

DU-09176-001 | 2018-09-12

User Guide

Kubernetes on NVIDIA DGX
Servers

Kubernetes on NVIDIA DGX Servers DU-09176-001| ii

Document Change History

DU-09176-001

Version Date Authors Description of Change

01 2018-09-12 Michael Balint, Robert Sohigian Initial release

Kubernetes on NVIDIA DGX Servers DU-09176-001| iii

Table of Contents

Chapter 1. Overview .. 1
1.1 What Is Kubernetes? .. 1
1.2 Choosing a Distribution ... 1
1.3 Accessing the Example File Archive ... 3

Chapter 2. Kubernetes Basics .. 4
2.1 Getting Started ... 4
2.2 Terminology .. 4
2.3 Kubernetes Manifest... 5

Chapter 3. Installation ... 7
3.1 Choosing Between Basic and DeepOps Installs ... 7

3.1.1 Basic Install ... 7
3.1.2 DeepOps Install .. 8

Chapter 4. Use Cases ... 9
4.1 Introduction... 9
4.2 Using NGC Containers with Kubernetes and Launching Jobs 9
4.3 Running a PyTorch Training Job ... 11
4.4 TensorRT Inferencing as a Service ... 12

4.4.1 Inferencing Toy Example ... 13
4.4.2 Deploying Inferencing in a Production Environment 14

4.5 Leveraging Kubeflow Across the Cluster ... 15
4.5.1 Installation .. 15
4.5.2 Ensure That Storage Is Connected (Or Disable It) 16
4.5.3 Turn Usage Reporting Off (Optional) ... 16
4.5.4 Bringing Up a Jupyter Notebook ... 16

Chapter 5. Using Persistent Storage ... 19
5.1 Introduction ... 19
5.2 Using NFS .. 19
5.3 Using Rook with Ceph .. 22

5.3.1 Performing a DeepOps or Manual Installation ... 22
5.3.2 Using Rook Storage... 23
5.3.3 Teardown .. 23

Chapter 6. Monitoring the Cluster .. 24
6.1 Leveraging DCGM, Prometheus, and Grafana for Monitoring.................................. 24
6.2 Generating a Usage Report ... 26

Chapter 7. Additional Setup .. 27
7.1 Adding a Node to the Cluster ... 27
7.2 Using Helm to Manage Kubernetes Software .. 27
7.3 Configuring User Access with RBAC ... 29
7.4 Securing a Cluster .. 31

APPENDIX A. Kubernetes Web UI (Formerly Dashboard) iv

Kubernetes on NVIDIA DGX Servers DU-09176-001| 1

Chapter 1. Overview

1.1 What Is Kubernetes?
Kubernetes is an open-source platform which enables users to orchestrate containerized
workloads across a cluster.

For NVIDIA® DGX™ servers, Kubernetes is an especially useful way of efficiently
allowing users to distribute their work across a cluster. For example, a deep learning
(DL) training job can be submitted that makes the request to use eight GPUs and
Kubernetes will schedule that job accordingly as GPUs become available in the cluster.
Once the job is complete, another job can start using the same GPUs. Another example is
a long-standing service can be set up to receive live input data and output inferenced
results. Further examples are detailed in Chapter 4.

Deploying Kubernetes and forming DGX servers as a cluster requires some setup, but it
is preferable to giving users direct access to individual machines. Instead of users
needing to ensure that they reserve a server, Kubernetes handles scheduling their work.
It also can split up a single node so that multiple users can use it at the same time. All of
this ensures that GPUs are being used as efficiently as possible. User access to the cluster
can still be managed, certain nodes can be tagged for privileged use, specific jobs can
have resource priority over others, and jobs can write to network storage. These topics
are covered starting in Chapter 5.

1.2 Choosing a Distribution
The officially-supported distribution of Kubernetes for DGX servers is known as
Kubernetes on NVIDIA GPUs.

https://github.com/NVIDIA/kubernetes

Kubernetes on NVIDIA DGX Servers DU-09176-001| 2

Alternatively, it is possible to leverage mainstream Kubernetes with the NVIDIA Device Plugin or
GKE Kubernetes (which has its own device plugin1 for NVIDIA GPUs).

However, these solutions will not provide the full set of features and functionality
offered by Kubernetes on NVIDIA GPUs, such as:

 Heterogeneous GPU support — If there is a mix of servers with NVIDIA Tesla® P100
and V100 GPUs, it is advantageous to be able to easily schedule jobs across this
variety in the cluster. This includes a whole host of other abilities, like being able to
schedule a job with a GPU memory limit as part of the resource request.

 GPU monitoring and health status — The NVIDIA distribution of Kubernetes can tap
into DCGM to monitor GPU state. GPU health check is also not supported in the GKE
version of Kubernetes.

 Alternative container support — The NVIDIA distribution of Kubernetes supports
more than just Docker. CRI-O2 support has been added, with makes running
OCI-compliant container runtimes possible. See here for instructions on how to leverage
this functionality.

 New features — NVIDIA incorporates features into Kubernetes on NVIDIA GPUs
well before they get added to mainstream Kubernetes.

1 Device plugins interface with Kubernetes to advertise resources to the cluster.
2 CRI-O is a lightweight alternative to using Docker as the container runtime for Kubernetes and allows you
to run any OCI-compliant container runtime.

https://kubernetes.io/
https://github.com/NVIDIA/k8s-device-plugin
https://cloud.google.com/kubernetes-engine/
https://developer.nvidia.com/data-center-gpu-manager-dcgm
https://www.docker.com/
https://www.opencontainers.org/
https://docs.nvidia.com/datacenter/kubernetes-install-guide/index.html#kubernetes-crio-runtime-support
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/device-plugins/
http://cri-o.io/
https://www.opencontainers.org/

Kubernetes on NVIDIA DGX Servers DU-09176-001| 3

1.3 Accessing the Example File Archive
This PDF contains an archive file of examples used throughout the document:

 k8s-gpu-examples.nvzip
To access the attached archive, click the Attachments tab from the left-hand toolbar of
this PDF, then select the file and click the Save option to retrieve it.

Figure 1 Accessing the Attachment

Note — The zip file attachment has been renamed with a .nvzip extension so that it can be
embedded in this document. Save the attached .nvzip file and rename it to .zip before
opening/extracting the file. Do not attempt to open the file from the PDF attachments tab

directly.

Kubernetes on NVIDIA DGX Servers DU-09176-001| 4

Chapter 2. Kubernetes Basics

2.1 Getting Started
This section provides a quick introduction to getting started with Kubernetes – and may
be skipped if the user is familiar with Kubernetes. For a more rigorous introduction to
Kubernetes, refer to the Kubernetes Tutorials and the overall Kubernetes Documentation.

2.2 Terminology
The following table has terms that are commonly used when working with Kubernetes,
which the rest of this document consistently refers to. It is helpful to be familiar with
these terms and concepts.

Additional terms can be found in the Kubernetes glossary.

