NVIDIA CUDA Compiler Driver
Release 13.0

NVIDIA Corporation

Oct 02, 2025






Contents

1 Overview

CUDA Programming Model

1.1
1.2 CUDA Sources . ... ...
1.3 Purpose of NVCC . .. ..

2 Supported Host Compilers

3 Compilation Phases

3.1 NVCC ldentification Macro

3.2 NVCC Phases . . . . . . . . e e
33 Supported Input File Suffixes . . . . . . . . ... .
3.4 Supported Phases. . . . . . . . .. e

4 The CUDA Compilation Trajectory

5 NVCC Command Options

5.1 Command Option Types and Notation . . .. ... .. ... ... ... . ... ... ...
5.2 Command Option Description . . . . . . . .. . .
5.2.1 File and Path Specifications . . . . . . . . .. ... ... ...
5.2.1.1 --output-file file(-0) . .. .. .. .. . . . . ...
5.2.1.2 --objdir-as-tempdir (-objtemp) . ... ... ... ... L
5.2.1.3 --pre-include file,...(-include) .. .... .. ... ... ... ... ....
5.2.14 --library library, ... (-1) .. ... .. .
52.15 --define-macro def, ... (-D) . .. .. . . . . ...
5.2.1.6 --undefine-macro def, ... (-U) . . ... ... . .. . ...
5.2.1.7 --include-path path, ... (-I). ... .. ... . . . ...
5.2.1.8 --system-include path, ... (-isystem) . ... ... ... .. .. ........
5.2.1.9 --library-path path, ... (-L). ... ... ... . ...
5.2.1.10 --output-directory directory(-odir) .. ... ... .. ... .. ... ....
5.2.1.11 --dependency-output file(-MF) ... .. ... ... ... ... ... ... ....
5.2.1.12 --generate-dependency-targets(-MP) . . ... ... ... ... .. ... ....
5.2.1.13 --compiler-bindir directory(-ccbin) ... ... ... ... ... ... ....
5.2.1.14 --allow-unsupported-compiler (-allow-unsupported-compiler) .. ..
5.2.1.15 --archiver-binary executable(-arbin) .. ... .. ..............
5.2.1.16 --cudart {none|shared|static}(-cudart) .....................
5.2.1.17 --cudadevrt {none|static} (-cudadevrt) . ... ... ... ... ... ......
5.2.1.18 --libdevice-directory directory (-1dir)....................
5.2.1.19 --target-directory string(-target-dir)....................
5.2.2 Options for Specifying the CompilationPhase . . . .. .. .. ...............
5.2.2.1 --link (-1ink) . ...
5.2.2.2 --1lib (-1db) . . .
5.2.2.3 --device-link (-dlink). . ... ... ... .. ...
5224 -—device-c (-dC). . . . . .. e
5.2.25 -—device-w (-dw). . . . ...




5.2.2.6 ——cuda (—cuda) . . . ... 20

5.2.2.7 --—compile (-C) ... ... 20
5.2.2.8 --fatbin (-fatbin) . . . .. . ... . ... 20
5.2.2.9 --cubin(-cubin). . . . ... 21
5.2.2.10  —=PtX (mPLX) « o ot e 21
5.22.11 --preprocess (-E) . . .. .. .. 21
5.2.2.12 --generate-dependencies (-M). .. .. ... ... . . ... .. ... ... ... .. 21
5.2.2.13 --generate-nonsystem-dependencies (-MM). ... ... ............. 21
5.2.2.14 --generate-dependencies-with-compile(-MD) . ... ... ... ....... 22
5.2.2.15 --generate-nonsystem-dependencies-with-compile (-MMD) .. ... ... 22
5.2.2.16 --optix-ir (-optix-ir). . ... . . . .. ... 22
52.2.17 --ltoir(-1ltodr). ... ... . . . 22
5.2.2.18  —-run(=run) . . . . . .. e 22
523 Options for Specifying Behavior of Compiler/Linker . . . . .. .. ... ... ....... 23
5.2.3.1 --profile (-pg) . . . . . . . 23
5.2.3.2 --debug (-g) . . . .. e 23
5.2.3.3 --device-debug (-G) . . ... ... ... 23
5.2.34 --extensible-whole-program(-ewp) .............. .. .. ...... 23
5.2.35 --NO-COMPress (-NO-COMPIreSS) . . . . v v v v vttt et e 23
5.2.3.6 --compress-mode {default|size|speed|balance|none} (-compress-mode) 23
5.2.3.7 --relocatable-ptx (-reloc-ptx) . .. ... .. ... .. .. .. ... .. .. ... 24
5.2.3.8 --generate-line-info (-lineinfo) ... .. ... .. ... .. .. .. .. .... 24
5.2.3.9 --optimization-info kind, ... (-opt-info)................... 24
5.2.3.10 --optimize level (-0) ... ... .. . . . . . . ... 24
5.23.11 --Ofast-compile level (-0Ofc).. ... ... ... ... . ... .. . ... ..... 24
5.2.3.12 --dopt kind (-dopt) . ... ... . . ... 25
5.2.3.13 --dlink-time-opt(-dlto) ... .. .. .. ... . . .. ... ... 25
5.2.3.14 --gen-opt-1lto(-gen-opt-1to).. ... ... ... . . . .. .. ... ... ... .. 25
5.23.15 --split-compile number (-split-compile).................... 25
5.23.16 --split-compile-extended number (-split-compile-extended). . . .. 25
5.2.3.17 --jobserver (-jobserver) . ... ... ... ... 26
5.2.3.18 --ftemplate-backtrace-limit limit (-ftemplate-backtrace-1limit). 26
5.2.3.19 --ftemplate-depth limit (-ftemplate-depth) . ... ............. 26
5.2.3.20 --no-exceptions(-noeh). ... ... ... .. ... ... 26
5.2.3.21 =--shared(-shared) . ... ... . . . . . . ... 27
52322 --x{clct+|cu} (-X) . . . .. 27
52.3.23 --std{c++03|c++11|c++14|c++17|c++20} (-std) . ... ... . ... ... .... 27
5.2.3.24 --no-host-device-initializer-list (-nohdinitlist) ........... 27
5.2.3.25 --expt-relaxed-constexpr (-expt-relaxed-constexpr) .......... 28
5.2.3.26 --extended-lambda (-extended-lambda) . ... .................. 28
5.2.3.27 --expt-extended-lambda (-expt-extended-lambda).............. 28
5.2.3.28 --machine {64} (-m) . . . .. . . . . ... 28
52329 --mb64 (-mb4) . . . .. e 28
5.2.3.30 --host-linker-script {use-1lcs|gen-1cs}(-hls) ... ............. 28
5.2.3.31 --augment-host-linker-script(-aug-hls). ... ................ 29
5.2.3.32 --host-relocatable-link (-r). . ... ... ... ... .. ... .. ... .. ... 29
5.2.3.33 --frandom-seed (-frandom-seed) . ... ... ... ... .. .. ... ... ..., 29
5.2.4  Options for Passing Specific Phase Options . . . . .. ................... 29
5.2.4.1 --compiler-options options, ... (-Xcompiler) . ... ... ......... 30
5.2.4.2 --linker-options options, ... (-Xlinker). ... ... ............. 30
5.2.4.3 --archive-options options, ... (-Xarchive) . . ... ............. 30
5.2.4.4 --ptxas-options options, ... (-Xptxas) ......... ... ... . ..., 30
5.2.45 --nvlink-options options, ... (-Xnvlink). .. ... ... ... ........ 30

5.2.5  Options for Guiding the Compiler Driver . . . . . . . . . .. ... .. . . ... 30




5.2.5.1 --static-global-template-stub {true|false}

(-static-global-template-stub). .. ... ... ... .. ... .. ... ..... 30
5.2.5.2 --device-entity-has-hidden-visibility {true|false}
(-device-entity-has-hidden-visibility) ... ... ... ........... 31
5.253 --forward-unknown-to-host-compiler (-forward-unknown-to-host-compiler) 32
5.2.5.4 --forward-unknown-to-host-1linker (-forward-unknown-to-host-1linker) 32
5.255 --forward-unknown-opts (-forward-unknown-opts) . . . ... ........ 32
5.2.5.6 --forward-slash-prefix-opts (-forward-slash-prefix-opts) ... .. 33
5.2.5.7 --dont-use-profile(-noprof). ... ... ... .. ... ... ... 33
5.2.5.8 --threads number (-t) . ... .. ... .. . . ... ... 33
5.2.5.9 --dryrun (-dryrun) . . . ... 33
52510 --verbose (-V) . . ... .. 33
5.25.11 --keep(-kKeep) . . . ... . . 34
5.25.12 --keep-dir directory (-keep-dir) ... .. .. ... . ... ... ... ... 34
5.25.13 --save-temps (-save-temps) ... ... ... ... ... ... ... 34
5.25.14 --clean-targets(-clean) ... ... ... .. . . ... ... ... 34
5.2.5.15 --run-args arguments,...(-run-args) ..... ... ... ... ... . ..., 34
5.2.5.16 --use-local-env (-use-local-env) ... ....... ... ... ... ... .... 34
5.2.5.17 --force-cl-env-setup (-force-cl-env-setup) ................. 34
5.2.5.18 --input-drive-prefix prefix(-idp)...... .. ... ... ... ... .... 35
5.2.5.19 --dependency-drive-prefix prefix(-ddp).................... 35
5.25.20 --drive-prefix prefix(-dp) .. ... ... .. .. . .. ... .. .. .. .. ... 35
5.25.21 --dependency-target-name target (-MT) ..................... 35
5.2.5.22 --no-align-double ... .. .. ... ... 35
5.2.5.23 --no-device-link (-nodlink) . ... .... .. .. .. .. ... ... .. .. ... 35
5.25.24 --allow-unsupported-compiler (-allow-unsupported-compiler).... 36
5.2.6  Options for Steering CUDA Compilation . . . .. ... ... ... .. ... ... .. .... 36
5.2.6.1 --default-stream{legacy|null|per-thread} (-default-stream) ... .. 36
5.2.7 Options for Steering GPU Code Generation . . . . . . ... ... ... ... ........ 36
5.2.7.1 --gpu-architecture(-arch) . ... ... ... .. . .. .. ... .. 36
5272 --gpu-code code, ... (-code) ... ... ... ... 37
5.2.7.3 --generate-code specification(-gencode) ... ... .. ... ........ 37
5274 --relocatable-device-code {true|false}(-rdc) . ... ... ......... 38
5.2.75 --entries entry, ... (-€) . . . ... .. 38
5.2.7.6 --maxrregcount amount (-maxrregcount) . .................... 38
5.2.7.7 --use_fast_math (-use_fast_math) .......... ... .. .. .. ...... 38
52.7.8 --ftz {true|false} (-ftz). .. .. ... . . . . . .. 39
5.2.7.9 --prec-div {true|false} (-prec-div) . ... ... .. .. ... .. .. .. .. .. 39
5.2.7.10 --prec-sqrt{true|false}(-prec-sqrt). .. .. ... ... ... .. ... .... 39
52.7.11 --fmad {true|false}(-fmad) . ... ... .. ... . .. . . . . .. . ... . ... 40
5.2.7.12 --extra-device-vectorization (-extra-device-vectorization).... 40
5.2.7.13 --compile-as-tools-patch(-astoolspatch)........... ... .. ... 40
5.2.7.14 --keep-device-functions (-keep-device-functions) . ... .. ... ... 40
5.2.7.15 --jump-table-density percentage(-jtd) .................... 40
52.8 Generic Tool Options . . . . . . . . 41
5.2.8.1 --disable-warnings (-wW) . . . . ... ... 41
5.2.8.2 --source-in-ptx (-src-in-ptx) . . .. .. ... ... .. L 41
5.2.8.3 --restrict (-restrict). ... ... ... . . . ... ... 41
5.2.8.4 --Wno-deprecated-gpu-targets (-Wno-deprecated-gpu-targets) . ... 41
5.2.8.5 --Wno-deprecated-declarations (-Wno-deprecated-declarations) .. 41
5.2.8.6 --Wreorder (-Wreorder) . . . . .. . . . . . . e 41
5.2.8.7 --Wdefault-stream-launch (-Wdefault-stream-launch) ........ .. 41
5.2.8.8 --Wmissing-launch-bounds (-Wmissing-launch-bounds) ... ... .. .. 41

5.2.8.9 --Wext-lambda-captures-this (-Wext-lambda-captures-this) ... .. 42




5.2.8.10 --Werror kind, ... (-Werror) . .. ... . . . . . . 42

5.2.8.11 --display-error-number (-err-no) ... .. .. ... ... ... .. ... .... 42
5.2.8.12 --no-display-error-number (-no-err-no) .................... 42
5.2.8.13 --diag-error errNum, ... (-diag-error) ... .... .. ... .. .. ..... 43
5.2.8.14 --diag-suppress errNum, ... (-diag-suppress) ................ 43
5.2.8.15 --diag-warn errNum, ... (-diag-warn) ... ... ... .. ... .. ....... 43
5.2.8.16 --resource-usage (-res-usage) . . . . . . .. ... 43
5.2.8.17 --device-stack-protector {true|false}(-device-stack-protector) . 43
5.2.8.18 --help(-h) . . ... . . . . e 43
5.2.8.19 --version (-V) . . . ... 44
5.2.8.20 --options-file file, ... (-optf) . ... ... ... . . ... .. .. .. .. ... 44
5.2.821 --time filename (-time) .. ... ... ... . . . . ... . 44
5.2.8.22 --gpp-config config (-gpp-config) ........... ... ... . ..... 44
5.2.8.23 --list-gpu-code(-code-1s) ... ... ... .. . ... ... ... 44
5.2.8.24 --list-gpu-arch(-arch-1s) ... ... ... ... .. ... ... .. ... .. ... 44
5.2.825 --fdevice-time-trace (-fdevice-time-trace) ................. 44
5.2.9 Phase Options . . . . . . . . . 45
5.2.9.1 Ptxas Options . . . . . . . . 45
5.2.9.2 NVLINK Options . . . . . . 51

53 NVCC Environment Variables . . . . . . . . . . 53
6 GPU Compilation 55
6.1 GPU Generations . . . . . . . . e 55
6.2 GPU Feature List. . . . . . . . e 55
6.3 Application Compatibility . . . . ... ... . 56
6.4 Virtual Architectures . . . . . . . 56
6.5 Virtual Architecture Feature List . . . . . . . . . . . . . . .. . . .. 58
6.6 Further Mechanisms . . . . . . . . ... e 58
6.6.1 Just-in-Time Compilation . . . . . . . . ... 58
6.6.2 Fatbinaries . . . . . . . . 60
6.7 NVCC Examples . . . . . . e e 60
6.7.1 Base Notation . . . . . . . . . . e 60
6.7.2 Shorthand . . . . . .. e 60
6.7.2.1 Shorthand T . . . . . . 60
6.7.2.2 Shorthand 2 . . . . . . . . 61
6.7.2.3 Shorthand 3 . . . . . . 61
6.7.3 GPU Code Generationin CUDA . . . . . . . . . . e 61
6.7.3.1 List of Supported GPU Codes . . . . . . . . . . . . .. . . 61
6.7.3.2 Extended Notation . . . ... . . .. . ... .. 62
6.7.3.3 Using Code Generation Options . . . . . . .. . . ... . . ... . ... . ... 62
6.7.4  Virtual Architecture Macros. . . . . . . . . . 63

7 Using Separate Compilation in CUDA 65
7.1 Code Changes for Separate Compilation. . . . . ... ... .. ... .. ... ... ...... 65
7.2 NVCC Options for Separate Compilation . . . .. ... ... ... ... ... ... . .... 65
7.3 Libraries . . . . . 66
7.4 Examples . . . . 67
7.5 Optimization Of Separate Compilation . . . . ... .. ... ... . ... .. ... ... ... 69
7.6 Potential Separate CompilationlIssues . . . ... ... .. ... ... ... . 69
7.6.1 Object Compatibility . . . ... ... . . 69
7.6.2 JITLinking Support . . . . . . . 69
7.6.3 Implicit CUDA Host Code . . . . . . . . e 70
7.6.4 Using __CUDA_ARCH__ . . . . . . . . . e 70
7.6.5 Device Codein Libraries . . . . . . . . . 71




8 Miscellaneous NVCC Usage

8.1 Cross Compilation. . . . ... .. ..
8.2 Keeping Intermediate Phase Files .
8.3 Cleaning Up Generated Files . . . .
8.4 Printing Code Generation Statistics
9 Notices
9.1 Notice ... ... ... .........
9.2 OpenCL .. ...............
9.3 Trademarks . . . . ...........




