

Data Center Driver version 418.226.00 (Linux) / 427.60 (Windows)

Release Notes

Table of Contents

Chapter 1. Version Highlights	1
1.1. Fixed Issues	1
1.2. Known Issues	1
1.3. Virtualization	2
Chapter 2. Hardware and Software Support	4

Chapter 1. Version Highlights

This section provides highlights of the NVIDIA Tesla 418 Driver, version 418.226.00 for Linux and 427.60 for Windows. For changes related to the 418 release of the NVIDIA display driver, review the file "NVIDIA_Changelog" available in the .run installer packages.

- Linux driver release date: 10/26/2021
- ▶ Windows driver release date: 10/26/2021

1.1. Fixed Issues

Security updates: See Security Bulletin: NVIDIA GPU Display Driver - October 2021, which is available on the release date of this driver and is listed on the <u>NVIDIA Product Security</u> page.

1.2. Known Issues

GPU Performance Counters

The use of developer tools from NVIDIA that access various performance counters requires administrator privileges. See this <u>note</u> for more details. For example, reading NVLink utilization metrics from nvidia-smi (nvidia-smi nvlink -g 0) would require administrator privileges.

NVML

NVML APIs may report incorrect values for NVLink counters (read/write). This issue will be fixed in a later release of the driver.

NoScanout Mode

NoScanout mode is no longer supported on NVIDIA Data Center GPU products. If NoScanout mode was previously used, then the following line in the "screen" section of /etc/X11/xorg.conf should be removed to ensure that X server starts on data center products:

Option "UseDisplayDevice" "None"

Tesla products now support one display of up to 4K resolution.

Unified Memory Support

Some Unified Memory APIs (for example, CPU page faults) are not supported on Windows in this version of the driver. Review the CUDA Programming Guide on the system requirements for Unified Memory

CUDA and unified memory is not supported when used with Linux power management states S3/S4.

IMPU FRU for Volta GPUs

The driver does not support the IPMI FRU multi-record information structure for NVLink. See the Design Guide for Tesla P100 and Tesla V100-SXM2 for more information.

Experimental OpenCL Features

Select features in OpenCL 2.0 are available in the driver for evaluation purposes only.

The following are the features as well as a description of known issues with these features in the driver:

Device side enqueue

- The current implementation is limited to 64-bit platforms only.
- OpenCL 2.0 allows kernels to be enqueued with global_work_size larger than the compute capability of the NVIDIA GPU. The current implementation supports only combinations of global_work_size and local_work_size that are within the compute capability of the NVIDIA GPU. The maximum supported CUDA grid and block size of NVIDIA GPUs is available at http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#computecapabilities. For a given grid dimension, the global_work_size can be determined by CUDA grid size x CUDA block size.
- For executing kernels (whether from the host or the device), OpenCL 2.0 supports non-uniform ND-ranges where global_work_size does not need to be divisible by the local_work_size. This capability is not yet supported in the NVIDIA driver, and therefore not supported for device side kernel enqueues.

Shared virtual memory

• The current implementation of shared virtual memory is limited to 64-bit platforms only.

1.3. Virtualization

To make use of GPU passthrough with virtual machines running Windows and Linux, the hardware platform must support the following features:

► A CPU with hardware-assisted instruction set virtualization: Intel VT-x or AMD-V.

- ▶ Platform support for I/O DMA remapping.
- On Intel platforms the DMA remapper technology is called Intel VT-d.
- On AMD platforms it is called AMD IOMMU.

Support for these feature varies by processor family, product, and system, and should be verified at the manufacturer's website.

Supported Hypervisors

The following hypervisors are supported:

Hypervisor	Notes
Citrix XenServer	Version 6.0 and later
VMware vSphere (ESX / ESXi)	Version 5.1 and later.
Red Hat KVM	Red Hat Enterprise Linux 7 with KVM
Microsoft Hyper-V	Windows Server 2016 Hyper-V Generation 2

Tesla products now support one display of up to 4K resolution.

Supported Graphics Cards

The following GPUs are supported for device passthrough:

GPU Family	Boards Supported
Turing	Tesla: T4
Volta	Tesla: V100
Pascal	Tesla: P100, P40, P4
Maxwell	Tesla: M60, M40, M6, M4
Kepler	Tesla: K520, K80

Chapter 2. Hardware and Software Support

Support for these feature varies by processor family, product, and system, and should be verified at the manufacturer's website.

Supported Operating Systems

The Release 418 driver is supported on the following operating systems:

- Windows 64-bit operating systems:
 - ▶ Microsoft Windows[®] Server 2019
 - ▶ Microsoft Windows[®] Server 2016
 - ► Microsoft Windows[®] 10
- Linux 64-bit distributions:
 - Red Hat Enterprise Linux / CentOS 8.y (where y <= 4)</p>
 - Red Hat Enterprise Linux / CentOS 7.y (where y <= 9)</p>
 - SUSE Linux Enterprise Server 15.3
 - Ubuntu 18.04.z LTS (where z <= 5)</p>
 - OpenSUSE Leap 15.3

API Support

This release supports the following APIs:

- NVIDIA[®] CUDA[®] 10.1 for NVIDIA[®] KeplerTM, MaxwellTM, PascalTM, VoltaTM and TuringTM GPUs
- ▶ OpenGL[®] 4.5
- ▶ Vulkan® 1.1
- DirectX 11
- DirectX 12 (Windows 10)
- ▶ Open Computing Language (OpenCLTM software) 1.2

Note that for using graphics APIs on Windows (i.e. OpenGL, Vulkan, DirectX 11 and DirectX 12) or any WDDM 2.0+ based functionality on Tesla GPUs, vGPU is required. See the <u>vGPU</u> <u>documentation</u> for more information.

Supported NVIDIA Tesla GPUs

_ . _ _. .

The Tesla driver package is designed for systems that have one or more Tesla products installed. This release of the Tesla driver supports CUDA C/C++ applications and libraries that rely on the CUDA C Runtime and/or CUDA Driver API.

Tesla Server Platforms			
Product	Architecture		
NVIDIA HGX-2	V100 and NVSwitch		
Tesla T-Series Products			
Product	GPU Architecture		
NVIDIA Tesla T4	Turing		
Tesla V-Series Products			
Product	GPU Architecture		
NVIDIA Tesla V100	Volta		
Tesla P-Series Products			
Product	GPU Architecture		
NVIDIA Tesla P100	Pascal		
NVIDIA Tesla P40	Pascal		
NVIDIA Tesla P4	Pascal		
Tesla K-Series Products			
Product	GPU Architecture		
NVIDIA Tesla K520	Kepler		
NVIDIA Tesla K80	Kepler		
Tesla M-Class Products			
Product	GPU Architecture		
NVIDIA Tesla M60	Maxwell		
NVIDIA Tesla M40 24 GB	Maxwell		
NVIDIA Tesla M40	Maxwell		
NVIDIA Tesla M6	Maxwell		

Tesla M-Class Products		
Product	GPU Architecture	
NVIDIA Tesla M4	Maxwell	

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA Corporation ("NVIDIA") makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer ("Terms of Sale"). NVIDIA hereby expressly objects to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer's own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA. It is customer's sole responsibility to evaluate and determine the applicability of any information contained in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of the application or the product. Weaknesses in customer's product designs may affect the quality and reliability of the NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document. Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. NOWWITHS aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms of Sale for the product.

Trademarks

NVIDIA and the NVIDIA logo are trademarks and/or registered trademarks of NVIDIA Corporation in the Unites States and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright

© 2021 NVIDIA Corporation & affiliates. All rights reserved.

