
DU-06709-001_v12.3 | October 2023

cuSOLVER Library

cuSOLVER Library DU-06709-001_v12.3 | ii

Table of Contents

Chapter 1. Introduction.. 1
1.1. cuSolverDN: Dense LAPACK..2

1.2. cuSolverSP: Sparse LAPACK... 2

1.3. cuSolverRF: Refactorization... 2

1.4. Naming Conventions...3

1.5. Asynchronous Execution...4

1.6. Library Property.. 5

1.7. High Precision Package..5

Chapter 2. Using the CUSOLVER API.. 6
2.1. General Description.. 6

2.1.2. Scalar Parameters... 6

2.1.3. Parallelism with Streams.. 6

2.1.4. How to Link cusolver Library.. 6

2.1.5. Link Third-party LAPACK Library..7

2.1.6. Convention of info...7

2.1.7. Usage of _bufferSize.. 7

2.1.8. cuSolverDN Logging...8

2.2. cuSolver Types Reference.. 9

2.2.1. cuSolverDN Types.. 9

2.2.1.1. cusolverDnHandle_t...9

2.2.1.2. cublasFillMode_t..9

2.2.1.3. cublasOperation_t.. 9

2.2.1.4. cusolverEigType_t.. 9

2.2.1.5. cusolverEigMode_t...10

2.2.1.6. cusolverIRSRefinement_t.. 10

2.2.1.7. cusolverDnIRSParams_t..11

2.2.1.8. cusolverDnIRSInfos_t...11

2.2.1.9. cusolverDnFunction_t.. 11

2.2.1.10. cusolverAlgMode_t...12

2.2.1.11. cusolverStatus_t...12

2.2.1.12. cusolverDnLoggerCallback_t.. 12

2.2.2. cuSolverSP Types... 12

2.2.2.1. cusolverSpHandle_t... 12

2.2.2.2. cusparseMatDescr_t..12

2.2.2.3. cusolverStatus_t...13

cuSOLVER Library DU-06709-001_v12.3 | iii

2.2.3. cuSolverRF Types... 14

2.2.3.1. cusolverRfHandle_t..14

2.2.3.2. cusolverRfMatrixFormat_t...14

2.2.3.3. cusolverRfNumericBoostReport_t.. 14

2.2.3.4. cusolverRfResetValuesFastMode_t...14

2.2.3.5. cusolverRfFactorization_t..15

2.2.3.6. cusolverRfTriangularSolve_t... 15

2.2.3.7. cusolverRfUnitDiagonal_t.. 15

2.2.3.8. cusolverStatus_t...15

2.3. cuSolver Formats Reference..16

2.3.1. Index Base Format...16

2.3.2. Vector (Dense) Format... 16

2.3.3. Matrix (Dense) Format... 16

2.3.4. Matrix (CSR) Format.. 17

2.3.5. Matrix (CSC) Format.. 17

2.4. cuSolverDN: dense LAPACK Function Reference...18

2.4.1. cuSolverDN Helper Function Reference...19

2.4.1.1. cusolverDnCreate().. 19

2.4.1.2. cusolverDnDestroy()...19

2.4.1.3. cusolverDnSetStream()..19

2.4.1.4. cusolverDnGetStream()..20

2.4.1.5. cusolverDnLoggerSetCallback()..20

2.4.1.6. cusolverDnLoggerSetFile().. 20

2.4.1.7. cusolverDnLoggerOpenFile()... 21

2.4.1.8. cusolverDnLoggerSetLevel()..21

2.4.1.9. cusolverDnLoggerSetMask()... 22

2.4.1.10. cusolverDnLoggerForceDisable()..22

2.4.1.11. cusolverDnCreateSyevjInfo()..22

2.4.1.12. cusolverDnDestroySyevjInfo().. 23

2.4.1.13. cusolverDnXsyevjSetTolerance()..23

2.4.1.14. cusolverDnXsyevjSetMaxSweeps()...23

2.4.1.15. cusolverDnXsyevjSetSortEig().. 24

2.4.1.16. cusolverDnXsyevjGetResidual()... 24

2.4.1.17. cusolverDnXsyevjGetSweeps()... 25

2.4.1.18. cusolverDnCreateGesvdjInfo()... 25

2.4.1.19. cusolverDnDestroyGesvdjInfo()..25

2.4.1.20. cusolverDnXgesvdjSetTolerance()... 26

2.4.1.21. cusolverDnXgesvdjSetMaxSweeps().. 26

cuSOLVER Library DU-06709-001_v12.3 | iv

2.4.1.22. cusolverDnXgesvdjSetSortEig()..26

2.4.1.23. cusolverDnXgesvdjGetResidual()... 27

2.4.1.24. cusolverDnXgesvdjGetSweeps()...27

2.4.1.25. cusolverDnIRSParamsCreate()..28

2.4.1.26. cusolverDnIRSParamsDestroy().. 28

2.4.1.27. cusolverDnIRSParamsSetSolverPrecisions()..29

2.4.1.28. cusolverDnIRSParamsSetSolverMainPrecision()... 30

2.4.1.29. cusolverDnIRSParamsSetSolverLowestPrecision()... 31

2.4.1.30. cusolverDnIRSParamsSetRefinementSolver()..31

2.4.1.31. cusolverDnIRSParamsSetTol().. 33

2.4.1.32. cusolverDnIRSParamsSetTolInner()..33

2.4.1.33. cusolverDnIRSParamsSetMaxIters()...34

2.4.1.34. cusolverDnIRSParamsSetMaxItersInner().. 35

2.4.1.35. cusolverDnIRSParamsEnableFallback()... 35

2.4.1.36. cusolverDnIRSParamsDisableFallback().. 36

2.4.1.37. cusolverDnIRSParamsGetMaxIters()...36

2.4.1.38. cusolverDnIRSInfosCreate()...37

2.4.1.39. cusolverDnIRSInfosDestroy()... 38

2.4.1.40. cusolverDnIRSInfosGetMaxIters()..38

2.4.1.41. cusolverDnIRSInfosGetNiters()..39

2.4.1.42. cusolverDnIRSInfosGetOuterNiters().. 39

2.4.1.43. cusolverDnIRSInfosRequestResidual()..40

2.4.1.44. cusolverDnIRSInfosGetResidualHistory()..40

2.4.1.45. cusolverDnCreateParams()... 41

2.4.1.46. cusolverDnDestroyParams()..42

2.4.1.47. cusolverDnSetAdvOptions()..42

2.4.2. Dense Linear Solver Reference (legacy)...42

2.4.2.1. cusolverDn<t>potrf().. 42

2.4.2.2. cusolverDnPotrf()[DEPRECATED]..45

2.4.2.3. cusolverDn<t>potrs()..47

2.4.2.4. cusolverDnPotrs()[DEPRECATED]...49

2.4.2.5. cusolverDn<t>potri()...51

2.4.2.6. cusolverDn<t>getrf().. 54

2.4.2.7. cusolverDnGetrf()[DEPRECATED]..56

2.4.2.8. cusolverDn<t>getrs()..59

2.4.2.9. cusolverDnGetrs()[DEPRECATED]...61

2.4.2.10. cusolverDn<t1><t2>gesv().. 62

2.4.2.11. cusolverDnIRSXgesv().. 76

cuSOLVER Library DU-06709-001_v12.3 | v

2.4.2.12. cusolverDn<t>geqrf()..82

2.4.2.13. cusolverDnGeqrf()[DEPRECATED]...84

2.4.2.14. cusolverDn<t1><t2>gels()...86

2.4.2.15. cusolverDnIRSXgels()... 100

2.4.2.16. cusolverDn<t>ormqr().. 105

2.4.2.17. cusolverDn<t>orgqr()... 109

2.4.2.18. cusolverDn<t>sytrf()... 112

2.4.2.19. cusolverDn<t>potrfBatched()...115

2.4.2.20. cusolverDn<t>potrsBatched().. 117

2.4.3. Dense Eigenvalue Solver Reference (legacy)..119

2.4.3.1. cusolverDn<t>gebrd()...119

2.4.3.2. cusolverDn<t>orgbr()... 122

2.4.3.3. cusolverDn<t>sytrd().. 126

2.4.3.4. cusolverDn<t>ormtr()...129

2.4.3.5. cusolverDn<t>orgtr().. 133

2.4.3.6. cusolverDn<t>gesvd()... 136

2.4.3.7. cusolverDnGesvd()[DEPRECATED].. 140

2.4.3.8. cusolverDn<t>gesvdj().. 143

2.4.3.9. cusolverDn<t>gesvdjBatched().. 148

2.4.3.10. cusolverDn<t>gesvdaStridedBatched()... 153

2.4.3.11. cusolverDn<t>syevd()... 159

2.4.3.12. cusolverDnSyevd()[DEPRECATED]...162

2.4.3.13. cusolverDn<t>syevdx()..165

2.4.3.14. cusolverDnSyevdx()[DEPRECATED]...170

2.4.3.15. cusolverDn<t>sygvd()... 174

2.4.3.16. cusolverDn<t>sygvdx()..179

2.4.3.17. cusolverDn<t>syevj()...185

2.4.3.18. cusolverDn<t>sygvj().. 190

2.4.3.19. cusolverDn<t>syevjBatched()...195

2.4.4. Dense Linear Solver Reference (64-bit API)... 199

2.4.4.1. cusolverDnXpotrf()..199

2.4.4.2. cusolverDnXpotrs()...202

2.4.4.3. cusolverDnXgetrf()..204

2.4.4.4. cusolverDnXgetrs()...206

2.4.4.5. cusolverDnXgeqrf()...208

2.4.4.6. cusolverDnXsytrs()... 210

2.4.4.7. cusolverDnXtrtri()... 213

2.4.5. Dense Eigenvalue Solver Reference (64-bit API)..215

cuSOLVER Library DU-06709-001_v12.3 | vi

2.4.5.1. cusolverDnXgesvd().. 215

2.4.5.2. cusolverDnXgesvdp().. 218

2.4.5.3. cusolverDnXgesvdr()...221

2.4.5.4. cusolverDnXsyevd().. 225

2.4.5.5. cusolverDnXsyevdx()...228

2.5. cuSolverSP: sparse LAPACK Function Reference.. 233

2.5.1. Helper Function Reference..233

2.5.1.1. cusolverSpCreate()...233

2.5.1.2. cusolverSpDestroy()... 233

2.5.1.3. cusolverSpSetStream().. 234

2.5.1.4. cusolverSpXcsrissym()... 234

2.5.2. High Level Function Reference... 235

2.5.2.1. cusolverSp<t>csrlsvlu()..235

2.5.2.2. cusolverSp<t>csrlsvqr()... 238

2.5.2.3. cusolverSp<t>csrlsvchol().. 241

2.5.2.4. cusolverSp<t>csrlsqvqr()... 244

2.5.2.5. cusolverSp<t>csreigvsi().. 247

2.5.2.6. cusolverSp<t>csreigs()...250

2.5.3. Low Level Function Reference.. 253

2.5.3.1. cusolverSpXcsrsymrcm()... 253

2.5.3.2. cusolverSpXcsrsymmdq()...254

2.5.3.3. cusolverSpXcsrsymamd()...256

2.5.3.4. cusolverSpXcsrmetisnd()... 257

2.5.3.5. cusolverSpXcsrzfd()..259

2.5.3.6. cusolverSpXcsrperm()..261

2.5.3.7. cusolverSpXcsrqrBatched()... 263

2.6. cuSolverRF: Refactorization Reference... 269

2.6.1. cusolverRfAccessBundledFactors()... 269

2.6.2. cusolverRfAnalyze()...270

2.6.3. cusolverRfSetupDevice()...271

2.6.4. cusolverRfSetupHost().. 273

2.6.5. cusolverRfCreate().. 275

2.6.6. cusolverRfExtractBundledFactorsHost()... 276

2.6.7. cusolverRfExtractSplitFactorsHost()..277

2.6.8. cusolverRfDestroy()...278

2.6.9. cusolverRfGetMatrixFormat()...279

2.6.10. cusolverRfGetNumericProperties()..279

2.6.11. cusolverRfGetNumericBoostReport().. 280

cuSOLVER Library DU-06709-001_v12.3 | vii

2.6.12. cusolverRfGetResetValuesFastMode()...280

2.6.13. cusolverRfGet_Algs().. 280

2.6.14. cusolverRfRefactor()... 281

2.6.15. cusolverRfResetValues()...282

2.6.16. cusolverRfSetMatrixFormat()... 283

2.6.17. cusolverRfSetNumericProperties().. 283

2.6.18. cusolverRfSetResetValuesFastMode()... 284

2.6.19. cusolverRfSetAlgs()...284

2.6.20. cusolverRfSolve().. 285

2.6.21. cusolverRfBatchSetupHost().. 286

2.6.22. cusolverRfBatchAnalyze()...289

2.6.23. cusolverRfBatchResetValues()... 289

2.6.24. cusolverRfBatchRefactor()... 291

2.6.25. cusolverRfBatchSolve()...291

2.6.26. cusolverRfBatchZeroPivot()..292

Chapter 3. Using the CUSOLVERMG API... 294
3.1. General Description.. 294

3.1.1. Thread Safety..294

3.1.2. Determinism... 294

3.1.3. Tile Strategy..294

3.1.4. Global Matrix Versus Local Matrix.. 296

3.1.5. Usage of _bufferSize.. 296

3.1.6. Synchronization...297

3.1.7. Context Switch.. 297

3.1.8. NVLINK..297

3.2. cuSolverMG Types Reference...297

3.2.1. cuSolverMG Types.. 297

3.2.2. cusolverMgHandle_t...297

3.2.3. cusolverMgGridMapping_t..297

3.2.4. cudaLibMgGrid_t...298

3.2.5. cudaLibMgMatrixDesc_t... 298

3.3. Helper Function Reference.. 298

3.3.1. cusolverMgCreate()...298

3.3.2. cusolverMgDestroy()... 298

3.3.3. cusolverMgDeviceSelect()...298

3.3.4. cusolverMgCreateDeviceGrid()...299

3.3.5. cusolverMgDestroyGrid().. 300

3.3.6. cusolverMgCreateMatDescr()...300

cuSOLVER Library DU-06709-001_v12.3 | viii

3.3.7. cusolverMgDestroyMatrixDesc().. 301

3.4. Dense Linear Solver Reference... 301

3.4.1. cusolverMgPotrf()..301

3.4.2. cusolverMgPotrs()...304

3.4.3. cusolverMgPotri()..307

3.4.4. cusolverMgGetrf()... 309

3.4.5. cusolverMgGetrs()...311

3.5. Dense Eigenvalue Solver Reference.. 314

3.5.1. cusolverMgSyevd().. 314

Appendix A. Acknowledgements.. 318

Appendix B. Bibliography... 320

cuSOLVER Library DU-06709-001_v12.3 | ix

List of Figures

Figure 1. Example of cusolveMG tiling for 3 GPUs .. 295

Figure 2. global matrix and local matrix ...296

cuSOLVER Library DU-06709-001_v12.3 | x

List of Tables

Table 1. cuSolverSP API ... 4

Table 2. Supported Inputs/Outputs data type and lower precision for the IRS solver 30

Table 3. Supported combinations of floating point precisions for cusolver <t1><t2>gesv()
functions..64

Table 4. Supported Inputs/Outputs data type and lower precision for the IRS solver 78

Table 5. Parameters of cusolverDnIRSXgesv_bufferSize() functions .. 78

Table 6. Parameters of cusolverDnIRSXgesv() functions ... 79

Table 7. Supported combinations of floating point precisions for cusolver <t1><t2>gels()
functions..88

Table 8. Parameters of cusolverDn<T1><T2>gels_bufferSize() functions 93

Table 9. Parameters of cusolverDn<T1><T2>gels() functions ..98

Table 10. Supported Inputs/Outputs data type and lower precision for the IRS solver 101

Table 11. Parameters of cusolverDnIRSXgels() functions ..103

Table 12. API of potrfBatched .. 116

cuSOLVER Library DU-06709-001_v12.3 | 1

Chapter 1. Introduction

The cuSolver library is a high-level package based on the cuBLAS and cuSPARSE libraries. It
consists of two modules corresponding to two sets of API:

 1. The cuSolver API on a single GPU

 2. The cuSolverMG API on a single node multiGPU

Each of these can be used independently or in concert with other toolkit libraries. To simplify
the notation, cuSolver denotes single GPU API and cuSolverMg denotes multiGPU API.

The intent of cuSolver is to provide useful LAPACK-like features, such as common matrix
factorization and triangular solve routines for dense matrices, a sparse least-squares solver
and an eigenvalue solver. In addition cuSolver provides a new refactorization library useful for
solving sequences of matrices with a shared sparsity pattern.

cuSolver combines three separate components under a single umbrella. The first part
of cuSolver is called cuSolverDN, and deals with dense matrix factorization and solve
routines such as LU, QR, SVD and LDLT, as well as useful utilities such as matrix and vector
permutations.

Next, cuSolverSP provides a new set of sparse routines based on a sparse QR factorization.
Not all matrices have a good sparsity pattern for parallelism in factorization, so the
cuSolverSP library also provides a CPU path to handle those sequential-like matrices. For
those matrices with abundant parallelism, the GPU path will deliver higher performance. The
library is designed to be called from C and C++.

The final part is cuSolverRF, a sparse re-factorization package that can provide very good
performance when solving a sequence of matrices where only the coefficients are changed but
the sparsity pattern remains the same.

The GPU path of the cuSolver library assumes data is already in the device memory. It is the
responsibility of the developer to allocate memory and to copy data between GPU memory
and CPU memory using standard CUDA runtime API routines, such as cudaMalloc(),
cudaFree(), cudaMemcpy(), and cudaMemcpyAsync().

cuSolverMg is GPU-accelerated ScaLAPACK. By now, cuSolverMg supports 1-D column block
cyclic layout and provides symmetric eigenvalue solver.

Note: The cuSolver library requires hardware with a CUDA compute capability (CC) of at
least 2.0 or higher. Please see the CUDA C++ Programming Guide for a list of the Compute
Capabilities corresponding to all NVIDIA GPUs.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities

Introduction

cuSOLVER Library DU-06709-001_v12.3 | 2

1.1. cuSolverDN: Dense LAPACK
The cuSolverDN library was designed to solve dense linear systems of the form

where the coefficient matrix , right-hand-side vector and solution vector

The cuSolverDN library provides QR factorization and LU with partial pivoting to handle
a general matrix A, which may be non-symmetric. Cholesky factorization is also provided
for symmetric/Hermitian matrices. For symmetric indefinite matrices, we provide Bunch-
Kaufman (LDL) factorization.

The cuSolverDN library also provides a helpful bidiagonalization routine and singular value
decomposition (SVD).

The cuSolverDN library targets computationally-intensive and popular routines in LAPACK,
and provides an API compatible with LAPACK. The user can accelerate these time-consuming
routines with cuSolverDN and keep others in LAPACK without a major change to existing code.

1.2. cuSolverSP: Sparse LAPACK
The cuSolverSP library was mainly designed to a solve sparse linear system

and the least-squares problem

where sparse matrix , right-hand-side vector and solution vector . For a
linear system, we require m=n.

The core algorithm is based on sparse QR factorization. The matrix A is accepted in CSR
format. If matrix A is symmetric/Hermitian, the user has to provide a full matrix, ie fill missing
lower or upper part.

If matrix A is symmetric positive definite and the user only needs to solve , Cholesky
factorization can work and the user only needs to provide the lower triangular part of A.

On top of the linear and least-squares solvers, the cuSolverSP library provides a simple
eigenvalue solver based on shift-inverse power method, and a function to count the number of
eigenvalues contained in a box in the complex plane.

1.3. cuSolverRF: Refactorization
The cuSolverRF library was designed to accelerate solution of sets of linear systems by fast
re-factorization when given new coefficients in the same sparsity pattern

Introduction

cuSOLVER Library DU-06709-001_v12.3 | 3

where a sequence of coefficient matrices , right-hand-sides and solutions

 are given for i=1,...,k.

The cuSolverRF library is applicable when the sparsity pattern of the coefficient matrices
as well as the reordering to minimize fill-in and the pivoting used during the LU factorization
remain the same across these linear systems. In that case, the first linear system (i=1)
requires a full LU factorization, while the subsequent linear systems (i=2,...,k) require only
the LU re-factorization. The later can be performed using the cuSolverRF library.

Notice that because the sparsity pattern of the coefficient matrices, the reordering and
pivoting remain the same, the sparsity pattern of the resulting triangular factors and also
remains the same. Therefore, the real difference between the full LU factorization and LU re-
factorization is that the required memory is known ahead of time.

1.4. Naming Conventions
The cuSolverDN library provides two different APIs; legacy and generic.

The functions in the legacy API are available for data types float, double, cuComplex, and
cuDoubleComplex. The naming convention for the legacy API is as follows:

cusolverDn<t><operation>

where <t> can be S, D, C, Z, or X, corresponding to the data types float, double, cuComplex,
cuDoubleComplex, and the generic type, respectively. <operation> can be Cholesky
factorization (potrf), LU with partial pivoting (getrf), QR factorization (geqrf) and Bunch-
Kaufman factorization (sytrf).

The functions in the generic API provide a single entry point for each routine and support for
64-bit integers to define matrix and vector dimensions. The naming convention for the generic
API is data-agnostic and is as follows:

cusolverDn<operation>

where <operation> can be Cholesky factorization (potrf), LU with partial pivoting (getrf)
and QR factorization (geqrf).

The cuSolverSP library functions are available for data types float, double, cuComplex, and
cuDoubleComplex. The naming convention is as follows:

cusolverSp[Host]<t>[<matrix data
format>]<operation>[<output matrix data format>]<based on>

where cuSolverSp is the GPU path and cusolverSpHost is the corresponding CPU path.
<t> can be S, D, C, Z, or X, corresponding to the data types float, double, cuComplex,
cuDoubleComplex, and the generic type, respectively.

The <matrix data format> is csr, compressed sparse row format.

The <operation> can be ls, lsq, eig, eigs, corresponding to linear solver, least-square
solver, eigenvalue solver and number of eigenvalues in a box, respectively.

Introduction

cuSOLVER Library DU-06709-001_v12.3 | 4

The <output matrix data format> can be v or m, corresponding to a vector or a matrix.

<based on> describes which algorithm is used. For example, qr (sparse QR factorization) is
used in linear solver and least-square solver.

All of the functions have the return type cusolverStatus_t and are explained in more detail
in the chapters that follow.

Table 1. cuSolverSP API

Routine
Data
format Operation

Output
format Based on

csrlsvlu csr linear solver (ls) vector (v) LU (lu)
with
partial
pivoting

csrlsvqr csr linear solver (ls) vector (v) QR
factorization
(qr)

csrlsvchol csr linear solver (ls) vector (v) Cholesky
factorization
(chol)

csrlsqvqr csr least-square solver (lsq) vector (v) QR
factorization
(qr)

csreigvsi csr eigenvalue solver (eig) vector (v) shift-
inverse

csreigs csr number of eigenvalues in a
box (eigs)

csrsymrcm csr Symmetric Reverse Cuthill-
McKee (symrcm)

The cuSolverRF library routines are available for data type double. Most of the routines follow
the naming convention:

cusolverRf_<operation>_[[Host]](...)

where the trailing optional Host qualifier indicates the data is accessed on the host versus on
the device, which is the default. The <operation> can be Setup, Analyze, Refactor, Solve,
ResetValues, AccessBundledFactors and ExtractSplitFactors.

Finally, the return type of the cuSolverRF library routines is cusolverStatus_t.

1.5. Asynchronous Execution
The cuSolver library functions prefer to keep asynchronous execution as much as possible.
Developers can always use the cudaDeviceSynchronize() function to ensure that the
execution of a particular cuSolver library routine has completed.

Introduction

cuSOLVER Library DU-06709-001_v12.3 | 5

A developer can also use the cudaMemcpy() routine to copy data from the
device to the host and vice versa, using the cudaMemcpyDeviceToHost and
cudaMemcpyHostToDevice parameters, respectively. In this case there is no need to add
a call to cudaDeviceSynchronize() because the call to cudaMemcpy() with the above
parameters is blocking and completes only when the results are ready on the host.

1.6. Library Property
The libraryPropertyType data type is an enumeration of library property types. (ie. CUDA
version X.Y.Z would yield MAJOR_VERSION=X, MINOR_VERSION=Y, PATCH_LEVEL=Z)

typedef enum libraryPropertyType_t
{
 MAJOR_VERSION,
 MINOR_VERSION,
 PATCH_LEVEL
} libraryPropertyType;

The following code can show the version of cusolver library.

 int major=-1,minor=-1,patch=-1;
 cusolverGetProperty(MAJOR_VERSION, &major);
 cusolverGetProperty(MINOR_VERSION, &minor);
 cusolverGetProperty(PATCH_LEVEL, &patch);
 printf("CUSOLVER Version (Major,Minor,PatchLevel): %d.%d.%d\n",
 major,minor,patch);

1.7. High Precision Package
The cusolver library uses high precision for iterative refinement when necessary.

cuSOLVER Library DU-06709-001_v12.3 | 6

Chapter 2. Using the CUSOLVER API

2.1. General Description
This chapter describes how to use the cuSolver library API. It is not a reference for the
cuSolver API data types and functions; that is provided in subsequent chapters.

2.1.1. Thread Safety
The library is thread-safe, and its functions can be called from multiple host threads.

2.1.2. Scalar Parameters
In the cuSolver API, the scalar parameters can be passed by reference on the host.

2.1.3. Parallelism with Streams
If the application performs several small independent computations, or if it makes data
transfers in parallel with the computation, then CUDA streams can be used to overlap these
tasks.

The application can conceptually associate a stream with each task. To achieve the overlap of
computation between the tasks, the developer should:

 1. Create CUDA streams using the function cudaStreamCreate(), and

 2. Set the stream to be used by each individual cuSolver library routine by calling, for
example, cusolverDnSetStream(), just prior to calling the actual cuSolverDN routine.

The computations performed in separate streams would then be overlapped automatically on
the GPU, when possible. This approach is especially useful when the computation performed
by a single task is relatively small, and is not enough to fill the GPU with work, or when there
is a data transfer that can be performed in parallel with the computation.

2.1.4. How to Link cusolver Library
cusolver library provides dynamic library libcusolver.so and static library
libcusolver_static.a. If the user links the application with libcusolver.so,
libcublas.so and libcublasLt.so are also required. If the user links the application with

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 7

libcusolver_static.a, the following libraries are also needed, libcudart_static.a,
libculibos.a libcusolver_lapack_static.a, libmetis_static.a,
libcublas_static.a and libcusparse_static.a.

Note: Thelibmetis_static.a library is deprecated and will be removed in the next major
release. Use thelibcusolver_metis_static.a instead.

2.1.5. Link Third-party LAPACK Library
Starting with CUDA 10.1 update 2, NVIDIA LAPACK library libcusolver_lapack_static.a
is a subset of LAPACK and only contains GPU accelerated stedc and bdsqr. The user
has to link libcusolver_static.a with libcusolver_lapack_static.a in order to
build the application successfully. Prior to CUDA 10.1 update 2, the user can replace
libcusolver_lapack_static.a with a third-party LAPACK library, for example, MKL.
In CUDA 10.1 update 2, the third-party LAPACK library no longer affects the behavior of
cusolver library, neither functionality nor performance. Furthermore the user cannot use
libcusolver_lapack_static.a as a standalone LAPACK library because it is only a subset
of LAPACK.

Note: Thelibcusolver_lapack_static.a library, which is the binary of CLAPACK-3.2.1, is a
new feature of CUDA 10.0.

‣ If you use libcusolver_static.a, then you must link with
libcusolver_lapack_static.a explicitly, otherwise the linker will report missing
symbols. No conflict of symbols between libcusolver_lapack_static.a and other
third-party LAPACK library, you are free to link the latter to your application.

‣ The libcusolver_lapack_static.a is built inside libcusolver.so. Hence, if you use
libcusolver.so, then you don't need to specify a LAPACK library. The libcusolver.so
will not pick up any routines from the third-party LAPACK library even you link the
application with it.

2.1.6. Convention of info
Each LAPACK routine returns an info which indicates the position of invalid parameter.
If info = -i, then i-th parameter is invalid. To be consistent with base-1 in LAPACK,
cusolver does not report invalid handle into info. Instead, cusolver returns
CUSOLVER_STATUS_NOT_INITIALIZED for invalid handle.

2.1.7. Usage of _bufferSize
There is no cudaMalloc inside cuSolver library, the user must allocate the device workspace
explicitly. The routine xyz_bufferSize is to query the size of workspace of the routine xyz,
for example xyz = potrf. To make the API simple, xyz_bufferSize follows almost the
same signature of xyz even it only depends on some parameters, for example, device pointer
is not used to decide the size of workspace. In most cases, xyz_bufferSize is called in the
beginning before actual device data (pointing by a device pointer) is prepared or before the

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 8

device pointer is allocated. In such case, the user can pass null pointer to xyz_bufferSize
without breaking the functionality.

2.1.8. cuSolverDN Logging
cuSOLVERDn logging mechanism can be enabled by setting the following environment
variables before launching the target application:

CUSOLVERDN_LOG_LEVEL=<level> - while level is one of the following levels:

‣ "0" - Off - logging is disabled (default)

‣ "1" - Error - only errors will be logged

‣ "2" - Trace - API calls that launch CUDA kernels will log their parameters and important
information

‣ "3" - Hints - hints that can potentially improve the application's performance

‣ "4" - Info - provides general information about the library execution, may contain details
about heuristic status

‣ "5" - API Trace - API calls will log their parameter and important information

CUSOLVERDN_LOG_MASK=<mask> - while mask is a combination of the following masks:

‣ "0" - Off

‣ "1" - Error

‣ "2" - Trace

‣ "4" - Hints

‣ "8" - Info

‣ "16" - API Trace

CUSOLVERDN_LOG_FILE=<file_name> - while file name is a path to a logging file. File name
may contain %i, that will be replaced with the process id. E.g "<file_name>_%i.log".

If CUSOLVERDN_LOG_FILE is not defined, the log messages are printed to stdout.

Another option is to use the experimental cusolverDn logging API. See:

cusolverDnLoggerSetCallback(), cusolverDnLoggerSetFile(), cusolverDnLoggerOpenFile(),
cusolverDnLoggerSetLevel(), cusolverDnLoggerSetMask(), cusolverDnLoggerForceDisable()

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 9

2.2. cuSolver Types Reference

2.2.1. cuSolverDN Types
The float, double, cuComplex, and cuDoubleComplex data types are supported. The first
two are standard C data types, while the last two are exported from cuComplex.h. In addition,
cuSolverDN uses some familiar types from cuBLAS.

2.2.1.1. cusolverDnHandle_t
This is a pointer type to an opaque cuSolverDN context, which the user must initialize by
calling cusolverDnCreate() prior to calling any other library function. An un-initialized
Handle object will lead to unexpected behavior, including crashes of cuSolverDN. The handle
created and returned by cusolverDnCreate() must be passed to every cuSolverDN function.

2.2.1.2. cublasFillMode_t
The type indicates which part (lower or upper) of the dense matrix was filled and consequently
should be used by the function.

Value Meaning
CUBLAS_FILL_MODE_LOWER The lower part of the matrix is filled.

CUBLAS_FILL_MODE_UPPER The upper part of the matrix is filled.

CUBLAS_FILL_MODE_FULL The full the matrix is filled.

Notice that BLAS implementations often use Fortran characters ‘L’ or ‘l’ (lower) and ‘U’ or
‘u’ (upper) to describe which part of the matrix is filled.

2.2.1.3. cublasOperation_t
The cublasOperation_t type indicates which operation needs to be performed with the
dense matrix.

Value Meaning
CUBLAS_OP_N The non-transpose operation is selected.

CUBLAS_OP_T The transpose operation is selected.

CUBLAS_OP_C The conjugate transpose operation is selected.

Notice that BLAS implementations often use Fortran characters ‘N’ or ‘n’ (non-transpose),
‘T’ or ‘t’ (transpose) and ‘C’ or ‘c’ (conjugate transpose) to describe which operations
needs to be performed with the dense matrix.

2.2.1.4. cusolverEigType_t
The cusolverEigType_t type indicates which type of eigenvalue the solver is.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 10

Value Meaning
CUSOLVER_EIG_TYPE_1 A*x = lambda*B*x

CUSOLVER_EIG_TYPE_2 A*B*x = lambda*x

CUSOLVER_EIG_TYPE_3 B*A*x = lambda*x

Notice that LAPACK implementations often use Fortran integer 1 (A*x = lambda*B*x), 2 (A*B*x
= lambda*x), 3 (B*A*x = lambda*x) to indicate which type of eigenvalue the solver is.

2.2.1.5. cusolverEigMode_t
The cusolverEigMode_t type indicates whether or not eigenvectors are computed.

Value Meaning
CUSOLVER_EIG_MODE_NOVECTOR Only eigenvalues are computed.

CUSOLVER_EIG_MODE_VECTOR Both eigenvalues and eigenvectors are computed.

Notice that LAPACK implementations often use Fortran character 'N' (only eigenvalues are
computed), 'V' (both eigenvalues and eigenvectors are computed) to indicate whether or not
eigenvectors are computed.

2.2.1.6. cusolverIRSRefinement_t
The cusolverIRSRefinement_t type indicates which solver type would be
used for the specific cusolver function. Most of our experimentation shows that
CUSOLVER_IRS_REFINE_GMRES is the best option.

More details about the refinement process can be found in Azzam Haidar, Stanimire Tomov, Jack
Dongarra, and Nicholas J. Higham. 2018. Harnessing GPU tensor cores for fast FP16 arithmetic
to speed up mixed-precision iterative refinement solvers. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage, and Analysis (SC '18). IEEE
Press, Piscataway, NJ, USA, Article 47, 11 pages.

Value Meaning
CUSOLVER_IRS_REFINE_NOT_SET Solver is not set; this value is what is set when

creating the params structure. IRS solver will
return an error.

CUSOLVER_IRS_REFINE_NONE No refinement solver, the IRS solver performs
a factorisation followed by a solve without any
refinement. For example if the IRS solver was
cusolverDnIRSXgesv(), this is equivalent to
a Xgesv routine without refinement and where
the factorisation is carried out in the lowest
precision. If for example the main precision
was CUSOLVER_R_64F and the lowest was
CUSOLVER_R_64F as well, then this is equivalent
to a call to cusolverDnDgesv().

CUSOLVER_IRS_REFINE_CLASSICAL Classical iterative refinement solver. Similar to
the one used in LAPACK routines.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 11

Value Meaning
CUSOLVER_IRS_REFINE_GMRES GMRES (Generalized Minimal Residual) based

iterative refinement solver. In recent study,
the GMRES method has drawn the scientific
community attention for its ability to be used as
refinement solver that outperforms the classical
iterative refinement method. based on our
experimentation, we recommend this setting.

CUSOLVER_IRS_REFINE_CLASSICAL_GMRES Classical iterative refinement solver that uses the
GMRES (Generalized Minimal Residual) internally
to solve the correction equation at each iteration.
We call the classical refinement iteration the outer
iteration while the GMRES is called inner iteration.
Note that if the tolerance of the inner GMRES
is set very low, lets say to machine precision,
then the outer classical refinement iteration will
performs only one iteration and thus this option
will behave like CUSOLVER_IRS_REFINE_GMRES.

CUSOLVER_IRS_REFINE_GMRES_GMRES Similar to
CUSOLVER_IRS_REFINE_CLASSICAL_GMRES
which consists of classical refinement process
that uses GMRES to solve the inner correction
system; here it is a GMRES (Generalized Minimal
Residual) based iterative refinement solver that
uses another GMRES internally to solve the
preconditioned system.

2.2.1.7. cusolverDnIRSParams_t
This is a pointer type to an opaque cusolverDnIRSParams_t structure, which holds
parameters for the iterative refinement linear solvers such as cusolverDnXgesv(). Use
corresponding helper functions described below to either Create/Destroy this structure or Set/
Get solver parameters.

2.2.1.8. cusolverDnIRSInfos_t
This is a pointer type to an opaque cusolverDnIRSInfos_t structure, which holds
information about the performed call to an iterative refinement linear solver (e.g.,
cusolverDnXgesv()). Use corresponding helper functions described below to either Create/
Destroy this structure or retrieve solve information.

2.2.1.9. cusolverDnFunction_t
The cusolverDnFunction_t type indicates which routine needs to be configured by
cusolverDnSetAdvOptions(). The value CUSOLVERDN_GETRF corresponds to the routine
Getrf.

Value Meaning
CUSOLVERDN_GETRF Corresponds to Getrf.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 12

2.2.1.10. cusolverAlgMode_t
The cusolverAlgMode_t type indicates which algorithm is selected by
cusolverDnSetAdvOptions(). The set of algorithms supported for each routine is described
in detail along with the routine's documentation.

The default algorithm is CUSOLVER_ALG_0. The user can also provide NULL to use the default
algorithm.

2.2.1.11. cusolverStatus_t
This is the same as cusolverStatus_t in the sparse LAPACK section.

2.2.1.12. cusolverDnLoggerCallback_t
cusolverDnLoggerCallback_t is a callback function pointer type.

Parameters:

Parameter Memory Input / Output Description
logLevel Output See cuSolverDN

Logging.

functionName Output The name of the
API that logged this
message.

message Output The log message.

Use the below function to set the callback function:

cusolverDnLoggerSetCallback()

2.2.2. cuSolverSP Types
The float, double, cuComplex, and cuDoubleComplex data types are supported. The first two
are standard C data types, while the last two are exported from cuComplex.h.

2.2.2.1. cusolverSpHandle_t
This is a pointer type to an opaque cuSolverSP context, which the user must initialize by calling
cusolverSpCreate() prior to calling any other library function. An un-initialized Handle
object will lead to unexpected behavior, including crashes of cuSolverSP. The handle created
and returned by cusolverSpCreate() must be passed to every cuSolverSP function.

2.2.2.2. cusparseMatDescr_t
We have chosen to keep the same structure as exists in cuSparse to describe the shape and
properties of a matrix. This enables calls to either cuSPARSE or cuSOLVER using the same
matrix description.

typedef struct {

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 13

 cusparseMatrixType_t MatrixType;
 cusparseFillMode_t FillMode;
 cusparseDiagType_t DiagType;
 cusparseIndexBase_t IndexBase;
} cusparseMatDescr_t;

Please read documenation of the cuSPARSE Library to understand each field of
cusparseMatDescr_t.

2.2.2.3. cusolverStatus_t
This is a status type returned by the library functions and it can have the following values.

CUSOLVER_STATUS_SUCCESS

The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED

The cuSolver library was not initialized. This is usually caused by the
lack of a prior call, an error in the CUDA Runtime API called by the
cuSolver routine, or an error in the hardware setup.

To correct: call cusolverCreate() prior to the function call; and
check that the hardware, an appropriate version of the driver, and the
cuSolver library are correctly installed.

CUSOLVER_STATUS_ALLOC_FAILED

Resource allocation failed inside the cuSolver library. This is usually
caused by a cudaMalloc() failure.

To correct: prior to the function call, deallocate previously allocated
memory as much as possible.

CUSOLVER_STATUS_INVALID_VALUE

An unsupported value or parameter was passed to the function (a
negative vector size, for example).

To correct: ensure that all the parameters being passed have valid
values.

CUSOLVER_STATUS_ARCH_MISMATCH

The function requires a feature absent from the device architecture;
usually caused by the lack of support for atomic operations or double
precision.

To correct: compile and run the application on a device with compute
capability 2.0 or above.

CUSOLVER_STATUS_EXECUTION_FAILED

The GPU program failed to execute. This is often caused by a launch
failure of the kernel on the GPU, which can be caused by multiple
reasons.

To correct: check that the hardware, an appropriate version of the
driver, and the cuSolver library are correctly installed.

CUSOLVER_STATUS_INTERNAL_ERROR

An internal cuSolver operation failed. This error is usually caused by a
cudaMemcpyAsync() failure.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 14

To correct: check that the hardware, an appropriate version of the
driver, and the cuSolver library are correctly installed. Also, check
that the memory passed as a parameter to the routine is not being
deallocated prior to the routine’s completion.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED

The matrix type is not supported by this function. This is usually caused
by passing an invalid matrix descriptor to the function.

To correct: check that the fields in descrA were set correctly.

2.2.3. cuSolverRF Types
cuSolverRF only supports double.

2.2.3.1. cusolverRfHandle_t
The cusolverRfHandle_t is a pointer to an opaque data structure that contains
the cuSolverRF library handle. The user must initialize the handle by calling
cusolverRfCreate() prior to any other cuSolverRF library calls. The handle is passed to all
other cuSolverRF library calls.

2.2.3.2. cusolverRfMatrixFormat_t
The cusolverRfMatrixFormat_t is an enum that indicates the input/output matrix
format assumed by the cusolverRfSetupDevice(), cusolverRfSetupHost(),
cusolverRfResetValues(), cusolveRfExtractBundledFactorsHost() and
cusolverRfExtractSplitFactorsHost() routines.

Value Meaning
CUSOLVER_MATRIX_FORMAT_CSR Matrix format CSR is assumed. (default)

CUSOLVER_MATRIX_FORMAT_CSC Matrix format CSC is assumed.

2.2.3.3. cusolverRfNumericBoostReport_t
The cusolverRfNumericBoostReport_t is an enum that indicates whether numeric boosting
(of the pivot) was used during the cusolverRfRefactor() and cusolverRfSolve() routines.
The numeric boosting is disabled by default.

Value Meaning
CUSOLVER_NUMERIC_BOOST_NOT_USED Numeric boosting not used. (default)

CUSOLVER_NUMERIC_BOOST_USED Numeric boosting used.

2.2.3.4. cusolverRfResetValuesFastMode_t
The cusolverRfResetValuesFastMode_t is an enum that indicates the mode used for
the cusolverRfResetValues() routine. The fast mode requires extra memory and is
recommended only if very fast calls to cusolverRfResetValues() are needed.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 15

Value Meaning
CUSOLVER_RESET_VALUES_FAST_MODE_OFF Fast mode disabled. (default)

CUSOLVER_RESET_VALUES_FAST_MODE_ON Ffast mode enabled.

2.2.3.5. cusolverRfFactorization_t
The cusolverRfFactorization_t is an enum that indicates which (internal) algorithm is
used for refactorization in the cusolverRfRefactor() routine.

Value Meaning
CUSOLVER_FACTORIZATION_ALG0 Algorithm 0. (default)

CUSOLVER_FACTORIZATION_ALG1 Algorithm 1.

CUSOLVER_FACTORIZATION_ALG2 Algorithm 2. Domino-based scheme.

2.2.3.6. cusolverRfTriangularSolve_t
The cusolverRfTriangularSolve_t is an enum that indicates which (internal) algorithm is
used for triangular solve in the cusolverRfSolve() routine.

Value Meaning
CUSOLVER_TRIANGULAR_SOLVE_ALG1 Algorithm 1. (default)

CUSOLVER_TRIANGULAR_SOLVE_ALG2 Algorithm 2. Domino-based scheme.

CUSOLVER_TRIANGULAR_SOLVE_ALG3 Aalgorithm 3. Domino-based scheme.

2.2.3.7. cusolverRfUnitDiagonal_t
The cusolverRfUnitDiagonal_t is an enum that indicates whether and where the unit
diagonal is stored in the input/output triangular factors in the cusolverRfSetupDevice(),
cusolverRfSetupHost() and cusolverRfExtractSplitFactorsHost() routines.

Value Meaning
CUSOLVER_UNIT_DIAGONAL_STORED_L Unit diagonal is stored in lower triangular factor.

(default)

CUSOLVER_UNIT_DIAGONAL_STORED_U Unit diagonal is stored in upper triangular factor.

CUSOLVER_UNIT_DIAGONAL_ASSUMED_L Unit diagonal is assumed in lower triangular
factor.

CUSOLVER_UNIT_DIAGONAL_ASSUMED_U Unit diagonal is assumed in upper triangular
factor.

2.2.3.8. cusolverStatus_t
The cusolverStatus_t is an enum that indicates success or failure of the cuSolverRF library
call. It is returned by all the cuSolver library routines, and it uses the same enumerated values
as the sparse and dense Lapack routines.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 16

2.3. cuSolver Formats Reference

2.3.1. Index Base Format
The CSR or CSC format requires either zero-based or one-based index for a sparse matrix
A. The GLU library supports only zero-based indexing. Otherwise, both one-based and zero-
based indexing are supported in cuSolver.

2.3.2. Vector (Dense) Format
The vectors are assumed to be stored linearly in memory. For example, the vector

is represented as

2.3.3. Matrix (Dense) Format
The dense matrices are assumed to be stored in column-major order in memory. The sub-
matrix can be accessed using the leading dimension of the original matrix. For examle, the
m*n (sub-)matrix

is represented as

with its elements arranged linearly in memory as

where lda ≥ m is the leading dimension of A.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 17

2.3.4. Matrix (CSR) Format
In CSR format the matrix is represented by the following parameters:

Parameter Type Size Meaning
n (int) The number of rows (and columns) in the

matrix.

nnz (int) The number of non-zero elements in the
matrix.

csrRowPtr (int *) n+1 The array of offsets corresponding to the
start of each row in the arrays csrColInd
and csrVal. This array has also an extra
entry at the end that stores the number of
non-zero elements in the matrix.

csrColInd (int *) nnz The array of column indices corresponding
to the non-zero elements in the matrix. It is
assumed that this array is sorted by row and
by column within each row.

csrVal (S|D|C|Z)* nnz The array of values corresponding to the
non-zero elements in the matrix. It is
assumed that this array is sorted by row and
by column within each row.

Note that in our CSR format, sparse matrices are assumed to be stored in row-major order,
in other words, the index arrays are first sorted by row indices and then within each row by
column indices. Also it is assumed that each pair of row and column indices appears only
once.

For example, the 4x4 matrix

is represented as

2.3.5. Matrix (CSC) Format
In CSC format the matrix is represented by the following parameters:

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 18

Parameter Type Size Meaning
n (int) The number of rows (and columns) in the

matrix.

nnz (int) The number of non-zero elements in the
matrix.

cscColPtr (int *) n+1 The array of offsets corresponding to the
start of each column in the arrays cscRowInd
and cscVal. This array has also an extra
entry at the end that stores the number of
non-zero elements in the matrix.

cscRowInd (int *) nnz The array of row indices corresponding to
the non-zero elements in the matrix. It is
assumed that this array is sorted by column
and by row within each column.

cscVal (S|D|C|Z)* nnz The array of values corresponding to the
non-zero elements in the matrix. It is
assumed that this array is sorted by column
and by row within each column.

Note that in our CSC format, sparse matrices are assumed to be stored in column-major
order, in other words, the index arrays are first sorted by column indices and then within each
column by row indices. Also it is assumed that each pair of row and column indices appears
only once.

For example, the 4x4 matrix

is represented as

2.4. cuSolverDN: dense LAPACK Function
Reference

This section describes the API of cuSolverDN, which provides a subset of dense LAPACK
functions.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 19

2.4.1. cuSolverDN Helper Function Reference
The cuSolverDN helper functions are described in this section.

2.4.1.1. cusolverDnCreate()

cusolverStatus_t
cusolverDnCreate(cusolverDnHandle_t *handle);

This function initializes the cuSolverDN library and creates a handle on the cuSolverDN
context. It must be called before any other cuSolverDN API function is invoked. It allocates
hardware resources necessary for accessing the GPU.

Parameter Memory In/out Meaning
handle host output The pointer to the handle to the

cuSolverDN context.

Status Returned

CUSOLVER_STATUS_SUCCESS The initialization succeeded.

CUSOLVER_STATUS_NOT_INITIALIZED The CUDA Runtime initialization failed.

CUSOLVER_STATUS_ALLOC_FAILED The resources could not be allocated.

CUSOLVER_STATUS_ARCH_MISMATCH The device only supports compute capability 2.0
and above.

2.4.1.2. cusolverDnDestroy()

cusolverStatus_t
cusolverDnDestroy(cusolverDnHandle_t handle);

This function releases CPU-side resources used by the cuSolverDN library.

Parameter Memory In/out Meaning
handle host input Handle to the cuSolverDN library context.

Status Returned

CUSOLVER_STATUS_SUCCESS The shutdown succeeded.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

2.4.1.3. cusolverDnSetStream()

cusolverStatus_t
cusolverDnSetStream(cusolverDnHandle_t handle, cudaStream_t streamId)

This function sets the stream to be used by the cuSolverDN library to execute its routines.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 20

Parameter Memory In/out Meaning
handle host input Handle to the cuSolverDN library context.

streamId host input The stream to be used by the library.

Status Returned

CUSOLVER_STATUS_SUCCESS The stream was set successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

2.4.1.4. cusolverDnGetStream()

cusolverStatus_t
cusolverDnGetStream(cusolverDnHandle_t handle, cudaStream_t *streamId)

This function sets the stream to be used by the cuSolverDN library to execute its routines.

Parameter Memory In/out Meaning
handle host input Handle to the cuSolverDN library context.

streamId host output The stream to be used by the library.

Status Returned

CUSOLVER_STATUS_SUCCESS The stream was set successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

2.4.1.5. cusolverDnLoggerSetCallback()
cusolverStatus_t cusolverDnLoggerSetCallback(cusolverDnLoggerCallback_t callback);

This function sets the logging callback function.

Parameters:

Parameter Memory Input / Output Description
callback Input Pointer to a callback

function. See
cusolverDnLoggerCallback_t.

Returns:

Return Value Description
CUSOLVER_STATUS_SUCCESS If the callback function was successfully set.

See cusolverStatus_t for a complete list of valid return codes.

2.4.1.6. cusolverDnLoggerSetFile()
cusolverStatus_t cusolverDnLoggerSetFile(FILE* file);

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 21

This function sets the logging output file. Note: once registered using this function call, the
provided file handle must not be closed unless the function is called again to switch to a
different file handle.

Parameters:

Parameter Memory Input / Output Description
file Input Pointer to an open file.

File should have write
permission.

Returns:

Return Value Description
CUSOLVER_STATUS_SUCCESS If logging file was successfully set.

See cusolverStatus_t for a complete list of valid return codes.

2.4.1.7. cusolverDnLoggerOpenFile()
cusolverStatus_t cusolverDnLoggerOpenFile(const char* logFile);

This function opens a logging output file in the given path.

Parameters:

Parameter Memory Input / Output Description
logFile Input Path of the logging

output file.

Returns:

Return Value Description
CUSOLVER_STATUS_SUCCESS If the logging file was successfully opened.

See cusolverStatus_t for a complete list of valid return codes.

2.4.1.8. cusolverDnLoggerSetLevel()
cusolverStatus_t cusolverDnLoggerSetLevel(int level);

This function sets the value of the logging level.

Parameters:

Parameter Memory Input / Output Description
level Input Value of the logging

level. See cuSolverDN
Logging.

Returns:

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 22

Return Value Description
CUSOLVER_STATUS_INVALID_VALUE If the value was not a valid logging level. See

cuSolverDN Logging.

CUSOLVER_STATUS_SUCCESS If the logging level was successfully set.

See cusolverStatus_t for a complete list of valid return codes.

2.4.1.9. cusolverDnLoggerSetMask()
cusolverStatus_t cusolverDnLoggerSetMask(int mask);

This function sets the value of the logging mask.

Parameters:

Parameter Memory Input / Output Description
mask Input Value of the logging

mask. See cuSolverDN
Logging.

Returns:

Return Value Description
CUSOLVER_STATUS_SUCCESS If the logging mask was successfully set.

See cusolverStatus_t for a complete list of valid return codes.

2.4.1.10. cusolverDnLoggerForceDisable()
cusolverStatus_t cusolverDnLoggerForceDisable();

This function disables logging for the entier run.

Returns:

Return Value Description
CUSOLVER_STATUS_SUCCESS If logging was successfully disabled.

See cusolverStatus_t for a complete list of valid return codes.

2.4.1.11. cusolverDnCreateSyevjInfo()

cusolverStatus_t
cusolverDnCreateSyevjInfo(
 syevjInfo_t *info);

This function creates and initializes the structure of syevj, syevjBatched and sygvj to
default values.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 23

Parameter Memory In/out Meaning
info host output The pointer to the structure of syevj.

Status Returned

CUSOLVER_STATUS_SUCCESS The structure was initialized successfully.

CUSOLVER_STATUS_ALLOC_FAILED The resources could not be allocated.

2.4.1.12. cusolverDnDestroySyevjInfo()

cusolverStatus_t
cusolverDnDestroySyevjInfo(
 syevjInfo_t info);

This function destroys and releases any memory required by the structure.

Parameter Memory In/out Meaning
info host input The structure of syevj.

Status Returned

CUSOLVER_STATUS_SUCCESS The resources are released successfully.

2.4.1.13. cusolverDnXsyevjSetTolerance()

cusolverStatus_t
cusolverDnXsyevjSetTolerance(
 syevjInfo_t info,
 double tolerance)

This function configures tolerance of syevj.

Parameter Memory In/out Meaning
info host in/out The pointer to the structure of syevj.

tolerance host input accuracy of numerical eigenvalues.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

2.4.1.14. cusolverDnXsyevjSetMaxSweeps()

cusolverStatus_t
cusolverDnXsyevjSetMaxSweeps(
 syevjInfo_t info,
 int max_sweeps)

This function configures maximum number of sweeps in syevj. The default value is 100.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 24

Parameter Memory In/out Meaning
info host in/out The pointer to the structure of syevj.

max_sweeps host input Maximum number of sweeps.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

2.4.1.15. cusolverDnXsyevjSetSortEig()

cusolverStatus_t
cusolverDnXsyevjSetSortEig(
 syevjInfo_t info,
 int sort_eig)

If sort_eig is zero, the eigenvalues are not sorted. This function only works for
syevjBatched. syevj and sygvj always sort eigenvalues in ascending order. By default,
eigenvalues are always sorted in ascending order.

Parameter Memory In/out Meaning
info host in/out The pointer to the structure of syevj.

sort_eig host input If sort_eig is zero, the eigenvalues are
not sorted.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

2.4.1.16. cusolverDnXsyevjGetResidual()

cusolverStatus_t
cusolverDnXsyevjGetResidual(
 cusolverDnHandle_t handle,
 syevjInfo_t info,
 double *residual)

This function reports residual of syevj or sygvj. It does not support syevjBatched. If the
user calls this function after syevjBatched, the error CUSOLVER_STATUS_NOT_SUPPORTED is
returned.

Parameter Memory In/out Meaning
handle host input Handle to the cuSolverDN library context.

info host input The pointer to the structure of syevj.

residual host output Residual of syevj.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_SUPPORTED Does not support batched version.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 25

2.4.1.17. cusolverDnXsyevjGetSweeps()

cusolverStatus_t
cusolverDnXsyevjGetSweeps(
 cusolverDnHandle_t handle,
 syevjInfo_t info,
 int *executed_sweeps)

This function reports number of executed sweeps of syevj or sygvj. It does not
support syevjBatched. If the user calls this function after syevjBatched, the error
CUSOLVER_STATUS_NOT_SUPPORTED is returned.

Parameter Memory In/out Meaning
handle host input Handle to the cuSolverDN library context.

info host input The pointer to the structure of syevj.

executed_sweeps host output Number of executed sweeps.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_SUPPORTED Does not support batched version.

2.4.1.18. cusolverDnCreateGesvdjInfo()

cusolverStatus_t
cusolverDnCreateGesvdjInfo(
 gesvdjInfo_t *info);

This function creates and initializes the structure of gesvdj and gesvdjBatched to default
values.

Parameter Memory In/out Meaning
info host output The pointer to the structure of gesvdj.

Status Returned

CUSOLVER_STATUS_SUCCESS The structure was initialized successfully.

CUSOLVER_STATUS_ALLOC_FAILED The resources could not be allocated.

2.4.1.19. cusolverDnDestroyGesvdjInfo()

cusolverStatus_t
cusolverDnDestroyGesvdjInfo(
 gesvdjInfo_t info);

This function destroys and releases any memory required by the structure.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 26

Parameter Memory In/out Meaning
info host input The structure of gesvdj.

Status Returned

CUSOLVER_STATUS_SUCCESS The resources are released successfully.

2.4.1.20. cusolverDnXgesvdjSetTolerance()

cusolverStatus_t
cusolverDnXgesvdjSetTolerance(
 gesvdjInfo_t info,
 double tolerance)

This function configures tolerance of gesvdj.

Parameter Memory In/out Meaning
info host in/out The pointer to the structure of gesvdj.

tolerance host input Accuracy of numerical singular values.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

2.4.1.21. cusolverDnXgesvdjSetMaxSweeps()

cusolverStatus_t
cusolverDnXgesvdjSetMaxSweeps(
 gesvdjInfo_t info,
 int max_sweeps)

This function configures the maximum number of sweeps in gesvdj. The default value is 100.

Parameter Memory In/out Meaning
info host in/out The pointer to the structure of gesvdj.

max_sweeps host input Maximum number of sweeps.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

2.4.1.22. cusolverDnXgesvdjSetSortEig()

cusolverStatus_t
cusolverDnXgesvdjSetSortEig(
 gesvdjInfo_t info,
 int sort_svd)

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 27

If sort_svd is zero, the singular values are not sorted. This function only works for
gesvdjBatched. gesvdj always sorts singular values in descending order. By default,
singular values are always sorted in descending order.

Parameter Memory In/out Meaning
info host in/out The pointer to the structure of gesvdj.

sort_svd host input If sort_svd is zero, the singular values
are not sorted.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

2.4.1.23. cusolverDnXgesvdjGetResidual()

cusolverStatus_t
cusolverDnXgesvdjGetResidual(
 cusolverDnHandle_t handle,
 gesvdjInfo_t info,
 double *residual)

This function reports residual of gesvdj. It does not support gesvdjBatched. If the user calls
this function after gesvdjBatched, the error CUSOLVER_STATUS_NOT_SUPPORTED is returned.

Parameter Memory In/out Meaning
handle host input Handle to the cuSolverDN library context.

info host input The pointer to the structure of gesvdj.

residual host output Residual of gesvdj.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_SUPPORTED Does not support batched version

2.4.1.24. cusolverDnXgesvdjGetSweeps()

cusolverStatus_t
cusolverDnXgesvdjGetSweeps(
 cusolverDnHandle_t handle,
 gesvdjInfo_t info,
 int *executed_sweeps)

This function reports number of executed sweeps of gesvdj. It does not support
gesvdjBatched. If the user calls this function after gesvdjBatched, the error
CUSOLVER_STATUS_NOT_SUPPORTED is returned.

Parameter Memory In/out Meaning
handle host input Handle to the cuSolverDN library context.

info host input The pointer to the structure of gesvdj.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 28

Parameter Memory In/out Meaning
executed_sweeps host output Number of executed sweeps.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_SUPPORTED Does not support batched version

2.4.1.25. cusolverDnIRSParamsCreate()

cusolverStatus_t
cusolverDnIRSParamsCreate(cusolverDnIRSParams_t *params);

This function creates and initializes the structure of parameters for an IRS solver such as
the cusolverDnIRSXgesv() or the cusolverDnIRSXgels() functions to default values. The
params structure created by this function can be used by one or more call to the same or to
a different IRS solver. Note that in CUDA 10.2, the behavior was different and a new params
structure was needed to be created per each call to an IRS solver. Also note that the user can
also change configurations of the params and then call a new IRS instance, but be careful that
the previous call was done because any change to the configuration before the previous call
was done could affect it.

Parameter Memory In/out Meaning
params host output Pointer to the cusolverDnIRSParams_t

Params structure

Status Returned

CUSOLVER_STATUS_SUCCESS The structure was created and initialized
successfully.

CUSOLVER_STATUS_ALLOC_FAILED The resources could not be allocated.

2.4.1.26. cusolverDnIRSParamsDestroy()

cusolverStatus_t
cusolverDnIRSParamsDestroy(cusolverDnIRSParams_t params);

This function destroys and releases any memory required by the Params structure.

Parameter Memory In/out Meaning
params host input The cusolverDnIRSParams_t Params

structure.

Status Returned

CUSOLVER_STATUS_SUCCESS The resources are released
successfully.

CUSOLVER_STATUS_IRS_PARAMS_NOT_INITIALIZED The Params structure was not created.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 29

CUSOLVER_STATUS_IRS_INFOS_NOT_DESTROYED Not all the Infos structure associated
with this Params structure have been
destroyed yet.

2.4.1.27. cusolverDnIRSParamsSetSolverPrecisions()

cusolverStatus_t
 cusolverDnIRSParamsSetSolverPrecisions(
 cusolverDnIRSParams_t params,
 cusolverPrecType_t solver_main_precision,
 cusolverPrecType_t solver_lowest_precision);

This function sets both the main and the lowest precision for the Iterative Refinement
Solver (IRS). By main precision, we mean the precision of the Input and Output datatype. By
lowest precision, we mean the solver is allowed to use as lowest computational precision
during the LU factorization process. Note that the user has to set both the main and
lowest precision before the first call to the IRS solver because they are NOT set by default
with the params structure creation, as it depends on the Input Output data type and user
request. It is a wrapper to both cusolverDnIRSParamsSetSolverMainPrecision() and
cusolverDnIRSParamsSetSolverLowestPrecision(). All possible combinations of main/
lowest precision are described in the table below. Usually the lowest precision defines the
speedup that can be achieved. The ratio of the performance of the lowest precision over the
main precision (e.g., Inputs/Outputs datatype) define the upper bound of the speedup that
could be obtained. More precisely, it depends on many factors, but for large matrices sizes,
it is the ratio of the matrix-matrix rank-k product (e.g., GEMM where K is 256 and M=N=size
of the matrix) that define the possible speedup. For instance, if the inout precision is real
double precision CUSOLVER_R_64F and the lowest precision is CUSOLVER_R_32F, then
we can expect a speedup of at most 2X for large problem sizes. If the lowest precision was
CUSOLVER_R_16F, then we can expect 3X-4X. A reasonable strategy should take the number
of right-hand sides, the size of the matrix as well as the convergence rate into account.

Parameter Memory In/out Meaning
params host in/out The cusolverDnIRSParams_t

Params structure.

solver_main_precision host input Allowed Inputs/Outputs datatype
(for example CUSOLVER_R_FP64
for a real double precision data).
See the table below for the
supported precisions.

solver_lowest_precision host input Allowed lowest compute type (for
example CUSOLVER_R_16F for
half precision computation). See
the table below for the supported
precisions.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_IRS_PARAMS_NOT_INITIALIZED The Params structure was not created.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 30

Table 2. Supported Inputs/Outputs data type and lower precision for
the IRS solver

Inputs/Outputs Data Type
(e.g., main precision) Supported values for the lowest precision
CUSOLVER_C_64F CUSOLVER_C_64F, CUSOLVER_C_32F, CUSOLVER_C_16F,

CUSOLVER_C_16BF, CUSOLVER_C_TF32

CUSOLVER_C_32F CUSOLVER_C_32F, CUSOLVER_C_16F, CUSOLVER_C_16BF,
CUSOLVER_C_TF32

CUSOLVER_R_64F CUSOLVER_R_64F, CUSOLVER_R_32F, CUSOLVER_R_16F,
CUSOLVER_R_16BF, CUSOLVER_R_TF32

CUSOLVER_R_32F CUSOLVER_R_32F, CUSOLVER_R_16F, CUSOLVER_R_16BF,
CUSOLVER_R_TF32

2.4.1.28. cusolverDnIRSParamsSetSolverMainPrecision()

cusolverStatus_t
cusolverDnIRSParamsSetSolverMainPrecision(
 cusolverDnIRSParams_t params,
 cusolverPrecType_t solver_main_precision);

This function sets the main precision for the Iterative Refinement Solver (IRS). By main
precision, we mean, the type of the Input and Output data. Note that the user has to set
both the main and lowest precision before a first call to the IRS solver because they are
NOT set by default with the params structure creation, as it depends on the Input Output
data type and user request. user can set it by either calling this function or by calling
cusolverDnIRSParamsSetSolverPrecisions() which set both the main and the lowest
precision together. All possible combinations of main/lowest precision are described in the
table in the cusolverDnIRSParamsSetSolverPrecisions() section above.

