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Chapter 1. Overview

NVIDIA® CUDA® Deep Neural Network library (cuDNN) is a GPU-accelerated library of
primitives for deep neural networks. It provides highly tuned implementations of routines
arising frequently in DNN applications:

‣ Convolution forward and backward, including cross-correlation

‣ Pooling forward and backward

‣ Softmax forward and backward

‣ Neuron activations forward and backward:

‣ Rectified linear (ReLU)

‣ Sigmoid

‣ Hyperbolic tangent (TANH)

‣ Tensor transformation functions

‣ LRN, LCN and batch normalization forward and backward

cuDNN convolution routines aim for a performance that is competitive with the fastest GEMM
(matrix multiply)-based implementations of such routines while using significantly less
memory.

cuDNN features include customizable data layouts, supporting flexible dimension ordering,
striding, and subregions for the 4D tensors used as inputs and outputs to all of its routines.
This flexibility allows easy integration into any neural network implementation and avoids the
input/output transposition steps sometimes necessary with GEMM-based convolutions.

cuDNN offers a context-based API that allows for easy multithreading and (optional)
interoperability with NVIDIA® CUDA®  streams.
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Chapter 2. Programming Model

The cuDNN library exposes a host API but assumes that for operations using the GPU, the
necessary data is directly accessible from the device.

An application using cuDNN must initialize a handle to the library context by calling
cudnnCreate(). This handle is explicitly passed to every subsequent library function that
operates on GPU data. Once the application finishes using cuDNN, it can release the
resources associated with the library handle using cudnnDestroy(). This approach allows the
user to explicitly control the library's functioning when using multiple host threads, GPUs and
CUDA streams.

For example, an application can use cudaSetDevice to associate different devices with
different host threads, and in each of those host threads, use a unique cuDNN handle that
directs the library calls to the device associated with it. Thus the cuDNN library calls made
with different handles will automatically run on different devices.

The device associated with a particular cuDNN context is assumed to remain unchanged
between the corresponding cudnnCreate() and cudnnDestroy() calls. In order for the
cuDNN library to use a different device within the same host thread, the application must
set the new device to be used by calling cudaSetDevice() and then create another cuDNN
context, which will be associated with the new device, by calling cudnnCreate().

cuDNN API Compatibility

Beginning in cuDNN 7, the binary compatibility of a patch and minor releases is maintained as
follows:

‣ Any patch release x.y.z is forward or backward-compatible with applications built against
another cuDNN patch release x.y.w (meaning, of the same major and minor version
number, but having w!=z).

‣ cuDNN minor releases beginning with cuDNN 7 are binary backward-compatible with
applications built against the same or earlier patch release (meaning, an application built
against cuDNN 7.x is binary compatible with cuDNN library 7.y, where y>=x).

‣ Applications compiled with a cuDNN version 7.y are not guaranteed to work with 7.x
release when y > x.

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnCreate
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnDestroy
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__DEVICE.html#group__CUDART__DEVICE_1g69e73c7dda3fc05306ae7c811a690fac
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Chapter 3. Convolution Formulas

This section describes the various convolution formulas implemented in  convolution
functions.

The convolution terms described in the table below apply to all the convolution formulas that
follow.

Table 1. Convolution terms

Term Description
Input (image) Tensor

Weight Tensor

Output Tensor

Current Batch Size

Current Input Channel

Total Input Channels

Input Image Height

Input Image Width

Current Output Channel

Total Output Channels

Current Output Height Position

Current Output Width Position

Group Count

Padding Value

Vertical Subsample Stride (along Height)

Horizontal Subsample Stride (along Width)

Vertical Dilation (along Height)

Horizontal Dilation (along Width)

Current Filter Height

Total Filter Height

Current Filter Width

Total Filter Width
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Term Description

Convolution (convolution mode set to CUDNN_CROSS_CORRELATION)

Convolution with Padding

Convolution with Subsample-Striding

Convolution with Dilation

Convolution (convolution mode set to CUDNN_CONVOLUTION)

Convolution using Grouped Convolution
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Chapter 4. Notation

As of cuDNN version 4, we have adopted a mathematically-inspired notation for layer inputs
and outputs using x,y,dx,dy,b,w for common layer parameters. This was done to improve
readability and ease of understanding of the meaning of the parameters. All layers now follow
a uniform convention as below:

During inference
y = layerFunction(x, otherParams)

During backpropagation
(dx, dOtherParams) = layerFunctionGradient(x,y,dy,otherParams)

During convolution

For convolution, the notation is:
y = x*w+b

where:

‣ w is the matrix of filter weights

‣ x is the previous layer's data (during inference)

‣ y is the next layer's data

‣ b is the bias and * is the convolution operator

In backpropagation routines, the parameters keep their meanings.

The parameters dx,dy,dw,db always refer to the gradient of the final network error function
with respect to a given parameter. So dy in all backpropagation routines always refers to error
gradient backpropagation through the network computation graph so far. Similarly, other
parameters in more specialized layers, such as, for instance, dMeans or dBnBias refer to
gradients of the loss function with regard to those parameters.

Note: w is used in the API for both the width of the x tensor and convolution filter matrix. To
resolve this ambiguity we use w and filter notation interchangeably for the convolution filter
weight matrix. The meaning is clear from the context since the layer width is always referenced
near its height.
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Chapter 5. Tensor Descriptor

The cuDNN library describes data holding images, videos and any other data with contents
with a generic n-D tensor defined with the following parameters:

‣ a dimension nbDims from 3 to 8

‣ a data type (32-bit floating-point, 64 bit-floating point, 16-bit floating-point...)

‣ dimA integer array defining the size of each dimension

‣ strideA integer array defining the stride of each dimension (for example, the number of
elements to add to reach the next element from the same dimension)

The first dimension of the tensor defines the batch size n, and the second dimension defines
the number of features maps c. This tensor definition allows, for example, to have some
dimensions overlapping each other within the same tensor by having the stride of one
dimension smaller than the product of the dimension and the stride of the next dimension.
In cuDNN, unless specified otherwise, all routines will support tensors with overlapping
dimensions for forward-pass input tensors, however, dimensions of the output tensors cannot
overlap. Even though this tensor format supports negative strides (which can be useful for
data mirroring), cuDNN routines do not support tensors with negative strides unless specified
otherwise.

5.1.  WXYZ Tensor Descriptor
Tensor descriptor formats are identified using acronyms, with each letter referencing a
corresponding dimension. In this document, the usage of this terminology implies:

‣ all the strides are strictly positive

‣ the dimensions referenced by the letters are sorted in decreasing order of their respective
strides

5.2.  4-D Tensor Descriptor
A 4-D tensor descriptor is used to define the format for batches of 2D images with 4 letters:
N,C,H,W for respectively the batch size, the number of feature maps, the height and the width.
The letters are sorted in decreasing order of the strides. The commonly used 4-D tensor
formats are:



Tensor Descriptor

NVIDIA cuDNN PG-06702-001_v8.3.1   |   7

‣ NCHW

‣ NHWC

‣ CHWN

5.3.  5-D Tensor Description
A 5-D tensor descriptor is used to define the format of the batch of 3D images with 5 letters:
N,C,D,H,W for respectively the batch size, the number of feature maps, the depth, the height,
and the width. The letters are sorted in decreasing order of the strides. The commonly used 5-
D tensor formats are called:

‣ NCDHW

‣ NDHWC

‣ CDHWN

5.4.  Fully-packed Tensors
A tensor is defined as XYZ-fully-packed if and only if:

‣ the number of tensor dimensions is equal to the number of letters preceding the fully-
packed suffix.

