cuDNN Installation Guide
cuDNN Installation Guide

Table of Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chapter 1. Overview..</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Chapter 2. Installing cuDNN On Linux</td>
<td>2</td>
</tr>
<tr>
<td>2.1</td>
<td>Prerequisites</td>
<td>2</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Installing NVIDIA Graphics Drivers</td>
<td>2</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Installing The CUDA Toolkit For Linux</td>
<td>2</td>
</tr>
<tr>
<td>2.2</td>
<td>Downloading cuDNN For Linux</td>
<td>2</td>
</tr>
<tr>
<td>2.3</td>
<td>Installing cuDNN On Linux</td>
<td>3</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Installing From A Tar File</td>
<td>3</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Installing From A Debian File</td>
<td>4</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Installing From An RPM File</td>
<td>4</td>
</tr>
<tr>
<td>2.4</td>
<td>Verifying The cuDNN Install On Linux</td>
<td>4</td>
</tr>
<tr>
<td>2.5</td>
<td>Upgrading From v7 To v8</td>
<td>5</td>
</tr>
<tr>
<td>2.6</td>
<td>Troubleshooting</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Chapter 3. Installing cuDNN On Windows</td>
<td>6</td>
</tr>
<tr>
<td>3.1</td>
<td>Prerequisites</td>
<td>6</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Installing NVIDIA Graphic Drivers</td>
<td>6</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Installing The CUDA Toolkit For Windows</td>
<td>6</td>
</tr>
<tr>
<td>3.2</td>
<td>Downloading cuDNN For Windows</td>
<td>6</td>
</tr>
<tr>
<td>3.3</td>
<td>Installing cuDNN On Windows</td>
<td>7</td>
</tr>
<tr>
<td>3.4</td>
<td>Upgrading From v7 To v8</td>
<td>8</td>
</tr>
<tr>
<td>3.5</td>
<td>Troubleshooting</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Chapter 4. Cross-compiling cuDNN Samples</td>
<td>9</td>
</tr>
<tr>
<td>4.1</td>
<td>NVIDIA DRIVE OS Linux</td>
<td>9</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Installing The For DRIVE OS</td>
<td>9</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Installing For DRIVE OS</td>
<td>9</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Cross-compiling Samples For DRIVE OS</td>
<td>9</td>
</tr>
<tr>
<td>4.2</td>
<td>QNX</td>
<td>10</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Installing The For QNX</td>
<td>10</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Installing For QNX</td>
<td>10</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Set The Environment Variables</td>
<td>10</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Cross-compiling Samples For QNX</td>
<td>10</td>
</tr>
</tbody>
</table>
Chapter 1. Overview

The NVIDIA® CUDA® Deep Neural Network library™ (cuDNN) is a GPU-accelerated library of primitives for deep neural networks. cuDNN provides highly tuned implementations for standard routines such as forward and backward convolution, pooling, normalization, and activation layers. cuDNN is part of the NVIDIA® Deep Learning SDK.

Deep learning researchers and framework developers worldwide rely on cuDNN for high-performance GPU acceleration. It allows them to focus on training neural networks and developing software applications rather than spending time on low-level GPU performance tuning. cuDNN accelerates widely used deep learning frameworks and is freely available to members of the NVIDIA Developer Program™.
2.1. Prerequisites

Ensure you meet the following requirements before you install cuDNN.

- For the latest compatibility software versions of the OS, CUDA, the CUDA driver, and the NVIDIA hardware, see the cuDNN Support Matrix.

2.1.1. Installing NVIDIA Graphics Drivers

About this task

Install up-to-date NVIDIA graphics drivers on your Linux system.

Procedure

1. Go to: NVIDIA download drivers
2. Select the GPU and OS version from the drop-down menus.
3. Download and install the NVIDIA graphics driver as indicated on that web page. For more information, select the ADDITIONAL INFORMATION tab for step-by-step instructions for installing a driver.
4. Restart your system to ensure the graphics driver takes effect.

2.1.2. Installing The CUDA Toolkit For Linux

About this task

Refer to the following instructions for installing CUDA on Linux, including the CUDA driver and toolkit: NVIDIA CUDA Installation Guide for Linux.

2.2. Downloading cuDNN For Linux
Before you begin

In order to download cuDNN, ensure you are registered for the NVIDIA Developer Program.

