CUDA Runtime API

API Reference Manual
# Table of Contents

Chapter 1. Difference between the driver and runtime APIs .............................................. 1
Chapter 2. API synchronization behavior ............................................................................. 3
Chapter 3. Stream synchronization behavior ...................................................................... 5
Chapter 4. Graph object thread safety ................................................................................. 7
Chapter 5. Rules for version mixing .................................................................................... 8
Chapter 6. Modules .............................................................................................................. 9

6.1. Device Management ........................................................................................................ 10
    cudaChooseDevice ............................................................................................................... 10
    cudaDeviceFlushGPUDirectRDMARWrites ......................................................................... 11
    cudaDeviceGetAttribute ..................................................................................................... 12
    cudaDeviceGetByPCIBusId .................................................................................................. 18
    cudaDeviceGetCacheConfig .............................................................................................. 19
    cudaDeviceGetDefaultMemPool ......................................................................................... 20
    cudaDeviceGetLimit ........................................................................................................... 21
    cudaDeviceGetMemPool ..................................................................................................... 22
    cudaDeviceGetNvSciSyncAttributes ................................................................................. 23
    cudaDeviceGetP2PAttribute ............................................................................................... 24
    cudaDeviceGetPCIBusId ..................................................................................................... 25
    cudaDeviceGetSharedMemConfig ..................................................................................... 26
    cudaDeviceGetStreamPriorityRange ................................................................................. 27
    cudaDeviceGetTexture1DLinearMaxWidth ....................................................................... 28
    cudaDeviceReset ............................................................................................................... 29
    cudaDeviceSetCacheConfig .............................................................................................. 30
    cudaDeviceSetLimit .......................................................................................................... 31
    cudaDeviceSetMemPool ..................................................................................................... 33
    cudaDeviceSetSharedMemConfig ....................................................................................... 34
    cudaDeviceSynchronize ...................................................................................................... 35
    cudaGetDevice .................................................................................................................. 36
    cudaGetDeviceCount ......................................................................................................... 37
    cudaGetDeviceFlags ........................................................................................................... 37
    cudaGetDeviceProperties .................................................................................................. 39
    cudaInitDevice .................................................................................................................. 45
    cudaIpcCloseMemHandle .................................................................................................... 46
    cudaIpcGetEventHandle ...................................................................................................... 47
6.2. Thread Management [DEPRECATED] .................................................................................... 56
cudaThreadExit........................................................................................................................... 56
cudaThreadGetCacheConfig.......................................................................................................57
cudaThreadGetLimit................................................................................................................... 58
cudaThreadSetCacheConfig....................................................................................................... 59
cudaThreadSetLimit....................................................................................................................60
cudaThreadSynchronize.............................................................................................................61

6.3. Error Handling.........................................................................................................................62
cudaGetErrorName.....................................................................................................................62
cudaGetErrorString.....................................................................................................................63
cudaGetLastError....................................................................................................................... 63
cudaPeekAtLastError................................................................................................................. 64

6.4. Stream Management.............................................................................................................. 65
cudaStreamCallback_t............................................................................................................... 65
cudaCtxResetPersistingL2Cache...............................................................................................66
cudaStreamAddCallback............................................................................................................ 66
cudaStreamAttachMemAsync.................................................................................................... 68
cudaStreamBeginCapture.......................................................................................................... 70
cudaStreamCopyAttributes........................................................................................................ 71
cudaStreamCreate......................................................................................................................72
cudaStreamCreateWithFlags..................................................................................................... 73
cudaStreamCreateWithPriority................................................................................................. 74
cudaStreamDestroy.................................................................................................................... 75
cudaStreamEndCapture............................................................................................................. 76
cudaStreamGetAttribute.............................................................................................................77
cudaStreamGetCaptureInfo.......................................................................................................77
cudaStreamGetFlags.................................................................................................................. 79
cudaStreamGetId........................................................................................................................ 80
cudaStreamGetPriority.............................................................................................................. 81
cudaStreamIsCapturing..............................................................................................................82
cudaStreamQuery....................................................................................................................... 83
cudaStreamSetAttribute.............................................................................................................84
CUDA Runtime API

6.5. Event Management
- cudaEventCreate
- cudaEventCreateWithFlags
- cudaEventDestroy
- cudaEventElapsedTime
- cudaEventQuery
- cudaEventRecord
- cudaEventRecordWithFlags
- cudaEventSynchronize

6.6. External Resource Interoperability
- cudaDestroyExternalMemory
- cudaDestroyExternalSemaphore
- cudaExternalMemoryGetMappedBuffer
- cudaExternalMemoryGetMappedMipmappedArray
- cudaImportExternalMemory
- cudaImportExternalSemaphore
- cudaSignalExternalSemaphoresAsync
- cudaWaitExternalSemaphoresAsync

6.7. Execution Control
- cudaFuncGetAttributes
- cudaFuncSetAttribute
- cudaFuncSetCacheConfig
- cudaFuncSetSharedMemConfig
- cudaGetParameterBuffer
- cudaGetParameterBufferV2
- cudaGridDependencySynchronize
- cudaLaunchCooperativeKernel
- cudaLaunchCooperativeKernelMultiDevice
- cudaLaunchHostFunc
- cudaLaunchKernel
- cudaLaunchKernelExC
- cudaSetDoubleForDevice
- cudaSetDoubleForHost
- cudaTriggerProgrammaticLaunchCompletion
6.8. Occupancy

- cudaOccupancyAvailableDynamicSMemPerBlock
- cudaOccupancyMaxActiveBlocksPerMultiprocessor
- cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags
- cudaOccupancyMaxActiveClusters
- cudaOccupancyMaxPotentialClusterSize

6.9. Memory Management

- cudaArrayGetInfo
- cudaArrayGetMemoryRequirements
- cudaArrayGetPlane
- cudaArrayGetSparseProperties
- cudaFree
- cudaFreeArray
- cudaFreeHost
- cudaFreeMipmappedArray
- cudaGetMipmappedArrayLevel
- cudaGetSymbolAddress
- cudaGetSymbolSize
- cudaHostAlloc
- cudaHostGetDevicePointer
- cudaHostGetFlags
- cudaHostRegister
- cudaHostUnregister
- cudaMalloc
- cudaMalloc3D
- cudaMalloc3DArray
- cudaMallocArray
- cudaMallocHost
- cudaMallocManaged
- cudaMallocMipmappedArray
- cudaMallocPitch
- cudaMemAdvise
- cudaMemAdvise_v2
- cudaMemcpy
- cudaMemcpy2D
- cudaMemcpy2DAsync
- cudaMemcpy2DFromArray

CUDA Runtime API
cudaMemcpy2DFromArrayAsync............................................................................................. 184
cudaMemcpy2DToArray............................................................................................................186
cudaMemcpy2DToArrayAsync.................................................................................................. 188
cudaMemcpy3D.........................................................................................................................189
cudaMemcpy3DAsync............................................................................................................... 192
cudaMemcpy3DPeer................................................................................................................. 194
cudaMemcpy3DPeerAsync....................................................................................................... 195
cudaMemcpyAsync....................................................................................................................196
cudaMemcpyFromSymbol........................................................................................................ 198
cudaMemcpyFromSymbolAsync.............................................................................................. 199
cudaMemcpyPeer......................................................................................................................200
cudaMemcpyPeerAsync............................................................................................................202
cudaMemcpyToSymbol............................................................................................................. 203
cudaMemcpyToSymbolAsync................................................................................................... 204
cudaMemGetInfo.......................................................................................................................206
cudaMemPrefetchAsync........................................................................................................ 207
cudaMemRangeGetAttribute.................................................................................................... 209
cudaMemRangeGetAttributes................................................................................................. 209
cudaMemset..............................................................................................................................210
cudaMemset2D......................................................................................................................... 211
cudaMemset2DAsync................................................................................................................212
cudaMemset3D......................................................................................................................... 213
cudaMemset3DAsync................................................................................................................214
cudaMemsetAsync.................................................................................................................... 215
cudaMipmappedArrayGetMemoryRequirements.................................................................... 216
cudaMipmappedArrayGetSparseProperties............................................................................ 217
make_cudaExtent......................................................................................................................218
make_cudaPitchedPtr.............................................................................................................. 219
make_cudaPos..........................................................................................................................220
6.10. Memory Management [DEPRECATED].............................................................................. 221
cudaMemcpyArrayToArray....................................................................................................... 222
cudaMemcpyFromArray........................................................................................................... 223
cudaMemcpyFromArrayAsync..................................................................................................224
cudaMemcpyToArray................................................................................................................ 225
cudaMemcpyToArrayAsync.......................................................................................................226
6.11. Stream Ordered Memory Allocator ....................................................................................227
cudaFreeAsync..........................................................................................................................228
cudaMallocAsync...................................................................................................................... 229
cudaMallocFromPoolAsync...................................................................................................... 235
cudaMemPoolCreate................................................................................................................ 236
cudaMemPoolDestroy...............................................................................................................237
cudaMemPoolExportPointer.................................................................................................... 237
cudaMemPoolExportToShareableHandle............................................................................238
cudaMemPoolGetAccess........................................................................................................ 239
cudaMemPoolGetAttribute.....................................................................................................239
cudaMemPoolImportFromShareableHandle........................................................................241
cudaMemPoolImportPointer..................................................................................................242
cudaMemPoolSetAccess..........................................................................................................242
cudaMemPoolSetAttribute.......................................................................................................243
cudaMemPoolTrimTo................................................................................................................244
6.12. Unified Addressing..............................................................................................................245
cudaPointerGetAttributes..........................................................................................................247
6.13. Peer Device Memory Access..................................................................................................248
cudaDeviceCanAccessPeer.......................................................................................................248
cudaDeviceDisablePeerAccess................................................................................................249
cudaDeviceEnablePeerAccess..................................................................................................250
cudaGLDeviceList..................................................................................................................251
cudaGLGetDevices................................................................................................................252
cudaGraphicsGLRegisterBuffer............................................................................................253
cudaGraphicsGLRegisterImage...............................................................................................254
cudaWGLGetDevice................................................................................................................255
6.15. OpenGL Interoperability [DEPRECATED]..............................................................................256
cudaGLMapFlags....................................................................................................................256
cudaGLMapBufferObject.........................................................................................................256
cudaGLMapBufferObjectAsync...............................................................................................257
cudaGLRegisterBufferObject..................................................................................................258
cudaGLSetBufferObjectMapFlags..........................................................................................259
cudaGLSetGLDevice................................................................................................................260
cudaGLUnmapBufferObject......................................................................................................260
cudaGLUnmapBufferObjectAsync..........................................................................................261
cudaGLUnregisterBufferObject...............................................................................................262
6.16. Direct3D 9 Interoperability..................................................................................................262
cudaD3D9DeviceList...............................................................................................................263
cudaD3D9GetDevice...............................................................................................................263
cudaD3D9GetDevices..............................................................................................................264
CUDA Runtime API

6.17. Direct3D 9 Interoperability [DEPRECATED]
- cudaD3D9GetDirect3DDevice
- cudaD3D9SetDirect3DDevice
- cudaGraphicsD3D9RegisterResource
- cudaD3D9MapFlags
- cudaD3D9RegisterFlags
- cudaD3D9MapResources
- cudaD3D9RegisterResource
- cudaD3D9ResourceGetMappedArray
- cudaD3D9ResourceGetMappedPitch
- cudaD3D9ResourceGetMappedPointer
- cudaD3D9ResourceGetMappedSize
- cudaD3D9ResourceGetSurfaceDimensions
- cudaD3D9ResourceSetMapFlags
- cudaD3D9UnmapResources
- cudaD3D9UnregisterResource

6.18. Direct3D 10 Interoperability
- cudaD3D10DeviceList
- cudaD3D10GetDevice
- cudaD3D10GetDevices
- cudaGraphicsD3D10RegisterResource
- cudaD3D10MapFlags
- cudaD3D10RegisterFlags
- cudaD3D10GetDirect3DDevice
- cudaD3D10MapResources
- cudaD3D10RegisterResource
- cudaD3D10ResourceGetMappedArray
- cudaD3D10ResourceGetMappedPitch
- cudaD3D10ResourceGetMappedPointer
- cudaD3D10ResourceGetMappedSize
- cudaD3D10ResourceGetSurfaceDimensions
- cudaD3D10ResourceSetMapFlags
- cudaD3D10SetDirect3DDevice
- cudaD3D10UnmapResources
- cudaD3D10UnregisterResource

6.19. Direct3D 10 Interoperability [DEPRECATED]
- cudaD3D10MapFlags
- cudaD3D10RegisterFlags
- cudaD3D10GetDirect3DDevice
- cudaD3D10MapResources
- cudaD3D10RegisterResource
- cudaD3D10ResourceGetMappedArray
- cudaD3D10ResourceGetMappedPitch
- cudaD3D10ResourceGetMappedPointer
- cudaD3D10ResourceGetMappedSize
- cudaD3D10ResourceGetSurfaceDimensions
- cudaD3D10ResourceSetMapFlags
- cudaD3D10SetDirect3DDevice
- cudaD3D10UnmapResources
- cudaD3D10UnregisterResource

6.20. Direct3D 11 Interoperability
- cudaD3D11DeviceList
cudaD3D11GetDevice ................................................................................................................ 298
cudaD3D11GetDevices ............................................................................................................. 299
cudaGraphicsD3D11RegisterResource .................................................................................... 300
cudaD3D11GetDirect3DDevice ................................................................................................. 302
cudaD3D11SetDirect3DDevice ................................................................................................. 303
6.22. VDPAU Interoperability ....................................................................................................... 304
cudaGraphicsVDPAURegisterOutputSurface ........................................................................... 304
cudaGraphicsVDPAURegisterVideoSurface ............................................................................. 305
cudaVDPAUGetDevice ............................................................................................................. 306
cudaVDPAUSetVDPAUDevice ................................................................................................. 307
6.23. EGL Interoperability ............................................................................................................ 307
cudaEGLStreamConsumerAcquireFrame ............................................................................... 308
cudaEGLStreamConsumerConnect ......................................................................................... 309
cudaEGLStreamConsumerConnectWithFlags ........................................................................ 309
cudaEGLStreamConsumerDisconnect .................................................................................... 310
cudaEGLStreamConsumerReleaseFrame ............................................................................... 311
cudaEGLStreamProducerConnect ........................................................................................... 311
cudaEGLStreamProducerDisconnect ...................................................................................... 312
cudaEGLStreamProducerPresentFrame .................................................................................. 313
cudaEGLStreamProducerReturnFrame .................................................................................... 314
cudaEventCreateFromEGLSync ............................................................................................... 314
cudaGraphicsEGLRegisterImage ............................................................................................. 315
cudaGraphicsResourceGetMappedEglFrame ........................................................................... 317
6.24. Graphics Interoperability ..................................................................................................... 318
cudaGraphicsMapResources .................................................................................................... 318
cudaGraphicsResourceGetMappedMipmappedArray ................................................................ 319
cudaGraphicsResourceGetMappedPointer ............................................................................. 320
cudaGraphicsResourceSetMapFlags ....................................................................................... 321
cudaGraphicsSubResourceGetMappedArray .......................................................................... 322
cudaGraphicsUnmapResources ............................................................................................... 323
cudaGraphicsUnregisterResource ........................................................................................... 324
6.25. Texture Object Management .............................................................................................. 325
cudaCreateChannelDesc .......................................................................................................... 326
cudaCreateTextureObject ........................................................................................................ 327
cudaDestroyTextureObject .................................................................................................... 332
cudaGetChannelDesc .............................................................................................................. 333
cudaGetTextureObjectResourceDesc ..................................................................................... 334
cudaGetTextureObjectResourceViewDesc.................................................................335
cudaGetTextureObjectTextureDesc.............................................................................336
cudaCreateSurfaceObject.............................................................................................337
cudaDestroySurfaceObject............................................................................................338
cudaGetSurfaceObjectResourceDesc...........................................................................339
6.27. Version Management..............................................................................................339
cudaDriverGetVersion..................................................................................................340
cudaRuntimeGetVersion.................................................................................................340
6.28. Graph Management................................................................................................341
cudaDeviceGetGraphMemAttribute................................................................................342
cudaDeviceGraphMemTrim..............................................................................................343
cudaDeviceSetGraphMemAttribute................................................................................344
cudaGetCurrentGraphExec..............................................................................................345
cudaGraphAddChildGraphNode......................................................................................345
cudaGraphAddDependencies..........................................................................................346
cudaGraphAddEmptyNode...............................................................................................348
cudaGraphAddEventRecordNode....................................................................................349
cudaGraphAddEventWaitNode........................................................................................350
cudaGraphAddExternalSemaphoresSignalNode.............................................................352
cudaGraphAddExternalSemaphoresWaitNode..................................................................353
cudaGraphAddHostNode..................................................................................................355
cudaGraphAddKernelNode..............................................................................................356
cudaGraphAddMemAllocNode..........................................................................................358
cudaGraphAddMemcpyNode.............................................................................................360
cudaGraphAddMemcpyNode1D.........................................................................................362
cudaGraphAddMemcpyNodeFromSymbol........................................................................363
cudaGraphAddMemcpyNodeToSymbol..............................................................................365
cudaGraphAddMemFreeNode...........................................................................................367
cudaGraphAddMemsetNode.............................................................................................368
cudaGraphAddNode.........................................................................................................370
cudaGraphChildGraphNodeGetGraph..............................................................................371
cudaGraphClone.............................................................................................................372
cudaGraphCreate...........................................................................................................373
cudaGraphDebugDotPrint.................................................................................................374
cudaGraphDestroy..........................................................................................................374
cudaGraphDestroyNode.................................................................................................375
cudaGraphEventRecordNodeGetEvent............................................................................376
cudaGraphEventRecordNodeSetEvent.................................................................377
cudaGraphEventWaitNodeGetEvent.................................................................378
cudaGraphEventWaitNodeSetEvent.................................................................379
cudaGraphExecChildGraphNodeSetParams......................................................380
cudaGraphExecDestroy....................................................................................381
cudaGraphExecEventRecordNodeSetEvent.......................................................382
cudaGraphExecEventWaitNodeSetEvent..........................................................383
cudaGraphExecExternalSemaphoresSignalNodeSetParams............................384
cudaGraphExecExternalSemaphoresWaitNodeSetParams.................................386
cudaGraphExecGetFlags..................................................................................387
cudaGraphExecHostNodeSetParams.................................................................388
cudaGraphExecKernelNodeSetParams..............................................................389
cudaGraphExecMemcpyNodeSetParams............................................................391
cudaGraphExecMemcpyNodeSetParams1D..........................................................392
cudaGraphExecMemcpyNodeSetParamsFromSymbol........................................394
cudaGraphExecMemcpyNodeSetParamsToSymbol.............................................395
cudaGraphExecMemsetNodeSetParams............................................................397
cudaGraphExecNodeSetParams........................................................................398
cudaGraphExecUpdate....................................................................................400
cudaGraphExternalSemaphoresSignalNodeGetParams....................................403
cudaGraphExternalSemaphoresSignalNodeSetParams....................................404
cudaGraphExternalSemaphoresWaitNodeGetParams........................................405
cudaGraphExternalSemaphoresWaitNodeSetParams........................................406
cudaGraphGetEdges.......................................................................................407
cudaGraphGetNodes.......................................................................................408
cudaGraphGetRootNodes................................................................................409
cudaGraphHostNodeGetParams.......................................................................410
cudaGraphHostNodeSetParams.......................................................................411
cudaGraphInstantiate....................................................................................412
cudaGraphInstantiateWithFlags....................................................................413
cudaGraphInstantiateWithParams..................................................................415
cudaGraphKernelNodeCopyAttributes............................................................418
cudaGraphKernelNodeGetAttribute..................................................................418
cudaGraphKernelNodeGetParams....................................................................419
cudaGraphKernelNodeSetAttribute..................................................................420
cudaGraphKernelNodeSetParams....................................................................421
cudaGraphLaunch............................................................................................422
cudaGraphMemAllocNodeGetParams..................................................................423
cudaGraphMemcpyNodeGetParams........................................................................................424
cudaGraphMemcpyNodeSetParams........................................................................................425
cudaGraphMemcpyNodeSetParams1D................................................................................... 426
cudaGraphMemcpyNodeSetParamsFromSymbol...................................................................427
cudaGraphMemcpyNodeSetParamsToSymbol........................................................................428
cudaGraphMemFreeNodeGetParams..................................................................................... 430
cudaGraphMemsetNodeGetParams........................................................................................ 431
cudaGraphMemsetNodeSetParams........................................................................................ 432
cudaGraphNodeFindInClone.................................................................................................... 433
cudaGraphNodeGetDependencies........................................................................................... 434
cudaGraphNodeGetDependentNodes......................................................................................435
cudaGraphNodeGetEnabled.....................................................................................................436
.cudaGraphNodeGetType...........................................................................................................437
.cudaGraphNodeSetEnabled.....................................................................................................438
.cudaGraphNodeSetParams......................................................................................................439
.cudaGraphReleaseUserObject.................................................................................................440
.cudaGraphRemoveDependencies............................................................................................441
.cudaGraphRetainUserObject....................................................................................................442
.cudaGraphUpload.....................................................................................................................443
.cudaUserObjectCreate..............................................................................................................444
.cudaUserObjectRelease...........................................................................................................445
.cudaUserObjectRetain..............................................................................................................446

6.29. Driver Entry Point Access.........................................................................................446
.cudaGetDriverEntryPoint....................................................................................................446

6.30. C++ API Routines.................................................................................................. 448
    __cudaOccupancyB2DHelper.................................................................................................448
.cudaCreateChannelDesc........................................................................................................448
.cudaEventCreate..................................................................................................................449
.cudaFuncGetAttributes..........................................................................................................450
.cudaFuncSetAttribute............................................................................................................451
.cudaFuncSetCacheConfig.......................................................................................................453
.cudaGetKernel........................................................................................................................454
.cudaGetSymbolAddress...........................................................................................................455
.cudaGetSymbolSize................................................................................................................456
.cudaGraphAddMemcpyNodeFromSymbol.............................................................................457
.cudaGraphAddMemcpyNodeToSymbol...................................................................................459
.cudaGraphExecMemcpyNodeSetParamsFromSymbol................................................................461
.cudaGraphExecMemcpyNodeSetParamsToSymbol....................................................................462
cudaGraphInstantiate............................................................................................................... 464
cudaGraphMemcpyNodeSetParamsFromSymbol...................................................................465
cudaGraphMemcpyNodeSetParamsToSymbol........................................................................466
cudaLaunchCooperativeKernel.......................................................................................... 468
cudaLaunchKernel.................................................................................................................469
cudaLaunchKernelEx..............................................................................................................471
cudaMallocAsync.................................................................................................................472
cudaMallocHost....................................................................................................................473
cudaMallocManaged.............................................................................................................. 474
cudaMemAdvise.....................................................................................................................477
cudaMemcpyFromSymbol....................................................................................................... 477
cudaMemcpyFromSymbolAsync.............................................................................................478
cudaMemcpyToSymbol...........................................................................................................479
cudaMemcpyToSymbolAsync..................................................................................................480
cudaOccupancyAvailableDynamicSMemPerBlock................................................................483
cudaOccupancyMaxActiveBlocksPerMultiprocessor......................................................... 484
cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags.........................................485
cudaOccupancyMaxActiveClusters.....................................................................................487
cudaOccupancyMaxPotentialBlockSize.............................................................................. 488
cudaOccupancyMaxPotentialBlockSizeVariableSMem......................................................489
cudaOccupancyMaxPotentialBlockSizeVariableSMemWithFlags......................................490
cudaOccupancyMaxPotentialClusterSize..........................................................................492
cudaStreamAttachMemAsync...............................................................................................495
6.31. Interactions with the CUDA Driver API........................................................................497
cudaGetFuncBySymbol..........................................................................................................499
cudaGetKernel....................................................................................................................500
6.32. Profiler Control...............................................................................................................500
cudaProfilerStart................................................................................................................500
cudaProfilerStop..................................................................................................................501
6.33. Data types used by CUDA Runtime.............................................................................501
cudaAccessPolicyWindow....................................................................................................502
cudaArrayMemoryRequirements.........................................................................................502
cudaArraySparseProperties...............................................................................................502
cudaChannelFormatDesc....................................................................................................502
cudaChildGraphNodeParams..............................................................................................502
cudaDeviceProp..................................................................................................................502
cudaEglFrame......................................................................................................................502
cudaGraphMemAttributeType................................................................................................... 539
cudaGraphNodeType................................................................................................................. 539
cudaLaunchAttributeID............................................................................................................. 540
cudaLimit.................................................................................................................................. 541
cudaMemAccessFlags.............................................................................................................. 541
cudaMemAllocationHandleType............................................................................................... 542
cudaMemAllocationType........................................................................................................... 542
cudaMemcpyKind...................................................................................................................... 542
cudaMemLocationType............................................................................................................. 543
cudaMemoryAdvise................................................................................................................... 543
cudaMemoryType...................................................................................................................... 543
cudaMemPoolAttr..................................................................................................................... 544
cudaMemRangeAttribute.......................................................................................................... 545
cudaResourceType.................................................................................................................... 545
cudaResourceViewFormat........................................................................................................ 545
cudaSharedCarveout................................................................................................................. 547
cudaSharedMemConfig............................................................................................................ 547
cudaStreamCaptureMode......................................................................................................... 548
cudaStreamCaptureStatus........................................................................................................ 548
cudaStreamUpdateCaptureDependenciesFlags..................................................................... 548
cudaSurfaceBoundaryMode..................................................................................................... 548
cudaSurfaceFormatMode......................................................................................................... 549
cudaTextureAddressMode........................................................................................................ 549
cudaTextureFilterMode............................................................................................................. 549
cudaTextureReadMode............................................................................................................. 550
cudaUserObjectFlags................................................................................................................ 550
cudaUserObjectRetainFlags..................................................................................................... 550
cudaArray_const_t.................................................................................................................... 550
cudaArray_t............................................................................................................................... 550
cudaEglStreamConnection....................................................................................................... 550
cudaError_t............................................................................................................................... 550
cudaEvent_t............................................................................................................................... 550
cudaExternalMemory_t............................................................................................................. 551
cudaExternalSemaphore_t....................................................................................................... 551
cudaFunction_t.......................................................................................................................... 551
cudaGraph_t.............................................................................................................................. 551
cudaGraphExec_t...................................................................................................................... 551
cudaGraphicsResource_t......................................................................................................... 551
Chapter 7. Data Structures

cudaEventRecordDefault ................................................................. 555
cudaEventRecordExternal ............................................................... 555
cudaEventWaitDefault ................................................................... 556
cudaEventWaitExternal ................................................................. 556
cudaExternalMemoryDedicated ...................................................... 556
cudaExternalSemaphoreSignalSkipNvSciBufMemSync ....................... 556
cudaExternalSemaphoreWaitSkipNvSciBufMemSync ........................... 556
cudaHostAllocDefault ................................................................... 556
cudaHostAllocMapped .................................................................... 556
 cudaHostAllocPortable ................................................................. 557
cudaHostAllocWriteCombined ....................................................... 557
 cudaHostRegisterDefault ............................................................. 557
 cudaHostRegisterIoMemory ........................................................... 557
 cudaHostRegisterMapped .............................................................. 557
 cudaHostRegisterPortable ............................................................ 557
 cudaHostRegisterReadOnly ............................................................ 557
cudaInvalidDeviceId ...................................................................... 557
cudalpcMemLazyEnablePeerAccess .................................................. 557
cudaMemAttachGlobal .................................................................... 557
cudaMemAttachHost ...................................................................... 558
cudaMemAttachSingle ..................................................................... 558
cudaNvSciSyncAttrSignal ............................................................... 558
cudaNvSciSyncAttrWait .................................................................. 558
cudaOccupancyDefault .................................................................. 558
cudaOccupancyDisableCachingOverride ........................................ 558
cudaPeerAccessDefault .................................................................. 558
cudaStreamDefault ....................................................................... 558
cudaStreamLegacy ........................................................................ 558
cudaStreamNonBlocking ............................................................... 559
cudaStreamPerThread .................................................................... 559

__cudaOccupancyB2DHelper ............................................................. 561
cudaAccessPolicyWindow ............................................................... 561
 base_ptr ..................................................................................... 562
hitProp ......................................................................................... 562
hitRatio ......................................................................................... 562
missProp ....................................................................................... 562
num_bytes................................................................................................................................. 562
cudaArrayMemoryRequirements.................................................................................................562
    alignment............................................................................................................................ 562
    size........................................................................................................................................ 562
cudaArraySparseProperties.........................................................................................................563
    depth.................................................................................................................................... 563
    flags..................................................................................................................................... 563
    height................................................................................................................................. 563
    miptailFirstLevel................................................................................................................... 563
    miptailSize............................................................................................................................ 563
    width................................................................................................................................... 563
cudaChannelFormatDesc.............................................................................................................563
    f........................................................................................................................................... 564
    w.......................................................................................................................................... 564
    x.......................................................................................................................................... 564
    y.......................................................................................................................................... 564
    z.......................................................................................................................................... 564
cudaChildGraphNodeParams...................................................................................................... 564
    graph................................................................................................................................. 564
cudaDeviceProp............................................................................................................................ 564
    accessPolicyMaxWindowSize............................................................................................... 564
    asyncEngineCount............................................................................................................... 565
    canMapHostMemory............................................................................................................. 565
    canUseHostPointerForRegisteredMem.................................................................................. 565
    clockRate............................................................................................................................ 565
    clusterLaunch....................................................................................................................... 565
    computeMode......................................................................................................................... 565
    computePreemptionSupported............................................................................................. 565
    concurrentKernels................................................................................................................. 565
    concurrentManagedAccess................................................................................................... 565
    cooperativeLaunch............................................................................................................... 565
    cooperativeMultiDeviceLaunch............................................................................................ 566
    deferredMappingCudaArraySupported.................................................................................. 566
    deviceOverlap....................................................................................................................... 566
    directManagedMemAccessFromHost...................................................................................... 566
    ECCEnabled........................................................................................................................ 566
    globalL1CacheSupported...................................................................................................... 566
    gpuDirectRDMAFlushWritesOptions..................................................................................... 566
gpuDirectRDMASupported....................................................................................................... 566
gpuDirectRDMAWritesOrdering............................................................................................... 566
hostNativeAtomicSupported................................................................................................. 567
hostRegisterReadOnlySupported............................................................................................ 567
hostRegisterSupported......................................................................................................... 567
integrated.................................................................................................................................. 567
ipcEventSupported.................................................................................................................. 567
isMultiGpuBoard.................................................................................................................... 567
kernelExecTimeoutEnabled......................................................................................................567
l2CacheSize............................................................................................................................. 567
localL1CacheSupported.......................................................................................................... 567
luid............................................................................................................................................. 567
luidDeviceNodeMask.............................................................................................................. 568
major..........................................................................................................................................568
managedMemory.................................................................................................................... 568
maxBlocksPerMultiProcessor................................................................................................. 568
maxGridSize............................................................................................................................ 568
maxSurface1D........................................................................................................................... 568
maxSurface1DLayered..............................................................................................................568
maxSurface2D........................................................................................................................... 568
maxSurface2DLayered..............................................................................................................568
maxSurface3D........................................................................................................................... 568
maxSurfaceCubemap............................................................................................................... 568
maxSurfaceCubemapLayered.................................................................................................. 569
maxTexture1D........................................................................................................................... 569
maxTexture1DLayered..............................................................................................................569
maxTexture1DLinear................................................................................................................ 569
maxTexture1DMipmap..............................................................................................................569
maxTexture2D........................................................................................................................... 569
maxTexture2DGather................................................................................................................ 569
maxTexture2DLayered..............................................................................................................569
maxTexture2DLinear................................................................................................................ 569
maxTexture2DMipmap..............................................................................................................569
maxTexture3D........................................................................................................................... 570
maxTexture3DAlt..................................................................................................................... 570
maxTextureCubemap............................................................................................................... 570
maxTextureCubemapLayered.................................................................................................. 570
maxThreadsDim....................................................................................................................... 570
maxThreadsPerBlock............................................................................................................... 570
maxThreadsPerMultiProcessor............................................................................................... 570
memoryBusWidth....................................................................................................................570
memoryClockRate................................................................................................................... 570
memoryPoolsSupported........................................................................................................... 570
memoryPoolSupportedHandleTypes....................................................................................... 571
memPitch.................................................................................................................................. 571
minor......................................................................................................................................... 571
multiGpuBoardGroupID............................................................................................................571
multiProcessorCount................................................................................................................571
name..........................................................................................................................................571
pageableMemoryAccess........................................................................................................... 571
pageableMemoryAccessUsesHostPageTables....................................................................... 571
pciBusID.................................................................................................................................... 571
pciDeviceID..............................................................................................................................571
pciDomainID..............................................................................................................................572
persistingL2CacheMaxSize.......................................................................................................572
regsPerBlock.............................................................................................................................572
regsPerMultiprocessor.............................................................................................................572
reserved.....................................................................................................................................572
reservedSharedMemPerBlock................................................................................................. 572
sharedMemPerBlock................................................................................................................ 572
sharedMemPerBlockOptin....................................................................................................... 572
sharedMemPerMultiprocessor................................................................................................ 572
singleToDoublePrecisionPerfRatio..........................................................................................572
sparseCudaArraySupported..................................................................................................... 573
streamPrioritiesSupported.......................................................................................................573
surfaceAlignment......................................................................................................................573
tccDriver.................................................................................................................................... 573
textureAlignment....................................................................................................................... 573
texturePitchAlignment............................................................................................................. 573
timelineSemaphoreInteropSupported..................................................................................... 573
totalConstMem..........................................................................................................................573
totalGlobalMem.........................................................................................................................573
unifiedAddressing......................................................................................................................573
unifiedFunctionPointers.......................................................................................................... 574
uuid............................................................................................................................................ 574
warpSize.................................................................................................................................... 574
cudaEglFrame ............................................................................................................................... 574
eglColorFormat .......................................................................................................................... 574
frameType .................................................................................................................................. 574
pArray ........................................................................................................................................ 574
planeCount ................................................................................................................................ 574
planeDesc .................................................................................................................................. 575
pPitch ......................................................................................................................................... 575
cudaEglPlaneDesc ........................................................................................................................ 575
channelDesc .............................................................................................................................. 575
depth .......................................................................................................................................... 575
height ......................................................................................................................................... 575
numChannels ............................................................................................................................ 575
pitch ........................................................................................................................................... 575
reserved ..................................................................................................................................... 575
width .......................................................................................................................................... 575
cudaEventRecordNodeParams .................................................................................................... 576
event .......................................................................................................................................... 576
cudaEventWaitNodeParams ......................................................................................................... 576
event .......................................................................................................................................... 576
cudaExtent ..................................................................................................................................... 576
depth .......................................................................................................................................... 576
height ......................................................................................................................................... 576
width .......................................................................................................................................... 576
cudaExternalMemoryBufferDesc ................................................................................................. 577
flags ........................................................................................................................................... 577
offset .......................................................................................................................................... 577
size ............................................................................................................................................. 577
cudaExternalMemoryHandleDesc ............................................................................................... 577
fd ................................................................................................................................................ 577
flags ........................................................................................................................................... 577
handle ........................................................................................................................................ 577
name .......................................................................................................................................... 578
nvSciBufObject .......................................................................................................................... 578
size ............................................................................................................................................. 578
type ............................................................................................................................................ 578
win32 .......................................................................................................................................... 578
cudaExternalMemoryMipmappedArrayDesc ............................................................................... 579
extent .......................................................................................................................................... 579
flags................................................................. 579
formatDesc.......................................................... 579
numLevels.............................................................. 579
offset................................................................. 579
cudaExternalSemaphoreHandleDesc....................... 579
fd........................................................................ 580
flags................................................................. 580
handle............................................................... 580
name..................................................................... 580
nvSciSyncObj........................................................ 580
type..................................................................... 580
win32................................................................... 580
cudaExternalSemaphoreSignalNodeParams............... 581
extSemArray....................................................... 581
numExtSems....................................................... 581
paramsArray...................................................... 581
cudaExternalSemaphoreSignalNodeParamsV2.............. 581
extSemArray....................................................... 581
numExtSems....................................................... 582
paramsArray...................................................... 582
cudaExternalSemaphoreSignalParams..................... 582
fence................................................................... 582
fence................................................................... 582
flags................................................................. 582
keyedMutex........................................................ 583
value................................................................... 583
cudaExternalSemaphoreSignalParams_v1............... 583
fence................................................................... 583
fence................................................................... 583
flags................................................................. 583
keyedMutex........................................................ 584
value................................................................... 584
cudaExternalSemaphoreWaitNodeParams............... 584
extSemArray....................................................... 584
numExtSems....................................................... 584
paramsArray...................................................... 584
cudaExternalSemaphoreWaitNodeParamsV2.............. 584
extSemArray....................................................... 585
numExtSems
paramsArray
cudaExternalSemaphoreWaitParams
fence
fence
fence
flags
key
keyedMutex
timeoutMs
value
cudaExternalSemaphoreWaitParams_v1
fence
fence
fence
flags
key
keyedMutex
timeoutMs
value
cudaFuncAttributes
binaryVersion
cacheModeCA
clusterDimMustBeSet
clusterSchedulingPolicyPreference
constSizeBytes
localSizeBytes
maxDynamicSharedSizeBytes
maxThreadsPerBlock
nonPortableClusterSizeAllowed
numRegs
preferredShmemCarveout
ptxVersion
requiredClusterWidth
reserved
sharedSizeBytes
cudaGraphExecUpdateResultInfo
errorFromNode
errorNode
result
cudaGraphInstantiateParams................................................................. 590
errNode_out............................................................................................. 591
flags.......................................................................................................... 591
result_out............................................................................................... 591
uploadStream......................................................................................... 591
cudaHostNodeParams.............................................................................. 591
fn.............................................................................................................. 591
userData................................................................................................. 591
cudaHostNodeParamsV2......................................................................... 591
fn.............................................................................................................. 592
userData................................................................................................. 592
cudalpcEventHandle_t............................................................................. 592
cudalpcMemHandle_t............................................................................... 592
cudaKernelNodeParams.......................................................................... 592
blockDim................................................................................................. 592
extra........................................................................................................ 592
func........................................................................................................ 592
gridDim................................................................................................. 593
kernelParams......................................................................................... 593
sharedMemBytes................................................................................... 593
cudaKernelNodeParamsV2..................................................................... 593
blockDim................................................................................................. 593
extra........................................................................................................ 593
func........................................................................................................ 593
gridDim................................................................................................. 593
kernelParams......................................................................................... 593
sharedMemBytes................................................................................... 593
cudaLaunchAttribute............................................................................. 594
cudaLaunchAttributeValue....................................................................... 594
accessPolicyWindow............................................................................... 594
clusterDim............................................................................................ 594
clusterSchedulingPolicyPreference....................................................... 594
cooperative............................................................................................ 594
priority................................................................................................... 594
syncPolicy.............................................................................................. 595
cudaLaunchConfig_t............................................................................... 595
attrs........................................................................................................ 595
blockDim................................................................................................. 595
dynamicSmemBytes................................................................................................................. 595
gridDim...................................................................................................................................... 595
numAttrs....................................................................................................................................595
stream....................................................................................................................................... 595
cudaLaunchParams......................................................................................................................595
args............................................................................................................................................596
blockDim....................................................................................................................................596
func............................................................................................................................................ 596
gridDim...................................................................................................................................... 596
sharedMem................................................................................................................................596
stream....................................................................................................................................... 596
cudaMemAccessDesc...................................................................................................................596
flags........................................................................................................................................... 596
location...................................................................................................................................... 596
cudaMemAllocNodeParams........................................................................................................ 597
accessDescCount......................................................................................................................597
accessDescs..............................................................................................................................597
bytesize...................................................................................................................................... 597
dptr......................................................................................................................................... 598
poolProps.................................................................................................................................. 597
cudaMemAllocNodeParamsV2.................................................................................................... 597
accessDescCount......................................................................................................................598
accessDescs..............................................................................................................................598
bytesize...................................................................................................................................... 598
dptr......................................................................................................................................... 598
poolProps.................................................................................................................................. 598
cudaMemcpy3DParms................................................................................................................. 598
dstArray..................................................................................................................................... 598
dstPos........................................................................................................................................599
dstPtr.........................................................................................................................................599
extent.........................................................................................................................................599
kind............................................................................................................................................ 599
srcArray..................................................................................................................................... 599
srcPos........................................................................................................................................599
srcPtr.........................................................................................................................................599
cudaMemcpy3DPeerParms............................................................................................................ 599
dstArray..................................................................................................................................... 599
dstDevice.................................................................................................................................. 599
dstPos........................................................................................................................................599
dstPtr......................................................................................................................................... 600
extent......................................................................................................................................... 600
srcArray..................................................................................................................................... 600
srcDevice................................................................................................................................... 600
srcPos........................................................................................................................................600
srcPtr.........................................................................................................................................600
cudaMemcpyNodeParams........................................................................................................... 600
copyParams...............................................................................................................................600
flags........................................................................................................................................... 600
reserved.....................................................................................................................................601
cudaMemFreeNodeParams................................................................. ..............................601
dptr.............................................................................................................................................601
cudaMemLocation........................................................................................................................ 601
id................................................................................................................................................ 601
type............................................................................................................................................ 601
cudaMemPoolProps..................................................................................................................... 601
allocType....................................................................................................................................601
handleTypes.............................................................................................................................. 602
location...................................................................................................................................... 602
maxSize..................................................................................................................................... 602
reserved.....................................................................................................................................602
win32SecurityAttributes............................................................................................................602
cudaMemPoolPtrExportData....................................................................................................... 602
cudaMemsetParams.................................................................................................................... 602
dst.............................................................................................................................................. 602
elemeconomy...............................................................................................................................603
height......................................................................................................................................... 603
pitch........................................................................................................................................... 603
value........................................................................................................................................... 603
width.......................................................................................................................................... 603
cudaMemsetParamsV2............................................................................................................... 603
dst.............................................................................................................................................. 603
elementSize...............................................................................................................................603
height......................................................................................................................................... 603
pitch........................................................................................................................................... 603
value........................................................................................................................................... 604
width.......................................................................................................................................... 604
cudaPitchedPtr............................................................................................................................. 604
pitch........................................................................................................................................... 604
ptr...............................................................................................................................................604
xsize........................................................................................................................................... 604
ysize........................................................................................................................................... 604
cudaPointerAttributes.................................................................................................................. 604
device.........................................................................................................................................604
devicePointer.............................................................................................................................605
hostPointer...............................................................................................................................605
type............................................................................................................................................ 605
cudaPos.........................................................................................................................................605
x..................................................................................................................................................605
y..................................................................................................................................................605
z..................................................................................................................................................605
cudaResourceDesc.......................................................................................................................606
array...........................................................................................................................................606
desc............................................................................................................................................606
devPtr.........................................................................................................................................606
height.........................................................................................................................................606
mipmap......................................................................................................................................606
pitchInBytes...............................................................................................................................606
resType...................................................................................................................................... 606
sizeInBytes................................................................................................................................ 606
width.......................................................................................................................................... 606
cudaResourceViewDesc............................................................................................................... 607
depth..........................................................................................................................................607
firstLayer.................................................................................................................................607
firstMipmapLevel.....................................................................................................................607
format........................................................................................................................................607
height.........................................................................................................................................607
lastLayer...................................................................................................................................607
lastMipmapLevel.......................................................................................................................607
width.......................................................................................................................................... 607
cudaTextureDesc.......................................................................................................................... 608
addressMode.............................................................................................................................608
borderColor............................................................................................................................... 608
disableTrilinearOptimization.................................................................................................... 608
filterMode.................................................................................................................................. 608
maxAnisotropy........................................................................................................................................608
maxMipmapLevelClamp..................................................................................................................608
minMipmapLevelClamp..............................................................................................................608
mipmapFilterMode..................................................................................................................608
mipmapLevelBias...................................................................................................................609
normalizedCoords..................................................................................................................609
readMode...................................................................................................................................609
seamlessCubemap..................................................................................................................609
sRGB............................................................................................................................................609
CUuuid_st......................................................................................................................................609
bytes..........................................................................................................................................609

Chapter 8. Data Fields.................................................................................................................610
Chapter 9. Deprecated List...........................................................................................................625
Chapter 1. Difference between the driver and runtime APIs

The driver and runtime APIs are very similar and can for the most part be used interchangeably. However, there are some key differences worth noting between the two.

Complexity vs. control

The runtime API eases device code management by providing implicit initialization, context management, and module management. This leads to simpler code, but it also lacks the level of control that the driver API has.

In comparison, the driver API offers more fine-grained control, especially over contexts and module loading. Kernel launches are much more complex to implement, as the execution configuration and kernel parameters must be specified with explicit function calls. However, unlike the runtime, where all the kernels are automatically loaded during initialization and stay loaded for as long as the program runs, with the driver API it is possible to only keep the modules that are currently needed loaded, or even dynamically reload modules. The driver API is also language-independent as it only deals with cubin objects.

Context management

Context management can be done through the driver API, but is not exposed in the runtime API. Instead, the runtime API decides itself which context to use for a thread: if a context has been made current to the calling thread through the driver API, the runtime will use that, but if there is no such context, it uses a “primary context.” Primary contexts are created as needed, one per device per process, are reference-counted, and are then destroyed when there are no more references to them. Within one process, all users of the runtime API will share the primary context, unless a context has been made current to each thread. The context that the runtime uses, i.e., either the current context or primary context, can be synchronized with cudaDeviceSynchronize(), and destroyed with cudaDeviceReset().

Using the runtime API with primary contexts has its tradeoffs, however. It can cause trouble for users writing plug-ins for larger software packages, for example, because if all plug-ins run in the same process, they will all share a context but will likely have no way to communicate with each other. So, if one of them calls cudaDeviceReset() after finishing all its CUDA work, the other plug-ins will fail because the context they were using was destroyed
without their knowledge. To avoid this issue, CUDA clients can use the driver API to create and set the current context, and then use the runtime API to work with it. However, contexts may consume significant resources, such as device memory, extra host threads, and performance costs of context switching on the device. This runtime-driver context sharing is important when using the driver API in conjunction with libraries built on the runtime API, such as cuBLAS or cuFFT.
The API provides memcpy/memset functions in both synchronous and asynchronous forms, the latter having an “Async” suffix. This is a misnomer as each function may exhibit synchronous or asynchronous behavior depending on the arguments passed to the function.

**Memcpy**

In the reference documentation, each memcpy function is categorized as synchronous or asynchronous, corresponding to the definitions below.

**Synchronous**

1. For transfers from pageable host memory to device memory, a stream sync is performed before the copy is initiated. The function will return once the pageable buffer has been copied to the staging memory for DMA transfer to device memory, but the DMA to final destination may not have completed.

2. For transfers from pinned host memory to device memory, the function is synchronous with respect to the host.

3. For transfers from device to either pageable or pinned host memory, the function returns only once the copy has completed.

4. For transfers from device memory to device memory, no host-side synchronization is performed.

5. For transfers from any host memory to any host memory, the function is fully synchronous with respect to the host.

**Asynchronous**

1. For transfers between device memory and pageable host memory, the function might be synchronous with respect to host.

2. For transfers from any host memory to any host memory, the function is fully synchronous with respect to the host.
3. If pageable memory must first be staged to pinned memory, the driver may synchronize with the stream and stage the copy into pinned memory.

4. For all other transfers, the function should be fully asynchronous.

**Memset**

The cudaMemset functions are asynchronous with respect to the host except when the target memory is pinned host memory. The Async versions are always asynchronous with respect to the host.

**Kernel Launches**

Kernel launches are asynchronous with respect to the host. Details of concurrent kernel execution and data transfers can be found in the CUDA Programmers Guide.
Chapter 3. Stream synchronization behavior

Default stream

The default stream, used when 0 is passed as a cudaStream_t or by APIs that operate on a stream implicitly, can be configured to have either `legacy` or `per-thread` synchronization behavior as described below.

The behavior can be controlled per compilation unit with the `--default-stream` nvcc option. Alternatively, per-thread behavior can be enabled by defining the `CUDA_API_PER_THREAD_DEFAULT_STREAM` macro before including any CUDA headers. Either way, the `CUDA_API_PER_THREAD_DEFAULT_STREAM` macro will be defined in compilation units using per-thread synchronization behavior.

Legacy default stream

The legacy default stream is an implicit stream which synchronizes with all other streams in the same `CUcontext` except for non-blocking streams, described below. (For applications using the runtime APIs only, there will be one context per device.) When an action is taken in the legacy stream such as a kernel launch or `cudaStreamWaitEvent()`, the legacy stream first waits on all blocking streams, the action is queued in the legacy stream, and then all blocking streams wait on the legacy stream.

For example, the following code launches a kernel `k_1` in stream `s`, then `k_2` in the legacy stream, then `k_3` in stream `s`:

```c
k_1<<<1, 1, 0, s>>>();
k_2<<<1, 1>>>();
k_3<<<1, 1, 0, s>>>();
```

The resulting behavior is that `k_2` will block on `k_1` and `k_3` will block on `k_2`.

Non-blocking streams which do not synchronize with the legacy stream can be created using the `cudaStreamNonBlocking` flag with the stream creation APIs.

The legacy default stream can be used explicitly with the `CUstream (cudaStream_t) handle` `CU_STREAM_LEGACY (cudaStreamLegacy)`.
Per-thread default stream

The per-thread default stream is an implicit stream local to both the thread and the CUcontext, and which does not synchronize with other streams (just like explicitly created streams). The per-thread default stream is not a non-blocking stream and will synchronize with the legacy default stream if both are used in a program.

The per-thread default stream can be used explicitly with the CUSstream (cudaStream_t) handle CU_STREAM_PER_THREAD (cudaStreamPerThread).
Chapter 4.  Graph object thread safety

Graph objects (\texttt{cudaGraph_t}, \texttt{CUgraph}) are not internally synchronized and must not be accessed concurrently from multiple threads. API calls accessing the same graph object must be serialized externally.

Note that \textbf{this includes APIs which may appear to be read-only}, such as \texttt{cudaGraphClone()} (\texttt{cuGraphClone()}) and \texttt{cudaGraphInstantiate()} (\texttt{cuGraphInstantiate()}). No API or pair of APIs is guaranteed to be safe to call on the same graph object from two different threads without serialization.
Chapter 5. Rules for version mixing

1. Starting with CUDA 11.0, the ABI version for the CUDA runtime is bumped every major release. CUDA-defined types, whether opaque handles or structures like `cudaDeviceProp`, have their ABI tied to the major release of the CUDA runtime. It is unsafe to pass them from function A to function B if those functions have been compiled with different major versions of the toolkit and linked together into the same device executable.

2. The CUDA Driver API has a per-function ABI denoted with a _v* extension. CUDA-defined types (e.g structs) should not be passed across different ABI versions. For example, an application calling `cuMemcpy2D_v2(const CUDA_MEMCPY2D_v2 *pCopy)` and using the older version of the struct `CUDA_MEMCPY2D_v1` instead of `CUDA_MEMCPY2D_v2`.

3. Users should not arbitrarily mix different API versions during the lifetime of a resource. These resources include IPC handles, memory, streams, contexts, events, etc. For example, a user who wants to allocate CUDA memory using `cuMemAlloc_v2` should free the memory using `cuMemFree_v2` and not `cuMemFree`.
Chapter 6. Modules

Here is a list of all modules:

- Device Management
- Thread Management [DEPRECATED]
- Error Handling
- Stream Management
- Event Management
- External Resource Interoperability
- Execution Control
- Occupancy
- Memory Management
- Memory Management [DEPRECATED]
- Stream Ordered Memory Allocator
- Unified Addressing
- Peer Device Memory Access
- OpenGL Interoperability
- OpenGL Interoperability [DEPRECATED]
- Direct3D 9 Interoperability
- Direct3D 9 Interoperability [DEPRECATED]
- Direct3D 10 Interoperability
- Direct3D 10 Interoperability [DEPRECATED]
- Direct3D 11 Interoperability
- Direct3D 11 Interoperability [DEPRECATED]
- VDPAU Interoperability
6.1. Device Management

This section describes the device management functions of the CUDA runtime application programming interface.

`__host__cudaError_t cudaChooseDevice (int *device, const cudaDeviceProp *prop)`

Select compute-device which best matches criteria.

Parameters

- **device**
  - Device with best match
- **prop**
  - Desired device properties

Returns

- `cudaSuccess`, `cudaErrorInvalidValue`

Description

Returns in `*device` the device which has properties that best match `*prop`.

Note:
Note that this function may also return error codes from previous, asynchronous launches.

Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.

Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
`cudaGetDeviceCount`, `cudaGetDevice`, `cudaSetDevice`, `cudaGetDeviceProperties`, `cudaInitDevice`

```
__host__ cudaError_t
cudaDeviceFlushGPUDirectRDMAWrites
(cudaFlushGPUDirectRDMAWritesTarget target, cudaFlushGPUDirectRDMAWritesScope scope)
```

Blocks until remote writes are visible to the specified scope.

**Parameters**

**target**
- The target of the operation, see `cudaFlushGPUDirectRDMAWritesTarget`

**scope**
- The scope of the operation, see `cudaFlushGPUDirectRDMAWritesScope`

**Returns**
`cudaSuccess`, `cudaErrorNotSupported`.

**Description**

Blocks until remote writes to the target context via mappings created through GPUDirect RDMA APIs, like `nvidia_p2p_get_pages` [see](https://docs.nvidia.com/cuda/gpudirect-rdma) for more information, are visible to the specified scope.

If the scope equals or lies within the scope indicated by `cudaDevAttrGPUDirectRDMAWritesOrdering`, the call will be a no-op and can be safely omitted for performance. This can be determined by comparing the numerical values between the two enums, with smaller scopes having smaller values.

Users may query support for this API via `cudaDevAttrGPUDirectRDMAFlushWritesOptions`. 
Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

`cuFlushGPUDirectRDMAWrites`

```c
__host__ __device__ cudaError_t cudaDeviceGetAttribute (int *value, cudaDeviceAttr attr, int device)
```

Returns information about the device.

**Parameters**

- **value**
  - Returned device attribute value
- **attr**
  - Device attribute to query
- **device**
  - Device number to query

**Returns**

`cudaSuccess`, `cudaErrorInvalidDevice`, `cudaErrorInvalidValue`

**Description**

Returns in `*value` the integer value of the attribute `attr` on device `device`. The supported attributes are:

- `cudaDevAttrMaxThreadsPerBlock`: Maximum number of threads per block
- `cudaDevAttrMaxBlockDimX`: Maximum x-dimension of a block
- `cudaDevAttrMaxBlockDimY`: Maximum y-dimension of a block
- `cudaDevAttrMaxBlockDimZ`: Maximum z-dimension of a block
- **cudaDevAttrMaxGridDimX**: Maximum x-dimension of a grid
- **cudaDevAttrMaxGridDimY**: Maximum y-dimension of a grid
- **cudaDevAttrMaxGridDimZ**: Maximum z-dimension of a grid
- **cudaDevAttrMaxSharedMemoryPerBlock**: Maximum amount of shared memory available to a thread block in bytes
- **cudaDevAttrTotalConstantMemory**: Memory available on device for __constant__ variables in a CUDA C kernel in bytes
- **cudaDevAttrWarpSize**: Warp size in threads
- **cudaDevAttrMaxPitch**: Maximum pitch in bytes allowed by the memory copy functions that involve memory regions allocated through `cudaMallocPitch()`
- **cudaDevAttrMaxTexture1DWidth**: Maximum 1D texture width
- **cudaDevAttrMaxTexture1DLinearWidth**: Maximum width for a 1D texture bound to linear memory
- **cudaDevAttrMaxTexture1DLinearHeight**: Maximum height for a 1D texture bound to linear memory
- **cudaDevAttrMaxTexture2DWidth**: Maximum 2D texture width
- **cudaDevAttrMaxTexture2DHeight**: Maximum 2D texture height
- **cudaDevAttrMaxTexture2DLinearWidth**: Maximum width for a 2D texture bound to linear memory
- **cudaDevAttrMaxTexture2DLinearHeight**: Maximum height for a 2D texture bound to linear memory
- **cudaDevAttrMaxTexture2DLinearPitch**: Maximum pitch in bytes for a 2D texture bound to linear memory
- **cudaDevAttrMaxTexture2DMipmappedWidth**: Maximum mipmapped 2D texture width
- **cudaDevAttrMaxTexture2DMipmappedHeight**: Maximum mipmapped 2D texture height
- **cudaDevAttrMaxTexture3DWidth**: Maximum 3D texture width
- **cudaDevAttrMaxTexture3DHeight**: Maximum 3D texture height
- **cudaDevAttrMaxTexture3DDepth**: Maximum 3D texture depth
- **cudaDevAttrMaxTexture3DWidthAlt**: Alternate maximum 3D texture width, 0 if no alternate maximum 3D texture size is supported
- **cudaDevAttrMaxTexture3DHeightAlt**: Alternate maximum 3D texture height, 0 if no alternate maximum 3D texture size is supported
- **cudaDevAttrMaxTexture3DDepthAlt**: Alternate maximum 3D texture depth, 0 if no alternate maximum 3D texture size is supported
- **cudaDevAttrMaxTextureCubemapWidth**: Maximum cubemap texture width or height
- **cudaDevAttrMaxTexture1DLayeredWidth**: Maximum 1D layered texture width
- **cudaDevAttrMaxTexture1DLayeredLayers**: Maximum layers in a 1D layered texture
- **cudaDevAttrMaxTexture2DLayeredWidth**: Maximum 2D layered texture width
- **cudaDevAttrMaxTexture2DLayeredHeight**: Maximum 2D layered texture height
- **cudaDevAttrMaxTexture2DLayeredLayers**: Maximum layers in a 2D layered texture
- **cudaDevAttrMaxTextureCubemapLayeredWidth**: Maximum cubemap layered texture width or height
- **cudaDevAttrMaxTextureCubemapLayeredLayers**: Maximum layers in a cubemap layered texture
- **cudaDevAttrMaxSurface1DWidth**: Maximum 1D surface width
- **cudaDevAttrMaxSurface2DWidth**: Maximum 2D surface width
- **cudaDevAttrMaxSurface2DHeight**: Maximum 2D surface height
- **cudaDevAttrMaxSurface3DWidth**: Maximum 3D surface width
- **cudaDevAttrMaxSurface3DHeight**: Maximum 3D surface height
- **cudaDevAttrMaxSurface3DDepth**: Maximum 3D surface depth
- **cudaDevAttrMaxSurface1DLayeredWidth**: Maximum 1D layered surface width
- **cudaDevAttrMaxSurface1DLayeredLayers**: Maximum layers in a 1D layered surface
- **cudaDevAttrMaxSurface2DLayeredWidth**: Maximum 2D layered surface width
- **cudaDevAttrMaxSurface2DLayeredHeight**: Maximum 2D layered surface height
- **cudaDevAttrMaxSurface2DLayeredLayers**: Maximum layers in a 2D layered surface
- **cudaDevAttrMaxSurfaceCubemapWidth**: Maximum cubemap surface width
- **cudaDevAttrMaxSurfaceCubemapLayeredWidth**: Maximum cubemap layered surface width
- **cudaDevAttrMaxSurfaceCubemapLayeredLayers**: Maximum layers in a cubemap layered surface
- **cudaDevAttrMaxRegistersPerBlock**: Maximum number of 32-bit registers available to a thread block
- **cudaDevAttrClockRate**: Peak clock frequency in kilohertz
- **cudaDevAttrTextureAlignment**: Alignment requirement; texture base addresses aligned to textureAlign bytes do not need an offset applied to texture fetches
- **cudaDevAttrTexturePitchAlignment**: Pitch alignment requirement for 2D texture references bound to pitched memory
- `cudaDevAttrGpuOverlap`: 1 if the device can concurrently copy memory between host and device while executing a kernel, or 0 if not
- `cudaDevAttrMultiProcessorCount`: Number of multiprocessors on the device
- `cudaDevAttrKernelExecTimeout`: 1 if there is a run time limit for kernels executed on the device, or 0 if not
- `cudaDevAttrIntegrated`: 1 if the device is integrated with the memory subsystem, or 0 if not
- `cudaDevAttrCanMapHostMemory`: 1 if the device can map host memory into the CUDA address space, or 0 if not
- `cudaDevAttrComputeMode`: Compute mode is the compute mode that the device is currently in. Available modes are as follows:
  - `cudaComputeModeDefault`: Default mode - Device is not restricted and multiple threads can use `cudaSetDevice()`. with this device.
  - `cudaComputeModeProhibited`: Compute-prohibited mode - No threads can use `cudaSetDevice()` with this device.
  - `cudaComputeModeExclusiveProcess`: Compute-exclusive-process mode - Many threads in one process will be able to use `cudaSetDevice()` with this device.
- `cudaDevAttrConcurrentKernels`: 1 if the device supports executing multiple kernels within the same context simultaneously, or 0 if not. It is not guaranteed that multiple kernels will be resident on the device concurrently so this feature should not be relied upon for correctness.
- `cudaDevAttrEccEnabled`: 1 if error correction is enabled on the device, 0 if error correction is disabled or not supported by the device
- `cudaDevAttrPciBusId`: PCI bus identifier of the device
- `cudaDevAttrPciDeviceId`: PCI device (also known as slot) identifier of the device
- `cudaDevAttrTccDriver`: 1 if the device is using a TCC driver. TCC is only available on Tesla hardware running Windows Vista or later.
- `cudaDevAttrMemoryClockRate`: Peak memory clock frequency in kilohertz
- `cudaDevAttrGlobalMemoryBusWidth`: Global memory bus width in bits
- `cudaDevAttrL2CacheSize`: Size of L2 cache in bytes. 0 if the device doesn’t have L2 cache.
- `cudaDevAttrMaxThreadsPerMultiProcessor`: Maximum resident threads per multiprocessor
- `cudaDevAttrUnifiedAddressing`: 1 if the device shares a unified address space with the host, or 0 if not
- `cudaDevAttrComputeCapabilityMajor`: Major compute capability version number
CUDA Runtime API

- **cudaDevAttrComputeCapabilityMinor**: Minor compute capability version number
- **cudaDevAttrStreamPrioritiesSupported**: 1 if the device supports stream priorities, or 0 if not
- **cudaDevAttrGlobalL1CacheSupported**: 1 if device supports caching globals in L1 cache, 0 if not
- **cudaDevAttrLocalL1CacheSupported**: 1 if device supports caching locals in L1 cache, 0 if not
- **cudaDevAttrMaxSharedMemoryPerMultiprocessor**: Maximum amount of shared memory available to a multiprocessor in bytes; this amount is shared by all thread blocks simultaneously resident on a multiprocessor
- **cudaDevAttrMaxRegistersPerMultiprocessor**: Maximum number of 32-bit registers available to a multiprocessor; this number is shared by all thread blocks simultaneously resident on a multiprocessor
- **cudaDevAttrManagedMemory**: 1 if device supports allocating managed memory, 0 if not
- **cudaDevAttrIsMultiGpuBoard**: 1 if device is on a multi-GPU board, 0 if not
- **cudaDevAttrMultiGpuBoardGroupID**: Unique identifier for a group of devices on the same multi-GPU board
- **cudaDevAttrHostNativeAtomicSupported**: 1 if the link between the device and the host supports native atomic operations
- **cudaDevAttrSingleToDoublePrecisionPerfRatio**: Ratio of single precision performance (in floating-point operations per second) to double precision performance
- **cudaDevAttrPageableMemoryAccess**: 1 if the device supports coherently accessing pageable memory without calling cudaHostRegister on it, and 0 otherwise
- **cudaDevAttrConcurrentManagedAccess**: 1 if the device can coherently access managed memory concurrently with the CPU, and 0 otherwise
- **cudaDevAttrComputePreemptionSupported**: 1 if the device supports Compute Preemption, 0 if not
- **cudaDevAttrCanUseHostPointerForRegisteredMem**: 1 if the device can access host registered memory at the same virtual address as the CPU, and 0 otherwise
- **cudaDevAttrCooperativeLaunch**: 1 if the device supports launching cooperative kernels via cudaLaunchCooperativeKernel, and 0 otherwise
- **cudaDevAttrCooperativeMultiDeviceLaunch**: 1 if the device supports launching cooperative kernels via cudaLaunchCooperativeKernelMultiDevice, and 0 otherwise
- **cudaDevAttrCanFlushRemoteWrites**: 1 if the device supports flushing of outstanding remote writes, and 0 otherwise
- **cudaDevAttrHostRegisterSupported**: 1 if the device supports host memory registration via `cudaHostRegister`, and 0 otherwise
- **cudaDevAttrPageableMemoryAccessUsesHostPageTables**: 1 if the device accesses pageable memory via the host’s page tables, and 0 otherwise
- **cudaDevAttrDirectManagedMemAccessFromHost**: 1 if the host can directly access managed memory on the device without migration, and 0 otherwise
- **cudaDevAttrMaxSharedMemoryPerBlockOptin**: Maximum per block shared memory size on the device. This value can be opted into when using `cudaFuncSetAttribute`
- **cudaDevAttrMaxBlocksPerMultiprocessor**: Maximum number of thread blocks that can reside on a multiprocessor
- **cudaDevAttrMaxPersistingL2CacheSize**: Maximum L2 persisting lines capacity setting in bytes
- **cudaDevAttrMaxAccessPolicyWindowSize**: Maximum value of `cudaAccessPolicyWindow::num_bytes`
- **cudaDevAttrReservedSharedMemoryPerBlock**: Shared memory reserved by CUDA driver per block in bytes
- **cudaDevAttrSparseCudaArraySupported**: 1 if the device supports sparse CUDA arrays and sparse CUDA mipmapped arrays.
- **cudaDevAttrHostRegisterReadOnlySupported**: Device supports using the `cudaHostRegister` flag `cudaHostRegisterReadOnly` to register memory that must be mapped as read-only to the GPU
- **cudaDevAttrMemoryPoolsSupported**: 1 if the device supports using the `cudaMallocAsync` and `cudaMemPool` family of APIs, and 0 otherwise
- **cudaDevAttrGPUDirectRDMASupported**: 1 if the device supports GPUDirect RDMA APIs, and 0 otherwise
- **cudaDevAttrGPUDirectRDMAFlushWritesOptions**: bitmask to be interpreted according to the `cudaFlushGPUDirectRDMAWritesOptions` enum
- **cudaDevAttrGPUDirectRDMAWritesOrdering**: see the `cudaGPUDirectRDMAWritesOrdering` enum for numerical values
- **cudaDevAttrMemoryPoolSupportedHandleTypes**: Bitmask of handle types supported with mempool based IPC
- **cudaDevAttrDeferredMappingCudaArraySupported**: 1 if the device supports deferred mapping CUDA arrays and CUDA mipmapped arrays.
- **cudaDevAttrIpcEventSupport**: 1 if the device supports IPC Events.
Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:


```c
__host__ cudaError_t cudaDeviceGetByPCIBusId (int *device, const char *pciBusId)
```

Returns a handle to a compute device.

**Parameters**

- **device**
  - Returned device ordinal
- **pciBusId**
  - String in one of the following forms: `[domain]:[bus]:[device]:[function]` `[domain]:[bus]:[device]` `[bus]:[device]:[function]` where `domain`, `bus`, `device`, and `function` are all hexadecimal values

**Returns**

`cudaSuccess`, `cudaErrorInvalidValue`, `cudaErrorInvalidDevice`.

**Description**

Returns in `*device` a device ordinal given a PCI bus ID string.

Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
`cudaDeviceGetPCIBusId`, `cuDeviceGetByPCIBusId`

```__host__ __device__ cudaError_t
cudaDeviceGetCacheConfig (cudaFuncCache *pCacheConfig)
```

Returns the preferred cache configuration for the current device.

**Parameters**

`pCacheConfig`
- Returned cache configuration

**Returns**

`cudaSuccess`

**Description**

On devices where the L1 cache and shared memory use the same hardware resources, this returns through `pCacheConfig` the preferred cache configuration for the current device. This is only a preference. The runtime will use the requested configuration if possible, but it is free to choose a different configuration if required to execute functions.

This will return a `pCacheConfig` of `cudaFuncCachePreferNone` on devices where the size of the L1 cache and shared memory are fixed.

The supported cache configurations are:

- `cudaFuncCachePreferNone`: no preference for shared memory or L1 (default)
- `cudaFuncCachePreferShared`: prefer larger shared memory and smaller L1 cache
- `cudaFuncCachePreferL1`: prefer larger L1 cache and smaller shared memory
- `cudaFuncCachePreferEqual`: prefer equal size L1 cache and shared memory

**Note:**
- Note that this function may also return error codes from previous, asynchronous launches.
Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.

Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

- `cudaDeviceSetCacheConfig`
- `cudaFuncSetCacheConfig [ C API]`
- `cudaFuncSetCacheConfig [ C++ API]`
- `cuCtxGetCacheConfig`

```
__host__ cudaError_t cudaDeviceGetDefaultMemPool (cudaMemPool_t *memPool, int device)
```

Returns the default mempool of a device.

Returns:

- `cudaSuccess`
- `cudaErrorInvalidDevice`
- `cudaErrorInvalidValue`
- `cudaErrorNotSupported`

Description:

The default mempool of a device contains device memory from that device.

Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

- `cuDeviceGetDefaultMemPool`
- `cudaMallocAsync`
- `cudaMemPoolTrimTo`
- `cudaMemPoolGetAttribute`
- `cudaDeviceSetMemPool`
- `cudaMemPoolSetAttribute`
- `cudaMemPoolSetAccess`
__host__ __device__ cudaError_t cudaDeviceGetLimit (size_t *pValue, cudaLimit limit)

Return resource limits.

Parameters

pValue
- Returned size of the limit

limit
- Limit to query

Returns
cudaSuccess, cudaErrorUnsupportedLimit, cudaErrorInvalidValue

Description

Returns in *pValue the current size of limit. The following cudaMemcpy values are supported.

- cudaMemcpyStackSize is the stack size in bytes of each GPU thread.
- cudaMemcpyPrintfFifoSize is the size in bytes of the shared FIFO used by the printf() device system call.
- cudaMemcpyMallocHeapSize is the size in bytes of the heap used by the malloc() and free() device system calls.
- cudaMemcpyDevRuntimeSyncDepth is the maximum grid depth at which a thread can issue the device runtime call cudaMemcpySynchronize() to wait on child grid launches to complete. This functionality is removed for devices of compute capability >= 9.0, and hence will return error cudaMemcpyUnsupportedLimit on such devices.
- cudaMemcpyDevRuntimePendingLaunchCount is the maximum number of outstanding device runtime launches.
- cudaMemcpyMaxL2FetchGranularity is the L2 cache fetch granularity.
- cudaMemcpyPersistingL2CacheSize is the persisting L2 cache size in bytes.

Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaMemcpyInitializationError, cudaMemcpyInsufficientDriver or cudaMemcpyNoDevice if this call tries to initialize internal CUDA RT state.
Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

`cudaDeviceSetLimit`, `cuCtxGetLimit`

```c
__host__ cudaError_t cudaDeviceGetMemPool (cudaMemPool_t *memPool, int device)
```

Gets the current mempool for a device.

**Returns**

`cudaSuccess`, `cudaErrorInvalidValue` `cudaErrorNotSupported`

**Description**

Returns the last pool provided to `cudaDeviceSetMemPool` for this device or the device’s default memory pool if `cudaDeviceSetMemPool` has never been called. By default the current mempool is the default mempool for a device, otherwise the returned pool must have been set with `cuDeviceSetMemPool` or `cudaDeviceSetMemPool`.

**Note:**

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

`cuDeviceGetMemPool`, `cudaDeviceGetDefaultMemPool`, `cudaDeviceSetMemPool`
__host__ cudaError_t cudaDeviceGetNvSciSyncAttributes (void *nvSciSyncAttrList, int device, int flags)

Return NvSciSync attributes that this device can support.

Parameters

nvSciSyncAttrList
  - Return NvSciSync attributes supported.
device
  - Valid Cuda Device to get NvSciSync attributes for.
flags
  - flags describing NvSciSync usage.

Description

Returns in nvSciSyncAttrList, the properties of NvSciSync that this CUDA device, dev can support. The returned nvSciSyncAttrList can be used to create an NvSciSync that matches this device’s capabilities.

If NvSciSyncAttrKey_RequiredPerm field in nvSciSyncAttrList is already set this API will return cudaErrorInvalidValue.

The applications should set nvSciSyncAttrList to a valid NvSciSyncAttrList failing which this API will return cudaErrorInvalidHandle.

The flags controls how applications intends to use the NvSciSync created from the nvSciSyncAttrList. The valid flags are:

- **cudaNvSciSyncAttrSignal**, specifies that the applications intends to signal an NvSciSync on this CUDA device.
- **cudaNvSciSyncAttrWait**, specifies that the applications intends to wait on an NvSciSync on this CUDA device.

At least one of these flags must be set, failing which the API returns cudaErrorInvalidValue. Both the flags are orthogonal to one another: a developer may set both these flags that allows to set both wait and signal specific attributes in the same nvSciSyncAttrList.

Note that this API updates the input nvSciSyncAttrList with values equivalent to the following public attribute key-values: NvSciSyncAttrKey_RequiredPerm is set to

- NvSciSyncAttrValPrimitiveType_SysmemSemaphore on any valid device.
- NvSciSyncAttrValPrimitiveType_Syncpoint if device is a Tegra device.
- NvSciSyncAttrValPrimitiveType_SysmemSemaphorePayload64b if device is GA10X+. NvSciSyncAttrKey_GpuId is set to the same UUID that is returned in `cudaDeviceProp.uuid` from cudaDeviceGetProperties for this device.

`cudaSuccess`, `cudaErrorDeviceUninitialized`, `cudaErrorInvalidValue`, `cudaErrorInvalidHandle`, `cudaErrorInvalidDevice`, `cudaErrorNotSupported`, `cudaErrorMemoryAllocation`

See also:
`cudaImportExternalSemaphore`, `cudaDestroyExternalSemaphore`, `cudaSignalExternalSemaphoresAsync`, `cudaWaitExternalSemaphoresAsync`

```c
__host__ cudaError_t cudaDeviceGetP2PAttribute(int *value, cudaDeviceP2PAttr attr, int srcDevice, int dstDevice)
```

Queries attributes of the link between two devices.

**Parameters**

- **value**
  - Returned value of the requested attribute
- **attr**
- **srcDevice**
  - The source device of the target link.
- **dstDevice**
  - The destination device of the target link.

**Returns**

`cudaSuccess`, `cudaErrorInvalidDevice`, `cudaErrorInvalidValue`

**Description**

Returns in `*value` the value of the requested attribute `attr` of the link between `srcDevice` and `dstDevice`. The supported attributes are:

- **cudaDevP2PAttrPerformanceRank**: A relative value indicating the performance of the link between two devices. Lower value means better performance (0 being the value used for most performant link).
- **cudaDevP2PAttrAccessSupported**: 1 if peer access is enabled.
- **cudaDevP2PAttrNativeAtomicSupported**: 1 if native atomic operations over the link are supported.
- `cudaDevP2PAttrCudaArrayAccessSupported`: 1 if accessing CUDA arrays over the link is supported.

Returns `cudaErrorInvalidDevice` if `srcDevice` or `dstDevice` are not valid or if they represent the same device.

Returns `cudaErrorInvalidValue` if `attrib` is not valid or if `value` is a null pointer.

**Note:**
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
- `cudaDeviceEnablePeerAccess`, `cudaDeviceDisablePeerAccess`, `cudaDeviceCanAccessPeer`, `cuDeviceGetP2PAttribute`

```__host__cudaError_t cudaDeviceGetPCIBusId (char *pciBusId, int len, int device)```

Returns a PCI Bus Id string for the device.

**Parameters**

- `pciBusId` - Returned identifier string for the device in the following format `[domain]:[bus]:[device]`. `[function]` where `domain`, `bus`, `device`, and `function` are all hexadecimal values.
- `len` - Maximum length of string to store in `name`
- `device` - Device to get identifier string for

**Returns**
- `cudaSuccess`, `cudaErrorInvalidValue`, `cudaErrorInvalidDevice`
Description

Returns an ASCII string identifying the device dev in the NULL-terminated string pointed to by pciBusId. len specifies the maximum length of the string that may be returned.

Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

cudaDeviceGetByPCIBusId, cuDeviceGetPCIBusId

__host__ __device__ __cudaError_t
cudaDeviceGetSharedMemConfig
cudaSharedMemConfig *pConfig)

Returns the shared memory configuration for the current device.

Parameters

pConfig
- Returned cache configuration

Returns
cudaSuccess, cudaErrorInvalidValue

Description

This function will return in pConfig the current size of shared memory banks on the current device. On devices with configurable shared memory banks, cudaDeviceSetSharedMemConfig can be used to change this setting, so that all subsequent kernel launches will by default use the new bank size. When cudaDeviceGetSharedMemConfig is called on devices without configurable shared memory, it will return the fixed bank size of the hardware.

The returned bank configurations can be either:
CUDA Runtime API

vRelease Version   |   27

- cudaSharedMemBankSizeFourByte - shared memory bank width is four bytes.
- cudaSharedMemBankSizeEightByte - shared memory bank width is eight bytes.

Note:
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaDeviceSetCacheConfig, cudaDeviceGetCacheConfig, cudaDeviceSetSharedMemConfig, cudaFuncSetCacheConfig, cuCtxGetSharedMemConfig

___host__cudaError_t
cudaDeviceGetStreamPriorityRange (int *leastPriority, int *greatestPriority)

Returns numerical values that correspond to the least and greatest stream priorities.

Parameters

- leastPriority
  - Pointer to an int in which the numerical value for least stream priority is returned
- greatestPriority
  - Pointer to an int in which the numerical value for greatest stream priority is returned

Returns
cudaSuccess

Description

Returns in *leastPriority and *greatestPriority the numerical values that correspond to the least and greatest stream priorities respectively. Stream priorities follow a convention where lower numbers imply greater priorities. The range of meaningful stream priorities is given by [*greatestPriority, *leastPriority]. If the user attempts to create a stream with a priority value that is outside the the meaningful range as specified by this API, the priority is automatically clamped down or up to either *leastPriority or
*greatestPriority respectively. See cudaStreamCreateWithPriority for details on creating a priority stream. A NULL may be passed in for *leastPriority or *greatestPriority if the value is not desired.

This function will return 0 in both *leastPriority and *greatestPriority if the current context’s device does not support stream priorities (see cudaDeviceGetAttribute).

Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaStreamCreateWithPriority, cudaStreamGetPriority, cuCtxGetStreamPriorityRange

__host__cudaError_t
cudaDeviceGetTexture1DLinearMaxWidth
(size_t *maxWidthInElements, const
cudaChannelFormatDesc *fmtDesc, int device)
Returns the maximum number of elements allocatable in a 1D linear texture for a given element size.

Parameters

maxWidthInElements
- Returns maximum number of texture elements allocatable for given fmtDesc.

fmtDesc
- Texture format description.

device

Returns

cudaSuccess, cudaErrorUnsupportedLimit, cudaErrorInvalidValue
Description

Returns in `maxWidthInElements` the maximum number of elements allocatable in a 1D linear texture for given format descriptor `fmtDesc`.

Note:
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

`cuDeviceGetTexture1DLinearMaxWidth`

__host__`cudaError_t cudaDeviceReset (void)`

Destroy all allocations and reset all state on the current device in the current process.

Returns

`cudaSuccess`

Description

Explicitly destroys and cleans up all resources associated with the current device in the current process. It is the caller’s responsibility to ensure that the resources are not accessed or passed in subsequent API calls and doing so will result in undefined behavior. These resources include CUDA types such as `cudaStream_t`, `cudaEvent_t`, `cudaArray_t`, `cudaMipmappedArray_t`, `cudaTextureObject_t`, `cudaSurfaceObject_t`, `textureReference`, `surfaceReference`, `cudaExternalMemory_t`, `cudaExternalSemaphore_t` and `cudaGraphicsResource_t`. Any subsequent API call to this device will reinitialize the device.

Note that this function will reset the device immediately. It is the caller’s responsibility to ensure that the device is not being accessed by any other host threads from the process when this function is called.

Note:
- Note that this function may also return error codes from previous, asynchronous launches.
Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.

Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
`cudaDeviceSynchronize`

`__host__cudaError_t cudaDeviceSetCacheConfig (cudaFuncCache cacheConfig)`
Sets the preferred cache configuration for the current device.

**Parameters**

`cacheConfig`
- Requested cache configuration

**Returns**

`cudaSuccess`

**Description**

On devices where the L1 cache and shared memory use the same hardware resources, this sets through `cacheConfig` the preferred cache configuration for the current device. This is only a preference. The runtime will use the requested configuration if possible, but it is free to choose a different configuration if required to execute the function. Any function preference set via `cudaFuncSetCacheConfig [ C API]` or `cudaFuncSetCacheConfig [ C++ API]` will be preferred over this device-wide setting. Setting the device-wide cache configuration to `cudaFuncCachePreferNone` will cause subsequent kernel launches to prefer to not change the cache configuration unless required to launch the kernel.

This setting does nothing on devices where the size of the L1 cache and shared memory are fixed.

Launching a kernel with a different preference than the most recent preference setting may insert a device-side synchronization point.

The supported cache configurations are:

- `cudaFuncCachePreferNone`: no preference for shared memory or L1 (default)
- `cudaFuncCachePreferShared`: prefer larger shared memory and smaller L1 cache
- `cudaFuncCachePreferL1`: prefer larger L1 cache and smaller shared memory
- **cudaFuncCachePreferEqual**: prefer equal size L1 cache and shared memory

**Note:**
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

**See also:**
- `cudaDeviceGetCacheConfig`, `cudaFuncSetCacheConfig [C API]`, `cudaFuncSetCacheConfig [C++ API]`, `cuCtxSetCacheConfig`

```c
__host__ cudaError_t cudaDeviceSetLimit (cudaLimit limit, size_t value)
```

**Set resource limits.**

**Parameters**
- **limit**
  - Limit to set
- **value**
  - Size of limit

**Returns**
- `cudaSuccess`, `cudaErrorUnsupportedLimit`, `cudaErrorInvalidValue`, `cudaErrorMemoryAllocation`

**Description**
Setting `limit` to `value` is a request by the application to update the current limit maintained by the device. The driver is free to modify the requested value to meet h/w requirements (this could be clamping to minimum or maximum values, rounding up to nearest element size, etc). The application can use `cudaDeviceGetLimit()` to find out exactly what the limit has been set to.

Setting each `cudaLimit` has its own specific restrictions, so each is discussed here.

- `cudaLimitStackSize` controls the stack size in bytes of each GPU thread.
- \texttt{cudaLimitPrintfFifoSize} controls the size in bytes of the shared FIFO used by the printf() device system call. Setting \texttt{cudaLimitPrintfFifoSize} must not be performed after launching any kernel that uses the printf() device system call - in such case \texttt{cudaErrorInvalidValue} will be returned.

- \texttt{cudaLimitMallocHeapSize} controls the size in bytes of the heap used by the malloc() and free() device system calls. Setting \texttt{cudaLimitMallocHeapSize} must not be performed after launching any kernel that uses the malloc() or free() device system calls - in such case \texttt{cudaErrorInvalidValue} will be returned.

- \texttt{cudaLimitDevRuntimeSyncDepth} controls the maximum nesting depth of a grid at which a thread can safely call \texttt{cudaDeviceSynchronize}. Setting this limit must be performed before any launch of a kernel that uses the device runtime and calls \texttt{cudaDeviceSynchronize} above the default sync depth, two levels of grids. Calls to \texttt{cudaDeviceSynchronize} will fail with error code \texttt{cudaErrorSyncDepthExceeded} if the limitation is violated. This limit can be set smaller than the default or up the maximum launch depth of 24. When setting this limit, keep in mind that additional levels of sync depth require the runtime to reserve large amounts of device memory which can no longer be used for user allocations. If these reservations of device memory fail, \texttt{cudaDeviceSetLimit} will return \texttt{cudaErrorMemoryAllocation}, and the limit can be reset to a lower value. This limit is only applicable to devices of compute capability < 9.0. Attempting to set this limit on devices of other compute capability will results in error \texttt{cudaErrorUnsupportedLimit} being returned.

- \texttt{cudaLimitDevRuntimePendingLaunchCount} controls the maximum number of outstanding device runtime launches that can be made from the current device. A grid is outstanding from the point of launch up until the grid is known to have been completed. Device runtime launches which violate this limitation fail and return \texttt{cudaErrorLaunchPendingCountExceeded} when \texttt{cudaGetLastError} is called after launch. If more pending launches than the default (2048 launches) are needed for a module using the device runtime, this limit can be increased. Keep in mind that being able to sustain additional pending launches will require the runtime to reserve larger amounts of device memory upfront which can no longer be used for allocations. If these reservations fail, \texttt{cudaDeviceSetLimit} will return \texttt{cudaErrorMemoryAllocation}, and the limit can be reset to a lower value. This limit is only applicable to devices of compute capability 3.5 and higher. Attempting to set this limit on devices of compute capability less than 3.5 will result in the error \texttt{cudaErrorUnsupportedLimit} being returned.

- \texttt{cudaLimitMaxL2FetchGranularity} controls the L2 cache fetch granularity. Values can range from 0B to 128B. This is purely a performance hint and it can be ignored or clamped depending on the platform.

- \texttt{cudaLimitPersistingL2CacheSize} controls size in bytes available for persisting L2 cache. This is purely a performance hint and it can be ignored or clamped depending on the platform.
See also:

cudaDeviceGetLimit, cuCtxSetLimit

__host__cudaError_t cudaDeviceSetMemPool (int device, cudaMemPool_t memPool)
Sets the current memory pool of a device.

Returns
cudaSuccess, cudaErrorInvalidValue cudaErrorInvalidDevice cudaErrorNotSupported

Description
The memory pool must be local to the specified device. Unless a mempool is specified in the cudaMallocAsync call, cudaMallocAsync allocates from the current mempool of the provided stream’s device. By default, a device’s current memory pool is its default memory pool.

Note:
Use cudaMallocFromPoolAsync to specify asynchronous allocations from a device different than the one the stream runs on.

See also:
**__host__cudaError_t**
**cudaDeviceSetSharedMemConfig**
*(cudaSharedMemConfig config)*

Sets the shared memory configuration for the current device.

**Parameters**

**config**
- Requested cache configuration

**Returns**

**cudaSuccess, cudaErrorInvalidValue**

**Description**

On devices with configurable shared memory banks, this function will set the shared memory bank size which is used for all subsequent kernel launches. Any per-function setting of shared memory set via **cudaFuncSetSharedMemConfig** will override the device wide setting.

Changing the shared memory configuration between launches may introduce a device side synchronization point.

Changing the shared memory bank size will not increase shared memory usage or affect occupancy of kernels, but may have major effects on performance. Larger bank sizes will allow for greater potential bandwidth to shared memory, but will change what kinds of accesses to shared memory will result in bank conflicts.

This function will do nothing on devices with fixed shared memory bank size.

The supported bank configurations are:

- **cudaSharedMemBankSizeDefault**: set bank width the device default (currently, four bytes)
- **cudaSharedMemBankSizeFourByte**: set shared memory bank width to be four bytes natively.
- **cudaSharedMemBankSizeEightByte**: set shared memory bank width to be eight bytes natively.

**Note:**

- Note that this function may also return error codes from previous, asynchronous launches.
Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.

Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

- `cudaDeviceSetCacheConfig`
- `cudaDeviceGetCacheConfig`
- `cudaDeviceGetSharedMemConfig`
- `cudaFuncSetCacheConfig`
- `cuCtxSetSharedMemConfig`

```c
__host__ device __cudaError_t
cudaDeviceSynchronize (void)
```

Wait for compute device to finish.

**Returns**

`cudaSuccess`

**Description**

Blocks until the device has completed all preceding requested tasks. `cudaDeviceSynchronize` returns an error if one of the preceding tasks has failed. If the `cudaDeviceScheduleBlockingSync` flag was set for this device, the host thread will block until the device has finished its work.

**Note:**

- Use of `cudaDeviceSynchronize` in device code was deprecated in CUDA 11.6 and removed for compute_90+ compilation. For compute capability < 9.0, compile-time opt-in by specifying `-D CUDA_FORCE_CDP1_IF_SUPPORTED` is required to continue using `cudaDeviceSynchronize` in device code for now. Note that this is different from host-side `cudaDeviceSynchronize`, which is still supported.

- Note that this function may also return error codes from previous, asynchronous launches.

- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.

- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.
See also:

cudaDeviceReset, cuCtxSynchronize

__host__device__cudaError_t cudaGetDevice (int *device)

Returns which device is currently being used.

Parameters

device
- Returns the device on which the active host thread executes the device code.

Returns
cudaSuccess, cudaErrorInvalidValue, cudaErrorDeviceUnavailable,

description

Returns in *device the current device for the calling host thread.

Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaGetDeviceCount, cudaSetDevice, cudaGetDeviceProperties, cudaChooseDevice, cuCtxGetCurrent
__host__ __device__ cudaError_t cudaGetDeviceCount (int *count)
Returns the number of compute-capable devices.

Parameters

count
  - Returns the number of devices with compute capability greater or equal to 2.0

Returns
cudaSuccess

Description
Returns in *count the number of devices with compute capability greater or equal to 2.0 that are available for execution.

Note:
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotAllowed may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaGetDevice, cudaSetDevice, cudaGetDeviceProperties, cudaChooseDevice, cudaInitDevice, cuDeviceGetCount

__host__ cudaError_t cudaGetDeviceFlags (unsigned int *flags)
Gets the flags for the current device.

Parameters

flags
  - Pointer to store the device flags
Returns

cudaSuccess, cudaErrorInvalidDevice

Description

Returns in flags the flags for the current device. If there is a current device for the calling thread, the flags for the device are returned. If there is no current device, the flags for the first device are returned, which may be the default flags. Compare to the behavior of cudaSetDeviceFlags.

Typically, the flags returned should match the behavior that will be seen if the calling thread uses a device after this call, without any change to the flags or current device inbetween by this or another thread. Note that if the device is not initialized, it is possible for another thread to change the flags for the current device before it is initialized. Additionally, when using exclusive mode, if this thread has not requested a specific device, it may use a device other than the first device, contrary to the assumption made by this function.

If a context has been created via the driver API and is current to the calling thread, the flags for that context are always returned.

Flags returned by this function may specifically include cudaDeviceMapHost even though it is not accepted by cudaSetDeviceFlags because it is implicit in runtime API flags. The reason for this is that the current context may have been created via the driver API in which case the flag is not implicit and may be unset.

Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

cudaGetDevice, cudaGetDeviceProperties, cudaSetDevice, cudaSetDeviceFlags, cudalInitDevice, cuCtxGetFlags, cuDevicePrimaryCtxGetState
`__host__cudaError_t cudaGetDeviceProperties (cudaDeviceProp *prop, int device)`

Returns information about the compute-device.

**Parameters**

- **prop** - Properties for the specified device
- **device** - Device number to get properties for

**Returns**

- `cudaSuccess`
- `cudaErrorInvalidDevice`

**Description**

Returns in `*prop` the properties of device `dev`. The `cudaDeviceProp` structure is defined as:

```c
struct cudaDeviceProp {
    char name[256];
    cudaUUID_t uuid;
    size_t totalGlobalMem;
    size_t sharedMemPerBlock;
    int regsPerBlock;
    int warpSize;
    size_t memPitch;
    int maxThreadsPerBlock;
    int maxThreadsDim[3];
    int maxGridSize[3];
    int clockRate;
    size_t totalConstMem;
    int major;
    int minor;
    size_t textureAlignment;
    size_t texturePitchAlignment;
    int deviceOverlap;
    int multiProcessorCount;
    int kernelExecTimeoutEnabled;
    int integrated;
    int canMapHostMemory;
    int computeMode;
    int maxTexture1D;
    int maxTexture1DMapmap;
    int maxTexture1DLinear;
    int maxTexture2D[2];
    int maxTexture2DMapmap[2];
    int maxTexture2DLinear[3];
    int maxTexture2DGather[2];
    int maxTexture3D[3];
    int maxTexture3DAlt[3];
    int maxTextureCubeMap;
    int maxTexture1DLayered[2];
    int maxTexture2DLayered[3];
    int maxTextureCubeMapLayered[2];
    int maxSurface1D;
    int maxSurface2D[2];
    int maxSurface3D[3];
};
```
int maxSurface1DLayered[2];
int maxSurface2DLayered[3];
int maxSurfaceCubemap;
int maxSurfaceCubemapLayered[2];
size_t surfaceAlignment;
int concurrentKernels;
int ECCEnabled;
int pciBusID;
int pciDeviceID;
int pciDomainID;
tccDriver;
int asyncEngineCount;
int unifiedAddressing;
int memoryClockRate;
int memoryBusWidth;
int l2CacheSize;
int persistingL2CacheMaxSize;
int maxThreadsPerMultiProcessor;
int streamPrioritiesSupported;
int globalL1CacheSupported;
int localL1CacheSupported;
size_t sharedMemPerMultiprocessor;
int regsPerMultiprocessor;
int managedMemory;
int isMultiGpuBoard;
int multiGpuBoardGroupID;
int singleToDoublePrecisionPerfRatio;
int pageableMemoryAccess;
int concurrentManagedAccess;
int computePreemptionSupported;
int canUseHostPointerForRegisteredMem;
int cooperativeLaunch;
int cooperativeMultiDeviceLaunch;
int pageableMemoryAccessUsesHostPageTables;
int directManagedMemAccessFromHost;
int accessPolicyMaxWindowSize;
)

where:

- **name[256]** is an ASCII string identifying the device.
- **uuid** is a 16-byte unique identifier.
- **totalGlobalMem** is the total amount of global memory available on the device in bytes.
- **sharedMemPerBlock** is the maximum amount of shared memory available to a thread block in bytes.
- **regsPerBlock** is the maximum number of 32-bit registers available to a thread block.
- **warpSize** is the warp size in threads.
- **memPitch** is the maximum pitch in bytes allowed by the memory copy functions that involve memory regions allocated through `cudaMallocPitch()`.
- **maxThreadsPerBlock** is the maximum number of threads per block.
- **maxThreadsDim[3]** contains the maximum size of each dimension of a block.
- **maxGridSize[3]** contains the maximum size of each dimension of a grid.
- **clockRate** is the clock frequency in kilohertz.
- **totalConstMem** is the total amount of constant memory available on the device in bytes.
- **major, minor** are the major and minor revision numbers defining the device's compute capability.
- **textureAlignment** is the alignment requirement; texture base addresses that are aligned to `textureAlignment` bytes do not need an offset applied to texture fetches.
- **texturePitchAlignment** is the pitch alignment requirement for 2D texture references that are bound to pitched memory.
- **deviceOverlap** is 1 if the device can concurrently copy memory between host and device while executing a kernel, or 0 if not. Deprecated, use instead asyncEngineCount.
- **multiProcessorCount** is the number of multiprocessors on the device.
- **kernelExecTimeoutEnabled** is 1 if there is a run time limit for kernels executed on the device, or 0 if not.
- **integrated** is 1 if the device is an integrated (motherboard) GPU and 0 if it is a discrete (card) component.
- **canMapHostMemory** is 1 if the device can map host memory into the CUDA address space for use with `cudaHostAlloc() / cudaHostGetDevicePointer()`, or 0 if not.
- **computeMode** is the compute mode that the device is currently in. Available modes are as follows:
  - **cudaComputeModeDefault**: Default mode - Device is not restricted and multiple threads can use `cudaSetDevice()` with this device.
  - **cudaComputeModeProhibited**: Compute-prohibited mode - No threads can use `cudaSetDevice()` with this device.
  - **cudaComputeModeExclusiveProcess**: Compute-exclusive-process mode - Many threads in one process will be able to use `cudaSetDevice()` with this device.
    - When an occupied exclusive mode device is chosen with `cudaSetDevice()`, all subsequent non-device management runtime functions will return `cudaErrorDevicesUnavailable`.
- **maxTexture1D** is the maximum 1D texture size.
- **maxTexture1DMipmap** is the maximum 1D mipmapmed texture texture size.
- **maxTexture1DLinear** is the maximum 1D texture size for textures bound to linear memory.
- **maxTexture2D[2]** contains the maximum 2D texture dimensions.
- **maxTexture2DMipmap[2]** contains the maximum 2D mipmapmed texture dimensions.
- **maxTexture2DLinear[3]** contains the maximum 2D texture dimensions for 2D textures bound to pitch linear memory.
- **maxTexture2DGather** contains the maximum 2D texture dimensions if texture gather operations have to be performed.
- **maxTexture3D** contains the maximum 3D texture dimensions.
- **maxTexture3DAlt** contains the maximum alternate 3D texture dimensions.
- **maxTextureCubemap** is the maximum cubemap texture width or height.
- **maxTexture1DLayered** contains the maximum 1D layered texture dimensions.
- **maxTexture2DLayered** contains the maximum 2D layered texture dimensions.
- **maxTextureCubemapLayered** contains the maximum cubemap layered texture dimensions.
- **maxSurface1D** is the maximum 1D surface size.
- **maxSurface2D** contains the maximum 2D surface dimensions.
- **maxSurface3D** contains the maximum 3D surface dimensions.
- **maxSurface1DLayered** contains the maximum 1D layered surface dimensions.
- **maxSurface2DLayered** contains the maximum 2D layered surface dimensions.
- **maxSurfaceCubemap** is the maximum cubemap surface width or height.
- **maxSurfaceCubemapLayered** contains the maximum cubemap layered surface dimensions.
- **surfaceAlignment** specifies the alignment requirements for surfaces.
- **concurrentKernels** is 1 if the device supports executing multiple kernels within the same context simultaneously, or 0 if not. It is not guaranteed that multiple kernels will be resident on the device concurrently so this feature should not be relied upon for correctness.
- **ECCEnabled** is 1 if the device has ECC support turned on, or 0 if not.
- **pciBusID** is the PCI bus identifier of the device.
- **pciDeviceID** is the PCI device (sometimes called slot) identifier of the device.
- **pciDomainID** is the PCI domain identifier of the device.
- **tccDriver** is 1 if the device is using a TCC driver or 0 if not.
- **asyncEngineCount** is 1 when the device can concurrently copy memory between host and device while executing a kernel. It is 2 when the device can concurrently copy memory between host and device in both directions and execute a kernel at the same time. It is 0 if neither of these is supported.
- **unifiedAddressing** is 1 if the device shares a unified address space with the host and 0 otherwise.
memoryClockRate is the peak memory clock frequency in kilohertz.

memoryBusWidth is the memory bus width in bits.

l2CacheSize is L2 cache size in bytes.

persistingL2CacheMaxSize is L2 cache’s maximum persisting lines size in bytes.

maxThreadsPerMultiProcessor is the number of maximum resident threads per multiprocessor.

streamPrioritiesSupported is 1 if the device supports stream priorities, or 0 if it is not supported.

globalL1CacheSupported is 1 if the device supports caching of globals in L1 cache, or 0 if it is not supported.

localL1CacheSupported is 1 if the device supports caching of locals in L1 cache, or 0 if it is not supported.

sharedMemPerMultiprocessor is the maximum amount of shared memory available to a multiprocessor in bytes; this amount is shared by all thread blocks simultaneously resident on a multiprocessor.

regsPerMultiprocessor is the maximum number of 32-bit registers available to a multiprocessor; this number is shared by all thread blocks simultaneously resident on a multiprocessor.

managedMemory is 1 if the device supports allocating managed memory on this system, or 0 if it is not supported.

isMultiGpuBoard is 1 if the device is on a multi-GPU board (e.g. Gemini cards), and 0 if not;

multiGpuBoardGroupID is a unique identifier for a group of devices associated with the same board. Devices on the same multi-GPU board will share the same identifier.

hostNativeAtomicSupported is 1 if the link between the device and the host supports native atomic operations, or 0 if it is not supported.

singleToDoublePrecisionPerfRatio is the ratio of single precision performance (in floating-point operations per second) to double precision performance.

pageableMemoryAccess is 1 if the device supports coherently accessing pageable memory without calling cudaHostRegister on it, and 0 otherwise.

concurrentManagedAccess is 1 if the device can coherently access managed memory concurrently with the CPU, and 0 otherwise.

computePreemptionSupported is 1 if the device supports Compute Preemption, and 0 otherwise.

canUseHostPointerForRegisteredMem is 1 if the device can access host registered memory at the same virtual address as the CPU, and 0 otherwise.
- `cooperativeLaunch` is 1 if the device supports launching cooperative kernels via `cudaLaunchCooperativeKernel`, and 0 otherwise.
- `cooperativeMultiDeviceLaunch` is 1 if the device supports launching cooperative kernels via `cudaLaunchCooperativeKernelMultiDevice`, and 0 otherwise.
- `sharedMemPerBlockOptin` is the per device maximum shared memory per block usable by special opt in
- `pageableMemoryAccessUsesHostPageTables` is 1 if the device accesses pageable memory via the host’s page tables, and 0 otherwise.
- `directManagedMemAccessFromHost` is 1 if the host can directly access managed memory on the device without migration, and 0 otherwise.
- `maxBlocksPerMultiProcessor` is the maximum number of thread blocks that can reside on a multiprocessor.
- `accessPolicyMaxWindowSize` is the maximum value of `cudaAccessPolicyWindow::num_bytes`.
- `reservedSharedMemPerBlock` is the shared memory reserved by CUDA driver per block in bytes
- `hostRegisterSupported` is 1 if the device supports host memory registration via `cudaHostRegister`, and 0 otherwise.
- `sparseCudaArraySupported` is 1 if the device supports sparse CUDA arrays and sparse CUDA mipmapped arrays, 0 otherwise
- `hostRegisterReadOnlySupported` is 1 if the device supports using the `cudaHostRegister` flag `cudaHostRegisterReadOnly` to register memory that must be mapped as read-only to the GPU
- `timelineSemaphoreInteropSupported` is 1 if external timeline semaphore interop is supported on the device, 0 otherwise
- `memoryPoolsSupported` is 1 if the device supports using the `cudaMallocAsync` and `cudaMemPool` family of APIs, 0 otherwise
- `gpuDirectRDMASupported` is 1 if the device supports GPUDirect RDMA APIs, 0 otherwise
- `gpuDirectRDMAFlushWritesOptions` is a bitmask to be interpreted according to the `cudaFlushGPUDirectRDMAWritesOptions` enum
- `gpuDirectRDMAWritesOrdering` See the `cudaGPUDirectRDMAWritesOrdering` enum for numerical values
- `memoryPoolSupportedHandleTypes` is a bitmask of handle types supported with mempool-based IPC
Deferred Mapping Cuda Array Supported is 1 if the device supports deferred mapping CUDA arrays and CUDA mipmapped arrays.

IpceventSupported is 1 if the device supports IPC Events, and 0 otherwise.

Unified Function Pointers is 1 if the device support unified pointers, and 0 otherwise.

**Note:**
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

**See also:**
cudaGetDeviceCount, cudaGetDevice, cudaSetDevice, cudaChooseDevice, cudaDeviceGetAttribute, cudaInitDevice, cuDeviceGetAttribute, cuDeviceGetName

```c
__host__ cudaError_t cudaInitDevice (int device, unsigned int deviceFlags, unsigned int flags)
```

Initialize device to be used for GPU executions.

**Parameters**

- **device**
  - Device on which the runtime will initialize itself.
- **deviceFlags**
  - Parameters for device operation.
- **flags**
  - Flags for controlling the device initialization.

**Returns**
cudaSuccess, cudaErrorInvalidDevice.

**Description**
This function will initialize the CUDA Runtime structures and primary context on device when called, but the context will not be made current to device.
When `cudaInitDeviceFlagsAreValid` is set in `flags`, deviceFlags are applied to the requested device. The values of deviceFlags match those of the flags parameters in `cudaSetDeviceFlags`. The effect may be verified by `cudaGetDeviceFlags`.

This function will return an error if the device is in `cudaComputeModeExclusiveProcess` and is occupied by another process or if the device is in `cudaComputeModeProhibited`.

Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

`cudaGetDeviceCount`, `cudaGetDevice`, `cudaGetDeviceProperties`, `cudaChooseDevice`, `cudaSetDevice`, `cuCtxSetCurrent`

```c
__host__ cudaError_t cudaIpcCloseMemHandle (void *devPtr)
```

Attempts to close memory mapped with `cudaIpcOpenMemHandle`.

**Parameters**

`devPtr`
- Device pointer returned by `cudaIpcOpenMemHandle`

**Returns**

`cudaSuccess`, `cudaErrorMapBufferObjectFailed`, `cudaErrorNotSupported`, `cudaErrorInvalidValue`

**Description**

Decrement the reference count of the memory returned by `cudaIpcOpenMemHandle` by 1. When the reference count reaches 0, this API unmaps the memory. The original allocation in the exporting process as well as imported mappings in other processes will be unaffected.

Any resources used to enable peer access will be freed if this is the last mapping using them.
IPC functionality is restricted to devices with support for unified addressing on Linux and Windows operating systems. IPC functionality on Windows is restricted to GPUs in TCC mode. Users can test their device for IPC functionality by calling `cudaDeviceGetAttribute` with `cudaDevAttrIpcEventSupport`.

**Note:**
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
- `cudaMalloc`, `cudaFree`, `cudaIpcGetEventHandle`, `cudaIpcOpenEventHandle`, `cudaIpcGetMemHandle`, `cudaIpcOpenMemHandle`, `culpcCloseMemHandle`

```c
__host__ cudaError_t cudaIpcGetEventHandle(
cudaIpcEventHandle_t *handle, cudaEvent_t event)
```

Gets an interprocess handle for a previously allocated event.

**Parameters**

- **handle**
  - Pointer to a user allocated cudaIpcEventHandle in which to return the opaque event handle
- **event**
  - Event allocated with `cudaEventInterprocess` and `cudaEventDisableTiming` flags.

**Returns**
- `cudaSuccess`, `cudaErrorInvalidResourceHandle`, `cudaErrorMemoryAllocation`, `cudaErrorMapBufferObjectFailed`, `cudaErrorNotSupported`, `cudaErrorInvalidValue`

**Description**

Takes as input a previously allocated event. This event must have been created with the `cudaEventInterprocess` and `cudaEventDisableTiming` flags set. This opaque handle may be copied into other processes and opened with `cudaIpcOpenEventHandle` to allow efficient hardware synchronization between GPU work in different processes.
After the event has been opened in the importing process, `cudaEventRecord`, `cudaEventSynchronize`, `cudaStreamWaitEvent` and `cudaEventQuery` may be used in either process. Performing operations on the imported event after the exported event has been freed with `cudaEventDestroy` will result in undefined behavior.

IPC functionality is restricted to devices with support for unified addressing on Linux and Windows operating systems. IPC functionality on Windows is restricted to GPUs in TCC mode. Users can test their device for IPC functionality by calling `cudaDeviceGetAttribute` with `cudaDevAttrIpcEventSupport`.

**Note:**

‣ Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.

‣ Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

`cudaEventCreate`, `cudaEventDestroy`, `cudaEventSynchronize`, `cudaEventQuery`, `cudaStreamWaitEvent`, `cudaIpcOpenEventHandle`, `cudaIpcGetMemHandle`, `cudaIpcOpenMemHandle`, `cudaIpcCloseMemHandle`, `cuIpcGetEventHandle`

```c
__host__ cudaError_t cudaIpcGetMemHandle(cudalpcMemHandle_t *handle, void *devPtr)
```

Gets an interprocess memory handle for an existing device memory allocation.

**Parameters**

- **handle**
  - Pointer to user allocated cudalpcMemHandle to return the handle in.
- **devPtr**
  - Base pointer to previously allocated device memory

**Returns**

`cudaSuccess`, `cudaErrorMemoryAllocation`, `cudaErrorMapBufferObjectFailed`, `cudaErrorNotSupported`, `cudaErrorInvalidValue`
Description
Takes a pointer to the base of an existing device memory allocation created with cudamalloc and exports it for use in another process. This is a lightweight operation and may be called multiple times on an allocation without adverse effects.

If a region of memory is freed with cufree and a subsequent call to cudamalloc returns memory with the same device address, culpcGetMemHandle will return a unique handle for the new memory.

IPC functionality is restricted to devices with support for unified addressing on Linux and Windows operating systems. IPC functionality on Windows is restricted to GPUs in TCC mode. Users can test their device for IPC functionality by calling cudaDeviceGetAttribute with cudaDevAttrLpcEventSupport

Note:
- Note that this function may also return cudainitializationError, culpcInsufficientDriver or culpcNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. culpcNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudamalloc, cufree, culpcGetEventHandle, culpcOpenEventHandle, culpcOpenMemHandle, culpcCloseMemHandle

__host__ cudaError_t culpcOpenEventHandle (cudaEvent_t *event, culpcEventHandle_t handle)
Opens an interprocess event handle for use in the current process.

Parameters
event
- Returns the imported event
handle
- Interprocess handle to open

Returns
cudasisucess, culpcMapBufferObjectFailed, culpcNotSupported, culpcInvalidValue, culpcDeviceUninitialized
Description

Opens an interprocess event handle exported from another process with `cudaIpcGetEventHandle`. This function returns a `cudaEvent_t` that behaves like a locally created event with the `cudaEventDisableTiming` flag specified. This event must be freed with `cudaEventDestroy`.

Performing operations on the imported event after the exported event has been freed with `cudaEventDestroy` will result in undefined behavior.

IPC functionality is restricted to devices with support for unified addressing on Linux and Windows operating systems. IPC functionality on Windows is restricted to GPUs in TCC mode. Users can test their device for IPC functionality by calling `cudaDeviceGetAttribute` with `cudaDevAttrIpcEventSupport`.

Note:

- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

`cudaEventCreate`, `cudaEventDestroy`, `cudaEventSynchronize`, `cudaEventQuery`, `cudaStreamWaitEvent`, `cudaIpcGetEventHandle`, `cudaIpcGetMemHandle`, `cudaIpcOpenMemHandle`, `cudaIpcCloseMemHandle`, `culpcOpenEventHandle`

```c
__host__ cudaError_t cudaIpcOpenMemHandle (void **devPtr, cudaIpcMemHandle_t handle, unsigned int flags)
```

Opens an interprocess memory handle exported from another process and returns a device pointer usable in the local process.

Parameters

- **devPtr**
  - Returned device pointer
- **handle**
  - cudaIpcMemHandle to open
flags
- Flags for this operation. Must be specified as `cudaIpcMemLazyEnablePeerAccess`

Returns
- `cudaSuccess`
- `cudaErrorMapBufferObjectFailed`
- `cudaErrorInvalidResourceHandle`
- `cudaErrorDeviceUninitialized`
- `cudaErrorTooManyPeers`
- `cudaErrorNotSupported`
- `cudaErrorInvalidValue`

Description
Maps memory exported from another process with `cudaIpcGetMemHandle` into the current device address space. For contexts on different devices `cudaIpcOpenMemHandle` can attempt to enable peer access between the devices as if the user called `cudaDeviceEnablePeerAccess`. This behavior is controlled by the `cudaIpcMemLazyEnablePeerAccess` flag. `cudaDeviceCanAccessPeer` can determine if a mapping is possible.

`cudaIpcOpenMemHandle` can open handles to devices that may not be visible in the process calling the API.

Contexts that may open cudaIpcMemHandles are restricted in the following way.

- cudaIpcMemHandles from each device in a given process may only be opened by one context per device per other process.
- If the memory handle has already been opened by the current context, the reference count on the handle is incremented by 1 and the existing device pointer is returned.

Memory returned from `cudaIpcOpenMemHandle` must be freed with `cudaIpcCloseMemHandle`.

Calling `cudaFree` on an exported memory region before calling `cudaIpcCloseMemHandle` in the importing context will result in undefined behavior.

IPC functionality is restricted to devices with support for unified addressing on Linux and Windows operating systems. IPC functionality on Windows is restricted to GPUs in TCC mode. Users can test their device for IPC functionality by calling `cudaDeviceGetAttribute` with `cudaDevAttrIpcEventSupport`.

Note:
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.
No guarantees are made about the address returned in *devPtr. In particular, multiple processes may not receive the same address for the same handle.

See also:
cudaMalloc, cudaFree, cudaIpcGetEventHandle, cudaIpcOpenEventHandle, cudaIpcGetMemHandle, cudaIpcCloseMemHandle, cudaDeviceEnablePeerAccess, cudaDeviceCanAccessPeer, cuIpcOpenMemHandle

__host__cudaError_t cudaSetDevice (int device)
Set device to be used for GPU executions.

Parameters
device
- Device on which the active host thread should execute the device code.

Returns
cudaSuccess, cudaErrorInvalidDevice, cudaErrorDeviceUnavailable,

Description
Sets device as the current device for the calling host thread. Valid device id’s are 0 to (cudaGetDeviceCount() - 1).

Any device memory subsequently allocated from this host thread using cudaMemcpy, cudaMemcpyPitch() or cudaMemcpyArray() will be physically resident on device. Any host memory allocated from this host thread using cudaMemcpyHost() or cudaMemcpyHost() or cudaMemcpyHost() will have its lifetime associated with device. Any streams or events created from this host thread will be associated with device. Any kernels launched from this host thread using the <<<>>> operator or cudaMemcpyHost() will be executed on device.

This call may be made from any host thread, to any device, and at any time. This function will do no synchronization with the previous or new device, and should only take significant time when it initializes the runtime’s context state. This call will bind the primary context of the specified device to the calling thread and all the subsequent memory allocations, stream and event creations, and kernel launches will be associated with the primary context. This function will also immediately initialize the runtime state on the primary context, and the context will be current on device immediately. This function will return an error if the device is in cudaComputeModeExclusiveProcess and is occupied by another process or if the device is in cudaComputeModeProhibited.

It is not required to call cudaInitDevice before using this function.
Note that this function may also return error codes from previous, asynchronous launches.

Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.

Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

`cudaGetDeviceCount`, `cudaGetDevice`, `cudaGetDeviceProperties`, `cudaChooseDevice`, `cudaInitDevice`, `cuCtxSetCurrent`

```__host__cudaError_t cudaSetDeviceFlags (unsigned int flags)`
Sets flags to be used for device executions.

