
NVIDIA Multi-Instance GPU User Guide
Release r575

NVIDIA Corporation

May 27, 2025

Contents

1 Supported GPUs 3

2 Supported Configurations 5

3 Virtualization 7

4 Concepts 9
4.1 Terminology . 9
4.2 Partitioning . 10
4.3 CUDA Concurrency Mechanisms . 15

5 Deployment Considerations 17
5.1 System Considerations . 17
5.2 Application Considerations . 18

6 MIG Device Names 19
6.1 Device Enumeration . 20
6.2 CUDA Device Enumeration . 20

7 Supported MIG Profiles 23
7.1 RTX PRO 6000 Blackwell MIG Profiles . 23
7.2 A30 MIG Profiles . 25
7.3 A100 MIG Profiles . 25
7.4 H100 MIG Profiles . 27
7.5 H200 MIG Profiles . 29

8 Getting Started with MIG 31
8.1 Prerequisites . 31
8.2 Enable MIG Mode . 32
8.2.1 GPU Reset on Hopper+ GPUs . 32
8.2.2 GPU Reset on NVIDIA Ampere Architecture GPUs . 33
8.2.3 Driver Clients . 33

8.3 List GPU Instance Profiles . 34
8.4 Creating GPU Instances . 35
8.4.1 Instance Geometry . 36

8.5 Running CUDA Applications on Bare-Metal . 38
8.5.1 GPU Instances . 38
8.5.2 GPU Utilization Metrics . 39
8.5.3 Compute Instances . 39

8.6 Destroying GPU Instances . 42
8.7 Monitoring MIG Devices . 43
8.8 MIG with CUDA MPS . 43
8.8.1 Workflow . 44
8.8.2 Configure GPU Instances . 44

i

8.8.3 Set Up the MPS Control Daemons . 45
8.8.4 Launch the Application . 45
8.8.5 A Complete Example . 45

8.9 Running CUDA Applications as Containers . 46
8.9.1 Install Docker . 46
8.9.2 Install NVIDIA Container Toolkit . 46
8.9.3 Running Containers . 47

8.10 MIG with Kubernetes . 49
8.11 MIG with Slurm . 49

9 Device Nodes and Capabilities 51
9.1 System Level Interface . 51
9.1.1 /dev Based nvidia-capabilities . 52
9.1.2 /proc based nvidia-capabilities (Deprecated) . 54

10 Notices 57
10.1 Notice . 57
10.2 OpenCL . 58
10.3 Trademarks . 58

ii

NVIDIA Multi-Instance GPU User Guide, Release r575

MIG User Guide

This edition of the user guide describes the Multi-Instance GPU feature first introduced with the
NVIDIA® Ampere architecture.

The new Multi-Instance GPU (MIG) feature allows GPUs (starting with NVIDIA Ampere architecture)
to be securely partitioned into up to seven separate GPU Instances for CUDA applications, providing
multiple users with separate GPU resources for optimal GPU utilization. This feature is particularly
beneficial for workloads that do not fully saturate the GPU’s compute capacity and therefore users
may want to run different workloads in parallel to maximize utilization.

For Cloud Service Providers (CSPs), who have multi-tenant use cases, MIG ensures one client cannot
impact the work or scheduling of other clients, in addition to providing enhanced isolation for cus-
tomers.

With MIG, each instance’s processors have separate and isolated paths through the entire memory
system - the on-chip crossbar ports, L2 cache banks, memory controllers, and DRAM address busses
are all assigned uniquely to an individual instance. This ensures that an individual user’s workload can
run with predictable throughput and latency, with the same L2 cache allocation and DRAM bandwidth,
even if other tasks are thrashing their own caches or saturating their DRAM interfaces. MIG can parti-
tion available GPU compute resources (including streaming multiprocessors or SMs, and GPU engines
such as copy engines or decoders), to provide a defined quality of service (QoS) with fault isolation for
different clients such as VMs, containers or processes. MIG enables multiple GPU Instances to run in
parallel on a single, physical NVIDIA Ampere architecture GPU.

WithMIG, users will be able to see and schedule jobs on their new virtual GPU Instances as if they were
physical GPUs. MIG works with Linux operating systems, supports containers using Docker Engine,
with support for Kubernetes and virtual machines using hypervisors such as Red Hat Virtualization
and VMware vSphere. MIG supports the following deployment configurations:

▶ Bare-metal, including containers

▶ GPU pass-through virtualization to Linux guests on top of supported hypervisors

▶ vGPU on top of supported hypervisors

MIG allows multiple vGPUs (and thereby VMs) to run in parallel on a single GPU, while preserving the
isolation guarantees that vGPU provides. For more information on GPU partitioning using vGPU and
MIG, refer to the technical brief.

The purpose of this document is to introduce the concepts behind MIG, deployment considerations
and provide examples of MIG management to demonstrate how users can run CUDA applications on
MIG supported GPUs.

Contents 1

https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/solutions/resources/documents1/TB-10226-001_v01.pdf

NVIDIA Multi-Instance GPU User Guide, Release r575

Figure 1: MIG Overview

2 Contents

Chapter 1. Supported GPUs

MIG is supported on GPUs starting with the NVIDIA Ampere generation (that is, GPUs with compute
capability >= 8.0). The following table provides a list of supported GPUs:

3

NVIDIA Multi-Instance GPU User Guide, Release r575

Table 1: Supported GPU Products

Product Architecture Microar-
chitec-
ture

Compute
Capability

Mem-
ory
Size

Max Number
of Instances

RTX PRO 6000 Blackwell
Server Edition

Blackwell GB202 12.0 96GB 4

RTX PRO 6000 Blackwell
Workstation Edition

Blackwell GB202 12.0 96GB 4

RTX PRO 6000 Blackwell
Max-Q Workstation Edition

Blackwell GB202 12.0 96GB 4

GB200 Blackwell GB100 10.0 186GB 7

B200 Blackwell GB100 10.0 180GB 7

H100-SXM5 Hopper GH100 9.0 80GB 7

H100-PCIE Hopper GH100 9.0 80GB 7

H100-SXM5 Hopper GH100 9.0 94GB 7

H100-PCIE Hopper GH100 9.0 94GB 7

H100 on GH200 Hopper GH100 9.0 96GB 7

H200-SXM5 Hopper GH100 9.0 141GB 7

H200 NVL Hopper GH100 9.0 141GB 7

A100-SXM4 NVIDIA Ampere
architecture

GA100 8.0 40GB 7

A100-SXM4 NVIDIA Ampere
architecture

GA100 8.0 80GB 7

A100-PCIE NVIDIA Ampere
architecture

GA100 8.0 40GB 7

A100-PCIE NVIDIA Ampere
architecture

GA100 8.0 80GB 7

A30 NVIDIA Ampere
architecture

GA100 8.0 24GB 4

Additionally, MIG is supported on systems that include the supported products above such as DGX,
DGX Station and HGX.

4 Chapter 1. Supported GPUs

Chapter 2. Supported Configurations

Supported deployment configurations with MIG include

▶ Bare-metal, including containers andMIG with Kubernetes

▶ GPU pass-through virtualization to Linux guests on top of supported hypervisors

▶ vGPU on top of supported hypervisors

5

NVIDIA Multi-Instance GPU User Guide, Release r575

6 Chapter 2. Supported Configurations

Chapter 3. Virtualization

MIG can be used with two types of virtualization:

▶ Under Linux guests on supported hypervisors, when MIG-supported GPUs are in GPU pass-
through, the same workflows workflows, tools, and Supported MIG Profiles available on bare-
metal can be used.

▶ MIG allows multiple vGPUs (and thereby VMs) to run in parallel on a single MIG-supported GPU,
while preserving the isolation guarantees that vGPU provides. To configure a GPU for use with
vGPU VMs, refer to the Configuring a GPU for MIG-Backed vGPUs. Refer also to the technical
brief for more information on GPU partitioning with vGPU.

7

https://docs.nvidia.com/ai-enterprise/latest/user-guide/index.html#configuring-a-gpu-for-mig-backed-vgpus
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/solutions/resources/documents1/TB-10226-001_v01.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/solutions/resources/documents1/TB-10226-001_v01.pdf

NVIDIA Multi-Instance GPU User Guide, Release r575

8 Chapter 3. Virtualization

Chapter 4. Concepts

4.1. Terminology

This section introduces some terminology used to describe the concepts behind MIG.

Streaming Multiprocessor

A streaming multiprocessor (SM) executes compute instructions on the GPU.

GPU Context

A GPU context is analogous to a CPU process. It encapsulates all the resources necessary to execute
operations on the GPU, including a distinct address space, memory allocations, etc. A GPU context
has the following properties:

▶ Fault isolation

▶ Individually scheduled

▶ Distinct address space

GPU Engine

A GPU engine is what executes work on the GPU. The most commonly used engine is the Com-
pute/Graphics engine that executes the compute instructions. Other engines include the copy engine
(CE) that is responsible for performing DMAs, NVDEC for video decoding, NVENC for encoding, etc.
Each engine can be scheduled independently and execute work for different GPU contexts.

GPU Memory Slice

A GPU memory slice is the smallest fraction of the GPU’s memory, including the corresponding mem-
ory controllers and cache. A GPU memory slice is roughly one eighth of the total GPU memory re-
sources, including both capacity and bandwidth.

GPU SM Slice

A GPU SM slice is the smallest fraction of the SMs on the GPU. A GPU SM slice is roughly one seventh
of the total number of SMs available in the GPU when configured in MIG mode.

GPU Slice

A GPU slice is the smallest fraction of the GPU that combines a single GPU memory slice and a single
GPU SM slice.

GPU Instance

A GPU Instance (GI) is a combination of GPU slices and GPU engines (DMAs, NVDECs, and so on).
Anything within a GPU instance always shares all the GPU memory slices and other GPU engines, but
it’s SM slices can be further subdivided into compute instances (CI). A GPU instance provides memory

9

NVIDIA Multi-Instance GPU User Guide, Release r575

QoS. Each GPU slice includes dedicated GPUmemory resources which limit both the available capacity
and bandwidth, and provide memory QoS. Each GPU memory slice gets 1/8 of the total GPU memory
resources and each GPU SM slice gets 1/7 of the total number of SMs.

Compute Instance

A GPU instance can be subdivided into multiple compute instances. A Compute Instance (CI) contains
a subset of the parent GPU instance’s SM slices and other GPU engines (DMAs, NVDECs, etc.). The CIs
share memory and engines.

4.2. Partitioning

Using the concepts introduced above, this section provides an overview of how the user can create
various partitions on the GPU. For illustration purposes, the document will use the A100-40GB as an
example, but the process is similar for other GPUs that support MIG.

GPU Instance

Partitioning of theGPUhappens usingmemory slices, so theA100-40GBGPUcanbe thought of having
8x5GB memory slices and 7 SM slices as shown in the diagram below.

Figure 2: Available Slices on A100

As explained above, then to create a GPU Instance (GI) requires combining some number of memory
slices with some number of compute slices. In the diagram below, a 5GB memory slice is combined
with 1 compute slice to create a 1g.5gb GI profile:

Similarly, 4x5GB memory slices can be combined with 4x1 compute slices to create the 4g.5gb GI
profile:

Compute Instance

The compute slices of a GPU Instance can be further subdivided into multiple Compute Instances (CI),
with the CIs sharing the engines andmemory of the parent GI, but eachCI has dedicated SM resources.

Using the same 4g.20gb example above, a CI may be created to consume only the first compute slice
as shown below:

In this case, four different CIs can be created by choosing any of the compute slices. Two compute
slices can also be combined together to create a 2c.4g.20gb profile:

In this example, 3 compute slices can also be combined to create a 3c.4g.20gb profile or all 4 can
be combined to create a 4c.4g.20gb profile. When all 4 compute slices are combined, the profile is
simply referred to as the 4g.20gb profile.

10 Chapter 4. Concepts

NVIDIA Multi-Instance GPU User Guide, Release r575

Figure 3: Combining 5GB Memory and One Compute Slice

Figure 4: Combining 4x5GB Memory and 4x1 Compute Slices

4.2. Partitioning 11

NVIDIA Multi-Instance GPU User Guide, Release r575

Figure 5: Combining Memory and First Compute Slice

Figure 6: Combining Memory and Two Compute Slices

12 Chapter 4. Concepts

NVIDIA Multi-Instance GPU User Guide, Release r575

Refer to the sections on the canonical naming scheme and the CUDA device terminology.

