is used.

▶ nvprof supports display of basic PCIe topolgy including PCI bridges between NVIDIA GPUs and
Host Bridge.

▶ To view and analyze bandwidth of memory transfers over PCIe topologies, new set of metrics
to collect total data bytes transmitted and recieved through PCIe are added. Those give accu-
mulated count for all devices in the system. These metrics are collected at the device level for
the entire application. And those are made available for devices with compute capability 5.2 and
higher.

▶ The Visual Profiler and nvprof added support for new metrics:

▶ Instruction executed for different types of load and store

▶ Total number of cached global/local load requests from SM to texture cache

▶ Global atomic/non-atomic/reduction bytes written to L2 cache from texture cache

▶ Surface atomic/non-atomic/reduction bytes written to L2 cache from texture cache

▶ Hit rate at L2 cache for all requests from texture cache

▶ Device memory (DRAM) read and write bytes

▶ The utilization level of the multiprocessor function units that execute tensor core instruc-
tions for devices with compute capability 7.0

▶ nvprof allows to collect tracing infromation along with the profiling information in the same pass.
Use new option --trace <api|gpu> to enable trace along with collection of events/metrics.

Profiler changes in CUDA 9.1

List of changes done as part of the CUDA Toolkit 9.1 release.

▶ The Visual Profiler shows the breakdown of the time spent on the CPU for each thread in the
CPU Details View.

▶ The Visual Profiler supports a new option to select the PC sampling frequency.

▶ The Visual Profiler shows NVLink version in the NVLink topology.

▶ nvprof provides the correlation ID when profiling data is generated in CSV format.

Profiler changes in CUDA 9.0

List of changes done as part of the CUDA Toolkit 9.0 release.

▶ Visual Profiler and nvprof now support profiling on devices with compute capability 7.0.

136 Chapter 17. Changelog

index.html#memory-statistics
index.html#memory-statistics
index.html#cpu-details-view

Profiler, Release 12.9

▶ Tools and extensions for profiling are hosted on Github at https://github.com/NVIDIA/
cuda-profiler

▶ There are several enhancements to Unified Memory profiling:

▶ The Visual Profiler now associates unified memory events with the source code at which the
memory is allocated.

▶ The Visual Profiler now correlates a CPU page fault to the source code resulting in the page
fault.

▶ New Unified Memory profiling events for page thrashing, throttling and remote map are
added.

▶ The Visual Profiler provides an option to switch between segment and non-segment mode
on the timeline.

▶ The Visual Profiler supports filtering of Unified Memory profiling events based on the virtual
address, migration reason or the page fault access type.

▶ CPU page fault support is extended to Mac platforms.

▶ Tracing and profiling of cooperative kernel launches is supported.

▶ The Visual Profiler shows NVLink events on the timeline.

▶ The Visual Profiler color codes links in the NVLink topology diagram based on throughput.

▶ The Visual Profiler supports new options to make it easier to do multi-hop remote profiling.

▶ nvprof supports a new option to select the PC sampling frequency.

▶ The Visual Profiler supports remote profiling to systems supporting ssh key exchange algorithms
with a key length of 2048 bits.

▶ OpenACC profiling is now also supported on non-NVIDIA systems.

▶ nvprof flushes all profiling data when a SIGINT or SIGKILL signal is encountered.

Profiler changes in CUDA 8.0

List of changes done as part of the CUDA Toolkit 8.0 release.

▶ Visual Profiler and nvprof now support NVLink analysis for devices with compute capability 6.0.
See NVLink view for more information.

▶ Visual Profiler and nvprof now support dependency analysis which enables optimization of the
program runtime and concurrency of applications utilizing multiple CPU threads and CUDA
streams. It allows computing the critical path of a specific execution, detect waiting time and
inspect dependencies between functions executing in different threads or streams. See Depen-
dency Analysis for more information.

▶ Visual Profiler and nvprof now support OpenACC profiling. See OpenACC for more information.

