
RN-08667-001_v8.0.3 | August 2020

cuDNN Release Notes

cuDNN Release Notes RN-08667-001_v8.0.3 | ii

Table of Contents

Chapter 1. cuDNN Overview...1

Chapter 2. cuDNN Release 8.x.x..2
2.1. cuDNN Release 8.0.3..2

2.2. cuDNN Release 8.0.2..7

2.3. cuDNN Release 8.0.1 Preview..12

2.4. cuDNN Release 8.0.0 Preview..16

Chapter 3. cuDNN Release 7.x.x..25
3.1. cuDNN 7.6.5.. 25

3.2. cuDNN 7.6.4.. 27

3.3. cuDNN 7.6.3.. 28

3.4. cuDNN 7.6.2.. 30

3.5. cuDNN 7.6.1.. 31

3.6. cuDNN 7.6.0.. 34

3.7. cuDNN 7.5.1.. 37

3.8. cuDNN 7.5.0.. 38

3.9. cuDNN 7.4.2.. 42

3.10. cuDNN 7.4.1.. 43

3.11. cuDNN 7.3.1.. 44

3.12. cuDNN 7.3.0.. 46

3.13. cuDNN 7.2.1.. 48

3.14. cuDNN 7.1.4.. 50

3.15. cuDNN 7.1.3.. 51

3.16. cuDNN 7.1.2.. 52

3.17. cuDNN 7.1.1.. 54

3.18. cuDNN 7.0.5.. 56

3.19. cuDNN 7.0.4.. 57

3.20. cuDNN 7.0.3.. 58

3.21. cuDNN 7.0.2.. 59

3.22. cuDNN 7.0.1.. 60

cuDNN Release Notes RN-08667-001_v8.0.3 | 1

Chapter 1. cuDNN Overview

NVIDIA cuDNN is a GPU-accelerated library of primitives for deep neural networks. It provides
highly tuned implementations of routines applied frequently in DNN applications:

‣ Convolution forward and backward, including cross-correlation

‣ Pooling forward and backward

‣ Softmax forward and backward

‣ Neuron activations forward and backward:

‣ Rectified linear (ReLU)

‣ Sigmoid

‣ Hyperbolic tangent (TANH)

‣ Tensor transformation functions

‣ LRN, LCN and batch normalization forward and backward

cuDNN convolution routines aim for performance that is competitive with the fastest GEMM
(matrix multiply)-based implementations of such routines while using significantly less
memory.

cuDNN features customizable data layouts supporting flexible dimension ordering, striding,
and subregions for the 4D tensors used as inputs and outputs in all of its routines. This
flexibility allows easy integration into any neural network implementation and avoids the input/
output transposition steps sometimes necessary with GEMM-based convolutions.

cuDNN offers a context-based API that allows for easy multi-threading and (optional)
interoperability with CUDA streams.

cuDNN Release Notes RN-08667-001_v8.0.3 | 2

Chapter 2. cuDNN Release 8.x.x

2.1. cuDNN Release 8.0.3
This is the cuDNN 8.0.3 release notes. This release includes fixes from the previous cuDNN
v8.0.x releases as well as the following additional changes. These release notes are applicable
to both cuDNN and JetPack users of cuDNN unless appended specifically with (not applicable
for Jetson platforms).

For previous cuDNN documentation, see the cuDNN Archived Documentation.

Key Features and Enhancements

cuDNN Backend API

Documentation for the cuDNN Backend API has been included in this release. Users
specify the computational case, set up an execution plan for it, and execute the computation
via numerous descriptors. The typical use pattern for a descriptor with attributes consists
of the following sequence of API calls:

 1. cudnnBackendCreateDescriptor() creates a descriptor of a specified type.

 2. cudnnBackendSetAttribute() sets the values of a settable attribute for the descriptor. All
required attributes must be set before the next step.

 3. cudnnBackendFinalize() finalizes the descriptor.

 4. cudnnBackendGetAttribute() gets the values of an attribute from a finalized descriptor.

For more information, refer to the cuDNN Backend API section in the cuDNN API Reference.

Compatibility

For the latest compatibility software versions of the OS, CUDA, the CUDA driver, and the
NVIDIA hardware, see the cuDNN Support Matrix for 8.x.x.

Limitations

‣ Samples must be installed in a writable location, otherwise the samples can crash.

https://docs.nvidia.com/deeplearning/sdk/cudnn-archived/index.html
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#backend-cudnnBackendCreateDescriptor
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#backend-cudnnBackendSetAttribute
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#backend-cudnnBackendFinalize
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#backend-cudnnBackendGetAttribute
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnn-backend-api
https://docs.nvidia.com/deeplearning/sdk/cudnn-support-matrix/index.html#cudnn-cuda-hardware-versions

cuDNN Release 8.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 3

‣ RNN and multi-head attention API calls may exhibit non-deterministic behavior when
the cuDNN 8.0.3 library is built with CUDA Toolkit 10.2 or higher. This is the result of a
new buffer management and heuristics in the cuBLAS library. As described in the Results
Reproducibility section in the cuBLAS Library User Guide, numerical results may not be
deterministic when cuBLAS APIs are launched in more than one CUDA stream via the
same cuBLAS handle. This is caused by two buffer sizes (16 KB and 4 MB) used in the
default configuration.

When a larger buffer size is not available at runtime, instead of waiting for a buffer of that
size to be released, a smaller buffer may be used with a different GPU kernel. The kernel
selection may affect numerical results. The user can eliminate the non-deterministic
behavior of cuDNN RNN and multi-head attention APIs, by setting a single buffer size in
the CUBLAS_WORKSPACE_CONFIG environmental variable, for example, :16:8 or :4096:2.

The first configuration instructs cuBLAS to allocate eight buffers of 16 KB each in GPU
memory while the second setting creates two buffers of 4 MB each. The default buffer
configuration in cuBLAS 10.2 and 11.0 is :16:8:4096:2, i.e., we have two buffer sizes.
In earlier cuBLAS libraries, such as cuBLAS 10.0, it used the :16:8 non-adjustable
configuration. When buffers of only one size are available, the behavior of cuBLAS calls is
deterministic in multi-stream setups.

‣ The tensor pointers and the filter pointers require at a minimum 4-byte alignment,
including INT8 data in the cuDNN library.

‣ Some computational options in cuDNN 8.0.3 now require increased alignment on tensors
in order to run performantly. As always, cuDNN recommends users to align tensors
to 128-bit boundaries which will be sufficiently aligned for any computational option in
cuDNN. Doing otherwise may cause performance regressions in cuDNN 8.0.3 compared to
cuDNN v7.6.

‣ For certain algorithms when the computation is in float (32-bit float) and the output is in
FP16 (half float), there are cases where the numerical accuracy between the different
algorithms might differ. cuDNN 8.0.3 users can target the backend API to query the
numerical notes of the algorithms to get the information programmatically. There are
cases where algo0 and algo1 will have a reduced precision accumulation when users
target the legacy API. In all cases, these numerical differences are not known to affect
training accuracy even though they might show up in unit tests.

‣ For the _ALGO_0 algorithm of convolution backward data and backward filter, grouped
convolution with groups larger than 1 and with odd product of dimensions C, D (if 3D
convolution), H, and W is not supported on devices older than Volta. To prevent a potential
illegal memory access by an instruction that only has a 16-bit version in Volta and above,
pad at least one of the dimensions to an even value.

‣ On K80 GPUs when cudnnConvolutionForward() is used with
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM algorithm and half input/
output data types a silent error might occur when the output width Q is 1 and both height
and width padding are zero.

https://docs.nvidia.com/cuda/cublas/index.html#cublasXtApi_reproducibility
https://docs.nvidia.com/cuda/cublas/index.html#cublasXtApi_reproducibility
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBiasActivationForward

cuDNN Release 8.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 4

‣ Several cuDNN APIs are unable to directly support computations using integer types
(CUDNN_DATA_INT8, CUDNN_DATA_INT8x4, CUDNN_DATA_INT8x32 or CUDNN_DATA_INT32).
Floating types (particularly CUDNN_DATA_FLOAT) are much more widely supported. If an
API does not support the desired type, cudnnTransformTensor() can be used to support
the use case by converting to/from a supported type and the desired type. Here are the
steps for doing so:

 1. Convert all input tensors from their native type to a supported type
(CUDNN_DATA_FLOAT is recommended).

 2. Run cuDNN API using the converted input tensors and output tensor descriptors set as
CUDNN_DATA_FLOAT.

 3. Convert all output tensors from a supported type to your desired output type.

Note: This will require extra memory use for the temporary buffers. Further, this will
introduce an additional round trip to memory which might noticeably impact performance.

‣ In INT8x32 Tensor Core cases, the parameters supported by cuDNN v7.6 are limited to W
>= (R-1) * dilationW && H >= (S-1) * dilationH, whereas, in cuDNN v8.0.x, W ==
(R-1) * dilationW || H == (S-1) * dilationH cases are no longer supported.

‣ In prior versions of cuDNN, some convolution algorithms can use texture-based load
instructure for performance improvements particularly in older hardware architectures.
Users can opt-out of using texture using the environmental variable CUDNN_TEXOFF_DBG.
In cuDNN 8.x, this variable is removed. Texture loading is turned off by default. Users who
wish to continue to use texture-based load, can adapt the new backend API and toggle the
engine knob CUDNN_KNOB_TYPE_USE_TEX to 1 for engines that support texture-based load
instructions.

‣ In the backend API, convolution forward engine with
CUDNN_ATTR_ENGINE_GLOBAL_INDEX=1 is not supported when the product (channels *
height * width) of the input image exceeds 536,870,912 which is 2^29.

Fixed Issues

‣ For cudnnConvolutionBackwardFilter, the 3D convolution table, wDesc: _NCHW, _ALGO_1
and FFT_TILING had incorrect data fields. This has been fixed in this release.

‣ In prior versions of cuDNN, cudnnPoolingForward() with pooling mode
CUDNN_POOLING_MAX might return incorrect result when one of the spatial dimensions
has negative padding and the output tensor is larger than the value recommended by
cudnnGetPoolingNdForwardOutputDim() or cudnnGetPooling2dForwardOutputDim(). This
issue has been fixed in this release.

‣ In cudnnPoolingForward() with average-pooling, when the output tensor data is INT8 type,
it is possible for some pixels result to be off by 1. Note that cudnnPoolingForward()
rounds to the nearest-even integer. This issue has been fixed in this release.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionBackwardFilter
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnPoolingForward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetPoolingNdForwardOutputDim
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetPooling2dForwardOutputDim
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnPoolingForward

cuDNN Release 8.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 5

‣ The performance of cudnnConvolutionBiasActivationForward() for INT8x4 use cases on
Volta and Turing, INT8x32 use cases on Turing, FP32 and pseudo-FP16 use cases on Volta,
Turing, and Ampere GPU architecture have been improved.

‣ We have updated our public headers to fully reflect the documented dependencies
between the 6 sub-libraries.

‣ There were libcudnn_ops/cnn/adv_infer/train_static.a binaries in the cuDNN
Debian and tgz packages. Users were advised not to link against those and link against
libcudnn_static.a instead. Those binaries have been removed from the release
packages.

‣ On Volta and Pascal architectures, performance regressions were present for various
TRUE_HALF convolutions. This has been fixed in this release.

‣ In prior versions of cuDNN, API functions cudnnGetConvolution*Algorithm_v7()
return a workspace size in the result for algo1 that is inconsistent with the result of the
corresponding cudnnGet*Workspace() calls if the math type of the convolution descriptor
is set to CUDNN_FMA_MATH. This issue has been fixed in this release.

‣ The new RNN APIs: cudnnRNNForward(), cudnnRNNBackwardData_v8(), and
cudnnRNNBackwardWeights_v8() were available as a preview in the cuDNN 8.0.2 release.
They no longer hold preview status.

‣ When using cudnnRNN*Ex() APIs, if the user planned to
use CUDNN_RNN_DATA_LAYOUT_SEQ_MAJOR_UNPACKED or
CUDNN_RNN_DATA_LAYOUT_BATCH_MAJOR_UNPACKED as the layout of the RNN data
descriptors, the user would have had to call cudnnSetRNNPaddingMode() to set
the mode to CUDNN_RNN_PADDED_IO_ENABLED after initializing an RNNDescriptor
but before calling cudnnGetRNNWorkspaceSize(). Not doing this would result
in CUDNN_STATUS_EXECUTION_FAILED. We’ve added internal checks to return
CUDNN_STATUS_BAD_PARAM to prevent hitting EXECUTION_FAILED.

‣ When cudnnBatchNormalizationForwardTrainingEx() is called with NHWC tensors with
pseudo-half configuration, under rare occasions the kernel would produce incorrect
results, including possible NaNs in the results. This has been fixed in this release. This
issue affects earlier releases since 7.4.1.

‣ Fused convolution-scale-bias-activation with per-channel α1 and α2 scaling gives
incorrect results when the reorder type in the convolution descriptor is set to
CUDNN_NO_REORDER. This is an issue in cuDNN version 8.0.2 This issue has been fixed in
this release.

‣ On NVIDIA Ampere GA100, cudnnConvolutionBackwardData() for Tensor Core enabled
problems with half input and output could, in rare cases, could produce incorrect
results; the same could happen for users of cudnnBackendExecute() using engine with
CUDNN_ATTR_ENGINE_GLOBAL_INDEX 57 for backward data. This has been fixed in this
release. (not applicable for Jetson platforms)

‣ There was a performance regression in MaskRCNN inference with automatic mixed
precision on V100. This has been fixed in this release.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionBiasActivationForward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationForwardTrainingEx
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionBackwardData
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBackendExecute

cuDNN Release 8.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 6

‣ Two dimensional forward convolutions using algo1 may segfault when the filter size is
large. For example, we’ve observed this issue when the filter width and height are more
than or equal to 363. This has been fixed in this release.

‣ For some 3D spatial non-Tensor-Core convolutions on Maxwell, Pascal, Volta, and
Turing architectures, cudnnBackwardFilter() can return incorrect results when the
convolution width padding exceeds the value (filterWidth - 1)/2. Likewise, users
of cudnnBackendExecute() can experience the same issue when using the engine
with CUDNN_ATTR_ENGINE_GLOBAL_INDEX 32 for backward filter. The issue affecting
cudnnBackwardFilter() has been fixed in this release. With cudnnBackendFinalize(), an
engine descriptor with CUDNN_ATTR_ENGINE_GLOBAL_INDEX 32 and a backward filter
operation that satisfies the above condition will return CUDNN_STATUS_NOT_SUPPORTED.

Known Issues

‣ Occasionally, inaccurate results were observed in outputs of the
cudnnRNNBackwardWeights() and cudnnRNNBackwardWeightsEx() functions when the
RNN cell type was GRU and the NVIDIA Ampere GPU architecture was used with FP32 I/O
and mathType of CUDNN_DEFAULT_MATH or CUDNN_TENSOR_OP_MATH. Users may switch to
CUDNN_FMA_MATH as a temporary workaround. This issue is being investigated.

‣ cudnnRNN*() with LSTM mode may produce inaccurate results on the cy outputs when
clipping is enabled on all GPUs. This issue exists in previous cuDNN releases as well.

‣ On Volta and Pascal architectures, performance regressions may be present for various
TRUE_HALF convolutions.

‣ When the user is using cudnnRNN* APIs with the problem sizes (input size, hidden size)
being not multiples of 16 for FP16 tensors or multiples of 8 for FP32 tensors, users may
encounter a return status of CUDNN_STATUS_EXECUTION_FAILED. This issue also affects
earlier releases cuDNN 8.0.1 Preview and cuDNN 8.0.2.

‣ Some ResNet-50 and SSD mixed precision inference use-cases may have performance
regressions compared to cuDNN 7.6 on V100. V-Net 3D models might have performance
regressions on Turing based architectures.

‣ When using cudnnRNN*Ex() APIs, if the user used
CUDNN_RNN_DATA_LAYOUT_SEQ_MAJOR_UNPACKED or
CUDNN_RNN_DATA_LAYOUT_BATCH_MAJOR_UNPACKED as the layout of the RNN data
descriptors, and if the batch size is larger than 6144 on Volta or NVIDIA Ampere A100
GPUs, or larger than 4096 on Turing GPUs, CUDNN_STATUS_EXECUTION_FAILED would be
returned.

‣ Documentation of the Backend API is not complete. The
CUDNN_BACKEND_OPERATION_GEN_STATS_DESCRIPTOR and
CUDNN_BACKEND_OPERATION_POINTWISE_DESCRIPTOR descriptor types will be
documented in a future release.

‣ The conv_sample_v8.0 sample is not included in the Debian and RPM packages. This will
be fixed in a future release.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBackwardFilter
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBackendExecute
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBackwardFilter
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBackendFinalize

cuDNN Release 8.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 7

‣ The libfreeimage.a library in the RHEL8 ppc64le RPM is for the wrong architecture. This
will be fixed in a future release.

‣ When the user is upgrading from cuDNN 8.0.2 to 8.0.3 through the Debian or RPM
package, before installing libcudnn8-samples_*.deb/rpm, users should manually
uninstall the old libcudnn8-doc package, otherwise a file conflict may happen.

2.2. cuDNN Release 8.0.2
This is the cuDNN 8.0.2 release notes and first GA release of cuDNN 8.x. This release includes
fixes from the previous cuDNN v8.0.x releases as well as the following additional changes.
These release notes are applicable to both cuDNN and JetPack users of cuDNN unless
appended specifically with (not applicable for Jetson platforms).

For previous cuDNN documentation, see the cuDNN Archived Documentation.

Key Features and Enhancements

cuDNN 8.0.1 Preview and 8.0.0 Preview

The key features mentioned in cuDNN 8.0.1 Preview and 8.0.0 Preview are now GA quality in
this release.

Added new API functions to the documentation

cudnnRNNBackwardData_v8() and cudnnRNNBackwardWeights_v8() are now
documented in the cudnn_adv_train.so Library. For a list of functions and data types that
were added in this release, see API Changes For cuDNN 8.0.2.

TF32 performance

‣ TF32 for 3D convolutions and deconvolution performance is significantly better, up to
3.9x, compared to cuDNN 8.0.1.

‣ TF32 for grouped convolutions on A100 were improved up to 1.5x performance
compared to cuDNN 8.0.1 on ResNext convolution layers and up to 3x the performance
compared to V100 with cuDNN v7.6. (not applicable for Jetson platforms)

The above performance improvements were measured using only cuDNN operations. The
observed performance improvements will depend on a number of factors, such as non-
cuDNN operations, kernel run time, and model architecture type.

Performance improvements

This release includes performance improvements on all architectures for 2D and 3D
grouped convolutions compared with version 7.6. Additionally, we improved kernel selection
heuristics on several known Deep Learning GitHub Examples (also known as model
scripts).

https://docs.nvidia.com/deeplearning/sdk/cudnn-archived/index.html
https://docs.nvidia.com/deeplearning/sdk/cudnn-release-notes/rel_8.html#rel-801-Preview
https://docs.nvidia.com/deeplearning/sdk/cudnn-release-notes/rel_8.html#rel-800-Preview
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#release-800
https://github.com/NVIDIA/DeepLearningExamples
https://github.com/NVIDIA/DeepLearningExamples

cuDNN Release 8.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 8

Compatibility

For the latest compatibility software versions of the OS, CUDA, the CUDA driver, and the
NVIDIA hardware, see the cuDNN Support Matrix for 8.x.x.