Parameter Memory In/out Meaning
params host in/out The cusolverDnIRSParams_t

Params structure.

solver_main_precision host input Allowed Inputs/Outputs datatype
(for example CUSOLVER_R_FP64
for a real double precision
data). See the table in the
cusolverDnIRSParamsSetSolverPrecisions()
section above for the supported
precisions.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_IRS_PARAMS_NOT_INITIALIZEDThe Params structure was not created.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 31

2.4.1.29. cusolverDnIRSParamsSetSolverLowestPrecision()

cusolverStatus_t
cusolverDnIRSParamsSetSolverLowestPrecision(
 cusolverDnIRSParams_t params,
 cusolverPrecType_t lowest_precision_type);

This function sets the lowest precision that will be used by Iterative Refinement Solver. By
lowest precision, we mean the solver is allowed to use as lowest computational precision
during the LU factorization process. Note that the user has to set both the main and lowest
precision before a first call to the IRS solver because they are NOT set by default with the
params structure creation, as it depends on the Input Output data type and user request.
Usually the lowest precision defines the speedup that can be achieved. The ratio of the
performance of the lowest precision over the main precision (e.g., Inputs/Outputs datatype)
define somehow the upper bound of the speedup that could be obtained. More precisely, it
depends on many factors, but for large matrices sizes, it is the ratio of the matrix-matrix rank-
k product (e.g., GEMM where K is 256 and M=N=size of the matrix) that define the possible
speedup. For instance, if the inout precision is real double precision CUSOLVER_R_64F and
the lowest precision is CUSOLVER_R_32F, then we can expect a speedup of at most 2X for
large problem sizes. If the lowest precision was CUSOLVER_R_16F, then we can expect 3X-4X.
A reasonable strategy should take the number of right-hand sides, the size of the matrix as
well as the convergence rate into account.

Parameter Memory In/out Meaning
params host in/

out
The cusolverDnIRSParams_t Params
structure.

lowest_precision_type host input Allowed lowest compute type
(for example CUSOLVER_R_16F
for half precision computation).
See the table in the
cusolverDnIRSParamsSetSolverPrecisions()
section above for the supported
precisions.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_IRS_PARAMS_NOT_INITIALIZEDThe Params structure was not created.

2.4.1.30. cusolverDnIRSParamsSetRefinementSolver()

cusolverStatus_t
cusolverDnIRSParamsSetRefinementSolver(
 cusolverDnIRSParams_t params,
 cusolverIRSRefinement_t solver);

This function sets the refinement solver to be used in the Iterative Refinement Solver functions
such as the cusolverDnIRSXgesv() or the cusolverDnIRSXgels() functions. Note that the

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 32

user has to set the refinement algorithm before a first call to the IRS solver because it is NOT
set by default with the creating of params. Details about values that can be set to and theirs
meaning are described in the table below.

Parameter Memory In/out Meaning
params host in/out The cusolverDnIRSParams_t Params

structure

solver host input Type of the refinement solver to
be used by the IRS solver such
as cusolverDnIRSXgesv() or
cusolverDnIRSXgels().

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_IRS_PARAMS_NOT_INITIALIZED The Params structure was not created.

CUSOLVER_IRS_REFINE_NOT_SET Solver is not set, this value is what is set when
creating the params structure. IRS solver will
return an error.

CUSOLVER_IRS_REFINE_NONE No refinement solver; the IRS solver performs
a factorization followed by a solve without any
refinement. For example, if the IRS solver was
cusolverDnIRSXgesv(), this is equivalent to
a Xgesv routine without refinement and where
the factorization is carried out in the lowest
precision. If for example the main precision
was CUSOLVER_R_64F and the lowest was
CUSOLVER_R_64F as well, then this is equivalent
to a call to cusolverDnDgesv().

CUSOLVER_IRS_REFINE_CLASSICAL Classical iterative refinement solver. Similar to
the one used in LAPACK routines.

CUSOLVER_IRS_REFINE_GMRES GMRES (Generalized Minimal Residual) based
iterative refinement solver. In recent study,
the GMRES method has drawn the scientific
community attention for its ability to be used as
refinement solver that outperforms the classical
iterative refinement method. Based on our
experimentation, we recommend this setting.

CUSOLVER_IRS_REFINE_CLASSICAL_GMRES Classical iterative refinement solver that uses the
GMRES (Generalized Minimal Residual) internally
to solve the correction equation at each iteration.
We call the classical refinement iteration the outer
iteration while the GMRES is called inner iteration.
Note that if the tolerance of the inner GMRES is
set very low, let say to machine precision, then the
outer classical refinement iteration will performs
only one iteration and thus this option will
behaves like CUSOLVER_IRS_REFINE_GMRES.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 33

CUSOLVER_IRS_REFINE_GMRES_GMRES Similar to
CUSOLVER_IRS_REFINE_CLASSICAL_GMRES
which consists of classical refinement process
that uses GMRES to solve the inner correction
system, here it is a GMRES (Generalized Minimal
Residual) based iterative refinement solver that
uses another GMRES internally to solve the
preconditioned system.

2.4.1.31. cusolverDnIRSParamsSetTol()

cusolverStatus_t
cusolverDnIRSParamsSetTol(
 cusolverDnIRSParams_t params,
 double val);

This function sets the tolerance for the refinement solver. By default it is such that all the RHS
satisfy:

 RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX where

‣ RNRM is the infinity-norm of the residual

‣ XNRM is the infinity-norm of the solution

‣ ANRM is the infinity-operator-norm of the matrix A

‣ EPS is the machine epsilon for the Inputs/Outputs datatype that matches LAPACK
<X>LAMCH('Epsilon')

‣ BWDMAX, the value BWDMAX is fixed to 1.0

The user can use this function to change the tolerance to a lower or higher value. Our goal
is to give the user more control such a way he can investigate and control every detail of the
IRS solver. Note that the tolerance value is always in real double precision whatever the Inputs/
Outputs datatype is.

Parameter Memory In/out Meaning
params host in/out The cusolverDnIRSParams_t Params

structure.

val host input Double precision real value to which the
refinement tolerance will be set.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_IRS_PARAMS_NOT_INITIALIZED The Params structure was not created.

2.4.1.32. cusolverDnIRSParamsSetTolInner()

cusolverStatus_t

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 34

 cusolverDnIRSParamsSetTolInner(
 cusolverDnIRSParams_t params,
 double val);

This function sets the tolerance for the inner refinement solver when the refinement
solver consists of two-levels solver (e.g., CUSOLVER_IRS_REFINE_CLASSICAL_GMRES
or CUSOLVER_IRS_REFINE_GMRES_GMRES cases). It is not referenced in case
of one level refinement solver such as CUSOLVER_IRS_REFINE_CLASSICAL or
CUSOLVER_IRS_REFINE_GMRES. It is set to 1e-4 by default. This function set the tolerance
for the inner solver (e.g. the inner GMRES). For example, if the Refinement Solver was
set to CUSOLVER_IRS_REFINE_CLASSICAL_GMRES, setting this tolerance mean that the
inner GMRES solver will converge to that tolerance at each outer iteration of the classical
refinement solver. Our goal is to give the user more control such a way he can investigate and
control every detail of the IRS solver. Note the, the tolerance value is always in real double
precision whatever the Inputs/Outputs datatype is.

Parameter Memory In/out Meaning
params host in/out The cusolverDnIRSParams_t Params

structure.

val host input Double precision real value to which the
tolerance of the inner refinement solver
will be set.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_IRS_PARAMS_NOT_INITIALIZEDThe Params structure was not created.

2.4.1.33. cusolverDnIRSParamsSetMaxIters()

cusolverStatus_t
cusolverDnIRSParamsSetMaxIters(
 cusolverDnIRSParams_t params,
 int max_iters);

This function sets the total number of allowed refinement iterations after which the solver
will stop. Total means any iteration which means the sum of the outer and the inner iterations
(inner is meaningful when two-levels refinement solver is set). Default value is set to 50. Our
goal is to give the user more control such a way he can investigate and control every detail of
the IRS solver.

Parameter Memory In/out Meaning
params host in/out The cusolverDnIRSParams_t Params

structure.

max_iters host input Maximum total number of iterations
allowed for the refinement solver.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 35

CUSOLVER_STATUS_IRS_PARAMS_NOT_INITIALIZED The Params structure was not created.

2.4.1.34. cusolverDnIRSParamsSetMaxItersInner()

cusolverStatus_t
 cusolverDnIRSParamsSetMaxItersInner(
 cusolverDnIRSParams_t params,
 cusolver_int_t maxiters_inner);

This function sets the maximal number of iterations allowed for the inner
refinement solver. It is not referenced in case of one level refinement solver such as
CUSOLVER_IRS_REFINE_CLASSICAL or CUSOLVER_IRS_REFINE_GMRES. The inner
refinement solver will stop after reaching either the inner tolerance or the MaxItersInner
value. By default, it is set to 50. Note that this value could not be larger than the MaxIters
since MaxIters is the total number of allowed iterations. Note that if the user calls
cusolverDnIRSParamsSetMaxIters after calling this function, SetMaxIters has priority and
will overwrite MaxItersInner to the minimum value of (MaxIters, MaxItersInner).

Parameter Memory In/out Meaning
params host in/out The cusolverDnIRSParams_t Params

structure

maxiters_inner host input Maximum number of allowed inner
iterations for the inner refinement
solver. Meaningful when the refinement
solver is a two-levels solver such as
CUSOLVER_IRS_REFINE_CLASSICAL_GMRES
or
CUSOLVER_IRS_REFINE_GMRES_GMRES.
Value should be less or equal to
MaxIters.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_IRS_PARAMS_NOT_INITIALIZED The Params structure was not created.

CUSOLVER_STATUS_IRS_PARAMS_INVALID If the value was larger than MaxIters.

2.4.1.35. cusolverDnIRSParamsEnableFallback()

cusolverStatus_t
 cusolverDnIRSParamsEnableFallback(
 cusolverDnIRSParams_t params);

This function enable the fallback to the main precision in case the Iterative Refinement Solver
(IRS) failed to converge. In other term, if the IRS solver failed to converge, the solver will
return a no convergence code (e.g., niter < 0), but can either return the non-convergent
solution as it is (e.g., disable fallback) or can fallback (e.g., enable fallback) to the main

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 36

precision (which is the precision of the Inputs/Outputs data) and solve the problem from
scratch returning the good solution. This is the behavior by default, and it will guarantee that
the IRS solver always provide the good solution. This function is provided because we provided
cusolverDnIRSParamsDisableFallback which allows the user to disable the fallback and
thus this function allow the user to re-enable it.

Parameter Memory In/out Meaning
params host in/out The cusolverDnIRSParams_t Params

structure

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_IRS_PARAMS_NOT_INITIALIZED The Params structure was not created.

2.4.1.36. cusolverDnIRSParamsDisableFallback()

cusolverStatus_t
 cusolverDnIRSParamsDisableFallback(
 cusolverDnIRSParams_t params);

This function disables the fallback to the main precision in case the Iterative Refinement
Solver (IRS) failed to converge. In other term, if the IRS solver failed to converge, the solver
will return a no convergence code (e.g., niter < 0), but can either return the non-convergent
solution as it is (e.g., disable fallback) or can fallback (e.g., enable fallback) to the main
precision (which is the precision of the Inputs/Outputs data) and solve the problem from
scratch returning the good solution. This function disables the fallback and the returned
solution is whatever the refinement solver was able to reach before it returns. Disabling
fallback does not guarantee that the solution is the good one. However, if users want to keep
getting the solution of the lower precision in case the IRS did not converge after certain
number of iterations, they need to disable the fallback. The user can re-enable it by calling
cusolverDnIRSParamsEnableFallback.

Parameter Memory In/out Meaning
params host in/out The cusolverDnIRSParams_t Params

structure

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_IRS_PARAMS_NOT_INITIALIZED The Params structure was not created.

2.4.1.37. cusolverDnIRSParamsGetMaxIters()

cusolverStatus_t
 cusolverDnIRSParamsGetMaxIters(
 cusolverDnIRSParams_t params,
 cusolver_int_t *maxiters);

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 37

This function returns the current setting in the params structure for the maximal allowed
number of iterations (e.g., either the default MaxIters, or the one set by the user in
case he set it using cusolverDnIRSParamsSetMaxIters). Note that this function
returns the current setting in the params configuration and not to be confused with the
cusolverDnIRSInfosGetMaxIters which return the maximal allowed number of iterations
for a particular call to an IRS solver. To be clearer, the params structure can be used for many
calls to an IRS solver. A user can change the allowed MaxIters between calls while the Infos
structure in cusolverDnIRSInfosGetMaxIters contains information about a particular call
and cannot be reused for different calls, and thus, cusolverDnIRSInfosGetMaxIters returns
the allowed MaxIters for that call.

Parameter Memory In/out Meaning
params host in The cusolverDnIRSParams_t Params

structure.

maxiters host output The maximal number of iterations that is
currently set.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_IRS_PARAMS_NOT_INITIALIZED The Params structure was not created.

2.4.1.38. cusolverDnIRSInfosCreate()

cusolverStatus_t
cusolverDnIRSInfosCreate(
 cusolverDnIRSInfos_t* infos)

This function creates and initializes the Infos structure that will hold the refinement
information of an Iterative Refinement Solver (IRS) call. Such information includes
the total number of iterations that was needed to converge (Niters), the outer
number of iterations (meaningful when two-levels preconditioner such as
CUSOLVER_IRS_REFINE_CLASSICAL_GMRES is used), the maximal number of iterations
that was allowed for that call, and a pointer to the matrix of the convergence history residual
norms. The Infos structure needs to be created before a call to an IRS solver. The Infos
structure is valid for only one call to an IRS solver, since it holds info about that solve and thus
each solve will requires its own Infos structure.

Parameter Memory In/out Meaning
info host output Pointer to the cusolverDnIRSInfos_t

Infos structure.

Status Returned

CUSOLVER_STATUS_SUCCESS The structure was initialized successfully.

CUSOLVER_STATUS_ALLOC_FAILED The resources could not be allocated.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 38

2.4.1.39. cusolverDnIRSInfosDestroy()

cusolverStatus_t
cusolverDnIRSInfosDestroy(
 cusolverDnIRSInfos_t infos);

This function destroys and releases any memory required by the Infos structure. This
function destroys all the information (e.g., Niters performed, OuterNiters performed, residual
history etc.) about a solver call; thus, this function should only be called after the user is
finished with the information.

Parameter Memory In/out Meaning
info host in/out The cusolverDnIRSInfos_t Infos

structure.

Status Returned

CUSOLVER_STATUS_SUCCESS The resources are released
successfully.

CUSOLVER_STATUS_IRS_INFOS_NOT_INITIALIZED The Infos structure was not created.

2.4.1.40. cusolverDnIRSInfosGetMaxIters()

cusolverStatus_t
 cusolverDnIRSInfosGetMaxIters(
 cusolverDnIRSInfos_t infos,
 cusolver_int_t *maxiters);

This function returns the maximal allowed number of iterations that was set
for the corresponding call to the IRS solver. Note that this function returns the
setting that was set when that call happened and is not to be confused with the
cusolverDnIRSParamsGetMaxIters which returns the current setting in the params
configuration structure. To be clearer, the params structure can be used for many calls to an
IRS solver. A user can change the allowed MaxIters between calls while the Infos structure
in cusolverDnIRSInfosGetMaxIters contains information about a particular call and cannot
be reused for different calls, thus cusolverDnIRSInfosGetMaxIters returns the allowed
MaxIters for that call.

Parameter Memory In/out Meaning
infos host in The cusolverDnIRSInfos_t Infos

structure.

maxiters host output The maximal number of iterations that is
currently set.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_IRS_INFOS_NOT_INITIALIZED The Infos structure was not created.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 39

2.4.1.41. cusolverDnIRSInfosGetNiters()

cusolverStatus_t cusolverDnIRSInfosGetNiters(
 cusolverDnIRSInfos_t infos,
 cusolver_int_t *niters);

This function returns the total number of iterations performed by the IRS solver. If it was
negative, it means that the IRS solver did not converge and if the user did not disable the
fallback to full precision, then the fallback to a full precision solution happened and solution is
good. Please refer to the description of negative niters values in the corresponding IRS linear
solver functions such as cusolverDnXgesv() or cusolverDnXgels().

Parameter Memory In/out Meaning
infos host in The cusolverDnIRSInfos_t Infos

structure.

niters host output The total number of iterations performed
by the IRS solver.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_IRS_INFOS_NOT_INITIALIZED The Infos structure was not created.

2.4.1.42. cusolverDnIRSInfosGetOuterNiters()

cusolverStatus_t
 cusolverDnIRSInfosGetOuterNiters(
 cusolverDnIRSInfos_t infos,
 cusolver_int_t *outer_niters);

This function returns the number of iterations performed by the outer refinement loop
of the IRS solver. When the refinement solver consists of a one-level solver such as
CUSOLVER_IRS_REFINE_CLASSICAL or CUSOLVER_IRS_REFINE_GMRES, it is the
same as Niters. When the refinement solver consists of a two-levels solver such as
CUSOLVER_IRS_REFINE_CLASSICAL_GMRES or CUSOLVER_IRS_REFINE_GMRES_GMRES,
it is the number of iterations of the outer loop. Refer to the description of the
cusolverIRSRefinement_t section for more details.

Parameter Memory In/out Meaning
infos host in The cusolverDnIRSInfos_t Infos

structure.

outer_niters host output The number of iterations of the outer
refinement loop of the IRS solver.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_IRS_INFOS_NOT_INITIALIZED The Infos structure was not created.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 40

2.4.1.43. cusolverDnIRSInfosRequestResidual()

cusolverStatus_t cusolverDnIRSInfosRequestResidual(
 cusolverDnIRSInfos_t infos);

This function tells the IRS solver to store the convergence history (residual norms) of
the refinement phase in a matrix that can be accessed via a pointer returned by the
cusolverDnIRSInfosGetResidualHistory() function.

Parameter Memory In/out Meaning
infos host in The cusolverDnIRSInfos_t Infos

structure

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_IRS_INFOS_NOT_INITIALIZED The Infos structure was not created.

2.4.1.44. cusolverDnIRSInfosGetResidualHistory()

cusolverStatus_t
cusolverDnIRSInfosGetResidualHistory(
 cusolverDnIRSInfos_t infos,
 void **residual_history);

If the user called cusolverDnIRSInfosRequestResidual() before the call to the
IRS function, then the IRS solver will store the convergence history (residual norms)
of the refinement phase in a matrix that can be accessed via a pointer returned by this
function. The datatype of the residual norms depends on the input and output data type.
If the Inputs/Outputs datatype is double precision real or complex (CUSOLVER_R_FP64
or CUSOLVER_C_FP64), this residual will be of type real double precision (FP64)
double, otherwise if the Inputs/Outputs datatype is single precision real or complex
(CUSOLVER_R_FP32 or CUSOLVER_C_FP32), this residual will be real single precision FP32
float.

The residual history matrix consists of two columns (even for the multiple right-hand side case
NRHS) of MaxIters+1 row, thus a matrix of size (MaxIters+1,2). Only the first OuterNiters
+1 rows contains the residual norms the other (e.g., OuterNiters+2:Maxiters+1) are garbage.
On the first column, each row "i" specify the total number of iterations happened till this outer
iteration "i" and on the second columns the residual norm corresponding to this outer iteration
"i". Thus, the first row (e.g., outer iteration "0") consists of the initial residual (e.g., the residual
before the refinement loop start) then the consecutive rows are the residual obtained at each
outer iteration of the refinement loop. Note, it only consists of the history of the outer loop.

If the refinement solver was CUSOLVER_IRS_REFINE_CLASSICAL or
CUSOLVER_IRS_REFINE_GMRES, then OuterNiters=Niters (Niters is the total number of
iterations performed) and there is Niters+1 rows of norms that correspond to the Niters outer
iterations.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 41

If the refinement solver was CUSOLVER_IRS_REFINE_CLASSICAL_GMRES or
CUSOLVER_IRS_REFINE_GMRES_GMRES, then OuterNiters <= Niters corresponds to the
outer iterations performed by the outer refinement loop. Thus, there is OuterNiters+1 residual
norms where row "i" correspond to the outer iteration "i" and the first column specify the total
number of iterations (outer and inner) that were performed till this step the second columns
correspond to the residual norm at this step.

For example, let's say the user specifies CUSOLVER_IRS_REFINE_CLASSICAL_GMRES as a
refinement solver and say it needed 3 outer iterations to converge and 4,3,3 inner iterations
at each outer, respectively. This consists of 10 total iterations. Row 0 corresponds to the
first residual before the refinement start, so it has 0 in its first column. On row 1 which
corresponds to the outer iteration 1, it will be 4 (4 is the total number of iterations that were
performed till now), on row 2 it will be 7, and on row 3 it will be 10.

In summary, let's define ldh=Maxiters+1, the leading dimension of the residual matrix. then
residual_history[i] shows the total number of iterations performed at the outer iteration
"i" and residual_history[i+ldh] corresponds to the norm of the residual at this outer
iteration.

Parameter MemoryIn/out Meaning
infos host in The cusolverDnIRSInfos_t

Infos structure.

residual_history host output Returns a void pointer to the
matrix of the convergence history
residual norms. See the description
above for the relation between the
residual norm datatype and the
inout datatype.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_IRS_INFOS_NOT_INITIALIZED The Infos structure was not created.

CUSOLVER_STATUS_INVALID_VALUE This function was called without calling
cusolverDnIRSInfosRequestResidual()
in advance.

2.4.1.45. cusolverDnCreateParams()

cusolverStatus_t
cusolverDnCreateParams(
 cusolverDnParams_t *params);

This function creates and initializes the structure of 64-bit API to default values.

Parameter Memory In/out Meaning
params host output The pointer to the structure of 64-bit

API.

Status Returned

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 42

CUSOLVER_STATUS_SUCCESS The structure was initialized successfully.

CUSOLVER_STATUS_ALLOC_FAILED The resources could not be allocated.

2.4.1.46. cusolverDnDestroyParams()

cusolverStatus_t
cusolverDnDestroyParams(
 cusolverDnParams_t params);

This function destroys and releases any memory required by the structure.

Parameter Memory In/out Meaning
params host input The structure of 64-bit API.

Status Returned

CUSOLVER_STATUS_SUCCESS The resources were released successfully.

2.4.1.47. cusolverDnSetAdvOptions()

cusolverStatus_t
cusolverDnSetAdvOptions (
 cusolverDnParams_t params,
 cusolverDnFunction_t function,
 cusolverAlgMode_t algo);

This function configures algorithm algo of function, a 64-bit API routine.

Parameter Memory In/out Meaning
params host in/out The pointer to the structure of 64-bit

API.

function host input The routine to be configured.

algo host input The algorithm to be configured.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_INVALID_VALUE Wrong combination of function and algo.

2.4.2. Dense Linear Solver Reference (legacy)
This section describes linear solver API of cuSolverDN, including Cholesky factorization, LU
with partial pivoting, QR factorization and Bunch-Kaufman (LDLT) factorization.

2.4.2.1. cusolverDn<t>potrf()
These helper functions calculate the necessary size of work buffers.

cusolverStatus_t

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 43

cusolverDnSpotrf_bufferSize(cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 float *A,
 int lda,
 int *Lwork);

cusolverStatus_t
cusolverDnDpotrf_bufferSize(cusolveDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 double *A,
 int lda,
 int *Lwork);

cusolverStatus_t
cusolverDnCpotrf_bufferSize(cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 cuComplex *A,
 int lda,
 int *Lwork);

cusolverStatus_t
cusolverDnZpotrf_bufferSize(cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 cuDoubleComplex *A,
 int lda,
 int *Lwork);

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSpotrf(cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 float *A,
 int lda,
 float *Workspace,
 int Lwork,
 int *devInfo);

cusolverStatus_t
cusolverDnDpotrf(cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 double *A,
 int lda,
 double *Workspace,
 int Lwork,
 int *devInfo);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCpotrf(cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 44

 cuComplex *A,
 int lda,
 cuComplex *Workspace,
 int Lwork,
 int *devInfo);

cusolverStatus_t
cusolverDnZpotrf(cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 cuDoubleComplex *A,
 int lda,
 cuDoubleComplex *Workspace,
 int Lwork,
 int *devInfo);

This function computes the Cholesky factorization of a Hermitian positive-definite matrix.

A is an n×n Hermitian matrix, only the lower or upper part is meaningful. The input parameter
uplo indicates which part of the matrix is used. The function would leave other parts
untouched.

If input parameter uplo is CUBLAS_FILL_MODE_LOWER, only the lower triangular part of A is
processed, and replaced by the lower triangular Cholesky factor L.

If input parameter uplo is CUBLAS_FILL_MODE_UPPER, only upper triangular part of A is
processed, and replaced by upper triangular Cholesky factor U.

The user has to provide working space which is pointed by input parameter Workspace.
The input parameter Lwork is size of the working space, and it is returned by
potrf_bufferSize().

If Cholesky factorization failed, i.e. some leading minor of A is not positive definite, or
equivalently some diagonal elements of L or U is not a real number. The output parameter
devInfo would indicate smallest leading minor of A which is not positive definite.

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong (not
counting handle).
API of potrf

Parameter Memory In/out Meaning
handle host input Handle to the cuSolverDN library context.

uplo host input Indicates if matrix A lower or upper
part is stored; the other part is not
referenced.

n host input Number of rows and columns of matrix
A.

A device in/out <type> array of dimension lda * n with
lda is not less than max(1,n).

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 45

Parameter Memory In/out Meaning
lda host input Leading dimension of two-dimensional

array used to store matrix A.

Workspace device in/out Working space, <type> array of size
Lwork.

Lwork host input Size of Workspace, returned by
potrf_bufferSize.

devInfo device output If devInfo = 0, the Cholesky
factorization is successful. if devInfo
= -i, the i-th parameter is wrong (not
counting handle). if devInfo = i, the
leading minor of order i is not positive
definite.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (n<0 or
lda<max(1,n)).

CUSOLVER_STATUS_ARCH_MISMATCH The device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

2.4.2.2. cusolverDnPotrf()[DEPRECATED]
[[DEPRECATED]] use cusolverDnXpotrf() instead. The routine will be removed in the next
major release.

The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnPotrf_bufferSize(
 cusolverDnHandle_t handle,
 cusolverDnParams_t params,
 cublasFillMode_t uplo,
 int64_t n,
 cudaDataType dataTypeA,
 const void *A,
 int64_t lda,
 cudaDataType computeType,
 size_t *workspaceInBytes)

The routine bellow

cusolverStatus_t
cusolverDnPotrf(
 cusolverDnHandle_t handle,
 cusolverDnParams_t params,
 cublasFillMode_t uplo,
 int64_t n,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 46

 cudaDataType dataTypeA,
 void *A,
 int64_t lda,
 cudaDataType computeType,
 void *pBuffer,
 size_t workspaceInBytes,
 int *info)

Computes the Cholesky factorization of a Hermitian positive-definite matrix using the generic
API interfacte.

A is an n×n Hermitian matrix, only lower or upper part is meaningful. The input parameter
uplo indicates which part of the matrix is used. The function would leave other part
untouched.

If input parameter uplo is CUBLAS_FILL_MODE_LOWER, only lower triangular part of A is
processed, and replaced by lower triangular Cholesky factor L.

If input parameter uplo is CUBLAS_FILL_MODE_UPPER, only upper triangular part of A is
processed, and replaced by upper triangular Cholesky factor U.

The user has to provide working space which is pointed by input parameter pBuffer. The
input parameter workspaceInBytes is size in bytes of the working space, and it is returned by
cusolverDnPotrf_bufferSize().

If Cholesky factorization failed, i.e. some leading minor of A is not positive definite, or
equivalently some diagonal elements of L or U is not a real number. The output parameter
info would indicate smallest leading minor of A which is not positive definite.

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting
handle).

Currently, cusolverDnPotrf supports only the default algorithm.
Table of algorithms supported by cusolverDnPotrf

CUSOLVER_ALG_0 or NULL Default algorithm.

List of input arguments for cusolverDnPotrf_bufferSize and cusolverDnPotrf:
API of potrf

Parameter Memory In/out Meaning
handle host input handle to the cuSolverDN library context.

params host input structure with information collected by
cusolverDnSetAdvOptions.

uplo host input indicates if matrix A lower or upper
part is stored, the other part is not
referenced.

n host input number of rows and columns of matrix A.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 47

Parameter Memory In/out Meaning
dataTypeA host in data type of array A.

A device in/out array of dimension lda * n with lda is
not less than max(1,n).

lda host input leading dimension of two-dimensional
array used to store matrix A.

computeType host in data type of computation.

pBuffer device in/out Working space. Array of type void of size
workspaceInBytes bytes.

workspaceInBytes host input size in bytes of pBuffer, returned by
cusolverDnPotrf_bufferSize.

info device output if info = 0, the Cholesky factorization
is successful. if info = -i, the i-
th parameter is wrong (not counting
handle). if info = i, the leading minor
of order i is not positive definite.

The generic API has two different types, dataTypeA is data type of the matrix A, computeType
is compute type of the operation. cusolverDnPotrf only supports the following four
combinations.
Valid combination of data type and compute type

DataTypeA ComputeType Meaning

CUDA_R_32F CUDA_R_32F SPOTRF

CUDA_R_64F CUDA_R_64F DPOTRF

CUDA_C_32F CUDA_C_32F CPOTRF

CUDA_C_64F CUDA_C_64F ZPOTRF

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (n<0 or
lda<max(1,n)).

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

2.4.2.3. cusolverDn<t>potrs()

cusolverStatus_t
cusolverDnSpotrs(cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 int nrhs,
 const float *A,
 int lda,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 48

 float *B,
 int ldb,
 int *devInfo);

cusolverStatus_t
cusolverDnDpotrs(cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 int nrhs,
 const double *A,
 int lda,
 double *B,
 int ldb,
 int *devInfo);

cusolverStatus_t
cusolverDnCpotrs(cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 int nrhs,
 const cuComplex *A,
 int lda,
 cuComplex *B,
 int ldb,
 int *devInfo);

cusolverStatus_t
cusolverDnZpotrs(cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 int nrhs,
 const cuDoubleComplex *A,
 int lda,
 cuDoubleComplex *B,
 int ldb,
 int *devInfo);

This function solves a system of linear equations

where A is an n×n Hermitian matrix, only lower or upper part is meaningful. The input
parameter uplo indicates which part of the matrix is used. The function would leave other part
untouched.

The user has to call potrf first to factorize matrix A. If input parameter uplo is
CUBLAS_FILL_MODE_LOWER, A is lower triangular Cholesky factor L correspoding to .
If input parameter uplo is CUBLAS_FILL_MODE_UPPER, A is upper triangular Cholesky factor U
corresponding to .

The operation is in-place, i.e. matrix X overwrites matrix B with the same leading dimension
ldb.

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong (not
counting handle).
API of potrs

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 49

Parameter Memory In/out Meaning
handle host input Handle to the cuSolveDN library context.

uplo host input Indicates if matrix A lower or upper
part is stored, the other part is not
referenced.

n host input Number of rows and columns of matrix
A.

nrhs host input Number of columns of matrix X and B.

A device input <type> array of dimension lda * n
with lda is not less than max(1,n). A is
either lower cholesky factor L or upper
Cholesky factor U.

lda host input Leading dimension of two-dimensional
array used to store matrix A.

B device in/out <type> array of dimension ldb * nrhs.
ldb is not less than max(1,n). As an
input, B is right hand side matrix. As an
output, B is the solution matrix.

devInfo device output If devInfo = 0, the Cholesky
factorization is successful. if devInfo
= -i, the i-th parameter is wrong (not
counting handle).

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (n<0, nrhs<0,
lda<max(1,n) or ldb<max(1,n)).

CUSOLVER_STATUS_ARCH_MISMATCH The device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

2.4.2.4. cusolverDnPotrs()[DEPRECATED]
[[DEPRECATED]] use cusolverDnXpotrs() instead. The routine will be removed in the next
major release.

cusolverStatus_t
cusolverDnPotrs(
 cusolverDnHandle_t handle,
 cusolverDnParams_t params,
 cublasFillMode_t uplo,
 int64_t n,
 int64_t nrhs,
 cudaDataType dataTypeA,
 const void *A,
 int64_t lda,
 cudaDataType dataTypeB,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 50

 void *B,
 int64_t ldb,
 int *info)

This function solves a system of linear equations

where A is a n×n Hermitian matrix, only lower or upper part is meaningful using the generic
API interface. The input parameter uplo indicates which part of the matrix is used. The
function would leave other part untouched.

The user has to call cusolverDnPotrf first to factorize matrix A. If input parameter uplo is
CUBLAS_FILL_MODE_LOWER, A is lower triangular Cholesky factor L correspoding to .
If input parameter uplo is CUBLAS_FILL_MODE_UPPER, A is upper triangular Cholesky factor U
corresponding to .

The operation is in-place, i.e. matrix X overwrites matrix B with the same leading dimension
ldb.

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting
handle).

Currently, cusolverDnPotrs supports only the default algorithm.
Table of algorithms supported by cusolverDnPotrs

CUSOLVER_ALG_0 or NULL Default algorithm.

List of input arguments for cusolverDnPotrs:
API of potrs

Parameter Memory In/out Meaning
handle host input Handle to the cuSolveDN library context.

params host input Structure with information collected by
cusolverDnSetAdvOptions.

uplo host input Indicates if matrix A lower or upper
part is stored, the other part is not
referenced.

n host input Number of rows and columns of matrix
A.

nrhs host input Number of columns of matrix X and B.

dataTypeA host in Data type of array A.

A device input Array of dimension lda * n with lda is
not less than max(1,n). A is either lower
cholesky factor L or upper Cholesky
factor U.

lda host input Leading dimension of two-dimensional
array used to store matrix A.

dataTypeB host in Data type of array B.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 51

Parameter Memory In/out Meaning
B device in/out Array of dimension ldb * nrhs. ldb is

not less than max(1,n). As an input, B is
right hand side matrix. As an output, B is
the solution matrix.

info device output If info = 0, the Cholesky factorization
is successful. if info = -i, the i-
th parameter is wrong (not counting
handle).

The generic API has two different types, dataTypeA is data type of the matrix A, dataTypeB is
data type of the matrix B. cusolverDnPotrs only supports the following four combinations.
Valid combination of data type and compute type

dataTypeA dataTypeB Meaning

CUDA_R_32F CUDA_R_32F SPOTRS

CUDA_R_64F CUDA_R_64F DPOTRS

CUDA_C_32F CUDA_C_32F CPOTRS

CUDA_C_64F CUDA_C_64F ZPOTRS

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (n<0, nrhs<0,
lda<max(1,n) or ldb<max(1,n)).

CUSOLVER_STATUS_ARCH_MISMATCH The device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

2.4.2.5. cusolverDn<t>potri()
These helper functions calculate the necessary size of work buffers.

cusolverStatus_t
cusolverDnSpotri_bufferSize(cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 float *A,
 int lda,
 int *Lwork);

cusolverStatus_t
cusolverDnDpotri_bufferSize(cusolveDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 double *A,
 int lda,
 int *Lwork);

cusolverStatus_t

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 52

cusolverDnCpotri_bufferSize(cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 cuComplex *A,
 int lda,
 int *Lwork);

cusolverStatus_t
cusolverDnZpotri_bufferSize(cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 cuDoubleComplex *A,
 int lda,
 int *Lwork);

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSpotri(cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 float *A,
 int lda,
 float *Workspace,
 int Lwork,
 int *devInfo);

cusolverStatus_t
cusolverDnDpotri(cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 double *A,
 int lda,
 double *Workspace,
 int Lwork,
 int *devInfo);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCpotri(cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 cuComplex *A,
 int lda,
 cuComplex *Workspace,
 int Lwork,
 int *devInfo);

cusolverStatus_t
cusolverDnZpotri(cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 cuDoubleComplex *A,
 int lda,
 cuDoubleComplex *Workspace,
 int Lwork,
 int *devInfo);

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 53

This function computes the inverse of a positive-definite matrix A using the Cholesky
factorization

computed by potrf().

A is a n×n matrix containing the triangular factor L or U computed by the Cholesky
factorization. Only lower or upper part is meaningful and the input parameter uplo indicates
which part of the matrix is used. The function would leave the other part untouched.

If the input parameter uplo is CUBLAS_FILL_MODE_LOWER, only lower triangular part of A is
processed, and replaced the by lower triangular part of the inverse of A.

If the input parameter uplo is CUBLAS_FILL_MODE_UPPER, only upper triangular part of A is
processed, and replaced by the upper triangular part of the inverse of A.

The user has to provide the working space which is pointed to by input parameter
Workspace. The input parameter Lwork is the size of the working space, returned by
potri_bufferSize().

If the computation of the inverse fails, i.e. some leading minor of L or U, is null, the output
parameter devInfo would indicate the smallest leading minor of L or U which is not positive
definite.

If the output parameter devInfo = -i (less than zero), the i-th parameter is wrong (not
counting the handle).
API of potri

Parameter Memory In/out Meaning
handle host input Handle to the cuSolverDN library context.

uplo host input Indicates if matrix A lower or upper
part is stored, the other part is not
referenced.

n host input Number of rows and columns of matrix
A.

A device in/out <type> array of dimension lda * n
where lda is not less than max(1,n).

lda host input Leading dimension of two-dimensional
array used to store matrix A.

Workspace device in/out Working space, <type> array of size
Lwork.

Lwork host input Size of Workspace, returned by
potri_bufferSize.

devInfo device output If devInfo = 0, the computation of the
inverse is successful. if devInfo = -
i, the i-th parameter is wrong (not
counting handle). if devInfo = i, the
leading minor of order i is zero.

Status Returned

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 54

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (n<0 or
lda<max(1,n)).

CUSOLVER_STATUS_ARCH_MISMATCH The device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

2.4.2.6. cusolverDn<t>getrf()
These helper functions calculate the size of work buffers needed.

Please visit cuSOLVER Library Samples - getrf for a code example.

cusolverStatus_t
cusolverDnSgetrf_bufferSize(cusolverDnHandle_t handle,
 int m,
 int n,
 float *A,
 int lda,
 int *Lwork);

cusolverStatus_t
cusolverDnDgetrf_bufferSize(cusolverDnHandle_t handle,
 int m,
 int n,
 double *A,
 int lda,
 int *Lwork);

cusolverStatus_t
cusolverDnCgetrf_bufferSize(cusolverDnHandle_t handle,
 int m,
 int n,
 cuComplex *A,
 int lda,
 int *Lwork);

cusolverStatus_t
cusolverDnZgetrf_bufferSize(cusolverDnHandle_t handle,
 int m,
 int n,
 cuDoubleComplex *A,
 int lda,
 int *Lwork);

The S and D data types are real single and double precision, respectively.

cusolverStatus_t
cusolverDnSgetrf(cusolverDnHandle_t handle,
 int m,
 int n,
 float *A,
 int lda,
 float *Workspace,

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/getrf

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 55

 int *devIpiv,
 int *devInfo);

cusolverStatus_t
cusolverDnDgetrf(cusolverDnHandle_t handle,
 int m,
 int n,
 double *A,
 int lda,
 double *Workspace,
 int *devIpiv,
 int *devInfo);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCgetrf(cusolverDnHandle_t handle,
 int m,
 int n,
 cuComplex *A,
 int lda,
 cuComplex *Workspace,
 int *devIpiv,
 int *devInfo);

cusolverStatus_t
cusolverDnZgetrf(cusolverDnHandle_t handle,
 int m,
 int n,
 cuDoubleComplex *A,
 int lda,
 cuDoubleComplex *Workspace,
 int *devIpiv,
 int *devInfo);

This function computes the LU factorization of a m×n matrix

where A is a m×n matrix, P is a permutation matrix, L is a lower triangular matrix with unit
diagonal, and U is an upper triangular matrix.

The user has to provide working space which is pointed by input parameter Workspace.
The input parameter Lwork is size of the working space, and it is returned by
getrf_bufferSize().

If LU factorization failed, i.e. matrix A (U) is singular, The output parameter devInfo=i
indicates U(i,i) = 0.

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong (not
counting handle).

If devIpiv is null, no pivoting is performed. The factorization is A=L*U, which is not
numerically stable.

No matter LU factorization failed or not, the output parameter devIpiv contains pivoting
sequence, row i is interchanged with row devIpiv(i).

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 56

The user can combine getrf and getrs to complete a linear solver.

Remark: getrf uses fastest implementation with large workspace of size m*n. The
user can choose the legacy implementation with minimal workspace by Getrf and
cusolverDnSetAdvOptions(params, CUSOLVERDN_GETRF, CUSOLVER_ALG_1).
API of getrf

Parameter Memory In/out Meaning
handle host input Handle to the cuSolverDN library context.

m host input Number of rows of matrix A.

n host input Number of columns of matrix A.

A device in/out <type> array of dimension lda * n with
lda is not less than max(1,m).

lda host input Leading dimension of two-dimensional
array used to store matrix A.

Workspace device in/out Working space, <type> array of size
Lwork.

devIpiv device output Array of size at least min(m,n),
containing pivot indices.

devInfo device output If devInfo = 0, the LU factorization
is successful. if devInfo = -i, the i-
th parameter is wrong (not counting
handle). if devInfo = i, the U(i,i) =
0.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (m,n<0 or
lda<max(1,m)).

CUSOLVER_STATUS_ARCH_MISMATCH The device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

2.4.2.7. cusolverDnGetrf()[DEPRECATED]
[[DEPRECATED]] use cusolverDnXgetrf() instead. The routine will be removed in the next
major release.

The helper function below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnGetrf_bufferSize(
 cusolverDnHandle_t handle,
 cusolverDnParams_t params,
 int64_t m,
 int64_t n,
 cudaDataType dataTypeA,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 57

 const void *A,
 int64_t lda,
 cudaDataType computeType,
 size_t *workspaceInBytes)

The following function:

cusolverStatus_t
cusolverDnGetrf(
 cusolverDnHandle_t handle,
 cusolverDnParams_t params,
 int64_t m,
 int64_t n,
 cudaDataType dataTypeA,
 void *A,
 int64_t lda,
 int64_t *ipiv,
 cudaDataType computeType,
 void *pBuffer,
 size_t workspaceInBytes,
 int *info)

computes the LU factorization of a m×n matrix

where A is an m×n matrix, P is a permutation matrix, L is a lower triangular matrix with unit
diagonal, and U is an upper triangular matrix using the generic API interface.

If LU factorization failed, i.e. matrix A (U) is singular, The output parameter info=i indicates
U(i,i) = 0.

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting
handle).

If ipiv is null, no pivoting is performed. The factorization is A=L*U, which is not numerically
stable.

No matter LU factorization failed or not, the output parameter ipiv contains pivoting
sequence, row i is interchanged with row ipiv(i).

The user has to provide working space which is pointed by input parameter pBuffer. The
input parameter workspaceInBytes is size in bytes of the working space, and it is returned by
cusolverDnGetrf_bufferSize().

The user can combine cusolverDnGetrf and cusolverDnGetrs to complete a linear solver.

Currently, cusolverDnGetrf supports two algorithms. To select legacy implementation, the
user has to call cusolverDnSetAdvOptions.
Table of algorithms supported by cusolverDnGetrf

CUSOLVER_ALG_0 or NULL Default algorithm. The fastest, requires a large
workspace of m*n elements.

CUSOLVER_ALG_1 Legacy implementation

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 58

List of input arguments for cusolverDnGetrf_bufferSize and cusolverDnGetrf:
API of cusolverDnGetrf

Parameter Memory In/out Meaning
handle host input Handle to the cuSolverDN library context.

params host input Structure with information collected by
cusolverDnSetAdvOptions.

m host input number of rows of matrix A.

n host input number of columns of matrix A.

dataTypeA host in data type of array A.

A device in/out <type> array of dimension lda * n with
lda is not less than max(1,m).

lda host input leading dimension of two-dimensional
array used to store matrix A.

ipiv device output array of size at least min(m,n),
containing pivot indices.

computeType host in data type of computation.

pBuffer device in/out Working space. Array of type void of size
workspaceInBytes bytes.

workspaceInBytes host input size in bytes of pBuffer, returned by
cusolverDnGetrf_bufferSize.

info device output if info = 0, the LU factorization is
successful. if info = -i, the i-th
parameter is wrong (not counting
handle). if info = i, the U(i,i) = 0.

The generic API has two different types, dataTypeA is data type of the matrix A, computeType
is compute type of the operation. cusolverDnGetrf only supports the following four
combinations.
valid combination of data type and compute type

DataTypeA ComputeType Meaning

CUDA_R_32F CUDA_R_32F SGETRF

CUDA_R_64F CUDA_R_64F DGETRF

CUDA_C_32F CUDA_C_32F CGETRF

CUDA_C_64F CUDA_C_64F ZGETRF

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (m,n<0 or
lda<max(1,m)).

CUSOLVER_STATUS_ARCH_MISMATCH The device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 59

2.4.2.8. cusolverDn<t>getrs()
Please visit cuSOLVER Library Samples - getrf for a code example.

cusolverStatus_t
cusolverDnSgetrs(cusolverDnHandle_t handle,
 cublasOperation_t trans,
 int n,
 int nrhs,
 const float *A,
 int lda,
 const int *devIpiv,
 float *B,
 int ldb,
 int *devInfo);

cusolverStatus_t
cusolverDnDgetrs(cusolverDnHandle_t handle,
 cublasOperation_t trans,
 int n,
 int nrhs,
 const double *A,
 int lda,
 const int *devIpiv,
 double *B,
 int ldb,
 int *devInfo);

cusolverStatus_t
cusolverDnCgetrs(cusolverDnHandle_t handle,
 cublasOperation_t trans,
 int n,
 int nrhs,
 const cuComplex *A,
 int lda,
 const int *devIpiv,
 cuComplex *B,
 int ldb,
 int *devInfo);

cusolverStatus_t
cusolverDnZgetrs(cusolverDnHandle_t handle,
 cublasOperation_t trans,
 int n,
 int nrhs,
 const cuDoubleComplex *A,
 int lda,
 const int *devIpiv,
 cuDoubleComplex *B,
 int ldb,
 int *devInfo);

This function solves a linear system of multiple right-hand sides

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/getrf

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 60

where A is an n×n matrix, and was LU-factored by getrf, that is, lower trianular part of A is L,
and upper triangular part (including diagonal elements) of A is U. B is a n×nrhs right-hand side
matrix.

The input parameter trans is defined by

The input parameter devIpiv is an output of getrf. It contains pivot indices, which are used
to permutate right-hand sides.

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong (not
counting handle).

The user can combine getrf and getrs to complete a linear solver.

Parameter Memory In/out Meaning
handle host input Handle to the cuSolverDN library context.

trans host input Operation op(A) that is non- or (conj.)
transpose.

n host input Number of rows and columns of matrix
A.

nrhs host input Number of right-hand sides.

A device input <type> array of dimension lda * n with
lda is not less than max(1,n).

lda host input Leading dimension of two-dimensional
array used to store matrix A.

devIpiv device input Array of size at least n, containing pivot
indices.

B device output <type> array of dimension ldb * nrhs
with ldb is not less than max(1,n).

ldb host input Leading dimension of two-dimensional
array used to store matrix B.

devInfo device output If devInfo = 0, the operation is
successful. if devInfo = -i, the i-
th parameter is wrong (not counting
handle).

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (n<0 or
lda<max(1,n) or ldb<max(1,n)).

CUSOLVER_STATUS_ARCH_MISMATCH The device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 61

2.4.2.9. cusolverDnGetrs()[DEPRECATED]
[[DEPRECATED]] use cusolverDnXgetrs() instead. The routine will be removed in the next
major release.

cusolverStatus_t
cusolverDnGetrs(
 cusolverDnHandle_t handle,
 cusolverDnParams_t params,
 cublasOperation_t trans,
 int64_t n,
 int64_t nrhs,
 cudaDataType dataTypeA,
 const void *A,
 int64_t lda,
 const int64_t *ipiv,
 cudaDataType dataTypeB,
 void *B,
 int64_t ldb,
 int *info)

This function solves a linear system of multiple right-hand sides

where A is a n×n matrix, and was LU-factored by cusolverDnGetrf, that is, lower trianular
part of A is L, and upper triangular part (including diagonal elements) of A is U. B is a n×nrhs
right-hand side matrix using the generic API interface.

The input parameter trans is defined by

The input parameter ipiv is an output of cusolverDnGetrf. It contains pivot indices, which
are used to permutate right-hand sides.

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting
handle).

The user can combine cusolverDnGetrf and cusolverDnGetrs to complete a linear solver.

Currently, cusolverDnGetrs supports only the default algorithm.
Table of algorithms supported by cusolverDnGetrs

CUSOLVER_ALG_0 or NULL Default algorithm.

List of input arguments for cusolverDnGetrss:

Parameter Memory In/out Meaning
handle host input Handle to the cuSolverDN library context.

params host input Structure with information collected by
cusolverDnSetAdvOptions.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 62

Parameter Memory In/out Meaning
trans host input Operation op(A) that is non- or (conj.)

transpose.

n host input Number of rows and columns of matrix
A.

nrhs host input Number of right-hand sides.

dataTypeA host in Data type of array A.

A device input Array of dimension lda * n with lda is
not less than max(1,n).

lda host input Leading dimension of two-dimensional
array used to store matrix A.

ipiv device input Array of size at least n, containing pivot
indices.

dataTypeB host in Data type of array B.

B device output <type> array of dimension ldb * nrhs
with ldb is not less than max(1,n).

ldb host input Leading dimension of two-dimensional
array used to store matrix B.

info device output If info = 0, the operation is successful.
if info = -i, the i-th parameter is
wrong (not counting handle).

The generic API has two different types, dataTypeA is data type of the matrix A and dataTypeB
is data type of the matrix B. cusolverDnGetrs only supports the following four combinations.
Valid combination of data type and compute type

DataTypeA dataTypeB Meaning

CUDA_R_32F CUDA_R_32F SGETRS

CUDA_R_64F CUDA_R_64F DGETRS

CUDA_C_32F CUDA_C_32F CGETRS

CUDA_C_64F CUDA_C_64F ZGETRS

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (n<0 or
lda<max(1,n) or ldb<max(1,n)).

CUSOLVER_STATUS_ARCH_MISMATCH The device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

2.4.2.10. cusolverDn<t1><t2>gesv()
These functions are modelled after functions DSGESV and ZCGESV from LAPACK. They
compute the solution of a system of linear equations with one or multiple right hand sides

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 63

using mixed precision iterative refinement techniques based on the LU factorization Xgesv.
These functions are similar in term of functionalities to the full precision LU solver (Xgesv,
where X denotes Z,C,D,S) but it uses lower precision internally in order to provide faster time
to solution, from here cames the name mixed precision. Mixed precision iterative refinement
techniques means that the solver compute an LU factorization in lower precision and then
iteratively refine the solution to achieve the accuracy of the Inputs/Outputs datatype precision.
The <t1> corresponds to the Inputs/Outputs datatype precision while <t2> represent the
internal lower precision at which the factorization will be carried on.

Where A is n-by-n matrix and X and B are n-by-nrhs matrices.

Functions API are designed to be as close as possible to LAPACK API to be considered
as a quick and easy drop-in replacement. Parameters and behavior are mostly the same
as LAPACK counterparts. Description of these functions and differences from LAPACK is
given below. <t1><t2>gesv() functions are designated by two floating point precisions
The <t1> corresponds to the main precision (e.g., Inputs/Outputs datatype precision) and
the <t2> represent the internal lower precision at which the factorization will be carried on.
cusolver<t1><t2>gesv() first attempts to factorize the matrix in lower precision and use
this factorization within an iterative refinement procedure to obtain a solution with same
normwise backward error as the main precision <t1>. If the approach fails to converge, then
the method fallback to the main precision factorization and solve (Xgesv) such a way that there
is always a good solution at the output of these functions. If <t2> is equal to <t1>, then it is not
a mixed precision process but rather a full one precision factorisation, solve and refinement
within the same main precision.

The iterative refinement process is stopped if

 ITER > ITERMAX

or for all the RHS we have:

 RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX

where

‣ ITER is the number of the current iteration in the iterative refinement process

‣ RNRM is the infinity-norm of the residual

‣ XNRM is the infinity-norm of the solution

‣ ANRM is the infinity-operator-norm of the matrix A

‣ EPS is the machine epsilon that matches LAPACK <t1>LAMCH('Epsilon')

The value ITERMAX and BWDMAX are fixed to 50 and 1.0 respectively.

The function returns value describes the results of the solving process. A
CUSOLVER_STATUS_SUCCESS indicates that the function finished with success otherwise, it
indicates if one of the API arguments is incorrect, or if the function did not finish with success.
More details about the error will be in the niters and the dinfo API parameters. See their

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 64

description below for more details. User should provide the required workspace allocated on
device memory. The amount of bytes required can be queried by calling the respective function
<t1><t2>gesv_bufferSize().

Note that in addition to the two mixed precision functions available in LAPACK (e.g., dsgesv
and zcgesv), we provide a large set of mixed precision functions that include half, bfloat and
tensorfloat as a lower precision as well as same precision functions (e.g., main and lowest
precision are equal <t2> is equal to <t1>). The following table specifies which precisions will be
used for which interface function.

Tensor Float (TF32), introduced with NVIDIA Ampere Architecture GPUs, is the most robust
tensor core accelerated compute mode for the iterative refinement solver. It is able to
solve the widest range of problems in HPC arising from different applications and provides
up to 4X and 5X speedup for real and complex systems, respectively. On Volta and Turing
architecture GPUs, half precision tensor core acceleration is recommended. In cases where
the iterative refinement solver fails to converge to the desired accuracy (main precision,
INOUT data precision), it is recommended to use main precision as internal lowest precision
(i.e., cusolverDn[DD,ZZ]gesv for the FP64 case).

Table 3. Supported combinations of floating point precisions for
cusolver <t1><t2>gesv() functions

Interface function
Main precision (matrix, rhs
and solution datatype)

Lowest precision allowed to
be used internally

cusolverDnZZgesv cuDoubleComplex double complex

cusolverDnZCgesv *has
LAPACK counterparts

cuDoubleComplex single complex

cusolverDnZKgesv cuDoubleComplex half complex

cusolverDnZEgesv cuDoubleComplex bfloat complex

cusolverDnZYgesv cuDoubleComplex tensorfloat complex

cusolverDnCCgesv cuComplex single complex

cusolverDnCKgesv cuComplex half complex

cusolverDnCEgesv cuComplex bfloat complex

cusolverDnCYgesv cuComplex tensorfloat complex

cusolverDnDDgesv double double

cusolverDnDSgesv *has
LAPACK counterparts

double single

cusolverDnDHgesv double half

cusolverDnDBgesv double bfloat

cusolverDnDXgesv double tensorfloat

cusolverDnSSgesv float single

cusolverDnSHgesv float half

cusolverDnSBgesv float bfloat

cusolverDnSXgesv float tensorfloat

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 65

cusolverDn<t1><t2>gesv_bufferSize() functions will return workspace buffer size in
bytes required for the corresponding cusolverDn<t1><t2>gesv() function.

cusolverStatus_t
cusolverDnZZgesv_bufferSize(
 cusolverHandle_t handle,
 int n,
 int nrhs,
 cuDoubleComplex * dA,
 int ldda,
 int * dipiv,
 cuDoubleComplex * dB,
 int lddb,
 cuDoubleComplex * dX,
 int lddx,
 void * dwork,
 size_t * lwork_bytes);

cusolverStatus_t
cusolverDnZCgesv_bufferSize(
 cusolverHandle_t handle,
 int n,
 int nrhs,
 cuDoubleComplex * dA,
 int ldda,
 int * dipiv,
 cuDoubleComplex * dB,
 int lddb,
 cuDoubleComplex * dX,
 int lddx,
 void * dwork,
 size_t * lwork_bytes);

cusolverStatus_t
cusolverDnZKgesv_bufferSize(
 cusolverHandle_t handle,
 int n,
 int nrhs,
 cuDoubleComplex * dA,
 int ldda,
 int * dipiv,
 cuDoubleComplex * dB,
 int lddb,
 cuDoubleComplex * dX,
 int lddx,
 void * dwork,
 size_t * lwork_bytes);

cusolverStatus_t
cusolverDnZEgesv_bufferSize(
 cusolverHandle_t handle,
 int n,
 int nrhs,
 cuDoubleComplex * dA,
 int ldda,
 int * dipiv,
 cuDoubleComplex * dB,
 int lddb,
 cuDoubleComplex * dX,
 int lddx,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 66

 void * dwork,
 size_t * lwork_bytes);

cusolverStatus_t
cusolverDnZYgesv_bufferSize(
 cusolverHandle_t handle,
 int n,
 int nrhs,
 cuDoubleComplex * dA,
 int ldda,
 int * dipiv,
 cuDoubleComplex * dB,
 int lddb,
 cuDoubleComplex * dX,
 int lddx,
 void * dwork,
 size_t * lwork_bytes);

cusolverStatus_t
cusolverDnCCgesv_bufferSize(
 cusolverHandle_t handle,
 int n,
 int nrhs,
 cuComplex * dA,
 int ldda,
 int * dipiv,
 cuComplex * dB,
 int lddb,
 cuComplex * dX,
 int lddx,
 void * dwork,
 size_t * lwork_bytes);

cusolverStatus_t
cusolverDnCKgesv_bufferSize(
 cusolverHandle_t handle,
 int n,
 int nrhs,
 cuComplex * dA,
 int ldda,
 int * dipiv,
 cuComplex * dB,
 int lddb,
 cuComplex * dX,
 int lddx,
 void * dwork,
 size_t * lwork_bytes);

cusolverStatus_t
cusolverDnCEgesv_bufferSize(
 cusolverHandle_t handle,
 int n,
 int nrhs,
 cuComplex * dA,
 int ldda,
 int * dipiv,
 cuComplex * dB,
 int lddb,
 cuComplex * dX,
 int lddx,
 void * dwork,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 67

 size_t * lwork_bytes);

cusolverStatus_t
cusolverDnCYgesv_bufferSize(
 cusolverHandle_t handle,
 int n,
 int nrhs,
 cuComplex * dA,
 int ldda,
 int * dipiv,
 cuComplex * dB,
 int lddb,
 cuComplex * dX,
 int lddx,
 void * dwork,
 size_t * lwork_bytes);

cusolverStatus_t
cusolverDnDDgesv_bufferSize(
 cusolverHandle_t handle,
 int n,
 int nrhs,
 double * dA,
 int ldda,
 int * dipiv,
 double * dB,
 int lddb,
 double * dX,
 int lddx,
 void * dwork,
 size_t * lwork_bytes);

cusolverStatus_t
cusolverDnDSgesv_bufferSize(
 cusolverHandle_t handle,
 int n,
 int nrhs,
 double * dA,
 int ldda,
 int * dipiv,
 double * dB,
 int lddb,
 double * dX,
 int lddx,
 void * dwork,
 size_t * lwork_bytes);

cusolverStatus_t
cusolverDnDHgesv_bufferSize(
 cusolverHandle_t handle,
 int n,
 int nrhs,
 double * dA,
 int ldda,
 int * dipiv,
 double * dB,
 int lddb,
 double * dX,
 int lddx,
 void * dwork,
 size_t * lwork_bytes);

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 68

cusolverStatus_t
cusolverDnDBgesv_bufferSize(
 cusolverHandle_t handle,
 int n,
 int nrhs,
 double * dA,
 int ldda,
 int * dipiv,
 double * dB,
 int lddb,
 double * dX,
 int lddx,
 void * dwork,
 size_t * lwork_bytes);

cusolverStatus_t
cusolverDnDXgesv_bufferSize(
 cusolverHandle_t handle,
 int n,
 int nrhs,
 double * dA,
 int ldda,
 int * dipiv,
 double * dB,
 int lddb,
 double * dX,
 int lddx,
 void * dwork,
 size_t * lwork_bytes);

cusolverStatus_t
cusolverDnSSgesv_bufferSize(
 cusolverHandle_t handle,
 int n,
 int nrhs,
 float * dA,
 int ldda,
 int * dipiv,
 float * dB,
 int lddb,
 float * dX,
 int lddx,
 void * dwork,
 size_t * lwork_bytes);

cusolverStatus_t
cusolverDnSHgesv_bufferSize(
 cusolverHandle_t handle,
 int n,
 int nrhs,
 float * dA,
 int ldda,
 int * dipiv,
 float * dB,
 int lddb,
 float * dX,
 int lddx,
 void * dwork,
 size_t * lwork_bytes);

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 69

cusolverStatus_t
cusolverDnSBgesv_bufferSize(
 cusolverHandle_t handle,
 int n,
 int nrhs,
 float * dA,
 int ldda,
 int * dipiv,
 float * dB,
 int lddb,
 float * dX,
 int lddx,
 void * dwork,
 size_t * lwork_bytes);

cusolverStatus_t
cusolverDnSXgesv_bufferSize(
 cusolverHandle_t handle,
 int n,
 int nrhs,
 float * dA,
 int ldda,
 int * dipiv,
 float * dB,
 int lddb,
 float * dX,
 int lddx,
 void * dwork,
 size_t * lwork_bytes);

Parameters of cusolverDn<T1><T2>gesv_bufferSize() functions

Parameter Memory In/out Meaning
handle host input Handle to the cusolverDN library context.

n host input Number of rows and columns of square
matrix A. Should be non-negative.

nrhs host input Number of right hand sides to solve.
Should be non-negative.

dA device None Matrix A with size n-by-n. Can be
NULL.

ldda host input Leading dimension of two-dimensional
array used to store matrix A. lda >= n.

dipiv device None Pivoting sequence. Not used and can be
NULL.

dB device None Set of right hand sides B of size n-by-
nrhs. Can be NULL.

lddb host input Leading dimension of two-dimensional
array used to store matrix of right hand
sides B. ldb >= n.

dX device None Set of soultion vectors X of size n-by-
nrhs. Can be NULL.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 70

Parameter Memory In/out Meaning
lddx host input Leading dimension of two-dimensional

array used to store matrix of solution
vectors X. ldx >= n.

dwork device none Pointer to device workspace. Not used
and can be NULL.

lwork_bytes host output Pointer to a variable where required size
of temporary workspace in bytes will be
stored. Can't be NULL.

cusolverStatus_t cusolverDnZZgesv(
 cusolverDnHandle_t handle,
 int n,
 int nrhs,
 cuDoubleComplex * dA,
 int ldda,
 int * dipiv,
 cuDoubleComplex * dB,
 int lddb,
 cuDoubleComplex * dX,
 int lddx,
 void * dWorkspace,
 size_t lwork_bytes,
 int * niter,
 int * dinfo);

cusolverStatus_t cusolverDnZCgesv(
 cusolverDnHandle_t handle,
 int n,
 int nrhs,
 cuDoubleComplex * dA,
 int ldda,
 int * dipiv,
 cuDoubleComplex * dB,
 int lddb,
 cuDoubleComplex * dX,
 int lddx,
 void * dWorkspace,
 size_t lwork_bytes,
 int * niter,
 int * dinfo);

cusolverStatus_t cusolverDnZKgesv(
 cusolverDnHandle_t handle,
 int n,
 int nrhs,
 cuDoubleComplex * dA,
 int ldda,
 int * dipiv,
 cuDoubleComplex * dB,
 int lddb,
 cuDoubleComplex * dX,
 int lddx,
 void * dWorkspace,
 size_t lwork_bytes,
 int * niter,
 int * dinfo);

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 71

cusolverStatus_t cusolverDnZEgesv(
 cusolverDnHandle_t handle,
 int n,
 int nrhs,
 cuDoubleComplex * dA,
 int ldda,
 int * dipiv,
 cuDoubleComplex * dB,
 int lddb,
 cuDoubleComplex * dX,
 int lddx,
 void * dWorkspace,
 size_t lwork_bytes,
 int * niter,
 int * dinfo);

cusolverStatus_t cusolverDnZYgesv(
 cusolverDnHandle_t handle,
 int n,
 int nrhs,
 cuDoubleComplex * dA,
 int ldda,
 int * dipiv,
 cuDoubleComplex * dB,
 int lddb,
 cuDoubleComplex * dX,
 int lddx,
 void * dWorkspace,
 size_t lwork_bytes,
 int * niter,
 int * dinfo);

cusolverStatus_t cusolverDnCCgesv(
 cusolverDnHandle_t handle,
 int n,
 int nrhs,
 cuComplex * dA,
 int ldda,
 int * dipiv,
 cuComplex * dB,
 int lddb,
 cuComplex * dX,
 int lddx,
 void * dWorkspace,
 size_t lwork_bytes,
 int * niter,
 int * dinfo);

cusolverStatus_t cusolverDnCKgesv(
 cusolverDnHandle_t handle,
 int n,
 int nrhs,
 cuComplex * dA,
 int ldda,
 int * dipiv,
 cuComplex * dB,
 int lddb,
 cuComplex * dX,
 int lddx,
 void * dWorkspace,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 72

 size_t lwork_bytes,
 int * niter,
 int * dinfo);

cusolverStatus_t cusolverDnCEgesv(
 cusolverDnHandle_t handle,
 int n,
 int nrhs,
 cuComplex * dA,
 int ldda,
 int * dipiv,
 cuComplex * dB,
 int lddb,
 cuComplex * dX,
 int lddx,
 void * dWorkspace,
 size_t lwork_bytes,
 int * niter,
 int * dinfo);

cusolverStatus_t cusolverDnCYgesv(
 cusolverDnHandle_t handle,
 int n,
 int nrhs,
 cuComplex * dA,
 int ldda,
 int * dipiv,
 cuComplex * dB,
 int lddb,
 cuComplex * dX,
 int lddx,
 void * dWorkspace,
 size_t lwork_bytes,
 int * niter,
 int * dinfo);

cusolverStatus_t cusolverDnDDgesv(
 cusolverDnHandle_t handle,
 int n,
 int nrhs,
 double * dA,
 int ldda,
 int * dipiv,
 double * dB,
 int lddb,
 double * dX,
 int lddx,
 void * dWorkspace,
 size_t lwork_bytes,
 int * niter,
 int * dinfo);

cusolverStatus_t cusolverDnDSgesv(
 cusolverDnHandle_t handle,
 int n,
 int nrhs,
 double * dA,
 int ldda,
 int * dipiv,
 double * dB,
 int lddb,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 73

 double * dX,
 int lddx,
 void * dWorkspace,
 size_t lwork_bytes,
 int * niter,
 int * dinfo);

cusolverStatus_t cusolverDnDHgesv(
 cusolverDnHandle_t handle,
 int n,
 int nrhs,
 double * dA,
 int ldda,
 int * dipiv,
 double * dB,
 int lddb,
 double * dX,
 int lddx,
 void * dWorkspace,
 size_t lwork_bytes,
 int * niter,
 int * dinfo);

cusolverStatus_t cusolverDnDBgesv(
 cusolverDnHandle_t handle,
 int n,
 int nrhs,
 double * dA,
 int ldda,
 int * dipiv,
 double * dB,
 int lddb,
 double * dX,
 int lddx,
 void * dWorkspace,
 size_t lwork_bytes,
 int * niter,
 int * dinfo);

cusolverStatus_t cusolverDnDXgesv(
 cusolverDnHandle_t handle,
 int n,
 int nrhs,
 double * dA,
 int ldda,
 int * dipiv,
 double * dB,
 int lddb,
 double * dX,
 int lddx,
 void * dWorkspace,
 size_t lwork_bytes,
 int * niter,
 int * dinfo);

cusolverStatus_t cusolverDnSSgesv(
 cusolverDnHandle_t handle,
 int n,
 int nrhs,
 float * dA,
 int ldda,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 74

 int * dipiv,
 float * dB,
 int lddb,
 float * dX,
 int lddx,
 void * dWorkspace,
 size_t lwork_bytes,
 int * niter,
 int * dinfo);

cusolverStatus_t cusolverDnSHgesv(
 cusolverDnHandle_t handle,
 int n,
 int nrhs,
 float * dA,
 int ldda,
 int * dipiv,
 float * dB,
 int lddb,
 float * dX,
 int lddx,
 void * dWorkspace,
 size_t lwork_bytes,
 int * niter,
 int * dinfo);

cusolverStatus_t cusolverDnSBgesv(
 cusolverDnHandle_t handle,
 int n,
 int nrhs,
 float * dA,
 int ldda,
 int * dipiv,
 float * dB,
 int lddb,
 float * dX,
 int lddx,
 void * dWorkspace,
 size_t lwork_bytes,
 int * niter,
 int * dinfo);

cusolverStatus_t cusolverDnSXgesv(
 cusolverDnHandle_t handle,
 int n,
 int nrhs,
 float * dA,
 int ldda,
 int * dipiv,
 float * dB,
 int lddb,
 float * dX,
 int lddx,
 void * dWorkspace,
 size_t lwork_bytes,
 int * niter,
 int * dinfo);

Parameters of cusolverDn<T1><T2>gesv() functions

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 75

Parameter Memory In/out Meaning
handle host input Handle to the cusolverDN library context.

n host input Number of rows and columns of square
matrix A. Should be non-negative.

nrhs host input Number of right hand sides to solve.
Should be non-negative.

dA device in/out Matrix A with size n-by-n. Can't be NULL.
On return - unchanged if the iterative
refinement process converged. If not
- will contains the factorization of the
matrix A in the main precision <T1> (A
= P * L * U, where P - permutation
matrix defined by vector ipiv, L and U -
lower and upper triangular matrices).

ldda host input Leading dimension of two-dimensional
array used to store matrix A. lda >= n.

dipiv device output Vector that defines permutation for the
factorization - row i was interchanged
with row ipiv[i]

dB device input Set of right hand sides B of size n-
by-nrhs . Can't be NULL.

lddb host input Leading dimension of two-dimensional
array used to store matrix of right hand
sides B. ldb >= n.

dX device output Set of soultion vectors X of size n-by-
nrhs . Can't be NULL.

lddx host input Leading dimension of two-dimensional
array used to store matrix of solution
vectors X. ldx >= n.

dWorkspace device input Pointer to an allocated workspace in
device memory of size lwork_bytes.

lwork_bytes host input Size of the allocated device workspace.
Should be at least what was returned by
cusolverDn<T1><T2>gesv_bufferSize()
function.

niters host output If iter is

‣ <0 : iterative refinement has failed,
main precision (Inputs/Outputs
precision) factorization has been
performed

‣ -1 : taking into account machine
parameters, n, nrhs, it is a priori not
worth working in lower precision

‣ -2 : overflow of an entry when moving
from main to lower precision

‣ -3 : failure during the factorization

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 76

Parameter Memory In/out Meaning
‣ -5 : overflow occured during

computation

‣ -50: solver stopped the iterative
refinement after reaching maximum
allowed iterations

‣ >0 : iter is a number of iterations
solver perfromed to reach
convergence criteria

dinfo device output Status of the IRS solver on the return. If 0
- solve was successful. If dinfo = -i then
i-th argument is not valid. If dinfo = i,
then U(i,i) computed in main precision
is exactly zero. The factorization has been
completed, but the factor U is exactly
singular, so the solution could not be
computed.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed, for example:

‣ n<0

‣ lda<max(1,n)

‣ ldb<max(1,n)

‣ ldx<max(1,n)

CUSOLVER_STATUS_ARCH_MISMATCH The IRS solver supports compute capability
7.0 and above. The lowest precision
options CUSOLVER_[CR]_16BF and
CUSOLVER_[CR]_TF32 are only available on
compute capability 8.0 and above.