Vi



NVIDIA CUDA Compiler Driver, Release 13.0

The documentation for nvcc, the CUDA compiler driver.

Contents 1



NVIDIA CUDA Compiler Driver, Release 13.0

2 Contents



Chapter 1. Overview

The CUDA Toolkit targets a class of applications whose control part runs as a process on a general
purpose computing device, and which use one or more NVIDIA GPUs as coprocessors for accelerating
single program, multiple data (SPMD) parallel jobs. Such jobs are self-contained, in the sense that they
can be executed and completed by a batch of GPU threads entirely without intervention by the host
process, thereby gaining optimal benefit from the parallel graphics hardware.

The GPU code is implemented as a collection of functions in a language that is essentially C++, but
with some annotations for distinguishing them from the host code, plus annotations for distinguishing
different types of data memory that exists on the GPU. Such functions may have parameters, and they
can be called using a syntax that is very similar to regular C function calling, but slightly extended for
being able to specify the matrix of GPU threads that must execute the called function. During its life
time, the host process may dispatch many parallel GPU tasks.

For more information on the CUDA programming model, consult the

Source files for CUDA applications consist of a mixture of conventional C++ host code, plus GPU de-
vice functions. The CUDA compilation trajectory separates the device functions from the host code,
compiles the device functions using the proprietary NVIDIA compilers and assembler, compiles the
host code using a C++ host compiler that is available, and afterwards embeds the compiled GPU func-
tions as fatbinary images in the host object file. In the linking stage, specific CUDA runtime libraries
are added for supporting remote SPMD procedure calling and for providing explicit GPU manipulation
such as allocation of GPU memory buffers and host-GPU data transfer.



https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

NVIDIA CUDA Compiler Driver, Release 13.0

The compilation trajectory involves several splitting, compilation, preprocessing, and merging steps
for each CUDA source file. It is the purpose of nvcc, the CUDA compiler driver, to hide the intricate
details of CUDA compilation from developers. It accepts a range of conventional compiler options,
such as for defining macros and include/library paths, and for steering the compilation process. All
non-CUDA compilation steps are forwarded to a C++ host compiler that is supported by nvcc, and
nvcc translates its options to appropriate host compiler command line options.

4 Chapter 1. Overview



Chapter 2. Supported Host Compilers

A general purpose C++ host compiler is needed by nvcc in the following situations:

During non-CUDA phases (except the run phase), because these phases will be forwarded by
nvcc to this compiler.

During CUDA phases, for several preprocessing stages and host code compilation (see also

).

nvcc assumes that the host compiler is installed with the standard method designed by the compiler
provider. If the host compiler installation is non-standard, the user must make sure that the environ-
ment is set appropriately and use relevant nvcc compile options.

The following documents provide detailed information about supported host compilers:

On all platforms, the default host compiler executable (gcc and g++ on Linux and c1. exe on Windows)
found in the current execution search path will be used, unless specified otherwise with appropriate
options (see file-and-path-specifications).

Note, nvce does not support the compilation of file paths that exceed the maximum path length
limitations of the host system. To support the compilation of long file paths, please refer to the doc-
umentation for your system.



https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html
https://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html

NVIDIA CUDA Compiler Driver, Release 13.0

6 Chapter 2. Supported Host Compilers



Chapter 3. Compilation Phases

nvcc predefines the following macros:

__Nvcc__
Defined when compiling C/C++/CUDA source files.

__CUDACC__
Defined when compiling CUDA source files.

__CUDACC_RDC__
Defined when compiling CUDA source files in relocatable device code mode (see

).

__CUDACC_EWP__
Defined when compiling CUDA source files in extensible whole program mode (see

).

__CUDACC_DEBUG__
Defined when compiling CUDA source files in the device-debug mode (see

).

__CUDACC_RELAXED_CONSTEXPR__
Defined when the --expt-relaxed-constexpr flagis specified on the command line. Refer to
the for more details.

__CUDACC_EXTENDED_LAMBDA__
Defined when the --expt-extended-1lambda or --extended-lambda flag is specified on the
command line. Refer to the for more details.

__CUDACC_VER_MAJOR__
Defined with the major version number of nvcc.

__CUDACC_VER_MINOR__
Defined with the minor version number of nvcc.

__CUDACC_VER_BUILD__
Defined with the build version number of nvcec.

__NVCC_DIAG_PRAGMA_SUPPORT__
Defined when the CUDA frontend compiler supports diagnostic control with the
nv_diag_suppress, nv_diag_error, nv_diag_warning, nv_diag_default,
nv_diag_once, and nv_diagnostic pragmas.



https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

NVIDIA CUDA Compiler Driver, Release 13.0

__CUDACC_DEVICE_ATOMIC_BUILTINS__
Defined when the CUDA frontend compiler supports device atomic compiler builtins. Refer to
the for more details.

A compilation phase is a logical translation step that can be selected by command line options to nvcc.
A single compilation phase can still be broken up by nvcc into smaller steps, but these smaller steps
are just implementations of the phase: they depend on seemingly arbitrary capabilities of the internal
tools that nvcc uses, and all of these internals may change with a new release of the CUDA Toolkit.
Hence, only compilation phases are stable across releases, and although nvcc provides options to
display the compilation steps that it executes, these are for debugging purposes only and must not
be copied and used in build scripts.

nvcc phases are selected by a combination of command line options and input file name suffixes, and
the execution of these phases may be modified by other command line options. In phase selection, the
input file suffix defines the phase input, while the command line option defines the required output
of the phase.

The following paragraphs list the recognized file name suffixes and the supported compilation phases.
A full explanation of the nvcc command line options can be found in

The following table defines how nvcc interprets its input files:

Input File Suffix | Description

.cu CUDA source file, containing host code and device functions

.C C source file

.CC, .CXX, .cpp | C++ source file

.ptx PTX intermediate assembly file (see )

.cubin CUDA device code binary file (CUBIN) for a single GPU architecture (see )
.fatbin CUDA fat binary file that may contain multiple PTX and CUBIN files (see )
.0, .obj Object file

.a, .1ib Library file

.res Resource file

.S0 Shared object file

Note that nvcc does not make any distinction between object, library or resource files. It just passes
files of these types to the linker when the linking phase is executed.

8 Chapter 3. Compilation Phases


https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

NVIDIA CUDA Compiler Driver, Release 13.0

The following table specifies the supported compilation phases, plus the option to nvcc that enables
the execution of each phase. It also lists the default name of the output file generated by each phase,
which takes effect when no explicit output file name is specified using the option --output-file:

3.4. Supported Phases 9



NVIDIA CUDA Compiler Driver, Release 13.0

Phase nvcc Option Default Output File Name
Long Name Short
Name
CUDA compilation to | --cuda -cuda | .cpp.ii appended to source file name,
C/C++ source file asin x.cu.cpp.ii. This output file can
be compiled by the host compiler that
was used by nvcc to preprocess the .cu
file.
C/C++ preprocessing --preprocess -E <result on standard output>
C/C++ compilation to ob- | --compile -C Source file name with suffix replaced by o
ject file on Linux or obj on Windows
Cubin generation from | --cubin -cubin| Source file name with suffix replaced by
CUDA source files cubin
Cubin generation from | --cubin -cubin| Source file name with suffix replaced by
PTX intermediate files. cubin
PTX generation from | --ptx -ptx Source file name with suffix replaced by
CUDA source files ptx
Fatbinary generation from | --fatbin -fatbinSource file name with suffix replaced by
source, PTX or cubin files fatbin
Linking relocatable device | --device-1link | -dlink| a_dlink.obj on Windows or a_dlink.
code. 0 on other platforms
Cubin generation from | --device-1link-+cuddiimkraubdidnk.cubin
linked relocatable device
code.
Fatbinary generation from | --device-1link-+ falithitk+-fatdiink . fatbin
linked relocatable device
code
Linking an executable <no phase op- a.exe on Windows or a.out on other
tion> platforms
Constructing an object file | --1ib -1ib a.lib on Windows or a.a on other plat-
archive, or library forms
make dependency genera- | --generate-dependencies<result on standard output>
tion
make dependency gener- | --generate-nonsydem-dependiénaistandard output>
ation without headers in
system paths.
Compile CUDA source to | --optix-ir -optixr$ource file name with suffix replaced by
OptiX IR output. optixir
Compile CUDA source to | --1toir -1toir| Source file name with suffix replaced by
LTO IR output. ltoir
Running an executable --run -run

Notes:

10

Chapter 3. Compilation Phases



NVIDIA CUDA Compiler Driver, Release 13.0

The last phase in this list is more of a convenience phase. It allows running the compiled and
linked executable without having to explicitly set the library path to the CUDA dynamic libraries.

Unless a phase option is specified, nvcc will compile and link all its input files.

3.4. Supported Phases 11



NVIDIA CUDA Compiler Driver, Release 13.0

12 Chapter 3. Compilation Phases



Chapter 4. The CUDA Compilation
Trajectory

CUDA compilation works as follows: the input program is preprocessed for device compilation and
is compiled to CUDA binary (cubin) and/or PTX intermediate code, which are placed in a fatbinary.
The input program is preprocessed once again for host compilation and is synthesized to embed the
fatbinary and transform CUDA specific C++ extensions into standard C++ constructs. Then the C++
host compiler compiles the synthesized host code with the embedded fatbinary into a host object.
The exact steps that are followed to achieve this are displayed in

The embedded fatbinary is inspected by the CUDA runtime system whenever the device code is
launched by the host program to obtain an appropriate fatbinary image for the current GPU.

CUDA programs are compiled in the whole program compilation mode by default, i.e., the device code
cannot reference an entity from a separate file. In the whole program compilation mode, device link
steps have no effect. For more information on the separate compilation and the whole program com-
pilation, refer to

13



NVIDIA CUDA Compiler Driver, Release 13.0

fatbinary

i .cu I
i H

i i

i oA B
| C++ Preprocessor C++ Preprocessor ! i i .

| | A is passed to B as an input file.

i I

3 .cppd.ii .cppl.ii E A - |
i i Ais #include'd in B.

i I

; cudafe++ — .cudafel.stub.c - cicc i . . N

! r o | | «Repeat | ! foreach .cuinput file.

1 | | -

i i . ‘ )

3 cudafelcpp o) pix E Repeat D for each virtual architecture.

i | | » Repeat ptxas and nvlink for each virtual/real

1 '

i ptxas E architecture combination.

i || « Device linker consists of steps in

! .cubin !

i '

‘ :

1 '

i I

|
|
|
|
|
|
|
|
|
|
|
|
|
|
L

B aﬁdlink.mg.c
|
[
a_dlink.cubin |
|
!
|
1
' o
a_dlink.fatbine — — — — o link.stub

C++ Gompiler

I

a_dlink.o / a_dlink.obj

Host Linker

I

executable

Fig. 1: CUDA Compilation Trajectory

14 Chapter 4. The CUDA Compilation Trajectory



Chapter 5. NVCC Command Options

Each nvcc option has along name and a short name, which are interchangeable with each other. These
two variants are distinguished by the number of hyphens that must precede the option name: long
names must be preceded by two hyphens, while short names must be preceded by a single hyphen.
For example, -I is the short name of --include-path. Long options are intended for use in build
scripts, where the size of the option is less important than the descriptive value. In contrast, short
options are intended for interactive use.

nvcc recognizes three types of command options: boolean options, single value options, and list op-
tions.

Boolean options do not have an argument; they are either specified on the command line or not. Single
value options must be specified at most once, but list options may be repeated. Examples of each of
these option types are, respectively: --verbose (switch to verbose mode), --output-file (specify
output file), and --include-path (specify include path).

Single value options and list options must have arguments, which must follow the name of the option
itself by either one of more spaces or an equals character. When a one-character short name such as
-I, -1, and -L is used, the value of the option may also immediately follow the option itself without
being seperated by spaces or an equal character. The individual values of list options may be separated
by commas in a single instance of the option, or the option may be repeated, or any combination of
these two cases.

Hence, for the two sample options mentioned above that may take values, the following notations are
legal:

-o file
-o=file
-Idir1,dir2 -I=dir3 -I dir4,dir5

Unless otherwise specified, long option names are used throughout this document. However, short
names can be used instead of long names for the same effect.

15



NVIDIA CUDA Compiler Driver, Release 13.0

5.2. Command Option Description

This section presents tables of nvcc options. The option type in the tables can be recognized as
follows: Boolean options do not have arguments specified in the first column, while the other two
types do. List options can be recognized by the repeat indicator , . . . at the end of the argument.

Long options are described in the first column of the options table, and short options occupy the
second column.

5.2.1. File and Path Specifications

5.2.1.1 --output-file file (-o)

Specify name and location of the output file.

5.2.1.2 --objdir-as-tempdir (-objtemp)

Create all intermediate files in the same directory as the object file. These intermediate files are
deleted when the compilation is finished. This option will take effect only if -c, -dc or -dw is also used.
Using this option will ensure that the intermediate file name that is embedded in the object file will
not change in multiple compiles of the same file. However, this is not guaranteed if the input is stdin.
If the same file is compiled with two different options, ex., ‘nvcc -c t.cu’ and ‘nvcc -c -ptx t.cu’, then
the files should be compiled in different directories. Compiling them in the same directory can either
cause the compilation to fail or produce incorrect results.

5.2.1.3 --pre-include file, ... (-include)

Specify header files that must be pre-included during preprocessing.

5.2.1.4 --library library, ... (-1)

Specify libraries to be used in the linking stage without the library file extension.

The libraries are searched for on the library search paths that have been specified using option
--library-path (see Libraries).

5.2.1.5 --define-macro def, ... (-D)

Define macros to be used during preprocessing.
def can be either name or name=definition.
» name - Predefine name as a macro.

» name=definition - The contents of definition are tokenized and preprocessed as if they appear
during translation phase three in a #define directive. The definition will be truncated by em-
bedded new line characters.

16 Chapter 5. NVCC Command Options



NVIDIA CUDA Compiler Driver, Release 13.0

5.2.1.6 --undefine-macro def,... (-U)

Undefine an existing macro during preprocessing or compilation.

5.2.1.7 --include-path path, ... (-I)

Specify include search paths.

5.2.1.8 --system-include path, ... (-isystem)

Specify system include search paths.

5.2.1.9 --library-path path,... (-L)

Specify library search paths (see Libraries).

5.2.1.10 --output-directory directory (-odir)

Specify the directory of the output file.

This option is intended for letting the dependency generation step (see --generate-dependencies)
generate a rule that defines the target object file in the proper directory.