Profile Placement

The number of slices that a GI can be created with is not arbitrary. The NVIDIA driver APIs provide a
number of “GPU Instance Profiles” and users can create GIs by specifying one of these profiles.

On a given GPU, multiple GIs can be created from amix andmatch of these profiles, so long as enough
slices are available to satisfy the request.

Note: The table below shows the profile names on the A100-SXM4-40GB product. For A100-SXM4-
80GB, the profile names will change according to the memory proportion - for example, 1g.10gb,
2g.20gb, 3g.40gb, 4g.40gb, 7g.80gb respectively.

For a list of all supported combinations of profiles on MIG-enabled GPUs, refer to the section on sup-
ported profiles.

Table 2: GPU Instance Profiles on A100

Profile
Name

Fraction
of Mem-
ory

Fraction
of SMs

Hardware
Units

L2
Cache
Size

Copy
En-
gines

Number of Instances Avail-
able

MIG
1g.5gb

1/8 1/7 0 NVDECs /0
JPEG /0 OFA

1/8 1 7

MIG
1g.5gb+me

1/8 1/7 1 NVDEC /1
JPEG /1 OFA

1/8 1 1 (A single 1g profile can in-
clude media extensions)

MIG
1g.10gb

1/8 1/7 1 NVDECs /0
JPEG /0 OFA

1/8 1 4

MIG
2g.10gb

2/8 2/7 1 NVDECs /0
JPEG /0 OFA

2/8 2 3

MIG
3g.20gb

4/8 3/7 2 NVDECs /0
JPEG /0 OFA

4/8 3 2

MIG
4g.20gb

4/8 4/7 2 NVDECs /0
JPEG /0 OFA

4/8 4 1

MIG
7g.40gb

Full 7/7 5 NVDECs /1
JPEG /1 OFA

Full 7 1

The diagram below shows a pictorial representation of how to build all valid combinations of GPU in-
stances.

In this diagram, a valid combination can be built by starting with an instance profile on the left and
combining it with other instance profiles as you move to the right, such that no two profiles overlap
vertically. For a list of all supported combinations and placements of profiles on A100 and A30, refer
to the section on supported profiles.

Note that prior to NVIDIA driver release R510, the combination of a (4 memory, 4 compute) and a (4
memory, 3 compute) profile was not supported. This restriction no longer applies on newer drivers.

Note that the diagram represents the physical layout of where the GPU Instances will exist once they
are instantiated on the GPU. As GPU Instances are created and destroyed at different locations, frag-
mentation can occur, and the physical position of one GPU Instance will play a role in which other GPU
Instances can be instantiated next to it.

4.2. Partitioning 13

NVIDIA Multi-Instance GPU User Guide, Release r575

Figure 7: MIG Profiles on A100

Figure 8: Profile Placements on A100

14 Chapter 4. Concepts

NVIDIA Multi-Instance GPU User Guide, Release r575

4.3. CUDA Concurrency Mechanisms

MIG has been designed to be largely transparent to CUDA applications - so that the CUDA program-
ming model remains unchanged to minimize programming effort. CUDA already exposes multiple
technologies for running work in parallel on the GPU and it is worthwhile showcasing how these tech-
nologies compare to MIG. Note that streams and MPS are part of the CUDA programming model and
thus work when used with GPU Instances.

CUDA Streams are a CUDA Programming model feature where, in a CUDA application, different work
can be submitted to independent queues and be processed independently by the GPU. CUDA streams
can only be used within a single process and don’t offer much isolation - the address space is shared,
the SMs are shared, the GPUmemory bandwidth, caches and capacity are shared. And lastly any errors
affect all the streams and the whole process.

MPS is the CUDA Multi-Process service. It allows co-operative multi process applications to share
compute resources on the GPU. It’s commonly used by MPI jobs that cooperate, but it has also been
used for sharing the GPU resources among unrelated applications, while accepting the challenges
that such a solution brings. MPS currently does not offer error isolation between clients and while
streaming multiprocessors used by each MPS client can be optionally limited to a percentage of all
SMs, the scheduling hardware is still shared. Memory bandwidth, caches and capacity are all shared
between MPS clients.

Lastly, MIG is the new form of concurrency offered by NVIDIA GPUs while addressing some of the
limitations with the other CUDA technologies for running parallel work.

Table 3: CUDA Concurrency Mechanisms

Streams MPS MIG

Partition Type Single Process Logical Physical

Max Partitions Unlimited 48 7

SM Performance Isolation No Yes (by percentage, not partitioning) Yes

Memory Protection No Yes Yes

Memory Bandwidth QoS No No Yes

Error Isolation No No Yes

Cross-Partition Interop Always IPC Limited IPC

Reconfigure Dynamic Process Launch When Idle

4.3. CUDA Concurrency Mechanisms 15

NVIDIA Multi-Instance GPU User Guide, Release r575

16 Chapter 4. Concepts

Chapter 5. Deployment Considerations

MIG functionality is provided as part of the NVIDIA GPU driver.

▶ H100 GPUs are supported starting with CUDA 12/R525 drivers.

▶ A100 and A30 GPUs are supported starting with CUDA 11/R450 drivers.

5.1. System Considerations

The following system considerations are relevant for when the GPU is in MIG mode.

▶ MIG is supported only on Linux operating system distributions supported by CUDA. It is also
recommended to use the latest NVIDIA Datacenter Linux. Refer to the quick start guide.

Note: Also note the device nodes and nvidia-capabilities for exposing the MIG devices.
The ∕procmechanism for system-level interfaces is deprecated as of 450.51.06 and it is recom-
mended to use the ∕dev based system-level interface for controlling access mechanisms of MIG
devices through cgroups. This functionality is available starting with 450.80.02+ drivers.

▶ Supported configurations include:

▶ Bare-metal, including containers

▶ GPU pass-through virtualization to Linux guests on top of supported hypervisors

▶ vGPU on top of supported hypervisors

MIG allows multiple vGPUs (and thereby VMs) to run in parallel on a single A100, while preserving
the isolation guarantees that vGPU provides. For more information on GPU partitioning using
vGPU and MIG, refer to the technical brief.

▶ Setting MIG mode on the A100/A30 requires a GPU reset (and thus super-user privileges). Once
the GPU is in MIG mode, instance management is then dynamic. Note that the setting is on a
per-GPU basis.

▶ On NVIDIA Ampere architecture GPUs, similar to ECC mode, MIG mode setting is persistent
across reboots until the user toggles the setting explicitly

▶ All daemons holding handles on driver modules need to be stopped before MIG enablement.

▶ This is true for systems such as DGX which may be running system health monitoring services
such as nvsm or GPU health monitoring or telemetry services such as DCGM.

17

https://docs.nvidia.com/datacenter/tesla/driver-installation-guide/index.html
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/solutions/resources/documents1/TB-10226-001_v01.pdf
https://docs.nvidia.com/nvidia-system-management-nvsm/

NVIDIA Multi-Instance GPU User Guide, Release r575

▶ Toggling MIG mode requires the CAP_SYS_ADMIN capability. Other MIG management, such as
creating and destroying instances, requires superuser by default, but can be delegated to non-
privileged users by adjusting permissions to MIG capabilities in ∕proc∕.

5.2. Application Considerations

Users should note the following considerations when the A100 is in MIG mode:

▶ No graphics APIs are supported (for example, OpenGL, Vulkan and so on.)

▶ No GPU to GPU P2P (either PCIe or NVLink) is supported.

▶ CUDAapplications treat aCompute Instance and its parentGPU Instance as a single CUDAdevice.
See this section on device enumeration by CUDA.

▶ CUDA IPC across GPU instances is not supported. CUDA IPC across Compute instances is sup-
ported.

▶ CUDA debugging (e.g. using cuda-gdb) and memory/race checking (for example, using cuda-
memcheck or compute-sanitizer) is supported.

▶ CUDAMPS is supported on top ofMIG. The only limitation is that themaximumnumber of clients
(48) is lowered proportionally to the Compute Instance size.

▶ GPUDirect RDMA is supported when used from GPU Instances.

18 Chapter 5. Deployment Considerations

Chapter 6. MIG Device Names

By default, a MIG device consists of a single “GPU Instance” and a single “Compute Instance”. The
following table highlights a naming convention to refer to a MIG device by its GPU Instance’s compute
slice count and its total memory in GB (rather than just its memory slice count).

When only a single CI is created (that consumes the entire compute capacity of the GI), then the CI
sizing is implied in the device name.

Figure 9: MIG Device Name

Note: The description below shows the profile names on the A100-SXM4-40GB product. For A100-
SXM4-80GB, the profile names will change according to the memory proportion - for example, 1g.
10gb, 2g.20gb, 3g.40gb, 4g.40gb, 7g.80gb, respectively.

Table 4: Device names when using a single CI

Memory 20gb 10gb 5gb

GPU Instance 3g 2g 1g

Compute Instance 3c 2c 1c

MIG Device 3g.20gb 2g.10gb 1g.5gb

GPC GPC GPC GPC GPC GPC

Each GI can be further sub-divided intomultiple CIs as required by users depending on their workloads.
The following table highlights what the name of a MIG device would look like in this case. The example
shown is for subdividing a 3g.20gb device into a set of sub-devices with different Compute Instance
slice counts.

19

NVIDIA Multi-Instance GPU User Guide, Release r575

Memory 20gb 20gb

GPU Instance 3g 3g

Compute Instance 1c 1c 1c 2c 1c

MIG Device 1c.3g.20gb 1c.3g.20gb 1c.3g.20gb 2c.3g.20gb 1c.3g.20gb

GPC GPC GPC GPC GPC GPC

6.1. Device Enumeration

GPU Instances (GIs) and Compute Instances (CIs) are enumerated in the ∕proc filesystem layout for
MIG.

$ ls -l ∕proc∕driver∕nvidia-caps∕
-r--r--r-- 1 root root 0 Nov 21 21:22 mig-minors
-r--r--r-- 1 root root 0 Nov 21 21:22 nvlink-minors
-r--r--r-- 1 root root 0 Nov 21 21:22 sys-minors

The corresponding device nodes (in mig-minors) are created under ∕dev∕nvidia-caps. Refer to
CUDA Device Enumeration for more information.

6.2. CUDA Device Enumeration

MIG supports running CUDA applications by specifying the CUDA device on which the application
should be run. With CUDA 11/R450 and CUDA 12/R525, only enumeration of a single MIG instance is
supported. In other words, regardless of how many MIG devices are created (or made available to a
container), a single CUDA process can only enumerate a single MIG device. CUDA applications treat a
CI and its parent GI as a single CUDA device. CUDA is limited to use a single CI and will pick the first
one available if several of them are visible. To summarize, there are two constraints:

1. CUDA can only enumerate a single compute instance

2. CUDAwill not enumerate non-MIG GPU if any compute instance is enumerated on any other GPU

Note that these constraints may be relaxed in future NVIDIA driver releases for MIG.
CUDA_VISIBLE_DEVICES has been extended to add support for MIG. Depending on the driver
versions being used, two formats are supported:

1. With drivers >= R470 (470.42.01+), each MIG device is assigned a GPU UUID starting with
MIG-<UUID>.

2. With drivers < R470 (for example, R450 and R460), each MIG device is enumerated by specifying
the CI and the corresponding parent GI. The format follows this convention: MIG-<GPU-UUID>∕
<GPU instance ID>∕<compute instance ID>.

Note: With the R470 NVIDIA datacenter drivers (470.42.01+), the example below shows how MIG
devices are assigned GPU UUIDs in an 8-GPU system with each GPU configured differently.