Limitations

‣ Samples must be installed in a writable location, otherwise the samples can crash.

‣ RNN and multi-head attention API calls may exhibit non-deterministic behavior when
the cuDNN 8.0.2 library is built with CUDA Toolkit 10.2 or higher. This is the result of a
new buffer management and heuristics in the cuBLAS library. As described in the Results
Reproducibility section in the cuBLAS Library User Guide, numerical results may not be
deterministic when cuBLAS APIs are launched in more than one CUDA stream via the
same cuBLAS handle. This is caused by two buffer sizes (16 KB and 4 MB) used in the
default configuration.

When a larger buffer size is not available at runtime, instead of waiting for a buffer of that
size to be released, a smaller buffer may be used with a different GPU kernel. The kernel
selection may affect numerical results. The user can eliminate the non-deterministic
behavior of cuDNN RNN and multi-head attention APIs, by setting a single buffer size in
the CUBLAS_WORKSPACE_CONFIG environmental variable, for example, :16:8 or :4096:2.

The first configuration instructs cuBLAS to allocate eight buffers of 16 KB each in GPU
memory while the second setting creates two buffers of 4 MB each. The default buffer
configuration in cuBLAS 10.2 and 11.0 is :16:8:4096:2, i.e., we have two buffer sizes.
In earlier cuBLAS libraries, such as cuBLAS 10.0, it used the :16:8 non-adjustable
configuration. When buffers of only one size are available, the behavior of cuBLAS calls is
deterministic in multi-stream setups.

‣ The tensor pointers and the filter pointers require at a minimum 4-byte alignment,
including INT8 data in the cuDNN library.

‣ Some computational options in cuDNN 8.0.2 now require increased alignment on tensors
in order to run performantly. As always, cuDNN recommends users to align tensors
to 128-bit boundaries which will be sufficiently aligned for any computational option in
cuDNN. Doing otherwise may cause performance regressions in cuDNN 8.0.2 compared to
cuDNN v7.6.

‣ For certain algorithms when the computation is in float (32-bit float) and the output is in
FP16 (half float), there are cases where the numerical accuracy between the different
algorithms might differ. cuDNN 8.0.2 users can target the backend API to query the
numerical notes of the algorithms to get the information programmatically. There are
cases where algo0 and algo1 will have a reduced precision accumulation when users
target the legacy API. In all cases, these numerical differences are not known to affect
training accuracy even though they might show up in unit tests.

‣ For the _ALGO_0 algorithm of convolution backward data and backward filter, grouped
convolution with groups larger than 1 and with odd product of dimensions C, D (if 3D

https://docs.nvidia.com/deeplearning/sdk/cudnn-support-matrix/index.html#cudnn-cuda-hardware-versions
https://docs.nvidia.com/cuda/cublas/index.html#cublasXtApi_reproducibility
https://docs.nvidia.com/cuda/cublas/index.html#cublasXtApi_reproducibility

cuDNN Release 8.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 9

convolution), H, and W is not supported on devices older than Volta. To prevent a potential
illegal memory access by an instruction that only has a 16-bit version in Volta and above,
pad at least one of the dimensions to an even value.

‣ On K80 GPUs when cudnnConvolutionForward() is used with
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM algorithm and half input/
output data types a silent error might occur when the output width Q is 1 and both height
and width padding are zero.

‣ Several cuDNN APIs are unable to directly support computations using integer types
(CUDNN_DATA_INT8, CUDNN_DATA_INT8x4, CUDNN_DATA_INT8x32 or CUDNN_DATA_INT32).
Floating types (particularly CUDNN_DATA_FLOAT) are much more widely supported. If an
API does not support the desired type, cudnnTransformTensor() can be used to support
the use case by converting to/from a supported type and the desired type. Here are the
steps for doing so:

 1. Convert all input tensors from their native type to a supported type
(CUDNN_DATA_FLOAT is recommended).

 2. Run cuDNN API using the converted input tensors and output tensor descriptors set as
CUDNN_DATA_FLOAT.

 3. Convert all output tensors from a supported type to your desired output type.

Note: This will require extra memory use for the temporary buffers. Further, this will
introduce an additional round trip to memory which might noticeably impact performance.

‣ In INT8x32 Tensor Core cases, the parameters supported by cuDNN v7.6 are limited to W
>= (R-1) * dilationW && H >= (S-1) * dilationH, whereas, in cuDNN v8.0.x, W ==
(R-1) * dilationW || H == (S-1) * dilationH cases are no longer supported.

‣ In prior versions of cuDNN, some convolution algorithms can use texture-based load
instructure for performance improvements particularly in older hardware architectures.
Users can opt-out of using texture using the environmental variable CUDNN_TEXOFF_DBG.
In cuDNN 8.x, this variable is removed. Texture loading is turned off by default. Users who
wish to continue to use texture-based load, can adapt the new backend API and toggle the
engine knob CUDNN_KNOB_TYPE_USE_TEX to 1 for engines that support texture-based load
instructions.

Fixed Issues

The following issues have been fixed in this release:

‣ The implementation of cuDNNLRNCrossChannelBackward() for even-sized normalization
windows was incorrect in all previous releases. This issue has been fixed in this release.

‣ There isn’t a dedicated API to query the supported or the most performant algo for
cudnnConvolutionBiasActivationForward() in cuDNN. It is not recommended to
query w via cudnnGetConvolutionForwardAlgorithm_v7. Instead, we recommend using
the cuDNN version 8 backend API. The number of supported engines can be queried using

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBiasActivationForward

cuDNN Release 8.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 10

enum CUDNN_ATTR_OPERATIONGRAPH_ENGINE_GLOBAL_COUNT from an operation graph
descriptor via cudnnBackendGetAttribute().

‣ A memcheck error may have occurred on cuDNN version 7.x builds when calling
cudnnConvolutionBackwardFilter () on Volta or Turing GPUs. This issue has been
fixed in this release.

‣ Various convolutions which exhibited sub-optimal performance on GA100 GPU are now
achieving ideal performance. (not applicable for Jetson platforms)

‣ cudnnCnnTrainVersionCheck() and cudnnCnnInferVersionCheck() were missing in
past releases. This issue has been fixed in this release.

‣ Documentation of RNN new APIs and deprecations is not complete. The
cudnnRNNBackwardData_v8() and cudnnRNNBackwardWeights_v8() have been added to
this release.

‣ cuDNN 8.0.1 built with Windows and CUDA 11.0 RC had reduced performance on 2D, 3D,
and grouped convolutions compared to Linux. This issue has been fixed in this release. (not
applicable for Jetson platforms)

‣ There was a known issue in cuDNN 8.0.1 when linking statically to cuDNN and using
the library's 3D algo1 backward filter convolutions. Users would see the library emit an
internal error or incorrectly state that a shared library was missing. This issue has been
fixed in this release.

‣ When using an RPM file on RedHat for installation, upgrading from cuDNN v7 to cuDNN
v8 directly or indirectly via TensorRT 7.1.3 would cause installation errors. This issue has
been fixed in this release.

‣ The implementation of cuDNNLRNCrossChannelBackward was inconsistent with the
implementation of cuDNNLRNCrossChannelForward and returned incorrect results when
the normalization window was even. This issue has been fixed in this release.

‣ RNN APIs in cuDNN v8.0.1, compiled with CUDA 11.0, used an incorrect default
down-conversion on GPUs with CUDA SM version SM80 (NVIDIA Ampere GPU
family) when supplied input data and weights have the CUDNN_DATA_FLOAT type and
cudnnMathType_t set via cudnnSetRNNMatrixMathType() is CUDNN_DEFAULT_MATH or
CUDNN_TENSOR_OP_MATH. Instead of using the default TF32 computation when Tensor
Cores are used, a down-conversion to FP16 (half-precision) was performed; same as in
the CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION mode. This introduced a lower dynamic
range of intermediate data but possibly faster execution. To disable the automatic down-
conversion of CUDNN_DATA_FLOAT weights and data in RNN APIs, the user needed to set
the environmental variable NVIDIA_TF32_OVERRIDE to 0 (notice this would have disabled
the use of TF32 in the entire library, which might have a performance impact on CNNs that
are not affected by this issue). Another workaround was to assign the CUDNN_FMA_MATH
mode to the cudnnMathType_t argument in cudnnSetRNNMatrixMathType(). Due to this,
the A100 GPU TF32 feature was not accessible for RNNs in cuDNN v8.0.1. This issue has
been fixed in this release. (not applicable for Jetson platforms)

cuDNN Release 8.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 11

‣ cuDNN convolution APIs may return CUDNN_STATUS_EXECUTION_FAILED when the
number of input or output channels equals to or exceeds 2097152. This issue exists for all
cuDNN 8.0.x releases. This issue has been fixed in this release.

‣ Since version 8.0.0 Preview, cudnnConvolutionForward(),
cudnnConvolutionBackwardData(), and cudnnConvolutionBackwardFilter()
erroneously returned CUDNN_STATUS_INTERNAL_ERROR when the workspace size
argument value was less than the required workspace size as returned by their respective
cudnnGetWorkspace() API. This issue has been fixed and CUDNN_STATUS_BAD_PARAMS is
returned as documented.

Known Issues

‣ In this release, the performance of cudnnConvolutionBiasActivationForward() for true-
half use cases on Pascal, INT8x4 use cases on Volta, and Turing, compared to version 7.6
is still lower. In addition, FP32 and pseudo-FP16 performance on Volta, Turing and the
NVIDIA Ampere GPU architecture is still not fully optimized.

‣ The new RNN APIs: cudnnRNNForward(), cudnnRNNBackwardData_v8(), and
cudnnRNNBackwardWeights_v8() are available as a preview in the cuDNN 8.0.2 release.

‣ Occasionally, inaccurate results were observed in outputs of the
cudnnRNNBackwardWeights() and cudnnRNNBackwardWeightsEx() functions when the
RNN cell type was GRU and the NVIDIA Ampere GPU architecture was used with FP32 I/O
and mathType of CUDNN_DEFAULT_MATH or CUDNN_TENSOR_OP_MATH. Users may switch to
CUDNN_FMA_MATH as a temporary workaround. This issue is being investigated.

‣ cudnnRNN*() with LSTM mode may produce inaccurate results on the cy outputs when
clipping is enabled on all GPUs. This issue exists in previous cuDNN releases as well.

‣ On Volta and Pascal architectures, performance regressions may be present for
TRUE_HALF convolution backward filter.

‣ When using cudnnRNN*Ex() APIs, if the user uses
CUDNN_RNN_DATA_LAYOUT_SEQ_MAJOR_UNPACKED or
CUDNN_RNN_DATA_LAYOUT_BATCH_MAJOR_UNPACKED as the layout of the RNN data
descriptors, and if the batch size is larger than 6144 on Volta or NVIDIA Ampere A100
GPUs, or larger than 4096 on Turing GPUs, CUDNN_STATUS_EXECUTION_FAILED may be
returned.

‣ Currently, there are libcudnn_ops/cnn/adv_infer/train_static.a binaries in the
cuDNN Debian and tgz packages. Users are advised not to link against those and link
against libcudnn_static.a instead. Those binaries will be removed from the release
packages in the next release.

‣ When using cudnnRNN*Ex() APIs, if the user plans to
use CUDNN_RNN_DATA_LAYOUT_SEQ_MAJOR_UNPACKED or
CUDNN_RNN_DATA_LAYOUT_BATCH_MAJOR_UNPACKED as the layout of the RNN
data descriptors, the user should call cudnnSetRNNPaddingMode() to set the
mode to CUDNN_RNN_PADDED_IO_ENABLED after initializing an RNNDescriptor

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBiasActivationForward

cuDNN Release 8.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 12

but before calling cudnnGetRNNWorkspaceSize(). Not doing this may result in
CUDNN_STATUS_EXECUTION_FAILED.

‣ Updated: August 24, 2020

Fused convolution-scale-bias-activation with per-channel α1 and α2 scaling gives
incorrect results when the reorder type in the convolution descriptor is set to
CUDNN_NO_REORDER.

‣ Updated: August 24, 2020

When the user is using cudnnRNN* APIs with the problem sizes (input size, hidden size)
being not multiples of 16 for FP16 tensors or multiples of 8 for FP32 tensors, users may
encounter a return status of CUDNN_STATUS_EXECUTION_FAILED.

‣ Updated: August 24, 2020

For some 3D spatial non-Tensor-Core convolutions on Maxwell, Pascal, Volta, and
Turing architectures, cudnnBackwardFilter() can return incorrect results when the
convolution width padding exceeds the value (filterWidth - 1)/2. Likewise, users
of cudnnBackendExecute() can experience the same issue when using the engine
with CUDNN_ATTR_ENGINE_GLOBAL_INDEX 32 for backward filter. The issue affecting
cudnnBackwardFilter() has been fixed in this release. With cudnnBackendFinalize(), an
engine descriptor with CUDNN_ATTR_ENGINE_GLOBAL_INDEX 32 and a backward filter
operation that satisfies the above condition will return CUDNN_STATUS_NOT_SUPPORTED.

2.3. cuDNN Release 8.0.1 Preview

ATTENTION: This is the cuDNN 8.0.1 Preview release. This Preview release is for early testing
and feedback, therefore, for production use of cuDNN, continue to use cuDNN 7.6.5. This
release is subject to change based on ongoing performance tuning and functional testing. For
feedback on the new backend API and deprecations, email cudnn@nvidia.com.

These release notes are applicable to JetPack users of cuDNN unless appended specifically
with (not applicable for Jetson platforms).

For previous cuDNN documentation, see the cuDNN Archived Documentation.

Key Features and Enhancements

‣ Added new kernels to improve the performance of fusion.

Compatibility

For the latest compatibility software versions of the OS, CUDA, the CUDA driver, and the
NVIDIA hardware, see the cuDNN Support Matrix for 8.0.1.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBackwardFilter
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBackendExecute
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBackwardFilter
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBackendFinalize
https://docs.nvidia.com/deeplearning/sdk/cudnn-archived/index.html#cudnn_7
mailto:cudnn@nvidia.com
https://docs.nvidia.com/deeplearning/sdk/cudnn-archived/index.html
https://docs.nvidia.com/deeplearning/sdk/cudnn-support-matrix/index.html#cudnn-cuda-hardware-versions

cuDNN Release 8.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 13

Limitations

‣ Samples must be installed in a writable location, otherwise the samples can crash.

‣ RNN and multi-head attention API calls may exhibit non-deterministic behavior when
the cuDNN 8.0.1 library is built with CUDA Toolkit 10.2 or higher. This is the result of a
new buffer management and heuristics in the cuBLAS library. As described in the Results
Reproducibility section in the cuBLAS Library User Guide, numerical results may not be
deterministic when cuBLAS APIs are launched in more than one CUDA stream via the
same cuBLAS handle. This is caused by two buffer sizes (16 KB and 4 MB) used in the
default configuration.

When a larger buffer size is not available at runtime, instead of waiting for a buffer of that
size to be released, a smaller buffer may be used with a different GPU kernel. The kernel
selection may affect numerical results. The user can eliminate the non-deterministic
behavior of cuDNN RNN and multi-head attention APIs, by setting a single buffer size in
the CUBLAS_WORKSPACE_CONFIG environmental variable, for example, :16:8 or :4096:2.

The first configuration instructs cuBLAS to allocate eight buffers of 16 KB each in GPU
memory while the second setting creates two buffers of 4 MB each. The default buffer
configuration in cuBLAS 10.2 and 11.0 is :16:8:4096:2, i.e., we have two buffer sizes.
In earlier cuBLAS libraries, such as cuBLAS 10.0, it used the :16:8 non-adjustable
configuration. When buffers of only one size are available, the behavior of cuBLAS calls is
deterministic in multi-stream setups.

‣ Some data types are not widely supported by all cuDNN API. For example,
CUDNN_DATA_INT8x4 is not supported by many functions. In such cases, support is
available by using cudnnTransformTensor() to transform the tensors from the desired type
to a type supported by the API. For example, a user is able to transform input tensors from
CUDNN_DATA_INT8x4 to CUDNN_DATA_INT8, run the desired API and then transform output
tensors from CUDNN_DATA_INT8 to CUDNN_DATA_INT8x4. Note that this transformation
will incur an extra round trip to memory.

‣ The tensor pointers and the filter pointers require at a minimum 4-byte alignment,
including INT8 data in the cuDNN library.

‣ Some computational options in cuDNN 8.0.1 now require increased alignment on tensors
in order to run performantly. As always, cuDNN recommends users to align tensors
to 128-bit boundaries which will be sufficiently aligned for any computational option in
cuDNN. Doing otherwise may cause performance regressions in cuDNN 8.0.1 compared to
cuDNN v7.6.

‣ For certain algorithms when the computation is in float (32-bit float) and the output is in
FP16 (half float), there are cases where the numerical accuracy between the different
algorithms might differ. cuDNN 8.0.1 users can target the backend API to query the
numerical notes of the algorithms to get the information programmatically. There are
cases where algo0 and algo1 will have a reduced precision accumulation when users

https://docs.nvidia.com/cuda/cublas/index.html#cublasXtApi_reproducibility
https://docs.nvidia.com/cuda/cublas/index.html#cublasXtApi_reproducibility
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnTransformTensor

cuDNN Release 8.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 14

target the legacy API. In all cases, these numerical differences are not known to affect
training accuracy even though they might show up in unit tests.

‣ For the _ALGO_0 algorithm of convolution backward data and backward filter, grouped
convolution with groups larger than 1 and with odd product of dimensions C, D (if 3D
convolution), H, and W is not supported on devices older than Volta. To prevent a potential
illegal memory access by an instruction that only has a 16-bit version in Volta and above,
pad at least one of the dimensions to an even value.

‣ On K80 GPUs when cudnnConvolutionForward() is used with
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM algorithm and half input/
output data types a silent error might occur when the output width Q is 1 and both height
and width padding are zero.

Fixed Issues

The following issues have been fixed in this release:

‣ The dimA and strideA parameters in cudnnSetTensorNdDescriptor() do not document the
tensor layout. The documentation has been updated to include this information.

‣ cuDNN 8.0.0 Preview will not work with GA10x NVIDIA Ampere GPU architectures. This has
been fixed in 8.0.1 Preview.

‣ cuDNN 8.0.0 Preview removed a restriction on convolution backward filter for output filter
with odd products of dimensions (N*C*D*H*W) for a kernel in algo0 for pre-Volta GPUs.
This can potentially lead to an illegal memory access error. This restriction is restored in
cuDNN 8.0.1 Preview. cuDNN will use a kernel that does not have this restriction for this
computation case.

‣ Fixed performance issues for pre-Vola architectures for convolutions (except when the
compute type is half).

‣ Mitigated the performance regression to less than 10% end-to-end.

Known Issues

‣ On pre-Volta, there are significant performance issues on convolution layers when the
compute type is half.

