NVIDIA.

NVIDIA cuDNN

API| Reference | NVIDIA Docs

PR-09702-001_v8.3.0 October 2021

Table of Contents

Chapter 1. INTrOQUCTION ..o i et e e e e e e e e 1
Chapter 2. Added, Deprecated, And Removed APl Functions...........ooociiiiiiiiieiiiiiieee. 2
2.1. APl Changes For CUDNN 8.2.0. ... i 2
2.2. APl Changes For CUDNN 8.1.0. ... i 2
2.3. APl Changes For cuDNN 8.0.3 ... i 2
2.4. API Changes For CUDNN 8.0.2. ... e 3
2.5. APl Changes For cUDNN 8.0.0 PrevieW.ot 3
Chapter 3. cudnn_ops_infer.so Library........ 8
3.7, Data Type RefEIrENCES. ..o i 8
3.1.1. Pointer To Opagque STrUCE TYPeS. ..ot 8
312, ENUMETAtION TYPES. ittt 10

3.2, AP FUNCHIONS .t 24
Chapter 4. cudnn_ops_train.so Library...... e 108
AT AP FUNCHIONS s 108
Chapter 5. cudnn_cnn_infer.so Library..........eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 154
0.7, Data TyPe RefEIrENCES. ... i 154
5.1.1. Pointer To Opaque STrUCt TYPeS. ..o i 154
0.0 S TUCE Ty DS ittt 154

0. 1.3, ENUMEration TYPES . i it 156
5.1.4. Data Types Found In cudnn_backend.h..........oo 167

0.2, AP FUNCHIONS e 167
Chapter 6. cudnn_cnn_train.so Library. ... 227
6.1. Data Type RefeIrENCES. ..o 227
6.1.1. Pointer To Opaque StrUCt TYPeS...ouii it 227
6.0 2. S TUCE Ty PO S i 227
6.1.3. ENUMEIAtION TYPES .ottt 228

6.2, AP FUNCHIONS .o 258
Chapter 7. cudnn_adv_infer.s0 Library. ... 283
7.1, Data Type RefEIENCES. ..o 283
7.1.1. Pointer To Opaque STrUCE TYPeS...ooiiiiiieiieie e 283
70,2, ENUMEration TYPES. .o 284

7.2, AP FUNCHIONS e 291
Chapter 8. cudnn_adv_train.so Library........ ... i 367
8.1. Data Type RefereNCeS. ..o 367

NVIDIA cuDNN PR-09702-001_v8.3.0 | ii

8.1 T ENUMEIatION TYPES o i 367

8.2 APT FUNCHIONS ..o 368
Chapter 9. cuDNN Backend APL.... . e 434
9.7, Data Type RefErENCES ..o 434
9.2, Backend DesCriplor TYPeS. e 435
0.3, USE a8 ittt 457
9.3.1. Setting Up An Operation Graph For A Grouped Convolution.........c.ccocooiiiiiiiii, 457
9.3.2. Setting Up An Engine Configuration........cocoiiiiiii i 459
9.3.3. Setting Up And Executing A Plan.......cooiii 459

NVIDIA cuDNN PR-09702-001_v8.3.0 | iii

List of Figures

Figure 1. Locations of x, y, hx, cx, hy, and cy signals in the multi-layer RNN model. 332
Figure 2. Data flow when the RNN model is bi-directional.ccccooiiiiiiiiii 333

Figure 3. Locations of x, y, hx, cx, hy, cy, dx, dy, dhx, dcx, dhy, and dcy signals a multi-layer
RNN model

NVIDIA cuDNN PR-09702-001_v8.3.0 | iv

Table 1.

Table 2.

Table 3.

Table 4.

Table 5.

Table 6.

Table 7.

Table 8.

Table 9.

Table 10.

Table 11.

Table 12.

Table 13.

Table 14.

Table 15.

Table 16.

Table 17.

Table 18.

Table 19.

Table 20.

Table 21.

Table 22.

Table 23.

Table 24.

List of Tables

APl functions and data types that were added ..o 2
APl functions and data types that were added ... 2
APl functions and data types that were added ... 3
APl functions and data types that were added ... 3
APl functions and data types that were added ... 4
API functions and data types that were deprecated ..o 5
API functions and data types that were removed ... 7
Supported CoONfIGQUIATIONS ..ooiiiiii i 29
SUPPOrted DatatyPes ..o 70
Supported CONfIGUIAtIONS L..iiiiiii e 112
Supported configUratioNS ... 116
Supported CONfIGUIATIONS ..ot 119
Supported CONIGUIATIONS ...oiiii e 123
For 2D convolutions: wDesc: NHW C . e 176
For 2D convolutions: wDesc: NCHW e 176
For 3D convolutions: wDesc: NCHW L. 181
For 3D convolutions: wDesc: NHWC L. 182
Supported combinations of data types (X = CUDNN_DATA]ccoooiiiiiiiieeeee 186
Supported configUratioNS ... 189
For 2D convolutions: wDesc: NCHW e 192
For 2D convolutions: wDesc: NCHWC ..o 195
For 2D convolutions: wDesc: NHW C . 195
For 3D convolutions: wDesc: NCHW e 196
For 3D convolutions: wDesc: NHWC L. 198

NVIDIA cuDNN PR-09702-001_v8.3.0 | v

Table 25.

Table 26.

Table 27.

Table 28.

Table 29.

Table 30.

Table 31.

Table 32.

Table 33.

Table 34.

Table 35.

Table 36.

Table 37.

Table 38.

Table 39.

Table 40.

Table 41.

Table 42.

Table 43.

CUDNN_FUSED_SCALE_BIAS_ACTIVATION_CONV_BNSTATS ..., 231
Conditions for Fully Fused Fast Path (Forward) ... 234
CUDNN_FUSED_SCALE_BIAS_ACTIVATION_WGRAD ..ot 235
Conditions for Fully Fused Fast Path (Backward)cccocooooiiiiiiee 238
CUDNN_FUSED_BN_FINALIZE_STATISTICS_TRAININGcccooiiiiiiiiiiiiceee 239
CUDNN_FUSED_BN_FINALIZE_STATISTICS_INFERENCE ..., 243
CUDNN_FUSED_CONVOLUTION_SCALE_BIAS_ADD_RELU ..o 245
Legend For Tables in This SECHION ..ot 249
CUDNN_FUSED_SCALE_BIAS_ACTIVATION_CONV_BNSTATS ..., 249
CUDNN_FUSED_SCALE_BIAS_ACTIVATION_WGRAD ..ot 251
CUDNN_FUSED_BN_FINALIZE_STATISTICS_TRAININGccoooiiiiiiiiiiiii i 252
CUDNN_FUSED_BN_FINALIZE_STATISTICS_INFERENCEccooiiiiiiiiii 255
CUDNN_FUSED_SCALE_BIAS_ADD_RELU ..o, 257
For 2D convolutions: dwDesc: NHWC .. 263
For 2D convolutions: dwDesc: NCHW o 263
For 3D convolutions: dwDesc: NCHW .o 267
For 3D convolutions: dwDesc: NHWC e 267
Supported COMBINAtIONS ..ot 352
The attribute types of cudnnBackendAttributeType_t. ..o 435

NVIDIA cuDNN PR-09702-001_v8.3.0 | vi

Chapter 1. Introduction

NVIDIA® CUDA® Deep Neural Network (cuDNN] library offers a context-based API that allows
for easy multithreading and (optional] interoperability with CUDA streams. This AP| Reference
lists the datatyes and functions per library. Specifically, this reference consists of a cuDNN
datatype reference section that describes the types of enums and a cuDNN API reference
section that describes all routines in the cuDNN Llibrary API.

The cuDNN library as well as this APl document has been split into the following libraries:

» cudnn_ops_infer - This entity contains the routines related to cuDNN context creation
and destruction, tensor descriptor management, tensor utility routines, and the inference
portion of common ML algorithms such as batch normalization, softmax, dropout, etc.

» cudnn ops_ train - This entity contains common training routines and algorithms, such
as batch normalization, softmax, dropout, etc. The cudnn_ops_train library depends on
cudnn_ops_infer.

» cudnn_cnn_infer - This entity contains all routines related to convolutional neural
networks needed at inference time. The cudnn_cnn_infer library depends on
cudnn_ops_infer.

» cudnn cnn_train - This entity contains all routines related to convolutional neural
networks needed during training time. The cudnn_cnn_train library depends on
cudnn_ops_infer, cudnn ops train, and cudnn_cnn_infer.

» cudnn_adv_infer - This entity contains all other features and algorithms. This includes
RNNs, CTC loss, and multi-head attention. The cudnn_adv_infer library depends on
cudnn_ops_infer.

» cudnn_adv_train - This entity contains all the training counterparts of
cudnn_adv_infer. The cudnn_adv_train library depends on cudnn ops_infer,
cudnn_ops_train, and cudnn_adv_infer.

» cudnn - This is an optional shim layer between the application layer and the cuDNN code.
This layer opportunistically opens the correct library for the APl at runtime.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 1

Chapter 2. Added, Deprecated, And
Removed APl Functions

2.1. APl Changes For cuDNN 8.2.0

The following tables show which API functions were added, deprecated, and removed for the
cuDNN 8.2.0.

Table 1. APl functions and data types that were added

Backend descriptor types

cudnnGetActivationDescriptorSwishBeta()

cudnnSetActivationDescriptorSwishBetal)

2.2. APl Changes For cuDNN 8.1.0

The following tables show which API functions were added, deprecated, and removed for the
cuDNN 8.1.0.

Table 2. API functions and data types that were added

Backend descriptor types
CUDNN_BACKEND MATMUL DESCRIPTOR
CUDNN_BACKEND_OPERATION_MATMUL DESCRIPTOR

2.3. APl Changes For cuDNN 8.0.3

The following tables show which API functions were added, deprecated, and removed for the
cuDNN 8.0.3.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 2

Added, Deprecated, And Removed API Functions

Table 3. APl functions and data types that were added

Backend descriptor types

CUDNN_BACKEND_CONVOLUTION_DESCRIPTOR

CUDNN_BACKEND_ENGINE _DESCRIPTOR
CUDNN_BACKEND_ENGINECFG_DESCRIPTOR

CUDNN_BACKEND ENGINEHEUR DESCRIPTOR

CUDNN_BACKEND_ EXECUTION_PLAN_DESCRIPTOR
CUDNN_BACKEND_INTERMEDIATE INFO_DESCRIPTOR
CUDNN_BACKEND_KNOB_CHOICE_DESCRIPTOR

CUDNN_BACKEND KNOB INFQO_DESCRIPTOR

CUDNN_BACKEND_LAYOUT INFO_DESCRIPTOR
CUDNN_BACKEND_OPERATION_CONVOLUTION_BACKWARD_DATA DESCRIPTOR
CUDNN_BACKEND_OPERATION_CONVOLUTION_BACKWARD_FILTER DESCRIPTOR
CUDNN_BACKEND_ OPERATION CONVOLUTION FORWARD DESCRIPTOR
CUDNN_BACKEND_OPERATION_GEN_STATS DESCRIPTOR
CUDNN_BACKEND_OPERATION_POINTWISE_DESCRIPTOR
CUDNN_BACKEND_OPERATIONGRAPH_ DESCRIPTOR

CUDNN_BACKEND TENSOR_DESCRIPTOR
CUDNN_BACKEND_VARIANT_PACK_DESCRIPTOR

2.4. APl Changes For cuDNN 8.0.2

The following tables show which API functions were added, deprecated, and removed for the
cuDNN 8.0.2.

Table 4. API functions and data types that were added

New functions and data types
cudnnRNNBackwardData v8l)
cudnnRNNBackwardWeights_v8()

2.5. APl Changes For cuDNN 8.0.0
Preview

The following tables show which API functions were added, deprecated, and removed for the
cuDNN 8.0.0 Preview Release.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 3

Added, Deprecated, And Removed API Functions

Table 5. APl functions and data types that were added

New functions and data types

cudnnAdvinferVersionCheck()

cudnnAdvTrainVersionCheckl()

cudnnBackendAttributeName_t

cudnnBackendAttributeType t

cudnnBackendCreateDescriptorl()

cudnnBackendDescriptor t

cudnnBackendDescriptorType t

cudnnBackendDestroyDescriptor()

cudnnBackendExecute(]

cudnnBackendFinalize()

cudnnBackendGetAttributel)

cudnnBackendHeurMode t

cudnnBackendInitialize()

cudnnBackendKnobType t

cudnnBackendlLayoutType t

cudnnBackendNumericalNote t

cudnnBackendSetAttribute()

cudnnBuildRNNDynamicl)

cudnnCTCLoss v8()

cudnnDeriveNormTensorDescriptorl()

cudnnForwardMode t

cudnnGenStatsMode t

cudnnGetCTCLossDescriptor v8()

cudnnGetCTCLossDescriptorEx()

cudnnGetCTCLossWorkspaceSize v8

cudnnGetFilterSizelnBytesl()

cudnnGetFoldedConvBackwardDataDescriptorsl()

cudnnGetNormalizationBackwardWorkspaceSizel()

cudnnGetNormalizationForwardTrainingWorkspaceSizel()

cudnnGetNormalizationTrainingReserveSpaceSizel()

cudnnGetRNNDescriptor_v8()

cudnnGetRNNMatrixMathTypel()

cudnnGetRNNTempSpaceSizes|()

cudnnGetRNNWeightParams(]

cudnnGetRNNWeightSpaceSizel)

cudnnLRNDescriptor_t

NVIDIA cuDNN

PR-09702-001_v8.3.0 | 4

Added, Deprecated, And Removed API Functions

New functions and data types

cudnnNormAlgo t

cudnnNormalizationBackward()

cudnnNormalizationForwardInferencel()

cudnnNormalizationForwardTrainingl()

cudnnNormMode t

cudnnNormOps_t

cudnnOpsInferVersionCheck()

cudnnOpsTrainVersionCheckl)

cudnnPointwiseMode_t
cudnnRNNForward()
cudnnRNNGetClip_v8(]
cudnnRNNSetClip_v8()
cudnnSetCTCLossDescriptor v8()
cudnnSetRNNDescriptor v8()

cudnnSeverity_t

For our deprecation policy, refer to the Backward Compatibility And Deprecation Policy section

in the cuDNN Developer Guide.

Table 6. APl functions and data types that were deprecated

Deprecated functions and data types Replaced with
cudnnCopyAlgorithmDescriptor ()
cudnnCreateAlgorithmDescriptor ()

cudnnCreatePersistentRNNPlan () cudnnBuildRNNDynamic|()

cudnnDestroyAlgorithmDescriptor ()
cudnnDestroyPersistentRNNPlan ()
cudnnFindRNNBackwardDataAlgorithmEx ()
cudnnFindRNNBackwardWeightsAlgorithmEx ()
cudnnFindRNNForwardInferenceAlgorithmEx ()
cudnnFindRNNForwardTrainingAlgorithmEx ()
cudnnGetAlgorithmDescriptor ()
cudnnGetAlgorithmPerformance ()
cudnnGetAlgorithmSpaceSize ()
cudnnGetRNNBackwardDataAlgorithmMaxCount (|)
cudnnGetRNNBackwardWeightsAlgorithmMaxCount ()
cudnnGetRNNDescriptor_v8(]

» cudnnGetRNNDescriptor v6 ()

> cudnnGetRNNMatrixMathType ()

NVIDIA cuDNN PR-09702-001_v8.3.0

5

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#backward-compatibility

Added, Deprecated, And Removed API Functions

Deprecated functions and data types Replaced with
» cudnnGetRNNBiasMode ()

» cudnnGetRNNPaddingMode ()

» cudnnGetRNNProjectionLayers ()

cudnnGetRNNForwardInferenceAlgorithmMaxCount ()
cudnnGetRNNForwardTrainingAlgorithmMaxCount ()
cudnnGetRNNWeightParamsl()

» cudnnGetRNNLinLayerBiasParams ()

» cudnnGetRNNLinLayerMatrixParams ()

cudnnGetRNNParamsSize () cudnnGetRNNWeightSpaceSizel)
cudnnGetRNNTempSpaceSizesl()

» cudnnGetRNNWorkspaceSize ()

» cudnnGetRNNTrainingReserveSize ()

cudnnPersistentRNNPlan t

cudnnRestoreAlgorithm()

» cudnnRNNBackwardData () cudnnRNNBackwardData v8(]

» cudnnRNNBackwardDataEx ()

cudnnRNNBackwardWeights v8()

» cudnnRNNBackwardWeights ()

» cudnnRNNBackwardWeightsEx ()

» cudnnRNNForwardInference () cudnnRhHﬂForwardU
» cudnnRNNForwardInferenceEx ()

» cudnnRNNForwardTraining ()

» cudnnRNNForwardTrainingEx ()

cudnnRNNGetClip () cudnnRNNGetClip_v8()
cudnnRNNSetClip () cudnnRNNSetClip_v8()

cudnnSaveAlgorithm ()

cudnnSetAlgorithmDescriptor ()

cudnnSetAlgorithmPerformance ()

cudnnSetPersistentRNNPlan ()

cudnnSetRNNAlgorithmDescriptor ()

cudnnSetRNNDescriptor v8(]

» cudnnSetRNNBiasMode ()

» cudnnSetRNNDescriptor v6 ()
» cudnnSetRNNMatrixMathType ()
> cudnnSetRNNPaddingMode ()

» cudnnSetRNNProjectionLayers ()

NVIDIA cuDNN PR-09702-001_v8.3.0 | 6

Added, Deprecated, And Removed API Functions

Table 7. API functions and data types that were removed

Removed functions and data types
cudnnConvolutionBwdDataPreference t
cudnnConvolutionBwdFilterPreference t
cudnnConvolutionFwdPreference t
cudnnGetConvolutionBackwardDataAlgorithm()
cudnnGetConvolutionBackwardFilterAlgorithm ()
cudnnGetConvolutionForwardAlgorithm ()
cudnnGetRNNDescriptor ()

cudnnSetRNNDescriptor ()

NVIDIA cuDNN PR-09702-001_v8.3.0 | 7

Chapter 3. cudnn ops_infer.so
Library

3.1. Data Type References

3.1.1. Pointer To Opaque Struct Types

3.1.1.1. cudnnActivationDescriptor t

cudnnActivationDescriptor tis a pointer to an opaque structure holding the description
of an activation operation. cudnnCreateActivationDescriptor(] is used to create one instance,
and cudnnSetActivationDescriptor(] must be used to initialize this instance.

3.1.1.2. cudnnCTCLossDescriptor t

cudnnCTCLossDescriptor tis a pointer to an opaque structure holding the
description of a CTC loss operation. cudnnCreateCTClossDescriptor(] is used to create
one instance, cudnnSetCTCLossDescriptor() is used to initialize this instance, and
cudnnDestroyCTClLossDescriptor(] is used to destroy this instance.

3.1.1.3. cudnnDropoutDescriptor t

cudnnDropoutDescriptor t is a pointer to an opaque structure holding the

description of a dropout operation. cudnnCreateDropoutDescriptor(] is used

to create one instance, cudnnSetDropoutDescriptor(] is used to initialize this

instance, cudnnDestroyDropoutDescriptor(] is used to destroy this instance,
cudnnGetDropoutDescriptor(] is used to query fields of a previously initialized instance,
cudnnRestoreDropoutDescriptor(] is used to restore an instance to a previously saved off
state.

3.1.1.4. cudnnFilterDescriptor t

cudnnFilterDescriptor tis a pointer to an opaque structure holding the description
of a filter dataset. cudnnCreateFilterDescriptor(] is used to create one instance, and

NVIDIA cuDNN PR-09702-001_v8.3.0 | 8

cudnn_ops_infer.so Library

cudnnSetFilter4dDescriptor(] or cudnnSetFilterNdDescriptor() must be used to initialize this
instance.

3.1.1.5. cudnnHandle t

cudnnHandle tisa pointer to an opaque structure holding the cuDNN library context. The
cuDNN library context must be created using cudnnCreate() and the returned handle must
be passed to all subsequent library function calls. The context should be destroyed at the end
using cudnnDestroy(]. The context is associated with only one GPU device, the current device
at the time of the call to cudnnCreate(). However, multiple contexts can be created on the
same GPU device.

3.1.1.6. cudnnLRNDescriptor t

cudnnLRNDescriptor t isa pointer to an opaque structure holding the parameters of a local
response normalization. cudnnCreatel RNDescriptor(] is used to create one instance, and the
routine cudnnSetLRNDescriptor() must be used to initialize this instance.

3.1.1.7. cudnnOpTensorDescriptor t

cudnnOpTensorDescriptor t isa pointer to an opaque structure holding the
description of a Tensor Core operation, used as a parameter to cudnnOpTensor().
cudnnCreateOpTensorDescriptor() is used to create one instance, and
cudnnSetOpTensorDescriptor() must be used to initialize this instance.

3.1.1.8. cudnnPoolingDescriptor t

cudnnPoolingDescriptor tis a pointer to an opaque structure holding the description

of a pooling operation. cudnnCreatePoolingDescriptor(] is used to create one instance, and
cudnnSetPoolingNdDescriptor(] or cudnnSetPooling2dDescriptor(] must be used to initialize
this instance.

3.1.1.9. cudnnReduceTensorDescriptor t

cudnnReduceTensorDescriptor t Is a pointer to an opaque structure holding the
description of a tensor reduction operation, used as a parameter to cudnnReduceTensor(].
cudnnCreateReduceTensorDescriptor() is used to create one instance, and
cudnnSetReduceTensorDescriptor() must be used to initialize this instance.

3.1.1.10. cudnnSpatialTransformerDescriptor t

cudnnSpatialTransformerDescriptor tis a pointer to an opaque structure holding the
description of a spatial transformation operation. cudnnCreateSpatialTransformerDescriptor()
is used to create one instance, cudnnSetSpatialTransformerNdDescriptor() is used to initialize
this instance, and cudnnDestroySpatialTransformerDescriptor() is used to destroy this
instance.

3.1.1.11. cudnnTensorDescriptor t

NVIDIA cuDNN PR-09702-001_v8.3.0 | 9

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnCreateLRNDescriptor
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnSetLRNDescriptor

cudnn_ops_infer.so Library

cudnnTensorDescriptor tis a pointer to an opaque structure holding the description
of a generic n-D dataset. cudnnCreateTensorDescriptor() is used to create one instance,
and one of the routines cudnnSetTensorNdDescriptor(], cudnnSetTensor4dDescriptor() or
cudnnSetTensor4dDescriptorEx() must be used to initialize this instance.

3.1.1.12. cudnnTensorTransformDescriptor t

cudnnTensorTransformDescriptor tIsan opaque structure containing the description of
the tensor transform. Use the cudnnCreateTensorTransformDescriptor() function to create an
instance of this descriptor, and cudnnDestroyTensorTransformDescriptor() function to destroy
a previously created instance.

3.1.2. Enumeration Types

3.1.2.1. cudnnActivationMode t

cudnnActivationMode tisan enumerated type used to select the neuron activation
function used in cudnnActivationForward(), cudnnActivationBackward(], and
cudnnConvolutionBiasActivationForward().

Values
CUDNN_ACTIVATION SIGMOID

Selects the sigmoid function.

CUDNN_ACTIVATION RELU

Selects the rectified linear function.

CUDNN_ACTIVATION_ TANH

Selects the hyperbolic tangent function.

CUDNN_ACTIVATION CLIPPED RELU

Selects the clipped rectified linear function.

CUDNN_ACTIVATION_ELU

Selects the exponential linear function.

CUDNN_ACTIVATION_ IDENTITY

Selects the identity function, intended for bypassing the activation step in
cudnnConvolutionBiasActivationForward(]. (The cudnnConvolutionBiasActivationForward()
function must use CUDNN_CONVOLUTION FWD ALGO IMPLICIT PRECOMP GEMM.) Does not
work with cudnnActivationForward(] or cudnnActivationBackward().

CUDNN_ACTIVATION_ SWISH
Selects the swish function.

3.1.2.2. cudnnAlgorithm t

NVIDIA cuDNN PR-09702-001_v8.3.0 | 10

cudnn_ops_infer.so Library

This function has been deprecated in cuDNN 8.0.

3.1.2.3. cudnnBatchNormMode t

cudnnBatchNormMode t is an enumerated type used to specify the mode of operation in
cudnnBatchNormalizationForwardInference(), cudnnBatchNormalizationForwardTrainingl(],
cudnnBatchNormalizationBackward() and cudnnDeriveBNTensorDescriptor(] routines.

Values

CUDNN_BATCHNORM PER ACTIVATION

Normalization is performed per-activation. This mode is intended to be used after the non-
convolutional network layers. In this mode, the tensor dimensions of bnBias and bnScale
and the parameters used in the cudnnBatchNormalization* functions are TxCxHxW.

CUDNN_BATCHNORM SPATIAL

Normalization is performed over N+spatial dimensions. This mode is intended for use after
convolutional layers (where spatial invariance is desired). In this mode the bnBias and
bnScale tensor dimensions are 1xCx1x1.

CUDNN_BATCHNORM SPATIAL PERSISTENT
This mode is similar to CUDNN_BATCHNORM SPATIAL but it can be faster for some tasks.

An optimized path may be selected for CUDNN_ DATA FLOAT and CUDNN DATA HALF types,
compute capability 6.0 or higher for the following two batch normalization API calls:
cudnnBatchNormalizationForwardTraining(), and cudnnBatchNormalizationBackward(]. In
the case of cudnnBatchNormalizationBackward(), the savedMean and savedInvVariance
arguments should not be NULL.

The rest of this section applies to NCHW mode only:

This mode may use a scaled atomic integer reduction that is deterministic but imposes
more restrictions on the input data range. When a numerical overflow occurs, the
algorithm may produce NaN-s or Inf-s (infinity) in output buffers.

When Inf-s/NaN-s are present in the input data, the output in this mode is the same as
from a pure floating-point implementation.

For finite but very large input values, the algorithm may encounter overflows

more frequently due to a lower dynamic range and emit Inf-s/NaN-s while

CUDNN_ BATCHNORM SPATIAL will produce finite results. The user can invoke
cudnnQueryRuntimeError() to check if a numerical overflow occurred in this mode.

3.1.2.4. cudnnBatchNormOps_t

cudnnBatchNormOps_t Is an enumerated type used to specify the mode of
operation in cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize(),
cudnnBatchNormalizationForwardTrainingEx(,
cudnnGetBatchNormalizationBackwardExWorkspaceSize(),

NVIDIA cuDNN PR-09702-001_v8.3.0 | 11

cudnn_ops_infer.so Library

cudnnBatchNormalizationBackwardEx(], and
cudnnGetBatchNormalizationTrainingExReserveSpaceSize(] functions.

Values

CUDNN_BATCHNORM OPS_BN

Only batch normalization is performed, per-activation.
CUDNN_BATCHNORM OPS BN ACTIVATION

First, the batch normalization is performed, and then the activation is performed.

CUDNN_BATCHNORM OPS_BN_ADD_ACTIVATION

Performs the batch normalization, then element-wise addition, followed by the activation
operation.

3.1.2.53. cudnnCTCLossAlgo t

cudnnCTCLossAlgo t is an enumerated type that exposes the different algorithms available
to execute the CTC loss operation.

Values
CUDNN CTC LOSS_ALGO DETERMINISTIC

Results are guaranteed to be reproducible.

CUDNN_CTC_LOSS_ALGO_NON_ DETERMINISTIC

Results are not guaranteed to be reproducible.

3.1.2.6. cudnnDataType t

cudnnDataType tIsan enumerated type indicating the data type to which a tensor descriptor
or filter descriptor refers.

Values

CUDNN_DATA FLOAT

The data is a 32-bit single-precision floating-point (float).
CUDNN_DATA DOUBLE

The data is a 64-bit double-precision floating-point (double).
CUDNN_DATA HALF

The data is a 16-bit floating-point.
CUDNN_DATA INT8

The data is an 8-bit signed integer.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 12

cudnn_ops_infer.so Library

CUDNN_DATA UINTS

The data is an 8-bit unsigned integer.
CUDNN_DATA_ INT32

The data is a 32-bit signed integer.

CUDNN_DATA INT8x4
The data is 32-bit elements each composed of 4 8-bit signed integers. This data type is only
supported with the tensor format CUDNN TENSOR_ NCHW VECT C.

CUDNN_DATA INT8x32
The data is 32-element vectors, each element being an 8-bit signed integer. This data type
Is only supported with the tensor format CUDNN TENSOR NCHW VECT C. Moreover, this data

type can only be used with algo 1, meaning, CUDNN CONVOLUTION FWD ALGO IMPLICIT
PRECOMP_GEMM. For more information, see cudnnConvolutionFwdAlgo_t.

CUDNN_DATA UINT8x4

The data is 32-bit elements each composed of 4 8-bit unsigned integers. This data type is
only supported with the tensor format CUDNN_ TENSOR NCHW VECT C.

CUDNN_DATA BFLOAT16
The data is a 16-bit quantity, with 7 mantissa bits, 8 exponent bits, and 1 sign bit.

3.1.2.7. cudnnDeterminism t

cudnnDeterminism t IS an enumerated type used to indicate if the computed results are
deterministic (reproducible). For more information, see Reproducibility (determinism).

Values
CUDNN NON DETERMINISTIC

Results are not guaranteed to be reproducible.
CUDNN_DETERMINISTIC

Results are guaranteed to be reproducible.

3.1.2.8. cudnnDivNormMode t

cudnnDivNormMode t is an enumerated type used to specify the mode of operation in
cudnnDivisiveNormalizationForward(] and cudnnDivisiveNormalizationBackward|().

NVIDIA cuDNN PR-09702-001_v8.3.0 | 13

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#reproducibility

cudnn_ops_infer.so Library

Values

CUDNN_DIVNORM PRECOMPUTED_ MEANS

The means tensor data pointer is expected to contain means or other kernel convolution
values precomputed by the user. The means pointer can also be NULL, in that case, it's
considered to be filled with zeroes. This is equivalent to spatial LRN.

S Note: In the backward pass, the means are treated as independent inputs and the gradient
over means is computed independently. In this mode, to yield a net gradient over the entire
LCN computational graph, the destbDi ffMeans result should be backpropagated through
the user's means layer (which can be implemented using average pooling) and added to the
destDiffData tensor produced by cudnnDivisiveNormalizationBackward().

3.1.2.9. cudnnErrQueryMode t

cudnnErrQueryMode_t is an enumerated type passed to cudnnQueryRuntimeError() to select
the remote kernel error query mode.

Values

CUDNN_ERRQUERY RAWCODE

Read the error storage location regardless of the kernel completion status.

CUDNN_ERRQUERY NONBLOCKING

Report if all tasks in the user stream of the cuDNN handle were completed. If that is the
case, report the remote kernel error code.

CUDNN_ERRQUERY BLOCKING

Wait for all tasks to complete in the user stream before reporting the remote kernel error
code.

3.1.2.10. cudnnFoldingDirection_ t

cudnnFoldingDirection tisan enumerated type used to select the folding direction. For
more information, see cudnnTensorTransformDescriptor t.

Data Member

CUDNN_TRANSFORM FOLD = QU

Selects folding.
CUDNN_TRANSFORM_UNFOLD = 1U

Selects unfolding.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 14

cudnn_ops_infer.so Library

3.1.2.11. cudnnIndicesType t

cudnnIndicesType tisanenumerated type used to indicate the data type for the indices to
be computed by the cudnnReduceTensor() routine. This enumerated type is used as a field for
the cudnnReduceTensorDescriptor_t descriptor.

Values

CUDNN_32BIT_INDICES

Compute unsigned int indices.

CUDNN_64BIT_INDICES

Compute unsigned long indices.

CUDNN_16BIT_INDICES

Compute unsigned short indices.

CUDNN_8BIT INDICES

Compute unsigned char indices.

3.1.2.12. cudnnLRNMode t

cudnnLRNMode t is an enumerated type used to specify the mode of operation in
cudnnLRNCrossChannelForward() and cudnnLRNCrossChannelBackward().

Values

CUDNN_LRN_CROSS_CHANNEL DIM1
LRN computation is performed across the tensor's dimension dimaA[1].

3.1.2.13. cudnnMathType t

cudnnMathType tisan enumerated type used to indicate if the use of Tensor Core operations
Is permitted in a given library routine.

Values

CUDNN_DEFAULT MATH

Tensor Core operations are not used on pre-NVIDIA A100 GPU devices. On A100 GPU
architecture devices, Tensor Core TF32 operation is permitted.

CUDNN_TENSOR_OP_MATH

The use of Tensor Core operations is permitted but will not actively perform datatype down
conversion on tensors in order to utilize Tensor Cores.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 15

cudnn_ops_infer.so Library

CUDNN_TENSOR_OP_MATH ALLOW_CONVERSION

The use of Tensor Core operations is permitted and will actively perform datatype down
conversion on tensors in order to utilize Tensor Cores.

CUDNN_FMA MATH
Restricted to only kernels that use FMA instructions.

On pre-NVIDIA A100 GPU devices, CUDNN DEFAULT MATH and CUDNN FMA MATH have

the same behavior: Tensor Core kernels will not be selected. With NVIDIA Ampere
Architecture and CUDA toolkit 11, CUDNN DEFAULT MATH permits TF32 Tensor Core
operation and CUDNN_FMA MATH does not. The TF32 behavior for CUDNN_ DEFAULT MATH and
the other Tensor Core math types can be explicitly disabled by the environment variable
NVIDIA TF32 OVERRIDE=0.

3.1.2.14. cudnnNanPropagation t

cudnnNanPropagation_t Isan enumerated type used to indicate if a given routine

should propagate Nan numbers. This enumerated type is used as a field for the
cudnnActivationDescriptor t descriptor and cudnnPoolingDescriptor t descriptor.
Values

CUDNN_NOT PROPAGATE NAN

Nan numbers are not propagated.

CUDNN_PROPAGATE NAN

Nan numbers are propagated.

3.1.2.15. cudnnNormAlgo t

cudnnNormAlgo tis an enumerated type used to specify the algorithm to execute the
normalization operation.

Values

CUDNN_NORM_ALGO_STANDARD

Standard normalization is performed.
CUDNN_NORM ALGO_PERSIST

This mode is similar to CUDNN_NORM ALGO_STANDARD, however it only supports
CUDNN NORM PER CHANNEL and can be faster for some tasks.

An optimized path may be selected for CUDNN DATA FLOAT and CUDNN_DATA HALF
types, compute capability 6.0 or higher for the following two normalization API calls:
cudnnNormalizationForwardTraining() and cudnnNormalizationBackward(). In the case of

cudnnNormalizationBackward(), the savedMean and savedInvVariance arguments should

not be NULL.

NVIDIA cuDNN PR-09702-001_v8.3.0 |

16

cudnn_ops_infer.so Library

The rest of this section applies to NCHW mode only: This mode may use a scaled atomic
integer reduction that is deterministic but imposes more restrictions on the input data
range. When a numerical overflow occurs, the algorithm may produce NaN-s or Inf-s
(infinity) in output buffers.

When Inf-s/NaN-s are present in the input data, the output in this mode is the same as
from a pure floating-point implementation.

For finite but very large input values, the algorithm may encounter overflows

more frequently due to a lower dynamic range and emit Inf-s/NaN-s while
CUDNN_NORM ALGO_ STANDARD will produce finite results. The user can invoke
cudnnQueryRuntimeError() to check if a numerical overflow occurred in this mode.

3.1.2.16. cudnnNormMode t

cudnnNormMode t is an enumerated type used to specify the

mode of operation in cudnnNormalizationForwardInference(],
cudnnNormalizationForwardTraining(), cudnnBatchNormalizationBackwardl(],
cudnnGetNormalizationForwardTrainingWorkspaceSize(),
cudnnGetNormalizationBackwardWorkspaceSize(), and
cudnnGetNormalizationTrainingReserveSpaceSize() routines.

Values

CUDNN_NORM_ PER_ ACTIVATION

Normalization is performed per-activation. This mode is intended to be used after the
non-convolutional network layers. In this mode, the tensor dimensions of normBias and
normScale and the parameters used in the cudnnNormalization* functions are TxCxHxW.

CUDNN_NORM_PER_CHANNEL

Normalization is performed per-channel over N+spatial dimensions. This mode is intended
for use after convolutional layers (where spatial invariance is desired). In this mode, the
normBias and normScale tensor dimensions are 1xCx1x1.

3.1.2.17. cudnnNormOps_t

cudnnNormOps_t Is an enumerated type used to specify the mode of

operation in cudnnGetNormalizationForwardTrainingWorkspaceSize(),
cudnnNormalizationForwardTraining(), cudnnGetNormalizationBackwardWorkspaceSizel(),
cudnnNormalizationBackward(), and cudnnGetNormalizationTrainingReserveSpaceSize()
functions.

Values
CUDNN_NORM OPS_NORM

Only normalization is performed.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 17

cudnn_ops_infer.so Library

CUDNN_NORM _OPS_NORM_ACTIVATION

First, the normalization is performed, then the activation is performed.

CUDNN_NORM OPS_NORM ADD ACTIVATION

Performs the normalization, then element-wise addition, followed by the activation
operation.

3.1.2.18. cudnnOpTensorOp t

cudnnOpTensorOp_t is an enumerated type used to indicate the Tensor Core operation to
be used by the cudnnOpTensor() routine. This enumerated type is used as a field for the
cudnnOpTensorDescriptor_t descriptor.

Values
CUDNN_OP_TENSOR ADD

The operation to be performed is addition.

CUDNN_OP_TENSOR_MUL

The operation to be performed is multiplication.

CUDNN_OP_TENSOR_ MIN

The operation to be performed is a minimum comparison.

CUDNN_OP_TENSOR_MAX

The operation to be performed is a maximum comparison.

CUDNN_OP_TENSOR_SQRT

The operation to be performed is square root, performed on only the A tensor.

CUDNN_OP_TENSOR_NOT

The operation to be performed is negation, performed on only the A tensor.

3.1.2.19. cudnnPoolingMode t

cudnnPoolingMode t isan enumerated type passed to cudnnSetPooling2dDescriptor() to
select the pooling method to be used by cudnnPoolingForward(] and cudnnPoolingBackward().

Values

CUDNN_POOLING_MAX

The maximum value inside the pooling window is used.

CUDNN_POOLING AVERAGE COUNT_INCLUDE_ PADDING

Values inside the pooling window are averaged. The number of elements used to calculate
the average includes spatial locations falling in the padding region.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 18

cudnn_ops_infer.so Library

CUDNN_POOLING AVERAGE COUNT_ EXCLUDE_ PADDING

Values inside the pooling window are averaged. The number of elements used to calculate
the average excludes spatial locations falling in the padding region.

CUDNN_POOLING MAX DETERMINISTIC

The maximum value inside the pooling window is used. The algorithm used is deterministic.

3.1.2.20. cudnnReduceTensorIndices_t

cudnnReduceTensorIndices t isan enumerated type used to indicate whether indices are to
be computed by the cudnnReduceTensor() routine. This enumerated type is used as a field for
the cudnnReduceTensorDescriptor_t descriptor.

Values
CUDNN_REDUCE_TENSOR NO_INDICES

Do not compute indices.

CUDNN_REDUCE_TENSOR_FLATTENED_ INDICES

Compute indices. The resulting indices are relative, and flattened.

3.1.2.21. cudnnReduceTensorOp t

cudnnReduceTensorOp_t IS an enumerated type used to indicate the Tensor Core operation
to be used by the cudnnReduceTensor() routine. This enumerated type is used as a field for the
cudnnReduceTensorDescriptor_t descriptor.

Values
CUDNN_REDUCE_TENSOR ADD

The operation to be performed is addition.

CUDNN_REDUCE_TENSOR_MUL

The operation to be performed is multiplication.

CUDNN_REDUCE_TENSOR_MIN

The operation to be performed is a minimum comparison.

CUDNN_REDUCE_TENSOR_MAX

The operation to be performed is a maximum comparison.

CUDNN_REDUCE_TENSOR_AMAX

The operation to be performed is a maximum comparison of absolute values.

CUDNN_REDUCE_TENSOR_AVG

The operation to be performed is averaging.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 19

cudnn_ops_infer.so Library

CUDNN_REDUCE_TENSOR NORM1

The operation to be performed is addition of absolute values.
CUDNN_REDUCE_TENSOR_NORM2

The operation to be performed is a square root of the sum of squares.
CUDNN_REDUCE_TENSOR MUL NO_ZEROS

The operation to be performed is multiplication, not including elements of value zero.

3.1.2.22. cudnnRNNAlgo t

cudnnRNNAlgo t is an enumerated type used to specify the algorithm used in the
cudnnRNNForwardInference(], cudnnRNNForwardTraining(], cudnnRNNBackwardDatal() and
cudnnRNNBackwardWeights(] routines.

Values

CUDNN_RNN_ALGO_STANDARD
Each RNN layer is executed as a sequence of operations. This algorithm is expected to have
robust performance across a wide range of network parameters.
CUDNN_RNN_ALGO_ PERSIST STATIC

The recurrent parts of the network are executed using a persistent kernel approach.
This method is expected to be fast when the first dimension of the input tensor is small
(meaning, a small minibatch).

CUDNN_RNN ALGO PERSIST STATIC is only supported on devices with compute capability
>=6.0.

CUDNN_RNN ALGO_ PERSIST DYNAMIC

The recurrent parts of the network are executed using a persistent kernel approach.

This method is expected to be fast when the first dimension of the input tensor is small
(meaning, a small minibatch]. When using CUDNN_RNN_ALGO PERSIST DYNAMIC persistent
kernels are prepared at runtime and are able to optimize using the specific parameters

of the network and active GPU. As such, when using CUDNN_RNN ALGO PERSIST DYNAMIC
a one-time plan preparation stage must be executed. These plans can then be reused in
repeated calls with the same model parameters.

The limits on the maximum number of hidden units supported when using

CUDNN RNN ALGO PERSIST DYNAMIC are significantly higher than the limits when using
CUDNN_RNN ALGO PERSIST STATIC, however throughput is likely to significantly reduce
when exceeding the maximums supported by CUDNN_RNN ALGO PERSIST STATIC. In this
regime, this method will still outperform CUDNN RNN ALGO_ STANDARD for some cases.

CUDNN RNN ALGO PERSIST DYNAMIC is only supported on devices with compute capability
>= 6.0 on Linux machines.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 20

cudnn_ops_infer.so Library

3.1.2.23. cudnnSamplerType t

cudnnSamplerType tisan enumerated type passed to
cudnnSetSpatialTransformerNdDescriptor(] to select the sampler type to be used by
cudnnSpatialTfSamplerForward() and cudnnSpatialTfSamplerBackward|().

Values

CUDNN_SAMPLER BILINEAR
Selects the bilinear sampler.

3.1.2.24. cudnnSeverity t

cudnnSeverity tisanenumerated type passed to the customized callback function for
logging that users may set. This enumerate describes the severity level of the item, so the
customized logging call back may react differently.

Values

CUDNN_SEV_FATAL

This value indicates a fatal error emitted by cuDNN.

CUDNN_SEV_ERROR

This value indicates a normal error emitted by cuDNN.

CUDNN_SEV_WARNING

This value indicates a warning emitted by cuDNN.

CUDNN_SEV_INFO

This value indicates a piece of information (for example, API log) emitted by cuDNN.

3.1.2.25. cudnnSoftmaxAlgorithm t

cudnnSoftmaxAlgorithm tis used to select an implementation of the softmax function used
in cudnnSoftmaxForward() and cudnnSoftmaxBackward().

Values

CUDNN_SOFTMAX FAST

This implementation applies the straightforward softmax operation.

CUDNN_SOFTMAX ACCURATE

This implementation scales each point of the softmax input domain by its maximum value
to avoid potential floating point overflows in the softmax evaluation.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 21

cudnn_ops_infer.so Library

CUDNN_SOFTMAX LOG

This entry performs the log softmax operation, avoiding overflows by scaling each point in
the input domain as in CUDNN SOFTMAX ACCURATE.

3.1.2.26. cudnnSoftmaxMode t

cudnnSoftmaxMode t is used to select over which data the cudnnSoftmaxForward(] and
cudnnSoftmaxBackward(] are computing their results.

Values
CUDNN_SOFTMAX MODE INSTANCE

The softmax operation is computed per image (N) across the dimensions ¢, H, W.

CUDNN_SOFTMAX MODE_CHANNEL

The softmax operation is computed per spatial location (1, w) per image (N) across
dimension C.

3.1.2.27. cudnnStatus_t

cudnnStatus_t is an enumerated type used for function status returns. All cuDNN library
functions return their status, which can be one of the following values:

Values

CUDNN_STATUS_SUCCESS

The operation was completed successfully.

CUDNN_STATUS_NOT_ INITIALIZED

The cuDNN library was not initialized properly. This error is usually returned when a call

to cudnnCreatel] fails or when cudnnCreatel] has not been called prior to calling another
cuDNN routine. In the former case, it is usually due to an error in the CUDA Runtime API

called by cudnnCreatel] or by an error in the hardware setup.
CUDNN_STATUS_ALLOC_FAILED

Resource allocation failed inside the cuDNN Llibrary. This is usually caused by an internal
cudaMalloc () failure.

To correct, prior to the function call, deallocate previously allocated memory as much as
possible.

CUDNN_STATUS_BAD PARAM
Anincorrect value or parameter was passed to the function.

To correct, ensure that all the parameters being passed have valid values.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 22

cudnn_ops_infer.so Library

CUDNN_STATUS_ARCH_MISMATCH

The function requires a feature absent from the current GPU device. Note that cuDNN only

supports devices with compute capabilities greater than or equal to 3.0.

To correct, compile and run the application on a device with appropriate compute capability.
CUDNN_STATUS_MAPPING ERROR

An access to GPU memory space failed, which is usually caused by a failure to bind a
texture.

To correct, prior to the function call, unbind any previously bound textures.
Otherwise, this may indicate an internal error/bug in the library.
CUDNN_STATUS_EXECUTION FAILED

The GPU program failed to execute. This is usually caused by a failure to launch some
cuDNN kernel on the GPU, which can occur for multiple reasons.

To correct, check that the hardware, an appropriate version of the driver, and the cuDNN

library are correctly installed.

Otherwise, this may indicate an internal error/bug in the library.
CUDNN_STATUS_INTERNAL ERROR

An internal cuDNN operation failed.

CUDNN_STATUS_NOT_SUPPORTED

The functionality requested is not presently supported by cuDNN.
CUDNN_STATUS_LICENSE ERROR
The functionality requested requires some license and an error was detected when trying to

check the current licensing. This error can happen if the license is not present or is expired
or if the environment variable NVIDIA LICENSE FILE is not set properly.

CUDNN_STATUS_RUNTIME PREREQUISITE MISSING
The runtime library that is required by RNN calls (1ibcuda.so or nvcuda.d11) cannot be
found in predefined search paths.

CUDNN_STATUS_RUNTIME IN PROGRESS

Some tasks in the user stream are not completed.

CUDNN_STATUS_RUNTIME_FP_OVERFLOW

Numerical overflow occurred during the GPU kernel execution.

cudnnTensorFormat_t is an enumerated type used by cudnnSetTensor4dDescriptor() to
create a tensor with a pre-defined layout. For a detailed explanation of how these tensors are
arranged in memory, see the Data Layout Formats section in the cuDNN Developer Guide.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 23

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#data-layout-formats

cudnn_ops_infer.so Library

Values
CUDNN_TENSOR NCHW

This tensor format specifies that the data is laid out in the following order: batch size,
feature maps, rows, columns. The strides are implicitly defined in such a way that the
data are contiguous in memory with no padding between images, feature maps, rows,
and columns; the columns are the inner dimension and the images are the outermost
dimension.

CUDNN_TENSOR_NHWC

This tensor format specifies that the data is laid out in the following order: batch size, rows,
columns, feature maps. The strides are implicitly defined in such a way that the data are
contiguous in memory with no padding between images, rows, columns, and feature maps;
the feature maps are the inner dimension and the images are the outermost dimension.

CUDNN_TENSOR_NCHW_VECT C

This tensor format specifies that the data is laid out in the following order: batch size,
feature maps, rows, columns. However, each element of the tensor is a vector of multiple
feature maps. The length of the vector is carried by the data type of the tensor. The strides
are implicitly defined in such a way that the data are contiguous in memory with no padding
between images, feature maps, rows, and columns; the columns are the inner dimension
and the images are the outermost dimension. This format is only supported with tensor
data types CUDNN_DATA INT8x4, CUDNN DATA INT8x32, and CUDNN DATA UINT8x4.

The CUDNN TENSOR NCHW VECT C can also be interpreted in the following way: The NCHW
INT8x32 format is really N x (C/32) x H x W x 32 (32 Cs for every W), just as the NCHW
INT8x4 format is N x [C/4) x H x W x 4 [4 Cs for every W]. Hence, the VECT c name - each W
is a vector (4 or 32) of Cs.

3.2. APl Functions

3.2.1. cudnnActivationForward ()

cudnnStatus_ t cudnnActivationForward (
cudnnHandle t handle,

cudnnActivationDescriptor t activationDesc,
const void *alpha,

const cudnnTensorDescriptor t xDesc,

const void X,

const void *beta,

const cudnnTensorDescriptor t yDesc,

void *y)

This routine applies a specified neuron activation function element-wise over each input value.
Note:

NVIDIA cuDNN PR-09702-001_v8.3.0 | 24

cudnn_ops_infer.so Library

» In-place operation is allowed for this routine; meaning, xData and yData pointers may be
equal. However, this requires xbDesc and yDesc descriptors to be identical (particularly, the
strides of the input and output must match for an in-place operation to be allowed).

» All tensor formats are supported for 4 and 5 dimensions, however, the best performance is
obtained when the strides of xDesc and yDesc are equal and Hii-packed. For more than 5
dimensions the tensors must have their spatial dimensions packed.

Parameters

handle

Input. Handle to a previously created cuDNN context. For more information, see
cudnnHandle_t.

activationDesc

Input. Activation descriptor. For more information, see cudnnActivationDescriptor_t.

alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the computation result

with prior value in the output layer as follows:
dstValue = alpha[0]*result + betal[0]*priorDstValue

For more information, see Scaling Parameters in the cuDNN Developer Guide.

xDesc

Input. Handle to the previously initialized input tensor descriptor. For more information, see
cudnnTensorDescriptor_t.

Input. Data pointer to GPU memory associated with the tensor descriptor xDesc.

yDesc

Input. Handle to the previously initialized output tensor descriptor.

Output. Data pointer to GPU memory associated with the output tensor descriptor yDesc.

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS NOT SUPPORTED

The function does not support the provided configuration.

CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:

» The parameter mode has an invalid enumerant value.

» Thedimensionsn, ¢, h, woftheinputtensorand output tensor differ.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 25

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#scaling-parameters

cudnn_ops_infer.so Library

» The datatype of the input tensor and output tensor differs.

» The strides nstride, cStride, hStride, wStride of the input tensor and output
tensor differ and in-place operation is used (meaning, x and y pointers are equall.

CUDNN_STATUS EXECUTION FATILED

The function failed to launch on the GPU.

3.2.2. cudnnAddTensor ()

cudnnStatus t cudnnAddTensor (

cudnnHandle t handle,
const void *alpha,
const cudnnTensorDescriptor t aDesc,
const void *A,
const void *beta,
const cudnnTensorDescriptor t cDesc,
void *C)

This function adds the scaled values of a bias tensor to another tensor. Each dimension of the
bias tensor A must match the corresponding dimension of the destination tensor ¢ or must be
equal to 1. In the latter case, the same value from the bias tensor for those dimensions will be
used to blend into the ¢ tensor.

S Note: Up to dimension 5, all tensor formats are supported. Beyond those dimensions, this
routine is not supported

Parameters
handle

Input. Handle to a previously created cuDNN context. For more information, see
cudnnHandle_t.

alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the source value with the

prior value in the destination tensor as follows:
dstValue = alpha[0]*srcValue + beta[0]*priorDstValue

For more information, see Scaling Parameters in the cuDNN Developer Guide.

aDesc

Input. Handle to a previously initialized tensor descriptor. For more information, see
cudnnTensorDescriptor_t.

Input. Pointer to data of the tensor described by the abesc descriptor.

cDesc

Input. Handle to a previously initialized tensor descriptor.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 26

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#scaling-parameters

cudnn_ops_infer.so Library

Input/Output. Pointer to data of the tensor described by the cbesc descriptor.

Returns

CUDNN_STATUS_SUCCESS
The function executed successfully.
CUDNN_STATUS_NOT SUPPORTED

The function does not support the provided configuration.

CUDNN_STATUS_BAD_PARAM

The dimensions of the bias tensor refer to an amount of data that is incompatible with the
output tensor dimensions or the dataType of the two tensor descriptors are different.

CUDNN_STATUS_EXECUTION_ FAILED

The function failed to launch on the GPU.

3.2.3. cudnnBatchNormalizationForwardInference ()
cudnnStatus_t cudnnBatchNormalizationForwardInference (
cudnnHandle t handle,
cudnnBatchNormMode t mode,
const void *alpha,
const void *beta,
const cudnnTensorDescriptor t xDesc,
const void 520
const cudnnTensorDescriptor t yDesc,
void Wy
const cudnnTensorDescriptor t bnScaleBiasMeanVarDesc,
const void *bnScale,
const void *bnBias,
const void *estimatedMean,
const void *estimatedVariance,
double epsilon)

This function performs the forward batch normalization layer computation for the inference
phase. This layer is based on the paper Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift, S. loffe, C. Szegedy, 2015.

%] Note:

» Only 4D and 5D tensors are supported.

» The input transformation performed by this function is defined as:

y = beta*y + alpha *[bnBias + (bnScale * (x-estimatedMean) /sqrt (epsilon +
estimatedVariance)]

» The epsilon value has to be the same during training, backpropagation and inference.

» For the training phase, use cudnnBatchNormalizationForwardTraining().

» Higher performance can be obtained when HW-packed tensors are used for all of x and dx.

For more information, see cudnnDeriveBNTensorDescriptor(] for the secondary tensor
descriptor generation for the parameters used in this function.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 27

https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167

cudnn_ops_infer.so Library

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor. For more information, see
cudnnHandle_t.

mode

Input. Mode of operation (spatial or per-activation]. For more information, see
cudnnBatchNormMode_t.

alpha, beta

Inputs. Pointers to scaling factors (in host memory) used to blend the layer output value

with prior value in the destination tensor as follows:
dstValue = alpha[0]*resultValue + beta[0]*priorDstValue

For more information, see Scaling Parameters in the cuDNN Developer Guide.

xDesc, yDesc
Input. Handles to the previously initialized tensor descriptors.

*x
Input. Data pointer to GPU memory associated with the tensor descriptor xDesc, for the
layer’s x input data.

*y
Input/Output. Data pointer to GPU memory associated with the tensor descriptor ybesc, for
the youtput of the batch normalization layer.

bnScaleBiasMeanVarDesc, bnScale, bnBias

Inputs. Tensor descriptors and pointers in device memory for the batch normalization scale
and bias parameters [(in the original paper bias is referred to as beta and scale as gamma).

estimatedMean, estimatedVariance

Inputs. Mean and variance tensors (these have the same descriptor as the bias and scale).
The resultRunningMean and resultRunningVariance, accumulated during the training
phase from the cudnnBatchNormalizationForwardTraining(] call, should be passed as
inputs here.

epsilon

Input. Epsilon value used in the batch normalization formula. Its value should be equal to or
greater than the value defined for CUDNN BN MIN EPSILON in cudnn.h.

Supported configurations

This function supports the following combinations of data types for various descriptors.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 28

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#scaling-parameters
https://arxiv.org/abs/1502.03167

cudnn_ops_infer.so Library

Table 8. Supported configurations

Data Type

Configurations xDesc bnScaleBiasMean alpha, beta yDesc

INT8 CONFIG CUDNN_DATA INT8 | CUDNN DATA FLOAT CUDNN DATA FLOAT CUDNN DATA INTS8

PSEUDO_ HALF CONFIGUDNN DATA HALF A CUDNN DATA FLOAT CUDNN DATA FLOAT CUDNN DATA HALF

FLOAT_CONFIG CUDNN_DATA_FLOAT CUDNN_DATA_FLOAT CUDNN_DATA_FLOAT CUDNN_DATA_FLOAT
DOUBLE_CONFIG CUDNN_DATA_DOUBIEEUDNN_DATA_DOUBIEEUDNN_DATA_DOUBIEEUDNN_DATA_DOUBLE
Returns

CUDNN_STATUS_SUCCESS

The computation was performed successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD_PARAM
At least one of the following conditions are met:
» One of the pointers alpha, beta, x, y, bnScale, bnBias, estimatedMean,
estimatedInvVariance iS NULL.

> The number of xDesc or yDesc tensor descriptor dimensions is not within the range of
[4,5] (only 4D and 5D tensors are supported.)

» bnScaleBiasMeanVarDesc dimensions are not 1xCx1x1 for 4D and 1xCx1x1x1 for 5D for
spatial, and are not TxCxHxW for 4D and 1TxCxDxHxW for 5D for per-activation mode.

> epsilonvalueis less than CUDNN BN MIN EPSILON.

» Dimensions or data types mismatch for xDesc, yDesc.

3.2.4. cudnnCopyAlgorithmDescriptor ()

This function has been deprecated in cuDNN 8.0.

3.2.5. cudnnCreate ()

cudnnStatus t cudnnCreate (cudnnHandle t *handle)

This function initializes the cuDNN library and creates a handle to an opaque structure holding
the cuDNN library context. It allocates hardware resources on the host and device and must
be called prior to making any other cuDNN library calls.

The cuDNN library handle is tied to the current CUDA device (context). To use the library on
multiple devices, one cuDNN handle needs to be created for each device.

For a given device, multiple cuDNN handles with different configurations (for example,
different current CUDA streams) may be created. Because cudnnCreate () allocates some
internal resources, the release of those resources by calling cudnnDestroy() will implicitly call

NVIDIA cuDNN PR-09702-001_v8.3.0 | 29

cudnn_ops_infer.so Library

cudaDeviceSynchronize; therefore, the recommended best practice is to call cudnnCreate/
cudnnDestroy outside of performance-critical code paths.

For multithreaded applications that use the same device from different threads, the
recommended programming model is to create one (or a few, as is convenient) cuDNN
handle(s) per thread and use that cuDNN handle for the entire life of the thread.
Parameters

handle

Output. Pointer to pointer where to store the address to the allocated cuDNN handle. For
more information, see cudnnHandle_t.

Returns
CUDNN_STATUS_BAD PARAM

Invalid (NULL) input pointer supplied.
CUDNN_STATUS NOT INITIALIZED

No compatible GPU found, CUDA driver not installed or disabled, CUDA runtime API
initialization failed.

CUDNN_STATUS_ARCH MISMATCH
NVIDIA GPU architecture is too old.
CUDNN_STATUS ALLOC_FAILED
Host memory allocation failed.
CUDNN_STATUS_INTERNAL ERROR
CUDA resource allocation failed.
CUDNN_STATUS LICENSE_ERROR
cuDNN license validation failed (only when the feature is enabled).

CUDNN_STATUS_SUCCESS

cuDNN handle was created successfully.

3.2.6. cudnnCreateActivationDescriptor ()

cudnnStatus t cudnnCreateActivationDescriptor (
cudnnActivationDescriptor t *activationDesc)

This function creates an activation descriptor object by allocating the memory needed to hold
its opaque structure. For more information, see cudnnActivationDescriptor_t.

Returns
CUDNN_STATUS_SUCCESS

The object was created successfully.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 30

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__DEVICE.html#group__CUDART__DEVICE_1g10e20b05a95f638a4071a655503df25d

cudnn_ops_infer.so Library

CUDNN_STATUS_ALLOC_FAILED

The resources could not be allocated.

3.2.7. cudnnCreateAlgorithmDescriptor ()

This function has been deprecated in cuDNN 8.0.

cudnnStatus_t cudnnCreateAlgorithmDescriptor (
cudnnAlgorithmDescriptor t *algoDesc)

This function creates an algorithm descriptor object by allocating the memory needed to hold
its opaque structure.

Returns

CUDNN_STATUS_SUCCESS

The object was created successfully.
CUDNN_STATUS_ALLOC_FAILED

The resources could not be allocated.

3.2.8. cudnnCreatelAlgorithmPerformance ()
cudnnStatus_t cudnnCreateAlgorithmPerformance (
cudnnAlgorithmPerformance t *algoPerf,

int numberToCreate)

This function creates multiple algorithm performance objects by allocating the memory
needed to hold their opaque structures.

Returns

CUDNN_STATUS_SUCCESS

The object was created successfully.

CUDNN_STATUS_ALLOC_FAILED

The resources could not be allocated.

3.2.9. cudnnCreateDropoutDescriptor ()

cudnnStatus_t cudnnCreateDropoutDescriptor (
cudnnDropoutDescriptor t *dropoutDesc)

This function creates a generic dropout descriptor object by allocating the memory needed to
hold its opaque structure. For more information, see cudnnDropoutDescriptor_t.

Returns

CUDNN_STATUS_SUCCESS

The object was created successfully.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 31

cudnn_ops_infer.so Library

CUDNN_STATUS_ALLOC_FAILED

The resources could not be allocated.

3.2.10. cudnnCreateFilterDescriptor ()

cudnnStatus t cudnnCreateFilterDescriptor (
cudnnFilterDescriptor t *filterDesc)

This function creates a filter descriptor object by allocating the memory needed to hold its
opaque structure. For more information, see cudnnFilterDescriptor_t.

Returns

CUDNN_STATUS SUCCESS
The object was created successfully.

CUDNN_STATUS_ALLOC_FAILED

The resources could not be allocated.

3.2.11. cudnnCreateLRNDescriptor ()

cudnnStatus_ t cudnnCreateLRNDescriptor (
cudnnLRNDescriptor t *poolingDesc)

This function allocates the memory needed to hold the data needed for LRN and
DivisiveNormalization layers operation and returns a descriptor used with subsequent
layer forward and backward calls.

Returns

CUDNN_STATUS_SUCCESS

The object was created successfully.

CUDNN_STATUS_ALLOC_FAILED

The resources could not be allocated.

3.2.12. cudnnCreateOpTensorDescriptor ()

cudnnStatus_t cudnnCreateOpTensorDescriptor (
cudnnOpTensorDescriptor t* opTensorDesc)

This function creates a tensor pointwise math descriptor. For more information, see
cudnnOpTensorDescriptor._t.

Parameters

opTensorDesc

Output. Pointer to the structure holding the description of the tensor pointwise math such
as add, multiply, and more.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 32

cudnn_ops_infer.so Library

Returns

CUDNN_STATUS_SUCCESS

The function returned successfully.

CUDNN_STATUS_BAD PARAM

Tensor pointwise math descriptor passed to the function is invalid.

CUDNN_STATUS_ALLOC_FAILED

Memory allocation for this tensor pointwise math descriptor failed.

3.2.13. cudnnCreatePoolingDescriptor ()

cudnnStatus t cudnnCreatePoolingDescriptor (
cudnnPoolingDescriptor t *poolingDesc)

This function creates a pooling descriptor object by allocating the memory needed to hold its
opaque structure.

Returns

CUDNN_STATUS_SUCCESS

The object was created successfully.

CUDNN_STATUS_ALLOC_FAILED

The resources could not be allocated.

3.2.14. cudnnCreateReduceTensorDescriptor ()

cudnnStatus_t cudnnCreateReduceTensorDescriptor (
cudnnReduceTensorDescriptor t* reduceTensorDesc)

This function creates a reduced tensor descriptor object by allocating the memory needed to
hold its opaque structure.

Returns
CUDNN_STATUS_SUCCESS

The object was created successfully.

CUDNN_STATUS_BAD_PARAM

reduceTensorDesc IS a NULL pointer.

CUDNN_STATUS_ALLOC_FAILED

The resources could not be allocated.

3.2.15. cudnnCreateSpatialTransformerDescriptor ()

cudnnStatus t cudnnCreateSpatialTransformerDescriptor (
cudnnSpatialTransformerDescriptor t *stDesc)

NVIDIA cuDNN PR-09702-001_v8.3.0 | 33

cudnn_ops_infer.so Library

This function creates a generic spatial transformer descriptor object by allocating the memory
needed to hold its opaque structure.

Returns

CUDNN_STATUS_SUCCESS

The object was created successfully.
CUDNN_STATUS_ALLOC_FAILED

The resources could not be allocated.

3.2.16. cudnnCreateTensorDescriptor ()

cudnnStatus t cudnnCreateTensorDescriptor (
cudnnTensorDescriptor t *tensorDesc)

This function creates a generic tensor descriptor object by allocating the memory needed to
hold its opaque structure. The data is initialized to all zeros.

Parameters
tensorDesc

Input. Pointer to pointer where the address to the allocated tensor descriptor object should
be stored.

Returns

CUDNN_STATUS_BAD_PARAM

Invalid input argument.

CUDNN_STATUS_ALLOC_FAILED

The resources could not be allocated.

CUDNN_STATUS_SUCCESS

The object was created successfully.

3.2.17. cudnnCreateTensorTransformDescriptor ()

cudnnStatus_ t cudnnCreateTensorTransformDescriptor (
cudnnTensorTransformDescriptor t *transformDesc);

This function creates a tensor transform descriptor object by allocating the memory

needed to hold its opaque structure. The tensor data is initialized to be all zero. Use the

cudnnSetTensorTransformDescriptor() function to initialize the descriptor created by this

function.

Parameters

transformDesc
Output. A pointer to an uninitialized tensor transform descriptor.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 34

cudnn_ops_infer.so Library

Returns

CUDNN_STATUS_ SUCCESS

The descriptor object was created successfully.
CUDNN_STATUS_BAD PARAM

The transformDesc IS NULL.
CUDNN_STATUS_ALLOC_FAILED

The memory allocation failed.

3.2.18. cudnnDeriveBNTensorDescriptor ()

cudnnStatus t cudnnDeriveBNTensorDescriptor (

cudnnTensorDescriptor t derivedBnDesc,
const cudnnTensorDescriptor t xDesc,
cudnnBatchNormMode t mode)

This function derives a secondary tensor descriptor for the batch normalization scale,
invVariance, bnBias, and bnScale subtensors from the layer's x data descriptor.

Use the tensor descriptor produced by this function as the bnScaleBiasMeanVarDesc
parameter for the cudnnBatchNormalizationForwardInference(] and
cudnnBatchNormalizationForwardTraining() functions, and as the bnScaleBiasDiffDesc
parameter in the cudnnBatchNormalizationBackward(] function.

The resulting dimensions will be:
» IxCx1x1 for 4D and 1xCx1x1x1 for 5D for BATCHNORM MODE SPATIAL

> IxCxHxW for 4D and 1xCxDxHxW for 5D for BATCHNORM MODE PER ACTIVATION mode

For HALF input data type the resulting tensor descriptor will have a FLOAT type. For other data
types, it will have the same type as the input data.

@ Note:

» Only 4D and 5D tensors are supported.

» The derivedBnDesc should be first created using cudnnCreateTensorDescriptor().

» xDesc is the descriptor for the layer's x data and has to be set up with proper dimensions
prior to calling this function.

Parameters

derivedBnDesc

Output. Handle to a previously created tensor descriptor.

xDesc

Input. Handle to a previously created and initialized layer’s x data descriptor.

mode

Input. Batch normalization layer mode of operation.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 35

cudnn_ops_infer.so Library

Returns
CUDNN_STATUS SUCCESS

The computation was performed successfully.

CUDNN_STATUS_BAD PARAM

Invalid Batch Normalization mode.

3.2.19. cudnnDeriveNormTensorDescriptor ()

cudnnStatus t CUDNNWINAPI
cudnnDeriveNormTensorDescriptor (cudnnTensorDescriptor t derivedNormScaleBiasDesc,
cudnnTensorDescriptor t derivedNormMeanVarDesc,
const cudnnTensorDescriptor t xDesc,
cudnnNormMode t mode,
int groupCnt)
This function derives tensor descriptors for the normalization mean, invariance,
normBias, and normScale subtensors from the layer's x data descriptor and norm mode.
normalization, mean, and invariance share the same descriptor while bias and scale

share the same descriptor.

Use the tensor descriptor produced by this function as the normScaleBiasDesc or
normMeanVarDesc parameter for the cudnnNormalizationForwardInference() and
cudnnNormalizationForwardTraining() functions, and as the dNormScaleBiasDesc and
normMeanVarDesc parameters in the cudnnNormalizationBackward() function.

The resulting dimensions will be:
» IxCx1x1 for 4D and 1xCx1x1x1 for 5D for CUDNN NORM PER ACTIVATION

> IxCxHxW for 4D and 1xCxDxHxW for 5D for CUDNN_ NORM PER CHANNEL mode

For HALF input data type the resulting tensor descriptor will have a FLOAT type. For other data
types, it will have the same type as the input data.

» Only 4D and 5D tensors are supported.

» The derivedNormScaleBiasDesc and derivedNormMeanVarDesc should be created first
using cudnnCreateTensorDescriptor(].

» xDesc Is the descriptor for the layer’s x data and has to be set up with proper dimensions
prior to calling this function.

Parameters

derivedNormScaleBiasDesc

Output. Handle to a previously created tensor descriptor.

derivedNormMeanVarDesc

Output. Handle to a previously created tensor descriptor.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 36

cudnn_ops_infer.so Library

xDesc

Input. Handle to a previously created and initialized layer's x data descriptor.

mode

Input. The normalization layer mode of operation.

Returns
CUDNN_STATUS_SUCCESS

The computation was performed successfully.

CUDNN_STATUS_BAD_PARAM

Invalid Batch Normalization mode.

3.2.20. cudnnDestroy ()

cudnnStatus_t cudnnDestroy(cudnnHandle t handle)

This function releases the resources used by the cuDNN handle. This function is usually the
last call with a particular handle to the cuDNN handle. Because cudnnCreate(] allocates
some internal resources, the release of those resources by calling cudnnbDestroy () will
implicitly call cudaDeviceSynchronize; therefore, the recommended best practice is to call
cudnnCreate/cudnnDestroy outside of performance-critical code paths.

Parameters
handle

Input. The cuDNN handle to be destroyed.

Returns

CUDNN_STATUS_SUCCESS

The cuDNN context destruction was successful.

CUDNN_STATUS_BAD_PARAM

Invalid (NULL) pointer supplied.

3.2.21. cudnnDestroyActivationDescriptor ()

cudnnStatus t cudnnDestroyActivationDescriptor (
cudnnActivationDescriptor t activationDesc)

This function destroys a previously created activation descriptor object.

Returns
CUDNN_STATUS_SUCCESS

The object was destroyed successfully.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 37

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__DEVICE.html#group__CUDART__DEVICE_1g10e20b05a95f638a4071a655503df25d

cudnn_ops_infer.so Library

3.2.22. cudnnDestroyAlgorithmDescriptor ()

This function has been deprecated in cuDNN 8.0.

cudnnStatus t cudnnDestroyAlgorithmDescriptor (
cudnnActivationDescriptor t algorithmDesc)

This function destroys a previously created algorithm descriptor object.

Returns
CUDNN_STATUS_SUCCESS

The object was destroyed successfully.

3.2.23. cudnnDestroyAlgorithmPerformance ()

cudnnStatus_t cudnnDestroyAlgorithmPerformance (
cudnnAlgorithmPerformance t algoPerf)

This function destroys a previously created algorithm descriptor object.

Returns
CUDNN_STATUS_SUCCESS

The object was destroyed successfully.

3.2.24. cudnnDestroyDropoutDescriptor ()

cudnnStatus_t cudnnDestroyDropoutDescriptor (
cudnnDropoutDescriptor t dropoutDesc)

This function destroys a previously created dropout descriptor object.

Returns
CUDNN_STATUS_SUCCESS

The object was destroyed successfully.

3.2.25. cudnnDestroyFilterDescriptor ()

cudnnStatus t cudnnDestroyFilterDescriptor (
cudnnFilterDescriptor t filterDesc)

This function destroys a previously created tensor 4D descriptor object.

Returns
CUDNN_STATUS SUCCESS

The object was destroyed successfully.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 38

cudnn_ops_infer.so Library

3.2.26. cudnnDestroyLRNDescriptor ()

cudnnStatus t cudnnDestroyLRNDescriptor (
cudnnLRNDescriptor t lrnDesc)

This function destroys a previously created LRN descriptor object.

Returns

CUDNN_STATUS_SUCCESS

The object was destroyed successfully.

3.2.27. cudnnDestroyOpTensorDescriptor ()

cudnnStatus t cudnnDestroyOpTensorDescriptor (
cudnnOpTensorDescriptor t opTensorDesc)

This function deletes a tensor pointwise math descriptor object.

Parameters

opTensorDesc

Input. Pointer to the structure holding the description of the tensor pointwise math to be
deleted.
Returns

CUDNN_STATUS_SUCCESS

The function returned successfully.

3.2.28. cudnnDestroyPoolingDescriptor ()

cudnnStatus t cudnnDestroyPoolingDescriptor (
cudnnPoolingDescriptor t poolingDesc)

This function destroys a previously created pooling descriptor object.

Returns

CUDNN_STATUS_SUCCESS

The object was destroyed successfully.

3.2.29. cudnnDestroyReduceTensorDescriptor ()

cudnnStatus t cudnnDestroyReduceTensorDescriptor (
cudnnReduceTensorDescriptor t tensorDesc)

This function destroys a previously created reduce tensor descriptor object. When the input
pointer is NULL, this function performs no destroy operation.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 39

cudnn_ops_infer.so Library

Parameters
tensorDesc

Input. Pointer to the reduce tensor descriptor object to be destroyed.

Returns

CUDNN_STATUS_SUCCESS

The object was destroyed successfully.

3.2.30. cudnnDestroySpatialTransformerDescriptor ()

cudnnStatus t cudnnDestroySpatialTransformerDescriptor (
cudnnSpatialTransformerDescriptor t stDesc)

This function destroys a previously created spatial transformer descriptor object.

Returns

CUDNN_STATUS_SUCCESS

The object was destroyed successfully.

3.2.31. cudnnDestroyTensorDescriptor ()

cudnnStatus_t cudnnDestroyTensorDescriptor (cudnnTensorDescriptor t tensorDesc)

This function destroys a previously created tensor descriptor object. When the input pointeris
NULL, this function performs no destroy operation.

Parameters
tensorDesc

Input. Pointer to the tensor descriptor object to be destroyed.

Returns

CUDNN_STATUS_SUCCESS

The object was destroyed successfully.

3.2.32. cudnnDestroyTensorTransformDescriptor ()

cudnnStatus t cudnnDestroyTensorTransformDescriptor (
cudnnTensorTransformDescriptor t transformDesc);

Destroys a previously created tensor transform descriptor.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 40

cudnn_ops_infer.so Library

Parameters

transformDesc
Input. The tensor transform descriptor to be destroyed.

Returns

CUDNN_STATUS_SUCCESS
The descriptor was destroyed successfully.

3.2.33. cudnnDivisiveNormalizationForward ()

cudnnStatus_t cudnnDivisiveNormalizationForward (

cudnnHandle t handle,
cudnnLRNDescriptor t normDesc,
cudnnDivNormMode t mode,
const void *alpha,
const cudnnTensorDescriptor t xDesc,
const void 520
const void *means,
void *temp,
void *temp2,
const void *beta,
const cudnnTensorDescriptor t yDesc,
void *y)

This function performs the forward spatial DivisiveNormalization layer computation. It
divides every value in a layer by the standard deviation of its spatial neighbors as described

in What is the Best Multi-Stage Architecture for Object Recognition, Jarrett 2009, Local Contrast
Normalization Layer section. Note that DivisiveNormalization only implements the

x/max (c, sigma_x) portion of the computation, where sigma_x is the variance over the
spatial neighborhood of x. The full LCN (Local Contrastive Normalization] computation can be
implemented as a two-step process:

X m = x-mean(x);

Yy = x_m/max(c, sigma(x m));

The x-mean (x) which is often referred to as "subtractive normalization” portion of the
computation can be implemented using cuDNN average pooling layer followed by a call to
addTensor.

S| Note: Supported tensor formats are NCHW for 4D and NCDHW for 5D with any non-overlapping
non-negative strides. Only 4D and 5D tensors are supported.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor.

normDesc

Input. Handle to a previously initialized LRN parameter descriptor. This descriptor is used
for both LRN and DivisiveNormalization layers.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 41

http://yann.lecun.com/exdb/publis/pdf/jarrett-iccv-09.pdf
http://yann.lecun.com/exdb/publis/pdf/jarrett-iccv-09.pdf

cudnn_ops_infer.so Library

divNormMode

Input. DivisiveNormalization layer mode of operation. Currently only
CUDNN DIVNORM PRECOMPUTED MEANS is implemented. Normalization is performed using
the means input tensor that is expected to be precomputed by the user.

alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the layer output value with
prior value in the destination tensor as follows:
dstValue = alpha[0O]*resultValue + beta[0]*priorDstValue

For more information, see Scaling Parameters in the cuDNN Developer Guide.

xDesc, yDesc

Input. Tensor descriptor objects for the input and output tensors. Note that xDesc is shared
between x, means, temp, and temp2 tensors.

Input. Input tensor data pointer in device memory.

means
Input. Input means tensor data pointer in device memory. Note that this tensor can be NULL
(in that case its values are assumed to be zero during the computation). This tensor also

doesn’t have to contain means, these can be any values, a frequently used variation is a
result of convolution with a normalized positive kernel (such as Gaussian).

temp, temp2

Workspace. Temporary tensors in device memory. These are used for computing
intermediate values during the forward pass. These tensors do not have to be preserved as
inputs from forward to the backward pass. Both use xDesc as their descriptor.

Output. Pointer in device memory to a tensor for the result of the forward
DivisiveNormalization computation.

Returns

CUDNN_STATUS_SUCCESS

The computation was performed successfully.
CUDNN_STATUS BAD PARAM

At least one of the following conditions are met:

> One of the tensor pointers x, y, temp, temp2 is NULL.
» Number of input tensor or output tensor dimensions is outside of [4, 5] range.
» A mismatch in dimensions between any two of the input or output tensors.

» Forin-place computation when pointers x == y, a mismatch in strides between the
input data and output data tensors.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 42

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#scaling-parameters

cudnn_ops_infer.so Library

» Alpha or beta pointer is NULL.
» LRN descriptor parameters are outside of their valid ranges.

» Any of the tensor strides are negative.
CUDNN_STATUS_UNSUPPORTED

The function does not support the provided configuration, for example, any of the input and
output tensor strides mismatch (for the same dimension) is a non-supported configuration.

3.2.34. cudnnDropoutForward ()

cudnnStatus t cudnnDropoutForward (

cudnnHandle t handle,

const cudnnDropoutDescriptor t dropoutDesc,

const cudnnTensorDescriptor t xdesc,

const void *x,

const cudnnTensorDescriptor t ydesc,

void “Vp

void *reserveSpace,

size t reserveSpaceSizeInBytes)

This function performs forward dropout operation over x returning results in y. If dropout was
used as a parameter to cudnnSetDropoutDescriptor(], the approximate dropout fraction of

x values will be replaced by a 0, and the rest will be scaled by 1/ (1-dropout). This function
should not be running concurrently with another cudnnDropoutForward () function using the
same states.

@ Note:

» Better performance is obtained for fully packed tensors.

» This function should not be called during inference.

Parameters
handle

Input. Handle to a previously created cuDNN context.

dropoutDesc

Input. Previously created dropout descriptor object.

xDesc

Input. Handle to a previously initialized tensor descriptor.

Input. Pointer to data of the tensor described by the xDesc descriptor.
yDesc

Input. Handle to a previously initialized tensor descriptor.

Output. Pointer to data of the tensor described by the yDesc descriptor.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 43

cudnn_ops_infer.so Library

reserveSpace

Output. Pointer to user-allocated GPU memory used by this function. It is expected that
the contents of reservespace does not change between cudnnDropoutForward () and
cudnnDropoutBackward|() calls.

reserveSpaceSizelInBytes

Input. Specifies the size in bytes of the provided memory for the reserve space.

Returns
CUDNN_STATUS_SUCCESS

The call was successful.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.

CUDNN_STATUS_BAD_PARAM
At least one of the following conditions are met:

» The number of elements of input tensor and output tensors differ.
» The datatype of the input tensor and output tensors differs.

» The strides of the input tensor and output tensors differ and in-place operation is used
(meaning, x and y pointers are equall.

» The provided reserveSpaceSizeInBytes is less than the value returned by
cudnnDropoutGetReserveSpaceSize().

» cudnnSetDropoutDescriptor(] has not been called on dropoutDesc with the non-NULL
states argument.

CUDNN_STATUS_EXECUTION FAILED

The function failed to launch on the GPU.

3.2.35. cudnnDropoutGetReserveSpaceSize ()

cudnnStatus t cudnnDropoutGetReserveSpaceSize (

cudnnTensorDescriptor t xDesc,

size t *sizeInBytes)
This function is used to query the amount of reserve needed to run dropout with the
input dimensions given by xDesc. The same reserve space Is expected to be passed to
cudnnDropoutForward() and cudnnDropoutBackward(], and its contents is expected to remain
unchanged between cudnnDropoutForward(] and cudnnDropoutBackward(] calls.

Parameters
xDesc

Input. Handle to a previously initialized tensor descriptor, describing input to a dropout
operation.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 44

cudnn_ops_infer.so Library

sizeInBytes

Output. Amount of GPU memory needed as reserve space to be able to run dropout with an
input tensor descriptor specified by xDesc.

Returns

CUDNN_STATUS_SUCCESS

The query was successful.

3.2.36. cudnnDropoutGetStatesSize ()

cudnnStatus t cudnnDropoutGetStatesSize (

cudnnHandle t handle,

size t *sizeInBytes)
This function is used to query the amount of space required to store the states of the random
number generators used by cudnnDropoutForward() function.

Parameters
handle

Input. Handle to a previously created cuDNN context.

sizelnBytes

Output. Amount of GPU memory needed to store random generator states.

Returns
CUDNN_STATUS_SUCCESS

The query was successful.

3.2.37. cudnnGetActivationDescriptor ()

cudnnStatus t cudnnGetActivationDescriptor (

const cudnnActivationDescriptor t activationDesc,
cudnnActivationMode t *mode,
cudnnNanPropagation t *reluNanOpt,
double *coef)

This function queries a previously initialized generic activation descriptor object.

Parameters
activationDesc

Input. Handle to a previously created activation descriptor.

mode

Output. Enumerant to specify the activation mode.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 45

cudnn_ops_infer.so Library

reluNanOpt

Output. Enumerant to specify the Nan propagation mode.

coef

Output. Floating point number to specify the clipping threshold when the activation mode
is set to CUDNN_ACTIVATION CLIPPED RELU or to specify the alpha coefficient when the
activation mode is set to CUDNN_ACTIVATION ELU.

Returns
CUDNN_STATUS_SUCCESS

The object was queried successfully.

3.2.38. cudnnGetActivationDescriptorSwishBeta ()

cudnnStatus t
cudnnGetActivationDescriptorSwishBeta (cudnnActivationDescriptor t
activationDesc, double* swish beta)

This function queries the current beta parameter set for SWISH activation.

Parameters
activationDesc

Input. Handle to a previously created activation descriptor.

swish _beta

Output. Pointer to a double value that will receive the currently configured SWISH beta
parameter.

Returns

CUDNN_STATUS_SUCCESS

The beta parameter was queried successfully.

CUDNN_STATUS_BAD PARAM
At least one of activationDesc or swish beta were NULL.

3.2.39. cudnnGetAlgorithmDescriptor ()

This function has been deprecated in cuDNN 8.0.

cudnnStatus t cudnnGetAlgorithmDescriptor (
const cudnnAlgorithmDescriptor t algoDesc,
cudnnAlgorithm t *algorithm)

This function queries a previously initialized generic algorithm descriptor object.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 46

cudnn_ops_infer.so Library

Parameters
algorithmDesc

Input. Handle to a previously created algorithm descriptor.
algorithm

Input. Struct to specify the algorithm.

Returns
CUDNN_STATUS_SUCCESS

The object was queried successfully.

3.2.40. cudnnGetAlgorithmPerformance ()

This function has been deprecated in cuDNN 8.0.

cudnnStatus_t cudnnGetAlgorithmPerformance (

const cudnnAlgorithmPerformance t algoPerf,
cudnnAlgorithmDescriptor t* algoDesc,
cudnnStatus_t* status,
float* time,
size t* memory)

This function queries a previously initialized generic algorithm performance object.

Parameters
algoPerf

Input/Output. Handle to a previously created algorithm performance object.

algoDesc

Output. The algorithm descriptor which the performance results describe.

status

Output. The cuDNN status returned from running the algoDesc algorithm.

timecoef

Output. The GPU time spent running the algobesc algorithm.

memory

Output. The GPU memory needed to run the algoDesc algorithm.

Returns
CUDNN_STATUS SUCCESS

The object was queried successfully.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 47

cudnn_ops_infer.so Library

3.2.41. cudnnGetAlgorithmSpaceSize ()

This function has been deprecated in cuDNN 8.0.
cudnnStatus t cudnnGetAlgorithmSpaceSize (

cudnnHaHdle_t handle,
cudnnAlgorithmDescriptor t algoDesc,
size t* algoSpaceSizelInBytes)

This function queries for the amount of host memory needed to call cudnnSaveAlgorithm(],
much like the "get workspace size” function query for the amount of device memory needed.

Parameters
handle

Input. Handle to a previously created cuDNN context.

algoDesc

Input. A previously created algorithm descriptor.

algoSpaceSizelInBytes
Output. Amount of host memory needed as a workspace to be able to save the metadata
from the specified algoDesc.

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_BAD PARAM

At least one of the arguments is NULL.

3.2.42. cudnnGetCallback ()

cudnnStatus t cudnnGetCallback (

unsigned mask,
void **udata,
cudnnCallback t fptr)

This function queries the internal states of cuDNN error reporting functionality.

Parameters
mask

Output. Pointer to the address where the current internal error reporting message bit mask
will be outputted.

udata

Output. Pointer to the address where the current internally stored udata address will be
stored.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 48

cudnn_ops_infer.so Library

fptr

Output. Pointer to the address where the current internally stored callback function
pointer will be stored. When the built-in default callback function is used, NULL will be
outputted.

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_BAD_ PARAM

If any of the input parameters are NULL.

3.2.43. cudnnGetCudartVersion ()

size t cudnnGetCudartVersion ()

The same version of a given cuDNN Llibrary can be compiled against different CUDA toolkit
versions. This routine returns the CUDA toolkit version that the currently used cuDNN library
has been compiled against.

3.2.44. cudnnGetDropoutDescriptor ()

cudnnStatus_t cudnnGetDropoutDescriptor (

cudnnDropoutDescriptor t dropoutDesc,
cudnnHandle t handle,
float *dropout,
void **states,
unsigned long long *seed)

This function queries the fields of a previously initialized dropout descriptor.

Parameters
dropoutDesc

Input. Previously initialized dropout descriptor.
handle

Input. Handle to a previously created cuDNN context.

dropout

Output. The probability with which the value from input is set to 0 during the dropout layer.

states

Output. Pointer to user-allocated GPU memory that holds random number generator
states.

seed

Output. Seed used to initialize random number generator states.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 49

cudnn_ops_infer.so Library

Returns

CUDNN_STATUS_SUCCESS

The call was successful.

CUDNN_STATUS_BAD PARAM

One or more of the arguments was an invalid pointer.

3.2.45. cudnnGetErrorString()

const char * cudnnGetErrorString(cudnnStatus t status)

This function converts the cuDNN status code to a NULL terminated (ASCIIZ] static string.

For example, when the input argument is CUDNN_STATUS SUCCESS, the returned string is
CUDNN_STATUS_SUCCESS. When an invalid status value is passed to the function, the returned
string is CUDNN_UNKNOWN_STATUS.

Parameters
status

Input. cuDNN enumerant status code.

Returns

Pointer to a static, NULL terminated string with the status name.

3.2.46. cudnnGetFilter4dDescriptor ()

cudnnStatus_t cudnnGetFilter4dDescriptor (

const cudnnFilterDescriptor t filterDesc,
cudnnDataType t *dataType,
cudnnTensorFormat t *format,

int IR,

int ®@y

int *h,

int *W)

This function queries the parameters of the previously initialized filter descriptor object.

Parameters
filterDesc

Input. Handle to a previously created filter descriptor.

datatype

Output. Data type.

format

Output. Type of format.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 50

cudnn_ops_infer.so Library

Output. Number of output feature maps.
Output. Number of input feature maps.
Output. Height of each filter.

Output. Width of each filter.

Returns
CUDNN_STATUS_SUCCESS

The object was set successfully.

3.2.47. cudnnGetFilterNdDescriptor ()

cudnnStatus t cudnnGetFilterNdDescriptor (
const cudnnFilterDescriptor t wDesc,

int nbDimsRequested,
cudnnDataType t *dataType,
cudnnTensorFormat t *format,

int *nbDims,

int filterDimA[])

This function queries a previously initialized filter descriptor object.

Parameters
wDesc

Input. Handle to a previously initialized filter descriptor.

nbDimsRequested

Input. Dimension of the expected filter descriptor. It is also the minimum size of the arrays
filterDimA in order to be able to hold the results

datatype

Output. Data type.

format

Output. Type of format.

nbDims

Output. Actual dimension of the filter.

filterDimA

Output. Array of dimensions of at least nbDimsRequested that will be filled with the filter
parameters from the provided filter descriptor.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 51

cudnn_ops_infer.so Library

Returns

CUDNN_STATUS_SUCCESS

The object was set successfully.

CUDNN_STATUS_BAD PARAM

The parameter nbDimsRequested is negative.

3.2.48. cudnnGetFilterSizeInBytes ()

cudnnStatus t
cudnnGetFilterSizeInBytes (const cudnnFilterDescriptor t filterDesc, size t *size) ;

This function returns the size of the filter tensor in memory with respect to the given
descriptor. It can be used to know the amount of GPU memory to be allocated to hold that
filter tensor.

Parameters

filterDesc
Input. handle to a previously initialized filter descriptor.
size

Output. size in bytes needed to hold the tensor in GPU memory.

Returns

CUDNN_STATUS_SUCCESS

filterDesc is valid.

CUDNN_STATUS_BAD_PARAM

filerDesc Is invald.

3.2.49. cudnnGetLRNDescriptor ()

cudnnStatus t cudnnGetLRNDescriptor (

cudnnLRNDescriptor t normDesc,
unsigned *1rnN,
double *1rnAlpha,
double *1lrnBeta,
double *1rnK)

This function retrieves values stored in the previously initialized LRN descriptor object.

Parameters

normDesc

Output. Handle to a previously created LRN descriptor.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 52

cudnn_ops_infer.so Library

1rnN, 1rnAlpha, l1rnBeta, 1rnkK

Output. Pointers to receive values of parameters stored in the descriptor object. See
cudnnSetLRNDescriptor() for more details. Any of these pointers can be NULL (no value is
returned for the corresponding parameter).

Returns

CUDNN_STATUS_SUCCESS

Function completed successfully.

3.2.50. cudnnGetOpTensorDescriptor ()

cudnnStatus t cudnnGetOpTensorDescriptor (
const cudnnOpTensorDescriptor t opTensorDesc,

cudnnOpTensorOp_ t *opTensorOp,
cudnnDataType t *opTensorCompType,
cudnnNanPropagation t *opTensorNanOpt)

This function returns the configuration of the passed tensor pointwise math descriptor.

Parameters
opTensorDesc

Input. Tensor pointwise math descriptor passed to get the configuration from.

opTensorOp

Output. Pointer to the tensor pointwise math operation type, associated with this tensor
pointwise math descriptor.

opTensorCompType

Output. Pointer to the cuDNN data-type associated with this tensor pointwise math
descriptor.

opTensorNanOpt
Output. Pointer to the NAN propagation option associated with this tensor pointwise math
descriptor.

Returns

CUDNN_STATUS_SUCCESS

The function returned successfully.

CUDNN_STATUS_BAD_ PARAM

Input tensor pointwise math descriptor passed is invalid.

3.2.51. cudnnGetPooling2dDescriptor ()

cudnnStatus t cudnnGetPooling2dDescriptor (
const cudnnPoolingDescriptor t poolingDesc,

NVIDIA cuDNN PR-09702-001_v8.3.0 | 53

cudnn_ops_infer.so Library

cudnnPoolingMode t *mode,
cudnnNanPropagation t *maxpoolingNanOpt,
int *windowHeight,

int *windowWidth,

int *verticalPadding,
int *horizontalPadding,
int *verticalStride,
int *horizontalStride)

This function queries a previously created 2D pooling descriptor object.

Parameters
poolingDesc

Input. Handle to a previously created pooling descriptor.

mode

Output. Enumerant to specify the pooling mode.
maxpoolingNanOpt

Output. Enumerant to specify the Nan propagation mode.

windowHeight

Output. Height of the pooling window.
windowWidth

Output. Width of the pooling window.

verticalPadding

Output. Size of vertical padding.

horizontalPadding

Output. Size of horizontal padding.

verticalStride

Output. Pooling vertical stride.

horizontalStride

Output. Pooling horizontal stride.

Returns
CUDNN_STATUS_SUCCESS

The object was set successfully.

3.2.52. cudnnGetPooling2dForwardOutputDim ()

cudnnStatus t cudnnGetPooling2dForwardOutputDim (

const cEdnnPoolingDescriptor_t poolingDesc,
const cudnnTensorDescriptor t inputDesc,
int *outN,

int *outC,

int *outH,

NVIDIA cuDNN PR-09702-001_v8.3.0 | 54

cudnn_ops_infer.so Library

int *outW)
This function provides the output dimensions of a tensor after 2d pooling has been applied.

Each dimension h and w of the output images is computed as follows:

outputDim = 1 + (inputDim + 2*padding - windowDim) /poolingStride;

Parameters
poolingDesc

Input. Handle to a previously initialized pooling descriptor.

inputDesc

Input. Handle to the previously initialized input tensor descriptor.
Output. Number of images in the output.

Output. Number of channels in the output.

Output. Height of images in the output.

Output. Width of images in the output.

Returns
CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS BAD PARAM
At least one of the following conditions are met:

> poolingDesc has not been initialized.

» poolingDesc or inputDesc has an invalid number of dimensions (2 and 4 respectively
are required).

3.2.53. cudnnGetPoolingNdDescriptor ()

cudnnStatus_t cudnnGetPoolingNdDescriptor (

const cudnnPoolingDescriptor t poolingDesc,

int nbDimsRequested,
cudnnPoolingMode t *mode,
cudnnNanPropagation t *maxpoolingNanOpt,
int *nbDims,

int windowDimAT[],

int paddingAl[],

int strideA[])

NVIDIA cuDNN PR-09702-001_v8.3.0 | 55

cudnn_ops_infer.so Library

This function queries a previously initialized generic pooling descriptor object.

Parameters
poolingDesc

Input. Handle to a previously created pooling descriptor.
nbDimsRequested

Input. Dimension of the expected pooling descriptor. It is also the minimum size of the
arrays windowDimA, paddinga, and stridea in order to be able to hold the results.

mode

Output. Enumerant to specify the pooling mode.
maxpoolingNanOpt

Input. Enumerant to specify the Nan propagation mode.
nbDims

Output. Actual dimension of the pooling descriptor.

windowDimA

Output. Array of dimension of at least nbDimsRequested that will be filled with the window
parameters from the provided pooling descriptor.

paddingA

Output. Array of dimension of at least nbDimsRequested that will be filled with the padding
parameters from the provided pooling descriptor.

strideA
Output. Array of dimension at least nbDimsRequested that will be filled with the stride
parameters from the provided pooling descriptor.

Returns

CUDNN_STATUS_SUCCESS

The object was queried successfully.

CUDNN_STATUS NOT SUPPORTED

The parameter nbDimsRequested Is greater than CUDNN_DIM MAX.

3.2.54. cudnnGetPoolingNdForwardOutputDim ()

cudnnStatus_t cudnnGetPoolingNdForwardOutputDim (
const cudnnPoolingDescriptor t poolingDesc,

const cudnnTensorDescriptor t inputDesc,
int nbDims,
int outDimA[])

This function provides the output dimensions of a tensor after Nd pooling has been applied.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 56

cudnn_ops_infer.so Library

Each dimension of the (nbDims-2) -D images of the output tensor is computed as follows:

outputDim = 1 + (inputDim + 2*padding - windowDim) /poolingStride;

Parameters
poolingDesc

Input. Handle to a previously initialized pooling descriptor.
inputDesc

Input. Handle to the previously initialized input tensor descriptor.
nbDims

Input. Number of dimensions in which pooling is to be applied.
outDimA

Output. Array of nbDims output dimensions.

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.
CUDNN_STATUS_BAD PARAM

At least one of the following conditions are met:

> poolingDesc has not been initialized.

> The value of nbDims is inconsistent with the dimensionality of poolingDesc and

inputDesc

3.2.55. cudnnGetProperty ()

cudnnStatus t cudnnGetProperty (
libraryPropertyType type,
int *value)

This function writes a specific part of the cuDNN Llibrary version number into the provided host
storage.

Parameters

type

Input. Enumerant type that instructs the function to report the numerical value of the
cuDNN major version, minor version, or the patch level.

value

Output. Host pointer where the version information should be written.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 57

cudnn_ops_infer.so Library

Returns

CUDNN_STATUS_INVALID VALUE

Invalid value of the type argument.

CUDNN_STATUS_SUCCESS

Version information was stored successfully at the provided address.

3.2.96. cudnnGetReduceTensorDescriptor ()

cudnnStatus_t cudnnGetReduceTensorDescriptor (
const cudnnReduceTensorDescriptor t reduceTensorDesc,

cudnnReduceTensorOp t *reduceTensorOp,
cudnnDataType t *reduceTensorCompType,
cudnnNanPropagation t *reduceTensorNanOpt,
cudnnReduceTensorIndices t *reduceTensorIndices,
cudnnIndicesType t *reduceTensorIndicesType)

This function queries a previously initialized reduce tensor descriptor object.

Parameters

reduceTensorDesc

Input. Pointer to a previously initialized reduce tensor descriptor object.

reduceTensorOp

Output. Enumerant to specify the reduce tensor operation.

reduceTensorCompType

Output. Enumerant to specify the computation datatype of the reduction.

reduceTensorNanOpt

Input. Enumerant to specify the Nan propagation mode.

reduceTensorIndices

Output. Enumerant to specify the reduced tensor indices.

reduceTensorIndicesType

Output. Enumerant to specify the reduce tensor indices type.

Returns

CUDNN_STATUS_ SUCCESS

The object was queried successfully.

CUDNN_STATUS_BAD PARAM

reduceTensorDesc IS NULL.

NVIDIA cuDNN PR-09702-001_v8.3.0

58

cudnn_ops_infer.so Library

3.2.57. cudnnGetReductionIndicesSize ()

cudnnStatus t cudnnGetReductionIndicesSize (

cudnnHaHdle_t handle,

const cudnnReduceTensorDescriptor t reduceDesc,
const cudnnTensorDescriptor t aDesc,

const cudnnTensorDescriptor t cDesc,

size t *sizelInBytes)

This is a helper function to return the minimum size of the index space to be passed to the
reduction given the input and output tensors.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor.

reduceDesc

Input. Pointer to a previously initialized reduce tensor descriptor object.

aDesc

Input. Pointer to the input tensor descriptor.

cDesc

Input. Pointer to the output tensor descriptor.

sizeInBytes

Output. Minimum size of the index space to be passed to the reduction.

Returns

CUDNN_STATUS_SUCCESS

The index space size is returned successfully.

3.2.98. cudnnGetReductionWorkspaceSize ()

cudnnStatus_t cudnnGetReductionWorkspaceSize (

cudnnHandle t handle,

const cudnnReduceTensorDescriptor t reduceDesc,
const cudnnTensorDescriptor t abDesc,

const cudnnTensorDescriptor t cDesc,

size t *sizelInBytes)

This is a helper function to return the minimum size of the workspace to be passed to the
reduction given the input and output tensors.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 59

cudnn_ops_infer.so Library

reduceDesc

Input. Pointer to a previously initialized reduce tensor descriptor object.

aDesc

Input. Pointer to the input tensor descriptor.

cDesc

Input. Pointer to the output tensor descriptor.

sizeInBytes

Output. Minimum size of the index space to be passed to the reduction.

Returns

CUDNN_STATUS_SUCCESS

The workspace size is returned successfully.

3.2.59. cudnnGetStream|()

cudnnStatus t cudnnGetStream (
cudnnHandle t handle,
cudaStream t *streamId)

This function retrieves the user CUDA stream programmed in the cuDNN handle. When the
user's CUDA stream is not set in the cuDNN handle, this function reports the null-stream.
Parameters

handle

Input. Pointer to the cuDNN handle.

streamlID

Output. Pointer where the current CUDA stream from the cuDNN handle should be stored.

Returns
CUDNN_STATUS_BAD PARAM

Invalid (NuLL) handle.
CUDNN_STATUS_SUCCESS

The stream identifier was retrieved successfully.

3.2.60. cudnnGetTensor4dDescriptor ()

cudnnStatus_t cudnnGetTensor4dDescriptor (
const cudnnTensorDescriptor t tensorDesc,

cudnnDataType t *dataType,
int *nl
int *c,
int #a,

NVIDIA cuDNN PR-09702-001_v8.3.0 | 60

cudnn_ops_infer.so Library

int *w,

int *nStride,
int *cStride,
int *hStride,
int *wStride)

This function queries the parameters of the previously initialized tensor4D descriptor object.

Parameters
tensorDesc

Input. Handle to a previously initialized tensor descriptor.

datatype

Output. Data type.

Output. Number of images.

Output. Number of feature maps per image.
Output. Height of each feature map.

Output. Width of each feature map.
nStride

Output. Stride between two consecutive images.

cStride

Output. Stride between two consecutive feature maps.

hStride

Output. Stride between two consecutive rows.

wStride

Output. Stride between two consecutive columns.

Returns
CUDNN_STATUS_SUCCESS

The operation succeeded.

3.2.61. cudnnGetTensorNdDescriptor ()

cudnnStatus t cudnnGetTensorNdDescriptor (

const chnnTensorDescriptor_t tensorDesc,

int nbDimsRequested,
cudnnDataType t *dataType,

int *nbDims,

NVIDIA cuDNN PR-09702-001_v8.3.0 | 61

cudnn_ops_infer.so Library

int dimA[],
int strideAl[])

This function retrieves values stored in a previously initialized tensor descriptor object.

Parameters
tensorDesc

Input. Handle to a previously initialized tensor descriptor.

nbDimsRequested

Input. Number of dimensions to extract from a given tensor descriptor. It is also the
minimum size of the arrays dima and strideA. If this number is greater than the resulting
nbDims [0], only nbDims [0] dimensions will be returned.

datatype

Output. Data type.

nbDims
Output. Actual number of dimensions of the tensor will be returned in nbDims [0].
dimA
Output. Array of dimensions of at least nbDimsRequested that will be filled with the
dimensions from the provided tensor descriptor.

strideA
Output. Array of dimensions of at least nbDimsRequested that will be filled with the strides
from the provided tensor descriptor.

Returns

CUDNN_STATUS_SUCCESS

The results were returned successfully.

CUDNN_STATUS_BAD_PARAM

EﬁhertensorDescoranimspoﬂﬂeriSNULL

3.2.62. cudnnGetTensorSizeInBytes ()

cudnnStatus_t cudnnGetTensorSizeInBytes (
const cudnnTensorDescriptor t tensorDesc,
size t *size)

This function returns the size of the tensor in memory in respect to the given descriptor. This
function can be used to know the amount of GPU memory to be allocated to hold that tensor.

Parameters
tensorDesc

Input. Handle to a previously initialized tensor descriptor.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 62

cudnn_ops_infer.so Library

size

Output. Size in bytes needed to hold the tensor in GPU memory.

Returns
CUDNN_STATUS SUCCESS

The results were returned successfully.

3.2.63. cudnnGetTensorTransformDescriptor ()

cudnnStatus t cudnnGetTensorTransformDescriptor (
cudnnTensorTransformDescriptor t transformDesc,
uint32 t nbDimsRequested,

cudnnTensorFormat t *destFormat,

int32 t padBeforeA[],

int32 t padAfterA[],

uint32 t foldA[],

cudnnFoldingDirection t *direction);

This function returns the values stored in a previously initialized tensor transform descriptor.