5.2.1.11 --dependency-output file (-MF)

Specify the dependency output file.

This  option specifies the output file for the dependency generation step
(see  --generate-dependencies). The option --generate-dependencies or
--generate-nonystem-dependencies must be specified if a dependency output file is set.

5.2.1.12 --generate-dependency-targets (-MP)

Add an empty target for each dependency.

This option adds phony targets to the dependency generation step (see --generate-dependencies)
intended to avoid makefile errors if old dependencies are deleted. The input files are not emitted as
phony targets.

5.2. Command Option Description 17



NVIDIA CUDA Compiler Driver, Release 13.0

5.2.1.13 --compiler-bindir directory (-ccbin)

Specify the directory in which the default host compiler executable resides.

The host compiler executable name can be also specified to ensure that the correct host compiler is se-
lected. In addition, driver prefix options (--input-drive-prefix, --dependency-drive-prefix,
or --drive-prefix) may need to be specified, if nvcc is executed in a Cygwin shell or a MinGW shell
on Windows.

5.2.1.14 --allow-unsupported-compiler (-allow-unsupported-compiler)

Disable nvcc check for supported host compiler versions.

Using an unsupported host compiler may cause compilation failure or incorrect run time execution.
Use at your own risk. This option has no effect on MacOS.

5.2.1.15 --archiver-binary executable (-arbin)

Specify the path of the archiver tool used create static library with --11ib.

5.2.1.16 --cudart {none|shared|static} (-cudart)

Specify the type of CUDA runtime library to be used: no CUDA runtime library, shared/dynamic CUDA
runtime library, or static CUDA runtime library.

Allowed Values
» none
» shared
» static
Default
The static CUDA runtime library is used by default.

5.2.1.17 --cudadevrt {none|static} (-cudadevrt)

Specify the type of CUDA device runtime library to be used: no CUDA device runtime library, or static
CUDA device runtime library.

Allowed Values
» none
» static
Default
The static CUDA device runtime library is used by default.

18 Chapter 5. NVCC Command Options



NVIDIA CUDA Compiler Driver, Release 13.0

5.2.1.18 --libdevice-directory directory (-1dir)

Specify the directory that contains the libdevice library files.

Libdevice library files are located in the nvvm/1ibdevice directory in the CUDA Toolkit.

5.2.1.19 --target-directory string (-target-dir)

Specify the subfolder name in the targets directory where the default include and library paths are
located.

5.2.2. Options for Specifying the Compilation Phase

Options of this category specify up to which stage the input files must be compiled.

5.2.2.1 --1link (-1ink)

Specify the default behavior: compile and link all input files.
Default Output File Name

a.exe on Windows or a.out on other platforms is used as the default output file name.

5.2.2.2 --1ib (-1ib)

Compile all input files into object files, if necessary, and add the results to the specified library output
file.

Default Output File Name

a.lib on Windows or a.a on other platforms is used as the default output file name.

5.2.2.3 --device-1link (-d1ink)

Link object files with relocatable device code and .ptx, .cubin, and .fatbin files into an object file
with executable device code, which can be passed to the host linker.

Default Output File Name

a_dlink.obj on Windows or a_dlink.o on other platforms is used as the default output file name.
When this option is used in conjunction with --fatbin, a_dlink.fatbin is used as the default out-
put file name. When this option is used in conjunction with --cubin, a_dlink.cubinis used as the
default output file name.

5.2. Command Option Description 19



NVIDIA CUDA Compiler Driver, Release 13.0

Compileeach .c, .cc, .cpp, .cxx,and .cuinput file into an object file that contains relocatable device
code.

It is equivalent to --relocatable-device-code=true --compile.
Default Output File Name

The source file name extension is replaced by .obj on Windows and .o on other platforms to create
the default output file name. For example, the default output file name for x.cuis x.obj on Windows
and Xx.0 on other platforms.

Compileeach .c, .cc, .cpp, .cxX,and . cuinput file into an object file that contains executable device
code.

It is equivalent to --relocatable-device-code=false --compile.
Default Output File Name

The source file name extension is replaced by .obj on Windows and .o on other platforms to create
the default output file name. For example, the default output file name for x.cuis x.obj on Windows
and x.o0 on other platforms.

Compile each .cuinput filetoa .cu.cpp.ii file.
Default Output File Name

.cu.cpp.ii is appended to the basename of the source file name to create the default output file
name. For example, the default output file name for x.cuis x.cu.cpp.ii.

Compile each .c, .cc, .cpp, .cxx, and .cu input file into an object file.
Default Output File Name

The source file name extension is replaced by .obj on Windows and .o on other platforms to create
the default output file name. For example, the default output file name for x.cuis x.obj on Windows
and x.o0 on other platforms.

Compile all .cu, .ptx,and .cubin input files to device-only . fatbin files.
nvcc discards the host code for each . cu input file with this option.
Default Output File Name

The source file name extension is replaced by .fatbin to create the default output file name. For
example, the default output file name for x.cuis x.fatbin.

20 Chapter 5. NVCC Command Options



NVIDIA CUDA Compiler Driver, Release 13.0

Compile all .cu and .ptx input files to device-only .cubin files.
nvcc discards the host code for each . cu input file with this option.
Default Output File Name

The source file name extension is replaced by .cubin to create the default output file name. For
example, the default output file name for x.cuis x.cubin.

Compile all . cu input files to device-only . ptx files.
nvcc discards the host code for each . cu input file with this option.
Default Output File Name

The source file name extension is replaced by . ptx to create the default output file name. For example,
the default output file name for x.cuis x.ptx.

Preprocess all .c, .cc, .cpp, .cxX,and .cu input files.
Default Output File Name
The output is generated in stdout by default.

Generate a dependency file that can be included in a Makefile for the .c, .cc, .cpp, .cxX,and .cu
input file.

nvcc uses a fixed prefix to identify dependencies in the preprocessed file ( ‘#1ine 1’ on Linux and
‘# 1’ on Windows). The files mentioned in source location directives starting with this prefix will be
included in the dependency list.

Default Output File Name
The output is generated in stdout by default.

Same as --generate-dependencies but skip header files found in system directories (Linux only).
Default Output File Name
The output is generated in stdout by default.

5.2. Command Option Description 21



NVIDIA CUDA Compiler Driver, Release 13.0

Generate a dependency file and compile the input file. The dependency file can be included in a Make-
file for the .c, .cc, .cpp, .cxx, and .cu input file.

This option cannot be specified together with -E. The dependency file name is computed as follows:
If -MF is specified, then the specified file is used as the dependency file name.

If -0 is specified, the dependency file name is computed from the specified file name by replacing
the suffix with “.d’.

Otherwise, the dependency file name is computed by replacing the input file names’s suffix with
d.
If the dependency file name is computed based on either -MF or -0, then multiple input files are not
supported.

Same as --generate-dependencies-with-compile but skip header files found in system directo-
ries (Linux only).

Compile CUDA source to OptiX IR (.optixir) output. The OptiX IR is only intended for consumption by
OptiX through appropriate APIs. This feature is not supported with link-time-optimization (-d1to), the
lto_NN -arch target, or with -gencode.

Default Output File Name

The source file name extension is replaced by .optixir to create the default output file name. For
example, the default output file name for x.cuis x.optixir.

Compile CUDA source to LTO IR (.Itoir) output. This feature is only supported with link-time-
optimization (-d1to) or the Ito_NN -arch target.

Default Output File Name

The source file name extension is replaced by .1toir to create the default output file name. For
example, the default output file name for x.cuis x.1toir.

Compile and link all input files into an executable, and executes it.

When the input is a single executable, it is executed without any compilation or linking. This step
is intended for developers who do not want to be bothered with setting the necessary environment
variables; these are set temporarily by nvcc.

22 Chapter 5. NVCC Command Options



NVIDIA CUDA Compiler Driver, Release 13.0

5.2.3. Options for Specifying Behavior of Compiler/Linker

5.2.3.1 --profile (-pg)

Instrument generated code/executable for use by gprof.

5.2.3.2 --debug (-g)

Generate debug information for host code.

5.2.3.3 --device-debug (-G)

Generate debug information for device code.

If --dopt is not specified, then this option turns off all optimizations on device code. It is not intended
for profiling; use --generate-1line-info instead for profiling.

5.2.3.4 --extensible-whole-program (-ewp)

Generate extensible whole program device code, which allows some calls to not be resolved until linking
with libcudadevrt.

5.2.3.5 --no-compress (-no-compress)

Do not compress device code in fatbinary.

5.2.3.6 --compress-mode {default|size|speed|balance|none} (-compress-mode)

Choose the device code compression behavior in fatbinary.

This option is not compatible with drivers released before CUDA Toolkit’s 12.4 Release.
Allowed Values

default

Uses the default compression mode, as if this weren’t specified. The behavior of this mode
can change from version to version. It is currently equivalent to speed.

size

Uses a compression mode more focused on reduced binary size, at the cost of compression
and decompression time.

speed

Uses a compression mode more focused on reduced decompression time, at the cost of
less reduction in final binary size.

balance

Uses a compression mode that balances binary size with compression and decompression
time.

5.2. Command Option Description 23



NVIDIA CUDA Compiler Driver, Release 13.0

none
Does not perform compression. Equivalent to --no-compress.
Default Value

default is used as the default mode.

Insert PTX from relocatable fatbins within input objects when producing final fatbin.

Generate line-number information for device code.

Provide optimization reports for the specified kind of optimization.
The following tags are supported:
inline
Emit remarks related to function inlining. Inlining pass may be invoked multiple times by

the compiler and a function not inlined in an earlier pass may be inlined in a subsequent
pass.

Specify optimization level for host code.

Specify the fast-compile level for device code, which controls the tradeoff between compilation speed
and runtime performance by disabling certain optimizations at varying levels.

Allowed Values
max: Focus only on the fastest compilation speed, disabling many optimizations.
mid: Balance compile time and runtime, disabling expensive optimizations.

min: More minimal impact on both compile time and runtime, minimizing some expensive opti-
mizations.

0: Disable fast-compile.
Default Value
The option is disabled by default.

24 Chapter 5. NVCC Command Options



NVIDIA CUDA Compiler Driver, Release 13.0

Enable device code optimization. When specified along with -G, enables limited debug information
generation for optimized device code (currently, only line number information). When -G is not speci-
fied, -dopt=on is implicit.

Allowed Values

on: enable device code optimization.

Perform link-time optimization of device code. The option ‘-Ito’ is also an alias to ‘-dlto’. Link-time opti-
mization must be specified at both compile and link time; at compile time it stores high-level interme-
diate code, then at link time it links together and optimizes the intermediate code. If that intermediate
is not found at link time then nothing happens. Intermediate code is also stored at compile time with
the --gpu-code="1to_NN' target. The options -d1to -arch=sm_NN will add a Ito_NN target; if you
want to only add a Ito_NN target and not the compute_NN that -arch=sm_NN usually generates, use
-arch=1to_NN.

Run the optimizer passes before generating the LTO IR.

Perform compiler optimizations in parallel.

Split compilation attempts to reduce compile time by enabling the compiler to run certain optimiza-
tion passes concurrently. It does this by splitting the device code into smaller translation units,
each containing one or more device functions, and running optimization passes on each unit con-
currently across multiple threads. It will then link back the split units prior to code generation. The
option accepts a numerical value that specifies the maximum number of threads the compiler can
use. One can also allow the compiler to use the maximum threads available on the system by setting
--split-compile=0. Setting --split-compile=1 will cause this option to be ignored. This option
can work in conjunction with device Link Time Optimization (-d1to) as well as --threads.

A more aggressive form of -split-compile. Available in LTO mode only.

Extended split compilation attempts to reduce compile time even further by extending concurrent
compilation through to the back-end. This agressive form of split compilation can potentially im-
pact performance of the compiled binary. The option accepts a numerical value that specifies
the maximum number of threads the compiler can use. One can also allow the compiler to use
the maximum threads available on the system by setting --split-compile-extended=0. Setting
--split-compile-extended=1 will cause this option to be ignored. This option is only applicable
with device Link Time Optimization (-d1to) and can work in conjunction with --threads.

5.2. Command Option Description 25



NVIDIA CUDA Compiler Driver, Release 13.0

When using -split-compile or --threads inside of a build controlled by GNU Make, require that
job slots are acquired Make’s jobserver for each of the threads used, helping prevent oversubscrip-
tion. This option does not restrict -split-compile-extended (the number of threads created by
it will not be controlled). This option only works when Make is called with -j set to a numerical value
greater than 1, as -j (without a number) causes Make to skip making the jobserver and -j1 disables
all parallelism. This requires GNU Make 4.3 or newer. For versions of Make before 4.4, or if the
--jobserver-style=pipe is manually specified to Make, each call to NVCC must be considered a
submake by make (by prepending a + to each line where NVCC is called) in order to provide it access
to Make’s jobserver. Using this option with an unsupported version of Make, or without the correct
-j value may lead to undefined behavior. We do not implement any signal handling and only minimal
error handling for this feature, which can cause resources to go unused if NVCC crashes. However, it
should not cause a deadlock even if an error occurs, as the job slot used by NVCC itself will always be
reclaimed.

Note: This flag is only supported on Linux.

Set the maximum number of template instantiation notes for a single warning or error to limit.

A value of 0 is allowed, and indicates that no limit should be enforced. This value is also passed to the
host compiler if it provides an equivalent flag.

Set the maximum instantiation depth for template classes to limit.

This value is also passed to the host compiler if it provides an equivalent flag.

Disable exception handling for host code.

Disable exception handling for host code, by passing “-EHs-c-" (for cl.exe) and “-fno-exceptions” (for
other host compilers) during host compiler invocation. These flags are added to the host compiler
invocation before any flags passed directly to the host compiler with “-Xcompiler”

Default (on Windows)
On Windows, nvcc passes [EHsc to the host compiler by default.
Example (on Windows)

nvcc --no-exceptions -Xcompiler /EHa x.cu

26 Chapter 5. NVCC Command Options



NVIDIA CUDA Compiler Driver, Release 13.0

5.2.3.21 --shared (-shared)

Generate a shared library during linking.

Use option --1inker-options when other linker options are required for more control.

5.2.3.22 --x{c|c++|cu} (-x)
Explicitly specify the language for the input files, rather than letting the compiler choose a default
based on the file name suffix.
Allowed Values
> C
> C++
» cu
Default

The language of the source code is determined based on the file name suffix.

5.2.3.23 --std {c++03|c++11|c++14|c++17|c++20} (-std)

Select a particular C++ dialect.
Allowed Values

» Cc++03

» c++11

» ct++14

> c++17

> Cc++20
Default

The default C++ dialect depends on the host compiler. nvcc matches the default C++ dialect that the
host compiler uses.

5.2.3.24 --no-host-device-initializer-1list (-nohdinitlist)

Do not consider member functions of std::initializer_list as __host__ __device__ func-
tions implicitly.

5.2. Command Option Description 27



NVIDIA CUDA Compiler Driver, Release 13.0

5.2.3.25 --expt-relaxed-constexpr (-expt-relaxed-constexpr)
Experimental flag: Allow host code to invoke " "__device__ constexpr ™ " functions, and device code to
invoke " '__host__ constexpr’ " functions.

Note that the behavior of this flag may change in future compiler releases.

5.2.3.26 --extended-lambda (-extended-lambda)

Allow __host __device__ annotations in lambda declarations.

—_

5.2.3.27 --expt-extended-lambda (-expt-extended-lambda)

Alias for --extended-1lambda.