‣ Sub-optimal performance is present in this release for all INT8 convolutions for all GPUs.

‣ The performance of cudnnConvolutionBiasActivationForward() is slower than v7.6 in most
cases. This is being actively worked on and performance optimizations will be available in
the upcoming releases.

‣ There are some peer-to-peer documentation links that are broken within the cuDNN API
Reference. These links will be fixed in the next release.

‣ cudnnCnnTrainVersionCheck() and cudnnCnnInferVersionCheck() are missing in
this release and will be added in the GA release.

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBiasActivationForward
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnSetTensorNdDescriptor
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBiasActivationForward
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html

cuDNN Release 8.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 15

‣ Documentation of RNN new APIs and deprecations is not complete. The
cudnnRNNBackwardData_v8() and cudnnRNNBackwardWeights_v8() functions will be
implemented in the next release.

‣ cuDNN 8.0.1 Preview build with Windows and CUDA 11.0 RC has reduced performance on
2D, 3D, and grouped convolutions compared to Linux.

‣ There is a known issue in cuDNN 8.0.1 when linking statically to cuDNN and using the
library's 3D algo1 backward filter convolutions. Users will see the library emit an internal
error or incorrectly state that a shared library is missing. This is a bug that will be fixed in
a future release.

‣ When using an RPM file on RedHat for installation, installing cuDNN v8 directly or via
TensorRT 7.1.3 will enable users to build their application with cuDNN v8. However, in
order for the user to compile an application with cuDNN v7 after cuDNN v8 is installed, the
user will need to perform the following steps:

 1. Issue sudo mv /usr/include/cudnn.h /usr/include/cudnn_v8.h.

 2. Issue sudo ln -s /etc/alternatives/libcudnn /usr/include/cudnn.h.

 3. Switch to cuDNN v7 by issuing sudo update-alternatives --config libcudnn
and choose cuDNN v7 from the list.

Steps 1 and 2 are required for the user to be able to switch between v7 and v8 installations.
After steps 1 and 2 are performed once, step 3 can be used repeatedly and the user
can choose the appropriate cuDNN version to work with. For more information, refer
to the Installing From An RPM File and Upgrading From v7 To v8 sections in the cuDNN
Installation Guide.

‣ When FFT Tiled aglo (i.e., CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING in forward
convolution or CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING for backward data) is
used for 3D convolution, an intermittent silent failure might happen due to an incorrect
stream used for kernel execution. In some cases, this might be manifested as undefined
values seen in the output.

‣ The implementation of cuDNNLRNCrossChannelBackward is inconsistent with the
implementation of cuDNNLRNCrossChannelForward and returns incorrect results when
the normalization window is even. This will be fixed in a future release.

‣ RNN APIs in cuDNN v8.0.1, compiled with CUDA 11.0, use an incorrect default
down-conversion on GPUs with CUDA SM version SM80 (NVIDIA Ampere GPU
family) when supplied input data and weights have the CUDNN_DATA_FLOAT type and
cudnnMathType_t set via cudnnSetRNNMatrixMathType() is CUDNN_DEFAULT_MATH or
CUDNN_TENSOR_OP_MATH. Instead of using the default TF32 computation when Tensor
Cores are used, a down-conversion to FP16 (half-precision) is performed; same as in the
CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION mode. This introduces a lower dynamic
range of intermediate data but possibly faster execution. To disable the automatic down-
conversion of CUDNN_DATA_FLOAT weights and data in RNN APIs, set the environmental
variable NVIDIA_TF32_OVERRIDE to 0 (notice this will disable the use of TF32 in the
entire library, which might have a performance impact on CNNs that are not affected

https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installlinux-rpm
https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#upgrade

cuDNN Release 8.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 16

by this issue). Another workaround is to assign the CUDNN_FMA_MATH mode to the
cudnnMathType_t argument in cudnnSetRNNMatrixMathType(). Due to this, the A100
TF32 feature is not accessible for RNNs in cuDNN v8.0.1.

‣ Several cuDNN APIs are unable to directly support computations using integer types
(CUDNN_DATA_INT8, CUDNN_DATA_INT8x4, CUDNN_DATA_INT8x32 or CUDNN_DATA_INT32).
Floating types (particularly CUDNN_DATA_FLOAT) are much more widely supported. If an
API does not support the desired type, cudnnTransformTensor() can be used to support
the use case by converting to/from a supported type and the desired type. Here are the
steps for doing so:

 1. Convert all input tensors from their native type to a supported type
(CUDNN_DATA_FLOAT is recommended).

 2. Run cuDNN API using the converted input tensors and output tensor descriptors set as
CUDNN_DATA_FLOAT.

 3. Convert all output tensors from a supported type to your desired output type.

Note: This will require extra memory use for the temporary buffers. Further, this will
introduce an additional round trip to memory which might noticeably impact performance.

‣ Updated: August 24, 2020

cuDNN convolution APIs may return CUDNN_STATUS_EXECUTION_FAILED when the
number of input or output channels equals to or exceeds 2097152.

‣ Updated: August 24, 2020

When the user is using cudnnRNN* APIs with the problem sizes (input size, hidden size)
being not multiples of 16 for FP16 tensors or multiples of 8 for FP32 tensors, users may
encounter a return status of CUDNN_STATUS_EXECUTION_FAILED.

2.4. cuDNN Release 8.0.0 Preview

ATTENTION: This is the cuDNN 8.0.0 Preview release. This Preview release is for early testing
and feedback, therefore, for production use of cuDNN, continue to use cuDNN 7.6.5. This
release is subject to change based on ongoing performance tuning and functional testing. For
feedback on the new backend API and deprecations, email cudnn@nvidia.com.

These release notes are applicable to JetPack users of cuDNN unless appended specifically
with (not applicable for Jetson platforms).

Note: cuDNN 8.0.0 passed GA quality testing and validation for TensorRT and JetPack users.

For previous cuDNN documentation, see the cuDNN Archived Documentation.

https://docs.nvidia.com/deeplearning/sdk/cudnn-archived/index.html#cudnn_7
mailto:cudnn@nvidia.com
https://docs.nvidia.com/deeplearning/sdk/cudnn-archived/index.html

cuDNN Release 8.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 17

Key Features and Enhancements

The following features and enhancements have been added to this release:

cuDNN library

‣ The cuDNN library has been split into the following libraries:

‣ cudnn_ops_infer - This entity contains the routines related to cuDNN context
creation and destruction, tensor descriptor management, tensor utility routines,
and the inference portion of common machine learning algorithms such as batch
normalization, softmax, dropout, etc.

‣ cudnn_ops_train - This entity contains common training routines and algorithms,
such as batch normalization, softmax, dropout, etc. The cudnn_ops_train library
depends on cudnn_ops_infer.

‣ cudnn_cnn_infer - This entity contains all routines related to convolutional neural
networks needed at inference time. The cudnn_cnn_infer library depends on
cudnn_ops_infer.

‣ cudnn_cnn_train - This entity contains all routines related to convolutional neural
networks needed during training time. The cudnn_cnn_train library depends on
cudnn_ops_infer, cudnn_ops_train, and cudnn_cnn_infer.

‣ cudnn_adv_infer - This entity contains all other features and algorithms. This
includes RNNs, CTC loss, and multi-head attention. The cudnn_adv_infer library
depends on cudnn_ops_infer.

‣ cudnn_adv_train - This entity contains all the training counterparts of
cudnn_adv_infer. The cudnn_adv_train library depends on cudnn_ops_infer,
cudnn_ops_train, and cudnn_adv_infer.

‣ cudnn - This is an optional shim layer between the application layer and the cuDNN
code. This layer opportunistically opens the correct library for the API at runtime.

‣ cuDNN does not support mixing sub-library versions. If there is a mismatch in the
cuDNN version numbers in the cuDNN sub-library header files, the build will crash. The
versions need to match on the major number and minor number, as well as the patch
level.

‣ The cuDNN sub-libraries must be installed under a single directory.

Multiple dynamic libraries

In order to link against a subset of cuDNN, you need to know which subset of the API you
are using and then link against the appropriate cuDNN sub-components. The cuDNN sub-
components are as follows:

‣ cudnn_ops_infer.so

‣ cudnn_ops_train.so

‣ cudnn_cnn_infer.so

cuDNN Release 8.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 18

‣ cudnn_cnn_train.so

‣ cudnn_adv_infer.so

‣ cudnn_adv_train.so

cuDNN linking options

There are two different linking options:

‣ Linking against individual sub-libraries: Users who link against individual sub-libraries
must be able to identify the API exposed by each cuDNN sub-library. Users also need
to know the hierarchy of the different cuDNN sub-libraries. Each .so or .a needs to be
specified explicitly in the user’s linking command, as well as any external dependencies
cuDNN require. For more information, refer to the Limitations section below.

‣ Linking against the full cuDNN (compatibility option): This would allow users to use
-lcudnn. libcudnn.so is provided as a shim layer that would open the appropriate
cuDNN sub-library for any particular cuDNN API call. While libcudnn.a is largely
unchanged, it is a statically linked file for all of cuDNN.

cuDNN loading options

For users who want a smaller memory footprint, there are 2 ways of loading the library.

‣ Cherry-pick loading: Each sub-library is loaded only when accessed. This will cause
the first reference to that sub-library to take a long time but will ensure the user isn’t
loading more libraries than they need.

‣ All access loading: All available cuDNN sub-libraries are loaded early during runtime.

New API functions

For a list of functions and data types that were added in this release, see API Changes For
cuDNN 8.0.0.

General Support of CUDA Graph Capture

CUDA Graphs are now supported for all functions in this release; with the following
restrictions.

‣ CUDA Toolkit 10.2 or higher is required

‣ cuDNN 8.0.0 graphs are captured via the CUDA graph-capture APIs

‣ any non-default use of textures by users of cuDNN needs to be disabled prior to capture

cuDNN 8.0.0 does not at this time offer API support to add operations to an existing CUDA
graph directly; however, the captured graph may be added to an existing graph through the
existing CUDA Graphs API.

Regarding texture usage, cuDNN 8.0.0 by default will not enable texture usage; expert
users may enable texture usage where allowed, but that usage will prevent a successful
CUDA Graph capture until disabled. In order for cuDNN 8.0.0 to be graph-capture
compatible library-wide, the cuDNN 8.0.0 CTC API was updated as described elsewhere.

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#release-800
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#release-800

cuDNN Release 8.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 19

The usual restrictions for CUDA Graphs apply in addition to these restrictions here.

New APIs for convolution

A new set of API functions to provide a brand new approach to cuDNN that offers more
fine-grain control of performance, numerical properties, etc.. for convolution. Using this
API, users directly access various engines that compute convolution forward propagation,
backward data, backward filter, and generic support for fusion starting with a limited
support in this cuDNN 8.0.0 release and expanding support in follow-up releases. Each
engine has performance tuning knobs such as GEMM tiling and split-K. Users can use this
API to fine-tune their network by querying cuDNN’s heuristics, or doing their own, to find
the most optimal engine configuration with which cuDNN computes each network layer.

NVIDIA Ampere GPU architecture support (not applicable for Jetson platforms)

‣ Added support for A100 GPU based on NVIDIA Ampere architecture.

‣ cuDNN 8.0.0 has seen significant improvements when using A100 GPUs compared to
Volta V100 with cuDNN 7.6.

‣ Added support for Tensor Float 32 (TF32) for 1D and 2D convolutions. Full support for
TF32 will come in future releases such as grouped convolutions and 3D convolutions in
addition to further performance tuning.

‣ Increased performance for the legacy Tensor Cores (mixed precision for 1D, 2D, 3D, and
grouped convolutions.

Turing and Volta architecture improvements

‣ New kernels for Tensor Cores and heuristics update for 1D convolution resulting in
performance improvements for speech networks such as Jasper and Tacotron2 and
WaveGlow, in addition to support for grouped 1D conv (QuartzNet).

‣ Added 3D convolutions support of NHWC and improved heuristics and kernels for
Tensor Cores in NCHW resulting in performance improvements for VNet, UNet-Medical
and UNet-Industrial. Additionally, FP16 3D convolutions are supported as well.

‣ Better utilization of Tensor Cores and heuristics for grouped convolutions result in
improvements for ResNext.

‣ More tuning for vision networks like ResNet-50 ([MXNet] [PyTorch] [TensorFlow]) and
SSD ([PyTorch] [TensorFlow]) with new updated heuristics.

Operation fusion

Operation fusion can be achieved via the backend API. The general workflow is similar to
running unfused operations, except that instead of creating a single operation Operation
Graph, the user may specify a multi-operation Operation Graph. For more information, see
Operation Fusion Via The Backend API in the cuDNN Developer Guide.

https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/SpeechRecognition/Jasper
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/SpeechSynthesis/Tacotron2
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/SpeechSynthesis/Tacotron2
https://nvidia.github.io/NeMo/asr/quartznet.html
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Segmentation/VNet
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Segmentation/UNet_Medical
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Segmentation/UNet_Industrial
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Classification/ConvNets
https://github.com/NVIDIA/DeepLearningExamples/tree/master/MxNet/Classification/RN50v1.5
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Classification/ConvNets
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Classification/RN50v1.5
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Detection/SSD
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Detection/SSD
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#op-fusion

cuDNN Release 8.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 20

Depthwise convolution extension

We’ve extended the fprop and dgrad NHWC depthwise kernels to support more
combinations (filter sizes/strides) such as 5x5/1x1, 5x5/2x2, 7x7/1x1, 7x7/2x2 (in addition to
what we already have, 1x1/1x1, 3x3/1x1, 3x3/2x2), which provides good performance.

Compatibility

For the latest compatibility software versions of the OS, CUDA, the CUDA driver, and the
NVIDIA hardware, see the cuDNN Support Matrix for 8.0.0.

Limitations

‣ Samples must be installed in a writable location, otherwise the samples can crash.

‣ RNN and multi-head attention API calls may exhibit non-deterministic behavior when
the cuDNN 8.0.0 library is built with CUDA Toolkit 10.2 or higher. This is the result of a
new buffer management and heuristics in the cuBLAS library. As described in the Results
Reproducibility section in the cuBLAS Library User Guide, numerical results may not be
deterministic when cuBLAS APIs are launched in more than one CUDA stream via the
same cuBLAS handle. This is caused by two buffer sizes (16 KB and 4 MB) used in the
default configuration.

When a larger buffer size is not available at runtime, instead of waiting for a buffer of that
size to be released, a smaller buffer may be used with a different GPU kernel. The kernel
selection may affect numerical results. The user can eliminate the non-deterministic
behavior of cuDNN RNN and multi-head attention APIs, by setting a single buffer size in
the CUBLAS_WORKSPACE_CONFIG environmental variable, for example, :16:8 or :4096:2.

The first configuration instructs cuBLAS to allocate eight buffers of 16 KB each in GPU
memory while the second setting creates two buffers of 4 MB each. The default buffer
configuration in cuBLAS 10.2 and 11.0 is :16:8:4096:2, i.e., we have two buffer sizes.
In earlier cuBLAS libraries, such as cuBLAS 10.0, it used the :16:8 non-adjustable
configuration. When buffers of only one size are available, the behavior of cuBLAS calls is
deterministic in multi-stream setups.

‣ Some data types are not widely supported by all cuDNN API. For example,
CUDNN_DATA_INT8x4 is not supported by many functions. In such cases, support is
available by using cudnnTransformTensor() to transform the tensors from the desired type
to a type supported by the API. For example, a user is able to transform input tensors from
CUDNN_DATA_INT8x4 to CUDNN_DATA_INT8, run the desired API and then transform output
tensors from CUDNN_DATA_INT8 to CUDNN_DATA_INT8x4. Note that this transformation
will incur an extra round trip to memory.

‣ The tensor pointers and the filter pointers require at a minimum 4-byte alignment,
including INT8 data in the cuDNN library.

‣ Some computational options in cuDNN 8.0.0 now require increased alignment on tensors
in order to run performantly. As always, cuDNN recommends users to align tensors

https://docs.nvidia.com/deeplearning/sdk/cudnn-support-matrix/index.html#cudnn-cuda-hardware-versions
https://docs.nvidia.com/cuda/cublas/index.html#cublasXtApi_reproducibility
https://docs.nvidia.com/cuda/cublas/index.html#cublasXtApi_reproducibility
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnTransformTensor

cuDNN Release 8.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 21

to 128-bit boundaries which will be sufficiently aligned for any computational option in
cuDNN. Doing otherwise may cause performance regressions in cuDNN 8.0.0 compared to
cuDNN v7.6.

‣ For certain algorithms when the computation is in float (32-bit float) and the output is in
FP16 (half float), there are cases where the numerical accuracy between the different
algorithms might differ. cuDNN 8.0.0 users can target the backend API to query the
numerical notes of the algorithms to get the information programmatically. There are
cases where algo0 and algo1 will have a reduced precision accumulation when users
target the legacy API. In all cases, these numerical differences are not known to affect
training accuracy even though they might show up in unit tests.

Deprecated Features

The following features are deprecated in cuDNN 8.0.0:

‣ Support for Ubuntu 14.04 has been deprecated in this release. Upgrade to 16.04 or 18.04
for continued support.

‣ Support for Mac OS X has been deprecated in this release. Operating systems that are
currently supported are Linux and Windows.

‣ cuDNN version 8 introduces a new API deprecation policy to enable a faster pace of
innovation. A streamlined, two-step, deprecation policy will be used for all API changes
starting with cuDNN version 8. For details about this new deprecation policy, see
Backward Compatibility And Deprecation Policy in the cuDNN Developer Guide.

‣ Removed and deprecated API changes. For a list of removed and deprecated APIs, see API
Changes For cuDNN 8.0.0.

Fixed Issues

The following issues have been fixed in this release:

‣ There is a known issue in that cudnnDestroy() does not destroy all that cudnnCreate()
created. Calling cudnnDestroy() after cudnnCreate() has a memory leak in some tests
of about 1.6 MB on host memory. This issue has been fixed in cuDNN 8.0.0.

‣ Starting in cuDNN 7.6.1, when using the experimental multi-head attention API, it is
possible that the forward and backward paths produce different results for the BERT
model, when the batch size is greater than one and/or the number of heads is greater than
one. This issue has been fixed in cuDNN 8.0.0.

‣ The description of cudnnSetCTCLossDescriptorEx() is not clear. This issue has been
fixed in cuDNN 8.0.0.

‣ Documentation affecting 1x1 convolution functions is not clear, for example
cudnnFindConvolutionBackwardDataAlgorithm(). This issue has been fixed in cuDNN
8.0.0.

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#backward-compatibility
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#release-800
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#release-800

cuDNN Release 8.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 22

‣ cuDNN forward convolution with
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM does not propagate NANs in
weights. This issue has been fixed in cuDNN 8.0.0.

‣ Document mathematical definitions of all operations in cuDNN. We include full
mathematical descriptions for the convolution functions.

