NVIDIA.

NVIDIA cuDNN

API| Reference | NVIDIA Docs

PR-09702-001_v8.4.1 May 2022

Table of Contents

Chapter 1. INTrOQUCTION ..o i et e e e e e e e e 1
Chapter 2. Added, Deprecated, And Removed APl Functions...........ooociiiiiiiiieiiiiiieee. 2
2.1. APl Changes For CUDNN 8.4.0... .o 2
2.2. APl Changes For CUDNN 8.3.0. ... i 2
2.3. APl Changes For cuDNN 8.2.0.o 3
2.4. API Changes For CUDNN 8.1.0. .. i 3
2.5. APl Changes For CUDNN 8.0.3 . . e 3
2.6. APl Changes For CUDNN 8.0.2. ... i 4
2.7. APl Changes For CUDNN 8.0.0 PreVIiEW.......coiiiiiiiiiiis e 4
Chapter 3. cudnn_ops_infer.so Library....... e 9
3.1, Data Type RefEIMENCES. ..ot 9
3.1.1. Pointer To Opagque STrUCE TYPeS. ..o i 9

3. 1.2, ENUMEration TyYPeS. . o 11

3.2 AP FUNCHIONS et 25
Chapter 4. cudnn_ops_train.so Library........ccco 110
A1 APT FUNCHIONS oot 110
Chapter 5. cudnn_cnn_infer.S0 Library ... 156
0.1, Data Type RefEIrENCES. ..o, 156
5.1.7. Pointer To Opagque STrUC TYPeS....ciiiiiiiiiieie e 156

0. 1.2, SITUCE Ty PO e, 156

0. 1.3 ENUMEIAtION Ty PES ittt 158

0.2, AP FUNCHIONS .o 161
Chapter 6. cudnn_cnn_train.so Library. ... 215
6.7. Data Type RefEIrENCES. ... i 215
6.1.1. Pointer To Opaque STrUCt TYPeS.. .. i 215
0.0 2 SETUCE Ty PO ittt 215

0. 1.3, ENUMEIation TYPES. it 216

6.2, AP FUNCHIONS .o 246
Chapter 7. cudnn_adv_infer.S0 Library. ... e 271
7.1. Data Type RefErENCES. ..ot 271
7.1.1. Pointer To Opaque STrUCt TYPeS....cuiiiiiiiii e 271
702 ENUMEIATION TYPS. it 272

7.2, AP FUNCHIONS et 279
Chapter 8. cudnn_adv_train.so Library........... e i 356

NVIDIA cuDNN PR-09702-001_v8.4.1 | ii

8.1. Data Type ReferenCeS. ..o 356

8.1 T ENUMEIatION TYPOS. oo 356
8.2 APT FUNCHIONS ..ot 357
Chapter 9. cuDNN Backend APL.... . e 422
9.1, Data Type RefErENCES ..o, 42?2
DT T ENUMEIAtION TYPES ittt 422
9.1.2. Data Types Found In cudnn_backend.h........coiiii 434
9.2, AP FUNCHIONS . e 434
9.3, Backend DesCriptor TYPeS. i 440
Dl USE CaSES..iiiiiii e 472
9.4.1. Setting Up An Operation Graph For A Grouped Convolution..........ccccooviiiiiiiiii, 472
9.4.2. Setting Up An Engine Configuration..........cooooiiiiiii i 474
9.4.3. Setting Up And Executing A PLan.......cooiii 474

NVIDIA cuDNN PR-09702-001_v8.4.1 | iii

List of Figures

Figure 1. Locations of x, y, hx, cx, hy, and cy signals in the multi-layer RNN model. 321
Figure 2. Data flow when the RNN model is bi-directional.ccccooiiiiiiiiii 322

Figure 3. Locations of x, y, hx, cx, hy, cy, dx, dy, dhx, dcx, dhy, and dcy signals a multi-layer
RININ OGEL e 393

NVIDIA cuDNN PR-09702-001_v8.4.1 | iv

Table 1.

Table 2.

Table 3.

Table 4.

Table 5.

Table 6.

Table 7.

Table 8.

Table 9.

Table 10.

Table 11.

Table 12.

Table 13.

Table 14.

Table 15.

Table 16.

Table 17.

Table 18.

Table 19.

Table 20.

Table 21.

Table 22.

Table 23.

Table 24.

List of Tables

API functions and data types that were added in cuUDNN 8.4.0 ..o, 2
API functions and data types that were added in cuDNN 8.3.0coccoiviiiiiiiiiiii 2
API functions and data types that were added in cuDNN 8.2.0 ..o, 3
API functions and data types that were added in cuDNN 8.1.0 ..o, 3
API functions and data types that were added in cuDNN 8.0.3 ..o, 3
APl functions and data types that were added in cuDNN 8.0.2 ... 4
APl functions and data types that were added in cuDNN 8.0.0 Previewcccocoeonnn. 4
API functions and data types that were deprecated in cuDNN 8.0.0 Preview 6
API functions and data types that were removed in cuDNN 8.0.0 Preview 7
Supported CONfIGUIAtIONS o..iiiiiii e 30
SUPPOrted DatatyPes ..o 71
Supported CONfIGUIATIONS ..ot 114
Supported CONIGUIATIONS ...oiiii e 118
Supported CONfIGUIATIONS ..ot 121
Supported CONfIGUIATIONS ..ot 125
For 2D convolutions: wDesc: NHWOC L. 164
For 2D convolutions: wDesc: NCHW L. 164
For 3D convolutions: wDesc: NCHW . 168
For 3D convolutions: wDesc: NHW C e 170
Supported combinations of data types (X = CUDNN_DATA]) ... 174
Supported CONfIGUIATIONS ..ot 176
For 2D convolutions: wDesc: NCHW e 179
For 2D convolutions: wDesc: NCHWC ..o 183
For 2D convolutions: wDesc: NHWC L. 183

NVIDIA cuDNN PR-09702-001_v8.4.1 | v

Table 25.

Table 26.

Table 27.

Table 28.

Table 29.

Table 30.

Table 371.

Table 32.

Table 33.

Table 34.

Table 35.

Table 36.

Table 37.

Table 38.

Table 39.

Table 40.

Table 41.

Table 42.

Table 43.

Table 44.

Table 45.

Table 46.

Table 47.

For 3D convolutions: wDesc: NCHW e 184
For 3D convolutions: wDesc: NHW C . e 185
CUDNN_FUSED_SCALE_BIAS_ACTIVATION_CONV_BNSTATS ..., 219
Conditions for Fully Fused Fast Path (Forward) ..o 222
CUDNN_FUSED_SCALE_BIAS_ACTIVATION_WGRADccoooiiiiiiiiiiiiie 223
Conditions for Fully Fused Fast Path (Backward)c.ocooooiiiiiiieee 226
CUDNN_FUSED_BN_FINALIZE_STATISTICS_TRAINING ..ot 227
CUDNN_FUSED_BN_FINALIZE_STATISTICS_INFERENCE ..o, 231
CUDNN_FUSED_CONVOLUTION_SCALE_BIAS_ADD_RELU ..o 233
Legend For Tables in This SECHION ..ot 237
CUDNN_FUSED_SCALE_BIAS_ACTIVATION_CONV_BNSTATS ..., 237
CUDNN_FUSED_SCALE_BIAS_ACTIVATION_WGRADccoooiiiiiiiiiiii 239
CUDNN_FUSED_BN_FINALIZE_STATISTICS_TRAININGcccooiiiiiiiiiiiiiieee 240
CUDNN_FUSED_BN_FINALIZE_STATISTICS_INFERENCE ... 243
CUDNN_FUSED_SCALE_BIAS_ADD_RELU ..ot 245
For 2D convolutions: dwDesc: NHWC . e 251
For 2D convolutions: dwDesc: NCHW e 251
For 3D convolutions: dwDesc: NCHW e 2bb
For 3D convolutions: dwDesc: NHWC e 256
Supported COMDBINATIONS ..ot 341
The attribute types of cudnnBackendAttributeType_t. .o 426

... 430
matmul operation dimension requIreMENTS ..., 456

NVIDIA cuDNN PR-09702-001_v8.4.1 | vi

Chapter 1. Introduction

NVIDIA® CUDA® Deep Neural Network (cuDNN] library offers a context-based API that allows
for easy multithreading and (optional] interoperability with CUDA streams. This AP| Reference
lists the datatyes and functions per library. Specifically, this reference consists of a cuDNN
datatype reference section that describes the types of enums and a cuDNN API reference
section that describes all routines in the cuDNN Llibrary API.

The cuDNN library as well as this APl document has been split into the following libraries:

» cudnn_ops_infer - This entity contains the routines related to cuDNN context creation
and destruction, tensor descriptor management, tensor utility routines, and the inference
portion of common ML algorithms such as batch normalization, softmax, dropout, etc.

» cudnn ops_ train - This entity contains common training routines and algorithms, such
as batch normalization, softmax, dropout, etc. The cudnn_ops_train library depends on
cudnn_ops_infer.

» cudnn_cnn_infer - This entity contains all routines related to convolutional neural
networks needed at inference time. The cudnn_cnn_infer library depends on
cudnn_ops_infer.

» cudnn cnn_train - This entity contains all routines related to convolutional neural
networks needed during training time. The cudnn_cnn_train library depends on
cudnn_ops_infer, cudnn ops train, and cudnn_cnn_infer.

» cudnn_adv_infer - This entity contains all other features and algorithms. This includes
RNNs, CTC loss, and multi-head attention. The cudnn_adv_infer library depends on
cudnn_ops_infer.

» cudnn_adv_train - This entity contains all the training counterparts of
cudnn_adv_infer. The cudnn_adv_train library depends on cudnn ops_infer,
cudnn_ops_train, and cudnn_adv_infer.

» cudnnBackend* - Introduced in cuDNN version 8.x, this entity contains a list of valid
cuDNN backend descriptor types, a list of valid attributes, a subset of valid attribute
values, and a full description of each backend descriptor type and their attributes.

» cudnn - This is an optional shim layer between the application layer and the cuDNN code.
This layer opportunistically opens the correct library for the APl at runtime.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 1

Chapter 2. Added, Deprecated, And
Removed APl Functions

2.1. APl Changes For cuDNN 8.4.0

The following tables show which API functions were added, deprecated, and removed for the
cuDNN 8.4.0.

Table 1. APl functions and data types that were added in cuDNN 8.4.0

Backend descriptor types

cudnnBackendBehaviorNote t
CUDNN_BACKEND_OPERATION_REDUCTION_DESCRIPTOR
CUDNN_BACKEND_POINTWISE_DESCRIPTOR
CUDNN_BACKEND REDUCTION DESCRIPTOR
cudnnBackendTensorReordering_t
cudnnBnFinalizeStatsMode_t

cudnnPaddingMode_t

cudnnResampleMode t

2.2. APl Changes For cuDNN 8.3.0

The following tables show which API functions were added, deprecated, and removed for the
cuDNN 8.3.0.

Table 2. API functions and data types that were added in cuDNN 8.3.0

Backend descriptor types
CUDNN_BACKEND_OPERATION_RESAMPLE BWD DESCRIPTOR
CUDNN_BACKEND_OPERATION_RESAMPLE FWD DESCRIPTOR
CUDNN_BACKEND RESAMPLE DESCRIPTOR

NVIDIA cuDNN PR-09702-001_v8.4.1 | 2

Added, Deprecated, And Removed API Functions

2.3. APl Changes For cuDNN 8.2.0

The following tables show which API functions were added, deprecated, and removed for the
cuDNN 8.2.0.

Table 3. API functions and data types that were added in cuDNN 8.2.0

New functions

cudnnGetActivationDescriptorSwishBeta()

cudnnSetActivationDescriptorSwishBetal)

2.4. APl Changes For cuDNN 8.1.0

The following tables show which API functions were added, deprecated, and removed for the
cuDNN 8.1.0.

Table 4. API functions and data types that were added in cuDNN 8.1.0

Backend descriptor types
CUDNN_BACKEND_MATMUL_DESCRIPTOR
CUDNN_BACKEND_ OPERATION_MATMUL DESCRIPTOR

2.9. APl Changes For cuDNN 8.0.3

The following tables show which API functions were added, deprecated, and removed for the
cuDNN 8.0.3.

Table 5. API functions and data types that were added in cuDNN 8.0.3

Backend descriptor types
CUDNN_BACKEND_CONVOLUTION_DESCRIPTOR
CUDNN_BACKEND_ENGINE DESCRIPTOR
CUDNN_BACKEND ENGINECFG DESCRIPTOR
CUDNN_BACKEND_ENGINEHEUR DESCRIPTOR
CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR
CUDNN_BACKEND_INTERMEDIATE INFO_DESCRIPTOR
CUDNN_BACKEND KNOB CHOICE DESCRIPTOR
CUDNN_BACKEND_KNOB_INFO_DESCRIPTOR

NVIDIA cuDNN PR-09702-001_v8.4.1 | 3

Added, Deprecated, And Removed API Functions

Backend descriptor types

CUDNN_BACKEND_ LAYOUT INFO_DESCRIPTOR
CUDNN_BACKEND_OPERATION_CONVOLUTION_BACKWARD_ DATA DESCRIPTOR
CUDNN_BACKEND_OPERATION_CONVOLUTION_BACKWARD_FILTER DESCRIPTOR
CUDNN_BACKEND_OPERATION_CONVOLUTION_FORWARD_DESCRIPTOR
CUDNN_BACKEND_ OPERATION_GEN_STATS DESCRIPTOR
CUDNN_BACKEND_OPERATION_POINTWISE_DESCRIPTOR
CUDNN_BACKEND_OPERATIONGRAPH_ DESCRIPTOR
CUDNN_BACKEND_TENSOR_DESCRIPTOR

CUDNN_BACKEND_ VARIANT PACK DESCRIPTOR

2.6. APl Changes For cuDNN 8.0.2

The following tables show which API functions were added, deprecated, and removed for the
cuDNN 8.0.2.

Table 6. API functions and data types that were added in cuDNN 8.0.2

New functions and data types
cudnnRNNBackwardData v8()
cudnnRNNBackwardWeights_v8()

2.7. APl Changes For cuDNN 8.0.0
Preview

The following tables show which API functions were added, deprecated, and removed for the
cuDNN 8.0.0 Preview Release.

Table 7. API functions and data types that were added in cuDNN 8.0.0
Preview

New functions and data types

cudnnAdvInferVersionCheck(]
cudnnAdvTrainVersionCheck(]
cudnnBackendAttributeName_t
cudnnBackendAttributeType t

cudnnBackendCreateDescriptorl()

cudnnBackendDescriptor t

NVIDIA cuDNN PR-09702-001_v8.4.1 | 4

Added, Deprecated, And Removed API Functions

New functions and data types

cudnnBackendDescriptorType t

cudnnBackendDestroyDescriptor|()

cudnnBackendExecute()

cudnnBackendFinalize()

cudnnBackendGetAttribute(]

cudnnBackendHeurMode t

cudnnBackendInitializel)

cudnnBackendKnobType t

cudnnBackendLayoutType t

cudnnBackendNumericalNote t

cudnnBackendSetAttribute()

cudnnBuildRNNDynamicl)

cudnnCTCLoss_v8l()

cudnnDeriveNormTensorDescriptor(]

cudnnForwardMode t

cudnnGenStatsMode_t

cudnnGetCTCLossDescriptor v8()

cudnnGetCTCLossDescriptorEx|()

cudnnGetCTCLossWorkspaceSize v8

cudnnGetFilterSizelnBytesl)

cudnnGetFoldedConvBackwardDataDescriptors|()

cudnnGetNormalizationBackwardWorkspaceSize|()

cudnnGetNormalizationForwardTrainingWorkspaceSize()

cudnnGetNormalizationTrainingReserveSpaceSizel)

cudnnGetRNNDescriptor v8(]

cudnnGetRNNMatrixMathTypel(]

cudnnGetRNNTempSpaceSizes()

cudnnGetRNNWeightParams)

cudnnGetRNNWeightSpaceSizel()

cudnnLRNDescriptor t

cudnnNormAlgo_t

cudnnNormalizationBackward|)

cudnnNormalizationForwardInference()

cudnnNormalizationForwardTraining()

cudnnNormMode t

cudnnNormQps_t

cudnnOpslInferVersionCheck()

cudnnOpsTrainVersionCheckl()

NVIDIA cuDNN

PR-09702-001_v8.4.1

5

Added, Deprecated, And Removed API Functions

New functions and data types
cudnnPointwiseMode_t
cudnnRNNForward()
cudnnRNNGetClip_v8(]
cudnnRNNSetClip_v8()
cudnnSetCTClLossDescriptor v8()
cudnnSetRNNDescriptor v8()

cudnnSeverity_t

For our deprecation policy, refer to the Backward Compatibility And Deprecation Policy section
in the cuDNN Developer Guide.

Table 8. API functions and data types that were deprecated in cuDNN
8.0.0 Preview
Deprecated functions and data types Replaced with

cudnnCopyAlgorithmDescriptor ()
cudnnCreateAlgorithmDescriptor ()

cudnnCreatePersistentRNNPlan () cudnnBuildRNNDynamicl)

cudnnDestroyAlgorithmDescriptor ()
cudnnDestroyPersistentRNNPlan ()
cudnnFindRNNBackwardDataAlgorithmEx ()
cudnnFindRNNBackwardWeightsAlgorithmEx ()
cudnnFindRNNForwardInferenceAlgorithmEx ()
cudnnFindRNNForwardTrainingAlgorithmEx ()
cudnnGetAlgorithmDescriptor ()
cudnnGetAlgorithmPerformance ()
cudnnGetAlgorithmSpaceSize ()
cudnnGetRNNBackwardDataAlgorithmMaxCount (|)
cudnnGetRNNBackwardWeightsAlgorithmMaxCount ()
cudnnGetRNNDescriptor v8()

» cudnnGetRNNDescriptor v6 ()
» cudnnGetRNNMatrixMathType ()
» cudnnGetRNNBiasMode ()

> cudnnGetRNNPaddingMode ()

» cudnnGetRNNProjectionLayers ()

cudnnGetRNNForwardInferenceAlgorithmMaxCount ()
cudnnGetRNNForwardTrainingAlgorithmMaxCount ()
cudnnGetRNNWeightParamsl()

» cudnnGetRNNLinLayerBiasParams ()

NVIDIA cuDNN PR-09702-001_v8.4.1 | 6

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#backward-compatibility

Added, Deprecated, And Removed API Functions

Deprecated functions and data types Replaced with
» cudnnGetRNNLinLayerMatrixParams ()

cudnnGetRNNParamsSize () cudnnGetRNNWeightSpaceSizel]
cudnnGetRNNTempSpaceSizes|()

» cudnnGetRNNWorkspaceSize ()

» cudnnGetRNNTrainingReserveSize ()

cudnnPersistentRNNPlan t

cudnnRestoreAlgorithm ()

> cudnnRNNBackwardData () cudnnRNNBackwardData v8()

» cudnnRNNBackwardDataEx ()

> cudnnRNNBackwardileights () cudnnRNNBackwardWeights_v8()

» cudnnRNNBackwardWeightsEx ()

» cudnnRNNForwardInference () CUdﬂﬂRPJNFOHNaFdU
» cudnnRNNForwardInferenceEx ()

» cudnnRNNForwardTraining ()

» cudnnRNNForwardTrainingEx ()

cudnnRNNGetClip () cudnnRNNGetClip v8()
cudnnRNNSetClip () cudnnRNNSetClip v8(

cudnnSaveAlgorithm ()
cudnnSetAlgorithmDescriptor ()
cudnnSetAlgorithmPerformance ()
cudnnSetPersistentRNNPlan ()
cudnnSetRNNAlgorithmDescriptor ()

> cudnnSetRNNBiasMode () cudnnSetRNNDescriptor v8()

» cudnnSetRNNDescriptor v6 ()
» cudnnSetRNNMatrixMathType ()
» cudnnSetRNNPaddingMode ()

» cudnnSetRNNProjectionLayers ()

Table 9. API functions and data types that were removed in cuDNN 8.0.0
Preview

Removed functions and data types
cudnnConvolutionBwdDataPreference t

cudnnConvolutionBwdFilterPreference t

NVIDIA cuDNN PR-09702-001_v8.4.1 | 7

Added, Deprecated, And Removed API Functions

Removed functions and data types
cudnnConvolutionFwdPreference t
cudnnGetConvolutionBackwardDataAlgorithm ()
cudnnGetConvolutionBackwardFilterAlgorithm ()
cudnnGetConvolutionForwardAlgorithm ()
cudnnGetRNNDescriptor ()

cudnnSetRNNDescriptor ()

NVIDIA cuDNN PR-09702-001_v8.4.1 | 8

Chapter 3. cudnn ops_infer.so
Library

3.1. Data Type References

3.1.1. Pointer To Opaque Struct Types

3.1.1.1. cudnnActivationDescriptor t

cudnnActivationDescriptor tis a pointer to an opaque structure holding the description
of an activation operation. cudnnCreateActivationDescriptor(] is used to create one instance,
and cudnnSetActivationDescriptor(] must be used to initialize this instance.