**Parameters**

**flags**
- Parameters for device operation

**Returns**

`cudaSuccess`, `cudaErrorInvalidValue`

**Description**

Records `flags` as the flags for the current device. If the current device has been set and that device has already been initialized, the previous flags are overwritten. If the current device has not been initialized, it is initialized with the provided flags. If no device has been made current to the calling thread, a default device is selected and initialized with the provided flags.

The two LSBs of the `flags` parameter can be used to control how the CPU thread interacts with the OS scheduler when waiting for results from the device.

- `cudaDeviceScheduleAuto`: The default value if the `flags` parameter is zero, uses a heuristic based on the number of active CUDA contexts in the process `C` and the number of logical processors in the system `P`. If `C > P`, then CUDA will yield to other OS threads when waiting for the device, otherwise CUDA will not yield while waiting for results and actively spin on the processor. Additionally, on Tegra devices, `cudaDeviceScheduleAuto` uses a heuristic based on the power profile of the platform and may choose `cudaDeviceScheduleBlockingSync` for low-powered devices.
- **cudaDeviceScheduleSpin**: Instruct CUDA to actively spin when waiting for results from the device. This can decrease latency when waiting for the device, but may lower the performance of CPU threads if they are performing work in parallel with the CUDA thread.

- **cudaDeviceScheduleYield**: Instruct CUDA to yield its thread when waiting for results from the device. This can increase latency when waiting for the device, but can increase the performance of CPU threads performing work in parallel with the device.

- **cudaDeviceScheduleBlockingSync**: Instruct CUDA to block the CPU thread on a synchronization primitive when waiting for the device to finish work.

- **cudaDeviceBlockingSync**: Instruct CUDA to block the CPU thread on a synchronization primitive when waiting for the device to finish work. **Deprecated**: This flag was deprecated as of CUDA 4.0 and replaced with cudaDeviceScheduleBlockingSync.

- **cudaDeviceMapHost**: This flag enables allocating pinned host memory that is accessible to the device. It is implicit for the runtime but may be absent if a context is created using the driver API. If this flag is not set, cudaHostGetDevicePointer() will always return a failure code.

- **cudaDeviceLmemResizeToMax**: Instruct CUDA to not reduce local memory after resizing local memory for a kernel. This can prevent thrashing by local memory allocations when launching many kernels with high local memory usage at the cost of potentially increased memory usage. **Deprecated**: This flag is deprecated and the behavior enabled by this flag is now the default and cannot be disabled.

**Note:**
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

**See also:**
cudaGetDeviceFlags, cudaGetDeviceCount, cudaGetDevice, cudaGetDeviceProperties, cudaSetDevice, cudaSetValidDevices, cudaInitDevice, cudaChooseDevice, cuDevicePrimaryCtxSetFlags
__host__ cudaError_t cudaSetValidDevices (int *device_arr, int len)

Set a list of devices that can be used for CUDA.

Parameters

**device_arr**
- List of devices to try

**len**
- Number of devices in specified list

Returns

cudaSuccess, cudaErrorInvalidValue, cudaErrorInvalidDevice

Description

Sets a list of devices for CUDA execution in priority order using **device_arr**. The parameter **len** specifies the number of elements in the list. CUDA will try devices from the list sequentially until it finds one that works. If this function is not called, or if it is called with a **len** of 0, then CUDA will go back to its default behavior of trying devices sequentially from a default list containing all of the available CUDA devices in the system. If a specified device ID in the list does not exist, this function will return cudaErrorInvalidDevice. If **len** is not 0 and **device_arr** is NULL or if **len** exceeds the number of devices in the system, then cudaErrorInvalidValue is returned.

Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotAllowed may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

cudaGetDeviceCount, cudaSetDevice, cudaGetDeviceProperties, cudaSetDeviceFlags, cudaChooseDevice
6.2. Thread Management [DEPRECATED]

This section describes deprecated thread management functions of the CUDA runtime application programming interface.

__host__cudaError_t cudaThreadExit (void)

Exit and clean up from CUDA launches.

Returns

cudaSuccess

Description

Deprecated

Note that this function is deprecated because its name does not reflect its behavior. Its functionality is identical to the non-deprecated function cudaDeviceReset(), which should be used instead.

Explicitly destroys all cleans up all resources associated with the current device in the current process. Any subsequent API call to this device will reinitialize the device.

Note that this function will reset the device immediately. It is the caller’s responsibility to ensure that the device is not being accessed by any other host threads from the process when this function is called.

Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

cudaDeviceReset
\_\_host\_\_\_cudaError\_t cudaThreadGetCacheConfig (cudaFuncCache *pCacheConfig)

Returns the preferred cache configuration for the current device.

**Parameters**

**pCacheConfig**
- Returned cache configuration

**Returns**

cudaSuccess

**Description**

**Deprecated**

Note that this function is deprecated because its name does not reflect its behavior. Its functionality is identical to the non-deprecated function cudaDeviceGetCacheConfig(), which should be used instead.

On devices where the L1 cache and shared memory use the same hardware resources, this returns through pCacheConfig the preferred cache configuration for the current device. This is only a preference. The runtime will use the requested configuration if possible, but it is free to choose a different configuration if required to execute functions.

This will return a pCacheConfig of cudaFuncCachePreferNone on devices where the size of the L1 cache and shared memory are fixed.

The supported cache configurations are:

- cudaFuncCachePreferNone: no preference for shared memory or L1 (default)
- cudaFuncCachePreferShared: prefer larger shared memory and smaller L1 cache
- cudaFuncCachePreferL1: prefer larger L1 cache and smaller shared memory

**Note:**

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.
See also:
cudaDeviceGetCacheConfig

__host__cudaError_t cudaThreadGetLimit (size_t *pValue, cudaLimit limit)
Returns resource limits.

Parameters
pValue
- Returned size in bytes of limit
limit
- Limit to query

Returns
cudaSuccess, cudaErrorUnsupportedLimit, cudaErrorInvalidValue

Description
Deprecated
Note that this function is deprecated because its name does not reflect its behavior. Its functionality is identical to the non-deprecated function cudaDeviceGetLimit(), which should be used instead.

Returns in *pValue the current size of limit. The supported cudaLimit values are:

- cudaLimitStackSize: stack size of each GPU thread;
- cudaLimitPrintfFifoSize: size of the shared FIFO used by the printf() device system call.
- cudaLimitMallocHeapSize: size of the heap used by the malloc() and free() device system calls;

Note:
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.
See also:

cudaDeviceGetLimit

__host__cudaError_t cudaThreadSetCacheConfig (cudaFuncCache cacheConfig)

Sets the preferred cache configuration for the current device.

Parameters

cacheConfig

- Requested cache configuration

Returns

cudaSuccess

Description

Deprecated

Note that this function is deprecated because its name does not reflect its behavior. Its functionality is identical to the non-deprecated function cudaDeviceSetCacheConfig(), which should be used instead.

On devices where the L1 cache and shared memory use the same hardware resources, this sets through cacheConfig the preferred cache configuration for the current device. This is only a preference. The runtime will use the requested configuration if possible, but it is free to choose a different configuration if required to execute the function. Any function preference set via cudaFuncSetCacheConfig (C API) or cudaFuncSetCacheConfig (C++ API) will be preferred over this device-wide setting. Setting the device-wide cache configuration to cudaFuncCachePreferNone will cause subsequent kernel launches to prefer not to change the cache configuration unless required to launch the kernel.

This setting does nothing on devices where the size of the L1 cache and shared memory are fixed.

Launching a kernel with a different preference than the most recent preference setting may insert a device-side synchronization point.

The supported cache configurations are:

- cudaFuncCachePreferNone: no preference for shared memory or L1 (default)
- cudaFuncCachePreferShared: prefer larger shared memory and smaller L1 cache
- cudaFuncCachePreferL1: prefer larger L1 cache and smaller shared memory
Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

cudaDeviceSetCacheConfig

```c
__host__cudaError_t cudaThreadSetLimit (cudaLimit limit, size_t value)
```

Set resource limits.

**Parameters**

- `limit` - Limit to set
- `value` - Size in bytes of limit

**Returns**

cudaSuccess, cudaErrorUnsupportedLimit, cudaErrorInvalidValue

**Description**

Deprecated

Note that this function is deprecated because its name does not reflect its behavior. Its functionality is identical to the non-deprecated function `cudaDeviceSetLimit()`, which should be used instead.

Setting `limit` to `value` is a request by the application to update the current limit maintained by the device. The driver is free to modify the requested value to meet h/w requirements [this could be clamping to minimum or maximum values, rounding up to nearest element size, etc]. The application can use `cudaThreadGetLimit()` to find out exactly what the limit has been set to.

Setting each `cudaLimit` has its own specific restrictions, so each is discussed here.

- `cudaLimitStackSize` controls the stack size of each GPU thread.
• **cudaLimitPrintfFifoSize** controls the size of the shared FIFO used by the printf() device system call. Setting **cudaLimitPrintfFifoSize** must be performed before launching any kernel that uses the printf() device system call, otherwise **cudaErrorInvalidValue** will be returned.

• **cudaLimitMallocHeapSize** controls the size of the heap used by the malloc() and free() device system calls. Setting **cudaLimitMallocHeapSize** must be performed before launching any kernel that uses the malloc() or free() device system calls, otherwise **cudaErrorInvalidValue** will be returned.

---

**Note:**

• Note that this function may also return error codes from previous, asynchronous launches.

• Note that this function may also return **cudaErrorInitializationError**, **cudaErrorInsufficientDriver** or **cudaErrorNoDevice** if this call tries to initialize internal CUDA RT state.

• Note that as specified by **cudaStreamAddCallback** no CUDA function may be called from callback. **cudaErrorNotPermitted** may, but is not guaranteed to, be returned as a diagnostic in such case.

---

**See also:**

**cudaDeviceSetLimit**

---

```c
__host__ cudaError_t cudaThreadSynchronize (void)
```

Wait for compute device to finish.

**Returns**

**cudaSuccess**

**Description**

**Deprecated**

Note that this function is deprecated because its name does not reflect its behavior. Its functionality is similar to the non-deprecated function **cudaDeviceSynchronize()**, which should be used instead.

Blocks until the device has completed all preceding requested tasks. **cudaThreadSynchronize()** returns an error if one of the preceding tasks has failed. If the **cudaDeviceScheduleBlockingSync** flag was set for this device, the host thread will block until the device has finished its work.
6.3. Error Handling

This section describes the error handling functions of the CUDA runtime application programming interface.

`__host__ __device__ const char *cudaGetErrorName(cudaError_t error)`

Returns the string representation of an error code enum name.

**Parameters**

- `error` - Error code to convert to string

**Returns**

`char*` pointer to a NULL-terminated string

**Description**

Returns a string containing the name of an error code in the enum. If the error code is not recognized, “unrecognized error code” is returned.

**See also:**

cudaGetErrorString, cudaGetLastError, cudaPeekAtLastError, cudaError, cuGetErrorName

Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

cudaDeviceSynchronize
__host__ __device__ __const char *cudaGetErrorString (cudaError_t error)

Returns the description string for an error code.

Parameters

error
- Error code to convert to string

Returns

char* pointer to a NULL-terminated string

Description

Returns the description string for an error code. If the error code is not recognized, “unrecognized error code” is returned.

See also:
cudaGetErrorName, cudaGetLastError, cudaPeekAtLastError, cudaError, cuGetErrorString

__host__ __device__ cudaError_t cudaGetLastError (void)

Returns the last error from a runtime call.

Returns

Description

Returns the last error that has been produced by any of the runtime calls in the same instance of the CUDA Runtime library in the host thread and resets it to \texttt{cudaSuccess}.

Note: Multiple instances of the CUDA Runtime library can be present in an application when using a library that statically links the CUDA Runtime.

\begin{itemize}
  \item Note that this function may also return error codes from previous, asynchronous launches.
  \item Note that this function may also return \texttt{cudaErrorInitializationError}, \texttt{cudaErrorInsufficientDriver} or \texttt{cudaErrorNoDevice} if this call tries to initialize internal CUDA RT state.
  \item Note that as specified by \texttt{cudaStreamAddCallback} no CUDA function may be called from callback. \texttt{cudaErrorNotPermitted} may, but is not guaranteed to, be returned as a diagnostic in such case.
\end{itemize}

See also:
\texttt{cudaPeekAtLastError}, \texttt{cudaGetErrorName}, \texttt{cudaGetErrorString}, \texttt{cudaError}

\begin{verbatim}
__host____device__cudaError_t
cudaPeekAtLastError (void)
\end{verbatim}

Returns the last error from a runtime call.

\begin{verbatim}
cudaSuccess, cudaErrorMissingConfiguration, cudaErrorMemoryAllocation,
cudaErrorInitializationError, cudaErrorLaunchFailure, cudaErrorLaunchTimeout,
cudaErrorLaunchOutOfResources, cudaErrorInvalidDeviceFunction,
cudaErrorInvalidConfiguration, cudaErrorInvalidDevice, cudaErrorInvalidValue,
cudaErrorInvalidPitchValue, cudaErrorInvalidSymbol, cudaErrorUnmapBufferObjectFailed,
cudaErrorInvalidDevicePointer, cudaErrorInvalidTexture, cudaErrorInvalidTextureBinding,
cudaErrorInvalidChannelDescriptor, cudaErrorInvalidMemcpyDirection,
cudaErrorInvalidFilterSetting, cudaErrorInvalidNormSetting, cudaErrorUnknown,
cudaErrorInvalidResourceHandle, cudaErrorInsufficientDriver, cudaErrorNoDevice,
cudaErrorSetOnActiveProcess, cudaErrorStartupFailure, cudaErrorInvalidPtx,
cudaErrorUnsupportedPtxVersion, cudaErrorNoKernelImageForDevice,
cudaErrorJitCompilerNotFound, cudaErrorJitCompilationDisabled
\end{verbatim}
Description

Returns the last error that has been produced by any of the runtime calls in the same instance of the CUDA Runtime library in the host thread. This call does not reset the error to \texttt{cudaSuccess} like \texttt{cudaGetLastError[)].

Note: Multiple instances of the CUDA Runtime library can be present in an application when using a library that statically links the CUDA Runtime.

\begin{itemize}
  \item Note that this function may also return error codes from previous, asynchronous launches.
  \item Note that this function may also return \texttt{cudaErrorInitializationError}, \texttt{cudaErrorInsufficientDriver} or \texttt{cudaErrorNoDevice} if this call tries to initialize internal CUDA RT state.
  \item Note that as specified by \texttt{cudaStreamAddCallback} no CUDA function may be called from callback. \texttt{cudaErrorNotPermitted} may, but is not guaranteed to, be returned as a diagnostic in such case.
\end{itemize}

See also:
\texttt{cudaGetLastError, cudaGetErrorName, cudaGetErrorString, cudaError}

\section*{6.4. Stream Management}

This section describes the stream management functions of the CUDA runtime application programming interface.

\begin{verbatim}
typedef void (CUDART_CB *cudaStreamCallback_t)(cudaStream_t stream, cudaError_t status, void* userData)
\end{verbatim}

Type of stream callback functions.
__host__ cudaError_t
cudaCtxResetPersistingL2Cache (void)
Resets all persisting lines in cache to normal status.

Returns
cudaSuccess.

Description
Resets all persisting lines in cache to normal status. Takes effect on function return.

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaAccessPolicyWindow

__host__ cudaError_t cudaStreamAddCallback (cudaStream_t stream, cudaStreamCallback_t callback, void *userData, unsigned int flags)
Add a callback to a compute stream.

Parameters
stream
- Stream to add callback to

callback
- The function to call once preceding stream operations are complete

userData
- User specified data to be passed to the callback function

flags
- Reserved for future use, must be 0

Returns
cudaSuccess, cudaErrorInvalidResourceHandle, cudaErrorInvalidValue, cudaErrorNotSupported
Description

Note:
This function is slated for eventual deprecation and removal. If you do not require the callback to execute in case of a device error, consider using `cudaLaunchHostFunc`. Additionally, this function is not supported with `cudaStreamBeginCapture` and `cudaStreamEndCapture`, unlike `cudaLaunchHostFunc`.

Adds a callback to be called on the host after all currently enqueued items in the stream have completed. For each `cudaStreamAddCallback` call, a callback will be executed exactly once. The callback will block later work in the stream until it is finished.

The callback may be passed `cudaSuccess` or an error code. In the event of a device error, all subsequently executed callbacks will receive an appropriate `cudaError_t`.

Callbacks must not make any CUDA API calls. Attempting to use CUDA APIs may result in `cudaErrorNotPermitted`. Callbacks must not perform any synchronization that may depend on outstanding device work or other callbacks that are not mandated to run earlier. Callbacks without a mandated order (in independent streams) execute in undefined order and may be serialized.

For the purposes of Unified Memory, callback execution makes a number of guarantees:

- The callback stream is considered idle for the duration of the callback. Thus, for example, a callback may always use memory attached to the callback stream.
- The start of execution of a callback has the same effect as synchronizing an event recorded in the same stream immediately prior to the callback. It thus synchronizes streams which have been “joined” prior to the callback.
- Adding device work to any stream does not have the effect of making the stream active until all preceding callbacks have executed. Thus, for example, a callback might use global attached memory even if work has been added to another stream, if it has been properly ordered with an event.
- Completion of a callback does not cause a stream to become active except as described above. The callback stream will remain idle if no device work follows the callback, and will remain idle across consecutive callbacks without device work in between. Thus, for example, stream synchronization can be done by signaling from a callback at the end of the stream.

Note:
- This function uses standard `default stream` semantics.
- Note that this function may also return error codes from previous, asynchronous launches.
Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.

Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaStreamCreate, cudaStreamCreateWithFlags, cudaStreamQuery, cudaStreamSynchronize, cudaStreamWaitEvent, cudaStreamDestroy, cudaMallocManaged, cudaStreamAttachMemAsync, cudaLaunchHostFunc, cuStreamAddCallback

```c
__host__ cudaError_t cudaStreamAttachMemAsync(cudaStream_t stream, void *devPtr, size_t length, unsigned int flags)
```

Attach memory to a stream asynchronously.

**Parameters**

- **stream**: Stream in which to enqueue the attach operation
- **devPtr**: Pointer to memory ([must be a pointer to managed memory or to a valid host-accessible region of system-allocated memory](https://docs.nvidia.com/cuda/cuda-runtime-api/index.html#cudaerrornotpermitted))
- **length**: Length of memory (defaults to zero)
- **flags**: Must be one of `cudaMemAttachGlobal`, `cudaMemAttachHost` or `cudaMemAttachSingle` (defaults to `cudaMemAttachSingle`)

**Returns**
cudaSuccess, cudaErrorNotReady, cudaErrorInvalidValue, cudaErrorInvalidResourceHandle

**Description**

Enqueues an operation in `stream` to specify stream association of `length` bytes of memory starting from `devPtr`. This function is a stream-ordered operation, meaning that it is dependent on, and will only take effect when, previous work in stream has completed. Any previous association is automatically replaced.

`devPtr` must point to an one of the following types of memories:
- managed memory declared using the `__managed__` keyword or allocated with `cudaMallocManaged`.

- a valid host-accessible region of system-allocated pageable memory. This type of memory may only be specified if the device associated with the stream reports a non-zero value for the device attribute `cudaDevAttrPageableMemoryAccess`.

For managed allocations, `length` must be either zero or the entire allocation’s size. Both indicate that the entire allocation’s stream association is being changed. Currently, it is not possible to change stream association for a portion of a managed allocation.

For pageable allocations, `length` must be non-zero.

The stream association is specified using `flags` which must be one of `cudaMemAttachGlobal`, `cudaMemAttachHost` or `cudaMemAttachSingle`. The default value for `flags` is `cudaMemAttachSingle` if the `cudaMemAttachGlobal` flag is specified, the memory can be accessed by any stream on any device. If the `cudaMemAttachHost` flag is specified, the program makes a guarantee that it won’t access the memory on the device from any stream on a device that has a zero value for the device attribute `cudaDevAttrConcurrentManagedAccess`. If the `cudaMemAttachSingle` flag is specified and `stream` is associated with a device that has a zero value for the device attribute `cudaDevAttrConcurrentManagedAccess`, the program makes a guarantee that it will only access the memory on the device from `stream`. It is illegal to attach singly to the NULL stream, because the NULL stream is a virtual global stream and not a specific stream. An error will be returned in this case.

When memory is associated with a single stream, the Unified Memory system will allow CPU access to this memory region so long as all operations in `stream` have completed, regardless of whether other streams are active. In effect, this constrains exclusive ownership of the managed memory region by an active GPU to per-stream activity instead of whole-GPU activity.

Accessing memory on the device from streams that are not associated with it will produce undefined results. No error checking is performed by the Unified Memory system to ensure that kernels launched into other streams do not access this region.

It is a program’s responsibility to order calls to `cudaStreamAttachMemAsync` via events, synchronization or other means to ensure legal access to memory at all times. Data visibility and coherency will be changed appropriately for all kernels which follow a stream-association change.

If `stream` is destroyed while data is associated with it, the association is removed and the association reverts to the default visibility of the allocation as specified at `cudaMallocManaged`. For `__managed__` variables, the default association is always `cudaMemAttachGlobal`. Note that destroying a stream is an asynchronous operation, and as a result, the change to default association won’t happen until all work in the stream has completed.
Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

`cudaStreamCreate`, `cudaStreamCreateWithFlags`, `cudaStreamWaitEvent`, `cudaStreamSynchronize`, `cudaStreamAddCallback`, `cudaStreamDestroy`, `cudaMallocManaged`, `cuStreamAttachMemAsync`

```c
__host__ cudaError_t cudaStreamBeginCapture (cudaStream_t stream, cudaStreamCaptureMode mode)
```

Begins graph capture on a stream.

**Parameters**

- **stream**
  - Stream in which to initiate capture
- **mode**
  - Controls the interaction of this capture sequence with other API calls that are potentially unsafe. For more details see `cudaThreadExchangeStreamCaptureMode`.

**Returns**

`cudaSuccess`, `cudaErrorInvalidValue`

**Description**

Begin graph capture on `stream`. When a stream is in capture mode, all operations pushed into the stream will not be executed, but will instead be captured into a graph, which will be returned via `cudaStreamEndCapture`. Capture may not be initiated if `stream` is `cudaStreamLegacy`. Capture must be ended on the same stream in which it was initiated, and it may only be initiated if the stream is not already in capture mode. The capture mode may be queried via `cudaStreamsIsCapturing`. A unique id representing the capture sequence may be queried via `cudaStreamGetCaptureInfo`.
If `mode` is not `cudaStreamCaptureModeRelaxed`, `cudaStreamEndCapture` must be called on this stream from the same thread.

### Note:
Kernels captured using this API must not use texture and surface references. Reading or writing through any texture or surface reference is undefined behavior. This restriction does not apply to texture and surface objects.

### Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
- `cudaStreamCreate`
- `cudaStreamsIsCapturing`
- `cudaStreamEndCapture`
- `cudaThreadExchangeStreamCaptureMode`
- `__host__` `cudaError_t cudaStreamCopyAttributes (cudaStream_t dst, cudaStream_t src)`

Copies attributes from source stream to destination stream.

**Parameters**
- `dst`
  - Destination stream
- `src`
  - Source stream For attributes see `cudaStreamAttrID`

**Returns**
- `cudaSuccess`
- `cudaErrorNotSupported`

**Description**
Copies attributes from source stream `src` to destination stream `dst`. Both streams must have the same context.

### Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
__host__ cudaError_t cudaStreamCreate (cudaStream_t *pStream)

Create an asynchronous stream.

Parameters

pStream
- Pointer to new stream identifier

Returns

cudaSuccess, cudaErrorInvalidValue

Description

Creates a new asynchronous stream.

Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

__host__ __device__ cudaError_t
cudaStreamCreateWithFlags (cudaStream_t *pStream, unsigned int flags)
Create an asynchronous stream.

Parameters

pStream
- Pointer to new stream identifier

flags
- Parameters for stream creation

Returns
cudaSuccess, cudaErrorInvalidValue

Description

Creates a new asynchronous stream. The flags argument determines the behaviors of the stream. Valid values for flags are

- cudaStreamDefault: Default stream creation flag.
- cudaStreamNonBlocking: Specifies that work running in the created stream may run concurrently with work in stream 0 (the NULL stream), and that the created stream should perform no implicit synchronization with stream 0.

Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaStreamCreate, cudaStreamCreateWithPriority, cudaStreamGetFlags, cudaStreamQuery, cudaStreamSynchronize, cudaStreamWaitEvent, cudaStreamAddCallback, cudaStreamDestroy, cuStreamCreate
__host__ cudaError_t cudaStreamCreateWithPriority(cudaStream_t *pStream, unsigned int flags, int priority)

Create an asynchronous stream with the specified priority.

Parameters

pStream
- Pointer to new stream identifier

flags
- Flags for stream creation. See cudaStreamCreateWithFlags for a list of valid flags that can be passed

priority
- Priority of the stream. Lower numbers represent higher priorities. See cudaDeviceGetStreamPriorityRange for more information about the meaningful stream priorities that can be passed.

Returns
cudaSuccess, cudaErrorInvalidValue

Description

Creates a stream with the specified priority and returns a handle in pStream. This API alters the scheduler priority of work in the stream. Work in a higher priority stream may preempt work already executing in a low priority stream.

priority follows a convention where lower numbers represent higher priorities. '0' represents default priority. The range of meaningful numerical priorities can be queried using cudaDeviceGetStreamPriorityRange. If the specified priority is outside the numerical range returned by cudaDeviceGetStreamPriorityRange, it will automatically be clamped to the lowest or the highest number in the range.

Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.
Stream priorities are supported only on GPUs with compute capability 3.5 or higher.

In the current implementation, only compute kernels launched in priority streams are affected by the stream’s priority. Stream priorities have no effect on host-to-device and device-to-host memory operations.

See also:


_host__device__cudaError_t cudaStreamDestroy(cudaStream_t stream)

Destroys and cleans up an asynchronous stream.

Parameters

stream
- Stream identifier

Returns

cudaSuccess, cudaErrorInvalidValue, cudaErrorInvalidResourceHandle

Description

Destroys and cleans up the asynchronous stream specified by stream.

In case the device is still doing work in the stream stream when cudaStreamDestroy() is called, the function will return immediately and the resources associated with stream will be released automatically once the device has completed all work in stream.

Note:

- This function uses standard default stream semantics.
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.
Use of the handle after this call is undefined behavior.

See also:

cudaStreamCreate, cudaStreamCreateWithFlags, cudaStreamQuery, cudaStreamWaitEvent, cudaStreamSynchronize, cudaStreamAddCallback, cuStreamDestroy

__host__cudaError_t cudaStreamEndCapture(cudaStream_t stream, cudaGraph_t *pGraph)

Ends capture on a stream, returning the captured graph.

Parameters

- **stream**
  - Stream to query
- **pGraph**
  - The captured graph

Returns

- cudaSuccess, cudaErrorInvalidValue, cudaErrorStreamCaptureWrongThread

Description

End capture on stream, returning the captured graph via pGraph. Capture must have been initiated on stream via a call to cudaStreamBeginCapture. If capture was invalidated, due to a violation of the rules of stream capture, then a NULL graph will be returned.

If the mode argument to cudaStreamBeginCapture was not cudaStreamCaptureModeRelaxed, this call must be from the same thread as cudaStreamBeginCapture.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaStreamCreate, cudaStreamBeginCapture, cudaStreamIsCapturing
`__host__cudaError_t cudaStreamGetAttribute`  
(cudaStream_t hStream, cudaStreamAttrID attr, cudaStreamAttrValue *value_out)  
Queries stream attribute.

**Parameters**

- **hStream**:  
- **attr**:  
- **value_out**:  

**Returns**

- `cudaSuccess`, `cudaErrorInvalidValue`, `cudaErrorInvalidResourceHandle`

**Description**

Queries attribute `attr` from `hStream` and stores it in corresponding member of `value_out`.

**Note:**

Note that this function may also return error codes from previous, asynchronous launches.

**See also:**

cudaAccessPolicyWindow

`__host__cudaError_t cudaStreamGetCaptureInfo`  
(cudaStream_t stream, cudaStreamCaptureStatus *captureStatus_out, unsigned long long *id_out, cudaGraph_t *graph_out, const cudaGraphNode_t **dependencies_out, size_t *numDependencies_out)  
Query a stream’s capture state.

**Parameters**

- **stream**:  
- **captureStatus_out**:  
- **id_out**:  
- **graph_out**:  
- **dependencies_out**:  
- **numDependencies_out**:  

- The stream to query

- Location to return the capture status of the stream; required
id_out
- Optional location to return an id for the capture sequence, which is unique over the lifetime of the process

graph_out
- Optional location to return the graph being captured into. All operations other than destroy and node removal are permitted on the graph while the capture sequence is in progress. This API does not transfer ownership of the graph, which is transferred or destroyed at cudaStreamEndCapture. Note that the graph handle may be invalidated before end of capture for certain errors. Nodes that are or become unreachable from the original stream at cudaStreamEndCapture due to direct actions on the graph do not trigger cudaErrorStreamCaptureUnjoined.

dependencies_out
- Optional location to store a pointer to an array of nodes. The next node to be captured in the stream will depend on this set of nodes, absent operations such as event wait which modify this set. The array pointer is valid until the next API call which operates on the stream or until end of capture. The node handles may be copied out and are valid until they or the graph is destroyed. The driver-owned array may also be passed directly to APIs that operate on the graph (not the stream) without copying.

numDependencies_out
- Optional location to store the size of the array returned in dependencies_out.

Returns
cudaSuccess, cudaErrorInvalidValue, cudaErrorStreamCaptureImplicit

Description
Query stream state related to stream capture.

If called on cudaStreamLegacy (the “null stream”) while a stream not created with cudaStreamNonBlocking is capturing, returns cudaErrorStreamCaptureImplicit.

Valid data (other than capture status) is returned only if both of the following are true:

- the call returns cudaSuccess
- the returned capture status is cudaStreamCaptureStatusActive

 Note:
- Graph objects are not threadsafe. More here.
- Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaStreamBeginCapture, cudaStreamIsCapturing, cudaStreamUpdateCaptureDependencies
__host__ cudaError_t cudaStreamGetFlags (cudaStream_t hStream, unsigned int *flags)

Query the flags of a stream.

Parameters

hStream
- Handle to the stream to be queried

flags
- Pointer to an unsigned integer in which the stream’s flags are returned

Returns

cudaSuccess, cudaErrorInvalidValue, cudaErrorInvalidResourceHandle

Description

Query the flags of a stream. The flags are returned in flags. See cudaStreamCreateWithFlags for a list of valid flags.

Note:

- This function uses standard default stream semantics.
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

cudaStreamCreateWithPriority, cudaStreamCreateWithFlags, cudaStreamGetPriority, cuStreamGetFlags
__host__ cudaError_t cudaStreamGetId(cudaStream_t hStream, unsigned long long *streamId)

Query the Id of a stream.

Parameters

hStream
- Handle to the stream to be queried

streamId
- Pointer to an unsigned long long in which the stream Id is returned

Returns
cudaSuccess, cudaErrorInvalidValue, cudaErrorInvalidResourceHandle

Description

Query the Id of a stream. The Id is returned in streamId. The Id is unique for the life of the program.

The stream handle hStream can refer to any of the following:

- a stream created via any of the CUDA runtime APIs such as cudaStreamCreate, cudaStreamCreateWithFlags and cudaStreamCreateWithPriority, or their driver API equivalents such as cuStreamCreate or cuStreamCreateWithPriority. Passing an invalid handle will result in undefined behavior.

- any of the special streams such as the NULL stream, cudaStreamLegacy and cudaStreamPerThread respectively. The driver API equivalents of these are also accepted which are NULL, CU_STREAM_LEGACY and CU_STREAM_PER_THREAD.

Note:

- This function uses standard default stream semantics.
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.
See also:
cudaStreamCreateWithPriority, cudaStreamCreateWithFlags, cudaStreamGetPriority, cudaStreamGetFlags, cuStreamGetId

__host__cudaError_t cudaStreamGetPriority (cudaStream_t hStream, int *priority)

Query the priority of a stream.

Parameters

hStream
- Handle to the stream to be queried

priority
- Pointer to a signed integer in which the stream’s priority is returned

Returns
cudaSuccess, cudaErrorInvalidValue, cudaErrorInvalidResourceHandle

Description

Query the priority of a stream. The priority is returned in \texttt{priority}. Note that if the stream was created with a priority outside the meaningful numerical range returned by \texttt{cudaDeviceGetStreamPriorityRange}, this function returns the clamped priority. See \texttt{cudaStreamCreateWithPriority} for details about priority clamping.

Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by \texttt{cudaStreamAddCallback} no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaStreamCreateWithPriority, cudaDeviceGetStreamPriorityRange, cudaStreamGetFlags, cuStreamGetPriority
__host__ cudaError_t cudaStreamIsCapturing (cudaStream_t stream, cudaStreamCaptureStatus *pCaptureStatus)

Returns a stream’s capture status.

Parameters

stream
- Stream to query

pCaptureStatus
- Returns the stream’s capture status

Returns
cudaSuccess, cudaErrorInvalidValue, cudaErrorStreamCaptureImplicit

Description

Return the capture status of stream via pCaptureStatus. After a successful call, *pCaptureStatus will contain one of the following:

- cudaStreamCaptureStatusNone: The stream is not capturing.
- cudaStreamCaptureStatusActive: The stream is capturing.
- cudaStreamCaptureStatusInvalidated: The stream was capturing but an error has invalidated the capture sequence. The capture sequence must be terminated with cudaStreamEndCapture on the stream where it was initiated in order to continue using stream.

Note that, if this is called on cudaStreamLegacy (the “null stream”) while a blocking stream on the same device is capturing, it will return cudaErrorStreamCaptureImplicit and *pCaptureStatus is unspecified after the call. The blocking stream capture is not invalidated.

When a blocking stream is capturing, the legacy stream is in an unusable state until the blocking stream capture is terminated. The legacy stream is not supported for stream capture, but attempted use would have an implicit dependency on the capturing stream(s).

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaStreamCreate, cudaStreamBeginCapture, cudaStreamEndCapture
__host__ cudaError_t cudaStreamQuery (cudaStream_t stream)
Queries an asynchronous stream for completion status.

Parameters
stream
- Stream identifier

Returns
cudaSuccess, cudaErrorNotReady, cudaErrorInvalidResourceHandle

Description
Returns cudaSuccess if all operations in stream have completed, or cudaErrorNotReady if not.

For the purposes of Unified Memory, a return value of cudaSuccess is equivalent to having called cudaStreamSynchronize.

Note:
- This function uses standard default stream semantics.
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaStreamCreate, cudaStreamCreateWithFlags, cudaStreamWaitEvent, cudaStreamSynchronize, cudaStreamAddCallback, cudaStreamDestroy, cuStreamQuery
__host__ cudaError_t cudaStreamSetAttribute (cudaStream_t hStream, cudaStreamAttrID attr, const cudaStreamAttrValue *value)

Sets stream attribute.

**Parameters**

- **hStream**
- **attr**
- **value**

**Returns**

- cudaSuccess
- cudaErrorInvalidValue
- cudaErrorInvalidResourceHandle

**Description**

Sets attribute **attr** on **hStream** from corresponding attribute of **value**. The updated attribute will be applied to subsequent work submitted to the stream. It will not affect previously submitted work.

---

**Note:**

Note that this function may also return error codes from previous, asynchronous launches.

**See also:**

cudaAccessPolicyWindow

---

__host__ cudaError_t cudaStreamSynchronize (cudaStream_t stream)

Waits for stream tasks to complete.

**Parameters**

- **stream**
  - Stream identifier

**Returns**

- cudaSuccess
- cudaErrorInvalidResourceHandle
Description

Blocks until `stream` has completed all operations. If the `cudaDeviceScheduleBlockingSync` flag was set for this device, the host thread will block until the stream is finished with all of its tasks.

Note:

- This function uses standard default stream semantics.
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

`cudaStreamCreate`, `cudaStreamCreateWithFlags`, `cudaStreamQuery`, `cudaStreamWaitEvent`, `cudaStreamAddCallback`, `cudaStreamDestroy`, `cuStreamSynchronize`

```c
__host__ cudaError_t
cudaStreamUpdateCaptureDependencies
cudaStream_t stream, cudaGraphNode_t *
dependencies, size_t numDependencies, unsigned
int flags)
```

Update the set of dependencies in a capturing stream (11.3+).

Returns

`cudaSuccess`, `cudaErrorInvalidValue`, `cudaErrorIllegalState`

Description

Modifies the dependency set of a capturing stream. The dependency set is the set of nodes that the next captured node in the stream will depend on.

Valid flags are `cudaStreamAddCaptureDependencies` and `cudaStreamSetCaptureDependencies`. These control whether the set passed to
the API is added to the existing set or replaces it. A flags value of 0 defaults to
\texttt{cudaStreamAddCaptureDependencies}.

Nodes that are removed from the dependency set via this API do not result in
\texttt{cudaErrorStreamCaptureUnjoined} if they are unreachable from the stream at
\texttt{cudaStreamEndCapture}.

Returns \texttt{cudaErrorIllegalState} if the stream is not capturing.

This API is new in CUDA 11.3. Developers requiring compatibility across minor versions of the
CUDA driver to 11.0 should not use this API or provide a fallback.

\begin{quote}
\textbf{Note:}
Note that this function may also return error codes from previous, asynchronous launches.
\end{quote}

\begin{quote}
\textbf{See also:}
\texttt{cudaStreamBeginCapture, cudaStreamGetCaptureInfo},
\end{quote}

\begin{verbatim}
__host__ __device__ cudaError_t
cudaStreamWaitEvent (cudaStream_t stream, cudaEvent_t event, unsigned int flags)
\end{verbatim}

Make a compute stream wait on an event.

\begin{quote}
\textbf{Parameters}
\begin{description}
\item [stream] - Stream to wait
\item [event] - Event to wait on
\item [flags] - Parameters for the operation[See above]
\end{description}
\end{quote}

\begin{quote}
\textbf{Returns}
\texttt{cudaSuccess, cudaErrorInvalidValue, cudaErrorInvalidResourceHandle}
\end{quote}

\begin{quote}
\textbf{Description}
Makes all future work submitted to \texttt{stream} wait for all work captured in \texttt{event}. See
\texttt{cudaEventRecord()} for details on what is captured by an event. The synchronization will be
performed efficiently on the device when applicable. \texttt{event} may be from a different device
than \texttt{stream}.

flags include:
(cudaEventWaitDefault): Default event creation flag.
(cudaEventWaitExternal): Event is captured in the graph as an external event node when performing stream capture.

Note:
- This function uses standard default stream semantics.
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaStreamCreate, cudaStreamCreateWithFlags, cudaStreamQuery, cudaStreamSynchronize, cudaStreamAddCallback, cudaStreamDestroy, cuStreamWaitEvent

__host__ cudaError_t
cudaThreadExchangeStreamCaptureMode(
cudaStreamCaptureMode *mode)
Swaps the stream capture interaction mode for a thread.

Parameters
mode
- Pointer to mode value to swap with the current mode

Returns
cudaSuccess, cudaErrorInvalidValue

Description
Sets the calling thread's stream capture interaction mode to the value contained in *mode, and overwrites *mode with the previous mode for the thread. To facilitate deterministic behavior across function or module boundaries, callers are encouraged to use this API in a push-pop fashion:

```c
    cudaStreamCaptureMode mode = desiredMode;
    cudaThreadExchangeStreamCaptureMode(&mode);
```
cudaThreadExchangeStreamCaptureMode(&mode); // restore previous mode

During stream capture (see cudaStreamBeginCapture), some actions, such as a call to cudaMalloc, may be unsafe. In the case of cudaMalloc, the operation is not enqueued asynchronously to a stream, and is not observed by stream capture. Therefore, if the sequence of operations captured via cudaStreamBeginCapture depended on the allocation being replayed whenever the graph is launched, the captured graph would be invalid.

Therefore, stream capture places restrictions on API calls that can be made within or concurrently to a cudaStreamBeginCapture-cudaStreamEndCapture sequence. This behavior can be controlled via this API and flags to cudaStreamBeginCapture.

A thread’s mode is one of the following:

- cudaStreamCaptureModeGlobal: This is the default mode. If the local thread has an ongoing capture sequence that was not initiated with cudaStreamCaptureModeRelaxed at cuStreamBeginCapture, or if any other thread has a concurrent capture sequence initiated with cudaStreamCaptureModeGlobal, this thread is prohibited from potentially unsafe API calls.

- cudaStreamCaptureModeThreadLocal: If the local thread has an ongoing capture sequence not initiated with cudaStreamCaptureModeRelaxed, it is prohibited from potentially unsafe API calls. Concurrent capture sequences in other threads are ignored.

- cudaStreamCaptureModeRelaxed: The local thread is not prohibited from potentially unsafe API calls. Note that the thread is still prohibited from API calls which necessarily conflict with stream capture, for example, attempting cudaEventQuery on an event that was last recorded inside a capture sequence.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaStreamBeginCapture

6.5. Event Management

This section describes the event management functions of the CUDA runtime application programming interface.
__host__cudaError_t cudaEventCreate (cudaEvent_t *event)
Creates an event object.

Parameters

event
- Newly created event

Returns
cudaSuccess, cudaErrorInvalidValue, cudaErrorLaunchFailure, cudaErrorMemoryAllocation

Description
Creates an event object for the current device using cudaEventDefault.

Note:
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
ccudaEventCreate [ C++ API], cudaEventCreateWithFlags, cudaEventRecord, cudaEventQuery, cudaEventSynchronize, cudaEventDestroy, cudaEventElapsedTime, cudaStreamWaitEvent, cuEventCreate

__host__device__cudaError_t cudaEventCreateWithFlags (cudaEvent_t *event, unsigned int flags)
Creates an event object with the specified flags.

Parameters

event
- Newly created event
flags
- Flags for new event

Returns
cudaSuccess, cudaErrorInvalidValue, cudaErrorLaunchFailure, cudaErrorMemoryAllocation

Description
Creates an event object for the current device with the specified flags. Valid flags include:

- **cudaEventDefault**: Default event creation flag.
- **cudaEventBlockingSync**: Specifies that event should use blocking synchronization. A host thread that uses `cudaEventSynchronize()` to wait on an event created with this flag will block until the event actually completes.
- **cudaEventDisableTiming**: Specifies that the created event does not need to record timing data. Events created with this flag specified and the **cudaEventBlockingSync** flag not specified will provide the best performance when used with `cudaStreamWaitEvent[]` and `cudaEventQuery[]`.
- **cudaEventInterprocess**: Specifies that the created event may be used as an interprocess event by `cudaIpcGetEventHandle[]`. **cudaEventInterprocess** must be specified along with **cudaEventDisableTiming**.

Note:
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return **cudaErrorInitializationError**, **cudaErrorInsufficientDriver** or **cudaErrorNoDevice** if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. **cudaErrorNotPermitted** may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaEventCreate [C API], cudaEventSynchronize, cudaEventDestroy, cudaEventElapsedTime, cudaStreamWaitEvent, cuEventCreate
__host__ __device__ cudaError_t cudaEventDestroy (cudaEvent_t event)

Destroys an event object.

Parameters

**event**
- Event to destroy

Returns

cudaSuccess, cudaErrorInvalidValue, cudaErrorInvalidResourceHandle, cudaErrorLaunchFailure

Description

Destroys the event specified by event.

An event may be destroyed before it is complete (i.e., while cudaEventQuery() would return cudaErrorNotReady). In this case, the call does not block on completion of the event, and any associated resources will automatically be released asynchronously at completion.

Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.
- Use of the handle after this call is undefined behavior.
- Returns cudaErrorInvalidResourceHandle in the event of being passed NULL as the input event.

See also:

cudaEventCreate [ C API], cudaEventCreateWithFlags, cudaEventQuery, cudaEventSynchronize, cudaEventRecord, cudaEventElapsedTime, cuEventDestroy
__host__ cudaError_t cudaEventElapsedTime (float *ms, cudaEvent_t start, cudaEvent_t end)

Computes the elapsed time between events.

Parameters

ms
- Time between start and end in ms

start
- Starting event

end
- Ending event

Returns
cudaSuccess, cudaErrorNotReady, cudaErrorInvalidValue, cudaErrorInvalidResourceHandle, cudaErrorLaunchFailure, cudaErrorUnknown

Description

Computes the elapsed time between two events (in milliseconds with a resolution of around 0.5 microseconds).

If either event was last recorded in a non-NULL stream, the resulting time may be greater than expected (even if both used the same stream handle). This happens because the cudaEventRecord() operation takes place asynchronously and there is no guarantee that the measured latency is actually just between the two events. Any number of other different stream operations could execute in between the two measured events, thus altering the timing in a significant way.

If cudaEventRecord() has not been called on either event, then cudaErrorInvalidResourceHandle is returned. If cudaEventRecord() has been called on both events but one or both of them has not yet been completed (that is, cudaEventQuery() would return cudaErrorNotReady on at least one of the events), cudaErrorNotReady is returned. If either event was created with the cudaEventDisableTiming flag, then this function will return cudaErrorInvalidResourceHandle.

Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

- Returns `cudaErrorInvalidResourceHandle` in the event of being passed NULL as the input event.

See also:

- `cudaEventCreate (C API)`, `cudaEventCreateWithFlags`, `cudaEventQuery`, `cudaEventSynchronize`, `cudaEventDestroy`, `cudaEventRecord`, `cuEventElapsedTime`

```c
__host__ cudaError_t cudaEventQuery (cudaEvent_t event)
```

Queries an event’s status.

**Parameters**

**event**
- Event to query

**Returns**

- `cudaSuccess`, `cudaErrorNotReady`, `cudaErrorInvalidValue`, `cudaErrorInvalidResourceHandle`, `cudaErrorLaunchFailure`

**Description**

Queries the status of all work currently captured by `event`. See `cudaEventRecord()` for details on what is captured by an event.

Returns `cudaSuccess` if all captured work has been completed, or `cudaErrorNotReady` if any captured work is incomplete.

For the purposes of Unified Memory, a return value of `cudaSuccess` is equivalent to having called `cudaEventSynchronize()`.

**Note:**

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
Modules

CUDA Runtime API

vRelease Version   |   94

Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

Returns `cudaErrorInvalidResourceHandle` in the event of being passed NULL as the input event.

See also:

`cudaEventCreate (C API)`, `cudaEventCreateWithFlags`, `cudaEventRecord`,
`cudaEventSynchronize`, `cudaEventDestroy`, `cudaEventElapsedTime`, `cuEventQuery`

```c
__host__ __device__ cudaError_t cudaEventRecord (cudaEvent_t event, cudaStream_t stream)
```

Records an event.

Parameters

- **event**
  - Event to record

- **stream**
  - Stream in which to record event

Returns

`cudaSuccess`, `cudaErrorInvalidValue`, `cudaErrorInvalidResourceHandle`,
`cudaErrorLaunchFailure`

Description

Captures in `event` the contents of `stream` at the time of this call. `event` and `stream` must be on the same CUDA context. Calls such as `cudaEventQuery()` or `cudaStreamWaitEvent()` will then examine or wait for completion of the work that was captured. Uses of `stream` after this call do not modify `event`. See note on default stream behavior for what is captured in the default case.

`cudaEventRecord()` can be called multiple times on the same event and will overwrite the previously captured state. Other APIs such as `cudaStreamWaitEvent()` use the most recently captured state at the time of the API call, and are not affected by later calls to `cudaEventRecord()`. Before the first call to `cudaEventRecord()`, an event represents an empty set of work, so for example `cudaEventQuery()` would return `cudaSuccess`.

Note:

- This function uses standard default stream semantics.
Note that this function may also return error codes from previous, asynchronous launches.

Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.

Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

Returns `cudaErrorInvalidResourceHandle` in the event of being passed NULL as the input event.

See also:
`cudaEventCreate (C API)`, `cudaEventCreateWithFlags`, `cudaEventQuery`, `cudaEventSynchronize`, `cudaEventDestroy`, `cudaEventElapsedTime`, `cudaStreamWaitEvent`, `cudaEventRecordWithFlags`, `cuEventRecord`

```c
__host__ cudaError_t cudaEventRecordWithFlags (cudaEvent_t event, cudaStream_t stream, unsigned int flags)
```

Records an event.

**Parameters**

- **event**
  - Event to record

- **stream**
  - Stream in which to record event

- **flags**
  - Parameters for the operation[See above]

**Returns**

`cudaSuccess`, `cudaErrorInvalidValue`, `cudaErrorInvalidResourceHandle`, `cudaErrorLaunchFailure`

**Description**

Captures in event the contents of stream at the time of this call. event and stream must be on the same CUDA context. Calls such as `cudaEventQuery[]` or `cudaStreamWaitEvent[]` will then examine or wait for completion of the work that was captured. Uses of stream after this call do not modify event. See note on default stream behavior for what is captured in the default case.
cudaEventRecordWithFlags() can be called multiple times on the same event and will overwrite the previously captured state. Other APIs such as cudaStreamWaitEvent() use the most recently captured state at the time of the API call, and are not affected by later calls to cudaEventRecordWithFlags(). Before the first call to cudaEventRecordWithFlags(), an event represents an empty set of work, so for example cudaEventQuery() would return cudaSuccess. Flags include:

- **cudaEventRecordDefault**: Default event creation flag.
- **cudaEventRecordExternal**: Event is captured in the graph as an external event node when performing stream capture.

**Note:**

- This function uses standard default stream semantics.
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.
- Returns cudaErrorInvalidResourceHandle in the event of being passed NULL as the input event.

See also:

cudaEventCreate (C API), cudaEventCreateWithFlags, cudaEventQuery, cudaEventSynchronize, cudaEventDestroy, cudaEventElapsedTime, cudaStreamWaitEvent, cudaEventRecord, cuEventRecord,

```c
__host__ cudaError_t cudaEventSynchronize (cudaEvent_t event)
```

Waits for an event to complete.

**Parameters**

**event**
- Event to wait for
Returns

cudaSuccess, cudaErrorInvalidValue, cudaErrorInvalidResourceHandle, cudaErrorLaunchFailure

Description

Waits until the completion of all work currently captured in event. See cudaEventRecord() for details on what is captured by an event.

Waiting for an event that was created with the cudaEventBlockingSync flag will cause the calling CPU thread to block until the event has been completed by the device. If the cudaEventBlockingSync flag has not been set, then the CPU thread will busy-wait until the event has been completed by the device.

Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.
- Returns cudaErrorInvalidResourceHandle in the event of being passed NULL as the input event.

See also:
cudaEventCreate [ C API], cudaEventCreateWithFlags, cudaEventRecord, cudaEventQuery, cudaEventDestroy, cudaEventElapsedTime, cuEventSynchronize

6.6. External Resource Interoperability

This section describes the external resource interoperability functions of the CUDA runtime application programming interface.
__host__cudaError_t cudaDestroyExternalMemory (cudaExternalMemory_t extMem)

Destroys an external memory object.

Parameters
extMem
- External memory object to be destroyed

Returns
cudaSuccess, cudaErrorInvalidResourceHandle

Description
Destroys the specified external memory object. Any existing buffers and CUDA mipmapped arrays mapped onto this object must no longer be used and must be explicitly freed using cudaFree and cudaFreeMipmappedArray respectively.

Note:
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.
- Use of the handle after this call is undefined behavior.

See also:
cudaImportExternalMemory, cudaExternalMemoryGetMappedBuffer, cudaExternalMemoryGetMappedMipmappedArray
__host__ cudaError_t
cudaDestroyExternalSemaphore
cudaExternalSemaphore_t extSem)
Destroys an external semaphore.

Parameters
extSem
- External semaphore to be destroyed

Returns
cudaSuccess, cudaErrorInvalidResourceHandle

Description
Destroys an external semaphore object and releases any references to the underlying resource. Any outstanding signals or waits must have completed before the semaphore is destroyed.

Note:
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.
- Use of the handle after this call is undefined behavior.

See also:
cudaImportExternalSemaphore, cudaSignalExternalSemaphoresAsync, cudaWaitExternalSemaphoresAsync
__host__ cudaError_t
cudaExternalMemoryGetMappedBuffer (void **devPtr, cudaExternalMemory_t extMem, const cudaExternalMemoryBufferDesc *bufferDesc)
Maps a buffer onto an imported memory object.

Parameters

*devPtr*
- Returned device pointer to buffer

*extMem*
- Handle to external memory object

*bufferDesc*
- Buffer descriptor

Returns
cudaSuccess, cudaErrorInvalidValue, cudaErrorInvalidResourceHandle

Description
Maps a buffer onto an imported memory object and returns a device pointer in *devPtr*.

The properties of the buffer being mapped must be described in *bufferDesc*. The *cudaExternalMemoryBufferDesc* structure is defined as follows:

```c
typedef struct cudaExternalMemoryBufferDesc_st {
  unsigned long long offset;
  unsigned long long size;
  unsigned int flags;
} cudaExternalMemoryBufferDesc;
```

where *cudaExternalMemoryBufferDesc::offset* is the offset in the memory object where the buffer’s base address is. *cudaExternalMemoryBufferDesc::size* is the size of the buffer. *cudaExternalMemoryBufferDesc::flags* must be zero.

The offset and size have to be suitably aligned to match the requirements of the external API. Mapping two buffers whose ranges overlap may or may not result in the same virtual address being returned for the overlapped portion. In such cases, the application must ensure that all accesses to that region from the GPU are volatile. Otherwise writes made via one address are not guaranteed to be visible via the other address, even if they’re issued by the same thread. It is recommended that applications map the combined range instead of mapping separate buffers and then apply the appropriate offsets to the returned pointer to derive the individual buffers.

The returned pointer *devPtr* must be freed using *cudaFree*. 
Note:

‣ Note that this function may also return error codes from previous, asynchronous launches.
‣ Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
‣ Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
`cudaImportExternalMemory`, `cudaDestroyExternalMemory`, `cudaExternalMemoryGetMappedMipmappedArray`

```c
__host__ cudaError_t
cudaExternalMemoryGetMappedMipmappedArray(
cudaMipmappedArray_t *mipmap,
cudaExternalMemory_t extMem, const
cudaExternalMemoryMipmappedArrayDesc
*mipmapDesc
)
```
Maps a CUDA mipmapped array onto an external memory object.

Parameters

- `mipmap`
  - Returned CUDA mipmapped array
- `extMem`
  - Handle to external memory object
- `mipmapDesc`
  - CUDA array descriptor

Returns

`cudaSuccess`, `cudaErrorInvalidValue`, `cudaErrorInvalidResourceHandle`

Description

Maps a CUDA mipmapped array onto an external object and returns a handle to it in `mipmap`. 
The properties of the CUDA mipmapped array being mapped must be described in `mipmapDesc`. The structure `cudaExternalMemoryMipmappedArrayDesc` is defined as follows:

```c
typedef struct cudaExternalMemoryMipmappedArrayDesc_st {
    unsigned long long offset;
    cudaChannelFormatDesc formatDesc;
    cudaExtent extent;
    unsigned int flags;
    unsigned int numLevels;
} cudaExternalMemoryMipmappedArrayDesc;
```

where `cudaExternalMemoryMipmappedArrayDesc::offset` is the offset in the memory object where the base level of the mipmap chain is. `cudaExternalMemoryMipmappedArrayDesc::formatDesc` describes the format of the data. `cudaExternalMemoryMipmappedArrayDesc::extent` specifies the dimensions of the base level of the mipmap chain. `cudaExternalMemoryMipmappedArrayDesc::flags` are flags associated with CUDA mipmapped arrays. For further details, please refer to the documentation for `cudaMalloc3DArray`. Note that if the mipmapped array is bound as a color target in the graphics API, then the flag `cudaArrayColorAttachment` must be specified in `cudaExternalMemoryMipmappedArrayDesc::flags`. `cudaExternalMemoryMipmappedArrayDesc::numLevels` specifies the total number of levels in the mipmap chain.

The returned CUDA mipmapped array must be freed using `cudaFreeMipmappedArray`.

**Note:**

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

**See also:**

cudaImportExternalMemory, cudaDestroyExternalMemory, cudaExternalMemoryGetMappedBuffer

**Note:**

If `cudaExternalMemoryHandleDesc::type` is `cudaExternalMemoryHandleTypeNvSciBuf`, then `cudaExternalMemoryMipmappedArrayDesc::numLevels` must not be greater than 1.
__host__ cudaError_t cudaImportExternalMemory (cudaExternalMemory_t *extMem_out, const cudaExternalMemoryHandleDesc *memHandleDesc)

Imports an external memory object.

Parameters

extMem_out
- Returned handle to an external memory object

memHandleDesc
- Memory import handle descriptor

Returns
cudaSuccess, cudaErrorInvalidValue, cudaErrorInvalidResourceHandle, cudaErrorOperatingSystem

Description

Imports an externally allocated memory object and returns a handle to that in extMem_out.

The properties of the handle being imported must be described in memHandleDesc. The cudaExternalMemoryHandleDesc structure is defined as follows:

```c
typedef struct cudaExternalMemoryHandleDesc_st {
  cudaExternalMemoryHandleType type;
  union {
    int fd;
    struct {
      void *handle;
      const void *name;
    } win32;
    const void *nvSciBufObject;
  } handle;
  unsigned long long size;
  unsigned int flags;
} cudaExternalMemoryHandleDesc;
```

where cudaExternalMemoryHandleDesc::type specifies the type of handle being imported. cudaExternalMemoryHandleType is defined as:

```c
typedef enum cudaExternalMemoryHandleType_enum {
  cudaExternalMemoryHandleTypeOpaqueFd = 1,
  cudaExternalMemoryHandleTypeOpaqueWin32 = 2,
  cudaExternalMemoryHandleTypeOpaqueWin32Kmt = 3,
  cudaExternalMemoryHandleTypeD3D12Heap = 4,
  cudaExternalMemoryHandleTypeD3D12Resource = 5,
  cudaExternalMemoryHandleTypeD3D11Resource = 6,
  cudaExternalMemoryHandleTypeD3D11ResourceKmt = 7,
  cudaExternalMemoryHandleTypeNvSciBuf = 8
} cudaExternalMemoryHandleType;
```
If `cudaExternalMemoryHandleDesc::type` is `cudaExternalMemoryHandleTypeOpaqueFd`, then `cudaExternalMemoryHandleDesc::handle::fd` must be a valid file descriptor referencing a memory object. Ownership of the file descriptor is transferred to the CUDA driver when the handle is imported successfully. Performing any operations on the file descriptor after it is imported results in undefined behavior.

If `cudaExternalMemoryHandleDesc::type` is `cudaExternalMemoryHandleTypeOpaqueWin32`, then exactly one of `cudaExternalMemoryHandleDesc::handle::win32::handle` and `cudaExternalMemoryHandleDesc::handle::win32::name` must not be NULL. If `cudaExternalMemoryHandleDesc::handle::win32::handle` is not NULL, then it must represent a valid shared NT handle that references a memory object. Ownership of this handle is not transferred to CUDA after the import operation, so the application must release the handle using the appropriate system call. If `cudaExternalMemoryHandleDesc::handle::win32::name` is not NULL, then it must point to a NULL-terminated array of UTF-16 characters that refers to a memory object.

If `cudaExternalMemoryHandleDesc::type` is `cudaExternalMemoryHandleTypeOpaqueWin32Kmt`, then `cudaExternalMemoryHandleDesc::handle::win32::handle` must be non-NULL and `cudaExternalMemoryHandleDesc::handle::win32::name` must be NULL. The handle specified must be a globally shared KMT handle. This handle does not hold a reference to the underlying object, and thus will be invalid when all references to the memory object are destroyed.

If `cudaExternalMemoryHandleDesc::type` is `cudaExternalMemoryHandleTypeD3D12Heap`, then exactly one of `cudaExternalMemoryHandleDesc::handle::win32::handle` and `cudaExternalMemoryHandleDesc::handle::win32::name` must not be NULL. If `cudaExternalMemoryHandleDesc::handle::win32::handle` is not NULL, then it must represent a valid shared NT handle that is returned by `ID3D12Device::CreateSharedHandle` when referring to a `ID3D12Heap` object. This handle holds a reference to the underlying object. If `cudaExternalMemoryHandleDesc::handle::win32::name` is not NULL, then it must point to a NULL-terminated array of UTF-16 characters that refers to a `ID3D12Heap` object.

If `cudaExternalMemoryHandleDesc::type` is `cudaExternalMemoryHandleTypeD3D12Resource`, then exactly one of `cudaExternalMemoryHandleDesc::handle::win32::handle` and `cudaExternalMemoryHandleDesc::handle::win32::name` must not be NULL. If `cudaExternalMemoryHandleDesc::handle::win32::handle` is not NULL, then it must represent a valid shared NT handle that is returned by `ID3D12Device::CreateSharedHandle` when referring to a `ID3D12Resource` object. This handle holds a reference to the underlying object. If `cudaExternalMemoryHandleDesc::handle::win32::name` is not NULL, then it must point to a NULL-terminated array of UTF-16 characters that refers to a `ID3D12Resource` object.

If `cudaExternalMemoryHandleDesc::type` is `cudaExternalMemoryHandleTypeD3D11Resource`, then exactly one of `cudaExternalMemoryHandleDesc::handle::win32::handle` and `cudaExternalMemoryHandleDesc::handle::win32::name` must not be
NULL. If `cudaExternalMemoryHandleDesc::handle::win32::handle` is not NULL, then it must represent a valid shared NT handle that is returned by IDXGIResource1::CreateSharedHandle when referring to a ID3D11Resource object. If `cudaExternalMemoryHandleDesc::handle::win32::name` is not NULL, then it must point to a NULL-terminated array of UTF-16 characters that refers to a ID3D11Resource object.

If `cudaExternalMemoryHandleDesc::type` is `cudaExternalMemoryHandleTypeD3D11ResourceKmt`, then `cudaExternalMemoryHandleDesc::handle::win32::handle` must be non-NULL and `cudaExternalMemoryHandleDesc::handle::win32::name` must be NULL. The handle specified must be a valid shared KMT handle that is returned by IDXGIResource::GetSharedHandle when referring to a ID3D11Resource object.

If `cudaExternalMemoryHandleDesc::type` is `cudaExternalMemoryHandleTypeNvSciBuf`, then `cudaExternalMemoryHandleDesc::handle::nvSciBufObject` must be NON-NULL and reference a valid NvSciBuf object. If the NvSciBuf object imported into CUDA is also mapped by other drivers, then the application must use `cudaWaitExternalSemaphoresAsync` or `cudaSignalExternalSemaphoresAsync` as appropriate barriers to maintain coherence between CUDA and the other drivers. See `cudaExternalSemaphoreWaitSkipNvSciBufMemSync` and `cudaExternalSemaphoreSignalSkipNvSciBufMemSync` for memory synchronization.

The size of the memory object must be specified in `cudaExternalMemoryHandleDesc::size`.

Specifying the flag `cudaExternalMemoryDedicated` in `cudaExternalMemoryHandleDesc::flags` indicates that the resource is a dedicated resource. The definition of what a dedicated resource is outside the scope of this extension. This flag must be set if `cudaExternalMemoryHandleDesc::type` is one of the following: `cudaExternalMemoryHandleTypeD3D12Resource` `cudaExternalMemoryHandleTypeD3D11Resource` `cudaExternalMemoryHandleTypeD3D11ResourceKmt`
__host__ cudaError_t cudaImportExternalSemaphore (cudaExternalSemaphore_t *extSem_out, const cudaExternalSemaphoreHandleDesc *semHandleDesc)

Imports an external semaphore.

Parameters
extSem_out
- Returned handle to an external semaphore
semHandleDesc
- Semaphore import handle descriptor

Returns
cudaSuccess, cudaErrorInvalidResourceHandle, cudaErrorOperatingSystem

Description
Imports an externally allocated synchronization object and returns a handle to that in extSem_out.

The properties of the handle being imported must be described in semHandleDesc. The cudaExternalSemaphoreHandleDesc is defined as follows:

```
typedef struct cudaExternalSemaphoreHandleDesc_st {
  cudaExternalSemaphoreHandleType type;
  union {
    int fd;
    struct {
      void *handle;
      const void *name;
    } win32;
    const void* NvSciSyncObj;
  } handle;
  unsigned int flags;
} cudaExternalSemaphoreHandleDesc;
```

where cudaExternalSemaphoreHandleDesc::type specifies the type of handle being imported. cudaExternalSemaphoreHandleType is defined as:

```
typedef enum cudaExternalSemaphoreHandleType_enum {
```

If `cudaExternalSemaphoreHandleDesc::type` is `cudaExternalSemaphoreHandleTypeOpaqueFd`, then `cudaExternalSemaphoreHandleDesc::handle::fd` must be a valid file descriptor referencing a synchronization object. Ownership of the file descriptor is transferred to the CUDA driver when the handle is imported successfully. Performing any operations on the file descriptor after it is imported results in undefined behavior.

If `cudaExternalSemaphoreHandleDesc::type` is `cudaExternalSemaphoreHandleTypeOpaqueWin32`, then exactly one of `cudaExternalSemaphoreHandleDesc::handle::win32::handle` and `cudaExternalSemaphoreHandleDesc::handle::win32::name` must not be NULL. If `cudaExternalSemaphoreHandleDesc::handle::win32::handle` is not NULL, then it must represent a valid shared NT handle that references a synchronization object. Ownership of this handle is not transferred to CUDA after the import operation, so the application must release the handle using the appropriate system call. If `cudaExternalSemaphoreHandleDesc::handle::win32::name` is not NULL, then it must name a valid synchronization object.

If `cudaExternalSemaphoreHandleDesc::type` is `cudaExternalSemaphoreHandleTypeOpaqueWin32Kmt`, then `cudaExternalSemaphoreHandleDesc::handle::win32::handle` must be non-NULL and `cudaExternalSemaphoreHandleDesc::handle::win32::name` must be NULL. The handle specified must be a globally shared KMT handle. This handle does not hold a reference to the underlying object, and thus will be invalid when all references to the synchronization object are destroyed.

If `cudaExternalSemaphoreHandleDesc::type` is `cudaExternalSemaphoreHandleTypeD3D12Fence`, then exactly one of `cudaExternalSemaphoreHandleDesc::handle::win32::handle` and `cudaExternalSemaphoreHandleDesc::handle::win32::name` must not be NULL. If `cudaExternalSemaphoreHandleDesc::handle::win32::handle` is not NULL, then it must represent a valid shared NT handle that is returned by `ID3D12Device::CreateSharedHandle` when referring to a `ID3D12Fence` object. This handle holds a reference to the underlying object. If `cudaExternalSemaphoreHandleDesc::handle::win32::name` is not NULL, then it must name a valid synchronization object that refers to a valid `ID3D12Fence` object.

If `cudaExternalSemaphoreHandleDesc::type` is `cudaExternalSemaphoreHandleTypeD3D11Fence`, then exactly one of `cudaExternalSemaphoreHandleDesc::handle::win32::handle` and
cudaExternalSemaphoreHandleDesc::handle::win32::name must not be NULL. If cudaExternalSemaphoreHandleDesc::handle::win32::handle is not NULL, then it must represent a valid shared NT handle that is returned by ID3D11Fence::CreateSharedHandle. If cudaExternalSemaphoreHandleDesc::handle::win32::name is not NULL, then it must name a valid synchronization object that refers to a valid ID3D11Fence object.

If cudaExternalSemaphoreHandleDesc::type is cudaExternalSemaphoreHandleTypeNvSciSync, then cudaExternalSemaphoreHandleDesc::handle::nvSciSyncObj represents a valid NvSciSyncObj.

cudaExternalSemaphoreHandleTypeKeyedMutex, then exactly one of cudaExternalSemaphoreHandleDesc::handle::win32::handle and cudaExternalSemaphoreHandleDesc::handle::win32::name must not be NULL. If cudaExternalSemaphoreHandleDesc::handle::win32::handle is not NULL, then it represent a valid shared NT handle that is returned by IDXGIResource1::CreateSharedHandle when referring to a IDXGIKeyedMutex object.

If cudaExternalSemaphoreHandleDesc::type is cudaExternalSemaphoreHandleTypeKeyedMutexKmt, then cudaExternalSemaphoreHandleDesc::handle::win32::handle must be non-NULL and cudaExternalSemaphoreHandleDesc::handle::win32::name must be NULL. The handle specified must represent a valid KMT handle that is returned by IDXGIResource::GetSharedHandle when referring to a IDXGIKeyedMutex object.

If cudaExternalSemaphoreHandleDesc::type is cudaExternalSemaphoreHandleTypeTimelineSemaphoreFd, then cudaExternalSemaphoreHandleDesc::handle::fd must be a valid file descriptor referencing a synchronization object. Ownership of the file descriptor is transferred to the CUDA driver when the handle is imported successfully. Performing any operations on the file descriptor after it is imported results in undefined behavior.

If cudaExternalSemaphoreHandleDesc::type is cudaExternalSemaphoreHandleTypeTimelineSemaphoreWin32, then exactly one of cudaExternalSemaphoreHandleDesc::handle::win32::handle and cudaExternalSemaphoreHandleDesc::handle::win32::name must not be NULL. If cudaExternalSemaphoreHandleDesc::handle::win32::handle is not NULL, then it must represent a valid shared NT handle that references a synchronization object. Ownership of this handle is not transferred to CUDA after the import operation, so the application must release the handle using the appropriate system call. If cudaExternalSemaphoreHandleDesc::handle::win32::name is not NULL, then it must name a valid synchronization object.

Note:

- Note that this function may also return error codes from previous, asynchronous launches.
Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.

Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

`cudaDestroyExternalSemaphore`, `cudaSignalExternalSemaphoresAsync`, `cudaWaitExternalSemaphoresAsync`

```c
__host__ cudaError_t cudaSignalExternalSemaphoresAsync (const cudaExternalSemaphore_t *extSemArray, const cudaExternalSemaphoreSignalParams *paramsArray, unsigned int numExtSems, cudaStream_t stream)
```

Signals a set of external semaphore objects.

**Parameters**

- `extSemArray`: Set of external semaphores to be signaled
- `paramsArray`: Array of semaphore parameters
- `numExtSems`: Number of semaphores to signal
- `stream`: Stream to enqueue the signal operations in

**Returns**

`cudaSuccess`, `cudaErrorInvalidResourceHandle`

**Description**

Enqueues a signal operation on a set of externally allocated semaphore object in the specified stream. The operations will be executed when all prior operations in the stream complete.

The exact semantics of signaling a semaphore depends on the type of the object.

If the semaphore object is any one of the following types:

`cudaExternalSemaphoreHandleTypeOpaqueFd`,
`cudaExternalSemaphoreHandleTypeOpaqueWin32`
cudaExternalSemaphoreHandleTypeOpaqueWin32Kmt then signaling the semaphore will set it to the signaled state.

If the semaphore object is any one of the following types:
cudaExternalSemaphoreHandleTypeD3D12Fence,
cudaExternalSemaphoreHandleTypeD3D11Fence,
cudaExternalSemaphoreHandleTypeTimelineSemaphoreFd,
cudaExternalSemaphoreHandleTypeTimelineSemaphoreWin32 then the semaphore will be set to the value specified in cudaExternalSemaphoreSignalParams::params::fence::value.

If the semaphore object is of the type cudaExternalSemaphoreHandleTypeNvSciSync this API sets cudaExternalSemaphoreSignalParams::params::nvSciSync::fence to a value that can be used by subsequent waiters of the same NvSciSync object to order operations with those currently submitted in stream. Such an update will overwrite previous contents of cudaExternalSemaphoreSignalParams::params::nvSciSync::fence. By default, signaling such an external semaphore object causes appropriate memory synchronization operations to be performed over all the external memory objects that are imported as cudaExternalMemoryHandleTypeNvSciBuf. This ensures that any subsequent accesses made by other importers of the same set of NvSciBuf memory object(s) are coherent. These operations can be skipped by specifying the flag cudaExternalSemaphoreSignalSkipNvSciBufMemSync, which can be used as a performance optimization when data coherency is not required. But specifying this flag in scenarios where data coherency is required results in undefined behavior. Also, for semaphore object of the type cudaExternalSemaphoreHandleTypeNvSciSync, if the NvSciSyncAttrList used to create the NvSciSyncObj had not set the flags in cudaDeviceGetNvSciSyncAttributes to cudaNvSciSyncAttrSignal, this API will return cudaErrorNotSupported.

cudaExternalSemaphoreSignalParams::params::nvSciSync::fence associated with semaphore object of the type cudaExternalSemaphoreHandleTypeNvSciSync can be deterministic. For this the NvSciSyncAttrList used to create the semaphore object must have value of NvSciSyncAttrKey_RequireDeterministicFences key set to true. Deterministic fences allow users to enqueue a wait over the semaphore object even before corresponding signal is enqueued. For such a semaphore object, CUDA guarantees that each signal operation will increment the fence value by ‘1’. Users are expected to track count of signals enqueued on the semaphore object and insert waits accordingly. When such a semaphore object is signaled from multiple streams, due to concurrent stream execution, it is possible that the order in which the semaphore gets signaled is indeterministic. This could lead to waiters of the semaphore getting unblocked incorrectly. Users are expected to handle such situations, either by not using the same semaphore object with deterministic fence support enabled in different streams or by adding explicit dependency amongst such streams so that the semaphore is signaled in order.

If the semaphore object is any one of the following types:
cudaExternalSemaphoreHandleTypeKeyedMutex,
cudaExternalSemaphoreHandleTypeKeyedMutexKmt, then the keyed mutex will be released with the key specified in cudaExternalSemaphoreSignalParams::params::keyedmutex::key.
Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

`cudaImportExternalSemaphore`, `cudaDestroyExternalSemaphore`, `cudaWaitExternalSemaphoresAsync`

```c
__host__ cudaError_t cudaWaitExternalSemaphoresAsync(const cudaExternalSemaphore_t *extSemArray, const cudaExternalSemaphoreWaitParams *paramsArray, unsigned int numExtSems, cudaStream_t stream)
```

Waits on a set of external semaphore objects.

Parameters

- `extSemArray` - External semaphores to be waited on
- `paramsArray` - Array of semaphore parameters
- `numExtSems` - Number of semaphores to wait on
- `stream` - Stream to enqueue the wait operations in

Returns

`cudaSuccess`, `cudaErrorInvalidResourceHandle` `cudaErrorTimeout`

Description

Enqueues a wait operation on a set of externally allocated semaphore object in the specified stream. The operations will be executed when all prior operations in the stream complete.
The exact semantics of waiting on a semaphore depends on the type of the object.

If the semaphore object is any one of the following types:

- `cudaExternalSemaphoreHandleTypeOpaqueFd`
- `cudaExternalSemaphoreHandleTypeOpaqueWin32`
- `cudaExternalSemaphoreHandleTypeOpaqueWin32Kmt`

then waiting on the semaphore will wait until the semaphore reaches the signaled state. The semaphore will then be reset to the unsignaled state. Therefore for every signal operation, there can only be one wait operation.

If the semaphore object is any one of the following types:

- `cudaExternalSemaphoreHandleTypeD3D12Fence`
- `cudaExternalSemaphoreHandleTypeD3D11Fence`
- `cudaExternalSemaphoreHandleTypeTimelineSemaphoreFd`
- `cudaExternalSemaphoreHandleTypeTimelineSemaphoreWin32`

then waiting on the semaphore will wait until the value of the semaphore is greater than or equal to `cudaExternalSemaphoreWaitParams::params::fence::value`.

If the semaphore object is of the type `cudaExternalSemaphoreHandleTypeNvSciSync` then,

waiting on the semaphore will wait until the `cudaExternalSemaphoreSignalParams::params::nvSciSync::fence` is signaled by the signaler of the NvSciSyncObj that was associated with this semaphore object. By default, waiting on such an external semaphore object causes appropriate memory synchronization operations to be performed over all external memory objects that are imported as `cudaExternalMemoryHandleTypeNvSciBuf`. This ensures that any subsequent accesses made by other importers of the same set of NvSciBuf memory object(s) are coherent. These operations can be skipped by specifying the flag `cudaExternalSemaphoreWaitSkipNvSciBufMemSync`, which can be used as a performance optimization when data coherency is not required. But specifying this flag in scenarios where data coherency is required results in undefined behavior. Also, for semaphore object of the type `cudaExternalSemaphoreHandleTypeNvSciSync`, if the NvSciSyncAttrList used to create the NvSciSyncObj had not set the flags in `cudaDeviceGetNvSciSyncAttributes` to `cudaNvSciSyncAttrWait`, this API will return `cudaErrorNotSupported`.

If the semaphore object is any one of the following types:

- `cudaExternalSemaphoreHandleTypeKeyedMutex`
- `cudaExternalSemaphoreHandleTypeKeyedMutexKmt`

then the keyed mutex will be acquired when it is released with the key specified in `cudaExternalSemaphoreSignalParams::params::keyedmutex::key` or until the timeout specified by `cudaExternalSemaphoreSignalParams::params::keyedmutex::timeoutMs` has lapsed. The timeout interval can either be a finite value specified in milliseconds or an infinite value. In case an infinite value is specified the timeout never elapses. The windows INFINITE macro must be used to specify infinite timeout.

**Note:**
6.7. Execution Control

This section describes the execution control functions of the CUDA runtime application programming interface.

Some functions have overloaded C++ API template versions documented separately in the C++ API Routines module.

```c
__host__ __device__ __global__
cudaFuncGetAttributes (cudaFuncAttributes *attr, const void *func)
```

Find out attributes for a given function.

**Parameters**

- `attr` - Return pointer to function’s attributes
- `func` - Device function symbol

**Returns**

cudaSuccess, cudaErrorInvalidDeviceFunction

**Description**

This function obtains the attributes of a function specified via `func`. `func` is a device function symbol and must be declared as a `__global__` function. The fetched attributes are placed in `attr`. If the specified function does not exist, then
**cudaErrorInvalidDeviceFunction** is returned. For templated functions, pass the function symbol as follows: `func_name<template_arg_0,...,template_arg_N>`

Note that some function attributes such as `maxThreadsPerBlock` may vary based on the device that is currently being used.

**Note:**
- Note that this function may also return error codes from previous, asynchronous launches.
- Use of a string naming a function as the `func` parameter was deprecated in CUDA 4.1 and removed in CUDA 5.0.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

**See also:**
- `cudaFuncGetCacheConfig (C API)`, `cudaFuncGetAttributes (C++ API)`, `cudaLaunchKernel (C API)`, `cuFuncGetAttribute`

```c
__host__ cudaError_t cudaFuncSetAttribute (const void *func, cudaFuncAttribute attr, int value)
```

Set attributes for a given function.

**Parameters**

- `func` - Function to get attributes of
- `attr` - Attribute to set
- `value` - Value to set

**Returns**
- `cudaSuccess`, `cudaErrorInvalidDeviceFunction`, `cudaErrorInvalidValue`
Description

This function sets the attributes of a function specified via `func`. The parameter `func` must be a pointer to a function that executes on the device. The parameter specified by `func` must be declared as a `__global__` function. The enumeration defined by `attr` is set to the value defined by `value`. If the specified function does not exist, then `cudaErrorInvalidDeviceFunction` is returned. If the specified attribute cannot be written, or if the value is incorrect, then `cudaErrorInvalidValue` is returned.

Valid values for `attr` are:

- `cudaFuncAttributeMaxDynamicSharedMemorySize` - The requested maximum size in bytes of dynamically-allocated shared memory. The sum of this value and the function attribute sharedSizeBytes cannot exceed the device attribute `cudaDevAttrMaxSharedMemoryPerBlockOptin`. The maximal size of requestable dynamic shared memory may differ by GPU architecture.

- `cudaFuncAttributePreferredSharedMemoryCarveout` - On devices where the L1 cache and shared memory use the same hardware resources, this sets the shared memory carveout preference, in percent of the total shared memory. See `cudaDevAttrMaxSharedMemoryPerMultiprocessor`. This is only a hint, and the driver can choose a different ratio if required to execute the function.

**Note:**
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

__host__ cudaError_t cudaFuncSetCacheConfig (const void *func, cudaFuncCache cacheConfig)
Sets the preferred cache configuration for a device function.

Parameters

func
- Device function symbol

cacheConfig
- Requested cache configuration

Returns

cudaSuccess, cudaErrorInvalidDeviceFunction

Description

On devices where the L1 cache and shared memory use the same hardware resources, this sets through cacheConfig the preferred cache configuration for the function specified via func. This is only a preference. The runtime will use the requested configuration if possible, but it is free to choose a different configuration if required to execute func.

func is a device function symbol and must be declared as a __global__ function. If the specified function does not exist, then cudaErrorInvalidDeviceFunction is returned. For templated functions, pass the function symbol as follows:
func_name<template_arg_0,...,template_arg_N>

This setting does nothing on devices where the size of the L1 cache and shared memory are fixed.

Launching a kernel with a different preference than the most recent preference setting may insert a device-side synchronization point.

The supported cache configurations are:

- cudaFuncCachePreferNone: no preference for shared memory or L1 (default)
- cudaFuncCachePreferShared: prefer larger shared memory and smaller L1 cache
- cudaFuncCachePreferL1: prefer larger L1 cache and smaller shared memory
- cudaFuncCachePreferEqual: prefer equal size L1 cache and shared memory

Note:
- Note that this function may also return error codes from previous, asynchronous launches.
Use of a string naming a function as the `func` parameter was deprecated in CUDA 4.1 and removed in CUDA 5.0.

Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.

Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaFuncSetCacheConfig (C++ API), cudaFuncGetAttributes (C API), cudaLaunchKernel (C API), cuFuncSetCacheConfig

```c
def __host__ cudaError_t cudaFuncSetSharedMemConfig(const void *func, cudaSharedMemConfig config)
```

Sets the shared memory configuration for a device function.

**Parameters**

- **func**: Device function symbol
- **config**: Requested shared memory configuration

**Returns**

cudaSuccess, cudaErrorInvalidDeviceFunction, cudaErrorInvalidValue

**Description**

On devices with configurable shared memory banks, this function will force all subsequent launches of the specified device function to have the given shared memory bank size configuration. On any given launch of the function, the shared memory configuration of the device will be temporarily changed if needed to suit the function’s preferred configuration. Changes in shared memory configuration between subsequent launches of functions, may introduce a device side synchronization point.

Any per-function setting of shared memory bank size set via `cudaFuncSetSharedMemConfig` will override the device wide setting set by `cudaDeviceSetSharedMemConfig`.

Changing the shared memory bank size will not increase shared memory usage or affect occupancy of kernels, but may have major effects on performance. Larger bank sizes will allow for greater potential bandwidth to shared memory, but will change what kinds of accesses to shared memory will result in bank conflicts.
This function will do nothing on devices with fixed shared memory bank size.

For templated functions, pass the function symbol as follows:
```c
func_name<template_arg_0,...,template_arg_N>
```

The supported bank configurations are:

- `cudaSharedMemBankSizeDefault`: use the device’s shared memory configuration when launching this function.
- `cudaSharedMemBankSizeFourByte`: set shared memory bank width to be four bytes natively when launching this function.
- `cudaSharedMemBankSizeEightByte`: set shared memory bank width to be eight bytes natively when launching this function.

**Note:**

- Note that this function may also return error codes from previous, asynchronous launches.
- Use of a string naming a function as the `func` parameter was deprecated in CUDA 4.1 and removed in CUDA 5.0.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

**See also:**

- `cudaDeviceSetSharedMemConfig`, `cudaDeviceGetSharedMemConfig`, `cudaDeviceSetCacheConfig`, `cudaDeviceGetCacheConfig`, `cudaFuncSetCacheConfig`, `cuFuncSetSharedMemConfig`

```c
__device__ void *cudaGetParameterBuffer (size_t alignment, size_t size)
```

Obtains a parameter buffer.

**Parameters**

- `alignment`
  - Specifies alignment requirement of the parameter buffer
- `size`
  - Specifies size requirement in bytes
Returns
Returns pointer to the allocated parameterBuffer

Description
Obtains a parameter buffer which can be filled with parameters for a kernel launch. Parameters passed to cudaLaunchDevice must be allocated via this function.

This is a low level API and can only be accessed from Parallel Thread Execution (PTX). CUDA user code should use <<< >>> to launch kernels.

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaLaunchDevice

__device__ void *cudaGetParameterBufferV2 (void *func, dim3 gridDimension, dim3 blockDimension, unsigned int sharedMemSize)
Launches a specified kernel.

Parameters
func
- Pointer to the kernel to be launched
gridDimension
- Specifies grid dimensions
blockDimension
- Specifies block dimensions
sharedMemSize
- Specifies size of shared memory

Returns
cudaSuccess, cudaErrorInvalidDevice, cudaErrorLaunchMaxDepthExceeded, cudaErrorInvalidConfiguration, cudaErrorStartupFailure, cudaErrorLaunchPendingCountExceeded, cudaErrorLaunchOutOfResources
Description
Launches a specified kernel with the specified parameter buffer. A parameter buffer can be obtained by calling `cudaGetParameterBuffer()`. This is a low level API and can only be accessed from Parallel Thread Execution (PTX). CUDA user code should use `<<< >>>` to launch the kernels.

Note:
Note that this function may also return error codes from previous, asynchronous launches. Please refer to Execution Configuration and Parameter Buffer Layout from the CUDA Programming Guide for the detailed descriptions of launch configuration and parameter layout respectively.

See also:
cudaGetParameterBuffer

__device__ void cudaGridDependencySynchronize(void)
Programmatic grid dependency synchronization.

Description
This device function will block the thread until all direct grid dependencies have completed. This API is intended to use in conjuncture with programmatic / launch event / dependency. See `cudaLaunchAttributeID::cudaLaunchAttributeProgrammaticStreamSerialization` and `cudaLaunchAttributeID::cudaLaunchAttributeProgrammaticEvent` for more information.

__host__ cudaError_t cudaLaunchCooperativeKernel(const void *func, dim3 gridDim, dim3 blockDim, void **args, size_t sharedMem, cudaStream_t stream)
Launches a device function where thread blocks can cooperate and synchronize as they execute.

Parameters
func
  - Device function symbol
gridDim
  - Grid dimensions
**blockDim**  
- Block dimensions

**args**  
- Arguments

**sharedMem**  
- Shared memory

**stream**  
- Stream identifier

**Returns**  
cudaSuccess, cudaErrorInvalidDeviceFunction, cudaErrorInvalidConfiguration, cudaErrorLaunchFailure, cudaErrorLaunchTimeout, cudaErrorLaunchOutOfResources, cudaErrorCooperativeLaunchTooLarge, cudaErrorSharedObjectInitFailed

**Description**


The device on which this kernel is invoked must have a non-zero value for the device attribute `cudaDevAttrCooperativeLaunch`.

The total number of blocks launched cannot exceed the maximum number of blocks per multiprocessor as returned by `cudaOccupancyMaxActiveBlocksPerMultiprocessor` (or `cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags`) times the number of multiprocessors as specified by the device attribute `cudaDevAttrMultiProcessorCount`.

The kernel cannot make use of CUDA dynamic parallelism.

If the kernel has N parameters the `args` should point to array of N pointers. Each pointer, from `args[0]` to `args[N - 1]`, point to the region of memory from which the actual parameter will be copied.

For templated functions, pass the function symbol as follows: `func_name<template_arg_0,...,template_arg_N>`

**sharedMem** sets the amount of dynamic shared memory that will be available to each thread block.

**stream** specifies a stream the invocation is associated to.

---

**Note:**

- This function uses standard default stream semantics.
- Note that this function may also return error codes from previous, asynchronous launches.
Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.

Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

`cudaLaunchCooperativeKernel` (C++ API), `cudaLaunchCooperativeKernelMultiDevice`, `cuLaunchCooperativeKernel`

```c
__host__ cudaError_t
cudaLaunchCooperativeKernelMultiDevice
(cudaLaunchParams *launchParamsList, unsigned int numDevices, unsigned int flags)
```

Launches device functions on multiple devices where thread blocks can cooperate and synchronize as they execute.

**Parameters**

- `launchParamsList` - List of launch parameters, one per device
- `numDevices` - Size of the `launchParamsList` array
- `flags` - Flags to control launch behavior

**Returns**

`cudaSuccess`, `cudaErrorInvalidDeviceFunction`, `cudaErrorInvalidConfiguration`, `cudaErrorLaunchFailure`, `cudaErrorLaunchTimeout`, `cudaErrorLaunchOutOfResources`, `cudaErrorCooperativeLaunchTooLarge`, `cudaErrorSharedObjectInitFailed`

**Description**

*Deprecated* This function is deprecated as of CUDA 11.3.

Invokes kernels as specified in the `launchParamsList` array where each element of the array specifies all the parameters required to perform a single kernel launch. These kernels can cooperate and synchronize as they execute. The size of the array is specified by `numDevices`. 
No two kernels can be launched on the same device. All the devices targeted by this multi-
device launch must be identical. All devices must have a non-zero value for the device
attribute cudaDevAttrCooperativeMultiDeviceLaunch.

The same kernel must be launched on all devices. Note that any __device__ or __constant__
variables are independently instantiated on every device. It is the application’s responsiblity to
ensure these variables are initialized and used appropriately.

The size of the grids as specified in blocks, the size of the blocks themselves and the amount
of shared memory used by each thread block must also match across all launched kernels.

The streams used to launch these kernels must have been created via either
cudaStreamCreate or cudaStreamCreateWithPriority or cudaStreamCreateWithPriority. The
NULL stream or cudaStreamLegacy or cudaStreamPerThread cannot be used.

The total number of blocks launched per kernel cannot exceed the maximum number of
blocks per multiprocessor as returned by cudaOccupancyMaxActiveBlocksPerMultiprocessor
(or cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags) times the number of
multiprocessors as specified by the device attribute cudaDevAttrMultiProcessorCount. Since
the total number of blocks launched per device has to match across all devices, the maximum
number of blocks that can be launched per device will be limited by the device with the least
number of multiprocessors.

The kernel cannot make use of CUDA dynamic parallelism.

The cudaLaunchParams structure is defined as:

```c
struct cudaLaunchParams
{
    void *func;
    dim3 gridDim;
    dim3 blockDim;
    void **args;
    size_t sharedMem;
    cudaStream_t stream;
};
```

where:

- **cudaLaunchParams::func** specifies the kernel to be launched. This same functions must
  be launched on all devices. For templated functions, pass the function symbol as follows:
  func_name<template_arg_0,...,template_arg_N>

- **cudaLaunchParams::gridDim** specifies the width, height and depth of the grid in blocks.
  This must match across all kernels launched.

- **cudaLaunchParams::blockDim** is the width, height and depth of each thread block. This
  must match across all kernels launched.

- **cudaLaunchParams::args** specifies the arguments to the kernel. If the kernel has N
  parameters then cudaLaunchParams::args should point to array of N pointers. Each
pointer, from `cudaLaunchParams::args[0]` to `cudaLaunchParams::args[N - 1]`, point to the region of memory from which the actual parameter will be copied.

- `cudaLaunchParams::sharedMem` is the dynamic shared-memory size per thread block in bytes. This must match across all kernels launched.

- `cudaLaunchParams::stream` is the handle to the stream to perform the launch in. This cannot be the NULL stream or `cudaStreamLegacy` or `cudaStreamPerThread`.

By default, the kernel won’t begin execution on any GPU until all prior work in all the specified streams has completed. This behavior can be overridden by specifying the flag `cudaCooperativeLaunchMultiDeviceNoPreSync`. When this flag is specified, each kernel will only wait for prior work in the stream corresponding to that GPU to complete before it begins execution.

Similarly, by default, any subsequent work pushed in any of the specified streams will not begin execution until the kernels on all GPUs have completed. This behavior can be overridden by specifying the flag `cudaCooperativeLaunchMultiDeviceNoPostSync`. When this flag is specified, any subsequent work pushed in any of the specified streams will only wait for the kernel launched on the GPU corresponding to that stream to complete before it begins execution.

**Note:**

- This function uses standard `default stream` semantics.

- Note that this function may also return error codes from previous, asynchronous launches.

- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.

- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

**See also:**

- `cudaLaunchCooperativeKernel [ C++ API]`, `cudaLaunchCooperativeKernel`, `cuLaunchCooperativeKernelMultiDevice`
__host__ cudaError_t cudaLaunchHostFunc (cudaStream_t stream, cudaHostFn_t fn, void *userData)

Enqueues a host function call in a stream.

Parameters

stream
fn
- The function to call once preceding stream operations are complete

userData
- User-specified data to be passed to the function

Returns
cudaSuccess, cudaErrorInvalidResourceHandle, cudaErrorInvalidValue, cudaErrorNotSupported

Description

Enqueues a host function to run in a stream. The function will be called after currently enqueued work and will block work added after it.

The host function must not make any CUDA API calls. Attempting to use a CUDA API may result in cudaErrorNotPermitted, but this is not required. The host function must not perform any synchronization that may depend on outstanding CUDA work not mandated to run earlier. Host functions without a mandated order (such as in independent streams) execute in undefined order and may be serialized.

For the purposes of Unified Memory, execution makes a number of guarantees:

- The stream is considered idle for the duration of the function’s execution. Thus, for example, the function may always use memory attached to the stream it was enqueued in.
- The start of execution of the function has the same effect as synchronizing an event recorded in the same stream immediately prior to the function. It thus synchronizes streams which have been “joined” prior to the function.
- Adding device work to any stream does not have the effect of making the stream active until all preceding host functions and stream callbacks have executed. Thus, for example, a function might use global attached memory even if work has been added to another stream, if the work has been ordered behind the function call with an event.
- Completion of the function does not cause a stream to become active except as described above. The stream will remain idle if no device work follows the function, and will remain idle across consecutive host functions or stream callbacks without device work in
between. Thus, for example, stream synchronization can be done by signaling from a host function at the end of the stream.

Note that, in contrast to `cuStreamAddCallback`, the function will not be called in the event of an error in the CUDA context.

**Note:**
- This function uses standard default stream semantics.
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

**See also:**
- `cudaStreamCreate`, `cudaStreamQuery`, `cudaStreamSynchronize`, `cudaStreamWaitEvent`, `cudaStreamDestroy`, `cudaMallocManaged`, `cudaStreamAttachMemAsync`, `cudaStreamAddCallback`, `cuLaunchHostFunc`

```c
__host__ cudaError_t cudaLaunchKernel (const void *func, dim3 gridDim, dim3 blockDim, void **args, size_t sharedMem, cudaStream_t stream)
```

Launches a device function.

**Parameters**
- **func**
  - Device function symbol
- **gridDim**
  - Grid dimensions
- **blockDim**
  - Block dimensions
- **args**
  - Arguments
- **sharedMem**
  - Shared memory
stream
- Stream identifier

Returns

Description

If the kernel has N parameters the args should point to array of N pointers. Each pointer, from args [0] to args [N - 1], point to the region of memory from which the actual parameter will be copied.

For templated functions, pass the function symbol as follows:
func_name<template_arg_0,...,template_arg_N>

sharedMem sets the amount of dynamic shared memory that will be available to each thread block.

stream specifies a stream the invocation is associated to.

Note:
- This function uses standard default stream semantics.
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaLaunchKernel [ C++ API], cuLaunchKernel
__host__ cudaError_t cudaLaunchKernelExC (const cudaLaunchConfig_t *config, const void *func, void **args)

Launches a CUDA function with launch-time configuration.

Parameters

*config*
- Launch configuration

*func*
- Kernel to launch

*args*
- Array of pointers to kernel parameters

Returns


Description

Note that the functionally equivalent variadic template `cudaLaunchKernelEx` is available for C++11 and newer.

Invokes the kernel `func` on `config->gridDim` (config->gridDim.x config->gridDim.y config->gridDim.z) grid of blocks. Each block contains `config->blockDim` (config->blockDim.x config->blockDim.y config->blockDim.z) threads.

`config->dynamicSmemBytes` sets the amount of dynamic shared memory that will be available to each thread block.

`config->stream` specifies a stream the invocation is associated to.

Configuration beyond grid and block dimensions, dynamic shared memory size, and stream can be provided with the following two fields of `config`:

`config->attrs` is an array of `config->numAttrs` contiguous `cudaLaunchAttribute` elements. The value of this pointer is not considered if `config->numAttrs` is zero. However, in that case, it is recommended to set the pointer to NULL. `config->numAttrs` is the number of attributes populating the first `config->numAttrs` positions of the `config->attrs` array.
If the kernel has N parameters the `args` should point to array of N pointers. Each pointer, from `args[0]` to `args[N - 1]`, point to the region of memory from which the actual parameter will be copied.

N.B. This function is so named to avoid unintentionally invoking the templated version, `cudaLaunchKernelEx`, for kernels taking a single `void**` or `void*` parameter.