‣ The functions cudnnGetConvolutionForwardAlgorithm_v7() and
cudnnGetConvolutionForwardWorkspaceSize() may return CUDNN_STATUS_SUCCESS
while the execution of the same convolution returns CUDNN_STATUS_NOT_SUPPORTED.
Similar issues may also happen for convolutionBackwardData() and
convolutionBackwardFilter(). This issue is present in cuDNN 7.2.2 library and later
versions. This has been fixed in cuDNN 8.0.0.

‣ Algorithms returned by cudnnGetConvolution*Algorithm() may, in some limited use
cases, fail to execute when they are actually run. This is a cuDNN library-wide issue and
applies for convolution forward, convolution backward data, and convolution backward
filter operations. This issue is also present in versions prior to cuDNN 8.0.0 EA.

‣ cuDNN does not support CUDA graphs. When launching a CUDA graph constructed via
a stream capture that includes a cudnnConvolutionForward() operation, you may see
cudaErrorLaunchFailure error. This is because CUDA graphs were not supported. The
user can proceed.

‣ There was a known performance drop in 3D convolutions for some cases on Turing GPUs
since cuDNN 7.4.2. This has been fixed on T4. (not applicable for Jetson platforms)

‣ There are rare cases where cudnnConvolution* will return STATUS_NOT_SUPPORTED
when cudnn*GetWorkspaceSize might return success for a given algorithm. This has
been fixed in cuDNN 8.0.0.

‣ In previous versions of cuDNN,
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM did not propagate NaN values
in some cases. This is fixed in the current release. Users desiring the old behavior can
configure ReLU activation and set the floor to be -Inf.

‣ The multiHeadAttention sample code was added to the cuDNN 7.6.3 release. The
sample code includes a simple NumPy/Autograd reference model of the multi-head
attention block that computes the forward response and all derivatives. The test code
demonstrates how to use the multi-head attention API, access attention weights, and
sequence data.

‣ Updated: July 22, 2020

In version 7.6.x, cudnnConvolutionBackwardData() with
PSEUDO_HALF_CONFIG with CUDNN_TENSOR_OP_MATH or FLOAT_CONFIG with
CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION returns incorrect results in 3D convolution
when the filter size of the w dimension is 1 and padding of the w dimension is 0. This issue
has been fixed in this release.

cuDNN Release 8.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 23

Known Issues

‣ Performance regressions on V100 are observed in this release on SSD inference use cases
if not using TensorRT.

‣ There are significant performance regressions on pre-Volta GPUs and some Turing GPUs
based on the TU102 architecture. This performance regression is not applicable to T4,
JetPack, and Tegra.

‣ Sub-optimal performance is present in this release for all INT8 convolutions for all GPUs.

‣ The performance of cudnnConvolutionBiasActivationForward() is slower than v7.6 in most
cases. This is being actively worked on and performance optimizations will be available in
the upcoming releases.

‣ On K80 GPUs when cudnnConvolutionForward() is used with
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM algorithm and half input/
output data types a silent error might occur.

‣ There are some peer-to-peer documentation links that are broken within the cuDNN API
Reference. These links will be fixed in the next release.

‣ cudnnCnnTrainVersionCheck() and cudnnCnnInferVersionCheck() are missing in
this release and will be added in the GA release.

‣ Documentation of RNN new APIs and deprecations is not complete. The
cudnnRNNBackwardData_v8() and cudnnRNNBackwardWeights_v8() functions will be
implemented in the next release.

‣ cuDNN 8.0.0 Preview will not work with GA10x NVIDIA Ampere GPU architectures. This will
be fixed in the next release.

‣ cuDNN 8.0.0 Preview build with Windows and CUDA 11.0 RC has reduced performance on
2D, 3D, and grouped convolutions compared to Linux.

‣ Updated: June 12, 2020

There is a known issue in cuDNN 8.0.0 when linking statically to cuDNN and using the
library's 3D algo1 backward filter convolutions. Users will see the library emit an internal
error or incorrectly state that a shared library is missing. This is a bug that will be fixed in
a future release.

‣ Updated: June 25, 2019

There is a known issue in cuDNN 8.0.0 when linking statically to cuDNN and using the
library's 3D algo1 backward filter convolutions. Users will see the library emit an internal
error or incorrectly state that a shared library is missing. This is a bug that will be fixed in
a future release.

‣ Updated: June 25, 2019

When using an RPM file on RedHat for installation, installing cuDNN v8 directly or via
TensorRT 7.1.3 will enable users to build their application with cuDNN v8. However, in

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBiasActivationForward
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBiasActivationForward
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html

cuDNN Release 8.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 24

order for the user to compile an application with cuDNN v7 after cuDNN v8 is installed, the
user will need to perform the following steps:

 1. Issue sudo mv /usr/include/cudnn.h /usr/include/cudnn_v8.h.

 2. Issue sudo ln -s /etc/alternatives/libcudnn /usr/include/cudnn.h.

 3. Switch to cuDNN v7 by issuing sudo update-alternatives --config libcudnn
and choose cuDNN v7 from the list.

Steps 1 and 2 are required for the user to be able to switch between v7 and v8 installations.
After steps 1 and 2 are performed once, step 3 can be used repeatedly and the user
can choose the appropriate cuDNN version to work with. For more information, refer
to the Installing From An RPM File and Upgrading From v7 To v8 sections in the cuDNN
Installation Guide.

‣ Updated: July 22, 2020

cudnnConvolutionForward(), cudnnConvolutionBackwardData(),
and cudnnConvolutionBackwardFilter() erroneously returns
CUDNN_STATUS_INTERNAL_ERROR when the workspace size argument value is less than
the required workspace size as returned by their respective cudnnGetWorkspace() API.

‣ Updated: August 24, 2020

cuDNN convolution APIs may return CUDNN_STATUS_EXECUTION_FAILED when the
number of input or output channels equals to or exceeds 2097152.

https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installlinux-rpm
https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#upgrade

cuDNN Release Notes RN-08667-001_v8.0.3 | 25

Chapter 3. cuDNN Release 7.x.x

3.1. cuDNN 7.6.5
This is the cuDNN 7.6.5 release notes. This release includes fixes from the previous cuDNN
v7.x.x releases as well as the following additional changes. These release notes are applicable
to both cuDNN and JetPack users unless appended specifically with (not applicable for Jetson
platforms).

For previous cuDNN release notes, see the cuDNN Archived Documentation.

Key Features and Enhancements

The following features and enhancements have been added to this release:

‣ Made performance improvements to several APIs including cudnnAddTensor,
cudnnOpTensor, cudnnActivationForward and cudnnActivationBackward.

‣ Separated the cuDNN datatype references and APIs from the cuDNN Developer Guide into a
new cuDNN API.

‣ Published Best Practices For Using cuDNN 3D Convolutions.

Compatibility

For the latest compatibility software versions of the OS, CUDA, the CUDA driver, and the
NVIDIA hardware, see the cuDNN Support Matrix for v7.6.5.

Limitations

Updated: June 5, 2020

‣ RNN and multi-head attention API calls may exhibit non-deterministic behavior when
the cuDNN 7.6.5 library is built with CUDA Toolkit 10.2 or higher. This is the result of a
new buffer management and heuristics in the cuBLAS library. As described in the Results
Reproducibility section in the cuBLAS Library User Guide, numerical results may not be
deterministic when cuBLAS APIs are launched in more than one CUDA stream via the
same cuBLAS handle. This is caused by two buffer sizes (16 KB and 4 MB) used in the
default configuration.

https://docs.nvidia.com/deeplearning/sdk/cudnn-archived/index.html
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html
https://docs.nvidia.com/deeplearning/sdk/cudnn-best-practices/index.html
https://docs.nvidia.com/deeplearning/sdk/cudnn-support-matrix/index.html#cudnn-cuda-hardware-versions
https://docs.nvidia.com/cuda/cublas/index.html#cublasXtApi_reproducibility
https://docs.nvidia.com/cuda/cublas/index.html#cublasXtApi_reproducibility

cuDNN Release 7.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 26

When a larger buffer size is not available at runtime, instead of waiting for a buffer of that
size to be released, a smaller buffer may be used with a different GPU kernel. The kernel
selection may affect numerical results. The user can eliminate the non-deterministic
behavior of cuDNN RNN and multi-head attention APIs, by setting a single buffer size in
the CUBLAS_WORKSPACE_CONFIG environmental variable, for example, :16:8 or :4096:2.

The first configuration instructs cuBLAS to allocate eight buffers of 16 KB each in GPU
memory while the second setting creates two buffers of 4 MB each. The default buffer
configuration in cuBLAS 10.2 and 11.0 is :16:8:4096:2, i.e., we have two buffer sizes.
In earlier cuBLAS libraries, such as cuBLAS 10.0, it used the :16:8 non-adjustable
configuration. When buffers of only one size are available, the behavior of cuBLAS calls is
deterministic in multi-stream setups.

Fixed Issues

The following issues have been fixed in this release:

‣ Corrected the documentation for cudnnBatchNormalization* API functions, clarifying
which are optional arguments and when the user needs to pass them to the API.

‣ Fixed a lack-of-synchronization issue when cudnnRNNBackwardData() and
cudnnRNNBackwardDataEx() calls a kernel that is not synchronized back to the
application's stream. This issue only appears when users are using bidirectional RNN
using algo of CUDNN_RNN_ALGO_STANDARD. This issue affects cuDNN versions 5 through
7.6.4.

‣ Corrected supported tensor format tables for cudnnConvolutionForward().

‣ cudnnConvolutionBackwardData used to give wrong answers when the kernel size
was >=30 in any dimension and the stride is 2 in that dimension; with the algorithm set to
CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING. This has been fixed.

‣ Fixed an issue where if the user uses cudnnBatchNormalizationForwardInference
with the mode of CUDNN_BATCHNORM_SPATIAL_PERSISTENT, the API will return
CUDNN_STATUS_NOT_SUPPORTED and not fall back to CUDNN_BATCHNORM_SPATIAL
mode. Now, it falls back correctly similar to the behavior of the other batch
normalization APIs including cudnnBatchNormalizationForwardTraining,
cudnnBatchNormalizationForwardTrainingEx, cudnnBatchNormalizationBackward
and cudnnBatchNormalizationBackwardEx.

‣ Previously, when cuDNN invoked convolve_common_engine_int8_NHWC kernel for
NHWC format, irrespective of the output data precision, the output values were clipped
to be in the range from -128 to 127. In this release, we have fixed the issue. As a result,
output values are clipped only for INT8 precision. Whereas, if the output data is float
precision, the values are not clipped.

Known Issues

‣ Updated: August 24, 2020

cuDNN Release 7.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 27

Two dimensional forward convolutions using algo1 may segfault when the filter size is
large. For example, we’ve observed this issue when the filter width and height are more
than or equal to 363.

3.2. cuDNN 7.6.4
This is the cuDNN 7.6.4 release notes. This release includes fixes from the previous cuDNN
v7.x.x releases as well as the following additional changes.

For previous cuDNN release notes, see the cuDNN Archived Documentation.

Key Features and Enhancements

The following features and enhancements have been added to this release:

‣ Gained significant speed-up in multihead-attention forward training and inference.

Compatibility

For the latest compatibility software versions of the OS, CUDA, the CUDA driver, and the
NVIDIA hardware, see the cuDNN Support Matrix for v7.6.4.

Limitations

‣ When launching a CUDA graph constructed via a stream capture that includes a
cudnnConvolutionForward operation, the subsequent synchronization point reports a
cudaErrorLaunchFailure error. This error appears when cuDNN is set to use a non-
default stream.

Fixed Issues

The following issues have been fixed in this release:

‣ Earlier versions of cuDNN v7.6 contained symbols which would conflict with those of in
TensorRT 5.1 and later. In some cases, these conflicts could lead to application crashes
when applications linked against cuDNN and TensorRT. This issue is fixed in cuDNN 7.6.4.

‣ Addressed the regressions that were introduced in the
cudnnConvolutionBiasActivationForward function in cuDNN 7.6.3. Previously, if this
API had different values in destination data buffer and zData buffer, then incorrect results
were computed. This issue has been resolved and now the API will compute correct
results even if users provide an arbitrary set of values to the destination data and zData.

‣ Multi-head attention will now return CUDNN_STATUS_ARCH_MISMATCH for true-half
configuration on devices with compute capability less than 5.3 (for example, most of
Maxwell and all of Kepler, etc..), which do not have native hardware support for true
half computation. Previously, an error like CUDNN_STATUS_EXECUTION_FAILED may be
triggered or inaccurate results may be produced.

https://docs.nvidia.com/deeplearning/sdk/cudnn-archived/index.html
https://docs.nvidia.com/deeplearning/sdk/cudnn-support-matrix/index.html#cudnn-cuda-hardware-versions

cuDNN Release 7.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 28

3.3. cuDNN 7.6.3
This is the cuDNN 7.6.3 release notes. This release includes fixes from the previous cuDNN
v7.x.x releases as well as the following additional changes. These release notes are applicable
to both cuDNN and JetPack users unless appended specifically with (not applicable for Jetson
platforms).

For previous cuDNN release notes, see the cuDNN Archived Documentation.

Key Features and Enhancements

The following features and enhancements have been added to this release:

‣ The cuDNN 7.6.3 library now supports auto-padding for NHWC layout. The functional
behavior, and the benefits of auto-padding as follows: (not applicable for Jetson platforms)

‣ For use cases where C and K dimensions of input and filter Tensors are not multiples
of 8, the auto-padding feature increases the Tensor size so that the Tensor dimensions
are multiples of 8.

‣ With auto-padding the cuDNN library invokes faster kernels, thereby improving the
performance.

‣ With auto-padding, the performance with NHWC data layout is now comparable to that
of the NCHW layout.

‣ Added support for dataType=CUDNN_DATA_HALF and computePrec=CUDNN_DATA_HALF
in multi-head attention forward (https://docs.nvidia.com/deeplearning/sdk/
cudnn-api/index.html#cudnnMultiHeadAttnForward) and backward (gradient)
(cudnnMultiHeadAttnBackwardData() and cudnnMultiHeadAttnBackwardWeights()) API
functions. (not applicable for Jetson platforms)

‣ Multi-head attention API now supports bias after the projections on Q, K, V, and O in the
cudnnMultiHeadAttnForward() call (backward bias gradient is not yet supported). (not
applicable for Jetson platforms)

The new feature required a small API change in cudnnSetAttnDescriptor(): the
cudnnAttnQueryMap_t queryMap argument is replaced with unsigned attnMode to
pass various on and off options. This change is backward compatible with earlier API
versions. (not applicable for Jetson platforms)

‣ Significantly improved the performance in typical multi-head attention use cases in
forward inference and training, especially when the vector length of each head is a
multiple of 32 up to 128. (not applicable for Jetson platforms)

‣ Tensor Core support is added for true half and single precision use cases
in multi-head attention. Users may utilize it by setting the mathType
argument in cudnnSetAttnDescriptor() to CUDNN_TENSOR_OP_MATH or
CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION. (not applicable for Jetson platforms)

https://docs.nvidia.com/deeplearning/sdk/cudnn-archived/index.html
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnMultiHeadAttnForward
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnMultiHeadAttnForward
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnMultiHeadAttnBackwardData
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnMultiHeadAttnBackwardWeights
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnMultiHeadAttnForward
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnSetAttnDescriptor
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnSetAttnDescriptor

cuDNN Release 7.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 29

‣ The multiHeadAttention sample code is added. The sample code includes a compact
NumPy/Autograd reference model of the multi-head attention block that computes the
forward response and all first-order derivatives. The test code demonstrates how to use
the multi-head attention API, access attention weights, and sequence data. (not applicable
for Jetson platforms)

‣ Improved depth-wise convolution for forward, dgrad, and wgrad under the following
conditions:

‣ Algorithm is algo1

‣ Tensor format for filter is NCHW (wgrad supports NHWC also)

‣ Input and outputs are in FP16 and computation is in FP32

‣ Filter size: 1x1, 3x3, 5x5, 7x7 (dgrad only supports stride 1)

‣ Math type is CUDNN_DEFAULT_MATH

‣ Improved grouped convolution for cudnnConvolutionBackwardFilter() in the
configuration below:

‣ Algorithm is CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1

‣ Math type is CUDNN_DEFAULT_MATH

‣ Tensor format for filter is NCHW

‣ Input and outputs are in FP16 and computation is in FP32

‣ Filter size: 1x1, 3x3, 5x5, 7x7

‣ Improved the performance of grouped convolution, for cudnnConvolutionForward() in
the configuration below:

‣ Algorithm is CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM

‣ Math type is CUDNN_TENSOR_OP_MATH or CUDNN_TENSOROP_MATH_ALLOW_CONVERSION

‣ Tensor format for filter is NHWC

‣ Input and outputs are in FP16 and computation is in FP16/ FP32

‣ Per group C & K == 4/8/16/32

‣ Filter size: 3x3

‣ Improved the performance of grouped convolution, for
cudnnConvolutionBackwardFilter() in the configuration below:

‣ Algorithm is CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1

‣ Math type is CUDNN_TENSOR_OP_MATH or CUDNN_TENSOROP_MATH_ALLOW_CONVERSION

‣ Tensor format for filter is NHWC

‣ Input and outputs are in FP16 and computation is in FP32

‣ On NVIDIA Volta (compute capability 7.0)

‣ Per group C & K == 4/8/16/32

‣ Filter size: 1x1, 3x3

cuDNN Release 7.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 30

Fixed Issues

The following issues have been fixed in this release:

‣ Fixed an issue where cudnnMultiHeadAttnBackwardData() was producing incorrect results
when K sequence length is longer than 32.

‣ Fixed a race condition in cudnnMultiHeadAttnBackwardData() that was producing
intermittent incorrect results.

‣ The function cudnnCTCLoss() produced incorrect gradient result for label whose length is
smaller than the maximal sequence length in the batch. This is fixed in cuDNN 7.6.3.

3.4. cuDNN 7.6.2
This is the cuDNN 7.6.2 release notes. This release includes fixes from the previous cuDNN
v7.x.x releases as well as the following additional changes.

For previous cuDNN release notes, see the cuDNN Archived Documentation.

Key Features and Enhancements

The following features and enhancements have been added to this release:

‣ Enhanced the performance of 3D deconvolution using cudnnConvolutionBackwardData(),
for the following configuration:

‣ 2x2x2 filter and 2x2x2 convolution stride.

‣ For FP16 for data input and output, and for accumulation.

‣ For FP32 for data input and output, and for accumulation.

‣ Enhanced the performance of 3D convolution using cudnnConvolutionForward(), for the
following configuration:

‣ Tensor Core for FP16 for data input and output and FP32 accumulation when
CUDNN_TENSOR_OP_MATH is set.

‣ Tensor Core for FP32 for data input and output and FP32 accumulation when
CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION is set.

‣ Enhanced the functionality of the data type cudnnFusedOps_t by adding the below three
enums:

‣ CUDNN_FUSED_CONV_SCALE_BIAS_ADD_ACTIVATION

‣ CUDNN_FUSED_SCALE_BIAS_ADD_ACTIVATION_GEN_BITMASK, and

‣ CUDNN_FUSED_DACTIVATION_FORK_DBATCHNORM

Fixed Issues

The following issues have been fixed in this release:

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnMultiHeadAttnBackwardData
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnMultiHeadAttnBackwardData
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnCTCLoss
https://docs.nvidia.com/deeplearning/sdk/cudnn-archived/index.html
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBackwardData
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionForward
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnMathType_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnMathType_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnFusedOps_t

cuDNN Release 7.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 31

‣ In cuDNN 7.6.1, on Volta architecture only, there may be a performance degradation
when the function cudnnConvolutionBackwardFilter() is used for 3D convolutions with
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1. This is fixed in cuDNN 7.6.2.