▶ Visual Profiler now supports CPU profiling. Refer CPU Details View and CPU Source View for more
information.

▶ Unified Memory profiling now provides GPU page fault information on devices with compute
capability 6.0 and 64 bit Linux platforms.

▶ Unified Memory profiling now provides CPU page fault information on 64 bit Linux platforms.

▶ Unified Memory profiling support is extended to the Mac platform.

137

https://github.com/NVIDIA/cuda-profiler
https://github.com/NVIDIA/cuda-profiler
index.html#nvlink-view
index.html#dependency-analysis
index.html#dependency-analysis
index.html#openacc
index.html#cpu-details-view
index.html#cpu-source-view

Profiler, Release 12.9

▶ The Visual Profiler source-disassembly view has several enhancements. There is now a single
integrated view for the different source level analysis results collected for a kernel instance. Re-
sults of different analysis steps can be viewed together. See Source-Disassembly View for more
information.

▶ The PC sampling feature is enhanced to point out the true latency issues for devices with com-
pute capability 6.0 and higher.

▶ Support for 16-bit floating point (FP16) data format profiling.

▶ If the new NVIDIA Tools Extension API(NVTX) feature of domains is used then Visual Profiler and
nvprof will show the NVTX markers and ranges grouped by domain.

▶ The Visual Profiler now adds a default file extension .nvvp if an extension is not specified when
saving or opening a session file.

▶ The Visual Profiler now supports timeline filtering options in create new session and import di-
alogs. Refer “Timeline Options” section under Creating a Session for more details.

Profiler changes in CUDA 7.5

List of changes done as part of the CUDA Toolkit 7.5 release.

▶ Visual Profiler now supports PC sampling for devices with compute capability 5.2. Warp
state including stall reasons are shown at source level for kernel latency analysis. See PC Sam-
pling View for more information.

▶ Visual Profiler now supports profiling child processes and profiling all processes launched
on the same system. See Creating a Session for more information on the new multi-process
profiling options. For profiling CUDA applications using Multi-Process Service(MPS) see MPS
profiling with Visual Profiler

▶ Visual Profiler import now supports browsing and selecting files on a remote system.

▶ nvprof now supports CPU profiling. See CPU Sampling for more information.

▶ All events and metrics for devices with compute capability 5.2 can now be collected accurately
in presence of multiple contexts on the GPU.

Profiler changes in CUDA 7.0

The profiling tools contain a number of changes and new features as part of the CUDA Toolkit 7.0
release.

▶ The Visual Profiler has been updated with several enhancements:

▶ Performance is improved when loading large data file. Memory usage is also reduced.

▶ Visual Profiler timeline is improved to view multi-gpu MPS profile data.

▶ Unified memory profiling is enhanced by providing fine grain data transfers to and from the
GPU, coupled with more accurate timestamps with each transfer.

▶ nvprof has been updated with several enhancements:

▶ All events and metrics for devices with compute capability 3.x and 5.0 can now be collected
accurately in presence of multiple contexts on the GPU.

Profiler changes in CUDA 6.5

List of changes done as part of the CUDA Toolkit 6.5 release.

▶ The Visual Profiler kernel memory analysis has been updated with several enhancements:

▶ ECC overhead is added which provides a count of memory transactions required for ECC

138 Chapter 17. Changelog

index.html#source-disassembly-view
index.html#creating-a-session
index.html#pc-sampling-view
index.html#pc-sampling-view
index.html#creating-a-session
index.html#mps-profiling-with-visual-profiler
index.html#mps-profiling-with-visual-profiler
index.html#cpu-sampling

Profiler, Release 12.9

▶ Under L2 cache a split up of transactions for L1 Reads, L1 Writes, Texture Reads, Atomic
and Noncoherent reads is shown

▶ Under L1 cache a count of Atomic transactions is shown

▶ The Visual Profiler kernel profile analysis view has been updated with several enhancements:

▶ Initially the instruction with maximum execution count is highlighted

▶ A bar is shown in the background of the counter value for the “Exec Count” column to make
it easier to identify instruction with high execution counts

▶ The current assembly instruction block is highlighted using two horizontal lines around the
block. Also “next” and “previous” buttons are added to move to the next or previous block
of assembly instructions.

