NVIDIA Data Center GPU Driver version
470.103.01 (Linux) / 472.98 (Windows)

Release Notes
Table of Contents

Chapter 1. Version Highlights ... 1
 1.1. Software Versions ... 1
 1.2. New Features .. 2
 1.3. Fixed Issues ... 3
 1.4. Known Issues ... 3

Chapter 2. Virtualization ... 5

Chapter 3. Hardware and Software Support 7
Chapter 1. Version Highlights

This section provides highlights of the NVIDIA Data Center GPU R470 Driver (version 470.103.01 Linux and 472.98 Windows).

For changes related to the 470 release of the NVIDIA display driver, review the file “NVIDIA_Changelog” available in the .run installer packages.

- Linux driver release date: 1/31/2022
- Windows driver release date: 1/31/2022

1.1. Software Versions

For this release, the software versions are listed below.

- CUDA Toolkit 11: 11.4
 Note that starting with CUDA 11, individual components of the toolkit are versioned independently. For a full list of the individual versioned components (e.g. nvcc, CUDA libraries etc.), see the CUDA Toolkit Release Notes
- NVIDIA Data Center GPU Driver: 470.103.01 (Linux) / 472.98 (Windows)
- Fabric Manager: 470.103.01 (Use `nv-fabricmanager -v`)
- GPU VBIOS:
 - 92.00.19.00.01 (NVIDIA A100 SKU200 with heatsink for HGX A100 8-way and 4-way)
 - 92.00.19.00.02 (NVIDIA A100 SKU202 w/o heatsink for HGX A100 4-way)
- NVSwitch VBIOS: 92.10.14.00.01
- NVFlash: 5.641

Due to a revision lock between the VBIOS and driver, VBIOS versions >= 92.00.18.00.00 must use corresponding drivers >= 450.36.01. Older VBIOS versions will work with newer drivers.

For more information on getting started with the NVIDIA Fabric Manager on NVSwitch-based systems (for example, HGX A100), refer to the Fabric Manager User Guide.
1.2. New Features

General

- Added support for the following NVIDIA GPU products:
 - NVIDIA A16
 - NVIDIA A100 80 GB PCIe
- Enabled new MIG profiles for the NVIDIA A30 where each of the 4 partitions has double the memory, 6GB up from 3GB per partition slice. See the MIG Device Names section of the NVIDIA MIG User Guide.
- This release includes support for OpenCL 3.0
 - Maintains backward compatibility with OpenCL 1.2. NVIDIA OpenCL 3.0 continues to support existing OpenCL 1.2 functionality as well as Khronos and vendor extensions that are already supported with NVIDIA OpenCL 1.2 drivers. The following new features beyond existing NVIDIA OpenCL 1.2 features are supported by NVIDIA OpenCL 3.0
 - RGBA vector component naming in OpenCL C kernels
 - pragma_unroll hint
 - opencl_3d_image_writes
 - clCreate*WithProperties APIs which can be used as replacement for existing clCreateBuffer/Image APIs.
 - clSetContextDestructorCallback
 - clCloneKernel from OpenCL 2.1
 - clEnqueueSVMMigrateMem from OpenCL 2.1
 - Incorporates the experimental 2.0 Device side enqueue

The current implementation is limited to 64-bit platforms only. Allows kernels to be enqueued with global_work_size larger than the compute capability of the NVIDIA GPU. The current implementation supports only combinations of global_work_size and local_work_size that are within the compute capability of the NVIDIA GPU.

The maximum supported CUDA grid and block size of NVIDIA GPUs is available at http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities. For a given grid dimension, the global_work_size can be determined by CUDA grid size x CUDA block size.

For executing kernels (whether from the host or the device), OpenCL 3.0 supports non-uniform ND-ranges where global_work_size does not need to be divisible by the
local_work_size. This capability is not yet supported in the NVIDIA driver, and therefore not supported for device side kernel enqueues.

Note: Other OpenCL 2.X entry-points which are now optional and are not supported in NVIDIA OpenCL 3.0 will behave as described at https://www.khronos.org/registry/OpenCL/specs/3.0-unified/html/OpenCL_API.html#opencl-3.0-backwards-compatibility

1.3. Fixed Issues

- **Security updates:** See Security Bulletin: NVIDIA GPU Display Driver - February 2022, which is posted shortly after the release date of this driver and will be listed on the NVIDIA Product Security page.

1.4. Known Issues

General

- `nvidia-release-upgrade` may report that not all updates have been installed and exit.