CUSOLVER_STATUS_INVALID_WORKSPACE lwork_bytes is smaller than the required
workspace.

CUSOLVER_STATUS_IRS_OUT_OF_RANGE Numerical error related to niters <0, see niters
description for more details.

CUSOLVER_STATUS_INTERNAL_ERROR An internal error occured, check the dinfo and
the niters arguments for more details.

2.4.2.11. cusolverDnIRSXgesv()
This function is designed to perform same functionality as cusolverDn<T1><T2>gesv()
functions, but wrapped in a more generic and expert interface that gives user more
control to parametrize the function as well as it provides more informations on output.
cusolverDnIRSXgesv() allows additional control of the solver parameters such as setting:

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 77

‣ the main precision (Inputs/Outputs precision) of the solver

‣ the lowest precision to be used internally by the solver

‣ the refinement solver type

‣ the maximum allowed number of iterations in the refinement phase

‣ the tolerance of the refinement solver

‣ the fallback to main precision

‣ and more

through the configuration parameters structure gesv_irs_params and its helper
functions. For more details about what configuration can be set and its meaning please
refer to all the functions in the cuSolverDN Helper Function Section that start with
cusolverDnIRSParamsxxxx(). Moreover, cusolverDnIRSXgesv() provides additional
informations on the output such as the convergence history (e.g., the residual norms) at
each iteration and the number of iterations needed to converge. For more details about
what informations can be retrieved and its meaning please refer to all the functions in the
cuSolverDN Helper Function Section that start with cusolverDnIRSInfosxxxx()

The function returns value describes the results of the solving process. A
CUSOLVER_STATUS_SUCCESS indicates that the function finished with success otherwise,
it indicates if one of the API arguments is incorrect, or if the configurations of params/infos
structure is incorrect or if the function did not finish with success. More details about the error
can be found by checking the niters and the dinfo API parameters. See their description
below for further details. User should provide the required workspace allocated on device for
the cusolverDnIRSXgesv() function. The amount of bytes required for the function can be
queried by calling the respective function cusolverDnIRSXgesv_bufferSize(). Note that,
if the user would like a praticular configuration to be set via the params structure, it should
be set before the call to cusolverDnIRSXgesv_bufferSize() to get the size of the required
workspace.

Tensor Float (TF32), introduced with NVIDIA Ampere Architecture GPUs, is the most robust
tensor core accelerated compute mode for the iterative refinement solver. It is able to solve
the widest range of problems in HPC arising from different applications and provides up to 4X
and 5X speedup for real and complex systems, respectively. On Volta and Turing architecture
GPUs, half precision tensor core acceleration is recommended. In cases where the iterative
refinement solver fails to converge to the desired accuracy (main precision, INOUT data
precision), it is recommended to use main precision as internal lowest precision.

The following table provides all possible combinations values for the lowest precision
corresponding to the Inputs/Outputs data type. Note that if the lowest precision matches the
Inputs/Outputs datatype, then the main precision factorization will be used.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 78

Table 4. Supported Inputs/Outputs data type and lower precision for
the IRS solver

Inputs/Outputs Data Type
(e.g., main precision) Supported values for the lowest precision
CUSOLVER_C_64F CUSOLVER_C_64F, CUSOLVER_C_32F, CUSOLVER_C_16F,

CUSOLVER_C_16BF, CUSOLVER_C_TF32

CUSOLVER_C_32F CUSOLVER_C_32F, CUSOLVER_C_16F, CUSOLVER_C_16BF,
CUSOLVER_C_TF32

CUSOLVER_R_64F CUSOLVER_R_64F, CUSOLVER_R_32F, CUSOLVER_R_16F,
CUSOLVER_R_16BF, CUSOLVER_R_TF32

CUSOLVER_R_32F CUSOLVER_R_32F, CUSOLVER_R_16F, CUSOLVER_R_16BF,
CUSOLVER_R_TF32

The cusolverDnIRSXgesv_bufferSize() function returns the required workspace buffer
size in bytes for the corresponding cusolverDnXgesv() call with the given gesv_irs_params
configuration.

cusolverStatus_t
cusolverDnIRSXgesv_bufferSize(
 cusolverDnHandle_t handle,
 cusolverDnIRSParams_t gesv_irs_params,
 cusolver_int_t n,
 cusolver_int_t nrhs,
 size_t * lwork_bytes);

Table 5. Parameters of cusolverDnIRSXgesv_bufferSize() functions

Parameter Memory In/out Meaning
handle host input Handle to the cusolverDn library context.

params host input Xgesv configuration parameters

n host input Number of rows and columns of the
square matrix A. Should be non-negative.

nrhs host input Number of right hand sides to
solve. Should be non-negative.
Note that nrhs is limited to 1 if the
selected IRS refinement solver is
CUSOLVER_IRS_REFINE_GMRES,
CUSOLVER_IRS_REFINE_GMRES_GMRES,
CUSOLVER_IRS_REFINE_CLASSICAL_GMRES.

lwork_bytes host out Pointer to a variable, where the
required size in bytes, of the
workspace will be stored after a call to
cusolverDnIRSXgesv_bufferSize.
Can't be NULL.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 79

cusolverStatus_t cusolverDnIRSXgesv(
 cusolverDnHandle_t handle,
 cusolverDnIRSParams_t gesv_irs_params,
 cusolverDnIRSInfos_t gesv_irs_infos,
 int n,
 int nrhs,
 void * dA,
 int ldda,
 void * dB,
 int lddb,
 void * dX,
 int lddx,
 void * dWorkspace,
 size_t lwork_bytes,
 int * dinfo);

Table 6. Parameters of cusolverDnIRSXgesv() functions

Parameter Memory In/out Meaning
handle host input Handle to the cusolverDn library context.

gesv_irs_params host input Configuration parameters structure, can
serve one or more calls to any IRS solver

gesv_irs_infos host in/out Info structure, where information
about a particular solve will be stored.
The gesv_irs_infos structure
correspond to a particular call. Thus
different calls requires different
gesv_irs_infos structure otherwise, it
will be overwritten.

n host input Number of rows and columns of square
matrix A. Should be non-negative.

nrhs host input Number of right hand sides to
solve. Should be non-negative.
Note that, nrhs is limited to 1 if the
selected IRS refinement solver is
CUSOLVER_IRS_REFINE_GMRES,
CUSOLVER_IRS_REFINE_GMRES_GMRES,
CUSOLVER_IRS_REFINE_CLASSICAL_GMRES.

dA device in/out Matrix A with size n-by-n. Can't be NULL.
On return - will contain the factorization
of the matrix A in the main precision (A
= P * L * U, where P - permutation
matrix defined by vector ipiv, L and U -
lower and upper triangular matrices)
if the iterative refinement solver was
set to CUSOLVER_IRS_REFINE_NONE
and the lowest precision is equal to the
main precision (Inputs/Ouputs datatype),
or if the iterative refinement solver did
not converge and the fallback to main
precision was enabled (fallback enabled

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 80

Parameter Memory In/out Meaning
is the default setting); unchanged
otherwise.

ldda host input Leading dimension of two-dimensional
array used to store matrix A. lda >= n.

dB device input Set of right hand sides B of size n-
by-nrhs . Can't be NULL.

lddb host input Leading dimension of two-dimensional
array used to store matrix of right hand
sides B. ldb >= n.

dX device output Set of soultion vectors X of size n-by-
nrhs . Can't be NULL.

lddx host input Leading dimension of two-dimensional
array used to store matrix of solution
vectors X. ldx >= n.

dWorkspace device input Pointer to an allocated workspace in
device memory of size lwork_bytes.

lwork_bytes host input Size of the allocated device workspace.
Should be at least what was returned by
cusolverDnIRSXgesv_bufferSize()
function

niters host output If iter is

‣ <0 : iterative refinement has failed,
main precision (Inputs/Outputs
precision) factorization has been
performed if fallback is enabled.

‣ -1 : taking into account machine
parameters, n, nrhs, it is a priori not
worth working in lower precision

‣ -2 : overflow of an entry when moving
from main to lower precision

‣ -3 : failure during the factorization

‣ -5 : overflow occured during
computation

‣ -maxiter: solver stopped the iterative
refinement after reaching maximum
allowed iterations.

‣ >0 : iter is a number of iterations
solver perfromed to reach
convergence criteria

dinfo device output Status of the IRS solver on the return. If 0
- solve was successful. If dinfo = -i then
i-th argument is not valid. If dinfo = i,
then U(i,i) computed in main precision
is exactly zero. The factorization has been

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 81

Parameter Memory In/out Meaning
completed, but the factor U is exactly
singular, so the solution could not be
computed.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed, for example:

‣ n<0

‣ lda<max(1,n)

‣ ldb<max(1,n)

‣ ldx<max(1,n)

CUSOLVER_STATUS_ARCH_MISMATCH The IRS solver supports compute capability
7.0 and above. The lowest precision
options CUSOLVER_[CR]_16BF and
CUSOLVER_[CR]_TF32 are only available on
compute capability 8.0 and above.

CUSOLVER_STATUS_INVALID_WORKSPACE lwork_bytes is smaller than the required
workspace. Could happen if the users called
cusolverDnIRSXgesv_bufferSize() function,
then changed some of the configurations setting
such as the lowest precision.

CUSOLVER_STATUS_IRS_OUT_OF_RANGE Numerical error related to niters <0, see niters
description for more details.

CUSOLVER_STATUS_INTERNAL_ERROR An internal error occured, check the dinfo and
the niters arguments for more details.

CUSOLVER_STATUS_IRS_PARAMS_NOT_INITIALIZEDThe configuration parameter gesv_irs_params
structure was not created.

CUSOLVER_STATUS_IRS_PARAMS_INVALID One of the configuration parameter in the
gesv_irs_params structure is not valid.

CUSOLVER_STATUS_IRS_PARAMS_INVALID_PREC The main and/or the lowest precision
configuration parameter in the gesv_irs_params
structure is not valid, check the table above for
the supported combinations.

CUSOLVER_STATUS_IRS_PARAMS_INVALID_MAXITERThe maxiter configuration parameter in the
gesv_irs_params structure is not valid.

CUSOLVER_STATUS_IRS_PARAMS_INVALID_REFINE The refinement solver configuration parameter in
the gesv_irs_params structure is not valid.

CUSOLVER_STATUS_IRS_NOT_SUPPORTED One of the configuration parameter in the
gesv_irs_params structure is not supported. For
example if nrhs >1, and refinement solver was set
to CUSOLVER_IRS_REFINE_GMRES.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 82

CUSOLVER_STATUS_IRS_INFOS_NOT_INITIALIZED The information structure gesv_irs_infos was
not created.

CUSOLVER_STATUS_ALLOC_FAILED CPU memory allocation failed, most likely during
the allocation of the residual array that store the
residual norms.

2.4.2.12. cusolverDn<t>geqrf()
These helper functions calculate the size of work buffers needed.

cusolverStatus_t
cusolverDnSgeqrf_bufferSize(cusolverDnHandle_t handle,
 int m,
 int n,
 float *A,
 int lda,
 int *Lwork);

cusolverStatus_t
cusolverDnDgeqrf_bufferSize(cusolverDnHandle_t handle,
 int m,
 int n,
 double *A,
 int lda,
 int *Lwork);

cusolverStatus_t
cusolverDnCgeqrf_bufferSize(cusolverDnHandle_t handle,
 int m,
 int n,
 cuComplex *A,
 int lda,
 int *Lwork);

cusolverStatus_t
cusolverDnZgeqrf_bufferSize(cusolverDnHandle_t handle,
 int m,
 int n,
 cuDoubleComplex *A,
 int lda,
 int *Lwork);

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSgeqrf(cusolverDnHandle_t handle,
 int m,
 int n,
 float *A,
 int lda,
 float *TAU,
 float *Workspace,
 int Lwork,
 int *devInfo);

cusolverStatus_t
cusolverDnDgeqrf(cusolverDnHandle_t handle,
 int m,
 int n,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 83

 double *A,
 int lda,
 double *TAU,
 double *Workspace,
 int Lwork,
 int *devInfo);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCgeqrf(cusolverDnHandle_t handle,
 int m,
 int n,
 cuComplex *A,
 int lda,
 cuComplex *TAU,
 cuComplex *Workspace,
 int Lwork,
 int *devInfo);

cusolverStatus_t
cusolverDnZgeqrf(cusolverDnHandle_t handle,
 int m,
 int n,
 cuDoubleComplex *A,
 int lda,
 cuDoubleComplex *TAU,
 cuDoubleComplex *Workspace,
 int Lwork,
 int *devInfo);

This function computes the QR factorization of a m×n matrix

where A is an m×n matrix, Q is an m×n matrix, and R is a n×n upper triangular matrix.

The user has to provide working space which is pointed by input parameter Workspace.
The input parameter Lwork is size of the working space, and it is returned by
geqrf_bufferSize().

The matrix R is overwritten in upper triangular part of A, including diagonal elements.

The matrix Q is not formed explicitly, instead, a sequence of householder vectors are stored in
lower triangular part of A. The leading nonzero element of householder vector is assumed to
be 1 such that output parameter TAU contains the scaling factor τ. If v is original householder
vector, q is the new householder vector corresponding to τ, satisying the following relation

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong (not
counting handle).
API of geqrf

Parameter Memory In/out Meaning
handle host input Handle to the cuSolverDN library context.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 84

Parameter Memory In/out Meaning
m host input Number of rows of matrix A.

n host input Number of columns of matrix A.

A device in/out <type> array of dimension lda * n with
lda is not less than max(1,m).

lda host input Leading dimension of two-dimensional
array used to store matrix A.

TAU device output <type> array of dimension at least
min(m,n).

Workspace device in/out Working space, <type> array of size
Lwork.

Lwork host input Size of working array Workspace.

devInfo device output If devInfo = 0, the LU factorization
is successful. if devInfo = -i, the i-
th parameter is wrong (not counting
handle).

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (m,n<0 or
lda<max(1,m)).

CUSOLVER_STATUS_ARCH_MISMATCH The device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

2.4.2.13. cusolverDnGeqrf()[DEPRECATED]
[[DEPRECATED]] use cusolverDnXgeqrf() instead. The routine will be removed in the next
major release.

The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnGeqrf_bufferSize(
 cusolverDnHandle_t handle,
 cusolverDnParams_t params,
 int64_t m,
 int64_t n,
 cudaDataType dataTypeA,
 const void *A,
 int64_t lda,
 cudaDataType dataTypeTau,
 const void *tau,
 cudaDataType computeType,
 size_t *workspaceInBytes)

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 85

The following routine:

cusolverStatus_t
cusolverDnGeqrf(
 cusolverDnHandle_t handle,
 cusolverDnParams_t params,
 int64_t m,
 int64_t n,
 cudaDataType dataTypeA,
 void *A,
 int64_t lda,
 cudaDataType dataTypeTau,
 void *tau,
 cudaDataType computeType,
 void *pBuffer,
 size_t workspaceInBytes,
 int *info)

computes the QR factorization of an m×n matrix

where A is a m×n matrix, Q is an m×n matrix, and R is an n×n upper triangular matrix using the
generic API interface.

The user has to provide working space which is pointed by input parameter pBuffer. The
input parameter workspaceInBytes is size in bytes of the working space, and it is returned by
cusolverDnGeqrf_bufferSize().

The matrix R is overwritten in upper triangular part of A, including diagonal elements.

The matrix Q is not formed explicitly, instead, a sequence of householder vectors are stored in
lower triangular part of A. The leading nonzero element of householder vector is assumed to
be 1 such that output parameter TAU contains the scaling factor τ. If v is original householder
vector, q is the new householder vector corresponding to τ, satisying the following relation

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting
handle).

Currently, cusolverDnGeqrf supports only the default algorithm.
Table of algorithms supported by cusolverDnGeqrf

CUSOLVER_ALG_0 or NULL Default algorithm.

List of input arguments for cusolverDnGeqrf_bufferSize and cusolverDnGeqrf:
API of geqrf

Parameter Memory In/out Meaning
handle host input Handle to the cuSolverDN library context.

params host input Structure with information collected by
cusolverDnSetAdvOptions.

m host input Number of rows of matrix A.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 86

Parameter Memory In/out Meaning
n host input Number of columns of matrix A.

dataTypeA host in Data type of array A.

A device in/out Array of dimension lda * n with lda is
not less than max(1,m).

lda host input Leading dimension of two-dimensional
array used to store matrix A.

TAU device output Array of dimension at least min(m,n).

computeType host in Data type of computation.

pBuffer device in/out Working space. Array of type void of size
workspaceInBytes bytes.

workspaceInBytes host input Size in bytes of working array pBuffer.

info device output If info = 0, the LU factorization is
successful. if info = -i, the i-th
parameter is wrong (not counting
handle).

The generic API has two different types, dataTypeA is data type of the matrix A and array
tau and computeType is compute type of the operation. cusolverDnGeqrf only supports the
following four combinations.
Valid combination of data type and compute type

DataTypeA ComputeType Meaning

CUDA_R_32F CUDA_R_32F SGEQRF

CUDA_R_64F CUDA_R_64F DGEQRF

CUDA_C_32F CUDA_C_32F CGEQRF

CUDA_C_64F CUDA_C_64F ZGEQRF

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (m,n<0 or
lda<max(1,m)).

CUSOLVER_STATUS_ARCH_MISMATCH The device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

2.4.2.14. cusolverDn<t1><t2>gels()
These functions compute the solution of a system of linear equations with one or multiple
right hand sides using mixed precision iterative refinement techniques based on the QR
factorization Xgels. These functions are similar in term of functionalities to the full precision
LAPACK QR (least squares) solver (Xgels, where X denotes Z,C,D,S) but it uses lower precision
internally in order to provide faster time to solution, from here cames the name mixed
precision. Mixed precision iterative refinement techniques means that the solver compute

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 87

an QR factorization in lower precision and then iteratively refine the solution to achieve the
accuracy of the Inputs/Outputs datatype precision. The <t1> corresponds to the Inputs/Outputs
datatype precision while <t2> represent the internal lower precision at which the factorization
will be carried on.

Where A is m-by-n matrix and X is n-by-nrhs and B is m-by-nrhs matrices.

Functions API are designed to be as close as possible to LAPACK API to be considered
as a quick and easy drop-in replacement. Description of these functions is given below.
<t1><t2>gels() functions are designated by two floating point precisions The <t1>
corresponds to the main precision (e.g., Inputs/Outputs datatype precision) and the
<t2> represent the internal lower precision at which the factorization will be carried on.
cusolver<t1><t2>gels() first attempts to factorize the matrix in lower precision and use
this factorization within an iterative refinement procedure to obtain a solution with same
normwise backward error as the main precision <t1>. If the approach fails to converge, then
the method fallback to the main precision factorization and solve (Xgels) such a way that
there is always a good solution at the output of these functions. If <t2> is equal to <t1>, then
it is not a mixed precision process but rather a full one precision factorisation, solve and
refinement within the same main precision.

The iterative refinement process is stopped if:

 ITER > ITERMAX

or for all the RHS we have:

 RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX

where

‣ ITER is the number of the current iteration in the iterative refinement process

‣ RNRM is the infinity-norm of the residual

‣ XNRM is the infinity-norm of the solution

‣ ANRM is the infinity-operator-norm of the matrix A

‣ EPS is the machine epsilon that matches LAPACK <t1>LAMCH('Epsilon')

The values ITERMAX and BWDMAX are fixed to 50 and 1.0 respectively.

The function returns value describes the results of the solving process. A
CUSOLVER_STATUS_SUCCESS indicates that the function finished with success otherwise, it
indicates if one of the API arguments is incorrect, or if the function did not finish with success.
More details about the error will be in the niters and the dinfo API parameters. See their
description below for more details. User should provide the required workspace allocated on
device memory. The amount of bytes required can be queried by calling the respective function
<t1><t2>gels_bufferSize().

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 88

We provide a large set of mixed precision functions that include half, bfloat and tensorfloat
as a lower precision as well as same precision functions (e.g., main and lowest precision are
equal <t2> is equal to <t1>). The following table specifies which precisions will be used for
which interface function:

Tensor Float (TF32), introduced with NVIDIA Ampere Architecture GPUs, is the most robust
tensor core accelerated compute mode for the iterative refinement solver. It is able to
solve the widest range of problems in HPC arising from different applications and provides
up to 4X and 5X speedup for real and complex systems, respectively. On Volta and Turing
architecture GPUs, half precision tensor core acceleration is recommended. In cases where
the iterative refinement solver fails to converge to the desired accuracy (main precision,
INOUT data precision), it is recommended to use main precision as internal lowest precision
(i.e., cusolverDn[DD,ZZ]gels for the FP64 case).

Table 7. Supported combinations of floating point precisions for
cusolver <t1><t2>gels() functions

Interface function
Main precision (matrix, rhs
and solution datatype)

Lowest precision allowed to
be used internally

cusolverDnZZgels cuDoubleComplex double complex

cusolverDnZCgels cuDoubleComplex single complex

cusolverDnZKgels cuDoubleComplex half complex

cusolverDnZEgels cuDoubleComplex bfloat complex

cusolverDnZYgels cuDoubleComplex tensorfloat complex

cusolverDnCCgels cuComplex single complex

cusolverDnCKgels cuComplex half complex

cusolverDnCEgels cuComplex bfloat complex

cusolverDnCYgels cuComplex tensorfloat complex

cusolverDnDDgels double double

cusolverDnDSgels double single

cusolverDnDHgels double half

cusolverDnDBgels double bfloat

cusolverDnDXgels double tensorfloat

cusolverDnSSgels float single

cusolverDnSHgels float half

cusolverDnSBgels float bfloat

cusolverDnSXgels float tensorfloat

cusolverDn<t1><t2>gels_bufferSize() functions will return workspace buffer size in
bytes required for the corresponding cusolverDn<t1><t2>gels() function.

cusolverStatus_t
cusolverDnZZgels_bufferSize(
 cusolverHandle_t handle,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 89

 int m,
 int n,
 int nrhs,
 cuDoubleComplex * dA,
 int ldda,
 cuDoubleComplex * dB,
 int lddb,
 cuDoubleComplex * dX,
 int lddx,
 void * dwork,
 size_t * lwork_bytes);

cusolverStatus_t
cusolverDnZCgels_bufferSize(
 cusolverHandle_t handle,
 int m,
 int n,
 int nrhs,
 cuDoubleComplex * dA,
 int ldda,
 cuDoubleComplex * dB,
 int lddb,
 cuDoubleComplex * dX,
 int lddx,
 void * dwork,
 size_t * lwork_bytes);

cusolverStatus_t
cusolverDnZKgels_bufferSize(
 cusolverHandle_t handle,
 int m,
 int n,
 int nrhs,
 cuDoubleComplex * dA,
 int ldda,
 cuDoubleComplex * dB,
 int lddb,
 cuDoubleComplex * dX,
 int lddx,
 void * dwork,
 size_t * lwork_bytes);

cusolverStatus_t
cusolverDnZEgels_bufferSize(
 cusolverHandle_t handle,
 int m,
 int n,
 int nrhs,
 cuDoubleComplex * dA,
 int ldda,
 cuDoubleComplex * dB,
 int lddb,
 cuDoubleComplex * dX,
 int lddx,
 void * dwork,
 size_t * lwork_bytes);

cusolverStatus_t
cusolverDnZYgels_bufferSize(
 cusolverHandle_t handle,
 int m,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 90

 int n,
 int nrhs,
 cuDoubleComplex * dA,
 int ldda,
 cuDoubleComplex * dB,
 int lddb,
 cuDoubleComplex * dX,
 int lddx,
 void * dwork,
 size_t * lwork_bytes);

cusolverStatus_t
cusolverDnCCgels_bufferSize(
 cusolverHandle_t handle,
 int m,
 int n,
 int nrhs,
 cuComplex * dA,
 int ldda,
 cuComplex * dB,
 int lddb,
 cuComplex * dX,
 int lddx,
 void * dwork,
 size_t * lwork_bytes);

cusolverStatus_t
cusolverDnCKgels_bufferSize(
 cusolverHandle_t handle,
 int m,
 int n,
 int nrhs,
 cuComplex * dA,
 int ldda,
 cuComplex * dB,
 int lddb,
 cuComplex * dX,
 int lddx,
 void * dwork,
 size_t * lwork_bytes);

cusolverStatus_t
cusolverDnCEgels_bufferSize(
 cusolverHandle_t handle,
 int m,
 int n,
 int nrhs,
 cuComplex * dA,
 int ldda,
 cuComplex * dB,
 int lddb,
 cuComplex * dX,
 int lddx,
 void * dwork,
 size_t * lwork_bytes);

cusolverStatus_t
cusolverDnCYgels_bufferSize(
 cusolverHandle_t handle,
 int m,
 int n,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 91

 int nrhs,
 cuComplex * dA,
 int ldda,
 cuComplex * dB,
 int lddb,
 cuComplex * dX,
 int lddx,
 void * dwork,
 size_t * lwork_bytes);

cusolverStatus_t
cusolverDnDDgels_bufferSize(
 cusolverHandle_t handle,
 int m,
 int n,
 int nrhs,
 double * dA,
 int ldda,
 double * dB,
 int lddb,
 double * dX,
 int lddx,
 void * dwork,
 size_t * lwork_bytes);

cusolverStatus_t
cusolverDnDSgels_bufferSize(
 cusolverHandle_t handle,
 int m,
 int n,
 int nrhs,
 double * dA,
 int ldda,
 double * dB,
 int lddb,
 double * dX,
 int lddx,
 void * dwork,
 size_t * lwork_bytes);

cusolverStatus_t
cusolverDnDHgels_bufferSize(
 cusolverHandle_t handle,
 int m,
 int n,
 int nrhs,
 double * dA,
 int ldda,
 double * dB,
 int lddb,
 double * dX,
 int lddx,
 void * dwork,
 size_t * lwork_bytes);

cusolverStatus_t
cusolverDnDBgels_bufferSize(
 cusolverHandle_t handle,
 int m,
 int n,
 int nrhs,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 92

 double * dA,
 int ldda,
 double * dB,
 int lddb,
 double * dX,
 int lddx,
 void * dwork,
 size_t * lwork_bytes);

cusolverStatus_t
cusolverDnDXgels_bufferSize(
 cusolverHandle_t handle,
 int m,
 int n,
 int nrhs,
 double * dA,
 int ldda,
 double * dB,
 int lddb,
 double * dX,
 int lddx,
 void * dwork,
 size_t * lwork_bytes);

cusolverStatus_t
cusolverDnSSgels_bufferSize(
 cusolverHandle_t handle,
 int m,
 int n,
 int nrhs,
 float * dA,
 int ldda,
 float * dB,
 int lddb,
 float * dX,
 int lddx,
 void * dwork,
 size_t * lwork_bytes);

cusolverStatus_t
cusolverDnSHgels_bufferSize(
 cusolverHandle_t handle,
 int m,
 int n,
 int nrhs,
 float * dA,
 int ldda,
 float * dB,
 int lddb,
 float * dX,
 int lddx,
 void * dwork,
 size_t * lwork_bytes);

cusolverStatus_t
cusolverDnSBgels_bufferSize(
 cusolverHandle_t handle,
 int m,
 int n,
 int nrhs,
 float * dA,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 93

 int ldda,
 float * dB,
 int lddb,
 float * dX,
 int lddx,
 void * dwork,
 size_t * lwork_bytes);

cusolverStatus_t
cusolverDnSXgels_bufferSize(
 cusolverHandle_t handle,
 int m,
 int n,
 int nrhs,
 float * dA,
 int ldda,
 float * dB,
 int lddb,
 float * dX,
 int lddx,
 void * dwork,
 size_t * lwork_bytes);

Table 8. Parameters of cusolverDn<T1><T2>gels_bufferSize() functions

Parameter Memory In/out Meaning
handle host input Handle to the cusolverDN library context.

m host input Number of rows of the matrix A. Should
be non-negative and n<=m

n host input Number of columns of the matrix A.
Should be non-negative and n<=m.

nrhs host input Number of right hand sides to solve.
Should be non-negative.

dA device None Matrix A with size m-by-n. Can be
NULL.

ldda host input Leading dimension of two-dimensional
array used to store matrix A. ldda >= m.

dB device None Set of right hand sides B of size m-by-
nrhs. Can be NULL.

lddb host input Leading dimension of two-dimensional
array used to store matrix of right hand
sides B. lddb >= max(1,m).

dX device None Set of soultion vectors X of size n-by-
nrhs. Can be NULL.

lddx host input Leading dimension of two-dimensional
array used to store matrix of solution
vectors X. lddx >= max(1,n).

dwork device none Pointer to device workspace. Not used
and can be NULL.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 94

Parameter Memory In/out Meaning
lwork_bytes host output Pointer to a variable where required size

of temporary workspace in bytes will be
stored. Can't be NULL.

cusolverStatus_t cusolverDnZZgels(
 cusolverDnHandle_t handle,
 int m,
 int n,
 int nrhs,
 cuDoubleComplex * dA,
 int ldda,
 cuDoubleComplex * dB,
 int lddb,
 cuDoubleComplex * dX,
 int lddx,
 void * dWorkspace,
 size_t lwork_bytes,
 int * niter,
 int * dinfo);

cusolverStatus_t cusolverDnZCgels(
 cusolverDnHandle_t handle,
 int m,
 int n,
 int nrhs,
 cuDoubleComplex * dA,
 int ldda,
 cuDoubleComplex * dB,
 int lddb,
 cuDoubleComplex * dX,
 int lddx,
 void * dWorkspace,
 size_t lwork_bytes,
 int * niter,
 int * dinfo);

cusolverStatus_t cusolverDnZKgels(
 cusolverDnHandle_t handle,
 int m,
 int n,
 int nrhs,
 cuDoubleComplex * dA,
 int ldda,
 cuDoubleComplex * dB,
 int lddb,
 cuDoubleComplex * dX,
 int lddx,
 void * dWorkspace,
 size_t lwork_bytes,
 int * niter,
 int * dinfo);

cusolverStatus_t cusolverDnZEgels(
 cusolverDnHandle_t handle,
 int m,
 int n,
 int nrhs,
 cuDoubleComplex * dA,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 95

 int ldda,
 cuDoubleComplex * dB,
 int lddb,
 cuDoubleComplex * dX,
 int lddx,
 void * dWorkspace,
 size_t lwork_bytes,
 int * niter,
 int * dinfo);

cusolverStatus_t cusolverDnZYgels(
 cusolverDnHandle_t handle,
 int m,
 int n,
 int nrhs,
 cuDoubleComplex * dA,
 int ldda,
 cuDoubleComplex * dB,
 int lddb,
 cuDoubleComplex * dX,
 int lddx,
 void * dWorkspace,
 size_t lwork_bytes,
 int * niter,
 int * dinfo);

cusolverStatus_t cusolverDnCCgels(
 cusolverDnHandle_t handle,
 int m,
 int n,
 int nrhs,
 cuComplex * dA,
 int ldda,
 cuComplex * dB,
 int lddb,
 cuComplex * dX,
 int lddx,
 void * dWorkspace,
 size_t lwork_bytes,
 int * niter,
 int * dinfo);

cusolverStatus_t cusolverDnCKgels(
 cusolverDnHandle_t handle,
 int m,
 int n,
 int nrhs,
 cuComplex * dA,
 int ldda,
 cuComplex * dB,
 int lddb,
 cuComplex * dX,
 int lddx,
 void * dWorkspace,
 size_t lwork_bytes,
 int * niter,
 int * dinfo);

cusolverStatus_t cusolverDnCEgels(
 cusolverDnHandle_t handle,
 int m,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 96

 int n,
 int nrhs,
 cuComplex * dA,
 int ldda,
 cuComplex * dB,
 int lddb,
 cuComplex * dX,
 int lddx,
 void * dWorkspace,
 size_t lwork_bytes,
 int * niter,
 int * dinfo);

cusolverStatus_t cusolverDnCYgels(
 cusolverDnHandle_t handle,
 int m,
 int n,
 int nrhs,
 cuComplex * dA,
 int ldda,
 cuComplex * dB,
 int lddb,
 cuComplex * dX,
 int lddx,
 void * dWorkspace,
 size_t lwork_bytes,
 int * niter,
 int * dinfo);

cusolverStatus_t cusolverDnDDgels(
 cusolverDnHandle_t handle,
 int m,
 int n,
 int nrhs,
 double * dA,
 int ldda,
 double * dB,
 int lddb,
 double * dX,
 int lddx,
 void * dWorkspace,
 size_t lwork_bytes,
 int * niter,
 int * dinfo);

cusolverStatus_t cusolverDnDSgels(
 cusolverDnHandle_t handle,
 int m,
 int n,
 int nrhs,
 double * dA,
 int ldda,
 double * dB,
 int lddb,
 double * dX,
 int lddx,
 void * dWorkspace,
 size_t lwork_bytes,
 int * niter,
 int * dinfo);

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 97

cusolverStatus_t cusolverDnDHgels(
 cusolverDnHandle_t handle,
 int m,
 int n,
 int nrhs,
 double * dA,
 int ldda,
 double * dB,
 int lddb,
 double * dX,
 int lddx,
 void * dWorkspace,
 size_t lwork_bytes,
 int * niter,
 int * dinfo);

cusolverStatus_t cusolverDnDBgels(
 cusolverDnHandle_t handle,
 int m,
 int n,
 int nrhs,
 double * dA,
 int ldda,
 double * dB,
 int lddb,
 double * dX,
 int lddx,
 void * dWorkspace,
 size_t lwork_bytes,
 int * niter,
 int * dinfo);

cusolverStatus_t cusolverDnDXgels(
 cusolverDnHandle_t handle,
 int m,
 int n,
 int nrhs,
 double * dA,
 int ldda,
 double * dB,
 int lddb,
 double * dX,
 int lddx,
 void * dWorkspace,
 size_t lwork_bytes,
 int * niter,
 int * dinfo);

cusolverStatus_t cusolverDnSSgels(
 cusolverDnHandle_t handle,
 int m,
 int n,
 int nrhs,
 float * dA,
 int ldda,
 float * dB,
 int lddb,
 float * dX,
 int lddx,
 void * dWorkspace,
 size_t lwork_bytes,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 98

 int * niter,
 int * dinfo);

cusolverStatus_t cusolverDnSHgels(
 cusolverDnHandle_t handle,
 int m,
 int n,
 int nrhs,
 float * dA,
 int ldda,
 float * dB,
 int lddb,
 float * dX,
 int lddx,
 void * dWorkspace,
 size_t lwork_bytes,
 int * niter,
 int * dinfo);

cusolverStatus_t cusolverDnSBgels(
 cusolverDnHandle_t handle,
 int m,
 int n,
 int nrhs,
 float * dA,
 int ldda,
 float * dB,
 int lddb,
 float * dX,
 int lddx,
 void * dWorkspace,
 size_t lwork_bytes,
 int * niter,
 int * dinfo);

cusolverStatus_t cusolverDnSXgels(
 cusolverDnHandle_t handle,
 int m,
 int n,
 int nrhs,
 float * dA,
 int ldda,
 float * dB,
 int lddb,
 float * dX,
 int lddx,
 void * dWorkspace,
 size_t lwork_bytes,
 int * niter,
 int * dinfo);

Table 9. Parameters of cusolverDn<T1><T2>gels() functions

Parameter Memory In/out Meaning
handle host input Handle to the cusolverDN library context.

m host input Number of rows of the matrix A. Should
be non-negative and n<=m

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 99

Parameter Memory In/out Meaning
n host input Number of columns of the matrix A.

Should be non-negative and n<=m.

nrhs host input Number of right hand sides to solve.
Should be non-negative.

dA device in/out Matrix A with size m-by-n. Can't be
NULL. On return - unchanged if the
lowest precision is not equal to the main
precision and the iterative refinement
solver converged, - garbage otherwise.

ldda host input Leading dimension of two-dimensional
array used to store matrix A. ldda >= m.

dB device input Set of right hand sides B of size m-
by-nrhs . Can't be NULL.

lddb host input Leading dimension of two-dimensional
array used to store matrix of right hand
sides B. lddb >= max(1,m).

dX device output Set of soultion vectors X of size n-by-
nrhs . Can't be NULL.

lddx host input Leading dimension of two-dimensional
array used to store matrix of solution
vectors X. lddx >= max(1,n).

dWorkspace device input Pointer to an allocated workspace in
device memory of size lwork_bytes.

lwork_bytes host input Size of the allocated device workspace.
Should be at least what was returned by
cusolverDn<T1><T2>gels_bufferSize()
function

niters host output If iter is

‣ <0 : iterative refinement has failed,
main precision (Inputs/Outputs
precision) factorization has been
performed.

‣ -1 : taking into account machine
parameters, n, nrhs, it is a priori not
worth working in lower precision

‣ -2 : overflow of an entry when moving
from main to lower precision

‣ -3 : failure during the factorization

‣ -5 : overflow occured during
computation

‣ -50: solver stopped the iterative
refinement after reaching maximum
allowed iterations.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 100

Parameter Memory In/out Meaning
‣ >0 : iter is a number of iterations

solver perfromed to reach
convergence criteria

dinfo device output Status of the IRS solver on the return. If 0
- solve was successful. If dinfo = -i then
i-th argument is not valid.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed, for example:

‣ n<0

‣ ldda<max(1,m)

‣ lddb<max(1,m)

‣ lddx<max(1,n)

CUSOLVER_STATUS_ARCH_MISMATCH The IRS solver supports compute capability
7.0 and above. The lowest precision
options CUSOLVER_[CR]_16BF and
CUSOLVER_[CR]_TF32 are only available on
compute capability 8.0 and above.

CUSOLVER_STATUS_INVALID_WORKSPACE lwork_bytes is smaller than the required
workspace.

CUSOLVER_STATUS_IRS_OUT_OF_RANGE Numerical error related to niters <0, see niters
description for more details.

CUSOLVER_STATUS_INTERNAL_ERROR An internal error occurred; check the dinfo and
the niters arguments for more details.

2.4.2.15. cusolverDnIRSXgels()
This function is designed to perform same functionality as cusolverDn<T1><T2>gels()
functions, but wrapped in a more generic and expert interface that gives user more
control to parametrize the function as well as it provides more informations on output.
cusolverDnIRSXgels() allows additional control of the solver parameters such as setting:

‣ the main precision (Inputs/Outputs precision) of the solver,

‣ the lowest precision to be used internally by the solver,

‣ the refinement solver type

‣ the maximum allowed number of iterations in the refinement phase

‣ the tolerance of the refinement solver

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 101

‣ the fallback to main precision

‣ and others

through the configuration parameters structure gels_irs_params and its helper
functions. For more details about what configuration can be set and its meaning please
refer to all the functions in the cuSolverDN Helper Function Section that start with
cusolverDnIRSParamsxxxx(). Moreover, cusolverDnIRSXgels() provides additional
informations on the output such as the convergence history (e.g., the residual norms) at
each iteration and the number of iterations needed to converge. For more details about
what informations can be retrieved and its meaning please refer to all the functions in the
cuSolverDN Helper Function Section that start with cusolverDnIRSInfosxxxx().

The function returns value describes the results of the solving process. A
CUSOLVER_STATUS_SUCCESS indicates that the function finished with success otherwise,
it indicates if one of the API arguments is incorrect, or if the configurations of params/infos
structure is incorrect or if the function did not finish with success. More details about the error
can be found by checking the niters and the dinfo API parameters. See their description
below for further details. Users should provide the required workspace allocated on device for
the cusolverDnIRSXgels() function. The amount of bytes required for the function can be
queried by calling the respective function cusolverDnIRSXgels_bufferSize(). Note that,
if the user would like a praticular configuration to be set via the params structure, it should
be set before the call to cusolverDnIRSXgels_bufferSize() to get the size of the required
workspace.

The following table provides all possible combinations values for the lowest precision
corresponding to the Inputs/Outputs data type. Note that if the lowest precision matches the
Inputs/Outputs datatype, then main precision factorization will be used

Tensor Float (TF32), introduced with NVIDIA Ampere Architecture GPUs, is the most robust
tensor core accelerated compute mode for the iterative refinement solver. It is able to solve
the widest range of problems in HPC arising from different applications and provides up to 4X
and 5X speedup for real and complex systems, respectively. On Volta and Turing architecture
GPUs, half precision tensor core acceleration is recommended. In cases where the iterative
refinement solver fails to converge to the desired accuracy (main precision, INOUT data
precision), it is recommended to use main precision as internal lowest precision.

Table 10. Supported Inputs/Outputs data type and lower precision for
the IRS solver

Inputs/Outputs Data Type
(e.g., main precision) Supported values for the lowest precision
CUSOLVER_C_64F CUSOLVER_C_64F, CUSOLVER_C_32F, CUSOLVER_C_16F,

CUSOLVER_C_16BF, CUSOLVER_C_TF32

CUSOLVER_C_32F CUSOLVER_C_32F, CUSOLVER_C_16F, CUSOLVER_C_16BF,
CUSOLVER_C_TF32

CUSOLVER_R_64F CUSOLVER_R_64F, CUSOLVER_R_32F, CUSOLVER_R_16F,
CUSOLVER_R_16BF, CUSOLVER_R_TF32

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 102

Inputs/Outputs Data Type
(e.g., main precision) Supported values for the lowest precision
CUSOLVER_R_32F CUSOLVER_R_32F, CUSOLVER_R_16F, CUSOLVER_R_16BF,

CUSOLVER_R_TF32

The cusolverDnIRSXgels_bufferSize() function return the required workspace buffer
size in bytes for the corresponding cusolverDnXgels() call with given gels_irs_params
configuration.

cusolverStatus_t
cusolverDnIRSXgels_bufferSize(
 cusolverDnHandle_t handle,
 cusolverDnIRSParams_t gels_irs_params,
 cusolver_int_t m,
 cusolver_int_t n,
 cusolver_int_t nrhs,
 size_t * lwork_bytes);

Parameters of cusolverDnIRSXgels_bufferSize() functions

Parameter Memory In/out Meaning
handle host input Handle to the cusolverDn library context.

params host input Xgels configuration parameters

m host input Number of rows of the matrix A. Should
be non-negative and n<=m

n host input Number of columns of the matrix A.
Should be non-negative and n<=m.

nrhs host input Number of right hand sides to
solve. Should be non-negative.
Note that, nrhs is limited to 1 if the
selected IRS refinement solver is
CUSOLVER_IRS_REFINE_GMRES,
CUSOLVER_IRS_REFINE_GMRES_GMRES,
CUSOLVER_IRS_REFINE_CLASSICAL_GMRES.

lwork_bytes host out Pointer to a variable, where the
required size in bytes, of the
workspace will be stored after a call to
cusolverDnIRSXgels_bufferSize. Can't be
NULL.

cusolverStatus_t cusolverDnIRSXgels(
 cusolverDnHandle_t handle,
 cusolverDnIRSParams_t gels_irs_params,
 cusolverDnIRSInfos_t gels_irs_infos,
 int m,
 int n,
 int nrhs,
 void * dA,
 int ldda,
 void * dB,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 103

 int lddb,
 void * dX,
 int lddx,
 void * dWorkspace,
 size_t lwork_bytes,
 int * dinfo);

Table 11. Parameters of cusolverDnIRSXgels() functions

Parameter Memory In/out Meaning
handle host input Handle to the cusolverDn library context.

gels_irs_params host input Configuration parameters structure, can
serve one or more calls to any IRS solver

gels_irs_infos host in/out Info structure, where information
about a particular solve will be
stored. The gels_irs_infos struture
correspond to a particular call. Thus
different calls requires different
gels_irs_infos structure otherwise, it
will be overwritten.

m host input Number of rows of the matrix A. Should
be non-negative and n<=m

n host input Number of columns of the matrix A.
Should be non-negative and n<=m.

nrhs host input Number of right hand sides to
solve. Should be non-negative.
Note that, nrhs is limited to 1 if the
selected IRS refinement solver is
CUSOLVER_IRS_REFINE_GMRES,
CUSOLVER_IRS_REFINE_GMRES_GMRES,
CUSOLVER_IRS_REFINE_CLASSICAL_GMRES.

dA device in/out Matrix A with size m-by-n. Can't be
NULL. On return - unchanged if the
lowest precision is not equal to the main
precision and the iterative refinement
solver converged, - garbage otherwise.

ldda host input Leading dimension of two-dimensional
array used to store matrix A. ldda >= m.

dB device input Set of right hand sides B of size m-
by-nrhs . Can't be NULL.

lddb host input Leading dimension of two-dimensional
array used to store matrix of right hand
sides B. lddb >= max(1,m).

dX device output Set of soultion vectors X of size n-by-
nrhs . Can't be NULL.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 104

Parameter Memory In/out Meaning
lddx host input Leading dimension of two-dimensional

array used to store matrix of solution
vectors X. lddx >= max(1,n).

dWorkspace device input Pointer to an allocated workspace in
device memory of size lwork_bytes.

lwork_bytes host input Size of the allocated device workspace.
Should be at least what was returned by
cusolverDnIRSXgels_bufferSize()
function.

niters host output If iter is

‣ <0 : iterative refinement has failed,
main precision (Inputs/Outputs
precision) factorization has been
performed if fallback is enabled

‣ -1 : taking into account machine
parameters, n, nrhs, it is a priori not
worth working in lower precision

‣ -2 : overflow of an entry when moving
from main to lower precision

‣ -3 : failure during the factorization

‣ -5 : overflow occured during
computation

‣ -maxiter: solver stopped the
iterative refinement after reaching
maximum allowed iterations

‣ >0 : iter is a number of iterations
solver performed to reach
convergence criteria

dinfo device output Status of the IRS solver on the return. If 0
- solve was successful. If dinfo = -i then
i-th argument is not valid.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed, for example:

‣ n<0

‣ ldda<max(1,m)

‣ lddb<max(1,m)

‣ lddx<max(1,n)

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 105

CUSOLVER_STATUS_ARCH_MISMATCH The IRS solver supports compute capability
7.0 and above. The lowest precision
options CUSOLVER_[CR]_16BF and
CUSOLVER_[CR]_TF32 are only available on
compute capability 8.0 and above.

CUSOLVER_STATUS_INVALID_WORKSPACE lwork_bytes is smaller than the required
workspace. Could happen if the users called
cusolverDnIRSXgels_bufferSize() function,
then changed some of the configurations setting
such as the lowest precision.

CUSOLVER_STATUS_IRS_OUT_OF_RANGE Numerical error related to niters <0; see
niters description for more details.

CUSOLVER_STATUS_INTERNAL_ERROR An internal error occured, check the dinfo and
the niters arguments for more details.

CUSOLVER_STATUS_IRS_PARAMS_NOT_INITIALIZEDThe configuration parameter gels_irs_params
structure was not created.

CUSOLVER_STATUS_IRS_PARAMS_INVALID One of the configuration parameter in the
gels_irs_params structure is not valid.

CUSOLVER_STATUS_IRS_PARAMS_INVALID_PREC The main and/or the lowest precision
configuration parameter in the gels_irs_params
structure is not valid, check the table above for
the supported combinations.

CUSOLVER_STATUS_IRS_PARAMS_INVALID_MAXITERThe maxiter configuration parameter in the
gels_irs_params structure is not valid.

CUSOLVER_STATUS_IRS_PARAMS_INVALID_REFINE The refinement solver configuration parameter in
the gels_irs_params structure is not valid.

CUSOLVER_STATUS_IRS_NOT_SUPPORTED One of the configuration parameter in the
gels_irs_params structure is not supported. For
example if nrhs >1, and refinement solver was set
to CUSOLVER_IRS_REFINE_GMRES.

CUSOLVER_STATUS_IRS_INFOS_NOT_INITIALIZED The information structure gels_irs_infos was
not created.

CUSOLVER_STATUS_ALLOC_FAILED CPU memory allocation failed, most likely during
the allocation of the residual array that store the
residual norms.

2.4.2.16. cusolverDn<t>ormqr()
These helper functions calculate the size of work buffers needed. Please visit cuSOLVER
Library Samples - ormqr for a code example.

cusolverStatus_t
cusolverDnSormqr_bufferSize(
 cusolverDnHandle_t handle,
 cublasSideMode_t side,
 cublasOperation_t trans,
 int m,
 int n,
 int k,

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/ormqr
https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/ormqr

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 106

 const float *A,
 int lda,
 const float *tau,
 const float *C,
 int ldc,
 int *lwork);

cusolverStatus_t
cusolverDnDormqr_bufferSize(
 cusolverDnHandle_t handle,
 cublasSideMode_t side,
 cublasOperation_t trans,
 int m,
 int n,
 int k,
 const double *A,
 int lda,
 const double *tau,
 const double *C,
 int ldc,
 int *lwork);

cusolverStatus_t
cusolverDnCunmqr_bufferSize(
 cusolverDnHandle_t handle,
 cublasSideMode_t side,
 cublasOperation_t trans,
 int m,
 int n,
 int k,
 const cuComplex *A,
 int lda,
 const cuComplex *tau,
 const cuComplex *C,
 int ldc,
 int *lwork);

cusolverStatus_t
cusolverDnZunmqr_bufferSize(
 cusolverDnHandle_t handle,
 cublasSideMode_t side,
 cublasOperation_t trans,
 int m,
 int n,
 int k,
 const cuDoubleComplex *A,
 int lda,
 const cuDoubleComplex *tau,
 const cuDoubleComplex *C,
 int ldc,
 int *lwork);

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSormqr(
 cusolverDnHandle_t handle,
 cublasSideMode_t side,
 cublasOperation_t trans,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 107

 int m,
 int n,
 int k,
 const float *A,
 int lda,
 const float *tau,
 float *C,
 int ldc,
 float *work,
 int lwork,
 int *devInfo);

cusolverStatus_t
cusolverDnDormqr(
 cusolverDnHandle_t handle,
 cublasSideMode_t side,
 cublasOperation_t trans,
 int m,
 int n,
 int k,
 const double *A,
 int lda,
 const double *tau,
 double *C,
 int ldc,
 double *work,
 int lwork,
 int *devInfo);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCunmqr(
 cusolverDnHandle_t handle,
 cublasSideMode_t side,
 cublasOperation_t trans,
 int m,
 int n,
 int k,
 const cuComplex *A,
 int lda,
 const cuComplex *tau,
 cuComplex *C,
 int ldc,
 cuComplex *work,
 int lwork,
 int *devInfo);

cusolverStatus_t
cusolverDnZunmqr(
 cusolverDnHandle_t handle,
 cublasSideMode_t side,
 cublasOperation_t trans,
 int m,
 int n,
 int k,
 const cuDoubleComplex *A,
 int lda,
 const cuDoubleComplex *tau,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 108

 cuDoubleComplex *C,
 int ldc,
 cuDoubleComplex *work,
 int lwork,
 int *devInfo);

This function overwrites m×n matrix C by

The operation of Q is defined by

Q is a unitary matrix formed by a sequence of elementary reflection vectors from QR
factorization (geqrf) of A.

Q=H(1) H(2) ... H(k)

Q is of order m if side = CUBLAS_SIDE_LEFT and of order n if side = CUBLAS_SIDE_RIGHT.

The user has to provide working space which is pointed by input parameter work. The input
parameter lwork is size of the working space, and it is returned by geqrf_bufferSize()
or ormqr_bufferSize(). Please note that the size in bytes of the working space is equal to
sizeof(<type>) * lwork.

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong (not
counting handle).

The user can combine geqrf, ormqr and trsm to complete a linear solver or a least-square
solver.
API of ormqr

Parameter Memory In/out Meaning
handle host input Handle to the cuSolverDn library context.

side host input Indicates if matrix Q is on the left or right
of C.

trans host input Operation op(Q) that is non- or (conj.)
transpose.

m host input Number of rows of matrix C.

n host input Number of columns of matrix C.

k host input Number of elementary relfections whose
product defines the matrix Q.

A device in/out <type> array of dimension lda * k
with lda is not less than max(1,m). The
matrix A is from geqrf, so i-th column
contains elementary reflection vector.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 109

Parameter Memory In/out Meaning
lda host input Leading dimension of two-dimensional

array used to store matrix A. if side is
CUBLAS_SIDE_LEFT, lda >= max(1,m);
if side is CUBLAS_SIDE_RIGHT, lda >=
max(1,n).

tau device input <type> array of dimension at least
min(m,n). The vector tau is from
geqrf, so tau(i) is the scalar of i-th
elementary reflection vector.

C device in/out <type> array of size ldc * n. On exit, C is
overwritten by op(Q)*C.

ldc host input Leading dimension of two-dimensional
array of matrix C. ldc >= max(1,m).

work device in/out Working space, <type> array of size
lwork.

lwork host input Size of working array work.

devInfo device output If devInfo = 0, the ormqr is successful.
If devInfo = -i, the i-th parameter is
wrong (not counting handle).

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (m,n<0 or wrong
lda or ldc).

CUSOLVER_STATUS_ARCH_MISMATCH The device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

2.4.2.17. cusolverDn<t>orgqr()
These helper functions calculate the size of work buffers needed. Please visit cuSOLVER
Library Samples - orgqr for a code example.

cusolverStatus_t
cusolverDnSorgqr_bufferSize(
 cusolverDnHandle_t handle,
 int m,
 int n,
 int k,
 const float *A,
 int lda,
 const float *tau,
 int *lwork);

cusolverStatus_t
cusolverDnDorgqr_bufferSize(
 cusolverDnHandle_t handle,

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/orgqr
https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/orgqr

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 110

 int m,
 int n,
 int k,
 const double *A,
 int lda,
 const double *tau,
 int *lwork);

cusolverStatus_t
cusolverDnCungqr_bufferSize(
 cusolverDnHandle_t handle,
 int m,
 int n,
 int k,
 const cuComplex *A,
 int lda,
 const cuComplex *tau,
 int *lwork);

cusolverStatus_t
cusolverDnZungqr_bufferSize(
 cusolverDnHandle_t handle,
 int m,
 int n,
 int k,
 const cuDoubleComplex *A,
 int lda,
 const cuDoubleComplex *tau,
 int *lwork);

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSorgqr(
 cusolverDnHandle_t handle,
 int m,
 int n,
 int k,
 float *A,
 int lda,
 const float *tau,
 float *work,
 int lwork,
 int *devInfo);

cusolverStatus_t
cusolverDnDorgqr(
 cusolverDnHandle_t handle,
 int m,
 int n,
 int k,
 double *A,
 int lda,
 const double *tau,
 double *work,
 int lwork,
 int *devInfo);

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 111

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCungqr(
 cusolverDnHandle_t handle,
 int m,
 int n,
 int k,
 cuComplex *A,
 int lda,
 const cuComplex *tau,
 cuComplex *work,
 int lwork,
 int *devInfo);

cusolverStatus_t
cusolverDnZungqr(
 cusolverDnHandle_t handle,
 int m,
 int n,
 int k,
 cuDoubleComplex *A,
 int lda,
 const cuDoubleComplex *tau,
 cuDoubleComplex *work,
 int lwork,
 int *devInfo);

This function overwrites m×n matrix A by

where Q is a unitary matrix formed by a sequence of elementary reflection vectors stored in A.

The user has to provide working space which is pointed by input parameter work. The input
parameter lwork is size of the working space, and it is returned by orgqr_bufferSize().
Please note that the size in bytes of the working space is equal to sizeof(<type>) * lwork.

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong (not
counting handle).

The user can combine geqrf, orgqr to complete orthogonalization.
API of ormqr

Parameter Memory In/out Meaning
handle host input Handle to the cuSolverDN library context.

m host input Number of rows of matrix Q. m >= 0;

n host input Number of columns of matrix Q. m >= n
>= 0;

k host input Number of elementary relfections whose
product defines the matrix Q. n >= k >= 0;

A device in/out <type> array of dimension lda * n
with lda is not less than max(1,m). i-

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 112

Parameter Memory In/out Meaning
th column of A contains elementary
reflection vector.

lda host input Leading dimension of two-dimensional
array used to store matrix A. lda >=
max(1,m).

tau device input <type> array of dimension k. tau(i) is
the scalar of i-th elementary reflection
vector.

work device in/out Working space, <type> array of size
lwork.

lwork host input Size of working array work.

devInfo device output If info = 0, the orgqr is successful. if
info = -i, the i-th parameter is wrong
(not counting handle).

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (m,n,k<0, n>m,
k>n or lda<m).

CUSOLVER_STATUS_ARCH_MISMATCH The device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

2.4.2.18. cusolverDn<t>sytrf()
These helper functions calculate the size of the needed buffers.

cusolverStatus_t
cusolverDnSsytrf_bufferSize(cusolverDnHandle_t handle,
 int n,
 float *A,
 int lda,
 int *Lwork);

cusolverStatus_t
cusolverDnDsytrf_bufferSize(cusolverDnHandle_t handle,
 int n,
 double *A,
 int lda,
 int *Lwork);

cusolverStatus_t
cusolverDnCsytrf_bufferSize(cusolverDnHandle_t handle,
 int n,
 cuComplex *A,
 int lda,
 int *Lwork);

cusolverStatus_t

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 113

cusolverDnZsytrf_bufferSize(cusolverDnHandle_t handle,
 int n,
 cuDoubleComplex *A,
 int lda,
 int *Lwork);

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSsytrf(cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 float *A,
 int lda,
 int *ipiv,
 float *work,
 int lwork,
 int *devInfo);

cusolverStatus_t
cusolverDnDsytrf(cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 double *A,
 int lda,
 int *ipiv,
 double *work,
 int lwork,
 int *devInfo);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCsytrf(cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 cuComplex *A,
 int lda,
 int *ipiv,
 cuComplex *work,
 int lwork,
 int *devInfo);

cusolverStatus_t
cusolverDnZsytrf(cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 cuDoubleComplex *A,
 int lda,
 int *ipiv,
 cuDoubleComplex *work,
 int lwork,
 int *devInfo);

This function computes the Bunch-Kaufman factorization of a n×n symmetric indefinite matrix

A is a n×n symmetric matrix, only lower or upper part is meaningful. The input parameter uplo
which part of the matrix is used. The function would leave other part untouched.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 114

If input parameter uplo is CUBLAS_FILL_MODE_LOWER, only lower triangular part of A is
processed, and replaced by lower triangular factor L and block diagonal matrix D. Each block
of D is either 1x1 or 2x2 block, depending on pivoting.

If input parameter uplo is CUBLAS_FILL_MODE_UPPER, only upper triangular part of A is
processed, and replaced by upper triangular factor U and block diagonal matrix D.

The user has to provide working space which is pointed by input parameter work. The input
parameter lwork is size of the working space, and it is returned by sytrf_bufferSize().
Please note that the size in bytes of the working space is equal to sizeof(<type>) * lwork.

If Bunch-Kaufman factorization failed, i.e. A is singular. The output parameter devInfo = i
would indicate D(i,i)=0.

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong (not
counting handle).