‣ the stride of the i-th dimension is equal to the product of the (i+1)-th dimension by the (i
+1)-th stride.

‣ the stride of the last dimension is 1.

5.5.  Partially-packed Tensors
The partially XYZ-packed terminology only applies in the context of a tensor format described
with a superset of the letters used to define a partially-packed tensor. A WXYZ tensor is defined
as XYZ-packed if and only if:

‣ The strides of all dimensions NOT referenced in the -packed suffix are greater or equal to
the product of the next dimension by the next stride.

‣ The stride of each dimension referenced in the -packed suffix in position i is equal to the
product of the (i+1)-st dimension by the (i+1)-st stride.

‣ If the last tensor's dimension is present in the -packed suffix, its stride is 1.

For example, an NHWC tensor WC-packed means that the c_stride is equal to 1 and w_stride
is equal to c_dim x c_stride. In practice, the -packed suffix is usually applied to the minor
dimensions of a tensor but can be applied to only the major dimensions; for example, an NCHW
tensor that is only N-packed.
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5.6.  Spatially Packed Tensors
Spatially-packed tensors are defined as partially-packed in spatial dimensions. For example, a
spatially-packed 4D tensor would mean that the tensor is either NCHW HW-packed or CNHW
HW-packed.

5.7.  Overlapping Tensors
A tensor is defined to be overlapping if iterating over a full range of dimensions produces the
same address more than once. In practice an overlapped tensor will have stride[i-1] <
stride[i]*dim[i] for some of the i from [1,nbDims] interval.
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Chapter 6. Data Layout Formats

This section describes how cuDNN tensors are arranged in memory. See
cudnnTensorFormat_t for enumerated tensor format types.

6.1.  Data Layout Example
Consider a batch of images in 4D with the following dimensions:

‣ N is the batch size; 1.

‣ C is the number of feature maps (i.e., number of channels); 64.

‣ H is the image height; 5.

‣ W is the image width; 4.

To keep the example simple, the image pixel elements are expressed as a sequence of
integers, 0, 1, 2, 3, and so on. See Figure 1.

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnTensorFormat_t
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Figure 1. Example with N=1, C=64, H=5, W=4.

6.2.  NCHW Memory Layout
The above 4D tensor is laid out in the memory in the NCHW format as below:

 1. Beginning with the first channel (c=0), the elements are arranged contiguously in row-
major order.

 2. Continue with second and subsequent channels until the elements of all the channels are
laid out. See Figure 2.

 3. Proceed to the next batch (if N is > 1).
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Figure 2. NCHW Memory Layout

6.3.  NHWC Memory Layout
For the NHWC memory layout, the corresponding elements in all the C channels are laid out
first, as below:
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 1. Begin with the first element of channel 0, then proceed to the first element of channel 1,
and so on, until the first elements of all the C channels are laid out.

 2. Next, select the second element of channel 0, then proceed to the second element of
channel 1, and so on, until the second element of all the channels are laid out.

 3. Follow the row-major order of channel 0 and complete all the elements. See Figure 3.
 4. Proceed to the next batch (if N is > 1).

Figure 3. NHWC Memory Layout
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6.4.  NC/32HW32 Memory Layout
The NC/32HW32 is similar to NHWC, with a key difference. For the NC/32HW32 memory
layout, the 64 channels are grouped into two groups of 32 channels each - first group
consisting of channels c0 through c31, and the second group consisting of channels c32
through c63. Then each group is laid out using the NHWC format. See Figure 4.

Figure 4. NC/32HW32 Memory Layout

For the generalized NC/xHWx layout format, the following observations apply:

‣ Only the channel dimension, C, is grouped into x channels each.

‣ When x = 1, each group has only one channel. Hence, the elements of one channel (i.e,
one group) are arranged contiguously (in the row-major order), before proceeding to the
next group (i.e., next channel). This is the same as NCHW format.

‣ When x = C, then NC/xHWx is identical to NHWC, i.e., the entire channel depth C is
considered as a single group. The case x = C can be thought of as vectorizing the entire C
dimension as one big vector, laying out all the Cs, followed by the remaining dimensions,
just like NHWC.

‣ The tensor format CUDNN_TENSOR_NCHW_VECT_C can also be interpreted in the
following way: The NCHW INT8x32 format is really N x (C/32) x H x W x 32 (32 Cs for
every W), just as the NCHW INT8x4 format is N x (C/4) x H x W x 4 (4 Cs for every W).
Hence the VECT_C name - each W is a vector (4 or 32) of Cs.

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnTensorFormat_t
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Chapter 7. Thread Safety

The cuDNN library is thread-safe. Its functions can be called from multiple host threads, so
long as the threads do not share the same cuDNN handle simultaneously.

When creating a per-thread cuDNN handle, it is recommended that a single synchronous call
of cudnnCreate() be made first before each thread creates its own handle asynchronously.

Per cudnnCreate(), for multi-threaded applications that use the same device from different
threads, the recommended programming model is to create one (or a few, as is convenient)
cuDNN handles per thread and use that cuDNN handle for the entire life of the thread.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnCreate
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnCreate
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Chapter 8. Reproducibility
(determinism)

By design, most of cuDNN's routines from a given version generate the same bit-wise results
across runs when executed on GPUs with the same architecture. There are some exceptions,
for example, the following routines do not guarantee reproducibility across runs, even on the
same architecture, because they use atomic operations:

‣ cudnnConvolutionBackwardFilter when CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0 or
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_3 is used

‣ cudnnConvolutionBackwardData when CUDNN_CONVOLUTION_BWD_DATA_ALGO_0  is
used

‣ cudnnPoolingBackward when CUDNN_POOLING_MAX  is used

‣ cudnnSpatialTfSamplerBackward

‣ cudnnCTCLoss and cudnnCTCLoss_v8 when CUDNN_CTC_LOSS_ALGO_NON_DETERMINSTIC
is used

Across different architectures, no cuDNN routines guarantee bit-wise reproducibility.
However, there is no guarantee of bit-wise reproducibility when comparing the same routine
run on NVIDIA Volta™ and NVIDIA Turing™, or NVIDIA Turing and NVIDIA Ampere Architecture.
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Chapter 9. Scaling Parameters

Many cuDNN routines like cudnnConvolutionForward() accept pointers in host memory to
scaling factors alpha and beta. These scaling factors are used to blend the computed values
with the prior values in the destination tensor as follows (see Figure 5):
dstValue = alpha*computedValue + beta*priorDstValue

Note: The dstValue is written to after being read.

Figure 5. Scaling Parameters for Convolution

When beta is zero, the output is not read and may contain uninitialized data (including NaN).