‣ In cuDNN 7.6.1, on Turing and Pascal architectures, performance may be degraded for
cudnnConvolutionBackwardData(), when used with the following conditions:

‣ CUDNN_CONVOLUTION_BWD_DATA_ALGO_0 for 3D convolutions

‣ wDesc, dyDesc and dxDesc are all in NCDHW

‣ Data type configuration is FLOAT_CONFIG (i.e., single precision data and compute)

This is fixed in cuDNN 7.6.2.

‣ In cuDNN 7.6.1, in some cases the function cudnnConvolutionBackwardData() may fail with
“disallowed mismatches” error on Turing (T4) and Volta(V100) architectures, when used
with the configuration below:

‣ Algorithm is CUDNN_CONVOLUTION_BWD_DATA_ALGO_1

‣ Math type is CUDNN_TENSOR_OP_MATH or CUDNN_TENSOROP_MATH_ALLOW_CONVERSION

‣ Tensor format for filter is NCHW

‣ Input and outputs are in FP16 and computation is in FP32

This is fixed in cuDNN 7.6.2.

3.5. cuDNN 7.6.1
This is the cuDNN 7.6.1 release notes. This release includes fixes from the previous cuDNN
v7.x.x releases as well as the following additional changes.

Key Features and Enhancements

The following features and enhancements have been added to this release:

‣ Performance is enhanced for 3D convolutions using Tensor Core for FP16 input and
output data types, whenever they are supported. Moreover, for single-precision (FP32)
input/output, cuDNN 7.6.1 will use these enhanced kernels whenever possible, and
only when cudnnMathType_t is set to CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION.
See cudnnConvolutionForward() and cudnnConvolutionBackwardData() and
cudnnConvolutionBackwardFilter().

‣ On Maxwell and Pascal architectures only, the performance of 3D convolutions with the
kernel size of 128^3, when used with CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1, is
enhanced.

‣ API logging is fully implemented for the experimental multihead attention API, namely, for
the following functions:

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBackwardFilter
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBwdFilterAlgo_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBackwardData
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBwdDataAlgo_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBackwardData
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBwdDataAlgo_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnMathType_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnTensorFormat_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnMathType_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionForward
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBackwardData
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBackwardFilter
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#api-logging

cuDNN Release 7.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 32

‣ cudnnCreateAttnDescriptor()

‣ cudnnDestroyAttnDescriptor()

‣ cudnnSetAttnDescriptor()

‣ cudnnGetAttnDescriptor()

‣ cudnnGetMultiHeadAttnBuffers()

‣ cudnnGetMultiHeadAttnWeights()

‣ cudnnMultiHeadAttnForward()

‣ cudnnMultiHeadAttnBackwardData()

‣ cudnnMultiHeadAttnBackwardWeights()

‣ cudnnSetSeqDataDescriptor()

‣ cudnnGetSeqDataDescriptor()

‣ cudnnCreateSeqDataDescriptor()

‣ cudnnDestroySeqDataDescriptor()

‣ Performance of the experimental multihead attention forward API is enhanced. See
cudnnMultiHeadAttnForward().

‣ Performance is enhanced for the fused convolution and fused wgrad fallback path. See
cudnnFusedOps_t.

Fixed Issues

The following issues have been fixed in this release:

‣ In cuDNN 7.6.0, the function cudnnGetConvolutionBackwardDataWorkspaceSize()
returns a value for which cudnnConvolutionBackwardData(), when used with
CUDNN_CONVOLUTION_BWD_DATA_ALGO_0, returns CUDNN_STATUS_NOT_SUPPORTED. This is
fixed in cuDNN 7.6.1 so that now cudnnGetConvolutionBackwardDataWorkspaceSize()
returns a proper value for cudnnConvolutionBackwardData().

‣ In cuDNN 7.6.0 and earlier versions, when all the following conditions are true,

‣ RNN model is bi-directional,

‣ Cell type is LSTM,

‣ cudnnRNNAlgo_t= CUDNN_RNN_ALGO_STANDARD, and

‣ Dropout probability was greater than zero,

then the cudnnRNNBackwardWeights() function produces inaccurate and occasionally
non-deterministic results.

This is fixed in cuDNN 7.6.1.

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnCreateAttnDescriptor
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnDestroyAttnDescriptor
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnSetAttnDescriptor
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnGetAttnDescriptor
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnGetMultiHeadAttnBuffers
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnGetMultiHeadAttnWeights
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnMultiHeadAttnForward
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnMultiHeadAttnBackwardData
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnMultiHeadAttnBackwardWeights
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnSetSeqDataDescriptor
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnGetSeqDataDescriptor
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnCreateSeqDataDescriptor
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnDestroySeqDataDescriptor
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnMultiHeadAttnForward
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnFusedOps_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnGetConvolutionBackwardDataWorkspaceSize
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBackwardData
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnRNNBackwardWeights

cuDNN Release 7.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 33

An underlying issue, where the same buffer was used for left-to-right and right-to-left
directions when re-computing forward dropout results passed from one RNN layer to the
next, was the cause of the bug.

‣ A bug in cuDNN 7.6.0 and earlier versions, in the cudnnRNNForwardTraining() function,
related to dropout, is fixed in cuDNN 7.6.1.

When all the following conditions are true:

‣ cudnnRNNAlgo_t=CUDNN_RNN_ALGO_PERSIST_STATIC,

‣ cudnnMathType_t is CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION, and

‣ input data type is CUDNN_DATA_FLOAT,

then the FP32-to-FP16 conversion might be applied as a performance optimization.

When this down conversion is scheduled, a GPU kernel invoked by cudnnDropoutForward()
would crash due to incorrect parameters being passed. In this case CUDA runtime reports
the "misaligned address" error when reading the data from global memory.

‣ In cuDNN 7.6.0, on RHEL7 only, the /usr/src/cudnn_samples_v7/samples_common.mk
file is missing. This requires a workaround to compile the cuDNN samples. This is fixed in
cuDNN 7.6.1 and the workaround is not needed for cuDNN 7.6.1 .

‣ In cuDNN 7.6.0, on pre-Volta hardware only, the function
cudnnGetConvolutionBackwardFilterWorkspaceSize() can erroneously return
CUDNN_STATUS_SUCCESS for cudnnConvolutionBackwardFilter() for 3D convolutions,
using CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1 with NDHWC layout. When this
occurs, the cudnnConvolutionBackwardFilter() function will process the data
using a kernel that expects the data in NCDHW layout (the only format supported
by wDesc in this case), leading to incorrect results. In cuDNN 7.6.1, this is fixed so
that cudnnGetConvolutionBackwardFilterWorkspaceSize() will now return
CUDNN_STATUS_NOT_SUPPORTED.

‣ In cuDNN 7.5.x and 7.6.0 for Jetson platform, in some cases the
function cudnnConvolutionBackwardData() , when used with
CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD, might return incorrect results. This is
fixed in cuDNN 7.6.1.

‣ When the data type configuration is FLOAT_CONFIG, then
cudnnGetConvolution*Algorithm(), for a few convolution sizes, incorrectly returns a
slow algorithm for the Pascal architecture. This is fixed in cuDNN 7.5.0 and later versions.

‣ When using the fusedOps API with the enum
CUDNN_FUSED_SCALE_BIAS_ACTIVATION_CONV_BNSTATS or
CUDNN_FUSED_SCALE_BIAS_ACTIVATION_WGRAD, and when input tensor is in NCHW
format or is not fully-packed, then incorrect results may be produced. This is now fixed in
cuDNN 7.6.1.

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnRNNForwardTraining
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnDropoutForward
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnGetConvolutionBackwardFilterWorkspaceSize
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBackwardFilter
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBackwardData

cuDNN Release 7.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 34

Known Issues

The following issues and limitations exist in this release:

‣ Algorithms returned by cudnnGetConvolution*Algorithm() may, in some limited use
cases, fail to execute when they are actually run. This is a cuDNN library-wide issue and
applies for convolution forward, convolution backward data, and convolution backward
filter operations. This issue is also present in versions prior to cuDNN 7.6.1.

‣ When the input and output tensors are in NHWC and the filter is 1x1 and NCHW, the
performance of the function cudnnConvolutionBackwardData() might be degraded.

‣ In cuDNN 7.6.1, when using the experimental multi-head attention API, it is possible that
the forward and backward paths produce different results for the BERT model, when the
batch size is greater than one and/or the number of heads is greater than one.

‣ In cuDNN 7.6.1, on Volta architecture only, there may be a performance degradation
when the function cudnnConvolutionBackwardFilter() is used for 3D convolutions with
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1.

‣ In cuDNN 7.6.1, on Turing and Pascal architectures, performance may be degraded for
cudnnConvolutionBackwardData(), when used with the following conditions:

‣ CUDNN_CONVOLUTION_BWD_DATA_ALGO_0 for 3D convolutions

‣ wDesc, dyDesc and dxDesc are all in NCDHW

‣ Data type configuration is FLOAT_CONFIG (i.e., single precision data and compute)

3.6. cuDNN 7.6.0
This is the cuDNN 7.6.0 release notes. This release includes fixes from the previous cuDNN
v7.x.x releases as well as the following additional changes.

Key Features and Enhancements

The following features and enhancements have been added to this release:

‣ A new API is introduced for fused ops, which can accelerate many use cases in ResNet-
like networks. With this new API it is now possible to execute various fused operations
such as apply per channel scale and bias, perform activation, compute convolution, and
generate batchnorm statistics. Below is a list of supported datatype and functions in this
API:

Datatypes:

‣ cudnnFusedOpsVariantParamPack_t

‣ cudnnFusedOpsConstParamPack_t

‣ cudnnFusedOpsPlan_t

‣ cudnnFusedOps_t

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBackwardData
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBackwardFilter
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBackwardData

cuDNN Release 7.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 35

‣ cudnnFusedOpsConstParamLabel_t

‣ cudnnFusedOpsPointerPlaceHolder_t

‣ cudnnFusedOpsVariantParamLabel_t

Functions:

‣ cudnnCreateFusedOpsConstParamPack

‣ cudnnDestroyFusedOpsConstParamPack

‣ cudnnSetFusedOpsConstParamPackAttribute

‣ cudnnGetFusedOpsConstParamPackAttribute

‣ cudnnCreateFusedOpsVariantParamPack

‣ cudnnDestroyFusedOpsVariantParamPack

‣ cudnnSetFusedOpsVariantParamPackAttribute

‣ cudnnGetFusedOpsVariantParamPackAttribute

‣ cudnnCreateFusedOpsPlan

‣ cudnnDestroyFusedOpsPlan

‣ cudnnMakeFusedOpsPlan

‣ cudnnFusedOpsExecute

‣ Improved the performance of grouped convolution layers in ResNeXt-50, for
cudnnConvolutionBackwardData() in the configuration below:

‣ On NVIDIA Volta (compute capability 7.0)

‣ Algorithm is CUDNN_CONVOLUTION_BWD_DATA_ALGO_1

‣ Stride of 1

‣ Math type is CUDNN_TENSOR_OP_MATH or
CUDNN_TENSOROP_MATH_ALLOW_CONVERSION

‣ Tensor format for filter is NHWC

‣ Input and outputs are in FP16 and computation is in FP32

‣ A new API is introduced to enhance the inference time. With this new API it is now possible
to separate the filter layout transformation that was applied on every call, which in turn
leads to inference time enhancement. Below is a list of supported datatype and functions
in this API.

‣ cudnnReorderType_t

‣ cudnnReorderFilterAndBias

‣ cudnnSetConvolutionReorderType

‣ cudnnGetConvolutionReorderType

‣ Performance is enhanced (by selecting a faster kernel) on NVIDIA T4 cards for INT8x4 and
INT8x32.

cuDNN Release 7.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 36

Fixed Issues

The following issues have been fixed in this release:

‣ In cuDNN 7.5.0 and cuDNN 7.5.1, a bug in the cudnnRNNBackwardData() function
affected the thread synchronization. This effect is limited to only the first iteration
of the loop, and only in some paths. This occurs when using the function with the
CUDNN_RNN_ALGO_PERSIST_STATIC method. This is fixed in cuDNN 7.6.0.

Known Issues

The following issues and limitations exist in this release:

‣ The cudnnConvolutionBackwardData() function for
CUDNN_CONVOLUTION_BWD_DATA_ALGO_0 fails with
CUDNN_STATUS_NOT_SUPPORTED when the input size is large.

‣ A general known issue for cuDNN library: the Tensor pointers and the filter pointers
require at a minimum 4-byte alignment, including for FP16 or INT8 data.

‣ On RHEL7 only, the /usr/src/cudnn_samples_v7/samples_common.mk file is
missing. This will prevent compiling the cuDNN samples. The workaround is to copy
the below contents into “samples_common.mk” text file and place this file in the “/
usr/src/cudnn_samples_v7/” directory, so that the /usr/src/cudnn_samples_v7/
samples_common.mk file exists.

Setting SMS for all samples
architecture

ifneq ($(TARGET_ARCH), ppc64le)
CUDA_VERSION := $(shell cat $(CUDA_PATH)/include/cuda.h |grep "define
 CUDA_VERSION" |awk '{print $$3}')
else
CUDA_VERSION := $(shell cat $(CUDA_PATH)/targets/ppc64le-linux/include/cuda.h |
grep "define CUDA_VERSION" |awk '{print $$3}')
endif

#Link against cublasLt for CUDA 10.1 and up.
CUBLASLT:=false
ifeq ($(shell test $(CUDA_VERSION) -ge 10010; echo $$?),0)
CUBLASLT:=true
endif
$(info Linking agains cublasLt = $(CUBLASLT))

ifeq ($(CUDA_VERSION),8000)
SMS_VOLTA =
else
ifneq ($(TARGET_ARCH), ppc64le)
ifeq ($(CUDA_VERSION), $(filter $(CUDA_VERSION), 9000 9010 9020))
SMS_VOLTA ?= 70
else
ifeq ($(TARGET_OS), darwin)
SMS_VOLTA ?= 70
else
SMS_VOLTA ?= 70 72 75
endif #ifneq ($(TARGET_OS), darwin)
endif #ifeq ($(CUDA_VERSION), $(filter $(CUDA_VERSION), 9000 9010 9020))
else

cuDNN Release 7.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 37

SMS_VOLTA ?= 70
endif #ifneq ($(TARGET_ARCH), ppc64le)
endif #ifeq ($(CUDA_VERSION),8000)
SMS ?= 30 35 50 53 60 61 62 $(SMS_VOLTA)

3.7. cuDNN 7.5.1
This is the cuDNN 7.5.1 release notes. This release includes fixes from the previous cuDNN
v7.x.x releases as well as the following additional changes.

Key Features and Enhancements

The following features and enhancements have been added to this release:

‣ The function cudnnMultiHeadAttnForward() is now enabled to sweep through
all the time-steps in a single API call. This is indicated by a negative value of the
currIdx argument in the inference mode, i.e., when reserveSpace=NULL so that either
cudnnMultiHeadAttnBackwardData() or cudnnMultiHeadAttnBackwardWeights() will
not be invoked. This sweep mode can be used to implement self-attention on the encoder
side of the transformer model.

Fixed Issues

The following issues have been fixed in this release:

‣ In cuDNN 7.5.0, using the static link for cudnnConvolutionBiasActivationForward()
function may result in CUDNN_STATUS_NOT_SUPPORTED error message. The
workaround is to perform a whole-archive link. This issue is fixed in cuDNN 7.5.1.

‣ In cuDNN 7.5.0 and 7.4.x, in some cases of input images with
large dimensions, the 3D forward convolution operations with
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM will cause a crash with
“illegal memory access” error. This is fixed in cuDNN 7.5.1.

‣ In cuDNN 7.5.0, setting attnDropoutDesc=NULL in cudnnSetAttnDescriptor()
triggered a segmentation fault in cudnnMultiHeadAttnForward(), even though the user
is required to set it to NULL in the inference mode. This is fixed in cuDNN 7.5.1.

Known Issues

The following issues and limitations exist in this release:

‣ In cuDNN7.5 and cudnn7.5.1, image size smaller than filter size is unsupported, even with
sufficient padding.

cuDNN Release 7.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 38

3.8. cuDNN 7.5.0
This is the cuDNN 7.5.0 release notes. This release includes fixes from the previous cuDNN
v7.x.x releases as well as the following additional changes.

Key Features and Enhancements

The following features and enhancements have been added to this release:

‣ In cudnnConvolutionForward() for 2D convolutions, for wDesc NCHW, the
IMPLICIT_GEMM algorithm (algo 0) now supports the Data Type Configuration of
INT8x4_CONFIG, and INT8x4_EXT_CONFIG also.

‣ A new set of APIs are added to provide support for Multi-Head Attention computation. The
following is a list of the new functions and data types:

Datatypes:

‣ cudnnSeqDataAxis_t

‣ cudnnMultiHeadAttnWeightKind_t

‣ cudnnSeqDataDescriptor_t

‣ cudnnWgradMode_t

‣ cudnnAttnQueryMap_t

‣ cudnnAttnDescriptor_t

Functions:

‣ cudnnCreateAttnDescriptor

‣ cudnnDestroyAttnDescriptor

‣ cudnnSetAttnDescriptor

‣ cudnnGetAttnDescriptor

‣ cudnnGetMultiHeadAttnBuffers

‣ cudnnGetMultiHeadAttnWeights

‣ cudnnMultiHeadAttnForward

‣ cudnnMultiHeadAttnBackwardData

‣ cudnnMultiHeadAttnBackwardWeights

‣ cudnnSetSeqDataDescriptor

‣ cudnnGetSeqDataDescriptor

‣ cudnnCreateSeqDataDescriptor

‣ cudnnDestroySeqDataDescriptor

‣ A new set of APIs for general tensor folding is introduced. The following is a list of the new
functions and data types:

cuDNN Release 7.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 39

Datatypes:

‣ cudnnTensorTransformDescriptor_t

‣ cudnnFoldingDirection_t

Functions:

‣ cudnnTransformTensorEx

‣ cudnnCreateTensorTransformDescriptor

‣ cudnnDestroyTensorTransformDescriptor

‣ cudnnInitTransformDest

‣ cudnnSetTensorTransformDescriptor

‣ cudnnGetTensorTransformDescriptor

‣ A new set of APIs, and enhancements for the existing APIs, are introduced for RNNs. The
following is the list of the new and enhanced functions and data types:

Datatypes:

‣ cudnnRNNBiasMode_t (new)

‣ cudnnRNNMode_t (enhanced)

Functions:

‣ cudnnSetRNNBiasMode (new)

‣ cudnnGetRNNBiasMode (new)

‣ cudnnGetRNNLinLayerBiasParams (enhanced)

‣ All cudnnRNNForward/Backward* functions are enhanced to support FP16 math precision
mode when both input and output are in FP16. To switch to FP16 math precision, set the
mathPrec parameter in cudnnSetRNNDescriptor to CUDNN_DATA_HALF. To switch
to FP32 math precision, set the mathPrec parameter in cudnnSetRNNDescriptor to
CUDNN_DATA_FLOAT. This feature is only available for CUDNN_ALGO_STANDARD and for
the compute capability 5.3 or higher.