5.2.3.28 --machine {64} (-m)

Specify 64-bit architecture.
Allowed Values

> 64
Default

This option is set based on the host platform on which nvcc is executed.

5.2.3.29 --m64 (-m64)

Alias for --machine=64

5.2.3.30 --host-linker-script {use-1lcs|gen-1cs} (-hls)

Use the host linker script (GNU/Linux only) to enable support for certain CUDA specific requirements,
while building executable files or shared libraries.

Allowed Values
use-1lcs

Prepares a host linker script and enables host linker to support relocatable device object
files that are larger in size, that would otherwise, in certain cases, cause the host linker to
fail with relocation truncation error.

gen-1cs

Generates a host linker script that can be passed to host linker manually, in the case where
host linker is invoked separately outside of nvcc. This option can be combined with -shared
or -r option to generate linker scripts that can be used while generating host shared li-
braries or host relocatable links respectively.

The file generated using this options must be provided as the last input file to the host
linker.

28 Chapter 5. NVCC Command Options



NVIDIA CUDA Compiler Driver, Release 13.0

The output is generated to stdout by default. Use the option -0 filename to specify the
output filename.

A linker script may already be in used and passed to the host linker using the host linker option
--script (or -T), then the generated host linker script must augment the existing linker script. In
such cases, the option —aug-hls must be used to generate linker script that contains only the aug-
mentation parts. Otherwise, the host linker behaviour is undefined.

A host linker option, such as -z with a non-default argument, that can modify the default linker script
internally, is incompatible with this option and the behavior of any such usage is undefined.

Default Value

use-1lcs is used as the default type.

Enables generation of host linker script that augments an existing host linker script (GNU/Linux only).
See option --host-1linker-script for more details.

When used in combination with -hls=gen-1cs, controls the behaviour of ~-hls=gen-1cs and sets
it to generate host linker script that can be used in host relocatable link (1d -r linkage). See option
-hls=gen-1cs for more information.

This option currently is effective only when used with -hls=gen-1cs; in all other cases, this option is
ignored currently.

The user specified random seed will be used to replace random numbers used in generating symbol
names and variable names. The option can be used to generate deterministicly identical ptx and object
files.

If the input value is a valid number (decimal, octal, or hex), it will be used directly as the random seed.
Otherwise, the CRC value of the passed string will be used instead.

NVCC will also pass the option, as well as the user specified value to host compilers, if the host compiler
is either GCC or Clang, since they support -frandom-seed option as well. Users are respoonsible for
assigning different seed to different files.

These flags allow for passing specific options directly to the internal compilation tools that nvcc en-
capsulates, without burdening nvcc with too-detailed knowledge on these tools.

5.2. Command Option Description 29



NVIDIA CUDA Compiler Driver, Release 13.0

5.2.4.1 --compiler-options options, ... (-Xcompiler)

Specify options directly to the compiler/preprocessor.

5.2.4.2 --linker-options options, ... (-X1linker)

Specify options directly to the host linker.

5.2.4.3 --archive-options options, ... (-Xarchive)

Specify options directly to the library manager.

5.2.4.4 --ptxas-options options, ... (-Xptxas)

Specify options directly to ptxas, the PTX optimizing assembler.

5.2.4.5 --nvlink-options options, ... (-Xnvlink)

Specify options directly to nvlink, the device linker.

5.2.5. Options for Guiding the Compiler Driver

5.2.5.1 --static-global-template-stub {true|false} (-static-global-template-stub)

In whole-program compilation mode (-rdc=false), force static linkage for host side stub functions
generated for __global__ function templates.

A __global__ function represents the entry point for GPU code execution, and is typically referenced
from host code. In whole program compilation mode (nvcc default), the device code in each translation
unit forms a self-contained device program. In the code sent to the host compiler, the CUDA frontend
compiler will replace the contents of the body of the original __global__ function or function tem-
plate with calls to the CUDA runtime to launch the kernel (these are referred to as ‘stub’ functions
below).

When this flag is false, the template stub function will have weak linkage. This causes a problem if
two different translation units a.cu and b. cu have the same instatiation fora __global__ template
G.

For example:

//common.h
template <typename T>
__global__ void G() { qaqq = 4; }

//a.cu

static __device__ int qqq;
#include "common.h"

int main() { G<int><<<1,1>>>(); }

(continues on next page)

30 Chapter 5. NVCC Command Options



NVIDIA CUDA Compiler Driver, Release 13.0

(continued from previous page)

//b.cu

static __device__ int qqq;
#include "common.h"

int main() { G<int><<<1,1>>>(); }

When a.cu and b.cu are compiled in nvcc whole program mode, the device programs generated for
a.cu and b.cu are separate programs, but the host linker will encounter multiple weak definitions
for G<int> stub instantiation, and choose only one in the linked host program. As a result, launching
G<int> from a.cu or b.cu will incorrectly launch the device program corresponding to one of a.cu
or b. cu; while the correct expected behavior is that G<int> from a.cu launches the device program
generated for a.cu, and G<int> from b.cu launches the device program generated for b . cu, respec-
tively.

When the flag is true, the CUDA frontend compiler will make all the stub functions static in the
generated host code. This solves the problem above, since G<int> in a.cu and b.cu now refer to
distinct symbols in the host object code, and the host linker will not combine these symbols.

Notes

This option is ignored unless the program is being compiled in whole program compilation mode
(-rdc=false).

Turning on this flag may break existing code in some corner cases (only in whole program com-
pilation mode):

If a __global__ function template is declared as a friend, and the friend declaration is the
first declaration of the entity.

If a __global__ function template is referenced, but not defined in the current translation
unit.

Default

true

This flag applies to __global__ functions and function templates, and to __constant__, __de-
vice__ and __managed__ variables and variable templates, when using host compilers that support
the visibility attribute (e.g. gcc, clang).

When this flag is enabled, the CUDA frontend compiler will implicitly add __at-
tribute__((visibility("hidden"))) to every declaration of these entities, unless
the entity has internal linkage or the entity has non-default visibility e.g., due to at-
tribute((visibility("default"))) onan enclosing namespace.

If building a shared library, entities with hidden visibility cannot be referenced from outside the
shared library. This behavior is desired for __global__ functions/template instantiations and for
__constant__/__device__/__managed__ variables and template instantiations, because the func-
tionality of these entities depends on the CUDA Runtime (CUDART) library. If such entities are refer-
enced from outside the shared library, then subtle errors can occur if a different CUDART is linked in to
the shared library versus the user of the shared library. By forcing hidden visibility for such entities,
these problems are avoided (the program will fail to build).

Please also see related flag -static-global-template-stub, which forces internal linkage for
__global__ templates in whole program compilation mode.

Default Value true

5.2. Command Option Description 31



NVIDIA CUDA Compiler Driver, Release 13.0

Forward unknown options to the host compiler. An ‘unknown option’ is a command line argument that
starts with - followed by another character, and is not a recognized nvcc flag or an argument for a
recognized nvcc flag.

If the unknown option is followed by a separate command line argument, the argument will not be
forwarded, unless it begins with the - character.

For example:

nvcc -forward-unknown-to-host-compiler -foo=bar a.cu will forward -foo=bar to
host compiler.

nvcc -forward-unknown-to-host-compiler -foo bar a.cu will report an error for bar
argument.

nvcc -forward-unknown-to-host-compiler -foo -bar a.cuwill forward -fooand -bar
to host compiler.

Note: On Windows, also see option -forward-slash-prefix-opts for forwarding options that be-
gin with /.

Forward unknown options to the host linker. An ‘unknown option’ is a command line argument that
starts with - followed by another character, and is not a recognized nvcc flag or an argument for a
recognized nvcc flag.

If the unknown option is followed by a separate command line argument, the argument will not be
forwarded, unless it begins with the - character.

For example:

nvcc -forward-unknown-to-host-linker -foo=bar a.cu will forward -foo=bar to host
linker.

nvcc -forward-unknown-to-host-linker -foo bar a.cu will report an error for bar
argument.

nvcc -forward-unknown-to-host-linker -foo -bar a.cu will forward -foo and -bar to
host linker.

Note: On Windows, also see option -forward-slash-prefix-opts for forwarding options that be-
gin with /.

Implies the combination of options -forward-unknown-to-host-linker and
-forward-unknown-to-host-compiler.

For example:

nvcc -forward-unknown-opts -foo=bar a.cu will forward -foo=bar to the host linker and
compiler.

nvcc -forward-unknown-opts -foo bar a.cu will report an error for bar argument.

nvcc -forward-unknown-opts -foo -bar a.cu will forward -foo and -bar to the host
linker and compiler.

32 Chapter 5. NVCC Command Options



NVIDIA CUDA Compiler Driver, Release 13.0

Note: On Windows, also see option -forward-slash-prefix-opts for forwarding options that be-
gin with /.

If this flag is specified, and forwarding unknown options to host toolchain is
enabled (-forward-unknown-opts or -forward-unknown-to-host-1linker or
-forward-unknown-to-host-compiler), then a command line argument beginning with /' is
forwarded to the host toolchain.

For example:

nvcc -forward-slash-prefix-opts -forward-unknown-opts /T foo.cu will forward
the flag /T to the host compiler and linker.

When this flag is not specified, a command line argument beginning with /" is treated as an input file.
For example:

nvcc /T foo.cu will treat /T’ as an input file, and the Windows API function GetFullPath-
Name () is used to determine the full path name.

Note: This flag is only supported on Windows.

Do not use configurations from the nvcc.profile file for compilation.

Specify the maximum number of threads to be used to execute the compilation steps in parallel.

This option can be used to improve the compilation speed when compiling for multiple architectures.
The compiler creates number threads to execute the compilation steps in parallel. If number is 1, this
option is ignored. If number is 0, the number of threads used is the number of CPUs on the machine.

List the compilation sub-commands without executing them.

List the compilation sub-commands while executing them.

5.2. Command Option Description 33



NVIDIA CUDA Compiler Driver, Release 13.0

5.2.5.11 --keep (-keep)

Keep all intermediate files that are generated during internal compilation steps.

5.2.5.12 --keep-dir directory (-keep-dir)

Keep all intermediate files that are generated during internal compilation steps in this directory.

5.2.5.13 --save-temps (-save-temps)

This option is an alias of --keep.

5.2.5.14 --clean-targets (-clean)

Delete all the non-temporary files that the same nvcc command would generate without this option.

This option reverses the behavior of nvcc. When specified, none of the compilation phases will be
executed. Instead, all of the non-temporary files that nvcc would otherwise create will be deleted.

5.2.5.15 --run-args arguments, ... (-run-args)

Specify command line arguments for the executable when used in conjunction with --run.

5.2.5.16 --use-local-env (-use-local-env)

Use this flag to force nvcc to assume that the environment for cl.exe has already been set up, and skip
running the batch file from the MSVC installation that sets up the environment for cl.exe. This can
significantly reduce overall compile time for small programs.

5.2.5.17 --force-cl-env-setup (-force-cl-env-setup)

Force nvcc to always run the batch file from the MSVC installation to set up the environment for cl.exe
(matching legacy nvcc behavior).

If this flag is not specified, by default, nvcc will skip running the batch file if the following conditions
are satisfied : cl.exe is in the PATH, environment variable VSCMD_VER is set, and, if -ccbin is specifed,
then compiler denoted by -ccbin matches the cl.exe in the PATH. Skipping the batch file execution
can reduce overall compile time significantly for small programs.

34 Chapter 5. NVCC Command Options



NVIDIA CUDA Compiler Driver, Release 13.0

Specify the input drive prefix.

On Windows, all command line arguments that refer to file names must be converted to the Windows
native format before they are passed to pure Windows executables. This option specifies how the
current development environment represents absolute paths. Use /cygwin/ as prefix for Cygwin
build environments and / as prefix for MinGW.

Specify the dependency drive prefix.

On Windows, when generating dependency files (see --generate-dependencies), all file names
must be converted appropriately for the instance of make that is used. Some instances of make have
trouble with the colon in absolute paths in the native Windows format, which depends on the envi-
ronment in which the make instance has been compiled. Use /cygwin/ as prefix for a Cygwin make,
and / as prefix for MinGW. Or leave these file names in the native Windows format by specifying
nothing.

Specify the drive prefix.

This option specifies prefix as both --input-drive-prefix and --dependency-drive-prefix.

Specify the target name of the generated rule when generating a dependency file (see
--generate-dependencies).

Specify that -malign-double should not be passed as a compiler argument on 32-bit platforms.
WARNING: this makes the ABI incompatible with the CUDA’s kernel ABI for certain 64-bit types.

Skip the device link step when linking object files.

5.2. Command Option Description 35



NVIDIA CUDA Compiler Driver, Release 13.0

Disable nvcc check for supported host compiler versions.

Using an unsupported host compiler may cause compilation failure or incorrect run time execution.
Use at your own risk. This option has no effect on MacOS.

Specify the stream that CUDA commands from the compiled program will be sent to by default.
Allowed Values
legacy

The CUDA legacy stream (per context, implicitly synchronizes with other streams)
per-thread

Normal CUDA stream (per thread, does not implicitly synchronize with other streams)
null

Deprecated alias for 1legacy
Default

legacy is used as the default stream.

Specify the name of the class of NVIDIA virtual GPU architecture for which the CUDA input files must
be compiled.

With the exception as described for the shorthand below, the architecture specified with this option
must be a virtual architecture (such as compute_100). Normally, this option alone does not trigger
assembly of the generated PTX for a real architecture (that is the role of nvcc option --gpu-code,
see below); rather, its purpose is to control preprocessing and compilation of the input to PTX.

For convenience, in case of simple nvcc compilations, the following shorthand is supported. If
no value for option --gpu-code is specified, then the value of this option defaults to the value
of --gpu-architecture. In this situation, as the only exception to the description above, the
value specified for --gpu-architecture may be a real architecture (such as a sm_100), in which
case nvcc uses the specified real architecture and its closest virtual architecture as the effec-
tive architecture values. For example, nvcc --gpu-architecture=sm_100 is equivalent to nvcc
--gpu-architecture=compute_100 --gpu-code=sm_100,compute_100. If the architecture-
specific real gpu (such as -arch=sm_90a) is specified, then both architecture-specific and non-
architecture-specific virtual code are added to the code list: --gpu-architecture=compute_90a
--gpu-code=sm_90a, compute_90, compute_90a.

36 Chapter 5. NVCC Command Options



NVIDIA CUDA Compiler Driver, Release 13.0

When -arch=native is specified, nvcc detects the visible GPUs on the system and generates codes
for them, no PTX program will be generated for this option. It is a warning if there are no visible
supported GPU on the system, and the default architecture will be used.

If ~arch=all is specified, nvcc embeds a compiled code image for all supported architectures
(sm_*), and a PTX program for the highest major virtual architecture. For -arch=all-major, nvcc
embeds a compiled code image for all supported major versions (sm_*8), plus the earliest supported,
and adds a PTX program for the highest major virtual architecture.

See for the list of supported virtual architectures and
for the list of supported real architectures.
Default

sm_75 is used as the default value; PTX is generated for compute_75 then assembled and optimized
for sm_75.

Specify the name of the NVIDIA GPU to assemble and optimize PTX for.

nvcc embeds a compiled code image in the resulting executable for each specified code architecture,
which is a true binary load image for each real architecture (such as sm_100), and PTX code for the
virtual architecture (such as compute_100).

During runtime, such embedded PTX code is dynamically compiled by the CUDA runtime system if no
binary load image is found for the current GPU.

Architectures specified for options --gpu-architecture and --gpu-code may be virtual as well
as real, but the code architectures must be compatible with the arch architecture. When the
--gpu-code option is used, the value for the --gpu-architecture option must be a virtual PTX
architecture.