These parameters are passed using a host memory pointer. The storage data types for alpha
and beta are:

‣ float for HALF and FLOAT tensors, and

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionForward
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‣ double for DOUBLE tensors.

Note: For improved performance use beta = 0.0. Use a non-zero value for beta only when
you need to blend the current output tensor values with the prior values of the output tensor.

Type Conversion

When the data input x, the filter input w and the output y are all in INT8 data type, the function
cudnnConvolutionBiasActivationForward() will perform the type conversion as shown in Figure
6:

Note: Accumulators are 32-bit integers that wrap on overflow.

Figure 6. INT8 for cudnnConvolutionBiasActivationForward

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBiasActivationForward
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Chapter 10. Tensor Core Operations

The cuDNN v7 library introduced the acceleration of compute-intensive routines using
Tensor Core hardware on supported GPU SM versions. Tensor Core operations are supported
beginning with the NVIDIA Volta GPU.

10.1.  Basics
Tensor Core operations accelerate matrix math operations; cuDNN uses Tensor Core
operations that accumulate into FP16, FP32, and INT32 values. Setting the math mode to
CUDNN_TENSOR_OP_MATH via the cudnnMathType_t enumerator indicates that the library will
use Tensor Core operations. This enumerator specifies the available options to enable the
Tensor Core and should be applied on a per-routine basis.

The default math mode is CUDNN_DEFAULT_MATH, which indicates that the Tensor Core
operations will be avoided by the library. Because the CUDNN_TENSOR_OP_MATH mode uses the
Tensor Cores, it is possible that these two modes generate slightly different numerical results
due to different sequencing of the floating-point operations.

For example, the result of multiplying two matrices using Tensor Core operations is very
close, but not always identical, to the result achieved using a sequence of scalar floating-point
operations. For this reason, the cuDNN library requires an explicit user opt-in before enabling
the use of Tensor Core operations.

However, experiments with training common deep learning models show negligible
differences between using Tensor Core operations and scalar floating point paths, as
measured by both the final network accuracy and the iteration count to convergence.
Consequently, the cuDNN library treats both modes of operation as functionally
indistinguishable and allows for the scalar paths to serve as legitimate fallbacks for cases in
which the use of Tensor Core operations is unsuitable.

Kernels using Tensor Core operations are available for:

‣ Convolutions

‣ RNNs

‣ Multi-Head Attention

See also Training with Mixed Precision.

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnMathType_t
http://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
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10.2.  Convolution Functions

10.2.1.  Prerequisites
For the supported GPUs, the Tensor Core operations will be triggered for convolution
functions only when cudnnSetConvolutionMathType() is called on the appropriate
convolution descriptor by setting the mathType to CUDNN_TENSOR_OP_MATH or
CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION.

10.2.2.  Supported Algorithms
When the prerequisite is met, the below convolution functions can be run as Tensor Core
operations:

‣ cudnnConvolutionForward()

‣ cudnnConvolutionBackwardData()

‣ cudnnConvolutionBackwardFilter()

See the table below for supported algorithms:

Supported Convolution Function Supported Algos
cudnnConvolutionForward CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM

CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED

cudnnConvolutionBackwardData CUDNN_CONVOLUTION_BWD_DATA_ALGO_1

CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED

cudnnConvolutionBackwardFilter CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1

CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD_NONFUSED

10.2.3.  Data And Filter Formats
The cuDNN library may use padding, folding, and NCHW-to-NHWC transformations to call the
Tensor Core operations. See Tensor Transformations.

For algorithms other than *_ALGO_WINOGRAD_NONFUSED, when the following requirements are
met, the cuDNN library will trigger the Tensor Core operations:

‣ Input, filter, and output descriptors (xDesc, yDesc, wDesc, dxDesc, dyDesc and dwDesc as
applicable) are of the dataType = CUDNN_DATA_HALF (i.e., FP16). For FP32 dataType see
FP32-to-FP16 Conversion.

‣ The number of input and output feature maps (i.e., channel dimension C) is a multiple of 8.
When the channel dimension is not a multiple of 8, see Padding.

‣ The filter is of type CUDNN_TENSOR_NCHW or CUDNN_TENSOR_NHWC.

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnSetConvolutionMathType
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionForward
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBackwardData
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBackwardFilter
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‣ If using a filter of type CUDNN_TENSOR_NHWC, then the input, filter, and output data pointers
(X, Y, W, dX, dY, and dW as applicable) are aligned to 128-bit boundaries.

10.3.  RNN Functions

10.3.1.  Prerequisites
Tensor Core operations are triggered for these RNN functions only when
cudnnSetRNNMatrixMathType() is called on the appropriate RNN descriptor setting mathType
to CUDNN_TENSOR_OP_MATH or CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION.

10.3.2.  Supported Algorithms
When the above prerequisite is met, the RNN functions below can be run as Tensor Core
operations:

‣ cudnnRNNForwardInference()

‣ cudnnRNNForwardTraining()

‣ cudnnRNNBackwardData()

‣ cudnnRNNBackwardWeights()

‣ cudnnRNNForwardInferenceEx()

‣ cudnnRNNForwardTrainingEx()

‣ cudnnRNNBackwardDataEx()

‣ cudnnRNNBackwardWeightsEx()

See the table below for the supported algorithms:

RNN Function Support Algos
All RNN functions that support Tensor Core
operations.

CUDNN_RNN_ALGO_STANDARD

CUDNN_RNN_ALGO_PERSIST_STATIC

10.3.3.  Data And Filter Formats
When the following requirements are met, then the cuDNN library triggers the Tensor Core
operations:

‣ For algo = CUDNN_RNN_ALGO_STANDARD:

‣ The hidden state size, input size, and the batch size is a multiple of 8.

‣ All user-provided tensors, workspace, and reserve space are aligned to 128-bit
boundaries.

‣ For FP16 input/output, the CUDNN_TENSOR_OP_MATH or
CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION is selected.

‣ For FP32 input/output, CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION is selected.

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnSetRNNMatrixMathType
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnRNNForwardInference
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnRNNForwardTraining
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnRNNBackwardData
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnRNNBackwardWeights
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnRNNForwardInferenceEx
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnRNNForwardTrainingEx
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnRNNBackwardDataEx
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnRNNBackwardWeightsEx
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‣ For algo = CUDNN_RNN_ALGO_PERSIST_STATIC:

‣ The hidden state size and the input size is a multiple of 32.

‣ The batch size is a multiple of 8.

‣ If the batch size exceeds 96 (for forward training or inference) or 32 (for backward
data), then the batch size constraints may be stricter, and large power-of-two batch
sizes may be needed.

‣ All user-provided tensors, workspace, and reserve space are aligned to 128-bit
boundaries.

‣ For FP16 input/output, CUDNN_TENSOR_OP_MATH or
CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION is selected.

‣ For FP32 input/output, CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION is selected.

See also Features Of RNN Functions.

10.4.  Tensor Transformations
A few functions in the cuDNN library will perform transformations such as folding, padding,
and NCHW-to-NHWC conversion while performing the actual function operation. See below.