▶ Syntax highlighting is added for the CUDA C source.

▶ Support is added for showing or hiding columns.

▶ A tooltip describing each column is added.

▶ nvprof now supports a new application replay mode for collecting multiple events and metrics.
In this mode the application is run multiple times instead of using kernel replay. This is useful
for cases when the kernel uses a large amount of device memory and use of kernel replay can be
slow due to a high overhead of saving and restoring device memory for each kernel replay run.
See Event/metric Summary Mode for more information. Visual Profiler also supports this new
application replay mode and it can enabled in the Visual Profiler “New Session” dialog.

▶ Visual Profiler now displays peak single precision flops and double precision flops for a GPU under
device properties.

▶ Improved source-to-assembly code correlation for CUDA Fortran applications compiled by the
PGI CUDA Fortran compiler.

Profiler changes in CUDA 6.0

List of changes done as part of the CUDA Toolkit 6.0 release.

▶ Unified Memory is fully supported by both the Visual Profiler and nvprof. Both profilers allow
you to see the Unified Memory related memory traffic to and from each GPU on your system.

▶ The standalone Visual Profiler, nvvp, now provides a multi-process timeline view. You can import
multiple timeline data sets collected with nvprof into nvvp and view them on the same time-
line to see how they are sharing the GPU(s). This multi-process import capability also includes
support for CUDA applications using MPS. See MPS Profiling for more information.

▶ The Visual Profiler now supports a remote profiling mode that allows you to collect a profile on
a remote Linux system and view the timeline, analysis results, and detailed results on your local
Linux, Mac, or Windows system. See Remote Profiling for more information.

▶ The Visual Profiler analysis system now includes a side-by-side source and disassembly view an-
notated with instruction execution counts, inactive thread counts, and predicated instruction
counts. This new view enables you to find hotspots and inefficient code sequences within your
kernels.

▶ The Visual Profiler analysis system has been updated with several new analysis passes: 1) kernel
instructions are categorized into classes so that you can see if instruction mix matches your
expectations, 2) inefficient shared memory access patterns are detected and reported, and 3)
per-SM activity level is presented to help you detect detect load-balancing issues across the
blocks of your kernel.

139

index.html#event-metric-summary-mode
index.html#mps-profiling
index.html#remote-profiling

Profiler, Release 12.9

▶ The Visual Profiler guided analysis system can now generate a kernel analysis report. The report
is a PDF version of the per-kernel information presented by the guided analysis system.

▶ Both nvvp and nvprof can now operate on a system that does not have an NVIDIA GPU. You
can import profile data collected from another system and view and analyze it on your GPU-less
system.

▶ Profiling overheads for both nvvp and nvprof have been significantly reduced.

140 Chapter 17. Changelog

Chapter 18. Notices

18.1. Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a
certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no repre-
sentations or warranties, expressed or implied, as to the accuracy or completeness of the information
contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall
have no liability for the consequences or use of such information or for any infringement of patents
or other rights of third parties that may result from its use. This document is not a commitment to
develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any
other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that
such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the
time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by
authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA
product referenced in this document. No contractual obligations are formed either directly or indirectly
by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military,
aircraft, space, or life support equipment, nor in applications where failure or malfunction of the NVIDIA
product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or
applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for
any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA.
It is customer’s sole responsibility to evaluate and determine the applicability of any information con-
tained in this document, ensure the product is suitable and fit for the application planned by customer,
and perform the necessary testing for the application in order to avoid a default of the application or
the product. Weaknesses in customer’s product designs may affect the quality and reliability of the
NVIDIA product and may result in additional or different conditions and/or requirements beyond those
contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or prob-
lem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is
contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other
NVIDIA intellectual property right under this document. Information published by NVIDIA regarding
third-party products or services does not constitute a license from NVIDIA to use such products or

141

Profiler, Release 12.9

services or a warranty or endorsement thereof. Use of such information may require a license from a
third party under the patents or other intellectual property rights of the third party, or a license from
NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA
in writing, reproduced without alteration and in full compliance with all applicable export laws and
regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE
BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WAR-
RANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CON-
SEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARIS-
ING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES. Notwithstanding any damages that customer might incur for any reason whatso-
ever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein
shall be limited in accordance with the Terms of Sale for the product.