The output parameter devIpiv contains pivoting sequence. If devIpiv(i) = k > 0, D(i,i)
is 1x1 block, and i-th row/column of A is interchanged with k-th row/column of A. If uplo is
CUBLAS_FILL_MODE_UPPER and devIpiv(i-1) = devIpiv(i) = -m < 0, D(i-1:i,i-1:i)
is a 2x2 block, and (i-1)-th row/column is interchanged with m-th row/column. If uplo is
CUBLAS_FILL_MODE_LOWER and devIpiv(i+1) = devIpiv(i) = -m < 0, D(i:i+1,i:i+1)
is a 2x2 block, and (i+1)-th row/column is interchanged with m-th row/column.
API of sytrf

Parameter Memory In/out Meaning
handle host input Handle to the cuSolverDN library context.

uplo host input Indicates if matrix A lower or upper
part is stored, the other part is not
referenced.

n host input Number of rows and columns of matrix
A.

A device in/out <type> array of dimension lda * n with
lda is not less than max(1,n).

lda host input Leading dimension of two-dimensional
array used to store matrix A.

ipiv device output Array of size at least n, containing pivot
indices.

work device in/out Working space, <type> array of size
lwork.

lwork host input Size of working space work.

devInfo device output if devInfo = 0, the LU factorization
is successful. if devInfo = -i, the i-
th parameter is wrong (not counting
handle). if devInfo = i, the D(i,i) =
0.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 115

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (n<0 or
lda<max(1,n)).

CUSOLVER_STATUS_ARCH_MISMATCH The device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

2.4.2.19. cusolverDn<t>potrfBatched()
The S and D data types are real valued single and double precision, respectively. Please visit
cuSOLVER Library Samples - potrfBatched for a code example.

cusolverStatus_t
cusolverDnSpotrfBatched(
 cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 float *Aarray[],
 int lda,
 int *infoArray,
 int batchSize);

cusolverStatus_t
cusolverDnDpotrfBatched(
 cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 double *Aarray[],
 int lda,
 int *infoArray,
 int batchSize);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCpotrfBatched(
 cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 cuComplex *Aarray[],
 int lda,
 int *infoArray,
 int batchSize);

cusolverStatus_t
cusolverDnZpotrfBatched(
 cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 cuDoubleComplex *Aarray[],
 int lda,
 int *infoArray,

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/potrfBatched

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 116

 int batchSize);

This function computes the Cholesky factorization of a squence of Hermitian positive-definite
matrices.

Each Aarray[i] for i=0,1,..., batchSize-1 is a n×n Hermitian matrix, only lower or
upper part is meaningful. The input parameter uplo indicates which part of the matrix is used.

If input parameter uplo is CUBLAS_FILL_MODE_LOWER, only lower triangular part of A is
processed, and replaced by lower triangular Cholesky factor L.

If input parameter uplo is CUBLAS_FILL_MODE_UPPER, only upper triangular part of A is
processed, and replaced by upper triangular Cholesky factor U.

If Cholesky factorization failed, i.e. some leading minor of A is not positive definite, or
equivalently some diagonal elements of L or U is not a real number. The output parameter
infoArray would indicate smallest leading minor of A which is not positive definite.

infoArray is an integer array of size batchsize. If potrfBatched returns
CUSOLVER_STATUS_INVALID_VALUE, infoArray[0] = -i (less than zero), meaning
that the i-th parameter is wrong (not counting handle). If potrfBatched returns
CUSOLVER_STATUS_SUCCESS but infoArray[i] = k is positive, then i-th matrix is not
positive definite and the Cholesky factorization failed at row k.

Remark: the other part of A is used as a workspace. For example, if uplo is
CUBLAS_FILL_MODE_UPPER, upper triangle of A contains cholesky factor U and lower triangle
of A is destroyed after potrfBatched.

Table 12. API of potrfBatched

Parameter Memory In/out Meaning
handle host input Handle to the cuSolverDN library context.

uplo host input Indicates if lower or upper part is stored;
the other part is used as a workspace.

n host input Number of rows and columns of matrix
A.

Aarray device in/out Array of pointers to <type> array of
dimension lda * n with lda is not less
than max(1,n).

lda host input Leading dimension of two-dimensional
array used to store each matrix
Aarray[i].

infoArray device output Array of size batchSize. infoArray[i]
contains information of factorization of
Aarray[i]. if potrfBatched returns
CUSOLVER_STATUS_INVALID_VALUE,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 117

Parameter Memory In/out Meaning
infoArray[0] = -i (less than zero)
means the i-th parameter is wrong
(not counting handle). if potrfBatched
returns CUSOLVER_STATUS_SUCCESS,
infoArray[i] = 0 means the Cholesky
factorization of i-th matrix is successful,
and infoArray[i] = k means the
leading submatrix of order k of i-th
matrix is not positive definite.

batchSize host input Number of pointers in Aarray.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (n<0 or
lda<max(1,n) or batchSize<1).

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

2.4.2.20. cusolverDn<t>potrsBatched()

cusolverStatus_t
cusolverDnSpotrsBatched(
 cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 int nrhs,
 float *Aarray[],
 int lda,
 float *Barray[],
 int ldb,
 int *info,
 int batchSize);

cusolverStatus_t
cusolverDnDpotrsBatched(
 cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 int nrhs,
 double *Aarray[],
 int lda,
 double *Barray[],
 int ldb,
 int *info,
 int batchSize);

cusolverStatus_t
cusolverDnCpotrsBatched(
 cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 int nrhs,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 118

 cuComplex *Aarray[],
 int lda,
 cuComplex *Barray[],
 int ldb,
 int *info,
 int batchSize);

cusolverStatus_t
cusolverDnZpotrsBatched(
 cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 int nrhs,
 cuDoubleComplex *Aarray[],
 int lda,
 cuDoubleComplex *Barray[],
 int ldb,
 int *info,
 int batchSize);

This function solves a squence of linear systems

where each Aarray[i] for i=0,1,..., batchSize-1 is a n×n Hermitian matrix, only lower
or upper part is meaningful. The input parameter uplo indicates which part of the matrix is
used.

The user has to call potrfBatched first to factorize matrix Aarray[i]. If input parameter
uplo is CUBLAS_FILL_MODE_LOWER, A is lower triangular Cholesky factor L correspoding
to . If input parameter uplo is CUBLAS_FILL_MODE_UPPER, A is upper triangular
Cholesky factor U corresponding to .

The operation is in-place, i.e. matrix X overwrites matrix B with the same leading dimension
ldb.

The output parameter info is a scalar. If info = -i (less than zero), the i-th parameter is
wrong (not counting handle).

Remark 1: only nrhs=1 is supported.

Remark 2: infoArray from potrfBatched indicates if the matrix is positive definite. info
from potrsBatched only shows which input parameter is wrong (not counting handle).

Remark 3: the other part of A is used as a workspace. For example, if uplo is
CUBLAS_FILL_MODE_UPPER, upper triangle of A contains cholesky factor U and lower triangle
of A is destroyed after potrsBatched.

Please visit cuSOLVER Library Samples - potrfBatched for a code example.
API of potrsBatched

Parameter Memory In/out Meaning
handle host input Handle to the cuSolveDN library context.

uplo host input Indicates if matrix A lower or upper part
is stored.

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/potrfBatched

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 119

Parameter Memory In/out Meaning
n host input Number of rows and columns of matrix

A.

nrhs host input Number of columns of matrix X and B.

Aarray device in/out Array of pointers to <type> array of
dimension lda * n with lda is not
less than max(1,n). Aarray[i] is
either lower cholesky factor L or upper
Cholesky factor U.

lda host input Leading dimension of two-dimensional
array used to store each matrix
Aarray[i].

Barray device in/out Array of pointers to <type> array of
dimension ldb * nrhs. ldb is not less
than max(1,n). As an input, Barray[i]
is right hand side matrix. As an output,
Barray[i] is the solution matrix.

ldb host input Leading dimension of two-dimensional
array used to store each matrix
Barray[i].

info device output If info = 0, all parameters are correct.
if info = -i, the i-th parameter is
wrong (not counting handle).

batchSize host input Number of pointers in Aarray.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (n<0, nrhs<0,
lda<max(1,n), ldb<max(1,n) or batchSize<0).

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

2.4.3. Dense Eigenvalue Solver Reference (legacy)
This chapter describes eigenvalue solver API of cuSolverDN, including bidiagonalization and
SVD.

2.4.3.1. cusolverDn<t>gebrd()
These helper functions calculate the size of work buffers needed.

cusolverStatus_t
cusolverDnSgebrd_bufferSize(
 cusolverDnHandle_t handle,
 int m,
 int n,
 int *Lwork);

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 120

cusolverStatus_t
cusolverDnDgebrd_bufferSize(
 cusolverDnHandle_t handle,
 int m,
 int n,
 int *Lwork);

cusolverStatus_t
cusolverDnCgebrd_bufferSize(
 cusolverDnHandle_t handle,
 int m,
 int n,
 int *Lwork);

cusolverStatus_t
cusolverDnZgebrd_bufferSize(
 cusolverDnHandle_t handle,
 int m,
 int n,
 int *Lwork);

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSgebrd(cusolverDnHandle_t handle,
 int m,
 int n,
 float *A,
 int lda,
 float *D,
 float *E,
 float *TAUQ,
 float *TAUP,
 float *Work,
 int Lwork,
 int *devInfo);

cusolverStatus_t
cusolverDnDgebrd(cusolverDnHandle_t handle,
 int m,
 int n,
 double *A,
 int lda,
 double *D,
 double *E,
 double *TAUQ,
 double *TAUP,
 double *Work,
 int Lwork,
 int *devInfo);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCgebrd(cusolverDnHandle_t handle,
 int m,
 int n,
 cuComplex *A,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 121

 int lda,
 float *D,
 float *E,
 cuComplex *TAUQ,
 cuComplex *TAUP,
 cuComplex *Work,
 int Lwork,
 int *devInfo);

cusolverStatus_t
cusolverDnZgebrd(cusolverDnHandle_t handle,
 int m,
 int n,
 cuDoubleComplex *A,
 int lda,
 double *D,
 double *E,
 cuDoubleComplex *TAUQ,
 cuDoubleComplex *TAUP,
 cuDoubleComplex *Work,
 int Lwork,
 int *devInfo);

This function reduces a general m×n matrix A to a real upper or lower bidiagonal form B by an
orthogonal transformation:

If m>=n, B is upper bidiagonal; if m<n, B is lower bidiagonal.

The matrix Q and P are overwritten into matrix A in the following sense:

‣ if m>=n, the diagonal and the first superdiagonal are overwritten with the upper bidiagonal
matrix B; the elements below the diagonal, with the array TAUQ, represent the orthogonal
matrix Q as a product of elementary reflectors, and the elements above the first
superdiagonal, with the array TAUP, represent the orthogonal matrix P as a product of
elementary reflectors.

‣ if m<n, the diagonal and the first subdiagonal are overwritten with the lower bidiagonal
matrix B; the elements below the first subdiagonal, with the array TAUQ, represent the
orthogonal matrix Q as a product of elementary reflectors, and the elements above
the diagonal, with the array TAUP, represent the orthogonal matrix P as a product of
elementary reflectors.

The user has to provide working space which is pointed by input parameter Work. The input
parameter Lwork is size of the working space, and it is returned by gebrd_bufferSize().

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong (not
counting handle).

Remark: gebrd only supports m>=n.
API of gebrd

Parameter Memory In/out Meaning
handle host input Handle to the cuSolverDN library context.

m host input Number of rows of matrix A.

n host input Number of columns of matrix A.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 122

Parameter Memory In/out Meaning
A device in/out <type> array of dimension lda * n with

lda is not less than max(1,n).

lda host input Leading dimension of two-dimensional
array used to store matrix A.

D device output Real array of dimension min(m,n). The
diagonal elements of the bidiagonal
matrix B: D(i) = A(i,i).

E device output Real array of dimension min(m,n). The
off-diagonal elements of the bidiagonal
matrix B: if m>=n, E(i) = A(i,i+1) for
i = 1,2,...,n-1; if m<n, E(i) = A(i
+1,i) for i = 1,2,...,m-1.

TAUQ device output <type> array of dimension min(m,n).
The scalar factors of the elementary
reflectors which represent the
orthogonal matrix Q.

TAUP device output <type> array of dimension min(m,n).
The scalar factors of the elementary
reflectors which represent the
orthogonal matrix P.

Work device in/out Working space, <type> array of size
Lwork.

Lwork host input Size of Work, returned by
gebrd_bufferSize.

devInfo device output If devInfo = 0, the operation is
successful. if devInfo = -i, the i-
th parameter is wrong (not counting
handle).

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (m,n<0, or
lda<max(1,m)).

CUSOLVER_STATUS_ARCH_MISMATCH The device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

2.4.3.2. cusolverDn<t>orgbr()
These helper functions calculate the size of work buffers needed.

cusolverStatus_t
cusolverDnSorgbr_bufferSize(
 cusolverDnHandle_t handle,
 cublasSideMode_t side,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 123

 int m,
 int n,
 int k,
 const float *A,
 int lda,
 const float *tau,
 int *lwork);

cusolverStatus_t
cusolverDnDorgbr_bufferSize(
 cusolverDnHandle_t handle,
 cublasSideMode_t side,
 int m,
 int n,
 int k,
 const double *A,
 int lda,
 const double *tau,
 int *lwork);

cusolverStatus_t
cusolverDnCungbr_bufferSize(
 cusolverDnHandle_t handle,
 cublasSideMode_t side,
 int m,
 int n,
 int k,
 const cuComplex *A,
 int lda,
 const cuComplex *tau,
 int *lwork);

cusolverStatus_t
cusolverDnZungbr_bufferSize(
 cusolverDnHandle_t handle,
 cublasSideMode_t side,
 int m,
 int n,
 int k,
 const cuDoubleComplex *A,
 int lda,
 const cuDoubleComplex *tau,
 int *lwork);

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSorgbr(
 cusolverDnHandle_t handle,
 cublasSideMode_t side,
 int m,
 int n,
 int k,
 float *A,
 int lda,
 const float *tau,
 float *work,
 int lwork,
 int *devInfo);

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 124

cusolverStatus_t
cusolverDnDorgbr(
 cusolverDnHandle_t handle,
 cublasSideMode_t side,
 int m,
 int n,
 int k,
 double *A,
 int lda,
 const double *tau,
 double *work,
 int lwork,
 int *devInfo);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCungbr(
 cusolverDnHandle_t handle,
 cublasSideMode_t side,
 int m,
 int n,
 int k,
 cuComplex *A,
 int lda,
 const cuComplex *tau,
 cuComplex *work,
 int lwork,
 int *devInfo);

cusolverStatus_t
cusolverDnZungbr(
 cusolverDnHandle_t handle,
 cublasSideMode_t side,
 int m,
 int n,
 int k,
 cuDoubleComplex *A,
 int lda,
 const cuDoubleComplex *tau,
 cuDoubleComplex *work,
 int lwork,
 int *devInfo);

This function generates one of the unitary matrices Q or P**H determined by gebrd when
reducing a matrix A to bidiagonal form:

Q and P**H are defined as products of elementary reflectors H(i) or G(i) respectively.

The user has to provide working space which is pointed by input parameter work. The input
parameter lwork is size of the working space, and it is returned by orgbr_bufferSize().
Please note that the size in bytes of the working space is equal to sizeof(<type>) * lwork.

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong (not
counting handle).

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 125

API of orgbr

Parameter Memory In/out Meaning
handle host input Handle to the cuSolverDN library context.

side host input If side = CUBLAS_SIDE_LEFT, generate
Q. if side = CUBLAS_SIDE_RIGHT,
generate P**T.

m host input Number of rows of matrix Q or P**T.

n host input If side = CUBLAS_SIDE_LEFT, m>= n>=
min(m,k). if side = CUBLAS_SIDE_RIGHT,
n>= m>= min(n,k).

k host input If side = CUBLAS_SIDE_LEFT, the
number of columns in the original m-
by-k matrix reduced by gebrd. if side
= CUBLAS_SIDE_RIGHT, the number
of rows in the original k-by-n matrix
reduced by gebrd.

A device in/out <type> array of dimension lda * n
On entry, the vectors which define the
elementary reflectors, as returned by
gebrd. On exit, the m-by-n matrix Q or
P**T.

lda host input Leading dimension of two-dimensional
array used to store matrix A. lda >=
max(1,m);

tau device input <type> array of dimension min(m,k)
if side is CUBLAS_SIDE_LEFT; of
dimension min(n,k) if side is
CUBLAS_SIDE_RIGHT; tau(i) must contain
the scalar factor of the elementary
reflector H(i) or G(i), which determines Q
or P**T, as returned by gebrd in its array
argument TAUQ or TAUP.

work device in/out Working space, <type> array of size
lwork.

lwork host input Size of working array work.

devInfo device output If info = 0, the ormqr is successful. if
info = -i, the i-th parameter is wrong
(not counting handle).

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (m,n<0 or wrong
lda).

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 126

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

2.4.3.3. cusolverDn<t>sytrd()
These helper functions calculate the size of work buffers needed.

cusolverStatus_t
cusolverDnSsytrd_bufferSize(
 cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 const float *A,
 int lda,
 const float *d,
 const float *e,
 const float *tau,
 int *lwork);

cusolverStatus_t
cusolverDnDsytrd_bufferSize(
 cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 const double *A,
 int lda,
 const double *d,
 const double *e,
 const double *tau,
 int *lwork);

cusolverStatus_t
cusolverDnChetrd_bufferSize(
 cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 const cuComplex *A,
 int lda,
 const float *d,
 const float *e,
 const cuComplex *tau,
 int *lwork);

cusolverStatus_t
cusolverDnZhetrd_bufferSize(
 cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 const cuDoubleComplex *A,
 int lda,
 const double *d,
 const double *e,
 const cuDoubleComplex *tau,
 int *lwork);

The S and D data types are real valued single and double precision, respectively.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 127

cusolverStatus_t
cusolverDnSsytrd(
 cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 float *A,
 int lda,
 float *d,
 float *e,
 float *tau,
 float *work,
 int lwork,
 int *devInfo);

cusolverStatus_t
cusolverDnDsytrd(
 cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 double *A,
 int lda,
 double *d,
 double *e,
 double *tau,
 double *work,
 int lwork,
 int *devInfo);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnChetrd(
 cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 cuComplex *A,
 int lda,
 float *d,
 float *e,
 cuComplex *tau,
 cuComplex *work,
 int lwork,
 int *devInfo);

cusolverStatus_t CUDENSEAPI cusolverDnZhetrd(
 cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 cuDoubleComplex *A,
 int lda,
 double *d,
 double *e,
 cuDoubleComplex *tau,
 cuDoubleComplex *work,
 int lwork,
 int *devInfo);

This function reduces a general symmetric (Hermitian) n×n matrix A to real symmetric
tridiagonal form T by an orthogonal transformation:

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 128

As an output, A contains T and householder reflection vectors. If uplo =
CUBLAS_FILL_MODE_UPPER, the diagonal and first superdiagonal of A are overwritten
by the corresponding elements of the tridiagonal matrix T, and the elements above the
first superdiagonal, with the array tau, represent the orthogonal matrix Q as a product of
elementary reflectors; If uplo = CUBLAS_FILL_MODE_LOWER, the diagonal and first subdiagonal
of A are overwritten by the corresponding elements of the tridiagonal matrix T, and the
elements below the first subdiagonal, with the array tau, represent the orthogonal matrix Q as
a product of elementary reflectors.

The user has to provide working space which is pointed by input parameter work. The input
parameter lwork is size of the working space, and it is returned by sytrd_bufferSize().
Please note that the size in bytes of the working space is equal to sizeof(<type>) * lwork.

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong (not
counting handle).
API of sytrd

Parameter Memory In/out Meaning
handle host input Handle to the cuSolverDN library context.

uplo host input Specifies which part of A is stored.
uplo = CUBLAS_FILL_MODE_LOWER:
Lower triangle of A is stored. uplo =
CUBLAS_FILL_MODE_UPPER: Upper
triangle of A is stored.

n host input Number of rows (columns) of matrix A.

A device in/out <type> array of dimension lda * n
with lda is not less than max(1,n). If
uplo = CUBLAS_FILL_MODE_UPPER, the
leading n-by-n upper triangular part of A
contains the upper triangular part of the
matrix A, and the strictly lower triangular
part of A is not referenced. If uplo =
CUBLAS_FILL_MODE_LOWER, the leading
n-by-n lower triangular part of A contains
the lower triangular part of the matrix A,
and the strictly upper triangular part of A
is not referenced. On exit, A is overwritten
by T and householder reflection vectors.

lda host input Leading dimension of two-dimensional
array used to store matrix A. lda >=
max(1,n).

D device output Real array of dimension n. The diagonal
elements of the tridiagonal matrix T:
D(i) = A(i,i).

E device output Real array of dimension (n-1).
The off-diagonal elements of
the tridiagonal matrix T: if uplo
= CUBLAS_FILL_MODE_UPPER,
E(i) = A(i,i+1). if uplo =

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 129

Parameter Memory In/out Meaning
CUBLAS_FILL_MODE_LOWER E(i) = A(i
+1,i).

tau device output <type> array of dimension (n-1).
The scalar factors of the elementary
reflectors which represent the
orthogonal matrix Q.

work device in/out Working space, <type> array of size
lwork.

lwork host input Size of work, returned by
sytrd_bufferSize.

devInfo device output If devInfo = 0, the operation is
successful. if devInfo = -i, the i-
th parameter is wrong (not counting
handle).

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed
(n<0, or lda<max(1,n), or uplo is
not CUBLAS_FILL_MODE_LOWER or
CUBLAS_FILL_MODE_UPPER).

CUSOLVER_STATUS_ARCH_MISMATCH The device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

2.4.3.4. cusolverDn<t>ormtr()
These helper functions calculate the size of work buffers needed.

cusolverStatus_t
cusolverDnSormtr_bufferSize(
 cusolverDnHandle_t handle,
 cublasSideMode_t side,
 cublasFillMode_t uplo,
 cublasOperation_t trans,
 int m,
 int n,
 const float *A,
 int lda,
 const float *tau,
 const float *C,
 int ldc,
 int *lwork);

cusolverStatus_t
cusolverDnDormtr_bufferSize(
 cusolverDnHandle_t handle,
 cublasSideMode_t side,
 cublasFillMode_t uplo,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 130

 cublasOperation_t trans,
 int m,
 int n,
 const double *A,
 int lda,
 const double *tau,
 const double *C,
 int ldc,
 int *lwork);

cusolverStatus_t
cusolverDnCunmtr_bufferSize(
 cusolverDnHandle_t handle,
 cublasSideMode_t side,
 cublasFillMode_t uplo,
 cublasOperation_t trans,
 int m,
 int n,
 const cuComplex *A,
 int lda,
 const cuComplex *tau,
 const cuComplex *C,
 int ldc,
 int *lwork);

cusolverStatus_t
cusolverDnZunmtr_bufferSize(
 cusolverDnHandle_t handle,
 cublasSideMode_t side,
 cublasFillMode_t uplo,
 cublasOperation_t trans,
 int m,
 int n,
 const cuDoubleComplex *A,
 int lda,
 const cuDoubleComplex *tau,
 const cuDoubleComplex *C,
 int ldc,
 int *lwork);

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSormtr(
 cusolverDnHandle_t handle,
 cublasSideMode_t side,
 cublasFillMode_t uplo,
 cublasOperation_t trans,
 int m,
 int n,
 float *A,
 int lda,
 float *tau,
 float *C,
 int ldc,
 float *work,
 int lwork,
 int *devInfo);

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 131

cusolverStatus_t
cusolverDnDormtr(
 cusolverDnHandle_t handle,
 cublasSideMode_t side,
 cublasFillMode_t uplo,
 cublasOperation_t trans,
 int m,
 int n,
 double *A,
 int lda,
 double *tau,
 double *C,
 int ldc,
 double *work,
 int lwork,
 int *devInfo);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCunmtr(
 cusolverDnHandle_t handle,
 cublasSideMode_t side,
 cublasFillMode_t uplo,
 cublasOperation_t trans,
 int m,
 int n,
 cuComplex *A,
 int lda,
 cuComplex *tau,
 cuComplex *C,
 int ldc,
 cuComplex *work,
 int lwork,
 int *devInfo);

cusolverStatus_t
cusolverDnZunmtr(
 cusolverDnHandle_t handle,
 cublasSideMode_t side,
 cublasFillMode_t uplo,
 cublasOperation_t trans,
 int m,
 int n,
 cuDoubleComplex *A,
 int lda,
 cuDoubleComplex *tau,
 cuDoubleComplex *C,
 int ldc,
 cuDoubleComplex *work,
 int lwork,
 int *devInfo);

This function overwrites m×n matrix C by

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 132

where Q is a unitary matrix formed by a sequence of elementary reflection vectors from sytrd.

The operation on Q is defined by

The user has to provide working space which is pointed by input parameter work. The input
parameter lwork is size of the working space, and it is returned by ormtr_bufferSize().
Please note that the size in bytes of the working space is equal to sizeof(<type>) * lwork.

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong (not
counting handle).
API of ormtr

Parameter Memory In/out Meaning
handle host input Handle to the cuSolverDN library context.

side host input side = CUBLAS_SIDE_LEFT, apply
Q or Q**T from the Left; side =
CUBLAS_SIDE_RIGHT, apply Q or Q**T
from the Right.

uplo host input uplo = CUBLAS_FILL_MODE_LOWER:
Lower triangle of A contains elementary
reflectors from sytrd. uplo =
CUBLAS_FILL_MODE_UPPER: Upper
triangle of A contains elementary
reflectors from sytrd.

trans host input Operation op(Q) that is non- or (conj.)
transpose.

m host input Number of rows of matrix C.

n host input Number of columns of matrix C.

A device in/out <type> array of dimension lda * m if
side = CUBLAS_SIDE_LEFT; lda * n if
side = CUBLAS_SIDE_RIGHT. The matrix
A from sytrd contains the elementary
reflectors.

lda host input Leading dimension of two-dimensional
array used to store matrix A. if side is
CUBLAS_SIDE_LEFT, lda >= max(1,m);
if side is CUBLAS_SIDE_RIGHT, lda >=
max(1,n).

tau device output <type> array of dimension (m-1) if side
is CUBLAS_SIDE_LEFT; of dimension
(n-1) if side is CUBLAS_SIDE_RIGHT;
The vector tau is from sytrd, so tau(i)
is the scalar of i-th elementary reflection
vector.

C device in/out <type> array of size ldc * n. On exit, C is
overwritten by op(Q)*C or C*op(Q).

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 133

Parameter Memory In/out Meaning
ldc host input Leading dimension of two-dimensional

array of matrix C. ldc >= max(1,m).

work device in/out Working space, <type> array of size
lwork.

lwork host input Size of working array work.

devInfo device output If devInfo = 0, the ormqr is successful.
if devInfo = -i, the i-th parameter is
wrong (not counting handle).

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (m,n<0 or wrong
lda or ldc).

CUSOLVER_STATUS_ARCH_MISMATCH The device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

2.4.3.5. cusolverDn<t>orgtr()
These helper functions calculate the size of work buffers needed.

cusolverStatus_t
cusolverDnSorgtr_bufferSize(
 cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 const float *A,
 int lda,
 const float *tau,
 int *lwork);

cusolverStatus_t
cusolverDnDorgtr_bufferSize(
 cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 const double *A,
 int lda,
 const double *tau,
 int *lwork);

cusolverStatus_t
cusolverDnCungtr_bufferSize(
 cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 const cuComplex *A,
 int lda,
 const cuComplex *tau,
 int *lwork);

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 134

cusolverStatus_t
cusolverDnZungtr_bufferSize(
 cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 const cuDoubleComplex *A,
 int lda,
 const cuDoubleComplex *tau,
 int *lwork);

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSorgtr(
 cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 float *A,
 int lda,
 const float *tau,
 float *work,
 int lwork,
 int *devInfo);

cusolverStatus_t
cusolverDnDorgtr(
 cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 double *A,
 int lda,
 const double *tau,
 double *work,
 int lwork,
 int *devInfo);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCungtr(
 cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 cuComplex *A,
 int lda,
 const cuComplex *tau,
 cuComplex *work,
 int lwork,
 int *devInfo);

cusolverStatus_t
cusolverDnZungtr(
 cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 cuDoubleComplex *A,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 135

 int lda,
 const cuDoubleComplex *tau,
 cuDoubleComplex *work,
 int lwork,
 int *devInfo);

This function generates a unitary matrix Q which is defined as the product of n-1 elementary
reflectors of order n, as returned by sytrd:

The user has to provide working space which is pointed by input parameter work. The input
parameter lwork is size of the working space, and it is returned by orgtr_bufferSize().
Please note that the size in bytes of the working space is equal to sizeof(<type>) * lwork.

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong (not
counting handle).
API of orgtr

Parameter Memory In/out Meaning
handle host input Handle to the cuSolverDN library context.

uplo host input uplo = CUBLAS_FILL_MODE_LOWER:
Lower triangle of A contains elementary
reflectors from sytrd. uplo =
CUBLAS_FILL_MODE_UPPER: Upper
triangle of A contains elementary
reflectors from sytrd.

n host input Number of rows (columns) of matrix Q.

A device in/out <type> array of dimension lda * n On
entry, matrix A from sytrd contains the
elementary reflectors. On exit, matrix A
contains the n-by-n orthogonal matrix Q.

lda host input Leading dimension of two-dimensional
array used to store matrix A. lda >=
max(1,n).

tau device input <type> array of dimension (n-1) tau(i)
is the scalar of i-th elementary reflection
vector.

work device in/out Working space, <type> array of size
lwork.

lwork host input Size of working array work.

devInfo device output If devInfo = 0, the orgtr is successful.
if devInfo = -i, the i-th parameter is
wrong (not counting handle).

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (n<0 or wrong
lda).

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 136

CUSOLVER_STATUS_ARCH_MISMATCH The device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

2.4.3.6. cusolverDn<t>gesvd()
The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnSgesvd_bufferSize(
 cusolverDnHandle_t handle,
 int m,
 int n,
 int *lwork);

cusolverStatus_t
cusolverDnDgesvd_bufferSize(
 cusolverDnHandle_t handle,
 int m,
 int n,
 int *lwork);

cusolverStatus_t
cusolverDnCgesvd_bufferSize(
 cusolverDnHandle_t handle,
 int m,
 int n,
 int *lwork);

cusolverStatus_t
cusolverDnZgesvd_bufferSize(
 cusolverDnHandle_t handle,
 int m,
 int n,
 int *lwork);

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSgesvd (
 cusolverDnHandle_t handle,
 signed char jobu,
 signed char jobvt,
 int m,
 int n,
 float *A,
 int lda,
 float *S,
 float *U,
 int ldu,
 float *VT,
 int ldvt,
 float *work,
 int lwork,
 float *rwork,
 int *devInfo);

cusolverStatus_t
cusolverDnDgesvd (
 cusolverDnHandle_t handle,
 signed char jobu,
 signed char jobvt,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 137

 int m,
 int n,
 double *A,
 int lda,
 double *S,
 double *U,
 int ldu,
 double *VT,
 int ldvt,
 double *work,
 int lwork,
 double *rwork,
 int *devInfo);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCgesvd (
 cusolverDnHandle_t handle,
 signed char jobu,
 signed char jobvt,
 int m,
 int n,
 cuComplex *A,
 int lda,
 float *S,
 cuComplex *U,
 int ldu,
 cuComplex *VT,
 int ldvt,
 cuComplex *work,
 int lwork,
 float *rwork,
 int *devInfo);

cusolverStatus_t
cusolverDnZgesvd (
 cusolverDnHandle_t handle,
 signed char jobu,
 signed char jobvt,
 int m,
 int n,
 cuDoubleComplex *A,
 int lda,
 double *S,
 cuDoubleComplex *U,
 int ldu,
 cuDoubleComplex *VT,
 int ldvt,
 cuDoubleComplex *work,
 int lwork,
 double *rwork,
 int *devInfo);

This function computes the singular value decomposition (SVD) of a m×n matrix A and
corresponding the left and/or right singular vectors. The SVD is written

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 138

where Σ is an m×n matrix which is zero except for its min(m,n) diagonal elements, U is an m×m
unitary matrix, and V is an n×n unitary matrix. The diagonal elements of Σ are the singular
values of A; they are real and non-negative, and are returned in descending order. The first
min(m,n) columns of U and V are the left and right singular vectors of A.

The user has to provide working space which is pointed by input parameter work. The input
parameter lwork is size of the working space, and it is returned by gesvd_bufferSize().
Please note that the size in bytes of the working space is equal to sizeof(<type>) * lwork.

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong (not
counting handle). if bdsqr did not converge, devInfo specifies how many superdiagonals of an
intermediate bidiagonal form did not converge to zero.

The rwork is real array of dimension (min(m,n)-1). If devInfo>0 and rwork is not nil, rwork
contains the unconverged superdiagonal elements of an upper bidiagonal matrix. This is
slightly different from LAPACK which puts unconverged superdiagonal elements in work if
type is real; in rwork if type is complex. rwork can be a NULL pointer if the user does not
want the information from supperdiagonal.

Please visit cuSOLVER Library Samples - gesvd for a code example.

Remark 1: gesvd only supports m>=n.

Remark 2: the routine returns , not V.
API of gesvd

Parameter Memory In/out Meaning
handle host input Handle to the cuSolverDN library context.

jobu host input Specifies options for computing all or
part of the matrix U: = 'A': all m columns
of U are returned in array U: = 'S':
the first min(m,n) columns of U (the
left singular vectors) are returned in
the array U; = 'O': the first min(m,n)
columns of U (the left singular vectors)
are overwritten on the array A; = 'N': no
columns of U (no left singular vectors)
are computed.

jobvt host input Specifies options for computing all or
part of the matrix V**T: = 'A': all N rows
of V**T are returned in the array VT; =
'S': the first min(m,n) rows of V**T (the
right singular vectors) are returned in the
array VT; = 'O': the first min(m,n) rows
of V**T (the right singular vectors) are
overwritten on the array A; = 'N': no rows
of V**T (no right singular vectors) are
computed.

m host input Number of rows of matrix A.

n host input Number of columns of matrix A.

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/gesvd

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 139

Parameter Memory In/out Meaning
A device in/out <type> array of dimension lda * n with

lda is not less than max(1,m). On exit,
the contents of A are destroyed.

lda host input Leading dimension of two-dimensional
array used to store matrix A.

S device output Real array of dimension min(m,n). The
singular values of A, sorted so that S(i)
>= S(i+1).

U device output <type> array of dimension ldu * m with
ldu is not less than max(1,m). U contains
the m×m unitary matrix U.

ldu host input Leading dimension of two-dimensional
array used to store matrix U.

VT device output <type> array of dimension ldvt * n
with ldvt is not less than max(1,n). VT
contains the n×n unitary matrix V**T.

ldvt host input Leading dimension of two-dimensional
array used to store matrix Vt.

work device in/out Working space, <type> array of size
lwork.

lwork host input Size of work, returned by
gesvd_bufferSize.

rwork device input Real array of dimension min(m,n)-1. It
contains the unconverged superdiagonal
elements of an upper bidiagonal matrix if
devInfo > 0.

devInfo device output If devInfo = 0, the operation is
successful. if devInfo = -i, the i-
th parameter is wrong (not counting
handle). If devInfo > 0, devInfo
indicates how many superdiagonals of
an intermediate bidiagonal form did not
converge to zero.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (m,n<0
or lda<max(1,m) or ldu<max(1,m) or
ldvt<max(1,n)).

CUSOLVER_STATUS_ARCH_MISMATCH The device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 140

2.4.3.7. cusolverDnGesvd()[DEPRECATED]
[[DEPRECATED]] use cusolverDnXgesvd() instead. The routine will be removed in the next
major release.

The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t cusolverDnGesvd_bufferSize(
 cusolverDnHandle_t handle,
 cusolverDnParams_t params,
 signed char jobu,
 signed char jobvt,
 int64_t m,
 int64_t n,
 cudaDataType dataTypeA,
 const void *A,
 int64_t lda,
 cudaDataType dataTypeS,
 const void *S,
 cudaDataType dataTypeU,
 const void *U,
 int64_t ldu,
 cudaDataType dataTypeVT,
 const void *VT,
 int64_t ldvt,
 cudaDataType computeType,
 size_t *workspaceInBytes);

The routine below:

cusolverStatus_t CUSOLVERAPI cusolverDnGesvd(
 cusolverDnHandle_t handle,
 cusolverDnParams_t params,
 signed char jobu,
 signed char jobvt,
 int64_t m,
 int64_t n,
 cudaDataType dataTypeA,
 void *A,
 int64_t lda,
 cudaDataType dataTypeS,
 void *S,
 cudaDataType dataTypeU,
 void *U,
 int64_t ldu,
 cudaDataType dataTypeVT,
 void *VT,
 int64_t ldvt,
 cudaDataType computeType,
 void *pBuffer,
 size_t workspaceInBytes,
 int *info);

This function computes the singular value decomposition (SVD) of a m×n matrix A and
corresponding the left and/or right singular vectors. The SVD is written

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 141

where Σ is an m×n matrix which is zero except for its min(m,n) diagonal elements, U is an m×m
unitary matrix, and V is an n×n unitary matrix. The diagonal elements of Σ are the singular
values of A; they are real and non-negative, and are returned in descending order. The first
min(m,n) columns of U and V are the left and right singular vectors of A.

The user has to provide working space which is pointed by input parameter pBuffer. The
input parameter workspaceInBytes is size in bytes of the working space, and it is returned by
cusolverDnGesvd_bufferSize().

If output parameter info = -i (less than zero), the i-th parameter is wrong (not
counting handle). if bdsqr did not converge, info specifies how many superdiagonals of an
intermediate bidiagonal form did not converge to zero.

Currently, cusolverDnGesvd supports only the default algorithm.
Table of algorithms supported by cusolverDnGesvd

CUSOLVER_ALG_0 or NULL Default algorithm.

Appendix G.5 provides a simple example of cusolverDnGesvd.

Remark 1: gesvd only supports m>=n.

Remark 2: the routine returns , not V.

List of input arguments for cusolverDnGesvd_bufferSize and cusolverDnGesvd:
API of cusolverDnGesvd

Parameter Memory In/out Meaning
handle host input handle to the cuSolverDN library context.

params host input structure with information collected by
cusolverDnSetAdvOptions.

jobu host input specifies options for computing all or
part of the matrix U: = 'A': all m columns
of U are returned in array U: = 'S':
the first min(m,n) columns of U (the
left singular vectors) are returned in
the array U; = 'O': the first min(m,n)
columns of U (the left singular vectors)
are overwritten on the array A; = 'N': no
columns of U (no left singular vectors)
are computed.

jobvt host input specifies options for computing all or
part of the matrix V**T: = 'A': all N rows
of V**T are returned in the array VT; =
'S': the first min(m,n) rows of V**T (the
right singular vectors) are returned in the
array VT; = 'O': the first min(m,n) rows
of V**T (the right singular vectors) are
overwritten on the array A; = 'N': no rows
of V**T (no right singular vectors) are
computed.

m host input number of rows of matrix A.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 142

Parameter Memory In/out Meaning
n host input number of columns of matrix A.

dataTypeA host input data type of array A.

A device in/out array of dimension lda * n with lda
is not less than max(1,m). On exit, the
contents of A are destroyed.

lda host input leading dimension of two-dimensional
array used to store matrix A.

dataTypeS host input data type of array S.

S device output real array of dimension min(m,n). The
singular values of A, sorted so that S(i)
>= S(i+1).

dataTypeU host input data type of array U.

U device output array of dimension ldu * m with ldu is
not less than max(1,m). U contains the
m×m unitary matrix U.

ldu host input leading dimension of two-dimensional
array used to store matrix U.

dataTypeVT host input data type of array VT.

VT device output array of dimension ldvt * n with ldvt
is not less than max(1,n). VT contains
the n×n unitary matrix V**T.

ldvt host input leading dimension of two-dimensional
array used to store matrix Vt.

computeType host input data type of computation.

pBuffer device in/out Working space. Array of type void of size
workspaceInBytes bytes.

workspaceInBytes host input Size in bytes of pBuffer, returned by
cusolverDnGesvd_bufferSize.

info device output if info = 0, the operation is successful.
if info = -i, the i-th parameter is
wrong (not counting handle). if info > 0,
info indicates how many superdiagonals
of an intermediate bidiagonal form did
not converge to zero.

The generic API has three different types, dataTypeA is data type of the matrix A, dataTypeS
is data type of the vector S and dataTypeU is data type of the matrix U, dataTypeVT is data
type of the matrix VT, computeType is compute type of the operation. cusolverDnGesvd only
supports the following four combinations.
Valid combination of data type and compute type

DataTypeA DataTypeS DataTypeU DataTypeVT ComputeType Meaning
CUDA_R_32F CUDA_R_32F CUDA_R_32F CUDA_R_32F CUDA_R_32F SGESVD

CUDA_R_64F CUDA_R_64F CUDA_R_64F CUDA_R_64F CUDA_R_64F DGESVD

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 143

DataTypeA DataTypeS DataTypeU DataTypeVT ComputeType Meaning
CUDA_C_32F CUDA_R_32F CUDA_C_32F CUDA_C_32F CUDA_C_32F CGESVD

CUDA_C_64F CUDA_R_64F CUDA_C_64F CUDA_C_64F CUDA_C_64F ZGESVD

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (m,n<0
or lda<max(1,m) or ldu<max(1,m) or
ldvt<max(1,n)).

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

2.4.3.8. cusolverDn<t>gesvdj()
The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnSgesvdj_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 int econ,
 int m,
 int n,
 const float *A,
 int lda,
 const float *S,
 const float *U,
 int ldu,
 const float *V,
 int ldv,
 int *lwork,
 gesvdjInfo_t params);

cusolverStatus_t
cusolverDnDgesvdj_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 int econ,
 int m,
 int n,
 const double *A,
 int lda,
 const double *S,
 const double *U,
 int ldu,
 const double *V,
 int ldv,
 int *lwork,
 gesvdjInfo_t params);

cusolverStatus_t
cusolverDnCgesvdj_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 144

 int econ,
 int m,
 int n,
 const cuComplex *A,
 int lda,
 const float *S,
 const cuComplex *U,
 int ldu,
 const cuComplex *V,
 int ldv,
 int *lwork,
 gesvdjInfo_t params);

cusolverStatus_t
cusolverDnZgesvdj_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 int econ,
 int m,
 int n,
 const cuDoubleComplex *A,
 int lda,
 const double *S,
 const cuDoubleComplex *U,
 int ldu,
 const cuDoubleComplex *V,
 int ldv,
 int *lwork,
 gesvdjInfo_t params);

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSgesvdj(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 int econ,
 int m,
 int n,
 float *A,
 int lda,
 float *S,
 float *U,
 int ldu,
 float *V,
 int ldv,
 float *work,
 int lwork,
 int *info,
 gesvdjInfo_t params);

cusolverStatus_t
cusolverDnDgesvdj(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 int econ,
 int m,
 int n,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 145

 double *A,
 int lda,
 double *S,
 double *U,
 int ldu,
 double *V,
 int ldv,
 double *work,
 int lwork,
 int *info,
 gesvdjInfo_t params);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCgesvdj(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 int econ,
 int m,
 int n,
 cuComplex *A,
 int lda,
 float *S,
 cuComplex *U,
 int ldu,
 cuComplex *V,
 int ldv,
 cuComplex *work,
 int lwork,
 int *info,
 gesvdjInfo_t params);

cusolverStatus_t
cusolverDnZgesvdj(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 int econ,
 int m,
 int n,
 cuDoubleComplex *A,
 int lda,
 double *S,
 cuDoubleComplex *U,
 int ldu,
 cuDoubleComplex *V,
 int ldv,
 cuDoubleComplex *work,
 int lwork,
 int *info,
 gesvdjInfo_t params);

This function computes the singular value decomposition (SVD) of a m×n matrix A and
corresponding the left and/or right singular vectors. The SVD is written:

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 146

where Σ is an m×n matrix which is zero except for its min(m,n) diagonal elements, U is an m×m
unitary matrix, and V is an n×n unitary matrix. The diagonal elements of Σ are the singular
values of A; they are real and non-negative, and are returned in descending order. The first
min(m,n) columns of U and V are the left and right singular vectors of A.

gesvdj has the same functionality as gesvd. The difference is that gesvd uses QR algorithm
and gesvdj uses Jacobi method. The parallelism of Jacobi method gives GPU better
performance on small and medium size matrices. Moreover the user can configure gesvdj to
perform approximation up to certain accuracy.

gesvdj iteratively generates a sequence of unitary matrices to transform matrix A to the
following form

where S is diagonal and diagonal of E is zero.

During the iterations, the Frobenius norm of E decreases monotonically. As E goes down to
zero, S is the set of singular values. In practice, Jacobi method stops if

where eps is given tolerance.

gesvdj has two parameters to control the accuracy. First parameter is tolerance
(eps). The default value is machine accuracy but The user can use function
cusolverDnXgesvdjSetTolerance to set a priori tolerance. The second parameter is
maximum number of sweeps which controls number of iterations of Jacobi method. The
default value is 100 but the user can use function cusolverDnXgesvdjSetMaxSweeps to set
a proper bound. The experimentis show 15 sweeps are good enough to converge to machine
accuracy. gesvdj stops either tolerance is met or maximum number of sweeps is met.

Jacobi method has quadratic convergence, so the accuracy is not proportional to number of
sweeps. To guarantee certain accuracy, the user should configure tolerance only.

The user has to provide working space which is pointed by input parameter work.
The input parameter lwork is the size of the working space, and it is returned by
gesvdj_bufferSize(). Please note that the size in bytes of the working space is equal to
sizeof(<type>) * lwork.

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting
handle). If info = min(m,n)+1, gesvdj does not converge under given tolerance and
maximum sweeps.

If the user sets an improper tolerance, gesvdj may not converge. For example, tolerance
should not be smaller than machine accuracy.

Please visit cuSOLVER Library Samples - gesvdj for a code example.

Remark 1: gesvdj supports any combination of m and n.

Remark 2: the routine returns V, not . This is different from gesvd.
API of gesvdj

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/gesvdj

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 147

Parameter Memory In/out Meaning
handle host input Handle to the cuSolverDN library context.

jobz host input Specifies options to either
compute singular value only or
singular vectors as well: jobz =
CUSOLVER_EIG_MODE_NOVECTOR :
Compute singular values only; jobz =
CUSOLVER_EIG_MODE_VECTOR : Compute
singular values and singular vectors.

econ host input econ = 1 for economy size for U and V.

m host input Number of rows of matrix A.

n host input Number of columns of matrix A.

A device in/out <type> array of dimension lda * n with
lda is not less than max(1,m). On exit,
the contents of A are destroyed.

lda host input Leading dimension of two-dimensional
array used to store matrix A.

S device output Real array of dimension min(m,n). The
singular values of A, sorted so that S(i)
>= S(i+1).

U device output <type> array of dimension ldu * m
if econ is zero. If econ is nonzero,
the dimension is ldu * min(m,n). U
contains the left singular vectors.

ldu host input Leading dimension of two-dimensional
array used to store matrix U. ldu is not
less than max(1,m).

V device output <type> array of dimension ldv * n
if econ is zero. If econ is nonzero,
the dimension is ldv * min(m,n). V
contains the right singular vectors.

ldv host input Leading dimension of two-dimensional
array used to store matrix V. ldv is not
less than max(1,n).

work device in/out <type> array of size lwork, working
space.

lwork host input Size of work, returned by
gesvdj_bufferSize.

info device output If info = 0, the operation is successful.
if info = -i, the i-th parameter is
wrong (not counting handle). if info =
min(m,n)+1, gesvdj dose not converge
under given tolerance and maximum
sweeps.

params host in/out Structure filled with parameters of Jacobi
algorithm and results of gesvdj.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 148

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (m,n<0
or lda<max(1,m) or ldu<max(1,m)
or ldv<max(1,n) or jobz is not
CUSOLVER_EIG_MODE_NOVECTOR or
CUSOLVER_EIG_MODE_VECTOR).

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

2.4.3.9. cusolverDn<t>gesvdjBatched()
The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnSgesvdjBatched_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 int m,
 int n,
 const float *A,
 int lda,
 const float *S,
 const float *U,
 int ldu,
 const float *V,
 int ldv,
 int *lwork,
 gesvdjInfo_t params,
 int batchSize);

cusolverStatus_t
cusolverDnDgesvdjBatched_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 int m,
 int n,
 const double *A,
 int lda,
 const double *S,
 const double *U,
 int ldu,
 const double *V,
 int ldv,
 int *lwork,
 gesvdjInfo_t params,
 int batchSize);

cusolverStatus_t
cusolverDnCgesvdjBatched_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 int m,
 int n,
 const cuComplex *A,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 149

 int lda,
 const float *S,
 const cuComplex *U,
 int ldu,
 const cuComplex *V,
 int ldv,
 int *lwork,
 gesvdjInfo_t params,
 int batchSize);

cusolverStatus_t
cusolverDnZgesvdjBatched_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 int m,
 int n,
 const cuDoubleComplex *A,
 int lda,
 const double *S,
 const cuDoubleComplex *U,
 int ldu,
 const cuDoubleComplex *V,
 int ldv,
 int *lwork,
 gesvdjInfo_t params,
 int batchSize);

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSgesvdjBatched(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 int m,
 int n,
 float *A,
 int lda,
 float *S,
 float *U,
 int ldu,
 float *V,
 int ldv,
 float *work,
 int lwork,
 int *info,
 gesvdjInfo_t params,
 int batchSize);

cusolverStatus_t
cusolverDnDgesvdjBatched(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 int m,
 int n,
 double *A,
 int lda,
 double *S,
 double *U,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 150

 int ldu,
 double *V,
 int ldv,
 double *work,
 int lwork,
 int *info,
 gesvdjInfo_t params,
 int batchSize);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCgesvdjBatched(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 int m,
 int n,
 cuComplex *A,
 int lda,
 float *S,
 cuComplex *U,
 int ldu,
 cuComplex *V,
 int ldv,
 cuComplex *work,
 int lwork,
 int *info,
 gesvdjInfo_t params,
 int batchSize);

cusolverStatus_t
cusolverDnZgesvdjBatched(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 int m,
 int n,
 cuDoubleComplex *A,
 int lda,
 double *S,
 cuDoubleComplex *U,
 int ldu,
 cuDoubleComplex *V,
 int ldv,
 cuDoubleComplex *work,
 int lwork,
 int *info,
 gesvdjInfo_t params,
 int batchSize);

This function computes singular values and singular vectors of a squence of general m×n
matrices

where is a real m×n diagonal matrix which is zero except for its min(m,n) diagonal
elements. (left singular vectors) is a m×m unitary matrix and (right singular vectors)

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 151

is a n×n unitary matrix. The diagonal elements of are the singular values of in either
descending order or non-sorting order.

gesvdjBatched performs gesvdj on each matrix. It requires that all matrices are of the same
size m,n no greater than 32 and are packed in contiguous way,

Each matrix is column-major with leading dimension lda, so the formula for random access is
 .

The parameter S also contains singular values of each matrix in contiguous way,

The formula for random access of S is .

Except for tolerance and maximum sweeps, gesvdjBatched can either sort the singular
values in descending order (default) or chose as-is (without sorting) by the function
cusolverDnXgesvdjSetSortEig. If the user packs several tiny matrices into diagonal blocks
of one matrix, non-sorting option can separate singular values of those tiny matrices.

gesvdjBatched cannot report residual and executed sweeps by function
cusolverDnXgesvdjGetResidual and cusolverDnXgesvdjGetSweeps. Any call of the
above two returns CUSOLVER_STATUS_NOT_SUPPORTED. The user needs to compute residual
explicitly.

The user has to provide working space pointed by input parameter work. The input parameter
lwork is the size of the working space, and it is returned by gesvdjBatched_bufferSize().
Please note that the size in bytes of the working space is equal to sizeof(<type>) * lwork.

The output parameter info is an integer array of size batchSize. If the function returns
CUSOLVER_STATUS_INVALID_VALUE, the first element info[0] = -i (less than zero)
indicates i-th parameter is wrong (not counting handle). Otherwise, if info[i] =
min(m,n)+1, gesvdjBatched does not converge on i-th matrix under given tolerance and
maximum sweeps.

Please visit cuSOLVER Library Samples - gesvdjBatched for a code example.
API of syevjBatched

Parameter Memory In/out Meaning
handle host input Handle to the cuSolverDN library context.

jobz host input Specifies options to either
compute singular value only or
singular vectors as well: jobz =
CUSOLVER_EIG_MODE_NOVECTOR :
Compute singular values only; jobz =
CUSOLVER_EIG_MODE_VECTOR : Compute
singular values and singular vectors.

m host input Number of rows of matrix Aj. m is no
greater than 32.

n host input Number of columns of matrix Aj. n is no
greater than 32.

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/gesvdjBatched

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 152

Parameter Memory In/out Meaning
A device in/out <type> array of dimension lda * n *

batchSize with lda is not less than
max(1,n). on Exit: the contents of Aj are
destroyed.

lda host input Lading dimension of two-dimensional
array used to store matrix Aj.

S device output Areal array of dimension
min(m,n)*batchSize. It stores the
singular values of Aj in descending order
or non-sorting order.

U device output <type> array of dimension ldu * m *
batchSize. Uj contains the left singular
vectors of Aj.

ldu host input Leading dimension of two-dimensional
array used to store matrix Uj. ldu is not
less than max(1,m).

V device output <type> array of dimension ldv * n
* batchSize. Vj contains the right
singular vectors of Aj.

ldv host input Leading dimension of two-dimensional
array used to store matrix Vj. ldv is not
less than max(1,n).

work device in/out <type> array of size lwork, working
space.

lwork host input Size of work, returned by
gesvdjBatched_bufferSize.

info device output An integer array of
dimension batchSize. If
CUSOLVER_STATUS_INVALID_VALUE
is returned, info[0] = -i (less than
zero) indicates i-th parameter is
wrong (not counting handle). Otherwise,
if info[i] = 0, the operation is
successful. if info[i] = min(m,n)+1,
gesvdjBatched dose not converge on
i-th matrix under given tolerance and
maximum sweeps.

params host in/out Structure filled with parameters of Jacobi
algorithm.

batchSize host input Number of matrices.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (m,n<0
or lda<max(1,m) or ldu<max(1,m)

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 153

or ldv<max(1,n) or jobz is not
CUSOLVER_EIG_MODE_NOVECTOR or
CUSOLVER_EIG_MODE_VECTOR , or batchSize<0).

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

2.4.3.10. cusolverDn<t>gesvdaStridedBatched()
The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnSgesvdaStridedBatched_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 int rank,
 int m,
 int n,
 const float *A,
 int lda,
 long long int strideA,
 const float *S,
 long long int strideS,
 const float *U,
 int ldu,
 long long int strideU,
 const float *V,
 int ldv,
 long long int strideV,
 int *lwork,
 int batchSize);

cusolverStatus_t
cusolverDnDgesvdaStridedBatched_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 int rank,
 int m,
 int n,
 const double *A,
 int lda,
 long long int strideA,
 const double *S,
 long long int strideS,
 const double *U,
 int ldu,
 long long int strideU,
 const double *V,
 int ldv,
 long long int strideV,
 int *lwork,
 int batchSize);

cusolverStatus_t
cusolverDnCgesvdaStridedBatched_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 int rank,
 int m,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 154

 int n,
 const cuComplex *A,
 int lda,
 long long int strideA,
 const float *S,
 long long int strideS,
 const cuComplex *U,
 int ldu,
 long long int strideU,
 const cuComplex *V,
 int ldv,
 long long int strideV,
 int *lwork,
 int batchSize);

cusolverStatus_t
cusolverDnZgesvdaStridedBatched_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 int rank,
 int m,
 int n,
 const cuDoubleComplex *A,
 int lda,
 long long int strideA,
 const double *S,
 long long int strideS,
 const cuDoubleComplex *U,
 int ldu,
 long long int strideU,
 const cuDoubleComplex *V,
 int ldv,
 long long int strideV,
 int *lwork,
 int batchSize);

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSgesvdaStridedBatched(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 int rank,
 int m,
 int n,
 const float *A,
 int lda,
 long long int strideA,
 float *S,
 long long int strideS,
 float *U,
 int ldu,
 long long int strideU,
 float *V,
 int ldv,
 long long int strideV,
 float *work,
 int lwork,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 155

 int *info,
 double *h_R_nrmF,
 int batchSize);

cusolverStatus_t
cusolverDnDgesvdaStridedBatched(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 int rank,
 int m,
 int n,
 const double *A,
 int lda,
 long long int strideA,
 double *S,
 long long int strideS,
 double *U,
 int ldu,
 long long int strideU,
 double *V,
 int ldv,
 long long int strideV,
 double *work,
 int lwork,
 int *info,
 double *h_R_nrmF,
 int batchSize);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCgesvdaStridedBatched(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 int rank,
 int m,
 int n,
 const cuComplex *A,
 int lda,
 long long int strideA,
 float *S,
 long long int strideS,
 cuComplex *U,
 int ldu,
 long long int strideU,
 cuComplex *V,
 int ldv,
 long long int strideV,
 cuComplex *work,
 int lwork,
 int *info,
 double *h_R_nrmF,
 int batchSize);

cusolverStatus_t
cusolverDnZgesvdaStridedBatched(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 156

 int rank,
 int m,
 int n,
 const cuDoubleComplex *A,
 int lda,
 long long int strideA,
 double *S,
 long long int strideS,
 cuDoubleComplex *U,
 int ldu,
 long long int strideU,
 cuDoubleComplex *V,
 int ldv,
 long long int strideV,
 cuDoubleComplex *work,
 int lwork,
 int *info,
 double *h_R_nrmF,
 int batchSize);

This function gesvda (a stands for approximate) approximates the singular value
decomposition of a tall skinny m×n matrix A and corresponding the left and right singular
vectors. The economy form of SVD is written by

where Σ is an n×n matrix. U is an m×n unitary matrix, and V is an n×n unitary matrix. The
diagonal elements of Σ are the singular values of A; they are real and non-negative, and are
returned in descending order. U and V are the left and right singular vectors of A.

gesvda computes eigenvalues of A**T*A to approximate singular values and singular vectors.
It generates matrices U and V and transforms the matrix A to the following form

where S is diagonal and E depends on rounding errors. To certain conditions, U, V and S
approximate singular values and singular vectors up to machine zero of single precision. In
general, V is unitary, S is more accurate than U. If singular value is far from zero, then left
singular vector U is accurate. In other words, the accuracy of singular values and left singular
vectors depend on the distance between singular value and zero.

The input parameter rank decides the number of singualr values and singular vectors are
computed in parameter S, U and V.

The output parameter h_RnrmF computes Frobenius norm of residual.

if the parameter rank is equal n. Otherwise, h_RnrmF reports

in Frobenius norm sense, that is, how far U is from unitary.

gesvdaStridedBatched performs gesvda on each matrix. It requires that all matrices are of
the same size m,n and are packed in a contiguous way,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 157

Each matrix is column-major with leading dimension lda, so the formula for random
access is . Similarly, the formula for random
access of S is , the formula for random access of U is

 and the formula for random access of V is
 .

The user has to provide working space which is pointed by input parameter work.
The input parameter lwork is the size of the working space, and it is returned by
gesvdaStridedBatched_bufferSize(). Please note that the size in bytes of the working
space is equal to sizeof(<type>) * lwork.

The output parameter info is an integer array of size batchSize. If the function returns
CUSOLVER_STATUS_INVALID_VALUE, the first element info[0] = -i (less than zero)
indicates i-th parameter is wrong (not counting handle). Otherwise, if info[i] =
min(m,n)+1, gesvdaStridedBatched does not converge on i-th matrix under given
tolerance.

Please visit cuSOLVER Library Samples - gesvdaStridedBatched for a code example.

Remark 1: the routine returns V, not . This is different from gesvd.

Remark 2: if the user is confident on the accuracy of singular values and singular vectors,
for example, certain conditions hold (required singular value is far from zero), then the
performance can be improved by passing a null pointer to h_RnrmF, i.e. no computation of
residual norm.
API of gesvda

Parameter Memory In/out Meaning
handle host input Handle to the cuSolverDN library context.

jobz host input Specifies options to either
compute singular value only or
singular vectors as well: jobz =
CUSOLVER_EIG_MODE_NOVECTOR :
Compute singular values only; jobz =
CUSOLVER_EIG_MODE_VECTOR : Compute
singular values and singular vectors.

rank host input Number of singular values (from largest
to smallest).

m host input Number of rows of matrix Aj.

n host input Number of columns of matrix Aj.

A device input <type> array of dimension strideA *
batchSize with lda is not less than
max(1,m). Aj is of dimension m * n.

lda host input Leading dimension of two-dimensional
array used to store matrix Aj.

strideA host input Value of type long long int that gives the
address offset between A[i] and A[i
+1]. strideA is not less than lda*n.

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/gesvdaStridedBatched

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 158

Parameter Memory In/out Meaning
S device output A real array of dimension

strideS*batchSize. It stores the
singular values of Aj in descending
order. Sj is of dimension rank * 1

strideS host input Value of type long long int that gives the
address offset between S[i] and S[i
+1]. strideS is not less than rank.

U device output <type> array of dimension strideU *
batchSize. Uj contains the left singular
vectors of Aj. Uj is of dimension m *
rank.

ldu host input Leading dimension of two-dimensional
array used to store matrix Uj. ldu is not
less than max(1,m).

strideU host input Value of type long long int that gives the
address offset between U[i] and U[i
+1]. strideU is not less than ldu*rank.

V device output <type> array of dimension strideV
* batchSize. Vj contains the right
singular vectors of Aj. Vj is of dimension
n * rank.

ldv host input Leading dimension of two-dimensional
array used to store matrix Vj. ldv is not
less than max(1,n).

strideV host input Value of type long long int that gives the
address offset between V[i] and V[i
+1]. strideV is not less than ldv*rank.

work device in/out <type> array of size lwork, working
space.

lwork host input Size of work, returned by
gesvdaStridedBatched_bufferSize.

info device output An integer array of
dimension batchSize. If
CUSOLVER_STATUS_INVALID_VALUE
is returned, info[0] = -i (less than
zero) indicates i-th parameter is
wrong (not counting handle). Otherwise,
if info[i] = 0, the operation is
successful. if info[i] = min(m,n)+1,
gesvdaStridedBatched dose not
converge on i-th matrix.

h_RnrmF host output <double> array of size batchSize.
h_RnrmF[i] is norm of residual of i-th
matrix.

batchSize host input Number of matrices. batchSize is not
less than 1.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 159

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (m,n<0
or lda<max(1,m) or ldu<max(1,m) or
ldv<max(1,n) or strideA<lda*n or
strideS<rank or strideU<ldu*rank or
strideV<ldv*rank or batchSize<1 or jobz
is not CUSOLVER_EIG_MODE_NOVECTOR or
CUSOLVER_EIG_MODE_VECTOR).

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

2.4.3.11. cusolverDn<t>syevd()
The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnSsyevd_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 const float *A,
 int lda,
 const float *W,
 int *lwork);

cusolverStatus_t
cusolverDnDsyevd_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 const double *A,
 int lda,
 const double *W,
 int *lwork);

cusolverStatus_t
cusolverDnCheevd_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 const cuComplex *A,
 int lda,
 const float *W,
 int *lwork);

cusolverStatus_t
cusolverDnZheevd_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 const cuDoubleComplex *A,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 160

 int lda,
 const double *W,
 int *lwork);

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSsyevd(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 float *A,
 int lda,
 float *W,
 float *work,
 int lwork,
 int *devInfo);

cusolverStatus_t
cusolverDnDsyevd(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 double *A,
 int lda,
 double *W,
 double *work,
 int lwork,
 int *devInfo);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCheevd(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 cuComplex *A,
 int lda,
 float *W,
 cuComplex *work,
 int lwork,
 int *devInfo);

cusolverStatus_t
cusolverDnZheevd(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 cuDoubleComplex *A,
 int lda,
 double *W,
 cuDoubleComplex *work,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 161

 int lwork,
 int *devInfo);

This function computes eigenvalues and eigenvectors of a symmetric (Hermitian) n×n matrix A.
The standard symmetric eigenvalue problem is

where Λ is a real n×n diagonal matrix. V is an n×n unitary matrix. The diagonal elements of Λ
are the eigenvalues of A in ascending order.

The user has to provide working space which is pointed by input parameter work. The input
parameter lwork is size of the working space, and it is returned by syevd_bufferSize().
Please note that the size in bytes of the working space is equal to sizeof(<type>) * lwork.

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong (not
counting handle). If devInfo = i (greater than zero), i off-diagonal elements of an
intermediate tridiagonal form did not converge to zero.

If jobz = CUSOLVER_EIG_MODE_VECTOR, A contains the orthonormal eigenvectors of the
matrix A. The eigenvectors are computed by a divide and conquer algorithm.