3.1.1.2. cudnnCTCLossDescriptor t

cudnnCTCLossDescriptor tis a pointer to an opaque structure holding the
description of a CTC loss operation. cudnnCreateCTClossDescriptor(] is used to create
one instance, cudnnSetCTCLossDescriptor() is used to initialize this instance, and
cudnnDestroyCTClLossDescriptor(] is used to destroy this instance.

3.1.1.3. cudnnDropoutDescriptor t

cudnnDropoutDescriptor t is a pointer to an opaque structure holding the

description of a dropout operation. cudnnCreateDropoutDescriptor(] is used

to create one instance, cudnnSetDropoutDescriptor(] is used to initialize this

instance, cudnnDestroyDropoutDescriptor(] is used to destroy this instance,
cudnnGetDropoutDescriptor(] is used to query fields of a previously initialized instance,
cudnnRestoreDropoutDescriptor(] is used to restore an instance to a previously saved off
state.

3.1.1.4. cudnnFilterDescriptor t

cudnnFilterDescriptor tis a pointer to an opaque structure holding the description
of a filter dataset. cudnnCreateFilterDescriptor(] is used to create one instance, and

NVIDIA cuDNN PR-09702-001_v8.4.1 | 9

cudnn_ops_infer.so Library

cudnnSetFilter4dDescriptor(] or cudnnSetFilterNdDescriptor() must be used to initialize this
instance.

3.1.1.5. cudnnHandle t

cudnnHandle tisa pointer to an opaque structure holding the cuDNN library context. The
cuDNN library context must be created using cudnnCreate() and the returned handle must
be passed to all subsequent library function calls. The context should be destroyed at the end
using cudnnDestroy(]. The context is associated with only one GPU device, the current device
at the time of the call to cudnnCreate(). However, multiple contexts can be created on the
same GPU device.

3.1.1.6. cudnnLRNDescriptor t

cudnnLRNDescriptor t isa pointer to an opaque structure holding the parameters of a local
response normalization. cudnnCreatel RNDescriptor(] is used to create one instance, and the
routine cudnnSetLRNDescriptor() must be used to initialize this instance.

3.1.1.7. cudnnOpTensorDescriptor t

cudnnOpTensorDescriptor t isa pointer to an opaque structure holding the
description of a Tensor Core operation, used as a parameter to cudnnOpTensor().
cudnnCreateOpTensorDescriptor() is used to create one instance, and
cudnnSetOpTensorDescriptor() must be used to initialize this instance.

3.1.1.8. cudnnPoolingDescriptor t

cudnnPoolingDescriptor tis a pointer to an opaque structure holding the description

of a pooling operation. cudnnCreatePoolingDescriptor(] is used to create one instance, and
cudnnSetPoolingNdDescriptor(] or cudnnSetPooling2dDescriptor(] must be used to initialize
this instance.

3.1.1.9. cudnnReduceTensorDescriptor t

cudnnReduceTensorDescriptor t Is a pointer to an opaque structure holding the
description of a tensor reduction operation, used as a parameter to cudnnReduceTensor(].
cudnnCreateReduceTensorDescriptor() is used to create one instance, and
cudnnSetReduceTensorDescriptor() must be used to initialize this instance.

3.1.1.10. cudnnSpatialTransformerDescriptor t

cudnnSpatialTransformerDescriptor tis a pointer to an opaque structure holding the
description of a spatial transformation operation. cudnnCreateSpatialTransformerDescriptor()
is used to create one instance, cudnnSetSpatialTransformerNdDescriptor() is used to initialize
this instance, and cudnnDestroySpatialTransformerDescriptor() is used to destroy this
instance.

3.1.1.11. cudnnTensorDescriptor t

NVIDIA cuDNN PR-09702-001_v8.4.1 | 10

cudnn_ops_infer.so Library

cudnnTensorDescriptor tis a pointer to an opaque structure holding the description
of a generic n-D dataset. cudnnCreateTensorDescriptor() is used to create one instance,
and one of the routines cudnnSetTensorNdDescriptor(], cudnnSetTensor4dDescriptor() or
cudnnSetTensor4dDescriptorEx() must be used to initialize this instance.

3.1.1.12. cudnnTensorTransformDescriptor t

cudnnTensorTransformDescriptor tIsan opaque structure containing the description of
the tensor transform. Use the cudnnCreateTensorTransformDescriptor() function to create an
instance of this descriptor, and cudnnDestroyTensorTransformDescriptor() function to destroy
a previously created instance.

3.1.2. Enumeration Types

3.1.2.1. cudnnActivationMode t

cudnnActivationMode tisan enumerated type used to select the neuron activation
function used in cudnnActivationForward(), cudnnActivationBackward(], and
cudnnConvolutionBiasActivationForward().

Values
CUDNN_ACTIVATION SIGMOID

Selects the sigmoid function.

CUDNN_ACTIVATION RELU

Selects the rectified linear function.

CUDNN_ACTIVATION_ TANH

Selects the hyperbolic tangent function.

CUDNN_ACTIVATION CLIPPED RELU

Selects the clipped rectified linear function.

CUDNN_ACTIVATION_ELU

Selects the exponential linear function.

CUDNN_ACTIVATION_ IDENTITY

Selects the identity function, intended for bypassing the activation step in
cudnnConvolutionBiasActivationForward(]. (The cudnnConvolutionBiasActivationForward()
function must use CUDNN_CONVOLUTION FWD ALGO IMPLICIT PRECOMP GEMM.) Does not
work with cudnnActivationForward(] or cudnnActivationBackward().

CUDNN_ACTIVATION_ SWISH
Selects the swish function.

3.1.2.2. cudnnAlgorithm t

NVIDIA cuDNN PR-09702-001_v8.4.1 | 11

cudnn_ops_infer.so Library

This function has been deprecated in cuDNN 8.0.

3.1.2.3. cudnnBatchNormMode t

cudnnBatchNormMode t is an enumerated type used to specify the mode of operation in
cudnnBatchNormalizationForwardInference(), cudnnBatchNormalizationForwardTrainingl(],
cudnnBatchNormalizationBackward() and cudnnDeriveBNTensorDescriptor(] routines.

Values

CUDNN_BATCHNORM PER ACTIVATION

Normalization is performed per-activation. This mode is intended to be used after the non-
convolutional network layers. In this mode, the tensor dimensions of bnBias and bnScale
and the parameters used in the cudnnBatchNormalization* functions are TxCxHxW.

CUDNN_BATCHNORM SPATIAL

Normalization is performed over N+spatial dimensions. This mode is intended for use after
convolutional layers (where spatial invariance is desired). In this mode the bnBias and
bnScale tensor dimensions are 1xCx1x1.

CUDNN_BATCHNORM SPATIAL PERSISTENT
This mode is similar to CUDNN_BATCHNORM SPATIAL but it can be faster for some tasks.

An optimized path may be selected for CUDNN_ DATA FLOAT and CUDNN DATA HALF types,
compute capability 6.0 or higher for the following two batch normalization API calls:
cudnnBatchNormalizationForwardTraining(), and cudnnBatchNormalizationBackward(]. In
the case of cudnnBatchNormalizationBackward(), the savedMean and savedInvVariance
arguments should not be NULL.

The rest of this section applies to NCHW mode only:

This mode may use a scaled atomic integer reduction that is deterministic but imposes
more restrictions on the input data range. When a numerical overflow occurs, the
algorithm may produce NaN-s or Inf-s (infinity) in output buffers.

When Inf-s/NaN-s are present in the input data, the output in this mode is the same as
from a pure floating-point implementation.

For finite but very large input values, the algorithm may encounter overflows

more frequently due to a lower dynamic range and emit Inf-s/NaN-s while

CUDNN_ BATCHNORM SPATIAL will produce finite results. The user can invoke
cudnnQueryRuntimeError() to check if a numerical overflow occurred in this mode.

3.1.2.4. cudnnBatchNormOps_t

cudnnBatchNormOps_t Is an enumerated type used to specify the mode of
operation in cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize(),
cudnnBatchNormalizationForwardTrainingEx(,
cudnnGetBatchNormalizationBackwardExWorkspaceSize(),

NVIDIA cuDNN PR-09702-001_v8.4.1 | 12

cudnn_ops_infer.so Library

cudnnBatchNormalizationBackwardEx(], and
cudnnGetBatchNormalizationTrainingExReserveSpaceSize(] functions.

Values

CUDNN_BATCHNORM OPS_BN

Only batch normalization is performed, per-activation.
CUDNN_BATCHNORM OPS BN ACTIVATION

First, the batch normalization is performed, and then the activation is performed.

CUDNN_BATCHNORM OPS_BN_ADD_ACTIVATION

Performs the batch normalization, then element-wise addition, followed by the activation
operation.

3.1.2.53. cudnnCTCLossAlgo t

cudnnCTCLossAlgo t is an enumerated type that exposes the different algorithms available
to execute the CTC loss operation.

Values
CUDNN CTC LOSS_ALGO DETERMINISTIC

Results are guaranteed to be reproducible.

CUDNN_CTC_LOSS_ALGO_NON_ DETERMINISTIC

Results are not guaranteed to be reproducible.

3.1.2.6. cudnnDataType t

cudnnDataType tIsan enumerated type indicating the data type to which a tensor descriptor
or filter descriptor refers.

Values

CUDNN_DATA FLOAT

The data is a 32-bit single-precision floating-point (float).
CUDNN_DATA DOUBLE

The data is a 64-bit double-precision floating-point (double).
CUDNN_DATA HALF

The data is a 16-bit floating-point.
CUDNN_DATA INT8

The data is an 8-bit signed integer.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 13

cudnn_ops_infer.so Library

CUDNN_DATA INT32

The data is a 32-bit signed integer.
CUDNN_DATA INT8x4

The data is 32-bit elements each composed of 4 8-bit signed integers. This data type is only
supported with the tensor format CUDNN_TENSOR NCHW VECT C.

CUDNN_DATA UINTS
The data is an 8-bit unsigned integer.

CUDNN_DATA UINT8x4
The data is 32-bit elements each composed of 4 8-bit unsigned integers. This data type is
only supported with the tensor format CUDNN_TENSOR_NCHW VECT C.

CUDNN_DATA INT8x32

The data is 32-element vectors, each element being an 8-bit signed integer. This data type
Is only supported with the tensor format CUDNN TENSOR NCHW VECT C. Moreover, this data
type can only be used with algo 1, meaning, CUDNN CONVOLUTION FWD ALGO IMPLICIT
PRECOMP GEMM. For more information, refer to cudnnConvolutionFwdAlgo_t.

CUDNN_DATA BFLOAT16

The data is a 16-bit quantity, with 7 mantissa bits, 8 exponent bits, and 1 sign bit.
CUDNN_DATA_ INT64

The data is a 64-bit signed integer.
CUDNN_DATA BOOLEAN

The data is a boolean (boo1).

3.1.2.7. cudnnDeterminism t

cudnnDeterminism_ t Is an enumerated type used to indicate if the computed results are
deterministic (reproducible). For more information, refer to Reproducibility ([determinism] in
the cuDNN Developer Guide.

Values

CUDNN_NON DETERMINISTIC

Results are not guaranteed to be reproducible.

CUDNN_DETERMINISTIC

Results are guaranteed to be reproducible.

3.1.2.8. cudnnDivNormMode t

cudnnDivNormMode t is an enumerated type used to specify the mode of operation in
cudnnDivisiveNormalizationForward(] and cudnnDivisiveNormalizationBackward|().

NVIDIA cuDNN PR-09702-001_v8.4.1 | 14

https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#reproducibility

cudnn_ops_infer.so Library

Values

CUDNN_DIVNORM PRECOMPUTED_ MEANS

The means tensor data pointer is expected to contain means or other kernel convolution
values precomputed by the user. The means pointer can also be NULL, in that case, it's
considered to be filled with zeroes. This is equivalent to spatial LRN.

S Note: In the backward pass, the means are treated as independent inputs and the gradient
over means is computed independently. In this mode, to yield a net gradient over the entire
LCN computational graph, the destbDi ffMeans result should be backpropagated through
the user's means layer (which can be implemented using average pooling) and added to the
destDiffData tensor produced by cudnnDivisiveNormalizationBackward().

3.1.2.9. cudnnErrQueryMode t

cudnnErrQueryMode_t is an enumerated type passed to cudnnQueryRuntimeError() to select
the remote kernel error query mode.

Values

CUDNN_ERRQUERY RAWCODE

Read the error storage location regardless of the kernel completion status.

CUDNN_ERRQUERY NONBLOCKING

Report if all tasks in the user stream of the cuDNN handle were completed. If that is the
case, report the remote kernel error code.

CUDNN_ERRQUERY BLOCKING

Wait for all tasks to complete in the user stream before reporting the remote kernel error
code.

3.1.2.10. cudnnFoldingDirection_ t

cudnnFoldingDirection tisan enumerated type used to select the folding direction. For
more information, refer to cudnnTensorTransformDescriptor t.

Data Member

CUDNN_TRANSFORM FOLD = QU

Selects folding.
CUDNN_TRANSFORM_UNFOLD = 1U

Selects unfolding.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 15

cudnn_ops_infer.so Library

3.1.2.11. cudnnIndicesType t

cudnnIndicesType tisanenumerated type used to indicate the data type for the indices to
be computed by the cudnnReduceTensor() routine. This enumerated type is used as a field for
the cudnnReduceTensorDescriptor_t descriptor.

Values

CUDNN_32BIT_INDICES

Compute unsigned int indices.

CUDNN_64BIT_INDICES

Compute unsigned long indices.

CUDNN_16BIT_INDICES

Compute unsigned short indices.

CUDNN_8BIT INDICES

Compute unsigned char indices.

3.1.2.12. cudnnLRNMode t

cudnnLRNMode t is an enumerated type used to specify the mode of operation in
cudnnLRNCrossChannelForward() and cudnnLRNCrossChannelBackward().

Values

CUDNN_LRN_CROSS_CHANNEL DIM1
LRN computation is performed across the tensor's dimension dimaA[1].

3.1.2.13. cudnnMathType t

cudnnMathType tisan enumerated type used to indicate if the use of Tensor Core operations
Is permitted in a given library routine.

Values

CUDNN_DEFAULT MATH

Tensor Core operations are not used on pre-NVIDIA A100 GPU devices. On A100 GPU
architecture devices, Tensor Core TF32 operation is permitted.

CUDNN_TENSOR_OP_MATH

The use of Tensor Core operations is permitted but will not actively perform datatype down
conversion on tensors in order to utilize Tensor Cores.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 16

cudnn_ops_infer.so Library

CUDNN_TENSOR_OP_MATH ALLOW_CONVERSION

The use of Tensor Core operations is permitted and will actively perform datatype down
conversion on tensors in order to utilize Tensor Cores.

CUDNN_FMA MATH
Restricted to only kernels that use FMA instructions.

On pre-NVIDIA A100 GPU devices, CUDNN DEFAULT MATH and CUDNN FMA MATH have

the same behavior: Tensor Core kernels will not be selected. With NVIDIA Ampere
Architecture and CUDA toolkit 11, CUDNN DEFAULT MATH permits TF32 Tensor Core
operation and CUDNN_FMA MATH does not. The TF32 behavior for CUDNN_ DEFAULT MATH and
the other Tensor Core math types can be explicitly disabled by the environment variable
NVIDIA TF32 OVERRIDE=0.

3.1.2.14. cudnnNanPropagation t

cudnnNanPropagation_t Isan enumerated type used to indicate if a given routine

should propagate Nan numbers. This enumerated type is used as a field for the
cudnnActivationDescriptor t descriptor and cudnnPoolingDescriptor t descriptor.
Values

CUDNN_NOT PROPAGATE NAN

Nan numbers are not propagated.

CUDNN_PROPAGATE NAN

Nan numbers are propagated.

3.1.2.15. cudnnNormAlgo t

cudnnNormAlgo tis an enumerated type used to specify the algorithm to execute the
normalization operation.

Values

CUDNN_NORM_ALGO_STANDARD

Standard normalization is performed.

CUDNN_NORM_ALGO_PERSIST

This mode is similar to CUDNN_NORM ALGO_STANDARD, however it only supports
CUDNN NORM PER CHANNEL and can be faster for some tasks.

An optimized path may be selected for CUDNN DATA FLOAT and CUDNN_DATA HALF
types, compute capability 6.0 or higher for the following two normalization API calls:

cudnnNormalizationForwardTraining() and cudnnNormalizationBackward(). In the case of

cudnnNormalizationBackward(), the savedMean and savedInvVariance arguments should

not be NULL.

NVIDIA cuDNN PR-09702-001_v8.4.1

17

cudnn_ops_infer.so Library

The rest of this section applies to NCHW mode only: This mode may use a scaled atomic
integer reduction that is deterministic but imposes more restrictions on the input data
range. When a numerical overflow occurs, the algorithm may produce NaN-s or Inf-s
(infinity) in output buffers.

When Inf-s/NaN-s are present in the input data, the output in this mode is the same as
from a pure floating-point implementation.