 When running the `nvidia-release-upgrade` command on DGX systems running DGX OS 4.99.x, it may exit and tell users: “Please install all available updates for your release before upgrading” even though all upgrades have been installed.

 Users who see this can run the following command:

  ```
sudo apt install -y nvidia-fabricmanager-450/bionic-updates --allow-downgrades
  ```

 After running this, proceed with the regular upgrade steps:

  ```
sudo apt update
sudo apt full-upgrade -y
sudo apt install -y nvidia-release-upgrade
sudo nvidia-release-upgrade
  ```

- By default, Fabric Manager runs as a systemd service. If using `DAEMONIZE=0` in the Fabric Manager configuration file, then the following steps may be required.

 1. Disable FM service from auto starting. ([`systemctl disable nvidia-fabricmanager`]

 2. Once the system is booted, manually start FM process. ([`/usr/bin/nv-fabricmanager -c /usr/share/nvidia/nvswitch/fabricmanager.cfg`]. Note, since the process is not a daemon, the SSH/Shell prompt will not be returned (use another SSH shell for other activities or run FM as a background task).

- On NVSwitch systems with Windows Server 2019 in shared NVSwitch virtualization mode, the host may hang or crash when a GPU is disabled in the guest VM. This issue is under investigation.
GPU Performance Counters

The use of developer tools from NVIDIA that access various performance counters requires administrator privileges. See this note for more details. For example, reading NVLink utilization metrics from `nvidia-smi` (`nvidia-smi nvlink -g 0`) would require administrator privileges.

NoScanout Mode

NoScanout mode is no longer supported on NVIDIA Data Center GPU products. If NoScanout mode was previously used, then the following line in the “screen” section of `/etc/X11/xorg.conf` should be removed to ensure that X server starts on data center products:

```
Option         "UseDisplayDevice" "None"
```

NVIDIA Data Center GPU products now support one display of up to 4K resolution.

Unified Memory Support

Some Unified Memory APIs (for example, CPU page faults) are not supported on Windows in this version of the driver. Review the CUDA Programming Guide on the system requirements for Unified Memory.

CUDA and unified memory is not supported when used with Linux power management states S3/S4.

IMPU FRU for Volta GPUs

The driver does not support the IPMI FRU multi-record information structure for NVLink. See the Design Guide for Tesla P100 and Tesla V100-SXM2 for more information.

OpenCL 3.0 Known Issues

- Device-Side-Enqueue related queries may return 0 values, although corresponding built-ins can be safely used by kernel. This is in accordance with conformance requirements described at https://www.khronos.org/registry/OpenCL/specs/3.0-unified/html/OpenCL_API.html#opencl-3.0-backwardscompatibility

- Shared virtual memory - the current implementation of shared virtual memory is limited to 64-bit platforms only.
Chapter 2. Virtualization

To make use of GPU passthrough with virtual machines running Windows and Linux, the hardware platform must support the following features:

- A CPU with hardware-assisted instruction set virtualization: Intel VT-x or AMD-V.
- Platform support for I/O DMA remapping.
- On Intel platforms the DMA remapper technology is called Intel VT-d.
- On AMD platforms it is called AMD IOMMU.

Support for these features varies by processor family, product, and system, and should be verified at the manufacturer’s website.

Supported Hypervisors

The following hypervisors are supported:

<table>
<thead>
<tr>
<th>Hypervisor</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citrix XenServer</td>
<td>Version 6.0 and later</td>
</tr>
<tr>
<td>VMware vSphere (ESX/ESXi)</td>
<td>Version 5.1 and later.</td>
</tr>
<tr>
<td>Red Hat KVM</td>
<td>Red Hat Enterprise Linux 7 with KVM</td>
</tr>
<tr>
<td>Microsoft Hyper-V</td>
<td>Windows Server 2016 Hyper-V Generation 2</td>
</tr>
</tbody>
</table>

Tesla products now support one display of up to 4K resolution.

Supported Graphics Cards

The following GPUs are supported for device passthrough:

<table>
<thead>
<tr>
<th>GPU Family</th>
<th>Boards Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVIDIA Ampere GPU Architecture</td>
<td>NVIDIA A100, A40, A30, A16, A10</td>
</tr>
<tr>
<td>Turing</td>
<td>NVIDIA T4</td>
</tr>
<tr>
<td>Volta</td>
<td>NVIDIA V100</td>
</tr>
<tr>
<td>Pascal</td>
<td>Tesla: P100, P40, P4</td>
</tr>
<tr>
<td>GPU Family</td>
<td>Boards Supported</td>
</tr>
<tr>
<td>------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Maxwell</td>
<td>Tesla: M60, M40, M6, M4</td>
</tr>
<tr>
<td>Kepler</td>
<td>Tesla: K520, K80</td>
</tr>
</tbody>
</table>
Chapter 3. Hardware and Software Support

Support for these features varies by processor family, product, and system, and should be verified at the manufacturer’s website.