Term Definition

cluster Master and node(s)

deployment An API object which allows an application to be deployed on a cluster. This will
typically include a pod definition and the number of replicas.

job A finite or batch task that runs to completion. Use this for scheduling DL training

kubectl The CLI for communication with a Kubernetes cluster and deploying manifests

kubelet The agent which runs on each node in the cluster and is responsible for making
sure that containers are running in a pod.

manifest Kubernetes is configured by editing manifest files full of metadata which define
a Kubernetes object. Usually, these files are written in YAML, but they may also
be written in JSON

master Central interface for management, deployments, control, and access

namespace Identifiers used to create virtual clusters in the same physical cluster

https://kubernetes.io/docs/tutorials/kubernetes-basics/
https://kubernetes.io/docs/home/?path=users&persona=app-developer&level=foundational
https://kubernetes.io/docs/reference/glossary/

Kubernetes on NVIDIA DGX Servers DU-09176-001| 5

node A worker machine/server in a Kubernetes cluster.

pod Not to be confused with the hardware notion. A Kubernetes pod is the smallest
atomic Kubernetes object and represents a set of running containers on a
cluster. For example, a pod can include a docker container which runs an
inferencing service. This pod can be deployed on a node in the cluster.

replicas An API object which allows you to deploy an application on a cluster. This will
typically include a pod definition and the number of replicas.

secret A secret that you wish to use in pods, jobs, or deployments. For example, an API
key could be saved as a secret and be leveraged when accessing a container
registry.

service An API object which describes how to access applications, such as a pod. This can
be used to expose a port on a running pod and define a load-balancer.

Table 1 Commonly used Kubernetes terms

2.3 Kubernetes Manifest
Configuration in Kubernetes involves creating/editing a manifest defining a Kubernetes
object and submitting them to the Kubernetes API using kubectl. An example manifest
called pod.yml follows.

apiVersion: v1
kind: Pod
metadata:
 name: static-web
 labels:
 role: myrole
spec:
 containers:
 - name: web
 image: nginx
 ports:
 - name: web
 containerPort: 80
 protocol: TCP

The first line defines which version of the Kubernetes API to use when creating the
object. This is typically just v1 but can also be further specified into batch/v1 or
apps/v1 depending on the use-case. Alpha and beta versions may also be specified. See
here for more information.

Next, the kind of object is specified. In this case, a Pod is being defined. Other objects
could be Job, Deployment, or Service.

In the metadata field, this object is given a name as well as any labels that should be
associate with it. This is helpful for finding/filtering objects in the future.

https://kubernetes.io/docs/concepts/overview/kubernetes-api/

Kubernetes on NVIDIA DGX Servers DU-09176-001| 6

The spec section then actually defines the object. Since in this case a Pod is being
defined, the associated container(s) that should be created within it must also be
defined. For this example, a nginx image is pulled and port 80 is opened within the Pod.
Note that this does not make port 80 accessible for this Pod in the cluster. To do that,
configure a Service object.

To deploy this pod, the kubectl create command would be used.

$ kubectl create -f pod.yml

Kubernetes on NVIDIA DGX Servers DU-09176-001| 7

Chapter 3. Installation

3.1 Choosing Between Basic and DeepOps Installs
There are two recommended methods of installation on DGX systems:

 For a basic installation, recommended for single machines (for example, an NVIDIA
DGX Station™ workstation), such as a simple on-premises cluster setup or where the
system administrator wishes to start from scratch and learn about each component
they are implementing, install Kubernetes on NVIDIA GPUs directly per the instructions
below.

 For a more advanced installation, recommended for larger clusters or more advanced
usage that employ best practices, refer to the DeepOps project.

3.1.1 Basic Install
Follow the official Kubernetes on NVIDIA GPUs Installation Guide for the latest installation
instructions. If Kubernetes is being installed on a single node, follow the optional
instructions to untaint3 the master node so jobs can be run on it. If installing Kubernetes
on a cluster, follow the setup steps for the master first, then set up each node thereafter.

Note — The installation requires access to the NGC registry (nvcr.io) and thus will not work if
the network is behind a firewall or has limitations on external connections to the internet.

3 Taints and tolerations involve tagging nodes in your Kubernetes cluster with special flags so that
future work might be scheduled (or avoided) on them.

https://docs.nvidia.com/datacenter/kubernetes-install-guide
https://github.com/NVIDIA/deepops
https://docs.nvidia.com/datacenter/kubernetes-install-guide
http://ngc.nvidia.com/
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/

Kubernetes on NVIDIA DGX Servers DU-09176-001| 8

If any problems are encountered with installation or setup, file an issue on the NVIDIA
Kubernetes github.

3.1.2 DeepOps Install
The DeepOps project facilitates deployment of multi-node GPU clusters for DL and HPC
environments. It is strongly recommended that system administrators use DeepOps to
bring up their DGX clusters since it employs best practices when it comes to setting up
things such as storage and configuring authentication and user access.

To install, follow the instructions in the DeepOps README.

https://github.com/NVIDIA/kubernetes
https://github.com/NVIDIA/kubernetes
https://github.com/NVIDIA/deepops
https://github.com/NVIDIA/deepops/blob/master/README.md

Kubernetes on NVIDIA DGX Servers DU-09176-001| 9

Chapter 4. Use Cases

4.1 Introduction
Most of the following use cases can be configured and executed through the Kubernetes
Web UI (Dashboard). For a basic run-through on how to leverage the Kubernetes Web
UI, reference the Kubernetes Web UI documentation. The following examples use the terminal
on the master instead.

4.2 Using NGC Containers with Kubernetes and
Launching Jobs

NVIDIA GPU Cloud (NGC) manages a catalog of fully integrated and optimized DL
framework containers that take full advantage of NVIDIA GPUs in both single and
multi-GPU configurations. They include NVIDIA CUDA® Toolkit, DIGITS workflow,
and the following DL frameworks: NVCaffe, Caffe2, Microsoft Cognitive Toolkit
(CNTK), MXNet, PyTorch, TensorFlow, Theano, and Torch. These framework containers
are delivered ready-to-run, including all necessary dependencies such as the CUDA
runtime and NVIDIA libraries.

To access the NGC container registry via Kubernetes, add a secret which will be
employed when Kubernetes asks NGC to pull container images from it.

1. Generate an NGC API Key, which will be used for the Kubernetes secret.
a) Login to the NGC Registry at https://ngc.nvidia.com/
b) Go to https://ngc.nvidia.com/configuration/api-key
c) Click on GENERATE API KEY

https://kubernetes.io/docs/tasks/access-application-cluster/web-ui-dashboard/
https://docs.nvidia.com/ngc/ngc-introduction
https://ngc.nvidia.com/configuration/api-key

Kubernetes on NVIDIA DGX Servers DU-09176-001| 10

2. Using the NGC API Key, create a Kubernetes secret so that Kubernetes will be able
to pull container images from the NGC registry. Create the secret by running the
following command on the master (substitute the registered email account and secret
in the appropriate locations).
$ kubectl create secret docker-registry nvcr.dgxkey –docker-
server=nvcr.io --docker-username=\$oauthtoken --docker-email=<email>
--docker-password=<NGC API Key>
secret "nvcr.dgxkey" created

3. Launch a Kubernetes Job using the secret.

Now that a secret exists, a cuda-job.yml file for execution can be defined.
apiVersion: batch/v1
kind: Job
metadata:
 name: cuda-job
spec:
 backoffLimit: 5
 template:
 spec:
 imagePullSecrets:
 - name: nvcr.dgxkey
 containers:
 - name: cuda-container
 image: nvcr.io/nvidia/cuda:9.0-cudnn7.1-devel-ubuntu16.04
 command: ["nvidia-smi"]
 args: ["-L"]
 extendedResourceRequests: ["nvidia-gpu"]
 restartPolicy: Never
 extendedResources:
 - name: "nvidia-gpu"
 resources:
 limits:
 nvidia.com/gpu: 1
 requests:
 nvidia.com/gpu: 1

Note — the preceding yaml file uses the secret (via the imagePullSecrets
definition) and connects to nvcr.io to pull the cuda container from the NGC
container registry. This job has been defined to use a single GPU in the
extendedResources section.