10.4.1.  FP32-to-FP16 Conversion
The cuDNN API allows the user to specify that FP32 input data may be copied and converted
to FP16 data internally to use Tensor Core operations for potentially improved performance.
This can be achieved by selecting CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION enum for
cudnnMathType_t. In this mode, the FP32 tensors are internally down-converted to FP16, the
Tensor Op math is performed, and finally up-converted to FP32 as outputs. See Figure 7.

Figure 7. Tensor Operation with FP32 Inputs

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnMathType_t
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For Convolutions

For convolutions, the FP32-to-FP16 conversion can be achieved by passing
the CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION enum value to the
cudnnSetConvolutionMathType() call.
// Set the math type to allow cuDNN to use Tensor Cores:
checkCudnnErr(cudnnSetConvolutionMathType(cudnnConvDesc,
 CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION));

For RNNs

For RNNs, the FP32-to-FP16 conversion can be achieved by passing
the CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION enum value to the
cudnnSetRNNMatrixMathType() call to allow FP32 data to be converted for use in RNNs.
// Set the math type to allow cuDNN to use Tensor Cores:
checkCudnnErr(cudnnSetRNNMatrixMathType(cudnnRnnDesc,
 CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION));

10.4.2.  Padding
For packed NCHW data, when the channel dimension is not a multiple of 8, then the
cuDNN library will pad the tensors as needed to enable Tensor Core operations. This
padding is automatic for packed NCHW data in both the CUDNN_TENSOR_OP_MATH and the
CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION cases.

10.4.3.  Folding
In the folding operation, the cuDNN library implicitly performs the formatting of input tensors
and saves the input tensors in an internal workspace. This can lead to an acceleration of the
call to Tensor Cores.

With folding or channel-folding, cuDNN can implicitly format the input tensors within an
internal workspace to accelerate the overall calculation. Performing this transformation for
the user often allows cuDNN to use kernels with restrictions on convolution stride to support a
strided convolution problem.

10.4.4.  Conversion Between NCHW And NHWC
Tensor Cores require that the tensors be in the NHWC data layout. Conversion between NCHW
and NHWC is performed when the user requests Tensor Op math. However, as stated in
Basics, a request to use Tensor Cores is just that, a request and Tensor Cores may not be
used in some cases. The cuDNN library converts between NCHW and NHWC if and only if
Tensor Cores are requested and are actually used.

If your input (and output) are NCHW, then expect a layout change.

Non-Tensor Op convolutions will not perform conversions between NCHW and NHWC.

In very rare and difficult-to-qualify cases that are a complex function of padding and filter
sizes, it is possible that Tensor Ops is not enabled. In such cases, users can pre-pad to enable
the Tensor Ops path.

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnSetConvolutionMathType
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnSetRNNMatrixMathType


Tensor Core Operations

NVIDIA cuDNN PG-06702-001_v8.3.1   |   23

10.5.1. FP16 Data
For FP16 data, Tensor Cores operate on FP16 input, output in FP16, and may accumulate
in FP16 or FP32. The FP16 multiply leads to a full-precision result that is accumulated in
FP32 operations with the other products in a given dot product for a matrix with m x n x k
dimensions. See Figure 8.

For an FP32 accumulation, with FP16 output, the output of the accumulator is down-converted
to FP16. Generally, the accumulation type is of greater or equal precision to the output type.

Figure 8. Tensor operation with FP16 inputs. The accumulation is in
FP32, which could be the input for other kernel features (for
example, activation/bias, beta blending, etc). The final output in
this example would be FP16.

10.6.  Guidelines For Good Performance On
Tensor Cores

For a deep learning compiler, the following are the key guidelines:

‣ Make sure that the convolution operation is eligible for Tensor Cores by avoiding any
combinations of large padding and large filters.

‣ Transform the inputs and filters to NHWC, pre-pad channel and batch size to be a multiple
of 8.
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‣ Make sure that all user-provided tensors, workspace, and reserve space are aligned to
128-bit boundaries. Note that 1024-bit alignment may deliver better performance.
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Chapter 11. GPU And Driver
Requirements

For the latest compatibility software versions of the OS, CUDA, the CUDA driver, and the
NVIDIA hardware, see the NVIDIA cuDNN Support Matrix.

https://docs.nvidia.com/deeplearning/sdk/cudnn-support-matrix/index.html
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Chapter 12. Backward Compatibility And
Deprecation Policy

cuDNN version 8 introduces a new API deprecation policy to enable a faster pace of innovation.

The old deprecation policy required three major library releases to complete an API update.
During this process, the original function name was first assigned to the legacy API, and then
to the revised API, depending on the library version. The user wishing to migrate to the new
API version had to update his or her code twice. In the first update, the original call foo()
had to be changed to foo_vN(), where N is the new major cuDNN version. After the next
major cuDNN release, the foo_vN() function had to be renamed back as foo(). Clearly, the
above process could be difficult for code maintenance, especially when many functions are
upgraded.

A streamlined, two-step, deprecation policy will be used for all API changes starting with
cuDNN version 8. Let us explain the process using two subsequent, major cuDNN releases,
version 8 and 9:

Table 2. Two-step, deprecation policy

cuDNN version Explanation
Major release 8 The updated API is introduced as foo_v8().

The deprecated API foo() is kept unchanged to
maintain backward compatibility until the next
major release.

Major release 9 The deprecated API foo() is permanently
removed and its name is not reused. The
foo_v8() function supersedes the retired call
foo().

If the existing API needs to be updated, a new function flavor is introduced with the _v tag
followed by the current, major cuDNN version. In the next major release, the deprecated
function is removed, and its name is never reused. A brand-new API is first introduced without
the _v tag.

The revised depreciation scheme allows us to retire the legacy API in just one major release.
Similarly to the previous API deprecation policy, the user is able to compile the legacy code
without any changes using the next major release of the cuDNN library. The backward
compatibility ends when another major cuDNN release is introduced.
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The updated function name embeds the information in which the cuDNN version of the API
call was modified. As a result, the API changes will be easier to track and document.

The new deprecation policy is applied also to pending API changes from
previous cuDNN releases. For example, according to the old deprecation policy,
cudnnSetRNNDescriptor_v6() should be removed in cuDNN version 8 and the upgraded call
cudnnSetRNNDescriptor() with the same arguments and behavior should be kept. Instead,
the new deprecation policy is applied to this case and the tagged function is kept.

Prototypes of deprecated functions will be prepended in cuDNN version 8 headers using the
CUDNN_DEPRECATED macro. When the -DCUDNN_WARN_DEPRECATED switch is passed to the
compiler, any deprecated function call in the user's code will emit a compiler warning, for
example:
warning: ‘cudnnStatus_t cudnnSetRNNMatrixMathType(cudnnRNNDescriptor_t, cudnnMathType_t)’ is
 deprecated [-Wdeprecated-declarations]

Or
warning C4996: 'cudnnSetRNNMatrixMathType': was declared deprecated

The above warnings are disabled by default to avoid potential build breaks in software setups
where compiler warnings are treated as errors.