Parameters

transformDesc
Input. A previously initialized tensor transform descriptor.
nbDimsRequested
Input. The number of dimensions to consider. For more information, see the Tensor
Descriptor section in the cuDNN Developer Guide.
destFormat
Output. The transform format that will be returned.
padBeforeA[]
Output. An array filled with the amount of padding to add before each dimension. The
dimension of this padBeforeA[] parameter is equal to nbDimsRequested.
padAfterAl]
Output. An array filled with the amount of padding to add after each dimension. The
dimension of this padBeforeA[] parameter is equal to nbDimsRequested.
foldA[]
Output. An array that was filled with the folding parameters for each spatial dimension. The
dimension of this foldA[] array is nbDimsRequested-2.
direction
Output. The setting that selects folding or unfolding. For more information, see
cudnnFoldingDirection_t.

Returns

CUDNN_STATUS_SUCCESS
The results were obtained successfully.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 63

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#tensor-descriptor
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#tensor-descriptor

cudnn_ops_infer.so Library

CUDNN_STATUS BAD PARAM
If transformDesc IS NULL or if nbDimsRequested is less than 3 or greater than
CUDNN_DIM MAX.

3.2.64. cudnnGetVersion ()

size t cudnnGetVersion ()

This function returns the version number of the cuDNN library. It returns the CUDNN_ VERSION
defined present in the cudnn.h header file. Starting with release R2, the routine can be

used to identify dynamically the current cuDNN library used by the application. The defined
CUDNN_VERSION can be used to have the same application linked against different cuDNN
versions using conditional compilation statements.

3.2.65. cudnnInitTransformDest ()

cudnnStatus t cudnnInitTransformDest (

const cudnnTensorTransformDescriptor t transformDesc,
const cudnnTensorDescriptor t srcDesc,
cudnnTensorDescriptor t destDesc,

size t *destSizelnBytes);

This function initializes and returns a destination tensor descriptor destbesc for tensor
transform operations. The initialization is done with the desired parameters described in the
transform descriptor cudnnTensorDescriptor t.

Note: The returned tensor descriptor will be packed.

Parameters

transformDesc

Input. Handle to a previously initialized tensor transform descriptor.
srcDesc

Input. Handle to a previously initialized tensor descriptor.
destDesc

Output. Handle of the tensor descriptor that will be initialized and returned.
destSizeInBytes

Output. A pointer to hold the size, in bytes, of the new tensor.

Returns

CUDNN_STATUS_SUCCESS
The tensor descriptor was initialized successfully.
CUDNN_STATUS BAD PARAM
If either srcDesc or destDesc is NULL, or if the tensor descriptor’s nbDims is incorrect. For
more information, see the Tensor Descriptor section in the cuDNN Developer Guide.
CUDNN_STATUS_NOT SUPPORTED
If the provided configuration is not 4D.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 64

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#tensor-descriptor

cudnn_ops_infer.so Library

CUDNN_STATUS_EXECUTION_FAILED
Function failed to launch on the GPU.

3.2.66. cudnnLRNCrossChannelForward ()

cudnnStatus t cudnnLRNCrossChannelForward (

cudnnHandle t handle,
cudnnLRNDescriptor t normDesc,
cudnnLRNMode t lrnMode,
const void *alpha,
const cudnnTensorDescriptor t xDesc,
const void Ay

const void *beta,
const cudnnTensorDescriptor t yDesc,
void *y)

This function performs the forward LRN layer computation.

S Note: Supported formats are: positive-strided, NCHW and NHWC for 4D x and y, and only
NCDHW DHW-packed for 5D (for both x and y). Only non-overlapping 4D and 5D tensors are
supported. NCHW layout is preferred for performance.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor.

normDesc

Input. Handle to a previously initialized LRN parameter descriptor.

lrnMode

Input. LRN layer mode of operation. Currently only CUDNN LRN CROSS CHANNEL DIM1 is
implemented. Normalization is performed along the tensor's dima[1].
alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the layer output value with

prior value in the destination tensor as follows:
dstValue = alpha[0O]*resultValue + beta[0]*priorDstValue

For more information, see Scaling Parameters in the cuDNN Developer Guide.

xDesc, yDesc

Input. Tensor descriptor objects for the input and output tensors.

Input. Input tensor data pointer in device memory.

Output. Output tensor data pointer in device memory.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 65

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#scaling-parameters

Returns

CUDNN_STATUS_SUCCESS

cudnn_ops_infer.so Library

The computation was performed successfully.

CUDNN_STATUS_BAD PARAM

At least one of the following conditions are met:

vV v v VY

CUDNN_STATUS_NOT_SUPPORTED

One of the tensor pointers x, y is NULL.
Number of input tensor dimensions is 2 or less.
LRN descriptor parameters are outside of their valid ranges.

One of the tensor parameters is 5D but is not in NCDHW DHW-packed format.

The function does not support the provided configuration. See the following for some
examples of non-supported configurations:

» Any of the input tensor datatypes is not the same as any of the output tensor datatype.

> xand y tensor dimensions mismatch.

> Any tensor parameters strides are negative.

3.2.67. cudnnNormalizationForwardInference ()

cudnnStatus t

cudnnNormalzzationForwardInference(cudnnHandleit handle,
cudnnNormMode t mode,

cudnnNormOps t normOps,
cudnnNormAlgo t algo,

This function performs the forward normalization layer computation for the inference phase.

const
const
const
const
const
const
const
const
const
const
const
const

void *alpha,

void *beta,

cudnnTensorDescriptor t xDesc,

void *x,

cudnnTensorDescriptor t normScaleBiasDesc,
void *normScale,

void *normBias,

cudnnTensorDescriptor t normMeanVarDesc,
void *estimatedMean,

void *estimatedVariance,
cudnnTensorDescriptor t zDesc,

void *z,

cudnnActivationDescriptor t activationDesc,

const

cudnnTensorDescriptor t yDesc,

void *y,
double epsilon,
int groupCnt) ;

Per-channel normalization layer is based on the paper Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift, S. loffe, C. Szegedy, 2015.

@ Note:

» Only 4D and 5D tensors are supported.

NVIDIA cuDNN

PR-09702-001_v8.3.0

https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167

cudnn_ops_infer.so Library

» The input transformation performed by this function is defined as:

y = beta*y + alpha *[normBias + (normScale * (x-estimatedMean)/sqrt(epsilon +
estimatedVariance)]

» The epsilon value has to be the same during training, backpropagation, and inference.

» For the training phase, use cudnnNormalizationForwardTraining(].

» Higher performance can be obtained when HW-packed tensors are used for all of x and y.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor. For more information, see
cudnnHandle_t.

mode

Input. Mode of operation (per-channel or per-activation). For more information, see
cudnnNormMode_t.

normOps

Input. Mode of post-operative. Currently, CUDNN_NORM OPS NORM ACTIVATION and
CUDNN NORM OPS NORM ADD ACTIVATION are notsupported.

algo

Input. Algorithm to be performed. For more information, see cudnnNormAlgo_t.

alpha, beta

Inputs. Pointers to scaling factors (in host memory) used to blend the layer output value
with prior value in the destination tensor as follows:
dstValue = alpha[0] *resultValue + beta[0] *priorDstValue

For more information, see Scaling Parameters in the cuDNN Developer Guide.

xDesc, yDesc
Input. Handles to the previously initialized tensor descriptors.

*x
Input. Data pointer to GPU memory associated with the tensor descriptor xbDesc, for the
layer’s x input data.

*y
Output. Data pointer to GPU memory associated with the tensor descriptor ybesc, for the y
output of the normalization layer.

zDesc, *z

Input. Tensor descriptors and pointers in device memory for residual addition to the result
of the normalization operation, prior to the activation. zbesc and *z are optional and are
only used when normOps is CUDNN NORM OPS NORM ADD ACTIVATION, otherwise users

NVIDIA cuDNN PR-09702-001_v8.3.0 | 67

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#scaling-parameters

cudnn_ops_infer.so Library

may pass NULL. When in use, z should have exactly the same dimension as x and the final
output y. For more information, see cudnnTensorDescriptor_t.

Since normOps Is only supported for CUDNN NORM OPS NORM, we can set these to NULL for
now.

normScaleBiasDesc, normScale, normBias
Inputs. Tensor descriptors and pointers in device memory for the normalization scale and
bias parameters (in the original paper bias is referred to as beta and scale as gammal).
normMeanVarDesc, estimatedMean, estimatedVariance
Inputs. Mean and variance tensors and their tensor descriptors. The estimatedMean

and estimatedvariance inputs, accumulated during the training phase from the
cudnnNormalizationForwardTraining() call, should be passed as inputs here.

activationDesc

Input. Descriptor for the activation operation. When the normOps input is set to either
CUDNN_ NORM OPS NORM ACTIVATION Or CUDNN NORM OPS NORM ADD ACTIVATION then
this activation is used, otherwise the user may pass NULL. Since normOps Is only supported
for CUDNN_NORM OPS NORM, we can set these to NULL for now.

epsilon
Input. Epsilon value used in the normalization formula. Its value should be equal to or
greater than zero.

groutCnt

Input. Only support 1 for now.

Returns

CUDNN_STATUS_SUCCESS

The computation was performed successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS BAD PARAM
At least one of the following conditions are met:
> One of the pointers alpha, beta, %, y, normScale, normBias, estimatedMean, and

estimatedInvVariance iS NULL.

» The number of xDesc or yDesc tensor descriptor dimensions is not within the range of
[4,5] (only 4D and 5D tensors are supported).

» normScaleBiasDesc and normMeanVarDesc dimensions are not 1xCx1x1 for 4D and
1xCx1x1x1 for 5D for per-channel, and are not TxCxHxW for 4D and 1xCxDxHxW for 5D
for per-activation mode.

> epsilon value is less than zero.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 68

https://arxiv.org/abs/1502.03167

cudnn_ops_infer.so Library

» Dimensions or data types mismatch for xDesc and yDesc.
CUDNN_STATUS_NOT SUPPORTED

A compute or data type other than FLOAT was chosen, or an unknown algorithm type was
chosen.

CUDNN_STATUS_EXECUTION_ FAILED

The function failed to launch on the GPU.

3.2.68. cudnnOpsInferVersionCheck ()

cudnnStatus_t cudnnOpsInferVersionCheck (void)

This function is the first of a series of corresponding functions that check for consistent library
versions among DLL files for different modules.

Returns

CUDNN_STATUS_SUCCESS

The version of this DLL file is consistent with cuDNN DLLs on which it depends.
CUDNN_STATUS VERSION MISMATCH

The version of this DLL file does not match that of a cuDNN DLLs on which it depends.

3.2.69. cudnnOpTensor ()

cudnnStatus t cudnnOpTensor (

cudnnHaHdle_t handle,
const cudnnOpTensorDescriptor t opTensorDesc,
const void *alphal,
const cudnnTensorDescriptor t aDesc,
const void *A,
const void *alpha2,
const cudnnTensorDescriptor t bDesc,
const void =13,
const void *beta,
const cudnnTensorDescriptor t cDesc,
void *C)

This function implements the equation ¢ = op(alphal[0] * A, alpha2[0] * B) +
beta[0] * C,given the tensors A, B, and C and the scaling factors alphal, alpha2, and beta.
The op to use is indicated by the descriptor cudnnOpTensorDescriptor_t, meaning, the type of
opTensorDesc. Currently-supported ops are listed by the cudnnOpTensorOp_t enum.

The following restrictions on the input and destination tensors apply:

» Each dimension of the input tensor 2 must match the corresponding dimension of
the destination tensor ¢, and each dimension of the input tensor B must match the
corresponding dimension of the destination tensor ¢ or must be equal to 1. In the latter
case, the same value from the input tensor B for those dimensions will be used to blend
into the ¢ tensor.

» The data types of the input tensors a and B, and the destination tensor C, must satisfy
Table 9.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 69

cudnn_ops_infer.so Library

Table 9. Supported Datatypes

opTensorCompType in

opTensorDesc A B c (destination)
FLOAT FLOAT FLOAT FLOAT
FLOAT INT8 INT8 FLOAT
FLOAT HALF HALF FLOAT
FLOAT BFLOAT16 BFLOAT16 FLOAT
DOUBLE DOUBLE DOUBLE DOUBLE
FLOAT FLOAT FLOAT HALF
FLOAT HALF HALF HALF
FLOAT INTS INT8 INTS8
FLOAT FLOAT FLOAT INTS8
FLOAT FLOAT FLOAT BFLOAT16
FLOAT BFLOAT16 BFLOAT16 BFLOAT16

Note: All tensor formats up to dimension five (5) are supported. This routine does not support
tensor formats beyond these dimensions.

Parameters
handle

Input. Handle to a previously created cuDNN context.

opTensorDesc

Input. Handle to a previously initialized op tensor descriptor.
alphal, alpha2, beta
Input. Pointers to scaling factors (in host memory) used to blend the source value with prior

value in the destination tensor as follows:
dstValue = alpha[0O]*resultValue + beta[0]*priorDstValue

For more information, see Scaling Parameters in the cuDNN Developer Guide.

aDesc, bDesc, cDesc

Input. Handle to a previously initialized tensor descriptor.
A, B

Input. Pointer to data of the tensors described by the aDesc and bbesc descriptors,

respectively.

Input/Output. Pointer to data of the tensor described by the cbesc descriptor.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 70

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#scaling-parameters

cudnn_ops_infer.so Library

Returns
CUDNN_STATUS SUCCESS

The function executed successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration. See the following for some
examples of non-supported configurations:

> The dimensions of the bias tensor and the output tensor dimensions are above 5.

> opTensorCompType IS Not set as stated above.
CUDNN_STATUS_BAD PARAM

The data type of the destination tensor ¢ is unrecognized, or the restrictions on the input
and destination tensors, stated above, are not met.

CUDNN_STATUS_EXECUTION_ FAILED

The function failed to launch on the GPU.

3.2.70. cudnnPoolingForward ()

cudnnStatus t cudnnPoolingForward (

cudnnHandle t handle,
const cudnnPoolingDescriptor t poolingDesc,
const void *alpha,

const cudnnTensorDescriptor t xDesc,

const void 520

const void *beta,

const cudnnTensorDescriptor t yDesc,

void *y)

This function computes pooling of input values (meaning, the maximum or average of several
adjacent values) to produce an output with smaller height and/or width.

@ Note:

» All tensor formats are supported, best performance is expected when using HiW-packed
tensors. Only 2 and 3 spatial dimensions are allowed.

» The dimensions of the output tensor yDesc can be smaller or bigger than the
dimensions advised by the routine cudnnGetPooling2dForwardQutputDim(] or
cudnnGetPoolingNdForwardOutputDim().

» For average pooling, the compute type is f1oat even for integer input and output data type.
Output round is nearest-even and clamp to the most negative or most positive value of type
if out of range.

Parameters
handle

Input. Handle to a previously created cuDNN context.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 71

cudnn_ops_infer.so Library

poolingDesc

Input. Handle to a previously initialized pooling descriptor.

alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the computation result

with prior value in the output layer as follows:
dstValue = alpha[0O]*resultValue + beta[0]*priorDstValue

For more information, see Scaling Parameters in the cuDNN Developer Guide.

xDesc

Input. Handle to the previously initialized input tensor descriptor. Must be of type FLOAT,
DOUBLE, HALF or INT8. For more information, see cudnnDataType_t.

Input. Data pointer to GPU memory associated with the tensor descriptor xDesc.

yDesc

Input. Handle to the previously initialized output tensor descriptor. Must be of type FLOAT,
DOUBLE, HALF or INT8. For more information, see cudnnDataType_t.

Output. Data pointer to GPU memory associated with the output tensor descriptor yDesc.

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:

» The dimensions n, c of the input tensor and output tensors differ.

» The datatype of the input tensor and output tensors differs.
CUDNN_STATUS_NOT SUPPORTED

The function does not support the provided configuration.

CUDNN_STATUS_EXECUTION_ FAILED

The function failed to launch on the GPU.

3.2.71. cudnnQueryRuntimeError ()

cudnnStatus t cudnnQueryRuntimeError (

cudnnHaHdle_t handle,
cudnnStatus_t *rstatus,
cudnnErrQueryMode t mode,
cudnnRuntimeTag t *tag)

NVIDIA cuDNN PR-09702-001_v8.3.0 | 72

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#scaling-parameters

cudnn_ops_infer.so Library

cuDNN library functions perform extensive input argument checking before launching GPU
kernels. The last step is to verify that the GPU kernel actually started. When a kernel fails to
start, CUDNN_STATUS EXECUTION FAILED is returned by the corresponding API call. Typically,
after a GPU kernel starts, no runtime checks are performed by the kernel itself - numerical
results are simply written to output buffers.

When the CUDNN BATCHNORM SPATIAL PERSISTENT mode is selected in
cudnnBatchNormalizationForwardTraining(] or cudnnBatchNormalizationBackward(], the
algorithm may encounter numerical overflows where CUDNN BATCHNORM SPATIAL performs
just fine albeit at a slower speed. The user can invoke cudnnQueryRuntimeError () to make
sure numerical overflows did not occur during the kernel execution. Those issues are reported
by the kernel that performs computations.

cudnnQueryRuntimeError () can be used in polling and blocking software
control flows. There are two polling modes (CUDNN ERRQUERY RAWCODE and
CUDNN ERRQUERY NONBLOCKING)and one blocking mode CUDNN ERRQUERY BLOCKING.

CUDNN_ERRQUERY RAWCODE reads the error storage location regardless of the kernel
completion status. The kernel might not even start and the error storage (allocated per
cuDNN handle) might be used by an earlier call.

CUDNN ERRQUERY NONBLOCKING checks if all tasks in the user stream are completed.
The cudnnQueryRuntimeError () function will return immediately and report

CUDNN STATUS RUNTIME IN PROGRESS In rstatus if some tasks in the user stream are
pending. Otherwise, the function will copy the remote kernel error code to rstatus.

In the blocking mode (CUDNN ERRQUERY BLOCKING), the function waits for all tasks to drain
in the user stream before reporting the remote kernel error code. The blocking flavor can
be further adjusted by calling cudasetDeviceFlags with the cudaDeviceScheduleSpin
cudaDeviceScheduleYield, or cudaDeviceScheduleBlockingSync flag.

CUDNN_ERRQUERY NONBLOCKING and CUDNN ERRQUERY BLOCKING modes should not be used
when the user stream is changed in the cuDNN handle, meaning, cudnnSetStream(] is invoked
between functions that report runtime kernel errors and the cudnnQueryRuntimeError ()
function.

The remote error status reported in rstatus can be set to: CUDNN_STATUS SUCCESS,
CUDNN_STATUS RUNTIME IN PROGRESS, Or CUDNN STATUS RUNTIME FP OVERFLOW. The
remote kernel error is automatically cleared by cudnnQueryRuntimeError ().

Note: The cudnnQueryRuntimeError () function should be used in conjunction with
cudnnBatchNormalizationForwardTraining() and cudnnBatchNormalizationBackward() when
the cudnnBatchNormMode_t argument is CUDNN_BATCHNORM SPATIAL PERSISTENT.

Parameters
handle

Input. Handle to a previously created cuDNN context.

rstatus

Output. Pointer to the user’s error code storage.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 73

cudnn_ops_infer.so Library

mode

Input. Remote error query mode.

tag

Input/Output. Currently, this argument should be NULL.

Returns

CUDNN_STATUS_SUCCESS

No errors detected (rstatus holds a valid value).

CUDNN_STATUS_BAD_PARAM

Invalid input argument.

CUDNN_STATUS_INTERNAL ERROR

A stream blocking synchronization or a non-blocking stream query failed.
CUDNN_STATUS_MAPPING ERROR

The device cannot access zero-copy memory to report kernel errors.

3.2.72. cudnnReduceTensor ()

cudnnStatus_t cudnnReduceTensor (

cudnnHandle t handle,

const cudnnReduceTensorDescriptor t reduceTensorDesc,
void *indices,

size t indicesSizeInBytes,
void *workspace,

size t workspaceSizeInBytes,
const void *alpha,

const cudnnTensorDescriptor t aDesc,

const void *A,

const void *beta,

const cudnnTensorDescriptor t cDesc,

void “C)

This function reduces tensor A by implementing the equation ¢ = alpha * reduce op

(A) + beta * C,given tensors A and C and scaling factors alpha and beta. The reduction
op to use is indicated by the descriptor reduceTensorDesc. Currently-supported ops are
listed by the cudnnReduceTensorOp_t enum.

Each dimension of the output tensor ¢ must match the corresponding dimension of the input
tensor A or must be equal to 1. The dimensions equal to 1 indicate the dimensions of A to be
reduced.

The implementation will generate indices for the min and max ops only, as indicated by
the cudnnReduceTensorindices_t enum of the reduceTensorDesc. Requesting indices for
the other reduction ops results in an error. The data type of the indices is indicated by the
cudnnlndicesType_t enum; currently only the 32-bit (unsigned int] type is supported.

The indices returned by the implementation are not absolute indices but relative to the
dimensions being reduced. The indices are also flattened, meaning, not coordinate tuples.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 74

cudnn_ops_infer.so Library

The data types of the tensors A and ¢ must match if of type double. In this case, alpha and
beta and the computation enum of reduceTensorDesc are all assumed to be of type double.

The HALF and INT8 data types may be mixed with the FLOAT data types. In these cases, the
computation enum of reduceTensorDesc is required to be of type FLOAT.

@ Note:

Up to dimension 8, all tensor formats are supported. Beyond those dimensions, this routine is
not supported.

Parameters
handle

Input. Handle to a previously created cuDNN context.
reduceTensorDesc

Input. Handle to a previously initialized reduce tensor descriptor.
indices

Output. Handle to a previously allocated space for writing indices.
indicesSizeInBytes

Input. Size of the above previously allocated space.
workspace

Input. Handle to a previously allocated space for the reduction implementation.
workspaceSizeInBytes

Input. Size of the above previously allocated space.
alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the source value with prior
value in the destination tensor as follows:
dstValue = alpha[0]*resultValue + beta[0]*priorDstValue

For more information, see Scaling Parameters in the cuDNN Developer Guide.
aDesc, cDesc
Input. Handle to a previously initialized tensor descriptor.

Input. Pointer to data of the tensor described by the abesc descriptor.

Input/Output. Pointer to data of the tensor described by the cDesc descriptor.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 75

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#scaling-parameters

cudnn_ops_infer.so Library

Returns
CUDNN_STATUS SUCCESS

The function executed successfully.
CUDNN_STATUS_NOT SUPPORTED

The function does not support the provided configuration. See the following for some
examples of non-supported configurations:

> The dimensions of the input tensor and the output tensor are above 8.

> reduceTensorCompType IS not set as stated above.
CUDNN_STATUS_BAD PARAM

The corresponding dimensions of the input and output tensors all match, or the conditions
in the above paragraphs are unmet.

CUDNN_INVALID VALUE

The allocations for the indices or workspace are insufficient.
CUDNN_STATUS_EXECUTION FAILED

The function failed to launch on the GPU.

3.2.73. cudnnRestoreAlgorithm()

This function has been deprecated in cuDNN 8.0.

cudnnStatus t cudnnRestoreAlgorithm (

cudnnHandle t handle,
void* algoSpace,
size t algoSpaceSizeInBytes,

cudnnAlgorithmDescriptor t algoDesc)

This function reads algorithm metadata from the host memory space provided by the user in
algoSpace, allowing the user to use the results of RNN finds from previous cuDNN sessions.
Parameters

handle

Input. Handle to a previously created cuDNN context.

algoDesc

Input. A previously created algorithm descriptor.

algoSpace

Input. Pointer to the host memory to be read.

algoSpaceSizelInBytes

Input. Amount of host memory needed as a workspace to be able to hold the metadata from
the specified algoDesc.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 76

cudnn_ops_infer.so Library

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_NOT_SUPPORTED

The metadata is from a different cuDNN version.

CUDNN_STATUS BAD PARAM
At least one of the following conditions is met:

» One of the arguments is NULL.

» The metadata is corrupted.

3.2.74. cudnnRestoreDropoutDescriptor ()

cudnnStatus_t cudnnRestoreDropoutDescriptor (
cudnnDropoutDescriptor t dropoutDesc,

cudnnHandle t handle,

float dropout,

void *states,

size t stateSizeInBytes,
unsigned long long seed)

This function restores a dropout descriptor to a previously saved-off state.

Parameters
dropoutDesc

Input/Output. Previously created dropout descriptor.
handle
Input. Handle to a previously created cuDNN context.

dropout

Input. Probability with which the value from an input tensor is set to 0 when performing
dropout.
states

Input. Pointer to GPU memory that holds random number generator states initialized by a
prior call to cudnnSetDropoutDescriptor().

stateSizeInBytes

Input. Size in bytes of buffer holding random number generator states.

seed

Input. Seed used in prior calls to cudnnSetDropoutDescriptor(] that initialized
states buffer. Using a different seed from this has no effect. A change of seed, and

NVIDIA cuDNN PR-09702-001_v8.3.0 | 77

cudnn_ops_infer.so Library

subsequent update to random number generator states can be achieved by calling
cudnnSetDropoutDescriptor().

Returns
CUDNN_STATUS SUCCESS

The call was successful.
CUDNN_STATUS_INVALID VALUE

States buffer size (as indicated in stateSizeInBytes)is too small.

3.2.75. cudnnSaveAlgorithm()

This function has been deprecated in cuDNN 8.0.

cudnnStatus t cudnnSaveAlgorithm (

cudnnHandle t handle,
cudnnAlgorithmDescriptor t algoDesc,

void* algoSpace

size t algoSpaceSizeInBytes)

This function writes algorithm metadata into the host memory space provided by the user in
algoSpace, allowing the user to preserve the results of RNN finds after cuDNN exits.
Parameters

handle

Input. Handle to a previously created cuDNN context.

algoDesc

Input. A previously created algorithm descriptor.

algoSpace

Input. Pointer to the host memory to be written.

algoSpaceSizelInBytes
Input. Amount of host memory needed as a workspace to be able to save the metadata from
the specified algoDesc.

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS BAD PARAM
At least one of the following conditions is met:

» One of the arguments is NULL.

> algoSpaceSizeInBytes istoo small.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 78

cudnn_ops_infer.so Library

3.2.76. cudnnScaleTensor ()

cudnnStatus t cudnnScaleTensor (

cudnnHaHdle_t handle,
const cudnnTensorDescriptor t yDesc,
void *Vy
const void *alpha)

This function scales all the elements of a tensor by a given factor.

Parameters
handle

Input. Handle to a previously created cuDNN context.

yDesc

Input. Handle to a previously initialized tensor descriptor.

Input/Output. Pointer to data of the tensor described by the ybesc descriptor.

alpha

Input. Pointer in the host memory to a single value that all elements of the tensor will be
scaled with. For more information, see Scaling Parameters in the cuDNN Developer Guide.

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.

CUDNN_STATUS_BAD_PARAM

One of the provided pointers is nil.

CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

3.2.77. cudnnSetActivationDescriptor ()

cudnnStatus t cudnnSetActivationDescriptor (

cudnnActivationDescriptor t activationDesc,
cudnnActivationMode t mode,
cudnnNanPropagation t reluNanOpt,
double coef)

This function initializes a previously created generic activation descriptor object.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 79

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#scaling-parameters

cudnn_ops_infer.so Library

Parameters
activationDesc
Input/Output. Handle to a previously created pooling descriptor.
mode
Input. Enumerant to specify the activation mode.
reluNanOpt
Input. Enumerant to specify the Nan propagation mode.

coef

Input. Floating point number. When the activation mode (see cudnnActivationMode_t] is

set to CUDNN_ACTIVATION CLIPPED RELU, this input specifies the clipping threshold; and
when the activation mode is set to CUDNN_ACTIVATION RELU, this input specifies the upper
bound.

Returns

CUDNN_STATUS_SUCCESS

The object was set successfully.

CUDNN_STATUS_BAD_ PARAM

mode or reluNanOpt has an invalid enumerant value.

3.2.78. cudnnSetActivationDescriptorSwishBeta ()

cudnnStatus t cudnnSetActivationDescriptorSwishBeta (cudnnActivationDescriptor t
activationDesc, double swish beta)

This function sets the beta parameter of the SWISH activation function to swish beta.

Parameters
activationDesc

Input/Output. Handle to a previously created activation descriptor.

swish _beta

Input. The value to set the SWISH activations’ beta parameter to.

Returns

CUDNN_STATUS_SUCCESS

The value was set successfully.

CUDNN_STATUS_BAD PARAM
The activation descriptor is a NULL pointer.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 80

cudnn_ops_infer.so Library

3.2.79. cudnnSetAlgorithmDescriptor ()

This function has been deprecated in cuDNN 8.0.

cudnnStatus t cudnnSetAlgorithmDescriptor (
cudnnAlgorithmDescriptor t algorithmDesc,
cudnnAlgorithm t algorithm)

This function initializes a previously created generic algorithm descriptor object.

Parameters
algorithmDesc

Input/Output. Handle to a previously created algorithm descriptor.

algorithm

Input. Struct to specify the algorithm.

Returns
CUDNN_STATUS_SUCCESS

The object was set successfully.

3.2.80. cudnnSetAlgorithmPerformance ()

This function has been deprecated in cuDNN 8.0.

cudnnStatus t cudnnSetAlgorithmPerformance (

cudnnAlEorithmPerformance_t algoPerf,
cudnnAlgorithmDescriptor t algoDesc,
cudnnStatus_t status,
float time,
size t memory)

This function initializes a previously created generic algorithm performance object.

Parameters
algoPerf

Input/Output. Handle to a previously created algorithm performance object.

algoDesc

Input. The algorithm descriptor which the performance results describe.

status

Input. The cuDNN status returned from running the algobesc algorithm.
time

Input. The GPU time spent running the algoDesc algorithm.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 81

cudnn_ops_infer.so Library

memory

Input. The GPU memory needed to run the algobesc algorithm.

Returns
CUDNN_STATUS SUCCESS

The object was set successfully.

CUDNN_STATUS_BAD PARAM

mode Or reluNanOpt has an invalid enumerate value.

3.2.81. cudnnSetCallback ()

cudnnStatus_t cudnnSetCallback (

unsigned mask,
void *udata,
cudnnCallback t fptr)

This function sets the internal states of cuDNN error reporting functionality.

Parameters

mask

Input. An unsigned integer. The four least significant bits (LSBs] of this unsigned integer
are used for switching on and off the different levels of error reporting messages. This
applies for both the default callbacks, and for the customized callbacks. The bit position is
in correspondence with the enum of cudnnSeverity t. The user may utilize the predefined
macros CUDNN_SEV_ERROR_EN, CUDNN_SEV_WARNING EN, and CUDNN_SEV_ INFO_EN to form
the bit mask. When a bit is set to 1, the corresponding message channel is enabled.

For example, when bit 3 is set to 1, the APl logging is enabled. Currently, only the log output
of level CUDNN_SEV_INFO is functional; the others are not yet implemented. When used for
turning on and off the logging with the default callback, the user may pass NULL to udata
and fptr. In addition, the environment variable CUDNN_ LOGDEST DBG must be set. For more
information, see the Backward compatibility and deprecation policy section in the cuDNN
Developer Guide.

» CUDNN SEV INFO EN= 0b1000 (functional).
» CUDNN SEV ERROR EN=0b0010 [not yet functional).
» CUDNN SEV WARNING EN= 0b07100 (not yet functionall.

The output of CUDNN_SEV_FATAL is always enabled and cannot be disabled.
udata

Input. A pointer provided by the user. This pointer will be passed to the user’s custom
logging callback function. The data it points to will not be read, nor be changed by cuDNN.
This pointer may be used in many ways, such as in a mutex or in a communication socket
for the user’s callback function for logging. If the user is utilizing the default callback

NVIDIA cuDNN PR-09702-001_v8.3.0 | 82

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#backward-compatibility

cudnn_ops_infer.so Library

function, or doesn’t want to use this input in the customized callback function, they may
pass in NULL.

fptr
Input. A pointer to a user-supplied callback function. When NULL is passed to this pointer,

then cuDNN switches back to the built-in default callback function. The user-supplied
callback function prototype must be similar to the following (also defined in the header file):

void customizedLoggingCallback (cudnnSeverity t sev, void *udata, const
cudnnDebug t *dbg, const char *msg);

» The structure cudnnDebug_t is defined in the header file. It provides the metadata,
such as time, time since start, stream ID, process and thread ID, that the user may
choose to print or store in their customized callback.

» The variable msg is the logging message generated by cuDNN. Each line of this
message is terminated by \0, and the end of the message is terminated by \0\0. Users
may select what is necessary to show in the log, and may reformat the string.

Returns
CUDNN_STATUS_SUCCESS

The function launched successfully.

3.2.82. cudnnSetDropoutDescriptor ()

cudnnStatus_t cudnnSetDropoutDescriptor (

cudnnDropoutDescriptor t dropoutDesc,
cudnnHandle t handle,

float dropout,

void *states,

size t stateSizeInBytes,
unsigned long long seed)

This function initializes a previously created dropout descriptor object. If the states argument
Is equal to NULL, then the random number generator states won't be initialized, and only

the dropout value will be set. The user is expected not to change the memory pointed at by
states for the duration of the computation.

When the states argument is not NULL, a cuRAND initialization kernel is invoked

by cudnnSetDropoutDescriptor (). This kernel requires a substantial amount

of GPU memory for the stack. Memory is released when the kernel finishes. The

CUDNN STATUS ALLOC FAILED status is returned when no sufficient free memory is available
for the GPU stack.

Parameters
dropoutDesc

Input/Output. Previously created dropout descriptor object.
handle

Input. Handle to a previously created cuDNN context.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 83

cudnn_ops_infer.so Library

dropout

Input. The probability with which the value from input is set to zero during the dropout layer.

states

Output. Pointer to user-allocated GPU memory that will hold random number generator
states.

stateSizeInBytes

Input. Specifies the size in bytes of the provided memory for the states.

seed

Input. Seed used to initialize random number generator states.

Returns

CUDNN_STATUS_SUCCESS

The call was successful.

CUDNN_STATUS_ INVALID VALUE

The sizeInBytes argumentis less than the value returned by
cudnnDropoutGetStatesSize().

CUDNN_STATUS_ALLOC_FAILED

The function failed to temporarily extend the GPU stack.
CUDNN_STATUS_EXECUTION_ FAILED

The function failed to launch on the GPU.
CUDNN_STATUS_INTERNAL ERROR

Internally used CUDA functions returned an error status.

3.2.83. cudnnSetFilter4dDescriptor ()

cudnnStatus_t cudnnSetFilter4dDescriptor (

cudnnFilterDescriptor t filterDesc,
cudnnDataType t dataType,
cudnnTensorFormat t format,

int k,

int €y

int h,

int W)

This function initializes a previously created filter descriptor object into a 4D filter. The layout
of the filters must be contiguous in memory.

Tensor format CUDNN TENSOR_NHWC has limited support in cudnnConvolutionForward(),
cudnnConvolutionBackwardDatal(), and cudnnConvolutionBackwardFilter(].

NVIDIA cuDNN PR-09702-001_v8.3.0 | 84

cudnn_ops_infer.so Library

Parameters
filterDesc

Input/Output. Handle to a previously created filter descriptor.
datatype
Input. Data type.
format
Input.Type of the filter layout format. If this input is set to CUDNN_TENSOR NCHW, which is

one of the enumerant values allowed by cudnnTensorFormat_t descriptor, then the layout
of the filter is in the form of KCRs, where:

> Krepresents the number of output feature maps
> Cisthe number of input feature maps

» Risthe number of rows per filter

» sisthe number of columns per filter

If this input is set to CUDNN_TENSOR_NHWC, then the layout of the filter is in the form of KRSC.
For more information, see cudnnTensorFormat_t.

Input. Number of output feature maps.
Input. Number of input feature maps.
Input. Height of each filter.

Input. Width of each filter.

Returns
CUDNN_STATUS SUCCESS

The object was set successfully.
CUDNN_STATUS_BAD PARAM

At least one of the parameters k, c, h, w is negative or dataType or format has an invalid
enumerant value.

3.2.84. cudnnSetFilterNdDescriptor ()

cudnnStatus_t cudnnSetFilterNdDescriptor (
cudnnFilterDescriptor t filterDesc,
cudnnDataType t dataType,
cudnnTensorFormat t format,

NVIDIA cuDNN PR-09702-001_v8.3.0 | 85

cudnn_ops_infer.so Library

int nbDims,
const int filterDimA[])

This function initializes a previously created filter descriptor object. The layout of the filters
must be contiguous in memory.

The tensor format CUDNN_TENSOR_NHWC has limited support in cudnnConvolutionForward(],
cudnnConvolutionBackwardDatal(), and cudnnConvolutionBackwardFilter().

Parameters
filterDesc

Input/Output. Handle to a previously created filter descriptor.
datatype
Input. Data type.
format
Input.Type of the filter layout format. If this input is set to CUDNN TENSOR NCHW, which is

one of the enumerant values allowed by cudnnTensorFormat_t descriptor, then the layout
of the filter is as follows:

» For N=4, a 4D filter descriptor, the filter layout is in the form of XKCRs:

> Krepresents the number of output feature maps

> Cisthe number of input feature maps

> Risthe number of rows per filter

> sisthe number of columns per filter
» Forn=3, a 3D filter descriptor, the number s (number of columns per filter) is omitted.
» For N=5 and greater, the layout of the higher dimensions immediately follows Rs.
On the other hand, if this input is set to CUDNN_TENSOR NHWC, then the layout of the filter is
as follows:
» ForN=4, a 4D filter descriptor, the filter layout is in the form of XKRsc.

» Forn=3, a 3D filter descriptor, the number s [number of columns per filter) is omitted
and the layout of c immediately follows R.

» For N=5 and greater, the layout of the higher dimensions are inserted between s and c.
For more information, see cudnnTensorFormat t.

nbDims

Input. Dimension of the filter.
filterDimA

Input. Array of dimension nbDims containing the size of the filter for each dimension.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 86

cudnn_ops_infer.so Library

Returns
CUDNN_STATUS SUCCESS

The object was set successfully.

CUDNN_STATUS_BAD PARAM

At least one of the elements of the array filterDimA is negative or dataType or format
has an invalid enumerant value.

CUDNN_STATUS_NOT_SUPPORTED

The parameter nbDims exceeds CUDNN_ DIM MAX.

3.2.85. cudnnSetLRNDescriptor ()

cudnnStatus t cudnnSetLRNDescriptor (
cudnnLRNDescriptor t normDesc,

unsigned 1lrnN,
double lrnAlpha,
double lrnBeta,
double 1rnK)

This function initializes a previously created LRN descriptor object.

@ Note:

» Macros CUDNN LRN MIN N, CUDNN LRN MAX N, CUDNN LRN MIN K, CUDNN LRN MIN BETA
defined in cudnn.h specify valid ranges for parameters.

» Values of double parameters will be cast down to the tensor datatype during computation.

Parameters
normDesc

Output. Handle to a previously created LRN descriptor.
lrnN

Input. Normalization window width in elements. The LRN layer uses a window [center-
lookBehind, center+lookAhead], where lookBehind = floor((lrnN-1)/2),
lookAhead = lrnN-lookBehind-1. 5o forn=10, the windowis [k-4...k...k+5] with

a total of 10 samples. For the DivisiveNormalization layer, the window has the same
extent as above in all spatial dimensions ([dimA[2], dimA[3], dimA[4]]). By default, 1rnN is
set to 5in cudnnCreatel RNDescriptor(].

lrnAlpha

Input. Value of the alpha variance scaling parameter in the normalization formula.

Inside the library code, this value is divided by the window width for LRN and by (window
width) “#spatialDimensions for DivisiveNormalization. By default, this value is set to
le-4 in cudnnCreateLRNDescriptor().

NVIDIA cuDNN PR-09702-001_v8.3.0 | 87

cudnn_ops_infer.so Library

lrnBeta

Input. Value of the beta power parameter in the normalization formula. By default, this
value is set to 0.75 in cudnnCreateL RNDescriptor(].

lrnK
Input. Value of the k parameter in the normalization formula. By default, this value is set to
2.0.

Returns

CUDNN_STATUS_SUCCESS

The object was set successfully.

CUDNN_STATUS_BAD_PARAM

One of the input parameters was out of valid range as described above.

3.2.86. cudnnSetOpTensorDescriptor ()

cudnnStatus_t cudnnSetOpTensorDescriptor (

cudnnOpTensorDescriptor t opTensorDesc,
cudnnOpTensorOp t opTensorOp,
cudnnDataType t opTensorCompType,
cudnnNanPropagation t opTensorNanOpt)

This function initializes a tensor pointwise math descriptor.

Parameters

opTensorDesc

Output. Pointer to the structure holding the description of the tensor pointwise math
descriptor.

opTensorOp

Input. Tensor pointwise math operation for this tensor pointwise math descriptor.

opTensorCompType

Input. Computation datatype for this tensor pointwise math descriptor.

opTensorNanOpt

Input. NAN propagation policy.

Returns

CUDNN_STATUS_SUCCESS

The function returned successfully.

CUDNN_STATUS_BAD_PARAM

At least one of the input parameters passed is invalid.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 88

cudnn_ops_infer.so Library

3.2.87. cudnnSetPooling2dDescriptor ()

cudnnStatus t cudnnSetPooling2dDescriptor (

cudnnPoalingDescriptor_t poolingDesc,
cudnnPoolingMode t mode,
cudnnNanPropagation t maxpoolingNanOpt,
int windowHeight,

int windowWidth,

int verticalPadding,
int horizontalPadding,
int verticalStride,
int horizontalStride)

This function initializes a previously created generic pooling descriptor object into a 2D
description.

Parameters
poolingDesc

Input/Output. Handle to a previously created pooling descriptor.

mode

Input. Enumerant to specify the pooling mode.
maxpoolingNanOpt

Input. Enumerant to specify the Nan propagation mode.

windowHeight

Input. Height of the pooling window.
windowWidth

Input. Width of the pooling window.

verticalPadding

Input. Size of vertical padding.

horizontalPadding

Input. Size of horizontal padding

verticalStride

Input. Pooling vertical stride.

horizontalStride

Input. Pooling horizontal stride.

Returns

CUDNN_STATUS_SUCCESS

The object was set successfully.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 89

cudnn_ops_infer.so Library

CUDNN_STATUS_BAD_ PARAM

At least one of the parameters windowHeight, windowWidth, verticalStride,
horizontalStride is negative or mode or maxpoolingNanOpt has an invalid enumerate
value.

3.2.88. cudnnSetPoolingNdDescriptor ()

cudnnStatus t cudnnSetPoolingNdDescriptor (

cudnnPoolingDescriptor t poolingDesc,
const cudnnPoolingMode t mode,

const cudnnNanPropagation t maxpoolingNanOpt,
int nbDims,

const int windowDimA[],
const int paddingAl],

const int strideA[])

This function initializes a previously created generic pooling descriptor object.

Parameters
poolingDesc

Input/Output. Handle to a previously created pooling descriptor.

mode

Input. Enumerant to specify the pooling mode.
maxpoolingNanOpt

Input. Enumerant to specify the Nan propagation mode.

nbDims

Input. Dimension of the pooling operation. Must be greater than zero.

windowDimA

Input. Array of dimension nbDims containing the window size for each dimension. The value
of array elements must be greater than zero.

paddingA

Input. Array of dimension nbDims containing the padding size for each dimension. Negative
padding is allowed.

strideA

Input. Array of dimension nbDims containing the striding size for each dimension. The
value of array elements must be greater than zero (meaning, negative striding size is not
allowed).

Returns
CUDNN_STATUS SUCCESS

The object was initialized successfully.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 90

cudnn_ops_infer.so Library

CUDNN_STATUS_NOT_SUPPORTED

If [nbDims > CUDNN_DIM MAX-2].
CUDNN_STATUS_BAD PARAM

Either nbDims, or at least one of the elements of the arrays windowDimA or strideA is
negative, or mode or maxpoolingNanOpt has an invalid enumerate value.

3.2.89. cudnnSetReduceTensorDescriptor ()

cudnnStatus_t cudnnSetReduceTensorDescriptor (
cudnnReduceTensorDescriptor t reduceTensorDesc,

cudnnReduceTensorOp t reduceTensorOp,
cudnnDataType t reduceTensorCompType,
cudnnNanPropagation t reduceTensorNanOpt,
cudnnReduceTensorIndices t reduceTensorIndices,
cudnnIndicesType t reduceTensorIndicesType)

This function initializes a previously created reduce tensor descriptor object.

Parameters
reduceTensorDesc

Input/Output. Handle to a previously created reduce tensor descriptor.

reduceTensorOp

Input. Enumerant to specify the reduce tensor operation.

reduceTensorCompType

Input. Enumerant to specify the computation datatype of the reduction.

reduceTensorNanOpt

Input. Enumerant to specify the Nan propagation mode.

reduceTensorIndices

Input. Enumerant to specify the reduced tensor indices.

reduceTensorIndicesType

Input. Enumerant to specify the reduce tensor indices type.

Returns
CUDNN_STATUS SUCCESS

The object was set successfully.

CUDNN_STATUS_BAD_ PARAM

reduceTensorDesciSNULL[reduceTensorOp,reduceTensorCompType
reduceTensorNanOpt, reduceTensorIndices or reduceTensorIndicesType has an
invalid enumerant value).

NVIDIA cuDNN PR-09702-001_v8.3.0 | 91

cudnn_ops_infer.so Library

3.2.90. cudnnSetSpatialTransformerNdDescriptor ()

cudnnStatus t cudnnSetSpatialTransformerNdDescriptor (

cudnnSpgtialTransformerDescriptor_t stDesc,
cudnnSamplerType t samplerType,
cudnnDataType t dataType,
const int nbDims,
const int dimA[])

This function initializes a previously created generic spatial transformer descriptor object.

Parameters
stDesc
Input/Output. Previously created spatial transformer descriptor object.
samplerType
Input. Enumerant to specify the sampler type.
dataType
Input. Data type.
nbDims
Input. Dimension of the transformed tensor.
dimA
Input. Array of dimension nbDims containing the size of the transformed tensor for every
dimension.

Returns

CUDNN_STATUS_SUCCESS

The call was successful.

CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:

> Either stDesc or dimA is NULL.

> Either dataType or samplerType has an invalid enumerant value

3.2.91. cudnnSetStream|()

cudnnStatus t cudnnSetStream(

cudnnHandle t handle,

cudaStream t streamId)
This function sets the user's CUDA stream in the cuDNN handle. The new stream will be used
to launch cuDNN GPU kernels or to synchronize to this stream when cuDNN kernels are
launched in the internal streams. If the cuDNN library stream is not set, all kernels use the
default (NULL) stream. Setting the user stream in the cuDNN handle guarantees the issue-
order execution of cuDNN calls and other GPU kernels launched in the same stream.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 92

cudnn_ops_infer.so Library

Parameters
handle

Input. Pointer to the cuDNN handle.

streamlD

Input. New CUDA stream to be written to the cuDNN handle.

Returns
CUDNN_STATUS BAD PARAM

Invalid (NULL) handle.
CUDNN_STATUS MAPPING ERROR

Mismatch between the user stream and the cuDNN handle context.

CUDNN_STATUS_SUCCESS

The new stream was set successfully.

3.2.92. cudnnSetTensor ()

cudnnStatus t cudnnSetTensor (

cudnnHandle t handle,
const cudnnTensorDescriptor t yDesc,
void *Vy

const void *valuePtr)

This function sets all the elements of a tensor to a given value.

Parameters
handle

Input. Handle to a previously created cuDNN context.

yDesc

Input. Handle to a previously initialized tensor descriptor.

Input/Output. Pointer to data of the tensor described by the ybesc descriptor.

valuePtr
Input. Pointer in host memory to a single value. All elements of the y tensor will be set to
value[0]. The data type of the element in value[0] has to match the data type of tensor y.
Returns
CUDNN_STATUS_SUCCESS

The function launched successfully.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 93

cudnn_ops_infer.so Library

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD_PARAM

One of the provided pointers is nil.

CUDNN_STATUS_EXECUTION_ FAILED

The function failed to launch on the GPU.

3.2.93. cudnnSetTensor4dDescriptor ()

cudnnStatus t cudnnSetTensor4dDescriptor (
cudnnTensorDescriptor t tensorDesc,

cudnnTensorFormat t format,
cudnnDataType t dataType,
int n,

int c,

int h,

int w)

This function initializes a previously created generic tensor descriptor object into a 4D tensor.
The strides of the four dimensions are inferred from the format parameter and set in such a
way that the data is contiguous in memory with no padding between dimensions.

Note: The total size of a tensor including the potential padding between dimensions is limited
to 2 Giga-elements of type datatype.

Parameters
tensorDesc

Input/Output. Handle to a previously created tensor descriptor.

format

Input. Type of format.
datatype
Input. Data type.
Input. Number of images.
Input. Number of feature maps per image.

Input. Height of each feature map.

Input. Width of each feature map.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 94

cudnn_ops_infer.so Library

Returns

CUDNN_STATUS_SUCCESS

The object was set successfully.
CUDNN_STATUS_BAD PARAM

At least one of the parameters n, ¢, h, w was negative or format has an invalid enumerant
value or dataType has an invalid enumerant value.

CUDNN_STATUS_NOT_SUPPORTED

The total size of the tensor descriptor exceeds the maximum limit of 2 Giga-elements.

3.2.94. cudnnSetTensor4dDescriptorEx ()

cudnnStatus t cudnnSetTensor4dDescriptorEx (

cudnnTensorDescriptor t tensorDesc,
cudnnDataType t dataType,
int n,

int €y

int h,

int w,

int nStride,
int cStride,
int hStride,
int wStride)

This function initializes a previously created generic tensor descriptor object into a 4D tensor,
similarly to cudnnSetTensor4dDescriptor () but with the strides explicitly passed as
parameters. This can be used to lay out the 4D tensor in any order or simply to define gaps
between dimensions.

@ Note:

» At present, some cuDNN routines have limited support for strides. Those routines will
return CUDNN_STATUS NOT SUPPORTED if a 4D tensor object with an unsupported stride is
used. cudnnTransformTensor(] can be used to convert the data to a supported layout.

» The total size of a tensor including the potential padding between dimensions is limited to 2
Giga-elements of type datatype.

Parameters

tensorDesc
Input/Output. Handle to a previously created tensor descriptor.
datatype

Input. Data type.

Input. Number of images.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 95

cudnn_ops_infer.so Library

Input. Number of feature maps per image.
Input. Height of each feature map.

Input. Width of each feature map.
nStride

Input. Stride between two consecutive images.

cStride

Input. Stride between two consecutive feature maps.

hStride

Input. Stride between two consecutive rows.

wStride

Input. Stride between two consecutive columns.

Returns
CUDNN_STATUS_SUCCESS

The object was set successfully.

CUDNN_STATUS_BAD_PARAM

At least one of the parameters n, ¢, h, wor nStride, cStride, hStride, wStride is
negative or dataType has an invalid enumerant value.

CUDNN_STATUS_NOT_SUPPORTED

The total size of the tensor descriptor exceeds the maximum limit of 2 Giga-elements.

3.2.95. cudnnSetTensorNdDescriptor ()

cudnnStatus_t cudnnSetTensorNdDescriptor (
cudnnTensorDescriptor t tensorDesc,

cudnnDataType t dataType,
int nbDims,
const int dimA[],
const int strideA[])

This function initializes a previously created generic tensor descriptor object.

S Note: The total size of a tensor including the potential padding between dimensions is limited
to 2 Giga-elements of type datatype. Tensors are restricted to having at least 4 dimensions,
and at most cupNN_DIM Max dimensions (defined in cudnn.h). When working with lower
dimensional data, it is recommended that the user create a 4D tensor, and set the size along
unused dimensions to 1.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 96

cudnn_ops_infer.so Library

Parameters
tensorDesc

Input/Output. Handle to a previously created tensor descriptor.
datatype
Input. Data type.

nbDims

Input. Dimension of the tensor.

@ Note: Do not use 2 dimensions. Due to historical reasons, the minimum number
of dimensions in the filter descriptor is three. For more information, see
cudnnGetRNNLinLayerBiasParamsi).

dimA
Input. Array of dimension nbDims that contain the size of the tensor for every dimension.
The size along unused dimensions should be set to 1. By convention, the ordering of

dimensions in the array follows the format - [N, ¢, b, H, W], with w occupying the smallest
index in the array.

strideA
Input. Array of dimension nbDims that contain the stride of the tensor for every dimension.
By convention, the ordering of the strides in the array follows the format - [Nstride,

Cstride, Dstride, Hstride, Wstride], with Wstride occupying the smallest index in
the array.

Returns

CUDNN_STATUS_SUCCESS

The object was set successfully.

CUDNN_STATUS_BAD PARAM
At least one of the elements of the array dima was negative or zero, or dataType has an
invalid enumerant value.

CUDNN_STATUS_NOT SUPPORTED

The parameter nbDims is outside the range [4, CUDNN DIM MAX], or the total size of the
tensor descriptor exceeds the maximum limit of 2 Giga-elements.

3.2.96. cudnnSetTensorNdDescriptorEx ()

cudnnStatus t cudnnSetTensorNdDescriptorEx (
cudnnTensorDescriptor t tensorDesc,
cudnnTensorFormat t format,
cudnnDataType t dataType,

NVIDIA cuDNN PR-09702-001_v8.3.0 | 97

cudnn_ops_infer.so Library

int nbDims,
const int dimAT[])

This function initializes an n-D tensor descriptor.

Parameters
tensorDesc

Output. Pointer to the tensor descriptor struct to be initialized.

format

Input. Tensor format.

dataType

Input. Tensor data type.

nbDims

Input. Dimension of the tensor.

@ Note: Do not use 2 dimensions. Due to historical reasons, the minimum number
of dimensions in the filter descriptor is three. For more information, see
cudnnGetRNNLinLayerBiasParamsl).

dimA

Input. Array containing the size of each dimension.

Returns

CUDNN_STATUS_SUCCESS

The function was successful.

CUDNN_STATUS_BAD_PARAM

Tensor descriptor was not allocated properly; or input parameters are not set correctly.

CUDNN_STATUS_NOT_SUPPORTED

Dimension size requested is larger than maximum dimension size supported.

3.2.97. cudnnSetTensorTransformDescriptor ()

cudnnStatus_t cudnnSetTensorTransformDescriptor (
cudnnTensorTransformDescriptor t transformDesc,
const uint32 t nbDims,

const cudnnTensorFormat t destFormat,

const int32 t padBeforeAl[],

const int32 t padAfterAl[],

const uint32 t foldA[],

const cudnnFoldingDirection t direction);

This function initializes a tensor transform descriptor that was previously created using the
cudnnCreateTensorTransformDescriptor() function.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 98

cudnn_ops_infer.so Library

Parameters
transformDesc

Output. The tensor transform descriptor to be initialized.

nbDims

Input. The dimensionality of the transform operands. Must be greater than 2. For more
information, see the Tensor Descriptor section from the cuDNN Developer Guide.

destFormat

Input. The desired destination format.

padBeforeA[]
Input. An array that contains the amount of padding that should be added before each
dimension. Set to NULL for no padding.

padAfterA[]
Input. An array that contains the amount of padding that should be added after each
dimension. Set to NULL for no padding.

foldAl]
Input. An array that contains the folding parameters for each spatial dimension (dimensions
2 and up). Set to NULL for no folding.

direction

Input. Selects folding or unfolding. This input has no effect when folding parameters are all
<= 1. For more information, see cudnnFoldingDirection t.

Returns

CUDNN_STATUS_SUCCESS

The function was launched successfully.
CUDNN_STATUS_BAD_PARAM
The parameter transformbDesc is NULL, or if direction is invalid, or nbDims is <= 2.

CUDNN_STATUS_NOT_SUPPORTED

If the dimension size requested is larger than maximum dimension size supported
(meaning, one of the nbDims is larger than CUDNN_DIM MAXx], or if destFromat is something
other than NCHW or NHWC.

3.2.98. cudnnSoftmaxForward ()

cudnnStatus t cudnnSoftmaxForward (

cudnnHandle t handle,
cudnnSoftmaxAlgorithm t algorithm,
cudnnSoftmaxMode t mode,
const void *alpha,

NVIDIA cuDNN PR-09702-001_v8.3.0 | 99

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#tensor-descriptor

cudnn_ops_infer.so Library

const cudnnTensorDescriptor t xDesc,
const void *x,
const void *beta,
const cudnnTensorDescriptor t yDesc,
void *y)

This routine computes the softmax function.

Note: All tensor formats are supported for all modes and algorithms with 4 and 5D tensors.
Performance is expected to be highest with NCHW fully-packed tensors. For more than 5
dimensions tensors must be packed in their spatial dimensions

Parameters
handle

Input. Handle to a previously created cuDNN context.
algorithm

Input. Enumerant to specify the softmax algorithm.
mode

Input. Enumerant to specify the softmax mode.
alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the computation result

with prior value in the output layer as follows:
dstValue = alpha[0]*result + beta[0]*priorDstValue

For more information, see the Scaling Parameters section in the cuDNN Developer Guide.

xDesc

Input. Handle to the previously initialized input tensor descriptor.

Input. Data pointer to GPU memory associated with the tensor descriptor xDesc.

yDesc

Input. Handle to the previously initialized output tensor descriptor.

Output. Data pointer to GPU memory associated with the output tensor descriptor yDesc.

Returns
CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 100

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#scaling-parameters

cudnn_ops_infer.so Library

CUDNN_STATUS BAD PARAM
At least one of the following conditions are met:

» Thedimensions n, ¢, h, w of the input tensor and output tensors differ.
» The datatype of the input tensor and output tensors differ.

» The parameters algorithm or mode have an invalid enumerant value.
CUDNN_STATUS_EXECUTION FAILED

The function failed to launch on the GPU.

3.2.99. cudnnSpatialTfGridGeneratorForward ()

cudnnStatus t cudnnSpatialTfGridGeneratorForward (

cudnnHandle t handle,
const cudnnSpatialTransformerDescriptor t stDesc,
const void *theta,
void *grid)

This function generates a grid of coordinates in the input tensor corresponding to each pixel
from the output tensor.

Note: Only 2d transformation is supported.

Parameters
handle

Input. Handle to a previously created cuDNN context.

stDesc

Input. Previously created spatial transformer descriptor object.

theta

Input. Affine transformation matrix. It should be of size n*2*3 for a 2d transformation,
where n is the number of images specified in stDesc.

grid
Output. A grid of coordinates. It is of size n*h*w*2 for a 2d transformation, where n, h,
w is specified in stDesc. In the 4th dimension, the first coordinate is x, and the second
coordinate is y.

Returns

CUDNN_STATUS_SUCCESS

The call was successful.

CUDNN_STATUS_BAD_ PARAM

At least one of the following conditions are met:

NVIDIA cuDNN PR-09702-001_v8.3.0 | 101

cudnn_ops_infer.so Library

» handle is NULL.

» One of the parameters grid or theta IS NULL.
CUDNN_STATUS_NOT SUPPORTED

The function does not support the provided configuration. See the following for some
examples of non-supported configurations:

» The dimension of the transformed tensor specified in stDesc > 4.
CUDNN_STATUS_EXECUTION_ FAILED

The function failed to launch on the GPU.

3.2.100. cudnnSpatialTfSamplerForward ()

cudnnStatus_t cudnnSpatialTfSamplerForward (

cudnnHandle t handle,
const cudnnSpatialTransformerDescriptor t stDesc,
const void *alpha,
const cudnnTensorDescriptor t xDesc,
const void Ay
const void *grid,
const void *beta,
cudnnTensorDescriptor t yDesc,
void *y)

This function performs a sampler operation and generates the output tensor using the grid
given by the grid generator.

Note: Only 2d transformation is supported.

Parameters
handle
Input. Handle to a previously created cuDNN context.
stDesc
Input. Previously created spatial transformer descriptor object.
alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the source value with prior

value in the destination tensor as follows:
dstValue = alpha[0]*srcValue + beta[0]*priorDstValue

For more information, see the Scaling Parameters section in the cuDNN Developer Guide.

xDesc

Input. Handle to the previously initialized input tensor descriptor.

Input. Data pointer to GPU memory associated with the tensor descriptor xDesc.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 102

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#scaling-parameters

cudnn_ops_infer.so Library

grid

Input. A grid of coordinates generated by cudnnSpatialTfGridGeneratorForward(].

yDesc

Input. Handle to the previously initialized output tensor descriptor.

Output. Data pointer to GPU memory associated with the output tensor descriptor yDesc.

Returns

CUDNN_STATUS_SUCCESS

The call was successful.

CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:

» handle iS NULL.

» One of the parameters x, y or grid is NULL.
CUDNN_STATUS NOT SUPPORTED

The function does not support the provided configuration. See the following for some
examples of non-supported configurations:

» The dimension of transformed tensor > 4.
CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

3.2.101. cudnnTransformFilter ()

cudnnStatus t cudnnTransformTensorEx (
cudnnHandle t handle,
const cudnnTensorTransformDescriptor t transDesc,

const void *alpha,

const cudnnFilterDescriptor t srcDesc,

const void *srcData,

const void *beta,

const cudnnFilterDescriptor t destDesc,

void *destData) ;
This function converts the filter between different formats, data types, or dimensions based
on the described transformation. It can be used to convert a filter with an unsupported layout

format to a filter with a supported layout format.

This function copies the scaled data from the input filter srcbesc to the output tensor
destDesc with a different layout. If the filter descriptors of srcDesc and destDesc have
different dimensions, they must be consistent with folding and padding amount and order
specified in transDesc.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 103

cudnn_ops_infer.so Library

The srcbesc and destDesc tensors must not overlap in any way (imeaning, tensors cannot be
transformed in place).

Note: When performing a folding transform or a zero-padding transform, the scaling factors
(a1pha, beta) should be set to (1, 0). However, unfolding transforms support any (alpha, beta)
values. This function is thread safe.

Parameters

handle

Input. Handle to a previously created cuDNN context. For more information, see
cudnnHandle_t.

transDesc

Input. A descriptor containing the details of the requested filter transformation. For more
information, see cudnnTensorTransformDescriptor_t.

alpha, beta

Input. Pointers, in the host memory, to the scaling factors used to scale the data in the input
tensor srcbhesc. beta is used to scale the destination tensor, while alpha is used to scale
the source tensor. For more information, see the Scaling Parameters section in the cuDNN
Developer Guide.

The beta scaling value is not honored in the folding and zero-padding cases. Unfolding
supports any (alpha, beta).

srcDesc, destDesc

Input. Handles to the previously initiated filter descriptors. srcbesc and destbesc must not
overlap. For more information, see cudnnTensorDescriptor_t.

srcData, destData

Input. Pointers, in the host memory, to the data of the tensor described by srcDesc and
destDesc respectively.

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_BAD_ PARAM

A parameter is uninitialized or initialized incorrectly, or the number of dimensions is
different between srcbesc and destDesc.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration. Also, in the folding and padding
paths, any value other than a=1 and B=0 will result in a CUDNN_STATUS NOT SUPPORTED.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 104

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#scaling-parameters

cudnn_ops_infer.so Library

CUDNN_STATUS_EXECUTION FAILED

The function failed to launch on the GPU.

3.2.102. cudnnTransformTensor ()

cudnnStatus t cudnnTransformTensor (

cudnnHandle t handle,
const void *alpha,
const cudnnTensorDescriptor t xDesc,
const void *x,
const void *beta,
const cudnnTensorDescriptor t yDesc,
void *y)

This function copies the scaled data from one tensor to another tensor with a different layout.
Those descriptors need to have the same dimensions but not necessarily the same strides.
The input and output tensors must not overlap in any way (meaning, tensors cannot be
transformed in place). This function can be used to convert a tensor with an unsupported
format to a supported one.

Parameters
handle

Input. Handle to a previously created cuDNN context.
alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the source value with prior

value in the destination tensor as follows:
dstValue = alpha[0]*srcValue + beta[0]*priorDstValue

For more information, see the Scaling Parameters section in the cuDNN Developer Guide.

xDesc

Input. Handle to a previously initialized tensor descriptor. For more information, see
cudnnTensorDescriptor_t.

X
Input. Pointer to data of the tensor described by the xDesc descriptor.
yDesc
Input. Handle to a previously initialized tensor descriptor. For more information, see
cudnnTensorDescriptor_t.
Y
Output. Pointer to data of the tensor described by the ybesc descriptor.
Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 105

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#scaling-parameters

cudnn_ops_infer.so Library

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD_PARAM

The dimensions n, c, h, w or the dataType of the two tensor descriptors are different.

CUDNN_STATUS_EXECUTION_ FAILED

The function failed to launch on the GPU.

3.2.103. cudnnTransformTensorEx ()

cudnnStatus_t cudnnTransformTensorEx (
cudnnHandle t handle,
const cudnnTensorTransformDescriptor t transDesc,

const void *alpha,
const cudnnTensorDescriptor t srcDesc,
const void *srcData,
const void *beta,
const cudnnTensorDescriptor t destDesc,
void *destData) ;
This function converts the tensor layouts between different formats. It can be used to convert a

tensor with an unsupported layout format to a tensor with a supported layout format.

This function copies the scaled data from the input tensor srcbesc to the output tensor
destDesc with a different layout. The tensor descriptors of srcDesc and destDesc should
have the same dimensions but need not have the same strides.

The srcbesc and destDesc tensors must not overlap in any way (meaning, tensors cannot be
transformed in place).

Note: When performing a folding transform or a zero-padding transform, the scaling
factors (alpha,beta) should be set to (1, 0). However, unfolding transforms support any
(alpha,beta) values. This function is thread safe.

Parameters

handle

Input. Handle to a previously created cuDNN context. For more information, see
cudnnHandle t.

transDesc

Input. A descriptor containing the details of the requested tensor transformation. For more
information, see cudnnTensorTransformDescriptor t.

alpha, beta

Input. Pointers, in the host memory, to the scaling factors used to scale the data in the input
tensor srcDesc. beta is used to scale the destination tensor, while alpha is used to scale
the source tensor. For more information, see the Scaling Parameters section in the cuDNN
Developer Guide.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 106

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#scaling-parameters

cudnn_ops_infer.so Library

The beta scaling value is not honored in the folding and zero-padding cases. Unfolding
supports any (alpha, betal.

srcDesc, destDesc

Input. Handles to the previously initiated tensor descriptors. srcDesc and destDesc must
not overlap. For more information, see cudnnTensorDescriptor_t.

srcData, destData

Input. Pointers, in the host memory, to the data of the tensor described by srcbesc and
destDesc respectively.

CUDNN_STATUS_SUCCESS

The function was launched successfully.

CUDNN_STATUS BAD PARAM

A parameter is uninitialized or initialized incorrectly, or the number of dimensions is
different between srcDesc and destDesc.

CUDNN_STATUS_NOT_SUPPORTED

Function does not support the provided configuration. Also, in the folding and padding
paths, any value other than a=1 and B=0 will result in a CUDNN_ STATUS NOT SUPPORTED.

CUDNN_STATUS_EXECUTION_ FAILED

Function failed to launch on the GPU.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 107

Chapter 4. cudnn ops train.so
Library

4.1. APl Functions

4.1.1. cudnnActivationBackward ()

cudnnStatus t cudnnActivationBackward (

cudnnHaHdle_t handle,
cudnnActivationDescriptor t activationDesc,
const void *alpha,
const cudnnTensorDescriptor t yDesc,
const void BV,
const cudnnTensorDescriptor t dyDesc,
const void *dy,
const cudnnTensorDescriptor t xDesc,
const void *x,
const void *beta,
const cudnnTensorDescriptor t dxDesc,
void *dx)

This routine computes the gradient of a neuron activation function.

%] Note:

» In-place operation is allowed for this routine; meaning dy and dx pointers may be equal.
However, this requires the corresponding tensor descriptors to be identical (particularly,
the strides of the input and output must match for an in-place operation to be allowed).

» Alltensor formats are supported for 4 and 5 dimensions, however, the best performance is
obtained when the strides of yDesc and xDesc are equal and Hii-packed. For more than 5
dimensions the tensors must have their spatial dimensions packed.

Parameters

handle

Input. Handle to a previously created cuDNN context. For more information, see
cudnnHandle_t.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 108

cudnn_ops_train.so Library

activationDesc

Input. Activation descriptor. See cudnnActivationDescriptor_t.

alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the computation result

with prior value in the output layer as follows:
dstValue = alpha[0O]*result + beta[0]*priorDstValue

For more information, see Scaling Parameters in the cuDNN Developer Guide.

yDesc

Input. Handle to the previously initialized input tensor descriptor. For more information, see
cudnnTensorDescriptor_t.

Input. Data pointer to GPU memory associated with the tensor descriptor yDesc.
dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.
dy

Input. Data pointer to GPU memory associated with the tensor descriptor dyDesc.
xDesc

Input. Handle to the previously initialized output tensor descriptor.

Input. Data pointer to GPU memory associated with the output tensor descriptor xDesc.

dxDesc

Input. Handle to the previously initialized output differential tensor descriptor.

dx

Output. Data pointer to GPU memory associated with the output tensor descriptor dxDesc.

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:

» The strides nStride, cStride, hStride, wStride of the input differential tensor
and output differential tensor differ and in-place operation is used.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration. See the following for some
examples of non-supported configurations:

NVIDIA cuDNN PR-09702-001_v8.3.0 | 109

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#scaling-parameters

cudnn_ops_train.so Library

» The dimensionsn, c, h, woftheinputtensorand outputtensor differ.

» The datatype of the input tensor and output tensor differs.

» The strides nStride, cStride, hStride, wStride of the inputtensor and the input

differential tensor differ.

» The strides nstride, cStride, hStride, wStride of the output tensor and the

output differential tensor differ.

CUDNN_STATUS_EXECUTION_ FAILED

The function failed to launch on the GPU.

4.1.2.

cudnnBatchNormalizationBackward ()

cudnnStatus t cudnnBatchNormalizationBackward (

cudnnHandle t handle,
cudnnBatchNormMode t mode,

const void *alphaDataDiff,
const void *betaDataDiff,
const void *alphaParamDiff,
const void *betaParamDiff,
const cudnnTensorDescriptor t xDesc,

const void R

const cudnnTensorDescriptor t dyDesc,

const void “ely,

const cudnnTensorDescriptor t dxDesc,

void *dx,

const cudnnTensorDescriptor t bnScaleBiasDiffDesc,
const void *bnScale,

void *resultBnScaleDiff,
void *resultBnBiasDiff,
double epsilon,

const void *savedMean,

const void *savedInvVariance)

This function performs the backward batch normalization layer computation. This layeris
based on the paper Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift, S. loffe, C. Szegedy, 2015. .

[g] Note:

» Only 4D and 5D tensors are supported.
» The epsilon value has to be the same during training, backpropagation, and inference.

» Higher performance can be obtained when HW-packed tensors are used for all of x, dy,
dx.

For more information, see cudnnbDeriveBNTensorDescriptor () for the secondary tensor
descriptor generation for the parameters used in this function.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor. For more information, see
cudnnHandle_t.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 110

https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167

cudnn_ops_train.so Library

mode

Input. Mode of operation (spatial or per-activation]. For more information, see
cudnnBatchNormMode_t.

*alphaDataDiff, *betaDataDiff

Inputs. Pointers to scaling factors (in host memory) used to blend the gradient output dx

with a prior value in the destination tensor as follows:
dstValue = alphaDataDiff[0]*resultValue + betaDataDiff[0]*priorDstValue

For more information, see Scaling Parameters in the cuDNN Developer Guide.

*alphaParamDiff, *betaParamDiff

Inputs. Pointers to scaling factors (in host memory) used to blend the gradient outputs
resultBnScaleDiff and resultBnBiasDiff with prior values in the destination tensor as
follows:

dstValue = alphaParamDiff[0]*resultValue + betaParamDiff[0] *priorDstValue

For more information, see Scaling Parameters.

xDesc, dxDesc, dyDesc

Inputs. Handles to the previously initialized tensor descriptors.

*x
Input. Data pointer to GPU memory associated with the tensor descriptor xDesc, for the
layer’s x data.

*dy
Inputs. Data pointer to GPU memory associated with the tensor descriptor dybesc, for the
backpropagated differential dy input.

*dx
Inputs. Data pointer to GPU memory associated with the tensor descriptor dxDesc, for the
resulting differential output with respect to x.

bnScaleBiasDiffDesc
Input. Shared tensor descriptor for the following five tensors: bnscale,
resultBnScaleDiff, resultBnBiasDiff, savedMean, savedInvVariance. lhe

dimensions for this tensor descriptor are dependent on normalization mode. For more
information, see cudnnDeriveBNTensorDescriptor().

S Note: The data type of this tensor descriptor must be f1oat for FP16 and FP32 input
tensors, and double for FP64 input tensors.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 111

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#scaling-parameters
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#scaling-parameters

cudnn_ops_train.so Library

*bnScale
Input. Pointer in the device memory for the batch normalization scale parameter (in the

original paper the quantity scale is referred to as gamma).

Note: The bnBias parameter is not needed for this layer's computation.

resultBnScaleDiff, resultBnBiasDiff
Outputs. Pointers in device memory for the resulting scale and bias differentials computed
by this routine. Note that these scale and bias gradients are weight gradients specific to
this batch normalization operation, and by definition are not backpropagated.

epsilon
Input. Epsilon value used in batch normalization formula. Its value should be equal to or

greater than the value defined for CUDNN BN MIN EPSILON in cudnn.h. The same epsilon
value should be used in forward and backward functions.

*savedMean, *savedInvVariance
Inputs. Optional cache parameters containing saved intermediate results that were
computed during the forward pass. For this to work correctly, the layer's x and bnScale
data have to remain unchanged until this backward function is called.

S Note: Both these parameters can be NULL but only at the same time. It is recommended to
use this cache since the memory overhead is relatively small.

Supported configurations

This function supports the following combinations of data types for various descriptors.

Table 10. Supported configurations
alphaDataDiff,
Data Type betaDataDiff,al
Configurations xDesc bnScaleBiasM¢ betaParamDiff dyDesc dxDesc

PSEUDO_ HALF CONFDSN DATA HALEUDNN DATA FLOZBUDNN DATA FLOGUDNN DATA HALEUDNN DATA HALF
FLOAT CONFIG A CUDNN DATA FLOZBUDNN DATA FLOZUDNN DATA FLOGUDNN DATA FLOZUDNN DATA FLOAT

DOUBLE CONFIG CUDNN DATA DOUBUBENN DATA DOUBUBNN DATA DOUBUENN DATA DOUBUENN DATA DOUBLE

Returns
CUDNN_STATUS_SUCCESS

The computation was performed successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 112

CUDNN_STATUS_BAD_ PARAM

At least one of the following conditions are met:

cudnn_ops_train.so Library

» Any of the pointers alpha, beta, x, dy, dx, bnScale, resultBnScaleDiff,
resultBnBiasDiff IS NULL.

» The number of xDesc or yDesc or dxDesc tensor descriptor dimensions is not within

the range of (4, 5] (only 4D and 5D tensors are supported).

» bnScaleBiasDiffDesc dimensions are not 1xCx1x1 for 4D and 1xCx1x1x1 for 5D for
spatial, and are not TxCxHxW for 4D and TxCxDxHxW for 5D for per-activation mode.

» Exactly one of savedMean, savedInvVariance pointers is NULL.

> epsilonvalueis less than CUDNN BN MIN EPSILON.

» Dimensions or data types mismatch for any pair of xDesc, dyDesc, dxDesc.

4.1.3.

const
const
const
const
const
const
const
const
const
const
const
void
const
void
const
const
const
void
void
double
const
const

const cudnnActivationDescriptor t

void
size t
void
size t

cudnnBatchNormalizationBackwardEx ()

cudnnStatus_t cudnnBatchNormalizationBackwardEx (
cudnnHandle t
cudnnBatchNormMode t
cudnnBatchNormOps t

void
void
void
void
cudnnTensorDescriptor t
void
cudnnTensorDescriptor t
void
cudnnTensorDescriptor t
void
cudnnTensorDescriptor t

cudnnTensorDescriptor t
cudnnTensorDescriptor t

void
void

void
void

handle,

mode,

bnOps,
*alphaDataDiff,
*betaDataDiff,
*alphaParamDiff,
*betaParamDiff,
xDesc,

*xData,

yDesc,

*yData,

dyDesc,

*dyData,

dzDesc,

*dzData,

dxDesc,

*dxData,
dBnScaleBiasDesc,
*bnScaleData,
*bnBiasData,
*dBnScaleData,
*dBnBiasData,
epsilon,
*savedMean,
*savedInvVariance,
activationDesc,
*workspace,

workSpaceSizeInBytes

*reserveSpace

reserveSpaceSizeInBytes) ;

This function is an extension of the cudnnBatchNormalizationBackward() for performing the
backward batch normalization layer computation with a fast NHWC semi-persistent kernel.
This APl will trigger the new semi-persistent NHWC kernel when the following conditions are

true:

» Alltensors, namely, x, y, dz, dy, dx mustbe NHWC-fully packed, and must be of the
type CUDNN DATA HALF.

» The input parameter mode must be set to CUDNN BATCHNORM SPATIAL PERSISTENT.

NVIDIA cuDNN

PR-09702-001_v8.3.0 | 113

cudnn_ops_train.so Library

> workspace IS not NULL.

» Before cuDNN version 8.2.0, the tensor ¢ dimension should always be a multiple of
4. After 8.2.0, the tensor ¢ dimension should be a multiple of 4 only when bnoOps is
CUDNN_BATCHNORM OPS BN ADD ACTIVATION.

> workSpaceSizelInBytes is equal to or larger than the amount required by
cudnnGetBatchNormalizationBackwardExWorkspaceSize().

» reserveSpaceSizeInBytes is equalto or larger than the amount required by
cudnnGetBatchNormalizationTrainingExReserveSpaceSizel().

» The content in reserveSpace stored by cudnnBatchNormalizationForwardTrainingEx(]
must be preserved.

If workspace IS NULL and workSpaceSizeInBytes of zero is passed in, this APl will function
exactly like the non-extended function cudnnBatchNormalizationBackward.

This workspace is not required to be clean. Moreover, the workspace does not have to
remain unchanged between the forward and backward pass, as it is not used for passing any
information.

This extended function can accept a *workspace pointer to the GPU workspace, and
workSpaceSizelInBytes, the size of the workspace, from the user.

The bnOps input can be used to set this function to perform either only the batch
normalization, or batch normalization followed by activation, or batch normalization followed
by element-wise addition and then activation.

Only 4D and 5D tensors are supported. The epsilon value has to be the same during the
training, the backpropagation, and the inference.

When the tensor layout is NCHW, higher performance can be obtained when HW-packed
tensors are used for x, dy, dx.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor. For more information, see
cudnnHandle_t.

mode

Input. Mode of operation (spatial or per-activation]. For more information, see
cudnnBatchNormMode_t.

bnOps
Input. Mode of operation. Currently, CUDNN_BATCHNORM OPS BN ACTIVATION and
CUDNN BATCHNORM OPS BN ADD ACTIVATION are only supported in the NHWC layout. For
more information, see cudnnBatchNormOps_t. This input can be used to set this function to
perform either only the batch normalization, or batch normalization followed by activation,
or batch normalization followed by element-wise addition and then activation.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 114

cudnn_ops_train.so Library

*alphaDataDiff, *betaDataDiff

Inputs. Pointers to scaling factors (in host memory) used to blend the gradient output dx

with a prior value in the destination tensor as follows:
dstValue = alpha[0O]*resultValue + beta[0]*priorDstValue

For more information, see Scaling Parameters in the cuDNN Developer Guide.

*alphaParamDiff, *betaParamDiff

Inputs. Pointers to scaling factors (in host memory) used to blend the gradient outputs
dBnScaleData and dBnBiasData with prior values in the destination tensor as follows:
dstValue = alpha[0O]*resultValue + beta[0]*priorDstValue

For more information, see Scaling Parameters in the cuDNN Developer Guide.
xDesc, *x, yDesc, *yData, dyDesc, *dyData

Inputs. Tensor descriptors and pointers in the device memory for the layer’s x data,
backpropagated gradient input dy, the original forward output y data. ybesc and yData are
not needed if bnOps Is set to CUDNN BATCHNORM OPS BN, users may pass NULL. For more
information, see cudnnTensorDescriptor_t.

dzDesc, *dzData, dxDesc, *dxData
Outputs. Tensor descriptors and pointers in the device memory for the computed
gradient output dz, and dx. dzDesc and *dzData are not needed when bnoOps Is
CUDNN_BATCHNORM OPS BN or CUDNN BATCHNORM OPS BN ACTIVATION, USers may pass
NULL. For more information, see cudnnTensorDescriptor_t.

dBnScaleBiasDesc

Input. Shared tensor descriptor for the following six tensors: bnScaleData, bnBiasData,
dBnScaleData, dBnBiasData, savedMean, and savedInvVariance. For more information,
see cudnnDeriveBNTensorDescriptor(].

The dimensions for this tensor descriptor are dependent on normalization mode.

S Note: The data type of this tensor descriptor must be float for FP16 and FP32 input
tensors and double for FP64 input tensors.

For more information, see cudnnTensorDescriptor t.

*bnScaleData

Input. Pointer in the device memory for the batch normalization scale parameter (in the
original paper the quantity scale is referred to as gammal).

*bnBiasData
Input. Pointers in the device memory for the batch normalization bias parameter [in the
original paper bias is referred to as beta). This parameter is used only when activation
should be performed.

*dBnScaleData, dBnBiasData
Inputs. Pointers in the device memory for the gradients of bnScaleData and bnBiasData,
respectively.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 115

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#scaling-parameters
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#scaling-parameters
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167

cudnn_ops_train.so Library

epsilon

Input. Epsilon value used in batch normalization formula. Its value should be equal to or
greater than the value defined for CUDNN BN MIN EPSILON in cudnn.h. The same epsilon
value should be used in forward and backward functions.

*savedMean, *savedInvVariance
Inputs. Optional cache parameters containing saved intermediate results computed during
the forward pass. For this to work correctly, the layer's x and bnScaleData, bnBiasData
data has to remain unchanged until this backward function is called. Note that both these
parameters can be NULL but only at the same time. It is recommended to use this cache
since the memory overhead is relatively small.

activationDesc
Input. Descriptor for the activation operation. When the bnops input is set to either
CUDNN BATCHNORM OPS BN ACTIVATION Or CUDNN BATCHNORM OPS BN ADD ACTIVATION
then this activation is used, otherwise user may pass NULL.

workspace
Input. Pointer to the GPU workspace. If workspace is NULL and workSpaceSizeInBytes
of zero is passed in, then this APl will function exactly like the non-extended function
cudnnBatchNormalizationBackward().

workSpaceSizeInBytes
Input. The size of the workspace. It must be large enough to trigger the fast NHWC semi-
persistent kernel by this function.

*reserveSpace
Input. Pointer to the GPU workspace for the reserveSpace.

reserveSpaceSizelInBytes
Input. The size of the reserveSpace. It must be equal or larger than the amount required
by cudnnGetBatchNormalizationTrainingExReserveSpaceSize(].

This function supports the following combinations of data types for various descriptors.

Table 11. Supported configurations

alphaDataDiff,
Data Type betaDataDiff,alphi dyDesc, dzDesc,
Configurations xDesc, yDesc dBnScaleBiasDes betaParamDiff dxDesc

PSEUDO_HALF CONFIGUDNN DATA HALF | CUDNN DATA FLOAT CUDNN DATA FLOAT CUDNN DATA HALF
FLOAT CONFIG CUDNN_DATA FLOAT CUDNN DATA FLOAT CUDNN DATA FLOAT CUDNN DATA FLOAT

DOUBLE CONFIG CUDNN_ DATA DOUBLECUDNN DATA DOUBLECUDNN DATA DOUBLECUDNN DATA DOUBLE

NVIDIA cuDNN PR-09702-001_v8.3.0 | 116

cudnn_ops_train.so Library

Returns
CUDNN_STATUS SUCCESS

The computation was performed successfully.
CUDNN_STATUS_NOT SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD PARAM

At least one of the following conditions are met:

» Any of the pointers alphabDataDiff, betaDataDiff, alphaParamDiff,
betaParamDiff, x, dy, dx, bnScale, resultBnScaleDiff, resultBnBiasDiff
IS NULL.

» The number of xDesc or yDesc or dxDesc tensor descriptor dimensions is not within
the range of (4, 5] (only 4D and 5D tensors are supported).

» dBnScaleBiasDesc dimensions not TxCx1x1 for 4D and 1xCx1x1x1 for 5D for spatial,
and are not 1xCxHxW for 4D and 1xCxDxHxW for 5D for per-activation mode.

> Exactly one of savedMean, savedInvVariance pointers is NULL.
> epsilonvalueis less than CUDNN BN MIN EPSILON.

» Dimensions or data types mismatch for any pair of xDesc, dyDesc, dxDesc.

4.1.4. cudnnBatchNormalizationForwardTraining ()
cudnnStatus_ t cudnnBatchNormalizationForwardTraining (
cudnnHandle t handle,
cudnnBatchNormMode t mode,
const void *alpha,
const void *beta,
const cudnnTensorDescriptor t xDesc,
const void X,
const cudnnTensorDescriptor t yDesc,
void =Yy
const cudnnTensorDescriptor t bnScaleBiasMeanVarDesc,
const void *bnScale,
const void *bnBias,
double exponentialAverageFactor,
void *resultRunningMean,
void *resultRunningVariance,
double epsilon,
void *resultSaveMean,
void *resultSaveInvVariance)

This function performs the forward batch normalization layer computation for the training
phase. This layer is based on the paper Batch Normalization: Accelerating Deep Network
Iraining by Reducing Internal Covariate Shift, S. loffe, C. Szegedy, 2015.

@ Note:

» Only 4D and 5D tensors are supported.

» The epsilon value has to be the same during training, backpropagation, and inference.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 117

https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167

cudnn_ops_train.so Library

» Forthe inference phase, use cudnnBatchNormalizationForwardInference.

» Higher performance can be obtained when HW-packed tensors are used for both x and y.

See cudnnDeriveBNTensorDescriptor() for the secondary tensor descriptor generation for the
parameters used in this function.

Parameters
handle

Handle to a previously created cuDNN library descriptor. For more information, see
cudnnHandle_t.

mode

Mode of operation (spatial or per-activation). For more information, see
cudnnBatchNormMode_t.

alpha, beta

Inputs. Pointers to scaling factors (in host memory) used to blend the layer output value

with prior value in the destination tensor as follows:
dstValue = alpha[0O]*resultValue + beta[0]*priorDstValue

For more information, see Scaling Parameters in the cuDNN Developer Guide.

xDesc, yDesc

Tensor descriptors and pointers in device memory for the layer's x and y data. For more
information, see cudnnTensorDescriptor t.

*x
Input. Data pointer to GPU memory associated with the tensor descriptor xDesc, for the
layer’s x input data.

*y
Input. Data pointer to GPU memory associated with the tensor descriptor ybesc, for the
youtput of the batch normalization layer.

bnScaleBiasMeanVarDesc
Shared tensor descriptor desc for the secondary tensor that was derived by

cudnnDeriveBNTensorDescriptor(). The dimensions for this tensor descriptor are
dependent on the normalization mode.

bnScale, bnBias
Inputs. Pointers in device memory for the batch normalization scale and bias parameters
(in the original paper bias is referred to as beta and scale as gammal). Note that bnBias
parameter can replace the previous layer's bias parameter for improved efficiency.
exponentialAverageFactor
Input. Factor used in the moving average computation as follows:

runningMean = runningMean* (1-factor) + newMean*factor

NVIDIA cuDNN PR-09702-001_v8.3.0 | 118

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#scaling-parameters
https://arxiv.org/abs/1502.03167

cudnn_ops_train.so Library

Use a factor=1/ (1+n) at N-th call to the function to get Cumulative Moving Average (CMA)

behavior such that:
CMA[n] = (x[1]+...+x[n])/n

This is proved below:

CMA[n+l1] = (n*CMA[n]+x[n+1])/ (n+l)

= ((n+l)*CMA[n]-CMA[n])/(n+l) + x[n+1]/(n+1)
= CMA[n]*(1-1/(n+1))+x[n+1]1*1/ (n+1)

= CMA[n]*(l-factor) + x(n+l)*factor

resultRunningMean, resultRunningVariance

Inputs/Outputs. Running mean and variance tensors (these have the same descriptor as the
bias and scale). Both of these pointers can be NULL but only at the same time. The value
stored in resultRunningVariance (or passed as an input in inference mode) is the sample
variance and is the moving average of variance [x] where the variance is computed either
over batch or spatial+batch dimensions depending on the mode. If these pointers are not
NULL, the tensors should be initialized to some reasonable values or to 0.

epsilon

Input. Epsilon value used in the batch normalization formula. Its value should be equal to or
greater than the value defined for CUDNN_BN MIN EPSILON in cudnn.h. The same epsilon
value should be used in forward and backward functions.

resultSaveMean, resultSaveInvVariance
Outputs. Optional cache to save intermediate results computed during the forward
pass. These buffers can be used to speed up the backward pass when supplied to the
cudnnBatchNormalizationBackward(] function. The intermediate results stored in
resultSaveMean and resultSavelInvVariance buffers should not be used directly
by the user. Depending on the batch normalization mode, the results stored in
resultSavelInvVariance may vary. For the cache to work correctly, the input layer data
must remain unchanged until the backward function is called. Note that both parameters
can be NULL but only at the same time. In such a case, intermediate statistics will not
be saved, and cudnnBatchNormalizationBackward(] will have to re-compute them. It is
recommended to use this cache as the memory overhead is relatively small because these
tensors have a much lower product of dimensions than the data tensors.

Supported configurations

This function supports the following combinations of data types for various descriptors.

Table 12. Supported configurations
Data Type
Configurations xDesc bnScaleBiasMean alpha, beta yDesc

PSEUDO_HALF CONFIGUDNN DATA HALF A CUDNN DATA FLOAT CUDNN DATA FLOAT CUDNN DATA HALF

FLOAT CONFIG CUDNN_ DATA FLOAT CUDNN DATA FLOAT CUDNN DATA FLOAT CUDNN DATA FLOAT

NVIDIA cuDNN PR-09702-001_v8.3.0 | 119

cudnn_ops_train.so Library

Data Type
Configurations xDesc bnScaleBiasMean alpha, beta yDesc
DOUBLE CONFIG CUDNN DATA DOUBLECUDNN DATA DOUBLECUDNN DATA DOUBLECUDNN DATA DOUBLE

PSE

Ret

UDO BFLOAT16 CCWENN; DATA BFLOATAWDNN DATA FLOAT CUDNN DATA FLOAT CUDNN DATA BFLOAT16

urns

CUDNN_STATUS_ SUCCESS

T

he computation was performed successfully.

CUDNN_STATUS_NOT_SUPPORTED

T

he function does not support the provided configuration.

CUDNN_STATUS_BAD_ PARAM

A

>

>

vV v v Vv

4.1

cud

NVIDI

t least one of the following conditions are met:

One of the pointers alpha, beta, x, y, bnScale, bnBias iS NULL.

The number of xDesc or yDesc tensor descriptor dimensions is not within the range of
[4,5] (only 4D and 5D tensors are supported).

bnScaleBiasMeanVarDesc dimensions are not 1xCx1x1 for 4D and 1xCx1x1x1 for 5D for
spatial, and are not 1xCxHxW for 4D and 1xCxDxHxW for 5D for per-activation mode.

Exactly one of resultSaveMean, resultSaveInvVariance pointers are NULL.
Exactly one of resultRunningMean, resultRunningInvVariance pointers are NULL.
epsilon value is less than CUDNN BN MIN EPSILON.
Dimensions or data types mismatch for xDesc, yDesc.

. cudnnBatchNormalizationForwardTrainingEx ()

nnStatus t cudnnBatchNormalizationForwardTrainingEx (

cudnnHandle t handle,

cudnnBatchNormMode t mode,

cudnnBatchNormOps t bnOps,

const void *alpha,

const void *beta,

const cudnnTensorDescriptor t xDesc,

const void *xData,

const cudnnTensorDescriptor t zDesc,

const void *zData,

const cudnnTensorDescriptor t yDesc,

void *yData,

const cudnnTensorDescriptor t bnScaleBiasMeanVarDesc,

const void *bnScaleData,

const void *bnBiasData,

double exponentialAverageFactor,

void *resultRunningMeanData,

void *resultRunningVarianceData,

double epsilon,

void *saveMean,

void *savelInvVariance,

const cudnnActivationDescriptor t activationDesc,

void *workspace,

size t workSpaceSizeInBytes

A cuDNN PR-09702-001_v8.3.0 | 120

cudnn_ops_train.so Library

void *reserveSpace
size t reserveSpaceSizeInBytes) ;

This function is an extension of the cudnnBatchNormalizationForwardTraining() for performing
the forward batch normalization layer computation.

This APl will trigger the new semi-persistent NHWC kernel when the following conditions are
true:

» Alltensors, namely, x, y, dz, dy, dx mustbe NHWC-fully packed and must be of the
type CUDNN DATA HALF.
» The input parameter mode must be set to CUDNN BATCHNORM SPATIAL PERSISTENT.

» workspace iS not NULL.

» Before cuDNN version 8.2.0, the tensor ¢ dimension should always be a multiple of
4. After 8.2.0, the tensor ¢ dimension should be a multiple of 4 only when bnoOps is
CUDNN BATCHNORM OPS BN ADD ACTIVATION.

» workSpaceSizeInBytes Is equal to or larger than the amount required by
cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize|().

» reserveSpaceSizeInBytes Is equal to or larger than the amount required by
cudnnGetBatchNormalizationTrainingExReserveSpaceSizel().

» The content in reserveSpace stored by cudnnBatchNormalizationForwardTrainingEx(]
must be preserved.

If workspace IS NULL and workSpaceSizeInBytes of zero is passed in, this APl will function
exactly like the non-extended function cudnnBatchNormalizationForwardTraining().

This workspace is not required to be clean. Moreover, the workspace does not have to
remain unchanged between the forward and backward pass, as it is not used for passing any
information.

This extended function can accept a *workspace pointer to the GPU workspace, and
workSpaceSizelInBytes, the size of the workspace, from the user.

The bnOps input can be used to set this function to perform either only the batch
normalization, or batch normalization followed by activation, or batch normalization followed
by element-wise addition and then activation.

Only 4D and 5D tensors are supported. The epsilon value has to be the same during the
training, the backpropagation, and the inference.

When the tensor layout is NCHW, higher performance can be obtained when HW-packed
tensors are used for x, dy, dx.

Parameters
handle

Handle to a previously created cuDNN library descriptor. For more information, see
cudnnHandle_t.

mode

Mode of operation (spatial or per-activation). For more information, see
cudnnBatchNormMode_t.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 121

cudnn_ops_train.so Library

bnOps
Input. Mode of operation for the fast NHWC kernel. See cudnnBatchNormOps_t. This input
can be used to set this function to perform either only the batch normalization, or batch
normalization followed by activation, or batch normalization followed by element-wise
addition and then activation.

*alpha, *beta

Inputs. Pointers to scaling factors (in host memory) used to blend the layer output value

with prior value in the destination tensor as follows:
dstValue = alpha[0O]*resultValue + beta[0]*priorDstValue

For more information, see Scaling Parameters in the cuDNN Developer Guide.

xDesc, *xData, zDesc, *zData, yDesc, *yData

Tensor descriptors and pointers in device memory for the layer's input x and output y, and
for the optional z tensor input for residual addition to the result of the batch normalization
operation, prior to the activation. The optional zDes and *zData descriptors are only used
when bnOps IS CUDNN_BATCHNORM OPS BN ADD ACTIVATION, otherwise users may pass
NULL. When in use, z should have exactly the same dimension as x and the final output y.
For more information, see cudnnTensorDescriptor_t.

bnScaleBiasMeanVarDesc

Shared tensor descriptor desc for the secondary tensor that was derived by
cudnnDeriveBNTensorDescriptor(]. The dimensions for this tensor descriptor are
dependent on the normalization mode.

*bnScaleData, *bnBiasData
Inputs. Pointers in device memory for the batch normalization scale and bias parameters (in
the original paper, bias is referred to as beta and scale as gamma). Note that bnBiasData
parameter can replace the previous layer’s bias parameter for improved efficiency.
exponentialAverageFactor
Input. Factor used in the moving average computation as follows:

runningMean = runningMean* (1-factor) + newMean*factor

Use a factor=1/ (1+n) at N-th call to the function to get Cumulative Moving Average (CMA)

behavior such that:

CMA[n] = (x[1l]+...+x[n])/n

This is proved below:

Writing

CMA[n+1l] = (n*CMA[n]+x[n+1])/ (n+1)
((n+l)*CMA[n]-CMA[n])/ (n+l) + x[n+1]/(n+1)

CMA[n]*(1-1/(n+l))+x[n+1]1*1/ (n+1)
CMA[n]*(l-factor) + x(n+l)*factor

*resultRunningMeanData, *resultRunningVarianceData

Inputs/Outputs. Pointers to the running mean and running variance data. Both

these pointers can be NULL but only at the same time. The value stored in
resultRunningVarianceData (or passed as an input in inference mode] is the sample
variance and is the moving average of variance [x] where the variance is computed either

NVIDIA cuDNN PR-09702-001_v8.3.0 | 122

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#scaling-parameters
https://arxiv.org/abs/1502.03167

cudnn_ops_train.so Library

over batch or spatial+batch dimensions depending on the mode. If these pointers are not
NULL, the tensors should be initialized to some reasonable values or to 0.

epsilon

Input. Epsilon value used in the batch normalization formula. Its value should be equal to or
greater than the value defined for CUDNN BN MIN EPSILON in cudnn.h. The same epsilon
value should be used in forward and backward functions.

*saveMean, *saveInvVariance
Outputs. Optional cache parameters containing saved intermediate results computed
during the forward pass. For this to work correctly, the layer's x and bnScaleData,
bnBiasData data has to remain unchanged until this backward function is called. Note that
both these parameters can be NULL but only at the same time. It is recommended to use
this cache since the memory overhead is relatively small.

activationDesc
Input. The tensor descriptor for the activation operation. When the
bnOps Input is set to either CUDNN BATCHNORM OPS BN ACTIVATION Or
CUDNN_ BATCHNORM OPS BN ADD ACTIVATION then this activation is used, otherwise user
may pass NULL.

*workspace, workSpaceSizeInBytes
Inputs. *workspace is a pointer to the GPU workspace, and workSpaceSizeInBytes is
the size of the workspace. When *workspace is not NULL and *workSpaceSizeInBytes IS
large enough, and the tensor layout is NHWC and the data type configuration is supported,
then this function will trigger a new semi-persistent NHWC kernel for batch normalization.
The workspace is not required to be clean. Also, the workspace does not need to remain
unchanged between the forward and backward passes.

*reserveSpace
Input. Pointer to the GPU workspace for the reserveSpace.

reserveSpaceSizelInBytes
Input. The size of the reserveSpace. Must be equal or larger than the amount required by
cudnnGetBatchNormalizationTrainingExReserveSpaceSize().

Supported configurations

This function supports the following combinations of data types for various descriptors.

Table 13. Supported configurations
Data Type
Configurations xDesc bnScaleBiasM¢ alpha, beta zDesc yDesc

PSEUDO_HALF CONBDEN DATA HALEUDNN DATA FLOGUDNN DATA FLOBUDNN DATA HALEUDNN DATA HALF
FLOAT CONFIG | CUDNN_DATA FLOGUDNN DATA FLOGUDNN DATA FLONDt supported | CUDNN DATA FLOAT

DOUBLE_CONFIG CUDNN_DATA DOUBDENN DATA DOUBEDENN DATA DOUBGE supported | CUDNN_DATA DOUBLE

NVIDIA cuDNN PR-09702-001_v8.3.0 | 123

cudnn_ops_train.so Library

Returns

CUDNN_STATUS_SUCCESS

The computation was performed successfully.
CUDNN_STATUS_NOT SUPPORTED

The function does not support the provided configuration.

CUDNN_STATUS BAD PARAM
At least one of the following conditions are met:

» One of the pointers alpha, beta, x, y, bnScaleData, bnBiasData IS NULL.

» The number of xDesc or yDesc tensor descriptor dimensions is not within the [4, 5]
range (only 4D and 5D tensors are supported).

> bnScaleBiasMeanVarDesc dimensions are not 1xCx1x1 for 4D and 1xCx1x1x1 for 5D for
spatial, and are not 1xCxHxW for 4D and 1xCxDxHxW for 5D for per-activation mode.

> Exactly one of saveMean, saveInvVariance pointers are NULL.

» Exactly one of resultRunningMeanData, resultRunningInvVarianceData pointers
are NULL.

> epsilonvalue is less than CUDNN BN MIN EPSILON.

» Dimensions or data types mismatch for xDesc, yDesc.

4.1.6. cudnnDivisiveNormalizationBackward ()

cudnnStatus t cudnnDivisiveNormalizationBackward (

cudnnHandle t handle,
cudnnLRNDescriptor t normDesc,
cudnnDivNormMode t mode,
const void *alpha,
const cudnnTensorDescriptor t xDesc,
const void 5%,
const void *means,
const void *dy,
void *temp,
void *temp2,
const void *beta,
const cudnnTensorDescriptor t dxDesc,
void *dx,
void *dMeans)

This function performs the backward DivisiveNormalization layer computation.

S| Note: Supported tensor formats are NCHW for 4D and NCDHW for 5D with any non-overlapping
non-negative strides. Only 4D and 5D tensors are supported.

Parameters

handle

Input. Handle to a previously created cuDNN library descriptor.

NVIDIA cuDNN

PR-09702-001_v8.3.0 | 124

cudnn_ops_train.so Library

normDesc
Input. Handle to a previously initialized LRN parameter descriptor (this descriptor is used
for both LRN and DivisiveNormalization layers).

mode
Input. DivisiveNormalization layer mode of operation. Currently only

CUDNN_ DIVNORM PRECOMPUTED MEANS is implemented. Normalization is performed using
the means input tensor that is expected to be precomputed by the user.

alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the layer output value with

prior value in the destination tensor as follows:
dstValue = alpha[0O]*resultValue + beta[0]*priorDstValue

For more information, see Scaling Parameters in the cuDNN Developer Guide.

xDesc, X, means

Input. Tensor descriptor and pointers in device memory for the layer's x and means data.
Note that the means tensor is expected to be precomputed by the user. It can also contain
any valid values [not required to be actual means, and can be for instance a result of a
convolution with a Gaussian kernel).

dy

Input. Tensor pointer in device memory for the layer's dy cumulative loss differential data
(error backpropagation).

temp, temp2

Workspace. Temporary tensors in device memory. These are used for computing
intermediate values during the backward pass. These tensors do not have to be preserved
from forward to backward pass. Both use xDesc as a descriptor.

dxDesc

Input. Tensor descriptor for dx and dMeans.
dx, dMeans

Output. Tensor pointers (in device memory] for the layers resulting in cumulative gradients
dx and dMeans (dLoss/dx and dLoss/dMeans). Both share the same descriptor.

Returns

CUDNN_STATUS_SUCCESS

The computation was performed successfully.

CUDNN_STATUS BAD PARAM
At least one of the following conditions are met:

> One of the tensor pointers x, dx, temp, tmep2, dy IS NULL.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 125

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#scaling-parameters

cudnn_ops_train.so Library

Number of any of the input or output tensor dimensions is not within the [4, 5] range.
Either alpha or beta pointer is NULL.
A mismatch in dimensions between xDesc and dxDesc.

LRN descriptor parameters are outside of their valid ranges.

vV vV v Vv VY

Any of the tensor strides is negative.
CUDNN_STATUS_UNSUPPORTED

The function does not support the provided configuration, for example, any of the input and
output tensor strides mismatch (for the same dimension] is a non-supported configuration.