For finite but very large input values, the algorithm may encounter overflows

more frequently due to a lower dynamic range and emit Inf-s/NaN-s while
CUDNN_NORM ALGO_ STANDARD will produce finite results. The user can invoke
cudnnQueryRuntimeError() to check if a numerical overflow occurred in this mode.

3.1.2.16. cudnnNormMode t

cudnnNormMode t is an enumerated type used to specify the

mode of operation in cudnnNormalizationForwardInference(],
cudnnNormalizationForwardTraining(), cudnnBatchNormalizationBackwardl(],
cudnnGetNormalizationForwardTrainingWorkspaceSize(),
cudnnGetNormalizationBackwardWorkspaceSize(), and
cudnnGetNormalizationTrainingReserveSpaceSize() routines.

Values

CUDNN_NORM_ PER_ ACTIVATION

Normalization is performed per-activation. This mode is intended to be used after the
non-convolutional network layers. In this mode, the tensor dimensions of normBias and
normScale and the parameters used in the cudnnNormalization* functions are TxCxHxW.

CUDNN_NORM_PER_CHANNEL

Normalization is performed per-channel over N+spatial dimensions. This mode is intended
for use after convolutional layers (where spatial invariance is desired). In this mode, the
normBias and normScale tensor dimensions are 1xCx1x1.

3.1.2.17. cudnnNormOps_t

cudnnNormOps_t Is an enumerated type used to specify the mode of

operation in cudnnGetNormalizationForwardTrainingWorkspaceSize(),
cudnnNormalizationForwardTraining(), cudnnGetNormalizationBackwardWorkspaceSizel(),
cudnnNormalizationBackward(), and cudnnGetNormalizationTrainingReserveSpaceSize()
functions.

Values
CUDNN_NORM OPS_NORM

Only normalization is performed.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 18

cudnn_ops_infer.so Library

CUDNN_NORM _OPS_NORM_ACTIVATION

First, the normalization is performed, then the activation is performed.

CUDNN_NORM OPS_NORM ADD ACTIVATION

Performs the normalization, then element-wise addition, followed by the activation
operation.

3.1.2.18. cudnnOpTensorOp t

cudnnOpTensorOp_t is an enumerated type used to indicate the Tensor Core operation to
be used by the cudnnOpTensor() routine. This enumerated type is used as a field for the
cudnnOpTensorDescriptor_t descriptor.

Values
CUDNN_OP_TENSOR ADD

The operation to be performed is addition.

CUDNN_OP_TENSOR_MUL

The operation to be performed is multiplication.

CUDNN_OP_TENSOR_ MIN

The operation to be performed is a minimum comparison.

CUDNN_OP_TENSOR_MAX

The operation to be performed is a maximum comparison.

CUDNN_OP_TENSOR_SQRT

The operation to be performed is square root, performed on only the A tensor.

CUDNN_OP_TENSOR_NOT

The operation to be performed is negation, performed on only the A tensor.

3.1.2.19. cudnnPoolingMode t

cudnnPoolingMode t isan enumerated type passed to cudnnSetPooling2dDescriptor() to
select the pooling method to be used by cudnnPoolingForward(] and cudnnPoolingBackward().

Values

CUDNN_POOLING_MAX

The maximum value inside the pooling window is used.

CUDNN_POOLING AVERAGE COUNT_INCLUDE_ PADDING

Values inside the pooling window are averaged. The number of elements used to calculate
the average includes spatial locations falling in the padding region.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 19

cudnn_ops_infer.so Library

CUDNN_POOLING AVERAGE COUNT_ EXCLUDE_ PADDING

Values inside the pooling window are averaged. The number of elements used to calculate
the average excludes spatial locations falling in the padding region.

CUDNN_POOLING MAX DETERMINISTIC

The maximum value inside the pooling window is used. The algorithm used is deterministic.

3.1.2.20. cudnnReduceTensorIndices_t

cudnnReduceTensorIndices t isan enumerated type used to indicate whether indices are to
be computed by the cudnnReduceTensor() routine. This enumerated type is used as a field for
the cudnnReduceTensorDescriptor_t descriptor.

Values
CUDNN_REDUCE_TENSOR NO_INDICES

Do not compute indices.

CUDNN_REDUCE_TENSOR_FLATTENED_ INDICES

Compute indices. The resulting indices are relative, and flattened.

3.1.2.21. cudnnReduceTensorOp t

cudnnReduceTensorOp_t IS an enumerated type used to indicate the Tensor Core operation
to be used by the cudnnReduceTensor() routine. This enumerated type is used as a field for the
cudnnReduceTensorDescriptor_t descriptor.

Values
CUDNN_REDUCE_TENSOR ADD

The operation to be performed is addition.

CUDNN_REDUCE_TENSOR_MUL

The operation to be performed is multiplication.

CUDNN_REDUCE_TENSOR_MIN

The operation to be performed is a minimum comparison.

CUDNN_REDUCE_TENSOR_MAX

The operation to be performed is a maximum comparison.

CUDNN_REDUCE_TENSOR_AMAX

The operation to be performed is a maximum comparison of absolute values.

CUDNN_REDUCE_TENSOR_AVG

The operation to be performed is averaging.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 20

cudnn_ops_infer.so Library

CUDNN_REDUCE_TENSOR NORM1

The operation to be performed is addition of absolute values.
CUDNN_REDUCE_TENSOR_NORM2

The operation to be performed is a square root of the sum of squares.
CUDNN_REDUCE_TENSOR MUL NO_ZEROS

The operation to be performed is multiplication, not including elements of value zero.

3.1.2.22. cudnnRNNAlgo t

cudnnRNNAlgo t is an enumerated type used to specify the algorithm used in the
cudnnRNNForwardInference(], cudnnRNNForwardTraining(], cudnnRNNBackwardDatal() and
cudnnRNNBackwardWeights(] routines.

Values

CUDNN_RNN_ALGO_STANDARD
Each RNN layer is executed as a sequence of operations. This algorithm is expected to have
robust performance across a wide range of network parameters.
CUDNN_RNN_ALGO_ PERSIST STATIC

The recurrent parts of the network are executed using a persistent kernel approach.
This method is expected to be fast when the first dimension of the input tensor is small
(meaning, a small minibatch).

CUDNN_RNN ALGO PERSIST STATIC is only supported on devices with compute capability
>=6.0.

CUDNN_RNN ALGO_ PERSIST DYNAMIC

The recurrent parts of the network are executed using a persistent kernel approach.

This method is expected to be fast when the first dimension of the input tensor is small
(meaning, a small minibatch]. When using CUDNN_RNN_ALGO PERSIST DYNAMIC persistent
kernels are prepared at runtime and are able to optimize using the specific parameters

of the network and active GPU. As such, when using CUDNN_RNN ALGO PERSIST DYNAMIC
a one-time plan preparation stage must be executed. These plans can then be reused in
repeated calls with the same model parameters.

The limits on the maximum number of hidden units supported when using

CUDNN RNN ALGO PERSIST DYNAMIC are significantly higher than the limits when using
CUDNN_RNN ALGO PERSIST STATIC, however throughput is likely to significantly reduce
when exceeding the maximums supported by CUDNN_RNN ALGO PERSIST STATIC. In this
regime, this method will still outperform CUDNN RNN ALGO_ STANDARD for some cases.

CUDNN RNN ALGO PERSIST DYNAMIC is only supported on devices with compute capability
>= 6.0 on Linux machines.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 21

cudnn_ops_infer.so Library

3.1.2.23. cudnnSamplerType t

cudnnSamplerType tisan enumerated type passed to
cudnnSetSpatialTransformerNdDescriptor(] to select the sampler type to be used by
cudnnSpatialTfSamplerForward() and cudnnSpatialTfSamplerBackward|().

Values

CUDNN_SAMPLER BILINEAR
Selects the bilinear sampler.

3.1.2.24. cudnnSeverity t

cudnnSeverity tisanenumerated type passed to the customized callback function for
logging that users may set. This enumerate describes the severity level of the item, so the
customized logging call back may react differently.

Values

CUDNN_SEV_FATAL

This value indicates a fatal error emitted by cuDNN.

CUDNN_SEV_ERROR

This value indicates a normal error emitted by cuDNN.

CUDNN_SEV_WARNING

This value indicates a warning emitted by cuDNN.

CUDNN_SEV_INFO

This value indicates a piece of information (for example, API log) emitted by cuDNN.

3.1.2.25. cudnnSoftmaxAlgorithm t

cudnnSoftmaxAlgorithm tis used to select an implementation of the softmax function used
in cudnnSoftmaxForward() and cudnnSoftmaxBackward().

Values

CUDNN_SOFTMAX FAST

This implementation applies the straightforward softmax operation.

CUDNN_SOFTMAX ACCURATE

This implementation scales each point of the softmax input domain by its maximum value
to avoid potential floating point overflows in the softmax evaluation.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 22

cudnn_ops_infer.so Library

CUDNN_SOFTMAX LOG

This entry performs the log softmax operation, avoiding overflows by scaling each point in
the input domain as in CUDNN SOFTMAX ACCURATE.

3.1.2.26. cudnnSoftmaxMode t

cudnnSoftmaxMode t is used to select over which data the cudnnSoftmaxForward(] and
cudnnSoftmaxBackward(] are computing their results.

Values

CUDNN_SOFTMAX MODE INSTANCE
The softmax operation is computed per image (N) across the dimensions ¢, H, W.
CUDNN_SOFTMAX MODE CHANNEL

The softmax operation is computed per spatial location (1, w) per image (N) across
dimension C.

3.1.2.27. cudnnStatus_t

cudnnStatus_t is an enumerated type used for function status returns. All cuDNN library
functions return their status, which can be one of the following values:

Values

CUDNN_STATUS_SUCCESS
The operation was completed successfully.
CUDNN_STATUS_NOT INITIALIZED
The cuDNN library was not initialized properly. This error is usually returned when a call
to cudnnCreate() fails or when cudnnCreate(] has not been called prior to calling another
cuDNN routine. In the former case, it is usually due to an error in the CUDA Runtime API
called by cudnnCreate(] or by an error in the hardware setup.
CUDNN_STATUS_ALLOC_FAILED

Resource allocation failed inside the cuDNN library. This is usually caused by an internal
cudaMalloc () failure.

To correct, prior to the function call, deallocate previously allocated memory as much as
possible.

CUDNN_STATUS_BAD PARAM
Anincorrect value or parameter was passed to the function.

To correct, ensure that all the parameters being passed have valid values.

CUDNN_STATUS_ARCH_MISMATCH

The function requires a feature absent from the current GPU device. Note that cuDNN only
supports devices with compute capabilities greater than or equal to 3.0.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 23

cudnn_ops_infer.so Library

To correct, compile and run the application on a device with appropriate compute capability.
CUDNN_STATUS_MAPPING ERROR

An access to GPU memory space failed, which is usually caused by a failure to bind a
texture.

To correct, prior to the function call, unbind any previously bound textures.

Otherwise, this may indicate an internal error/bug in the library.

CUDNN_STATUS_EXECUTION_ FAILED

The GPU program failed to execute. This is usually caused by a failure to launch some
cuDNN kernel on the GPU, which can occur for multiple reasons.

To correct, check that the hardware, an appropriate version of the driver, and the cuDNN
library are correctly installed.

Otherwise, this may indicate an internal error/bug in the library.

CUDNN_STATUS INTERNAL ERROR
An internal cuDNN operation failed.
CUDNN_STATUS NOT SUPPORTED
The functionality requested is not presently supported by cuDNN.
CUDNN_STATUS LICENSE ERROR
The functionality requested requires some license and an error was detected when trying to
check the current licensing. This error can happen if the license is not present or is expired
or if the environment variable NVIDIA LICENSE FILE is not set properly.
CUDNN_STATUS RUNTIME PREREQUISITE MISSING
A runtime library required by cuDNN cannot be found in the predefined search paths. These
libraries are 1ibcuda.so (nvcuda.d11) and libnvrtc.so [nvrtc64 <Major Release
Version><Minor Release Version> 0.dll and nvrtc-builtins64 <Major Release
Version><Minor Release Version>.dl1l).
CUDNN_STATUS RUNTIME IN PROGRESS
Some tasks in the user stream are not completed.
CUDNN_STATUS RUNTIME FP OVERFLOW
Numerical overflow occurred during the GPU kernel execution.

cudnnTensorFormat_t is an enumerated type used by cudnnSetTensor4dDescriptor() to
create a tensor with a pre-defined layout. For a detailed explanation of how these tensors are
arranged in memory, refer to Data Layout Formats in the cuDNN Developer Guide.

CUDNN_TENSOR_NCHW

This tensor format specifies that the data is laid out in the following order: batch size,
feature maps, rows, columns. The strides are implicitly defined in such a way that the

NVIDIA cuDNN PR-09702-001_v8.4.1 | 24

https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#data-layout-formats

cudnn_ops_infer.so Library

data are contiguous in memory with no padding between images, feature maps, rows,
and columns; the columns are the inner dimension and the images are the outermost
dimension.

CUDNN_TENSOR_NHWC

This tensor format specifies that the data is laid out in the following order: batch size, rows,
columns, feature maps. The strides are implicitly defined in such a way that the data are
contiguous in memory with no padding between images, rows, columns, and feature maps;
the feature maps are the inner dimension and the images are the outermost dimension.

CUDNN_TENSOR_NCHW_VECT_C

This tensor format specifies that the data is laid out in the following order: batch size,
feature maps, rows, columns. However, each element of the tensor is a vector of multiple
feature maps. The length of the vector is carried by the data type of the tensor. The strides
are implicitly defined in such a way that the data are contiguous in memory with no padding
between images, feature maps, rows, and columns; the columns are the inner dimension
and the images are the outermost dimension. This format is only supported with tensor
data types CUDNN DATA INT8x4, CUDNN DATA INT8x32, and CUDNN DATA UINT8x4.

The CUDNN TENSOR NCHW VECT C can also be interpreted in the following way: The NCHW
INT8x32 format is really N x (C/32) x H x W x 32 (32 Cs for every W], just as the NCHW
INT8x4 format is N x (C/4) x Hx W x 4 (4 Cs for every W]. Hence, the VECT c name - each W
is a vector (4 or 32) of Cs.

3.2. APl Functions

3.2.1. cudnnActivationForward ()

cudnnStatus t cudnnActivationForward (
cudnnHandle t handle,

cudnnActivationDescriptor t activationDesc,
const void *alpha,

const cudnnTensorDescriptor t xDesc,

const void W5

const void *beta,

const cudnnTensorDescriptor t yDesc,

void *y)

This routine applies a specified neuron activation function element-wise over each input value.

@ Note:

» In-place operation is allowed for this routine; meaning, xData and yData pointers may be
equal. However, this requires xDesc and yDesc descriptors to be identical (particularly, the
strides of the input and output must match for an in-place operation to be allowed).

» Alltensor formats are supported for 4 and 5 dimensions, however, the best performance is
obtained when the strides of xDesc and yDesc are equal and HW-packed. For more than 5
dimensions the tensors must have their spatial dimensions packed.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 25

cudnn_ops_infer.so Library

Parameters
handle

Input. Handle to a previously created cuDNN context. For more information, refer to
cudnnHandle_t.

activationDesc

Input. Activation descriptor. For more information, refer to cudnnActivationDescriptor t.

alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the computation result

with prior value in the output layer as follows:
dstValue = alpha[0O]*result + beta[0]*priorDstValue

For more information, refer to Scaling Parameters in the cuDNN Developer Guide.

xDesc

Input. Handle to the previously initialized input tensor descriptor. For more information,
refer to cudnnTensorDescriptor_t.

Input. Data pointer to GPU memory associated with the tensor descriptor xDesc.

yDesc

Input. Handle to the previously initialized output tensor descriptor.

Output. Data pointer to GPU memory associated with the output tensor descriptor yDesc.

Returns

CUDNN_STATUS_SUCCESS
The function launched successfully.
CUDNN_STATUS_NOT SUPPORTED
The function does not support the provided configuration.
CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:
The parameter mode has an invalid enumerant value.

The dimensions n, ¢, h, woftheinputtensor and output tensor differ.

The datatype of the input tensor and output tensor differs.

vV v v VY

The strides nStride, cStride, hStride, wStride of the inputtensor and output
tensor differ and in-place operation is used [meaning, x and y pointers are equal).

NVIDIA cuDNN PR-09702-001_v8.4.1 | 26

https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#scaling-parameters

cudnn_ops_infer.so Library

CUDNN_STATUS_EXECUTION FAILED

The function failed to launch on the GPU.

3.2.2. cudnnAddTensor ()

cudnnStatus t cudnnAddTensor (

cudnnHandle t handle,
const void *alpha,
const cudnnTensorDescriptor t aDesc,
const void *A,
const void *beta,
const cudnnTensorDescriptor t cDesc,
void o(©)

This function adds the scaled values of a bias tensor to another tensor. Each dimension of the
bias tensor A must match the corresponding dimension of the destination tensor ¢ or must be
equal to 1. In the latter case, the same value from the bias tensor for those dimensions will be
used to blend into the ¢ tensor.

Note: Up to dimension five (5], all tensor formats are supported except for
CUDNN_TENSOR NCHW VECT C as input tensor format. Beyond these dimensions, this routine is
not supported.

Parameters

handle

Input. Handle to a previously created cuDNN context. For more information, refer to
cudnnHandle_t.

alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the source value with the

prior value in the destination tensor as follows:
dstValue = alpha[0O]*srcValue + beta[0]*priorDstValue

For more information, refer to Scaling Parameters in the cuDNN Developer Guide.

aDesc

Input. Handle to a previously initialized tensor descriptor. For more information, refer to
cudnnTensorDescriptor_t.

Input. Pointer to data of the tensor described by the abesc descriptor.
cDesc

Input. Handle to a previously initialized tensor descriptor.

Input/Output. Pointer to data of the tensor described by the cbesc descriptor.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 27

https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#scaling-parameters

cudnn_ops_infer.so Library

Returns

CUDNN_STATUS_SUCCESS
The function executed successfully.
CUDNN_STATUS_NOT SUPPORTED

The function does not support the provided configuration.

CUDNN_STATUS_BAD_ PARAM

The dimensions of the bias tensor refer to an amount of data that is incompatible with the
output tensor dimensions or the dataType of the two tensor descriptors are different.

CUDNN_STATUS_EXECUTION_ FAILED

The function failed to launch on the GPU.

3.2.3. cudnnBatchNormalizationForwardInference ()
cudnnStatus_t cudnnBatchNormalizationForwardInference (
cudnnHandle t handle,
cudnnBatchNormMode t mode,
const void *alpha,
const void *beta,
const cudnnTensorDescriptor t xDesc,
const void %0
const cudnnTensorDescriptor t yDesc,
void ®Vy
const cudnnTensorDescriptor t bnScaleBiasMeanVarDesc,
const void *bnScale,
const void *bnBias,
const void *estimatedMean,
const void *estimatedVariance,
double epsilon)

This function performs the forward batch normalization layer computation for the inference
phase. This layer is based on the paper Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift, S. loffe, C. Szegedy, 2015.