Note that the simple swapping of older cuDNN version 7 shared library files will not work with
the cuDNN version 8 release. The user source code needs to be recompiled from scratch with
the cuDNN version 8 headers and linked with the version 8 libraries.
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Chapter 13. Grouped Convolutions

cuDNN supports grouped convolutions by setting groupCount > 1 for the convolution
descriptor convDesc, using cudnnSetConvolutionGroupCount().

Note: By default, the convolution descriptor convDesc is set to groupCount of 1.

Basic Idea

Conceptually, in grouped convolutions, the input channels and the filter channels are split into
a groupCount number of independent groups, with each group having a reduced number of
channels. The convolution operation is then performed separately on these input and filter
groups.

For example, consider the following: if the number of input channels is 4, and the number
of filter channels of 12. For a normal, ungrouped convolution, the number of computation
operations performed are 12*4.

If the groupCount is set to 2, then there are now two input channel groups of two input
channels each, and two filter channel groups of six filter channels each.

As a result, each grouped convolution will now perform 2*6 computation operations, and two
such grouped convolutions are performed. Hence the computation savings are 2x: (12*4)/
(2*(2*6)) .

cuDNN Grouped Convolution

‣ When using groupCount for grouped convolutions, you must still define all tensor
descriptors so that they describe the size of the entire convolution, instead of specifying
the sizes per group.

‣ Grouped convolutions are supported for all formats that are currently supported by the
functions cudnnConvolutionForward(), cudnnConvolutionBackwardData() and
cudnnConvolutionBackwardFilter().

‣ The tensor stridings that are set for groupCount of 1 are also valid for any group count.

‣ By default, the convolution descriptor convDesc is set to groupCount of 1.

Note: See Convolution Formulas for the math behind the cuDNN grouped convolution.



Grouped Convolutions

NVIDIA cuDNN PG-06702-001_v8.3.1   |   29

Example

Below is an example showing the dimensions and strides for grouped convolutions for NCHW
format, for 2D convolution.

Note: The symbols * and / are used to indicate multiplication and division.

xDesc or dxDesc:

‣ Dimensions: [batch_size, input_channel, x_height, x_width]

‣ Strides: [input_channels*x_height*x_width, x_height*x_width, x_width, 1]

wDesc or dwDesc:

‣ Dimensions: [output_channels, input_channels/groupCount, w_height,
w_width]

‣ Format: NCHW

convDesc:

‣ Group Count: groupCount

yDesc or dyDesc:

‣ Dimensions: [batch_size, output_channels, y_height, y_width]

‣ Strides: [output_channels*y_height*y_width, y_height*y_width, y_width, 1]
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Chapter 14. Error Reporting And API
Logging

The cuDNN error reporting and API logging is a utility for recording the cuDNN API execution
and error information. For each cuDNN API function call, all input parameters are reported
in the API logging. If errors occur during the execution of the cuDNN API, a traceback of the
error conditions can also be reported to help troubleshooting. This functionality is disabled
by default, and can be enabled using the methods described in the later part of this section
through three logging severity levels: CUDNN_LOGINFO_DBG, CUDNN_LOGWARN_DBG and
CUDNN_LOGERR_DBG.

The log output contains variable names, data types, parameter values, device pointers,
process ID, thread ID, cuDNN handle, CUDA stream ID, and metadata such as time of the
function call in microseconds.

For example, when the severity level CUDNN_LOGINFO_DBG is enabled, the user will receive the
API loggings, such as:
cuDNN (v8300) function cudnnSetActivationDescriptor() called:
    mode: type=cudnnActivationMode_t; val=CUDNN_ACTIVATION_RELU (1);
    reluNanOpt: type=cudnnNanPropagation_t; val=CUDNN_NOT_PROPAGATE_NAN (0);
    coef: type=double; val=1000.000000;
Time: 2017-11-21T14:14:21.366171 (0d+0h+1m+5s since start)
Process: 21264, Thread: 21264, cudnn_handle: NULL, cudnn_stream: NULL.

When the severity level CUDNN_LOGWARN_DBG or CUDNN_LOGERR_DBG are enabled, the
log output additionally reports an error traceback such as the example below. This
traceback reports the relevant error/warning conditions, aiming to provide the user hints
for troubleshooting purposes. Within the traceback, each message may have their own
severity and will only be reported when the respective severity level is enabled. The traceback
messages are printed in the reverse order of the execution so the messages at the top will be
the root cause and tend to be more helpful for debugging.
cuDNN (v8300) function cudnnBackendFinalize() called:
    Info: Traceback contains 5 message(s)
        Error: CUDNN_STATUS_BAD_PARAM; reason: out <= 0
        Error: CUDNN_STATUS_BAD_PARAM; reason: is_valid_spacial_dim(xSpatialDimA[dim],
 wSpatialDimA[dim], ySpatialDimA[dim], cDesc.getPadLowerA()[dim], cDesc.getPadUpperA()[dim],
 cDesc.getStrideA()[dim], cDesc.getDilationA()[dim])
        Error: CUDNN_STATUS_BAD_PARAM; reason: is_valid_convolution(xDesc, wDesc, cDesc,
 yDesc)
        Error: CUDNN_STATUS_BAD_PARAM; reason: convolution.init(xDesc, wDesc, cDesc, yDesc)
        Error: CUDNN_STATUS_BAD_PARAM; reason: finalize_internal()
Time: 2021-10-05T17:11:07.935640 (0d+0h+0m+15s since start)
Process=87720; Thread=87720; GPU=NULL; Handle=NULL; StreamId=NULL.
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There are two methods, as described below, to enable the error/warning reporting and API
logging. For convenience, the log output can be handled by the built-in default callback
function, which will direct the output to a log file or the standard I/O as designated by the user.
The user may also write their own callback function to handle this information programmably,
and use the cudnnSetCallback() to pass in the function pointer of their own callback function.

Method 1: Using Environment Variables

To enable API logging using environment variables, follow these steps:

‣ Decide which logging severity levels to include from these three options:
CUDNN_LOGINFO_DBG, CUDNN_LOGWARN_DBG, CUDNN_LOGERR_DBG. The logging severity
levels are independent of each other. Any combination of them is valid.

‣ Set the environment variables CUDNN_LOGINFO_DBG or CUDNN_LOGWARN_DBG or
CUDNN_LOGERR_DBG to 1, and

‣ Set the environment variable CUDNN_LOGDEST_DBG to one of the following:

‣ stdout, stderr, or a user-desired file path, for example, /home/userName1/log.txt.

‣ Include the conversion specifiers in the file name. For example:

‣ To include date and time in the file name, use the date and time conversion specifiers:
log_%Y_%m_%d_%H_%M_%S.txt. The conversion specifiers will be automatically
replaced with the date and time when the program is initiated, resulting in
log_2017_11_21_09_41_00.txt.

‣ To include the process id in the file name, use the %i conversion specifier: log_%Y_%m_
%d_%H_%M_%S_%i.txt for the result: log_2017_11_21_09_41_00_21264.txt when
the process id is 21264. When you have several processes running, using the process
id conversion specifier will prevent these processes from writing to the same file at the
same time.