4. Execute the job.
$ kubectl create -f ./cuda-job.yml

5. Check the job.
$ kubectl get jobs

The job will launch a pod, which will terminate upon completion.

6. Monitor it.

https://kubernetes.io/docs/concepts/workloads/pods/pod/

Kubernetes on NVIDIA DGX Servers DU-09176-001| 11

$ kubectl get pods --show-all

7. Follow the logs to see output (note that the pod name will differ from the job name
and will have some random characters at the end of it).
$ kubectl logs -f <cuda-pod-name>

There will eventually see a single line listing the GPU allocated to this pod

8. To delete the job (this will also remove the pod).
$ kubectl delete job cuda-job

For more background on Kubernetes jobs, including how they are executed and
available parameters, refer to the official documentation on the topic.

4.3 Running a PyTorch Training Job
Running a DL training job follows the same convention.

1. Ensure that a Kubernetes secret is set up for access to the NGC Registry.

2. Define pytorch-job.yml.
apiVersion: batch/v1
kind: Job
metadata:
 name: pytorch-example
spec:
 backoffLimit: 5
 template:
 spec:
 imagePullSecrets:
 - name: nvcr.dgxkey
 containers:
 - name: pytorch-container
 image: nvcr.io/nvidia/pytorch:18.08-py3
 command: ["/bin/sh"]
 args: ["-c", "python
/workspace/examples/upstream/mnist/main.py"]
 extendedResourceRequests: ["nvidia-gpu"]
 restartPolicy: Never
 extendedResources:
 - name: "nvidia-gpu"
 resources:
 limits:
 nvidia.com/gpu: 4
 requests:
 nvidia.com/gpu: 4

3. Execute the job.
$ kubectl create -f ./pytorch-job.yml

https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/

Kubernetes on NVIDIA DGX Servers DU-09176-001| 12

4. Check the progress of the training job.
$ kubectl get pods
<pytorch-example pod name>

5. Observe name of pytorch-example pod and request the logs from the pod.
$ kubectl logs <pytorch-example pod name>
Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-
ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-
ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-
ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-
ubyte.gz
Processing...
Done!
main.py:68: UserWarning: Implicit dimension choice for log_softmax
has been deprecated. Change the call to include dim=X as an
argument.
return F.log_softmax(x)
main.py:90: UserWarning: invalid index of a 0-dim tensor. This will
be an error in PyTorch 0.5. Use tensor.item() to convert a 0-dim
tensor to a Python number
100. * batch_idx / len(train_loader), loss.data[0]))
Train Epoch: 1 [0/60000 (0%)] Loss: 2.373651
Train Epoch: 1 [640/60000 (1%)] Loss: 2.310517
Train Epoch: 1 [1280/60000 (2%)] Loss: 2.281828
Train Epoch: 1 [1920/60000 (3%)] Loss: 2.315808
Train Epoch: 1 [2560/60000 (4%)] Loss: 2.235439
Train Epoch: 1 [3200/60000 (5%)] Loss: 2.234249
Train Epoch: 1 [3840/60000 (6%)] Loss: 2.226109
Train Epoch: 1 [4480/60000 (7%)] Loss: 2.228646
Train Epoch: 1 [5120/60000 (9%)] Loss: 2.132811

4.4 TensorRT Inferencing as a Service
Kubernetes is particularly well-suited for deploying inferencing services since it is
generally used to deploy and scale web services. Features like self-healing (auto-
restarting, re-scheduling, and replicating containers to ensure they are in a Running
state are met per deployment specifications) and hybrid scaling (the ability to run
containers across multiple nodes that might not be co-located – for example, nodes that
are on-premises vs nodes that are in the cloud). This section discusses a toy inferencing
example and then gives some recommendations for production inferencing.

Kubernetes on NVIDIA DGX Servers DU-09176-001| 13

4.4.1 Inferencing Toy Example
Inferencing in a production environment has many considerations, but for a toy
example, we’ll keep things simple by running a single Kubernetes pod and expose it with
a service. Since we want a long-standing service, we will not be using a job and instead
launch our pod and corresponding service as a Kubernetes deployment. Note that this
example uses an older version of TensorRT, which includes an inferencing server.

In the following tensorrt-service-deployment.yml file, a Kubernetes deployment
which launches a TensorRT pod is defined.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: tensorrt-deployment
 labels:
 app: tensorrt
spec:
 replicas: 1
 selector:
 matchLabels:
 app: tensorrt
 template:
 metadata:
 labels:
 app: tensorrt
 spec:
 imagePullSecrets:
 - name: nvcr.dgxkey
 containers:
 - name: tensorrt-container
 image: nvcr.io/nvidia/tensorrt:17.12
 command: ["/bin/sh"]
 args: ["-c", "tensorrt_server/onnx_inception_v1"]
 ports:
 - containerPort: 8000
 extendedResourceRequests: ["nvidia-gpu"]
 extendedResources:
 - name: "nvidia-gpu"
 resources:
 limits:
 nvidia.com/gpu: 4
 requests:
 nvidia.com/gpu: 4

apiVersion: v1
kind: Service
metadata:
 labels:

https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

Kubernetes on NVIDIA DGX Servers DU-09176-001| 14

 run: tensorrt-service
 name: tensorrt-service
spec:
 ports:
 - port: 8000
 targetPort: 8000
 selector:
 app: tensorrt-server
 type: NodePort

Scale in this deployment can be increased by incrementing the replicas count. Port
8000 is also exposed, which is leveraged by the service definition at the end of the file.
For more on services, the various service types, and how to expose specific ports, refer to
the official Kubernetes documentation.

1. To run this deployment, execute the following on the master.
$ kubectl create -f ./tensorrt-deployment.yml
deployment "tensorrt-deployment" created
service "tensorrt-service" created

2. Ensure the pod is running.
$ kubectl get pods
NAME READY STATUS RESTARTS AGE
tensorrt-deployment 1/1 Running 0 47m

3. Make a request to the exposed service endpoint to run inferencing on the data.
$ curl --data-binary @rex.jpg \
 http://127.0.0.1:8000/api/classify
{ "confidence" : 0.5003, "label" : "DINGO" },
{ "confidence" : 0.4035, "label" : "KELPIE" },
{ "confidence" : 0.0692, "label" : "BASENJI" }
]

4.4.2 Deploying Inferencing in a Production
Environment

4.4.2.1 Using the NGC Inference Server Container
For running inferencing in production, use the latest version of the Inference Server
container provided on NGC. Consult the Inference Server User Guide for more information
on leveraging this container.