20 Chapter 6. MIG Device Names

NVIDIA Multi-Instance GPU User Guide, Release r575

$ nvidia-smi -L

GPU 0: A100-SXM4-40GB (UUID: GPU-5d5ba0d6-d33d-2b2c-524d-9e3d8d2b8a77)
MIG 1g.5gb Device 0: (UUID: MIG-c6d4f1ef-42e4-5de3-91c7-45d71c87eb3f)
MIG 1g.5gb Device 1: (UUID: MIG-cba663e8-9bed-5b25-b243-5985ef7c9beb)
MIG 1g.5gb Device 2: (UUID: MIG-1e099852-3624-56c0-8064-c5db1211e44f)
MIG 1g.5gb Device 3: (UUID: MIG-8243111b-d4c4-587a-a96d-da04583b36e2)
MIG 1g.5gb Device 4: (UUID: MIG-169f1837-b996-59aa-9ed5-b0a3f99e88a6)
MIG 1g.5gb Device 5: (UUID: MIG-d5d0152c-e3f0-552c-abee-ebc0195e9f1d)
MIG 1g.5gb Device 6: (UUID: MIG-7df6b45c-a92d-5e09-8540-a6b389968c31)

GPU 1: A100-SXM4-40GB (UUID: GPU-0aa11ebd-627f-af3f-1a0d-4e1fd92fd7b0)
MIG 2g.10gb Device 0: (UUID: MIG-0c757cd7-e942-5726-a0b8-0e8fb7067135)
MIG 2g.10gb Device 1: (UUID: MIG-703fb6ed-3fa0-5e48-8e65-1c5bdcfe2202)
MIG 2g.10gb Device 2: (UUID: MIG-532453fc-0faa-5c3c-9709-a3fc2e76083d)

GPU 2: A100-SXM4-40GB (UUID: GPU-08279800-1cbe-a71d-f3e6-8f67e15ae54a)
MIG 3g.20gb Device 0: (UUID: MIG-aa232436-d5a6-5e39-b527-16f9b223cc46)
MIG 3g.20gb Device 1: (UUID: MIG-3b12da37-7fa2-596c-8655-62dab88f0b64)

GPU 3: A100-SXM4-40GB (UUID: GPU-71086aca-c858-d1e0-aae1-275bed1008b9)
MIG 7g.40gb Device 0: (UUID: MIG-3e209540-03e2-5edb-8798-51d4967218c9)

GPU 4: A100-SXM4-40GB (UUID: GPU-74fa9fb7-ccf6-8234-e597-7af8ace9a8f5)
MIG 1c.3g.20gb Device 0: (UUID: MIG-79c62632-04cc-574b-af7b-cb2e307120d8)
MIG 1c.3g.20gb Device 1: (UUID: MIG-4b3cc0fd-6876-50d7-a8ba-184a86e2b958)
MIG 1c.3g.20gb Device 2: (UUID: MIG-194837c7-0476-5b56-9c45-16bddc82e1cf)
MIG 1c.3g.20gb Device 3: (UUID: MIG-291820db-96a4-5463-8e7b-444c2d2e3dfa)
MIG 1c.3g.20gb Device 4: (UUID: MIG-5a97e28a-7809-5e93-abae-c3818c5ea801)
MIG 1c.3g.20gb Device 5: (UUID: MIG-3dfd5705-b18a-5a7c-bcee-d03a0ccb7a96)

GPU 5: A100-SXM4-40GB (UUID: GPU-3301e6dd-d38f-0eb5-4665-6c9659f320ff)
MIG 4g.20gb Device 0: (UUID: MIG-6d96b9f9-960e-5057-b5da-b8a35dc63aa8)

GPU 6: A100-SXM4-40GB (UUID: GPU-bb40ed7d-cbbb-d92c-50ac-24803cda52c5)
MIG 1c.7g.40gb Device 0: (UUID: MIG-66dd01d7-8cdb-5a13-a45d-c6eb0ee11810)
MIG 2c.7g.40gb Device 1: (UUID: MIG-03c649cb-e6ae-5284-8e94-4b1cf767e06c)
MIG 3c.7g.40gb Device 2: (UUID: MIG-8abf68e0-2808-525e-9133-ba81701ed6d3)

GPU 7: A100-SXM4-40GB (UUID: GPU-95fac899-e21a-0e44-b0fc-e4e3bf106feb)
MIG 4g.20gb Device 0: (UUID: MIG-219c765c-e07f-5b85-9c04-4afe174d83dd)
MIG 2g.10gb Device 1: (UUID: MIG-25884364-137e-52cc-a7e4-ecf3061c3ae1)
MIG 1g.5gb Device 2: (UUID: MIG-83e71a6c-f0c3-5dfc-8577-6e8b17885e1f)

6.2. CUDA Device Enumeration 21

NVIDIA Multi-Instance GPU User Guide, Release r575

22 Chapter 6. MIG Device Names

Chapter 7. Supported MIG Profiles

This section provides an overview of the supported profiles and possible placements of the MIG pro-
files on supported GPUs.

7.1. RTX PRO 6000 Blackwell MIG Profiles

The following diagram shows the profiles supported on the NVIDIA RTX PRO 6000 Blackwell Worksta-
tion Edition, Max-Q Workstation Edition, and RTX PRO 6000 Blackwell Server Edition:

Figure 10: NVIDIA RTX PRO 6000 Blackwell Workstation Edition and RTX PRO 6000 Blackwell Max-Q
Workstation Edition

The following table shows the supported profiles on the RTX PRO 6000 Blackwell Workstation Edition,
Max-Q Workstation Edition, and RTX PRO 6000 Blackwell Server Edition 96GB products:

23

NVIDIA Multi-Instance GPU User Guide, Release r575

Table 5: GPU Instance Profiles on RTX PRO 6000

Profile Name Fraction of
Memory

Fraction of
SMs

Hardware Units L2 Cache
Size

Copy En-
gines

Number of
Inst.

MIG 1g.24gb 1/4 1/4 1 NVDEC /1
JPEG /0 OFA

1/4 1 4

MIG
1g.24gb+me

1/4 1/4 1 NVDEC /1
JPEG /1 OFA

1/4 1 1

MIG
1g.24gb+gfx

1/4 1/4 1 NVDEC /1
JPEG /0 OFA

1/4 1 4

MIG
1g.24gb+me.all

1/4 1/4 4 NVDEC /4
JPEG /1 OFA

1/4 1 1

MIG 1g.24gb-
me

1/4 1/4 0 NVDEC /0
JPEG /0 OFA

1/4 1 4

MIG 2g.48gb 1/2 1/2 2 NVDEC /2
JPEG /0 OFA

1/2 2 2

MIG
2g.48gb+gfx

1/2 1/2 2 NVDEC /2
JPEG /0 OFA

1/2 2 2

MIG
2g.48gb+me.all

1/2 1/2 4 NVDEC /4
JPEG /1 OFA

1/2 2 1

MIG 2g.48gb-
me

1/2 1/2 0 NVDEC /0
JPEG /0 OFA

1/2 2 2

MIG 4g.96gb Full Full 4 NVDEC /4
JPEG /1 OFA

Full 4 1

MIG
4g.96gb+gfx

Full Full 4 NVDEC /4
JPEG /1 OFA

Full 4 1

Universal MIG

Universal MIG enables both compute and graphics workloads to run on the same GPU with hardware
isolation. This feature is available on RTX PRO 6000 GPUs. +gfx profiles which are new in GB20X
architecture, enables graphics support in MIG instances.

Profile References

▶ +me profiles: Include at least one media engine (NVDEC, NVENC, NVJPG, or OFA).

▶ +gfx: Adds support for graphics APIs (new in GB20X).

▶ +me.all: Allocates all available media engines to this instance (does not include graphics sup-
port).

▶ -me: Excludes all media engines for pure compute workloads.

24 Chapter 7. Supported MIG Profiles

NVIDIA Multi-Instance GPU User Guide, Release r575

7.2. A30 MIG Profiles

The following diagram shows the profiles supported on the NVIDIA A30:

Figure 11: Profiles on A30

The following table shows the supported profiles on the A30-24GB product.

Table 6: GPU Instance Profiles on A30

Profile
Name

Fraction
of Mem-
ory

Fraction
of SMs

Hardware
Units

L2
Cache
Size

Copy
En-
gines

Number of InstancesAvail-
able

MIG
1g.6gb

1/4 1/4 0 NVDECs /0
JPEG /0 OFA

1/4 1 4

MIG
1g.6gb+me

1/4 1/4 1 NVDEC /1
JPEG /1 OFA

1/4 1 1 (A single 1g profile can in-
clude media extensions)

MIG
2g.12gb

2/4 2/4 2 NVDECs /0
JPEG /0 OFA

2/4 2 2

MIG
2g.12gb+me

2/4 2/4 2 NVDECs /1
JPEG /1 OFA

2/4 2 1 (A single 2g profile can in-
clude media extensions)

MIG
4g.24gb

Full 4/4 4 NVDECs /1
JPEG /1 OFA

Full 4 1

Note: The 1g.6gb+me profile is only available starting with R470 drivers.

The 2g.12gb+me profile is only available starting with R525 drivers.

7.3. A100 MIG Profiles

The following diagram shows the profiles supported on the NVIDIA A100:

The following table shows the supported profiles on the A100-SXM4-40GB product. For A100-SXM4-
80GB, the profile names will change according to the memory proportion – for example, 1g.10gb,
1g.10gb+me, 1g.20gb, 2g.20gb, 3g.40gb, 4g.40gb, 7g.80gb respectively.

7.2. A30 MIG Profiles 25

NVIDIA Multi-Instance GPU User Guide, Release r575

Figure 12: Profiles on A100

Table 7: GPU Instance Profiles on A100

Profile
Name

Fraction
of Mem-
ory

Fraction
of SMs

Hardware
Units

L2
Cache
Size

Copy
En-
gines

Number of Instances Avail-
able

MIG
1g.5gb

1/8 1/7 0 NVDECs /0
JPEG /0 OFA

1/8 1 7

MIG
1g.5gb+me

1/8 1/7 1 NVDEC /1
JPEG /1 OFA

1/8 1 1 (A single 1g profile can in-
clude media extensions)

MIG
1g.10gb

1/8 1/7 1 NVDEC /0
JPEG /0 OFA

1/8 1 4

MIG
2g.10gb

2/8 2/7 1 NVDEC /0
JPEG /0 OFA

2/8 2 3

MIG
3g.20gb

4/8 3/7 2 NVDECs /0
JPEG /0 OFA

4/8 3 2

MIG
4g.20gb

4/8 4/7 2 NVDECs /0
JPEG /0 OFA

4/8 4 1

MIG
7g.40gb

Full 7/7 5 NVDECs /1
JPEG /1 OFA

Full 7 1

Note: The 1g.5gb+me profile is only available starting with R470 drivers.

The 1g.10gb profile is only available starting with R525 drivers.

26 Chapter 7. Supported MIG Profiles

NVIDIA Multi-Instance GPU User Guide, Release r575

7.4. H100 MIG Profiles

The following diagram shows the profiles supported on the NVIDIA H100:

Figure 13: Profiles on H100

The following table shows the supported profiles on the H100 80GB product (PCIe and SXM5).

Table 8: GPU Instance Profiles on H100

Profile
Name

Fraction
of Mem-
ory

Fraction
of SMs

Hardware
Units

L2
Cache
Size

Copy
En-
gines

Number of InstancesAvail-
able

MIG
1g.10gb

1/8 1/7 1 NVDEC /1
JPEG /0 OFA

1/8 1 7

MIG
1g.10gb+me

1/8 1/7 1 NVDEC /1
JPEG /1 OFA

1/8 1 1 (A single 1g profile can in-
clude media extensions)

MIG
1g.20gb

1/4 1/7 1 NVDEC /1
JPEG /0 OFA

1/8 1 4

MIG
2g.20gb

2/8 2/7 2 NVDECs /2
JPEG /0 OFA

2/8 2 3

MIG
3g.40gb

4/8 3/7 3 NVDECs /3
JPEG /0 OFA

4/8 3 2

MIG
4g.40gb

4/8 4/7 4 NVDECs /4
JPEG /0 OFA

4/8 4 1

MIG
7g.80gb

Full 7/7 7 NVDECs /7
JPEG /1 OFA

Full 8 1

The following table shows the supported profiles on the H100 94GB product (PCIe and SXM5).