[g] Note:

» Only 4D and 5D tensors are supported.

» The input transformation performed by this function is defined as:

y = beta*y + alpha *[bnBias + (bnScale * (x-estimatedMean) /sqrt(epsilon +
estimatedVariance)]

» The epsilon value has to be the same during training, backpropagation and inference.

» For the training phase, refer to cudnnBatchNormalizationForwardTraining().

» Higher performance can be obtained when HW-packed tensors are used for all of x and dx.

For more information, refer to cudnnDeriveBNTensorDescriptor(] for the secondary tensor
descriptor generation for the parameters used in this function.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 28

https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167

cudnn_ops_infer.so Library

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor. For more information, refer
to cudnnHandle_t.

mode

Input. Mode of operation (spatial or per-activation]. For more information, refer to
cudnnBatchNormMode_t.

alpha, beta

Inputs. Pointers to scaling factors (in host memory) used to blend the layer output value

with prior value in the destination tensor as follows:
dstValue = alpha[0]*resultValue + beta[0]*priorDstValue

For more information, refer to Scaling Parameters in the cuDNN Developer Guide.

xDesc, yDesc
Input. Handles to the previously initialized tensor descriptors.

*x
Input. Data pointer to GPU memory associated with the tensor descriptor xDesc, for the
layer’s x input data.

*y
Input/Output. Data pointer to GPU memory associated with the tensor descriptor ybesc, for
the youtput of the batch normalization layer.

bnScaleBiasMeanVarDesc, bnScale, bnBias

Inputs. Tensor descriptors and pointers in device memory for the batch normalization scale
and bias parameters [(in the original paper bias is referred to as beta and scale as gamma).

estimatedMean, estimatedVariance

Inputs. Mean and variance tensors (these have the same descriptor as the bias and scale).
The resultRunningMean and resultRunningVariance, accumulated during the training
phase from the cudnnBatchNormalizationForwardTraining(] call, should be passed as
inputs here.

epsilon

Input. Epsilon value used in the batch normalization formula. Its value should be equal to or
greater than the value defined for CUDNN BN MIN EPSILON in cudnn.h.

Supported configurations

This function supports the following combinations of data types for various descriptors.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 29

https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#scaling-parameters
https://arxiv.org/abs/1502.03167

cudnn_ops_infer.so Library

Table 10. Supported configurations

Data Type

Configurations xDesc bnScaleBiasMean alpha, beta yDesc

INT8 CONFIG CUDNN_DATA INT8 | CUDNN DATA FLOAT CUDNN DATA FLOAT CUDNN DATA INTS8

PSEUDO_ HALF CONFIGUDNN DATA HALF A CUDNN DATA FLOAT CUDNN DATA FLOAT CUDNN DATA HALF
FLOAT CONFIG CUDNN_ DATA FLOAT CUDNN DATA FLOAT CUDNN DATA FLOAT CUDNN DATA FLOAT
DOUBLE CONFIG CUDNN_ DATA DOUBLECUDNN DATA DOUBLECUDNN DATA DOUBLECUDNN DATA DOUBLE

BFLOAT16 CONFIG CUDNN_DATA BFLOATQWDNN DATA FLOAT CUDNN DATA FLOAT CUDNN DATA BFLOAT16

Returns
CUDNN_STATUS SUCCESS

The computation was performed successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD_ PARAM

At least one of the following conditions are met:

» One of the pointers alpha, beta, x, y, bnScale, bnBias, estimatedMean,

estimatedInvVariance iS NULL.

» The number of xDesc or yDesc tensor descriptor dimensions is not within the range of
[4,5] (only 4D and 5D tensors are supported.)

> bnScaleBiasMeanVarDesc dimensions are not 1xCx1x1 for 4D and 1xCx1x1x1 for 5D for
spatial, and are not 1xCxHxW for 4D and 1xCxDxHxW for 5D for per-activation mode.

» epsilonvalueis less than CUDNN BN MIN EPSILON.

» Dimensions or data types mismatch for xDesc, yDesc.

3.2.4. cudnnCopyAlgorithmDescriptor ()

This function has been deprecated in cuDNN 8.0.

3.2.5. cudnnCreate ()

cudnnStatus_t cudnnCreate (cudnnHandle t *handle)

This function initializes the cuDNN library and creates a handle to an opaque structure holding
the cuDNN library context. It allocates hardware resources on the host and device and must
be called prior to making any other cuDNN library calls.

The cuDNN library handle is tied to the current CUDA device (context). To use the library on
multiple devices, one cuDNN handle needs to be created for each device.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 30

cudnn_ops_infer.so Library

For a given device, multiple cuDNN handles with different configurations (for example,
different current CUDA streams) may be created. Because cudnnCreate () allocates some
internal resources, the release of those resources by calling cudnnDestroy() will implicitly call
cudaDeviceSynchronize; therefore, the recommended best practice is to call cudnnCreate/
cudnnDestroy outside of performance-critical code paths.

For multithreaded applications that use the same device from different threads, the
recommended programming model is to create one (or a few, as is convenient) cuDNN
handle(s) per thread and use that cuDNN handle for the entire life of the thread.
Parameters

handle

Output. Pointer to pointer where to store the address to the allocated cuDNN handle. For
more information, refer to cudnnHandle_t.

Returns
CUDNN_STATUS_BAD PARAM

Invalid (NULL) input pointer supplied.
CUDNN_STATUS NOT INITIALIZED

No compatible GPU found, CUDA driver not installed or disabled, CUDA runtime API
initialization failed.

CUDNN_STATUS_ARCH MISMATCH
NVIDIA GPU architecture is too old.
CUDNN_STATUS ALLOC_FAILED
Host memory allocation failed.
CUDNN_STATUS_INTERNAL ERROR
CUDA resource allocation failed.
CUDNN_STATUS LICENSE_ ERROR
cuDNN license validation failed (only when the feature is enabled).

CUDNN_STATUS_SUCCESS

cuDNN handle was created successfully.

3.2.6. cudnnCreateActivationDescriptor ()

cudnnStatus t cudnnCreateActivationDescriptor (
cudnnActivationDescriptor t *activationDesc)

This function creates an activation descriptor object by allocating the memory needed to hold
its opaque structure. For more information, refer to cudnnActivationDescriptor_t.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 31

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__DEVICE.html#group__CUDART__DEVICE_1g10e20b05a95f638a4071a655503df25d

cudnn_ops_infer.so Library

Returns

CUDNN_STATUS_SUCCESS

The object was created successfully.

CUDNN_STATUS_ALLOC_FAILED

The resources could not be allocated.

3.2.7. cudnnCreateAlgorithmDescriptor ()

This function has been deprecated in cuDNN 8.0.

cudnnStatus_t cudnnCreateAlgorithmDescriptor (
cudnnAlgorithmDescriptor t *algoDesc)

This function creates an algorithm descriptor object by allocating the memory needed to hold
its opaque structure.

Returns

CUDNN_STATUS_SUCCESS
The object was created successfully.

CUDNN_STATUS_ALLOC_FAILED

The resources could not be allocated.

3.2.8. cudnnCreateAlgorithmPerformance ()
cudnnStatus t cudnnCreateAlgorithmPerformance (

cudnnAlgorithmPerformance t *algoPerf,

int numberToCreate)

This function creates multiple algorithm performance objects by allocating the memory
needed to hold their opaque structures.

Returns

CUDNN_STATUS_SUCCESS
The object was created successfully.

CUDNN_STATUS_ALLOC_FAILED

The resources could not be allocated.

3.2.9. cudnnCreateDropoutDescriptor ()

cudnnStatus t cudnnCreateDropoutDescriptor (
cudnnDropoutDescriptor t *dropoutDesc)

This function creates a generic dropout descriptor object by allocating the memory needed to
hold its opaque structure. For more information, refer to cudnnDropoutDescriptor_t.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 32

cudnn_ops_infer.so Library

Returns

CUDNN_STATUS_SUCCESS
The object was created successfully.

CUDNN_STATUS_ALLOC_FAILED

The resources could not be allocated.

3.2.10. cudnnCreateFilterDescriptor ()

cudnnStatus t cudnnCreateFilterDescriptor (
cudnnFilterDescriptor t *filterDesc)

This function creates a filter descriptor object by allocating the memory needed to hold its
opaque structure. For more information, refer to cudnnFilterDescriptor_t.

Returns
CUDNN_STATUS_SUCCESS

The object was created successfully.

CUDNN_STATUS_ALLOC_FAILED

The resources could not be allocated.

3.2.11. cudnnCreateLRNDescriptor ()

cudnnStatus_t cudnnCreateLRNDescriptor (
cudnnLRNDescriptor t *poolingDesc)

This function allocates the memory needed to hold the data needed for LRN and
DivisiveNormalization layers operation and returns a descriptor used with subsequent
layer forward and backward calls.

Returns

CUDNN_STATUS_SUCCESS
The object was created successfully.

CUDNN_STATUS_ALLOC_FAILED

The resources could not be allocated.

3.2.12. cudnnCreateOpTensorDescriptor ()

cudnnStatus_t cudnnCreateOpTensorDescriptor (
cudnnOpTensorDescriptor t* opTensorDesc)

This function creates a tensor pointwise math descriptor. For more information, refer to
cudnnOpTensorDescriptor_t.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 33

cudnn_ops_infer.so Library

Parameters

opTensorDesc

Output. Pointer to the structure holding the description of the tensor pointwise math such
as add, multiply, and more.

Returns

CUDNN_STATUS_SUCCESS

The function returned successfully.

CUDNN_STATUS_BAD_ PARAM

Tensor pointwise math descriptor passed to the function is invalid.

CUDNN_STATUS_ALLOC_FAILED

Memory allocation for this tensor pointwise math descriptor failed.

3.2.13. cudnnCreatePoolingDescriptor ()

cudnnStatus t cudnnCreatePoolingDescriptor (
cudnnPoolingDescriptor t *poolingDesc)

This function creates a pooling descriptor object by allocating the memory needed to hold its
opaque structure.

Returns

CUDNN_STATUS_SUCCESS

The object was created successfully.

CUDNN_STATUS_ALLOC_FAILED

The resources could not be allocated.

3.2.14. cudnnCreateReduceTensorDescriptor ()

cudnnStatus_t cudnnCreateReduceTensorDescriptor (
cudnnReduceTensorDescriptor t* reduceTensorDesc)

This function creates a reduced tensor descriptor object by allocating the memory needed to
hold its opaque structure.

Returns

CUDNN_STATUS_SUCCESS

The object was created successfully.

CUDNN_STATUS_BAD_PARAM

reduceTensorDesc is a NULL pointer.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 34

cudnn_ops_infer.so Library

CUDNN_STATUS_ALLOC_FAILED

The resources could not be allocated.

3.2.15. cudnnCreateSpatialTransformerDescriptor ()

cudnnStatus t cudnnCreateSpatialTransformerDescriptor (
cudnnSpatialTransformerDescriptor t *stDesc)

This function creates a generic spatial transformer descriptor object by allocating the memory
needed to hold its opaque structure.

Returns

CUDNN_STATUS_SUCCESS

The object was created successfully.

CUDNN_STATUS_ALLOC_FAILED

The resources could not be allocated.

3.2.16. cudnnCreateTensorDescriptor ()

cudnnStatus t cudnnCreateTensorDescriptor (
cudnnTensorDescriptor t *tensorDesc)

This function creates a generic tensor descriptor object by allocating the memory needed to
hold its opaque structure. The data is initialized to all zeros.
Parameters
tensorDesc
Input. Pointer to pointer where the address to the allocated tensor descriptor object should
be stored.
Returns

CUDNN_STATUS_BAD_PARAM

Invalid input argument.

CUDNN_STATUS_ALLOC_FAILED

The resources could not be allocated.

CUDNN_STATUS_SUCCESS

The object was created successfully.

3.2.17. cudnnCreateTensorTransformDescriptor ()

cudnnStatus t cudnnCreateTensorTransformDescriptor (
cudnnTensorTransformDescriptor t *transformDesc);

NVIDIA cuDNN PR-09702-001_v8.4.1 | 35

cudnn_ops_infer.so Library

This function creates a tensor transform descriptor object by allocating the memory
needed to hold its opaque structure. The tensor data is initialized to be all zero. Use the
cudnnSetTensorTransformDescriptor() function to initialize the descriptor created by this
function.

Parameters

transformDesc
Output. A pointer to an uninitialized tensor transform descriptor.

Returns

CUDNN_STATUS_SUCCESS

The descriptor object was created successfully.
CUDNN_STATUS BAD PARAM

The transformDesc iS NULL.
CUDNN_STATUS_ALLOC_FAILED

The memory allocation failed.

3.2.18. cudnnDeriveBNTensorDescriptor ()

cudnnStatus_t cudnnDeriveBNTensorDescriptor (

cudnnTensorDescriptor_t derivedBnDesc,
const cudnnTensorDescriptor t xDesc,
cudnnBatchNormMode t mode)

This function derives a secondary tensor descriptor for the batch normalization scale,
invVariance, bnBias, and bnScale subtensors from the layer’'s x data descriptor.

Use the tensor descriptor produced by this function as the bnScaleBiasMeanVarDesc
parameter for the cudnnBatchNormalizationForwardInference(] and
cudnnBatchNormalizationForwardTraining(] functions, and as the bnScaleBiasDiffDesc
parameter in the cudnnBatchNormalizationBackward(] function.

The resulting dimensions will be:

» 1xCx1x1 for 4D and 1xCx1x1x1 for 5D for BATCHNORM MODE SPATIAL

» IxCxHxW for 4D and 1xCxDxHxW for 5D for BATCHNORM MODE PER ACTIVATION mode

For HALF input data type the resulting tensor descriptor will have a FLOAT type. For other data
types, it will have the same type as the input data.

@ Note:

» Only 4D and 5D tensors are supported.

» The derivedBnDesc should be first created using cudnnCreateTensorDescriptor().

» xDesc is the descriptor for the layer's x data and has to be set up with proper dimensions
prior to calling this function.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 36

cudnn_ops_infer.so Library

Parameters
derivedBnDesc

Output. Handle to a previously created tensor descriptor.

xDesc

Input. Handle to a previously created and initialized layer’s x data descriptor.

mode

Input. Batch normalization layer mode of operation.

Returns

CUDNN_STATUS_SUCCESS

The computation was performed successfully.

CUDNN_STATUS_BAD_ PARAM

Invalid Batch Normalization mode.

3.2.19. cudnnDeriveNormTensorDescriptor ()

cudnnStatus t CUDNNWINAPI
cudnnDeriveNormTensorDescriptor (cudnnTensorDescriptor t derivedNormScaleBiasDesc,
cudnnTensorDescriptor t derivedNormMeanVarDesc,
const cudnnTensorDescriptor t xDesc,
cudnnNormMode t mode,
int groupCnt)
This function derives tensor descriptors for the normalization mean, invariance,
normBias, and normScale subtensors from the layer's x data descriptor and norm mode.
normalization, mean, and invariance share the same descriptor while bias and scale

share the same descriptor.

Use the tensor descriptor produced by this function as the normScaleBiasDesc or
normMeanVarDesc parameter for the cudnnNormalizationForwardInference(] and
cudnnNormalizationForwardTraining() functions, and as the dNormScaleBiasDesc and
normMeanVarDesc parameters in the cudnnNormalizationBackward(] function.

The resulting dimensions will be:

» 1IxCx1x1 for 4D and 1xCx1x1x1 for 5D for CUDNN_NORM PER ACTIVATION

> IxCxHxW for 4D and 1xCxDxHxW for 5D for CUDNN_ NORM PER CHANNEL mode

For HALF input data type the resulting tensor descriptor will have a FLOAT type. For other data
types, it will have the same type as the input data.

» Only 4D and 5D tensors are supported.

» The derivedNormScaleBiasDesc and derivedNormMeanVarDesc should be created first
using cudnnCreateTensorDescriptor(].

NVIDIA cuDNN PR-09702-001_v8.4.1 | 37

cudnn_ops_infer.so Library

» xDesc is the descriptor for the layer's x data and has to be set up with proper dimensions
prior to calling this function.

Parameters
derivedNormScaleBiasDesc

Output. Handle to a previously created tensor descriptor.
derivedNormMeanVarDesc

Output. Handle to a previously created tensor descriptor.
xDesc

Input. Handle to a previously created and initialized layer's x data descriptor.

mode

Input. The normalization layer mode of operation.

Returns

CUDNN_STATUS_SUCCESS

The computation was performed successfully.

CUDNN_STATUS_BAD PARAM

Invalid Batch Normalization mode.

3.2.20. cudnnDestroy ()

cudnnStatus_t cudnnDestroy(cudnnHandle t handle)

This function releases the resources used by the cuDNN handle. This function is usually the
last call with a particular handle to the cuDNN handle. Because cudnnCreate(] allocates
some internal resources, the release of those resources by calling cudnnbestroy () will
implicitly call cudaDeviceSynchronize; therefore, the recommended best practice is to call
cudnnCreate/cudnnDestroy outside of performance-critical code paths.

Parameters

handle

Input. The cuDNN handle to be destroyed.

Returns

CUDNN_STATUS_SUCCESS

The cuDNN context destruction was successful.

CUDNN_STATUS BAD PARAM

Invalid (NULL) pointer supplied.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 38

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__DEVICE.html#group__CUDART__DEVICE_1g10e20b05a95f638a4071a655503df25d

cudnn_ops_infer.so Library

3.2.21. cudnnDestroyActivationDescriptor ()

cudnnStatus_t cudnnDestroyActivationDescriptor (
cudnnActivationDescriptor t activationDesc)

This function destroys a previously created activation descriptor object.

Returns

CUDNN_STATUS_SUCCESS

The object was destroyed successfully.

3.2.22. cudnnDestroyAlgorithmDescriptor ()

This function has been deprecated in cuDNN 8.0.

cudnnStatus_t cudnnDestroyAlgorithmDescriptor (
cudnnActivationDescriptor t algorithmbDesc)

This function destroys a previously created algorithm descriptor object.

Returns

CUDNN_STATUS_SUCCESS

The object was destroyed successfully.

3.2.23. cudnnDestroyAlgorithmPerformance ()

cudnnStatus_t cudnnDestroyAlgorithmPerformance (
cudnnAlgorithmPerformance t algoPerf)

This function destroys a previously created algorithm descriptor object.

Returns

CUDNN_STATUS_SUCCESS

The object was destroyed successfully.

3.2.24. cudnnDestroyDropoutDescriptor ()

cudnnStatus t cudnnDestroyDropoutDescriptor (
cudnnDropoutDescriptor t dropoutDesc)

This function destroys a previously created dropout descriptor object.

Returns

CUDNN_STATUS_SUCCESS

The object was destroyed successfully.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 39

cudnn_ops_infer.so Library

3.2.25. cudnnDestroyFilterDescriptor ()

cudnnStatus t cudnnDestroyFilterDescriptor (
cudnnFilterDescriptor t filterDesc)

This function destroys a previously created tensor 4D descriptor object.

