
DATA CENTER GPU MANAGER

DU-07862-001_v1.7 | January 2021

User Guide

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | ii

TABLE OF CONTENTS

Chapter 1. Overview.. 1
1.1. What is DCGM... 1
1.2. Focus Areas.. 2
1.3. Target Users... 3

Chapter 2. Getting Started...4
2.1. Supported Platforms... 4
2.2. Installation... 4
2.3. Basic Components.. 6
2.4. Modes of Operation.. 6

2.4.1. Embedded Mode... 7
2.4.2. Standalone Mode.. 8

2.5. Static Library.. 8
Chapter 3. Feature Overview... 9

3.1. Groups...10
3.2. Configuration...12
3.3. Policy.. 14

3.3.1. Notifications.. 14
3.3.2. Actions... 16

3.4. Job Stats..17
3.5. Health and Diagnostics... 19

3.5.1. Background Health Checks... 19
3.5.2. Active Health Checks..20

3.6. Topology...22
3.7. NVlink Counters..23
3.8. Field Groups..23
3.9. Link Status..24
3.10. Profiling Metrics..25

3.10.1. Profiling Metrics...26
3.10.2. CUDA Test Generator (dcgmproftester)...27
3.10.3. Platform Support... 28

Chapter 4. Integrating with DCGM.. 29
4.1. Integrating with DCGM Reader..29

4.1.1. Reading Using the Dictionary.. 29
4.1.2. Reading Using Inheritance.. 30
4.1.3. Completing the Proof of Concept... 31
4.1.4. Additional Customization... 31

4.2. Integrating with Prometheus and Grafana.. 32
4.2.1. Starting the Prometheus Server... 32
4.2.2. Starting the Prometheus Client..33
4.2.3. Integrating with Grafana... 34

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | iii

4.2.4. Customizing the Prometheus Client...38
Chapter 5. DCGM Diagnostics.. 40

5.1. Overview.. 40
5.1.1. DCGM Diagnostics Goals.. 40
5.1.2. Beyond the Scope of the DCGM Diagnostics...41
5.1.3. Dependencies... 41
5.1.4. Supported Products.. 41

5.2. Using DCGM Diagnostics.. 42
5.2.1. Command line options.. 42
5.2.2. Usage Examples.. 46
5.2.3. Configuration file.. 47
5.2.4. Global parameters... 47
5.2.5. GPU parameters..48
5.2.6. Test Parameters.. 49

5.3. Overview of Plugins...50
5.3.1. Deployment Plugin...50
5.3.2. PCIe - GPU Bandwidth Plugin.. 51
5.3.3. Memory Bandwidth Plugin.. 57
5.3.4. SM Stress Plugin.. 58
5.3.5. Hardware Disagnostic Plugin... 61
5.3.6. Targeted Stress Plugin...64
5.3.7. Power Plugin.. 67

5.4. Test Output...69
5.4.1. JSON Output.. 69

Chapter 6. DCGM Modularity... 70
6.1. Module List... 70
6.2. Blacklisting Modules...71

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | iv

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 1

Chapter 1.
OVERVIEW

1.1. What is DCGM
The NVIDIA® Data Center GPU Manager (DCGM) simplifies administration of NVIDIA
Tesla GPUs in cluster and datacenter environments. At its heart, DCGM is an intelligent,
lightweight user space library/agent that performs a variety of functions on each host
system:

‣ GPU behavior monitoring
‣ GPU configuration management
‣ GPU policy oversight
‣ GPU health and diagnostics
‣ GPU accounting and process statistics
‣ NVSwitch configuration and monitoring

This functionality is accessible programmatically though public APIs and interactively
through CLI tools. It is designed to be run either as a standalone entity or as an
embedded library within management tools.

This document is intended as an overview of DCGM’s main goals and features and is
intended for system administrators, ISV developers, and individual users managing
groups of Tesla GPUs.

TERMINOLOGY

Term Meaning

DCGM NVIDIA’s Datacenter GPU Manager

NVIDIA Host Engine Standalone executable wrapper for DCGM shared

library

Host Engine daemon Daemon mode of operation for the NVIDIA Host

Engine

https://developer.nvidia.com/dcgm

Overview

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 2

Term Meaning

Fabric Manager A module within the Host Engine daemon that

supports NVSwitch fabric on DGX-2 or HGX-2.

3rd-party DCGM Agent Any node-level process from a 3rd-party that runs

DCGM in Embedded Mode

Embedded Mode DCGM executing as a shared library within a 3rd-

party DCGM agent

Standalone Mode DCGM executing as a standalone process via the

Host Engine

System Validation Health checks encompassing the GPU, board and

surrounding environment

HW diagnostic System validation component focusing on GPU

hardware correctness

RAS event Reliability, Availability, Serviceability event.

Corresponding to both fatal and non-fatal GPU

issues

NVML NVIDIA Management Library

1.2. Focus Areas
DCGM’s design is geared towards the following key functional areas.

Manage GPUs as collections of related resources. In the majority of large-scale GPU
deployments there are multiple GPUs per host, and often multiple hosts per job. In most
cases there is a strong desire to ensure homogeneity of behavior across these related
resources, even as specific expectations may change from job to job or user to user,
and even as multiple jobs may use resources on the same host simultaneously. DCGM
applies a group-centric philosophy to node level GPU management.

Configure NVSwitches. On DGX-2 or HGX-2, all GPUs communicate by way of NVSwitch.
The Fabric Manager component of DCGM configures the switches to form a single
memory fabric among all participating GPUs, and monitors the NVLinks that support
the fabric.

Define and enforce GPU configuration state. The behavior of NVIDIA GPUs can be
controlled by users to match requirements of particular environments or applications.
This includes performance characteristics such as clock settings, exclusivity constraints
like compute mode, and environmental controls like power limits. DCGM provides
enforcement and persistence mechanisms to ensure behavioral consistency across
related GPUs.

Automate GPU management policies. NVIDIA GPUs have advanced capabilities that
facilitate error containment and identify problem areas. Automated policies that define

Overview

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 3

GPU response to certain classes of events, including recovery from errors and isolation
of bad hardware, ensure higher reliability and a simplified administration environment.
DCGM provides policies for common situations that require notification or automated
action.

Provide robust, online health and diagnostics. The ability to ascertain the health of a GPU
and its interaction with the surrounding system is a critical management need. This
need comes in various forms, from passive background monitoring to quick system
validation to extensive hardware diagnostics. In all cases it is important to provide these
features with minimal impact on the system and minimal additional environmental
requirements. DCGM provides extensive automated and non-automated health and
diagnostic capabilities.

Enable job-level statistics and accounting. Understanding GPU usage is important
for schedulers and resource managers. Tying this information together with RAS
events, performance information and other telemetry, especially at the boundaries
of a workload, is very useful in explaining job behavior and root-causing potential
performance or execution issues. DCGM provides mechanism to gather, group and
analyze data at the job level.

1.3. Target Users
DCGM is targeted at the following users:

‣ OEMs and ISVs wishing to improve GPU integration within their software.
‣ Datacenter admins managing their own GPU enabled infrastructure.
‣ Individual users and FAEs needing better insight into GPU behavior, especially

during problem analysis.
‣ All DGX-2 and HGX-2 users will use the Fabric Manager to configure and monitor

the NVSwitch fabric.

DCGM provides different interfaces to serve different consumers and use cases.
Programmatic access via C and Python is geared towards integration with 3rd-
party software. Python interfaces are also geared towards admin-centric scripting
environments. CLI-based tools are present to provide an interactive out-of-the-box
experience for end users. Each interface provides roughly equivalent functionality.

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 4

Chapter 2.
GETTING STARTED

2.1. Supported Platforms
DCGM currently supports the following products and environments:

‣ All K80 and newer Tesla GPUs
‣ NVSwitch on DGX A100, HGX A100. Note that for DGX-2 and HGX-2 systems,

while a minimum version of DCGM 1.7 is required, DCGM 2.0 is recommended.
‣ All Maxwell and newer non-Tesla GPUs

Starting with v1.3, limited DCGM functionality is available on non-Tesla GPUs.
More details are available in the section Feature Overview.

‣ Linux - x64, Arm64 and POWER
‣ Ubuntu (20.04, 18.04 and 16.04 LTS only) and CentOS/RHEL (7.x+ only)
‣ CUDA 7.5+ and NVIDIA Driver R418+

NVIDIA Driver R450 and later is required on systems using NVSwitch, such as DGX
A100 or HGX A100. Starting with DCGM 2.0, Fabric Manager (FM) for NVSwitch
systems is no longer bundled with DCGM packages. FM is a separate artifact that
can be installed using the CUDA network repository. For more information, see the
Fabric Manager User Guide.

‣ Bare metal and virtualized (full passthrough only)

2.2. Installation
To run DCGM the target system must include the following NVIDIA components, listed
in dependency order:

 1. Supported Tesla Recommended Driver
 2. Supported CUDA Toolkit
 3. DCGM Runtime and SDK
 4. DCGM Python bindings (if desired)

https://docs.nvidia.com/datacenter/tesla/fabric-manager-user-guide/index.html
https://docs.nvidia.com/datacenter/tesla/fabric-manager-user-guide/index.html

Getting Started

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 5

All of the core components are available as RPMs/DEBs from NVIDIA’s website.
The Python bindings are available in the /usr/src/dcgm/bindings directory after
installation. The user must be root or have sudo privileges for installation, as for any
such packaging operations.

DCGM is tested and designed to run with a Tesla Recommended Driver. Attempting to
run on other drivers, such as a developer driver, could result in missing functionality.

To remove the previous installation (if any), perform the following steps (e.g. on an
RPM-based system).

 1. Make sure that the nv-hostengine is not running. You can stop it using the following
command

sudo nv-hostengine -t
 2. Remove the previous installation.

sudo yum remove datacenter-gpu-manager

Installing DCGM via the package manager is simple.

‣ ‣ For example, on an RPM-based system:

sudo rpm -ivh datacenter-gpu-manager_xxx-1_x86_64.rpm

‣ Installing DCGM on a Debian-based system is similar using dpkg:

sudo dpkg –i datacenter-gpu-manager_xxx-1_amd64.deb

Note that the default dcgm.service files included in the installation package use the
systemd format. If DCGM is being installed on OS distributions that use the init.d
format, then these files may need to be modified.

To verify installation, start the standalone host engine and use dcgmi to query the
system. You should see a listing of all supported GPUs:

nv-hostengine
Starting host engine using port number : 5555

dcgmi discovery -l
2 GPUs found.
+--------+---+
| GPU ID | Device Information |
+========+===+
0	Name: Tesla K80
	PCI Bus ID: 0000:07:00.0
	Device UUID: GPU-000000000000000000000000000000000000
+--------+---+	
1	Name: Tesla K80
	PCI Bus ID: 0000:08:00.0
	Device UUID: GPU-111111111111111111111111111111111115
+--------+---+

nv-hostengine –t
Host engine successfully terminated.

Getting Started

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 6

2.3. Basic Components
DCGM shared library

The user space shared library, libdcgm.so, is the core component of DCGM. This
library implements the major underlying functionality and exposes this as a set of C-
based APIs. It sits on top of the NVIDIA driver, NVML, and the CUDA Toolkit.

NVIDIA Host Engine
The NVIDIA host engine, nv-hostengine, is a thin wrapper around the DCGM shared
library. Its main job is to instantiate the DCGM library as a persistent standalone
process, including appropriate management of the monitoring and management
activities.

‣ DCGM can run as root or non-root. Some DCGM functionality, such as
configuration management, are not allowed to be run as non-root.

‣ On DGX-2 or HGX-2, nv-hostengine must run as root to enable the Fabric
Manager.

DCGM CLI Tool
The command line interface to DCGM, dcgmi, is a network-capable interface into
the NVIDIA host engine. It exposes much of the DCGM functionality in a simple,
interactive format. It is intended for users and admins who want to control DCGM, or
gather relevant data, without needing to build against the programmatic interfaces. It
is not intended for scripting.

Python Bindings
The Python bindings are included with the DCGM package and installed in /usr/
src/dcgm/bindings.

Software Development Kit
The DCGM SDK includes examples of how to leverage major DCGM features,
alongside API documentation and headers. The SDK includes coverage for both C
and Python based APIs, and include examples for using DCGM in both standalone
and embedded modes.
These are installed in /usr/src/dcgm/sdk_samples.

2.4. Modes of Operation
The core DCGM library can be run as a standalone process or be loaded by an agent as a
shared library. In both cases it provides roughly the same class of functionality and has
the same overall behavior. The choice of mode depends on how it best fits within the
user’s existing environment.

In both modes the DCGM library should be run as root. Many features will not work
without privileged access to the GPU, including various configuration settings and
diagnostics.

Getting Started

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 7

2.4.1. Embedded Mode
In this mode the agent is loaded as a shared library. This mode is provided for the
following situations:

‣ A 3rd-party agent already exists on the node, and
‣ Extra jitter associated with an additional autonomous agent needs to be managed

By loading DCGM as a shared library and managing the timing of its activity, 3rd-party
agents can control exactly when DCGM is actively using CPU and GPU resources.

In this mode the 3rd-party agent should generally load the shared library at system
initialization and manage the DCGM infrastructure over the lifetime of the host.
Since DCGM is stateful, it is important that the library is maintained over the life of
the 3rd-party agent, not invoked in a one-off fashion. In this mode all data gathering
loops, management activities, etc. can be explicitly invoked and controlled via library
interfaces. A 3rd-party agent may choose, for example, to synchronize DCGM activities
across an entire multi-node job in this way.

Caution In this mode it is important that the various DCGM management interfaces be
executed by the 3rd-party within the designated frequency ranges, as described in the
API definitions. Running too frequently will waste resources with no noticeable gain.
Running too infrequently will allow for gaps in monitoring and management coverage.

Working in this mode requires a sequence of setup steps and a management thread
within the 3rd-party agent that periodically triggers all necessary DCGM background
work. The logic is roughly as follows:

‣ On Agent Startup

dcgmInit()

System or job-level setup, e.g.
call dcgmGroupCreate() to set up GPU groups
call dcgmWatchFields() to manage watched metrics
call dcgmPolicySet() to set policy

‣ Periodic Background Tasks (managed)

Trigger system management behavior, i.e.
 call dcgmUpdateAllFields() to manage metrics
 call dcgmPolicyTrigger() to manage policies

Gather system data, e.g.
 call dcgmHealthCheck() to check health
 call dcgmGetLatestValues() to get metric updates

‣ On Agent Shutdown

dcgmShutdown()

For a more complete example see the Embedded Mode example in the DCGM SDK

Getting Started

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 8

2.4.2. Standalone Mode
In this mode the DCGM agent is embedded in a simple daemon provided by NVIDIA,
the NVIDIA Host Engine. This mode is provided for the following situations:

‣ DCGM clients prefer to interact with a daemon rather than manage a shared library
resource themselves

‣ Multiple clients wish to interact with DCGM, rather than a single node agent
‣ Users wish to leverage the NVIDIA CLI tool, DCGMI
‣ Users of DGX-2 or HGX-2 systems will need to run the Host Engine daemon to

configure and monitor the NVSwitches

Generally, NVIDIA prefers this mode of operation, as it provides the most flexibility and
lowest maintenance cost to users. In this mode the DCGM library management routines
are invoked transparently at default frequencies and with default behaviors, in contrast
to the user control provided by the Embedded Mode. Users can either leverage DCGMI
tool to interact with the daemon process or load the DCGM library with daemon’s IP
address during initialization for programmatic interaction.