4.4.2.2 Deploying a Load Balancer or Ingress Service
The deployment in the toy example above only uses one replica and is exposed through
a service using the NodePort type. Scaling the deployment can be done by increasing the
number of replicas. Production deployments should consider leveraging a LoadBalancer
service type or committing to using an Ingress resource.

https://kubernetes.io/docs/concepts/services-networking/service/
https://docs.nvidia.com/deeplearning/sdk/inference-user-guide/index.html
https://kubernetes.io/docs/concepts/services-networking/service/#loadbalancer
https://kubernetes.io/docs/concepts/services-networking/ingress/

Kubernetes on NVIDIA DGX Servers DU-09176-001| 15

4.5 Leveraging Kubeflow Across the Cluster
Kubeflow runs on Kubernetes, creating an easy-to-use, scalable way of building ML
models in TensorFlow and PyTorch, as well as leveraging those models in production.
Additionally, a multi-tenant Jupyter notebook frontend can be enabled, allowing users
on the cluster to request GPU resources and write their code without needing to know
anything about Kubernetes or containers. Users simply point their browser to the
Kubeflow service, request resources, and start coding in python.

See this video for a demo of Kubeflow in action.

4.5.1 Installation
For comprehensive installation instructions, follow the Kubeflow User Guide. Below are
abbreviated instructions on how to get set up quickly.

1. Download ksonnet4.

Download the latest ksonnet Linux amd64 release to the master.

$ wget
https://github.com/ksonnet/ksonnet/releases/download/v0.12.0/ks_0.12
.0_linux_amd64.tar.gz

2. Unpack the release.
$ tar -xzf ks_0.12.0_linux_amd64.tar.gz

3. Move the ks binary to /usr/local/bin/.
$ sudo cp ks_0.12.0_linux_amd64/ks /usr/local/bin/

4. Install Kubeflow.
$ export KUBEFLOW_VERSION=0.2.5

Kubeflow 0.2.5 is recommended by this guide as it was tested to work with
Kubernetes on NVIDIA GPUs v1.9.7. Installing a more recent release may be
attempted. For kubeflow releases see: https://github.com/kubeflow/kubeflow/releases

5. Run the deployment script for a quick and easy setup.
$ mkdir kubeflow && cd kubeflow
$ curl
https://raw.githubusercontent.com/kubeflow/kubeflow/v${KUBEFLOW_VERS
ION}/scripts/deploy.sh | bash

4 Ksonnet is a tool which allows you to write, package, and deploy apps on Kubernetes. It
leverages reusable json snippets to define the app.

https://github.com/kubeflow/kubeflow
https://drive.google.com/open?id=1ruzwjLgVr8fXfeuoA1xNxNwIWMLrHISl
https://www.kubeflow.org/
https://github.com/ksonnet/ksonnet/releases
https://github.com/kubeflow/kubeflow/releases
https://ksonnet.io/

Kubernetes on NVIDIA DGX Servers DU-09176-001| 16

4.5.2 Ensure That Storage Is Connected (Or Disable It)
Kubeflow (specifically Jupyter) expects persistent volumes to be attached. Before
launching a Jupyter Notebook server, ensure that storage is connected. For NFS, refer to
the section in this document on how to define a PersistentVolume for NFS.

Alternatively, the requirement for storage may be disabled by running the following
commands. Be aware that any code created in a Jupyter Notebook won’t persist, should
the cluster be taken down.

(cd to the kubeflow_ks_app directory…)

$ ks param set kubeflow-core jupyterNotebookPVCMount "null"
$ ks apply default

4.5.3 Turn Usage Reporting Off (Optional)
Note that usage reporting is turned on by default. To disable it, run the following
commands…

(cd to the kubeflow_ks_app directory…)

$ ks param set kubeflow-core reportUsage false
$ ks apply default
$ kubectl delete deploy spartakus-volunteer

4.5.4 Bringing Up a Jupyter Notebook
1. Connect to the Jupyter Notebook on the master.

$ PODNAME=`kubectl get pods --namespace=${NAMESPACE} --
selector="app=tf-hub" --output=template --template="{{with index
.items 0}}{{.metadata.name}}{{end}}"`
$ kubectl port-forward --namespace=${NAMESPACE} $PODNAME 8000:8000

2. Open a browser and go to http://localhost:8000

3. To expose Kubeflow externally so it can be accessed anywhere on the same network,
change the service type and expose it.
$ ks param set kubeflow-core jupyterHubServiceType NodePort
$ ks apply default
$ kubectl get services

4. Look for the NodePort tf-hub service and associated port.
$ kubectl get services | grep tf-hub
tf-hub-0 ClusterIP None <none> 8000/TCP 2m
tf-hub-lb NodePort 10.97.38.143 <none> 80:30303/TCP 2m

The tf-hub-port in this case is 30303.

Go to http://<master>:<tf-hub-port>

http://localhost:8000/

Kubernetes on NVIDIA DGX Servers DU-09176-001| 17

5. At the sign-in prompt, sign-in using any username/password. Sign in using any
username/password

6. Select a CPU or GPU image from the Image dropdown menu depending on what

type of training is being done. CPU and GPU images for each TensorFlow minor
version(e.g.: 1.4.1,1.5.1,1.6.0) are available. Another option is to enter the name of any
TF image to be run.

7. Allocate memory, CPU, GPU, or other resources as needed.

Request GPU resources by specifying the following json in Extra Resource Limits
section: {"nvidia.com/gpu": 1}

8. Click Spawn (note that the images are tens of GBs in size and can take a long time to
download depending on the network connection).
The Jupyter Notebook interface should launch.

9. Test that the instance has access to GPUs via in a new Jupyter Notebook:
!!nvidia-smi

The resulting output should show a line for each GPU that was requested for the
instance.

10. Run a script leveraging TensorFlow with MNIST data.
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
import tensorflow as tf
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x, W) + b)
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))

Kubernetes on NVIDIA DGX Servers DU-09176-001| 18

train_step = tf.train.GradientDescentOptimizer(0.05).minimize(cross_entropy)
sess = tf.InteractiveSession()
tf.global_variables_initializer().run()
for _ in range(1000):
 batch_xs, batch_ys = mnist.train.next_batch(100)
 sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))

Kubernetes on NVIDIA DGX Servers DU-09176-001| 19

Chapter 5. Using Persistent Storage

5.1 Introduction
Kubernetes pods are meant to be stateless and thus on-disk files in pod containers are
ephemeral. Setting up a more permanent storage source is crucial for saving users’
work.

5.2 Using NFS
Several storage objects must be deployed in Kubernetes before pods can access them as a
permanent storage source. A PersistentVolume must first be defined to represent a
storage volume. For this example, we will leverage NFS via one of the servers in our
cluster, but it is possible to swap this configuration for another volume type. Then, a
PersistentVolumeClaim can be defined to serve as a binding between a Pod and the
previously defined PersistentVolume. Finally, when deploying a pod, the
PersistentVolumeClaim can be specified in the Pod definition to reserve the disk space.
It is assumed that an NFS server is already running and accessible from the cluster.