18.2. OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

18.3. Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the
U.S. and other countries. Other company and product names may be trademarks of the respective
companies with which they are associated.

Copyright

©2007-2025, NVIDIA Corporation & affiliates. All rights reserved

142 Chapter 18. Notices

	Focused Profiling
	Marking Regions of CPU Activity
	Naming CPU and CUDA Resources
	Flush Profile Data
	Profiling CUDA Fortran Applications
	​Visual Profiler
	Getting Started
	Setting up Java Runtime Environment
	Installing JRE
	Modify Your Application For Profiling
	Creating a Session
	Analyzing Your Application
	Exploring the Timeline
	Looking at the Details
	Improve Loading of Large Profiles

	Sessions
	Executable Session
	Import Session
	Import Single-Process nvprof Session
	Import Multi-Process nvprof Session
	Import Command-Line Profiler Session

	Application Requirements
	Visual Profiler Views
	Timeline View
	Timeline Controls
	Navigating the Timeline
	Timeline Refreshing
	Dependency Analysis Controls

	Analysis View
	Guided Application Analysis
	Unguided Application Analysis
	PC Sampling View
	Memory Statistics
	NVLink view

	Source-Disassembly View
	GPU Details View
	CPU Details View
	OpenACC Details View
	OpenMP Details View
	Properties View
	Console View
	Settings View
	CPU Source View

	Customizing the Profiler
	Resizing a View
	Reordering a View
	Moving a View
	Undocking a View
	Opening and Closing a View

	Command Line Arguments

	​nvprof
	Command Line Options
	CUDA Profiling Options
	CPU Profiling Options
	Print Options
	IO Options

	Profiling Modes
	Summary Mode
	GPU-Trace and API-Trace Modes
	Event/metric Summary Mode
	Event/metric Trace Mode

	Profiling Controls
	Timeout
	Concurrent Kernels
	Profiling Scope
	Multiprocess Profiling
	System Profiling
	Unified Memory Profiling
	CPU Thread Tracing

	Output
	Adjust Units
	CSV
	Export/Import
	Demangling
	Redirecting Output
	Dependency Analysis

	CPU Sampling
	CPU Sampling Limitations

	OpenACC
	OpenACC Options
	OpenACC Summary Modes

	OpenMP
	OpenMP Options

	Remote Profiling
	Remote Profiling With Visual Profiler
	One-hop remote profiling

	Remote Profiling With nvprof
	Collect Data On Remote System
	View And Analyze Data

	NVIDIA Tools Extension
	NVTX API Overview
	NVTX API Events
	NVTX Markers
	NVTX Range Start/Stop
	NVTX Range Push/Pop
	Event Attributes Structure
	NVTX Synchronization Markers

	NVTX Domains
	NVTX Resource Naming
	NVTX String Registration

	MPI Profiling
	Automatic MPI Annotation with NVTX
	Manual MPI Profiling
	Further Reading

	MPS Profiling
	MPS profiling with Visual Profiler
	MPS profiling with nvprof
	Viewing nvprof MPS timeline in Visual Profiler

	Dependency Analysis
	Background
	Metrics
	Support
	Limitations

	Metrics Reference
	Metrics for Capability 5.x
	Metrics for Capability 6.x
	Metrics for Capability 7.x

	Warp State
	Migrating to Nsight Tools from Visual Profiler and nvprof
	Profiler Known Issues
	Changelog
	Notices
	Notice
	OpenCL
	Trademarks