Procedure

1. Go to: NVIDIA cuDNN home page.
2. Click Download.
3. Complete the short survey and click Submit.
4. Accept the Terms and Conditions. A list of available download versions of cuDNN displays.
5. Select the cuDNN version you want to install. A list of available resources displays.

2.3. Installing cuDNN On Linux

About this task

The following steps describe how to build a cuDNN dependent program. Choose the installation method that meets your environment needs. For example, the tar file installation applies to all Linux platforms, and the Debian installation package applies to Ubuntu 16.04 and 18.04.

In the following sections:

‣ your CUDA directory path is referred to as /usr/local/cuda/
‣ your cuDNN download path is referred to as <cudnnpath>

2.3.1. Installing From A Tar File

Before issuing the following commands, you’ll need to replace x.x and v8.x.x.x with your specific CUDA version and cuDNN version and package date.

Procedure

1. Navigate to your <cudnnpath> directory containing the cuDNN Tar file.
2. Unzip the cuDNN package.

 $ tar -xzvf cudnn-x.x-linux-x64-v8.x.x.x.tgz

 or

 $ tar -xzvf cudnn-x.x-linux-aarch64sbsa-v8.x.x.x.tgz

3. Copy the following files into the CUDA Toolkit directory, and change the file permissions.

 $ sudo cp cuda/include/cudnn*.h /usr/local/cuda/include
 $ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64
 $ sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn*
2.3.2. Installing From A Debian File

Before issuing the following commands, you’ll need to replace x.x and 8.x.x.x with your specific CUDA version and cuDNN version and package date.

About this task

Procedure

1. Navigate to your `<cudnnpath>` directory containing the cuDNN Debian file.
2. Install the runtime library, for example:
   ```
sudo dpkg -i libcudnn8_8.x.x-1+cudax.x_amd64.deb
   or
   sudo dpkg -i libcudnn8_8.x.x-1+cudax.x_arm64.deb
   ```
3. Install the developer library, for example:
   ```
sudo dpkg -i libcudnn8-dev_8.x.x-1+cudax.x_amd64.deb
   or
   sudo dpkg -i libcudnn8-dev_8.x.x-1+cudax.x_arm64.deb
   ```
4. Install the code samples and the cuDNN library documentation, for example:
   ```
sudo dpkg -i libcudnn8-samples_8.x.x-1+cudax.x_amd64.deb
   or
   sudo dpkg -i libcudnn8-samples_8.x.x-1+cudax.x_arm64.deb
   ```

2.3.3. Installing From An RPM File

About this task

Procedure

1. Download the rpm package `libcudnn*.rpm` to the local path.
2. Install the rpm package from the local path. This will install the cuDNN libraries.
   ```
rpm -ivh libcudnn8-x86_64.rpm
   rpm -ivh libcudnn8-devel-x86_64.rpm
   rpm -ivh libcudnn8-samples-x86_64.rpm
   or
   rpm -ivh libcudnn8-aarch64.rpm
   rpm -ivh libcudnn8-devel-aarch64.rpm
   rpm -ivh libcudnn8-samples-aarch64.rpm
   ```

2.4. Verifying The cuDNN Install On Linux
About this task

To verify that cuDNN is installed and is running properly, compile the \texttt{mnistCUDNN} sample located in the \texttt{/usr/src/cudnn_samples_v8} directory in the Debian file.

Procedure

1. Copy the cuDNN sample to a writable path.
 \[
 \texttt{\$cp -r /usr/src/cudnn_samples_v8/ $HOME} \\
 \]

2. Go to the writable path.
 \[
 \texttt{\$ cd $HOME/cudnn_samples_v8/mnistCUDNN} \\
 \]

3. Compile the \texttt{mnistCUDNN} sample.
 \[
 \texttt{\$make clean && make} \\
 \]

4. Run the \texttt{mnistCUDNN} sample.
 \[
 \texttt{\$./mnistCUDNN} \\
 \]

 If cuDNN is properly installed and running on your Linux system, you will see a message similar to the following:
 \[
 \texttt{Test passed!} \\
 \]

2.5. Upgrading From v7 To v8

Since version 8 can coexist with previous versions of cuDNN, if the user has an older version of cuDNN such as v6 or v7, installing version 8 will not automatically delete an older revision. Therefore, if the user wants the latest version, install cuDNN version 8 by following the installation steps.