1. Define a nfs-pv.yml file for the PersistentVolume.
apiVersion: v1
kind: PersistentVolume
metadata:
 name: nfs-pv
spec:
 capacity:
 storage: 10Gi
 accessModes:
 - ReadWriteMany
 nfs:

https://kubernetes.io/docs/concepts/storage/volumes/

Kubernetes on NVIDIA DGX Servers DU-09176-001| 20

 server: <nfs_server>
 path: <nfs_mount_path>

Note that this defines the capacity for the volume as 10 GB with a ReadWriteMany
access mode (meaning that this volume can be mounted as read-write by many nodes).
Also observe that the spec references the NFS driver, defining a server IP and
directory path to mount from. Make sure to change both values (<nfs_server> and
<nfs_mount_path>). Consult the official Kubernetes documentation on persistent volumes to
learn more about additional options, such as defining a reclaim policy or mount options.

2. Create the persistent volume.
$ kubectl apply -f ./nfs-pv.yml
persistentvolume "nfs-pv" created

3. Verify that the persistent volume was created.
$ kubectl get pv
NAME LABELS CAPACITY ACCESSMODES STATUS CLAIM REASON AGE
nfs-pv <none> 10Gi RWX Available 10s

4. Define a nfs-pvc.yml file for the PersistentVolumeClaim.
kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: nfs-pvc
spec:
 accessModes:
 - ReadWriteMany
 storageClassName: ""
 resources:
 requests:
 storage: 10Gi

This persistent volume claim (PVC) will search for a compatible persistent volume
(PV) to bind with - using the access mode and storage request as matching criteria.
Note that we define the storageClassName as an empty string to avoid the PVC
searching for storage on the default storage class. Alternatively, a storage class could
be defined for both the PV and PVC.

Once bound, the PV will not be able to bind with another PVC, but multiple pods in
the same cluster can use the same PVC.

5. Create the persistent volume claim.
$ kubectl apply -f ./nfs-pvc.yml
persistentvolumeclaim "nfs-pvc" created

6. Verify that the persistent volume claim was created.
$ kubectl get pvc
NAME LABELS STATUS VOLUME CAPACITY ACCESSMODES AGE
nfs-pvc <none> Bound nfs-pv 10Gi RWO 10s

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#access-modes
https://kubernetes.io/docs/concepts/storage/persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#reclaiming
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#mount-options
https://kubernetes.io/docs/concepts/storage/storage-classes/

Kubernetes on NVIDIA DGX Servers DU-09176-001| 21

7. Use the PVC in a pod.
apiVersion: v1
kind: Pod
metadata:
 name: nfs-pod
spec:
 imagePullSecrets:
 - name: nvcr.dgxkey
 containers:
 - name: pytorch-container
 image: nvcr.io/nvidia/pytorch:18.05-py3
 command: ["/bin/bash", "-c", "--"]
 args: ["while true; do sleep 30; done;"]
 extendedResourceRequests: ["nvidia-gpu"]
 volumeMounts:
 - name: nfs-vol
 mountPath: /nfs
 volumes:
 - name: nfs-vol
 persistentVolumeClaim:
 claimName: nfs-pvc
 extendedResources:
 - name: "nvidia-gpu"
 resources:
 limits:
 nvidia.com/gpu: 1
 requests:
 nvidia.com/gpu: 1

This pod will spin up the PyTorch container from NGC (as shown in a previous
example) and will mount the NFS share within the container at the /nfs mount
point. Since the PV and corresponding PVC were defined to retain data, all files
written to this location within the container will remain on the NFS after the pod is
restarted or deleted.

8. Deploy the pod.
$ kubectl create -f nfs-pod.yml
Pod "nfs-pod" was created

9. Use a shell on the running pod to verify the mount point.
$ kubectl exec -it nfs-pod -- /bin/bash
root@nfs-pod:/workspace# cd /nfs && touch test123

The new file test123 should now exist on the nfs share (check by verifying the
share).

Kubernetes on NVIDIA DGX Servers DU-09176-001| 22

5.3 Using Rook with Ceph
Rook provides an abstraction layer for orchestrating, managing, and scaling, cluster
storage. We recommend using Rook with Ceph as a means for providing persistent
storage on Kubernetes clusters of DGX servers.

Ceph is advantageous because 1) it is capable of multiple storage types (block, object,
and file storage), 2) it provides a means to scale-out storage on multiple nodes but
present itself as a single system, and 3) it has many enterprise storage features including
replication (or erasure encoding), snapshots, thin provisioning, tiering (ability to shift
data between flash and hard drives), and self-healing capabilities.

5.3.1 Performing a DeepOps or Manual Installation
DeepOps is the preferred method for installing Rook and Ceph. It automates the setup of
Kubernetes clusters through Ansible scripts that systems administrators can pick and
choose from or run entirely.

If DeepOps is not to be used, instructions for a manual installation of Rook and Ceph are
also given.

5.3.1.1 DeepOps Installation
DeepOps is the preferred method for installing Rook and Ceph. It automates the setup of
Kubernetes clusters through Ansible scripts that systems administrators can pick and
choose from or run entirely. Directions on using it are available via the Management Server
Setup instructions.

5.3.1.2 Manual Installation
If DeepOps is not leveraged, the Rook GitHub repository can be used instead. Setup is
facilitated by using the examples directory contained within it.

1. Clone the repository.

This step requires git.
$ git clone https://github.com/rook/rook.git

2. cd to examples in the cluster/examples/kubernetes directory.
$ cd cluster/examples/kubernetes/ceph

3. Use the operator and cluster manifests to start rook and ceph.
$ kubectl create -f operator.yaml
$kubectl create -f cluster.yaml

4. Verify that rook-ceph-operator, rook-ceph-agent, and rook-discover pods are in the
Running state before proceeding.
$ kubectl -n rook-ceph-system get pods

https://github.com/NVIDIA/deepops
https://github.com/NVIDIA/deepops
https://git-scm.com/

Kubernetes on NVIDIA DGX Servers DU-09176-001| 23

NAME READY STATUS RESTARTS AGE
rook-ceph-operator-6f5cf4cc77-mj92t 1/1 Running 0 1m
rook-ceph-agent-flw5v 1/1 Running 0 1m
rook-discover-l6q8r 1/1 Running 0 1m

5.3.2 Using Rook Storage
Rook storage can be leveraged as a block, object, or shared file system.

Follow these links for examples of how to use Rook and Ceph with pods:

 Block: Create block storage to be consumed by a pod
 Object: Create an object store that is accessible inside or outside the Kubernetes

cluster
 Shared File System: Create a file system to be shared across multiple pods

5.3.3 Teardown
To remove the Rook setup, follow the teardown directions.

https://rook.github.io/docs/rook/master/block.html
https://rook.github.io/docs/rook/master/object.html
https://rook.github.io/docs/rook/master/filesystem.html
https://rook.github.io/docs/rook/master/ceph-teardown.html

Kubernetes on NVIDIA DGX Servers DU-09176-001| 24

Chapter 6. Monitoring the Cluster

6.1 Leveraging DCGM, Prometheus, and Grafana
for Monitoring

An integrated monitoring stack is provided with NVIDIA Kubernetes deployments. It
can be initialized by following the directions in the installation guide. Once set up, access must
be done either through a browser on the master (go to http://localhost:3000) or by looking
for the Grafana service port.