Supported Operating Systems for NVIDIA Data Center GPUs

The Release 470 driver is supported on the following operating systems:

- Windows x86_64 operating systems:
 - Microsoft Windows® Server 2022
 - Microsoft Windows® Server 2019
 - Microsoft Windows® Server 2016
 - Microsoft Windows® 11
 - Microsoft Windows® 10

- The table below summarizes the supported Linux 64-bit distributions. For a complete list of distributions, kernel versions supported, see the CUDA Linux System Requirements documentation.

<table>
<thead>
<tr>
<th>Distribution</th>
<th>x86_64</th>
<th>POWER</th>
<th>Arm64 Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpenSUSE Leap 15.x (where y <= 3)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Red Hat Enterprise Linux / CentOS 8.y (where y <= 5)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Red Hat Enterprise Linux / CentOS 7.y (where y <= 9)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>SUSE Linux Enterprise Server 15.x (where y <= 3)</td>
<td>Yes</td>
<td>No</td>
<td>Yes [see note]</td>
</tr>
<tr>
<td>Ubuntu 20.04 LTS</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Hardware and Software Support

NVIDIA Data Center GPU Driver version 470.103.01 (Linux) / 472.98 (Windows)

<table>
<thead>
<tr>
<th>Distribution</th>
<th>x86_64</th>
<th>POWER</th>
<th>Arm64 Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ubuntu 18.04.z LTS</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>(where z <= 6)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note that SUSE Linux Enterprise Server (SLES) 15.3 is provided as a preview for Arm64 server since there are known issues when running some CUDA applications related to dependencies on glibc 2.27.

Supported Operating Systems and CPU Configurations for HGX A100

The Release 470 driver is validated with HGX A100 on the following operating systems and CPU configurations:

- Linux 64-bit distributions:
 - Red Hat Enterprise Linux 8.5 (in 4/8/16-GPU configurations)
 - Red Hat Enterprise Linux 7.9 (in 4/8/16-GPU configurations)
 - CentOS Linux 8.5 (in 4/8/16-GPU configurations)
 - CentOS Linux 7.9 (in 4/8/16-GPU configurations)
 - Ubuntu 18.04.6 LTS (in 4/8/16-GPU configurations)
 - SUSE SLES 15.3 (in 4/8/16-GPU configurations)

- CPU Configurations:
 - AMD Rome in PCIe Gen4 mode
 - Intel Skylake/Cascade Lake (4-socket) in PCIe Gen3 mode

Supported Virtualization Configurations

The Release 470 driver is validated with HGX A100 on the following configurations:

- Passthrough (full visibility of GPUs and NVSwitches to guest VMs):
 - 8-GPU configurations with Ubuntu 18.04.4 LTS

- Shared NVSwitch (guest VMs only have visibility of GPUs and full NVLink bandwidth between GPUs in the same guest VM):
 - 16-GPU configurations with Ubuntu 18.04.4 LTS
 - 1/2/4/8-GPU configurations with Windows x86_64 operating systems:
 - Microsoft Windows® Server 2019
 - Microsoft Windows® Server 2016
 - Microsoft Windows® 10

API Support

This release supports the following APIs:
NVIDIA® CUDA® 11.4 for NVIDIA® Kepler™, Maxwell™, Pascal™, Volta™, Turing™ and NVIDIA Ampere architecture GPUs

- OpenGL® 4.6
- Vulkan® 1.2
- DirectX 11
- DirectX 12 (Windows 10)
- Open Computing Language (OpenCL™ software) 3.0

Note that for using graphics APIs on Windows (i.e. OpenGL, Vulkan, DirectX 11 and DirectX 12) or any WDDM 2.0+ based functionality on Data Center GPUs, vGPU is required. See the vGPU documentation for more information.

Supported NVIDIA Data Center GPUs

The NVIDIA Data Center GPU driver package is designed for systems that have one or more Data Center GPU products installed. This release of the driver supports CUDA C/C++ applications and libraries that rely on the CUDA C Runtime and/or CUDA Driver API.

