

September 2013

CUDA 2.2 Pinned

Memory APIs

September 2013 ii

Month 2007 1

Table of Contents

Table of Contents...1

1. Overview ...2

1.1 “Portable pinned memory”: available to all contexts ... 3

1.2 “Mapped pinned memory”: zero-copy... 3

1.3 Write-combined memory ... 4

2 Driver API ...5

2.1 New device attributes.. 5

2.2 cuCtxCreate .. 5

2.3 cuMemHostAlloc .. 6

2.4 cuMemHostGetDevicePointer... 6

3 CUDA Runtime API ...7

3.1 New Device Properties... 7

3.2 cudaSetDeviceFlags ... 7

3.3 cudaHostAlloc... 8

3.3 cudaHostGetDevicePointer .. 8

4 Frequently Asked Questions..9

4.1 I am trying to use mapped pinned memory, but I’m not getting a device pointer. 9

4.2 Why didn’t NVIDIA implement zero-copy simply by ignoring the copy commands? 9

4.3 When should I use mapped pinned memory?.. 9

4.4 I am trying to use mapped pinned memory, and I’m not getting the expected results.10

4.5 Why do pinned allocations seem to be using CUDA address space? ..10

4.6 Mapped pinned memory is giving me a big performance hit! ...11

4.7 When should I use write-combined memory? ...11

CUDA 2.2 Pinned Memory APIs

September 2013 2

1. Overview

The term “pinned memory” does not appear anywhere in the CUDA header files, but has
been adopted by the CUDA developer community to refer to memory allocated by the
CUDA driver API’s cuMemAllocHost() or the CUDA runtime’s cudaMallocHost()
functions. Such memory is allocated for the CPU, but also page-locked and mapped for
access by the GPU for higher transfer speeds and eligibility for asynchronous memcpy1.

However, before CUDA 2.2 the benefits of pinned memory were realized only on the CPU
thread (or, if using the driver API, the CUDA context) in which the memory was allocated.
This restriction is especially problematic on pre-CUDA 2.2 applications that are operating
multiple GPUs, since a given buffer was guaranteed to be treated as pageable by one of the
CUDA contexts needed to drive multiple GPUs.

In addition, before CUDA 2.2, pinned memory could only be copied to and from a GPU’s
device memory; CUDA kernels could not access CPU memory directly, even if it was
pinned.

CUDA 2.2 introduces new APIs that relax these restrictions via a new function called
cuMemHostAlloc()2 (or in the CUDA runtime, cudaHostAlloc()). The new features are
as follows:

- “Portable” pinned buffers that are available to all GPUs.

- “Mapped” pinned buffers that are mapped into the CUDA address space. On integrated

GPUs, mapped pinned memory enables applications to avoid superfluous copies since

integrated GPUs operate on the same pool of physical memory as the CPU. As a result,

mapped pinned buffers may be referred to as “zero-copy” buffers.

- “WC” (write-combined) memory that is not cached by the CPU, but kept in a small

intermediary buffer and written as needed at high speed. WC memory has higher PCI

Express copy performance and does not have any effect on the CPU caches (since the

WC buffers are a separate hardware resource), but WC memory has drawbacks. The

CPU cannot read from WC memory without incurring a performance penalty3, so WC

memory cannot be used in the general case – it is best for buffers where the CPU is

1 Pageable memory cannot be copied asynchronously since the operating system may move it or swap

it out to disk before the GPU is finished using it.

2 You may wonder why NVIDIA would name a function “cuMemHostAlloc” when the existing

function to allocate pinned memory is called “cuMemAllocHost.” Both naming conventions follow

“global to local” scoping as you read from left to right –prefix, function family, action.

cuMemAllocHost() belongs to the family “Mem” and performs the “alloc host” operation;

cuMemHostAlloc() belongs to the family “MemHost” and performs the “alloc” function.

3 Note, SSE4.1 introduced the MOVNTDQA instruction that enables CPUs to read from WC

memory with high performance.

CUDA 2.2 Pinned Memory APIs

September 2013 3

producing data for consumption by the GPU. Additionally, WC memory may require

fence instructions to ensure coherence.4

These features are completely orthogonal - you can allocate a portable, write-combined
buffer, a portable pinned buffer, a write-combined buffer that is neither portable nor pinned,
or any other permutation enabled by the flags.