Returns

CUDNN_STATUS_SUCCESS

The object was destroyed successfully.

3.2.26. cudnnDestroyLRNDescriptor ()

cudnnStatus t cudnnDestroyLRNDescriptor (
cudnnLRNDescriptor t lrnDesc)

This function destroys a previously created LRN descriptor object.

Returns

CUDNN_STATUS_SUCCESS

The object was destroyed successfully.

3.2.27. cudnnDestroyOpTensorDescriptor ()

cudnnStatus t cudnnDestroyOpTensorDescriptor (
cudnnOpTensorDescriptor t opTensorDesc)

This function deletes a tensor pointwise math descriptor object.

Parameters

opTensorDesc
Input. Pointer to the structure holding the description of the tensor pointwise math to be
deleted.

Returns

CUDNN_STATUS_SUCCESS

The function returned successfully.

3.2.28. cudnnDestroyPoolingDescriptor ()

cudnnStatus t cudnnDestroyPoolingDescriptor (
cudnnPoolingDescriptor t poolingDesc)

This function destroys a previously created pooling descriptor object.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 40

cudnn_ops_infer.so Library

Returns

CUDNN_STATUS_SUCCESS

The object was destroyed successfully.

3.2.29. cudnnDestroyReduceTensorDescriptor ()

cudnnStatus t cudnnDestroyReduceTensorDescriptor (
cudnnReduceTensorDescriptor t tensorDesc)

This function destroys a previously created reduce tensor descriptor object. When the input
pointer is NULL, this function performs no destroy operation.

Parameters
tensorDesc

Input. Pointer to the reduce tensor descriptor object to be destroyed.

Returns

CUDNN_STATUS_SUCCESS

The object was destroyed successfully.

3.2.30. cudnnDestroySpatialTransformerDescriptor ()

cudnnStatus t cudnnDestroySpatialTransformerDescriptor (
cudnnSpatialTransformerDescriptor t stDesc)

This function destroys a previously created spatial transformer descriptor object.

Returns

CUDNN_STATUS_SUCCESS

The object was destroyed successfully.

3.2.31. cudnnDestroyTensorDescriptor ()

cudnnStatus_t cudnnDestroyTensorDescriptor (cudnnTensorDescriptor t tensorDesc)

This function destroys a previously created tensor descriptor object. When the input pointeris
NULL, this function performs no destroy operation.

Parameters
tensorDesc

Input. Pointer to the tensor descriptor object to be destroyed.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 41

cudnn_ops_infer.so Library

Returns

CUDNN_STATUS_SUCCESS

The object was destroyed successfully.

3.2.32. cudnnDestroyTensorTransformDescriptor ()

cudnnStatus t cudnnDestroyTensorTransformDescriptor (
cudnnTensorTransformDescriptor t transformDesc);

Destroys a previously created tensor transform descriptor.

Parameters

transformDesc
Input. The tensor transform descriptor to be destroyed.

Returns

CUDNN_STATUS_SUCCESS
The descriptor was destroyed successfully.

3.2.33. cudnnDivisiveNormalizationForward ()

cudnnStatus t cudnnDivisiveNormalizationForward (

cudnnHandle t handle,
cudnnLRNDescriptor t normDesc,
cudnnDivNormMode t mode,
const void *alpha,
const cudnnTensorDescriptor t xDesc,
const void 5%,
const void *means,
void *temp,
void *temp2,
const void *beta,
const cudnnTensorDescriptor t yDesc,
void *y)

This function performs the forward spatial DivisiveNormalization layer computation. It
divides every value in a layer by the standard deviation of its spatial neighbors as described

in What is the Best Multi-Stage Architecture for Object Recognition, Jarrett 2009, Local Contrast
Normalization Layer section. Note that DivisiveNormalization only implements the

x/max (c, sigma_x) portion of the computation, where sigma_x is the variance over the
spatial neighborhood of x. The full LCN (Local Contrastive Normalization] computation can be
implemented as a two-step process:

X m = x-mean(x);
Yy = x_m/max(c, sigma(x_m));

NVIDIA cuDNN PR-09702-001_v8.4.1 | 42

http://yann.lecun.com/exdb/publis/pdf/jarrett-iccv-09.pdf
http://yann.lecun.com/exdb/publis/pdf/jarrett-iccv-09.pdf

cudnn_ops_infer.so Library

The x-mean (x) which is often referred to as “subtractive normalization” portion of the
computation can be implemented using cuDNN average pooling layer followed by a call to
addTensor

S| Note: Supported tensor formats are NCHW for 4D and NCDHW for 5D with any non-overlapping
non-negative strides. Only 4D and 5D tensors are supported.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor.
normDesc
Input. Handle to a previously initialized LRN parameter descriptor. This descriptor is used
for both LRN and DivisiveNormalization layers.
divNormMode
Input. DivisiveNormalization layer mode of operation. Currently only

CUDNN_DIVNORM PRECOMPUTED MEANS is implemented. Normalization is performed using
the means input tensor that is expected to be precomputed by the user.

alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the layer output value with

prior value in the destination tensor as follows:
dstValue = alpha[0O]*resultValue + beta[0]*priorDstValue

For more information, refer to Scaling Parameters in the cuDNN Developer Guide.

xDesc, yDesc

Input. Tensor descriptor objects for the input and output tensors. Note that xDesc is shared
between x, means, temp, and temp2 tensors.

X
Input. Input tensor data pointer in device memory.

means
Input. Input means tensor data pointer in device memory. Note that this tensor can be NULL
(in that case its values are assumed to be zero during the computation). This tensor also
doesn’t have to contain means, these can be any values, a frequently used variation is a
result of convolution with a normalized positive kernel (such as Gaussian).

temp, temp2

Workspace. Temporary tensors in device memory. These are used for computing
intermediate values during the forward pass. These tensors do not have to be preserved as
inputs from forward to the backward pass. Both use xDesc as their descriptor.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 43

https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#scaling-parameters

cudnn_ops_infer.so Library

Output. Pointer in device memory to a tensor for the result of the forward
DivisiveNormalization computation.

Returns

CUDNN_STATUS_SUCCESS

The computation was performed successfully.
CUDNN_STATUS_BAD PARAM

At least one of the following conditions are met:

> One of the tensor pointers x, y, temp, temp2 is NULL.

» Number of input tensor or output tensor dimensions is outside of [4, 5] range.

» A mismatch in dimensions between any two of the input or output tensors.

» Forin-place computation when pointers x == y, a mismatch in strides between the
input data and output data tensors.

>

Alpha or beta pointer is NULL.
» LRN descriptor parameters are outside of their valid ranges.

» Any of the tensor strides are negative.
CUDNN_STATUS_UNSUPPORTED

The function does not support the provided configuration, for example, any of the input and
output tensor strides mismatch (for the same dimension) is a non-supported configuration.

3.2.34. cudnnDropoutForward ()

cudnnStatus t cudnnDropoutForward (

cudnnHaHdle_t handle,

const cudnnDropoutDescriptor t dropoutDesc,

const cudnnTensorDescriptor t xdesc,

const void W5

const cudnnTensorDescriptor t ydesc,

void *Vy

void *reserveSpace,

size t reserveSpaceSizeInBytes)

This function performs forward dropout operation over x returning results in y. If dropout was
used as a parameter to cudnnSetDropoutDescriptor(), the approximate dropout fraction of

x values will be replaced by a 0, and the rest will be scaled by 1/ (1-dropout). This function
should not be running concurrently with another cudnnDropoutForward () function using the
same states.

@ Note:

» Better performance is obtained for fully packed tensors.

» This function should not be called during inference.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 44

cudnn_ops_infer.so Library

Parameters
handle

Input. Handle to a previously created cuDNN context.

dropoutDesc

Input. Previously created dropout descriptor object.

xDesc

Input. Handle to a previously initialized tensor descriptor.

Input. Pointer to data of the tensor described by the xDesc descriptor.

yDesc

Input. Handle to a previously initialized tensor descriptor.

Output. Pointer to data of the tensor described by the yDesc descriptor.
reserveSpace
Output. Pointer to user-allocated GPU memory used by this function. It is expected that

the contents of reserveSpace does not change between cudnnDropoutForward () and
cudnnDropoutBackward() calls.

reserveSpaceSizeInBytes

Input. Specifies the size in bytes of the provided memory for the reserve space.

Returns

CUDNN_STATUS_SUCCESS

The call was successful.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD PARAM

At least one of the following conditions are met:

> The number of elements of input tensor and output tensors differ.
> The datatype of the input tensor and output tensors differs.

» The strides of the input tensor and output tensors differ and in-place operation is used
(meaning, x and y pointers are equal).

» The provided reserveSpaceSizeInBytes is less than the value returned by
cudnnDropoutGetReserveSpaceSize(].

NVIDIA cuDNN PR-09702-001_v8.4.1 | 45

cudnn_ops_infer.so Library

» cudnnSetDropoutDescriptor(] has not been called on dropoutDesc with the non-NULL
states argument.

CUDNN_STATUS EXECUTION FATILED

The function failed to launch on the GPU.

3.2.35. cudnnDropoutGetReserveSpaceSize ()

cudnnStatus_t cudnnDropoutGetReserveSpaceSize (

cudnnTensorDescriptor t xDesc,

size t *sizelInBytes)
This function is used to query the amount of reserve needed to run dropout with the
input dimensions given by xDesc. The same reserve space Is expected to be passed to
cudnnDropoutForward() and cudnnDropoutBackward(], and its contents is expected to remain
unchanged between cudnnDropoutForward(] and cudnnDropoutBackward(] calls.

Parameters
xDesc

Input. Handle to a previously initialized tensor descriptor, describing input to a dropout
operation.

sizeInBytes

Output. Amount of GPU memory needed as reserve space to be able to run dropout with an
input tensor descriptor specified by xDesc.

Returns

CUDNN_STATUS_SUCCESS

The query was successful.

3.2.36. cudnnDropoutGetStatesSize ()

cudnnStatus t cudnnDropoutGetStatesSize (

cudnnHandle t handle,

size t *sizeInBytes)
This function is used to query the amount of space required to store the states of the random
number generators used by cudnnDropoutForward() function.

Parameters
handle

Input. Handle to a previously created cuDNN context.

sizelnBytes

Output. Amount of GPU memory needed to store random generator states.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 46

cudnn_ops_infer.so Library

Returns

CUDNN_STATUS_SUCCESS

The query was successful.

3.2.37. cudnnGetActivationDescriptor ()

cudnnStatus t cudnnGetActivationDescriptor (

const cudnnActivationDescriptor t activationDesc,
cudnnActivationMode t *mode,
cudnnNanPropagation t *reluNanOpt,
double *coef)

This function queries a previously initialized generic activation descriptor object.

Parameters
activationDesc

Input. Handle to a previously created activation descriptor.

mode

Output. Enumerant to specify the activation mode.

reluNanOpt

Output. Enumerant to specify the Nan propagation mode.

coef

Output. Floating point number to specify the clipping threshold when the activation mode
is set to CUDNN_ACTIVATION CLIPPED RELU or to specify the alpha coefficient when the
activation mode is set to CUDNN_ACTIVATION ELU.

Returns

CUDNN_STATUS_SUCCESS

The object was queried successfully.

3.2.38. cudnnGetActivationDescriptorSwishBeta ()

cudnnStatus t
cudnnGetActivationDescriptorSwishBeta (cudnnActivationDescriptor t
activationDesc, double* swish beta)

This function queries the current beta parameter set for SWISH activation.

Parameters
activationDesc

Input. Handle to a previously created activation descriptor.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 47

cudnn_ops_infer.so Library

swish beta
Output. Pointer to a double value that will receive the currently configured SWISH beta
parameter.

Returns

CUDNN_STATUS_SUCCESS

The beta parameter was queried successfully.

CUDNN_STATUS BAD PARAM
AtleastOneOfactivationDescOrswish_beta\NereNULL.

3.2.39. cudnnGetAlgorithmDescriptor ()

This function has been deprecated in cuDNN 8.0.

cudnnStatus t cudnnGetAlgorithmDescriptor (
const cudnnAlgorithmDescriptor t algoDesc,
cudnnAlgorithm t *algorithm)

This function queries a previously initialized generic algorithm descriptor object.

Parameters

algorithmDesc

Input. Handle to a previously created algorithm descriptor.

algorithm

Input. Struct to specify the algorithm.

Returns

CUDNN_STATUS_SUCCESS

The object was queried successfully.

3.2.40. cudnnGetAlgorithmPerformance ()

This function has been deprecated in cuDNN 8.0.

cudnnStatus t cudnnGetAlgorithmPerformance (

const cudnnAlgorithmPerformance t algoPerf,
cudnnAlgorithmDescriptor t* algoDesc,
cudnnStatus t* status,
float* time,
size t* memory)

This function queries a previously initialized generic algorithm performance object.

NVIDIA cuDNN PR-09702-001_v8.4.1

48

cudnn_ops_infer.so Library

Parameters

algoPerf

Input/Output. Handle to a previously created algorithm performance object.

algoDesc

Output. The algorithm descriptor which the performance results describe.

status

Output. The cuDNN status returned from running the algoDesc algorithm.

timecoef

Output. The GPU time spent running the algoDesc algorithm.

memory

Output. The GPU memory needed to run the algoDesc algorithm.

Returns

CUDNN_STATUS_SUCCESS

The object was queried successfully.

3.2.41. cudnnGetAlgorithmSpaceSize ()

This function has been deprecated in cuDNN 8.0.
cudnnStatus t cudnnGetAlgorithmSpaceSize (

cudnnHandle t handle,
cudnnAlgorithmDescriptor t algoDesc,
size t* algoSpaceSizeInBytes)

This function queries for the amount of host memory needed to call cudnnSaveAlgorithm(],

much like the “get workspace size” function query for the amount of device memory needed.

Parameters
handle

Input. Handle to a previously created cuDNN context.

algoDesc

Input. A previously created algorithm descriptor.

algoSpaceSizelInBytes

Output. Amount of host memory needed as a workspace to be able to save the metadata

from the specified algoDesc.

NVIDIA cuDNN PR-09702-001_v8.4.1

| 49

cudnn_ops_infer.so Library

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_BAD PARAM

At least one of the arguments is NULL.

3.2.42. cudnnGetCallback ()

cudnnStatus t cudnnGetCallback (

unsigned mask,
void **udata,
cudnnCallback t fptr)

This function queries the internal states of cuDNN error reporting functionality.

Parameters
mask

Output. Pointer to the address where the current internal error reporting message bit mask
will be outputted.

udata

Output. Pointer to the address where the current internally stored udata address will be
stored.

fptr

Output. Pointer to the address where the current internally stored callback function
pointer will be stored. When the built-in default callback function is used, NULL will be
outputted.

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_BAD_ PARAM

If any of the input parameters are NULL.

3.2.43. cudnnGetCudartVersion ()

size t cudnnGetCudartVersion ()

The same version of a given cuDNN Llibrary can be compiled against different CUDA toolkit
versions. This routine returns the CUDA toolkit version that the currently used cuDNN library
has been compiled against.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 50

cudnn_ops_infer.so Library

3.2.44. cudnnGetDropoutDescriptor ()

cudnnStatus t cudnnGetDropoutDescriptor (

cudnnDrapoutDescriptor_t dropoutDesc,
cudnnHandle t handle,
float *dropout,
void **states,
unsigned long long *seed)

This function queries the fields of a previously initialized dropout descriptor.

Parameters

dropoutDesc

Input. Previously initialized dropout descriptor.

handle

Input. Handle to a previously created cuDNN context.

dropout

Output. The probability with which the value from input is set to 0 during the dropout layer.

states

Output. Pointer to user-allocated GPU memory that holds random number generator
states.

seed

Output. Seed used to initialize random number generator states.

Returns
CUDNN_STATUS SUCCESS

The call was successful.

CUDNN_STATUS_BAD PARAM

One or more of the arguments was an invalid pointer.

3.2.45. cudnnGetErrorString()

const char * cudnnGetErrorString(cudnnStatus_t status)

This function converts the cuDNN status code to a NULL terminated (ASCIIZ] static string.

For example, when the input argument is CUDNN STATUS SUCCESS, the returned string is
CUDNN_STATUS suUcCESS. When an invalid status value is passed to the function, the returned
string is CUDNN_UNKNOWN_ STATUS.

Parameters

status

Input. cuDNN enumerant status code.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 51

cudnn_ops_infer.so Library

Returns

Pointer to a static, NULL terminated string with the status name.

3.2.46. cudnnGetFilter4dDescriptor ()

cudnnStatus_t cudnnGetFilter4dDescriptor (

const cudnnFilterDescriptor t filterDesc,
cudnnDataType t *dataType,
cudnnTensorFormat t *format,

int Bk,

int “@p

int *hr

int *w)

This function queries the parameters of the previously initialized filter descriptor object.

Parameters
filterDesc

Input. Handle to a previously created filter descriptor.

datatype

Output. Data type.

format

Output. Type of format.

Output. Number of output feature maps.
Output. Number of input feature maps.
Output. Height of each filter.

Output. Width of each filter.

Returns
CUDNN_STATUS_SUCCESS

The object was set successfully.

3.2.47. cudnnGetFilterNdDescriptor ()

cudnnStatus t cudnnGetFilterNdDescriptor (
const cudnnFilterDescriptor t wDesc,

int nbDimsRequested,
cudnnDataType t *dataType,
cudnnTensorFormat t *format,

NVIDIA cuDNN PR-09702-001_v8.4.1 | 52

cudnn_ops_infer.so Library

int *nbDims,
int filterDimA[])

This function queries a previously initialized filter descriptor object.

Parameters
wDesc

Input. Handle to a previously initialized filter descriptor.

nbDimsRequested

Input. Dimension of the expected filter descriptor. It is also the minimum size of the arrays
filterDimA in order to be able to hold the results

datatype

Output. Data type.

format

Output. Type of format.

nbDims

Output. Actual dimension of the filter.

filterDimA
Output. Array of dimensions of at least nbDimsRequested that will be filled with the filter
parameters from the provided filter descriptor.

Returns

CUDNN_STATUS_SUCCESS

The object was set successfully.

CUDNN_STATUS_BAD_ PARAM

The parameter nbDimsRequested is negative.

3.2.48. cudnnGetFilterSizeInBytes ()

cudnnStatus_t
cudnnGetFilterSizeInBytes (const cudnnFilterDescriptor t filterDesc, size t *size) ;

This function returns the size of the filter tensor in memory with respect to the given
descriptor. It can be used to know the amount of GPU memory to be allocated to hold that
filter tensor.

Parameters
filterDesc

Input. handle to a previously initialized filter descriptor.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 53

cudnn_ops_infer.so Library

size

Output. size in bytes needed to hold the tensor in GPU memory.

Returns

CUDNN_STATUS_SUCCESS

filterDesc is valid.

CUDNN_STATUS_BAD PARAM

filerDesc is invald.

3.2.49. cudnnGetLRNDescriptor ()

cudnnStatus t cudnnGetLRNDescriptor (

cudnnLRﬁDescriptor_t normbDesc,
unsigned *1rnN,
double *1lrnAlpha,
double *1lrnBeta,
double *1rnkK)

This function retrieves values stored in the previously initialized LRN descriptor object.