Note:

- This function uses standard [default stream] semantics.
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

`cudaLaunchKernelEx(const cudaLaunchConfig_t *config, void (*kernel)(ExpTypes...), ActTypes &&... args) “cudaLaunchKernelEx [C++ API]”, cuLaunchKernelEx`

```__host__ cudaError_t cudaSetDoubleForDevice (double *d)```

Converts a double argument to be executed on a device.

Parameters

`d`

- Double to convert

Returns

`cudaSuccess`

Description

`Deprecated` This function is deprecated as of CUDA 7.5

Converts the double value of `d` to an internal float representation if the device does not support double arithmetic. If the device does natively support doubles, then this function does nothing.
Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

- `cudaFuncSetCacheConfig` [C API]
- `cudaFuncGetAttributes` [C API]
- `cudaSetDoubleForHost`

`__host__cudaError_t cudaSetDoubleForHost (double *d)`

Converts a double argument after execution on a device.

**Parameters**

- `d` - Double to convert

**Returns**

- `cudaSuccess`

**Description**

*Deprecated* This function is deprecated as of CUDA 7.5

Converts the double value of `d` from a potentially internal float representation if the device does not support double arithmetic. If the device does natively support doubles, then this function does nothing.

Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
Note that as specified by cudaStreamAddCallback, no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaFuncSetCacheConfig (C API), cudaFuncGetAttributes (C API), cudaSetDoubleForDevice

__device__ void
cudaTriggerProgrammaticLaunchCompletion (void)

Programmatic dependency trigger.

Description

This device function ensures the programmatic launch completion edges / events are fulfilled. See cudaLaunchAttributeID::cudaLaunchAttributeProgrammaticStreamSerialization and cudaLaunchAttributeID::cudaLaunchAttributeProgrammaticEvent for more information. The event / edge kick off only happens when every CTAs in the grid has either exited or called this function at least once, otherwise the kick off happens automatically after all warps finishes execution but before the grid completes. The kick off only enables scheduling of the secondary kernel. It provides no memory visibility guarantee itself. The user could enforce memory visibility by inserting a memory fence of the correct scope.

6.8. Occupancy

This section describes the occupancy calculation functions of the CUDA runtime application programming interface.

Besides the occupancy calculator functions (cudaOccupancyMaxActiveBlocksPerMultiprocessor and cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags), there are also C++ only occupancy-based launch configuration functions documented in C++ API Routines module.

See cudaOccupancyMaxPotentialBlockSize (C++ API), cudaOccupancyMaxPotentialBlockSize [C++ API], cudaOccupancyMaxPotentialBlockSizeVariableSMem [C++ API], cudaOccupancyMaxPotentialBlockSizeVariableSMem [C++ API], cudaOccupancyAvailableDynamicSMemPerBlock [C++ API].
__host__ cudaError_t
cudaOccupancyAvailableDynamicSMemPerBlock
(size_t *dynamicSmemSize, const void *func, int
numBlocks, int blockSize)

Returns dynamic shared memory available per block when launching numBlocks blocks on SM.

Parameters

dynamicSmemSize
- Returned maximum dynamic shared memory

func
- Kernel function for which occupancy is calculated

numBlocks
- Number of blocks to fit on SM

blockSize
- Size of the block

Returns

cudaSuccess, cudaErrorInvalidDevice, cudaErrorInvalidDeviceFunction,
cudaErrorInvalidValue, cudaErrorUnknown.

Description

Returns in *dynamicSmemSize the maximum size of dynamic shared memory to allow numBlocks blocks per SM.

Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags,
cudaOccupancyMaxPotentialBlockSize [C++ API].
cudaOccupancyMaxPotentialBlockSizeWithFlags (C++ API),
cudaOccupancyMaxPotentialBlockSizeVariableSMem (C++ API),
cudaOccupancyMaxPotentialBlockSizeVariableSMemWithFlags (C++ API),
cudaOccupancyAvailableDynamicSMemPerBlock

__host__ __device__ cudaError_t

cudaOccupancyMaxActiveBlocksPerMultiprocessor
(int *numBlocks, const void *func, int blockSize, size_t
dynamicSMemSize)

Returns occupancy for a device function.

Parameters

numBlocks
  - Returned occupancy

func
  - Kernel function for which occupancy is calculated

blockSize
  - Block size the kernel is intended to be launched with

dynamicSMemSize
  - Per-block dynamic shared memory usage intended, in bytes

Returns
cudaSuccess, cudaErrorInvalidDevice, cudaErrorInvalidDeviceFunction,
cudaErrorInvalidValue, cudaErrorUnknown.

Description

Returns in *numBlocks the maximum number of active blocks per streaming multiprocessor for the device function.

Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.
__host__ cudaError_t
cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags
(int *numBlocks, const void *func, int blockSize, size_t
dynamicSMemSize, unsigned int flags)

Returns occupancy for a device function with the specified flags.

Parameters

numBlocks
- Returned occupancy

func
- Kernel function for which occupancy is calculated

blockSize
- Block size the kernel is intended to be launched with

dynamicSMemSize
- Per-block dynamic shared memory usage intended, in bytes

flags
- Requested behavior for the occupancy calculator

Returns

cudaSuccess, cudaErrorInvalidDevice, cudaErrorInvalidDeviceFunction,
cudaErrorInvalidValue, cudaErrorUnknown.

Description

Returns in *numBlocks the maximum number of active blocks per streaming multiprocessor for the device function.

The flags parameter controls how special cases are handled. Valid flags include:

- cudaOccupancyDefault: keeps the default behavior as
  cudaOccupancyMaxActiveBlocksPerMultiprocessor
- **cudaOccupancyDisableCachingOverride**: This flag suppresses the default behavior on platform where global caching affects occupancy. On such platforms, if caching is enabled, but per-block SM resource usage would result in zero occupancy, the occupancy calculator will calculate the occupancy as if caching is disabled. Setting this flag makes the occupancy calculator to return 0 in such cases. More information can be found about this feature in the “Unified L1/Texture Cache” section of the Maxwell tuning guide.

---

**Note:**
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

```c
__host__ cudaError_t
cudaOccupancyMaxActiveClusters (int *numClusters, const void *func, const cudaLaunchConfig_t *launchConfig)
```

Given the kernel function (`func`) and launch configuration (`config`), return the maximum number of clusters that could co-exist on the target device in `*numClusters`.

**Parameters**

- **numClusters**
  - Returned maximum number of clusters that could co-exist on the target device
- **func**
  - Kernel function for which maximum number of clusters are calculated
launchConfig

Returns
cudaSuccess, cudaErrorInvalidDeviceFunction, cudaErrorInvalidValue,
cudaErrorInvalidClusterSize, cudaErrorUnknown.

Description
If the function has required cluster size already set (see cudaFuncGetAttributes), the cluster size from config must either be unspecified or match the required size. Without required sizes, the cluster size must be specified in config, else the function will return an error.

Note that various attributes of the kernel function may affect occupancy calculation. Runtime environment may affect how the hardware schedules the clusters, so the calculated occupancy is not guaranteed to be achievable.

Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaFuncGetAttributes cudaOccupancyMaxActiveClusters (C++ API),
cuOccupancyMaxActiveClusters
__host__ cudaError_t

cudaOccupancyMaxPotentialClusterSize

(int *clusterSize, const void *func, const
cudaLaunchConfig_t *launchConfig)

Given the kernel function (\texttt{func}) and launch configuration (\texttt{config}), return the maximum cluster size in \texttt{clusterSize}.

**Parameters**

- \texttt{clusterSize} - Returned maximum cluster size that can be launched for the given kernel function and launch configuration
- \texttt{func} - Kernel function for which maximum cluster size is calculated
- \texttt{launchConfig}

**Returns**

\texttt{cudaSuccess}, \texttt{cudaErrorInvalidDeviceFunction}, \texttt{cudaErrorInvalidValue}, \texttt{cudaErrorUnknown}.

**Description**

The cluster dimensions in \texttt{config} are ignored. If \texttt{func} has a required cluster size set (see \texttt{cudaFuncGetAttributes}), \texttt{clusterSize} will reflect the required cluster size.

By default this function will always return a value that’s portable on future hardware. A higher value may be returned if the kernel function allows non-portable cluster sizes.

This function will respect the compile time launch bounds.

**Note:**

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return \texttt{cudaErrorInitializationError}, \texttt{cudaErrorInsufficientDriver} or \texttt{cudaErrorNoDevice} if this call tries to initialize internal CUDA RT state.
- Note that as specified by \texttt{cudaStreamAddCallback} no CUDA function may be called from callback. \texttt{cudaErrorNotPermitted} may, but is not guaranteed to, be returned as a diagnostic in such case.

**See also:**
6.9. Memory Management

This section describes the memory management functions of the CUDA runtime application programming interface.

Some functions have overloaded C++ API template versions documented separately in the C++ API Routines module.

__host__cudaError_t cudaArrayGetInfo (cudaChannelFormatDesc *desc, cudaExtent *extent, unsigned int *flags, cudaArray_t array)

Gets info about the specified cudaArray.

Parameters

desc
- Returned array type
extent
- Returned array shape. 2D arrays will have depth of zero
flags
- Returned array flags
array
- The cudaArray to get info for

Returns
cudaSuccess, cudaErrorInvalidValue

Description

Returns in *desc, *extent and *flags respectively, the type, shape and flags of array.

Any of *desc, *extent and *flags may be specified as NULL.

Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
`cuArrayGetDescriptor`, `cuArray3DGetDescriptor`

```c
_host__cudaError_t cudaArrayGetMemoryRequirements (cudaArrayMemoryRequirements *memoryRequirements, cudaArray_t array, int device)
```

Returns the memory requirements of a CUDA array.

**Parameters**

- `memoryRequirements` - Pointer to `cudaArrayMemoryRequirements`
- `array` - CUDA array to get the memory requirements of
- `device` - Device to get the memory requirements for

**Returns**

- `cudaSuccess`
- `cudaErrorInvalidValue`

**Description**

Returns the memory requirements of a CUDA array in `memoryRequirements`. If the CUDA array is not allocated with flag `cudaArrayDeferredMapping`, `cudaErrorInvalidValue` will be returned.

The returned value in `cudaArrayMemoryRequirements::size` represents the total size of the CUDA array. The returned value in `cudaArrayMemoryRequirements::alignment` represents the alignment necessary for mapping the CUDA array.

**See also:**

`cudaMipmappedArrayGetMemoryRequirements`
__host__ cudaError_t cudaArrayGetPlane (cudaArray_t *pPlaneArray, cudaArray_t hArray, unsigned int planeIdx)

Gets a CUDA array plane from a CUDA array.

Parameters

pPlaneArray
- Returned CUDA array referenced by the planeIdx

hArray
- CUDA array

planeIdx
- Plane index

Returns

cudaSuccess, cudaErrorInvalidValue cudaErrorInvalidResourceHandle

Description

Returns in pPlaneArray a CUDA array that represents a single format plane of the CUDA array hArray.

If planeIdx is greater than the maximum number of planes in this array or if the array does not have a multi-planar format e.g: cudaChannelFormatKindNV12, then cudaErrorInvalidValue is returned.

Note that if the hArray has format cudaChannelFormatKindNV12, then passing in 0 for planeIdx returns a CUDA array of the same size as hArray but with one 8-bit channel and cudaChannelFormatKindUnsigned as its format kind. If 1 is passed for planeIdx, then the returned CUDA array has half the height and width of hArray with two 8-bit channels and cudaChannelFormatKindUnsigned as its format kind.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cuArrayGetPlane
__host__ cudaError_t cudaArrayGetSparseProperties (cudaArraySparseProperties *sparseProperties, cudaArray_t array)

Returns the layout properties of a sparse CUDA array.

Parameters

sparseProperties
  - Pointer to return the cudaArraySparseProperties

array
  - The CUDA array to get the sparse properties of

Returns
cudaSuccess cudaErrorInvalidValue

Description

Returns the layout properties of a sparse CUDA array in sparseProperties. If the CUDA array is not allocated with flag cudaArraySparse cudaErrorInvalidValue will be returned.

If the returned value in cudaArraySparseProperties::flags contains cudaArraySparsePropertiesSingleMipTail, then cudaArraySparseProperties::miptailSize represents the total size of the array. Otherwise, it will be zero. Also, the returned value in cudaArraySparseProperties::miptailFirstLevel is always zero. Note that the array must have been allocated using cudaMallocArray or cudaMalloc3DArray. For CUDA arrays obtained using cudaMipmappedArrayGetLevel, cudaErrorInvalidValue will be returned. Instead, cudaMipmappedArrayGetSparseProperties must be used to obtain the sparse properties of the entire CUDA mipmapped array to which array belongs to.

See also:
cudaMipmappedArrayGetSparseProperties, cuMemMapArrayAsync

__host__ device__cudaError_t cudaFree (void *devPtr)

Frees memory on the device.

Parameters

devPtr
  - Device pointer to memory to free
Returns

cudaSuccess, cudaErrorInvalidValue

Description

Frees the memory space pointed to by devPtr, which must have been returned by a previous call to one of the following memory allocation APIs - cudaMalloc[], cudaMallocPitch[], cudaMallocManaged[], cudaMallocAsync[], cudaMallocFromPoolAsync[].

Note - This API will not perform any implicit synchronization when the pointer was allocated with cudaMallocAsync or cudaMallocFromPoolAsync. Callers must ensure that all accesses to the pointer have completed before invoking cudaFree. For best performance and memory reuse, users should use cudaFreeAsync to free memory allocated via the stream ordered memory allocator.

If cudaFree(devPtr) has already been called before, an error is returned. If devPtr is 0, no operation is performed. cudaFree() returns cudaErrorValue in case of failure.

The device version of cudaFree cannot be used with a *devPtr allocated using the host API, and vice versa.

Note:

› Note that this function may also return error codes from previous, asynchronous launches.

› Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.

› Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

cudaMalloc, cudaMallocPitch, cudaMallocManaged, cudaMallocArray, cudaFreeArray, cudaMallocAsync, cudaMallocFromPoolAsync, cudaMallocHost [ C API], cudaFreeHost, cudaMalloc3D, cudaMalloc3DArray, cudaFreeAsync, cudaHostAlloc, cuMemFree
__host__ cudaError_t cudaFreeArray (cudaArray_t array)
Frees an array on the device.

Parameters
array
- Pointer to array to free

Returns
cudaSuccess, cudaErrorInvalidValue

Description
Frees the CUDA array array, which must have been returned by a previous call to cudaMallocArray(). If devPtr is 0, no operation is performed.

Note:
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaMalloc, cudaMallocPitch, cudaFree, cudaMallocArray, cudaMallocHost (C API), cudaFreeHost, cudaHostAlloc, cuArrayDestroy

__host__ cudaError_t cudaFreeHost (void *ptr)
Frees page-locked memory.

Parameters
ptr
- Pointer to memory to free
Returns

cudaSuccess, cudaErrorInvalidValue

Description

Frees the memory space pointed to by hostPtr, which must have been returned by a previous call to cudaMallocHost[] or cudaHostAlloc[].

Note:

‣ Note that this function may also return error codes from previous, asynchronous launches.
‣ Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
‣ Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

cudaMalloc, cudaMallocPitch, cudaFree, cudaMallocArray, cudaFreeArray, cudaMallocHost [ C API], cudaMalloc3D, cudaMalloc3DArray, cudaHostAlloc, cuMemFreeHost

__host__cudaError_t cudaFreeMipmappedArray (cudaMipmappedArray_t mipmappedArray)

Frees a mipmapped array on the device.

Parameters

mipmappedArray

- Pointer to mipmapped array to free

Returns

cudaSuccess, cudaErrorInvalidValue

Description

Frees the CUDA mipmapped array mipmappedArray, which must have been returned by a previous call to cudaMallocMipmappedArray[]. If devPtr is 0, no operation is performed.
Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

- `cudaMalloc`, `cudaMallocPitch`, `cudaFree`, `cudaMallocArray`, `cudaMallocHost (C API)`, `cudaFreeHost`, `cudaHostAlloc`, `cuMipmappedArrayDestroy`

```c
__host__ cudaError_t cudaGetMipmappedArrayLevel (cudaArray_t *levelArray, cudaMipmappedArray_const_t mipmappedArray, unsigned int level)
```

Gets a mipmap level of a CUDA mipmapped array.

Parameters

- **levelArray**
  - Returned mipmap level CUDA array
- **mipmappedArray**
  - CUDA mipmapped array
- **level**
  - Mipmap level

Returns

- `cudaSuccess`, `cudaErrorInvalidValue` `cudaErrorInvalidResourceHandle`

Description

Returns in `*levelArray` a CUDA array that represents a single mipmap level of the CUDA mipmapped array `mipmappedArray`.

If `level` is greater than the maximum number of levels in this mipmapped array, `cudaErrorInvalidValue` is returned.

If `mipmappedArray` is NULL, `cudaErrorInvalidResourceHandle` is returned.
__host__ cudaError_t cudaMemcpySymbolAddress (void **devPtr, const void *symbol)

Finds the address associated with a CUDA symbol.

Parameters

- **devPtr**
  - Return device pointer associated with symbol

- **symbol**
  - Device symbol address

Returns

- cudaSuccess
- cudaErrorInvalidSymbol
- cudaErrorNoKernelImageForDevice

Description

Returns in *devPtr the address of symbol symbol on the device. symbol is a variable that resides in global or constant memory space. If symbol cannot be found, or if symbol is not declared in the global or constant memory space, *devPtr is unchanged and the error cudaMemcpySymbol is returned.
Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.

Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
- `cudaGetSymbolAddress` [C++ API], `cudaGetSymbolSize` [C API], `cuModuleGetGlobal`

```c
__host__ cudaError_t cudaMemcpySymbolSize (size_t *size, const void *symbol)
```

Finds the size of the object associated with a CUDA symbol.

**Parameters**

- **size**
  - Size of object associated with symbol
- **symbol**
  - Device symbol address

**Returns**

- `cudaSuccess`, `cudaErrorInvalidSymbol`, `cudaErrorNoKernelImageForDevice`

**Description**

Returns in `*size` the size of symbol `symbol`. `symbol` is a variable that resides in global or constant memory space. If `symbol` cannot be found, or if `symbol` is not declared in global or constant memory space, `*size` is unchanged and the error `cudaErrorInvalidSymbol` is returned.

**Note:**

- Note that this function may also return error codes from previous, asynchronous launches.
- Use of a string naming a variable as the `symbol` parameter was deprecated in CUDA 4.1 and removed in CUDA 5.0.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

`cudaGetSymbolAddress (C API)`
`cudaGetSymbolSize (C++ API)`
`cuModuleGetGlobal`

```c
__host__ cudaError_t cudaHostAlloc (void **pHost, size_t size, unsigned int flags)
```

Allocates page-locked memory on the host.

**Parameters**

- **pHost**
  - Device pointer to allocated memory
- **size**
  - Requested allocation size in bytes
- **flags**
  - Requested properties of allocated memory

**Returns**

- `cudaSuccess`
- `cudaErrorInvalidValue`
- `cudaErrorMemoryAllocation`

**Description**

Allocates `size` bytes of host memory that is page-locked and accessible to the device. The driver tracks the virtual memory ranges allocated with this function and automatically accelerates calls to functions such as `cudaMemcpy()`. Since the memory can be accessed directly by the device, it can be read or written with much higher bandwidth than pageable memory obtained with functions such as `malloc()`. Allocating excessive amounts of pinned memory may degrade system performance, since it reduces the amount of memory available to the system for paging. As a result, this function is best used sparingly to allocate staging areas for data exchange between host and device.

The `flags` parameter enables different options to be specified that affect the allocation, as follows.

- **cudaHostAllocDefault**: This flag’s value is defined to be 0 and causes `cudaHostAlloc()` to emulate `cudaMallocHost()`.
- **cudaHostAllocPortable**: The memory returned by this call will be considered as pinned memory by all CUDA contexts, not just the one that performed the allocation.
- **cudaHostAllocMapped**: Maps the allocation into the CUDA address space. The device pointer to the memory may be obtained by calling `cudaHostGetDevicePointer()`.
cudaHostAllocWriteCombined: Allocates the memory as write-combined (WC). WC memory can be transferred across the PCI Express bus more quickly on some system configurations, but cannot be read efficiently by most CPUs. WC memory is a good option for buffers that will be written by the CPU and read by the device via mapped pinned memory or host->device transfers.

All of these flags are orthogonal to one another: a developer may allocate memory that is portable, mapped and/or write-combined with no restrictions.

In order for the cudaHostAllocMapped flag to have any effect, the CUDA context must support the cudaDeviceMapHost flag, which can be checked via cudaGetDeviceFlags[]. The cudaDeviceMapHost flag is implicitly set for contexts created via the runtime API.

The cudaHostAllocMapped flag may be specified on CUDA contexts for devices that do not support mapped pinned memory. The failure is deferred to cudaHostGetDevicePointer[] because the memory may be mapped into other CUDA contexts via the cudaHostAllocPortable flag.

Memory allocated by this function must be freed with cudaFreeHost[].

Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

cudaSetDeviceFlags, cudaMallocHost [C API], cudaFreeHost, cudaGetDeviceFlags, cuMemHostAlloc

__host__cudaError_t cudaHostGetDevicePointer (void **pDevice, void *pHost, unsigned int flags)

Passes back device pointer of mapped host memory allocated by cudaHostAlloc or registered by cudaHostRegister.

Parameters

pDevice

- Returned device pointer for mapped memory
**pHost**
- Requested host pointer mapping

**flags**
- Flags for extensions (must be 0 for now)

**Returns**
- `cudaSuccess`, `cudaErrorInvalidValue`, `cudaErrorMemoryAllocation`

**Description**
Passes back the device pointer corresponding to the mapped, pinned host buffer allocated by `cudaHostAlloc()` or registered by `cudaHostRegister[]`. `cudaHostGetDevicePointer()` will fail if the `cudaDeviceMapHost` flag was not specified before deferred context creation occurred, or if called on a device that does not support mapped, pinned memory.

For devices that have a non-zero value for the device attribute `cudaDevAttrCanUseHostPointerForRegisteredMem`, the memory can also be accessed from the device using the host pointer `pHost`. The device pointer returned by `cudaHostGetDevicePointer[]` may or may not match the original host pointer `pHost` and depends on the devices visible to the application. If all devices visible to the application have a non-zero value for the device attribute, the device pointer returned by `cudaHostGetDevicePointer[]` will match the original pointer `pHost`. If any device visible to the application has a zero value for the device attribute, the device pointer returned by `cudaHostGetDevicePointer[]` will not match the original host pointer `pHost`, but it will be suitable for use on all devices provided Unified Virtual Addressing is enabled. In such systems, it is valid to access the memory using either pointer on devices that have a non-zero value for the device attribute. Note however that such devices should access the memory using only of the two pointers and not both.

`flags` provides for future releases. For now, it must be set to 0.

**Note:**
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

**See also:**
cudaSetDeviceFlags, cudaHostAlloc, cuMemHostGetDevicePointer

__host__cudaError_t cudaHostGetFlags (unsigned int *pFlags, void *pHost)

Passes back flags used to allocate pinned host memory allocated by cudaHostAlloc.

Parameters

- **pFlags**: Returned flags word
- **pHost**: Host pointer

Returns

cudaSuccess, cudaErrorInvalidValue

Description

cudaHostGetFlags() will fail if the input pointer does not reside in an address range allocated by cudaHostAlloc().

Note:
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaHostAlloc, cuMemHostGetFlags
__host__ cudaError_t cudaHostRegister (void *ptr, 
size_t size, unsigned int flags)
Registers an existing host memory range for use by CUDA.

Parameters

ptr
- Host pointer to memory to page-lock

size
- Size in bytes of the address range to page-lock in bytes

flags
- Flags for allocation request

Returns
cudaSuccess, cudaErrorInvalidValue, cudaErrorMemoryAllocation, 
cudaErrorHostMemoryAlreadyRegistered, cudaErrorNotSupported

Description
Page-locks the memory range specified by ptr and size and maps it for the device(s) as specified by flags. This memory range also is added to the same tracking mechanism as cudaHostAlloc() to automatically accelerate calls to functions such as cudaMemcpy(). Since the memory can be accessed directly by the device, it can be read or written with much higher bandwidth than pageable memory that has not been registered. Page-locking excessive amounts of memory may degrade system performance, since it reduces the amount of memory available to the system for paging. As a result, this function is best used sparingly to register staging areas for data exchange between host and device.

On systems where pageableMemoryAccessUsesHostPageTables is true, cudaHostRegister will not page-lock the memory range specified by ptr but only populate unpopulated pages.

cudaHostRegister is supported only on I/O coherent devices that have a non-zero value for the device attribute cudaDevAttrHostRegisterSupported.

The flags parameter enables different options to be specified that affect the allocation, as follows.

- cudaHostRegisterDefault: On a system with unified virtual addressing, the memory will be both mapped and portable. On a system with no unified virtual addressing, the memory will be neither mapped nor portable.

- cudaHostRegisterPortable: The memory returned by this call will be considered as pinned memory by all CUDA contexts, not just the one that performed the allocation.

- cudaHostRegisterMapped: Maps the allocation into the CUDA address space. The device pointer to the memory may be obtained by calling cudaHostGetDevicePointer().
- **cudaHostRegisterIoMemory**: The passed memory pointer is treated as pointing to some memory-mapped I/O space, e.g. belonging to a third-party PCIe device, and it will marked as non cache-coherent and contiguous.

- **cudaHostRegisterReadOnly**: The passed memory pointer is treated as pointing to memory that is considered read-only by the device. On platforms without `cudaDevAttrPageableMemoryAccessUsesHostPageTables`, this flag is required in order to register memory mapped to the CPU as read-only. Support for the use of this flag can be queried from the device attribute `cudaDeviceAttrReadOnlyHostRegisterSupported`. Using this flag with a current context associated with a device that does not have this attribute set will cause `cudaHostRegister` to error with `cudaErrorNotSupported`.

  All of these flags are orthogonal to one another: a developer may page-lock memory that is portable or mapped with no restrictions.

  The CUDA context must have been created with the cudaMapHost flag in order for the `cudaHostRegisterMapped` flag to have any effect.

  The `cudaHostRegisterMapped` flag may be specified on CUDA contexts for devices that do not support mapped pinned memory. The failure is deferred to `cudaHostGetDevicePointer()` because the memory may be mapped into other CUDA contexts via the `cudaHostRegisterPortable` flag.

  For devices that have a non-zero value for the device attribute `cudaDevAttrCanUseHostPointerForRegisteredMem`, the memory can also be accessed from the device using the host pointer `ptr`. The device pointer returned by `cudaHostGetDevicePointer()` may or may not match the original host pointer `ptr` and depends on the devices visible to the application. If all devices visible to the application have a non-zero value for the device attribute, the device pointer returned by `cudaHostGetDevicePointer()` will match the original pointer `ptr`. If any device visible to the application has a zero value for the device attribute, the device pointer returned by `cudaHostGetDevicePointer()` will not match the original host pointer `ptr`, but it will be suitable for use on all devices provided Unified Virtual Addressing is enabled. In such systems, it is valid to access the memory using either pointer on devices that have a non-zero value for the device attribute. Note however that such devices should access the memory using only of the two pointers and not both.

  The memory page-locked by this function must be unregistered with `cudaHostUnregister[]`.

  **Note:**

  - Note that this function may also return error codes from previous, asynchronous launches.
  - Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

`cudaHostUnregister`, `cudaHostGetFlags`, `cudaHostGetDevicePointer`, `cuMemHostRegister`

```
__host__cudaError_t cudaHostUnregister (void *ptr)
```

Unregisters a memory range that was registered with `cudaHostRegister`.

### Parameters

**ptr**

- Host pointer to memory to unregister

### Returns

- `cudaSuccess`
- `cudaErrorInvalidValue`
- `cudaErrorHostMemoryNotRegistered`

### Description

Unmaps the memory range whose base address is specified by `ptr`, and makes it pageable again.

The base address must be the same one specified to `cudaHostRegister`.

Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

`cudaHostUnregister`, `cuMemHostUnregister`
`__host__` `__device__` `cudaError_t cudaMalloc (void **devPtr, size_t size)`

Allocate memory on the device.

**Parameters**

- **devPtr**
  - Pointer to allocated device memory
- **size**
  - Requested allocation size in bytes

**Returns**

- `cudaSuccess`, `cudaErrorInvalidValue`, `cudaErrorMemoryAllocation`

**Description**

Allocates `size` bytes of linear memory on the device and returns in `*devPtr` a pointer to the allocated memory. The allocated memory is suitably aligned for any kind of variable. The memory is not cleared. `cudaMalloc()` returns `cudaErrorMemoryAllocation` in case of failure.

The device version of `cudaFree` cannot be used with a `*devPtr` allocated using the host API, and vice versa.

**Note:**

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

**See also:**

- `cudaMallocPitch`, `cudaFree`, `cudaMallocArray`, `cudaFreeArray`, `cudaMalloc3D`, `cudaMalloc3DArray`, `cudaMallocHost` [C API], `cudaFreeHost`, `cudaHostAlloc`, `cuMemAlloc`
__host__ cudaError_t cudaMalloc3D (cudaPitchedPtr *pitchedDevPtr, cudaExtent extent)
Allocates logical 1D, 2D, or 3D memory objects on the device.

Parameters

pitchedDevPtr
- Pointer to allocated pitched device memory

extent
- Requested allocation size (width field in bytes)

Returns

cudaSuccess, cudaErrorInvalidValue, cudaErrorMemoryAllocation

Description

Allocates at least width * height * depth bytes of linear memory on the device and returns a cudaPitchedPtr in which ptr is a pointer to the allocated memory. The function may pad the allocation to ensure hardware alignment requirements are met. The pitch returned in the pitch field of pitchedDevPtr is the width in bytes of the allocation.

The returned cudaPitchedPtr contains additional fields xsize and ysize, the logical width and height of the allocation, which are equivalent to the width and height extent parameters provided by the programmer during allocation.

For allocations of 2D and 3D objects, it is highly recommended that programmers perform allocations using cudaMalloc3D() or cudaMallocPitch(). Due to alignment restrictions in the hardware, this is especially true if the application will be performing memory copies involving 2D or 3D objects (whether linear memory or CUDA arrays).

Note:

- Note that this function may also return error codes from previous, asynchronous launches.

- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.

- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaMalloc3DArray

__host__cudaError_t cudaMalloc3DArray (cudaArray_t *array, const cudaChannelFormatDesc *desc, cudaExtent extent, unsigned int flags)

Allocate an array on the device.

Parameters

array
  - Pointer to allocated array in device memory

desc
  - Requested channel format

extent
  - Requested allocation size (width field in elements)

flags
  - Flags for extensions

Returns

cudaSuccess, cudaErrorInvalidValue, cudaErrorMemoryAllocation

Description

Allocates a CUDA array according to the cudaChannelFormatDesc structure desc and returns a handle to the new CUDA array in *array.

The cudaChannelFormatDesc is defined as:

```c
struct cudaChannelFormatDesc {
  int x, y, z, w;
  enum cudaChannelFormatKind f;
};
```

where cudaChannelFormatKind is one of cudaChannelFormatKindSigned, cudaChannelFormatKindUnsigned, or cudaChannelFormatKindFloat.

cudaMalloc3DArray can allocate the following:

- A 1D array is allocated if the height and depth extents are both zero.
- A 2D array is allocated if only the depth extent is zero.
- A 3D array is allocated if all three extents are non-zero.
- A 1D layered CUDA array is allocated if only the height extent is zero and the cudaArrayLayered flag is set. Each layer is a 1D array. The number of layers is determined by the depth extent.

- A 2D layered CUDA array is allocated if all three extents are non-zero and the cudaArrayLayered flag is set. Each layer is a 2D array. The number of layers is determined by the depth extent.

- A cubemap CUDA array is allocated if all three extents are non-zero and the cudaArrayCubemap flag is set. Width must be equal to height, and depth must be six. A cubemap is a special type of 2D layered CUDA array, where the six layers represent the six faces of a cube. The order of the six layers in memory is the same as that listed in cudaGraphicsCubeFace.

- A cubemap layered CUDA array is allocated if all three extents are non-zero, and both, cudaArrayCubemap and cudaArrayLayered flags are set. Width must be equal to height, and depth must be a multiple of six. A cubemap layered CUDA array is a special type of 2D layered CUDA array that consists of a collection of cubemaps. The first six layers represent the first cubemap, the next six layers form the second cubemap, and so on.

The flags parameter enables different options to be specified that affect the allocation, as follows.

- **cudaArrayDefault**: This flag’s value is defined to be 0 and provides default array allocation

- **cudaArrayLayered**: Allocates a layered CUDA array, with the depth extent indicating the number of layers

- **cudaArrayCubemap**: Allocates a cubemap CUDA array. Width must be equal to height, and depth must be six. If the cudaArrayLayered flag is also set, depth must be a multiple of six.

- **cudaArraySurfaceLoadStore**: Allocates a CUDA array that could be read from or written to using a surface reference.

- **cudaArrayTextureGather**: This flag indicates that texture gather operations will be performed on the CUDA array. Texture gather can only be performed on 2D CUDA arrays.

- **cudaArraySparse**: Allocates a CUDA array without physical backing memory. The subregions within this sparse array can later be mapped onto a physical memory allocation by calling cuMemMapArrayAsync. This flag can only be used for creating 2D, 3D or 2D layered sparse CUDA arrays. The physical backing memory must be allocated via cuMemCreate.

- **cudaArrayDeferredMapping**: Allocates a CUDA array without physical backing memory. The entire array can later be mapped onto a physical memory allocation by calling cuMemMapArrayAsync. The physical backing memory must be allocated via cuMemCreate.

The width, height and depth extents must meet certain size requirements as listed in the following table. All values are specified in elements.
Note that 2D CUDA arrays have different size requirements if the cudaArrayTextureGather flag is set. In that case, the valid range for (width, height, depth) is [(1,maxTexture2DGather[0]), (1,maxTexture2DGather[1]), 0].

<table>
<thead>
<tr>
<th>CUDA array type</th>
<th>Valid extents that must always be met {(width range in elements), (height range), (depth range)}</th>
<th>Valid extents with cudaArraySurfaceLoadStore set {(width range in elements), (height range), (depth range)}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1D</td>
<td>{(1,maxTexture1D), 0, 0}</td>
<td>{1,maxSurface1D}, 0, 0</td>
</tr>
<tr>
<td>2D</td>
<td>{(1,maxTexture2D[0]), (1,maxTexture2D[1]), 0}</td>
<td>{1,maxSurface2D[0]}, (1,maxSurface2D[1]), 0</td>
</tr>
<tr>
<td>3D</td>
<td>{(1,maxTexture3D[0]), (1,maxTexture3D[1]), (1,maxTexture3D[2])}</td>
<td>{1,maxSurface3D[0]}, (1,maxSurface3D[1]), (1,maxSurface3D[2])</td>
</tr>
<tr>
<td></td>
<td>OR {1,maxTexture3DAlt[0], (1,maxTexture3DAlt[1]), (1,maxTexture3DAlt[2])}</td>
<td></td>
</tr>
<tr>
<td>1D Layered</td>
<td>{(1,maxTexture1DLayered[0]), 0, (1,maxTexture1DLayered[1])}</td>
<td>{1,maxSurface1DLayered[0]}, 0, (1,maxSurface1DLayered[1])</td>
</tr>
<tr>
<td>2D Layered</td>
<td>{(1,maxTexture2DLayered[0]), (1,maxTexture2DLayered[1]), (1,maxTexture2DLayered[2])}</td>
<td>{1,maxSurface2DLayered[0]}, (1,maxSurface2DLayered[1]), (1,maxSurface2DLayered[2])</td>
</tr>
<tr>
<td>Cubemap</td>
<td>{(1,maxTextureCubemap), (1,maxTextureCubemap), 6}</td>
<td>{1,maxSurfaceCubemap), (1,maxSurfaceCubemap), 6</td>
</tr>
<tr>
<td>Cubemap Layered</td>
<td>{(1,maxTextureCubemapLayered[0]), (1,maxTextureCubemapLayered[0]), (1,maxTextureCubemapLayered[1])}</td>
<td>{1,maxSurfaceCubemapLayered[0]), (1,maxSurfaceCubemapLayered[0]), (1,maxSurfaceCubemapLayered[1])</td>
</tr>
</tbody>
</table>

Note:
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaMalloc3D, cudaMalloc, cudaMallocPitch, cudaFree, cudaFreeArray, cudaMallocHost [C API], cudaFreeHost, cudaHostAlloc, make_cudaExtent, cuArray3DCreate

__host__ cudaError_t cudaMallocArray (cudaArray_t *array, const cudaChannelFormatDesc *desc, size_t width, size_t height, unsigned int flags)
Allocate an array on the device.

Parameters
array
- Pointer to allocated array in device memory
desc
- Requested channel format
width
- Requested array allocation width
height
- Requested array allocation height
flags
- Requested properties of allocated array

Returns
cudaSuccess, cudaErrorInvalidValue, cudaErrorMemoryAllocation

Description
Allocates a CUDA array according to the cudaChannelFormatDesc structure desc and returns a handle to the new CUDA array in *array.
The cudaChannelFormatDesc is defined as:
```c
struct cudaChannelFormatDesc {
    int x, y, z, w;
    enum cudaChannelFormatKind f;
};
```

where cudaChannelFormatKind is one of cudaChannelFormatKindSigned, cudaChannelFormatKindUnsigned, or cudaChannelFormatKindFloat.
The flags parameter enables different options to be specified that affect the allocation, as follows.
- cudaArrayDefault: This flag’s value is defined to be 0 and provides default array allocation
- cudaArraySurfaceLoadStore: Allocates an array that can be read from or written to using a surface reference
• **cudaArrayTextureGather**: This flag indicates that texture gather operations will be performed on the array.

• **cudaArraySparse**: Allocates a CUDA array without physical backing memory. The subregions within this sparse array can later be mapped onto a physical memory allocation by calling `cuMemMapArrayAsync`. The physical backing memory must be allocated via `cuMemCreate`.

• **cudaArrayDeferredMapping**: Allocates a CUDA array without physical backing memory. The entire array can later be mapped onto a physical memory allocation by calling `cuMemMapArrayAsync`. The physical backing memory must be allocated via `cuMemCreate`.

(width and height must meet certain size requirements. See [cudaMalloc3DArray](https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDA__MEMORY.html) for more details.)

---

### Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

---

### See also:

`cudaMalloc`, `cudaMallocPitch`, `cudaFree`, `cudaFreeArray`, `cudaMallocHost (C API)`, `cudaFreeHost`, `cudaMalloc3D`, `cudaMalloc3DArray`, `cudaHostAlloc`, `cuArrayCreate`

---

**__host__cudaError_t cudaMallocHost (void **ptr, size_t size)**

Allocates page-locked memory on the host.

**Parameters**

- **ptr** - Pointer to allocated host memory
- **size** - Requested allocation size in bytes
Returns

cudaSuccess, cudaErrorInvalidValue, cudaErrorMemoryAllocation

Description

Allocates size bytes of host memory that is page-locked and accessible to the device. The driver tracks the virtual memory ranges allocated with this function and automatically accelerates calls to functions such as cudaMemcpy[]. Since the memory can be accessed directly by the device, it can be read or written with much higher bandwidth than pageable memory obtained with functions such as malloc[].

On systems where pageableMemoryAccessUsesHostPageTables is true, cudaMallocHost[] may not page-lock the allocated memory.

Page-locking excessive amounts of memory with cudaMallocHost[] may degrade system performance, since it reduces the amount of memory available to the system for paging. As a result, this function is best used sparingly to allocate staging areas for data exchange between host and device.

Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

cudaMalloc, cudaMallocPitch, cudaMallocArray, cudaMalloc3D, cudaMalloc3DArray, cudaHostAlloc, cudaFree, cudaFreeArray, cudaMallocHost [C++ API], cudaFreeHost, cudaHostAlloc, cuMemAllocHost
__host__ cudaError_t cudaMallocManaged (void **devPtr, size_t size, unsigned int flags)

Allocates memory that will be automatically managed by the Unified Memory system.

**Parameters**

*devPtr*
- Pointer to allocated device memory

*size*
- Requested allocation size in bytes

*flags*
- Must be either `cudaMemAttachGlobal` or `cudaMemAttachHost` (defaults to `cudaMemAttachGlobal`)

**Returns**

`cudaSuccess`, `cudaErrorMemoryAllocation`, `cudaErrorNotSupported`, `cudaErrorInvalidValue`

**Description**

Allocates `size` bytes of managed memory on the device and returns in `*devPtr` a pointer to the allocated memory. If the device doesn’t support allocating managed memory, `cudaErrorNotSupported` is returned. Support for managed memory can be queried using the device attribute `cudaDevAttrManagedMemory`. The allocated memory is suitably aligned for any kind of variable. The memory is not cleared. If `size` is 0, `cudaMallocManaged` returns `cudaErrorInvalidValue`. The pointer is valid on the CPU and on all GPUs in the system that support managed memory. All accesses to this pointer must obey the Unified Memory programming model.

*flags* specifies the default stream association for this allocation. *flags* must be one of `cudaMemAttachGlobal` or `cudaMemAttachHost`. The default value for *flags* is `cudaMemAttachGlobal`. If `cudaMemAttachGlobal` is specified, then this memory is accessible from any stream on any device. If `cudaMemAttachHost` is specified, then the allocation should not be accessed from devices that have a zero value for the device attribute `cudaDevAttrConcurrentManagedAccess`; an explicit call to `cudaStreamAttachMemAsync` will be required to enable access on such devices.

If the association is later changed via `cudaStreamAttachMemAsync` to a single stream, the default association, as specified during `cudaMallocManaged`, is restored when that stream is destroyed. For __managed__ variables, the default association is always `cudaMemAttachGlobal`. Note that destroying a stream is an asynchronous operation, and as a result, the change to default association won’t happen until all work in the stream has completed.

Memory allocated with `cudaMallocManaged` should be released with `cudaFree`. 
Device memory oversubscription is possible for GPUs that have a non-zero value for the device attribute `cudaDevAttrConcurrentManagedAccess`. Managed memory on such GPUs may be evicted from device memory to host memory at any time by the Unified Memory driver in order to make room for other allocations.

In a multi-GPU system where all GPUs have a non-zero value for the device attribute `cudaDevAttrConcurrentManagedAccess`, managed memory may not be populated when this API returns and instead may be populated on access. In such systems, managed memory can migrate to any processor’s memory at any time. The Unified Memory driver will employ heuristics to maintain data locality and prevent excessive page faults to the extent possible. The application can also guide the driver about memory usage patterns via `cudaMemAdvise`. The application can also explicitly migrate memory to a desired processor’s memory via `cudaMemPrefetchAsync`.

In a multi-GPU system where all of the GPUs have a zero value for the device attribute `cudaDevAttrConcurrentManagedAccess` and all the GPUs have peer-to-peer support with each other, the physical storage for managed memory is created on the GPU which is active at the time `cudaMallocManaged` is called. All other GPUs will reference the data at reduced bandwidth via peer mappings over the PCIe bus. The Unified Memory driver does not migrate memory among such GPUs.

In a multi-GPU system where not all GPUs have peer-to-peer support with each other and where the value of the device attribute `cudaDevAttrConcurrentManagedAccess` is zero for at least one of those GPUs, the location chosen for physical storage of managed memory is system-dependent.

- On Linux, the location chosen will be device memory as long as the current set of active contexts are on devices that either have peer-to-peer support with each other or have a non-zero value for the device attribute `cudaDevAttrConcurrentManagedAccess`. If there is an active context on a GPU that does not have a non-zero value for that device attribute and it does not have peer-to-peer support with the other devices that have active contexts on them, then the location for physical storage will be ‘zero-copy’ or host memory. Note that this means that managed memory that is located in device memory is migrated to host memory if a new context is created on a GPU that doesn’t have a non-zero value for the device attribute and does not support peer-to-peer with at least one of the other devices that has an active context. This in turn implies that context creation may fail if there is insufficient host memory to migrate all managed allocations.

- On Windows, the physical storage is always created in ‘zero-copy’ or host memory. All GPUs will reference the data at reduced bandwidth over the PCIe bus. In these circumstances, use of the environment variable CUDA_VISIBLE_DEVICES is recommended to restrict CUDA to only use those GPUs that have peer-to-peer support. Alternatively, users can also set CUDA_MANAGED_FORCE_DEVICE_ALLOC to a non-zero value to force the driver to always use device memory for physical storage. When this environment variable is set to a non-zero value, all devices used in that process that support managed memory have to be peer-to-peer compatible with each other. The error
cudaErrorInvalidDevice will be returned if a device that supports managed memory is used and it is not peer-to-peer compatible with any of the other managed memory supporting devices that were previously used in that process, even if cudaDeviceReset has been called on those devices. These environment variables are described in the CUDA programming guide under the “CUDA environment variables” section.

Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaMallocPitch, cudaFree, cudaMallocArray, cudaFreeArray, cudaMalloc3D, cudaMalloc3DArray, cudaMallocHost (C API), cudaFreeHost, cudaHostAlloc, cudaDeviceGetAttribute, cudaStreamAttachMemAsync, cuMemAllocManaged

__host__cudaError_t cudaMallocMipmappedArray (cudaMipmappedArray_t *mipmappedArray, const cudaChannelFormatDesc *desc, cudaExtent extent, unsigned int numLevels, unsigned int flags)

Allocate a mipmapped array on the device.

Parameters

mipmappedArray
- Pointer to allocated mipmapped array in device memory
desc
- Requested channel formatextent
- Requested allocation size (width field in elements)
numLevels
- Number of mipmap levels to allocateflags
- Flags for extensions
Returns

cudaSuccess, cudaErrorInvalidValue, cudaErrorMemoryAllocation

Description

Allocates a CUDA mipmapped array according to the cudaChannelFormatDesc structure desc and returns a handle to the new CUDA mipmapped array in *mipmappedArray. numLevels specifies the number of mipmap levels to be allocated. This value is clamped to the range $[1, 1 + \text{floor}(\log_2(\text{max(width, height, depth))))]$. The cudaChannelFormatDesc is defined as:

```c
struct cudaChannelFormatDesc {
    int x, y, z, w;
    enum cudaChannelFormatKind f;
};
```

where cudaChannelFormatKind is one of cudaChannelFormatKindSigned, cudaChannelFormatKindUnsigned, or cudaChannelFormatKindFloat.

cudaMallocMipmappedArray() can allocate the following:

- A 1D mipmapped array is allocated if the height and depth extents are both zero.
- A 2D mipmapped array is allocated if only the depth extent is zero.
- A 3D mipmapped array is allocated if all three extents are non-zero.
- A 1D layered CUDA mipmapped array is allocated if only the height extent is zero and the cudaArrayLayered flag is set. Each layer is a 1D mipmapped array. The number of layers is determined by the depth extent.
- A 2D layered CUDA mipmapped array is allocated if all three extents are non-zero and the cudaArrayLayered flag is set. Each layer is a 2D mipmapped array. The number of layers is determined by the depth extent.
- A cubemap CUDA mipmapped array is allocated if all three extents are non-zero and the cudaArrayCubemap flag is set. Width must be equal to height, and depth must be six. The order of the six layers in memory is the same as that listed in cudaGraphicsCubeFace.
- A cubemap layered CUDA mipmapped array is allocated if all three extents are non-zero, and both, cudaArrayCubemap and cudaArrayLayered flags are set. Width must be equal to height, and depth must be a multiple of six. A cubemap layered CUDA mipmapped array is a special type of 2D layered CUDA mipmapped array that consists of a collection of cubemap mipmapped arrays. The first six layers represent the first cubemap mipmapped array, the next six layers form the second cubemap mipmapped array, and so on.

The flags parameter enables different options to be specified that affect the allocation, as follows.
- **cudaArrayDefault**: This flag’s value is defined to be 0 and provides default mipmapped array allocation.

- **cudaArrayLayered**: Allocates a layered CUDA mipmapped array, with the depth extent indicating the number of layers.

- **cudaArrayCubemap**: Allocates a cubemap CUDA mipmapped array. Width must be equal to height, and depth must be six. If the cudaArrayLayered flag is also set, depth must be a multiple of six.

- **cudaArraySurfaceLoadStore**: This flag indicates that individual mipmap levels of the CUDA mipmapped array will be read from or written to using a surface reference.

- **cudaArrayTextureGather**: This flag indicates that texture gather operations will be performed on the CUDA array. Texture gather can only be performed on 2D CUDA mipmapped arrays, and the gather operations are performed only on the most detailed mipmap level.

- **cudaArraySparse**: Allocates a CUDA mipmapped array without physical backing memory. The subregions within this sparse array can later be mapped onto a physical memory allocation by calling `cuMemMapArrayAsync`. This flag can only be used for creating 2D, 3D or 2D layered sparse CUDA mipmapped arrays. The physical backing memory must be allocated via `cuMemCreate`.

- **cudaArrayDeferredMapping**: Allocates a CUDA mipmapped array without physical backing memory. The entire array can later be mapped onto a physical memory allocation by calling `cuMemMapArrayAsync`. The physical backing memory must be allocated via `cuMemCreate`.

The width, height and depth extents must meet certain size requirements as listed in the following table. All values are specified in elements.

<table>
<thead>
<tr>
<th>CUDA array type</th>
<th>Valid extents that must always be met {(width range in elements), (height range), (depth range)}</th>
<th>Valid extents with cudaArraySurfaceLoadStore set {(width range in elements), (height range), (depth range)}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1D</td>
<td>{ [1, maxTexture1DMipmap[0]], 0, 0 }</td>
<td>{ [1, maxSurface1D], 0, 0 }</td>
</tr>
<tr>
<td>2D</td>
<td>{ [1, maxTexture2DMipmap[0]], [1, maxTexture2DMipmap[1]], 0 }</td>
<td>{ [1, maxSurface2D[0]], [1, maxSurface2D[1]], 0 }</td>
</tr>
<tr>
<td>3D</td>
<td>{ [1, maxTexture3D[0]], [1, maxTexture3D[1]], [1, maxTexture3D[2]] } OR { [1, maxTexture3DAlt[0]], [1, maxTexture3DAlt[1]], [1, maxTexture3DAlt[2]] }</td>
<td>{ [1, maxSurface3D[0]], [1, maxSurface3D[1]], [1, maxSurface3D[2]] }</td>
</tr>
<tr>
<td>1D Layered</td>
<td>{ [1, maxTexture1DLayered[0]], 0, [1, maxTexture1DLayered[1]] }</td>
<td>{ [1, maxSurface1DLayered[0]], 0, [1, maxSurface1DLayered[1]] }</td>
</tr>
<tr>
<td>CUDA array type</td>
<td>Valid extents that must always be met</td>
<td>Valid extents with cudaArraySurfaceLoadStore set</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------------------------------</td>
<td>-----------------------------------------------</td>
</tr>
<tr>
<td>2D Layered</td>
<td>{(1, maxTexture2DLayered[0]), (1, maxTexture2DLayered[1]), (1, maxTexture2DLayered[2])}</td>
<td>{(1, maxSurface2DLayered[0]), (1, maxSurface2DLayered[1]), (1, maxSurface2DLayered[2])}</td>
</tr>
<tr>
<td>Cubemap</td>
<td>{(1, maxTextureCubemap), (1, maxTextureCubemap)}, 6 }</td>
<td>{(1, maxSurfaceCubemap), (1, maxSurfaceCubemap)}, 6 }</td>
</tr>
<tr>
<td>Cubemap Layered</td>
<td>{(1, maxTextureCubemapLayered[0]), (1, maxTextureCubemapLayered[0]), (1, maxTextureCubemapLayered[1])}</td>
<td>{(1, maxSurfaceCubemapLayered[0]), (1, maxSurfaceCubemapLayered[0]), (1, maxSurfaceCubemapLayered[1])}</td>
</tr>
</tbody>
</table>

**Note:**
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaMalloc3D, cudaMalloc, cudaMallocPitch, cudaFree, cudaFreeArray, cudaMallocHost [C API], cudaFreeHost, cudaHostAlloc, make_cudaExtent, cuMipmappedArrayCreate

**__host__cudaError_t cudaMallocPitch (void **devPtr, size_t *pitch, size_t width, size_t height)**

Allocates pitched memory on the device.

**Parameters**
- **devPtr** - Pointer to allocated pitched device memory
- **pitch** - Pitch for allocation
- **width** - Requested pitched allocation width (in bytes)
**height**
- Requested pitched allocation height

**Returns**
cudaSuccess, cudaErrorInvalidValue, cudaErrorMemoryAllocation

**Description**
Allocates at least \( \text{width} \times \text{height} \) bytes of linear memory on the device and returns in \(*\text{devPtr}*) a pointer to the allocated memory. The function may pad the allocation to ensure that corresponding pointers in any given row will continue to meet the alignment requirements for coalescing as the address is updated from row to row. The pitch returned in \(*\text{pitch}*) by cudaMallocPitch() is the width in bytes of the allocation. The intended usage of \( \text{pitch} \) is as a separate parameter of the allocation, used to compute addresses within the 2D array. Given the row and column of an array element of type \( T \), the address is computed as:

\[
T\* \text{pElement} = (T\*)((\text{char}*)\text{BaseAddress} + \text{Row} \times \text{pitch}) + \text{Column};
\]

For allocations of 2D arrays, it is recommended that programmers consider performing pitch allocations using cudaMallocPitch(). Due to pitch alignment restrictions in the hardware, this is especially true if the application will be performing 2D memory copies between different regions of device memory (whether linear memory or CUDA arrays).

**Note:**
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

**See also:**
cudaMalloc, cudaFree, cudaMallocArray, cudaFreeArray, cudaMallocHost [C API], cudaFreeHost, cudaMalloc3D, cudaMalloc3DArray, cudaMemcpy, cuMemAllocPitch
__host__cudaError_t cudaMemAdvise (const void *devPtr, size_t count, cudaMemoryAdvise advice, int device)

Advise about the usage of a given memory range.

Parameters

devPtr
- Pointer to memory to set the advice for

count
- Size in bytes of the memory range

advice
- Advice to be applied for the specified memory range

device
- Device to apply the advice for

Returns
cudaSuccess, cudaErrorInvalidValue, cudaErrorInvalidDevice

Description

Advise the Unified Memory subsystem about the usage pattern for the memory range starting at devPtr with a size of count bytes. The start address and end address of the memory range will be rounded down and rounded up respectively to be aligned to CPU page size before the advice is applied. The memory range must refer to managed memory allocated via cudaMallocManaged or declared via __managed__ variables. The memory range could also refer to system-allocated pageable memory provided it represents a valid, host-accessible region of memory and all additional constraints imposed by advice as outlined below are also satisfied. Specifying an invalid system-allocated pageable memory range results in an error being returned.

The advice parameter can take the following values:

- cudaMemAdviseSetReadMostly: This implies that the data is mostly going to be read from and only occasionally written to. Any read accesses from any processor to this region will create a read-only copy of at least the accessed pages in that processor’s memory. Additionally, if cudaMemcpyAsync is called on this region, it will create a read-only copy of the data on the destination processor. If any processor writes to this region, all copies of the corresponding page will be invalidated except for the one where the write occurred. The device argument is ignored for this advice. Note that for a page to be read-duplicated, the accessing processor must either be the CPU or a GPU that has a non-zero value for the device attribute cudaDevAttrConcurrentManagedAccess.

Also, if a context is created on a device that does not have the device attribute
cudaDevAttrConcurrentManagedAccess set, then read-duplication will not occur until all such contexts are destroyed. If the memory region refers to valid system-allocated pageable memory, then the accessing device must have a non-zero value for the device attribute cudaDevAttrPageableMemoryAccess for a read-only copy to be created on that device. Note however that if the accessing device also has a non-zero value for the device attribute cudaDevAttrPageableMemoryAccessUsesHostPageTables, then setting this advice will not create a read-only copy when that device accesses this memory region.

- cudaMemAdviceUnsetReadMostly: Undoes the effect of cudaMemAdviceReadMostly and also prevents the Unified Memory driver from attempting heuristic read-duplication on the memory range. Any read-duplicated copies of the data will be collapsed into a single copy. The location for the collapsed copy will be the preferred location if the page has a preferred location and one of the read-duplicated copies was resident at that location. Otherwise, the location chosen is arbitrary.

- cudaMemAdviseSetPreferredLocation: This advice sets the preferred location for the data to be the memory belonging to device. Passing in cudaCpuDeviceId for device sets the preferred location as host memory. If device is a GPU, then it must have a non-zero value for the device attribute cudaDevAttrConcurrentManagedAccess. Setting the preferred location does not cause data to migrate to that location immediately. Instead, it guides the migration policy when a fault occurs on that memory region. If the data is already in its preferred location and the faulting processor can establish a mapping without requiring the data to be migrated, then data migration will be avoided. On the other hand, if the data is not in its preferred location or if a direct mapping cannot be established, then it will be migrated to the processor accessing it. It is important to note that setting the preferred location does not prevent data prefetching done using cudaMemPrefetchAsync. Having a preferred location can override the page thrash detection and resolution logic in the Unified Memory driver. Normally, if a page is detected to be constantly thrashing between for example host and device memory, the page may eventually be pinned to host memory by the Unified Memory driver. But if the preferred location is set as device memory, then the page will continue to thrash indefinitely. If cudaMemAdviseSetReadMostly is also set on this memory region or any subset of it, then the policies associated with that advice will override the policies of this advice, unless read accesses from device will not result in a read-only copy being created on that device as outlined in description for the advice cudaMemAdviseSetReadMostly. If the memory region refers to valid system-allocated pageable memory, then device must have a non-zero value for the device attribute cudaDevAttrPageableMemoryAccess.

- cudaMemAdviseUnsetPreferredLocation: Undoes the effect of cudaMemAdviseSetPreferredLocation and changes the preferred location to none.

- cudaMemAdviseSetAccessedBy: This advice implies that the data will be accessed by device. Passing in cudaCpuDeviceId for device will set the advice for the CPU. If device is a GPU, then the device attribute cudaDevAttrConcurrentManagedAccess must be non-zero. This advice does not cause data migration and has no impact on the location of the data per se. Instead, it causes the data to always be mapped in
the specified processor’s page tables, as long as the location of the data permits a mapping to be established. If the data gets migrated for any reason, the mappings are updated accordingly. This advice is recommended in scenarios where data locality is not important, but avoiding faults is. Consider for example a system containing multiple GPUs with peer-to-peer access enabled, where the data located on one GPU is occasionally accessed by peer GPUs. In such scenarios, migrating data over to the other GPUs is not as important because the accesses are infrequent and the overhead of migration may be too high. But preventing faults can still help improve performance, and so having a mapping set up in advance is useful. Note that on CPU access of this data, the data may be migrated to host memory because the CPU typically cannot access device memory directly. Any GPU that had the cudaMemAdviceSetAccessedBy flag set for this data will now have its mapping updated to point to the page in host memory. If cudaMemAdviseSetReadMostly is also set on this memory region or any subset of it, then the policies associated with that advice will override the policies of this advice. Additionally, if the preferred location of this memory region or any subset of it is also device, then the policies associated with cudaMemAdviseSetPreferredLocation will override the policies of this advice. If the memory region refers to valid system-allocated pageable memory, then device must have a non-zero value for the device attribute cudaDevAttrPageableMemoryAccess. Additionally, if device has a non-zero value for the device attribute cudaDevAttrPageableMemoryAccessUsesHostPageTables, then this call has no effect.

- cudaMemAdviseUnsetAccessedBy: Undoes the effect of cudaMemAdviseSetAccessedBy. Any mappings to the data from device may be removed at any time causing accesses to result in non-fatal page faults. If the memory region refers to valid system-allocated pageable memory, then device must have a non-zero value for the device attribute cudaDevAttrPageableMemoryAccess. Additionally, if device has a non-zero value for the device attribute cudaDevAttrPageableMemoryAccessUsesHostPageTables, then this call has no effect.

**Note:**

- Note that this function may also return error codes from previous, asynchronous launches.
- This function exhibits asynchronous behavior for most use cases.
- This function uses standard default stream semantics.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.
__host__cudaError_t cudaMemAdvise_v2 (const void *devPtr, size_t count, cudaMemoryAdvise advice, cudaMemLocation location)

Advise about the usage of a given memory range.

Parameters

devPtr
   - Pointer to memory to set the advice for

count
   - Size in bytes of the memory range

advice
   - Advice to be applied for the specified memory range

location
   - Location to apply the advice for

Returns

cudaSuccess, cudaErrorInvalidValue, cudaErrorInvalidDevice

Description

Advise the Unified Memory subsystem about the usage pattern for the memory range starting at devPtr with a size of count bytes. The start address and end address of the memory range will be rounded down and rounded up respectively to be aligned to CPU page size before the advice is applied. The memory range must refer to managed memory allocated via cudaMemAllocManaged or declared via __managed__ variables. The memory range could also refer to system-allocated pageable memory provided it represents a valid, host-accessible region of memory and all additional constraints imposed by advice as outlined below are also satisfied. Specifying an invalid system-allocated pageable memory range results in an error being returned.

The advice parameter can take the following values:

- cudaMemAdviseSetReadMostly: This implies that the data is mostly going to be read from and only occasionally written to. Any read accesses from any processor to this region will create a read-only copy of at least the accessed pages in that processor’s memory. Additionally, if cudaMemcpyAsync or cudaMemcpyAsync_v2 is called on this region, it will create a read-only copy of the data on the destination processor. If the target location for cudaMemcpyAsync_v2 is a host NUMA node
and a read-only copy already exists on another host NUMA node, that copy will be migrated to the targeted host NUMA node. If any processor writes to this region, all copies of the corresponding page will be invalidated except for the one where the write occurred. If the writing processor is the CPU and the preferred location of the page is a host NUMA node, then the page will also be migrated to that host NUMA node. The location argument is ignored for this advice. Note that for a page to be read-duplicated, the accessing processor must either be the CPU or a GPU that has a non-zero value for the device attribute `cudaDevAttrConcurrentManagedAccess`. Also, if a context is created on a device that does not have the device attribute `cudaDevAttrConcurrentManagedAccess` set, then read-duplication will not occur until all such contexts are destroyed. If the memory region refers to valid system-allocated pageable memory, then the accessing device must have a non-zero value for the device attribute `cudaDevAttrPageableMemoryAccess` for a read-only copy to be created on that device. Note however that if the accessing device also has a non-zero value for the device attribute `cudaDevAttrPageableMemoryAccessUsesHostPageTables`, then setting this advice will not create a read-only copy when that device accesses this memory region.

- `cudaMemAdviceUnsetReadMostly`: Undoes the effect of `cudaMemAdviseSetReadMostly` and also prevents the Unified Memory driver from attempting heuristic read-duplication on the memory range. Any read-duplicated copies of the data will be collapsed into a single copy. The location for the collapsed copy will be the preferred location if the page has a preferred location and one of the read-duplicated copies was resident at that location. Otherwise, the location chosen is arbitrary. Note: The location argument is ignored for this advice.

- `cudaMemAdviseSetPreferredLocation`: This advice sets the preferred location for the data to be the memory belonging to location. When `cudaMemLocation::type` is `cudaMemLocationTypeHost`, `cudaMemLocation::id` is ignored and the preferred location is set to be host memory. To set the preferred location to a specific host NUMA node, applications must set `cudaMemLocation::type` to `cudaMemLocationTypeHostNuma` and `cudaMemLocation::id` must specify the NUMA ID of the host NUMA node. If `cudaMemLocation::type` is set to `cudaMemLocationTypeHostNumaCurrent`, `cudaMemLocation::id` will be ignored and the host NUMA node closest to the calling thread’s CPU will be used as the preferred location. If `cudaMemLocation::type` is a `cudaMemLocationTypeDevice`, then `cudaMemLocation::id` must be a valid device ordinal and the device must have a non-zero value for the device attribute `cudaDevAttrConcurrentManagedAccess`. Setting the preferred location does not cause data to migrate to that location immediately. Instead, it guides the migration policy when a fault occurs on that memory region. If the data is already in its preferred location and the faulting processor can establish a mapping without requiring the data to be migrated, then data migration will be avoided. On the other hand, if the data is not in its preferred location or if a direct mapping cannot be established, then it will be migrated to the processor accessing it. It is important to note that setting the preferred location does not prevent data prefetching done using `cudaMemPrefetchAsync`. Having a preferred
location can override the page thrash detection and resolution logic in the Unified Memory driver. Normally, if a page is detected to be constantly thrashing between for example host and device memory, the page may eventually be pinned to host memory by the Unified Memory driver. But if the preferred location is set as device memory, then the page will continue to thrash indefinitely. If `cudaMemAdviseSetReadMostly` is also set on this memory region or any subset of it, then the policies associated with that advice will override the policies of this advice, unless read accesses from location will not result in a read-only copy being created on that processor as outlined in description for the advice `cudaMemAdviseSetReadMostly`. If the memory region refers to valid system-allocated pageable memory, and `cudaMemLocation::type` is `cudaMemLocationTypeDevice` then `cudaMemLocation::id` must be a valid device that has a non-zero value for the device attribute `cudaDevAttrPageableMemoryAccess`.

- `cudaMemAdviseUnsetPreferredLocation`: Undoes the effect of `cudaMemAdviseSetPreferredLocation` and changes the preferred location to none. The location argument is ignored for this advice.

- `cudaMemAdviseSetAccessedBy`: This advice implies that the data will be accessed by processor location. The `cudaMemLocation::type` must be either `cudaMemLocationTypeDevice` with `cudaMemLocation::id` representing a valid device ordinal or `cudaMemLocationTypeHost` and `cudaMemLocation::id` will be ignored. All other location types are invalid. If `cudaMemLocation::id` is a GPU, then the device attribute `cudaDevAttrConcurrentManagedAccess` must be non-zero. This advice does not cause data migration and has no impact on the location of the data per se. Instead, it causes the data to always be mapped in the specified processor’s page tables, as long as the location of the data permits a mapping to be established. If the data gets migrated for any reason, the mappings are updated accordingly. This advice is recommended in scenarios where data locality is not important, but avoiding faults is. Consider for example a system containing multiple GPUs with peer-to-peer access enabled, where the data located on one GPU is occasionally accessed by peer GPUs. In such scenarios, migrating data over to the other GPUs is not as important because the accesses are infrequent and the overhead of migration may be too high. But preventing faults can still help improve performance, and so having a mapping set up in advance is useful. Note that on CPU access of this data, the data may be migrated to host memory because the CPU typically cannot access device memory directly. Any GPU that had the `cudaMemAdviseSetAccessedBy` flag set for this data will now have its mapping updated to point to the page in host memory. If `cudaMemAdviseSetReadMostly` is also set on this memory region or any subset of it, then the policies associated with that advice will override the policies of this advice. Additionally, if the preferred location of this memory region or any subset of it is also `location`, then the policies associated with `CU_MEM_ADVISE_SET_PREFERRED_LOCATION` will override the policies of this advice. If the memory region refers to valid system-allocated pageable memory, and `cudaMemLocation::type` is `cudaMemLocationTypeDevice` then device in `cudaMemLocation::id` must have a non-zero value for the device attribute `cudaDevAttrPageableMemoryAccess`. Additionally, if `cudaMemLocation::id` has a non-zero
value for the device attribute `cudaDevAttrPageableMemoryAccessUsesHostPageTables`, then this call has no effect.

**CU_MEM_ADVISE_UNSET_ACCESSED_BY**: Undoes the effect of `cudaMemAdviseSetAccessedBy`. Any mappings to the data from `location` may be removed at any time causing accesses to result in non-fatal page faults. If the memory region refers to valid system-allocated pageable memory, and `cudaMemLocation::type` is `cudaMemLocationTypeDevice` then device in `cudaMemLocation::id` must have a non-zero value for the device attribute `cudaDevAttrPageableMemoryAccess`. Additionally, if `cudaMemLocation::id` has a non-zero value for the device attribute `cudaDevAttrPageableMemoryAccessUsesHostPageTables`, then this call has no effect.

**Note:**
- Note that this function may also return error codes from previous, asynchronous launches.
- This function exhibits asynchronous behavior for most use cases.
- This function uses standard default stream semantics.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
`cudaMemcpy`, `cudaMemcpyPeer`, `cudaMemcpyAsync`, `cudaMemcpy3DPeerAsync`, `cudaMemPrefetchAsync`, `cuMemAdvise`, `cuMemAdvise_v2`

```c
__host__cudaError_t cudaMemcpy (void *dst, const void *src, size_t count, cudaMemcpyKind kind)
```
Copies data between host and device.

**Parameters**

- **dst**
  - Destination memory address
- **src**
  - Source memory address
- **count**
  - Size in bytes to copy
kind
- Type of transfer

Returns
cudaSuccess, cudaErrorInvalidValue, cudaErrorInvalidMemcpyDirection

Description
Copies count bytes from the memory area pointed to by src to the memory area pointed to by dst, where kind specifies the direction of the copy, and must be one of cudaMemcpyHostToHost, cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice, or cudaMemcpyDefault. Passing cudaMemcpyDefault is recommended, in which case the type of transfer is inferred from the pointer values. However, cudaMemcpyDefault is only allowed on systems that support unified virtual addressing. Calling cudaMemcpy() with dst and src pointers that do not match the direction of the copy results in an undefined behavior.

Note:
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.
- This function exhibits synchronous behavior for most use cases.
- Memory regions requested must be either entirely registered with CUDA, or in the case of host pageable transfers, not registered at all. Memory regions spanning over allocations that are both registered and not registered with CUDA are not supported and will return CUDA_ERROR_INVALID_VALUE.

See also:
__host__ cudaError_t cudaMemcpy2D (void *dst, size_t dpitch, const void *src, size_t spitch, size_t width, size_t height, cudaMemcpyKind kind)

Copies data between host and device.

Parameters

dst
   - Destination memory address
dpitch
   - Pitch of destination memory
src
   - Source memory address
spitch
   - Pitch of source memory
width
   - Width of matrix transfer [columns in bytes]
height
   - Height of matrix transfer [rows]
kind
   - Type of transfer

Returns

cudaSuccess, cudaMemcpyInvalidValue, cudaMemcpyInvalidPitchValue, cudaMemcpyInvalidMemcpyDirection

description

Copies a matrix (height rows of width bytes each) from the memory area pointed to by src to the memory area pointed to by dst, where kind specifies the direction of the copy, and must be one of cudaMemcpyHostToDevice, cudaMemcpyHostToHost, cudaMemcpyDeviceToDevice, or cudaMemcpyDefault. Passing cudaMemcpyDefault is recommended, in which case the type of transfer is inferred from the pointer values. However, cudaMemcpyDefault is only allowed on systems that support unified virtual addressing. dpitch and spitch are the widths in memory in bytes of the 2D arrays pointed to by dst and src, including any padding added to the end of each row. The memory areas may not overlap. width must not exceed either dpitch or spitch. Calling cudaMemcpy2D with dst and src pointers that do not match the direction of the copy results in an undefined behavior. cudaMemcpy2D returns an error if dpitch or spitch exceeds the maximum allowed.
Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaMemcpy2DAsync no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.
- Memory regions requested must be either entirely registered with CUDA, or in the case of host pageable transfers, not registered at all. Memory regions spanning over allocations that are both registered and not registered with CUDA are not supported and will return CUDA_ERROR_INVALID_VALUE.

See also:
cudamempcy, cudaMemcpy2DToArray, cudaMemcpy2DFromArray, cudaMemcpy2DArrayToArray, cudaMemcpyToArray, cudaMemcpyFromSymbol, cudaMemcpy2DAsync, cudaMemcpy2DFromArrayAsync, cudaMemcpy2FromArrayAsync, cudaMemcpyToSymbolAsync, cudaMemcpyFromSymbolAsync, cuMemcpy2D, cuMemcpy2DUnaligned

__host__cudaError_t cudaMemcpy2DArrayToArray(cudaArray_t dst, size_t wOffsetDst, size_t hOffsetDst, cudaArray_const_t src, size_t wOffsetSrc, size_t width, size_t height, cudaMemcpyKind kind)

Copies data between host and device.

Parameters

dst
  - Destination memory address
wOffsetDst
  - Destination starting X offset (columns in bytes)
hOffsetDst
  - Destination starting Y offset (rows)
src
  - Source memory address
wOffsetSrc
- Source starting X offset [columns in bytes]

hOffsetSrc
- Source starting Y offset [rows]

width
- Width of matrix transfer [columns in bytes]

height
- Height of matrix transfer [rows]

kind
- Type of transfer

Returns
cudaSuccess, cudaErrorInvalidValue, cudaErrorInvalidMemcpyDirection

Description
Copies a matrix (height rows of width bytes each) from the CUDA array src starting at hOffsetSrc rows and wOffsetSrc bytes from the upper left corner to the CUDA array dst starting at hOffsetDst rows and wOffsetDst bytes from the upper left corner, where kind specifies the direction of the copy, and must be one of cudaMemcpyHostToHost, cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice, or cudaMemcpyDefault. Passing cudaMemcpyDefault is recommended, in which case the type of transfer is inferred from the pointer values. However, cudaMemcpyDefault is only allowed on systems that support unified virtual addressing. wOffsetDst + width must not exceed the width of the CUDA array dst. wOffsetSrc + width must not exceed the width of the CUDA array src.

Note:
- Note that this function may also return error codes from previous, asynchronous launches.
- This function exhibits synchronous behavior for most use cases.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaMemcpy2DAsync no CUDA function may be called from callback. cudaMemcpyNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaMemcpy, cudaMemcpy2D, cudaMemcpy2DToArray, cudaMemcpy2DFromArray, cudaMemcpyToDevice, cudaMemcpyDefault, cudaMemcpyHostToHost, cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice, cudaMemcpyToSymbol, cudaMemcpyFromSymbol, cudaMemcpyAsync, cudaMemcpy2DAsync.
CUDA Runtime API

cudaMemcpy2DAsync (void *dst, size_t dpitch, const void *src, size_t spitch, size_t width, size_t height, cudaMemcpyKind kind, cudaStream_t stream)

Copies data between host and device.

Parameters

dst
- Destination memory address
dpitch
- Pitch of destination memory
src
- Source memory address
spitch
- Pitch of source memory
width
- Width of matrix transfer [columns in bytes]
height
- Height of matrix transfer [rows]
kind
- Type of transfer
stream
- Stream identifier

Returns
cudaSuccess, cudaErrorInvalidValue, cudaErrorInvalidPitchValue, cudaErrorInvalidMemcpyDirection

Description
Copies a matrix (height rows of width bytes each) from the memory area pointed to by src to the memory area pointed to by dst, where kind specifies the direction of the copy, and must be one of cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice, or cudaMemcpyDefault. Passing cudaMemcpyDefault is recommended, in which case the type of transfer is inferred from the pointer values. However, cudaMemcpyDefault is only allowed on systems that support unified virtual addressing. dpitch and spitch are the widths in memory in bytes of the 2D arrays.
pointed to by dst and src, including any padding added to the end of each row. The memory areas may not overlap. width must not exceed either dpitch or spitch.

Calling cudaMemcpy2DAsync() with dst and src pointers that do not match the direction of the copy results in an undefined behavior. cudaMemcpy2DAsync() returns an error if dpitch or spitch is greater than the maximum allowed.

cudaMemcpy2DAsync() is asynchronous with respect to the host, so the call may return before the copy is complete. The copy can optionally be associated to a stream by passing a non-zero stream argument. If kind is cudaMemcpyHostToDevice or cudaMemcpyDeviceToHost and stream is non-zero, the copy may overlap with operations in other streams.

The device version of this function only handles device to device copies and cannot be given local or shared pointers.

Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- This function exhibits asynchronous behavior for most use cases.
- This function uses standard default stream semantics.
- Note that this function may also return cudaMemcpyInitializationError, cudaMemcpyInsufficientDriver or cudaMemcpyNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaMemcpyAddCallback no CUDA function may be called from callback. cudaMemcpyNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.
- Memory regions requested must be either entirely registered with CUDA, or in the case of host pageable transfers, not registered at all. Memory regions spanning over allocations that are both registered and not registered with CUDA are not supported and will return CUDA_ERROR_INVALID_VALUE.

See also:
cudaMemcpy, cudaMemcpy2D, cudaMemcpy2DToArray, cudaMemcpy2DFromArray, cudaMemcpy2DArrayToArray, cudaMemcpyToSymbol, cudaMemcpyFromSymbol, cudaMemcpyAsync, cudaMemcpy2DToArrayAsync, cudaMemcpy2DFromArrayAsync, cudaMemcpyToSymbolAsync, cudaMemcpyFromSymbolAsync, cudaMemcpy2DAsync
__host__ cudaError_t cudaMemcpy2DFromArray (void *dst, size_t dpitch, cudaMemcpy_const_t src, size_t wOffset, size_t hOffset, size_t width, size_t height, cudaMemcpyKind kind)

Copies data between host and device.

**Parameters**

dst - Destination memory address
dpitch - Pitch of destination memory
src - Source memory address
wOffset - Source starting X offset (columns in bytes)
hOffset - Source starting Y offset (rows)
width - Width of matrix transfer (columns in bytes)
height - Height of matrix transfer (rows)
kind - Type of transfer

**Returns**
cudaSuccess, cudaMemcpyErrorInvalidValue, cudaMemcpyErrorInvalidPitchValue, cudaMemcpyErrorInvalidMemcpyDirection

**Description**
Copies a matrix (height rows of width bytes each) from the CUDA array src starting at hOffset rows and wOffset bytes from the upper left corner to the memory area pointed to by dst, where kind specifies the direction of the copy, and must be one of cudaMemcpyHostToDevice, cudaMemcpyHostToHost, cudaMemcpyDeviceToDevice, or cudaMemcpyDeviceToHost. Passing cudaMemcpyDefault is recommended, in which case the type of transfer is inferred from the pointer values. However, cudaMemcpyDefault is only allowed on systems that support unified virtual addressing. dpitch is the width in memory in bytes of the 2D array pointed to by dst, including any padding added to the end of each row. wOffset + width must not exceed the width of the CUDA array src. width must not exceed dpitch. cudaMemcpy2DFromArray returns an error if dpitch exceeds the maximum allowed.
Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- This function exhibits synchronous behavior for most use cases.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaMemcpyAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.
- Memory regions requested must be either entirely registered with CUDA, or in the case of host pageable transfers, not registered at all. Memory regions spanning over allocations that are both registered and not registered with CUDA are not supported and will return CUDA_ERROR_INVALID_VALUE.

See also:
cudACopy, cudaMemcpy2D, cudaMemcpy2DTohost, cudaMemcpy2DArrayTohost, cudaMemcpy2DTohostSymbol, cudaMemcpyFromhostSymbol, cudaMemcpyAsync, cudaMemcpy2DAsync, cudaMemcpy2DFromArrayAsync, cudaMemcpy2DFromArrayAsyncSymbol, cudaMemcpyFromhostSymbolAsync, cuMemcpy2D, cuMemcpy2DUnaligned

___host___cudaError_t
cudaMemcopy2DFromArrayAsync (void *dst, size_t dpitch, cudaArray_const_t src, size_t wOffset, size_t hOffset, size_t width, size_t height, cudaMemcpyKind kind, cudaStream_t stream)

Copies data between host and device.

Parameters

dst
- Destination memory address
dpitch
- Pitch of destination memory
csrc
- Source memory address
wOffset
- Source starting X offset (columns in bytes)
hOffset
- Source starting Y offset (rows)

width
- Width of matrix transfer (columns in bytes)

height
- Height of matrix transfer (rows)

kind
- Type of transfer

stream
- Stream identifier

Returns
cudaSuccess, cudaMemcpyHostToDevice, cudaMemcpyDeviceToDevice, cudaMemcpyDefault

descriptions
Copies a matrix (height rows of width bytes each) from the CUDA array src starting at hOffset rows and wOffset bytes from the upper left corner to the memory area pointed to by dst, where kind specifies the direction of the copy, and must be one of cudaMemcpyHostToDevice, cudaMemcpyDeviceToDevice, cudaMemcpyDefault. Passing cudaMemcpyDefault is recommended, in which case the type of transfer is inferred from the pointer values. However, cudaMemcpyDefault is only allowed on systems that support unified virtual addressing. dpitch is the width in memory in bytes of the 2D array pointed to by dst, including any padding added to the end of each row. wOffset + width must not exceed the width of the CUDA array src. width must not exceed dpitch. cudaMemcpy2DFromArrayAsync() returns an error if dpitch exceeds the maximum allowed.

cudaMemcpy2DFromArrayAsync() is asynchronous with respect to the host, so the call may return before the copy is complete. The copy can optionally be associated to a stream by passing a non-zero stream argument. If kind is cudaMemcpyHostToDevice or cudaMemcpyDeviceToHost and stream is non-zero, the copy may overlap with operations in other streams.

Note:
- Note that this function may also return error codes from previous, asynchronous launches.
- This function exhibits asynchronous behavior for most use cases.
- This function uses standard default stream semantics.
Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.

Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

Memory regions requested must be either entirely registered with CUDA, or in the case of host pageable transfers, not registered at all. Memory regions spanning over allocations that are both registered and not registered with CUDA are not supported and will return `CUDA_ERROR_INVALID_VALUE`.

See also:

- `cudaMemcpy`
- `cudaMemcpy2D`
- `cudaMemcpy2DToArray`
- `cudaMemcpy2DFromArray`
- `cudaMemcpy2DArrayToArrayAsync`
- `cudaMemcpyToSymbol`
- `cudaMemcpyFromSymbol`
- `cudaMemcpyAsync`
- `cudaMemcpy2DAsync`
- `cudaMemcpyToSymbolAsync`
- `cudaMemcpyFromSymbolAsync`
- `cuMemcpy2DAsync`


```c
__host__ cudaError_t cudaMemcpy2DToArray
(cudaArray_t dst, size_t wOffset, size_t hOffset, const void *src, size_t spitch, size_t width, size_t height, cudaMemcpyKind kind)
```

Copies data between host and device.

**Parameters**

- `dst` - Destination memory address
- `wOffset` - Destination starting X offset (columns in bytes)
- `hOffset` - Destination starting Y offset (rows)
- `src` - Source memory address
- `spitch` - Pitch of source memory
- `width` - Width of matrix transfer (columns in bytes)
- `height` - Height of matrix transfer (rows)
kind
  - Type of transfer

Returns
cudaSuccess, cudaErrorInvalidValue, cudaErrorInvalidPitchValue, cudaErrorInvalidMemcpyDirection

Description
Copies a matrix (height rows of width bytes each) from the memory area pointed to by src to the CUDA array dst starting at hOffset rows and wOffset bytes from the upper left corner, where kind specifies the direction of the copy, and must be one of cudaMemcpyHostToHost, cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice, or cudaMemcpyDefault. Passing cudaMemcpyDefault is recommended, in which case the type of transfer is inferred from the pointer values. However, cudaMemcpyDefault is only allowed on systems that support unified virtual addressing. spitch is the width in memory in bytes of the 2D array pointed to by src, including any padding added to the end of each row. wOffset + width must not exceed the width of the CUDA array dst. width must not exceed spitch. cudaMemcpy2DToArray() returns an error if spitch exceeds the maximum allowed.

Note:
- Note that this function may also return error codes from previous, asynchronous launches.
- This function exhibits synchronous behavior for most use cases.
- Note that this function may also return cudaMemcpyInitializationError, cudaMemcpyInsufficientDriver or cudaMemcpyNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaMemcpyStreamCallback no CUDA function may be called from callback. cudaMemcpyNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.
- Memory regions requested must be either entirely registered with CUDA, or in the case of host pageable transfers, not registered at all. Memory regions spanning over allocations that are both registered and not registered with CUDA are not supported and will return CUDA_ERROR_INVALID_VALUE.

See also:
cudamemcpy, cudaMemcpy2D, cudaMemcpy2DFromArray, cudaMemcpy2DArrayToArray, cudaMemcpyToSymbol, cudaMemcpyFromArraySymbol, cudaMemcpyAsync, cudaMemcpy2DAsync, cudaMemcpy2DToArrayAsync, cudaMemcpy2DFromArrayAsync, cudaMemcpyToSymbolAsync, cudaMemcpyFromArraySymbolAsync, cudaMemcpy2D, cudaMemcpy2DUnaligned
Copies data between host and device.

**Parameters**

- **dst** - Destination memory address
- **wOffset** - Destination starting X offset (columns in bytes)
- **hOffset** - Destination starting Y offset (rows)
- **src** - Source memory address
- **spitch** - Pitch of source memory
- **width** - Width of matrix transfer (columns in bytes)
- **height** - Height of matrix transfer (rows)
- **kind** - Type of transfer
- **stream** - Stream identifier

**Returns**

- `cudaSuccess`
- `cudaErrorInvalidValue`
- `cudaErrorInvalidPitchValue`
- `cudaErrorInvalidMemcpyDirection`

**Description**

Copies a matrix (height rows of width bytes each) from the memory area pointed to by `src` to the CUDA array `dst` starting at `hOffset` rows and `wOffset` bytes from the upper left corner, where `kind` specifies the direction of the copy, and must be one of `cudaMemcpyHostToHost`, `cudaMemcpyHostToDevice`, `cudaMemcpyDeviceToHost`, `cudaMemcpyDeviceToDevice`, or `cudaMemcpyDefault`. Passing `cudaMemcpyDefault` is recommended, in which case the type of transfer is inferred from the pointer values. However, `cudaMemcpyDefault` is only allowed on systems that support unified virtual addressing. `spitch` is the width in memory in bytes of the 2D array pointed to by `src`, including any padding added to the end of each row. `wOffset + width` must not exceed the width of the
CUDA array dst. width must not exceed spitch. cudaMemcpy2DToArrayAsync() returns an error if spitch exceeds the maximum allowed.

cudaMemcpy2DToArrayAsync() is asynchronous with respect to the host, so the call may return before the copy is complete. The copy can optionally be associated to a stream by passing a non-zero stream argument. If kind is cudaMemcpyHostToDevice or cudaMemcpyDeviceToHost and stream is non-zero, the copy may overlap with operations in other streams.

Note:
- Note that this function may also return error codes from previous, asynchronous launches.
- This function exhibits asynchronous behavior for most use cases.
- This function uses standard default stream semantics.
- Note that this function may also return cudaMemcpyInitializationError, cudaMemcpyInsufficientDriver or cudaMemcpyNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaMemcpyAddCallback no CUDA function may be called from callback. cudaMemcpyNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.
- Memory regions requested must be either entirely registered with CUDA, or in the case of host pageable transfers, not registered at all. Memory regions spanning over allocations that are both registered and not registered with CUDA are not supported and will return CUDA_ERROR_INVALID_VALUE.

See also:
cudamemcpy, cudaMemcpy2D, cudaMemcpy2DToArray, cudaMemcpy2DFromArray, cudaMemcpy2DArrayToArray, cudaMemcpyToSymbol, cudaMemcpyFromSymbol, cudaMemcpyAsync, cudaMemcpy2DAsync, cudaMemcpy2DFromArrayAsync, cudaMemcpyToSymbolAsync, cudaMemcpyFromSymbolAsync, cudaMemcpyAsync, cudaMemcpy2DAsync

__host__cudaError_t cudaMemcpy3D (const cudaMemcpy3DParms *p)
Copies data between 3D objects.

Parameters
p
- 3D memory copy parameters
Returns

cudaSuccess, cudaMemcpyErrorInvalidValue, cudaMemcpyErrorInvalidPitchValue, cudaMemcpyErrorInvalidMemcpyDirection

Description

```c
struct cudaExtent {
    size_t width;
    size_t height;
    size_t depth;
};
struct cudaExtent
    make_cudaExtent(size_t w, size_t h, size_t d);

struct cudaPos {
    size_t x;
    size_t y;
    size_t z;
};
struct cudaPos
    make_cudaPos(size_t x, size_t y, size_t z);

struct cudaMemcpy3DParms {
    cudaArray_t srcArray;
    struct cudaMemcpy3DParms srcPos;
    struct cudaMemcpy3DParms srcPtr;
    cudaArray_t dstArray;
    struct cudaMemcpy3DParms dstPos;
    struct cudaMemcpy3DParms dstPtr;
    struct cudaExtent extent;
    enum cudaMemcpyKind kind;
};
```

cudaMemcpy3D() copies data between two 3D objects. The source and destination objects may be in either host memory, device memory, or a CUDA array. The source, destination, extent, and kind of copy performed is specified by the cudaMemcpy3DParms struct which should be initialized to zero before use:

```c
struct cudaMemcpy3DParms myParms = {0};
```

The struct passed to cudaMemcpy3D() must specify one of srcArray or srcPtr and one of dstArray or dstPtr. Passing more than one non-zero source or destination will cause cudaMemcpy3D() to return an error.

The srcPos and dstPos fields are optional offsets into the source and destination objects and are defined in units of each object’s elements. The element for a host or device pointer is assumed to be unsigned char.
The `extent` field defines the dimensions of the transferred area in elements. If a CUDA array is participating in the copy, the extent is defined in terms of that array’s elements. If no CUDA array is participating in the copy then the extents are defined in elements of `unsigned char`.

The `kind` field defines the direction of the copy. It must be one of `cudaMemcpyHostToDevice`, `cudaMemcpyHostToHost`, `cudaMemcpyDeviceToDevice`, or `cudaMemcpyDefault`. Passing `cudaMemcpyDefault` is recommended, in which case the type of transfer is inferred from the pointer values. However, `cudaMemcpyDefault` is only allowed on systems that support unified virtual addressing. For `cudaMemcpyHostToDevice` or `cudaMemcpyHostToHost` passed as kind and cudaMemcpy type passed as source or destination, if the kind implies cudaMemcpy type to be present on the host, `cudaMemcpy3D()` will disregard that implication and silently correct the kind based on the fact that cudaMemcpy type can only be present on the device.

If the source and destination are both arrays, `cudaMemcpy3D()` will return an error if they do not have the same element size.

The source and destination object may not overlap. If overlapping source and destination objects are specified, undefined behavior will result.

The source object must entirely contain the region defined by `srcPos` and `extent`. The destination object must entirely contain the region defined by `dstPos` and `extent`.

`cudaMemcpy3D()` returns an error if the pitch of `srcPtr` or `dstPtr` exceeds the maximum allowed. The pitch of a `cudaPitchedPtr` allocated with `cudaMalloc3D()` will always be valid.

**Note:**

- Note that this function may also return error codes from previous, asynchronous launches.
- This function exhibits `synchronous` behavior for most use cases.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

**See also:**

`cudaMalloc3D`, `cudaMalloc3DArray`, `cudaMemset3D`, `cudaMemcpy3DAsync`, `cudaMemcpy`, `cudaMemcpy2D`, `cudaMemcpy2DToArray`, `cudaMemcpy2DFromArray`, `cudaMemcpy2DArrayToArray`, `cudaMemcpyToSymbol`, `cudaMemcpyFromSymbol`, `cudaMemcpyAsync`, `cudaMemcpy2DAsync`, `cudaMemcpy2DToArrayAsync`, `cudaMemcpy2DFromArrayAsync`, `cudaMemcpyToSymbolAsync`, `cudaMemcpyFromSymbolAsync`, `make_cudaExtent`, `make_cudaPos`, `cuMemcpy3D`
cudaMemcpy3DAsync (const cudaMemcpy3DParms *p, cudaStream_t stream)
Copies data between 3D objects.

Parameters
p
- 3D memory copy parameters

stream
- Stream identifier

Returns
cudaSuccess, cudaErrorInvalidValue, cudaErrorInvalidPitchValue, cudaErrorInvalidMemcpyDirection

Description

```c
struct cudaExtent {
    size_t width;
    size_t height;
    size_t depth;
};

struct make_cudaExtent (size_t w, size_t h, size_t d);

struct cudaPos {
    size_t x;
    size_t y;
    size_t z;
};

struct make_cudaPos (size_t x, size_t y, size_t z);

struct cudaMemcpy3DParms {
    cudaArray_t srcArray;
    struct cudaPos srcPos;
    struct cudaPitchedPtr srcPtr;
    cudaArray_t dstArray;
    struct cudaPos dstPos;
    struct cudaMemcpyKind dstPtr;
    struct cudaMemcpyKind extent;
    enum cudaMemcpyKind kind;
};
```
`cudaMemcpy3DAsync()` copies data between two 3D objects. The source and destination objects may be in either host memory, device memory, or a CUDA array. The source, destination, extent, and kind of copy performed is specified by the `cudaMemcpy3DParms` struct which should be initialized to zero before use:

```c
cudaMemcpy3DParms myParms = {0};
```

The struct passed to `cudaMemcpy3DAsync()` must specify one of `srcArray` or `srcPtr` and one of `dstArray` or `dstPtr`. Passing more than one non-zero source or destination will cause `cudaMemcpy3DAsync()` to return an error.

The `srcPos` and `dstPos` fields are optional offsets into the source and destination objects and are defined in units of each object’s elements. The element for a host or device pointer is assumed to be `unsigned char`. For CUDA arrays, positions must be in the range [0, 2048) for any dimension.

The `extent` field defines the dimensions of the transferred area in elements. If a CUDA array is participating in the copy, the extent is defined in terms of that array’s elements. If no CUDA array is participating in the copy then the extents are defined in elements of `unsigned char`.

The `kind` field defines the direction of the copy. It must be one of `cudaMemcpyHostToDevice`, `cudaMemcpyDeviceToHost`, `cudaMemcpyDeviceToDevice`, or `cudaMemcpyDefault`. Passing `cudaMemcpyDefault` is recommended, in which case the type of transfer is inferred from the pointer values. However, `cudaMemcpyDefault` is only allowed on systems that support unified virtual addressing. For `cudaMemcpyHostToDevice` or `cudaMemcpyDeviceToDevice` passed as kind and cudaArray type passed as source or destination, if the kind implies cudaArray type to be present on the host, `cudaMemcpy3DAsync()` will disregard that implication and silently correct the kind based on the fact that cudaArray type can only be present on the device.

If the source and destination are both arrays, `cudaMemcpy3DAsync()` will return an error if they do not have the same element size.

The source and destination object may not overlap. If overlapping source and destination objects are specified, undefined behavior will result.

The source object must lie entirely within the region defined by `srcPos` and `extent`. The destination object must lie entirely within the region defined by `dstPos` and `extent`.

`cudaMemcpy3DAsync()` returns an error if the pitch of `srcPtr` or `dstPtr` exceeds the maximum allowed. The pitch of a `cudaPitchedPtr` allocated with `cudaMalloc3D()` will always be valid.

`cudaMemcpy3DAsync()` is asynchronous with respect to the host, so the call may return before the copy is complete. The copy can optionally be associated to a stream by passing a non-zero stream argument. If kind is `cudaMemcpyHostToDevice` or `cudaMemcpyDeviceToHost` and stream is non-zero, the copy may overlap with operations in other streams.

The device version of this function only handles device to device copies and cannot be given local or shared pointers.
CUDA Runtime API

__host__ cudaError_t cudaMemcpy3DPeer (const cudaMemcpy3DPeerParms *p)

Copies memory between devices.

Parameters

p
- Parameters for the memory copy

Returns

cudaSuccess, cudaMemcpy3DPeerInvalidValue, cudaMemcpy3DPeerInvalidDevice, cudaMemcpy3DPeerInvalidPitchValue

Description

Perform a 3D memory copy according to the parameters specified in p. See the definition of the cudaMemcpy3DPeerParms structure for documentation of its parameters.

Note that this function is synchronous with respect to the host only if the source or destination of the transfer is host memory. Note also that this copy is serialized with respect to all pending
and future asynchronous work in to the current device, the copy’s source device, and the
copy’s destination device (use cudaMemcpy3DPeerAsync to avoid this synchronization).

Note:

‣ Note that this function may also return error codes from previous, asynchronous launches.
‣ This function exhibits synchronous behavior for most use cases.
‣ Note that this function may also return cudaErrorInitializationError,
cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.
‣ Note that as specified by cudaMemcpy3DPeerAsync no CUDA function may be called
from callback. cudaMemcpy3DPeerAsync may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:
cudaMemcpy, cudaMemcpyPeer, cudaMemcpyAsync, cudaMemcpyPeerAsync,
cudaMemcpy3DPeerAsync, cuMemcpy3DPeer

__host__cudaError_t cudaMemcpy3DPeerAsync
(const cudaMemcpy3DPeerParms *p, cudaStream_t stream)
Copies memory between devices asynchronously.

Parameters

p
  - Parameters for the memory copy
stream
  - Stream identifier

Returns
cudaSuccess, cudaErrorInvalidValue, cudaErrorInvalidDevice, cudaErrorInvalidPitchValue

Description
Perform a 3D memory copy according to the parameters specified in p. See the definition of
the cudaMemcpy3DPeerParms structure for documentation of its parameters.
Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- This function exhibits asynchronous behavior for most use cases.
- This function uses standard default stream semantics.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaMemcpyAsync from callback. cudaMemcpyNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaMemcpy, cudaMemcpyPeer, cudaMemcpyAsync, cudaMemcpyPeerAsync, cudaMemcpy3DPeerAsync, cuMemcpy3DPeerAsync

__host__ __device__ cudaError_t cudaMemcpyAsync
(void *dst, const void *src, size_t count, cudaMemcpyKind kind, cudaStream_t stream)

Copies data between host and device.

Parameters

dst
- Destination memory address
src
- Source memory address
count
- Size in bytes to copy
kind
- Type of transfer
stream
- Stream identifier

Returns
cudaSuccess, cudaMemcpyInvalidValue, cudaMemcpyInvalidMemcpyDirection
Description

Copies count bytes from the memory area pointed to by src to the memory area pointed to by dst, where kind specifies the direction of the copy, and must be one of cudaMemcpyHostToHost, cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice, or cudaMemcpyDefault. Passing cudaMemcpyDefault is recommended, in which case the type of transfer is inferred from the pointer values. However, cudaMemcpyDefault is only allowed on systems that support unified virtual addressing.

The memory areas may not overlap. Calling cudaMemcpyAsync with dst and src pointers that do not match the direction of the copy results in an undefined behavior.

cudaMemcpyAsync is asynchronous with respect to the host, so the call may return before the copy is complete. The copy can optionally be associated to a stream by passing a non-zero stream argument. If kind is cudaMemcpyHostToDevice or cudaMemcpyDeviceToHost and the stream is non-zero, the copy may overlap with operations in other streams.

The device version of this function only handles device to device copies and cannot be given local or shared pointers.

Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- This function exhibits asynchronous behavior for most use cases.
- This function uses standard default stream semantics.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.
- Memory regions requested must be either entirely registered with CUDA, or in the case of host pageable transfers, not registered at all. Memory regions spanning over allocations that are both registered and not registered with CUDA are not supported and will return CUDA_ERROR_INVALID_VALUE.

See also:
cudaMemcpy, cudaMemcpy2D, cudaMemcpy2DToArray, cudaMemcpy2DFromArray, cudaMemcpy2DArrayToArray, cudaMemcpyToSymbol, cudaMemcpyFromSymbol, cudaMemcpy2DAsync, cudaMemcpy2DToArrayAsync, cudaMemcpy2DFromArrayAsync,
cudaMemcpyToSymbolAsync, cudaMemcpyFromSymbolAsync, cuMemcpyAsync, cuMemcpyDtoHAsync, cuMemcpyHtoDAsync, cuMemcpyDtoDAsync

__host__cudaError_t cudaMemcpyFromSymbol (void *dst, const void *symbol, size_t count, size_t offset, cudaMemcpyKind kind)
Copies data from the given symbol on the device.

Parameters

dst
- Destination memory address
symbol
- Device symbol address
count
- Size in bytes to copy
offset
- Offset from start of symbol in bytes
kind
- Type of transfer

Returns
cudaSuccess, cudaErrorInvalidValue, cudaErrorInvalidSymbol, cudaErrorInvalidMemcpyDirection, cudaErrorNoKernelImageForDevice

Description
Copies count bytes from the memory area pointed to by offset bytes from the start of symbol symbol to the memory area pointed to by dst. The memory areas may not overlap. symbol is a variable that resides in global or constant memory space. kind can be either cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice, or cudaMemcpyDefault. Passing cudaMemcpyDefault is recommended, in which case the type of transfer is inferred from the pointer values. However, cudaMemcpyDefault is only allowed on systems that support unified virtual addressing.

Note:
- Note that this function may also return error codes from previous, asynchronous launches.
- This function exhibits synchronous behavior for most use cases.
- Use of a string naming a variable as the symbol parameter was deprecated in CUDA 4.1 and removed in CUDA 5.0.
Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.

Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
`cudaMemcpy`, `cudaMemcpy2D`, `cudaMemcpy2DToArray`, `cudaMemcpy2DFromArray`, `cudaMemcpy2DArrayToArray`, `cudaMemcpyToSymbol`, `cudaMemcpyAsync`, `cudaMemcpy2DAsync`, `cudaMemcpy2DToArrayAsync`, `cudaMemcpy2DFromArrayAsync`, `cudaMemcpyToSymbolAsync`, `cudaMemcpyFromSymbolAsync`, `cuMemcpy`, `cuMemcpyDtoH`, `cuMemcpyDtoD`.