1.1 “Portable pinned memory”: available to all
contexts

Before CUDA 2.2, the benefits of pinned memory could only be realized on the CUDA
context that allocated it. This restriction was especially onerous on multi-GPU applications,
since they often divide problems among GPUs, dispatching different subsets of the input
data to different GPUs and gathering the output data into one buffer. cuMemHostAlloc ()
relaxes this restriction through the CU_MEMALLOC_PORTABLE flag. When this flag is
specified, the pinned memory is made available to all CUDA contexts, not just the one that
performed the allocation5.

Portable pinned memory works both for contexts that predate the allocation, and for
contexts that are created after the allocation has been performed.

Portable pinned memory may be freed by any CUDA context by calling
cuMemFreeHost(). Once freed, it is no longer available to any CUDA context.

The CUDA runtime exposes this feature via the new cudaHostAlloc() function with the
cudaHostAllocPortable flag. Memory allocated by cudaHostAlloc() may be freed
by calling cudaFreeHost().

1.2 “Mapped pinned memory”: zero-copy

To date, CUDA has presented a memory model where the CPU and GPU have distinct
memory that is accessible to one device or the other, but never both. Data interchange
between the two devices is achieved by allocating two buffers (one each in CPU memory
and GPU memory) and copying data between them. This memory model reflects the target
GPUs for CUDA, which historically have been discrete GPUs with dedicated memory
subsystems.

There are two scenarios where it is desirable for the CPU and GPU to share a buffer without
explicit buffer allocations and copies:

1) On GPUs integrated into the motherboard, the copies are superfluous because the

CPU and GPU memory are physically the same.

4 The CUDA driver uses WC internally and must issue a store fence instruction whenever it sends a

command to the GPU. So the application may not have to use store fences at all.

5 Portable pinned memory is not the default for compatibility reasons. Making pinned allocations

portable without an opt-in from the application could cause failures to be reported that did not occur

in previous versions of CUDA.

CUDA 2.2 Pinned Memory APIs

September 2013 4

2) On discrete GPUs running workloads that are transfer-bound, or for suitable

workloads where the GPU can overlap computation with kernel -originated PCI-

Express transfers, higher performance may be achieved as well as obviating the

need to allocate a GPU memory buffer.

Using this feature, NVIDIA has observed performance benefits that range from a modest
20% to more than 100%. There are also benefits in ease of programming as compared to
streamed applications that overlap transfers with computation. CUDA streams require
developers to create streams and software-pipeline downloads, kernel processing and
readbacks; and the optimal number of streams must be determined empirically and may vary
from chip to chip. In contrast, an application using zero-copy simply launches a kernel with
device pointers that reference pinned CPU memory.

The API works by creating pinned allocations that have two addresses that alias the same
memory: a host pointer that is passed back upon allocation, and a device pointer that may be
queried. The buffer is freed using existing API functions that free pinned memory (the
driver API’s cuMemFreeHost() or the CUDA runtime’s cudaFreeHost()).

Since the mapped buffer is shared by the CPU and GPU, developers must synchronize
access using existing context, stream or event APIs. Synchronization typically is needed
when the application wants to read data written to a mapped pinned buffer by the GPU. If
the application is using multi-buffering to maximize concurrent CPU/GPU execution, it
may have to synchronize before starting to write to a buffer that may still be getting read by
the GPU.

1.3 Write-combined memory

By default, CUDA allocates pinned memory as cacheable so it can serve as a substitute for
memory allocated with traditional APIs such as malloc(). But there are potential
performance benefits to allocating pinned memory as write-combined (WC). Quoting from
Intel’s web site6: “Writes to WC memory are not cached in the typical sense of the word
cached. They are delayed in an internal buffer that is separate from the internal L1 and L2
caches. The buffer is not snooped and thus does not provide data coherency.”

So writes to write-combined memory do not pollute the CPU caches, and because the
memory is not snooped during transfers across the PCI Express bus, it may perform as
much as 40% faster on certain PCI Express 2.0 implementations.

Certain CPU instructions are especially designed to interact with WC memory – these
include “nontemporal store” instructions such as SSE’s MOVNTPS and “masked move”
instructions such as SSE2’s MASKMOVDQU. Using such instructions is not necessary to
get the benefits of WC memory, however; any set of CPU instructions that write the data
once, preferably contiguously, will exhibit good performance on WC memory.

The SSE4 instruction set provides a streaming load instruction (MOVNTDQA) that can
efficiently read from WC memory7. If the CPUID instruction is executed with EAX==1, bit
19 of ECX indicates whether SSE4.1 is available.

6 http://download.intel.com/design/PentiumII/applnots/24442201.pdf

7 http://softwarecommunity.intel.com/articles/eng/1248.htm

http://download.intel.com/design/PentiumII/applnots/24442201.pdf

CUDA 2.2 Pinned Memory APIs

September 2013 5

2 Driver API

This section briefly describes the CUDA 2.2 additions to the CUDA driver API for pinned
memory management.