Note: The supported conversion specifiers are similar to the strftime function.

If the file already exists, the log will overwrite the existing file.

Note: These environmental variables are only checked once at the initialization. Any
subsequent changes in these environmental variables will not be effective in the current
run. Also note that these environment settings can be overridden by Method 2 below.

Refer to Table 3 for the impact on the performance of API logging using environment
variables. The CUDNN_LOG{INFO,WARN,ERR}_DBG notation in the table header means the
conclusion is applicable to either one of the environment variables.

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnSetCallback
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Table 3. API Logging Using Environment Variables

Environment variables CUDNN_LOG{INFO,WARN,ERR}_DBG=0CUDNN_LOG{INFO,WARN,ERR}_DBG=1

CUDNN_LOGDEST_DBG not set No logging output

No performance loss

No logging output

No performance loss

CUDNN_LOGDEST_DBG=NULL No logging output

No performance loss

No logging output

No performance loss

CUDNN_LOGDEST_DBG=stdout or
stderr

No logging output

No performance loss

Logging to stdout or stderr

Some performance loss

CUDNN_LOGDEST_DBG=filename.txtNo logging output

No performance loss

Logging to filename.txt

Some performance loss

Method 2: Using the API

Method 2: To use API function calls to enable API logging, refer to the API description of
cudnnSetCallback() and cudnnGetCallback().

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnSetCallback
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnGetCallback
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Chapter 15. Features Of RNN Functions

The RNN functions are:

‣ cudnnRNNForwardInference()

‣ cudnnRNNForwardTraining()

‣ cudnnRNNBackwardData()

‣ cudnnRNNBackwardWeights()

‣ cudnnRNNForwardInferenceEx()

‣ cudnnRNNForwardTrainingEx()

‣ cudnnRNNBackwardDataEx()

‣ cudnnRNNBackwardWeightsEx()

See the table below for a list of features supported by each RNN function:

Note:

For each of these terms, the short-form versions shown in the parenthesis
are used in the tables below for brevity: CUDNN_RNN_ALGO_STANDARD
(_ALGO_STANDARD), CUDNN_RNN_ALGO_PERSIST_STATIC (_ALGO_PERSIST_STATIC),
CUDNN_RNN_ALGO_PERSIST_DYNAMIC (_ALGO_PERSIST_DYNAMIC), and
CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION (_ALLOW_CONVERSION).

Functions
Input/output layout
supported

Supports variable
sequence length in
batch Commonly supported

cudnnRNNForwardInference

cudnnRNNForwardTraining

cudnnRNNBackwardData

cudnnRNNBackwardWeights

Only Sequence major,
packed (non-padded)

Only with
_ALGO_STANDARD

Require input
sequences descending
sorted according to
length

cudnnRNNForwardInferenceEx

cudnnRNNForwardTrainingEx
‣ Sequence major

unpacked
Only with
_ALGO_STANDARD

Mode (cell type)
supported:
CUDNN_RNN_RELU,
CUDNN_RNN_TANH,
CUDNN_LSTM,
CUDNN_GRU

Algo supported1 (see
the table below for an

1 Do not mix different algos for different steps of training. It’s also not recommended to mix non-extended and extended API for
different steps of training.

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnRNNForwardInference
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnRNNForwardTraining
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnRNNBackwardData
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnRNNBackwardWeights
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnRNNForwardInferenceEx
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnRNNForwardTrainingEx
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnRNNBackwardDataEx
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnRNNBackwardWeightsEx


Features Of RNN Functions

NVIDIA cuDNN PG-06702-001_v8.3.1   |   34

Functions
Input/output layout
supported

Supports variable
sequence length in
batch Commonly supported

cudnnRNNBackwardDataEx

cudnnRNNBackwardWeightsEx

‣ Batch major
unpacked2

‣ Sequence major
packed2

For unpacked layout2,
no input sorting
required.

For packed layout,
require input sequences
descending sorted
according to length

elaboration on these
algorithms):

_ALGO_STANDARD,
_ALGO_PERSIST_STATIC,
_ALGO_PERSIST_DYNAMIC

Math mode supported:

CUDNN_DEFAULT_MATH,CUDNN_TENSOR_OP_MATH

(will automatically fall
back if run on pre-
Volta or if algo doesn’t
support Tensor Cores)

_ALLOW_CONVERSION
(may do down
conversion to utilize
Tensor Cores)

Direction mode
supported:

CUDNN_UNIDIRECTIONAL,
 
CUDNN_BIDIRECTIONAL

RNN input mode:
CUDNN_LINEAR_INPUT,
CUDNN_SKIP_INPUT

The following table provides the features supported by the algorithms referred in the
above table: CUDNN_RNN_ALGO_STANDARD, CUDNN_RNN_ALGO_PERSIST_STATIC, and
CUDNN_RNN_ALGO_PERSIST_DYNAMIC.

Features _ALGO_STANDARD _ALGO_PERSIST_STATIC_ALGO_PERSIST_DYNAMIC

Half input

Single accumulation

Half output

Supported

Half intermediate storage

Single accumulation

Single input

Single accumulation

Single output

Supported

If running on Volta, with CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION*, will
down-convert and use half intermediate storage.

Otherwise: Single intermediate storage

Single accumulation

Double input

Double accumulation

Supported Not Supported Supported

2 To use an unpacked layout, users need to set CUDNN_RNN_PADDED_IO_ENABLED through cudnnSetRNNPaddingMode().

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#fnsrc_2
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#fnsrc_2
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Features _ALGO_STANDARD _ALGO_PERSIST_STATIC_ALGO_PERSIST_DYNAMIC
Double output Double intermediate

storage

Double accumulation

Double intermediate
storage

Double accumulation

LSTM recurrent
projection

Supported Not Supported Not Supported

LSTM cell clipping Supported

Variable sequence
length in batch

Supported Not Supported Not Supported

Tensor Cores on Volta/
Xavier

Supported

For half input/output, acceleration requires
setting

CUDNN_TENSOR_OP_MATH3 or
CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION 3

Acceleration requires inputSize and
hiddenSize to be a multiple of 8

For single input/output, acceleration requires
setting

CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION3

Acceleration requires inputSize and
hiddenSize to be a multiple of 8

Not Supported,
will execute
normally ignoring
CUDNN_TENSOR_OP_MATH3

or
_ALLOW_CONVERSION3

Other limitations Max problem size
is limited by GPU
specifications.

Requires real time
compilation through
NVRTC

3 CUDNN_TENSOR_OP_MATH or CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION can be set through
cudnnSetRNNMatrixMathType().

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#fnsrc_3
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#fnsrc_3
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#fnsrc_3
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#fnsrc_3


NVIDIA cuDNN PG-06702-001_v8.3.1   |   36

Chapter 16. Mixed Precision Numerical
Accuracy

When the computation precision and the output precision are not the same, it is possible that
the numerical accuracy will vary from one algorithm to the other.