4.1.7. cudnnDropoutBackward ()

cudnnStatus_t cudnnDropoutBackward (
cudnnHandle t handle,
const cudnnDropoutDescriptor t dropoutDesc,
const cudnnTensorDescriptor t dydesc,

const void #ely,

const cudnnTensorDescriptor t dxdesc,

void welx,

void *reserveSpace,

size t reserveSpaceSizeInBytes)

This function performs backward dropout operation over dy returning results in dx. If during
forward dropout operation value from x was propagated to y then during backward operation
value from dy will be propagated to dx, otherwise, dx value will be set to 0.

Note: Better performance is obtained for fully packed tensors.

Parameters
handle

Input. Handle to a previously created cuDNN context.

dropoutDesc

Input. Previously created dropout descriptor object.

dyDesc
Input. Handle to a previously initialized tensor descriptor.
dy
Input. Pointer to data of the tensor described by the dyDesc descriptor.

dxDesc

Input. Handle to a previously initialized tensor descriptor.
dx

Output. Pointer to data of the tensor described by the dxDesc descriptor.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 126

reserveSpace

cudnn_ops_train.so Library

Input. Pointer to user-allocated GPU memory used by this function. It is expected that
reserveSpace was populated during a call to cudnnDropoutForward and has not been

changed.

reserveSpaceSizelInBytes

Input. Specifies the size in bytes of the provided memory for the reserve space

Returns
CUDNN_STATUS_SUCCESS

The call was successful.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.

CUDNN_STATUS BAD PARAM

At least one of the following conditions are met:

» The number of elements of input tensor and output tensors differ.

>

The datatype of the input tensor and output tensors differs.

» The strides of the input tensor and output tensors differ and in-place operation is used

li.e., x and y pointers are equall.

» The provided reserveSpaceSizeInBytes is less than the value returned by

cudnnDropoutGetReserveSpaceSize.

» cudnnSetDropoutDescriptor has not been called on dropoutDesc with the non-NULL

states argument.
CUDNN_STATUS_EXECUTION FAILED

The function failed to launch on the GPU.

4.1.8.

cudnnGetBatchNormalizationBackwardExWorkspac

cudnnStatus t cudnnGetBatchNormalizationBackwardExWorkspaceSize (

cudnnHandle t
cudnnBatchNormMode t
cudnnBatchNormOps t

const cudnnTensorDescriptor t
const cudnnTensorDescriptor t
const cudnnTensorDescriptor t
const cudnnTensorDescriptor t
const cudnnTensorDescriptor t
const cudnnTensorDescriptor t
const cudnnActivationDescriptor_ t
size t

handle,

mode,

bnOps,

xDesc,

yDesc,

dyDesc,

dzDesc,

dxDesc,
dBnScaleBiasDesc,
activationDesc,
*sizelnBytes) ;

This function returns the amount of GPU memory workspace the user should allocate to be
able to call cudnnGetBatchNormalizationBackwardExWorkspaceSize () function for the
specified bnOps input setting. The workspace allocated will then be passed to the function
cudnnGetBatchNormalizationBackwardExWorkspaceSize ()

NVIDIA cuDNN

PR-09702-001_v8.3.0 |

cudnn_ops_train.so Library

Parameters

handle

Input. Handle to a previously created cuDNN library descriptor. For more information, see
cudnnHandle_t.

mode

Input. Mode of operation (spatial or per-activation]. For more information, see
cudnnBatchNormMode_t.

bnOps

Input. Mode of operation for the fast NHWC kernel. For more information, see
cudnnBatchNormOps_t. This input can be used to set this function to perform either
only the batch normalization, or batch normalization followed by activation, or batch
normalization followed by element-wise addition and then activation.

xDesc, yDesc, dyDesc, dzDesc, dxDesc

Tensor descriptors and pointers in the device memory for the layer’s x data, back
propagated differential dy (inputs), the optional y input data, the optional dz output, and the
dx output, which is the resulting differential with respect to x. For more information, see
cudnnTensorDescriptor_t.

dBnScaleBiasDesc

Input. Shared tensor descriptor for the following six tensors: bnScalebata, bnBiasData,
dBnScaleData, dBnBiasData, savedMean, and savedInvVariance. Thisis

the shared tensor descriptor desc for the secondary tensor that was derived by
cudnnDeriveBNTensorDescriptor(). The dimensions for this tensor descriptor are
dependent on normalization mode. Note that the data type of this tensor descriptor must be
float for FP16 and FP32 input tensors, and double for FP64 input tensors.

activationDesc
Input. Descriptor for the activation operation. When the bnops input is set to either
CUDNN_BATCHNORM OPS BN ACTIVATION Or CUDNN BATCHNORM OPS BN ADD ACTIVATION,
then this activation is used, otherwise user may pass NULL.

*sizeInBytes

Output. Amount of GPU memory required for the workspace, as determined by this function,
to be able to execute the cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize()
function with the specified bnops input setting.

Returns
CUDNN_STATUS SUCCESS

The computation was performed successfully.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 128

cudnn_ops_train.so Library

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:
» Number of xDesc, yDesc or dxDesc tensor descriptor dimensions is not within the

range of [4,5] (only 4D and 5D tensors are supported).

> dBnScaleBiasDesc dimensions not 1xCx1x1 for 4D and 1xCx1x1x1 for 5D for spatial,
and are not 1xCxHxW for 4D and 1xCxDxHxW for 5D for per-activation mode.

» Dimensions or data types mismatch for any pair of xDesc, dyDesc, dxDesc.

4.1.9. cudnnGetBatchNormalizationForwardTrainingExW
cudnnStatus t cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize (
cudnnHandle t handle,
cudnnBatchNormMode t mode,
cudnnBatchNormOps t bnOps,
const cudnnTensorDescriptor t xDesc,
const cudnnTensorDescriptor t zDesc,
const cudnnTensorDescriptor t yDesc,
const cudnnTensorDescriptor t bnScaleBiasMeanVarDesc,
const cudnnActivationDescriptor t activationDesc,
size t *sizeInBytes) ;

This function returns the amount of GPU memory workspace the user should allocate to be
able to call cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize () function
for the specified bnops input setting. The workspace allocated should then be passed by the
user to the function cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize ().

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor. For more information, see
cudnnHandle_t.

mode

Input. Mode of operation (spatial or per-activation). For more information, see
cudnnBatchNormMode_t.

bnOps
Input. Mode of operation for the fast NHWC kernel. For more information, see
cudnnBatchNormOps_t. This input can be used to set this function to perform either
only the batch normalization, or batch normalization followed by activation, or batch
normalization followed by element-wise addition and then activation.

xDesc, zDesc, yDesc

Tensor descriptors and pointers in the device memory for the layer's x data,
the optional z input data, and the y output. zDesc is only needed when bnOps is

NVIDIA cuDNN PR-09702-001_v8.3.0 | 129

cudnn_ops_train.so Library

CUDNN_BATCHNORM OPS BN ADD ACTIVATION, otherwise the user may pass NULL. For
more information, see cudnnTensorDescriptor_t.

bnScaleBiasMeanVarDesc

Input. Shared tensor descriptor for the following six tensors: bnScaleData, bnBiasData,
dBnScaleData, dBnBiasData, savedMean, and savedInvVariance. Thisis

the shared tensor descriptor desc for the secondary tensor that was derived by
cudnnDeriveBNTensorDescriptor(). The dimensions for this tensor descriptor are
dependent on normalization mode. Note that the data type of this tensor descriptor must be
float for FP16 and FP32 input tensors, and double for FP64 input tensors.

activationDesc
Input. Descriptor for the activation operation. When the bnops input is set to either
CUDNN BATCHNORM OPS BN ACTIVATION Or CUDNN BATCHNORM OPS BN ADD ACTIVATION
then this activation is used, otherwise the user may pass NULL.

*sizeInBytes
Output. Amount of GPU memory required for the workspace,
as determined by this function, to be able to execute the
cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize () function with the
specified bnOps input setting.

Returns

CUDNN_STATUS_SUCCESS

The computation was performed successfully.

CUDNN_STATUS NOT SUPPORTED
The function does not support the provided configuration.
CUDNN_STATUS BAD PARAM

At least one of the following conditions are met:

» Number of xDesc, yDesc or dxDesc tensor descriptor dimensions is not within the
range of [4,5] (only 4D and 5D tensors are supported).

» dBnScaleBiasDesc dimensions not 1xCx1x1 for 4D and 1xCx1x1x1 for 5D for spatial,
and are not 1xCxHxW for 4D and 1xCxDxHxW for 5D for per-activation mode.

» Dimensions or data types mismatch for xDesc, yDesc.

4.1.10. cudnnGetBatchNormalizationTrainingExReserveS

cudnnStatus_t cudnnGetBatchNormalizationTrainingExReserveSpaceSize (

cudnnHandle t handle,
cudnnBatchNormMode t mode,
cudnnBatchNormOps t bnOps,

const cudnnActivationDescriptor t activationDesc,
const cudnnTensorDescriptor t xDesc,

size t *sizelInBytes) ;

NVIDIA cuDNN PR-09702-001_v8.3.0 | 130

cudnn_ops_train.so Library

This function returns the amount of reserve GPU memory workspace the user should allocate
for the batch normalization operation, for the specified bnOps input setting. In contrast to the
workspace, the reserved space should be preserved between the forward and backward calls,
and the data should not be altered.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor. For more information, see
cudnnHandle_t.

mode

Input. Mode of operation (spatial or per-activation]. For more information, see
cudnnBatchNormMode_t.

bnOps
Input. Mode of operation for the fast NHWC kernel. For more information, see
cudnnBatchNormOps_t. This input can be used to set this function to perform either
only the batch normalization, or batch normalization followed by activation, or batch
normalization followed by element-wise addition and then activation.

xDesc

Tensor descriptors for the layer’'s x data. For more information, see
cudnnTensorDescriptor_t.

activationDesc
Input. Descriptor for the activation operation. When the bnops input is set to either
CUDNN_BATCHNORM OPS BN ACTIVATION Or CUDNN BATCHNORM OPS BN ADD ACTIVATION
then this activation is used, otherwise user may pass NULL.

*sizeInBytes
Output. Amount of GPU memory reserved.

Returns

CUDNN_STATUS_SUCCESS

The computation was performed successfully.

CUDNN_STATUS NOT SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD PARAM

At least one of the following conditions are met:

» The xDesc tensor descriptor dimension is not within the [4, 5] range (only 4D and 5D
tensors are supported).

4.1.11. cudnnGetNormalizationBackwardWorkspaceSize ()

cudnnStatus_t

NVIDIA cuDNN PR-09702-001_v8.3.0 | 131

cudnn_ops_train.so Library

cudnnGetNormalizationBackwardWorkspaceSize (cudnnHandle t handle,
cudnnNormMode t mode,
cudnnNormOps t normOps,
cudnnNormAlgo t algo,
const cudnnTensorDescriptor t xDesc,
const cudnnTensorDescriptor t yDesc,
const cudnnTensorDescriptor t dyDesc,
const cudnnTensorDescriptor t dzDesc,
const cudnnTensorDescriptor t dxDesc,
const cudnnTensorDescriptor t
dNormScaleBiasDesc,
const cudnnActivationDescriptor t
activationDesc,
const cudnnTensorDescriptor t
normMeanVarDesc,
size t *sizelnBytes,
int groupCnt) ;

This function returns the amount of GPU memory workspace the user should allocate
to be able to call cudnnNormalizationBackward() function for the specified normops

and algo input setting. The workspace allocated will then be passed to the function
cudnnNormalizationBackward().

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor. For more information, see
cudnnHandle_t.

mode
Input. Mode of operation (per-channel or per-activation). For more information, see
cudnnNormMode_t.

normOps

Input. Mode of post-operative. Currently CUDNN_NORM OPS NORM ACTIVATION and
CUDNN NORM OPS NORM ADD ACTIVATION are only supported in the NHWC layout. For
more information, see cudnnNormOps_t. This input can be used to set this function

to perform either only the normalization, or normalization followed by activation, or
normalization followed by element-wise addition and then activation.

algo

Input. Algorithm to be performed. For more information, see cudnnNormAlgo_t.

xDesc, yDesc, dyDesc, dzDesc, dxDesc

Tensor descriptors and pointers in the device memory for the layer's x data, back
propagated differential dy (inputs), the optional y input data, the optional dz output, and the
dx output, which is the resulting differential with respect to x. For more information, see
cudnnTensorDescriptor_t.

dNormScaleBiasDesc

Input. Shared tensor descriptor for the following four tensors: normScaleData,
normBiasData, dNormScaleData, dNormBiasData. [he dimensions for this tensor
descriptor are dependent on normalization mode. Note that the data type of this tensor

NVIDIA cuDNN PR-09702-001_v8.3.0 | 132

cudnn_ops_train.so Library

descriptor must be float for FP16 and FP32 input tensors, and double for FP64 input
tensors.

activationDesc

Input. Descriptor for the activation operation. When the normOps input is set to either
CUDNN_NORM OPS NORM ACTIVATION Or CUDNN NORM OPS NORM ADD ACTIVATION, then
this activation is used, otherwise the user may pass NULL.

normMeanVarDesc

Input. Shared tensor descriptor for the following tensors: savedMean and
savedInvVariance. The dimensions for this tensor descriptor are dependent on
normalization mode. Note that the data type of this tensor descriptor must be float for FP16
and FP32 input tensors, and double for FP64 input tensors.

*sizeInBytes
Output. Amount of GPU memory required for the workspace, as determined by this function,

to be able to execute the cudnnGetNormalizationForwardTrainingWorkspaceSize() function
with the specified normOps input setting.

groutCnt

Input. Only support 1 for now.

Returns

CUDNN_STATUS_SUCCESS

The computation was performed successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.

CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:

» Number of xDesc, yDesc or dxDesc tensor descriptor dimensions is not within the
range of [4,5] (only 4D and 5D tensors are supported).

» dNormScaleBiasDesc dimensions not 1xCx1x1 for 4D and 1xCx1x1x1 for 5D for per-
channel, and are not TxCxHxW for 4D and 1xCxDxHxW for 5D for per-activation mode.

» Dimensions or data types mismatch for any pair of xDesc, dyDesc, dxDesc.

4.1.12. cudnnGetNormalizationForwardTrainingWorkspac

cudnnStatus t

cudnnGetNormalizationForwardTrainingWorkspaceSize (cudnnHandle t handle,
cudnnNormMode t mode,
cudnnNormOps_t normOps,
cudnnNormAlgo t algo,

const cudnnTensorDescriptor t xDesc,
const cudnnTensorDescriptor t
zDesc,

NVIDIA cuDNN PR-09702-001_v8.3.0 | 133

cudnn_ops_train.so Library

const cudnnTensorDescriptor t
yDesc,

const cudnnTensorDescriptor t
normScaleBiasDesc,

const cudnnActivationDescriptor t
activationDesc,

const cudnnTensorDescriptor t
normMeanVarDesc,

size t *sizelnBytes,

int groupCnt) ;
This function returns the amount of GPU memory workspace the user should allocate to be
able to call cudnnNormalizationForwardTraining() function for the specified normops and
algo input setting. The workspace allocated should then be passed by the user to the function
cudnnNormalizationForwardTraining().

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor. For more information, see
cudnnHandle_t.

mode

Input. Mode of operation (per-channel or per-activation). For more information, see
cudnnNormMode_t.

normOps

Input. Mode of post-operative. Currently CUDNN NORM OPS NORM ACTIVATION and
CUDNN NORM OPS NORM ADD ACTIVATION are only supported in the NHWC layout. For
more information, see cudnnNormOps_t. This input can be used to set this function

to perform either only the normalization, or normalization followed by activation, or
normalization followed by element-wise addition and then activation.

algo

Input. Algorithm to be performed. For more information, see cudnnNormAlgo_t.

xDesc, zDesc, yDesc

Tensor descriptors and pointers in the device memory for the layer's x data, the
optional z input data, and the y output. zDesc is only needed when normoOps is

CUDNN NORM OPS NORM ADD ACTIVATION, otherwise the user may pass NULL. For more
information, see cudnnTensorDescriptor t.

normScaleBiasDesc

Input. Shared tensor descriptor for the following tensors: normScalebata and
normBiasData. The dimensions for this tensor descriptor are dependent on normalization
mode. Note that the data type of this tensor descriptor must be float for FP16 and FP32
input tensors, and double for FP64 input tensors.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 134

cudnn_ops_train.so Library

activationDesc

Input. Descriptor for the activation operation. When the normOps input is set to either
CUDNN_NORM OPS NORM ACTIVATION Or CUDNN NORM OPS NORM ADD ACTIVATION, then
this activation is used, otherwise the user may pass NULL.

normMeanVarDesc

Input. Shared tensor descriptor for the following tensors: savedMean and
savedInvVariance. The dimensions for this tensor descriptor are dependent on
normalization mode. Note that the data type of this tensor descriptor must be float for FP16
and FP32 input tensors, and double for FP64 input tensors.

*sizeInBytes
Output. Amount of GPU memory required for the workspace, as determined by this function,

to be able to execute the cudnnGetNormalizationForwardTrainingWorkspaceSize() function
with the specified normOps input setting.

groutCnt

Input. Only support 1 for now.

Returns

CUDNN_STATUS_SUCCESS

The computation was performed successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.

CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:

» Number of xDesc, yDesc or zDesc tensor descriptor dimensions is not within the range
of [4,5] {only 4D and 5D tensors are supported).

» normScaleBiasDesc dimensions not 1xCx1x1 for 4D and 1xCx1x1x1 for 5D for per-
channel, and are not TxCxHxW for 4D and 1xCxDxHxW for 5D for per-activation mode.

» Dimensions or data types mismatch for xDesc, yDesc.

4.1.13. cudnnGetNormalizationTrainingReserveSpaceSiz

cudnnStatus_t
cudnnGetNormalizationTrainingReserveSpaceSize (cudnnHandle t handle,
cudnnNormMode t mode,
cudnnNormOps t normOps,
cudnnNormAlgo t algo,
const cudnnActivationDescriptor t
activationDesc,
const cudnnTensorDescriptor t xDesc,
size t *sizelnBytes,
int groupCnt) ;

NVIDIA cuDNN PR-09702-001_v8.3.0 | 135

cudnn_ops_train.so Library

This function returns the amount of reserve GPU memory workspace the user should allocate
for the normalization operation, for the specified normOps input setting. In contrast to the
workspace, the reserved space should be preserved between the forward and backward calls,
and the data should not be altered.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor. For more information, see
cudnnHandle_t.

mode
Input. Mode of operation (per-channel or per-activation). For more information, see
cudnnNormMode_t.

normOps

Input. Mode of post-operative. Currently CUDNN_ NORM OPS NORM ACTIVATION and
CUDNN_NORM OPS NORM ADD ACTIVATION are only supported in the NHWC layout. For
more information, see cudnnNormOps_t . This input can be used to set this function
to perform either only the normalization, or normalization followed by activation, or
normalization followed by element-wise addition and then activation.

algo

Input. Algorithm to be performed. For more information, see cudnnNormAlgo_t.

xDesc

Tensor descriptors for the layer's x data. For more information, see
cudnnTensorDescriptor_t.

activationDesc

Input. Descriptor for the activation operation. When the normOps input is set to either
CUDNN_NORM OPS NORM ACTIVATION or CUDNN NORM OPS NORM ADD ACTIVATION then
this activation is used, otherwise the user may pass NULL.

*sizeInBytes

Output. Amount of GPU memory reserved.

groutCnt

Input. Only support 1 for now.

Returns
CUDNN_STATUS_SUCCESS

The computation was performed successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 136

cudnn_ops_train.so Library

CUDNN_STATUS BAD PARAM
At least one of the following conditions are met:

» The xDesc tensor descriptor dimension is not within the [4,5] range (only 4D and 5D
tensors are supported).

4.1.14. cudnnLRNCrossChannelBackward ()

cudnnStatus t cudnnLRNCrossChannelBackward (

cudnnHaHdle_t handle,
cudnnLRNDescriptor t normDesc,
cudnnLRNMode t lrnMode,
const void *alpha,
const cudnnTensorDescriptor t yDesc,
const void ®W

const cudnnTensorDescriptor t dyDesc,
const void *dy,
const cudnnTensorDescriptor t xDesc,
const void X,

const void *beta,
const cudnnTensorDescriptor t dxDesc,
void *dx)

This function performs the backward LRN layer computation.

S Note: Supported formats are: positive-strided, NCHW and NHWC for 4D x and y, and only
NCDHW DHW-packed for 5D (for both x and y]. Only non-overlapping 4D and 5D tensors are
supported. NCHW layout is preferred for performance.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor.

normDesc

Input. Handle to a previously initialized LRN parameter descriptor.

lrnMode

Input. LRN layer mode of operation. Currently, only CUDNN LRN CROSS CHANNEL DIMI is
implemented. Normalization is performed along the tensor’'s dima[1].
alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the layer output value with

prior value in the destination tensor as follows:
dstValue = alpha[0]*resultValue + beta[0]*priorDstValue

For more information, see Scaling Parameters in the cuDNN Developer Guide.

yDesc, y

Input. Tensor descriptor and pointer in device memory for the layer's y data.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 137

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#scaling-parameters

cudnn_ops_train.so Library

dyDesc, dy

Input. Tensor descriptor and pointer in device memory for the layer's input cumulative loss
differential data dy (including error backpropagation).

xDesc, x

Input. Tensor descriptor and pointer in device memory for the layer's x data. Note that
these values are not modified during backpropagation.

dxDesc, dx
Output. Tensor descriptor and pointer in device memory for the layer’s resulting cumulative
loss differential data dx (including error backpropagation).

Returns

CUDNN_STATUS_SUCCESS

The computation was performed successfully.

CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:

One of the tensor pointers x, y is NULL.
Number of input tensor dimensions is 2 or less.

LRN descriptor parameters are outside of their valid ranges.

vV v v VY

One of the tensor parameters is 5D but is not in NCDHW DHW-packed format.
CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration. See the following for some
examples of non-supported configurations:

> Any of the input tensor datatypes is not the same as any of the output tensor datatype.
> Any pairwise tensor dimensions mismatch for %, y, dx, dy.

> Any tensor parameters strides are negative.

4.1.15. cudnnNormalizationBackward ()

cudnnStatus t
cudnnNormalizationBackward (cudnnHandle t handle,
cudnnNormMode t mode,
cudnnNormOps t normOps,
cudnnNormAlgo t algo,
const void *alphaDataDiff,
const void *betaDataDiff,
const void *alphaParamDiff,
const void *betaParamDiff,
const cudnnTensorDescriptor t xDesc,
const void *xData,
const cudnnTensorDescriptor t yDesc,
const void *yData,
const cudnnTensorDescriptor t dyDesc,
const void *dyData,
const cudnnTensorDescriptor t dzDesc,

NVIDIA cuDNN PR-09702-001_v8.3.0 | 138

cudnn_ops_train.so Library

void *dzData,
const cudnnTensorDescriptor t dxDesc,
void *dxData,
const cudnnTensorDescriptor t dNormScaleBiasDesc,
const void *normScaleData,
const void *normBiasData,
void *dNormScaleData,
void *dNormBiasData,
double epsilon,
const cudnnTensorDescriptor t normMeanVarDesc,
const void *savedMean,
const void *savedInvVariance,
cudnnActivationDescriptor t activationDesc,
void *workSpace,
size t workSpaceSizeInBytes,
void *reserveSpace,
size t reserveSpaceSizelnBytes,
int groupCnt)

This function performs backward normalization layer computation that is specified by mode.
Per-channel normalization layer is based on the paper Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift, S. loffe, C. Szegedy, 2015.

Note: Only 4D and 5D tensors are supported.

The epsilon value has to be the same during training, backpropagation, and inference.

This workspace is not required to be clean. Moreover, the workspace does not have to
remain unchanged between the forward and backward pass, as it is not used for passing any
information.

This function can accept a *workspace pointer to the GPU workspace, and
workSpaceSizelInBytes, the size of the workspace, from the user.

The normOps input can be used to set this function to perform either only the normalization, or
normalization followed by activation, or normalization followed by element-wise addition and
then activation.

When the tensor layout is NCHW, higher performance can be obtained when HW-packed
tensors are used for x, dy, dx.

Higher performance for CUDNN_NORM PER CHANNEL mode can be obtained when the following
conditions are true:

» All tensors, namely, x, y, dz, dy, and dx must be NHWC-fully packed, and must be of the
type CUDNN DATA HALF.

» The tensor C dimension should be a multiple of 4.

» The input parameter mode must be set to CUDNN_NORM PER CHANNEL.
» The input parameter algo must be set to CUDNN_NORM ALGO PERSIST.
» Workspace is not NULL.

» workSpaceSizelInBytes is equal to or larger than the amount required by
cudnnGetNormalizationBackwardWorkspaceSize().

» reserveSpaceSizeInBytes Is equalto or larger than the amount required by
cudnnGetNormalizationTrainingReserveSpaceSize().

NVIDIA cuDNN PR-09702-001_v8.3.0 | 139

https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167

cudnn_ops_train.so Library

» The content in reserveSpace stored by cudnnNormalizationForwardTraining(] must be
preserved.

Parameters

handle
Input. Handle to a previously created cuDNN library descriptor. For more information, see

cudnnHandle t.

mode
Input. Mode of operation (per-channel or per-activation). For more information, see
cudnnNormMode_t.

normOps

Input. Mode of post-operative. Currently CUDNN NORM OPS NORM ACTIVATION and
CUDNN NORM OPS NORM ADD ACTIVATION are only supported in the NHWC layout. For
more information, see cudnnNormOps_t. This input can be used to set this function

to perform either only the normalization, or normalization followed by activation, or
normalization followed by element-wise addition and then activation.

algo

Input. Algorithm to be performed. For more information, see cudnnNormAlgo_t.

*alphaDataDiff, *betaDataDiff

Inputs. Pointers to scaling factors (in host memory) used to blend the gradient output dx

with a prior value in the destination tensor as follows:
dstValue = alpha[0] *resultValue + beta[0] *priorDstValue

For more information, see Scaling Parameters in the cuDNN Developer Guide.

*alphaParamDiff, *betaParamDiff

Inputs. Pointers to scaling factors (in host memory) used to blend the gradient outputs
dNormScaleData and dNormBiasData with prior values in the destination tensor as
follows:

dstValue = alpha[0] *resultValue + beta[0] *priorDstValue

For more information, see Scaling Parameters in the cuDNN Developer Guide.

xDesc, *xData, yDesc, *yData, dyDesc, *dyData

Inputs. Tensor descriptors and pointers in the device memory for the layer’'s x data,
backpropagated gradient input dy, the original forward output y data. ybesc and yData are
not needed if normOps is set to CUDNN_NORM OPS_NORM, Users may pass NULL. For more
information, see cudnnTensorDescriptor_t.

dzDesc, *dzData, dxDesc, *dxData

Outputs. Tensor descriptors and pointers in the device memory for the computed

gradient output dz and dx. dzDesc and *dzData is not needed when normOps is
CUDNN NORM OPS NORM Or CUDNN NORM OPS NORM ACTIVATION, Users may pass NULL. For
more information, see cudnnTensorDescriptor t.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 140

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#scaling-parameters
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#scaling-parameters

cudnn_ops_train.so Library

dNormScaleBiasDesc

Input. Shared tensor descriptor for the following six tensors: normScaleData,
normBiasData, dNormScaleData, and dNormBiasData. IThe dimensions for this tensor
descriptor are dependent on normalization mode.

Note: The data type of this tensor descriptor must be float for FP16 and FP32 input tensors
and double for FP64 input tensors.

For more information, see cudnnTensorDescriptor t.

*normScaleData
Input. Pointer in the device memory for the normalization scale parameter (in the original
paper the quantity scale is referred to as gamma).

*normBiasData
Input. Pointers in the device memory for the normalization bias parameter (in the original

paper bias is referred to as beta). This parameter is used only when activation should be
performed.

*dNormScaleData, dNormBiasData
Inputs. Pointers in the device memory for the gradients of normScalebata and
normBiasData, respectively.
epsilon
Input. Epsilon value used in normalization formula. Its value should be equal to or greater
than zero. The same epsilon value should be used in forward and backward functions.
normMeanVarDesc
Input. Shared tensor descriptor for the following tensors: savedMean and

savedInvVariance. The dimensions for this tensor descriptor are dependent on
normalization mode.

S Note: The data type of this tensor descriptor must be float for FP16 and FP32 input tensors
and double for FP64 input tensors.

For more information, see cudnnTensorDescriptor t.

*savedMean, *savedInvVariance

Inputs. Optional cache parameters containing saved intermediate results computed
during the forward pass. For this to work correctly, the layer's x and normScaleData,
normBiasData data has to remain unchanged until this backward function is called. Note
that both these parameters can be NULL but only at the same time. It is recommended to
use this cache since the memory overhead is relatively small.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 141

https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167

cudnn_ops_train.so Library

activationDesc

Input. Descriptor for the activation operation. When the normOps input is set to either
CUDNN_NORM OPS NORM ACTIVATION Or CUDNN NORM OPS NORM ADD ACTIVATION then
this activation is used, otherwise the user may pass NULL.

workspace

Input. Pointer to the GPU workspace.

workSpaceSizeInBytes

Input. The size of the workspace. It must be large enough to trigger the fast NHWC semi-
persistent kernel by this function.

*reserveSpace

Input. Pointer to the GPU workspace for the reservespace.

reserveSpaceSizelInBytes

Input. The size of the reserveSpace. It must be equal or larger than the amount required
by cudnnGetNormalizationTrainingReserveSpaceSize(].

groutCnt

Input. Only support 1 for now.

Returns
CUDNN_STATUS SUCCESS

The computation was performed successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

» Any of the pointers alphaDataDiff, betaDataDiff, alphaParamDiff
betaParamDiff,xData,dyData,deata,normScaleData,dNormScaleData,and
dNormBiasData IS NULL.

> The number of xDesc or yDesc or dxDesc tensor descriptor dimensions is not within
the range of [4,5] (only 4D and 5D tensors are supported).

» dNormScaleBiasDesc dimensions not 1xCx1x1 for 4D and 1xCx1x1x1 for 5D for per-
channel, and are not TxCxHxW for 4D and 1xCxDxHxW for 5D for per-activation mode.

> Exactly one of savedMean, savedInvVariance pointers is NULL.
> epsilon value is less than zero.

» Dimensions or data types mismatch for any pair of xDesc, dyDesc, dxDesc,

dNormScaleBiasDesc, and normMeanVarDesc

NVIDIA cuDNN PR-09702-001_v8.3.0 | 142

cudnn_ops_train.so Library

4.1.16. cudnnNormalizationForwardTraining ()

cudnnStatus t
cudnnNormalizationForwardTraining (cudnnHandle t handle,
cudnnNormMode t mode,
cudnnNormOps_t normOps,
cudnnNormAlgo t algo,
const void *alpha,
const void *beta,
const cudnnTensorDescriptor t xDesc,
const void *xData,
const cudnnTensorDescriptor t normScaleBiasDesc,
const void *normScale,
const void *normBias,
double exponentialAverageFactor,
const cudnnTensorDescriptor t normMeanVarDesc,
void *resultRunningMean,
void *resultRunningVariance,
double epsilon,
void *resultSaveMean,
void *resultSavelInvVariance,
cudnnActivationDescriptor t activationDesc,
const cudnnTensorDescriptor t zDesc,
const void *zData,
const cudnnTensorDescriptor t yDesc,
void *yData,
void *workspace,
size t workSpaceSizeInBytes,
void *reserveSpace,
size t reserveSpaceSizelInBytes,
int groupCnt) ;

This function performs the forward normalization layer computation for the training phase.
Depending on mode, different normalization operations will be performed. Per-channel layer

is based on the paper Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift, S. loffe, C. Szegedy, 2015.

@ Note:

» Only 4D and 5D tensors are supported.
» The epsilon value has to be the same during training, back propagation, and inference.

» For the inference phase, use cudnnNormalizationForwardInference().

» Higher performance can be obtained when HW-packed tensors are used for both x and y.

This APl will trigger the new semi-persistent NHWC kernel when the following conditions are
true:

» All tensors, namely, xData, yData must be NHWC-fully packed and must be of the type
CUDNN_DATA HALF.

» The tensor C dimension should be a multiple of 4.
» The input parameter mode must be set to CUDNN NORM PER CHANNEL.
» The input parameter algo must be set to CUDNN_NORM ALGO PERSIST.

> workspace IS not NULL

NVIDIA cuDNN PR-09702-001_v8.3.0 | 143

https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167

cudnn_ops_train.so Library

> workSpaceSizelInBytes is equal to or larger than the amount required by
cudnnGetNormalizationForwardTrainingWorkspaceSizel().

» reserveSpaceSizeInBytes is equalto or larger than the amount required by
cudnnGetNormalizationTrainingReserveSpaceSize().

» The content in reserveSpace stored by cudnnNormalizationForwardTraining(] must be

preserved.

This workspace is not required to be clean. Moreover, the workspace does not have to

remain unchanged between the forward and backward pass, as it is not used for passing any
information. This extended function can accept a *workspace pointer to the GPU workspace,

and workSpaceSizeTInBytes, the size of the workspace, from the user.

The normOps input can be used to set this function to perform either only the normalization, or

normalization followed by activation, or normalization followed by element-wise addition and

then activation.

Only 4D and 5D tensors are supported. The epsilon value has to be the same during the
training, the backpropagation, and the inference.

When the tensor layout is NCHW, higher performance can be obtained when HW-packed
tensors are used for xData, yData.

Parameters

handle

Input. Handle to a previously created cuDNN library descriptor. For more information, see

cudnnHandle t.

mode
Input. Mode of operation (per-channel or per-activation). For more information, see
cudnnNormMode_t.

normOps

Input. Mode of post-operative. Currently CUDNN NORM OPS NORM ACTIVATION and

CUDNN NORM OPS NORM ADD ACTIVATION are only supported in the NHWC layout. For

more information, see cudnnNormOps_t. This input can be used to set this function
to perform either only the normalization, or normalization followed by activation, or
normalization followed by element-wise addition and then activation.

algo

Input. Algorithm to be performed. For more information, see cudnnNormAlgo_t.

*alpha, *beta

Inputs. Pointers to scaling factors (in host memory) used to blend the layer output value

with prior value in the destination tensor as follows:
dstValue = alpha[0] *resultValue + beta[0] *priorDstValue

For more information, see Scaling Parameters in the cuDNN Developer Guide.

xDesc, yDesc

Input. Handles to the previously initialized tensor descriptors.

NVIDIA cuDNN PR-09702-001_v8.3.0

144

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#scaling-parameters

cudnn_ops_train.so Library

*xData

Input. Data pointer to GPU memory associated with the tensor descriptor xDesc, for the
layer’'s x input data.

*yData

Output. Data pointer to GPU memory associated with the tensor descriptor yDesc, for the y
output of the normalization layer.

zDesc, *zData

Input. Tensor descriptors and pointers in device memory for residual addition to the result
of the normalization operation, prior to the activation. zbesc and *zData are optional and
are only used when normOps is CUDNN_NORM OPS NORM ADD ACTIVATION, otherwise the
user may pass NULL. When in use, z should have exactly the same dimension as xData and
the final output ybata. For more information, see cudnnTensorDescriptor_t.

normScaleBiasDesc, normScale, normBias

Inputs. Tensor descriptors and pointers in device memory for the normalization scale and
bias parameters (in the original paper bias is referred to as beta and scale as gamma). The
dimensions for the tensor descriptor are dependent on the normalization mode.

exponentialAverageFactor

Input. Factor used in the moving average computation as follows:

runningMean = runningMean* (1-factor) + newMean*factor

Use a factor=1/ (1+n) at N-th call to the function to get Cumulative Moving Average (CMA)

behavior such that:
CMA[n] = (x[1]+...+x[n])/n

This is proved below:

Writing

CMA[n+l] = (n*CMA[n]+x[n+1])/(n+1)

((n+1) *CMA[n]-CMA[n])/ (n+1l) + x[n+1]/(n+1)
CMA[n]*(1-1/(n+l))+x[n+1]*1/ (n+1)
CMA[n] * (1-factor) + x(n+l)*factor

normMeanVarDesc

Inputs. Tensor descriptor used for following tensors: resultRunningMean,

resultRunningVariance, resultSaveMean, resultSaveInvVariance

*resultRunningMean, *resultRunningVariance

Inputs/Outputs. Pointers to the running mean and running variance data. Both

these pointers can be NULL but only at the same time. The value stored in
resultRunningVariance (or passed as an input in inference mode) is the sample variance
and is the moving average of variance [x] where the variance is computed either over
batch or spatial+batch dimensions depending on the mode. If these pointers are not NULL,
the tensors should be initialized to some reasonable values or to 0.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 145

https://arxiv.org/abs/1502.03167

cudnn_ops_train.so Library

epsilon

Input. Epsilon value used in the normalization formula. Its value should be equal to or
greater than zero.

*resultSaveMean, *resultSaveInvVariance

Outputs. Optional cache parameters containing saved intermediate results computed
during the forward pass. For this to work correctly, the layer's x and normScale, normBias
data has to remain unchanged until this backward function is called. Note that both these
parameters can be NULL but only at the same time. It is recommended to use this cache
since the memory overhead is relatively small.

activationDesc
Input. The tensor descriptor for the activation operation. When the normOps input is set to

either CUDNN_NORM OPS NORM ACTIVATION Or CUDNN NORM OPS NORM ADD ACTIVATION
then this activation is used, otherwise the user may pass NULL.

*workspace, workSpaceSizeInBytes
Inputs. *workspace is a pointer to the GPU workspace, and workSpaceSizeInBytes is
the size of the workspace. When *workspace is not NULL and *workSpaceSizeInBytes IS
large enough, and the tensor layout is NHWC and the data type configuration is supported,
then this function will trigger a semi-persistent NHWC kernel for normalization. The

workspace is not required to be clean. Also, the workspace does not need to remain
unchanged between the forward and backward passes.

*reserveSpace

Input. Pointer to the GPU workspace for the reservespace.

reserveSpaceSizelInBytes

Input. The size of the reservespace. Must be equal or larger than the amount required by
cudnnGetNormalizationTrainingReserveSpaceSize|().

groutCnt

Input. Only support 1 for now.

CUDNN_STATUS_SUCCESS

The computation was performed successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.

CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:

One of the pointers alpha, beta, xData, yData, normScale, and normBias iS NULL.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 146

cudnn_ops_train.so Library

» The number of xDesc or ybesc tensor descriptor dimensions is not within the [4,5]
range (only 4D and 5D tensors are supported).

» normScaleBiasDesc dimensions are not 1xCx1x1 for 4D and 1xCx1x1x1 for 5D for per-
channel mode, and are not TXCxHxW for 4D and TxCxDxHxW for 5D for per-activation
mode.

Exactly one of resultSaveMean, resultSaveInvVariance pointers are NULL.
ExacﬂyoneOfresultRunningMean,resultRunningIanariancepoﬂﬂersareNULL

epsilon value is less than zero.

vV v v VY

Dimensions or data types mismatch for xDesc, yDesc.

4.1.17. cudnnOpsTrainVersionCheck ()
cudnnStatus_t cudnnOpsTrainVersionCheck (void)

This function checks whether the version of the OpsTrain subset of the library is consistent
with the other sub-libraries.

Returns

CUDNN_STATUS_SUCCESS

The version is consistent with other sub-libraries.

CUDNN_STATUS_VERSION_ MISMATCH

The version of OpsTrain is not consistent with other sub-libraries. Users should check the
installation and make sure all sub-component versions are consistent.

4.1.18. cudnnPoolingBackward ()

cudnnStatus_t cudnnPoolingBackward (

cudnnHandle t handle,
const cudnnPoolingDescriptor t poolingDesc,
const void *alpha,
const cudnnTensorDescriptor t yDesc,
const void “Vp
const cudnnTensorDescriptor t dyDesc,
const void #elky,
const cudnnTensorDescriptor t xDesc,
const void *xData,
const void *beta,
const cudnnTensorDescriptor t dxDesc,
void *dx)

This function computes the gradient of a pooling operation.

As of cuDNN version 6.0, a deterministic algorithm is implemented for max backwards
pooling. This algorithm can be chosen via the pooling mode enum of poolingDesc. The
deterministic algorithm has been measured to be up to 50% slower than the legacy max
backwards pooling algorithm, or up to 20% faster, depending upon the use case.

Note: All tensor formats are supported, best performance is expected when using HWw-packed
tensors. Only 2 and 3 spatial dimensions are allowed

NVIDIA cuDNN PR-09702-001_v8.3.0 | 147

cudnn_ops_train.so Library

Parameters
handle

Input. Handle to a previously created cuDNN context.
poolingDesc

Input. Handle to the previously initialized pooling descriptor.
alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the computation result

with prior value in the output layer as follows:
dstValue = alpha[0]*resultValue + beta[0]*priorDstValue

For more information, see Scaling Parameters in the cuDNN Developer Guide.

yDesc

Input. Handle to the previously initialized input tensor descriptor. Can be NULL for avg
pooling.

Input. Data pointer to GPU memory associated with the tensor descriptor yDesc. Can be
NULL for avg pooling.

dyDesc
Input. Handle to the previously initialized input differential tensor descriptor.
dy
Input. Data pointer to GPU memory associated with the tensor descriptor dyData.

xDesc

Input. Handle to the previously initialized output tensor descriptor. Can be NULL for avg
pooling.

Input. Data pointer to GPU memory associated with the output tensor descriptor xDesc. Can
be NULL for avg pooling.

dxDesc

Input. Handle to the previously initialized output differential tensor descriptor.
dx

Output. Data pointer to GPU memory associated with the output tensor descriptor dxDesc.

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 148

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#scaling-parameters

cudnn_ops_train.so Library

CUDNN_STATUS BAD PARAM
At least one of the following conditions are met:

» The dimensions n, c, h, w of the yDesc and dyDesc tensors differ.

» The strides nStride, cStride, hStride, wStride of the yDesc and dybesc tensors
differ.

» The dimensions n, ¢, h, w of the dxDesc and dxDesc tensors differ.

» The strides nStride, cStride, hStride, wStride of the xDesc and dxDesc tensors
differ.

> The datatype of the four tensors differ.
CUDNN_STATUS_NOT SUPPORTED

The function does not support the provided configuration. See the following for some
examples of non-supported configurations:

» The wstride of input tensor or output tensor is not 1.
CUDNN_STATUS_EXECUTION FAILED

The function failed to launch on the GPU.

4.1.19. cudnnSoftmaxBackward ()

cudnnStatus t cudnnSoftmaxBackward (

cudnnHandle t handle,
cudnnSoftmaxAlgorithm t algorithm,
cudnnSoftmaxMode t mode,
const void *alpha,
const cudnnTensorDescriptor t yDesc,
const void *yData,
const cudnnTensorDescriptor t dyDesc,
const void *dy,
const void *beta,
const cudnnTensorDescriptor t dxDesc,
void *dx)

This routine computes the gradient of the softmax function.

@ Note:

» In-place operation is allowed for this routine; meaning, dy and dx pointers may be equal.
However, this requires dybesc and dxDesc descriptors to be identical (particularly, the
strides of the input and output must match for in-place operation to be allowed).

» All tensor formats are supported for all modes and algorithms with 4 and 5D tensors.
Performance is expected to be highest with NCHW fully-packed tensors. For more than 5
dimensions tensors must be packed in their spatial dimensions.

Parameters
handle

Input. Handle to a previously created cuDNN context.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 149

cudnn_ops_train.so Library

algorithm

Input. Enumerant to specify the softmax algorithm.
mode

Input. Enumerant to specify the softmax mode.
alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the computation result

with prior value in the output layer as follows:
dstValue = alpha[0]*result + beta[0]*priorDstValue

For more information, see the Scaling Parameters section in the cuDNN Developer Guide.

yDesc

Input. Handle to the previously initialized input tensor descriptor.

Input. Data pointer to GPU memory associated with the tensor descriptor yDesc.
dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.
dy

Input. Data pointer to GPU memory associated with the tensor descriptor dyData.

dxDesc

Input. Handle to the previously initialized output differential tensor descriptor.
dx

Output. Data pointer to GPU memory associated with the output tensor descriptor dxDesc.

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.

CUDNN_STATUS_BAD_PARAM
At least one of the following conditions are met:

The dimensions n, ¢, h, w of the yDesc, dyDesc and dxDesc tensors differ.

The strides nStride, cStride, hStride, wStride of the yDesc and dyDesc tensors
differ.

The datatype of the three tensors differs.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 150

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#scaling-parameters

cudnn_ops_train.so Library

CUDNN_STATUS_EXECUTION FAILED

The function failed to launch on the GPU.

4.1.20. cudnnSpatialTfGridGeneratorBackward ()

cudnnStatus t cudnnSpatialTfGridGeneratorBackward (

cudnnHandle t handle,
const cudnnSpatialTransformerDescriptor t stDesc,
const void *dgrid,
void *dtheta)

This function computes the gradient of a grid generation operation.
Note: Only 2d transformation is supported.

Parameters
handle

Input. Handle to a previously created cuDNN context.

stDesc

Input. Previously created spatial transformer descriptor object.
dgrid

Input. Data pointer to GPU memory contains the input differential data.
dtheta

Output. Data pointer to GPU memory contains the output differential data.

Returns

CUDNN_STATUS_SUCCESS

The call was successful.

CUDNN_STATUS BAD PARAM
At least one of the following conditions are met:

» handle is NULL.

» One of the parameters dgrid or dtheta is NULL.
CUDNN_STATUS_NOT SUPPORTED

The function does not support the provided configuration. See the following for some
examples of non-supported configurations:

» The dimension of the transformed tensor specified in stDesc > 4.

CUDNN_STATUS_EXECUTION_ FAILED

The function failed to launch on the GPU.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 151

cudnn_ops_train.so Library

4.1.21. cudnnSpatialTfSamplerBackward ()

cudnnStatus t cudnnSpatialTfSamplerBackward (

cudnnHaHdle_t handle,
const cudnnSpatialTransformerDescriptor t stDesc,
const void *alpha,
const cudnnTensorDescriptor t xDesc,
const void *x,

const void *beta,
const cudnnTensorDescriptor t dxDesc,
void bR,

const void *alphaDgrid,
const cudnnTensorDescriptor t dyDesc,
const void *dy,

const void *grid,
const void *betaDgrid,
void *dgrid)

This function computes the gradient of a sampling operation.
Note: Only 2d transformation is supported.

Parameters
handle
Input. Handle to a previously created cuDNN context.
stDesc
Input. Previously created spatial transformer descriptor object.
alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the source value with prior

value in the destination tensor as follows:
dstValue = alpha[0]*srcValue + beta[0]*priorDstValue

For more information, see the Scaling Parameters section in the cuDNN Developer Guide.

xDesc

Input. Handle to the previously initialized input tensor descriptor.

Input. Data pointer to GPU memory associated with the tensor descriptor xDesc.

dxDesc

Input. Handle to the previously initialized output differential tensor descriptor.
dx

Output. Data pointer to GPU memory associated with the output tensor descriptor dxDesc.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 152

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#scaling-parameters

cudnn_ops_train.so Library

alphaDgrid, betaDgrid

Input. Pointers to scaling factors (in host memory) used to blend the gradient outputs dgrid
with prior value in the destination pointer as follows:
dstValue = alpha[0O]*srcValue + beta[0]*priorDstValue

For more information, see the Scaling Parameters section in the cuDNN Developer Guide.
dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.
dy

Input. Data pointer to GPU memory associated with the tensor descriptor dyDesc.
grid

Input. A grid of coordinates generated by cudnnSpatialTfGridGeneratorForward|().

dgrid

Output. Data pointer to GPU memory contains the output differential data.

Returns

CUDNN_STATUS_SUCCESS

The call was successful.

CUDNN_STATUS BAD PARAM
At least one of the following conditions are met:

> handle iS NULL.
> One of the parameters %, dx, vy, dy, grid, dgrid is NULL.

» The dimension of dy differs from those specified in stDesc.
CUDNN_STATUS_NOT SUPPORTED

The function does not support the provided configuration. See the following for some
examples of non-supported configurations:

» The dimension of transformed tensor > 4.
CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 153

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#scaling-parameters

Chapter 5. cudnn cnn infer.so

Libra ry

5.1. Data Type References

5.1.1. Pointer To Opaque Struct Types

5.1.1.1. cudnnConvolutionDescriptor t

cudnnConvolutionDescriptor tis a pointer to an opaque structure holding the description
of a convolution operation. cudnnCreateConvolutionDescriptor(] is used to create one instance,
and cudnnSetConvolutionNdDescriptor() or cudnnSetConvolution2dDescriptor() must be used
to initialize this instance.

5.1.2. Struct Types

5.1.2.1. cudnnConvolutionBwdDataAlgoPerf t

cudnnConvolutionBwdDataAlgoPerf t is a structure containing performance results
returned by cudnnFindConvolutionBackwardDataAlgorithm(] or heuristic results returned by
cudnnGetConvolutionBackwardDataAlgorithm_v7().

Data Members
cudnnConvolutionBwdDataAlgo_t algo

The algorithm runs to obtain the associated performance metrics.
cudnnStatus_t status
If any error occurs during the workspace allocation or timing of

cudnnConvolutionBackwardDatal(), this status will represent that error. Otherwise, this
status will be the return status of cudnnConvolutionBackwardDatal(].

NVIDIA cuDNN PR-09702-001_v8.3.0 | 154

cudnn_cnn_infer.so Library

» CUDNN_ STATUS ALLOC_FAILED if any error occurred during workspace allocation or if
the provided workspace is insufficient.

> CUDNN STATUS INTERNAL ERROR If any error occurred during timing calculations or

workspace deallocation.

> Otherwise, this will be the return status of cudnnConvolutionBackwardDatal(].

float time

The execution time of cudnnConvolutionBackwardDatal() (in milliseconds).

size_t memory

The workspace size (in bytes).
cudnnDeterminism t determinism

The determinism of the algorithm.
cudnnMathType t mathType

The math type provided to the algorithm.
int reserved[3]

Reserved space for future properties.

5.1.2.2. cudnnConvolutionFwdAlgoPerf t

cudnnConvolutionFwdAlgoPerf t isa structure containing performance results
returned by cudnnFindConvolutionForwardAlgorithm() or heuristic results returned by
cudnnGetConvolutionForwardAlgorithm_v7().

Data Members

cudnnConvolutionFwdAlgo t algo
The algorithm runs to obtain the associated performance metrics.
cudnnStatus_t status

If any error occurs during the workspace allocation or timing of
cudnnConvolutionForward(], this status will represent that error. Otherwise, this status will
be the return status of cudnnConvolutionForward(].

> CUDNN_ STATUS ALLOC_FAILED if any error occurred during workspace allocation or if
the provided workspace is insufficient.

» CUDNN STATUS INTERNAL ERROR if any error occurred during timing calculations or

workspace deallocation.

> Otherwise, this will be the return status of cudnnConvolutionForward|().

float time

The execution time of cudnnConvolutionForward(] (in milliseconds).

NVIDIA cuDNN PR-09702-001_v8.3.0 | 155

cudnn_cnn_infer.so Library

size_t memory

The workspace size (in bytes).
cudnnDeterminism t determinism

The determinism of the algorithm.
cudnnMathType t mathType

The math type provided to the algorithm.

int reserved[3]

Reserved space for future properties.

5.1.3. Enumeration Types

5.1.3.1. cudnnBackendAttributeName t

cudnnBackendAttributeName t isanenumerated type that indicates the backend
descriptor attributes that can be set or get via cudnnBackendSetAttribute(] and
cudnnBackendGetAttribute(] functions. The backend descriptor to which an attribute belongs
is identified by the prefix of the attribute name.

typedef enum {

CUDNN_ATTR POINTWISE MODE =0,

CUDNN_ATTR POINTWISE MATH PREC = i,
CUDNN_ATTR POINTWISE NAN PROPAGATION = 2,

CUDNN_ATTR POINTWISE RELU LOWER CLIP = 3,

CUDNN_ATTR POINTWISE RELU UPPER CLIP = 4,

CUDNN_ATTR CONVOLUTION COMP TYPE = 100,

CUDNN_ATTR CONVOLUTION CONV_MODE = 101,

CUDNN_ATTR CONVOLUTION DILATIONS = 102,

CUDNN_ATTR CONVOLUTION FILTER STRIDES = 103,

CUDNN_ATTR CONVOLUTION POST PADDINGS = 104,

CUDNN_ATTR CONVOLUTION PRE PADDINGS = 105,

CUDNN_ATTR CONVOLUTION SPATIAL DIMS = 106,

CUDNN ATTR ENGINEHEUR MODE = 200,

CUDNN_ATTR ENGINEHEUR OPERATION GRAPH = 201,

CUDNN_ATTR ENGINEHEUR RESULTS = 202,

CUDNN ATTR ENGINECFG ENGINE = 300,
CUDNN_ATTR ENGINECFG INTERMEDIATE INFO = 301,

CUDNN_ATTR ENGINECFG KNOB_CHOICES = 302,

CUDNN_ATTR EXECUTION PLAN HANDLE = 400,
CUDNN_ATTR EXECUTION PLAN ENGINE CONFIG = 401,
CUDNN_ATTR EXECUTION PLAN WORKSPACE SIZE = 402,
CUDNN_ATTR EXECUTION PLAN COMPUTED INTERMEDIATE UIDS = 403,

CUDNN_ATTR EXECUTION PLAN RUN ONLY INTERMEDIATE UIDS = 404,

CUDNN_ATTR INTERMEDIATE INFO UNIQUE ID = 500,
CUDNN_ATTR INTERMEDIATE INFO SIZE = 501,
CUDNN_ATTR INTERMEDIATE INFO DEPENDENT DATA UIDS = 502,
CUDNN_ATTR INTERMEDIATE INFO DEPENDENT ATTRIBUTES = 503,
CUDNN_ATTR KNOB CHOICE KNOB TYPE = 600,
CUDNN_ATTR KNOB CHOICE KNOB VALUE = 601,

CUDNN_ATTR OPERATION CONVOLUTION FORWARD ALPHA = 700,

NVIDIA cuDNN PR-09702-001_v8.3.0 | 156

CUDNN_ATTR OPERATION CONVOLUTION FORWARD BETA

CUDNN ATTR OPERATION CONVOLUTION FORWARD CONV_DESC

CUDNN ATTR OPERATION CONVOLUTION FORWARD
CUDNN ATTR OPERATION CONVOLUTION FORWARD |

CUDNN ATTR OPERATION CONVOLUTION FORWARD
CUDNN_ATTR OPERATION CONVOLUTION BWD DATA ALPHA
CUDNN_ATTR OPERATION CONVOLUTION BWD DATA BETA

W
X
Y

CUDNN_ATTR_OPERATION CONVOLUTION BWD DATA CONV_DESC
CUDNN_ATTR OPERATION CONVOLUTION BWD DATA W

CUDNN_ ATTR OPERATION CONVOLUTION BWD DATA DX

CUDNN_ATTR OPERATION CONVOLUTION BWD DATA DY
CUDNN ATTR OPERATION CONVOLUTION BWD FILTER ALPHA

CUDNN_ATTR OPERATION CONVOLUTION BWD FILTER BETA
CUDNN_ATTR OPERATION CONVOLUTION BWD FILTER CONV_DESC
CUDNN_ATTR OPERATION CONVOLUTION BWD FILTER DW
CUDNN_ATTR OPERATION CONVOLUTION BWD FILTER X
CUDNN_ATTR OPERATION CONVOLUTION BWD FILTER DY
CUDNN_ATTR_OPERATION POINTWISE_ PW_DESCRIPTOR

CUDNN_ATTR OPERATION POINTWISE XDESC
CUDNN_ATTR OPERATION POINTWISE BDESC
CUDNN_ATTR OPERATION POINTWISE YDESC
CUDNN_ATTR_OPERATION POINTWISE ALPHAL
CUDNN_ATTR OPERATION POINTWISE ALPHA2
CUDNN_ATTR OPERATION POINTWISE DXDESC
CUDNN_ATTR OPERATION POINTWISE DYDESC
CUDNN_ATTR_OPERATION POINTWISE TDESC

CUDNN_ATTR OPERATION GENSTATS MODE
CUDNN_ ATTR OPERATION GENSTATS MATH PREC
CUDNN ATTR OPERATION GENSTATS XDESC
CUDNN ATTR OPERATION GENSTATS SUMDESC
CUDNN_ATTR_OPERATION_GENSTATS_SQSUMDESC

CUDNN ATTR OPERATIONGRAPH HANDLE
CUDNN ATTR OPERATIONGRAPH OPS

CUDNN_ATTR_OPERATIONGRAPH_ENGINE_GLOBAL_COUNT =

CUDNN_ATTR TENSOR BYTE ALIGNMENT = 900,
CUDNN_ATTR TENSOR DATA TYPE = 901,
CUDNN_ATTR TENSOR DIMENSIONS = 902,
CUDNN_ATTR TENSOR STRIDES = 903,
CUDNN_ATTR TENSOR VECTOR_COUNT = 904,
CUDNN_ATTR TENSOR VECTORIZED DIMENSION = 905,
CUDNN_ATTR TENSOR_UNIQUE ID = 906,
CUDNN_ATTR TENSOR IS VIRTUAL = 907,
CUDNN_ATTR VARIANT PACK UNIQUE IDS = 1000,
CUDNN_ATTR VARIANT PACK DATA POINTERS = 1001,
CUDNN_ATTR VARIANT PACK INTERMEDIATES = 1002,
CUDNN_ATTR VARIANT PACK WORKSPACE = 1003,
CUDNN_ATTR LAYOUT INFO TENSOR UID = 1100,
CUDNN_ATTR LAYOUT INFO TYPES = 1101,
CUDNN_ATTR KNOB_INFO TYPE = 1200,
CUDNN_ATTR KNOB_ INFO MAXIMUM VALUE = 1201,
CUDNN_ATTR KNOB INFO MINIMUM VALUE = 1202,
CUDNN_ATTR KNOB INFO STRIDE = 1203,

CUDNN_ATTR_ENGINE OPERATION GRAPH = 1300,

CUDNN_ATTR ENGINE GLOBAL_ INDEX = 1301,
CUDNN_ATTR_ENGINE_KNOB INFO = 1302,
CUDNN_ATTR _ENGINE NUMERICAL NOTE = 1303,
CUDNN_ATTR ENGINE LAYOUT INFO = 1304,
CUDNN_ATTR ENGINE BEHAVIOR NOTE = 1305,

NVIDIA cuDNN

= 800,

801,
802,

cudnn_cnn_infer.so Library

701,
702,
703,
704,
705,
706,
707,
708,
709,
710,
711,
712,
713,
714,
715,
716,
717,
750,
751,
752,
753,
754,
755,
756,
757,
758,

770,
771,
772,
773,
774,

PR-09702-001

_v8.3.0

157

cudnn_cnn_infer.so Library

CUDNN_ATTR MATMUL COMP TYPE = 1500,

CUDNN_ATTR OPERATION MATMUL ADESC = 1520,
CUDNN_ATTR_OPERATION MATMUL_BDESC = 1521,
CUDNN_ATTR OPERATION MATMUL_ CDESC = 1522,

CUDNN_ ATTR OPERATION MATMUL DESC = 1523
CUDNN ATTR OPERATION MATMUL IRREGULARLY STRIDED BATCH COUNT = 1524

CUDNN_ATTR REDUCTION OPERATOR = 1600
CUDNN_ ATTR REDUCTION COMP TYPE = 1601,
CUDNN_ATTR OPERATION REDUCTION XDESC = 1610
CUDNN_ ATTR OPERATION REDUCTION YDESC = 1611,
CUDNN_ ATTR OPERATION REDUCTION DESC = 1612,

} cudnnBackendAttributeName t;

Returns

The list of return values depends on the arguments used as explained in the cuDNN Backend
API.

5.1.3.2. cudnnBackendAttributeType t

cudnnBackendAttributeType t isan enumerated type that indicates type of backend
descriptor attributes that can be set and get via cudnnBackendSetAttribute() and
cudnnBackendGetAttribute() functions.

typedef enum {
CUDNN TYPE HANDLE = O,
CUDNN_ TYPE DATA TYPE,
CUDNN TYPE BOOLEAN,
CUDNN TYPE INT64,
CUDNN_TYPE FLOAT,
CUDNN TYPE DOUBLE,
CUDNN_TYPE VOID PTR,
CUDNN_ TYPE CONVOLUTION MODE,
CUDNN_TYPE HEUR MODE,
CUDNN_ TYPE KNOB TYPE,
CUDNN TYPE NAN PROPOGATION,
CUDNN_ TYPE NUMERICAL NOTE,
CUDNN_TYPE LAYOUT TYPE,
CUDNN TYPE ATTRIB NAME,
CUDNN TYPE POINTWISE MODE,
CUDNN_ TYPE BACKEND DESCRIPTOR,
CUDNN_TYPE GENSTATS MODE

} cudnnBackendAttributeType t;

Returns

The list of return values depends on the arguments used as explained in the cuDNN Backend
API, specifically, refer to cudnnBackendAttributeType_t for details.

5.1.3.3. cudnnBackendDescriptorType t

cudnnBackendDescriptor tisanenumerated type that indicates the type of backend
descriptors. Users create a backend descriptor of a particular type by passing a value from
this enumerate to cudnnBackendCreateDescriptor(] function.

typedef enum {
CUDNN_ BACKEND POINTWISE DESCRIPTOR = O,

NVIDIA cuDNN PR-09702-001_v8.3.0 | 158

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnn-backend-api
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnn-backend-api

cudnn_cnn_infer.so Library

CUDNN_ BACKEND CONVOLUTION DESCRIPTOR,
CUDNN_BACKEND ENGINE DESCRIPTOR,
CUDNN BACKEND ENGINECFG DESCRIPTOR,
CUDNN_BACKEND ENGINEHEUR DESCRIPTOR,
CUDNN_BACKEND EXECUTION PLAN DESCRIPTOR,
CUDNN_BACKEND INTERMEDIATE INFO DESCRIPTOR,
CUDNN_BACKEND KNOB CHOICE DESCRIPTOR,
CUDNN_BACKEND KNOB INFO_ DESCRIPTOR,
CUDNN_ BACKEND LAYOUT INFO DESCRIPTOR,
CUDNN_ BACKEND OPERATION CONVOLUTION FORWARD DESCRIPTOR,
CUDNN BACKEND OPERATION CONVOLUTION BACKWARD FILTER DESCRIPTOR,
CUDNN_BACKEND OPERATION CONVOLUTION BACKWARD DATA DESCRIPTOR,
CUDNN_BACKEND OPERATION POINTWISE DESCRIPTOR,
CUDNN_ BACKEND OPERATION GEN STATS DESCRIPTOR,
CUDNN BACKEND OPERATIONGRAPH DESCRIPTOR,
CUDNN_BACKEND VARIANT PACK DESCRIPTOR,
CUDNN_BACKEND TENSOR DESCRIPTOR,

} cudnnBackendDescriptorType t;

Returns

The list of return values depends on the arguments used as explained in the cuDNN Backend
APL.

5.1.3.4. cudnnBackendHeurMode t

cudnnBackendHeurMode t is an enumerated type that indicates the operation mode of a
CUDNN_BACKEND ENGINE HEUR DESCRIPTOR.

typedef enum {
CUDNN_HEUR MODE INSTANT = O,
CUDNN_HEUR MODE B =1

Values
CUDNN_HEUR MODE B

Can utilize the neural net based heuristics to improve generalization performance
compared to CUDNN_HEUR MODE INSTANT. In cases where the neural netis

utilized, inference time on the CPU will be increased by 10-100x compared to

CUDNN HEUR MODE INSTANT. These neural net heuristics are not supported for any of the
following cases:

» 3-D convolutions

» Grouped convolutions (groupCount larger than 1)

» Dilated convolutions (any dilation for any spatial dimension larger than 1)
Further, the neural net is only enabled on x86 platforms when cuDNN is run on an
A100 GPU. In cases where the neural net is not supported, CUDNN HEUR MODE B will
also fall back to CUDNN HEUR MODE INSTANT. CUDNN_ HEUR MODE B will fall back to

CUDNN HEUR MODE INSTANT in cases where the overhead of CUDNN HEUR MODE B is
projected to reduce overall network performance.

5.1.3.59. cudnnBackendKnobType t

NVIDIA cuDNN PR-09702-001_v8.3.0 | 159

cudnn_cnn_infer.so Library

cudnnBackendKnobType t Isan enumerated type that indicates the type of performance
knobs. Performance knobs are runtime settings to an engine that will affect its performance.
Users can query for an array of performance knobs and their valid value range from a

CUDNN BACKEND ENGINE DESCRIPTOR using cudnnBackendGetAttribute() function. Users
can set the choice for each knob using the cudnnBackendSetAttribute() function with a
CUDNN BACKEND KNOB CHOICE DESCRIPTOR descriptor.

typedef enum {

CUDNN_KNOB TYPE SPLIT K =0,
CUDNN_KNOB TYPE SWIZZLE = i,
CUDNN_KNOB TYPE TILE SIZE = 2,
CUDNN_KNOB_TYPE USE_TEX = 3,
CUDNN_KNOB_TYPE_EDGE = 4,
CUDNN_KNOB_TYPE KBLOCK = 5,
CUDNN_KNOB TYPE LDGA =6,
CUDNN_KNOB_TYPE_LDGB =7,
CUDNN_KNOB_TYPE_CHUNK K = 8,
CUDNN_KNOB TYPE SPLIT H =9,
CUDNN_KNOB TYPE WINO TILE = 10,
CUDNN_KNOB_TYPE_MULTIPLY =11,
CUDNN_KNOB_TYPE SPLIT K BUF =12,
CUDNN_KNOB_ TYPE TILEK = 13,
CUDNN_KNOB TYPE STAGES = 14,
CUDNN_KNOB_TYPE_REDUCTION MODE = 15,
CUDNN_KNOB TYPE CTA SPLIT K MODE = 16,
CUDNN_KNOB TYPE SPLIT K SLC = 17,
CUDNN_KNOB TYPE IDX MODE = 18,
CUDNN_KNOB_TYPE_SLICED =19,
CUDNN_KNOB_TYPE_SPLIT RS = 20,
CUDNN_KNOB_TYPE SINGLEBUFFER = 21,
CUDNN_KNOB_TYPE LDGC = 22,
CUDNN_KNOB_TYPE_SPECFILT = 23,
CUDNN_KNOB_TYPE KERNEL CFG 24,

CUDNN_KNOB TYPE COUNTS = 25,
} cudnnBackendKnobType t;

5.1.3.6. cudnnBackendLayoutType t

cudnnBackendLayoutType t is an enumerated type that indicates queryable
layout requirements of an engine. Users can query for layout requirements from a
CUDNN_BACKEND ENGINE DESC descriptor using cudnnBackendGetAttribute() function

typedef enum {
CUDNN_ LAYOUT TYPE PREFERRED NCHW
CUDNN_LAYOUT TYPE PREFERRED NHWC
CUDNN_LAYOUT_TYPE_PREFERRED_PAD4CK
CUDNN_ LAYOUT TYPE PREFERRED PAD8CK
CUDNN LAYOUT TYPE COUNT =
} cudnnBackendLayoutType t;

Il
S W N PO
~ S S~~~

5.1.3.7. cudnnBackendNumericalNote t

cudnnBackendNumericalNot t Isan enumerated type that indicates queryable numerical
properties of an engine. Users can query for an array of numerical notes from an
CUDNN_ BACKEND ENGINE DESC using cudnnBackendGetAttribute() function.

typedef enum {
CUDNN_ NUMERICAL NOTE TENSOR CORE = 0,
CUDNN NUMERICAL NOTE DOWN CONVERT INPUTS,
CUDNN NUMERICAL NOTE REDUCED PRECISION REDUCTION,
CUDNN NUMERICAL NOTE FFT,
CUDNN_ NUMERICAL NOTE NONDETERMINISTIC,

NVIDIA cuDNN PR-09702-001_v8.3.0 | 160

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnBackendGetAttribute

cudnn_cnn_infer.so Library

CUDNN NUMERICAL NOTE WINOGRAD,
CUDNN_ NUMERICAL NOTE TYPE COUNT
} cudnnBackendNumericalNote t;

5.1.3.8. cudnnConvolutionBwdDataAlgo t

cudnnConvolutionBwdDataAlgo_ t is an enumerated type that exposes the different
algorithms available to execute the backward data convolution operation.

Values
CUDNN CONVOLUTION BWD DATA ALGO 0

This algorithm expresses the convolution as a sum of matrix products without actually
explicitly forming the matrix that holds the input tensor data. The sum is done using the
atomic add operation, thus the results are non-deterministic.

CUDNN_CONVOLUTION BWD DATA ALGO_1
This algorithm expresses the convolution as a matrix product without actually explicitly
forming the matrix that holds the input tensor data. The results are deterministic.
CUDNN_CONVOLUTION BWD DATA ALGO_FFT
This algorithm uses a Fast-Fourier Transform approach to compute the convolution. A

significant memory workspace is needed to store intermediate results. The results are
deterministic.

CUDNN_CONVOLUTION BWD DATA ALGO_FFT_ TILING
This algorithm uses the Fast-Fourier Transform approach but splits the inputs into
tiles. A significant memory workspace is needed to store intermediate results but less

than CUDNN CONVOLUTION BWD DATA ALGO_ FET for large size images. The results are
deterministic.

CUDNN_CONVOLUTION BWD_DATA ALGO_WINOGRAD
This algorithm uses the Winograd Transform approach to compute the convolution. A

reasonably sized workspace is needed to store intermediate results. The results are
deterministic.

CUDNN_CONVOLUTION BWD DATA ALGO_WINOGRAD NONFUSED

This algorithm uses the Winograd Transform approach to compute the convolution.
A significant workspace may be needed to store intermediate results. The results are
deterministic.

5.1.3.9. cudnnConvolutionBwdFilterAlgo t

cudnnConvolutionBwdFilterAlgo t isan enumerated type that exposes the different
algorithms available to execute the backward filter convolution operation.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 161

cudnn_cnn_infer.so Library

CUDNN_CONVOLUTION BWD_FILTER ALGO_0

This algorithm expresses the convolution as a sum of matrix products without actually
explicitly forming the matrix that holds the input tensor data. The sum is done using the
atomic add operation, thus the results are non-deterministic.

CUDNN_CONVOLUTION BWD_ FILTER ALGO_1
This algorithm expresses the convolution as a matrix product without actually explicitly
forming the matrix that holds the input tensor data. The results are deterministic.
CUDNN_CONVOLUTION BWD_FILTER ALGO_FFT
This algorithm uses the Fast-Fourier Transform approach to compute the convolution.

A significant workspace is needed to store intermediate results. The results are
deterministic.

CUDNN_CONVOLUTION BWD_ FILTER ALGO_3
This algorithm is similar to CUDNN_CONVOLUTION BWD FILTER ALGO 0 but uses some
small workspace to precompute some indices. The results are also non-deterministic.
CUDNN_CONVOLUTION BWD_FILTER WINOGRAD NONFUSED
This algorithm uses the Winograd Transform approach to compute the convolution.

A significant workspace may be needed to store intermediate results. The results are
deterministic.

CUDNN_CONVOLUTION BWD FILTER ALGO FFT TILING
This algorithm uses the Fast-Fourier Transform approach to compute the convolution

but splits the input tensor into tiles. A significant workspace may be needed to store
intermediate results. The results are deterministic.

cudnnConvolutionFwdAlgo t isan enumerated type that exposes the different algorithms
available to execute the forward convolution operation.

CUDNN_CONVOLUTION FWD_ALGO_IMPLICIT GEMM
This algorithm expresses the convolution as a matrix product without actually explicitly
forming the matrix that holds the input tensor data.

CUDNN_CONVOLUTION FWD_ALGO_IMPLICIT PRECOMP_ GEMM
This algorithm expresses convolution as a matrix product without actually explicitly forming
the matrix that holds the input tensor data, but still needs some memory workspace to

precompute some indices in order to facilitate the implicit construction of the matrix that
holds the input tensor data.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 162

cudnn_cnn_infer.so Library

CUDNN_CONVOLUTION FWD ALGO GEMM

This algorithm expresses the convolution as an explicit matrix product. A significant

memory workspace is needed to store the matrix that holds the input tensor data.
CUDNN_CONVOLUTION FWD_ ALGO DIRECT

This algorithm expresses the convolution as a direct convolution (for example, without

implicitly or explicitly doing a matrix multiplication).
CUDNN_CONVOLUTION FWD_ ALGO_ FFT

This algorithm uses the Fast-Fourier Transform approach to compute the convolution. A

significant memory workspace is needed to store intermediate results.
CUDNN_CONVOLUTION FWD_ALGO FFT TILING

This algorithm uses the Fast-Fourier Transform approach but splits the inputs into tiles.

A significant memory workspace is needed to store intermediate results but less than
CUDNN_CONVOLUTION FWD ALGO FFT for large size images.

CUDNN_CONVOLUTION FWD_ALGO_ WINOGRAD

This algorithm uses the Winograd Transform approach to compute the convolution. A
reasonably sized workspace is needed to store intermediate results.

CUDNN_CONVOLUTION FWD_ALGO_WINOGRAD NONFUSED

This algorithm uses the Winograd Transform approach to compute the convolution. A
significant workspace may be needed to store intermediate results.

5.1.3.11. cudnnConvolutionMode t

cudnnConvolutionMode t isan enumerated type used by cudnnSetConvolution2dDescriptor()
to configure a convolution descriptor. The filter used for the convolution can be applied in two
different ways, corresponding mathematically to a convolution or to a cross-correlation. (A
cross-correlation is equivalent to a convolution with its filter rotated by 180 degrees.]

Values

CUDNN_CONVOLUTION

In this mode, a convolution operation will be done when applying the filter to the images.

CUDNN_CROSS_CORRELATION

In this mode, a cross-correlation operation will be done when applying the filter to the
images.

5.1.3.12. cudnnGenStatsMode t

cudnnGenStatsMode t is an enumerated type to indicate the statistics mode in the backend
statistics generation operation.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 163

cudnn_cnn_infer.so Library

CUDNN_GENSTATS_SUM_SQSUM

In this mode, the sum and sum of squares of the input tensor along the specified

dimensions are computed and written out. The reduction dimensions currently supported

are limited per channel, however additional support may be added upon request.

cudnnPointwiseMode t isan enumerated type to indicate the intended pointwise math
operation in the backend pointwise operation descriptor.

CUDNN_POINTWISE_ADD

In this mode, a pointwise addition between two tensors is computed.
CUDNN_POINTWISE ADD_ SQUARE

In this mode, a pointwise addition between the first tensor and the square of the second

tensor is computed.
CUDNN_POINTWISE DIV

In this mode, a pointwise true division of the first tensor by second tensor is computed.
CUDNN_POINTWISE MAX

In this mode, a pointwise maximum is taken between two tensors.
CUDNN_POINTWISE MIN

In this mode, a pointwise minimum is taken between two tensors.
CUDNN_POINTWISE_MOD

In this mode, a pointwise floating-point remainder of the first tensor’s division by the

second tensor is computed.
CUDNN_POINTWISE MUL

In this mode, a pointwise multiplication between two tensors is computed.
CUDNN_POINTWISE POW

In this mode, a pointwise value from the first tensor to the power of the second tensor is

computed.
CUDNN_POINTWISE_SUB

In this mode, a pointwise subtraction between two tensors is computed.
CUDNN_POINTWISE_ABS

In this mode, a pointwise absolute value of the input tensor is computed.
CUDNN_POINTWISE CEIL

In this mode, a pointwise ceiling of the input tensor is computed.
CUDNN_POINTWISE COS

In this mode, a pointwise trigonometric cosine of the input tensor is computed.
CUDNN_POINTWISE EXP

In this mode, a pointwise exponential of the input tensor is computed.

NVIDIA cuDNN PR-09702-001_v8.3.0 |

164

cudnn_cnn_infer.so Library

CUDNN_POINTWISE FLOOR

In this mode, a pointwise floor of the input tensor is computed.
CUDNN_POINTWISE LOG

In this mode, a pointwise natural logarithm of the input tensor is computed.
CUDNN_POINTWISE NEG

In this mode, a pointwise numerical negative of the input tensor is computed.
CUDNN_POINTWISE RSQRT

In this mode, a pointwise reciprocal of the square root of the input tensor is computed.
CUDNN_POINTWISE SIN

In this mode, a pointwise trigonometric sine of the input tensor is computed.
CUDNN_POINTWISE_ SQRT

In this mode, a pointwise square root of the input tensor is computed.
CUDNN_POINTWISE TAN

In this mode, a pointwise trigonometric tangent of the input tensor is computed.
CUDNN_POINTWISE RELU_FWD

In this mode, a pointwise rectified linear activation function of the input tensor is computed.
CUDNN_POINTWISE_TANH FWD

In this mode, a pointwise tanh activation function of the input tensor is computed.
CUDNN_POINTWISE_SIGMOID_FWD

In this mode, a pointwise sigmoid activation function of the input tensor is computed.
CUDNN_POINTWISE ELU_FWD

In this mode, a pointwise Exponential Linear Unit activation function of the input tensoris

computed.
CUDNN_POINTWISE GELU_FWD

In this mode, a pointwise Gaussian Error Linear Unit activation function of the input tensor

Is computed.
CUDNN_POINTWISE SOFTPLUS_ FWD

In this mode, a pointwise softplus activation function of the input tensor is computed.
CUDNN_POINTWISE SWISH FWD

In this mode, a pointwise swish activation function of the input tensor is computed.
CUDNN_POINTWISE RELU_BWD

In this mode, a pointwise first derivative of rectified linear activation of the input tensor is

computed.
CUDNN_POINTWISE_TANH BWD

In this mode, a pointwise first derivative of tanh activation of the input tensor is computed.
CUDNN_POINTWISE SIGMOID_ BWD

In this mode, a pointwise first derivative of sigmoid activation of the input tensor is

computed.
CUDNN_POINTWISE ELU_BWD

In this mode, a pointwise first derivative of Exponential Linear Unit activation of the input

tensor is computed.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 165

cudnn_cnn_infer.so Library

CUDNN_POINTWISE GELU_ BWD
In this mode, a pointwise first derivative of Gaussian Error Linear Unit activation of the input
tensor is computed.

CUDNN_POINTWISE_SOFTPLUS_BWD
In this mode, a pointwise first derivative of softplus activation of the input tensoris
computed.

CUDNN_POINTWISE SWISH BWD
In this mode, a pointwise first derivative of swish activation of the input tensor is computed.

CUDNN_POINTWISE CMP_EQ
In this mode, a pointwise truth value of the first tensor equal to the second tensor is
computed.

CUDNN_POINTWISE CMP_NEQ
In this mode, a pointwise truth value of the first tensor not equal to the second tensor is
computed.

CUDNN_POINTWISE_CMP_GT
In this mode, a pointwise truth value of the first tensor greater than the second tensor is
computed.

CUDNN_POINTWISE CMP_GE
In this mode, a pointwise truth value of the first tensor greater than equal to the second
tensor is computed.

CUDNN_POINTWISE_CMP_ LT
In this mode, a pointwise truth value of the first tensor less than the second tensoris
computed.

CUDNN_POINTWISE_CMP LE
In this mode, a pointwise truth value of the first tensor less than equal to the second tensor
Is computed.

CUDNN_POINTWISE LOGICAL_AND
In this mode, a pointwise truth value of the first tensor logical AND second tensor is
computed.

CUDNN_POINTWISE_LOGICAL OR
In this mode, a pointwise truth value of the first tensor logical OR second tensor is
computed.

CUDNN_POINTWISE LOGICAL_NOT
In this mode, a pointwise truth value of input tensor’s logical NOT is computed.

typedef enum {

CUDNN_ DEFAULT REORDER
CUDNN_ NO_ REORDER

} cudnnReorderType t;

0,
1,

cudnnReorderType t isan enumerated type to set the convolution reordering type. The
reordering type can be set by cudnnSetConvolutionReorderType(] and its status can be read by
cudnnGetConvolutionReorderType(].

NVIDIA cuDNN PR-09702-001_v8.3.0 | 166

cudnn_cnn_infer.so Library

5.1.4. Data Types Found In cudnn_backend.h

5.1.4.1. cudnnBackendDescriptor t

cudnnBackendDescriptor tis a typedefvoid pointer to one of many opaque descriptor
structures. The type of structure that it points to is determined by the argument when
allocating the memory for the opaque structure using cudnnBackendCreateDescriptor(].

Attributes of a descriptor can be set using cudnnBackendSetAttribute(). After all

required attributes of a descriptor are set, the descriptor can be finalized by
cudnnBackendFinalizeDescriptor(]. From a finalized descriptor, one can query its queryable
attributes using cudnnBackendGetAttribute(]. Finally, the memory allocated for a descriptor
can be freed using cudnnBackendDestroyDescriptor(].

H.2. APl Functions

5.2.1. cudnnBackendCreateDescriptor ()

cudnnStatus_t cudnnBackendCreateDescriptor (cudnnBackendDescriptorType t
descriptorType, cudnnBackendDescriptor t *descriptor)

This function allocates memory:

» inthe descriptor for a given descriptor type

» atthe location pointed by the descriptor
Note: The cudnnBackendDescriptor t is a pointer to void *.

Parameters

descriptorType

Input. One among the enumerated cudnnBackendDescriptorType_t.

descriptor

Input. Pointer to an instance of cudnnBackendDescriptor_t to be created.

Returns

CUDNN_STATUS_SUCCESS

The creation was successful.

CUDNN_STATUS_NOT_SUPPORTED

Creating a descriptor of a given type is not supported.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 167

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnBackendCreateDescriptor
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnBackendSetAttribute
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnBackendFinalizeDescriptor
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnBackendGetAttribute
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnBackendDestroyDescriptor

cudnn_cnn_infer.so Library

CUDNN_STATUS_ALLOC_FAILED
The memory allocation failed.

Additional return values depend on the arguments used as explained in the cuDNN Backend
API.

5.2.2. cudnnBackendDestroyDescriptor ()

cudnnStatus t cudnnBackendDestroyDescriptor (cudnnBackendDescriptor tdescriptor)

This function destroys instances of cudnnBackendDescriptor_t that were previously created
using cudnnBackendCreateDescriptor().

Parameters
descriptor

Input. Instance of cudnnBackendDescriptor_t previously created by
cudnnBackendCreateDescriptor(].

Returns
CUDNN_STATUS_SUCCESS

The memory was destroyed successfully.

CUDNN_STATUS_ALLOC_FAILED

The destruction of memory failed.

Undefined Behavior

The descriptor was altered between the Create and Destroy Descriptor.
Undefined

The value pointed by the descriptor will be Undefined after the memory is free and done.

Additional return values depend on the arguments used as explained in the cuDNN Backend
AP

H5.2.3. cudnnBackendExecute ()

cudnnStatus cudnnBackendExecute (cudnnHandle t handle, cudnnBackendDescriptor t
executionPlan, cudnnBackendDescriptor t varianPack)

This function executes:

» the given Engine Configuration Plan onthe VariantPack

» the finalized ExecutionPlan on the data

The data and the working space are encapsulated in the variantPack.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 168

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnn-backend-api
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnn-backend-api
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnBackendDescriptor_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnBackendCreateDescriptor
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnBackendDescriptor_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnBackendCreateDescriptor
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnn-backend-api
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnn-backend-api

cudnn_cnn_infer.so Library

Parameters
executionPlan

Input. Pointer to the cuDNN handle to be destroyed.

variantPack
Input. Pointer to the finalized variantPack consisting of:

» Data pointer for each non-virtual pointer of the operation set in the execution plan.

> Pointer to user-allocated workspace in global memory at least as large as the size
queried from CUDNN BACKEND .
Returns

CUDNN_STATUS_SUCCESS

The ExecutionPlan was executed successfully.
CUDNN_STATUS_BAD PARAM

An incorrect or inconsistent value is encountered. Some examples:
> A required data pointeris invalid.
CUDNN_STATUS_INTERNAL ERROR

Some internal errors were encountered.

CUDNN_STATUS_EXECUTION_ FAILED
An error was encountered executing the plan with the variant pack.

Additional return values depend on the arguments used as explained in the cuDNN Backend
AP

5.2.4. cudnnBackendFinalize ()

cudnnStatus_t cudnnbBackendFinalize (cudnnBackendDescriptor descriptor)

This function finalizes the memory pointed to by the descriptor. The type of finalization is
done depending on the descriptorType argument with which the descriptor was created
using cudnnBackendCreate(] or initialized using cudnnBackendInitialize().

cudnnBackendFinalize () also checks all the attributes set between the create/

initialization and finalize phase. If successful, cudnnBackendFinalize () returns
CUDNN_STATUS SUCCESS and the finalized state of the descriptor is set to true. In this state,
setting attributes using cudnnBackendSetAttribute(] is not allowed. Getting attributes using
cudnnBackendGetAttribute(] is only allowed when the finalized state of the descriptor is
true.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 169

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnn-backend-api
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnn-backend-api
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnBackendCreate
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnBackendInitialize
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnBackendSetAttribute
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnBackendGetAttribute

cudnn_cnn_infer.so Library

Parameters

descriptor

Input. Instance of cudnnBackendDescriptor_t to finalize.

Returns
CUDNN_STATUS SUCCESS

The descriptor was finalized successfully.
CUDNN_STATUS_BAD PARAM

Invalid descriptor attribute values or combination thereof is encountered.
CUDNN_STATUS_NOT SUPPORTED

Descriptor attribute values or combinations therefore not supported by the current version
of cuDNN are encountered.

CUDNN_STATUS_INTERNAL ERROR
Some internal errors are encountered.

Additional return values depend on the arguments used as explained in the cuDNN Backend
APL.

H.2.5. cudnnBackendGetAttribute ()

cudnnStatus_t cudnnBackendGetAttribute (
cudnnBackendDescriptor t descriptor,
cudnnBackendAttributeName t attributeName,
cudnnBackendAttributeType t attributeType,
int64 t requestedElementCount,
int64 t *elementCount,
void *arrayOfElements) ;

This function retrieves the value(s) of an attribute of a descriptor. attributeName is the
name of the attribute whose value is requested. The attributeType is the type of attribute.
requestsedElementCount Is the number of elements to be potentially retrieved. The
number of elements for the requested attribute is stored in elementCount. The retrieved
values are stored in arrayOfElements. When the attribute is expected to have a single
value, arrayOfElements can be pointer to the output value. This function will return
CUDNN_STATUS_NOT_ INTIALIZED if the descriptor was already successfully finalized.

Parameters
descriptor

Input. Instance of cudnnBackendDescriptor t whose attribute the user wants to retrieve.

attributeName

Input. The name of the attribute being get from the on the descriptor.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 170

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnBackendDescriptor_t
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnn-backend-api
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnn-backend-api
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnBackendDescriptor_t

cudnn_cnn_infer.so Library

attributeType

Input. The type of attribute.
requestedElementCount

Input. Number of elements to output to arrayOfElements.
elementCount
Input. Output pointer for the number of elements the descriptor attribute has.

Note that cudnnBackendGetAttribute () will only write the least of this and
requestedElementCount elements to arrayOfElements.

arrayOfElements

Input. Array of elements of the datatype of the attributeType. The datatype of the
attributeType is listed in the mapping table of cudnnBackendAttributeType_t.

Returns
CUDNN_STATUS SUCCESS

The attributeName was given to the descriptor successfully.
CUDNN_STATUS BAD PARAM

One or more invalid or inconsistent argument values were encountered. Some examples:

> attributeName is not a valid attribute for the descriptor.

> attributeType is not one of the valid types for the attribute.

CUDNN_STATUS_NOT_INITIALIZED

The descriptor has not been successfully finalized using cudnnBackendFinalize().

Additional return values depend on the arguments used as explained in the cuDNN Backend
APL.

H.2.6. cudnnBackendInitialize ()

cudnnStatus_t cudnnBackendInitialize (cudnnBackendDescriptor t descriptor,
cudnnBackendDescriptorType t descriptorType, size t sizelInBytes)

This function repurposes a pre-allocated memory pointed to by a descriptor of size

sizeInByte to a backend descriptor of type descriptorType. The necessary size for a

descriptor type can be acquired by calling the function cudnnBackendGetSizeOf(]. The

finalized state of the descriptor is setto false.

Parameters
descriptor

Input. Instance of cudnnBackendDescriptor_t to be initialized.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 171

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnn-backend-api
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnn-backend-api
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnBackendGetSizeOf
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnBackendDescriptor_t

cudnn_cnn_infer.so Library

descriptorType

Input. Enumerated value for the type of cuDNN backend descriptor.

sizeInBytes

Input. Size of memory pointed to by descriptor.

Returns

CUDNN_STATUS_SUCCESS

The memory was initialized successfully.

CUDNN_STATUS BAD PARAM
An invalid or inconsistent argument value is encountered. For example:

> descriptorisanullptr

> sizelInBytes is less than the size required by the descriptor type

Additional return values depend on the arguments used as explained in the cuDNN Backend
APL.

H5.2.7. cudnnBackendSetAttribute ()

cudnnStatus_t cudnnBackendSetAttribute (
cudnnBackendDescriptor t descriptor,
cudnnBackendAttributeName t attributeName,
cudnnBackendAttributeType t attributeType,
inté4 t elementCount,
void *arrayOfElements) ;

This function sets an attribute of a descriptor to value(s) provided as a pointer. descriptor
is the descriptor to be set. attributeName is the name of the attribute to be set.
attributeType is the type of attribute. The value to which the attribute is set, is pointed by
the arrayOfElements. The number of elements is given by elementCount. This function will
return CUDNN_STATUS NOT_ INTIALIZED if the descriptor is already successfully finalized
using cudnnBackendFinalize().

Parameters
descriptor

Input. Instance of cudnnBackendDescriptor_t whose attribute is being set.

attributeName

Input. The name of the attribute being set on the descriptor.

attributeType

Input. The type of attribute.

elementCount

Input. Number of elements being set.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 172

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnn-backend-api
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnn-backend-api
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnBackendFinalize
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnBackendDescriptor_t

cudnn_cnn_infer.so Library

arrayOfElements

Input. The starting location for an array from where to read the values from. The elements
of the array are expected to be of the datatype of the attributeType. The datatype of the
attributeType Is listed in the mapping table of cudnnBackendAttributeType t.

Returns
CUDNN_STATUS SUCCESS

The attributeName was set to the descriptor.

CUDNN_STATUS_NOT_INITIALIZED

The backend descriptor pointed to by the descriptor is already in the finalized state.
CUDNN_STATUS_BAD PARAM

The function is called with arguments that correspond to invalid values. Some possible
causes are:

attributeName is not a settable attribute of descriptor
attributeType is incorrect for this attributeName.

>
| 2
» elemCount value is unexpected.

> arrayOfElements contains values invalid for the attributeType.
CUDNN_STATUS NOT SUPPORTED

The value(s) to which the attributes are being set is not supported by the current version of
cuDNN.

Additional return values depend on the arguments used as explained in the cuDNN Backend
APL.

H5.2.8. cudnnCnnInferVersionCheck ()

cudnnStatus_t cudnnCnnInferVersionCheck (void)

This function checks whether the version of the cnnInfer subset of the library is consistent
with the other sub-libraries.

Returns

CUDNN_STATUS_SUCCESS
The version is consistent with other sub-libraries.

CUDNN_STATUS_VERSION MISMATCH
The version of CnnInfer is not consistent with other sub-libraries. Users should check the
installation and make sure all sub-component versions are consistent.

5.2.9. cudnnConvolutionBackwardData ()

cudnnStatus_t cudnnConvolutionBackwardData (
cudnnHandle t handle,

NVIDIA cuDNN PR-09702-001_v8.3.0 | 173

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnn-backend-api
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnn-backend-api

cudnn_cnn_infer.so Library

const void *alpha,
const cudnnFilterDescriptor t wDesc,
const wvoid *w,

const cudnnTensorDescriptor t dyDesc,
const void “ely,

const cudnnConvolutionDescriptor t convDesc,
cudnnConvolutionBwdDataAlgo t algo,

void *workSpace,
size t workSpaceSizeInBytes,
const void *beta,
const cudnnTensorDescriptor t dxDesc,
void *dx)

This function computes the convolution data gradient of the tensor dy, where y is the output of
the forward convolution in cudnnConvolutionForward(]. It uses the specified algo, and returns
the results in the output tensor dx. Scaling factors alpha and beta can be used to scale the
computed result or accumulate with the current dx.

Parameters
handle

Input. Handle to a previously created cuDNN context. For more information, see
cudnnHandle_t.

alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the computation result

with prior value in the output layer as follows:
dstValue = alpha[0]*result + betal[0]*priorDstValue

For more information, see Scaling Parameters in the cuDNN Developer Guide.

wDesc

Input. Handle to a previously initialized filter descriptor. For more information, see
cudnnFilterDescriptor_t.

w
Input. Data pointer to GPU memory associated with the filter descriptor wbesc.

dyDesc
Input. Handle to the previously initialized input differential tensor descriptor. For more
information, see cudnnTensorDescriptor_t.

dy
Input. Data pointer to GPU memory associated with the input differential tensor descriptor
dyDesc.

convDesc

Input. Previously initialized convolution descriptor. For more information, see
cudnnConvolutionDescriptor_t.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 174

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#scaling-parameters

cudnn_cnn_infer.so Library

algo

Input. Enumerant that specifies which backward data convolution algorithm should be used
to compute the results. For more information, see cudnnConvolutionBwdDataAlgo_t.

workSpace

Input. Data pointer to GPU memory to a workspace needed to be able to execute the
specified algorithm. If no workspace is needed for a particular algorithm, that pointer can
be nil.

workSpaceSizelInBytes

Input. Specifies the size in bytes of the provided workSpace.

dxDesc

Input. Handle to the previously initialized output tensor descriptor.
dx

Input/Output. Data pointer to GPU memory associated with the output tensor descriptor
dxDesc that carries the result.

Supported configurations

This function supports the following combinations of data types for wbesc, dyDesc, convDesc,
and dxDesc.

wDesc, dyDesc and dxDesc
Data Type Configurations Data Type convDesc Data Type

TRUE_HALF CONFIG (only CUDNN_DATA HALF CUDNN_DATA HALF
supported on architectures

with true FP16 support,

meaning, compute capability

5.3 and later]

PSEUDO_HALF_CONFIG CUDNN_DATA HALF CUDNN_DATA FLOAT
PSEUDO_BFLOAT16 CONFIG | CUDNN_DATA BFLOAT16 CUDNN_DATA FLOAT
FLOAT CONFIG CUDNN_DATA FLOAT CUDNN_DATA FLOAT
DOUBLE _CONFIG CUDNN_DATA DOUBLE CUDNN_DATA DOUBLE

Supported algorithms

S Note: Specifying a separate algorithm can cause changes in performance, support and
computation determinism. See the following for a list of algorithm options, and their respective
supported parameters and deterministic behavior.

The table below shows the list of the supported 2D and 3D convolutions. The 2D convolutions
are described first, followed by the 3D convolutions.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 175

cudnn_cnn_infer.so Library

For the following terms, the short-form versions shown in the parentheses are used in the

table below, for brevity:

CUDNN_CONVOLUTION BWD DATA ALGO 0 (_ALGO_O0)
CUDNN_ CONVOLUTION BWD DATA ALGO 1 (_ALGO_1)

CUDNN CONVOLUTION BWD DATA ALGO FFT (_FFT)

CUDNN_CONVOLUTION BWD DATA ALGO FFT TILING (_FFT_TILING)

CUDNN CONVOLUTION BWD DATA ALGO WINOGRAD (_WINOGRAD)

CUDNN_CONVOLUTION BWD DATA ALGO WINOGRAD NONFUSED (_WINOGRAD_NONFUSED)

CUDNN_ TENSOR NCHW (_NCHW)
CUDNN TENSOR NHWC (_NHWC)
CUDNN_TENSOR NCHW VECT C (_NCHW_VECT_C)

Table 14. For 2D convolutions: whesc: NHWC

Filter descriptor wbesc: NHWC (see cudnnTensorFormat_t)

Tensor Tensor
Formats Formats
Deterministic Supported for Supported for
Algo Name (Yes or No) dyDesc dxDesc
| ALGO 0 NHWC HWC- NHWC HWC-
packed packed
_ALGO 1
Table 15. For 2D convolutions: wbesc: NCHW

Filter descriptor wbesc: NCHwW.

Tensor Tensor
Formats Formats
Deterministic Supported for Supported for
Algo Name (Yes or No) dyDesc dxDesc
ALGO 0 No NCHW CHW- All except
packed _NCHW_VECT_C.

NVIDIA cuDNN

Data Type
Configurations
Supported Important

TRUE_HALF_CONFIG
PSEUDO_HALF CONFIG
PSEUDO_BFLOAT16 CONFIG

FLOAT CONFIG

Data Type
Configurations
Supported Important

TRUE_HALF cONFDdation:

reater than
PSEUDO HALF COKRFIG

0 for all
PSEUDO_BFLOATL§i/ReNEHAs

FLOAT CONFIG | ~onvDesc

DOUBLE_coNrIG Oroup Count

PR-09702-001_v8.3.0 | 176

Filter descriptor wbesc: NCHW.

Deterministic

Algo Name (Yes or No)
_ALGO 1 Yes
FET Yes

NVIDIA cuDNN

Tensor Tensor
Formats Formats
Supported for Supported for
dyDesc dxDesc

NCHW CHW- All except
packed _NCHW_VECT _C.
NCHW CHW- NCHW HW-
packed packed

cudnn_cnn_infer.so Library

Data Type

Configurations

Supported Important
Support:

Greater than 0

TRUE_HALF CONFDdation:
reater than
PSEUDO HALF COKRFIG
0 forall

PSEUDO_BFLOATI1§ReNEHRAS

FLOAT CONFIG | ~onvDesc

DOUBLE_CONFIG Oroup Count
Support:
Greater than 0

PSEUDO_HALF COBiation: 1 for

all dimensions
FLOAT CONFIG

convDesc
Group Count
Support:
Greater than 0

dxDesc feature
map height +

2 * convDesc
zero-padding
height must
equal 256 or
less

dxDesc feature
map width +

2 * convDesc
zero-padding
width must
equal 256 or
less

convDesc
vertical and
horizontal filter
stride must
equal 1

PR-09702-001_v8.3.0 | 177

cudnn_cnn_infer.so Library

Filter descriptor wbesc: NCHW.

Tensor Tensor
Formats Formats Data Type
Deterministic Supported for Supported for Configurations
Algo Name (Yes or No) dyDesc dxDesc Supported Important
wDesc filter
height must
be greater
than convDesc
zero-padding
height
wDesc filter
width must
be greater
than convbDesc
zero-padding
width
_FFT TILING | Yes NCHW CHW- NCHW HW- PSEUDO_HALF COBHation: 1 for
packed packed FLOAT CONFIG all dimensions
DOUBLE_CONFIG onVPese
i also - Group Count
supported Support:

when the task Greater than 0

can be handled | When neither
by 1D FFT, of whesc filter
meaning, one dimensionis 1,
of the filter the filter width
dimensions, and height
width or height = must not be

is 1. larger than 32

When either
of wbesc filter
dimension

is 1, the
largest filter
dimension
should not
exceed 256

convDesc

vertical and

NVIDIA cuDNN PR-09702-001_v8.3.0 | 178

Filter descriptor wbesc: NCHW.

Algo Name

_WINOGRAD

NVIDIA cuDNN

Tensor Tensor

Formats Formats Data Type
Deterministic Supported for Supported for Configurations
(Yes or No) dyDesc dxDesc Supported
Yes NCHW CHW- | All except

packed _NCHW_VECT C.

cudnn_cnn_infer.so Library

Important
horizontal filter
stride must
equal 1 when
either the filter
width or filter
height is 1,
otherwise, the
stride can be 1
or?2

wDesc filter
height must

be greater
than convDesc
zero-padding
height

wDesc filter
width must

be greater
than convbDesc
zero-padding
width

PSEUDO_HALF COBHation: 1 for

FLOAT CONFIG

all dimensions

convDesc
Group Count
Support:
Greater than 0

convDesc
vertical and
horizontal filter
stride must
equal 1

wDesc filter
height must be
3

PR-09702-001_v8.3.0 | 179

cudnn_cnn_infer.so Library

Filter descriptor wbesc: NCHW.

Tensor Tensor
Formats Formats Data Type
Deterministic Supported for Supported for Configurations
Algo Name (Yes or No) dyDesc dxDesc Supported Important
wDesc filter
width must be
3
_WINOGRAD NONFY&ED NCHW CHW- | All except TRUE HALF CcoNrFD#ation: 1 for
packed _NCHW_VECT_C. all dimensions

PSEUDO_HALF CONFIG
nvDesc

cO
PSEUDO BFLOATL16 CONFIG
Group Count

FLOAT_CONFIG Sypport:

Greater than 0

convDesc
vertical and
horizontal filter
stride must
equal 1

wDesc filter
(height, width)
must be (3,3)
or (5,5)

If wDesc

filter (height,

width] is (5,5

then the data

type config

TRUE HALF CONFIG
is not

supported

NVIDIA cuDNN PR-09702-001_v8.3.0 | 180

Table 16.

Filter descriptor wbesc: NCHW.

Deterministic

Algo Name (Yes or No)
_ALGO 0 Yes

_ALGO 1 Yes

_FFT TILING Yes

NVIDIA cuDNN

Tensor
Formats
Supported for
dyDesc

NCDHW
CDHW-packed

NCDHW
CDHW-packed

NCDHW
CDHW-packed

For 3D convolutions: wbesc: NCHW

Tensor
Formats
Supported for
dxDesc

All except
_NCDHW_VECT_C.

NCDHW
CDHW-packed

NCDHW DHW-
packed

cudnn_cnn_infer.so Library

Data Type
Configurations

Supported Important

pPSEUDO HALF coBilation:

reater th
PSEUDO BFLOAT1% CONFIG

OFor all
FLOAT_CONFIG | dimensions

an

DOUBLE_CONFIG ~onyDesc

Group Count
Support:
Greater than 0

TRUE_HALF cONFDdation: 1 for

all dimensions
PSEUDO BFLOAT16 CONFIG

onvDesc

C
PSEUDO_HALF CONFIG
Group Count

FLOAT_CONFIGDOYRBBaFONFIG

Greater than 0

PSEUDO HALF_cOBilation: 1 for

all dimensions
FLOAT CONFIG

convDesc
DOUBLE_CONFIG

Group Count

Support:

Greater than 0

wDesc filter

height must
equal 16 or
less

wDesc filter

width must
equal 16 or
less

wDesc filter

depth must
equal 16 or
less

PR-09702-001_v8.3.0 | 181

Filter descriptor wbesc: NCHW.

Tensor Tensor
Formats Formats
Deterministic Supported for Supported for
Algo Name (Yes or No) dyDesc dxDesc
Table 17. For 3D convolutions: whesc: NHWC

Filter descriptor whesc: NHWC

Tensor Tensor
Algo Formats Formats
Name (3D Deterministic Supported for Supported for
Convolutions) (Yes or No) dyDesc dxDesc
_ALGO_1 Yes NDHWC NDHWC

DHWC-packed | DHWC-packed

NVIDIA cuDNN

cudnn_cnn_infer.so Library

Data Type

Configurations

Supported Important
convDesc
must have all
filter strides
equal to 1

wDesc filter
height must
be greater
than convDesc
zero-padding
height

wDesc filter
width must

be greater
than convDesc
zero-padding
width

wDesc filter
depth must

be greater
than convbDesc
zero-padding
width

Data Type
Configurations
Supported Important

TRUE_HALF CONFDdation:
Greater

PSEUDO_HALF CONFIG

than O for all

PESUDO_BFLOAT1§iR@NEHRs

FLOAT CONFIG

PR-09702-001_v8.3.0 | 182

cudnn_cnn_infer.so Library

Filter descriptor whesc: NHWC

Tensor Tensor
Algo Formats Formats Data Type
Name (3D Deterministic Supported for Supported for Configurations
Convolutions) (Yes or No) dyDesc dxDesc Supported Important

convDesc
Group Count
Support:
Greater than 0

CUDNN_STATUS_SUCCESS

The operation was launched successfully.
CUDNN_STATUS BAD PARAM

At least one of the following conditions are met:
At least one of the following is NULL: handle, dyDesc, wDesc, convDesc, dxDesc, dy, w,
dx, alpha, beta
wDesc and dyDesc have a non-matching number of dimensions
wDesc and dxDesc have a non-matching number of dimensions
wDesc has fewer than three number of dimensions
wDesc, dxDesc, and dyDesc have a non-matching data type.

wDesc and dxDesc have a non-matching number of input feature maps per image (or
group in case of grouped convolutions).
dyDesc spatial sizes do not match with the expected size as determined by

cudnnGetConvolutionNdForwardOutputDim

CUDNN_STATUS_NOT SUPPORTED
At least one of the following conditions are met:
dyDesc or dxDesc have a negative tensor striding
dyDesc, wDesc 0r dxDesc has a number of dimensions thatis not4 or 5

The chosen algo does not support the parameters provided; see above for an exhaustive
list of parameters that support each algo

dyDesc or wDesc indicate an output channel count that isn't a multiple of group count (if
group count has been set in convDesc].