2.1 New device attributes

CUresult CUDAAPI cuDeviceGetAttribute(int *pi,

CUdevice_attribute attrib, CUdevice dev);

New enumerants CU_DEVICE_ATTRIBUTE_CAN_MAP_HOST_MEMORY and
CU_DEVICE_ATTRIBUTE_INTEGRATED that enable applications to query whether a device
can map system memory and whether it is integrated, respectively.

CU_DEVICE_ATTRIBUTE_INTEGRATED Nonzero if the device is integrated with
the host memory system.

CU_DEVICE_ATTRIBUTE_CAN_MAP_HOST_M

EMORY
Nonzero if the device can map host
memory. This structure member
corresponds to the driver API’s
CU_DEVICE_ATTRIBUTE_CAN_MAP_H

OST_MEMORY query.

For integrated devices, zero-copy (specifying CU_CTX_MAP_HOST to cuCtxCreate(),
specifying CU_MEMHOSTALLOC_DEVICEMAP to cuMemHostAlloc(), and using the
resulting buffer for data interchange in conjunction with context-, stream- or event-based
CPU synchronization) is always a performance win. All CUDA-capable integrated devices
are able to map host memory.If the CU_DEVICE_ATTRIBUTE_CAN_MAP_HOST_MEMORY
query returns 0, the device cannot map system memory and
cuMemHostGetDevicePointer()/ cudaHostGetDevicePointer() will return a failure
code. On such devices, it is still legitimate to specify the

CU_MEMHOSTALLOC_DEVICEMAP/cudaHostAllocMapped flag, because portable
pinned allocations may make the memory available to other devices that are able to map host
memory.

If the CU_DEVICE_ATTRIBUTE_CAN_MAP_HOST_MEMORY query returns 1, the device
pointer for a mapped pinned buffer may be queried with
cuMemHostGetDevicePointer()/cudaHostGetDevicePointer().

2.2 cuCtxCreate

CUresult CUDAAPI cuCtxCreate(CUcontext *pctx, unsigned int

flags, CUdevice dev);

specified to cuCtxCreate() to enable mapped pinned allocations. It may be combined with
other flags such as CU_CTX_SCHED_SPIN.

CUDA 2.2 Pinned Memory APIs

September 2013 6

If this flag is specified, pinned allocations may be mapped into the CUDA address space by

specifying the CU_MEMHOSTALLOC_DEVICEMAP flag and their CUDA addresses
(CUdeviceptr) may be queried by calling cuMemGetDevicePointer().

2.3 cuMemHostAlloc

CUresult cuMemHostAlloc(void **pp, size_t cBytes, unsigned

int Flags);

#define CU_MEMHOSTALLOC_PORTABLE 0x01

#define CU_MEMHOSTALLOC_DEVICEMAP 0x02

#define CU_MEMHOSTALLOC_WRITECOMBINED 0x04

This function allocates a pinned buffer that may be directly accessed by the GPU(s) in the
system and passes back the resulting CPU pointer in *pp.

If the Flags parameter is 0, cuMemHostAlloc() emulates the pre-CUDA 2.2 function
cuMemAllocHost() except that it may allocate more than 4GB of memory on 64-bit
systems.

If CU_MEMHOSTALLOC_PORTABLE is specified, the memory is made available to all
CUDA contexts, including contexts created after the memory has been allocated. Any
context may free the memory by calling cuMemFreeHost(); at that time, the memory is freed
for all contexts.

If CU_MEMHOSTALLOC_DEVICEMAP is specified, the memory is mapped into the
CUDA address space. The device pointer may be obtained by calling
cuMemHostGetDevicePointer ().

If CU_MEMHOSTALLOC_WRITECOMBINED is specified, the memory is allocated and
mapped as write-combined.

The pointer allocated by cuMemHostAlloc() must be freed with the existing driver API
function cuMemFreeHost().

2.4 cuMemHostGetDevicePointer

CUresult cuMemHostGetDevicePointer(CUdeviceptr *pDevice,

void *pHost, unsigned int Flags);

Passes back the device pointer for a host allocation that was allocated by

cuMemHostAlloc() with the CU_MEMHOSTALLOC_DEVICEMAP flag set. The function
will fail if either of these conditions is not met by the input host pointer.

IMPORTANT: for portable allocations, there is no guarantee that the device pointer will
be the same for different GPUs. This function must be called on each CUDA context by
applications that wish to perform zero-copy operations with multiple GPUs.