The daemon leverages a socket-based interface to speak with external processes, e.g.
DCGMI. Users are responsible for configuring the system initialization behavior, post
DCGM install, to ensure the daemon is properly executed on startup.

‣ Helper installation scripts for daemon setup will be included in the next Release
Candidate package.

‣ On DGX-2 or HGX-2 systems, nv-hostengine is automatically started at system
boot time, so that the Fabric Manager can configure and monitor the NVSwitches.

2.5. Static Library
A statically-linked stub version of the DCGM library has been included for the purposes
of being able to remove an explicit dependency on the DCGM shared library. This
library provides wrappers to the DCGM symbols and uses dlopen() to dynamically
access libdcgm.so. If the shared library is not installed, or cannot be found in the
LD_LIBRARY_PATH, an error code is returned. When linking against this library libdl
must be included in the compile line which is typically done using:

gcc foo.c –o foo –ldcgm_stub -ldl

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 9

Chapter 3.
FEATURE OVERVIEW

The following sections review key DCGM features, along with examples of input and
output using the DCGMI tool. Common usage scenarios and suggested best practices
are included as well. Starting with v1.3, DCGM is supported on non-Tesla GPUs. The
following table lists the features available on different GPU products.

Support Status

Feature Group Tesla Titan Quadro GeForce

Field Value
Watches (GPU
metrics)

X X X X

Configuration
Management

X X X X

Active Health
Checks (GPU
subsystems)

X X X X

Job Statistics X X X X

Topology X X X X

Introspection X X X X

Policy Notification X

GPU Diagnostics
(Diagnostic Levels –
1, 2, 3)

All Levels Level 1 Level 1 Level 1

While DCGM interfaces are shown, all functionality below is accessible via the C and
Python APIs as well.

Feature Overview

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 10

3.1. Groups
Almost all DCGM operations take place on groups. Users can create, destroy and modify
collections of GPUs on the local node, using these constructs to control all subsequent
DCGM activities.

Groups are intended to help the user manage collections of GPUs as a single abstract
resource, usually correlated to the scheduler’s notion of a node-level job. By working in
this way clients can ask question about the entire job, such as job-level health, without
needing to track the individual resources.

 Note: Today DCGM does not enforce group behavior beyond itself, e.g. through OS
isolation mechanisms like cgroups. It is expected that clients do this externally. The
ability for clients to opt-in to DCGM enforcement of this state is likely in the future.

In machines with only one GPU the group concept can be ignored altogether, as all
DCGM operations that require a group can use one containing that sole GPU. For
convenience, at init, DCGM creates a default group representing all supported GPUs in
the system.

Groups in DCGM need not be disjoint. In many cases it may make sense to maintain
overlapping groups for different needs. Global groups, consisting of all GPUs in the
system, are useful for node-level concepts such as global configuration or global health.
Partitioned groups, consisting of only a subset of GPUs, are useful for job-level concepts
such as job stats and health.

Tip It is recommended that the client maintain one long-lived global group for
node-level activities. For systems with multiple transient concurrent workloads it is
recommended that additional partitioned groups be maintained on a per-job basis.

For example, a group created to manage the GPUs associated with a single job
might have the following lifecycle. During prologue operations the group is created,
configured, and used to verify the GPUs are ready for work. During epilogue operations
the groups is used to extract target information. And while the job is running, DCGM
works in the background to handle the requested behaviors.

Managing groups is very simple. Using the dcgmi group subcommand, the following
example shows how to create, list and delete a group.

Feature Overview

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 11

dcgmi group -c GPU_Group
Successfully created group "GPU_Group" with a group ID of 1

dcgmi group -l
1 group found.
+--+
| GROUPS |
+============+===+
Group ID	1
Group Name	GPU_Group
GPU ID(s)	None
+------------+---+

dcgmi group -d 1
Successfully removed group 1

To add GPUs to a group it is first necessary to identify them. This can be done by first
asking DCGM for all supported GPUs in the system.

dcgmi discovery -l
2 GPUs found.
+--------+---+
| GPU ID | Device Information |
+========+===+
0	Name: Tesla K80
	PCI Bus ID: 0000:07:00.0
	Device UUID: GPU-000000000000000000000000000000000000
+--------+---+	
1	Name: Tesla K80
	PCI Bus ID: 0000:08:00.0
	Device UUID: GPU-111111111111111111111111111111111111
+--------+---+

dcgmi group -g 1 -a 0,1
Add to group operation successful.

Feature Overview

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 12

dcgmi group -g 1 -i
+--+
| GROUPS |
+============+===+
Group ID	1
Group Name	GPU_Group
GPU ID(s)	0, 1
+------------+---+

3.2. Configuration
An important aspect of managing GPUs, especially in multi-node environments, is
ensuring consistent configuration across workloads and across devices. In this context
the term configuration refers to the set of administrative parameters exposed by NVIDIA
to tune GPU behavior. DCGM makes it easier for clients to define target configurations
and ensure those configurations are maintained over time.

It is important to note that different GPU properties have different levels of persistence.
There are two broad categories:

‣ Device InfoROM lifetime

‣ Non-volatile memory on each board, holding certain configurable firmware
settings.

‣ Persists indefinitely, though firmware can be flashed.
‣ GPU initialization lifetime

‣ Driver level data structures, holding volatile GPU runtime information.
‣ Persists until the GPU is de-initialized by the kernel mode driver.

DCGM is primarily focused on maintaining configuration settings that fall into the
second category. These settings are normally volatile, potentially resetting each time
a GPU becomes idle or is reset. By using DCGM a client can ensure that these settings
persist over the desired lifetime.

In most common situations the client should be expected to define a configuration
for all GPUs in the system (global group) at system initialization, or define individual
partitioned group settings on a per-job basis. Once a configuration has been defined
DCGM will enforce that configuration, for example across driver restarts, GPU resets or
at job start.

DCGM currently supports the follows configuration settings:

Setting Description Defaults

Sync Boost Coordinate Auto Boost across
GPUs in the group

None

Target Clocks Attempt to maintain fixed clocks
at the target values

None

ECC Mode Enable ECC protection
throughout the GPU’s memory

Usually On

Feature Overview

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 13

Setting Description Defaults

Power Limit Set the maximum allowed power
consumption

Varies

Compute Mode Limit concurrent process access
to the GPU

No restrictions

To define a target configuration for a group, use the dcgmi config subcommand.
Using the group created in the section above, the following example shows how to set a
compute mode target and then list the current configuration state.

dcgmi config -g 1 --set -c 2
Configuration successfully set.
#dcgmi config -g 1 --get
+--------------------------+------------------------+------------------------+
| GPU_Group | | |
| Group of 2 GPUs | TARGET CONFIGURATION | CURRENT CONFIGURATION |
+==========================+========================+========================+
Sync Boost	Not Specified	Disabled
SM Application Clock	Not Specified	****
Memory Application Clock	Not Specified	****
ECC Mode	Not Specified	****
Power Limit	Not Specified	****
Compute Mode	E. Process	E. Process
+--------------------------+------------------------+------------------------+
**** Non-homogenous settings across group. Use with –v flag to see details.

#dcgmi config -g 1 --get --verbose
+--------------------------+------------------------+------------------------+
| GPU ID: 0 | | |
| Tesla K20c | TARGET CONFIGURATION | CURRENT CONFIGURATION |
+==========================+========================+========================+
Sync Boost	Not Specified	Disabled
SM Application Clock	Not Specified	705
Memory Application Clock	Not Specified	2600
ECC Mode	Not Specified	Disabled
Power Limit	Not Specified	225
Compute Mode	E. Process	E. Process
+--------------------------+------------------------+------------------------+		
+--------------------------+------------------------+------------------------+		
GPU ID: 1		
GeForce GT 430	TARGET CONFIGURATION	CURRENT CONFIGURATION
+==========================+========================+========================+		
Sync Boost	Not Specified	Disabled
SM Application Clock	Not Specified	562
Memory Application Clock	Not Specified	2505
ECC Mode	Not Specified	Enabled
Power Limit	Not Specified	200
Compute Mode	E. Process	E. Process
+--------------------------+------------------------+------------------------+

Once a configuration is set, DCGM maintains the notion of Target and Current state.
Target tracks the user’s request for configuration state while Current tracks the
actual state of the GPU and group. These are generally maintained such that they are
equivalent with DCGM restoring current state to target in situations where that state is
lost or changed. This is common in situations where DCGM has executed some invasive
policy like a health check or GPU reset.

Feature Overview

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 14

3.3. Policy
DCGM provides a way for clients to configure automatic GPU behaviors in response
to various conditions. This is useful for event->action situations, such as GPU recovery
in the face of serious errors. It’s also useful for event->notification situations, such as
when a client wants to be warned if a RAS event occurs. In both scenarios the client must
define a condition on which to trigger further behavior. These conditions are specified
from a predefined set of possible metrics. In some cases the client must also provide a
threshold above/below which the metric condition is triggered. Generally, conditions are
fatal and non-fatal RAS events, or performance-oriented warnings. These include the
following examples:

Condition Type Threshold Description

PCIe/NVLINK Errors Fatal Hardcoded Uncorrected, or
corrected above SDC
threshold

ECC Errors Fatal Hardcoded Single DBE, multiple co-
located SBEs

Page Retirement Limit Non-Fatal Settable Lifetime limit for ECC
errors, or above RMA
rate

Power Excursions Performance Settable Excursions above
specified board power
threshold

Thermal Excursions Performance Settable Excursions above
specified GPU thermal
threshold

XIDs All Hardcoded XIDs represent several
kinds of events within
the NVIDIA driver
such as pending page
retirements or GPUs
falling off the bus. See
http://docs.nvidia.com/
deploy/xid-errors/
index.html for details.

3.3.1. Notifications
The simplest form of a policy is to instruct DCGM to notify a client when the target
condition is met. No further action is performed beyond this. This is primarily
interesting as a callback mechanism within the programmatic interfaces, as a way to
avoid polling.

When running DCGM in embedded mode such callbacks are invoked automatically
by DCGM each time a registered condition is hit, at which point the client can deal
with that event as desired. The client must register through the appropriate API calls to

http://docs.nvidia.com/deploy/xid-errors/index.html
http://docs.nvidia.com/deploy/xid-errors/index.html
http://docs.nvidia.com/deploy/xid-errors/index.html

Feature Overview

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 15

receive these callbacks. Doing so transparently instructs DCGM to track the conditions
that trigger those results.

Once a callback has been received for a particular condition, that notification
registration is terminated. If the client wants repeated notifications for a condition it
should re-register after processing each callback.

The dcgmi policy subcommand does allow access to some of this functionality from
the command line via setting of conditions and via a blocking notification mechanism.
This can be useful when watching for a particular problem, e.g. during a debugging
session.

As an example, the following shows setting a notification policy for PCIe fatal and non-
fatal events:

 # dcgmi policy -g 2 --set 0,0 -p
Policy successfully set.

#dcgmi policy -g 2 --get
Policy information
+---------------------------+--+
| GPU_Group | Policy Information |
+===========================+==+
Violation conditions	PCI errors and replays
Isolation mode	Manual
Action on violation	None
Validation after action	None
Validation failure action	None
+---------------------------+--+
**** Non-homogenous settings across group. Use with –v flag to see details.

#dcgmi policy -g 2 --get --verbose
Policy information
+---------------------------+--+
| GPU ID: 0 | Policy Information |
+===========================+==+
Violation conditions	PCI errors and replays
Isolation mode	Manual
Action on violation	None
Validation after action	None
Validation failure action	None
+---------------------------+--+	
+---------------------------+--+	
GPU ID: 1	Policy Information
+===========================+==+	
Violation conditions	PCI errors and replays
Isolation mode	Manual
Action on violation	None
Validation after action	None
Validation failure action	None
+---------------------------+---

Once such a policy is set the client will receive notifications accordingly. While this is
primarily interesting for programmatic use cases, dcgmi policy can be invoked to
wait for policy notifications:

dcgmi policy -g 2 --reg
Listening for violations
...
A PCIe error has violated policy manager values.
...

Feature Overview

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 16

3.3.2. Actions
Action policies are a superset of the notification policies above.

Some clients may find it useful to tie a condition to an action that DCGM performs
automatically as soon as the condition is met. This is most pertinent when the condition
is a RAS event that prevents the GPU from otherwise operating normally.

Policies that are defined as actions include three additional components:

 1. Isolation mode – whether DCGM grabs exclusive access to the GPU before performing
the subsequent policy steps.

 2. Action – The DCGM invasive behavior to perform.
 3. Validation – Any follow-up validation of GPU state, post action.

A common action based policy is to configure DCGM to automatically retire a memory
page after an ECC DBE has occurred. By retiring the page and re-initializing the GPU,
DCGM can isolate the hardware fault and prepare the GPU for the next job. Since this
operation involves resetting the GPU, a quick system validation is a follow-up step to
ensure the GPU is healthy.

Clients setting action policies receive two notifications each time the policy is run.

 1. Notification callback when condition is hit and policy enacted.
 2. Notification callback when action completes, i.e. after validation step.

Using the dcgmi policy subcommand, this kind of action-based policy can be
configured as follows:

dcgmi policy -g 1 --set 1,1 -e
Policy successfully set.

dcgmi policy -g 1 --get
Policy information for group 1
+--+
| GPU ID: 0 | Policy Information |
+===========================+==+
Violation Conditions	Double-bit ECC errors
Isolation mode	Manual
Action on violation	Reset GPU
Validation after action	NVVS (Short)
Validation failure action	None

Feature Overview

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 17

+---------------------------+--+
...

As shown in the previous section, dcgmi policy can also be used to watch for
notifications associated with this policy.

3.4. Job Stats
DCGM provides background data gathering and analysis capabilities, including the
ability to aggregate data across the lifetime of a target workload and across the GPUs
involved. This makes it easy for clients to gather job level data, such as accounting, in a
single request.

To request this functionality a client must first enable stats recording for the target
group. This tells DCGM that all relevant metrics must be periodically watched for
those GPUs, along with process activity on the devices. This need only be done once at
initialization for each job-level group.

 # dcgmi stats -g 1 --enable
Successfully started process watches on group 1.

Stats recording must be enabled prior to the start of the target workload(s) for reliable
information to be available.

Once a job has completed DCGM can be queried for information about that job, both at
the summary level of a group and, if needed, broken down individually between the
GPUs within that group. The suggested behavior is that clients perform this query in
epilogue scripts as part of job cleanup.