7.4. H100 MIG Profiles 27

NVIDIA Multi-Instance GPU User Guide, Release r575

Profile
Name

Fraction
of Mem-
ory

Fraction
of SMs

Hardware
Units

L2
Cache
Size

Copy
En-
gines

Number of InstancesAvail-
able

MIG
1g.12gb

1/8 1/7 1 NVDEC /1
JPEG /0 OFA

1/8 1 7

MIG
1g.12gb+me

1/8 1/7 1 NVDEC /1
JPEG /1 OFA

1/8 1 1 (A single 1g profile can in-
clude media extensions)

MIG
1g.24gb

1/4 1/7 1 NVDEC /1
JPEG /0 OFA

1/8 1 4

MIG
2g.24gb

2/8 2/7 2 NVDECs /2
JPEG /0 OFA

2/8 2 3

MIG
3g.47gb

4/8 3/7 3 NVDECs /3
JPEG /0 OFA

4/8 3 2

MIG
4g.47gb

4/8 4/7 4 NVDECs /4
JPEG /0 OFA

4/8 4 1

MIG
7g.94gb

Full 7/7 7 NVDECs /7
JPEG /1 OFA

Full 8 1

The following table shows the supported profiles on the H100 96GB product (H100 on GH200).

Profile
Name

Fraction
of Mem-
ory

Fraction
of SMs

Hardware
Units

L2
Cache
Size

Copy
En-
gines

Number of InstancesAvail-
able

MIG
1g.12gb

1/8 1/7 1 NVDEC /1
JPEG /0 OFA

1/8 1 7

MIG
1g.12gb+me

1/8 1/7 1 NVDEC /1
JPEG /1 OFA

1/8 1 1 (A single 1g profile can in-
clude media extensions)

MIG
1g.24gb

1/4 1/7 1 NVDEC /1
JPEG /0 OFA

1/8 1 4

MIG
2g.24gb

2/8 2/7 2 NVDECs /2
JPEG /0 OFA

2/8 2 3

MIG
3g.48gb

4/8 3/7 3 NVDECs /3
JPEG /0 OFA

4/8 3 2

MIG
4g.48gb

4/8 4/7 4 NVDECs /4
JPEG /0 OFA

4/8 4 1

MIG
7g.96gb

Full 7/7 7 NVDECs /7
JPEG /1 OFA

Full 8 1

28 Chapter 7. Supported MIG Profiles

NVIDIA Multi-Instance GPU User Guide, Release r575

7.5. H200 MIG Profiles

The following diagram shows the profiles supported on the NVIDIA H200:

Figure 14: Profiles on H200

The following table shows the supported profiles on the H200 141GB product.

Table 9: GPU Instance Profiles on H200

Profile
Name

Fraction
of Mem-
ory

Fraction
of SMs

Hardware
Units

L2
Cache
Size

Copy
En-
gines

Number of InstancesAvail-
able

MIG
1g.18gb

1/8 1/7 1 NVDECs /1
JPEG /0 OFA

1/8 1 7

MIG
1g.18gb+me

1/8 1/7 1 NVDEC /1
JPEG /1 OFA

1/8 1 1 (A single 1g profile can in-
clude media extensions)

MIG
1g.35gb

1/4 1/7 1 NVDECs /1
JPEG /0 OFA

1/8 1 4

MIG
2g.35gb

2/8 2/7 2 NVDECs /2
JPEG /0 OFA

2/8 2 3

MIG
3g.71gb

4/8 3/7 3 NVDECs /3
JPEG /0 OFA

4/8 3 2

MIG
4g.71gb

4/8 4/7 4 NVDECs /4
JPEG /0 OFA

4/8 4 1

MIG
7g.141gb

Full 7/7 7 NVDECs /7
JPEG /1 OFA

Full 8 1

7.5. H200 MIG Profiles 29

NVIDIA Multi-Instance GPU User Guide, Release r575

30 Chapter 7. Supported MIG Profiles

Chapter 8. Getting Started with MIG

8.1. Prerequisites

The following prerequisites and minimum software versions are recommended when using supported
GPUs in MIG mode:

▶ MIG is supported only on GPUs and systems listed here.

▶ It is recommended to install the latest NVIDIA datacenter driver. The minimum versions are:

▶ If using H100, then CUDA 12 and NVIDIA driver R525 (>= 525.53) or later

▶ If using A100/A30, then CUDA 11 and NVIDIA driver R450 (>= 450.80.02) or later

▶ If using RTX PRO 6000 Blackwell GPUs, then CUDA 12.x and NVIDIA driver R575 (>=575.51.
03) or later are required.

▶ Linux operating system distributions supported by CUDA.

▶ If running containers or using Kubernetes, then:

▶ NVIDIA Container Toolkit (nvidia-docker2): v2.5.0 or later

▶ NVIDIA K8s Device Plugin: v0.7.0 or later

▶ NVIDIA gpu-feature-discovery: v0.2.0 or later

MIG can be managed programmatically using NVIDIA Management Library (NVML) APIs or its
command-line-interface, nvidia-smi. Note that for brevity, some of the nvidia-smi output in the
following examples may be cropped to showcase the relevant sections of interest.

For more information on the MIG commands, see the nvidia-smi man page or nvidia-smi mig
--help. For information on the MIG management APIs, see the NVML header (nvml.h) included in
the CUDA Toolkit packages (cuda-nvml-dev-*; installed under ∕usr∕local∕cuda∕include∕nvml.
h). For automated tooling support with configuring MIG, refer to the NVIDIA MIG Partition Editor (or
mig-parted) tools.

31

https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html
https://github.com/nvidia/mig-parted

NVIDIA Multi-Instance GPU User Guide, Release r575

8.2. Enable MIG Mode

By default, MIG mode is not enabled on the GPU. For example, running nvidia-smi shows that MIG
mode is disabled:

$ nvidia-smi -i 0
+---+
| NVIDIA-SMI 450.80.02 Driver Version: 450.80.02 CUDA Version: 11.0 |
|-------------------------------+----------------------+----------------------+
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage∕Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
===============================+======================+======================		
0 A100-SXM4-40GB Off	00000000:36:00.0 Off	0
N∕A 29C P0 62W ∕ 400W	0MiB ∕ 40537MiB	6% Default
		Disabled
+-------------------------------+----------------------+----------------------+

MIG mode can be enabled on a per-GPU basis with the following command:

nvidia-smi -i <GPU IDs> -mig 1

The GPUs can be selected using comma separated GPU indexes, PCI Bus IDs or UUIDs. If no GPU ID is
specified, then MIG mode is applied to all the GPUs on the system.

When MIG is enabled on the GPU, depending on the GPU product, the driver will attempt to reset the
GPU so that MIG mode can take effect.

$ sudo nvidia-smi -i 0 -mig 1
Enabled MIG Mode for GPU 00000000:36:00.0
All done.

$ nvidia-smi -i 0 --query-gpu=pci.bus_id,mig.mode.current --format=csv
pci.bus_id, mig.mode.current
00000000:36:00.0, Enabled

8.2.1. GPU Reset on Hopper+ GPUs

Starting with the Hopper generation of GPUs, enabling MIG mode no longer requires a GPU reset to
take effect (and thus the driver does not attempt to reset the GPU in the background).

Note that MIG mode (Disabled or Enabled states) is only persistent as long as the driver is resident
in the system (that is, the kernel modules are loaded). MIGmode is no longer persistent across system
reboots (there is no longer a status bit stored in the GPU InfoROM).

Thus, an unload and reload of the driver kernel modules will disable MIG mode.

32 Chapter 8. Getting Started with MIG

NVIDIA Multi-Instance GPU User Guide, Release r575

8.2.2. GPU Reset on NVIDIA Ampere Architecture GPUs

On NVIDIA Ampere architecture GPUs, when MIG mode is enabled, the driver will attempt to reset the
GPU so that MIG mode can take effect.

Note that MIG mode (Disabled or Enabled states) is persistent across system reboots (there is a
status bit stored in the GPU InfoROM). Thus MIG mode has to be explicitly disabled to return the GPU
to its default state.

Note: If you are using MIG inside a VM with NVIDIA Ampere GPUs (A100 or A30) in passthrough, then
you may need to reboot the VM to allow the GPU to be in MIG mode as in some cases, GPU reset is not
allowed via the hypervisor for security reasons. This can be seen in the following example:

$ sudo nvidia-smi -i 0 -mig 1
Warning: MIG mode is in pending enable state for GPU 00000000:00:03.0:Not Supported
Reboot the system or try nvidia-smi --gpu-reset to make MIG mode effective on GPU�
↪→00000000:00:03.0
All done.

$ sudo nvidia-smi --gpu-reset
Resetting GPU 00000000:00:03.0 is not supported.

8.2.3. Driver Clients

In some cases, if you have agents on the system (for example, monitoring agents) that use the GPU,
then you may not be able to initiate a GPU reset. For example, on DGX systems, you may encounter
the following message:

$ sudo nvidia-smi -i 0 -mig 1
Warning: MIG mode is in pending enable state for GPU 00000000:07:00.0:In use by�
↪→another client
00000000:07:00.0 is currently being used by one or more other processes (e.g. CUDA�
↪→application or a monitoring application such as another instance of nvidia-smi).�
↪→Please first kill all processes using the device and retry the command or reboot�
↪→the system to make MIG mode effective.
All done.

In this specific DGX example, you would have to stop the nvsm and dcgm services, enable MIG mode
on the desired GPU and then restore the monitoring services:

$ sudo systemctl stop nvsm

$ sudo systemctl stop dcgm

$ sudo nvidia-smi -i 0 -mig 1
Enabled MIG Mode for GPU 00000000:07:00.0
All done.

The examples shown in the document use super-user privileges. As described in the Device Nodes
section, granting read access to mig∕config capabilities allows non-root users to manage instances
once the GPU has been configured into MIG mode. The default file permissions on the mig∕config
file are as follows.

8.2. Enable MIG Mode 33

NVIDIA Multi-Instance GPU User Guide, Release r575

$ ls -l ∕proc∕driver∕nvidia∕capabilities∕*
∕proc∕driver∕nvidia∕capabilities∕mig:
total 0
-r-------- 1 root root 0 May 24 16:10 config
-r--r--r-- 1 root root 0 May 24 16:10 monitor

8.3. List GPU Instance Profiles

The NVIDIA driver provides a number of profiles that users can opt-in for when configuring the MIG
feature in A100. The profiles are the sizes and capabilities of the GPU instances that can be created
by the user. The driver also provides information about the placements, which indicate the type and
number of instances that can be created.

$ nvidia-smi mig -lgip
+---+
| GPU instance profiles: |
| GPU Name ID Instances Memory P2P SM DEC ENC |
| Free∕Total GiB CE JPEG OFA |
|===|
| 0 MIG 1g.5gb 19 7∕7 4.75 No 14 0 0 |
| 1 0 0 |
+---+
| 0 MIG 1g.5gb+me 20 1∕1 4.75 No 14 1 0 |
| 1 1 1 |
+---+
| 0 MIG 1g.10gb 15 4∕4 9.62 No 14 1 0 |
| 1 0 0 |
+---+
| 0 MIG 2g.10gb 14 3∕3 9.62 No 28 1 0 |
| 2 0 0 |
+---+
| 0 MIG 3g.20gb 9 2∕2 19.50 No 42 2 0 |
| 3 0 0 |
+---+
| 0 MIG 4g.20gb 5 1∕1 19.50 No 56 2 0 |
| 4 0 0 |
+---+
| 0 MIG 7g.40gb 0 1∕1 39.25 No 98 5 0 |
| 7 1 1 |
+---+

List the possible placements available using the following command. The syntax of the placement
is {<index>}:<GPU Slice Count> and shows the placement of the instances on the GPU. The
placement index shown indicates how the profiles are mapped on the GPU as shown in the supported
profiles tables.

$ nvidia-smi mig -lgipp
GPU 0 Profile ID 19 Placements: {0,1,2,3,4,5,6}:1
GPU 0 Profile ID 20 Placements: {0,1,2,3,4,5,6}:1
GPU 0 Profile ID 15 Placements: {0,2,4,6}:2
GPU 0 Profile ID 14 Placements: {0,2,4}:2
GPU 0 Profile ID 9 Placements: {0,4}:4
GPU 0 Profile ID 5 Placement : {0}:4
GPU 0 Profile ID 0 Placement : {0}:8

34 Chapter 8. Getting Started with MIG

NVIDIA Multi-Instance GPU User Guide, Release r575

The command shows that the user can create two instances of type 3g.20gb (profile ID 9) or seven
instances of 1g.5gb (profile ID 19).

8.4. Creating GPU Instances

Before starting to use MIG, the user needs to create GPU instances using the -cgi option. One of
three options can be used to specify the instance profiles to be created:

▶ Profile ID (e.g. 9, 14, 5)

▶ Short name of the profile (such as 3g.20gb)

▶ Full profile name of the instance (such as MIG 3g.20gb)

Once the GPU instances are created, you need to create the corresponding Compute Instances (CI).
By using the -C option, nvidia-smi creates these instances.