For instance, --gpu-architecture=compute_100 is not compatible with --gpu-code=sm_980, be-
cause the earlier compilation stages will assume the availability of compute_100 features that are not
present on sm_960.

See for the list of supported virtual architectures and
for the list of supported real architectures.

This option provides a generalization of the --gpu-architecture=arch --gpu-code=code, ...
option combination for specifying nvcc behavior with respect to code generation.

Where use of the previous options generates code for different real architectures with the PTX for
the same virtual architecture, option --generate-code allows multiple PTX generations for different
virtual architectures. In fact, --gpu-architecture=arch --gpu-code=code, ... is equivalent to
--generate-code=arch=arch, code=code, .. ..

--generate-code options may be repeated for different virtual architectures.

See for the list of supported virtual architectures and
for the list of supported real architectures.

5.2. Command Option Description 37



NVIDIA CUDA Compiler Driver, Release 13.0

Enable or disable the generation of relocatable device code.

If disabled, executable device code is generated. Relocatable device code must be linked before it can
be executed.

Allowed Values
true
false

Default

The generation of relocatable device code is disabled.

Specify the global entry functions for which code must be generated.

PTX generated for all entry functions, but only the selected entry functions are assembled. Entry
function names for this option must be specified in the mangled name.

Default

nvcc generates code for all entry functions.

Specify the maximum amount of registers that GPU functions can use.

Until a function-specific limit, a higher value will generally increase the performance of individual GPU
threads that execute this function. However, because thread registers are allocated from a global
register pool on each GPU, a higher value of this option will also reduce the maximum thread block
size, thereby reducing the amount of thread parallelism. Hence, a good maxrregcount value is the
result of a trade-off.

A value less than the minimum registers required by ABI will be bumped up by the compiler to ABI
minimum limit.

User program may not be able to make use of all registers as some registers are reserved by compiler.
Default

No maximum is assumed.

Make use of fast math library.

--use_fast_mathimplies --ftz=true --prec-div=false --prec-sqrt=false --fmad=true.

38 Chapter 5. NVCC Command Options



NVIDIA CUDA Compiler Driver, Release 13.0

Control single-precision denormals support.
--ftz=true flushes denormal values to zero and --ftz=false preserves denormal values.
--use_fast_math implies --ftz=true.
Allowed Values
true
false
Default

This option is set to false and nvcc preserves denormal values.

This option controls single-precision floating-point division and reciprocals.

--prec-div=true enables the IEEE round-to-nearest mode and --prec-div=false enables the
fast approximation mode.

--use_fast_math implies --prec-div=false.
Allowed Values

true

false
Default

This option is set to true and nvcc enables the IEEE round-to-nearest mode.

This option controls single-precision floating-point square root.

--prec-sqrt=true enables the IEEE round-to-nearest mode and --prec-sqrt=false enables the
fast approximation mode.

--use_fast_math implies --prec-sqrt=false.
Allowed Values

true

false
Default

This option is set to true and nvcc enables the IEEE round-to-nearest mode.

5.2. Command Option Description 39



NVIDIA CUDA Compiler Driver, Release 13.0

5.2.7.11 --fmad {true|false} (-fmad)
This option enables (disables) the contraction of floating-point multiplies and adds/subtracts into
floating-point multiply-add operations (FMAD, FFMA, or DFMA).
--use_fast_math implies --fmad=true.
Allowed Values
» true
» false
Default

This option is set to true and nvcc enables the contraction of floating-point multiplies and
adds/subtracts into floating-point multiply-add operations (FMAD, FFMA, or DFMA).

5.2.7.12 --extra-device-vectorization (-extra-device-vectorization)

This option enables more aggressive device code vectorization.

5.2.7.13 --compile-as-tools-patch (-astoolspatch)

Compile patch code for CUDA tools. Implies ~keep-device-functions.
May only be used in conjunction with --ptx or --cubin or --fatbin.
Shall not be used in conjunction with -rdc=true or -ewp.

Some PTX ISA features may not be usable in this compilation mode.

5.2.7.14 --keep-device-functions (-keep-device-functions)

In whole program compilation mode, preserve user defined external linkage __device__ function def-
initions in generated PTX.

5.2.7.15 --jump-table-density percentage (-jtd)

Specify the case density percentage in switch statements, and use it as a minimal threshold to deter-
mine whether jump table(brx.idx instruction) will be used to implement a switch statement.

The percentage ranges from 0 to 101 inclusively.

Default

This option is set to 101 and nvcc disables jump table generation for switch statements.

40 Chapter 5. NVCC Command Options



NVIDIA CUDA Compiler Driver, Release 13.0

5.2.8. Generic Tool Options

5.2.8.1 --disable-warnings (-w)

Inhibit all warning messages.

5.2.8.2 --source-in-ptx (-src-in-ptx)

Interleave source in PTX.

May only be used in conjunction with --device-debug or --generate-1line-info.
5.2.8.3 --restrict (-restrict)

Assert that all kernel pointer parameters are restrict pointers.

5.2.8.4 --Wno-deprecated-gpu-targets (-Wno-deprecated-gpu-targets)

Suppress warnings about deprecated GPU target architectures.

5.2.8.5 --Wno-deprecated-declarations (-Wno-deprecated-declarations)

Suppress warning on use of a deprecated entity.

5.2.8.6 --Wreorder (-Wreorder)

Generate warnings when member initializers are reordered.

5.2.8.7 --Wdefault-stream-launch (-Wdefault-stream-launch)

Generate warning when an explicit stream argument is not provided in the <<<...>>> kernel launch
syntax.

5.2.8.8 --Wmissing-launch-bounds (-Wmissing-launch-bounds)

Generate warning when a __global__ function does not have an explicit __launch_bounds__ an-
notation.

5.2. Command Option Description 41



NVIDIA CUDA Compiler Driver, Release 13.0

Generate warning when an extended lambda implicitly captures this.

Make warnings of the specified kinds into errors.
The following is the list of warning kinds accepted by this option:
all-warnings

Treat all warnings as errors.
cross-execution-space-call

Be more strict about unsupported cross execution space calls. The compiler will generate an
error instead of a warning for a call from a __host device__toa __host__ function.

reorder
Generate errors when member initializers are reordered.
default-stream-launch

Generate error when an explicit stream argument is not provided in the <<<...>>> kernel
launch syntax.

missing-launch-bounds

Generate warning when a __global__ function does not have an explicit
__launch_bounds__ annotation.

ext-lambda-captures-this
Generate error when an extended lambda implicitly captures this.
deprecated-declarations

Generate error on use of a deprecated entity.

This option displays a diagnostic number for any message generated by the CUDA frontend compiler
(note: not the host compiler).

This option disables the display of a diagnostic number for any message generated by the CUDA fron-
tend compiler (note: not the host compiler).

42 Chapter 5. NVCC Command Options



NVIDIA CUDA Compiler Driver, Release 13.0

5.2.8.13 --diag-error errNum, ... (-diag-error)

Emit error for specified diagnostic message(s) generated by the CUDA frontend compiler (note: does
not affect diagnostics generated by the host compiler/preprocessor).

5.2.8.14 --diag-suppress errNum, ... (-diag-suppress)

Suppress specified diagnostic message(s) generated by the CUDA frontend compiler (note: does not
affect diagnostics generated by the host compiler/preprocessor).

5.2.8.15 --diag-warn errNum, ... (-diag-warn)

Emit warning for specified diagnostic message(s) generated by the CUDA frontend compiler (note:
does not affect diagnostics generated by the host compiler/preprocessor).

5.2.8.16 --resource-usage (-res-usage)

Show resource usage such as registers and memory of the GPU code.

This option implies --nvlink-options=--verbose when --relocatable-device-code=true is
set. Otherwise, it implies --ptxas-options=--verbose.

5.2.8.17 --device-stack-protector {true|false} (-device-stack-protector)

Enable or disable the generation of stack canaries in device code.

Stack canaries make it more difficult to exploit certain types of memory safety bugs involving stack-
local variables. The compiler uses heuristics to assess the risk of such a bug in each function. Only
those functions which are deemed high-risk make use of a stack canary.

Allowed Values
» true
» false
Default

The generation of stack canaries in device code is disabled.

5.2.8.18 --help (-h)

Print help information on this tool.

5.2. Command Option Description 43



NVIDIA CUDA Compiler Driver, Release 13.0

5.2.8.19 --version (-V)

Print version information on this tool.

5.2.8.20 --options-file file,... (-optf)

Include command line options from specified file.

5.2.8.21 --time filename (-time)

Generate a comma separated value table with the time taken by each compilation phase, and append
it at the end of the file given as the option argument. If the file is empty, the column headings are
generated in the first row of the table.

If the file name is -, the timing data is generated in stdout.
5.2.8.22 --gpp-config config (-qpp-config)

Specify the configuration ([[compiler/]version,][target]) when using g++ host compiler. The argument
will be forwarded to the g++ compiler with its -V flag.

5.2.8.23 --list-gpu-code (-code-1s)

List the non-architecture-specific gpu architectures (sm_XX) supported by the tool and exit.

If both -list-gpu-code and -list-gpu-arch are set, the list is displayed using the same format as the
-generate-code value.

5.2.8.24 --list-gpu-arch (-arch-1s)

List the non-architecture-specific virtual device architectures (compute_XX) supported by the tool and
exit.

If both -list-gpu-arch and -list-gpu-code are set, the list is displayed using the same format as the
-generate-code value.

5.2.8.25 --fdevice-time-trace (-fdevice-time-trace)

Enables the time profiler, outputting a JSON file based on given file name. If file name is -, the JSON
file will have the same name as the user provided output file -0, otherwise it will be set to ‘trace.json’.

44 Chapter 5. NVCC Command Options



NVIDIA CUDA Compiler Driver, Release 13.0

5.2.9. Phase Options

The following sections lists some useful options to lower level compilation tools.

5.2.9.1 Ptxas Options

The following table lists some useful ptxas options which can be specified with nvcc option -Xptxas.
5.2.9.1.1 --allow-expensive-optimizations (-allow-expensive-optimizations)

Enable (disable) to allow compiler to perform expensive optimizations using maximum available re-

sources (memory and compile-time).

If unspecified, default behavior is to enable this feature for optimization level >= 02.

5.2.9.1.2 --compile-only (-c)

Generate relocatable object.

5.2.9.1.3 --def-load-cache (-d1lcm)

Default cache modifier on global/generic load.

5.2.9.1.4 --def-store-cache (-dscm)

Default cache modifier on global/generic store.

5.2.9.1.5 --device-debug (-g)

Semantics same as nvcc option --device-debug.

5.2.9.1.6 --disable-optimizer-constants (-disable-optimizer-consts)

Disable use of optimizer constant bank.

5.2.9.1.7 --entry entry, ... (-e)

Semantics same as nvcc option --entries.

5.2. Command Option Description 45



NVIDIA CUDA Compiler Driver, Release 13.0

Semantics same as nvcc option --fmad.

Force specified cache modifier on global/generic load.

Force specified cache modifier on global/generic store.

Semantics same as nvcc option --generate-line-info.

Specify name of NVIDIA GPU to generate code for.

This option also takes virtual compute architectures, in which case code generation is suppressed. This
can be used for parsing only.

PTX for .target sm_XY can be compiled to all GPU targets sm_MN, sm_MNa, SM_MNf where MN >=
XY. PTX for .target sm_XYf can be compiled to GPU targets sm_XZ, sm_XZf, sm_XZa where Z >=Y and
sm_XY and sm_XZ belong in same family. PTX with .target sm_XYa can only be compiled to GPU target
sm_XVYa.

Allowed Values

compute_75 compute_86 compute_86 compute_87

compute_88 compute_89 compute_960 compute_90a

compute_100

compute_100f

compute_100a

compute_103

compute_103f

compute_103a

compute_110

compute_110f

compute_110a

compute_120

compute_120f

compute_120a

compute_121

compute_121f

compute_121a

sm_75 sm_80 sm_86 sm_87
sm_88 sm_89 sm_90 sm_90a
sm_100 sm_100f sm_100a sm_103
sm_103f sm_103a sm_110 sm_110f
sm_110a sm_120 sm_120f sm_120a
sm_121 sm_121f sm_121a

Default value: sm_75

46

Chapter 5. NVCC Command Options




NVIDIA CUDA Compiler Driver, Release 13.0

5.2.9.1.13 --help (-h)

Semantics same as nvcc option --help.

5.2.9.1.14 --machine (-m)

Semantics same as nvcc option --machine.

5.2.9.1.15 --maxrregcount amount (-maxrregcount)

Semantics same as nvcc option --maxrregcount.

5.2.9.1.16 --opt-level N (-0)

Specify optimization level.

Default value: 3.

5.2.9.1.17 --options-file file,... (-optf)

Semantics same as nvcc option --options-file.

5.2.9.1.18 --position-independent-code (-pic)

Generate position-independent code.
Default value:
For whole-program compilation: true

Otherwise: false

5.2.9.1.19 --preserve-relocs (-preserve-relocs)

This option will make ptxas to generate relocatable references for variables and preserve relocations
generated for them in linked executable.

5.2.9.1.20 --sp-bounds-check (-sp-bounds-check)

Generate stack-pointer bounds-checking code sequence.

This option is turned on automatically when --device-debug or --opt-level=0 is specified.

5.2. Command Option Description 47



NVIDIA CUDA Compiler Driver, Release 13.0

5.2.9.1.21 --suppress-async-bulk-multicast-advisory-warning(-suppress-async-bulk-multicast-ad

Suppress the warning on use of .multicast: :cluster modifier on cp.async.bulk{.tensor} in-
struction with sm_90.

5.2.9.1.22 --verbose (-v)

Enable verbose mode which prints code generation statistics.

5.2.9.1.23 --version (-V)

Semantics same as nvcc option --version.

5.2.9.1.24 --warning-as-error (-Werror)

Make all warnings into errors.

5.2.9.1.25 --warn-on-double-precision-use (-warn-double-usage)

Warning if double(s) are used in an instruction.

5.2.9.1.26 --warn-on-local-memory-usage (-warn-1lmem-usage)

Warning if local memory is used.

5.2.9.1.27 --warn-on-spills (-warn-spills)

Warning if registers are spilled to local memory.

5.2.9.1.28 --compile-as-tools-patch (-astoolspatch)

Compile patch code for CUDA tools.
Shall not be used in conjunction with -Xptxas -c or -ewp.

Some PTX ISA features may not be usable in this compilation mode.

48 Chapter 5. NVCC Command Options



NVIDIA CUDA Compiler Driver, Release 13.0

5.2.9.1.29 --maxntid (-maxntid)

Specify the maximum number of threads that a thread block can have.

This option will be ignored if used along with -maxrregcount option. This option is also ignored for
entry functions that have .maxntid directive specified.

5.2.9.1.30 --minnctapersm (-minnctapersm)

Specify the minimum number of CTAs to be mapped to an SM.

This option will be ignored if used along with -maxrregcount option. This option is also ignored for
entry functions that have .minnctapersm directive specified.

5.2.9.1.31 --override-directive-values (-override-directive-values)

Override the PTX directives values by the corresponding option values.

This option is effective only for -minnctapersm, -maxntid and -maxrregcount options.

5.2.9.1.32 --make-errors-visible-at-exit (-make-errors-visible-at-exit)

Generate required instructions at exit point to make memory faults and errors visible at exit.

5.2.9.1.33 --0fast-compile level (-0fc)

Specify the fast-compile level for device code, which controls the tradeoff between compilation speed
and runtime performance by disabling certain optimizations at varying levels. Passed automatically at
the same level when nvcc is called with --Ofast-compile.