CUDNN_STATUS_MAPPING_ERROR

An error occurs during the texture binding of texture object creation associated with the
filter data or the input differential tensor data.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 183

cudnn_cnn_infer.so Library

CUDNN_STATUS_EXECUTION_ FAILED

The function failed to launch on the GPU.

5.2.10. cudnnConvolutionBiasActivationForward ()

cudnnStatus t cudnnConvolutionBiasActivationForward (

cudnnHandle t handle,

const void *alphal,

const cudnnTensorDescriptor t xDesc,

const void *x,

const cudnnFilterDescriptor t wDesc,

const void *w,

const cudnnConvolutionDescriptor t convDesc,
cudnnConvolutionFwdAlgo t algo,

void *workSpace,

size t workSpaceSizeInBytes,
const void *alpha2z,

const cudnnTensorDescriptor t zDesc,

const void *7,

const cudnnTensorDescriptor t biasDesc,

const void *bias,

const cudnnActivationDescriptor t activationDesc,
const cudnnTensorDescriptor t yDesc,

void *y)

This function applies a bias and then an activation to the convolutions or cross-correlations of
cudnnConvolutionForward(], returning results in y. The full computation follows the equation y
= act (alphal * conv(x) + alpha2 * z + bias).

[g] Note:

» The routine cudnnGetConvolution2dForwardOutputDim(] or
cudnnGetConvolutionNdForwardQutputDim() can be used to determine the proper
dimensions of the output tensor descriptor yDesc with respect to xDesc, convDesc, and
wDesc.

» Only the CUDNN CONVOLUTION FWD ALGO IMPLICIT PRECOMP_ GEMM algo is enabled
with CUDNN_ACTIVATION IDENTITY. In other words, in the cudnnActivationDescriptor_t
structure of the input activationbDesc, if the mode of the cudnnActivationMode_t
field is set to the enum value CUDNN_ ACTIVATION IDENTITY, then the input
cudnnConvolutionFwdAlgo_t of this function cudnnConvolutionBiasActivationForward()
must be set to the enum value CUDNN CONVOLUTION FWD ALGO IMPLICIT PRECOMP GEMM.
For more information, see cudnnSetActivationDescriptor().

» Device pointer z and y may be pointing to the same buffer, however, x cannot point to the
same buffer as z or y.
Parameters
handle

Input. Handle to a previously created cuDNN context. For more information, see
cudnnHandle_t.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 184

cudnn_cnn_infer.so Library

alphal, alpha2

Input. Pointers to scaling factors (in host memory) used to blend the computation result of

convolution with z and bias as follows:
y = act (alphal * conv(x) + alpha2 * z + bias)

For more information, see Scaling Parameters in the cuDNN Developer Guide.

xDesc

Input. Handle to a previously initialized tensor descriptor. For more information, see
cudnnTensorDescriptor_t.

X
Input. Data pointer to GPU memory associated with the tensor descriptor xDesc.
wDesc
Input. Handle to a previously initialized filter descriptor. For more information, see
cudnnFilterDescriptor_t.
w
Input. Data pointer to GPU memory associated with the filter descriptor wbesc.
convDesc
Input. Previously initialized convolution descriptor. For more information, see
cudnnConvolutionDescriptor._t.
algo
Input. Enumerant that specifies which convolution algorithm should be used to compute the
results. For more information, see cudnnConvolutionFwdAlgo_t.
workSpace

Input. Data pointer to GPU memory to a workspace needed to be able to execute the
specified algorithm. If no workspace is needed for a particular algorithm, that pointer can
be nil.

workSpaceSizeInBytes

Input. Specifies the size in bytes of the provided workspace.

zDesc

Input. Handle to a previously initialized tensor descriptor.

Input. Data pointer to GPU memory associated with the tensor descriptor zDesc.
biasDesc

Input. Handle to a previously initialized tensor descriptor.
bias

Input. Data pointer to GPU memory associated with the tensor descriptor biasDesc.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 185

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#scaling-parameters

cudnn_cnn_infer.so Library

activationDesc

Input. Handle to a previously initialized activation descriptor. For more information, see
cudnnActivationDescriptor_t.

yDesc

Input. Handle to a previously initialized tensor descriptor.

Input/Output. Data pointer to GPU memory associated with the tensor descriptor ybesc that
carries the result of the convolution.

For the convolution step, this function supports the specific combinations of data

types for xDesc, wDesc, convDesc, and yDesc as listed in the documentation of
cudnnConvolutionForward(). The following table specifies the supported combinations of data
types for %, v, z, bias, and alphal/alpha2.

Table 18. Supported combinations of data types (x = CUDNN DATA]

alphal/
X w convDesc y and z bias alpha2
X_DOUBLE X_DOUBLE X_DOUBLE X_DOUBLE X_DOUBLE X_DOUBLE
X_FLOAT X_FLOAT X_FLOAT X_FLOAT X_FLOAT X_FLOAT
X_HALF X_HALF X_FLOAT X_HALF X_HALF X_FLOAT
X BFLOAT16 X BFLOATI16 X FLOAT X BFLOATI16 X BFLOAT16 X FLOAT
X_INT8 X INT8 X_INT32 X_INT8 X_FLOAT X_FLOAT
X_INT8 X_INT8 X_INT32 X_FLOAT X_FLOAT X_FLOAT
X_INT8x4 X_INT8x4 X_TINT32 X_INT8x4 X_FLOAT X_FLOAT
X_TINT8x4 X_TINT8x4 X_TINT32 X_FLOAT X_FLOAT X_FLOAT
X_UINTS X_INT8 X_INT32 X_INT8 X_FLOAT X_FLOAT
X_UINTS X INT8 X_INT32 X_FLOAT X_FLOAT X_FLOAT
X_UINT8x4 X_INT8x4 X_INT32 X_INT8x4 X_FLOAT X_FLOAT
X_UINT8x4 X_INT8x4 X_TINT32 X_FLOAT X_FLOAT X_FLOAT
X_INT8x32 X_INT8x32 X_TINT32 X _INT8x32 X_FLOAT X_FLOAT
Returns

In addition to the error values listed by the documentation of cudnnConvolutionForward(], the
possible error values returned by this function and their meanings are listed below.
CUDNN_STATUS_SUCCESS

The operation was launched successfully.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 186

cudnn_cnn_infer.so Library

CUDNN_STATUS BAD PARAM
At least one of the following conditions are met:

» At least one of the following is NULL: handle, xDesc, wDesc, convDesc, yDesc, zDesc,
biasDesc, activationDesc, xData, wData, yData, zData, bias, alphal, alphaZ2.
» The number of dimensions of xDesc, wDesc, yDesc, zDesc Is not equal to the array

length of convbDesc + 2.

CUDNN_STATUS_NOT SUPPORTED
The function does not support the provided configuration. Some examples of non-supported
configurations are as follows:

» The mode of activationDesc is neither CUDNN ACTIVATION RELU Or
CUDNN_ ACTIVATION IDENTITY.

The reluNanOpt of activationDesc IS N0t CUDNN NOT PROPAGATE NAN.
The second stride of biasDesc is not equal to one.

The first dimension of biasDesc is not equal to one.

vV v v VY

The second dimension of biasDesc and the first dimension of filterDesc are not
equal.

> The data type of biasDesc does not correspond to the data type of yDesc as listed in the
above data types table.

> zDesc and destDesc do not match.
CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

5.2.11. cudnnConvolutionForward ()

cudnnStatus t cudnnConvolutionForward (

cudnnHandle t handle,
const void *alpha,
const cudnnTensorDescriptor t xDesc,
const void *x,

const cudnnFilterDescriptor t wDesc,
const void *w,

const cudnnConvolutionDescriptor t convDesc,
cudnnConvolutionFwdAlgo t algo,

void *workSpace,
size t workSpaceSizeInBytes,
const void *beta,
const cudnnTensorDescriptor t yDesc,
void *y)

This function executes convolutions or cross-correlations over x using filters specified with w,
returning results in y. Scaling factors alpha and beta can be used to scale the input tensor
and the output tensor respectively.

Note: The routine cudnnGetConvolution2dForwardOutputDim() or
cudnnGetConvolutionNdForwardQutputDim(] can be used to determine the proper dimensions
of the output tensor descriptor yDesc with respect to xDesc, convDesc, and wDesc.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 187

cudnn_cnn_infer.so Library

Parameters
handle

Input. Handle to a previously created cuDNN context. For more information, see
cudnnHandle_t.

alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the computation result

with prior value in the output layer as follows:
dstValue = alpha[0]*result + betal[0]*priorDstValue

For more information, see Scaling Parameters in the cuDNN Developer Guide.

xDesc

Input. Handle to a previously initialized tensor descriptor. For more information, see
cudnnTensorDescriptor_t.

X
Input. Data pointer to GPU memory associated with the tensor descriptor xDesc.
wDesc
Input. Handle to a previously initialized filter descriptor. For more information, see
cudnnFilterDescriptor_t.
w
Input. Data pointer to GPU memory associated with the filter descriptor wbesc.
convDesc
Input. Previously initialized convolution descriptor. For more information, see
cudnnConvolutionDescriptor_t.
algo
Input. Enumerant that specifies which convolution algorithm should be used to compute the
results. For more information, see cudnnConvolutionFwdAlgo_t.
workSpace

Input. Data pointer to GPU memory to a workspace needed to be able to execute the
specified algorithm. If no workspace is needed for a particular algorithm, that pointer can
be nil.

workSpaceSizeInBytes

Input. Specifies the size in bytes of the provided workspace.

yDesc

Input. Handle to a previously initialized tensor descriptor.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 188

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#scaling-parameters

cudnn_cnn_infer.so Library

Input/Output. Data pointer to GPU memory associated with the tensor descriptor ybesc that

carries the result of the convolution.

Supported configurations

This function supports the following combinations of data types for xDesc, wDesc, convDesc

and yDesc.

Table 19.

Data Type

Configurations xDesc and wDesc

TRUE_HALF CONFIG | CUDNN DATA HALF
(only supported on

architectures with

true FP16 support,

meaning, compute

capability 5.3 and

later)
PSEUDO HALF CONFIG CUDNN DATA HALF

PSEUDO BFLOAT16 COMFUIN DATA BFLOAT16
(only support on

architecture with

bfloatlé support,

meaning, compute

capability 8.0 and

later)
FLOAT CONFIG CUDNN_DATA FLOAT
DOUBLE_CONFIG CUDNN_DATA DOUBLE

INT8 CONFIG
(only supported

CUDNN_DATA INTS8

on architectures
with DP4A support,
meaning, compute
capability 6.1 and
later)

INT8 EXT CONFIG
(only supported

CUDNN_DATA INTS8

on architectures
with DP4A support,

NVIDIA cuDNN

Supported configurations

convDesc

CUDNN_DATA HALF

CUDNN_ DATA FLOAT

CUDNN_DATA FLOAT

CUDNN_ DATA FLOAT
CUDNN_DATA DOUBLE

CUDNN_DATA INT32

CUDNN_DATA INT32

yDesc

CUDNN_DATA HALF

CUDNN_ DATA HALF

CUDNN DATA BFLOAT16

CUDNN_ DATA FLOAT
CUDNN_DATA DOUBLE

CUDNN_DATA INTS8

CUDNN_DATA FLOAT

PR-09702-001_v8.3.0 | 189

cudnn_cnn_infer.so Library

Data Type

Configurations xDesc and wDesc convDesc yDesc
meaning, compute

capability 6.1 and

later)

INT8x4 CONFIG CUDNN DATA INT8x4 CUDNN_DATA INT32 CUDNN DATA INT8x4
(only supported

on architectures

with DP4A support,

meaning, compute

capability 6.1 and

later)

INT8x4 EXT CONFIG | CUDNN DATA INT8x4 CUDNN DATA INT32 CUDNN DATA FLOAT
(only supported

on architectures

with DP4A support,

meaning, compute

capability 6.1 and

later)
UINT8 CONFIG «Desc: CUDNN_DATA INT32 CUDNN_DATA INTS8
[only supported CUDNN_DATA UINTS
on architectures

. Desc:
with DP4A support, v

: CUDNN_DATA INTS8

meaning, compute - -
capability 6.1 and
later)
UINT8x4 CONFIG xDesc: CUDNN_DATA INT32 CUDNN_DATA INT8x4
[only supported CUDNN_DATA UINTS8x4
on architectures

. Desc:
with DP4A support, v

. CUDNN_DATA INT8x4
meaning, compute - -
capability 6.1 and
later)
UINT8_EXT_CONFIG | ypegc: CUDNN_DATA INT32 CUDNN_DATA_ FLOA
(only supported CUDNN_DATA_UTINT8
on architectures
wDesc:

with DP4A support,

. CUDNN_DATA INTS8
meaning, compute - -

capability 6.1 and
later)

NVIDIA cuDNN PR-09702-001_v8.3.0 | 190

cudnn_cnn_infer.so Library

Data Type
Configurations xDesc and wDesc convDesc yDesc
UINT8x4 EXT CONFIG ,pege- CUDNN DATA INT32 CUDNN DATA FLOAT
(only supported CUDNN_DATA UINT8x4
on architectures

. D :
with DP4A support, woesc

: CUDNN DATA INT8x4

meaning, compute - —
capability 6.1 and
later)
INT8x32 CONFIG CUDNN DATA INT8x32 CUDNN DATA INT32 CUDNN DATA INT8x32

(only supported

on architectures
with IMMA support,
meaning compute
capability 7.5 and
later)

Supported algorithms

S Note: For this function, all algorithms perform deterministic computations. Specifying a
separate algorithm can cause changes in performance and support.

The table below shows the list of the supported 2D and 3D convolutions. The 2D convolutions
are described first, followed by the 3D convolutions.

For the following terms, the short-form versions shown in the parenthesis are used in the
table below, for brevity:

CUDNN CONVOLUTION FWD ALGO IMPLICIT GEMM (_IMPLICIT_GEMM])

CUDNN CONVOLUTION FWD ALGO IMPLICIT PRECOMP GEMM (_IMPLICIT_PRECOMP_GEMM])
CUDNN_CONVOLUTION FWD ALGO GEMM (_GEMM]

CUDNN_ CONVOLUTION FWD ALGO DIRECT (_DIRECT)

CUDNN CONVOLUTION FWD ALGO FFT (_FFT)

CUDNN CONVOLUTION FWD ALGO FFT TILING (_FFT_TILING)
CUDNN_CONVOLUTION FWD ALGO WINOGRAD (_WINOGRAD)

CUDNN CONVOLUTION FWD ALGO WINOGRAD NONFUSED (_WINOGRAD_NONFUSED)
CUDNN_ TENSOR_NCHW (_NCHW)

vV V. v v v vV v v v v

CUDNN_TENSOR NHWC (_NHWC)

v

CUDNN TENSOR NCHW VECT C (_NCHW_VECT_C)

NVIDIA cuDNN PR-09702-001_v8.3.0 | 191

cudnn_cnn_infer.so Library

Table 20. For 2D convolutions: whesc: NCHW

Filter descriptor wDesc: _NCHW (see cudnnTensorFormat_t)

convDesc Group count support: Greater than 0, for all algos.

Tensor Formats Tensor Formats Data Type
Supported for Supported for Configurations

Algo Name xDesc yDesc Supported Important
_IMPLICIT GEMM | All except All except TRUE_HALF CONFIG Dilation: Greater
NCHW_VECT_C. NCHW_VECT_C. than 0 for all
- - - - - - PSEUDO_HALF CONFIG .
dimensions

PSEUDO BFLOAT16 CONFIG
FLOAT CONFIG
DOUBLE CONFIG

_IMPLICIT PRECOMPAEMept All except TRUE_HALF CONFIG Dilation: 1 for all

NCHW VECT C. NCHW VECT C. dimensions
— — - — — - PSEUDO_HALF CONFIG

PSEUDO_BFLOAT16 CONFIG
FLOAT CONFIG
DOUBLE_CONFIG

GEMM All except All except PSEUDO HALF CONF1IBilation: 1 for all

NCHW VECT C. NCHW VECT C. dimensions
- - - - — - FLOAT CONFIG

DOUBLE CONFIG

FFT NCHW HW-packed NCHW HW-packed | PSEUDO_HALF_ CONFIBilation: 1 for all

dimensions
FLOAT CONFIG

xDesc feature
map height + 2 *
convDesc zero-
padding height
must equal 256 or
less

xDesc feature
map width + 2 *
convDesc Zero-
padding width
must equal 256 or
less

convDesc vertical

and horizontal

NVIDIA cuDNN PR-09702-001_v8.3.0 | 192

Filter descriptor wDesc: _NCHW (see cudnnTensorFormat_t)

convDesc Group count support: Greater than 0, for all algos.

Tensor Formats Tensor Formats Data Type
Supported for Supported for

Algo Name xDesc yDesc Supported

Configurations

Important

cudnn_cnn_infer.so Library

_FFT_TILING

NVIDIA cuDNN

filter stride must
equal 1

wDesc filter height
must be greater
than convbDesc
zero-padding
height

wDesc filter width
must be greater
than convbesc
zero-padding
width

PSEUDO HALF_ CONFIBilation: 1 for all

FLOAT CONFIG

DOUBLE_CONFIG
is also supported
when the task can
be handled by 1D
FFT, meaning,
one of the filter
dimensions, width
or heightis 1.

dimensions

When neither

of whesc filter
dimensionis 1, the
filter width and
height must not be
larger than 32

When either

of wbesc filter
dimension is 1,
the largest filter
dimension should
not exceed 256

convDesc vertical
and horizontal
filter stride

must equal 1
when either the
filter width or
filter height is

1, otherwise the

PR-09702-001_v8.3.0 | 193

cudnn_cnn_infer.so Library

Filter descriptor wDesc: _NCHW (see cudnnTensorFormat_t)

convDesc Group count support: Greater than 0, for all

Tensor Formats
Supported for

yDesc

Tensor Formats
Supported for

xDesc

Algo Name

All All
except NCHW VECT @&xcept NCHW VECT

_WINOGRAD

_ WINOGRAD NONFUSED

NVIDIA cuDNN

algos.

Data Type
Configurations
Supported

Important
stride can be a1
or?

wDesc filter height
must be greater
than convbDesc
zero-padding
height

wDesc filter width
must be greater
than convbesc
zero-padding
width

PSEUDO HALF_ CONFIBilation: 1 for all

C
T FLOAT CONFIG

dimensions

convDesc vertical
and horizontal
filter stride must
equal 1

wDesc filter height
must be 3

wDesc filter width
must be 3

TRUE_HALF CONFIG Dilation: 1 for all

dimensions

PSEUDO_HALF CONFIG

convDesc vertical

PSEUDO BFLOAT16 CONFIG

FLOAT CONFIG

PR-09702-001_v8.3.0 |

and horizontal
filter stride must
equal 1

wDesc filter
(height, width)
must be (3,3) or
(5,5)

194

cudnn_cnn_infer.so Library

Filter descriptor wDesc: _NCHW (see cudnnTensorFormat_t)

convDesc Group count support: Greater than 0, for all algos.

Tensor Formats Tensor Formats Data Type
Supported for Supported for Configurations
Algo Name xDesc yDesc Supported Important

If whesc filter
(height, width)
is (5,5), then
data type config
TRUE HALF CONFIG
is not supported.

_DIRECT Currently not implemented in cuDNN.

Table 21. For 2D convolutions: whesc: _NCHWC

Filter descriptor wDesc: _NCHWC

convDesc Group count support: Greater than 0.

Data Type
Configurations
Algo Name xDesc yDesc Supported Important
_IMPLICIT GEMM NCHW VECT C _NCHW _VECT_C UINT8x4 CONFIG | Dilation: 1 forall
dimensions
_IMPLICIT PRECOMP GEMM INT8x4 EXT CONFIG
_IMPLICIT PRECOMP IGEMN VECT C _NCHW _VECT_C INT8x32 CONFIG | Dilation: 1 for all
dimensions
Requires compute
capability 7.2 or
above.
Table 22. For 2D convolutions: whesc: NHWC
Filter descriptor wDesc: _NHWC
convDesc Group count support: Greater than 0.
Data Type
Configurations
Algo Name xDesc yDesc Supported Important
_IMPLICIT GEMM NHWC fully- NHWC fully- INT8 CONFIG Dilation: 1 for all
packed packed dimensions
_IMPLICIT PRECOMP GEMM INT8 EXT CONFIG

NVIDIA cuDNN PR-09702-001_v8.3.0 | 195

Filter descriptor wDesc: _NHWC

convDesc Group count support: Greater than 0.

Algo Name xDesc
_IMPLICIT GEMM NHWC HWC-
packed.

_IMPLICIT PRECOMP GEMM

Table 23.

Filter descriptor wDesc: _NCHW

yDesc

NHWC HWC-
packed.

NCHW CHW-
packed

For 3D convolutions: whesc:

cudnn_cnn_infer.so Library

Data Type
Configurations
Supported
UINT8 CONFIG

UINT8 EXT CONFIG

TRUE_HALF CONFIG

Important

Input and output
feature maps must
be a multiple of 4.
QOutput features
maps can be
non-multiple

in the case of
INT8 EXT CONFIG
or
UINT8 EXT CONFIG.

PSEUDO_ HALF CONEIG

PSEUDO_BFLOAT16 CONFIG

FLOAT CONFIG

DOUBLE CONFIG

_ NCHW

convDesc Group count support: Greater than 0, for all algos.

xDesc

Algo Name

_IMPLICIT GEMM | All except

_NCHW_VECT_C.

_IMPLICIT PRECOMP GEMM

NCDHW DHW-
packed

_FFT TILING

NVIDIA cuDNN

yDesc

All except

_NCHW_VECT_C.

NCDHW DHW-
packed

Data Type
Configurations
Supported

Important

PSEUDO HALF CONF1IBilation: Greater

than 0 for all

PSEUDO BFLOAT16 CONFIG
dimensions

FLOAT CONFIG

DOUBLE CONFIG

Dilation: Greater
than O for all
dimensions

Dilation: 1 for all
dimensions

PR-09702-001_v8.3.0 | 196

cudnn_cnn_infer.so Library

Filter descriptor wDesc: _NCHW
convDesc Group count support: Greater than 0, for all algos.

Data Type
Configurations
Algo Name xDesc yDesc Supported Important
wDesc filter height
must equal 16 or
less

wDesc filter width
must equal 16 or
less

wDesc filter depth
must equal 16 or
less

convDesc must
have all filter
strides equal to 1

wDesc filter height
must be greater
than convDesc
zero-padding
height

wDesc filter width
must be greater
than convbDesc
zero-padding
width

wDesc filter depth
must be greater
than convbDesc
zero-padding
width

NVIDIA cuDNN PR-09702-001_v8.3.0 | 197

cudnn_cnn_infer.so Library

Table 24. For 3D convolutions: whesc: NHWC

Filter descriptor wDesc: _NHWC

convDesc Group count support: Greater than 0, for all algos.

Data Type
Configurations
Algo Name xDesc yDesc Supported Important
_IMPLICIT PRECOMPNER#NC NDHWC PSEUDO_HALF CONFIBilation: Greater
DHWC-packed ~ DHWC-packed psmupo_srroaTis colirrs orall
dimensions

FLOAT CONFIG

= Note: Tensors can be converted to and from CUDNN_TENSOR_NCHW_VECT_C with
cudnnTransformTensor().

Returns

CUDNN_STATUS_SUCCESS

The operation was launched successfully.
CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:
> At least one of the following is NULL: handle, xDesc, wbesc, convDesc, yDesc, xData, w,
yData, alpha, beta
» xDesc and yDesc have a non-matching number of dimensions
> xDesc and wDesc have a non-matching number of dimensions
» xDesc has fewer than three number of dimensions
» xDesc's number of dimensions is not equal to convDesc array length + 2

» xDesc and whesc have a non-matching number of input feature maps per image (or
group in case of grouped convolutions]

» yDesc or wDesc indicate an output channel count that isn't a multiple of group count [if
group count has been set in convDesc].

> xDesc, wDesc, and yDesc have a non-matching data type
» For some spatial dimension, wbesc has a spatial size that is larger than the input

spatial size (including zero-padding size)

CUDNN_STATUS NOT SUPPORTED
At least one of the following conditions are met:

» xDesc or yDesc have negative tensor striding

> xDesc, wDesc, Or yDesc has a number of dimensions thatis not 4 or 5

NVIDIA cuDNN PR-09702-001_v8.3.0 | 198

cudnn_cnn_infer.so Library

> yDesc spatial sizes do not match with the expected size as determined by
cudnnGetConvolutionNdForwardOutputDim()

» The chosen algo does not support the parameters provided; see above for an exhaustive
list of parameters supported for each algo

CUDNN_STATUS_MAPPING_ERROR

An error occurs during the texture object creation associated with the filter data.

CUDNN_STATUS_EXECUTION_ FAILED

The function failed to launch on the GPU.

5.2.12. cudnnCreateConvolutionDescriptor ()

cudnnStatus t cudnnCreateConvolutionDescriptor (
cudnnConvolutionDescriptor t *convDesc)

This function creates a convolution descriptor object by allocating the memory needed to hold
its opaque structure. For more information, see cudnnConvolutionDescriptor t.

Returns

CUDNN_STATUS_SUCCESS

The object was created successfully.

CUDNN_STATUS_ALLOC_FAILED

The resources could not be allocated.

5.2.13. cudnnDestroyConvolutionDescriptor ()

cudnnStatus t cudnnDestroyConvolutionDescriptor (
cudnnConvolutionDescriptor t convDesc)

This function destroys a previously created convolution descriptor object.
Returns

CUDNN_STATUS_SUCCESS
The descriptor was destroyed successfully.

5.2.14. cudnnFindConvolutionBackwardDataAlgorithm ()

cudnnStatus_t cudnnFindConvolutionBackwardDataAlgorithm (

cudnnHandle t handle,

const cudnnFilterDescriptor t wDesc,

const cudnnTensorDescriptor t dyDesc,

const cudnnConvolutionDescriptor t convDesc,

const cudnnTensorDescriptor t dxDesc,

const int requestedAlgoCount,
int *returnedAlgoCount,
cudnnConvolutionBwdDataAlgoPerf t *perfResults)

NVIDIA cuDNN PR-09702-001_v8.3.0 | 199

cudnn_cnn_infer.so Library

This function attempts all algorithms available for cudnnConvolutionBackwardData(]. It will
attempt both the provided convDesc mathType and CUDNN DEFAULT MATH (assuming the two
differ).

S Note: Algorithms without the CUDNN TENSOR OP MATH availability will only be tried with
CUDNN DEFAULT MATH, and returned as such.

Memory is allocated via cudaMalloc (). The performance metrics are returned in
the user-allocated array of cudnnConvolutionBwdDataAlgoPerf_t. These metrics
are written in a sorted fashion where the first element has the lowest compute
time. The total number of resulting algorithms can be queried through the AP!I
cudnnGetConvolutionBackwardDataAlgorithmMaxCount().

@ Note:

» This function is host blocking.

» Itis recommended to run this function prior to allocating layer data; doing otherwise may
needlessly inhibit some algorithm options due to resource usage.

Parameters
handle

Input. Handle to a previously created cuDNN context.

wDesc

Input. Handle to a previously initialized filter descriptor.

dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.

convDesc

Input. Previously initialized convolution descriptor.
dxDesc

Input. Handle to the previously initialized output tensor descriptor.

requestedAlgoCount

Input. The maximum number of elements to be stored in perfResults.

returnedAlgoCount

Output. The number of output elements stored in perfResults.

perfResults

Output. A user-allocated array to store performance metrics sorted ascending by compute
time.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 200

cudnn_cnn_infer.so Library

Returns
CUDNN_STATUS SUCCESS

The query was successful.
CUDNN_STATUS_BAD PARAM

At least one of the following conditions are met:
handle Is not allocated properly.
wDesc, dyDesc, or dxDesc Is not allocated properly.

wDesc, dyDesc, or dxDesc has fewer than 1 dimension.

Either returnedCount or perfResults is nil.

vV v v v Vv

requestedCount is less than 1.
CUDNN_STATUS ALLOC_ FAILED

This function was unable to allocate memory to store sample input, filters and output.
CUDNN_STATUS_INTERNAL ERROR

At least one of the following conditions are met:

» The function was unable to allocate necessary timing objects.
» The function was unable to deallocate necessary timing objects.

» The function was unable to deallocate sample input, filters and output.

5.2.15. cudnnFindConvolutionBackwardDataAlgorithmEx (

cudnnStatus t cudnnFindConvolutionBackwardDataAlgorithmEx (

cudnnHandle t handle,

const cudnnFilterDescriptor t wDesc,

const void *w,

const cudnnTensorDescriptor t dyDesc,

const void *dy,

const cudnnConvolutionDescriptor t convDesc,

const cudnnTensorDescriptor t dxDesc,

void *dx,

const int requestedAlgoCount,
int *returnedAlgoCount,
cudnnConvolutionBwdDataAlgoPerf t *perfResults,

void *workSpace,

size t workSpaceSizelInBytes)

This function attempts all algorithms available for cudnnConvolutionBackwardDatal(). It will

attempt both the provided convbesc mathType and CUDNN_DEFAULT MATH (assuming the two
differ).

S Note: Algorithms without the CUDNN TENSOR OP MATH availability will only be tried with
CUDNN DEFAULT MATH, and returned as such.

Memory is allocated via cudaMalloc (). The performance metrics are returned in
the user-allocated array of cudnnConvolutionBwdDataAlgoPerf_t. These metrics

NVIDIA cuDNN PR-09702-001_v8.3.0 | 201

cudnn_cnn_infer.so Library

are written in a sorted fashion where the first element has the lowest compute
time. The total number of resulting algorithms can be queried through the API
cudnnGetConvolutionBackwardDataAlgorithmMaxCount().

Note: This function is host blocking.

Parameters

handle

Input. Handle to a previously created cuDNN context.

wDesc

Input. Handle to a previously initialized filter descriptor.

w
Input. Data pointer to GPU memory associated with the filter descriptor wbesc.
dyDesc
Input. Handle to the previously initialized input differential tensor descriptor.
dy
Input. Data pointer to GPU memory associated with the filter descriptor dyDesc.
convDesc
Input. Previously initialized convolution descriptor.
dxDesc
Input. Handle to the previously initialized output tensor descriptor.
dxDesc
Input/Output. Data pointer to GPU memory associated with the tensor descriptor dxbesc.
The content of this tensor will be overwritten with arbitrary values.
requestedAlgoCount

Input. The maximum number of elements to be stored in perfResults.
returnedAlgoCount
Output. The number of output elements stored in perfResults.

perfResults

Output. A user-allocated array to store performance metrics sorted ascending by compute
time.

workSpace
Input. Data pointer to GPU memory is a necessary workspace for some algorithms. The size

of this workspace will determine the availability of algorithms. A nil pointer is considered a
workSpace of 0 bytes.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 202

cudnn_cnn_infer.so Library

workSpaceSizeInBytes

Input. Specifies the size in bytes of the provided workspace.

Returns
CUDNN_STATUS SUCCESS

The query was successful.
CUDNN_STATUS_BAD PARAM

At least one of the following conditions are met:

» handle is not allocated properly.

> wDesc, dyDesc, or dxDesc Is not allocated properly.

> wDesc, dyDesc, or dxDesc has fewer than 1 dimension.
> w, dy, or dx is nil.

» Either returnedCount or perfResults is nil.

>

requestedCount is less than 1.
CUDNN_STATUS INTERNAL ERROR
At least one of the following conditions are met:

» The function was unable to allocate necessary timing objects.
» The function was unable to deallocate necessary timing objects.

» The function was unable to deallocate sample input, filters and output.

5.2.16. cudnnFindConvolutionForwardAlgorithm ()

cudnnStatus t cudnnFindConvolutionForwardAlgorithm (

cudnnHandle t handle,

const cudnnTensorDescriptor t xDesc,

const cudnnFilterDescriptor t wDesc,

const cudnnConvolutionDescriptor t convDesc,

const cudnnTensorDescriptor t yDesc,

const int requestedAlgoCount,
int *returnedAlgoCount,
cudnnConvolutionFwdAlgoPerf t *perfResults)

This function attempts all algorithms available for cudnnConvolutionForward(). It will attempt
both the provided convbDesc mathType and CUDNN_DEFAULT MATH (assuming the two differ].

S Note: Algorithms without the CUDNN_TENSOR 0P MATH availability will only be tried with
CUDNN_DEFAULT MATH, and returned as such.

Memory is allocated via cudaMalloc (). The performance metrics are returned
in the user-allocated array of cudnnConvolutionFwdAlgoPerf t. These metrics
are written in a sorted fashion where the first element has the lowest compute

NVIDIA cuDNN PR-09702-001_v8.3.0 | 203

cudnn_cnn_infer.so Library

time. The total number of resulting algorithms can be queried through the API
cudnnGetConvolutionForwardAlgorithmMaxCount().

@ Note:

» This function is host blocking.

» Itis recommended to run this function prior to allocating layer data; doing otherwise may
needlessly inhibit some algorithm options due to resource usage.

Parameters
handle

Input. Handle to a previously created cuDNN context.

xDesc

Input. Handle to the previously initialized input tensor descriptor.

wDesc

Input. Handle to a previously initialized filter descriptor.

convDesc

Input. Previously initialized convolution descriptor.

yDesc

Input. Handle to the previously initialized output tensor descriptor.

requestedAlgoCount

Input. The maximum number of elements to be stored in perfResults.

returnedAlgoCount

Output. The number of output elements stored in perfResults.

perfResults
Output. A user-allocated array to store performance metrics sorted ascending by compute
time.

Returns

CUDNN_STATUS_SUCCESS

The query was successful.

CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:

» handle is not allocated properly.
> xDesc, wDesc, or yDesc are not allocated properly.

> xDesc, wDesc, Or yDesc has fewer than 1 dimension.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 204

cudnn_cnn_infer.so Library

> Either returnedCount or perfResults is nil.

> requestedCount is less than 1.
CUDNN_STATUS_ALLOC_FAILED

This function was unable to allocate memory to store sample input, filters and output.
CUDNN_STATUS INTERNAL ERROR

At least one of the following conditions are met:

» The function was unable to allocate necessary timing objects.
» The function was unable to deallocate necessary timing objects.

> The function was unable to deallocate sample input, filters and output.

5.2.17. cudnnFindConvolutionForwardAlgorithmEx ()

cudnnStatus_t cudnnFindConvolutionForwardAlgorithmEx (

cudnnHandle t handle,

const cudnnTensorDescriptor t xDesc,

const void *x,

const cudnnFilterDescriptor t wDesc,

const void *w,

const cudnnConvolutionDescriptor t convDesc,

const cudnnTensorDescriptor t yDesc,

void =57,

const int requestedAlgoCount,
int *returnedAlgoCount,
cudnnConvolutionFwdAlgoPerf t *perfResults,

void *workSpace,

size t workSpaceSizeInBytes)

This function attempts all algorithms available for cudnnConvolutionForward(). It will attempt
both the provided convDesc mathType and CUDNN_DEFAULT MATH (assuming the two differ].

S Note: Algorithms without the CUDNN_TENSOR 0P MATH availability will only be tried with
CUDNN_DEFAULT MATH, and returned as such.

Memory is allocated via cudaMalloc (). The performance metrics are returned
in the user-allocated array of cudnnConvolutionFwdAlgoPerf_t. These metrics
are written in a sorted fashion where the first element has the lowest compute
time. The total number of resulting algorithms can be queried through the API
cudnnGetConvolutionForwardAlgorithmMaxCount().

Note: This function is host blocking.

Parameters
handle

Input. Handle to a previously created cuDNN context.

xDesc

Input. Handle to the previously initialized input tensor descriptor.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 205

cudnn_cnn_infer.so Library

X
Input. Data pointer to GPU memory associated with the tensor descriptor xDesc.
wDesc
Input. Handle to a previously initialized filter descriptor.
w
Input. Data pointer to GPU memory associated with the filter descriptor wbesc.
convDesc
Input. Previously initialized convolution descriptor.
yDesc
Input. Handle to the previously initialized output tensor descriptor.
Y
Input/Output. Data pointer to GPU memory associated with the tensor descriptor ybesc. The
content of this tensor will be overwritten with arbitrary values.
requestedAlgoCount

Input. The maximum number of elements to be stored in perfResults.

returnedAlgoCount

Output. The number of output elements stored in perfResults.

perfResults

Output. A user-allocated array to store performance metrics sorted ascending by compute
time.

workSpace

Input. Data pointer to GPU memory is a necessary workspace for some algorithms. The size
of this workspace will determine the availability of algorithms. A nil pointer is considered a
workSpace of 0 bytes.

workSpaceSizelInBytes

Input. Specifies the size in bytes of the provided workspace.

CUDNN_STATUS_SUCCESS

The query was successful.

CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:

handle is not allocated properly.
xDesc, wDesc, or yDesc are not allocated properly.

xDesc, wDesc, Or yDesc has fewer than 1 dimension.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 206

cudnn_cnn_infer.so Library

> x,w, oryisnil

> Either returnedCount or perfResults is nil.

> requestedCount is less than 1.
CUDNN_STATUS_INTERNAL_ERROR

At least one of the following conditions are met:

» The function was unable to allocate necessary timing objects.
» The function was unable to deallocate necessary timing objects.

» The function was unable to deallocate sample input, filters and output.

5.2.18. cudnnGetConvolution2dDescriptor ()

cudnnStatus_t cudnnGetConvolution2dDescriptor (
const cudnnConvolutionDescriptor t convDesc,

int *pad_h,

int *pad w,

int v

int Y,

int *dilation_h,
int *dilation w,
cudnnConvolutionMode t *mode,
cudnnDataType t *computeType)

This function queries a previously initialized 2D convolution descriptor object.

Parameters
convDesc

Input/Output. Handle to a previously created convolution descriptor.
pad_h

Output. Zero-padding height: number of rows of zeros implicitly concatenated onto the top
and onto the bottom of input images.

pad_w

Output. Zero-padding width: number of columns of zeros implicitly concatenated onto the
left and onto the right of input images.

Output. Vertical filter stride.

Output. Horizontal filter stride.
dilation_h

Output. Filter height dilation.
dilation w

Output. Filter width dilation.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 207

cudnn_cnn_infer.so Library

mode

Output. Convolution mode.

computeType

Output. Compute precision.

Returns
CUDNN_STATUS_SUCCESS

The operation was successful.

CUDNN_STATUS_BAD_PARAM

The parameter convDesc is nil.

5.2.19. cudnnGetConvolution2dForwardOutputDim ()

cudnnStatus_t cudnnGetConvolution2dForwardOutputDim (
const cudnnConvolutionDescriptor t convDesc,

const cudnnTensorDescriptor t inputTensorDesc,
const cudnnFilterDescriptor t filterDesc,

int i,

int “@,

int i,

int *w)

This function returns the dimensions of the resulting 4D tensor of a 2D convolution, given the
convolution descriptor, the input tensor descriptor and the filter descriptor This function can
help to setup the output tensor and allocate the proper amount of memory prior to launch the
actual convolution.

Each dimension h and w of the output images is computed as follows:

outputDim = 1 + (inputDim + 2*pad - (((filterDim-1)*dilation)+1))/
convolutionStride;

Note: The dimensions provided by this routine must be strictly respected when calling
cudnnConvolutionForward() or cudnnConvolutionBackwardBias(). Providing a smaller or larger
output tensor is not supported by the convolution routines

Parameters
convDesc

Input. Handle to a previously created convolution descriptor.

inputTensorDesc

Input. Handle to a previously initialized tensor descriptor.

filterDesc

Input. Handle to a previously initialized filter descriptor.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 208

cudnn_cnn_infer.so Library

Output. Number of output images.
Output. Number of output feature maps per image.
Output. Height of each output feature map.

Output. Width of each output feature map.

Returns
CUDNN_STATUS_BAD PARAM
One or more of the descriptors has not been created correctly or there is a mismatch

between the feature maps of inputTensorDesc and filterDesc.
CUDNN_STATUS_SUCCESS

The object was set successfully.

5.2.20. cudnnGetConvolutionBackwardDataAlgorithmMaxC

cudnnStatus t cudnnGetConvolutionBackwardDataAlgorithmMaxCount (

cudnnHandle t handle,

int *count)
This function returns the maximum number of algorithms which can
be returned from cudnnFindConvolutionBackwardDataAlgorithm(] and
cudnnGetConvolutionForwardAlgorithm_v7(). This is the sum of all algorithms plus the sum of
all algorithms with Tensor Core operations supported for the current device.

Parameters
handle

Input. Handle to a previously created cuDNN context.

count

Output. The resulting maximum number of algorithms.

Returns

CUDNN_STATUS_SUCCESS

The function was successful.

CUDNN_STATUS_BAD PARAM

The provided handle is not allocated properly.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 209

cudnn_cnn_infer.so Library

5.2.21. cudnnGetConvolutionBackwardDataAlgorithm v7 (

cudnnStatus_t cudnnGetConvolutionBackwardDataAlgorithm v7(

cudnnHaHdle_t handle,

const cudnnFilterDescriptor t wDesc,

const cudnnTensorDescriptor t dyDesc,

const cudnnConvolutionDescriptor t convDesc,

const cudnnTensorDescriptor t dxDesc,

const int requestedAlgoCount,
int *returnedAlgoCount,
cudnnConvolutionBwdDataAlgoPerf t *perfResults)

This function serves as a heuristic for obtaining the best suited algorithm for
cudnnConvolutionBackwardDatal(] for the given layer specifications. This function will

return all algorithms (including CUDNN_TENSOR OP_MATH and CUDNN DEFAULT MATH

versions of algorithms where CUDNN_TENSOR OP MATH may be available] sorted by

expected (based on internal heuristic) relative performance with the fastest being

index 0 of perfResults. For an exhaustive search for the fastest algorithm, use
cudnnFindConvolutionBackwardDataAlgorithm(). The total number of resulting algorithms can
be queried through the returnedalgoCount variable.

Parameters
handle

Input. Handle to a previously created cuDNN context.
wDesc
Input. Handle to a previously initialized filter descriptor.
dyDesc
Input. Handle to the previously initialized input differential tensor descriptor.

convDesc

Input. Previously initialized convolution descriptor.

dxDesc

Input. Handle to the previously initialized output tensor descriptor.

requestedAlgoCount

Input. The maximum number of elements to be stored in perfResults.

returnedAlgoCount

Output. The number of output elements stored in perfResults.

perfResults

Output. A user-allocated array to store performance metrics sorted ascending by compute
time.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 210

cudnn_cnn_infer.so Library

Returns

CUDNN_STATUS_SUCCESS

The query was successful.

CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:

» One of the parameters handle, wDesc, dyDesc, convDesc, dxDesc, perfResults
returnedAlgoCount iS NULL.

> The numbers of feature maps of the input tensor and output tensor differ.

> The dataType of the two tensor descriptors or the filters are different.

> requestedAlgoCount is less than or equal to 0.

5.2.22. cudnnGetConvolutionBackwardDataWorkspaceSize

cudnnStatus t cudnnGetConvolutionBackwardDataWorkspaceSize (

cudnnHandle t handle,
const cudnnFilterDescriptor t wDesc,

const cudnnTensorDescriptor t dyDesc,
const cudnnConvolutionDescriptor t convDesc,
const cudnnTensorDescriptor t dxDesc,
cudnnConvolutionBwdDataAlgo t algo,

size t *sizelInBytes)

This function returns the amount of GPU memory workspace the user needs to allocate to be
able to call cudnnConvolutionBackwardDatal() with the specified algorithm. The workspace
allocated will then be passed to the routine cudnnConvolutionBackwardDatal(]. The specified
algorithm can be the result of the call to cudnnGetConvolutionBackwardDataAlgorithm_v7(]
or can be chosen arbitrarily by the user. Note that not every algorithm is available for every
configuration of the input tensor and/or every configuration of the convolution descriptor.

Parameters
handle

Input. Handle to a previously created cuDNN context.

wDesc

Input. Handle to a previously initialized filter descriptor.

dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.

convDesc

Input. Previously initialized convolution descriptor.

dxDesc

Input. Handle to the previously initialized output tensor descriptor.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 211

cudnn_cnn_infer.so Library

algo
Input. Enumerant that specifies the chosen convolution algorithm.
sizeInBytes

Output. Amount of GPU memory needed as workspace to be able to execute a forward
convolution with the specified algo.

Returns

CUDNN_STATUS_SUCCESS

The query was successful.

CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:

» The numbers of feature maps of the input tensor and output tensor differ.

» The dataType of the two tensor descriptors or the filter are different.
CUDNN_STATUS NOT SUPPORTED

The combination of the tensor descriptors, filter descriptor and convolution descriptor is
not supported for the specified algorithm.

5.2.23. cudnnGetConvolutionForwardAlgorithmMaxCount (

cudnnStatus t cudnnGetConvolutionForwardAlgorithmMaxCount (

cudnnHandle t handle,

int *count)
This function returns the maximum number of algorithms which can be returned from
cudnnFindConvolutionForwardAlgorithm() and cudnnGetConvolutionForwardAlgorithm_v7(].
This is the sum of all algorithms plus the sum of all algorithms with Tensor Core operations
supported for the current device.

Parameters

handle

Input. Handle to a previously created cuDNN context.

count

Output. The resulting maximum number of algorithms.

Returns

CUDNN_STATUS_SUCCESS

The function was successful.

CUDNN_STATUS_BAD_PARAM

The provided handle is not allocated properly.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 212

cudnn_cnn_infer.so Library

5.2.24. cudnnGetConvolutionForwardAlgorithm v7 ()

cudnnStatus_t cudnnGetConvolutionForwardAlgorithm v7 (

cudnnHaHdle_t handle,

const cudnnTensorDescriptor t xDesc,

const cudnnFilterDescriptor t wDesc,

const cudnnConvolutionDescriptor t convDesc,

const cudnnTensorDescriptor t yDesc,

const int requestedAlgoCount,
int *returnedAlgoCount,
cudnnConvolutionFwdAlgoPerf t *perfResults)

This function serves as a heuristic for obtaining the best suited algorithm for
cudnnConvolutionForward() for the given layer specifications. This function will return

all algorithms (including CUDNN_TENSOR OP MATH and CUDNN DEFAULT MATH versions of
algorithms where CUDNN_TENSOR_OP_MATH may be available) sorted by expected (based on
internal heuristic) relative performance with the fastest being index 0 of perfResults. Foran
exhaustive search for the fastest algorithm, use cudnnFindConvolutionForwardAlgorithm().
The total number of resulting algorithms can be queried through the returnedalgoCount
variable.

Parameters
handle

Input. Handle to a previously created cuDNN context.
xDesc

Input. Handle to the previously initialized input tensor descriptor.
wDesc

Input. Handle to a previously initialized convolution filter descriptor.
convDesc

Input. Previously initialized convolution descriptor.
yDesc

Input. Handle to the previously initialized output tensor descriptor.
requestedAlgoCount

Input. The maximum number of elements to be stored in perfResults.

returnedAlgoCount

Output. The number of output elements stored in perfResults.

perfResults

Output. A user-allocated array to store performance metrics sorted ascending by compute
time.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 213

cudnn_cnn_infer.so Library

Returns
CUDNN_STATUS SUCCESS

The query was successful.
CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:
» One of the parameters handle, xDesc, wDesc, convDesc, yDesc, perfResults
returnedAlgoCount iS NULL.
Either yDesc or wbesc have different dimensions from xDesc.
The data types of tensors xDesc, yDesc or wDesc are not all the same.
The number of feature maps in xDesc and wbesc differs.

The tensor xDesc has a dimension smaller than 3.

vV vV v Vv VY

requestedAlgoCount is less than or equal to 0.

5.2.25. cudnnGetConvolutionForwardWorkspaceSize ()

cudnnStatus t cudnnGetConvolutionForwardWorkspaceSize (
cudnnHandle t handle,

const cudnnTensorDescriptor t xDesc,

const cudnnFilterDescriptor t wDesc,

const cudnnConvolutionDescriptor t convDesc,
const cudnnTensorDescriptor t yDesc,
cudnnConvolutionFwdAlgo t algo,

size t *sizeInBytes)

This function returns the amount of GPU memory workspace the user needs to allocate to be
able to call cudnnConvolutionForward(] with the specified algorithm. The workspace allocated
will then be passed to the routine cudnnConvolutionForward(]. The specified algorithm can

be the result of the call to cudnnGetConvolutionForwardAlgorithm_v7(] or can be chosen
arbitrarily by the user. Note that not every algorithm is available for every configuration of the
input tensor and/or every configuration of the convolution descriptor.

Parameters
handle

Input. Handle to a previously created cuDNN context.

xDesc

Input. Handle to the previously initialized x tensor descriptor.

wDesc

Input. Handle to a previously initialized filter descriptor.

convDesc

Input. Previously initialized convolution descriptor.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 214

cudnn_cnn_infer.so Library

yDesc

Input. Handle to the previously initialized y tensor descriptor.
algo

Input. Enumerant that specifies the chosen convolution algorithm.

sizeInBytes

Output. Amount of GPU memory needed as workspace to be able to execute a forward
convolution with the specified algo.

Returns

CUDNN_STATUS_SUCCESS

The query was successful.

CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:

One of the parameters handle, xDesc, wDesc, convDesc, yDesc IS NULL.
The tensor yDesc or wbesc are not of the same dimension as xDesc.
The tensor xDesc, yDesc or wDesc are not of the same data type.

The numbers of feature maps of the tensor xDesc and wDesc differ.

vV vV v v VY

The tensor xDesc has a dimension smaller than 3.
CUDNN_STATUS_NOT_SUPPORTED

The combination of the tensor descriptors, filter descriptor and convolution descriptor is
not supported for the specified algorithm.

5.2.26. cudnnGetConvolutionGroupCount ()

cudnnStatus_t cudnnGetConvolutionGroupCount (
cudnnConvolutionDescriptor t convDesc,
int *groupCount)

This function returns the group count specified in the given convolution descriptor.
Returns

CUDNN_STATUS_SUCCESS

The group count was returned successfully.
CUDNN_STATUS_BAD PARAM

An invalid convolution descriptor was provided.

5.2.27. cudnnGetConvolutionMathType ()

cudnnStatus_t cudnnGetConvolutionMathType (
cudnnConvolutionDescriptor t convDesc,

NVIDIA cuDNN PR-09702-001_v8.3.0 | 215

cudnn_cnn_infer.so Library

cudnnMathType t *mathType)

This function returns the math type specified in a given convolution descriptor.

Returns

CUDNN_STATUS_SUCCESS

The math type was returned successfully.

CUDNN_STATUS_BAD_ PARAM

An invalid convolution descriptor was provided.

5.2.28. cudnnGetConvolutionNdDescriptor ()

cudnnStatus_t cudnnGetConvolutionNdDescriptor (
const cudnnConvolutionDescriptor t convDesc,

int arrayLengthRequested,
int *arrayLength,

int padAll]l,

int filterStrideAl[],

int dilationA[],
cudnnConvolutionMode t *mode,

cudnnDataType t *dataType)

This function queries a previously initialized convolution descriptor object.

Parameters

convDesc

Input/Output. Handle to a previously created convolution descriptor.

arrayLengthRequested

Input. Dimension of the expected convolution descriptor. It is also the minimum size of the
arrays pada, filterStrideA, and dilationA in order to be able to hold the results

arrayLength
Output. Actual dimension of the convolution descriptor.
pada

Output. Array of dimension of at least arrayLengthRequested that will be filled with the
padding parameters from the provided convolution descriptor.

filterStrideA
Output. Array of dimension of at least arrayLengthRequested that will be filled with the
filter stride from the provided convolution descriptor.

dilationA
Output. Array of dimension of at least arrayLengthRequested that will be filled with the
dilation parameters from the provided convolution descriptor.

mode

Output. Convolution mode of the provided descriptor.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 216

cudnn_cnn_infer.so Library

datatype

Output. Datatype of the provided descriptor.

Returns

CUDNN_STATUS_SUCCESS

The query was successful.

CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:

» The descriptor convDesc is nil.

» The arrayLengthRequest Is negative.
CUDNN_STATUS_NOT_SUPPORTED

The arrayLengthRequested Is greater than CUDNN_DIM MAX-2.

5.2.29. cudnnGetConvolutionNdForwardOutputDim ()

cudnnStatus t cudnnGetConvolutionNdForwardOutputDim (
const cudnnConvolutionDescriptor t convDesc,

const cudnnTensorDescriptor t inputTensorDesc,
const cudnnFilterDescriptor t filterDesc,

int nbDims,

int tensorOuputDimAT[])

This function returns the dimensions of the resulting n-D tensor of a nbbDims-2-D convolution,
given the convolution descriptor, the input tensor descriptor and the filter descriptor This
function can help to setup the output tensor and allocate the proper amount of memory prior
to launch the actual convolution.

Each dimension of the (nbDims-2) -D images of the output tensor is computed as follows:

outputDim = 1 + (inputDim + 2*pad - (((filterDim-1)*dilation)+1))/
convolutionStride;

Note: The dimensions provided by this routine must be strictly respected when calling
cudnnConvolutionForward() or cudnnConvolutionBackwardBias(). Providing a smaller or larger
output tensor is not supported by the convolution routines.

Parameters
convDesc

Input. Handle to a previously created convolution descriptor.

inputTensorDesc

Input. Handle to a previously initialized tensor descriptor.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 217

cudnn_cnn_infer.so Library

filterDesc

Input. Handle to a previously initialized filter descriptor.

nbDims

Input. Dimension of the output tensor.
tensorOuputDimA

Output. Array of dimensions nbDims that contains on exit of this routine the sizes of the
output tensor.

Returns
CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:

» One of the parameters convDesc, inputTensorDesc, and filterDesc is nil.

» The dimension of the filter descriptor filterDesc is different from the dimension of
input tensor descriptor inputTensorDesc.

> The dimension of the convolution descriptor is different from the dimension of input
tensor descriptor inputTensorDesc-2.

» The features map of the filter descriptor filterDesc is different from the one of input
tensor descriptor inputTensorDesc.

> The size of the dilated filter filterDesc is larger than the padded sizes of the input
tensor.

» The dimension nbDims of the output array is negative or greater than the dimension of
input tensor descriptor inputTensorDesc.

CUDNN_STATUS_SUCCESS

The routine exited successfully.

5.2.30. cudnnGetConvolutionReorderType ()

cudnnStatus t cudnnGetConvolutionReorderType (
cudnnConvolutionDescriptor t convDesc,
cudnnReorderType t *reorderType);

This function retrieves the convolution reorder type from the given convolution descriptor.

Parameters

convDesc

Input. The convolution descriptor from which the reorder type should be retrieved.
reorderType

Output. The retrieved reorder type. For more information, see cudnnReorderType_t.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 218

cudnn_cnn_infer.so Library

Returns

CUDNN_STATUS BAD PARAM

One of the inputs to this function is not valid.
CUDNN_STATUS_SUCCESS

The reorder type is retrieved successfully.

5.2.31. cudnnGetFoldedConvBackwardDataDescriptors ()

cudnnStatus t

cudnnGetFoldedConvBackwardDataDescriptors (const cudnnHandle t handle,
const cudnnFilterDescriptor t filterDesc,
const cudnnTensorDescriptor t diffDesc,
const cudnnConvolutionDescriptor t

convDesc,
const cudnnTensorDescriptor t gradDesc,
const cudnnTensorFormat t transformFormat,
cudnnFilterDescriptor t foldedFilterDesc,
cudnnTensorDescriptor t paddedDiffDesc,
cudnnConvolutionDescriptor t
foldedConvDesc,

cudnnTensorDescriptor t foldedGradDesc,

cudnnTensorTransformDescriptor t
filterFoldTransDesc,

cudnnTensorTransformDescriptor t
diffPadTransDesc,

cudnnTensorTransformDescriptor t
gradFoldTransDesc,

cudnnTensorTransformDescriptor t
gradUnfoldTransDesc) ;

This function calculates folding descriptors for backward data gradients. It takes as input
the data descriptors along with the convolution descriptor and computes the folded data
descriptors and the folding transform descriptors. These can then be used to do the actual
folding transform.

Parameters

handle

Input. Handle to a previously created cuDNN context.

filterDesc
Input. Filter descriptor before folding.
diffDesc

Input. Diff descriptor before folding.

convDesc

Input. Convolution descriptor before folding.

gradDesc

Input. Gradient descriptor before folding.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 219

cudnn_cnn_infer.so Library

transformFormat

Input. Transform format for folding.
foldedFilterDesc

Output. Folded filter descriptor.
paddedDiffDesc

Output. Padded Diff descriptor.
foldedConvDesc

Output. Folded convolution descriptor.
foldedGradDesc

Output. Folded gradient descriptor.

filterFoldTransDesc

Output. Folding transform descriptor for filter.

diffPadTransDesc

Output. Folding transform descriptor for Desc.

gradFoldTransDesc

Output. Folding transform descriptor for gradient.

gradUnfoldTransDesc

Output. Unfolding transform descriptor for folded gradient.

CUDNN_STATUS_SUCCESS

Folded descriptors were computed successfully.

CUDNN_STATUS_BAD_PARAM

If any of the input parameters is NULL or if the input tensor has more than 4 dimensions.

CUDNN_STATUS EXECUTION FATILED

Computing the folded descriptors failed.

cudnnStatus t cudnnIm2Col (

cudnnHandle t handle,
cudnnTensorDescriptor t srcDesc,
const void *srcData,
cudnnFilterDescriptor t filterDesc,
cudnnConvolutionDescriptor t convDesc,
void *colBuffer)

This function constructs the A matrix necessary to perform a forward pass of GEMM
convolution. This A matrix has a height of batch size*y height*y width and width of
input_channels*filter_height*filter_width,Wher&

NVIDIA cuDNN PR-09702-001_v8.3.0 | 220

cudnn_cnn_infer.so Library

» Dbatch size is xDesc first dimension
» y height/y width are computed from cudnnGetConvolutionNdForwardOutputDim ()
» input channels is xDesc second dimension

» filter height/filter width are wDesc third and fourth dimension

The A matrix is stored in format HW fully-packed in GPU memory.

Parameters

handle

Input. Handle to a previously created cuDNN context.
srcDesc

Input. Handle to a previously initialized tensor descriptor.
srcData

Input. Data pointer to GPU memory associated with the input tensor descriptor.

filterDesc

Input. Handle to a previously initialized filter descriptor.

convDesc

Input. Handle to a previously initialized convolution descriptor.

colBuffer

Output. Data pointer to GPU memory storing the output matrix.

Returns

CUDNN_STATUS_BAD_PARAM

srcData Or colBuffer iS NULL
CUDNN_STATUS NOT SUPPORTED
Any of srcDesc, filterDesc, convDesc has dataType of CUDNN DATA INTS,

CUDNN DATA INT8x4, CUDNN DATA INT8 Or CUDNN DATA INT8x4 convDesc has
groupCount larger than 1.

CUDNN_STATUS_EXECUTION_ FAILED

The CUDA kernel execution was unsuccessful.

CUDNN_STATUS_SUCCESS

The output data array is successfully generated.

H.2.33. cudnnReorderFilterAndBias ()

cudnnStatus_t cudnnReorderFilterAndBias (
cudnnHandle t handle,
const cudnnFilterDescriptor t filterDesc,

NVIDIA cuDNN PR-09702-001_v8.3.0 | 221

cudnn_cnn_infer.so Library

cudnnReorderType t reorderType,
const void *filterData,

void *reorderedFilterData,

int reorderBias,

const void *biasData,

volid *reorderedBiasData);

This function cudnnReorderFilterAndBias(], reorders the filter and bias values for tensors with
data type CUDNN DATA INT8x32. It can be used to enhance the inference time by separating
the reordering operation from convolution.

Filter and bias tensor with data type CUDNN_ DATA INT8x32 requires permutation of output
channel axes in order to take advantage of the Tensor Core IMMA instruction. This is done in
every cudnnConvolutionForward() and cudnnConvolutionBiasActivationForward() call when the
reorder type attribute of the convolution descriptor is set to CUDNN DEFAULT REORDER. Users
can avoid the repeated reordering kernel call by first using this call to reorder the filter and
bias tensor and call the convolution forward APIs with reorder type set to CUDNN_ NO REORDER.

For example, convolutions in a neural network of multiple layers can require reordering of
kernels at every layer, which can take up a significant fraction of the total inference time.
Using this function, the reordering can be done one time on the filter and bias data followed by
the convolution operations at the multiple layers, thereby enhancing the inference time.

Parameters

handle
Input. Handle to a previously created cuDNN context.
filterDesc
Input. Descriptor for the kernel dataset.
reorderType
Input. Setting to either perform reordering or not. For more information, see
cudnnReorderType_t.
filterData
Input. Pointer to the filter (kernel] data location in the device memory.
reorderedFilterData
Output. Pointer to the location in the device memory where the reordered filter data will be
written to, by this function. This tensor has the same dimensions as filterData.

reorderBias
Input. If > 0, then reorders the bias data also. If <= 0 then does not perform reordering
operations on the bias data.

biasData
Input. Pointer to the bias data location in the device memory.

reorderedBiasData
Output. Pointer to the location in the device memory where the reordered bias data will be
written to, by this function. This tensor has the same dimensions as biasData.

Returns

CUDNN_STATUS_SUCCESS
Reordering was successful.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 222

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionForward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionBiasActivationForward

cudnn_cnn_infer.so Library

CUDNN_STATUS_EXECUTION FAILED
Either the reordering of the filter data or of the bias data failed.

5.2.34. cudnnSetConvolution2dDescriptor ()

cudnnStatus t cudnnSetConvolution2dDescriptor (

cudnnCoHvolutionDescriptorit convDesc,
int pad_h,

int pad w,

int u,

int v,

int dilation h,
int dilation w,
cudnnConvolutionMode t mode,
cudnnDataType t computeType)

This function initializes a previously created convolution descriptor object into a 2D
correlation. This function assumes that the tensor and filter descriptors correspond to
the forward convolution path and checks if their settings are valid. That same convolution
descriptor can be reused in the backward path provided it corresponds to the same layer.

Parameters
convDesc

Input/Output. Handle to a previously created convolution descriptor.
pad_h

Input. Zero-padding height: number of rows of zeros implicitly concatenated onto the top
and onto the bottom of input images.

pad_w

Input. Zero-padding width: number of columns of zeros implicitly concatenated onto the left
and onto the right of input images.

Input. Vertical filter stride.

Input. Horizontal filter stride.
dilation h

Input. Filter height dilation.
dilation_w

Input. Filter width dilation.

mode

Input. Selects between CUDNN CONVOLUTION and CUDNN CROSS CORRELATION.

computeType

Input. Compute precision.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 223

cudnn_cnn_infer.so Library

Returns

CUDNN_STATUS_SUCCESS

The object was set successfully.
CUDNN_STATUS_BAD PARAM

At least one of the following conditions are met:
The descriptor convbesc is nil.
One of the parameters pad_h, pad_w is strictly negative.

One of the parameters u, v is negative or zero.

One of the parameters dilation h, dilation wis negative or zero.

vV v v v Vv

The parameter mode has an invalid enumerant value.

5.2.35. cudnnSetConvolutionGroupCount ()

cudnnStatus t cudnnSetConvolutionGroupCount (
cudnnConvolutionDescriptor t convDesc,
int groupCount)

This function allows the user to specify the number of groups to be used in the associated
convolution.

Returns

CUDNN_STATUS_SUCCESS

The group count was set successfully.

CUDNN_STATUS_BAD_ PARAM

An invalid convolution descriptor was provided

5.2.36. cudnnSetConvolutionMathType ()

cudnnStatus t cudnnSetConvolutionMathType (
cudnnConvolutionDescriptor t convDesc,
cudnnMathType t mathType)

This function allows the user to specify whether or not the use of tensor op is permitted in the
library routines associated with a given convolution descriptor.

Returns

CUDNN_STATUS_SUCCESS

The math type was set successfully.

CUDNN_STATUS_BAD_PARAM

Either an invalid convolution descriptor was provided or an invalid math type was specified.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 224

cudnn_cnn_infer.so Library

5.2.37. cudnnSetConvolutionNdDescriptor ()

cudnnStatus t cudnnSetConvolutionNdDescriptor (

cudnnConvolutionDescriptor t convDesc,

int arraylLength,
const int padAl[],

const int filterStrideAl[],
const int dilationA[],
cudnnConvolutionMode t mode,
cudnnDataType t dataType)

This function initializes a previously created generic convolution descriptor object into a n-D
correlation. That same convolution descriptor can be reused in the backward path provided

it corresponds to the same layer. The convolution computation will be done in the specified

dataType, which can be potentially different from the input/output tensors.

Parameters

convDesc

Input/Output. Handle to a previously created convolution descriptor.

arrayLength

Input. Dimension of the convolution.
padA

Input. Array of dimension arrayLength containing the zero-padding size for each
dimension. For every dimension, the padding represents the number of extra zeros
implicitly concatenated at the start and at the end of every element of that dimension.

filterStrideA

Input. Array of dimension arrayLength containing the filter stride for each dimension. For
every dimension, the filter stride represents the number of elements to slide to reach the
next start of the filtering window of the next point.

dilationA

Input. Array of dimension arrayLength containing the dilation factor for each dimension.
mode

Input. Selects between CUDNN CONVOLUTION and CUDNN CROSS CORRELATION.
datatype

Input. Selects the data type in which the computation will be done.

S Note: CUDNN DATA HALF in cudnnSetConvolutionNdDescriptor () with
HALF CONVOLUTION BWD FILTER is not recommended as it is known to not
be useful for any practical use case for training and will be considered to be
blocked in a future cuDNN release. The use of CUDNN_DATA HALF for input
tensorsincudnnSetTensorNdDescriptor()andCUDNN_DATA_FLOATin

cudnnSetConvolutionNdDescriptor () With HALF CONVOLUTION BWD FILTER is

NVIDIA cuDNN PR-09702-001_v8.3.0 | 225

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnSetConvolutionNdDescriptor
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnSetTensorNdDescriptor
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnSetConvolutionNdDescriptor

cudnn_cnn_infer.so Library

recommended and is used with the automatic mixed precision (AMP) training in many well
known deep learning frameworks.

Returns

CUDNN_STATUS_SUCCESS

The object was set successfully.

CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:

The descriptor convDesc is nil.
ThearrayLengthRequestisnegaﬂve

The enumerant mode has an invalid value.

The enumerant datatype has an invalid value.
One of the elements of pada is strictly negative.

One of the elements of stridea is negative or zero.

vV vV . v v Vv v v

One of the elements of dilationa is negative or zero.
CUDNN_STATUS_NOT SUPPORTED
At least one of the following conditions are met:

» The arrayLengthRequest Is greater than CUDNN DIM MAX.

5.2.38. cudnnSetConvolutionReorderType ()

cudnnStatus t cudnnSetConvolutionReorderType (
cudnnConvolutionDescriptor t convDesc,
cudnnReorderType t reorderType) ;

This function sets the convolution reorder type for the given convolution descriptor.

Parameters

convDesc

Input. The convolution descriptor for which the reorder type should be set.
reorderType

Input. Set the reorder type to this value. For more information, see cudnnReorderType_t.

Returns

CUDNN_STATUS BAD PARAM

The reorder type supplied is not supported.
CUDNN_STATUS_SUCCESS

Reorder type is set successfully.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 226

Chapter 6. cudnn cnn train.so

Libra ry

6.1. Data Type References

6.1.1. Pointer To Opaque Struct Types

6.1.1.1. cudnnFusedOpsConstParamPack t

cudnnFusedOpsConstParamPack t Is a pointer to an opaque structure holding

the description of the cudnnFusedOps constant parameters. Use the function
cudnnCreateFusedOpsConstParamPack(] to create one instance of this structure, and the
function cudnnDestroyFusedOpsConstParamPack(] to destroy a previously-created descriptor.

6.1.1.2. cudnnFusedOpsPlan_t

cudnnFusedOpsPlan_t is a pointer to an opaque structure holding the description of the
cudnnFusedOpsPlan. This descriptor contains the plan information, including the problem
type and size, which kernels should be run, and the internal workspace partition. Use the
function cudnnCreateFusedOpsPlan(] to create one instance of this structure, and the function
cudnnDestroyFusedOpsPlan(] to destroy a previously-created descriptor.

6.1.1.3. cudnnFusedOpsVariantParamPack t

cudnnFusedOpsVariantParamPack tis a pointer to an opaque structure holding

the description of the cudnnFusedOps variant parameters. Use the function
cudnnCreateFusedOpsVariantParamPack|() to create one instance of this structure, and
the function cudnnDestroyFusedOpsVariantParamPack(] to destroy a previously-created
descriptor.

6.1.2. Struct Types

6.1.2.1. cudnnConvolutionBwdFilterAlgoPerf t

NVIDIA cuDNN PR-09702-001_v8.3.0 | 227

cudnn_cnn_train.so Library

cudnnConvolutionBwdFilterAlgoPerf tis a structure containing performance results
returned by cudnnFindConvolutionBackwardFilterAlgorithm() or heuristic results returned by
cudnnGetConvolutionBackwardFilterAlgorithm_v7().

Data Members

cudnnConvolutionBwdFilterAlgo t algo

The algorithm runs to obtain the associated performance metrics.
cudnnStatus_t status
If any error occurs during the workspace allocation or timing of

cudnnConvolutionBackwardFilter(], this status will represent that error. Otherwise, this
status will be the return status of cudnnConvolutionBackwardFilter().

» CUDNN_STATUS ALLOC FAILED if any error occurred during workspace allocation or if
the provided workspace is insufficient.

» CUDNN STATUS INTERNAL ERROR if any error occurred during timing calculations or
workspace deallocation.

> Otherwise, this will be the return status of cudnnConvolutionBackwardFilter().

float time

The execution time of cudnnConvolutionBackwardFilter(] (in milliseconds).

size_t memory

The workspace size [(in bytes).

cudnnDeterminism t determinism

The determinism of the algorithm.

cudnnMathType t mathType

The math type provided to the algorithm.

int reserved[3]

Reserved space for future properties.

6.1.3. Enumeration Types

6.1.3.1. cudnnFusedOps t

The cudnnFusedOps_t type is an enumerated type to select a specific sequence of
computations to perform in the fused operations.

Member Description

CUDNN_FUSED_SCALE BIAS ACTIVATION CONV_ BNS@ATsper-channel basis, it performs these

=0 operations in this order: scale, add bias,
activation, convolution, and generate batchnorm
statistics.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 228

Member

CUDNN_FUSED SCALE BIAS ACTIVATION WGRAD
1

cudnn_cnn_train.so Library

Description

On a per-channel basis, it performs these
operations in this order: scale, add bias,
activation, convolution backward weights, and
generate batchnorm statistics.

CUDNN_FUSED_SCALE_BIAS_ACTIVATION_WGRAD

Qutput

Input

Y

wgrad RelLU

F

dw «—

X
.-

equivalent scale
f—

equivalent bias
P

Yo Scale &

Bias

[

y; = RelLU(y;) v,= scale(x)+bias

dy

CUDNN_FUSED BN FINALIZE STATISTICS TRAININGomputes the equivalent scale and bias from

2

ySum, ySgqSum and learned scale, bias.

Optionally update running statistics and generate
saved stats

CUDNN_FUSED BN FINALIZE STATISTICS INFERENCEmMputes the equivalent scale and bias from the

3

learned running statistics and the learned scale,
bias.

CUDNN_FUSED CONV_SCALE BIAS ADD ACTIVATIONOnN a per-channel basis, performs these

4

operations in this order: convolution, scale, add
bias, element-wise addition with another tensor,
and activation.

CUDNN_FUSED SCALE BIAS ADD ACTIVATION GEN BnmMpsr-channel basis, performs these

5

CUDNN_FUSED DACTIVATION FORK DBATCHNORM
6

NVIDIA cuDNN

operations in this order: scale and bias on one
tensor, scale, and bias on a second tensor,
element-wise addition of these two tensors, and
on the resulting tensor perform activation, and
generate activation bit mask.

On a per-channel basis, performs these
operations in this order: backward activation,
fork (meaning, write out gradient for the residual
branch), and backward batch norm.

PR-09702-001_v8.3.0 | 229

cudnn_cnn_train.so Library

6.1.3.2. cudnnFusedOpsConstParamLabel t

The cudnnFusedOpsConstParamLabel t isan enumerated type for the selection
of the type of the cudnnFusedOps descriptor. For more information, see

cudnnSetFusedOpsConstParamPackAttributel(].

typedef enum {

CUDNN_PARAM XDESC

CUDNN PARAM XDATA PLACEHOLDER
CUDNN_PARAM BN MODE

CUDNN_ PARAM BN EQSCALEBIAS DESC
CUDNN_PARAM BN EQSCALE PLACEHOLDER
CUDNN_ PARAM BN EQBIAS PLACEHOLDER
CUDNN_PARAM ACTIVATION DESC
CUDNN_PARAM CONV_DESC

CUDNN_PARAM WDESC

CUDNN PARAM WDATA PLACEHOLDER
CUDNN_PARAM DWDESC

CUDNN_ PARAM DWDATA PLACEHOLDER
CUDNN_PARAM YDESC

CUDNN_ PARAM YDATA PLACEHOLDER
CUDNN_PARAM DYDESC

CUDNN_ PARAM DYDATA PLACEHOLDER

CUDNN_ PARAM YSTATS DESC

CUDNN PARAM YSUM PLACEHOLDER

CUDNN PARAM YSQSUM PLACEHOLDER
CUDNN_PARAM BN SCALEBIAS MEANVAR DESC
CUDNN_PARAM BN SCALE PLACEHOLDER
CUDNN_ PARAM BN BIAS PLACEHOLDER
CUDNN_ PARAM BN SAVED MEAN PLACEHOLDER
CUDNN_ PARAM BN SAVED INVSTD PLACEHOLDER
CUDNN_PARAM BN RUNNING MEAN PLACEHOLDER
CUDNN_ PARAM BN RUNNING VAR PLACEHOLDER
CUDNN_PARAM ZDESC

CUDNN_ PARAM ZDATA PLACEHOLDER

CUDNN_ PARAM BN 7 EQSCALEBIAS DESC
CUDNN_ PARAM BN 7 EQSCALE PLACEHOLDER
CUDNN_ PARAM BN 7 EQBIAS PLACEHOLDER
CUDNN_ PARAM ACTIVATION BITMASK DESC

CUDNN_PARAM ACTIVATION BITMASK PLACEHOLDER

CUDNN_PARAM DXDESC

CUDNN PARAM DXDATA PLACEHOLDER
CUDNN_ PARAM DZDESC
CUDNN_PARAM DZDATA PLACEHOLDER
CUDNN_PARAM BN DSCALE PLACEHOLDER
CUDNN_ PARAM BN DBIAS PLACEHOLDER
} cudnnFusedOpsConstParamLabel t;

Short-form used

Setter

Getter

X PointerPlaceHolder t

x_ prefix in the Attribute column

NVIDIA cuDNN

I
O U ™ WN RO
S~ S S N~ S~ o~~~

I
N

~

I
~ ~ N

~

I
~ ~ N

~

I
I = e = W =SSy
OO JdUd WN O

I
~

NN
= o
~

~

I
N N
w N

~

~

Il
N N
(ST

I
N
o
~ S~~~

~

[Tl Il
wwwwN NN
W NP O W
S~ S~ S~ S~ S

~

~

I
wwwww
@ ~J oy U1

~ S

~

Stands for
cudnnSetFusedOpsConstParamPackAttribute()

cudnnGetFusedOpsConstParamPackAttribute()

cudnnFusedOpsPointerPlaceHolder t

Stands for CUDNN_PARAM in the enumerator
name

PR-09702-001_v8.3.0 | 230

cudnn_cnn_train.so Library

Table 25. CUDNN_ FUSED SCALE BIAS ACTIVATION CONV_BNSTATS

For the attribute CUDNN_FUSED_SCALE_BIAS_ACTIVATION CONV_BNSTATS in
cudnnFusedOp_t

Expected Descriptor

Type Passed in, in Default Value After
Attribute the Setter Description Creation
X _XDESC In the setter, the Tensor descriptor NULL
*param should be describing the size,
xDesc, a pointer to a layout, and datatype of
previously initialized the x (input] tensor.
cudnnTensorDescriptor t.
X_XDATA PLACEHOLDER | In the setter, the Describes whether CUDNN_PTR NULL
*param should xData pointerin the
be a pointer to a VariantParamPack
previously initialized will be NULL, or if not,
X_PointerPlaceHolder wser promised pointer
alignment *.
X _BN_MODE In the setter, the Describes the mode of | CUDNN BATCHNORM PER ACTIVATION
*param should operation for the scale,
be a pointer to a bias and the statistics.

previously initialized

cudnnBatchNormMode t*AS of cuDNN 7.6.0, only

CUDNN_BATCHNORM SPATIAL

and
CUDNN_BATCHNORM SPATIAL PERSISTENT
are supported,

meaning, scale, bias,

and statistics are all

per-channel.

X_BN_EQSCALEBIAS DESCIn the setter, the Tensor descriptor NULL
*param should describing the size,
be a pointer to a layout, and datatype
previously initialized of the batchNorm

cudnnTensorDescriptor_t.equivalent scale and
bias tensors. The
shapes must match
the mode specified in
CUDNN_PARAM BN MODE.
If set to NULL, both
scale and bias
operation will become a

NOP.
X_BN EQSCALE PLACEHOLDEfhe setter, the Describes whether CUDNN_ PTR NULL
*param should batchnorm equivalent
be a pointer to a scale pointer in the
previously initialized VariantParamPack

X_PointerPlaceHolder_wﬂ[be NULL, or if not,
user promised pointer
alignment *.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 231

cudnn_cnn_train.so Library

For the attribute CUDNN_FUSED_SCALE_BIAS_ACTIVATION CONV_BNSTATS in

cudnnFusedOp_t

Expected Descriptor

Type Passed in, in Default Value After
Attribute the Setter Description Creation
If set to
CUDNN_PTR NULL, then
the scale operation
becomes a NOP.
X BN EQBIAS PLACEHOLDHERthe setter, the Describes whether CUDNN_PTR NULL
*param should batchnorm equivalent
be a pointer to a bias pointerin the
previously initialized VariantParamPack

X ACTIVATION DESC

X_CONV_DESC

X_WDESC

X WDATA PLACEHOLDER

NVIDIA cuDNN

X_PointerPlaceHolder wil be NULL, orif not,
user promised pointer
alignment *.

If set to

CUDNN_PTR NULL,
then the bias operation
becomes a NOP.

In the setter, the Describes the activation | NULL
*param should operation.

be a pointer to a As of cuDNN 7.6.0, only
previously initialized o
AR . a%mvahon modes of
cudnnActivationDescriptor_t*.
CUDNN_ACTIVATION RELU
and
CUDNN ACTIVATION IDENTITY
are supported. If
set to NULL or if the
activation mode is set to
CUDNN ACTIVATION IDENTITY,
then the activation
in the op sequence
becomes a NOP.

In the setter, the Describes the NULL
*param should convolution operation.

be a pointer to a

previously initialized

cudnnConvolutionDescriptor t*.

In the setter, the Filter descriptor NULL

*param should describing the size,

be a pointer to a layout and datatype of

previously initialized the w (filter) tensor.

cudnnFilterDescriptor t*.

In the setter, the Describes whether w CUDNN_PTR NULL
*param should (filter] tensor pointer in

be a pointer to a the variantParamPack

previously initialized will be NULL, or if not,

X PointerPlaceHolder| t*.

PR-09702-001_v8.3.0

| 232

cudnn_cnn_train.so Library

For the attribute CUDNN_FUSED_SCALE_BIAS_ACTIVATION CONV_BNSTATS in
cudnnFusedOp_t

Expected Descriptor

Type Passed in, in Default Value After
Attribute the Setter Description Creation
user promised pointer
alignment *.
X _YDESC In the setter, the Tensor descriptor NULL
*param should describing the size,
be a pointer to a layout and datatype of
previously initialized the y (output] tensor.
cudnnTensorDescriptor t*.
X_YDATA PLACEHOLDER In the setter, the Describes whether CUDNN_PTR NULL
*param should y loutput) tensor
be a pointerto a pointer in the
previously initialized VariantParamPack

X_PointerPlaceHolder wil be NULL, or if not,
user promised pointer
alignment *.

X_YSTATS DESC In the setter, the Tensor descriptor NULL
*param should describing the size,
be a pointer to a layout and datatype of
previously initialized the sum of y and sum of

cudnnTensorDescriptorytsguare tensors. The
shapes need to match
the mode specified in
CUDNN_PARAM BN MODE.

If set to NULL, the y
statistics generation
operation will become a

NOP.
X_YSUM PLACEHOLDER Inthe setter, the Describes whether CUDNN_PTR NULL
*param should sum of y painter in the
be a pointer to a VariantParamPack
previously initialized will be NULL, or if not,
X_PointerPlaceHolder| tiser promised pointer
alignment *.
If set to

CUDNN_PTR NULL, the
y statistics generation
operation will become a

NOP.
X_YSQSUM PLACEHOLDER In the setter, the Describes whether sum | CUDNN_PTR NULL
*param should of y square pointer in
be a pointer to a the variantParamPack
previously initialized will be NULL, or if not,

X_PointerPlaceHolder| tiser promised pointer
alignment *.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 233

cudnn_cnn_train.so Library

For the attribute CUDNN_FUSED_SCALE_BIAS_ACTIVATION CONV_BNSTATS in

cudnnFusedOp_t
Expected Descriptor

Type Passed in, in

Attribute the Setter

@ Note:

Default Value After

Description Creation

If set to
CUDNN_PTR_NULL, the
y statistics generation
operation will become a
NOP.

» If the corresponding pointer placeholder in ConstParamPack is set to CUDNN_PTR NULL,
then the device pointer in the variantParamPack needs to be NULL as well.

» If the corresponding pointer placeholder in ConstParamPack is set to
CUDNN PTR ELEM ALIGNED Oor CUDNN_ PTR 16B ALIGNED, then the device pointerin the
VariantParamPack may not be NULL and need to be at least element-aligned or 16 bytes-

aligned, respectively.

As of cuDNN 7.6.0, if the conditions in Table 26 are met, then the fully fused fast path will be
triggered. Otherwise, a slower partially fused path will be triggered.

Table 26.

Parameter
Device compute capability
CUDNN_PARAM XDESC

CUDNN_ PARAM XDATA PLACEHOLDER

CUDNN PARAM BN EQSCALEBIAS DESC
CUDNN_ PARAM BN EQSCALE PLACEHOLDER

CUDNN PARAM BN EQBIAS PLACEHOLDER

CUDNN_PARAM CONV_DESC
CUDNN_PARAM WDESC

CUDNN_ PARAM WDATA PLACEHOLDER

NVIDIA cuDNN

Conditions for Fully Fused Fast Path (Forward)

Condition
Need to be one of 7.0, 7.2 or 7.5.

Tensor is 4 dimensional

Datatype is CUDNN_DATA HALF

Layout is nawWC fully packed

Alignment is CUDNN_PTR_16B_ALIGNED
Tensor’s ¢ dimension is a multiple of 8.

If either one of scale and bias operation is not
turned into a NOP:

Tensor is 4 dimensional with shape 1TxCx1x1
Datatype is CUDNN_DATA HALF

Layout is fully packed

Alignment is CUDNN_PTR_16B_ALIGNED

Convolution descriptor’'s mode needs to be
CUDNN_CROSS_CORRELATION.

Convolution descriptor’s dataType needs to be
CUDNN DATA FLOAT.

Convolution descriptor's dilationais (1,1).

PR-09702-001_v8.3.0 | 234

Parameter

CUDNN_ PARAM YDESC

CUDNN_ PARAM YDATA PLACEHOLDER

CUDNN_ PARAM YSTATS DESC
CUDNN_ PARAM YSUM PLACEHOLDER

CUDNN_ PARAM YSQSUM PLACEHOLDER

cudnn_cnn_train.so Library

Condition

Convolution descriptor’s group count needs to be
1

Convolution descriptor's mathType
needs to be CUDNN_ TENSOR_OP_MATH or
CUDNN_TENSOR_OP MATH ALLOW CONVERSION.

Filter is in NHWC layout

Filter's data type is CUDNN_DATA HALF
Filter's K dimension is a multiple of 32
Filter size RxS is either 1x1 or 3x3

If filter size RxS is 1x1, convolution descriptor’s
padA needs to be (0,0) and filterStrideA needs
to be (1,1).

Filter's alignment is CUDNN_PTR 16B_ALIGNED
Tensor is 4 dimensional

Datatype is CUDNN_DATA HALF

Layout is nawc fully packed

Alignment is CUDNN_PTR_16B ALIGNED

If the generate statistics operation is not turned
into a NOP:

Tensor is 4 dimensional with shape TxKx1x1
Datatype is CUDNN_DATA FLOAT
Layout is fully packed

Alignment is CUDNN_PTR_16B_ALIGNED

CUDNN FUSED SCALE BIAS ACTIVATION WGRAD

For the attribute CUDNN_FUSED_ SCALE BIAS ACTIVATION WGRAD in cudnnFusedOp_ t

Table 27.
Expected
Descriptor Type
Passed in, in the
Attribute Setter
X_XDESC In the setter, the

*param should be

xDesc, a pointer to a
previously initialized

Default Value After
Description Creation
Tensor descriptor NULL

describing the size,
layout and datatype of
the x (input] tensor

cudnnTensorDescriptor t.

X _XDATA PLACEHOLDER In the setter, the
*param should

be a pointerto a

previously initialized

Describes whether
xData pointer in the
VariantParamPack
will be NULL, or if not,

CUDNN_PTR NULL

X PointerPlaceHolder t*.

NVIDIA cuDNN

PR-09702-001_v8.3.0 | 235

cudnn_cnn_train.so Library

For the attribute CUDNN_FUSED_SCALE_BIAS_ACTIVATION_ WGRAD in cudnnFusedOp t

Expected
Descriptor Type
Passed in, in the Default Value After
Attribute Setter Description Creation
user promised pointer
alignment *.
X BN MODE In the setter, the Describes the mode CUDNN BATCHNORM PER ACTIVATION
- *param should of operation for the - o
be a pointerto a scale, bias and the

previously initialized | statistics.

oy *
cudnnBatchNormMode,ﬁtS.O]c cUDNN

7.6.0, only

CUDNN BATCHNORM SPATIAL

and

CUDNN BATCHNORM SPATIAL PERSISTENT
are supported,

meaning, scale, bias,

and statistics are all

per-channel.

X BN EQSCALEBIAS DESC In the setter, the Tensor descriptor NULL
*param should describing the size,
be a pointerto a layout and datatype

previously initialized | of the batchNorm

cudnnTensorDescriptoretuivalent scale and
bias tensors. The
shapes must match
the mode specified in
CUDNN_PARAM BN MODE,
If set to NULL, both
scale and bias
operation will become

a NOP.
X BN EQSCALE PLACEHOLDER | In the setter, the Describes whether CUDNN PTR NULL
*param should batchnorm equivalent
be a pointerto a scale pointerin the

previously initialized | variantParamPack

X_PointerPlaceHoldewilt be NULL, or if not,
user promised pointer
alignment *.

If set to

CUDNN_PTR NULL, then
the scale operation
becomes a NOP.

X BN EQBIAS PLACEHOLDER | In the setter, the Describes whether CUDNN_PTR NULL
*param should batchnorm equivalent
be a pointerto a bias pointer in the

previously initialized | variantParamPack
X_PointerPlaceHoldewilt be NULL, or if not,

NVIDIA cuDNN PR-09702-001_v8.3.0 | 236

cudnn_cnn_train.so Library

For the attribute CUDNN_FUSED_SCALE_BIAS_ACTIVATION_ WGRAD in cudnnFusedOp t

Attribute

X_ACTIVATION DESC

X_CONV_DESC

X_DWDESC

X DWDATA PLACEHOLDER

X_DYDESC

NVIDIA cuDNN

Expected
Descriptor Type
Passed in, in the
Setter

In the setter, the
*param should

be a pointerto a
previously initialized
cudnnActivationDescri

Description
user promised pointer
alignment *.

If set to
CUDNN_PTR NULL,

then the bias operation

becomes a NOP.

Describes the
activation operation.

As of cuDNN

In the setter, the
*param should

be a pointerto a
previously initialized

Dgoér?.'q*onty the

ctivation mode of

Default Value After

Creation

NULL

CUDNN ACTIVATION RELU

and

CUDNN_ACTIVATION IDENTITY

is supported. If
set to NULL or
if the activation
mode is set to

CUDNN_ACTIVATION IDENTITY

then the activation
in the op sequence
becomes a NOP.

Describes the
convolution operation.

cudnnConvolutionDescriptor_t*.

In the setter, the
*param should

be a pointerto a
previously initialized

Filter descriptor
describing the size,
layout and datatype of
the aw (filter gradient

cudnnFilterDescriptor| Butput) tensor.

In the setter, the
*param should

be a pointerto a
previously initialized

Describes whether dw
(filter gradient output]
tensor pointer in the
VariantParamPack

X_PointerPlaceHoldewilt be NULL, or if not,

In the setter, the
*param should

be a pointerto a
previously initialized

user promised pointer
alignment *.

Tensor descriptor
describing the size,
layout and datatype of
the dy (gradient input]

cudnnTensorDescriptortdfisor.

NULL

NULL

CUDNN_PTR_NULL

NULL

PR-09702-001_v8.3.0

237

cudnn_cnn_train.so Library

For the attribute CUDNN_FUSED_SCALE_BIAS_ACTIVATION_ WGRAD in cudnnFusedOp t

Expected
Descriptor Type
Passed in, in the
Setter

In the setter, the
*param should
be a pointerto a

Attribute

X DYDATA PLACEHOLDER

previously initialized

Default Value After

Description Creation

Describes whether
dy [gradient input]
tensor pointer in the
VariantParamPack

CUDNN_PTR NULL

X_PointerPlaceHoldewilt be NULL, or if not,

@ Note:

user promised pointer
alignment *.

» If the corresponding pointer placeholder in ConstParamPack is set to CUDNN_PTR NULL,
then the device pointer in the VariantParamPack needs to be NULL as well.

» If the corresponding pointer placeholder in ConstParamPack is set to
CUDNN PTR ELEM ALIGNED Or CUDNN_ PTR 16B ALIGNED, then the device pointerin the
VariantParamPack may not be NULL and needs to be at least element-aligned or 16 bytes-

aligned, respectively.

As of cuDNN 7.6.0, if the conditions in Table 28 are met, then the fully fused fast path will be
triggered. Otherwise a slower partially fused path will be triggered.

Table 28.

Parameter
Device compute capability

CUDNN_PARAM XDESC

CUDNN_ PARAM XDATA PLACEHOLDER

CUDNN_PARAM BN EQSCALEBIAS DESC
CUDNN_ PARAM BN EQSCALE PLACEHOLDER

CUDNN_ PARAM BN EQBIAS PLACEHOLDER

CUDNN_PARAM CONV_DESC
CUDNN_PARAM DWDESC

CUDNN_ PARAM DWDATA PLACEHOLDER

NVIDIA cuDNN

Conditions for Fully Fused Fast Path (Backward)

Condition
Needs to be one of 7.0, 7.2 or 7.5.

Tensor is 4 dimensional

Datatype is CUDNN DATA HALF

Layout is nawWC fully packed

Alignment is CUDNN_PTR 16B ALIGNED
Tensor’s ¢ dimension is a multiple of 8.

If either one of scale and bias operation is not
turned into a NOP:

Tensor is 4 dimensional with shape 1xCx1x1
Datatype is CUDNN_DATA HALF

Layout is fully packed

Alignment is CUDNN_PTR 16B ALIGNED

Convolution descriptor’'s mode needs to be
CUDNN_CROSS_CORRELATION.

Convolution descriptor’s dataType needs to be
CUDNN_DATA FLOAT.

PR-09702-001_v8.3.0 | 238

cudnn_cnn_train.so Library

Parameter Condition
Convolution descriptor’s dilationAis (1,1)

Convolution descriptor’s group count needs to be
1.

Convolution descriptor's mathType
needs to be CUDNN_ TENSOR_OP_MATH or
CUDNN_TENSOR_OP MATH ALLOW_ CONVERSION.

Filter gradient is in NHWC layout

Filter gradient’s data type is CUDNN_DATA HALF
Filter gradient’s K dimension is a multiple of 32.
Filter gradient size RxS is either 1x1 or 3x3

If filter gradient size RxS is 1x1, convolution
descriptor’s pada needs to be (0,0) and
filterStrideA needs to be (1,1).

Filter gradient’s alignment is
CUDNN_PTR 16B_ALIGNED

CUDNN_PARAM DYDESC Tensor is 4 dimensional
CUDNN PARAM DYDATA PLACEHOLDER Datatype is CUDNN_DATA HALF
Layout is nawC fully packed

Alignment is CUDNN_PTR_16B ALIGNED

Table 29. CUDNN_FUSED BN FINALIZE STATISTICS TRAINING

For the attribute CUDNN_FUSED_ BN FINALIZE STATISTICS TRAINING in cudnnFusedOp_t

Expected
Descriptor Type
Passed in, in the Default Value After
Attribute Setter Description Creation
X BN MODE In the setter, the Describes the mode CUDNN BATCHNORM PER ACTIVATION
- *param should of operation for the - o
be a pointerto a scale, bias and the

previously initialized | statistics.

oy *
cudnnBatchNormMode,ﬁtS.O]c cUDNN

7.6.0, only

CUDNN BATCHNORM SPATIAL

and

CUDNN BATCHNORM SPATIAL PERSISTENT
are supported,

meaning, scale, bias

and statistics are all

per-channel.

X _YSTATS DESC In the setter, the Tensor descriptor NULL
*param should describing the size,

NVIDIA cuDNN PR-09702-001_v8.3.0 | 239

cudnn_cnn_train.so Library

For the attribute CUDNN_FUSED_BN_FINALIZE STATISTICS TRAINING iN cudnnFusedOp_t

Expected

Descriptor Type

Passed in, in the Default Value After
Attribute Setter Description Creation

be a pointerto a layout and datatype

previously initialized | of the sum of y and

cudnnTensorDescriptsm‘E’t@f y square
tensors. The shapes
need to match the
mode specified in
CUDNN_PARAM BN MODE|

X _YSUM PLACEHOLDER In the setter, the Describes whether CUDNN_PTR NULL
*param should sum of y pointer in the
be a pointerto a VariantParamPack

previously initialized | will be NULL, or if not,
X _PointerPlaceHoldeuserpromised pointer
alignment *.

X _YSQSUM PLACEHOLDER In the setter, the Describes whether CUDNN_PTR NULL
*param should sum of y square
be a pointerto a pointer in the

previously initialized | variantParamPack

X_PointerPlaceHoldewilt be NULL, or if not,
user promised pointer
alignment *.

X BN SCALEBIAS MEANVAR DESK the setter, the A common tensor NULL
*param should descriptor describing
be a pointerto a the size, layout

previously initialized | and datatype of the
cudnnTensorDescriptorbatchNorm trained
scale, bias and
statistics tensors. The
shapes need to match
the mode specified in
CUDNN_PARAM BN MODE
(similar to the
bnScaleBiasMeanVarDesc

field in the
cudnnBatchNormalization*
API).
X BN _SCALE PLACEHOLDER In the setter, the Describes whether the | CUDNN_PTR NULL
*param should batchNorm trained
be a pointerto a scale pointer in the

previously initialized | variantParamPack

X_PointerPlaceHoldewilt be NULL, or if not,
user promised pointer
alignment *.

If the output of
BN_EQSCALE is not
needed, then this is

NVIDIA cuDNN PR-09702-001_v8.3.0 | 240

cudnn_cnn_train.so Library

For the attribute CUDNN_FUSED_BN_FINALIZE STATISTICS TRAINING iN cudnnFusedOp_t

Expected
Descriptor Type
Passed in, in the
Attribute Setter Description
not needed and may
be NULL.
X BN BIAS PLACEHOLDER In the setter, the Describes whether the
- - *param should batchNorm trained
be a pointerto a bias pointerin the

previously initialized | variantParamPack

X_PointerPlaceHoldewilt be NULL, or if not,
user promised pointer
alignment *.

If neither output

of BN_EQSCALE or
BN_EQBIAS is needed,
then this is not needed
and may be NULL.

X BN SAVED MEAN PLACEHOLDER the setter, the Describes whether
*param should the batchNorm saved
be a pointerto a mean pointerin the

previously initialized | variantParamPack

X_PointerPlaceHoldewilt be NULL, or if not,
user promised pointer
alignment *.

If set to

CUDNN_PTR NULL, then
the computation for
this output becomes a

NOP.
X BN SAVED INVSTD PLACEHOLDERe setter, the Describes whether
*param should the batchNorm saved
be a pointerto a inverse standard

previously initialized | deviation pointer in the

X PointerPlaceHolde¥ar*antParamPack
will be NULL, or if not,
user promised pointer
alignment *.

If set to

CUDNN_PTR NULL, then
the computation for
this output becomes a

NOP.

X BN _RUNNING MEAN PLACEHOLIDEthe setter, the Describes whether the
*param should batchNorm running
be a pointerto a mean pointer in the

VariantParamPack

will be NULL, or if not,

Default Value After
Creation

CUDNN_PTR NULL

CUDNN_PTR NULL

CUDNN_PTR NULL

CUDNN_PTR NULL

NVIDIA cuDNN PR-09702-001_v8.3.0 | 241

cudnn_cnn_train.so Library

For the attribute CUDNN_FUSED_BN_FINALIZE STATISTICS TRAINING iN cudnnFusedOp_t

Expected
Descriptor Type
Passed in, in the Default Value After
Attribute Setter Description Creation
previously initialized | user promised pointer
X_PointerPlaceHoldegligmment *.
If set to
CUDNN_PTR NULL, then
the computation for
this output becomes a
NOP.
X BN RUNNING VAR PLACEHOLDERthe setter, the Describes whether the | CUDNN_PTR NULL
*param should batchNorm running
be a pointerto a variance pointer in the

X_BN_EQSCALEBIAS DESC

X BN EQSCALE PLACEHOLDER

NVIDIA cuDNN

previously initialized | variantParamPack

X_PointerPlaceHoldewilt be NULL, or if not,
user promised pointer
alignment *.

If set to

CUDNN_PTR NULL, then
the computation for
this output becomes a

NOP.
In the setter, the Tensor descriptor NULL
*param should describing the size,
be a pointerto a layout and datatype

previously initialized | of the batchNorm

cudnnTensorDescriptoretiiivalent scale and
bias tensors. The
shapes need to match
the mode specified in
CUDNN_PARAM BN MODE,

If neither output

of BN_EQSCALE or
BN_EQBIAS is needed,
then this is not needed
and may be NULL.

In the setter, the Describes whether CUDNN_PTR NULL
*param should batchnorm equivalent
be a pointerto a scale pointer in the

previously initialized | variantParamPack

X_PointerPlaceHoldewilt be NULL, orif not,
user promised pointer
alignment *.

If setto
CUDNN_PTR NULL, then
the computation for

PR-09702-001_v8.3.0 | 242

cudnn_cnn_train.so Library

For the attribute CUDNN_FUSED_BN_FINALIZE STATISTICS TRAINING iN cudnnFusedOp_t

Expected
Descriptor Type
Passed in, in the Default Value After
Attribute Setter Description Creation
this output becomes a
NOP.
X BN EQBIAS PLACEHOLDER | In the setter, the Describes whether CUDNN PTR NULL
- B *param should batchnorm equivalent -
be a pointerto a bias pointerin the

previously initialized | variantParamPack

X_PointerPlaceHoldewilt be NULL, or if not,
user promised pointer
alignment *.

If set to

CUDNN_PTR NULL, then
the computation for
this output becomes a
NOP.

Table 30. CUDNN_ FUSED BN FINALIZE STATISTICS INFERENCE

For the attribute CUDNN_FUSED BN FINALIZE STATISTICS_INFERENCE in cudnnFusedOp_t

Expected
Descriptor Type
Passed in, in the Default Value After
Attribute Setter Description Creation
X BN MODE In the setter, the Describes the mode CUDNN BATCHNORM PER ACTIVATION
o *param should of operation for the - S
be a pointerto a scale, bias and the

previously initialized | statistics.

N *
cudrmBatchNormMode_ﬁtS.Of cUDNN

7.6.0, only

CUDNN_ BATCHNORM SPATIAL

and

CUDNN_ BATCHNORM SPATIAL PERSISTENT
are supported,

meaning, scale, bias

and statistics are all

per-channel.

X BN SCALEBIAS MEANVAR DESH the setter, the A common tensor NULL
*param should descriptor describing
be a pointerto a the size, layout

previously initialized | and datatype of the

cudnnTensorDescriptorbatchNorm trained
scale, bias and
statistics tensors. The

NVIDIA cuDNN PR-09702-001_v8.3.0 | 243

cudnn_cnn_train.so Library

For the attribute CUDNN_FUSED BN FINALIZE STATISTICS_INFERENCE in cudnnFusedOp_t

Attribute

X_BN_SCALE PLACEHOLDER

X_BN_BIAS PLACEHOLDER

Expected
Descriptor Type
Passed in, in the Default Value After
Setter Description Creation
shapes need to match
the mode specified in
CUDNN_PARAM BN MODE
(similar to the
bnScaleBiasMeanVarDesc
field in the
cudnnBatchNormalization*
API).
In the setter, the Describes whether the | CUDNN_PTR NULL
*param should batchNorm trained
be a pointerto a scale pointerin the

previously initialized | variantParamPack

X_PointerPlaceHoldemi&be]NULL,Orifnot
user promised pointer
alignment *.

In the setter, the Describes whether the
*param should batchNorm trained
be a pointerto a bias pointer in the

previously initialized | variantParamPack

X_PointerPlaceHoldewilt be NULL, or if not,
user promised pointer
alignment *.

X BN RUNNING MEAN PLACEHOLDEfe setter, the Describes whether the

*param should batchNorm running
be a pointerto a mean pointer in the
previously initialized | variantParamPack
X_PointerPlaceHoldewilt be NULL, orif not,
user promised pointer

alignment *.
X BN RUNNING VAR PLACEHOLDERthe setter, the Describes whether the
*param should batchNorm running
be a pointerto a variance pointer in the

X_BN_EQSCALEBIAS DESC

NVIDIA cuDNN

previously initialized | variantParamPack
X_PointerPlaceHoldewilt be NULL, or if not,
user promised pointer

alignment *.
In the setter, the Tensor descriptor
*param should describing the size,
be a pointerto a layout and datatype

previously initialized | of the batchNorm

cudnnTensorDescriptoregivalent scale and
bias tensors. The
shapes need to match
the mode specified in

CUDNN_PARAM BN MODE,

CUDNN_PTR NULL

CUDNN_PTR NULL

CUDNN_PTR NULL

NULL

PR-09702-001_v8.3.0

244

cudnn_cnn_train.so Library

For the attribute CUDNN_FUSED BN FINALIZE STATISTICS_INFERENCE in cudnnFusedOp_t

Expected
Descriptor Type
Passed in, in the Default Value After
Attribute Setter Description Creation
X BN _EQSCALE PLACEHOLDER | In the setter, the Describes whether CUDNN_PTR NULL
*param should batchnorm equivalent
be a pointerto a scale pointerin the

previously initialized | variantParamPack

X_PointerPlaceHoldewilt be NULL, or if not,
user promised pointer
alignment *.