Note: Without creating GPU instances (and corresponding compute instances), CUDA workloads
cannot be run on the GPU. In other words, simply enabling MIGmode on the GPU is not sufficient. Also
note that, the createdMIG devices are not persistent across system reboots. Thus, the user or system
administrator needs to recreate the desired MIG configurations if the GPU or system is reset. For
automated tooling support for this purpose, refer to the NVIDIA MIG Partition Editor (or mig-parted)
tool, including creating a systemd service that could recreate the MIG geometry at system startup.

The following example shows how the user can create GPU instances (and corresponding compute
instances). In this example, the user can create two GPU instances (of type 3g.20gb), with each GPU
instance having half of the available compute and memory capacity. In this example, we purposefully
use profile ID and short profile name to showcase how either option can be used:

$ sudo nvidia-smi mig -cgi 9,3g.20gb -C
Successfully created GPU instance ID 2 on GPU 0 using profile MIG 3g.20gb (ID 9)
Successfully created compute instance ID 0 on GPU 0 GPU instance ID 2 using�
↪→profile MIG 3g.20gb (ID 2)
Successfully created GPU instance ID 1 on GPU 0 using profile MIG 3g.20gb (ID 9)
Successfully created compute instance ID 0 on GPU 0 GPU instance ID 1 using�
↪→profile MIG 3g.20gb (ID 2)

Now list the available GPU instances:

$ sudo nvidia-smi mig -lgi
+--+
| GPU instances: |
| GPU Name Profile Instance Placement |
| ID ID Start:Size |
|==|
| 0 MIG 3g.20gb 9 1 4:4 |
+--+
| 0 MIG 3g.20gb 9 2 0:4 |
+--+

Now verify that the GIs and corresponding CIs are created:

8.4. Creating GPU Instances 35

https://github.com/nvidia/mig-parted

NVIDIA Multi-Instance GPU User Guide, Release r575

$ nvidia-smi
+---+
| MIG devices: |
+------------------+----------------------+-----------+-----------------------+
GPU GI CI MIG	Memory-Usage	Vol	Shared
ID ID Dev		SM Unc	CE ENC DEC OFA JPG
		ECC	
==================+======================+===========+=======================			
0 1 0 0	11MiB ∕ 20224MiB	42 0	3 0 2 0 0
+------------------+----------------------+-----------+-----------------------+			
0 2 0 1	11MiB ∕ 20096MiB	42 0	3 0 2 0 0
+------------------+----------------------+-----------+-----------------------+

+---+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|===|
| No running processes found |
+---+

8.4.1. Instance Geometry

As described in the section on Partitioning, the NVIDIA driver APIs provide a number of available GPU
Instance profiles that can be chosen by the user.

If a mixed geometry of the profiles is specified by the user, then the NVIDIA driver chooses the place-
ment of the various profiles. This can be seen in the following examples.

Example 1: Creation of a 4-2-1 geometry. After the instances are created, the placement of the profiles
can be observed:

$ sudo nvidia-smi mig -cgi 19,14,5
Successfully created GPU instance ID 13 on GPU 0 using profile MIG 1g.5gb (ID 19)
Successfully created GPU instance ID 5 on GPU 0 using profile MIG 2g.10gb (ID 14)
Successfully created GPU instance ID 1 on GPU 0 using profile MIG 4g.20gb (ID 5)

$ sudo nvidia-smi mig -lgi
+--+
| GPU instances: |
| GPU Name Profile Instance Placement |
| ID ID Start:Size |
|==|
| 0 MIG 1g.5gb 19 13 6:1 |
+--+
| 0 MIG 2g.10gb 14 5 4:2 |
+--+
| 0 MIG 4g.20gb 5 1 0:4 |
+--+

Example 2: Creation of a 3-2-1-1 geometry.

Note: Due to a known issue with the APIs, the profile ID 9 or 3g.20gbmust be specified first in order.
Not doing so, will result in the following error:

36 Chapter 8. Getting Started with MIG

NVIDIA Multi-Instance GPU User Guide, Release r575

$ sudo nvidia-smi mig -cgi 19,19,14,9
Successfully created GPU instance ID 13 on GPU 0 using profile MIG 1g.5gb�
↪→(ID 19)
Successfully created GPU instance ID 11 on GPU 0 using profile MIG 1g.5gb�
↪→(ID 19)
Successfully created GPU instance ID 3 on GPU 0 using profile MIG 2g.10gb�
↪→(ID 14)
Unable to create a GPU instance on GPU 0 using profile 9: Insufficient�
↪→Resources
Failed to create GPU instances: Insufficient Resources

Specify the correct order for the 3g.20gb profile. The remaining combinations of the profiles do not
have this requirement.

$ sudo nvidia-smi mig -cgi 9,19,14,19
Successfully created GPU instance ID 2 on GPU 0 using profile MIG 3g.20gb (ID 9)
Successfully created GPU instance ID 7 on GPU 0 using profile MIG 1g.5gb (ID 19)
Successfully created GPU instance ID 4 on GPU 0 using profile MIG 2g.10gb (ID 14)
Successfully created GPU instance ID 8 on GPU 0 using profile MIG 1g.5gb (ID 19)

$ sudo nvidia-smi mig -lgi
+--+
| GPU instances: |
| GPU Name Profile Instance Placement |
| ID ID Start:Size |
|==|
| 0 MIG 1g.5gb 19 7 0:1 |
+--+
| 0 MIG 1g.5gb 19 8 1:1 |
+--+
| 0 MIG 2g.10gb 14 4 2:2 |
+--+
| 0 MIG 3g.20gb 9 2 4:4 |
+--+

Example 3: Creation of a 2-1-1-1-1-1 geometry:

$ sudo nvidia-smi mig -cgi 14,19,19,19,19,19
Successfully created GPU instance ID 5 on GPU 0 using profile MIG 2g.10gb (ID 14)
Successfully created GPU instance ID 13 on GPU 0 using profile MIG 1g.5gb (ID 19)
Successfully created GPU instance ID 7 on GPU 0 using profile MIG 1g.5gb (ID 19)
Successfully created GPU instance ID 8 on GPU 0 using profile MIG 1g.5gb (ID 19)
Successfully created GPU instance ID 9 on GPU 0 using profile MIG 1g.5gb (ID 19)
Successfully created GPU instance ID 10 on GPU 0 using profile MIG 1g.5gb (ID 19)

$ sudo nvidia-smi mig -lgi
+--+
| GPU instances: |
| GPU Name Profile Instance Placement |
| ID ID Start:Size |
|==|
| 0 MIG 1g.5gb 19 7 0:1 |
+--+
| 0 MIG 1g.5gb 19 8 1:1 |
+--+

(continues on next page)

8.4. Creating GPU Instances 37

NVIDIA Multi-Instance GPU User Guide, Release r575

(continued from previous page)

| 0 MIG 1g.5gb 19 9 2:1 |
+--+
| 0 MIG 1g.5gb 19 10 3:1 |
+--+
| 0 MIG 1g.5gb 19 13 6:1 |
+--+
| 0 MIG 2g.10gb 14 5 4:2 |
+--+

8.5. Running CUDA Applications on Bare-Metal

8.5.1. GPU Instances

The following example shows how two CUDA applications can be run in parallel on two different GPU
instances. In this example, theBlackScholesCUDAsample is run simultaneously on the twoGIs created
on the A100.

$ nvidia-smi -L
GPU 0: A100-SXM4-40GB (UUID: GPU-e86cb44c-6756-fd30-cd4a-1e6da3caf9b0)

MIG 3g.20gb Device 0: (UUID: MIG-c7384736-a75d-5afc-978f-d2f1294409fd)
MIG 3g.20gb Device 1: (UUID: MIG-a28ad590-3fda-56dd-84fc-0a0b96edc58d)

$ CUDA_VISIBLE_DEVICES=MIG-c7384736-a75d-5afc-978f-d2f1294409fd .∕BlackScholes &
$ CUDA_VISIBLE_DEVICES=MIG-a28ad590-3fda-56dd-84fc-0a0b96edc58d .∕BlackScholes &

Now verify the two CUDA applications are running on two separate GPU instances:

$ nvidia-smi
+---+
| MIG devices: |
+------------------+----------------------+-----------+-----------------------+
GPU GI CI MIG	Memory-Usage	Vol	Shared
ID ID Dev		SM Unc	CE ENC DEC OFA JPG
		ECC	
==================+======================+===========+=======================			
0 1 0 0	268MiB ∕ 20224MiB	42 0	3 0 2 0 0
+------------------+----------------------+-----------+-----------------------+			
0 2 0 1	268MiB ∕ 20096MiB	42 0	3 0 2 0 0
+------------------+----------------------+-----------+-----------------------+

+---+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|===|
| 0 1 0 58866 C .∕BlackScholes 253MiB |
| 0 2 0 58856 C .∕BlackScholes 253MiB |
+---+

38 Chapter 8. Getting Started with MIG

NVIDIA Multi-Instance GPU User Guide, Release r575

8.5.2. GPU Utilization Metrics

NVML (and nvidia-smi) does not support attribution of utilization metrics to MIG devices. From the
previous example, the utilization is displayed as N∕A when running CUDA programs:

$ nvidia-smi

+---+
| MIG devices: |
+------------------+----------------------+-----------+-----------------------+
GPU GI CI MIG	Memory-Usage	Vol	Shared
ID ID Dev	BAR1-Usage	SM Unc	CE ENC DEC OFA JPG
		ECC	
==================+======================+===========+=======================			
0 1 0 0	268MiB ∕ 20096MiB	42 0	3 0 2 0 0
	4MiB ∕ 32767MiB		
+------------------+----------------------+-----------+-----------------------+			
0 2 0 1	268MiB ∕ 20096MiB	42 0	3 0 2 0 0
	4MiB ∕ 32767MiB		
+------------------+----------------------+-----------+-----------------------+

+---+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|===|
| 0 1 0 6217 C ...inux∕release∕BlackScholes 253MiB |
| 0 2 0 6223 C ...inux∕release∕BlackScholes 253MiB |
+---+

For monitoring MIG devices on MIG capable GPUs such as the A100, including attribution of GPU
metrics (including utilization and other profiling metrics), it is recommended to use NVIDIA DCGM
v2.0.13 or later. See the Profiling Metrics section in the DCGM User Guide for more details on getting
started.

8.5.3. Compute Instances

As explained earlier in this document, a further level of concurrency can be achieved by using Compute
Instances (CIs). The following example shows how 3 CUDA processes (BlackScholes CUDA sample) can
be run on the same GI.

First, list the available CI profiles available using our prior configuration of creating 2 GIs on the A100.

$ sudo nvidia-smi mig -lcip -gi 1
+---
↪→-+
| Compute instance profiles: �
↪→ |
| GPU GPU Name Profile Instances Exclusive Shared �
↪→ |
| Instance ID Free∕Total SM DEC ENC OFA�
↪→ |
| ID CE JPEG �
↪→ |

(continues on next page)

8.5. Running CUDA Applications on Bare-Metal 39

https://docs.nvidia.com/datacenter/dcgm/latest/user-guide/feature-overview.html#profiling

NVIDIA Multi-Instance GPU User Guide, Release r575

(continued from previous page)

|==|
| 0 1 MIG 1c.3g.20gb 0 0∕3 14 2 0 0 �
↪→ |
| 3 0 �
↪→ |
+---
↪→-+
| 0 1 MIG 2c.3g.20gb 1 0∕1 28 2 0 0 �
↪→ |
| 3 0 �
↪→ |
+---
↪→-+
| 0 1 MIG 3g.20gb 2* 0∕1 42 2 0 0 �
↪→ |
| 3 0 �
↪→ |
+---
↪→-+

Create 3 CIs, each of type 1c compute capacity (profile ID 0) on the first GI.