$ kubectl get services --all-namespaces |grep grafana
monitoring grafana NodePort 10.x.x.x <none> 3000:30902/TCP 14m

In this example, navigating to http://<machine_ip>:30902 shows the grafana home page.

Click on Home → Nodes to view GPU stats for the nodes.

https://docs.nvidia.com/datacenter/kubernetes-install-guide/index.html
http://localhost:3000/

Kubernetes on NVIDIA DGX Servers DU-09176-001| 25

Kubernetes on NVIDIA DGX Servers DU-09176-001| 26

6.2 Generating a Usage Report
Exporting data from grafana dashboards is a useful way of generating a usage report. In
the upper right hand corner of the dashboard, click on the time-period to be covered.
Then, click on a title bar of the graph and select More → Export CSV.

For GPU Utilization, using “series as columns” generates the best results.

Kubernetes on NVIDIA DGX Servers DU-09176-001| 27

Chapter 7. Additional Setup

The setup documented in this section is not required but is useful to refer to as
necessary.

7.1 Adding a Node to the Cluster
Whether adding a new node on-premises or in the cloud, all that is required is

1. Install and run Kubernetes on the node to be added.

Follow the instructions in the installation guide.

2. Instruct the node to join the cluster.
$ sudo kubeadm join --token <token> <master-ip>:<master-port> --
discovery-token-ca-cert-hash sha256::<hash> --ignore-preflight-
errors=all

3. Retrieve the token on the master by running the following command.
$ sudo kubeadm token create --print-join-command

7.2 Using Helm to Manage Kubernetes Software
Helm is a tool that streamlines installation and management of Kubernetes applications.
Think of it like apt/yum/homebrew for Kubernetes. Helm charts are the equivalents of
packages on Kubernetes - complete with package release versions and the ability to roll
back from new installations. For more on Helm, how to make Helm charts, and other
information on Helm, refer to the official docs.

https://docs.nvidia.com/datacenter/kubernetes-install-guide/index.html
https://helm.sh/
https://github.com/helm/charts
https://docs.helm.sh/

Kubernetes on NVIDIA DGX Servers DU-09176-001| 28

Helm has two parts: the Helm client (helm) and the Helm server (Tiller).

Tiller runs inside of a Kubernetes cluster, and manages releases (installations) of charts.
helm runs on a laptop, CI/CD, etc.

Refer to Helm releases page for the latest version of Helm.

1. Use the installation script for the release on the master to install Tiller.
$ wget https://storage.googleapis.com/kubernetes-helm/helm-v2.9.1-
linux-amd64.tar.gz -O get-helm.run && chmod 777 get-helm.run && bash
./get-helm.run

2. Ensure that Tiller is running on the Kubernetes cluster.
$ kubectl get pods --all-namespaces |grep tiller
kube-system tiller-deploy-689869587f-pq5nt 1/1 Running 0 5m

3. Start helm by setting up the ServiceAcount, ClusterRoleBinding, and initializing it.
kubectl create sa tiller --namespace kube-system
kubectl create clusterrolebinding tiller --clusterrole cluster-admin
--serviceaccount=kube-system:tiller
helm init --service-account tiller --node-selectors node-
role.kubernetes.io/master=true

4. Use the helm search command to explore available charts.
$ helm search
<lists available packages>
$ helm search tensorflow
stable/distributed-tensorflow 0.1.1 1.6.0 A Helm chart for
running distributed TensorFlow...
stable/tensorflow-notebook 0.1.2 1.6.0 A Helm chart for
tensorflow notebook and tensor...
stable/tensorflow-serving 0.1.2 1.14.0 TensorFlow Serving is
an open-source software l…
Inspect a chart…
$ helm inspect stable/tensorflow-serving
<shows details of chart>
Install the chart…
$ helm install stable/tensorflow-serving
<installs the chart on the cluster>

https://docs.helm.sh/glossary/#helm-and-helm
https://docs.helm.sh/glossary/#tiller
https://github.com/helm/helm/releases

Kubernetes on NVIDIA DGX Servers DU-09176-001| 29

7.3 Configuring User Access with RBAC
Role-based access control (RBAC) provides a way to regulate access to the Kubernetes
cluster based upon roles that can be defined by the cluster administrator. Additionally,
authentication may be performed through an Identity Provider (IdP), such as Google or
LDAP via OpenID token. This section covers a basic use case for leveraging RBAC and
namespaces. Namespaces are virtual clusters backed by the same physical cluster which
are a convenient way of segmenting deployments, especially for clusters that have many
users and teams.

For more information on RBAC, refer to the Kubernetes guide on the topic. A more
automated setup of users with admin privileges in the cluster can leverage the DeepOps
scripts.

Note —RBAC should be enabled by default. If it is not, it might be necessary to start the
apiserver with --authorization-mode=RBAC.

In this example, a user with limited namespace access will be created with the following
account information:

 Username: employee
 Group: nvidia

The necessary RBAC policies will be added so this user can fully manage deployments
(i.e. use kubectl run command) only inside the office namespace. At the end, the policies
will be tested to make sure they work as expected.

1. Create the nvidia-team Namespace.

Execute the kubectl create command to create the namespace (as the admin user):

$ kubectl create namespace nvidiateam

As previously mentioned, Kubernetes does not have API Objects for User Accounts. Of
the available ways to manage authentication (see Kubernetes official documentation for
a complete list), we will use OpenSSL certificates for their simplicity. The necessary
steps are:

2. Create a private key for the user.

In this example, the file is named employee.key.
$ openssl genrsa -out employee.key 2048

3. Create a certificate sign request employee.csr using the private key was just created.

Make sure to specify the username and group in the -subj section (CN is for the
username and O for the group
$ openssl req -new -key employee.key -out employee.csr -subj
"/CN=employee/O=nvidia"

https://kubernetes.io/docs/reference/access-authn-authz/authentication/#openid-connect-tokens
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://github.com/NVIDIA/deepops
https://github.com/NVIDIA/deepops

Kubernetes on NVIDIA DGX Servers DU-09176-001| 30

4. Locate the Kubernetes cluster certificate authority (CA).

This will be responsible for approving the request and generating the necessary
certificate to access the cluster API. Its location is normally /etc/kubernetes/pki/.
Check that the files ca.crt and ca.key exist in the location.

5. Generate the final certificate employee.crt by approving the certificate sign request,
employee.csr, made earlier.

Substitute the CA_LOCATION placeholder with the location of the cluster CA. In
this example, the certificate will be valid for 500 days.
$ openssl x509 -req -in employee.csr -CA CA_LOCATION/ca.crt -CAkey
CA_LOCATION/ca.key -CAcreateserial -out employee.crt -days 500

6. Save both employee.crt and employee.key in a safe location.

 In this example, /home/employee/.certs/ will be used.