If set to
CUDNN_PTR_NULL, then
the computation for
this output becomes a

NOP.
X BN EQBIAS PLACEHOLDER | In the setter, the Describes whether CUDNN PTR NULL
*param should batchnorm equivalent
be a pointerto a bias pointer in the

previously initialized | variantParamPack

X_PointerPlaceHoldewilt be NULL, or if not,
user promised pointer
alignment *.

If set to

CUDNN_PTR NULL, then
the computation for
this output becomes a
NOP.

Table 31. CUDNN_FUSED CONVOLUTION SCALE BIAS ADD RELU

For the attribute CUDNN_FUSED CONVOLUTION SCALE BIAS ADD RELU in cudnnFusedOp t

This operation performs the following computation, where * denotes convolution operator:
y=1 (w*x)+2 z+b

Expected Descriptor

Type Passed in, in Default Value After
Attribute the Setter Description Creation
X _XDESC In the setter, the Tensor descriptor NULL
*param should be describing the size,
xDesc, a pointer to a layout and datatype of
previously initialized the x (input] tensor.
cudnnTensorDescriptor t.
X_XDATA PLACEHOLDER | In the setter, the Describes whether CUDNN_PTR NULL
*param should xData pointerin the
be a pointer to a VariantParamPack

will be NULL, or if not,

NVIDIA cuDNN PR-09702-001_v8.3.0 | 245

cudnn_cnn_train.so Library

For the attribute CUDNN_FUSED_CONVOLUTION SCALE BIAS ADD_ RELU iN cudnnFusedOp_t

This operation performs the following computation, where * denotes convolution operator:

y=1 (w*x)+2 z+b

Expected Descriptor
Type Passed in, in

Attribute the Setter

previously initialized

X_PointerPlaceHolder| abignment *.

In the setter, the
*param should
be a pointer to a

X_CONV_DESC

previously initialized

cudnnConvolutionDescriptor_t.

In the setter, the
*param should
be a pointer to a

X_WDESC

previously initialized
cudnnFilterDescriptor_t.

In the setter, the
*param should
be a pointerto a

X WDATA PLACEHOLDER

previously initialized

Default Value After
Description Creation
user promised pointer
Describes the NULL
convolution operation.
Filter descriptor NULL

describing the size,
layout and datatype of
the w (filter) tensor.

Describes whether w
(filter] tensor pointer in
the variantParamPack
will be NULL, or if not,

CUDNN_PTR NULL

X _PointerPlaceHolder| tiser promised pointer

X_BN_EQSCALEBIAS DESCIn the setter, the
*param should
be a pointer to a

previously initialized

alignment *.

Tensor descriptor NULL
describing the size,
layout and datatype
of the a7 scale and

cudnnTensorDescriptor_t.bias tensors. The

X BN EQSCALE PLACEHOLDEHe setter, the
*param should
be a pointer to a

previously initialized

tensor should have
shape (1,K,1,1], Kis
the number of output
features.

Describes whether
batchnorm equivalent
scale or aj tensor
pointerin the

CUDNN_PTR NULL

X PointerPlaceHolder VYariantParamPack

In the setter, the
*param should be

X_ZDESC

xDesc, a pointer to a

NVIDIA cuDNN

will be NULL, or if not,
user promised pointer
alignment *.

If set to

CUDNN_PTR NULL, then
a1 scaling becomes an
NOP.

Tensor descriptor NULL
describing the size,

layout and datatype of

the z tensor.

PR-09702-001_v8.3.0

| 246

cudnn_cnn_train.so Library

For the attribute CUDNN_FUSED_CONVOLUTION SCALE BIAS ADD_ RELU iN cudnnFusedOp_t

This operation performs the following computation, where * denotes convolution operator:
y=1 (w*x)+2 z+b

Expected Descriptor

Type Passed in, in Default Value After
Attribute the Setter Description Creation

previously initialized If unset, then z scale-

cudnnTensorDescriptoradd term becomes a

NOP.

CUDNN PARAM ZDATA PLAREHwLBEHer, the Describes whether z CUDNN_PTR NULL

*param should tensor pointerin the

be a pointer to a VariantParamPack

previously initialized will be NULL, or if not,

X_PointerPlaceHolder| tiser promised pointer
alignment *.

If set to

CUDNN_PTR NULL,
then z scale-add term
becomes a NOP.

CUDNN PARAM BN 7 EQSCHLHEI&sttBEShe Tensor descriptor NULLPTR
*param should describing the size,
be a pointerto a layout and datatype of
previously initialized the as tensor.

cudnnTensorDescriptor t.

If set to NULL then
scaling for input z
becomes a NOP.

CUDNN_PARAM BN 7 EQSCALHhesaUtERGhBER Describes whether CUDNN PTR NULL
*param should batchnorm z-equivalent
be a pointerto a scaling pointer in the
previously initialized VariantParamPack

X _PointerPlaceHolder| will be NULL, or if not,
user promised pointer
alignment *.

If set to

CUDNN_PTR NULL, then
the scaling for input z
becomes a NOP.

X _ACTIVATION DESC In the setter, the Describes the activation | NULL
*param should operation.

b ointer to
€apointer o a As of 7.6.0, only
previously initialized o
A . a%t|vat|on modes of
cudnnActivationDescriptor f.
CUDNN_ACTIVATION RELU
and
CUDNN_ACTIVATION IDENTITY
are supported. If
set to NULL or if the

activation mode is set to

NVIDIA cuDNN PR-09702-001_v8.3.0 | 247

cudnn_cnn_train.so Library

For the attribute CUDNN_FUSED_CONVOLUTION SCALE BIAS ADD_ RELU iN cudnnFusedOp_t

This operation performs the following computation, where * denotes
y=1(w*x)+2 z+b

Expected Descriptor
Type Passed in, in
Attribute the Setter Description

convolution operator:

Default Value After
Creation

CUDNN_ACTIVATION IDENTITY

then the activation
in the op sequence
becomes a NOP.

X _YDESC In the setter, the Tensor descriptor
*param should describing the size,
be a pointerto a layout and datatype of
previously initialized the y (output] tensor.

cudnnTensorDescriptor t*.

X_YDATA PLACEHOLDER | In the setter, the Describes whether
*param Should y (output) tensor
be a pointer to a pointerin the
previously initialized VariantParamPack

X_PointerPlaceHolder wil be NULL, orif not,
user promised pointer
alignment *.

NULL

CUDNN_PTR NULL

6.1.3.3. cudnnFusedOpsPointerPlaceHolder t

cudnnFusedOpsPointerPlaceHolder t isan enumerated type used to select the alignment

type of the cudnnFusedops descriptor pointer.

Member Description
CUDNN_PTR NULL = 0 Indicates that the pointer

to the tensor in the

variantPack will be NULL.

CUDNN_PTR ELEM ALIGNED = 1 Indicates that the pointer

to the tensor in the

variantPack will not be NULL, and will have

element alignment.

CUDNN PTR 16B ALIGNED = 2 Indicates that the pointer

to the tensor in the

variantPack will not be NULL, and will have 16

byte alignment.

6.1.3.4. cudnnFusedOpsVariantParamLabel t

The cudnnFusedOpsVariantParamLabel t isan enumerated type thatis used to set the

buffer pointers. These buffer pointers can be changed in each iteration.

typedef enum {
CUDNN_ PTR_XDATA
CUDNN_PTR BN EQSCALE
CUDNN_PTR BN EQBIAS
CUDNN_PTR WDATA
CUDNN_ PTR DWDATA
CUDNN_PTR YDATA
CUDNN_PTR DYDATA

1 [| [R A
U WN RO
N~ S N~ N~~~

NVIDIA cuDNN

PR-09702-001_v8.3.0 | 248

CUDNN_PTR_ YSUM

CUDNN_PTR YSQSUM

CUDNN_PTR_WORKS PACE
CUDNN_PTR BN SCALE

CUDNN_PTR BN BIAS

CUDNN_ PTR BN SAVED MEAN
CUDNN_PTR BN SAVED INVSTD
CUDNN_PTR BN RUNNING MEAN
CUDNN_PTR BN RUNNING VAR

CUDNN_PTR ZDATA

CUDNN PTR BN Z EQSCALE
CUDNN_PTR BN Z EQBIAS

CUDNN_ PTR ACTIVATION BITMASK
CUDNN_PTR DXDATA

CUDNN_PTR_D ZDATA

CUDNN_PTR BN DSCALE
CUDNN_PTR BN DBIAS

CUDNN SCALAR SIZE T WORKSPACE SIZE IN BYTES
CUDNN_SCALAR INT64 T BN ACCUMULATION COUNT
CUDNN_SCALAR DOUBLE BN EXP AVG FACTOR
CUDNN_SCALAR DOUBLE BN EPSILON

} cudnnFusedOpsVariantParamLabel_t;

Table 32.

Short-form used
Setter

cudnn_cnn_train.so Library

= 100,
- 101,
= 102,
= 103,

Legend For Tables in This Section

Stands for
cudnnSetFusedOpsVariantParamPackAttribute()

Getter

cudnnGetFusedOpsVariantParamPackAttribute()

x_ prefix in the Attribute key column

enumerator name.

Table 33.

CUDNN_FUSED SCALE BIAS ACTIVATION CONV_BNSTATS

For the attribute CUDNN_FUSED_SCALE_BIAS_ACTIVATION_ CONV_BNSTATS in

cudnnFusedOp_t

Expected
Descriptor
Type
Passed
in, in the

Attribute key Setter

X_XDATA

I/0 Type
input

void *

X BN EQSCALE input

void *

NVIDIA cuDNN

Default
Description Value
Pointer to x (input) NULL

tensor on device, need to

agree with previously set
CUDNN_PARAM XDATA PLACEHOLDER
attribute *.

Pointer to batchnorm equivalent
scale tensor on device, need

to agree with previously set
CUDNN_PARAM BN EQSCALE PLACEHOLDER
attribute *.

NULL

PR-09702-001_v8.3.0 |

Stands for CUDNN_PTR or CUDNN_ SCALAR in the

249

cudnn_cnn_train.so Library

For the attribute CUDNN_FUSED_SCALE_BIAS_ACTIVATION CONV_BNSTATS in

cudnnFusedOp_t

Expected
Descriptor
Type
Passed
in, in the

Attribute key Setter

X_ BN _EQBIAS void *

X_WDATA void *

X_YDATA void *

X _YSUM void *

X YSQSUM void *

X WORKSPACE void *

X _SIZE T WORKSPACE SIZEsINeBY¥TES

@ Note:

1/0 Type
input

input

output

output

output

input

input

Default
Description Value
Pointer to batchnorm equivalent | NULL

bias tensor on device, need

to agree with previously set

CUDNN_ PARAM BN EQBIAS PLACEHOLDER
attribute *.

Pointer to w (filter) tensor
on device, need to agree
with previously set
CUDNN PARAM WDATA PLACEHOLDER
attribute *.

NULL

Pointer to y (output)
tensor on device, need to
agree with previously set
CUDNN PARAM YDATA PLACEHOLDER
attribute *.

NULL

Pointer to sum of y

tensor on device, need to

agree with previously set
CUDNN_PARAM YSUM PLACEHOLDER
attribute *.

NULL

Pointer to sum of y square
tensor on device, need to
agree with previously set
CUDNN PARAM YSQSUM PLACEHOLDER
attribute *.

NULL

Pointer to user allocated NULL
workspace on device. Can be

NULL if the workspace size

requested is 0.

Pointer to a size_t valuein 0

host memory describing the
user allocated workspace
size in bytes. The amount
needs to be equal or larger
than the amount requested in
cudnnMakeFusedOpsPlan.

» If the corresponding pointer placeholder in ConstParamPack is set to CUDNN_PTR NULL,
then the device pointer in the VariantParamPack needs to be NULL as well

NVIDIA cuDNN

PR-09702-001_v8.3.0 |

250

cudnn_cnn_train.so Library

» If the corresponding pointer placeholder in ConstParamPack is set to
CUDNN_ PTR ELEM ALIGNED Oor CUDNN PTR 16B ALIGNED, then the device pointer in the
VariantParamPack may not be NULL and needs to be at least element-aligned or 16 bytes-
aligned, respectively.

Table 34.

CUDNN FUSED SCALE BIAS ACTIVATION WGRAD

For the attribute CUDNN_FUSED_SCALE_BIAS_ACTIVATION WGRAD in cudnnFusedOp t

Attribute key

X_XDATA

X_BN_EQSCALE

X_BN EQBIAS

X DWDATA

X DYDATA

X WORKSPACE

Expected
Descriptol

Type
Passed
in, in the
Setter

void *

void *

void *

void *

void *

void *

X _SIZE T WORKSPACE SIZE IN BYSESe t *

NVIDIA cuDNN

I/0 Type
input

input

input

output

input

input

input

Default
Description Value
Pointer to x (input] NULL

tensor on device, need to

agree with previously set
CUDNN_PARAM XDATA PLACEHOLDER
attribute *.

Pointer to batchnorm NULL
equivalent scale tensor

on device, need to agree

with previously set
CUDNN_PARAM BN EQSCALE PLACEHOLDER
attribute *.

Pointer to batchnorm NULL
equivalent bias tensor

on device, need to agree

with previously set
CUDNN_PARAM BN EQBIAS PLACEHOLDER
attribute *.

Pointer to aw (filter NULL
gradient output] tensor

on device, need to agree

with previously set

CUDNN PARAM WDATA PLACEHOLDER
attribute *.

Pointer to dy (gradient input] ' NULL
tensor on device, need to

agree with previously set
CUDNN_PARAM YDATA PLACEHOLDER
attribute *.

Pointer to user allocated NULL
workspace on device. Can be

NULL if the workspace size
requested is 0.

Pointerto a size tvaluein |0
host memory describing the

PR-09702-001_v8.3.0 | 251

cudnn_cnn_train.so Library

For the attribute CUDNN_FUSED_SCALE_BIAS_ACTIVATION_ WGRAD in cudnnFusedOp t

Expected
Descriptol
Type
Passed
in, in the Default
Attribute key Setter I/0 Type Description Value
user allocated workspace
size in bytes. The amount
needs to be equal or larger
than the amount requested
IN cudnnMakeFusedOpsPlan.

@ Note:

» If the corresponding pointer placeholder in ConstParamPack is set to CUDNN_PTR NULL,
then the device pointer in the variantParamPack needs to be NULL as well.

» If the corresponding pointer placeholder in ConstParampPack is set to
CUDNN_PTR ELEM ALIGNED Or CUDNN PTR 16B ALIGNED, then the device pointer in the
VariantParamPack may not be NULL and needs to be at least element-aligned or 16 bytes-
aligned, respectively.

Table 35. CUDNN_FUSED BN FINALIZE STATISTICS TRAINING

For the attribute CUDNN_FUSED_BN_FINALIZE STATISTICS TRAINING iN cudnnFusedOp_t

Expected
Descripta
Type
Passed
in, in the Default
Attribute key Setter I/0 Type Description Value
X_YSUM void * | input Pointer to sum of y NULL
tensor on device, need to
agree with previously set
CUDNN_PARAM YSUM PLACEHOLDER
attribute *. -
X_YSQSUM void * input Pointer to sum of y square NULL
tensor on device, need to
agree with previously set
CUDNN_PARAM YSQSUM PLACEHOLDER
attribute *. -
X _BN_SCALE void * input Pointer to sum of y square NULL

tensor on device, need to

agree with previously set
CUDNN_PARAM BN SCALE PLACEHOLDER
attribute *.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 252

cudnn_cnn_train.so Library

For the attribute CUDNN_FUSED_BN_FINALIZE STATISTICS TRAINING iN cudnnFusedOp_t

Expected
Descripta
Type
Passed
in, in the
Attribute key Setter
X_ BN BIAS void *
X BN SAVED MEAN void *
X_BN_SAVED INVSTD void *
X BN RUNNING MEAN void *
X_BN_RUNNING VAR void *
X_ BN EQSCALE void *
X BN EQBIAS void *

X_INT64 T BN ACCUMULATION COUNE64 t
*

NVIDIA cuDNN

I/0 Type Description

input

output

output

input/

output

input/

output

output

output

input

Default
Value

Pointer to sum of y square NULL
tensor on device, need to
agree with previously set
CUDNN_PARAM BN BIAS PLACEHOLDER

attribute *.

Pointer to sum of y square NULL
tensor on device, need to

agree with previously set
CUDNN_PARAM BN SAVED MEAN PLACEHOLDER

attribute *.

Pointer to sum of y square NULL

tensor on device, need to

agree with previously set
CUDNN_PARAM BN SAVED INVSTD PLACEHOLDER

attribute *.

Pointer to sum of y square NULL

tensor on device, need to

agree with previously set
CUDNN_PARAM BN RUNNING MEAN PLACEHOLDER

attribute *.

Pointer to sum of y square
tensor on device, need to
agree with previously set
CUDNN_PARAM BN RUNNING VAR PLACEHOLDER
attribute *.

NULL

Pointer to batchnorm equivalent | NULL
scale tensor on device, need

to agree with previously set
CUDNN_PARAM BN EQSCALE PLACEHOLDER

attribute *.

Pointer to batchnorm equivalent | NULL
bias tensor on device, need

to agree with previously set
CUDNN_PARAM BN EQBIAS PLACEHOLDER

attribute *.

Pointer to a scalar value in 0
int64_t on host memory.

This value should describe the
number of tensor elements
accumulated in the sum of v
and sum of y square tensors.

PR-09702-001_v8.3.0 | 253

cudnn_cnn_train.so Library

For the attribute CUDNN_FUSED_BN_FINALIZE STATISTICS TRAINING iN cudnnFusedOp_t

Attribute key

X_DOUBLE BN EXP AVG FACTOR

X_DOUBLE_BN EPSILON

X WORKSPACE

Expected
Descripta
Type
Passed
in, in the
Setter

double

*

double

*

void *

X_SIZE T WORKSPACE SIZE IN B¥iE® t

NVIDIA cuDNN

*

I/0 Type Description

input

input

input

input

For example, in the single
GPU use case, if the mode is
CUDNN_BATCHNORM SPATIAL Or

Default

Value

CUDNN_ BATCHNORM SPATIAL PERSISTENT

the value should be equal to
N*H*W of the tensor from which
the statistics are calculated.

In multi-GPU use case, if all-
reduce has been performed

on the sum of y and sum of

y square tensors, this value
should be the sum of the single
GPU accumulation count on
each of the GPUs.

Pointer to a scalar value in
double on host memory.

Factor used in the moving
average computation. See
exponentialAverageFactor
in cudnnBatchNormalization*

APls.

Pointer to a scalar value in
double on host memory.

A conditioning constant used
in the batch normalization
formula. Its value should

be equal to or greater

than the value defined for
CUDNN_BN MIN EPSILON in
cudnn.h

See
exponentialAverageFactor
in cudnnBatchNormalization*

APls.

Pointer to user allocated
workspace on device. Can be
NULL if the workspace size
requested is 0.

Pointer to a size tvaluein
host memory describing the
user allocated workspace

NULL

PR-09702-001_v8.3.0

254

cudnn_cnn_train.so Library

For the attribute CUDNN_FUSED_BN_FINALIZE STATISTICS TRAINING iN cudnnFusedOp_t

Expected

Descripta

Type

Passed

in, in the Default

Attribute key Setter I/0 Type Description Value

size in bytes. The amount
needs to be equal or larger
than the amount requested in
cudnnMakeFusedOpsPlan.

@ Note:

» If the corresponding pointer placeholder in ConstParamPack is set to CUDNN_PTR NULL,
then the device pointer in the variantParamPack needs to be NULL as well.

» If the corresponding pointer placeholder in ConstParampPack is set to
CUDNN_PTR ELEM ALIGNED or CUDNN PTR 16B ALIGNED, then the device pointer in the
VariantParamPack may not be NULL and needs to be at least element-aligned or 16 bytes-
aligned, respectively.

Table 36. CUDNN_FUSED BN FINALIZE STATISTICS INFERENCE

For the attribute CUDNN_FUSED BN FINALIZE STATISTICS_INFERENCE in cudnnFusedOp_t

Expected
Descripto
Type
Passed
in, in the Default
Attribute key Setter I/0 Type Description Value
X BN SCALE void * input Pointer to sum of y square NULL
tensor on device, need to
agree with previously set
CUDNN_PARAM BN SCALE PLACEHOLDER
attribute *.
X BN BIAS void * input Pointer to sum of y square NULL
tensor on device, need to
agree with previously set
CUDNN PARAM BN BIAS PLACEHOLDER
attribute *.
X_BN_RUNNING MEAN void * input/ Pointer to sum of y square NULL
output tensor on device, need to
agree with previously set
CUDNN_PARAM BN RUNNING MEAN PLACEHOLDER
attribute *.
X BN RUNNING VAR void * input/ Pointer to sum of y square NULL
output tensor on device, need to

NVIDIA cuDNN PR-09702-001_v8.3.0 | 255

cudnn_cnn_train.so Library

For the attribute CUDNN_FUSED BN FINALIZE STATISTICS_INFERENCE in cudnnFusedOp_t

Expected

Descripto

Type

Passed

in, in the Default
Attribute key Setter I/0 Type Description Value

agree with previously set
CUDNN_PARAM BN RUNNING VAR PLACEHOLDER
attribute *.

X BN EQSCALE void * output Pointer to batchnorm equivalent ' NULL
scale tensor on device, need
to agree with previously set
CUDNN_PARAM BN EQSCALE PLACEHOLDER
attribute *.

X BN EQBIAS void * output Pointer to batchnorm equivalent ' NULL
bias tensor on device, need
to agree with previously set
CUDNN_PARAM BN EQBIAS PLACEHOLDER
attribute *.

X_DOUBLE BN EPSILON double * input Pointer to a scalar value in 0.0
double on host memory.

A conditioning constant used in
the batch normatlization formula.
Its value should be equal to or
greater than the value defined
for CUDNN BN MIN EPSILON in
cudnn.h

See
exponentialAverageFactor
in cudnnBatchNormalization*

APls.

X _WORKSPACE void * input Pointer to user allocated NULL
workspace on device. Can be
NULL if the workspace size
requested is 0.

X _SIZE T WORKSPACE SIZE IN BWERES t * input Pointer to a size tvaluein 0
host memory describing the
user allocated workspace
size in bytes. The amount
needs to be equal or larger
than the amount requested in
cudnnMakeFusedOpsPlan

@ Note:

» If the corresponding pointer placeholder in ConstParamPack is set to CUDNN_PTR NULL,
then the device pointer in the variantParamPack needs to be NULL as well.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 256

cudnn_cnn_train.so Library

» If the corresponding pointer placeholder in ConstParamPack is set to
CUDNN_ PTR ELEM ALIGNED Oor CUDNN PTR 16B ALIGNED, then the device pointer in the
VariantParamPack may not be NULL and needs to be at least element-aligned or 16 bytes-
aligned, respectively.

Table 37. CUDNN FUSED SCALE BIAS ADD RELU

For the attribute CUDNN_FUSED BN FINALIZE STATISTICS_INFERENCE in cudnnFusedOp_t

Expected
Descriptor Type
Passed in, in the
Attribute key Setter I/0 Type Description Default Value

X_XDATA void * input Pointer to x NULL
(image) tensor
on device, need
to agree with
previously set
CUDNN_PARAM XDATA PLACEHOLDER
attribute *.

X_WDATA void * input Pointer to w (filter] | NULL
tensor on device,
need to agree with
previously set
CUDNN_PARAM WDATA PLACEHOLDER
attribute *.

X BN _EQSCALE void * input Pointer to alphal | NULL
or batchnorm
equivalent scale
tensor on device;
need to agree with
previously set
CUDNN_PARAM BN EQSCALE PLACEHOLDER
attribute *.

X _ZDATA void * input Pointer to z NULL
(tensor on device:
Need to agree
with previously set
CUDNN_PARAM YDATA PLACEHOLDER
attribute *.

X BN Z EQSCALE | void * input Pointer to alpha2, | NULL
equivalent scale
tensor for z; Need
to agree with
previously set
CUDNN_PARAM BN 7 EQSCALE PLACEHOLDER
attribute *.

X BN _Z EQBIAS void * input Pointer to NULL
batchnorm
equivalent bias

NVIDIA cuDNN PR-09702-001_v8.3.0 | 257

cudnn_cnn_train.so Library

For the attribute CUDNN_FUSED_BN_FINALIZE STATISTICS_ INFERENCE in cudnnFusedOp_t

Expected

Descriptor Type

Passed in, in the
Attribute key Setter I/0 Type
X _YDATA void * output
X_WORKSPACE void * input

X_SIZE T WORKSPACEiS4ZE TN BYTES input

@ Note:

Description Default Value

tensor on device,

need to agree with

previously set
CUDNN_PARAM BN 7 EQBIAS PLACEHOLDER
attribute *.

Pointer to y NULL

(output] tensor

on device, need

to agree with

previously set
CUDNN_PARAM YDATA PLACEHOLDER
attribute *.

Pointer to NULL
user allocated
workspace on

device. Can

be NULL if the

workspace size
requested is 0.

Pointer to a 0
size tvalue

in host memory
describing the

user allocated
workspace size

in bytes. The

amount needs to

be equal or larger
than the amount
requested in
cudnnMakeFusedOpsPlan.

» If the corresponding pointer placeholder in ConstParamPack is set to CUDNN_PTR_ NULL,
then the device pointer in the variantParamPack needs to be NULL as well.

» If the corresponding pointer placeholder in ConstParamPack is set to
CUDNN_PTR ELEM ALIGNED Or CUDNN PTR 16B ALIGNED, then the device pointerin the
VariantParamPack may not be NULL and needs to be at least element-aligned or 16 bytes-

aligned, respectively.

6.2. APl Functions

NVIDIA cuDNN

PR-09702-001_v8.3.0 | 258

cudnn_cnn_train.so Library

6.2.1. cudnnCnnTrainVersionCheck ()

cudnnStatus_t cudnnCnnTrainVersionCheck (void)

This function checks whether the version of the cnnTrain subset of the library is consistent
with the other sub-libraries.

Returns

CUDNN_STATUS_SUCCESS
The version is consistent with other sub-libraries.

CUDNN_STATUS_VERSION MISMATCH
The version of cnnTrain is not consistent with other sub-libraries. Users should check the
installation and make sure all sub-component versions are consistent.

6.2.2. cudnnConvolutionBackwardBias ()
cudnnStatus_t cudnnConvolutionBackwardBias (

cudnnHandle t handle,

const void *alpha,

const cudnnTensorDescriptor t dyDesc,

const void *dy,

const void *beta,

const cudnnTensorDescriptor t dbDesc,

void *db)

This function computes the convolution function gradient with respect to the bias, which is the
sum of every element belonging to the same feature map across all of the images of the input
tensor. Therefore, the number of elements produced is equal to the number of features maps
of the input tensor.

Parameters

handle

Input. Handle to a previously created cuDNN context. For more information, see
cudnnHandle_t.

alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the computation result

with prior value in the output layer as follows:
dstValue = alpha[0O]*resultValue + beta[0]*priorDstValue

For more information, see Scaling Parameters in the cuDNN Developer Guide.

dyDesc

Input. Handle to the previously initialized input tensor descriptor. For more information, see
cudnnTensorDescriptor_t.

dy

Input. Data pointer to GPU memory associated with the tensor descriptor dyDesc.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 259

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#scaling-parameters

cudnn_cnn_train.so Library

dbDesc

Input. Handle to the previously initialized output tensor descriptor.
db

Output. Data pointer to GPU memory associated with the output tensor descriptor dbDesc.

Returns
CUDNN_STATUS_SUCCESS

The operation was launched successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

» One of the parameters n, height, width of the output tensoris not 1.

» The numbers of feature maps of the input tensor and output tensor differ.

» The dataType of the two tensor descriptors is different.

6.2.3. cudnnConvolutionBackwardFilter ()
cudnnStatus_t cudnnConvolutionBackwardFilter (

cudnnHandle t handle,

const void *alpha,

const cudnnTensorDescriptor t xDesc,

const void *x,

const cudnnTensorDescriptor t dyDesc,

const void *dy,

const cudnnConvolutionDescriptor t convDesc,

cudnnConvolutionBwdFilterAlgo t algo,

void *workSpace,

size t workSpaceSizeInBytes,

const void *beta,

const cudnnFilterDescriptor t dwDesc,

void *dw)

This function computes the convolution weight (filter) gradient of the tensor dy, where y is the
output of the forward convolution in cudnnConvolutionForward(). It uses the specified algo,
and returns the results in the output tensor dw. Scaling factors alpha and beta can be used to
scale the computed result or accumulate with the current dw.

Parameters
handle

Input. Handle to a previously created cuDNN context. For more information, see
cudnnHandle_t.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 260

cudnn_cnn_train.so Library

alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the computation result

with prior value in the output layer as follows:
dstValue = alpha[0O]*result + betal[0]*priorDstValue

For more information, see Scaling Parameters in the cuDNN Developer Guide.

xDesc

Input. Handle to a previously initialized tensor descriptor. For more information, see
cudnnTensorDescriptor_t.

Input. Data pointer to GPU memory associated with the tensor descriptor xDesc.
dyDesc
Input. Handle to the previously initialized input differential tensor descriptor.
dy
Input. Data pointer to GPU memory associated with the backpropagation gradient tensor
descriptor dyDesc.

convDesc

Input. Previously initialized convolution descriptor. For more information, see
cudnnConvolutionDescriptor._t.

algo

Input. Enumerant that specifies which convolution algorithm should be used to compute the
results. For more information, see cudnnConvolutionBwdFilterAlgo_t.

workSpace

Input. Data pointer to GPU memory to a workspace needed to be able to execute the
specified algorithm. If no workspace is needed for a particular algorithm, that pointer can
be nil.

workSpaceSizeInBytes
Input. Specifies the size in bytes of the provided workspace.

dwDesc

Input. Handle to a previously initialized filter gradient descriptor. For more information, see
cudnnFilterDescriptor_t.

dw

Input/Output. Data pointer to GPU memory associated with the filter gradient descriptor
dwDesc that carries the result.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 261

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#scaling-parameters

cudnn_cnn_train.so Library

Supported configurations

This function supports the following combinations of data types for xDesc, dyDesc, convDesc,
and dwbDesc.

xDesc, dyDesc, and dwDesc
Data Type Configurations Data Type convDesc Data Type

TRUE_HALF_CONFIG (only CUDNN DATA HALF CUDNN_DATA HALF
supported on architectures

with true FP16 support,

meaning, compute capability

5.3 and later]

PSEUDO_HALF CONFIG CUDNN_DATA HALF CUDNN_DATA FLOAT
PSEUDO BFLOAT16 CONFIG CUDNN DATA BFLOAT16 CUDNN_ DATA FLOAT
FLOAT CONFIG CUDNN_DATA FLOAT CUDNN_ DATA FLOAT
DOUBLE CONFIG CUDNN_DATA DOUBLE CUDNN_DATA DOUBLE

Supported algorithms

S Note: Specifying a separate algorithm can cause changes in performance, support and
computation determinism. See the following table for an exhaustive list of algorithm options
and their respective supported parameters and deterministic behavior.

The table below shows the list of the supported 2D and 3D convolutions. The 2D convolutions
are described first, followed by the 3D convolutions.

For the following terms, the short-form versions shown in the parentheses are used in the
table below, for brevity:

» CUDNN_CONVOLUTION BWD FILTER ALGO 0 (_ALGO_0)
> CUDNN_CONVOLUTION BWD FILTER ALGO 1 (_ALGO_1)

» CUDNN CONVOLUTION BWD FILTER ALGO 3 (_ALGO_3)

» CUDNN CONVOLUTION BWD FILTER ALGO FFT (_FFT)

» CUDNN CONVOLUTION BWD FILTER ALGO FFT TILING (_FFT_TILING)

» CUDNN_ CONVOLUTION BWD FILTER ALGO WINOGRAD NONFUSED (_WINOGRAD_NONFUSED)
» CUDNN TENSOR NCHW (_NCHW)

» CUDNN TENSOR NHWC (_NHWC)

» CUDNN TENSOR NCHW VECT C (_NCHW_VECT_C)

NVIDIA cuDNN PR-09702-001_v8.3.0 | 262

cudnn_cnn_train.so Library

Table 38. For 2D convolutions: dwbesc: NHWC

Filter descriptor dwbDesc: NHWC [see cudnnTensorFormat_t)

Tensor Tensor
Formats Formats Data Type
Deterministic Supported for Supported for Configurations
Algo Name (Yes or No) dyDesc dxDesc Supported Important
_ALGO_0 and All except NHWC HWC- PSEUDO HALF CONFIG
ALGO_ 1 NCHW_VECT C | packed
- - - - - PSEUDO BFLOAT16 CONFIG
FLOAT CONFIG

Table 39. For 2D convolutions: dwbesc: _NCHW

Filter descriptor dwbDesc: NCHW

Tensor Tensor
Formats Formats Data Type
Deterministic Supported for Supported for Configurations
Algo Name (Yes or No) dyDesc dxDesc Supported Important
_ALGO 0 No All except NCHW CHW- pPSEUDO_HALF coBilation:
NCHW_VECT C | packed reater than
- - - PSEUDO BFLOAT1% CONFIG
- 0for all
FLOAT CONFIG | dimensions
DOUBLE_CONFIG ~onyDesc
Group Count
Support:
Greater than 0
_ALGO 1 Yes All except NCHW CHW- PSEUDO HALF cOBilation:
NCHW_VECT C packed reater than
- - - PSEUDO BFLOAT1® CONFIG
- 0for all

FLOAT CONFIG | dimensions

DOUBLE_CONFIG oonyDesc

Group Count

Support:
Greater than 0
_FFT Yes NCHW CHW- NCHW CHW- PSEUDO HALF_cOBilation: 1 for
packed packed all dimensions

FLOAT CONFIG
convDesc

Group Count

NVIDIA cuDNN PR-09702-001_v8.3.0 | 263

cudnn_cnn_train.so Library

Filter descriptor dwDesc: NCHW

Tensor Tensor
Formats Formats Data Type
Deterministic Supported for Supported for Configurations
Algo Name (Yes or No) dyDesc dxDesc Supported

Important

Support:
Greater than 0

xDesc feature
map height +
2 * convDesc
zero-padding
height must
equal 256 or
less

xDesc feature
map width +
2 * convDesc
zero-padding
width must
equal 256 or
less

convDesc
vertical and
horizontal filter
stride must
equal 1

dwbesc filter
height must
be greater
than convDesc
zero-padding
height

dwbesc filter
width must

be greater
than convbDesc
zero-padding
width

ALGO 3 No All except NCHW CHW- pPSEUDO HALF coBilation: 1 for

NCHW VECT C | packed
- - - FLOAT CONFIG

all dimensions

NVIDIA cuDNN PR-09702-001_v8.3.0 | 264

Filter descriptor dwDesc: NCHW

Deterministic

Algo Name (Yes or No)

_WINOGRAD NONFYSED

_FFT TILING | Yes

NVIDIA cuDNN

Tensor Tensor
Formats Formats
Supported for Supported for
dyDesc dxDesc

All except NCHW CHW-
_NCHW VECT C | packed

NCHW CHW- NCHW CHW-
packed packed

cudnn_cnn_train.so Library

Data Type
Configurations
Supported Important
DOUBLE CONFIG convDesc
Group Count
Support:

Greater than 0

TRUE_HALF cONFDdation: 1 for

all dimensions
PSEUDO HALF CONFIG

nvDesc

PSEUDO_BFLOATI%OCONFIG

Group Count
FLOAT_CONFIG ' Sypport:

Greater than 0

convDesc
vertical and
horizontal filter
stride must
equal 1

dwDesc filter
(height, width)
must be (3,3)
or (5,5)

If dwbesc
filter (height,
width) is (5,5,
then the data
type config

TRUE_HALF CONFIG

is not
supported.

PSEUDO_HALF COBHation: 1 for

all dimensions
FLOAT CONFIG

convDesc
DOUBLE CONFIG

Group Count

Support:

Greater than 0

PR-09702-001_v8.3.0 | 265

cudnn_cnn_train.so Library

Filter descriptor dwDesc: NCHW

Tensor Tensor
Formats Formats Data Type
Deterministic Supported for Supported for Configurations
Algo Name (Yes or No) dyDesc dxDesc Supported Important

dyDesc width
or height
must equal
1 (the same
dimension
as in xDesc).
The other
dimension
must be
less than or
equal to 256,
meaning, the
largest 1D tile
size currently
supported.

convDesc
vertical and
horizontal filter
stride must
equal 1

dwbDesc filter
height must
be greater
than convDesc
zero-padding
height

dwDesc filter
width must

be greater
than convbDesc
zero-padding
width

NVIDIA cuDNN PR-09702-001_v8.3.0 | 266

Table 40.

For 3D convolutions: dwbesc: NCHW

Filter descriptor dwDesc: NCHW.

Algo
Name (3D

Deterministic

Convolutions) (Yes or No)

_ALGO 0

_ALGO_3

Table 41.

No

No

For 3D convolutions: dwbesc: NHWC

Tensor Tensor
Formats Formats
Supported for Supported for
dyDesc dxDesc

All except NCDHW

_NCDHW_VECT_c| CDHW-packed

NCDHW fully-
packed

NCDHW fully-
packed

Filter descriptor dwDesc: NHWC.

Algo
Name (3D

Deterministic

Convolutions) (Yes or No)

_ALGO 1

NVIDIA cuDNN

Yes

Tensor Tensor
Formats Formats
Supported for Supported for
xDesc dyDesc
NDHWC HWC- NDHWC HWC-
packed packed

cudnn_cnn_train.so Library

Data Type
Configurations

Supported Important

pPSEUDO HALF coBilation:

reater th
PSEUDO BFLOAT1% CONFIG

OFor all
FLOAT_CONFIG | dimensions

an

DOUBLE_CONFIG ~onyDesc

Group Count
Support:
Greater than 0

PSEUDO HALF cODilation:
greater than

0 for all
DOUBLE_CONFIG dimensions

FLOAT CONFIG

convDesc
Group Count
Support:
Greater than 0

Data Type
Configurations

Supported Important

psEUDO HALF coBilation:
greateréhan

PSEUDO BFLOT16~ CONFI
U for all

FLOAT_CONFIG | dimensions

TRUE_HALF_CONFIGnyDesc

Group Count
Support:
Greater than 0

PR-09702-001_v8.3.0 | 267

cudnn_cnn_train.so Library

Returns
CUDNN_STATUS SUCCESS

The operation was launched successfully.
CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:
> At least one of the following is NULL: handle, xDesc, dyDesc, convDesc, dwDesc,
xData, dyData, dwData, alpha, beta
xDesc and dyDesc have a non-matching number of dimensions
xDesc and dwDesc have a non-matching number of dimensions
xDesc has fewer than three number of dimensions

xDesc, dyDesc, and dwDesc have a non-matching data type.

vV vV v Vv VY

xDesc and dwDesc have a non-matching number of input feature maps per image (or
group in case of grouped convolutions).

» yDesc or dwDesc indicate an output channel count that isn't a multiple of group count [if
group count has been set in convDesc].

CUDNN_STATUS_NOT SUPPORTED
At least one of the following conditions are met:
» xDesc or dyDesc have negative tensor striding
» xDesc, dyDesc or dwDesc has a number of dimensions that is not 4 or 5
> The chosen algo does not support the parameters provided; see above for exhaustive
list of parameter support for each algo

CUDNN_STATUS_MAPPING_ERROR

An error occurs during the texture object creation associated with the filter data.
CUDNN_STATUS_EXECUTION FAILED

The function failed to launch on the GPU.

6.2.4. cudnnCreateFusedOpsConstParamPack ()

cudnnStatus_t cudnnCreateFusedOpsConstParamPack (

cudnnFusedOpsConstParamPack t *constPack,

cudnnFusedOps_t ops);
This function creates an opaque structure to store the various problem size information, such
as the shape, layout and the type of tensors, and the descriptors for convolution and activation,
for the selected sequence of cudnnFusedOps computations.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 268

cudnn_cnn_train.so Library

Parameters

constPack
Input. The opaque structure that is created by this function. For more information, see
cudnnfFusedOpsConstParamPack_t.

ops
Input. The specific sequence of computations to perform in the cudnnFusedOps
computations, as defined in the enumerant type cudnnFusedOps_t.

Returns

CUDNN_STATUS BAD PARAM
If either constPack or ops iS NULL.
CUDNN_STATUS_SUCCESS
If the descriptor is created successfully.
CUDNN_STATUS_NOT SUPPORTED
If the ops enum value is not supported or reserved for future use.

6.2.5. cudnnCreateFusedOpsPlan ()

cudnnStatus_t cudnnCreateFusedOpsPlan (
cudnnFusedOpsPlan t *plan,
cudnnFusedOps_t ops);

This function creates the plan descriptor for the cudnnFusedOps computation. This descriptor
contains the plan information, including the problem type and size, which kernels should be
run, and the internal workspace partition.

Parameters

plan
Input. A pointer to the instance of the descriptor created by this function.

ops
Input. The specific sequence of fused operations computations for which this plan
descriptor should be created. For more information, see cudnnFusedOps_t.

Returns

CUDNN_STATUS_BAD PARAM

If either the input *plan is NULL or the ops input is not a valid cudnnFusedOp enum.
CUDNN_STATUS_NOT SUPPORTED

The ops input provided is not supported.
CUDNN_STATUS_SUCCESS

The plan descriptor is created successfully.

6.2.6. cudnnCreateFusedOpsVariantParamPack ()

cudnnStatus t cudnnCreateFusedOpsVariantParamPack (

NVIDIA cuDNN PR-09702-001_v8.3.0 | 269

cudnn_cnn_train.so Library

cudnnFusedOpsVariantParamPack t *varPack,
cudnnFusedOps_t ops);

This function creates a descriptor for cudnnFusedOps constant parameters.

Parameters

varPack
Input. Pointer to the descriptor created by this function. For more information, see
cudnnFusedOpsVariantParamPack_t.

ops
Input. The specific sequence of fused operations computations for which this descriptor
should be created.

Returns

CUDNN_STATUS_SUCCESS

The descriptor is successfully created.
CUDNN_STATUS_BAD PARAM

If any input is invalid.

6.2.7. cudnnDestroyFusedOpsConstParamPack ()

cudnnStatus t cudnnDestroyFusedOpsConstParamPack (
cudnnFusedOpsConstParamPack t constPack);

This function destroys a previously-created cudnnFusedOpsConstParamPack_t structure.

Parameters

constPack
Input. The cudnnFusedOpsConstParamPack_t structure that should be destroyed.

Returns

CUDNN_STATUS_SUCCESS

If the descriptor is destroyed successfully.
CUDNN_STATUS_INTERNAL ERROR

If the ops enum value is not supported or invalid.

6.2.8. cudnnDestroyFusedOpsPlan ()

cudnnStatus t cudnnDestroyFusedOpsPlan (
cudnnFusedOpsPlan t plan);

This function destroys the plan descriptor provided.

Parameters

plan
Input. The descriptor that should be destroyed by this function.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 270

cudnn_cnn_train.so Library

Returns

CUDNN_STATUS_SUCCESS
If either the plan descriptor is NULL or the descriptor is successfully destroyed.

6.2.9. cudnnDestroyFusedOpsVariantParamPack ()

cudnnStatus t cudnnDestroyFusedOpsVariantParamPack (
cudnnFusedOpsVariantParamPack t varPack);

This function destroys a previously-created descriptor for cudnnFusedOps constant
parameters.

Parameters

varPack
Input. The descriptor that should be destroyed.

Returns

CUDNN_STATUS_SUCCESS
The descriptor is successfully destroyed.

6.2.10. cudnnFindConvolutionBackwardFilterAlgorithm (

cudnnStatus t cudnnFindConvolutionBackwardFilterAlgorithm (

cudnnHandle t handle,

const cudnnTensorDescriptor t xDesc,

const cudnnTensorDescriptor t dyDesc,

const cudnnConvolutionDescriptor t convDesc,

const cudnnFilterDescriptor t dwDesc,

const int requestedAlgoCount,
int *returnedAlgoCount,

cudnnConvolutionBwdFilterAlgoPerf t *perfResults)

This function attempts all algorithms available for cudnnConvolutionBackwardFilter(). It will
attempt both the provided convDesc mathType and CUDNN DEFAULT MATH (assuming the two
differ].

S Note: Algorithms without the CUDNN TENSOR OP MATH availability will only be tried with
CUDNN DEFAULT MATH, and returned as such.

Memory is allocated via cudaMalloc (). The performance metrics are returned in
the user-allocated array of cudnnConvolutionBwdFilterAlgoPerf t. These metrics
are written in a sorted fashion where the first element has the lowest compute
time. The total number of resulting algorithms can be queried through the API
cudnnGetConvolutionBackwardFilterAlgorithmMaxCount(].

[g] Note:

» This function is host blocking.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 271

cudnn_cnn_train.so Library

» Itis recommended to run this function prior to allocating layer data; doing otherwise may
needlessly inhibit some algorithm options due to resource usage.

Parameters
handle

Input. Handle to a previously created cuDNN context.

xDesc

Input. Handle to the previously initialized input tensor descriptor.

dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.

convDesc

Input. Previously initialized convolution descriptor.

dwDesc

Input. Handle to a previously initialized filter descriptor.

requestedAlgoCount

Input. The maximum number of elements to be stored in perfResults.

returnedAlgoCount

Output. The number of output elements stored in perfResults.

perfResults
Output. A user-allocated array to store performance metrics sorted ascending by compute
time.

Returns

CUDNN_STATUS_SUCCESS

The query was successful.

CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:

handle Is not allocated properly.

xDesc, dyDesc, or dwDesc are not allocated properly.

| 2
| 2
> xDesc, dyDesc, or dwDesc has fewer than 1 dimension.
> Either returnedCount or perfResults is nil.

| 2

requestedCount Is less than 1.
CUDNN_STATUS ALLOC_FAILED

This function was unable to allocate memory to store sample input, filters and output.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 272

cudnn_cnn_train.so Library

CUDNN_STATUS_INTERNAL ERROR
At least one of the following conditions are met:

» The function was unable to allocate necessary timing objects.
» The function was unable to deallocate necessary timing objects.

> The function was unable to deallocate sample input, filters and output.

6.2.11. cudnnFindConvolutionBackwardFilterAlgorithmE

cudnnStatus t cudnnFindConvolutionBackwardFilterAlgorithmEx (

cudnnHandle t handle,

const cudnnTensorDescriptor t xDesc,

const void *x,

const cudnnTensorDescriptor t dyDesc,

const void *dy,

const cudnnConvolutionDescriptor t convDesc,

const cudnnFilterDescriptor t dwDesc,

void *dw,

const int requestedAlgoCount,
int *returnedAlgoCount,
cudnnConvolutionBwdFilterAlgoPerf t *perfResults,

void *workSpace,

size t workSpaceSizeInBytes)

This function attempts all algorithms available for cudnnConvolutionBackwardFilter(). It will
attempt both the provided convbesc mathType and CUDNN DEFAULT MATH (assuming the two
differ].

S Note: Algorithms without the CUDNN_TENSOR 0P MATH availability will only be tried with
CUDNN_DEFAULT MATH, and returned as such.

Memory is allocated via cudaMalloc (). The performance metrics are returned in
the user-allocated array of cudnnConvolutionBwdFilterAlgoPerf t. These metrics
are written in a sorted fashion where the first element has the lowest compute
time. The total number of resulting algorithms can be queried through the AP!I
cudnnGetConvolutionBackwardFilterAlgorithmMaxCount().

Note: This function is host blocking.

Parameters
handle

Input. Handle to a previously created cuDNN context.
xDesc

Input. Handle to the previously initialized input tensor descriptor.

Input. Data pointer to GPU memory associated with the filter descriptor xDesc.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 273

cudnn_cnn_train.so Library

dyDesc
Input. Handle to the previously initialized input differential tensor descriptor.
dy
Input. Data pointer to GPU memory associated with the tensor descriptor dyDesc.
convDesc
Input. Previously initialized convolution descriptor.
dwDesc

Input. Handle to a previously initialized filter descriptor.
dw

Input/Output. Data pointer to GPU memory associated with the filter descriptor dwbesc. The
content of this tensor will be overwritten with arbitrary values.

requestedAlgoCount
Input. The maximum number of elements to be stored in perfResults.
returnedAlgoCount

Output. The number of output elements stored in perfResults.

perfResults

Output. A user-allocated array to store performance metrics sorted ascending by compute
time.

workSpace
Input. Data pointer to GPU memory is a necessary workspace for some algorithms. The size

of this workspace will determine the availability of algorithms. A nil pointer is considered a
workSpace of 0 bytes.

workSpaceSizeInBytes

Input. Specifies the size in bytes of the provided workSpace.

CUDNN_STATUS_SUCCESS
The query was successful.
CUDNN_STATUS BAD PARAM
At least one of the following conditions are met:
handle is not allocated properly.
xDesc, dyDesc, or dwDesc are not allocated properly.
xDesc, dyDesc, or dwDesc has fewer than 1 dimension.
%, dy, or dw is nil.

Either returnedCount or perfResults is nil.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 274

cudnn_cnn_train.so Library

> requestedCount is less than 1.
CUDNN_STATUS_INTERNAL ERROR

At least one of the following conditions are met:

» The function was unable to allocate necessary timing objects.
» The function was unable to deallocate necessary timing objects.

» The function was unable to deallocate sample input, filters and output.

6.2.12. cudnnFusedOpsExecute ()

cudnnStatus t cudnnFusedOpsExecute (
cudnnHandle t handle,

const cudnnFusedOpsPlan t plan,
cudnnFusedOpsVariantParamPack t varPack);

This function executes the sequence of cudnnFusedOps operations.

Parameters

handle

Input. Pointer to the cuDNN Llibrary context.
plan

Input. Pointer to a previously-created and initialized plan descriptor.
varPack

Input. Pointer to the descriptor to the variant parameters pack.

Returns

CUDNN_STATUS_BAD PARAM
If the type of cudnnFusedOps_t in the plan descriptor is unsupported.

6.2.13. cudnnGetConvolutionBackwardFilterAlgorithmMa

cudnnStatus t cudnnGetConvolutionBackwardFilterAlgorithmMaxCount (

cudnnHandle t handle,

int *count)
This function returns the maximum number of algorithms which can
be returned from cudnnFindConvolutionBackwardFilterAlgorithm(] and
cudnnGetConvolutionForwardAlgorithm_v7(). This is the sum of all algorithms plus the sum of
all algorithms with Tensor Core operations supported for the current device.

Parameters
handle

Input. Handle to a previously created cuDNN context.

count

Output. The resulting maximum count of algorithms.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 275

cudnn_cnn_train.so Library

Returns
CUDNN_STATUS SUCCESS

The function was successful.
CUDNN_STATUS_BAD PARAM

The provided handle is not allocated properly.

6.2.14. cudnnGetConvolutionBackwardFilterAlgorithm v

cudnnStatus t cudnnGetConvolutionBackwardFilterAlgorithm v7 (

cudnnHandle t handle,

const cudnnTensorDescriptor t xDesc,

const cudnnTensorDescriptor t dyDesc,

const cudnnConvolutionDescriptor t convDesc,

const cudnnFilterDescriptor t dwDesc,

const int requestedAlgoCount,
int *returnedAlgoCount,

cudnnConvolutionBwdFilterAlgoPerf t *perfResults)

This function serves as a heuristic for obtaining the best suited algorithm for
cudnnConvolutionBackwardFilter() for the given layer specifications. This function will
return all algorithms (including CUDNN_TENSOR_OP MATH and CUDNN_DEFAULT MATH
versions of algorithms where CUDNN_TENSOR OP MATH may be available) sorted

by expected (based on internal heuristic) relative performance with fastest being

index 0 of perfResults. For an exhaustive search for the fastest algorithm, use
cudnnFindConvolutionBackwardFilterAlgorithm(). The total number of resulting algorithms
can be queried through the returnedAlgoCount variable.

Parameters
handle

Input. Handle to a previously created cuDNN context.

xDesc

Input. Handle to the previously initialized input tensor descriptor.

dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.

convDesc

Input. Previously initialized convolution descriptor.

dwDesc

Input. Handle to a previously initialized filter descriptor.

requestedAlgoCount

Input. The maximum number of elements to be stored in perfResults.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 276

cudnn_cnn_train.so Library

returnedAlgoCount

Output. The number of output elements stored in perfResults.

perfResults

Output. A user-allocated array to store performance metrics sorted ascending by compute
time.

Returns

CUDNN_STATUS_SUCCESS

The query was successful.

CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:

» One of the parameters handle, xDesc, dyDesc, convDesc, dwDesc, perfResults
returnedAlgoCount iS NULL.

> The numbers of feature maps of the input tensor and output tensor differ.

> The dataType of the two tensor descriptors or the filter are different.

» requestedAlgoCount is less than or equal to 0.

6.2.15. cudnnGetConvolutionBackwardFilterWorkspaceSi

cudnnStatus t cudnnGetConvolutionBackwardFilterWorkspaceSize (

cudnnHaHdle_t handle,
const cudnnTensorDescriptor t xDesc,

const cudnnTensorDescriptor t dyDesc,
const cudnnConvolutionDescriptor t convDesc,
const cudnnFilterDescriptor t dwDesc,
cudnnConvolutionBwdFilterAlgo t algo,

size t *sizeInBytes)

This function returns the amount of GPU memory workspace the user needs to allocate to be
able to call cudnnConvolutionBackwardFilter(] with the specified algorithm. The workspace
allocated will then be passed to the routine cudnnConvolutionBackwardFilter(]. The specified
algorithm can be the result of the call to cudnnGetConvolutionBackwardFilterAlgorithm_v7(]
or can be chosen arbitrarily by the user. Note that not every algorithm is available for every
configuration of the input tensor and/or every configuration of the convolution descriptor.

Parameters
handle

Input. Handle to a previously created cuDNN context.

xDesc

Input. Handle to the previously initialized input tensor descriptor.

dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 277

cudnn_cnn_train.so Library

convDesc

Input. Previously initialized convolution descriptor.

dwDesc

Input. Handle to a previously initialized filter descriptor.
algo

Input. Enumerant that specifies the chosen convolution algorithm.
sizeInBytes

Output. Amount of GPU memory needed as workspace to be able to execute a forward
convolution with the specified algo.

Returns

CUDNN_STATUS_SUCCESS

The query was successful.

CUDNN_STATUS_BAD_PARAM
At least one of the following conditions are met:

» The numbers of feature maps of the input tensor and output tensor differ.

» The dataType of the two tensor descriptors or the filter are different.
CUDNN_STATUS_NOT SUPPORTED

The combination of the tensor descriptors, filter descriptor and convolution descriptor is
not supported for the specified algorithm.

6.2.16. cudnnGetFusedOpsConstParamPackAttribute ()

cudnnStatus_t cudnnGetFusedOpsConstParamPackAttribute (
const cudnnFusedOpsConstParamPack t constPack,
cudnnFusedOpsConstParamLabel t paramLabel,

void *param,

int *isNULL) ;

This function retrieves the values of the descriptor pointed to by the param pointer input. The
type of the descriptor is indicated by the enum value of paramLabel input.

Parameters

constPack
Input. The opaque cudnnFusedOpsConstParamPack_t structure that contains the various
problem size information, such as the shape, layout and the type of tensors, and the
descriptors for convolution and activation, for the selected sequence of cudnnFusedOps_t
computations.

paramLabel
Input. Several types of descriptors can be retrieved by this getter function. The param input
points to the descriptor itself, and this input indicates the type of the descriptor pointed to

NVIDIA cuDNN PR-09702-001_v8.3.0 | 278

cudnn_cnn_train.so Library

by the param input. The cudnnFusedOpsConstParamlabel_t enumerant type enables the
selection of the type of the descriptor. Refer to the param description below.

param
Input. Data pointer to the host memory associated with the descriptor that should be
retrieved. The type of this descriptor depends on the value of paramLabel. For the given
paramLabel, if the associated value inside the constPack is set to NULL or by default
NULL, then cuDNN will copy the value or the opaque structure in the constPack to
the host memory buffer pointed to by param. For more information, see the table in
cudnnFusedOpsConstParamLabel t.

isNULL
Input/Output. Users must pass a pointer to an integer in the host memory in this field. If
the value in the constPack associated with the given paramLabel is by default NULL or
previously set by the user to NULL, then cuDNN will write a non-zero value to the location
pointed by isNULL.

Returns

CUDNN_STATUS_SUCCESS

The descriptor values are retrieved successfully.
CUDNN_STATUS_BAD PARAM

If either constPack, param Oor isNULL IS NULL; or if paramLabel is invalid

6.2.17. cudnnGetFusedOpsVariantParamPackAttribute ()

cudnnStatus t cudnnGetFusedOpsVariantParamPackAttribute (
const cudnnFusedOpsVariantParamPack t varPack,
cudnnFusedOpsVariantParamLabel t paramLabel,

void *ptr);

This function retrieves the settings of the variable parameter pack descriptor.

Parameters

varPack
Input. Pointer to the cudnnFusedOps variant parameter pack (varPack] descriptor.
paramLabel
Input. Type of the buffer pointer parameter (in the varpack descriptor]). For more
information, see cudnnFusedOpsConstParamlLabel t. The retrieved descriptor values vary
according to this type.
ptr
Output. Pointer to the host or device memory where the retrieved value is written
by this function. The data type of the pointer, and the host/device memory
location, depend on the paramLabel input selection. For more information, see
cudnnFusedOpsVariantParamlabel t.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 279

cudnn_cnn_train.so Library

Returns

CUDNN_STATUS_SUCCESS

The descriptor values are retrieved successfully.
CUDNN_STATUS BAD PARAM

If either varPack or ptr Is NULL, or if paramLabel is set to invalid value.

6.2.18. cudnnMakeFusedOpsPlan ()

cudnnStatus t cudnnMakeFusedOpsPlan (
cudnnHandle t handle,

cudnnFusedOpsPlan t plan,

const cudnnFusedOpsConstParamPack t constPack,
size t *workspaceSizelInBytes);

This function determines the optimum kernel to execute, and the workspace size
the user should allocate, prior to the actual execution of the fused operations by
cudnnFusedOpsExecute().

Parameters

handle
Input. Pointer to the cuDNN Llibrary context.
plan
Input. Pointer to a previously-created and initialized plan descriptor.
constPack
Input. Pointer to the descriptor to the const parameters pack.
workspaceSizeInBytes
Output. The amount of workspace size the user should allocate for the execution of this
plan.

Returns

CUDNN_STATUS_BAD PARAM
If any of the inputs is NULL, or if the type of cudnnFusedOps_t in the constPack descriptor
Is unsupported.

CUDNN_STATUS_SUCCESS
The function executed successfully.

6.2.19. cudnnSetFusedOpsConstParamPackAttribute ()

cudnnStatus_t cudnnSetFusedOpsConstParamPackAttribute (
cudnnFusedOpsConstParamPack t constPack,
cudnnFusedOpsConstParamLabel t paramLabel,
const void *param) ;
This function sets the descriptor pointed to by the param pointer input. The type of the
descriptor to be set is indicated by the enum value of the paramLabel input.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 280

cudnn_cnn_train.so Library

Parameters

constPack
Input. The opaque cudnnFusedOpsConstParamPack_t structure that contains the various

problem size information, such as the shape, layout and the type of tensors, the descriptors
for convolution and activation, and settings for operations such as convolution and
activation.

paramLabel
Input. Several types of descriptors can be set by this setter function. The param input points
to the descriptor itself, and this input indicates the type of the descriptor pointed to by
the param input. The cudnnFusedOpsConstParamlabel t enumerant type enables the
selection of the type of the descriptor.

param
Input. Data pointer to the host memory, associated with the specific descriptor. The type of
the descriptor depends on the value of paramLabel. For more information, see the table in
cudnnFusedOpsConstParamlabel t.

If this pointer is set to NULL, then the cuDNN Llibrary will record as such.
If not, then the values pointed to by this pointer (meaning, the value or the
opaque structure underneath) will be copied into the constPack during
cudnnSetFusedOpsConstParamPackAttribute()Operaﬂon

Returns

CUDNN_STATUS_SUCCESS
The descriptor is set successfully.
CUDNN_STATUS_BAD PARAM
If constPack is NULL, or if paramLabel or the ops setting for constpPack is invalid

6.2.20. cudnnSetFusedOpsVariantParamPackAttribute ()

cudnnStatus_t cudnnSetFusedOpsVariantParamPackAttribute (
cudnnFusedOpsVariantParamPack t varPack,
cudnnFusedOpsVariantParamLabel t paramLabel,

void *ptr);

This function sets the variable parameter pack descriptor.

Parameters

varPack
Input. Pointer to the cudnnFusedops variant parameter pack [varpack] descriptor.
paramLabel
Input. Type to which the buffer pointer parameter (in the varpack descriptor] is set by this
function. For more information, see cudnnFusedOpsConstParamlLabel t.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 281

cudnn_cnn_train.so Library

ptr
Input. Pointer, to the host or device memory, to the value to which the descriptor
parameter is set. The data type of the pointer, and the host/device memory
location, depend on the paramLabel input selection. For more information, see
cudnnFusedOpsVariantParamlabel t.

Returns

CUDNN_STATUS_BAD PARAM

If varPack is NULL or if paramLabel is set to an unsupported value.
CUDNN_STATUS_SUCCESS

The descriptor was set successfully.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 282

Chapter 7. cudnn_adv_infer.so
Library

7.1. Data Type References

7.1.1. Pointer To Opaque Struct Types

7.1.1.1. cudnnAttnDescriptor t
cudnnAttnDescriptor t isa pointer to an opaque structure holding parameters of the multi-
head attention layer such as:

» weight and bias tensor shapes (vector lengths before and after linear projections)

» parameters that can be set in advance and do not change when invoking functions to
evaluate forward responses and gradients (number of attention heads, softmax smoothing/
sharpening coefficient]

» other settings that are necessary to compute temporary buffer sizes.

Use the cudnnCreateAttnDescriptor(] function to create an instance of the attention descriptor
object and cudnnDestroyAttnDescriptor(] to delete the previously created descriptor. Use the
cudnnSetAttnDescriptor(] function to configure the descriptor.

7.1.1.2. cudnnPersistentRNNPlan t
This function is deprecated starting in cuDNN 8.0.0.

cudnnPersistentRNNPlan t is a pointer to an opaque structure holding a plan to execute a
dynamic persistent RNN. cudnnCreatePersistentRNNPlan(] is used to create and initialize one
instance.

7.1.1.3. cudnnRNNDataDescriptor t

cudnnRNNDataDescriptor t is a pointer to an opaque structure holding the description of an
RNN data set. The function cudnnCreateRNNDataDescriptor() is used to create one instance,
and cudnnSetRNNDataDescriptor() must be used to initialize this instance.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 283

cudnn_adv_infer.so Library

7.1.1.4. cudnnRNNDescriptor t

cudnnRNNDescriptor t isa pointer to an opaque structure holding the description of an RNN
operation. cudnnCreateRNNDescriptor(] is used to create one instance.

7.1.1.5. cudnnSeqgDataDescriptor t

cudnnSegDataDescriptor t is a pointer to an opaque structure holding parameters of the
sequence data container or buffer. The sequence data container is used to store fixed size
vectors defined by the VECT dimension. Vectors are arranged in additional three dimensions:
TIME, BATCH and BEAM.

The TIME dimension is used to bundle vectors into sequences of vectors. The actual sequences
can be shorter than the TIME dimension, therefore, additional information is needed about
each sequence length and how unused [padding] vectors should be saved.

It is assumed that the sequence data container is fully packed. The TIME, BATCH and BEAM
dimensions can be in any order when vectors are traversed in the ascending order of
addresses. Six data layouts (permutation of TIME, BATCH and BEAM) are possible.

The cudnnSegDataDescriptor_t object holds the following parameters:

» data type used by vectors

» TIME, BATCH, BEAM and VECT dimensions

» data layout

» the length of each sequence along the TIME dimension

» an optional value to be copied to output padding vectors

Use the cudnnCreateSegDataDescriptor() function to create one instance of the sequence

data descriptor object and cudnnDestroySegDataDescriptor() to delete a previously created
descriptor. Use the cudnnSetSegDataDescriptor(] function to configure the descriptor.

This descriptor is used by multi-head attention API functions.

7.1.2. Enumeration Types

7.1.2.1. cudnnDirectionMode t

cudnnDirectionMode t isan enumerated type used to specify the recurrence pattern in the
cudnnRNNForwardInference(), cudnnRNNForwardTraining(], cudnnRNNBackwardDatal() and
cudnnRNNBackwardWeights(] routines.

Values

CUDNN_UNIDIRECTIONAL
The network iterates recurrently from the first input to the last.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 284

cudnn_adv_infer.so Library

CUDNN_BIDIRECTIONAL
Each layer of the network iterates recurrently from the first input to the last and separately
from the last input to the first. The outputs of the two are concatenated at each iteration
giving the output of the layer.

7.1.2.2. cudnnForwardMode t

cudnnForwardMode t is an enumerated type to specify inference or training mode in
RNN API. This parameter allows the cuDNN library to tune more precisely the size of the
workspace buffer that could be different in inference and training regimens.

Values

CUDNN_FWD_MODE_INFERENCE

Selects the inference mode.

CUDNN_FWD_MODE_TRAINING

Selects the training mode.

7.1.2.3. cudnnMultiHeadAttnWeightKind t

cudnnMultiHeadAttnWeightKind t is an enumerated type that specifies a group of weights
or biases in the cudnnGetMultiHeadAttnWeights() function.

Values
CUDNN MH ATTN Q WEIGHTS

Selects the input projection weights for queries.

CUDNN_MH_ATTN K WEIGHTS

Selects the input projection weights for keys.

CUDNN_MH_ATTN_V_WEIGHTS

Selects the input projection weights for values.

CUDNN_MH_ATTN_O_WEIGHTS

Selects the output projection weights.

CUDNN_MH_ATTN_Q BIASES

Selects the input projection biases for queries.

CUDNN_MH_ATTN_K_BIASES

Selects the input projection biases for keys.

CUDNN_MH_ATTN V_BIASES

Selects the input projection biases for values.

CUDNN_MH_ATTN_O_BIASES

Selects the output projection biases.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 285

cudnn_adv_infer.so Library

7.1.2.4. cudnnRNNBiasMode t

cudnnRNNBiasMode t is an enumerated type used to specify the number of bias vectors
for RNN functions. See the description of the cudnnRNNMode_t enumerated type for the
equations for each cell type based on the bias mode.

Values

CUDNN_RNN_NO_BIAS

Applies RNN cell formulas that do not use biases.

CUDNN_RNN SINGLE INP BIAS

Applies RNN cell formulas that use one input bias vector in the input GEMM.

CUDNN_RNN DOUBLE_BIAS

Applies RNN cell formulas that use two bias vectors.

CUDNN_RNN_SINGLE REC_BIAS

Applies RNN cell formulas that use one recurrent bias vector in the recurrent GEMM.

7.1.2.5. cudnnRNNClipMode t

cudnnRNNClipMode t is an enumerated type used to select the LSTM cell clipping mode. It is
used with cudnnRNNSetClip(J, cudnnRNNGetClip() functions, and internally within LSTM cells.

Values

CUDNN_RNN_ CLIP_NONE

Disables LSTM cell clipping.
CUDNN_RNN CLIP MINMAX

Enables LSTM cell clipping.

7.1.2.6. cudnnRNNDatalayout t

cudnnRNNDataLayout t isan enumerated type used to select the RNN data layout. It is used
in the API calls cudnnGetRNNDataDescriptor() and cudnnSetRNNDataDescriptor().

Values
CUDNN RNN DATA LAYOUT SEQ MAJOR UNPACKED

Data layout is padded, with outer stride from one time-step to the next.

CUDNN_RNN_DATA LAYOUT SEQ MAJOR PACKED

The sequence length is sorted and packed as in the basic RNN API.
CUDNN_RNN_DATA LAYOUT BATCH MAJOR_UNPACKED

Data layout is padded, with outer stride from one batch to the next.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 286

cudnn_adv_infer.so Library

7.1.2.7. cudnnRNNInputMode t

cudnnRNNInputMode t Isan enumerated type used to specify the behavior of the first layer in
the cudnnRNNForwardInference(), cudnnRNNForwardTraining(), cudnnRNNBackwardData()
and cudnnRNNBackwardWeights() routines.

Values

CUDNN_LINEAR INPUT

A biased matrix multiplication is performed at the input of the first recurrent layer.
CUDNN_SKIP_ INPUT
No operation is performed at the input of the first recurrent layer. If CUDNN_SKIP INPUT Is

used the leading dimension of the input tensor must be equal to the hidden state size of the
network.

7.1.2.8. cudnnRNNMode t

cudnnRNNMode t is an enumerated type used to specify the type of network used in the
cudnnRNNForwardInference, cudnnRNNForwardTraining, cudnnRNNBackwardData and
cudnnRNNBackwardWeights routines.

Values
CUDNN_RNN_RELU
A single-gate recurrent neural network with a ReLU activation function.

In the forward pass, the output h, for a given iteration can be computed from the recurrent
input h.q and the previous layer input x;, given the matrices w, R and the bias vectors, where

ReLU (x) = max (X, O).

If cudnnRNNBiasMode t biasMode in rnnDesc iS CUDNN_RNN DOUBLE BIAS (default
mode), then the following equation with biases by, and by applies:

he = ReLU(Wx, + Ry + by + byy)

If cudnnRNNBiasMode t biasMode In rnnDesc iS CUDNN RNN SINGLE INP BIAS Or
CUDNN RNN SINGLE REC BIAS, then the following equation with bias b applies:

ht = ReLU(WiXt + Riht-l + bl)

If cudnnRNNBiasMode t biasMode In rnnDesc iS CUDNN RNN NO BIAS, then the following
equation applies:

h, = ReLU(Wx, + Rh,.,)
CUDNN_RNN TANH

A single-gate recurrent neural network with a tanh activation function.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 287

cudnn_adv_infer.so Library

In the forward pass, the output h; for a given iteration can be computed from the recurrent
input h.q and the previous layer input x;, given the matrices w, R and the bias vectors, and
where tanh Is the hyperbolic tangent function.

If cudnnRNNBiasMode t biasMode in rnnDesc iS CUDNN RNN DOUBLE BIAS (default
mode), then the following equation with biases by, and by applies:

he = tanh(W,-xt + Rh.q + by; + bR,-)

If cudnnRNNBiasMode t biasMode in rnnDesc iS CUDNN RNN SINGLE INP BIAS or
CUDNN_RNN SINGLE REC BIAS, then the following equation with bias b applies:

ht = tanh (Wixt + Riht-l + bI)

If cudnnRNNBiasMode t biasMode In rnnDesc IS CUDNN RNN NO BIAS, then the following
equation applies:

ht’ = tanh (Wlxt + Riht-].)
CUDNN_LSTM
A four-gate Long Short-Term Memory (LSTM) network with no peephole connections.

In the forward pass, the output h, and cell output ¢, for a given iteration can be computed
from the recurrent input h4, the cell input ¢.; and the previous layer input x,, given the
matrices W, R and the bias vectors.

In addition, the following applies:

” o is the sigmoid operator such that: G(X) =1 / (1 +e‘X),
» o represents a point-wise multiplication,
> tanh is the hyperbolic tangent function, and

Iy f, op € represent the input, forget, output and new gates respectively.

If cudnnRNNBiasMode t biasMode in rnnDesc is CUDNN RNN DOUBLE BIAS (default
mode), then the following equations with biases by, and bg apply:

k=0 (Wixt + Rihyq +by; + bRi)
f,=o0 (fot + Rehyq + by + be)
0= 0 (Woxt + Rohyq + by, + bRo)

¢’ = tanh [cht + Rchpq + by + bRJ
Ce=f, o Ctipocy

h,

0; ° tanh (ct)

If cudnnRNNBiasMode t biasMode in rnnDesc iS CUDNN RNN SINGLE INP BIAS or
CUDNN_RNN SINGLE REC BIAS, then the following equations with bias b apply:

NVIDIA cuDNN PR-09702-001_v8.3.0 | 288

cudnn_adv_infer.so Library

ii= o (Wl-xt + Rih 4 +bi)

ft =0 (fot + tht_l +bf)
0= 0 (Woxt + Rohyq +bo)
;= tanh[WCxt + Rcheq +bc)
cc=f,oCutigoCy

h; = o, ° tanh (ct)

If cudnnRNNBiasMode t biasMode in rnnDesc IS CUDNN RNN NO BIAS, then the following
equations apply:

ii= o (Wl-xt + Riht_l)

f,=o0 (fot + tht_l)
0= 0 (Woxt + Roht—]J
;= tanh[WCxt + Rcht_])
ce=f o Catipocy
h; = o, ° tanh (ct)
CUDNN_GRU
A three-gate network consisting of Gated Recurrent Units.

In the forward pass, the output h;, for a given iteration can be computed from the recurrent
input h., and the previous layer input x, given matrices w, R and the bias vectors.

In addition, the following applies:

o is the sigmoid operator such that: o[x) =1 / (1 +e‘X),
° represents a point-wise multiplication,
tanh is the hyperbolic tangent function, and

i, ry,, h ; represent the input, reset, and new gates respectively.

If cudnnRNNBiasMode t biasMode in rnnDesc iS CUDNN RNN DOUBLE BIAS (default
mode], then the following equations with biases by, and bg apply:

ir=o0 (W,-xt + Rih.q +by; + bRu)
re=0 (Wrxt + Rehyq + by, + bRr)
h = tanh(WhXt +ree (tht—l +th) + bWhJ

h; = (1 'it) o My +ipohq

NVIDIA cuDNN PR-09702-001_v8.3.0 | 289

cudnn_adv_infer.so Library

If cudnnRNNBiasMode t biasMode in rnnDesc IS CUDNN RNN SINGLE INP BIAS, then the
following equations with bias b apply:

i, = o (Wx, + Rh, +b)

re= o (W.x, + Rhq +b,)

K, = tanh(Wx, + r, * (Ryhs) + by
he=(1-i) H +i, °h4

If cudnnRNNBiasMode t biasMode in rnnDesc iS CUDNN RNN SINGLE REC BIAS, then the
following equations with bias b apply:

i, = o (Wx, + Rih.q +b)

re= o (W,x, + Rhy +b,)

K, =tanh(W,x, + r, * (Ryhs +bgy))
he=(1-i) H +i °h4

If cudnnRNNBiasMode t biasMode in rnnDesc IS CUDNN _RNN NO BIAS, then the following
equations apply:

ii=0 (Wixt + Riht-l)
re=0 (Wrxt + Rrht_])
h,= tanh(tht +rp° (tht_]D

h; = (1 'it) e hy+ip°h

7.1.2.9. cudnnRNNPaddingMode t

cudnnRNNPaddingMode t isan enumerated type used to enable or disable the padded input/
output.

Values

CUDNN_RNN_PADDED IO DISABLED

Disables the padded input/output.
CUDNN_RNN PADDED IO ENABLED

Enables the padded input/output.

7.1.2.10. cudnnSeqgDataAxis t

cudnnSegDataAxis t is an enumerated type that indexes active dimensions in the dimaA[]
argument that is passed to the cudnnSetSeqgDataDescriptor(] function to configure the
sequence data descriptor of type cudnnSegDataDescriptor_t.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 290

cudnn_adv_infer.so Library

cudnnSeqgDataAxis_t constants are also used in the axis[] argument of the
cudnnSetSeqgDataDescriptor() call to define the layout of the sequence data buffer in memory.

See cudnnSetSeqgDataDescriptor(] for a detailed description on how to use the
cudnnSeqgDataAxis t enumerated type.

The CUDNN SEQDATA DIM COUNT macro defines the number of constants in the
cudnnSeqgDataAxis t enumerated type. This value is currently set to 4.

Values

CUDNN_SEQDATA TIME_DIM

Identifies the TIME (sequence length] dimension or specifies the TIME in the data layout.

CUDNN_SEQDATA BATCH_DIM

Identifies the BATCH dimension or specifies the BATCH in the data layout.

CUDNN_SEQDATA BEAM DIM

Identifies the BEAM dimension or specifies the BEAM in the data layout.

CUDNN_SEQDATA VECT_DIM

Identifies the VECT (vector]) dimension or specifies the VECT in the data layout.

7.2. APl Functions

7.2.1. cudnnAdvInferVersionCheck ()

cudnnStatus_ t cudnnAdvInferVersionCheck (void)

This function checks to see whether the version of the Advinfer subset of the library is
consistent with the other sub-libraries.

Returns

CUDNN_STATUS_SUCCESS

The version is consistent with other sub-libraries.
CUDNN_STATUS VERSION MISMATCH

The version of Advinfer is not consistent with other sub-libraries. Users should check the
installation and make sure all sub-component versions are consistent.

7.2.2. cudnnBuildRNNDynamic ()

cudnnStatus_t cudnnBuildRNNDynamic (
cudnnHandle t handle,
cudnnRNNDescriptor t rnnDesc,
int32 t miniBatch);

NVIDIA cuDNN PR-09702-001_v8.3.0 | 291

cudnn_adv_infer.so Library

This function compiles the RNN persistent code using CUDA runtime compilation library
(NVRTC] when the CUDNN RNN ALGO PERSIST DYNAMIC algo is selected. The code is
tailored to the current GPU and specific hyperparameters (miniBatch). This call is expected
to be expensive in terms of runtime and should be invoked infrequently. Note that the

CUDNN_ RNN ALGO PERSIST DYNAMIC algo does not support variable length sequences within
the batch.

handle

Input. Handle to a previously created cuDNN context.

rnnDesc

Input. A previously initialized RNN descriptor.

miniBatch

Input. The exact number of sequences in a batch.

CUDNN_STATUS_SUCCESS

The code was built and linked successfully.

CUDNN_STATUS_MAPPING ERROR
A GPU/CUDA resource, such as a texture object, shared memory, or zero-copy memory is
not available in the required size or there is a mismatch between the user resource and
cuDNN internal resources. A resource mismatch may occur, for example, when calling
cudnnSetStream (). There could be a mismatch between the user provided CUDA stream

and the internal CUDA events instantiated in the cuDNN handle when cudnnCreate () was
invoked.

This error status may not be correctable when it is related to texture dimensions, shared
memory size, or zero-copy memory availability. If CUDNN STATUS MAPPING ERROR IS
returned by cudnnSetStream (), then it is typically correctable, however, it means that
the cuDNN handle was created on one GPU and the user stream passed to this function is
associated with another GPU.

CUDNN_STATUS_ALLOC_FAILED

The resources could not be allocated.

CUDNN_STATUS_RUNTIME PREREQUISITE MISSING

The prerequisite runtime library could not be found.

CUDNN_STATUS_NOT_SUPPORTED

The current hyper-parameters are invalid.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 292

cudnn_adv_infer.so Library

7.2.3. cudnnCreateAttnDescriptor ()

cudnnStatus_t cudnnCreateAttnDescriptor (cudnnAttnDescriptor t *attnDesc);

This function creates one instance of an opaque attention descriptor object by allocating the
host memory for it and initializing all descriptor fields. The function writes NULL to attnDesc
when the attention descriptor object cannot be allocated.

Use the cudnnSetAttnDescriptor(] function to configure the attention descriptor and
cudnnDestroyAttnDescriptor(] to destroy it and release the allocated memory.

Parameters

attnDesc
Output. Pointer where the address to the newly created attention descriptor should be
written.

Returns

CUDNN_STATUS_SUCCESS

The descriptor object was created successfully.
CUDNN_STATUS_BAD PARAM

An invalid input argument was encountered (attnDesc=NULL).
CUDNN_STATUS_ALLOC_FAILED

The memory allocation failed.

7.2.4. cudnnCreatePersistentRNNPlan ()

This function has been deprecated in cuDNN 8.0. Use cudnnBuildRNNDynamic(] instead of
cudnnCreatePersistentRNNPlan ().

cudnnStatus_t cudnnCreatePersistentRNNPlan (

cudnnRNNDescriptor t rnnDesc,
const int minibatch,
const cudnnDataType t dataType,

cudnnPersistentRNNPlan t *plan)

This function creates a plan to execute persistent RNNs when using the
CUDNN_RNN ALGO PERSIST DYNAMIC algo. This planis tailored to the current GPU and
problem hyperparameters. This function call is expected to be expensive in terms of runtime
and should be used infrequently. For more information, see cudnnRNNDescriptor_t,
cudnnDataType_t, and cudnnPersistentRNNPlan_t.

Returns

CUDNN_STATUS_SUCCESS

The object was created successfully.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 293

cudnn_adv_infer.so Library

CUDNN_STATUS_MAPPING_ERROR

A GPU/CUDA resource, such as a texture object, shared memory, or zero-copy memory is
not available in the required size or there is a mismatch between the user resource and
cuDNN internal resources. A resource mismatch may occur, for example, when calling
cudnnSetStream (). There could be a mismatch between the user provided CUDA stream
and the internal CUDA events instantiated in the cuDNN handle when cudnnCreate () was
invoked.

This error status may not be correctable when it is related to texture dimensions, shared
memory size, or zero-copy memory availability. If CUDNN_STATUS MAPPING ERROR IS
returned by cudnnSetstream (), then it is typically correctable, however, it means that
the cuDNN handle was created on one GPU and the user stream passed to this function is
associated with another GPU.

CUDNN_STATUS_ALLOC_FAILED

The resources could not be allocated.

CUDNN_STATUS_RUNTIME PREREQUISITE MISSING

A prerequisite runtime library cannot be found.

CUDNN_STATUS_NOT_SUPPORTED

The current hyperparameters are invalid.

7.2.5. cudnnCreateRNNDataDescriptor ()

cudnnStatus_t cudnnCreateRNNDataDescriptor (
cudnnRNNDataDescriptor t *RNNDataDesc)

This function creates a RNN data descriptor object by allocating the memory needed to hold
its opaque structure.

Returns

CUDNN_STATUS_SUCCESS

The RNN data descriptor object was created successfully.
CUDNN_STATUS_BAD PARAM
RNNDataDesc IS NULL.

CUDNN_STATUS_ALLOC_FAILED

The resources could not be allocated.

7.2.6. cudnnCreateRNNDescriptor ()

cudnnStatus_t cudnnCreateRNNDescriptor (
cudnnRNNDescriptor t *rnnDesc)

This function creates a generic RNN descriptor object by allocating the memory needed to
hold its opaque structure.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 294

cudnn_adv_infer.so Library

Returns

CUDNN_STATUS_SUCCESS

The object was created successfully.

CUDNN_STATUS_ALLOC_FAILED

The resources could not be allocated.

7.2.7. cudnnCreateSeqDataDescriptor ()

cudnnStatus_ t cudnnCreateSeqgDataDescriptor (cudnnSegDataDescriptor t *segDataDesc);

This function creates one instance of an opaque sequence data descriptor object by allocating
the host memory for it and initializing all descriptor fields. The function writes NULL to
segDataDesc when the sequence data descriptor object cannot be allocated.

Use the cudnnSetSegDataDescriptor(] function to configure the sequence data descriptor and
cudnnDestroySegDataDescriptor() to destroy it and release the allocated memory.

Parameters

seqgDataDesc
Output. Pointer where the address to the newly created sequence data descriptor should be
written.

Returns

CUDNN_STATUS_SUCCESS

The descriptor object was created successfully.
CUDNN_STATUS_BAD PARAM

An invalid input argument was encountered [segDataDesc=NULL).
CUDNN_STATUS_ALLOC_FAILED

The memory allocation failed.

7.2.8. cudnnDestroyAttnDescriptor ()

cudnnStatus_t cudnnDestroyAttnDescriptor (cudnnAttnDescriptor t attnDesc);

This function destroys the attention descriptor object and releases its memory. The attnDesc
argument can be NULL. Invoking cudnnDestroyAttnDescriptor () with a NULL argument is a
no operation (NOP).

The cudnnDestroyAttnDescriptor () function is not able to detect if the attnDesc
argument holds a valid address. Undefined behavior will occur in case of passing an invalid
pointer, not returned by the cudnnCreateAttnDescriptor() function, or in the double deletion
scenario of a valid address.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 295

cudnn_adv_infer.so Library

Parameters
attnDesc

Input. Pointer to the attention descriptor object to be destroyed.
Returns

CUDNN_STATUS_SUCCESS
The descriptor was destroyed successfully.

7.2.9. cudnnDestroyPersistentRNNPlan ()

This function has been deprecated in cuDNN 8.0.

cudnnStatus t cudnnDestroyPersistentRNNPlan (
cudnnPersistentRNNPlan t plan)

This function destroys a previously created persistent RNN plan object.

Returns
CUDNN_STATUS SUCCESS

The object was destroyed successfully.

7.2.10. cudnnDestroyRNNDataDescriptor ()

cudnnStatus_t cudnnDestroyRNNDataDescriptor (
cudnnRNNDataDescriptor t RNNDataDesc)

This function destroys a previously created RNN data descriptor object.

Returns

CUDNN_STATUS_SUCCESS

The RNN data descriptor object was destroyed successfully.

7.2.11. cudnnDestroyRNNDescriptor ()

cudnnStatus_t cudnnDestroyRNNDescriptor (
cudnnRNNDescriptor t rnnDesc)

This function destroys a previously created RNN descriptor object.

Returns

CUDNN_STATUS_SUCCESS

The object was destroyed successfully.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 296

cudnn_adv_infer.so Library

7.2.12. cudnnDestroySeqDataDescriptor ()

cudnnStatus_t cudnnDestroySegDataDescriptor (cudnnSegDataDescriptor t segDataDesc);

This function destroys the sequence data descriptor object and releases its memory. The
segDataDesc argument can bENULLJnVOMng cudnnDestroySegDataDescriptor () with a
NULL argument is a no operation (NOP).

The cudnnDestroySeqDataDescriptor () function is not able to detect if the seqDataDesc
argument holds a valid address. Undefined behavior will occur in case of passing an invalid
pointer, not returned by the cudnnCreateSegDataDescriptor() function, or in the double
deletion scenario of a valid address.

Parameters

seqgDataDesc
Input. Pointer to the sequence data descriptor object to be destroyed.

Returns

CUDNN_STATUS_SUCCESS
The descriptor was destroyed successfully.

7.2.13. cudnnFindRNNForwardInferenceAlgorithmEx ()
This function has been deprecated in cuDNN 8.0.

cudnnStatus t cudnnFindRNNForwardInferenceAlgorithmEx (

cudnnHandle t handle,

const cudnnRNNDescriptor t rnnDesc,

const int seqglength,

const cudnnTensorDescriptor t *xDesc,

const void *x,

const cudnnTensorDescriptor t hxDesc,

const void Wk,

const cudnnTensorDescriptor t cxDesc,

const void HE@X,

const cudnnFilterDescriptor t wDesc,

const void *w,

const cudnnTensorDescriptor t *yDesc,

void *Vy

const cudnnTensorDescriptor t hyDesc,

void *hy,

const cudnnTensorDescriptor t cyDesc,

void H@W,

const float findIntensity,
const int requestedAlgoCount,
int *returnedAlgoCount,
cudnnAlgorithmPerformance t *perfResults,

void *workspace,

size t workSpaceSizeInBytes)

This function attempts all available cuDNN algorithms for cudnnRNNForwardInferencel(),
using user-allocated GPU memory. It outputs the parameters that influence the performance
of the algorithm to a user-allocated array of cudnnAlgorithmPerformance t. These
parameter metrics are written in sorted fashion where the first element has the lowest
compute time.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 297

cudnn_adv_infer.so Library

Parameters

handle

Input. Handle to a previously created cuDNN context.

rnnDesc

Input. A previously initialized RNN descriptor.

seqlLength

Input. Number of iterations to unroll over. The value of this seqLength must not exceed the
value that was used in cudnnGetRNNWorkspaceSize() function for querying the workspace
size required to execute the RNN.

xDesc

Input. An array of fully packed tensor descriptors describing the input to each recurrent
iteration (one descriptor per iteration). The first dimension (batch size) of the tensors may
decrease from element n to element n+1 but may not increase. Each tensor descriptor
must have the same second dimension (vector length).

Input. Data pointer to GPU memory associated with the tensor descriptors in the array
xDesc. The data are expected to be packed contiguously with the first element of iteration n
+1 following directly from the last element of iteration n.

hxDesc

Input. A fully packed tensor descriptor describing the initial hidden state of the RNN.
The first dimension of the tensor depends on the direction argument used to initialize

rnnDesc:

» If direction is CUDNN UNIDIRECTIONAL the first dimension should match the
numLayers argument.

» Ifdirection Is CUDNN BIDIRECTIONAL the first dimension should match double the
numLayers argument.

The second dimension must match the first dimension of the tensors described in xDesc.
The third dimension must match the hiddenSize argument used to initialize rnnDesc. The
tensor must be fully packed.

Input. Data pointer to GPU memory associated with the tensor descriptor hxDesc. If a NULL
pointer is passed, the initial hidden state of the network will be initialized to zero.

cxDesc

Input. A fully packed tensor descriptor describing the initial cell state for LSTM networks.
The first dimension of the tensor depends on the direction argument used to initialize

rnnDesc:

NVIDIA cuDNN PR-09702-001_v8.3.0 | 298

cudnn_adv_infer.so Library

» Ifdirection is CUDNN UNIDIRECTIONAL the first dimension should match the
numLayers argument.

» Ifdirection is CUDNN BIDIRECTIONAL the first dimension should match double the
numLayers argument.

The second dimension must match the first dimension of the tensors described in xDesc.
The third dimension must match the hiddenSize argument used to initialize rnnDesc. The
tensor must be fully packed.

cXxX

Input. Data pointer to GPU memory associated with the tensor descriptor cxDesc. If a NULL
pointer is passed, the initial cell state of the network will be initialized to zero.

wDesc

Input. Handle to a previously initialized filter descriptor describing the weights for the RNN.

Input. Data pointer to GPU memory associated with the filter descriptor wbesc.
yDesc
Input. An array of fully packed tensor descriptors describing the output from each recurrent

iteration (one descriptor per iteration). The second dimension of the tensor depends on the
direction argument used to initialize rnnDesc:

» Ifdirection is CUDNN UNIDIRECTIONAL the second dimension should match the
hiddenSize argument.

» Ifdirection is CUDNN BIDIRECTIONAL the second dimension should match double the
hiddenSize argument.

The first dimension of the tensor n must match the first dimension of the tensor n in xDesc.

Output. Data pointer to GPU memory associated with the output tensor descriptor yDesc.
The data are expected to be packed contiguously with the first element of iteration n+1
following directly from the last element of iteration n.

hyDesc
Input. A fully packed tensor descriptor describing the final hidden state of the RNN. The

first dimension of the tensor depends on the direction argument used to initialize

rnnDesc:

» Ifdirection Is CUDNN UNIDIRECTIONAL the first dimension should match the
numLayers argument.

» If direction is CUDNN BIDIRECTIONAL the first dimension should match double the
numLayers argument.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 299

cudnn_adv_infer.so Library

The second dimension must match the first dimension of the tensors described in xDesc.
The third dimension must match the hiddenSize argument used to initialize rnnDesc. The
tensor must be fully packed.

hy

Output. Data pointer to GPU memory associated with the tensor descriptor hyDesc. If a
NULL pointer is passed, the final hidden state of the network will not be saved.

cyDesc

Input. A fully packed tensor descriptor describing the final cell state for LSTM networks.
The first dimension of the tensor depends on the direction argument used to initialize

rnnDesc:

>

If direction is CUDNN UNIDIRECTIONAL the first dimension should match the
numLayers argument.

If direction is CUDNN BIDIRECTIONAL the first dimension should match double the
numLayers argument.

The second dimension must match the first dimension of the tensors described in xDesc.
The third dimension must match the hiddenSize argument used to initialize rnnDesc. The
tensor must be fully packed.

cy

Output. Data pointer to GPU memory associated with the tensor descriptor cyDesc. If a
NULL pointer is passed, the final cell state of the network will not be saved.

findIntensity

Input.This input was previously unused in versions prior to 7.2.0. It is used in cuDNN 7.2.0
and later versions to control the overall runtime of the RNN find algorithms, by selecting
the percentage of a large Cartesian product space to be searched.

>

Setting findIntensity within the range (0,1.] will set a percentage of the entire RNN
search space to search. When findIntensity is setto 1.0, a full search is performed
over all RNN parameters.

When findIntensity is set to 0.0f, a quick, minimal search is performed. This setting
has the best runtime. However, in this case the parameters returned by this function
will not correspond to the best performance of the algorithm; a longer search might
discover better parameters. This option will execute up to three instances of the
configured RNN problem. Runtime will vary proportionally to RNN problem size, as it
will in the other cases, hence no guarantee of an explicit time bound can be given.

Setting findIntensity within the range [-1.,0) sets a percentage of a reduced
Cartesian product space to be searched. This reduced search space has been
heuristically selected to have good performance. The setting of -1.0 represents a full
search over this reduced search space.

Values outside the range [-1,1] are truncated to the range [-1,1], and then interpreted as
per the above.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 300

cudnn_adv_infer.so Library

Setting findIntensity to 1.0 in cuDNN 7.2 and later versions is equivalent to the
behavior of this function in versions prior to cuDNN 7.2.0.

This function times the single RNN executions over large parameter spaces - one
execution per parameter combination. The times returned by this function are latencies.

requestedAlgoCount

Input. The maximum number of elements to be stored in perfResults.

returnedAlgoCount

Output. The number of output elements stored in perfResults.

perfResults

Output. A user-allocated array to store performance metrics sorted ascending by compute
time.

workspace

Input. Data pointer to GPU memory to be used as a workspace for this call.

workSpaceSizelInBytes

Input. Specifies the size in bytes of the provided workspace.

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

The descriptor rnnDesc is invalid.

At least one of the descriptors hxDesc, cxDesc, wDesc, hyDesc, cyDesc or one of
the descriptors in xDesc, yDesc is invalid.

The descriptors in one of xDesc, hxDesc, cxDesc, wDesc, yDesc, hyDesc,
cyDesc have incorrect strides or dimensions.

workSpaceSizeInBytes is too small.
CUDNN_STATUS_EXECUTION_ FAILED

The function failed to launch on the GPU.
CUDNN_STATUS_ALLOC_FAILED

The function was unable to allocate memory.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 301

cudnn_adv_infer.so Library

7.2.14. cudnnGetAttnDescriptor ()

cudnnStatus t cudnnGetAttnDescriptor (
cudnnAttnDescriptor t attnDesc,
unsigned *attnMode,
int *nHeads,
double *smScaler,
cudnnDataType t *dataType,
cudnnDataType t *computePrec,
cudnnMathType t *mathType,
cudnnDropoutDescriptor t *attnDropoutDesc,
cudnnDropoutDescriptor t *postDropoutDesc,
int *gSize,
int *kSize,
int *vSize,
int *gProjSize,
int *kProjSize,
int *vProjSize,
int *oProjSize,
int *goMaxSeqglength,
int *kvMaxSeqglLength,
int *maxBatchSize,
int *maxBeamSize) ;
This function retrieves settings from the previously created attention descriptor. The user can

assign NULL to any pointer except attnDesc when the retrieved value is not needed.

Parameters

attnDesc

Input. Attention descriptor.
attnMode

Output. Pointer to the storage for binary attention flags.
nHeads

Output. Pointer to the storage for the number of attention heads.
smScaler

Output. Pointer to the storage for the softmax smoothing/sharpening coefficient.
dataType

Output. Data type for attention weights, sequence data inputs, and outputs.
computePrec

Output. Pointer to the storage for the compute precision.
mathType

Output. NVIDIA Tensor Core settings.
attnDropoutDesc

Output. Descriptor of the dropout operation applied to the softmax output.
postDropoutDesc

Output. Descriptor of the dropout operation applied to the multi-head attention output.
gSize, kSize, vSize

Output. Q, K, and V embedding vector lengths.
gProjSize, kProjSize, vProjSize

Output. Q, K, and V embedding vector lengths after input projections.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 302

cudnn_adv_infer.so Library

oProjSize
Output. Pointer to store the output vector length after projection.

goMaxSeqLength
Output. Largest sequence length expected in sequence data descriptors related to Q, O, dQ,
dO inputs and outputs.

kvMaxSeqLength
Output. Largest sequence length expected in sequence data descriptors related to K, V, dK,
dV inputs and outputs.

maxBatchSize
Output. Largest batch size expected in the cudnnSegDataDescriptor_t container.

maxBeamSize
Output. Largest beam size expected in the cudnnSegDataDescriptor_t container.

Returns

CUDNN_STATUS_SUCCESS

Requested attention descriptor fields were retrieved successfully.
CUDNN_STATUS_BAD PARAM

An invalid input argument was found.

7.2.15. cudnnGetMultiHeadAttnBuffers ()

cudnnStatus_t cudnnGetMultiHeadAttnBuffers (
cudnnHandle t handle,
const cudnnAttnDescriptor t attnDesc,
size t *weightSizelInBytes,
size t *workSpaceSizelInBytes,
size t *reserveSpaceSizeInBytes);
This function computes weight, work, and reserve space buffer sizes used by the following

functions:

» cudnnMultiHeadAttnForward()

» cudnnMultiHeadAttnBackwardData ()

» cudnnMultiHeadAttnBackwardWeights ()

Assigning NULL to the reserveSpaceSizeInBytes argument indicates that the user does not

plan to invoke multi-head attention gradient functions: cudnnMultiHeadAttnBackwardData()
and cudnnMultiHeadAttnBackwardWeights(]. This situation occurs in the inference mode.

Note: NULL cannot be assigned to weightSizeInBytes and workSpaceSizeInBytes pointers.

The user must allocate weight, work, and reserve space buffer sizes in the GPU memory using
cudaMalloc () with the reported buffer sizes. The buffers can be also carved out from a larger
chunk of allocated memory but the buffer addresses must be at least 16B aligned.

The work-space buffer is used for temporary storage. Its content can be discarded or
modified after all GPU kernels launched by the corresponding APl complete. The reserve-
space buffer is used to transfer intermediate results from cudnnMultiHeadAttnForward()

NVIDIA cuDNN PR-09702-001_v8.3.0 | 303

cudnn_adv_infer.so Library

to cudnnMultiHeadAttnBackwardData(], and from cudnnMultiHeadAttnBackwardDatal() to
cudnnMultiHeadAttnBackwardWeights(). The content of the reserve-space buffer cannot be
modified until all GPU kernels launched by the above three multi-head attention API functions
finish.

All multi-head attention weight and bias tensors are stored in a single weight buffer.

For speed optimizations, the cuDNN APl may change tensor layouts and their relative
locations in the weight buffer based on the provided attention parameters. Use the
cudnnGetMultiHeadAttnWeights() function to obtain the start address and the shape of each
weight or bias tensor.

Parameters

handle

Input. The current cuDNN context handle.

attnDesc

Input. Pointer to a previously initialized attention descriptor.

weightSizeInBytes
Output. Minimum buffer size required to store all multi-head attention trainable
parameters.

workSpaceSizeInBytes
Output. Minimum buffer size required to hold all temporary surfaces used by the forward
and gradient multi-head attention API calls.

reserveSpaceSizelInBytes
Output. Minimum buffer size required to store all intermediate data exchanged between

forward and backward (gradient] multi-head attention functions. Set this parameter to NULL
in the inference mode indicating that gradient API calls will not be invoked.

Returns

CUDNN_STATUS_SUCCESS

The requested buffer sizes were computed successfully.

CUDNN_STATUS_BAD_ PARAM

An invalid input argument was found.

7.2.16. cudnnGetMultiHeadAttnWeights ()

cudnnStatus t cudnnGetMultiHeadAttnWeights (
cudnnHandle t handle,
const cudnnAttnDescriptor t attnDesc,
cudnnMultiHeadAttnWeightKind t wKind,
size t weightSizeInBytes,
const void *weights,
cudnnTensorDescriptor t wDesc,
volid **wAddr) ;

NVIDIA cuDNN PR-09702-001_v8.3.0 | 304

cudnn_adv_infer.so Library

This function obtains the shape of the weight or bias tensor. It also retrieves the start address
of tensor data located in the weight buffer. Use the wkind argument to select a particular
tensor. For more information, see cudnnMultiHeadAttnWeightKind_t for the description of the
enumerant type.

Biases are used in the input and output projections when the
CUDNN ATTN ENABLE PROJ BIASES flagis set in the attention descriptor. See
cudnnSetAttnDescriptor(] for the description of flags to control projection biases.

When the corresponding weight or bias tensor does not exist, the function writes NULL to
the storage location pointed by wAddr and returns zeros in the wbesc tensor descriptor. The
return status of the cudnnGetMultiHeadAttnWeights(] function is CUDNN STATUS SUCCESS in
this case.

The cuDNN multiHeadAttention sample code demonstrates how to access multi-

head attention weights. Although the buffer with weights and biases should be

allocated in the GPU memory, the user can copy it to the host memory and invoke the
cudnnGetMultiHeadAttnWeights() function with the host weights address to obtain tensor
pointers in the host memory. This scheme allows the user to inspect trainable parameters
directly in the CPU memory.

Parameters
handle

Input. The current cuDNN context handle.

attnDesc

Input. A previously configured attention descriptor.

wKind

Input. Enumerant type to specify which weight or bias tensor should be retrieved.

weightSizeInBytes

Input. Buffer size that stores all multi-head attention weights and biases.

weights

Input. Pointer to the weight buffer in the host or device memory.

wDesc

Output. The descriptor specifying weight or bias tensor shape. For weights, the
wDesc.dimA[] array has three elements: [nHeads, projected size, original size].
For biases, the whesc.dimA[] array also has three elements: [nHeads, projected
size, 1].ThewDesc.strideA[] array describes how tensor elements are arranged in
memory.

wAddr

Output. Pointer to a location where the start address of the requested tensor should be
written. When the corresponding projection is disabled, the address written to wAddr is
NULL.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 305

cudnn_adv_infer.so Library

Returns
CUDNN_STATUS_SUCCESS

The weight tensor descriptor and the address of data in the device memory were
successfully retrieved.

CUDNN_STATUS_BAD_PARAM

An invalid or incompatible input argument was encountered. For example, wkind did not
have a valid value or weightSizeInBytes was too small.

7.2.17. cudnnGetRNNBackwardDataAlgorithmMaxCount ()
This function has been deprecated in cuDNN 8.0.

7.2.18. cudnnGetRNNBiasMode ()

This function has been deprecated in cuDNN 8.0. Use cudnnGetRNNDescriptor_v8(] instead of
cudnnGetRNNBiasMode ()

cudnnStatus t cudnnGetRNNBiasMode (
cudnnRNNDescriptor t rnnDesc,
cudnnRNNBiasMode t *biasMode)

This function retrieves the RNN bias mode that was configured by cudnnSetRNNBiasMode().
The default value of biasMode in rnnDesc after cudnnCreateRNNDescriptor(] is
CUDNN_RNN DOUBLE_ BIAS.

Parameters
rnnDesc

Input. A previously created RNN descriptor.

*biasMode

Output. Pointer to where RNN bias mode should be saved.
Returns
CUDNN_STATUS_BAD PARAM

Either the rnnDesc or *biasMode IS NULL.

CUDNN_STATUS_SUCCESS

The biasMode parameter was retrieved successfully.

7.2.19. cudnnGetRNNDataDescriptor ()

cudnnStatus_t cudnnGetRNNDataDescriptor (

cudnnRNNDataDescriptor t RNNDataDesc,
cudnnDataType t *dataType,
cudnnRNNDataLayout t *layout,

NVIDIA cuDNN PR-09702-001_v8.3.0 | 306

cudnn_adv_infer.so Library

int *maxSeqlLength,

int *batchSize,

int *vectorSize,

int arrayLengthRequested,
int seqlengthArrayl[],
void *paddingFill) ;

This function retrieves a previously created RNN data descriptor object.

RNNDataDesc

Input. A previously created and initialized RNN descriptor.
dataType

Output. Pointer to the host memory location to store the datatype of the RNN data tensor.
layout

Output. Pointer to the host memory location to store the memory layout of the RNN data
tensor.

maxSeqLength

Output. The maximum sequence length within this RNN data tensor, including the padding
vectors.

batchsize
Output. The number of sequences within the mini-batch.

vectorSize

Output. The vector length (meaning, embedding size) of the input or output tensor at each
time-step.

arrayLengthRequested
Input. The number of elements that the user requested for seqLengthArray.

seqlLengthArray

Output. Pointer to the host memory location to store the integer array describing the length
(meaning, number of time-steps) of each sequence. This is allowed to be a NULL pointer if
arrayLengthRequested is 0.

paddingFill

Output. Pointer to the host memory location to store the user defined symbol. The symbol
should be interpreted as the same data type as the RNN data tensor.