An example of group-level data provided by dcgmi stats:

dcgmi stats --pid 1234 -v
Successfully retrieved process info for pid: 1234. Process ran on 1 GPUs.
+--+
| GPU ID: 0 |
+==================================+===+
|------- Execution Stats ----------+---|
Start Time *	Tue Nov 3 17:36:43 2015
End Time *	Tue Nov 3 17:38:33 2015
Total Execution Time (sec) *	110.33
No. of Conflicting Processes *	0
+------- Performance Stats --------+---+	
Energy Consumed (Joules)	15758
Power Usage (Watts)	Avg: 150, Max: 250, Min: 100
Max GPU Memory Used (bytes) *	213254144
SM Clock (MHz)	Avg: 837, Max: 875, Min: 679
Memory Clock (MHz)	Avg: 2505, Max: 2505, Min: 2505
SM Utilization (%)	Avg: 99, Max: 100, Min: 99
Memory Utilization (%)	Avg: 2, Max: 3, Min: 0
PCIe Rx Bandwidth (megabytes)	Avg: N/A, Max: N/A, Min: N/A
PCIe Tx Bandwidth (megabytes)	Avg: N/A, Max: N/A, Min: N/A
+------- Event Stats --------------+---+	
Single Bit ECC Errors	0
Double Bit ECC Errors	0
PCIe Replay Warnings	0
Critical XID Errors	0
+------- Slowdown Stats -----------+---+	
Due to - Power (%)	0
- Thermal (%)	0

Feature Overview

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 18

- Reliability (%)	0
- Board Limit (%)	0
- Low Utilization (%)	0
- Sync Boost (%)	Not Supported
+----------------------------------+---+
(*) Represents a process statistic. Otherwise device statistic during process
 lifetime listed.

For certain frameworks the processes and their PIDs cannot be associated with a job
directly, and the process associated with a job may spawn many children. In order to
get job-level stats for such a scenario, DCGM must be notified when a job starts and
stops. It is required that the client notifies DCGM with the user defined job id and
the corresponding GPU group at job prologue, and notifies with the job id at the job
epilogue. The user can query the job stats using the job id and get aggregated stats
across all the pids during the window of interest.

An example of notifying DCGM at the beginning and end of the job using dcgmi:

dcgmi stats -g 1 –s <user-provided-jobid>
Successfully started recording stats for <user-provided-jobid>
dcgmi stats –x <user-provided-jobid>
Successfully stopped recording stats for <user-provided-jobid>

The stats corresponding to the job id already watched can be retrieved using dcgmi:

dcgmi stats –j <user-provided-jobid>
Successfully retrieved statistics for <user-provided-jobid>
+--+
| GPU ID: 0 |
+==================================+===+
|------- Execution Stats ----------+---|
Start Time	Tue Nov 3 17:36:43 2015
End Time	Tue Nov 3 17:38:33 2015
Total Execution Time (sec)	110.33
No. of Processes	0
+----- Performance Stats ----------+---+	
Energy Consumed (Joules)	15758
Power Usage (Watts)	Avg: 150, Max: 250, Min 100
Max GPU Memory Used (bytes)	213254144
SM Clock (MHz)	Avg: 837, Max: 875, Min: 679
Memory Clock (MHz)	Avg: 2505, Max: 2505, Min: 2505
SM Utilization (%)	Avg: 99, Max: 100, Min: 99
Memory Utilization (%)	Avg: 2, Max: 3, Min: 0
PCIe Rx Bandwidth (megabytes)	Avg: N/A, Max: N/A, Min: N/A
PCIe Tx Bandwidth (megabytes)	Avg: N/A, Max: N/A, Min: N/A
+----- Event Stats ----------------+---+	
Single Bit ECC Errors	0
Double Bit ECC Errors	0
PCIe Replay Warnings	0
Critical XID Errors	0
+----- Slowdown Stats -------------+---+	
Due to - Power (%)	0
- Thermal (%)	0
- Reliability (%)	0
- Board Limit (%)	0
- Low Utilization (%)	0
- Sync Boost (%)	Not Supported
+----------------------------------+---+

Feature Overview

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 19

3.5. Health and Diagnostics
DCGM provides several mechanisms for understanding GPU health, each targeted at
different needs. By leveraging each of these interfaces it is easy for clients to determine
overall GPU health non-invasively -- while workloads are running, and actively -- when
the GPU(s) can run dedicated tests. A new major feature of DCGM is the ability to run
online hardware diagnostics.

More detailed targeted use cases are as follows:

‣ Background health checks.

These are non-invasive monitoring operations that occur while jobs are running,
and can be queried at any time. There is no impact on application behavior or
performance.

‣ Prologue health checks.

Quick, invasive health checks that take a few seconds and are designed to verify that
a GPU is ready for work prior to job submission.

‣ Epilogue health checks.

Medium duration invasive health checks, taking a few minutes, that can be run
when a job has failed or a GPU’s health is otherwise suspect
.

‣ Full system validation.

Long duration invasive health checks, taking tens of minutes, that can be run when a
system is being active investigated for hardware problems or other serious issues.

Caution All of these are online diagnostics, meaning they run within the current
environment. There is potential for factors beyond the GPU to influence behavior
in negative ways. While these tools try to identify those situations, full offline
diagnostics delivered via a different NVIDIA tool are required for complete
hardware validation, and are required for RMA.

‣

3.5.1. Background Health Checks
This form of health check is based on passive, background monitoring of various
hardware and software components. The objective is to identify problems in key areas
without impact on application behavior or performance. These kinds of checks can catch
serious problems, such as unresponsive GPUs, corrupted firmware, thermal escapes, etc.

When such issues are identified they are reported by DCGM as warnings or errors. Each
situation can require different client responses, but the following guidelines are usually
true:

Feature Overview

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 20

‣ Warning – an issue has been detected that won’t prevent current work from
completing, but the issue should be examined and potentially addressed in the
future.

‣ Error – a critical issue has been detected and the current work is likely compromised
or interrupted. These situations typically correspond to fatal RAS events and usually
indicate the need for job termination and GPU health analysis.

Background health checks can be set and watched via simple DCGM interfaces. Using
dcgmi health as the interface, the following code sets several health checks for a
group and then verifies that those checks are currently enabled:

 # dcgmi health -g 1 -s mpi
Health monitor systems set successfully.

To view the current status of all GPUs in the group the client can simply query for
the overall group health. The result is an overall health score for the group as well as
individual results for each impacted GPU, identifying key problems.

For example, DCGM would show the following when excessive PCIe replay events or
InfoROM issues are detected:

dcgmi health -g 1 –c
Health Monitor Report
+--+
| Group 1 | Overall Health: Warning |
+==================+===+
GPU ID: 0	Warning
	PCIe system: Warning - Detected more than 8 PCIe
	replays per minute for GPU 0: 13
+------------------+---+	
GPU ID: 1	Warning
	InfoROM system: Warning - A corrupt InfoROM has been
	detected in GPU 1.
+------------------+---+

The dcgmi interfaces above only report current health status. The underlying data,
exposed via other interfaces, captures more information about the timeframe of the
events and their connections to executing processes on the GPU.

3.5.2. Active Health Checks
This form of health check is invasive, requiring exclusive access to the target GPUs. By
running real workloads and analyzing the results, DCGM is able to identify common
problems of a variety of types. These include:

‣ Deployment and Software Issues

‣ NVIDIA library access and versioning
‣ 3rd-party software conflicts

‣ Integration Issues

‣ Correctable/uncorrectable issues on PCIe/NVLINK busses
‣ Topological limitations
‣ OS-level device restrictions, cgroups checks
‣ Basic power and thermal constraint checks

Feature Overview

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 21

‣ Stress Checks

‣ Power and thermal stress
‣ PCIe/NVLINK throughput stress
‣ Constant relative system performance
‣ Maximum relative system performance

‣ Hardware Issues and Diagnostics

‣ GPU hardware and SRAMs
‣ Computational robustness
‣ Memory
‣ PCIe/NVLINK busses

DCGM exposes these health checks through its diagnostic and policy interfaces. DCGM
provides three levels of diagnostic capability (see dcgmi diag help on the command line).
DCGM runs more in-depth tests to verify the health of the GPU at each level. The test
names and tests run at each level are provided in the table below:

Test Classes
Test Suite
Name Run Level

Test

Duration Software Hardware Integration Stress

Quick 1 ~ seconds Deployment -- -- --

Medium 2 ~ 2 minutes Deployment Memory Test PCIe/NVLink --

Long 3 ~15 minutes Deployment Memory Test

Memory
Bandwidth

HW
Diagnostic
Tests

PCIe/NVLink SM Stress

Targeted
Stress

Targeted
Power

While simple tests of runtime libraries and configuration are possible on non-Tesla
GPUs (Run Level 1), DCGM is also able to perform hardware diagnostics, connectivity
diagnostics, and a suite of stress tests on Tesla GPUs to help validate health and
isolate problems. The actions in each test type are further described in the section GPU
Parameters.

For example, running the full system validation (long test):

dcgmi diag -g 1 -r 3
Successfully ran diagnostic for group 1.
+---------------------------+--+
| Diagnostic | Result |
+===========================+==+
|------- Deployment --------+--|
Blacklist	Pass
NVML Library	Pass
CUDA Main Library	Pass
CUDA Toolkit Libraries	Pass
Permissions and OS Blocks	Pass
Persistence Mode	Pass
Environment Variables	Pass
Page Retirement	Pass
Graphics Processes	Pass
+------- Hardware ----------+--+

Feature Overview

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 22

| GPU Memory | Pass - All |
| Diagnostic | Pass - All |
+------- Integration -------+--+
| PCIe | Pass - All |
+------- Performance -------+--+
SM Stress	Pass - All
Targeted Stress	Pass - All
Targeted Power	Pass - All
Memory Bandwidth	Pass – All
+---------------------------+--+

Diagnostic configuration options, as well as verbose output with a description of
failures/actions will be included in the next Release Candidate package.

The diagnostic tests can also be run as part of the validation phase of action-based
policies. A common scenario, for example, would be to run the short version of the test
as a validation to a DBE page retirement action.

DCGM will store logs from these tests on the host file system. Two types of logs exist:

‣ Hardware diagnostics include an encrypted binary log, only viewable by NVIDIA.
‣ System validation and stress checks provide additional time series data via JSON

text files. These can be viewed in numerous programs to see much more detailed
information about GPU behavior during each test.

For complete details about the active health checks, including descriptions of the plugins
and their various failure conditions, please read chapter 5.

3.6. Topology
DCGM provides several mechanisms for understanding GPU topology both at a verbose
device-level view and non-verbose group-level view. These views are designed to give
a user information about connectivity to other GPUs in the system as well as NUMA/
affinity information.

For the device-level view:

dcgmi topo --gpuid 0
+-------------------+--+
| GPU ID: 0 | Topology Information |
+===================+==+
| CPU Core Affinity | 0 - 11 |
+-------------------+--+
| To GPU 1 | Connected via an on-board PCIe switch |
| To GPU 2 | Connected via a PCIe host bridge |
+-------------------+--+

And for the group-level view:

dcgmi topo -g 1
+-------------------+--+
| MyGroup | Topology Information |
+===================+==+
| CPU Core Affinity | 0 - 11 |
+-------------------+--+
| NUMA Optimal | True |
+-------------------+--+
| Worst Path | Connected via a PCIe host bridge |

Feature Overview

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 23

+-------------------+--+
.........

3.7. NVlink Counters
DCGM provides a way to check the nvlink error counters for various links in the
system. This makes it easy for clients to catch abnormalities and watch the health of the
communication over nvlink. There are multiple types of nvlink errors that are accounted
for by DCGM as follows:

 1. CRC FLIT Error: Data link receive flow control digit CRC error
 2. CRC Data Error: Data link receive data CRC error.
 3. Replay Error: Transmit replay error.
 4. Recovery Error: Transmit recovery error.

To check the nvlink counters for all the nvlink present in gpu with gpu Id 0:

 # dcgmi nvlink --errors -g 0
+---+
| GPU ID: 0 | NVLINK Error Counts |
+---+
Link 0	CRC FLIT Error	0
Link 0	CRC Data Error	0
Link 0	Replay Error	0
Link 0	Recovery Error	0
Link 1	CRC FLIT Error	0
Link 1	CRC Data Error	0
Link 1	Replay Error	0
Link 1	Recovery Error	0
Link 2	CRC FLIT Error	0
Link 2	CRC Data Error	0
Link 2	Replay Error	0
Link 2	Recovery Error	0
Link 3	CRC FLIT Error	0
Link 3	CRC Data Error	0
Link 3	Replay Error	0
Link 3	Recovery Error	0
+---+

3.8. Field Groups
DCGM provides predefined groups of fields like job statistics, process statistics, and
health for ease of use. Additionally, DCGM allows users to create their own custom
groups of fields called field groups. Users can watch a group of fields on a group of
GPUs and then retrieve either the latest values or a range of values of every field in a
field group for every GPU in a group.

Field groups are not used directly in DCGMI, but you can still look at them and manage
them from DCGMI.

To see all of the active field groups on a system, run:

dcgmi fieldgroup -l
4 field groups found.
+--+
| FIELD GROUPS |

Feature Overview

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 24

+============+===+
ID	1
Name	DCGM_INTERNAL_1SEC
Field IDs	38, 73, 86, 112, 113, 119, 73, 51, 47, 46, 66, 72, 61, 118,...
+------------+---+	
ID	2
Name	DCGM_INTERNAL_30SEC
Field IDs	124, 125, 126, 130, 131, 132, 133, 134, 135, 136, 137, 138,...
+------------+---+	
ID	3
Name	DCGM_INTERNAL_HOURLY
Field IDs	117, 55, 56, 64, 62, 63, 6, 5, 26, 8, 17, 107, 22, 108, 30, 31
+------------+---+	
ID	4
Name	DCGM_INTERNAL_JOB
Field IDs	111, 65, 36, 37, 38, 101, 102, 77, 78, 40, 41, 121, 115, 11...
+------------+---+

If you want to create your own field group, pick a unique name for it, decide which field
IDs you want inside of it, and run:

 # dcgmi fieldgroup -c mygroupname -f 50,51,52
Successfully created field group "mygroupname" with a field group ID of 5

Note that field IDs come from dcgm_fields.h and are the macros that start with
DCGM_FI_.

Once you have created a field group, you can query its info:

#dcgmi fieldgroup -i --fieldgroup 5
+--+
| FIELD GROUPS |
+============+===+
ID	5
Name	mygroupname
Field IDs	50, 51, 52
+------------+---+

If you want to delete a field group, run the following command:

dcgmi fieldgroup -d -g 5
Successfully removed field group 5

Note that DCGM creates a few field groups internally. Field groups that are created
internally, like the ones above, cannot be removed. Here is an example of trying to delete
a DCGM-internal field group:

dcgmi fieldgroup -d -g 1
Error: Cannot destroy field group 1. Return: No permission.