Parameters

normDesc

Output. Handle to a previously created LRN descriptor.
1rnN, 1rnAlpha, 1rnBeta, 1rnK
Output. Pointers to receive values of parameters stored in the descriptor object. For more

information, refer to cudnnSetLRNDescriptor(). Any of these pointers can be NULL (no value
is returned for the corresponding parameter).

Returns

CUDNN_STATUS_SUCCESS

Function completed successfully.

3.2.50. cudnnGetOpTensorDescriptor ()

cudnnStatus_t cudnnGetOpTensorDescriptor (
const cudnnOpTensorDescriptor t opTensorDesc,

cudnnOpTensorOp t *opTensorOp,
cudnnDataType t *opTensorCompType,
cudnnNanPropagation t *opTensorNanOpt)

This function returns the configuration of the passed tensor pointwise math descriptor.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 54

cudnn_ops_infer.so Library

Parameters
opTensorDesc

Input. Tensor pointwise math descriptor passed to get the configuration from.

opTensorOp

Output. Pointer to the tensor pointwise math operation type, associated with this tensor
pointwise math descriptor.

opTensorCompType

Output. Pointer to the cuDNN data-type associated with this tensor pointwise math
descriptor.

opTensorNanOpt
Output. Pointer to the NAN propagation option associated with this tensor pointwise math
descriptor.

Returns

CUDNN_STATUS_SUCCESS

The function returned successfully.

CUDNN_STATUS_BAD_ PARAM

Input tensor pointwise math descriptor passed is invalid.

3.2.51. cudnnGetPooling2dDescriptor ()

cudnnStatus t cudnnGetPooling2dDescriptor (

const cﬁdnnPoolingDescriptor_t poolingDesc,
cudnnPoolingMode t *mode,
cudnnNanPropagation t *maxpoolingNanOpt,
int *windowHeight,

int *windowWidth,

int *verticalPadding,
int *horizontalPadding,
int *verticalStride,
int *horizontalStride)

This function queries a previously created 2D pooling descriptor object.

Parameters

poolingDesc

Input. Handle to a previously created pooling descriptor.

mode
Output. Enumerant to specify the pooling mode.
maxpoolingNanOpt

Output. Enumerant to specify the Nan propagation mode.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 55

cudnn_ops_infer.so Library

windowHeight

Output. Height of the pooling window.
windowWidth

Output. Width of the pooling window.

verticalPadding

Output. Size of vertical padding.
horizontalPadding

Output. Size of horizontal padding.

verticalStride

Output. Pooling vertical stride.

horizontalStride

Output. Pooling horizontal stride.

Returns

CUDNN_STATUS_SUCCESS

The object was set successfully.

3.2.52. cudnnGetPooling2dForwardOutputDim ()

cudnnStatus t cudnnGetPooling2dForwardOutputDim (

const cﬁdnnPoolingDescriptorit poolingDesc,
const cudnnTensorDescriptor t inputDesc,
int *outN,

int *outC,

int *outH,

int *outW)

This function provides the output dimensions of a tensor after 2d pooling has been applied.

Each dimension h and w of the output images is computed as follows:

outputDim = 1 + (inputDim + 2*padding - windowDim) /poolingStride;

Parameters
poolingDesc

Input. Handle to a previously initialized pooling descriptor.
inputDesc

Input. Handle to the previously initialized input tensor descriptor.

Output. Number of images in the output.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 56

cudnn_ops_infer.so Library

Output. Number of channels in the output.
Output. Height of images in the output.

Output. Width of images in the output.

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:

> poolingDesc has not been initialized.

» poolingDesc or inputDesc has an invalid number of dimensions (2 and 4 respectively
are required).

3.2.53. cudnnGetPoolingNdDescriptor ()

cudnnStatus t cudnnGetPoolingNdDescriptor (

const cudnnPoolingDescriptor t poolingDesc,

int nbDimsRequested,
cudnnPoolingMode t *mode,
cudnnNanPropagation t *maxpoolingNanOpt,
int *nbDims,

int windowDimAT[],

int paddingAl[],

int strideAl[])

This function queries a previously initialized generic pooling descriptor object.

Parameters
poolingDesc

Input. Handle to a previously created pooling descriptor.

nbDimsRequested

Input. Dimension of the expected pooling descriptor. It is also the minimum size of the
arrays windowDimA, paddinga, and stridea in order to be able to hold the results.

mode

Output. Enumerant to specify the pooling mode.
maxpoolingNanOpt

Input. Enumerant to specify the Nan propagation mode.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 57

cudnn_ops_infer.so Library

nbDims

Output. Actual dimension of the pooling descriptor.

windowDimA

Output. Array of dimension of at least nbDimsRequested that will be filled with the window
parameters from the provided pooling descriptor.

paddingA

Output. Array of dimension of at least nbDimsRequested that will be filled with the padding
parameters from the provided pooling descriptor.

strideA
Output. Array of dimension at least nbDimsRequested that will be filled with the stride
parameters from the provided pooling descriptor.

Returns

CUDNN_STATUS_SUCCESS

The object was queried successfully.

CUDNN_STATUS_NOT_SUPPORTED

The parameter nbDimsRequested Is greater than CUDNN_ DIM MAX.

3.2.54. cudnnGetPoolingNdForwardOutputDim ()

cudnnStatus t cudnnGetPoolingNdForwardOutputDim (
const cudnnPoolingDescriptor t poolingDesc,

const cudnnTensorDescriptor t inputDesc,
int nbDims,
int outDimA[])

This function provides the output dimensions of a tensor after Nd pooling has been applied.

Each dimension of the (nbDims-2)-D images of the output tensor is computed as follows:

outputDim = 1 + (inputDim + 2*padding - windowDim) /poolingStride;

Parameters

poolingDesc

Input. Handle to a previously initialized pooling descriptor.

inputDesc

Input. Handle to the previously initialized input tensor descriptor.

nbDims

Input. Number of dimensions in which pooling is to be applied.

outDimA

Output. Array of nbDims output dimensions.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 58

cudnn_ops_infer.so Library

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.
CUDNN_STATUS_BAD PARAM

At least one of the following conditions are met:

> poolingDesc has not been initialized.

» The value of nbDims Is inconsistent with the dimensionality of poolingbesc and

inputDesc

3.2.99. cudnnGetProperty ()

cudnnStatus_t cudnnGetProperty (
libraryPropertyType type,
int *value)

This function writes a specific part of the cuDNN library version number into the provided host
storage.

Parameters

type

Input. Enumerant type that instructs the function to report the numerical value of the
cuDNN major version, minor version, or the patch level.

value

Output. Host pointer where the version information should be written.

Returns
CUDNN_STATUS INVALID VALUE

Invalid value of the type argument.
CUDNN_STATUS_SUCCESS

Version information was stored successfully at the provided address.

3.2.56. cudnnGetReduceTensorDescriptor ()

cudnnStatus t cudnnGetReduceTensorDescriptor (
const cudnnReduceTensorDescriptor t reduceTensorDesc,

cudnnReduceTensorOp t *reduceTensorOp,
cudnnDataType t *reduceTensorCompType,
cudnnNanPropagation t *reduceTensorNanOpt,
cudnnReduceTensorIndices t *reduceTensorIndices,
cudnnIndicesType t *reduceTensorIndicesType)

This function queries a previously initialized reduce tensor descriptor object.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 59

cudnn_ops_infer.so Library

Parameters
reduceTensorDesc

Input. Pointer to a previously initialized reduce tensor descriptor object.

reduceTensorOp

Output. Enumerant to specify the reduce tensor operation.

reduceTensorCompType

Output. Enumerant to specify the computation datatype of the reduction.

reduceTensorNanOpt

Input. Enumerant to specify the Nan propagation mode.

reduceTensorIndices

Output. Enumerant to specify the reduced tensor indices.

reduceTensorIndicesType

Output. Enumerant to specify the reduce tensor indices type.

Returns
CUDNN_STATUS SUCCESS

The object was queried successfully.
CUDNN_STATUS_BAD PARAM

reduceTensorDesc IS NULL.

3.2.597. cudnnGetReductionIndicesSize ()

cudnnStatus t cudnnGetReductionIndicesSize (

cudnnHandle t handle,
const cudnnReduceTensorDescriptor t reduceDesc,
const cudnnTensorDescriptor t aDesc,

const cudnnTensorDescriptor t cDesc,

size t *sizeInBytes)

This is a helper function to return the minimum size of the index space to be passed to the
reduction given the input and output tensors.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor.

reduceDesc

Input. Pointer to a previously initialized reduce tensor descriptor object.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 60

cudnn_ops_infer.so Library

aDesc

Input. Pointer to the input tensor descriptor.

cDesc

Input. Pointer to the output tensor descriptor.

sizeInBytes

Output. Minimum size of the index space to be passed to the reduction.

Returns

CUDNN_STATUS_SUCCESS

The index space size is returned successfully.

3.2.58. cudnnGetReductionWorkspaceSize ()

cudnnStatus t cudnnGetReductionWorkspaceSize (

cudnnHandle t handle,
const cudnnReduceTensorDescriptor t reduceDesc,
const cudnnTensorDescriptor t aDesc,

const cudnnTensorDescriptor t cDesc,

size t *sizelInBytes)

This is a helper function to return the minimum size of the workspace to be passed to the

reduction given the input and output tensors.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor.

reduceDesc

Input. Pointer to a previously initialized reduce tensor descriptor object.

aDesc

Input. Pointer to the input tensor descriptor.

cDesc

Input. Pointer to the output tensor descriptor.

sizeInBytes

Output. Minimum size of the index space to be passed to the reduction.

Returns
CUDNN_STATUS_SUCCESS

The workspace size is returned successfully.

NVIDIA cuDNN PR-09702-001_v8.4.1

|61

cudnn_ops_infer.so Library

3.2.59. cudnnGetStream|()

cudnnStatus t cudnnGetStream (
cudnnHandle t handle,
cudaStream t *streamlId)

This function retrieves the user CUDA stream programmed in the cuDNN handle. When the
user's CUDA stream is not set in the cuDNN handle, this function reports the null-stream.
Parameters

handle

Input. Pointer to the cuDNN handle.

streamlD

Output. Pointer where the current CUDA stream from the cuDNN handle should be stored.

Returns
CUDNN_STATUS BAD PARAM

Invalid (NULL) handle.
CUDNN_STATUS_SUCCESS

The stream identifier was retrieved successfully.

3.2.60. cudnnGetTensor4dDescriptor ()

cudnnStatus_t cudnnGetTensor4dDescriptor (
const cudnnTensorDescriptor t tensorDesc,

cudnnDataType t *dataType,
int A,

int Bcr

int T,

int *w,

int *nStride,
int *cStride,
int *hStride,
int *wStride)

This function queries the parameters of the previously initialized tensor4D descriptor object.

Parameters
tensorDesc

Input. Handle to a previously initialized tensor descriptor.
datatype
Output. Data type.

Output. Number of images.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 62

cudnn_ops_infer.so Library

Output. Number of feature maps per image.
Output. Height of each feature map.

Output. Width of each feature map.
nStride

Output. Stride between two consecutive images.

cStride

Output. Stride between two consecutive feature maps.

hStride

Output. Stride between two consecutive rows.

wStride

Output. Stride between two consecutive columns.

Returns
CUDNN_STATUS_SUCCESS

The operation succeeded.

3.2.61. cudnnGetTensorNdDescriptor ()

cudnnStatus t cudnnGetTensorNdDescriptor (

const cudnnTensorDescriptor t tensorDesc,

int nbDimsRequested,
cudnnDataType t *dataType,

int *nbDims,

int dimA[],

int strideA[])

This function retrieves values stored in a previously initialized tensor descriptor object.

Parameters
tensorDesc

Input. Handle to a previously initialized tensor descriptor.

nbDimsRequested

Input. Number of dimensions to extract from a given tensor descriptor. It is also the
minimum size of the arrays dima and strideA. If this number is greater than the resulting
nbDims [0], only nbDims [0] dimensions will be returned.

datatype

Output. Data type.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 63

cudnn_ops_infer.so Library

nbDims
Output. Actual number of dimensions of the tensor will be returned in nbDims [0].
dimA

Output. Array of dimensions of at least nbDimsRequested that will be filled with the
dimensions from the provided tensor descriptor.

strideA
Output. Array of dimensions of at least nbDimsRequested that will be filled with the strides

from the provided tensor descriptor.

Returns

CUDNN_STATUS_SUCCESS

The results were returned successfully.

CUDNN_STATUS_BAD_PARAM

Either tensorDesc or nbDims pointer is NULL

3.2.62. cudnnGetTensorSizeInBytes ()

cudnnStatus t cudnnGetTensorSizelInBytes (
const cudnnTensorDescriptor t tensorDesc,
size t *size)

This function returns the size of the tensor in memory in respect to the given descriptor. This
function can be used to know the amount of GPU memory to be allocated to hold that tensor.
Parameters
tensorDesc

Input. Handle to a previously initialized tensor descriptor.
size

Output. Size in bytes needed to hold the tensor in GPU memory.

Returns
CUDNN_STATUS_SUCCESS

The results were returned successfully.

3.2.63. cudnnGetTensorTransformDescriptor ()

cudnnStatus_t cudnnGetTensorTransformDescriptor (
cudnnTensorTransformDescriptor t transformDesc,
uint32 t nbDimsRequested,

cudnnTensorFormat t *destFormat,

int32 t padBeforeAl[],

int32 t padAfterAl[],

uint32_t foldA[],

NVIDIA cuDNN PR-09702-001_v8.4.1 | 64

cudnn_ops_infer.so Library

cudnnFoldingDirection t *direction);

This function returns the values stored in a previously initialized tensor transform descriptor.

Parameters

transformDesc
Input. A previously initialized tensor transform descriptor.
nbDimsRequested
Input. The number of dimensions to consider. For more information, refer to Tensor
Descriptor in the cuDNN Developer Guide.
destFormat
Output. The transform format that will be returned.
padBeforeAl]
Output. An array filled with the amount of padding to add before each dimension. The
dimension of this padBeforeA[] parameter is equal to nbDimsRequested.
padAfterAl]
Output. An array filled with the amount of padding to add after each dimension. The
dimension of this padBeforeA[] parameter is equal to nbDimsRequested.
foldAl]
Output. An array that was filled with the folding parameters for each spatial dimension. The
dimension of this foldA[] array is nbDimsRequested-2.
direction
Output. The setting that selects folding or unfolding. For more information, refer to
cudnnFoldingDirection_t.

Returns

CUDNN_STATUS_SUCCESS
The results were obtained successfully.

CUDNN_STATUS_BAD PARAM
If transformDesc IS NULL or if nbDimsRequested Is less than 3 or greater than
CUDNN_ DIM MAX.

3.2.64. cudnnGetVersion ()

size t cudnnGetVersion ()

This function returns the version number of the cuDNN Llibrary. It returns the CUDNN_ VERSION
defined present in the cudnn.h header file. Starting with release R2, the routine can be

used to identify dynamically the current cuDNN library used by the application. The defined
CUDNN_VERSION can be used to have the same application linked against different cuDNN
versions using conditional compilation statements.

3.2.65. cudnnInitTransformDest ()

cudnnStatus t cudnnInitTransformDest (
const cudnnTensorTransformDescriptor t transformDesc,
const cudnnTensorDescriptor t srcDesc,

NVIDIA cuDNN PR-09702-001_v8.4.1 | 65

https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#tensor-descriptor
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#tensor-descriptor

cudnn_ops_infer.so Library

cudnnTensorDescriptor t destDesc,

size t *destSizelInBytes);
This function initializes and returns a destination tensor descriptor destDesc for tensor
transform operations. The initialization is done with the desired parameters described in the
transform descriptor cudnnTensorDescriptor_t.

Note: The returned tensor descriptor will be packed.

Parameters

transformDesc

Input. Handle to a previously initialized tensor transform descriptor.
srcDesc

Input. Handle to a previously initialized tensor descriptor.
destDesc

Output. Handle of the tensor descriptor that will be initialized and returned.
destSizeInBytes

Output. A pointer to hold the size, in bytes, of the new tensor.

Returns

CUDNN_STATUS_SUCCESS
The tensor descriptor was initialized successfully.
CUDNN_STATUS_BAD PARAM
If either srcDesc or destDesc is NULL, or if the tensor descriptor’s nbDims is incorrect. For
more information, refer to Tensor Descriptor in the cuDNN Developer Guide.
CUDNN_STATUS_NOT SUPPORTED
If the provided configuration is not 4D.
CUDNN_STATUS_EXECUTION FAILED
Function failed to launch on the GPU.

3.2.66. cudnnLRNCrossChannelForward ()

cudnnStatus t cudnnLRNCrossChannelForward (

cudnnHandle t handle,
cudnnLRNDescriptor t normDesc,
cudnnLRNMode t lrnMode,
const void *alpha,
const cudnnTensorDescriptor t xDesc,
const wvoid *x,

const void *beta,
const cudnnTensorDescriptor t yDesc,
void *y)

This function performs the forward LRN layer computation.

@ Note: Supported formats are: positive-strided, NCHW and NHWC for 4D x and y, and only
NCDHW DHW-packed for 5D (for both x and y). Only non-overlapping 4D and 5D tensors are
supported. NCHW layout is preferred for performance.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 66

https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#tensor-descriptor

cudnn_ops_infer.so Library

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor.

normDesc

Input. Handle to a previously initialized LRN parameter descriptor.
lrnMode
Input. LRN layer mode of operation. Currently only CUDNN LRN CROSS CHANNEL DIM1 is
implemented. Normalization is performed along the tensor’'s dima[1].
alpha, beta
Input. Pointers to scaling factors (in host memory) used to blend the layer output value with

prior value in the destination tensor as follows:
dstValue = alpha[0]*resultValue + beta[0]*priorDstValue

For more information, refer to Scaling Parameters in the cuDNN Developer Guide.

xDesc, yDesc

Input. Tensor descriptor objects for the input and output tensors.

X

Input. Input tensor data pointer in device memory.
Y

Output. Output tensor data pointer in device memory.
Returns

CUDNN_STATUS_SUCCESS

The computation was performed successfully.

CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:

» One of the tensor pointers x, y is NULL.
» Number of input tensor dimensions is 2 or less.
» LRN descriptor parameters are outside of their valid ranges.

> One of the tensor parameters is 5D but is not in NCDHW DHW-packed format.
CUDNN_STATUS NOT SUPPORTED

The function does not support the provided configuration. See the following for some
examples of non-supported configurations:

» Any of the input tensor datatypes is not the same as any of the output tensor datatype.

» xand y tensor dimensions mismatch.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 67

https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#scaling-parameters

cudnn_ops_infer.so Library

» Any tensor parameters strides are negative.