Please visit cuSOLVER Library Samples - syevd for a code example.
API of syevd

Parameter Memory In/out Meaning
handle host input Handle to the cuSolverDN library context.

jobz host input Specifies options to either compute
eigenvalue only or compute eigen-pair:
jobz = CUSOLVER_EIG_MODE_NOVECTOR
: Compute eigenvalues only; jobz =
CUSOLVER_EIG_MODE_VECTOR : Compute
eigenvalues and eigenvectors.

uplo host input Specifies which part of A is stored.
uplo = CUBLAS_FILL_MODE_LOWER:
Lower triangle of A is stored. uplo =
CUBLAS_FILL_MODE_UPPER: Upper
triangle of A is stored.

n host input Number of rows (or columns) of matrix A.

A device in/out <type> array of dimension lda * n
with lda is not less than max(1,n).
If uplo = CUBLAS_FILL_MODE_UPPER,
the leading n-by-n upper triangular
part of A contains the upper triangular
part of the matrix A. If uplo =
CUBLAS_FILL_MODE_LOWER, the
leading n-by-n lower triangular part
of A contains the lower triangular
part of the matrix A. On exit, if jobz
= CUSOLVER_EIG_MODE_VECTOR, and
devInfo = 0, A contains the orthonormal
eigenvectors of the matrix A. If jobz =

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/syevd

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 162

Parameter Memory In/out Meaning
CUSOLVER_EIG_MODE_NOVECTOR, the
contents of A are destroyed.

lda host input Leading dimension of two-dimensional
array used to store matrix A.

W device output A real array of dimension n. The
eigenvalue values of A, in ascending
order ie, sorted so that W(i) <= W(i+1).

work device in/out Working space, <type> array of size
lwork.

Lwork host input Size of work, returned by
syevd_bufferSize.

devInfo device output If devInfo = 0, the operation is
successful. if devInfo = -i, the i-
th parameter is wrong (not counting
handle). if devInfo = i (> 0), devInfo
indicates i off-diagonal elements of an
intermediate tridiagonal form did not
converge to zero;

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (n<0,
or lda<max(1,n), or jobz is not
CUSOLVER_EIG_MODE_NOVECTOR or
CUSOLVER_EIG_MODE_VECTOR, or uplo
is not CUBLAS_FILL_MODE_LOWER or
CUBLAS_FILL_MODE_UPPER).

CUSOLVER_STATUS_ARCH_MISMATCH The device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

2.4.3.12. cusolverDnSyevd()[DEPRECATED]
[[DEPRECATED]] use cusolverDnXsyevd() instead. The routine will be removed in the next
major release.

The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
 cusolverDnSyevd_bufferSize(
 cusolverDnHandle_t handle,
 cusolverParams_t params,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 cudaDataType dataTypeA,
 const void *A,
 int64_t lda,
 cudaDataType dataTypeW,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 163

 const void *W,
 cudaDataType computeType,
 size_t *workspaceInBytes);

The routine bellow

cusolverStatus_t
 cusolverDnSyevd(
 cusolverDnHandle_t handle,
 cusolverParams_t params,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 cudaDataType dataTypeA,
 const void *A,
 int64_t lda,
 cudaDataType dataTypeW,
 const void *W,
 cudaDataType computeType,
 void *pBuffer,
 size_t workspaceInBytes,
 int *info);

computes eigenvalues and eigenvectors of a symmetric (Hermitian) n×n matrix A using the
generic API interface. The standard symmetric eigenvalue problem is

where Λ is a real n×n diagonal matrix. V is an n×n unitary matrix. The diagonal elements of Λ
are the eigenvalues of A in ascending order.

The user has to provide working space which is pointed by input parameter pBuffer. The
input parameter workspaceInBytes is size in bytes of the working space, and it is returned by
cusolverDnSyevd_bufferSize().

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting
handle). If info = i (greater than zero), i off-diagonal elements of an intermediate
tridiagonal form did not converge to zero.

if jobz = CUSOLVER_EIG_MODE_VECTOR, A contains the orthonormal eigenvectors of the
matrix A. The eigenvectors are computed by a divide and conquer algorithm.

Currently, cusolverDnSyevd supports only the default algorithm.
Table of algorithms supported by cusolverDnSyevd

CUSOLVER_ALG_0 or NULL Default algorithm.

List of input arguments for cusolverDnSyevd_bufferSize and cusolverDnSyevd:
API of cusolverDnSyevd

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

params host input structure with information collected by
cusolverDnSetAdvOptions.

jobz host input specifies options to either compute
eigenvalue only or compute eigen-pair:

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 164

jobz = CUSOLVER_EIG_MODE_NOVECTOR
: Compute eigenvalues only; jobz =
CUSOLVER_EIG_MODE_VECTOR : Compute
eigenvalues and eigenvectors.

uplo host input specifies which part of A is stored.
uplo = CUBLAS_FILL_MODE_LOWER:
Lower triangle of A is stored. uplo =
CUBLAS_FILL_MODE_UPPER: Upper
triangle of A is stored.

n host input number of rows (or columns) of matrix A.

dataTypeA host in data type of array A.

A device in/out array of dimension lda * n with lda
is not less than max(1,n). If uplo
= CUBLAS_FILL_MODE_UPPER, the
leading n-by-n upper triangular part
of A contains the upper triangular
part of the matrix A. If uplo =
CUBLAS_FILL_MODE_LOWER, the
leading n-by-n lower triangular part
of A contains the lower triangular
part of the matrix A. On exit, if jobz
= CUSOLVER_EIG_MODE_VECTOR, and
info = 0, A contains the orthonormal
eigenvectors of the matrix A. If jobz =
CUSOLVER_EIG_MODE_NOVECTOR, the
contents of A are destroyed.

lda host input leading dimension of two-dimensional
array used to store matrix A.

dataTypeW host in data type of array W.

W device output a real array of dimension n. The
eigenvalue values of A, in ascending
order ie, sorted so that W(i) <= W(i+1).

computeType host in data type of computation.

pBuffer device in/out Working space. Array of type void of size
workspaceInBytes bytes.

workspaceInBytes host input Size in bytes of pBuffer, returned by
cusolverDnSyevd_bufferSize.

info device output if info = 0, the operation is successful.
if info = -i, the i-th parameter is
wrong (not counting handle). if info =
i (> 0), info indicates i off-diagonal
elements of an intermediate tridiagonal
form did not converge to zero;

The generic API has three different types, dataTypeA is data type of the matrix A,
dataTypeW is data type of the matrix W and computeType is compute type of the operation.
cusolverDnSyevd only supports the following four combinations.
Valid combination of data type and compute type

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 165

DataTypeA DataTypeW ComputeType Meaning

CUDA_R_32F CUDA_R_32F CUDA_R_32F SSYEVD

CUDA_R_64F CUDA_R_64F CUDA_R_64F DSYEVD

CUDA_C_32F CUDA_R_32F CUDA_C_32F CHEEVD

CUDA_C_64F CUDA_R_64F CUDA_C_64F ZHEEVD

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (n<0,
or lda<max(1,n), or jobz is not
CUSOLVER_EIG_MODE_NOVECTOR or
CUSOLVER_EIG_MODE_VECTOR, or uplo
is not CUBLAS_FILL_MODE_LOWER or
CUBLAS_FILL_MODE_UPPER).

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

2.4.3.13. cusolverDn<t>syevdx()
The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnSsyevdx_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cusolverEigRange_t range,
 cublasFillMode_t uplo,
 int n,
 const float *A,
 int lda,
 float vl,
 float vu,
 int il,
 int iu,
 int *h_meig,
 const float *W,
 int *lwork);

cusolverStatus_t
cusolverDnDsyevdx_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cusolverEigRange_t range,
 cublasFillMode_t uplo,
 int n,
 const double *A,
 int lda,
 double vl,
 double vu,
 int il,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 166

 int iu,
 int *h_meig,
 const double *W,
 int *lwork);

cusolverStatus_t
cusolverDnCheevdx_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cusolverEigRange_t range,
 cublasFillMode_t uplo,
 int n,
 const cuComplex *A,
 int lda,
 float vl,
 float vu,
 int il,
 int iu,
 int *h_meig,
 const float *W,
 int *lwork);

cusolverStatus_t
cusolverDnZheevdx_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cusolverEigRange_t range,
 cublasFillMode_t uplo,
 int n,
 const cuDoubleComplex *A,
 int lda,
 double vl,
 double vu,
 int il,
 int iu,
 int *h_meig,
 const double *W,
 int *lwork);

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSsyevdx(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cusolverEigRange_t range,
 cublasFillMode_t uplo,
 int n,
 float *A,
 int lda,
 float vl,
 float vu,
 int il,
 int iu,
 int *h_meig,
 float *W,
 float *work,
 int lwork,
 int *devInfo);

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 167

cusolverStatus_t
cusolverDnDsyevdx(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cusolverEigRange_t range,
 cublasFillMode_t uplo,
 int n,
 double *A,
 int lda,
 double vl,
 double vu,
 int il,
 int iu,
 int *h_meig,
 double *W,
 double *work,
 int lwork,
 int *devInfo);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCheevdx(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cusolverEigRange_t range,
 cublasFillMode_t uplo,
 int n,
 cuComplex *A,
 int lda,
 float vl,
 float vu,
 int il,
 int iu,
 int *h_meig,
 float *W,
 cuComplex *work,
 int lwork,
 int *devInfo);

cusolverStatus_t
cusolverDnZheevdx(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cusolverEigRange_t range,
 cublasFillMode_t uplo,
 int n,
 cuDoubleComplex *A,
 int lda,
 double vl,
 double vu,
 int il,
 int iu,
 int *h_meig,
 double *W,
 cuDoubleComplex *work,
 int lwork,
 int *devInfo);

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 168

This function computes all or selection of the eigenvalues and optionally eigenvectors of a
symmetric (Hermitian) n×n matrix A. The standard symmetric eigenvalue problem is:

where Λ is a real n×h_meig diagonal matrix. V is an n×h_meig unitary matrix. h_meig is the
number of eigenvalues/eigenvectors computed by the routine, h_meig is equal to n when
the whole spectrum (e.g., range = CUSOLVER_EIG_RANGE_ALL) is requested. The diagonal
elements of Λ are the eigenvalues of A in ascending order.

The user has to provide working space which is pointed by input parameter work. The input
parameter lwork is size of the working space, and it is returned by syevdx_bufferSize().
Please note that the size in bytes of the working space is equal to sizeof(<type>) * lwork.

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong (not
counting handle). If devInfo = i (greater than zero), i off-diagonal elements of an
intermediate tridiagonal form did not converge to zero.

If jobz = CUSOLVER_EIG_MODE_VECTOR, A contains the orthonormal eigenvectors of the
matrix A. The eigenvectors are computed by a divide and conquer algorithm.

Please visit cuSOLVER Library Samples - syevdx for a code example.
API of syevdx

Parameter Memory In/out Meaning
handle host input Handle to the cuSolverDN library context.

jobz host input Specifies options to either compute
eigenvalue only or compute eigen-pair:
jobz = CUSOLVER_EIG_MODE_NOVECTOR
: Compute eigenvalues only; jobz =
CUSOLVER_EIG_MODE_VECTOR : Compute
eigenvalues and eigenvectors.

range host input Specifies options to which selection of
eigenvalues and optionally eigenvectors
that need to be computed: range
= CUSOLVER_EIG_RANGE_ALL : all
eigenvalues/eigenvectors will be
found, will becomes the classical
syevd/heevd routine; range =
CUSOLVER_EIG_RANGE_V : all
eigenvalues/eigenvectors in the half-
open interval (vl,vu] will be found; range
= CUSOLVER_EIG_RANGE_I : the il-th
through iu-th eigenvalues/eigenvectors
will be found;

uplo host input Specifies which part of A is stored.
uplo = CUBLAS_FILL_MODE_LOWER:
Lower triangle of A is stored. uplo =
CUBLAS_FILL_MODE_UPPER: Upper
triangle of A is stored.

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/syevdx

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 169

Parameter Memory In/out Meaning
n host input Number of rows (or columns) of matrix A.

A device in/out <type> array of dimension lda * n
with lda is not less than max(1,n).
If uplo = CUBLAS_FILL_MODE_UPPER,
the leading n-by-n upper triangular
part of A contains the upper triangular
part of the matrix A. If uplo =
CUBLAS_FILL_MODE_LOWER, the
leading n-by-n lower triangular part
of A contains the lower triangular
part of the matrix A. On exit, if jobz
= CUSOLVER_EIG_MODE_VECTOR, and
devInfo = 0, A contains the orthonormal
eigenvectors of the matrix A. If jobz =
CUSOLVER_EIG_MODE_NOVECTOR, the
contents of A are destroyed.

lda host input Leading dimension of two-dimensional
array used to store matrix A.lda is not
less than max(1,n).

vl,vu host input Real values float or double for (C,
S) or (Z, D) precision respectively. If
range = CUSOLVER_EIG_RANGE_V,
the lower and upper bounds of the
interval to be searched for eigenvalues.
vl > vu. Not referenced if range =
CUSOLVER_EIG_RANGE_ALL or range
= CUSOLVER_EIG_RANGE_I. Note that,
if eigenvalues are very close to each
other, it is well known that two different
eigenvalues routines might find slightly
different number of eigenvalues inside
the same interval. This is due to the fact
that different eigenvalue algorithms,
or even same algorithm but different
run might find eigenvalues within some
rounding error close to the machine
precision. Thus, if the user wants to be
sure not to miss any eigenvalue within
the interval bound, we suggest that the
user substract/add epsilon (machine
precision) to the interval bound such
as (vl=vl-eps, vu=vu+eps]. This
suggestion is valid for any selective
routine from cuSolver or LAPACK.

il,iu host input Integer. If range =
CUSOLVER_EIG_RANGE_I, the indices
(in ascending order) of the smallest and
largest eigenvalues to be returned. 1
<= il <= iu <= n, if n > 0; il = 1 and iu
= 0 if n = 0. Not referenced if range =

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 170

Parameter Memory In/out Meaning
CUSOLVER_EIG_RANGE_ALL or range =
CUSOLVER_EIG_RANGE_V.

h_meig host output Integer. The total number of eigenvalues
found. 0 <= h_meig <= n. If range =
CUSOLVER_EIG_RANGE_ALL, h_meig = n,
and if range = CUSOLVER_EIG_RANGE_I,
h_meig = iu-il+1.

W device output A real array of dimension n. The
eigenvalue values of A, in ascending
order ie, sorted so that W(i) <= W(i+1).

work device in/out Working space, <type> array of size
lwork.

lwork host input Size of work, returned by
syevdx_bufferSize.

devInfo device output If devInfo = 0, the operation is
successful. if devInfo = -i, the i-
th parameter is wrong (not counting
handle). if devInfo = i (> 0), devInfo
indicates i off-diagonal elements of an
intermediate tridiagonal form did not
converge to zero.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed
(n<0, or lda<max(1,n), or jobz is
not CUSOLVER_EIG_MODE_NOVECTOR
or CUSOLVER_EIG_MODE_VECTOR, or
range is not CUSOLVER_EIG_RANGE_ALL
or CUSOLVER_EIG_RANGE_V or
CUSOLVER_EIG_RANGE_I, or uplo is
not CUBLAS_FILL_MODE_LOWER or
CUBLAS_FILL_MODE_UPPER).

CUSOLVER_STATUS_ARCH_MISMATCH The device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

2.4.3.14. cusolverDnSyevdx()[DEPRECATED]
[[DEPRECATED]] use cusolverDnXsyevdx() instead. The routine will be removed in the next
major release.

The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
 cusolverDnSyevdx_bufferSize(
 cusolverDnHandle_t handle,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 171

 cusolverParams_t params,
 cusolverEigMode_t jobz,
 cusolverEigRange_t range,
 cublasFillMode_t uplo,
 int n,
 cudaDataType dataTypeA,
 const void *A,
 int64_t lda,
 void *vl,
 void *vu,
 int64_t il,
 int64_t iu,
 int64_t *h_meig,
 cudaDataType dataTypeW,
 const void *W,
 cudaDataType computeType,
 size_t *workspaceInBytes);

The routine bellow

cusolverStatus_t
 cusolverDnSyevdx (
 cusolverDnHandle_t handle,
 cusolverParams_t params,
 cusolverEigMode_t jobz,
 cusolverEigRange_t range,
 cublasFillMode_t uplo,
 int n,
 cudaDataType dataTypeA,
 const void *A,
 int64_t lda,
 void *vl,
 void *vu,
 int64_t il,
 int64_t iu,
 int64_t *h_meig,
 cudaDataType dataTypeW,
 const void *W,
 cudaDataType computeType,
 void *pBuffer,
 size_t workspaceInBytes,
 int *info);

computes all or selection of the eigenvalues and optionally eigenvectors of a symmetric
(Hermitian) n×n matrix A using the generic API interface. The standard symmetric eigenvalue
problem is

where Λ is a real n×h_meig diagonal matrix. V is an n×h_meig unitary matrix. h_meig is the
number of eigenvalues/eigenvectors computed by the routine, h_meig is equal to n when
the whole spectrum (e.g., range = CUSOLVER_EIG_RANGE_ALL) is requested. The diagonal
elements of Λ are the eigenvalues of A in ascending order.

The user has to provide working space which is pointed by input parameter pBuffer. The input
parameter workspaceInBytes is size in bytesr of the working space, and it is returned by
cusolverDnSyevdx_bufferSize().

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 172

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting
handle). If info = i (greater than zero), i off-diagonal elements of an intermediate
tridiagonal form did not converge to zero.

if jobz = CUSOLVER_EIG_MODE_VECTOR, A contains the orthonormal eigenvectors of the
matrix A. The eigenvectors are computed by a divide and conquer algorithm.

Currently, cusolverDnSyevdx supports only the default algorithm.
Table of algorithms supported by cusolverDnSyevdx

CUSOLVER_ALG_0 or NULL Default algorithm.

List of input arguments for cusolverDnSyevdx_bufferSize and cusolverDnSyevdx:
API of cusolverDnSyevdx

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

params host input structure with information collected by
cusolverDnSetAdvOptions.

jobz host input specifies options to either compute
eigenvalue only or compute eigen-pair:
jobz = CUSOLVER_EIG_MODE_NOVECTOR
: Compute eigenvalues only; jobz =
CUSOLVER_EIG_MODE_VECTOR : Compute
eigenvalues and eigenvectors.

range host input specifies options to which selection of
eigenvalues and optionally eigenvectors
that need to be computed: range
= CUSOLVER_EIG_RANGE_ALL : all
eigenvalues/eigenvectors will be
found, will becomes the classical
syevd/heevd routine; range =
CUSOLVER_EIG_RANGE_V : all
eigenvalues/eigenvectors in the half-
open interval (vl,vu] will be found; range
= CUSOLVER_EIG_RANGE_I : the il-th
through iu-th eigenvalues/eigenvectors
will be found;

uplo host input specifies which part of A is stored.
uplo = CUBLAS_FILL_MODE_LOWER:
Lower triangle of A is stored. uplo =
CUBLAS_FILL_MODE_UPPER: Upper
triangle of A is stored.

n host input number of rows (or columns) of matrix A.

dataTypeA host in data type of array A.

A device in/out array of dimension lda * n with lda
is not less than max(1,n). If uplo
= CUBLAS_FILL_MODE_UPPER, the
leading n-by-n upper triangular part
of A contains the upper triangular
part of the matrix A. If uplo =

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 173

CUBLAS_FILL_MODE_LOWER, the
leading n-by-n lower triangular part
of A contains the lower triangular
part of the matrix A. On exit, if jobz
= CUSOLVER_EIG_MODE_VECTOR, and
info = 0, A contains the orthonormal
eigenvectors of the matrix A. If jobz =
CUSOLVER_EIG_MODE_NOVECTOR, the
contents of A are destroyed.

lda host input leading dimension of two-dimensional
array used to store matrix A.lda is not
less than max(1,n).

vl,vu host input If range = CUSOLVER_EIG_RANGE_V,
the lower and upper bounds of the
interval to be searched for eigenvalues.
vl > vu. Not referenced if range =
CUSOLVER_EIG_RANGE_ALL or range
= CUSOLVER_EIG_RANGE_I. Note that,
if eigenvalues are very close to each
other, it is well known that two different
eigenvalues routines might find slightly
different number of eigenvalues inside
the same interval. This is due to the fact
that different eigenvalue algorithms,
or even same algorithm but different
run might find eigenvalues within some
rounding error close to the machine
precision. Thus, if the user want to be
sure not to miss any eigenvalue within
the interval bound, we suggest that, the
user substract/add epsilon (machine
precision) to the interval bound such as
(vl=vl-eps, vu=vu+eps]. this suggestion
is valid for any selective routine from
cuSolver or LAPACK.

il,iu host input integer. If range =
CUSOLVER_EIG_RANGE_I, the indices
(in ascending order) of the smallest
and largest eigenvalues to be returned.
1 <= il <= iu <= n, if n > 0; il = 1 and iu
= 0 if n = 0. Not referenced if range =
CUSOLVER_EIG_RANGE_ALL or range =
CUSOLVER_EIG_RANGE_V.

h_meig host output integer. The total number of eigenvalues
found. 0 <= h_meig <= n. If range =
CUSOLVER_EIG_RANGE_ALL, h_meig = n,
and if range = CUSOLVER_EIG_RANGE_I,
h_meig = iu-il+1.

dataTypeW host in data type of array W.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 174

W device output a real array of dimension n. The
eigenvalue values of A, in ascending
order ie, sorted so that W(i) <= W(i+1).

computeType host in data type of computation.

pBuffer device in/out Working space. Array of type void of size
workspaceInBytes bytes.

workspaceInBytes host input Size in bytes of pBuffer, returned by
cusolverDnSyevdx_bufferSize.

info device output if info = 0, the operation is successful.
if info = -i, the i-th parameter is
wrong (not counting handle). if info =
i (> 0), info indicates i off-diagonal
elements of an intermediate tridiagonal
form did not converge to zero;

The generic API has three different types, dataTypeA is data type of the matrix A,
dataTypeW is data type of the matrix W and computeType is compute type of the operation.
cusolverDnSyevdx only supports the following four combinations.
Valid combination of data type and compute type

DataTypeA DataTypeW ComputeType Meaning

CUDA_R_32F CUDA_R_32F CUDA_R_32F SSYEVDX

CUDA_R_64F CUDA_R_64F CUDA_R_64F DSYEVDX

CUDA_C_32F CUDA_R_32F CUDA_C_32F CHEEVDX

CUDA_C_64F CUDA_R_64F CUDA_C_64F ZHEEVDX

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (n<0,
or lda<max(1,n), or jobz is not
CUSOLVER_EIG_MODE_NOVECTOR or
CUSOLVER_EIG_MODE_VECTOR, or range
is not CUSOLVER_EIG_RANGE_ALL
or CUSOLVER_EIG_RANGE_V or
CUSOLVER_EIG_RANGE_I, or uplo is
not CUBLAS_FILL_MODE_LOWER or
CUBLAS_FILL_MODE_UPPER).

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

2.4.3.15. cusolverDn<t>sygvd()
The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 175

cusolverDnSsygvd_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigType_t itype,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 const float *A,
 int lda,
 const float *B,
 int ldb,
 const float *W,
 int *lwork);

cusolverStatus_t
cusolverDnDsygvd_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigType_t itype,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 const double *A,
 int lda,
 const double *B,
 int ldb,
 const double *W,
 int *lwork);

cusolverStatus_t
cusolverDnChegvd_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigType_t itype,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 const cuComplex *A,
 int lda,
 const cuComplex *B,
 int ldb,
 const float *W,
 int *lwork);

cusolverStatus_t
cusolverDnZhegvd_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigType_t itype,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 const cuDoubleComplex *A,
 int lda,
 const cuDoubleComplex *B,
 int ldb,
 const double *W,
 int *lwork);

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSsygvd(

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 176

 cusolverDnHandle_t handle,
 cusolverEigType_t itype,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 float *A,
 int lda,
 float *B,
 int ldb,
 float *W,
 float *work,
 int lwork,
 int *devInfo);

cusolverStatus_t
cusolverDnDsygvd(
 cusolverDnHandle_t handle,
 cusolverEigType_t itype,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 double *A,
 int lda,
 double *B,
 int ldb,
 double *W,
 double *work,
 int lwork,
 int *devInfo);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnChegvd(
 cusolverDnHandle_t handle,
 cusolverEigType_t itype,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 cuComplex *A,
 int lda,
 cuComplex *B,
 int ldb,
 float *W,
 cuComplex *work,
 int lwork,
 int *devInfo);

cusolverStatus_t
cusolverDnZhegvd(
 cusolverDnHandle_t handle,
 cusolverEigType_t itype,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 cuDoubleComplex *A,
 int lda,
 cuDoubleComplex *B,
 int ldb,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 177

 double *W,
 cuDoubleComplex *work,
 int lwork,
 int *devInfo);

This function computes eigenvalues and eigenvectors of a symmetric (Hermitian) n×n matrix-
pair (A,B). The generalized symmetric-definite eigenvalue problem is

where the matrix B is positive definite. Λ is a real n×n diagonal matrix. The diagonal elements
of Λ are the eigenvalues of (A, B) in ascending order. V is an n×n orthogonal matrix. The
eigenvectors are normalized as follows:

The user has to provide working space which is pointed by input parameter work. The input
parameter lwork is size of the working space, and it is returned by sygvd_bufferSize().
Please note that the size in bytes of the working space is equal to sizeof(<type>) * lwork.

If output parameter devInfo = -i (less than zero), the i-th parameter
is wrong (not counting handle). If devInfo = i (i > 0 and i<=n) and jobz =
CUSOLVER_EIG_MODE_NOVECTOR, i off-diagonal elements of an intermediate tridiagonal
form did not converge to zero. If devInfo = N + i (i > 0), then the leading minor of order i of
B is not positive definite. The factorization of B could not be completed and no eigenvalues or
eigenvectors were computed.

if jobz = CUSOLVER_EIG_MODE_VECTOR, A contains the orthogonal eigenvectors of the
matrix A. The eigenvectors are computed by divide and conquer algorithm.

Please visit cuSOLVER Library Samples - sygvd for a code example.
API of sygvd

Parameter Memory In/out Meaning
handle host input Handle to the cuSolverDN library context.

itype host input Specifies the problem type to be solved:

‣ itype=CUSOLVER_EIG_TYPE_1: A*x
= (lambda)*B*x.

‣ itype=CUSOLVER_EIG_TYPE_2:
A*B*x = (lambda)*x.

‣ itype=CUSOLVER_EIG_TYPE_3:
B*A*x = (lambda)*x.

jobz host input Specifies options to either compute
eigenvalue only or compute eigen-pair:
jobz = CUSOLVER_EIG_MODE_NOVECTOR
: Compute eigenvalues only; jobz =

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/sygvd

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 178

Parameter Memory In/out Meaning
CUSOLVER_EIG_MODE_VECTOR : Compute
eigenvalues and eigenvectors.

uplo host input Specifies which part of A
and B are stored. uplo =
CUBLAS_FILL_MODE_LOWER: Lower
triangle of A and B are stored. uplo
= CUBLAS_FILL_MODE_UPPER: Upper
triangle of A and B are stored.

n host input Number of rows (or columns) of matrix A
and B.

A device in/out <type> array of dimension lda * n
with lda is not less than max(1,n).
If uplo = CUBLAS_FILL_MODE_UPPER,
the leading n-by-n upper triangular
part of A contains the upper triangular
part of the matrix A. If uplo =
CUBLAS_FILL_MODE_LOWER, the
leading n-by-n lower triangular part
of A contains the lower triangular
part of the matrix A. On exit, if jobz
= CUSOLVER_EIG_MODE_VECTOR, and
devInfo = 0, A contains the orthonormal
eigenvectors of the matrix A. If jobz =
CUSOLVER_EIG_MODE_NOVECTOR, the
contents of A are destroyed.

lda host input Leading dimension of two-dimensional
array used to store matrix A. lda is not
less than max(1,n).

B device in/out <type> array of dimension ldb * n.
If uplo = CUBLAS_FILL_MODE_UPPER,
the leading n-by-n upper triangular
part of B contains the upper triangular
part of the matrix B. If uplo =
CUBLAS_FILL_MODE_LOWER, the leading
n-by-n lower triangular part of B contains
the lower triangular part of the matrix
B. On exit, if devInfo is less than n, B is
overwritten by triangular factor U or L
from the Cholesky factorization of B.

ldb host input Leading dimension of two-dimensional
array used to store matrix B. ldb is not
less than max(1,n).

W device output A real array of dimension n. The
eigenvalue values of A, sorted so that
W(i) >= W(i+1).

work device in/out Working space, <type> array of size
lwork.

Lwork host input Size of work, returned by
sygvd_bufferSize.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 179

Parameter Memory In/out Meaning
devInfo device output If devInfo = 0, the operation is

successful. if devInfo = -i, the i-
th parameter is wrong (not counting
handle). If devInfo = i (> 0), devInfo
indicates either potrf or syevd is wrong.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (n<0, or
lda<max(1,n), or ldb<max(1,n), or itype
is not 1, 2 or 3, or jobz is not 'N' or 'V', or
uplo is not CUBLAS_FILL_MODE_LOWER or
CUBLAS_FILL_MODE_UPPER).

CUSOLVER_STATUS_ARCH_MISMATCH The device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

2.4.3.16. cusolverDn<t>sygvdx()
The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnSsygvdx_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigType_t itype,
 cusolverEigMode_t jobz,
 cusolverEigRange_t range,
 cublasFillMode_t uplo,
 int n,
 const float *A,
 int lda,
 const float *B,
 int ldb,
 float vl,
 float vu,
 int il,
 int iu,
 int *h_meig,
 const float *W,
 int *lwork);

cusolverStatus_t
cusolverDnDsygvdx_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigType_t itype,
 cusolverEigMode_t jobz,
 cusolverEigRange_t range,
 cublasFillMode_t uplo,
 int n,
 const double *A,
 int lda,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 180

 const double *B,
 int ldb,
 double vl,
 double vu,
 int il,
 int iu,
 int *h_meig,
 const double *W,
 int *lwork);

cusolverStatus_t
cusolverDnChegvdx_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigType_t itype,
 cusolverEigMode_t jobz,
 cusolverEigRange_t range,
 cublasFillMode_t uplo,
 int n,
 const cuComplex *A,
 int lda,
 const cuComplex *B,
 int ldb,
 float vl,
 float vu,
 int il,
 int iu,
 int *h_meig,
 const float *W,
 int *lwork);

cusolverStatus_t
cusolverDnZhegvdx_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigType_t itype,
 cusolverEigMode_t jobz,
 cusolverEigRange_t range,
 cublasFillMode_t uplo,
 int n,
 const cuDoubleComplex *A,
 int lda,
 const cuDoubleComplex *B,
 int ldb,
 double vl,
 double vu,
 int il,
 int iu,
 int *h_meig,
 const double *W,
 int *lwork);

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSsygvdx(
 cusolverDnHandle_t handle,
 cusolverEigType_t itype,
 cusolverEigMode_t jobz,
 cusolverEigRange_t range,
 cublasFillMode_t uplo,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 181

 int n,
 float *A,
 int lda,
 float *B,
 int ldb,
 float vl,
 float vu,
 int il,
 int iu,
 int *h_meig,
 float *W,
 float *work,
 int lwork,
 int *devInfo);

cusolverStatus_t
cusolverDnDsygvdx(
 cusolverDnHandle_t handle,
 cusolverEigType_t itype,
 cusolverEigMode_t jobz,
 cusolverEigRange_t range,
 cublasFillMode_t uplo,
 int n,
 double *A,
 int lda,
 double *B,
 int ldb,
 double vl,
 double vu,
 int il,
 int iu,
 int *h_meig,
 double *W,
 double *work,
 int lwork,
 int *devInfo);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnChegvdx(
 cusolverDnHandle_t handle,
 cusolverEigType_t itype,
 cusolverEigMode_t jobz,
 cusolverEigRange_t range,
 cublasFillMode_t uplo,
 int n,
 cuComplex *A,
 int lda,
 cuComplex *B,
 int ldb,
 float vl,
 float vu,
 int il,
 int iu,
 int *h_meig,
 float *W,
 cuComplex *work,
 int lwork,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 182

 int *devInfo);

cusolverStatus_t
cusolverDnZhegvdx(
 cusolverDnHandle_t handle,
 cusolverEigType_t itype,
 cusolverEigMode_t jobz,
 cusolverEigRange_t range,
 cublasFillMode_t uplo,
 int n,
 cuDoubleComplex *A,
 int lda,
 cuDoubleComplex *B,
 int ldb,
 double vl,
 double vu,
 int il,
 int iu,
 int *h_meig,
 double *W,
 cuDoubleComplex *work,
 int lwork,
 int *devInfo);

This function computes all or selection of the eigenvalues and optionally eigenvectors of a
symmetric (Hermitian) n×n matrix-pair (A,B). The generalized symmetric-definite eigenvalue
problem is

where the matrix B is positive definite. Λ is a real n×h_meig diagonal matrix. The diagonal
elements of Λ are the eigenvalues of (A, B) in ascending order. V is an n×h_meig orthogonal
matrix. h_meig is the number of eigenvalues/eigenvectors computed by the routine, h_meig is
equal to n when the whole spectrum (e.g., range = CUSOLVER_EIG_RANGE_ALL) is requested.
The eigenvectors are normalized as follows:

The user has to provide working space which is pointed by input parameter work. The input
parameter lwork is size of the working space, and it is returned by sygvdx_bufferSize().
Please note that the size in bytes of the working space is equal to sizeof(<type>) * lwork.

If output parameter devInfo = -i (less than zero), the i-th parameter
is wrong (not counting handle). If devInfo = i (i > 0 and i<=n) and jobz =
CUSOLVER_EIG_MODE_NOVECTOR, i off-diagonal elements of an intermediate tridiagonal
form did not converge to zero. If devInfo = n + i (i > 0), then the leading minor of order i of
B is not positive definite. The factorization of B could not be completed and no eigenvalues or
eigenvectors were computed.

If jobz = CUSOLVER_EIG_MODE_VECTOR, A contains the orthogonal eigenvectors of the
matrix A. The eigenvectors are computed by divide and conquer algorithm.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 183

Please visit cuSOLVER Library Samples - sygvdx for a code example.
API of sygvdx

Parameter Memory In/out Meaning
handle host input Handle to the cuSolverDN library context.

itype host input Specifies the problem type to be solved:

‣ itype=CUSOLVER_EIG_TYPE_1: A*x
= (lambda)*B*x

‣ itype=CUSOLVER_EIG_TYPE_2:
A*B*x = (lambda)*x

‣ itype=CUSOLVER_EIG_TYPE_3:
B*A*x = (lambda)*x

jobz host input Specifies options to either compute
eigenvalue only or compute eigen-pair:
jobz = CUSOLVER_EIG_MODE_NOVECTOR
: Compute eigenvalues only; jobz =
CUSOLVER_EIG_MODE_VECTOR : Compute
eigenvalues and eigenvectors.

range host input Specifies options to which selection of
eigenvalues and optionally eigenvectors
that need to be computed: range
= CUSOLVER_EIG_RANGE_ALL : all
eigenvalues/eigenvectors will be
found, will becomes the classical
syevd/heevd routine; range =
CUSOLVER_EIG_RANGE_V : all
eigenvalues/eigenvectors in the half-
open interval (vl,vu] will be found;
range = CUSOLVER_EIG_RANGE_I :
the il-th through iu-th eigenvalues/
eigenvectors will be found;

uplo host input Specifies which part of A
and B are stored. uplo =
CUBLAS_FILL_MODE_LOWER: Lower
triangle of A and B are stored. uplo
= CUBLAS_FILL_MODE_UPPER: Upper
triangle of A and B are stored.

n host input Number of rows (or columns) of matrix A
and B.

A device in/out <type> array of dimension lda * n
with lda is not less than max(1,n).
If uplo = CUBLAS_FILL_MODE_UPPER,
the leading n-by-n upper triangular
part of A contains the upper triangular
part of the matrix A. If uplo =
CUBLAS_FILL_MODE_LOWER, the
leading n-by-n lower triangular part
of A contains the lower triangular

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/sygvdx

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 184

Parameter Memory In/out Meaning
part of the matrix A. On exit, if jobz
= CUSOLVER_EIG_MODE_VECTOR, and
devInfo = 0, A contains the orthonormal
eigenvectors of the matrix A. If jobz =
CUSOLVER_EIG_MODE_NOVECTOR, the
contents of A are destroyed.

lda host input Leading dimension of two-dimensional
array used to store matrix A. lda is not
less than max(1,n).

B device in/out <type> array of dimension ldb * n.
If uplo = CUBLAS_FILL_MODE_UPPER,
the leading n-by-n upper triangular
part of B contains the upper triangular
part of the matrix B. If uplo =
CUBLAS_FILL_MODE_LOWER, the leading
n-by-n lower triangular part of B contains
the lower triangular part of the matrix
B. On exit, if devInfo is less than n, B is
overwritten by triangular factor U or L
from the Cholesky factorization of B.

ldb host input Leading dimension of two-dimensional
array used to store matrix B. ldb is not
less than max(1,n).

vl,vu host input Real values float or double for (C,
S) or (Z, D) precision respectively. If
range = CUSOLVER_EIG_RANGE_V,
the lower and upper bounds of the
interval to be searched for eigenvalues.
vl > vu. Not referenced if range =
CUSOLVER_EIG_RANGE_ALL or range
= CUSOLVER_EIG_RANGE_I. Note that,
if eigenvalues are very close to each
other, it is well known that two different
eigenvalues routines might find slightly
different number of eigenvalues inside
the same interval. This is due to the fact
that different eigenvalue algorithms,
or even same algorithm but different
run might find eigenvalues within some
rounding error close to the machine
precision. Thus, if the user want to be
sure not to miss any eigenvalue within
the interval bound, we suggest that, the
user substract/add epsilon (machine
precision) to the interval bound such as
(vl=vl-eps, vu=vu+eps]. this suggestion
is valid for any selective routine from
cuSolver or LAPACK.

il,iu host input Integer. If range =
CUSOLVER_EIG_RANGE_I, the indices

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 185

Parameter Memory In/out Meaning
(in ascending order) of the smallest and
largest eigenvalues to be returned. 1
<= il <= iu <= n, if n > 0; il = 1 and iu
= 0 if n = 0. Not referenced if range =
CUSOLVER_EIG_RANGE_ALL or range =
CUSOLVER_EIG_RANGE_V.

h_meig host output Integer. The total number of eigenvalues
found. 0 <= h_meig <= n. If range =
CUSOLVER_EIG_RANGE_ALL, h_meig = n,
and if range = CUSOLVER_EIG_RANGE_I,
h_meig = iu-il+1.

W device output A real array of dimension n. The
eigenvalue values of A, sorted so that
W(i) >= W(i+1).

work device in/out Working space, <type> array of size
lwork.

lwork host input Size of work, returned by
sygvdx_bufferSize.

devInfo device output If devInfo = 0, the operation is
successful. if devInfo = -i, the i-
th parameter is wrong (not counting
handle). If devInfo = i (> 0), devInfo
indicates either potrf or syevd is wrong.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (n<0,
or lda<max(1,n), or ldb<max(1,n),
or itype is not CUSOLVER_EIG_TYPE_1
or CUSOLVER_EIG_TYPE_2 or
CUSOLVER_EIG_TYPE_3 or jobz is
not CUSOLVER_EIG_MODE_NOVECTOR
or CUSOLVER_EIG_MODE_VECTORL, or
range is not CUSOLVER_EIG_RANGE_ALL
or CUSOLVER_EIG_RANGE_V or
CUSOLVER_EIG_RANGE_I, or uplo is
not CUBLAS_FILL_MODE_LOWER or
CUBLAS_FILL_MODE_UPPER).

CUSOLVER_STATUS_ARCH_MISMATCH The device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

2.4.3.17. cusolverDn<t>syevj()
The helper functions below can calculate the sizes needed for pre-allocated buffer.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 186

cusolverStatus_t
cusolverDnSsyevj_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 const float *A,
 int lda,
 const float *W,
 int *lwork,
 syevjInfo_t params);

cusolverStatus_t
cusolverDnDsyevj_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 const double *A,
 int lda,
 const double *W,
 int *lwork,
 syevjInfo_t params);

cusolverStatus_t
cusolverDnCheevj_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 const cuComplex *A,
 int lda,
 const float *W,
 int *lwork,
 syevjInfo_t params);

cusolverStatus_t
cusolverDnZheevj_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 const cuDoubleComplex *A,
 int lda,
 const double *W,
 int *lwork,
 syevjInfo_t params);

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSsyevj(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 float *A,
 int lda,
 float *W,
 float *work,
 int lwork,
 int *info,
 syevjInfo_t params);

cusolverStatus_t

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 187

cusolverDnDsyevj(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 double *A,
 int lda,
 double *W,
 double *work,
 int lwork,
 int *info,
 syevjInfo_t params);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCheevj(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 cuComplex *A,
 int lda,
 float *W,
 cuComplex *work,
 int lwork,
 int *info,
 syevjInfo_t params);

cusolverStatus_t
cusolverDnZheevj(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 cuDoubleComplex *A,
 int lda,
 double *W,
 cuDoubleComplex *work,
 int lwork,
 int *info,
 syevjInfo_t params);

This function computes eigenvalues and eigenvectors of a symmetric (Hermitian) n×n matrix A.
The standard symmetric eigenvalue problem is

where Λ is a real n×n diagonal matrix. Q is an n×n unitary matrix. The diagonal elements of Λ
are the eigenvalues of A in ascending order.

syevj has the same functionality as syevd. The difference is that syevd uses QR algorithm
and syevj uses Jacobi method. The parallelism of Jacobi method gives GPU better
performance on small and medium size matrices. Moreover the user can configure syevj to
perform approximation up to certain accuracy.

How does it work?

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 188

syevj iteratively generates a sequence of unitary matrices to transform matrix A to the
following form

where W is diagonal and E is symmetric without diagonal.

During the iterations, the Frobenius norm of E decreases monotonically. As E goes down to
zero, W is the set of eigenvalues. In practice, Jacobi method stops if

where eps is the given tolerance.

syevj has two parameters to control the accuracy. First parameter is tolerance
(eps). The default value is machine accuracy but The user can use function
cusolverDnXsyevjSetTolerance to set a priori tolerance. The second parameter is
maximum number of sweeps which controls number of iterations of Jacobi method. The
default value is 100 but the user can use function cusolverDnXsyevjSetMaxSweeps to set
a proper bound. The experimentis show 15 sweeps are good enough to converge to machine
accuracy. syevj stops either tolerance is met or maximum number of sweeps is met.

The Jacobi method has quadratic convergence, so the accuracy is not proportional to number
of sweeps. To guarantee certain accuracy, the user should configure tolerance only.

After syevj, the user can query residual by function cusolverDnXsyevjGetResidual
and number of executed sweeps by function cusolverDnXsyevjGetSweeps. However the
user needs to be aware that residual is the Frobenius norm of E, not accuracy of individual
eigenvalue, i.e.

The same as syevd, the user has to provide working space pointed by input parameter
work. The input parameter lwork is the size of the working space, and it is returned by
syevj_bufferSize(). Please note that the size in bytes of the working space is equal to
sizeof(<type>) * lwork.

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting
handle). If info = n+1, syevj does not converge under given tolerance and maximum
sweeps.

If the user sets an improper tolerance, syevj may not converge. For example, tolerance
should not be smaller than machine accuracy.

If jobz = CUSOLVER_EIG_MODE_VECTOR, A contains the orthonormal eigenvectors V.

Please visit cuSOLVER Library Samples - syevj for a code example.
API of syevj

Parameter Memory In/out Meaning
handle host input Handle to the cuSolverDN library context.

jobz host input Specifies options to either compute
eigenvalue only or compute eigen-pair:
jobz = CUSOLVER_EIG_MODE_NOVECTOR

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/syevj

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 189

Parameter Memory In/out Meaning
: Compute eigenvalues only; jobz =
CUSOLVER_EIG_MODE_VECTOR : Compute
eigenvalues and eigenvectors.

uplo host input Specifies which part of A is stored.
uplo = CUBLAS_FILL_MODE_LOWER:
Lower triangle of A is stored. uplo =
CUBLAS_FILL_MODE_UPPER: Upper
triangle of A is stored.

n host input Number of rows (or columns) of matrix A.

A device in/out <type> array of dimension lda * n
with lda is not less than max(1,n).
If uplo = CUBLAS_FILL_MODE_UPPER,
the leading n-by-n upper triangular
part of A contains the upper triangular
part of the matrix A. If uplo =
CUBLAS_FILL_MODE_LOWER, the
leading n-by-n lower triangular part
of A contains the lower triangular
part of the matrix A. On exit, if jobz
= CUSOLVER_EIG_MODE_VECTOR, and
info = 0, A contains the orthonormal
eigenvectors of the matrix A. If jobz =
CUSOLVER_EIG_MODE_NOVECTOR, the
contents of A are destroyed.

lda host input Leading dimension of two-dimensional
array used to store matrix A.

W device output A real array of dimension n. The
eigenvalue values of A, in ascending
order ie, sorted so that W(i) <= W(i+1).

work device in/out Working space, <type> array of size
lwork.

lwork host input Size of work, returned by
syevj_bufferSize.

info device output If info = 0, the operation is successful.
if info = -i, the i-th parameter is
wrong (not counting handle). If info = n
+1, syevj does not converge under given
tolerance and maximum sweeps.

params host in/out Structure filled with parameters of Jacobi
algorithm and results of syevj.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (n<0,
or lda<max(1,n), or jobz is not
CUSOLVER_EIG_MODE_NOVECTOR or

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 190

CUSOLVER_EIG_MODE_VECTOR, or uplo
is not CUBLAS_FILL_MODE_LOWER or
CUBLAS_FILL_MODE_UPPER).

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

2.4.3.18. cusolverDn<t>sygvj()
The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnSsygvj_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigType_t itype,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 const float *A,
 int lda,
 const float *B,
 int ldb,
 const float *W,
 int *lwork,
 syevjInfo_t params);

cusolverStatus_t
cusolverDnDsygvj_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigType_t itype,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 const double *A,
 int lda,
 const double *B,
 int ldb,
 const double *W,
 int *lwork,
 syevjInfo_t params);

cusolverStatus_t
cusolverDnChegvj_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigType_t itype,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 const cuComplex *A,
 int lda,
 const cuComplex *B,
 int ldb,
 const float *W,
 int *lwork,
 syevjInfo_t params);

cusolverStatus_t
cusolverDnZhegvj_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigType_t itype,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 191

 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 const cuDoubleComplex *A,
 int lda,
 const cuDoubleComplex *B,
 int ldb,
 const double *W,
 int *lwork,
 syevjInfo_t params);

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSsygvj(
 cusolverDnHandle_t handle,
 cusolverEigType_t itype,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 float *A,
 int lda,
 float *B,
 int ldb,
 float *W,
 float *work,
 int lwork,
 int *info,
 syevjInfo_t params);

cusolverStatus_t
cusolverDnDsygvj(
 cusolverDnHandle_t handle,
 cusolverEigType_t itype,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 double *A,
 int lda,
 double *B,
 int ldb,
 double *W,
 double *work,
 int lwork,
 int *info,
 syevjInfo_t params);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnChegvj(
 cusolverDnHandle_t handle,
 cusolverEigType_t itype,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 cuComplex *A,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 192

 int lda,
 cuComplex *B,
 int ldb,
 float *W,
 cuComplex *work,
 int lwork,
 int *info,
 syevjInfo_t params);

cusolverStatus_t
cusolverDnZhegvj(
 cusolverDnHandle_t handle,
 cusolverEigType_t itype,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 cuDoubleComplex *A,
 int lda,
 cuDoubleComplex *B,
 int ldb,
 double *W,
 cuDoubleComplex *work,
 int lwork,
 int *info,
 syevjInfo_t params);

This function computes eigenvalues and eigenvectors of a symmetric (Hermitian) n×n matrix-
pair (A,B). The generalized symmetric-definite eigenvalue problem is

where the matrix B is positive definite. Λ is a real n×n diagonal matrix. The diagonal elements
of Λ are the eigenvalues of (A, B) in ascending order. V is an n×n orthogonal matrix. The
eigenvectors are normalized as follows:

This function has the same functionality as sygvd except that syevd in sygvd is replaced
by syevj in sygvj. Therefore, sygvj inherits properties of syevj, the user can use
cusolverDnXsyevjSetTolerance and cusolverDnXsyevjSetMaxSweeps to configure
tolerance and maximum sweeps.

However the meaning of residual is different from syevj. sygvj first computes Cholesky
factorization of matrix B,

transform the problem to standard eigenvalue problem, then calls syevj.

For example, the standard eigenvalue problem of type I is

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 193

where matrix M is symmtric

The residual is the result of syevj on matrix M, not A.

The user has to provide working space which is pointed by input parameter work. The input
parameter lwork is the size of the working space, and it is returned by sygvj_bufferSize().
Please note that the size in bytes of the working space is equal to sizeof(<type>) * lwork.

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting
handle). If info = i (i > 0 and i<=n), B is not positive definite, the factorization of B could not
be completed and no eigenvalues or eigenvectors were computed. If info = n+1, syevj does
not converge under given tolerance and maximum sweeps. In this case, the eigenvalues and
eigenvectors are still computed because non-convergence comes from improper tolerance of
maximum sweeps.

if jobz = CUSOLVER_EIG_MODE_VECTOR, A contains the orthogonal eigenvectors V.

Please visit cuSOLVER Library Samples - sygvj for a code example.
API of sygvj

Parameter Memory In/out Meaning
handle host input Handle to the cuSolverDN library context.

itype host input Specifies the problem type to be solved:
itype=CUSOLVER_EIG_TYPE_1:
A*x = (lambda)*B*x.
itype=CUSOLVER_EIG_TYPE_2:
A*B*x = (lambda)*x.
itype=CUSOLVER_EIG_TYPE_3: B*A*x =
(lambda)*x.

jobz host input Specifies options to either compute
eigenvalue only or compute eigen-pair:
jobz = CUSOLVER_EIG_MODE_NOVECTOR
: Compute eigenvalues only; jobz =
CUSOLVER_EIG_MODE_VECTOR : Compute
eigenvalues and eigenvectors.

uplo host input Specifies which part of A
and B are stored. uplo =
CUBLAS_FILL_MODE_LOWER: Lower
triangle of A and B are stored. uplo
= CUBLAS_FILL_MODE_UPPER: Upper
triangle of A and B are stored.

n host input Number of rows (or columns) of matrix A
and B.

A device in/out <type> array of dimension lda * n
with lda is not less than max(1,n).
If uplo = CUBLAS_FILL_MODE_UPPER,
the leading n-by-n upper triangular
part of A contains the upper triangular
part of the matrix A. If uplo =
CUBLAS_FILL_MODE_LOWER, the

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/sygvj

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 194

Parameter Memory In/out Meaning
leading n-by-n lower triangular part
of A contains the lower triangular
part of the matrix A. On exit, if jobz
= CUSOLVER_EIG_MODE_VECTOR, and
info = 0, A contains the orthonormal
eigenvectors of the matrix A. If jobz =
CUSOLVER_EIG_MODE_NOVECTOR, the
contents of A are destroyed.

lda host input Leading dimension of two-dimensional
array used to store matrix A. lda is not
less than max(1,n).

B device in/out <type> array of dimension ldb * n.
If uplo = CUBLAS_FILL_MODE_UPPER,
the leading n-by-n upper triangular
part of B contains the upper triangular
part of the matrix B. If uplo =
CUBLAS_FILL_MODE_LOWER, the leading
n-by-n lower triangular part of B contains
the lower triangular part of the matrix
B. On exit, if info is less than n, B is
overwritten by triangular factor U or L
from the Cholesky factorization of B.

ldb host input Leading dimension of two-dimensional
array used to store matrix B. ldb is not
less than max(1,n).

W device output A real array of dimension n. The
eigenvalue values of A, sorted so that
W(i) >= W(i+1).

work device in/out Working space, <type> array of size
lwork.

lwork host input Size of work, returned by
sygvj_bufferSize.

info device output if info = 0, the operation is successful.
if info = -i, the i-th parameter is
wrong (not counting handle). If info
= i (> 0), info indicates either B is
not positive definite or syevj (called by
sygvj) does not converge.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (n<0,
or lda<max(1,n), or ldb<max(1,n),
or itype is not 1, 2 or 3, or jobz is not
CUSOLVER_EIG_MODE_NOVECTOR or
CUSOLVER_EIG_MODE_VECTOR, or uplo

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 195

is not CUBLAS_FILL_MODE_LOWER or
CUBLAS_FILL_MODE_UPPER).

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

2.4.3.19. cusolverDn<t>syevjBatched()
The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnSsyevjBatched_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 const float *A,
 int lda,
 const float *W,
 int *lwork,
 syevjInfo_t params,
 int batchSize
);

cusolverStatus_t
cusolverDnDsyevjBatched_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 const double *A,
 int lda,
 const double *W,
 int *lwork,
 syevjInfo_t params,
 int batchSize
);

cusolverStatus_t
cusolverDnCheevjBatched_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 const cuComplex *A,
 int lda,
 const float *W,
 int *lwork,
 syevjInfo_t params,
 int batchSize
);

cusolverStatus_t
cusolverDnZheevjBatched_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 const cuDoubleComplex *A,
 int lda,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 196

 const double *W,
 int *lwork,
 syevjInfo_t params,
 int batchSize
);

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSsyevjBatched(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 float *A,
 int lda,
 float *W,
 float *work,
 int lwork,
 int *info,
 syevjInfo_t params,
 int batchSize
);

cusolverStatus_t
cusolverDnDsyevjBatched(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 double *A,
 int lda,
 double *W,
 double *work,
 int lwork,
 int *info,
 syevjInfo_t params,
 int batchSize
);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCheevjBatched(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 cuComplex *A,
 int lda,
 float *W,
 cuComplex *work,
 int lwork,
 int *info,
 syevjInfo_t params,
 int batchSize
);

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 197

cusolverStatus_t
cusolverDnZheevjBatched(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 cuDoubleComplex *A,
 int lda,
 double *W,
 cuDoubleComplex *work,
 int lwork,
 int *info,
 syevjInfo_t params,
 int batchSize
);

This function computes eigenvalues and eigenvectors of a squence of symmetric (Hermitian)
n×n matrices

where is a real n×n diagonal matrix. is an n×n unitary matrix. The diagonal elements of
 are the eigenvalues of in either ascending order or non-sorting order.

syevjBatched performs syevj on each matrix. It requires that all matrices are of the same
size n and are packed in contiguous way,

Each matrix is column-major with leading dimension lda, so the formula for random access is
 .

The parameter W also contains eigenvalues of each matrix in contiguous way,

The formula for random access of W is .

Except for tolerance and maximum sweeps, syevjBatched can either sort the
eigenvalues in ascending order (default) or chose as-is (without sorting) by the function
cusolverDnXsyevjSetSortEig. If the user packs several tiny matrices into diagonal blocks of
one matrix, non-sorting option can separate spectrum of those tiny matrices.

syevjBatched cannot report residual and executed sweeps by function
cusolverDnXsyevjGetResidual and cusolverDnXsyevjGetSweeps. Any call of the above
two returns CUSOLVER_STATUS_NOT_SUPPORTED. The user needs to compute residual
explicitly.

The user has to provide working space pointed by input parameter work. The input parameter
lwork is the size of the working space, and it is returned by syevjBatched_bufferSize().
Please note that the size in bytes of the working space is equal to sizeof(<type>) * lwork.

The output parameter info is an integer array of size batchSize. If the function returns
CUSOLVER_STATUS_INVALID_VALUE, the first element info[0] = -i (less than zero)

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 198

indicates i-th parameter is wrong (not counting handle). Otherwise, if info[i] = n+1,
syevjBatched does not converge on i-th matrix under given tolerance and maximum
sweeps.

If jobz = CUSOLVER_EIG_MODE_VECTOR, contains the orthonormal eigenvectors .

Please visit cuSOLVER Library Samples - syevjBatched for a code example.
API of syevjBatched

Parameter Memory In/out Meaning
handle host input Handle to the cuSolverDN library context.

jobz host input Specifies options to either compute
eigenvalue only or compute eigen-pair:
jobz = CUSOLVER_EIG_MODE_NOVECTOR
: Compute eigenvalues only; jobz =
CUSOLVER_EIG_MODE_VECTOR : Compute
eigenvalues and eigenvectors.

uplo host input Specifies which part of Aj is stored.
uplo = CUBLAS_FILL_MODE_LOWER:
Lower triangle of Aj is stored. uplo
= CUBLAS_FILL_MODE_UPPER: Upper
triangle of Aj is stored.

n host input Number of rows (or columns) of matrix
each Aj.

A device in/out <type> array of dimension lda *
n * batchSize with lda is not
less than max(1,n). If uplo =
CUBLAS_FILL_MODE_UPPER, the
leading n-by-n upper triangular part
of Aj contains the upper triangular
part of the matrix Aj. If uplo =
CUBLAS_FILL_MODE_LOWER, the
leading n-by-n lower triangular part
of Aj contains the lower triangular
part of the matrix Aj. On exit, if jobz
= CUSOLVER_EIG_MODE_VECTOR,
and info[j] = 0, Aj contains
the orthonormal eigenvectors
of the matrix Aj. If jobz =
CUSOLVER_EIG_MODE_NOVECTOR, the
contents of Aj are destroyed.

lda host input Leading dimension of two-dimensional
array used to store matrix Aj.

W device output A real array of dimension n*batchSize.
It stores the eigenvalues of Aj in
ascending order or non-sorting order.

work device in/out <type> array of size lwork, workspace.

lwork host input Size of work, returned by
syevjBatched_bufferSize.

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/syevjBatched

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 199

Parameter Memory In/out Meaning
info device output An integer array of

dimension batchSize. If
CUSOLVER_STATUS_INVALID_VALUE is
returned, info[0] = -i (less than zero)
indicates i-th parameter is wrong (not
counting handle). Otherwise, if info[i]
= 0, the operation is successful. If
info[i] = n+1, syevjBatched does
not converge on i-th matrix under given
tolerance and maximum sweeps.

params host in/out Structure filled with parameters of Jacobi
algorithm.

batchSize host input Number of matrices.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (n<0,
or lda<max(1,n), or jobz is not
CUSOLVER_EIG_MODE_NOVECTOR or
CUSOLVER_EIG_MODE_VECTOR, or uplo
is not CUBLAS_FILL_MODE_LOWER or
CUBLAS_FILL_MODE_UPPER), or batchSize<0.

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

2.4.4. Dense Linear Solver Reference (64-bit API)
This section describes linear solver 64-bit API of cuSolverDN, including Cholesky factorization,
LU with partial pivoting and QR factorization.

2.4.4.1. cusolverDnXpotrf()
The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnXpotrf_bufferSize(
 cusolverDnHandle_t handle,
 cusolverDnParams_t params,
 cublasFillMode_t uplo,
 int64_t n,
 cudaDataType dataTypeA,
 const void *A,
 int64_t lda,
 cudaDataType computeType,
 size_t *workspaceInBytesOnDevice,
 size_t *workspaceInBytesOnHost)

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 200

The following routine:

cusolverStatus_t
cusolverDnXpotrf(
 cusolverDnHandle_t handle,
 cusolverDnParams_t params,
 cublasFillMode_t uplo,
 int64_t n,
 cudaDataType dataTypeA,
 void *A,
 int64_t lda,
 cudaDataType computeType,
 void *bufferOnDevice,
 size_t workspaceInBytesOnDevice,
 void *bufferOnHost,
 size_t workspaceInBytesOnHost,
 int *info)

computes the Cholesky factorization of a Hermitian positive-definite matrix using the generic
API interfacte.

A is a n×n Hermitian matrix, only lower or upper part is meaningful. The input parameter uplo
indicates which part of the matrix is used. The function would leave other part untouched.

If input parameter uplo is CUBLAS_FILL_MODE_LOWER, only lower triangular part of A is
processed, and replaced by lower triangular Cholesky factor L.

If input parameter uplo is CUBLAS_FILL_MODE_UPPER, only upper triangular part of A is
processed, and replaced by upper triangular Cholesky factor U.

The user has to provide device and host working spaces which are pointed by
input parameters bufferOnDevice and bufferOnHost. The input parameters
workspaceInBytesOnDevice (and workspaceInBytesOnHost) is size in bytes of the device
(and host) working space, and it is returned by cusolverDnXpotrf_bufferSize().

If Cholesky factorization failed, i.e. some leading minor of A is not positive definite, or
equivalently some diagonal elements of L or U is not a real number. The output parameter
info would indicate smallest leading minor of A which is not positive definite.

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting
handle).

Currently, cusolverDnXpotrf supports only the default algorithm.

Please visit cuSOLVER Library Samples - Xpotrf for a code example.
Table of algorithms supported by cusolverDnXpotrf

CUSOLVER_ALG_0 or NULL Default algorithm.

List of input arguments for cusolverDnXpotrf_bufferSize and cusolverDnXpotrf:
API of potrf

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/Xpotrf

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 201

Parameter Memory In/out Meaning
handle host input Handle to the cuSolverDN library context.

params host input Structure with information collected by
cusolverDnSetAdvOptions.

uplo host input Indicates if matrix A lower or upper
part is stored, the other part is not
referenced.

n host input Number of rows and columns of matrix
A.

dataTypeA host in Data type of array A.

A device in/out Array of dimension lda * n with lda is
not less than max(1,n).

lda host input Leading dimension of two-dimensional
array used to store matrix A.

computeType host in Data type of computation.

bufferOnDevice device in/out Device workspace. Array of type void of
size workspaceInBytesOnDevice bytes.

workspaceInBytesOnDevicehost input Size in bytes of
bufferOnDevice, returned by
cusolverDnXpotrf_bufferSize.

bufferOnHost host in/out Host workspace. Array of type void of
size workspaceInBytesOnHost bytes.

workspaceInBytesOnHosthost input Size in bytes of bufferOnHost, returned
by cusolverDnXpotrf_bufferSize.

info device output If info = 0, the Cholesky factorization
is successful. If info = -i, the i-
th parameter is wrong (not counting
handle). If info = i, the leading minor
of order i is not positive definite.

The generic API has two different types, dataTypeA is data type of the matrix A, computeType
is compute type of the operation. cusolverDnXpotrf only supports the following four
combinations.
Valid combination of data type and compute type

DataTypeA ComputeType Meaning
CUDA_R_32F CUDA_R_32F SPOTRF

CUDA_R_64F CUDA_R_64F DPOTRF

CUDA_C_32F CUDA_C_32F CPOTRF

CUDA_C_64F CUDA_C_64F ZPOTRF

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 202

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (n<0 or
lda<max(1,n)).

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

2.4.4.2. cusolverDnXpotrs()

cusolverStatus_t
cusolverDnXpotrs(
 cusolverDnHandle_t handle,
 cusolverDnParams_t params,
 cublasFillMode_t uplo,
 int64_t n,
 int64_t nrhs,
 cudaDataType dataTypeA,
 const void *A,
 int64_t lda,
 cudaDataType dataTypeB,
 void *B,
 int64_t ldb,
 int *info)

This function solves a system of linear equations

where A is a n×n Hermitian matrix, only lower or upper part is meaningful using the generic
API interface. The input parameter uplo indicates which part of the matrix is used. The
function would leave other part untouched.

The user has to call cusolverDnXpotrf first to factorize matrix A. If input parameter uplo is
CUBLAS_FILL_MODE_LOWER, A is lower triangular Cholesky factor L correspoding to .
If input parameter uplo is CUBLAS_FILL_MODE_UPPER, A is upper triangular Cholesky factor U
corresponding to .

The operation is in-place, i.e. matrix X overwrites matrix B with the same leading dimension
ldb.

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting
handle).

Currently, cusolverDnXpotrs supports only the default algorithm.

Please visit cuSOLVER Library Samples - Xpotrf for a code example.
Table of algorithms supported by cusolverDnXpotrs

CUSOLVER_ALG_0 or NULL Default algorithm.

List of input arguments for cusolverDnXpotrs:
API of potrs

Parameter Memory In/out Meaning
handle host input Handle to the cuSolveDN library context.

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/Xpotrf

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 203

Parameter Memory In/out Meaning
params host input Structure with information collected by

cusolverDnSetAdvOptions.

uplo host input Indicates if matrix A lower or upper
part is stored, the other part is not
referenced.

n host input Number of rows and columns of matrix
A.

nrhs host input Number of columns of matrix X and B.

dataTypeA host in Data type of array A.

A device input Array of dimension lda * n with lda is
not less than max(1,n). A is either lower
cholesky factor L or upper Cholesky
factor U.

lda host input Leading dimension of two-dimensional
array used to store matrix A.

dataTypeB host in Data type of array B.

B device in/out Array of dimension ldb * nrhs. ldb is
not less than max(1,n). As an input, B is
right hand side matrix. As an output, B is
the solution matrix.

info device output If info = 0, the Cholesky factorization
is successful. if info = -i, the i-
th parameter is wrong (not counting
handle).