About this task

To upgrade from v7 to v8 for RHEL, run:
\[
\texttt{\$ sudo rpm --upgrade *.rpm} \\
\]

To upgrade from v7 to v8 for Ubuntu, run:
\[
\texttt{\$ sudo dpkg -i libcudnn*.deb} \\
\]

To switch between v7 and v8 installations, issue \texttt{sudo update-alternatives --config libcudnn} and choose the appropriate cuDNN version.

2.6. Troubleshooting

About this task

Join the NVIDIA Developer Forum to post questions and follow discussions.
Chapter 3. Installing cuDNN On Windows

3.1. Prerequisites
Ensure you meet the following requirements before you install cuDNN.

- For the latest compatibility software versions of the OS, CUDA, the CUDA driver, and the NVIDIA hardware, see the cuDNN Support Matrix.

3.1.1. Installing NVIDIA Graphic Drivers
Install up-to-date NVIDIA graphics drivers on your Windows system.

Procedure
1. Go to: NVIDIA download drivers
2. Select the GPU and OS version from the drop-down menus.
3. Download and install the NVIDIA driver as indicated on that web page. For more information, select the ADDITIONAL INFORMATION tab for step-by-step instructions for installing a driver.
4. Restart your system to ensure the graphics driver takes effect.

3.1.2. Installing The CUDA Toolkit For Windows

About this task
Refer to the following instructions for installing CUDA on Windows, including the CUDA driver and toolkit: NVIDIA CUDA Installation Guide for Windows.

3.2. Downloading cuDNN For Windows
Before you begin

In order to download cuDNN, ensure you are registered for the NVIDIA Developer Program.

Procedure

1. Go to: NVIDIA cuDNN home page.
2. Click Download.
3. Complete the short survey and click Submit.
4. Accept the Terms and Conditions. A list of available download versions of cuDNN displays.
5. Select the cuDNN version to want to install. A list of available resources displays.
6. Extract the cuDNN archive to a directory of your choice.

3.3. Installing cuDNN On Windows

The following steps describe how to build a cuDNN dependent program.

About this task

Before issuing the following commands, you’ll need to replace x.x and 8.x.x.x with your specific CUDA version and cuDNN version and package date.

In the following sections the CUDA v9.0 is used as example:

- Your CUDA directory path is referred to as `C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vx.x`
- Your cuDNN directory path is referred to as `<installpath>`

Procedure

1. Navigate to your `<installpath>` directory containing cuDNN.
2. Unzip the cuDNN package.

   ```
   cudnn-x.x-windows-x64-v8.x.x.x.zip  
   or  
   cudnn-x.x-windows10-x64-v8.x.x.x.zip
   ```
3. Copy the following files into the CUDA Toolkit directory.

 a). Copy `<installpath>\cuda\bin\cudnn*.dll` to `C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vx.x\bin`.
 b). Copy `<installpath>\cuda\include\cudnn*.h` to `C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vx.x\include`.
 c). Copy `<installpath>\cuda\lib\x64\cudnn*.lib` to `C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vx.x\lib\x64`.
4. Set the following environment variables to point to where cuDNN is located. To access the value of the `$\{CUDA_PATH\}$` environment variable, perform the following steps:
a). Open a command prompt from the Start menu.
b). Type Run and hit Enter.
c). Issue the control sysdm.cpl command.
d). Select the Advanced tab at the top of the window.
e). Click Environment Variables at the bottom of the window.
f). Ensure the following values are set:

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>CUDA_PATH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable Value</td>
<td>C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vx.x</td>
</tr>
</tbody>
</table>

 5. Include cudnn.lib in your Visual Studio project.
 a). Open the Visual Studio project and right-click on the project name.
 b). Click Linker > Input > Additional Dependencies.
 c). Add cudnn.lib and click OK.

3.4. Upgrading From v7 To v8

About this task

Navigate to your <installpath> directory containing cuDNN and delete the old cuDNN lib and header files. Reinstall the latest cuDNN version by following the steps in Installing cuDNN On Windows.

3.5. Troubleshooting

About this task

Join the NVIDIA Developer Forum to post questions and follow discussions.
Chapter 4. Cross-compiling cuDNN Samples

This section describes how to cross-compile cuDNN samples.

4.1. NVIDIA DRIVE OS Linux

Follow the below steps to cross-compile samples on NVIDIA DRIVE OS Linux.