3.9. Link Status
In DCGM 1.5, you can query the status of the NVLinks of the GPUs and NVSwitches
attached to the system with the following command:

dcgmi nvlink --link-status
+----------------------+
| NvLink Link Status |
+----------------------+
GPUs:

Feature Overview

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 25

 gpuId 0:
 U U U U U U
 gpuId 1:
 U U U U U U
 gpuId 2:
 U U U U U U
 gpuId 3:
 U U U U U U
 gpuId 4:
 U U U U U U
 gpuId 5:
 U U U U U U
 gpuId 6:
 U U U U U U
 gpuId 7:
 U U U U U U
 gpuId 8:
 U U U U U U
 gpuId 9:
 U U U U U U
 gpuId 10:
 U U U U U U
 gpuId 11:
 U U U U U U
 gpuId 12:
 U U U U U U
 gpuId 13:
 U U U U U U
 gpuId 14:
 U U U U U U
 gpuId 15:
 U U U U U U
NvSwitches:
 physicalId 8:
 U U U U U U X X U U U U U U U U U U
 physicalId 9:
 U U U U U U U U U U U U U U X X U U
 physicalId 10:
 U U U U U U U U U U U U X U U U X U
 physicalId 11:
 U U U U U U X X U U U U U U U U U U
 physicalId 12:
 U U U U X U U U U U U U U U U U X U
 physicalId 13:
 U U U U X U U U U U U U U U U U X U
 physicalId 24:
 U U U U U U X X U U U U U U U U U U
 physicalId 25:
 U U U U U U U U U U U U U U X X U U
 physicalId 26:
 U U U U U U U U U U U U X U U U X U
 physicalId 27:
 U U U U U U X X U U U U U U U U U U
 physicalId 28:
 U U U U X U U U U U U U U U U U X U
 physicalId 29:
 U U U U X U U U U U U U U U U U X U

Key: Up=U, Down=D, Disabled=X, Not Supported=_

3.10. Profiling Metrics
As GPU-enabled servers become more common in the datacenter, it becomes important
to better understand applications’ performance and the utilization of GPU resources in

Feature Overview

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 26

the cluster. Profiling metrics in DCGM enables the collection of a set of metrics using the
hardware counters on the GPU. DCGM provides access to device-level metrics at low
performance overhead in a continuous manner. This feature is currently in beta starting
with DCGM 1.7.

DCGM includes a new profiling module to provide access to these metrics. The new
metrics are available as new fields (i.e.n new IDs) via the regular DCGM APIs (such as
the C, Python, Go bindings or the dcgmi command line utility). The installer packages
also include an example CUDA based test load generator (called dcgmproftester) to
demonstrate the new capabilities.

3.10.1. Profiling Metrics
In this release of DCGM, the following new device-level profiling metrics are supported.
The definitions and corresponding DCGM field IDs are listed. By default, DCGM
provides the metrics at a sample rate of 1Hz (every 1000ms). Users can query the metrics
at any configurable frequency (minimum is 100ms) from DCGM (for example, see dcgmi
dmon -d).

Table 1 Device Level GPU Metrics

Metric Definition
DCGM Field Name

(DCGM_FI_*) and ID

Graphics Engine Activity Ratio of time the graphics
engine is active. The graphics
engine is active if a graphics/
compute context is bound and
the graphics pipe or compute
pipe is busy.

PROF_GR_ENGINE_ACTIVE (ID:
1001)

SM Activity The ratio of cycles an SM has at
least 1 warp assigned (computed
from the number of cycles and
elapsed cycles)

PROF_SM_ACTIVE (ID: 1002)

SM Occupancy The ratio of number of warps
resident on an SM. (number of
resident warps as a percentage
of the theoretical maximum
number of warps per elapsed
cycle)

PROF_SM_OCCUPANCY (ID: 1003)

Tensor Activity The ratio of cycles the tensor
(HMMA) pipe is active (off the
peak sustained elapsed cycles)

PROF_PIPE_TENSOR_ACTIVE (ID:
1004)

Memory BW Utilization The ratio of cycles the device
memory interface is active
sending or receiving data.

PROF_DRAM_ACTIVE (ID: 1005)

Engine Activity Ratio of cycles the fp64 /fp32 /
fp16 / HMMA|IMMA pipes are
active.

PROF_PIPE_FPXY_ACTIVE (ID:
1006 (FP64); 1007 (FP32); 1008
(FP16))

Feature Overview

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 27

Metric Definition
DCGM Field Name

(DCGM_FI_*) and ID

NVLink Activity The number of bytes of active
NVLink rx or tx data including
both header and payload.

DEV_NVLINK_BANDWIDTH_L0

PCIe Bandwidth pci__bytes_{rx, tx} - The number
of bytes of active pcie rx or tx
data including both header and
payload.

PROF_PCIE_[T|R]X_BYTES (ID:
1009 (TX); 1010 (RX))

Some metrics require multiple passes to be collected and therefore all metrics cannot be
collected together. Due to hardware limitations on the Tesla V100, only certain groups
of metrics can be read together. For example, SM Activity | SM Occupancy cannot
be collected together with Tensor Utilization. To overcome these limitations, DCGM
supports automatic multiplexing of metrics by statistically sampling the requested
metrics and performing the groupings internally. This may be transparent to users who
requested metrics that may not have been able to be collected together.

Profiling of the GPU counters requires administrator privileges starting with Linux
drivers 418.43 or later. This is documented here. When using profiling metrics from
DCGM, ensure that nv-hostengine is started with superuser privileges.

3.10.2. CUDA Test Generator (dcgmproftester)
dcgmproftester is a CUDA load generator. It can be used to generate deterministic
CUDA workloads for reading and validating GPU metrics. The tool is shipped as a
simple x86_64 Linux binary along with the CUDA kernels compiled to PTX. Customers
can use the tool in conjunction with dcgmi to quickly generate a load on the GPU and
view the metrics reported by DCGM via dcgmi dmon on stdout.

dcgmproftester takes two important arguments as input: -t for generating load for
a particular metric (for example use 1004 to generate a half-precision matrix-multiply-
accumulate for the Tensor Cores) and -d for specifying the test duration. Add --no-
dcgm-validation to let dcgmproftester generate test loads only.

For a list of all the field IDs that can be used to generate specific test loads, see the table
in the Profiling Metrics section. The rest of this section includes some examples using the
dcgmi command line utility.

Before starting to use dcgmproftester copy the utilities into a local directory. You
should find the dcgmproftester binary and DcgmProfTesterKernels.ptx for the
PTX of the kernels.

 $ cp -r /usr/local/dcgm/sdk_samples/dcgmproftester $HOME

For example in a console, generate a load for the TensorCores on V100 for 30seconds. As
can be seen, the V100 is able to achieve close to 94TFLops of FP16 performance using the
TensorCores.

 $./dcgmproftester --no-dcgm-validation -t 1004 -d 30
 CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_MULTIPROCESSOR: 2048
 CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT: 80
 CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_MULTIPROCESSOR: 98304

https://developer.nvidia.com/nvidia-development-tools-solutions-ERR_NVGPUCTRPERM-permission-issue-performance-counters

Feature Overview

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 28

 CU_DEVICE_ATTRIBUTE_MEMORY_CLOCK_RATE: 877000
 Max Memory bandwidth: 898048000000 bytes (898.05 GiB)
 CudaInit completed successfully.

 TensorEngineActive ??? (91772.8 gflops)
 TensorEngineActive ??? (93744.9 gflops)
 TensorEngineActive ??? (93831.8 gflops)
 TensorEngineActive ??? (93848.2 gflops)
 TensorEngineActive ??? (93844.5 gflops)

In another console, use the dcgmi dmon -e command to view the various performance
metrics (streamed to stdout) reported by DCGM as the CUDA workload runs on the
GPU. In this example, DCGM reports the GPU activity, TensorCore activity and Memory
utilization at a frequency of 1Hz (or 1000ms). As can be seen, the GPU is busy doing
work (~99% of Graphics Activity showing that the SMs are busy), with the TensorCore
activity pegged to ~80%. Note that dcgmi is currently returning the metrics for GPU ID:
0. On a multi-GPU system, you can specify the GPU ID for which DCGM should return
the metrics. By default, the metrics are returned for all the GPUs in the system.

 $ dcgmi dmon -e 1001,1004,1005
 # GPU/Sw GRACT TENSO DRAMA
 Id
 0 0.000 0.000 0.000
 0 1.000 0.909 0.213
 0 0.994 0.797 0.251
 0 0.992 0.796 0.251
 0 0.992 0.796 0.250
 0 0.993 0.797 0.251
 0 0.994 0.797 0.251
 0 0.994 0.797 0.251
 0 0.993 0.796 0.251

3.10.3. Platform Support
Profiling metrics are currently supported for the following GPU products on Linux
x86_64 and POWER (ppc64le) platforms:

‣ Tesla V100
‣ Tesla T4

R418.87.00+ Tesla Linux drivers downloaded from the NVIDIA driver downloads site.

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 29

Chapter 4.
INTEGRATING WITH DCGM

4.1. Integrating with DCGM Reader
DcgmReader.py is a class meant to facilitate gathering telemetry from DCGM so that the
information can be viewed directly or integrated elsewhere. The sdk_samples directory
contains a simple script which uses DcgmReader in DcgmReaderExample.py. The
directory also contains other examples of how DcgmReader can be used to integrate into
tools such as collectd (dcgm_collectd.py), Prometheus (dcgm_prometheus.py).

This section will walk through two simple ways of using DcgmReader to easily gather
information from DCGM.

First, let's imagine that you want to publish some telemetry from DCGM on a message
bus such as ZMQ. We can access this through two simple methods, the first of which
asks for a dictionary.

All examples here assume that you have DCGM installed and nv-hostengine active
locally.

4.1.1. Reading Using the Dictionary
dictionary_reader_example.py
from DcgmReader import DcgmReader
import zmq
import time

def main():
 dr = DcgmReader()
 context = zmq.Context()
 socket = context.socket(zmq.PUB)
 socket.bind(“tcp://*:4096”)
 while True:
 ‘’’
 GetLatestGpuValuesAsFieldDict() gives us a dictionary that maps
 gpu ids to
 the GPU value dictionary. The GPU value dictionary maps each
 field name to
 the value for that field. This will publish each in the format
 GPU:<GPU ID>:fieldTag=value

Integrating with DCGM

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 30

 NOTE: if you prefer to use field ids instead of field tags
 (names) see
 GetLatestGpuValueAsFieldIdDict()
 ‘’’
 data = dr.GetLatestGpuValuesAsFieldDict()
 for gpuId in data:
 for fieldTag in data[gpuId]:
 msg = "GPU:%s:%s=%s" % (str(gpuId), fieldTag,
 val.value)
 self.m_zmqSocket.send("%s %s" % (fieldTag,
 message))
if __name__ == ‘__main__’:
 main()

This method permits you to use DcgmReader without learning much about it.

4.1.2. Reading Using Inheritance
Using inheritance allows finer-grained controls.

inheritance_reader_example.py
from DcgmReader import DcgmReader
import zmq
import time

class DcgmPublisher(DcgmReader):
 # Have our constructor also open a ZMQ socket for publishing.
 def __init__(self, port=4096):
 DcgmReader.__init__(self)
 context = zmq.Context()
 self.m_zmqSocket = context.socket(zmq.PUB)
 self.m_zmqSocket.bind("tcp://*:%d" % (port))

 '''
 Publish the fieldTag as the topic and the message data as
 "GPU:<GPU ID>:fieldTag=value"
 This overrides the method in DcgmReader for what to do with each
 field. If you want additional controls, consider overriding
 CustomDataHandler from the parent class.
 '''
 def CustomFieldHandler(self, gpuId, fieldId, fieldTag, val):
 topic = fieldTag
 message = "GPU:%s:%s=%s" % (str(gpuId), fieldTag, val.value)
 self.m_zmqSocket.send("%s %s" % (topic, message))

def main():
 dp = DcgmPublisher()

 while True:
 # Process is a method in DcgmReader that gets the data and starts
 # processing it, resulting in our version of CustomFieldHandler
 # getting called.
 dp.Process()
 time.sleep(15)

if __name__ == '__main__':
 main()

This method grants you more control over DcgmReader.

Integrating with DCGM

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 31

4.1.3. Completing the Proof of Concept
Either script – when run with DCGM installed and an active nv-hostengine - will
publish data on port 4096. The following script will subscribe and print that data.

To run the subscriber from a different host, simply change localhost on line 5 to the
IP address of the remote machine that is publishing data from DCGM. As is, the script
will connect locally.

subscriber_example.py
import zmq

port = 4096
context = zmq.Context()
socket = context.socket(zmq.SUB)
Change localhost to the ip addr of the publisher if remote
socket.connect("tcp://localhost:%d" % (port))
socket.setsockopt(zmq.SUBSCRIBE, '')

while True:
 update = socket.recv()
 topic, message = update.split()
 print message

4.1.4. Additional Customization
DcgmReader gathers the following fields by default:

defaultFieldIds = [
 dcgm_fields.DCGM_FI_DRIVER_VERSION,
 dcgm_fields.DCGM_FI_NVML_VERSION,
 dcgm_fields.DCGM_FI_PROCESS_NAME,
 dcgm_fields.DCGM_FI_DEV_POWER_USAGE,
 dcgm_fields.DCGM_FI_DEV_GPU_TEMP,
 dcgm_fields.DCGM_FI_DEV_SM_CLOCK,
 dcgm_fields.DCGM_FI_DEV_GPU_UTIL,
 dcgm_fields.DCGM_FI_DEV_RETIRED_PENDING,
 dcgm_fields.DCGM_FI_DEV_RETIRED_SBE,
 dcgm_fields.DCGM_FI_DEV_RETIRED_DBE,
 dcgm_fields.DCGM_FI_DEV_ECC_SBE_VOL_TOTAL,
 dcgm_fields.DCGM_FI_DEV_ECC_DBE_VOL_TOTAL,
 dcgm_fields.DCGM_FI_DEV_ECC_SBE_AGG_TOTAL,
 dcgm_fields.DCGM_FI_DEV_ECC_DBE_AGG_TOTAL,
 dcgm_fields.DCGM_FI_DEV_FB_TOTAL,
 dcgm_fields.DCGM_FI_DEV_FB_FREE,
 dcgm_fields.DCGM_FI_DEV_FB_USED,
 dcgm_fields.DCGM_FI_DEV_PCIE_REPLAY_COUNTER,
 dcgm_fields.DCGM_FI_DEV_COMPUTE_PIDS,
 dcgm_fields.DCGM_FI_DEV_POWER_VIOLATION,
 dcgm_fields.DCGM_FI_DEV_THERMAL_VIOLATION,
 dcgm_fields.DCGM_FI_DEV_XID_ERRORS,
 dcgm_fields.DCGM_FI_DEV_NVLINK_CRC_FLIT_ERROR_COUNT_TOTAL,
 dcgm_fields.DCGM_FI_DEV_NVLINK_CRC_DATA_ERROR_COUNT_TOTAL,
 dcgm_fields.DCGM_FI_DEV_NVLINK_REPLAY_ERROR_COUNT_TOTAL,
 dcgm_fields.DCGM_FI_DEV_NVLINK_RECOVERY_ERROR_COUNT_TOTAL
]

Integrating with DCGM

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 32

There are hundreds more fields that DCGM provides, and you may be interested
in monitoring different ones. You can control this in your script by instantiating
DcgmReader with parameters:

custom_fields_example.py
myFieldIds = [
 dcgm_fields.DCGM_FI_DEV_SM_CLOCK,
 dcgm_fields.DCGM_FI_DEV_MEM_CLOCK,
 dcgm_fields.DCGM_FI_DEV_APP_CLOCK,
 dcgm_fields.DCGM_FI_DEV_MEMORY_TEMP,
 dcgm_fields.DCGM_FI_DEV_GPU_TEMP,
 dcgm_fields.DCGM_FI_DEV_POWER_USAGE,
 dcgm_fields.DCGM_FI_DEV_GPU_UTIL,
 dcgm_fields.DCGM_FI_DEV_MEM_COPY_UTIL,
 dcgm_fields.DCGM_FI_DEV_COMPUTE_PIDS]
…
 # In main(), change the instantiation:
 dr = DcgmReader(fieldIds=myFieldIds)
…

You can control other behaviors of DcgmReader using these additional parameters:

‣ hostname: defaults to localhost. Controls the hostname[:port] where we connected
to DCGM.