‣ Added support for INT8x4 and INT8x32 data type for cudnnPoolingForward. Using these
will provide improved performance over scalar data type.

Fixed Issues

The following issues have been fixed in this release:

‣ When the following is true for the cudnnConvolutionBackwardData() function:

‣ used with CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING, and

‣ convDesc's vertical stride is exactly 2, and

‣ the vertical padding is a multiple of 2, and

‣ the filter height is a multiple of 2

cuDNN Release 7.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 40

OR

‣ used with CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING, and

‣ convDesc's horizontal stride is exactly 2, and

‣ the horizontal padding is a multiple of 2, and

‣ the filter width is a multiple of 2

then the resulting output is incorrect. This issue was present in cuDNN 7.3.1 and later.
This is fixed in cuDNN 7.5.0.

‣ The mathPrec parameter in cudnnSetRNNDescriptor is reserved for controlling math
precision in RNN, but was not checked or enforced. This parameter is now strictly
enforced. As a result, the following applies:

‣ For the input/output in FP16, the parameter mathPrec can be CUDNN_DATA_HALF or
CUDNN_DATA_FLOAT.

‣ For the input/output in FP32, the parameter mathPrec can only be
CUDNN_DATA_FLOAT, and

‣ For the input/output in FP64, double type, the parameter mathPrec can only be
CUDNN_DATA_DOUBLE.

‣ Users upgrading to cuDNN 7.4 may see insufficiently small values returned from the
function cudnnGetConvolutionBackwardFilterWorkspaceSize () for dimensions 5
and greater, resulting in a CUDNN_STATUS_EXECUTION_FAILED error message. In cuDNN
7.4, the workaround for this issue is to calculate the workspace by using the formula
below:
Let M be the product of output tensor (gradDesc) dimensions starting at 1.
Let N be the output tensor dimension 0.
Let Mp = (M+31)/32
Let Np = (N+31)/32
W = 2 * M * N * sizeof(int) is the workspace that should be used.

This is fixed.

‣ In earlier cuDNN versions, when all the conditions below are true:

‣ 3-D convolution

‣ Batch size > 1

‣ Algorithm is CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1

‣ convDesc's dataType is CUDNN_DATA_HALF, then, calls to
cudnnConvolutionBackwardFilter() may produce incorrect (and non-deterministic)
results. This is fixed in cuDNN 7.5.0.

‣ In cuDNN 7.4.2, for some cases the 3D convolution resulted in a reduced performance on
Turing GPUs, compared to the previous cuDNN releases. This is fixed.

‣ For int8x32 datatype, the function cudnnSetTensor4dDescriptorEx erroneously returns
CUDNN_STATUS_BAD_PARAM. Now it is fixed in cuDNN 7.5 so it no longer returns bad
param.

cuDNN Release 7.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 41

‣ In cuDNN 7.4.1 and 7.4.2, when cudnnBatchNormMode_t is set to
CUDNN_BATCHNORM_SPATIAL_PERSISTENT and the input/output tensors are in
NHWC format and of CUDNN_DATA_HALF datatype, then, on Windows only, the
cudnnBatchNormalization*Ex functions are supported only with the device in TCC mode.
See Tesla Compute Cluster Mode for Windows .

Starting with cuDNN 7.5.0, the following checks are added for the driver mode on
Windows. If on Windows and not in TCC mode:

‣ The functions will fallback to a slower implementation if bnOps in the
cudnnBatchNormalization*Ex function is set to CUDNN_BATCHNORM_OPS_BN.

‣ If bnOps is set to CUDNN_BATCHNORM_OPS_BN_ACTIVATION, or
CUDNN_BATCHNORM_OPS_BN_ADD_ACTIVATION, the CUDNN_STATUS_NOT_SUPPORTED is
returned.

‣ In cuDNN 7.4.2, in some cases the cudnnConvolutionBackwardData() function, when
used with NHWC tensor format, resulted in the “disallowed mismatches” error. This is
fixed.

‣ In some cases, using cudnnConvolutionBiasActivationForward() with GroupCount()
> 1 and xDesc's data type is CUDNN_DATA_HALF will produce incorrect results for all
groups except the first. This is fixed.

‣ When using cuDNN 7.3.1 on Quadro P4000, when calling the
cudnnConvolutionForward() function with
CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED algorithm, there was a small
chance of seeing intermittent inaccurate results. This is fixed.

‣ When cudnnConvolutionForward() is called with these settings: Datatype is
CUDNN_DATA_INT8x4, Convolution is 2D, architecture is sm_61, filter size is larger than
8x8, then incorrect result and potential illegal memory access error occurs. This is fixed.

‣ For sm_72 and sm_75, the function cudnnConvolutionBiasActivationForward(), when
used with INT8x32, failed to run. This is fixed.

‣ In the function cudnnSetRNNDataDescriptor , if API logging is turned on, the
seqLengthArray field in the log may not display the correct number of array elements.
This is fixed.

‣ For the batchNorm functions cudnnBatchNormalization{Backward|BackwardEx|
ForwardInference|ForwardTraining|ForwardTrainingEx}, the value of epsilon is
required to be greater or equal to CUDNN_BN_MIN_EPSILON which was defined in the
cudnn.h file to the value 1e-5. This threshold value is now lowered to 0.0 to allow a wider
range of epsilon value. However, users should still choose the epsilon value carefully,
since a too small a value of epsilon may cause batchNormalization to overflow when the
input data's standard deviation is close to 0.

‣ Some Grouped Convolutions (particularly those used in Depthwise-Separable
convolutions) may return INTERNAL_ERROR if they have all inputs/outputs as NHWC-
packed and do not match one of the following criteria:

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#tesla-compute-cluster-mode-for-windows

cuDNN Release 7.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 42

‣ filter_height = 1, filter_width = 1, vertical_conv_stride = 1, horizontal_conv_stride = 1

‣ filter_height = 3, filter_width = 3, vertical_conv_stride = 1, horizontal_conv_stride = 1

‣ filter_height = 3, filter_width = 3, vertical_conv_stride = 2, horizontal_conv_stride = 2

Known Issues

The following issues and limitations exist in this release:

‣ The RNN persist-static algorithm returns incorrect results for GRU problems in
backwards mode, when the hidden size is greater than 1024. Due to this, RNN persist-
static algorithm is disabled in cuDNN 7.5.0. Users with such GRU problems are advised
to use the standard or persist-dynamic RNN algorithms. See cudnnRNNAlgo_t. This note
applies to all previous cuDNN 7 releases.

‣ The function cudnnConvolutionBackwardFilter(), when used with
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1, returns the error "Uninitialized
__global__ memory read of size 4".

3.9. cuDNN 7.4.2
This is the cuDNN 7.4.2 release notes. This release includes fixes from the previous cuDNN
v7.x.x releases as well as the following additional changes.

Fixed Issues

The following issues have been fixed in this release:

‣ In some cases when the data is in CUDNN_DATA_HALF and NHWC, illegal memory access
may occur for cudnnBatchNormalization* functions in the cuDNN 7.4.1 library. This is
now fixed.

‣ When the data is in CUDNN_DATA_HALF and NHWC, for cudnnBatchNormalization*
functions when (N*H*W) is large and odd number, the output may contain wrong results.
This is fixed.

‣ When calling the cudnnConvolutionBiasActivationForward() function with the algo
parameter set to CUDNN_CONVOLUTION_FWD_ALGO_FFT and the activationDesc
parameter set to CUDNN_ACTIVATION_RELU and sufficiently large inputs, the ReLU
operation is not applied and negative values are passed through to the output. This issue is
now fixed. This issue was present in all previous cuDNN versions.

‣ Performance regression was introduced in cuDNN 7.4.1
for cudnnConvolutionBwdFilterAlgo_t() function with
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1 algorithm. This is fixed.

Known Issues

The following issues and limitations exist in this release:

cuDNN Release 7.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 43

‣ When cudnnBatchNormMode_t is set to CUDNN_BATCHNORM_SPATIAL_PERSISTENT
and the input/output tensors are in NHWC format and of CUDNN_DATA_HALF datatype,
then, on Windows only, the cudnnBatchNormalization*Ex functions are supported only
with the device in TCC mode. See Tesla Compute Cluster Mode for Windows. This issue
is not present on Linux systems. This issue is present in cuDNN 7.4.1 and this current
version.

‣ In some cases the 3D convolution will have a reduced performance on Turing GPUs,
compared to the previous cuDNN releases.

‣ The functions cudnnGetConvolutionForwardAlgorithm_v7()
and cudnnGetConvolutionForwardWorkspaceSize() will return
CUDNN_STATUS_SUCCESS, but the execution of the convolution returns
CUDNN_STATUS_NOT_SUPPORTED. This issue is present in cuDNN 7.2.2 library and later
versions.

3.10. cuDNN 7.4.1
This is the cuDNN 7.4.1 release notes. This release includes fixes from the previous cuDNN
v7.x.x releases as well as the following additional changes.

Key Features and Enhancements

The following enhancements have been added to this release:

‣ Added a new family of fast NHWC batch normalization functions. See the following five new
functions and one new type descriptor:

‣ cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize() function

‣ cudnnBatchNormalizationForwardTrainingEx function

‣ cudnnGetBatchNormalizationBackwardExWorkspaceSize() function

‣ cudnnBatchNormalizationBackwardEx() function

‣ cudnnGetBatchNormalizationTrainingExReserveSpaceSize() function

‣ cudnnBatchNormOps_t type descriptor

‣ For API Logging, a conversion specifier for the process id is added. With this, the process
id can be included in the log file name. See API Logging.

‣ Performance of cudnnPoolingBackward() is enhanced for the
average pooling when using NHWC data format--for both the
CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING and
CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING cases of
cudnnPoolingMode_t.

‣ Performance of the strided convolution in cudnnConvolutionBackwardData() is
enhanced when the filter is in NHWC format and the data type is TRUE_HALF_CONFIG or

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#tesla-compute-cluster-mode-for-windows
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#api-logging

cuDNN Release 7.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 44

PSEUDO_HALF_CONFIG or FLOAT_CONFIG. For strides u,v < r,s the performance is
further enhanced.

‣ Significantly improved the performance of cudnnConvolutionForward(),
cudnnConvolutionBackwardData() and cudnnConvolutionBackwardFilter()
functions on RCNN models such as Fast RCNN, Faster RCNN, & Mask RCNN.

Fixed Issues

The following issues have been fixed in this release:

‣ The following set up was giving “Misaligned Address” error in cuDNN 7.3.x. This
is fixed in cuDNN 7.4.1: For the cudnnConvolutionForward() function with the
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM algorithm, in the data
type configuration of PSEUDO_HALF_CONFIG, when the input and output tensors are in in
NHWC and the filter is 1x1 and NCHW, and Tensor Op is enabled.

‣ For a few convolution sizes for ALGO_0 and ALGO_1, the performance of the function
cudnnConvolutionBackwardFilter() was degraded in cuDNN 7.3.1. This is now fixed.

‣ Fixed. In cuDNN 7.3.1 the function cudnnAddTensor was computing incorrect results
when run on GPUs with the compute capability < 6.0 (prior to Pascal).

Known Issues

The following issues and limitations exist in this release:

‣ When calling the cudnnConvolutionBiasActivationForward() function with the algo
parameter set to CUDNN_CONVOLUTION_FWD_ALGO_FFT and the activationDesc
parameter set to CUDNN_ACTIVATION_RELU and sufficiently large inputs, the ReLU
operation is not applied and negative values are passed through to the output. This issue is
present in all previous cuDNN versions.

3.11. cuDNN 7.3.1
This is the cuDNN 7.3.1 release notes. This release includes fixes from the previous cuDNN
v7.x.x releases as well as the following additional changes.

Key Features and Enhancements

The following enhancements have been added to this release:

‣ The FFT tiling algorithms for convolution have been enhanced
to support strided convolution. In specific, for the algorithms
CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING and
CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING, the convDesc's vertical and
horizontal filter stride can be 2 when neither the filter width nor the filter height is 1.

cuDNN Release 7.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 45

‣ The CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD algorithm for
cudnnConvolutionForward() and cudnnConvolutionBackwardData() now give
superior performance for Volta architecture. In addition, the mobile version of this
algorithm in the same functions gives superior performance for Maxwell and Pascal
architectures.

‣ Dilated convolutions now give superior performance for cudnnConvolutionForward(),
cudnnConvolutionBackwardData(), and cudnnConvolutionBackwardFilter() on
Volta architecture, in some cases.

Known Issues and Limitations

The following issues and limitations exist in this release:

‣ For the cudnnConvolutionForward(), when using a 1x1 filter with input and output
tensors of NHWC format and of CUDNN_DATA_HALF (half precision) type, and the filter
format is NCHW, with compute type of float, cuDNN will generate incorrect results.

‣ On Quadro P4000, when calling cudnnConvolutionForward() function with
CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED algorithm, there may be a
small chance of seeing intermittent inaccurate results.

‣ When using cudnnConvolutionBackwardFilter() with
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0 in mixed precision computation, with
input/output in CUDNN_DATA_HALF (half precision) and compute type of float, when
the number of batches (N) is larger than 1 the results might include INF due to an
intermediate down-convert to half float. In other words, with an accumulation of float for
all intermediate values (such as in CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1) the
result will be a finite half precision float. This limitation also exists in all previous cuDNN
versions.

Fixed Issues

The following issues have been fixed in this release:

‣ Fixed a pointer arithmetic integer overflow issue in RNN forward and backward functions,
when sequence length and mini-batch size are sufficiently large.

‣ When tensor cores are enabled in cuDNN 7.3.0, the
cudnnConvolutionBackwardFilter() calculations were performing an illegal memory
access when K and C values are both non-integral multiples of 8. This issue is fixed.

‣ For the CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1 algorithm in
cudnnConvolutionBackwardFilter(), on Volta, the tensor operations were occasionally
failing when the filter spatial size (filter h * filter w) was greater than 64. This issue is fixed.

‣ While running cuDNN 7.3.0 on Turing with CUDA 10.0, r400 driver, the functions
cudnnRNNForwardTraining(Ex) and cudnnRNNForwardInference(Ex) errored out
returning CUDNN_STATUS_NOT_SUPPORTED. This issue is fixed.

cuDNN Release 7.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 46

‣ In cuDNN 7.3.0, when using CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1 with tensor
data or filter data in NHWC format, the function might have resulted in a silent failure. This
is now fixed.

3.12. cuDNN 7.3.0
This is the cuDNN 7.3.0release notes. This release includes fixes from the previous cuDNN
v7.x.x releases as well as the following additional changes.

Key Features and Enhancements

The following enhancements have been added to this release:

‣ Support is added to the following for the dilated convolution, for NCHW and NHWC filter
formats:

‣ cudnnConvolutionForward() for 2D,
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM,

‣ cudnnConvolutionBackwardData() for 2D,
CUDNN_CONVOLUTION_BWD_DATA_ALGO_1, and

‣ cudnnConvolutionBackwardFilter() for 2D,
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1

For these supported cases, the dilated convolution is expected to offer superior speed,
compared to the existing dilated convolution with algo 0.

‣ Grouped convolutions for depth-wise separable convolutions are optimized for the
following NHWC formats: HHH (input: Half, compute: Half, output: Half), HSH, and SSS.

‣ While using CUDNN_TENSOR_OP_MATH or
CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION, with the tensor cores, the c and k
dimensions of the tensors are now padded to multiples of 8 (as needed), to allow a tensor
core kernel to run.

‣ The CUDNN_BATCHNORM_SPATIAL_PERSISTENT algo is
enhanced in cudnnBatchNormalizationForwardTraining() and
cudnnBatchNormalizationBackward() to propagate NaN-s or Inf-s as in a pure floating
point implementation (the "persistent" flavor of the batch normalization is optimized
for speed and it uses integer atomics for inter thread-block reductions). In earlier
versions of cuDNN we recommended invoking cudnnQueryRuntimeError() to ensure
no overflow was encountered. When it happened, the best practice was to discard the
results, and use CUDNN_BATCHNORM_SPATIAL instead, as some results generated by
CUDNN_BATCHNORM_SPATIAL_PERSISTENT could be finite but invalid. This behavior is
now corrected: NaN-s and/or Inf-s are consistently output when intermediate results are
out of range. The refined implementation simulates math operations on special floating
point values, for example, +Inf-Inf=NaN.

cuDNN Release 7.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 47

Known Issues and Limitations

Following issues and limitations exist in this release:

‣ When tensor cores are enabled in cuDNN 7.3.0, the wgrad calculations will perform an
illegal memory access when K and C values are both non-integral multiples of 8. This will
not likely produce incorrect results, but may corrupt other memory depending on the user
buffer locations. This issue is present on Volta & Turing architectures.

‣ Using cudnnGetConvolution*_v7 routines with cudnnConvolutionDescriptor_t set
to CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION leads to incorrect outputs. These
incorrect outputs will consist only of CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION
cases, instead of also returning the performance results for both DEFAULT_MATH and
CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION cases.

Fixed Issues

The following issues have been fixed in this release:

‣ Using cudnnConvolutionBackwardData() with
CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD algorithm produced incorrect
results due to an incorrect filter transform. This issue was present in cuDNN 7.2.1.

‣ For INT8 type, with xDesc and yDesc of NHWC format, the
cudnnGetConvolutionForwardAlgorithm_v7 function was incorrectly returning
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM as a valid algorithm. This is fixed.

‣ cudnnConvolutionForward() using CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD
intermittently produced incorrect results in cuDNN 7.2, due to a race condition. This issue
is fixed.

‣ When running cudnnConvolutionBackwardFilter() with NHWC filter format, when
n, c, and k are all multiple of 8, and when the workSpace input is exactly as indicated by
cudnnGetConvolutionBackwardFilterWorkspaceSize(), leads to error in cuDNN 7.2.
This is fixed.

‣ When the user runs cudnnRNNForward* or cudnnRNNBackward* with FP32
input/output on sm_70 or sm_72, with RNN descriptor's algo field set to
CUDNN_RNN_ALGO_PERSIST_STATIC, and cudnnMathType_t type set to
CUDNN_TENSOR_OP_MATH via cudnnSetRNNMatrixMathType, then the results were
incorrect. This is fixed.

‣ When the user runs cudnnRNNForward* or cudnnRNNBackward* with FP32
input/output on sm_70 or sm_72, with RNN descriptor's algo field set to
CUDNN_RNN_ALGO_PERSIST_STATIC, and cudnnMathType_t type set to
CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION via cudnnSetRNNMatrixMathType,
then the resulting performance was suboptimal. This is fixed.