At present, Flags must be set to 0.

CUDA 2.2 Pinned Memory APIs

September 2013 7

3 CUDA Runtime API

This section briefly describes the CUDA 2.2 additions to the CUDA runtime APIs for
pinned memory management.

3.1 New Device Properties

The cudaDeviceProp structure passed back by cudaGetDeviceProperties() has two new
members:

int integrated; Nonzero if the device is integrated with the host
memory system. This structure member corresponds to
the driver API’s
CU_DEVICE_ATTRIBUTE_INTEGRATED query.

int

canMapHostMemory;

Nonzero if the device can map host memory. This
structure member corresponds to the driver API’s
CU_DEVICE_ATTRIBUTE_CAN_MAP_HOST_MEMORY

query.

3.2 cudaSetDeviceFlags

cudaError_t CUDARTAPI cudaSetDeviceFlags(unsigned int

Flags);

#define cudaDeviceScheduleAuto 0

#define cudaDeviceScheduleSpin 1

#define cudaDeviceScheduleYield 2

#define cudaDeviceBlockingSync 4

#define cudaDeviceMapHost 8

cudaSetDeviceFlags() may be called before any other CUDA operations are performed in
a given CPU thread.

cudaDeviceScheduleSpin and cudaDeviceScheduleYield specify
whether pageable memcpy’s spin or yield the CPU for synchronization;

cudaDeviceScheduleAuto allows CUDA to select the heuristic to use.

cudaDeviceBlockingSync specifies that the CPU will block rather than spin when
cudaThreadSynchronize() is called.

The cudaDeviceMapHost flag causes all pinned allocations to consume CUDA address
space, and enables cudaHostGetDevicePointer() to obtain the device pointer for a given
host allocation. If cudaSetDeviceFlags()was not called before CUDA started to be used,
cudaHostGetDevicePointer() will return a failure code.

CUDA 2.2 Pinned Memory APIs

September 2013 8

3.3 cudaHostAlloc

cudaError_t CUDARTAPI cudaHostAlloc(void **pHost, size_t

bytes, unsigned int Flags);

#define cudaHostAllocDefault 0

#define cudaHostAllocPortable 1

#define cudaHostAllocMapped 2

#define cudaHostAllocWriteCombined 4

This function allocates a pinned buffer that may be directly accessed by the GPU(s) in the

system and passes back the resulting CPU pointer in *pp.

If the Flags parameter is 0 or cudaHostAllocDefault, cudaHostAlloc() emulates
the pre-CUDA 2.2 function cudaMallocHost() except that it may allocate more than 4GB
of memory on 64-bit systems.

If cudaHostAllocPortable is specified, the memory is made available to all CUDA
contexts, including contexts created after the memory has been allocated.

If cudaHostAllocMapped is specified, the memory is mapped into the CUDA address
space. The device pointer may be obtained by calling cuMemHostGetDevicePointer ().

If cudaHostAllocWriteCombined is specified, the memory is allocated and mapped
as write-combined.

The pointer allocated by cudaHostAlloc() must be freed with the existing driver API
function cudaFreeHost().

3.3 cudaHostGetDevicePointer

cudaError_t CUDARTAPI cudaHostGetDevicePointer(void

**pDevice, void *pHost, unsigned int Flags);

Passes back the device pointer for a host allocation that was allocated by cudaHostAlloc()
with the cudaHostAllocMapped flag. The function will fail if either of these conditions
is not met by the input host pointer.

IMPORTANT: for portable allocations, there is no guarantee that the device pointer will
be the same for different GPUs. This function must be called for each CUDA device by
applications that wish to perform zero-copy operations with multiple GPUs.

At present, Flags must be set to 0.

CUDA 2.2 Pinned Memory APIs

September 2013 9

4 Frequently Asked Questions

This section is by no means complete, but addresses a few questions that are commonly
encountered by developers trying to use the new CUDA 2.2 pinned memory features.

4.1 I am trying to use mapped pinned memory, but
I’m not getting a device pointer.

If cuMemHostGetDevicePointer() or cudaMemHostGetDevicePointer() is failing, this
is usually because the CUDA context was not created with the needed flags. Driver API
apps must create the context with the CU_CTX_MAP_HOST flag; CUDA runtime apps

must call cudaSetDeviceFlags() with the cudaMapHost flag before any CUDA
operations have been performed8.

Another possible explanation for cuMemHostGetDevicePointer() or
cudaMemHostGetDevicePointer()failing is that the GPU does not support mapped
pinned memory. You can use the new device query described in section 2.1 and section 3.1
to determine whether mapped pinned memory is supported.