‣ fieldIds: explained above. Controls the fields we are going to watch and read in
DCGM.

‣ updateFrequency: defaults to 10 seconds (specified in microseconds). Controls
how often DCGM refreshes each field value.

‣ maxKeepAge: defaults to 1 hour (specified in seconds). Controls how long DCGM
keeps data for each of the specified fields.

‣ ignoreList: defaults to an empty array. Specifies field ids that should be
retrieved but should be ignored for processing. Usually used for metadata. •
fieldGroupName: defaults to dcgm_fieldgroupData. Controls the name that
DcgmReader gives to the group of fields we are watching. This is useful for running
multiple instances of DcgmReader simultaneously

.

4.2. Integrating with Prometheus and Grafana

4.2.1. Starting the Prometheus Server
On the server side, configure Prometheus to read (scrape) the data being published by
the dcgm_prometheus client. Just add a job to the scrape_configs section of the yaml
Prometheus configuration file. See the following section of a working configuration:

A scrape configuration containing exactly one endpoint to scrape:
scrape_configs:
 # The job name is added as a label `job=<job_name>` to any timeseries scraped
 from this config.
 - job_name: 'dcgm'

 # metrics_path defaults to '/metrics'
 # scheme defaults to 'http'.

Integrating with DCGM

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 33

 static_configs:
 - targets: ['hostnameWhereClientIsRunning:8000']

Replace 'hostnameWhereClientIsRunning' with the name or ip address of the host where
the client is running, or localhost if both are executing on the same host.

Once the configure file has been updated, launch Prometheus with the specified
configuration file:

$./prometheus --config.file=prometheus.yml

Verify that Prometheus is up and running by opening a browser to http://localhost:9090.
Select a metric in the box next to the 'Execute' button, click the 'Execute' button, and then
select the 'Graph' tab. The page should display:

4.2.2. Starting the Prometheus Client
The script dcgm_prometheus.py is provided as a fully functional Prometheus client
that will publish timeseries data on a port to be read (scraped) by Prometheus. By
default, this script will publish common fields read from a DCGM instance running
locally every 10 seconds to localhost:8000. Information on controlling what is published,
how often, and on what port will be in the section on customization.

On the client side, start this script. It can either connect to a standalone host engine or
run on embedded in the script. To start an embedded host engine and check that it is
publishing:

$ python dcgm_prometheus.py -e
$ curl localhost:8000 > tmp.txt

Integrating with DCGM

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 34

HELP dcgm_sm_clock DCGM_PROMETHEUS
TYPE dcgm_sm_clock gauge
dcgm_sm_clock{GpuBusID="00000000:08:00.0",GpuID="1"} 1480.0
dcgm_sm_clock{GpuBusID="00000000:07:00.0",GpuID="0"} 1480.0
dcgm_sm_clock{GpuBusID="00000000:0E:00.0",GpuID="2"} 1480.0
dcgm_sm_clock{GpuBusID="00000000:0F:00.0",GpuID="3"} 1480.0
HELP dcgm_nvlink_flit_crc_error_count_total DCGM_PROMETHEUS
TYPE dcgm_nvlink_flit_crc_error_count_total gauge
dcgm_nvlink_flit_crc_error_count_total{GpuBusID="00000000:08:00.0",GpuID="1"}
 0.0
dcgm_nvlink_flit_crc_error_count_total{GpuBusID="00000000:0E:00.0",GpuID="2"}
 0.0
dcgm_nvlink_flit_crc_error_count_total{GpuBusID="00000000:0F:00.0",GpuID="3"}
 0.0
HELP dcgm_power_usage DCGM_PROMETHEUS
TYPE dcgm_power_usage gauge
dcgm_power_usage{GpuBusID="00000000:08:00.0",GpuID="1"} 294.969
dcgm_power_usage{GpuBusID="00000000:07:00.0",GpuID="0"} 273.121
dcgm_power_usage{GpuBusID="00000000:0E:00.0",GpuID="2"} 280.484
dcgm_power_usage{GpuBusID="00000000:0F:00.0",GpuID="3"} 281.301
HELP dcgm_nvlink_data_crc_error_count_total DCGM_PROMETHEUS
TYPE dcgm_nvlink_data_crc_error_count_total gauge
dcgm_nvlink_data_crc_error_count_total{GpuBusID="00000000:08:00.0",GpuID="1"}
 0.0
dcgm_nvlink_data_crc_error_count_total{GpuBusID="00000000:0E:00.0",GpuID="2"}
 0.0
dcgm_nvlink_data_crc_error_count_total{GpuBusID="00000000:0F:00.0",GpuID="3"}
 0.0
...

The number of GPUs may vary, and the published field ids can be changed through
configuration, but the output should conform to the above format.

4.2.3. Integrating with Grafana
Grafana offers additional features such as configurable dashboards and integration
with Grafana is straightforward. Install and launch Grafana, and then open a browser
to http://localhost:3000. The default login / password is admin / admin. After logging in,
clock on the Grafana icon and select the 'Data Sources' option. Configure the Prometheus
server as a data source:

Integrating with DCGM

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 35

Click ‘Add’ and then create a dashboard using the data that is scraped from the DCGM
Prometheus client. Click the Grafana icon again and then Dashboards -> New. There
are a lot of ways to customize dashboards; to create a dashboard with graphs, click the
'Graph' option at the top. Select 'Panel Title' and then 'Edit':

Integrating with DCGM

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 36

Type dcgm into the metric name box as shown below, and Grafana will offer you auto-
completion options for the DCGM fields you have configured. If this doesn't happen,
then the data source wasn't configured correctly, or Prometheus has stopped running.

Integrating with DCGM

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 37

Use the different tabs to customize the graph as desired. This graph has the metric
dcgm_gpu_temp selected, and the title changed via the 'General', plus the units set to
Celsius via the Axes tab.

Integrating with DCGM

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 38

4.2.4. Customizing the Prometheus Client
The DCGM Prometheus client can be controlled using command line parameters:

‣ -n, --hostname: specifies the hostname of the DCGM instance we're querying for
data. Default: localhost. Mutually exclusive with -e.

‣ -e, --embedded: start an embedded hostengine from this script instead of connecting
to a standalone hostengine. Mutually exclusive with -n.

‣ -p, --publish-port: specifies the port where data is published. Default: 8000. Please
note that if you change this you'll need to change the Prometheus configuration
accordingly.

‣ -i, --interval: specifies the interval at which DCGM is queried and data is published
in seconds. Default: 10.

‣ -l, --ignore-list: specifies fields queried but not published. Default:
DCGM_FI_DEV_PCI_BUSID (57).

‣ --log-file: Specifies the path to a log file. If this is used without –log-level, then only
critical information is logged.

‣ --log-level: One of CRITICAL (0), ERROR (1), WARNING (2), INFO (3), or DEBUG
(4) to specify what kind of information should be logged. If this is used without –
log-file, then the information is logged to stdout.

‣ -f, --field-ids: specifies the list of fields queried and published from DCGM. Default:

DCGM_FI_DEV_PCI_BUSID (57)
DCGM_FI_DEV_POWER_USAGE (155)
DCGM_FI_DEV_GPU_TEMP (150)
DCGM_FI_DEV_SM_CLOCK (100)

Integrating with DCGM

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 39

DCGM_FI_DEV_GPU_UTIL (203)
DCGM_FI_DEV_RETIRED_PENDING (392)
DCGM_FI_DEV_RETIRED_SBE (390)
DCGM_FI_DEV_RETIRED_DBE (391)
DCGM_FI_DEV_ECC_SBE_AGG_TOTAL (312)
DCGM_FI_DEV_ECC_DBE_AGG_TOTAL (313)
DCGM_FI_DEV_FB_TOTAL (250)
DCGM_FI_DEV_FB_FREE (251)
DCGM_FI_DEV_FB_USED (252)
DCGM_FI_DEV_PCIE_REPLAY_COUNTER (202)
DCGM_FI_DEV_ECC_SBE_VOL_TOTAL (310)
DCGM_FI_DEV_ECC_DBE_VOL_TOTAL (311)
DCGM_FI_DEV_POWER_VIOLATION (240)
DCGM_FI_DEV_THERMAL_VIOLATION (241)
DCGM_FI_DEV_XID_ERRORS (230)
DCGM_FI_DEV_NVLINK_CRC_FLIT_ERROR_COUNT_TOTAL (409)
DCGM_FI_DEV_NVLINK_CRC_DATA_ERROR_COUNT_TOTAL (419)
DCGM_FI_DEV_NVLINK_REPLAY_ERROR_COUNT_TOTAL (429)
DCGM_FI_DEV_NVLINK_RECOVERY_ERROR_COUNT_TOTAL (439)

Example Usages

#Change the DCGM host to one named sel:
$ python dcgm_prometheus.py -n sel
Change the port:
$ python dcgm_prometheus.py -p 10101
Change the interval
$ python dcgm_prometheus.py -i 20
Change the ignore list and publish list:
$ python dcgm_prometheus.py -l 523 -f 523,310,311,312

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 40

Chapter 5.
DCGM DIAGNOSTICS

5.1. Overview
The NVIDIA Validation Suite (NVVS) is now called DCGM Diagnostics. As of DCGM
v1.5, running NVVS as a standalone utility is now deprecated and all the functionality
(including command line options) is available via the DCGM command-line utility
('dcgmi'). For brevity, the rest of the document may use DCGM Diagnostics and NVVS
interchangeably.

5.1.1. DCGM Diagnostics Goals
DCGM Diagnostics are designed to:

 1. Provide a system-level tool, in production environments, to assess cluster readiness
levels before a workload is deployed.

 2. Facilitate multiple run modes:

‣ Interactive via an administrator or user in plain text.
‣ Scripted via another tool with easily parseable output.

 3. Provide multiple test timeframes to facilitate different preparedness or failure
conditions:

‣ Level 1 tests to use as a readiness metric
‣ Level 2 tests to use as an epilogue on failure
‣ Level 3 tests to be run by an administrator as post-mortem

 4. Integrate the following concepts into a single tool to discover deployment, system
software and hardware configuration issues, basic diagnostics, integration issues,
and relative system performance.

‣ Deployment and Software Issues

‣ NVML library access and versioning
‣ CUDA library access and versioning
‣ Software conflicts

DCGM Diagnostics

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 41

‣ Hardware Issues and Diagnostics

‣ Pending Page Retirements
‣ PCIe interface checks
‣ NVLink interface checks
‣ Framebuffer and memory checks
‣ Compute engine checks

‣ Integration Issues

‣ PCIe replay counter checks
‣ Topological limitations
‣ Permissions, driver, and cgroups checks
‣ Basic power and thermal constraint checks

‣ Stress Checks

‣ Power and thermal stress
‣ Throughput stress
‣ Constant relative system performance
‣ Maximum relative system performance
‣ Memory Bandwidth

 5. Provide troubleshooting help
 6. Easily integrate into Cluster Scheduler and Cluster Management applications
 7. Reduce downtime and failed GPU jobs

5.1.2. Beyond the Scope of the DCGM Diagnostics
DCGM Diagnostics are not designed to:

 1. Provide comprehensive hardware diagnostics
 2. Actively fix problems
 3. Replace the field diagnosis tools. Please refer to http://docs.nvidia.com/deploy/hw-

field-diag/index.html for that process.
 4. Facilitate any RMA process. Please refer to http://docs.nvidia.com/deploy/rma-

process/index.html for those procedures.

5.1.3. Dependencies
‣ DCGM Diagnostics require a NVIDIA Linux driver to be installed. Both the

standard display driver and Tesla Recommended Driver will work. You can obtain a
driver from http://www.nvidia.com/object/unix.html.

‣ DCGM Diagnostics require the standard C++ runtime library with GLIBCXX of at
least version 3.4.5 or greater.

5.1.4. Supported Products
DCGM Diagnostics support NVIDIA Data center GPUs running on 64-bit Linux (bare
metal) operating systems. NVIDIA® Tesla™ Line:

‣ All Kepler, Maxwell, Pascal, Volta, Turing and NVIDIA Ampere architecture GPUs

http://docs.nvidia.com/deploy/hw-field-diag/index.html
http://docs.nvidia.com/deploy/hw-field-diag/index.html
http://docs.nvidia.com/deploy/rma-process/index.html
http://docs.nvidia.com/deploy/rma-process/index.html
http://www.nvidia.com/object/unix.html

DCGM Diagnostics

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 42

5.2. Using DCGM Diagnostics
The various command line options of DCGM Diagnostics are designed to control general
execution parameters, whereas detailed changes to execution behavior are contained
within the configuration files detailed in the next chapter.

5.2.1. Command line options
The various options for dcgmi diag are as follows:

Short option Long option Description

--statspath Write the plugin statistics to
a given path rather than the
current directory.

-a --appendLog When generating a debug logfile,
do not overwrite the contents of
a current log. Used in conjuction
with the -d and -l options.

-c --configfile Specify the configuration file to
be used. The default is that no
config file is used.

-i --gpuList Comma separated list of the
indexes of the GPUs to run
NVVS on. This cannot be used in
conjunction with -g (group). If
neither are specified, then the
diagnostic is run on all GPUs.

-j --jsonOutput Provide the output in JSON
instead of text.

-d --debugLevel Specify the debug level for the
output log. The range is 0 to 5
with 5 being the most verbose.

--debugLogFile Specify the logfile for debug
information. This will produce an
encrypted log file intended to be
returned to NVIDIA for post-run
analysis after an error.

--plugin-path Specify a custom path for the
NVVS plugins. The plugins must
have the same permissions and
owner as the NVVS executable.