```c
__host__cudaError_t cudaMemcpyFromSymbolAsync(void *dst, const void *symbol, size_t count, size_t offset, cudaMemcpyKind kind, cudaStream_t stream)
```

Copies data from the given symbol on the device.

**Parameters**

- **dst**
  - Destination memory address
- **symbol**
  - Device symbol address
- **count**
  - Size in bytes to copy
- **offset**
  - Offset from start of symbol in bytes
- **kind**
  - Type of transfer
- **stream**
  - Stream identifier

**Returns**

`cudaSuccess`, `cudaErrorInvalidValue`, `cudaErrorInvalidSymbol`, `cudaErrorInvalidMemcpyDirection`, `cudaErrorNoKernelImageForDevice`

**Description**

Copies `count` bytes from the memory area pointed to by `offset` bytes from the start of symbol `symbol` to the memory area pointed to by `dst`. The memory areas may not overlap.
symbol is a variable that resides in global or constant memory space. kind can be either cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice, or cudaMemcpyDefault. Passing cudaMemcpyDefault is recommended, in which case the type of transfer is inferred from the pointer values. However, cudaMemcpyDefault is only allowed on systems that support unified virtual addressing.

cudaMemcpyFromSymbolAsync() is asynchronous with respect to the host, so the call may return before the copy is complete. The copy can optionally be associated to a stream by passing a non-zero stream argument. If kind is cudaMemcpyDeviceToHost and stream is non-zero, the copy may overlap with operations in other streams.

Note:
- Note that this function may also return error codes from previous, asynchronous launches.
- This function exhibits asynchronous behavior for most use cases.
- This function uses standard default stream semantics.
- Use of a string naming a variable as the symbol parameter was deprecated in CUDA 4.1 and removed in CUDA 5.0.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaMemcpyPeer, no CUDA function may be called from callback. cudaMemcpyNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaMemcpy, cudaMemcpy2D, cudaMemcpy2DToArray, cudaMemcpy2DFromArray, cudaMemcpy2DArrayToArray, cudaMemcpy2DFromArrayAsync, cudaMemcpyToSymbol, cudaMemcpyFromSymbol, cudaMemcpyAsync, cudaMemcpy2DAsync, cudaMemcpy2DToArrayAsync, cudaMemcpy2DFromArrayAsync, cudaMemcpyToSymbolAsync, cudaMemcpyFromSymbolAsync, cudaMemcpyDefaultAsync, cudaMemcpyDefaultToAsync

__host__cudaError_t cudaMemcpyPeer (void *dst, int dstDevice, const void *src, int srcDevice, size_t count)
Copies memory between two devices.

Parameters
dst
- Destination device pointer
**dstDevice**  
- Destination device

**src**  
- Source device pointer

**srcDevice**  
- Source device

**count**  
- Size of memory copy in bytes

**Returns**  
`cudaSuccess`, `cudaErrorInvalidValue`, `cudaErrorInvalidDevice`

**Description**
Copies memory from one device to memory on another device. `dst` is the base device pointer of the destination memory and `dstDevice` is the destination device. `src` is the base device pointer of the source memory and `srcDevice` is the source device. `count` specifies the number of bytes to copy.

Note that this function is asynchronous with respect to the host, but serialized with respect all pending and future asynchronous work in to the current device, `srcDevice`, and `dstDevice` (use `cudaMemcpyPeerAsync` to avoid this synchronization).

**Note:**
- Note that this function may also return error codes from previous, asynchronous launches.
- This function exhibits synchronous behavior for most use cases.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

**See also:**  
`cudaMemcpy`, `cudaMemcpyAsync`, `cudaMemcpyPeerAsync`, `cudaMemcpy3DPeerAsync`, `cuMemcpyPeer`
__host__cudaError_t cudaMemcpyPeerAsync (void *
dst, int dstDevice, const void *src, int srcDevice,
size_t count, cudaStream_t stream)

Copies memory between two devices asynchronously.

Parameters

dst
- Destination device pointer
dstDevice
- Destination device
src
- Source device pointer
srcDevice
- Source device
count
- Size of memory copy in bytes
stream
- Stream identifier

Returns
cudaSuccess, cudaErrorInvalidValue, cudaErrorInvalidDevice

Description
Copies memory from one device to memory on another device. dst is the base device pointer of the destination memory and dstDevice is the destination device. src is the base device pointer of the source memory and srcDevice is the source device. count specifies the number of bytes to copy.

Note that this function is asynchronous with respect to the host and all work on other devices.

Note:
- Note that this function may also return error codes from previous, asynchronous launches.
- This function exhibits asynchronous behavior for most use cases.
- This function uses standard default stream semantics.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
`cudaMemcpy`, `cudaMemcpyPeer`, `cudaMemcpyAsync`, `cudaMemcpy3DPeerAsync`, `cuMemcpyPeerAsync`

```c
__host__ cudaError_t cudaMemcpyToSymbol (const void *symbol, const void *src, size_t count, size_t offset, cudaMemcpyKind kind)
```
Copies data to the given symbol on the device.

**Parameters**
- **symbol**
  - Device symbol address
- **src**
  - Source memory address
- **count**
  - Size in bytes to copy
- **offset**
  - Offset from start of symbol in bytes
- **kind**
  - Type of transfer

**Returns**
`cudaSuccess`, `cudaErrorInvalidValue`, `cudaErrorInvalidSymbol`, `cudaErrorInvalidMemcpyDirection`, `cudaErrorNoKernelImageForDevice`

**Description**
Copies `count` bytes from the memory area pointed to by `src` to the memory area pointed to by `offset`. The memory areas may not overlap. `symbol` is a variable that resides in global or constant memory space. `kind` can be either `cudaMemcpyHostToDevice`, `cudaMemcpyDeviceToDevice`, or `cudaMemcpyDefault`. Passing `cudaMemcpyDefault` is recommended, in which case the type of transfer is inferred from the pointer values. However, `cudaMemcpyDefault` is only allowed on systems that support unified virtual addressing.
See also:

cudaMemcpy, cudaMemcpy2D, cudaMemcpy2DToArray, cudaMemcpy2DFromArray, cudaMemcpy2DArrayToArray, cudaMemcpyFromSymbol, cudaMemcpyAsync, cudaMemcpy2DAsync, cudaMemcpy2DToArrayAsync, cudaMemcpy2DFromArrayAsync, cudaMemcpyToSymbolAsync, cudaMemcpyFromSymbolAsync, cuMemcpy, cuMemcpyHtoD, cuMemcpyDtoD

__host__cudaError_t cudaMemcpyToSymbolAsync(const void *symbol, const void *src, size_t count, size_t offset, cudaMemcpyKind kind, cudaStream_t stream)

Copies data to the given symbol on the device.

Parameters

symbol
  - Device symbol address
src
  - Source memory address
count
  - Size in bytes to copy
offset
  - Offset from start of symbol in bytes
kind
  - Type of transfer
stream
- Stream identifier

Returns
cudaSuccess, cudaErrorInvalidValue, cudaErrorInvalidSymbol,
cudaErrorInvalidMemcpyDirection, cudaErrorNoKernelImageForDevice

Description
Copies count bytes from the memory area pointed to by src to the memory area pointed
to by offset bytes from the start of symbol symbol. The memory areas may not overlap.
symbol is a variable that resides in global or constant memory space. kind can be either
 cudaMemcpyHostToDevice, cudaMemcpyDeviceToDevice, or cudaMemcpyDefault. Passing
cudaMemcpyDefault is recommended, in which case the type of transfer is inferred from the
pointer values. However, cudaMemcpyDefault is only allowed on systems that support unified
virtual addressing.
cudaMemcpyToSymbolAsync() is asynchronous with respect to the host, so the call may return
before the copy is complete. The copy can optionally be associated to a stream by passing a
non-zero stream argument. If kind is cudaMemcpyHostToDevice and stream is non-zero,
the copy may overlap with operations in other streams.

Note:
- Note that this function may also return error codes from previous, asynchronous launches.
- This function exhibits asynchronous behavior for most use cases.
- This function uses standard default stream semantics.
- Use of a string naming a variable as the symbol parameter was deprecated in CUDA 4.1
  and removed in CUDA 5.0.
- Note that this function may also return cudaMemcpyInitializationError,
cudaErrorInsufficientDriver or cudaMemcpyNoDevice if this call tries to initialize internal
  CUDA RT state.
- Note that as specified by cudaMemcpyAddCallback no CUDA function may be called
  from callback. cudaMemcpyNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:
cudamemcpy, cudaMemcpy2D, cudaMemcpy2DToarray, cudaMemcpy2DFromArray,
cudaMemcpy2DArrayToArray, cudaMemcpyToSymbol, cudaMemcpyFromSymbol,
cudaMemcpyAsync, cudaMemcpy2DAsync, cudaMemcpy2DToArrayAsync.
### cudaMemcpy2DFromArrayAsync, cudaMemcpyFromSymbolAsync, cudaMemcpyAsync, cuMemcpyHtoDAsync, cuMemcpyDtoDAsync

---

**__host__cudaError_t cudaMemcpyGetInfo (size_t *free, size_t *total)**

Gets free and total device memory.

**Parameters**

- **free**
  - Returned free memory in bytes

- **total**
  - Returned total memory in bytes

**Returns**

- **cudaSuccess**, **cudaErrorInvalidValue**, **cudaErrorLaunchFailure**

**Description**

Returns in *total* the total amount of memory available to the current context. Returns in *free* the amount of memory on the device that is free according to the OS. CUDA is not guaranteed to be able to allocate all of the memory that the OS reports as free. In a multi-tenant situation, free estimate returned is prone to race condition where a new allocation/free done by a different process or a different thread in the same process between the time when free memory was estimated and reported, will result in deviation in free value reported and actual free memory.

The integrated GPU on Tegra shares memory with CPU and other component of the SoC. The free and total values returned by the API excludes the SWAP memory space maintained by the OS on some platforms. The OS may move some of the memory pages into swap area as the GPU or CPU allocate or access memory. See Tegra app note on how to calculate total and free memory on Tegra.

---

**Note:**

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return **cudaErrorInitializationError**, **cudaErrorInsufficientDriver** or **cudaErrorNoDevice** if this call tries to initialize internal CUDA RT state.
- Note that as specified by **cudaStreamAddCallback** no CUDA function may be called from callback. **cudaErrorNotPermitted** may, but is not guaranteed to, be returned as a diagnostic in such case.
See also:

cuMemGetInfo

__host__ cudaError_t cudaMemPrefetchAsync
(const void *devPtr, size_t count, int dstDevice, cudaStream_t stream)

Prefetches memory to the specified destination device.

Parameters

devPtr
- Pointer to be prefetched

count
- Size in bytes
dstDevice
- Destination device to prefetch to
stream
- Stream to enqueue prefetch operation

Returns
cudaSuccess, cudaErrorInvalidValue, cudaErrorInvalidDevice

Description

Prefetches memory to the specified destination device. devPtr is the base device pointer of the memory to be prefetched and dstDevice is the destination device. count specifies the number of bytes to copy. stream is the stream in which the operation is enqueued. The memory range must refer to managed memory allocated via cudaMemcpyManaged or declared via __managed__ variables.

Passing in cudaCpuDeviceId for dstDevice will prefetch the data to host memory. If dstDevice is a GPU, then the device attribute cudaDevAttrConcurrentManagedAccess must be non-zero. Additionally, stream must be associated with a device that has a non-zero value for the device attribute cudaDevAttrConcurrentManagedAccess.

The start address and end address of the memory range will be rounded down and rounded up respectively to be aligned to CPU page size before the prefetch operation is enqueued in the stream.

If no physical memory has been allocated for this region, then this memory region will be populated and mapped on the destination device. If there’s insufficient memory to prefetch the desired region, the Unified Memory driver may evict pages from other cudaMemcpyManaged allocations to host memory in order to make room. Device memory allocated using cudaMemcpy or cudaMemcpyArray will not be evicted.
By default, any mappings to the previous location of the migrated pages are removed and mappings for the new location are only setup on dstDevice. The exact behavior however also depends on the settings applied to this memory range via cudaMemAdvise as described below:

If cudaMemAdviseSetReadMostly was set on any subset of this memory range, then that subset will create a read-only copy of the pages on dstDevice.

If cudaMemAdviseSetPreferredLocation was called on any subset of this memory range, then the pages will be migrated to dstDevice even if dstDevice is not the preferred location of any pages in the memory range.

If cudaMemAdviseSetAccessedBy was called on any subset of this memory range, then mappings to those pages from all the appropriate processors are updated to refer to the new location if establishing such a mapping is possible. Otherwise, those mappings are cleared.

Note that this API is not required for functionality and only serves to improve performance by allowing the application to migrate data to a suitable location before it is accessed. Memory accesses to this range are always coherent and are allowed even when the data is actively being migrated.

Note that this function is asynchronous with respect to the host and all work on other devices.

Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- This function exhibits asynchronous behavior for most use cases.
- This function uses standard default stream semantics.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

cudaMemcpy, cudaMemcpyPeer, cudaMemcpyAsync, cudaMemcpy3DPeerAsync, cudaMemcpy, cudaMemcpy_v2, cuMemPrefetchAsync


__host__ cudaError_t cudaMemRangeGetAttribute
(void *data, size_t dataSize, cudaMemRangeAttribute attribute, const void *devPtr, size_t count)

Query an attribute of a given memory range.

Parameters

- **data**: A pointer to a memory location where the result of each attribute query will be written to.
- **dataSize**: Array containing the size of data
- **attribute**: The attribute to query
- **devPtr**: Start of the range to query
- **count**: Size of the range to query

Returns

- **cudaSuccess**, **cudaErrorInvalidValue**

Description

Query an attribute about the memory range starting at `devPtr` with a size of `count` bytes. The memory range must refer to managed memory allocated via `cudaMallocManaged` or declared via `__managed__` variables.

The `attribute` parameter can take the following values:

- **cudaMemRangeAttributeReadMostly**: If this attribute is specified, `data` will be interpreted as a 32-bit integer, and `dataSize` must be 4. The result returned will be 1 if all pages in the given memory range have read-duplication enabled, or 0 otherwise.

- **cudaMemRangeAttributePreferredLocation**: If this attribute is specified, `data` will be interpreted as a 32-bit integer, and `dataSize` must be 4. The result returned will be a GPU device id if all pages in the memory range have that GPU as their preferred location, or it will be cudaCpuDeviceId if all pages in the memory range have the CPU as their preferred location, or it will be cudaInvalidDeviceId if either all the pages don’t have the same preferred location or some of the pages don’t have a preferred location at all. Note that the actual location of the pages in the memory range at the time of the query may be different from the preferred location.

- **cudaMemRangeAttributeAccessedBy**: If this attribute is specified, `data` will be interpreted as an array of 32-bit integers, and `dataSize` must be a non-zero multiple of 4. The result
returned will be a list of device ids that had cudaMemAdviceSetAccessedBy set for that entire memory range. If any device does not have that advice set for the entire memory range, that device will not be included. If data is larger than the number of devices that have that advice set for that memory range, cudaInvalidDeviceId will be returned in all the extra space provided. For ex., if dataSize is 12 [i.e., data has 3 elements] and only device 0 has the advice set, then the result returned will be [0, cudaInvalidDeviceId, cudaInvalidDeviceId]. If data is smaller than the number of devices that have that advice set, then only as many devices will be returned as can fit in the array. There is no guarantee on which specific devices will be returned, however.

- **cudaMemRangeAttributeLastPrefetchLocation**: If this attribute is specified, data will be interpreted as a 32-bit integer, and dataSize must be 4. The result returned will be the last location to which all pages in the memory range were prefetched explicitly via `cudaMemPrefetchAsync`. This will either be a GPU id or cudaCpuDeviceId depending on whether the last location for prefetch was a GPU or the CPU respectively. If any page in the memory range was never explicitly prefetched or if all pages were not prefetched to the same location, cudaInvalidDeviceId will be returned. Note that this simply returns the last location that the application requested to prefetch the memory range to. It gives no indication as to whether the prefetch operation to that location has completed or even begun.

- **cudaMemRangeAttributePreferredLocationType**: If this attribute is specified, data will be interpreted as a `cudaMemLocationType`, and dataSize must be `sizeof(cudaMemLocationType)`. The `cudaMemLocationType` returned will be `cudaMemLocationTypeDevice` if all pages in the memory range have the same GPU as their preferred location, or `cudaMemLocationType` will be `cudaMemLocationTypeHost` if all pages in the memory range have the CPU as their preferred location, or it will be `cudaMemLocationTypeHostNuma` if all the pages in the memory range have the same host NUMA node ID as their preferred location or it will be cudaMemLocationTypeInvalid if either all the pages don’t have the same preferred location or some of the pages don’t have a preferred location at all. Note that the actual location type of the pages in the memory range at the time of the query may be different from the preferred location type.

- **cudaMemRangeAttributePreferredLocationId**: If this attribute is specified, data will be interpreted as a 32-bit integer, and dataSize must be 4. If the `cudaMemRangeAttributePreferredLocationType` query for the same address range returns `cudaMemLocationTypeDevice`, it will be a valid device ordinal or if it returns `cudaMemLocationTypeHostNuma` it will be a valid host NUMA node ID or if it returns any other location type, the id should be ignored.

- **cudaMemRangeAttributeLastPrefetchLocationType**: If this attribute is specified, data will be interpreted as a `cudaMemLocationType`, and dataSize must be `sizeof(cudaMemLocationType)`. The result returned will be the last location type to which all pages in the memory range were prefetched explicitly via `cuMemPrefetchAsync`. The `cudaMemLocationType` returned will be `cudaMemLocationTypeDevice` if the last prefetch location was the GPU or `cudaMemLocationTypeHost` if it was the CPU or
cudaMemLocationTypeHostNuma if the last prefetch location was a specific host NUMA node. If any page in the memory range was never explicitly prefetched or if all pages were not prefetched to the same location, CUmemLocationType will be cudaMemLocationTypeInvalid. Note that this simply returns the last location type that the application requested to prefetch the memory range to. It gives no indication as to whether the prefetch operation to that location has completed or even begun.

- cudaMemRangeAttributeLastPrefetchLocationId: If this attribute is specified, data will be interpreted as a 32-bit integer, and dataSize must be 4. If the cudaMemRangeAttributeLastPrefetchLocationType query for the same address range returns cudaMemLocationTypeDevice, it will be a valid device ordinal or if it returns cudaMemLocationTypeHostNuma, it will be a valid host NUMA node ID or if it returns any other location type, the id should be ignored.

**Note:**
- Note that this function may also return error codes from previous, asynchronous launches.
- This function exhibits asynchronous behavior for most use cases.
- This function uses standard default stream semantics.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

**See also:**
- cudaMemRangeGetAttributes, cudaMemPrefetchAsync, cudaMemAdvise, cuMemRangeGetAttribute
__host__ cudaError_t cudaMemRangeGetAttributes
(void **data, size_t *dataSizes,
cudaMemRangeAttribute *attributes, size_t
numAttributes, const void *devPtr, size_t count)

Query attributes of a given memory range.

Parameters

- **data**
  - A two-dimensional array containing pointers to memory locations where the result of each attribute query will be written to.

- **dataSizes**
  - Array containing the sizes of each result

- **attributes**
  - An array of attributes to query (numAttributes and the number of attributes in this array should match)

- **numAttributes**
  - Number of attributes to query

- **devPtr**
  - Start of the range to query

- **count**
  - Size of the range to query

Returns

cudaSuccess, cudaErrorInvalidValue

Description

Query attributes of the memory range starting at devPtr with a size of count bytes. The memory range must refer to managed memory allocated via cudaMallocManaged or declared via __managed__ variables. The attributes array will be interpreted to have numAttributes entries. The dataSizes array will also be interpreted to have numAttributes entries. The results of the query will be stored in data.

The list of supported attributes are given below. Please refer to cudaMemRangeGetAttribute for attribute descriptions and restrictions.

- cudaMemRangeAttributeReadMostly
- cudaMemRangeAttributePreferredLocation
- cudaMemRangeAttributeAccessedBy
- cudaMemRangeAttributeLastPrefetchLocation
Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

`cudaMemRangeGetAttribute`, `cudaMemAdvise`, `cudaMemPrefetchAsync`, `cuMemRangeGetAttributes`

__host__cudaError_t cudaMemcpy (void *devPtr, int *value, size_t count)

Initializes or sets device memory to a value.

Parameters

- `devPtr` - Pointer to device memory
- `value` - Value to set for each byte of specified memory
- `count` - Size in bytes to set

Returns

`cudaSuccess`, `cudaErrorInvalidValue`.

Description

Fills the first `count` bytes of the memory area pointed to by `devPtr` with the constant byte value `value`.
Note that this function is asynchronous with respect to the host unless `devPtr` refers to pinned host memory.

Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- See also `memset` synchronization details.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

`cuMemsetD8`, `cuMemsetD16`, `cuMemsetD32`

```c
__host__ cudaError_t cudaMemset2D (void *devPtr, size_t pitch, int value, size_t width, size_t height)
```

Initializes or sets device memory to a value.

**Parameters**

- **devPtr**
  - Pointer to 2D device memory
- **pitch**
  - Pitch in bytes of 2D device memory (Unused if `height` is 1)
- **value**
  - Value to set for each byte of specified memory
- **width**
  - Width of matrix set [columns in bytes]
- **height**
  - Height of matrix set [rows]

**Returns**

`cudaSuccess`, `cudaErrorInvalidValue`,

**Description**

Sets to the specified value `value` a matrix `[height rows of width bytes each]` pointed to by `devPtr`. `pitch` is the width in bytes of the 2D array pointed to by `devPtr`, including any
padding added to the end of each row. This function performs fastest when the pitch is one that has been passed back by `cudaMallocPitch()`. Note that this function is asynchronous with respect to the host unless `devPtr` refers to pinned host memory.

```c
__host__ __device__ cudaError_t
cudaMemset2DAsync (void *devPtr, size_t pitch, int value, size_t width, size_t height, cudaStream_t stream)
```

Initializes or sets device memory to a value.

**Parameters**

- **devPtr**
  - Pointer to 2D device memory
- **pitch**
  - Pitch in bytes of 2D device memory (Unused if `height` is 1)
- **value**
  - Value to set for each byte of specified memory
- **width**
  - Width of matrix set (columns in bytes)
- **height**
  - Height of matrix set (rows)
stream
- Stream identifier

Returns
cudaSuccess, cudaErrorInvalidValue.

Description
Sets to the specified value value a matrix [height rows of width bytes each] pointed to by dstPtr. pitch is the width in bytes of the 2D array pointed to by dstPtr, including any padding added to the end of each row. This function performs fastest when the pitch is one that has been passed back by cudaMallocPitch().

cudaMemset2DAsync() is asynchronous with respect to the host, so the call may return before the memset is complete. The operation can optionally be associated to a stream by passing a non-zero stream argument. If stream is non-zero, the operation may overlap with operations in other streams.

The device version of this function only handles device to device copies and cannot be given local or shared pointers.

Note:
- Note that this function may also return error codes from previous, asynchronous launches.
- See also memset synchronization details.
- This function uses standard default stream semantics.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaMemset, cudaMemset2D, cudaMemset3D, cudaMemsetAsync, cudaMemset3DAsync, cuMemsetD2D8Async, cuMemsetD2D16Async, cuMemsetD2D32Async
__host__ cudaError_t cudaMemset3D (cudaPitchedPtr pitchedDevPtr, int value, cudaExtent extent)
Initializes or sets device memory to a value.

Parameters
pitchedDevPtr
- Pointer to pitched device memory
value
- Value to set for each byte of specified memory
extent
- Size parameters for where to set device memory [width field in bytes]

Returns
cudaSuccess, cudaErrorInvalidValue.

Description
Initializes each element of a 3D array to the specified value value. The object to initialize is defined by pitchedDevPtr. The pitch field of pitchedDevPtr is the width in memory in bytes of the 3D array pointed to by pitchedDevPtr, including any padding added to the end of each row. The xsize field specifies the logical width of each row in bytes, while the ysize field specifies the height of each 2D slice in rows. The pitch field of pitchedDevPtr is ignored when height and depth are both equal to 1.

The extents of the initialized region are specified as a width in bytes, a height in rows, and a depth in slices.

Extents with width greater than or equal to the xsize of pitchedDevPtr may perform significantly faster than extents narrower than the xsize. Secondarily, extents with height equal to the ysize of pitchedDevPtr will perform faster than when the height is shorter than the ysize.

This function performs fastest when the pitchedDevPtr has been allocated by cudaMalloc3D().

Note that this function is asynchronous with respect to the host unless pitchedDevPtr refers to pinned host memory.

Note:
- Note that this function may also return error codes from previous, asynchronous launches.
- See also memset synchronization details.
Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.

Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
- `cudaMemset`, `cudaMemset2D`, `cudaMemsetAsync`, `cudaMemset2DAsync`, `cudaMemset3DAsync`, `cudaMalloc3D`, `make_cudaPitchedPtr`, `make_cudaExtent`

```c
__host__ device__cudaError_t
cudaMemset3DAsync (cudaPitchedPtr pitchedDevPtr, int value, cudaExtent extent, cudaStream_t stream)
```

Initializes or sets device memory to a value.

**Parameters**
- `pitchedDevPtr` - Pointer to pitched device memory
- `value` - Value to set for each byte of specified memory
- `extent` - Size parameters for where to set device memory (width field in bytes)
- `stream` - Stream identifier

**Returns**
- `cudaSuccess`, `cudaErrorInvalidValue`

**Description**

Initializes each element of a 3D array to the specified value `value`. The object to initialize is defined by `pitchedDevPtr`. The pitch field of `pitchedDevPtr` is the width in memory in bytes of the 3D array pointed to by `pitchedDevPtr`, including any padding added to the end of each row. The `xsize` field specifies the logical width of each row in bytes, while the `ysize` field specifies the height of each 2D slice in rows. The pitch field of `pitchedDevPtr` is ignored when `height` and `depth` are both equal to 1.

The extents of the initialized region are specified as a width in bytes, a `height` in rows, and a `depth` in slices.
Extents with width greater than or equal to the xsize of pitchedDevPtr may perform significantly faster than extents narrower than the xsize. Secondarily, extents with height equal to the ysize of pitchedDevPtr will perform faster than when the height is shorter than the ysize.

This function performs fastest when the pitchedDevPtr has been allocated by cudaMalloc3D().

cudaMemset3DAsync() is asynchronous with respect to the host, so the call may return before the memset is complete. The operation can optionally be associated to a stream by passing a non-zero stream argument. If stream is non-zero, the operation may overlap with operations in other streams.

The device version of this function only handles device to device copies and cannot be given local or shared pointers.

Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- See also memset synchronization details.
- This function uses standard default stream semantics.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaMemset, cudaMemset2D, cudaMemset3D, cudaMemcpyAsync, cudaMemcpy2DAsync, cudaMemcpy3D, cudaMemcpy, make_cudaPitchedPtr, make_cudaExtent

__host__ __device__ cudaError_t cudaMemcpyAsync(void *devPtr, int value, size_t count, cudaMemcpyStream_t stream)

Initializes or sets device memory to a value.

Parameters

devPtr
  - Pointer to device memory
value
- Value to set for each byte of specified memory

count
- Size in bytes to set

stream
- Stream identifier

Returns
cudaSuccess, cudaErrorInvalidValue.

Description
Fills the first count bytes of the memory area pointed to by devPtr with the constant byte value value.

cudaMemsetAsync() is asynchronous with respect to the host, so the call may return before the memset is complete. The operation can optionally be associated to a stream by passing a non-zero stream argument. If stream is non-zero, the operation may overlap with operations in other streams.

The device version of this function only handles device to device copies and cannot be given local or shared pointers.

Note:
- Note that this function may also return error codes from previous, asynchronous launches.
- See also memset synchronization details.
- This function uses standard default stream semantics.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaMemset, cudaMemset2D, cudaMemset3D, cudaMemcpy2DAsync, cudaMemcpy3DAsync, cudaMemcpyD8Async, cudaMemcpyD16Async, cudaMemcpyD32Async
__host__cudaError_t cudaMipmappedArrayGetMemoryRequirements(
cudaArrayMemoryRequirements *memoryRequirements, 
cudaMipmappedArray_t mipmap, int device)

Returns the memory requirements of a CUDA mipmapped array.

Parameters

memoryRequirements
- Pointer to cudaArrayMemoryRequirements

mipmap
- CUDA mipmapped array to get the memory requirements of

device
- Device to get the memory requirements for

Returns

cudaSuccess cudaErrorInvalidValue

Description

Returns the memory requirements of a CUDA mipmapped array in memoryRequirements.
If the CUDA mipmapped array is not allocated with flag cudaMemcpyDeferredMapping, 
cudaErrorInvalidValue will be returned.

The returned value in cudaMemcpyMemoryRequirements::size represents the total size of the
CUDA mipmapped array. The returned value in cudaMemcpyMemoryRequirements::alignment
represents the alignment necessary for mapping the CUDA mipmapped array.

See also:

cudaArrayGetMemoryRequirements
__host__ cudaError_t
cudaMipmappedArrayGetSparseProperties(
cudaArraySparseProperties *sparseProperties,
cudaMipmappedArray_t mipmap)

Returns the layout properties of a sparse CUDA mipmapped array.

**Parameters**

- **sparseProperties**
  - Pointer to return `cudaArraySparseProperties`
- **mipmap**
  - The CUDA mipmapped array to get the sparse properties of

**Returns**

cudaSuccess cudaErrorInvalidValue

**Description**

Returns the sparse array layout properties in `sparseProperties`. If the CUDA mipmapped array is not allocated with flag `cudaArraySparse cudaErrorInvalidValue` will be returned.

For non-layered CUDA mipmapped arrays, `cudaArraySparseProperties::miptailSize` returns the size of the mip tail region. The mip tail region includes all mip levels whose width, height or depth is less than that of the tile. For layered CUDA mipmapped arrays, if `cudaArraySparseProperties::flags` contains `cudaArraySparsePropertiesSingleMipTail`, then `cudaArraySparseProperties::miptailSize` specifies the size of the mip tail of all layers combined. Otherwise, `cudaArraySparseProperties::miptailSize` specifies mip tail size per layer. The returned value of `cudaArraySparseProperties::miptailFirstLevel` is valid only if `cudaArraySparseProperties::miptailSize` is non-zero.

**See also:**

cudaArrayGetSparseProperties, cuMemMapArrayAsync
__host__make_cudaExtent (size_t w, size_t h, size_t d)
Returns a cudaExtent based on input parameters.

Parameters
w
- Width in elements when referring to array memory, in bytes when referring to linear memory
h
- Height in elements
d
- Depth in elements

Returns
cudaExtent specified by w, h, and d

Description
Returns a cudaExtent based on the specified input parameters w, h, and d.

See also:
make_cudaPitchedPtr, make_cudaPos

__host__make_cudaPitchedPtr (void *d, size_t p, size_t xsz, size_t ysz)
Returns a cudaPitchedPtr based on input parameters.

Parameters
d
- Pointer to allocated memory
p
- Pitch of allocated memory in bytes
xsz
- Logical width of allocation in elements
ysz
- Logical height of allocation in elements

Returns
cudaPitchedPtr specified by d, p, xsz, and ysz
Description
Returns a `cudaPitchedPtr` based on the specified input parameters d, p, xsz, and ysz.

See also:
`make_cudaExtent`, `make_cudaPos`

```c
#include <cuda_runtime_api.h>

__host__ make_cudaPos (size_t x, size_t y, size_t z)
```
Returns a cudaPos based on input parameters.

Parameters
x
- X position
y
- Y position
z
- Z position

Returns
cudaPos specified by x, y, and z

Description
Returns a `cudaPos` based on the specified input parameters x, y, and z.

See also:
`make_cudaExtent`, `make_cudaPitchedPtr`

6.10. Memory Management [DEPRECATED]

This section describes deprecated memory management functions of the CUDA runtime application programming interface.

Some functions have overloaded C++ API template versions documented separately in the C++ API Routines module.
__host__ cudaError_t cudaMemcpyArrayToArray
(cuArray_t dst, size_t wOffsetDst, size_t hOffsetDst,
cuArray_const_t src, size_t wOffsetSrc, size_t
hOffsetSrc, size_t count, cudaMemcpyKind kind)

Copies data between host and device.

Parameters

dst
- Destination memory address

wOffsetDst
- Destination starting X offset (columns in bytes)

hOffsetDst
- Destination starting Y offset (rows)

src
- Source memory address

wOffsetSrc
- Source starting X offset (columns in bytes)

hOffsetSrc
- Source starting Y offset (rows)

count
- Size in bytes to copy

kind
- Type of transfer

Returns
cudaSuccess, cudaErrorInvalidValue, cudaMemcpyKind

Description

Deprecated

Copies count bytes from the CUDA array src starting at hOffsetSrc rows and
wOffsetSrc bytes from the upper left corner to the CUDA array dst starting at
hOffsetDst rows and wOffsetDst bytes from the upper left corner, where kind
specifies the direction of the copy, and must be one of cudaMemcpyHostToHost,
cuMemcpyHostToDevice, cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice, or
 cudaMemcpyDefault. Passing cudaMemcpyDefault is recommended, in which case the type of
transfer is inferred from the pointer values. However, cudaMemcpyDefault is only allowed on
systems that support unified virtual addressing.
Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaMemcpyAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudAmemcpy, cudaMemcpy2D, cudaMemcpyToArray, cudaMemcpy2DToArray, cudaMemcpyFromArray, cudaMemcpy2DFromArray, cudaMemcpy2DToArrayAsync, cudaMemcpyFromArrayAsync, cudaMemcpy2DArrayToArray, cudaMemcpyToSymbol, cudaMemcpyFromArray, cudaMemcpy2DFromArray, cudaMemcpy2DArrayToArray, cudaMemcpyToSymbolAsync, cudaMemcpyFromArrayAsync, cudaMemcpy2DFromArrayAsync, cudaMemcpyToSymbolAsync, cudaMemcpyAtO

__host__cudaError_t cudaMemcpyFromArray (void *dst, cudaArray_const_t src, size_t wOffset, size_t hOffset, size_t count, cudaMemcpyKind kind)

Copies data between host and device.

Parameters

dst
  - Destination memory address
src
  - Source memory address
wOffset
  - Source starting X offset (columns in bytes)
hOffset
  - Source starting Y offset (rows)
count
  - Size in bytes to copy
kind
  - Type of transfer

Returns
cudaSuccess, cudaMemcpyInvalidValue, cudaMemcpyInvalidMemcpyDirection
Description

Deprecated

Copies `count` bytes from the CUDA array `src` starting at `hOffset` rows and `wOffset` bytes from the upper left corner to the memory area pointed to by `dst`, where `kind` specifies the direction of the copy, and must be one of `cudaMemcpyHostToHost`, `cudaMemcpyHostToDevice`, `cudaMemcpyDeviceToHost`, `cudaMemcpyDeviceToDevice`, or `cudaMemcpyDefault`. Passing `cudaMemcpyDefault` is recommended, in which case the type of transfer is inferred from the pointer values. However, `cudaMemcpyDefault` is only allowed on systems that support unified virtual addressing.

Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- This function exhibits synchronous behavior for most use cases.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

- `cudaMemcpy`, `cudaMemcpy2D`, `cudaMemcpyToArrays`, `cudaMemcpy2DToArrays`,
- `cudaMemcpy2DFromArray`, `cudaMemcpyArrayToArray`, `cudaMemcpy2DArrayToArray`,
- `cudaMemcpy2DAsync`, `cudaMemcpyToArraysAsync`, `cudaMemcpy2DToArraysAsync`,
- `cudaMemcpyFromArrayAsync`, `cudaMemcpy2DFromArrayAsync`, `cudaMemcpyProxy`, `cudaMemcpyFromSymbolAsync`,
- `cudaMemcpyFromSymbolAsync`, `cuMemcpyAtO`, `cuMemcpyAtD`
__host__ cudaError_t cudaMemcpyFromArrayAsync
(void *dst, cudaArray_const_t src, size_t wOffset,
size_t hOffset, size_t count, cudaMemcpyKind kind,
cudaStream_t stream)

Copies data between host and device.

**Parameters**

- **dst**
  - Destination memory address
- **src**
  - Source memory address
- **wOffset**
  - Source starting X offset (columns in bytes)
- **hOffset**
  - Source starting Y offset (rows)
- **count**
  - Size in bytes to copy
- **kind**
  - Type of transfer
- **stream**
  - Stream identifier

**Returns**

cudaSuccess, cudaErrorInvalidValue, cudaErrorInvalidMemcpyDirection

**Description**

**Deprecated**

Copies `count` bytes from the CUDA array `src` starting at `hOffset` rows and `wOffset` bytes from the upper left corner to the memory area pointed to by `dst`, where `kind` specifies the direction of the copy, and must be one of cudaMemcpyHostToDevice, cudaMemcpyDeviceToDevice, cudaMemcpyHostToHost, or cudaMemcpyDefault. Passing cudaMemcpyDefault is recommended, in which case the type of transfer is inferred from the pointer values. However, cudaMemcpyDefault is only allowed on systems that support unified virtual addressing.

cudaMemcpyFromArrayAsync() is asynchronous with respect to the host, so the call may return before the copy is complete. The copy can optionally be associated to a stream by passing a non-zero `stream` argument. If `kind` is cudaMemcpyHostToDevice or cudaMemcpyDeviceToHost and `stream` is non-zero, the copy may overlap with operations in other streams.
Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- This function exhibits asynchronous behavior for most use cases.
- This function uses standard default stream semantics.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaMemcpyAddCallback no CUDA function may be called from callback. cudaErrorNotAllowed may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaMemcpy, cudaMemcpy2D, cudaMemcpyToArray, cudaMemcpy2DToArray,
cudaMemcpyFromArray, cudaMemcpy2DFromArray, cudaMemcpyArrayToArray,
cudaMemcpy2DArrayToArray, cudaMemcpyToSymbol, cudaMemcpyFromArraySymbol,
cudaMemcpyAsync, cudaMemcpy2DAsync, cudaMemcpyToArrayAsync,
cudaMemcpy2DToArrayAsync, cudaMemcpyToSymbolAsync,
cudaMemcpyFromArraySymbolAsync, cudaMemcpyToHostAsync, cudaMemcpy2DAsync

__host__cudaError_t cudaMemcpyToArray
(cudaArray_t dst, size_t wOffset, size_t hOffset, const void *src, size_t count, cudaMemcpyKind kind)
Copies data between host and device.

Parameters

dst
- Destination memory address

wOffset
- Destination starting X offset (columns in bytes)

hOffset
- Destination starting Y offset (rows)

src
- Source memory address

count
- Size in bytes to copy

kind
- Type of transfer
Returns

cudaSuccess, cudaErrorInvalidValue, cudaErrorInvalidMemcpyDirection

Description

Deprecated

Copies count bytes from the memory area pointed to by src to the CUDA array dst starting at hOffset rows and wOffset bytes from the upper left corner, where kind specifies the direction of the copy, and must be one of cudaMemcpyHostToHost, cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice, or cudaMemcpyDefault. Passing cudaMemcpyDefault is recommended, in which case the type of transfer is inferred from the pointer values. However, cudaMemcpyDefault is only allowed on systems that support unified virtual addressing.

Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- This function exhibits synchronous behavior for most use cases.
- Note that this function may also return cudaMemcpyInitializationError, cudaMemcpyInsufficientDriver or cudaMemcpyNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaMemcpyDataStreamCallback no CUDA function may be called from callback. cudaMemcpyNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

cudamempy, cudaMemcpy2D, cudaMemcpy2DtoArray, cudaMemcpyFromArray, cudaMemcpy2DFromArray, cudaMemcpyToArray, cudaMemcpy2DtoSymbol, cudaMemcpyFromArraySymbol, cudaMemcpy2DtoArraySymbol, cudaMemcpyFromArraySymbol, cudaMemcpy2DtoArrayAsync, cudaMemcpyFromArrayAsync, cudaMemcpy2DtoSymbolAsync, cudaMemcpyFromArraySymbolAsync, cudaMemcpy2DtoHost, cudaMemcpyDtoA
__host__ cudaError_t cudaMemcpyToArrayAsync (cudaArray_t dst, size_t wOffset, size_t hOffset, const void *src, size_t count, cudaMemcpyKind kind, cudaStream_t stream)

Copies data between host and device.

Parameters

dst
- Destination memory address

wOffset
- Destination starting X offset (columns in bytes)

hOffset
- Destination starting Y offset (rows)

src
- Source memory address

count
- Size in bytes to copy

kind
- Type of transfer

stream
- Stream identifier

Returns

cudaSuccess, cudaMemcpyInvalidValue, cudaMemcpyInvalidMemcpyDirection

Description

Deprecated

Copies count bytes from the memory area pointed to by src to the CUDA array dst starting at hOffset rows and wOffset bytes from the upper left corner, where kind specifies the direction of the copy, and must be one of cudaMemcpyHostToDevice, cudaMemcpyHostToHost, cudaMemcpyDeviceToDevice, or cudaMemcpyDefault. Passing cudaMemcpyDefault is recommended, in which case the type of transfer is inferred from the pointer values. However, cudaMemcpyDefault is only allowed on systems that support unified virtual addressing.

copyToArrayAsync() is asynchronous with respect to the host, so the call may return before the copy is complete. The copy can optionally be associated to a stream by passing a non-zero stream argument. If kind is cudaMemcpyHostToDevice or cudaMemcpyDeviceToHost and stream is non-zero, the copy may overlap with operations in other streams.
6.11. Stream Ordered Memory Allocator

overview

The asynchronous allocator allows the user to allocate and free in stream order. All asynchronous accesses of the allocation must happen between the stream executions of the allocation and the free. If the memory is accessed outside of the promised stream order, a use before allocation / use after free error will cause undefined behavior.

The allocator is free to reallocate the memory as long as it can guarantee that compliant memory accesses will not overlap temporally. The allocator may refer to internal stream ordering as well as inter-stream dependencies (such as CUDA events and null stream dependencies) when establishing the temporal guarantee. The allocator may also insert inter-stream dependencies to establish the temporal guarantee.

Supported Platforms

Whether or not a device supports the integrated stream ordered memory allocator may be queried by calling `cudaDeviceGetAttribute` with the device attribute `cudaDevAttrMemoryPoolsSupported`.

---

Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- This function exhibits asynchronous behavior for most use cases.
- This function uses standard default stream semantics.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

`cudaMemcpy`, `cudaMemcpy2D`, `cudaMemcpypToArray`, `cudaMemcpyp2DToArray`, `cudaMemcopyFromArray`, `cudaMemcpyp2DFromArray`, `cudaMemcpypArrayToArray`, `cudaMemcpyp2DArrayToArray`, `cudaMemcpypToSymbol`, `cudaMemcopyFromSymbol`, `cudaMemcpypAsync`, `cudaMemcpyp2DAsync`, `cudaMemcpyp2DtoArrayAsync`, `cudaMemcpypFromArrayAsync`, `cudaMemcpyp2DFromArrayAsync`, `cudaMemcpypToSymbolAsync`, `cudaMemcpypFromArrayAsync`, `cuMemcpyHtoAAsync`, `cuMemcpyp2DAsync`
__host__ cudaError_t cudaFreeAsync (void *devPtr, cudaStream_t hStream)
Frees memory with stream ordered semantics.

Parameters

devPtr
hStream
- The stream establishing the stream ordering promise

Returns
cudaSuccess, cudaErrorInvalidValue, cudaErrorNotSupported

Description
Inserts a free operation into hStream. The allocation must not be accessed after stream execution reaches the free. After this API returns, accessing the memory from any subsequent work launched on the GPU or querying its pointer attributes results in undefined behavior.

Note:
During stream capture, this function results in the creation of a free node and must therefore be passed the address of a graph allocation.

Note:
- Note that this function may also return error codes from previous, asynchronous launches.
- This function uses standard default stream semantics.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cuMemFreeAsync, cudaMallocAsync
__host__ cudaError_t cudaMallocAsync (void **devPtr, size_t size, cudaStream_t hStream)

Allocates memory with stream ordered semantics.

Parameters

devPtr
- Returned device pointer

size
- Number of bytes to allocate

hStream
- The stream establishing the stream ordering contract and the memory pool to allocate from

Returns
cudaSuccess, cudaErrorInvalidValue, cudaErrorNotSupported, cudaErrorOutOfMemory,

Description

Inserts an allocation operation into hStream. A pointer to the allocated memory is returned immediately in *dptr. The allocation must not be accessed until the allocation operation completes. The allocation comes from the memory pool associated with the stream’s device.

Note:

▸ The default memory pool of a device contains device memory from that device.

▸ Basic stream ordering allows future work submitted into the same stream to use the allocation. Stream query, stream synchronize, and CUDA events can be used to guarantee that the allocation operation completes before work submitted in a separate stream runs.

▸ During stream capture, this function results in the creation of an allocation node. In this case, the allocation is owned by the graph instead of the memory pool. The memory pool’s properties are used to set the node’s creation parameters.

Note:

▸ Note that this function may also return error codes from previous, asynchronous launches.

▸ This function uses standard default stream semantics.

▸ Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

```c
__host__ cudaError_t cudaMallocFromPoolAsync(void **ptr, size_t size, cudaMemPool_t memPool, cudaStream_t stream)
```

Allocates memory from a specified pool with stream ordered semantics.

**Parameters**
- **ptr**
  - Returned device pointer
- **size**
- **memPool**
  - The pool to allocate from
- **stream**
  - The stream establishing the stream ordering semantic

**Returns**
`cudaSuccess`, `cudaErrorInvalidValue`, `cudaErrorNotSupported`, `cudaErrorOutOfMemory`

**Description**
Inserts an allocation operation into `hStream`. A pointer to the allocated memory is returned immediately in `*dptr`. The allocation must not be accessed until the the allocation operation completes. The allocation comes from the specified memory pool.

**Note:**
- The specified memory pool may be from a device different than that of the specified `hStream`. 
Basic stream ordering allows future work submitted into the same stream to use the allocation. Stream query, stream synchronize, and CUDA events can be used to guarantee that the allocation operation completes before work submitted in a separate stream runs.

Note:
During stream capture, this function results in the creation of an allocation node. In this case, the allocation is owned by the graph instead of the memory pool. The memory pool’s properties are used to set the node’s creation parameters.

See also:
cuMemAllocFromPoolAsync, cudaMallocAsync [C++ API], cudaMallocAsync, cudaFreeAsync, cudaDeviceGetDefaultMemPool, cudaMemPoolCreate, cudaMemPoolSetAccess, cudaMemPoolSetAttribute

__host__cudaError_t cudaMemPoolCreate
(cudaMemPool_t *memPool, const cudaMemPoolProps *poolProps)
Creates a memory pool.

Returns
cudaSuccess, cudaErrorInvalidValue, cudaErrorNotSupported

Description
Creates a CUDA memory pool and returns the handle in pool. The poolProps determines the properties of the pool such as the backing device and IPC capabilities.

To create a memory pool targeting a specific host NUMA node, applications must set cudaMemPoolProps::cudaMemLocation::type to cudaMemLocationTypeHostNuma and cudaMemPoolProps::cudaMemLocation::id must specify the NUMA ID of the host memory node. By default, the pool’s memory will be accessible from the device it is allocated on. In the case of pools created with cudaMemLocationTypeHostNuma, their default accessibility will be from the host CPU. Applications can control the maximum size of the pool by specifying a non-zero value for cudaMemPoolProps::maxSize. If set to 0, the maximum size of the pool will default to a system dependent value.

Note:
Specifying cudaMemHandleTypeNone creates a memory pool that will not support IPC.

See also:
__host__ cudaError_t cudaMemPoolDestroy (cudaMemPool_t memPool)

Destroys the specified memory pool.

Returns

cudaSuccess, cudaErrorInvalidValue

Description

If any pointers obtained from this pool haven’t been freed or the pool has free operations that haven’t completed when `cudaMemPoolDestroy` is invoked, the function will return immediately and the resources associated with the pool will be released automatically once there are no more outstanding allocations.

Destroying the current mempool of a device sets the default mempool of that device as the current mempool for that device.

Note:

A device’s default memory pool cannot be destroyed.

See also:


__host__ cudaError_t cudaMemPoolExportPointer (cudaMemPoolPtrExportData *exportData, void *ptr)

Export data to share a memory pool allocation between processes.

Parameters

exportData
ptr

- pointer to memory being exported

Returns

cudaSuccess, cudaErrorInvalidValue, cudaErrorOutOfMemory
Description
Constructs `shareData_out` for sharing a specific allocation from an already shared memory pool. The recipient process can import the allocation with the `cudaMemPoolImportPointer` api. The data is not a handle and may be shared through any IPC mechanism.

See also:
`cuMemPoolExportPointer`, `cudaMemPoolExportToShareableHandle`, `cudaMemPoolImportFromShareableHandle`, `cudaMemPoolImportPointer`

__host__*/cudaError_t
cudaMemPoolExportToShareableHandle (void *
shareableHandle, cudaMemPool_t memPool,
cudaMemAllocationHandleType handleType, unsigned int flags)
Exports a memory pool to the requested handle type.

Parameters

- `shareableHandle`
- `memPool`
- `handleType`
  - the type of handle to create
- `flags`
  - must be 0

Returns
`cudaSuccess`, `cudaErrorInvalidValue`, `cudaErrorOutOfMemory`

Description
Given an IPC capable mempool, create an OS handle to share the pool with another process. A recipient process can convert the shareable handle into a mempool with `cudaMemPoolImportFromShareableHandle`. Individual pointers can then be shared with the `cudaMemPoolExportPointer` and `cudaMemPoolImportPointer` APIs. The implementation of what the shareable handle is and how it can be transferred is defined by the requested handle type.

Note:
To create an IPC capable mempool, create a mempool with a CUmemAllocationHandleType other than cudaMemHandleTypeNone.

See also:

__host__cudaError_t cudaMemPoolGetAccess (cudaMemAccessFlags *flags, cudaMemPool_t memPool, cudaMemLocation *location)

Returns the accessibility of a pool from a device.

Parameters
flags
- the accessibility of the pool from the specified location
memPool
- the pool being queried
location
- the location accessing the pool

Description
Returns the accessibility of the pool’s memory from the specified location.

See also:
<code>cudasyncGetAccess</code>, <code>cudaMemPoolSetAccess</code>

__host__cudaError_t cudaMemPoolGetAttribute (cudaMemPool_t memPool, cudaMemPoolAttr attr, void *value)

Gets attributes of a memory pool.

Parameters
memPool
attr
- The attribute to get
value
- Retrieved value
Returns
cudaSuccess, cudaErrorInvalidValue

Description
Supported attributes are:

- **cudaMemPoolAttrReleaseThreshold**: (value type = cuuint64_t) Amount of reserved memory in bytes to hold onto before trying to release memory back to the OS. When more than the release threshold bytes of memory are held by the memory pool, the allocator will try to release memory back to the OS on the next call to stream, event or context synchronize. (default 0)

- **cudaMemPoolReuseFollowEventDependencies**: (value type = int) Allow cudaMemcpyAsync to use memory asynchronously freed in another stream as long as a stream ordering dependency of the allocating stream on the free action exists. Cuda events and null stream interactions can create the required stream ordered dependencies. (default enabled)

- **cudaMemPoolReuseAllowOpportunistic**: (value type = int) Allow reuse of already completed frees when there is no dependency between the free and allocation. (default enabled)

- **cudaMemPoolReuseAllowInternalDependencies**: (value type = int) Allow cudaMemcpyAsync to insert new stream dependencies in order to establish the stream ordering required to reuse a piece of memory released by cudaMemcpyAsync [default enabled].

- **cudaMemPoolAttrReservedMemCurrent**: (value type = cuuint64_t) Amount of backing memory currently allocated for the mempool.

- **cudaMemPoolAttrReservedMemHigh**: (value type = cuuint64_t) High watermark of backing memory allocated for the mempool since the last time it was reset.

- **cudaMemPoolAttrUsedMemCurrent**: (value type = cuuint64_t) Amount of memory from the pool that is currently in use by the application.

- **cudaMemPoolAttrUsedMemHigh**: (value type = cuuint64_t) High watermark of the amount of memory from the pool that was in use by the application since the last time it was reset.

**Note:**
Note that as specified by cudaMemcpyAsync no CUDA function may be called from callback. cudaMemcpyAsync may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
__host__ cudaError_t
cudaMemPoolImportFromShareableHandle  
(cudaMemPool_t *memPool, void *shareableHandle, cudaMemAllocationHandleType handleType, unsigned int flags)

imports a memory pool from a shared handle.

Parameters

memPool
shareableHandle
handleType
  - The type of handle being imported
flags
  - must be 0

Returns
cudaSuccess, cudaErrorInvalidValue, cudaErrorOutOfMemory

Description

Specific allocations can be imported from the imported pool with cudaMemPoolImportPointer.

Note:

Imported memory pools do not support creating new allocations. As such imported memory pools may not be used in cudaDeviceSetMemPool or cudaMallocFromPoolAsync calls.

See also:
cuMemPoolImportFromShareableHandle, cudaMemPoolExportToShareableHandle, cudaMemPoolExportPointer, cudaMemPoolImportPointer
__host__ cudaError_t cudaMemPoolImportPointer
(void **ptr, cudaMemPool_t memPool,
cudaMemPoolPtrExportData *exportData)

Import a memory pool allocation from another process.

Returns
CUDA_SUCCESS, CUDA_ERROR_INVALID_VALUE, CUDA_ERROR_NOT_INITIALIZED, CUDA_ERROR_OUT_OF_MEMORY

Description
Returns in ptr_out a pointer to the imported memory. The imported memory must not be accessed before the allocation operation completes in the exporting process. The imported memory must be freed from all importing processes before being freed in the exporting process. The pointer may be freed with cudaFree or cudaFreeAsync. If cudaFreeAsync is used, the free must be completed on the importing process before the free operation on the exporting process.

Note:
The cudaFreeAsync api may be used in the exporting process before the cudaFreeAsync operation completes in its stream as long as the cudaFreeAsync in the exporting process specifies a stream with a stream dependency on the importing process’s cudaFreeAsync.

See also:
cuMemPoolImportPointer, cudaMemPoolExportToShareableHandle, cudaMemPoolImportFromShareableHandle, cudaMemPoolExportPointer

__host__ cudaError_t cudaMemPoolSetAccess
(cudaMemPool_t memPool, const
cudaMemAccessDesc *descList, size_t count)

Controls visibility of pools between devices.

Parameters
memPool
descList
count
- Number of descriptors in the map array.
Returns
cudaSuccess, cudaErrorInvalidValue

Description

See also:
cuMemPoolSetAccess, cudaMemPoolGetAccess, cudaMallocAsync, cudaFreeAsync

__host__cudaError_t cudaMemPoolSetAttribute
(cudaMemPool_t memPool, cudaMemPoolAttr attr, void *value)
Sets attributes of a memory pool.

Parameters

memPool
attr
- The attribute to modify
value
- Pointer to the value to assign

Returns
cudaSuccess, cudaErrorInvalidValue

Description

Supported attributes are:

- cudaMemPoolAttrReleaseThreshold: [value type = cuuint64_t] Amount of reserved memory in bytes to hold onto before trying to release memory back to the OS. When more than the release threshold bytes of memory are held by the memory pool, the allocator will try to release memory back to the OS on the next call to stream, event or context synchronize. (default 0)

- cudaMemPoolReuseFollowEventDependencies: [value type = int] Allow cudaMallocAsync to use memory asynchronously freed in another stream as long as a stream ordering dependency of the allocating stream on the free action exists. Cuda events and null stream interactions can create the required stream ordered dependencies. (default enabled)

- cudaMemPoolReuseAllowOpportunistic: [value type = int] Allow reuse of already completed frees when there is no dependency between the free and allocation. (default enabled)
(cudaMemPoolReuseAllowInternalDependencies): (value type = int) Allow cudaMallocAsync to insert new stream dependencies in order to establish the stream ordering required to reuse a piece of memory released by cudaFreeAsync [default enabled].

cudaMemPoolAttrReservedMemHigh: (value type = cuuint64_t) Reset the high watermark that tracks the amount of backing memory that was allocated for the memory pool. It is illegal to set this attribute to a non-zero value.

cudaMemPoolAttrUsedMemHigh: (value type = cuuint64_t) Reset the high watermark that tracks the amount of used memory that was allocated for the memory pool. It is illegal to set this attribute to a non-zero value.

Note:
Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cuMemPoolSetAttribute, cudaMallocAsync, cudaFreeAsync, cudaDeviceGetDefaultMemPool, cudaDeviceGetMemPool, cudaMemPoolCreate

__host__cudaError_t cudaMemPoolTrimTo
(cudaMemPool_t memPool, size_t minBytesToKeep)
Tries to release memory back to the OS.

Parameters
memPool
minBytesToKeep
- If the pool has less than minBytesToKeep reserved, the TrimTo operation is a no-op. Otherwise the pool will be guaranteed to have at least minBytesToKeep bytes reserved after the operation.

Returns
cudaSuccess, cudaErrorInvalidValue

Description
Releases memory back to the OS until the pool contains fewer than minBytesToKeep reserved bytes, or there is no more memory that the allocator can safely release. The allocator cannot
release OS allocations that back outstanding asynchronous allocations. The OS allocations may happen at different granularity from the user allocations.

Note:
- Allocations that have not been freed count as outstanding.
- Allocations that have been asynchronously freed but whose completion has not been observed on the host (e.g., by a synchronize) can count as outstanding.

Note:
Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cuMemPoolTrimTo, cudaMallocAsync, cudaFreeAsync, cudaDeviceGetDefaultMemPool, cudaDeviceGetMemPool, cudaMemPoolCreate

6.12. Unified Addressing

This section describes the unified addressing functions of the CUDA runtime application programming interface.

Overview

CUDA devices can share a unified address space with the host. For these devices there is no distinction between a device pointer and a host pointer -- the same pointer value may be used to access memory from the host program and from a kernel running on the device (with exceptions enumerated below).

Supported Platforms

Whether or not a device supports unified addressing may be queried by calling cudaGetDeviceProperties[] with the device property cudaDeviceProp::unifiedAddressing.

Unified addressing is automatically enabled in 64-bit processes.

Looking Up Information from Pointer Values

It is possible to look up information about the memory which backs a pointer value. For instance, one may want to know if a pointer points to host or device memory. As another example, in the case of device memory, one may want to know on which
CUDA device the memory resides. These properties may be queried using the function cudaPointerGetAttributes().

Since pointers are unique, it is not necessary to specify information about the pointers specified to cudaMemcpy() and other copy functions. The copy direction cudaMemcpyDefault may be used to specify that the CUDA runtime should infer the location of the pointer from its value.

**Automatic Mapping of Host Allocated Host Memory**

All host memory allocated through all devices using cudaMemcpyHost() and cudaHostAlloc() is always directly accessible from all devices that support unified addressing. This is the case regardless of whether or not the flags cudaMemcpyPortable and cudaMemcpyMapped are specified.

The pointer value through which allocated host memory may be accessed in kernels on all devices that support unified addressing is the same as the pointer value through which that memory is accessed on the host. It is not necessary to call cudaMemcpyDevicePointer() to get the device pointer for these allocations.

Note that this is not the case for memory allocated using the flag cudaMemcpyWriteCombined, as discussed below.

**Direct Access of Peer Memory**

Upon enabling direct access from a device that supports unified addressing to another peer device that supports unified addressing using cudaDeviceEnablePeerAccess(), all memory allocated in the peer device using cudaMemcpy() and cudaMemcpyPitch() will immediately be accessible by the current device. The device pointer value through which any peer’s memory may be accessed in the current device is the same pointer value through which that memory may be accessed from the peer device.

**Exceptions, Disjoint Addressing**

Not all memory may be accessed on devices through the same pointer value through which they are accessed on the host. These exceptions are host memory registered using cudaMemcpyHostRegister() and host memory allocated using the flag cudaMemcpyWriteCombined. For these exceptions, there exists a distinct host and device address for the memory. The device address is guaranteed to not overlap any valid host pointer range and is guaranteed to have the same value across all devices that support unified addressing.

This device address may be queried using cudaMemcpyDevicePointer() when a device using unified addressing is current. Either the host or the unified device pointer value may be used to refer to this memory in cudaMemcpy() and similar functions using the cudaMemcpyDefault memory direction.
__host__ cudaError_t cudaPointerGetAttributes (cudaPointerAttributes *attributes, const void *ptr)

Returns attributes about a specified pointer.

Parameters
attributes
- Attributes for the specified pointer
ptr
- Pointer to get attributes for

Returns
cudaSuccess, cudaErrorInvalidDevice, cudaErrorInvalidValue

Description
Returns in *attributes the attributes of the pointer ptr. If pointer was not allocated in, mapped by or registered with context supporting unified addressing cudaErrorInvalidValue is returned.

Note:
In CUDA 11.0 forward passing host pointer will return cudaMemoryTypeUnregistered in cudaPointerAttributes::type and call will return cudaSuccess.

The cudaPointerAttributes structure is defined as:

```c
struct cudaPointerAttributes {
    enum cudaMemoryType
        type;
    int device;
    void *devicePointer;
    void *hostPointer;
};
```

In this structure, the individual fields mean

- cudaPointerAttributes::type identifies type of memory. It can be cudaMemoryTypeUnregistered for unregistered host memory, cudaMemoryTypeHost for registered host memory, cudaMemoryTypeDevice for device memory or cudaMemoryTypeManaged for managed memory.

- device is the device against which ptr was allocated. If ptr has memory type cudaMemoryTypeDevice then this identifies the device on which the memory referred to by ptr physically resides. If ptr has memory type cudaMemoryTypeHost then this identifies the device which was current when the allocation was made [and if that device is deinitialized then this allocation will vanish with that device’s state].
- **devicePointer** is the device pointer alias through which the memory referred to by `ptr` may be accessed on the current device. If the memory referred to by `ptr` cannot be accessed directly by the current device then this is NULL.

- **hostPointer** is the host pointer alias through which the memory referred to by `ptr` may be accessed on the host. If the memory referred to by `ptr` cannot be accessed directly by the host then this is NULL.

**Note:**
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

**See also:**
- `cudaGetDeviceCount`, `cudaGetDevice`, `cudaSetDevice`, `cudaChooseDevice`, `cudaInitDevice`, `cuPointerGetAttributes`

## 6.13. Peer Device Memory Access

This section describes the peer device memory access functions of the CUDA runtime application programming interface.

```c
__host__ cudaError_t cudaDeviceCanAccessPeer (int *canAccessPeer, int device, int peerDevice)
```

Queries if a device may directly access a peer device’s memory.

**Parameters**

- **canAccessPeer**
  - Returned access capability

- **device**
  - Device from which allocations on `peerDevice` are to be directly accessed.

- **peerDevice**
  - Device on which the allocations to be directly accessed by `device` reside.
Returns
cudaSuccess, cudaErrorInvalidDevice

Description
Returns in *canAccessPeer a value of 1 if device device is capable of directly accessing memory from peerDevice and 0 otherwise. If direct access of peerDevice from device is possible, then access may be enabled by calling cudaDeviceEnablePeerAccess().

Note:
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaDeviceEnablePeerAccess, cudaDeviceDisablePeerAccess, cuDeviceCanAccessPeer

__host__cudaError_t cudaDeviceDisablePeerAccess (int peerDevice)
Disables direct access to memory allocations on a peer device.

Parameters
peerDevice
- Peer device to disable direct access to

Returns
cudaSuccess, cudaErrorPeerAccessNotEnabled, cudaErrorInvalidDevice

Description
Returns cudaErrorPeerAccessNotEnabled if direct access to memory on peerDevice has not yet been enabled from the current device.
Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaDeviceCanAccessPeer, cudaDeviceEnablePeerAccess, cuCtxDisablePeerAccess

__host__cudaError_t cudaDeviceEnablePeerAccess (int peerDevice, unsigned int flags)
Enables direct access to memory allocations on a peer device.

Parameters
peerDevice
- Peer device to enable direct access to from the current device
flags
- Reserved for future use and must be set to 0

Returns
cudaSuccess, cudaErrorInvalidDevice, cudaErrorPeerAccessAlreadyEnabled, cudaErrorInvalidValue

Description
On success, all allocations from peerDevice will immediately be accessible by the current device. They will remain accessible until access is explicitly disabled using cudaDeviceDisablePeerAccess() or either device is reset using cudaDeviceReset().

Note that access granted by this call is unidirectional and that in order to access memory on the current device from peerDevice, a separate symmetric call to cudaDeviceEnablePeerAccess() is required.

Note that there are both device-wide and system-wide limitations per system configuration, as noted in the CUDA Programming Guide under the section “Peer-to-Peer Memory Access”.

Returns cudaErrorInvalidDevice if cudaDeviceCanAccessPeer() indicates that the current device cannot directly access memory from peerDevice.
Returns `cudaErrorPeerAccessAlreadyEnabled` if direct access of `peerDevice` from the current device has already been enabled.

Returns `cudaErrorInvalidValue` if `flags` is not 0.

### Note:
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

### See also:
- `cudaDeviceCanAccessPeer`, `cudaDeviceDisablePeerAccess`, `cuCtxEnablePeerAccess`

### 6.14. OpenGL Interoperability

This section describes the OpenGL interoperability functions of the CUDA runtime application programming interface. Note that mapping of OpenGL resources is performed with the graphics API agnostic, resource mapping interface described in **Graphics Interopability**.

#### `enum cudaGLDeviceList`

CUDA devices corresponding to the current OpenGL context

#### Values

- **cudaGLDeviceListAll = 1**
  - The CUDA devices for all GPUs used by the current OpenGL context

- **cudaGLDeviceListCurrentFrame = 2**
  - The CUDA devices for the GPUs used by the current OpenGL context in its currently rendering frame

- **cudaGLDeviceListNextFrame = 3**
  - The CUDA devices for the GPUs to be used by the current OpenGL context in the next frame
__host__ cudaError_t cudaGLGetDevices (unsigned int *pCudaDeviceCount, int *pCudaDevices, unsigned int cudaDeviceCount, cudaGLDeviceList deviceList)

Gets the CUDA devices associated with the current OpenGL context.

Parameters

pCudaDeviceCount
- Returned number of CUDA devices corresponding to the current OpenGL context

pCudaDevices
- Returned CUDA devices corresponding to the current OpenGL context

cudaDeviceCount
- The size of the output device array pCudaDevices

deviceList
- The set of devices to return. This set may be cudaGLDeviceListAll for all devices, cudaGLDeviceListCurrentFrame for the devices used to render the current frame (in SLI), or cudaGLDeviceListNextFrame for the devices used to render the next frame (in SLI).

Returns
cudaSuccess, cudaErrorNoDevice, cudaErrorInvalidGraphicsContext, cudaErrorOperatingSystem, cudaErrorUnknown

Description

Returns in *pCudaDeviceCount the number of CUDA-compatible devices corresponding to the current OpenGL context. Also returns in *pCudaDevices at most cudaDeviceCount of the CUDA-compatible devices corresponding to the current OpenGL context. If any of the GPUs being used by the current OpenGL context are not CUDA capable then the call will return cudaErrorNoDevice.

Note:
- This function is not supported on Mac OS X.
- Note that this function may also return error codes from previous, asynchronous launches.

See also:
__host__ cudaError_t cudaGraphicsGLRegisterBuffer (cudaGraphicsResource **resource, GLuint buffer, unsigned int flags)

Registers an OpenGL buffer object.

Parameters

**resource**
- Pointer to the returned object handle

**buffer**
- name of buffer object to be registered

**flags**
- Register flags

Returns

cudaSuccess, cudaErrorInvalidDevice, cudaErrorInvalidValue, cudaErrorInvalidResourceHandle, cudaErrorOperatingSystem, cudaErrorUnknown

Description

Registers the buffer object specified by buffer for access by CUDA. A handle to the registered object is returned as resource. The register flags flags specify the intended usage, as follows:

- **cudaGraphicsRegisterFlagsNone**: Specifies no hints about how this resource will be used. It is therefore assumed that this resource will be read from and written to by CUDA. This is the default value.

- **cudaGraphicsRegisterFlagsReadOnly**: Specifies that CUDA will not write to this resource.

- **cudaGraphicsRegisterFlagsWriteDiscard**: Specifies that CUDA will not read from this resource and will write over the entire contents of the resource, so none of the data previously stored in the resource will be preserved.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

`__host__cudaError_t cudaGraphicsGLRegisterImage(cudaGraphicsResource **resource, GLuint image, GLenum target, unsigned int flags)`

Register an OpenGL texture or renderbuffer object.

**Parameters**

- **resource**
  - Pointer to the returned object handle
- **image**
  - name of texture or renderbuffer object to be registered
- **target**
  - Identifies the type of object specified by image
- **flags**
  - Register flags

**Returns**

- `cudaSuccess`
- `cudaErrorInvalidDevice`
- `cudaErrorInvalidValue`
- `cudaErrorInvalidResourceHandle`
- `cudaErrorOperatingSystem`
- `cudaErrorUnknown`

**Description**

Registers the texture or renderbuffer object specified by `image` for access by CUDA. A handle to the registered object is returned as `resource`.

`target` must match the type of the object, and must be one of `GL_TEXTURE_2D`, `GL_TEXTURE_RECTANGLE`, `GL_TEXTURE_CUBE_MAP`, `GL_TEXTURE_3D`, `GL_TEXTURE_2D_ARRAY`, or `GL_RENDERBUFFER`.

The register flags `flags` specify the intended usage, as follows:

- **`cudaGraphicsRegisterFlagsNone`**: Specifies no hints about how this resource will be used. It is therefore assumed that this resource will be read from and written to by CUDA. This is the default value.

- **`cudaGraphicsRegisterFlagsReadOnly`**: Specifies that CUDA will not write to this resource.

- **`cudaGraphicsRegisterFlagsWriteDiscard`**: Specifies that CUDA will not read from this resource and will write over the entire contents of the resource, so none of the data previously stored in the resource will be preserved.

- **`cudaGraphicsRegisterFlagsSurfaceLoadStore`**: Specifies that CUDA will bind this resource to a surface reference.

- **`cudaGraphicsRegisterFlagsTextureGather`**: Specifies that CUDA will perform texture gather operations on this resource.
The following image formats are supported. For brevity’s sake, the list is abbreviated. For ex., {GL_R, GL_RG} X {8, 16} would expand to the following 4 formats {GL_R8, GL_R16, GL_RG8, GL_RG16}:

- GL_RED, GL_RG, GL_RGBA, GL_LUMINANCE, GL_ALPHA, GL_LUMINANCE_ALPHA, GL_INTENSITY
- {GL_R, GL_RG, GL_RGBA} X {8, 16, 16F, 32F, 8UI, 16UI, 8I, 16I, 32I}
- {GL_LUMINANCE, GL_ALPHA, GL_LUMINANCE_ALPHA, GL_INTENSITY} X {8, 16, 16F_ARB, 32F_ARB, 8UI_EXT, 16UI_EXT, 32UI_EXT, 8I_EXT, 16I_EXT, 32I_EXT}

The following image classes are currently disallowed:

- Textures with borders
- Multisampled renderbuffers

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:

__host__cudaError_t cudaWGLGetDevice (int *device, HGPUNV hGpu)

Gets the CUDA device associated with hGpu.

Parameters
device
- Returns the device associated with hGpu, or -1 if hGpu is not a compute device.

hGpu
- Handle to a GPU, as queried via WGL_NV_gpu_affinity

Returns
cudaSuccess

Description
Returns the CUDA device associated with a hGpu, if applicable.
6.15. OpenGL Interoperability [DEPRECATED]

This section describes deprecated OpenGL interoperability functionality.

enum cudaGLMapFlags

CUDA GL Map Flags

Values

cudaGLMapFlagsNone = 0
   Default; Assume resource can be read/written

cudaGLMapFlagsReadOnly = 1
   CUDA kernels will not write to this resource

cudaGLMapFlagsWriteDiscard = 2
   CUDA kernels will only write to and will not read from this resource

__host__cudaError_t cudaGLMapBufferObject (void **devPtr, GLuint bufObj)
Maps a buffer object for access by CUDA.

Parameters

devPtr
   - Returned device pointer to CUDA object

bufObj
   - Buffer object ID to map

Returns

cudaSuccess, cudaErrorMapBufferObjectFailed
Description

 Deprecated This function is deprecated as of CUDA 3.0.

Maps the buffer object of ID bufObj into the address space of CUDA and returns in *devPtr
the base pointer of the resulting mapping. The buffer must have previously been registered
by calling cudaGLRegisterBufferObject(). While a buffer is mapped by CUDA, any OpenGL
operation which references the buffer will result in undefined behavior. The OpenGL context
used to create the buffer, or another context from the same share group, must be bound to the
current thread when this is called.

All streams in the current thread are synchronized with the current GL context.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsMapResources

__host__cudaError_t cudaGLMapBufferObjectAsync
(void **devPtr, GLuint bufObj, cudaStream_t stream)

Maps a buffer object for access by CUDA.

Parameters

devPtr
  - Returned device pointer to CUDA object
bufObj
  - Buffer object ID to map
stream
  - Stream to synchronize

Returns

cudaSuccess, cudaErrorMapBufferObjectFailed

Description

 Deprecated This function is deprecated as of CUDA 3.0.

Maps the buffer object of ID bufObj into the address space of CUDA and returns in *devPtr
the base pointer of the resulting mapping. The buffer must have previously been registered
by calling cudaGLRegisterBufferObject(). While a buffer is mapped by CUDA, any OpenGL
operation which references the buffer will result in undefined behavior. The OpenGL context
used to create the buffer, or another context from the same share group, must be bound to the current thread when this is called.

Stream /p stream is synchronized with the current GL context.

### Note:
Note that this function may also return error codes from previous, asynchronous launches.

#### See also:
[cudaGraphicsMapResources](#)

### __host__cudaError_t cudaGLRegisterBufferObject (GLuint bufObj)

Registers a buffer object for access by CUDA.

#### Parameters
- **bufObj**
  - Buffer object ID to register

#### Returns
- cudaSuccess, cudaErrorInitializationError

#### Description
This function is deprecated as of CUDA 3.0.

Registers the buffer object of ID `bufObj` for access by CUDA. This function must be called before CUDA can map the buffer object. The OpenGL context used to create the buffer, or another context from the same share group, must be bound to the current thread when this is called.

### Note:
Note that this function may also return error codes from previous, asynchronous launches.

#### See also:
[cudaGraphicsGLRegisterBuffer](#)
__host__ cudaError_t
cudaGLSetBufferObjectMapFlags (GLuint bufObj,
unsigned int flags)
Set usage flags for mapping an OpenGL buffer.

Parameters

bufObj
- Registered buffer object to set flags for
flags
- Parameters for buffer mapping

Returns
cudaSuccess, cudaErrorInvalidValue, cudaErrorInvalidResourceHandle, cudaErrorUnknown

Description

Deprecated This function is deprecated as of CUDA 3.0.

Set flags for mapping the OpenGL buffer bufObj
Changes to flags will take effect the next time bufObj is mapped. The flags argument may be any of the following:

- cudaGLMapFlagsNone: Specifies no hints about how this buffer will be used. It is therefore assumed that this buffer will be read from and written to by CUDA kernels. This is the default value.
- cudaGLMapFlagsReadOnly: Specifies that CUDA kernels which access this buffer will not write to the buffer.
- cudaGLMapFlagsWriteDiscard: Specifies that CUDA kernels which access this buffer will not read from the buffer and will write over the entire contents of the buffer, so none of the data previously stored in the buffer will be preserved.

If bufObj has not been registered for use with CUDA, then cudaErrorInvalidResourceHandle is returned. If bufObj is presently mapped for access by CUDA, then cudaErrorUnknown is returned.

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaGraphicsResourceSetMapFlags
__host__cudaError_t cudaGLSetGLDevice (int device)
Sets a CUDA device to use OpenGL interoperability.

Parameters
device
- Device to use for OpenGL interoperability

Returns
cudaSuccess, cudaErrorInvalidDevice, cudaErrorSetOnActiveProcess

Description
Deprecated
This function is deprecated as of CUDA 5.0.
This function is deprecated and should no longer be used. It is no longer necessary to associate a CUDA device with an OpenGL context in order to achieve maximum interoperability performance.
This function will immediately initialize the primary context on device if needed.

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaGraphicsGLRegisterBuffer, cudaGraphicsGLRegisterImage

__host__cudaError_t cudaGLUnmapBufferObject (GLuint bufObj)
Unmaps a buffer object for access by CUDA.

Parameters
bufObj
- Buffer object to unmap

Returns
cudaSuccess, cudaErrorUnmapBufferObjectFailed

Description
Deprecated
This function is deprecated as of CUDA 3.0.
Unmaps the buffer object of ID `bufObj` for access by CUDA. When a buffer is unmapped, the base address returned by `cudaGLMapBufferObject()` is invalid and subsequent references to the address result in undefined behavior. The OpenGL context used to create the buffer, or another context from the same share group, must be bound to the current thread when this is called.

All streams in the current thread are synchronized with the current GL context.

**Note:**
Note that this function may also return error codes from previous, asynchronous launches.

See also:
`cudaGraphicsUnmapResources`

```c
__host__ cudaError_t
cudaGLUnmapBufferObjectAsync (GLuint bufObj, cudaStream_t stream)
```

Unmaps a buffer object for access by CUDA.

**Parameters**
- `bufObj` - Buffer object to unmap
- `stream` - Stream to synchronize

**Returns**
`cudaSuccess`, `cudaErrorUnmapBufferObjectFailed`

**Description**
This function is deprecated as of CUDA 3.0.

Unmaps the buffer object of ID `bufObj` for access by CUDA. When a buffer is unmapped, the base address returned by `cudaGLMapBufferObject()` is invalid and subsequent references to the address result in undefined behavior. The OpenGL context used to create the buffer, or another context from the same share group, must be bound to the current thread when this is called.

Stream `/p stream` is synchronized with the current GL context.
Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaGraphicsUnmapResources

__host__cudaError_t cudaGLUnregisterBufferObject(GLuint bufObj)
Unregisters a buffer object for access by CUDA.

Parameters
bufObj
- Buffer object to unregister

Returns
cudaSuccess

Description
Deprecated This function is deprecated as of CUDA 3.0.
Unregisters the buffer object of ID bufObj for access by CUDA and releases any CUDA resources associated with the buffer. Once a buffer is unregistered, it may no longer be mapped by CUDA. The GL context used to create the buffer, or another context from the same share group, must be bound to the current thread when this is called.

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaGraphicsUnregisterResource

6.16. Direct3D 9 Interoperability

This section describes the Direct3D 9 interoperability functions of the CUDA runtime application programming interface. Note that mapping of Direct3D 9 resources is performed
with the graphics API agnostic, resource mapping interface described in Graphics Interopability.

enum cudaD3D9DeviceList
CUDA devices corresponding to a D3D9 device

Values
\texttt{cudaD3D9DeviceListAll} = 1
The CUDA devices for all GPUs used by a D3D9 device
\texttt{cudaD3D9DeviceListCurrentFrame} = 2
The CUDA devices for the GPUs used by a D3D9 device in its currently rendering frame
\texttt{cudaD3D9DeviceListNextFrame} = 3
The CUDA devices for the GPUs to be used by a D3D9 device in the next frame

__host__cudaError_t cudaD3D9GetDevice (int *device, const char *pszAdapterName)
Gets the device number for an adapter.

Parameters
\textbf{device}
- Returns the device corresponding to pszAdapterName
\textbf{pszAdapterName}
- D3D9 adapter to get device for

Returns
\texttt{cudaSuccess}, \texttt{cudaErrorInvalidValue}, \texttt{cudaErrorUnknown}

Description
Returns in *device the CUDA-compatible device corresponding to the adapter name pszAdapterName obtained from EnumDisplayDevices or IDirect3D9::GetAdapterIdentifier[]. If no device on the adapter with name pszAdapterName is CUDA-compatible then the call will fail.

\textbf{Note:}
Note that this function may also return error codes from previous, asynchronous launches.

\textbf{See also:}
\texttt{cudaD3D9SetDirect3DDevice}, \texttt{cudaGraphicsD3D9RegisterResource}, \texttt{cuD3D9GetDevice}
__host__ cudaError_t cudaD3D9GetDevices (unsigned int *pCudaDeviceCount, int *pCudaDevices, unsigned int cudaDeviceCount, IDirect3DDevice9 *pD3D9Device, cudaD3D9DeviceList deviceList)

Gets the CUDA devices corresponding to a Direct3D 9 device.

Parameters

pCudaDeviceCount
- Returned number of CUDA devices corresponding to pD3D9Device

pCudaDevices
- Returned CUDA devices corresponding to pD3D9Device

cudaDeviceCount
- The size of the output device array pCudaDevices

pD3D9Device
- Direct3D 9 device to query for CUDA devices

deviceList
- The set of devices to return. This set may be cudaD3D9DeviceListAll for all devices, cudaD3D9DeviceListCurrentFrame for the devices used to render the current frame (in SLI), or cudaD3D9DeviceListNextFrame for the devices used to render the next frame (in SLI).

Returns
cudaSuccess, cudaErrorNoDevice, cudaErrorUnknown

Description

Returns in *pCudaDeviceCount the number of CUDA-compatible devices corresponding to the Direct3D 9 device pD3D9Device. Also returns in *pCudaDevices at most cudaDeviceCount of the CUDA-compatible devices corresponding to the Direct3D 9 device pD3D9Device.

If any of the GPUs being used to render pDevice are not CUDA capable then the call will return cudaErrorNoDevice.

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:

__host__ cudaError_t cudaD3D9GetDirect3DDevice (IDirect3DDevice9 **ppD3D9Device)

Gets the Direct3D device against which the current CUDA context was created.

Parameters

ppD3D9Device
- Returns the Direct3D device for this thread

Returns
cudaSuccess, cudaErrorInvalidGraphicsContext, cudaErrorUnknown

Description

Returns in *ppD3D9Device the Direct3D device against which this CUDA context was created in cudaD3D9SetDirect3DDevice().

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaD3D9SetDirect3DDevice, cuD3D9GetDirect3DDevice

__host__ cudaError_t cudaD3D9SetDirect3DDevice (IDirect3DDevice9 *pD3D9Device, int device)

Sets the Direct3D 9 device to use for interoperability with a CUDA device.

Parameters

pD3D9Device
- Direct3D device to use for this thread
device
- The CUDA device to use. This device must be among the devices returned when querying cudaDeviceListAll from cudaGetDevice, may be set to -1 to automatically select an appropriate CUDA device.
Returns
cudaSuccess, cudaErrorInitializationError, cudaErrorInvalidValue, cudaErrorSetOnActiveProcess

Description
Records pD3D9Device as the Direct3D 9 device to use for Direct3D 9 interoperability with the CUDA device device and sets device as the current device for the calling host thread.
This function will immediately initialize the primary context on device if needed.
If device has already been initialized then this call will fail with the error cudaErrorSetOnActiveProcess. In this case it is necessary to reset device using cudaDeviceReset() before Direct3D 9 interoperability on device may be enabled.
Successfully initializing CUDA interoperability with pD3D9Device will increase the internal reference count on pD3D9Device. This reference count will be decremented when device is reset using cudaDeviceReset().
Note that this function is never required for correct functionality. Use of this function will result in accelerated interoperability only when the operating system is Windows Vista or Windows 7, and the device pD3DDDevice is not an IDirect3DDevice9Ex. In all other circumstances, this function is not necessary.

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaD3D9GetDevice, cudaGraphicsD3D9RegisterResource, cudaDeviceReset

__host__cudaError_t
cudaGraphicsD3D9RegisterResource
cudaGraphicsResource **resource,
IDirect3DResource9 *pD3DResource, unsigned int flags)
Register a Direct3D 9 resource for access by CUDA.

Parameters
resource
- Pointer to returned resource handle
**pD3DResource**
- Direct3D resource to register

**flags**
- Parameters for resource registration

**Returns**
cudaSuccess, cudaErrorInvalidDevice, cudaErrorInvalidValue, cudaErrorInvalidResourceHandle, cudaErrorUnknown

**Description**
Registers the Direct3D 9 resource `pD3DResource` for access by CUDA.

If this call is successful then the application will be able to map and unmap this resource until it is unregistered through `cudaGraphicsUnregisterResource()`. Also on success, this call will increase the internal reference count on `pD3DResource`. This reference count will be decremented when this resource is unregistered through `cudaGraphicsUnregisterResource()`.

This call potentially has a high-overhead and should not be called every frame in interactive applications.

The type of `pD3DResource` must be one of the following.

- IDirect3DVertexBuffer9: may be accessed through a device pointer
- IDirect3DIndexBuffer9: may be accessed through a device pointer
- IDirect3DSurface9: may be accessed through an array. Only stand-alone objects of type IDirect3DSurface9 may be explicitly shared. In particular, individual mipmap levels and faces of cube maps may not be registered directly. To access individual surfaces associated with a texture, one must register the base texture object.
- IDirect3DBaseTexture9: individual surfaces on this texture may be accessed through an array.

The `flags` argument may be used to specify additional parameters at register time. The valid values for this parameter are

- `cudaGraphicsRegisterFlagsNone`: Specifies no hints about how this resource will be used.
- `cudaGraphicsRegisterFlagsSurfaceLoadStore`: Specifies that CUDA will bind this resource to a surface reference.
- `cudaGraphicsRegisterFlagsTextureGather`: Specifies that CUDA will perform texture gather operations on this resource.

Not all Direct3D resources of the above types may be used for interoperability with CUDA. The following are some limitations.

- The primary rendertarget may not be registered with CUDA.
Resources allocated as shared may not be registered with CUDA.

Textures which are not of a format which is 1, 2, or 4 channels of 8, 16, or 32-bit integer or floating-point data cannot be shared.

Surfaces of depth or stencil formats cannot be shared.

A complete list of supported formats is as follows:

- D3DFMT_L8
- D3DFMT_L16
- D3DFMT_A8R8G8B8
- D3DFMT_X8R8G8B8
- D3DFMT_G16R16
- D3DFMT_A8B8G8R8
- D3DFMT_A8
- D3DFMT_A8L8
- D3DFMT_Q8W8V8U8
- D3DFMT_V16U16
- D3DFMT_A16B16G16R16F
- D3DFMT_A16B16G16R16
- D3DFMT_R32F
- D3DFMT_G16R16F
- D3DFMT_A32B32G32R32F
- D3DFMT_G32R32F
- D3DFMT_R16F

If pD3DResource is of incorrect type or is already registered, then cudaErrorInvalidResourceHandle is returned. If pD3DResource cannot be registered, then cudaErrorUnknown is returned.

Note: Note that this function may also return error codes from previous, asynchronous launches.

See also:
6.17. Direct3D 9 Interoperability
[DEPRECATED]

This section describes deprecated Direct3D 9 interoperability functions.

enum cudaD3D9MapFlags

CUDA D3D9 Map Flags

Values

cudaD3D9MapFlagsNone = 0
  Default; Assume resource can be read/written

cudaD3D9MapFlagsReadOnly = 1
  CUDA kernels will not write to this resource

cudaD3D9MapFlagsWriteDiscard = 2
  CUDA kernels will only write to and will not read from this resource

enum cudaD3D9RegisterFlags

CUDA D3D9 Register Flags

Values

cudaD3D9RegisterFlagsNone = 0
  Default; Resource can be accessed through void*

cudaD3D9RegisterFlagsArray = 1
  Resource can be accessed through a CUarray*

__host__cudaError_t cudaD3D9MapResources (int count, IDirect3DResource9 **ppResources)

Map Direct3D resources for access by CUDA.

Parameters

count
  - Number of resources to map for CUDA

ppResources
  - Resources to map for CUDA
**Returns**

cudaSuccess, cudaErrorInvalidResourceHandle, cudaErrorUnknown

**Description**

*Deprecated* This function is deprecated as of CUDA 3.0.

Maps the count Direct3D resources in ppResources for access by CUDA.

The resources in ppResources may be accessed in CUDA kernels until they are unmapped. Direct3D should not access any resources while they are mapped by CUDA. If an application does so, the results are undefined.

This function provides the synchronization guarantee that any Direct3D calls issued before cudaD3D9MapResources[] will complete before any CUDA kernels issued after cudaD3D9MapResources[] begin.

If any of ppResources have not been registered for use with CUDA or if ppResources contains any duplicate entries then cudaErrorInvalidResourceHandle is returned. If any of ppResources are presently mapped for access by CUDA then cudaErrorUnknown is returned.

**Note:**

Note that this function may also return error codes from previous, asynchronous launches.

**See also:**

cudaGraphicsMapResources

```c
__host__ cudaError_t cudaD3D9RegisterResource
(IDirect3DResource9 *pResource, unsigned int flags)
```

Registers a Direct3D resource for access by CUDA.

**Parameters**

- **pResource**
  - Resource to register
- **flags**
  - Parameters for resource registration

**Returns**

cudaSuccess, cudaErrorInvalidValue, cudaErrorInvalidResourceHandle, cudaErrorUnknown
Description

**Deprecated** This function is deprecated as of CUDA 3.0.

Registers the Direct3D resource `pResource` for access by CUDA.

If this call is successful, then the application will be able to map and unmap this resource until it is unregistered through `cudaD3D9UnregisterResource()`. Also on success, this call will increase the internal reference count on `pResource`. This reference count will be decremented when this resource is unregistered through `cudaD3D9UnregisterResource()`.

This call potentially has a high-overhead and should not be called every frame in interactive applications.

The type of `pResource` must be one of the following:

- `IDirect3DVertexBuffer9`: No notes.
- `IDirect3DIndexBuffer9`: No notes.
- `IDirect3DSurface9`: Only stand-alone objects of type `IDirect3DSurface9` may be explicitly shared. In particular, individual mipmap levels and faces of cube maps may not be registered directly. To access individual surfaces associated with a texture, one must register the base texture object.
- `IDirect3DBaseTexture9`: When a texture is registered, all surfaces associated with all mipmap levels of all faces of the texture will be accessible to CUDA.

The `flags` argument specifies the mechanism through which CUDA will access the Direct3D resource. The following value is allowed:

- `cudaD3D9RegisterFlagsNone`: Specifies that CUDA will access this resource through a `void*`. The pointer, size, and pitch for each subresource of this resource may be queried through `cudaD3D9ResourceGetMappedPointer()`, `cudaD3D9ResourceGetMappedSize()`, and `cudaD3D9ResourceGetMappedPitch()` respectively. This option is valid for all resource types.

Not all Direct3D resources of the above types may be used for interoperability with CUDA. The following are some limitations:

- The primary rendertarget may not be registered with CUDA.
- Resources allocated as shared may not be registered with CUDA.
- Any resources allocated in D3DPOOL_SYSTEMMEM or D3DPOOL_MANAGED may not be registered with CUDA.
- Textures which are not of a format which is 1, 2, or 4 channels of 8, 16, or 32-bit integer or floating-point data cannot be shared.
- Surfaces of depth or stencil formats cannot be shared.
If Direct3D interoperability is not initialized on this context, then `cudaErrorInvalidDevice` is returned. If `pResource` is of incorrect type (e.g., a non-stand-alone `IDirect3DSurface9`) or is already registered, then `cudaErrorInvalidResourceHandle` is returned. If `pResource` cannot be registered then `cudaErrorUnknown` is returned.

**Note:**
Note that this function may also return error codes from previous, asynchronous launches.

**See also:**
cudaGraphicsD3D9RegisterResource

```c
__host__cudaError_t
cudaD3D9ResourceGetMappedArray (cudaArray **ppArray, IDirect3DResource9 *pResource, unsigned int face, unsigned int level)
```

Get an array through which to access a subresource of a Direct3D resource which has been mapped for access by CUDA.

**Parameters**

- **ppArray**
  - Returned array corresponding to subresource
- **pResource**
  - Mapped resource to access
- **face**
  - Face of resource to access
- **level**
  - Level of resource to access

**Returns**
cudaSuccess, cudaErrorInvalidResourceHandle, cudaErrorUnknown

**Description**

**Deprecated** This function is deprecated as of CUDA 3.0.

Returns in `*pArray` an array through which the subresource of the mapped Direct3D resource `pResource`, which corresponds to `face` and `level` may be accessed. The value set in `pArray` may change every time that `pResource` is mapped.

If `pResource` is not registered then `cudaErrorInvalidResourceHandle` is returned. If `pResource` was not registered with usage flags `cudaD3D9RegisterFlagsArray`, then
cudaErrorInvalidResourceHandle is returned. If pResource is not mapped, then cudaErrorUnknown is returned.

For usage requirements of face and level parameters, see cudaD3D9ResourceGetMappedPointer[].

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaGraphicsSubResourceGetMappedArray

__host__ cudaError_t
cudaD3D9ResourceGetMappedPitch (size_t *pPitch, size_t *pPitchSlice, IDirect3DResource9 *pResource, unsigned int face, unsigned int level)

Get the pitch of a subresource of a Direct3D resource which has been mapped for access by CUDA.

Parameters

pPitch
- Returned pitch of subresource

pPitchSlice
- Returned Z-slice pitch of subresource

pResource
- Mapped resource to access

face
- Face of resource to access

level
- Level of resource to access

Returns
cudaSuccess, cudaErrorInvalidValue, cudaErrorInvalidResourceHandle, cudaErrorUnknown

Description

Deprecated This function is deprecated as of CUDA 3.0.

Returns in *pPitch and *pPitchSlice the pitch and Z-slice pitch of the subresource of the mapped Direct3D resource pResource, which corresponds to face and level. The values set in pPitch and pPitchSlice may change every time that pResource is mapped.
The pitch and Z-slice pitch values may be used to compute the location of a sample on a surface as follows.

For a 2D surface, the byte offset of the sample at position \( x, y \) from the base pointer of the surface is:

\[
y \times \text{pitch} + (\text{bytes per pixel}) \times x
\]

For a 3D surface, the byte offset of the sample at position \( x, y, z \) from the base pointer of the surface is:

\[
z \times \text{slicePitch} + y \times \text{pitch} + (\text{bytes per pixel}) \times x
\]

Both parameters \( p\text{Pitch} \) and \( p\text{PitchSlice} \) are optional and may be set to NULL.

If \( p\text{Resource} \) is not of type IDirect3DBaseTexture9 or one of its sub-types or if \( p\text{Resource} \) has not been registered for use with CUDA, then cudaErrorInvalidResourceHandle is returned. If \( p\text{Resource} \) was not registered with usage flags cudaD3D9RegisterFlagsNone, then cudaErrorInvalidResourceHandle is returned. If \( p\text{Resource} \) is not mapped for access by CUDA then cudaErrorUnknown is returned.

For usage requirements of \( \text{face} \) and \( \text{level} \) parameters, see cudaD3D9ResourceGetMappedPointer[].

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsResourceGetMappedPointer

__host__cudaError_t
cudaD3D9ResourceGetMappedPointer (void **pPointer, IDirect3DResource9 *pResource, unsigned int face, unsigned int level)

Get a pointer through which to access a subresource of a Direct3D resource which has been mapped for access by CUDA.

Parameters

pPointer
  - Returned pointer corresponding to subresource
pResource
  - Mapped resource to access
face
   - Face of resource to access
level
   - Level of resource to access

Returns
cudaSuccess, cudaErrorInvalidValue, cudaErrorInvalidResourceHandle, cudaErrorUnknown

Description
Deprecated This function is deprecated as of CUDA 3.0.

Returns in *pPointer the base pointer of the subresource of the mapped Direct3D resource pResource, which corresponds to face and level. The value set in pPointer may change every time that pResource is mapped.

If pResource is not registered, then cudaErrorInvalidResourceHandle is returned.
If pResource was not registered with usage flags cudaD3D9RegisterFlagsNone, then cudaErrorInvalidResourceHandle is returned. If pResource is not mapped, then cudaErrorUnknown is returned.
If pResource is of type IDirect3DCubeTexture9, then face must one of the values enumerated by type D3DCUBEMAP_FACES. For all other types, face must be 0. If face is invalid, then cudaErrorInvalidValue is returned.
If pResource is of type IDirect3DBaseTexture9, then level must correspond to a valid mipmap level. Only mipmap level 0 is supported for now. For all other types level must be 0. If level is invalid, then cudaErrorInvalidValue is returned.

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaGraphicsResourceGetMappedPointer
__host__ cudaError_t
cudaD3D9ResourceGetMappedSize (size_t *pSize,
IDirect3DResource9 *pResource, unsigned int face,
unsigned int level)

Get the size of a subresource of a Direct3D resource which has been mapped for access by
CUDA.

Parameters

pSize
- Returned size of subresource

pResource
- Mapped resource to access

face
- Face of resource to access

level
- Level of resource to access

Returns
cudaSuccess, cudaErrorInvalidValue, cudaErrorInvalidResourceHandle, cudaErrorUnknown

Description

Deprecated This function is deprecated as of CUDA 3.0.

Returns in *pSize the size of the subresource of the mapped Direct3D resource pResource,
which corresponds to face and level. The value set in pSize may change every time that
pResource is mapped.

If pResource has not been registered for use with CUDA then
cudaErrorInvalidResourceHandle is returned. If pResource was not registered with usage
flags cudaD3D9RegisterFlagsNone, then cudaErrorInvalidResourceHandle is returned. If
pResource is not mapped for access by CUDA then cudaErrorUnknown is returned.

For usage requirements of face and level parameters, see
cudaD3D9ResourceGetMappedPointer[].

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaGraphicsResourceGetMappedPointer
__host__ cudaError_t
cudaD3D9ResourceGetSurfaceDimensions(
    size_t *pWidth, size_t *pHeight, size_t *pDepth,
    IDirect3DResource9 *pResource, unsigned int face,
    unsigned int level)

Get the dimensions of a registered Direct3D surface.

Parameters

pWidth
  - Returned width of surface

pHeight
  - Returned height of surface

pDepth
  - Returned depth of surface

pResource
  - Registered resource to access

face
  - Face of resource to access

level
  - Level of resource to access

Returns
cudaSuccess, cudaErrorInvalidValue, cudaErrorInvalidResourceHandle.

Description

 Deprecated This function is deprecated as of CUDA 3.0.

Returns in *pWidth, *pHeight, and *pDepth the dimensions of the subresource of the
mapped Direct3D resource pResource which corresponds to face and level.

Since anti-aliased surfaces may have multiple samples per pixel, it is possible that the
dimensions of a resource will be an integer factor larger than the dimensions reported by the
Direct3D runtime.

The parameters pWidth, pHeight, and pDepth are optional. For 2D surfaces, the value
returned in *pDepth will be 0.

If pResource is not of type IDirect3DBaseTexture9 or IDirect3DSurface9 or if pResource has
not been registered for use with CUDA, then cudaErrorInvalidResourceHandle is returned.

For usage requirements of face and level parameters, see
Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsSubResourceGetMappedArray

__host__cudaError_t
cudaD3D9ResourceSetMapFlags (IDirect3DResource9 *pResource, unsigned int flags)
Set usage flags for mapping a Direct3D resource.

Parameters

pResource
- Registered resource to set flags for
flags
- Parameters for resource mapping

Returns

cudaSuccess, cudaErrorInvalidValue, cudaErrorInvalidResourceHandle, cudaErrorUnknown

Description

Deprecated This function is deprecated as of CUDA 3.0.
Set flags for mapping the Direct3D resource pResource.
Changes to flags will take effect the next time pResource is mapped. The flags argument may be any of the following:

- cudaD3D9MapFlagsNone: Specifies no hints about how this resource will be used. It is therefore assumed that this resource will be read from and written to by CUDA kernels. This is the default value.
- cudaD3D9MapFlagsReadOnly: Specifies that CUDA kernels which access this resource will not write to this resource.
- cudaD3D9MapFlagsWriteDiscard: Specifies that CUDA kernels which access this resource will not read from this resource and will write over the entire contents of the resource, so none of the data previously stored in the resource will be preserved.

If pResource has not been registered for use with CUDA, then cudaErrorInvalidResourceHandle is returned. If pResource is presently mapped for access by CUDA, then cudaErrorUnknown is returned.
**__host__cudaError_t cudaD3D9UnmapResources (int count, IDirect3DResource9 **ppResources)**

Unmap Direct3D resources for access by CUDA.

**Parameters**

- **count**
  - Number of resources to unmap for CUDA

- **ppResources**
  - Resources to unmap for CUDA

**Returns**

cudaSuccess, cudaErrorInvalidResourceHandle, cudaErrorUnknown

**Description**

*Deprecated* This function is deprecated as of CUDA 3.0.

Unmaps the `count` Direct3D resources in `ppResources`.

This function provides the synchronization guarantee that any CUDA kernels issued before `cudaD3D9UnmapResources()` will complete before any Direct3D calls issued after `cudaD3D9UnmapResources()` begin.

If any of `ppResources` have not been registered for use with CUDA or if `ppResources` contains any duplicate entries, then `cudaErrorInvalidResourceHandle` is returned. If any of `ppResources` are not presently mapped for access by CUDA then `cudaErrorUnknown` is returned.

**Note:**

Note that this function may also return error codes from previous, asynchronous launches.

**See also:**

cudaGraphicsUnmapResources
__host__ cudaError_t cudaD3D9UnregisterResource(IDirect3DResource9 *pResource)
Unregisters a Direct3D resource for access by CUDA.

Parameters
pResource
- Resource to unregister

Returns
cudaSuccess, cudaErrorInvalidResourceHandle, cudaErrorUnknown

Description
Deprecated  This function is deprecated as of CUDA 3.0.
Unregisters the Direct3D resource pResource so it is not accessible by CUDA unless registered again.
If pResource is not registered, then cudaErrorInvalidResourceHandle is returned.

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaGraphicsUnregisterResource

6.18. Direct3D 10 Interoperability

This section describes the Direct3D 10 interoperability functions of the CUDA runtime application programming interface. Note that mapping of Direct3D 10 resources is performed with the graphics API agnostic, resource mapping interface described in Graphics Interopability.

enum cudaD3D10DeviceList
CUDA devices corresponding to a D3D10 device

Values
cudaD3D10DeviceListAll = 1
The CUDA devices for all GPUs used by a D3D10 device

`cudaD3D10DeviceListCurrentFrame = 2`

The CUDA devices for the GPUs used by a D3D10 device in its currently rendering frame

`cudaD3D10DeviceListNextFrame = 3`

The CUDA devices for the GPUs to be used by a D3D10 device in the next frame

```c
__host__cudaError_t cudaD3D10GetDevice (int *device, IDXGIAdapter *pAdapter)
```

Gets the device number for an adapter.

**Parameters**

- `device`: Returns the device corresponding to `pAdapter`
- `pAdapter`: D3D10 adapter to get device for

**Returns**

- `cudaSuccess`, `cudaErrorInvalidValue`, `cudaErrorUnknown`

**Description**

Returns in `*device` the CUDA-compatible device corresponding to the adapter `pAdapter` obtained from IDXGIFactory::EnumAdapters. This call will succeed only if a device on adapter `pAdapter` is CUDA-compatible.

**Note:**

Note that this function may also return error codes from previous, asynchronous launches.

**See also:**

- `cudaGraphicsD3D10RegisterResource`, `cuD3D10GetDevice`
__host__ cudaError_t cudaD3D10GetDevices 
(unsigned int *pCudaDeviceCount, int *pCudaDevices, 
unsigned int cudaDeviceCount, ID3D10Device *pD3D10Device, cudaD3D10DeviceList deviceList)

Gets the CUDA devices corresponding to a Direct3D 10 device.

Parameters

pCudaDeviceCount
- Returned number of CUDA devices corresponding to pD3D10Device

pCudaDevices
- Returned CUDA devices corresponding to pD3D10Device

cudaDeviceCount
- The size of the output device array pCudaDevices

pD3D10Device
- Direct3D 10 device to query for CUDA devices

deviceList
- The set of devices to return. This set may be cudaD3D10DeviceListAll for all devices, 
cudaD3D10DeviceListCurrentFrame for the devices used to render the current frame (in SLI), or cudaD3D10DeviceListNextFrame for the devices used to render the next frame (in SLI).

Returns

cudaSuccess, cudaErrorNoDevice, cudaErrorUnknown

Description

Returns in *pCudaDeviceCount the number of CUDA-compatible devices corresponding to the Direct3D 10 device pD3D10Device. Also returns in *pCudaDevices at most cudaDeviceCount of the CUDA-compatible devices corresponding to the Direct3D 10 device pD3D10Device.

If any of the GPUs being used to render pDevice are not CUDA capable then the call will return cudaErrorNoDevice.

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:

Registers a Direct3D 10 resource for access by CUDA.

**Parameters**

- **resource**
  - Pointer to returned resource handle
- **pD3DResource**
  - Direct3D resource to register
- **flags**
  - Parameters for resource registration

**Returns**

cudaSuccess, cudaErrorInvalidDevice, cudaErrorInvalidValue, cudaErrorInvalidResourceHandle, cudaErrorUnknown

**Description**

Registers the Direct3D 10 resource `pD3DResource` for access by CUDA.

If this call is successful, then the application will be able to map and unmap this resource until it is unregistered through `cudaGraphicsUnregisterResource`(). Also on success, this call will increase the internal reference count on `pD3DResource`. This reference count will be decremented when this resource is unregistered through `cudaGraphicsUnregisterResource`().

This call potentially has a high-overhead and should not be called every frame in interactive applications.

The type of `pD3DResource` must be one of the following.

- **ID3D10Buffer**: may be accessed via a device pointer
- **ID3D10Texture1D**: individual subresources of the texture may be accessed via arrays
- **ID3D10Texture2D**: individual subresources of the texture may be accessed via arrays
- **ID3D10Texture3D**: individual subresources of the texture may be accessed via arrays

The `flags` argument may be used to specify additional parameters at register time. The valid values for this parameter are
- **cudaGraphicsRegisterFlagsNone**: Specifies no hints about how this resource will be used.
- **cudaGraphicsRegisterFlagsSurfaceLoadStore**: Specifies that CUDA will bind this resource to a surface reference.
- **cudaGraphicsRegisterFlagsTextureGather**: Specifies that CUDA will perform texture gather operations on this resource.

Not all Direct3D resources of the above types may be used for interoperability with CUDA. The following are some limitations.

- The primary rendertarget may not be registered with CUDA.
- Textures which are not of a format which is 1, 2, or 4 channels of 8, 16, or 32-bit integer or floating-point data cannot be shared.
- Surfaces of depth or stencil formats cannot be shared.

A complete list of supported DXGI formats is as follows. For compactness the notation $A_{B,C,D}$ represents $A_B$, $A_C$, and $A_D$.

- DXGI_FORMAT_A8_UNORM
- DXGI_FORMAT_B8G8R8A8_UNORM
- DXGI_FORMAT_B8G8R8X8_UNORM
- DXGI_FORMAT_R16_FLOAT
- DXGI_FORMAT_R16G16B16A16_{FLOAT,SINT,SNORM,UINT,UNORM}
- DXGI_FORMAT_R16G16_{FLOAT,SINT,SNORM,UINT,UNORM}
- DXGI_FORMAT_R16_{SINT,SNORM,UINT,UNORM}
- DXGI_FORMAT_R32_FLOAT
- DXGI_FORMAT_R32G32B32A32_{FLOAT,SINT,UINT}
- DXGI_FORMAT_R32G32_{FLOAT,SINT,UINT}
- DXGI_FORMAT_R32_{SINT,UINT}
- DXGI_FORMAT_R8G8B8A8_{SINT,SNORM,UINT,UNORM,UNORM_SRGB}
- DXGI_FORMAT_R8G8_{SINT,SNORM,UINT,UNORM}
- DXGI_FORMAT_R8_{SINT,SNORM,UINT,UNORM}

If `pD3DResource` is of incorrect type or is already registered, then **cudaErrorInvalidResourceHandle** is returned. If `pD3DResource` cannot be registered, then **cudaErrorUnknown** is returned.
Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaGraphicsUnregisterResource, cudaGraphicsMapResources,
cudaGraphicsSubResourceGetMappedArray, cudaGraphicsResourceGetMappedPointer,
cuGraphicsD3D10RegisterResource

6.19. Direct3D 10 Interoperability [DEPRECATED]

This section describes deprecated Direct3D 10 interoperability functions.

enum cudaD3D10MapFlags
CUDA D3D10 Map Flags

Values

cudaD3D10MapFlagsNone = 0
  Default; Assume resource can be read/written

cudaD3D10MapFlagsReadOnly = 1
  CUDA kernels will not write to this resource

cudaD3D10MapFlagsWriteDiscard = 2
  CUDA kernels will only write to and will not read from this resource

enum cudaD3D10RegisterFlags
CUDA D3D10 Register Flags

Values

cudaD3D10RegisterFlagsNone = 0
  Default; Resource can be accessed through a void*

cudaD3D10RegisterFlagsArray = 1
  Resource can be accessed through a CUarray*
__host__ cudaError_t cudaD3D10GetDirect3DDevice (ID3D10Device **ppD3D10Device)

Gets the Direct3D device against which the current CUDA context was created.

Parameters

 ppD3D10Device  
- Returns the Direct3D device for this thread

Returns
cudaSuccess, cudaErrorUnknown

Description

Deprecated  This function is deprecated as of CUDA 5.0.
This function is deprecated and should no longer be used. It is no longer necessary to
associate a CUDA device with a D3D10 device in order to achieve maximum interoperability
performance.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaD3D10SetDirect3DDevice

__host__ cudaError_t cudaD3D10MapResources (int count, ID3D10Resource **ppResources)

Maps Direct3D Resources for access by CUDA.

Parameters

 count  
- Number of resources to map for CUDA
 ppResources  
- Resources to map for CUDA

Returns
cudaSuccess, cudaErrorInvalidResourceHandle, cudaErrorUnknown
Description

Deprecated This function is deprecated as of CUDA 3.0.

Maps the count Direct3D resources in ppResources for access by CUDA.

The resources in ppResources may be accessed in CUDA kernels until they are unmapped. Direct3D should not access any resources while they are mapped by CUDA. If an application does so, the results are undefined.

This function provides the synchronization guarantee that any Direct3D calls issued before cudaD3D10MapResources[] will complete before any CUDA kernels issued after cudaD3D10MapResources[] begin.

If any of ppResources have not been registered for use with CUDA or if ppResources contains any duplicate entries then cudaErrorInvalidResourceHandle is returned. If any of ppResources are presently mapped for access by CUDA then cudaErrorUnknown is returned.

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsMapResources

__host__cudaError_t cudaD3D10RegisterResource(ID3D10Resource *pResource, unsigned int flags)

Registers a Direct3D 10 resource for access by CUDA.

Parameters

pResource
- Resource to register

flags
- Parameters for resource registration

Returns

cudaSuccess, cudaErrorInvalidDevice, cudaErrorInvalidValue, cudaErrorInvalidResourceHandle, cudaErrorUnknown

Description

Deprecated This function is deprecated as of CUDA 3.0.
Registers the Direct3D resource `pResource` for access by CUDA.

If this call is successful, then the application will be able to map and unmap this resource until it is unregistered through `cudaD3D10UnregisterResource()`. Also on success, this call will increase the internal reference count on `pResource`. This reference count will be decremented when this resource is unregistered through `cudaD3D10UnregisterResource()`.

This call potentially has a high-overhead and should not be called every frame in interactive applications.

The type of `pResource` must be one of the following:

- **ID3D10Buffer**: Cannot be used with `flags` set to `cudaD3D10RegisterFlagsArray`.
- **ID3D10Texture1D**: No restrictions.
- **ID3D10Texture2D**: No restrictions.
- **ID3D10Texture3D**: No restrictions.

The `flags` argument specifies the mechanism through which CUDA will access the Direct3D resource. The following values are allowed.

- **cudaD3D10RegisterFlagsNone**: Specifies that CUDA will access this resource through a `void*`. The pointer, size, and pitch for each subresource of this resource may be queried through `cudaD3D10ResourceGetMappedPointer()`, `cudaD3D10ResourceGetMappedSize()`, and `cudaD3D10ResourceGetMappedPitch()` respectively. This option is valid for all resource types.
- **cudaD3D10RegisterFlagsArray**: Specifies that CUDA will access this resource through a `CUarray` queried on a sub-resource basis through `cudaD3D10ResourceGetMappedArray()`. This option is only valid for resources of type `ID3D10Texture1D`, `ID3D10Texture2D`, and `ID3D10Texture3D`.

Not all Direct3D resources of the above types may be used for interoperability with CUDA. The following are some limitations.

- The primary render target may not be registered with CUDA.
- Resources allocated as shared may not be registered with CUDA.
- Textures which are not of a format which is 1, 2, or 4 channels of 8, 16, or 32-bit integer or floating-point data cannot be shared.
- Surfaces of depth or stencil formats cannot be shared.

If Direct3D interoperability is not initialized on this context then `cudaErrorInvalidDevice` is returned. If `pResource` is of incorrect type or is already registered then `cudaErrorInvalidResourceHandle` is returned. If `pResource` cannot be registered then `cudaErrorUnknown` is returned.
__host__ cudaError_t

cudaD3D10ResourceGetMappedArray (cudaArray **ppArray, ID3D10Resource *pResource, unsigned int subResource)

Gets an array through which to access a subresource of a Direct3D resource which has been mapped for access by CUDA.

**Parameters**

- **ppArray**
  - Returned array corresponding to subresource
- **pResource**
  - Mapped resource to access
- **subResource**
  - Subresource of pResource to access

**Returns**

cudaSuccess, cudaErrorInvalidValue, cudaErrorInvalidResourceHandle, cudaErrorUnknown

**Description**

*Deprecated* This function is deprecated as of CUDA 3.0.

Returns in *ppArray an array through which the subresource of the mapped Direct3D resource pResource which corresponds to subResource may be accessed. The value set in ppArray may change every time that pResource is mapped.

If pResource is not registered, then cudaErrorInvalidResourceHandle is returned. If pResource was not registered with usage flags cudaD3D10RegisterFlagsArray, then cudaErrorInvalidResourceHandle is returned. If pResource is not mapped then cudaErrorUnknown is returned.

For usage requirements of the subResource parameter, see cudaD3D10ResourceGetMappedPointer().

---

**Note:**

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsD3D10RegisterResource
Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaGraphicsSubResourceGetMappedArray

__host__cudaError_t
cudaD3D10ResourceGetMappedPitch (size_t *pPitch,
size_t *pPitchSlice, ID3D10Resource *pResource,
unsigned int subResource)

Gets the pitch of a subresource of a Direct3D resource which has been mapped for access by CUDA.

Parameters
pPitch
- Returned pitch of subresource
pPitchSlice
- Returned Z-slice pitch of subresource
pResource
- Mapped resource to access
subResource
- Subresource of pResource to access

Returns
cudaSuccess, cudaErrorInvalidValue, cudaErrorInvalidResourceHandle, cudaErrorUnknown

Description
Deprecated This function is deprecated as of CUDA 3.0.

Returns in *pPitch and *pPitchSlice the pitch and Z-slice pitch of the subresource of the mapped Direct3D resource pResource, which corresponds to subResource. The values set in pPitch and pPitchSlice may change every time that pResource is mapped.

The pitch and Z-slice pitch values may be used to compute the location of a sample on a surface as follows.

For a 2D surface, the byte offset of the sample at position \( x, y \) from the base pointer of the surface is:

\[ y \times \text{pitch} + \text{bytes per pixel} \times x \]
For a 3D surface, the byte offset of the sample at position $x$, $y$, $z$ from the base pointer of the surface is:

$$z \times \text{slicePitch} + y \times \text{pitch} + \text{bytes per pixel} \times x$$

Both parameters $pPitch$ and $pPitchSlice$ are optional and may be set to NULL.

If $pResource$ is not of type ID3D10Texture1D, ID3D10Texture2D, or ID3D10Texture3D, or if $pResource$ has not been registered for use with CUDA, then cudaErrorInvalidResourceHandle is returned. If $pResource$ was not registered with usage flags cudaD3D10RegisterFlagsNone, then cudaErrorInvalidResourceHandle is returned. If $pResource$ is not mapped for access by CUDA then cudaErrorUnknown is returned.

For usage requirements of the subResource parameter see cudaD3D10ResourceGetMappedPointer().

**Note:**

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsSubResourceGetMappedArray

```c
__host__ cudaError_t
```

Gets a pointer through which to access a subresource of a Direct3D resource which has been mapped for access by CUDA.

**Parameters**

- **pPointer**
  - Returned pointer corresponding to subresource

- **pResource**
  - Mapped resource to access

- **subResource**
  - Subresource of $pResource$ to access

**Returns**

cudaSuccess, cudaErrorInvalidValue, cudaErrorInvalidResourceHandle, cudaErrorUnknown
**Description**

**Deprecated** This function is deprecated as of CUDA 3.0.

Returns in *pPointer the base pointer of the subresource of the mapped Direct3D resource pResource which corresponds to subResource. The value set in pPointer may change every time that pResource is mapped.

If pResource is not registered, then cudaErrorInvalidResourceHandle is returned. If pResource was not registered with usage flags cudaD3D9RegisterFlagsNone, then cudaErrorInvalidResourceHandle is returned. If pResource is not mapped then cudaErrorUnknown is returned.

If pResource is of type ID3D10Buffer then subResource must be 0. If pResource is of any other type, then the value of subResource must come from the subresource calculation in D3D10CalcSubResource().

**Note:**

Note that this function may also return error codes from previous, asynchronous launches.

**See also:**

cudaGraphicsResourceGetMappedPointer

```c
__host__ cudaError_t
cudaD3D10ResourceGetMappedSize (size_t *pSize, ID3D10Resource *pResource, unsigned int subResource)
```

Gets the size of a subresource of a Direct3D resource which has been mapped for access by CUDA.

**Parameters**

- **pSize**
  - Returned size of subresource
- **pResource**
  - Mapped resource to access
- **subResource**
  - Subresource of pResource to access

**Returns**

cudaSuccess, cudaErrorInvalidValue, cudaErrorInvalidResourceHandle, cudaErrorUnknown
Description

**Deprecated** This function is deprecated as of CUDA 3.0.

Returns in *pSize the size of the subresource of the mapped Direct3D resource pResource which corresponds to subResource. The value set in pSize may change every time that pResource is mapped.

If pResource has not been registered for use with CUDA then cudaErrorInvalidHandle is returned. If pResource was not registered with usage flags cudaD3D10RegisterFlagsNone, then cudaErrorInvalidResourceHandle is returned. If pResource is not mapped for access by CUDA then cudaErrorUnknown is returned.

For usage requirements of the subResource parameter see cudaD3D10ResourceGetMappedPointer().

**Note:**

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsResourceGetMappedPointer

cudaD3D10ResourceGetSurfaceDimensions

```c
__host__ cudaError_t
cudaD3D10ResourceGetSurfaceDimensions(size_t *pWidth, size_t *pHeight, size_t *pDepth, ID3D10Resource *pResource, unsigned int subResource)
```

Gets the dimensions of a registered Direct3D surface.

**Parameters**

- **pWidth**
  - Returned width of surface
- **pHeight**
  - Returned height of surface
- **pDepth**
  - Returned depth of surface
- **pResource**
  - Registered resource to access
- **subResource**
  - Subresource of pResource to access
Returns

cudaSuccess, cudaErrorInvalidValue, cudaErrorInvalidResourceHandle.

Description

Deprecated
This function is deprecated as of CUDA 3.0.

Returns in *pWidth, *pHeight, and *pDepth the dimensions of the subresource of the mapped Direct3D resource pResource which corresponds to subResource.

Since anti-aliased surfaces may have multiple samples per pixel, it is possible that the dimensions of a resource will be an integer factor larger than the dimensions reported by the Direct3D runtime.

The parameters pWidth, pHeight, and pDepth are optional. For 2D surfaces, the value returned in *pDepth will be 0.

If pResource is not of type ID3D10Texture1D, ID3D10Texture2D, or ID3D10Texture3D, or if pResource has not been registered for use with CUDA, then cudaErrorInvalidHandle is returned.

For usage requirements of subResource parameters see cudaD3D10ResourceGetMappedPointer().

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsSubResourceGetMappedArray

__host__cudaError_t
cudaD3D10ResourceSetMapFlags (ID3D10Resource *pResource, unsigned int flags)
Set usage flags for mapping a Direct3D resource.

Parameters

pResource
- Registered resource to set flags for

flags
- Parameters for resource mapping
Returns

cudaSuccess, cudaErrorInvalidValue, cudaErrorInvalidResourceHandle, cudaErrorUnknown.

Description

Deprecated
This function is deprecated as of CUDA 3.0.

Set usage flags for mapping the Direct3D resource pResource.

Changes to flags will take effect the next time pResource is mapped. The flags argument may be any of the following:

- **cudaD3D10MapFlagsNone**: Specifies no hints about how this resource will be used. It is therefore assumed that this resource will be read from and written to by CUDA kernels. This is the default value.

- **cudaD3D10MapFlagsReadOnly**: Specifies that CUDA kernels which access this resource will not write to this resource.

- **cudaD3D10MapFlagsWriteDiscard**: Specifies that CUDA kernels which access this resource will not read from this resource and will write over the entire contents of the resource, so none of the data previously stored in the resource will be preserved.

If pResource has not been registered for use with CUDA then cudaErrorInvalidHandle is returned. If pResource is presently mapped for access by CUDA then cudaErrorUnknown is returned.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsResourceSetMapFlags

__host__cudaError_t cudaD3D10SetDirect3DDevice
(ID3D10Device *pD3D10Device, int device)

Sets the Direct3D 10 device to use for interoperability with a CUDA device.

Parameters

- **pD3D10Device**
  - Direct3D device to use for interoperability
device
   - The CUDA device to use. This device must be among the devices returned when querying
     `cudaD3D10DeviceListAll` from `cudaD3D10GetDevices`, may be set to -1 to automatically
     select an appropriate CUDA device.

Returns
`cudaSuccess`, `cudaErrorInitializationError`, `cudaErrorInvalidValue`,
`cudaErrorSetOnActiveProcess`

Description
`Deprecated` This function is deprecated as of CUDA 5.0.
This function is deprecated and should no longer be used. It is no longer necessary to
associate a CUDA device with a D3D10 device in order to achieve maximum interoperability
performance.
This function will immediately initialize the primary context on device if needed.

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
`cudaD3D10GetDevice`, `cudaGraphicsD3D10RegisterResource`, `cudaDeviceReset`

`__host__cudaError_t cudaD3D10UnmapResources(int count, ID3D10Resource **ppResources)`
Unmaps Direct3D resources.

Parameters
`count`
   - Number of resources to unmap for CUDA
`ppResources`
   - Resources to unmap for CUDA

Returns
`cudaSuccess`, `cudaErrorInvalidResourceHandle`, `cudaErrorUnknown`

Description
`Deprecated` This function is deprecated as of CUDA 3.0.
Unmaps the count Direct3D resource in ppResources.
This function provides the synchronization guarantee that any CUDA kernels issued before `cudaD3D10UnmapResources()` will complete before any Direct3D calls issued after `cudaD3D10UnmapResources()` begin.

If any of `ppResources` have not been registered for use with CUDA or if `ppResources` contains any duplicate entries, then `cudaErrorInvalidResourceHandle` is returned. If any of `ppResources` are not presently mapped for access by CUDA then `cudaErrorUnknown` is returned.

**Note:**
Note that this function may also return error codes from previous, asynchronous launches.

**See also:**
`cudaGraphicsUnmapResources`

```c
__host__ cudaError_t cudaD3D10UnregisterResource(ID3D10Resource *pResource)
```

Unregisters a Direct3D resource.  

**Parameters**

- `pResource` - Resource to unregister

**Returns**
`cudaSuccess`, `cudaErrorInvalidResourceHandle`, `cudaErrorUnknown`

**Description**

*Deprecated*  This function is deprecated as of CUDA 3.0.

Unregisters the Direct3D resource `resource` so it is not accessible by CUDA unless registered again.

If `pResource` is not registered, then `cudaErrorInvalidResourceHandle` is returned.

**Note:**
Note that this function may also return error codes from previous, asynchronous launches.

**See also:**
`cudaGraphicsUnregisterResource`
6.20. Direct3D 11 Interoperability

This section describes the Direct3D 11 interoperability functions of the CUDA runtime application programming interface. Note that mapping of Direct3D 11 resources is performed with the graphics API agnostic, resource mapping interface described in Graphics Interopability.

enum cudaD3D11DeviceList

CUDA devices corresponding to a D3D11 device

Values

cudaD3D11DeviceListAll = 1
   The CUDA devices for all GPUs used by a D3D11 device

cudaD3D11DeviceListCurrentFrame = 2
   The CUDA devices for the GPUs used by a D3D11 device in its currently rendering frame

cudaD3D11DeviceListNextFrame = 3
   The CUDA devices for the GPUs to be used by a D3D11 device in the next frame

__host__cudaError_t cudaD3D11GetDevice (int *device, IDXGIAdapter *pAdapter)

Gets the device number for an adapter.

Parameters

device
   - Returns the device corresponding to pAdapter

pAdapter
   - D3D11 adapter to get device for

Returns

cudaSuccess, cudaErrorInvalidValue, cudaErrorUnknown

Description

Returns in *device the CUDA-compatible device corresponding to the adapter pAdapter obtained from IDXGIFactory::EnumAdapters. This call will succeed only if a device on adapter pAdapter is CUDA-compatible.

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
- cudaGraphicsUnregisterResource
- cudaGraphicsMapResources
- cudaGraphicsSubResourceGetMappedArray
- cudaGraphicsResourceGetMappedPointer
- cuD3D11GetDevice

```c
__host__ cudaError_t cudaD3D11GetDevices
(unsigned int *pCudaDeviceCount, int *pCudaDevices,
unsigned int cudaDeviceCount, ID3D11Device *pD3D11Device,
cudaD3D11DeviceList deviceList)
```

Gets the CUDA devices corresponding to a Direct3D 11 device.

**Parameters**

- **pCudaDeviceCount**
  - Returned number of CUDA devices corresponding to pD3D11Device
- **pCudaDevices**
  - Returned CUDA devices corresponding to pD3D11Device
- **cudaDeviceCount**
  - The size of the output device array pCudaDevices
- **pD3D11Device**
  - Direct3D 11 device to query for CUDA devices
- **deviceList**
  - The set of devices to return. This set may be `cudaD3D11DeviceListAll` for all devices, `cudaD3D11DeviceListCurrentFrame` for the devices used to render the current frame (in SLI), or `cudaD3D11DeviceListNextFrame` for the devices used to render the next frame (in SLI).

**Returns**

- `cudaSuccess`
- `cudaErrorNoDevice`
- `cudaErrorUnknown`

**Description**

Returns in `pCudaDeviceCount` the number of CUDA-compatible devices corresponding to the Direct3D 11 device `pD3D11Device`. Also returns in `pCudaDevices` at most `cudaDeviceCount` of the the CUDA-compatible devices corresponding to the Direct3D 11 device `pD3D11Device`.

If any of the GPUs being used to render `pDevice` are not CUDA capable then the call will return `cudaErrorNoDevice`. 
__host__ cudaError_t
cudaGraphicsD3D11RegisterResource
(cudaGraphicsResource **resource, ID3D11Resource *pD3DResource, unsigned int flags)

Register a Direct3D 11 resource for access by CUDA.

Parameters

resource
- Pointer to returned resource handle

pD3DResource
- Direct3D resource to register

flags
- Parameters for resource registration

Returns
cudaSuccess, cudaErrorInvalidDevice, cudaErrorInvalidValue, cudaErrorInvalidResourceHandle, cudaErrorUnknown

Description

Registers the Direct3D 11 resource pD3DResource for access by CUDA.

If this call is successful, then the application will be able to map and unmap this resource until it is unregistered through cudaGraphicsUnregisterResource[]. Also on success, this call will increase the internal reference count on pD3DResource. This reference count will be decremented when this resource is unregistered through cudaGraphicsUnregisterResource[].

This call potentially has a high-overhead and should not be called every frame in interactive applications.

The type of pD3DResource must be one of the following.

- ID3D11Buffer: may be accessed via a device pointer
- **ID3D11Texture1D**: individual subresources of the texture may be accessed via arrays
- **ID3D11Texture2D**: individual subresources of the texture may be accessed via arrays
- **ID3D11Texture3D**: individual subresources of the texture may be accessed via arrays

The `flags` argument may be used to specify additional parameters at register time. The valid values for this parameter are

- `cudaGraphicsRegisterFlagsNone`: Specifies no hints about how this resource will be used.
- `cudaGraphicsRegisterFlagsSurfaceLoadStore`: Specifies that CUDA will bind this resource to a surface reference.
- `cudaGraphicsRegisterFlagsTextureGather`: Specifies that CUDA will perform texture gather operations on this resource.

Not all Direct3D resources of the above types may be used for interoperability with CUDA. The following are some limitations.

- The primary rendertarget may not be registered with CUDA.
- Textures which are not of a format which is 1, 2, or 4 channels of 8, 16, or 32-bit integer or floating-point data cannot be shared.
- Surfaces of depth or stencil formats cannot be shared.

A complete list of supported DXGI formats is as follows. For compactness the notation `A_{B,C,D}` represents `A_B`, `A_C`, and `A_D`.

- `DXGI_FORMAT_A8_UNORM`
- `DXGI_FORMAT_B8G8R8A8_UNORM`
- `DXGI_FORMAT_B8G8R8X8_UNORM`
- `DXGI_FORMAT_R16_FLOAT`
- `DXGI_FORMAT_R16G16B16A16_{FLOAT,SINT,SNORM,UINT,UNORM}`
- `DXGI_FORMAT_R16G16_{FLOAT,SINT,SNORM,UINT,UNORM}`
- `DXGI_FORMAT_R16_{SINT,SNORM,UINT,UNORM}`
- `DXGI_FORMAT_R32_FLOAT`
- `DXGI_FORMAT_R32G32B32A32_{FLOAT,SINT,UINT}`
- `DXGI_FORMAT_R32G32_{FLOAT,SINT,UINT}`
- `DXGI_FORMAT_R32_{SINT,UINT}`
- `DXGI_FORMAT_R8G8B8A8_{SINT,SNORM,UINT,UNORM,UNORM_SRGB}`
- `DXGI_FORMAT_R8G8_{SINT,SNORM,UINT,UNORM}`
- `DXGI_FORMAT_R8_{SINT,SNORM,UINT,UNORM}`
If pD3DResource is of incorrect type or is already registered, then cudaErrorInvalidResourceHandle is returned. If pD3DResource cannot be registered, then cudaErrorUnknown is returned.

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:

6.21. Direct3D 11 Interoperability [DEPRECATED]

This section describes deprecated Direct3D 11 interoperability functions.

__host__cudaError_t cudaD3D11GetDirect3DDevice(ID3D11Device **ppD3D11Device)

Gets the Direct3D device against which the current CUDA context was created.

Parameters
ppD3D11Device
- Returns the Direct3D device for this thread

Returns
cudaSuccess, cudaErrorUnknown

Description
Deprecated This function is deprecated as of CUDA 5.0.

This function is deprecated and should no longer be used. It is no longer necessary to associate a CUDA device with a D3D11 device in order to achieve maximum interoperability performance.

Note:
__host__ cudaError_t cudaD3D11SetDirect3DDevice (ID3D11Device *pD3D11Device, int device)

Sets the Direct3D 11 device to use for interoperability with a CUDA device.

**Parameters**

- **pD3D11Device**
  - Direct3D device to use for interoperability
- **device**
  - The CUDA device to use. This device must be among the devices returned when querying cudaD3D11DeviceListAll from cudaD3D11GetDevices, may be set to -1 to automatically select an appropriate CUDA device.

**Returns**

cudaSuccess, cudaErrorInitializationError, cudaErrorInvalidValue, cudaErrorSetOnActiveProcess

**Description**

**Deprecated** This function is deprecated as of CUDA 5.0.

This function is deprecated and should no longer be used. It is no longer necessary to associate a CUDA device with a D3D11 device in order to achieve maximum interoperability performance.

This function will immediately initialize the primary context on device if needed.
6.22. VDPAU Interoperability

This section describes the VDPAU interoperability functions of the CUDA runtime application programming interface.

```c
__host__ cudaError_t cudaGraphicsVDPAURegisterOutputSurface (cudaGraphicsResource **resource, VdpOutputSurface vdpSurface, unsigned int flags)
```

Register a VdpOutputSurface object.

**Parameters**

- **resource**
  - Pointer to the returned object handle
- **vdpSurface**
  - VDPAU object to be registered
- **flags**
  - Map flags

**Returns**

`cudaSuccess`, `cudaErrorInvalidDevice`, `cudaErrorInvalidValue`, `cudaErrorInvalidResourceHandle`, `cudaErrorUnknown`

**Description**

Registers the VdpOutputSurface specified by `vdpSurface` for access by CUDA. A handle to the registered object is returned as `resource`. The surface’s intended usage is specified using `flags`, as follows:

- **cudaGraphicsMapFlagsNone**: Specifies no hints about how this resource will be used. It is therefore assumed that this resource will be read from and written to by CUDA. This is the default value.
- **cudaGraphicsMapFlagsReadOnly**: Specifies that CUDA will not write to this resource.
- **cudaGraphicsMapFlagsWriteDiscard**: Specifies that CUDA will not read from this resource and will write over the entire contents of the resource, so none of the data previously stored in the resource will be preserved.
__host__ cudaError_t
cudaGraphicsVDPAURegisterVideoSurface
(cudaGraphicsResource **resource, VdpVideoSurface vdpSurface, unsigned int flags)
Register a VdpVideoSurface object.

Parameters
resource
- Pointer to the returned object handle
vdpSurface
- VDPAU object to be registered
flags
- Map flags

Returns
cudaSuccess, cudaErrorInvalidDevice, cudaErrorInvalidValue,
cudaErrorInvalidResourceHandle, cudaErrorUnknown

Description
Registers the VdpVideoSurface specified by vdpSurface for access by CUDA. A handle to the registered object is returned as resource. The surface’s intended usage is specified using flags, as follows:

- **cudaGraphicsMapFlagsNone**: Specifies no hints about how this resource will be used. It is therefore assumed that this resource will be read from and written to by CUDA. This is the default value.

- **cudaGraphicsMapFlagsReadOnly**: Specifies that CUDA will not write to this resource.

- **cudaGraphicsMapFlagsWriteDiscard**: Specifies that CUDA will not read from this resource and will write over the entire contents of the resource, so none of the data previously stored in the resource will be preserved.
__host__ cudaError_t cudaVDPAUGetDevice (int *device, VdpDevice vdpDevice, VdpGetProcAddress *vdpGetProcAddress)

Gets the CUDA device associated with a VdpDevice.

Parameters

device
  - Returns the device associated with vdpDevice, or -1 if the device associated with vdpDevice is not a compute device.

vdpDevice
  - A VdpDevice handle

vdpGetProcAddress
  - VDPAU’s VdpGetProcAddress function pointer

Returns
cudaSuccess

Description

Returns the CUDA device associated with a VdpDevice, if applicable.

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaVDPAUSetVDPAUDevice, cuVDPAUGetDevice
__host__ cudaError_t cudaVDPAUSetVDPAUDevice
(int device, VdpDevice vdpDevice, VdpGetProcAddress
*vdpGetProcAddress)

Sets a CUDA device to use VDPAU interoperability.

Parameters

device
  - Device to use for VDPAU interoperability

vdpDevice
  - The VdpDevice to interoperate with

vdpGetProcAddress
  - VDPAU’s VdpGetProcAddress function pointer

Returns
cudaSuccess, cudaErrorInvalidDevice, cudaErrorSetOnActiveProcess

Description

Records vdpDevice as the VdpDevice for VDPAU interoperability with the CUDA device
device and sets device as the current device for the calling host thread.

This function will immediately initialize the primary context on device if needed.

If device has already been initialized then this call will fail with the error
cudaErrorSetOnActiveProcess. In this case it is necessary to reset device using
cudaDeviceReset() before VDPAU interoperability on device may be enabled.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaGraphicsVDPAURegisterVideoSurface, cudaGraphicsVDPAURegisterOutputSurface,
cudaDeviceReset

6.23. EGL Interoperability

This section describes the EGL interoperability functions of the CUDA runtime application
programming interface.
__host__ cudaError_t
cudaEGLStreamConsumerAcquireFrame(
cudaEglStreamConnection *conn,
cudaGraphicsResource_t *pCudaResource,
cudaStream_t *pStream, unsigned int timeout)

Acquire an image frame from the EGLStream with CUDA as a consumer.

Parameters

c conn
- Connection on which to acquire
pCudaResource
- CUDA resource on which the EGLStream frame will be mapped for use.
pStream
- CUDA stream for synchronization and any data migrations implied by
cudaEglResourceLocationFlags.
timeout
- Desired timeout in usec.

Returns
cudaSuccess, cudaErrorInvalidValue, cudaErrorUnknown, cudaErrorLaunchTimeout

Description

Acquire an image frame from EGLStreamKHR. cudaGraphicsResourceGetMappedEglFrame
can be called on pCudaResource to get cudaEglFrame.

See also:
cudaEGLStreamConsumerConnect, cudaEGLStreamConsumerDisconnect,
cudaEGLStreamConsumerReleaseFrame, cuEGLStreamConsumerAcquireFrame
__host__ cudaError_t
cudaEGLStreamConsumerConnect
(cudaEglStreamConnection *conn, EGLStreamKHR eglStream)
Connect CUDA to EGLStream as a consumer.

Parameters

conn
  - Pointer to the returned connection handle
eglStream
  - EGLStreamKHR handle

Returns

cudaSuccess, cudaErrorInvalidValue, cudaErrorUnknown

Description

Connect CUDA as a consumer to EGLStreamKHR specified by eglStream.
The EGLStreamKHR is an EGL object that transfers a sequence of image frames from one API to another.

See also:
cudaEGLStreamConsumerDisconnect, cudaEGLStreamConsumerAcquireFrame, cudaEGLStreamConsumerReleaseFrame, cuEGLStreamConsumerConnect

__host__ cudaError_t
cudaEGLStreamConsumerConnectWithFlags
(cudaEglStreamConnection *conn, EGLStreamKHR eglStream, unsigned int flags)
Connect CUDA to EGLStream as a consumer with given flags.

Parameters

conn
  - Pointer to the returned connection handle
eglStream
  - EGLStreamKHR handle
flags
- Flags denote intended location - system or video.

Returns
cudaSuccess, cudaErrorInvalidValue, cudaErrorUnknown

Description
Connect CUDA as a consumer to EGLStreamKHR specified by stream with specified flags defined by cudaEglResourceLocationFlags.
The flags specify whether the consumer wants to access frames from system memory or video memory. Default is cudaEglResourceLocationVidmem.

See also:
cudaEGLStreamConsumerDisconnect, cudaEGLStreamConsumerAcquireFrame, cudaEGLStreamConsumerReleaseFrame, cuEGLStreamConsumerConnectWithFlags

__host__cudaError_t
cudaEGLStreamConsumerDisconnect (cudaEglStreamConnection *conn)
Disconnected CUDA as a consumer to EGLStream.

Parameters
conn
- Connection to disconnect.

Returns
cudaSuccess, cudaErrorInvalidValue, cudaErrorUnknown

Description
Disconnected CUDA as a consumer to EGLStreamKHR.

See also:
cudaEGLStreamConsumerConnect, cudaEGLStreamConsumerAcquireFrame, cudaEGLStreamConsumerReleaseFrame, cuEGLStreamConsumerDisconnect
```c
__host__ cudaError_t
cudaEGLStreamConsumerReleaseFrame
(cudaEglStreamConnection *conn,
cudaGraphicsResource_t pCudaResource,
cudaStream_t *pStream)
```

Releases the last frame acquired from the EGLStream.

**Parameters**
- **conn** - Connection on which to release
- **pCudaResource** - CUDA resource whose corresponding frame is to be released
- **pStream** - CUDA stream on which release will be done.

**Returns**
- `cudaSuccess`
- `cudaErrorInvalidValue`
- `cudaErrorUnknown`

**Description**
Release the acquired image frame specified by `pCudaResource` to EGLStreamKHR.

**See also:**
- `cudaEGLStreamConsumerConnect`
- `cudaEGLStreamConsumerDisconnect`
- `cudaEGLStreamConsumerAcquireFrame`
- `cuEGLStreamConsumerReleaseFrame`

```c
__host__ cudaError_t
cudaEGLStreamProducerConnect
(cudaEglStreamConnection *conn, EGLStreamKHR eglStream,
EGLint width, EGLint height)
```

Connect CUDA to EGLStream as a producer.

**Parameters**
- **conn** - Pointer to the returned connection handle
- **eglStream** - EGLStreamKHR handle
width
- width of the image to be submitted to the stream

height
- height of the image to be submitted to the stream

Returns
cudaSuccess, cudaErrorInvalidValue, cudaErrorUnknown

Description
Connect CUDA as a producer to EGLStreamKHR specified by stream.
The EGLStreamKHR is an EGL object that transfers a sequence of image frames from one API to another.

See also:
cudaEGLStreamProducerDisconnect, cudaEGLStreamProducerPresentFrame, cudaEGLStreamProducerReturnFrame, cuEGLStreamProducerConnect

__host__cudaError_t
cudaEGLStreamProducerDisconnect(cudaEglStreamConnection *conn)
Disconnect CUDA as a producer to EGLStream.

Parameters
conn
- Connection to disconnect.

Returns
cudaSuccess, cudaErrorInvalidValue, cudaErrorUnknown

Description
Disconnect CUDA as a producer to EGLStreamKHR.

See also:
cudaEGLStreamProducerConnect, cudaEGLStreamProducerPresentFrame, cudaEGLStreamProducerReturnFrame, cuEGLStreamProducerDisconnect
__host__ cudaError_t cudaEGLStreamProducerPresentFrame (cudaEglStreamConnection *conn, cudaEglFrame eglframe, cudaStream_t *pStream)

Present a CUDA eglFrame to the EGLStream with CUDA as a producer.

Parameters

conn
- Connection on which to present the CUDA array

eglframe
- CUDA Eglstream Producer Frame handle to be sent to the consumer over EglStream.

pStream
- CUDA stream on which to present the frame.

Returns
cudaSuccess, cudaErrorInvalidValue, cudaErrorUnknown

Description

The cudaEglFrame is defined as:

```c
typedef struct cudaEglFrame_st {
    union {
        cudaArray_t pArray[CUDA_EGL_MAX_PLANES];
        struct cudaPitchedPtr pPitch[CUDA_EGL_MAX_PLANES];
    } frame;
    cudaEglPlaneDesc planeDesc[CUDA_EGL_MAX_PLANES];
    unsigned int planeCount;
    cudaEglFrameType frameType;
    cudaEglColorFormat eglColorFormat;
} cudaEglFrame;
```

For cudaEglFrame of type cudaEglFrameTypePitch, the application may present sub-region of a memory allocation. In that case, cudaPitchedPtr::ptr will specify the start address of the sub-region in the allocation and cudaEglPlaneDesc will specify the dimensions of the sub-region.

See also:
cudaEGLStreamProducerConnect, cudaEGLStreamProducerDisconnect, cudaEGLStreamProducerReturnFrame, cuEGLStreamProducerPresentFrame
__host__cudaError_t
cudaEGLStreamProducerReturnFrame
(cudaEglStreamConnection *conn, cudaEglFrame *eglframe, cudaStream_t *pStream)
Return the CUDA eglFrame to the EGLStream last released by the consumer.

Parameters

conn
- Connection on which to present the CUDA array
eglframe
- CUDA EglStream Producer Frame handle returned from the consumer over EglStream.

pStream
- CUDA stream on which to return the frame.

Returns
cudaSuccess, cudaErrorLaunchTimeout, cudaErrorInvalidValue, cudaErrorUnknown

Description
This API can potentially return cudaErrorLaunchTimeout if the consumer has not returned a frame to EGL stream. If timeout is returned the application can retry.

See also:
cudaEGLStreamProducerConnect, cudaEGLStreamProducerDisconnect,
cudaEGLStreamProducerPresentFrame, cudaEGLStreamProducerReturnFrame

__host__cudaError_t cudaEventCreateFromEGLSync
(cudaEvent_t *phEvent, EGLSyncKHR eglSync, unsigned int flags)
Creates an event from EGLSync object.

Parameters

phEvent
- Returns newly created event
eglSync
- Opaque handle to EGLSync object

flags
- Event creation flags
Returns

cudaSuccess, cudaErrorInitializationError, cudaErrorInvalidValue, cudaErrorLaunchFailure, cudaErrorMemoryAllocation

Description

Creates an event *phEvent from an EGLSyncKHR eglSync with the flags specified via flags. Valid flags include:

- **cudaEventDefault**: Default event creation flag.
- **cudaEventBlockingSync**: Specifies that the created event should use blocking synchronization. A CPU thread that uses cudaEventSynchronize() to wait on an event created with this flag will block until the event has actually been completed.

cudaEventRecord and TimingData are not supported for events created from EGLSync.

The EGLSyncKHR is an opaque handle to an EGL sync object. typedef void* EGLSyncKHR

See also:

cudaEventQuery, cudaEventSynchronize, cudaEventDestroy

```c
__host__cudaError_t
cudaGraphicsEGLRegisterImage
cudaGraphicsResource **pCudaResource, EGLImageKHR image, unsigned int flags)
```

Registers an EGL image.

Parameters

- **pCudaResource**: Pointer to the returned object handle
- **image**: An EGLImageKHR image which can be used to create target resource.
- **flags**: Map flags

Returns

cudaSuccess, cudaErrorInvalidResourceHandle, cudaErrorInvalidValue, cudaErrorUnknown
Description

Registers the EGLImageKHR specified by image for access by CUDA. A handle to the registered object is returned as pCudaResource. Additional Mapping/Unmapping is not required for the registered resource and cudaGraphicsResourceGetMappedEglFrame can be directly called on the pCudaResource.

The application will be responsible for synchronizing access to shared objects. The application must ensure that any pending operation which access the objects have completed before passing control to CUDA. This may be accomplished by issuing and waiting for glFinish command on all GLcontexts (for OpenGL and likewise for other APIs). The application will be also responsible for ensuring that any pending operation on the registered CUDA resource has completed prior to executing subsequent commands in other APIs accessing the same memory objects. This can be accomplished by calling cuCtxSynchronize or cuEventSynchronize (preferably).

The surface’s intended usage is specified using flags, as follows:

- **cudaGraphicsRegisterFlagsNone**: Specifies no hints about how this resource will be used. It is therefore assumed that this resource will be read from and written to by CUDA. This is the default value.
- **cudaGraphicsRegisterFlagsReadOnly**: Specifies that CUDA will not write to this resource.
- **cudaGraphicsRegisterFlagsWriteDiscard**: Specifies that CUDA will not read from this resource and will write over the entire contents of the resource, so none of the data previously stored in the resource will be preserved.

The EGLImageKHR is an object which can be used to create EGLImage target resource. It is defined as a void pointer. typedef void* EGLImageKHR

See also:

__host__ cudaError_t
cudaGraphicsResourceGetMappedEglFrame
cudaEglFrame *eglFrame, cudaGraphicsResource_t resource, unsigned int index, unsigned int mipLevel)
Get an eglFrame through which to access a registered EGL graphics resource.

Parameters
eglFrame
- Returned eglFrame.
resource
- Registered resource to access.
index
- Index for cubemap surfaces.
mipLevel
- Mipmap level for the subresource to access.

Returns
cudaSuccess, cudaErrorInvalidValue, cudaErrorUnknown

Description
Returns in *eglFrame an eglFrame pointer through which the registered graphics resource resource may be accessed. This API can only be called for EGL graphics resources.

The cudaEglFrame is defined as

```c
typedef struct cudaEglFrame_st {
  union {
    cudaArray_t pArray[CUDA_EGL_MAX_PLANES];
    struct cudaMemcpyDesc pPitch[CUDA_EGL_MAX_PLANES];
  } frame;
  cudaEglPlaneDesc planeDesc[CUDA_EGL_MAX_PLANES];
  unsigned int planeCount;
  cudaEglFrameType frameType;
  cudaEglColorFormat eglColorFormat;
} cudaEglFrame;
```

Note:
Note that in case of multiplanar *eglFrame, pitch of only first plane (unsigned int cudaEglPlaneDesc::pitch) is to be considered by the application.

See also:
6.24. Graphics Interoperability

This section describes the graphics interoperability functions of the CUDA runtime application programming interface.

__host__ cudaError_t cudaGraphicsMapResources (int count, cudaGraphicsResource_t *resources, cudaStream_t stream)
Map graphics resources for access by CUDA.

Parameters

count
- Number of resources to map

resources
- Resources to map for CUDA

stream
- Stream for synchronization

Returns
cudaSuccess, cudaErrorInvalidResourceHandle, cudaErrorUnknown

Description

Maps the count graphics resources in resources for access by CUDA.

The resources in resources may be accessed by CUDA until they are unmapped. The graphics API from which resources were registered should not access any resources while they are mapped by CUDA. If an application does so, the results are undefined.

This function provides the synchronization guarantee that any graphics calls issued before cudaGraphicsMapResources() will complete before any subsequent CUDA work issued in stream begins.

If resources contains any duplicate entries then cudaErrorInvalidResourceHandle is returned. If any of resources are presently mapped for access by CUDA then cudaErrorUnknown is returned.

Note:
This function uses standard default stream semantics.

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

```c
__host__ cudaError_t
cudaGraphicsResourceGetMappedMipmappedArray(
cudaMipmappedArray_t *mipmappedArray,
cudaGraphicsResource_t resource)
```

Get a mipmapped array through which to access a mapped graphics resource.

### Parameters

- **mipmappedArray**
  - Returned mipmapped array through which `resource` may be accessed
- **resource**
  - Mapped resource to access

### Returns

`cudaSuccess`, `cudaErrorInvalidValue`, `cudaErrorInvalidResourceHandle`, `cudaErrorUnknown`

### Description

Returns in `*mipmappedArray` a mipmapped array through which the mapped graphics resource `resource` may be accessed. The value set in `mipmappedArray` may change every time that `resource` is mapped.

If `resource` is not a texture then it cannot be accessed via an array and `cudaErrorUnknown` is returned. If `resource` is not mapped then `cudaErrorUnknown` is returned.

**Note:**
Note that this function may also return error codes from previous, asynchronous launches.

Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.

Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

__host__ cudaError_t
cudaGraphicsResourceGetMappedPointer (void **devPtr, size_t *size, cudaGraphicsResource_t resource)
Get an device pointer through which to access a mapped graphics resource.

Parameters

devPtr
- Returned pointer through which resource may be accessed

size
- Returned size of the buffer accessible starting at *devPtr

resource
- Mapped resource to access

Returns

cudaSuccess, cudaErrorInvalidValue, cudaErrorInvalidResourceHandle, cudaErrorUnknown

Description

Returns in *devPtr a pointer through which the mapped graphics resource resource may be accessed. Returns in *size the size of the memory in bytes which may be accessed from that pointer. The value set in devPtr may change every time that resource is mapped.

If resource is not a buffer then it cannot be accessed via a pointer and cudaErrorUnknown is returned. If resource is not mapped then cudaErrorUnknown is returned. *
Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.

Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

```c
__host__ cudaError_t
cudaGraphicsResourceSetMapFlags
(cudaGraphicsResource_t resource, unsigned int flags)
```

Set usage flags for mapping a graphics resource.

**Parameters**

- **resource**
  - Registered resource to set flags for

- **flags**
  - Parameters for resource mapping

**Returns**

`cudaSuccess`, `cudaErrorInvalidValue`, `cudaErrorInvalidResourceHandle`, `cudaErrorUnknown`.

**Description**

Set flags for mapping the graphics resource `resource`. Changes to flags will take effect the next time `resource` is mapped. The `flags` argument may be any of the following:

- **cudaGraphicsMapFlagsNone**: Specifies no hints about how `resource` will be used. It is therefore assumed that CUDA may read from or write to `resource`.

- **cudaGraphicsMapFlagsReadOnly**: Specifies that CUDA will not write to `resource`.

- **cudaGraphicsMapFlagsWriteDiscard**: Specifies CUDA will not read from `resource` and will write over the entire contents of `resource`, so none of the data previously stored in `resource` will be preserved.
If resource is presently mapped for access by CUDA then cudaErrorUnknown is returned. If flags is not one of the above values then cudaErrorInvalidValue is returned.

**Note:**
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaGraphicsMapResources, cuGraphicsResourceSetMapFlags

```c
__host__cudaError_t
cudaGraphicsSubResourceGetMappedArray
cudaArray_t *array, cudaGraphicsResource_t resource, unsigned int arrayIndex, unsigned int mipLevel)
```

Get an array through which to access a subresource of a mapped graphics resource.

**Parameters**
- `array`: Returned array through which a subresource of resource may be accessed
- `resource`: Mapped resource to access
- `arrayIndex`: Array index for array textures or cubemap face index as defined by cudaGraphicsCubeFace for cubemap textures for the subresource to access
- `mipLevel`: Mipmap level for the subresource to access

**Returns**
cudaSuccess, cudaErrorInvalidValue, cudaErrorInvalidResourceHandle, cudaErrorUnknown
**Description**

Returns in *array* an array through which the subresource of the mapped graphics resource 
resource which corresponds to array index arrayIndex and mipmap level mipLevel may 
be accessed. The value set in array may change every time that resource is mapped.

If resource is not a texture then it cannot be accessed via an array and cudaErrorUnknown 
is returned. If arrayIndex is not a valid array index for resource then 
cudaErrorInvalidValue is returned. If mipLevel is not a valid mipmap level for resource 
then cudaErrorInvalidValue is returned. If resource is not mapped then cudaErrorUnknown 
is returned.

**Note:**

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, 
cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal 
CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called 
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a 
 diagnostic in such case.

**See also:**

```c
__host__ cudaError_t cudaGraphicsUnmapResources 
(int count, cudaGraphicsResource_t *resources, 
cudaStream_t stream)
```

Unmap graphics resources.

**Parameters**

- **count**
  - Number of resources to unmap
- **resources**
  - Resources to unmap
- **stream**
  - Stream for synchronization
Returns
cudaSuccess, cudaErrorInvalidResourceHandle, cudaErrorUnknown

Description
Unmaps the count graphics resources in resources.
Once unmapped, the resources in resources may not be accessed by CUDA until they are mapped again.
This function provides the synchronization guarantee that any CUDA work issued in stream before cudaGraphicsUnmapResources will complete before any subsequently issued graphics work begins.
If resources contains any duplicate entries then cudaErrorInvalidResourceHandle is returned. If any of resources are not presently mapped for access by CUDA then cudaErrorUnknown is returned.

Note:
- This function uses standard default stream semantics.
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaGraphicsMapResources, cuGraphicsUnmapResources

__host__cudaError_t
cudaGraphicsUnregisterResource
(cudaGraphicsResource_t resource)
Unregisters a graphics resource for access by CUDA.

Parameters
resource
- Resource to unregister
Returns

cudaSuccess, cudaErrorInvalidResourceHandle, cudaErrorUnknown

Description

Unregisters the graphics resource \texttt{resource} so it is not accessible by CUDA unless registered again.

If \texttt{resource} is invalid then \texttt{cudaErrorInvalidResourceHandle} is returned.

\begin{itemize}
  \item Note that this function may also return error codes from previous, asynchronous launches.
  \item Note that this function may also return \texttt{cudaErrorInitializationError}, \texttt{cudaErrorInsufficientDriver} or \texttt{cudaErrorNoDevice} if this call tries to initialize internal CUDA RT state.
  \item Note that as specified by \texttt{cudaStreamAddCallback} no CUDA function may be called from callback. \texttt{cudaErrorNotPermitted} may, but is not guaranteed to, be returned as a diagnostic in such case.
  \item Use of the handle after this call is undefined behavior.
\end{itemize}

See also:


6.25. Texture Object Management

This section describes the low level texture object management functions of the CUDA runtime application programming interface. The texture object API is only supported on devices of compute capability 3.0 or higher.
__host__ cudaCreateChannelDesc (int x, int y, int z, int w, cudaChannelFormatKind f)

Returns a channel descriptor using the specified format.

Parameters

x
- X component

y
- Y component

z
- Z component

w
- W component

f
- Channel format

Returns

Channel descriptor with format f

Description

Returns a channel descriptor with format f and number of bits of each component x, y, z, and w. The cudaChannelFormatDesc is defined as:

```c
struct cudaChannelFormatDesc {
    int x, y, z, w;
    enum cudaChannelFormatKind f;
};
```

where cudaChannelFormatKind is one of cudaChannelFormatKindSigned, cudaChannelFormatKindUnsigned, or cudaChannelFormatKindFloat.

See also:
cudaCreateChannelDesc [C++ API], cudaGetChannelDesc, cudaCreateTextureObject, cudaCreateSurfaceObject
__host__ cudaError_t cudaCreateTextureObject (cudaTextureObject_t *pTexObject, const cudaResourceDesc *pResDesc, const cudaTextureDesc *pTexDesc, const cudaResourceViewDesc *pResViewDesc)

Creates a texture object.

Parameters

pTexObject
- Texture object to create

pResDesc
- Resource descriptor

pTexDesc
- Texture descriptor

pResViewDesc
- Resource view descriptor

Returns
cudaSuccess, cudaErrorInvalidValue

Description

Creates a texture object and returns it in pTexObject. pResDesc describes the data to texture from. pTexDesc describes how the data should be sampled. pResViewDesc is an optional argument that specifies an alternate format for the data described by pResDesc, and also describes the subresource region to restrict access to when texturing. pResViewDesc can only be specified if the type of resource is a CUDA array or a CUDA mipmapped array.

Texture objects are only supported on devices of compute capability 3.0 or higher. Additionally, a texture object is an opaque value, and, as such, should only be accessed through CUDA API calls.

The cudaResourceDesc structure is defined as:

```c
struct cudaResourceDesc {
    enum cudaResourceType resType;
    union {
        struct { cudaArray_t array; } array;
        struct { cudaMipmappedArray_t mipmap; } mipmap;
    }
};
```
where:

- `cudaResourceDesc::resType` specifies the type of resource to texture from.

  CUresourceType is defined as:

  ```
  enum cudaResourceType {
    cudaResourceTypeArray = 0x00,
    cudaResourceTypeMipmappedArray = 0x01,
    cudaResourceTypeLinear = 0x02,
    cudaResourceTypePitch2D = 0x03
  };
  ```

  If `cudaResourceDesc::resType` is set to `cudaResourceTypeArray`, `cudaResourceDesc::res::array::array` must be set to a valid CUDA array handle.

  If `cudaResourceDesc::resType` is set to `cudaResourceTypeMipmappedArray`, `cudaResourceDesc::res::mipmap::mipmap` must be set to a valid CUDA mipmapped array handle and `cudaTextureDesc::normalizedCoords` must be set to true.

  If `cudaResourceDesc::resType` is set to `cudaResourceTypeLinear`, `cudaResourceDesc::res::linear::devPtr` must be set to a valid device pointer, that is aligned to `cudaDeviceProp::textureAlignment`. `cudaResourceDesc::res::linear::desc` describes the format and the number of components per array element. `cudaResourceDesc::res::linear::sizeInBytes` specifies the size of the array in bytes. The total number of elements in the linear address range cannot exceed `cudaDeviceProp::maxTexture1DLinear`. The number of elements is computed as `(sizeInBytes / sizeof(desc))`.

  If `cudaResourceDesc::resType` is set to `cudaResourceTypePitch2D`, `cudaResourceDesc::res::pitch2D::devPtr` must be set to a valid device pointer, that is aligned to `cudaDeviceProp::textureAlignment`. `cudaResourceDesc::res::pitch2D::desc` describes the format and the number of components per array element. `cudaResourceDesc::res::pitch2D::width` and `cudaResourceDesc::res::pitch2D::height` specify the width and height of the array in elements, and cannot exceed `cudaDeviceProp::maxTexture2DLinear[0]` and `cudaDeviceProp::maxTexture2DLinear[1]` respectively. `cudaResourceDesc::res::pitch2D::pitchInBytes` specifies the pitch between two

```
The `cudaTextureDesc` struct is defined as

```c
struct cudaTextureDesc {
    enum cudaTextureAddressMode addressMode[3];
    enum cudaTextureFilterMode filterMode;
    enum cudaTextureReadMode readMode;
    int sRGB;
    float borderColor[4];
    int normalizedCoords;
    unsigned int maxAnisotropy;
    enum cudaTextureFilterMode mipmapFilterMode;
    float mipmapLevelBias;
    float minMipmapLevelClamp;
    float maxMipmapLevelClamp;
    int disableTrilinearOptimization;
    int seamlessCubemap;
};
```

where

- `cudaTextureDesc::addressMode` specifies the addressing mode for each dimension of the texture data. `cudaTextureAddressMode` is defined as:

```c
enum cudaTextureAddressMode {
    cudaAddressModeWrap = 0,
    cudaAddressModeClamp = 1,
    cudaAddressModeMirror = 2,
    cudaAddressModeBorder = 3
};
```

This is ignored if `cudaResourceDesc::resType` is `cudaResourceTypeLinear`. Also, if `cudaTextureDesc::normalizedCoords` is set to zero, `cudaAddressModeWrap` and `cudaAddressModeMirror` won’t be supported and will be switched to `cudaAddressModeClamp`.

- `cudaTextureDesc::filterMode` specifies the filtering mode to be used when fetching from the texture. `cudaTextureFilterMode` is defined as:

```c
enum cudaTextureFilterMode {
    cudaFilterModePoint = 0,
    cudaFilterModeLinear = 1
};
```

This is ignored if `cudaResourceDesc::resType` is `cudaResourceTypeLinear`.

- `cudaTextureDesc::readMode` specifies whether integer data should be converted to floating point or not. `cudaTextureReadMode` is defined as:

```c
enum cudaTextureReadMode {
    cudaReadModeElementType = 0,
    cudaReadModeNormalizedFloat = 1
};
```
Note that this applies only to 8-bit and 16-bit integer formats. 32-bit integer format would not be promoted, regardless of whether or not this `cudaTextureDesc::readMode` is set `cudaReadModeNormalizedFloat` is specified.

- `cudaTextureDesc::sRGB` specifies whether sRGB to linear conversion should be performed during texture fetch.

- `cudaTextureDesc::borderColor` specifies the float values of color. where: `cudaTextureDesc::borderColor[0]` contains value of ‘R’, `cudaTextureDesc::borderColor[1]` contains value of ‘G’, `cudaTextureDesc::borderColor[2]` contains value of ‘B’, `cudaTextureDesc::borderColor[3]` contains value of ‘A’. Note that application using integer border color values will need to `<reinterpret_cast>` these values to float. The values are set only when the addressing mode specified by `cudaTextureDesc::addressMode` is `cudaAddressModeBorder`.

- `cudaTextureDesc::normalizedCoords` specifies whether the texture coordinates will be normalized or not.

- `cudaTextureDesc::maxAnisotropy` specifies the maximum anisotropy ratio to be used when doing anisotropic filtering. This value will be clamped to the range [1,16].

- `cudaTextureDesc::.mipmapFilterMode` specifies the filter mode when the calculated mipmap level lies between two defined mipmap levels.

- `cudaTextureDesc::.mipmapLevelBias` specifies the offset to be applied to the calculated mipmap level.

- `cudaTextureDesc::minMipmapLevelClamp` specifies the lower end of the mipmap level range to clamp access to.

- `cudaTextureDesc::maxMipmapLevelClamp` specifies the upper end of the mipmap level range to clamp access to.

- `cudaTextureDesc::disableTrilinearOptimization` specifies whether the trilinear filtering optimizations will be disabled.

- `cudaTextureDesc::seamlessCubemap` specifies whether seamless cube map filtering is enabled. This flag can only be specified if the underlying resource is a CUDA array or a CUDA mipmapped array that was created with the flag `cudaArrayCubemap`. When seamless cube map filtering is enabled, texture address modes specified by `cudaTextureDesc::addressMode` are ignored. Instead, if the `cudaTextureDesc::filterMode` is set to `cudaFilterModePoint` the address mode `cudaAddressModeClamp` will be applied for all dimensions. If the `cudaTextureDesc::filterMode` is set to `cudaFilterModeLinear` seamless cube map filtering will be performed when sampling along the cube face borders.

The `cudaResourceViewDesc` struct is defined as

```c
struct cudaResourceViewDesc {
```
where:

- `cudaResourceViewDesc::format` specifies how the data contained in the CUDA array or CUDA mipmapped array should be interpreted. Note that this can incur a change in size of the texture data. If the resource view format is a block compressed format, then the underlying CUDA array or CUDA mipmapped array has to have a 32-bit unsigned integer format with 2 or 4 channels, depending on the block compressed format. For ex., BC1 and BC4 require the underlying CUDA array to have a 32-bit unsigned int with 2 channels. The other BC formats require the underlying resource to have the same 32-bit unsigned int format but with 4 channels.

- `cudaResourceViewDesc::width` specifies the new width of the texture data. If the resource view format is a block compressed format, this value has to be 4 times the original width of the resource. For non block compressed formats, this value has to be equal to that of the original resource.

- `cudaResourceViewDesc::height` specifies the new height of the texture data. If the resource view format is a block compressed format, this value has to be 4 times the original height of the resource. For non block compressed formats, this value has to be equal to that of the original resource.

- `cudaResourceViewDesc::depth` specifies the new depth of the texture data. This value has to be equal to that of the original resource.

- `cudaResourceViewDesc::firstMipmapLevel` specifies the most detailed mipmap level. This will be the new mipmap level zero. For non-mipmapped resources, this value has to be zero. `cudaTextureDesc::minMipmapLevelClamp` and `cudaTextureDesc::maxMipmapLevelClamp` will be relative to this value. For ex., if the firstMipmapLevel is set to 2, and a minMipmapLevelClamp of 1.2 is specified, then the actual minimum mipmap level clamp will be 3.2.

- `cudaResourceViewDesc::lastMipmapLevel` specifies the least detailed mipmap level. For non-mipmapped resources, this value has to be zero.

- `cudaResourceViewDesc::firstLayer` specifies the first layer index for layered textures. This will be the new layer zero. For non-layered resources, this value has to be zero.

- `cudaResourceViewDesc::lastLayer` specifies the last layer index for layered textures. For non-layered resources, this value has to be zero.
__host__ cudaError_t cudaDestroyTextureObject (cudaTextureObject_t texObject)

Destroys a texture object.

Parameters

texObject
- Texture object to destroy

Returns

cudaSuccess, cudaErrorInvalidValue

Description

Destroys the texture object specified by texObject.

See also:
cudaDestroyTextureObject, cuTexObjectCreate

Note:

- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.
- Use of the handle after this call is undefined behavior.
cudaCreateTextureObject, cuTexObjectDestroy

__host__cudaError_t cudaGetChannelDesc (cudaChannelFormatDesc *desc, cudaArray_const_t array)
Get the channel descriptor of an array.

Parameters

desc
- Channel format
array
- Memory array on device

Returns
cudaSuccess, cudaErrorInvalidValue

Description

Returns in *desc the channel descriptor of the CUDA array array.

Note:
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaCreateChannelDesc [ C API], cudaCreateTextureObject, cudaCreateSurfaceObject
__host__.cudaError_t
cudaGetTextureObjectResourceDesc
(cuResDesc *pResDesc, cudaTextureObject_t texObject)

Returns a texture object’s resource descriptor.

Parameters
pResDesc
- Resource descriptor
texObject
- Texture object

Returns
cudaSuccess, cudaErrorInvalidValue

Description
Returns the resource descriptor for the texture object specified by texObject.

Note:
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaCreateTextureObject, cuTexObjectGetResourceDesc
__host__ cudaError_t
cudaGetTextureObjectResourceViewDesc(
    cudaResourceViewDesc *pResViewDesc,
    cudaTextureObject_t texObject)

Returns a texture object’s resource view descriptor.

Parameters

pResViewDesc
  - Resource view descriptor

texObject
  - Texture object

Returns

cudaSuccess, cudaErrorInvalidValue

Description

Returns the resource view descriptor for the texture object specified by texObject. If no resource view was specified, cudaErrorInvalidValue is returned.

Note:

- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.

- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaCreateTextureObject, cuTexObjectGetResourceViewDesc
__host__ cudaError_t
cudaGetTextureObjectTextureDesc (cudaTextureDesc *pTexDesc, cudaTextureObject_t texObject)

Returns a texture object’s texture descriptor.

Parameters

pTexDesc
- Texture descriptor
texObject
- Texture object

Returns
cudaSuccess, cudaErrorInvalidValue

Description

Returns the texture descriptor for the texture object specified by texObject.

Note:

- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaCreateTextureObject, cuTexObjectGetTextureDesc


This section describes the low level texture object management functions of the CUDA runtime application programming interface. The surface object API is only supported on devices of compute capability 3.0 or higher.
__host__ cudaError_t cudaCreateSurfaceObject (cudaSurfaceObject_t *pSurfObject, const cudaResourceDesc *pResDesc)
Creates a surface object.

Parameters

**pSurfObject**
- Surface object to create

**pResDesc**
- Resource descriptor

Returns
cudaSuccess, cudaErrorInvalidValue, cudaErrorInvalidChannelDescriptor, cudaErrorInvalidResourceHandle

Description
Creates a surface object and returns it in pSurfObject. pResDesc describes the data to perform surface load/stores on. cudaResourceDesc::resType must be cudaResourceTypeArray and cudaResourceDesc::res::array::array must be set to a valid CUDA array handle.

Surface objects are only supported on devices of compute capability 3.0 or higher. Additionally, a surface object is an opaque value, and, as such, should only be accessed through CUDA API calls.

**Note:**
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaDestroySurfaceObject, cuSurfObjectCreate
__host__ cudaError_t cudaDestroySurfaceObject (cudaSurfaceObject_t surfObject)

Destroys a surface object.

Parameters

surfObject
- Surface object to destroy

Returns

cudaSuccess, cudaErrorInvalidValue

Description

Destroys the surface object specified by surfObject.

Note:

➤ Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.

➤ Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

➤ Use of the handle after this call is undefined behavior.

See also:

cudaCreateSurfaceObject, cuSurfObjectDestroy
__host__ cudaError_t
cudaGetSurfaceObjectResourceDesc
(cudaResourceDesc *pResDesc, cudaSurfaceObject_t surfObject)

Returns a surface object’s resource descriptor Returns the resource descriptor for the surface object specified by surfObject.

Parameters
pResDesc
- Resource descriptor
surfObject
- Surface object

Returns
cudaSuccess, cudaErrorInvalidValue

Description

Note:
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaCreateSurfaceObject, cuSurfObjectGetResourceDesc

6.27. Version Management
__host__cudaError_t cudaDriverGetVersion (int *driverVersion)

Returns the latest version of CUDA supported by the driver.

Parameters

driverVersion
  - Returns the CUDA driver version.

Returns

cudaSuccess, cudaErrorInvalidValue

Description

Returns in *driverVersion the latest version of CUDA supported by the driver. The version is returned as (1000 major + 10 minor). For example, CUDA 9.2 would be represented by 9020. If no driver is installed, then 0 is returned as the driver version.

This function automatically returns cudaErrorInvalidValue if driverVersion is NULL.

Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaRuntimeGetVersion, cuDriverGetVersion

__host____device__cudaError_t
cudaRuntimeGetVersion (int *runtimeVersion)

Returns the CUDA Runtime version.

Parameters

runtimeVersion
  - Returns the CUDA Runtime version.
Returns

cudaSuccess, cudaErrorInvalidValue

Description

Returns in *runtimeVersion the version number of the current CUDA Runtime instance. The version is returned as (1000 major + 10 minor). For example, CUDA 9.2 would be represented by 9020.

As of CUDA 12.0, this function no longer initializes CUDA. The purpose of this API is solely to return a compile-time constant stating the CUDA Toolkit version in the above format.

This function automatically returns cudaErrorInvalidValue if the runtimeVersion argument is NULL.

Note:

- Note that this function may also return cudaMemcpyInitializationError, cudaMemcpyInsufficientDriver or cudaMemcpyNoDevice if this call tries to initialize internal CUDA RT state.

- Note that as specified by cudaMemcpyAddCallback no CUDA function may be called from callback. cudaMemcpyNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

cudaDriverGetVersion, cuDriverGetVersion

6.28. Graph Management

This section describes the graph management functions of CUDA runtime application programming interface.
__host__ cudaError_t
cudaDeviceGetGraphMemAttribute (int device,
cudaGraphMemAttributeType attr, void *value)

Query asynchronous allocation attributes related to graphs.

Parameters

device
  - Specifies the scope of the query
attr
  - attribute to get
value
  - retrieved value

Returns
cudaSuccess, cudaErrorInvalidDevice

Description

Valid attributes are:

- cudaGraphMemAttrUsedMemCurrent: Amount of memory, in bytes, currently associated with graphs
- cudaGraphMemAttrUsedMemHigh: High watermark of memory, in bytes, associated with graphs since the last time it was reset. High watermark can only be reset to zero.
- cudaGraphMemAttrReservedMemCurrent: Amount of memory, in bytes, currently allocated for use by the CUDA graphs asynchronous allocator.
- cudaGraphMemAttrReservedMemHigh: High watermark of memory, in bytes, currently allocated for use by the CUDA graphs asynchronous allocator.

Note:

- Graph objects are not threadsafe. More here.
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaDeviceSetGraphMemAttribute, cudaGraphAddMemAllocNode, cudaGraphAddMemFreeNode, cudaDeviceGraphMemTrim, cudaMallocAsync, cudaFreeAsync

__host__cudaError_t cudaDeviceGraphMemTrim (int device)

Free unused memory that was cached on the specified device for use with graphs back to the OS.

Parameters

device
- The device for which cached memory should be freed.

Returns
cudaSuccess, cudaErrorInvalidValue

Description

Blocks which are not in use by a graph that is either currently executing or scheduled to execute are freed back to the operating system.

Note:

- Graph objects are not threadsafe. More here.
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaGraphAddMemAllocNode, cudaGraphAddMemFreeNode, cudaDeviceGetGraphMemAttribute, cudaDeviceSetGraphMemAttribute, cudaMallocAsync, cudaFreeAsync

__host__ cudaError_t

cudaDeviceSetGraphMemAttribute (int device, cudaGraphMemAttributeType attr, void *value)

Set asynchronous allocation attributes related to graphs.

Parameters

device
  - Specifies the scope of the query
attr
  - attribute to get
value
  - pointer to value to set

Returns

cudaSuccess, cudaErrorInvalidDevice

Description

Valid attributes are:

- cudaGraphMemAttrUsedMemHigh: High watermark of memory, in bytes, associated with graphs since the last time it was reset. High watermark can only be reset to zero.
- cudaGraphMemAttrReservedMemHigh: High watermark of memory, in bytes, currently allocated for use by the CUDA graphs asynchronous allocator.

Note:

- Graph objects are not threadsafe. More here.
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.
See also:
cudaDeviceGetGraphMemAttribute, cudaGraphAddMemAllocNode,
cudaGraphAddMemFreeNode, cudaDeviceGraphMemTrim, cudaMemcpyAsync, cudaMemcpyAsync

__device__cudaGraphExec_t
cudaGetCurrentGraphExec (void)
Get the currently running device graph id.

Returns
Returns the current device graph id, 0 if the call is outside of a device graph.

Description
Get the currently running device graph id.

See also:
cudaLaunchDevice

__host__cudaError_t cudaGraphAddChildGraphNode
(cudaGraphNode_t *pGraphNode, cudaGraph_t graph,
const cudaGraphNode_t *pDependencies, size_t
numDependencies, cudaGraph_t childGraph)
Creates a child graph node and adds it to a graph.

Parameters
pGraphNode
  - Returns newly created node
graph
  - Graph to which to add the node
pDependencies
  - Dependencies of the node
numDependencies
  - Number of dependencies
childGraph
  - The graph to clone into this node

Returns
cudaSuccess, cudaErrorInvalidValue
**Description**

Creates a new node which executes an embedded graph, and adds it to graph with `numDependencies` dependencies specified via `pDependencies`. It is possible for `numDependencies` to be 0, in which case the node will be placed at the root of the graph. `pDependencies` may not have any duplicate entries. A handle to the new node will be returned in `pGraphNode`.

If `hGraph` contains allocation or free nodes, this call will return an error.

The node executes an embedded child graph. The child graph is cloned in this call.

**Note:**

- Graph objects are not threadsafe. [More here.](#)
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

**See also:**

`cudaGraphAddNode`, `cudaGraphChildGraphNodeGetGraph`, `cudaGraphCreate`, `cudaGraphDestroyNode`, `cudaGraphAddEmptyNode`, `cudaGraphAddKernelNode`, `cudaGraphAddHostNode`, `cudaGraphAddMemcpyNode`, `cudaGraphAddMemsetNode`, `cudaGraphClone`

```c
__host__cudaError_t cudaGraphAddDependencies(cudaGraph_t graph, const cudaGraphNode_t *from, const cudaGraphNode_t *to, size_t numDependencies)
```

Adds dependency edges to a graph.

**Parameters**

- `graph` - Graph to which dependencies are added
from
- Array of nodes that provide the dependencies
to
- Array of dependent nodes
numDependencies
- Number of dependencies to be added

Returns
cudaSuccess, cudaErrorInvalidValue

Description
The number of dependencies to be added is defined by numDependencies. Elements in pFrom and pTo at corresponding indices define a dependency. Each node in pFrom and pTo must belong to graph.

If numDependencies is 0, elements in pFrom and pTo will be ignored. Specifying an existing dependency will return an error.

Note:
- Graph objects are not threadsafe. More here.
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaGraphRemoveDependencies, cudaGraphGetEdges, cudaGraphNodeGetDependencies, cudaGraphNodeGetDependentNodes
__host__ cudaError_t cudaGraphAddEmptyNode
cudaGraphNode_t *pGraphNode, cudaGraph_t graph,
const cudaGraphNode_t *pDependencies, size_t numDependencies)

Creates an empty node and adds it to a graph.

Parameters

pGraphNode
- Returns newly created node

graph
- Graph to which to add the node

pDependencies
- Dependencies of the node

numDependencies
- Number of dependencies

Returns
cudaSuccess, cudaErrorInvalidValue

Description

Creates a new node which performs no operation, and adds it to graph with numDependencies dependencies specified via pDependencies. It is possible for numDependencies to be 0, in which case the node will be placed at the root of the graph. pDependencies may not have any duplicate entries. A handle to the new node will be returned in pGraphNode.

An empty node performs no operation during execution, but can be used for transitive ordering. For example, a phased execution graph with 2 groups of n nodes with a barrier between them can be represented using an empty node and 2*n dependency edges, rather than no empty node and n^2 dependency edges.

Note:

- Graph objects are not threadsafe. More here.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
```
cudaGraphAddNode, cudaGraphCreate, cudaGraphDestroyNode,
cudaGraphAddChildGraphNode, cudaGraphAddKernelNode, cudaGraphAddHostNode,
cudaGraphAddMemcpyNode, cudaGraphAddMemsetNode
```

```c
__host__ cudaError_t cudaGraphAddEventRecordNode (cudaGraphNode_t *pGraphNode, cudaGraph_t graph, const cudaGraphNode_t *pDependencies, size_t numDependencies, cudaEvent_t event)
```
Creates an event record node and adds it to a graph.

**Parameters**
- `pGraphNode`
- `graph`
- `pDependencies`
- `numDependencies`
- `event`

**Returns**
- `cudaSuccess`, `cudaErrorInvalidValue`

**Description**
Creates a new event record node and adds it to `hGraph` with `numDependencies` dependencies specified via `dependencies` and event specified in `event`. It is possible for `numDependencies` to be 0, in which case the node will be placed at the root of the graph. `dependencies` may not have any duplicate entries. A handle to the new node will be returned in `pGraphNode`.

Each launch of the graph will record `event` to capture execution of the node’s dependencies. These nodes may not be used in loops or conditionals.
Note:

- Graph objects are not threadsafe. More here.
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotAllowed` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

- `cudaGraphAddNode`, `cudaGraphAddEventWaitNode`, `cudaEventRecordWithFlags`, `cudaStreamWaitEvent`, `cudaGraphCreate`, `cudaGraphDestroyNode`, `cudaGraphAddChildGraphNode`, `cudaGraphAddEmptyNode`, `cudaGraphAddKernelNode`, `cudaGraphAddMemcpyNode`, `cudaGraphAddMemsetNode`

```c
__host__ cudaError_t cudaGraphAddEventWaitNode(
cudaGraphNode_t *pGraphNode, cudaGraph_t graph, const
cudaGraphNode_t *pDependencies, size_t numDependencies, cudaEvent_t event)
```

Creates an event wait node and adds it to a graph.

**Parameters**

- `pGraphNode`
- `graph`
- `pDependencies`
- `numDependencies`
- `event`
  - Number of dependencies
  - Event for the node

**Returns**

- `cudaSuccess`
- `cudaErrorInvalidValue`
Description

Creates a new event wait node and adds it to hGraph with numDependencies dependencies specified via dependencies and event specified in event. It is possible for numDependencies to be 0, in which case the node will be placed at the root of the graph. dependencies may not have any duplicate entries. A handle to the new node will be returned in phGraphNode.

The graph node will wait for all work captured in event. See cuEventRecord() for details on what is captured by an event. The synchronization will be performed efficiently on the device when applicable. event may be from a different context or device than the launch stream.

These nodes may not be used in loops or conditionals.

Note:

- Graph objects are not threadsafe. More here.
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

cudaGraphAddNode, cudaGraphAddEventRecordNode, cudaEventRecordWithFlags, cudaStreamWaitEvent, cudaGraphCreate, cudaGraphDestroyNode, cudaGraphAddChildGraphNode, cudaGraphAddEmptyNode, cudaGraphAddKernelNode, cudaGraphAddMemcpyNode, cudaGraphAddMemsetNode
__host__ cudaError_t
cudaGraphAddExternalSemaphoresSignalNode
cudaGraphNode_t *pGraphNode,
cudaGraph_t graph, const cudaGraphNode_t *pDependencies, size_t numDependencies, const cudaExternalSemaphoreSignalNodeParams *nodeParams)

Creates an external semaphore signal node and adds it to a graph.

Parameters

pGraphNode
  - Returns newly created node

graph
  - Graph to which to add the node

pDependencies
  - Dependencies of the node

numDependencies
  - Number of dependencies

nodeParams
  - Parameters for the node

Returns
cudaSuccess, cudaErrorInvalidValue

Description

Creates a new external semaphore signal node and adds it to graph with numDependencies dependencies specified via dependencies and arguments specified in nodeParams. It is possible for numDependencies to be 0, in which case the node will be placed at the root of the graph. dependencies may not have any duplicate entries. A handle to the new node will be returned in pGraphNode.

Performs a signal operation on a set of externally allocated semaphore objects when the node is launched. The operation(s) will occur after all of the node’s dependencies have completed.

Note:

- Graph objects are not threadsafe. More here.
- Note that this function may also return error codes from previous, asynchronous launches.
Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.

Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

`cudaGraphAddNode`, `cudaGraphExternalSemaphoresSignalNodeGetParams`,
`cudaGraphExternalSemaphoresSignalNodeSetParams`,
`cudaGraphExecExternalSemaphoresSignalNodeSetParams`,
`cudaGraphAddExternalSemaphoresWaitNode`, `cudaImportExternalSemaphore`,
`cudaSignalExternalSemaphoresAsync`, `cudaWaitExternalSemaphoresAsync`,
`cudaGraphCreate`, `cudaGraphDestroyNode`, `cudaGraphAddEventRecordNode`,
`cudaGraphAddEventWaitNode`, `cudaGraphAddChildGraphNode`, `cudaGraphAddEmptyNode`,
`cudaGraphAddKernelNode`, `cudaGraphAddMemcpyNode`, `cudaGraphAddMemsetNode`

```c
__host__ cudaError_t
cudaGraphAddExternalSemaphoresWaitNode
(cudaGraphNode_t *pGraphNode,
cudaGraph_t graph, const cudaGraphNode_t *
pDependencies, size_t numDependencies,
const cudaExternalSemaphoreWaitNodeParams *
nodeParams)
```

Creates an external semaphore wait node and adds it to a graph.

**Parameters**

- **pGraphNode**
  - Returns newly created node

- **graph**
  - Graph to which to add the node

- **pDependencies**
  - Dependencies of the node

- **numDependencies**
  - Number of dependencies

- **nodeParams**
  - Parameters for the node
Returns

`cudaSuccess`, `cudaErrorInvalidValue`

Description

Creates a new external semaphore wait node and adds it to graph with `numDependencies` dependencies specified via `dependencies` and arguments specified in `nodeParams`. It is possible for `numDependencies` to be 0, in which case the node will be placed at the root of the graph. `dependencies` may not have any duplicate entries. A handle to the new node will be returned in `pGraphNode`.

Performs a wait operation on a set of externally allocated semaphore objects when the node is launched. The node's dependencies will not be launched until the wait operation has completed.

Note:

- Graph objects are not threadsafe. [More here.](#)
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

- `cudaGraphAddNode`, `cudaGraphExternalSemaphoresWaitNodeGetParams`, `cudaGraphExternalSemaphoresWaitNodeSetParams`, `cudaGraphExecExternalSemaphoresWaitNodeSetParams`, `cudaGraphAddExternalSemaphoresWaitNode`, `cudaSignalExternalSemaphore`, `cudaSignalExternalSemaphoresAsync`, `cudaWaitExternalSemaphoresAsync`, `cudaGraphCreate`, `cudaGraphDestroyNode`, `cudaGraphAddEventRecordNode`, `cudaGraphAddEventWaitNode`, `cudaGraphAddChildGraphNode`, `cudaGraphAddEmptyNode`, `cudaGraphAddKernelNode`, `cudaGraphAddMemcpyNode`, `cudaGraphAddMemsetNode`
__host__ cudaError_t cudaGraphAddHostNode
(cudaGraphNode_t *pGraphNode, cudaGraph_t graph,
const cudaGraphNode_t *pDependencies, size_t
numDependencies, const cudaHostNodeParams
*pNodeParams)

Creates a host execution node and adds it to a graph.

Parameters

pGraphNode
- Returns newly created node

graph
- Graph to which to add the node

pDependencies
- Dependencies of the node

numDependencies
- Number of dependencies

pNodeParams
- Parameters for the host node

Returns
cudaSuccess, cudaErrorNotSupported, cudaErrorInvalidValue

Description

Creates a new CPU execution node and adds it to graph with numDependencies
dependencies specified via pDependencies and arguments specified in pNodeParams. It is
possible for numDependencies to be 0, in which case the node will be placed at the root of
the graph. pDependencies may not have any duplicate entries. A handle to the new node will
be returned in pGraphNode.

When the graph is launched, the node will invoke the specified CPU function. Host nodes are
not supported under MPS with pre-Volta GPUs.

Note:

- Graph objects are not threadsafe. More here.
- Note that this function may also return error codes from previous, asynchronous launches.
__host__ cudaError_t cudaGraphAddKernelNode
(const cudaGraphNode_t *pGraphNode, cudaGraph_t graph,
const cudaGraphNode_t *pDependencies, size_t numDependencies,
const cudaKernelNodeParams *pNodeParams)

Creates a kernel execution node and adds it to a graph.

Parameters

pGraphNode
- Returns newly created node

graph
- Graph to which to add the node

pDependencies
- Dependencies of the node

numDependencies
- Number of dependencies

pNodeParams
- Parameters for the GPU execution node

Returns

cudaSuccess, cudaErrorInvalidValue, cudaErrorInvalidDeviceFunction

Description

Creates a new kernel execution node and adds it to graph with numDependencies dependencies specified via pDependencies and arguments specified in pNodeParams. It is possible for numDependencies to be 0, in which case the node will be placed at the root of the graph.
the graph. pDependencies may not have any duplicate entries. A handle to the new node will be returned in pGraphNode.

The **cudaKernelNodeParams** structure is defined as:

```c
struct cudaKernelNodeParams {
  void* func;
  dim3 gridDim;
  dim3 blockDim;
  unsigned int sharedMemBytes;
  void ***kernelParams;
  void **extra;
};
```

When the graph is launched, the node will invoke kernel **func** on a \((gridDim.x \times gridDim.y \times gridDim.z)\) grid of blocks. Each block contains \((blockDim.x \times blockDim.y \times blockDim.z)\) threads.

**sharedMem** sets the amount of dynamic shared memory that will be available to each thread block.

Kernel parameters to **func** can be specified in one of two ways:

1) Kernel parameters can be specified via **kernelParams**. If the kernel has \(N\) parameters, then **kernelParams** needs to be an array of \(N\) pointers. Each pointer, from **kernelParams[0]** to **kernelParams[N-1]**, points to the region of memory from which the actual parameter will be copied. The number of kernel parameters and their offsets and sizes do not need to be specified as that information is retrieved directly from the kernel’s image.

2) Kernel parameters can also be packaged by the application into a single buffer that is passed in via **extra**. This places the burden on the application of knowing each kernel parameter’s size and alignment/padding within the buffer. The **extra** parameter exists to allow this function to take additional less commonly used arguments. **extra** specifies a list of names of extra settings and their corresponding values. Each extra setting name is immediately followed by the corresponding value. The list must be terminated with either **NULL** or **CU_LAUNCH_PARAM_END**.

- **CU_LAUNCH_PARAM_END**, which indicates the end of the **extra** array;
- **CU_LAUNCH_PARAM_BUFFER_POINTER**, which specifies that the next value in **extra** will be a pointer to a buffer containing all the kernel parameters for launching kernel **func**;
- **CU_LAUNCH_PARAM_BUFFER_SIZE**, which specifies that the next value in **extra** will be a pointer to a size_t containing the size of the buffer specified with **CU_LAUNCH_PARAM_BUFFER_POINTER**;

The error **cudaErrorInvalidValue** will be returned if kernel parameters are specified with both **kernelParams** and **extra** (i.e. both **kernelParams** and **extra** are non-NULL).
The `kernelParams` or extra array, as well as the argument values it points to, are copied during this call.

**Note:**

Kernels launched using graphs must not use texture and surface references. Reading or writing through any texture or surface reference is undefined behavior. This restriction does not apply to texture and surface objects.

**Note:**

- Graph objects are not threadsafe. [More here.](#)
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

- `cudaGraphAddNode`, `cudaLaunchKernel`, `cudaGraphKernelNodeGetParams`, `cudaGraphKernelNodeSetParams`, `cudaGraphCreate`, `cudaGraphDestroyNode`, `cudaGraphAddChildGraphNode`, `cudaGraphAddEmptyNode`, `cudaGraphAddHostNode`, `cudaGraphAddMemcpyNode`, `cudaGraphAddMemsetNode`, `cudaGraphAddMemAllocNode`

```c
__host__ cudaError_t cudaGraphAddMemAllocNode(cudaGraphNode_t *pGraphNode, cudaGraph_t graph, const cudaGraphNode_t *pDependencies, size_t numDependencies, cudaMemAllocNodeParams *nodeParams)
```

Creates an allocation node and adds it to a graph.

**Parameters**

- **pGraphNode**
  - Returns newly created node
- **graph**
  - Graph to which to add the node
**pDependencies**
- Dependencies of the node

**numDependencies**
- Number of dependencies

**nodeParams**
- Parameters for the node

**Returns**
cudaSuccess, cudaErrorCudartUnloading, cudaErrorInitializationError, cudaErrorNotSupported, cudaErrorInvalidValue, cudaErrorOutOfMemory

**Description**
Creates a new allocation node and adds it to graph with numDependencies dependencies specified via pDependencies and arguments specified in nodeParams. It is possible for numDependencies to be 0, in which case the node will be placed at the root of the graph. pDependencies may not have any duplicate entries. A handle to the new node will be returned in pGraphNode.

When cudaGraphAddMemAllocNode creates an allocation node, it returns the address of the allocation in nodeParams.dptr. The allocation’s address remains fixed across instantiations and launches.

If the allocation is freed in the same graph, by creating a free node using cudaGraphAddMemFreeNode, the allocation can be accessed by nodes ordered after the allocation node but before the free node. These allocations cannot be freed outside the owning graph, and they can only be freed once in the owning graph.

If the allocation is not freed in the same graph, then it can be accessed not only by nodes in the graph which are ordered after the allocation node, but also by stream operations ordered after the graph’s execution but before the allocation is freed.

Allocations which are not freed in the same graph can be freed by:

- passing the allocation to cudaMemFreeAsync or cudaMemFree;
- launching a graph with a free node for that allocation; or
- specifying cudaGraphInstantiateFlagAutoFreeOnLaunch during instantiation, which makes each launch behave as though it called cudaMemFreeAsync for every unfreed allocation.

It is not possible to free an allocation in both the owning graph and another graph. If the allocation is freed in the same graph, a free node cannot be added to another graph. If the allocation is freed in another graph, a free node can no longer be added to the owning graph.

The following restrictions apply to graphs which contain allocation and/or memory free nodes:

- Nodes and edges of the graph cannot be deleted.
- The graph cannot be used in a child node.
Only one instantiation of the graph may exist at any point in time.

The graph cannot be cloned.

Note:
- Graph objects are not threadsafe. More here.
- Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaGraphAddNode, cudaGraphAddMemFreeNode, cudaGraphMemAllocNodeGetParams, cudaDeviceGraphMemTrim, cudaDeviceGetGraphMemAttribute, cudaDeviceSetGraphMemAttribute, cudaMemcpyAsync, cudaFreeAsync, cudaGraphCreate, cudaGraphDestroyNode, cudaGraphAddChildGraphNode, cudaGraphAddEmptyNode, cudaGraphAddEventRecordNode, cudaGraphAddEventWaitNode, cudaGraphAddExternalSemaphoresSignalNode, cudaGraphAddExternalSemaphoresWaitNode, cudaGraphAddKernelNode, cudaGraphAddMemcpyNode, cudaGraphAddMemsetNode

__host__ cudaError_t cudaGraphAddMemcpyNode (cudaGraphNode_t *pGraphNode, cudaGraph_t graph, const cudaGraphNode_t *pDependencies, size_t numDependencies, const cudaMemcpy3DParms *pCopyParams)

Creates a memcpy node and adds it to a graph.

Parameters
- **pGraphNode**
  - Returns newly created node
- **graph**
  - Graph to which to add the node
- **pDependencies**
  - Dependencies of the node
- **numDependencies**
  - Number of dependencies
- **pCopyParams**
  - Parameters for the memory copy

Returns
- cudaSuccess, cudaErrorInvalidValue
Description

Creates a new memcpy node and adds it to graph with numDependencies dependencies specified via pDependencies. It is possible for numDependencies to be 0, in which case the node will be placed at the root of the graph. pDependencies may not have any duplicate entries. A handle to the new node will be returned in pGraphNode.

When the graph is launched, the node will perform the memcpy described by pCopyParams. See cudaMemcpy3D for a description of the structure and its restrictions.

Memcpy nodes have some additional restrictions with regards to managed memory, if the system contains at least one device which has a zero value for the device attribute cudaDevAttrConcurrentManagedAccess.

Note:

- Graph objects are not threadsafe. More here.
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaGraphAddNode, cudaMemcpy3D, cudaMemcpyNodeToSymbol, cudaMemcpyNodeFromSymbol, cudaMemcpyNode1D, cudaMemcpyNodeGetParams, cudaMemcpyNodeSetParams, cudaGraphCreate, cudaGraphDestroyNode, cudaMemcpyAddChildGraphNode, cudaMemcpyAddEmptyNode, cudaMemcpyAddKernelNode, cudaMemcpyAddHostNode, cudaMemcpyAddMemsetNode
__host__ cudaError_t cudaGraphAddMemcpyNode1D (cudaGraphNode_t *pGraphNode, cudaGraph_t graph, const cudaGraphNode_t *pDependencies, size_t numDependencies, void *dst, const void *src, size_t count, cudaMemcpyKind kind)

Creates a 1D memcpy node and adds it to a graph.

Parameters

pGraphNode
- Returns newly created node

graph
- Graph to which to add the node

pDependencies
- Dependencies of the node

numDependencies
- Number of dependencies

dst
- Destination memory address

src
- Source memory address

count
- Size in bytes to copy

kind
- Type of transfer

Returns
cudaSuccess, cudaErrorInvalidValue

Description

Creates a new 1D memcpy node and adds it to graph with numDependencies dependencies specified via pDependencies. It is possible for numDependencies to be 0, in which case the node will be placed at the root of the graph. pDependencies may not have any duplicate entries. A handle to the new node will be returned in pGraphNode.

When the graph is launched, the node will copy count bytes from the memory area pointed to by src to the memory area pointed to by dst, where kind specifies the direction of the copy, and must be one of cudaMemcpyHostToHost, cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice, or cudaMemcpyDefault. Passing cudaMemcpyDefault is recommended, in which case the type of transfer is inferred from the pointer values. However, cudaMemcpyDefault is only allowed on systems that support unified
virtual addressing. Launching a memcpy node with dst and src pointers that do not match the direction of the copy results in an undefined behavior.

Memcpy nodes have some additional restrictions with regards to managed memory, if the system contains at least one device which has a zero value for the device attribute `cudaDevAttrConcurrentManagedAccess`.

Note:

- Graph objects are not threadsafe. [More here](#).
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

`cudaMemcpy`, `cudaGraphAddMemcpyNode`, `cudaGraphMemcpyNodeGetParams`, `cudaGraphMemcpyNodeSetParams`, `cudaGraphMemcpyNodeSetParams1D`, `cudaGraphCreate`, `cudaGraphDestroyNode`, `cudaGraphAddChildGraphNode`, `cudaGraphAddEmptyNode`, `cudaGraphAddKernelNode`, `cudaGraphAddHostNode`, `cudaGraphAddMemsetNode`

```c
__host__ cudaError_t
cudaGraphAddMemcpyNodeFromSymbol(
cudaGraphNode_t *pGraphNode, cudaGraph_t graph,
const cudaGraphNode_t *pDependencies, size_t numDependencies, void *dst, const void *symbol,
size_t count, size_t offset, cudaMemcpyKind kind)
```

Creates a memcpy node to copy from a symbol on the device and adds it to a graph.

Parameters

- **pGraphNode**
  - Returns newly created node
- **graph**
  - Graph to which to add the node
pDependencies
- Dependencies of the node
numDependencies
- Number of dependencies
dst
- Destination memory address
symbol
- Device symbol address
count
- Size in bytes to copy
offset
- Offset from start of symbol in bytes
kind
- Type of transfer

Returns
cudaSuccess, cudaErrorInvalidValue

Description
Creates a new memcpy node to copy from symbol and adds it to graph with numDependencies dependencies specified via pDependencies. It is possible for numDependencies to be 0, in which case the node will be placed at the root of the graph. pDependencies may not have any duplicate entries. A handle to the new node will be returned in pGraphNode.

When the graph is launched, the node will copy count bytes from the memory area pointed to by offset bytes from the start of symbol symbol to the memory area pointed to by dst. The memory areas may not overlap. symbol is a variable that resides in global or constant memory space. kind can be either cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice, or cudaMemcpyDefault. Passing cudaMemcpyDefault is recommended, in which case the type of transfer is inferred from the pointer values. However, cudaMemcpyDefault is only allowed on systems that support unified virtual addressing.

Memcpy nodes have some additional restrictions with regards to managed memory, if the system contains at least one device which has a zero value for the device attribute cudaDevAttrConcurrentManagedAccess.

Note:
- Graph objects are not threadsafe. More here.
- Note that this function may also return error codes from previous, asynchronous launches.
Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.

Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

- `cudaMemcpyFromSymbol`
- `cudaGraphAddMemcpyNode`
- `cudaGraphAddMemcpyNodeToSymbol`
- `cudaGraphMemcpyNodeGetParams`
- `cudaGraphMemcpyNodeSetParams`
- `cudaGraphMemcpyNodeSetParamsFromSymbol`
- `cudaGraphMemcpyNodeSetParamsToSymbol`
- `cudaGraphCreate`
- `cudaGraphDestroyNode`
- `cudaGraphAddChildGraphNode`
- `cudaGraphAddEmptyNode`
- `cudaGraphAddKernelNode`
- `cudaGraphAddHostNode`
- `cudaGraphAddMemsetNode`

```c
__host__ cudaError_t
cudaGraphAddMemcpyNodeToSymbol(
cudaGraphNode_t *pGraphNode, cudaGraph_t graph,
const cudaGraphNode_t *pDependencies, size_t numDependencies,
const void *symbol, const void *src, size_t count, size_t offset,
cudaMemcpyKind kind)
```

Creates a memcpy node to copy to a symbol on the device and adds it to a graph.

**Parameters**

- `pGraphNode` - Returns newly created node
- `graph` - Graph to which to add the node
- `pDependencies` - Dependencies of the node
- `numDependencies` - Number of dependencies
- `symbol` - Device symbol address
- `src` - Source memory address
count
  - Size in bytes to copy

offset
  - Offset from start of symbol in bytes

kind
  - Type of transfer

Returns
cudaSuccess, cudaErrorInvalidValue

Description
Creates a new memcpy node to copy to symbol and adds it to graph with numDependencies dependencies specified via pDependencies. It is possible for numDependencies to be 0, in which case the node will be placed at the root of the graph. pDependencies may not have any duplicate entries. A handle to the new node will be returned in pGraphNode.

When the graph is launched, the node will copy count bytes from the memory area pointed to by src to the memory area pointed to by offset bytes from the start of symbol symbol. The memory areas may not overlap. symbol is a variable that resides in global or constant memory space. kind can be either cudaMemcpyHostToDevice, cudaMemcpyDeviceToDevice, or cudaMemcpyDefault. Passing cudaMemcpyDefault is recommended, in which case the type of transfer is inferred from the pointer values. However, cudaMemcpyDefault is only allowed on systems that support unified virtual addressing.

Memcpy nodes have some additional restrictions with regards to managed memory, if the system contains at least one device which has a zero value for the device attribute cudaDevAttrConcurrentManagedAccess.

Note:
- Graph objects are not threadsafe. More here.
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaGraphAddMemFreeNode

cudaGraphNode_t *pGraphNode, cudaGraph_t graph,
const cudaGraphNode_t *pDependencies, size_t numDependencies, void *dptr

Creates a memory free node and adds it to a graph.

Parameters

pGraphNode
- Returns newly created node

graph
- Graph to which to add the node

pDependencies
- Dependencies of the node

numDependencies
- Number of dependencies

dptr
- Address of memory to free

Returns

cudaSuccess, cudaErrorCudartUnloading, cudaErrorInitializationError,
cudaErrorNotSupported, cudaErrorInvalidValue, cudaErrorOutOfMemory

Description

Creates a new memory free node and adds it to graph with numDependencies dependencies specified via pDependencies and address specified in dptr. It is possible for numDependencies to be 0, in which case the node will be placed at the root of the graph. pDependencies may not have any duplicate entries. A handle to the new node will be returned in pGraphNode.

cudaGraphAddMemFreeNode will return cudaErrorInvalidValue if the user attempts to free:

- an allocation twice in the same graph.
- an address that was not returned by an allocation node.
The following restrictions apply to graphs which contain allocation and/or memory free nodes:

- Nodes and edges of the graph cannot be deleted.
- The graph cannot be used in a child node.
- Only one instantiation of the graph may exist at any point in time.
- The graph cannot be cloned.

**Note:**
- Graph objects are not threadsafe. [More here.](#)
- Note that this function may also return error codes from previous, asynchronous launches.

See also:
- [cudaGraphAddNode](#), [cudaGraphAddMemAllocNode](#), [cudaGraphMemFreeNodeGetParams](#), [cudaDeviceGraphMemTrim](#), [cudaDeviceGetGraphMemAttribute](#), [cudaDeviceSetGraphMemAttribute](#), [cudaMallocAsync](#), [cudaFreeAsync](#), [cudaGraphCreate](#), [cudaGraphDestroyNode](#), [cudaGraphAddChildGraphNode](#), [cudaGraphAddEmptyNode](#), [cudaGraphAddEventRecordNode](#), [cudaGraphAddEventWaitNode](#), [cudaGraphAddExternalSemaphoresSignalNode](#), [cudaGraphAddExternalSemaphoresWaitNode](#), [cudaGraphAddKernelNode](#), [cudaGraphAddMemcpyNode](#), [cudaGraphAddMemsetNode](#), [cudaDeviceGetGraphMemAttribute](#), [cudaDeviceSetGraphMemAttribute](#)

```c
__host__ cudaError_t cudaGraphAddMemsetNode
(cudaGraphNode_t *pGraphNode, cudaGraph_t graph, const cudaGraphNode_t *pDependencies, size_t numDependencies, const cudaMemcpyParams *pMemcpyParams)
```
Creates a memset node and adds it to a graph.

**Parameters**

- **pGraphNode**
  - Returns newly created node
- **graph**
  - Graph to which to add the node
- **pDependencies**
  - Dependencies of the node
- **numDependencies**
  - Number of dependencies
**pMemsetParams**
- Parameters for the memory set

**Returns**
cudaSuccess, cudaErrorInvalidValue, cudaErrorInvalidDevice

**Description**
Creates a new memset node and adds it to graph with numDependencies dependencies specified via pDependencies. It is possible for numDependencies to be 0, in which case the node will be placed at the root of the graph. pDependencies may not have any duplicate entries. A handle to the new node will be returned in pGraphNode.

The element size must be 1, 2, or 4 bytes. When the graph is launched, the node will perform the memset described by pMemsetParams.

**Note:**
- Graph objects are not threadsafe. [More here](#).
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

**See also:**
cudaGraphAddNode, cudaMemset2D, cudaGraphMemsetNodeGetParams, cudaGraphMemsetNodeSetParams, cudaGraphCreate, cudaGraphDestroyNode, cudaGraphAddChildGraphNode, cudaGraphAddEmptyNode, cudaGraphAddKernelNode, cudaGraphAddHostNode, cudaGraphAddMemcpyNode
__host__ cudaError_t cudaGraphAddNode(
cudaGraphNode_t *pGraphNode, cudaGraph_t graph, const cudaGraphNode_t *pDependencies,
size_t numDependencies, cudaGraphNodeParams *nodeParams)

Adds a node of arbitrary type to a graph.

Parameters

pGraphNode  
- Returns newly created node
graph  
- Graph to which to add the node
pDependencies  
- Dependencies of the node
numDependencies  
- Number of dependencies
nodeParams  
- Specification of the node

Returns

cudaSuccess, cudaErrorInvalidValue, cudaErrorInvalidDeviceFunction, cudaErrorNotSupported

Description

Creates a new node in graph described by nodeParams with numDependencies dependencies specified via pDependencies. numDependencies may be 0. pDependencies may be null if numDependencies is 0. pDependencies may not have any duplicate entries.

nodeParams is a tagged union. The node type should be specified in the type field, and type-specific parameters in the corresponding union member. All unused bytes - that is, reserved0 and all bytes past the utilized union member - must be set to zero. It is recommended to use brace initialization or memset to ensure all bytes are initialized.

Note that for some node types, nodeParams may contain "out parameters" which are modified during the call, such as nodeParams->alloc.dptr.

A handle to the new node will be returned in pGraphNode.
Note:

- Graph objects are not threadsafe. More here.
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

`cudaGraphCreate`, `cudaGraphNodeSetParams`, `cudaGraphExecNodeSetParams`

__host__ cudaError_t cudaGraphChildGraphNodeGetGraph (cudaGraphNode_t node, cudaGraph_t *pGraph)

Gets a handle to the embedded graph of a child graph node.

**Parameters**

**node**

- Node to get the embedded graph for

**pGraph**

- Location to store a handle to the graph

**Returns**

`cudaSuccess`, `cudaErrorInvalidValue`

**Description**

Gets a handle to the embedded graph in a child graph node. This call does not clone the graph. Changes to the graph will be reflected in the node, and the node retains ownership of the graph.

Allocation and free nodes cannot be added to the returned graph. Attempting to do so will return an error.

Note:
Graph objects are not threadsafe. [More here.]

Note that this function may also return error codes from previous, asynchronous launches.

Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.

Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaGraphAddChildGraphNode, cudaGraphNodeFindInClone

__host__ cudaError_t cudaGraphClone (cudaGraph_t *pGraphClone, cudaGraph_t originalGraph)
Clones a graph.

Parameters

pGraphClone
- Returns newly created cloned graph

originalGraph
- Graph to clone

Returns
cudaSuccess, cudaErrorInvalidValue, cudaErrorMemoryAllocation

Description

This function creates a copy of originalGraph and returns it in pGraphClone. All parameters are copied into the cloned graph. The original graph may be modified after this call without affecting the clone.

Child graph nodes in the original graph are recursively copied into the clone.

Note:

- Graph objects are not threadsafe. [More here.]

- Note that this function may also return error codes from previous, asynchronous launches.
Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.

Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
`cudaGraphCreate`, `cudaGraphNodeFindInClone`

```c
__host__ cudaError_t cudaGraphCreate (cudaGraph_t *pGraph, unsigned int flags)
```

Creates a graph.

**Parameters**

- **pGraph**
  - Returns newly created graph

- **flags**
  - Graph creation flags, must be 0

**Returns**

- `cudaSuccess`, `cudaErrorInvalidValue`, `cudaErrorMemoryAllocation`

**Description**

Creates an empty graph, which is returned via `pGraph`.

**Note:**

- Graph objects are not threadsafe. [More here](#).
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaGraphAddChildGraphNode, cudaGraphAddEmptyNode, cudaGraphAddKernelNode, cudaGraphAddHostNode, cudaGraphAddMemcpyNode, cudaGraphAddMemsetNode, cudaGraphInstantiate, cudaGraphDestroy, cudaGraphGetNodes, cudaGraphGetRootNodes, cudaGraphGetEdges, cudaGraphClone

__host__cudaError_t cudaGraphDebugDotPrint (cudaGraph_t graph, const char *path, unsigned int flags)
Write a DOT file describing graph structure.

Parameters
graph
  - The graph to create a DOT file from

path
  - The path to write the DOT file to

flags
  - Flags from cudaGraphDebugDotFlags for specifying which additional node information to write

Returns
cudaSuccess, cudaErrorInvalidValue, cudaErrorOperatingSystem

Description
Using the provided graph, write to path a DOT formatted description of the graph. By default this includes the graph topology, node types, node id, kernel names and memcpy direction. flags can be specified to write more detailed information about each node type such as parameter values, kernel attributes, node and function handles.

__host__cudaError_t cudaGraphDestroy (cudaGraph_t graph)
Destroys a graph.

Parameters
graph
  - Graph to destroy

Returns
cudaSuccess, cudaErrorInvalidValue
Description

Destroys the graph specified by `graph`, as well as all of its nodes.

Note:

- Graph objects are not threadsafe. [More here.]
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.
- Use of the handle after this call is undefined behavior.

See also:

`cudaGraphCreate`

```
__host__ cudaError_t cudaGraphDestroyNode (cudaGraphNode_t node)
```

Remove a node from the graph.

Parameters

- `node` - Node to remove

Returns

`cudaSuccess`, `cudaErrorInvalidValue`

Description

Removes `node` from its graph. This operation also severs any dependencies of other nodes on `node` and vice versa.

Dependencies cannot be removed from graphs which contain allocation or free nodes. Any attempt to do so will return an error.
Note:

- Graph objects are not threadsafe. [More here.](#)
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.
- Use of the handle after this call is undefined behavior.

See also:

`cudaGraphAddChildGraphNode`, `cudaGraphAddEmptyNode`, `cudaGraphAddKernelNode`, `cudaGraphAddHostNode`, `cudaGraphAddMemcpyNode`, `cudaGraphAddMemsetNode`

```
__host__cudaError_t
cudaGraphEventRecordNodeGetEvent
(cudaGraphNode_t node, cudaEvent_t *event_out)
```

Returns the event associated with an event record node.

Parameters

- `node`
- `event_out`
  
  - Pointer to return the event

Returns

`cudaSuccess`, `cudaErrorInvalidValue`

Description

Returns the event of event record node `hNode` in `event_out`.

Note:

- Graph objects are not threadsafe. [More here.](#)
- Note that this function may also return error codes from previous, asynchronous launches.
Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.

Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

- `cudaGraphAddEventRecordNode`
- `cudaGraphEventRecordNodeSetEvent`
- `cudaGraphEventWaitNodeGetEvent`
- `cudaEventRecordWithFlags`
- `cudaStreamWaitEvent`

```c
__host__ cudaError_t
cudaGraphEventRecordNodeSetEvent
(cudaGraphNode_t node, cudaEvent_t event)
```

Sets an event record node’s event.

**Parameters**

- `node`
- `event`
  - Event to use

**Returns**

- `cudaSuccess`, `cudaErrorInvalidValue`

**Description**

Sets the event of event record node `hNode` to `event`.

**Note:**

- Graph objects are not thread safe. [More here.]
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.
See also:
cudaGraphNodeSetParams, cudaGraphAddEventRecordNode, cudaGraphEventRecordNodeGetEvent, cudaGraphEventWaitNodeSetEvent, cudaEventRecordWithFlags, cudaStreamWaitEvent

`__host__cudaError_t cudaGraphEventWaitNodeGetEvent(cudaGraphNode_t node, cudaEvent_t *event_out)`

Returns the event associated with an event wait node.

**Parameters**
- **node**
- **event_out**
  - Pointer to return the event

**Returns**
cudaSuccess, cudaErrorInvalidValue

**Description**
Returns the event of event wait node `hNode` in `event_out`.

**Note:**
- Graph objects are not threadsafe. [More here.]
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaGraphAddEventWaitNode, cudaGraphEventWaitNodeSetEvent, cudaGraphEventRecordNodeGetEvent, cudaEventRecordWithFlags, cudaStreamWaitEvent
__host__ cudaError_t

cudaGraphEventWaitNodeSetEvent

(cudaGraphNode_t node, cudaEvent_t event)

Sets an event wait node’s event.

Parameters

node
event

- Event to use

Returns

cudaSuccess, cudaErrorInvalidValue

Description

Sets the event of event wait node hNode to event.

Note:

- Graph objects are not threadsafe. More here.
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

cudaGraphNodeSetParams, cudaGraphAddEventWaitNode,
cudaGraphEventWaitNodeGetEvent, cudaGraphEventRecordNodeSetEvent,
cudaEventRecordWithFlags, cudaStreamWaitEvent
__host__ cudaError_t
cudaGraphExecChildGraphNodeSetParams
(cudagraphExec_t hGraphExec, cudaGraphNode_t node, cudagraph_t childGraph)

Updates node parameters in the child graph node in the given graphExec.

Parameters

hGraphExec
- The executable graph in which to set the specified node

node
- Host node from the graph which was used to instantiate graphExec

childGraph
- The graph supplying the updated parameters

Returns
cudaSuccess, cudaErrorInvalidValue.

Description

Updates the work represented by node in hGraphExec as though the nodes contained in node's graph had the parameters contained in childGraph's nodes at instantiation. node must remain in the graph which was used to instantiate hGraphExec. Changed edges to and from node are ignored.

The modifications only affect future launches of hGraphExec. Already enqueued or running launches of hGraphExec are not affected by this call. node is also not modified by this call.

The topology of childGraph, as well as the node insertion order, must match that of the graph contained in node. See cudaGraphExecUpdate() for a list of restrictions on what can be updated in an instantiated graph. The update is recursive, so child graph nodes contained within the top level child graph will also be updated.

Note:

- Graph objects are not threadsafe. More here.
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
- `cudaGraphExecNodeSetParams`
- `cudaGraphAddChildGraphNode`
- `cudaGraphChildGraphNodeGetGraph`
- `cudaGraphExecKernelNodeSetParams`
- `cudaGraphExecMemcpyNodeSetParams`
- `cudaGraphExecMemsetNodeSetParams`
- `cudaGraphExecHostNodeSetParams`
- `cudaGraphExecEventRecordNodeSetEvent`
- `cudaGraphExecEventWaitNodeSetEvent`
- `cudaGraphExecExternalSemaphoresSignalNodeSetParams`
- `cudaGraphExecExternalSemaphoresWaitNodeSetParams`
- `cudaGraphExecUpdate`
- `cudaGraphInstantiate`

```c
__host__ cudaError_t cudaGraphExecDestroy (cudaGraphExec_t graphExec)
```

Destroys an executable graph.

**Parameters**

- `graphExec`
  - Executable graph to destroy

**Returns**

- `cudaSuccess`
- `cudaErrorInvalidValue`

**Description**

Destroys the executable graph specified by `graphExec`.

**Note:**

- Graph objects are not threadsafe. [More here.](#)
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.
Use of the handle after this call is undefined behavior.

See also:
_cudaGraphInstantiate, cudaGraphUpload, cudaGraphLaunch

__host__cudaError_t
cudaGraphExecEventRecordNodeSetEvent
t(cudaGraphExec_t hGraphExec, cudaGraphNode_t hNode, cudaEvent_t event)
Sets the event for an event record node in the given graphExec.

Parameters

hGraphExec - The executable graph in which to set the specified node
hNode - Event record node from the graph from which graphExec was instantiated
event - Updated event to use

Returns
cudaSuccess, cudaErrorInvalidValue.

Description
Sets the event of an event record node in an executable graph hGraphExec. The node is identified by the corresponding node hNode in the non-executable graph, from which the executable graph was instantiated.

The modifications only affect future launches of hGraphExec. Already enqueued or running launches of hGraphExec are not affected by this call. hNode is also not modified by this call.