Allowed Values
» max: Focus only on the fastest compilation speed, disabling many optimizations.
» mid: Balance compile time and runtime, disabling expensive optimizations.

» min: More minimal impact on both compile time and runtime, minimizing some expensive opti-
mizations.

» O: Disable fast-compile.
Default Value
The option is disabled by default.

5.2. Command Option Description 49



NVIDIA CUDA Compiler Driver, Release 13.0

5.2.9.1.34 --device-stack-protector (-device-stack-protector)

Enable or disable the generation of stack canaries in device code.

Stack canaries make it more difficult to exploit certain types of memory safety bugs involving stack-
local variables. The compiler uses heuristics to assess the risk of such a bug in each function. Only
those functions which are deemed high-risk make use of a stack canary.

Allowed Values
» true
» false
Default

The generation of stack canaries in device code is disabled.

5.2.9.1.35 --g-tensor-memory-access-check (-g-tmem-access-check)

Enable tensor memory access checks for tcgen@5 operations.

This option is enabled by default with --device-debug (-g) option.

5.2.9.1.36 --gno-tensor-memory-access-check (-gno-tmem-access-check)

Disable tensor memory access checks for tcgen@5 operations.

This option will override the --g-tensor-memory-access-check option if both are specified.

5.2.9.1.37 --split-compile (-split-compile)

Specify the maximum amount of concurrent threads to be utilized when running compiler optimiza-
tions.

If value specified is 1, option will be ignored. If value specified is 8, then the number of threads will be
the number of CPUs on the underlying machine.

5.2.9.1.38 --jobserver (-jobserver)

Enable GNU jobserver support.

When using -split-compile inside of a build controlled by GNU Make, require that job slots are
acquired Make’s jobserver for each of the threads used, helping prevent oversubscription. This option
only works when Make is called with -j set to a numerical value greater than 1, as -j (without a
number) causes Make to skip making the jobserver and -j1 disables all parallelism. This requires GNU
Make 4.3 or newer. Using this option with an unsupported version of Make, or without the correct -j
value may lead to undefined behavior.

Note: This flag is only supported on Linux.

50 Chapter 5. NVCC Command Options



NVIDIA CUDA Compiler Driver, Release 13.0

5.2.9.2 NVLINK Options

The following is a list of some useful nvlink options which can be specified with nvcc option
--nvlink-options.

5.2.9.2.1 --disable-warnings (-w)

Inhibit all warning messages.

5.2.9.2.2 --preserve-relocs (-preserve-relocs)

Preserve resolved relocations in linked executable.

5.2.9.2.3 --verbose (-v)

Enable verbose mode which prints code generation statistics.

5.2.9.2.4 --warning-as-error (-Werror)

Make all warnings into errors.

5.2.9.2.5 --suppress-arch-warning (-suppress-arch-warning)

Suppress the warning that otherwise is printed when object does not contain code for target arch.

5.2.9.2.6 --suppress-stack-size-warning (-suppress-stack-size-warning)

Suppress the warning that otherwise is printed when stack size cannot be determined.

5.2.9.2.7 --dump-callgraph (-dump-callgraph)

Dump information about the callgraph and register usage.

5.2.9.2.8 --dump-callgraph-no-demangle (-dump-callgraph-no-demangle)

Dump callgraph information without demangling.

5.2. Command Option Description 51



NVIDIA CUDA Compiler Driver, Release 13.0

5.2.9.2.9 --Xptxas (-Xptxas)

Ptxas options (only used with LTO).

5.2.9.2.10 --cpu-arch (-cpu-arch)

Specify the name of the cpu target architecture.

5.2.9.2.11 --extra-warnings (-extrawarn)

Emit extra warnings about possible problems.

5.2.9.2.12 --gen-host-linker-script (-ghls)

Specify the type of host linker script to be generated.

5.2.9.2.13 --ignore-host-info (-ignore-host-info)

Ignore information about host references, so don’t remove device code that could potentially be ref-
erenced by host.

5.2.9.2.14 --keep-system-libraries (-keep-system-libraries)

Don’t optimize away system library (e.g. cudadevrt) code.

5.2.9.2.15 --kernels-used (-kernels-used)

Specify kernels that are used. Can be part of a kernel name so any kernels with that string in name
are matched. If this option is used, then any other kernels are considered dead-code and removed.

5.2.9.2.16 --options-file (-optf)

Include command line options from the specified file.

5.2.9.2.17 --report-arch (-report-arch)

Report SM target arch in error messages.

52 Chapter 5. NVCC Command Options



NVIDIA CUDA Compiler Driver, Release 13.0

5.2.9.2.18 --suppress-debug-info (-suppress-debug-info)

Do not preserve debug symbols in output. This option is ignored if used without —debug option.

5.2.9.2.19 --variables-used (-variables used)

Specify variables that are used. Can be part of a variable name so any variable with that string in name
are matched. If this option is used, then any other variables are considered dead-code and potentially
removed unless have other accesses from device code.

5.2.9.2.20 --device-stack-protector {true|false} (-device-stack-protector)

Enable or disable the generation of stack canaries in device code (only used with LTO).

Stack canaries make it more difficult to exploit certain types of memory safety bugs involving stack-
local variables. The compiler uses heuristics to assess the risk of such a bug in each function. Only
those functions which are deemed high-risk make use of a stack canary.

Allowed Values
» true
» false
Default

The generation of stack canaries in device code is disabled.

5.3. NVCC Environment Variables

NVCC_PREPEND_FLAGS and NVCC_APPEND_FLAGS:
The nvec command line flags can be augmented using the following environment variables, if set:
NVCC_PREPEND_FLAGS
Flags to be injected before the normal nvcc command line.
NVCC_APPEND_FLAGS
Flags to be injected after the normal nvcc command line.

For example, after setting:

export NVCC_PREPEND_FLAGS='-G -keep -arch=sm_90'

export NVCC_APPEND_FLAGS='-DNAME=" foo "'

The following invocation:

nvce foo.cu -o foo

Becomes equivalent to:

5.3. NVCC Environment Variables 53



NVIDIA CUDA Compiler Driver, Release 13.0

nvcc -G -keep -arch=sm_96 foo.cu -o foo -DNAME=" foo
These environment variables can be useful for injecting nvcc flags globally without modifying build
scripts.

The additional flags coming from either NVCC_PREPEND_FLAGS or NVCC_APPEND_FLAGS will be
listed in the verbose log (--verbose).

NVCC_CCBIN:

A default host compiler can be set using the environment variable NVCC_CCBIN. For example, after
setting:

export NVCC_CCBIN='gcc'

nvcc will choose gcc as the host compiler if --compiler-bindir is not set.

NVCC_CCBIN can be useful for controlling the default host compiler globally. If NVCC_CCBIN
and --compiler-bindir are both set, nvcc will choose the host compiler specified by
--compiler-bindir. For example:

export NVCC_CCBIN='gcc'

nvcc foo.cu -ccbin='clang' -o foo

In this case, nvcc will choose clang as the host compiler.

54 Chapter 5. NVCC Command Options



Chapter 6. GPU Compilation

This chapter describes the GPU compilation model that is maintained by nvcc, in cooperation with the
CUDA driver. It goes through some technical sections, with concrete examples at the end.

In order to allow for architectural evolution, NVIDIA GPUs are released in different generations. New
generations introduce major improvements in functionality and/or chip architecture, while GPU models
within the same generation show minor configuration differences that moderately affect functionality,
performance, or both.

All NVIDIA GPUs have a compute capability (CC) which is a two part identifier in the form major.
minor The major version identifies the GPU generation, while the minor number identifies the version
within that generation. For example, compute capability 8.6 is part of CC 8.x generation. While GPUs
generations are often refered to by product names such as Hopper or Blackwell, these don’t always
have a direct correspondence to major compute capability version.

Binary compatibility of GPU applications is not guaranteed across different major compute capabilities.
For example, a CUDA application that has been compiled for a CC 9.0 GPU will not runona CC 10.0 GPU
(and vice versa). This is because the instruction set and instruction encodings are different between
different major compute capabilities.

Binary compatibility within a major compute capability can be guaranteed under certain conditions.
This is the case when two GPU versions do not show functional differences (for instance when one
version is a scaled down version of the other), or when one version is functionally included in the other.
An example of the latter is that code compiled for the target sm_80 will run on all other CC 8.x GPUs,
such as sm_86 or sm_89.

The following table lists the names of the current GPU architectures, annotated with the functional
capabilities that they provide. There are other differences, such as amounts of register and processor
clusters, that only affect execution performance.

In NVCC, GPUs are named sm_xy, where x denotes the major compute capability, and y the minor
compute capability. Additionally, to facilitate comparing GPU capabilities, CUDA attempts to choose
its GPU names such that if x1y1 <= x2y2 then all non-ISA related capabilities of sm_x1y1 are included
in sm_x2y2.

55



NVIDIA CUDA Compiler Driver, Release 13.0

sm_75 Turing support

sm_80, sm_86 and sm_87, sm_88 NVIDIA Ampere GPU archi-
tecture support

sm_89 Ada support

sm_90, sm_90a Hopper support

sm_100, sm_100f, sm_100a, sm_103, sm_103f, sm_103a, sm_110, | Blackwell support
sm_110f, sm_110a, sm_120, sm_120f, sm_120a, sm_121, sm_121f
sm_121a

Binary code compatibility over CPU generations, together with a published instruction set architecture
is the usual mechanism for ensuring that distributed applications out there in the field will continue to
run on newer versions of the CPU when these become mainstream.

This situation is different for GPUs, because NVIDIA cannot guarantee binary compatibility without
sacrificing regular opportunities for GPU improvements. Rather, as is already conventional in the
graphics programming domain, nvcc relies on a two stage compilation model for ensuring applica-
tion compatibility with future GPU generations.

GPU compilation is performed via an intermediate representation, PTX, which can be considered as
assembly for a virtual GPU architecture. Contrary to an actual graphics processor, such a virtual GPU
is defined entirely by the set of capabilities, or features, that it provides to the application. In particular,
a virtual GPU architecture provides a (largely) generic instruction set, and binary instruction encoding
is a non-issue because PTX programs are always represented in text format.

Hence, a nvcc compilation command always uses two architectures: a virtual intermediate architec-
ture, plus a real GPU architecture to specify the intended processor to execute on. For such an nvcc
command to be valid, the real architecture must be an implementation of the virtual architecture. This
is further explained below.

The chosen virtual architecture is more of a statement on the GPU capabilities that the application
requires: using a smaller virtual architecture still allows a wider range of actual architectures for the
second nvcc stage. Conversely, specifying a virtual architecture that provides features unused by the
application unnecessarily restricts the set of possible GPUs that can be specified in the second nvcc
stage.

From this it follows that the virtual architecture should always be chosen as low as possible, thereby
maximizing the actual GPUs to run on. The real architecture should be chosen as high as possible
(assuming that this always generates better code), but this is only possible with knowledge of the
actual GPUs on which the application is expected to run on. As we will see later in the situation of
just-in-time compilation, where the driver has this exact knowledge, the runtime GPU is the one on
which the program is about to be launched/executed.

56 Chapter 6. GPU Compilation



NVIDIA CUDA Compiler Driver, Release 13.0

e NVCC o
o x.cu (device code)
= |
8
=
e
m
% Stage 1
E' (PTX Generation)
o
[ &)
o
= |
T
= X.ptx H
L S o ______
i H
R CUDA Runtime .
o
= |
©
= Stage 2
-g (Cubin Generation)
E
[7y]
8
x.cubin = Execute
K -

Fig. 1: Two-Staged Compilation with Virtual and Real Architectures

6.4. Virtual Architectures 57



NVIDIA CUDA Compiler Driver, Release 13.0

compute_75 Turing support

compute_80, compute_86 and compute_87, compute_88 NVIDIA Ampere GPU archi-
tecture support

compute_89 Ada support

compute_90, compute_90a Hopper support

compute_100, compute_100f, compute_100a, compute_103, | Blackwell support
compute_103f, compute_103a, compute_110, compute_110f,
compute_110a, compute_120, compute_120f, compute_120a,
compute_121, compute_121f, compute_121a

The above table lists the currently defined virtual architectures. The virtual architecture naming
scheme is the same as the real architecture naming scheme shown in Section

Clearly, compilation staging in itself does not help towards the goal of application compatibility with
future GPUs. For this we need two other mechanisms: just-in-time compilation (JIT) and fatbinaries.

The compilation step to an actual GPU binds the code to one generation of GPUs. Within that genera-
tion, it involves a choice between GPU coverage and possible performance. For example, compiling to
sm_80 allows the code to run on all NVIDIA Ampere and Ada generation GPUs, but compiling to sm_89
would probably yield better code if Ada generation GPUs are the only targets.

By specifying a virtual code architecture instead of a real GPU, nvcc postpones the assembly of PTX
code until application runtime, at which time the target GPU is exactly known. For instance, the com-
mand below allows generation of exactly matching GPU binary code, when the application is launched
on an sm_90 or later architecture.

nvcc X.cu --gpu-architecture=compute_90 --gpu-code=compute_90

The disadvantage of just-in-time compilation is increased application startup delay, but this can be
alleviated by letting the CUDA driver use a compilation cache (refer to “Section 3.1.1.2. Just-in-Time
Compilation” of ) which is persistent over multiple runs of the applica-
tions.

58 Chapter 6. GPU Compilation


https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

NVIDIA CUDA Compiler Driver, Release 13.0

e NVCC o
o) x.cu (device code)
= |
8
=
e
m
% Stage 1
E' (PTX Generation)
o
[ &)
o
= |
T
= X.ptx

v o_ o ___ o ______

i

..... CUDA Runtime - .
=
2 I Stage 2
@ —=  (Cubin Generation)
: A
5
- x.cubin
8
W
Execute
K S

Fig. 2: Just-in-Time Compilation of Device Code

6.6. Further Mechanisms 59



NVIDIA CUDA Compiler Driver, Release 13.0

A different solution to overcome startup delay by JIT while still allowing execution on newer GPUs is
to specify multiple code instances, as in

nvcc X.cu --gpu-architecture=compute_86 --gpu-code=compute_80,sm_86,sm_89

This command generates exact code for two architectures, plus PTX code for use by JIT in case a next-
generation GPU is encountered. nvcc organizes its device code in fatbinaries, which are able to hold
multiple translations of the same GPU source code. At runtime, the CUDA driver will select the most
appropriate translation when the device function is launched.

nvcc provides the options --gpu-architecture and --gpu-code for specifying the target ar-
chitectures for both translation stages. Except for allowed short hands described below, the
--gpu-architecture option takes a single value, which must be the name of a virtual compute ar-
chitecture, while option --gpu-code takes a list of values which must all be the names of actual GPUs.
nvcc performs a stage 2 translation for each of these GPUs, and will embed the result in the result of
compilation (which usually is a host object file or executable).

Example

nvcc X.cu --gpu-architecture=compute_860 --gpu-code=sm_80,sm_86

nvcc allows a number of shorthands for simple cases.

--gpu-code arguments can be virtual architectures. In this case the stage 2 translation will be omit-
ted for such virtual architecture, and the stage 1 PTX result will be embedded instead. At application
launch, and in case the driver does not find a better alternative, the stage 2 compilation will be invoked
by the driver with the PTX as input.