4.1.1. Installing The For DRIVE OS

Before issuing the following commands, you'll need to replace x-x with your specific version.

1. Download the for Ubuntu package: cuda*ubuntu*_amd64.deb
2. Download the cross compile package: cuda*-cross-aarch64*_all.deb
3. Execute the following commands:

   ```
   sudo dpkg -i cuda*ubuntu*_amd64.deb
   sudo apt-get update
   sudo apt-get install cuda-toolkit-x-x -y
   sudo apt-get install cuda-cross-aarch64* -y
   ```

4.1.2. Installing For DRIVE OS

1. Download the Ubuntu package for your preferred version: *libcudnn8-cross-aarch64_*.deb
2. Download the cross compile package: libcudnn8-dev-cross-aarch64_*.deb
3. Execute the following commands:

   ```
   sudo dpkg -i *libcudnn8-cross-aarch64_*.deb
   sudo dpkg -i libcudnn8-dev-cross-aarch64_*.deb
   ```

4.1.3. Cross-compiling Samples For DRIVE OS

Copy the cudnn_samples_v8 directory to your home directory:

```
$ cp -r /usr/src/cudnn_samples_v8 $HOME
```

For each sample, execute the following commands:

```
$ cd $HOME/cudnn_samples_v8/(each sample)
$ make TARGET_ARCH=aarch64
```
4.2. QNX

Follow the below steps to cross-compile cuDNN samples on QNX:

4.2.1. Installing The For QNX

Before issuing the following commands, you’ll need to replace x-x with your specific version.

1. Download the for Ubuntu package: cuda*ubuntu*_amd64.deb
2. Download the cross compile package: cuda*-cross-aarch64*_all.deb
3. Execute the following commands:

   ```
   sudo dpkg -i cuda*ubuntu*_amd64.deb  
   sudo dpkg -i cuda*-cross-aarch64*_all.deb  
   sudo apt-get update  
   sudo apt-get install cuda-toolkit-x-x -y  
   sudo apt-get install cuda-cross-qnx -y  
   ```

4.2.2. Installing For QNX

1. Download the Ubuntu package for your preferred version: *libcudnn8-cross-aarch64_* .deb
2. Download the cross compile package: libcudnn8-devel-cross-aarch64_* .deb
3. Execute the following commands:

   ```
   sudo dpkg -i *libcudnn8-cross-aarch64_* .deb  
   sudo dpkg -i libcudnn8-dev-cross-aarch64_* .deb  
   ```

4.2.3. Set The Environment Variables

To set the environment variables, issue the following commands:

   ```
   export CUDA_PATH={PATH}/install/cuda/  
   export QNX_HOST={PATH}/host/linux/x86_64  
   export QNX_TARGET={PATH}/target/qnx7  
   ```

4.2.4. Cross-compiling Samples For QNX

Copy the cudnn_samples_v8 directory to your home directory:

   ```
   $ cp -r /usr/src/cudnn_samples_v8 $HOME  
   ```

Before issuing the following commands, you’ll need to replace 8.x.x with your specific version.

For each sample, execute the following commands:

   ```
   $ cd $HOME/cudnn_samples_v8/(each sample)  
   $ make TARGET_OS=QNX TARGET_ARCH=aarch64 HOST_COMPILER={SET FULL PATH to YOUR CROSS COMPILER}  
   ```

 (for example: make TARGET_OS=QNX TARGET_ARCH=aarch64 HOST_COMPILER={QNX_HOST/usr/bin/aarch64-unknown-nto-qnx8.x.x-g++})
Trademarks
NVIDIA, the NVIDIA logo, and cuBLAS, CUDA, CUDA Toolkit, cuDNN, DALI, DIGITS, DGX, DGX-1, DGX-2, DGX Station, DLPprof, GPU, JetPack, Jetson, Kepler, Maxwell, NCCL, Nsight Compute, Nsight Systems, NVcaffe, NVIDIA Ampere GPU architecture, NVIDIA Deep Learning SDK, NVIDIA Developer Program, NVIDIA GPU Cloud, NVLink, NVSHMEM, PerfWorks, Pascal, SDK Manager, T4, Tegra, TensorRT, TensorRT Inference Server, Tesla, TF-TRT, Triton Inference Server, Turing, and Volta are trademarks and/or registered trademarks of NVIDIA Corporation in the United States and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright
© 2017-2020 NVIDIA Corporation. All rights reserved.