Note:

- Graph objects are not threadsafe. [More here](#).
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
- `cudaGraphExecNodeSetParams`
- `cudaGraphAddEventRecordNode`
- `cudaGraphEventRecordNodeGetEvent`
- `cudaGraphEventWaitNodeSetEvent`
- `cudaEventRecordWithFlags`
- `cudaStreamWaitEvent`
- `cudaGraphExecKernelNodeSetParams`
- `cudaGraphExecMemcpyNodeSetParams`
- `cudaGraphExecMemsetNodeSetParams`
- `cudaGraphExecHostNodeSetParams`
- `cudaGraphExecChildGraphNodeSetParams`
- `cudaGraphExecEventWaitNodeSetEvent`
- `cudaGraphExecExternalSemaphoresSignalNodeSetParams`
- `cudaGraphExecExternalSemaphoresWaitNodeSetParams`
- `cudaGraphExecEventWaitNodeSetEvent`
- `cudaGraphExecUpdate`
- `cudaGraphInstantiate`

```c
__host__ cudaError_t
cudaGraphExecEventWaitNodeSetEvent
(cudaGraphExec_t hGraphExec, cudaGraphNode_t hNode, cudaEvent_t event)
```

Sets the event for an event wait node in the given graphExec.

**Parameters**

- **hGraphExec**
  - The executable graph in which to set the specified node
- **hNode**
  - Event wait node from the graph from which graphExec was instantiated
- **event**
  - Updated event to use

**Returns**
- `cudaSuccess`
- `cudaErrorInvalidValue`

**Description**

Sets the event of an event wait node in an executable graph `hGraphExec`. The node is identified by the corresponding node `hNode` in the non-executable graph, from which the executable graph was instantiated.

The modifications only affect future launches of `hGraphExec`. Already enqueued or running launches of `hGraphExec` are not affected by this call. `hNode` is also not modified by this call.
Note:

‣ Graph objects are not threadsafe. More here.
‣ Note that this function may also return error codes from previous, asynchronous launches.
‣ Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
‣ Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaGraphExecNodeSetParams, cudaGraphAddEventWaitNode, cudaGraphEventWaitNodeGetEvent, cudaGraphEventRecordNodeSetEvent, cudaEventRecordWithFlags, cudaStreamWaitEvent, cudaGraphExecKernelNodeSetParams, cudaGraphExecMemcpyNodeSetParams, cudaGraphExecMemsetNodeSetParams, cudaGraphExecHostNodeSetParams, cudaGraphExecChildGraphNodeSetParams, cudaGraphExecEventRecordNodeSetEvent, cudaGraphExecExternalSemaphoresSignalNodeSetParams, cudaGraphExecExternalSemaphoresWaitNodeSetParams, cudaGraphExecUpdate, cudaGraphInstantiate

__host__cudaError_t
cudaGraphExecExternalSemaphoresSignalNodeSetParams
(cudaGraphExec_t hGraphExec, cudaGraphNode_t hNode, const cudaExternalSemaphoreSignalNodeParams *nodeParams)

Sets the parameters for an external semaphore signal node in the given graphExec.

Parameters

hGraphExec
- The executable graph in which to set the specified node

hNode
- semaphore signal node from the graph from which graphExec was instantiated

nodeParams
- Updated Parameters to set
Returns

cudaSuccess, cudaErrorInvalidValue.

Description

Sets the parameters of an external semaphore signal node in an executable graph hGraphExec. The node is identified by the corresponding node hNode in the non-executable graph, from which the executable graph was instantiated.

hNode must not have been removed from the original graph.

The modifications only affect future launches of hGraphExec. Already enqueued or running launches of hGraphExec are not affected by this call. hNode is also not modified by this call. Changing nodeParams->numExtSems is not supported.

Note:

- Graph objects are not threadsafe. More here.
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

cudaGraphExecNodeSetParams, cudaGraphAddExternalSemaphoresSignalNode, cudalImportExternalSemaphore, cudaSignalExternalSemaphoresAsync, cudaWaitExternalSemaphoresAsync, cudaGraphExecKernelNodeSetParams, cudaGraphExecMemcpyNodeSetParams, cudaMemcpyNodeSetParams, cudaGraphExecMemsetNodeSetParams, cudaGraphExecHostNodeSetParams, cudaGraphExecChildGraphNodeSetParams, cudaGraphExecEventRecordNodeSetEvent, cudaGraphExecEventWaitNodeSetEvent, cudaGraphExecExternalSemaphoresWaitNodeSetParams, cudaGraphExecUpdate, cudaGraphInstantiate
__host__ cudaError_t

cudaGraphExecExternalSemaphoresWaitNodeSetParams
(cudaGraphExec_t hGraphExec,
cudaGraphNode_t hNode, const
cudaExternalSemaphoreWaitNodeParams
*nodeParams)

Sets the parameters for an external semaphore wait node in the given graphExec.

Parameters

- **hGraphExec**
  - The executable graph in which to set the specified node

- **hNode**
  - semaphore wait node from the graph from which graphExec was instantiated

- **nodeParams**
  - Updated Parameters to set

Returns

cudaSuccess, cudaErrorInvalidValue,

Description

Sets the parameters of an external semaphore wait node in an executable graph hGraphExec. The node is identified by the corresponding node hNode in the non-executable graph, from which the executable graph was instantiated.

hNode must not have been removed from the original graph.

The modifications only affect future launches of hGraphExec. Already enqueued or running launches of hGraphExec are not affected by this call. hNode is also not modified by this call.

Changing nodeParams->numExtSems is not supported.

Note:

- Graph objects are not threadsafe. [More here](#).
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaGraphExecNodeSetParams, cudaGraphAddExternalSemaphoresWaitNode, cudaImportExternalSemaphore, cudaSignalExternalSemaphoresAsync, cudaWaitExternalSemaphoresAsync, cudaGraphExecKernelNodeSetParams, cudaGraphExecMemcpyNodeSetParams, cudaGraphExecMemsetNodeSetParams, cudaGraphExecHostNodeSetParams, cudaGraphExecChildGraphNodeSetParams, cudaGraphExecEventRecordNodeSetEvent, cudaGraphExecEventWaitNodeSetEvent, cudaGraphExecExternalSemaphoresSignalNodeSetParams, cudaGraphExecUpdate, cudaGraphInstantiate

__host__cudaError_t cudaGraphExecGetFlags (cudaGraphExec_t graphExec, unsigned long long *flags)

Query the instantiation flags of an executable graph.

Parameters

graphExec
- The executable graph to query
flags
- Returns the instantiation flags

Returns

cudaSuccess, cudaErrorInvalidValue

Description

Returns the flags that were passed to instantiation for the given executable graph. cudaGraphInstantiateFlagUpload will not be returned by this API as it does not affect the resulting executable graph.

Note:

- Graph objects are not threadsafe. More here.
- Note that this function may also return error codes from previous, asynchronous launches.
Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.

Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
`cudaGraphInstantiate`, `cudaGraphInstantiateWithFlags`, `cudaGraphInstantiateWithParams`

```c
__host__ cudaError_t cudaGraphExecHostNodeSetParams (cudaGraphExec_t hGraphExec, cudaGraphNode_t node, const cudaHostNodeParams *pNodeParams)
```

Sets the parameters for a host node in the given graphExec.

**Parameters**

- **hGraphExec**
  
  - The executable graph in which to set the specified node

- **node**
  
  - Host node from the graph which was used to instantiate graphExec

- **pNodeParams**
  
  - Updated Parameters to set

**Returns**

- `cudaSuccess`
- `cudaErrorInvalidValue`

**Description**

Updates the work represented by `node` in `hGraphExec` as though `node` had contained `pNodeParams` at instantiation. `node` must remain in the graph which was used to instantiate `hGraphExec`. Changed edges to and from `node` are ignored.

The modifications only affect future launches of `hGraphExec`. Already enqueued or running launches of `hGraphExec` are not affected by this call. `node` is also not modified by this call.

**Note:**

- Graph objects are not threadsafe. [More here](#).
- Note that this function may also return error codes from previous, asynchronous launches.
Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.

Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

- `cudaGraphExecNodeSetParams`
- `cudaGraphAddHostNode`
- `cudaGraphHostNodeSetParams`
- `cudaGraphExecKernelNodeSetParams`
- `cudaGraphExecMemcpyNodeSetParams`
- `cudaGraphExecMemsetNodeSetParams`
- `cudaGraphExecChildGraphNodeSetParams`
- `cudaGraphExecEventRecordNodeSetEvent`
- `cudaGraphExecEventWaitNodeSetEvent`
- `cudaGraphExecExternalSemaphoresSignalNodeSetParams`
- `cudaGraphExecExternalSemaphoresWaitNodeSetParams`
- `cudaGraphExecUpdate`
- `cudaGraphInstantiate`

```__host__ cudaError_t
cudaGraphExecKernelNodeSetParams (cudaGraphExec_t hGraphExec, cudaGraphNode_t node, const cudaKernelNodeParams *pNodeParams)
```

Sets the parameters for a kernel node in the given graphExec.

**Parameters**

- `hGraphExec`
  - The executable graph in which to set the specified node
- `node`
  - Kernel node from the graph from which graphExec was instantiated
- `pNodeParams`
  - Updated Parameters to set

**Returns**

- `cudaSuccess`
- `cudaErrorInvalidValue`

**Description**

Sets the parameters of a kernel node in an executable graph `hGraphExec`. The node is identified by the corresponding node `node` in the non-executable graph, from which the executable graph was instantiated.

`hNode` must not have been removed from the original graph. All `nodeParams` fields may change, but the following restrictions apply to `func` updates:
The owning device of the function cannot change.

A node whose function originally did not use CUDA dynamic parallelism cannot be updated to a function which uses CDP.

If hGraphExec was not instantiated for device launch, a node whose function originally did not use device-side cudaGraphLaunch() cannot be updated to a function which uses device-side cudaGraphLaunch() unless the node resides on the same device as nodes which contained such calls at instantiate-time. If no such calls were present at instantiation, these updates cannot be performed at all.

The modifications only affect future launches of hGraphExec. Already enqueued or running launches of hGraphExec are not affected by this call. node is also not modified by this call.

Note:

- Graph objects are not threadsafe. More here.
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

cudaGraphExecNodeSetParams, cudaGraphAddKernelNode, cudaGraphKernelNodeSetParams, cudaGraphExecMemcpyNodeSetParams, cudaGraphExecMemsetNodeSetParams, cudaGraphExecHostNodeSetParams, cudaGraphExecChildGraphNodeSetParams, cudaGraphExecEventRecordNodeSetEvent, cudaGraphExecEventWaitNodeSetEvent, cudaGraphExecExternalSemaphoresSignalNodeSetParams, cudaGraphExecExternalSemaphoresWaitNodeSetParams, cudaGraphExecUpdate, cudaGraphInstantiate
__host__ cudaError_t
cudaGraphExecMemcpyNodeSetParams
cudaGraphExec_t hGraphExec, cudaGraphNode_t	node, const cudaMemcpy3DParms *pNodeParams)

Sets the parameters for a memcpy node in the given graphExec.

**Parameters**

- **hGraphExec** - The executable graph in which to set the specified node
- **node** - Memcpy node from the graph which was used to instantiate graphExec
- **pNodeParams** - Updated Parameters to set

**Returns**

cudaSuccess, cudaErrorInvalidValue.

**Description**

Updates the work represented by node in hGraphExec as though node had contained
pNodeParams at instantiation. node must remain in the graph which was used to instantiate
hGraphExec. Changed edges to and from node are ignored.

The source and destination memory in pNodeParams must be allocated from the same
contexts as the original source and destination memory. Both the instantiation-time memory
operands and the memory operands in pNodeParams must be 1-dimensional. Zero-length
operations are not supported.

The modifications only affect future launches of hGraphExec. Already enqueued or running
launches of hGraphExec are not affected by this call. node is also not modified by this call.

Returns cudaErrorInvalidValue if the memory operands’ mappings changed or either the
original or new memory operands are multidimensional.

---

**Note:**

- Graph objects are not threadsafe. More here.
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
Note that as specified by `cudaStreamAddCallback`, no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
- `cudaGraphExecNodeSetParams`
- `cudaGraphAddMemcpyNode`
- `cudaGraphExecMemcpyNodeSetParams`
- `cudaGraphExecMemcpyNodeSetParamsToSymbol`
- `cudaGraphExecMemcpyNodeSetParamsFromSymbol`
- `cudaGraphExecMemcpyNodeSetParams1D`
- `cudaGraphExecKernelNodeSetParams`
- `cudaGraphExecMemcpyNodeSetParams`  
- `cudaGraphExecMemcpyNodeSetParamsToSymbol`  
- `cudaGraphExecMemcpyNodeSetParamsFromSymbol`
- `cudaGraphExecMemcpyNodeSetParams1D`
- `cudaGraphExecMemcpyNodeSetParamsToSymbol`
- `cudaGraphExecMemcpyNodeSetParamsFromSymbol`
- `cudaGraphExecMemcpyNodeSetParams1D`
- `cudaGraphExecMemcpyNodeSetParamsToSymbol`
- `cudaGraphExecMemcpyNodeSetParamsFromSymbol`
- `cudaGraphExecMemcpyNodeSetParams1D`
- `cudaGraphExecMemcpyNodeSetParamsToSymbol`
- `cudaGraphExecMemcpyNodeSetParamsFromSymbol`
- `cudaGraphExecMemcpyNodeSetParams1D`
- `cudaGraphExecMemcpyNodeSetParamsToSymbol`
- `cudaGraphExecMemcpyNodeSetParamsFromSymbol`
- `cudaGraphExecMemcpyNodeSetParams1D`
- `cudaGraphExecMemcpyNodeSetParamsToSymbol`
- `cudaGraphExecMemcpyNodeSetParamsFromSymbol`
- `cudaGraphExecMemcpyNodeSetParams1D`
- `cudaGraphExecMemcpyNodeSetParamsToSymbol`
- `cudaGraphExecMemcpyNodeSetParamsFromSymbol`
- `cudaGraphExecMemcpyNodeSetParams1D`
- `cudaGraphExecMemcpyNodeSetParamsToSymbol`
- `cudaGraphExecMemcpyNodeSetParamsFromSymbol`
- `cudaGraphExecMemcpyNodeSetParams1D`
- `cudaGraphExecMemcpyNodeSetParamsToSymbol`
- `cudaGraphExecMemcpyNodeSetParamsFromSymbol`
- `cudaGraphExecMemcpyNodeSetParams1D`
- `cudaGraphExecMemcpyNodeSetParamsToSymbol`
- `cudaGraphExecMemcpyNodeSetParamsFromSymbol`
- `cudaGraphExecMemcpyNodeSetParams1D`
- `cudaGraphExecMemcpyNodeSetParamsToSymbol`
- `cudaGraphExecMemcpyNodeSetParamsFromSymbol`
- `cudaGraphExecMemcpyNodeSetParams1D`
- `cudaGraphExecMemcpyNodeSetParamsToSymbol`
- `cudaGraphExecMemcpyNodeSetParamsFromSymbol`
- `cudaGraphExecMemcpyNodeSetParams1D`
- `cudaGraphExecMemcpyNodeSetParamsToSymbol`
- `cudaGraphExecMemcpyNodeSetParamsFromSymbol`
- `cudaGraphExecMemcpyNodeSetParams1D`
- `cudaGraphExecMemcpyNodeSetParamsToSymbol`
- `cudaGraphExecMemcpyNodeSetParamsFromSymbol`
- `cudaGraphExecMemcpyNodeSetParams1D`
- `cudaGraphExecMemcpyNodeSetParamsToSymbol`
- `cudaGraphExecMemcpyNodeSetParamsFromSymbol`
- `cudaGraphExecMemcpyNodeSetParams1D`
- `cudaGraphExecMemcpyNodeSetParamsToSymbol`
- `cudaGraphExecMemcpyNodeSetParamsFromSymbol`
- `cudaGraphExecMemcpyNodeSetParams1D`
- `cudaGraphExecMemcpyNodeSetParamsToSymbol`
- `cudaGraphExecMemcpyNodeSetParamsFromSymbol`
- `cudaGraphExecMemcpyNodeSetParams1D`
- `cudaGraphExecMemcpyNodeSetParamsToSymbol`
- `cudaGraphExecMemcpyNodeSetParamsFromSymbol`
- `cudaGraphExecMemcpyNodeSetParams1D`
- `cudaGraphExecMemcpyNodeSetParamsToSymbol`
- `cudaGraphExecMemcpyNodeSetParamsFromSymbol`
- `cudaGraphExecMemcpyNodeSetParams1D`
- `cudaGraphExecMemcpyNodeSetParamsToSymbol`
- `cudaGraphExecMemcpyNodeSetParamsFromSymbol`
- `cudaGraphExecMemcpyNodeSetParams1D`
- `cudaGraphExecMemcpyNodeSetParamsToSymbol`
- `cudaGraphExecMemcpyNodeSetParamsFromSymbol`
- `cudaGraphExecMemcpyNodeSetParams1D`
- `cudaGraphExecMemcpyNodeSetParamsToSymbol`
- `cudaGraphExecMemcpyNodeSetParamsFromSymbol`
- `cudaGraphExecMemcpyNodeSetParams1D`
- `cudaGraphExecMemcpyNodeSetParamsToSymbol`
- `cudaGraphExecMemcpyNodeSetParamsFromSymbol`
- `cudaGraphExecMemcpyNodeSetParams1D`
- `cudaGraphExecMemcpyNodeSetParamsToSymbol`
- `cudaGraphExecMemcpyNodeSetParamsFromSymbol`
- `cudaGraphExecMemcpyNodeSetParams1D`
- `cudaGraphExecMemcpyNodeSetParamsToSymbol`
- `cudaGraphExecMemcpyNodeSetParamsFromSymbol`
- `cudaGraphExecMemcpyNodeSetParams1D`
- `cudaGraphExecMemcpyNodeSetParamsToSymbol`
- `cudaGraphExecMemcpyNodeSetParamsFromSymbol`
- `cudaGraphExecMemcpyNodeSetParams1D`
- `cudaGraphExecMemcpyNodeSetParamsToSymbol`
- `cudaGraphExecMemcpyNodeSetParamsFromSymbol`
- `cudaGraphExecMemcpyNodeSetParams1D`
- `cudaGraphExecMemcpyNodeSetParamsToSymbol`
- `cudaGraphExecMemcpyNodeSetParamsFromSymbol`
- `cudaGraphExecMemcpyNodeSetParams1D`
- `cudaGraphExecMemcpyNodeSetParamsToSymbol`
- `cudaGraphExecMemcpyNodeSetParamsFromSymbol`  

```c
__host__ cudaError_t cudaGraphExecMemcpyNodeSetParams1D(cudaGraphExec_t hGraphExec, cudaGraphNode_t node, void *dst, const void *src, size_t count, cudaMemcpyKind kind)
```

Sets the parameters for a memcpy node in the given graphExec to perform a 1-dimensional copy.

**Parameters**

- **hGraphExec**  
  - The executable graph in which to set the specified node
- **node**  
  - Memcpy node from the graph which was used to instantiate graphExec
- **dst**  
  - Destination memory address
- **src**  
  - Source memory address
- **count**  
  - Size in bytes to copy
- **kind**  
  - Type of transfer

**Returns**
- `cudaSuccess`
- `cudaErrorInvalidValue`
Description

Updates the work represented by `node` in `hGraphExec` as though `node` had contained the given params at instantiation. `node` must remain in the graph which was used to instantiate `hGraphExec`. Changed edges to and from `node` are ignored.

`src` and `dst` must be allocated from the same contexts as the original source and destination memory. The instantiation-time memory operands must be 1-dimensional. Zero-length operations are not supported.

The modifications only affect future launches of `hGraphExec`. Already enqueued or running launches of `hGraphExec` are not affected by this call. `node` is also not modified by this call.

Returns `cudaErrorInvalidValue` if the memory operands’ mappings changed or the original memory operands are multidimensional.

Note:

- Graph objects are not threadsafe. More here.
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

`cudaGraphAddMemcpyNode`, `cudaGraphAddMemcpyNode1D`, `cudaGraphMemcpyNodeSetParams`, `cudaGraphMemcpyNodeSetParams1D`, `cudaGraphExecMemcpyNodeSetParams`, `cudaGraphExecKernelNodeSetParams`, `cudaGraphExecMemsetNodeSetParams`, `cudaGraphExecHostNodeSetParams`, `cudaGraphExecChildGraphNodeSetParams`, `cudaGraphExecEventRecordNodeSetEvent`, `cudaGraphExecEventWaitNodeSetEvent`, `cudaGraphExecExternalSemaphoresSignalNodeSetParams`, `cudaGraphExecExternalSemaphoresWaitNodeSetParams`, `cudaGraphExecUpdate`, `cudaGraphInstantiate`
__host__ cudaError_t
cudaGraphNode_t
node, void *dst, const void *symbol, size_t count,
size_t offset, cudaMemcpyKind kind)

Sets the parameters for a memcpy node in the given graphExec to copy from a symbol on the
device.

Parameters

- **hGraphExec**: The executable graph in which to set the specified node
- **node**: Memcpy node from the graph which was used to instantiate graphExec
- **dst**: Destination memory address
- **symbol**: Device symbol address
- **count**: Size in bytes to copy
- **offset**: Offset from start of symbol in bytes
- **kind**: Type of transfer

Returns

- **cudaSuccess**, **cudaErrorInvalidValue**

Description

Updates the work represented by `node` in `hGraphExec` as though `node` had contained the
given params at instantiation. `node` must remain in the graph which was used to instantiate
`hGraphExec`. Changed edges to and from `node` are ignored.

`symbol` and `dst` must be allocated from the same contexts as the original source and
destination memory. The instantiation-time memory operands must be 1-dimensional. Zero-
length operations are not supported.

The modifications only affect future launches of `hGraphExec`. Already enqueued or running
launches of `hGraphExec` are not affected by this call. `node` is also not modified by this call.

Returns **cudaErrorInvalidValue** if the memory operands’ mappings changed or the original
memory operands are multidimensional.
Note:

- Graph objects are not threadsafe. [More here](#).
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

- `cudaGraphAddMemcpyNode`, `cudaGraphAddMemcpyNodeFromSymbol`,
- `cudaGraphMemcpyNodeSetParams`, `cudaGraphMemcpyNodeSetParamsFromSymbol`,
- `cudaGraphExecMemcpyNodeSetParams`, `cudaGraphExecMemcpyNodeSetParamsToSymbol`,
- `cudaGraphExecKernelNodeSetParams`, `cudaGraphExecMemsetNodeSetParams`,
- `cudaGraphExecHostNodeSetParams`, `cudaGraphExecChildGraphNodeSetParams`,
- `cudaGraphExecEventRecordNodeSetEvent`, `cudaGraphExecEventWaitNodeSetEvent`,
- `cudaGraphExecExternalSemaphoresSignalNodeSetParams`,
- `cudaGraphExecExternalSemaphoresWaitNodeSetParams`, `cudaGraphExecUpdate`,
- `cudaGraphInstantiate`

```c
__host__ cudaError_t cudaGraphExecMemcpyNodeSetParamsToSymbol(cudaGraphExec_t hGraphExec, cudaGraphNode_t node, const void *symbol, const void *src, size_t count, size_t offset, cudaMemcpyKind kind)
```

Sets the parameters for a memcpy node in the given graphExec to copy to a symbol on the device.

**Parameters**

- **hGraphExec**
  - The executable graph in which to set the specified node
- **node**
  - Memcpy node from the graph which was used to instantiate graphExec
- **symbol**
  - Device symbol address
src
- Source memory address

count
- Size in bytes to copy

offset
- Offset from start of symbol in bytes

kind
- Type of transfer

Returns
cudaSuccess, cudaErrorInvalidValue

Description
Updates the work represented by node in hGraphExec as though node had contained the given params at instantiation. node must remain in the graph which was used to instantiate hGraphExec. Changed edges to and from node are ignored.

src and symbol must be allocated from the same contexts as the original source and destination memory. The instantiation-time memory operands must be 1-dimensional. Zero-length operations are not supported.

The modifications only affect future launches of hGraphExec. Already enqueued or running launches of hGraphExec are not affected by this call. node is also not modified by this call.

Returns cudaErrorInvalidValue if the memory operands’ mappings changed or the original memory operands are multidimensional.

Note:
- Graph objects are not threadsafe. More here.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaGraphAddMemcpyNode, cudaGraphAddMemcpyNodeToSymbol, cudaGraphMemcpyNodeSetParams, cudaGraphMemcpyNodeSetParamsToSymbol, cudaGraphExecMemcpyNodeSetParams.
__host__ cudaError_t cudaGraphExecMemsetNodeSetParams (cudaGraphExec_t hGraphExec, cudaGraphNode_t node, const cudaMemsetParams *pNodeParams)

Sets the parameters for a memset node in the given graphExec.

Parameters

- **hGraphExec**
  - The executable graph in which to set the specified node
- **node**
  - Memset node from the graph which was used to instantiate graphExec
- **pNodeParams**
  - Updated Parameters to set

Returns

cudaSuccess, cudaErrorInvalidValue,

Description

Updates the work represented by *node* in *hGraphExec* as though *node* had contained *pNodeParams* at instantiation. *node* must remain in the graph which was used to instantiate *hGraphExec*. Changed edges to and from *node* are ignored.

The destination memory in *pNodeParams* must be allocated from the same context as the original destination memory. Both the instantiation-time memory operand and the memory operand in *pNodeParams* must be 1-dimensional. Zero-length operations are not supported.

The modifications only affect future launches of *hGraphExec*. Already enqueued or running launches of *hGraphExec* are not affected by this call. *node* is also not modified by this call.

Returns cudaErrorInvalidValue if the memory operand’s mappings changed or either the original or new memory operand are multidimensional.
Note:

- Graph objects are not threadsafe. More here.
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

- `cudaGraphExecNodeSetParams`, `cudaGraphAddMemsetNode`
- `cudaGraphMemsetNodeSetParams`, `cudaGraphExecKernelNodeSetParams`
- `cudaGraphExecMemcpyNodeSetParams`, `cudaGraphExecHostNodeSetParams`
- `cudaGraphExecChildGraphNodeSetParams`, `cudaGraphExecEventRecordNodeSetEvent`
- `cudaGraphExecEventWaitNodeSetEvent`, `cudaGraphExecExternalSemaphoresSignalNodeSetParams`
- `cudaGraphExecExternalSemaphoresWaitNodeSetParams`, `cudaGraphExecUpdate`
- `cudaGraphInstantiate`

```c
__host__ cudaError_t cudaGraphExecNodeSetParams (cudaGraphExec_t graphExec, cudaGraphNode_t node, cudaGraphNodeParams *nodeParams)
```

Update’s a graph node’s parameters in an instantiated graph.

**Parameters**

- `graphExec`
  - The executable graph in which to update the specified node
- `node`
  - Corresponding node from the graph from which graphExec was instantiated
- `nodeParams`
  - Updated Parameters to set

**Returns**

- `cudaSuccess`
- `cudaErrorInvalidValue`
- `cudaErrorInvalidDeviceFunction`
- `cudaErrorNotSupported`
Description

Sets the parameters of a node in an executable graph `graphExec`. The node is identified by the corresponding node `node` in the non-executable graph from which the executable graph was instantiated. `node` must not have been removed from the original graph.

The modifications only affect future launches of `graphExec`. Already enqueued or running launches of `graphExec` are not affected by this call. `node` is also not modified by this call.

Allowed changes to parameters on executable graphs are as follows:

<table>
<thead>
<tr>
<th>Node type</th>
<th>Allowed changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>kernel</td>
<td>See <a href="https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EXEC__NODE.html#ga2f215ba00042910fa4aa2764c813df44">cudaGraphExecKernelNodeSetParams</a></td>
</tr>
<tr>
<td>memcpy</td>
<td>Addresses for 1-dimensional copies if allocated in same context; see <a href="https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EXEC__NODE.html#ga9051a758d478e45f9029d09f2391f473">cudaGraphExecMemcpyNodeSetParams</a></td>
</tr>
<tr>
<td>memset</td>
<td>Addresses for 1-dimensional memsets if allocated in same context; see <a href="https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EXEC__NODE.html#ga7d6ed3a6ef50bb3d2f07fa667d8c6edf">cudaGraphExecMemsetNodeSetParams</a></td>
</tr>
<tr>
<td>host</td>
<td>Unrestricted</td>
</tr>
<tr>
<td>child graph</td>
<td>Topology must match and restrictions apply recursively; see <a href="https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EXEC__NODE.html#ga33f8e6c5bd1023b236a0b8c9338b48f4">cudaGraphExecUpdate</a></td>
</tr>
<tr>
<td>event wait</td>
<td>Unrestricted</td>
</tr>
<tr>
<td>event record</td>
<td>Unrestricted</td>
</tr>
<tr>
<td>external semaphore signal</td>
<td>Number of semaphore operations cannot change</td>
</tr>
<tr>
<td>external semaphore wait</td>
<td>Number of semaphore operations cannot change</td>
</tr>
<tr>
<td>memory allocation</td>
<td>API unsupported</td>
</tr>
<tr>
<td>memory free</td>
<td>API unsupported</td>
</tr>
</tbody>
</table>

Note:

- Graph objects are not threadsafe. [More here.](https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EXEC__NODE.html#ga2f215ba00042910fa4aa2764c813df44)
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
Note that as specified by `cudaStreamAddCallback`, no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
`cudaGraphAddNode`, `cudaGraphNodeSetParams`, `cudaGraphExecUpdate`, `cudaGraphInstantiate`

```c
__host__ cudaError_t cudaGraphExecUpdate(cudaGraphExec_t hGraphExec, cudaGraph_t hGraph, cudaGraphExecUpdateResultInfo *resultInfo)
```

Check whether an executable graph can be updated with a graph and perform the update if possible.

**Parameters**

- **hGraphExec**
  The instantiated graph to be updated

- **hGraph**
  The graph containing the updated parameters

- **resultInfo**
  the error info structure

**Returns**

`cudaSuccess`, `cudaErrorGraphExecUpdateFailure`.

**Description**

Updates the node parameters in the instantiated graph specified by `hGraphExec` with the node parameters in a topologically identical graph specified by `hGraph`.

**Limitations:**

- **Kernel nodes:**
  - The owning context of the function cannot change.
  - A node whose function originally did not use CUDA dynamic parallelism cannot be updated to a function which uses CDP.
  - A cooperative node cannot be updated to a non-cooperative node, and vice-versa.
  - If the graph was instantiated with `cudaGraphInstantiateFlagUseNodePriority`, the priority attribute cannot change. Equality is checked on the originally requested priority values, before they are clamped to the device’s supported range.
If hGraphExec was not instantiated for device launch, a node whose function originally did not use device-side cudaGraphLaunch() cannot be updated to a function which uses device-side cudaGraphLaunch() unless the node resides on the same device as nodes which contained such calls at instantiate-time. If no such calls were present at instantiation, these updates cannot be performed at all.

Memset and memcpy nodes:
- The CUDA device(s) to which the operand(s) was allocated/mapped cannot change.
- The source/destination memory must be allocated from the same contexts as the original source/destination memory.
- Only 1D memsets can be changed.

Additional memcpy node restrictions:
- Changing either the source or destination memory type (i.e. CU_MEMORYTYPE_DEVICE, CU_MEMORYTYPE_ARRAY, etc.) is not supported.

Note: The API may add further restrictions in future releases. The return code should always be checked.

cudaGraphExecUpdate sets the result member of resultInfo to:

cudaGraphExecUpdateError if passed an invalid value.
cudaGraphExecUpdateErrorTopologyChanged if the graph topology changed
cudaGraphExecUpdateErrorNodeTypeChanged if the type of a node changed, in which case hErrorNode_out is set to the node from hGraph.
- `cudaGraphExecUpdateErrorFunctionChanged` if the function of a kernel node changed [CUDA driver < 11.2]
- `cudaGraphExecUpdateErrorUnsupportedFunctionChange` if the `func` field of a kernel changed in an unsupported way (see note above), in which case `hErrorNode_out` is set to the node from `hGraph`
- `cudaGraphExecUpdateErrorParametersChanged` if any parameters to a node changed in a way that is not supported, in which case `hErrorNode_out` is set to the node from `hGraph`
- `cudaGraphExecUpdateErrorAttributesChanged` if any attributes of a node changed in a way that is not supported, in which case `hErrorNode_out` is set to the node from `hGraph`
- `cudaGraphExecUpdateErrorNotSupported` if something about a node is unsupported, like the node’s type or configuration, in which case `hErrorNode_out` is set to the node from `hGraph`

If the update fails for a reason not listed above, the result member of `resultInfo` will be set to `cudaGraphExecUpdateError`. If the update succeeds, the result member will be set to `cudaGraphExecUpdateSuccess`.

`cudaGraphExecUpdate` returns `cudaSuccess` when the update was performed successfully. It returns `cudaErrorGraphExecUpdateFailure` if the graph update was not performed because it included changes which violated constraints specific to instantiated graph update.

### Note:
- Graph objects are not threadsafe. [More here](#).
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

### See also:
`cudaGraphInstantiate`
__host__ cudaError_t
cudaGraphExternalSemaphoresSignalNodeGetParams
(cudaGraphNode_t hNode,
cudaExternalSemaphoreSignalNodeParams *
params_out)

Returns an external semaphore signal node’s parameters.

Parameters

hNode
- Node to get the parameters for

params_out
- Pointer to return the parameters

Returns
cudaSuccess, cudaErrorInvalidValue

Description

Returns the parameters of an external semaphore signal node hNode in params_out. The extSemArray and paramsArray returned in params_out, are owned by the node. This memory remains valid until the node is destroyed or its parameters are modified, and should not be modified directly. Use cudaGraphExternalSemaphoresSignalNodeSetParams to update the parameters of this node.

Note:

- Graph objects are not threadsafe. [More here.]
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaGraphExternalSemaphoresSignalNodeSetParams
(cudaGraphNode_t hNode, const
cudaExternalSemaphoreSignalNodeParams
*nodeParams)
Sets an external semaphore signal node’s parameters.

Parameters
hNode
- Node to set the parameters for
nodeParams
- Parameters to copy

Returns
cudaSuccess, cudaErrorInvalidValue

Description
Sets the parameters of an external semaphore signal node hNode to nodeParams.

Note:
- Graph objects are not threadsafe. More here.
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
CUDA Runtime API

cudaGraphNodeSetParams, cudaGraphAddExternalSemaphoresSignalNode, cudaGraphExternalSemaphoresSignalNodeSetParams, cudaGraphAddExternalSemaphoresWaitNode, cudaSignalExternalSemaphoresAsync, cudaWaitExternalSemaphoresAsync

__host__cudaError_t
cudaGraphExternalSemaphoresWaitNodeGetParams
(cudaGraphNode_t hNode, cudaExternalSemaphoreWaitNodeParams *params_out)
Returns an external semaphore wait node’s parameters.

Parameters

hNode
- Node to get the parameters for

params_out
- Pointer to return the parameters

Returns
cudaSuccess, cudaErrorInvalidValue

Description

Returns the parameters of an external semaphore wait node hNode in params_out. The extSemArray and paramsArray returned in params_out, are owned by the node. This memory remains valid until the node is destroyed or its parameters are modified, and should not be modified directly. Use cudaGraphExternalSemaphoresSignalNodeSetParams to update the parameters of this node.

Note:

- Graph objects are not threadsafe. More here.
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
`cudaLaunchKernel`, `cudaGraphAddExternalSemaphoresWaitNode`,
`cudaGraphExternalSemaphoresWaitNodeSetParams`,
`cudaGraphAddExternalSemaphoresWaitNode`, `cudaSignalExternalSemaphoresAsync`,
`cudaWaitExternalSemaphoresAsync`

```c
__host__ cudaError_t
cudaGraphExternalSemaphoresWaitNodeSetParams
    (cudaGraphNode_t hNode, const
cudaExternalSemaphoreWaitNodeParams *nodeParams)
```

Sets an external semaphore wait node's parameters.

**Parameters**

- **hNode**
  - Node to set the parameters for
- **nodeParams**
  - Parameters to copy

**Returns**

`cudaSuccess`, `cudaErrorInvalidValue`

**Description**

Sets the parameters of an external semaphore wait node `hNode` to `nodeParams`.

**Note:**

- Graph objects are not threadsafe. [More here.](#)
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
- `cudaGraphNodeSetParams`
- `cudaGraphAddExternalSemaphoresWaitNode`
- `cudaGraphExternalSemaphoresWaitNodeSetParams`
- `cudaGraphAddExternalSemaphoresWaitNode`
- `cudaSignalExternalSemaphoresAsync`
- `cudaGraphExternalSemaphoresAsync`

```c
__host__ cudaError_t cudaGraphGetEdges (cudaGraph_t graph, cudaGraphNode_t *from, cudaGraphNode_t *to, size_t *numEdges)
```

Returns a graph's dependency edges.

**Parameters**

- `graph` - Graph to get the edges from
- `from` - Location to return edge endpoints
- `to` - Location to return edge endpoints
- `numEdges` - See description

**Returns**

- `cudaSuccess`
- `cudaErrorInvalidValue`

**Description**

Returns a list of graph's dependency edges. Edges are returned via corresponding indices in `from` and `to`; that is, the node in `to[i]` has a dependency on the node in `from[i]`. `from` and `to` may both be NULL, in which case this function only returns the number of edges in `numEdges`. Otherwise, `numEdges` entries will be filled in. If `numEdges` is higher than the actual number of edges, the remaining entries in `from` and `to` will be set to NULL, and the number of edges actually returned will be written to `numEdges`.

**Note:**
- Graph objects are not threadsafe. More here.
Note that this function may also return error codes from previous, asynchronous launches.

Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.

Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

- `cudaGraphGetNodes`
- `cudaGraphGetRootNodes`
- `cudaGraphAddDependencies`
- `cudaGraphRemoveDependencies`
- `cudaGraphNodeGetDependencies`
- `cudaGraphNodeGetDependentNodes`

```
__host__ cudaError_t cudaGraphGetNodes
(cudaGraph_t graph, cudaGraphNode_t *nodes, size_t *numNodes)
```

Returns a graph’s nodes.

**Parameters**

- **graph**
  - Graph to query
- **nodes**
  - Pointer to return the nodes
- **numNodes**
  - See description

**Returns**

- `cudaSuccess`
- `cudaErrorInvalidValue`

**Description**

Returns a list of graph’s nodes. `nodes` may be NULL, in which case this function will return the number of nodes in `numNodes`. Otherwise, `numNodes` entries will be filled in. If `numNodes` is higher than the actual number of nodes, the remaining entries in `nodes` will be set to NULL, and the number of nodes actually obtained will be returned in `numNodes`.

**Note:**

- Graph objects are not thread safe. [More here](#).
Note that this function may also return error codes from previous, asynchronous launches.

Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.

Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
`cudaGraphCreate`, `cudaGraphGetRootNodes`, `cudaGraphGetEdges`, `cudaGraphNodeGetType`, `cudaGraphNodeGetDependencies`, `cudaGraphNodeGetDependentNodes`

```c
__host__ cudaError_t cudaGraphGetRootNodes (cudaGraph_t graph, cudaGraphNode_t *pRootNodes, size_t *pNumRootNodes)
```

Returns a graph’s root nodes.

### Parameters

- **graph**
  - Graph to query
- **pRootNodes**
  - Pointer to return the root nodes
- **pNumRootNodes**
  - See description

### Returns

`cudaSuccess`, `cudaErrorInvalidValue`

### Description

Returns a list of graph’s root nodes. `pRootNodes` may be NULL, in which case this function will return the number of root nodes in `pNumRootNodes`. Otherwise, `pNumRootNodes` entries will be filled in. If `pNumRootNodes` is higher than the actual number of root nodes, the remaining entries in `pRootNodes` will be set to NULL, and the number of nodes actually obtained will be returned in `pNumRootNodes`.

### Note:

- Graph objects are not threadsafe. [More here](#).
Note that this function may also return error codes from previous, asynchronous launches.

- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.

- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

`cudaGraphCreate`, `cudaGraphNodeGetNodes`, `cudaGraphNodeGetEdges`, `cudaGraphNodeGetType`, `cudaGraphNodeGetDependencies`, `cudaGraphNodeGetDependentNodes`.

```c
__host__ cudaError_t cudaGraphHostNodeGetParams (cudaGraphNode_t node, cudaHostNodeParams *pNodeParams)
```

Returns a host node’s parameters.

**Parameters**

- **node**
  - Node to get the parameters for

- **pNodeParams**
  - Pointer to return the parameters

**Returns**

`cudaSuccess`, `cudaErrorInvalidValue`

**Description**

Returns the parameters of host node `node` in `pNodeParams`.

**Note:**

- Graph objects are not threadsafe. [More here](#).

- Note that this function may also return error codes from previous, asynchronous launches.

- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
`cudaLaunchHostFunc`, `cudaGraphAddHostNode`, `cudaGraphHostNodeSetParams`

```
__host__cudaError_t cudaGraphHostNodeSetParams (cudaGraphNode_t node, const cudaHostNodeParams *pNodeParams)
```
Sets a host node’s parameters.

**Parameters**

- **node**
  - Node to set the parameters for

- **pNodeParams**
  - Parameters to copy

**Returns**

`cudaSuccess`, `cudaErrorInvalidValue`

**Description**

Sets the parameters of host node `node` to `nodeParams`.

**Note:**

- Graph objects are not threadsafe. More here.
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
`cudaGraphNodeSetParams`, `cudaLaunchHostFunc`, `cudaGraphAddHostNode`, `cudaGraphHostNodeGetParams`
`__host__ cudaError_t cudaGraphInstantiate(cudaGraphExec_t *pGraphExec, cudaGraph_t graph, unsigned long long flags)`

Creates an executable graph from a graph.

**Parameters**

- **pGraphExec**
  - Returns instantiated graph
- **graph**
  - Graph to instantiate
- **flags**
  - Flags to control instantiation. See `CUgraphInstantiate_flags`.

**Returns**

`cudaSuccess`, `cudaErrorInvalidValue`

**Description**

Instantiates `graph` as an executable graph. The graph is validated for any structural constraints or intra-node constraints which were not previously validated. If instantiation is successful, a handle to the instantiated graph is returned in `pGraphExec`.

The `flags` parameter controls the behavior of instantiation and subsequent graph launches. Valid flags are:

- `cudaGraphInstantiateFlagAutoFreeOnLaunch`, which configures a graph containing memory allocation nodes to automatically free any unfreed memory allocations before the graph is relaunched.

- `cudaGraphInstantiateFlagDeviceLaunch`, which configures the graph for launch from the device. If this flag is passed, the executable graph handle returned can be used to launch the graph from both the host and device. This flag cannot be used in conjunction with `cudaGraphInstantiateFlagAutoFreeOnLaunch`.

- `cudaGraphInstantiateFlagUseNodePriority`, which causes the graph to use the priorities from the per-node attributes rather than the priority of the launch stream during execution. Note that priorities are only available on kernel nodes, and are copied from stream priority during stream capture.

If `graph` contains any allocation or free nodes, there can be at most one executable graph in existence for that graph at a time. An attempt to instantiate a second executable graph before destroying the first with `cudaGraphExecDestroy` will result in an error.
Graphs instantiated for launch on the device have additional restrictions which do not apply to host graphs:

- The graph’s nodes must reside on a single device.
- The graph can only contain kernel nodes. Furthermore, use of CUDA Dynamic Parallelism is not permitted. Cooperative launches are permitted as long as MPS is not in use.

If `graph` is not instantiated for launch on the device but contains kernels which call device-side `cudaGraphLaunch()` from multiple devices, this will result in an error.

Note:
- Graph objects are not threadsafe. More here.
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
`cudaGraphInstantiateWithFlags`, `cudaGraphCreate`, `cudaGraphUpload`, `cudaGraphLaunch`, `cudaGraphExecDestroy`

```c
__host__ cudaError_t cudaGraphInstantiateWithFlags(cudaGraphExec_t *pGraphExec, cudaGraph_t graph, unsigned long long flags)
```

Creates an executable graph from a graph.

Parameters

- `pGraphExec`
  - Returns instantiated graph
- `graph`
  - Graph to instantiate
- `flags`
  - Flags to control instantiation. See [CUgraphInstantiate_flags](#).


Returns

cudaSuccess, cudaErrorInvalidValue

Description

Instantiates graph as an executable graph. The graph is validated for any structural constraints or intra-node constraints which were not previously validated. If instantiation is successful, a handle to the instantiated graph is returned in pGraphExec.

The flags parameter controls the behavior of instantiation and subsequent graph launches. Valid flags are:

- `cudaGraphInstantiateFlagAutoFreeOnLaunch`, which configures a graph containing memory allocation nodes to automatically free any unfreed memory allocations before the graph is relaunched.
- `cudaGraphInstantiateFlagDeviceLaunch`, which configures the graph for launch from the device. If this flag is passed, the executable graph handle returned can be used to launch the graph from both the host and device. This flag can only be used on platforms which support unified addressing. This flag cannot be used in conjunction with `cudaGraphInstantiateFlagAutoFreeOnLaunch`.
- `cudaGraphInstantiateFlagUseNodePriority`, which causes the graph to use the priorities from the per-node attributes rather than the priority of the launch stream during execution. Note that priorities are only available on kernel nodes, and are copied from stream priority during stream capture.

If graph contains any allocation or free nodes, there can be at most one executable graph in existence for that graph at a time. An attempt to instantiate a second executable graph before destroying the first with `cudaGraphExecDestroy` will result in an error.

If graph contains kernels which call device-side `cudaGraphLaunch` from multiple devices, this will result in an error.

Graphs instantiated for launch on the device have additional restrictions which do not apply to host graphs:

- The graph’s nodes must reside on a single device.
- The graph can only contain kernel nodes, memcpy nodes, memset nodes, and child graph nodes. Operation-specific restrictions are outlined below.

- Kernel nodes:
  - Use of CUDA Dynamic Parallelism is not permitted.
  - Cooperative launches are permitted as long as MPS is not in use.

- Memcpy nodes:
Only copies involving device memory and/or pinned device-mapped host memory are permitted.

Copies involving CUDA arrays are not permitted.

Both operands must be accessible from the current device, and the current device must match the device of other nodes in the graph.

Note:

- Graph objects are not threadsafe. More here.
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

`cudaGraphInstantiate`, `cudaGraphCreate`, `cudaGraphUpload`, `cudaGraphLaunch`, `cudaGraphExecDestroy`

```c
__host__ cudaError_t
cudaGraphInstantiateWithParams (cudaGraphExec_t *pGraphExec, cudaGraph_t graph, cudaGraphInstantiateParams *instantiateParams)
```

Creates an executable graph from a graph.

Parameters

- `pGraphExec` - Returns instantiated graph
- `graph` - Graph to instantiate
- `instantiateParams` - Instantiation parameters

Returns

`cudaSuccess`, `cudaErrorInvalidValue`
Description

Instantiates graph as an executable graph according to the instantiateParams structure. The graph is validated for any structural constraints or intra-node constraints which were not previously validated. If instantiation is successful, a handle to the instantiated graph is returned in pGraphExec.

instantiateParams controls the behavior of instantiation and subsequent graph launches, as well as returning more detailed information in the event of an error. cudaGraphInstantiateParams is defined as:

```c
typedef struct {
    unsigned long long flags;
    cudaStream_t uploadStream;
    cudaGraphNode_t errNode_out;
    cudaGraphInstantiateResult result_out;
} cudaGraphInstantiateParams;
```

The flags field controls the behavior of instantiation and subsequent graph launches. Valid flags are:

- **cudaGraphInstantiateFlagAutoFreeOnLaunch**, which configures a graph containing memory allocation nodes to automatically free any unfreed memory allocations before the graph is relaunched.

- **cudaGraphInstantiateFlagUpload**, which will perform an upload of the graph into uploadStream once the graph has been instantiated.

- **cudaGraphInstantiateFlagDeviceLaunch**, which configures the graph for launch from the device. If this flag is passed, the executable graph handle returned can be used to launch the graph from both the host and device. This flag can only be used on platforms which support unified addressing. This flag cannot be used in conjunction with cudaGraphInstantiateFlagAutoFreeOnLaunch.

- **cudaGraphInstantiateFlagUseNodePriority**, which causes the graph to use the priorities from the per-node attributes rather than the priority of the launch stream during execution. Note that priorities are only available on kernel nodes, and are copied from stream priority during stream capture.

If graph contains any allocation or free nodes, there can be at most one executable graph in existence for that graph at a time. An attempt to instantiate a second executable graph before destroying the first with cudaGraphExecDestroy will result in an error.

If graph contains kernels which call device-side cudaGraphLaunch() from multiple devices, this will result in an error.

Graphs instantiated for launch on the device have additional restrictions which do not apply to host graphs:

- The graph’s nodes must reside on a single device.
The graph can only contain kernel nodes, memcpy nodes, memset nodes, and child graph nodes. Operation-specific restrictions are outlined below.

Kernel nodes:
- Use of CUDA Dynamic Parallelism is not permitted.
- Cooperative launches are permitted as long as MPS is not in use.

Memcpy nodes:
- Only copies involving device memory and/or pinned device-mapped host memory are permitted.
- Copies involving CUDA arrays are not permitted.
- Both operands must be accessible from the current device, and the current device must match the device of other nodes in the graph.

In the event of an error, the result_out and errNode_out fields will contain more information about the nature of the error. Possible error reporting includes:

- `cudaGraphInstantiateError`, if passed an invalid value or if an unexpected error occurred which is described by the return value of the function. errNode_out will be set to NULL.
- `cudaGraphInstantiateInvalidStructure`, if the graph structure is invalid. errNode_out will be set to one of the offending nodes.
- `cudaGraphInstantiateNodeOperationNotSupported`, if the graph is instantiated for device launch but contains a node of an unsupported node type, or a node which performs unsupported operations, such as use of CUDA dynamic parallelism within a kernel node. errNode_out will be set to this node.
- `cudaGraphInstantiateMultipleDevicesNotSupported`, if the graph is instantiated for device launch but a node’s device differs from that of another node. This error can also be returned if a graph is not instantiated for device launch and it contains kernels which call device-side `cudaGraphLaunch` from multiple devices. errNode_out will be set to this node.

If instantiation is successful, result_out will be set to `cudaGraphInstantiateSuccess`, and hErrNode_out will be set to NULL.

---

**Note:**
- Graph objects are not threadsafe. More here.
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaGraphCreate, cudaGraphInstantiate, cudaGraphInstantiateWithFlags, cudaGraphExecDestroy

__host__cudaError_t
cudaGraphKernelNodeCopyAttributes
cudaGraphNode_t hSrc, cudaGraphNode_t hDst)
Copies attributes from source node to destination node.

Returns
cudaSuccess, cudaErrorInvalidContext

Description
Copies attributes from source node src to destination node dst. Both node must have the same context.

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaAccessPolicyWindow

__host__cudaError_t
cudaGraphKernelNodeGetAttribute
cudaGraphNode_t hNode, cudaKernelNodeAttrID attr, cudaKernelNodeAttrValue *value_out)
Queries node attribute.

Parameters
hNode
attr
value_out
Returns

cudaSuccess, cudaErrorInvalidValue, cudaErrorInvalidResourceHandle

Description

Queries attribute attr from node hNode and stores it in corresponding member of value_out.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaAccessPolicyWindow

__host__cudaError_t
cudaGraphKernelNodeGetParams (cudaGraphNode_t node, cudaKernelNodeParams *pNodeParams)

Returns a kernel node’s parameters.

Parameters

node
  - Node to get the parameters for
pNodeParams
  - Pointer to return the parameters

Returns

cudaSuccess, cudaErrorInvalidValue, cudaErrorInvalidDeviceFunction

Description

Returns the parameters of kernel node node in pNodeParams. The kernelParams or extra array returned in pNodeParams, as well as the argument values it points to, are owned by the node. This memory remains valid until the node is destroyed or its parameters are modified, and should not be modified directly. Use cudaGraphKernelNodeSetParams to update the parameters of this node.

The params will contain either kernelParams or extra, according to which of these was most recently set on the node.
Note:

- Graph objects are not thread safe. More here.
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
`cudaLaunchKernel`, `cudaGraphAddKernelNode`, `cudaGraphKernelNodeSetParams`

```c
__host__ cudaError_t
cudaGraphKernelNodeSetAttribute
cudaGraphNode_t hNode, cudaKernelNodeAttrID attr, const cudaKernelNodeAttrValue *value)
```

Sets node attribute.

**Parameters**

- `hNode`
- `attr`
- `value`

**Returns**

- `cudaSuccess`, `cudaErrorInvalidValue`, `cudaErrorInvalidResourceHandle`

**Description**

Sets attribute `attr` on node `hNode` from corresponding attribute of `value`.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaAccessPolicyWindow

__host__ cudaError_t cudaGraphKernelNodeSetParams (cudaGraphNode_t node, const cudaKernelNodeParams *pNodeParams)

Sets a kernel node’s parameters.

Parameters

node
  - Node to set the parameters for
pNodeParams
  - Parameters to copy

Returns

cudaSuccess, cudaErrorInvalidValue, cudaErrorInvalidResourceHandle, cudaErrorMemoryAllocation

description

Sets the parameters of kernel node node to pNodeParams.

Note:

- Graph objects are not threadsafe. More here.
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaGraphNodeSetParams, cudaLaunchKernel, cudaGraphAddKernelNode, cudaGraphKernelNodeGetParams
__host__ cudaError_t cudaGraphLaunch(
cudaGraphExec_t graphExec, cudaStream_t stream)
Launches an executable graph in a stream.

Parameters

graphExec
- Executable graph to launch

stream
- Stream in which to launch the graph

Returns
cudaSuccess, cudaErrorInvalidValue

Description
Executes graphExec in stream. Only one instance of graphExec may be executing at a
time. Each launch is ordered behind both any previous work in stream and any previous
launches of graphExec. To execute a graph concurrently, it must be instantiated multiple
times into multiple executable graphs.

If any allocations created by graphExec remain unfreed (from a previous launch) and
graphExec was not instantiated with cudaGraphInstantiateFlagAutoFreeOnLaunch, the
launch will fail with cudaErrorInvalidValue.

Note:
- Graph objects are not threadsafe. More here.
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
  CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called
  from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:
cudaGraphInstantiate, cudaGraphUpload, cudaGraphExecDestroy
__host__ cudaError_t
cudaGraphMemAllocNodeGetParams
(cudaGraphNode_t node, cudaMemAllocNodeParams *params_out)
Returns a memory alloc node’s parameters.

Parameters

node
- Node to get the parameters for

params_out
- Pointer to return the parameters

Returns
cudaSuccess, cudaErrorInvalidValue

Description

Returns the parameters of a memory alloc node hNode in params_out. The poolProps and accessDescs returned in params_out, are owned by the node. This memory remains valid until the node is destroyed. The returned parameters must not be modified.

Note:
- Graph objects are not threadsafe. More here.
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaGraphAddMemAllocNode, cudaGraphMemFreeNodeGetParams
__host__ cudaError_t
cudaGraphMemcpyNodeGetParams
cudaGraphNode_t node, cudaMemcpy3DParms *pNodeParams)
Returns a memcpy node’s parameters.

Parameters
node
- Node to get the parameters for
pNodeParams
- Pointer to return the parameters

Returns
cudaSuccess, cudaMemcpy3DParms

Description
Returns the parameters of memcpy node node in pNodeParams.

Note:
- Graph objects are not threadsafe. More here.
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaMemcpy3DParms or cudaErrorDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaMemcpy3DParms no CUDA function may be called from callback. cudaMemcpy3DParms may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaMemcpy3D, cudaMemcpy3DParms, cudaMemcpy3DParms
__host__ cudaError_t
cudaGraphMemcpyNodeSetParams  
(cudaGraphNode_t node, const cudaMemcpy3DParms *pNodeParams)
Sets a memcpy node’s parameters.

Parameters

dnode
   - Node to set the parameters for
pNodeParams
   - Parameters to copy

Returns
cudaSuccess, cudaErrorInvalidValue.

Description
Sets the parameters of memcpy node node to pNodeParams.

Note:
- Graph objects are not threadsafe. [More here](#).
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaGraphNodeSetParams, cudaMemcpy3D, cudaMemcpy3DParmsToSymbol, cudaMemcpy3DParmsFromSymbol, cudaMemcpy3DParms1D, cudaMemcpyNode, cudaMemcpyNodeGetParams
__host__ cudaError_t
cudaGraphMemcpyNodeSetParams1D
(cudaGraphNode_t node, void *dst, const void *src,
size_t count, cudaMemcpyKind kind)

Sets a memcpy node’s parameters to perform a 1-dimensional copy.

Parameters

**node**
- Node to set the parameters for

**dst**
- Destination memory address

**src**
- Source memory address

**count**
- Size in bytes to copy

**kind**
- Type of transfer

Returns

cudaSuccess, cudaErrorInvalidValue

Description

Sets the parameters of memcpy node `node` to the copy described by the provided parameters. When the graph is launched, the node will copy `count` bytes from the memory area pointed to by `src` to the memory area pointed to by `dst`, where `kind` specifies the direction of the copy, and must be one of `cudaMemcpyHostToHost`, `cudaMemcpyHostToDevice`, `cudaMemcpyDeviceToHost`, `cudaMemcpyDeviceToDevice`, or `cudaMemcpyDefault`. Passing `cudaMemcpyDefault` is recommended, in which case the type of transfer is inferred from the pointer values. However, `cudaMemcpyDefault` is only allowed on systems that support unified virtual addressing. Launching a memcpy node with `dst` and `src` pointers that do not match the direction of the copy results in an undefined behavior.

Note:

- Graph objects are not threadsafe. More here.
- Note that this function may also return error codes from previous, asynchronous launches.
Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.

Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
`cudaMemcpy`, `cudaGraphMemcpyNodeSetParams`, `cudaGraphAddMemcpyNode`, `cudaGraphMemcpyNodeGetParams`

```
__host__ cudaError_t
cudaGraphMemcpyNodeSetParamsFromSymbol( cudaGraphNode_t node, void *dst, const void *symbol, size_t count, size_t offset, cudaMemcpyKind kind)
```

Sets a memcpy node’s parameters to copy from a symbol on the device.

**Parameters**

- **node**
  - Node to set the parameters for

- **dst**
  - Destination memory address

- **symbol**
  - Device symbol address

- **count**
  - Size in bytes to copy

- **offset**
  - Offset from start of symbol in bytes

- **kind**
  - Type of transfer

**Returns**

`cudaSuccess`, `cudaErrorInvalidValue`

**Description**

Sets the parameters of memcpy node `node` to the copy described by the provided parameters.
When the graph is launched, the node will copy `count` bytes from the memory area pointed to by `offset` bytes from the start of `symbol` to the memory area pointed to by `dst`. The memory areas may not overlap. `symbol` is a variable that resides in global or constant memory space. `kind` can be either `cudaMemcpyDeviceToHost`, `cudaMemcpyDeviceToDevice`, or `cudaMemcpyDefault`. Passing `cudaMemcpyDefault` is recommended, in which case the type of transfer is inferred from the pointer values. However, `cudaMemcpyDefault` is only allowed on systems that support unified virtual addressing.

### Note:

- Graph objects are not threadsafe. [More here.](#)
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

### See also:

`cudaMemcpyFromSymbol`, `cudaGraphMemcpyNodeSetParams`,
`cudaGraphMemcpyNodeSetParamsToSymbol`, `cudaGraphAddMemcpyNode`,
`cudaGraphMemcpyNodeGetParams`

```c
__host__ cudaError_t
cudaGraphMemcpyNodeSetParamsToSymbol
cudaGraphNode_t node, const void *symbol, const
void *src, size_t count, size_t offset, cudaMemcpyKind
kind)
```

Sets a memcpy node’s parameters to copy to a symbol on the device.

### Parameters

- **node**
  - Node to set the parameters for
- **symbol**
  - Device symbol address
- **src**
  - Source memory address
count
- Size in bytes to copy

offset
- Offset from start of symbol in bytes

kind
- Type of transfer

Returns
cudaSuccess, cudaErrorInvalidValue

Description
Sets the parameters of memcpy node node to the copy described by the provided parameters. When the graph is launched, the node will copy count bytes from the memory area pointed to by src to the memory area pointed to by offset bytes from the start of symbol symbol. The memory areas may not overlap. symbol is a variable that resides in global or constant memory space. kind can be either cudaMemcpyHostToDevice, cudaMemcpyDeviceToDevice, or cudaMemcpyDefault. Passing cudaMemcpyDefault is recommended, in which case the type of transfer is inferred from the pointer values. However, cudaMemcpyDefault is only allowed on systems that support unified virtual addressing.

Note:
- Graph objects are not threadsafe. More here.
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaMemcpyInitializationError, cudaMemcpyInsufficientDriver or cudaMemcpyNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaMemcpyToSymbol no CUDA function may be called from callback. cudaMemcpyNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
__host__ cudaError_t
cudaGraphMemFreeNodeGetParams
cudaGraphNode_t node, void *dptr_out)

Returns a memory free node's parameters.

Parameters
node
- Node to get the parameters for
dptr_out
- Pointer to return the device address

Returns
cudaSuccess, cudaErrorInvalidValue

Description
Returns the address of a memory free node hNode in dptr_out.

Note:
- Graph objects are not threadsafe. More here.
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaGraphAddMemFreeNode, cudaGraphMemFreeNodeGetParams
__host__ cudaError_t 
cudaGraphMemsetNodeGetParams 
(cudaGraphNode_t node, cudaMemsetParams *pNodeParams)

Returns a memset node’s parameters.

Parameters

- node
  - Node to get the parameters for

- pNodeParams
  - Pointer to return the parameters

Returns

cudaSuccess, cudaErrorInvalidValue

Description

Returns the parameters of memset node node in pNodeParams.

Note:

- Graph objects are not threadsafe. More here.
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotAllowed may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaMemset2D, cudaGraphAddMemsetNode, cudaGraphMemsetNodeSetParams
__host__ cudaError_t
cudaGraphMemsetNodeSetParams
(cudaGraphNode_t node, const cudaMemsetParams *pNodeParams)

Sets a memset node’s parameters.

Parameters

node
- Node to set the parameters for

pNodeParams
- Parameters to copy

Returns
cudaSuccess, cudaErrorInvalidValue

Description
Sets the parameters of memset node node to pNodeParams.

Note:

- Graph objects are not threadsafe. [More here.](#)
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaGraphNodeSetParams, cudaMemcpy2D, cudaMemcpyAddMemsetNode, cudaMemcpyMemsetNodeGetParams
__host__ cudaError_t cudaGraphNodeFindInClone (cudaGraphNode_t *pNode, cudaGraphNode_t originalNode, cudaGraph_t clonedGraph)

Finds a cloned version of a node.

**Parameters**

- **pNode**
  - Returns handle to the cloned node

- **originalNode**
  - Handle to the original node

- **clonedGraph**
  - Cloned graph to query

**Returns**

- cudaSuccess
- cudaMemcpyError

**Description**

This function returns the node in clonedGraph corresponding to originalNode in the original graph.

clonedGraph must have been cloned from originalGraph via cudaGraphClone. originalNode must have been in originalGraph at the time of the call to cudaGraphClone, and the corresponding cloned node in clonedGraph must not have been removed. The cloned node is then returned via pNode.

**Note:**

- Graph objects are not threadsafe. [More here](#).
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaMemcpyErrorInsufficientDriver or cudaMemcpyErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaMemcpyAddCallback no CUDA function may be called from callback. cudaMemcpyErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

**See also:**

- cudaGraphClone
__host__ cudaError_t

cudaGraphNodeGetDependencies (cudaGraphNode_t node, cudaGraphNode_t *pDependencies, size_t *pNumDependencies)

Returns a node’s dependencies.

Parameters

node
  - Node to query

pDependencies
  - Pointer to return the dependencies

pNumDependencies
  - See description

Returns

cudaSuccess, cudaErrorInvalidValue

Description

Returns a list of node’s dependencies. pDependencies may be NULL, in which case this function will return the number of dependencies in pNumDependencies. Otherwise, pNumDependencies entries will be filled in. If pNumDependencies is higher than the actual number of dependencies, the remaining entries in pDependencies will be set to NULL, and the number of nodes actually obtained will be returned in pNumDependencies.

Note:

- Graph objects are not thread safe. More here.
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaGraphNodeGetDependentNodes, cudaGraphGetNodes, cudaGraphGetRootNodes, cudaMemcpy, cudaGraphAddDependencies, cudaGraphRemoveDependencies

__host__ cudaError_t
cudaGraphNodeGetDependentNodes
(cudaGraphNode_t node, cudaGraphNode_t *pDependentNodes, size_t *pNumDependentNodes)

Returns a node’s dependent nodes.

Parameters

**node**
- Node to query

**pDependentNodes**
- Pointer to return the dependent nodes

**pNumDependentNodes**
- See description

Returns

cudaSuccess, cudaErrorInvalidValue

Description

Returns a list of node's dependent nodes. If pDependentNodes is NULL, in which case this function will return the number of dependent nodes in pNumDependentNodes. Otherwise, pNumDependentNodes entries will be filled in. If pNumDependentNodes is higher than the actual number of dependent nodes, the remaining entries in pDependentNodes will be set to NULL, and the number of nodes actually obtained will be returned in pNumDependentNodes.

Note:

- Graph objects are not threadsafe. More here.
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaMemcpy, no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.
__host__ cudaError_t cudaGraphNodeGetEnabled (cudaGraphExec_t hGraphExec, cudaGraphNode_t hNode, unsigned int *isEnabled)

Query whether a node in the given graphExec is enabled.

Parameters

hGraphExec
- The executable graph in which to set the specified node

hNode
- Node from the graph from which graphExec was instantiated

isEnabled
- Location to return the enabled status of the node

Returns

cudaSuccess, cudaErrorInvalidValue.

Description

Sets isEnabled to 1 if hNode is enabled, or 0 if hNode is disabled.

The node is identified by the corresponding node hNode in the non-executable graph, from which the executable graph was instantiated.

hNode must not have been removed from the original graph.

Note:

Currently only kernel, memset and memcpy nodes are supported.

Note:

- Graph objects are not threadsafe. More here.
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaGraphNodeSetEnabled, cudaGraphExecUpdate, cudaGraphInstantiate cudaGraphLaunch

__host__cudaError_t cudaGraphNodeGetType(cudaGraphNode_t node, cudaGraphNodeType *pType)

Returns a node’s type.

**Parameters**

node  
- Node to query

pType  
- Pointer to return the node type

**Returns**

cudaSuccess, cudaErrorInvalidValue

**Description**

Returns the node type of node in pType.

**Note:**

- Graph objects are not threadsafe. [More here](#).
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaGraphGetNodes, cudaGraphGetRootNodes, cudaGraphChildGraphNodeGetGraph, cudaGraphKernelNodeGetParams, cudaGraphKernelNodeSetParams.
__host__ cudaError_t cudaGraphNodeSetEnabled (cudaGraphExec_t hGraphExec, cudaGraphNode_t hNode, unsigned int isEnabled)

Enables or disables the specified node in the given graphExec.

Parameters

hGraphExec
- The executable graph in which to set the specified node

hNode
- Node from the graph from which graphExec was instantiated

isEnabled
- Node is enabled if != 0, otherwise the node is disabled

Returns
cudaSuccess, cudaErrorInvalidValue.

Description

Sets hNode to be either enabled or disabled. Disabled nodes are functionally equivalent to empty nodes until they are reenabled. Existing node parameters are not affected by disabling/enabling the node.

The node is identified by the corresponding node hNode in the non-executable graph, from which the executable graph was instantiated.

hNode must not have been removed from the original graph.

The modifications only affect future launches of hGraphExec. Already enqueued or running launches of hGraphExec are not affected by this call. hNode is also not modified by this call.

Note:
Currently only kernel, memset and memcpy nodes are supported.

Note:
- Graph objects are not threadsafe. More here.
- Note that this function may also return error codes from previous, asynchronous launches.
Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.

Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
`cudaGraphNodeGetEnabled`, `cudaGraphExecUpdate`, `cudaGraphInstantiate` `cudaGraphLaunch`

```c
__host__ cudaError_t cudaGraphNodeSetParams (cudaGraphNode_t node, cudaGraphNodeParams *nodeParams)
```

Update’s a graph node’s parameters.

**Parameters**

- **node**
  - Node to set the parameters for
- **nodeParams**
  - Parameters to copy

**Returns**

`cudaSuccess`, `cudaErrorInvalidValue`, `cudaErrorInvalidDeviceFunction`, `cudaErrorNotSupported`

**Description**

Sets the parameters of graph node `node` to `nodeParams`. The node type specified by `nodeParams->type` must match the type of `node`. `nodeParams` must be fully initialized and all unused bytes (reserved, padding) zeroed.

Modifying parameters is not supported for node types `cudaGraphNodeTypeMemAlloc` and `cudaGraphNodeTypeMemFree`.

**Note:**

- Graph objects are not threadsafe. [More here.](#)
- Note that this function may also return error codes from previous, asynchronous launches.
Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.

Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

`cudaGraphAddNode`, `cudaGraphExecNodeSetParams`

```c
__host__ cudaError_t cudaGraphReleaseUserObject (cudaGraph_t graph, cudaUserObject_t object, unsigned int count)
```

Release a user object reference from a graph.

**Parameters**

- **graph**
  - The graph that will release the reference

- **object**
  - The user object to release a reference for

- **count**
  - The number of references to release, typically 1. Must be nonzero and not larger than \(\text{INT \_MAX}\).

**Returns**

`cudaSuccess`, `cudaErrorInvalidValue`

**Description**

Releases user object references owned by a graph.

See CUDA User Objects in the CUDA C++ Programming Guide for more information on user objects.

See also:

`cudaUserObjectCreate`, `cudaUserObjectRetain`, `cudaUserObjectRelease`, `cudaGraphRetainUserObject`, `cudaGraphCreate`
__host__ cudaError_t
cudaGraphRemoveDependencies (cudaGraph_t graph, const cudaGraphNode_t *from, const cudaGraphNode_t *to, size_t numDependencies)

Removes dependency edges from a graph.

Parameters

graph
- Graph from which to remove dependencies

from
- Array of nodes that provide the dependencies

to
- Array of dependent nodes

numDependencies
- Number of dependencies to be removed

Returns
cudaSuccess, cudaErrorInvalidValue

Description
The number of dependencies to be removed is defined by numDependencies. Elements in pFrom and pTo at corresponding indices define a dependency. Each node in pFrom and pTo must belong to graph.

If numDependencies is 0, elements in pFrom and pTo will be ignored. Specifying a non-existing dependency will return an error.

Note:

- Graph objects are not threadsafe. More here.
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.
__host__ cudaError_t cudaGraphRetainUserObject (cudaGraph_t graph, cudaUserObject_t object, unsigned int count, unsigned int flags)

Retain a reference to a user object from a graph.

Parameters

graph
- The graph to associate the reference with

object
- The user object to retain a reference for

count
- The number of references to add to the graph, typically 1. Must be nonzero and not larger than INT_MAX.

flags
- The optional flag cudaGraphUserObjectMove transfers references from the calling thread, rather than create new references. Pass 0 to create new references.

Returns

cudaSuccess, cudaErrorInvalidValue

Description

Creates or moves user object references that will be owned by a CUDA graph.

See CUDA User Objects in the CUDA C++ Programming Guide for more information on user objects.

See also:

cudaUserObjectCreate, cudaUserObjectRetain, cudaUserObjectRelease, cudaGraphReleaseUserObject, cudaGraphCreate
__host__.cudaError_t cudaGraphUpload
(cudaGraphExec_t graphExec, cudaStream_t stream)

Uploads an executable graph in a stream.

Returns
cudaSuccess, cudaErrorInvalidValue,

Description
Uploads hGraphExec to the device in hStream without executing it. Uploads of the same hGraphExec will be serialized. Each upload is ordered behind both any previous work in hStream and any previous launches of hGraphExec. Uses memory cached by stream to back the allocations owned by graphExec.

Note:
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.

See also:
cudaGraphInstantiate, cudaGraphLaunch, cudaGraphExecDestroy

__host__.cudaError_t cudaUserObjectCreate
(cudaUserObject_t *object_out, void *ptr,
cudaHostFn_t destroy, unsigned int initialRefcount,
unsigned int flags)

Create a user object.

Parameters
object_out
- Location to return the user object handle
ptr
- The pointer to pass to the destroy function
destroy
- Callback to free the user object when it is no longer in use
initialRefcount
  - The initial refcount to create the object with, typically 1. The initial references are owned by the calling thread.

flags
  - Currently it is required to pass `cudaUserObjectNoDestructorSync`, which is the only defined flag. This indicates that the destroy callback cannot be waited on by any CUDA API. Users requiring synchronization of the callback should signal its completion manually.

Returns
  `cudaSuccess`, `cudaErrorInvalidValue`

Description
Create a user object with the specified destructor callback and initial reference count. The initial references are owned by the caller.

Destructor callbacks cannot make CUDA API calls and should avoid blocking behavior, as they are executed by a shared internal thread. Another thread may be signaled to perform such actions, if it does not block forward progress of tasks scheduled through CUDA.

See CUDA User Objects in the CUDA C++ Programming Guide for more information on user objects.

See also:
  `cudaUserObjectRetain`, `cudaUserObjectRelease`, `cudaGraphRetainUserObject`, `cudaGraphReleaseUserObject`, `cudaGraphCreate`

__host__cudaError_t cudaUserObjectRelease (cudaUserObject_t object, unsigned int count)
Release a reference to a user object.

Parameters
  object
    - The object to release
  count
    - The number of references to release, typically 1. Must be nonzero and not larger than INT_MAX.

Returns
  `cudaSuccess`, `cudaErrorInvalidValue`
Description
Releases user object references owned by the caller. The object’s destructor is invoked if the reference count reaches zero.

It is undefined behavior to release references not owned by the caller, or to use a user object handle after all references are released.

See CUDA User Objects in the CUDA C++ Programming Guide for more information on user objects.

See also:
cudaUserObjectCreate, cudaUserObjectRetain, cudaGraphRetainUserObject, cudaGraphReleaseUserObject, cudaGraphCreate

__host__ cudaError_t cudaUserObjectRetain (cudaUserObject_t object, unsigned int count)
Retain a reference to a user object.

Parameters
object
- The object to retain
count
- The number of references to retain, typically 1. Must be nonzero and not larger than INT_MAX.

Returns
cudaSuccess, cudaErrorInvalidValue

Description
Retains new references to a user object. The new references are owned by the caller.

See CUDA User Objects in the CUDA C++ Programming Guide for more information on user objects.

See also:
cudaUserObjectCreate, cudaUserObjectRelease, cudaGraphRetainUserObject, cudaGraphReleaseUserObject, cudaGraphCreate
6.29. **Driver Entry Point Access**

This section describes the driver entry point access functions of CUDA runtime application programming interface.

```c
__host__ cudaError_t cudaGetDriverEntryPoint
(const char *symbol, void **funcPtr, unsigned long long flags,
 cudaDriverEntryPointQueryResult *driverStatus)
```

Returns the requested driver API function pointer.

**Parameters**

- `symbol`
  - The base name of the driver API function to look for. As an example, for the driver API `cuMemAlloc_v2`, `symbol` would be `cuMemAlloc`. Note that the API will use the CUDA runtime version to return the address to the most recent ABI compatible driver symbol, `cuMemAlloc` or `cuMemAlloc_v2`.

- `funcPtr`
  - Location to return the function pointer to the requested driver function

- `flags`
  - Flags to specify search options.

- `driverStatus`
  - Optional location to store the status of finding the symbol from the driver. See `cudaDriverEntryPointQueryResult` for possible values.

**Returns**

- `cudaSuccess`
- `cudaErrorInvalidValue`
- `cudaErrorNotSupported`

**Description**

Returns in `**funcPtr` the address of the CUDA driver function for the requested flags.

For a requested driver symbol, if the CUDA version in which the driver symbol was introduced is less than or equal to the CUDA runtime version, the API will return the function pointer to the corresponding versioned driver function.

The pointer returned by the API should be cast to a function pointer matching the requested driver function's definition in the API header file. The function pointer typedef can be picked up from the corresponding typedefs header file. For example, `cudaTypedefs.h` consists of function pointer typedefs for driver APIs defined in `cuda.h`. 

CUDA Runtime API
The API will return `cudaSuccess` and set the returned `funcPtr` to NULL if the requested driver function is not supported on the platform, no ABI compatible driver function exists for the CUDA runtime version or if the driver symbol is invalid.

It will also set the optional `driverStatus` to one of the values in `cudaDriverEntryPointQueryResult` with the following meanings:

- **cudaDriverEntryPointSuccess** - The requested symbol was successfully found based on input arguments and `pfn` is valid
- **cudaDriverEntryPointSymbolNotFound** - The requested symbol was not found
- **cudaDriverEntryPointVersionNotSufficient** - The requested symbol was found but is not supported by the current runtime version (CUDART_VERSION)

The requested flags can be:

- **cudaEnableDefault**: This is the default mode. This is equivalent to `cudaEnablePerThreadDefaultStream` if the code is compiled with --default-stream per-thread compilation flag or the macro CUDA_API_PER_THREAD_DEFAULT_STREAM is defined; `cudaEnableLegacyStream` otherwise.
- **cudaEnableLegacyStream**: This will enable the search for all driver symbols that match the requested driver symbol name except the corresponding per-thread versions.
- **cudaEnablePerThreadDefaultStream**: This will enable the search for all driver symbols that match the requested driver symbol name including the per-thread versions. If a per-thread version is not found, the API will return the legacy version of the driver function.

**Note:**

- Version mixing among CUDA-defined types and driver API versions is strongly discouraged and doing so can result in an undefined behavior. [More here.](#)
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

**See also:**

`cuGetProcAddress`
6.30. **C++ API Routines**

C++-style interface built on top of CUDA runtime API.

This section describes the C++ high level API functions of the CUDA runtime application programming interface. To use these functions, your application needs to be compiled with the `nvcc` compiler.

**__cudaOccupancyB2DHelper**

cppClassifierVisibility: visibility=public

**template < class T >**
**__host__cudaCreateChannelDesc (void)**

[C++ API] Returns a channel descriptor using the specified format

**Returns**

Channel descriptor with format $f$

**Description**

Returns a channel descriptor with format $f$ and number of bits of each component $x$, $y$, $z$, and $w$. The `cudaChannelFormatDesc` is defined as:

```c
struct cudaChannelFormatDesc {
  int $x$, $y$, $z$, $w$
  enum cudaChannelFormatKind $f$
};
```

where `cudaChannelFormatKind` is one of `cudaChannelFormatKindSigned`, `cudaChannelFormatKindUnsigned`, `cudaChannelFormatKindFloat`, `cudaChannelFormatKindSignedNormalized8X1`, `cudaChannelFormatKindSignedNormalized8X2`, `cudaChannelFormatKindSignedNormalized8X4`, `cudaChannelFormatKindUnsignedNormalized8X1`, `cudaChannelFormatKindUnsignedNormalized8X2`, `cudaChannelFormatKindUnsignedNormalized8X4`, `cudaChannelFormatKindSignedNormalized16X1`, `cudaChannelFormatKindSignedNormalized16X2`, `cudaChannelFormatKindSignedNormalized16X4`, `cudaChannelFormatKindUnsignedNormalized16X1`, `cudaChannelFormatKindUnsignedNormalized16X2`, `cudaChannelFormatKindUnsignedNormalized16X4` or `cudaChannelFormatKindNV12`.


The format is specified by the template specialization.

The template function specializes for the following scalar types: char, signed char, unsigned char, short, unsigned short, int, unsigned int, long, unsigned long, and float. The template function specializes for the following vector types: char{1|2|4}, uchar{1|2|4}, short{1|2|4}, ushort{1|2|4}, int{1|2|4}, uint{1|2|4}, long{1|2|4}, ulong{1|2|4}, float{1|2|4}. The template function specializes for following cudaChannelFormatKind enum values: cudaChannelFormatKind{Uns|S}ignedNormalized{8|16}X{1|2|4}, and cudaChannelFormatKindNV12.

Invoking the function on a type without a specialization defaults to creating a channel format of kind cudaChannelFormatKindNone

See also:
cudaCreateChannelDesc (Low level), cudaGetChannelDesc,

__host__cudaError_t cudaEventCreate (cudaEvent_t *event, unsigned int flags)

[C++ API] Creates an event object with the specified flags

Parameters

- **event**
  - Newly created event
- **flags**
  - Flags for new event

Returns
cudaSuccess, cudaErrorInvalidValue, cudaErrorLaunchFailure, cudaErrorMemoryAllocation

Description

Creates an event object with the specified flags. Valid flags include:

- **cudaEventDefault**: Default event creation flag.
- **cudaEventBlockingSync**: Specifies that event should use blocking synchronization. A host thread that uses cudaEventSynchronize() to wait on an event created with this flag will block until the event actually completes.
- **cudaEventDisableTiming**: Specifies that the created event does not need to record timing data. Events created with this flag specified and the cudaEventBlockingSync flag not specified will provide the best performance when used with cudaStreamWaitEvent[] and cudaMemcpyDeviceToHost[].
Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return \texttt{cudaErrorInitializationError}, \texttt{cudaErrorInsufficientDriver} or \texttt{cudaErrorNoDevice} if this call tries to initialize internal CUDA RT state.
- Note that as specified by \texttt{cudaStreamAddCallback} no CUDA function may be called from callback. \texttt{cudaErrorNotPermitted} may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
\texttt{cudaEventCreate} (C API), \texttt{cudaEventCreateWithFlags}, \texttt{cudaEventRecord}, \texttt{cudaEventQuery}, \texttt{cudaEventSynchronize}, \texttt{cudaEventDestroy}, \texttt{cudaEventElapsedTime}, \texttt{cudaStreamWaitEvent}

\begin{verbatim}
template < class T > __host__ cudaError_t
cudaFuncGetAttributes (cudaFuncAttributes *attr, T *entry)
\end{verbatim}

[C++ API] Find out attributes for a given function

**Parameters**

- **attr**
  - Return pointer to function’s attributes
- **entry**
  - Function to get attributes of

**Returns**

\texttt{cudaSuccess}, \texttt{cudaErrorInvalidDeviceFunction}

**Description**

This function obtains the attributes of a function specified via \texttt{entry}. The parameter \texttt{entry} must be a pointer to a function that executes on the device. The parameter specified by \texttt{entry} must be declared as a \texttt{__global__} function. The fetched attributes are placed in \texttt{attr}. If the specified function does not exist, then \texttt{cudaErrorInvalidDeviceFunction} is returned.

Note that some function attributes such as \texttt{maxThreadsPerBlock} may vary based on the device that is currently being used.
Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

`cudaLaunchKernel (C++ API), cudaFuncSetCacheConfig (C++ API), cudaFuncGetAttributes (C API), cudaSetDoubleForDevice, cudaSetDoubleForHost`

`template < class T > __host__cudaError_t cudaFuncSetAttribute (T *entry, cudaFuncAttribute attr, int value)`

[C++ API] Set attributes for a given function

**Parameters**

- **entry**
  - Function to get attributes of
- **attr**
  - Attribute to set
- **value**
  - Value to set

**Returns**

`cudaSuccess, cudaErrorInvalidDeviceFunction, cudaErrorInvalidValue`

**Description**

This function sets the attributes of a function specified via `entry`. The parameter `entry` must be a pointer to a function that executes on the device. The parameter specified by `entry` must be declared as a `__global__` function. The enumeration defined by `attr` is set to the value defined by `value`. If the specified function does not exist, then `cudaErrorInvalidDeviceFunction` is returned. If the specified attribute cannot be written, or if the value is incorrect, then `cudaErrorInvalidValue` is returned.

Valid values for `attr` are:

- `cudaFuncAttributeMaxDynamicSharedMemorySize` - The requested maximum size in bytes of dynamically-allocated shared memory. The sum of this value
and the function attribute sharedSizeBytes cannot exceed the device attribute 
cudaDevAttrMaxSharedMemoryPerBlockOptin. The maximal size of requestable dynamic 
shared memory may differ by GPU architecture.

- cudaFuncAttributePreferredSharedMemoryCarveout - On devices where the 
L1 cache and shared memory use the same hardware resources, this sets the 
shared memory carveout preference, in percent of the total shared memory. See 
cudaDevAttrMaxSharedMemoryPerMultiprocessor. This is only a hint, and the driver can 
choose a different ratio if required to execute the function.

- cudaFuncAttributeRequiredClusterWidth: The required cluster width in blocks. The width, 
height, and depth values must either all be 0 or all be positive. The validity of the cluster 
dimensions is checked at launch time. If the value is set during compile time, it cannot be 
set at runtime. Setting it at runtime will return cudaErrorNotPermitted.

- cudaFuncAttributeRequiredClusterHeight: The required cluster height in blocks. The 
width, height, and depth values must either all be 0 or all be positive. The validity of the 
center dimensions is checked at launch time. If the value is set during compile time, it 
cannot be set at runtime. Setting it at runtime will return cudaErrorNotPermitted.

- cudaFuncAttributeRequiredClusterDepth: The required cluster depth in blocks. The width, 
height, and depth values must either all be 0 or all be positive. The validity of the cluster 
dimensions is checked at launch time. If the value is set during compile time, it cannot be 
set at runtime. Setting it at runtime will return cudaErrorNotPermitted.

- cudaFuncAttributeClusterSchedulingPolicyPreference: The block scheduling policy of a 
function. The value type is cudaClusterSchedulingPolicy.

Note:
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, 
cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal 
CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called 
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a 
diagnostic in such case.

cudaLaunchKernel [ C++ API], cudaFuncSetCacheConfig [ C++ API], cudaFuncGetAttributes [ C 
API], cudaSetDoubleForDevice, cudaSetDoubleForHost
template < class T > __host__ cudaError_t
cudaFuncSetCacheConfig (T *func, cudaFuncCache cacheConfig)

[C++ API] Sets the preferred cache configuration for a device function

Parameters

func
- device function pointer

cacheConfig
- Requested cache configuration

Returns
cudaSuccess, cudaErrorInvalidDeviceFunction

Description

On devices where the L1 cache and shared memory use the same hardware resources, this
sets through cacheConfig the preferred cache configuration for the function specified via
func. This is only a preference. The runtime will use the requested configuration if possible,
but it is free to choose a different configuration if required to execute func.

func must be a pointer to a function that executes on the device. The parameter specified by
func must be declared as a __global__ function. If the specified function does not exist,
then cudaErrorInvalidDeviceFunction is returned.

This setting does nothing on devices where the size of the L1 cache and shared memory are
fixed.

Launching a kernel with a different preference than the most recent preference setting may
insert a device-side synchronization point.

The supported cache configurations are:

- cudaFuncCachePreferNone: no preference for shared memory or L1 (default)
- cudaFuncCachePreferShared: prefer larger shared memory and smaller L1 cache
- cudaFuncCachePreferL1: prefer larger L1 cache and smaller shared memory

Note:
- Note that this function may also return error codes from previous, asynchronous launches.
Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.

Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

cudaLaunchKernel [C++ API], cudaFuncSetCacheConfig [C API], cudaFuncGetAttributes [C++ API], cudaSetDoubleForDevice, cudaSetDoubleForHost, cudaThreadGetCacheConfig, cudaThreadSetCacheConfig

template <class T> __host__ cudaError_t cudaGetKernel (cudaKernel_t *kernelPtr, const T *entryFuncAddr)

Get pointer to device kernel that matches entry function `entryFuncAddr`.

**Parameters**

- **kernelPtr**
  - Returns the device kernel
- **entryFuncAddr**
  - Address of device entry function to search kernel for

**Returns**

`cudaSuccess`

**Description**

Returns in `kernelPtr` the device kernel corresponding to the entry function `entryFuncAddr`.

**See also:**

cudaGetKernel [C API]
template < class T > __host__.cudaError_t
cudaGetSymbolAddress (void **devPtr, const T symbol)

[C++ API] Finds the address associated with a CUDA symbol

Parameters

**devPtr**
- Return device pointer associated with symbol

**symbol**
- Device symbol reference

Returns

cudaSuccess, cudaErrorInvalidSymbol, cudaErrorNoKernelImageForDevice

Description

Returns in *devPtr* the address of symbol *symbol* on the device. *symbol* can either be a variable that resides in global or constant memory space. If *symbol* cannot be found, or if *symbol* is not declared in the global or constant memory space, *devPtr* is unchanged and the error cudaErrorInvalidSymbol is returned.

**Note:**
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaGetSymbolAddress [ C API], cudaGetSymbolSize [ C++ API]
template < class T > __host__ cudaError_t 
cudaGetSymbolSize (size_t *size, const T symbol)

[C++ API] Finds the size of the object associated with a CUDA symbol

Parameters

size
- Size of object associated with symbol

symbol
- Device symbol reference

Returns

cudaSuccess, cudaErrorInvalidSymbol, cudaErrorNoKernelImageForDevice

Description

Returns in *size the size of symbol symbol. symbol must be a variable that resides in global or constant memory space. If symbol cannot be found, or if symbol is not declared in global or constant memory space, *size is unchanged and the error cudaErrorInvalidSymbol is returned.

Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

cudaGetSymbolAddress [ C++ API], cudaGetSymbolSize [ C API]
template < class T > __host__ cudaError_t cudaGraphAddMemcpyNodeFromSymbol (cudaGraphNode_t *pGraphNode, cudaGraph_t graph, const cudaGraphNode_t *pDependencies, size_t numDependencies, void *dst, const T symbol, size_t count, size_t offset, cudaMemcpyKind kind)

Creates a memcpy node to copy from a symbol on the device and adds it to a graph.

Parameters

pGraphNode
- Returns newly created node

graph
- Graph to which to add the node

pDependencies
- Dependencies of the node

numDependencies
- Number of dependencies

dst
- Destination memory address

symbol
- Device symbol address

count
- Size in bytes to copy

offset
- Offset from start of symbol in bytes

kind
- Type of transfer

Returns

cudaSuccess, cudaErrorInvalidValue

Description

Creates a new memcpy node to copy from symbol and adds it to graph with numDependencies dependencies specified via pDependencies. It is possible for numDependencies to be 0, in which case the node will be placed at the root of the graph. pDependencies may not have any duplicate entries. A handle to the new node will be returned in pGraphNode.
When the graph is launched, the node will copy `count` bytes from the memory area pointed to by `offset` bytes from the start of `symbol` to the memory area pointed to by `dst`. The memory areas may not overlap. `symbol` is a variable that resides in global or constant memory space. `kind` can be either `cudaMemcpyDeviceToHost`, `cudaMemcpyDeviceToDevice`, or `cudaMemcpyDefault`. Passing `cudaMemcpyDefault` is recommended, in which case the type of transfer is inferred from the pointer values. However, `cudaMemcpyDefault` is only allowed on systems that support unified virtual addressing.

Memcpy nodes have some additional restrictions with regards to managed memory, if the system contains at least one device which has a zero value for the device attribute `cudaDevAttrConcurrentManagedAccess`.

### Note:
- Graph objects are not threadsafe. [More here](#).
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

### See also:
- `cudaMemcpyFromSymbol`, `cudaGraphAddMemcpyNode`,
- `cudaGraphAddMemcpyNodeToDevice`, `cudaGraphMemcpyNodeGetParams`,
- `cudaGraphMemcpyNodeSetParams`, `cudaGraphMemcpyNodeSetParamsFromSymbol`,
- `cudaGraphMemcpyNodeSetParamsToDevice`, `cudaGraphCreate`, `cudaGraphDestroyNode`,
- `cudaGraphAddChildGraphNode`, `cudaGraphAddEmptyNode`, `cudaGraphAddKernelNode`,
- `cudaGraphAddHostNode`, `cudaGraphAddMemcpyNode`
template < class T > __host__ cudaError_t
cudaGraphAddMemcpyNodeToSymbol
cudaGraphNode_t * pGraphNode, cudaGraph_t graph,
const cudaGraphNode_t * pDependencies, size_t
numDependencies, const T symbol, const void * src,
size_t count, size_t offset, cudaMemcpyKind kind)

Creates a memcpy node to copy to a symbol on the device and adds it to a graph.

Parameters

- **pGraphNode**
  - Returns newly created node

- **graph**
  - Graph to which to add the node

- **pDependencies**
  - Dependencies of the node

- **numDependencies**
  - Number of dependencies

- **symbol**
  - Device symbol address

- **src**
  - Source memory address

- **count**
  - Size in bytes to copy

- **offset**
  - Offset from start of symbol in bytes

- **kind**
  - Type of transfer

Returns

- **cudaSuccess**, **cudaErrorInvalidValue**

Description

Creates a new memcpy node to copy to `symbol` and adds it to `graph` with `numDependencies` dependencies specified via `pDependencies`. It is possible for `numDependencies` to be 0, in which case the node will be placed at the root of the graph. `pDependencies` may not have any duplicate entries. A handle to the new node will be returned in `pGraphNode`. 
When the graph is launched, the node will copy `count` bytes from the memory area pointed to by `src` to the memory area pointed to by `offset` bytes from the start of `symbol`. The memory areas may not overlap. `symbol` is a variable that resides in global or constant memory space. `kind` can be either `cudaMemcpyHostToDevice`, `cudaMemcpyDeviceToDevice`, or `cudaMemcpyDefault`. Passing `cudaMemcpyDefault` is recommended, in which case the type of transfer is inferred from the pointer values. However, `cudaMemcpyDefault` is only allowed on systems that support unified virtual addressing.

Memcpy nodes have some additional restrictions with regards to managed memory, if the system contains at least one device which has a zero value for the device attribute `cudaDevAttrConcurrentManagedAccess`.

**Note:**
- Graph objects are not threadsafe. [More here.](#)
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

**See also:**
- `cudaMemcpyToSymbol`, `cudaGraphAddMemcpyNode`,
- `cudaGraphAddMemcpyNodeFromSymbol`, `cudaGraphMemcpyNodeGetParams`,
- `cudaGraphMemcpyNodeSetParams`, `cudaGraphMemcpyNodeSetParamsToSymbol`,
- `cudaGraphMemcpyNodeSetParamsFromSymbol`, `cudaGraphCreate`, `cudaGraphDestroyNode`,
- `cudaGraphAddChildGraphNode`, `cudaGraphAddEmptyNode`, `cudaGraphAddKernelNode`,
- `cudaGraphAddHostNode`, `cudaGraphAddMemsetNode`
template < class T > __host__ cudaError_t
cudaGraphExecMemcpyNodeSetParamsFromSymbol
cudaGraphExec_t hGraphExec, cudaGraphNode_t	node, void *dst, const T symbol, size_t count, size_t
offset, cudaMemcpyKind kind)

Sets the parameters for a memcpy node in the given graphExec to copy from a symbol on the
device.

Parameters

hGraphExec  
- The executable graph in which to set the specified node
node  
- Memcpy node from the graph which was used to instantiate graphExec
dst  
- Destination memory address
symbol  
- Device symbol address
count  
- Size in bytes to copy
offset  
- Offset from start of symbol in bytes
kind  
- Type of transfer

Returns
cudaSuccess, cudaErrorInvalidValue

Description

Updates the work represented by node in hGraphExec as though node had contained the
given params at instantiation. node must remain in the graph which was used to instantiate
hGraphExec. Changed edges to and from node are ignored.

symbol and dst must be allocated from the same contexts as the original source and
destination memory. The instantiation-time memory operands must be 1-dimensional. Zero-
length operations are not supported.

The modifications only affect future launches of hGraphExec. Already enqueued or running
launches of hGraphExec are not affected by this call. node is also not modified by this call.

Returns cudaErrorInvalidValue if the memory operands’ mappings changed or the original
memory operands are multidimensional.
Note:

- Graph objects are not threadsafe. [More here.](#)
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

- `cudaGraphAddMemcpyNode`, `cudaGraphAddMemcpyNodeFromSymbol`,
- `cudaGraphMemcpyNodeSetParams`, `cudaGraphMemcpyNodeSetParamsFromSymbol`,
- `cudaGraphInstantiate`, `cudaGraphExecMemcpyNodeSetParams`,
- `cudaGraphExecMemcpyNodeSetParamsToSymbol`, `cudaGraphExecKernelNodeSetParams`,
- `cudaGraphExecMemsetNodeSetParams`, `cudaGraphExecHostNodeSetParams`

```cpp
template < class T > __host__ cudaError_t
cudaGraphExecMemcpyNodeSetParamsToSymbol(
cudaGraphExec_t hGraphExec, cudaGraphNode_t node,
const T symbol, const void *src, size_t count,
size_t offset, cudaMemcpyKind kind)
```

Sets the parameters for a memcpy node in the given graphExec to copy to a symbol on the device.

**Parameters**

**hGraphExec**
- The executable graph in which to set the specified node

**node**
- Memcpy node from the graph which was used to instantiate graphExec

**symbol**
- Device symbol address

**src**
- Source memory address

**count**
- Size in bytes to copy
offset
- Offset from start of symbol in bytes

kind
- Type of transfer

Returns
cudaSuccess, cudaErrorInvalidValue

Description
Updates the work represented by node in hGraphExec as though node had contained the given params at instantiation. node must remain in the graph which was used to instantiate hGraphExec. Changed edges to and from node are ignored.

src and symbol must be allocated from the same contexts as the original source and destination memory. The instantiation-time memory operands must be 1-dimensional. Zero-length operations are not supported.

The modifications only affect future launches of hGraphExec. Already enqueued or running launches of hGraphExec are not affected by this call. node is also not modified by this call.

Returns cudaErrorInvalidValue if the memory operands’ mappings changed or the original memory operands are multidimensional.

Note:
- Graph objects are not threadsafe. More here.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaGraphAddMemcpyNode, cudaGraphAddMemcpyNodeToSymbol,
cudaGraphMemcpyNodeSetParams, cudaGraphMemcpyNodeSetParamsToSymbol,
cudaGraphInstantiate, cudaGraphExecMemcpyNodeSetParams,
cudaGraphExecMemcpyNodeSetParamsFromSymbol, cudaGraphExecKernelNodeSetParams,
cudaGraphExecMemsetNodeSetParams, cudaGraphExecHostNodeSetParams
__host__ cudaError_t cudaGraphInstantiate
(cudaGraphExec_t *pGraphExec, cudaGraph_t graph,
cudaGraphNode_t *pErrorNode, char *pLogBuffer,
size_t bufferSize)

Creates an executable graph from a graph.

Parameters

pGraphExec
  - Returns instantiated graph

graph
  - Graph to instantiate

pErrorNode
  - In case of an instantiation error, this may be modified to indicate a node contributing to
    the error

pLogBuffer
  - A character buffer to store diagnostic messages

bufferSize
  - Size of the log buffer in bytes

Returns

cudaSuccess, cudaErrorInvalidValue

Description

Instantiates graph as an executable graph. The graph is validated for any structural
constraints or intra-node constraints which were not previously validated. If instantiation is
successful, a handle to the instantiated graph is returned in pGraphExec.

If there are any errors, diagnostic information may be returned in pErrorNode and
pLogBuffer. This is the primary way to inspect instantiation errors. The output will be null
terminated unless the diagnostics overflow the buffer. In this case, they will be truncated, and
the last byte can be inspected to determine if truncation occurred.

Note:

- Graph objects are not threadsafe. More here.
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaGraphInstantiateWithFlags, cudaGraphCreate, cudaGraphUpload, cudaGraphLaunch, cudaGraphExecDestroy

template < class T > __host__ cudaError_t
cudaGraphMemcpyNodeSetParamsFromSymbol(
cudaGraphNode_t node, void *dst, const T symbol, 
size_t count, size_t offset, cudaMemcpyKind kind)

Sets a memcpy node’s parameters to copy from a symbol on the device.

Parameters
node
- Node to set the parameters for
dst
- Destination memory address
symbol
- Device symbol address
count
- Size in bytes to copy
offset
- Offset from start of symbol in bytes
kind
- Type of transfer

Returns
cudaSuccess, cudaErrorInvalidValue

Description
Sets the parameters of memcpy node node to the copy described by the provided parameters. When the graph is launched, the node will copy count bytes from the memory area pointed to by offset bytes from the start of symbol symbol to the memory area pointed to by dst. The memory areas may not overlap. symbol is a variable that resides in global or constant memory space. kind can be either cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice, or cudaMemcpyDefault. Passing cudaMemcpyDefault is recommended, in which case the type

of transfer is inferred from the pointer values. However, `cudaMemcpyDefault` is only allowed on systems that support unified virtual addressing.

**Note:**
- Graph objects are not threadsafe. [More here](#).
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

**See also:**
- `cudaMemcpyFromSymbol`, `cudaGraphMemcpyNodeSetParams`, `cudaGraphMemcpyNodeSetParamsToSymbol`, `cudaGraphAddMemcpyNode`, `cudaGraphMemcpyNodeGetParams`

```cpp
template < class T > __host__ cudaError_t
cudaGraphMemcpyNodeSetParamsToSymbol
  (cudaGraphNode_t node, const T symbol, const void *src, size_t count, size_t offset, cudaMemcpyKind kind)
```

Sets a memcpy node’s parameters to copy to a symbol on the device.

**Parameters**
- `node` - Node to set the parameters for
- `symbol` - Device symbol address
- `src` - Source memory address
- `count` - Size in bytes to copy
- `offset` - Offset from start of symbol in bytes
**kind**

- Type of transfer

**Returns**

cudaSuccess, cudaErrorInvalidValue

**Description**

Sets the parameters of memcpy node node to the copy described by the provided parameters.

When the graph is launched, the node will copy count bytes from the memory area pointed to by src to the memory area pointed to by offset bytes from the start of symbol symbol. The memory areas may not overlap. kind is a variable that resides in global or constant memory space. kind can be either cudaMemcpyHostToDevice, cudaMemcpyDeviceToDevice, or cudaMemcpyDefault. Passing cudaMemcpyDefault is recommended, in which case the type of transfer is inferred from the pointer values. However, cudaMemcpyDefault is only allowed on systems that support unified virtual addressing.

**Note:**

- Graph objects are not threadsafe. [More here.](#)
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

**See also:**

cudaMemcpyToSymbol, cudaMemcpyNodeSetParams, cudaMemcpyNodeSetParamsFromSymbol, cudaMemcpyNodeGetParams
template < class T > __host__ cudaError_t
cudaLaunchCooperativeKernel (const T *func,
dim3 gridDim, dim3 blockDim, void **args, size_t
sharedMem, cudaStream_t stream)
Launches a device function.

Parameters
func
  - Device function symbol
gridDim
  - Grid dimensions
blockDim
  - Block dimensions
args
  - Arguments
sharedMem
  - Shared memory (defaults to 0)
stream
  - Stream identifier (defaults to NULL)

Returns
cudaSuccess, cudaErrorInvalidDeviceFunction, cudaErrorInvalidConfiguration,
cudaErrorLaunchFailure, cudaErrorLaunchTimeout, cudaErrorLaunchOutOfResources,
cudaErrorSharedObjectInitFailed

Description
The function invokes kernel func on gridDim (gridDim.x gridDim.y gridDim.z) grid of
blocks. Each block contains blockDim (blockDim.x blockDim.y blockDim.z) threads.
The device on which this kernel is invoked must have a non-zero value for the device attribute
cudaDevAttrCooperativeLaunch.
The total number of blocks launched cannot exceed the maximum number of blocks
per multiprocessor as returned by cudaOccupancyMaxActiveBlocksPerMultiprocessor
(or cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags) times the number of
multiprocessors as specified by the device attribute cudaDevAttrMultiProcessorCount.
The kernel cannot make use of CUDA dynamic parallelism.
If the kernel has N parameters the args should point to array of N pointers. Each pointer,
from args[0] to args[N - 1], point to the region of memory from which the actual
parameter will be copied.
sharedMem sets the amount of dynamic shared memory that will be available to each thread block.

stream specifies a stream the invocation is associated to.

Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- This function exhibits asynchronous behavior for most use cases.
- This function uses standard default stream semantics.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

cudaLaunchCooperativeKernel (C API)

```cpp
template < class T > __host__ cudaError_t
cudaLaunchKernel (const T *func, dim3 gridDim, dim3 blockDim, void **args, size_t sharedMem, cudaStream_t stream)
```

Launches a device function.

Parameters

- **func**
  - Device function symbol
- **gridDim**
  - Grid dimensions
- **blockDim**
  - Block dimensions
- **args**
  - Arguments
- **sharedMem**
  - Shared memory (defaults to 0)
- **stream**
  - Stream identifier (defaults to NULL)
Returns


Description


If the kernel has N parameters the args should point to array of N pointers. Each pointer, from args[0] to args[N - 1], point to the region of memory from which the actual parameter will be copied.

sharedMem sets the amount of dynamic shared memory that will be available to each thread block.

stream specifies a stream the invocation is associated to.

Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- This function exhibits asynchronous behavior for most use cases.
- This function uses standard default stream semantics.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

cudaLaunchKernel ( C API)
template < typename... ExpTypes, typename... ActTypes > __host__ cudaError_t cudaLaunchKernelEx (const cudaLaunchConfig_t *config, void(*)(ExpTypes...) kernel, ActTypes &&... args)
Launches a CUDA function with launch-time configuration.

Parameters

- **config**
  - Launch configuration
- **kernel**
- **args**
  - Parameter pack of kernel parameters

Returns

- cudaSuccess, cudaErrorInvalidDeviceFunction, cudaErrorInvalidConfiguration,
- cudaErrorLaunchFailure, cudaErrorLaunchTimeout, cudaErrorLaunchOutOfResources,
- cudaErrorSharedObjectInitFailed, cudaErrorInvalidPtx, cudaErrorUnsupportedPtxVersion,
- cudaErrorNoKernelImageForDevice, cudaErrorJitCompilerNotFound,
- cudaErrorJitCompilationDisabled

Description


cfg->dynamicSmemBytes sets the amount of dynamic shared memory that will be available to each thread block.

cfg->stream specifies a stream the invocation is associated to.