Example

nvcc X.cu --gpu-architecture=compute_86 --gpu-code=compute_80,sm_80,sm_86

60 Chapter 6. GPU Compilation



NVIDIA CUDA Compiler Driver, Release 13.0

The --gpu-code option can be omitted. Only in this case, the --gpu-architecture value can be
a non-virtual architecture. The --gpu-code values default to the closest virtual architecture that is
implemented by the GPU specified with --gpu-architecture, plusthe --gpu-architecture,value
itself. The closest virtual architecture is used as the effective --gpu-architecture, value. If the
--gpu-architecture valueisavirtual architecture, it is also used as the effective --gpu-code value

Example

nvcc x.cu --gpu-architecture=sm_86
nvcc X.cu --gpu-architecture=compute_80

are equivalent to

nvcc X.cu --gpu-architecture=compute_86 --gpu-code=sm_86,compute_86
nvcc x.cu --gpu-architecture=compute_80 --gpu-code=compute_860

Both --gpu-architecture and --gpu-code options can be omitted.

Example

nvcc X.cu

is equivalent to

nvcc x.cu --gpu-architecture=compute_75 --gpu-code=sm_75, compute_75

Below are the recognized GPU code values for compilation and optimization:

Compute Capability Targets

compute_75

compute_860

compute_86

compute_87

compute_88

compute_89

compute_90

compute_90a

compute_100

compute_100f

compute_100a

compute_103

compute_103f

compute_103a

compute_110

compute_110f

compute_110a

compute_120

compute_120f

compute_120a

compute_121

compute_121f

compute_121a

Link-Time Optimization (LTO) Targets

6.7. NVCC Examples

61



NVIDIA CUDA Compiler Driver, Release 13.0

1to_75 1to_80 1to_86 1to_87

1to_88 1to_89 1to_96 1to_90a

1to_106 | 1to_100f | 1to_160a | 1to_103

lto_103f | 1to_103a | 1to_116 | 1lto_110f

lto_110a | 1to_120 | 1to_1206f | 1to_120a

1to_121 1to_121f | 1to_121a

Streaming Multiprocessor (SM) Architectures

sm_75 sm_80 sm_86 sm_87
sm_88 sm_89 sm_90 sm_90a
sm_100 | sm_100f | sm_100a | sm_103
sm_103f | sm_103a | sm_110 | sm_110f
sm_110a | sm_120 | sm_1206f | sm_120a
sm_121 sm_121f | sm_121a

The options --gpu-architecture and --gpu-code can be used in all cases where code is to be
generated for one or more GPUs using a common virtual architecture. This will cause a single invocation
of nvcc stage 1 (that is, preprocessing and generation of virtual PTX assembly code), followed by a
compilation stage 2 (binary code generation) repeated for each specified GPU.

Using a common virtual architecture means that all assumed GPU features are fixed for the entire
nvcc compilation. For instance, the following nvcc command assumes only the features available in
compute capability 8.0 for both sm_80 code and the sm_86 code:

nvcc X.cu --gpu-architecture=compute_86 --gpu-code=compute_80,sm_860,sm_86

Sometimes it is necessary to perform different GPU code generation steps, partitioned over different
architectures. This is possible using nvcc option --generate-code, which then must be used instead
of a --gpu-architecture and --gpu-code combination.

Unlike option --gpu-architecture, option --generate-code may be repeated on the nvcc com-
mand line. It takes sub-options arch and code, which must not be confused with their main op-
tion equivalents, but behave similarly. If repeated architecture compilation is used, then the device
code must use conditional compilation based on the value of the architecture identification macro
__CUDA_ARCH__, which is described in the next section.

For example, the following assumes only the features available in compute capability 8.0 for the sm_80
and sm_86 code, but all features available in compute capability 9.0 support on sm_960:

—_—

62 Chapter 6. GPU Compilation



NVIDIA CUDA Compiler Driver, Release 13.0

nvce x.cu \
--generate-code arch=compute_80, code=sm_860 \
--generate-code arch=compute_80, code=sm_86 \
--generate-code arch=compute_90, code=sm_90

Or, leaving actual GPU code generation to the JIT compiler in the CUDA driver:

nvce x.cu \
--generate-code arch=compute_80, code=compute_80 \
--generate-code arch=compute_90, code=compute_90

The code sub-options can be combined with a slightly more complex syntax:

nvcec x.cu \
--generate-code arch=compute_80,code=[sm_80,sm_86] \
--generate-code arch=compute_90, code=sm_90

The architecture identification macro __CUDA_ARCH__ is assigned a three-digit value string xy® (end-
ing in a literal 8) for each stage 1 nvcc compilation that compiles for compute_xy.

This macro can be used in the implementation of GPU functions for determining the virtual architec-
ture for which it is currently being compiled. The host code (the non-GPU code) must not depend on
it.

The architecture list macro __CUDA_ARCH_LIST__ is a list of comma-separated __CUDA_ARCH__ val-
ues for each of the virtual architectures specified in the compiler invocation. The list is sorted in
numerically ascending order.

The macro __CUDA_ARCH_LIST__ is defined when compiling C, C++ and CUDA source files.

For example, the following nvcc compilation command line will define __CUDA_ARCH_LIST__ as 8600,
860,900 :

nvce x.cu \

--generate-code arch=compute_90, code=sm_90 \
--generate-code arch=compute_80, code=sm_86 \
--generate-code arch=compute_86,code=sm_86 \
--generate-code arch=compute_86,code=sm_89

6.7. NVCC Examples 63



NVIDIA CUDA Compiler Driver, Release 13.0

64 Chapter 6. GPU Compilation



Chapter 7. Using Separate Compilation
in CUDA

Prior to the 5.0 release, CUDA did not support separate compilation, so CUDA code could not call device
functions or access variables across files. Such compilation is referred to as whole program compilation.
We have always supported the separate compilation of host code, it was just the CUDA device code
that needed to all be within one file. Starting with CUDA 5.0, separate compilation of device code is
supported, but the old whole program mode is still the default, so there are new options to invoke
separate compilation.

The code changes required for separate compilation of device code are the same as what you already
do for host code, namely using extern and static to control the visibility of symbols. Note that
previously extern was ignored in CUDA code; now it will be honored. With the use of static itis
possible to have multiple device symbols with the same name in different files. For this reason, the
CUDA API calls that referred to symbols by their string name are deprecated; instead the symbol should
be referenced by its address.

CUDA works by embedding device code into host objects. In whole program compilation, it embeds
executable device code into the host object. In separate compilation, we embed relocatable device
code into the host object, and run nv1link, the device linker, to link all the device code together. The
output of nvlink is then linked together with all the host objects by the host linker to form the final
executable.

The generation of relocatable vs executable device code is controlled by the
--relocatable-device-code option.

The --compile option is already used to control stopping a compile at a host object, so a new option
--device-c is added that simply does --relocatable-device-code=true --compile.

To invoke just the device linker, the --device-1ink option can be used, which emits a host object
containing the embedded executable device code. The output of that must then be passed to the
host linker. Or:

65



NVIDIA CUDA Compiler Driver, Release 13.0

nvcc <objects>

can be used to implicitly call both the device and host linkers. This works because if the device linker
does not see any relocatable code it does not do anything.

The following figure shows the flow.

X.cU y.cu z.cpp

\ ! |

~
[nvcc --device-c [nvcc ——device—c] [ C++ Gompiler ]
vy

X0/ Xob — r v.0 / y.obj z.0/ z.obj

i

[ Device Linker ]

a_dlink.o / a_dlink.obj —l
W

x( Host Linker w:

I\ )

executable / library

Fig. 1: CUDA Separate Compilation Trajectory

The device linker has the ability to read the static host library formats (. a on Linuxand Mac OS X, .1ib
on Windows). It ignores any dynamic (.so or .d11) libraries. The --1library and --1library-path
options can be used to pass libraries to both the device and host linker. The library name is specified
without the library file extension when the --1ibrary option is used.

nvcc --gpu-architecture=sm_100 a.o b.o --library-path=<path> --library=foo

Alternatively, the library name, including the library file extension, can be used without the --1ibrary
option on Windows.

nvcc --gpu-architecture=sm_100 a.obj b.obj foo.lib --library-path=<path>

Note that the device linker ignores any objects that do not have relocatable device code.

66 Chapter 7. Using Separate Compilation in CUDA



NVIDIA CUDA Compiler Driver, Release 13.0

7.4. Examples

Suppose we have the following files:

(===~ b.h ———————---
#define N 8
extern __device__ int g[N];

extern __device__ void bar(void);

J)m=mmmmmm=e b.cu ----------
#include "b.h"

__device__ int g[N];

__device__ void bar (void)

{
g[threadIdx.x]++;
}
[/========== Bo@QU ==========

#include <stdio.h>
#include "b.h"

__global__ void foo (void) {

__shared__ int a[N];
a[threadIdx.x] threadIdx.x;

__syncthreads();

g[threadIdx.x] a[blockDim.x - threadIdx.x - 1];

bar();
}

int main (void) {
unsigned int i;
int *dg, hg[N];
int sum = 0;

foo<<<1, N>>>() :

if (cudaGetSymbolAddress((void*#*)&dg, g)){
printf("couldn't get the symbol addr\n");
return 1;

}

if (cudaMemcpy(hg, dg, N * sizeof(int), cudaMemcpyDeviceToHost)){
printf("couldn't memcpy\n");
return 1;

}

for (i = 0; i < N; i++) {
sum += hg[i];
}

(continues on next page)

7.4. Examples 67



NVIDIA CUDA Compiler Driver, Release 13.0

(continued from previous page)
if (sum == 36) {
printf("PASSED\n");
} else {
printf("FAILED (%d)\n", sum);
}

return 0;

}

These can be compiled with the following commands (these examples are for Linux):

nvcc --gpu-architecture=sm_100 --device-c a.cu b.cu
nvcc --gpu-architecture=sm_100 a.o b.o

If you want to invoke the device and host linker separately, you can do:

nvcc --gpu-architecture=sm_100 --device-c a.cu b.cu
nvcc --gpu-architecture=sm_100 --device-link a.o b.o --output-file link.o
gt+ a.o b.o link.o --library-path=<path> --library=cudart

Note that all desired target architectures must be passed to the device linker, as that specifies what will
be in the final executable (some objects or libraries may contain device code for multiple architectures,
and the link step can then choose what to put in the final executable).

If you want to use the driver API to load a linked cubin, you can request just the cubin:

nvcc --gpu-architecture=sm_100 --device-link a.o b.o \
--cubin --output-file link.cubin

The objects could be put into a library and used with:

nvcc --gpu-architecture=sm_100 --device-c a.cu b.cu
nvcc --1ib a.o b.o --output-file test.a
nvcc --gpu-architecture=sm_100 test.a

Note that only static libraries are supported by the device linker.

A PTX file can be compiled to a host object file and then linked by using:

nvcc --gpu-architecture=sm_100 --device-c a.ptx

An example that uses libraries, host linker, and dynamic parallelism would be:

nvcc --gpu-architecture=sm_100 --device-c a.cu b.cu
nvcc --gpu-architecture=sm_100 --device-link a.o b.o --output-file link.o
nvcc --lib --output-file libgpu.a a.o b.o link.o
g++ host.o --library=gpu --library-path=<path> \
--library=cudadevrt --library=cudart

It is possible to do multiple device links within a single host executable, as long as each device link is in-
dependent of the other. This requirement of independence means that they cannot share code across
device executables, nor can they share addresses (e.g., a device function address can be passed from
host to device for a callback only if the device link sees both the caller and potential callback calleg;
you cannot pass an address from one device executable to another, as those are separate address
spaces).

68 Chapter 7. Using Separate Compilation in CUDA



NVIDIA CUDA Compiler Driver, Release 13.0

Separately compiled code may not have as high of performance as whole program code because of the
inability to inline code across files. A way to still get optimal performance is to use link-time optimiza-
tion, which stores intermediate code which is then linked together to perform high level optimizations.
This can be done with the --dlink-time-opt or -d1lto option. This option must be specified at both
compile and link time. If only some of the files are compiled with -d1lto, then those will be linked
and optimized together while the rest uses the normal separate compilation. A side effect is that this
shifts some of the compile time to the link phase, and there may be some scalability issues with really
large codes. If you want to compile using -gencode to build for multiple arch, use -dc -gencode
arch=compute_NN, code=1to_NN to specify the intermediate IR to be stored (where NN is the SM
architecture version). Then use -d1to option to link for a specific architecture.

As of CUDA 12.0 there is support for runtime LTO via the nvJitLink library.

Only relocatable device code with the same ABI version, link-compatible SM target architecture, and
same pointer size (32 or 64) can be linked together. The toolkit version of the linker must be >= the
toolkit version of the objects. Incompatible objects will produce a link error. Link-compatible SM ar-
chitectures are ones that have compatible SASS binaries that can combine without translating, e.g.
sm_86 and sm_80. An object could have been compiled for a different architecture but also have PTX
available, in which case the device linker will JIT the PTX to cubin for the desired architecture and then
link.

If Link Time Optimization is used with -d1to, the intermediate LTOIR is only guaranteed to be com-
patible within a major release (e.g. can link together 12.0and 12.1 LTO intermediates, but not 12.1 and
11.6).

If a kernel is limited to a certain number of registers with the launch_bounds attribute or the
--maxrregcount option, then all functions that the kernel calls must not use more than that number
of registers; if they exceed the limit, then a link error will be given.

JIT linking means doing an implicit relink of the code at load time. If the cubin does not match the
target architecture at load time, the driver re-invokes the device linker to generate cubin for the target
architecture, by first JIT'ing the PTX for each object to the appropriate cubin, and then linking together
the new cubin. If PTX or cubin for the target architecture is not found for an object, then the link will
fail. Implicit JIT linking of the LTO intermediates is not supported at this time, although they can be
explicitly linked with the nvditLink library.

7.5. Optimization Of Separate Compilation 69



NVIDIA CUDA Compiler Driver, Release 13.0

A file like b . cu above only contains CUDA device code, so one might think that the b.o object doesn’t
need to be passed to the host linker. But actually there is implicit host code generated whenever a
device symbol can be accessed from the host side, either via a launch or an API call like cudaGet-
SymbolAddress(). This implicit host code is put into b. 0, and needs to be passed to the host linker.
Plus, for JIT linking to work all device code must be passed to the host linker, else the host executable
will not contain device code needed for the JIT link. So a general rule is that the device linker and host
linker must see the same host object files (if the object files have any device references in them—if a
file is pure host then the device linker doesn’t need to see it). If an object file containing device code
is not passed to the host linker, then you will see an error message about the function __cudaReg-
isterlLinkedBinary_name calling an undefined or unresolved symbol __fatbinwrap_name.

In separate compilation, __CUDA_ARCH__ must not be used in headers such that different objects
could contain different behavior. Or, it must be guaranteed that all objects will compile for the same
compute_arch. If a weak function or template function is defined in a header and its behavior depends
on __CUDA_ARCH__, then the instances of that function in the objects could conflict if the objects are
compiled for different compute arch. For example, if an a.h contains:

template<typename T>
__device__ T* getptr(void)

{
#if __CUDA_ARCH__ == 860

return NULL; /* no address */
#else

__shared__ T arr[256];
return arr;
#endif

}

Then if a.cu and b.cu both include a.h and instantiate getptr for the same type, and b.cu expects a
non-NULL address, and compile with:

nvcc --gpu-architecture=compute_80 --device-c a.cu
nvcc --gpu-architecture=compute_86 --device-c b.cu
nvcc --gpu-architecture=sm_86 a.o b.o

At link time only one version of the getptr is used, so the behavior would depend on which ver-
sion is picked. To avoid this, either a.cu and b.cu must be compiled for the same compute arch, or
__CUDA_ARCH__ should not be used in the shared header function.