$ sudo nvidia-smi mig -cci 0,0,0 -gi 1
Successfully created compute instance on GPU 0 GPU instance ID 1 using profile MIG�
↪→1c.3g.20gb (ID 0)
Successfully created compute instance on GPU 0 GPU instance ID 1 using profile MIG�
↪→1c.3g.20gb (ID 0)
Successfully created compute instance on GPU 0 GPU instance ID 1 using profile MIG�
↪→1c.3g.20gb (ID 0)

Using nvidia-smi, the following CIs are now created on GI 1:

$ sudo nvidia-smi mig -lci -gi 1
+---+
| Compute instances: |
| GPU GPU Name Profile Instance |
| Instance ID ID |
| ID |
|===|
| 0 1 MIG 1c.3g.20gb 0 0 |
+---+
| 0 1 MIG 1c.3g.20gb 0 1 |
+---+
| 0 1 MIG 1c.3g.20gb 0 2 |
+---+

And the GIs and CIs created on the A100 are now enumerated by the driver:

$ nvidia-smi
+---+
| MIG devices: |
+------------------+----------------------+-----------+-----------------------+
GPU GI CI MIG	Memory-Usage	Vol	Shared
ID ID Dev		SM Unc	CE ENC DEC OFA JPG
		ECC	
==================+======================+===========+=======================			
0 1 0 0	11MiB ∕ 20224MiB	14 0	3 0 2 0 0

(continues on next page)

40 Chapter 8. Getting Started with MIG

NVIDIA Multi-Instance GPU User Guide, Release r575

(continued from previous page)

+------------------+ +-----------+-----------------------+
| 0 1 1 1 | | 14 0 | 3 0 2 0 0 |
+------------------+ +-----------+-----------------------+
| 0 1 2 2 | | 14 0 | 3 0 2 0 0 |
+------------------+----------------------+-----------+-----------------------+

+---+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|===|
| No running processes found |
+---+

Now, three BlackScholes applications can be created and run in parallel:

$ CUDA_VISIBLE_DEVICES=MIG-c7384736-a75d-5afc-978f-d2f1294409fd .∕BlackScholes &
$ CUDA_VISIBLE_DEVICES=MIG-c376546e-7559-5610-9721-124e8dbb1bc8 .∕BlackScholes &
$ CUDA_VISIBLE_DEVICES=MIG-928edfb0-898f-53bd-bf24-c7e5d08a6852 .∕BlackScholes &

And seen using nvidia-smi as running processes on the three CIs:

$ nvidia-smi
+---+
| MIG devices: |
+------------------+----------------------+-----------+-----------------------+
GPU GI CI MIG	Memory-Usage	Vol	Shared
ID ID Dev		SM Unc	CE ENC DEC OFA JPG
		ECC	
==================+======================+===========+=======================			
0 1 0 0	476MiB ∕ 20224MiB	14 0	3 0 2 0 0
+------------------+ +-----------+-----------------------+			
0 1 1 1		14 0	3 0 2 0 0
+------------------+ +-----------+-----------------------+			
0 1 2 2		14 0	3 0 2 0 0
+------------------+----------------------+-----------+-----------------------+

+---+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|===|
| 0 1 0 59785 C .∕BlackScholes 153MiB |
| 0 1 1 59796 C .∕BlackScholes 153MiB |
| 0 1 2 59885 C .∕BlackScholes 153MiB |
+---+

8.5. Running CUDA Applications on Bare-Metal 41

NVIDIA Multi-Instance GPU User Guide, Release r575

8.6. Destroying GPU Instances

Once the GPU is inMIGmode, GIs and CIs can be configured dynamically. The following example shows
how the CIs and GIs created in the previous examples can be destroyed.

Note: If the intention is to destroy all the CIs and GIs, then this can be accomplished with the following
commands:

$ sudo nvidia-smi mig -dci && sudo nvidia-smi mig -dgi
Successfully destroyed compute instance ID 0 from GPU 0 GPU instance ID 1
Successfully destroyed compute instance ID 1 from GPU 0 GPU instance ID 1
Successfully destroyed compute instance ID 2 from GPU 0 GPU instance ID 1
Successfully destroyed GPU instance ID 1 from GPU 0
Successfully destroyed GPU instance ID 2 from GPU 0

In this example, we delete the specific CIs created under GI 1.

$ sudo nvidia-smi mig -dci -ci 0,1,2 -gi 1
Successfully destroyed compute instance ID 0 from GPU 0 GPU instance ID 1
Successfully destroyed compute instance ID 1 from GPU 0 GPU instance ID 1
Successfully destroyed compute instance ID 2 from GPU 0 GPU instance ID 1

It can be verified that the CI devices have now been torn down on the GPU:

$ nvidia-smi
+---+
| MIG devices: |
+------------------+----------------------+-----------+-----------------------+
GPU GI CI MIG	Memory-Usage	Vol	Shared
ID ID Dev		SM Unc	CE ENC DEC OFA JPG
		ECC	
==================+======================+===========+=======================			
No MIG devices found			
+---+

+---+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|===|
| No running processes found |
+---+

Now the GIs have to be deleted:

$ sudo nvidia-smi mig -dgi
Successfully destroyed GPU instance ID 1 from GPU 0
Successfully destroyed GPU instance ID 2 from GPU 0

42 Chapter 8. Getting Started with MIG

NVIDIA Multi-Instance GPU User Guide, Release r575

8.7. Monitoring MIG Devices

For monitoring MIG devices on including attribution of GPU metrics (including utilization and other
profilingmetrics), it is recommended to use NVIDIA DCGM v3 or later. See the ProfilingMetrics section
in the DCGM User Guide for more details on getting started.

Note: On NVIDIA Ampere architecture GPUs (A100 or A30), NVML (and nvidia-smi) does not support
attribution of utilizationmetrics toMIG devices. From the previous example, the utilization is displayed
as N/A when running CUDA programs:

$ nvidia-smi

+---+
| MIG devices: |
+------------------+----------------------+-----------+-----------------------+
GPU GI CI MIG	Memory-Usage	Vol	Shared
ID ID Dev	BAR1-Usage	SM Unc	CE ENC DEC OFA JPG
		ECC	
==================+======================+===========+=======================			
0 1 0 0	268MiB ∕ 20096MiB	42 0	3 0 2 0 0
	4MiB ∕ 32767MiB		
+------------------+----------------------+-----------+-----------------------+			
0 2 0 1	268MiB ∕ 20096MiB	42 0	3 0 2 0 0
	4MiB ∕ 32767MiB		
+------------------+----------------------+-----------+-----------------------+

+---+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|===|
| 0 1 0 6217 C ...inux∕release∕BlackScholes 253MiB |
| 0 2 0 6223 C ...inux∕release∕BlackScholes 253MiB |
+---+

8.8. MIG with CUDA MPS

As described in CUDA Concurrency Mechanisms, CUDA Multi-Process Service (MPS) enables co-
operative multi-process CUDA applications to be processed concurrently on the GPU. MPS and MIG
can work together, potentially achieving even higher levels of utilization for certain workloads.

Refer to the MPS documentation to understand the architecture and provisioning sequence for MPS.

In the following sections, we will walk through an example of running MPS on MIG devices.

8.7. Monitoring MIG Devices 43

https://developer.nvidia.com/dcgm
https://docs.nvidia.com/datacenter/dcgm/latest/user-guide/feature-overview.html#profiling
https://docs.nvidia.com/deploy/mps/index.html
https://docs.nvidia.com/deploy/mps/index.html#provisioning-sequence

NVIDIA Multi-Instance GPU User Guide, Release r575

8.8.1. Workflow

In summary, the workflow for running with MPS is as follows:

▶ Configure the desired MIG geometry on the GPU.

▶ Setup the CUDA_MPS_PIPE_DIRECTORY variable to point to unique directories so that the mul-
tiple MPS servers and clients can communicate with each other using named pipes and Unix
domain sockets.

▶ Launch the application by specifying the MIG device using CUDA_VISIBLE_DEVICES.

Note: The MPS documentation recommends setting up EXCLUSIVE_PROCESS mode to ensure that
a single MPS server is using the GPU. However, this mode is not supported when the GPU is in MIG
mode as we use multiple MPS servers (one per MIG GPU instance).

8.8.2. Configure GPU Instances

Follow the steps outlined in the previous sections to configure the desired MIG geometry on the GPU.
For this example, we configure the GPU into a 3g.20gb,3g.2gb geometry:

$ nvidia-smi

+---+
| NVIDIA-SMI 460.73.01 Driver Version: 460.73.01 CUDA Version: 11.2 |
|-------------------------------+----------------------+----------------------+
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage∕Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
===============================+======================+======================		
0 A100-PCIE-40GB On	00000000:65:00.0 Off	On
N∕A 37C P0 66W ∕ 250W	581MiB ∕ 40536MiB	N∕A Default
		Enabled
+-------------------------------+----------------------+----------------------+

+---+
| MIG devices: |
+------------------+----------------------+-----------+-----------------------+
GPU GI CI MIG	Memory-Usage	Vol	Shared
ID ID Dev	BAR1-Usage	SM Unc	CE ENC DEC OFA JPG
		ECC	
==================+======================+===========+=======================			
0 1 0 0	290MiB ∕ 20096MiB	42 0	3 0 2 0 0
	8MiB ∕ 32767MiB		
+------------------+----------------------+-----------+-----------------------+			
0 2 0 1	290MiB ∕ 20096MiB	42 0	3 0 2 0 0
	8MiB ∕ 32767MiB		
+------------------+----------------------+-----------+-----------------------+

44 Chapter 8. Getting Started with MIG

NVIDIA Multi-Instance GPU User Guide, Release r575

8.8.3. Set Up the MPS Control Daemons

In this step, we start an MPS control daemon (with admin privileges) and ensure we use a different
socket for each daemon:

export CUDA_MPS_PIPE_DIRECTORY=∕tmp∕<MIG_UUID>
mkdir -p $CUDA_MPS_PIPE_DIRECTORY

CUDA_VISIBLE_DEVICES=<MIG_UUID> \
CUDA_MPS_PIPE_DIRECTORY=∕tmp∕<MIG_UUID> \
nvidia-cuda-mps-control -d

8.8.4. Launch the Application

Now we can launch the application by specifying the desired MIG device using
CUDA_VISIBLE_DEVICES:

CUDA_VISIBLE_DEVICES=<MIG_UUID> \
my-cuda-app

8.8.5. A Complete Example

We now provide a script below where we attempt to run the BlackScholes from before on the two
MIG devices created on the GPU:

#!∕usr∕bin∕env bash

set -euo pipefail

#GPU 0: A100-PCIE-40GB (UUID: GPU-63feeb45-94c6-b9cb-78ea-98e9b7a5be6b)
MIG 3g.20gb Device 0: (UUID: MIG-GPU-63feeb45-94c6-b9cb-78ea-98e9b7a5be6b∕1∕0)
MIG 3g.20gb Device 1: (UUID: MIG-GPU-63feeb45-94c6-b9cb-78ea-98e9b7a5be6b∕2∕0)

GPU_UUID=GPU-63feeb45-94c6-b9cb-78ea-98e9b7a5be6b
for i in MIG-$GPU_UUID∕1∕0 MIG-$GPU_UUID∕2∕0; do

set the environment variable on each MPS
control daemon and use different socket for each MIG instance
export CUDA_MPS_PIPE_DIRECTORY=∕tmp∕$i
mkdir -p $CUDA_MPS_PIPE_DIRECTORY
sudo CUDA_VISIBLE_DEVICES=$i \

CUDA_MPS_PIPE_DIRECTORY=∕tmp∕$i \
nvidia-cuda-mps-control -d

now launch the job on the specific MIG device
and select the appropriate MPS server on the device
CUDA_MPS_PIPE_DIRECTORY=∕tmp∕$i \
CUDA_VISIBLE_DEVICES=$i \
.∕bin∕BlackScholes &

done

8.8. MIG with CUDA MPS 45

NVIDIA Multi-Instance GPU User Guide, Release r575

When running this script, we can observe the two MPS servers on each MIG device and the corre-
sponding CUDA program started as an MPS client when using nvidia-smi:

+---+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|===|
| 0 1 0 46781 M+C .∕bin∕BlackScholes 251MiB |
| 0 1 0 46784 C nvidia-cuda-mps-server 29MiB |
| 0 2 0 46797 M+C .∕bin∕BlackScholes 251MiB |
| 0 2 0 46798 C nvidia-cuda-mps-server 29MiB |
+---+

8.9. Running CUDA Applications as Containers

NVIDIA Container Toolkit has been enhanced to provide support for MIG devices, allowing users to run
GPU containers with runtimes such as Docker. This section provides an overview of running Docker
containers on A100 with MIG.