Configuration beyond grid and block dimensions, dynamic shared memory size, and stream can be provided with the following two fields of cfg:

- **cfg->attrs** is an array of cfg->numAttrs contiguous cudaLaunchAttribute elements. The value of this pointer is not considered if cfg->numAttrs is zero. However, in that case, it is recommended to set the pointer to NULL. cfg->numAttrs is the number of attributes populating the first cfg->numAttrs positions of the cfg->attrs array.
The kernel arguments should be passed as arguments to this function via the `args` parameter pack.

The C API version of this function, `cudaLaunchKernelExC`, is also available for pre-C++11 compilers and for use cases where the ability to pass kernel parameters via void* array is preferable.

**Note:**
- This function uses standard [default stream](/docs/cuda/runtime-api.html#default-stream-adjacency) semantics.
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

**See also:**
- `cudaLaunchKernelEx (C API)`, `cuLaunchKernelEx`

```c
__host__ cudaError_t cudaMallocAsync (void **ptr, size_t size, cudaMemPool_t memPool, cudaStream_t stream)
```

Allocate from a pool.

**Description**

This is an alternate spelling for `cudaMallocFromPoolAsync` made available through operator overloading.

**See also:**
- `cudaMallocFromPoolAsync`, `cudaMallocAsync (C API)`
__host__ cudaError_t cudaMallocHost (void **ptr, size_t size, unsigned int flags)

[C++ API] Allocates page-locked memory on the host

Parameters

- **ptr**
  - Device pointer to allocated memory
- **size**
  - Requested allocation size in bytes
- **flags**
  - Requested properties of allocated memory

Returns

cudaSuccess, cudaErrorMemoryAllocation

Description

Allocates size bytes of host memory that is page-locked and accessible to the device. The driver tracks the virtual memory ranges allocated with this function and automatically accelerates calls to functions such as cudaMemcpy[]. Since the memory can be accessed directly by the device, it can be read or written with much higher bandwidth than pageable memory obtained with functions such as malloc[]. Allocating excessive amounts of pinned memory may degrade system performance, since it reduces the amount of memory available to the system for paging. As a result, this function is best used sparingly to allocate staging areas for data exchange between host and device.

The flags parameter enables different options to be specified that affect the allocation, as follows.

- **cudaHostAllocDefault**: This flag's value is defined to be 0.
- **cudaHostAllocPortable**: The memory returned by this call will be considered as pinned memory by all CUDA contexts, not just the one that performed the allocation.
- **cudaHostAllocMapped**: Maps the allocation into the CUDA address space. The device pointer to the memory may be obtained by calling cudaHostGetDevicePointer[].
- **cudaHostAllocWriteCombined**: Allocates the memory as write-combined (WC). WC memory can be transferred across the PCI Express bus more quickly on some system configurations, but cannot be read efficiently by most CPUs. WC memory is a good option for buffers that will be written by the CPU and read by the device via mapped pinned memory or host->device transfers.

All of these flags are orthogonal to one another: a developer may allocate memory that is portable, mapped and/or write-combined with no restrictions.
cudaSetDeviceFlags[] must have been called with the cudaDeviceMapHost flag in order for the cudaHostAllocMapped flag to have any effect.

The cudaHostAllocMapped flag may be specified on CUDA contexts for devices that do not support mapped pinned memory. The failure is deferred to cudaHostGetDevicePointer[] because the memory may be mapped into other CUDA contexts via the cudaHostAllocPortable flag.

Memory allocated by this function must be freed with cudaFreeHost[].

Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaSetDeviceFlags, cudaMallocHost [C API], cudaFreeHost, cudaHostAlloc

template < class T > __host__ cudaError_t cudaMallocManaged (T **devPtr, size_t size, unsigned int flags)
Allocates memory that will be automatically managed by the Unified Memory system.

Parameters

devPtr
- Pointer to allocated device memory

size
- Requested allocation size in bytes

flags
- Must be either cudaMemAttachGlobal or cudaMemAttachHost [defaults to cudaMemAttachGlobal]

Returns
cudaSuccess, cudaErrorMemoryAllocation, cudaErrorNotSupported, cudaErrorInvalidValue
Modules

Description

Allocates size bytes of managed memory on the device and returns in *devPtr a pointer to the allocated memory. If the device doesn’t support allocating managed memory, cudaErrorNotSupported is returned. Support for managed memory can be queried using the device attribute cudaDevAttrManagedMemory. The allocated memory is suitably aligned for any kind of variable. The memory is not cleared. If size is 0, cudaMallocManaged returns cudaErrorInvalidValue. The pointer is valid on the CPU and on all GPUs in the system that support managed memory. All accesses to this pointer must obey the Unified Memory programming model.

flags specifies the default stream association for this allocation. flags must be one of cudaMemAttachGlobal or cudaMemAttachHost. The default value for flags is cudaMemAttachGlobal. If cudaMemAttachGlobal is specified, then this memory is accessible from any stream on any device. If cudaMemAttachHost is specified, then the allocation should not be accessed from devices that have a zero value for the device attribute cudaDevAttrConcurrentManagedAccess; an explicit call to cudaStreamAttachMemAsync will be required to enable access on such devices.

If the association is later changed via cudaStreamAttachMemAsync to a single stream, the default association, as specified during cudaMallocManaged, is restored when that stream is destroyed. For __managed__ variables, the default association is always cudaMemAttachGlobal. Note that destroying a stream is an asynchronous operation, and as a result, the change to default association won’t happen until all work in the stream has completed.

Memory allocated with cudaMallocManaged should be released with cudaFree.

Device memory oversubscription is possible for GPUs that have a non-zero value for the device attribute cudaDevAttrConcurrentManagedAccess. Managed memory on such GPUs may be evicted from device memory to host memory at any time by the Unified Memory driver in order to make room for other allocations.

In a multi-GPU system where all GPUs have a non-zero value for the device attribute cudaDevAttrConcurrentManagedAccess, managed memory may not be populated when this API returns and instead may be populated on access. In such systems, managed memory can migrate to any processor’s memory at any time. The Unified Memory driver will employ heuristics to maintain data locality and prevent excessive page faults to the extent possible. The application can also guide the driver about memory usage patterns via cudaMemAdvise. The application can also explicitly migrate memory to a desired processor’s memory via cudaMemPrefetchAsync.

In a multi-GPU system where all of the GPUs have a zero value for the device attribute cudaDevAttrConcurrentManagedAccess and all the GPUs have peer-to-peer support with each other, the physical storage for managed memory is created on the GPU which is active at the time cudaMallocManaged is called. All other GPUs will reference the data at reduced
bandwidth via peer mappings over the PCIe bus. The Unified Memory driver does not migrate memory among such GPUs.

In a multi-GPU system where not all GPUs have peer-to-peer support with each other and where the value of the device attribute `cudaDevAttrConcurrentManagedAccess` is zero for at least one of those GPUs, the location chosen for physical storage of managed memory is system-dependent.

- On Linux, the location chosen will be device memory as long as the current set of active contexts are on devices that either have peer-to-peer support with each other or have a non-zero value for the device attribute `cudaDevAttrConcurrentManagedAccess`. If there is an active context on a GPU that does not have a non-zero value for that device attribute and it does not have peer-to-peer support with the other devices that have active contexts on them, then the location for physical storage will be ‘zero-copy’ or host memory. Note that this means that managed memory that is located in device memory is migrated to host memory if a new context is created on a GPU that doesn’t have a non-zero value for the device attribute and does not support peer-to-peer with at least one of the other devices that has an active context. This in turn implies that context creation may fail if there is insufficient host memory to migrate all managed allocations.

- On Windows, the physical storage is always created in ‘zero-copy’ or host memory. All GPUs will reference the data at reduced bandwidth over the PCIe bus. In these circumstances, use of the environment variable CUDA_VISIBLE_DEVICES is recommended to restrict CUDA to only use those GPUs that have peer-to-peer support. Alternatively, users can also set CUDA_MANAGED_FORCE_DEVICE_ALLOC to a non-zero value to force the driver to always use device memory for physical storage. When this environment variable is set to a non-zero value, all devices used in that process that support managed memory have to be peer-to-peer compatible with each other. The error `cudaErrorInvalidDevice` will be returned if a device that supports managed memory is used and it is not peer-to-peer compatible with any of the other managed memory supporting devices that were previously used in that process, even if `cudaDeviceReset` has been called on those devices. These environment variables are described in the CUDA programming guide under the “CUDA environment variables” section.

- On ARM, managed memory is not available on discrete gpu with Drive PX-2.

**Note:**

- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.

- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.
template < class T > cudaError_t cudaMemAdvise (T *devPtr, size_t count, cudaMemoryAdvise advice, cudaMemLocation location)
Advise about the usage of a given memory range.

Description
This is an alternate spelling for cudaMemAdvise made available through operator overloading.

See also:
cudaMemAdvise, cudaMemAdvise (C API)

template < class T > __host__cudaError_t cudaMemcpyFromSymbol (void *dst, const T symbol, size_t count, size_t offset, cudaMemcpyKind kind)
[C++ API] Copies data from the given symbol on the device

Parameters
dst
 - Destination memory address
symbol
 - Device symbol reference
count
 - Size in bytes to copy
offset
 - Offset from start of symbol in bytes
kind
 - Type of transfer

Returns
cudaSuccess, cudaErrorInvalidValue, cudaErrorInvalidSymbol,
cudaErrorInvalidMemcpyDirection, cudaErrorNoKernelImageForDevice
Description

Copies `count` bytes from the memory area `offset` bytes from the start of symbol `symbol` to the memory area pointed to by `dst`. The memory areas may not overlap. `symbol` is a variable that resides in global or constant memory space. `kind` can be either `cudaMemcpyDeviceToHost` or `cudaMemcpyDeviceToDevice`.

Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- This function exhibits synchronous behavior for most use cases.
- Use of a string naming a variable as the `symbol` parameter was deprecated in CUDA 4.1 and removed in CUDA 5.0.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

`cudaMemcpy`, `cudaMemcpy2D`, `cudaMemcpy2DToArray`, `cudaMemcpy2DFromArray`, `cudaMemcpy2DArrayToArray`, `cudaMemcpyToSymbol`, `cudaMemcpyAsync`, `cudaMemcpy2DAsync`, `cudaMemcpy2DToArrayAsync`, `cudaMemcpy2DFromArrayAsync`, `cudaMemcpyToSymbolAsync`, `cudaMemcpyFromSymbolAsync`

template < class T > __host__ __cudaError_t cudaMemcpyFromSymbolAsync (void *dst, const T *symbol, size_t count, size_t offset, cudaMemcpyKind kind, cudaStream_t stream)

[C++ API] Copies data from the given symbol on the device

Parameters

- `dst` - Destination memory address
- `symbol` - Device symbol reference
count  
- Size in bytes to copy

offset  
- Offset from start of symbol in bytes

kind  
- Type of transfer

stream  
- Stream identifier

Returns

cudaSuccess, cudaErrorInvalidValue, cudaErrorInvalidSymbol, cudaErrorInvalidMemcpyDirection, cudaErrorNoKernelImageForDevice

Description

Copies `count` bytes from the memory area `offset` bytes from the start of symbol `symbol` to the memory area pointed to by `dst`. The memory areas may not overlap. `symbol` is a variable that resides in global or constant memory space. `kind` can be either cudaMemcpyDeviceToHost or cudaMemcpyDeviceToDevice. 

`cudaMemcpyFromSymbolAsync()` is asynchronous with respect to the host, so the call may return before the copy is complete. The copy can optionally be associated to a stream by passing a non-zero `stream` argument. If `kind` is cudaMemcpyDeviceToHost and `stream` is non-zero, the copy may overlap with operations in other streams.

Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- This function exhibits asynchronous behavior for most use cases.
- Use of a string naming a variable as the `symbol` parameter was deprecated in CUDA 4.1 and removed in CUDA 5.0.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaMemcpyFromSymbolAsync no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

cudaMemcpy, cudaMemcpy2D, cudaMemcpy2DToArrays, cudaMemcpy2DFromArray, cudaMemcpy2DArrayToArray, cudaMemcpyToSymbol, cudaMemcpyFromSymbol.
template < class T > __host__cudaError_t
cudaMemcpyToSymbol (const T symbol, const void *
src, size_t count, size_t offset, cudaMemcpyKind
kind)

[C++ API] Copies data to the given symbol on the device

Parameters

symbol
- Device symbol reference

src
- Source memory address

count
- Size in bytes to copy

offset
- Offset from start of symbol in bytes

kind
- Type of transfer

Returns
cudaSuccess, cudaErrorInvalidValue, cudaErrorInvalidSymbol,
cudaErrorInvalidMemcpyDirection, cudaErrorNoKernelImageForDevice

Description

Copies count bytes from the memory area pointed to by src to the memory area
offset bytes from the start of symbol symbol. The memory areas may not overlap.
symbol is a variable that resides in global or constant memory space. kind can be either
cudaMemcpyHostToDevice or cudaMemcpyDeviceToDevice.

Note:
- Note that this function may also return error codes from previous, asynchronous launches.
- This function exhibits synchronous behavior for most use cases.
- Use of a string naming a variable as the symbol parameter was deprecated in CUDA 4.1
  and removed in CUDA 5.0.
Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.

Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

`cudaMemcpy`, `cudaMemcpy2D`, `cudaMemcpy2DToArray`, `cudaMemcpy2DFromArray`, `cudaMemcpy2DArrayToArray`, `cudaMemcpyFromSymbol`, `cudaMemcpyAsync`, `cudaMemcpy2DAsync`, `cudaMemcpy2DToArrayAsync`, `cudaMemcpy2DFromArrayAsync`, `cudaMemcpyToSymbolAsync`, `cudaMemcpyFromSymbolAsync`

template < class T > __host__cudaError_t cudaMemcpyToSymbolAsync (const T symbol, const void *src, size_t count, size_t offset, cudaMemcpyKind kind, cudaStream_t stream)

[C++ API] Copies data to the given symbol on the device

**Parameters**

- **symbol**
  - Device symbol reference
- **src**
  - Source memory address
- **count**
  - Size in bytes to copy
- **offset**
  - Offset from start of symbol in bytes
- **kind**
  - Type of transfer
- **stream**
  - Stream identifier

**Returns**

`cudaSuccess`, `cudaErrorInvalidValue`, `cudaErrorInvalidSymbol`, `cudaErrorInvalidMemcpyDirection`, `cudaErrorNoKernelImageForDevice`
Description

Copies `count` bytes from the memory area pointed to by `src` to the memory area `offset` bytes from the start of `symbol symbol`. The memory areas may not overlap. `symbol` is a variable that resides in global or constant memory space. `kind` can be either `cudaMemcpyHostToDevice` or `cudaMemcpyDeviceToDevice`.

`cudaMemcpyToSymbolAsync()` is asynchronous with respect to the host, so the call may return before the copy is complete. The copy can optionally be associated to a stream by passing a non-zero `stream` argument. If `kind` is `cudaMemcpyHostToDevice` and `stream` is non-zero, the copy may overlap with operations in other streams.

Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- This function exhibits asynchronous behavior for most use cases.
- Use of a string naming a variable as the `symbol` parameter was deprecated in CUDA 4.1 and removed in CUDA 5.0.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

`cudaMemcpy`, `cudaMemcpy2D`, `cudaMemcpy2DToArray`, `cudaMemcpy2DFromArray`, 
`cudaMemcpy2DArrayToArray`, `cudaMemcpy2DFromArrayAsync`, `cudaMemcpyFromSymbol`, `cudaMemcpyAsync`, `cudaMemcpy2DAsync`, `cudaMemcpy2DToArrayAsync`, `cudaMemcpy2DFromArrayAsync`, `cudaMemcpyFromSymbolAsync`
template < class T > __host__ cudaError_t
cudaOccupancyAvailableDynamicSMemPerBlock(
  size_t *dynamicSmemSize, T func, int numBlocks, int
  blockSize)

Returns dynamic shared memory available per block when launching numBlocks blocks on
SM.

Parameters

dynamicSmemSize
  - Returned maximum dynamic shared memory

func
  - Kernel function for which occupancy is calculated

numBlocks
  - Number of blocks to fit on SM

blockSize
  - Size of the block

Returns

cudaSuccess, cudaErrorInvalidDevice, cudaErrorInvalidDeviceFunction,
cudaErrorInvalidValue, cudaErrorUnknown.

Description

Returns in *dynamicSmemSize the maximum size of dynamic shared memory to allow
numBlocks blocks per SM.

Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError,
cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:
cudaOccupancyMaxPotentialBlockSize
cudaOccupancyMaxPotentialBlockSizeWithFlags

cudaOccupancyMaxActiveBlocksPerMultiprocessor

cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags

cudaOccupancyMaxPotentialBlockSizeVariableSMem

cudaOccupancyMaxPotentialBlockSizeVariableSMemWithFlags

template < class T > __host__ cudaError_t
cudaOccupancyMaxActiveBlocksPerMultiprocessor
(int *numBlocks, T func, int blockSize, size_t dynamicSMemSize)

Returns occupancy for a device function.

Parameters

numBlocks
- Returned occupancy

func
- Kernel function for which occupancy is calculated

blockSize
- Block size the kernel is intended to be launched with

dynamicSMemSize
- Per-block dynamic shared memory usage intended, in bytes

Returns

cudaSuccess, cudaErrorInvalidDevice, cudaErrorInvalidDeviceFunction, cudaErrorInvalidValue, cudaErrorUnknown.

Description

Returns in *numBlocks the maximum number of active blocks per streaming multiprocessor for the device function.

Note:
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
- `cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags`
- `cudaOccupancyMaxPotentialBlockSize`
- `cudaOccupancyMaxPotentialBlockSizeWithFlags`
- `cudaOccupancyMaxPotentialBlockSizeVariableSMem`
- `cudaOccupancyMaxPotentialBlockSizeVariableSMemWithFlags`
- `cudaOccupancyAvailableDynamicSMemPerBlock`

```cpp
template < class T > __host__ cudaError_t cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags(int *numBlocks, T func, int blockSize, size_t dynamicSMemSize, unsigned int flags)
```

Returns occupancy for a device function with the specified flags.

**Parameters**

- `numBlocks` - Returned occupancy
- `func` - Kernel function for which occupancy is calculated
- `blockSize` - Block size the kernel is intended to be launched with
- `dynamicSMemSize` - Per-block dynamic shared memory usage intended, in bytes
- `flags` - Requested behavior for the occupancy calculator

**Returns**
- `cudaSuccess`, `cudaErrorInvalidDevice`, `cudaErrorInvalidDeviceFunction`, `cudaErrorInvalidValue`, `cudaErrorUnknown`

**Description**

Returns in `*numBlocks` the maximum number of active blocks per streaming multiprocessor for the device function.
The flags parameter controls how special cases are handled. Valid flags include:

- **cudaOccupancyDefault**: keeps the default behavior as `cudaOccupancyMaxActiveBlocksPerMultiprocessor`
- **cudaOccupancyDisableCachingOverride**: suppresses the default behavior on platform where global caching affects occupancy. On such platforms, if caching is enabled, but per-block SM resource usage would result in zero occupancy, the occupancy calculator will calculate the occupancy as if caching is disabled. Setting this flag makes the occupancy calculator to return 0 in such cases. More information can be found about this feature in the "Unified L1/Texture Cache" section of the Maxwell tuning guide.

**Note:**

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

- `cudaOccupancyMaxActiveBlocksPerMultiprocessor`
- `cudaOccupancyMaxPotentialBlockSize`
- `cudaOccupancyMaxPotentialBlockSizeWithFlags`
- `cudaOccupancyMaxPotentialBlockSizeVariableSMem`
- `cudaOccupancyMaxPotentialBlockSizeVariableSMemWithFlags`
- `cudaOccupancyAvailableDynamicSMemPerBlock`
template < class T > __host__ cudaError_t
cudaOccupancyMaxActiveClusters (int *numClusters, 
T *func, const cudaLaunchConfig_t *config)

Given the kernel function (func) and launch configuration (config), return the maximum number of clusters that could co-exist on the target device in *numClusters.

Parameters
numClusters
- Returned maximum number of clusters that could co-exist on the target device
func
- Kernel function for which maximum number of clusters are calculated
config
- Launch configuration for the given kernel function

Returns
cudaSuccess, cudaMemcpyInvalidateDeviceFunction, cudaMemcpyInvalidValue,
cudaErrorInvalidClusterSize, cudaMemcpyUnknown.

Description
If the function has required cluster size already set (see cudaMemcpyGetAttributes), the cluster size from config must either be unspecified or match the required size. Without required sizes, the cluster size must be specified in config, else the function will return an error.

Note that various attributes of the kernel function may affect occupancy calculation. Runtime environment may affect how the hardware schedules the clusters, so the calculated occupancy is not guaranteed to be achievable.

Note:
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaMemcpyInitializationError,
cudaErrorInsufficientDriver or cudaMemcpyNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaMemcpyAddCallback no CUDA function may be called from callback. cudaMemcpyNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaFuncGetAttributes
template < class T > __host__ cudaError_t 
cudaOccupancyMaxPotentialBlockSize (int *
minGridSize, int *blockSize, T func, size_t 
dynamicSMemSize, int blockSizeLimit)

Returns grid and block size that achieves maximum potential occupancy for a device function.

Parameters

minGridSize
- Returned minimum grid size needed to achieve the best potential occupancy

blockSize
- Returned block size

func
- Device function symbol

dynamicSMemSize
- Per-block dynamic shared memory usage intended, in bytes

blockSizeLimit
- The maximum block size $func$ is designed to work with. 0 means no limit.

Returns

cudaSuccess, cudaErrorInvalidDevice, cudaErrorInvalidDeviceFunction, 
cudaErrorInvalidValue, cudaErrorUnknown.

Description

Returns in *minGridSize and *blocksize a suggested grid / block size pair that achieves the best potential occupancy (i.e. the maximum number of active warps with the smallest number of blocks).

Use

See also:

cudaOccupancyMaxPotentialBlockSizeVariableSMem if the amount of per-block dynamic shared memory changes with different block sizes.

Note:

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, 
cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:

- `cudaOccupancyMaxPotentialBlockSizeWithFlags`
- `cudaOccupancyMaxActiveBlocksPerMultiprocessor`
- `cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags`
- `cudaOccupancyMaxPotentialBlockSizeVariableSMem`
- `cudaOccupancyMaxPotentialBlockSizeVariableSMemWithFlags`
- `cudaOccupancyAvailableDynamicSMemPerBlock`

```cpp
template < typename UnaryFunction, class T > __host__ cudaError_t
cudaOccupancyMaxPotentialBlockSizeVariableSMem
  (int *minGridSize, int *blockSize, T func,
   UnaryFunction blockSizeToDynamicSMemSize, int blockSizeLimit)
```

Returns grid and block size that achieves maximum potential occupancy for a device function.

**Parameters**

- **minGridSize**
  - Returned minimum grid size needed to achieve the best potential occupancy
- **blockSize**
  - Returned block size
- **func**
  - Device function symbol
- **blockSizeToDynamicSMemSize**
  - A unary function / functor that takes block size, and returns the size, in bytes, of dynamic shared memory needed for a block
- **blockSizeLimit**
  - The maximum block size `func` is designed to work with. 0 means no limit.

**Returns**

- `cudaSuccess`, `cudaErrorInvalidDevice`, `cudaErrorInvalidDeviceFunction`, `cudaErrorInvalidValue`, `cudaErrorUnknown`
Description
Returns in *minGridSize and *blocksize a suggested grid / block size pair that achieves the best potential occupancy (i.e. the maximum number of active warps with the smallest number of blocks).

Note:
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaOccupancyMaxPotentialBlockSizeVariableSMemWithFlags
cudaOccupancyMaxActiveBlocksPerMultiprocessor
cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags
cudaOccupancyMaxPotentialBlockSize
cudaOccupancyMaxPotentialBlockSizeWithFlags
cudaOccupancyAvailableDynamicSMemPerBlock

template < typename UnaryFunction, class T > __host__ cudaError_t
cudaOccupancyMaxPotentialBlockSizeVariableSMemWithFlags
(int *minGridSize, int *blockSize, T func,
UnaryFunction blockSizeToDynamicSMemSize, int blockSizeLimit, unsigned int flags)
Returns grid and block size that achieves maximum potential occupancy for a device function.

Parameters
minGridSize
- Returned minimum grid size needed to achieve the best potential occupancy
**blockSize**
- Returned block size

**func**
- Device function symbol

**blockSizeToDynamicSMemSize**
- A unary function / functor that takes block size, and returns the size, in bytes, of dynamic shared memory needed for a block

**blockSizeLimit**
- The maximum block size `func` is designed to work with. 0 means no limit.

**flags**
- Requested behavior for the occupancy calculator

**Returns**
- `cudaSuccess`, `cudaErrorInvalidDevice`, `cudaErrorInvalidDeviceFunction`, `cudaErrorInvalidValue`, `cudaErrorUnknown`.

**Description**

Returns in `*minGridSize` and `*blocksize` a suggested grid / block size pair that achieves the best potential occupancy (i.e. the maximum number of active warps with the smallest number of blocks).

The `flags` parameter controls how special cases are handled. Valid flags include:

- **cudaOccupancyDefault**: keeps the default behavior as `cudaOccupancyMaxPotentialBlockSizeVariableSMemWithFlags`
- **cudaOccupancyDisableCachingOverride**: This flag suppresses the default behavior on platform where global caching affects occupancy. On such platforms, if caching is enabled, but per-block SM resource usage would result in zero occupancy, the occupancy calculator will calculate the occupancy as if caching is disabled. Setting this flag makes the occupancy calculator to return 0 in such cases. More information can be found about this feature in the “Unified L1/Texture Cache” section of the Maxwell tuning guide.

**Note:**

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.
See also:
cudaOccupancyMaxPotentialBlockSizeVariableSMem
cudaOccupancyMaxActiveBlocksPerMultiprocessor
cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags
cudaOccupancyMaxPotentialBlockSize
cudaOccupancyMaxPotentialBlockSizeWithFlags
cudaOccupancyAvailableDynamicSMemPerBlock

template < class T > __host__cudaError_t
cudaOccupancyMaxPotentialBlockSizeWithFlags
(int *minGridSize, int *blockSize, T func, size_t
dynamicSMemSize, int blockSizeLimit, unsigned int flags)
Returns grid and block size that achieved maximum potential occupancy for a device function
with the specified flags.

Parameters

minGridSize
- Returned minimum grid size needed to achieve the best potential occupancy

blockSize
- Returned block size

func
- Device function symbol

dynamicSMemSize
- Per-block dynamic shared memory usage intended, in bytes

blockSizeLimit
- The maximum block size `func` is designed to work with. 0 means no limit.

flags
- Requested behavior for the occupancy calculator

Returns
cudaSuccess, cudaErrorInvalidDevice, cudaErrorInvalidDeviceFunction,
cudaErrorInvalidValue, cudaErrorUnknown,
**Description**

Returns in `*minGridSize` and `*blocksize` a suggested grid / block size pair that achieves the best potential occupancy (i.e. the maximum number of active warps with the smallest number of blocks).

The `flags` parameter controls how special cases are handle. Valid flags include:

- **cudaOccupancyDefault**: keeps the default behavior as `cudaOccupancyMaxPotentialBlockSize`
- **cudaOccupancyDisableCachingOverride**: This flag suppresses the default behavior on platform where global caching affects occupancy. On such platforms, if caching is enabled, but per-block SM resource usage would result in zero occupancy, the occupancy calculator will calculate the occupancy as if caching is disabled. Setting this flag makes the occupancy calculator to return 0 in such cases. More information can be found about this feature in the “Unified L1/Texture Cache” section of the Maxwell tuning guide.

**Use**

**See also:**

- [cudaOccupancyMaxPotentialBlockSize](#)
- [cudaOccupancyMaxActiveBlocksPerMultiprocessor](#)
- [cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags](#)
- [cudaOccupancyMaxPotentialBlockSizeVariableSMem](#)
- [cudaOccupancyMaxPotentialBlockSizeVariableSMemWithFlags](#)
- [cudaOccupancyAvailableDynamicSMemPerBlock](#)

**Note:**

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by [cudaStreamAddCallback](#) no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.

**See also:**

- [cudaOccupancyMaxPotentialBlockSize](#)
- [cudaOccupancyMaxActiveBlocksPerMultiprocessor](#)
- [cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags](#)
- [cudaOccupancyMaxPotentialBlockSizeVariableSMem](#)
- [cudaOccupancyMaxPotentialBlockSizeVariableSMemWithFlags](#)
- [cudaOccupancyAvailableDynamicSMemPerBlock](#)
template < class T > __host__ cudaError_t cudaOccupancyMaxPotentialClusterSize (int *clusterSize, T *func, const cudaLaunchConfig_t *config)

Given the kernel function (func) and launch configuration (config), return the maximum cluster size in *clusterSize.

Parameters
clusterSize
- Returned maximum cluster size that can be launched for the given kernel function and launch configuration
func
- Kernel function for which maximum cluster size is calculated
config
- Launch configuration for the given kernel function

Returns
cudaSuccess, cudaErrorInvalidDeviceFunction, cudaErrorInvalidValue, cudaErrorUnknown,

Description
The cluster dimensions in config are ignored. If func has a required cluster size set (see cudaFuncGetAttributes), *clusterSize will reflect the required cluster size.

By default this function will always return a value that’s portable on future hardware. A higher value may be returned if the kernel function allows non-portable cluster sizes.

This function will respect the compile time launch bounds.

Note:
- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return cudaErrorInitializationError, cudaErrorInsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal CUDA RT state.
- Note that as specified by cudaStreamAddCallback no CUDA function may be called from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in such case.

See also:
cudaFuncGetAttributes

template < class T > __host__cudaError_t
cudaStreamAttachMemAsync (cudaStream_t stream, T *devPtr, size_t length, unsigned int flags)
Attach memory to a stream asynchronously.

Parameters

stream
- Stream in which to enqueue the attach operation
devPtr
- Pointer to memory (must be a pointer to managed memory or to a valid host-accessible region of system-allocated memory)
length
- Length of memory [defaults to zero]
flags
- Must be one of cudaMemAttachGlobal, cudaMemAttachHost or cudaMemAttachSingle (defaults to cudaMemAttachSingle)

Returns

cudaSuccess, cudaErrorNotReady, cudaErrorInvalidValue, cudaErrorInvalidResourceHandle

Description

Enqueues an operation in stream to specify stream association of length bytes of memory starting from devPtr. This function is a stream-ordered operation, meaning that it is dependent on, and will only take effect when, previous work in stream has completed. Any previous association is automatically replaced.

devPtr must point to one of the following types of memories:

- managed memory declared using the __managed__ keyword or allocated with cudaMallocManaged.
- a valid host-accessible region of system-allocated pageable memory. This type of memory may only be specified if the device associated with the stream reports a non-zero value for the device attribute cudaDevAttrPageableMemoryAccess.

For managed allocations, length must be either zero or the entire allocation’s size. Both indicate that the entire allocation’s stream association is being changed. Currently, it is not possible to change stream association for a portion of a managed allocation.

For pageable allocations, length must be non-zero.
The stream association is specified using flags which must be one of `cudaMemAttachGlobal`, `cudaMemAttachHost` or `cudaMemAttachSingle`. The default value for flags is `cudaMemAttachSingle` If the `cudaMemAttachGlobal` flag is specified, the memory can be accessed by any stream on any device. If the `cudaMemAttachHost` flag is specified, the program makes a guarantee that it won’t access the memory on the device from any stream on a device that has a zero value for the device attribute `cudaDevAttrConcurrentManagedAccess`. If the `cudaMemAttachSingle` flag is specified and `stream` is associated with a device that has a zero value for the device attribute `cudaDevAttrConcurrentManagedAccess`, the program makes a guarantee that it will only access the memory on the device from `stream`. It is illegal to attach singly to the NULL stream, because the NULL stream is a virtual global stream and not a specific stream. An error will be returned in this case.

When memory is associated with a single stream, the Unified Memory system will allow CPU access to this memory region so long as all operations in `stream` have completed, regardless of whether other streams are active. In effect, this constrains exclusive ownership of the managed memory region by an active GPU to per-stream activity instead of whole-GPU activity.

Accessing memory on the device from streams that are not associated with it will produce undefined results. No error checking is performed by the Unified Memory system to ensure that kernels launched into other streams do not access this region.

It is a program’s responsibility to order calls to `cudaStreamAttachMemAsync` via events, synchronization or other means to ensure legal access to memory at all times. Data visibility and coherency will be changed appropriately for all kernels which follow a stream-association change.

If `stream` is destroyed while data is associated with it, the association is removed and the association reverts to the default visibility of the allocation as specified at `cudaMallocManaged`. For __managed__ variables, the default association is always `cudaMemAttachGlobal`. Note that destroying a stream is an asynchronous operation, and as a result, the change to default association won’t happen until all work in the stream has completed.

**Note:**

- Note that this function may also return error codes from previous, asynchronous launches.
- Note that this function may also return `cudaErrorInitializationError`, `cudaErrorInsufficientDriver` or `cudaErrorNoDevice` if this call tries to initialize internal CUDA RT state.
- Note that as specified by `cudaStreamAddCallback` no CUDA function may be called from callback. `cudaErrorNotPermitted` may, but is not guaranteed to, be returned as a diagnostic in such case.
See also:
cudaStreamCreate, cudaStreamCreateWithFlags, cudaStreamWaitEvent, cudaStreamSynchronize, cudaStreamAddCallback, cudaStreamDestroy, cudaMallocManaged

6.31. Interactions with the CUDA Driver API

This section describes the interactions between the CUDA Driver API and the CUDA Runtime API.

Primary Contexts

There exists a one to one relationship between CUDA devices in the CUDA Runtime API and CUcontexts in the CUDA Driver API within a process. The specific context which the CUDA Runtime API uses for a device is called the device’s primary context. From the perspective of the CUDA Runtime API, a device and its primary context are synonymous.

Initialization and Tear-Down

CUDA Runtime API calls operate on the CUDA Driver API CUcontext which is current to the calling host thread.

The function cudaInitDevice() ensures that the primary context is initialized for the requested device but does not make it current to the calling thread.

The function cudaSetDevice() initializes the primary context for the specified device and makes it current to the calling thread by calling cuCtxSetCurrent().

The CUDA Runtime API will automatically initialize the primary context for a device at the first CUDA Runtime API call which requires an active context. If no CUcontext is current to the calling thread when a CUDA Runtime API call which requires an active context is made, then the primary context for a device will be selected, made current to the calling thread, and initialized.

The context which the CUDA Runtime API initializes will be initialized using the parameters specified by the CUDA Runtime API functions cudaSetDeviceFlags(), cudaD3D9SetDirect3DDevice(), cudaD3D10SetDirect3DDevice(), cudaD3D11SetDirect3DDevice(), cudaGLSetGLDevice(), and cudaVDPAUSetVDPAUDevice().

Note that these functions will fail with cudaErrorSetOnActiveProcess if they are called when the primary context for the specified device has already been initialized. (or if the current device has already been initialized, in the case of cudaSetDeviceFlags()).

Primary contexts will remain active until they are explicitly deinitialized using cudaDeviceReset(). The function cudaDeviceReset() will deinitialize the primary context for the calling thread’s current device immediately. The context will remain current to all of the threads that it was current to. The next CUDA Runtime API call on any thread which requires an active context will trigger the reinitialization of that device’s primary context.
Note that primary contexts are shared resources. It is recommended that the primary context not be reset except just before exit or to recover from an unspecified launch failure.

**Context Interoperability**

Note that the use of multiple `CUcontext` s per device within a single process will substantially degrade performance and is strongly discouraged. Instead, it is highly recommended that the implicit one-to-one device-to-context mapping for the process provided by the CUDA Runtime API be used.

If a non-primary `CUcontext` created by the CUDA Driver API is current to a thread then the CUDA Runtime API calls to that thread will operate on that `CUcontext`, with some exceptions listed below. Interoperability between data types is discussed in the following sections.

The function `cudaPointerGetAttributes()` will return the error `cudaErrorIncompatibleDriverContext` if the pointer being queried was allocated by a non-primary context. The function `cudaDeviceEnablePeerAccess()` and the rest of the peer access API may not be called when a non-primary `CUcontext` is current. To use the pointer query and peer access APIs with a context created using the CUDA Driver API, it is necessary that the CUDA Driver API be used to access these features.

All CUDA Runtime API state (e.g., global variables’ addresses and values) travels with its underlying `CUcontext`. In particular, if a `CUcontext` is moved from one thread to another then all CUDA Runtime API state will move to that thread as well.

Please note that attaching to legacy contexts (those with a version of 3010 as returned by `cuCtxGetApiVersion()`) is not possible. The CUDA Runtime will return `cudaErrorIncompatibleDriverContext` in such cases.

**Interactions between CUstream and cudaStream_t**

The types `CUstream` and `cudaStream_t` are identical and may be used interchangeably.

**Interactions between CEvent and cudaEvent_t**

The types `CEvent` and `cudaEvent_t` are identical and may be used interchangeably.

**Interactions between CUarray and cudaArray_t**

The types `CUarray` and `struct cudaArray *` represent the same data type and may be used interchangeably by casting the two types between each other.

In order to use a `CUarray` in a CUDA Runtime API function which takes a struct `cudaArray *`, it is necessary to explicitly cast the `CUarray` to a struct `cudaArray *`.

In order to use a struct `cudaArray *` in a CUDA Driver API function which takes a `CUarray`, it is necessary to explicitly cast the struct `cudaArray *` to a `CUarray`.

**Interactions between CUgraphicsResource and cudaGraphicsResource_t**

The types `CUgraphicsResource` and `cudaGraphicsResource_t` represent the same data type and may be used interchangeably by casting the two types between each other.
In order to use a **CUgraphicsResource** in a CUDA Runtime API function which takes a **cudaGraphicsResource_t**, it is necessary to explicitly cast the **CUgraphicsResource** to a **cudaGraphicsResource_t**.

In order to use a **cudaGraphicsResource_t** in a CUDA Driver API function which takes a **CUgraphicsResource**, it is necessary to explicitly cast the **cudaGraphicsResource_t** to a **CUgraphicsResource**.

**Interactions between CUtexObject and cudaTextureObject**

The types **CUtexObject** and **cudaTextureObject_t** represent the same data type and may be used interchangeably by casting the two types between each other.

In order to use a **CUtexObject** in a CUDA Runtime API function which takes a **cudaTextureObject_t**, it is necessary to explicitly cast the **CUtexObject** to a **cudaTextureObject_t**.

In order to use a **cudaTextureObject_t** in a CUDA Driver API function which takes a **CUtexObject**, it is necessary to explicitly cast the **cudaTextureObject_t** to a **CUtexObject**.

**Interactions between CUsurfObject and cudaSurfaceObject_t**

The types **CUsurfObject** and **cudaSurfaceObject_t** represent the same data type and may be used interchangeably by casting the two types between each other.

In order to use a **CUsurfObject** in a CUDA Runtime API function which takes a **cudaSurfaceObject_t**, it is necessary to explicitly cast the **CUsurfObject** to a **cudaSurfaceObject_t**.

In order to use a **cudaSurfaceObject_t** in a CUDA Driver API function which takes a **CUsurfObject**, it is necessary to explicitly cast the **cudaSurfaceObject_t** to a **CUsurfObject**.

**Interactions between CUfunction and cudaFunction_t**

The types **CUfunction** and **cudaFunction_t** represent the same data type and may be used interchangeably by casting the two types between each other.

In order to use a **cudaFunction_t** in a CUDA Driver API function which takes a **CUfunction**, it is necessary to explicitly cast the **cudaFunction_t** to a **CUfunction**.

```c
__host__cudaError_t cudaGetFuncBySymbol
(cudaFunction_t *functionPtr, const void *symbolPtr)
```

Get pointer to device entry function that matches entry function **symbolPtr**.

**Parameters**

- **functionPtr**
  - Returns the device entry function

- **symbolPtr**
  - Pointer to device entry function to search for
Returns

cudaSuccess

Description

Returns in functionPtr the device entry function corresponding to the symbol symbolPtr.

__host__cudaError_t cudaMemcpy (cudaMemcpy_t *device, void *host, size_t size, cudaMemcpyKind kind)

Copy data from host to device.

Parameters

device - Returns the device pointer

host - Address of host data

size - Size of data to copy

kind - Copy direction

Returns

cudaSuccess

Description

Copies data from host to device.

See also:

cudaMemcpy (C++ API)

6.32. Profiler Control

This section describes the profiler control functions of the CUDA runtime application programming interface.

__host__cudaError_t cudaProfilerStart (void)

Enable profiling.

Returns

cudaSuccess
Description
Enables profile collection by the active profiling tool for the current context. If profiling is already enabled, then `cudaProfilerStart` has no effect.

cudaProfilerStart and cudaProfilerStop APIs are used to programmatically control the profiling granularity by allowing profiling to be done only on selective pieces of code.

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaProfilerStop, cuProfilerStart

__host__cudaError_t cudaProfilerStop (void)
Disable profiling.

Returns
cudaSuccess

Description
Disables profile collection by the active profiling tool for the current context. If profiling is already disabled, then `cudaProfilerStop` has no effect.

cudaProfilerStart and cudaProfilerStop APIs are used to programmatically control the profiling granularity by allowing profiling to be done only on selective pieces of code.

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:
cudaProfilerStart, cuProfilerStop

6.33. Data types used by CUDA Runtime
struct cudaAccessPolicyWindow
struct cudaArrayMemoryRequirements
struct cudaArraySparseProperties
struct cudaChannelFormatDesc
struct cudaChildGraphNodeParams
struct cudaDeviceProp
struct cudaEglFrame
struct cudaEglPlaneDesc
struct cudaEventRecordNodeParams
struct cudaEventWaitNodeParams
struct cudaExtent
struct cudaExternalMemoryBufferDesc
struct cudaExternalMemoryHandleDesc
struct cudaExternalMemoryMipmappedArrayDesc
struct cudaExternalSemaphoreHandleDesc
struct cudaExternalSemaphoreSignalNodeParams
struct cudaExternalSemaphoreSignalNodeParamsV2
struct cudaExternalSemaphoreSignalParams
struct cudaExternalSemaphoreSignalParams_v1
struct cudaExternalSemaphoreWaitNodeParams
struct cudaExternalSemaphoreWaitNodeParamsV2
struct cudaExternalSemaphoreWaitParams
struct cudaExternalSemaphoreWaitParams_v1
struct cudaFuncAttributes
struct cudaGraphExecUpdateResultInfo
struct cudaGraphInstantiateParams
struct cudaHostNodeParams
struct cudaHostNodeParamsV2
struct cudaIpcEventHandle_t
struct cudaIpcMemHandle_t
struct cudaKernelNodeParams
struct cudaKernelNodeParamsV2
struct cudaLaunchAttribute
union cudaLaunchAttributeValue
struct cudaLaunchConfig_t
struct cudaLaunchParams
struct cudaMemcpy3DParms
struct cudaMemcpy3DPeerParms
struct cudaMemcpyNodeParams
struct cudaMemcpyNodeParamsV2
struct cudaMemcpy3DPeerParms
struct cudaMemcpyNodeParams
struct cudaMemcpyNodeParamsV2
struct cudaMemcpyNodeParams
struct cudaResourceDesc
struct cudaResourceViewDesc
struct cudaTextureDesc
struct CUuuid_st

enum cudaAccessProperty
Specifications performance hint with cudaAccessPolicyWindow for hitProp and missProp members.

Values
cudaAccessPropertyNormal = 0
  Normal cache persistence.
cudaAccessPropertyStreaming = 1
  Streaming access is less likely to persist from cache.
cudaAccessPropertyPersisting = 2
  Persisting access is more likely to persist in cache.

enum cudaCGScope
CUDA cooperative group scope

Values
cudaCGScopeInvalid = 0
  Invalid cooperative group scope
cudaCGScopeGrid = 1
  Scope represented by a grid_group
cudaCGScopeMultiGrid = 2
  Scope represented by a multi_grid_group

enum cudaChannelFormatKind
Channel format kind

Values
cudaChannelFormatKindSigned = 0
  Signed channel format
cudaChannelFormatKindUnsigned = 1
Unsigned channel format

cudaChannelFormatKindFloat = 2
  Float channel format

cudaChannelFormatKindNone = 3
  No channel format

cudaChannelFormatKindNV12 = 4
  Unsigned 8-bit integers, planar 4:2:0 YUV format

cudaChannelFormatKindUnsignedNormalized8X1 = 5
  1 channel unsigned 8-bit normalized integer

cudaChannelFormatKindUnsignedNormalized8X2 = 6
  2 channel unsigned 8-bit normalized integer

cudaChannelFormatKindUnsignedNormalized8X4 = 7
  4 channel unsigned 8-bit normalized integer

cudaChannelFormatKindUnsignedNormalized16X1 = 8
  1 channel unsigned 16-bit normalized integer

cudaChannelFormatKindUnsignedNormalized16X2 = 9
  2 channel unsigned 16-bit normalized integer

cudaChannelFormatKindUnsignedNormalized16X4 = 10
  4 channel unsigned 16-bit normalized integer

cudaChannelFormatKindSignedNormalized8X1 = 11
  1 channel signed 8-bit normalized integer

cudaChannelFormatKindSignedNormalized8X2 = 12
  2 channel signed 8-bit normalized integer

cudaChannelFormatKindSignedNormalized8X4 = 13
  4 channel signed 8-bit normalized integer

cudaChannelFormatKindSignedNormalized16X1 = 14
  1 channel signed 16-bit normalized integer

cudaChannelFormatKindSignedNormalized16X2 = 15
  2 channel signed 16-bit normalized integer

cudaChannelFormatKindSignedNormalized16X4 = 16
  4 channel signed 16-bit normalized integer

cudaChannelFormatKindUnsignedBlockCompressed1 = 17
  4 channel unsigned normalized block-compressed (BC1 compression) format

cudaChannelFormatKindUnsignedBlockCompressed1SRGB = 18
  4 channel unsigned normalized block-compressed (BC1 compression) format with sRGB encoding

cudaChannelFormatKindUnsignedBlockCompressed2 = 19
  4 channel unsigned normalized block-compressed (BC2 compression) format

cudaChannelFormatKindUnsignedBlockCompressed2SRGB = 20
  4 channel unsigned normalized block-compressed (BC2 compression) format with sRGB encoding

cudaChannelFormatKindUnsignedBlockCompressed3 = 21
  4 channel unsigned normalized block-compressed (BC3 compression) format
cudaChannelFormatKindUnsignedBlockCompressed3SRGB = 22
4 channel unsigned normalized block-compressed (BC3 compression) format with sRGB encoding

cudaChannelFormatKindUnsignedBlockCompressed4 = 23
1 channel unsigned normalized block-compressed (BC4 compression) format

cudaChannelFormatKindSignedBlockCompressed4 = 24
1 channel signed normalized block-compressed (BC4 compression) format

cudaChannelFormatKindUnsignedBlockCompressed5 = 25
2 channel unsigned normalized block-compressed (BC5 compression) format

cudaChannelFormatKindSignedBlockCompressed5 = 26
2 channel signed normalized block-compressed (BC5 compression) format

cudaChannelFormatKindUnsignedBlockCompressed6H = 27
3 channel unsigned half-float block-compressed (BC6H compression) format

cudaChannelFormatKindSignedBlockCompressed6H = 28
3 channel signed half-float block-compressed (BC6H compression) format

cudaChannelFormatKindUnsignedBlockCompressed7 = 29
4 channel unsigned normalized block-compressed (BC7 compression) format

cudaChannelFormatKindUnsignedBlockCompressed7SRGB = 30
4 channel unsigned normalized block-compressed (BC7 compression) format with sRGB encoding

enum cudaClusterSchedulingPolicy

Cluster scheduling policies. These may be passed to cudaFuncSetAttribute

Values

cudaClusterSchedulingPolicyDefault = 0
the default policy

cudaClusterSchedulingPolicySpread = 1
spread the blocks within a cluster to the SMs

cudaClusterSchedulingPolicyLoadBalancing = 2
allow the hardware to load-balance the blocks in a cluster to the SMs

enum cudaComputeMode

CUDA device compute modes

Values

cudaComputeModeDefault = 0
Default compute mode (Multiple threads can use cudaSetDevice() with this device)
cudaComputeModeExclusive = 1
Compute-exclusive-thread mode (Only one thread in one process will be able to use cudaSetDevice() with this device)
cudaComputeModeProhibited = 2
Compute-prohibited mode [No threads can use cudaSetDevice() with this device]

cudaComputeModeExclusiveProcess = 3
Compute-exclusive-process mode [Many threads in one process will be able to use cudaSetDevice() with this device]

**enum cudaDeviceAttr**
CUDA device attributes

**Values**

cudaDevAttrMaxThreadsPerBlock = 1
Maximum number of threads per block

cudaDevAttrMaxBlockSizeX = 2
Maximum block dimension X

cudaDevAttrMaxBlockSizeY = 3
Maximum block dimension Y

cudaDevAttrMaxBlockSizeZ = 4
Maximum block dimension Z

cudaDevAttrMaxGridSizeX = 5
Maximum grid dimension X

cudaDevAttrMaxGridSizeY = 6
Maximum grid dimension Y

cudaDevAttrMaxGridSizeZ = 7
Maximum grid dimension Z

cudaDevAttrMaxSharedMemoryPerBlock = 8
Maximum shared memory available per block in bytes

cudaDevAttrTotalConstantMemory = 9
Memory available on device for __constant__ variables in a CUDA C kernel in bytes

cudaDevAttrWarpSize = 10
Warp size in threads

cudaDevAttrMaxPitch = 11
Maximum pitch in bytes allowed by memory copies

cudaDevAttrMaxRegistersPerBlock = 12
Maximum number of 32-bit registers available per block

cudaDevAttrClockRate = 13
Peak clock frequency in kilohertz

cudaDevAttrTextureAlignment = 14
Alignment requirement for textures

cudaDevAttrGpuOverlap = 15
Device can possibly copy memory and execute a kernel concurrently

cudaDevAttrMultiProcessorCount = 16
Number of multiprocessors on device
cudaDevAttrKernelExecTimeout = 17
    Specifies whether there is a run time limit on kernels

cudaDevAttrIntegrated = 18
    Device is integrated with host memory

cudaDevAttrCanMapHostMemory = 19
    Device can map host memory into CUDA address space

cudaDevAttrComputeMode = 20
    Compute mode [See cudaComputeMode for details]

cudaDevAttrMaxTexture1DWidth = 21
    Maximum 1D texture width

cudaDevAttrMaxTexture2DWidth = 22
    Maximum 2D texture width

cudaDevAttrMaxTexture2DHeight = 23
    Maximum 2D texture height

cudaDevAttrMaxTexture3DWidth = 24
    Maximum 3D texture width

cudaDevAttrMaxTexture3DHeight = 25
    Maximum 3D texture height

cudaDevAttrMaxTexture3DDepth = 26
    Maximum 3D texture depth

cudaDevAttrMaxTexture2DLayeredWidth = 27
    Maximum 2D layered texture width

cudaDevAttrMaxTexture2DLayeredHeight = 28
    Maximum 2D layered texture height

cudaDevAttrMaxTexture2DLayeredLayers = 29
    Maximum layers in a 2D layered texture

cudaDevAttrSurfaceAlignment = 30
    Alignment requirement for surfaces

cudaDevAttrConcurrentKernels = 31
    Device can possibly execute multiple kernels concurrently

cudaDevAttrEccEnabled = 32
    Device has ECC support enabled

cudaDevAttrPciBusId = 33
    PCI bus ID of the device

cudaDevAttrPciDeviceId = 34
    PCI device ID of the device

cudaDevAttrTccDriver = 35
    Device is using TCC driver model

cudaDevAttrMemoryClockRate = 36
    Peak memory clock frequency in kilohertz

cudaDevAttrGlobalMemoryBusWidth = 37
    Global memory bus width in bits

cudaDevAttrL2CacheSize = 38
Size of L2 cache in bytes

**cudaDevAttrMaxThreadsPerMultiProcessor = 39**
Maximum resident threads per multiprocessor

**cudaDevAttrAsyncEngineCount = 40**
Number of asynchronous engines

**cudaDevAttrUnifiedAddressing = 41**
Device shares a unified address space with the host

**cudaDevAttrMaxTexture1DLayeredWidth = 42**
Maximum 1D layered texture width

**cudaDevAttrMaxTexture1DLayeredLayers = 43**
Maximum layers in a 1D layered texture

**cudaDevAttrMaxTexture2DGatherWidth = 45**
Maximum 2D texture width if cudaArrayTextureGather is set

**cudaDevAttrMaxTexture2DGatherHeight = 46**
Maximum 2D texture height if cudaArrayTextureGather is set

**cudaDevAttrMaxTexture3DWidthAlt = 47**
Alternate maximum 3D texture width

**cudaDevAttrMaxTexture3DHeightAlt = 48**
Alternate maximum 3D texture height

**cudaDevAttrMaxTexture3DDepthAlt = 49**
Alternate maximum 3D texture depth

**cudaDevAttrPciDomainId = 50**
PCI domain ID of the device

**cudaDevAttrTexturePitchAlignment = 51**
Pitch alignment requirement for textures

**cudaDevAttrMaxTextureCubemapWidth = 52**
Maximum cubemap texture width/height

**cudaDevAttrMaxTextureCubemapLayeredWidth = 53**
Maximum cubemap layered texture width/height

**cudaDevAttrMaxTextureCubemapLayeredLayers = 54**
Maximum layers in a cubemap layered texture

**cudaDevAttrMaxSurface1DWidth = 55**
Maximum 1D surface width

**cudaDevAttrMaxSurface2DWidth = 56**
Maximum 2D surface width

**cudaDevAttrMaxSurface2DHeight = 57**
Maximum 2D surface height

**cudaDevAttrMaxSurface3DWidth = 58**
Maximum 3D surface width

**cudaDevAttrMaxSurface3DHeight = 59**
Maximum 3D surface height

**cudaDevAttrMaxSurface3DDepth = 60**
Maximum 3D surface depth
cudaDevAttrMaxSurface1DLayeredWidth = 61
  Maximum 1D layered surface width
cudaDevAttrMaxSurface1DLayeredLayers = 62
  Maximum layers in a 1D layered surface
cudaDevAttrMaxSurface2DLayeredWidth = 63
  Maximum 2D layered surface width
cudaDevAttrMaxSurface2DLayeredHeight = 64
  Maximum 2D layered surface height
cudaDevAttrMaxSurface2DLayeredLayers = 65
  Maximum layers in a 2D layered surface
cudaDevAttrMaxSurfaceCubemapWidth = 66
  Maximum cubemap surface width
cudaDevAttrMaxSurfaceCubemapLayeredWidth = 67
  Maximum cubemap layered surface width
cudaDevAttrMaxSurfaceCubemapLayeredLayers = 68
  Maximum layers in a cubemap layered surface
cudaDevAttrMaxTexture1DLinearWidth = 69
  Maximum 1D linear texture width
cudaDevAttrMaxTexture2DLinearWidth = 70
  Maximum 2D linear texture width
cudaDevAttrMaxTexture2DLinearHeight = 71
  Maximum 2D linear texture height
cudaDevAttrMaxTexture2DLinearPitch = 72
  Maximum 2D linear texture pitch in bytes
cudaDevAttrMaxTexture2DMipmappedWidth = 73
  Maximum mipmapped 2D texture width
cudaDevAttrMaxTexture2DMipmappedHeight = 74
  Maximum mipmapped 2D texture height
cudaDevAttrComputeCapabilityMajor = 75
  Major compute capability version number
cudaDevAttrComputeCapabilityMinor = 76
  Minor compute capability version number
cudaDevAttrMaxTexture1DMipmappedWidth = 77
  Maximum mipmapped 1D texture width
cudaDevAttrStreamPrioritiesSupported = 78
  Device supports stream priorities
cudaDevAttrGlobalL1CacheSupported = 79
  Device supports caching globals in L1
cudaDevAttrLocalL1CacheSupported = 80
  Device supports caching locals in L1
cudaDevAttrMaxSharedMemoryPerMultiprocessor = 81
  Maximum shared memory available per multiprocessor in bytes
cudaDevAttrMaxRegistersPerMultiprocessor = 82
Maximum number of 32-bit registers available per multiprocessor

\texttt{cudaDevAttrManagedMemory} = 83

Device can allocate managed memory on this system

\texttt{cudaDevAttrIsMultiGpuBoard} = 84

Device is on a multi-GPU board

\texttt{cudaDevAttrMultiGpuBoardGroupId} = 85

Unique identifier for a group of devices on the same multi-GPU board

\texttt{cudaDevAttrHostNativeAtomicSupported} = 86

Link between the device and the host supports native atomic operations

\texttt{cudaDevAttrSingleToDoublePrecisionPerfRatio} = 87

Ratio of single precision performance (in floating-point operations per second) to double precision performance

\texttt{cudaDevAttrPageableMemoryAccess} = 88

Device supports coherently accessing pageable memory without calling \texttt{cudaHostRegister} on it

\texttt{cudaDevAttrConcurrentManagedAccess} = 89

Device can coherently access managed memory concurrently with the CPU

\texttt{cudaDevAttrComputePreemptionSupported} = 90

Device supports Compute Preemption

\texttt{cudaDevAttrCanUseHostPointerForRegisteredMem} = 91

Device can access host registered memory at the same virtual address as the CPU

\texttt{cudaDevAttrReserved92} = 92

\texttt{cudaDevAttrReserved93} = 93

\texttt{cudaDevAttrReserved94} = 94

\texttt{cudaDevAttrCooperativeLaunch} = 95

Device supports launching cooperative kernels via \texttt{cudaLaunchCooperativeKernel}

\texttt{cudaDevAttrCooperativeMultiDeviceLaunch} = 96

Deprecated, \texttt{cudaLaunchCooperativeKernelMultiDevice} is deprecated.

\texttt{cudaDevAttrMaxSharedMemoryPerBlockOptin} = 97

The maximum optin shared memory per block. This value may vary by chip. See \texttt{cudaFuncSetAttribute}

\texttt{cudaDevAttrCanFlushRemoteWrites} = 98

Device supports flushing of outstanding remote writes.

\texttt{cudaDevAttrHostRegisterSupported} = 99

Device supports host memory registration via \texttt{cudaHostRegister}.

\texttt{cudaDevAttrPageableMemoryAccessUsesHostPageTables} = 100

Device accesses pageable memory via the host’s page tables.

\texttt{cudaDevAttrDirectManagedMemAccessFromHost} = 101

Host can directly access managed memory on the device without migration.

\texttt{cudaDevAttrMaxBlocksPerMultiprocessor} = 106

Maximum number of blocks per multiprocessor

\texttt{cudaDevAttrMaxPersistingL2CacheSize} = 108

Maximum L2 persisting lines capacity setting in bytes.
cudaDevAttrMaxAccessPolicyWindowSize = 109
  Maximum value of cudaAccessPolicyWindow::num_bytes.

cudaDevAttrReservedSharedMemoryPerBlock = 111
  Shared memory reserved by CUDA driver per block in bytes

cudaDevAttrSparseCudaArraySupported = 112
  Device supports sparse CUDA arrays and sparse CUDA mipmapped arrays

cudaDevAttrHostRegisterReadOnlySupported = 113
  Device supports using the cudaHostRegister flag cudaHostRegisterReadOnly to register memory that must be mapped as read-only to the GPU

cudaDevAttrTimelineSemaphoreInteropSupported = 114
  External timeline semaphore interop is supported on the device

cudaDevAttrMaxTimelineSemaphoreInteropSupported = 114
  Deprecated, External timeline semaphore interop is supported on the device

cudaDevAttrMemoryPoolsSupported = 115
  Device supports using the cudaMallocAsync and cudaMemPool family of APIs

cudaDevAttrGPUDirectRDMAEnabled = 116
  Device supports GPUDirect RDMA APIs, like nvidia_p2p_get_pages (see https://docs.nvidia.com/cuda/gpudirect-rdma for more information)

cudaDevAttrGPUDirectRDMAFlushWritesOptions = 117
  The returned attribute shall be interpreted as a bitmask, where the individual bits are listed in the cudaFlushGPUDirectRDMAFlushWritesOptions enum

cudaDevAttrGPUDirectRDMAWritesOrdering = 118
  GPUDirect RDMA writes to the device do not need to be flushed for consumers within the scope indicated by the returned attribute. See cudaGPUDirectRDMAWriteOrdering for the numerical values returned here.

cudaDevAttrMemoryPoolSupportedHandleTypes = 119
  Handle types supported with mempool based IPC

cudaDevAttrClusterLaunch = 120
  Indicates device supports cluster launch

cudaDevAttrDeferredMappingCudaArraySupported = 121
  Device supports deferred mapping CUDA arrays and CUDA mipmapped arrays

cudaDevAttrReserved122 = 122

cudaDevAttrReserved123 = 123

cudaDevAttrReserved124 = 124

cudaDevAttrIpcEventSupport = 125
  Device supports IPC Events.

cudaDevAttrMemSyncDomainCount = 126
  Number of memory synchronization domains the device supports.

cudaDevAttrReserved127 = 127

cudaDevAttrReserved128 = 128

cudaDevAttrReserved129 = 129

cudaDevAttrNumaConfig = 130
  NUMA configuration of a device: value is of type cudaDeviceNumaConfig enum
cudaDevAttrNumaId = 131
    NUMA node ID of the GPU memory
cudaDevAttrReserved132 = 132
cudaDevAttrHostNumaId = 134
    NUMA ID of the host node closest to the device. Returns -1 when system does not support NUMA.
cudaDevAttrMax

enum cudaDeviceP2PAttr
CUDA device P2P attributes

Values

cudaDevP2PAttrPerformanceRank = 1
    A relative value indicating the performance of the link between two devices
cudaDevP2PAttrAccessSupported = 2
    Peer access is enabled
cudaDevP2PAttrNativeAtomicSupported = 3
    Native atomic operation over the link supported
cudaDevP2PAttrCudaArrayAccessSupported = 4
    Accessing CUDA arrays over the link supported

enum cudaDriverEntryPointQueryResult
Enum for status from obtaining driver entry points, used with cudaApiGetDriverEntryPoint

Values

cudaDriverEntryPointSuccess = 0
    Search for symbol found a match
cudaDriverEntryPointSymbolNotFound = 1
    Search for symbol was not found
cudaDriverEntryPointVersionNotSufficient = 2
    Search for symbol was found but version wasn’t great enough

enum cudaEglColorFormat
CUDA EGL Color Format - The different planar and multiplanar formats currently supported for CUDA_EGL interops.

Values

cudaEglColorFormatYUV420Planar = 0
    Y, U, V in three surfaces, each in a separate surface, U/V width = 1/2 Y width, U/V height = 1/2 Y height.
CUDA Runtime API

cudaEglColorFormatYUV420SemiPlanar = 1
Y, UV in two surfaces (UV as one surface) with VU byte ordering, width, height ratio same as YUV420Planar.

cudaEglColorFormatYUV422Planar = 2
Y, U, V each in a separate surface, U/V width = 1/2 Y width, U/V height = Y height.

cudaEglColorFormatYUV422SemiPlanar = 3
Y, UV in two surfaces with VU byte ordering, width, height ratio same as YUV422Planar.

cudaEglColorFormatARGB = 6
R/G/B/A four channels in one surface with BGRA byte ordering.

cudaEglColorFormatRGBA = 7
R/G/B/A four channels in one surface with ABGR byte ordering.

cudaEglColorFormatL = 8
single luminance channel in one surface.

cudaEglColorFormatR = 9
single color channel in one surface.

cudaEglColorFormatYUV444Planar = 10
Y, U, V in three surfaces, each in a separate surface, U/V width = Y width, U/V height = Y height.

cudaEglColorFormatYUV444SemiPlanar = 11
Y, UV in two surfaces (UV as one surface) with VU byte ordering, width, height ratio same as YUV444Planar.

cudaEglColorFormatUYVY422 = 12
Y, U, V in one surface, interleaved as UYVY in one channel.

cudaEglColorFormatUYVY422 = 13
Y, U, V in one surface, interleaved as YUYV in one channel.

cudaEglColorFormatABGR = 14
R/G/B/A four channels in one surface with RGBA byte ordering.

cudaEglColorFormatBGRA = 15
R/G/B/A four channels in one surface with ARGB byte ordering.

cudaEglColorFormatA = 16
Alpha color format - one channel in one surface.

cudaEglColorFormatRG = 17
R/G color format - two channels in one surface with GR byte ordering

cudaEglColorFormatAYUV = 18
Y, U, V, A four channels in one surface, interleaved as VUYA.

cudaEglColorFormatYVU444SemiPlanar = 19
Y, VU in two surfaces (VU as one surface) with UV byte ordering, U/V width = Y width, U/V height = Y height.

cudaEglColorFormatYVU422SemiPlanar = 20
Y, VU in two surfaces (VU as one surface) with UV byte ordering, U/V width = 1/2 Y width, U/V height = Y height.

cudaEglColorFormatYVU420SemiPlanar = 21
Y, VU in two surfaces (VU as one surface) with UV byte ordering, U/V width = 1/2 Y width, U/V height = 1/2 Y height.

cudaEglColorFormatY10V10U10_444SemiPlanar = 22
Y10, V10U10 in two surfaces (VU as one surface) with UV byte ordering, U/V width = Y width, U/V height = Y height.

cudaEglColorFormatY10V10U10_420SemiPlanar = 23
Y10, V10U10 in two surfaces (VU as one surface) with UV byte ordering, U/V width = 1/2 Y width, U/V height = 1/2 Y height.

cudaEglColorFormatY12V12U12_444SemiPlanar = 24
Y12, V12U12 in two surfaces (VU as one surface) with UV byte ordering, U/V width = Y width, U/V height = Y height.

cudaEglColorFormatY12V12U12_420SemiPlanar = 25
Y12, V12U12 in two surfaces (VU as one surface) with UV byte ordering, U/V width = 1/2 Y width, U/V height = 1/2 Y height.

cudaEglColorFormatVYUY_ER = 26
Extended Range Y, U, V in one surface, interleaved as YVYU in one channel.

cudaEglColorFormatUYVY_ER = 27
Extended Range Y, U, V in one surface, interleaved as YUYV in one channel.

cudaEglColorFormatYUYV_ER = 28
Extended Range Y, U, V in one surface, interleaved as UYVY in one channel.

cudaEglColorFormatYUYV_ER = 29
Extended Range Y, U, V in one surface, interleaved as VYUY in one channel.

cudaEglColorFormatYUYVA_ER = 31
Extended Range Y, U, V, A four channels in one surface, interleaved as AVUY.

cudaEglColorFormatAYUVA_ER = 32
Extended Range Y, U, V, A four channels in one surface, interleaved as VUYA.

cudaEglColorFormatYUV444Planar_ER = 33
Extended Range Y, U, V in three surfaces, U/V width = Y width, U/V height = Y height.

cudaEglColorFormatYUV422Planar_ER = 34
Extended Range Y, U, V in three surfaces, U/V width = 1/2 Y width, U/V height = Y height.

cudaEglColorFormatYUV420Planar_ER = 35
Extended Range Y, U, V in three surfaces, U/V width = 1/2 Y width, U/V height = 1/2 Y height.

cudaEglColorFormatYUV444SemiPlanar_ER = 36
Extended Range Y, UV in two surfaces (UV as one surface) with VU byte ordering, U/V width = Y width, U/V height = Y height.

cudaEglColorFormatYUV422SemiPlanar_ER = 37
Extended Range Y, UV in two surfaces (UV as one surface) with VU byte ordering, U/V width = 1/2 Y width, U/V height = Y height.

cudaEglColorFormatYUV420SemiPlanar_ER = 38
Extended Range Y, UV in two surfaces (UV as one surface) with VU byte ordering, U/V width = 1/2 Y width, U/V height = 1/2 Y height.

cudaEglColorFormatYVU444Planar_ER = 39
Extended Range Y, V, U in three surfaces, U/V width = Y width, U/V height = Y height.
cudaEglColorFormatYVU422Planar_ER = 40
Extended Range Y, V, U in three surfaces, U/V width = 1/2 Y width, U/V height = Y height.

cudaEglColorFormatYVU420Planar_ER = 41
Extended Range Y, V, U in three surfaces, U/V width = 1/2 Y width, U/V height = 1/2 Y height.

cudaEglColorFormatYVU444SemiPlanar_ER = 42
Extended Range Y, VU in two surfaces (VU as one surface) with UV byte ordering, U/V width = Y width, U/V height = Y height.

cudaEglColorFormatYVU422SemiPlanar_ER = 43
Extended Range Y, VU in two surfaces (VU as one surface) with UV byte ordering, U/V width = 1/2 Y width, U/V height = Y height.

cudaEglColorFormatYVU420SemiPlanar_ER = 44
Extended Range Y, VU in two surfaces (VU as one surface) with UV byte ordering, U/V width = 1/2 Y width, U/V height = 1/2 Y height.

cudaEglColorFormatBayerRGGB = 45
Bayer format - one channel in one surface with interleaved RGGB ordering.

cudaEglColorFormatBayerBGGR = 46
Bayer format - one channel in one surface with interleaved BGGR ordering.

cudaEglColorFormatBayerGRBG = 47
Bayer format - one channel in one surface with interleaved GRBG ordering.

cudaEglColorFormatBayerGBRG = 48
Bayer format - one channel in one surface with interleaved GBRG ordering.

cudaEglColorFormatBayer10RGGB = 49
Bayer10 format - one channel in one surface with interleaved RGGB ordering. Out of 16 bits, 10 bits used 6 bits No-op.

cudaEglColorFormatBayer10BGGR = 50
Bayer10 format - one channel in one surface with interleaved BGGR ordering. Out of 16 bits, 10 bits used 6 bits No-op.

cudaEglColorFormatBayer10GRBG = 51
Bayer10 format - one channel in one surface with interleaved GRBG ordering. Out of 16 bits, 10 bits used 6 bits No-op.

cudaEglColorFormatBayer10GBRG = 52
Bayer10 format - one channel in one surface with interleaved GBRG ordering. Out of 16 bits, 10 bits used 6 bits No-op.

cudaEglColorFormatBayer12RGGB = 53
Bayer12 format - one channel in one surface with interleaved RGGB ordering. Out of 16 bits, 12 bits used 4 bits No-op.

cudaEglColorFormatBayer12BGGR = 54
Bayer12 format - one channel in one surface with interleaved BGGR ordering. Out of 16 bits, 12 bits used 4 bits No-op.

cudaEglColorFormatBayer12GRBG = 55
Bayer12 format - one channel in one surface with interleaved GRBG ordering. Out of 16 bits, 12 bits used 4 bits No-op.

cudaEglColorFormatBayer12GBRG = 56
Bayer12 format - one channel in one surface with interleaved GBRG ordering. Out of 16 bits, 12 bits used 4 bits No-op.

cudaEglColorFormatBayer14RGGB = 57
Bayer14 format - one channel in one surface with interleaved RGGB ordering. Out of 16 bits, 14 bits used 2 bits No-op.

cudaEglColorFormatBayer14BGGR = 58
Bayer14 format - one channel in one surface with interleaved BGGR ordering. Out of 16 bits, 14 bits used 2 bits No-op.

cudaEglColorFormatBayer14GRBG = 59
Bayer14 format - one channel in one surface with interleaved GRBG ordering. Out of 16 bits, 14 bits used 2 bits No-op.

cudaEglColorFormatBayer14GBRG = 60
Bayer14 format - one channel in one surface with interleaved GBRG ordering. Out of 16 bits, 14 bits used 2 bits No-op.

cudaEglColorFormatBayer20RGGB = 61
Bayer20 format - one channel in one surface with interleaved RGGB ordering. Out of 32 bits, 20 bits used 12 bits No-op.

cudaEglColorFormatBayer20BGGR = 62
Bayer20 format - one channel in one surface with interleaved BGGR ordering. Out of 32 bits, 20 bits used 12 bits No-op.

cudaEglColorFormatBayer20GRBG = 63
Bayer20 format - one channel in one surface with interleaved GRBG ordering. Out of 32 bits, 20 bits used 12 bits No-op.

cudaEglColorFormatBayer20GBRG = 64
Bayer20 format - one channel in one surface with interleaved GBRG ordering. Out of 32 bits, 20 bits used 12 bits No-op.

cudaEglColorFormatYVU444Planar = 65
Y, V, U in three surfaces, each in a separate surface, U/V width = Y width, U/V height = Y height.

cudaEglColorFormatYVU422Planar = 66
Y, V, U in three surfaces, each in a separate surface, U/V width = 1/2 Y width, U/V height = Y height.

cudaEglColorFormatYVU420Planar = 67
Y, V, U in three surfaces, each in a separate surface, U/V width = 1/2 Y width, U/V height = 1/2 Y height.

cudaEglColorFormatBayerIspRGGB = 68
Nvidia proprietary Bayer ISP format - one channel in one surface with interleaved RGGB ordering and mapped to opaque integer datatype.

cudaEglColorFormatBayerIspBGGR = 69
Nvidia proprietary Bayer ISP format - one channel in one surface with interleaved BGGR ordering and mapped to opaque integer datatype.

cudaEglColorFormatBayerIspGRBG = 70
Nvidia proprietary Bayer ISP format - one channel in one surface with interleaved GRBG ordering and mapped to opaque integer datatype.

cudaEglColorFormatBayerIspGBRG = 71
  Nvidia proprietary Bayer ISP format - one channel in one surface with interleaved GRBG ordering and mapped to opaque integer datatype.

cudaEglColorFormatBayerBCCR = 72
  Bayer format - one channel in one surface with interleaved BCCR ordering.

cudaEglColorFormatBayerRCCB = 73
  Bayer format - one channel in one surface with interleaved RCCB ordering.

cudaEglColorFormatBayerCRBC = 74
  Bayer format - one channel in one surface with interleaved CRBC ordering.

cudaEglColorFormatBayerCBRC = 75
  Bayer format - one channel in one surface with interleaved CBRC ordering.

cudaEglColorFormatBayer10CCCC = 76
  Bayer10 format - one channel in one surface with interleaved CCCC ordering. Out of 16 bits, 10 bits used 6 bits No-op.

cudaEglColorFormatBayer12BCCR = 77
  Bayer12 format - one channel in one surface with interleaved BCCR ordering. Out of 16 bits, 12 bits used 4 bits No-op.

cudaEglColorFormatBayer12RCCB = 78
  Bayer12 format - one channel in one surface with interleaved RCCB ordering. Out of 16 bits, 12 bits used 4 bits No-op.

cudaEglColorFormatBayer12CRBC = 79
  Bayer12 format - one channel in one surface with interleaved CRBC ordering. Out of 16 bits, 12 bits used 4 bits No-op.

cudaEglColorFormatBayer12CBRC = 80
  Bayer12 format - one channel in one surface with interleaved CBRC ordering. Out of 16 bits, 12 bits used 4 bits No-op.

cudaEglColorFormatBayer12CCCC = 81
  Bayer12 format - one channel in one surface with interleaved CCCC ordering. Out of 16 bits, 12 bits used 4 bits No-op.

cudaEglColorFormatY = 82
  Color format for single Y plane.

cudaEglColorFormatYUV420SemiPlanar_2020 = 83
  Y, UV in two surfaces (UV as one surface) U/V width = 1/2 Y width, U/V height = 1/2 Y height.

cudaEglColorFormatYUV420SemiPlanar_2020 = 84
  Y, VU in two surfaces (VU as one surface) U/V width = 1/2 Y width, U/V height = 1/2 Y height.

cudaEglColorFormatYUV420Planar_2020 = 85
  Y, U, V in three surfaces, each in a separate surface, U/V width = 1/2 Y width, U/V height = 1/2 Y height.

cudaEglColorFormatYVU420Planar_2020 = 86
  Y, V, U in three surfaces, each in a separate surface, U/V width = 1/2 Y width, U/V height = 1/2 Y height.
cudaEglColorFormatYUV420SemiPlanar_709 = 87
Y, UV in two surfaces (UV as one surface) U/V width = 1/2 Y width, U/V height = 1/2 Y height.
cudaEglColorFormatYVU420SemiPlanar_709 = 88
Y, VU in two surfaces (VU as one surface) U/V width = 1/2 Y width, U/V height = 1/2 Y height.
cudaEglColorFormatYUV420Planar_709 = 89
Y, U, V in three surfaces, each in a separate surface, U/V width = 1/2 Y width, U/V height = 1/2 Y height.
cudaEglColorFormatYUY420Planar_709 = 90
Y, V, U in three surfaces, each in a separate surface, U/V width = 1/2 Y width, U/V height = 1/2 Y height.
cudaEglColorFormatY10V10U10_420SemiPlanar_709 = 91
Y10, V10U10 in two surfaces (VU as one surface) U/V width = 1/2 Y width, U/V height = 1/2 Y height.
cudaEglColorFormatY10V10U10_420SemiPlanar_2020 = 92
Y10, V10U10 in two surfaces (VU as one surface) U/V width = 1/2 Y width, U/V height = 1/2 Y height.
cudaEglColorFormatY10V10U10_422SemiPlanar_2020 = 93
Y10, V10U10 in two surfaces (VU as one surface) U/V width = 1/2 Y width, U/V height = Y height.
cudaEglColorFormatY10V10U10_422SemiPlanar = 94
Y10, V10U10 in two surfaces (VU as one surface) U/V width = 1/2 Y width, U/V height = Y height.
cudaEglColorFormatY10V10U10_422SemiPlanar_709 = 95
Y10, V10U10 in two surfaces (VU as one surface) U/V width = 1/2 Y width, U/V height = Y height.
cudaEglColorFormatY_ER = 96
Extended Range Color format for single Y plane.
cudaEglColorFormatY_709_ER = 97
Extended Range Color format for single Y plane.
cudaEglColorFormatY10_ER = 98
Extended Range Color format for single Y10 plane.
cudaEglColorFormatY10_709_ER = 99
Extended Range Color format for single Y10 plane.
cudaEglColorFormatY12_ER = 100
Extended Range Color format for single Y12 plane.
cudaEglColorFormatY12_709_ER = 101
Extended Range Color format for single Y12 plane.
cudaEglColorFormatYUVA = 102
Y, U, V, A four channels in one surface, interleaved as AVUY.
cudaEglColorFormatYVYU = 104
Y, U, V in one surface, interleaved as YVYU in one channel.
cudaEglColorFormatVYUY = 105
Y, U, V in one surface, interleaved as VYUY in one channel.
cudaEglColorFormatY10V10U10_420SemiPlanar_ER = 106
Extended Range Y10, V10U10 in two surfaces (VU as one surface) U/V width = 1/2 Y width, U/V height = 1/2 Y height.

cudaEglColorFormatY10V10U10_420SemiPlanar_709_ER = 107
Extended Range Y10, V10U10 in two surfaces (VU as one surface) U/V width = 1/2 Y width, U/V height = 1/2 Y height.

cudaEglColorFormatY10V10U10_444SemiPlanar_ER = 108
Extended Range Y10, V10U10 in two surfaces (VU as one surface) U/V width = Y width, U/V height = Y height.

cudaEglColorFormatY10V10U10_444SemiPlanar_709_ER = 109
Extended Range Y10, V10U10 in two surfaces (VU as one surface) U/V width = Y width, U/V height = Y height.

cudaEglColorFormatY12V12U12_420SemiPlanar_ER = 110
Extended Range Y12, V12U12 in two surfaces (VU as one surface) U/V width = 1/2 Y width, U/V height = 1/2 Y height.

cudaEglColorFormatY12V12U12_420SemiPlanar_709_ER = 111
Extended Range Y12, V12U12 in two surfaces (VU as one surface) U/V width = 1/2 Y width, U/V height = 1/2 Y height.

cudaEglColorFormatY12V12U12_444SemiPlanar_ER = 112
Extended Range Y12, V12U12 in two surfaces (VU as one surface) U/V width = Y width, U/V height = Y height.

cudaEglColorFormatY12V12U12_444SemiPlanar_709_ER = 113
Extended Range Y12, V12U12 in two surfaces (VU as one surface) U/V width = Y width, U/V height = Y height.

**enum cudaEglFrameType**

CUDA EglFrame type - array or pointer

**Values**

cudaEglFrameTypeArray = 0
Frame type CUDA array

cudaEglFrameTypePitch = 1
Frame type CUDA pointer

**enum cudaEglResourceLocationFlags**

Resource location flags - sysmem or vidmem

For CUDA context on iGPU, since video and system memory are equivalent - these flags will not have an effect on the execution.

For CUDA context on dGPU, applications can use the flag cudaEglResourceLocationFlags to give a hint about the desired location.
**cudaEglResourceLocationSysmem** - the frame data is made resident on the system memory to be accessed by CUDA.

**cudaEglResourceLocationVidmem** - the frame data is made resident on the dedicated video memory to be accessed by CUDA.

There may be an additional latency due to new allocation and data migration, if the frame is produced on a different memory.

**Values**

- **cudaEglResourceLocationSysmem = 0x00**
  - Resource location sysmem
- **cudaEglResourceLocationVidmem = 0x01**
  - Resource location vidmem

**enum cudaError**

CUDA error types

**Values**

- **cudaSuccess = 0**
  - The API call returned with no errors. In the case of query calls, this also means that the operation being queried is complete [see `cudaEventQuery()` and `cudaStreamQuery()`].
- **cudaErrorInvalidValue = 1**
  - This indicates that one or more of the parameters passed to the API call is not within an acceptable range of values.
- **cudaErrorMemoryAllocation = 2**
  - The API call failed because it was unable to allocate enough memory or other resources to perform the requested operation.
- **cudaErrorInitializationError = 3**
  - The API call failed because the CUDA driver and runtime could not be initialized.
- **cudaErrorCudartUnloading = 4**
  - This indicates that a CUDA Runtime API call cannot be executed because it is being called during process shut down, at a point in time after CUDA driver has been unloaded.
- **cudaErrorProfilerDisabled = 5**
  - This indicates profiler is not initialized for this run. This can happen when the application is running with external profiling tools like visual profiler.
- **cudaErrorProfilerNotInitialized = 6**
  - **Deprecated** This error return is deprecated as of CUDA 5.0. It is no longer an error to attempt to enable/disable the profiling via `cudaProfilerStart` or `cudaProfilerStop` without initialization.
- **cudaErrorProfilerAlreadyStarted = 7**
  - **Deprecated** This error return is deprecated as of CUDA 5.0. It is no longer an error to call `cudaProfilerStart()` when profiling is already enabled.
cudaErrorProfilerAlreadyStopped = 8
   Deprecated This error return is deprecated as of CUDA 5.0. It is no longer an error to call cudaProfilerStop() when profiling is already disabled.

cudaErrorInvalidConfiguration = 9
   This indicates that a kernel launch is requesting resources that can never be satisfied by the current device. Requesting more shared memory per block than the device supports will trigger this error, as will requesting too many threads or blocks. See cudaDeviceProp for more device limitations.

cudaErrorInvalidPitchValue = 12
   This indicates that one or more of the pitch-related parameters passed to the API call is not within the acceptable range for pitch.

cudaErrorInvalidSymbol = 13
   This indicates that the symbol name/identifier passed to the API call is not a valid name or identifier.

cudaErrorInvalidHostPointer = 16
   Deprecated This error return is deprecated as of CUDA 10.1.

cudaErrorInvalidDevicePointer = 17
   Deprecated This error return is deprecated as of CUDA 10.1.

cudaErrorInvalidTexture = 18
   This indicates that the texture passed to the API call is not a valid texture.

cudaErrorInvalidTextureBinding = 19
   This indicates that the texture binding is not valid. This occurs if you call cudaGetTextureAlignmentOffset() with an unbound texture.

cudaErrorInvalidChannelDescriptor = 20
   This indicates that the channel descriptor passed to the API call is not valid. This occurs if the format is not one of the formats specified by cudaChannelFormatKind, or if one of the dimensions is invalid.

cudaErrorInvalidMemcpyDirection = 21
   This indicates that the direction of the memcpy passed to the API call is not one of the types specified by cudaMemcpyKind.

cudaErrorAddressOfConstant = 22
   Deprecated This error return is deprecated as of CUDA 3.1. Variables in constant memory may now have their address taken by the runtime via cudaGetSymbolAddress().

cudaErrorTextureFetchFailed = 23
   Deprecated This error return is deprecated as of CUDA 3.1. Device emulation mode was removed with the CUDA 3.1 release.

cudaErrorTextureNotBound = 24
This indicated that a texture was not bound for access. This was previously used for device emulation of texture operations. **Deprecated** This error return is deprecated as of CUDA 3.1. Device emulation mode was removed with the CUDA 3.1 release.

**cudaErrorSynchronizationError = 25**
This indicated that a synchronization operation had failed. This was previously used for some device emulation functions. **Deprecated** This error return is deprecated as of CUDA 3.1. Device emulation mode was removed with the CUDA 3.1 release.

**cudaErrorInvalidFilterSetting = 26**
This indicates that a non-float texture was being accessed with linear filtering. This is not supported by CUDA.

**cudaErrorInvalidNormSetting = 27**
This indicates that an attempt was made to read a non-float texture as a normalized float. This is not supported by CUDA.

**cudaErrorMixedDeviceExecution = 28**
Mixing of device and device emulation code was not allowed. **Deprecated** This error return is deprecated as of CUDA 3.1. Device emulation mode was removed with the CUDA 3.1 release.

**cudaErrorNotYetImplemented = 31**
This indicates that the API call is not yet implemented. Production releases of CUDA will never return this error. **Deprecated** This error return is deprecated as of CUDA 4.1.

**cudaErrorMemoryValueTooLarge = 32**
This indicated that an emulated device pointer exceeded the 32-bit address range. **Deprecated** This error return is deprecated as of CUDA 3.1. Device emulation mode was removed with the CUDA 3.1 release.

**cudaErrorStubLibrary = 34**
This indicates that the CUDA driver that the application has loaded is a stub library. Applications that run with the stub rather than a real driver loaded will result in CUDA API returning this error.

**cudaErrorInsufficientDriver = 35**
This indicates that the installed NVIDIA CUDA driver is older than the CUDA runtime library. This is not a supported configuration. Users should install an updated NVIDIA display driver to allow the application to run.

**cudaErrorCallRequiresNewerDriver = 36**
This indicates that the API call requires a newer CUDA driver than the one currently installed. Users should install an updated NVIDIA CUDA driver to allow the API call to succeed.

**cudaErrorInvalidSurface = 37**
This indicates that the surface passed to the API call is not a valid surface.

**cudaErrorDuplicateVariableName = 43**
This indicates that multiple global or constant variables (across separate CUDA source files in the application) share the same string name.

**cudaErrorDuplicateTextureName = 44**
This indicates that multiple textures (across separate CUDA source files in the application) share the same string name.

\textbf{cudaErrorDuplicateSurfaceName = 45}

This indicates that multiple surfaces (across separate CUDA source files in the application) share the same string name.

\textbf{cudaErrorDevicesUnavailable = 46}

This indicates that all CUDA devices are busy or unavailable at the current time. Devices are often busy/unavailable due to use of \texttt{cudaComputeModeProhibited}, \texttt{cudaComputeModeExclusiveProcess}, or when long running CUDA kernels have filled up the GPU and are blocking new work from starting. They can also be unavailable due to memory constraints on a device that already has active CUDA work being performed.

\textbf{cudaErrorIncompatibleDriverContext = 49}

This indicates that the current context is not compatible with this the CUDA Runtime. This can only occur if you are using CUDA Runtime/Driver interoperability and have created an existing Driver context using the driver API. The Driver context may be incompatible either because the Driver context was created using an older version of the API, because the Runtime API call expects a primary driver context and the Driver context is not primary, or because the Driver context has been destroyed. Please see \texttt{Interactions} with the CUDA Driver API” for more information.

\textbf{cudaErrorMissingConfiguration = 52}

The device function being invoked (usually via \texttt{cudaLaunchKernel()}) was not previously configured via the \texttt{cudaConfigureCall()} function.

\textbf{cudaErrorPriorLaunchFailure = 53}

This indicated that a previous kernel launch failed. This was previously used for device emulation of kernel launches. \texttt{Deprecated} This error return is deprecated as of CUDA 3.1. Device emulation mode was removed with the CUDA 3.1 release.

\textbf{cudaErrorLaunchMaxDepthExceeded = 65}

This error indicates that a device runtime grid launch did not occur because the depth of the child grid would exceed the maximum supported number of nested grid launches.

\textbf{cudaErrorLaunchFileScopedTex = 66}

This error indicates that a grid launch did not occur because the kernel uses file-scoped textures which are unsupported by the device runtime. Kernels launched via the device runtime only support textures created with the Texture Object API’s.

\textbf{cudaErrorLaunchFileScopedSurf = 67}

This error indicates that a grid launch did not occur because the kernel uses file-scoped surfaces which are unsupported by the device runtime. Kernels launched via the device runtime only support surfaces created with the Surface Object API’s.

\textbf{cudaErrorSyncDepthExceeded = 68}

This error indicates that a call to \texttt{cudaDeviceSynchronize} made from the device runtime failed because the call was made at grid depth greater than than either the default (2 levels of grids) or user specified device limit \texttt{cudaLimitDevRuntimeSyncDepth}. To be able to synchronize on launched grids at a greater depth successfully, the maximum nested depth at which \texttt{cudaDeviceSynchronize} will be called must be specified with the
The CUDA Runtime API provides a set of functions for managing GPU resources and device interactions. These APIs are designed to abstract away the complexities of the underlying hardware, allowing developers to focus on high-level algorithm development.

**cudaLimitDevRuntimeSyncDepth**
Limit to the **cudaDeviceSetLimit** API before the host-side launch of a kernel using the device runtime. Keep in mind that additional levels of sync depth require the runtime to reserve large amounts of device memory that cannot be used for user allocations. Note that **cudaDeviceSynchronize** made from device runtime is only supported on devices of compute capability < 9.0.

**cudaErrorLaunchPendingCountExceeded = 69**
This error indicates that a device runtime grid launch failed because the launch would exceed the limit **cudaLimitDevRuntimePendingLaunchCount**. For this launch to proceed successfully, **cudaDeviceSetLimit** must be called to set the **cudaLimitDevRuntimePendingLaunchCount** to be higher than the upper bound of outstanding launches that can be issued to the device runtime. Keep in mind that raising the limit of pending device runtime launches will require the runtime to reserve device memory that cannot be used for user allocations.

**cudaErrorInvalidDeviceFunction = 98**
The requested device function does not exist or is not compiled for the proper device architecture.

**cudaErrorNoDevice = 100**
This indicates that no CUDA-capable devices were detected by the installed CUDA driver.

**cudaErrorInvalidDevice = 101**
This indicates that the device ordinal supplied by the user does not correspond to a valid CUDA device or that the action requested is invalid for the specified device.

**cudaErrorDeviceNotLicensed = 102**
This indicates that the device doesn’t have a valid Grid License.

**cudaErrorSoftwareValidityNotEstablished = 103**
By default, the CUDA runtime may perform a minimal set of self-tests, as well as CUDA driver tests, to establish the validity of both. Introduced in CUDA 11.2, this error return indicates that at least one of these tests has failed and the validity of either the runtime or the driver could not be established.

**cudaErrorStartupFailure = 127**
This indicates an internal startup failure in the CUDA runtime.

**cudaErrorInvalidKernelImage = 200**
This indicates that the device kernel image is invalid.

**cudaErrorDeviceUninitialized = 201**
This most frequently indicates that there is no context bound to the current thread. This can also be returned if the context passed to an API call is not a valid handle (such as a context that has had **cuCtxDestroy()** invoked on it). This can also be returned if a user mixes different API versions (i.e. 3010 context with 3020 API calls). See **cuCtxGetApiVersion()** for more details.

**cudaErrorMapBufferObjectFailed = 205**
This indicates that the buffer object could not be mapped.

**cudaErrorUnmapBufferObjectFailed = 206**
This indicates that the buffer object could not be unmapped.

**cudaErrorArraysIsMapped = 207**
This indicates that the specified array is currently mapped and thus cannot be destroyed.

`cudaErrorAlreadyMapped = 208`
This indicates that the resource is already mapped.

`cudaErrorNoKernelImageForDevice = 209`
This indicates that there is no kernel image available that is suitable for the device. This can occur when a user specifies code generation options for a particular CUDA source file that do not include the corresponding device configuration.

`cudaErrorAlreadyAcquired = 210`
This indicates that a resource has already been acquired.

`cudaErrorNotMapped = 211`
This indicates that a resource is not mapped.

`cudaErrorNotMappedAsArray = 212`
This indicates that a mapped resource is not available for access as an array.

`cudaErrorNotMappedAsPointer = 213`
This indicates that a mapped resource is not available for access as a pointer.

`cudaErrorECCUncorrectable = 214`
This indicates that an uncorrectable ECC error was detected during execution.

`cudaErrorUnsupportedLimit = 215`
This indicates that the `cudaLimit` passed to the API call is not supported by the active device.

`cudaErrorDeviceAlreadyInUse = 216`
This indicates that a call tried to access an exclusive-thread device that is already in use by a different thread.

`cudaErrorPeerAccessUnsupported = 217`
This error indicates that P2P access is not supported across the given devices.

`cudaErrorInvalidPtx = 218`
A PTX compilation failed. The runtime may fall back to compiling PTX if an application does not contain a suitable binary for the current device.

`cudaErrorInvalidGraphicsContext = 219`
This indicates an error with the OpenGL or DirectX context.

`cudaErrorNvlinkUncorrectable = 220`
This indicates that an uncorrectable NVLink error was detected during the execution.

`cudaErrorJitCompilerNotFound = 221`
This indicates that the PTX JIT compiler library was not found. The JIT Compiler library is used for PTX compilation. The runtime may fall back to compiling PTX if an application does not contain a suitable binary for the current device.

`cudaErrorUnsupportedPtxVersion = 222`
This indicates that the provided PTX was compiled with an unsupported toolchain. The most common reason for this, is the PTX was generated by a compiler newer than what is supported by the CUDA driver and PTX JIT compiler.

`cudaErrorJitCompilationDisabled = 223`
This indicates that the JIT compilation was disabled. The JIT compilation compiles PTX. The runtime may fall back to compiling PTX if an application does not contain a suitable binary for the current device.

`cudaErrorUnsupportedExecAffinity = 224`
This indicates that the provided execution affinity is not supported by the device.

`cudaErrorUnsupportedDevSideSync = 225`
This indicates that the code to be compiled by the PTX JIT contains unsupported call to `cudaDeviceSynchronize`.

`cudaErrorInvalidSource = 300`
This indicates that the device kernel source is invalid.

`cudaErrorFileNotFound = 301`
This indicates that the file specified was not found.

`cudaErrorSharedObjectSymbolNotFound = 302`
This indicates that a link to a shared object failed to resolve.

`cudaErrorSharedObjectInitFailed = 303`
This indicates that initialization of a shared object failed.

`cudaErrorOperatingSystem = 304`
This error indicates that an OS call failed.

`cudaErrorInvalidResourceHandle = 400`
This indicates that a resource handle passed to the API call was not valid. Resource handles are opaque types like `cudaStream_t` and `cudaEvent_t`.

`cudaErrorIllegalState = 401`
This indicates that a resource required by the API call is not in a valid state to perform the requested operation.

`cudaErrorSymbolNotFound = 500`
This indicates that a named symbol was not found. Examples of symbols are global/constant variable names, driver function names, texture names, and surface names.

`cudaErrorNotReady = 600`
This indicates that asynchronous operations issued previously have not completed yet. This result is not actually an error, but must be indicated differently than `cudaSuccess` (which indicates completion). Calls that may return this value include `cudaEventQuery()` and `cudaStreamQuery()`.

`cudaErrorIllegalAddress = 700`
The device encountered a load or store instruction on an invalid memory address. This leaves the process in an inconsistent state and any further CUDA work will return the same error. To continue using CUDA, the process must be terminated and relaunched.

`cudaErrorLaunchOutOfResources = 701`
This indicates that a launch did not occur because it did not have appropriate resources. Although this error is similar to `cudaErrorInvalidConfiguration`, this error usually indicates that the user has attempted to pass too many arguments to the device kernel, or the kernel launch specifies too many threads for the kernel’s register count.

`cudaErrorLaunchTimeout = 702`
This indicates that the device kernel took too long to execute. This can only occur if timeouts are enabled - see the device property kernelExecTimeoutEnabled for more information. This leaves the process in an inconsistent state and any further CUDA work will return the same error. To continue using CUDA, the process must be terminated and relaunched.

cudaErrorLaunchIncompatibleTexturing = 703
This error indicates a kernel launch that uses an incompatible texturing mode.

cudaErrorPeerAccessAlreadyEnabled = 704
This error indicates that a call to cudaDeviceEnablePeerAccess() is trying to re-enable peer addressing on from a context which has already had peer addressing enabled.

cudaErrorPeerAccessNotEnabled = 705
This error indicates that cudaDeviceDisablePeerAccess() is trying to disable peer addressing which has not been enabled yet via cudaDeviceEnablePeerAccess().

cudaErrorSetOnActiveProcess = 708
This indicates that the user has called cudaSetValidDevices(), cudaSetDeviceFlags(), cudaD3D9SetDirect3DDevice(), cudaD3D10SetDirect3DDevice, cudaD3D11SetDirect3DDevice(), or cudaVDPAUSetVDPAUDevice() after initializing the CUDA runtime by calling non-device management operations (allocating memory and launching kernels are examples of non-device management operations). This error can also be returned if using runtime/driver interoperability and there is an existing CUcontext active on the host thread.

cudaErrorContextIsDestroyed = 709
This error indicates that the context current to the calling thread has been destroyed using cuCtxDestroy, or is a primary context which has not yet been initialized.

cudaErrorAssert = 710
An assert triggered in device code during kernel execution. The device cannot be used again. All existing allocations are invalid. To continue using CUDA, the process must be terminated and relaunched.

cudaErrorTooManyPeers = 711
This error indicates that the hardware resources required to enable peer access have been exhausted for one or more of the devices passed to cudaEnablePeerAccess().

cudaErrorHostMemoryAlreadyRegistered = 712
This error indicates that the memory range passed to cudaHostRegister() has already been registered.

cudaErrorHostMemoryNotRegistered = 713
This error indicates that the pointer passed to cudaHostUnregister() does not correspond to any currently registered memory region.

cudaErrorHardwareStackError = 714
Device encountered an error in the call stack during kernel execution, possibly due to stack corruption or exceeding the stack size limit. This leaves the process in an inconsistent state and any further CUDA work will return the same error. To continue using CUDA, the process must be terminated and relaunched.

cudaErrorIllegalInstruction = 715
The device encountered an illegal instruction during kernel execution. This leaves the process in an inconsistent state and any further CUDA work will return the same error. To continue using CUDA, the process must be terminated and relaunched.

`cudaErrorMisalignedAddress = 716`

The device encountered a load or store instruction on a memory address which is not aligned. This leaves the process in an inconsistent state and any further CUDA work will return the same error. To continue using CUDA, the process must be terminated and relaunched.

`cudaErrorInvalidAddressSpace = 717`

While executing a kernel, the device encountered an instruction which can only operate on memory locations in certain address spaces (global, shared, or local), but was supplied a memory address not belonging to an allowed address space. This leaves the process in an inconsistent state and any further CUDA work will return the same error. To continue using CUDA, the process must be terminated and relaunched.

`cudaErrorInvalidPc = 718`

The device encountered an invalid program counter. This leaves the process in an inconsistent state and any further CUDA work will return the same error. To continue using CUDA, the process must be terminated and relaunched.

`cudaErrorLaunchFailure = 719`

An exception occurred on the device while executing a kernel. Common causes include dereferencing an invalid device pointer and accessing out of bounds shared memory. Less common cases can be system specific - more information about these cases can be found in the system specific user guide. This leaves the process in an inconsistent state and any further CUDA work will return the same error. To continue using CUDA, the process must be terminated and relaunched.

`cudaErrorCooperativeLaunchTooLarge = 720`

This error indicates that the number of blocks launched per grid for a kernel that was launched via either `cudaLaunchCooperativeKernel` or `cudaLaunchCooperativeKernelMultiDevice` exceeds the maximum number of blocks as allowed by `cudaOccupancyMaxActiveBlocksPerMultiprocessor` or `cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags` times the number of multiprocessors as specified by the device attribute `cudaDevAttrMultiProcessorCount`.

`cudaErrorNotPermitted = 800`

This error indicates the attempted operation is not permitted.

`cudaErrorNotSupported = 801`

This error indicates the attempted operation is not supported on the current system or device.

`cudaErrorSystemNotReady = 802`

This error indicates that the system is not yet ready to start any CUDA work. To continue using CUDA, verify the system configuration is in a valid state and all required driver daemons are actively running. More information about this error can be found in the system specific user guide.

`cudaErrorSystemDriverMismatch = 803`
This error indicates that there is a mismatch between the versions of the display driver and the CUDA driver. Refer to the compatibility documentation for supported versions.

**cudaErrorCompatNotSupportedOnDevice = 804**
This error indicates that the system was upgraded to run with forward compatibility but the visible hardware detected by CUDA does not support this configuration. Refer to the compatibility documentation for the supported hardware matrix or ensure that only supported hardware is visible during initialization via the CUDA_VISIBLE_DEVICES environment variable.

**cudaErrorMpsConnectionFailed = 805**
This error indicates that the MPS client failed to connect to the MPS control daemon or the MPS server.

**cudaErrorMpsRpcFailure = 806**
This error indicates that the remote procedural call between the MPS server and the MPS client failed.

**cudaErrorMpsServerNotReady = 807**
This error indicates that the MPS server is not ready to accept new MPS client requests. This error can be returned when the MPS server is in the process of recovering from a fatal failure.

**cudaErrorMpsMaxClientsReached = 808**
This error indicates that the hardware resources required to create MPS client have been exhausted.

**cudaErrorMpsMaxConnectionsReached = 809**
This error indicates that the hardware resources required to device connections have been exhausted.

**cudaErrorMpsClientTerminated = 810**
This error indicates that the MPS client has been terminated by the server. To continue using CUDA, the process must be terminated and relaunched.

**cudaErrorCdpNotSupported = 811**
This error indicates, that the program is using CUDA Dynamic Parallelism, but the current configuration, like MPS, does not support it.

**cudaErrorCdpVersionMismatch = 812**
This error indicates, that the program contains an unsupported interaction between different versions of CUDA Dynamic Parallelism.

**cudaErrorStreamCaptureUnsupported = 900**
The operation is not permitted when the stream is capturing.

**cudaErrorStreamCaptureInvalidated = 901**
The current capture sequence on the stream has been invalidated due to a previous error.