CUDNN_STATUS_SUCCESS

The parameters are fetched successfully.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 307

cudnn_adv_infer.so Library

CUDNN_STATUS_BAD PARAM
Any one of these have occurred:

> AnyofRNNDataDesc,dataType,layout,maxSeqLength,batchSize,vectorSize
paddingFill is NULL.
> seqgLengthArray Is NULL while arrayLengthRequested is greater than zero.

> arrayLengthRequested is less than zero.

7.2.20. cudnnGetRNNDescriptor v6 ()

This function has been deprecated in cuDNN 8.0. Use cudnnGetRNNDescriptor_v8(] instead of
cudnnGetRNNDescriptor v6 ().

cudnnStatus t cudnnGetRNNDescriptor ve6 (
cudnnHandle t handle,
cudnnRNNDescriptor t rnnDesc,

int *hiddenSize,

int *numLayers,

cudnnDropoutDescriptor t *dropoutDesc,

cudnnRNNInputMode t *inputMode,
cudnnDirectionMode t *direction,
cudnnRNNMode t *cellMode,
cudnnRNNAlgo t *algo,

cudnnDataType t *mathPrec) {

This function retrieves RNN network parameters that were configured by
cudnnSetRNNDescriptor_vé(]. All pointers passed to the function should be not-NULL or

CUDNN_STATUS BAD PARAM is reported. The function does not check the validity of retrieved
parameters.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor.

rnnDesc

Input. A previously created and initialized RNN descriptor.

hiddenSize

Output. Pointer to where the size of the hidden state should be stored (the same value is
used in every RNN layer).

numLayers

Output. Pointer to where the number of RNN layers should be stored.

dropoutDesc

Output. Pointer to where the handle to a previously configured dropout descriptor should be
stored.

inputMode

Output. Pointer to where the mode of the first RNN layer should be saved.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 308

cudnn_adv_infer.so Library

direction

Output. Pointer to where RNN uni-directional/bi-directional mode should be saved.

mode

Output. Pointer to where RNN cell type should be saved.
algo

Output. Pointer to where RNN algorithm type should be stored.

mathPrec

Output. Pointer to where the math precision type should be stored.

Returns
CUDNN_STATUS_SUCCESS

RNN parameters were successfully retrieved from the RNN descriptor.

CUDNN_STATUS_BAD PARAM

At least one pointer passed to the function is NULL.

7.2.21. cudnnGetRNNDescriptor v8()

cudnnStatus_t cudnnGetRNNDescriptor v8 (
cudnnRNNDescriptor t rnnDesc,
cudnnRNNAlgo t *algo,

cudnnRNNMode t *cellMode,
cudnnRNNBiasMode t *biasMode,
cudnnDirectionMode t *dirMode,
cudnnRNNInputMode t *inputMode,
cudnnDataType t *dataType,
cudnnDataType t *mathPrec,
cudnnMathType t *mathType,

int32 t *inputSize,

int32 t *hiddenSize,

int32 t *projSize,

int32 t *numlLayers,

cudnnDropoutDescriptor t *dropoutDesc,

uint32 t *auxFlags);

This function retrieves RNN network parameters that were configured by
cudnnSetRNNDescriptor v8(). The user can assign NULL to any pointer except rnnDesc

when the retrieved value is not needed. The function does not check the validity of retrieved
parameters.

Parameters
rnnDesc

Input. A previously created and initialized RNN descriptor.

algo

Output. Pointer to where RNN algorithm type should be stored.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 309

cudnn_adv_infer.so Library

cellMode
Output. Pointer to where RNN cell type should be saved.

biasMode

Output. Pointer to where RNN bias mode cudnnRNNBiasMode_t should be saved.

dirMode

Output. Pointer to where RNN uni-directional/bi-directional mode should be saved.
inputMode

Output. Pointer to where the mode of the first RNN layer should be saved.
dataType

Output. Pointer to where the data type of RNN weights/biases should be stored.
mathPrec

Output. Pointer to where the math precision type should be stored.
mathType

Output. Pointer to where the preferred option for Tensor Cores are saved.
inputSize

Output. Pointer to where the RNN input vector size is stored.

hiddenSize

Output. Pointer to where the size of the hidden state should be stored (the same value is
used in every RNN layer).

projSize

Output. Pointer to where the LSTM cell output size after the recurrent projection is stored.
numLayers

Output. Pointer to where the number of RNN layers should be stored.

dropoutDesc

Output. Pointer to where the handle to a previously configured dropout descriptor should be
stored.

auxFlags

Output. Pointer to miscellaneous RNN options (flags) that do not require passing additional
numerical values to configure.

CUDNN_STATUS_SUCCESS

RNN parameters were successfully retrieved from the RNN descriptor.

CUDNN_STATUS_BAD PARAM

An invalid input argument was found (rnnDesc was NULL).

NVIDIA cuDNN PR-09702-001_v8.3.0 | 310

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnRNNBiasMode_t

cudnn_adv_infer.so Library

CUDNN_STATUS_NOT_INITIALIZED

The RNN descriptor was configured with the legacy cudnnSetRNNDescriptor vé() call.

7.2.22. cudnnGetRNNForwardInferenceAlgorithmMaxCount
This function has been deprecated in cuDNN 8.0.

7.2.23. cudnnGetRNNForwardTrainingAlgorithmMaxCount (
This function has been deprecated in cuDNN 8.0.

7.2.24. cudnnGetRNNLinLayerBiasParams ()

This function has been deprecated in cuDNN 8.0. Use cudnnGetRNNWeightParams|() instead
OfcudnnGetRNNLinLayerBiasParams(L

cudnnStatus_t cudnnGetRNNLinLayerBiasParams (

cudnnHandle t handle,
const cudnnRNNDescriptor t rnnDesc,
const int pseudolayer,

const cudnnTensorDescriptor t xDesc,
const cudnnFilterDescriptor t wDesc,

const void *w,

const int linLayerID,
cudnnFilterDescriptor t linLayerBiasDesc,
void **1linlayerBias)

This function is used to obtain a pointer and a descriptor of every RNN bias column vector
in each pseudo-layer within the recurrent network defined by rnnDesc and its input width
specified in xDesc.

match the behavior of cudnnGetRNNLinLayerMatrixParamsl).

Note: The cudnnGetRNNLinLayerBiasParams() function was changed in cuDNN version 7.1.1 to

The cudnnGetRNNLinLayerBiasParamsl) function returns the RNN bias vector size in two
dimensions: rows and columns.

Due to historical reasons, the minimum number of dimensions in the filter descriptor is three.
In previous versions of the cuDNN library, the function returns the total number of vector
elements in linLayerBiasDesc as follows:

filterDimA[O]=total size,
filterDimA[1]=1,
filterDimA[2]=1

For more information, see the description of the cudnnGetFilterNdDescriptor() function.

In cuDNN 7.1.1, the format was changed to:

filterDimA[0]=1,

filterDimA[l]=rows,

filterDimA[2]=1 (number of columns)

In both cases, the format field of the filter descriptor should be ignored when retrieved by

cudnnGetFilterNdDescriptorl(].

The RNN implementation in cuDNN uses two bias vectors before the cell non-linear function.
Note that the RNN implementation in cuDNN depends on the number of bias vectors before
the cell non-linear function. Refer to the equations in the cudnnRNNMode_t description, for

NVIDIA cuDNN PR-09702-001_v8.3.0 | 311

cudnn_adv_infer.so Library

the enumerant type based on the value of cudnnRNNBiasMode t biasMode in rnnDesc. If
nonexistent biases are referenced by 1inLayerID, then this function sets 1inLayerBiasDesc
to a zeroed filter descriptor where:

filterDimA[0]=0,
filterDimA[1]=0, and
filterDimA[2]=2

and sets linLayerBias to NULL. Refer to the details for the function parameter 1inLayerID
to determine the relevant values of 1inLayerID based on biasMode.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor.
rnnDesc
Input. A previously initialized RNN descriptor.

pseudolayer

Input. The pseudo-layer to query. In uni-directional RNNs, a pseudo-layer is the same as a
physical layer [pseudoLayer=0 is the RNN input layer, pseudoLayer=1 is the first hidden
layer). In bi-directional RNNs, there are twice as many pseudo-layers in comparison to
physical layers.

> pseudoLayer=0 refers to the forward part of the physical input layer
> pseudoLayer=1 refers to the backward part of the physical input layer
> pseudoLayer=2 is the forward part of the first hidden layer, and so on

xDesc

Input. A fully packed tensor descriptor describing the input to one recurrent iteration (to
retrieve the RNN input width).

wDesc

Input. Handle to a previously initialized filter descriptor describing the weights for the RNN.

Input. Data pointer to GPU memory associated with the filter descriptor wbesc.

linLayerID
Input. Linear ID index of the weight matrix.
If cel1Mode in rnnDesc was set to CUDNN_RNN RELU Oor CUDNN_RNN_TANH:

> Value 0 references the weight matrix used in conjunction with the input from the
previous layer or input to the RNN model.

» Value 1 references the weight matrix used in conjunction with the hidden state from the
previous time step or the initial hidden state.

|fcellModeinrnnDesc\NaSSettOCUDNNiLSTM:

NVIDIA cuDNN PR-09702-001_v8.3.0 | 312

cudnn_adv_infer.so Library

» Values 0, 1, 2, and 3 reference weight matrices used in conjunction with the input from
the previous layer or input to the RNN model.

» Values 4, 5, 6, and 7 reference weight matrices used in conjunction with the hidden
state from the previous time step or the initial hidden state.

> Value 8 corresponds to the projection matrix, if enabled.
Values and their LSTM gates:

» linLayerIDO and 4 correspond to the input gate.
» linLayerID1 and 5 correspond to the forget gate.

» linLayerID2 and 6 correspond to the new cell state calculations with a hyperbolic
tangent.

» linLayerID3 and 7 correspond to the output gate.
If cel1Mode in rnnDesc was set to CUDNN GRU:

> Values 0, 1, and 2 reference weight matrices used in conjunction with the input from the
previous layer or input to the RNN model.

> Values 3, 4, and 5 reference weight matrices used in conjunction with the hidden state
from the previous time step or the initial hidden state.

Values and their GRU gates:

» linLayerIDO and 3 correspond to the reset gate.
» linLayerID1 and 4 references to the update gate.

» linLayerID2 and 5 correspond to the new hidden state calculations with a hyperbolic
tangent.

linLayerBiasDesc

Output. Handle to a previously created filter descriptor.

linLayerBias
Output. Data pointer to GPU memory associated with the filter descriptor
linLayerBiasDesc.

Returns

CUDNN_STATUS_SUCCESS

The query was successful.
CUDNN_STATUS_NOT SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

NVIDIA cuDNN PR-09702-001_v8.3.0 | 313

cudnn_adv_infer.so Library

» One of the following arguments is NULL: handle, rnnDesc, xDesc, wDesc,

linLayerBiasDesc, linLayerBias
> A data type mismatch was detected between rnnDesc and other descriptors.
» Minimum requirement for the w pointer alignment is not satisfied.

» The value of pseudoLayer or linLayerID is out of range.
CUDNN_STATUS_INVALID VALUE

Some elements of the 1inLayerBias vector are outside the w buffer boundaries as
specified by the wbesc descriptor.

7.2.25. cudnnGetRNNLinLayerMatrixParams ()

This function has been deprecated in cuDNN 8.0 . Use cudnnGetRNNWeightParams|(] instead
OfcudnnGetRNNLinLayerMatrixParams(L

cudnnStatus_t cudnnGetRNNLinLayerMatrixParams (

cudnnHandle t handle,
const cudnnRNNDescriptor t rnnDesc,
const int pseudolayer,

const cudnnTensorDescriptor t xDesc,
const cudnnFilterDescriptor t wDesc,

const wvoid *w,

const int linLayerID,
cudnnFilterDescriptor t linLayerMatDesc,
void **1linLayerMat)

This function is used to obtain a pointer and a descriptor of every RNN weight matrix in each
pseudo-layer within the recurrent network defined by rnnDesc and its input width specified in
xDesc.

S Note: The cudnnGetRNNLinLayerMatrixParams() function was enhanced in cuDNN version
7.1.1 without changing its prototype. Instead of reporting the total number of elements in each
weight matrix in the 1inLayerMatDesc filter descriptor, the function returns the matrix size
as two dimensions: rows and columns. Moreover, when a weight matrix does not exist, for
example, due to CUDNN_SKIP INPUT mode, the function returns NULL in linLayerMat and all
fields of 1inLayerMatDesc are zero.

The cudnnGetRNNLinLayerMatrixParams(] function returns the RNN matrix size in two
dimensions: rows and columns. This allows the user to easily print and initialize RNN
weight matrices. Elements in each weight matrix are arranged in the row-major order.

Due to historical reasons, the minimum number of dimensions in the filter descriptor is
three. In previous versions of the cuDNN Llibrary, the function returned the total number of
weights in linLayerMatDesc as follows: filterDimA[0]=total size, filterDimA[1]=1,
filterDimA[2]=1 (see the description of the cudnnGetFilterNdDescriptor() function).

In cuDNN 7.1.1, the format was changed to: filterDimA[0]=1, filterDimA[l]=rows,
filterDimA[2]=columns. In both cases, the “format” field of the filter descriptor should be
ignored when retrieved by cudnnGetFilterNdDescriptor().

NVIDIA cuDNN PR-09702-001_v8.3.0 | 314

cudnn_adv_infer.so Library

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor.

rnnDesc

Input. A previously initialized RNN descriptor.

pseudolayer
Input. The pseudo-layer to query. In uni-directional RNNs, a pseudo-layer is the same as a
physical layer ([pseudoLayer=0 is the RNN input layer, pseudoLayer=1 is the first hidden
layer]. In bi-directional RNNs, there are twice as many pseudo-layers in comparison to
physical layers.
> pseudoLayer=0 refers to the forward part of the physical input layer
> pseudolayer=1 refers to the backward part of the physical input layer

> pseudolLayer=2 is the forward part of the first hidden layer, and so on
xDesc

Input. A fully packed tensor descriptor describing the input to one recurrent iteration (to
retrieve the RNN input width).

wDesc

Input. Handle to a previously initialized filter descriptor describing the weights for the RNN.

Input. Data pointer to GPU memory associated with the filter descriptor wbesc.

linLayerID
Input. The linear layer to obtain information about:
» » |fmode in rnnDesc was set to CUDNN_RNN RELU or CUDNN_RNN TANH:

» Value O references the bias applied to the input from the previous layer
(relevant if biasMode in rnnDesc iS CUDNN_RNN SINGLE INP BIAS Or
CUDNN_RNN DOUBLE BIAS).

» Value 1 references the bias applied to the recurrent input (relevant if biasMode
in rnnDesc is CUDNN_RNN DOUBLE BTIAS Or CUDNN_RNN SINGLE REC BIAS).

» Ifmode In rnnDesc was set to CUDNN LSTM:

» Values of 0, 1, 2 and 3 reference bias applied to the input from the previous
layer (relevant if biasMode in rnnDesc iS CUDNN_RNN SINGLE INP BIAS Or
CUDNN_RNN_DOUBLE_BIAS).

> Values of 4,5, 6 and 7 reference bias applied to the recurrent input
(relevant if biasMode in rnnDesc is CUDNN_RNN_DOUBLE_BIAS Or
CUDNN_RNN_SINGLE REC BIAS).

NVIDIA cuDNN PR-09702-001_v8.3.0 | 315

cudnn_adv_infer.so Library

» Values and their associated gates:

Values 0 and 4 reference the input gate.

Values 1 and 5 reference the forget gate.

vV vV

Values 2 and 6 reference the new memory gate.
> Values 3 and 7 reference the output gate.
» If mode In rnnDesc was set to CUDNN_GRU:
» Values of 0, 1 and 2 reference bias applied to the input from the previous

layer (relevant if biasMode in rnnDesc iS CUDNN RNN SINGLE INP_BIAS Or
CUDNN_RNN_DOUBLE_BIAS).

> Values of 3, 4 and 5 reference bias applied to the recurrent input
(relevant if biasMode in rnnDesc is CUDNN_RNN DOUBLE BIAS Or
CUDNN RNN SINGLE REC BIAS).

» Values and their associated gates:

» Values 0 and 3 reference the reset gate.
» Values 1 and 4 reference the update gate.

» Values 2 and 5 reference the new memory gate.

For more information on modes and bias modes, see cudnnRNNMode t.

linLayerMatDesc

Output. Handle to a previously created filter descriptor. When the weight matrix does not
exist, the returned filer descriptor has all fields set to zero.

linLayerMat
Output. Data pointer to GPU memory associated with the filter descriptor
linLayerMatDesc. When the weight matrix does not exist, the returned pointer is NULL.
Returns

CUDNN_STATUS_SUCCESS

The query was successful.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS BAD PARAM

At least one of the following conditions are met:

» One of the following arguments is NULL: handle, rnnDesc, xDesc, wDesc,
linLayerMatDesc, linLayerMat.
> A data type mismatch was detected between rnnDesc and other descriptors.

» Minimum requirement for the w pointer alignment is not satisfied.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 316

cudnn_adv_infer.so Library

> ThevalueofpseudoLayer‘OrlinLayerIDiSOUtOfrange
CUDNN_STATUS_INVALID VALUE

Some elements of the 1inLayerMat vector are outside the w buffer boundaries as specified
by the wbesc descriptor.

7.2.26. cudnnGetRNNMatrixMathType ()

This function has been deprecated in cuDNN 8.0. Use cudnnGetRNNDescriptor_v8(] instead of
cudnnGetRNNMatrixMathType ().

cudnnStatus t cudnnGetRNNMatrixMathType (
cudnnRNNDescriptor t rnnDesc,
cudnnMathType t *mType);

This function retrieves the preferred settings for NVIDIA Tensor Cores on NVIDIA Volta™ (SM
7.0) or higher GPUs. See the cudnnMathType_t description for more details.

Parameters
rnnDesc

Input. A previously created and initialized RNN descriptor.
mType

Output. Address where the preferred Tensor Core settings should be stored.

Returns
CUDNN_STATUS_SUCCESS

The requested RNN descriptor field was retrieved successfully.

CUDNN_STATUS_BAD_PARAM

An invalid input argument was found (rnnDesc or mType was NULL).

7.2.27. cudnnGetRNNPaddingMode ()

This function has been deprecated in cuDNN 8.0. Use cudnnGetRNNDescriptor_v8() instead of
cudnnGetRNNPaddingMode ().

cudnnStatus_ t cudnnGetRNNPaddingMode (
cudnnRNNDescriptor t rnnDesc,
cudnnRNNPaddingMode t *paddingMode)

This function retrieves the RNN padding mode from the RNN descriptor.

Parameters
rnnDesc

Input/Output. A previously created RNN descriptor.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 317

cudnn_adv_infer.so Library

*paddingMode

Input. Pointer to the host memory where the RNN padding mode is saved.

Returns

CUDNN_STATUS_SUCCESS

The RNN padding mode parameter was retrieved successfully.

CUDNN_STATUS_BAD PARAM

Either the rnnDesc or *paddingMode is NULL.

7.2.28. cudnnGetRNNParamsSize ()

This function has been deprecated in cuDNN 8.0. Use cudnnGetRNNWeightSpaceSize(] instead
of cudnnGetRNNParamsSize ().

cudnnStatus_t cudnnGetRNNParamsSize (

cudnnHandle t handle,
const cudnnRNNDescriptor t rnnDesc,
const cudnnTensorDescriptor t xDesc,

size t *sizelInBytes,
cudnnDataType t dataType)

This function is used to query the amount of parameter space required to execute the RNN
described by rnnDesc with input dimensions defined by xDesc.

Parameters

S
handle

Input. Handle to a previously created cuDNN library descriptor.

rnnDesc

Input. A previously initialized RNN descriptor.

xDesc

Input. A fully packed tensor descriptor describing the input to one recurrent iteration.

sizeInBytes

Output. Minimum amount of GPU memory needed as parameter space to be able to execute
an RNN with the specified descriptor and input tensors.

dataType

Input. The data type of the parameters.

Returns

CUDNN_STATUS_SUCCESS

The query was successful.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 318

cudnn_adv_infer.so Library

CUDNN_STATUS BAD PARAM
At least one of the following conditions are met:

The descriptor rnnDesc is invalid.
The descriptor xDesc is invalid.

The descriptor xDesc is not fully packed.

vV v v VY

The combination of dataType and tensor descriptor data type is invalid.
CUDNN_STATUS_NOT SUPPORTED

The combination of the RNN descriptor and tensor descriptors is not supported.

7.2.29. cudnnGetRNNProjectionLayers ()

This function has been deprecated in cuDNN 8.0. Use cudnnGetRNNDescriptor_v8() instead of
cudnnGetRNNProjectionLayers ().

cudnnStatus_t cudnnGetRNNProjectionLayers (

cudnnHandle t handle,
cudnnRNNDescriptor t rnnDesc,

int *recProjSize,
int *outProjSize)

This function retrieves the current RNN projection parameters. By default, the projection
feature is disabled so invoking this function will yield recProjSize equal to hiddenSize and
outProjSize setto zero. The cudnnSetRNNProjectionLayers() method enables the RNN
projection.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor.

rnnDesc

Input. A previously created and initialized RNN descriptor.

recProjSize

Output. Pointer where the recurrent projection size should be stored.

outProjSize

Output. Pointer where the output projection size should be stored.

Returns
CUDNN_STATUS SUCCESS

RNN projection parameters were retrieved successfully.

CUDNN_STATUS_BAD_ PARAM

A NULL pointer was passed to the function.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 319

cudnn_adv_infer.so Library

7.2.30. cudnnGetRNNTempSpaceSizes ()

cudnnStatus t cudnnGetRNNTempSpaceSizes (
cudnnHandle t handle,
cudnnRNNDescriptor t rnnDesc,
cudnnForwardMode t fMode,
cudnnRNNDataDescriptor t xDesc,
size t *workSpaceSize,
size t *reserveSpaceSize);

This function computes the work and reserve space buffer sizes based on the RNN network
geometry stored in rnnbesc, designated usage (inference or training) defined by the fMode
argument, and the current RNN data dimensions [maxSeglLength, batchsize) retrieved from
xDesc. When RNN data dimensions change, the cudnnGetRNNTempSpaceSizes () must be
called again because RNN temporary buffer sizes are not monotonic.

The user can assign NULL to workSpaceSize Or reserveSpaceSize pointers when the
corresponding value is not needed.

Parameters
handle

Input. The current cuDNN context handle.

rnnDesc

Input. A previously initialized RNN descriptor.

fMode
Input. Specifies whether temporary buffers are used in inference or training
modes. The reserve-space buffer is not used during inference. Therefore, the
returned size of the reserve space buffer will be zero when the £Mode argument is
CUDNN_ FWD MODE INFERENCE.

xDesc

Input. A single RNN data descriptor that specifies current RNN data dimensions:
maxSeqLength and batchSize.

workSpaceSize

Output. Minimum amount of GPU memory in bytes needed as a workspace buffer. The
workspace buffer is not used to pass intermediate results between APls but as a temporary
read/write buffer.

reserveSpaceSize

Output. Minimum amount of GPU memory in bytes needed as the reserve-space buffer. The
reserve space buffer is used to pass intermediate results from cudnnRNNForward(] to RNN
BackwardData and BackwardWeights routines that compute first order derivatives with
respect to RNN inputs or trainable weight and biases.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 320

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnRNNForward

cudnn_adv_infer.so Library

Returns
CUDNN_STATUS SUCCESS

RNN temporary buffer sizes were computed successfully.
CUDNN_STATUS_BAD PARAM

An invalid input argument was detected.
CUDNN_STATUS_NOT SUPPORTED

An incompatible or unsupported combination of input arguments was detected.

7.2.31. cudnnGetRNNWeightParams ()

cudnnStatus_t cudnnGetRNNWeightParams (
cudnnHandle t handle,
cudnnRNNDescriptor t rnnDesc,
int32 t pseudolayer,
size t weightSpaceSize,
const void *weightSpace,
int32 t linlayerID,
cudnnTensorDescriptor t mDesc,
void **mAddr,
cudnnTensorDescriptor t bDesc,
void **bAddr) ;

This function is used to obtain the start address and shape of every RNN weight matrix and
bias vector in each pseudo-layer within the recurrent network.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor.

rnnDesc
Input. A previously initialized RNN descriptor.

pseudolayer

Input. The pseudo-layer to query. In uni-directional RNNs, a pseudo-layer is the same as a
physical layer ([pseudoLayer=0 is the RNN input layer, pseudoLayer=1 is the first hidden
layer]. In bi-directional RNNs, there are twice as many pseudo-layers in comparison to
physical layers:

» pseudoLayer=0 refers to the forward direction sub-layer of the physical input layer
> pseudolLayer=1 refers to the backward direction sub-layer of the physical input layer

> pseudolLayer=2 is the forward direction sub-layer of the first hidden layer, and so on
weightSpaceSize

Input. Size of the weight space buffer in bytes.
weightSpace

Input. Pointer to the weight space buffer.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 321

cudnn_adv_infer.so Library

linLayerID

Input. Weight matrix or bias vector linear ID index.

If cel1Mode in rnnDesc was set to CUDNN RNN RELU or CUDNN RNN TANH:

» Value 0 references the weight matrix or bias vector used in conjunction with the input
from the previous layer or input to the RNN model.

» Value 1 references the weight matrix or bias vector used in conjunction with the hidden
state from the previous time step or the initial hidden state.

If cel1Mode in rnnDesc was set to CUDNN LSTM:

> Values 0, 1, 2 and 3 reference weight matrices or bias vectors used in conjunction with
the input from the previous layer or input to the RNN model.

> Values 4, 5, 6 and 7 reference weight matrices or bias vectors used in conjunction with
the hidden state from the previous time step or the initial hidden state.

» Value 8 corresponds to the projection matrix, if enabled (there is no bias in this
operation).

Values and their LSTM gates:

» linLayerIDO and 4 correspond to the input gate.
» linLayerID1 and 5 correspond to the forget gate.

» linLayerID2 and 6 correspond to the new cell state calculations with hyperbolic
tangent.

» linLayerID3 and 7 correspond to the output gate.
If cel1Mode in rnnDesc was set to CUDNN GRU:

> Values 0, 1 and 2 reference weight matrices or bias vectors used in conjunction with the
input from the previous layer or input to the RNN model.

» Values 3, 4 and 5 reference weight matrices or bias vectors used in conjunction with the
hidden state from the previous time step or the initial hidden state.

Values and their GRU gates:

» linLayerIDO and 3 correspond to the reset gate.
» linLayerID1 and 4 reference to the update gate.
» linLayerID2 and 5 correspond to the new hidden state calculations with hyperbolic

tangent.

For more information on modes and bias modes, see cudnnRNNMode t.

mDesc

Output. Handle to a previously created tensor descriptor. The shape of the corresponding
weight matrix is returned in this descriptor in the following format: dima[3] = {1,
rows, cols}. The reported number of tensor dimensions is zero when the weight matrix

NVIDIA cuDNN PR-09702-001_v8.3.0 | 322

cudnn_adv_infer.so Library

does not exist. This situation occurs for input GEMM matrices of the first layer when
CUDNN_ SKIP INPUT is selected or for the LSTM projection matrix when the feature is
disabled.

mAddr

Output. Pointer to the beginning of the weight matrix within the weight space buffer. When
the weight matrix does not exist, the returned address is NULL.

bDesc
Output. Handle to a previously created tensor descriptor. The shape of the corresponding

bias vector is returned in this descriptor in the following format: dimA[3] = {1, rows,
1}. The reported number of tensor dimensions is zero when the bias vector does not exist.

bAddr
Output. Pointer to the beginning of the bias vector within the weight space buffer. When the
bias vector does not exist, the returned address is NULL.

Returns

CUDNN_STATUS_SUCCESS

The query was completed successfully.

CUDNN_STATUS_BAD_PARAM

An invalid input argument was encountered. For example, the value of pseudoLayer is out
of range or 1inLayerID is negative or larger than 8.

CUDNN_STATUS_INVALID VALUE

Some weight/bias elements are outside the weight space buffer boundaries.

CUDNN_STATUS_NOT_INITIALIZED

The RNN descriptor was configured with the legacy cudnnSetRNNDescriptor vé(] call.

7.2.32. cudnnGetRNNWeightSpaceSize ()
cudnnStatus t cudnnGetRNNWeightSpaceSize (

cudnnHandle t handle,

cudnnRNNDescriptor t rnnDesc,

size t *weightSpaceSize);

This function reports the required size of the weight space buffer in bytes. The weight space
buffer holds all RNN weight matrices and bias vectors.

Parameters
handle

Input. The current cuDNN context handle.

rnnDesc
Input. A previously initialized RNN descriptor.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 323

cudnn_adv_infer.so Library

weightSpaceSize

Output. Minimum size in bytes of GPU memory needed for all RNN trainable parameters.

Returns

CUDNN_STATUS_SUCCESS

The query was successful.

CUDNN_STATUS_BAD PARAM

Aninvalid input argument was encountered. For example, any input argument was NULL.
CUDNN_STATUS_NOT INITIALIZED

The RNN descriptor was configured with the legacy cudnnSetRNNDescriptor vé() call.

7.2.33. cudnnGetRNNWorkspaceSize ()

This function has been deprecated in cuDNN 8.0. Use cudnnGetRNNTempSpaceSizes() instead
of cudnnGetRNNWorkspaceSize ()

cudnnStatus_t cudnnGetRNNWorkspaceSize (

cudnnHandle t handle,
const cudnnRNNDescriptor t rnnDesc,
const int seglLength,
const cudnnTensorDescriptor t *xDesc,

size t *sizelInBytes)

This function is used to query the amount of work space required to execute the RNN
described by rnnDesc with input dimensions defined by xDesc.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor.

rnnDesc

Input. A previously initialized RNN descriptor.

seqlLength
Input. Number of iterations to unroll over. Workspace that is allocated, based on the size
that this function provides, cannot be used for sequences longer than seqLength.

xDesc
Input. An array of tensor descriptors describing the input to each recurrent iteration (one
descriptor per iteration). The first dimension (batch size) of the tensors may decrease from
element n to element n+1 but may not increase. For example, if you have multiple time
series in a batch, they can be different lengths. This dimension is the batch size for the

particular iteration of the sequence, and so it should decrease when a sequence in the
batch has been terminated.

Each tensor descriptor must have the same second dimension [vector length).

NVIDIA cuDNN PR-09702-001_v8.3.0 | 324

cudnn_adv_infer.so Library

sizeInBytes
Output. Minimum amount of GPU memory needed as workspace to be able to execute an
RNN with the specified descriptor and input tensors.

Returns

CUDNN_STATUS_SUCCESS

The query was successful.

CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:
The descriptor rnnDesc is invalid.
At least one of the descriptors in xDesc is invalid.

The descriptors in xDesc have inconsistent second dimensions, strides or data types.

The descriptors in xDesc have increasing first dimensions.

vV v v Vv VY

The descriptors in xDesc are not fully packed.
CUDNN_STATUS_NOT SUPPORTED

The data types in tensors described by xDesc are not supported.

7.2.34. cudnnGetSegDataDescriptor ()

cudnnStatus_ t cudnnGetSegDataDescriptor (
const cudnnSegDataDescriptor t segDataDesc,
cudnnDataType t *dataType,

int *nbDims,

int nbDimsRequested,

int dimA[],

cudnnSegDataAxis t axes|[],

size t *seqglengthArraySize,

size t seqgLengthSizeRequested,

int seglengthArrayl],

void *paddingFill) ;

This function retrieves settings from a previously created sequence data descriptor. The user
can assign NULL to any pointer except segDataDesc when the retrieved value is not needed.
The nbDimsRequested argument applies to both dima[] and axes[] arrays. A positive value

of nbDimsRequested or seqlengthSizeRequested is ignored when the corresponding array,
dimA[],axes[],OrseqLengthArray[]iSNULL.

The cudnnGetSegDataDescriptor() function does not report the actual strides in the sequence
data buffer. Those strides can be handy in computing the offset to any sequence data element.
The user must precompute strides based on the axes[] and dimA[] arrays reported by the
cudnnGetSegDataDescriptor() function. Below is sample code that performs this task:

// Array holding sequence data strides.

size t strA[CUDNN_ SEQDATA DIM COUNT] = {0};

// Compute strides from dimension and order arrays.
size t stride = 1;

for (int i = nbDims - 1; i >= 0; i--) {

int j = int(axes[i]);

NVIDIA cuDNN PR-09702-001_v8.3.0 | 325

cudnn_adv_infer.so Library

if (unsigned(j) < CUDNN_ SEQDATA DIM COUNT-1 &é& strA[j] == 0) {
strA[j] = stride;
stride *= dimA[j];
} else {
fprintf (stderr, "ERROR: invalid axes[%d]=%d\n\n", i, j);
abort () ;

}
}

Now, the straA[] array can be used to compute the index to any sequence data element, for

example:

// Using four indices (batch, beam, time, vect) with ranges already checked.
size t base = strA[CUDNN SEQDATA BATCH DIM] * batch

+ strA[CUDNN SEQDATA BEAM DIM] * beam

+ strA[CUDNN SEQDATA TIME DIM] * time;
val = segDataPtr[base + vect];

The above code assumes that all four indices (batch, beam, time, wvect)are less

than the corresponding value in the dima[] array. The sample code also omits the
StrA[CUDNN SEQDATA VECT DIM] stride because its value is always 1, meaning, elements of
one vector occupy a contiguous block of memory.

Parameters

seqgDataDesc
Input. Sequence data descriptor.
dataType
Output. Data type used in the sequence data buffer.
nbDims
Output. The number of active dimensions in the dimaA[] and axes[] arrays.
nbDimsRequested
Input. The maximum number of consecutive elements that can be written to dimaA[] and
axes[] arrays starting from index zero. The recommended value for this argument is
CUDNN_SEQDATA DIM COUNT.
dimA[]
Output. Integer array holding sequence data dimensions.
axes|[]
Output. Array of cudnnSegDataAxis_t that defines the layout of sequence data in memory.
seqlLengthArraySize
Output. The number of required elements in seqLengthArray[] to save all sequence
lengths.

seqLengthSizeRequested
Input. The maximum number of consecutive elements that can be written to the
seglLengthArray[] array starting from index zero.

seqLengthArray[]
Output. Integer array holding sequence lengths.

paddingFill
Output. Pointer to a storage location of dataType with the fill value that should be written to
all padding vectors. Use NULL when an explicit initialization of output padding vectors was
not requested.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 326

cudnn_adv_infer.so Library

Returns

CUDNN_STATUS_SUCCESS

Requested sequence data descriptor fields were retrieved successfully.
CUDNN_STATUS_BAD PARAM

An invalid input argument was found.
CUDNN_STATUS_INTERNAL ERROR

An inconsistent internal state was encountered.

7.2.35. cudnnMultiHeadAttnForward ()

cudnnStatus_t cudnnMultiHeadAttnForward (
cudnnHandle t handle,

const cudnnAttnDescriptor t attnDesc,
int currldx,

const int loWinIdx[],

const int hiWinIdx[],

const int devSeqlLengthsQO[],

const int devSeqlengthsKV[],

const cudnnSegDataDescriptor t gDesc,
const void *queries,

const void *residuals,

const cudnnSegDataDescriptor t kDesc,
const void *keys,

const cudnnSegDataDescriptor t vDesc,
const void *values,

const cudnnSegDataDescriptor t oDesc,

void *out,

size t weightSizeInBytes,

const void *weights,

size t workSpaceSizeInBytes,

void *workSpace,

size t reserveSpaceSizelnBytes,

void *reserveSpace) ;

The cudnnMultiHeadAttnForward () function computes the forward responses of the
multi-head attention layer. When reserveSpaceSizeInBytes=0 and reserveSpace=NULL,
the function operates in the inference mode in which backward (gradient) functions are

not invoked, otherwise, the training mode is assumed. In the training mode, the reserve
space is used to pass intermediate results from cudnnMultiHeadAttnForward () to
cudnnMultiHeadAttnBackwardData() and from cudnnMultiHeadAttnBackwardData(] to
cudnnMultiHeadAttnBackwardWeights().

In the inference mode, the currIdx specifies the time-step or sequence index of the
embedding vectors to be processed. In this mode, the user can perform one iteration for time-
step zero (currIdx=0], then update @, K, V vectors and the attention window, and execute the
next step (currIdx=1]). The iterative process can be repeated for all time-steps.

When all Q time-steps are available (for example, in the training mode or in the inference
mode on the encoder side in self-attention),the user can assign a negative value to currIdx
and the cudnnMultiHeadAttnForward () APl will automatically sweep through all Q time-
steps.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 327

cudnn_adv_infer.so Library

The 1oWwinIdx[] and hiWwinTdx[] host arrays specify the attention window size for each
Q time-step. In a typical self-attention case, the user must include all previously visited
embedding vectors but not the current or future vectors. In this situation, the user should set:

currIdx=0: loWinIdx[0]=0; hiWinIdx[0]=0; // initial time-step, no attention window
currIdx=1: loWinIdx[1]=0; hiWinIdx[1]=1; // attention window spans one vector
currldx=2: loWinIdx[2]=0; hiWinIdx[2]=2; // attention window spans two vectors

(...)

When currIdx is negative in cudnnMultiHeadAttnForward (), the lowinIdx[]

and hiwinIdx[] arrays must be fully initialized for all time-steps. When
cudnnMultiHeadAttnForward () is invoked with currIdx=0, currIdx=1, currIdx=2, etc.,
then the user can update lowinIdx [currIdx] and hiWinIdx[currIdx] elements only
before invoking the forward response function. All other elements in the lowinIdx[] and
hiWinIdx[] arrays will not be accessed. Any adaptive attention window scheme can be
implemented that way.

Use the following settings when the attention window should be the maximum size, for
example, in cross-attention:

currIdx=0: loWinIdx[0]=0; hiWinIdx[0]=maxSeqglenK;
currIdx=1: loWinIdx[1]=0; hiWinIdx[1l]=maxSegLenK;
currIdx=2: loWinIdx[2]=0; hiWinIdx[2]=maxSeqglLenkK;
(...)

The maxSeqgLenK value above should be equal to or larger than

dimA[CUDNN_SEQDATA TIME DIM] Iin the kDesc descriptor. A good choice is to use
maxSeqLenK=INT MAX from limits.h.

S Note: The actual length of any K sequence defined in seqLengthArray[] in
cudnnSetSeqgDataDescriptor() can be shorter than maxSeqLenk. The effective attention window
span is computed based on seqlengthArray[] stored in the K sequence descriptor and
indices held in 1owinIdx[] and hiWinIdx[] arrays.

devSeqLengthsQO[] and devSeqLengthsKV[] are pointers to device (not host) arrays

with @, 0, and K, V sequence lengths. Note that the same information is also passed

in the corresponding descriptors of type cudnnSegDataDescriptor_t on the host side.

The need for extra device arrays comes from the asynchronous nature of cuDNN calls

and limited size of the constant memory dedicated to GPU kernel arguments. When the
cudnnMultiHeadAttnForward () APl returns, the sequence length arrays stored in the
descriptors can be immediately modified for the next iteration. However, the GPU kernels
launched by the forward call may not have started at this point. For this reason, copies of
sequence arrays are needed on the device side to be accessed directly by GPU kernels. Those
copies cannot be created inside the cudnnMultiHeadAttnForward () function for very large
K, V inputs without the device memory allocation and CUDA stream synchronization.

To reduce the cudnnMultiHeadAttnForward () APl overhead, devSeqLengthsQO[]
and devSeqglLengthsKV[] device arrays are not validated to contain the same settings as
seglLengthArray[] in the sequence data descriptors.

Sequence lengths in the kDesc and vDesc descriptors should be the same. Similarly,
sequence lengths in the gbesc and oDesc descriptors should match. The user can define
six different data layouts in the gbesc, kDesc, vDesc and oDesc descriptors. See the
cudnnSetSeqgDataDescriptor() function for the discussion of those layouts. All multi-head
attention API calls require that the same layout is used in all sequence data descriptors.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 328

cudnn_adv_infer.so Library

In the transformer model, the multi-head attention block is tightly coupled with the layer
normalization and residual connections. cudnnMultiHeadAttnForward () does not
encompass the layer normalization but it can be used to handle residual connections as
depicted in the following figure.

queries (before LN)

. queries res=queries
Y
_______________ R
Layer :
Normalization
cuDNN Attention
queries (afterlN)) o attention <
. scope
g
cuDNN Attention E .% .
=
attention 2 u
e =
Scope g Layer

Normalization

S A e

Queries and residuals share the same gbesc descriptor in cudnnMultiHeadAttnForward ().
When residual connections are disabled, the residuals pointer should be NULL. When residual
connections are enabled, the vector length in gbesc should match the vector length specified
in the oDesc descriptor, so that a vector addition is feasible.

The queries, keys, and values pointers are not allowed to be NULL, even when Kand V are
the same inputs or Q, K, V are the same inputs.

Parameters
handle

Input. The current cuDNN context handle.

attnDesc

Input. A previously initialized attention descriptor.

currldx
Input. Time-step in queries to process. When the currIdx argument is negative, all Q time-
steps are processed. When currIdx is zero or positive, the forward response is computed
for the selected time-step only. The latter input can be used in inference mode only, to

process one time-step while updating the next attention window and @, R, K, V inputs in-
between calls.

loWinIdx[], hiWinIdx[]

Input. Two host integer arrays specifying the start and end indices of the attention window
for each Q time-step. The start index in K, V sets is inclusive, and the end index is exclusive.

devSeqLengthsQO[]

Input. Device array specifying sequence lengths of query, residual, and output sequence
data.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 329

cudnn_adv_infer.so Library

devSeqgLengthsKV[]

Input. Device array specifying sequence lengths of key and value input data.
gDesc

Input. Descriptor for the query and residual sequence data.
queries

Input. Pointer to queries data in the device memory.

residuals

Input. Pointer to residual data in device memory. Set this argument to NULL if no residual
connections are required.

kDesc
Input. Descriptor for the keys sequence data.
keys
Input. Pointer to keys data in device memory.
vDesc
Input. Descriptor for the values sequence data.
values
Input. Pointer to values data in device memory.
oDesc
Input. Descriptor for the multi-head attention output sequence data.
out
Output. Pointer to device memory where the output response should be written.

weightSizeInBytes

Input. Size of the weight buffer in bytes where all multi-head attention trainable parameters
are stored.

weights
Input. Pointer to the weight buffer in device memory.
workSpaceSizeInBytes

Input. Size of the work-space buffer in bytes used for temporary API storage.
workSpace
Input/Output. Pointer to the work-space buffer in device memory.

reserveSpaceSizeInBytes

Input. Size of the reserve-space buffer in bytes used for data exchange between forward
and backward (gradient) API calls. This parameter should be zero in the inference mode
and non-zero in the training mode.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 330

cudnn_adv_infer.so Library

reserveSpace

Input/Output. Pointer to the reserve-space buffer in device memory. This argument should
be NULL in inference mode and non-NULL in the training mode.

Returns
CUDNN_STATUS_SUCCESS

No errors were detected while processing APl input arguments and launching GPU kernels.
CUDNN_STATUS_BAD PARAM

An invalid or incompatible input argument was encountered. Some examples include:

> arequired input pointer was NULL
» currIdx was outof bound

> the descriptor value for attention, query, key, value, and output were incompatible
with one another

CUDNN_STATUS_EXECUTION_ FAILED

The process of launching a GPU kernel returned an error, or an earlier kernel did not
complete successfully.

CUDNN_STATUS_INTERNAL ERROR

An inconsistent internal state was encountered.

CUDNN_STATUS_NOT_SUPPORTED

A requested option or a combination of input arguments is not supported.
CUDNN_STATUS_ALLOC_FAILED

Insufficient amount of shared memory to launch a GPU kernel.

7.2.36. cudnnRNNForward ()

cudnnStatus_t cudnnRNNForward (
cudnnHandle t handle,
cudnnRNNDescriptor t rnnDesc,
cudnnForwardMode t fwdMode,
const int32 t devSeqgLengths([],
cudnnRNNDataDescriptor t xDesc,
const void *x,
cudnnRNNDataDescriptor t yDesc,
void *y,
cudnnTensorDescriptor t hDesc,
const void *hx,
void *hy,
cudnnTensorDescriptor t cDesc,
const void *cx,
void *cy,
size t weightSpaceSize,
const void *weightSpace,
size t workSpaceSize,
void *workSpace,
size t reserveSpaceSize,
void *reserveSpace) ;

NVIDIA cuDNN PR-09702-001_v8.3.0 | 331

cudnn_adv_infer.so Library

This routine computes the forward response of the recurrent neural network described by
rnnDesc With inputs in x, hx, cx, and weights/biases in the weightspace buffer. RNN outputs
are written to v, hy, and cy buffers. Locations of %, y, hx, cx, hy, and cy signals in the multi-
layer RNN model are shown in the Figure below. Note that internal RNN signals between
time-steps and between layers are not exposed to the user.

Figure 1. Locations of x, y, hx, cx, hy, and cy signals in the multi-layer
RNN model.

‘F’T "n’T H’T "r’T

hx, cx —m > S . —» hy, cy (lover=2)
hx, cx —m > S > —» hy, cy {layer=1)
1 I “ i
hx, cx —» — — — — hy, cy {laver=0)
time=0 time=1 time=2 time=3

The next Figure depicts data flow when the RNN model is bi-directional. In this mode each
RNN physical layer consists of two consecutive pseudo-layers, each with its own weights,
biases, the initial hidden state hx, and for LSTM, also the initial cell state cx. Even pseudo-
layers 0, 2, 4 process input vectors from left to right or in the forward (F) direction. Odd
pseudo-layers 1, 3, 5 process input vectors from right to left or in the reverse (R] direction.
Two successive pseudo-layers operate on the same input vectors, just in a different order.
Pseudo-layers 0 and 1 access the original sequences stored in the x buffer. Outputs of F

and R cells are concatenated so vectors fed to the next two pseudo-layers have lengths of 2x
hiddenSize or 2x projSize. Input GEMMs in subsequent pseudo-layers adjust vector lengths
to 1x hiddenSize.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 332

cudnn_adv_infer.so Library

Figure 2. Data flow when the RNN model is bi-directional.
[I] [I] [I] coreat
Y T 4 Y o 4 Y < 4
hy, cy « + | s |e + |« Ineedolave
¥, Cy F R F IR F R hx, cx (psedolayer=5)
hy,cx —» » = o . » hy, cy (psedolayer=4)
a iy ey <
[I] [I] [1] correat
< o4 T S
hy, cy < . |4 . | * —— hx, cx(psedolayer=3)
F R F R F R
hx, cx P - P (- P » hy, cy (psedolayer=2)
aiiy ailis ailiy
[I | [I | [1] concat
< 4 “F 4 < 4
hy, cy « * |« . |4 . |« hx, cx {psedolayer=1)
hx, cx — I'= R > I'= R > I'= R » hy, cy (psedolayer=0)
<r < iy
X — X — b A —
time=0 time=1 time=2

When the fwdMode parameter is set to CUDNN_FWD MODE TRAINING, the cudnnRNNForward ()
function stores intermediate data required to compute first order derivatives in the

reserve space buffer. Work and reserve space buffer sizes should be computed by the
cudnnGetRNNTempSpaceSizes(] function with the same fwdMode setting as used in the
cudnnRNNForward () call.

The same layout type must be specified in xDesc and yDesc descriptors. The same sequence
lengths must be configured in xDesc, yDesc and in the device array devSegLengths. The
cudnnRNNForward () function does not verify that sequence lengths stored in devSeqLengths
in GPU memory are the same as in xDesc and yDesc descriptors in CPU memory. Sequence
length arrays from xDesc and yDesc descriptors are checked for consistency, however.

Parameters
handle

Input. The current cuDNN context handle.
rnnDesc

Input. A previously initialized RNN descriptor.
fwdMode

Input. Specifies inference or training mode (CUDNN_ FWD MODE INFERENCE and
CUDNN_FWD_MODE_TRAINING]. In the training mode, additional data is stored in the reserve
space buffer. This information is used in the backward pass to compute derivatives.

devSeqLengths

Input. A copy of seqlLengthArray from xDesc or yDesc RNN data descriptor. The
devSegLengths array must be stored in GPU memory as it is accessed asynchronously by

NVIDIA cuDNN PR-09702-001_v8.3.0 | 333

cudnn_adv_infer.so Library

GPU kernels, possibly after the cudnnRNNForward () function exists. This argument cannot
be NULL.

xDesc

Input. A previously initialized descriptor corresponding to the RNN model primary input. The
dataType, layout, maxSeqgLength, batchSize, and segqLengthArray must match that of
yDesc. The parameter vectorSize must match the inputSize argument passed to the
cudnnSetRNNDescriptor_v8(] function.

Input. Data pointer to the GPU memory associated with the RNN data descriptor xDesc. The
vectors are expected to be arranged in memory according to the layout specified by xDesc.
The elements in the tensor (including padding vectors) must be densely packed.

yDesc

Input. A previously initialized RNN data descriptor. The dataType, layout, maxSegLength,
batchSize, and seqlLengthArray must match that of xDesc. The parameter vectorSize
depends on whether LSTM projection is enabled and whether the network is bidirectional.
Specifically:

» Forunidirectional models, the parameter vectorsize must match the hiddenSize
argument passed to cudnnSetRNNDescriptor_v8(). If the LSTM projection is
enabled, the vectorsize must be the same as the projSize argument passed to
cudnnSetRNNDescriptor v8(].

» For bidirectional models, if the RNN cellMode is CUDNN_LSTM and the projection
feature is enabled, the parameter vectorsize must be 2x the projSize argument
passed to cudnnSetRNNDescriptor_v8(]. Otherwise, it should be 2x the hiddensize
value.

Output. Data pointer to the GPU memory associated with the RNN data descriptor yDesc.
The vectors are expected to be laid out in memory according to the layout specified by
yDesc. The elements in the tensor (including elements in the padding vector) must be
densely packed, and no strides are supported.

hDesc
Input. A tensor descriptor describing the initial or final hidden state of RNN. Hidden state

data are fully packed. The first dimension of the tensor depends on the dirMode argument
passed to the cudnnSetRNNDescriptor_v8(] function.

» If dirMode IS CUDNN UNIDIRECTIONAL, then the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor_v8(].

» If dirMode Is CUDNN BIDIRECTIONAL, then the first dimension should be double the
numLayers argument passed to cudnnSetRNNDescriptor_v8().

NVIDIA cuDNN PR-09702-001_v8.3.0 | 334

cudnn_adv_infer.so Library

The second dimension must match the batchsize parameter described in xDesc. The
third dimension depends on whether RNN mode is CUDNN_LSTM and whether the LSTM
projection is enabled. Specifically:

» |f RNN mode is cUDNN LsTM and LSTM projection is enabled, the third dimension must
match the projsize argument passed to the cudnnSetRNNProjectionlLayers(] call.

» Otherwise, the third dimension must match the hiddensSize argument passed to the
cudnnSetRNNDescriptor v8() call used to initialize rnnDesc.

hx

Input. Pointer to the GPU buffer with the RNN initial hidden state. Data dimensions are
described by the hDesc tensor descriptor. If a NULL pointer is passed, the initial hidden
state of the network will be initialized to zero.

hy

Output. Pointer to the GPU buffer where the final RNN hidden state should be stored. Data
dimensions are described by the hDesc tensor descriptor. If a NULL pointer is passed, the
final hidden state of the network will not be saved.

cDesc
Input. For LSTM networks only. A tensor descriptor describing the initial or final cell state

for LSTM networks only. Cell state data are fully packed. The first dimension of the tensor
depends on the dirMode argument passed to the cudnnSetRNNDescriptor_v8(] call.

» If dirMode is CUDNN UNIDIRECTIONAL the first dimension should match the numLayers
argument passed to cudnnSetRNNDescriptor_v8().

» If dirMode is CUDNN_BIDIRECTIONAL the first dimension should match double the
numLayers argument passed to cudnnSetRNNDescriptor_v8(].

The second tensor dimension must match the batchsize parameter in xDesc.
The third dimension must match the hiddenSize argument passed to the
cudnnSetRNNDescriptor_v8() call.

CcX

Input. For LSTM networks only. Pointer to the GPU buffer with the initial LSTM state data.
Data dimensions are described by the cDesc tensor descriptor. If a NULL pointer is passed,
the initial cell state of the network will be initialized to zero.

cy

Output. For LSTM networks only. Pointer to the GPU buffer where final LSTM state data
should be stored. Data dimensions are described by the cbesc tensor descriptor. If a NULL
pointer is passed, the final LSTM cell state will not be saved.

weightSpaceSize

Input. Specifies the size in bytes of the provided weight-space buffer.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 335

cudnn_adv_infer.so Library

weightSpace

Input. Address of the weight space buffer in GPU memory.

workSpaceSize

Input. Specifies the size in bytes of the provided workspace buffer.

workSpace

Input/Output. Address of the workspace buffer in GPU memory to store temporary data.

reserveSpaceSize

Input. Specifies the size in bytes of the reserve-space buffer.

reserveSpace

Input/Output. Address of the reserve-space buffer in GPU memory.

CUDNN_STATUS_SUCCESS
No errors were detected while processing APl input arguments and launching GPU kernels.
CUDNN_STATUS_NOT SUPPORTED

At least one of the following conditions are met:

variable sequence length input is passed while CUDNN RNN ALGO PERSIST STATIC Or
CUDNN RNN ALGO PERSIST DYNAMIC is specified

CUDNN_RNN ALGO PERSIST STATIC Or CUDNN RNN ALGO PERSIST DYNAMIC is
requested on pre-Pascal devices

the "double’ floating point type is used for input/output and the
CUDNN_RNN ALGO PERSIST STATIC algo

CUDNN_STATUS BAD PARAM
An invalid or incompatible input argument was encountered. For example:

some input descriptors are NULL

at least one of the settings in rnnDesc, xDesc, yDesc, hDesc, or cDesc descriptors is
invalid

weightSpaceSize, workSpaceSize, Or reserveSpaceSize is too small

CUDNN_STATUS EXECUTION FATILED

The process of launching a GPU kernel returned an error, or an earlier kernel did not
complete successfully.

CUDNN_STATUS_ALLOC_FAILED

The function was unable to allocate CPU memory.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 336

cudnn_adv_infer.so Library

7.2.37. cudnnRNNForwardInference ()

This function has been deprecated in cuDNN 8.0. Use cudnnRNNForward(] instead of
cudnnRNNForwardInference ().

cudnnStatus t cudnnRNNForwardInference (

cudnnHandle t handle,
const cudnnRNNDescriptor t rnnDesc,
const int seqglength,
const cudnnTensorDescriptor t *xDesc,
const void *x,

const cudnnTensorDescriptor t hxDesc,
const void wlabid

const cudnnTensorDescriptor t cxDesc,
const void ®Ex,

const cudnnFilterDescriptor t wDesc,
const void *w,

const cudnnTensorDescriptor t *yDesc,
void Yy

const cudnnTensorDescriptor t hyDesc,
void w107,

const cudnnTensorDescriptor t cyDesc,
void glehvy

void *workspace,
size t workSpaceSizelInBytes)

This routine executes the recurrent neural network described by rnnDesc with

inputs x, hx, and cx, weights w and outputs y, hy, and cy. workspace Is required for
intermediate storage. This function does not store intermediate data required for training;
cudnnRNNForwardTrainingl] should be used for that purpose.

Parameters

handle

Input. Handle to a previously created cuDNN context.
rnnDesc

Input. A previously initialized RNN descriptor.
seqLength

Input. Number of iterations to unroll over. The value of this segqlength must not exceed the
value that was used in cudnnGetRNNWorkspaceSize() function for querying the workspace

size required to execute the RNN.

xDesc

Input. An array of seqLength fully packed tensor descriptors. Each descriptor in the array
should have three dimensions that describe the input data format to one recurrent iteration

(one descriptor per RNN time-step). The first dimension (batch size] of the tensors may
decrease from iteration n to iteration n+1 but may not increase. Each tensor descriptor
must have the same second dimension (RNN input vector length, inputsize). The third
dimension of each tensor should be 1. Input data are expected to be arranged in the

column-major order so strides in xDesc should be set as follows:
strideA[O]=inputSize, strideA[l]=1, strideA[2]=1

NVIDIA cuDNN PR-09702-001_v8.3.0 |

337

cudnn_adv_infer.so Library

Input. Data pointer to GPU memory associated with the array of tensor descriptors xDesc.
The input vectors are expected to be packed contiguously with the first vector of iteration

(time-step) n+1 following directly from the last vector of iteration n. In other words, input

vectors for all RNN time-steps should be packed in the contiguous block of GPU memory
with no gaps between the vectors.

hxDesc
Input. A fully packed tensor descriptor describing the initial hidden state of the RNN.

The first dimension of the tensor depends on the direction argument used to initialize

rnnDesc:

» If direction is CUDNN UNIDIRECTIONAL the first dimension should match the
numLayers argument.

» Ifdirection Is CUDNN BIDIRECTIONAL the first dimension should match double the
numLayers argument.

The second dimension must match the first dimension of the tensors described in xDesc.
The third dimension must match the hiddenSize argument used to initialize rnnDesc. The
tensor must be fully packed.

hx
Input. Data pointer to GPU memory associated with the tensor descriptor hxDesc. If a NULL
pointer is passed, the initial hidden state of the network will be initialized to zero.

cxDesc
Input. A fully packed tensor descriptor describing the initial cell state for LSTM networks.

The first dimension of the tensor depends on the direction argument used to initialize

rnnDesc:

» Ifdirection is CUDNN UNIDIRECTIONAL the first dimension should match the
numLayers argument.

» Ifdirection is CUDNN BIDIRECTIONAL the first dimension should match double the

numLayers argument.

The second dimension must match the first dimension of the tensors described in xDesc.
The third dimension must match the hiddenSize argument used to initialize rnnDesc. The
tensor must be fully packed.

CcX

Input. Data pointer to GPU memory associated with the tensor descriptor cxDesc. If a NULL
pointer is passed, the initial cell state of the network will be initialized to zero.

wDesc

Input. Handle to a previously initialized filter descriptor describing the weights for the RNN.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 338

cudnn_adv_infer.so Library

Input. Data pointer to GPU memory associated with the filter descriptor wbesc.
yDesc
Input. An array of fully packed tensor descriptors describing the output from each recurrent

iteration (one descriptor per iteration). The second dimension of the tensor depends on the
direction argument used to initialize rnnDesc:

» Ifdirection is CUDNN UNIDIRECTIONAL the second dimension should match the
hiddenSize argument.
» Ifdirection is CUDNN BIDIRECTIONAL the second dimension should match double the

hiddenSize argument.

The first dimension of the tensor n must match the first dimension of the tensor n in xDesc.

Output. Data pointer to GPU memory associated with the output tensor descriptor yDesc.
The data are expected to be packed contiguously with the first element of iteration n+1
following directly from the last element of iteration n.

hyDesc
Input. A fully packed tensor descriptor describing the final hidden state of the RNN. The

first dimension of the tensor depends on the direction argument used to initialize

rnnDesc:

» If direction is CUDNN UNIDIRECTIONAL the first dimension should match the
numLayers argument.

» Ifdirection is CUDNN BIDIRECTIONAL the first dimension should match double the

numLayers argument.

The second dimension must match the first dimension of the tensors described in xDesc.
The third dimension must match the hiddenSize argument used to initialize rnnDesc. The
tensor must be fully packed.

hy
Output. Data pointer to GPU memory associated with the tensor descriptor hyDesc. If a
NULL pointer is passed, the final hidden state of the network will not be saved.

cyDesc
Input. A fully packed tensor descriptor describing the final cell state for LSTM networks.

The first dimension of the tensor depends on the direction argument used to initialize

rnnDesc:

» Ifdirection is CUDNN UNIDIRECTIONAL the first dimension should match the
numLayers argument.

» Ifdirection is CUDNN BIDIRECTIONAL the first dimension should match double the
numLayers argument.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 339

cudnn_adv_infer.so Library

The second dimension must match the first dimension of the tensors described in xDesc.
The third dimension must match the hiddenSize argument used to initialize rnnDesc. The
tensor must be fully packed.

cy

Output. Data pointer to GPU memory associated with the tensor descriptor cyDesc. If a
NULL pointer is passed, the final cell state of the network will not be saved.

workspace

Input. Data pointer to GPU memory to be used as a workspace for this call.

workSpaceSizelInBytes

Input. Specifies the size in bytes of the provided workspace.

Returns

CUDNN_STATUS_ SUCCESS

The function launched successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS BAD PARAM

At least one of the following conditions are met:

» The descriptor rnnDesc is invalid.

> At least one of the descriptors hxDesc, cxDesc, wDesc, hyDesc, cyDesc or one of the
descriptors in xDesc, yDesc Is invalid.

» The descriptors in one of xDesc, hxDesc, cxDesc, wDesc, yDesc, hyDesc, cyDesc have
incorrect strides or dimensions.

> workSpaceSizeInBytes istoo small.
CUDNN_STATUS_INVALID_ VALUE

cudnnSetPersistentRNNPLlan(] was not called prior to the current function when
CUDNN RNN ALGO PERSIST DYNAMIC was selected in the RNN descriptor.

CUDNN_STATUS_EXECUTION_ FAILED

The function failed to launch on the GPU.
CUDNN_STATUS_ALLOC_FAILED

The function was unable to allocate memory.

7.2.38. cudnnRNNForwardInferenceEx ()

This function has been deprecated in cuDNN 8.0. Use cudnnRNNForward() instead of
cudnnRNNForwardInference ().

NVIDIA cuDNN PR-09702-001_v8.3.0 | 340

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnSetPersistentRNNPlan

cudnn_adv_infer.so Library

cudnnStatus_t cudnnRNNForwardInferenceEx (

cudnnHandle t handle,
const cudnnRNNDescriptor t rnnDesc,
const cudnnRNNDataDescriptor t xDesc,
const void X,

const cudnnTensorDescriptor t hxDesc,
const void *hx,
const cudnnTensorDescriptor t cxDesc,
const void Ny,
const cudnnFilterDescriptor t wDesc,
const wvoid *w,

const cudnnRNNDataDescriptor t yDesc,
void ¥,

const cudnnTensorDescriptor t hyDesc,
void *hy,
const cudnnTensorDescriptor t cyDesc,
void H@W,
const cudnnRNNDataDescriptor t kDesc,
const void *keys,
const cudnnRNNDataDescriptor t cDesc,
void *cAttn,
const cudnnRNNDataDescriptor t iDesc,
void *iAttn,
const cudnnRNNDataDescriptor t gDesc,
void *queries,
void *workSpace,
size t workSpaceSizeInBytes)

This routine is the extended version of the cudnnRNNForwardInference() function. The
cudnnRNNForwardTrainingEx () function allows the user to use an unpacked (padded)
layout for input x and output y. In the unpacked layout, each sequence in the mini-batch

is considered to be of fixed length, specified by maxSeqLength in its corresponding
RNNDataDescriptor. Each fixed-length sequence, for example, the nth sequence in the
mini-batch, is composed of a valid segment, specified by the seqlLengthArray[n] inits
corresponding RNNDataDescriptor, and a padding segment to make the combined sequence
length equal to maxSegLength.

With an unpacked layout, both sequence major (meaning, time major) and batch major are
supported. For backward compatibility, the packed sequence major layout is supported.
However, similar to the non-extended function cudnnRNNForwardInference(], the sequences
in the mini-batch need to be sorted in descending order according to length.

Parameters
handle

Input. Handle to a previously created cuDNN context.

rnnDesc

Input. A previously initialized RNN descriptor.

xDesc

Input. A previously initialized RNN Data descriptor. The dataType, layout, maxSegLength,
batchSize, and seqLengthArray need to match that of ybesc

Input. Data pointer to the GPU memory associated with the RNN data descriptor xDesc. The
vectors are expected to be laid out in memory according to the layout specified by xDesc.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 341

cudnn_adv_infer.so Library

The elements in the tensor (including elements in the padding vector) must be densely
packed, and no strides are supported.

hxDesc

Input. A fully packed tensor descriptor describing the initial hidden state of the RNN.
The first dimension of the tensor depends on the direction argument used to initialize

rnnDesc:

» Ifdirection is CUDNN UNIDIRECTIONAL the first dimension should match the
numLayers argument.

» Ifdirection is CUDNN BIDIRECTIONAL the first dimension should match double the
numLayers argument.

The second dimension must match the batchsize parameter described in xDesc. The third

dimension depends on whether RNN mode is CUDNN_LSTM and whether LSTM projection is
enabled. Specifically:

» If RNN mode is cUDNN LsTM and LSTM projection is enabled, the third dimension must

match the recProjsize argument passed to cudnnSetRNNProjectionLayers(] call used
to set rnnDesc.

» Otherwise, the third dimension must match the hiddensize argument used to initialize

rnnDesc.

hx

Input. Data pointer to GPU memory associated with the tensor descriptor hxDesc. If a NULL
pointer is passed, the initial hidden state of the network will be initialized to zero.

cxDesc

Input. A fully packed tensor descriptor describing the initial cell state for LSTM networks.
The first dimension of the tensor depends on the direction argument used to initialize
rnnDesc:

» If direction is CUDNN UNIDIRECTIONAL the first dimension should match the
numLayers argument.
» Ifdirection Is CUDNN BIDIRECTIONAL the first dimension should match double the

numLayers argument.

The second dimension must match the batchSize parameter in xDesc. The third
dimension must match the hiddenSize argument used to initialize rnnDesc.

CcX

Input. Data pointer to GPU memory associated with the tensor descriptor cxDesc. If a NULL
pointer is passed, the initial cell state of the network will be initialized to zero.

wDesc

Input. Handle to a previously initialized filter descriptor describing the weights for the RNN.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 342

cudnn_adv_infer.so Library

Input. Data pointer to GPU memory associated with the filter descriptor wbesc.

yDesc

Input. A previously initialized RNN data descriptor. The dataType, layout, maxSegLength ,
batchSize, and seqlLengthArray must match that of dyDesc and dxDesc. The parameter
vectorSize depends on whether RNN mode is CUDNN LSTM and whether LSTM projection
is enabled and whether the network is bidirectional. Specifically:

» Forunidirectional network, if the RNN mode is cubDNN LSTM and LSTM projection
is enabled, the parameter vectorSize must match the recProjsize argument
passed to cudnnSetRNNProjectionlayers() call used to set rnnbesc. If the network is
bidirectional, then multiply the value by 2.

» Otherwise, for a unidirectional network, the parameter vectorsize must match the
hiddenSize argument used to initialize rnnDesc. If the network is bidirectional, then
multiply the value by 2.

Output. Data pointer to the GPU memory associated with the RNN data descriptor yDesc.
The vectors are expected to be laid out in memory according to the layout specified by
yDesc. The elements in the tensor (including elements in the padding vector) must be
densely packed, and no strides are supported.

hyDesc

Input. A fully packed tensor descriptor describing the final hidden state of the RNN. The
descriptor must be set exactly the same way as hxDesc.

hy

Output. Data pointer to GPU memory associated with the tensor descriptor hybesc. If a
NULL pointer is passed, the final hidden state of the network will not be saved.

cyDesc

Input. A fully packed tensor descriptor describing the final cell state for LSTM networks.
The descriptor must be set exactly the same way as cxDesc.

cy

Output. Data pointer to GPU memory associated with the tensor descriptor cybesc. If a
NULL pointer is passed, the final cell state of the network will not be saved.

kDesc

Reserved. User may pass in NULL.
keys

Reserved. Users may pass in NULL.

cDesc

Reserved. Users may pass in NULL.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 343

cudnn_adv_infer.so Library

cAttn

Reserved. Users may pass in NULL.

iDesc

Reserved. Users may pass in NULL.

iAttn

Reserved. Users may pass in NULL.
qgDesc

Reserved. Users may pass in NULL.
queries

Reserved. Users may pass in NULL.

workspace

Input. Data pointer to GPU memory to be used as a workspace for this call.

workSpaceSizelInBytes

Input. Specifies the size in bytes of the provided workspace.

Returns
CUDNN_STATUS_SUCCESS

The function launched successfully.
CUDNN_STATUS_NOT SUPPORTED

At least one of the following conditions are met:
» Variable sequence length input is passed in while CUDNN RNN ALGO PERSIST STATIC
or CUDNN_RNN ALGO PERSIST DYNAMIC is used.

» CUDNN RNN ALGO PERSIST STATIC Or CUDNN RNN ALGO PERSIST DYNAMIC is used on
pre-Pascal devices.

» Double input/output is used for CUDNN_RNN ALGO PERSIST STATIC.
CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:

» The descriptor rnnDesc Is invalid.

> At least one of the descriptors in xDesc, yDesc, hxDesc, cxDesc, wDesc, hyDesc,
cyDesc is invalid, or has incorrect strides or dimensions.

> reserveSpaceSizeInBytes istoo small.

> workSpaceSizeInBytes istoo small.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 344

cudnn_adv_infer.so Library

CUDNN_STATUS_INVALID VALUE

cudnnSetPersistentRNNPlan() was not called prior to the current function when
CUDNN RNN ALGO PERSIST DYNAMIC was selected in the RNN descriptor.

CUDNN_STATUS_EXECUTION_ FAILED

The function failed to launch on the GPU.
CUDNN_STATUS_ALLOC_FAILED

The function was unable to allocate memory.

7.2.39. cudnnRNNGetClip ()

This function has been deprecated in cuDNN 8.0. Use cudnnRNNGetClip_v8() instead of
cudnnRNNGetClip ().

cudnnStatus t cudnnRNNGetClip (

cudnnHandle t handle,
cudnnRNNDescriptor t rnnDesc,
cudnnRNNClipMode t *clipMode,
cudnnNanPropagation t *clipNanOpt,
double #lelip,
double *rclip);

Retrieves the current LSTM cell clipping parameters, and stores them in the arguments
provided.

Parameters

*clipMode

Output. Pointer to the location where the retrieved clipMode is stored. The clipMode can
be CUDNN RNN CLIP NONE in which case no LSTM cell state clipping is being performed;
or CUDNN_RNN CLIP MINMAX, in which case the cell state activation to other units are being
clipped.

*1lclip, *rclip

Output. Pointers to the location where the retrieved LSTM cell clipping range [1clip,
rclip] is stored.

*clipNanOpt

Output. Pointer to the location where the retrieved c1ipNanoOpt is stored.

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_BAD_PARAM

If any of the pointer arguments provided are NULL.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 345

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnSetPersistentRNNPlan

cudnn_adv_infer.so Library

7.2.40. cudnnRNNGetClip v8 ()

cudnnStatus t cudnnRNNGetClip v8 (
cudnnRNNDescriptor t rnnDesc,
cudnnRNNClipMode t *clipMode,
cudnnNanPropagation t *clipNanOpt,
double *1lclip,
double *rclip);

Retrieves the current LSTM cell clipping parameters, and stores them in the arguments
provided. The user can assign NULL to any pointer except rnnDesc when the retrieved value is
not needed. The function does not check the validity of retrieved parameters.

Parameters
rnnDesc

Input. A previously initialized RNN descriptor.

clipMode
Output. Pointer to the location where the retrieved cudnnRNNClipMode_t value is stored.
The clipMode can be CUDNN RNN CLIP NONE in which case no LSTM cell state clipping is
being performed; or CUDNN RNN CLIP MINMAX, in which case the cell state activation to
other units are being clipped.

clipNanOpt

Output. Pointer to the location where the retrieved cudnnNanPropagation_t value is stored.

lclip, rclip
Output. Pointers to the location where the retrieved LSTM cell clipping range [1clip,
rclip] is stored.

Returns

CUDNN_STATUS_SUCCESS

LSTM clipping parameters were successfully retrieved from the RNN descriptor.

CUDNN_STATUS_BAD_ PARAM

An invalid input argument was found (rnnDesc was NULL).

7.2.41. cudnnRNNSetClip ()

This function has been deprecated in cuDNN 8.0. Use cudnnRNNSetClip_v8(] instead of
cudnnRNNSetClip ().

cudnnStatus t cudnnRNNSetClip (

cudnnHandle t handle,
cudnnRNNDescriptor t rnnDesc,
cudnnRNNClipMode t clipMode,
cudnnNanPropagation t clipNanOpt,
double lclip,
double rclip);

NVIDIA cuDNN PR-09702-001_v8.3.0 | 346

cudnn_adv_infer.so Library

Sets the LSTM cell clipping mode. The LSTM clipping is disabled by default. When enabled,
clipping is applied to all layers. This cudnnRNNSetClip () function may be called multiple
times.

Parameters
clipMode

Input. Enables or disables the LSTM cell clipping. When clipMode is set to
CUDNN RNN CLIP NONE no LSTM cell state clipping is performed. When clipMode is
CUDNN_RNN CLIP MINMAX the cell state activation to other units is clipped.

lclip, rclip
Input. The range [1clip, rclip] to which the LSTM cell clipping should be set.
clipNanOpt

Input. When set to CUDNN_PROPAGATE_NAN (see the description for
cudnnNanPropagation_tJ, NaN is propagated from the LSTM cell, or it can be set to one of
the clipping range boundary values, instead of propagating.

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_BAD_ PARAM

Returns this value if 1clip > rclip; orif either 1clip or rclip is NaN.

7.2.42. cudnnRNNSetClip v8 ()

cudnnStatus t cudnnRNNSetClip v8(
cudnnRNNDescriptor t rnnDesc,
cudnnRNNClipMode t clipMode,
cudnnNanPropagation t clipNanOpt,
double lclip,
double rclip);

Sets the LSTM cell clipping mode. The LSTM clipping is disabled by default. When enabled,
clipping is applied to all layers. This cudnnRNNSetClip() function does not affect the work,
reserve, and weight-space buffer sizes and may be called multiple times.

Parameters
rnnDesc

Input. A previously initialized RNN descriptor.

clipMode
Input. Enables or disables the LSTM cell clipping. When clipMode is set to
CUDNN_RNN CLIP NONE no LSTM cell state clipping is performed. When clipMode is
CUDNN_RNN CLIP MINMAX the cell state activation to other units is clipped.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 347

cudnn_adv_infer.so Library

clipNanOpt

Input. When set to CUDNN_PROPAGATE_NAN (see the description for
cudnnNanPropagation_t), NaN is propagated from the LSTM cell, or it can be set to one of
the clipping range boundary values, instead of propagating.

lclip, rclip

Input. The range [1clip, rclip] to which the LSTM cell clipping should be set.

Returns
CUDNN_STATUS_SUCCESS

The function completed successfully.

CUDNN_STATUS BAD PARAM
An invalid input argument was found, for example:

» rnnDesc was NULL
> lclip > rclip

> either 1clip or rclip is NaN
CUDNN_STATUS_BAD PARAM

The dimensions of the bias tensor refer to an amount of data that is incompatible with the
output tensor dimensions or the dataType of the two tensor descriptors are different.

CUDNN_STATUS_EXECUTION_ FAILED

The function failed to launch on the GPU.

7.2.43. cudnnSetAttnDescriptor ()

cudnnStatus t cudnnSetAttnDescriptor (
cudnnAttnDescriptor t attnDesc,
unsigned attnMode,

int nHeads,

double smScaler,

cudnnDataType t dataType,
cudnnDataType t computePrec,
cudnnMathType t mathType,
cudnnDropoutDescriptor t attnDropoutDesc,
cudnnDropoutDescriptor t postDropoutDesc,
int gSize,

int kSize,

int vSize,

int gProjSize,

int kProjSize,

int vProjSize,

int oProjSize,

int goMaxSeqlLength,

int kvMaxSeqgLength,

int maxBatchSize,

int maxBeamSize) ;

This function configures a multi-head attention descriptor that was previously created using
the cudnnCreateAttnDescriptor() function. The function sets attention parameters that are

NVIDIA cuDNN PR-09702-001_v8.3.0 | 348

cudnn_adv_infer.so Library

necessary to compute internal buffer sizes, dimensions of weight and bias tensors, or to select
optimized code paths.

Input sequence data descriptors in cudnnMultiHeadAttnForward(),
cudnnMultiHeadAttnBackwardData(] and cudnnMultiHeadAttnBackwardWeights(] functions
are checked against the configuration parameters stored in the attention descriptor.

Some parameters must match exactly while max arguments such as maxBatchSize or
goMaxSeqgLength establish upper limits for the corresponding dimensions.

The multi-head attention model can be described by the following equations:

h;= (WV,,'V)softmax(smScaler(KTW,T(,,-) (Woq)), fori =0..nHeads-1

nHeads-1
MultlH eadAttIl(q, K, V, WQ, WK’ WV’ WO) = E :WO'lhl
i=0

Where:

» nHeads is the number of independent attention heads that evaluate h; vectors.
» qisaprimary input, a single query column vector.

» K, Vare two matrices of key and value column vectors.

For simplicity, the above equations are presented using a single embedding vector q but the
APl can handle multiple q candidates in the beam search scheme, process q vectors from
multiple sequences bundled into a batch, or automatically iterate through all embedding
vectors (time-steps] of a sequence. Thus, in general, q, K, V inputs are tensors with additional
pieces of information such as the active length of each sequence or how unused padding
vectors should be saved.

In some publications, Wy; matrices are combined into one output projection matrix and h;
vectors are merged explicitly into a single vector. This is an equivalent notation. In the library,
W, matrices are conceptually treated the same way as Wq;, Wy; or Wy; input projection
weights. See the description of the cudnnGetMultiHeadAttnWeights() function for more details.

Weight matrices Wg,;, Wk;, Wy; and Wy, play similar roles, adjusting vector lengths in q, K, V
inputs and in the multi-head attention final output. The user can disable any or all projections
by setting qProjSize, kProjSize, vProjSize or oProjSize arguments to zero.

Embedding vector sizes in q, K, V and the vector lengths after projections need to be

selected in such a way that matrix multiplications described above are feasible. Otherwise,
CUDNN STATUS BAD PARAM is returned by the cudnnSetAttnDescriptor () function. All four
weight matrices are used when it is desirable to maintain rank deficiency of WKQ,:W,T(,,-WQ,- or
Wovy, = Wp,Wy; matrices to eliminate one or more dimensions during linear transformations in
each head. This is a form of feature extraction. In such cases, the projected sizes are smaller
than the original vector lengths.

For each attention head, weight matrix sizes are defined as follows:
» Wy, - size [gProjSize x qSize], i=0.nHeads-1
» Wyg; - size [kProjSize xkSize], i=0.nHeads- 1, kProjSize = qProjSize

» Wy, - size [vProjSizex vSize], i=0.nHeads-1

NVIDIA cuDNN PR-09702-001_v8.3.0 | 349

cudnn_adv_infer.so Library

» Wy, - size [oProjSize x (vProjSize > 0? vProjSize : vSize)], i=0.nHeads-1

When the output projection is disabled (oProjSize=0), the output vector length is

nHeads* (vProjSize > 0? vProjSize : vSize), meaning, the output is a concatenation of all h;
vectors. In the alternative interpretation, a concatenated matrix Wy=[Wyo Wp1, Woy, ...]
forms the identity matrix.

Softmax is a normalized, exponential vector function that takes and outputs vectors of the
same size. The multi-head attention API utilizes softmax of the CUDNN SOFTMAX ACCURATE
type to reduce the likelihood of the floating-point overflow.

The smScaler parameter is the softmax sharpening/smoothing coefficient. When
smScaler=1.0, softmax uses the natural exponential function exp (x) or 2.7183". When
smScaler<1.0, for example smScaler=0.2, the function used by the softmax block will not
grow as fast because exp (0.2"x) ~ 1.2214".

The smScaler parameter can be adjusted to process larger ranges of values fed to softmax.
When the range is too large (or smScaler is not sufficiently small for the given rangel, the
output vector of the softmax block becomes categorical, meaning, one vector element is close
to 1.0 and other outputs are zero or very close to zero. When this occurs, the Jacobian matrix
of the softmax block is also close to zero so deltas are not back-propagated during training
from output to input except through residual connections, if these connections are enabled.
The user can set smScaler to any positive floating-point value or even zero. The smScaler
parameter is not trainable.

The goMaxSegLength, kvMaxSeqlLength, maxBatchSize, and maxBeamSize arguments
declare the maximum sequence lengths, maximum batch size, and maximum beam size
respectively, in the cudnnSegDataDescriptor_t containers. The actual dimensions supplied
to forward and backward (gradient) API functions should not exceed the max limits. The max
arguments should be set carefully because too large values will result in excessive memory
usage due to oversized work and reserve space buffers.

The attnMode argument is treated as a binary mask where various on/off options are set.
These options can affect the internal buffer sizes, enforce certain argument checks, select
optimized code execution paths, or enable attention variants that do not require additional
numerical arguments. An example of such options is the inclusion of biases in input and
output projections.

The attnDropoutDesc and postDropoutDesc arguments are descriptors that define

two dropout layers active in the training mode. The first dropout operation defined by
attnDropoutDesc, is applied directly to the softmax output. The second dropout operation,
specified by postDropoutbesc, alters the multi-head attention output, just before the point
where residual connections are added.

S| Note: The cudnnSetAttnDescriptor () function performs a shallow copy of attnDropoutDesc
and postDropoutDesc, meaning, the addresses of both dropout descriptors are stored in the
attention descriptor and not the entire structure. Therefore, the user should keep dropout
descriptors during the entire life of the attention descriptor.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 350

cudnn_adv_infer.so Library

attnDesc

Output. Attention descriptor to be configured.

attnMode

Input. Enables various attention options that do not require additional numerical values.
See the table below for the list of supported flags. The user should assign a preferred set of
bitwise OrR-ed flags to this argument.

nHeads

Input. Number of attention heads.

smScaler

Input. Softmax smoothing (1.0 >= smScaler >= 0.0]or sharpening [smScaler > 1.0]
coefficient. Negative values are not accepted.

dataType

Input. Data type used to represent attention inputs, attention weights and attention outputs.
computePrec

Input. Compute precision.
mathType

Input. NVIDIA Tensor Core settings.

attnDropoutDesc

Input. Descriptor of the dropout operation applied to the softmax output. See the table
below for a list of unsupported features.

postDropoutDesc

Input. Descriptor of the dropout operation applied to the multi-head attention output, just
before the point where residual connections are added. See the table below for a list of
unsupported features.

gSize, kSize, vSize
Input. Q, K, V. embedding vector lengths.
gProjSize, kProjSize, vProjSize

Input. Q, K, V.embedding vector lengths after input projections. Use zero to disable the
corresponding projection.

oProjSize
Input. The h; vector length after the output projection. Use zero to disable this projection.
goMaxSeqLength

Input. Largest sequence length expected in sequence data descriptors related to Q, 0, dQ
and dO inputs and outputs.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 351

cudnn_adv_infer.so Library

kvMaxSeqLength

Input. Largest sequence length expected in sequence data descriptors related to K, V, dK
and dV inputs and outputs.

maxBatchSize

Input. Largest batch size expected in any cudnnSegDataDescriptor_t container.

maxBeamSize

Input. Largest beam size expected in any cudnnSegDataDescriptor_t container.

CUDNN_ATTN_QUERYMAP ALL TO_ONE

Forward declaration of mapping between Q and K, V vectors when the beam size is greater
than one in the Q input. Multiple Q vectors from the same beam bundle map to the same
K, V vectors. This means that beam sizes in the K, V sets are equal to one.

CUDNN_ATTN QUERYMAP ONE_TO ONE
Forward declaration of mapping between Q and K, V vectors when the beam size is greater

than one in the Q input. Multiple Q vectors from the same beam bundle map to different
K, V vectors. This requires beam sizes in K, V sets to be the same as in the Q input.

CUDNN_ATTN_DISABLE_PROJ_BIASES

Use no biases in the attention input and output projections.

CUDNN_ATTN_ENABLE PROJ_BIASES

Use extra biases in the attention input and output projections. In this case the projected K
vectors are computed as K; =Wy K+b*[1, 1, ...,1]1xn, where nis the number of columns in

the K matrix. In other words, the same column vector b is added to all columns of K after
the weight matrix multiplication.

Table 42. Supported combinations
dataType computePrec mathType
CUDNN_DATA DOUBLE CUDNN_DATA DOUBLE CUDNN_DEFAULT MATH
CUDNN_DATA FLOAT CUDNN_DATA FLOAT CUDNN DEFAULT MATH,
CUDNN_ TENSOR OP MATH ALLOW CONVERSION
CUDNN_DATA HALF CUDNN_DATA HALF CUDNN DEFAULT MATH,

CUDNN_TENSOR OP_MATH,
CUDNN_TENSOR OP MATH ALLOW CONVERSION

NVIDIA cuDNN PR-09702-001_v8.3.0 | 352

cudnn_adv_infer.so Library

Unsupported features

1. The dropout option is currently not supported by the multi-head attention API. Assign NULL
to attnDropoutDesc and postDropoutDesc arguments when configuring the attention
descriptor.

2. The CUDNN ATTN ENABLE PROJ BIASES option is not supported in the multi-head
attention gradient functions.

3. The paddingFill argument in cudnnSegDataDescriptor tis currently ignored by all
multi-head attention functions.

Returns
CUDNN_STATUS_SUCCESS

The attention descriptor was configured successfully.

CUDNN_STATUS_BAD PARAM
An invalid input argument was encountered. Some examples include:
> post projection Q and K sizes were not equal

> dataType, computePrec, or mathType were invalid

> one or more of the following arguments were either negative or zero: nHeads, gSize,

kSize, vSize, goMaxSeqglength, kvMaxSegLength, maxBatchSize, maxBeamSize

> one or more of the following arguments were negative: gprojSize, kProjSize,

vProjSize, smScaler
CUDNN_STATUS_NOT_SUPPORTED

A requested option or a combination of input arguments is not supported.

7.2.44. cudnnSetPersistentRNNPlan ()

This function has been deprecated in cuDNN 8.0.

cudnnStatus t cudnnSetPersistentRNNPlan (
cudnnRNNDescriptor t rnnDesc,
cudnnPersistentRNNPlan t plan)

This function sets the persistent RNN plan to be executed when using rnnDesc and
CUDNN_RNN ALGO PERSIST DYNAMIC algo.

Returns
CUDNN_STATUS SUCCESS

The plan was set successfully.

CUDNN_STATUS_BAD_ PARAM

The algo selected in rnnDesc is Not CUDNN_RNN ALGO PERSIST DYNAMIC.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 353

cudnn_adv_infer.so Library

7.2.45. cudnnSetRNNAlgorithmDescriptor ()
This function has been deprecated in cuDNN 8.0.

7.2.46. cudnnSetRNNBiasMode ()

This function has been deprecated in cuDNN 8.0. Use cudnnSetRNNDescriptor_v8(] instead of
cudnnSetRNNBiasMode ().

cudnnStatus t cudnnSetRNNBiasMode (
cudnnRNNDescriptor t rnnDesc,
cudnnRNNBiasMode t biasMode)

The cudnnSetRNNBiasMode () function sets the number of bias vectors for a previously
created and initialized RNN descriptor. This function should be called to enable

the specified bias mode in an RNN. The default value of biasMode in rnnDesc after
cudnnCreateRNNDescriptor(] is CUDNN_RNN DOUBLE_BIAS.

Parameters
rnnDesc

Input/Output. A previously created RNN descriptor.

biasMode

Input. Sets the number of bias vectors. For more information, see cudnnRNNBiasMode _t.

Returns
CUDNN_STATUS BAD PARAM

Either the rnnDesc is NULL or biasMode has an invalid enumerant value.

CUDNN_STATUS_SUCCESS

The biasMode was set successfully.

CUDNN_STATUS_NOT_SUPPORTED

Non-default bias mode (an enumerated type besides CUDNN RNN DOUBLE BIAS) applied to
an RNN algo other than CUDNN_ RNN ALGO STANDARD.

7.2.47. cudnnSetRNNDataDescriptor ()

cudnnStatus t cudnnSetRNNDataDescriptor (

cudnnRNNDataDescriptor t RNNDataDesc,
cudnnDataType t dataType,
cudnnRNNDatalLayout t layout,

int maxSeqglength,

int batchSize,

int vectorSize,

const int seglengthArray|[],
void *paddingFill) ;

NVIDIA cuDNN PR-09702-001_v8.3.0 | 354

cudnn_adv_infer.so Library

This function initializes a previously created RNN data descriptor object. This data structure
is intended to support the unpacked (padded) layout for input and output of extended RNN
inference and training functions. A packed (unpadded) layout is also supported for backward
compatibility.

Parameters
RNNDataDesc

Input/Output. A previously created RNN descriptor. For more information, see
cudnnRNNDataDescriptor_t.

dataType

Input. The datatype of the RNN data tensor. For more information, see cudnnDataType_t.

layout

Input. The memory layout of the RNN data tensor.
maxSeqLength
Input. The maximum sequence length within this RNN data tensor. In the unpacked

(padded) layout, this should include the padding vectors in each sequence. In the packed
(unpadded] layout, this should be equal to the greatest element in seqLengthArray.

batchSize

Input. The number of sequences within the mini-batch.

vectorSize

Input. The vector length (embedding size) of the input or output tensor at each time-step.
seqlLengthArray

Input. An integer array with batchsize number of elements. Describes the length (number

of time-steps) of each sequence. Each element in seqLengthArray must be greater than

or equal to 0 but less than or equal to maxSeqLength. In the packed layout, the elements

should be sorted in descending order, similar to the layout required by the non-extended
RNN compute functions.

paddingFill
Input. A user-defined symbol for filling the padding position in RNN output. This is only
effective when the descriptor is describing the RNN output, and the unpacked layout is
specified. The symbol should be in the host memory, and is interpreted as the same data
type as that of the RNN data tensor. If a NULL pointer is passed in, then the padding position
in the output will be undefined.

Returns

CUDNN_STATUS_SUCCESS

The object was set successfully.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 355

cudnn_adv_infer.so Library

CUDNN_STATUS_NOT SUPPORTED

dataType is not one of CUDNN_DATA HALF, CUDNN_ DATA FLOAT Or CUDNN DATA DOUBLE.
CUDNN_STATUS_BAD PARAM

Any one of these have occurred:
RNNDataDesc IS NULL.

Any one of maxSegLength, batchSize or vectorSize Is less than or equal to zero.

>
>
> Anelement of seqLengthArray Is less than zero or greater than maxSegLength.
» Layout is not one of CUDNN_RNN DATA LAYOUT SEQ MAJOR UNPACKED,
CUDNN_RNN DATA LAYOUT SEQ MAJOR PACKED Or

CUDNN RNN DATA LAYOUT BATCH MAJOR UNPACKED

CUDNN_STATUS ALLOC FAILED
The allocation of internal array storage has failed.

7.2.48. cudnnSetRNNDescriptor v6 ()

This function has been deprecated in cuDNN 8.0. Use cudnnSetRNNDescriptor_v8() instead of
cudnnSetRNNDescriptor v6 ().

cudnnStatus t cudnnSetRNNDescriptor vé6 (

cudnnHandlg_t handle,
cudnnRNNDescriptor t rnnDesc,
const int hiddenSize,
const int numLayers,
cudnnDropoutDescriptor t dropoutDesc,
cudnnRNNInputMode t inputMode,
cudnnDirectionMode t direction,
cudnnRNNMode t mode,
cudnnRNNAlgo t algo,
cudnnDataType t mathPrec)

This function initializes a previously created RNN descriptor object.

Note: Larger networks, for example, longer sequences or more layers, are expected to be
more efficient than smaller networks.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor.

rnnDesc

Input/Output. A previously created RNN descriptor.
hiddenSize

Input. Size of the internal hidden state for each layer.

numLayers

Input. Number of stacked layers.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 356

cudnn_adv_infer.so Library

dropoutDesc
Input. Handle to a previously created and initialized dropout descriptor. Dropout will be
applied between layers, for example, a single layer network will have no dropout applied.

inputMode

Input. Specifies the behavior at the input to the first layer

direction

Input. Specifies the recurrence pattern, for example, bidirectional.

mode

Input. Specifies the type of RNN to compute.
algo
Input. Specifies which RNN algorithm should be used to compute the results.

mathPrec

Input. Math precision. This parameter is used for controlling the math precision in RNN.
The following applies:

» For the input/output in FP16, the parameter mathPrec can be CUDNN_DATA HALF or
CUDNN DATA FLOAT.

» For the input/output in FP32, the parameter mathPrec can only be CUDNN_ DATA FLOAT.

» For the input/output in FP64, double type, the parameter mathPrec can only be
CUDNN DATA DOUBLE.

Returns
CUDNN_STATUS_SUCCESS

The object was set successfully.

CUDNN_STATUS_BAD_PARAM

Either at least one of the parameters hiddenSize or numLayers was zero or negative,
one of inputMode, direction, mode, algo or dataType has an invalid enumerant value,
dropoutDesc is an invalid dropout descriptor or rnnDesc has not been created correctly.

7.2.49. cudnnSetRNNDescriptor v8()

cudnnStatus t cudnnSetRNNDescriptor v8 (
cudnnRNNDescriptor t rnnDesc,
cudnnRNNAlgo t algo,
cudnnRNNMode t cellMode,
cudnnRNNBiasMode t biasMode,
cudnnDirectionMode t dirMode,
cudnnRNNInputMode t inputMode,
cudnnDataType t dataType,
cudnnDataType t mathPrec,
cudnnMathType t mathType,
int32 t inputSize,
int32 t hiddenSize,
int32 t projSize,

NVIDIA cuDNN PR-09702-001_v8.3.0 | 357

cudnn_adv_infer.so Library

int32 t numlayers,
cudnnDropoutDescriptor t dropoutDesc,
uint32 t auxFlags);

This function initializes a previously created RNN descriptor object. The RNN descriptor
configured by cudnnSetRNNDescriptor v8 () was enhanced to store all information needed
to compute the total number of adjustable weights/biases in the RNN model.

Parameters
rnnDesc

Input. A previously initialized RNN descriptor.

algo
Input. RNN algo (CUDNN_RNN_ ALGO STANDARD, CUDNN_RNN ALGO PERSIST STATIC, Or
CUDNN_RNN ALGO PERSIST DYNAMIC]).

cellMode

Input. Specifies the RNN cell type in the entire model (RELU, TANH, LSTM, GRU).

biasMode

Input. Sets the number of bias vectors (CUDNN RNN NO BIAS,

CUDNN RNN SINGLE INP BIAS, CUDNN RNN SINGLE REC BIAS,
CUDNN_ RNN DOUBLE BIAS). The two single bias settings are functionally the same for RELT,
TANH and LsSTM cell types. For differences in GRU cells, see the description of CUDNN_GRU in
the cudnnRNNMode t enumerated type.

dirMode

Input. Specifies the recurrence pattern: CUDNN_ UNIDIRECTIONAL Or
CUDNN_ BIDIRECTIONAL. In bidirectional RNNs, the hidden states passed between physical
layers are concatenations of forward and backward hidden states.

inputMode
Input. Specifies how the input to the RNN model is processed by the first layer. When
inputMode IS CUDNN LINEAR INPUT, original input vectors of size inputSize are
multiplied by the weight matrix to obtain vectors of hiddenSize. When inputMode is

CUDNN_SKIP_ INPUT, the original input vectors to the first layer are used as is without
multiplying them by the weight matrix.

dataType
Input. Specifies data type for RNN weights/biases and input and output data.

mathPrec

Input. This parameter is used to control the compute math precision in the RNN model. The
following applies:

» For the input/output in FP16, the parameter mathPrec can be CUDNN_DATA HALF or
CUDNN_DATA FLOAT.

» For the input/output in FP32, the parameter mathPrec can only be CUDNN DATA FLOAT.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 358

cudnn_adv_infer.so Library

» For the input/output in FP64, double type, the parameter mathPrec can only be
CUDNN DATA DOUBLE.

mathType

Input. Sets the preferred option to use NVIDIA Tensor Cores accelerators on Volta (SM 7.0)
or higher GPU-s).

» When dataType IS CUDNN DATA HALF, the mathType parameter can be
CUDNN_DEFAULT MATH or CUDNN_ TENSOR_OP MATH. The ALLOW_CONVERSION setting is
treated the same CUDNN TENSOR OP MATH for this data type.

» When dataType IS CUDNN DATA FLOAT, the mathType parameter can be
CUDNN DEFAULT MATH or CUDNN_ TENSOR OP MATH ALLOW_ CONVERSION. When the
latter settings are used, original weights and intermediate results will be down-
converted to CUDNN DATA HALF before they are used in another recursive iteration.

» When dataType is CUDNN DATA DOUBLE, the mathType parameter can be
CUDNN DEFAULT MATH.

This option has an advisory status meaning Tensor Cores may not be always utilized, for
example, due to specific GEMM dimensions restrictions.

inputSize

Input. Size of the input vector in the RNN model. When the inputMode=CUDNN_ SKIP INPUT,
the inputsSize should match the hiddenSize value.

hiddenSize

Input. Size of the hidden state vector in the RNN model. The same hidden size is used in all
RNN layers.

projSize

Input. The size of the LSTM cell output after the recurrent projection. This value should

not be larger than hiddensize. It is legal to set projsize equal to hiddenSize, however,
in this case, the recurrent projection feature is disabled. The recurrent projection is an
additional matrix multiplication in the LSTM cell to project hidden state vectors h¢ into
smaller vectors r = W.h¢, where W, is a rectangular matrix with projSize rows and
hiddenSize columns. When the recurrent projection is enabled, the output of the LSTM
cell [both to the next layer and unrolled in-time) is r. instead of h.. The recurrent projection
can be enabled for LSTM cells and CUDNN_RNN ALGO_ STANDARD only.

numLayers

Input. Number of stacked, physical layers in the deep RNN model. When dirMode=
CUDNN_ BIDIRECTIONAL, the physical layer consists of two pseudo-layers corresponding to
forward and backward directions.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 359

cudnn_adv_infer.so Library

dropoutDesc

Input. Handle to a previously created and initialized dropout descriptor. Dropout operation
will be applied between physical layers. A single layer network will have no dropout applied.
Dropout is used in the training mode only.

auxFlags
Input. This argument is used to pass miscellaneous switches that do not require
additional numerical values to configure the corresponding feature. In future
cuDNN releases, this parameter will be used to extend the RNN functionality
without adding new API functions (applicable options should be bitwise OR-
ed). Currently, this parameter is used to enable or disable padded input/output
(CUDNN RNN PADDED IO DISABLED, CUDNN RNN PADDED IO ENABLED). When the
padded /0 is enabled, layouts CUDNN_RNN DATA LAYOUT SEQ MAJOR UNPACKED
and CUDNN_RNN DATA LAYOUT BATCH MAJOR UNPACKED are permitted in RNN data
descriptors.

Returns
CUDNN_STATUS_SUCCESS

The RNN descriptor was configured successfully.
CUDNN_STATUS_BAD PARAM

Aninvalid input argument was detected.
CUDNN_STATUS_NOT SUPPORTED

The dimensions of the bias tensor refer to an amount of data that is incompatible with the
output tensor dimensions or the dataType of the two tensor descriptors are different.

CUDNN_STATUS_EXECUTION_ FAILED

An incompatible or unsupported combination of input arguments was detected.

7.2.50. cudnnSetRNNMatrixMathType ()

This function has been deprecated in cuDNN 8.0. Use cudnnSetRNNDescriptor_v8(] instead of
cudnnSetRNNMatrixMathType ().

cudnnStatus_t cudnnSetRNNMatrixMathType (
cudnnRNNDescriptor t rnnDesc,
cudnnMathType t mType)

This function sets the preferred option to use NVIDIA Tensor Cores accelerators on Volta
GPUs (SM 7.0 or higher]). When the mType parameter is CUDNN_TENSOR_OP MATH, inference
and training RNN APIs will attempt use Tensor Cores when weights/biases are of type
CUDNN DATA HALF or CUDNN DATA FLOAT. When RNN weights/biases are stored in the
CUDNN_ DATA FLOAT format, the original weights and intermediate results will be down-
converted to CUDNN_ DATA HALF before they are used in another recursive iteration.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 360

cudnn_adv_infer.so Library

Parameters

rnnDesc
Input. A previously created and initialized RNN descriptor.
mType

Input. A preferred compute option when performing RNN GEMMs (general matrix-matrix
multiplications). This option has an advisory status meaning that Tensor Cores may not be
utilized, for example, due to specific GEMM dimensions.

Returns
CUDNN_STATUS_SUCCESS

The preferred compute option for the RNN network was set successfully.

CUDNN_STATUS_BAD_PARAM

An invalid input parameter was detected.

7.2.51. cudnnSetRNNPaddingMode ()

This function has been deprecated in cuDNN 8.0. Use cudnnSetRNNDescriptor v8(] instead of
cudnnSetRNNPaddingMode ().

cudnnStatus_t cudnnSetRNNPaddingMode (
cudnnRNNDescriptor t rnnDesc,
cudnnRNNPaddingMode t paddingMode)

This function enables or disables the padded RNN input/output for a previously

created and initialized RNN descriptor. This information is required before calling the
cudnnGetRNNWorkspaceSize() and cudnnGetRNNTrainingReserveSize(] functions, to
determine whether additional workspace and training reserve space is needed. By default, the
padded RNN input/output is not enabled.

Parameters
rnnDesc

Input/Output. A previously created RNN descriptor.
paddingMode

Input. Enables or disables the padded input/output. For more information, see
cudnnRNNPaddingMode_t.

Returns
CUDNN_STATUS_SUCCESS

The paddingMode was set successfully.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 361

cudnn_adv_infer.so Library

CUDNN_STATUS_BAD_ PARAM

Either the rnnDesc Is NULL or paddingMode has an invalid enumerant value.

7.2.52. cudnnSetRNNProjectionLayers ()

This function has been deprecated in cuDNN 8.0. Use cudnnSetRNNDescriptor_v8() instead of
cudnnSetRNNProjectionLayers ().
cudnnStatus t cudnnSetRNNProjectionLayers (

cudnnHandle t handle,
cudnnRNNDescriptor t rnnDesc,

int recProjSize,
int outProjSize)

The cudnnSetRNNProjectionLayers () function should be called to enable the recurrent
and/or output projection in a recursive neural network. The recurrent projection is an
additional matrix multiplication in the LSTM cell to project hidden state vectors h, into smaller
vectors r, = W,h,, where W, is a rectangular matrix with recProjSize rows and hiddenSize
columns. When the recurrent projection is enabled, the output of the LSTM cell (both to the
next layer and unrolled in-time) is r, instead of h.. The dimensionality of i, f, o and ¢, vectors

used in conjunction with non-linear functions remains the same as in the canonical LSTM cell.
To make this possible, the shapes of matrices in the LSTM formulas (see cudnnRNNMode _t
typel, such as W; in hidden RNN layers or R; in the entire network, become rectangular versus
square in the canonical LSTM mode. Obviously, the result of R;* W, is a square matrix but it is
rank deficient, reflecting the compression of LSTM output. The recurrent projection is typically
employed when the number of independent (adjustable] weights in the RNN network with
projection is smaller in comparison to canonical LSTM for the same hiddensize value.

The recurrent projection can be enabled for LSTM cells and CUDNN_ RNN ALGO STANDARD
only. The recProjsize parameter should be smaller than the hiddensize value. It is legal

to set recProjSize equal to hiddenSize but in that case the recurrent projection feature is
disabled.

The output projection is currently not implemented.

For more information on the recurrent and output RNN projections, see the paper by Hasim
Sak, et al.: Long Short-Term Memory Based Recurrent Neural Network Architectures For
Large Vocabulary Speech Recognition.

Parameters
handle

Input. Handle to a previously created library descriptor.

rnnDesc

Input. A previously created and initialized RNN descriptor.

recProjSize

Input. The size of the LSTM cell output after the recurrent projection. This value should not
be larger than hiddenSize.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 362

https://arxiv.org/abs/1402.1128
https://arxiv.org/abs/1402.1128
https://arxiv.org/abs/1402.1128

cudnn_adv_infer.so Library

outProjSize

Input. This parameter should be zero.