-r --run Run a specific test or test
suite. Test suites are 1 (short),
2 (medium), or 3 (long). Use
quotes to specify individual tests,
and use commas to separate
multiple tests. For example: -
p "diagnostic,sm stress". This
argument is mandatory.

DCGM Diagnostics

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 43

Short option Long option Description

-p --parameters Specify test parameters
via the command-line. Use
quotes around the argument,
and separate the arguments
using ';'. For example: -p "sm
stress.test_duration=150;diagnostic.test_duration=150"
would set the test duration for
the hardware Diagnostic and the
SM Stress test to 150 seconds
each.

--host Specifies the host of the nv-
hostengine we want to connect
to. Defaults to localhost.

--statsonfail Output statistic logs only if a test
failure is encountered.

throttle-mask Specify which throttling reasons
should be ignored. You can
provide a comma separated list of
reasons. For example, specifying
'HW_SLOWDOWN,SW_THERMAL'
would ignore the HW_SLOWDOWN
and SW_THERMAL throttling
reasons. Alternatively, you can
specify the integer value of the
ignore bitmask. For the bitmask,
multiple reasons may be specified
by the sum of their bit masks.
For example, specifying '40'
would ignore the HW_SLOWDOWN
and SW_THERMAL throttling
reasons. Valid throttling
reasons and their corresponding
bitmasks (given in parentheses)
are: "HW_SLOWDOWN (8)
SW_THERMAL (32) HW_THERMAL
(64) HW_POWER_BRAKE (128)

--train Runs the diagnostic iteratively
and generate a configure file of
the golden values for this system
based on the results of multiple
runs of the diagnostic tests. This
should be used when you wish
to restrict what the acceptable
standards for the plugins are to
ensure that your system conforms
to a higher standard. This is
intended for systems which have
a known, stable configuration.
This is a beta feature for the 1.6
release.

--force Ignore non-fatal errors and train
the diagnostic. For example, if
too great coefficient of variance
is found among the test runs,
then the results would normally
be thrown out and no file would

DCGM Diagnostics

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 44

Short option Long option Description

be generated. --force will
create the file and ignore these
conditions.

--training-iterations Specifies the number of times
the diagnostic tests are each run
during training. The default is 4.

--training-variance Specifies the acceptable
coefficient of variance required
to trust the data and generate a
golden values configuration file in
training. The default is 5, which
means the coefficient of variance
has to be .05 or less to trust the
data.

--training-tolerance The percentage that the golden
value should be scaled for
tolerance when producing the
file. For example, if 10 were
specified, then values would be
adjusted to tolerate 10% off of
the standard before writing the
config file so that runs do not
have to achieve exactly the same
result (or better) as the training
runs. Default is 5.

--golden-values-filename Specify the filename of the
golden values file. These
files are written to the /tmp
dir, and the default name is
golden_values.yml.

-v --verbose Enable verbose output.

-g --group Specifies the list of GPUs on
which the diagnostic should
run. If no group is specified, the
diagnostic is run on all GPUs.

-h --help Display usage information and
exit.

NVVS has been deprecated. The various options for NVVS are as follows:

Short option Long option Description

--statspath Write the plugin statistics to
a given path rather than the
current directory.

-a --appendLog When generating a debug logfile,
do not overwrite the contents of
a current log. Used in conjuction
with the -d and -l options.

-c --config Specify the configuration file to
be used. The default is /etc/
nvidia-validation-suite/
nvvs.conf

DCGM Diagnostics

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 45

Short option Long option Description

--configless Run NVVS in a configless mode.
Executes a "long" test on all
supported GPUs.

-d --debugLevel Specify the debug level for the
output log. The range is 0 to 5
with 5 being the most verbose.
Used in conjunction with the -l
flag.

-g --listGpus List the GPUs available and exit.
This will only list GPUs that are
supported by NVVS.

-i --indexes Comma separated list of indexes
to run NVVS on.

-j --jsonOutput Instructs nvvs to format the
output as JSON.

-l --debugLogFile Specify the logfile for debug
information. This will produce an
encrypted log file intended to be
returned to NVIDIA for post-run
analysis after an error.

--quiet No console output given. See logs
and return code for errors.

-p --pluginpath Specify a custom path for the
NVVS plugins.

-s --scriptable Produce output in a colon-
separated, more script-friendly
and parseable format.

--specifiedtest Run a specific test in a configless
mode. Multiple word tests should
be in quotes, and if more than
one test is specified it should be
comma-separated.

--parameters Specify test parameters
via the command-line. For
example: --parameters "sm
stress.test_duration=300" would
set the test duration for the SM
Stress test to 300 seconds.

--statsonfail Output statistic logs only if a test
failure is encountered.

-t --listTests List the tests available to be
executed through NVVS and exit.
This will list only the readily
loadable tests given the current
path and library conditions.

-v --verbose Enable verbose reporting.

--version Displays the version information
and exits.

DCGM Diagnostics

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 46

Short option Long option Description

-h --help Display usage information and
exit.

5.2.2. Usage Examples
To display the list of GPUs available on the system.

user@hostname
$ nvvs -g

NVIDIA Validation Suite (version 352.00)

Supported GPUs available:
 [0000:01:00.0] -- Tesla K40c
 [0000:05:00.0] -- Tesla K20c
 [0000:06:00.0] -- Tesla K20c

An example "quick" test (explained later) using a custom configuration file.

user@hostname
$ nvvs -c Tesla_K40c_quick.conf

NVIDIA Validation Suite (version 352.00)

 Software
 Blacklist ... PASS
 NVML Library PASS
 CUDA Main Library PASS
 CUDA Toolkit Libraries PASS
 Permissions and OS-related Blocks PASS
 Persistence Mode PASS
 Environmental Variables PASS

To output an encrypted debug file at the highest debug level to send to NVIDIA for
analysis after a problem.

user@hostname
$ nvvs -c Tesla_K40c_medium.conf -d 5 -l debug.log

NVIDIA Validation Suite (version 352.00)

 Software
 Blacklist ... PASS
 NVML Library PASS
 CUDA Main Library PASS
 CUDA Toolkit Libraries PASS
 Permissions and OS-related Blocks PASS
 Persistence Mode PASS
 Environmental Variables PASS
 Hardware
 Memory GPU0 PASS
 Integration
 PCIe .. FAIL
 *** GPU 0 is running at PCI link width 8X, which is below the minimum
 allowed link width of 16X (parameter:
min_pci_width)"

The output file, debug.log would then be returned to NVIDIA.

DCGM Diagnostics

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 47

5.2.3. Configuration file
The NVVS configuration file is a YAML-formatted (e.g. human-readable JSON) text file
with three main stanzas controlling the various tests and their execution.

The general format of a configuration file consists of:

%YAML 1.2

globals:
 key1: value
 key2: value

test_suite_name:
- test_class_name1:
 test_name1:
 key1: value
 key2: value
 subtests:
 subtest_name1:
 key1: value
 key2: value
 test_name2:
 key1: value
 key2: value
-test_class_name2:
 test_name3:
 key1: value
 key2: value

gpus:
- gpuset: name
 properties:
 key1: value
 key2: value
 tests:
 name: test_suite_name

There are three distinct sections: globals, test_suite_name, and gpus each with its own
subsection of parameters and as is with any YAML document, indentation is important
thus if errors are generated from your own configuration files please refer to this
example for indentation reference.

5.2.4. Global parameters
Keyword Value Type Description

logfile String The prefix for all detailed test
data able to be used for post-
processing.

logfile_type String Can be json, text, or binary. Used
in conjunction with the logfile
global parameter. Default is JSON.

scriptable Boolean Accepts true, or false. Produces
a script-friendly, colon-separated

http://www.yaml.org

DCGM Diagnostics

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 48

Keyword Value Type Description

output and is identical to the -s
command line parameter.

serial_override Boolean Accepts true, or false. Some tests
are designed to run in parallel
if multiple GPUs are given.
This parameter overrides that
behavior serializing execution
across all tests.

require_persistence_mode Boolean Accepts true, or false.
Persistence mode is a prerequisite
for some tests, this global
overrides that requirement and
should only be used if it is not
possible to activate persistence
mode on your system.

5.2.5. GPU parameters
The gpus stanza may consist of one or more gpusets which will each match zero or more
GPUs on the system based on their properties(a match of zero will produce an error).

GPUs are matched based on the following criteria with their configuration file keywords
in parenthesis:

‣ Name of the GPU, i.e. Tesla K40c (name)
‣ Brand of the GPU, i.e. Tesla (brand)
‣ A comma separated list of indexes (index)
‣ The GPU UUID (uuid)
‣ or the PCIe Bus ID (busid)

The matching rules are based off of exclusion. First, the list of supported GPUs is taken
and if no properties tag is given then all GPUs will be used in the test. Because a UUID
or PCIe Bus ID can only match a single GPU, if those properties are given then only that
GPU will be used if found. The remaining properties, index, brand, and name work in
an "AND" fashion such that, if specified, the result must match at least one GPU on the
system for a test to be performed.

For example, if name is set to "Tesla K40c" and index is set to "0" NVVS will error if
index 0 is not a Tesla K40c. By specifying both brand and index a user may limit a test to
specific "Tesla" cards for example. In this version of NVVS, all matching GPUs must be
homogeneous.

The second identifier for a gpuset is tests. This parameter specifies either the suite of tests
that a user wishes to run or the test itself.

At present the following suites are available:

‣ Quick -- meant as a pre-run sanity check to ensure that the GPUs are ready for a job.
Currently runs the Deployment tests described in the next chapter.

‣ Medium -- meant as a quick, post-error check to make sure that nothing very
obvious such as ECC enablement or double-bit errors have occurred on a GPU.

DCGM Diagnostics

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 49

Currently runs the Deployment, Memory/Hardware, and PCIe/Bandwidth tests. The
Hardware tests are meant to be relatively short to find obvious issues.

‣ Long -- meant as a more extensive check to find potential power and/or performance
problems within a cluster. Currently runs an extensive test that involves
Deployment, Memory/Hardware, PCI/Bandwidth, Power, Stress, and Memory
Bandwidth. The Hardware tests will run in a longer-term iterative mode that are
meant to try and capture transient failures as well as obvious issues.

An individual test can also be specified. Currently the keywords are: Memory, Diagnostic,
Targeted Stress, Targeted Power, PCIe, SM Stress, and Memory Bandwidth. Please see the
"custom" section in the next subchapter to configure and tweak the parameters when
this method is used.

5.2.6. Test Parameters
The format of the NVVS configuration file is designed for extensibility. Each test suite
above can be customized in a number of ways described in detail in the following
chapter for each test. Individual tests belong to a specific class of functionality which,
when wanting to customize specific parameters, must also be specified.

The classes and the respective tests they perform are as follows:

Class name Tests Brief description

Software Deployment Checks for various runtime
libraries, persistence mode,
permissions, environmental
variables, and blacklisted
drivers.

Hardware Diagnostic Execute a series of hardware
diagnostics meant to exercise
a GPU or GPUs to their factory
specified limits.

Integration PCIe Test host to GPU, GPU to host,
and P2P (if possible) bandwidth.
P2P between GPUs occurs over
NvLink (if possible) or PCIe.

Targeted Stress Sustain a specific targeted stress
level for a given amount of time.

Targeted Power Sustain a specific targeted power
level for a given amount of time.

SM Stress Sustain a workload on the
Streaming Multiprocessors (SMs)
of the GPU for a given amount of
time.

Stress

Memory Bandwidth Verify that a certain memory
bandwidth can be achieved on
the framebuffer of the GPU.

DCGM Diagnostics

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 50

Some tests also have subtests that can be enabled by using the subtests keyword and then
hierarchically adding the subtest parameters desired beneath. An example would be the
PCIe Bandwidth test which may have a section that looks similar to this:

long:
- integration:
 pcie:
 test_unpinned: false
 subtests:
 h2d_d2h_single_pinned:
 min_bandwidth: 20
 min_pci_width: 16

When only a specific test is given in the GPU set portion of the configuration file, both
the suite and class of the test are custom. For example:

%YAML 1.2

globals:
 logfile: nvvs.log

custom:
- custom:
 targeted stress:
 test_duration: 60

gpus:
- gpuset: all_K40c
 properties:
 name: Tesla K40c
 tests:
 - name: targeted stress

5.3. Overview of Plugins
The NVIDIA Validation Suite consists of a series of plugins that are each designed to
accomplish a different goal.

5.3.1. Deployment Plugin
The deployment plugin's purpose is to verify the compute environment is ready to run
Cuda applications and is able to load the NVML library.

Preconditions

‣ LD_LIBRARY_PATH must include the path to the cuda libraries, which for version
X.Y of Cuda is normally /usr/local/cuda-X.Y/lib64, which can be set by running
export LD_LIBRARY_PATH=/usr/local/cuda-X.Y/lib64

‣ The linux nouveau driver must not be running, and should be blacklisted since it
will conflict with the nvidia driver

DCGM Diagnostics

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 51

Configuration Parameters

None at this time.

Stat Outputs

None at this time.

Failure

The plugin will fail if:

‣ The corresponding device nodes for the target GPU(s) are being blocked by the
operating system (e.g. cgroups) or exist without r/w permissions for the current
user.

‣ The NVML library libnvidia-ml.so cannot be loaded
‣ The Cuda runtime libraries cannot be loaded
‣ The nouveau driver is found to be loaded
‣ Any pages are pending retirement on the target GPU(s)
‣ Any other graphics processes are running on the target GPU(s) while the plugin

runs

5.3.2. PCIe - GPU Bandwidth Plugin
The GPU bandwidth plugin's purpose is to measure the bandwidth and latency to and
from the GPUs and the host.

Preconditions

None

Sub Tests

The plugin consists of several self-tests that each measure a different aspect of
bandwidth or latency. Each subtest has either a pinned/unpinned pair or a p2p enabled/
p2p disabled pair of identical tests. Pinned/unpinned tests use either pinned or
unpinned memory when copying data between the host and the GPUs.

This plugin will use NvLink to communicate between GPUs when possible. Otherwise,
communication between GPUs will occur over PCIe

Each sub test is represented with a tag that is used both for specifying configuration
parameters for the sub test and for outputting stats for the sub test. P2p enabled/p2p
disabled tests enable or disable GPUs on the same card talking to each other directly
rather than through the PCIe bus.