**cudaErrorStreamCaptureMerge = 902**
The operation would have resulted in a merge of two independent capture sequences.

**cudaErrorStreamCaptureUnmatched = 903**
The capture was not initiated in this stream.

**cudaErrorStreamCaptureUnjoined = 904**
The capture sequence contains a fork that was not joined to the primary stream.
cudaErrorStreamCaptureIsolation = 905
A dependency would have been created which crosses the capture sequence boundary.
Only implicit in-stream ordering dependencies are allowed to cross the boundary.

cudaErrorStreamCaptureImplicit = 906
The operation would have resulted in a disallowed implicit dependency on a current capture sequence from cudaStreamLegacy.

cudaErrorCapturedEvent = 907
The operation is not permitted on an event which was last recorded in a capturing stream.

cudaErrorStreamCaptureWrongThread = 908
A stream capture sequence not initiated with the cudaStreamCaptureModeRelaxed argument to cudaStreamBeginCapture was passed to cudaStreamEndCapture in a different thread.

cudaErrorTimeout = 909
This indicates that the wait operation has timed out.

cudaErrorGraphExecUpdateFailure = 910
This error indicates that the graph update was not performed because it included changes which violated constraints specific to instantiated graph update.

cudaErrorExternalDevice = 911
This indicates that an async error has occurred in a device outside of CUDA. If CUDA was waiting for an external device’s signal before consuming shared data, the external device signaled an error indicating that the data is not valid for consumption. This leaves the process in an inconsistent state and any further CUDA work will return the same error. To continue using CUDA, the process must be terminated and relaunched.

cudaErrorInvalidClusterSize = 912
This indicates that a kernel launch error has occurred due to cluster misconfiguration.

cudaErrorUnknown = 999
This indicates that an unknown internal error has occurred.

cudaErrorApiFailureBase = 10000
Any unhandled CUDA driver error is added to this value and returned via the runtime.
Production releases of CUDA should not return such errors. Deprecated This error return is deprecated as of CUDA 4.1.

enum cudaExternalMemoryHandleType

External memory handle types

Values

cudaExternalMemoryHandleTypeOpaqueFd = 1
Handle is an opaque file descriptor

cudaExternalMemoryHandleTypeOpaqueWin32 = 2
Handle is an opaque shared NT handle

cudaExternalMemoryHandleTypeOpaqueWin32Kmt = 3
Handle is an opaque, globally shared handle
cudaExternalMemoryHandleTypeD3D12Heap = 4
  Handle is a D3D12 heap object

cudaExternalMemoryHandleTypeD3D12Resource = 5
  Handle is a D3D12 committed resource

cudaExternalMemoryHandleTypeD3D11Resource = 6
  Handle is a shared NT handle to a D3D11 resource

cudaExternalMemoryHandleTypeD3D11ResourceKmt = 7
  Handle is a globally shared handle to a D3D11 resource

cudaExternalMemoryHandleTypeNvSciBuf = 8
  Handle is an NvSciBuf object

enum cudaExternalSemaphoreHandleType

External semaphore handle types

Values

cudaExternalSemaphoreHandleTypeOpaqueFd = 1
  Handle is an opaque file descriptor

cudaExternalSemaphoreHandleTypeOpaqueWin32 = 2
  Handle is an opaque shared NT handle

cudaExternalSemaphoreHandleTypeOpaqueWin32Kmt = 3
  Handle is an opaque, globally shared handle

cudaExternalSemaphoreHandleTypeD3D12Fence = 4
  Handle is a shared NT handle referencing a D3D12 fence object

cudaExternalSemaphoreHandleTypeD3D11Fence = 5
  Handle is a shared NT handle referencing a D3D11 fence object

cudaExternalSemaphoreHandleTypeNvSciSync = 6
  Opque handle to NvSciSync Object

cudaExternalSemaphoreHandleTypeKeyedMutex = 7
  Handle is a shared NT handle referencing a D3D11 keyed mutex object

cudaExternalSemaphoreHandleTypeKeyedMutexKmt = 8
  Handle is a shared KMT handle referencing a D3D11 keyed mutex object

cudaExternalSemaphoreHandleTypeTimelineSemaphoreFd = 9
  Handle is an opaque handle file descriptor referencing a timeline semaphore

cudaExternalSemaphoreHandleTypeTimelineSemaphoreWin32 = 10
  Handle is an opaque handle file descriptor referencing a timeline semaphore

enum cudaFlushGPUDirectRDMAWritesOptions

CUDA GPUDirect RDMA flush writes APIs supported on the device

Values

cudaFlushGPUDirectRDMAWritesOptionHost = 1<<0
cudaDeviceFlushGPUDirectRDMAWrites[] and its CUDA Driver API counterpart are supported on the device.

cudaFlushGPUDirectRDMAWritesOptionMemOps = 1<<1

The CU_STREAM_WAIT_VALUE_FLUSH flag and the CU_STREAM_MEM_OP_FLUSH_REMOTE_WRITES MemOp are supported on the CUDA device.

enum cudaFlushGPUDirectRDMAWritesScope
CUDA GPUDirect RDMA flush writes scopes

Values

cudaFlushGPUDirectRDMAWritesToOwner = 100
Blocks until remote writes are visible to the CUDA device context owning the data.
cudaFlushGPUDirectRDMAWritesToAllDevices = 200
Blocks until remote writes are visible to all CUDA device contexts.

enum cudaFlushGPUDirectRDMAWritesTarget
CUDA GPUDirect RDMA flush writes targets

Values

cudaFlushGPUDirectRDMAWritesTargetCurrentDevice
Sets the target for cudaDeviceFlushGPUDirectRDMAWrites[] to the currently active CUDA device context.

enum cudaFuncAttribute
CUDA function attributes that can be set using cudaMemcpy

Values

cudaFuncAttributeMaxDynamicSharedMemorySize = 8
Maximum dynamic shared memory size
cudaFuncAttributePreferredSharedMemoryCarveout = 9
Preferred shared memory-L1 cache split
cudaFuncAttributeClusterDimMustBeSet = 10
Indicator to enforce valid cluster dimension specification on kernel launch
cudaFuncAttributeRequiredClusterWidth = 11
Required cluster width
cudaFuncAttributeRequiredClusterHeight = 12
Required cluster height
cudaFuncAttributeRequiredClusterDepth = 13
Required cluster depth
cudaFuncAttributeNonPortableClusterSizeAllowed = 14
   Whether non-portable cluster scheduling policy is supported

cudaFuncAttributeClusterSchedulingPolicyPreference = 15
   Required cluster scheduling policy preference

 cudaFuncAttributeMax

enum cudaFuncCache

CUDA function cache configurations

Values

   cudaFuncCachePreferNone = 0
      Default function cache configuration, no preference

   cudaFuncCachePreferShared = 1
      Prefer larger shared memory and smaller L1 cache

   cudaFuncCachePreferL1 = 2
      Prefer larger L1 cache and smaller shared memory

   cudaFuncCachePreferEqual = 3
      Prefer equal size L1 cache and shared memory

enum cudaGetDriverEntryPointFlags

Flags to specify search options to be used with cudaGetDriverEntryPoint For more details see cuGetProcAddress

Values

   cudaEnableDefault = 0x0
      Default search mode for driver symbols.

   cudaEnableLegacyStream = 0x1
      Search for legacy versions of driver symbols.

   cudaEnablePerThreadDefaultStream = 0x2
      Search for per-thread versions of driver symbols.

enum cudaGPUDirectRDMAWritesOrdering

CUDA GPUDirect RDMA flush writes ordering features of the device

Values

   cudaGPUDirectRDMAWritesOrderingNone = 0
      The device does not natively support ordering of GPUDirect RDMA writes.
      cudaFlushGPUDirectRDMAWrites() can be leveraged if supported.

   cudaGPUDirectRDMAWritesOrderingOwner = 100
Natively, the device can consistently consume GPUDirect RDMA writes, although other CUDA devices may not.

```
cudaGPUDirectRDMAWritesOrderingAllDevices = 200
```

Any CUDA device in the system can consistently consume GPUDirect RDMA writes to this device.

### enum cudaGraphDebugDotFlags

CUDA Graph debug write options

**Values**

- `cudaGraphDebugDotFlagsVerbose = 1<<0`
  - Output all debug data as if every debug flag is enabled
- `cudaGraphDebugDotFlagsKernelNodeParams = 1<<2`
  - Adds `cudaKernelNodeParams` to output
- `cudaGraphDebugDotFlagsMemcpyNodeParams = 1<<3`
  - Adds `cudaMemcpy3DParms` to output
- `cudaGraphDebugDotFlagsMemsetNodeParams = 1<<4`
  - Adds `cudaMemsetParams` to output
- `cudaGraphDebugDotFlagsHostNodeParams = 1<<5`
  - Adds `cudaHostNodeParams` to output
- `cudaGraphDebugDotFlagsEventNodeParams = 1<<6`
  - Adds `cudaEvent_t` handle from record and wait nodes to output
- `cudaGraphDebugDotFlagsExtSemasSignalNodeParams = 1<<7`
  - Adds `cudaExternalSemaphoreSignalNodeParams` values to output
- `cudaGraphDebugDotFlagsExtSemasWaitNodeParams = 1<<8`
  - Adds `cudaExternalSemaphoreWaitNodeParams` to output
- `cudaGraphDebugDotFlagsKernelNodeAttributes = 1<<9`
  - Adds `cudaKernelNodeAttrID` values to output
- `cudaGraphDebugDotFlagsHandles = 1<<10`
  - Adds node handles and every kernel function handle to output

### enum cudaGraphExecUpdateResult

CUDA Graph Update error types

**Values**

- `cudaGraphExecUpdateSuccess = 0x0`
  - The update succeeded
- `cudaGraphExecUpdateError = 0x1`
  - The update failed for an unexpected reason which is described in the return value of the function
- `cudaGraphExecUpdateErrorTopologyChanged = 0x2`
The update failed because the topology changed

**cudaGraphExecUpdateErrorNodeTypeChanged = 0x3**

The update failed because a node type changed

**cudaGraphExecUpdateErrorFunctionChanged = 0x4**

The update failed because the function of a kernel node changed (CUDA driver < 11.2)

**cudaGraphExecUpdateErrorParametersChanged = 0x5**

The update failed because the parameters changed in a way that is not supported

**cudaGraphExecUpdateErrorNotSupported = 0x6**

The update failed because something about the node is not supported

**cudaGraphExecUpdateErrorUnsupportedFunctionChange = 0x7**

The update failed because the function of a kernel node changed in an unsupported way

**cudaGraphExecUpdateErrorAttributesChanged = 0x8**

The update failed because the node attributes changed in a way that is not supported

---

**enum cudaGraphicsCubeFace**

CUDA graphics interop array indices for cube maps

**Values**

- **cudaGraphicsCubeFacePositiveX = 0x00**
  Positive X face of cubemap

- **cudaGraphicsCubeFaceNegativeX = 0x01**
  Negative X face of cubemap

- **cudaGraphicsCubeFacePositiveY = 0x02**
  Positive Y face of cubemap

- **cudaGraphicsCubeFaceNegativeY = 0x03**
  Negative Y face of cubemap

- **cudaGraphicsCubeFacePositiveZ = 0x04**
  Positive Z face of cubemap

- **cudaGraphicsCubeFaceNegativeZ = 0x05**
  Negative Z face of cubemap

---

**enum cudaGraphicsMapFlags**

CUDA graphics interop map flags

**Values**

- **cudaGraphicsMapFlagsNone = 0**
  Default; Assume resource can be read/written

- **cudaGraphicsMapFlagsReadOnly = 1**
  CUDA will not write to this resource

- **cudaGraphicsMapFlagsWriteDiscard = 2**
  CUDA will only write to and will not read from this resource
enum cudaGraphicsRegisterFlags

CUDA graphics interop register flags

Values

cudaGraphicsRegisterFlagsNone = 0
  Default

cudaGraphicsRegisterFlagsReadOnly = 1
  CUDA will not write to this resource

cudaGraphicsRegisterFlagsWriteDiscard = 2
  CUDA will only write to and will not read from this resource

cudaGraphicsRegisterFlagsSurfaceLoadStore = 4
  CUDA will bind this resource to a surface reference

cudaGraphicsRegisterFlagsTextureGather = 8
  CUDA will perform texture gather operations on this resource

enum cudaGraphInstantiateFlags

Flags for instantiating a graph

Values

cudaGraphInstantiateFlagAutoFreeOnLaunch = 1
  Automatically free memory allocated in a graph before relaunching.

cudaGraphInstantiateFlagUpload = 2
  Automatically upload the graph after instantiaton.

cudaGraphInstantiateFlagDeviceLaunch = 4
  Instantiate the graph to be launchable from the device.

cudaGraphInstantiateFlagUseNodePriority = 8
  Run the graph using the per-node priority attributes rather than the priority of the stream it is launched into.

enum cudaGraphInstantiateResult

Graph instantiation results

Values

cudaGraphInstantiateSuccess = 0
  Instantiation succeeded

cudaGraphInstantiateError = 1
  Instantiation failed for an unexpected reason which is described in the return value of the function

cudaGraphInstantiateInvalidStructure = 2
Instantiation failed due to invalid structure, such as cycles

\texttt{cudaGraphInstantiateNodeOperationNotSupported = 3}

Instantiation for device launch failed because the graph contained an unsupported operation

\texttt{cudaGraphInstantiateMultipleDevicesNotSupported = 4}

Instantiation for device launch failed due to the nodes belonging to different contexts

\textbf{enum cudaGraphMemAttributeType}

Graph memory attributes

\textbf{Values}

\texttt{cudaGraphMemAttrUsedMemCurrent = 0x0}

\{value type = cuuint64\_t\} Amount of memory, in bytes, currently associated with graphs.

\texttt{cudaGraphMemAttrUsedMemHigh = 0x1}

\{value type = cuuint64\_t\} High watermark of memory, in bytes, associated with graphs since the last time it was reset. High watermark can only be reset to zero.

\texttt{cudaGraphMemAttrReservedMemCurrent = 0x2}

\{value type = cuuint64\_t\} Amount of memory, in bytes, currently allocated for use by the CUDA graphs asynchronous allocator.

\texttt{cudaGraphMemAttrReservedMemHigh = 0x3}

\{value type = cuuint64\_t\} High watermark of memory, in bytes, currently allocated for use by the CUDA graphs asynchronous allocator.

\textbf{enum cudaGraphNodeType}

CUDA Graph node types

\textbf{Values}

\texttt{cudaGraphNodeTypeKernel = 0x00}

GPU kernel node

\texttt{cudaGraphNodeTypeMemcpy = 0x01}

Memcpy node

\texttt{cudaGraphNodeTypeMemset = 0x02}

Memset node

\texttt{cudaGraphNodeTypeHost = 0x03}

Host (executable) node

\texttt{cudaGraphNodeTypeGraph = 0x04}

Node which executes an embedded graph

\texttt{cudaGraphNodeTypeEmpty = 0x05}

Empty (no-op) node

\texttt{cudaGraphNodeTypeWaitEvent = 0x06}

External event wait node
CUDA Runtime API

cudaGraphNodeTypeEventRecord = 0x07
    External event record node

cudaGraphNodeTypeExtSemaphoreSignal = 0x08
    External semaphore signal node

cudaGraphNodeTypeExtSemaphoreWait = 0x09
    External semaphore wait node

cudaGraphNodeTypeMemAlloc = 0x0a
    Memory allocation node

cudaGraphNodeTypeMemFree = 0x0b
    Memory free node

cudaGraphNodeTypeCount

enum cudaLaunchAttributeID

Launch attributes enum; used as id field of cudaLaunchAttribute

Values

cudaLaunchAttributeIgnore = 0
    Ignored entry, for convenient composition

cudaLaunchAttributeAccessPolicyWindow = 1
    Valid for streams, graph nodes, launches.

cudaLaunchAttributeCooperative = 2
    Valid for graph nodes, launches.

cudaLaunchAttributeSynchronizationPolicy = 3
    Valid for streams.

cudaLaunchAttributeClusterDimension = 4
    Valid for graph nodes, launches.

cudaLaunchAttributeClusterSchedulingPolicyPreference = 5
    Valid for graph nodes, launches.

cudaLaunchAttributeProgrammaticStreamSerialization = 6
    Valid for launches. Setting programmaticStreamSerializationAllowed to non-0 signals
    that the kernel will use programmatic means to resolve its stream dependency, so
    that the CUDA runtime should opportunistically allow the grid’s execution to overlap
    with the previous kernel in the stream, if that kernel requests the overlap. The
    dependent launches can choose to wait on the dependency using the programmatic sync
    [cudaGridDependencySynchronize] or equivalent PTX instructions.

cudaLaunchAttributeProgrammaticEvent = 7
    Valid for launches. Event recorded through this launch attribute is guaranteed to only
    trigger after all block in the associated kernel trigger the event. A block can trigger
    the event programmatically in a future CUDA release. A trigger can also be inserted
    at the beginning of each block’s execution if triggerAtBlockStart is set to non-0. The
    dependent launches can choose to wait on the dependency using the programmatic sync
    [cudaGridDependencySynchronize] or equivalent PTX instructions. Note that dependents
(including the CPU thread calling `cudaEventSynchronize()`) are not guaranteed to observe the release precisely when it is released. For example, `cudaEventSynchronize()` may only observe the event trigger long after the associated kernel has completed. This recording type is primarily meant for establishing programmatic dependency between device tasks. The event supplied must not be an interprocess or interop event. The event must disable timing (i.e. created with `cudaEventDisableTiming` flag set).

**cudaLaunchAttributePriority** = 8  
Valid for streams, graph nodes, launches.

**cudaLaunchAttributeMemSyncDomainMap** = 9
**cudaLaunchAttributeMemSyncDomain** = 10

### Enum `cudaLimit`

CUDA Limits

**Values**

- **`cudaLimitStackSize`** = 0x00  
  GPU thread stack size
- **`cudaLimitPrintfFifoSize`** = 0x01  
  GPU printf FIFO size
- **`cudaLimitMallocHeapSize`** = 0x02  
  GPU malloc heap size
- **`cudaLimitDevRuntimeSyncDepth`** = 0x03  
  GPU device runtime synchronize depth
- **`cudaLimitDevRuntimePendingLaunchCount`** = 0x04  
  GPU device runtime pending launch count
- **`cudaLimitMaxL2FetchGranularity`** = 0x05  
  A value between 0 and 128 that indicates the maximum fetch granularity of L2 (in Bytes). This is a hint
- **`cudaLimitPersistingL2CacheSize`** = 0x06  
  A size in bytes for L2 persisting lines cache size

### Enum `cudaMemAccessFlags`

Specifies the memory protection flags for mapping.

**Values**

- **`cudaMemAccessFlagsProtNone`** = 0  
  Default, make the address range not accessible
- **`cudaMemAccessFlagsProtRead`** = 1  
  Make the address range read accessible
- **`cudaMemAccessFlagsProtReadWrite`** = 3  
  Make the address range read-write accessible
enum cudaMemAllocationHandleType

Flags for specifying particular handle types

Values

cudaMemHandleTypeNone = 0x0
  Does not allow any export mechanism.

cudaMemHandleTypePosixFileDescriptor = 0x1
  Allows a file descriptor to be used for exporting. Permitted only on POSIX systems. [int]

cudaMemHandleTypeWin32 = 0x2
  Allows a Win32 NT handle to be used for exporting. [HANDLE]

cudaMemHandleTypeWin32Kmt = 0x4
  Allows a Win32 KMT handle to be used for exporting. [D3DKMT_HANDLE]

enum cudaMemAllocationType

Defines the allocation types available

Values

cudaMemAllocationTypeInvalid = 0x0

cudaMemAllocationTypePinned = 0x1
  This allocation type is "pinned", i.e. cannot migrate from its current location while the
  application is actively using it

cudaMemAllocationTypeMax = 0x7FFFFFFF

enum cudaMemcpyKind

CUDA memory copy types

Values

cudaMemcpyHostToHost = 0
  Host -> Host

cudaMemcpyHostToDevice = 1
  Host -> Device

cudaMemcpyDeviceToHost = 2
  Device -> Host

cudaMemcpyDeviceToDevice = 3
  Device -> Device

cudaMemcpyDefault = 4
  Direction of the transfer is inferred from the pointer values. Requires unified virtual
  addressing
enum cudaMemLocationType
Specifies the type of location

Values

- cudaMemLocationTypeInvalid = 0
- cudaMemLocationTypeDevice = 1
  - Location is a device location, thus id is a device ordinal
- cudaMemLocationTypeHost = 2
  - Location is host, id is ignored
- cudaMemLocationTypeHostNuma = 3
  - Location is a host NUMA node, thus id is a host NUMA node id
- cudaMemLocationTypeHostNumaCurrent = 4
  - Location is the host NUMA node closest to the current thread’s CPU, id is ignored

enum cudaMemoryAdvise
CUDA Memory Advise values

Values

- cudaMemAdviseSetReadMostly = 1
  - Data will mostly be read and only occasionally be written to
- cudaMemAdviseUnsetReadMostly = 2
  - Undo the effect of cudaMemAdviseSetReadMostly
- cudaMemAdviseSetPreferredLocation = 3
  - Set the preferred location for the data as the specified device
- cudaMemAdviseUnsetPreferredLocation = 4
  - Clear the preferred location for the data
- cudaMemAdviseSetAccessedBy = 5
  - Data will be accessed by the specified device, so prevent page faults as much as possible
- cudaMemAdviseUnsetAccessedBy = 6
  - Let the Unified Memory subsystem decide on the page faulting policy for the specified device

enum cudaMemoryType
CUDA memory types

Values

- cudaMemoryTypeUnregistered = 0
  - Unregistered memory
- cudaMemoryTypeHost = 1
Host memory

- `cudaMemoryTypeDevice = 2`
  - Device memory

- `cudaMemoryTypeManaged = 3`
  - Managed memory

**enum cudaMemPoolAttr**

CUDA memory pool attributes

**Values**

- `cudaMemPoolReuseFollowEventDependencies = 0x1`
  - (value type = int) Allow cuMemAllocAsync to use memory asynchronously freed in another streams as long as a stream ordering dependency of the allocating stream on the free action exists. Cuda events and null stream interactions can create the required stream ordered dependencies. (default enabled)

- `cudaMemPoolReuseAllowOpportunistic = 0x2`
  - (value type = int) Allow reuse of already completed frees when there is no dependency between the free and allocation. (default enabled)

- `cudaMemPoolReuseAllowInternalDependencies = 0x3`
  - (value type = int) Allow cuMemAllocAsync to insert new stream dependencies in order to establish the stream ordering required to reuse a piece of memory released by cuFreeAsync (default enabled).

- `cudaMemPoolAttrReleaseThreshold = 0x4`
  - (value type = cuuint64_t) Amount of reserved memory in bytes to hold onto before trying to release memory back to the OS. When more than the release threshold bytes of memory are held by the memory pool, the allocator will try to release memory back to the OS on the next call to stream, event or context synchronize. (default 0)

- `cudaMemPoolAttrReservedMemCurrent = 0x5`
  - (value type = cuuint64_t) Amount of backing memory currently allocated for the mempool.

- `cudaMemPoolAttrReservedMemHigh = 0x6`
  - (value type = cuuint64_t) High watermark of backing memory allocated for the mempool since the last time it was reset. High watermark can only be reset to zero.

- `cudaMemPoolAttrUsedMemCurrent = 0x7`
  - (value type = cuuint64_t) Amount of memory from the pool that is currently in use by the application.

- `cudaMemPoolAttrUsedMemHigh = 0x8`
  - (value type = cuuint64_t) High watermark of the amount of memory from the pool that was in use by the application since the last time it was reset. High watermark can only be reset to zero.
enum cudaMemRangeAttribute

CUDA range attributes

Values

cudaMemRangeAttributeReadMostly = 1
    Whether the range will mostly be read and only occasionnally be written to

cudaMemRangeAttributePreferredLocation = 2
    The preferred location of the range

cudaMemRangeAttributeAccessedBy = 3
    Memory range has cudaMemAdviseSetAccessedBy set for specified device

cudaMemRangeAttributeLastPrefetchLocation = 4
    The last location to which the range was prefetched

cudaMemRangeAttributePreferredLocationType = 5
    The preferred location type of the range

cudaMemRangeAttributePreferredLocationId = 6
    The preferred location id of the range

cudaMemRangeAttributeLastPrefetchLocationType = 7
    The last location type to which the range was prefetched

cudaMemRangeAttributeLastPrefetchLocationId = 8
    The last location id to which the range was prefetched

enum cudaResourceType

CUDA resource types

Values

cudaResourceTypeArray = 0x00
    Array resource

cudaResourceTypeMipmappedArray = 0x01
    Mipmapped array resource

cudaResourceTypeLinear = 0x02
    Linear resource

cudaResourceTypePitch2D = 0x03
    Pitch 2D resource

enum cudaResourceViewFormat

CUDA texture resource view formats

Values

cudaResViewFormatNone = 0x00
No resource view format (use underlying resource format)

- **cudaResViewFormatUnsignedChar1 = 0x01**
  - 1 channel unsigned 8-bit integers
- **cudaResViewFormatUnsignedChar2 = 0x02**
  - 2 channel unsigned 8-bit integers
- **cudaResViewFormatUnsignedChar4 = 0x03**
  - 4 channel unsigned 8-bit integers
- **cudaResViewFormatSignedChar1 = 0x04**
  - 1 channel signed 8-bit integers
- **cudaResViewFormatSignedChar2 = 0x05**
  - 2 channel signed 8-bit integers
- **cudaResViewFormatSignedChar4 = 0x06**
  - 4 channel signed 8-bit integers
- **cudaResViewFormatUnsignedShort1 = 0x07**
  - 1 channel unsigned 16-bit integers
- **cudaResViewFormatUnsignedShort2 = 0x08**
  - 2 channel unsigned 16-bit integers
- **cudaResViewFormatUnsignedShort4 = 0x09**
  - 4 channel unsigned 16-bit integers
- **cudaResViewFormatSignedShort1 = 0x0a**
  - 1 channel signed 16-bit integers
- **cudaResViewFormatSignedShort2 = 0x0b**
  - 2 channel signed 16-bit integers
- **cudaResViewFormatSignedShort4 = 0x0c**
  - 4 channel signed 16-bit integers
- **cudaResViewFormatUnsignedInt1 = 0x0d**
  - 1 channel unsigned 32-bit integers
- **cudaResViewFormatUnsignedInt2 = 0x0e**
  - 2 channel unsigned 32-bit integers
- **cudaResViewFormatUnsignedInt4 = 0x0f**
  - 4 channel unsigned 32-bit integers
- **cudaResViewFormatSignedInt1 = 0x10**
  - 1 channel signed 32-bit integers
- **cudaResViewFormatSignedInt2 = 0x11**
  - 2 channel signed 32-bit integers
- **cudaResViewFormatSignedInt4 = 0x12**
  - 4 channel signed 32-bit integers
- **cudaResViewFormatHalf1 = 0x13**
  - 1 channel 16-bit floating point
- **cudaResViewFormatHalf2 = 0x14**
  - 2 channel 16-bit floating point
- **cudaResViewFormatHalf4 = 0x15**
  - 4 channel 16-bit floating point
cudaResViewFormatFloat1 = 0x16
1 channel 32-bit floating point
cudaResViewFormatFloat2 = 0x17
2 channel 32-bit floating point
cudaResViewFormatFloat4 = 0x18
4 channel 32-bit floating point

cudaResViewFormatUnsignedBlockCompressed1 = 0x19
Block compressed 1
cudaResViewFormatUnsignedBlockCompressed2 = 0x1a
Block compressed 2
cudaResViewFormatUnsignedBlockCompressed3 = 0x1b
Block compressed 3
cudaResViewFormatUnsignedBlockCompressed4 = 0x1c
Block compressed 4 unsigned
cudaResViewFormatSignedBlockCompressed4 = 0x1d
Block compressed 4 signed
cudaResViewFormatUnsignedBlockCompressed5 = 0x1e
Block compressed 5 unsigned
cudaResViewFormatSignedBlockCompressed5 = 0x1f
Block compressed 5 signed
cudaResViewFormatUnsignedBlockCompressed6H = 0x20
Block compressed 6 unsigned half-float
cudaResViewFormatSignedBlockCompressed6H = 0x21
Block compressed 6 signed half-float
cudaResViewFormatUnsignedBlockCompressed7 = 0x22
Block compressed 7

enum cudaSharedCarveout

Shared memory carveout configurations. These may be passed to cudaFuncSetAttribute

Values

cudaSharedmemCarveoutDefault = -1
No preference for shared memory or L1 (default)
cudaSharedmemCarveoutMaxShared = 100
Prefer maximum available shared memory, minimum L1 cache
cudaSharedmemCarveoutMaxL1 = 0
Prefer maximum available L1 cache, minimum shared memory

enum cudaSharedMemConfig

CUDA shared memory configuration
Values

cudaSharedMemBankSizeDefault = 0

cudaSharedMemBankSizeFourByte = 1

cudaSharedMemBankSizeEightByte = 2

enum cudaStreamCaptureMode

Possible modes for stream capture thread interactions. For more details see cudaStreamBeginCapture and cudaThreadExchangeStreamCaptureMode

Values

cudaStreamCaptureModeGlobal = 0

cudaStreamCaptureModeThreadLocal = 1

cudaStreamCaptureModeRelaxed = 2

enum cudaStreamCaptureStatus

Possible stream capture statuses returned by cudaStreamIsCapturing

Values

cudaStreamCaptureStatusNone = 0
    Stream is not capturing

cudaStreamCaptureStatusActive = 1
    Stream is actively capturing

cudaStreamCaptureStatusInvalidated = 2
    Stream is part of a capture sequence that has been invalidated, but not terminated

enum cudaStreamUpdateCaptureDependenciesFlags

Flags for cudaStreamUpdateCaptureDependencies

Values

cudaStreamAddCaptureDependencies = 0x0
    Add new nodes to the dependency set

cudaStreamSetCaptureDependencies = 0x1
    Replace the dependency set with the new nodes

enum cudaSurfaceBoundaryMode

CUDA Surface boundary modes
Values

`cudaBoundaryModeZero = 0`
Zero boundary mode

`cudaBoundaryModeClamp = 1`
Clamp boundary mode

`cudaBoundaryModeTrap = 2`
Trap boundary mode

`enum cudaSurfaceFormatMode`
CUDA Surface format modes

Values

`cudaFormatModeForced = 0`
Forced format mode

`cudaFormatModeAuto = 1`
Auto format mode

`enum cudaTextureAddressMode`
CUDA texture address modes

Values

`cudaAddressModeWrap = 0`
Wrapping address mode

`cudaAddressModeClamp = 1`
Clamp to edge address mode

`cudaAddressModeMirror = 2`
Mirror address mode

`cudaAddressModeBorder = 3`
Border address mode

`enum cudaTextureFilterMode`
CUDA texture filter modes

Values

`cudaFilterModePoint = 0`
Point filter mode

`cudaFilterModeLinear = 1`
Linear filter mode
enum cudaTextureReadMode
CUDA texture read modes

Values
- cudaReadModeElementType = 0
  - Read texture as specified element type
- cudaReadModeNormalizedFloat = 1
  - Read texture as normalized float

enum cudaUserObjectFlags
Flags for user objects for graphs

Values
- cudaUserObjectNoDestructorSync = 0x1
  - Indicates the destructor execution is not synchronized by any CUDA handle.

enum cudaUserObjectRetainFlags
Flags for retaining user object references for graphs

Values
- cudaGraphUserObjectMove = 0x1
  - Transfer references from the caller rather than creating new references.

typedef cudaArray *cudaArray_const_t
CUDA array (as source copy argument)

typedef cudaArray *cudaArray_t
CUDA array

typedef struct CUeglStreamConnection_st *cudaEglStreamConnection
CUDA EGLSream Connection

typedef cudaError_t
CUDA Error types
typedef struct CUevent_st *cudaEvent_t
CUDA event types

typedef struct CUexternalMemory_st *cudaExternalMemory_t
CUDA external memory

typedef struct CUexternalSemaphore_st *cudaExternalSemaphore_t
CUDA external semaphore

typedef struct CUfunc_st *cudaFunction_t
CUDA function

typedef struct CUgraph_st *cudaGraph_t
CUDA graph

typedef struct CUgraphExec_st *cudaGraphExec_t
CUDA executable (launchable) graph

typedef cudaGraphicsResource *cudaGraphicsResource_t
CUDA graphics resource types

typedef struct CUgraphNode_st *cudaGraphNode_t
CUDA graph node.

typedef void (CUDART_CB *cudaHostFn_t) (void* userData)
CUDA host function
```c
typedef struct CUkern_st *cudaKernel_t
CUDA kernel

typedef struct CUmemPoolHandle_st *cudaMemPool_t
CUDA memory pool

typedef cudaMipmappedArray *cudaMipmappedArray_const_t
CUDA mipmapped array (as source argument)

typedef cudaMipmappedArray *cudaMipmappedArray_t
CUDA mipmapped array

typedef struct CUstream_st *cudaStream_t
CUDA stream

typedef unsigned long long cudaSurfaceObject_t
An opaque value that represents a CUDA Surface object

typedef unsigned long long cudaTextureObject_t
An opaque value that represents a CUDA texture object

typedef struct CUuserObject_st *cudaUserObject_t
CUDA user object for graphs

#define CUDA_EGL_MAX_PLANES 3
Maximum number of planes per frame

#define CUDA_IPC_HANDLE_SIZE 64
CUDA IPC Handle Size
```
#define cudaArrayColorAttachment 0x20
Must be set in cudaExternalMemoryGetMappedMipmappedArray if the mipmapped array is used as a color target in a graphics API

#define cudaArrayCubemap 0x04
Must be set in cudaMalloc3DArray to create a cubemap CUDA array

#define cudaArrayDefault 0x00
Default CUDA array allocation flag

#define cudaArrayDeferredMapping 0x80
Must be set in cudaMallocArray, cudaMalloc3DArray or cudaMallocMipmappedArray in order to create a deferred mapping CUDA array or CUDA mipmapped array

#define cudaArrayLayered 0x01
Must be set in cudaMalloc3DArray to create a layered CUDA array

#define cudaArraySparse 0x40
Must be set in cudaMallocArray, cudaMalloc3DArray or cudaMallocMipmappedArray in order to create a sparse CUDA array or CUDA mipmapped array

#define cudaArraySparsePropertiesSingleMipTail 0x1
Indicates that the layered sparse CUDA array or CUDA mipmapped array has a single mip tail region for all layers

#define cudaArraySurfaceLoadStore 0x02
Must be set in cudaMallocArray or cudaMalloc3DArray in order to bind surfaces to the CUDA array

#define cudaArrayTextureGather 0x08
Must be set in cudaMallocArray or cudaMalloc3DArray in order to perform texture gather operations on the CUDA array
#define cudaCooperativeLaunchMultiDeviceNoPostSync 0x02
If set, any subsequent work pushed in a stream that participated in a call to `cudaLaunchCooperativeKernelMultiDevice` will only wait for the kernel launched on the GPU corresponding to that stream to complete before it begins execution.

#define cudaCooperativeLaunchMultiDeviceNoPreSync 0x01
If set, each kernel launched as part of `cudaLaunchCooperativeKernelMultiDevice` only waits for prior work in the stream corresponding to that GPU to complete before the kernel begins execution.

#define cudaCpuDeviceId ((int)-1)
Device id that represents the CPU

#define cudaDeviceBlockingSync 0x04
Deprecated This flag was deprecated as of CUDA 4.0 and replaced with `cudaDeviceScheduleBlockingSync`.
Device flag - Use blocking synchronization

#define cudaDeviceLmemResizeToMax 0x10
Device flag - Keep local memory allocation after launch

#define cudaDeviceMapHost 0x08
Device flag - Support mapped pinned allocations

#define cudaDeviceMask 0xff
Device flags mask

#define cudaDeviceScheduleAuto 0x00
Device flag - Automatic scheduling
#define cudaDeviceScheduleBlockingSync 0x04
Device flag - Use blocking synchronization

#define cudaDeviceScheduleMask 0x07
Device schedule flags mask

#define cudaDeviceScheduleSpin 0x01
Device flag - Spin default scheduling

#define cudaDeviceScheduleYield 0x02
Device flag - Yield default scheduling

#define cudaDeviceSyncMemops 0x80
Device flag - Use synchronous behavior for cudaMemcpy/cudaMemset

#define cudaEventBlockingSync 0x01
Event uses blocking synchronization

#define cudaEventDefault 0x00
Default event flag

#define cudaEventDisableTiming 0x02
Event will not record timing data

#define cudaEventInterprocess 0x04
Event is suitable for interprocess use. cudaEventDisableTiming must be set

#define cudaEventRecordDefault 0x00
Default event record flag

#define cudaEventRecordExternal 0x01
Event is captured in the graph as an external event node when performing stream capture
#define cudaEventWaitDefault 0x00

Default event wait flag

#define cudaEventWaitExternal 0x01

Event is captured in the graph as an external event node when performing stream capture

#define cudaExternalMemoryDedicated 0x1

Indicates that the external memory object is a dedicated resource

#define cudaExternalSemaphoreSignalSkipNvSciBufMemSync 0x01

When the /p flags parameter of `cudaExternalSemaphoreSignalParams` contains this flag, it indicates that signaling an external semaphore object should skip performing appropriate memory synchronization operations over all the external memory objects that are imported as `cudaExternalMemoryHandleTypeNvSciBuf`, which otherwise are performed by default to ensure data coherency with other importers of the same NvSciBuf memory objects.

#define cudaExternalSemaphoreWaitSkipNvSciBufMemSync 0x02

When the /p flags parameter of `cudaExternalSemaphoreWaitParams` contains this flag, it indicates that waiting an external semaphore object should skip performing appropriate memory synchronization operations over all the external memory objects that are imported as `cudaExternalMemoryHandleTypeNvSciBuf`, which otherwise are performed by default to ensure data coherency with other importers of the same NvSciBuf memory objects.

#define cudaHostAllocDefault 0x00

Default page-locked allocation flag

#define cudaHostAllocMapped 0x02

Map allocation into device space
#define cudaHostAllocPortable 0x01
Pinned memory accessible by all CUDA contexts

#define cudaHostAllocWriteCombined 0x04
Write-combined memory

#define cudaHostRegisterDefault 0x00
Default host memory registration flag

#define cudaHostRegisterIoMemory 0x04
Memory-mapped I/O space

#define cudaHostRegisterMapped 0x02
Map registered memory into device space

#define cudaHostRegisterPortable 0x01
Pinned memory accessible by all CUDA contexts

#define cudaHostRegisterReadOnly 0x08
Memory-mapped read-only

#define cudaInitDeviceFlagsAreValid 0x01
Tell the CUDA runtime that DeviceFlags is being set in cudaInitDevice call

#define cudaInvalidDeviceId ((int)-2)
Device id that represents an invalid device

#define cudaLpcMemLazyEnablePeerAccess 0x01
Automatically enable peer access between remote devices as needed

#define cudaMemAttachGlobal 0x01
Memory can be accessed by any stream on any device
```c
#define cudaMemAttachHost 0x02
Memory cannot be accessed by any stream on any device

#define cudaMemAttachSingle 0x04
Memory can only be accessed by a single stream on the associated device

#define cudaNvSciSyncAttrSignal 0x1
When /p flags of cudaDeviceGetNvSciSyncAttributes is set to this, it indicates that application need signaler specific NvSciSyncAttr to be filled by cudaDeviceGetNvSciSyncAttributes.

#define cudaNvSciSyncAttrWait 0x2
When /p flags of cudaDeviceGetNvSciSyncAttributes is set to this, it indicates that application need waiter specific NvSciSyncAttr to be filled by cudaDeviceGetNvSciSyncAttributes.

#define cudaOccupancyDefault 0x00
Default behavior

#define cudaOccupancyDisableCachingOverride 0x01
Assume global caching is enabled and cannot be automatically turned off

#define cudaPeerAccessDefault 0x00
Default peer addressing enable flag

#define cudaStreamDefault 0x00
Default stream flag

#define cudaStreamLegacy ((cudaStream_t)0x1)
Legacy stream handle
Stream handle that can be passed as a cudaStream_t to use an implicit stream with legacy synchronization behavior.
See details of the synchronization behavior.
```


#define cudaStreamNonBlocking 0x01
Stream does not synchronize with stream 0 (the NULL stream)

#define cudaStreamPerThread ((cudaStream_t)0x2)
Per-thread stream handle
Stream handle that can be passed as a cudaStream_t to use an implicit stream with per-thread synchronization behavior.
See details of the synchronization behavior.
Chapter 7.  Data Structures

Here are the data structures with brief descriptions:

- __cudaOccupancyB2DHelper
- cudaAccessPolicyWindow
- cudaArrayMemoryRequirements
- cudaArraySparseProperties
- cudaChannelFormatDesc
- cudaChildGraphNodeParams
- cudaDeviceProp
- cudaEglFrame
- cudaEglPlaneDesc
- cudaEventRecordNodeParams
- cudaEventWaitNodeParams
- cudaExtent
- cudaExternalMemoryBufferDesc
- cudaExternalMemoryHandleDesc
- cudaExternalMemoryMipmappedArrayDesc
- cudaExternalSemaphoreHandleDesc
- cudaExternalSemaphoreSignalNodeParams
- cudaExternalSemaphoreSignalNodeParamsV2
- cudaExternalSemaphoreSignalParams
- cudaExternalSemaphoreSignalParams_v1
- cudaExternalSemaphoreWaitNodeParams
- cudaExternalSemaphoreWaitNodeParamsV2
- cudaExternalSemaphoreWaitParams
- cudaExternalSemaphoreWaitParams_v1
- cudaFuncAttributes
- cudaGraphExecUpdateResultInfo
- cudaGraphInstantiateParams
- cudaHostNodeParams
- cudaHostNodeParamsV2
- cudaLpcEventHandle_t
- cudaLpcMemHandle_t
- cudaKernelNodeParams
7.1. __cudaOccupancyB2DHelper

C++ API Routines: cppClassifierVisibility: visibility=public  cppClassifierTemplateModel: =

Helper functor for cudaOccupancyMaxPotentialBlockSize

7.2. cudaAccessPolicyWindow Struct

Reference

Specifies an access policy for a window, a contiguous extent of memory beginning at base_ptr and ending at base_ptr + num_bytes. Partition into many segments and assign segments such that, sum of “hit segments” / window == approx. ratio. sum of “miss segments” / window == approx 1-ratio. Segments and ratio specifications are fitted to the capabilities of the architecture. Accesses in a hit segment apply the hitProp access policy. Accesses in a miss segment apply the missProp access policy.
void *cudaAccessPolicyWindow::base_ptr
Starting address of the access policy window. CUDA driver may align it.

enum cudaAccessProperty
cudaAccessPolicyWindow::hitProp
CUaccessProperty set for hit.

float cudaAccessPolicyWindow::hitRatio
hitRatio specifies percentage of lines assigned hitProp, rest are assigned missProp.

enum cudaAccessProperty
cudaAccessPolicyWindow::missProp
CUaccessProperty set for miss. Must be either NORMAL or STREAMING.

size_t cudaAccessPolicyWindow::num_bytes
Size in bytes of the window policy. CUDA driver may restrict the maximum size and alignment.

7.3. cudaArrayMemoryRequirements
Struct Reference
CUDA array and CUDA mipmapped array memory requirements

size_t cudaArrayMemoryRequirements::alignment
Alignment necessary for mapping the array.

size_t cudaArrayMemoryRequirements::size
Total size of the array.
7.4. cudaArraySparseProperties Struct Reference

Sparse CUDA array and CUDA mipmapped array properties

unsigned int cudaArraySparseProperties::depth
Tile depth in elements

unsigned int cudaArraySparseProperties::flags
Flags will either be zero or cudaArraySparsePropertiesSingleMipTail

unsigned int cudaArraySparseProperties::height
Tile height in elements

unsigned int cudaArraySparseProperties::miptailFirstLevel
First mip level at which the mip tail begins

unsigned long long cudaArraySparseProperties::miptailSize
Total size of the mip tail.

unsigned int cudaArraySparseProperties::width
Tile width in elements

7.5. cudaChannelFormatDesc Struct Reference

CUDA Channel format descriptor
enum cudaChannelFormatKind
CUDAChannelFormatDesc::f
Channel format kind

int cudaChannelFormatDesc::w
w

int cudaChannelFormatDesc::x
x

int cudaChannelFormatDesc::y
y

int cudaChannelFormatDesc::z
z

7.6. cudaChildGraphNodeParams Struct Reference
Child graph node parameters

cudaGraph_t cudaChildGraphNodeParams::graph
The child graph to clone into the node for node creation, or a handle to the graph owned by the node for node query

7.7. cudaDeviceProp Struct Reference
CUDA device properties

int cudaDeviceProp::accessPolicyMaxWindowSize
The maximum value of cudaAccessPolicyWindow::num_bytes.
int cudaDeviceProp::asyncEngineCount
Number of asynchronous engines

int cudaDeviceProp::canMapHostMemory
Device can map host memory with cudaHostAlloc/cudaHostGetDevicePointer

int cudaDeviceProp::canUseHostPointerForRegisteredMem
Device can access host registered memory at the same virtual address as the CPU

int cudaDeviceProp::clockRate
Deprecated, Clock frequency in kilohertz

int cudaDeviceProp::clusterLaunch
Indicates device supports cluster launch

int cudaDeviceProp::computeMode
Deprecated, Compute mode [See cudaComputeMode]

int cudaDeviceProp::computePreemptionSupported
Device supports Compute Preemption

int cudaDeviceProp::concurrentKernels
Device can possibly execute multiple kernels concurrently

int cudaDeviceProp::concurrentManagedAccess
Device can coherently access managed memory concurrently with the CPU

int cudaDeviceProp::cooperativeLaunch
Device supports launching cooperative kernels via cudaLaunchCooperativeKernel
int cudaDeviceProp::cooperativeMultiDeviceLaunch

Deprecated, cudaLaunchCooperativeKernelMultiDevice is deprecated.

int cudaDeviceProp::deferredMappingCudaArraySupported

1 if the device supports deferred mapping CUDA arrays and CUDA mipmapped arrays

int cudaDeviceProp::deviceOverlap

Device can concurrently copy memory and execute a kernel. Deprecated. Use instead asyncEngineCount.

int cudaDeviceProp::directManagedMemAccessFromHost

Host can directly access managed memory on the device without migration.

int cudaDeviceProp::ECCEnabled

Device has ECC support enabled

int cudaDeviceProp::globalL1CacheSupported

Device supports caching globals in L1

unsigned int cudaDeviceProp::gpuDirectRDMAFlushWritesOptions

Bitmask to be interpreted according to the cudaFlushGPUDirectRDMAWritesOptions enum

int cudaDeviceProp::gpuDirectRDMASupported

1 if the device supports GPUDirect RDMA APIs, 0 otherwise

int cudaDeviceProp::gpuDirectRDMAWritesOrdering

See the cudaGPUDirectRDMAWritesOrdering enum for numerical values
int cudaDeviceProp::hostNativeAtomicSupported
Link between the device and the host supports native atomic operations

int cudaDeviceProp::hostRegisterReadOnlySupported
Device supports using the cudaHostRegister flag cudaHostRegisterReadOnly to register memory that must be mapped as read-only to the GPU.

int cudaDeviceProp::hostRegisterSupported
Device supports host memory registration via cudaHostRegister.

int cudaDeviceProp::integrated
Device is integrated as opposed to discrete.

int cudaDeviceProp::ipcEventSupported
Device supports IPC Events.

int cudaDeviceProp::isMultiGpuBoard
Device is on a multi-GPU board.

int cudaDeviceProp::kernelExecTimeoutEnabled
Deprecated, Specified whether there is a run time limit on kernels.

int cudaDeviceProp::l2CacheSize
Size of L2 cache in bytes.

int cudaDeviceProp::localL1CacheSupported
Device supports caching locals in L1.

char cudaDeviceProp::luid
8-byte locally unique identifier. Value is undefined on TCC and non-Windows platforms.
unsigned int cudaDeviceProp::luidDeviceNodeMask
LUID device node mask. Value is undefined on TCC and non-Windows platforms

int cudaDeviceProp::major
Major compute capability

int cudaDeviceProp::managedMemory
Device supports allocating managed memory on this system

int cudaDeviceProp::maxBlocksPerMultiProcessor
Maximum number of resident blocks per multiprocessor

int cudaDeviceProp::maxGridSize
Maximum size of each dimension of a grid

int cudaDeviceProp::maxSurface1D
Maximum 1D surface size

int cudaDeviceProp::maxSurface1DLayered
Maximum 1D layered surface dimensions

int cudaDeviceProp::maxSurface2D
Maximum 2D surface dimensions

int cudaDeviceProp::maxSurface2DLayered
Maximum 2D layered surface dimensions

int cudaDeviceProp::maxSurface3D
Maximum 3D surface dimensions

int cudaDeviceProp::maxSurfaceCubemap
Maximum Cubemap surface dimensions
int cudaDeviceProp::maxSurfaceCubemapLayered
Maximum Cubemap layered surface dimensions

int cudaDeviceProp::maxTexture1D
Maximum 1D texture size

int cudaDeviceProp::maxTexture1DLayered
Maximum 1D layered texture dimensions

int cudaDeviceProp::maxTexture1DLinear
Deprecated, do not use. Use cudaDeviceGetTexture1DLinearMaxWidth() or cuDeviceGetTexture1DLinearMaxWidth() instead.

int cudaDeviceProp::maxTexture1DMipmap
Maximum 1D mipmapped texture size

int cudaDeviceProp::maxTexture2D
Maximum 2D texture dimensions

int cudaDeviceProp::maxTexture2DGather
Maximum 2D texture dimensions if texture gather operations have to be performed

int cudaDeviceProp::maxTexture2DLayered
Maximum 2D layered texture dimensions

int cudaDeviceProp::maxTexture2DLinear
Maximum dimensions (width, height, pitch) for 2D textures bound to pitched memory

int cudaDeviceProp::maxTexture2DMipmap
Maximum 2D mipmapped texture dimensions
int cudaDeviceProp::maxTexture3D
Maximum 3D texture dimensions

int cudaDeviceProp::maxTexture3DAlt
Maximum alternate 3D texture dimensions

int cudaDeviceProp::maxTextureCubemap
Maximum Cubemap texture dimensions

int cudaDeviceProp::maxTextureCubemapLayered
Maximum Cubemap layered texture dimensions

int cudaDeviceProp::maxThreadsDim
Maximum size of each dimension of a block

int cudaDeviceProp::maxThreadsPerBlock
Maximum number of threads per block

int cudaDeviceProp::maxThreadsPerMultiProcessor
Maximum resident threads per multiprocessor

int cudaDeviceProp::memoryBusWidth
Global memory bus width in bits

int cudaDeviceProp::memoryClockRate
Deprecated, Peak memory clock frequency in kilohertz

int cudaDeviceProp::memoryPoolsSupported
1 if the device supports using the cudaMallocAsync and cudaMemPool family of APIs, 0 otherwise
unsigned int cudaDeviceProp::memoryPoolSupportedHandleTypes
Bitmask of handle types supported with mempool-based IPC

size_t cudaDeviceProp::memPitch
Maximum pitch in bytes allowed by memory copies

int cudaDeviceProp::minor
Minor compute capability

int cudaDeviceProp::multiGpuBoardGroupID
Unique identifier for a group of devices on the same multi-GPU board

int cudaDeviceProp::multiProcessorCount
Number of multiprocessors on device

char cudaDeviceProp::name
ASCII string identifying device

int cudaDeviceProp::pageableMemoryAccess
Device supports coherently accessing pageable memory without calling cudaHostRegister on it

int cudaDeviceProp::pageableMemoryAccessUsesHostPageTables
Device accesses pageable memory via the host’s page tables

int cudaDeviceProp::pciBusID
PCI bus ID of the device

int cudaDeviceProp::pciDeviceID
PCI device ID of the device
int cudaDeviceProp::pciDomainID

PCI domain ID of the device

int cudaDeviceProp::persistingL2CacheMaxSize

Device’s maximum L2 persisting lines capacity setting in bytes

int cudaDeviceProp::regsPerBlock

32-bit registers available per block

int cudaDeviceProp::regsPerMultiprocessor

32-bit registers available per multiprocessor

int cudaDeviceProp::reserved

Reserved for future use

size_t cudaDeviceProp::reservedSharedMemPerBlock

Shared memory reserved by CUDA driver per block in bytes

size_t cudaDeviceProp::sharedMemPerBlock

Shared memory available per block in bytes

size_t cudaDeviceProp::sharedMemPerBlockOptin

Per device maximum shared memory per block usable by special opt in

size_t cudaDeviceProp::sharedMemPerMultiprocessor

Shared memory available per multiprocessor in bytes

int cudaDeviceProp::singleToDoublePrecisionPerfRatio

Deprecated, Ratio of single precision performance (in floating-point operations per second) to double precision performance
int cudaDeviceProp::sparseCudaArraySupported
1 if the device supports sparse CUDA arrays and sparse CUDA mipmapped arrays, 0 otherwise

int cudaDeviceProp::streamPrioritiesSupported
Device supports stream priorities

size_t cudaDeviceProp::surfaceAlignment
Alignment requirements for surfaces

int cudaDeviceProp::tccDriver
1 if device is a Tesla device using TCC driver, 0 otherwise

size_t cudaDeviceProp::textureAlignment
Alignment requirement for textures

size_t cudaDeviceProp::texturePitchAlignment
Pitch alignment requirement for texture references bound to pitched memory

int cudaDeviceProp::timelineSemaphoreInteropSupported
External timeline semaphore interop is supported on the device

size_t cudaDeviceProp::totalConstMem
Constant memory available on device in bytes

size_t cudaDeviceProp::totalGlobalMem
Global memory available on device in bytes

int cudaDeviceProp::unifiedAddressing
Device shares a unified address space with the host
**int cudaDeviceProp::unifiedFunctionPointers**
Indicates device supports unified pointers

**cudaUUID_t cudaDeviceProp::uuid**
16-byte unique identifier

**int cudaDeviceProp::warpSize**
Warp size in threads

### 7.8. cudaEglFrame Struct Reference

CUDA EGLFrame Descriptor - structure defining one frame of EGL.

Each frame may contain one or more planes depending on whether the surface is Multiplanar or not. Each plane of EGLFrame is represented by `cudaEglPlaneDesc` which is defined as:

```c
typedef struct cudaEglPlaneDesc_st {
   unsigned int width;
   unsigned int height;
   unsigned int depth;
   unsigned int pitch;
   unsigned int numChannels;
   struct cudaChannelFormatDesc channelDesc;
   unsigned int reserved[4];
} cudaEglPlaneDesc;
```

**cudaEglColorFormat cudaEglFrame::eglColorFormat**
CUDA EGL Color Format

**cudaEglFrameType cudaEglFrame::frameType**
Array or Pitch

**cudaArray_t cudaEglFrame::pArray**
Array of CUDA arrays corresponding to each plane

**unsigned int cudaEglFrame::planeCount**
Number of planes
struct cudaEglPlaneDesc cudaEglFrame::planeDesc
CUDA EGL Plane Descriptor cudaEglPlaneDesc

struct cudaPitchedPtr cudaEglFrame::pPitch
Array of Pointers corresponding to each plane

7.9. cudaEglPlaneDesc Struct Reference
CUDA EGL Plane Descriptor - structure defining each plane of a CUDA EGLFrame

struct cudaChannelFormatDesc
cudaEglPlaneDesc::channelDesc
Channel Format Descriptor

unsigned int cudaEglPlaneDesc::depth
Depth of plane

unsigned int cudaEglPlaneDesc::height
Height of plane

unsigned int cudaEglPlaneDesc::numChannels
Number of channels for the plane

unsigned int cudaEglPlaneDesc::pitch
Pitch of plane

unsigned int cudaEglPlaneDesc::reserved
Reserved for future use

unsigned int cudaEglPlaneDesc::width
Width of plane
7.10. `cudaEventRecordNodeParams` Struct Reference

Event record node parameters

`cudaEvent_t cudaEventRecordNodeParams::event`

The event to record when the node executes

7.11. `cudaEventWaitNodeParams` Struct Reference

Event wait node parameters

`cudaEvent_t cudaEventWaitNodeParams::event`

The event to wait on from the node

7.12. `cudaExtent` Struct Reference

CUDA extent

See also:

`make_cudaExtent`

`size_t cudaExtent::depth`

Depth in elements

`size_t cudaExtent::height`

Height in elements

`size_t cudaExtent::width`

Width in elements when referring to array memory, in bytes when referring to linear memory
7.13.  cudaExternalMemoryBufferDesc

Struct Reference

External memory buffer descriptor

unsigned int cudaExternalMemoryBufferDesc::flags

Flags reserved for future use. Must be zero.

unsigned long long
cudaExternalMemoryBufferDesc::offset

Offset into the memory object where the buffer's base is

unsigned long long
cudaExternalMemoryBufferDesc::size

Size of the buffer

7.14.  cudaExternalMemoryHandleDesc

Struct Reference

External memory handle descriptor

int cudaExternalMemoryHandleDesc::fd

File descriptor referencing the memory object. Valid when type is cudaExternalMemoryHandleTypeOpaqueFd

unsigned int cudaExternalMemoryHandleDesc::flags

Flags must either be zero or cudaExternalMemoryDedicated

void *cudaExternalMemoryHandleDesc::handle

Valid NT handle. Must be NULL if 'name' is non-NULL
const void *cudaExternalMemoryHandleDesc::name
Name of a valid memory object. Must be NULL if ‘handle’ is non-NULL.

const void
*cudaExternalMemoryHandleDesc::nvSciBufObject
A handle representing NvSciBuf Object. Valid when type is
cudaExternalMemoryHandleTypeNvSciBuf

unsigned long long
cudaExternalMemoryHandleDesc::size
Size of the memory allocation

enums cudaExternalMemoryHandleType
cudaExternalMemoryHandleDesc::type
Type of the handle

cudaExternalMemoryHandleDesc::@7::@8
cudaExternalMemoryHandleDesc::win32
Win32 handle referencing the semaphore object. Valid when type is one of the following:

- cudaExternalMemoryHandleTypeOpaqueWin32
- cudaExternalMemoryHandleTypeOpaqueWin32Kmt
- cudaExternalMemoryHandleTypeD3D12Heap
- cudaExternalMemoryHandleTypeD3D12Resource
- cudaExternalMemoryHandleTypeD3D11Resource
- cudaExternalMemoryHandleTypeD3D11ResourceKmt

Exactly one of ‘handle’ and ‘name’ must be non-NULL. If type is one of the following: cudaExternalMemoryHandleTypeOpaqueWin32Kmt cudaExternalMemoryHandleTypeD3D11ResourceKmt then ‘name’ must be NULL.
7.15. **cudaExternalMemoryMipmappedArrayDesc**

Struct Reference

External memory mipmap descriptor

```
struct cudaExtent
cudaExternalMemoryMipmappedArrayDesc::extent
```

Dimensions of base level of the mipmap chain

```
unsigned int
cudaExternalMemoryMipmappedArrayDesc::flags
```

Flags associated with CUDA mipmapped arrays. See [cudaMallocMipmappedArray](#)

```
struct cudaChannelFormatDesc
cudaExternalMemoryMipmappedArrayDesc::formatDesc
```

Format of base level of the mipmap chain

```
unsigned int
cudaExternalMemoryMipmappedArrayDesc::numLevels
```

Total number of levels in the mipmap chain

```
unsigned long long
cudaExternalMemoryMipmappedArrayDesc::offset
```

Offset into the memory object where the base level of the mipmap chain is.

---

7.16. **cudaExternalSemaphoreHandleDesc**

Struct Reference

External semaphore handle descriptor
int cudaExternalSemaphoreHandleDesc::fd
File descriptor referencing the semaphore object. Valid when type is one of the following:

- cudaExternalSemaphoreHandleTypeOpaqueFd
- cudaExternalSemaphoreHandleTypeTimelineSemaphoreFd

unsigned int
cudaExternalSemaphoreHandleDesc::flags
Flags reserved for the future. Must be zero.

void *cudaExternalSemaphoreHandleDesc::handle
Valid NT handle. Must be NULL if ‘name’ is non-NULL

const void
*cudaExternalSemaphoreHandleDesc::name
Name of a valid synchronization primitive. Must be NULL if ‘handle’ is non-NULL.

const void
*cudaExternalSemaphoreHandleDesc::nvSciSyncObj
Valid NvSciSyncObj. Must be non NULL

enum cudaExternalSemaphoreHandleType
cudaExternalSemaphoreHandleDesc::type
Type of the handle

cudaExternalSemaphoreHandleDesc::@9::@10
cudaExternalSemaphoreHandleDesc::win32
Win32 handle referencing the semaphore object. Valid when type is one of the following:

- cudaExternalSemaphoreHandleTypeOpaqueWin32
- cudaExternalSemaphoreHandleTypeOpaqueWin32Kmt
- cudaExternalSemaphoreHandleTypeD3D12Fence
CUDA Runtime API

7.17. **cudaExternalSemaphoreSignalNodeParams**

Struct Reference

External semaphore signal node parameters

cudaExternalSemaphore_t
*cudaExternalSemaphoreSignalNodeParams::extSemArray

Array of external semaphore handles.

unsigned int
cudaExternalSemaphoreSignalNodeParams::numExtSems

Number of handles and parameters supplied in extSemArray and paramsArray.

cudaExternalSemaphoreSignalParams
*cudaExternalSemaphoreSignalNodeParams::paramsArray

Array of external semaphore signal parameters.

7.18. **cudaExternalSemaphoreSignalNodeParamsV2**

Struct Reference

External semaphore signal node parameters

cudaExternalSemaphore_t
*cudaExternalSemaphoreSignalNodeParamsV2::extSemArray

Array of external semaphore handles.
unsigned int
cudaExternalSemaphoreSignalNodeParamsV2::numExtSems

Number of handles and parameters supplied in extSemArray and paramsArray.

cudaExternalSemaphoreSignalParams
*cudaExternalSemaphoreSignalNodeParamsV2::paramsArray

Array of external semaphore signal parameters.

7.19. cudaExternalSemaphoreSignalParams
Struct Reference

External semaphore signal parameters, compatible with driver type

void *cudaExternalSemaphoreSignalParams::fence

Pointer to NvSciSyncFence. Valid if cudaExternalSemaphoreHandleType is of type
cudaExternalSemaphoreHandleTypeNvSciSync.

cudaExternalSemaphoreSignalParams::@19::@20
cudaExternalSemaphoreSignalParams::fence

Parameters for fence objects

unsigned int
cudaExternalSemaphoreSignalParams::flags

Only when cudaExternalSemaphoreSignalParams is used to signal a
cudaExternalSemaphore_t of type cudaExternalSemaphoreHandleTypeNvSciSync, the
valid flag is cudaExternalSemaphoreSignalSkipNvSciBufMemSync; which indicates
that while signaling the cudaExternalSemaphore_t, no memory synchronization
operations should be performed for any external memory object imported as
cudaExternalMemoryHandleTypeNvSciBuf. For all other types of cudaExternalSemaphore_t,
flags must be zero.
cudaExternalSemaphoreSignalParams::@19::@22
cudaExternalSemaphoreSignalParams::keyedMutex

Parameters for keyed mutex objects

unsigned long long
cudaExternalSemaphoreSignalParams::value

Value of fence to be signaled

7.20. cudaExternalSemaphoreSignalParams_v1

Struct Reference

External semaphore signal parameters (deprecated)

void
*cudaExternalSemaphoreSignalParams_v1::fence

Pointer to NvSciSyncFence. Valid if cudaExternalSemaphoreHandleType is of type
cudaExternalSemaphoreHandleTypeNvSciSync.

cudaExternalSemaphoreSignalParams_v1::@11::@12
cudaExternalSemaphoreSignalParams_v1::fence

Parameters for fence objects

unsigned int
cudaExternalSemaphoreSignalParams_v1::flags

Only when cudaExternalSemaphoreSignalParams is used to signal a
cudaExternalSemaphore_t of type cudaExternalSemaphoreHandleTypeNvSciSync, the
valid flag is cudaExternalSemaphoreSignalSkipNvSciBufMemSync: which indicates
that while signaling the cudaExternalSemaphore_t, no memory synchronization
operations should be performed for any external memory object imported as
cudaExternalMemoryHandleTypeNvSciBuf. For all other types of cudaExternalSemaphore_t,
flags must be zero.
cudaExternalSemaphoreSignalParams_v1::keyedMutex

Parameters for keyed mutex objects

unsigned long long
cudaExternalSemaphoreSignalParams_v1::value

Value of fence to be signaled

7.21. cudaExternalSemaphoreWaitNodeParams

Struct Reference

External semaphore wait node parameters

cudaExternalSemaphore_t
*cudaExternalSemaphoreWaitNodeParams::extSemArray

Array of external semaphore handles.

unsigned int
cudaExternalSemaphoreWaitNodeParams::numExtSems

Number of handles and parameters supplied in extSemArray and paramsArray.

cudaExternalSemaphoreWaitParams
*cudaExternalSemaphoreWaitNodeParams::paramsArray

Array of external semaphore wait parameters.

7.22. cudaExternalSemaphoreWaitNodeParamsV2

Struct Reference

External semaphore wait node parameters
cudaExternalSemaphore_t
*cudaExternalSemaphoreWaitNodeParamsV2::extSemArray
Array of external semaphore handles.

unsigned int
cudaExternalSemaphoreWaitNodeParamsV2::numExtSems
Number of handles and parameters supplied in extSemArray and paramsArray.

cudaExternalSemaphoreWaitParams
*cudaExternalSemaphoreWaitNodeParamsV2::paramsArray
Array of external semaphore wait parameters.

7.23. cudaExternalSemaphoreWaitParams Struct Reference
External semaphore wait parameters, compatible with driver type

void *cudaExternalSemaphoreWaitParams::fence
Pointer to NvSciSyncFence. Valid if cudaExternalSemaphoreHandleType is of type
cudaExternalSemaphoreHandleTypeNvSciSync.

cudaExternalSemaphoreWaitParams::@23::@24
cudaExternalSemaphoreWaitParams::fence
Parameters for fence objects

unsigned int
cudaExternalSemaphoreWaitParams::flags
Only when cudaExternalSemaphoreSignalParams is used to signal a
cudaExternalSemaphore_t of type cudaExternalSemaphoreHandleTypeNvSciSync, the valid flag is
cudaExternalSemaphoreSignalSkipNvSciBufMemSync; which indicates
that while waiting for the cudaExternalSemaphore_t, no memory synchronization
operations should be performed for any external memory object imported as
cudaExternalMemoryHandleTypeNvSciBuf. For all other types of cudaExternalSemaphore_t, flags must be zero.

**unsigned long long**

cudaExternalSemaphoreWaitParams::key

Value of key to acquire the mutex with

**cudaExternalSemaphoreWaitParams::@23::@26**

cudaExternalSemaphoreWaitParams::keyedMutex

Parameters for keyed mutex objects

**unsigned int**

cudaExternalSemaphoreWaitParams::timeoutMs

Timeout in milliseconds to wait to acquire the mutex

**unsigned long long**

cudaExternalSemaphoreWaitParams::value

Value of fence to be waited on

### 7.24. cudaExternalSemaphoreWaitParams_v1

Struct Reference

External semaphore wait parameters [deprecated]

**void *cudaExternalSemaphoreWaitParams_v1::fence**

Pointer to NvSciSyncFence. Valid if cudaExternalSemaphoreHandleType is of type cudaExternalSemaphoreHandleTypeNvSciSync.

**cudaExternalSemaphoreWaitParams_v1::@15::@16**

cudaExternalSemaphoreWaitParams_v1::fence

Parameters for fence objects
unsigned int
cudaExternalSemaphoreWaitParams_v1::flags

Only when `cudaExternalSemaphoreSignalParams` is used to signal a `cudaExternalSemaphore_t` of type `cudaExternalSemaphoreHandleTypeNvSciSync`, the valid flag is `cudaExternalSemaphoreSignalSkipNvSciBufMemSync`; which indicates that while waiting for the `cudaExternalSemaphore_t`, no memory synchronization operations should be performed for any external memory object imported as `cudaExternalMemoryHandleTypeNvSciBuf`. For all other types of `cudaExternalSemaphore_t`, flags must be zero.

unsigned long long
cudaExternalSemaphoreWaitParams_v1::key

Value of key to acquire the mutex with

cudaExternalSemaphoreWaitParams_v1::@15::@18
cudaExternalSemaphoreWaitParams_v1::keyedMutex

Parameters for keyed mutex objects

unsigned int
cudaExternalSemaphoreWaitParams_v1::timeoutMs

Timeout in milliseconds to wait to acquire the mutex

unsigned long long
cudaExternalSemaphoreWaitParams_v1::value

Value of fence to be waited on

7.25. `cudaFuncAttributes` Struct Reference

CUDA function attributes
int cudaFuncAttributes::binaryVersion

The binary architecture version for which the function was compiled. This value is the major binary version * 10 + the minor binary version, so a binary version 1.3 function would return the value 13.

int cudaFuncAttributes::cacheModeCA

The attribute to indicate whether the function has been compiled with user specified option "-Xptxas --dlcm=ca" set.

int cudaFuncAttributes::clusterDimMustBeSet

If this attribute is set, the kernel must launch with a valid cluster dimension specified.

int cudaFuncAttributes::clusterSchedulingPolicyPreference

The block scheduling policy of a function. See cudaFuncSetAttribute

size_t cudaFuncAttributes::constSizeBytes

The size in bytes of user-allocated constant memory required by this function.

size_t cudaFuncAttributes::localSizeBytes

The size in bytes of local memory used by each thread of this function.

int cudaFuncAttributes::maxDynamicSharedSizeBytes

The maximum size in bytes of dynamic shared memory per block for this function. Any launch must have a dynamic shared memory size smaller than this value.

int cudaFuncAttributes::maxThreadsPerBlock

The maximum number of threads per block, beyond which a launch of the function would fail. This number depends on both the function and the device on which the function is currently loaded.
int cudaFuncAttributes::nonPortableClusterSizeAllowed

Whether the function can be launched with non-portable cluster size. 1 is allowed, 0 is disallowed. A non-portable cluster size may only function on the specific SKUs the program is tested on. The launch might fail if the program is run on a different hardware platform.

CUDA API provides `cudaOccupancyMaxActiveClusters` to assist with checking whether the desired size can be launched on the current device.

Portable Cluster Size

A portable cluster size is guaranteed to be functional on all compute capabilities higher than the target compute capability. The portable cluster size for sm_90 is 8 blocks per cluster. This value may increase for future compute capabilities.

The specific hardware unit may support higher cluster sizes that’s not guaranteed to be portable. See `cudaFuncSetAttribute`.

int cudaFuncAttributes::numRegs

The number of registers used by each thread of this function.

int cudaFuncAttributes::preferredShmemCarveout

On devices where the L1 cache and shared memory use the same hardware resources, this sets the shared memory carveout preference, in percent of the maximum shared memory. Refer to `cudaDevAttrMaxSharedMemoryPerMultiprocessor`. This is only a hint, and the driver can choose a different ratio if required to execute the function. See `cudaFuncSetAttribute`.

int cudaFuncAttributes::ptxVersion

The PTX virtual architecture version for which the function was compiled. This value is the major PTX version * 10 + the minor PTX version, so a PTX version 1.3 function would return the value 13.

int cudaFuncAttributes::requiredClusterWidth

The required cluster width/height/depth in blocks. The values must either all be 0 or all be positive. The validity of the cluster dimensions is otherwise checked at launch time.

If the value is set during compile time, it cannot be set at runtime. Setting it at runtime should return cudaErrorNotPermitted. See `cudaFuncSetAttribute`.
int cudaFuncAttributes::reserved

Reserved for future use.

size_t cudaFuncAttributes::sharedSizeBytes

The size in bytes of statically-allocated shared memory per block required by this function. This does not include dynamically-allocated shared memory requested by the user at runtime.

7.26. cudaGraphExecUpdateResultInfo Struct Reference

Result information returned by cudaGraphExecUpdate

cudaGraphNode_t cudaGraphExecUpdateResultInfo::errorFromNode

The from node of error edge when the topologies do not match. Otherwise NULL.

cudaGraphNode_t cudaGraphExecUpdateResultInfo::errorNode

The “to node” of the error edge when the topologies do not match. The error node when the error is associated with a specific node. NULL when the error is generic.

enumcudaGraphExecUpdateResult cudaGraphExecUpdateResultInfo::result

Gives more specific detail when a cuda graph update fails.

7.27. cudaGraphInstantiateParams Struct Reference

Graph instantiation parameters
cudaGraphNode_t
cudaGraphInstantiateParams::errNode_out
The node which caused instantiation to fail, if any

unsigned long long
cudaGraphInstantiateParams::flags
Instantiation flags

cudaGraphInstantiateResult
cudaGraphInstantiateParams::result_out
Whether instantiation was successful. If it failed, the reason why

cudaStream_t
cudaGraphInstantiateParams::uploadStream
Upload stream

7.28. cudaHostNodeParams Struct
Reference

CUDA host node parameters

cudaHostFn_t cudaHostNodeParams::fn
The function to call when the node executes

void *cudaHostNodeParams::userData
Argument to pass to the function

7.29. cudaHostNodeParamsV2 Struct
Reference

CUDA host node parameters
cudaHostFn_t cudaHostNodeParamsV2::fn
The function to call when the node executes

void *cudaHostNodeParamsV2::userData
Argument to pass to the function

7.30. cudaIpcEventHandle_t Struct
Reference
CUDA IPC event handle

7.31. cudaIpcMemHandle_t Struct
Reference
CUDA IPC memory handle

7.32. cudaKernelNodeParams Struct
Reference
CUDA GPU kernel node parameters

dim3 cudaKernelNodeParams::blockDim
Block dimensions

**cudaKernelNodeParams::extra
Pointer to kernel arguments in the “extra” format

void *cudaKernelNodeParams::func
Kernel to launch
dim3 cudaKernelNodeParams::gridDim
Grid dimensions

**cudaKernelNodeParams::kernelParams
Array of pointers to individual kernel arguments

unsigned int
cudaKernelNodeParams::sharedMemBytes
Dynamic shared-memory size per thread block in bytes

7.33. cudaKernelNodeParamsV2 Struct
Reference
CUDA GPU kernel node parameters

uint3 cudaKernelNodeParamsV2::blockDim
Block dimensions

**cudaKernelNodeParamsV2::extra
Pointer to kernel arguments in the "extra" format

void *cudaKernelNodeParamsV2::func
Kernel to launch

uint3 cudaKernelNodeParamsV2::gridDim
Grid dimensions

**cudaKernelNodeParamsV2::kernelParams
Array of pointers to individual kernel arguments
unsigned int
cudaKernelNodeParamsV2::sharedMemBytes

Dynamic shared-memory size per thread block in bytes

7.34. cudaLaunchAttribute Struct Reference

Launch attribute

7.35. cudaLaunchAttributeValue Union Reference

Launch attributes union; used as value field of cudaLaunchAttribute

struct cudaAccessPolicyWindow
cudaLaunchAttributeValue::accessPolicyWindow

Attribute cudaAccessPolicyWindow.

cudaLaunchAttributeValue::@29
cudaLaunchAttributeValue::clusterDim

Cluster dimensions for the kernel node.

enum cudaClusterSchedulingPolicy
cudaLaunchAttributeValue::clusterSchedulingPolicyPreference

Cluster scheduling policy preference for the kernel node.

int cudaLaunchAttributeValue::cooperative

Nonzero indicates a cooperative kernel (see cudaLaunchCooperativeKernel).

int cudaLaunchAttributeValue::priority

Execution priority of the kernel.
enum cudaSynchronizationPolicy
cudaLaunchAttributeValue::syncPolicy
cudaSynchronizationPolicy for work queued up in this stream

7.36. cudaLaunchConfig_t Struct Reference
CUDA extensible launch configuration

cudaLaunchAttribute *cudaLaunchConfig_t::attrs
nullable if numAttrs == 0

dim3 cudaLaunchConfig_t::blockDim
Block dimensions

size_t cudaLaunchConfig_t::dynamicSmemBytes
Dynamic shared-memory size per thread block in bytes

dim3 cudaLaunchConfig_t::gridDim
Grid dimensions

unsigned int cudaLaunchConfig_t::numAttrs
Number of attributes populated in attrs

cudaStream_t cudaLaunchConfig_t::stream
Stream identifier

7.37. cudaLaunchParams Struct Reference
CUDA launch parameters
**cudaLaunchParams::args**

Arguments

`dim3 cudaLaunchParams::blockDim`
Block dimensions

`void *cudaLaunchParams::func`
Device function symbol

`dim3 cudaLaunchParams::gridDim`
Grid dimensions

`size_t cudaLaunchParams::sharedMem`
Shared memory

`cudaStream_t cudaLaunchParams::stream`
Stream identifier

7.38.  **cudaMemAccessDesc Struct**
Reference

Memory access descriptor

`enum cudaMemAccessFlags`
`cudaMemAccessDesc::flags`
CUmemProt accessibility flags to set on the request

`struct cudaMemLocation`
`cudaMemAccessDesc::location`
Location on which the request is to change it’s accessibility
7.39. cudaMemAllocNodeParams Struct Reference

Memory allocation node parameters

```c
size_t cudaMemAllocNodeParams::accessDescCount
in: Number of `accessDescs`'s
```

```c
cudaMemAccessDesc
*cudaMemAllocNodeParams::accessDescs
in: number of memory access descriptors. Must not exceed the number of GPUs.
```

```c
size_t cudaMemAllocNodeParams::bytesize
in: size in bytes of the requested allocation
```

```c
void *cudaMemAllocNodeParams::dptr
out: address of the allocation returned by CUDA
```

```c
struct cudaMemPoolProps
cudaMemAllocNodeParams::poolProps
in: location where the allocation should reside (specified in location). handleTypes must be cudaMemHandleTypeNone. IPC is not supported. in: array of memory access descriptors. Used to describe peer GPU access
```

7.40. cudaMemAllocNodeParamsV2 Struct Reference

Memory allocation node parameters
size_t cudaMemAllocNodeParamsV2::accessDescCount
in: Number of `accessDescs` s

cudaMemAccessDesc *cudaMemAllocNodeParamsV2::accessDescs
in: number of memory access descriptors. Must not exceed the number of GPUs.

size_t cudaMemAllocNodeParamsV2::bytesize
in: size in bytes of the requested allocation

void *cudaMemAllocNodeParamsV2::dptr
out: address of the allocation returned by CUDA

struct cudaMemPoolProps cudaMemAllocNodeParamsV2::poolProps
in: location where the allocation should reside (specified in location). handleTypes must be
cudaMemHandleTypeNone. IPC is not supported. in: array of memory access descriptors.
Used to describe peer GPU access

7.41. cudaMemcpy3DParms Struct Reference

CUDA 3D memory copying parameters

cudaArray_t cudaMemcpy3DParms::dstArray
Destination memory address

struct cudaMemcpy3DParms::dstPos
Destination position offset
struct cudaPitchedPtr cudaMemcpy3DParms::dstPtr

Pitched destination memory address

struct cudaExtent cudaMemcpy3DParms::extent

Requested memory copy size

enum cudaMemcpyKind cudaMemcpy3DParms::kind

Type of transfer

cudaArray_t cudaMemcpy3DParms::srcArray

Source memory address

struct cudaPos cudaMemcpy3DParms::srcPos

Source position offset

struct cudaPitchedPtr cudaMemcpy3DParms::srcPtr

Pitched source memory address

7.42. cudaMemcpy3DPeerParms Struct Reference

CUDA 3D cross-device memory copying parameters

cudaArray_t cudaMemcpy3DPeerParms::dstArray

Destination memory address

int cudaMemcpy3DPeerParms::dstDevice

Destination device

struct cudaPos cudaMemcpy3DPeerParms::dstPos

Destination position offset
struct cudaPitchedPtr
cudaMemcpy3DPeerParms::dstPtr
Pitched destination memory address

struct cudaExtent cudaMemcpy3DPeerParms::extent
Requested memory copy size

cudaArray_t cudaMemcpy3DPeerParms::srcArray
Source memory address

int cudaMemcpy3DPeerParms::srcDevice
Source device

struct cudaPos cudaMemcpy3DPeerParms::srcPos
Source position offset

struct cudaPitchedPtr
cudaMemcpy3DPeerParms::srcPtr
Pitched source memory address

7.43. cudaMemcpyNodeParams Struct Reference
Memcpy node parameters

struct cudaMemcpy3DParms
cudaMemcpyNodeParams::copyParams
Parameters for the memory copy

int cudaMemcpyNodeParams::flags
Must be zero
int cudaMemcpyNodeParams::reserved
Must be zero

7.44. cudaMemcpyNodeParams Struct Reference
Memory free node parameters

void *cudaMemFreeNodeParams::dptr
in: the pointer to free

7.45. cudaMemLocation Struct Reference
Specifies a memory location.
To specify a gpu, set type = cudaMemLocationTypeDevice and set id = the gpu’s device ordinal.
To specify a cpu NUMA node, set type = cudaMemLocationTypeHostNuma and set id = host NUMA node id.

int cudaMemLocation::id
identifier for a given this location’s CUmemLocationType.

enumcudaMemLocationType cudaMemLocation::type
Specifies the location type, which modifies the meaning of id.

7.46. cudaMemPoolProps Struct Reference
Specifies the properties of allocations made from the pool.

enumcudaMemAllocationType cudaMemPoolProps::allocType
Allocation type. Currently must be specified as cudaMemAllocationTypePinned
enum cudaMemAllocationHandleType
cudaMemPoolProps::handleTypes
Handle types that will be supported by allocations from the pool.

struct cudaMemLocation
cudaMemPoolProps::location
Location allocations should reside.

size_t cudaMemPoolProps::maxSize
Maximum pool size. When set to 0, defaults to a system dependent value.

unsigned char cudaMemPoolProps::reserved
reserved for future use, must be 0

void *cudaMemPoolProps::win32SecurityAttributes
Windows-specific LPSECURITYATTRIBUTES required when cudaMemHandleTypeWin32 is specified. This security attribute defines the scope of which exported allocations may be transferred to other processes. In all other cases, this field is required to be zero.

7.47. cudaMemPoolPtrExportData Struct Reference
Opaque data for exporting a pool allocation

7.48. cudaMemsetParams Struct Reference
CUDA Memset node parameters

void *cudaMemsetParams::dst
Destination device pointer
unsigned int cudaMemsetParams::elementSize
Size of each element in bytes. Must be 1, 2, or 4.

size_t cudaMemsetParams::height
Number of rows

size_t cudaMemsetParams::pitch
Pitch of destination device pointer. Unused if height is 1

unsigned int cudaMemsetParams::value
Value to be set

size_t cudaMemsetParams::width
Width of the row in elements

7.49. cudaMemsetParamsV2 Struct
Reference

CUDA Memset node parameters

void *cudaMemsetParamsV2::dst
Destination device pointer

unsigned int cudaMemsetParamsV2::elementSize
Size of each element in bytes. Must be 1, 2, or 4.

size_t cudaMemsetParamsV2::height
Number of rows

size_t cudaMemsetParamsV2::pitch
Pitch of destination device pointer. Unused if height is 1
unsigned int cudaMemsetParamsV2::value
Value to be set

size_t cudaMemsetParamsV2::width
Width of the row in elements

7.50. cudaPitchedPtr Struct Reference
CUDA Pitched memory pointer
See also:
make_cudaPitchedPtr

size_t cudaPitchedPtr::pitch
Pitch of allocated memory in bytes

void *cudaPitchedPtr::ptr
Pointer to allocated memory

size_t cudaPitchedPtr::xsize
Logical width of allocation in elements

size_t cudaPitchedPtr::ysize
Logical height of allocation in elements

7.51. cudaPointerAttributes Struct Reference
CUDA pointer attributes

int cudaPointerAttributes::device
The device against which the memory was allocated or registered. If the memory type is cudaMemoryTypeDevice then this identifies the device on which the memory referred
physically resides. If the memory type is `cudaMemoryTypeHost` or `cudaMemoryTypeManaged` then this identifies the device which was current when the memory was allocated or registered (and if that device is deinitialized then this allocation will vanish with that device’s state).

```c
void *cudaPointerAttributes::devicePointer
```

The address which may be dereferenced on the current device to access the memory or NULL if no such address exists.

```c
void *cudaPointerAttributes::hostPointer
```

The address which may be dereferenced on the host to access the memory or NULL if no such address exists.

**Note:**

CUDA doesn’t check if unregistered memory is allocated so this field may contain invalid pointer if an invalid pointer has been passed to CUDA.

```c
enum cudaMemoryType cudaPointerAttributes::type
```

The type of memory - `cudaMemoryTypeUnregistered`, `cudaMemoryTypeHost`, `cudaMemoryTypeDevice` or `cudaMemoryTypeManaged`.

### 7.52. cudaPos Struct Reference

CUDA 3D position

**See also:**

- `make_cudaPos`

```c
size_t cudaPos::x
```

x

```c
size_t cudaPos::y
```

y

```c
size_t cudaPos::z
```

z
7.53. cudaResourceDesc Struct Reference

CUDA resource descriptor

cudaArray_t cudaResourceDesc::array
CUDA array

struct cudaChannelFormatDesc
ccudaResourceDesc::desc
Channel descriptor

void *cudaResourceDesc::devPtr
Device pointer

size_t cudaResourceDesc::height
Height of the array in elements

cudaMipmappedArray_t cudaResourceDesc::mipmap
CUDA mipmapped array

size_t cudaResourceDesc::pitchInBytes
Pitch between two rows in bytes

enum cudaResourceType cudaResourceDesc::resType
Resource type

size_t cudaResourceDesc::sizeInBytes
Size in bytes

size_t cudaResourceDesc::width
Width of the array in elements
7.54. cudaResourceViewDesc Struct Reference

CUDA resource view descriptor

```c
size_t cudaResourceViewDesc::depth
```
Depth of the resource view

```c
unsigned int cudaResourceViewDesc::firstLayer
```
First layer index

```c
unsigned int cudaResourceViewDesc::firstMipmapLevel
```
First defined mipmap level

```c
enum cudaResourceViewFormat cudaResourceViewDesc::format
```
Resource view format

```c
size_t cudaResourceViewDesc::height
```
Height of the resource view

```c
unsigned int cudaResourceViewDesc::lastLayer
```
Last layer index

```c
unsigned int cudaResourceViewDesc::lastMipmapLevel
```
Last defined mipmap level

```c
size_t cudaResourceViewDesc::width
```
Width of the resource view
7.55. cudaTextureDesc Struct Reference

CUDA texture descriptor

enum cudaTextureAddressMode
cudaTextureDesc::addressMode
Texture address mode for up to 3 dimensions

float cudaTextureDesc::borderColor
Texture Border Color

int cudaTextureDesc::disableTrilinearOptimization
Disable any trilinear filtering optimizations.

enum cudaTextureFilterMode
cudaTextureDesc::filterMode
Texture filter mode

unsigned int cudaTextureDesc::maxAnisotropy
Limit to the anisotropy ratio

float cudaTextureDesc::maxMipmapLevelClamp
Upper end of the mipmap level range to clamp access to

float cudaTextureDesc::minMipmapLevelClamp
Lower end of the mipmap level range to clamp access to

enum cudaTextureFilterMode
cudaTextureDesc::mipmapFilterMode
Mipmap filter mode
float cudaTextureDesc::mipmapLevelBias
Offset applied to the supplied mipmap level

int cudaTextureDesc::normalizedCoords
Indicates whether texture reads are normalized or not

enum cudaTextureReadMode
cudaTextureDesc::readMode
Texture read mode

int cudaTextureDesc::seamlessCubemap
Enable seamless cube map filtering.

int cudaTextureDesc::sRGB
Perform sRGB->linear conversion during texture read

7.56. CUuuuid_st Struct Reference
CUDA UUID types

char CUuuuid_st::bytes
< CUDA definition of UUID
Chapter 8.   Data Fields

Here is a list of all documented struct and union fields with links to the struct/union documentation for each field:

A

accessDescCount
cudaMemAllocNodeParams
cudaMemAllocNodeParamsV2
accessDescs
cudaMemAllocNodeParamsV2
cudaMemAllocNodeParams
accessPolicyMaxWindowSize
cudaDeviceProp
accessPolicyWindow
cudaLaunchAttributeValue
addressMode
cudaTextureDesc
alignment
cudaArrayMemoryRequirements
allocType
cudaMemPoolProps
args
cudaLaunchParams
array
cudaResourceDesc
asyncEngineCount
cudaDeviceProp
attrs
cudaLaunchConfig_t

B

base_ptr
cudaAccessPolicyWindow
binaryVersion
cudaFuncAttributes
blockDim
cudaKernelNodeParams
cudaKernelNodeParamsV2
cudaLaunchParams
cudaLaunchConfig_t
borderColor
cudaTextureDesc
bytes
cudaUUID_t
byteSize
cudaMemAllocNodeParams
cudaMemAllocNodeParamsV2

cacheModeCA
cudaFuncAttributes
canMapHostMemory
cudaDeviceProp
canUseHostPointerForRegisteredMem
cudaDeviceProp
channelDesc
cudaEglPlaneDesc
clockRate
cudaDeviceProp
clusterDim
cudaLaunchAttributeValue
clusterDimMustBeSet
cudaFuncAttributes
clusterLaunch
cudaDeviceProp
clusterSchedulingPolicyPreference
cudaFuncAttributes
cudaLaunchAttributeValue
computeMode
cudaDeviceProp
computePreemptionSupported
cudaDeviceProp
concurrentKernels
cudaDeviceProp
concurrentManagedAccess
cudaDeviceProp
constSizeBytes
cudaFuncAttributes

cooperative
cudaLaunchAttributeValue

cooperativeLaunch
cudaDeviceProp

cooperativeMultiDeviceLaunch
cudaDeviceProp

copyParams
cudMemcpyNodeParams

D
deferedMappingCudaArraySupported
cudaDeviceProp

depth
cudaEglPlaneDesc
cudaExtent
cudaResourceViewDesc
cudaArraySparseProperties
desc
cudaResourceDesc
device
cudaPointerAttributes
deviceOverlap
cudaDeviceProp
devicePointer
cudaPointerAttributes
devPtr
cudaResourceDesc
directManagedMemAccessFromHost
cudaDeviceProp
disableTrilinearOptimization
cudaTextureDesc
dptr
cudaMemFreeNodeParams
cudaMemAllocNodeParams
cudaMemAllocNodeParamsV2
dst
cudaMemsetParams
cudaMemsetParamsV2
dstArray
cudaMemcpy3DPrams
cudaMemcpy3DPeerParms
dstDevice
cudaMemcpy3DPeerParms
dstPos
cudaMemcpy3DParms
cudaMemcpy3DPeerParms
dstPtr
cudaMemcpy3DPeerParms
cudaMemcpy3DParms
dynamicSmemBytes
cudaLaunchConfig_t

E
ECCEnabled
cudaDeviceProp
eglColorFormat
cudaEglFrame
elementSize
cudaMemsetParamsV2
cudaMemsetParams
errNode_out
cudaGraphInstantiateParams
errorFromNode
cudaGraphExecUpdateResultInfo
errorNode
cudaGraphExecUpdateResultInfo
event
cudaEventRecordNodeParams
cudaEventWaitNodeParams
extent
cudaMemcpy3DPeerParms
cudaMemcpy3DParms
cudaExternalMemoryMipmappedArrayDesc
extra
cudaKernelNodeParamsV2
cudaKernelNodeParams
extSemArray
cudaExternalSemaphoreWaitNodeParams
cudaExternalSemaphoreSignalNodeParamsV2
cudaExternalSemaphoreWaitNodeParamsV2
cudaExternalSemaphoreSignalNodeParams
F
f
cudaChannelFormatDesc
fd
cudaExternalMemoryHandleDesc
cudaExternalSemaphoreHandleDesc
fence
cudaExternalSemaphoreSignalParams_v1
cudaExternalSemaphoreSignalParams
cudaExternalSemaphoreSignalParams_v1
cudaExternalSemaphoreWaitParams
cudaExternalSemaphoreWaitParams_v1
filterMode
cudaTextureDesc
firstLayer
cudaResourceViewDesc
firstMipmapLevel
cudaResourceViewDesc
flags
cudaMemcpyNodeParams
cudaMemAccessDesc
cudaExternalMemoryHandleDesc
cudaExternalMemoryBufferDesc
cudaExternalMemoryMipmappedArrayDesc
cudaExternalSemaphoreHandleDesc
cudaArraySparseProperties
cudaGraphInstantiateParams
cudaExternalSemaphoreSignalParams_v1
cudaExternalSemaphoreSignalParams
cudaExternalSemaphoreWaitParams
cudaExternalSemaphoreWaitParams_v1
fn
cudaHostNodeParams
cudaHostNodeParamsV2
format
cudaResourceViewDesc
formatDesc
cudaExternalMemoryMipmappedArrayDesc
frameType
cudaEglFrame
func
cudaKernelNodeParamsV2
Data Fields

CUDA Runtime API

vRelease Version   |   615

cudaLaunchParams
cudaKernelNodeParams

cudaDeviceProp
globalL1CacheSupported
gpuDirectRDMAFlushWritesOptions
gpuDirectRDMASupported
gpuDirectRDMAWritesOrdering
graph
cudaChildGraphNodeParams
gridDim
cudaKernelNodeParams
cudaLaunchConfig_t
cudaKernelNodeParamsV2
cudaLaunchParams

handle
cudaExternalMemoryHandleDesc
cudaExternalSemaphoreHandleDesc
handleTypes
cudaMemPoolProps
height
cudaEglPlaneDesc
cudaMemsetParams

cudaResourceDesc
cudaArraySparseProperties
cudaResourceViewDesc
cudaExtent
cudaMemsetParams
hitProp
cudaAccessPolicyWindow
hitRatio
cudaAccessPolicyWindow
hostNativeAtomicSupported
cudaDeviceProp
hostPointer
cudaPointerAttributes
Data Fields

hostRegisterReadOnlySupported
  cudaDeviceProp
hostRegisterSupported
  cudaDeviceProp

id
cudaMemLocation
integrated
  cudaDeviceProp
ipcEventSupported
  cudaDeviceProp
isMultiGpuBoard
  cudaDeviceProp

kernelExecTimeoutEnabled
  cudaDeviceProp
kernelParams
  cudaKernelNodeParams
  cudaKernelNodeParamsV2
key
  cudaExternalSemaphoreWaitParams_v1
  cudaExternalSemaphoreWaitParams
keyedMutex
  cudaExternalSemaphoreSignalParams_v1
  cudaExternalSemaphoreSignalParams_v1
  cudaExternalSemaphoreSignalParams
  cudaExternalSemaphoreWaitParams
kind
  cudaMemcpy3DParms

l2CacheSize
  cudaDeviceProp
lastLayer
  cudaResourceViewDesc
lastMipmapLevel
  cudaResourceViewDesc
localL1CacheSupported
  cudaDeviceProp
localSizeBytes
  cudaFuncAttributes
Data Fields

location
  cudaMemPoolProps
  cudaMemAccessDesc

luid
  cudaDeviceProp

luidDeviceNodeMask
  cudaDeviceProp

M

major
  cudaDeviceProp

managedMemory
  cudaDeviceProp

maxAnisotropy
  cudaTextureDesc

maxBlocksPerMultiProcessor
  cudaDeviceProp

maxDynamicSharedSizeBytes
  cudaFuncAttributes

maxGridSize
  cudaDeviceProp

maxMipmapLevelClamp
  cudaTextureDesc

maxSize
  cudaMemPoolProps

maxSurface1D
  cudaDeviceProp

maxSurface1DLayered
  cudaDeviceProp

maxSurface2D
  cudaDeviceProp

maxSurface2DLayered
  cudaDeviceProp

maxSurface3D
  cudaDeviceProp

maxSurfaceCubemap
  cudaDeviceProp

maxSurfaceCubemapLayered
  cudaDeviceProp

maxTexture1D
  cudaDeviceProp

maxTexture1DLayered
  cudaDeviceProp
maxTexture1DLinear
   cudaDeviceProp
maxTexture1DMipmap
   cudaDeviceProp
maxTexture2D
   cudaDeviceProp
maxTexture2DGather
   cudaDeviceProp
maxTexture2DLayered
   cudaDeviceProp
maxTexture2DLinear
   cudaDeviceProp
maxTexture2DMipmap
   cudaDeviceProp
maxTexture3D
   cudaDeviceProp
maxTexture3DAlt
   cudaDeviceProp
maxTextureCubemap
   cudaDeviceProp
maxTextureCubemapLayered
   cudaDeviceProp
maxThreadsDim
   cudaDeviceProp
maxThreadsPerBlock
   cudaDeviceProp
cudaFuncAttributes
maxThreadsPerMultiProcessor
   cudaDeviceProp
memoryBusWidth
   cudaDeviceProp
memoryClockRate
   cudaDeviceProp
memoryPoolsSupported
   cudaDeviceProp
memoryPoolSupportedHandleTypes
   cudaDeviceProp
memPitch
   cudaDeviceProp
minMipmapLevelClamp
   cudaTextureDesc
minor
   cudaDeviceProp
mipmap
  cudaResourceDesc
mipmapFilterMode
  cudaTextureDesc
mipmapLevelBias
  cudaTextureDesc
miptailFirstLevel
  cudaArraySparseProperties
miptailSize
  cudaArraySparseProperties
missProp
  cudaAccessPolicyWindow
multiGpuBoardGroupID
  cudaDeviceProp
multiProcessorCount
  cudaDeviceProp

N
name
  cudaDeviceProp
  cudaExternalMemoryHandleDesc
  cudaExternalSemaphoreHandleDesc
nonPortableClusterSizeAllowed
  cudaFuncAttributes
normalizedCoords
  cudaTextureDesc
num_bytes
  cudaAccessPolicyWindow
numAttrs
  cudaLaunchConfig_t
numChannels
  cudaEglPlaneDesc
numExtSems
  cudaExternalSemaphoreSignalNodeParams
  cudaExternalSemaphoreSignalNodeParamsV2
  cudaExternalSemaphoreWaitNodeParams
  cudaExternalSemaphoreWaitNodeParamsV2
numLevels
  cudaExternalMemoryMipmappedArrayDesc
numRegs
  cudaFuncAttributes
nvSciBufObject
  cudaExternalMemoryHandleDesc
nvSciSyncObj
  cudaExternalSemaphoreHandleDesc

0
offset
  cudaExternalMemoryBufferDesc
  cudaExternalMemoryMipmappedArrayDesc

P
pageableMemoryAccess
  cudaDeviceProp
pageableMemoryAccessUsesHostPageTables
  cudaDeviceProp
paramsArray
  cudaExternalSemaphoreSignalNodeParamsV2
  cudaExternalSemaphoreWaitNodeParams
  cudaExternalSemaphoreSignalNodeParams
  cudaExternalSemaphoreWaitNodeParamsV2
pArray
  cudaEglFrame
pciBusID
  cudaDeviceProp
pciDeviceID
  cudaDeviceProp
pciDomainID
  cudaDeviceProp
persistingL2CacheMaxSize
  cudaDeviceProp
pitch
  cudaMemsetParamsV2
  cudaEglPlaneDesc
  cudaPitchedPtr
  cudaMemsetParams
pitchInBytes
  cudaResourceDesc
planeCount
  cudaEglFrame
planeDesc
  cudaEglFrame
poolProps
  cudaMemAllocNodeParamsV2
  cudaMemAllocNodeParams
pPitch
  cudaEglFrame
preferredShmemCarveout
  cudaFuncAttributes
priority
  cudaLaunchAttributeValue
ptr
  cudaPitchedPtr
ptxVersion
  cudaFuncAttributes

R
readMode
  cudaTextureDesc
regsPerBlock
  cudaDeviceProp
regsPerMultiprocessor
  cudaDeviceProp
requiredClusterWidth
  cudaFuncAttributes
reserved
  cudaMemcpyNodeParams
  cudaDeviceProp
  cudaEglPlaneDesc
  cudaEglFrame
  cudaEglPlaneDesc
  cudaDeviceProp
  cudaMemcpyNodeParams
reservedSharedMemPerBlock
  cudaDeviceProp
resType
  cudaResourceDesc
result
  cudaGraphExecUpdateResultInfo
result_out
  cudaGraphInstantiateParams

S
seamlessCubemap
  cudaTextureDesc
sharedMem
  cudaMemcpyNodeParams
sharedMemBytes
  cudaMemcpyNodeParamsV2
  cudaMemcpyNodeParams
sharedMemPerBlock
cudaDeviceProp
sharedMemPerBlockOptin
cudaDeviceProp
sharedMemPerMultiprocessor
cudaDeviceProp
sharedSizeBytes
cudaFuncAttributes
singleToDoublePrecisionPerfRatio
cudaDeviceProp
size
cudaArrayMemoryRequirements
cudaExternalMemoryHandleDesc
cudaExternalMemoryBufferDesc
sizeInBytes
cudaResourceDesc
sparseCudaArraySupported
cudaDeviceProp
srcArray
cudaMemcpy3DPeerParms
cudaMemcpy3DParms
srcDevice
cudaMemcpy3DPeerParms
srcPos
cudaMemcpy3DParms
cudaMemcpy3DPeerParms
srcPtr
cudaMemcpy3DPeerParms
cudaMemcpy3DParms
sRGB
cudaTextureDesc
stream
cudaLaunchConfig_t
cudaLaunchParams
streamPrioritiesSupported
cudaDeviceProp
surfaceAlignment
cudaDeviceProp
syncPolicy
cudaLaunchAttributeValue
Data Fields

T
tccDriver
   cudaDeviceProp
textureAlignment
   cudaDeviceProp
texturePitchAlignment
   cudaDeviceProp	
timelineSemaphoreInteropSupported
   cudaDeviceProp
timeoutMs
   cudaExternalSemaphoreWaitParams_v1
   cudaExternalSemaphoreWaitParams
totalConstMem
   cudaDeviceProp
totalGlobalMem
   cudaDeviceProp
type
   cudaMemLocation
   cudaPointerAttributes
   cudaExternalSemaphoreHandleDesc
   cudaExternalMemoryHandleDesc

U
unifiedAddressing
   cudaDeviceProp
unifiedFunctionPointers
   cudaDeviceProp
uploadStream
   cudaGraphInstantiateParams
userData
   cudaHostNodeParams
   cudaHostNodeParamsV2
uuid
   cudaDeviceProp

V
value
   cudaMemsetParams
   cudaExternalSemaphoreWaitParams
   cudaExternalSemaphoreSignalParams
   cudaExternalSemaphoreWaitParams_v1
   cudaExternalSemaphoreSignalParams_v1
Data Fields

CUDA Runtime API

vRelease Version   |   624

cudaMemsetParamsV2

W

w

cudaChannelFormatDesc

warpSize

cudaDeviceProp

width

cudaArraySparseProperties
cudaResourceDesc
cudaResourceViewDesc
cudaExtent
cudaMemsetParamsV2
cudaMemsetParams
cudaEglPlaneDesc

win32

cudaExternalMemoryHandleDesc
cudaExternalSemaphoreHandleDesc

win32SecurityAttributes

cudaMemPoolProps

X

x

cudaChannelFormatDesc
cudaPos

xsize

cudaPitchedPtr

Y

y

cudaChannelFormatDesc
cudaPos

ysize

cudaPitchedPtr

Z

z

cudaChannelFormatDesc
cudaPos
Chapter 9.  Deprecated List

Global `cudaThreadExit`

Global `cudaThreadGetCacheConfig`

Global `cudaThreadGetLimit`

Global `cudaThreadSetCacheConfig`

Global `cudaThreadSetLimit`

Global `cudaThreadSynchronize`

Global `cudaLaunchCooperativeKernelMultiDevice`
   This function is deprecated as of CUDA 11.3.

Global `cudaSetDoubleForDevice`
   This function is deprecated as of CUDA 7.5

Global `cudaSetDoubleForHost`
   This function is deprecated as of CUDA 7.5
Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyToArray

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyToArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyTo Array

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyFromArray
Global `cudaGLUnregisterBufferObject`
This function is deprecated as of CUDA 3.0.

Global `cudaD3D9MapResources`
This function is deprecated as of CUDA 3.0.

Global `cudaD3D9RegisterResource`
This function is deprecated as of CUDA 3.0.

Global `cudaD3D9ResourceGetMappedArray`
This function is deprecated as of CUDA 3.0.

Global `cudaD3D9ResourceGetMappedPitch`
This function is deprecated as of CUDA 3.0.

Global `cudaD3D9ResourceGetMappedPointer`
This function is deprecated as of CUDA 3.0.

Global `cudaD3D9ResourceGetMappedSize`
This function is deprecated as of CUDA 3.0.

Global `cudaD3D9ResourceGetSurfaceDimensions`
This function is deprecated as of CUDA 3.0.

Global `cudaD3D9ResourceSetMapFlags`
This function is deprecated as of CUDA 3.0.

Global `cudaD3D9UnmapResources`
This function is deprecated as of CUDA 3.0.
Global cudaD3D9UnregisterResource
This function is deprecated as of CUDA 3.0.

Global cudaD3D10GetDirect3DDevice
This function is deprecated as of CUDA 5.0.

Global cudaD3D10MapResources
This function is deprecated as of CUDA 3.0.

Global cudaD3D10RegisterResource
This function is deprecated as of CUDA 3.0.

Global cudaD3D10ResourceGetMappedArray
This function is deprecated as of CUDA 3.0.

Global cudaD3D10ResourceGetMappedPitch
This function is deprecated as of CUDA 3.0.

Global cudaD3D10ResourceGetMappedPointer
This function is deprecated as of CUDA 3.0.

Global cudaD3D10ResourceGetMappedSize
This function is deprecated as of CUDA 3.0.

Global cudaD3D10ResourceGetSurfaceDimensions
This function is deprecated as of CUDA 3.0.

Global cudaD3D10ResourceSetMapFlags
This function is deprecated as of CUDA 3.0.
Global `cudaD3D10SetDirect3DDevice`
   This function is deprecated as of CUDA 5.0.

Global `cudaD3D10UnmapResources`
   This function is deprecated as of CUDA 3.0.

Global `cudaD3D10UnregisterResource`
   This function is deprecated as of CUDA 3.0.

Global `cudaD3D11GetDirect3DDevice`
   This function is deprecated as of CUDA 5.0.

Global `cudaD3D11SetDirect3DDevice`
   This function is deprecated as of CUDA 5.0.

Global `cudaErrorProfilerNotInitialized`
   This error return is deprecated as of CUDA 5.0. It is no longer an error to attempt to enable/disable the profiling via `cudaProfilerStart` or `cudaProfilerStop` without initialization.

Global `cudaErrorProfilerAlreadyStarted`
   This error return is deprecated as of CUDA 5.0. It is no longer an error to call `cudaProfilerStart()` when profiling is already enabled.

Global `cudaErrorProfilerAlreadyStopped`
   This error return is deprecated as of CUDA 5.0. It is no longer an error to call `cudaProfilerStop()` when profiling is already disabled.

Global `cudaErrorInvalidHostPointer`
   This error return is deprecated as of CUDA 10.1.

Global `cudaErrorInvalidDevicePointer`
   This error return is deprecated as of CUDA 10.1.
Global cudaErrorAddressOfConstant
This error return is deprecated as of CUDA 3.1. Variables in constant memory may now have their address taken by the runtime via cudaGetSymbolAddress().

Global cudaErrorTextureFetchFailed
This error return is deprecated as of CUDA 3.1. Device emulation mode was removed with the CUDA 3.1 release.

Global cudaErrorTextureNotBound
This error return is deprecated as of CUDA 3.1. Device emulation mode was removed with the CUDA 3.1 release.

Global cudaErrorSynchronizationError
This error return is deprecated as of CUDA 3.1. Device emulation mode was removed with the CUDA 3.1 release.

Global cudaErrorMixedDeviceExecution
This error return is deprecated as of CUDA 3.1. Device emulation mode was removed with the CUDA 3.1 release.

Global cudaErrorNotYetImplemented
This error return is deprecated as of CUDA 4.1.

Global cudaErrorMemoryValueTooLarge
This error return is deprecated as of CUDA 3.1. Device emulation mode was removed with the CUDA 3.1 release.

Global cudaErrorPriorLaunchFailure
This error return is deprecated as of CUDA 3.1. Device emulation mode was removed with the CUDA 3.1 release.

Global cudaErrorApiFailureBase
This error return is deprecated as of CUDA 4.1.
Global `cudaDeviceBlockingSync`

This flag was deprecated as of CUDA 4.0 and replaced with `cudaDeviceScheduleBlockingSync`. 
Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA Corporation ("NVIDIA") makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer ("Terms of Sale"). NVIDIA hereby expressly objects to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed either directly or indirectly by this document.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright

© 2007-2022 NVIDIA Corporation & affiliates. All rights reserved.