8.9.1. Install Docker

Many Linux distributions may come with Docker-CE pre-installed. If not, use the Docker installation
script to install Docker.

$ curl https:∕∕get.docker.com | sh \
&& sudo systemctl start docker \
&& sudo systemctl enable docker

8.9.2. Install NVIDIA Container Toolkit

Now install the NVIDIA Container Toolkit (previously known as nvidia-docker2).

To get access to the ∕dev nvidia capabilities, it is recommended to use at least v2.5.0 of nvidia-
docker2. Refer to the Installation Guide for more information.

For brevity, the installation instructions provided here are for Ubuntu 18.04 LTS. Refer to the NVIDIA
Container Toolkit page for instructions on other Linux distributions.

Setup the repository and the GPG key:

$ distribution=$(. ∕etc∕os-release;echo IDVERSION_ID) \
&& curl -fsSL https:∕∕nvidia.github.io∕libnvidia-container∕gpgkey | sudo gpg --

↪→dearmor -o ∕usr∕share∕keyrings∕nvidia-container-toolkit-keyring.gpg \
&& curl -s -L https:∕∕nvidia.github.io∕libnvidia-container∕$distribution∕

↪→libnvidia-container.list | \
sed 's#deb https:∕∕#deb [signed-by=∕usr∕share∕keyrings∕nvidia-container-

↪→toolkit-keyring.gpg] https:∕∕#g' | \
sudo tee ∕etc∕apt∕sources.list.d∕nvidia-container-toolkit.list

46 Chapter 8. Getting Started with MIG

https://github.com/NVIDIA/nvidia-container-toolkit
https://github.com/NVIDIA/nvidia-container-toolkit
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html

NVIDIA Multi-Instance GPU User Guide, Release r575

Install the NVIDIA Container Toolkit packages (and their dependencies):

$ sudo apt-get install -y nvidia-docker2 \
&& sudo systemctl restart docker

8.9.3. Running Containers

To run containers on specific MIG devices – whether these are GIs or specific underlying CIs, then
the NVIDIA_VISIBLE_DEVICES variable (or the --gpus option with Docker 19.03+) can be used.
NVIDIA_VISIBLE_DEVICES supports the following formats to specify MIG devices:

▶ MIG-<GPU-UUID>∕<GPU instance ID>∕<compute instance ID>when using R450 and R460
drivers or MIG-<UUID> starting with R470 drivers.

▶ GPUDeviceIndex>:<MIGDeviceIndex>

If using Docker 19.03, the --gpus option can be used to specify MIG devices by using the following
format: "device=MIG-device", where MIG-device can follow either of the format specified above
for NVIDIA_VISIBLE_DEVICES.

The following example shows running nvidia-smi from within a CUDA container using both formats.
As can be seen in the example, only one MIG device as chosen is visible to the container when using
either format.

$ sudo docker run --runtime=nvidia \
-e NVIDIA_VISIBLE_DEVICES=MIG-c7384736-a75d-5afc-978f-d2f1294409fd \
nvidia∕cuda nvidia-smi

+---+
| MIG devices: |
+------------------+----------------------+-----------+-----------------------+
GPU GI CI MIG	Memory-Usage	Vol	Shared
ID ID Dev		SM Unc	CE ENC DEC OFA JPG
		ECC	
==================+======================+===========+=======================			
0 1 0 0	11MiB ∕ 20224MiB	42 0	3 0 2 0 0
+------------------+----------------------+-----------+-----------------------+

+---+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|===|
| No running processes found |
+---+

For Docker versions < 19.03
$ sudo docker run --runtime=nvidia \

-e NVIDIA_VISIBLE_DEVICES="0:0" \
nvidia∕cuda nvidia-smi -L

GPU 0: A100-SXM4-40GB (UUID: GPU-e86cb44c-6756-fd30-cd4a-1e6da3caf9b0)
MIG 3g.20gb Device 0: (UUID: MIG-c7384736-a75d-5afc-978f-d2f1294409fd)

For Docker versions >= 19.03
(continues on next page)

8.9. Running CUDA Applications as Containers 47

NVIDIA Multi-Instance GPU User Guide, Release r575

(continued from previous page)

$ sudo docker run --gpus '"device=0:0"' \
nvidia∕cuda nvidia-smi -L

GPU 0: A100-SXM4-40GB (UUID: GPU-e86cb44c-6756-fd30-cd4a-1e6da3caf9b0)
MIG 3g.20gb Device 0: (UUID: MIG-c7384736-a75d-5afc-978f-d2f1294409fd)

Amore complex example is to run a TensorFlow container to do a training run using GPUs on theMNIST
dataset. This is shown below:

$ sudo docker run --gpus '"device=0:1"' \
nvcr.io∕nvidia∕pytorch:20.11-py3 \
∕bin∕bash -c 'cd ∕opt∕pytorch∕examples∕upstream∕mnist && python main.py'

=============
== PyTorch ==
=============

NVIDIA Release 20.11 (build 17345815)
PyTorch Version 1.8.0a0+17f8c32

Container image Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.

Copyright (c) 2014-2020 Facebook Inc.
Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert)
Copyright (c) 2012-2014 Deepmind Technologies (Koray Kavukcuoglu)
Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu)
Copyright (c) 2011-2013 NYU (Clement Farabet)
Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou, Iain�
↪→Melvin, Jason Weston)
Copyright (c) 2006 Idiap Research Institute (Samy Bengio)
Copyright (c) 2001-2004 Idiap Research Institute (Ronan Collobert, Samy Bengio,�
↪→Johnny Mariethoz)
Copyright (c) 2015 Google Inc.
Copyright (c) 2015 Yangqing Jia
Copyright (c) 2013-2016 The Caffe contributors
All rights reserved.

NVIDIA Deep Learning Profiler (dlprof) Copyright (c) 2020, NVIDIA CORPORATION. All�
↪→rights reserved.

Various files include modifications (c) NVIDIA CORPORATION. All rights reserved.
NVIDIA modifications are covered by the license terms that apply to the underlying�
↪→project or file.

NOTE: Legacy NVIDIA Driver detected. Compatibility mode ENABLED.

9920512it [00:01, 7880654.53it∕s]
32768it [00:00, 129950.31it∕s]
1654784it [00:00, 2353765.88it∕s]
8192it [00:00, 41020.33it∕s]
∕opt∕conda∕lib∕python3.6∕site-packages∕torchvision∕datasets∕mnist.py:480:�
↪→UserWarning: The given NumPy array is not writeable, and PyTorch does not support�
↪→non-writeable tensors. This means you can write to the underlying (supposedly non-
↪→writeable) NumPy array using the tensor. You may want to copy the array to protect�
↪→its data or make it writeable before converting it to a tensor. This type of�
↪→warning will be suppressed for the rest of this program. (Triggered internally at .
↪→.∕torch∕csrc∕utils∕tensor_numpy.cpp:141.)

(continues on next page)

48 Chapter 8. Getting Started with MIG

NVIDIA Multi-Instance GPU User Guide, Release r575

(continued from previous page)

return torch.from_numpy(parsed.astype(m[2], copy=False)).view(*s)
Downloading http:∕∕yann.lecun.com∕exdb∕mnist∕train-images-idx3-ubyte.gz to ..∕data∕
↪→MNIST∕raw∕train-images-idx3-ubyte.gz
Extracting ..∕data∕MNIST∕raw∕train-images-idx3-ubyte.gz to ..∕data∕MNIST∕raw
Downloading http:∕∕yann.lecun.com∕exdb∕mnist∕train-labels-idx1-ubyte.gz to ..∕data∕
↪→MNIST∕raw∕train-labels-idx1-ubyte.gz
Extracting ..∕data∕MNIST∕raw∕train-labels-idx1-ubyte.gz to ..∕data∕MNIST∕raw
Downloading http:∕∕yann.lecun.com∕exdb∕mnist∕t10k-images-idx3-ubyte.gz to ..∕data∕
↪→MNIST∕raw∕t10k-images-idx3-ubyte.gz
Extracting ..∕data∕MNIST∕raw∕t10k-images-idx3-ubyte.gz to ..∕data∕MNIST∕raw
Downloading http:∕∕yann.lecun.com∕exdb∕mnist∕t10k-labels-idx1-ubyte.gz to ..∕data∕
↪→MNIST∕raw∕t10k-labels-idx1-ubyte.gz
Extracting ..∕data∕MNIST∕raw∕t10k-labels-idx1-ubyte.gz to ..∕data∕MNIST∕raw
Processing...
Done!
Train Epoch: 1 [0∕60000 (0%)] Loss: 2.320747
Train Epoch: 1 [640∕60000 (1%)] Loss: 1.278727

8.10. MIG with Kubernetes

MIG support in Kubernetes is available starting with v0.7.0 of the NVIDIA Device Plugin for Kubernetes.
Visit the documentation on getting started with MIG and Kubernetes.

8.11. MIG with Slurm

Slurm is a workload manager that is widely used at high performance computing centers such as
government labs, universities.

Starting with 21.08, Slurm supports the usage of MIG devices. Refer to the official documentation on
getting started.

8.10. MIG with Kubernetes 49

https://github.com/NVIDIA/k8s-device-plugin
https://docs.nvidia.com/datacenter/cloud-native/kubernetes/latest/index.html
https://slurm.schedmd.com/
https://slurm.schedmd.com/gres.html#MIG_Management

NVIDIA Multi-Instance GPU User Guide, Release r575

50 Chapter 8. Getting Started with MIG

Chapter 9. Device Nodes and
Capabilities

Currently, the NVIDIA kernel driver exposes its interfaces through a few system-wide device nodes.
Each physical GPU is represented by its own device node - for example, nvidia0, nvidia1 and so on.
This is shown below for a 2-GPU system.

∕dev
��� nvidiactl
��� nvidia-modeset
��� nvidia-uvm
��� nvidia-uvm-tools
��� nvidia-nvswitchctl
��� nvidia0
��� nvidia1

Starting with CUDA 11/R450, a new abstraction known as nvidia-capabilities has been intro-
duced. The idea being that access to a specific capability is required to performcertain actions through
the driver. If a user has access to the capability, the action will be carried out. If a user does not have
access to the capability, the action will fail. The one exception being if you are the root-user (or any
user with CAP_SYS_ADMIN privileges). With CAP_SYS_ADMIN privileges, you implicitly have access to
all nvidia-capabilities.

For example, the mig-config capability allows one to create and destroy MIG instances on any MIG-
capable GPU (for example, the A100 GPU). Without this capability, all attempts to create or destroy a
MIG instance will fail. Likewise, the fabric-mgmt capability allows one to run the Fabric Manager as
a non-root but privileged daemon. Without this capability, all attempts to launch the Fabric Manager
as a non-root user will fail.

The following sections walk through the system level interface for managing these new
nvidia-capabilities, including the steps necessary to grant and revoke access to them.

9.1. System Level Interface

There are two different system-level interfaces available to work with nvidia-capabilities. The
first is via ∕dev and the second is via ∕proc. The ∕proc based interface relies on user-permissions and
mount namespaces to limit access to a particular capability, while the ∕dev based interface relies on
cgroups. Technically, the ∕dev based interface also relies on user-permissions as a second-level access
control mechanism (on the actual device node files themselves), but the primary access control mech-
anism is cgroups. The current CUDA 11/R450 GA (Linux driver 450.51.06) supports both mechanisms,
but going forward the ∕dev based interface is the preferred method and the /proc based interface

51

NVIDIA Multi-Instance GPU User Guide, Release r575

is deprecated. For now, users can choose the desired interface by using the nv_cap_enable_devfs
parameter on the nvidia.ko kernel module:

▶ When nv_cap_enable_devfs=0, the ∕proc based interface is enabled.

▶ When nv_cap_enable_devfs=1, the ∕dev based interface is enabled.

▶ A setting of nv_cap_enable_devfs=0 is the default for the R450 driver (as of Linux 450.51.06).

▶ All future NVIDIA datacenter drivers will have a default of nv_cap_enable_devfs=1.

The following is an example of loading the nvidia kernel module with this parameter set:

$ modprobe nvidia nv_cap_enable_devfs=1

9.1.1. /dev Based nvidia-capabilities

The system level interface for interacting with ∕dev based capabilities is actually through a combina-
tion of ∕proc and ∕dev.