Returns
CUDNN_STATUS SUCCESS

RNN projection parameters were set successfully.
CUDNN_STATUS_BAD PARAM

An invalid input argument was detected (for example, NULL handles, negative values for
projection parameters).

CUDNN_STATUS_NOT_SUPPORTED

Projection applied to RNN algo other than CUDNN_ RNN ALGO_ STANDARD, cell type other than
CUDNN_LSTM, recProjSize larger than hiddensSize.

7.2.53. cudnnSetSegDataDescriptor ()

cudnnStatus_t cudnnSetSegDataDescriptor (

cudnnSeqgDataDescriptor t segDataDesc,

cudnnDataType t dataType,

int nbDims,

const int dimA[],

const cudnnSquatanis_t axes|[],

size t seqglLengthArraySize,

const int seqlLengthArrayl[],

void *paddingFill) ;
This function initializes a previously created sequence data descriptor object. In the most
simplified view, this descriptor defines dimensions (dima) and the data layout (axes] of a
four-dimensional tensor. All four dimensions of the sequence data descriptor have unique
identifiers that can be used to index the dima[] array:
CUDNN_SEQDATA TIME DIM
CUDNN_SEQDATA BATCH DIM
CUDNN_SEQDATA BEAM DIM
CUDNN_SEQDATA VECT DIM
For example, to express information that vectors in our sequence data buffer are five elements
long, we need to assign dimA [CUDNN SEQDATA VECT DIM]=5in the dimA[] array.

The number of active dimensions in the dima[] and axes[] arrays is defined by the nbDims
argument. Currently, the value of this argument should be four. The actual size of the dimA[]
and axes[] arrays should be declared using the CUDNN SEQDATA DIM COUNT Macro.

The cudnnSegDataDescriptor_t container is treated as a collection of fixed length vectors that
form sequences, similarly to words (vectors of characters) constructing sentences. The TIME
dimension spans the sequence length. Different sequences are bundled together in a batch.

A BATCH may be a group of individual sequences or beams. A BEAM is a cluster of alternative
sequences or candidates. When thinking about the beam, consider a translation task from one
language to another. You may want to keep around and experiment with several translated
versions of the original sentence before selecting the best one. The number of candidates kept
around is the BEAM size.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 363

cudnn_adv_infer.so Library

Every sequence can have a different length, even within the same beam, so vectors toward
the end of the sequence can be just padding. The paddingFill argument specifies how

the padding vectors should be written in output sequence data buffers. The paddingFill
argument points to one value of type dataType that should be copied to all elements in
padding vectors. Currently, the only supported value for paddingFi11 is NULL which means
this option should be ignored. In this case, elements of the padding vectors in output buffers
will have undefined values.

It is assumed that a non-empty sequence always starts from the time index zero. The
seqgLengthArray[] must specify all sequence lengths in the container so the total size of this
array should be dimA [CUDNN SEQDATA BATCH DIM] * dimA[CUDNN SEQDATA BEAM DIM].
Each element of the seqLengthArray[] array should have a non-negative value, less than
or equal to dimA[CUDNN SEQDATA TIME DIM; the maximum sequence length. Elements in
seqgLengthArray[] are always arranged in the same batch-major order, meaning, when
considering BEAM and BATCH dimensions, BATCH is the outer or the slower changing index
when we traverse the array in ascending order of the addresses. Using a simple example, the
seqgLengthArray[] array should hold sequence lengths in the following order:

{batch idx=0, beam idx=0}

{batch idx=0, beam idx=1}

{batch idx=1, beam idx=0}

{batch idx=1, beam idx=1}

{batch idx=2, beam idx=0}

{batch idx=2, beam idx=1}

when dimA [CUDNN_SEQDATA BATCH DIM]=3 and dimA[CUDNN_ SEQDATA BEAM DIM]=2.

Data stored in the cudnnSegDataDescriptor_t container must comply with the following
constraints:

» All datais fully packed. There are no unused spaces or gaps between individual vector
elements or consecutive vectors.

» The most inner dimension of the container is the vector. In other words, the first
contiguous group of dimA [CUDNN SEQDATA VECT DIM] elements belongs to the first
vector, followed by elements of the second vector, and so on.

The axes argument in the cudnnSetSegDataDescriptor () function is a bit more
complicated. This array should have the same capacity as dimA[]. The axes[] array

specifies the actual data layout in the GPU memory. In this function, the layout is described

in the following way: as we move from one element of a vector to another in memory

by incrementing the element pointer, what is the order of VECT, TIME, BATCH, and BEAM
dimensions that we encounter. Let us assume that we want to define the following data layout:

«— time -
i T ('_—'J — I beam
il ST a— .
i] B | & |
2 r K 71 padding
seqlengthAmay[] [3]| | | P — k""d vectors

that corresponds to tensor dimensions:
int dimA[CUDNN SEQDATA DIM COUNT];

NVIDIA cuDNN PR-09702-001_v8.3.0 | 364

cudnn_adv_infer.so Library

dimA [CUDNN_SEQDATA TIME DIM]
dimA [CUDNN_SEQDATA BATCH DIM]
dimA[CUDNN SEQDATA BEAM DIM]
dimA[CUDNN SEQDATA VECT DIM]

N Wb
Ne Ne Ne N

Now, let’s initialize the axes[] array. Note that the most inner dimension is described by the
last active element of axes[]. There is only one valid configuration here as we always traverse
a full vector first. Thus, we need to write CUDNN_SEQDATA VECT DIM in the last active element
of axes[].

cudnnSegDataAxis t axes[CUDNN SEQDATA DIM COUNT];
axes[3] = CUDNN_SEQDATA VECT DIM; // 3 = nbDims-1

Now, let's work on the remaining three elements of axes[]1. When we reach the end of the
first vector, we jJump to the next beam, therefore:
axes[2] = CUDNN SEQDATA BEAM DIM;

When we approach the end of the second vector, we move to the next batch, therefore:
axes[1l] = CUDNN_SEQDATA BATCH DIM;

The last (outermost) dimension is TIME:
axes[0] = CUDNN_SEQDATA TIME DIM;

The four values of the axes[] array fully describe the data layout depicted in the figure.

The sequence data descriptor allows the user to select 3! = ¢ different data layouts or
permutations of BEAM, BATCH and TIME dimensions. The multi-head attention APl supports all
six layouts.

Parameters

seqgDataDesc
Output. Pointer to a previously created sequence data descriptor.
dataType
Input. Data type of the sequence data buffer (CUDNN_DATA HALF, CUDNN DATA FLOAT Or
CUDNN_ DATA DOUBLE).
nbDims
Input. Must be 4. The number of active dimensions in dimA[] and axes[] arrays. Both
arrays should be declared to contain at least CUDNN_SEQDATA DIM COUNT elements.
dimA[]
Input. Integer array specifying sequence data dimensions. Use the cudnnSegDataAxis_t
enumerated type to index all active dima[] elements.

axes|[]
Input. Array of cudnnSegDataAxis_t that defines the layout of sequence data in memory.
The first nbDims elements of axes [] should be initialized with the outermost dimension in
axes[0] and the innermost dimension in axes [nbDims-1].

seqlLengthArraySize

Input. Number of elements in the sequence length array, seqLengthArrayl[].
seqlLengthArray|[]

Input. An integer array that defines all sequence lengths of the container.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 365

cudnn_adv_infer.so Library

paddingFill
Input. Must be NULL. Pointer to a value of dataType that is used to fill up output vectors
beyond the valid length of each sequence or NULL to ignore this setting.

Returns

CUDNN_STATUS_SUCCESS

All input arguments were validated and the sequence data descriptor was successfully
updated.

CUDNN_STATUS BAD PARAM
An invalid input argument was found. Some examples include:

» segDataDesc=NULL

> dateType was not a valid type of cudnnDataType_t

> nbDims was negative or zero
> seqglengthArraySize did not match the expected length
>

some elements of segqLengthArray[] were invalid

CUDNN_STATUS_NOT SUPPORTED
An unsupported input argument was encountered. Some examples include:

» nbDims Is not equal to 4

» paddingFill is not NULL

CUDNN_STATUS_ALLOC_FAILED
Failed to allocate storage for the sequence data descriptor object.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 366

Chapter 8. cudnn _adv train.so
Library

8.1. Data Type References

8.1.1. Enumeration Types

8.1.1.1. cudnnlLossNormalizationMode t

cudnnLossNormalizationMode tisanenumerated type that controls the
input normalization mode for a loss function. This type can be used with
cudnnSetCTCLossDescriptorEx(].

Values
CUDNN_LOSS NORMALIZATION NONE

The input probs of the cudnnCTCLoss() function is expected to be the normalized
probability, and the output gradients is the gradient of loss with respect to the
unnormalized probability.

CUDNN_LOSS NORMALIZATION_SOFTMAX

The input probs of the cudnnCTCLoss() function is expected to be the unnormalized
activation from the previous layer, and the output gradients is the gradient with respect to
the activation. Internally the probability is computed by softmax normalization.

8.1.1.2. cudnnWgradMode t

cudnnWgradMode t is an enumerated type that selects how buffers holding gradients of the
loss function, computed with respect to trainable parameters, are updated. Currently, this type
is used by the cudnnMultiHeadAttnBackwardWeights(] and cudnnRNNBackwardWeights_v8(]
functions only.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 367

cudnn_adv_train.so Library

Values
CUDNN_WGRAD MODE_ADD

A weight gradient component corresponding to a new batch of inputs is added to previously
evaluated weight gradients. Before using this mode, the buffer holding weight gradients
should be initialized to zero. Alternatively, the first API call outputting to an uninitialized
buffer should use the CUDNN WGRAD MODE SET option.

CUDNN_WGRAD MODE_SET
A weight gradient component, corresponding to a new batch of inputs, overwrites previously
stored weight gradients in the output buffer.

8.2. APl Functions

8.2.1. cudnnAdvTrainVersionCheck ()

cudnnStatus_ t cudnnAdvTrainVersionCheck (void)

This function checks whether the version of the AdvTrain subset of the library is consistent
with the other sub-libraries.

Returns

CUDNN_STATUS_SUCCESS

The version is consistent with other sub-libraries.

CUDNN_STATUS_VERSION_ MISMATCH

The version of AdvTrain is not consistent with other sub-libraries. Users should check the
installation and make sure all sub-component versions are consistent.

8.2.2. cudnnCreateCTCLossDescriptor ()

cudnnStatus_t cudnnCreateCTCLossDescriptor (
cudnnCTCLossDescriptor t* ctcLossDesc)

This function creates a CTC loss function descriptor.

Parameters

ctclossDesc

Output. CTC loss descriptor to be set. For more information, see
cudnnCTCl ossDescriptor t.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 368

cudnn_adv_train.so Library

Returns
CUDNN_STATUS SUCCESS

The function returned successfully.
CUDNN_STATUS_BAD PARAM

CTC loss descriptor passed to the function is invalid.

CUDNN_STATUS_ALLOC_FAILED

Memory allocation for this CTC loss descriptor failed.

8.2.3. cudnnCTCLoss ()

cudnnStatus_ t cudnnCTCLoss (

cudnnHandle t handle,

const cudnnTensorDescriptor t probsDesc,

const void *probs,

const int hostLabels[],

const int hostLabellengths|[],
const int hostInputlLengths]|[],
void *costs,

const cudnnTensorDescriptor t gradientsDesc,
const void *gradients,
cudnnCTCLossAlgo_t algo,

const cudnnCTCLossDescriptor t ctcLossDesc,

void *workspace,

size t *workSpaceSizelInBytes)

This function returns the CTC costs and gradients, given the probabilities and labels.

S| Note: This function can have an inconsistent interface depending on the
cudnnlLossNormalizationMode_t chosen (bound to the cudnnCTCLossDescriptor_t with
cudnnSetCTCLossDescriptorEx()). For the CUDNN_1.OSS_NORMALIZATION NONE, this function
has an inconsistent interface, for example, the probs input is probability normalized by
softmax, but the gradients output is with respect to the unnormalized activation. However, for
CUDNN LOSS NORMALIZATION SOFTMAX, the function has a consistent interface; all values are
normalized by softmax.

Parameters
handle

Input. Handle to a previously created cuDNN context. For more information, see
cudnnHandle t.

probsDesc

Input. Handle to the previously initialized probabilities tensor descriptor. For more
information, see cudnnTensorDescriptor_t.

probs

Input. Pointer to a previously initialized probabilities tensor. These input probabilities are
normalized by softmax.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 369

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnLossNormalizationMode_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnCTCLossDescriptor_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnSetCTCLossDescriptorEx

cudnn_adv_train.so Library

hostLabels

Input. Pointer to a previously initialized labels list, in CPU memory.

hostLabellengths

Input. Pointer to a previously initialized lengths list in CPU memory, to walk the above labels
list.

hostInputLengths

Input. Pointer to a previously initialized list of the lengths of the timing steps in each batch,
in CPU memory.

costs
Output. Pointer to the computed costs of CTC.
gradientsDesc

Input. Handle to a previously initialized gradient tensor descriptor.

gradients

Output. Pointer to the computed gradients of CTC. These computed gradient outputs are
with respect to the unnormalized activation.

algo
Input. Enumerant that specifies the chosen CTC loss algorithm. For more information, see

cudnnCTCLossAlgo t.

ctclLossDesc

Input. Handle to the previously initialized CTC loss descriptor. For more information, see
cudnnCTCLossDescriptor_t.

workspace

Input. Pointer to GPU memory of a workspace needed to be able to execute the specified
algorithm.

sizeInBytes
Input. Amount of GPU memory needed as workspace to be able to execute the CTC loss
computation with the specified algo.

Returns

CUDNN_STATUS_SUCCESS

The query was successful.

CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:

» The dimensions of probsDesc do not match the dimensions of gradientsbDesc.

» The inputLengths do not agree with the first dimension of probsbesc.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 370

cudnn_adv_train.so Library

» The workSpaceSizeInBytes is not sufficient.

» The labelLengths is greater than 205.
CUDNN_STATUS_NOT SUPPORTED

A compute or data type other than FLOAT was chosen, or an unknown algorithm type was
chosen.

CUDNN_STATUS_EXECUTION_ FAILED

The function failed to launch on the GPU.

8.2.4. cudnnCTCLoss_v8 ()

cudnnStatus_t cudnnCTCLoss_v8 (

cudnnHandle t handle,
cudnnCTCLossAlgo t algo,

const cudnnCTCLossDescriptor t ctcLossDesc,
const cudnnTensorDescriptor t probsDesc,
const void *probs,

const int labels[],

const int labellengths|],
const int inputLengths([],
void *costs,

const cudnnTensorDescriptor t gradientsDesc,
const void *gradients,

size t *workSpaceSizelInBytes,
void *workspace)

This function returns the CTC costs and gradients, given the probabilities and labels. Many
CTC API functions were updated in v8 with the v8 suffix to support CUDA graphs. Label and
input data is now passed in GPU memory, and cudnnCTCLossDescriptor_t should be set using
cudnnSetCTCLossDescriptor_v8().

S| Note: This function can have an inconsistent interface depending on the
cudnnlLossNormalizationMode_t chosen (bound to the cudnnCTCLossDescriptor_t with
cudnnSetCTCLossDescriptorEx()). For the CUDNN LOSS_NORMALIZATION NONE, this function
has an inconsistent interface, for example, the probs input is probability normalized by
softmax, but the gradients output is with respect to the unnormalized activation. However, for
CUDNN_LOSS NORMALIZATION SOFTMAX, the function has a consistent interface; all values are
normalized by softmax.

Parameters
handle

Input. Handle to a previously created cuDNN context. For more information, see
cudnnHandle_t.

algo

Input. Enumerant that specifies the chosen CTC loss algorithm. For more information, see
cudnnCTCLossAlgo_t.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 371

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnCTCLossDescriptor_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnSetCTCLossDescriptor_v8
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnLossNormalizationMode_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnCTCLossDescriptor_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnSetCTCLossDescriptorEx
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnCTCLossAlgo_t

cudnn_adv_train.so Library

ctcLossDesc

Input. Handle to the previously initialized CTC loss descriptor. To use this _v8 function, this
descriptor must be set using cudnnSetCTCLossDescriptor_v8(]. For more information, see
cudnnCTClossDescriptor_t.

probsDesc

Input. Handle to the previously initialized probabilities tensor descriptor. For more
information, see cudnnTensorDescriptor t.

probs

Input. Pointer to a previously initialized probabilities tensor. These input probabilities are
normalized by softmax.

labels
Input. Pointer to a previously initialized labels list, in GPU memory.

labellengths

Input. Pointer to a previously initialized lengths list in GPU memory, to walk the above
labels list.

inputLengths

Input. Pointer to a previously initialized list of the lengths of the timing steps in each batch,
in GPU memory.

costs

Output. Pointer to the computed costs of CTC.

gradientsDesc

Input. Handle to a previously initialized gradient tensor descriptor.

gradients

Output. Pointer to the computed gradients of CTC. These computed gradient outputs are
with respect to the unnormalized activation.

workspace

Input. Pointer to GPU memory of a workspace needed to be able to execute the specified
algorithm.

sizeInBytes

Input. Amount of GPU memory needed as a workspace to be able to execute the CTC loss
computation with the specified algo.

Returns
CUDNN_STATUS_SUCCESS

The query was successful.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 372

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnSetCTCLossDescriptor_v8
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnCTCLossDescriptor_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnTensorDescriptor_t

CUDNN_STATUS_BAD_PARAM

cudnn_adv_train.so Library

At least one of the following conditions are met:

v v v Vv

CUDNN_STATUS_NOT_SUPPORTED

A compute or data type other than FLOAT was chosen, or an unknown algorithm type was

chosen.
CUDNN_STATUS_EXECUTION FAILED

The dimensions of probsbesc do not match the dimensions of gradientsbDesc.
The inputLengths do not agree with the first dimension of probsbDesc.
The workSpaceSizeInBytes is not sufficient.

The labelLengths is greater than 256.

The function failed to launch on the GPU.

8.2.9.

cudnnDestroyCTCLossDescriptor ()

cudnnStatus_t cudnnDestroyCTCLossDescriptor (

cudnnCTCLossDescriptor t

ctcLossDesc)

This function destroys a CTC loss function descriptor object.

Parameters

ctclossDesc

Input. CTC loss function descriptor to be destroyed.

Returns

CUDNN_STATUS_SUCCESS

The function returned successfully.

8.2.6.

This function has been deprecated in cuDNN 8.0.

cudnnStatus_t cudnnFindRNNBackwardDataAlgorithmEx (

cudnnHandle t
const cudnnRNNDescriptor t

const
const
const
const
const
const
const
const
const
const
const
const
const

int
cudnnTensorDescriptor t
void
cudnnTensorDescriptor_t
void
cudnnTensorDescriptor t
void
cudnnTensorDescriptor t
void
cudnnFilterDescriptor t
void
cudnnTensorDescriptor t
void

NVIDIA cuDNN

handle,
rnnDesc,
seqglength,
*yDesc,
Yy
*dyDesc,
*dy,
dhyDesc,
*dhy,
dcyDesc,
*dey,
wDesc,
*w,
hxDesc,
*hx,

PR-09702-001_v8.3.0

cudnnFindRNNBackwardDataAlgorithmEx ()

373

cudnn_adv_train.so Library

const cudnnTensorDescriptor t cxDesc,

const void BEsK,

const cudnnTensorDescriptor t *dxDesc,

void *dx,

const cudnnTensorDescriptor t dhxDesc,

void *dhx,

const cudnnTensorDescriptor t dcxDesc,

void “elesz,

const float findIntensity,

const int requestedAlgoCount,
int *returnedAlgoCount,
cudnnAlgorithmPerformance t *perfResults,

void *workspace,

size t workSpaceSizeInBytes,
const void *reserveSpace,

size t reserveSpaceSizeInBytes)

This function attempts all available cuDNN algorithms for cudnnRNNBackwardDatal(), using
user-allocated GPU memory. It outputs the parameters that influence the performance of the
algorithm to a user-allocated array of cudnnAlgorithmPerformance t. [hese parameter
metrics are written in sorted fashion where the first element has the lowest compute time.

Parameters
handle

Input. Handle to a previously created cuDNN context.

rnnDesc
Input. A previously initialized RNN descriptor.
seqlLength

Input. Number of iterations to unroll over. The value of this seqLength must not exceed the
value that was used in cudnnGetRNNWorkspaceSize() function for querying the workspace
size required to execute the RNN.

yDesc

Input. An array of fully packed tensor descriptors describing the output from each recurrent
iteration (one descriptor per iteration). The second dimension of the tensor depends on the
direction argument used to initialize rnnDesc:

» Ifdirection is CUDNN UNIDIRECTIONAL the second dimension should match the
hiddenSize argument.

» Ifdirection is CUDNN BIDIRECTIONAL the second dimension should match double the
hiddenSize argument.

The first dimension of the tensor n must match the first dimension of the tensorn in
dyDesc.

Input. Data pointer to GPU memory associated with the output tensor descriptor yDesc.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 374

cudnn_adv_train.so Library

dyDesc

Input. An array of fully packed tensor descriptors describing the gradient at the output from
each recurrent iteration (one descriptor per iteration). The second dimension of the tensor
depends on the direction argument used to initialize rnnDesc:

» Ifdirection is CUDNN UNIDIRECTIONAL the second dimension should match the
hiddenSize argument.

» Ifdirection is CUDNN BIDIRECTIONAL the second dimension should match double the
hiddenSize argument.

The first dimension of the tensor n must match the second dimension of the tensorn in

dxDesc.

dy
Input. Data pointer to GPU memory associated with the tensor descriptors in the array
dyDesc.

dhyDesc

Input. A fully packed tensor descriptor describing the gradients at the final hidden state of
the RNN. The first dimension of the tensor depends on the direction argument used to
initialize rnnbesc:

» Ifdirection is CUDNN UNIDIRECTIONAL the first dimension should match the
numLayers argument.

» If direction is CUDNN BIDIRECTIONAL the first dimension should match double the
numLayers argument.

The second dimension must match the first dimension of the tensors described in dxDesc.
The third dimension must match the hiddenSize argument used to initialize rnnDesc. The
tensor must be fully packed.

dhy
Input. Data pointer to GPU memory associated with the tensor descriptor dhybDesc. If a NULL

pointer is passed, the gradients at the final hidden state of the network will be initialized to
zero.

dcyDesc
Input. A fully packed tensor descriptor describing the gradients at the final cell state of

the RNN. The first dimension of the tensor depends on the direction argument used to
initialize rnnDesc:

» Ifdirection is CUDNN UNIDIRECTIONAL the first dimension should match the
numLayers argument.

» Ifdirection is CUDNN BIDIRECTIONAL the first dimension should match double the
numLayers argument.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 375

cudnn_adv_train.so Library

The second dimension must match the first dimension of the tensors described in dxDesc.
The third dimension must match the hiddenSize argument used to initialize rnnDesc. The
tensor must be fully packed.

decy
Input. Data pointer to GPU memory associated with the tensor descriptor decybDesc. If a NULL

pointer is passed, the gradients at the final cell state of the network will be initialized to
zero.

wDesc

Input. Handle to a previously initialized filter descriptor describing the weights for the RNN.

w
Input. Data pointer to GPU memory associated with the filter descriptor wbesc.
hxDesc
Input. A fully packed tensor descriptor describing the initial hidden state of the RNN.
The first dimension of the tensor depends on the direction argument used to initialize
rnnDesc:
» Ifdirection is CUDNN UNIDIRECTIONAL the first dimension should match the
numLayers argument.
» Ifdirection is CUDNN BIDIRECTIONAL the first dimension should match double the
numLayers argument.
The second dimension must match the first dimension of the tensors described in dxDesc.
The third dimension must match the hiddenSize argument used to initialize rnnDesc. The
tensor must be fully packed.
hx
Input. Data pointer to GPU memory associated with the tensor descriptor hxDesc. If a NULL
pointer is passed, the initial hidden state of the network will be initialized to zero.
cxDesc

Input. A fully packed tensor descriptor describing the initial cell state for LSTM networks.
The first dimension of the tensor depends on the direction argument used to initialize

rnnDesc:

» If direction is CUDNN UNIDIRECTIONAL the first dimension should match the
numLayers argument.

» Ifdirection Is CUDNN BIDIRECTIONAL the first dimension should match double the
numLayers argument.

The second dimension must match the first dimension of the tensors described in dxDesc.
The third dimension must match the hiddenSize argument used to initialize rnnDesc. The
tensor must be fully packed.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 376

cudnn_adv_train.so Library

CcX

Input. Data pointer to GPU memory associated with the tensor descriptor cxDesc. If a NULL
pointer is passed, the initial cell state of the network will be initialized to zero.

dxDesc

Input. An array of fully packed tensor descriptors describing the gradient at the input of
each recurrent iteration (one descriptor per iteration). The first dimension (batch size)
of the tensors may decrease from element n to element n+1 but may not increase. Each
tensor descriptor must have the same second dimension (vector length).

dx

Output. Data pointer to GPU memory associated with the tensor descriptors in the array

dxDesc.
dhxDesc
Input. A fully packed tensor descriptor describing the gradient at the initial hidden state of

the RNN. The first dimension of the tensor depends on the direction argument used to
initialize rnnDesc:

» Ifdirection is CUDNN UNIDIRECTIONAL the first dimension should match the
numLayers argument.

» Ifdirection is CUDNN BIDIRECTIONAL the first dimension should match double the
numLayers argument.

The second dimension must match the first dimension of the tensors described in dxDesc.
The third dimension must match the hiddenSize argument used to initialize rnnDesc. The
tensor must be fully packed.

dhx
Output. Data pointer to GPU memory associated with the tensor descriptor dhxDesc. If a
NULL pointer is passed, the gradient at the hidden input of the network will not be set.
dcxDesc
Input. A fully packed tensor descriptor describing the gradient at the initial cell state of

the RNN. The first dimension of the tensor depends on the direction argument used to
initialize rnnDesc:

» Ifdirection is CUDNN UNIDIRECTIONAL the first dimension should match the
numLayers argument.

» If direction is CUDNN BIDIRECTIONAL the first dimension should match double the
numLayers argument.

The second dimension must match the first dimension of the tensors described in dxDesc.
The third dimension must match the hiddenSize argument used to initialize rnnDesc. The
tensor must be fully packed.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 377

cudnn_adv_train.so Library

decx
Output. Data pointer to GPU memory associated with the tensor descriptor dexDesc. If a
NULL pointer is passed, the gradient at the cell input of the network will not be set.
findIntensity
Input.This input was previously unused in versions prior to cuDNN 7.2.0. It is used in cuDNN

7.2.0 and later versions to control the overall runtime of the RNN find algorithms, by
selecting the percentage of a large Cartesian product space to be searched.

» Setting findIntensity within the range (0,1.] will set a percentage of the entire RNN
search space to search. When findIntensity is setto 1.0, a full search is performed
over all RNN parameters.

» When findIntensity is set to 0.0f, a quick, minimal search is performed. This setting
has the best runtime. However, in this case the parameters returned by this function
will not correspond to the best performance of the algorithm; a longer search might
discover better parameters. This option will execute up to three instances of the
configured RNN problem. Runtime will vary proportionally to RNN problem size, as it
will in the other cases, hence no guarantee of an explicit time bound can be given.

» Setting findIntensity within the range [-1.,0) sets a percentage of a reduced
Cartesian product space to be searched. This reduced search space has been
heuristically selected to have good performance. The setting of -1.0 represents a full
search over this reduced search space.

» Values outside the range [-1,1] are truncated to the range [-1,1], and then interpreted as
per the above.

> Setting findIntensity to 1.0 in cuDNN 7.2 and later versions is equivalent to the
behavior of this function in versions prior to cuDNN 7.2.0.

» This function times the single RNN executions over large parameter spaces - one
execution per parameter combination. The times returned by this function are latencies.

requestedAlgoCount

Input. The maximum number of elements to be stored in perfResults.

returnedAlgoCount

Output. The number of output elements stored in perfResults.

perfResults

Output. A user-allocated array to store performance metrics sorted ascending by compute
time.

workspace

Input. Data pointer to GPU memory to be used as a workspace for this call.

workSpaceSizelInBytes

Input. Specifies the size in bytes of the provided workspace.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 378

cudnn_adv_train.so Library

reserveSpace

Input/Output. Data pointer to GPU memory to be used as a reserve space for this call.

reserveSpaceSizelnBytes

Input. Specifies the size in bytes of the provided reservespace.

Returns
CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.

CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:

» The descriptor rnnDesc is invalid.

> At least one of the descriptors dhxDesc, wDesc, hxDesc, cxDesc, dcxDesc,
dhyDesc, dcyDesc or one of the descriptors in yDesc, dxdesc, dydesc is invalid.

» The descriptors in one of yDesc, dxDesc, dyDesc, dhxDesc, wDesc, hxDesc,
cxDesc, dcxDesc, dhyDesc, dcyDesc has incorrect strides or dimensions.

> workSpaceSizeInBytes is too small.

> reserveSpaceSizeInBytes istoo small.
CUDNN_STATUS_EXECUTION_ FAILED

The function failed to launch on the GPU.
CUDNN_STATUS ALLOC_FAILED

The function was unable to allocate memory.

8.2.7. cudnnFindRNNBackwardWeightsAlgorithmEx ()
This function has been deprecated in cuDNN 8.0.

cudnnStatus_t cudnnFindRNNBackwardWeightsAlgorithmEx (

cudnnHandle t handle,

const cudnnRNNDescriptor t rnnDesc,

const int seqglength,

const cudnnTensorDescriptor t *xDesc,

const void X,

const cudnnTensorDescriptor t hxDesc,

const void *hx,

const cudnnTensorDescriptor t *yDesc,

const void *y,

const float findIntensity,
const int requestedAlgoCount,
int *returnedAlgoCount,
cudnnAlgorithmPerformance t *perfResults,

const void *workspace,

size t workSpaceSizeInBytes,

NVIDIA cuDNN PR-09702-001_v8.3.0 | 379

cudnn_adv_train.so Library

const cudnnFilterDescriptor t dwDesc,

void *dwl

const wvoid *reserveSpace,

size t reserveSpaceSizeInBytes)

This function attempts all available cuDNN algorithms for cudnnRNNBackwardWeights(],
using user-allocated GPU memory. It outputs the parameters that influence the performance
of the algorithm to a user-allocated array of cudnnAlgorithmPerformance t. [hese
parameter metrics are written in sorted fashion where the first element has the lowest
compute time.

Parameters
handle

Input. Handle to a previously created cuDNN context.
rnnDesc
Input. A previously initialized RNN descriptor.
seqlLength
Input. Number of iterations to unroll over. The value of this seqLength must not exceed the

value that was used in cudnnGetRNNWorkspaceSize() function for querying the workspace
size required to execute the RNN.

xDesc

Input. An array of fully packed tensor descriptors describing the input to each recurrent
iteration (one descriptor per iteration). The first dimension (batch size) of the tensors may
decrease from element n to element n+1 but may not increase. Each tensor descriptor
must have the same second dimension (vector length).

Input. Data pointer to GPU memory associated with the tensor descriptors in the array

xDesc.
hxDesc
Input. A fully packed tensor descriptor describing the initial hidden state of the RNN.

The first dimension of the tensor depends on the direction argument used to initialize

rnnDesc:

» Ifdirection is CUDNN UNIDIRECTIONAL the first dimension should match the
numLayers argument.

» If direction is CUDNN BIDIRECTIONAL the first dimension should match double the
numLayers argument.

The second dimension must match the first dimension of the tensors described in xDesc.
The third dimension must match the hiddenSize argument used to initialize rnnDesc. The
tensor must be fully packed.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 380

hx

cudnn_adv_train.so Library

Input. Data pointer to GPU memory associated with the tensor descriptor hxDesc. If a NULL
pointer is passed, the initial hidden state of the network will be initialized to zero.

yDesc

Input. An array of fully packed tensor descriptors describing the output from each recurrent
iteration (one descriptor per iteration). The second dimension of the tensor depends on the
direction argument used to initialize rnnDesc:

>

If direction is CUDNN UNIDIRECTIONAL the second dimension should match the
hiddenSize argument.

If direction is CUDNN BIDIRECTIONAL the second dimension should match double the
hiddenSize argument.

The first dimension of the tensor n must match the first dimension of the tensorn in

dyDesc.

Input. Data pointer to GPU memory associated with the output tensor descriptor yDesc.

findIntensity

Input.This input was previously unused in versions prior to cuDNN 7.2.0. It is used in cuDNN
7.2.0 and later versions to control the overall runtime of the RNN find algorithms, by
selecting the percentage of a large Cartesian product space to be searched.

>

Setting findIntensity within the range (0,1.] will set a percentage of the entire RNN
search space to search. When findIntensityis setto 1.0, a full search is performed
over all RNN parameters.

When findIntensity is set to 0.0f, a quick, minimal search is performed. This setting
has the best runtime. However, in this case the parameters returned by this function
will not correspond to the best performance of the algorithm; a longer search might
discover better parameters. This option will execute up to three instances of the
configured RNN problem. Runtime will vary proportionally to RNN problem size, as it
will in the other cases, hence no guarantee of an explicit time bound can be given.

Setting findIntensity within the range [-1.,0) sets a percentage of a reduced
Cartesian product space to be searched. This reduced search space has been
heuristically selected to have good performance. The setting of -1.0 represents a full
search over this reduced search space.

Values outside the range [-1,1] are truncated to the range [-1,1], and then interpreted as
per the above.

Setting findIntensity to 1.0 in cuDNN 7.2 and later versions is equivalent to the
behavior of this function in versions prior to cuDNN 7.2.0.

This function times the single RNN executions over large parameter spaces - one
execution per parameter combination. The times returned by this function are latencies.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 381

cudnn_adv_train.so Library

requestedAlgoCount

Input. The maximum number of elements to be stored in perfResults.

returnedAlgoCount

Output. The number of output elements stored in perfResults.

perfResults

Output. A user-allocated array to store performance metrics sorted ascending by compute
time.

workspace
Input. Data pointer to GPU memory to be used as a workspace for this call.
workSpaceSizeInBytes

Input. Specifies the size in bytes of the provided workspace.

dwDesc

Input. Handle to a previously initialized filter descriptor describing the gradients of the
weights for the RNN.

dw
Input/Output. Data pointer to GPU memory associated with the filter descriptor dwbesc.
reserveSpace

Input. Data pointer to GPU memory to be used as a reserve space for this call.

reserveSpaceSizelInBytes

Input. Specifies the size in bytes of the provided reservespace.

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.

CUDNN_STATUS BAD PARAM
At least one of the following conditions are met:

The descriptor rnnDesc is invalid.

At least one of the descriptors hxDesc, dwbDesc or one of the descriptors in xDesc,
yDesc Is invalid.

The descriptors in one of xDesc, hxDesc, yDesc, dwDesc have incorrect strides or
dimensions.

workSpaceSizeInBytes is too small.

reserveSpaceSizelInBytes is too small.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 382

cudnn_adv_train.so Library

CUDNN_STATUS_EXECUTION FAILED

The function failed to launch on the GPU.
CUDNN_STATUS_ALLOC_FAILED

The function was unable to allocate memory.

8.2.8. cudnnFindRNNForwardTrainingAlgorithmEx ()

This function has been deprecated in cuDNN 8.0.
cudnnStatus t cudnnFindRNNForwardTrainingAlgorithmEx (

cudnnHandle t handle,

const cudnnRNNDescriptor t rnnDesc,

const int seqglLength,

const cudnnTensorDescriptor t *xDesc,

const void W5

const cudnnTensorDescriptor t hxDesc,

const void *hx,

const cudnnTensorDescriptor t cxDesc,

const void WEsK,

const cudnnFilterDescriptor t wDesc,

const void *w,

const cudnnTensorDescriptor t *yDesc,

void *Vy

const cudnnTensorDescriptor t hyDesc,

void *hy,

const cudnnTensorDescriptor t cyDesc,

void *@Yy

const float findIntensity,
const int requestedAlgoCount,
int *returnedAlgoCount,
cudnnAlgorithmPerformance t *perfResults,

void *workspace,

size t workSpaceSizeInBytes,
void *reserveSpace,

size t reserveSpaceSizeInBytes)

This function attempts all available cuDNN algorithms for cudnnRNNForwardTraining(], using
user-allocated GPU memory. It outputs the parameters that influence the performance of the
algorithm to a user-allocated array of cudnnAlgorithmPerformance t. [hese parameter
metrics are written in sorted fashion where the first element has the lowest compute time.

Parameters
handle

Input. Handle to a previously created cuDNN context.
rnnDesc

Input. A previously initialized RNN descriptor.

xDesc
Input. An array of fully packed tensor descriptors describing the input to each recurrent
iteration (one descriptor per iteration). The first dimension (batch size) of the tensors may

decrease from element n to element n+1 but may not increase. Each tensor descriptor
must have the same second dimension (vector length).

NVIDIA cuDNN PR-09702-001_v8.3.0 | 383

cudnn_adv_train.so Library

seqLength

Input. Number of iterations to unroll over. The value of this seqLength must not exceed the
value that was used in cudnnGetRNNWorkspaceSize(] function for querying the workspace
size required to execute the RNN.

Input. Data pointer to GPU memory associated with the tensor descriptors in the array

xDesc.
hxDesc
Input. A fully packed tensor descriptor describing the initial hidden state of the RNN.

The first dimension of the tensor depends on the direction argument used to initialize

rnnDesc:

» Ifdirection is CUDNN UNIDIRECTIONAL the first dimension should match the
numLayers argument.

» Ifdirection is CUDNN BIDIRECTIONAL the first dimension should match double the
numLayers argument.

The second dimension must match the first dimension of the tensors described in xDesc.
The third dimension must match the hiddenSize argument used to initialize rnnDesc. The
tensor must be fully packed.

hx
Input. Data pointer to GPU memory associated with the tensor descriptor hxDesc. If a NULL
pointer is passed, the initial hidden state of the network will be initialized to zero.

cxDesc
Input. A fully packed tensor descriptor describing the initial cell state for LSTM networks.

The first dimension of the tensor depends on the direction argument used to initialize

rnnDesc:

» Ifdirection is CUDNN UNIDIRECTIONAL the first dimension should match the
numLayers argument.

» Ifdirection is CUDNN BIDIRECTIONAL the first dimension should match double the

numLayers argument.

The second dimension must match the first dimension of the tensors described in xDesc.
The third dimension must match the hiddenSize argument used to initialize rnnDesc. The
tensor must be fully packed.

CcX

Input. Data pointer to GPU memory associated with the tensor descriptor cxDesc. If a NULL
pointer is passed, the initial cell state of the network will be initialized to zero.

wDesc

Input. Handle to a previously initialized filter descriptor describing the weights for the RNN.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 384

cudnn_adv_train.so Library

Input. Data pointer to GPU memory associated with the filter descriptor wbesc.
yDesc
Input. An array of fully packed tensor descriptors describing the output from each recurrent

iteration (one descriptor per iteration). The second dimension of the tensor depends on the
direction argument used to initialize rnnDesc:

» Ifdirection is CUDNN UNIDIRECTIONAL the second dimension should match the
hiddenSize argument.

» Ifdirection is CUDNN BIDIRECTIONAL the second dimension should match double the
hiddenSize argument.

The first dimension of the tensor n must match the first dimension of the tensor n in xDesc.

Output. Data pointer to GPU memory associated with the output tensor descriptor yDesc.
hyDesc
Input. A fully packed tensor descriptor describing the final hidden state of the RNN. The

first dimension of the tensor depends on the direction argument used to initialize

rnnDesc:

» If direction is CUDNN UNIDIRECTIONAL the first dimension should match the
numLayers argument.

» Ifdirection Is CUDNN BIDIRECTIONAL the first dimension should match double the
numLayers argument.

The second dimension must match the first dimension of the tensors described in xDesc.
The third dimension must match the hiddenSize argument used to initialize rnnDesc. The
tensor must be fully packed.

hy
Output. Data pointer to GPU memory associated with the tensor descriptor hyDesc. If a
NULL pointer is passed, the final hidden state of the network will not be saved.

cyDesc
Input. A fully packed tensor descriptor describing the final cell state for LSTM networks.
The first dimension of the tensor depends on the direction argument used to initialize

rnnDesc:

» Ifdirection is CUDNN UNIDIRECTIONAL the first dimension should match the
numLayers argument.

» Ifdirection is CUDNN BIDIRECTIONAL the first dimension should match double the
numLayers argument.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 385

cudnn_adv_train.so Library

The second dimension must match the first dimension of the tensors described in xDesc.
The third dimension must match the hiddenSize argument used to initialize rnnDesc. The
tensor must be fully packed.

cy
Output. Data pointer to GPU memory associated with the tensor descriptor cyDesc. If a
NULL pointer is passed, the final cell state of the network will not be saved.

findIntensity
Input.This input was previously unused in versions prior to cuDNN 7.2.0. It is used in cuDNN

7.2.0 and later versions to control the overall runtime of the RNN find algorithms, by
selecting the percentage of a large Cartesian product space to be searched.

» Setting findIntensity within the range (0,1.] will set a percentage of the entire RNN
search space to search. When findIntensity is setto 1.0, a full search is performed
over all RNN parameters.

» When findIntensity is set to 0.0f, a quick, minimal search is performed. This setting
has the best runtime. However, in this case the parameters returned by this function
will not correspond to the best performance of the algorithm; a longer search might
discover better parameters. This option will execute up to three instances of the
configured RNN problem. Runtime will vary proportionally to RNN problem size, as it
will in the other cases, hence no guarantee of an explicit time bound can be given.

» Setting findIntensity within the range [-1.,0) sets a percentage of a reduced
Cartesian product space to be searched. This reduced search space has been
heuristically selected to have good performance. The setting of -1.0 represents a full
search over this reduced search space.

» Values outside the range [-1,1] are truncated to the range [-1,1], and then interpreted as
per the above.

» Setting findIntensity to 1.0 in cuDNN 7.2 and later versions is equivalent to the
behavior of this function in versions prior to cuDNN 7.2.0.

» This function times the single RNN executions over large parameter spaces - one
execution per parameter combination. The times returned by this function are latencies.

requestedAlgoCount

Input. The maximum number of elements to be stored in perfResults.

returnedAlgoCount

Output. The number of output elements stored in perfResults.

perfResults

Output. A user-allocated array to store performance metrics sorted ascending by compute
time.

workspace

Input. Data pointer to GPU memory to be used as a workspace for this call.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 386

cudnn_adv_train.so Library

workSpaceSizeInBytes

Input. Specifies the size in bytes of the provided workspace.

reserveSpace

Input/Output. Data pointer to GPU memory to be used as a reserve space for this call.

reserveSpaceSizeInBytes

Input. Specifies the size in bytes of the provided reserveSpace.

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:

» The descriptor rnnDesc is invalid.

> At least one of the descriptors hxDesc, cxDesc, wDesc, hyDesc, cyDesc or one of
the descriptors in xDesc, yDesc is invalid.

> The descriptors in one of xDesc, hxDesc, cxDesc, wDesc, yDesc, hyDesc,
cyDesc have incorrect strides or dimensions.

> workSpaceSizeInBytes is too small.

> reserveSpaceSizeInBytes istoo small.
CUDNN_STATUS_EXECUTION_ FAILED

The function failed to launch on the GPU.
CUDNN_STATUS ALLOC_FAILED

The function was unable to allocate memory.

8.2.9. cudnnGetCTCLossDescriptor ()

cudnnStatus t cudnnGetCTCLossDescriptor (
cudnnCTCLossDescriptor t ctcLossDesc,
cudnnDataType t* compType)

This function returns the configuration of the passed CTC loss function descriptor.
Parameters

ctcLossDesc

Input. CTC loss function descriptor passed, from which to retrieve the configuration.

compType

Output. Compute type associated with this CTC loss function descriptor.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 387

cudnn_adv_train.so Library

Returns

CUDNN_STATUS_SUCCESS

The function returned successfully.
CUDNN_STATUS_BAD PARAM

Input OpTensor descriptor passed is invalid.

8.2.10. cudnnGetCTCLossDescriptorEx ()

cudnnStatus t cudnnGetCTCLossDescriptorEx (

cudnnCTCLossDescriptor t ctcLossDesc,
cudnnDataType t *compType,
cudnnLossNormalizationMode t *normMode,
cudnnNanPropagation t *gradMode)

This function returns the configuration of the passed CTC loss function descriptor.

Parameters
ctcLossDesc

Input. CTC loss function descriptor passed, from which to retrieve the configuration.
compType

Output. Compute type associated with this CTC loss function descriptor.

normMode

Output. Input normalization type for this CTC loss function descriptor. For more
information, see cudnnLossNormalizationMode t.

gradMode

Output. NaN propagation type for this CTC loss function descriptor.

Returns

CUDNN_STATUS_SUCCESS

The function returned successfully.

CUDNN_STATUS_BAD_PARAM

Input OpTensor descriptor passed is invalid.

8.2.11. cudnnGetCTCLossDescriptor v8 ()

cudnnStatus t cudnnGetCTCLossDescriptor v8(

cudnnCTCLossDescriptor t ctcLossDesc,
cudnnDataType t *compType,
cudnnLossNormalizationMode t *normMode,
cudnnNanPropagation t *gradMode,

int *maxLabellLength)

This function returns the configuration of the passed CTC loss function descriptor.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 388

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnLossNormalizationMode_t

cudnn_adv_train.so Library

Parameters

ctcLossDesc

Input. CTC loss function descriptor passed, from which to retrieve the configuration.
compType

Output. Compute type associated with this CTC loss function descriptor.

normMode

Output. Input normalization type for this CTC loss function descriptor. For more
information, see cudnnLossNormalizationMode_t.

gradMode

Output. NaN propagation type for this CTC loss function descriptor.
maxLabellLength

Output. The max label length for this CTC loss function descriptor.

Returns

CUDNN_STATUS_SUCCESS

The function returned successfully.

CUDNN_STATUS_BAD PARAM

Input OpTensor descriptor passed is invalid.

8.2.12. cudnnGetCTCLossWorkspaceSize ()

cudnnStatus_t cudnnGetCTCLossWorkspaceSize (

cudnnHandle t handle,

const cudnnTensorDescriptor t probsDesc,
const cudnnTensorDescriptor t gradientsDesc,
const int *labels,

const int *labellengths,
const int *inputLengths,
cudnnCTCLossAlgo t algo,

const cudnnCTCLossDescriptor_ t ctcLossDesc,
size t *sizelInBytes)

This function returns the amount of GPU memory workspace the user needs to allocate to be
able to call cudnnCTCLoss() with the specified algorithm. The workspace allocated will then be
passed to the routine cudnnCTClossl().

Parameters
handle

Input. Handle to a previously created cuDNN context.

probsDesc

Input. Handle to the previously initialized probabilities tensor descriptor.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 389

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnLossNormalizationMode_t

cudnn_adv_train.so Library

gradientsDesc

Input. Handle to a previously initialized gradient tensor descriptor.
labels

Input. Pointer to a previously initialized labels list.

labellengths

Input. Pointer to a previously initialized lengths list, to walk the above labels list.
inputLengths

Input. Pointer to a previously initialized list of the lengths of the timing steps in each batch.
algo

Input. Enumerant that specifies the chosen CTC loss algorithm

ctclLossDesc

Input. Handle to the previously initialized CTC loss descriptor.

sizeInBytes
Output. Amount of GPU memory needed as workspace to be able to execute the CTC loss
computation with the specified algo.

Returns

CUDNN_STATUS_SUCCESS
The query was successful.
CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:
The dimensions of probsDesc do not match the dimensions of gradientsbesc.

The inputLengths do not agree with the first dimension of probsbesc.

The workSpaceSizeInBytes is not sufficient.

vV v v VY

The labelLengths is greater than 256.
CUDNN_STATUS NOT SUPPORTED

A compute or data type other than FLOAT was chosen, or an unknown algorithm type was
chosen.

8.2.13. cudnnGetCTCLossWorkspaceSize v8 ()

cudnnStatus t cudnnGetCTCLossWorkspaceSize v8(

cudnnHaHdle_t handle,
cudnnCTCLossAlgo t algo,

const cudnnCTCLossDescriptor t ctcLossDesc,
const cudnnTensorDescriptor t probsDesc,
const cudnnTensorDescriptor t gradientsDesc,
size t *sizeInBytes

NVIDIA cuDNN PR-09702-001_v8.3.0 | 390

cudnn_adv_train.so Library

This function returns the amount of GPU memory workspace the user needs to allocate to
be able to call cudnnCTCLoss_v8(] with the specified algorithm. The workspace allocated will
then be passed to the routine cudnnCTCLoss_v8().

Parameters
handle

Input. Handle to a previously created cuDNN context.
algo

Input. Enumerant that specifies the chosen CTC loss algorithm.

ctcLossDesc

Input. Handle to the previously initialized CTC loss descriptor.

probsDesc

Input. Handle to the previously initialized probabilities tensor descriptor.

gradientsDesc

Input. Handle to a previously initialized gradient tensor descriptor.

sizeInBytes
Output. Amount of GPU memory needed as workspace to be able to execute the CTC loss
computation with the specified algo.

Returns

CUDNN_STATUS_SUCCESS

The query was successful.
CUDNN_STATUS_BAD PARAM

At least one of the following conditions are met:
» The dimensions of probsDesc do not match the dimensions of gradientsDesc.
CUDNN_STATUS_NOT SUPPORTED

A compute or data type other than FLOAT was chosen, or an unknown algorithm type was
chosen.

8.2.14. cudnnGetRNNTrainingReserveSize ()

This function has been deprecated in cuDNN 8.0. Use cudnnGetRNNTempSpaceSizes() instead
of cudnnGetRNNWorkspaceSize ().

cudnnStatus t cudnnGetRNNTrainingReserveSize (

cudnnHaHdle_t handle,
const cudnnRNNDescriptor t rnnDesc,
const int seqglength,
const cudnnTensorDescriptor t *xDesc,

size t *sizeInBytes)

NVIDIA cuDNN PR-09702-001_v8.3.0 | 391

cudnn_adv_train.so Library

This function is used to query the amount of reserved space required for training the RNN
described by rnnDesc with input dimensions defined by xDesc. The same reserved space
buffer must be passed to cudnnRNNForwardTraining(], cudnnRNNBackwardDatal(), and
cudnnRNNBackwardWeights(]. Each of these calls overwrites the contents of the reserved
space, however it can safely be backed up and restored between calls if reuse of the memory
Is desired.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor.

rnnDesc
Input. A previously initialized RNN descriptor.
seqlLength

Input. Number of iterations to unroll over. The value of this seqLength must not exceed the
value that was used in cudnnGetRNNWorkspaceSize() function for querying the workspace
size required to execute the RNN.

xDesc

Input. An array of tensor descriptors describing the input to each recurrent iteration (one
descriptor per iteration). The first dimension (batch size) of the tensors may decrease from
element n to element n+1 but may not increase. Each tensor descriptor must have the
same second dimension (vector length).

sizeInBytes
Output. Minimum amount of GPU memory needed as reserve space to be able to train an
RNN with the specified descriptor and input tensors.

Returns

CUDNN_STATUS_SUCCESS

The query was successful.

CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:
The descriptor rnnDesc is invalid.
At least one of the descriptors in xDesc is invalid.

The descriptors in xDesc have inconsistent second dimensions, strides or data types.

The descriptors in xDesc have increasing first dimensions.

vV vV v Vv VY

The descriptors in xDesc are not fully packed.
CUDNN_STATUS_NOT SUPPORTED

The data types in tensors described by xDesc are not supported.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 392

cudnn_adv_train.so Library

8.2.15. cudnnMultiHeadAttnBackwardData ()

cudnnStatus_t cudnnMultiHeadAttnBackwardData (
cudnnHandle t handle,

const cudnnAttnDescriptor t attnDesc,
const int loWinIdx[],

const int hiWinIdx[],

const int devSeqLengthsDQDO[],

const int devSeqlLengthsDKDV|[],

const cudnnSegDataDescriptor t doDesc,
const void *dout,

const cudnnSegDataDescriptor t dgDesc,
void *dqueries,

const void *queries,

const cudnnSegDataDescriptor t dkDesc,
void *dkeys,

const void *keys,

const cudnnSegDataDescriptor t dvDesc,
void *dvalues,

const void *values,

size t weightSizeInBytes,

const void *weights,

size t workSpaceSizeInBytes,

void *workSpace,

size t reserveSpaceSizelnBytes,

void *reserveSpace) ;

This function computes exact, first-order derivatives of the multi-head attention block with
respect to its inputs: Q, K, V. If y=F(x] is a vector-valued function that represents the multi-
head attention layer and it takes some vector we R" as an input (with all other parameters
and inputs constant], and outputs vector yeR™, then cudnnMultiHeadAttnBackwardData ()

T
computes the result of (ayi/ax,-) Oout Where 64, Is the mx 1 gradient of the loss function with
respect to multi-head attention outputs. The 8., gradient is back propagated through prior
layers of the deep learning model. E)yi/axj is the mxn Jacobian matrix of F(x). The input is

supplied via the dout argument and gradient results for Q, K, V are written to the dqueries,
dkeys, and dvalues buffers.

The cudnnMultiHeadAttnBackwardData () function does not output partial derivatives for
residual connections because this result is equal to §,,. If the multi-head attention model
enables residual connections sourced directly from Q, then the dout tensor needs to be added
to dqueries to obtain the correct result of the latter. This operation is demonstrated in the
cuDNN multiHeadAttention sample code.

The cudnnMultiHeadAttnBackwardData () function must be invoked after
CudﬂﬂNﬂﬂUHeadAUnForwardU.TheloWinIdx[],hiWinIdx[],queries,key&

values, weights, and reserveSpace arguments should be the same as in the
CudnnNhﬂﬂHeadAUnForwardUCaU.devSeqLengthsDQDO[]anddevSeqLengthsDKDV[J
device arrays should contain the same start and end attention window indices as
devSeglLengthsQO[] and devSeqlLengthsKV[] arrays in the forward function invocation.

Note: cudnnMultiHeadAttnBackwardData () does not verify that sequence lengths
stored in devSeqglLengthsDODO[] and devSeqgLengthsDKDV [] contain the same settings as
seqglLengthArray[] in the corresponding sequence data descriptor.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 393

cudnn_adv_train.so Library

handle

Input. The current context handle.

attnDesc

Input. A previously initialized attention descriptor.
loWinIdx[], hiWinIdx][]
Input. Two host integer arrays specifying the start and end indices of the attention window
for each Q time-step. The start index in K, V sets is inclusive, and the end index is exclusive.
devSeqLengthsDQDO][]
Input. Device array containing a copy of the sequence length array from the dgbesc or
doDesc sequence data descriptor.
devSeqLengthsDKDV]]
Input. Device array containing a copy of the sequence length array from the dkDesc or
dvDesc sequence data descriptor.
doDesc
Input. Descriptor for the 8, gradients (vectors of partial derivatives of the loss function with
respect to the multi-head attention outputs).
dout
Pointer to 8., gradient data in the device memory.
dgDesc
Input. Descriptor for queries and dqueries sequence data.
dqueries
Output. Device pointer to gradients of the loss function computed with respect to queries
vectors.
queries

Input. Pointer to queries data in the device memory. This is the same input as in
cudnnMultiHeadAttnForward|().

dkDesc

Input. Descriptor for keys and dkeys sequence data.
dkeys

Output. Device pointer to gradients of the loss function computed with respect to keys
vectors.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 394

cudnn_adv_train.so Library

keys

Input. Pointer to keys data in the device memory. This is the same input as in
cudnnMultiHeadAttnForward|().

dvDesc

Input. Descriptor for values and dvalues sequence data.

dvalues

Output. Device pointer to gradients of the loss function computed with respect to values
vectors.

values

Input. Pointer to values data in the device memory. This is the same input as in
cudnnMultiHeadAttnForward().

weightSizeInBytes

Input. Size of the weight buffer in bytes where all multi-head attention trainable
parameters are stored.

weights

Input. Address of the weight buffer in the device memory.

workSpaceSizelInBytes

Input. Size of the work-space buffer in bytes used for temporary API storage.

workSpace

Input/Output. Address of the work-space buffer in the device memory.

reserveSpaceSizelInBytes

Input. Size of the reserve-space buffer in bytes used for data exchange between forward
and backward (gradient) API calls.

reserveSpace

Input/Output. Address to the reserve-space buffer in the device memory.

CUDNN_STATUS_SUCCESS

No errors were detected while processing APl input arguments and launching GPU kernels.

CUDNN_STATUS_BAD_ PARAM

An invalid or incompatible input argument was encountered.

CUDNN_STATUS_EXECUTION_ FAILED

The process of launching a GPU kernel returned an error, or an earlier kernel did not
complete successfully.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 395

cudnn_adv_train.so Library

CUDNN_STATUS_INTERNAL ERROR

An inconsistent internal state was encountered.

CUDNN_STATUS_NOT_SUPPORTED

A requested option or a combination of input arguments is not supported.

CUDNN_STATUS_ALLOC_FAILED

Insufficient amount of shared memory to launch a GPU kernel.

8.2.16. cudnnMultiHeadAttnBackwardWeights ()

cudnnStatus_t cudnnMultiHeadAttnBackwardWeights (
cudnnHandle t handle,

const cudnnAttnDescriptor t attnDesc,
cudnnWgradMode t addGrad,

const cudnnSegDataDescriptor t gDesc,
const void *queries,

const cudnnSegDataDescriptor t kDesc,
const void *keys,

const cudnnSegDataDescriptor t vDesc,
const void *values,

const cudnnSegDataDescriptor t doDesc,
const void *dout,

size t weightSizeInBytes,

const void *weights,

void *dweights,

size t workSpaceSizeInBytes,

void *workSpace,

size t reserveSpaceSizelnBytes,

void *reserveSpace) ;

This function computes exact, first-order derivatives of the multi-head attention block with
respect to its trainable parameters: projection weights and projection biases. If y=F(w] is a
vector-valued function that represents the multi-head attention layer and it takes some vector
xeR" of flatten weights or biases as an input (with all other parameters and inputs fixed), and
outputs vector ye R™, then cudnnMultiHeadAttnBackwardWeights () computes the result

of (ayi/axj)T&)ut where 6,4, Is the mx 1 gradient of the loss function with respect to multi-
head attention outputs. The &, gradient is back propagated through prior layers of the deep
learning model. 6y1,/6xj is the mxn Jacobian matrix of Flw). The &, input is supplied via the
dout argument.

All gradient results with respect to weights and biases are written to the dweights buffer.
The size and the organization of the dweights buffer is the same as the weights buffer that
holds multi-head attention weights and biases. The cuDNN multiHeadAttention sample
code demonstrates how to access those weights.

Gradient of the loss function with respect to weights or biases is typically computed over
multiple batches. In such a case, partial results computed for each batch should be summed
together. The addGrad argument specifies if the gradients from the current batch should be
added to previously computed results or the dweights buffer should be overwritten with the
new results.

The cudnnMultiHeadAttnBackwardWeights () function should be invoked after
cudnnMultiHeadAttnBackwardDatal(). The queries, keys, values, weights, and

NVIDIA cuDNN PR-09702-001_v8.3.0 | 396

cudnn_adv_train.so Library

reserveSpace arguments should be the same as in cudnnMultiHeadAttnForward() and
cudnnMultiHeadAttnBackwardDatal(] calls. The dout argument should be the same as in
cudnnMultiHeadAttnBackwardData().

Parameters
handle

Input. The current context handle.
attnDesc

Input. A previously initialized attention descriptor.
addGrad
Input. Weight gradient output mode.
gDesc
Input. Descriptor for the query sequence data.
queries
Input. Pointer to queries sequence data in the device memory.
kDesc
Input. Descriptor for the keys sequence data.
keys
Input. Pointer to keys sequence data in the device memory.
vDesc
Input. Descriptor for the values sequence data.
values
Input. Pointer to values sequence data in the device memory.

doDesc

Input. Descriptor for the 8, gradients (vectors of partial derivatives of the loss function with
respect to the multi-head attention outputs).

dout

Input. Pointer to 6,4, gradient data in the device memory.
weightSizeInBytes

Input. Size of the weights and dweights buffers in bytes.
weights

Input. Address of the weight buffer in the device memory.

dweights

Output. Address of the weight gradient buffer in the device memory.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 397

workSpaceSizeInBytes

cudnn_adv_train.so Library

Input. Size of the work-space buffer in bytes used for temporary API storage.

workSpace

Input/Output. Address of the work-space buffer in the device memory.

reserveSpaceSizeInBytes

Input. Size of the reserve-space buffer in bytes used for data exchange between forward

and backward (gradient) API calls.

reserveSpace

Input/Output. Address to the reserve-space buffer in the device memory.

Returns

CUDNN_STATUS_SUCCESS

No errors were detected while processing APl input arguments and launching GPU kernels.

CUDNN_STATUS BAD PARAM

An invalid or incompatible input argument was encountered.

CUDNN_STATUS_EXECUTION_ FAILED

The process of launching a GPU kernel returned an error, or an earlier kernel did not

complete successfully.
CUDNN_STATUS_INTERNAL ERROR

An inconsistent internal state was encountered.

CUDNN_STATUS_NOT_SUPPORTED

A requested option or a combination of input arguments is not supported.

8.2.17.

cudnnRNNBackwardData ()

This function has been deprecated in cuDNN 8.0. Use cudnnRNNBackwardData_v8(] instead of

cudnnRNNBackwardData ().

cudnnStatus_t cudnnRNNBackwardData (

cudnnHandle t

const cudnnRNNDescriptor t
const int

const cudnnTensorDescriptor t
const void

const cudnnTensorDescriptor t
const void

const cudnnTensorDescriptor t
const void

const cudnnTensorDescriptor t
const void

const cudnnFilterDescriptor t
const void

const cudnnTensorDescriptor t
const void

const cudnnTensorDescriptor t

NVIDIA cuDNN

handle,
rnnDesc,
seqglength,
*yDesc,
Y
*dyDesc,
*dy,
dhyDesc,
*dhy,
dcyDesc,

hxDesc,
Wk,
cxDesc,

PR-09702-001_v8.3.0

398

cudnn_adv_train.so Library

const void *ex,

const cudnnTensorDescriptor t *dxDesc,

void *dx,

const cudnnTensorDescriptor t dhxDesc,

void *dhx,

const cudnnTensorDescriptor t dcxDesc,

void BElEsR,;

void *workspace,

size t workSpaceSizeInBytes,
const void *reserveSpace,

size t reserveSpaceSizelInBytes)

This routine executes the recurrent neural network described by rnnDesc with output
gradients dy, dhy, and dhc, weights w and input gradients dx, dhx, and dcx. workspace is
required for intermediate storage. The data in reserveSpace must have previously been
generated by cudnnRNNForwardTraining(). The same reserveSpace data must be used for
future calls to cudnnRNNBackwardWeights(] if they execute on the same input data.

Parameters
handle

Input. Handle to a previously created cuDNN context. For more information , see
cudnnHandle_t.

rnnDesc

Input. A previously initialized RNN descriptor. For more information, see
cudnnRNNDescriptor_t.

seqlLength

Input. Number of iterations to unroll over. The value of this seqLength must not exceed
the value that was used in the cudnnGetRNNWorkspaceSize() function for querying the
workspace size required to execute the RNN.

yDesc

Input. An array of fully packed tensor descriptors describing the output from

each recurrent iteration (one descriptor per iteration). For more information, see
cudnnTensorDescriptor_t. The second dimension of the tensor depends on the direction
argument used to initialize rnnDesc:

» Ifdirection Iis CUDNN UNIDIRECTIONAL the second dimension should match the
hiddenSize argument.

» If direction is CUDNN BIDIRECTIONAL the second dimension should match double the
hiddenSize argument.

The first dimension of the tensor n must match the first dimension of the tensornin
dyDesc.

Input. Data pointer to GPU memory associated with the output tensor descriptor yDesc.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 399

cudnn_adv_train.so Library

dyDesc

Input. An array of fully packed tensor descriptors describing the gradient at the output from
each recurrent iteration (one descriptor per iteration). The second dimension of the tensor
depends on the direction argument used to initialize rnnDesc:

» Ifdirection is CUDNN UNIDIRECTIONAL the second dimension should match the
hiddenSize argument.

» Ifdirection is CUDNN BIDIRECTIONAL the second dimension should match double the
hiddenSize argument.

The first dimension of the tensor n must match the first dimension of the tensorn in

dxDesc.

dy
Input. Data pointer to GPU memory associated with the tensor descriptors in the array
dyDesc.

dhyDesc

Input. A fully packed tensor descriptor describing the gradients at the final hidden state of
the RNN. The first dimension of the tensor depends on the direction argument used to
initialize rnnbesc:

» Ifdirection is CUDNN UNIDIRECTIONAL the first dimension should match the
numLayers argument.

» If direction is CUDNN BIDIRECTIONAL the first dimension should match double the
numLayers argument.

The second dimension must match the first dimension of the tensors described in xDesc.
The third dimension must match the hiddenSize argument used to initialize rnnDesc. The
tensor must be fully packed.

dhy
Input. Data pointer to GPU memory associated with the tensor descriptor dhybDesc. If a NULL

pointer is passed, the gradients at the final hidden state of the network will be initialized to
zero.

dcyDesc
Input. A fully packed tensor descriptor describing the gradients at the final cell state of

the RNN. The first dimension of the tensor depends on the direction argument used to
initialize rnnDesc:

» Ifdirection is CUDNN UNIDIRECTIONAL the first dimension should match the
numLayers argument.

» Ifdirection is CUDNN BIDIRECTIONAL the first dimension should match double the
numLayers argument.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 400

cudnn_adv_train.so Library

The second dimension must match the first dimension of the tensors described in xDesc.
The third dimension must match the hiddenSize argument used to initialize rnnDesc. The
tensor must be fully packed.

decy
Input. Data pointer to GPU memory associated with the tensor descriptor decybDesc. If a NULL

pointer is passed, the gradients at the final cell state of the network will be initialized to
zero.

wDesc

Input. Handle to a previously initialized filter descriptor describing the weights for the RNN.
For more information, see cudnnFilterDescriptor t.

Input. Data pointer to GPU memory associated with the filter descriptor wbesc.
hxDesc
Input. A fully packed tensor descriptor describing the initial hidden state of the RNN.

The first dimension of the tensor depends on the direction argument used to initialize

rnnDesc:

» Ifdirection is CUDNN UNIDIRECTIONAL the first dimension should match the
numLayers argument.

» Ifdirection is CUDNN BIDIRECTIONAL the first dimension should match double the
numLayers argument.

The second dimension must match the second dimension of the tensors described in
xDesc. The third dimension must match the hiddenSize argument used to initialize
rnnDesc. The tensor must be fully packed.

hx
Input. Data pointer to GPU memory associated with the tensor descriptor hxDesc. If a NULL
pointer is passed, the initial hidden state of the network will be initialized to zero.

cxDesc
Input. A fully packed tensor descriptor describing the initial cell state for LSTM networks.

The first dimension of the tensor depends on the direction argument used to initialize

rnnDesc:

» Ifdirection Is CUDNN UNIDIRECTIONAL the first dimension should match the
numLayers argument.

» Ifdirection is CUDNN BIDIRECTIONAL the first dimension should match double the
numLayers argument.

The second dimension must match the second dimension of the tensors described in
xDesc. The third dimension must match the hiddenSize argument used to initialize
rnnDesc. The tensor must be fully packed.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 401

cudnn_adv_train.so Library

CcX

Input. Data pointer to GPU memory associated with the tensor descriptor cxDesc. If a NULL
pointer is passed, the initial cell state of the network will be initialized to zero.

dxDesc

Input. An array of fully packed tensor descriptors describing the gradient at the input of
each recurrent iteration (one descriptor per iteration). The first dimension (batch size)
of the tensors may decrease from element n to element n+1 but may not increase. Each
tensor descriptor must have the same second dimension (vector length).

dx

Output. Data pointer to GPU memory associated with the tensor descriptors in the array

dxDesc.
dhxDesc
Input. A fully packed tensor descriptor describing the gradient at the initial hidden state of

the RNN. The first dimension of the tensor depends on the direction argument used to
initialize rnnDesc:

» Ifdirection is CUDNN UNIDIRECTIONAL the first dimension should match the
numLayers argument.

» Ifdirection is CUDNN BIDIRECTIONAL the first dimension should match double the
numLayers argument.

The second dimension must match the first dimension of the tensors described in xDesc.
The third dimension must match the hiddenSize argument used to initialize rnnDesc. The
tensor must be fully packed.

dhx
Output. Data pointer to GPU memory associated with the tensor descriptor dhxDesc. If a
NULL pointer is passed, the gradient at the hidden input of the network will not be set.
dcxDesc
Input. A fully packed tensor descriptor describing the gradient at the initial cell state of

the RNN. The first dimension of the tensor depends on the direction argument used to
initialize rnnDesc:

» Ifdirection is CUDNN UNIDIRECTIONAL the first dimension should match the
numLayers argument.

» If direction is CUDNN BIDIRECTIONAL the first dimension should match double the
numLayers argument.

The second dimension must match the first dimension of the tensors described in xDesc.
The third dimension must match the hiddenSize argument used to initialize rnnDesc. The
tensor must be fully packed.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 402

cudnn_adv_train.so Library

dex

Output. Data pointer to GPU memory associated with the tensor descriptor dexDesc. If a
NULL pointer is passed, the gradient at the cell input of the network will not be set.

workspace

Input. Data pointer to GPU memory to be used as a workspace for this call.

workSpaceSizelInBytes

Input. Specifies the size in bytes of the provided workspace.

reserveSpace

Input/Output. Data pointer to GPU memory to be used as a reserve space for this call.

reserveSpaceSizelInBytes

Input. Specifies the size in bytes of the provided reservespace.

CUDNN_STATUS_ SUCCESS

The function launched successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD PARAM

At least one of the following conditions are met:

The descriptor rnnDesc is invalid.

At least one of the descriptors dhxDesc, wDesc, hxDesc, cxDesc, dcxDesc, dhyDesc
dcyDesc or one of the descriptors in yDesc, dxdesc, dydesc Is invalid.

The descriptors in one of yDesc, dxDesc, dyDesc, dhxDesc, wDesc, hxDesc, cxDesc,
dcxDesc, dhyDesc, deyDesc has incorrect strides or dimensions.

workSpaceSizeInBytes istoo small.

reserveSpaceSizeInBytes is too small.
CUDNN_STATUS_INVALID_ VALUE

cudnnSetPersistentRNNPLlan(] was not called prior to the current function when
CUDNN RNN ALGO PERSIST DYNAMIC was selected in the RNN descriptor.

CUDNN_STATUS_MAPPING_ERROR

A GPU/CUDA resource, such as a texture object, shared memory, or zero-copy memory is
not available in the required size or there is a mismatch between the user resource and
cuDNN internal resources. A resource mismatch may occur, for example, when calling
cudnnSetStream (). There could be a mismatch between the user provided CUDA stream

and the internal CUDA events instantiated in the cuDNN handle when cudnnCreate () was
invoked.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 403

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnSetPersistentRNNPlan

cudnn_adv_train.so Library

This error status may not be correctable when it is related to texture dimensions, shared
memory size, or zero-copy memory availability. If CUDNN_STATUS MAPPING ERROR IS
returned by cudnnSetStream (), then it is typically correctable, however, it means that
the cuDNN handle was created on one GPU and the user stream passed to this function is
associated with another GPU.

CUDNN_STATUS_EXECUTION_ FAILED

The function failed to launch on the GPU.
CUDNN_STATUS_ALLOC_FAILED

The function was unable to allocate memory.

8.2.18. cudnnRNNBackwardData_ v8 ()

cudnnStatus t cudnnRNNBackwardData v8 (
cudnnHandle t handle,
cudnnRNNDescriptor t rnnDesc,
const int32 t devSeqLengths[],
cudnnRNNDataDescriptor t yDesc,
const void *y,
const void *dy,
cudnnRNNDataDescriptor t xDesc,
void *dx,
cudnnTensorDescriptor t hDesc,
const void *hx,
const void *dhy,
void *dhx,
cudnnTensorDescriptor t cDesc,
const void *cx,
const void *dcy,
void *dcx,
size t weightSpaceSize,
const void *weightSpace,
size t workSpaceSize,
void *workSpace,
size t reserveSpaceSize,
void *reserveSpace) ;

This function computes exact, first-order derivatives of the RNN model with respect to its
inputs: x, hx and for the LSTM cell typealsocx. If 0 = [y, hy, cyl = F(x, hx, cx) = F(z) is a vector-
valued function that represents the entire RNN model and it takes vectors x(for all time-steps]
and vectors hx, cx (for all layers) as inputs, concatenated into ze R" (network weights and
biases are assumed constant], and outputs vectors y, hy, cy concatenated into a vector oeR™

T
then cudnnRNNBackwardData v8 () computes the result of (60,-/62}-) Oout Where 6 IS the
mx1 gradient of the loss function with respect to all RNN outputs. The 6., gradient is back
propagated through prior layers of the deep learning model, starting from the model output.

ao,./az,- is the mxn Jacobian matrix of F(z). The &,, input is supplied via the dy, dhy, and dcy
T
arguments and gradient results (ao,./azj) Oour @re written to the dx, dhx, and dex buffers.

Locations of %, y, hx, cx, hy, cy, dx, dy, dhx, dcx, dhy, and dcy signals a multi-layer RNN
model are shown in the Figure below. Note that internal RNN signals (between time-steps and
between layers] are not exposed by the cudnnRNNBackwardpata w8 () function.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 404

cudnn_adv_train.so Library

Figure 3. Locations of x, y, hx, cx, hy, cy, dx, dy, dhx, dcx, dhy, and dcy
signals a multi-layer RNN model.

?# ?T vT ?T

hy,
hx, X . > > - Y. CY faver=2
i I i i
hx, hy, ¢
X “—b > » » —pv y layer=1
‘ ‘ I i
hy,
hx, X, » > > - v, ey fayer=0
KT KT KT KT
time=0 time=1 tirme=2 time=3

Memory addresses to the primary RNN output v, the initial hidden state hx, and the
initial cell state cx (for LSTM only) should point to the same data as in the preceding
cudnnRNNForward () call. The dy and dx pointers cannot be NULL.

The cudnnRNNBackwardData v8 () function accepts any combination of dhy, dhx, dcy, dex
buffer addresses being NULL. When dhy or dcy are NULL, it is assumed that those inputs are
zero. When dhx or dex pointers are NULL then the corresponding results are not written by
cudnnRNNBackwardData v8 ().

When all hx, dhy, dhx pointers are NULL, then the corresponding tensor descriptor hDesc
can be NULL too. The same rule applies to the cx, dcy, dex pointers and the cDesc tensor
descriptor.

The cudnnRNNBackwardData v8 () function allows the user to

use padded layouts for inputs y, dy, and output dx. In padded or

unpacked layouts (CUDNN RNN DATA LAYOUT SEQ MAJOR UNPACKED,

CUDNN RNN DATA LAYOUT BATCH MAJOR UNPACKED) each sequence of vectors

In @ mini-batch has a fixed length defined by the maxSeqgLength argument in the
cudnnSetRNNDataDescriptor() function. The term "unpacked" refers here to the presence of
padding vectors, and not unused address ranges between contiguous vectors.

Each padded, fixed-length sequence starts from a segment of valid vectors. The valid vector
count is stored in seqLengthArray passed to cudnnSetRNNDataDescriptor(], such that

0 < seglengthArray[i] <= maxSegLength for all sequences in a mini-batch, i.e., for
i=0..batchsize-1. The remaining padding vectors make the combined sequence length
equal to maxSeqgLength. Both sequence-major and batch-major padded layouts are supported.

In addition, a packed sequence-major layout: CUDNN_RNN DATA LAYOUT SEQ MAJOR PACKED
can be selected by the user. In the latter layout, sequences of vectors in a mini-batch are
sorted in the descending order according to the sequence lengths. First, all vectors for time

NVIDIA cuDNN PR-09702-001_v8.3.0 | 405

cudnn_adv_train.so Library

step zero are stored. They are followed by vectors for time step one, and so on. This layout
uses no padding vectors.

The same layout type must be specified in xDesc and yDesc descriptors.

Two host arrays named seqlengthArray in xDesc and yDesc RNN data descriptors must
be the same. In addition, a copy of seglengthArray in the device memory must be passed
via the devSeglLengths argument. This array is supplied directly to GPU kernels. The
cudnnRNNBackwardData v8 () function does not verify that sequence lengths stored in
devSegLengths in GPU memory are the same as in xDesc and ybesc descriptors in CPU
memory. Sequence length arrays from xDesc and yDesc descriptors are checked for
consistency, however.

The cudnnRNNBackwardData v8 () function must be called after cudnnRNNForward(].
The cudnnRNNForward() function should be invoked with the fwdMode argument of type
cudnnRNNForward() set to CUDNN_FWD MODE_TRATINING.

Parameters

handle

Input. The current cuDNN context handle.

rnnDesc

Input. A previously initialized RNN descriptor.
devSeqLengths

Input. A copy of seqLengthArray from xDesc or yDesc RNN data descriptors. The
devSeqgLengths array must be stored in GPU memory as it is accessed asynchronously
by GPU kernels, possibly after the cudnnRNNBackwardData v8 () function exists. This
argument cannot be NULL.

yDesc

Input. A previously initialized descriptor corresponding to the RNN model primary output.
The dataType, layout, maxSeqLength, batchSize, and seqLengthArray need to match
that of xDesc.

Yy, dy

Input. Data pointers to GPU buffers holding the RNN model primary output and gradient
deltas (gradient of the loss function with respect to y). The y output should be produced by
the preceding cudnnRNNForward() call. The y and dy vectors are expected to be laid out in
memory according to the layout specified by yDesc. The elements in the tensor (including
elements in padding vectors) must be densely packed. The y and dy arguments cannot be
NULL.

xDesc

Input. A previously initialized RNN data descriptor corresponding to the gradient
of the loss function with respect to the RNN primary model input. The dataType,
layout, maxSeqglLength, batchSize, and seqlLengthArray must match that of ybesc

NVIDIA cuDNN PR-09702-001_v8.3.0 | 406

cudnn_adv_train.so Library

The parameter vectorSize must match the inputSize argument passed to the
cudnnSetRNNDescriptor v8(] function.

dx

Output. Data pointer to GPU memory where back-propagated gradients of the loss function
with respect to the RNN primary input x should be stored. The vectors are expected to be
arranged in memory according to the layout specified by xDesc. The elements in the tensor
(including padding vectors) must be densely packed. This argument cannot be NULL.

hDesc

Input. A tensor descriptor describing the initial RNN hidden state hx and gradients of the
loss function with respect to the initial of final hidden state. Hidden state data and the
corresponding gradients are fully packed. The first dimension of the tensor depends on the
dirMode argument passed to the cudnnSetRNNDescriptor_v8() function.

» If dirMode is CUDNN UNIDIRECTIONAL, then the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor_v8().

» If dirMode is CUDNN BIDIRECTIONAL, then the first dimension should be double the
numLayers argument passed to cudnnSetRNNDescriptor_v8(].

The second dimension must match the batchsize parameter described in xDesc. The
third dimension depends on whether RNN mode is CUDNN_LSTM and whether the LSTM
projection is enabled. Specifically:

> If RNN mode is CUDNN LSTM and LSTM projection is enabled, the third dimension must
match the projsize argument passed to the cudnnSetRNNDescriptor_v8() call.

» Otherwise, the third dimension must match the hiddensize argument passed to the
cudnnSetRNNDescriptor_v8(] call used to initialize rnnDesc.

hx, dhy

Input. Addresses of GPU buffers with the RNN initial hidden state hx and gradient deltas
dhy. Data dimensions are described by the hDesc tensor descriptor. If a NULL pointer is
passed in hx or dhy arguments, the corresponding buffer is assumed to contain all zeros.

dhx

Output. Pointer to the GPU buffer where first-order derivatives corresponding to initial
hidden state variables should be stored. Data dimensions are described by the hDesc
tensor descriptor. If a NULL pointer is assigned to dhx, the back-propagated derivatives are
not saved.

cDesc

Input. For LSTM networks only. A tensor descriptor describing the initial cell state cx and
gradients of the loss function with respect to the initial of final cell state. Cell state data are
fully packed. The first dimension of the tensor depends on the di rMode argument passed to
the cudnnSetRNNDescriptor_v8(] call.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 407

cudnn_adv_train.so Library

» If dirMode Is CUDNN_UNIDIRECTIONAL, then the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor_v8(].

» If dirMode IS CUDNN BIDIRECTIONAL, then the first dimension should be double the
numLayers argument passed to cudnnSetRNNDescriptor_v8().

The second tensor dimension must match the batchSize parameter in xDesc.
The third dimension must match the hiddenSize argument passed to the
cudnnSetRNNDescriptor_v8() call.

cx, dcy

Input. For LSTM networks only. Addresses of GPU buffers with the initial LSTM state data

and gradient deltas dcy. Data dimensions are described by the cDesc tensor descriptor. If
a NULL pointer is passed in cx or dcy arguments, the corresponding buffer is assumed to

contain all zeros.

dcx

Output. For LSTM networks only. Pointer to the GPU buffer where first-order derivatives
corresponding to initial LSTM state variables should be stored. Data dimensions are
described by the cDesc tensor descriptor. If a NULL pointer is assigned to dcx, the back-
propagated derivatives are not saved.

weightSpaceSize

Input. Specifies the size in bytes of the provided weight-space buffer.

weightSpace

Input. Address of the weight space buffer in GPU memory.

workSpaceSize

Input. Specifies the size in bytes of the provided workspace buffer.

workSpace

Input/Output. Address of the workspace buffer in GPU memory to store temporary data.

reserveSpaceSize

Input. Specifies the size in bytes of the reserve-space buffer.

reserveSpace

Input/Output. Address of the reserve-space buffer in GPU memory.

Returns

CUDNN_STATUS_SUCCESS

No errors were detected while processing APl input arguments and launching GPU kernels.

CUDNN_STATUS_NOT_SUPPORTED

At least one of the following conditions are met:

NVIDIA cuDNN PR-09702-001_v8.3.0 | 408

cudnn_adv_train.so Library

> variable sequence length input is passed while CUDNN_RNN ALGO PERSIST STATIC Or
CUDNN_RNN ALGO PERSIST DYNAMIC Is specified

> CUDNN RNN ALGO PERSIST STATIC Or CUDNN RNN ALGO PERSIST DYNAMIC is
requested on pre-Pascal devices

» the 'double’ floating point type is used for input/output and the
CUDNN_RNN ALGO PERSIST STATIC algo
CUDNN_STATUS_BAD PARAM

An invalid or incompatible input argument was encountered. For example:

» some input descriptors are NULL
> settings in rnnDesc, xDesc, yDesc, hDesc, or cDesc descriptors are invalid

> weightSpaceSize, workSpaceSize, Or reserveSpaceSize is too small
CUDNN_STATUS_MAPPING_ERROR

A GPU/CUDA resource, such as a texture object, shared memory, or zero-copy memory is
not available in the required size or there is a mismatch between the user resource and
cuDNN internal resources. A resource mismatch may occur, for example, when calling
cudnnSetStream (). There could be a mismatch between the user provided CUDA stream
and the internal CUDA events instantiated in the cuDNN handle when cudnnCreate () was
invoked.

This error status may not be correctable when it is related to texture dimensions, shared
memory size, or zero-copy memory availability. If CUDNN_STATUS MAPPING ERROR IS
returned by cudnnSetStream(), then it is typically correctable, however, it means that
the cuDNN handle was created on one GPU and the user stream passed to this function is
associated with another GPU.

CUDNN_STATUS_EXECUTION_ FAILED

The process of launching a GPU kernel returned an error, or an earlier kernel did not
complete successfully.

CUDNN_STATUS_ALLOC_FAILED

The function was unable to allocate CPU memory.

8.2.19. cudnnRNNBackwardDataEx ()

This function has been deprecated in cuDNN 8.0. Use cudnnRNNBackwardData_v8 instead of
cudnnRNNBackwardDataEx ().

cudnnStatus t cudnnRNNBackwardDataEx (

cudnnHaHdle_t handle,
const cudnnRNNDescriptor t rnnDesc,
const cudnnRNNDataDescriptor t yDesc,
const void “Wp
const cudnnRNNDataDescriptor t dyDesc,
const void *dy,
const cudnnRNNDataDescriptor t dcDesc,

NVIDIA cuDNN PR-09702-001_v8.3.0 | 409

cudnn_adv_train.so Library

const void *dcAttn,

const cudnnTensorDescriptor t dhyDesc,

const void *dhy,

const cudnnTensorDescriptor t dcyDesc,

const void *dcy,

const cudnnFilterDescriptor t wDesc,

const void *w,

const cudnnTensorDescriptor t hxDesc,

const void *hx,

const cudnnTensorDescriptor t cxDesc,

const wvoid WEsR,

const cudnnRNNDataDescriptor t dxDesc,

void *dx,

const cudnnTensorDescriptor t dhxDesc,

void *dhx,

const cudnnTensorDescriptor t dcxDesc,

void *dex,

const cudnnRNNDataDescriptor t dkDesc,

void *dkeys,

void *workSpace,
size t workSpaceSizeInBytes,
void *reserveSpace,
size t reserveSpaceSizelInBytes)

This routine is the extended version of the function cudnnRNNBackwardData(]. This function
cudnnRNNBackwardDataEx () allows the user to use an unpacked (padded) layout for input y
and output dx.

In the unpacked layout, each sequence in the mini-batch is considered to be of fixed length,
specified by maxSegLength in its corresponding RNNDataDescriptor. Each fixed-length
sequence, for example, the nth sequence in the mini-batch, is composed of a valid segment
specified by the seqLengthArray[n] in its corresponding RNNDataDescriptor; and a padding
segment to make the combined sequence length equal to maxSeqgLength.

With the unpacked layout, both sequence major (meaning, time major] and batch major are
supported. For backward compatibility, the packed sequence major layout is supported.
However, similar to the non-extended function cudnnRNNBackwardDatal(], the sequences in
the mini-batch need to be sorted in descending order according to length.

Parameters

handle

Input. Handle to a previously created This function is deprecated starting in cuDNN 8.0.0.
context.

rnnDesc
Input. A previously initialized RNN descriptor.
yDesc

Input. A previously initialized RNN data descriptor. Must match or be the exact same
descriptor previously passed into cudnnRNNForwardTrainingEx().

Input. Data pointer to the GPU memory associated with the RNN data descriptor yDesc.
The vectors are expected to be laid out in memory according to the layout specified by
yDesc. The elements in the tensor (including elements in the padding vector) must be

NVIDIA cuDNN PR-09702-001_v8.3.0 | 410

cudnn_adv_train.so Library

densely packed, and no strides are supported. Must contain the exact same data previously
produced by cudnnRNNForwardTrainingEx().

dyDesc

Input. A previously initialized RNN data descriptor. The dataType, layout, maxSegLength,
batchSize, vectorSize, and seqLengthArray need to match the yDesc previously passed
to cudnnRNNForwardTrainingEx(].

dy

Input. Data pointer to the GPU memory associated with the RNN data descriptor dyDesc.
The vectors are expected to be laid out in memory according to the layout specified by
dyDesc. The elements in the tensor (including elements in the padding vector) must be
densely packed, and no strides are supported.

dhyDesc

Input. A fully packed tensor descriptor describing the gradients at the final hidden state of
the RNN. The first dimension of the tensor depends on the direction argument used to
initialize rnnbDesc. Additionally:

» Ifdirection is CUDNN UNIDIRECTIONAL the first dimension should match the
numLayers argument.

» Ifdirection is CUDNN BIDIRECTIONAL the first dimension should match double the
numLayers argument.

The second dimension must match the batchsize parameter in xDesc. The third
dimension depends on whether the RNN mode is CUDNN_LSTM and whether LSTM
projection is enabled. Additionally:

» If the RNN mode is cuDNN_LSTM and LSTM projection is enabled, the third dimension
must match the recProjSize argument passed to cudnnSetRNNProjectionLayers()
call used to set rnnDesc.

» Otherwise, the third dimension must match the hiddensize argument used to initialize
rnnDesc.
dhy

Input. Data pointer to GPU memory associated with the tensor descriptor dhyDesc. If a NULL
pointer is passed, the gradients at the final hidden state of the network will be initialized to
zero.

dcyDesc

Input. A fully packed tensor descriptor describing the gradients at the final cell state of
the RNN. The first dimension of the tensor depends on the direction argument used to
initialize rnnDesc. Additionally:

» If direction is CUDNN UNIDIRECTIONAL the first dimension should match the
numLayers argument.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 411

cudnn_adv_train.so Library

» Ifdirection is CUDNN BIDIRECTIONAL the first dimension should match double the
numLayers argument.

The second dimension must match the first dimension of the tensors described in xDesc.
The third dimension must match the hiddenSize argument used to initialize rnnDesc. The
tensor must be fully packed.

dcy

Input. Data pointer to GPU memory associated with the tensor descriptor deyDesc. If a NULL
pointer is passed, the gradients at the final cell state of the network will be initialized to
zero.

wDesc

Input. Handle to a previously initialized filter descriptor describing the weights for the RNN.

Input. Data pointer to GPU memory associated with the filter descriptor wbesc.
hxDesc
Input. A fully packed tensor descriptor describing the initial hidden state of

the RNN. Must match or be the exact same descriptor previously passed into
cudnnRNNForwardTrainingEx(].

hx

Input. Data pointer to GPU memory associated with the tensor descriptor hxDesc. If a NULL
pointer is passed, the initial hidden state of the network will be initialized to zero. Must
contain the exact same data previously passed into cudnnRNNForwardTrainingEx(), or be
NULL if NULL was previously passed to cudnnRNNForwardTrainingEx(].

cxDesc

Input. A fully packed tensor descriptor describing the initial cell state for LSTM
networks. Must match or be the exact same descriptor previously passed into
cudnnRNNForwardTrainingEx(].

cXxX

Input. Data pointer to GPU memory associated with the tensor descriptor cxDesc. If a NULL
pointer is passed, the initial cell state of the network will be initialized to zero. Must contain
the exact same data previously passed into cudnnRNNForwardTrainingEx(], or be NULL if
NULL was previously passed to cudnnRNNForwardTrainingEx().

dxDesc

Input. A previously initialized RNN data descriptor. The dataType, layout, maxSeqgLength,
batchSize, vectorSize and segLengthArray need to match that of xDesc previously
passed to cudnnRNNForwardTrainingEx().

NVIDIA cuDNN PR-09702-001_v8.3.0 | 412

cudnn_adv_train.so Library

Output. Data pointer to the GPU memory associated with the RNN data descriptor dxDesc.
The vectors are expected to be laid out in memory according to the layout specified by
dxDesc. The elements in the tensor (including elements in the padding vector) must be
densely packed, and no strides are supported.

dhxDesc

Input. A fully packed tensor descriptor describing the gradient at the initial hidden state of
the RNN. The descriptor must be set exactly the same way as dhyDesc.

dhx

Output. Data pointer to GPU memory associated with the tensor descriptor dhxDesc. If a
NULL pointer is passed, the gradient at the hidden input of the network will not be set.

dcxDesc

Input. A fully packed tensor descriptor describing the gradient at the initial cell state of the
RNN. The descriptor must be set exactly the same way as dcyDesc.

dcx

Output. Data pointer to GPU memory associated with the tensor descriptor dexbesc. If a
NULL pointer is passed, the gradient at the cell input of the network will not be set.

dkDesc

Reserved. Users may pass in NULL.
dkeys

Reserved. Users may pass in NULL.

workspace

Input. Data pointer to GPU memory to be used as a workspace for this call.

workSpaceSizelInBytes

Input. Specifies the size in bytes of the provided workspace.

reserveSpace

Input/Output. Data pointer to GPU memory to be used as a reserve space for this call.

reserveSpaceSizelnBytes

Input. Specifies the size in bytes of the provided reservespace.

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_NOT_SUPPORTED

At least one of the following conditions are met:

NVIDIA cuDNN PR-09702-001_v8.3.0 | 413

cudnn_adv_train.so Library

> Variable sequence length input is passed in while CUDNN_RNN ALGO PERSIST STATIC
or CUDNN_RNN ALGO PERSIST DYNAMIC is used.

» CUDNN RNN ALGO PERSIST STATIC Or CUDNN RNN ALGO PERSIST DYNAMIC is used on
pre-Pascal devices.

» Double input/output is used for CUDNN_RNN_ALGO PERSIST STATIC.
CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:

» The descriptor rnnDesc is invalid.

> At least one of the descriptors yDesc, dxdesc, dydesc, dhxDesc, wDesc, hxDesc,
cxDesc, dexDesc, dhyDesc, dcyDesc is invalid or has incorrect strides or dimensions.

> workSpaceSizeInBytes istoo small.

> reserveSpaceSizeInBytes istoo small.
CUDNN_STATUS_INVALID_VALUE

cudnnSetPersistentRNNPLlan(] was not called prior to the current function when
CUDNN RNN ALGO PERSIST DYNAMIC was selected in the RNN descriptor.

CUDNN_STATUS_MAPPING_ERROR

A GPU/CUDA resource, such as a texture object, shared memory, or zero-copy memory is
not available in the required size or there is a mismatch between the user resource and
cuDNN internal resources. A resource mismatch may occur, for example, when calling
cudnnSetStream (). There could be a mismatch between the user provided CUDA stream

and the internal CUDA events instantiated in the cuDNN handle when cudnnCreate () was
invoked.

This error status may not be correctable when it is related to texture dimensions, shared
memory size, or zero-copy memory availability. If CUDNN STATUS MAPPING ERROR IS
returned by cudnnSetsStream(), then it is typically correctable, however, it means that
the cuDNN handle was created on one GPU and the user stream passed to this function is
associated with another GPU.

CUDNN_STATUS_EXECUTION_ FAILED

The function failed to launch on the GPU.
CUDNN_STATUS_ALLOC_FAILED

The function was unable to allocate memory.

8.2.20. cudnnRNNBackwardWeights ()

This function has been deprecated in cuDNN 8.0. Use cudnnRNNBackwardWeights_v8()
instead of cudnnRNNBackwardWeights ().

cudnnStatus t cudnnRNNBackwardWeights (
cudnnHandle t handle,
const cudnnRNNDescriptor t rnnDesc,

NVIDIA cuDNN PR-09702-001_v8.3.0 | 414

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnSetPersistentRNNPlan

cudnn_adv_train.so Library

const int seqglength,

const cudnnTensorDescriptor t *xDesc,

const wvoid R,

const cudnnTensorDescriptor t hxDesc,

const void *nx,

const cudnnTensorDescriptor t “*yDesc,

const void W,

const void *workspace,

size t workSpaceSizeInBytes,
const cudnnFilterDescriptor t dwDesc,

void *dw,

const void *reserveSpace,

size t reserveSpaceSizeInBytes)

This routine accumulates weight gradients dw from the recurrent neural network described
by rnnDesc with inputs x, hx and outputs y. The mode of operation in this case is additive,
the weight gradients calculated will be added to those already existing in dw. workspace is
required for intermediate storage. The data in reserveSpace must have previously been
generated by cudnnRNNBackwardData().

Parameters

handle

Input. Handle to a previously created cuDNN context.

rnnDesc
Input. A previously initialized RNN descriptor.
seqLength

Input. Number of iterations to unroll over. The value of this seglLength must not exceed the
value that was used in cudnnGetRNNWorkspaceSize() function for querying the workspace
size required to execute the RNN.

xDesc

Input. An array of fully packed tensor descriptors describing the input to each recurrent
iteration (one descriptor per iteration). The first dimension (batch size) of the tensors may
decrease from element n to element n+1 but may not increase. Each tensor descriptor
must have the same second dimension (vector length).

Input. Data pointer to GPU memory associated with the tensor descriptors in the array

xDesc.
hxDesc
Input. A fully packed tensor descriptor describing the initial hidden state of the RNN.

The first dimension of the tensor depends on the direction argument used to initialize

rnnDesc:

» Ifdirection is CUDNN UNIDIRECTIONAL the first dimension should match the
numLayers argument.

» Ifdirection is CUDNN BIDIRECTIONAL the first dimension should match double the
numLayers argument.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 415

cudnn_adv_train.so Library

The second dimension must match the first dimension of the tensors described in xDesc.
The third dimension must match the hiddenSize argument used to initialize rnnDesc. The
tensor must be fully packed.

hx

Input. Data pointer to GPU memory associated with the tensor descriptor hxDesc. If a NULL
pointer is passed, the initial hidden state of the network will be initialized to zero.

yDesc

Input. An array of fully packed tensor descriptors describing the output from each recurrent
iteration (one descriptor per iteration). The second dimension of the tensor depends on the
direction argument used to initialize rnnDesc:

If direction is CUDNN UNIDIRECTIONAL the second dimension should match the
hiddenSize argument.

If direction is CUDNN BIDIRECTIONAL the second dimension should match double the
hiddenSize argument.

The first dimension of the tensor n must match the first dimension of the tensorn in
dyDesc.

Input. Data pointer to GPU memory associated with the output tensor descriptor yDesc.

workspace

Input. Data pointer to GPU memory to be used as a workspace for this call.

workSpaceSizelInBytes

Input. Specifies the size in bytes of the provided workspace.

dwDesc

Input. Handle to a previously initialized filter descriptor describing the gradients of the
weights for the RNN.

dw

Input/Output. Data pointer to GPU memory associated with the filter descriptor dwbesc.

reserveSpace

Input. Data pointer to GPU memory to be used as a reserve space for this call.

reserveSpaceSizeInBytes

Input. Specifies the size in bytes of the provided reservespace.

CUDNN_STATUS_SUCCESS

The function launched successfully.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 416

cudnn_adv_train.so Library

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

» The descriptor rnnDesc is invalid.

> At least one of the descriptors hxDesc, dwDesc or one of the descriptors in xDesc,
yDesc is invalid.

» The descriptors in one of xDesc, hxDesc, yDesc, dwDesc have incorrect strides or
dimensions.

» workSpaceSizeInBytes is too small.

> reserveSpaceSizelInBytes is too small.
CUDNN_STATUS_EXECUTION_ FAILED

The function failed to launch on the GPU.
CUDNN_STATUS_ALLOC_FAILED

The function was unable to allocate memory.

8.2.21. cudnnRNNBackwardWeights v8 ()

cudnnStatus t cudnnRNNBackwardWeights v8 (
cudnnHandle t handle,
cudnnRNNDescriptor t rnnDesc,
cudnnWgradMode t addGrad,
const int32 t devSeqLengths([],
cudnnRNNDataDescriptor t xDesc,
const void *x,
cudnnTensorDescriptor t hDesc,
const void *hxk,
cudnnRNNDataDescriptor t yDesc,
const void *y,
size t weightSpaceSize,
void *dweightSpace,
size t workSpaceSize,
void *workSpace,
size t reserveSpaceSize,
void *reserveSpace);

This function computes exact, first-order derivatives of the RNN model with respect to all
trainable parameters: weights and biases. If o = [y, hy, cy]l = Fw] is a vector-valued function
that represents the multi-layer RNN model and it takes some vector we R" of “flatten”
weights or biases as input (with all other data inputs constant), and outputs vector oe R", then

T :
cudnnRNNBackwardWeights_v8 () computes the result of (ao,./awj) Oout Where 6, 1S the

mx 1 gradient of the loss function with respect to all RNN outputs. The 6, gradient is back
propagated through prior layers of the deep learning model, starting from the model output.

ao,./awj is the mxn Jacobian matrix of Flw). The &, input is supplied via the dy, dny, and dcy
arguments in the cudnnRNNBackwardData v8 () function.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 417

cudnn_adv_train.so Library

All gradient results (aoi/awj)T&)utwith respect to weights and biases are written to the
dweightSpace buffer. The size and the organization of the dweightSpace buffer is the same
as the weightSpace buffer that holds RNN weights and biases.

Gradient of the loss function with respect to weights and biases is typically computed over
multiple mini-batches. In such a case, partial results computed for each mini-batch should be
aggregated. The addGrad argument specifies if gradients from the current mini-batch should
be added to previously computed results (CUDNN_WGRAD MODE_ADD) or the dweightSpace
buffer should be overwritten with the new results (CUDNN_WGRAD MODE_SET). Currently, the
cudnnRNNBackwardWeights v8 () function supports the CUDNN_WGRAD MODE_ADD mode only
so the dweightSpace buffer should be zeroed by the user before invoking the routine for the
first time.

The same sequence lengths must be specified in the xDesc descriptor and in the device array
devSegLengths. The cudnnRNNBackwardWeights v8 () function should be invoked after
cudnnRNNBackwardData(].

Parameters

handle

Input. The current cuDNN context handle.
rnnDesc

Input. A previously initialized RNN descriptor.
addGrad

Input. Weight gradient output mode. For more details, see the description of the
cudnnWgradMode_t enumerated type. Currently, only the CUDNN_ WGRAD MODE_ADD mode is
supported by the cudnnRNNBackwardWeights v8 () function.

devSeqlLengths

Input. A copy of seqLengthArray from the xDesc RNN data descriptor. The
devSeqgLengths array must be stored in GPU memory as it is accessed asynchronously by
GPU kernels, possibly after the cudnnRNNBackwardWeights v8 () function exists.

xDesc
Input. A previously initialized descriptor corresponding to the RNN model input data.

This is the same RNN data descriptor as used in the preceding cudnnRNNForward() and
cudnnRNNBackwardData_v8() calls.

X
Input. Pointer to the GPU buffer with the primary RNN input. The same buffer address x
should be provided in prior cudnnRNNForward(] and cudnnRNNBackwardData_v8(] calls.
hDesc

Input. A tensor descriptor describing the initial RNN hidden state. Hidden state data are
fully packed. This is the same tensor descriptor as used in prior cudnnRNNForward() and
cudnnRNNBackwardData_v8() calls.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 418

cudnn_adv_train.so Library

hx

Input. Pointer to the GPU buffer with the RNN initial hidden state. The same buffer address
hx should be provided in prior cudnnRNNForward(] and cudnnRNNBackwardData_v8()
calls.

yDesc

Input. A previously initialized descriptor corresponding to the RNN model output
data. This is the same RNN data descriptor as used in prior cudnnRNNForward() and
cudnnRNNBackwardData_v8() calls.

Y
Output. Pointer to the GPU buffer with the primary RNN output as generated by the prior
cudnnRNNForward() call. Data in the y buffer are described by the ybesc descriptor.
Elements in the y tensor (including elements in padding vectors) must be densely packed.
weightSpaceSize
Input. Specifies the size in bytes of the provided weight-space buffer.
dweightSpace
Output. Address of the weight space buffer in GPU memory.
workSpaceSize
Input. Specifies the size in bytes of the provided workspace buffer.
workSpace
Input/Output. Address of the workspace buffer in GPU memory to store temporary data.
reserveSpaceSize
Input. Specifies the size in bytes of the reserve-space buffer.
reserveSpace
Input/Output. Address of the reserve-space buffer in GPU memory.
Returns

CUDNN_STATUS_SUCCESS

No errors were detected while processing APl input arguments and launching GPU kernels.
CUDNN_STATUS_NOT SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD PARAM

An invalid or incompatible input argument was encountered. For example:

> some input descriptors are NULL
> settings in rnnDesc, xDesc, yDesc, or hDesc descriptors are invalid

> weightSpaceSize, workSpaceSize, Or reserveSpaceSize values are too small

NVIDIA cuDNN PR-09702-001_v8.3.0 | 419

cudnn_adv_train.so Library

» the addGrad argument is not equal to CUDNN_ WGRAD MODE ADD
CUDNN_STATUS_EXECUTION FAILED

The process of launching a GPU kernel returned an error, or an earlier kernel did not
complete successfully.

CUDNN_STATUS_ALLOC_FAILED

The function was unable to allocate CPU memory.

8.2.22. cudnnRNNBackwardWeightsEx ()

This function has been deprecated in cuDNN 8.0. Use cudnnRNNBackwardWeights_v8()
instead of cudnnRNNBackwardWeightsEX ().

cudnnStatus t cudnnRNNBackwardWeightsEx (

cudnnHandle t handle,

const cudnnRNNDescriptor t rnnDesc,

const cudnnRNNDataDescriptor t xDesc,

const void R

const cudnnTensorDescriptor t hxDesc,

const void *hx,

const cudnnRNNDataDescriptor t yDesc,

const void =W

void *workSpace,

size t workSpaceSizelInBytes,
const cudnnFilterDescriptor t dwDesc,

void *dw,

void *reserveSpace,

size t reserveSpaceSizeInBytes)

This routine is the extended version of the function cudnnRNNBackwardWeights(]. This
function cudnnRNNBackwardWweightsEx () allows the user to use an unpacked (padded) layout
for input x and output dw.