3.2.67. cudnnNormalizationForwardInference ()

cudnnStatus_t
cudnnNormalizationForwardInference (cudnnHandle t handle,
cudnnNormMode t mode,
cudnnNormOps t normOps,
cudnnNormAlgo t algo,
const void *alpha,
const void *beta,
const cudnnTensorDescriptor t xDesc,
const void *x,
const cudnnTensorDescriptor t normScaleBiasDesc,
const void *normScale,
const void *normBias,
const cudnnTensorDescriptor t normMeanVarDesc,
const void *estimatedMean,
const void *estimatedVariance,
const cudnnTensorDescriptor t zDesc,
const void *z,
cudnnActivationDescriptor t activationDesc,
const cudnnTensorDescriptor t yDesc,
void *y,
double epsilon,
int groupCnt) ;

This function performs the forward normalization layer computation for the inference phase.
Per-channel normalization layer is based on the paper Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift, S. loffe, C. Szegedy, 2015.

[g] Note:

» Only 4D and 5D tensors are supported.

» The input transformation performed by this function is defined as:

y = beta*y + alpha *[normBias + (normScale * (x-estimatedMean)/sqrt(epsilon +
estimatedVariance)]

» The epsilon value has to be the same during training, backpropagation, and inference.

» For the training phase, refer to cudnnNormalizationForwardTraining(].

» Higher performance can be obtained when HW-packed tensors are used for all of x and y.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor. For more information, refer
to cudnnHandle_t.

mode

Input. Mode of operation (per-channel or per-activation). For more information, refer to
cudnnNormMode_t.

normOps

Input. Mode of post-operative. Currently, CUDNN_NORM OPS NORM ACTIVATION and
CUDNN_ NORM OPS NORM ADD ACTIVATION are not supported.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 68

https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167

cudnn_ops_infer.so Library

algo

Input. Algorithm to be performed. For more information, refer to cudnnNormAlgo_t.

alpha, beta

Inputs. Pointers to scaling factors (in host memory) used to blend the layer output value

with prior value in the destination tensor as follows:
dstValue = alpha[0] *resultValue + beta[0] *priorDstValue

For more information, refer to Scaling Parameters in the cuDNN Developer Guide.

xDesc, yDesc
Input. Handles to the previously initialized tensor descriptors.
*x

Input. Data pointer to GPU memory associated with the tensor descriptor xbesc, for the
layer’s x input data.

*y
Output. Data pointer to GPU memory associated with the tensor descriptor ybesc, for the y
output of the normalization layer.

zDesc, *z

Input. Tensor descriptors and pointers in device memory for residual addition to the result
of the normalization operation, prior to the activation. zDesc and *z are optional and are
only used when normOps is CUDNN_ NORM OPS NORM ADD ACTIVATION, otherwise users
may pass NULL. When in use, z should have exactly the same dimension as x and the final
output y. For more information, refer to cudnnTensorDescriptor_t.

Since normOps Is only supported for CUDNN_NORM OPS NORM, we can set these to NULL for
now.

normScaleBiasDesc, normScale, normBias
Inputs. Tensor descriptors and pointers in device memory for the normalization scale and
bias parameters (in the original paper bias is referred to as beta and scale as gammal).
normMeanVarDesc, estimatedMean, estimatedVariance
Inputs. Mean and variance tensors and their tensor descriptors. The estimatedMean

and estimatedvariance inputs, accumulated during the training phase from the
cudnnNormalizationForwardTraining() call, should be passed as inputs here.

activationDesc

Input. Descriptor for the activation operation. When the normOps input is set to either
CUDNN_NORM OPS NORM ACTIVATION Or CUDNN NORM OPS NORM ADD ACTIVATION then
this activation is used, otherwise the user may pass NULL. Since normOps Is only supported
for CUDNN_NORM OPS NORM, we can set these to NULL for now.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 69

https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#scaling-parameters
https://arxiv.org/abs/1502.03167

cudnn_ops_infer.so Library

epsilon
Input. Epsilon value used in the normalization formula. Its value should be equal to or
greater than zero.

groutCnt

Input. Only support 1 for now.

Returns

CUDNN_STATUS_SUCCESS

The computation was performed successfully.
CUDNN_STATUS_NOT SUPPORTED
A compute or data type other than what is supported was chosen, or an unknown algorithm
type was chosen.
CUDNN_STATUS BAD PARAM
At least one of the following conditions are met:
» One of the pointers alpha, beta, %, y, normScale, normBias, estimatedMean, and

estimatedInvVariance iS NULL.

» The number of xDesc or yDesc tensor descriptor dimensions is not within the range of
[4,5] (only 4D and 5D tensors are supported).

» normScaleBiasDesc and normMeanVarDesc dimensions are not 1xCx1x1 for 4D and
TxCx1x1x1 for 5D for per-channel, and are not 1xCxHxW for 4D and 1xCxDxHxW for 5D
for per-activation mode.

> epsilon value is less than zero.

» Dimensions or data types mismatch for xDesc and yDesc.
CUDNN_STATUS_NOT SUPPORTED

A compute or data type other than FLOAT was chosen, or an unknown algorithm type was
chosen.

CUDNN_STATUS_EXECUTION_ FAILED

The function failed to launch on the GPU.

3.2.68. cudnnOpsInferVersionCheck ()

cudnnStatus t cudnnOpsInferVersionCheck (void)

This function is the first of a series of corresponding functions that check for consistent library
versions among DLL files for different modules.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 70

cudnn_ops_infer.so Library

Returns
CUDNN_STATUS SUCCESS

The version of this DLL file is consistent with cuDNN DLLs on which it depends.
CUDNN_STATUS_VERSION_ MISMATCH

The version of this DLL file does not match that of a cuDNN DLLs on which it depends.

3.2.69. cudnnOpTensor ()

cudnnStatus t cudnnOpTensor (

cudnnHaHdle_t handle,
const cudnnOpTensorDescriptor t opTensorDesc,
const void *alphal,
const cudnnTensorDescriptor t aDesc,
const void *A,
const void *alpha2,
const cudnnTensorDescriptor t bDesc,
const void w13,
const void *beta,
const cudnnTensorDescriptor t cDesc,
void *C)

This function implements the equation ¢ = op(alphal[0] * A, alpha2[0] * B) +
beta[0] * C,given the tensors a, B, and C and the scaling factors alphal, alpha2, and beta.
The op to use is indicated by the descriptor cudnnOpTensorDescriptor_t, meaning, the type of
opTensorDesc. Currently-supported ops are listed by the cudnnOpTensorOp_t enum.

The following restrictions on the input and destination tensors apply:

» Each dimension of the input tensor 2 must match the corresponding dimension of
the destination tensor ¢, and each dimension of the input tensor B must match the
corresponding dimension of the destination tensor ¢ or must be equal to 1. In the latter
case, the same value from the input tensor B for those dimensions will be used to blend
into the c tensor.

» The data types of the input tensors & and B, and the destination tensor C, must satisfy
Table 11.

Table 11. Supported Datatypes
opTensorCompType in
opTensorDesc A B c (destination)
FLOAT FLOAT FLOAT FLOAT
FLOAT INT8 INT8 FLOAT
FLOAT HALF HALF FLOAT
FLOAT BFLOAT16 BFLOAT16 FLOAT
DOUBLE DOUBLE DOUBLE DOUBLE
FLOAT FLOAT FLOAT HALF
FLOAT HALF HALF HALF

NVIDIA cuDNN PR-09702-001_v8.4.1 | 71

cudnn_ops_infer.so Library

opTensorCompType in

opTensorDesc A B c (destination)
FLOAT INTS INTS INTS

FLOAT FLOAT FLOAT INTS

FLOAT FLOAT FLOAT BFLOAT16
FLOAT BFLOAT16 BFLOAT16 BFLOAT16

Note: CUDNN TENSOR NCHW VECT C is not supported as input tensor format. All tensors up to
dimension five (5] are supported. This routine does not support tensor formats beyond these
dimensions.

Parameters
handle

Input. Handle to a previously created cuDNN context.
opTensorDesc

Input. Handle to a previously initialized op tensor descriptor.
alphal, alpha2, beta

Input. Pointers to scaling factors (in host memory) used to blend the source value with prior
value in the destination tensor as follows:
dstValue = alpha[0O]*resultValue + beta[0]*priorDstValue

For more information, refer to Scaling Parameters in the cuDNN Developer Guide.

aDesc, bDesc, cDesc

Input. Handle to a previously initialized tensor descriptor.

A, B

Input. Pointer to data of the tensors described by the aDesc and bbesc descriptors,
respectively.

Input/Output. Pointer to data of the tensor described by the cbesc descriptor.

Returns

CUDNN_STATUS_ SUCCESS

The function executed successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration. See the following for some
examples of non-supported configurations:

> The dimensions of the bias tensor and the output tensor dimensions are above 5.

> opTensorCompType IS not set as stated above.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 72

https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#scaling-parameters

cudnn_ops_infer.so Library

CUDNN_STATUS_BAD_ PARAM

The data type of the destination tensor C is unrecognized, or the restrictions on the input
and destination tensors, stated above, are not met.

CUDNN_STATUS_EXECUTION_ FAILED

The function failed to launch on the GPU.

3.2.70. cudnnPoolingForward ()

cudnnStatus t cudnnPoolingForward (

cudnnHandle t handle,
const cudnnPoolingDescriptor t poolingDesc,
const void *alpha,

const cudnnTensorDescriptor t xDesc,

const void *x,

const void *beta,

const cudnnTensorDescriptor t yDesc,

void *y)

This function computes pooling of input values [meaning, the maximum or average of several
adjacent values) to produce an output with smaller height and/or width.

@ Note:

» All tensor formats are supported, best performance is expected when using HW-packed
tensors. Only 2 and 3 spatial dimensions are allowed. Vectorized tensors are only
supported if they have 2 spatial dimensions.

» The dimensions of the output tensor yDesc can be smaller or bigger than the
dimensions advised by the routine cudnnGetPooling2dForwardQutputDim() or
cudnnGetPoolingNdForwardOutputDim(].

» For average pooling, the compute type is float even for integer input and output data type.
Output round is nearest-even and clamp to the most negative or most positive value of type
if out of range.

Parameters
handle

Input. Handle to a previously created cuDNN context.
poolingDesc

Input. Handle to a previously initialized pooling descriptor.
alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the computation result

with prior value in the output layer as follows:
dstValue = alpha[0]*resultValue + betal[0]*priorDstValue

For more information, refer to Scaling Parameters in the cuDNN Developer Guide.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 73

https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#scaling-parameters

cudnn_ops_infer.so Library

xDesc

Input. Handle to the previously initialized input tensor descriptor. Must be of type FLOAT,
DOUBLE, HALF, INTS8, INT8x4, INT8x32, or BFLOAT16. For more information, refer to
cudnnDataType_t.

X
Input. Data pointer to GPU memory associated with the tensor descriptor xDesc.
yDesc
Input. Handle to the previously initialized output tensor descriptor. Must be of type FLOAT,
DOUBLE, HALF, INT8, INT8x4, INT8x32, or BFLOAT16. For more information, refer to
cudnnDataType_t.
Y
Output. Data pointer to GPU memory associated with the output tensor descriptor yDesc.
Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.
CUDNN_STATUS_BAD PARAM

At least one of the following conditions are met:

» The dimensions n, c of the input tensor and output tensors differ.

» The datatype of the input tensor and output tensors differs.
CUDNN_STATUS NOT SUPPORTED

The function does not support the provided configuration.

CUDNN_STATUS_EXECUTION_ FAILED

The function failed to launch on the GPU.

3.2.71. cudnnQueryRuntimeError ()

cudnnStatus t cudnnQueryRuntimeError (

cudnnHandle t handle,
cudnnStatus t *rstatus,
cudnnErrQueryMode t mode,
cudnnRuntimeTag t *tag)

cuDNN library functions perform extensive input argument checking before launching GPU
kernels. The last step is to verify that the GPU kernel actually started. When a kernel fails to
start, CUDNN_STATUS EXECUTION FAILED is returned by the corresponding API call. Typically,
after a GPU kernel starts, no runtime checks are performed by the kernel itself - numerical
results are simply written to output buffers.

When the CUDNN_BATCHNORM SPATIAL PERSISTENT mode is selected in
cudnnBatchNormalizationForwardTraining() or cudnnBatchNormalizationBackward|(), the
algorithm may encounter numerical overflows where CUDNN BATCHNORM SPATIAL performs

NVIDIA cuDNN PR-09702-001_v8.4.1 | 74

cudnn_ops_infer.so Library

just fine albeit at a slower speed. The user can invoke cudnnQueryRuntimeError () to make
sure numerical overflows did not occur during the kernel execution. Those issues are reported
by the kernel that performs computations.

cudnnQueryRuntimeError () can be used in polling and blocking software
control flows. There are two polling modes (CUDNN ERRQUERY RAWCODE and
CUDNN ERRQUERY NONBLOCKING)and one blocking mode CUDNN ERRQUERY BLOCKING.

CUDNN_ERRQUERY RAWCODE reads the error storage location regardless of the kernel
completion status. The kernel might not even start and the error storage (allocated per
cuDNN handle) might be used by an earlier call.

CUDNN ERRQUERY NONBLOCKING checks if all tasks in the user stream are completed.
The cudnnQueryRuntimeError () function will return immediately and report

CUDNN STATUS RUNTIME IN PROGRESS In rstatus if some tasks in the user stream are
pending. Otherwise, the function will copy the remote kernel error code to rstatus.

In the blocking mode (CUDNN ERRQUERY BLOCKING), the function waits for all tasks to drain
in the user stream before reporting the remote kernel error code. The blocking flavor can
be further adjusted by calling cudasetDeviceFlags with the cudaDeviceScheduleSpin
cudaDeviceScheduleYield, or cudaDeviceScheduleBlockingSync flag.

CUDNN_ERRQUERY NONBLOCKING and CUDNN ERRQUERY BLOCKING modes should not be used
when the user stream is changed in the cuDNN handle, meaning, cudnnSetStream(] is invoked
between functions that report runtime kernel errors and the cudnnQueryRuntimeError ()
function.

The remote error status reported in rstatus can be set to: CUDNN_STATUS SUCCESS,
CUDNN_STATUS RUNTIME IN PROGRESS, Or CUDNN STATUS RUNTIME FP OVERFLOW. The
remote kernel error is automatically cleared by cudnnQueryRuntimeError ().

Note: The cudnnQueryRuntimeError () function should be used in conjunction with
cudnnBatchNormalizationForwardTraining() and cudnnBatchNormalizationBackward() when
the cudnnBatchNormMode_t argument is CUDNN_BATCHNORM SPATIAL PERSISTENT.

Parameters
handle

Input. Handle to a previously created cuDNN context.

rstatus

Output. Pointer to the user’'s error code storage.

mode

Input. Remote error query mode.

tag

Input/Output. Currently, this argument should be NULL.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 75

cudnn_ops_infer.so Library

Returns

CUDNN_STATUS_SUCCESS

No errors detected (rstatus holds a valid value).

CUDNN_STATUS_BAD PARAM

Invalid input argument.

CUDNN_STATUS_INTERNAL ERROR

A stream blocking synchronization or a non-blocking stream query failed.

CUDNN_STATUS_MAPPING_ERROR

The device cannot access zero-copy memory to report kernel errors.

3.2.72. cudnnReduceTensor ()

cudnnStatus t cudnnReduceTensor (

cudnnHaHdle_t handle,

const cudnnReduceTensorDescriptor t reduceTensorDesc,
void *indices,

size t indicesSizelInBytes,
void *workspace,

size t workspaceSizeInBytes,
const void *alpha,

const cudnnTensorDescriptor t aDesc,

const void *A,

const void *beta,

const cudnnTensorDescriptor t cDesc,

void *C)

This function reduces tensor & by implementing the equation C = alpha * reduce op

(A) + beta * C,given tensors A and C and scaling factors alpha and beta. The reduction
op to use is indicated by the descriptor reduceTensorDesc. Currently-supported ops are
listed by the cudnnReduceTensorOp_t enum.

Each dimension of the output tensor ¢ must match the corresponding dimension of the input
tensor A or must be equal to 1. The dimensions equal to 1 indicate the dimensions of A to be
reduced.

The implementation will generate indices for the min and max ops only, as indicated by
the cudnnReduceTensorindices_t enum of the reduceTensorDesc. Requesting indices for
the other reduction ops results in an error. The data type of the indices is indicated by the
cudnnindicesType_t enum; currently only the 32-bit (unsigned int] type is supported.

The indices returned by the implementation are not absolute indices but relative to the
dimensions being reduced. The indices are also flattened, meaning, not coordinate tuples.

The data types of the tensors A and ¢ must match if of type double. In this case, alpha and
beta and the computation enum of reduceTensorDesc are all assumed to be of type double.

The HALF and INT8 data types may be mixed with the FLOAT data types. In these cases, the
computation enum of reduceTensorDesc is required to be of type FLOAT.

Note:

NVIDIA cuDNN PR-09702-001_v8.4.1 | 76

cudnn_ops_infer.so Library

Up to dimension 8, all tensor formats are supported. Beyond those dimensions, this routine is
not supported.

Parameters
handle

Input. Handle to a previously created cuDNN context.
reduceTensorDesc

Input. Handle to a previously initialized reduce tensor descriptor.
indices

Output. Handle to a previously allocated space for writing indices.
indicesSizeInBytes

Input. Size of the above previously allocated space.
workspace

Input. Handle to a previously allocated space for the reduction implementation.
workspaceSizeInBytes

Input. Size of the above previously allocated space.
alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the source value with prior
value in the destination tensor as follows:
dstValue = alpha[0O]*resultValue + beta[0]*priorDstValue

For more information, refer to Scaling Parameters in the cuDNN Developer Guide.

aDesc, cDesc

Input. Handle to a previously initialized tensor descriptor.

Input. Pointer to data of the tensor described by the abesc descriptor.

Input/Output. Pointer to data of the tensor described by the cDesc descriptor.

Returns
CUDNN_STATUS_SUCCESS

The function executed successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration. See the following for some
examples of non-supported configurations:

» The dimensions of the input tensor and the output tensor are above 8.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 77

https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#scaling-parameters

cudnn_ops_infer.so Library

> reduceTensorCompType IS not set as stated above.
CUDNN_STATUS_BAD PARAM

The corresponding dimensions of the input and output tensors all match, or the conditions
in the above paragraphs are unmet.

CUDNN_INVALID VALUE

The allocations for the indices or workspace are insufficient.

CUDNN_STATUS_EXECUTION_ FAILED

The function failed to launch on the GPU.

3.2.73. cudnnRestoreAlgorithm()

This function has been deprecated in cuDNN 8.0.

cudnnStatus t cudnnRestoreAlgorithm(

cudnnHandle t handle,
void* algoSpace,
size t algoSpaceSizeInBytes,

cudnHAlgorithmDescriptor_t algoDesc)

This function reads algorithm metadata from the host memory space provided by the user in
algoSpace, allowing the user to use the results of RNN finds from previous cuDNN sessions.
Parameters

handle

Input. Handle to a previously created cuDNN context.

algoDesc

Input. A previously created algorithm descriptor.

algoSpace

Input. Pointer to the host memory to be read.

algoSpaceSizelInBytes
Input. Amount of host memory needed as a workspace to be able to hold the metadata from
the specified algoDesc.