DCGM Diagnostics

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 52

Sub Test Tag

Pinned/Unpinned

P2P Enabled/P2P Disabled Description

h2d_d2h_single_pinned Pinned Device <-> Host Bandwidth, one

GPU at a time

h2d_d2h_single_unpinned Unpinned Device <-> Host Bandwidth, one

GPU at a time

h2d_d2h_concurrent_pinned Pinned Device <-> Host Bandwidth, all

GPUs concurrently

h2d_d2h_concurrent_unpinned Unpinned Device <-> Host Bandwidth, all

GPUs concurrently

h2d_d2h_latency_pinned Pinned Device <-> Host Latency, one GPU

at a time

h2d_d2h_latency_unpinned Unpinned Device <-> Host Latency, one GPU

at a time

p2p_bw_p2p_enabled P2P Enabled Device <-> Device bandwidth one

GPU pair at a time

p2p_bw_p2p_disabled P2P Disabled Device <-> Device bandwidth one

GPU pair at a time

p2p_bw_concurrent_p2p_enabled P2P Enabled Device <-> Device bandwidth,

concurrently, focusing on

bandwidth between GPUs

between GPUs likely to be

directly connected to each

other -> for each (index / 2) and

(index / 2)+1

p2p_bw_concurrent_p2p_disabled P2P Disabled Device <-> Device bandwidth,

concurrently, focusing on

bandwidth between GPUs

between GPUs likely to be

directly connected to each

other -> for each (index / 2) and

(index / 2)+1

1d_exch_bw_p2p_enabled P2P Enabled Device <-> Device bandwidth,

concurrently, focusing on

bandwidth between gpus, every

GPU either sending to the gpu

with the index higher than itself

DCGM Diagnostics

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 53

Sub Test Tag

Pinned/Unpinned

P2P Enabled/P2P Disabled Description

(l2r) or to the gpu with the index

lower than itself (r2l)

1d_exch_bw_p2p_disabled P2P Disabled Device <-> Device bandwidth,

concurrently, focusing on

bandwidth between gpus, every

GPU either sending to the gpu

with the index higher than itself

(l2r) or to the gpu with the index

lower than itself (r2l)

p2p_latency_p2p_enabled P2P Enabled Device <-> Device Latency, one

GPU pair at a time

p2p_latency_p2p_disabled P2P Disabled Device <-> Device Latency, one

GPU pair at a time

Configuration Parameters- Global

Parameter Name Type Default Value Range Description

test_pinned Bool True True/False Include subtests

that test using

pinned memory.

test_unpinned Bool True True/False Include subtests

that test using

unpinned memory.

test_p2p_on Bool True True/False Include subtests

that require peer

to peer (P2P)

memory transfers

between cards to

occur.

test_p2p_off Bool True True/False Include subtests

that do not require

peer to peer (P2P)

memory transfers

between cards to

occur.

DCGM Diagnostics

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 54

Parameter Name Type Default Value Range Description

max_pcie_replays Float 80.0 1.0 - 1000000.0 Maximum number

of PCIe replays to

allow per GPU for

the duration of

this plugin. This

is based on an

expected replay

rate <8 per minute

for PCIe Gen 3.0,

assuming this

plugin will run for

less than a minute

and allowing 10x

as many replays

before failure.

Configuration Parameters- Sub Test

Parameter Name Default (Range) Affected Sub Tests Description

min_bandwidth Null

(0.0 - 100.0)

h2d_d2h_single_pinned,

h2d_d2h_single_unpinned,

h2d_d2h_concurrent_pinned,

h2d_d2h_concurrent_unpinned

Minimum bandwidth in GB/s that

must be reached for this sub-test

to pass.

max_latency 100,000.0

(0.0 - 1,000,000.0)

h2d_d2h_latency_pinned,

h2d_d2h_latency_unpinned

Latency in microseconds that

cannot be exceeded for this sub-

test to pass.

min_pci_generation 1.0

(1.0 - 3.0)

h2d_d2h_single_pinned,

h2d_d2h_single_unpinned

Minimum allowed PCI generation

that the GPU must be at or

exceed for this sub-test to pass.

min_pci_width 1.0

(1.0 - 16.0)

h2d_d2h_single_pinned,

h2d_d2h_single_unpinned

Minimum allowed PCI width that

the GPU must be at or exceed

for this sub-test to pass. For

example, 16x = 16.0.

Stat Outputs - Global

Stat Name Stat Scope Type Description

pcie_replay_count GPU Float The per second
reading of PCIe
replays that have

DCGM Diagnostics

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 55

Stat Name Stat Scope Type Description

occurred since the
start of the GPU
Bandwidth plugin.

Stat Outputs -Sub Test

Stats for the GPU Bandwidth test are also output on a test by test basis, using the sub
test name as the group name key. The following stats sections are organized by sub test.

h2d_d2h_single_pinned/h2d_d2h_single_unpinned

Stat Name Type Description

N_h2d Float Average bandwidth from host to

device for device N

N_d2h Float Average bandwidth from device

to host for device N

N_bidir Float Average bandwidth from device

to host and host to device at the

same time for device N

h2d_d2h_concurrent_pinned/h2d_d2h_concurrent_unpinned

Stat Name Type Description

N_h2d Float Average bandwidth from host to

device for device N

N_d2h Float Average bandwidth from device

to host for device N

N_bidir Float Average bandwidth from device

to host and host to device at the

same time for device N

sum_bidir Float Sum of the average bandwidth

from device to host and host to

device for all devices.

sum_h2d Float Sum of the average bandwidth

from host to device for all

devices.

sum_d2h Float Sum of the average bandwidth

from device to host for all

devices.

DCGM Diagnostics

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 56

h2d_d2h_latency_pinned/h2d_d2h_latency_unpinned

Stat Name Type Description

N_h2d Float Average latency from host to

device for device N

N_d2h Float Average latency from device to

host for device N

N_bidir Float Average latency from device to

host and host to device at the

same time for device N

p2p_bw_p2p_enabled/p2p_bw_p2p_disabled

Stat Name Type Description

N_M_onedir Float Average bandwidth from device

N to device M, copying one

direction at a time.

N_M_bidir Float Average bandwidth from device

N to device M, copying both

directions at the same time.

p2p_bw_concurrent_p2p_enabled/p2p_bw_concurrent_p2p_disabled

Stat Name Type Description

l2r_N_M Float Average bandwidth from device

N to device M

r2l_N_M Float Average bandwidth from device

M to device N

bidir_N_M Float Average bandwidth from

device M to device N, copying

concurrently

r2l_sum Float Sum of average bandwidth for all

right (M) to left (N) copies

r2l_sum Float Sum of average bidirectional

bandwidth for all right (M) to left

(N) and left to right copies copies

1d_exch_bw_p2p_enabled/1d_exch_bw_p2p_disabled

DCGM Diagnostics

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 57

Stat Name Type Description

l2r_N Float Average bandwidth from device

N to device N+1

r2l_N Float Average bandwidth from device

N to device N-1

l2r_sum Float Sum of all l2r average bandwidth

stats

r2l_sum Float Sum of all l2r average bandwidth

stats

p2p_latency_p2p_enabled/p2p_latency_p2p_disabled

Stat Name Type Description

N_M Float Average latency from device N to

device M

Failure

The plugin will fail if:

‣ The latency exceeds the configured threshold for relevant tests.
‣ The bandwidth cannot exceed the configured threshold for relevant tests.
‣ If the number of PCIe retransmits exceeds a user-provided threshold.

5.3.3. Memory Bandwidth Plugin
The purpose of the Memory Bandwidth plugin is to validate that the bandwidth of the
framebuffer of the GPU is above a preconfigured threshold.

Preconditions

This plugin only runs on GV100 GPUs at this time.

Configuration Parameters

Parameter Name Type Default Value Range Description

minimum_bandwidth Float Differs per GPU 1.0 - 1000000.0 Minimum
framebuffer
bandwidth
threshold that
must be achieved
in order to pass

DCGM Diagnostics

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 58

Parameter Name Type Default Value Range Description

this test in MB/
sec.

Stat Outputs

Stat Name Stat Scope Type Description

power_usage GPU Time series Float Per second power
usage of each GPU in
watts. Note that for
multi-GPU boards,
each GPU gets a
fraction of the power
budget of the board.

memory_clock GPU Time series Float Per second clock rate
of the GPU’s memory
in MHZ

nvml_events GPU Time series Int64 Any events that
were read with
nvmlEventSetWait
during the test and
the timestamp it was
read it.

Failure

The plugin will fail if:

‣ the minimum bandwidth specified in minimum_bandwidth cannot be achieved.
‣ If GPU double bit ECC errors occur or the configured amount of SBE errors occur.
‣ If a critical XID occurs

5.3.4. SM Stress Plugin
The SM performance plugin’s purpose is to bring the Streaming Multiprocessors (SMs)
of the target GPU(s) to a target performance level in gigaflops by doing large matrix
multiplications using cublas. Unlike the Targeted Stress plugin, the SM stress plugin
does not copy the source arrays to the GPU before every matrix multiplication. This
allows the SM performance plugin's performance to not be capped by device to host
bandwidth. The plugin calculates how many matrix operations per second are necessary
to achieve the configured performance target and fails if it cannot achieve that target.

This plugin should be used to watch for thermal, power and related anomalies while the
target GPU(s) are under realistic load conditions. By setting the appropriate parameters

DCGM Diagnostics

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 59

a user can ensure that all GPUs in a node or cluster reach desired performance levels.
Further analysis of the generated stats can also show variations in the required power,
clocks or temperatures to reach these targets, and thus highlight GPUs or nodes that are
operating less efficiently.

Preconditions

None

Configuration Parameters

Parameter Name Type Default Value Range Description

test_duration Float 90.0 30.0 - 3600.0 How long the

performance test

should run for

in seconds. It is

recommended to

set this to at least

30 seconds for

performance to

stabilize.

temperature_max Float Null 30.0 - 120.0 The maximum

temperature in C

the card is allowed

to reach during the

test. Note that this

check is disabled

by default. Use

nvidia-smi -q to

see the normal

temperature limits

of your device.

target_stress Float Null SKU dependent The maximum

relative

performance each

card will attempt

to achieve.

Stat Outputs

Stat Name Stat Scope Type Description

power_usage GPU Time series Float Per second power
usage of each GPU in

DCGM Diagnostics

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 60

Stat Name Stat Scope Type Description

watts. Note that for
multi-GPU boards,
each GPU gets a
fraction of the power
budget of the board.

graphics_clock GPU Time series Float Per second clock rate
of each GPU in MHZ

memory_clock GPU Time series Float Per second clock rate
of the GPU’s memory
in MHZ

nvml_events GPU Time series Int64 Any events that
were read with
nvmlEventSetWait -
including single or
double bit errors or
XID errors - during the
test.

power_violation GPU Time series Float Percentage of time
this GPU was violating
power constraints.

gpu_temperature GPU Time series Float Per second
temperature of the
GPU in degrees C

perf_gflops GPU Time series Float The per second
reading of average
gflops since the test
began.

flops_per_op GPU Float Flops (floating point
operations) per
operation queued to
the GPU stream. One
operation is one call
to cublasSgemm or
cublasDgemm

bytes_copied_per_op GPU Float How many bytes are
copied to + from the
GPU per operation

DCGM Diagnostics

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 61

Stat Name Stat Scope Type Description

num_cuda_streams GPU Float How many cuda
streams were used
per gpu to queue
operations to the
GPUs

try_ops_per_sec GPU Float Calculated number of
ops/second necessary
to achieve target
gigaflops

Failure

The plugin will fail if:

‣ The GPU temperature exceeds a user-provided threshold.
‣ If thermal violation counters increase
‣ If the target performance level cannot be reached
‣ If GPU double bit ECC errors occur or the configured amount of SBE errors occur.
‣ If a critical XID occurs

5.3.5. Hardware Disagnostic Plugin
The HW Diagnostic Plugin is designed to identify HW failures on GPU silicon and
board-level components, extending out to the PCIE and NVLINK interfaces. It is not
intended to identify HW or system level issues beyond the NVIDIA-provided HW. Nor
is it intended to identify SW level issues above the HW, e.g. in the NVIDIA driver stack.
The plugin runs a series of tests that target GPU computational correctness, GDDR/HBM
memory resiliency, GPU and SRAM high power operation, SM stress and NVLINK/PCIE
correctness. The plugin can run with several combinations of tests corresponding to
medium and long NVVS operational modes. This plugin will take about three minutes
to execute.

The plugin produces a simple pass/fail output. A failing output means that a potential
HW issue has been found. However, the NVVS HW Diagnostic Plugin is not by itself a
justification for GPU RMA. Any failure in the plugin should be followed by execution
of the full NVIDIA Field Diagnostic after the machine has been taken offline. Only a
failure of the Field Diagnostic tool constitutes grounds for RMA. Since the NVVS HW
Diagnostic Plugin is a functional subset of the Field Diagnostic a failure in the plugin is a
strong indicator of a future Field Diagnostic failure.

Preconditions

‣ No other GPU processes can be running.

DCGM Diagnostics

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 62

Configuration Parameters

Parameter Name Type Default Value Range Description

test_duration Float 180.0 30.0 - 3600.0 How long the

performance test

should run for

in seconds. It is

recommended to

set this to at least

30 seconds to make

sure you actually

get some stress

from the test.

use_doubles Boolean False True or False If set to true,

tells the test to

use double-point

precision in its

calculations. By

default, it is false

and the test will

use floating point

precision.

temperature_max Float 100.0 30.0 - 120.0 The maximum

temperature in C

that the card is

allowed to reach

during the test.

Use nvidia-smi -q

to see the normal

temperature limits

of your device.

Stat Outputs

Stat Name Stat Scope Type Description

power_usage GPU Time series Float Per second power
usage of each GPU in
watts. Note that for
multi-GPU boards,
each GPU gets a
fraction of the power
budget of the board.

DCGM Diagnostics

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 63

Stat Name Stat Scope Type Description

graphics_clock GPU Time series Float Per second clock rate
of each GPU in MHZ

memory_clock GPU Time series Float Per second clock rate
of the GPU’s memory
in MHZ

nvml_events GPU Time series Int64 Any events that
were read with
nvmlEventSetWait -
including single or
double bit errors or
XID errors - during the
test.

power_violation GPU Time series Float Percentage of time
this GPU was violating
power constraints.

gpu_temperature GPU Time series Float Per second
temperature of the
GPU in degrees C

thermal_violation GPU Time series Float Percentage of time
this GPU was violating
thermal constraints.

perf_gflops GPU Time Series Float The per second
reading of average
gflops since the test
began.

Failure

The plugin will fail if:

‣ The corresponding device nodes for the target GPU(s) are being blocked by the
operating system (e.g. cgroups) or exist without r/w permissions for the current
user.

‣ Other GPU processes are running
‣ A hardware issue has been detected. This is not an RMA actionable failure but rather an

indication that more investigation is required.
‣ The temperature reaches unacceptable levels during the test.
‣ If GPU double bit ECC errors occur or the configured amount of SBE errors occur.
‣ If a critical XID occurs

DCGM Diagnostics

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 64

5.3.6. Targeted Stress Plugin
The Targeted Stress plugin’s purpose is to bring the GPU to a target performance level in
gigaflops by doing large matrix multiplications using cublas. The plugin calculates how
many matrix operations per second are necessary to achieve the configured performance
target and fails if it cannot achieve that target.

This plugin should be used to watch for thermal, power and related anomalies while the
target GPU(s) are under realistic load conditions. By setting the appropriate parameters
a user can ensure that all GPUs in a node or cluster reach desired performance levels.
Further analysis of the generated stats can also show variations in the required power,
clocks or temperatures to reach these targets, and thus highlight GPUs or nodes that are
operating less efficiently.