‣ Convolution routines with filter format as NHWC require both input and output formats to
be NHWC. However, in cuDNN 7.2 and earlier, this condition was not being checked for, as

cuDNN Release 7.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 48

a result of which silent failures may have occurred. This is fixed in 7.3.0 to correctly return
CUDNN_STATUS_NOT_SUPPORTED.

3.13. cuDNN 7.2.1
This is the cuDNN 7.2.1 release notes. This release includes fixes from the previous cuDNN
v7.x.x releases as well as the following additional changes.

Key Features and Enhancements

The following enhancements have been added to this release:

‣ The following new functions are added to provide support for the padding mask for the
cudnnRNN* family of functions:

‣ cudnnSetRNNPaddingMode(): Enables/disables the padded RNN input/output.

‣ cudnnGetRNNPaddingMode(): Reads the padding mode status.

‣ cudnnCreateRNNDataDescriptor() and cudnnDestroyRNNDataDescriptor():
Creates and destroys, respectively, cudnnRNNDataDescriptor_t, an RNN data
descriptor.

‣ cudnnSetRNNDataDescriptor() and cudnnGetRNNDataDescriptor(): Initializes and
reads, respectively, the RNN data descriptor.

‣ cudnnRNNForwardTrainingEx(): An extended version of the
cudnnRNNForwardTraining() to allow for the padded (unpacked) layout for the input/
output.

‣ cudnnRNNForwardInferenceEx(): An extended version of the
cudnnRNNForwardInference() to allow for the padded (unpacked) layout for the
input/output.

‣ cudnnRNNBackwardDataEx(): An extended version of the cudnnRNNBackwardData()
to allow for the padded (unpacked) layout for the input/output.

‣ cudnnRNNBackwardWeightsEx(): An extended version of the
cudnnRNNBackwardWeights() to allow for the padded (unpacked) layout for the input/
output.

‣ Added support for cell clipping in cuDNN LSTM. The following new functions are added:

‣ cudnnRNNSetClip() and cudnnRNNGetClip(): Sets and retrieves, respectively, the
LSTM cell clipping mode.

‣ Accelerate your convolution computation with this new feature: When the input channel
size c is a multiple of 32, you can use the new data type CUDNN_DATA_INT8x32 to
accelerate your convolution computation.

Note: This new data type CUDNN_DATA_INT8x32 is only supported by sm_72.

cuDNN Release 7.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 49

‣ Enhanced the family of cudnnFindRNN* functions. The findIntensity input to these
functions now enable the user to control the overall runtime of the RNN find algorithms,
by selecting a percentage of a large Cartesian product space to be searched.

‣ A new mode CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION is added to
cudnnMathType_t. The computation time for FP32 tensors can be reduced by selecting
this mode.

‣ The functions cudnnRNNForwardInference(), cudnnRNNForwardTraining(),
cudnnRNNBackwardData(), and cudnnRNNBackwardWeights()
will now perform down conversion of FP32 input/output only when
CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION is set.

‣ Improved the heuristics for cudnnGet*Algorithm() functions.

Known Issues and Limitations

Following issues and limitations exist in this release:

‣ For FP16 inputs, the functions cudnnGetConvolutionForwardAlgorithm(),
cudnnGetConvolutionBackwardDataAlgorithm(), and
cudnnGetConvolutionBackwardFilterAlgorithm() will obtain a slower algorithm.

‣ For cases where beta is not equal to zero, and when the input channel size is greater
than 65535, then the below cudnnConvolutionBackwardFilter() algorithms may return
EXECUTION_FAILED error:

‣ CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0,

‣ CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1, and

‣ CUDNN_CONVOLUTION_BWD_FILTER_ALGO_3

‣ This is a rare occurrence: When beta is not equal to zero, the function
cudnnFindConvolutionBackwardFilterAlgorithm() may not return the fastest
algorithm available for cudnnConvolutionBackwardFilter().

‣ Grouped convolutions are not supported in the TRUE_HALF_CONFIG (convDesc
is CUDNN_DATA_HALF) data type configuration. As a workaround, the
PSEUDO_HALF_CONFIG (convDesc is CUDNN_DATA_FLOAT) data type configuration can
be used without losing any precision.

‣ For the cudnnConvolutionBiasActivationForward() function, if the input
cudnnActivationMode_t is set to enum value CUDNN_ACTIVATION_IDENTITY,
then the input cudnnConvolutionFwdAlgo_t must be set to the enum value
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM.

‣ When the user runs cudnnRNNForward* or cudnnRNNBackward* with FP32
input/output, on sm_70 or sm_72, with RNN descriptor's algo field set to
CUDNN_RNN_ALGO_PERSIST_STATIC, and math type set to CUDNN_TENSOR_OP_MATH via
cudnnSetRNNMatrixMathType(), then the results are incorrect.

‣ When the user runs cudnnRNNForward* or cudnnRNNBackward* with
FP32 input/output, on sm_70 or sm_72, with RNN descriptor's algo

cuDNN Release 7.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 50

field set to CUDNN_RNN_ALGO_PERSIST_STATIC, and math type set to
CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION via cudnnSetRNNMatrixMathType(), then
the resulting performance is suboptimal.

Fixed Issues

The following issues have been fixed in this release:

‣ The cudnnConvolutionBackwardData() function produced incorrect result under these
conditions:

‣ The algo input is set to CUDNN_CONVOLUTION_BWD_DATA_ALGO_1 in
cudnnConvolutionBwdDataAlgo_t, and

‣ CUDNN_TENSOR_OP_MATH is selected.

Under above conditions, the dgrad computation was giving incorrect results when the
data is not packed and the data format is NCHW. This is fixed.

‣ When the cudnnConvolutionFwdAlgo_t() was set to
CONVOLUTION_FWD_ALGO_FFT_TILING then the function cudnnConvolutionForward()
was leading to illegal memory access. This is now fixed.

‣ cudnnPoolingBackward() was failing when using a large kernel size used for
'global_pooling' with NHWC I/O layout. This is fixed.

‣ The below two items are fixed: If you set RNN mathtype to CUDNN_TENSOR_OP_MATH,
and run RNN on sm6x or earlier hardware:

‣ a. You may have received CUDNN_STATUS_NOT_SUPPORTED when algo selected is
CUDNN_RNN_ALGO_STANDARD or CUDNN_RNN_ALGO_PERSIST_STATIC.

‣ b. You may have received incorrect results when algo selected is
CUDNN_RNN_ALGO_PERSIST_DYNAMIC.

‣ If you passed in variable sequence length input tensor to cudnnRNNForwardInference(),
cudnnRNNForwardTraining(), cudnnRNNBackwardData(), and used
CUDNN_RNN_ALGO_PERSIST_STATIC or CUDNN_RNN_ALGO_PERSIST_DYNAMIC,
then you may have received incorrect results. Now this is being checked, and
CUDNN_STATUS_NOT_SUPPORTED will be returned.

3.14. cuDNN 7.1.4
This is the cuDNN 7.1.4 release notes. This release includes fixes from the previous cuDNN
v7.x.x releases as well as the following additional changes.

Key Features and Enhancements

The following enhancements have been added to this release:

‣ Improved performance for some cases of data-gradient convolutions and maxpooling. This
is expected to improve performance of ResNet-50 like networks.

cuDNN Release 7.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 51

‣ The runtime of the RNN Find algorithm suite is improved in v7.1.4 resulting in slightly
improved runtime of cudnnFindRNN***AlgorithmEx.

Known Issues

Following are known issues in this release:

‣ cudnnGet picks a slow algorithm that does not use Tensor Cores on Volta when inputs are
FP16 and it is possible to do so.

‣ The cudnnConvolutionBackwardFilter() function may output incorrect results for
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_FFT_TILING when the convolution mode is
CUDNN_CONVOLUTION. This function should not be used in this mode.

Fixed Issues

The following issues have been fixed in this release:

‣ cudnnAddTensorNd might cause a segmentation fault if called with bad arguments (e.g.
null pointer), this issue is in 7.1.3 only and fixed in 7.1.4.

‣ cudnnRNNBackwardData LSTM cell with fp16 (half) inputs might generate wrong values
(silently), this issue exists in cudnn 7.1.3 binaries compiled with cuda toolkit 9.0 and toolkit
cuda 9.2, and does not exist in cudnn 7.1.3 binaries compiled with toolkit 9.1.

‣ cudnnGetRNNLinLayerMatrixParams wrongly returns CUDNN_STATUS_BAD_PARAM
when cudnnSetRNNDescriptor is called with dataType == CUDNN_DATA_FLOAT. This is
an issue in 7.1.3 only and will be fixed in 7.1.4. The dataType argument as of today supports
only CUDNN_DATA_FLOAT and we plan to support additional compute types in the future.

‣ There is a small memory leak issue when calling cudnnRNNBackwardData with
CUDNN_RNN_ALGO_STANDARD. This issue also affects previous cuDNN v7 releases. This is
fixed in 7.1.4.

‣ RNN with half precision returns CUDNN_EXECUTION_FAILED on Kepler gpu in 7.1.3. This is
fixed in 7.1.4 to use pseudo-fp16 computation

‣ The RNN Find algorithm suite mistakenly did not test CUDNN_RNN_ALGO_PERSIST_STATIC
and CUDNN_RNN_ALGO_PERSIST_DYNAMIC kernels with tensor operations enabled when it
was possible to do so. This is fixed in v7.1.4.

3.15. cuDNN 7.1.3
This is the cuDNN 7.1.3 release notes. This release includes fixes from the previous cuDNN
v7.x.x releases as well as the following additional changes.

Known Issues

Following are known issues in this release:

cuDNN Release 7.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 52

‣ cudnnGet picks a slow algorithm that does not use Tensor Cores on Volta when inputs are
FP16 and it is possible to do so.

‣ The cudnnConvolutionBackwardFilter() function may output incorrect results
for CUDNN_CONVOLUTION_BWD_FILTER_ALGO_FFT_TILING when the convolution
mode is CUDNN_CONVOLUTION and the product "n*k" (n - batch size, k - number
of output feature maps) is large, i.e., several thousand or more. It appears that the
CUDNN_CROSS_CORRELATION mode is not affected by this bug.

‣ There is a small memory leak issue when calling cudnnRNNBackwardData with
CUDNN_RNN_ALGO_STANDARD. This issue also affects previous cuDNN v7 releases.

‣ RNN with half precision will not work on Kepler GPUs and will return
CUDNN_EXECUTION_FAILED. This will be fixed in future releases to return
CUDNN_STATUS_UNSUPPORTED.

Fixed Issues

The following issues have been fixed in this release:

‣ cudnnRNNbackwardData for LSTM with recurrent projection in half precision may fail in
rare cases with misaligned memory access on Pascal and Maxwell.

‣ cudnnRNNbackwardData for bidirectional LSTM with recurrent projection may produce
inaccurate results, or CUDNN_STATUS_UNSUPPORTED.

‣ Algo 1 for forward convolution and dgrad may produce erroneous results when the filter
size is greater than the input size. This issue is fixed in 7.1.3.

‣ For very large RNN networks, the function cudnnGetRNNWorkspaceSize and
cudnnGetRNNTrainingReserveSize may internally overflow and give incorrect results.

‣ The small performance regression on multi-layer RNNs using the STANDARD algorithm
and Tensor Core math in 7.1.2, as compared to 7.0.5, is fixed in this release.

‣ Fixed an issue with Persistent LSTM backward pass with a hidden state size in the range
257 to 512 on GPUs with number of SMs between 22 and 31 might hang. This issue also
exists in 7.1.1. This is fixed in 7.1.3.

‣ Fixed an issue Persistent GRU backward pass with a hidden state size in the range 513-
>720 on GPUs with exactly 30 SMs would hang. This issue also exists in 7.1.1. This is fixed
in 7.1.3.

3.16. cuDNN 7.1.2
This is the cuDNN 7.1.2 release notes. This release includes fixes from the previous cuDNN
v7.x.x releases as well as the following additional changes.

Key Features and Enhancements

The following enhancements have been added to this release:

cuDNN Release 7.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 53

‣ RNN search API extended to support all RNN algorithms.

‣ Newly added projection Layer supported for inference bidirectional RNN cells and for
backward data and gradient.

‣ Support IDENTITY Activation for all cudnnConvolutionBiasActivationForward data
types for CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM.

‣ Added documentation to clarify RNN/LSTM weight formats.

Known Issues

Following are known issues in this release:

‣ cudnnGet picks a slow algorithm that does not use Tensor Cores on Volta when inputs are
FP16 and it is possible to do so.

‣ There may be a small performance regression on multi-layer RNNs using the STANDARD
algorithm with Tensor Core math in this release compared to v7.0.5.

‣ LSTM projection dgrad half precision may fail in rare cases with misaligned memory
access on Pascal and Maxwell.

‣ Dgrad for bidirectional LSTM with projection should not be used, may produce inaccurate
results, or CUDNN_STATUS_UNSUPPORTED.

‣ The cudnnConvolutionBackwardFilter() function may output incorrect results
for CUDNN_CONVOLUTION_BWD_FILTER_ALGO_FFT_TILING when the convolution
mode is CUDNN_CONVOLUTION and the product "n*k" (n - batch size, k - number of
output feature maps) is large, i.e., several thousand or more. It appears that the
CUDNN_CROSS_CORRELATION mode is not affected by this.

‣ Persistent LSTM backward pass with a hidden state size in the range 257 to 512 on GPUs
with number of SMs between 22 and 31 might hang. This issue also exists in 7.1.1 and will
be fixed in 7.1.3.

‣ Persistent GRU backward pass with a hidden state size in the range 513 to 720 on GPUs
with exactly 30 SMs would hang. This issue also exists in 7.1.1 and will be fixed in 7.1.3.

‣ Algo 1 for forward convolution and dgrad may produce erroneous results when the filter
size is greater than the input size.

Fixed Issues

The following issues have been fixed in this release:

‣ The uint8 input for convolution is restricted to Volta and later. We added support for older
architectures, for algo: CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM.

‣ In some cases when algorithm CUDNN_CONVOLUTION_BWD_FILTER_ALGO1 was selected,
the routine cudnnConvolutionBackwardFilter could fail at runtime and return
CUDNN_STATUS_EXECUTION_FAILED. It now returns CUDNN_STATUS_NOT_SUPPORTED.

‣ cudnnSetRNNDescriptor no longer needs valid Dropout Descriptor in inference mode,
user can pass NULL for Dropout Descriptor in inference mode.

cuDNN Release 7.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 54

3.17. cuDNN 7.1.1
This is the cuDNN 7.1.1 release notes. This release includes fixes from the previous cuDNN
v7.x.x releases as well as the following additional changes.

Key Features and Enhancements

The following enhancements have been added to this release:

‣ Added new API cudnnSetRNNProjectionLayers and cudnnGetRNNProjectionLayers
to support Projection Layer for the RNN LSTM cell. In this release only the inference
use case will be supported. The bi-directional and the training forward and backward
for training is not supported in 7.1.1 but will be supported in the upcoming 7.1.2
release without API changes. For all the unsupported cases in this release,
CUDNN_NOT_SUPPORTED is returned when projection layer is set and the RNN is called.

‣ The cudnnGetRNNLinLayerMatrixParams() function was enhanced and a bug was fixed
without modifying its prototype. Specifically:

‣ The cudnnGetRNNLinLayerMatrixParams() function was updated to support the
RNN projection feature. An extra linLayerID value of 8 can be used to retrieve the
address and the size of the “recurrent” projection weight matrix when "mode" in
cudnnSetRNNDescriptor() is configured to CUDNN_LSTM and the recurrent projection
is enabled via cudnnSetRNNProjectionLayers().

‣ Instead of reporting the total number of elements in each weight matrix in the
“linLayerMatDesc” filter descriptor, the cudnnGetRNNLinLayerMatrixParams()
function returns the matrix size as two dimensions: rows and columns. This allows the
user to easily print and initialize RNN weight matrices. Elements in each weight matrix
are arranged in the row-major order. Due to historical reasons, the minimum number
of dimensions in the filter descriptor is three. In previous versions of the cuDNN
library, cudnnGetRNNLinLayerMatrixParams() returned the total number of weights
as follows: filterDimA[0]=total_size, filterDimA[1]=1, filterDimA[2]=1.
In v7.1.1, the format was changed to: filterDimA[0]=1, filterDimA[1]=rows,
filterDimA[2]=columns. In both cases, the "format" field of the filter descriptor
should be ignored when retrieved by cudnnGetFilterNdDescriptor().

‣ A bug in cudnnGetRNNLinLayerMatrixParams() was fixed to return a zeroed filter
descriptor when the corresponding weight matrix does not exist. This occurs, for
example, for linLayerID values of 0-3 when the first RNN layer is configured to exclude
matrix multiplications applied to RNN input data (inputMode=CUDNN_SKIP_INPUT
in cudnnSetRNNDescriptor() specifies implicit, fixed identity weight matrices
for RNN input). Such cases in previous versions of the cuDNN library caused
cudnnGetRNNLinLayerMatrixParams() to return corrupted filter descriptors
with some entries from the previous call. A workaround was to create a new filter
descriptor for every invocation of cudnnGetRNNLinLayerMatrixParams().

cuDNN Release 7.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 55

‣ The cudnnGetRNNLinLayerBiasParams() function was updated to report
the bias column vectors in "linLayerBiasDesc" in the same format as
cudnnGetRNNLinLayerMatrixParams(). In previous versions of the cuDNN library,
cudnnGetRNNLinLayerBiasParams() returned the total number of adjustable
bias parameters as follows: filterDimA[0]=total_size, filterDimA[1]=1,
filterDimA[2]=1. In v7.1.1, the format was changed to: filterDimA[0]=1,
filterDimA[1]=rows, filterDimA[2]=1 (number of columns). In both cases,
the "format" field of the filter descriptor should be ignored when retrieved by
cudnnGetFilterNdDescriptor(). The recurrent projection GEMM does not have a bias
so the range of valid inputs for the "linLayerID" argument remains the same.

‣ Added support for use of Tensor Core for the CUDNN_RNN_ALGO_PERSIST_STATIC. This
required cuda cuDNN v7.1 build with CUDA 9.1 and 387 or higher driver. It will not work
with CUDA 9.0 and 384 driver.

‣ Added RNN search API that allows the application to provide an RNN descriptor and
get a list of possible algorithm choices with performance and memory usage, to allow
applications to choose between different implementations. For more information,
refer to the documentation of: cudnnFindRNNForwardInferenceAlgorithmEx,
cudnnFindRNNForwardTrainingAlgorithmEx,
cudnnFindRNNBackwardDataAlgorithmEx, and
cudnnFindRNNBackwardWeightsAlgorithmEx. In this release, the search will operate on
STANDARD algorithm and will not support PERSISTENT algorithms of RNN.

‣ Added uint8 for support for the input data for
cudnnConvolutionBiasActivationForward and cudnnConvolutionForward. Currently
the support is on Volta (sm 70) and later architectures. Support for older architectures will
be gradually added in the upcoming releases.

‣ Suport for CUDNN_ACTIVATION_IDENTITY is added to
cudnnConvolutionBiasActivationForward. This allows users to perform Convolution
and Bias without Activation.