First, a newmajor device is now associatedwith nvidia-caps and can be read from the standard ∕proc∕
devices file.

$ cat ∕proc∕devices | grep nvidia-caps
508 nvidia-caps

Second, the exact same set of files exist under ∕proc∕driver∕nvidia∕capabilities. These files
no longer control access to the capability directly and instead, the contents of these files point at a
device node under ∕dev, through which cgroups can be used to control access to the capability.

This can be seen in the following example:

$ cat ∕proc∕driver∕nvidia∕capabilities∕mig∕config
DeviceFileMinor: 1
DeviceFileMode: 256
DeviceFileModify: 1

The combination of the device major for nvidia-caps and the value of DeviceFileMinor in this file
indicate that the mig-config capability (which allows a user to create and destroy MIG devices) is
controlled by the device node with a major:minor of 238:1. As such, one will need to use cgroups
to grant a process read access to this device in order to configure MIG devices. The purpose of the
DeviceFileMode and DeviceFileModify fields in this file are explained later on in this section.

The standard location for these device nodes is under ∕dev∕nvidia-caps:

$ ls -l ∕dev∕nvidia-caps
total 0
cr-------- 1 root root 508, 1 Nov 21 17:16 nvidia-cap1
cr--r--r-- 1 root root 508, 2 Nov 21 17:16 nvidia-cap2
...

Unfortunately, these device nodes cannot be automatically created/deleted by the NVIDIA driver at the
same time it creates/deletes files under ∕proc∕driver∕nvidia∕capabilities (due to GPL compli-
ance issues). Instead, a user-level program called nvidia-modprobe is provided, that can be invoked
from user-space in order to do this. For example:

52 Chapter 9. Device Nodes and Capabilities

NVIDIA Multi-Instance GPU User Guide, Release r575

$ nvidia-modprobe \
-f ∕proc∕driver∕nvidia∕capabilities∕mig∕config \
-f ∕proc∕driver∕nvidia∕capabilities∕mig∕monitor

$ ls -l ∕dev∕nvidia-caps
total 0
cr-------- 1 root root 508, 1 Nov 21 17:16 nvidia-cap1
cr--r--r-- 1 root root 508, 2 Nov 21 17:16 nvidia-cap2

nvidia-modprobe looks at the DeviceFileMode in each capability file and creates the device node
with the permissions indicated (for example, +ur from a value of 256 (o400) from our example for
mig-config).

Programs such as nvidia-smiwill automatically invoke nvidia-modprobe (when available) to create
these device nodes on your behalf. In other scenarios it is not necessarily required to use nvidia-
modprobe to create these device nodes, but it does make the process simpler.

If you actually want to prevent nvidia-modprobe from ever creating a particular device node on your
behalf, you can do the following:

Give a user write permissions to the capability file under ∕proc
$ chmod +uw ∕proc∕driver∕nvidia∕capabilities∕mig∕config

Update the file with a "DeviceFileModify" setting of 0
$ echo "DeviceFileModify: 0" > ∕proc∕driver∕nvidia∕capabilities∕mig∕config

You will then be responsible for managing creation of the device node referenced by ∕proc∕driver∕
nvidia∕capabilities∕mig∕config going forward. If you want to change that in the future, simply
reset it to a value of DeviceFileModify: 1 with the same command sequence.

This is important in the context of containers because we may want to give a container access to a
certain capability even if it doesn’t exist in the ∕proc hierarchy yet.

For example, granting a container the mig-config capability implies that we should also grant it ca-
pabilities to access all possible gis and cis that could be created for any GPU on the system. Otherwise
the container will have no way of working with those gis and cis once they have actually been created.

One final thing to note about ∕dev based capabilities is that the minor numbers for all possible capa-
bilities are predetermined and can be queried under various files of the form:

∕proc∕driver∕nvidia-caps∕*-minors

For example, all capabilities related to MIG can be looked up as:

$ cat ∕proc∕driver∕nvidia-caps∕mig-minors
config 1
monitor 2
gpu0∕gi0∕access 3
gpu0∕gi0∕ci0∕access 4
gpu0∕gi0∕ci1∕access 5
gpu0∕gi0∕ci2∕access 6
...
gpu31∕gi14∕ci6∕access 4321
gpu31∕gi14∕ci7∕access 4322

The format of the content is: GPU<deviceMinor>∕gi<GPU instance ID>∕ci<compute instance
ID>

Note that the GPU device minor number can be obtained by using either of these mechanisms:

9.1. System Level Interface 53

NVIDIA Multi-Instance GPU User Guide, Release r575

▶ The NVML API nvmlDeviceGetMinorNumber() so it returns the device minor number

▶ Or use the PCI BDF available under ∕proc∕driver∕nvidia∕gpus∕
domain:bus:device:function∕information. This file contains a “Device Minor” field.

Note: The NVML device numbering (such as through nvidia-smi) is not the device minor number.

For example, if the MIG geometry was created as below:

+---+
| MIG devices: |
+------------------+----------------------+-----------+-----------------------+
GPU GI CI MIG	Memory-Usage	Vol	Shared
ID ID Dev	BAR1-Usage	SM Unc	CE ENC DEC OFA JPG
		ECC	
==================+======================+===========+=======================			
0 1 0 0	19MiB ∕ 40192MiB	14 0	3 0 3 0 3
	0MiB ∕ 65535MiB		
+------------------+ +-----------+-----------------------+			
0 1 1 1		14 0	3 0 3 0 3
+------------------+ +-----------+-----------------------+			
0 1 2 2		14 0	3 0 3 0 3
+------------------+----------------------+-----------+-----------------------+

Then the corresponding device nodes: ∕dev∕nvidia-cap12, ∕dev∕nvidia-cap13, ∕dev∕
nvidia-cap14, and ∕dev∕nvidia-cap15 would be created.

9.1.2. /proc based nvidia-capabilities (Deprecated)

The system level interface for interacting with ∕proc based nvidia-capabilities is rooted at ∕proc∕
driver∕nvidia∕capabilities. Files underneath this hierarchy are used to represent each capabil-
ity, with read access to these files controlling whether a user has a given capability or not. These files
have no content and only exist to represent a given capability.

For example, the mig-config capability (which allows a user to create and destroy MIG devices) is
represented as follows:

∕proc∕driver∕nvidia∕capabilities
��� mig

��� config

Likewise, the capabilities required to run workloads on a MIG device once it has been created are rep-
resented as follows (namely as access to the GPU Instance and Compute Instance that comprise the
MIG device):

∕proc∕driver∕nvidia∕capabilities
��� gpu0

��� mig
��� gi0
� ��� access
� ��� ci0
� ��� access

(continues on next page)

54 Chapter 9. Device Nodes and Capabilities

NVIDIA Multi-Instance GPU User Guide, Release r575

(continued from previous page)

��� gi1
� ��� access
� ��� ci0
� ��� access
��� gi2

��� access
��� ci0

��� access

And the corresponding file system layout is shown below with read permissions:

$ ls -l ∕proc∕driver∕nvidia∕capabilities∕gpu0∕mig∕gi*
∕proc∕driver∕nvidia∕capabilities∕gpu0∕mig∕gi1:
total 0
-r--r--r-- 1 root root 0 May 24 17:38 access
dr-xr-xr-x 2 root root 0 May 24 17:38 ci0

∕proc∕driver∕nvidia∕capabilities∕gpu0∕mig∕gi2:
total 0
-r--r--r-- 1 root root 0 May 24 17:38 access
dr-xr-xr-x 2 root root 0 May 24 17:38 ci0

For a CUDA process to be able to run on top ofMIG, it needs access to the Compute Instance capability
and its parent GPU Instance. Thus a MIG device is identified by the following format:

MIG-<GPU-UUID>∕<GPU instance ID>∕<compute instance ID>

As an example, having read access to the following paths would allow one to run workloads on theMIG
device represented by <gpu0, gi0, ci0>:

∕proc∕driver∕nvidia∕capabilities∕gpu0∕mig∕gi0∕access
∕proc∕driver∕nvidia∕capabilities∕gpu0∕mig∕gi0∕ci0∕access

Note that there is no access file representing a capability to run workloads on gpu0 (only on gi0 and
ci0 that sit underneath gpu0). This is because the traditional mechanism of using cgroups to control
access to top level GPU devices (and any required meta devices) is still required. As shown earlier in
the document, the cgroups mechanism applies to:

∕dev∕nvidia0
∕dev∕nvidiactl
∕dev∕nvidiactl-uvm
...

In the context of containers, a new mount namespace should be overlaid on top of the path for ∕
proc∕driver∕nvidia∕capabilities, and only those capabilities a user wishes to grant to a con-
tainer should be bind-mounted in. Since the host’s user/group information is retained across the
bind-mount, it must be ensured that the correct user permissions are set for these capabilities on the
host before injecting them into a container.

9.1. System Level Interface 55

NVIDIA Multi-Instance GPU User Guide, Release r575

56 Chapter 9. Device Nodes and Capabilities

Chapter 10. Notices

10.1. Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a
certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no repre-
sentations or warranties, expressed or implied, as to the accuracy or completeness of the information
contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall
have no liability for the consequences or use of such information or for any infringement of patents
or other rights of third parties that may result from its use. This document is not a commitment to
develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any
other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that
such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the
time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by
authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA
product referenced in this document. No contractual obligations are formed either directly or indirectly
by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military,
aircraft, space, or life support equipment, nor in applicationswhere failure ormalfunction of theNVIDIA
product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or
applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIAmakes no representation or warranty that products based on this document will be suitable for
any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA.
It is customer’s sole responsibility to evaluate and determine the applicability of any information con-
tained in this document, ensure the product is suitable and fit for the application planned by customer,
and perform the necessary testing for the application in order to avoid a default of the application or
the product. Weaknesses in customer’s product designs may affect the quality and reliability of the
NVIDIA product andmay result in additional or different conditions and/or requirements beyond those
contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or prob-
lem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is
contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other
NVIDIA intellectual property right under this document. Information published by NVIDIA regarding
third-party products or services does not constitute a license from NVIDIA to use such products or

57

NVIDIA Multi-Instance GPU User Guide, Release r575

services or a warranty or endorsement thereof. Use of such information may require a license from a
third party under the patents or other intellectual property rights of the third party, or a license from
NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA
in writing, reproduced without alteration and in full compliance with all applicable export laws and
regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENTANDALLNVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE
BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WAR-
RANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENTWILL NVIDIA BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CON-
SEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARIS-
ING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCHDAMAGES. Notwithstanding any damages that customermight incur for any reasonwhatso-
ever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein
shall be limited in accordance with the Terms of Sale for the product.

10.2. OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

10.3. Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the
U.S. and other countries. Other company and product names may be trademarks of the respective
companies with which they are associated.

Copyright

©2020-2025, NVIDIA Corporation & affiliates. All rights reserved

58 Chapter 10. Notices

	Supported GPUs
	Supported Configurations
	Virtualization
	Concepts
	Terminology
	Partitioning
	CUDA Concurrency Mechanisms

	Deployment Considerations
	System Considerations
	Application Considerations

	MIG Device Names
	Device Enumeration
	CUDA Device Enumeration

	Supported MIG Profiles
	RTX PRO 6000 Blackwell MIG Profiles
	A30 MIG Profiles
	A100 MIG Profiles
	H100 MIG Profiles
	H200 MIG Profiles

	Getting Started with MIG
	Prerequisites
	Enable MIG Mode
	GPU Reset on Hopper+ GPUs
	GPU Reset on NVIDIA Ampere Architecture GPUs
	Driver Clients

	List GPU Instance Profiles
	Creating GPU Instances
	Instance Geometry

	Running CUDA Applications on Bare-Metal
	GPU Instances
	GPU Utilization Metrics
	Compute Instances

	Destroying GPU Instances
	Monitoring MIG Devices
	MIG with CUDA MPS
	Workflow
	Configure GPU Instances
	Set Up the MPS Control Daemons
	Launch the Application
	A Complete Example

	Running CUDA Applications as Containers
	Install Docker
	Install NVIDIA Container Toolkit
	Running Containers

	MIG with Kubernetes
	MIG with Slurm

	Device Nodes and Capabilities
	System Level Interface
	/dev Based nvidia-capabilities
	/proc based nvidia-capabilities (Deprecated)

	Notices
	Notice
	OpenCL
	Trademarks