4.2 Why didn’t NVIDIA implement zero-copy simply
by ignoring the copy commands?

Although many CUDA applications exhibit an execution pattern (memcpy hostdevice,

kernel processing, memcpy devicehost) where this could be done, it would be very

difficult to ignore the copy in the general case because once the hostdevice copy is done,
the host source buffer can be modified by the CPU without affecting the data being
processed by the GPU.

4.3 When should I use mapped pinned memory?

For integrated GPUs, mapped pinned memory is always a performance win because it
eliminates superfluous memcpy’s. You can check whether a given GPU is integrated with the
driver API’s cuDeviceGetAttribute() function with the
CU_DEVICE_ATTRIBUTE_INTEGRATED enumeration value, or by calling the CUDA
runtime’s cudaGetDeviceProperties() function and checking the integrated member
of the cudaDeviceProp structure.

8 A future version of CUDA will be able to allocate mapped pinned memory on a per-allocation basis
(based solely on whether the CU_MEMHOSTALLOC_DEVICEMAP flag or

cudaHostAllocMapped flag was specified), without requiring a context-wide flag to be in effect.

CUDA 2.2 Pinned Memory APIs

September 2013 10

For discrete GPUs, mapped pinned memory is only a performance win in certain cases.
Since the memory is not cached by the GPU, it should be read or written exactly once; and
the global loads and stores that read or write the memory must be coalesced to avoid a 2x
performance penalty.

For most applications, this means that discrete GPUs must perform all coalesced memory
transactions or zero-copy will not improve performance.

4.4 I am trying to use mapped pinned memory, and
I’m not getting the expected results.

99% of the time, this is due to missing CPU/GPU synchronization. All kernel launches are
asynchronous, i.e. control is returned to the CPU before the GPU has finished executing the
kernel. Any kernel that writes to a mapped output buffer requires that the CPU synchronize
with the GPU before reading from the buffer. In this sense, kernel launches that operate on
mapped pinned memory are akin to asynchronous memcpy calls such as
cuMemcpyDtoHAsync() or cudaMemcpyAsync() – since the GPU is operating
independently of the CPU, the only way to ensure that the buffer is ready to be read is
through explicit synchronization.

The big hammer to use for CPU/GPU synchronization is
cuCtxSynchronize()/cudaThreadSynchronize(), which wait until the GPU is idle before
returning.

More granular CPU/GPU synchronization may be performed via streamed operations and
calling cuStreamSynchronize()/cudaStreamSynchronize(). These calls may return before
the GPU goes idle, since other streams may contain work for the GPU.

The most operation-specific CPU/GPU synchronization may be performed via events –
cuEventRecord()/cudaEventRecord() causes the GPU to record an event when all
preceding GPU commands in the stream have been performed;
cuEventSynchronize()/cudaEventSynchronize() wait until the event has been recorded.

4.5 Why do pinned allocations seem to be using
CUDA address space?

Unfortunately, if you specify CU_CTX_MAP_HOST to cuCtxCreate() or specify
cudaDeviceMapHost to cudaSetDeviceFlags(), all pinned allocations are mapped into
CUDA’s 32-bit linear address space, regardless of whether the device pointer is needed. For
some applications, this may limit the usefulness of mapped pinned memory to prototyping
and proof-of-concept implementations.

A future version of CUDA will obviate the need for these context- and device-wide flags to
be specified and enable allocations to be mapped on a per-allocation basis instead.

CUDA 2.2 Pinned Memory APIs

September 2013 11

4.6 Mapped pinned memory is giving me a big
performance hit!

On discrete GPUs, mapped pinned memory is only a performance win if all memory
transactions are coalesced. For uncoalesced memory transactions, a 2-7x reduction in PCI
Express bandwidth will be observed.

4.7 When should I use write-combined memory?

Since it is inefficient for the CPU to read from WC memory, it cannot be used in the general
case. Developers must use a priori knowledge of the buffer’s usage in deciding whether to
allocate them as WC. If the application never uses the CPU to read from the buffer (except
via SSE4’s MOVNTDQA instruction), the buffer is a good candidate for WC allocation.

NVIDIA Corporation

2701 San Tomas Expressway

Santa Clara, CA 95050

www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, GeForce, NVIDIA Quadro, and NVIDIA CUDA are trademarks or
registered trademarks of NVIDIA Corporation in the United States and other countries. Other
company and product names may be trademarks of the respective companies with which they
are associated.

Copyright

© 2009-2013 NVIDIA Corporation. All rights reserved.