The generic API has two different types, dataTypeA is data type of the matrix A, dataTypeB is
data type of the matrix B. cusolverDnXpotrs only supports the following four combinations.
Valid combination of data type and compute type

dataTypeA dataTypeB Meaning
CUDA_R_32F CUDA_R_32F SPOTRS

CUDA_R_64F CUDA_R_64F DPOTRS

CUDA_C_32F CUDA_C_32F CPOTRS

CUDA_C_64F CUDA_C_64F ZPOTRS

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (n<0, nrhs<0,
lda<max(1,n) or ldb<max(1,n)).

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 204

2.4.4.3. cusolverDnXgetrf()
The helper function below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t cusolverDnXgetrf_bufferSize(
 cusolverDnHandle_t handle,
 cusolverDnParams_t params,
 int64_t m,
 int64_t n,
 cudaDataType dataTypeA,
 const void *A,
 int64_t lda,
 cudaDataType computeType,
 size_t *workspaceInBytesOnDevice,
 size_t *workspaceInBytesOnHost)

The function bellow

cusolverStatus_t
cusolverDnXgetrf(
 cusolverDnHandle_t handle,
 cusolverDnParams_t params,
 int64_t m,
 int64_t n,
 cudaDataType dataTypeA,
 void *A,
 int64_t lda,
 int64_t *ipiv,
 cudaDataType computeType,
 void *bufferOnDevice,
 size_t workspaceInBytesOnDevice,
 void *bufferOnHost,
 size_t workspaceInBytesOnHost,
 int *info)

computes the LU factorization of a m×n matrix

where A is a m×n matrix, P is a permutation matrix, L is a lower triangular matrix with unit
diagonal, and U is an upper triangular matrix using the generic API interface.

If LU factorization failed, i.e. matrix A (U) is singular, The output parameter info=i indicates
U(i,i) = 0.

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting
handle).

If ipiv is null, no pivoting is performed. The factorization is A=L*U, which is not numerically
stable.

No matter LU factorization failed or not, the output parameter ipiv contains pivoting
sequence, row i is interchanged with row ipiv(i).

The user has to provide device and host working spaces which are pointed by
input parameters bufferOnDevice and bufferOnHost. The input parameters

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 205

workspaceInBytesOnDevice (and workspaceInBytesOnHost) is size in bytes of the device
(and host) working space, and it is returned by cusolverDnXgetrf_bufferSize().

The user can combine cusolverDnXgetrf and cusolverDnGetrs to complete a linear solver.

Currently, cusolverDnXgetrf supports two algorithms. To select legacy implementation, the
user has to call cusolverDnSetAdvOptions.

Please visit cuSOLVER Library Samples - Xgetrf for a code example.
Table of algorithms supported by cusolverDnXgetrf

CUSOLVER_ALG_0 or NULL Default algorithm. The fastest, requires a large
workspace of m*n elements.

CUSOLVER_ALG_1 Legacy implementation

List of input arguments for cusolverDnXgetrf_bufferSize and cusolverDnXgetrf:
API of cusolverDnXgetrf

Parameter Memory In/out Meaning
handle host input Handle to the cuSolverDN library context.

params host input Structure with information collected by
cusolverDnSetAdvOptions.

m host input Number of rows of matrix A.

n host input Number of columns of matrix A.

dataTypeA host in Data type of array A.

A device in/out <type> array of dimension lda * n with
lda is not less than max(1,m).

lda host input Leading dimension of two-dimensional
array used to store matrix A.

ipiv device output Array of size at least min(m,n),
containing pivot indices.

computeType host in Data type of computation.

bufferOnDevice device in/out Device workspace. Array of type void of
size workspaceInBytesOnDevice bytes.

workspaceInBytesOnDevicehost input Size in bytes of
bufferOnDevice, returned by
cusolverDnXpotrf_bufferSize.

bufferOnHost host in/out Host workspace. Array of type void of
size workspaceInBytesOnHost bytes.

workspaceInBytesOnHosthost input Size in bytes of bufferOnHost, returned
by cusolverDnXpotrf_bufferSize.

info device output If info = 0, the LU factorization is
successful. if info = -i, the i-th
parameter is wrong (not counting
handle). If info = i, the U(i,i) = 0.

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/Xgetrf

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 206

The generic API has two different types, dataTypeA is data type of the matrix A, computeType
is compute type of the operation. cusolverDnXgetrf only supports the following four
combinations.
valid combination of data type and compute type

DataTypeA ComputeType Meaning
CUDA_R_32F CUDA_R_32F SGETRF

CUDA_R_64F CUDA_R_64F DGETRF

CUDA_C_32F CUDA_C_32F CGETRF

CUDA_C_64F CUDA_C_64F ZGETRF

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (m,n<0 or
lda<max(1,m)).

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

2.4.4.4. cusolverDnXgetrs()

cusolverStatus_t
cusolverDnXgetrs(
 cusolverDnHandle_t handle,
 cusolverDnParams_t params,
 cublasOperation_t trans,
 int64_t n,
 int64_t nrhs,
 cudaDataType dataTypeA,
 const void *A,
 int64_t lda,
 const int64_t *ipiv,
 cudaDataType dataTypeB,
 void *B,
 int64_t ldb,
 int *info)

This function solves a linear system of multiple right-hand sides

where A is a n×n matrix, and was LU-factored by cusolverDnXgetrf, that is, lower trianular
part of A is L, and upper triangular part (including diagonal elements) of A is U. B is a n×nrhs
right-hand side matrix using the generic API interface.

The input parameter trans is defined by

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 207

The input parameter ipiv is an output of cusolverDnXgetrf. It contains pivot indices, which
are used to permutate right-hand sides.

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting
handle).

The user can combine cusolverDnXgetrf and cusolverDnXgetrs to complete a linear
solver.

Currently, cusolverDnXgetrs supports only the default algorithm.

Please visit cuSOLVER Library Samples - Xgetrf for a code example.
Table of algorithms supported by cusolverDnXgetrs

CUSOLVER_ALG_0 or NULL Default algorithm.

List of input arguments for cusolverDnXgetrss:

Parameter Memory In/out Meaning
handle host input Handle to the cuSolverDN library context.

params host input Structure with information collected by
cusolverDnSetAdvOptions.

trans host input Operation op(A) that is non- or (conj.)
transpose.

n host input Number of rows and columns of matrix
A.

nrhs host input Number of right-hand sides.

dataTypeA host in Data type of array A.

A device input Array of dimension lda * n with lda is
not less than max(1,n).

lda host input Leading dimension of two-dimensional
array used to store matrix A.

ipiv device input Array of size at least n, containing pivot
indices.

dataTypeB host in Data type of array B.

B device output <type> array of dimension ldb * nrhs
with ldb is not less than max(1,n).

ldb host input Leading dimension of two-dimensional
array used to store matrix B.

info device output If info = 0, the operation is successful.
if info = -i, the i-th parameter is
wrong (not counting handle).

The generic API has two different types: dataTypeA is data type of the matrix A and dataTypeB
is data type of the matrix B. cusolverDnXgetrs only supports the following four combinations:
Valid combination of data type and compute type

DataTypeA dataTypeB Meaning
CUDA_R_32F CUDA_R_32F SGETRS

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/Xgetrf

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 208

DataTypeA dataTypeB Meaning
CUDA_R_64F CUDA_R_64F DGETRS

CUDA_C_32F CUDA_C_32F CGETRS

CUDA_C_64F CUDA_C_64F ZGETRS

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (n<0 or
lda<max(1,n) or ldb<max(1,n)).

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

2.4.4.5. cusolverDnXgeqrf()
The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnXgeqrf_bufferSize(
 cusolverDnHandle_t handle,
 cusolverDnParams_t params,
 int64_t m,
 int64_t n,
 cudaDataType dataTypeA,
 const void *A,
 int64_t lda,
 cudaDataType dataTypeTau,
 const void *tau,
 cudaDataType computeType,
 size_t *workspaceInBytesOnDevice,
 size_t *workspaceInBytesOnHost)

The following routine:

cusolverStatus_t cusolverDnXgeqrf(
 cusolverDnHandle_t handle,
 cusolverDnParams_t params,
 int64_t m,
 int64_t n,
 cudaDataType dataTypeA,
 void *A,
 int64_t lda,
 cudaDataType dataTypeTau,
 void *tau,
 cudaDataType computeType,
 void *bufferOnDevice,
 size_t workspaceInBytesOnDevice,
 void *bufferOnHost,
 size_t workspaceInBytesOnHost,
 int *info)

computes the QR factorization of a m×n matrix

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 209

where A is an m×n matrix, Q is a m×n matrix, and R is an n×n upper triangular matrix using the
generic API interface.

The user has to provide device and host working spaces which are pointed by
input parameters bufferOnDevice and bufferOnHost. The input parameters
workspaceInBytesOnDevice (and workspaceInBytesOnHost) is size in bytes of the device
(and host) working space, and it is returned by cusolverDnXgeqrf_bufferSize().

The matrix R is overwritten in upper triangular part of A, including diagonal elements.

The matrix Q is not formed explicitly, instead, a sequence of householder vectors are stored in
lower triangular part of A. The leading nonzero element of householder vector is assumed to
be 1 such that output parameter TAU contains the scaling factor τ. If v is original householder
vector, q is the new householder vector corresponding to τ, satisying the following relation

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting
handle).

Currently, cusolverDnXgeqrf supports only the default algorithm.

Please visit cuSOLVER Library Samples - Xgeqrf for a code example.
Table of algorithms supported by cusolverDnXgeqrf

CUSOLVER_ALG_0 or NULL Default algorithm.

List of input arguments for cusolverDnXgeqrf_bufferSize and cusolverDnXgeqrf:
API of geqrf

Parameter Memory In/out Meaning
handle host input Handle to the cuSolverDN library context.

params host input Structure with information collected by
cusolverDnSetAdvOptions.

m host input Number of rows of matrix A.

n host input Number of columns of matrix A.

dataTypeA host in Data type of array A.

A device in/out Array of dimension lda * n with lda is
not less than max(1,m).

lda host input Leading dimension of two-dimensional
array used to store matrix A.

TAU device output Array of dimension at least min(m,n).

computeType host in Data type of computation.

bufferOnDevice device in/out Device workspace. Array of type void of
size workspaceInBytesOnDevice bytes.

workspaceInBytesOnDevicehost input Size in bytes of
bufferOnDevice, returned by
cusolverDnXpotrf_bufferSize.

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/Xgeqrf

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 210

Parameter Memory In/out Meaning
bufferOnHost host in/out Host workspace. Array of type void of

size workspaceInBytesOnHost bytes.

workspaceInBytesOnHosthost input Size in bytes of bufferOnHost, returned
by cusolverDnXpotrf_bufferSize.

info device output If info = 0, the LU factorization is
successful. If info = -i, the i-th
parameter is wrong (not counting
handle).

The generic API has two different types, dataTypeA is data type of the matrix A and array tau
and computeType is compute type of the operation. cusolverDnXgeqrf only supports the
following four combinations.
Valid combination of data type and compute type

DataTypeA ComputeType Meaning
CUDA_R_32F CUDA_R_32F SGEQRF

CUDA_R_64F CUDA_R_64F DGEQRF

CUDA_C_32F CUDA_C_32F CGEQRF

CUDA_C_64F CUDA_C_64F ZGEQRF

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (m,n<0 or
lda<max(1,m)).

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

2.4.4.6. cusolverDnXsytrs()
The helper functions below can calculate the sizes needed for pre-allocated buffers.

cusolverStatus_t
cusolverDnXsytrs_bufferSize(
 cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int64_t n,
 int64_t nrhs,
 cudaDataType dataTypeA,
 const void *A,
 int64_t lda,
 const int64_t *ipiv,
 cudaDataType dataTypeB,
 void *B,
 int64_t ldb,
 size_t *workspaceInBytesOnDevice,
 size_t *workspaceInBytesOnHost);

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 211

The following routine:

cusolverStatus_t CUSOLVERAPI cusolverDnXsytrs(
 cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int64_t n,
 int64_t nrhs,
 cudaDataType dataTypeA,
 const void *A,
 int64_t lda,
 const int64_t *ipiv,
 cudaDataType dataTypeB,
 void *B,
 int64_t ldb,
 void *bufferOnDevice,
 size_t workspaceInBytesOnDevice,
 void *bufferOnHost,
 size_t workspaceInBytesOnHost,
 int *info);

solves a system of linear equations using the generic API interfacte.

A contains the factorization from cusolverDnXsytrf(), only lower or upper part is
meaningful, the other part is not touched.

If input parameter uplo is CUBLAS_FILL_MODE_LOWER, the details of the factorization are
stores as:

If input parameter uplo is CUBLAS_FILL_MODE_UPPER, the details of the factorization are
stores as:

The user has to provide the pivot indices that can be otained by cusolverDnXsytrf()
as well as device and host work spaces which are pointed by input parameters
bufferOnDevice and bufferOnHost. The input parameters workspaceInBytesOnDevice
and workspaceInBytesOnHost are sizes in bytes of the device and host work spaces, and they
are returned by cusolverDnXsytrs_bufferSize().

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting
handle).

List of input arguments for cusolverDnXsytrs_bufferSize and cusolverDnXsytrs:
API of sytrs

Parameter Memory In/out Meaning
handle host input Handle to the cuSolverDN library context.

uplo host input Indicates if matrix A lower or upper
part is stored, the other part is not
referenced.

n host input Number of rows and columns of matrix
A.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 212

Parameter Memory In/out Meaning
nrhs host input Number of right-hand sides.

dataTypeA host in Data type of array A.

A device input Array of dimension lda * n with lda is
not less than max(1,n).

lda host input Leading dimension of two-dimensional
array used to store matrix A.

ipiv device input Array of size at least n, containing pivot
indices.

dataTypeB host in Data type of array B.

B device in/out Array of dimension ldb * nrhs with ldb
is not less than max(1,nrhs).

ldb host input Leading dimension of two-dimensional
array used to store matrix B.

bufferOnDevice device in/out Device workspace. Array of type void of
size workspaceInBytesOnDevice bytes.

workspaceInBytesOnDevicehost input Size in bytes of
bufferOnDevice, returned by
cusolverDnXsytrs_bufferSize.

bufferOnHost host in/out Host workspace. Array of type void of
size workspaceInBytesOnHost bytes.

workspaceInBytesOnHosthost input Size in bytes of bufferOnHost, returned
by cusolverDnXsytrs_bufferSize.

info device output If info = 0, the Cholesky factorization
is successful. If info = -i, the i-
th parameter is wrong (not counting
handle). If info = i, the leading minor
of order i is not positive definite.

The generic API has two different types: dataTypeA is data type of the matrix A, dataTypeB is
data type of the matrix A. cusolverDnXsytrs only supports the following four combinations:
Valid combination of data type and compute type

DataTypeA DataTypeB Meaning
CUDA_R_32F CUDA_R_32F SSYTRS

CUDA_R_64F CUDA_R_64F DSYTRS

CUDA_C_32F CUDA_C_32F CSYTRS

CUDA_C_64F CUDA_C_64F ZSYTRS

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (n<0 or
lda<max(1,n)).

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED Data type is not supported.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 213

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

2.4.4.7. cusolverDnXtrtri()
The helper functions below can calculate the sizes needed for pre-allocated buffers.

cusolverStatus_t
cusolverDnXtrtri_bufferSize(
 cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 cublasDiagType_t diag,
 int64_t n,
 cudaDataType dataTypeA,
 void *A,
 int64_t lda,
 size_t *workspaceInBytesOnDevice,
 size_t *workspaceInBytesOnHost);

The following routine:

cusolverStatus_t
cusolverDnXtrtri(
 cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 cublasDiagType_t diag,
 int64_t n,
 cudaDataType dataTypeA,
 void *A,
 int64_t lda,
 void *bufferOnDevice,
 size_t workspaceInBytesOnDevice,
 void *bufferOnHost,
 size_t workspaceInBytesOnHost,
 int *info);

computes the inverse of a triangular matrix using the generic API interfacte.

A is an n×n triangular matrix, only lower or upper part is meaningful. The input parameter
uplo indicates which part of the matrix is used. The function would leave other part
untouched.

If input parameter uplo is CUBLAS_FILL_MODE_LOWER, only lower triangular part of A is
processed, and replaced by lower triangular inverse.

If input parameter uplo is CUBLAS_FILL_MODE_UPPER, only upper triangular part of A is
processed, and replaced by upper triangular inverse.

The user has to provide device and host work spaces which are pointed by input parameters
bufferOnDevice and bufferOnHost. The input parameters workspaceInBytesOnDevice
and workspaceInBytesOnHost are sizes in bytes of the device and host work spaces, and they
are returned by cusolverDnXtrtri_bufferSize().

If matrix inversion fails, the output parameter info = i shows A(i,i) = 0.

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting
handle).

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 214

Please visit cuSOLVER Library Samples - Xtrtri for a code example.

List of input arguments for cusolverDnXtrtri_bufferSize and cusolverDnXtrtri:
API of trtri

Parameter Memory In/out Meaning
handle host input Handle to the cuSolverDN library context.

uplo host input Indicates if matrix A lower or upper
part is stored, the other part is not
referenced.

diag host input The enumerated unit diagonal type.

n host input Number of rows and columns of matrix
A.

dataTypeA host in Data type of array A.

A device in/out Array of dimension lda * n with lda is
not less than max(1,n).

lda host input Leading dimension of two-dimensional
array used to store matrix A.

bufferOnDevice device in/out Device workspace. Array of type void of
size workspaceInBytesOnDevice bytes.

workspaceInBytesOnDevicehost input Size in bytes of
bufferOnDevice, returned by
cusolverDnXtrtri_bufferSize.

bufferOnHost host in/out Host workspace. Array of type void of
size workspaceInBytesOnHost bytes.

workspaceInBytesOnHosthost input Size in bytes of bufferOnHost, returned
by cusolverDnXtrtri_bufferSize.

info device output If info = 0, the matrix inversion
succeeded. If info = -i, the i-th
parameter is wrong (not counting
handle). If info = i, A(i,i) = 0.

Valid data types

DataTypeA Meaning

CUDA_R_32F STRTRI

CUDA_R_64F DTRTRI

CUDA_C_32F CTRTRI

CUDA_C_64F ZTRTRI

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_NOT_SUPPORTED Data type is not supported.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (n<0 or
lda<max(1,n)).

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/Xtrtri

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 215

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

2.4.5. Dense Eigenvalue Solver Reference (64-bit
API)

This section describes eigenvalue solver API of cuSolverDN, including bidiagonalization and
SVD.

2.4.5.1. cusolverDnXgesvd()
The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnXgesvd_bufferSize(
 cusolverDnHandle_t handle,
 cusolverDnParams_t params,
 signed char jobu,
 signed char jobvt,
 int64_t m,
 int64_t n,
 cudaDataType dataTypeA,
 const void *A,
 int64_t lda,
 cudaDataType dataTypeS,
 const void *S,
 cudaDataType dataTypeU,
 const void *U,
 int64_t ldu,
 cudaDataType dataTypeVT,
 const void *VT,
 int64_t ldvt,
 cudaDataType computeType,
 size_t *workspaceInBytesOnDevice,
 size_t *workspaceInBytesOnHost)

The following routine:

cusolverStatus_t
cusolverDnXgesvd(
 cusolverDnHandle_t handle,
 cusolverDnParams_t params,
 signed char jobu,
 signed char jobvt,
 int64_t m,
 int64_t n,
 cudaDataType dataTypeA,
 void *A,
 int64_t lda,
 cudaDataType dataTypeS,
 void *S,
 cudaDataType dataTypeU,
 void *U,
 int64_t ldu,
 cudaDataType dataTypeVT,
 void *VT,
 int64_t ldvt,
 cudaDataType computeType,
 void *bufferOnDevice,
 size_t workspaceInBytesOnDevice,
 void *bufferOnHost,
 size_t workspaceInBytesOnHost,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 216

 int *info)

This function computes the singular value decomposition (SVD) of a m×n matrix A and
corresponding the left and/or right singular vectors. The SVD is written

where Σ is an m×n matrix which is zero except for its min(m,n) diagonal elements, U is an m×m
unitary matrix, and V is an n×n unitary matrix. The diagonal elements of Σ are the singular
values of A; they are real and non-negative, and are returned in descending order. The first
min(m,n) columns of U and V are the left and right singular vectors of A.

The user has to provide device and host working spaces which are pointed by
input parameters bufferOnDevice and bufferOnHost. The input parameters
workspaceInBytesOnDevice (and workspaceInBytesOnHost) is size in bytes of the device
(and host) working space, and it is returned by cusolverDnXgesvd_bufferSize().

If output parameter info = -i (less than zero), the i-th parameter is wrong (not
counting handle). if bdsqr did not converge, info specifies how many superdiagonals of an
intermediate bidiagonal form did not converge to zero.

Currently, cusolverDnXgesvd supports only the default algorithm.
Table of algorithms supported by cusolverDnXgesvd

CUSOLVER_ALG_0 or NULL Default algorithm.

Please visit cuSOLVER Library Samples - Xgesvd for a code example.

Remark 1: gesvd only supports m>=n.

Remark 2: the routine returns , not V.

List of input arguments for cusolverDnXgesvd_bufferSize and cusolverDnXgesvd:
API of cusolverDnXgesvd

Parameter Memory In/out Meaning
handle host input Handle to the cuSolverDN library context.

params host input Structure with information collected by
cusolverDnSetAdvOptions.

jobu host input Specifies options for computing all or
part of the matrix U: = 'A': all m columns
of U are returned in array U: = 'S':
the first min(m,n) columns of U (the
left singular vectors) are returned in
the array U; = 'O': the first min(m,n)
columns of U (the left singular vectors)
are overwritten on the array A; = 'N': no
columns of U (no left singular vectors)
are computed.

jobvt host input Specifies options for computing all or
part of the matrix V**T: = 'A': all N rows
of V**T are returned in the array VT; =
'S': the first min(m,n) rows of V**T (the

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/Xgesvd

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 217

Parameter Memory In/out Meaning
right singular vectors) are returned in the
array VT; = 'O': the first min(m,n) rows
of V**T (the right singular vectors) are
overwritten on the array A; = 'N': no rows
of V**T (no right singular vectors) are
computed.

m host input Number of rows of matrix A.

n host input Number of columns of matrix A.

dataTypeA host input Data type of array A.

A device in/out Array of dimension lda * n with lda
is not less than max(1,m). On exit, the
contents of A are destroyed.

lda host input Leading dimension of two-dimensional
array used to store matrix A.

dataTypeS host input Data type of array S.

S device output Real array of dimension min(m,n). The
singular values of A, sorted so that S(i)
>= S(i+1).

dataTypeU host input Data type of array U.

U device output Array of dimension ldu * m with ldu is
not less than max(1,m). U contains the
m×m unitary matrix U.

ldu host input Leading dimension of two-dimensional
array used to store matrix U.

dataTypeVT host input Data type of array VT.

VT device output Array of dimension ldvt * n with ldvt
is not less than max(1,n). VT contains
the n×n unitary matrix V**T.

ldvt host input Leading dimension of two-dimensional
array used to store matrix Vt.

computeType host input Data type of computation.

bufferOnDevice device in/out Device workspace. Array of type void of
size workspaceInBytesOnDevice bytes.

workspaceInBytesOnDevicehost input Dize in bytes of
bufferOnDevice, returned by
cusolverDnXpotrf_bufferSize.

bufferOnHost host in/out Host workspace. Array of type void of
size workspaceInBytesOnHost bytes.

workspaceInBytesOnHosthost input Size in bytes of bufferOnHost, returned
by cusolverDnXpotrf_bufferSize.

info device output If info = 0, the operation is successful.
if info = -i, the i-th parameter is
wrong (not counting handle). if info > 0,
info indicates how many superdiagonals

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 218

Parameter Memory In/out Meaning
of an intermediate bidiagonal form did
not converge to zero.

The generic API has three different types, dataTypeA is data type of the matrix A, dataTypeS
is data type of the vector S and dataTypeU is data type of the matrix U, dataTypeVT is data
type of the matrix VT, computeType is compute type of the operation. cusolverDnXgesvd only
supports the following four combinations.
Valid combination of data type and compute type

DataTypeA DataTypeS DataTypeU DataTypeVT ComputeType Meaning
CUDA_R_32F CUDA_R_32F CUDA_R_32F CUDA_R_32F CUDA_R_32F SGESVD

CUDA_R_64F CUDA_R_64F CUDA_R_64F CUDA_R_64F CUDA_R_64F DGESVD

CUDA_C_32F CUDA_R_32F CUDA_C_32F CUDA_C_32F CUDA_C_32F CGESVD

CUDA_C_64F CUDA_R_64F CUDA_C_64F CUDA_C_64F CUDA_C_64F ZGESVD

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (m,n<0
or lda<max(1,m) or ldu<max(1,m) or
ldvt<max(1,n)).

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

2.4.5.2. cusolverDnXgesvdp()
The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnXgesvdp_bufferSize(
 cusolverDnHandle_t handle,
 cusolverDnParams_t params,
 cusolverEigMode_t jobz,
 int econ,
 int64_t m,
 int64_t n,
 cudaDataType dataTypeA,
 const void *A,
 int64_t lda,
 cudaDataType dataTypeS,
 const void *S,
 cudaDataType dataTypeU,
 const void *U,
 int64_t ldu,
 cudaDataType dataTypeV,
 const void *V,
 int64_t ldv,
 cudaDataType computeType,
 size_t *workspaceInBytesOnDevice,
 size_t *workspaceInBytesOnHost)

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 219

The routine below:

cusolverStatus_t
cusolverDnXgesvdp(
 cusolverDnHandle_t handle,
 cusolverDnParams_t params,
 cusolverEigMode_t jobz,
 int econ,
 int64_t m,
 int64_t n,
 cudaDataType dataTypeA,
 void *A,
 int64_t lda,
 cudaDataType dataTypeS,
 void *S,
 cudaDataType dataTypeU,
 void *U,
 int64_t ldu,
 cudaDataType dataTypeV,
 void *V,
 int64_t ldv,
 cudaDataType computeType,
 void *bufferOnDevice,
 size_t workspaceInBytesOnDevice,
 void *bufferOnHost,
 size_t workspaceInBytesOnHost,
 int *d_info,
 double *h_err_sigma)

This function computes the singular value decomposition (SVD) of a m×n matrix A and
corresponding the left and/or right singular vectors. The SVD is written

where Σ is an m×n matrix which is zero except for its min(m,n) diagonal elements, U is an m×m
unitary matrix, and V is an n×n unitary matrix. The diagonal elements of Σ are the singular
values of A; they are real and non-negative, and are returned in descending order. The first
min(m,n) columns of U and V are the left and right singular vectors of A.

cusolverDnXgesvdp combines polar decomposition in [14] and cusolverDnXsyevd to
compute SVD. It is much faster than cusolverDnXgesvd which is based on QR algorithm.
However polar decomposition in [14] may not deliver a full unitary matrix when the matrix A
has a singular value close to zero. To workaround the issue when the singular value is close to
zero, we add a small perturbation so polar decomposition can deliver the correct result. The
consequence is inaccurate singular values shifted by this perturbation. The output parameter
h_err_sigma is the magnitude of this perturbation. In other words, h_err_sigma shows the
accuracy of SVD.

The user has to provide device and host working spaces which are pointed by
input parameters bufferOnDevice and bufferOnHost. The input parameters
workspaceInBytesOnDevice (and workspaceInBytesOnHost) is size in bytes of the device
(and host) working space, and it is returned by cusolverDnXgesvdp_bufferSize().

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting
handle).

Currently, cusolverDnXgesvdp supports only the default algorithm.
Table of algorithms supported by cusolverDnXgesvdp

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 220

CUSOLVER_ALG_0 or NULL Default algorithm.

Please visit cuSOLVER Library Samples - Xgesvdp for a code example.

Remark 1: gesvdp supports n>=m as well.

Remark 2: the routine returns V, not

List of input arguments for cusolverDnXgesvdp_bufferSize and cusolverDnXgesvdp:
API of cusolverDnXgesvdp

Parameter Memory In/out Meaning
handle host input Handle to the cuSolverDN library context.

params host input Structure with information collected by
cusolverDnSetAdvOptions.

jobz host input Specifies options to either compute
singular values only or compute singular
vectors as well:

jobz = CUSOLVER_EIG_MODE_NOVECTOR :
Compute singular values only.

jobz = CUSOLVER_EIG_MODE_VECTOR :
Compute singular values and singular
vectors.

econ host input econ = 1 for economy size for U and V.

m host input Number of rows of matrix A.

n host input Number of columns of matrix A.

dataTypeA host input Data type of array A.

A device in/out Array of dimension lda * n with lda
is not less than max(1,m). On exit, the
contents of A are destroyed.

lda host input Leading dimension of two-dimensional
array used to store matrix A.

dataTypeS host input Data type of array S.

S device output Real array of dimension min(m,n). The
singular values of A, sorted so that S(i)
>= S(i+1).

dataTypeU host input Data type of array U.

U device output Array of dimension ldu * m with ldu
is not less than max(1,m). U contains
the m×m unitary matrix U. If econ=1, only
reports first min(m,n) columns of U.

ldu host input Leading dimension of two-dimensional
array used to store matrix U.

dataTypeV host input Data type of array V.

V device output Array of dimension ldv * n with ldv
is not less than max(1,n). V contains

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/Xgesvdp

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 221

Parameter Memory In/out Meaning
the n×n unitary matrix V. if econ=1, only
reports first min(m,n) columns of V.

ldv host input Leading dimension of two-dimensional
array used to store matrix V.

computeType host input Data type of computation.

bufferOnDevice device in/out Device workspace. Array of type void of
size workspaceInBytesOnDevice bytes.

workspaceInBytesOnDevicehost input Size in bytes of
bufferOnDevice, returned by
cusolverDnXpotrf_bufferSize.

bufferOnHost host in/out Host workspace. Array of type void of
size workspaceInBytesOnHost bytes.

workspaceInBytesOnHosthost input Size in bytes of bufferOnHost, returned
by cusolverDnXpotrf_bufferSize.

info device output If info = 0, the operation is successful.
if info = -i, the i-th parameter is
wrong (not counting handle).

h_err_sigma host output Magnitude of the perturbation, showing
the accuracy of SVD.

The generic API has three different types, dataTypeA is data type of the matrix A, dataTypeS
is data type of the vector S and dataTypeU is data type of the matrix U, dataTypeV is data type
of the matrix V, computeType is compute type of the operation. cusolverDnXgesvdp only
supports the following four combinations:
Valid combination of data type and compute type

DataTypeA DataTypeS DataTypeU DataTypeV ComputeType Meaning
CUDA_R_32F CUDA_R_32F CUDA_R_32F CUDA_R_32F CUDA_R_32F SGESVDP

CUDA_R_64F CUDA_R_64F CUDA_R_64F CUDA_R_64F CUDA_R_64F DGESVDP

CUDA_C_32F CUDA_R_32F CUDA_C_32F CUDA_C_32F CUDA_C_32F CGESVDP

CUDA_C_64F CUDA_R_64F CUDA_C_64F CUDA_C_64F CUDA_C_64F ZGESVDP

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (m,n<0
or lda<max(1,m) or ldu<max(1,m) or
ldv<max(1,n)).

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

2.4.5.3. cusolverDnXgesvdr()
The helper functions below can calculate the sizes needed for pre-allocated buffer.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 222

cusolverStatus_t
cusolverDnXgesvdr_bufferSize (
 cusolverDnHandle_t handle,
 cusolverDnParams_t params,
 signed char jobu,
 signed char jobv,
 int64_t m,
 int64_t n,
 int64_t k,
 int64_t p,
 int64_t niters,
 cudaDataType dataTypeA,
 const void *A,
 int64_t lda,
 cudaDataType dataTypeSrand,
 const void *Srand,
 cudaDataType dataTypeUrand,
 const void *Urand,
 int64_t ldUrand,
 cudaDataType dataTypeVrand,
 const void *Vrand,
 int64_t ldVrand,
 cudaDataType computeType,
 size_t *workspaceInBytesOnDevice,
 size_t *workspaceInBytesOnHost)

The routine below

cusolverStatus_t
cusolverDnXgesvdr(
 cusolverDnHandle_t handle,
 cusolverDnParams_t params,
 signed char jobu,
 signed char jobv,
 int64_t m,
 int64_t n,
 int64_t k,
 int64_t p,
 int64_t niters,
 cudaDataType dataTypeA,
 void *A,
 int64_t lda,
 cudaDataType dataTypeSrand,
 void *Srand,
 cudaDataType dataTypeUrand,
 void *Urand,
 int64_t ldUrand,
 cudaDataType dataTypeVrand,
 void *Vrand,
 int64_t ldVrand,
 cudaDataType computeType,
 void *bufferOnDevice,
 size_t workspaceInBytesOnDevice,
 void *bufferOnHost,
 size_t workspaceInBytesOnHost,
 int *d_info)

This function computes the approximated rank-k singular value decomposition (k-SVD) of an
m×n matrix A and the corresponding left and/or right singular vectors. The k-SVD is written as

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 223

where Σ is a k×k matrix which is zero except for its diagonal elements, U is an m×k
orthonormal matrix, and V is an k×n orthonormal matrix. The diagonal elements of Σ are
the approximated singular values of A; they are real and non-negative, and are returned in
descending order. The columns of U and V are the top-k left and right singular vectors of A.

cusolverDnXgesvdr implements randomized methods described in [15] to compute
k-SVD that is accurate with high probablity if the conditions described in [15] hold.
cusolverDnXgesvdr is intended to compute a very small portion of the spectrum (meaning
that k is very small compared to min(m,n)). of A fast and with good quality, specially when the
dimenions of the matrix are large.

The accuracy of the method depends on the spectrum of A, the number of power iterations
niters, the oversampling parameter p and the ratio between p and the dimensions of
the matrix A. Larger values of oversampling p or larger number of iterations niters
might produce more accurate approximations, but it will also increase the run time of
cusolverDnXgesvdr.

Our recommendation is to use two iterations and set the oversampling to at least 2k. Once the
solver provides enough accuracy, adjust the values of k and niters for better performance.

The user has to provide device and host working spaces which are pointed by
input parameters bufferOnDevice and bufferOnHost. The input parameters
workspaceInBytesOnDevice (and workspaceInBytesOnHost) is size in bytes of the device
(and host) working space, and it is returned by cusolverDnXgesvdr_bufferSize().

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting
handle).

Currently, cusolverDnXgesvdr supports only the default algorithm.
Table of algorithms supported by cusolverDnXgesvdr

CUSOLVER_ALG_0 or NULL Default algorithm.

Please visit cuSOLVER Library Samples - Xgesvdr for a code example.

Remark 1: gesvdr supports n>=m as well.

Remark 2: the routine returns V, not

List of input arguments for cusolverDnXgesvdr_bufferSize and cusolverDnXgesvdr:
API of cusolverDnXgesvdr

Parameter Memory In/out Meaning
handle host input Handle to the cuSolverDN library context.

params host input Structure with information collected by
cusolverDnSetAdvOptions.

jobu host input Specifies options for computing all or
part of the matrix U: = 'S': the first k
columns of U (the left singular vectors)
are returned in the array U; = 'N': no

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/Xgesvdr

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 224

Parameter Memory In/out Meaning
columns of U (no left singular vectors)
are computed.

jobv host input Specifies options for computing all or
part of the matrix V: = 'S': the first k
rows of V (the right singular vectors)
are returned in the array V; = 'N': no
rows of V (no right singular vectors) are
computed.

m host input Number of rows of matrix A.

n host input Number of columns of matrix A.

k host input Rank of the k-SVD decomposition of
matrix A. rank is less than min(m,n).

p host input Oversampling. The size of the subspace
will be (k + p). (k+p) is less than
min(m,n).

niters host input Number of iteration of power method.

dataTypeA host input Data type of array A.

A device in/out Array of dimension lda * n with lda
is not less than max(1,m). On exit, the
contents of A are destroyed.

lda host input Leading dimension of two-dimensional
array used to store matrix A.

dataTypeS host input Data type of array S.

S device output Real array of dimension min(m,n). The
singular values of A, sorted so that S(i)
>= S(i+1).

dataTypeU host input Data type of array U.

U device output Array of dimension ldu * m with ldu
is not less than max(1,m). U contains
the m×m unitary matrix U. if jobu=S, only
reports first min(m,n) columns of U.

ldu host input Leading dimension of two-dimensional
array used to store matrix U.

dataTypeV host input Data type of array V.

V device output Array of dimension ldv * n with ldv
is not less than max(1,n). V contains
the n×n unitary matrix V. If jobv=S, only
reports first min(m,n) columns of V.

ldv host input Leading dimension of two-dimensional
array used to store matrix V.

computeType host input Data type of computation.

bufferOnDevice device in/out Device workspace. Array of type void of
size workspaceInBytesOnDevice bytes.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 225

Parameter Memory In/out Meaning
workspaceInBytesOnDevicehost input Size in bytes of

bufferOnDevice, returned by
cusolverDnXgesvdr_bufferSize.

bufferOnHost host in/out Host workspace. Array of type void of
size workspaceInBytesOnHost bytes.

workspaceInBytesOnHosthost input Size in bytes of bufferOnHost, returned
by cusolverDnXgesvdr_bufferSize.

d_info device output If info = 0, the operation is successful.
If info = -i, the i-th parameter is
wrong (not counting handle).

The generic API has five different types, dataTypeA is data type of the matrix A, dataTypeS is
data type of the vector S and dataTypeU is data type of the matrix U, dataTypeV is data type
of the matrix V, computeType is compute type of the operation. cusolverDnXgesvdr only
supports the following four combinations.
Valid combination of data type and compute type

DataTypeA DataTypeS DataTypeU DataTypeV ComputeType Meaning
CUDA_R_32F CUDA_R_32F CUDA_R_32F CUDA_R_32F CUDA_R_32F SGESVDR

CUDA_R_64F CUDA_R_64F CUDA_R_64F CUDA_R_64F CUDA_R_64F DGESVDR

CUDA_C_32F CUDA_R_32F CUDA_C_32F CUDA_C_32F CUDA_C_32F CGESVDR

CUDA_C_64F CUDA_R_64F CUDA_C_64F CUDA_C_64F CUDA_C_64F ZGESVDR

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (m,n<0
or lda<max(1,m) or ldu<max(1,m) or
ldv<max(1,n)).

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

2.4.5.4. cusolverDnXsyevd()
The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnXsyevd_bufferSize(
 cusolverDnHandle_t handle,
 cusolverDnParams_t params,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int64_t n,
 cudaDataType dataTypeA,
 const void *A,
 int64_t lda,
 cudaDataType dataTypeW,
 const void *W,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 226

 cudaDataType computeType,
 size_t *workspaceInBytesOnDevice,
 size_t *workspaceInBytesOnHost)

The following routine:

cusolverStatus_t
cusolverDnXsyevd(
 cusolverDnHandle_t handle,
 cusolverDnParams_t params,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int64_t n,
 cudaDataType dataTypeA,
 void *A,
 int64_t lda,
 cudaDataType dataTypeW,
 void *W,
 cudaDataType computeType,
 void *bufferOnDevice,
 size_t workspaceInBytesOnDevice,
 void *bufferOnHost,
 size_t workspaceInBytesOnHost,
 int *info)

computes eigenvalues and eigenvectors of a symmetric (Hermitian) n×n matrix A using the
generic API interface. The standard symmetric eigenvalue problem is

where Λ is a real n×n diagonal matrix. V is an n×n unitary matrix. The diagonal elements of Λ
are the eigenvalues of A in ascending order.

The user has to provide device and host working spaces which are pointed by
input parameters bufferOnDevice and bufferOnHost. The input parameters
workspaceInBytesOnDevice (and workspaceInBytesOnHost) is size in bytes of the device
(and host) working space, and it is returned by cusolverDnXsyevd_bufferSize().

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting
handle). If info = i (greater than zero), i off-diagonal elements of an intermediate
tridiagonal form did not converge to zero.

If jobz = CUSOLVER_EIG_MODE_VECTOR, A contains the orthonormal eigenvectors of the
matrix A. The eigenvectors are computed by a divide and conquer algorithm.

Please visit cuSOLVER Library Samples - Xsyevd for a code example.

Currently, cusolverDnXsyevd supports only the default algorithm.
Table of algorithms supported by cusolverDnXsyevd

CUSOLVER_ALG_0 or NULL Default algorithm.

List of input arguments for cusolverDnXsyevd_bufferSize and cusolverDnXsyevd:
API of cusolverDnXsyevd

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/Xsyevd

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 227

Parameter Memory In/out Meaning
handle host input Handle to the cuSolverDN library context.

params host input Structure with information collected by
cusolverDnSetAdvOptions.

jobz host input Specifies options to either compute
eigenvalue only or compute eigen-pair:
jobz = CUSOLVER_EIG_MODE_NOVECTOR
: Compute eigenvalues only; jobz =
CUSOLVER_EIG_MODE_VECTOR : Compute
eigenvalues and eigenvectors.

uplo host input Specifies which part of A is stored.
uplo = CUBLAS_FILL_MODE_LOWER:
Lower triangle of A is stored. uplo =
CUBLAS_FILL_MODE_UPPER: Upper
triangle of A is stored.

n host input Number of rows (or columns) of matrix A.

dataTypeA host in Data type of array A.

A device in/out Array of dimension lda * n with lda
is not less than max(1,n). If uplo
= CUBLAS_FILL_MODE_UPPER, the
leading n-by-n upper triangular part
of A contains the upper triangular
part of the matrix A. If uplo =
CUBLAS_FILL_MODE_LOWER, the
leading n-by-n lower triangular part
of A contains the lower triangular
part of the matrix A. On exit, if jobz
= CUSOLVER_EIG_MODE_VECTOR, and
info = 0, A contains the orthonormal
eigenvectors of the matrix A. If jobz =
CUSOLVER_EIG_MODE_NOVECTOR, the
contents of A are destroyed.

lda host input Leading dimension of two-dimensional
array used to store matrix A.

dataTypeW host in Data type of array W.

W device output A real array of dimension n. The
eigenvalue values of A, in ascending
order, i.e., sorted so that W(i) <= W(i
+1).

computeType host in Data type of computation.

bufferOnDevice device in/out Device workspace. Array of type void of
size workspaceInBytesOnDevice bytes.

workspaceInBytesOnDevicehost input Size in bytes of
bufferOnDevice, returned by
cusolverDnXpotrf_bufferSize.

bufferOnHost host in/out Host workspace. Array of type void of
size workspaceInBytesOnHost bytes.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 228

Parameter Memory In/out Meaning
workspaceInBytesOnHosthost input Size in bytes of bufferOnHost, returned

by cusolverDnXpotrf_bufferSize.

info device output If info = 0, the operation is successful.
If info = -i, the i-th parameter is
wrong (not counting handle). If info =
i (> 0), info indicates i off-diagonal
elements of an intermediate tridiagonal
form did not converge to zero.

The generic API has three different types, dataTypeA is data type of the matrix A,
dataTypeW is data type of the matrix W and computeType is compute type of the operation.
cusolverDnXsyevd only supports the following four combinations.
Valid combination of data type and compute type

DataTypeA DataTypeW ComputeType Meaning
CUDA_R_32F CUDA_R_32F CUDA_R_32F SSYEVD

CUDA_R_64F CUDA_R_64F CUDA_R_64F DSYEVD

CUDA_C_32F CUDA_R_32F CUDA_C_32F CHEEVD

CUDA_C_64F CUDA_R_64F CUDA_C_64F ZHEEVD

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (n<0,
or lda<max(1,n), or jobz is not
CUSOLVER_EIG_MODE_NOVECTOR or
CUSOLVER_EIG_MODE_VECTOR, or uplo
is not CUBLAS_FILL_MODE_LOWER or
CUBLAS_FILL_MODE_UPPER).

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

2.4.5.5. cusolverDnXsyevdx()
The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnXsyevdx_bufferSize(
 cusolverDnHandle_t handle,
 cusolverDnParams_t params,
 cusolverEigMode_t jobz,
 cusolverEigRange_t range,
 cublasFillMode_t uplo,
 int64_t n,
 cudaDataType dataTypeA,
 const void *A,
 int64_t lda,
 void *vl,
 void *vu,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 229

 int64_t il,
 int64_t iu,
 int64_t *h_meig,
 cudaDataType dataTypeW,
 const void *W,
 cudaDataType computeType,
 size_t *workspaceInBytesOnDevice,
 size_t *workspaceInBytesOnHost)

The following routine:

cusolverStatus_t CUSOLVERAPI cusolverDnXsyevdx(
 cusolverDnHandle_t handle,
 cusolverDnParams_t params,
 cusolverEigMode_t jobz,
 cusolverEigRange_t range,
 cublasFillMode_t uplo,
 int64_t n,
 cudaDataType dataTypeA,
 void *A,
 int64_t lda,
 void * vl,
 void * vu,
 int64_t il,
 int64_t iu,
 int64_t *meig64,
 cudaDataType dataTypeW,
 void *W,
 cudaDataType computeType,
 void *bufferOnDevice,
 size_t workspaceInBytesOnDevice,
 void *bufferOnHost,
 size_t workspaceInBytesOnHost,
 int *info)

computes all or selection of the eigenvalues and optionally eigenvectors of a symmetric
(Hermitian) n×n matrix A using the generic API interface. The standard symmetric eigenvalue
problem is

where Λ is a real n×h_meig diagonal matrix. V is an n×h_meig unitary matrix. h_meig is the
number of eigenvalues/eigenvectors computed by the routine, h_meig is equal to n when
the whole spectrum (e.g., range = CUSOLVER_EIG_RANGE_ALL) is requested. The diagonal
elements of Λ are the eigenvalues of A in ascending order.

The user has to provide device and host working spaces which are pointed by
input parameters bufferOnDevice and bufferOnHost. The input parameters
workspaceInBytesOnDevice (and workspaceInBytesOnHost) is size in bytes of the device
(and host) working space, and it is returned by cusolverDnXsyevdx_bufferSize().

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting
handle). If info = i (greater than zero), i off-diagonal elements of an intermediate
tridiagonal form did not converge to zero.

if jobz = CUSOLVER_EIG_MODE_VECTOR, A contains the orthonormal eigenvectors of the
matrix A. The eigenvectors are computed by a divide and conquer algorithm.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 230

Currently, cusolverDnXsyevdx supports only the default algorithm.

Please visit cuSOLVER Library Samples - Xsyevdx for a code example.
Table of algorithms supported by cusolverDnXsyevdx

CUSOLVER_ALG_0 or NULL Default algorithm.

List of input arguments for cusolverDnXsyevdx_bufferSize and cusolverDnXsyevdx:
API of cusolverDnXsyevdx

Parameter Memory In/out Meaning
handle host input Handle to the cuSolverDN library context.

params host input Structure with information collected by
cusolverDnSetAdvOptions.

jobz host input Specifies options to either compute
eigenvalue only or compute eigen-pair:
jobz = CUSOLVER_EIG_MODE_NOVECTOR
: Compute eigenvalues only; jobz =
CUSOLVER_EIG_MODE_VECTOR : Compute
eigenvalues and eigenvectors.

range host input Specifies options to which selection of
eigenvalues and optionally eigenvectors
that need to be computed: range
= CUSOLVER_EIG_RANGE_ALL : all
eigenvalues/eigenvectors will be
found, will becomes the classical
syevd/heevd routine; range =
CUSOLVER_EIG_RANGE_V : all
eigenvalues/eigenvectors in the half-
open interval (vl,vu] will be found; range
= CUSOLVER_EIG_RANGE_I : the il-th
through iu-th eigenvalues/eigenvectors
will be found;

uplo host input Specifies which part of A is stored.
uplo = CUBLAS_FILL_MODE_LOWER:
Lower triangle of A is stored. uplo =
CUBLAS_FILL_MODE_UPPER: Upper
triangle of A is stored.

n host input Number of rows (or columns) of matrix A.

dataTypeA host in Data type of array A.

A device in/out Array of dimension lda * n with lda
is not less than max(1,n). If uplo
= CUBLAS_FILL_MODE_UPPER, the
leading n-by-n upper triangular part
of A contains the upper triangular
part of the matrix A. If uplo =
CUBLAS_FILL_MODE_LOWER, the
leading n-by-n lower triangular part
of A contains the lower triangular
part of the matrix A. On exit, if jobz
= CUSOLVER_EIG_MODE_VECTOR, and

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/Xsyevdx

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 231

Parameter Memory In/out Meaning
info = 0, A contains the orthonormal
eigenvectors of the matrix A. If jobz =
CUSOLVER_EIG_MODE_NOVECTOR, the
contents of A are destroyed.

lda host input Leading dimension of two-dimensional
array used to store matrix A.lda is not
less than max(1,n).

vl,vu host input If range = CUSOLVER_EIG_RANGE_V,
the lower and upper bounds of the
interval to be searched for eigenvalues.
vl > vu. Not referenced if range =
CUSOLVER_EIG_RANGE_ALL or range
= CUSOLVER_EIG_RANGE_I. Note that,
if eigenvalues are very close to each
other, it is well known that two different
eigenvalues routines might find slightly
different number of eigenvalues inside
the same interval. This is due to the fact
that different eigenvalue algorithms,
or even same algorithm but different
run might find eigenvalues within some
rounding error close to the machine
precision. Thus, if the user want to be
sure not to miss any eigenvalue within
the interval bound, we suggest that, the
user substract/add epsilon (machine
precision) to the interval bound such as
(vl=vl-eps, vu=vu+eps]. this suggestion
is valid for any selective routine from
cuSolver or LAPACK.

il,iu host input Integer. If range =
CUSOLVER_EIG_RANGE_I, the indices
(in ascending order) of the smallest
and largest eigenvalues to be returned.
1 <= il <= iu <= n, if n > 0; il = 1 and iu
= 0 if n = 0. Not referenced if range =
CUSOLVER_EIG_RANGE_ALL or range =
CUSOLVER_EIG_RANGE_V.

h_meig host output Integer. The total number of eigenvalues
found. 0 <= h_meig <= n. If range =
CUSOLVER_EIG_RANGE_ALL, h_meig = n,
and if range = CUSOLVER_EIG_RANGE_I,
h_meig = iu-il+1.

dataTypeW host in Data type of array W.

W device output A real array of dimension n. The
eigenvalue values of A, in ascending
order, i.e., sorted so that W(i) <= W(i
+1).

computeType host in Data type of computation.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 232

Parameter Memory In/out Meaning
bufferOnDevice device in/out Device workspace. Array of type void of

size workspaceInBytesOnDevice bytes.

workspaceInBytesOnDevicehost input Size in bytes of
bufferOnDevice, returned by
cusolverDnXpotrf_bufferSize.

bufferOnHost host in/out Host workspace. Array of type void of
size workspaceInBytesOnHost bytes.

workspaceInBytesOnHosthost input Size in bytes of bufferOnHost, returned
by cusolverDnXpotrf_bufferSize.

info device output If info = 0, the operation is successful.
if info = -i, the i-th parameter is
wrong (not counting handle). If info =
i (> 0), info indicates i off-diagonal
elements of an intermediate tridiagonal
form did not converge to zero.

The generic API has three different types, dataTypeA is data type of the matrix A,
dataTypeW is data type of the matrix W and computeType is compute type of the operation.
cusolverDnXsyevdx only supports the following four combinations:
Valid combination of data type and compute type

DataTypeA DataTypeW ComputeType Meaning
CUDA_R_32F CUDA_R_32F CUDA_R_32F SSYEVDX

CUDA_R_64F CUDA_R_64F CUDA_R_64F DSYEVDX

CUDA_C_32F CUDA_R_32F CUDA_C_32F CHEEVDX

CUDA_C_64F CUDA_R_64F CUDA_C_64F ZHEEVDX

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed
(n<0, or lda<max(1,n), or jobz is
not CUSOLVER_EIG_MODE_NOVECTOR
or CUSOLVER_EIG_MODE_VECTOR, or
range is not CUSOLVER_EIG_RANGE_ALL
or CUSOLVER_EIG_RANGE_V or
CUSOLVER_EIG_RANGE_I, or uplo is
not CUBLAS_FILL_MODE_LOWER or
CUBLAS_FILL_MODE_UPPER).

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 233

2.5. cuSolverSP: sparse LAPACK Function
Reference

This section describes the API of cuSolverSP, which provides a subset of LAPACK funtions for
sparse matrices in CSR or CSC format.

2.5.1. Helper Function Reference

2.5.1.1. cusolverSpCreate()

cusolverStatus_t
cusolverSpCreate(cusolverSpHandle_t *handle)

This function initializes the cuSolverSP library and creates a handle on the cuSolver context.
It must be called before any other cuSolverSP API function is invoked. It allocates hardware
resources necessary for accessing the GPU.
Output

handle The pointer to the handle to the cuSolverSP
context.

Status Returned

CUSOLVER_STATUS_SUCCESS The initialization succeeded.

CUSOLVER_STATUS_NOT_INITIALIZED The CUDA Runtime initialization failed.

CUSOLVER_STATUS_ALLOC_FAILED The resources could not be allocated.

CUSOLVER_STATUS_ARCH_MISMATCH The device only supports compute capability 2.0
and above.

2.5.1.2. cusolverSpDestroy()
cusolverStatus_t
cusolverSpDestroy(cusolverSpHandle_t handle)

This function releases CPU-side resources used by the cuSolverSP library.
Input

handle The handle to the cuSolverSP context.

Status Returned

CUSOLVER_STATUS_SUCCESS The shutdown succeeded.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 234

2.5.1.3. cusolverSpSetStream()

cusolverStatus_t
cusolverSpSetStream(cusolverSpHandle_t handle, cudaStream_t streamId)

This function sets the stream to be used by the cuSolverSP library to execute its routines.
Input

handle The handle to the cuSolverSP context.

streamId The stream to be used by the library.

Status Returned

CUSOLVER_STATUS_SUCCESS The stream was set successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

2.5.1.4. cusolverSpXcsrissym()

cusolverStatus_t
cusolverSpXcsrissymHost(cusolverSpHandle_t handle,
 int m,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const int *csrRowPtrA,
 const int *csrEndPtrA,
 const int *csrColIndA,
 int *issym);

This function checks if A has symmetric pattern or not. The output parameter issym reports 1
if A is symmetric; otherwise, it reports 0.

The matrix A is an m×m sparse matrix that is defined in CSR storage format by the four arrays
csrValA, csrRowPtrA, csrEndPtrA and csrColIndA.

The supported matrix type is CUSPARSE_MATRIX_TYPE_GENERAL.

The csrlsvlu and csrlsvqr do not accept non-general matrix. the user has to extend the
matrix into its missing upper/lower part, otherwise the result is not expected. The user can
use csrissym to check if the matrix has symmetric pattern or not.

Remark 1: only CPU path is provided.

Remark 2: the user has to check returned status to get valid information. The function
converts A to CSC format and compare CSR and CSC format. If the CSC failed because of
insufficient resources, issym is undefined, and this state can only be detected by the return
status code.
Input

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 235

Parameter MemorySpace Description
handle host Handle to the cuSolverSP library context.

m host Number of rows and columns of matrix A.

nnzA host Number of nonzeros of matrix A. It is the size of
csrValA and csrColIndA.

descrA host The descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrRowPtrA host Integer array of m elements that contains the start
of every row.

csrEndPtrA host Integer array of m elements that contains the end
of the last row plus one.

csrColIndA host Integer array of nnzAcolumn indices of the
nonzero elements of matrix A.

Output

Parameter MemorySpace Description
issym host 1 if A is symmetric; 0 otherwise.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED The resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (m,nnzA<=0),
base index is not 0 or 1.

CUSOLVER_STATUS_ARCH_MISMATCH The device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED The matrix type is not supported.

2.5.2. High Level Function Reference
This section describes high level API of cuSolverSP, including linear solver, least-square
solver and eigenvalue solver. The high-level API is designed for ease-of-use, so it allocates
any required memory under the hood automatically. If the host or GPU system memory is not
enough, an error is returned.

2.5.2.1. cusolverSp<t>csrlsvlu()

cusolverStatus_t
cusolverSpScsrlsvlu[Host](cusolverSpHandle_t handle,
 int n,
 int nnzA,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 236

 const cusparseMatDescr_t descrA,
 const float *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const float *b,
 float tol,
 int reorder,
 float *x,
 int *singularity);

cusolverStatus_t
cusolverSpDcsrlsvlu[Host](cusolverSpHandle_t handle,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const double *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const double *b,
 double tol,
 int reorder,
 double *x,
 int *singularity);

cusolverStatus_t
cusolverSpCcsrlsvlu[Host](cusolverSpHandle_t handle,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const cuComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const cuComplex *b,
 float tol,
 int reorder,
 cuComplex *x,
 int *singularity);

cusolverStatus_t
cusolverSpZcsrlsvlu[Host](cusolverSpHandle_t handle,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const cuDoubleComplex *b,
 double tol,
 int reorder,
 cuDoubleComplex *x,
 int *singularity);

This function solves the linear system

where A is an n×n sparse matrix that is defined in CSR storage format by the three arrays
csrValA, csrRowPtrA, and csrColIndA. b is the right-hand-side vector of size n, and x is the
solution vector of size n.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 237

The supported matrix type is CUSPARSE_MATRIX_TYPE_GENERAL. If matrix A is symmetric/
Hermitian and only lower/upper part is used or meaningful, the user has to extend the matrix
into its missing upper/lower part, otherwise the result would be wrong.

The linear system is solved by sparse LU with partial pivoting:

cusolver library provides three reordering schemes, symrcm symamd, and csrmetisnd to
reduce zero fill-in which dramactically affects the performance of LU factorization. The input
parameter reorder can enable symrcm (symamd or csrmetisnd) if reorder is 1 (2, or 3),
otherwise, no reordering is performed.

If reorder is nonzero, csrlsvlu does

where .

If A is singular under given tolerance (max(tol,0)), then some diagonal elements of U is zero,
i.e.

The output parameter singularity is the smallest index of such j. If A is non-singular,
singularity is -1. The index is base-0, independent of base index of A. For example, if 2nd
column of A is the same as first column, then A is singular and singularity = 1 which
means U(1,1)≈0.

Remark 1: csrlsvlu performs traditional LU with partial pivoting, the pivot of k-th column is
determined dynamically based on the k-th column of intermediate matrix. csrlsvlu follows
Gilbert and Peierls's algorithm [4] which uses depth-first-search and topological ordering to
solve triangular system (Davis also describes this algorithm in detail in his book [1]). since
cuda 10.1, csrlsvlu will incrementally reallocate the memory to store L and U. This feature
can avoid over-estimate size from QR factorization. In some cases, zero fill-in of QR can be
order of magnitude higher than LU.

Remark 2: only CPU (Host) path is provided.
Input

Parameter
cusolverSp
MemSpace

*Host
MemSpace Description

handle host host Handle to the cuSolverSP library context.

n host host Number of rows and columns of matrix
A.

nnzA host host Number of nonzeros of matrix A.

descrA host host The descriptor of matrix A.
The supported matrix type is
CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 238

Parameter
cusolverSp
MemSpace

*Host
MemSpace Description

csrValA device host <type> array of nnzA csrRowPtrA(n)
 csrRowPtrA(0) nonzero elements of

matrix A.

csrRowPtrA device host Integer array of n elements that
contains the start of every row and the
end of the last row plus one.

csrColIndA device host Integer array of nnzA csrRowPtrA(n)
 csrRowPtrA(0) column indices of the

nonzero elements of matrix A.

b device host Right hand side vector of size n.

tol host host Tolerance to decide if singular or not.

reorder host host No ordering if reorder=0. Otherwise,
symrcm, symamd, or csrmetisnd is used
to reduce zero fill-in.

Output

Parameter
cusolverSp
MemSpace

*Host
MemSpace Description

x device host Solution vector of size n, x = inv(A)*b.

singularity host host -1 if A is invertible. Otherwise, first index
j such that U(j,j)≈0

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED The resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (n,nnzA<=0, base
index is not 0 or 1, reorder is not 0,1,2,3)

CUSOLVER_STATUS_ARCH_MISMATCH The device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED The matrix type is not supported.

2.5.2.2. cusolverSp<t>csrlsvqr()

cusolverStatus_t
cusolverSpScsrlsvqr[Host](cusolverSpHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 const float *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const float *b,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 239

 float tol,
 int reorder,
 float *x,
 int *singularity);

cusolverStatus_t
cusolverSpDcsrlsvqr[Host](cusolverSpHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 const double *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const double *b,
 double tol,
 int reorder,
 double *x,
 int *singularity);

cusolverStatus_t
cusolverSpCcsrlsvqr[Host](cusolverSpHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 const cuComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const cuComplex *b,
 float tol,
 int reorder,
 cuComplex *x,
 int *singularity);

cusolverStatus_t
cusolverSpZcsrlsvqr[Host](cusolverSpHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const cuDoubleComplex *b,
 double tol,
 int reorder,
 cuDoubleComplex *x,
 int *singularity);

This function solves the linear system

A is an m×m sparse matrix that is defined in CSR storage format by the three arrays csrValA,
csrRowPtrA, and csrColIndA. b is the right-hand-side vector of size m, and x is the solution
vector of size m.

The supported matrix type is CUSPARSE_MATRIX_TYPE_GENERAL. If matrix A is symmetric/
Hermitian and only lower/upper part is used or meaningful, the user has to extend the matrix
into its missing upper/lower part, otherwise the result would be wrong.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 240

The linear system is solved by sparse QR factorization,

If A is singular under given tolerance (max(tol,0)), then some diagonal elements of R is zero,
i.e.

The output parameter singularity is the smallest index of such j. If A is non-singular,
singularity is -1. The singularity is base-0, independent of base index of A. For example,
if 2nd column of A is the same as first column, then A is singular and singularity = 1 which
means R(1,1)≈0.

cusolver library provides three reordering schemes, symrcm symamd, and csrmetisnd to
reduce zero fill-in which dramactically affects the performance of QR factorization. The input
parameter reorder can enable symrcm (symamd or csrmetisnd) if reorder is 1 (2, or 3),
otherwise, no reordering is performed.
Input

Parameter
cusolverSp
MemSpace

*Host
MemSpace Description

handle host host Handle to the cuSolverSP library context.

m host host Number of rows and columns of matrix
A.

nnz host host Number of nonzeros of matrix A.

descrA host host The descriptor of matrix A.
The supported matrix type is
CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrValA device host <type> array of nnz csrRowPtrA(m)
 csrRowPtrA(0) nonzero elements of

matrix A.

csrRowPtrA device host Integer array of m elements that
contains the start of every row and the
end of the last row plus one.

csrColIndA device host Integer array of nnz csrRowPtrA(m)
 csrRowPtrA(0) column indices of the

nonzero elements of matrix A.

b device host Right hand side vector of size m.

tol host host Tolerance to decide if singular or not.

reorder host host No ordering if reorder=0. Otherwise,
symrcm, symamd, or csrmetisnd is used
to reduce zero fill-in.

Output

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 241

Parameter
cusolverSp
MemSpace

*Host
MemSpace Description

x device host solution vector of size m, x = inv(A)*b.

singularity host host -1 if A is invertible. Otherwise, first index j
such that R(j,j)≈0

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED The resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (m,nnz<=0, base
index is not 0 or 1, reorder is not 0,1,2,3)

CUSOLVER_STATUS_ARCH_MISMATCH The device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED The matrix type is not supported.

2.5.2.3. cusolverSp<t>csrlsvchol()

cusolverStatus_t
cusolverSpScsrlsvchol[Host](cusolverSpHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 const float *csrVal,
 const int *csrRowPtr,
 const int *csrColInd,
 const float *b,
 float tol,
 int reorder,
 float *x,
 int *singularity);

cusolverStatus_t
cusolverSpDcsrlsvchol[Host](cusolverSpHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 const double *csrVal,
 const int *csrRowPtr,
 const int *csrColInd,
 const double *b,
 double tol,
 int reorder,
 double *x,
 int *singularity);

cusolverStatus_t
cusolverSpCcsrlsvchol[Host](cusolverSpHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 242

 const cuComplex *csrVal,
 const int *csrRowPtr,
 const int *csrColInd,
 const cuComplex *b,
 float tol,
 int reorder,
 cuComplex *x,
 int *singularity);

cusolverStatus_t
cusolverSpZcsrlsvchol[Host](cusolverSpHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *csrVal,
 const int *csrRowPtr,
 const int *csrColInd,
 const cuDoubleComplex *b,
 double tol,
 int reorder,
 cuDoubleComplex *x,
 int *singularity);

This function solves the linear system

A is an m×m symmetric postive definite sparse matrix that is defined in CSR storage format by
the three arrays csrValA, csrRowPtrA, and csrColIndA. b is the right-hand-side vector of
size m, and x is the solution vector of size m.