In the unpacked layout, each sequence in the mini-batch is considered to be of fixed length,
specified by maxSeqLength in its corresponding RNNDataDescriptor. Each fixed-length
sequence, for example, the nth sequence in the mini-batch, is composed of a valid segment
specified by the seqLengthArray[n] in its corresponding RNNDataDescriptor; and a padding
segment to make the combined sequence length equal to maxseqLength.

With the unpacked layout, both sequence major (meaning, time major] and batch major are
supported. For backward compatibility, the packed sequence major layout is supported.
However, similar to the non-extended function cudnnRNNBackwardWeights(], the sequences
in the mini-batch need to be sorted in descending order according to length.

Parameters
handle

Input. Handle to a previously created cuDNN context.

rnnDesc

Input. A previously initialized RNN descriptor.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 420

cudnn_adv_train.so Library

xDesc

Input. A previously initialized RNN data descriptor. Must match or be the exact same
descriptor previously passed into cudnnRNNForwardTrainingEx().

Input. Data pointer to GPU memory associated with the tensor descriptors
in the array xbesc. Must contain the exact same data previously passed into
cudnnRNNForwardTrainingEx().

hxDesc

Input. A fully packed tensor descriptor describing the initial hidden state of
the RNN. Must match or be the exact same descriptor previously passed into
cudnnRNNForwardTrainingEx(].

hx

Input. Data pointer to GPU memory associated with the tensor descriptor hxDesc. If a NULL
pointer is passed, the initial hidden state of the network will be initialized to zero. Must
contain the exact same data previously passed into cudnnRNNForwardTrainingEx(), or be
NULL if NULL was previously passed to cudnnRNNForwardTrainingEx().

yDesc

Input. A previously initialized RNN data descriptor. Must match or be the exact same
descriptor previously passed into cudnnRNNForwardTrainingEx().

Input. Data pointer to GPU memory associated with the output tensor descriptor ybDesc.
Must contain the exact same data previously produced by cudnnRNNForwardTrainingEx(].

workspace

Input. Data pointer to GPU memory to be used as a workspace for this call.

workSpaceSizelInBytes

Input. Specifies the size in bytes of the provided workspace.

dwDesc

Input. Handle to a previously initialized filter descriptor describing the gradients of the
weights for the RNN.

dw

Input/Output. Data pointer to GPU memory associated with the filter descriptor dwbesc.

reserveSpace

Input. Data pointer to GPU memory to be used as a reserve space for this call.

reserveSpaceSizeInBytes

Input. Specifies the size in bytes of the provided reservespace.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 421

cudnn_adv_train.so Library

Returns
CUDNN_STATUS SUCCESS

The function launched successfully.
CUDNN_STATUS_NOT SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:

» The descriptor rnnDesc is invalid.

> At least one of the descriptors xDesc, yDesc, hxDesc, dwDesc is invalid, or has incorrect
strides or dimensions.

» workSpaceSizeInBytes is too small.

> reserveSpaceSizelInBytes is too small.
CUDNN_STATUS_EXECUTION_ FAILED

The function failed to launch on the GPU.

CUDNN_STATUS_ALLOC_FAILED

The function was unable to allocate memory.

8.2.23. cudnnRNNForwardTraining()
This function is deprecated starting in cuDNN 8.0.0.

Use cudnnRNNForward() instead of cudnnRNNForwardTraining ().

cudnnStatus t cudnnRNNForwardTraining (

cudnnHandle t handle,

const cudnnRNNDescriptor t rnnDesc,
const int seqglLength,
const cudnnTensorDescriptor t *xDesc,

const void W0

const cudnnTensorDescriptor t hxDesc,

const void *hx,

const cudnnTensorDescriptor t cxDesc,

const void WEsK,

const cudnnFilterDescriptor t wDesc,

const void *w,

const cudnnTensorDescriptor t *yDesc,

void “Wy

const cudnnTensorDescriptor t hyDesc,

void *hy,

const cudnnTensorDescriptor t cyDesc,

void ey

void *workspace,
size t workSpaceSizeInBytes,
void *reserveSpace,
size t reserveSpaceSizeInBytes)

This routine executes the recurrent neural network described by rnnDesc with inputs x, hx,
and cx, weights w and outputs y, hy, and cy. workspace is required for intermediate storage.
reserveSpace stores data required for training. The same reserveSpace data must be used

NVIDIA cuDNN PR-09702-001_v8.3.0 | 422

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnRNNForward

cudnn_adv_train.so Library

for future calls to cudnnRNNBackwardData() and cudnnRNNBackwardWeights(] if these
execute on the same input data.

Parameters
handle

Input. Handle to a previously created cuDNN context.
rnnDesc
Input. A previously initialized RNN descriptor.
seqlLength
Input. Number of iterations to unroll over. The value of this seqLength must not exceed the

value that was used in cudnnGetRNNWorkspaceSize() function for querying the workspace
size required to execute the RNN.

xDesc

Input. An array of seqLength fully packed tensor descriptors. Each descriptor in the

array should have three dimensions that describe the input data format to one recurrent
iteration (one descriptor per RNN time-step). The first dimension (batch size) of the tensors
may decrease from iteration element n to iteration element n+1 but may not increase.

Each tensor descriptor must have the same second dimension (RNN input vector length,
inputSize). The third dimension of each tensor should be 1. Input vectors are expected to

be arranged in the column-major order so strides in xDesc should be set as follows:
strideA[O]=inputSize, strideA[l]=1, strideA[2]=1

Input. Data pointer to GPU memory associated with the array of tensor descriptors xDesc.
The input vectors are expected to be packed contiguously with the first vector of iterations
(time-step) n+1 following directly the last vector of iteration n. In other words, input vectors
for all RNN time-steps should be packed in the contiguous block of GPU memory with no
gaps between the vectors.

hxDesc
Input. A fully packed tensor descriptor describing the initial hidden state of the RNN.

The first dimension of the tensor depends on the direction argument used to initialize

rnnDesc:

» Ifdirection Is CUDNN UNIDIRECTIONAL the first dimension should match the
numLayers argument.

» Ifdirection is CUDNN BIDIRECTIONAL the first dimension should match double the
numLayers argument.

The second dimension must match the first dimension of the tensors described in xDesc.
The third dimension must match the hiddenSize argument used to initialize rnnDesc. The
tensor must be fully packed.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 423

cudnn_adv_train.so Library

hx
Input. Data pointer to GPU memory associated with the tensor descriptor hxDesc. If a NULL
pointer is passed, the initial hidden state of the network will be initialized to zero.

cxDesc
Input. A fully packed tensor descriptor describing the initial cell state for LSTM networks.

The first dimension of the tensor depends on the direction argument used to initialize

rnnDesc:

» Ifdirection is CUDNN UNIDIRECTIONAL the first dimension should match the
numLayers argument.

» If direction is CUDNN BIDIRECTIONAL the first dimension should match double the

numLayers argument.

The second dimension must match the first dimension of the tensors described in xDesc.
The third dimension must match the hiddenSize argument used to initialize rnnDesc. The
tensor must be fully packed.

cXxX

Input. Data pointer to GPU memory associated with the tensor descriptor cxDesc. If a NULL
pointer is passed, the initial cell state of the network will be initialized to zero.

wDesc

Input. Handle to a previously initialized filter descriptor describing the weights for the RNN.

Input. Data pointer to GPU memory associated with the filter descriptor wbesc.

yDesc

Input. An array of fully packed tensor descriptors describing the output from each recurrent
iteration (one descriptor per iteration). The second dimension of the tensor depends on the
direction argument used to initialize rnnDesc:

» Ifdirection is CUDNN UNIDIRECTIONAL the second dimension should match the
hiddenSize argument.

» Ifdirection is CUDNN BIDIRECTIONAL the second dimension should match double the
hiddenSize argument.

The first dimension of the tensor n must match the first dimension of the tensor n in xDesc.

Output. Data pointer to GPU memory associated with the output tensor descriptor yDesc.

hyDesc

Input. A fully packed tensor descriptor describing the final hidden state of the RNN. The
first dimension of the tensor depends on the direction argument used to initialize

rnnDesc:

NVIDIA cuDNN PR-09702-001_v8.3.0 | 424

>

>

cudnn_adv_train.so Library

If direction IS CUDNN_UNIDIRECTIONAL the first dimension should match the

numLayers argument.

If direction IS CUDNN BIDIRECTIONAL the first dimension should match double the

numLayers argument.

The second dimension must match the first dimension of the tensors described in xDesc.
The third dimension must match the hiddenSize argument used to initialize rnnDesc. The
tensor must be fully packed.

hy

Output. Data pointer to GPU memory associated with the tensor descriptor hybesc. If a
NULL pointer is passed, the final hidden state of the network will not be saved.

cyDesc

Input. A fully packed tensor descriptor describing the final cell state for LSTM networks.
The first dimension of the tensor depends on the direction argument used to initialize

rnnDesc:

>

If direction is CUDNN UNIDIRECTIONAL the first dimension should match the
numLayers argument.

If direction is CUDNN BIDIRECTIONAL the first dimension should match double the
numLayers argument.

The second dimension must match the first dimension of the tensors described in xDesc.
The third dimension must match the hiddenSize argument used to initialize rnnDesc. The
tensor must be fully packed.

cy

Output. Data pointer to GPU memory associated with the tensor descriptor cyDesc. If a
NULL pointer is passed, the final cell state of the network will not be saved.

workspace

Input. Data pointer to GPU memory to be used as a workspace for this call.

workSpaceSizeInBytes

Input. Specifies the size in bytes of the provided workspace.

reserveSpace

Input/Output. Data pointer to GPU memory to be used as a reserve space for this call.

reserveSpaceSizeInBytes

Input. Specifies the size in bytes of the provided reservespace.

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 425

cudnn_adv_train.so Library

CUDNN_STATUS_BAD_ PARAM

A

>

>

>

>

t least one of the following conditions are met:

The descriptor rnnDesc is invalid.

At least one of the descriptors hxDesc, cxDesc, wDesc, hyDesc, cyDesc or one of
the descriptors in xDesc, yDesc is invalid.

The descriptors in one of xDesc, hxDesc, cxDesc, wDesc, yDesc, hyDesc,
cyDesc have incorrect strides or dimensions.

workSpaceSizeInBytes is too small.

reserveSpaceSizelInBytes is too small.

CUDNN_STATUS_INVALID VALUE

cudnnSetPersistentRNNPLlan(] was not called prior to the current function when

CUDNN RNN ALGO PERSIST DYNAMIC was selected in the RNN descriptor.

CUDNN_STATUS_EXECUTION_ FAILED

T

he function failed to launch on the GPU.

CUDNN_STATUS_ALLOC_FAILED

The function was unable to allocate memory.

8.2.24. cudnnRNNForwardTrainingEx ()

This

function has been deprecated starting in cuDNN 8.0. Use cudnnRNNForward() instead of

cudnnRNNForwardTrainingEx ().

cudn

NVIDI

nStatus_t cudnnRNNForwardTrainingEx (

cudnnHandle t handle,

const cudnnRNNDescriptor t rnnDesc,

const cudnnRNNDataDescriptor t xDesc,

const void *x,

const cudnnTensorDescriptor t hxDesc,

const void Wk,

const cudnnTensorDescriptor t cxDesc,

const void @R,

const cudnnFilterDescriptor t wDesc,

const void *w,

const cudnnRNNDataDescriptor t yDesc,

void *Vp

const cudnnTensorDescriptor t hyDesc,

void *hy,

const cudnnTensorDescriptor t cyDesc,

void ®@Y,

const cudnnRNNDataDescriptor t kDesc,

const void *keys,

const cudnnRNNDataDescriptor t cDesc,

void *cAttn,

const cudnnRNNDataDescriptor t iDesc,

void *iAttn,

const cudnnRNNDataDescriptor t gDesc,

void *queries,

void *workSpace,
size t workSpaceSizelInBytes,
void *reserveSpace,
A cuDNN PR-09702-001_v8.3.0 | 426

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnSetPersistentRNNPlan
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnRNNForward

cudnn_adv_train.so Library

size t reserveSpaceSizelInBytes) ;

This routine is the extended version of the cudnnRNNForwardTraining(] function. The
cudnnRNNForwardTrainingEx () allows the user to use unpacked (padded) layout for input x
and output y.

In the unpacked layout, each sequence in the mini-batch is considered to be of fixed length,
specified by maxSeqLength Iin its corresponding RNNDataDescriptor. Each fixed-length
sequence, for example, the nth sequence in the mini-batch, is composed of a valid segment
specified by the seqLengthArray[n] inits corresponding RNNDataDescriptor; and a padding
segment to make the combined sequence length equal to maxSeqLength.

With the unpacked layout, both sequence major (meaning, time major) and batch major are
supported. For backward compatibility, the packed sequence major layout is supported.
However, similar to the non-extended function cudnnRNNForwardTrainingl), the sequences in
the mini-batch need to be sorted in descending order according to length.

Parameters
handle

Input. Handle to a previously created cuDNN context.

rnnDesc

Input. A previously initialized RNN descriptor.
xDesc

Input. A previously initialized RNN Data descriptor. The dataType, layout, maxSeqLength,
batchSize, and seqLengthArray need to match that of yDesc

Input. Data pointer to the GPU memory associated with the RNN data descriptor xDesc.
The input vectors are expected to be laid out in memory according to the layout specified
by xDesc. The elements in the tensor (including elements in the padding vector) must be
densely packed, and no strides are supported.

hxDesc
Input. A fully packed tensor descriptor describing the initial hidden state of the RNN.

The first dimension of the tensor depends on the direction argument used to initialize
rnnDesc. Moreover:

» If direction is CUDNN UNIDIRECTIONAL then the first dimension should match the
numLayers argument.
» Ifdirection Is CUDNN BIDIRECTIONAL then the first dimension should match double

the numLayers argument.

The second dimension must match the batchSize parameter in xDesc. The third
dimension depends on whether RNN mode is CUDNN LSTM and whether LSTM projection is
enabled. Additionally:

NVIDIA cuDNN PR-09702-001_v8.3.0 | 427

cudnn_adv_train.so Library

» If RNN mode is CUDNN LSTM and LSTM projection is enabled, the third dimension must
match the recProjsize argument passed to cudnnSetRNNProjectionLayers(] call used
to set rnnDesc.

» Otherwise, the third dimension must match the hiddensize argument used to initialize

rnnDesc.
hx
Input. Data pointer to GPU memory associated with the tensor descriptor hxDesc. If a NULL

pointer is passed, the initial hidden state of the network will be initialized to zero.

cxDesc
Input. A fully packed tensor descriptor describing the initial cell state for LSTM networks.

The first dimension of the tensor depends on the direction argument used to initialize
rnnDesc. Additionally:

» Ifdirection is CUDNN UNIDIRECTIONAL the first dimension should match the
numLayers argument.

» If direction is CUDNN BIDIRECTIONAL the first dimension should match double the
numLayers argument.

The second dimension must match the first dimension of the tensors described in xDesc.
The third dimension must match the hiddenSize argument used to initialize rnnDesc. The
tensor must be fully packed.

cXxX
Input. Data pointer to GPU memory associated with the tensor descriptor cxDesc. If a NULL
pointer is passed, the initial cell state of the network will be initialized to zero.

wDesc

Input. Handle to a previously initialized filter descriptor describing the weights for the RNN.

Input. Data pointer to GPU memory associated with the filter descriptor wbesc.

yDesc

Input. A previously initialized RNN data descriptor. The dataType, layout, maxSeqLength,
batchSize, and seqLengthArray need to match that of dyDesc and dxDesc. The
parameter vectorsSize depends on whether the RNN mode is CUDNN LsSTM and whether
LSTM projection is enabled and whether the network is bidirectional. Specifically:

» For a unidirectional network, if the RNN mode is cUDNN_LsTM and LSTM projection
Is enabled, the parameter vectorSize must match the recProjsize argument
passed to cudnnSetRNNProjectionLayers(] call used to set rnnbesc. If the network is
bidirectional, then multiply the value by 2.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 428

cudnn_adv_train.so Library

> Otherwise, for unidirectional network, the parameter vectorsize must match the
hiddenSize argument used to initialize rnnDesc. If the network is bidirectional, then
multiply the value by 2.

Y
Output. Data pointer to GPU memory associated with the RNN data descriptor yDesc. The
input vectors are expected to be laid out in memory according to the layout specified by
yDesc. The elements in the tensor (including elements in the padding vector] must be
densely packed, and no strides are supported.

hyDesc
Input. A fully packed tensor descriptor describing the final hidden state of the RNN. The
descriptor must be set exactly the same as hxDesc.

hy

Output. Data pointer to GPU memory associated with the tensor descriptor hybesc. If a
NULL pointer is passed, the final hidden state of the network will not be saved.

cyDesc

Input. A fully packed tensor descriptor describing the final cell state for LSTM networks.
The descriptor must be set exactly the same as cxDesc.

cy

Output. Data pointer to GPU memory associated with the tensor descriptor cyDesc. If a
NULL pointer is passed, the final cell state of the network will not be saved.

kDesc

Reserved. Users may pass in NULL.
keys

Reserved. Users may pass in NULL.

cDesc

Reserved. Users may pass in NULL.

cAttn

Reserved. Users may pass in NULL.

iDesc

Reserved. Users may pass in NULL.

iAttn

Reserved. Users may pass in NULL.

gDesc

Reserved. Users may pass in NULL.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 429

cudnn_adv_train.so Library

queries

Reserved. Users may pass in NULL.

workspace

Input. Data pointer to GPU memory to be used as a workspace for this call.

workSpaceSizelInBytes

Input. Specifies the size in bytes of the provided workspace.

reserveSpace

Input/Output. Data pointer to GPU memory to be used as a reserve space for this call.

reserveSpaceSizeInBytes

Input. Specifies the size in bytes of the provided reservespace.

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_NOT_SUPPORTED

At least one of the following conditions are met:
Variable sequence length input is passed in while CUDNN RNN ALGO PERSIST STATIC
or CUDNN_RNN ALGO PERSIST DYNAMIC is used.

CUDNN_RNN ALGO PERSIST STATIC Or CUDNN RNN ALGO PERSIST DYNAMIC is used on
pre-Pascal devices.

Double input/output is used for CUDNN_RNN ALGO PERSIST STATIC.
CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:

The descriptor rnnDesc is invalid.

At least one of the descriptors xDesc, yDesc, hxDesc, cxDesc, wDesc, hyDesc, and
cyDesc is invalid, or have incorrect strides or dimensions.

workSpaceSizeInBytes is too small.

reserveSpaceSizeInBytes is too small.
CUDNN_STATUS_INVALID_VALUE

cudnnSetPersistentRNNPLlan(] was not called prior to the current function when
CUDNN_RNN ALGO PERSIST DYNAMIC was selected in the RNN descriptor.

CUDNN_STATUS_EXECUTION_ FAILED

The function failed to launch on the GPU.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 430

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnSetPersistentRNNPlan

cudnn_adv_train.so Library

CUDNN_STATUS_ALLOC_FAILED

The function was unable to allocate memory.

8.2.25. cudnnSetCTCLossDescriptor ()

cudnnStatus t cudnnSetCTCLossDescriptor (

cudnnCTCLossDescriptor t ctcLossDesc,

cudnnDataType t compType)
This function sets a CTC loss function descriptor. See also the extended version
cudnnSetCTCLossDescriptorEx(] to set the input normalization mode.

When the extended version cudnnSetCTCLossDescriptorEx(] is used with normMode set to
CUDNN_LOSS NORMALIZATION NONE and the gradMode set to CUDNN NOT PROPAGATE NAN,
then it is the same as the current function cudnnSetCTCLossDescriptor (), meaning:

cudnnSetCtcLossDescriptor (*) = cudnnSetCtcLossDescriptorEx (*,
normMode=CUDNN_LOSS_NORMALIZATION_NONE, gradMode=CUDNN_NOT_PROPAGATE_NAN)

Parameters
ctclLossDesc

Output. CTC loss descriptor to be set.
compType

Input. Compute type for this CTC loss function.

Returns

CUDNN_STATUS_SUCCESS

The function returned successfully.

CUDNN_STATUS_BAD_ PARAM

At least one of the input parameters passed is invalid.

8.2.26. cudnnSetCTCLossDescriptorEx ()

cudnnStatus t cudnnSetCTCLossDescriptorEx (

cudnnCTCLossDescriptor t ctcLossDesc,
cudnnDataType t compType,
cudnnLossNormalizationMode t normMode,
cudnnNanPropagation t gradMode)

This function is an extension of cudnnSetCTCLossDescriptor(). This function provides an
additional interface normMode to set the input normalization mode for the CTC loss function,
and gradMode to control the NaN propagation type.

When this function cudnnSetCTCLossDescriptorEx () is used with normMode set to
CUDNN_LOSS_NORMALIZATION_NONEandthegradModeSettoCUDNN_NOT_PROPAGATE_NAN,
then it is the same as cudnnSetCTCLossDescriptor(], meaning:

cudnnSetCtcLossDescriptor (*) = cudnnSetCtcLossDescriptorEx (*,
normMode=CUDNN_LOSS_NORMALIZATION NONE, gradMode=CUDNN NOT PROPAGATE NAN)

NVIDIA cuDNN PR-09702-001_v8.3.0 | 431

cudnn_adv_train.so Library

Parameters

ctcLossDesc

Output. CTC loss descriptor to be set.
compType

Input. Compute type for this CTC loss function.
normMode

Input. Input normalization type for this CTC loss function. For more information, see
cudnnlLossNormalizationMode_t.

gradMode

Input. NaN propagation type for this CTC loss function. For L the sequence length, R
the number of repeated letters in the sequence, and T the length of sequential data,
the following applies: when a sample with L+R > T is encountered during the gradient
calculation, if gradMode is set to CUDNN_PROPAGATE NAN (see cudnnNanPropagation_tJ,
then the CTC loss function does not write to the gradient buffer for that sample.
Instead, the current values, even not finite, are retained. If gradMode Is set to

CUDNN NOT PROPAGATE NAN, then the gradient for that sample is set to zero. This
guarantees finite gradient.

Returns
CUDNN_STATUS SUCCESS

The function returned successfully.

CUDNN_STATUS_BAD_PARAM

At least one of the input parameters passed is invalid.

8.2.27. cudnnSetCTCLossDescriptor v8()

cudnnStatus t cudnnSetCTCLossDescriptorEx (

cudnnCTCLossDescriptor t ctcLossDesc,
cudnnDataType t compType,
cudnnLossNormalizationMode t normMode,
cudnnNanPropagation t gradMode,

int maxLabelLength)

Many CTC API functions are updated in cuDNN version 8.0.0 to support CUDA graphs. In order
to do so, a new parameter is needed, maxLabelLength. Now that label and input data are
assumed to be in GPU memory, this information is not otherwise readily available.

Parameters

ctclLossDesc

Output. CTC loss descriptor to be set.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 432

cudnn_adv_train.so Library

compType
Input. Compute type for this CTC loss function.

normMode

Input. Input normalization type for this CTC loss function. For more information, see
cudnnlossNormalizationMode_t.

gradMode

Input. NaN propagation type for this CTC loss function. For L the sequence length, R
the number of repeated letters in the sequence, and T the length of sequential data,

the following applies: when a sample with L+R > T is encountered during the gradient
calculation, if gradMode is set to CUDNN_PROPAGATE NAN (see cudnnNanPropagation_t],
then the CTC loss function does not write to the gradient buffer for that sample.
Instead, the current values, even not finite, are retained. If gradMode is set to

CUDNN NOT PROPAGATE NAN, then the gradient for that sample is set to zero. This
guarantees finite gradient.

maxLabellLength

Input. The maximum label length from the labels data.

Returns

CUDNN_STATUS_SUCCESS

The function returned successfully.

CUDNN_STATUS_BAD PARAM

At least one of input parameters passed is invalid.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 433

Chapter 9. cuDNN Backend AP|

This chapter documents the current implemented behavior of the cudnnBackend* API
introduced in cuDNN version 8.x. Users specify the computational case, set up an execution
plan for it, and execute the computation via numerous descriptors. The typical use pattern for
a descriptor with attributes consists of the following sequence of API calls:

1. cudnnBackendCreateDescriptor() creates a descriptor of a specified type.

2. cudnnBackendSetAttribute(] sets the values of a settable attribute for the descriptor. All
required attributes must be set before the next step.

3. cudnnBackendFinalize(] finalizes the descriptor.

4. cudnnBackendGetAttribute() gets the values of an attribute from a finalized descriptor.

The enumeration type cudnnBackendDescriptorType t enumerates the list of valid cuDNN
backend descriptor types. The enumeration type cudnnBackendAttributeName_ t enumerates
the list of valid attributes. Each descriptor type in cudnnBackendDescriptorType_t has a
disjoint subset of valid attribute values of cudnnBackendAttributeName_t. The full description
of each descriptor type and their attributes are specified in the Backend Descriptor Types
section.

9.1. Data Type References

9.1.1. cudnnBackendAttributeType t

typedef enum {
CUDNN_ TYPE HANDLE = O,
CUDNN_TYPE DATA TYPE,
CUDNN TYPE BOOLEAN,
CUDNN_TYPE INT64,
CUDNN_ TYPE FLOAT,
CUDNN_TYPE DOUBLE,
CUDNN_TYPE VOID PTR,
CUDNN_TYPE_CONVOLUTION_MODE,
CUDNN_TYPE HEUR MODE,
CUDNN_TYPE KNOB TYPE,
CUDNN_TYPE NAN PROPOGATION,
CUDNN_TYPE_NUMERICAL_NOTE,
CUDNN_TYPE ATTRIB NAME,
CUDNN_TYPE POINTWISE MODE,
CUDNN TYPE BACKEND DESCRIPTOR,
CUDNN_TYPE GENSTATS MODE

} cudnnBackendAttributeType t;

NVIDIA cuDNN PR-09702-001_v8.3.0 | 434

cuDNN Backend API

The enumeration type cudnnBackendAttributeType t specifies the data type of an
attribute of a cuDNN backend descriptor. It is used to specify the type of data pointed
to by the void *arrayOofElements argument of cudnnBackendSetAttribute(] and

cudnnBackendGetAttributel().

Table 43. The attribute types of cudnnBackendAttributeType t.

cudnnBackendAttributeType t
CUDNN_TYPE_HANDLE
CUDNN_TYPE_DATA_TYPE
CUDNN_TYPE_BOOLEAN
CUDNN_TYPE_INT64
CUDNN_TYPE_FLOAT
CUDNN_TYPE_DOUBLE
CUDNN_TYPE_VOID_ PTR
CUDNN_TYPE_CONVOLUTION_MODE
CUDNN_TYPE_HEUR_MODE
CUDNN_TYPE_KNOB_TYPE
CUDNN_TYPE_NAN_PROPOGATION
CUDNN_TYPE_NUMERICAL NOTE
CUDNN_TYPE_ATTRIB_NAME
CUDNN_TYPE_POINTWISE MODE
CUDNN_TYPE_BACKEND_ DESCRIPTOR

CUDNN_TYPE GENSTATS MODE

Attribute type
cudnnHandle t

cudnnDataType t

bool

int64 t

float

double

void *
cudnnConvolutionMode t
cudnnBackendHeurMode t

cudnnBackendKnobType t

cudnnNanPropagation_t

cudnnBackendNumericalNote t
cudnnBackendAttributeName t

cudnnPointwiseMode_t

cudnnBackendDescriptor t
cudnnGenStatsMode t

9.2. Backend Descriptor Types

This section enumerates all valid attributes of various descriptors.

9.2.1. CUDNN_BACKEND CONVOLUTION DESCRIPTOR

Created with cudnnBackendCreate (CUDNN BACKEND CONVOLUTION DESCRIPTOR, &desc);
the cuDNN backend convolution descriptor specifies the parameters for a convolution
operator for both forward and backward propagation: compute data type, convolution mode,
filter dilation and stride, and padding on both sides.

Attributes

Attributes of a cuDNN backend convolution descriptor are values of enumeration type
cudnnBackendAttributeName_t with prefix CUDNN_ATTR CONVOLUTION :
CUDNN_ATTR CONVOLUTION COMP TYPE

The compute type of the convolution operator.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 435

cuDNN Backend API

> CUDNN TYPE DATA TYPE; one element.

> Required attribute.
CUDNN_ATTR_CONVOLUTION MODE
Convolution or cross-correlation mode.

» CUDNN TYPE CONVOLUTION MODE; one element.

> Required attribute.
CUDNN_ATTR _CONVOLUTION DILATIONS
Filter dilation.

> CUDNN_TYPE INT64;one or more, but at most CUDNN MAX DIMS elements.

» Required attribute.
CUDNN_ATTR CONVOLUTION FILTER STRIDES
Filter stride.

> CUDNN TYPE INT64;0ne or more, butat most CUDNN MAX DIMS elements.

> Required attribute.
CUDNN_ATTR _CONVOLUTION PRE_PADDINGS
Padding at the beginning of each spatial dimension.

» CUDNN TYPE INT64;one or more, but at most CUDNN MAX DIMS elements.

> Required attribute.
CUDNN_ATTR_CONVOLUTION POST PADDINGS
Padding at the end of each spatial dimension.

> CUDNN_TYPE INT64;one or more, but at most CUDNN MAX DIMS elements.

» Required attribute.

Finalization

cudnnBackendFinalize() with a CUDNN BACKEND CONVOLUTION DESCRIPTOR can have the
following return values:
CUDNN_STATUS BAD PARAM

An elemCount argument for setting CUDNN_ATTR CONVOLUTION DILATIONS,

CUDNN_ ATTR CONVOLUTION FILTER STRIDES, CUDNN ATTR CONVOLUTION PRE PADDINGS,
and CUDNN_ ATTR CONVOLUTION POST PADDINGS is not equal to the value set for

CUDNN ATTR CONVOLUTION SPATIAL DIMS.

CUDNN_STATUS_SUCCESS

The descriptor was finalized successfully.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 436

cuDNN Backend API

9.2.2. CUDNN_BACKEND ENGINE DESCRIPTOR

Created with descriptor type value CUDNN BACKEND ENGINE DESCRIPTOR, cCuDNN backend
engine descriptor describes an engine to compute an operation graph. An engine is a grouping

of kernels with similar compute and numerical attributes.

Attributes

Attributes of a cuDNN backend convolution descriptor are values of enumeration type
cudnnBackendAttributeName_t with prefix CUDNN_ATTR ENGINE :
CUDNN_ATTR ENGINE OPERATION_ GRAPH

The operation graph to compute.

> CUDNN TYPE BACKEND DESCRIPTOR; one element of descriptor type
CUDNN_ BACKEND OPERATIONGRAPH DESCRIPTOR.

> Required attribute.
CUDNN_ATTR_ENGINE_GLOBAL_INDEX
The index for the engine.

> CUDNN TYPE INT64;one element.

» Valid values are between 0 and
CUDNN_ ATTR OPERATIONGRAPH ENGINE GLOBAL COUNT-1.

> Required attribute.
CUDNN_ATTR_ENGINE_KNOB_INFO
The descriptors of performance knobs of the engine.

> CUDNN TYPE BACKEND DESCRIPTOR; one element of descriptor type
CUDNN_BACKEND KNOB_ INFO DESCRIPTOR.

> Read-only attribute.
CUDNN_ATTR_ENGINE_ NUMERICAL NOTE
The numerical attributes of the engine.

» CUDNN TYPE NUMERICAL NOTE; zero or more elements.

> Read-only attribute.
CUDNN_ATTR_ENGINE_LAYOUT INFO
The preferred tensor layouts of the engine.

> CUDNN TYPE BACKEND DESCRIPTOR; one element of descriptor type
CUDNN_BACKEND LAYOUT INFO DESCRIPTOR.

> Read-only attribute.

NVIDIA cuDNN PR-09702-001_v8.3.0

437

cuDNN Backend API

Finalization
CUDNN_STATUS SUCCESS

The descriptor was finalized successfully.

CUDNN_STATUS_NOT_SUPPORTED

The descriptor attribute set is not supported by the current version of cuDNN. Some
examples include:

» Thevalue of CUDNN_ATTR ENGINE GLOBAL INDEX is notin avalid range.

CUDNN_STATUS_BAD PARAM

The descriptor attribute set is inconsistent or in an unexpected state. Some examples
include:

» The operation graph descriptor set is not already finalized.

9.2.3. CUDNN_BACKEND ENGINECFG DESCRIPTOR

Created with cudnnBackendCreate (CUDNN BACKEND ENGINECFG DESCRIPTOR, &desc);
the cuDNN backend engine configuration descriptor consists of an engine descriptor and

an array of knob choice descriptors. Users can query from engine config information about
intermediates: computational intermediate results that can be reused between executions.

Attributes
CUDNN_ATTR ENGINECFG ENGINE
The backend engine.

» CUDNN TYPE BACKEND DESCRIPTOR: one element, a backend descriptor of type
CUDNN_BACKEND ENGINE DESCRIPTOR.

» Required attribute.
CUDNN_ATTR ENGINECFG KNOB CHOICES
The engine tuning knobs and choices.

> CUDNN TYPE BACKEND DESCRIPTOR: zero or more elements, backend descriptors of
type CUDNN BACKEND KNOB CHOICE DESCRIPTOR.

CUDNN_ATTR ENGINECFG_INTERMEDIATE INFO
Information of the computational intermediate of this engine config.

> CUDNN TYPE BACKEND DESCRIPTOR: one element, a backend descriptor of type
CUDNN_ BACKEND INTERMEDIATE INFO DESCRIPTOR.
> Read-only attribute.

» Currently unsupported. Placeholder for future implementation.

NVIDIA cuDNN PR-09702-001_v8.3.0 |

438

cuDNN Backend API

Finalization
CUDNN_STATUS SUCCESS

The descriptor was finalized successfully.

CUDNN_STATUS_NOT_SUPPORTED

The descriptor attribute set is not supported by the current version of cuDNN. Some
examples include:

» The value knob.

9.2.4. CUDNN BACKEND ENGINEHEUR DESCRIPTOR

Created with cudnnBackendCreate (CUDNN BACKEND ENGINEHEUR DESCRIPTOR, &desc);
the cuDNN backend engine heuristics descriptor allows users to obtain for an operation graph
engine configuration descriptors ranked by performance according to cuDNN's heuristics.

Attributes
CUDNN_ATTR ENGINEHEUR OPERATION GRAPH

The operation graph for which heuristics result in a query.

CUDNN_TYPE_BACKEND DESCRIPTOR

One element.

» Required attribute.
CUDNN_ATTR_ENGINEHEUR MODE

The heuristic mode to query the result.

> CUDNN TYPE HEUR MODE; one element.

> Required attribute.
CUDNN_ATTR_ENGINEHEUR RESULTS
The result of the heuristics query.

> CUDNN TYPE BACKEND DESCRIPTOR; zero or more elements of descriptor type
CUDNN BACKEND ENGINECFG DESCRIPTOR.

> Get-only attribute.

Finalization

Return values of cudnnBackendFinalize (desc) where desc is a cuDNN backend engine
heuristics descriptor:
CUDNN_STATUS_SUCCESS

The descriptor was finalized successfully.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 439

cuDNN Backend API

9.2.5. CUDNN_BACKEND EXECUTION PLAN DESCRIPTOR

Created with cudnnBackendCreate (CUDNN BACKEND EXECUTION PLAN DESCRIPTOR,

&desc) ; the cuDNN backend execution plan descriptor allows the user to specify an execution
plan, consists of a cuDNN handle, an engine configuration, and optionally an array of
intermediates to compute.

Attributes
CUDNN_ATTR EXECUTION PLAN HANDLE
A cuDNN handle.

> CUDNN TYPE HANDLE; one element.

» Required attribute.
CUDNN_ATTR EXECUTION PLAN ENGINE CONFIG
An engine configuration to execute.

> CUDNN_BACKEND ENGINECFG DESCRIPTOR; one element.

> Required attribute.
CUDNN_ATTR_EXECUTION PLAN RUN ONLY INTERMEDIATE UIDS
Unique identifiers of intermediates to compute.

» CUDNN TYPE INT64;zero or more elements.

» Optional attribute. If set, the execution plan will only compute the specified intermediate
and not any of the output tensors on the operation graph in the engine configuration.

CUDNN_ATTR_EXECUTION PLAN COMPUTED INTERMEDIATE UIDS
Unique identifiers of precomputed intermediates.

» CUDNN TYPE INT64;zero or more elements.

> Optional attribute. If set, the plan will expect and use pointers for each intermediate in
the variant pack descriptor during execution.

» Not supported currently: placeholder for future implementation.
CUDNN_ATTR EXECUTION PLAN WORKSPACE SIZE
The size of the workspace buffer required to execute this plan.

» CUDNN TYPE INT64;one element.

> Read-only attribute.

Finalization

Return values of cudnnBackendFinalize (desc) where desc is a cuDNN backend execution
plan descriptor:

NVIDIA cuDNN PR-09702-001_v8.3.0 | 440

cuDNN Backend API

CUDNN_STATUS_SUCCESS

The descriptor was finalized successfully.

9.2.6. CUDNN_BACKEND INTERMEDIATE INFO DESCRIPTOR

Created with cudnnBackendCreate (CUDNN BACKEND INTERMEDIATE INFO DESCRIPTOR,
&desc) ; the cuDNN backend intermediate descriptor is a read-only descriptor that contains
information about an execution intermediate. An execution intermediate is some intermediate
computation for an engine config in device memory that can be reused between plan execution
to amortize the kernel. Each intermediate is identified by a unique ID. Users can query for the
device memory size of the intermediate. An intermediate can depend on the data of one or
more tensors identified by the tensor UIDs or one more attribute of the operation graph.

This is a read-only descriptor. Users cannot set the descriptor attributes or finalize the
descriptor. User query for a finalized descriptor from an engine config descriptor.

Attributes
CUDNN_ATTR_INTERMEDIATE INFO_UNIQUE_ID
A unique identifier of the intermediate.

> CUDNN TYPE INT64;one element.

> Read-only attribute.
CUDNN_ATTR INTERMEDIATE INFO SIZE
The required device memory size for the intermediate.

» CUDNN TYPE INT64;one element.

> Read-only attribute.
CUDNN_ATTR_INTERMEDIATE INFO DEPENDENT DATA UIDS
UID of tensors on which the intermediate depends.

> CUDNN TYPE INT64;zero or more elements.

> Read-only attribute.
CUDNN_ATTR INTERMEDIATE INFO DEPENDENT ATTRIBUTES

Placeholder for future implementation.

Finalization

User does not finalize this descriptor. cudnnBackendFinalize (desc) with a backend
intermediate descriptor returns CUDNN_STATUS NOT SUPPORTED.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 441

cuDNN Backend API

9.2.7. CUDNN BACKEND KNOB CHOICE DESCRIPTOR

Created with cudnnBackendCreate (CUDNN BACKEND KNOB CHOICE DESCRIPTOR, &desc);
the cuDNN backend knob choice descriptor consists of the type of knobs to be set and the
value to which the knob is set.

Attributes
CUDNN_ATTR_KNOB_CHOICE KNOB TYPE
The type of knobs to be set.

> CUDNN TYPE KNOB TYPE: one element.

» Required attribute.
CUDNN_ATTR KNOB CHOICE KNOB VALUE

> CUDNN TYPE INT64:one element.

» Required attribute.

Finalization

Return values of cudnnBackendFinalize (desc) where desc is a cuDNN backend knob
choice descriptor:
CUDNN_STATUS_SUCCESS

The knob choice descriptor was finalized successfully.

9.2.8. CUDNN BACKEND KNOB INFO DESCRIPTOR

Created with cudnnBackendCreate (CUDNN BACKEND INFO DESCRIPTOR, &desc);the
cuDNN backend knob info descriptor consists of the type and valid value range of an engine
performance knob. Valid value range is given in terms of minimum, maximum, and stride
of valid values. This is a purely informative descriptor type. Setting descriptor attributes is
not supported. User obtains an array of finalized descriptors, one for each knob type, from a
finalized backend descriptor.

Attributes
CUDNN_ATTR KNOB INFO TYPE
The type of the performance knob.

> CUDNN TYPE KNOB TYPE: one element.

> Read-only attribute.

CUDNN_ATTR_KNOB_INFO_MAXIMUM VALUE

The smallest valid value choice value for this knob.

» CUDNN TYPE INT64:one element.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 442

cuDNN Backend API

> Read-only attribute.
CUDNN_ATTR _KNOB_INFO MINIMUM VALUE
The largest valid choice value for this knob.

» CUDNN TYPE INT64:one element.

> Read-only attribute.
CUDNN_ATTR_KNOB_INFO_STRIDE
The stride of valid choice values for this knob.

> CUDNN TYPE INT64:one element.

» Read-only attribute.

Finalization

This descriptor is read-only; it is retrieved and finalized from a cuDNN backend engine
configuration descriptor. Users cannot set or finalize.

9.2.9. CUDNN BACKEND LAYOUT INFO DESCRIPTOR

Created with descriptor type value CUDNN BACKEND LAYOUT INFO DESCRIPTOR, CUDNN
backend layout info descriptor provides information on the preferred layout for a tensor.

Attributes
CUDNN_ATTR LAYOUT INFO TENSOR UID
The UID of the tensor.

> CUDNN TYPE INT64;one element.

> Read-only attribute.
CUDNN_ATTR LAYOUT INFO TYPES
The preferred layout of the tensor.

» CUDNN TYPE LAYOUT TYPE: zero or more element cudnnBackendLayoutType_t.

> Read-only attribute.

Finalization

This descriptor is read-only; it is retrieved and finalized from a cuDNN backend engine
configuration descriptor. Users cannot set its attribute or finalize it.

9.2.10. CUDNN_BACKEND MATMUL DESCRIPTOR

Created with cudnnBackendCreate (CUDNN BACKEND MATMUL DESCRIPTOR, &desc);the
cuDNN backend matmul descriptor specifies any metadata needed for the matmul operation.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 443

cuDNN Backend API

Attributes

CUDNN_ATTR MATMUL_ COMP_TYPE
The compute precision used for the matmul operation.

> CUDNN TYPE DATA TYPE; one element.

> Required attribute.

Finalization

Return values of cudnnBackendFinalize (desc) where desc is a cuDNN backend matmul
descriptor:
CUDNN_STATUS_SUCCESS

The descriptor was finalized successfully.

9.2.11. CUDNN_BACKEND OPERATION CONVOLUTION BACKWARD

Created with

cudnnBackendCreate (CUDNN BACKEND OPERATION CONVOLUTION BACKWARD DATA DESCRIPTOR,
&desc) ; the cuDNN backend convolution backward data operation descriptor specifies an
operation node for convolution backward data to compute the gradient of input data dx with

filter tensor w and gradient of response dy with output a scaling and residue add with B

scaling. That is, the equation dx = a(w*’dy] + Bdx, where * denotes the convolution backward

data operator.

Attributes

Attributes of a cuDNN backend convolution descriptor are values
of enumeration type cudnnBackendAttributeName_t with prefix
CUDNN_ATTR_OPERATION CONVOLUTION BWD DATA :
CUDNN_ATTR_OPERATION CONVOLUTION BWD DATA ALPHA

The alpha value.

> CUDNN TYPE FLOAT or CUDNN TYPE DOUBLE; one or more elements.

> Required attribute.
CUDNN_ATTR_OPERATION CONVOLUTION BWD_DATA BETA
The beta value.

> CUDNN TYPE FLOAT or CUDNN TYPE DOUBLE; one or more elements.

» Required attribute.
CUDNN_ATTR OPERATION CONVOLUTION BWD DATA CONV_DESC

The convolution operator descriptor.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 444

cuDNN Backend API

» CUDNN TYPE BACKEND DESCRIPTOR; one element of descriptor type
CUDNN BACKEND CONVOLUTION DESCRIPTOR.

» Required attribute.
CUDNN_ATTR OPERATION CONVOLUTION BWD DATA W
The convolution filter tensor descriptor.

> CUDNN TYPE BACKEND DESCRIPTOR; one element of descriptor type
CUDNN_BACKEND TENSOR DESCRIPTOR.

> Required attribute.
CUDNN_ATTR_OPERATION CONVOLUTION BWD_DATA DX
The image gradient tensor descriptor.

> CUDNN TYPE BACKEND DESCRIPTOR; one element of descriptor type
CUDNN_BACKEND TENSOR DESCRIPTOR.

> Required attribute.
CUDNN_ATTR_OPERATION CONVOLUTION BWD_ DATA DY
The response gradient tensor descriptor.

> CUDNN TYPE BACKEND DESCRIPTOR; one element of descriptor type
CUDNN_BACKEND TENSOR DESCRIPTOR.

> Required attribute.

Finalization

In finalizing the convolution operation, the tensor dimensions of the tensor DX, w, and DY are
bound based on the same interpretations as the X, W, and Y tensor dimensions described in the
CUDNN_ BACKEND OPERATION CONVOLUTION FORWARD DESCRIPTOR section.

cudnnBackendFinalize() with a

CUDNN_BACKEND OPERATION CONVOLUTION BACKWARD DATA DESCRIPTOR () can have the
following return values:

CUDNN_STATUS BAD PARAM

Invalid or inconsistent attribute values are encountered. Some possible cause:

» The DX, W, and DY tensors do not constitute a valid convolution operation under the
convolution operator.

CUDNN_STATUS_SUCCESS

The descriptor was finalized successfully.

9.2.12. CUDNN_BACKEND OPERATION CONVOLUTION BACKWARD

Created with
cudnnBackendCreate (CUDNN BACKEND OPERATION CONVOLUTION BACKWARD FILTER DESCRIPTOR,

NVIDIA cuDNN PR-09702-001_v8.3.0 | 445

cuDNN Backend API

&desc) ; the cuDNN backend convolution backward filter operation descriptor specifies an
operation node for convolution backward filter to compute the gradient of filter dw with image
tensor x and gradient of response dy with output a scaling and residue add with B scaling.

That is, the equation: dw = a(x*Ndy) +Bdw, where *” denotes the convolution backward filter

operator.

Attributes of a cuDNN backend convolution descriptor are values
of enumeration type cudnnBackendAttributeName_t with prefix
CUDNN ATTR OPERATION CONVOLUTION BWD FILTER :
CUDNN_ATTR OPERATION CONVOLUTION BWD FILTER ALPHA

The alpha value.

CUDNN_ TYPE FLOAT or CUDNN TYPE DOUBLE,; one or more elements.

Required attribute. Required to be set before finalization.
CUDNN_ATTR OPERATION CONVOLUTION BWD_ FILTER BETA

The beta value.

CUDNN_TYPE FLOAT Or CUDNN_TYPE DOUBLE; one or more elements.

Required attribute. Required to be set before finalization.
CUDNN_ATTR_OPERATION CONVOLUTION BWD_FILTER CONV_DESC
The convolution operator descriptor.

CUDNN_ TYPE BACKEND DESCRIPTOR;one element of descriptor type
CUDNN_BACKEND CONVOLUTION DESCRIPTOR.

Required attribute. Required to be set before finalization.
CUDNN_ATTR_OPERATION CONVOLUTION BWD_FILTER DW
The convolution filter tensor descriptor.

CUDNN_ TYPE BACKEND DESCRIPTOR;one element of descriptor type
CUDNN_BACKEND TENSOR DESCRIPTOR.

Required attribute. Required to be set before finalization.
CUDNN_ATTR_OPERATION CONVOLUTION BWD FILTER X
The image gradient tensor descriptor.

CUDNN_TYPE BACKEND DESCRIPTOR; one element of descriptor type
CUDNN_BACKEND TENSOR DESCRIPTOR.

Required attribute. Required to be set before finalization.
CUDNN_ATTR OPERATION CONVOLUTION BWD FILTER DY

The response gradient tensor descriptor.

NVIDIA cuDNN PR-09702-001_v8.3.0 |

446

cuDNN Backend API

» CUDNN TYPE BACKEND DESCRIPTOR; one element of descriptor type
CUDNN_ BACKEND TENSOR DESCRIPTOR.

> Required attribute. Required to be set before finalization.

Finalization

In finalizing the convolution operation, the tensor dimensions of the tensor X, bw, and DY are
bound based on the same interpretations as the x, W, and Y tensor dimensions described in the
CUDNN_BACKEND OPERATION_CONVOLUTION _FORWARD_DESCRIPTOR section.

cudnnBackendFinalize() with a

CUDNN_BACKEND OPERATION CONVOLUTION BACKWARD FILTER DESCRIPTOR () can have the
following return values:

CUDNN_STATUS_ BAD PARAM

Invalid or inconsistent attribute values are encountered. Some possible cause:

» The x, bw, and DY tensors do not constitute a valid convolution operation under the
convolution operator.

CUDNN_STATUS_SUCCESS

The descriptor was finalized successfully.

9.2.13. CUDNN_BACKEND OPERATION CONVOLUTION FORWARD

Created with

cudnnBackendCreate (CUDNN BACKEND OPERATION CONVOLUTION FORWARD DESCRIPTOR,
&desc) ; the cuDNN backend convolution forward operation descriptor specifies an operation
node for forward convolution to compute the response tensor y of image tensor x convoluted
with filter tensor w with output scaling a and residual add with B scaling. That is, the equation

y = a(w*x) +fy, where * is the convolution operator in the forward direction.

Attributes

Attributes of a cuDNN backend convolution descriptor are values
of enumeration type cudnnBackendAttributeName_t with prefix
CUDNN_ATTR OPERATION CONVOLUTION FORWARD :
CUDNN_ATTR OPERATION CONVOLUTION FORWARD ALPHA

The alpha value.

> CUDNN_TYPE FLOAT Or CUDNN_TYPE DOUBLE; one or more elements.

> Required to be set before finalization.
CUDNN_ATTR_OPERATION CONVOLUTION FORWARD BETA
The beta value.

» CUDNN TYPE FLOAT or CUDNN TYPE DOUBLE; one or more elements.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 447

cuDNN Backend API

Required attribute.
CUDNN_ATTR_OPERATION CONVOLUTION_ FORWARD CONV_DESC
The convolution operator descriptor.

CUDNN_TYPE BACKEND DESCRIPTOR; one element of descriptor type
CUDNN_BACKEND CONVOLUTION DESCRIPTOR.

Required attribute.
CUDNN_ATTR OPERATION CONVOLUTION FORWARD W

The convolution filter tensor descriptor.

CUDNN_TYPE BACKEND DESCRIPTOR; one element of descriptor type
CUDNN_BACKEND TENSOR DESCRIPTOR.

Required attribute.
CUDNN_ATTR OPERATION CONVOLUTION FORWARD X
The image tensor descriptor.

CUDNN_TYPE BACKEND DESCRIPTOR;one element of descriptor type
CUDNN_ BACKEND TENSOR DESCRIPTOR.

Required attribute.
CUDNN_ATTR OPERATION CONVOLUTION FORWARD Y
The response tensor descriptor.

CUDNN_TYPE BACKEND DESCRIPTOR;one element of descriptor type
CUDNN_ BACKEND TENSOR DESCRIPTOR.

Required attribute.

In finalizing the convolution operation, the tensor dimensions of the tensor X, w, and v are
bound based on the following interpretations:

The CUDNN ATTR CONVOLUTION SPATIAL DIMS attribute of

CUDNN ATTR OPERATION CONVOLUTION FORWARD CONV DESC is the number of spatial
dimension of the convolution. The number of dimensions for tensor x, w, and Y must be larger
than the number of spatial dimensions by 2 or 3 depending on how users choose to specify the
convolution tensors.

If the number of tensor dimension is the number of spatial dimensions plus 2:

x tensor dimension and stride arrays are [N, GC, ..]
W tensor dimension and stride arrays are [KG, C, ..]

Y tensor dimension and stride arrays are [N, GK, ..]

NVIDIA cuDNN PR-09702-001_v8.3.0 | 448

cuDNN Backend API

where the ellipsis .. are shorthand for spatial dimensions of each tensor, G is the number

of convolution groups, and ¢ and K are the number of input and output feature maps per
group. In this interpretation, it is assumed that the memory layout for each group is packed.
cudnnBackendFinalize() asserts the tensors dimensions and strides are consistent with this
interpretation or it returns CUDNN STATUS BAD PARAM.

If the number of tensor dimension is the number of spatial dimensions plus 3:

> xtensor dimension and stride arrays are [N, G, C, ..]
> wWtensor dimension and stride arrays are [G, K, C, ..]

> v tensor dimension and stride arrays are [N, G, K, ..]

where the ellipsis .. are shorthand for spatial dimensions of each tensor, G is the number of
convolution groups, and ¢ and K are the number of input and output feature maps per group.
In this interpretation, users can specify an unpacked group stride. cudnnBackendFinalize()
asserts the tensors dimensions and strides are consistent with this interpretation or it returns
CUDNN_STATUS_ BAD PARAM.

cudnnBackendFinalize() with a

CUDNN BACKEND OPERATION CONVOLUTION FORWARD DESCRIPTOR can have the following
return values:

CUDNN_STATUS_BAD PARAM

Invalid or inconsistent attribute values are encountered. Some possible cause:

» The x,w, and Y tensors do not constitute a valid convolution operation under the
convolution operator.

CUDNN_STATUS_SUCCESS

The descriptor was finalized successfully.

9.2.14. CUDNN BACKEND OPERATION GEN STATS DESCRIPTOR

Represents an operation that will generate per-channel statistics. The specific statistics
that will be generated depends on the CUDNN ATTR OPERATION GENSTATS MODE attribute
in the descriptor. Currently, only CUDNN_GENSTATS SUM sQsSUMis supported for the
CUDNN_ATTR OPERATION GENSTATS MODE. It will generate the sum and quadratic

sum of per-channel elements of the input tensor x. The output dimension should

be all 1 except the c dimension. Also, the ¢ dimension of outputs should equal the ¢
dimension of the input. This opaque struct can be created with cudnnBackendCreate ()
(CUDNN_ BACKEND OPERATION GEN STATS DESCRIPTOR)].

Attributes
CUDNN_ATTR OPERATION GENSTATS MODE

Sets the CUDNN TYPE GENSTATS MODEOf the operation. This attribute is required.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 449

cuDNN Backend API

CUDNN_ATTR OPERATION GENSTATS_MATH PREC

The math precision of the computation. This attribute is required.

CUDNN_ATTR_OPERATION_ GENSTATS_ XDESC

Sets the descriptor for the input tensor x. This attribute is required.

CUDNN_ATTR_OPERATION_ GENSTATS_SUMDESC

Sets the descriptor for the output tensor sum. This attribute is required.

CUDNN_ATTR_OPERATION_GENSTATS_SQSUMDESC

Sets the descriptor for the output tensor quadraticsum. This attribute is required.

Finalization

In the finalization stage, the attributes are cross checked to make sure there are no conflicts.
The status below may be returned:
CUDNN_STATUS_BAD_PARAM

Invalid or inconsistent attribute values are encountered. Some possible causes are:

» The number of dimensions do not match between the input and output tensors.

» The input/output tensor dimensions do not agree with the above description.

CUDNN_STATUS_SUCCESS

The descriptor was finalized successfully.

9.2.15. CUDNN_BACKEND OPERATION MATMUL DESCRIPTOR

Created with cudnnBackendCreate (CUDNN BACKEND OPERATION MATMUL DESCRIPTOR,
&desc) ; the cuDNN backend matmul operation descriptor specifies an operation node for
matmul to compute the matrix product C by multiplying matrix A and matrix B, as shown in the
following equation: C = AB

Attributes

The commonly used GEMM operation is also achieved using this matmul operation along with
other pointwise operations.

Attributes of a cuDNN backend matmul descriptor are values of enumeration type
cudnnBackendAttributeName_t with prefix CUDNN_ATTR OPERATION MATMUL :
CUDNN_ATTR OPERATION MATMUL ADESC

The matrix A descriptor.

» CUDNN TYPE BACKEND DESCRIPTOR; one element of descriptor type
CUDNN_BACKEND TENSOR DESCRIPTOR.

» Required attribute.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 450

cuDNN Backend API

CUDNN_ATTR OPERATION MATMUL BDESC
The matrix B descriptor.

> CUDNN TYPE BACKEND DESCRIPTOR; one element of descriptor type
CUDNN_ BACKEND TENSOR DESCRIPTOR.

> Required attribute.
CUDNN_ATTR_OPERATION MATMUL CDESC
The matrix C descriptor.

> CUDNN TYPE BACKEND DESCRIPTOR; one element of descriptor type
CUDNN_ BACKEND TENSOR DESCRIPTOR.

> Required attribute.
CUDNN_ATTR_OPERATION MATMUL IRREGULARLY STRIDED_ BATCH_ COUNT
Number of matmul operations to perform in the batch on matrix. Default = 1.

> CUDNN TYPE INT64;one element.
» Default value is 1.

CUDNN_ATTR OPERATION MATMUL DESC
The matmul operation descriptor.

» CUDNN TYPE BACKEND DESCRIPTOR; one element of descriptor type
CUDNN_ BACKEND MATMUL DESCRIPTOR.

> Required attribute.

Finalization

In the finalization of the matmul operation, the tensor dimensions of the of the matrices A, B
and C will be check to ensure that they satisfy the requirements of matrix multiplication:

cudnnBackendFinalize() with a CUDNN BACKEND OPERATION MATMUL DESCRIPTOR can have
the following return values:
CUDNN_STATUS_NOT SUPPORTED

An unsupported attribute value was encountered. Some possible cause:
» If not all of the matrices A, B and C are rank-3 tensors.

CUDNN_STATUS_BAD PARAM
Invalid or inconsistent attribute values are encountered. Some possible causes:

» The CUDNN_ATTR OPERATION MATMUL IRREGULARLY STRIDED BATCH COUNT specified
Is a negative value.

» The CUDNN ATTR OPERATION MATMUL IRREGULARLY STRIDED BATCH COUNT and
one or more of the batch sizes of the matrices A, B and C are not equal to one. That is

NVIDIA cuDNN PR-09702-001_v8.3.0 | 451

cuDNN Backend API

to say there is a conflict where both irregularly and regularly strided batched matrix
multiplication are specified, which is not a valid use case.

» The dimensions of the matrices A, B and C do not satisfy the requirements of matrix
multiplication.

CUDNN_STATUS_SUCCESS

The descriptor was finalized successfully.

9.2.16. CUDNN_ BACKEND OPERATION POINTWISE DESCRIPTOR

Represents a pointwise operation that implements the equation

Y = op(alphal * X)or Y = op(alphal * X, alpha2 * B) depending on the operation

type. The actual type of operation represented by op () above depends on the

CUDNN ATTR OPERATION POINTWISE PW DESCRIPTOR attribute in the descriptor. This
operation descriptor supports operations with either single input single output such as
CUDNN POINTWISE SQRT, CUDNN POINTWISE RELU FWD, CUDNN POINTWISE TANH FWD,
CUDNN POINTWISE SIGMOID FWD, and CUDNN POINTWISE ELU FWD, or dual inputs single
output, such as CUDNN POINTWISE ADD, CUDNN POINTWISE MUL, CUDNN POINTWISE MIN,
CUDNN POINTWISE MAX. In the latter case, broadcasting is assumed when a

tensor dimension in one of the tensors is 1 while the other tensors corresponding
dimension is not 1. This opaque struct can be created with cudnnBackendCreate ()
(CUDNN BACKSEND OPERATION POINTWISE DESCRIPTOR).

Attributes
CUDNN_ATTR_OPERATION POINTWISE PW_DESCRIPTOR
Sets the descriptor containing the mathematical settings of the pointwise operation. This

attribute is required.

CUDNN_ATTR OPERATION_ POINTWISE XDESC

Sets the descriptor for the input tensor X. This attribute is required.
CUDNN_ATTR_OPERATION POINTWISE BDESC
If the operation requires 2 inputs, such as add or multiply, this attribute sets the second

input tensor B. If the operation requires only 1 input, this field is not used and should not be
set.

CUDNN_ATTR_OPERATION_ POINTWISE_YDESC

Sets the descriptor for the output tensor Y. This attribute is required.

CUDNN_ATTR OPERATION POINTWISE ALPHAL

Sets the scalar alphal value in the equation. Can be in float or half. This attribute is
optional, if not set, the default value is 1.0.

CUDNN_ATTR OPERATION POINTWISE ALPHA2

If the operation requires 2 inputs, such as add or multiply, this attribute sets the scalar
alpha2 value in the equation. Can be in float or half. This attribute is optional, if not set, the

NVIDIA cuDNN PR-09702-001_v8.3.0 | 452

cuDNN Backend API

default value is 1.0. If the operation requires only 1 input, this field is not used and should
not be set.

Finalization

In the finalization stage, the attributes are cross checked to make sure there are no conflicts.
The status below may be returned:
CUDNN_STATUS_BAD PARAM

Invalid or inconsistent attribute values are encountered. Some possible causes are:

» The number of dimensions do not match between the input and output tensors.

» The input/output tensor dimensions do not agree with the above described automatic
broadcasting rules.

CUDNN_STATUS_SUCCESS

The descriptor was finalized successfully.

9.2.17. CUDNN_ BACKEND OPERATIONGRAPH DESCRIPTOR

Created with descriptor type value CUDNN BACKEND OPERATIONGRAPH DESCRIPTOR, cCuDNN
backend operation graph descriptor describes an operation graph, a small network of one or
more operations connected by virtual tensors. Operation graph defines users’ computation
case or mathematical expression that they wish to compute.

Attributes

Attributes of a cuDNN backend convolution descriptor are values of enumeration type
cudnnBackendAttributeName_t with prefix CUDNN_ATTR OPERATIONGRAPH :
CUDNN_ATTR OPERATIONGRAPH HANDLE

A cuDNN handle.

> CUDNN TYPE DATA TYPE; one element.

> Required attribute.
CUDNN_ATTR OPERATIONGRAPH OPS
Operation nodes to form the operation graph.

» CUDNN TYPE BACKEND DESCRIPTOR; one or more elements of descriptor type
CUDNN_ BACKEND OPERATION * DESCRIPTOR().

» Required attribute.
CUDNN_ATTR OPERATIONGRAPH ENGINE GLOBAL COUNT
The number of engines to support the operation graph.

» CUDNN TYPE INT64;one element.

> Read-only attribute.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 453

cuDNN Backend API

CUDNN_ATTR OPERATIONGRAPH ENGINE SUPPORTED COUNT
The number of engines that support the operation graph.

> CUDNN TYPE INT64;one element.

> Read-only attribute; placeholder only: currently not supported.

Finalization
CUDNN_STATUS_BAD PARAM
Aninvalid attribute value was encountered. For example:

» One of the backend descriptors in CUDNN_ATTR OPERATIONGRAPH OPS is not finalized.

» Thevalue CUDNN ATTR OPERATIONGRAPH HANDLE is not a valid cuDNN handle.
CUDNN_STATUS_NOT SUPPORTED
An unsupported attribute value was encountered. For example:

» The combination of operations of attribute CUDNN_ ATTR OPERATIONGRAPH OPS is not
supported.

CUDNN_STATUS_SUCCESS

The descriptor was finalized successfully.

9.2.18. CUDNN_BACKEND TENSOR DESCRIPTOR

Created with cudnnBackendCreate (CUDNN BACKEND TENSOR DESCRIPTOR, &desc);the
cuDNN backend tensor allows users to specify the memory storage of a generic tensor. A
tensor is identified by a unique identifier and described by its data type, its data byte-alignment
requirements, and the extents and strides of its dimensions. Optionally, a tensor element

can be vector in one of its dimensions. A tensor can also be set to be virtual when it is an
intermediate variable in a computation graph and not mapped to physical global memory
storage.

Attributes

Attributes of a cuDNN backend tensor descriptors are values of enumeration type
cudnnBackendAttributeName_t with prefix CUDNN_ATTR TENSOR :
CUDNN_ATTR _TENSOR_UNIQUE_ID

An integer that uniquely identifies the tensor.

» CUDNN TYPE INT64;one element.

» Required attribute.
CUDNN_ATTR TENSOR DATA TYPE
Data type of tensor.

> CUDNN TYPE DATA TYPE; one element.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 454

cuDNN Backend API

> Required attribute.
CUDNN_ATTR TENSOR BYTE ALIGNMENT
Byte alignment of pointers for this tensor.

> CUDNN TYPE INT64;one element.

> Required attribute.
CUDNN_ATTR_TENSOR_DIMENSIONS
Tensor dimensions.

> CUDNN TYPE INT64;at most CUDNN MAX DIMS elements.

» Required attribute.
CUDNN_ATTR TENSOR STRIDES
Tensor strides.

> CUDNN TYPE INT64;at most CUDNN MAX DIMS elements.

> Required attribute.
CUDNN_ATTR _TENSOR_VECTOR_COUNT
Size of vectorization.

» CUDNN TYPE INT64;one element.

> Default value: 1
CUDNN_ATTR _TENSOR_VECTORIZED DIMENSION
Index of the vectorized dimension.

> CUDNN TYPE INT64;one element.

» Required to be set before finalization if CUDNN_ATTR TENSOR VECTOR COUNT is set to a
value different than its default; otherwise it's ignored.

CUDNN_ATTR_TENSOR_IS VIRTUAL

Indicates whether the tensor is virtual. A virtual tensor is an intermediate tensor in the
operation graph that exists in transient and not read from or written to in global device
memory.

> CUDNN TYPE BOOL; one element.
> Default value: false
Finalization

cudnnBackendFinalize() with a CUDNN BACKEND CONVOLUTION DESCRIPTOR can have the
following return values:

NVIDIA cuDNN PR-09702-001_v8.3.0 | 455

cuDNN Backend API

CUDNN_STATUS_BAD PARAM
Aninvalid attribute value was encountered. For example:

» Any of the tensor dimensions or strides is not positive.

» The value of the tensor alignment attribute is not divisible by the size of the data type.

CUDNN_STATUS NOT SUPPORTED
An unsupported attribute value was encountered. For example:

» The data type attribute is CUDNN_DATA INT8x4, CUDNN DATA UINT8x4, Or
CUDNN_ DATA INT8x32.

» The data type attribute is CUDNN_DATA INT8 and CUDNN ATTR TENSOR VECTOR COUNT
value is not 1, 4, or 32.

CUDNN_STATUS_SUCCESS

The descriptor was finalized successfully.

9.2.19. CUDNN BACKEND VARIANT PACK DESCRIPTOR

Created with cudnnBackendCreate (CUDNN BACKEND VARIANT PACK DESCRIPTOR, &desc);
the cuDNN backend variant pack plan allows users to set up pointers to device buffers to
various non-virtual tensors, identified by unique identifiers, of the operation graph, workspace,
and computation intermediates.

Attributes
CUDNN_ATTR _VARIANT PACK UNIQUE IDS
A unique identifier of tensor for each data pointer.

» CUDNN TYPE INT64;zero of more elements.

» Required attribute.
CUDNN_ATTR VARIANT PACK DATA POINTERS
Tensor data device pointers.

> CUDNN TYPE VOID PTR;Zzero or more elements.

> Required attribute.
CUDNN_ATTR VARIANT PACK_ INTERMEDIATES
Intermediate device pointers.

» CUDNN TYPE VOID PTR; zero or more elements.

> Setting attribute unsupported. Placeholder for support to be added in a future version.
CUDNN_ATTR _VARIANT PACK WORKSPACE

Workspace to device pointer.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 456

cuDNN Backend API

CUDNN_TYPE VOID_ PTR;one element.

Required attribute.

The return values for cudnnBackendFinalize() when called with a cuDNN backend variant pack
descriptor is:
CUDNN_STATUS_SUCCESS

The descriptor was finalized successfully.

This section describes some typical use cases of the cuDNN backend convolution API; for
example, setting up a simple operation graph, setting up an engine config for that operation
graph, and finally setting up an execution plan and executing it with data pointers set in a
variant pack descriptor.

This use case creates an operation graph with a single grouped 3D convolution forward
operation. It starts by setting up the input and output tensors, binding them to a convolution
forward operation, and finally setting up an operation graph with a single node.

1. Create tensor descriptors.

cudnnBackendDescriptor_ t xDesc;
cudnnBackendCreateDescriptor (CUDNN_BACKEND TENSOR DESCRIPTOR, &xDesc);

cudnnDataType t dtype = CUDNN_DATA FLOAT;

cudnnBackendSetAttribute (xDesc, CUDNN_ATTR TENSOR DATA TYPE,
CUDNN_TYPE DATA TYPE, 1, &dtype);

int64_t xDim[] = {n, g, ¢, 4, h, w};

int64_t xStr[] = {g * c *d *h * w, ¢ *d *h *w, d *h *w, h *w, w, 1};

int64_t xUi = 'x';

int64_t alignment = 4;

cudnnBackendSetAttribute (xDesc, CUDNN ATTR TENSOR DIMENSIONS,
CUDNN_TYPE INT64, 6, xDim);

cudnnBackendSetAttribute (xDesc, CUDNN_ATTR_TENSOR_STRIDES,
CUDNN_TYPE_INT64, 6, xStr);

cudnnBackendSetAttribute (xDesc, CUDNN_ATTR_TENSOR _UNIQUE_ ID,
CUDNN_TYPE_INT64, 1, &xUi);

cudnnBackendSetAttribute (xDesc, CUDNN ATTR TENSOR BYTE ALIGNMENT,
CUDNN_TYPE INTé64, 1, &alignment);

cudnnBackendFinalize (xDesc) ;

NVIDIA cuDNN PR-09702-001_v8.3.0 | 457

cuDNN Backend API

2. Repeat the above step for the convolution filter and response tensor descriptor. The
six filter tensor dimensions are [g, k, c, t, r, s] andthe six response tensor
dimensions are [n, g, k, o, p, gl,respectively. Below, when finalizing a convolution
operator to which the tensors are bound, dimension consistency is checked, meaning all
n, g, c, k values shared among the three tensors are required to be the same. Otherwise,
CUDNN_ STATUS BAD PARAM status is returned.

For backward compatibility with how tensors are specified in cudnnTensorDescriptor t
and used in convolution API, it is also possible to specify a 5D tensor with the following
dimension:

image: [n, g*c, d, h, w]
filter: [g*k, ¢, t, r, s]

response: [n, g*k, o, p, gl

In this format, a similar consistency check is performed when finalizing a convolution
operator descriptor to which the tensors are bound.

3. Create, set, and finalize a convolution operator descriptor.

int64_t nbDims = 3;

cudnnDataType t compType = CUDNN_DATA FLOAT;
cudnnConvolutionMode t mode = CUDNN_CONVOLUTION;
inté64_t pad[] = { 0, 0, 0 };

int64_t filterStr[] = { 1, 1, 1 };

int64_t dilation[] = { 1, 1, 1 };

cudnnBackendCreateDescriptor (CUDNN_BACKEND CONVOLUTION DESCRIPTOR, &cDesc) ;

cudnnBackendSetAttribute (cDesc, CUDNN_ATTR_CONVOLUTION_ SPATIAL DIMS,
CUDNN_TYPE_INT64, 1, &nbDims);

cudnnBackendSetAttribute (cDesc, CUDNN_ATTR CONVOLUTION_ COMP TYPE,
CUDNN_TYPE_DATA TYPE, 1, &compType) ;

cudnnBackendSetAttribute (cDesc, CUDNN_ATTR_CONVOLUTION CONV_MODE,
CUDNN_TYPE_CONVOLUTION MODE, 1, &mode) ;

cudnnBackendSetAttribute (cDesc, CUDNN_ATTR_CONVOLUTION PRE PADDINGS,
CUDNN_TYPE_INT64, nbDims, pad);

cudnnBackendSetAttribute (cDesc, CUDNN ATTR CONVOLUTION_ POST PADDINGS,
CUDNN_TYPE INT64, nbDims, pad);

cudnnBackendSetAttribute (cDesc, CUDNN_ATTR_CONVOLUTION_DILATIONS 0
CUDNN_TYPE_INT64, nbDims, dilation);

cudnnBackendSetAttribute (cDesc, CUDNN_ATTR_CONVOLUTION FILTER STRIDES,
CUDNN_TYPE_INT64, nbDims, filterStr);
cudnnBackendFinalize (cDesc) ;

4. Create, set, and finalize a convolution forward operation descriptor.

cudnnBackendDescriptor_ t fprop;
float alpha = 1.0;
float beta = 0.5;

cudnnBackendCreateDescriptor (CUDNN_BACKEND OPERATION CONVOLUTION FORWARD DESCRIPTOR,
&fprop) ;
cudnnBackendSetAttribute (fprop, CUDNN_ATTR_ OPERATION CONVOLUTION FORWARD X,
CUDNN_TYPE_BACKEND DESCRIPTOR, 1, &xDesc);
cudnnBackendSetAttribute (fprop, CUDNN_ATTR_OPERATION_ CONVOLUTION_ FORWARD W,
CUDNN_TYPE_BACKEND_ DESCRIPTOR, 1, &wDesc);

NVIDIA cuDNN PR-09702-001_v8.3.0 | 458

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnTensorDescriptor_t

cuDNN Backend API

cudnnBackendSetAttribute (fprop, CUDNN_ATTR OPERATION CONVOLUTION FORWARD Y,
CUDNN_TYPE BACKEND DESCRIPTOR, 1, &yDesc);
cudnnBackendSetAttribute (fprop,
CUDNN_ATTR_OPERATION CONVOLUTION FORWARD CONV_DESC,
CUDNN_TYPE_BACKEND DESCRIPTOR, 1, &cDesc);

cudnnBackendSetAttribute (fprop, CUDNN ATTR OPERATION CONVOLUTION FORWARD ALPHA,
dtype, 1, alpha);

cudnnBackendSetAttribute (fprop, CUDNN_ATTR OPERATION CONVOLUTION FORWARD BETA,
dtype, 1, beta);

cudnnBackendFinalize (fprop) ;

5. Create, set, and finalize an operation graph descriptor.

cudnnBackendDescriptor t op_graph;

cudnnBackendCreateDescriptor (CUDNN_BACKEND OPERATIONGRAPH DESCRIPTOR, op_graph) ;

cudnnBackendSetAttribute (op_graph, CUDNN_ATTR OPERATIONGRAPH OPS,
CUDNN_TYPE BACKEND DESCRIPTOR, len, ops);

cudnnBackendSetAttribute (op_graph, CUDNN_ATTR OPERATIONGRAPH HANDLE,
CUDNN_TYPE_HANDLE, 1, &handle);

cudnnBackendFinalize (op_graph) ;

This use case describes the steps with which users can set up an engine config from a
previously finalized operation graph. This is an example in which users would like to use the
engine with CUDNN_ATTR_ENGINE GLOBAL INDEX O for this operation graph and does not set
any performance knobs.

1. Create, set, and finalize an engine descriptor.

cudnnBackendDescriptor_ t engine;

cudnnBackendCreateDescriptor (CUDNN_BACKEND ENGINE DESCRIPTOR, &engine) ;

cudnnBackendSetAttribute (engine, CUDNN_ATTR_ENGINE_ OPERATION_GRAPH,
CUDNN_TYPE_BACKEND DESCRIPTOR, 1, &opset);

Inté64_t gidx = 0;

cudnnBackendSetAttribute (engine, CUDNN ATTR ENGINE GLOBAL INDEX,
CUDNN_TYPE_INT64, 1, &gidx);

cudnnBackendFinalize (engine) ;

The user can query a finalized engine descriptor with cudnnBackendGetAttribute(] API
call for its attributes, including the performance knobs that it has. For simplicity, this use

case skips this step and assumes the user is setting up an engine config descriptor below
without making any changes to performance knobs.

2. Create, set, and finalize an engine config descriptor.

cudnnBackendDescriptor_t engcfg;

cudnnBackendSetAttribute (engcfg, CUDNN ATTR ENGINECFG_ENGINE,
CUDNN_TYPE BACKEND DESCRIPTOR, 1, &engine);

cudnnBackendFinalize (engcfq) ;

This use case describes the steps with which users set up an execution plan with a previously
finalized engine config descriptor, set up the data pointer variant pack, and finally executing
the plan.

NVIDIA cuDNN PR-09702-001_v8.3.0 | 459

cuDNN Backend API

1. Create, set, and finalize an execution plan descriptor. Obtain workspace size to allocate.

cudnnBackendDescriptor_t plan;

cudnnBackendCreate (CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR , &plan);

cudnnBackendSetAttribute (plan, CUDNN ATTR EXECUTION PLAN ENGINE CONFIG,
CUDNN_TYPE BACKEND DESCRIPTOR, 1, &engcfg);

cudnnBackendFinalize (plan) ;

int64_t workspaceSize;
cudnnBackendGetAttribute (plan, CUDNN_ATTR EXECUTION PLAN WORKSPACE SIZE,
CUDNN_TYPE INT64, 1, NULL, &workspaceSize)

2. Create, set and finalize a variant pack descriptor.

void *dev_ptrs[3] = {xData, wData, yData}; // device pointer
int64_t uwids[3] = {‘x', ‘W', ‘y'};
Void *workspace;

cudnnBackendDescriptor_ t varpack;
cudnnBackendCreate (CUDNN_BACKEND VARIANT PACK DESCRIPTOR, &varpack);
cudnnBackendSetAttribute (varpack, CUDNN_ATTR VARIANT PACK DATA POINTERS,

CUDNN_TYPE_VOID_ PTR, 3, dev ptrs);
cudnnBackendSetAttribute (varpack, CUDNN_ATTR VARIANT PACK UNIQUE IDS,

CUDNN_TYPE INTé64, 3, uids);
cudnnBackendSetAttribute (varpack, CUDNN_ATTR VARIANT PACK WORKSPACE,

CUDNN_TYPE VOID PTR, 1, &workspace);
cudnnBackendFinalize (varPack) ;

3. Execute the plan with a variant pack.
cudnnBackendExecute (handle, plan, varpack);

NVIDIA cuDNN PR-09702-001_v8.3.0 | 460

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA
Corporation ["NVIDIA") makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this
document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any
infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material
(defined belowl), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.
Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed
in an individual sales agreement signed by authorized representatives of NVIDIA and customer ("Terms of Sale”). NVIDIA hereby expressly objects to applying any
customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed
either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications
where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA
accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product
is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained in this document,
ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of
the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in additional
or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem
which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (i) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or a warranty
or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the third party,
or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance
with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA's aggregate and cumulative liability towards customer for the products
described herein shall be limited in accordance with the Terms of Sale for the product.

ARM

ARM, AMBA and ARM Powered are registered trademarks of ARM Limited. Cortex, MPCore and Mali are trademarks of ARM Limited. "ARM" is used to represent
ARM Holdings plc; its operating company ARM Limited; and the regional subsidiaries ARM Inc.; ARM KK; ARM Korea Limited.; ARM Taiwan Limited; ARM France
SAS; ARM Consulting (Shanghai) Co. Ltd.; ARM Germany GmbH; ARM Embedded Technologies Pvt. Ltd.; ARM Norway, AS and ARM Sweden AB.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051 @2
www.nvidia.com
NVIDIA.

http://www.nvidia.com

Trademarks

NVIDIA, the NVIDIA logo, and CUDA, DRIVE, JetPack, Kepler, Maxwell, Pascal, Turing, Volta and Xavier are trademarks and/or registered trademarks of NVIDIA

Corporation in the United States and other countries. Other company and product names may be trademarks of the respective companies with which they are
associated.

Copyright
© 2017-2021 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051 @Z
www.nvidia.com
NVIDIA.

http://www.nvidia.com

	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Added, Deprecated, And Removed API Functions
	2.1. API Changes For cuDNN 8.2.0
	2.2. API Changes For cuDNN 8.1.0
	2.3. API Changes For cuDNN 8.0.3
	2.4. API Changes For cuDNN 8.0.2
	2.5. API Changes For cuDNN 8.0.0 Preview

	cudnn_ops_infer.so Library
	3.1. Data Type References
	3.1.1. Pointer To Opaque Struct Types
	3.1.1.1. cudnnActivationDescriptor_t
	3.1.1.2. cudnnCTCLossDescriptor_t
	3.1.1.3. cudnnDropoutDescriptor_t
	3.1.1.4. cudnnFilterDescriptor_t
	3.1.1.5. cudnnHandle_t
	3.1.1.6. cudnnLRNDescriptor_t
	3.1.1.7. cudnnOpTensorDescriptor_t
	3.1.1.8. cudnnPoolingDescriptor_t
	3.1.1.9. cudnnReduceTensorDescriptor_t
	3.1.1.10. cudnnSpatialTransformerDescriptor_t
	3.1.1.11. cudnnTensorDescriptor_t
	3.1.1.12. cudnnTensorTransformDescriptor_t

	3.1.2. Enumeration Types
	3.1.2.1. cudnnActivationMode_t
	3.1.2.2. cudnnAlgorithm_t
	3.1.2.3. cudnnBatchNormMode_t
	3.1.2.4. cudnnBatchNormOps_t
	3.1.2.5. cudnnCTCLossAlgo_t
	3.1.2.6. cudnnDataType_t
	3.1.2.7. cudnnDeterminism_t
	3.1.2.8. cudnnDivNormMode_t
	3.1.2.9. cudnnErrQueryMode_t
	3.1.2.10. cudnnFoldingDirection_t
	3.1.2.11. cudnnIndicesType_t
	3.1.2.12. cudnnLRNMode_t
	3.1.2.13. cudnnMathType_t
	3.1.2.14. cudnnNanPropagation_t
	3.1.2.15. cudnnNormAlgo_t
	3.1.2.16. cudnnNormMode_t
	3.1.2.17. cudnnNormOps_t
	3.1.2.18. cudnnOpTensorOp_t
	3.1.2.19. cudnnPoolingMode_t
	3.1.2.20. cudnnReduceTensorIndices_t
	3.1.2.21. cudnnReduceTensorOp_t
	3.1.2.22. cudnnRNNAlgo_t
	3.1.2.23. cudnnSamplerType_t
	3.1.2.24. cudnnSeverity_t
	3.1.2.25. cudnnSoftmaxAlgorithm_t
	3.1.2.26. cudnnSoftmaxMode_t
	3.1.2.27. cudnnStatus_t
	3.1.2.28. cudnnTensorFormat_t

	3.2. API Functions
	3.2.1. cudnnActivationForward()
	3.2.2. cudnnAddTensor()
	3.2.3. cudnnBatchNormalizationForwardInference()
	3.2.4. cudnnCopyAlgorithmDescriptor()
	3.2.5. cudnnCreate()
	3.2.6. cudnnCreateActivationDescriptor()
	3.2.7. cudnnCreateAlgorithmDescriptor()
	3.2.8. cudnnCreateAlgorithmPerformance()
	3.2.9. cudnnCreateDropoutDescriptor()
	3.2.10. cudnnCreateFilterDescriptor()
	3.2.11. cudnnCreateLRNDescriptor()
	3.2.12. cudnnCreateOpTensorDescriptor()
	3.2.13. cudnnCreatePoolingDescriptor()
	3.2.14. cudnnCreateReduceTensorDescriptor()
	3.2.15. cudnnCreateSpatialTransformerDescriptor()
	3.2.16. cudnnCreateTensorDescriptor()
	3.2.17. cudnnCreateTensorTransformDescriptor()
	3.2.18. cudnnDeriveBNTensorDescriptor()
	3.2.19. cudnnDeriveNormTensorDescriptor()
	3.2.20. cudnnDestroy()
	3.2.21. cudnnDestroyActivationDescriptor()
	3.2.22. cudnnDestroyAlgorithmDescriptor()
	3.2.23. cudnnDestroyAlgorithmPerformance()
	3.2.24. cudnnDestroyDropoutDescriptor()
	3.2.25. cudnnDestroyFilterDescriptor()
	3.2.26. cudnnDestroyLRNDescriptor()
	3.2.27. cudnnDestroyOpTensorDescriptor()
	3.2.28. cudnnDestroyPoolingDescriptor()
	3.2.29. cudnnDestroyReduceTensorDescriptor()
	3.2.30. cudnnDestroySpatialTransformerDescriptor()
	3.2.31. cudnnDestroyTensorDescriptor()
	3.2.32. cudnnDestroyTensorTransformDescriptor()
	3.2.33. cudnnDivisiveNormalizationForward()
	3.2.34. cudnnDropoutForward()
	3.2.35. cudnnDropoutGetReserveSpaceSize()
	3.2.36. cudnnDropoutGetStatesSize()
	3.2.37. cudnnGetActivationDescriptor()
	3.2.38. cudnnGetActivationDescriptorSwishBeta()
	3.2.39. cudnnGetAlgorithmDescriptor()
	3.2.40. cudnnGetAlgorithmPerformance()
	3.2.41. cudnnGetAlgorithmSpaceSize()
	3.2.42. cudnnGetCallback()
	3.2.43. cudnnGetCudartVersion()
	3.2.44. cudnnGetDropoutDescriptor()
	3.2.45. cudnnGetErrorString()
	3.2.46. cudnnGetFilter4dDescriptor()
	3.2.47. cudnnGetFilterNdDescriptor()
	3.2.48. cudnnGetFilterSizeInBytes()
	3.2.49. cudnnGetLRNDescriptor()
	3.2.50. cudnnGetOpTensorDescriptor()
	3.2.51. cudnnGetPooling2dDescriptor()
	3.2.52. cudnnGetPooling2dForwardOutputDim()
	3.2.53. cudnnGetPoolingNdDescriptor()
	3.2.54. cudnnGetPoolingNdForwardOutputDim()
	3.2.55. cudnnGetProperty()
	3.2.56. cudnnGetReduceTensorDescriptor()
	3.2.57. cudnnGetReductionIndicesSize()
	3.2.58. cudnnGetReductionWorkspaceSize()
	3.2.59. cudnnGetStream()
	3.2.60. cudnnGetTensor4dDescriptor()
	3.2.61. cudnnGetTensorNdDescriptor()
	3.2.62. cudnnGetTensorSizeInBytes()
	3.2.63. cudnnGetTensorTransformDescriptor()
	3.2.64. cudnnGetVersion()
	3.2.65. cudnnInitTransformDest()
	3.2.66. cudnnLRNCrossChannelForward()
	3.2.67. cudnnNormalizationForwardInference()
	3.2.68. cudnnOpsInferVersionCheck()
	3.2.69. cudnnOpTensor()
	3.2.70. cudnnPoolingForward()
	3.2.71. cudnnQueryRuntimeError()
	3.2.72. cudnnReduceTensor()
	3.2.73. cudnnRestoreAlgorithm()
	3.2.74. cudnnRestoreDropoutDescriptor()
	3.2.75. cudnnSaveAlgorithm()
	3.2.76. cudnnScaleTensor()
	3.2.77. cudnnSetActivationDescriptor()
	3.2.78. cudnnSetActivationDescriptorSwishBeta()
	3.2.79. cudnnSetAlgorithmDescriptor()
	3.2.80. cudnnSetAlgorithmPerformance()
	3.2.81. cudnnSetCallback()
	3.2.82. cudnnSetDropoutDescriptor()
	3.2.83. cudnnSetFilter4dDescriptor()
	3.2.84. cudnnSetFilterNdDescriptor()
	3.2.85. cudnnSetLRNDescriptor()
	3.2.86. cudnnSetOpTensorDescriptor()
	3.2.87. cudnnSetPooling2dDescriptor()
	3.2.88. cudnnSetPoolingNdDescriptor()
	3.2.89. cudnnSetReduceTensorDescriptor()
	3.2.90. cudnnSetSpatialTransformerNdDescriptor()
	3.2.91. cudnnSetStream()
	3.2.92. cudnnSetTensor()
	3.2.93. cudnnSetTensor4dDescriptor()
	3.2.94. cudnnSetTensor4dDescriptorEx()
	3.2.95. cudnnSetTensorNdDescriptor()
	3.2.96. cudnnSetTensorNdDescriptorEx()
	3.2.97. cudnnSetTensorTransformDescriptor()
	3.2.98. cudnnSoftmaxForward()
	3.2.99. cudnnSpatialTfGridGeneratorForward()
	3.2.100. cudnnSpatialTfSamplerForward()
	3.2.101. cudnnTransformFilter()
	3.2.102. cudnnTransformTensor()
	3.2.103. cudnnTransformTensorEx()

	cudnn_ops_train.so Library
	4.1. API Functions
	4.1.1. cudnnActivationBackward()
	4.1.2. cudnnBatchNormalizationBackward()
	4.1.3. cudnnBatchNormalizationBackwardEx()
	4.1.4. cudnnBatchNormalizationForwardTraining()
	4.1.5. cudnnBatchNormalizationForwardTrainingEx()
	4.1.6. cudnnDivisiveNormalizationBackward()
	4.1.7. cudnnDropoutBackward()
	4.1.8. cudnnGetBatchNormalizationBackwardExWorkspaceSize()
	4.1.9. cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize()
	4.1.10. cudnnGetBatchNormalizationTrainingExReserveSpaceSize()
	4.1.11. cudnnGetNormalizationBackwardWorkspaceSize()
	4.1.12. cudnnGetNormalizationForwardTrainingWorkspaceSize()
	4.1.13. cudnnGetNormalizationTrainingReserveSpaceSize()
	4.1.14. cudnnLRNCrossChannelBackward()
	4.1.15. cudnnNormalizationBackward()
	4.1.16. cudnnNormalizationForwardTraining()
	4.1.17. cudnnOpsTrainVersionCheck()
	4.1.18. cudnnPoolingBackward()
	4.1.19. cudnnSoftmaxBackward()
	4.1.20. cudnnSpatialTfGridGeneratorBackward()
	4.1.21. cudnnSpatialTfSamplerBackward()

	cudnn_cnn_infer.so Library
	5.1. Data Type References
	5.1.1. Pointer To Opaque Struct Types
	5.1.1.1. cudnnConvolutionDescriptor_t

	5.1.2. Struct Types
	5.1.2.1. cudnnConvolutionBwdDataAlgoPerf_t
	5.1.2.2. cudnnConvolutionFwdAlgoPerf_t

	5.1.3. Enumeration Types
	5.1.3.1. cudnnBackendAttributeName_t
	5.1.3.2. cudnnBackendAttributeType_t
	5.1.3.3. cudnnBackendDescriptorType_t
	5.1.3.4. cudnnBackendHeurMode_t
	5.1.3.5. cudnnBackendKnobType_t
	5.1.3.6. cudnnBackendLayoutType_t
	5.1.3.7. cudnnBackendNumericalNote_t
	5.1.3.8. cudnnConvolutionBwdDataAlgo_t
	5.1.3.9. cudnnConvolutionBwdFilterAlgo_t
	5.1.3.10. cudnnConvolutionFwdAlgo_t
	5.1.3.11. cudnnConvolutionMode_t
	5.1.3.12. cudnnGenStatsMode_t
	5.1.3.13. cudnnPointwiseMode_t
	5.1.3.14. cudnnReorderType_t

	5.1.4. Data Types Found In cudnn_backend.h
	5.1.4.1. cudnnBackendDescriptor_t

	5.2. API Functions
	5.2.1. cudnnBackendCreateDescriptor()
	5.2.2. cudnnBackendDestroyDescriptor()
	5.2.3. cudnnBackendExecute()
	5.2.4. cudnnBackendFinalize()
	5.2.5. cudnnBackendGetAttribute()
	5.2.6. cudnnBackendInitialize()
	5.2.7. cudnnBackendSetAttribute()
	5.2.8. cudnnCnnInferVersionCheck()
	5.2.9. cudnnConvolutionBackwardData()
	5.2.10. cudnnConvolutionBiasActivationForward()
	5.2.11. cudnnConvolutionForward()
	5.2.12. cudnnCreateConvolutionDescriptor()
	5.2.13. cudnnDestroyConvolutionDescriptor()
	5.2.14. cudnnFindConvolutionBackwardDataAlgorithm()
	5.2.15. cudnnFindConvolutionBackwardDataAlgorithmEx()
	5.2.16. cudnnFindConvolutionForwardAlgorithm()
	5.2.17. cudnnFindConvolutionForwardAlgorithmEx()
	5.2.18. cudnnGetConvolution2dDescriptor()
	5.2.19. cudnnGetConvolution2dForwardOutputDim()
	5.2.20. cudnnGetConvolutionBackwardDataAlgorithmMaxCount()
	5.2.21. cudnnGetConvolutionBackwardDataAlgorithm_v7()
	5.2.22. cudnnGetConvolutionBackwardDataWorkspaceSize()
	5.2.23. cudnnGetConvolutionForwardAlgorithmMaxCount()
	5.2.24. cudnnGetConvolutionForwardAlgorithm_v7()
	5.2.25. cudnnGetConvolutionForwardWorkspaceSize()
	5.2.26. cudnnGetConvolutionGroupCount()
	5.2.27. cudnnGetConvolutionMathType()
	5.2.28. cudnnGetConvolutionNdDescriptor()
	5.2.29. cudnnGetConvolutionNdForwardOutputDim()
	5.2.30. cudnnGetConvolutionReorderType()
	5.2.31. cudnnGetFoldedConvBackwardDataDescriptors()
	5.2.32. cudnnIm2Col()
	5.2.33. cudnnReorderFilterAndBias()
	5.2.34. cudnnSetConvolution2dDescriptor()
	5.2.35. cudnnSetConvolutionGroupCount()
	5.2.36. cudnnSetConvolutionMathType()
	5.2.37. cudnnSetConvolutionNdDescriptor()
	5.2.38. cudnnSetConvolutionReorderType()

	cudnn_cnn_train.so Library
	6.1. Data Type References
	6.1.1. Pointer To Opaque Struct Types
	6.1.1.1. cudnnFusedOpsConstParamPack_t
	6.1.1.2. cudnnFusedOpsPlan_t
	6.1.1.3. cudnnFusedOpsVariantParamPack_t

	6.1.2. Struct Types
	6.1.2.1. cudnnConvolutionBwdFilterAlgoPerf_t

	6.1.3. Enumeration Types
	6.1.3.1. cudnnFusedOps_t
	6.1.3.2. cudnnFusedOpsConstParamLabel_t
	6.1.3.3. cudnnFusedOpsPointerPlaceHolder_t
	6.1.3.4. cudnnFusedOpsVariantParamLabel_t

	6.2. API Functions
	6.2.1. cudnnCnnTrainVersionCheck()
	6.2.2. cudnnConvolutionBackwardBias()
	6.2.3. cudnnConvolutionBackwardFilter()
	6.2.4. cudnnCreateFusedOpsConstParamPack()
	6.2.5. cudnnCreateFusedOpsPlan()
	6.2.6. cudnnCreateFusedOpsVariantParamPack()
	6.2.7. cudnnDestroyFusedOpsConstParamPack()
	6.2.8. cudnnDestroyFusedOpsPlan()
	6.2.9. cudnnDestroyFusedOpsVariantParamPack()
	6.2.10. cudnnFindConvolutionBackwardFilterAlgorithm()
	6.2.11. cudnnFindConvolutionBackwardFilterAlgorithmEx()
	6.2.12. cudnnFusedOpsExecute()
	6.2.13. cudnnGetConvolutionBackwardFilterAlgorithmMaxCount()
	6.2.14. cudnnGetConvolutionBackwardFilterAlgorithm_v7()
	6.2.15. cudnnGetConvolutionBackwardFilterWorkspaceSize()
	6.2.16. cudnnGetFusedOpsConstParamPackAttribute()
	6.2.17. cudnnGetFusedOpsVariantParamPackAttribute()
	6.2.18. cudnnMakeFusedOpsPlan()
	6.2.19. cudnnSetFusedOpsConstParamPackAttribute()
	6.2.20. cudnnSetFusedOpsVariantParamPackAttribute()

	cudnn_adv_infer.so Library
	7.1. Data Type References
	7.1.1. Pointer To Opaque Struct Types
	7.1.1.1. cudnnAttnDescriptor_t
	7.1.1.2. cudnnPersistentRNNPlan_t
	7.1.1.3. cudnnRNNDataDescriptor_t
	7.1.1.4. cudnnRNNDescriptor_t
	7.1.1.5. cudnnSeqDataDescriptor_t

	7.1.2. Enumeration Types
	7.1.2.1. cudnnDirectionMode_t
	7.1.2.2. cudnnForwardMode_t
	7.1.2.3. cudnnMultiHeadAttnWeightKind_t
	7.1.2.4. cudnnRNNBiasMode_t
	7.1.2.5. cudnnRNNClipMode_t
	7.1.2.6. cudnnRNNDataLayout_t
	7.1.2.7. cudnnRNNInputMode_t
	7.1.2.8. cudnnRNNMode_t
	7.1.2.9. cudnnRNNPaddingMode_t
	7.1.2.10. cudnnSeqDataAxis_t

	7.2. API Functions
	7.2.1. cudnnAdvInferVersionCheck()
	7.2.2. cudnnBuildRNNDynamic()
	7.2.3. cudnnCreateAttnDescriptor()
	7.2.4. cudnnCreatePersistentRNNPlan()
	7.2.5. cudnnCreateRNNDataDescriptor()
	7.2.6. cudnnCreateRNNDescriptor()
	7.2.7. cudnnCreateSeqDataDescriptor()
	7.2.8. cudnnDestroyAttnDescriptor()
	7.2.9. cudnnDestroyPersistentRNNPlan()
	7.2.10. cudnnDestroyRNNDataDescriptor()
	7.2.11. cudnnDestroyRNNDescriptor()
	7.2.12. cudnnDestroySeqDataDescriptor()
	7.2.13. cudnnFindRNNForwardInferenceAlgorithmEx()
	7.2.14. cudnnGetAttnDescriptor()
	7.2.15. cudnnGetMultiHeadAttnBuffers()
	7.2.16. cudnnGetMultiHeadAttnWeights()
	7.2.17. cudnnGetRNNBackwardDataAlgorithmMaxCount()
	7.2.18. cudnnGetRNNBiasMode()
	7.2.19. cudnnGetRNNDataDescriptor()
	7.2.20. cudnnGetRNNDescriptor_v6()
	7.2.21. cudnnGetRNNDescriptor_v8()
	7.2.22. cudnnGetRNNForwardInferenceAlgorithmMaxCount()
	7.2.23. cudnnGetRNNForwardTrainingAlgorithmMaxCount()
	7.2.24. cudnnGetRNNLinLayerBiasParams()
	7.2.25. cudnnGetRNNLinLayerMatrixParams()
	7.2.26. cudnnGetRNNMatrixMathType()
	7.2.27. cudnnGetRNNPaddingMode()
	7.2.28. cudnnGetRNNParamsSize()
	7.2.29. cudnnGetRNNProjectionLayers()
	7.2.30. cudnnGetRNNTempSpaceSizes()
	7.2.31. cudnnGetRNNWeightParams()
	7.2.32. cudnnGetRNNWeightSpaceSize()
	7.2.33. cudnnGetRNNWorkspaceSize()
	7.2.34. cudnnGetSeqDataDescriptor()
	7.2.35. cudnnMultiHeadAttnForward()
	7.2.36. cudnnRNNForward()
	7.2.37. cudnnRNNForwardInference()
	7.2.38. cudnnRNNForwardInferenceEx()
	7.2.39. cudnnRNNGetClip()
	7.2.40. cudnnRNNGetClip_v8()
	7.2.41. cudnnRNNSetClip()
	7.2.42. cudnnRNNSetClip_v8()
	7.2.43. cudnnSetAttnDescriptor()
	7.2.44. cudnnSetPersistentRNNPlan()
	7.2.45. cudnnSetRNNAlgorithmDescriptor()
	7.2.46. cudnnSetRNNBiasMode()
	7.2.47. cudnnSetRNNDataDescriptor()
	7.2.48. cudnnSetRNNDescriptor_v6()
	7.2.49. cudnnSetRNNDescriptor_v8()
	7.2.50. cudnnSetRNNMatrixMathType()
	7.2.51. cudnnSetRNNPaddingMode()
	7.2.52. cudnnSetRNNProjectionLayers()
	7.2.53. cudnnSetSeqDataDescriptor()

	cudnn_adv_train.so Library
	8.1. Data Type References
	8.1.1. Enumeration Types
	8.1.1.1. cudnnLossNormalizationMode_t
	8.1.1.2. cudnnWgradMode_t

	8.2. API Functions
	8.2.1. cudnnAdvTrainVersionCheck()
	8.2.2. cudnnCreateCTCLossDescriptor()
	8.2.3. cudnnCTCLoss()
	8.2.4. cudnnCTCLoss_v8()
	8.2.5. cudnnDestroyCTCLossDescriptor()
	8.2.6. cudnnFindRNNBackwardDataAlgorithmEx()
	8.2.7. cudnnFindRNNBackwardWeightsAlgorithmEx()
	8.2.8. cudnnFindRNNForwardTrainingAlgorithmEx()
	8.2.9. cudnnGetCTCLossDescriptor()
	8.2.10. cudnnGetCTCLossDescriptorEx()
	8.2.11. cudnnGetCTCLossDescriptor_v8()
	8.2.12. cudnnGetCTCLossWorkspaceSize()
	8.2.13. cudnnGetCTCLossWorkspaceSize_v8()
	8.2.14. cudnnGetRNNTrainingReserveSize()
	8.2.15. cudnnMultiHeadAttnBackwardData()
	8.2.16. cudnnMultiHeadAttnBackwardWeights()
	8.2.17. cudnnRNNBackwardData()
	8.2.18. cudnnRNNBackwardData_v8()
	8.2.19. cudnnRNNBackwardDataEx()
	8.2.20. cudnnRNNBackwardWeights()
	8.2.21. cudnnRNNBackwardWeights_v8()
	8.2.22. cudnnRNNBackwardWeightsEx()
	8.2.23. cudnnRNNForwardTraining()
	8.2.24. cudnnRNNForwardTrainingEx()
	8.2.25. cudnnSetCTCLossDescriptor()
	8.2.26. cudnnSetCTCLossDescriptorEx()
	8.2.27. cudnnSetCTCLossDescriptor_v8()

	cuDNN Backend API
	9.1. Data Type References
	9.1.1. cudnnBackendAttributeType_t

	9.2. Backend Descriptor Types
	9.2.1. CUDNN_BACKEND_CONVOLUTION_DESCRIPTOR
	9.2.2. CUDNN_BACKEND_ENGINE_DESCRIPTOR
	9.2.3. CUDNN_BACKEND_ENGINECFG_DESCRIPTOR
	9.2.4. CUDNN_BACKEND_ENGINEHEUR_DESCRIPTOR
	9.2.5. CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR
	9.2.6. CUDNN_BACKEND_INTERMEDIATE_INFO_DESCRIPTOR
	9.2.7. CUDNN_BACKEND_KNOB_CHOICE_DESCRIPTOR
	9.2.8. CUDNN_BACKEND_KNOB_INFO_DESCRIPTOR
	9.2.9. CUDNN_BACKEND_LAYOUT_INFO_DESCRIPTOR
	9.2.10. CUDNN_BACKEND_MATMUL_DESCRIPTOR
	9.2.11. CUDNN_BACKEND_OPERATION_CONVOLUTION_BACKWARD_DATA_DESCRIPTOR
	9.2.12. CUDNN_BACKEND_OPERATION_CONVOLUTION_BACKWARD_FILTER_DESCRIPTOR
	9.2.13. CUDNN_BACKEND_OPERATION_CONVOLUTION_FORWARD_DESCRIPTOR
	9.2.14. CUDNN_BACKEND_OPERATION_GEN_STATS_DESCRIPTOR
	9.2.15. CUDNN_BACKEND_OPERATION_MATMUL_DESCRIPTOR
	9.2.16. CUDNN_BACKEND_OPERATION_POINTWISE_DESCRIPTOR
	9.2.17. CUDNN_BACKEND_OPERATIONGRAPH_DESCRIPTOR
	9.2.18. CUDNN_BACKEND_TENSOR_DESCRIPTOR
	9.2.19. CUDNN_BACKEND_VARIANT_PACK_DESCRIPTOR

	9.3. Use Cases
	9.3.1. Setting Up An Operation Graph For A Grouped Convolution
	9.3.2. Setting Up An Engine Configuration
	9.3.3. Setting Up And Executing A Plan