‣ All API functions now support logging. User can trigger logging by setting environment
variable “CUDNN_LOGINFO_DBG=1” and “CUDNN_LOGDEST_DBG= <option>” where
<option> (i.e., the output destination of the log) can be chosen from “stdout”, “stderr”, or a
file path. User may also use the new Set/GetCallBack functions to install their customized
callback function. Log files can be added to the reported bugs or shared with us for
analysis and future optimizations through partners.nvidia.com.

‣ Improved performance of 3D convolution on Volta architecture.

‣ The following algo-related functions have been added for this release:
cudnnGetAlgorithmSpaceSize, cudnnSaveAlgorithm, cudnnRestoreAlgorithm,
cudnnCreateAlgorithmDescriptor, cudnnSetAlgorithmDescriptor,
cudnnGetAlgorithmDescriptor, cudnnDestroyAlgorithmDescriptor,
cudnnCreateAlgorithmPerformance, cudnnSetAlgorithmPerformance,
cudnnGetAlgorithmPerformance, cudnnDestroyAlgorithmPerformance.

cuDNN Release 7.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 56

‣ All algorithms for convolutions now support groupCount > 1. This includes
cudnConvolutionForward(), cudnnConvolutionBackwardData(), and
cudnnConvolutionBackwardFilter().

Known Issues

Following are known issues in this release:

‣ RNN search Algorithm is restricted to STANDARD algorithm.

‣ Newly added projection Layer supported for inference and one directional RNN cells.

‣ uint8 input for convolution is restricted to Volta and later.

‣ cudnnGet picks a slow algorithm that doesn't use Tensor Cores on Volta when inputs are
FP16 and it is possible to do so.

‣ There may be a small performance regression on multi-layer RNNs using the STANDARD
algorithm with Tensor Core math in this release compared to 7.0.5.

Fixed Issues

The following issues have been fixed in this release:

‣ 3D convolution performance improvements for Volta.

‣ Added support for Algorithm 0 data gradients to cover cases previously not supported.

‣ Removed the requirement for dropout Descriptor in RNN inference. Before application had
to set a non point for the dropout Descriptor which was not used.

‣ Use of CUDNN_TENSOR_NCHW_VECT_C with non-zero padding resulted in a return
status of CUDNN_STATUS_INTERNAL_ERROR. This issue is now fixed.

3.18. cuDNN 7.0.5
This is the cuDNN 7.0.5 release notes. This release includes fixes from the previous cuDNN
v7.x.x releases as well as the following additional changes.

Key Features and Enhancements

The following enhancements have been added to this release:

‣ None.

Known Issues

Following are known issues in this release:

‣ cuDNN library may trigger a CPU floating point exception when FP exceptions are enabled
by user. This issue exists for all 7.0.x releases.

‣ There are heavy use cases of RNN layers that might hit a memory allocation issue in
the CUDA driver when using cuDNN v7 with CUDA 8.0 and R375 driver on pre-Pascal

cuDNN Release 7.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 57

architectures (Kepler and Maxwell). In these cases, subsequent CUDA kernels may fail to
launch with an Error Code 30. To resolve the issue, it is recommended to use the latest
R384 driver (from NVIDIA driver downloads) or to ensure that the persistence daemon is
started. This behavior is observed on all 7.0.x releases.

‣ When using TENSOR_OP_MATH mode with cudnnConvolutionBiasActivationForward,
the pointer to the bias must be aligned to 16 bytes and the size of allocated memory must
be multiples of 256 elements. This behavior exists for all 7.0.x releases.

Fixed Issues

The following issues have been fixed in this release:

‣ Corrected the algorithm fallback behavior in RNN when user set to use
CUDNN_TENSOR_OP_MATH when using compute card without Tensor Cores. Instead of
returning CUDNN_STATUS_NOT_SUPPORTED, the RNN algorithm will now continue to run
using CUDNN_DEFAULT_MATH. The correct behavior is to fall back to using default math
when Tensor Core is not supported. Fixed to the expected behavior.

‣ On Volta hardware, BWD_FILTER_ALGO_1 and BWD_DATA_ALGO_1 convolutions using a
number of filter elements greater than 512 were causing CUDA_ERROR_ILLEGAL_ADDRESS
and CUDNN_STATUS_INTERNAL_ERROR errors. Logic was added to fall back to a generic
kernel for these filter sizes.

‣ cuDNN v7 with CUDA 8.0 produced erroneous results on Volta for some common cases of
Algo 1. Logic was added to fall back to a generic kernel when cudnn v7 with CUDA 8.0 is
used on Volta.

3.19. cuDNN 7.0.4
This is the cuDNN 7.0.4 release notes. This release includes fixes from the previous cuDNN
v7.x.x releases as well as the following additional changes.

Key Features and Enhancements

Performance improvements for grouped convolutions when input channels and output
channels per group are 1, 2, or 4 for the following algorithms:

‣ CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM

‣ CUDNN_CONVOLUTION_BWD_DATA_ALGO0

‣ CUDNN_CONVOLUTION_BWD_DATA_ALGO_1

‣ CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0

‣ CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1

Known Issues

Following are known issues in this release:

cuDNN Release 7.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 58

‣ The CUDA 8.0 build of cuDNN may produce incorrect computations when run on Volta.

‣ cuDNN library triggers CPU floating point exception when FP exceptions are enabled by
user. This issue exists for all 7.0.x releases.

‣ There are heavy use cases of RNN layers that might hit a memory allocation issue in
the CUDA driver when using cuDNN v7 with CUDA 8.0 and R375 driver on pre-Pascal
architectures (Kepler and Maxwell). In these cases, subsequent CUDA kernels may fail to
launch with an Error Code 30. To resolve the issue, it is recommended to use the latest
R384 driver (from NVIDIA driver downloads) or to ensure that the persistence daemon is
started. This behavior is observed on all 7.0.x releases.

‣ When using TENSOR_OP_MATH mode with cudnnConvolutionBiasActivationForward,
the pointer to the bias must be aligned to 16 bytes and the size of allocated memory must
be multiples of 256 elements. This behavior exists for all 7.0.x releases.

Fixed Issues

The following issues have been fixed in this release:

‣ Fixed out-of-band global memory accesses in the 256-point 1D FFT kernel. The problem
affected convolutions with 1x1 filters and tall but narrow images, e.g., 1x500 (WxH). In
those cases, the workspace size for the FFT_TILING algo was computed incorrectly. There
was no error in the FFT kernel.

‣ Eliminated a source of floating point exceptions in the
CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED algorithm. The host code to
generate a negative infinity floating point value was substituted with a different logic. By
default, FP exceptions are disabled. However, a user program enabled them by invoking
feenableexcept(). There are at least two other sources of FP exceptions in the cuDNN
library, affecting for example BATCHNORM_SPATIAL_PERSISTENT. Those sources of FP
exceptions will be eliminated in future releases of the cuDNN library.

3.20. cuDNN 7.0.3
This is the cuDNN 7.0.3 release notes. This release includes fixes from the previous cuDNN
v7.x.x releases as well as the following additional changes.

Key Features and Enhancements

Performance improvements for various cases:

‣ Forward Grouped Convolutions where input channel per groups is 1, 2 or 4 and hardware
is Volta or Pascal.

‣ cudnnTransformTensor() where input and output tensor is packed.

Note: This is an improved fallback, improvements will not be seen in all cases.

cuDNN Release 7.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 59

Known Issues

The following are known issues in this release:

‣ CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING may cause CUDA_ERROR_ILLEGAL_ADDRESS.
This issue affects input images of just one 1 pixel in width and certain n, c, k, h
combinations.

Fixed Issues

The following issues have been fixed in this release:

‣ AddTensor and TensorOp produce incorrect results for half and INT8 inputs for various
use cases.

‣ cudnnPoolingBackward() can produce incorrect values for rare cases of non-
deterministic MAX pooling with window_width > 256. These rare cases are when the
maximum element in a window is duplicated horizontally (along width) by a stride of 256*k
for some k. The behavior is now fixed to accumulate derivatives for the duplicate that is
left-most.

‣ cudnnGetConvolutionForwardWorkspaceSize() produces incorrect workspace size for
algorithm FFT_TILING for 1d convolutions. This only occurs for large sized convolutions
where intermediate calculations produce values greater than 2^31 (2 to the power of 31).

‣ CUDNN_STATUS_NOT_SUPPORTED returned by cudnnPooling*() functions for small x
image (channels * height * width < 4).

3.21. cuDNN 7.0.2
This is the cuDNN 7.0.2 release notes. This release includes fixes from the previous cuDNN
v7.x.x releases as well as the following additional changes.

Key Features and Enhancements

This is a patch release of cuDNN 7.0 and includes bug fixes and performance improvements
mainly on Volta.

Algo 1 Convolutions Performance Improvements
Performance improvements were made to
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM,
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1, and CUDNN_CONVOLUTION_BWD_DATA_ALGO_1.
These improvements consist of new SASS kernels and improved heuristics. The new
kernels implement convolutions over various data sizes and tile sizes. The improved
heuristics take advantage of these new kernels.

cuDNN Release 7.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 60

Known Issues

The following are known issues in this release:

‣ cudnnGetConvolutionForwardWorkspaceSize() returns overflowed size_t value for
certain input shape for CUDNN_CONVOLUTION_*_ALGO_FFT_TILING.

‣ cudnnPoolingBackward() fails for pooling window size > 256.

Fixed Issues

The following issues have been fixed in this release:

‣ Batch Norm CUDNN_BATCHNORM_SPATIAL_PERSISTENT might get into race conditions in
certain scenarios.

‣ cuDNN convolution layers using TENSOR_OP_MATH with fp16 inputs and outputs and fp32
compute will use “round to nearest” mode instead of “round to zero” mode as in 7.0.1. This
rounding mode has proven to achieve better results in training.

‣ Fixed synchronization logic in the CUDNN_CTC_LOSS_ALGO_DETERMINISTIC algo for CTC.
The original code would hang in rare cases.

‣ Convolution algorithms using TENSOR_OP_MATH returned a workspace size from
*GetWorkspaceSize() smaller than actually necessary.

‣ The results of int8 are inaccurate in certain cases when calling
cudnnConvolutionForward() in convolution layer.

‣ cudnnConvolutionForward() called with xDesc’s channel = yDesc’s channel =
groupCount could compute incorrect values when vertical padding > 0.

3.22. cuDNN 7.0.1
This is the cuDNN 7.0.1 release notes. This release includes the following changes.

cuDNN v7.0.1 is the first release to support the Volta GPU architecture. In addition, cuDNN
v7.0.1 brings new layers, grouped convolutions, and improved convolution find as error query
mechanism.

Key Features and Enhancements

This cuDNN release includes the following key features and enhancements.

Tensor Cores
Version 7.0.1 of cuDNN is the first to support the Tensor Core operations in its
implementation. Tensor Cores provide highly optimized matrix multiplication building
blocks that do not have an equivalent numerical behavior in the traditional instructions,
therefore, its numerical behavior is slightly different.

cuDNN Release 7.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 61

cudnnSetConvolutionMathType, cudnnSetRNNMatrixMathType, and cudnnMathType_t
The cudnnSetConvolutionMathType and cudnnSetRNNMatrixMathType functions
enable you to choose whether or not to use Tensor Core operations in the convolution and
RNN layers respectively by setting the math mode to either CUDNN_TENSOR_OP_MATH or
CUDNN_DEFAULT_MATH.

Tensor Core operations perform parallel floating point accumulation of multiple floating
point products.

Setting the math mode to CUDNN_TENSOR_OP_MATH indicates that the library will use Tensor
Core operations.

The default is CUDNN_DEFAULT_MATH. This default indicates that the Tensor Core operations
will be avoided by the library. The default mode is a serialized operation whereas, the
Tensor Core is a parallelized operation, therefore, the two might result in slightly different
numerical results due to the different sequencing of operations.

Note: The library falls back to the default math mode when Tensor Core operations are not
supported or not permitted.

cudnnSetConvolutionGroupCount
A new interface that allows applications to perform convolution groups in the convolution
layers in a single API call.

cudnnCTCLoss
cudnnCTCLoss provides a GPU implementation of the Connectionist Temporal
Classification (CTC) loss function for RNNs. The CTC loss function is used for phoneme
recognition in speech and handwriting recognition.

CUDNN_BATCHNORM_SPATIAL_PERSISTENT
The CUDNN_BATCHNORM_SPATIAL_PERSISTENT function is a new batch
normalization mode for cudnnBatchNormalizationForwardTraining
and cudnnBatchNormalizationBackward. This mode is similar to
CUDNN_BATCHNORM_SPATIAL, however, it can be faster for some tasks.

cudnnQueryRuntimeError
The cudnnQueryRuntimeError function reports error codes written by GPU
kernels when executing cudnnBatchNormalizationForwardTraining and
cudnnBatchNormalizationBackward with the CUDNN_BATCHNORM_SPATIAL_PERSISTENT
mode.

cudnnGetConvolutionForwardAlgorithm_v7
This new API returns all algorithms sorted by expected performance
(using internal heuristics). These algorithms are output similarly to
cudnnFindConvolutionForwardAlgorithm.

cuDNN Release 7.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 62

cudnnGetConvolutionBackwardDataAlgorithm_v7
This new API returns all algorithms sorted by expected performance
(using internal heuristics). These algorithms are output similarly to
cudnnFindConvolutionBackwardAlgorithm.

cudnnGetConvolutionBackwardFilterAlgorithm_v7
This new API returns all algorithms sorted by expected performance
(using internal heuristics). These algorithms are output similarly to
cudnnFindConvolutionBackwardFilterAlgorithm.

CUDNN_REDUCE_TENSOR_MUL_NO_ZEROS
The MUL_NO_ZEROS function is a multiplication reduction that ignores zeros in the data.

CUDNN_OP_TENSOR_NOT
The OP_TENSOR_NOT function is a unary operation that takes the negative of (alpha*A).

cudnnGetDropoutDescriptor
The cudnnGetDropoutDescriptor function allows applications to get dropout values.

Using cuDNN v7.0.1

Ensure you are familiar with the following notes when using this release.

‣ Multi-threading behavior has been modified. Multi-threading is allowed only when using
different cuDNN handles in different threads.

‣ In cudnnConvolutionBackwardFilter, dilated convolution did not support cases where
the product of all filter dimensions was odd for half precision floating point. These are now
supported by CUDNN_CONVOLUTION_BWD_FILTER_ALGO1.

‣ Fixed bug that produced a silent computation error for when a batch size was larger than
65536 for CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM.

‣ In getConvolutionForwardAlgorithm, an error was not correctly reported in v5 when
the output size was larger than expected. In v6 the CUDNN_STATUS_NOT_SUPPORTED, error
message displayed. In v7, this error is modified to CUDNN_STATUS_BAD_PARAM.

‣ In cudnnConvolutionBackwardFilter, cuDNN now runs some exceptional cases
correctly where it previously erroneously returned CUDNN_STATUS_NOT_SUPPORTED.
This impacted the algorithms CUDNN_CONVOLUTION_BWD_FILTER_ALGO0 and
CUDNN_CONVOLUTION_BWD_FILTER_ALGO3.

Deprecated Features

The following routines have been removed:

‣ cudnnSetConvolution2dDescriptor_v4

‣ cudnnSetConvolution2dDescriptor_v5

‣ cudnnGetConvolution2dDescriptor_v4

cuDNN Release 7.x.x

cuDNN Release Notes RN-08667-001_v8.0.3 | 63

‣ cudnnGetConvolution2dDescriptor_v5

Note: Only the non-suffixed versions of these routines remain.

The following routines have been created and have the same API prototype as their non-
suffixed equivalent from cuDNN v6:

‣ cudnnSetRNNDescriptor_v5 - The non-suffixed version of the routines in cuDNN v7.0.1
are now mapped to their _v6 equivalent.

ATTENTION: It is strongly advised to use the non-suffixed version as the _v5 and _v6
routines will be removed in the next cuDNN release.

‣ cudnnGetConvolutionForwardAlgorithm,
cudnnGetConvolutionBackwardDataAlgorithm, and
cudnnGetConvolutionBackwardFilterAlgorithm - A _v7 version of this routine has
been created. For more information, see the Backward compatibility and deprecation policy
chapter of the cuDNN documentation for details.

Known Issues

‣ cuDNN pooling backwards fails for pooling window size > 256.

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA
Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this
document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any
infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material
(defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed
in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any
customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed
either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications
where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA
accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product
is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained in this document,
ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of
the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in additional
or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem
which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or a warranty
or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the third party,
or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance
with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the products
described herein shall be limited in accordance with the Terms of Sale for the product.

VESA DisplayPort

DisplayPort and DisplayPort Compliance Logo, DisplayPort Compliance Logo for Dual-mode Sources, and DisplayPort Compliance Logo for Active Cables are
trademarks owned by the Video Electronics Standards Association in the United States and other countries.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
www.nvidia.com

http://www.nvidia.com

Trademarks

NVIDIA, the NVIDIA logo, and cuBLAS, CUDA, CUDA Toolkit, cuDNN, DALI, DIGITS, DGX, DGX-1, DGX-2, DGX Station, DLProf, GPU, JetPack, Jetson, Kepler, Maxwell,
NCCL, Nsight Compute, Nsight Systems, NVCaffe, NVIDIA Ampere GPU architecture, NVIDIA Deep Learning SDK, NVIDIA Developer Program, NVIDIA GPU Cloud,
NVLink, NVSHMEM, PerfWorks, Pascal, SDK Manager, T4, Tegra, TensorRT, TensorRT Inference Server, Tesla, TF-TRT, Triton Inference Server, Turing, and Volta are
trademarks and/or registered trademarks of NVIDIA Corporation in the United States and other countries. Other company and product names may be trademarks
of the respective companies with which they are associated.

Copyright
© 2017-2020 NVIDIA Corporation. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
www.nvidia.com

http://www.nvidia.com

	Table of Contents
	cuDNN Overview
	cuDNN Release 8.x.x
	2.1. cuDNN Release 8.0.3
	2.2. cuDNN Release 8.0.2
	2.3. cuDNN Release 8.0.1 Preview
	2.4. cuDNN Release 8.0.0 Preview

	cuDNN Release 7.x.x
	3.1. cuDNN 7.6.5
	3.2. cuDNN 7.6.4
	3.3. cuDNN 7.6.3
	3.4. cuDNN 7.6.2
	3.5. cuDNN 7.6.1
	3.6. cuDNN 7.6.0
	3.7. cuDNN 7.5.1
	3.8. cuDNN 7.5.0
	3.9. cuDNN 7.4.2
	3.10. cuDNN 7.4.1
	3.11. cuDNN 7.3.1
	3.12. cuDNN 7.3.0
	3.13. cuDNN 7.2.1
	3.14. cuDNN 7.1.4
	3.15. cuDNN 7.1.3
	3.16. cuDNN 7.1.2
	3.17. cuDNN 7.1.1
	3.18. cuDNN 7.0.5
	3.19. cuDNN 7.0.4
	3.20. cuDNN 7.0.3
	3.21. cuDNN 7.0.2
	3.22. cuDNN 7.0.1