7. Add a new context with the new credentials for the Kubernetes cluster.
$ kubectl config set-credentials employee --client-
certificate=/home/employee/.certs/employee.crt --client-
key=/home/employee/.certs/employee.key
$ kubectl config set-context employee-context --namespace=nvidiateam
--user=employee

8. An access denied error should be generated when using the kubectl CLI with this
configuration file. This is expected as permitted operations have not yet been defined
for this user.
$ kubectl --context=employee-context get pods

9. Create the Role for Managing Deployments

Create a role-deployment-manager.yaml file with the content below. This yaml file
creates a rule that allows a user to execute several operations on Deployments, Pods
and ReplicaSets (necessary for creating a Deployment), which belong to the core
(expressed by "" in the yaml file), apps, and extensions API Groups.
kind: Role
 apiVersion: rbac.authorization.k8s.io/v1beta1
 metadata:
 namespace: office
 name: deployment-manager
 rules:
 - apiGroups: ["", "extensions", "apps"]
 resources: ["deployments", "replicasets", "pods"]
 verbs: ["get", "list", "watch", "create", "update", "patch",
"delete"] # You can also use ["*"]

10. Create the Role in the cluster.
$ kubectl create -f role-deployment-manager.yaml

11. Bind the role to the Employee User.

Kubernetes on NVIDIA DGX Servers DU-09176-001| 31

Create a rolebinding-deployment-manager.yaml file with the content below. In this
file, the deployment-manager Role is being bound to the User Account employee
inside the office namespace.
kind: RoleBinding
 apiVersion: rbac.authorization.k8s.io/v1beta1
 metadata:
 name: deployment-manager-binding
 namespace: office
 subjects:
 - kind: User
 name: employee
 apiGroup: ""
 roleRef:
 kind: Role
 name: deployment-manager
 apiGroup: ""

12. Deploy the RoleBinding.
$ kubectl create -f rolebinding-deployment-manager.yaml

13. Test the RBAC Rule.
$ kubectl --context=employee-context run --image nginx nginx
$ kubectl --context=employee-context get pods

Running the same command with the --namespace=default argument will fail, as the
employee user does not have access to this namespace.

$ kubectl --context=employee-context get pods --namespace=default

7.4 Securing a Cluster
Securing the cluster is important — and there are many potential security pitfalls that
can be exposed when leveraging Kubernetes. For a basic setup, consider the following.

 Restrict access to kubectl: Prevent unauthorized users from accessing the cluster
 Use RBAC and namespaces: Use role-based access control to define roles with rules

containing a set of permissions
 Use a Network Policy: Control pod-to-pod traffic (open by default)
 Protect Kubernetes UI / Dashboard: Either disable it or restrict access, as it uses a

highly-privileged Kubernetes service account
 Disable account token: Disable the automatic mounting of the service account token,

as it can be abused by an attacker
 Use pod Security Policy: Enable Docker seccomp and other security restrictions

A security benchmark analyzer, such as the Kubernetes Auto Analyzer, can also be run on the
cluster.

https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#seccomp
https://github.com/nccgroup/kube-auto-analyzer

Kubernetes on NVIDIA DGX Servers DU-09176-001| iv

APPENDIX A. Kubernetes Web UI
(Formerly Dashboard)

A.1. Running the Kubernetes Web UI
The Kubernetes Web UI (formerly Dashboard) is a useful way of maintaining a
Kubernetes cluster via a browser. It will perform most of the operations that would
normally be done from the command line on the master (via kubectl). The Web UI also
provides information on the state of Kubernetes resources in the cluster and any errors
that maybe have occurred.

A.2. Installing the Kubernetes Web UI
By default, the Kubernetes Web UI is not deployed. To do so, use the officially-
recommended setup deployment yaml.

$ kubectl create -f
https://raw.githubusercontent.com/kubernetes/dashboard/master/src/deplo
y/recommended/kubernetes-dashboard.yaml

A.3. Accessing the Kubernetes Web UI
There are multiple ways to access the Web. Granting access to the Web UI publicly
presents huge security risks and should be avoided unless the intent is to grant all users
on-site access to the Kubernetes cluster.

The default method of accessing the Web UI is via the master.

Kubernetes on NVIDIA DGX Servers DU-09176-001| v

1. Open a proxy up to the Kubernetes Dashboard service.
$ kubectl proxy

2. On the master, navigate the browser to the dashboard.
http://localhost:8001/api/v1/namespaces/kube-system/services/https:kubernetes-dashboard:/proxy/

3. A login page is presented - to log in, it is necessary to create a service account and
retrieve its associated token.
$ kubectl create serviceaccount my-dashboard-sa
serviceaccount "my-dashboard-sa" created

4. Give the service account cluster-admin permissions on the cluster.

Caution — Ensure this change conforms to company security policies..

$ kubectl create clusterrolebinding my-dashboard-sa \
 --clusterrole=cluster-admin \
 --serviceaccount=default:my-dashboard-sa
clusterrolebinding "my-dashboard-sa" created

5. Get the name of the secret associated with the newly-created cluster role binding.
$ kubectl get secrets | grep my-dashboard-sa
my-dashboard-sa-token-wb7lf kubernetes.io/service-account-token 3
10s

6. Get the token from the secret description (substitute the name of the secret).
$ kubectl describe secret my-dashboard-sa-token-wb7lf

The resulting token can be used to authenticate on the login screen.

A.4. Ideal Access for Kubernetes Web UI
An ideal Kubernetes deployment for many users that need to access and control
Kubernetes via the Web UI would involve implementing an SSO-like experience where
each user has specific permissions to access the interface. This is outside of the scope of
this document. For more information, consult the official Kubernetes authentication
documentation.

A.5. Using the Kubernetes Web UI
Everything from managing roles to setting up namespaces and launching pods, jobs,
and deployments can be done through the Web UI. For most users, leveraging the
kubectl CLI will be more efficient, but the UI presents a good way for new users to see

http://localhost:8001/api/v1/namespaces/kube-system/services/https:kubernetes-dashboard:/proxy/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://kubernetes.io/docs/reference/access-authn-authz/authentication/

Kubernetes on NVIDIA DGX Servers DU-09176-001| vi

most of the available options and provides a useful way to observe and monitor existing
Kubernetes objects.

A new Kubernetes object can be created by- clicking on the CREATE button in the upper-
right hand corner of the Web UI. From there, a manifest file can be pasted into the text
input field.

Kubernetes on NVIDIA DGX Servers DU-09176-001| vii

www.nvidia.com

Notice
The information provided in this specification is believed to be accurate and reliable as of the date provided. However,
NVIDIA Corporation (“NVIDIA”) does not give any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information. NVIDIA shall have no liability for the consequences or use of such information or
for any infringement of patents or other rights of third parties that may result from its use. This publication supersedes
and replaces all other specifications for the product that may have been previously supplied.
NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and other changes to this
specification, at any time and/or to discontinue any product or service without notice. Customer should obtain the latest
relevant specification before placing orders and should verify that such information is current and complete.
NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order
acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives of
NVIDIA and customer. NVIDIA hereby expressly objects to applying any customer general terms and conditions regarding
the purchase of the NVIDIA product referenced in this specification.
NVIDIA products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or
life support equipment, nor in applications where failure or malfunction of the NVIDIA product can reasonably be
expected to result in personal injury, death or property or environmental damage. NVIDIA accepts no liability for inclusion
and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer’s
own risk.
NVIDIA makes no representation or warranty that products based on these specifications will be suitable for any specified
use without further testing or modification. Testing of all parameters of each product is not necessarily performed by
NVIDIA. It is customer’s sole responsibility to ensure the product is suitable and fit for the application planned by
customer and to do the necessary testing for the application to avoid a default of the application or the product.
Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in
additional or different conditions and/or requirements beyond those contained in this specification. NVIDIA does not
accept any liability related to any default, damage, costs or problem which may be based on or attributable to: (i) the
use of the NVIDIA product in any manner that is contrary to this specification, or (ii) customer product designs.
No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual
property right under this specification. Information published by NVIDIA regarding third-party products or services does
not constitute a license from NVIDIA to use such products or services or a warranty or endorsement thereof. Use of such
information may require a license from a third party under the patents or other intellectual property rights of the third
party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA. Reproduction of
information in this specification is permissible only if reproduction is approved by NVIDIA in writing, is reproduced without
alteration, and is accompanied by all associated conditions, limitations, and notices.
ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED,
IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED
WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. Notwithstanding any
damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards
customer for the products described herein shall be limited in accordance with the NVIDIA terms and conditions of sale
for the product.