The supported matrix type is CUSPARSE_MATRIX_TYPE_GENERAL and upper triangular part
of A is ignored (if parameter reorder is zero). In other words, suppose input matrix A is
decomposed as , where L is lower triangular, D is diagonal and U is upper
triangular. The function would ignore U and regard A as a symmetric matrix with the formula

 . If parameter reorder is nonzero, the user has to extend A to a full matrix,
otherwise the solution would be wrong.

The linear system is solved by sparse Cholesky factorization,

where G is the Cholesky factor, a lower triangular matrix.

The output parameter singularity has two meanings:

‣ If A is not postive definite, there exists some integer k such that A(0:k, 0:k) is not
positive definite. singularity is the minimum of such k.

‣ If A is postive definite but near singular under tolerance (max(tol,0)), i.e. there exists
some integer k such that . singularity is the minimum of such k.

singularity is base-0. If A is positive definite and not near singular under tolerance,
singularity is -1. If the user wants to know if A is postive definite or not, tol=0 is enough.

cusolver library provides three reordering schemes, symrcm symamd, and csrmetisnd to
reduce zero fill-in which dramactically affects the performance of Cholesky factorization. The

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 243

input parameter reorder can enable symrcm (symamd or csrmetisnd) if reorder is 1 (2, or 3),
otherwise, no reordering is performed.

Remark 1: the function works for in-place (x and b point to the same memory block) and out-
of-place.

Remark 2: the function only works on 32-bit index, if matrix G has large zero fill-in such that
number of nonzeros is bigger than , then CUSOLVER_STATUS_ALLOC_FAILED is returned.
Input

Parameter
cusolverSp
MemSpace

*Host
MemSpace Description

handle host host Handle to the cuSolverSP library context.

m host host Number of rows and columns of matrix
A.

nnz host host Number of nonzeros of matrix A.

descrA host host The descriptor of matrix A.
The supported matrix type is
CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrValA device host <type> array of nnz csrRowPtrA(m)
 csrRowPtrA(0) nonzero elements of

matrix A.

csrRowPtrA device host Integer array of m elements that
contains the start of every row and the
end of the last row plus one.

csrColIndA device host Integer array of nnz csrRowPtrA(m)
 csrRowPtrA(0) column indices of the

nonzero elements of matrix A.

b device host Right hand side vector of size m.

tol host host Tolerance to decide singularity.

reorder host host No ordering if reorder=0. Otherwise,
symrcm, symamd, or csrmetisnd is used
to reduce zero fill-in.

Output

Parameter
cusolverSp
MemSpace

*Host
MemSpace Description

x device host solution vector of size m, x = inv(A)*b.

singularity host host -1 if A is symmetric postive definite.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 244

CUSOLVER_STATUS_ALLOC_FAILED The resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (m,nnz<=0, base
index is not 0 or 1, reorder is not 0,1,2,3)

CUSOLVER_STATUS_ARCH_MISMATCH The device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED The matrix type is not supported.

2.5.2.4. cusolverSp<t>csrlsqvqr()
The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverSpScsrlsqvqr[Host](cusolverSpHandle_t handle,
 int m,
 int n,
 int nnz,
 const cusparseMatDescr_t descrA,
 const float *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const float *b,
 float tol,
 int *rankA,
 float *x,
 int *p,
 float *min_norm);

cusolverStatus_t
cusolverSpDcsrlsqvqr[Host](cusolverSpHandle_t handle,
 int m,
 int n,
 int nnz,
 const cusparseMatDescr_t descrA,
 const double *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const double *b,
 double tol,
 int *rankA,
 double *x,
 int *p,
 double *min_norm);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverSpCcsrlsqvqr[Host](cusolverSpHandle_t handle,
 int m,
 int n,
 int nnz,
 const cusparseMatDescr_t descrA,
 const cuComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 245

 const cuComplex *b,
 float tol,
 int *rankA,
 cuComplex *x,
 int *p,
 float *min_norm);

cusolverStatus_t
cusolverSpZcsrlsqvqr[Host](cusolverSpHandle_t handle,
 int m,
 int n,
 int nnz,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const cuDoubleComplex *b,
 double tol,
 int *rankA,
 cuDoubleComplex *x,
 int *p,
 double *min_norm);

This function solves the following least-square problem:

A is an m×n sparse matrix that is defined in CSR storage format by the three arrays csrValA,
csrRowPtrA, and csrColIndA. b is the right-hand-side vector of size m, and x is the least-
square solution vector of size n.

The supported matrix type is CUSPARSE_MATRIX_TYPE_GENERAL. If A is square, symmetric/
Hermitian and only lower/upper part is used or meaningful, the user has to extend the matrix
into its missing upper/lower part, otherwise the result is wrong.

This function only works if m is greater or equal to n, in other words, A is a tall matrix.

The least-square problem is solved by sparse QR factorization with column pivoting,

If A is of full rank (i.e. all columns of A are linear independent), then matrix P is an identity.
Suppose rank of A is k, less than n, the permutation matrix P reorders columns of A in the
following sense:

where and A have the same rank, but is almost zero, i.e. every column of is linear
combination of .

The input parameter tol decides numerical rank. The absolute value of every entry in is
less than or equal to tolerance=max(tol,0).

The output parameter rankA denotes numerical rank of A.

Suppose and , the least square problem can be reformed by

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 246

or in matrix form

The output parameter min_norm is , which is minimum value of least-square problem.

If A is not of full rank, above equation does not have a unique solution. The least-square
problem is equivalent to

Or equivalently another least-square problem

The output parameter x is , the solution of least-square problem.

The output parameter p is a vector of size n. It corresponds to a permutation matrix P. p(i)=j
means (P*x)(i) = x(j). If A is of full rank, p=0:n-1.

Remark 1: p is always base 0, independent of base index of A.

Remark 2: only CPU (Host) path is provided.
Input

Parameter
cusolverSp
MemSpace

*Host
MemSpace Description

handle host host Handle to the cuSolver library context.

m host host Number of rows of matrix A.

n host host Number of columns of matrix A.

nnz host host Number of nonzeros of matrix A.

descrA host host The descriptor of matrix A.
The supported matrix type is
CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrValA device host <type> array of nnz csrRowPtrA(m)
 csrRowPtrA(0) nonzero elements of

matrix A.

csrRowPtrA device host Integer array of m elements that
contains the start of every row and the
end of the last row plus one.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 247

Parameter
cusolverSp
MemSpace

*Host
MemSpace Description

csrColIndA device host Integer array of nnz csrRowPtrA(m)
 csrRowPtrA(0) column indices of the

nonzero elements of matrix A.

b device host Right hand side vector of size m.

tol host host Tolerance to decide rank of A.

Output

Parameter
cusolverSp
MemSpace

*Host
MemSpace Description

rankA host host Numerical rank of A.

x device host Solution vector of size n, x=pinv(A)*b.

p device host A vector of size n, which represents
the permuation matrix P satisfying
A*P^T=Q*R.

min_norm host host ||A*x-b||, x=pinv(A)*b.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED The resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (m,n,nnz<=0),
base index is not 0 or 1.

CUSOLVER_STATUS_ARCH_MISMATCH The device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED The matrix type is not supported.

2.5.2.5. cusolverSp<t>csreigvsi()
The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverSpScsreigvsi[Host](cusolverSpHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 const float *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 float mu0,
 const float *x0,
 int maxite,
 float tol,
 float *mu,
 float *x);

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 248

cusolverStatus_t
cusolverSpDcsreigvsi[Host](cusolverSpHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 const double *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 double mu0,
 const double *x0,
 int maxite,
 double tol,
 double *mu,
 double *x);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverSpCcsreigvsi[Host](cusolverSpHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 const cuComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 cuComplex mu0,
 const cuComplex *x0,
 int maxite,
 float tol,
 cuComplex *mu,
 cuComplex *x);

cusolverStatus_t
cusolverSpZcsreigvsi(cusolverSpHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 cuDoubleComplex mu0,
 const cuDoubleComplex *x0,
 int maxite,
 double tol,
 cuDoubleComplex *mu,
 cuDoubleComplex *x);

This function solves the simple eigenvalue problem by shift-inverse method.

A is an m×m sparse matrix that is defined in CSR storage format by the three arrays csrValA,
csrRowPtrA, and csrColIndA. The output paramter x is the approximated eigenvector of size
m,

The following shift-inverse method corrects eigenpair step-by-step until convergence.

It accepts several parameters:

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 249

mu0 is an initial guess of eigenvalue. The shift-inverse method will converge to the eigenvalue
mu nearest mu0 if mu is a singleton. Otherwise, the shift-inverse method may not converge.

x0 is an initial eigenvector. If the user has no preference, just chose x0 randomly. x0 must be
nonzero. It can be non-unit length.

tol is the tolerance to decide convergence. If tol is less than zero, it would be treated as
zero.

maxite is maximum number of iterations. It is useful when shift-inverse method does not
converge because the tolerance is too small or the desired eigenvalue is not a singleton.
Shift-Inverse Method

The supported matrix type is CUSPARSE_MATRIX_TYPE_GENERAL. If A is symmetric/Hermitian
and only lower/upper part is used or meaningful, the user has to extend the matrix into its
missing upper/lower part, otherwise the result is wrong.

Remark 1: [cu|h]solver[S|D]csreigvsi only allows mu0 as a real number. This works if A
is symmetric. Otherwise, the non-real eigenvalue has a conjugate counterpart on the complex
plan, and shift-inverse method would not converge to such eigevalue even the eigenvalue
is a singleton. The user has to extend A to complex numbre and call [cu|h]solver[C|
Z]csreigvsi with mu0 not on real axis.

Remark 2: the tolerance tol should not be smaller than |mu0|*eps, where eps is machine
zero. Otherwise, shift-inverse may not converge because of small tolerance.
Input

Parameter
cusolverSp
MemSpace

*Host
MemSpace Description

handle host host Handle to the cuSolver library context.

m host host Number of rows and columns of matrix
A.

nnz host host Number of nonzeros of matrix A.

descrA host host The descriptor of matrix A.
The supported matrix type is
CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 250

Parameter
cusolverSp
MemSpace

*Host
MemSpace Description

csrValA device host <type> array of nnz csrRowPtrA(m)
 csrRowPtrA(0) nonzero elements of

matrix A.

csrRowPtrA device host Integer array of m elements that
contains the start of every row and the
end of the last row plus one.

csrColIndA device host Integer array of nnz csrRowPtrA(m)
 csrRowPtrA(0) column indices of the

nonzero elements of matrix A.

mu0 host host Initial guess of eigenvalue.

x0 device host Initial guess of eigenvector, a vecotr of
size m.

maxite host host Maximum iterations in shift-inverse
method.

tol host host Tolerance for convergence.

Output

Parameter
cusolverSp
MemSpace

*Host
MemSpace Description

mu device host Approximated eigenvalue nearest mu0
under tolerance.

x device host Approximated eigenvector of size m.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED The resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (m,nnz<=0), base
index is not 0 or 1.

CUSOLVER_STATUS_ARCH_MISMATCH The device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED The matrix type is not supported.

2.5.2.6. cusolverSp<t>csreigs()

cusolverStatus_t
solverspScsreigs[Host](cusolverSpHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 const float *csrValA,
 const int *csrRowPtrA,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 251

 const int *csrColIndA,
 cuComplex left_bottom_corner,
 cuComplex right_upper_corner,
 int *num_eigs);

cusolverStatus_t
cusolverSpDcsreigs[Host](cusolverSpHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 const double *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 cuDoubleComplex left_bottom_corner,
 cuDoubleComplex right_upper_corner,
 int *num_eigs);

cusolverStatus_t
cusolverSpCcsreigs[Host](cusolverSpHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 const cuComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 cuComplex left_bottom_corner,
 cuComplex right_upper_corner,
 int *num_eigs);

cusolverStatus_t
cusolverSpZcsreigs[Host](cusolverSpHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 cuDoubleComplex left_bottom_corner,
 cuDoubleComplex right_upper_corner,
 int *num_eigs);

This function computes number of algebraic eigenvalues in a given box B by contour integral

where closed line C is boundary of the box B which is a rectangle specified by two points, one
is left bottom corner (input parameter left_botoom_corner) and the other is right upper
corner (input parameter right_upper_corner). P(z)=det(A - z*I) is the characteristic
polynomial of A.

A is an m×m sparse matrix that is defined in CSR storage format by the three arrays csrValA,
csrRowPtrA, and csrColIndA.

The output parameter num_eigs is number of algebraic eigenvalues in the box B. This number
may not be accurate due to several reasons:

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 252

 1. The contour C is close to some eigenvalues or even passes through some eigenvalues.

 2. The numerical integration is not accurate due to coarse grid size. The default resolution is
1200 grids along contour C uniformly.

Even though csreigs may not be accurate, it still can give the user some idea how many
eigenvalues in a region where the resolution of disk theorem is bad. For example, standard 3-
point stencil of finite difference of Laplacian operator is a tridiagonal matrix, and disk theorem
would show "all eigenvalues are in the interval [0, 4*N^2]" where N is number of grids. In this
case, csreigs is useful for any interval inside [0, 4*N^2].

Remark 1: if A is symmetric in real or hermitian in complex, all eigenvalues are real. The user
still needs to specify a box, not an interval. The height of the box can be much smaller than the
width.

Remark 2: only CPU (Host) path is provided.
Input

Parameter
cusolverSp
MemSpace

*Host
MemSpace Description

handle host host Handle to the cuSolverSP library context.

m host host Number of rows and columns of matrix
A.

nnz host host Number of nonzeros of matrix A.

descrA host host The descriptor of matrix A.
The supported matrix type is
CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrValA device host <type> array of nnz csrRowPtrA(m)
 csrRowPtrA(0) nonzero elements of

matrix A.

csrRowPtrA device host Integer array of m elements that
contains the start of every row and the
end of the last row plus one.

csrColIndA device host Integer array of nnz csrRowPtrA(m)
 csrRowPtrA(0) column indices of the

nonzero elements of matrix A.

left_bottom_corner host host Left bottom corner of the box.

right_upper_corner host host Right upper corner of the box.

Output

Parameter
cusolverSp
MemSpace

*Host
MemSpace Description

num_eigs host host Number of algebraic eigenvalues in a
box.

Status Returned

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 253

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED The resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (m,nnz<=0), base
index is not 0 or 1.

CUSOLVER_STATUS_ARCH_MISMATCH The device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED The matrix type is not supported.

2.5.3. Low Level Function Reference
This section describes low level API of cuSolverSP, including symrcm and batched QR.

2.5.3.1. cusolverSpXcsrsymrcm()

cusolverStatus_t
cusolverSpXcsrsymrcmHost(cusolverSpHandle_t handle,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 int *p);

This function implements Symmetric Reverse Cuthill-McKee permutation. It returns a
permutation vector p such that A(p,p) would concentrate nonzeros to diagonal. This is
equivalent to symrcm in MATLAB, however the result may not be the same because of different
heuristics in the pseudoperipheral finder. The cuSolverSP library implements symrcm based
on the following two papers:

E. Chuthill and J. McKee, reducing the bandwidth of sparse symmetric matrices, ACM '69
Proceedings of the 1969 24th national conference, Pages 157-172

Alan George, Joseph W. H. Liu, An Implementation of a Pseudoperipheral Node Finder, ACM
Transactions on Mathematical Software (TOMS) Volume 5 Issue 3, Sept. 1979, Pages 284-295

The output parameter p is an integer array of n elements. It represents a permutation
array and it indexed using the base-0 convention. The permutation array p corresponds to a
permutation matrix P, and satisfies the following relation:

A is an n×n sparse matrix that is defined in CSR storage format by the three arrays csrValA,
csrRowPtrA, and csrColIndA.

The supported matrix type is CUSPARSE_MATRIX_TYPE_GENERAL. Internally rcm works on
 , the user does not need to extend the matrix if the matrix is not symmetric.

Remark 1: only CPU (Host) path is provided.
Input

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 254

Parameter
*Host
MemSpace Description

handle host Handle to the cuSolverSP library context.

n host Number of rows and columns of matrix A.

nnzA host Number of nonzeros of matrix A. It is the size of
csrValA and csrColIndA.

descrA host The descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrRowPtrA host Integer array of n+1 elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA host Integer array of nnzAcolumn indices of the
nonzero elements of matrix A.

Output

Parameter hsolver Description
p host Permutation vector of size n.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED The resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (n,nnzA<=0),
base index is not 0 or 1.

CUSOLVER_STATUS_ARCH_MISMATCH The device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED The matrix type is not supported.

2.5.3.2. cusolverSpXcsrsymmdq()

cusolverStatus_t
cusolverSpXcsrsymmdqHost(cusolverSpHandle_t handle,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 int *p);

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 255

This function implements Symmetric Minimum Degree Algorithm based on Quotient Graph. It
returns a permutation vector p such that A(p,p) would have less zero fill-in during Cholesky
factorization. The cuSolverSP library implements symmdq based on the following two papers:

Patrick R. Amestoy, Timothy A. Davis, Iain S. Duff, An Approximate Minimum Degree Ordering
Algorithm, SIAM J. Matrix Analysis Applic. Vol 17, no 4, pp. 886-905, Dec. 1996.

Alan George, Joseph W. Liu, A Fast Implementation of the Minimum Degree Algorithm Using
Quotient Graphs, ACM Transactions on Mathematical Software, Vol 6, No. 3, September 1980,
page 337-358.

The output parameter p is an integer array of n elements. It represents a permutation array
with base-0 index. The permutation array p corresponds to a permutation matrix P, and
satisfies the following relation:

A is an n×n sparse matrix that is defined in CSR storage format by the three arrays csrValA,
csrRowPtrA, and csrColIndA.

The supported matrix type is CUSPARSE_MATRIX_TYPE_GENERAL. Internally mdq works on
 , the user does not need to extend the matrix if the matrix is not symmetric.

Remark 1: only CPU (Host) path is provided.
Input

Parameter
*Host
MemSpace Description

handle host Handle to the cuSolverSP library context.

n host Number of rows and columns of matrix A.

nnzA host Number of nonzeros of matrix A. It is the size of
csrValA and csrColIndA.

descrA host The descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrRowPtrA host Integer array of n+1 elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA host Integer array of nnzAcolumn indices of the
nonzero elements of matrix A.

Output

Parameter hsolver Description
p host Permutation vector of size n.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 256

CUSOLVER_STATUS_ALLOC_FAILED The resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (n,nnzA<=0),
base index is not 0 or 1.

CUSOLVER_STATUS_ARCH_MISMATCH The device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED The matrix type is not supported.

2.5.3.3. cusolverSpXcsrsymamd()

cusolverStatus_t
cusolverSpXcsrsymamdHost(cusolverSpHandle_t handle,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 int *p);

This function implements Symmetric Approximate Minimum Degree Algorithm based on
Quotient Graph. It returns a permutation vector p such that A(p,p) would have less zero fill-
in during Cholesky factorization. The cuSolverSP library implements symamd based on the
following paper:

Patrick R. Amestoy, Timothy A. Davis, Iain S. Duff, An Approximate Minimum Degree Ordering
Algorithm, SIAM J. Matrix Analysis Applic. Vol 17, no 4, pp. 886-905, Dec. 1996.

The output parameter p is an integer array of n elements. It represents a permutation array
with base-0 index. The permutation array p corresponds to a permutation matrix P, and
satisfies the following relation:

A is an n×n sparse matrix that is defined in CSR storage format by the three arrays csrValA,
csrRowPtrA, and csrColIndA.

The supported matrix type is CUSPARSE_MATRIX_TYPE_GENERAL. Internally amd works on
 , the user does not need to extend the matrix if the matrix is not symmetric.

Remark 1: only CPU (Host) path is provided.
Input

Parameter
*Host
MemSpace Description

handle host Handle to the cuSolverSP library context.

n host Number of rows and columns of matrix A.

nnzA host Number of nonzeros of matrix A. It is the size of
csrValA and csrColIndA.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 257

Parameter
*Host
MemSpace Description

descrA host The descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrRowPtrA host Integer array of n+1 elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA host Integer array of nnzAcolumn indices of the
nonzero elements of matrix A.

Output

Parameter hsolver Description
p host Permutation vector of size n.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED The resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (n,nnzA<=0),
base index is not 0 or 1.

CUSOLVER_STATUS_ARCH_MISMATCH The device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

2.5.3.4. cusolverSpXcsrmetisnd()

cusolverStatus_t
cusolverSpXcsrmetisndHost(
 cusolverSpHandle_t handle,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const int64_t *options,
 int *p);

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 258

This function is a wrapper of METIS_NodeND. It returns a permutation vector p such that
A(p,p) would have less zero fill-in during nested dissection. The cuSolverSP library links
libmetis_static.a which is 64-bit metis-5.1.0 .

Note: Thelibmetis_static.a library is deprecated and will be removed in the next major
release. Use thelibcusolver_metis_static.a instead.

The parameter options is the configuration of metis. For those who do not have experiences
of metis, set options = NULL for default setting.

The output parameter p is an integer array of n elements. It represents a permutation array
with base-0 index. The permutation array p corresponds to a permutation matrix P, and
satisfies the following relation:

A is an n×n sparse matrix that is defined in CSR storage format by the three arrays csrValA,
csrRowPtrA, and csrColIndA.

The supported matrix type is CUSPARSE_MATRIX_TYPE_GENERAL. Internally csrmetisnd works
on , the user does not need to extend the matrix if the matrix is not symmetric.

Remark 1: only CPU (Host) path is provided.
Input

Parameter
*Host
MemSpace Description

handle host Handle to the cuSolverSP library context.

n host Number of rows and columns of matrix A.

nnzA host Number of nonzeros of matrix A. It is the size of
csrValA and csrColIndA.

descrA host The descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrRowPtrA host Integer array of n+1 elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA host Integer array of nnzAcolumn indices of the
nonzero elements of matrix A.

options host Integer array to configure metis.

Output

Parameter
*Host
MemSpace Description

p host Permutation vector of size n.

Status Returned

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 259

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED The resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (n,nnzA<=0),
base index is not 0 or 1.

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED The matrix type is not supported.

2.5.3.5. cusolverSpXcsrzfd()

cusolverStatus_t
cusolverSpScsrzfdHost(
 cusolverSpHandle_t handle,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const float *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 int *P,
 int *numnz)

cusolverStatus_t
cusolverSpDcsrzfdHost(
 cusolverSpHandle_t handle,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const double *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 int *P,
 int *numnz)

cusolverStatus_t
cusolverSpCcsrzfdHost(
 cusolverSpHandle_t handle,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const cuComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 int *P,
 int *numnz)

cusolverStatus_t
cusolverSpZcsrzfdHost(
 cusolverSpHandle_t handle,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 260

 int *P,
 int *numnz)

This function implements MC21, zero-free diagonal algorithm. It returns a permutation vector
p such that A(p,:) has no zero diagonal.

A is an n×n sparse matrix that is defined in CSR storage format by the three
arrays csrValA, csrRowPtrA, and csrColIndA. The supported matrix type is
CUSPARSE_MATRIX_TYPE_GENERAL.

The output parameter p is an integer array of n elements. It represents a permutation array
with base-0 index. The permutation array p corresponds to a permutation matrix P, and
satisfies the following relation:

The output parameter numnz describes number of nonzero diagonal in permutated matrix
A(p,:). If numnz is less than n, matrix A has structural singularity.

Remark 1: only CPU (Host) path is provided.

Remark 2: this routine does not maximize diagonal value of permuted matrix. The user cannot
expect this routine can make "LU without pivoting" stable.
Input

Parameter
*Host
MemSpace Description

handle host Handle to the cuSolverSP library context.

n host Number of rows and columns of matrix A.

nnzA host Number of nonzeros of matrix A. It is the size of
csrValA and csrColIndA.

descrA host The descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrValA host <type> array of nnzA csrRowPtrA(m)
csrRowPtrA(0) nonzero elements of matrix A.

csrRowPtrA host Integer array of n+1 elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA host Integer array of nnzAcolumn indices of the
nonzero elements of matrix A.

Output

Parameter
*Host
MemSpace Description

p host Permutation vector of size n.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 261

Parameter
*Host
MemSpace Description

numnz host Number of nonzeros on diagonal of permuted
matrix.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED The resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (n,nnzA<=0),
base index is not 0 or 1.

CUSOLVER_STATUS_ARCH_MISMATCH The device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED The matrix type is not supported.

2.5.3.6. cusolverSpXcsrperm()

cusolverStatus_t
cusolverSpXcsrperm_bufferSizeHost(cusolverSpHandle_t handle,
 int m,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 int *csrRowPtrA,
 int *csrColIndA,
 const int *p,
 const int *q,
 size_t *bufferSizeInBytes);

cusolverStatus_t
cusolverSpXcsrpermHost(cusolverSpHandle_t handle,
 int m,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 int *csrRowPtrA,
 int *csrColIndA,
 const int *p,
 const int *q,
 int *map,
 void *pBuffer);

Given a left permutation vector p which corresponds to permutation matrix P and a right
permutation vector q which corresponds to permutation matrix Q, this function computes
permutation of matrix A by

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 262

A is an m×n sparse matrix that is defined in CSR storage format by the three arrays csrValA,
csrRowPtrA and csrColIndA.

The operation is in-place, i.e. the matrix A is overwritten by B.

The permutation vector p and q are base 0. p performs row permutation while q performs
column permutation. One can also use MATLAB command to permutate matrix A.

This function only computes sparsity pattern of B. The user can use parameter map to get
csrValB as well. The parameter map is an input/output. If the user sets map=0:1:(nnzA-1)
before calling csrperm, csrValB=csrValA(map).

The supported matrix type is CUSPARSE_MATRIX_TYPE_GENERAL. If A is symmetric and only
lower/upper part is provided, the user has to pass into this function.

This function requires a buffer size returned by csrperm_bufferSize(). The address of
pBuffer must be a multiple of 128 bytes. If it is not, CUSOLVER_STATUS_INVALID_VALUE is
returned.

For example, if matrix A is

and left permutation vector p=(0,2,1), right permutation vector q=(2,1,0), then is

Remark 1: only CPU (Host) path is provided.

Remark 2: the user can combine csrsymrcm and csrperm to get which has less zero
fill-in during QR factorization.
Input

Parameter
cusolverSp
MemSpace Description

handle host Handle to the cuSolver library context.

m host Number of rows of matrix A.

n host Number of columns of matrix A.

nnzA host Number of nonzeros of matrix A. It is the size of
csrValA and csrColIndA.

descrA host The descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrRowPtrA host Integer array of m+1 elements that contains the
start of every row and end of last row plus one of
matrix A.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 263

Parameter
cusolverSp
MemSpace Description

csrColIndA host Integer array of nnzAcolumn indices of the
nonzero elements of matrix A.

p host Left permutation vector of size m.

q host Right permutation vector of size n.

map host Integer array of nnzA indices. If the user wants to
get relationship between A and B, map must be set
0:1:(nnzA-1).

pBuffer host Buffer allocated by the user, the size is returned
by csrperm_bufferSize().

Output

Parameter hsolver Description
csrRowPtrA host Integer array of m+1 elements that contains the

start of every row and end of last row plus one of
matrix B.

csrColIndA host Integer array of nnzAcolumn indices of the
nonzero elements of matrix B.

map host Integer array of nnzA indices that maps matrix A
to matrix B.

pBufferSizeInBytes host Number of bytes of the buffer.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED The resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (m,n,nnzA<=0),
base index is not 0 or 1.

CUSOLVER_STATUS_ARCH_MISMATCH The device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED The matrix type is not supported.

2.5.3.7. cusolverSpXcsrqrBatched()
The create and destroy methods start and end the lifetime of a csrqrInfo object.

cusolverStatus_t
cusolverSpCreateCsrqrInfo(csrqrInfo_t *info);

cusolverStatus_t
cusolverSpDestroyCsrqrInfo(csrqrInfo_t info);

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 264

Analysis is the same for all data types, but each data type has a unique buffer size.

cusolverStatus_t
cusolverSpXcsrqrAnalysisBatched(cusolverSpHandle_t handle,
 int m,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csrqrInfo_t info);

cusolverStatus_t
cusolverSpScsrqrBufferInfoBatched(cusolverSpHandle_t handle,
 int m,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const float *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 int batchSize,
 csrqrInfo_t info,
 size_t *internalDataInBytes,
 size_t *workspaceInBytes);

cusolverStatus_t
cusolverSpDcsrqrBufferInfoBatched(cusolverSpHandle_t handle,
 int m,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const double *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 int batchSize,
 csrqrInfo_t info,
 size_t *internalDataInBytes,
 size_t *workspaceInBytes);

Calculate buffer sizes for complex valued data types.

cusolverStatus_t
cusolverSpCcsrqrBufferInfoBatched(cusolverSpHandle_t handle,
 int m,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const cuComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 int batchSize,
 csrqrInfo_t info,
 size_t *internalDataInBytes,
 size_t *workspaceInBytes);

cusolverStatus_t
cusolverSpZcsrqrBufferInfoBatched(cusolverSpHandle_t handle,
 int m,

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 265

 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 int batchSize,
 csrqrInfo_t info,
 size_t *internalDataInBytes,
 size_t *workspaceInBytes);

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverSpScsrqrsvBatched(cusolverSpHandle_t handle,
 int m,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const float *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const float *b,
 float *x,
 int batchSize,
 csrqrInfo_t info,
 void *pBuffer);

cusolverStatus_t
cusolverSpDcsrqrsvBatched(cusolverSpHandle_t handle,
 int m,
 int n,
 int nnz,
 const cusparseMatDescr_t descrA,
 const double *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const double *b,
 double *x,
 int batchSize,
 csrqrInfo_t info,
 void *pBuffer);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverSpCcsrqrsvBatched(cusolverSpHandle_t handle,
 int m,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const cuComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const cuComplex *b,
 cuComplex *x,
 int batchSize,
 csrqrInfo_t info,
 void *pBuffer);

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 266

cusolverStatus_t
cusolverSpZcsrqrsvBatched(cusolverSpHandle_t handle,
 int m,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const cuDoubleComplex *b,
 cuDoubleComplex *x,
 int batchSize,
 csrqrInfo_t info,
 void *pBuffer);

The batched sparse QR factorization is used to solve either a set of least-squares problems

or a set of linear systems

where each is a m×n sparse matrix that is defined in CSR storage format by the four arrays
csrValA, csrRowPtrA and csrColIndA.

The supported matrix type is CUSPARSE_MATRIX_TYPE_GENERAL. If A is symmetric and only
lower/upper part is prvided, the user has to pass into this function.

The prerequisite to use batched sparse QR has two-folds. First all matrices must have the
same sparsity pattern. Second, no column pivoting is used in least-square problem, so the
solution is valid only if is of full rank for all j = 1,2,..., batchSize . All matrices have
the same sparity pattern, so only one copy of csrRowPtrA and csrColIndA is used. But the
array csrValA stores coefficients of one after another. In other words, csrValA[k*nnzA :
(k+1)*nnzA] is the value of .

The batched QR uses opaque data structure csrqrInfo to keep intermediate data, for
example, matrix Q and matrix R of QR factorization. The user needs to create csrqrInfo
first by cusolverSpCreateCsrqrInfo before any function in batched QR operation. The
csrqrInfo would not release internal data until cusolverSpDestroyCsrqrInfo is called.

There are three routines in batched sparse QR, cusolverSpXcsrqrAnalysisBatched,
cusolverSp[S|D|C|Z]csrqrBufferInfoBatched and cusolverSp[S|D|C|
Z]csrqrsvBatched.

First, cusolverSpXcsrqrAnalysisBatched is the analysis phase, used to analyze sparsity
pattern of matrix Q and matrix R of QR factorization. Also parallelism is extracted during
analysis phase. Once analysis phase is done, the size of working space to perform QR is
known. However cusolverSpXcsrqrAnalysisBatched uses CPU to analyze the structure of
matrix A, and this may consume a lot of memory. If host memory is not sufficient to finish the
analysis, CUSOLVER_STATUS_ALLOC_FAILED is returned. The required memory for analysis
is proportional to zero fill-in in QR factorization. The user may need to perform some kind of
reordering to minimize zero fill-in, for example, colamd or symrcm in MATLAB. cuSolverSP
library provides symrcm (cusolverSpXcsrsymrcm).

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 267

Second, the user needs to choose proper batchSize and to prepare working space for
sparse QR. There are two memory blocks used in batched sparse QR. One is internal
memory block used to store matrix Q and matrix R. The other is working space used to
perform numerical factorization. The size of the former is proportional to batchSize, and
the size is specified by returned parameter internalDataInBytes of cusolverSp[S|D|C|
Z]csrqrBufferInfoBatched. while the size of the latter is almost independent of batchSize,
and the size is specified by returned parameter workspaceInBytes of cusolverSp[S|D|C|
Z]csrqrBufferInfoBatched. The internal memory block is allocated implicitly during first
call of cusolverSp[S|D|C|Z]csrqrsvBatched. The user only needs to allocate working
space for cusolverSp[S|D|C|Z]csrqrsvBatched.

Instead of trying all batched matrices, the user can find maximum batchSize by querying
cusolverSp[S|D|C|Z]csrqrBufferInfoBatched. For example, the user can increase
batchSize till summation of internalDataInBytes and workspaceInBytes is greater than
size of available device memory.

Suppose that the user needs to perform 253 linear solvers and available device memory
is 2GB. if cusolverSp[S|D|C|Z]csrqrsvBatched can only afford batchSize 100, the
user has to call cusolverSp[S|D|C|Z]csrqrsvBatched three times to finish all. The
user calls cusolverSp[S|D|C|Z]csrqrBufferInfoBatched with batchSize 100. The
opaque info would remember this batchSize and any subsequent call of cusolverSp[S|
D|C|Z]csrqrsvBatched cannot exceed this value. In this example, the first two calls
of cusolverSp[S|D|C|Z]csrqrsvBatched will use batchSize 100, and last call of
cusolverSp[S|D|C|Z]csrqrsvBatched will use batchSize 53.

Example: suppose that A0, A1, .., A9 have the same sparsity pattern, the following code solves
10 linear systems by batched sparse QR.

// Suppose that A0, A1, .., A9 are m x m sparse matrix represented by CSR format,
// Each matrix Aj has nonzero nnzA, and shares the same csrRowPtrA and csrColIndA.
// csrValA is aggregation of A0, A1, ..., A9.
int m ; // number of rows and columns of each Aj
int nnzA ; // number of nonzeros of each Aj
int *csrRowPtrA ; // each Aj has the same csrRowPtrA
int *csrColIndA ; // each Aj has the same csrColIndA
double *csrValA ; // aggregation of A0,A1,...,A9
cont int batchSize = 10; // 10 linear systems

cusolverSpHandle_t handle; // handle to cusolver library
csrqrInfo_t info = NULL;
cusparseMatDescr_t descrA = NULL;
void *pBuffer = NULL; // working space for numerical factorization

// step 1: create a descriptor
cusparseCreateMatDescr(&descrA);
cusparseSetMatIndexBase(descrA, CUSPARSE_INDEX_BASE_ONE); // A is base-1
cusparseSetMatType(descrA, CUSPARSE_MATRIX_TYPE_GENERAL); // A is a general matrix

// step 2: create empty info structure
cusolverSpCreateCsrqrInfo(&info);

// step 3: symbolic analysis
cusolverSpXcsrqrAnalysisBatched(
 handle, m, m, nnzA,
 descrA, csrRowPtrA, csrColIndA, info);

// step 4: allocate working space for Aj*xj=bj

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 268

cusolverSpDcsrqrBufferInfoBatched(
 handle, m, m, nnzA,
 descrA,
 csrValA, csrRowPtrA, csrColIndA,
 batchSize,
 info,
 &internalDataInBytes,
 &workspaceInBytes);

cudaMalloc(&pBuffer, workspaceInBytes);

// step 5: solve Aj*xj = bj
cusolverSpDcsrqrsvBatched(
 handle, m, m, nnzA,
 descrA, csrValA, csrRowPtrA, csrColIndA,
 b,
 x,
 batchSize,
 info,
 pBuffer);

// step 7: destroy info
cusolverSpDestroyCsrqrInfo(info);

Please refer to cuSOLVER Library Samples - csrqr for a code example.

Remark 1: only GPU (device) path is provided.
Input

Parameter
cusolverSp
MemSpace Description

handle host Handle to the cuSolverSP library context.

m host Number of rows of each matrix Aj.

n host Number of columns of each matrix Aj.

nnzA host Number of nonzeros of each matrix Aj. It is the
size csrColIndA.

descrA host The descriptor of each matrix Aj. The supported
matrix type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrValA device <type> array of nnzA*batchSize nonzero
elements of matrices A0, A1, All matrices
are aggregated one after another.

csrRowPtrA device Integer array of m+1 elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA device Integer array of nnzAcolumn indices of the
nonzero elements of each matrix Aj.

b device <type> array of m*batchSize of right-hand-side
vectors b0, b1, All vectors are aggregated
one after another.

batchSize host Number of systems to be solved.

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/csrqr

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 269

Parameter
cusolverSp
MemSpace Description

info host Opaque structure for QR factorization.

pBuffer device Buffer allocated by the user, the size is returned
by cusolverSpXcsrqrBufferInfoBatched().

Output

Parameter
cusolverSp
MemSpace Description

x device <type> array of m*batchSize of solution vectors
x0, x1, All vectors are aggregated one
after another.

internalDataInBytes host Number of bytes of the internal data.

workspaceInBytes host Number of bytes of the buffer in numerical
factorization.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED The resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (m,n,nnzA<=0),
base index is not 0 or 1.

CUSOLVER_STATUS_ARCH_MISMATCH The device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED The matrix type is not supported.

2.6. cuSolverRF: Refactorization
Reference

This section describes API of cuSolverRF, a library for fast refactorization.

2.6.1. cusolverRfAccessBundledFactors()

cusolverStatus_t
cusolverRfAccessBundledFactors(/* Input */
 cusolverRfHandle_t handle,
 /* Output (in the host memory) */
 int* nnzM,
 /* Output (in the device memory) */
 int** Mp,
 int** Mi,
 double** Mx);

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 270

This routine allows direct access to the lower L and upper U triangular factors stored in
the cuSolverRF library handle. The factors are compressed into a single matrix M=(L-
I)+U, where the unitary diagonal of L is not stored. It is assumed that a prior call to the
cusolverRfRefactor() was done in order to generate these triangular factors.

Parameter MemSpace In/out Meaning
handle host input The handle to the cuSolverRF library.

nnzM host output The number of non-zero elements of
matrix M.

Mp device output The array of offsets corresponding to the
start of each row in the arrays Mi and Mx.
This array has also an extra entry at the
end that stores the number of non-zero
elements in the matrix M. The array
size is n+1.

Mi device output The array of column indices
corresponding to the non-zero elements
in the matrix M. It is assumed that this
array is sorted by row and by column
within each row. The array size is nnzM.

Mx device output The array of values corresponding to the
non-zero elements in the matrix M. It is
assumed that this array is sorted by row
and by column within each row. The array
size is nnzM.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_EXECUTION_FAILED A kernel failed to launch on the GPU.

2.6.2. cusolverRfAnalyze()

cusolverStatus_t
cusolverRfAnalyze(cusolverRfHandle_t handle);

This routine performs the appropriate analysis of parallelism available in the LU re-
factorization depending upon the algorithm chosen by the user.

It is assumed that a prior call to the cusolverRfSetup[Host|Device]() was done in order to
create internal data structures needed for the analysis.

This routine needs to be called only once for a single linear system

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 271

Parameter MemSpace In/out Meaning
handle host in/out The handle to the cuSolverRF library.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_EXECUTION_FAILED A kernel failed to launch on the GPU.

CUSOLVER_STATUS_ALLOC_FAILED An allocation of memory failed.

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

2.6.3. cusolverRfSetupDevice()

cusolverStatus_t
cusolverRfSetupDevice(/* Input (in the device memory) */
 int n,
 int nnzA,
 int* csrRowPtrA,
 int* csrColIndA,
 double* csrValA,
 int nnzL,
 int* csrRowPtrL,
 int* csrColIndL,
 double* csrValL,
 int nnzU,
 int* csrRowPtrU,
 int* csrColIndU,
 double* csrValU,
 int* P,
 int* Q,
 /* Output */
 cusolverRfHandle_t handle);

This routine assembles the internal data structures of the cuSolverRF library. It is often the
first routine to be called after the call to the cusolverRfCreate() routine.

This routine accepts as input (on the device) the original matrix A, the lower (L) and upper (U)
triangular factors, as well as the left (P) and the right (Q) permutations resulting from the
full LU factorization of the first (i=1) linear system

The permutations P and Q represent the final composition of all the left and right reorderings
applied to the original matrix A, respectively. However, these permutations are often
associated with partial pivoting and reordering to minimize fill-in, respectively.

This routine needs to be called only once for a single linear system

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 272

Parameter MemSpace In/out Meaning
n host input The number of rows (and columns) of

matrix A.

nnzA host input The number of non-zero elements of
matrix A.

csrRowPtrA device input The array of offsets corresponding
to the start of each row in the arrays
csrColIndA and csrValA. This array has
also an extra entry at the end that stores
the number of non-zero elements in the
matrix. The array size is n+1.

csrColIndA device input The array of column indices
corresponding to the non-zero elements
in the matrix. It is assumed that this
array is sorted by row and by column
within each row. The array size is nnzA.

csrValA device input The array of values corresponding to the
non-zero elements in the matrix. It is
assumed that this array is sorted by row
and by column within each row. The array
size is nnzA.

nnzL host input The number of non-zero elements of
matrix L.

csrRowPtrL device input The array of offsets corresponding
to the start of each row in the arrays
csrColIndL and csrValL. This array has
also an extra entry at the end that stores
the number of non-zero elements in the
matrix L. The array size is n+1.

csrColIndL device input The array of column indices
corresponding to the non-zero elements
in the matrix L. It is assumed that this
array is sorted by row and by column
within each row. The array size is nnzL.

csrValL device input The array of values corresponding to the
non-zero elements in the matrix L. It is
assumed that this array is sorted by row
and by column within each row. The array
size is nnzL.

nnzU host input the number of non-zero elements of
matrix U.

csrRowPtrU device input The array of offsets corresponding
to the start of each row in the arrays
csrColIndU and csrValU. This array has
also an extra entry at the end that stores
the number of non-zero elements in the
matrix U. The array size is n+1.

csrColIndU device input The array of column indices
corresponding to the non-zero elements

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 273

Parameter MemSpace In/out Meaning
in the matrix U. It is assumed that this
array is sorted by row and by column
within each row. The array size is nnzU.

csrValU device input The array of values corresponding to the
non-zero elements in the matrix U. It is
assumed that this array is sorted by row
and by column within each row. The array
size is nnzU.

P device input The left permutation (often associated
with pivoting). The array size in n.

Q device input The right permutation (often associated
with reordering). The array size in n.

handle host output The handle to the GLU library.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE An unsupported value or parameter was passed.

CUSOLVER_STATUS_ALLOC_FAILED An allocation of memory failed.

CUSOLVER_STATUS_EXECUTION_FAILED A kernel failed to launch on the GPU.

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

2.6.4. cusolverRfSetupHost()

cusolverStatus_t
cusolverRfSetupHost(/* Input (in the host memory) */
 int n,
 int nnzA,
 int* h_csrRowPtrA,
 int* h_csrColIndA,
 double* h_csrValA,
 int nnzL,
 int* h_csrRowPtrL,
 int* h_csrColIndL,
 double* h_csrValL,
 int nnzU,
 int* h_csrRowPtrU,
 int* h_csrColIndU,
 double* h_csrValU,
 int* h_P,
 int* h_Q,
 /* Output */
 cusolverRfHandle_t handle);

This routine assembles the internal data structures of the cuSolverRF library. It is often the
first routine to be called after the call to the cusolverRfCreate() routine.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 274

This routine accepts as input (on the host) the original matrix A, the lower (L) and upper (U)
triangular factors, as well as the left (P) and the right (Q) permutations resulting from the
full LU factorization of the first (i=1) linear system

The permutations P and Q represent the final composition of all the left and right reorderings
applied to the original matrix A, respectively. However, these permutations are often
associated with partial pivoting and reordering to minimize fill-in, respectively.

This routine needs to be called only once for a single linear system

Parameter MemSpace In/out Meaning
n host input The number of rows (and columns) of

matrix A.

nnzA host input The number of non-zero elements of
matrix A.

h_csrRowPtrA host input The array of offsets corresponding
to the start of each row in the arrays
h_csrColIndA and h_csrValA. This
array has also an extra entry at the end
that stores the number of non-zero
elements in the matrix. The array size is
n+1.

h_csrColIndA host input The array of column indices
corresponding to the non-zero elements
in the matrix. It is assumed that this
array is sorted by row and by column
within each row. The array size is nnzA.

h_csrValA host input The array of values corresponding to the
non-zero elements in the matrix. It is
assumed that this array is sorted by row
and by column within each row. The array
size is nnzA.

nnzL host input The number of non-zero elements of
matrix L.

h_csrRowPtrL host input The array of offsets corresponding
to the start of each row in the arrays
h_csrColIndL and h_csrValL. This
array has also an extra entry at the end
that stores the number of non-zero
elements in the matrix L. The array size
is n+1.

h_csrColIndL host input The array of column indices
corresponding to the non-zero elements
in the matrix L. It is assumed that this
array is sorted by row and by column
within each row. The array size is nnzL.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 275

Parameter MemSpace In/out Meaning
h_csrValL host input The array of values corresponding to the

non-zero elements in the matrix L. It is
assumed that this array is sorted by row
and by column within each row. The array
size is nnzL.

nnzU host input The number of non-zero elements of
matrix U.

h_csrRowPtrU host input The array of offsets corresponding
to the start of each row in the arrays
h_csrColIndU and h_csrValU. This
array has also an extra entry at the end
that stores the number of non-zero
elements in the matrix U. The array size
is n+1.

h_csrColIndU host input The array of column indices
corresponding to the non-zero elements
in the matrix U. It is assumed that this
array is sorted by row and by column
within each row. The array size is nnzU.

h_csrValU host input The array of values corresponding to the
non-zero elements in the matrix U. It is
assumed that this array is sorted by row
and by column within each row. The array
size is nnzU.

h_P host input The left permutation (often associated
with pivoting). The array size in n.

h_Q host input The right permutation (often associated
with reordering). The array size in n.

handle host output The handle to the cuSolverRF library.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE An unsupported value or parameter was passed.

CUSOLVER_STATUS_ALLOC_FAILED An allocation of memory failed.

CUSOLVER_STATUS_EXECUTION_FAILED A kernel failed to launch on the GPU.

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

2.6.5. cusolverRfCreate()

cusolverStatus_t cusolverRfCreate(cusolverRfHandle_t *handle);

This routine initializes the cuSolverRF library. It allocates required resources and must be
called prior to any other cuSolverRF library routine.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 276

Parameter MemSpace In/out Meaning
handle host output The pointer to the cuSolverRF library

handle.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED An allocation of memory failed.

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

2.6.6. cusolverRfExtractBundledFactorsHost()

cusolverStatus_t
cusolverRfExtractBundledFactorsHost(/* Input */
 cusolverRfHandle_t handle,
 /* Output (in the host memory) */
 int* h_nnzM,
 int** h_Mp,
 int** h_Mi,
 double** h_Mx);

This routine extracts lower (L) and upper (U) triangular factors from the cuSolverRF
library handle into the host memory. The factors are compressed into a single matrix M=(L-
I)+U, where the unitary diagonal of (L) is not stored. It is assumed that a prior call to the
cusolverRfRefactor() was done in order to generate these triangular factors.

Parameter MemSpace In/out Meaning
handle host input The handle to the cuSolverRF library.

h_nnzM host output The number of non-zero elements of
matrix M.

h_Mp host output The array of offsets corresponding to the
start of each row in the arrays h_Mi and
h_Mx. This array has also an extra entry
at the end that stores the number of non-
zero elements in the matrix M. The array
size is n+1.

h_Mi host output The array of column indices
corresponding to the non-zero elements
in the matrix. It is assumed that this
array is sorted by row and by column
within each row. The array size is
h_nnzM.

h_Mx host output The array of values corresponding to the
non-zero elements in the matrix. It is
assumed that this array is sorted by row

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 277

Parameter MemSpace In/out Meaning
and by column within each row. The array
size is h_nnzM.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED An allocation of memory failed.

CUSOLVER_STATUS_EXECUTION_FAILED A kernel failed to launch on the GPU.

2.6.7. cusolverRfExtractSplitFactorsHost()

cusolverStatus_t
cusolverRfExtractSplitFactorsHost(/* Input */
 cusolverRfHandle_t handle,
 /* Output (in the host memory) */
 int* h_nnzL,
 int** h_Lp,
 int** h_Li,
 double** h_Lx,
 int* h_nnzU,
 int** h_Up,
 int** h_Ui,
 double** h_Ux);

This routine extracts lower (L) and upper (U) triangular factors from the cuSolverRF library
handle into the host memory. It is assumed that a prior call to the cusolverRfRefactor()
was done in order to generate these triangular factors.

Parameter MemSpace In/out Meaning
handle host input The handle to the cuSolverRF library.

h_nnzL host output The number of non-zero elements of
matrix L.

h_Lp host output The array of offsets corresponding to the
start of each row in the arrays h_Li and
h_Lx. This array has also an extra entry
at the end that stores the number of non-
zero elements in the matrix L. The array
size is n+1.

h_Li host output The array of column indices
corresponding to the non-zero elements
in the matrix L. It is assumed that this
array is sorted by row and by column
within each row. The array size is
h_nnzL.

h_Lx host output The array of values corresponding to the
non-zero elements in the matrix L. It is
assumed that this array is sorted by row

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 278

Parameter MemSpace In/out Meaning
and by column within each row. The array
size is h_nnzL.

h_nnzU host output The number of non-zero elements of
matrix U.

h_Up host output The array of offsets corresponding to the
start of each row in the arrays h_Ui and
h_Ux. This array has also an extra entry
at the end that stores the number of non-
zero elements in the matrix U. The array
size is n+1.

h_Ui host output The array of column indices
corresponding to the non-zero elements
in the matrix U. It is assumed that this
array is sorted by row and by column
within each row. The array size is
h_nnzU.

h_Ux host output The array of values corresponding to the
non-zero elements in the matrix U. It is
assumed that this array is sorted by row
and by column within each row. The array
size is h_nnzU.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED An allocation of memory failed.

CUSOLVER_STATUS_EXECUTION_FAILED A kernel failed to launch on the GPU.

2.6.8. cusolverRfDestroy()

cusolverStatus_t cusolverRfDestroy(cusolverRfHandle_t handle);

This routine shuts down the cuSolverRF library. It releases acquired resources and must be
called after all the cuSolverRF library routines.

Parameter MemSpace In/out Meaning
handle host input The cuSolverRF library handle.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 279

2.6.9. cusolverRfGetMatrixFormat()

cusolverStatus_t
cusolverRfGetMatrixFormat(cusolverRfHandle_t handle,
 cusolverRfMatrixFormat_t *format,
 cusolverRfUnitDiagonal_t *diag);

This routine gets the matrix format used in the cusolverRfSetupDevice(),
cusolverRfSetupHost(), cusolverRfResetValues(),
cusolverRfExtractBundledFactorsHost() and cusolverRfExtractSplitFactorsHost()
routines.

Parameter MemSpace In/out Meaning
handle host input The handle to the cuSolverRF library.

format host output The enumerated matrix format type.

diag host output The enumerated unit diagonal type.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

2.6.10. cusolverRfGetNumericProperties()

cusolverStatus_t
cusolverRfGetNumericProperties(cusolverRfHandle_t handle,
 double *zero,
 double *boost);

This routine gets the numeric values used for checking for ''zero'' pivot and for boosting it in
the cusolverRfRefactor() and cusolverRfSolve() routines. The numeric boosting will be
used only if boost > 0.0.

Parameter MemSpace In/out Meaning
handle host input The handle to the cuSolverRF library.

zero host output The value below which zero pivot is
flagged.

boost host output The value which is substituted for zero
pivot (if the later is flagged).

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 280

2.6.11. cusolverRfGetNumericBoostReport()

cusolverStatus_t
cusolverRfGetNumericBoostReport(cusolverRfHandle_t handle,
 cusolverRfNumericBoostReport_t *report);

This routine gets the report whether numeric boosting was used in the
cusolverRfRefactor() and cusolverRfSolve() routines.

Parameter MemSpace In/out Meaning
handle host input The handle to the cuSolverRF library.

report host output The enumerated boosting report type.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

2.6.12. cusolverRfGetResetValuesFastMode()

cusolverStatus_t
cusolverRfGetResetValuesFastMode(cusolverRfHandle_t handle,
 rfResetValuesFastMode_t *fastMode);

This routine gets the mode used in the cusolverRfResetValues routine.

Parameter MemSpace In/out Meaning
handle host input The handle to the cuSolverRF library.

fastMode host output The enumerated mode type.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

2.6.13. cusolverRfGet_Algs()

cusolverStatus_t
cusolverRfGet_Algs(cusolverRfHandle_t handle,
 cusolverRfFactorization_t* fact_alg,
 cusolverRfTriangularSolve_t* solve_alg);

This routine gets the algorithm used for the refactorization in cusolverRfRefactor() and the
triangular solve in cusolverRfSolve().

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 281

Parameter MemSpace In/out Meaning
handle host input The handle to the cuSolverRF library.

alg host output The enumerated algorithm type.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

2.6.14. cusolverRfRefactor()

cusolverStatus_t cusolverRfRefactor(cusolverRfHandle_t handle);

This routine performs the LU re-factorization:

exploring the available parallelism on the GPU. It is assumed that a prior call to the
glu_analyze() was done in order to find the available paralellism.

This routine may be called multiple times, once for each of the linear systems:

There are some constraints to the combination of algorithms used for refactorization and
solving routines, cusolverRfRefactor() and cusolverRfSolve(). The wrong combination
generates the error code CUSOLVER_STATUS_INVALID_VALUE. The table bellow summarizes
the supported combinations of algorithms:
Compatible algorithms for solving and refactorization routines.

Factorization Solving
CUSOLVERRF_FACTORIZATION_ALG0 TRIANGULAR_SOLVE_ALG1

CUSOLVERRF_FACTORIZATION_ALG1 TRIANGULAR_SOLVE_ALG2,
TRIANGULAR_SOLVE_ALG3

CUSOLVERRF_FACTORIZATION_ALG2 TRIANGULAR_SOLVE_ALG2,
TRIANGULAR_SOLVE_ALG3

Parameter MemSpace In/out Meaning
handle host in/out The handle to the cuSolverRF library.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_EXECUTION_FAILED A kernel failed to launch on the GPU.

CUSOLVER_STATUS_ZERO_PIVOT A zero pivot was encountered during the
computation.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 282

2.6.15. cusolverRfResetValues()

cusolverStatus_t
cusolverRfResetValues(/* Input (in the device memory) */
 int n,
 int nnzA,
 int* csrRowPtrA,
 int* csrColIndA,
 double* csrValA,
 int* P,
 int* Q,
 /* Output */
 cusolverRfHandle_t handle);

This routine updates internal data structures with the values of the new coefficient matrix.
It is assumed that the arrays csrRowPtrA, csrColIndA, P and Q have not changed since the
last call to the cusolverRfSetup[Host|Device] routine. This assumption reflects the fact
that the sparsity pattern of coefficient matrices as well as reordering to minimize fill-in and
pivoting remain the same in the set of linear systems:

This routine may be called multiple times, once for each of the linear systems:

Parameter MemSpace In/out Meaning
n host input The number of rows (and columns) of

matrix A.

nnzA host input The number of non-zero elements of
matrix A.

csrRowPtrA device input The array of offsets corresponding
to the start of each row in the arrays
csrColIndA and csrValA. This array has
also an extra entry at the end that stores
the number of non-zero elements in the
matrix. The array size is n+1.

csrColIndA device input The array of column indices
corresponding to the non-zero elements
in the matrix. It is assumed that this
array is sorted by row and by column
within each row. The array size is nnzA.

csrValA device input The array of values corresponding to the
non-zero elements in the matrix. It is
assumed that this array is sorted by row
and by column within each row. The array
size is nnzA.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 283

Parameter MemSpace In/out Meaning
P device input The left permutation (often associated

with pivoting). The array size in n.

Q device input The right permutation (often associated
with reordering). The array size in n.

handle host output The handle to the cuSolverRF library.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE An unsupported value or parameter was passed.

CUSOLVER_STATUS_EXECUTION_FAILED A kernel failed to launch on the GPU.

2.6.16. cusolverRfSetMatrixFormat()

cusolverStatus_t
cusolverRfSetMatrixFormat(cusolverRfHandle_t handle,
 gluMatrixFormat_t format,
 gluUnitDiagonal_t diag);

This routine sets the matrix format used in the cusolverRfSetupDevice(),
cusolverRfSetupHost(), cusolverRfResetValues(),
cusolverRfExtractBundledFactorsHost() and cusolverRfExtractSplitFactorsHost()
routines. It may be called once prior to cusolverRfSetupDevice() and
cusolverRfSetupHost() routines.

Parameter MemSpace In/out Meaning
handle host input The handle to the cuSolverRF library.

format host input The enumerated matrix format type.

diag host input The enumerated unit diagonal type.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE An enumerated mode parameter is wrong.

2.6.17. cusolverRfSetNumericProperties()

cusolverStatus_t
cusolverRfSetNumericProperties(cusolverRfHandle_t handle,
 double zero,
 double boost);

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 284

This routine sets the numeric values used for checking for ''zero'' pivot and for boosting it
in the cusolverRfRefactor() and cusolverRfSolve() routines. It may be called multiple
times prior to cusolverRfRefactor() and cusolverRfSolve() routines. The numeric
boosting will be used only if boost > 0.0.

Parameter MemSpace In/out Meaning
handle host input The handle to the cuSolverRF library.

zero host input The value below which zero pivot is
flagged.

boost host input The value which is substituted for zero
pivot (if the later is flagged).

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

2.6.18. cusolverRfSetResetValuesFastMode()

cusolverStatus_t
cusolverRfSetResetValuesFastMode(cusolverRfHandle_t handle,
 gluResetValuesFastMode_t fastMode);

This routine sets the mode used in the cusolverRfResetValues routine. The
fast mode requires extra memory and is recommended only if very fast calls
to cusolverRfResetValues() are needed. It may be called once prior to
cusolverRfAnalyze() routine.

Parameter MemSpace In/out Meaning
handle host input The handle to the cuSolverRF library.

fastMode host input The enumerated mode type.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE An enumerated mode parameter is wrong.

2.6.19. cusolverRfSetAlgs()

cusolverStatus_t
cusolverRfSetAlgs(cusolverRfHandle_t handle,
 gluFactorization_t fact_alg,
 gluTriangularSolve_t alg);

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 285

This routine sets the algorithm used for the refactorization in cusolverRfRefactor() and the
triangular solve in cusolverRfSolve(). It may be called once prior to cusolverRfAnalyze()
routine.

Parameter MemSpace In/out Meaning
handle host input The handle to the cuSolverRF library.

alg host input The enumerated algorithm type.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

2.6.20. cusolverRfSolve()

cusolverStatus_t
cusolverRfSolve(/* Input (in the device memory) */
 cusolverRfHandle_t handle,
 int *P,
 int *Q,
 int nrhs,
 double *Temp,
 int ldt,
 /* Input/Output (in the device memory) */
 double *XF,
 /* Input */
 int ldxf);

This routine performs the forward and backward solve with the lower and upper
 triangular factors resulting from the LU re-factorization:

which is assumed to have been computed by a prior call to the cusolverRfRefactor()
routine.

The routine can solve linear systems with multiple right-hand-sides (RHS):

even though currently only a single RHS is supported.

This routine may be called multiple times, once for each of the linear systems:

Parameter MemSpace In/out Meaning
handle host output The handle to the cuSolverRF library.

P device input The left permutation (often associated
with pivoting). The array size in n.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 286

Parameter MemSpace In/out Meaning
Q device input The right permutation (often associated

with reordering). The array size in n.

nrhs host input The number right-hand-sides to be
solved.

Temp host input The dense matrix that contains
temporary workspace (of size ldt*nrhs).

ldt host input The leading dimension of dense matrix
Temp (ldt >= n).

XF host in/out The dense matrix that contains the right-
hand-sides F and solutions X (of size
ldxf*nrhs).

ldxf host input The leading dimension of dense matrix
XF (ldxf >= n).

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE An unsupported value or parameter was passed.

CUSOLVER_STATUS_EXECUTION_FAILED A kernel failed to launch on the GPU.

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

2.6.21. cusolverRfBatchSetupHost()

cusolverStatus_t
cusolverRfBatchSetupHost(/* Input (in the host memory) */
 int batchSize,
 int n,
 int nnzA,
 int* h_csrRowPtrA,
 int* h_csrColIndA,
 double *h_csrValA_array[],
 int nnzL,
 int* h_csrRowPtrL,
 int* h_csrColIndL,
 double *h_csrValL,
 int nnzU,
 int* h_csrRowPtrU,
 int* h_csrColIndU,
 double *h_csrValU,
 int* h_P,
 int* h_Q,
 /* Output */
 cusolverRfHandle_t handle);

This routine assembles the internal data structures of the cuSolverRF library for batched
operation. It is called after the call to the cusolverRfCreate() routine, and before any other
batched routines.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 287

The batched operation assumes that the user has the following linear systems:

where each matrix in the set: has the same sparsity pattern, and quite similar such that
factorization can be done by the same permutation P and Q. In other words, is a small
perturbation of .

This routine accepts as input (on the host) the original matrix A (sparsity pattern and batched
values), the lower (L) and upper (U) triangular factors, as well as the left (P) and the right
(Q) permutations resulting from the full LU factorization of the first (i=1) linear system:

The permutations P and Q represent the final composition of all the left and right reorderings
applied to the original matrix A, respectively. However, these permutations are often
associated with partial pivoting and reordering to minimize fill-in, respectively.

Remark 1: the matrices A, L and U must be CSR format and base-0.

Remark 2: to get best performance, batchSize should be multiple of 32 and greater or equal
to 32. The algorithm is memory-bound, once bandwidth limit is reached, there is no room to
improve performance by large batchSize. In practice, batchSize of 32 - 128 is often enough
to obtain good performance, but in some cases larger batchSize might be beneficial.

The following routine needs to be called only once for a single linear system:

Parameter MemSpace In/out Meaning
batchSize host input The number of matrices in the batched

mode.

n host input The number of rows (and columns) of
matrix A.

nnzA host input The number of non-zero elements of
matrix A.

h_csrRowPtrA host input The array of offsets corresponding
to the start of each row in the arrays
h_csrColIndA and h_csrValA. This
array has also an extra entry at the end
that stores the number of non-zero
elements in the matrix. The array size is
n+1.

h_csrColIndA host input The array of column indices
corresponding to the non-zero elements
in the matrix. It is assumed that this
array is sorted by row and by column
within each row. The array size is nnzA.

h_csrValA_array host input Array of pointers of size batchSize,
each pointer points to the array of values
corresponding to the non-zero elements
in the matrix.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 288

Parameter MemSpace In/out Meaning
nnzL host input The number of non-zero elements of

matrix L.

h_csrRowPtrL host input The array of offsets corresponding
to the start of each row in the arrays
h_csrColIndL and h_csrValL. This
array has also an extra entry at the end
that stores the number of non-zero
elements in the matrix L. The array size
is n+1.

h_csrColIndL host input The array of column indices
corresponding to the non-zero elements
in the matrix L. It is assumed that this
array is sorted by row and by column
within each row. The array size is nnzL.

h_csrValL host input The array of values corresponding to the
non-zero elements in the matrix L. It is
assumed that this array is sorted by row
and by column within each row. The array
size is nnzL.

nnzU host input The number of non-zero elements of
matrix U.

h_csrRowPtrU host input The array of offsets corresponding
to the start of each row in the arrays
h_csrColIndU and h_csrValU. This
array has also an extra entry at the end
that stores the number of non-zero
elements in the matrix U. The array size
is n+1.

h_csrColIndU host input The array of column indices
corresponding to the non-zero elements
in the matrix U. It is assumed that this
array is sorted by row and by column
within each row. The array size is nnzU.

h_csrValU host input The array of values corresponding to the
non-zero elements in the matrix U. It is
assumed that this array is sorted by row
and by column within each row. The array
size is nnzU.

h_P host input The left permutation (often associated
with pivoting). The array size in n.

h_Q host input The right permutation (often associated
with reordering). The array size in n.

handle host output The handle to the cuSolverRF library.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 289

CUSOLVER_STATUS_INVALID_VALUE An unsupported value or parameter was passed.

CUSOLVER_STATUS_ALLOC_FAILED An allocation of memory failed.

CUSOLVER_STATUS_EXECUTION_FAILED A kernel failed to launch on the GPU.