70 Chapter 7. Using Separate Compilation in CUDA



NVIDIA CUDA Compiler Driver, Release 13.0

If a device function with non-weak external linkage is defined in a library as well as a non-library object
(or another library), the device linker will complain about the multiple definitions (this differs from
traditional host linkers that may ignore the function definition from the library object, if it was already

found in an earlier object).

7.6. Potential Separate Compilation Issues 71



NVIDIA CUDA Compiler Driver, Release 13.0

72 Chapter 7. Using Separate Compilation in CUDA



Chapter 8. Miscellaneous NVCC Usage

Cross compilation is controlled by using the following nvec command line option:

--compiler-bindir is used for cross compilation, where the underlying host compiler is capa-
ble of generating objects for the target platform.

On an x86 system, if a CUDA toolkit installation has been configured to support cross compilation to
both Tegra and non-Tegra ARM targets, then nvcc will use the non-Tegra configuration by default,
when an ARM host cross compiler has been specified. To use the Tegra configuration instead, pass
“-target-dir aarch64-1linux”to nvcc.

nvcc stores intermediate results by default into temporary files that are deleted immediately before it
completes. The location of the temporary file directories used are, depending on the current platform,
as follows:

Windows
Value of environment variable TEMP is used. If it is not set, C:\Windows\temp is used instead.

Other Platforms
Value of environment variable TMPDIR is used. If it is not set, /tmp is used instead.

Option --keep makes nvcc store these intermediate files in the current directory or in the directory
specified by --keep-dir instead, with names as described in

All files generated by a particular nvcc command can be cleaned up by repeating the command, but
with additional option --clean-targets. This option is particularly useful after using --keep, be-
cause the --keep option usually leaves quite an amount of intermediate files around.

Because using --clean-targets will remove exactly what the original nvcc command created, it is
important to exactly repeat all of the options in the original command. For instance, in the following
example, omitting --keep, or adding --compile will have different cleanup effects.

73



NVIDIA CUDA Compiler Driver, Release 13.0

nvcc acos.cu --keep
nvcc acos.cu --keep --clean-targets

A summary on the amount of used registers and the amount of memory needed per compiled device
function can be printed by passing option --resource-usage to nvcc:

$ nvcc --resource-usage acos.cu -arch sm_80

ptxas info : 1536 bytes gmem
ptxas info : Compiling entry function 'acos_main' for 'sm_80'
ptxas info : Function properties for acos_main

0 bytes stack frame, © bytes spill stores, 0 bytes spill loads
ptxas info : Used 6 registers, 1536 bytes smem, 32 bytes cmem[0]

As shown in the above example, the amount of statically allocated global memory (gmem) is listed.

Global memory and some of the constant banks are module scoped resources and not per kernel
resources. Allocation of constant variables to constant banks is profile specific.

Followed by this, per kernel resource information is printed.

Stack frame is per thread stack usage used by this function. Spill stores and loads represent stores
and loads done on stack memory which are being used for storing variables that couldn’t be allocated
to physical registers.

Similarly number of registers, amount of shared memory and total space in constant bank allocated
is shown.

74 Chapter 8. Miscellaneous NVCC Usage



Chapter 9. Notices

This document is provided for information purposes only and shall not be regarded as a warranty of a
certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no repre-
sentations or warranties, expressed or implied, as to the accuracy or completeness of the information
contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall
have no liability for the consequences or use of such information or for any infringement of patents
or other rights of third parties that may result from its use. This document is not a commitment to
develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any
other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that
such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the
time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by
authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA
product referenced in this document. No contractual obligations are formed either directly or indirectly
by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military,
aircraft, space, or life support equipment, nor in applications where failure or malfunction of the NVIDIA
product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or
applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for
any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA.
It is customer’s sole responsibility to evaluate and determine the applicability of any information con-
tained in this document, ensure the product is suitable and fit for the application planned by customer,
and perform the necessary testing for the application in order to avoid a default of the application or
the product. Weaknesses in customer’s product designs may affect the quality and reliability of the
NVIDIA product and may result in additional or different conditions and/or requirements beyond those
contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or prob-
lem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is
contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other
NVIDIA intellectual property right under this document. Information published by NVIDIA regarding
third-party products or services does not constitute a license from NVIDIA to use such products or

75



NVIDIA CUDA Compiler Driver, Release 13.0

services or a warranty or endorsement thereof. Use of such information may require a license from a
third party under the patents or other intellectual property rights of the third party, or a license from
NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA
in writing, reproduced without alteration and in full compliance with all applicable export laws and
regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE
BEING PROVIDED “AS 1S.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WAR-
RANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CON-
SEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARIS-
ING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES. Notwithstanding any damages that customer might incur for any reason whatso-
ever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein
shall be limited in accordance with the Terms of Sale for the product.

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the
U.S. and other countries. Other company and product names may be trademarks of the respective
companies with which they are associated.

©2012-2025, NVIDIA Corporation & affiliates. All rights reserved

76 Chapter 9. Notices



	Overview
	CUDA Programming Model
	CUDA Sources
	Purpose of NVCC

	Supported Host Compilers
	Compilation Phases
	NVCC Identification Macro
	NVCC Phases
	Supported Input File Suffixes
	Supported Phases

	The CUDA Compilation Trajectory
	NVCC Command Options
	Command Option Types and Notation
	Command Option Description
	File and Path Specifications
	--output-file file (-o)
	--objdir-as-tempdir (-objtemp)
	--pre-include file,... (-include)
	--library library,... (-l)
	--define-macro def,... (-D)
	--undefine-macro def,... (-U)
	--include-path path,... (-I)
	--system-include path,... (-isystem)
	--library-path path,... (-L)
	--output-directory directory (-odir)
	--dependency-output file (-MF)
	--generate-dependency-targets (-MP)
	--compiler-bindir directory (-ccbin)
	--allow-unsupported-compiler (-allow-unsupported-compiler)
	--archiver-binary executable (-arbin)
	--cudart {none|shared|static} (-cudart)
	--cudadevrt {none|static} (-cudadevrt)
	--libdevice-directory directory (-ldir)
	--target-directory string (-target-dir)

	Options for Specifying the Compilation Phase
	--link (-link)
	--lib (-lib)
	--device-link (-dlink)
	--device-c (-dc)
	--device-w (-dw)
	--cuda (-cuda)
	--compile (-c)
	--fatbin (-fatbin)
	--cubin (-cubin)
	--ptx (-ptx)
	--preprocess (-E)
	--generate-dependencies (-M)
	--generate-nonsystem-dependencies (-MM)
	--generate-dependencies-with-compile (-MD)
	--generate-nonsystem-dependencies-with-compile (-MMD)
	--optix-ir (-optix-ir)
	--ltoir (-ltoir)
	--run (-run)

	Options for Specifying Behavior of Compiler/Linker
	--profile (-pg)
	--debug (-g)
	--device-debug (-G)
	--extensible-whole-program (-ewp)
	--no-compress (-no-compress)
	--compress-mode {default|size|speed|balance|none} (-compress-mode)
	--relocatable-ptx (-reloc-ptx)
	--generate-line-info (-lineinfo)
	--optimization-info kind,... (-opt-info)
	--optimize level (-O)
	--Ofast-compile level (-Ofc)
	--dopt kind (-dopt)
	--dlink-time-opt (-dlto)
	--gen-opt-lto (-gen-opt-lto)
	--split-compile number (-split-compile)
	--split-compile-extended number (-split-compile-extended)
	--jobserver (-jobserver)
	--ftemplate-backtrace-limit limit (-ftemplate-backtrace-limit)
	--ftemplate-depth limit (-ftemplate-depth)
	--no-exceptions (-noeh)
	--shared (-shared)
	--x {c|c++|cu} (-x)
	--std {c++03|c++11|c++14|c++17|c++20} (-std)
	--no-host-device-initializer-list (-nohdinitlist)
	--expt-relaxed-constexpr (-expt-relaxed-constexpr)
	--extended-lambda (-extended-lambda)
	--expt-extended-lambda (-expt-extended-lambda)
	--machine {64} (-m)
	--m64 (-m64)
	--host-linker-script {use-lcs|gen-lcs} (-hls)
	--augment-host-linker-script (-aug-hls)
	--host-relocatable-link (-r)
	--frandom-seed (-frandom-seed)

	Options for Passing Specific Phase Options
	--compiler-options options,... (-Xcompiler)
	--linker-options options,... (-Xlinker)
	--archive-options options,... (-Xarchive)
	--ptxas-options options,... (-Xptxas)
	--nvlink-options options,... (-Xnvlink)

	Options for Guiding the Compiler Driver
	--static-global-template-stub {true|false} (-static-global-template-stub)
	--device-entity-has-hidden-visibility {true|false} (-device-entity-has-hidden-visibility)
	--forward-unknown-to-host-compiler (-forward-unknown-to-host-compiler)
	--forward-unknown-to-host-linker (-forward-unknown-to-host-linker)
	--forward-unknown-opts (-forward-unknown-opts)
	--forward-slash-prefix-opts (-forward-slash-prefix-opts)
	--dont-use-profile (-noprof)
	--threads number (-t)
	--dryrun (-dryrun)
	--verbose (-v)
	--keep (-keep)
	--keep-dir directory (-keep-dir)
	--save-temps (-save-temps)
	--clean-targets (-clean)
	--run-args arguments,... (-run-args)
	--use-local-env (-use-local-env)
	--force-cl-env-setup (-force-cl-env-setup)
	--input-drive-prefix prefix (-idp)
	--dependency-drive-prefix prefix (-ddp)
	--drive-prefix prefix (-dp)
	--dependency-target-name target (-MT)
	--no-align-double
	--no-device-link (-nodlink)
	--allow-unsupported-compiler (-allow-unsupported-compiler)

	Options for Steering CUDA Compilation
	--default-stream {legacy|null|per-thread} (-default-stream)

	Options for Steering GPU Code Generation
	--gpu-architecture (-arch)
	--gpu-code code,... (-code)
	--generate-code specification (-gencode)
	--relocatable-device-code {true|false} (-rdc)
	--entries entry,... (-e)
	--maxrregcount amount (-maxrregcount)
	--use_fast_math (-use_fast_math)
	--ftz {true|false} (-ftz)
	--prec-div {true|false} (-prec-div)
	--prec-sqrt {true|false} (-prec-sqrt)
	--fmad {true|false} (-fmad)
	--extra-device-vectorization (-extra-device-vectorization)
	--compile-as-tools-patch (-astoolspatch)
	--keep-device-functions (-keep-device-functions)
	--jump-table-density percentage (-jtd)

	Generic Tool Options
	--disable-warnings (-w)
	--source-in-ptx (-src-in-ptx)
	--restrict (-restrict)
	--Wno-deprecated-gpu-targets (-Wno-deprecated-gpu-targets)
	--Wno-deprecated-declarations (-Wno-deprecated-declarations)
	--Wreorder (-Wreorder)
	--Wdefault-stream-launch (-Wdefault-stream-launch)
	--Wmissing-launch-bounds (-Wmissing-launch-bounds)
	--Wext-lambda-captures-this (-Wext-lambda-captures-this)
	--Werror kind,... (-Werror)
	--display-error-number (-err-no)
	--no-display-error-number (-no-err-no)
	--diag-error errNum,... (-diag-error)
	--diag-suppress errNum,... (-diag-suppress)
	--diag-warn errNum,... (-diag-warn)
	--resource-usage (-res-usage)
	--device-stack-protector {true|false} (-device-stack-protector)
	--help (-h)
	--version (-V)
	--options-file file,... (-optf)
	--time filename (-time)
	--qpp-config config (-qpp-config)
	--list-gpu-code (-code-ls)
	--list-gpu-arch (-arch-ls)
	--fdevice-time-trace (-fdevice-time-trace)

	Phase Options
	Ptxas Options
	--allow-expensive-optimizations (-allow-expensive-optimizations)
	--compile-only (-c)
	--def-load-cache (-dlcm)
	--def-store-cache (-dscm)
	--device-debug (-g)
	--disable-optimizer-constants (-disable-optimizer-consts)
	--entry entry,... (-e)
	--fmad (-fmad)
	--force-load-cache (-flcm)
	--force-store-cache (-fscm)
	--generate-line-info (-lineinfo)
	--gpu-name gpuname (-arch)
	--help (-h)
	--machine (-m)
	--maxrregcount amount (-maxrregcount)
	--opt-level N (-O)
	--options-file file,... (-optf)
	--position-independent-code (-pic)
	--preserve-relocs (-preserve-relocs)
	--sp-bounds-check (-sp-bounds-check)
	--suppress-async-bulk-multicast-advisory-warning (-suppress-async-bulk-multicast-advisory-warning)
	--verbose (-v)
	--version (-V)
	--warning-as-error (-Werror)
	--warn-on-double-precision-use (-warn-double-usage)
	--warn-on-local-memory-usage (-warn-lmem-usage)
	--warn-on-spills (-warn-spills)
	--compile-as-tools-patch (-astoolspatch)
	--maxntid (-maxntid)
	--minnctapersm (-minnctapersm)
	--override-directive-values (-override-directive-values)
	--make-errors-visible-at-exit (-make-errors-visible-at-exit)
	--Ofast-compile level (-Ofc)
	--device-stack-protector (-device-stack-protector)
	--g-tensor-memory-access-check (-g-tmem-access-check)
	--gno-tensor-memory-access-check (-gno-tmem-access-check)
	--split-compile (-split-compile)
	--jobserver (-jobserver)

	NVLINK Options
	--disable-warnings (-w)
	--preserve-relocs (-preserve-relocs)
	--verbose (-v)
	--warning-as-error (-Werror)
	--suppress-arch-warning (-suppress-arch-warning)
	--suppress-stack-size-warning (-suppress-stack-size-warning)
	--dump-callgraph (-dump-callgraph)
	--dump-callgraph-no-demangle (-dump-callgraph-no-demangle)
	--Xptxas (-Xptxas)
	--cpu-arch (-cpu-arch)
	--extra-warnings (-extrawarn)
	--gen-host-linker-script (-ghls)
	--ignore-host-info (-ignore-host-info)
	--keep-system-libraries (-keep-system-libraries)
	--kernels-used (-kernels-used)
	--options-file (-optf)
	--report-arch (-report-arch)
	--suppress-debug-info (-suppress-debug-info)
	--variables-used (-variables used)
	--device-stack-protector {true|false} (-device-stack-protector)



	NVCC Environment Variables

	GPU Compilation
	GPU Generations
	GPU Feature List
	Application Compatibility
	Virtual Architectures
	Virtual Architecture Feature List
	Further Mechanisms
	Just-in-Time Compilation
	Fatbinaries

	NVCC Examples
	Base Notation
	Shorthand
	Shorthand 1
	Shorthand 2
	Shorthand 3

	GPU Code Generation in CUDA
	List of Supported GPU Codes
	Extended Notation
	Using Code Generation Options

	Virtual Architecture Macros


	Using Separate Compilation in CUDA
	Code Changes for Separate Compilation
	NVCC Options for Separate Compilation
	Libraries
	Examples
	Optimization Of Separate Compilation
	Potential Separate Compilation Issues
	Object Compatibility
	JIT Linking Support
	Implicit CUDA Host Code
	Using __CUDA_ARCH__
	Device Code in Libraries


	Miscellaneous NVCC Usage
	Cross Compilation
	Keeping Intermediate Phase Files
	Cleaning Up Generated Files
	Printing Code Generation Statistics

	Notices
	Notice
	OpenCL
	Trademarks