Preconditions

None

Configuration Parameters

Parameter Name Type Default Value Range Description

test_duration Float 120.0 30.0 - 3600.0 How long the

Targeted Stress

test should run

for in seconds. It

is recommended

to set this to at

least 30 seconds

for performance to

stabilize.

temperature_max Float Null 30.0 - 120.0 The maximum

temperature in C

the card is allowed

to reach during the

test. Note that this

check is disabled

by default. Use

nvidia-smi -q to

see the normal

temperature limits

of your device.

target_stress Float Null SKU dependent The maximum

relative stress each

DCGM Diagnostics

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 65

Parameter Name Type Default Value Range Description

card will attempt

to achieve.

max_pcie_replays Float 160.0 1.0 - 1000000.0 Maximum number

of PCIe replays

to allow per GPU

for the duration

of this plugin.

This is based

on an expected

replay rate <8 per

minute for PCIe

Gen 3.0, assuming

this plugin will

run for 2 minutes

(configurable)

and allowing 10x

as many replays

before failure.

Stat Outputs

Stat Name Stat Scope Type Description

power_usage GPU Time series Float Per second power
usage of each GPU in
watts. Note that for
multi-GPU boards,
each GPU gets a
fraction of the power
budget of the board.

graphics_clock GPU Time series Float Per second clock rate
of each GPU in MHZ

memory_clock GPU Time series Float Per second clock rate
of the GPU’s memory
in MHZ

nvml_events GPU Time series Int64 Any events that
were read with
nvmlEventSetWait
during the test and

DCGM Diagnostics

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 66

Stat Name Stat Scope Type Description

the timestamp it was
read it.

power_violation GPU Time series Float Percentage of time
this GPU was violating
power constraints.

gpu_temperature GPU Time series Float Per second
temperature of the
GPU in degrees C

perf_gflops GPU Time series Float The per second
reading of average
gflops since the test
began.

flops_per_op GPU Float Flops (floating point
operations) per
operation queued to
the GPU stream. One
operation is one call
to cublasSgemm or
cublasDgemm

bytes_copied_per_op GPU Float How many bytes are
copied to + from the
GPU per operation

num_cuda_streams GPU Float How many cuda
streams were used
per gpu to queue
operations to the
GPUs

try_ops_per_sec GPU Float Calculated number of
ops/second necessary
to achieve target
gigaflops

pcie_replay_count GPU Float The per second
reading of PCIe
replays that have
occurred since the
start of the Targeted
Stress plugin.

DCGM Diagnostics

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 67

Failure

The plugin will fail if:

‣ The GPU temperature exceeds a user-provided threshold.
‣ If temperature violation counters increase
‣ If the target stress level cannot be reached
‣ If GPU double bit ECC errors occur or the configured amount of SBE errors occur.
‣ If the number of PCIe retransmits exceeds a user-provided threshold.
‣ A crtical XID occurs

5.3.7. Power Plugin
The purpose of the power plugin is to bring the GPUs to a preconfigured power level
in watts by gradually increasing the compute load on the GPUs until the desired power
level is achieved. This verifies that the GPUs can sustain a power level for a reasonable
amount of time without problems like thermal violations arising.

Preconditions

None

Configuration Parameters

Parameter Name Type Default Value Range Description

test_duration Float 120.0 30.0 - 3600.0 How long the
performance test
should run for
in seconds. It is
recommended
to set this to at
least 60 seconds
for performance
to stabilize.

temperature_max Float Null 30.0 - 120.0 The maximum
temperature
in C the card is
allowed to reach
during the test.
Note that this
check is disabled
by default. Use
nvidia-smi -q to
see the normal
temperature

DCGM Diagnostics

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 68

Parameter Name Type Default Value Range Description

limits of your
device.

target_power Float Differs per GPU Differs per GPU.
Defaults to TDP -
1 watt.

What power
level in wattage
we should try
to maintain.
If this is set to
greater than the
enforced power
limit of the GPU,
then we will try
to power cap the
device

Stat Outputs

Stat Name Stat Scope Type Description

power_usage GPU Time series Float Per second power
usage of each GPU in
watts. Note that for
multi-GPU boards,
each GPU gets a
fraction of the power
budget of the board.

graphics_clock GPU Time series Float Per second clock rate
of each GPU in MHZ

memory_clock GPU Time series Float Per second clock rate
of the GPU’s memory
in MHZ

nvml_events GPU Time series Int64 Any events that
were read with
nvmlEventSetWait
during the test and
the timestamp it was
read it.

power_violation GPU Time series Float Percentage of time
this GPU was violating
power constraints.

DCGM Diagnostics

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 69

Stat Name Stat Scope Type Description

gpu_temperature GPU Time series Float Per second
temperature of the
GPU in degrees C

Failure

The plugin will fail if:

‣ The GPU temperature exceeds a user-provided threshold.
‣ If temperature violation counters increase
‣ If the target performance level cannot be reached
‣ If GPU double bit ECC errors occur or the configured amount of SBE errors occur.
‣ If a critical XID occurs

5.4. Test Output
The output of tests can be collected by setting the "logfile" global parameter which
represents the prefix for the detailed outputs produced by each test. The default type
of output is JSON but text and binary outputs are available as well. The latter two are
meant more for parsing and direct reading by custom consumers respectively so this
portion of the document will focus on the JSON output.

5.4.1. JSON Output
The JSON output format is keyed based off of the "stats" keys given in each test
overview from Chapter 3. These standard JSON files can be processed in any number
of ways but two example Python scripts have been provided to aid in visualization in
the default installation directory.. The first is a JSON to comma-separated value script
(json2csv.py) which can be used to import key values in to a graphing spreadsheet.
Proper usage would be:

user@hostname
$ python json2csv.py -i stats_targeted_performance.json -o stats.csv -k
 gpu_temperature,power_usage

Also provided is an example Python script that uses the pygal library to generate readily
viewable scalar vector graphics charts (json2svg.py), able to be opened in any browser.
Proper usage would be:

user@hostname
$ python json2svg.py -i stats_targeted_performance.json -o stats.svg -k
 gpu_temperature,power_usage

http://pygal.org

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 70

Chapter 6.
DCGM MODULARITY

DCGM 1.5 introduces a concept called modularity to DCGM where different functional
areas are separated into different shared libraries. These shared libraries are lazy-loaded
by DCGM when first used by a corresponding API or DCGMI call. If you never want
a module to be loaded, you can blacklist that module using dcgmi, API calls, or nv-
hostengine command-line arguments. Additionally, you can remove the so.1 file of the
module you want to permanently blacklist, and DCGM will behave as if the library is
blacklisted.

6.1. Module List
The following modules have been added to DCGM.

Module ID # Description

DcgmModuleIdNvSwitch 1 Manages NVSwitches and is required in
order for DGX-2 / HGX-2 systems to function

DCGM Modularity

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 71

Module ID # Description

properly. This can be loaded explicitly by
adding “-l -g” to your nv-hostengine command
line.

Requires nv-hostengine to run as root.

DcgmModuleIdVGPU 2 Provides telemetry on paravirtualized GPUs.

DcgmModuleIdIntrospect 3 Provides time-series data about the running
state of nv-hostengine.

DcgmModuleIdHealth 4 Provides passive health checks of GPUs and
NVSwitches

DcgmModuleIdPolicy 5 Allows users to register callbacks based off
GPU events like XIDs and overtemp.

DcgmModuleIdConfig 6 Allows users to set GPU configuration.

Requires nv-hostengine to run as root.

DcgmModuleIdDiag 7 Enables users to call the DCGM GPU Diagnostic

6.2. Blacklisting Modules
Users may prevent DCGM from loading modules by providing a command-line option
to nv-hostengine when they run it. The argument to this command line is the # column
in the table above.

For instance, to start nv-hostengine with the introspection (3) and health (4) modules
blacklisted, you would change nv-hostengine’s service file to pass the following
arguments: nv-hostengine --blacklist-modules 3,4

Note that NVSwitch must be explicitly loaded with the -l and -g options. To only load
the NVSwitch module and blacklist all others, use the following command line:

nv-hostengine -l -g --blacklist-modules 2,3,4,5,6,7

You can query the status of all of the dcgm modules with the following command:

#dcgmi modules -l
+-----------+--------------------+--+
| List Modules |
| Status: Success |
+===========+====================+==+
| Module ID | Name | State |
+-----------+--------------------+--+
0	Core	Loaded
1	NvSwitch	Not loaded
2	VGPU	Not loaded
3	Introspection	Not loaded
4	Health	Not loaded
5	Policy	Not loaded
6	Config	Not loaded
7	Diag	Not loaded
+-----------+--------------------+--+

Only modules that are Not Loaded can be blacklisted.

DCGM Modularity

www.nvidia.com
Data Center GPU Manager DU-07862-001_v1.7 | 72

To blacklist a module, take note of its module name from the table above. We’ll blacklist
module Policy for this example:

#dcgmi modules --blacklist Policy
+-----------------------------+---+
| Blacklist Module |
| Status: Success |
| Successfully blacklisted module Policy |
+=============================+===+
+-----------------------------+---+

Once a module has been blacklisted, you can verify that by listing modules again:

dcgmi modules -l
+-----------+--------------------+--+
| List Modules |
| Status: Success |
+===========+====================+==+
| Module ID | Name | State |
+-----------+--------------------+--+
0	Core	Loaded
1	NvSwitch	Not loaded
2	VGPU	Not loaded
3	Introspection	Not loaded
4	Health	Not loaded
5	Policy	Blacklisted
6	Config	Not loaded
7	Diag	Not loaded
+-----------+--------------------+--+

Notice

THE INFORMATION IN THIS GUIDE AND ALL OTHER INFORMATION CONTAINED IN NVIDIA DOCUMENTATION

REFERENCED IN THIS GUIDE IS PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED,

STATUTORY, OR OTHERWISE WITH RESPECT TO THE INFORMATION FOR THE PRODUCT, AND EXPRESSLY

DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A

PARTICULAR PURPOSE. Notwithstanding any damages that customer might incur for any reason whatsoever,

NVIDIA’s aggregate and cumulative liability towards customer for the product described in this guide shall

be limited in accordance with the NVIDIA terms and conditions of sale for the product.

THE NVIDIA PRODUCT DESCRIBED IN THIS GUIDE IS NOT FAULT TOLERANT AND IS NOT DESIGNED,

MANUFACTURED OR INTENDED FOR USE IN CONNECTION WITH THE DESIGN, CONSTRUCTION, MAINTENANCE,

AND/OR OPERATION OF ANY SYSTEM WHERE THE USE OR A FAILURE OF SUCH SYSTEM COULD RESULT IN A

SITUATION THAT THREATENS THE SAFETY OF HUMAN LIFE OR SEVERE PHYSICAL HARM OR PROPERTY DAMAGE

(INCLUDING, FOR EXAMPLE, USE IN CONNECTION WITH ANY NUCLEAR, AVIONICS, LIFE SUPPORT OR OTHER

LIFE CRITICAL APPLICATION). NVIDIA EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS

FOR SUCH HIGH RISK USES. NVIDIA SHALL NOT BE LIABLE TO CUSTOMER OR ANY THIRD PARTY, IN WHOLE OR

IN PART, FOR ANY CLAIMS OR DAMAGES ARISING FROM SUCH HIGH RISK USES.

NVIDIA makes no representation or warranty that the product described in this guide will be suitable for

any specified use without further testing or modification. Testing of all parameters of each product is not

necessarily performed by NVIDIA. It is customer’s sole responsibility to ensure the product is suitable and

fit for the application planned by customer and to do the necessary testing for the application in order

to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect

the quality and reliability of the NVIDIA product and may result in additional or different conditions and/

or requirements beyond those contained in this guide. NVIDIA does not accept any liability related to any

default, damage, costs or problem which may be based on or attributable to: (i) the use of the NVIDIA

product in any manner that is contrary to this guide, or (ii) customer product designs.

Other than the right for customer to use the information in this guide with the product, no other license,

either expressed or implied, is hereby granted by NVIDIA under this guide. Reproduction of information

in this guide is permissible only if reproduction is approved by NVIDIA in writing, is reproduced without

alteration, and is accompanied by all associated conditions, limitations, and notices.

Trademarks

NVIDIA and the NVIDIA logo are trademarks and/or registered trademarks of NVIDIA Corporation in the

Unites States and other countries. Other company and product names may be trademarks of the respective

companies with which they are associated.

Copyright

© 2018-2021 NVIDIA Corporation. All rights reserved.

www.nvidia.com

	Table of Contents
	Overview
	1.1. What is DCGM
	1.2. Focus Areas
	1.3. Target Users

	Getting Started
	2.1. Supported Platforms
	2.2. Installation
	2.3. Basic Components
	2.4. Modes of Operation
	2.4.1. Embedded Mode
	2.4.2. Standalone Mode

	2.5. Static Library

	Feature Overview
	3.1. Groups
	3.2. Configuration
	3.3. Policy
	3.3.1. Notifications
	3.3.2. Actions

	3.4. Job Stats
	3.5. Health and Diagnostics
	3.5.1. Background Health Checks
	3.5.2. Active Health Checks

	3.6. Topology
	3.7. NVlink Counters
	3.8. Field Groups
	3.9. Link Status
	3.10. Profiling Metrics
	3.10.1. Profiling Metrics
	3.10.2. CUDA Test Generator (dcgmproftester)
	3.10.3. Platform Support

	Integrating with DCGM
	4.1. Integrating with DCGM Reader
	4.1.1. Reading Using the Dictionary
	4.1.2. Reading Using Inheritance
	4.1.3. Completing the Proof of Concept
	4.1.4. Additional Customization

	4.2. Integrating with Prometheus and Grafana
	4.2.1. Starting the Prometheus Server
	4.2.2. Starting the Prometheus Client
	4.2.3. Integrating with Grafana
	4.2.4. Customizing the Prometheus Client

	DCGM Diagnostics
	5.1. Overview
	5.1.1. DCGM Diagnostics Goals
	5.1.2. Beyond the Scope of the DCGM Diagnostics
	5.1.3. Dependencies
	5.1.4. Supported Products

	5.2. Using DCGM Diagnostics
	5.2.1. Command line options
	5.2.2. Usage Examples
	5.2.3. Configuration file
	5.2.4. Global parameters
	5.2.5. GPU parameters
	5.2.6. Test Parameters

	5.3. Overview of Plugins
	5.3.1. Deployment Plugin
	5.3.2. PCIe - GPU Bandwidth Plugin
	5.3.3. Memory Bandwidth Plugin
	5.3.4. SM Stress Plugin
	5.3.5. Hardware Disagnostic Plugin
	5.3.6. Targeted Stress Plugin
	5.3.7. Power Plugin

	5.4. Test Output
	5.4.1. JSON Output

	DCGM Modularity
	6.1. Module List
	6.2. Blacklisting Modules