For example, when the computation is performed in FP32 and the output is in FP16, the
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0 (ALGO_0) has lower accuracy compared to the
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1 (ALGO_1). This is because ALGO_0 does not use
extra workspace, and is forced to accumulate the intermediate results in FP16, i.e., half
precision float, and this reduces the accuracy. The ALGO_1, on the other hand, uses additional
workspace to accumulate the intermediate values in FP32, i.e., full precision float.
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Chapter 17. Operation Fusion Via The
Backend API

Introduced in cuDNN 8.0, operation fusion can be achieved via the backend API. The general
workflow is similar to running unfused operations, except that instead of creating a single
operation Operation Graph, the user may specify a multi-operation Operation Graph. Here we
illustrate the flow via an example.

In the following example, the user would like to implement a fusion operation of convolution,
bias, and activation.

‣ First, the user should create three cuDNN backend operation descriptors - one
convolution operation descriptor and two pointwise operation descriptors. Depending on
the pointwise mode in the pointwise descriptor, a pointwise operation descriptor can be set
up to describe an activation operation or a bias operation. By specifying the backend tensor
Tmp0 as both the output of the convolution operation and the input of the bias operation,
this allows cuDNN to infer the dataflow between the operations. The same applies to
tensor Tmp1. Here assume the user doesn’t need the intermediate results Tmp0 and Tmp1
for any other use, then the user can specify them to be virtual tensors, so the memory I/Os
can later be optimized out.

‣ Note for the purpose of fusion, users should not construct in-place operations where
any of the input UIDs matches any of its own output UIDs. Such in-place operations will
be considered cyclic in later graph analysis and deemed unsupported.

‣ Also note that the operation descriptors can be passed into cuDNN in any order, as the
tensor UIDs are enough to determine the dependencies in the graph.
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Figure 9. A set of operation descriptors the user passes to the
operation graph

‣ Second, upon finalizing the operation graph, cuDNN will perform the dataflow analysis
to establish the dependency relationship between operations and connect the edges, as
illustrated in the figure below. In this step, cuDNN will also perform various checks to
confirm the validity of the graph.

Figure 10. The operation graph after finalization

‣ Third, with the finalized operation graph, there are two options:

‣ For most users that prefer cuDNN to recommend the best engine and knob choices,
they can query cuDNN’s heuristics to get a list of engine configs and choose from
them. After that, the user can construct the execution plan using the chosen engine
config. Note the heuristics support for fusion use cases are not yet available. This will
be available in the coming releases.

‣ For expert users, they can query the engines that can support this operation graph.
For each engine, the user can further query the numerical notes and adjustable
knobs. Numerical notes would inform the user about the numerical behavior of the
engine such as whether it does datatype down conversion at the input or during output
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reduction. The adjustable knobs allow fine grained control of the engine’s behavior and
performance. With the engine choice and the knob choice determined, the user can
construct the backend engine, backend engine config, and further the execution plan.

Note for operation fusion use cases, there are two different mechanisms in cuDNN to
support them. First, there are engines containing offline compiled kernels that can support
certain fusion patterns. These engines try to match the user provided operation graph
with their supported fusion pattern. If there is a match, then that particular engine is
deemed suitable for this use case. In addition, there are also runtime fusion engines to be
made available in the upcoming releases. Instead of passively matching the user graph,
such engines actively walk the graph and assemble code blocks to form a CUDA kernel
and compile on the fly. Such runtime fusion engines are much more flexible in its range
of support. However, because the construction of the execution plans requires runtime
compilation, the one-time CPU overhead is higher than the other engines.

‣ Finally, with the execution plan constructed and when it comes time to run it, the user
should construct the backend variant pack by providing the workspace pointer, an array
of UIDs, and an array of device pointers. The UIDs and the pointers should be in the
corresponding order. With the handle, the execution plan and variant pack, the execution
API can be called and the computation is carried out on the GPU.

The table below briefly summarizes the current fusion support in cuDNN. We will be adding
additional support in the upcoming releases. We welcome feature suggestions. For feedback,
email cudnn@nvidia.com.

Fusion Graph Pattern
Supported Device
Compute Capabilities

Supported Data
Config and Layout

Supported Engine
Types

Conv_Bias_Add_activationAll that cuDNN
supports

Same as
cudnnConvolutionBiasActivationForward()

Pattern matching
engines, runtime fusion
engines

Scale_Bias_Activation_convolution_genStatsCompute capability 70
or above

PSEUDO_HALF_CONFIG,
NHWC layout

Pattern matching
engines, runtime fusion
engines

Convolution_PointwiseCompute capability 75
or above

Flexible Runtime fusion engines

Gemm_Pointwise Compute capability 75
or above

Flexible Runtime fusion engines

mailto:cudnn@nvidia.com
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Chapter 18. Troubleshooting

The following sections help answer the most commonly asked questions regarding typical use
cases.

18.1.  FAQs

Q: Where in the software stack does cuDNN sit? What is the interaction
between CUDA, cuDNN, and TensorRT?

A: The following graphic shows how cuDNN relates to other software in the stack.

Figure 11. Software stack with cuDNN.
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Q: I’m not sure if I should use cuDNN for inference or training. How does it
compare with TensorRT?

A: cuDNN provides the building blocks for common routines such as convolution, pooling,
activation and RNN/LSTMs. You can use cuDNN for both training and inference. However,
where it differs from TensorRT is that the latter (TensorRT) is a programmable inference
accelerator; just like a framework. TensorRT sees the whole graph and optimizes the network
by fusing/combining layers and optimizing kernel selection for improved latency, throughout,
power efficiency and for reducing memory requirements.

A rule of thumb you can apply is to check out TensorRT, see if it meets your inference needs, if
it doesn't, then look at cuDNN for a closer, more in-depth perspective.

Q: How does heuristics in cuDNN work? How does it know what is the optimal
solution for a given problem?

A: NVIDIA actively monitors the Deep Learning space for important problem specifications
such as commonly used models. The heuristics are produced by sampling a portion of these
problem specifications with available computational choices. Over time, more models are
discovered and incorporated into the heuristics.

Q: Is cuDNN going to support running arbitrary graphs?

A: No, we don’t plan to become a framework and execute the whole graph one op at a time.
At this time, we are focused on a subgraph given by the user, where we try to produce an
optimized fusion kernel. We will document what the rules regarding what can be fused and
what cannot. The goal is to support general and flexible fusion, however, it will take time and
there will be limits in what it can do in the cuDNN version 8.0.0 launch.

Q: What’s the difference between TensorRT, TensorFlow/XLA’s fusion, and
cuDNN’s fusion?

A: TensorRT and TensorFlow are frameworks; they see the whole graph and can do global
optimization, however, they generally only fuse pointwise ops together. On the other hand,
cuDNN targets a subgraph, but can fuse convolutions with pointwise ops, thus providing
potentially better performance. CuDNN fusion kernels can be utilized by TensorRT and
TensorFlow/XLA as part of their global graph optimization.

Q: Can I write an application calling cuDNN directly?

A: Yes, you can call the C/C++ API directly. Usually, data scientists would wait for framework
integration and use the Python API which is more convenient. However, if your use case
requires better performance, you can target the cuDNN API directly.
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Q: How does mixed precision training work?