VESA DisplayPort
DisplayPort and DisplayPort Compliance Logo, DisplayPort Compliance Logo for Dual-mode Sources, and DisplayPort
Compliance Logo for Active Cables are trademarks owned by the Video Electronics Standards Association in the United
States and other countries.

HDMI
HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing
LLC.

OpenCL
OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks
NVIDIA, the NVIDIA logo, GeForce, and SLI are trademarks and/or registered trademarks of NVIDIA Corporation in the
U.S. and other countries. Other company and product names may be trademarks of the respective companies with which
they are associated.

Copyright
© 2018 NVIDIA Corporation. All rights reserved.

	Chapter 1. Overview
	1.1 What Is Kubernetes?
	1.2 Choosing a Distribution
	1.3 Accessing the Example File Archive

	Chapter 2. Kubernetes Basics
	2.1 Getting Started
	2.2 Terminology
	2.3 Kubernetes Manifest

	Chapter 3. Installation
	3.1 Choosing Between Basic and DeepOps Installs
	3.1.1 Basic Install
	3.1.2 DeepOps Install

	Chapter 4. Use Cases
	4.1 Introduction
	4.2 Using NGC Containers with Kubernetes and Launching Jobs
	4.3 Running a PyTorch Training Job
	4.4 TensorRT Inferencing as a Service
	4.4.1 Inferencing Toy Example
	4.4.2 Deploying Inferencing in a Production Environment
	4.4.2.1 Using the NGC Inference Server Container
	4.4.2.2 Deploying a Load Balancer or Ingress Service

	4.5 Leveraging Kubeflow Across the Cluster
	4.5.1 Installation
	4.5.2 Ensure That Storage Is Connected (Or Disable It)
	4.5.3 Turn Usage Reporting Off (Optional)
	4.5.4 Bringing Up a Jupyter Notebook

	Chapter 5. Using Persistent Storage
	5.1 Introduction
	5.2 Using NFS
	5.3 Using Rook with Ceph
	5.3.1 Performing a DeepOps or Manual Installation
	5.3.1.1 DeepOps Installation
	5.3.1.2 Manual Installation

	5.3.2 Using Rook Storage
	5.3.3 Teardown

	Chapter 6. Monitoring the Cluster
	6.1 Leveraging DCGM, Prometheus, and Grafana for Monitoring
	6.2 Generating a Usage Report

	Chapter 7. Additional Setup
	7.1 Adding a Node to the Cluster
	7.2 Using Helm to Manage Kubernetes Software
	7.3 Configuring User Access with RBAC
	7.4 Securing a Cluster
	Appendix A. Kubernetes Web UI (Formerly Dashboard)
	A.1. Running the Kubernetes Web UI
	A.2. Installing the Kubernetes Web UI
	A.3. Accessing the Kubernetes Web UI
	A.4. Ideal Access for Kubernetes Web UI
	A.5. Using the Kubernetes Web UI

k8s-gpu-examples-master/README.md

k8s-gpu-examples

k8s-gpu-examples-master/nfs-pod.yaml

apiVersion: v1
kind: Pod
metadata:
 name: nfs-pod
spec:
 imagePullSecrets:
 - name: nvcr.dgxkey
 containers:
 - name: pytorch-container
 image: nvcr.io/nvidia/pytorch:18.05-py3
 command: ["/bin/bash", "-c", "--"]
 args: ["while true; do sleep 30; done;"]
 extendedResourceRequests: ["nvidia-gpu"]
 volumeMounts:
 - name: nfs-vol
 mountPath: /nfs
 volumes:
 - name: nfs-vol
 persistentVolumeClaim:
 claimName: nfs-pvc
 extendedResources:
 - name: "nvidia-gpu"
 resources:
 limits:
 nvidia.com/gpu: 1
 requests:
 nvidia.com/gpu: 1

k8s-gpu-examples-master/nfs-pv.yaml

apiVersion: v1
kind: PersistentVolume
metadata:
 name: nfs-pv
spec:
 capacity:
 storage: 10Gi
 accessModes:
 - ReadWriteMany
 nfs:
 server: <nfs_server>
 path: <nfs_mount_path>

k8s-gpu-examples-master/nfs-pvc.yaml

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: nfs-pvc
spec:
 accessModes:
 - ReadWriteMany
 storageClassName: ""
 resources:
 requests:
 storage: 10Gi

k8s-gpu-examples-master/pytorch-job.yaml

apiVersion: batch/v1
kind: Job
metadata:
 name: pytorch-example
spec:
 backoffLimit: 5
 template:
 spec:
 imagePullSecrets:
 - name: nvcr.dgxkey
 containers:
 - name: pytorch-container
 image: nvcr.io/nvidia/pytorch:18.08-py3
 command: ["/bin/sh"]
 args: ["-c", "python /workspace/examples/upstream/mnist/main.py"]
 extendedResourceRequests: ["nvidia-gpu"]
 restartPolicy: Never
 extendedResources:
 - name: "nvidia-gpu"
 resources:
 limits:
 nvidia.com/gpu: 4
 requests:
 nvidia.com/gpu: 4

k8s-gpu-examples-master/tensorrt-service-deployment.yaml

piVersion: apps/v1
kind: Deployment
metadata:
 name: tensorrt-deployment
 labels:
 app: tensorrt
spec:
 replicas: 1
 selector:
 matchLabels:
 app: tensorrt
 template:
 metadata:
 labels:
 app: tensorrt
 spec:
 imagePullSecrets:
 - name: nvcr.dgxkey
 containers:
 - name: tensorrt-container
 image: nvcr.io/nvidia/tensorrt:17.12
 command: ["/bin/sh"]
 args: ["-c", "tensorrt_server/onnx_inception_v1"]
 ports:
 - containerPort: 8000
 extendedResourceRequests: ["nvidia-gpu"]
 extendedResources:
 - name: "nvidia-gpu"
 resources:
 limits:
 nvidia.com/gpu: 4
 requests:
 nvidia.com/gpu: 4

apiVersion: v1
kind: Service
metadata:
 labels:
 run: tensorrt-service
 name: tensorrt-service
spec:
 ports:
 - port: 8000
 targetPort: 8000
 selector:
 app: tensorrt-server
 type: NodePort