ATTENTION: Release 470 will be the last driver branch to support Data Center GPUs based on the Kepler architecture. This includes discontinued support for the following compute capabilities:

- sm_30 (Kepler)
- sm_32 (Kepler)
- sm_35 (Kepler)
- sm_37 (Kepler)

NVIDIA Server Platforms

<table>
<thead>
<tr>
<th>Product</th>
<th>Architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVIDIA HGX A100</td>
<td>A100 and NVSwitch</td>
</tr>
<tr>
<td>NVIDIA HGX-2</td>
<td>V100 and NVSwitch</td>
</tr>
</tbody>
</table>

RTX-Series / T-Series Products

<table>
<thead>
<tr>
<th>Product</th>
<th>GPU Architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVIDIA RTX A6000</td>
<td>NVIDIA Ampere</td>
</tr>
<tr>
<td>NVIDIA RTX A5000</td>
<td>NVIDIA Ampere</td>
</tr>
<tr>
<td>NVIDIA RTX A4000</td>
<td>NVIDIA Ampere</td>
</tr>
<tr>
<td>Quadro RTX 8000</td>
<td>Turing</td>
</tr>
</tbody>
</table>
RTX-Series / T-Series Products

<table>
<thead>
<tr>
<th>Product</th>
<th>GPU Architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quadro RTX 6000</td>
<td>Turing</td>
</tr>
<tr>
<td>NVIDIA T1000</td>
<td>Turing</td>
</tr>
<tr>
<td>NVIDIA T600</td>
<td>Turing</td>
</tr>
<tr>
<td>NVIDIA T400</td>
<td>Turing</td>
</tr>
</tbody>
</table>

Data Center A-Series Products

<table>
<thead>
<tr>
<th>Product</th>
<th>GPU Architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVIDIA A100</td>
<td>NVIDIA Ampere</td>
</tr>
<tr>
<td>NVIDIA A100 80 GB PCIe</td>
<td>NVIDIA Ampere</td>
</tr>
<tr>
<td>NVIDIA A40</td>
<td>NVIDIA Ampere</td>
</tr>
<tr>
<td>NVIDIA A30</td>
<td>NVIDIA Ampere</td>
</tr>
<tr>
<td>NVIDIA A16</td>
<td>NVIDIA Ampere</td>
</tr>
<tr>
<td>NVIDIA A10</td>
<td>NVIDIA Ampere</td>
</tr>
</tbody>
</table>

Data Center T-Series Products

<table>
<thead>
<tr>
<th>Product</th>
<th>GPU Architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVIDIA T4</td>
<td>Turing</td>
</tr>
</tbody>
</table>

Data Center V-Series Products

<table>
<thead>
<tr>
<th>Product</th>
<th>GPU Architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVIDIA V100</td>
<td>Volta</td>
</tr>
</tbody>
</table>

Data Center P-Series Products

<table>
<thead>
<tr>
<th>Product</th>
<th>GPU Architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVIDIA Tesla P100</td>
<td>Pascal</td>
</tr>
<tr>
<td>NVIDIA Tesla P40</td>
<td>Pascal</td>
</tr>
<tr>
<td>NVIDIA Tesla P4</td>
<td>Pascal</td>
</tr>
</tbody>
</table>

Data Center K-Series Products

<table>
<thead>
<tr>
<th>Product</th>
<th>GPU Architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVIDIA Tesla K520</td>
<td>Kepler</td>
</tr>
<tr>
<td>NVIDIA Tesla K80</td>
<td>Kepler</td>
</tr>
</tbody>
</table>
Data Center M-Class Products

<table>
<thead>
<tr>
<th>Product</th>
<th>GPU Architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVIDIA Tesla M60</td>
<td>Maxwell</td>
</tr>
<tr>
<td>NVIDIA Tesla M40 24 GB</td>
<td>Maxwell</td>
</tr>
<tr>
<td>NVIDIA Tesla M40</td>
<td>Maxwell</td>
</tr>
<tr>
<td>NVIDIA Tesla M6</td>
<td>Maxwell</td>
</tr>
<tr>
<td>NVIDIA Tesla M4</td>
<td>Maxwell</td>
</tr>
</tbody>
</table>
Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document. Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms of Sale for the product.

Trademarks

NVIDIA and the NVIDIA logo are trademarks and/or registered trademarks of NVIDIA Corporation in the Unites States and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright

© 2022 NVIDIA Corporation & affiliates. All rights reserved.