A: Several components need to work together to make mixed precision training possible.
CuDNN needs to support the layers with the required datatype config and have optimized
kernels that run very fast. In addition, there is a module called automatic mixed precision
(AMP) in frameworks which intelligently decides which op can run in a lower precision without
affecting convergence and minimize the number of type conversions/transposes in the entire
graph. These work together to give you speed up. For more information, see Mixed Precision
Numerical Accuracy.

Q: How can I pick the fastest convolution kernels with cuDNN version 8.0.0?

A: In the API introduced in cuDNN v8, convolution kernels are grouped by similar computation
and numerical properties into engines. Every engine has a queryable set of performance
tuning knobs. A computation case such as a convolution operation graph can be computed
using different valid combinations of engines and their knobs, known as an engine
configuration. Users can query an array of engine configurations for any given computation
case ordered by performance, from fastest to slowest according to cuDNN’s own heuristics.
Alternately, users can generate all possible engine configurations by querying the engine
count and available knobs for each engine. This generated list could be used for auto-tuning or
the user could create their own heuristics.

Q: Why is cuDNN version 8.0 convolution API call much slower on the first call
than subsequent calls?

A: Due to the library split, cuDNN version 8.0 API will only load the necessary kernels
on the first API call that requires it. In previous versions, this load would have been
observed in the first cuDNN API call that triggers CUDA context initialization, typically
cudnnCreate(). In version 8.0, this is delayed until the first sub-library call that triggers
CUDA context initialization. Users who desire to have CUDA context preloaded can call the
new cudnnCnnInferVersionCheck() API (or its related cousins), which has the side effect of
initializing a CUDA context. This will reduce the run time for all subsequent API calls.

Q: How do I build the cuDNN version 8.0.0 split library?

A: cuDNN v8.0 library is split into multiple sub-libraries. Each library contains a subset of the
API. Users can link directly against the individual libraries or link with a dlopen layer which
follows a plugin architecture.

To link against an individual library, users can directly specify it and its dependencies
on the linker command line. For example, for infer libraries: -lcudnn_adv_infer, -
lcudnn_cnn_infer, or -lcudnn_ops_infer.

For all libraries, -lcudnn_adv_train, -lcudnn_cnn_train, -lcudnn_ops_train, -
lcudnn_adv_infer, -lcudnn_cnn_infer, and -lcudnn_ops_infer.

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#mixed-precision-numerical-accuracy
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#mixed-precision-numerical-accuracy
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The dependency order is documented in the cuDNN 8.0.0 Preview Release Notes and the
NVIDIA cuDNN API Reference.

Alternatively, the user can continue to link against a shim layer (-libcudnn) which can dlopen
the correct library that provides the implementation of the function. When the function is
called for the first time, the dynamic loading of the library takes place.

Linker argument:
-lcudnn

Q: What are the new APIs in cuDNN version 8.0.0?

A: The new cuDNN APIs are listed in the cuDNN 8.0.0 Release Notes as well as in the API
Changes For cuDNN 8.0.0.

18.2.  How Do I Report A Bug?
We appreciate all types of feedback. If you encounter any issues, please report them by
following these steps.

 1. Register for the NVIDIA Developer website.
 2. Log in to the developer site.
 3. Click on your name in the upper right corner.
 4. Click My account > My Bugs and select Submit a New Bug.
 5. Fill out the bug reporting page. Be descriptive and if possible, provide the steps that you

are following to help reproduce the problem.
 6. Click Submit a bug.

18.3.  Support
Support, resources, and information about cuDNN can be found online at https://
developer.nvidia.com/cudnn. This includes downloads, webinars, NVIDIA Developer Forums,
and more.

For questions or to provide feedback, please contact cuDNN@nvidia.com.

https://docs.nvidia.com/deeplearning/sdk/cudnn-release-notes/rel_8.html#rel-800-Preview
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#release-800-preview
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#release-800-preview
https://developer.nvidia.com/
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
http://devtalk.nvidia.com/
mailto:cuDNN@nvidia.com
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Chapter 19. Acknowledgments

Some of the cuDNN library routines were derived from code developed by others and are
subject to the following:

19.1.  University of Tennessee
Copyright (c) 2010 The University of Tennessee.

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
    * Redistributions of source code must retain the above copyright
      notice, this list of conditions and the following disclaimer.
    * Redistributions in binary form must reproduce the above
      copyright notice, this list of conditions and the following
      disclaimer listed in this license in the documentation and/or
      other materials provided with the distribution.
    * Neither the name of the copyright holders nor the names of its
      contributors may be used to endorse or promote products derived
      from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

19.2.  University of California, Berkeley
COPYRIGHT

All contributions by the University of California:
Copyright (c) 2014, The Regents of the University of California (Regents)
All rights reserved.

All other contributions:
Copyright (c) 2014, the respective contributors
All rights reserved.
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Caffe uses a shared copyright model: each contributor holds copyright over
their contributions to Caffe. The project versioning records all such
contribution and copyright details. If a contributor wants to further mark
their specific copyright on a particular contribution, they should indicate
their copyright solely in the commit message of the change when it is
committed.

LICENSE

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met: 

1. Redistributions of source code must retain the above copyright notice, this
   list of conditions and the following disclaimer. 
2. Redistributions in binary form must reproduce the above copyright notice,
   this list of conditions and the following disclaimer in the documentation
   and/or other materials provided with the distribution. 

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

CONTRIBUTION AGREEMENT

By contributing to the BVLC/caffe repository through pull-request, comment,
or otherwise, the contributor releases their content to the
license and copyright terms herein.

19.3.  Facebook AI Research, New York
Copyright (c) 2014, Facebook, Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

 * Redistributions of source code must retain the above copyright notice, this
   list of conditions and the following disclaimer.

 * Redistributions in binary form must reproduce the above copyright notice,
   this list of conditions and the following disclaimer in the documentation
   and/or other materials provided with the distribution.

 * Neither the name Facebook nor the names of its contributors may be used to
   endorse or promote products derived from this software without specific
   prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
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SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Additional Grant of Patent Rights

"Software" means fbcunn software distributed by Facebook, Inc.

Facebook hereby grants you a perpetual, worldwide, royalty-free, non-exclusive,
irrevocable (subject to the termination provision below) license under any
rights in any patent claims owned by Facebook, to make, have made, use, sell,
offer to sell, import, and otherwise transfer the Software. For avoidance of
doubt, no license is granted under Facebookâ€™s rights in any patent claims that
are infringed by (i) modifications to the Software made by you or a third party,
or (ii) the Software in combination with any software or other technology
provided by you or a third party.

The license granted hereunder will terminate, automatically and without notice,
for anyone that makes any claim (including by filing any lawsuit, assertion or
other action) alleging (a) direct, indirect, or contributory infringement or
inducement to infringe any patent: (i) by Facebook or any of its subsidiaries or
affiliates, whether or not such claim is related to the Software, (ii) by any
party if such claim arises in whole or in part from any software, product or
service of Facebook or any of its subsidiaries or affiliates, whether or not
such claim is related to the Software, or (iii) by any party relating to the
Software; or (b) that any right in any patent claim of Facebook is invalid or
unenforceable.
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