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

2.6.22. cusolverRfBatchAnalyze()

cusolverStatus_t cusolverRfBatchAnalyze(cusolverRfHandle_t handle);

This routine performs the appropriate analysis of parallelism available in the batched LU re-
factorization.

It is assumed that a prior call to the cusolverRfBatchSetup[Host]() was done in order to
create internal data structures needed for the analysis.

The following routine needs to be called only once for a single linear system:

Parameter Memory In/out Meaning
handle host in/out The handle to the cuSolverRF library.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_EXECUTION_FAILED A kernel failed to launch on the GPU.

CUSOLVER_STATUS_ALLOC_FAILED An allocation of memory failed.

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

2.6.23. cusolverRfBatchResetValues()

cusolverStatus_t
cusolverRfBatchResetValues(/* Input (in the device memory) */
 int batchSize,
 int n,
 int nnzA,
 int* csrRowPtrA,
 int* csrColIndA,
 double* csrValA_array[],
 int *P,
 int *Q,
 /* Output */
 cusolverRfHandle_t handle);

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 290

This routine updates internal data structures with the values of the new coefficient matrix. It
is assumed that the arrays csrRowPtrA, csrColIndA, P and Q have not changed since the last
call to the cusolverRfbatch_setup_host routine.

This assumption reflects the fact that the sparsity pattern of coefficient matrices as well as
reordering to minimize fill-in and pivoting remain the same in the set of linear systems:

The input parameter csrValA_array is an array of pointers on device memory.
csrValA_array(j) points to matrix: which is also on device memory.

Parameter MemSpace In/out Meaning
batchSize host input The number of matrices in batched

mode.

n host input The number of rows (and columns) of
matrix A.

nnzA host input The number of non-zero elements of
matrix A.

csrRowPtrA device input The array of offsets corresponding
to the start of each row in the arrays
csrColIndA and csrValA. This array has
also an extra entry at the end that stores
the number of non-zero elements in the
matrix. The array size is n+1.

csrColIndA device input The array of column indices
corresponding to the non-zero elements
in the matrix. It is assumed that this
array is sorted by row and by column
within each row. The array size is nnzA.

csrValA_array device input Array of pointers of size batchSize,
each pointer points to the array of values
corresponding to the non-zero elements
in the matrix.

P device input The left permutation (often associated
with pivoting). The array size in n.

Q device input The right permutation (often associated
with reordering). The array size in n.

handle host output The handle to the cuSolverRF library.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE An unsupported value or parameter was passed.

CUSOLVER_STATUS_EXECUTION_FAILED A kernel failed to launch on the GPU.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 291

2.6.24. cusolverRfBatchRefactor()

cusolverStatus_t cusolverRfBatchRefactor(cusolverRfHandle_t handle);

This routine performs the LU re-factorization:

exploring the available parallelism on the GPU. It is assumed that a prior call to the
cusolverRfBatchAnalyze() was done in order to find the available paralellism.

Remark: cusolverRfBatchRefactor() would not report any failure of LU refactorization.
The user has to call cusolverRfBatchZeroPivot() to know which matrix failed the LU
refactorization.

Parameter Memory In/out Meaning
handle host in/out The handle to the cuSolverRF library.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_EXECUTION_FAILED A kernel failed to launch on the GPU.

2.6.25. cusolverRfBatchSolve()

cusolverStatus_t
cusolverRfBatchSolve(/* Input (in the device memory) */
 cusolverRfHandle_t handle,
 int *P,
 int *Q,
 int nrhs,
 double *Temp,
 int ldt,
 /* Input/Output (in the device memory) */
 double *XF_array[],
 /* Input */
 int ldxf);

To solve , first we reform the equation by where
. Then do refactorization by cusolverRfBatch_Refactor(). Further
cusolverRfBatch_Solve() takes over the remaining steps, including:

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 292

The input parameter XF_array is an array of pointers on device memory. XF_array(j) points
to matrix which is also on device memory.

Remark 1: only a single rhs is supported.

Remark 2: no singularity is reported during backward solve. If some matrix failed the
refactorization and has some zero diagonal, backward solve would compute NAN. The user
has to call cusolverRfBatch_Zero_Pivot to check if refactorization is successful or not.

Parameter MemSpace In/out Meaning
handle host output The handle to the cuSolverRF library.

P device input The left permutation (often associated
with pivoting). The array size in n.

Q device input The right permutation (often associated
with reordering). The array size in n.

nrhs host input The number right-hand-sides to be
solved.

Temp device input The dense matrix that contains
temporary workspace (of size ldt*nrhs).

ldt host input The leading dimension of dense matrix
Temp (ldt >= n).

XF_array device in/out Array of pointers of size batchSize,
each pointer points to the dense matrix
that contains the right-hand-sides F and
solutions X (of size ldxf*nrhs).

ldxf host input The leading dimension of dense matrix
XF (ldxf >= n).

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE An unsupported value or parameter was passed.

CUSOLVER_STATUS_EXECUTION_FAILED A kernel failed to launch on the GPU.

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

2.6.26. cusolverRfBatchZeroPivot()

cusolverStatus_t
cusolverRfBatchZeroPivot(/* Input */
 cusolverRfHandle_t handle
 /* Output (in the host memory) */
 int *position);

Although is close to each other, it does not mean exists for every j.
The user can query which matrix failed LU refactorization by checking corresponding value in
position array. The input parameter position is an integer array of size batchSize.

Using the CUSOLVER API

cuSOLVER Library DU-06709-001_v12.3 | 293

The j-th component denotes the refactorization result of matrix . If position(j) is -1, the
LU refactorization of matrix is successful. If position(j) is k >= 0, matrix is not LU
factorizable and its matrix is zero.

The return value of cusolverRfBatch_Zero_Pivot is CUSOLVER_STATUS_ZERO_PIVOT if
there exists one which failed LU refactorization. The user can redo LU factorization to get
new permutation P and Q if error code CUSOLVER_STATUS_ZERO_PIVOT is returned.

Parameter MemSpace In/out Meaning
handle host input The handle to the cuSolverRF library.

position host output Integer array of size batchSize. The
value of position(j) reports singularity
of matrix Aj, -1 if no structural/
numerical zero, k >= 0 if Aj(k,k) is
either structural zero or numerical zero.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_ZERO_PIVOT A zero pivot was encountered during the
computation.

cuSOLVER Library DU-06709-001_v12.3 | 294

Chapter 3. Using the CUSOLVERMG
API

3.1. General Description
This section describes how to use the cuSolverMG library API. It is not a reference for the
cuSolverMG API data types and functions; that is provided in subsequent chapters.

3.1.1. Thread Safety
The library is thread-safe only if there is one cuSolverMG context per thread.

3.1.2. Determinism
Currently all cuSolverMG API routines from a given toolkit version generate the same bit-wise
results when the following conditions are respected :

‣ all GPUs particating to the computation have the same compute-capabilities and the same
number of SMs.

‣ the tiles size is kept the same between run.

‣ number of logical GPUs is kept the same. The order of GPUs are not important because all
have the same compute-capabilities.

3.1.3. Tile Strategy
The tiling strategy of cuSolverMG is compatible with ScaLAPACK. The current release only
supports 1-D column block cyclic, column-major PACKED format.

Figure 1.a shows a partition of the matrix A of dimension M_A by N_A. Each column tile has T_A
columns. There are seven columns of tiles, labeled as 0,1,2,3,4,5,6, distributed into three GPUs
in a cyclic way, i.e. each GPU takes one column tile in turn. For example, GPU 0 has column
tile 0, 3, 6 (yellow tiles) and GPU 1 takes column tiles next to GPU 0 (blue tiles). Not all GPUs
have the same number of tiles; in this example, GPU 0 has three tiles, others have only two
tiles.

Using the CUSOLVERMG API

cuSOLVER Library DU-06709-001_v12.3 | 295

Figure 1.b shows two possilbe formats to store those column tiles locally in each GPU.
Left side is called PACKED format and right side is UNPACKED format. PACKED format
aggregates three column tiles in a contiguous memory block while UNPACKED format
distributes these three column tiles into different memory blocks. The only difference between
them is that PACKED format can have a big GEMM call instead of three GEMM calls in
UNPACKED format. So theoretically speaking, PACKED format can deliver better performance
than UNPACKED format. cusolveMG only supports PACKED format in the API. In order to
achieve maximal performance, the user just needs to choose the proper tile size T_A to
partition the matrix, not too small, for example 256 or above is enough.

There is another parameter, called LLD_A, to control the leading dimension of the local matrix
in each GPU. LLD_A must be greater or equal to M_A. The purpose of LLD_A is for better
performance of GEMM. For small problems, GEMM is faster if LLD_A is power of 2. However
for big problems, LLD_A does not show significant improvement. cuSolverMG only supports
LLD_A=M_A.

Figure 1. Example of cusolveMG tiling for 3 GPUs

The processing grid in cuSolverMG is a list of GPU IDs, similar to the process ID in
ScaLAPACK. cuSolverMG only supports 1D column block cyclic, so only 1D grid is supported
as well. Suppose deviceId is a list of GPU IDs, both deviceId=1,1,1 and deviceId=2,1,0
are valid. The former describes three logical devices that are selected to run cuSolverMG
routines, and all have the same physical ID, 0. The latter still uses three logical devices, but
each has a different physical ID. The current design only accepts 32 logical devices, that is, the
length of deviceId is less or equal to 32. Figure 1 uses deviceId=0,1,2.

In practice, the matrix A is distributed into GPUs listed in deviceId. If the user chooses
deviceId=1,1,1, all columns tile are located in GPU 1, this will limit the size of the problem
because of memory capacity of one GPU. Besides, multiGPU routine adds extra overhead on
data communication through the off-chip bus, which has a big performance impact if NVLINK
is not supported or used. It would be faster to run on a single GPU instead of runing multiGPU
version with devices of the same GPU ID.

Using the CUSOLVERMG API

cuSOLVER Library DU-06709-001_v12.3 | 296

3.1.4. Global Matrix Versus Local Matrix
Operating a submatrix of the matrix A is simple in dense linear algebra, just shift the pointer
to the starting point of the submatrix relative to A. For example, gesvd(10,10, A) is SVD
of A(0:9,0:9). gesvd(10,10, A + 5 + 2*lda) is SVD of 10-by-10 submatrix starting at
A(5,2).

However it is not simple to operate on a submatrix of a distributed matrix because different
starting point of the submatrix changes the distribution of the layout of that submatrix.
ScaLAPACK introduces two parameters, IA and JA, to locate the submatrix. Figure 2 shows
(global) matrix A of dimension M_A by N_A. The sub(A) is a M by N submatrix of A, starting at IA
and JA. Please be aware that IA and JA are base-1.

Given a distributed matrix A, the user can compute eigenvalues of the submatrix sub(A) by
either calling syevd(A, IA, JA) or gathering sub(A) to another distributed matrix B and
calling syevd(B, IB=1, JB=1).

Figure 2. global matrix and local matrix

3.1.5. Usage of _bufferSize
There is no cudaMalloc inside cuSolverMG library, so the user must allocate the device
workspace explicitly. The routine xyz_bufferSize is to query the size of workspace of the
routine xyz, for example xyz = syevd. To make the API simple, xyz_bufferSize follows
almost the same signature of xyz even it only depends on some parameters, for example, the
device pointer is not used to decide the size of workspace. In most cases, xyz_bufferSize
is called in the beginning before actual device data (pointing by a device pointer) is prepared
or before the device pointer is allocated. In such cases, the user can pass a null pointer to
xyz_bufferSize without breaking the functionality.

Using the CUSOLVERMG API

cuSOLVER Library DU-06709-001_v12.3 | 297

xyz_bufferSize returns bufferSize for each device. The size is number of elements, not
number of bytes.

3.1.6. Synchronization
All routines are in synchronous (blocking call) manner. The data is ready after the routine.
However the user has to prepare the distributed data before calling the routine. For example,
if the user has multiple streams to set up the matrix, stream synchronization or device
synchronization is necessary to guarantee the distributed matrix is ready.

3.1.7. Context Switch
The user does not need to restore the device by cudaSetDevice() after each cuSolverMG call.
All routines set the device back to what the caller has.

3.1.8. NVLINK
The peer-to-peer communication via NVLINK can dramatically reduce the overhead of data
exchange among GPUs. cuSolverMG does not enable NVLINK implicitly, instead, it gives this
option back to the user, not to interfere with other libraries. The example code H.1 shows how
to enable peer-to-peer communication.

3.2. cuSolverMG Types Reference

3.2.1. cuSolverMG Types
The float, double, cuComplex, and cuDoubleComplex data types are supported. The first
two are standard C data types, while the last two are exported from cuComplex.h. In addition,
cuSolverMG uses some familiar types from cuBLAS.

3.2.2. cusolverMgHandle_t
This is a pointer type to an opaque cuSolverMG context, which the user must initialize by
calling cusolverMgCreate() prior to calling any other library function. An un-initialized
handle object will lead to unexpected behavior, including crashes of cuSolverMG. The handle
created and returned by cusolverMgCreate() must be passed to every cuSolverMG function.

3.2.3. cusolverMgGridMapping_t
The type indicates layout of grids.

Value Meaning
CUDALIBMG_GRID_MAPPING_ROW_MAJOR Row-major ordering.

CUDALIBMG_GRID_MAPPING_COL_MAJOR Column-major ordering.

Using the CUSOLVERMG API

cuSOLVER Library DU-06709-001_v12.3 | 298

3.2.4. cudaLibMgGrid_t
Opaque structure of the distributed grid.

3.2.5. cudaLibMgMatrixDesc_t
Opaque structure of the distributed matrix descriptor.

3.3. Helper Function Reference

3.3.1. cusolverMgCreate()

cusolverStatus_t
cusolverMgCreate(cusolverMgHandle_t *handle)

This function initializes the cuSolverMG library and creates a handle on the cuSolverMG
context. It must be called before any other cuSolverMG API function is invoked. It allocates
hardware resources necessary for accessing the GPU.
Output

handle The pointer to the handle to the cuSolverMG
context.

Status Returned

CUSOLVER_STATUS_SUCCESS The initialization succeeded.

CUSOLVER_STATUS_ALLOC_FAILED The resources could not be allocated.

3.3.2. cusolverMgDestroy()

cusolverStatus_t
cusolverMgDestroy(cusolverMgHandle_t handle)

This function releases CPU-side resources used by the cuSolverMG library.
Input

handle The handle to the cuSolverMG context.

Status Returned

CUSOLVER_STATUS_SUCCESS The shutdown succeeded.

3.3.3. cusolverMgDeviceSelect()

Using the CUSOLVERMG API

cuSOLVER Library DU-06709-001_v12.3 | 299

cusolverStatus_t
cusolverMgDeviceSelect(
 cusolverMgHandle_t handle,
 int nbDevices,
 int deviceId[])

This function registers a subset of devices (GPUs) to cuSolverMG handle. Such subset of
devices is used in subsequent API calls. The array deviceId contains a list of logical device
ID. The term logical means repeated device ID are permitted. For example, suppose the
user has only one GPU in the system, say device 0. If the user sets deviceId=0,0,0, then
cuSolverMG treats them as three independent GPUs, one stream each, so concurrent kernel
launches still hold. The current design only supports up to 32 logical devices.
Input

handle The pointer to the handle to the cuSolverMG
context.

nbDevices The number of logical devices.

deviceId An integer array of size nbDevices.

Status Returned

CUSOLVER_STATUS_SUCCESS The initialization succeeded.

CUSOLVER_STATUS_INVALID_VALUE nbDevices must be greater than zero, and less or
equal to 32.

CUSOLVER_STATUS_ALLOC_FAILED The resources could not be allocated.

CUSOLVER_STATUS_INTERNAL_ERROR Internal error occurred when setting internal
streams and events.

3.3.4. cusolverMgCreateDeviceGrid()

cusolverStatus_t
cusolverMgCreateDeviceGrid(
 cusolverMgGrid_t* grid,
 int32_t numRowDevices,
 int32_t numColDevices,
 const int32_t deviceId[],
 cusolverMgGridMapping_t mapping)

This function sets up a grid of devices.

Only 1-D column block cyclic is supported, so numRowDevices must be equal to 1.

WARNING: cusolverMgCreateDeviceGrid() must be consistent with
cusolverMgDeviceSelect(), i.e. numColDevices must be equal to nbDevices in
cusolverMgDeviceSelect().

Parameter MemSpace In/out Meaning
grid host output The pointer to the opaque structure.

numRowDevices host input Number of devices in the row.

numColDevices host input Number of devices in the column.

Using the CUSOLVERMG API

cuSOLVER Library DU-06709-001_v12.3 | 300

Parameter MemSpace In/out Meaning
deviceId host input Integer array of size numColDevices,

containing device IDs.

mapping host input Row-major or column-major ordering.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_INVALID_VALUE numColDevices is not greater than 0.
numRowDevices is not 1.

3.3.5. cusolverMgDestroyGrid()

cusolverStatus_t
cusolverMgDestroyGrid(
 cusolverMgGrid_t grid)

This function releases resources of a grid.

Parameter MemSpace In/out Meaning
grid host input/output The pointer to the opaque structure.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

3.3.6. cusolverMgCreateMatDescr()

cusolverStatus_t
cusolverMgCreateMatrixDesc(
 cusolverMgMatrixDesc_t * desc,
 int64_t numRows,
 int64_t numCols,
 int64_t rowBlockSize,
 int64_t colBlockSize,
 cudaDataType_t dataType,
 const cusolverMgGrid_t grid)

This function sets up the matrix descriptor desc.

Only 1-D column block cyclic is supported, so numRows must be equal to rowBlockSize.

Parameter Memory In/out Meaning
desc host output The matrix descriptor.

numRows host input The number of rows of global A.

numCols host input The number of columns of global A.

rowBlockSize host input The number of rows per tile.

colBlockSize host input The number of columns per tile.

Using the CUSOLVERMG API

cuSOLVER Library DU-06709-001_v12.3 | 301

Parameter Memory In/out Meaning
dataType host input Data type of the matrix.

grid host input The pointer to structure of grid.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_INVALID_VALUE numRows, numCols, or rowBlockSize or
colBlockSize is less than 0. numRows is not
equal to rowBlockSize.

3.3.7. cusolverMgDestroyMatrixDesc()

cusolverStatus_t
cusolverMgDestroyMatrixDesc(
 cusolverMgMatrixDesc_t desc)

This function releases the matrix descriptor desc.

Parameter Memory In/out Meaning
desc host input/output The matrix descriptor.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

3.4. Dense Linear Solver Reference
This section describes the linear solver API of cuSolverMG.

3.4.1. cusolverMgPotrf()
The following helper function can calculate the sizes needed for pre-allocated buffer for
cusolverMgPotrf:

cusolverStatus_t
cusolverMgPotrf_bufferSize(
 cusolverMgHandle_t handle,
 cublasFillMode_t uplo,
 int N,
 void *array_d_A[],
 int IA,
 int JA,
 cudaLibMgMatrixDesc_t descrA,
 cudaDataType computeType,
 int64_t *lwork)

Using the CUSOLVERMG API

cuSOLVER Library DU-06709-001_v12.3 | 302

The following routine:

cusolverStatus_t
cusolverMgPotrf(
 cusolverMgHandle_t handle,
 cublasFillMode_t uplo,
 int N,
 void *array_d_A[],
 int IA,
 int JA,
 cudaLibMgMatrixDesc_t descrA,
 cudaDataType computeType,
 void *array_d_work[],
 int64_t lwork,
 int *info)

computes the Cholesky factorization of a Hermitian positive-definite matrix using the generic
API interface.

A is an n×n Hermitian matrix; only lower or upper part is meaningful. The input parameter
uplo indicates which part of the matrix is used. The function would leave other parts
untouched.

If input parameter uplo is CUBLAS_FILL_MODE_LOWER, only lower triangular part of A is
processed, and replaced by lower triangular Cholesky factor L:

If input parameter uplo is CUBLAS_FILL_MODE_UPPER, only upper triangular part of A is
processed, and replaced by upper triangular Cholesky factor U:

The user has to provide device working space in array_d_work. array_d_work is a host
pointer array of dimension G, where G is number of devices. array_d_work[j] is a device
pointer pointing to a device memory in j-th device. The data type of array_d_work[j] is
computeType. The size of array_d_work[j] is lwork which is the number of elements per
device, returned by cusolverMgPotrf_bufferSize().

If Cholesky factorization failed, i.e. some leading minor of A is not positive definite, or
equivalently some diagonal elements of L or U is not a real number. The output parameter
info would indicate smallest leading minor of A which is not positive definite.

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting
handle).

The generic API has two different types, dataTypeA is data type of the matrix A,
andcomputeType is compute type of the operation and data type of the workspace
(array_d_work) descrA contains dataTypeA, so there is no explicit parameter of dataTypeA.
cusolverMgPotrf only supports the following four combinations.

Please visit cuSOLVER Library Samples - MgPotrf for a code example.
valid combination of data type and compute type

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/MgPotrf

Using the CUSOLVERMG API

cuSOLVER Library DU-06709-001_v12.3 | 303

DataTypeA ComputeType Meaning
CUDA_R_32F CUDA_R_32F SPOTRF

CUDA_R_64F CUDA_R_64F DPOTRF

CUDA_C_32F CUDA_C_32F CPOTRF

CUDA_C_64F CUDA_C_64F ZPOTRF

API of potrf

Parameter Memory In/out Meaning
handle host input Handle to the cuSolverMg library context.

uplo host input Indicates if matrix A lower or
upper part is stored, the other
part is not referenced. Only
CUBLAS_FILL_MODE_LOWER is supported.

N host input Number of rows and columns of matrix
sub(A).

array_d_A host in/out A host pointer array of dimension G.
It contains a distributed <type> array
containing sub(A) of dimension N * N.
On exit, sub(A) contains the factors L or
U.

IA host input The row index in the global array A
indicating the first row of sub(A).

JA host input The column index in the global array A
indicating the first column of sub(A).

descrA host input Matrix descriptor for the distributed
matrix A.

computeType host input Data type used for computation.

array_d_work host in/out A host pointer array of dimension G.
array_d_work[j] points to a device
working space in j-th device, <type>
array of size lwork.

lwork host input Sze of array_d_work[j], returned
by cusolverMgPotrf_bufferSize.
lwork denotes number of elements, not
number of bytes.

info host output If info = 0, the Cholesky factorization is
successful.

If info = -i, the i-th parameter is
wrong (not counting handle).

If info = i, the leading minor of order i
is not positive definite.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

Using the CUSOLVERMG API

cuSOLVER Library DU-06709-001_v12.3 | 304

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (M,N<0).

CUSOLVER_STATUS_ARCH_MISMATCH The device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

3.4.2. cusolverMgPotrs()
The helper function below can calculate the sizes needed for pre-allocated buffer for
cusolverMgPotrs.

cusolverStatus_t
cusolverMgPotrs_bufferSize(
 cusolverMgHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 int nrhs,
 void *array_d_A[],
 int IA,
 int JA,
 cudaLibMgMatrixDesc_t descrA,
 void *array_d_B[],
 int IB,
 int JB,
 cudaLibMgMatrixDesc_t descrB,
 cudaDataType computeType,
 int64_t *lwork)

The following routine:

cusolverStatus_t
cusolverMgPotrs(
 cusolverMgHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 int nrhs,
 void *array_d_A[],
 int IA,
 int JA,
 cudaLibMgMatrixDesc_t descrA,
 void *array_d_B[],
 int IB,
 int JB,
 cudaLibMgMatrixDesc_t descrB,
 cudaDataType computeType,
 void *array_d_work[],
 int64_t lwork,
 int *info)

This function solves a system of linear equations:

Using the CUSOLVERMG API

cuSOLVER Library DU-06709-001_v12.3 | 305

where A is a n×n Hermitian matrix, only lower or upper part is meaningful using the generic
API interface. The input parameter uplo indicates which part of the matrix is used. The
function would leave other parts untouched.

If input parameter uplo is CUBLAS_FILL_MODE_LOWER, the matrix should A contain the lower
triangular factor for Cholesky decomposition previously computed by cusolverMgPotrf
routine.

If input parameter uplo is CUBLAS_FILL_MODE_UPPER, the matrix should A contain the upper
triangular factor for Cholesky decomposition previously computed by the cusolverMgPotrf
routine.

The operation is in-place, i.e. matrix B contains the solution of the linear system on exit.

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting
handle).

The user has to provide device working space in array_d_work. array_d_work is a host
pointer array of dimension G, where G is the number of devices. array_d_work[j] is a device
pointer pointing to a device memory in the j-th device. The data type of array_d_work[j]
is computeType. The size of array_d_work[j] is lwork which is number of elements per
device, returned by cusolverMgPotrs_bufferSize().

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting
handle).

The generic API has four different types: dataTypeA is data type of the matrix A, dataTypeB
is data type of the matrix B, computeType is compute type of the operation and data type of
the workspace (array_d_work) descrA contains dataTypeA and descrB contains dataTypeB
and so there is no explicit parameter of dataTypeA and dataTypeB. cusolverMgPotrs only
supports the following four combinations.

Please visit cuSOLVER Library Samples - MgPotrf for a code example.
valid combination of data type and compute type

DataTypeA DataTypeB ComputeType Meaning
CUDA_R_32F CUDA_R_32F CUDA_R_32F SPOTRS

CUDA_R_64F CUDA_R_64F CUDA_R_64F DPOTRS

CUDA_C_32F CUDA_C_32F CUDA_C_32F CPOTRS

CUDA_C_64F CUDA_C_64F CUDA_C_64F ZPOTRS

API of potrs

Parameter Memory In/out Meaning
handle host input Handle to the cuSolverMg library context.

uplo host input Indicates if matrix A lower or
upper part is stored, the other

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/MgPotrf

Using the CUSOLVERMG API

cuSOLVER Library DU-06709-001_v12.3 | 306

Parameter Memory In/out Meaning
part is not referenced. Only
CUBLAS_FILL_MODE_LOWER is supported.

N host input Number of rows and columns of matrix
sub(A).

NRHS host input Number of columns of matrix sub(A)
and sub(B).

array_d_A host in/out A host pointer array of dimension G.
It contains a distributed <type> array
containing sub(A) of dimension M * N.
On exit, sub(A) contains the factors L
and U.

IA host input The row index in the global array A
indicating the first row of sub(A).

JA host input The column index in the global array A
indicating the first column of sub(A).

descrA host input Matrix descriptor for the distributed
matrix A.

array_d_B host in/out A host pointer array of dimension G.
It contains a distributed <type> array
containing sub(B) of dimension N *
NRHS. On exit, sub(A) contains the
solution to the linear system.

IB host input The row index in the global array B
indicating the first row of sub(B).

JB host input The column index in the global array B
indicating the first column of sub(B).

descrB host input Matrix descriptor for the distributed
matrix B.

computeType host input Data type used for computation.

array_d_work host in/out A host pointer array of dimension G.
array_d_work[j] points to a device
working space in j-th device, <type>
array of size lwork.

lwork host input Size of array_d_work[j], returned
by cusolverMgPotrs_bufferSize.
lwork denotes number of elements, not
number of bytes.

info host output If info = 0, the routine successful.

If info = -i, the i-th parameter is
wrong (not counting handle).

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

Using the CUSOLVERMG API

cuSOLVER Library DU-06709-001_v12.3 | 307

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (M,N<0).

CUSOLVER_STATUS_ARCH_MISMATCH The device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

3.4.3. cusolverMgPotri()
The helper function below can calculate the sizes needed for pre-allocated buffer for
cusolverMgPotri.

cusolverStatus_t
cusolverMgPotri_bufferSize(
 cusolverMgHandle_t handle,
 cublasFillMode_t uplo,
 int N,
 void *array_d_A[],
 int IA,
 int JA,
 cudaLibMgMatrixDesc_t descrA,
 cudaDataType computeType,
 int64_t *lwork)

The following routine:

cusolverStatus_t
cusolverMgPotri(
 cusolverMgHandle_t handle,
 cublasFillMode_t uplo,
 int N,
 void *array_d_A[],
 int IA,
 int JA,
 cudaLibMgMatrixDesc_t descrA,
 cudaDataType computeType,
 void *array_d_work[],
 int64_t lwork,
 int *info)

This function computes the inverse of a Hermitian positive-definite matrix A using the
Cholesky factorization

computed by cusolverMgPotrf().

If the input parameter uplo is CUBLAS_FILL_MODE_LOWER, on input, matrix A contains the
lower triangular factor of A computed by cusolverMgPotrf. Only lower triangular part of A is
processed, and replaced the by lower triangular part of the inverse of A.

If the input parameter uplo is CUBLAS_FILL_MODE_UPPER, on input, matrix A contains the
upper triangular factor of A computed by cusolverMgPotrf. Only upper triangular part of A is
processed, and replaced the by upper triangular part of the inverse of A.

Using the CUSOLVERMG API

cuSOLVER Library DU-06709-001_v12.3 | 308

The user has to provide device working space in array_d_work. array_d_work is a host
pointer array of dimension G, where G is number of devices. array_d_work[j] is a device
pointer pointing to a device memory in the j-th device. The data type of array_d_work[j]
is computeType. The size of array_d_work[j] is lwork which is number of elements per
device, returned by cusolverMgPotri_bufferSize().

If the computation of the inverse fails, i.e. some leading minor of L or U, is null, the output
parameter info would indicate the smallest leading minor of L or U which is not positive
definite.

If the output parameter info = -i (less than zero), the i-th parameter is wrong (not
counting the handle).

The generic API has two different types, dataTypeA is data type of the matrix A, computeType
is compute type of the operation and data type of the workspace (array_d_work) descrA
contains dataTypeA, so there is no explicit parameter of dataTypeA. cusolverMgPotri only
supports the following four combinations.

Please visit cuSOLVER Library Samples - MgPotrf for a code example.
valid combination of data type and compute type

DataTypeA ComputeType Meaning
CUDA_R_32F CUDA_R_32F SPOTRI

CUDA_R_64F CUDA_R_64F DPOTRI

CUDA_C_32F CUDA_C_32F CPOTRI

CUDA_C_64F CUDA_C_64F ZPOTRI

API of potrf

Parameter Memory In/out Meaning
handle host input Handle to the cuSolverMg library context.

uplo host input Indicates if matrix A lower or
upper part is stored, the other
part is not referenced. Only
CUBLAS_FILL_MODE_LOWER is supported.

N host input Number of rows and columns of matrix
sub(A).

array_d_A host in/out A host pointer array of dimension G.
It contains a distributed <type> array
containing sub(A) of dimension N * N.
On exit, sub(A) contains the upper or
lower triangular part of the inverse of A
depeding on the value of uplo argument.

IA host input The row index in the global array A
indicating the first row of sub(A).

JA host input The column index in the global array A
indicating the first column of sub(A).

descrA host input Matrix descriptor for the distributed
matrix A.

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/MgPotrf

Using the CUSOLVERMG API

cuSOLVER Library DU-06709-001_v12.3 | 309

Parameter Memory In/out Meaning
computeType host input Data type used for computation.

array_d_work host in/out A host pointer array of dimension G.
array_d_work[j] points to a device
working space in j-th device, <type>
array of size lwork.

lwork host input Size of array_d_work[j], returned
by cusolverMgPotri_bufferSize.
lwork denotes number of elements, not
number of bytes.

info host output If info = 0, the Cholesky factorization is
successful.

If info = -i, the i-th parameter is
wrong (not counting handle).

If info = i, the leading minor of order i
is zero.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (M,N<0).

CUSOLVER_STATUS_ARCH_MISMATCH The device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

3.4.4. cusolverMgGetrf()
The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverMgGetrf_bufferSize(
 cusolverMgHandle_t handle,
 int M,
 int N,
 void *array_d_A[],
 int IA,
 int JA,
 cudaLibMgMatrixDesc_t descrA,
 int *array_d_IPIV[],
 cudaDataType_t computeType,
 int64_t *lwork);

cusolverStatus_t
cusolverMgGetrf(
 cusolverMgHandle_t handle,
 int M,
 int N,
 void *array_d_A[],

Using the CUSOLVERMG API

cuSOLVER Library DU-06709-001_v12.3 | 310

 int IA,
 int JA,
 cudaLibMgMatrixDesc_t descrA,
 int *array_d_IPIV[],
 cudaDataType_t computeType,
 void *array_d_work[],
 int64_t lwork,
 int *info);

This function computes the LU factorization of a M×N matrix

where A is a M×N matrix, P is a permutation matrix, L is a lower triangular matrix with unit
diagonal, and U is an upper triangular matrix.

The user has to provide device working space in array_d_work. array_d_work is a host
pointer array of dimension G, where G is number of devices. array_d_work[j] is a device
pointer pointing to a device memory in j-th device. The data type of array_d_work[j] is
computeType. The size of array_d_work[j] is lwork which is number of elements per
device, returned by cusolverMgGetrf_bufferSize().

If LU factorization failed, i.e. matrix A (U) is singular, The output parameter info=i indicates
U(i,i) = 0.

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting
handle).

If array_d_IPIV is null, no pivoting is performed. The factorization is A=L*U, which is not
numerically stable.

array_d_IPIV must be consistent with array_d_A, i.e. JA is the first column of sub(A), also
the first column of sub(IPIV).

No matter LU factorization failed or not, the output parameter array_d_IPIV contains
pivoting sequence, row i is interchanged with row array_d_IPIV(i).

The generic API has three different types, dataTypeA is data type of the matrix
A, computeType is compute type of the operation and data type of the workspace
(array_d_work) descrA conatins dataTypeA, so there is no explicit parameter of dataTypeA.
cusolverMgGetrf only supports the following four combinations.

Please visit cuSOLVER Library Samples - MgGetrf for a code example.
valid combination of data type and compute type

DataTypeA ComputeType Meaning
CUDA_R_32F CUDA_R_32F SGETRF

CUDA_R_64F CUDA_R_64F DGETRF

CUDA_C_32F CUDA_C_32F CGETRF

CUDA_C_64F CUDA_C_64F ZGETRF

Remark 1: tile size TA must be less or equal to 512.
API of getrf

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/MgGetrf

Using the CUSOLVERMG API

cuSOLVER Library DU-06709-001_v12.3 | 311

Parameter Memory In/out Meaning
handle host input Handle to the cuSolverMg library context.

M host input Number of rows of matrix sub(A).

N host input Number of columns of matrix sub(A).

array_d_A host in/out A host pointer array of dimension G.
It contains a distributed <type> array
containing sub(A) of dimension M * N.
On exit, sub(A) contains the factors L
and U.

IA host input The row index in the global array A
indicating the first row of sub(A).

JA host input The column index in the global array A
indicating the first column of sub(A).

descrA host input Matrix descriptor for the distributed
matrix A.

array_d_IPIV host output A host pointer array of dimension G.
it contains a distributed integer array
containing sub(IPIV) of size min(M,N).
sub(IPIV) contains pivot indices.

computeType host input Data type used for computation.

array_d_work host in/out A host pointer array of dimension G.
array_d_work[j] points to a device
working space in j-th device, <type>
array of size lwork.

lwork host input Size of array_d_work[j], returned
by cusolverMgGetrf_bufferSize.
lwork denotes number of elements, not
number of bytes.

info host output If info = 0, the LU factorization is
successful.

If info = -i, the i-th parameter is
wrong (not counting handle).

If info = i, the U(i,i) = 0.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (M,N<0).

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

3.4.5. cusolverMgGetrs()
The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverMgGetrs_bufferSize(

Using the CUSOLVERMG API

cuSOLVER Library DU-06709-001_v12.3 | 312

 cusolverMgHandle_t handle,
 cublasOperation_t TRANS,
 int N,
 int NRHS,
 void *array_d_A[],
 int IA,
 int JA,
 cudaLibMgMatrixDesc_t descrA,
 int *array_d_IPIV[],
 void *array_d_B[],
 int IB,
 int JB,
 cudaLibMgMatrixDesc_t descrB,
 cudaDataType_t computeType,
 int64_t *lwork);

cusolverStatus_t
cusolverMgGetrs(
 cusolverMgHandle_t handle,
 cublasOperation_t TRANS,
 int N,
 int NRHS,
 void *array_d_A[],
 int IA,
 int JA,
 cudaLibMgMatrixDesc_t descrA,
 int *array_d_IPIV[],
 void *array_d_B[],
 int IB,
 int JB,
 cudaLibMgMatrixDesc_t descrB,
 cudaDataType_t computeType,
 void *array_d_work[],
 int64_t lwork,
 int *info);

This function solves a linear system of multiple right-hand sides

where A is a N×N matrix, and was LU-factored by getrf, that is, lower trianular part of A is L,
and upper triangular part (including diagonal elements) of A is U. B is a N×NRHS right-hand side
matrix. The solution matirx X overwrites the right-hand-side matrix B.

The input parameter TRANS is defined by

The user has to provide device working space in array_d_work. array_d_work is a host
pointer array of dimension G, where G is number of devices. array_d_work[j] is a device
pointer pointing to a device memory in j-th device. The data type of array_d_work[j] is
computeType. The size of array_d_work[j] is lwork which is number of elements per
device, returned by cusolverMgGetrs_bufferSize().

If array_d_IPIV is null, no pivoting is performed. Otherwise, array_d_IPIV is an output of
getrf. It contains pivot indices, which are used to permutate right-hand sides.

Using the CUSOLVERMG API

cuSOLVER Library DU-06709-001_v12.3 | 313

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting
handle).

The generic API has three different types, dataTypeA is data type of the matrix A, dataTypeB
is data type of the matrix B, and computeType is compute type of the operation and data
type of the workspace (array_d_work) descrA conatins dataTypeA, so there is no explicit
parameter of dataTypeA. descrB conatins dataTypeB, so there is no explicit parameter of
dataTypeB. cusolverMgGetrs only supports the following four combinations.
Valid combinations of data type and compute type

DataTypeA DataTypeB ComputeType Meaning
CUDA_R_32F CUDA_R_32F CUDA_R_32F SGETRS

CUDA_R_64F CUDA_R_64F CUDA_R_64F DGETRS

CUDA_C_32F CUDA_C_32F CUDA_C_32F CGETRS

CUDA_C_64F CUDA_C_64F CUDA_C_64F ZGETRS

Remark 1: tile size TA must be less or equal to 512.

Remark 2: only support TRANS=CUBLAS_OP_N.

Please visit cuSOLVER Library Samples - MgGetrf for a code example.
API of getrs

Parameter Memory In/out Meaning
handle host input Handle to the cuSolverMG library context.

TRANS host input Operation op(A) that is non- or (conj.)
transpose.

N host input Number of rows and columns of matrix
sub(A).

NRHS host input Number of columns of matrix sub(B).

array_d_A host input A host pointer array of dimension G.
It contains a distributed <type> array
containing sub(A) of dimension M * N.
sub(A) contains the factors L and U.

IA host input The row index in the global array A
indicating the first row of sub(A).

JA host input The column index in the global array A
indicating the first column of sub(A).

descrA host input Matrix descriptor for the distributed
matrix A.

array_d_IPIV host input A host pointer array of dimension G.
it contains a distributed integer array
containing sub(IPIV) of dimension
min(M,N). sub(IPIV) contains pivot
indices.

array_d_B host in/out A host pointer array of dimension G.
It contains a distributed <type> array

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/MgGetrf

Using the CUSOLVERMG API

cuSOLVER Library DU-06709-001_v12.3 | 314

Parameter Memory In/out Meaning
containing sub(B) of dimension N *
NRHS.

IB host input The row index in the global array B
indicating the first row of sub(B).

JB host input The column index in the global array B
indicating the first column of sub(B).

descrB host input Matrix descriptor for the distributed
matrix B.

computeType host input Data type used for computation.

array_d_work host in/out A host pointer array of dimension G.
array_d_work[j] points to a device
working space in j-th device, <type>
array of size lwork.

lwork host input Size of array_d_work[j], returned
by cusolverMgGetrs_bufferSize.
lwork denotes number of elements, not
number of bytes.

info host output If info = 0, the operation is successful.

If info = -i, the i-th parameter is
wrong (not counting handle).

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (N<0 or NRHS<0).

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

3.5. Dense Eigenvalue Solver Reference
This section describes the eigenvalue solver API of cuSolverMG.

3.5.1. cusolverMgSyevd()
The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverMgSyevd_bufferSize(
 cusolverMgHandle_t handle,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int N,
 void *array_d_A[],
 int IA,
 int JA,
 cudaLibMgMatrixDesc_t descrA,
 void *W,
 cudaDataType_t dataTypeW,
 cudaDataType_t computeType,

Using the CUSOLVERMG API

cuSOLVER Library DU-06709-001_v12.3 | 315

 int64_t *lwork
);

cusolverStatus_t
cusolverMgSyevd(
 cusolverMgHandle_t handle,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int N,
 void *array_d_A[],
 int IA,
 int JA,
 cudaLibMgMatrixDesc_t descrA,
 void *W,
 cudaDataType_t dataTypeW,
 cudaDataType_t computeType,
 void *array_d_work[],
 int64_t lwork,
 int *info);

This function computes eigenvalues and eigenvectors of a symmetric (Hermitian) N×N matrix A.
The standard symmetric eigenvalue problem is:

where Λ is a real N×N diagonal matrix. V is an N×N unitary matrix. The diagonal elements of Λ
are the eigenvalues of A in ascending order.

cusolverMgSyevd returns the eigenvalues in W and overwrites the eigenvectors in A. W is a
host 1×N vector.

The generic API has three different types, dataTypeA is data type of the matrix A, dataTypeW
is data type of the vector W, and computeType is compute type of the operation and data type of
the workspace (array_d_work) descrA conatins dataTypeA, so there is no explicit parameter
of dataTypeA. cusolverMgSyevd only supports the following four combinations.

Valid combination of data type and compute type

DataTypeA DataTypeW ComputeType Meaning
CUDA_R_32F CUDA_R_32F CUDA_R_32F SSYEVD

CUDA_R_64F CUDA_R_64F CUDA_R_64F DSYEVD

CUDA_C_32F CUDA_R_32F CUDA_C_32F CHEEVD

CUDA_C_64F CUDA_R_64F CUDA_C_64F ZHEEVD

The user has to provide device working space in array_d_work. array_d_work is a host
pointer array of dimension G, where G is number of devices. array_d_work[j] is a device
pointer pointing to a device memory in j-th device. The data type of array_d_work[j] is
computeType. The size of array_d_work[j] is lwork which is number of elements per
device, returned by cusolverMgSyevd_bufferSize().

array_d_A is also a host pointer array of dimension G. array_d_A[j] is a device pointer
pointing to a device memory in j-th device. The data type of array_d_A[j] is dataTypeA.
The size of array_d_A[j] is about N*TA*(blocks per device). The user has to prepare
array_d_A manually (seecuSOLVER Library Samples - MgSyevd for a code example.).

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/MgSyevd

Using the CUSOLVERMG API

cuSOLVER Library DU-06709-001_v12.3 | 316

If output parameter info = -i (less than zero), the i-th parameter is wrong (not counting
handle). If info = i (greater than zero), i off-diagonal elements of an intermediate
tridiagonal form did not converge to zero.

If jobz = CUSOLVER_EIG_MODE_VECTOR, A contains the orthonormal eigenvectors of the
matrix A. The eigenvectors are computed by a divide and conquer algorithm.

Remark 1: only CUBLAS_FILL_MODE_LOWER is supported, so the user has to prepare lower
triangle of A.

Remark 2: only IA=1 and JA=1 are supported.

Remark 3: tile size TA must be less or equal to 1024. To achieve best performance, TA should
be 256 or 512.

Please visit cuSOLVER Library Samples - MgSyevd for a code example.
API of syevd

Parameter Memory In/out Meaning
handle host input Handle to the cuSolverMG library context.

jobz host input Specifies options to either compute
eigenvalue only or compute eigen-pair:

jobz = CUSOLVER_EIG_MODE_NOVECTOR :
Compute eigenvalues only

jobz = CUSOLVER_EIG_MODE_VECTOR :
Compute eigenvalues and eigenvectors

uplo host input Specifies which part of A is stored.

uplo = CUBLAS_FILL_MODE_LOWER:
Lower triangle of A is stored.

uplo = CUBLAS_FILL_MODE_UPPER:
Upper triangle of A is stored.

Only CUBLAS_FILL_MODE_LOWER is
supported.

N host input Number of rows (or columns) of matrix
sub(A).

array_d_A host in/out A host pointer array of dimension G.
It contains a distributed <type> array
containing sub(A) of dimension N * N.

If uplo = CUBLAS_FILL_MODE_UPPER, the
leading N-by-N upper triangular part of
sub(A) contains the upper triangular
part of the matrix sub(A).

If uplo = CUBLAS_FILL_MODE_LOWER,
the leading N-by-N lower triangular part
of sub(A) contains the lower triangular
part of the matrix sub(A). On exit, if
jobz = CUSOLVER_EIG_MODE_VECTOR,
and info = 0, sub(A) contains the

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuSOLVER/MgSyevd

Using the CUSOLVERMG API

cuSOLVER Library DU-06709-001_v12.3 | 317

Parameter Memory In/out Meaning
orthonormal eigenvectors of the matrix
sub(A).

If jobz =
CUSOLVER_EIG_MODE_NOVECTOR, the
contents of A are destroyed.

IA host input The row index in the global array A
indicating the first row of sub(A).

JA host input The column index in the global array A
indicating the first column of sub(A).

descrA host input Matrix descriptor for the distributed
matrix A.

W host output A real array of dimension N. The
eigenvalue values of sub(A), in
ascending order ie, sorted so that W(i)
<= W(i+1).

dataTypeW host input Data type of the vector W.

computeType host input Data type used for computation.

array_d_work host in/out A host pointer array of dimension G.
array_d_work[j] points to a device
working space in j-th device, <type>
array of size lwork.

lwork host input Size of array_d_work[j], returned
by cusolverMgSyevd_bufferSize.
lwork denotes number of elements, not
number of bytes.

info host output If info = 0, the operation is successful.

If info = -i, the i-th parameter is
wrong (not counting handle).

If info = i (> 0), info indicates i off-
diagonal elements of an intermediate
tridiagonal form did not converge to zero.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (N<0,
or lda<max(1,N), or jobz is not
CUSOLVER_EIG_MODE_NOVECTOR or
CUSOLVER_EIG_MODE_VECTOR, or uplo is not
CUBLAS_FILL_MODE_LOWER, or IA and JA are not
1, or N is bigger than dimension of global A, or the
combination of dataType and computeType is not
valid.

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

cuSOLVER Library DU-06709-001_v12.3 | 318

Appendix A. Acknowledgements

NVIDIA would like to thank the following individuals and institutions for their contributions:

‣ CPU LAPACK routines from netlib, CLAPACK-3.2.1 (http://www.netlib.org/clapack/)

The following is license of CLAPACK-3.2.1.

Copyright (c) 1992-2008 The University of Tennessee. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer listed in this license in the documentation and/or other
materials provided with the distribution.

- Neither the name of the copyright holders nor the names of its contributors may be used
to endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

‣ METIS-5.1.0 (http://glaros.dtc.umn.edu/gkhome/metis/metis/overview)

The following is license of METIS (Apache 2.0 license).

Copyright 1995-2013, Regents of the University of Minnesota

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file
except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Acknowledgements

cuSOLVER Library DU-06709-001_v12.3 | 319

Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
ANY KIND, either express or implied. See the License for the specific language governing
permissions and limitations under the License.

‣ QD (A C++/fortran-90 double-double and quad-double package) (http://crd-legacy.lbl.gov/
~dhbailey/mpdist/)

The following is license of QD (modified BSD license).

Copyright (c) 2003-2009, The Regents of the University of California, through Lawrence
Berkeley National Laboratory (subject to receipt of any required approvals from U.S. Dept. of
Energy) All rights reserved.

1. Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

(1) Redistributions of source code must retain the copyright notice, this list of conditions and
the following disclaimer.

(2) Redistributions in binary form must reproduce the copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

(3) Neither the name of the University of California, Lawrence Berkeley National Laboratory,
U.S. Dept. of Energy nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

2. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

3. You are under no obligation whatsoever to provide any bug fixes, patches, or upgrades to
the features, functionality or performance of the source code ("Enhancements") to anyone;
however, if you choose to make your Enhancements available either publicly, or directly
to Lawrence Berkeley National Laboratory, without imposing a separate written license
agreement for such Enhancements, then you hereby grant the following license: a non-
exclusive, royalty-free perpetual license to install, use, modify, prepare derivative works,
incorporate into other computer software, distribute, and sublicense such enhancements or
derivative works thereof, in binary and source code form.

cuSOLVER Library DU-06709-001_v12.3 | 320

Appendix B. Bibliography

[1] Timothy A. Davis, Direct Methods for sparse Linear Systems, siam 2006.

[2] E. Chuthill and J. McKee, reducing the bandwidth of sparse symmetric matrices, ACM '69
Proceedings of the 1969 24th national conference, Pages 157-172.

[3] Alan George, Joseph W. H. Liu, An Implementation of a Pseudoperipheral Node Finder,
ACM Transactions on Mathematical Software (TOMS) Volume 5 Issue 3, Sept. 1979 Pages
284-295.

[4] J. R. Gilbert and T. Peierls, Sparse partial pivoting in time proportional to arithmetic
operations, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 862-874.

[5] Alan George and Esmond Ng, An Implementation of Gaussian Elimination with Partial
Pivoting for Sparse Systems, SIAM J. Sci. and Stat. Comput., 6(2), 390-409.

[6] Alan George and Esmond Ng, Symbolic Factorization for Sparse Gaussian Elimination with
Paritial Pivoting, SIAM J. Sci. and Stat. Comput., 8(6), 877-898.

[7] John R. Gilbert, Xiaoye S. Li, Esmond G. Ng, Barry W. Peyton, Computing Row and Column
Counts for Sparse QR and LU Factorization, BIT 2001, Vol. 41, No. 4, pp. 693-711.

[8] Patrick R. Amestoy, Timothy A. Davis, Iain S. Duff, An Approximate Minimum Degree
Ordering Algorithm, SIAM J. Matrix Analysis Applic. Vol 17, no 4, pp. 886-905, Dec. 1996.

[9] Alan George, Joseph W. Liu, A Fast Implementation of the Minimum Degree Algorithm
Using Quotient Graphs, ACM Transactions on Mathematical Software, Vol 6, No. 3, September
1980, page 337-358.

[10] Alan George, Joseph W. Liu, Computer Solution of Large Sparse Positive Definite Systems,
Englewood Cliffs, New Jersey: Prentice-Hall, 1981.

[11] Iain S. Duff, ALGORITHM 575 Permutations for a Zero-Free Diagonal, ACM Transactions
on Mathematical Software, Vol 7, No 3, September 1981, Page 387-390

[12] Iain S. Duff and Jacko Koster, On algorithms for permuting large entries to the diagonal
of a sparse matrix, SIAM Journal on Matrix Analysis and Applications, 2001, Vol. 22, No. 4 : pp.
973-996

[13] "A Fast and Highly Quality Multilevel Scheme for Partitioning Irregular Graphs". George
Karypis and Vipin Kumar. SIAM Journal on Scientific Computing, Vol. 20, No. 1, pp. 359-392,
1999.

Bibliography

cuSOLVER Library DU-06709-001_v12.3 | 321

[14] YUJI NAKATSUKASA, ZHAOJUN BAI, AND FRANC¸OIS GYGI, OPTIMIZING HALLEY’S
ITERATION FOR COMPUTING THE MATRIX POLAR DECOMPOSITION, SIAM J. Matrix Anal.
Appl., 31 (5): 2700-2720,2010

[15] Halko, Nathan, Per-Gunnar Martinsson, and Joel A. Tropp. "Finding structure with
randomness: Probabilistic algorithms for constructing approximate matrix decompositions."
SIAM review 53.2 (2011): 217-288.

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA
Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this
document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any
infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material
(defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed
in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any
customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed
either directly or indirectly by this document.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may
be trademarks of the respective companies with which they are associated.

Copyright
© 2014-2023 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
https://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	List of Figures
	List of Tables
	Introduction
	1.1. cuSolverDN: Dense LAPACK
	1.2. cuSolverSP: Sparse LAPACK
	1.3. cuSolverRF: Refactorization
	1.4. Naming Conventions
	1.5. Asynchronous Execution
	1.6. Library Property
	1.7. High Precision Package

	Using the CUSOLVER API
	2.1. General Description
	2.1.1. Thread Safety
	2.1.2. Scalar Parameters
	2.1.3. Parallelism with Streams
	2.1.4. How to Link cusolver Library
	2.1.5. Link Third-party LAPACK Library
	2.1.6. Convention of info
	2.1.7. Usage of _bufferSize
	2.1.8. cuSolverDN Logging

	2.2. cuSolver Types Reference
	2.2.1. cuSolverDN Types
	2.2.1.1. cusolverDnHandle_t
	2.2.1.2. cublasFillMode_t
	2.2.1.3. cublasOperation_t
	2.2.1.4. cusolverEigType_t
	2.2.1.5. cusolverEigMode_t
	2.2.1.6. cusolverIRSRefinement_t
	2.2.1.7. cusolverDnIRSParams_t
	2.2.1.8. cusolverDnIRSInfos_t
	2.2.1.9. cusolverDnFunction_t
	2.2.1.10. cusolverAlgMode_t
	2.2.1.11. cusolverStatus_t
	2.2.1.12. cusolverDnLoggerCallback_t

	2.2.2. cuSolverSP Types
	2.2.2.1. cusolverSpHandle_t
	2.2.2.2. cusparseMatDescr_t
	2.2.2.3. cusolverStatus_t

	2.2.3. cuSolverRF Types
	2.2.3.1. cusolverRfHandle_t
	2.2.3.2. cusolverRfMatrixFormat_t
	2.2.3.3. cusolverRfNumericBoostReport_t
	2.2.3.4. cusolverRfResetValuesFastMode_t
	2.2.3.5. cusolverRfFactorization_t
	2.2.3.6. cusolverRfTriangularSolve_t
	2.2.3.7. cusolverRfUnitDiagonal_t
	2.2.3.8. cusolverStatus_t

	2.3. cuSolver Formats Reference
	2.3.1. Index Base Format
	2.3.2. Vector (Dense) Format
	2.3.3. Matrix (Dense) Format
	2.3.4. Matrix (CSR) Format
	2.3.5. Matrix (CSC) Format

	2.4. cuSolverDN: dense LAPACK Function Reference
	2.4.1. cuSolverDN Helper Function Reference
	2.4.1.1. cusolverDnCreate()
	2.4.1.2. cusolverDnDestroy()
	2.4.1.3. cusolverDnSetStream()
	2.4.1.4. cusolverDnGetStream()
	2.4.1.5. cusolverDnLoggerSetCallback()
	2.4.1.6. cusolverDnLoggerSetFile()
	2.4.1.7. cusolverDnLoggerOpenFile()
	2.4.1.8. cusolverDnLoggerSetLevel()
	2.4.1.9. cusolverDnLoggerSetMask()
	2.4.1.10. cusolverDnLoggerForceDisable()
	2.4.1.11. cusolverDnCreateSyevjInfo()
	2.4.1.12. cusolverDnDestroySyevjInfo()
	2.4.1.13. cusolverDnXsyevjSetTolerance()
	2.4.1.14. cusolverDnXsyevjSetMaxSweeps()
	2.4.1.15. cusolverDnXsyevjSetSortEig()
	2.4.1.16. cusolverDnXsyevjGetResidual()
	2.4.1.17. cusolverDnXsyevjGetSweeps()
	2.4.1.18. cusolverDnCreateGesvdjInfo()
	2.4.1.19. cusolverDnDestroyGesvdjInfo()
	2.4.1.20. cusolverDnXgesvdjSetTolerance()
	2.4.1.21. cusolverDnXgesvdjSetMaxSweeps()
	2.4.1.22. cusolverDnXgesvdjSetSortEig()
	2.4.1.23. cusolverDnXgesvdjGetResidual()
	2.4.1.24. cusolverDnXgesvdjGetSweeps()
	2.4.1.25. cusolverDnIRSParamsCreate()
	2.4.1.26. cusolverDnIRSParamsDestroy()
	2.4.1.27. cusolverDnIRSParamsSetSolverPrecisions()
	2.4.1.28. cusolverDnIRSParamsSetSolverMainPrecision()
	2.4.1.29. cusolverDnIRSParamsSetSolverLowestPrecision()
	2.4.1.30. cusolverDnIRSParamsSetRefinementSolver()
	2.4.1.31. cusolverDnIRSParamsSetTol()
	2.4.1.32. cusolverDnIRSParamsSetTolInner()
	2.4.1.33. cusolverDnIRSParamsSetMaxIters()
	2.4.1.34. cusolverDnIRSParamsSetMaxItersInner()
	2.4.1.35. cusolverDnIRSParamsEnableFallback()
	2.4.1.36. cusolverDnIRSParamsDisableFallback()
	2.4.1.37. cusolverDnIRSParamsGetMaxIters()
	2.4.1.38. cusolverDnIRSInfosCreate()
	2.4.1.39. cusolverDnIRSInfosDestroy()
	2.4.1.40. cusolverDnIRSInfosGetMaxIters()
	2.4.1.41. cusolverDnIRSInfosGetNiters()
	2.4.1.42. cusolverDnIRSInfosGetOuterNiters()
	2.4.1.43. cusolverDnIRSInfosRequestResidual()
	2.4.1.44. cusolverDnIRSInfosGetResidualHistory()
	2.4.1.45. cusolverDnCreateParams()
	2.4.1.46. cusolverDnDestroyParams()
	2.4.1.47. cusolverDnSetAdvOptions()

	2.4.2. Dense Linear Solver Reference (legacy)
	2.4.2.1. cusolverDn<t>potrf()
	2.4.2.2. cusolverDnPotrf()[DEPRECATED]
	2.4.2.3. cusolverDn<t>potrs()
	2.4.2.4. cusolverDnPotrs()[DEPRECATED]
	2.4.2.5. cusolverDn<t>potri()
	2.4.2.6. cusolverDn<t>getrf()
	2.4.2.7. cusolverDnGetrf()[DEPRECATED]
	2.4.2.8. cusolverDn<t>getrs()
	2.4.2.9. cusolverDnGetrs()[DEPRECATED]
	2.4.2.10. cusolverDn<t1><t2>gesv()
	2.4.2.11. cusolverDnIRSXgesv()
	2.4.2.12. cusolverDn<t>geqrf()
	2.4.2.13. cusolverDnGeqrf()[DEPRECATED]
	2.4.2.14. cusolverDn<t1><t2>gels()
	2.4.2.15. cusolverDnIRSXgels()
	2.4.2.16. cusolverDn<t>ormqr()
	2.4.2.17. cusolverDn<t>orgqr()
	2.4.2.18. cusolverDn<t>sytrf()
	2.4.2.19. cusolverDn<t>potrfBatched()
	2.4.2.20. cusolverDn<t>potrsBatched()

	2.4.3. Dense Eigenvalue Solver Reference (legacy)
	2.4.3.1. cusolverDn<t>gebrd()
	2.4.3.2. cusolverDn<t>orgbr()
	2.4.3.3. cusolverDn<t>sytrd()
	2.4.3.4. cusolverDn<t>ormtr()
	2.4.3.5. cusolverDn<t>orgtr()
	2.4.3.6. cusolverDn<t>gesvd()
	2.4.3.7. cusolverDnGesvd()[DEPRECATED]
	2.4.3.8. cusolverDn<t>gesvdj()
	2.4.3.9. cusolverDn<t>gesvdjBatched()
	2.4.3.10. cusolverDn<t>gesvdaStridedBatched()
	2.4.3.11. cusolverDn<t>syevd()
	2.4.3.12. cusolverDnSyevd()[DEPRECATED]
	2.4.3.13. cusolverDn<t>syevdx()
	2.4.3.14. cusolverDnSyevdx()[DEPRECATED]
	2.4.3.15. cusolverDn<t>sygvd()
	2.4.3.16. cusolverDn<t>sygvdx()
	2.4.3.17. cusolverDn<t>syevj()
	2.4.3.18. cusolverDn<t>sygvj()
	2.4.3.19. cusolverDn<t>syevjBatched()

	2.4.4. Dense Linear Solver Reference (64-bit API)
	2.4.4.1. cusolverDnXpotrf()
	2.4.4.2. cusolverDnXpotrs()
	2.4.4.3. cusolverDnXgetrf()
	2.4.4.4. cusolverDnXgetrs()
	2.4.4.5. cusolverDnXgeqrf()
	2.4.4.6. cusolverDnXsytrs()
	2.4.4.7. cusolverDnXtrtri()

	2.4.5. Dense Eigenvalue Solver Reference (64-bit API)
	2.4.5.1. cusolverDnXgesvd()
	2.4.5.2. cusolverDnXgesvdp()
	2.4.5.3. cusolverDnXgesvdr()
	2.4.5.4. cusolverDnXsyevd()
	2.4.5.5. cusolverDnXsyevdx()

	2.5. cuSolverSP: sparse LAPACK Function Reference
	2.5.1. Helper Function Reference
	2.5.1.1. cusolverSpCreate()
	2.5.1.2. cusolverSpDestroy()
	2.5.1.3. cusolverSpSetStream()
	2.5.1.4. cusolverSpXcsrissym()

	2.5.2. High Level Function Reference
	2.5.2.1. cusolverSp<t>csrlsvlu()
	2.5.2.2. cusolverSp<t>csrlsvqr()
	2.5.2.3. cusolverSp<t>csrlsvchol()
	2.5.2.4. cusolverSp<t>csrlsqvqr()
	2.5.2.5. cusolverSp<t>csreigvsi()
	2.5.2.6. cusolverSp<t>csreigs()

	2.5.3. Low Level Function Reference
	2.5.3.1. cusolverSpXcsrsymrcm()
	2.5.3.2. cusolverSpXcsrsymmdq()
	2.5.3.3. cusolverSpXcsrsymamd()
	2.5.3.4. cusolverSpXcsrmetisnd()
	2.5.3.5. cusolverSpXcsrzfd()
	2.5.3.6. cusolverSpXcsrperm()
	2.5.3.7. cusolverSpXcsrqrBatched()

	2.6. cuSolverRF: Refactorization Reference
	2.6.1. cusolverRfAccessBundledFactors()
	2.6.2. cusolverRfAnalyze()
	2.6.3. cusolverRfSetupDevice()
	2.6.4. cusolverRfSetupHost()
	2.6.5. cusolverRfCreate()
	2.6.6. cusolverRfExtractBundledFactorsHost()
	2.6.7. cusolverRfExtractSplitFactorsHost()
	2.6.8. cusolverRfDestroy()
	2.6.9. cusolverRfGetMatrixFormat()
	2.6.10. cusolverRfGetNumericProperties()
	2.6.11. cusolverRfGetNumericBoostReport()
	2.6.12. cusolverRfGetResetValuesFastMode()
	2.6.13. cusolverRfGet_Algs()
	2.6.14. cusolverRfRefactor()
	2.6.15. cusolverRfResetValues()
	2.6.16. cusolverRfSetMatrixFormat()
	2.6.17. cusolverRfSetNumericProperties()
	2.6.18. cusolverRfSetResetValuesFastMode()
	2.6.19. cusolverRfSetAlgs()
	2.6.20. cusolverRfSolve()
	2.6.21. cusolverRfBatchSetupHost()
	2.6.22. cusolverRfBatchAnalyze()
	2.6.23. cusolverRfBatchResetValues()
	2.6.24. cusolverRfBatchRefactor()
	2.6.25. cusolverRfBatchSolve()
	2.6.26. cusolverRfBatchZeroPivot()

	Using the CUSOLVERMG API
	3.1. General Description
	3.1.1. Thread Safety
	3.1.2. Determinism
	3.1.3. Tile Strategy
	3.1.4. Global Matrix Versus Local Matrix
	3.1.5. Usage of _bufferSize
	3.1.6. Synchronization
	3.1.7. Context Switch
	3.1.8. NVLINK

	3.2. cuSolverMG Types Reference
	3.2.1. cuSolverMG Types
	3.2.2. cusolverMgHandle_t
	3.2.3. cusolverMgGridMapping_t
	3.2.4. cudaLibMgGrid_t
	3.2.5. cudaLibMgMatrixDesc_t

	3.3. Helper Function Reference
	3.3.1. cusolverMgCreate()
	3.3.2. cusolverMgDestroy()
	3.3.3. cusolverMgDeviceSelect()
	3.3.4. cusolverMgCreateDeviceGrid()
	3.3.5. cusolverMgDestroyGrid()
	3.3.6. cusolverMgCreateMatDescr()
	3.3.7. cusolverMgDestroyMatrixDesc()

	3.4. Dense Linear Solver Reference
	3.4.1. cusolverMgPotrf()
	3.4.2. cusolverMgPotrs()
	3.4.3. cusolverMgPotri()
	3.4.4. cusolverMgGetrf()
	3.4.5. cusolverMgGetrs()

	3.5. Dense Eigenvalue Solver Reference
	3.5.1. cusolverMgSyevd()

	Acknowledgements
	Bibliography