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_NOT_SUPPORTED

The metadata is from a different cuDNN version.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions is met:

NVIDIA cuDNN PR-09702-001_v8.4.1 | 78

cudnn_ops_infer.so Library

» One of the arguments is NULL.

> The metadata is corrupted.

3.2.74. cudnnRestoreDropoutDescriptor ()

cudnnStatus_t cudnnRestoreDropoutDescriptor (
cudnnDropoutDescriptor t dropoutDesc,

cudnnHandle t handle,

float dropout,

void *states,

size t stateSizeInBytes,
unsigned long long seed)

This function restores a dropout descriptor to a previously saved-off state.

Parameters

dropoutDesc

Input/Output. Previously created dropout descriptor.
handle

Input. Handle to a previously created cuDNN context.
dropout

Input. Probability with which the value from an input tensor is set to 0 when performing
dropout.
states

Input. Pointer to GPU memory that holds random number generator states initialized by a
prior call to cudnnSetDropoutDescriptor().

stateSizeInBytes

Input. Size in bytes of buffer holding random number generator states.

seed

Input. Seed used in prior calls to cudnnSetDropoutDescriptor(] that initialized
states buffer. Using a different seed from this has no effect. A change of seed, and
subsequent update to random number generator states can be achieved by calling
cudnnSetDropoutDescriptor(].

Returns
CUDNN_STATUS_SUCCESS

The call was successful.

CUDNN_STATUS_INVALID VALUE

States buffer size (as indicated in stateSizeInBytes)is too small.

3.2.75. cudnnSaveAlgorithm/()

NVIDIA cuDNN PR-09702-001_v8.4.1 | 79

cudnn_ops_infer.so Library

This function has been deprecated in cuDNN 8.0.

cudnnStatus t cudnnSaveAlgorithm(

cudnnHandle t handle,
cudnnAlgorithmDescriptor t algoDesc,

void* algoSpace

size t algoSpaceSizelInBytes)

This function writes algorithm metadata into the host memory space provided by the user in
algoSpace, allowing the user to preserve the results of RNN finds after cuDNN exits.
Parameters

handle

Input. Handle to a previously created cuDNN context.

algoDesc

Input. A previously created algorithm descriptor.

algoSpace

Input. Pointer to the host memory to be written.

algoSpaceSizelInBytes
Input. Amount of host memory needed as a workspace to be able to save the metadata from
the specified algoDesc.

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_BAD PARAM
At least one of the following conditions is met:

» One of the arguments is NULL.

> algoSpaceSizeInBytes istoo small.

3.2.76. cudnnScaleTensor ()

cudnnStatus t cudnnScaleTensor (

cudnnHandle t handle,
const cudnnTensorDescriptor t yDesc,
void *Vy
const void *alpha)

This function scales all the elements of a tensor by a given factor.

Parameters
handle

Input. Handle to a previously created cuDNN context.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 80

cudnn_ops_infer.so Library

yDesc

Input. Handle to a previously initialized tensor descriptor.

Y
Input/Output. Pointer to data of the tensor described by the ybesc descriptor.

alpha
Input. Pointer in the host memory to a single value that all elements of the tensor will be
scaled with. For more information, refer to Scaling Parameters in the cuDNN Developer
Guide.

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS NOT SUPPORTED

The function does not support the provided configuration.

CUDNN_STATUS_BAD PARAM

One of the provided pointers is nil.

CUDNN_STATUS_EXECUTION_ FAILED

The function failed to launch on the GPU.

3.2.77. cudnnSetActivationDescriptor ()

cudnnStatus_t cudnnSetActivationDescriptor (

cudnnActivationDescriptor t activationDesc,
cudnnActivationMode t mode,
cudnnNanPropagation t reluNanOpt,
double coef)

This function initializes a previously created generic activation descriptor object.

Parameters

activationDesc

Input/Output. Handle to a previously created activation descriptor.

mode

Input. Enumerant to specify the activation mode.

reluNanOpt

Input. Enumerant to specify the Nan propagation mode.

coef

Input. Floating point number. When the activation mode (refer to cudnnActivationMode_t) is
set to CUDNN_ACTIVATION CLIPPED RELU, this input specifies the clipping threshold; and

NVIDIA cuDNN PR-09702-001_v8.4.1 | 81

https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#scaling-parameters

cudnn_ops_infer.so Library

when the activation mode is set to CUDNN_ACTIVATION RELU, this input specifies the upper
bound.

Returns

CUDNN_STATUS_SUCCESS

The object was set successfully.

CUDNN_STATUS_BAD PARAM

mode Or reluNanOpt has an invalid enumerant value.

3.2.78. cudnnSetActivationDescriptorSwishBeta ()

cudnnStatus t cudnnSetActivationDescriptorSwishBeta (cudnnActivationDescriptor t
activationDesc, double swish beta)

This function sets the beta parameter of the SWISH activation function to swish beta.

Parameters

activationDesc

Input/Output. Handle to a previously created activation descriptor.

swish beta

Input. The value to set the SWISH activations’ beta parameter to.

Returns

CUDNN_STATUS_SUCCESS

The value was set successfully.

CUDNN_STATUS_BAD_PARAM
The activation descriptor is a NULL pointer.

3.2.79. cudnnSetAlgorithmDescriptor ()

This function has been deprecated in cuDNN 8.0.

cudnnStatus_t cudnnSetAlgorithmDescriptor (
cudnnAlgorithmDescriptor t algorithmDesc,
cudnnAlgorithm t algorithm)

This function initializes a previously created generic algorithm descriptor object.
Parameters

algorithmDesc

Input/Output. Handle to a previously created algorithm descriptor.

algorithm

Input. Struct to specify the algorithm.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 82

cudnn_ops_infer.so Library

Returns
CUDNN_STATUS SUCCESS

The object was set successfully.

3.2.80. cudnnSetAlgorithmPerformance ()

This function has been deprecated in cuDNN 8.0.

cudnnStatus t cudnnSetAlgorithmPerformance (

cudnnAlgorithmPerformance t algoPerf,
cudnnAlgorithmDescriptor t algoDesc,
cudnnStatus t status,
float time,
size t memory)

This function initializes a previously created generic algorithm performance object.

Parameters
algoPerf

Input/Output. Handle to a previously created algorithm performance object.

algoDesc

Input. The algorithm descriptor which the performance results describe.

status

Input. The cuDNN status returned from running the algobesc algorithm.
time

Input. The GPU time spent running the algoDesc algorithm.
memory

Input. The GPU memory needed to run the algobesc algorithm.

Returns

CUDNN_STATUS_SUCCESS

The object was set successfully.

CUDNN_STATUS BAD PARAM

mode or reluNanOpt has an invalid enumerate value.

3.2.81. cudnnSetCallback ()

cudnnStatus t cudnnSetCallback (

unsigned mask,
void *udata,
cudnnCallback t fptr)

This function sets the internal states of cuDNN error reporting functionality.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 83

cudnn_ops_infer.so Library

Parameters

mask

Input. An unsigned integer. The four least significant bits (LSBs) of this unsigned integer
are used for switching on and off the different levels of error reporting messages. This
applies for both the default callbacks, and for the customized callbacks. The bit position is
in correspondence with the enum of cudnnseverity t. The user may utilize the predefined
macros CUDNN SEV_ERROR_EN, CUDNN_SEV_WARNING EN, and CUDNN_SEV_ INFO_EN to form
the bit mask. When a bit is set to 1, the corresponding message channel is enabled.

For example, when bit 3 is set to 1, the APl logging is enabled. Currently, only the log output
of level CUDNN_SEV INFO is functional; the others are not yet implemented. When used for
turning on and off the logging with the default callback, the user may pass NULL to udata
and fptr. In addition, the environment variable CUDNN_LOGDEST_ DBG must be set. For
more information, refer to Backward Compatibility and Deprecation Policy in the cuDNN
Developer Guide.

» CUDNN_ SEV_INFO EN=0b1000 (functional).
» CUDNN_SEV_ERROR_EN= 0b0010 (not yet functionall.
» CUDNN_ SEV_WARNING EN=0b0100 (not yet functionall.

The output of CUDNN SEV_FATAL is always enabled and cannot be disabled.

udata

Input. A pointer provided by the user. This pointer will be passed to the user’'s custom
logging callback function. The data it points to will not be read, nor be changed by cuDNN.
This pointer may be used in many ways, such as in a mutex or in a communication socket
for the user’s callback function for logging. If the user is utilizing the default callback
function, or doesn’t want to use this input in the customized callback function, they may
pass in NULL.

fptr

Input. A pointer to a user-supplied callback function. When NULL is passed to this pointer,
then cuDNN switches back to the built-in default callback function. The user-supplied
callback function prototype must be similar to the following (also defined in the header file):

void customizedLoggingCallback (cudnnSeverity t sev, void *udata, const
cudnnDebug t *dbg, const char *msg);
» The structure cudnnDebug_t is defined in the header file. It provides the metadata,
such as time, time since start, stream ID, process and thread ID, that the user may
choose to print or store in their customized callback.

» The variable msg is the logging message generated by cuDNN. Each line of this
message is terminated by \0, and the end of the message is terminated by \0\0. Users
may select what is necessary to show in the log, and may reformat the string.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 84

https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#backward-compatibility

cudnn_ops_infer.so Library

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

3.2.82. cudnnSetDropoutDescriptor ()

cudnnStatus t cudnnSetDropoutDescriptor (

cudnnDropoutDescriptor t dropoutDesc,
cudnnHandle t handle,

float dropout,

void *states,

size t stateSizeInBytes,
unsigned long long seed)

This function initializes a previously created dropout descriptor object. If the states argument
Is equal to NULL, then the random number generator states won't be initialized, and only

the dropout value will be set. The user is expected not to change the memory pointed at by
states for the duration of the computation.

When the states argument is not NULL, a cuRAND initialization kernel is invoked

by cudnnSetDropoutDescriptor (). This kernel requires a substantial amount

of GPU memory for the stack. Memory is released when the kernel finishes. The
CUDNN_STATUS ALLOC FAILED status is returned when no sufficient free memory is available
for the GPU stack.

Parameters

dropoutDesc

Input/Output. Previously created dropout descriptor object.

handle

Input. Handle to a previously created cuDNN context.

dropout

Input. The probability with which the value from input is set to zero during the dropout layer.

states

Output. Pointer to user-allocated GPU memory that will hold random number generator
states.

stateSizeInBytes

Input. Specifies the size in bytes of the provided memory for the states.

seed

Input. Seed used to initialize random number generator states.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 85

cudnn_ops_infer.so Library

Returns
CUDNN_STATUS SUCCESS

The call was successful.
CUDNN_STATUS_INVALID VALUE

The sizeInBytes argumentis less than the value returned by
cudnnDropoutGetStatesSize().

CUDNN_STATUS_ALLOC_FAILED

The function failed to temporarily extend the GPU stack.
CUDNN_STATUS_EXECUTION FAILED

The function failed to launch on the GPU.
CUDNN_STATUS_INTERNAL_ERROR

Internally used CUDA functions returned an error status.

3.2.83. cudnnSetFilter4dDescriptor ()

cudnnStatus t cudnnSetFilter4dDescriptor (

cudnnFilterDescriptor t filterDesc,
cudnnDataType t dataType,
cudnnTensorFormat t format,

int k,

int cp

int h,

int w)

This function initializes a previously created filter descriptor object into a 4D filter. The layout
of the filters must be contiguous in memory.

Tensor format CUDNN_TENSOR_NHWC has limited support in cudnnConvolutionForward(],
cudnnConvolutionBackwardDatal(), and cudnnConvolutionBackwardFilter().

Parameters
filterDesc

Input/Output. Handle to a previously created filter descriptor.
datatype
Input. Data type.
format
Input.Type of the filter layout format. If this input is set to CUDNN TENSOR NCHW, which is

one of the enumerant values allowed by cudnnTensorFormat_t descriptor, then the layout
of the filter is in the form of KCRS, where:

> Krepresents the number of output feature maps

» Cis the number of input feature maps

NVIDIA cuDNN PR-09702-001_v8.4.1 | 86

cudnn_ops_infer.so Library

> Risthe number of rows per filter

» sisthe number of columns per filter

If this input is set to CUDNN_TENSOR_NHWC, then the layout of the filter is in the form of KRscC.
For more information, refer to cudnnTensorFormat t.

Input. Number of output feature maps.
Input. Number of input feature maps.
Input. Height of each filter.

Input. Width of each filter.

Returns
CUDNN_STATUS_SUCCESS

The object was set successfully.

CUDNN_STATUS_BAD PARAM

At least one of the parameters k, ¢, h, w is negative or dataType or format has an invalid
enumerant value.

3.2.84. cudnnSetFilterNdDescriptor ()

cudnnStatus t cudnnSetFilterNdDescriptor (
cudnnFilterDescriptor t filterDesc,

cudnnDataType t dataType,
cudnnTensorFormat t format,

int nbDims,

const int filterDimA[])

This function initializes a previously created filter descriptor object. The layout of the filters
must be contiguous in memory.

The tensor format CUDNN_TENSOR NHWC has limited support in cudnnConvolutionForward(],
cudnnConvolutionBackwardDatal(), and cudnnConvolutionBackwardFilter(].

Parameters
filterDesc

Input/Output. Handle to a previously created filter descriptor.

datatype

Input. Data type.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 87

cudnn_ops_infer.so Library

format

Input.Type of the filter layout format. If this input is set to CUDNN_TENSOR NCHW, which is
one of the enumerant values allowed by cudnnTensorFormat_t descriptor, then the layout
of the filter is as follows:

> ForN=4, a 4D filter descriptor, the filter layout is in the form of KCRs:

> Krepresents the number of output feature maps

> Cisthe number of input feature maps

> Risthe number of rows per filter

» sisthe number of columns per filter
» Forn=3, a 3D filter descriptor, the number s (number of columns per filter) is omitted.
» ForN=5 and greater, the layout of the higher dimensions immediately follows Rs.
On the other hand, if this input is set to CUDNN TENSOR NHWC, then the layout of the filter is
as follows:
» ForN=4, a 4D filter descriptor, the filter layout is in the form of XRscC.

» Forn=3, a 3D filter descriptor, the number s (number of columns per filter) is omitted
and the layout of c immediately follows R.

» ForN=5 and greater, the layout of the higher dimensions are inserted between s and C.
For more information, refer to cudnnTensorFormat_t.

nbDims

Input. Dimension of the filter.

filterDimA

Input. Array of dimension nbDims containing the size of the filter for each dimension.

Returns
CUDNN_STATUS SUCCESS

The object was set successfully.

CUDNN_STATUS_BAD PARAM
At least one of the elements of the array filterDimA is negative or dataType or format
has an invalid enumerant value.

CUDNN_STATUS_NOT_SUPPORTED

The parameter nbDims exceeds CUDNN_ DIM MAX.

3.2.85. cudnnSetLRNDescriptor ()

cudnnStatus t cudnnSetLRNDescriptor (
cudnnLRNDescriptor t normDesc,
unsigned 1lrnN,
double lrnAlpha,

NVIDIA cuDNN PR-09702-001_v8.4.1 | 88

cudnn_ops_infer.so Library

double lrnBeta,
double 1rnkK)

This function initializes a previously created LRN descriptor object.

@ Note:

» Macros CUDNN LRN MIN N, CUDNN LRN MAX N, CUDNN LRN MIN K, CUDNN LRN MIN BETA
defined in cudnn.h specify valid ranges for parameters.

» Values of double parameters will be cast down to the tensor datatype during computation.

Parameters
normDesc

Output. Handle to a previously created LRN descriptor.
lrnN

Input. Normalization window width in elements. The LRN layer uses a window [center-
lookBehind, center+lookAhead],WherelookBehind = floor((lrnN-1)/2),
lookAhead = lrnN-lookBehind-1.50 for n=10, the window is [k-4...k...k+5] with

a total of 10 samples. For the DivisiveNormalization layer, the window has the same
extent as above in all spatial dimensions (dimA[2], dimA[3], dimA[4]). By default, 1rnN is
set to 5 in cudnnCreatel. RNDescriptorl().

lrnAlpha

Input. Value of the alpha variance scaling parameter in the normalization formula.

Inside the library code, this value is divided by the window width for LRN and by (window
width) “#spatialDimensions for DivisiveNormalization. By default, this value is set to
le-4 in cudnnCreateLRNDescriptor().

lrnBeta

Input. Value of the beta power parameter in the normalization formula. By default, this
value is set to 0.75 in cudnnCreatelL RNDescriptor(].

lrnK
Input. Value of the k parameter in the normalization formula. By default, this value is set to
2.0.

Returns

CUDNN_STATUS_SUCCESS

The object was set successfully.

CUDNN_STATUS_BAD PARAM

One of the input parameters was out of valid range as described above.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 89

cudnn_ops_infer.so Library

3.2.86. cudnnSetOpTensorDescriptor ()

cudnnStatus t cudnnSetOpTensorDescriptor (

cudnnOpTensorDescriptor_t opTensorDesc,
cudnnOpTensorOp_t opTensorOp,
cudnnDataType t opTensorCompType,
cudnnNanPropagation t opTensorNanOpt)

This function initializes a tensor pointwise math descriptor.

Parameters
opTensorDesc

Output. Pointer to the structure holding the description of the tensor pointwise math
descriptor.

opTensorOp

Input. Tensor pointwise math operation for this tensor pointwise math descriptor.

opTensorCompType

Input. Computation datatype for this tensor pointwise math descriptor.

opTensorNanOpt

Input. NAN propagation policy.

Returns

CUDNN_STATUS_SUCCESS

The function returned successfully.

CUDNN_STATUS_BAD PARAM

At least one of the input parameters passed is invalid.

3.2.87. cudnnSetPooling2dDescriptor ()

cudnnStatus t cudnnSetPooling2dDescriptor (

cudnnPoalingDescriptor_t poolingDesc,
cudnnPoolingMode t mode,
cudnnNanPropagation t maxpoolingNanOpt,
int windowHeight,

int windowWidth,

int verticalPadding,
int horizontalPadding,
int verticalStride,
int horizontalStride)

This function initializes a previously created generic pooling descriptor object into a 2D
description.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 90

cudnn_ops_infer.so Library

Parameters
poolingDesc

Input/Output. Handle to a previously created pooling descriptor.

mode

Input. Enumerant to specify the pooling mode.
maxpoolingNanOpt

Input. Enumerant to specify the Nan propagation mode.

windowHeight

Input. Height of the pooling window.

windowWidth

Input. Width of the pooling window.

verticalPadding

Input. Size of vertical padding.

horizontalPadding

Input. Size of horizontal padding

verticalStride

Input. Pooling vertical stride.

horizontalStride

Input. Pooling horizontal stride.

Returns
CUDNN_STATUS_SUCCESS

The object was set successfully.

CUDNN_STATUS_BAD_PARAM

At least one of the parameters windowHeight, windowWidth, verticalStride,
horizontalStride is negative or mode or maxpoolingNanOpt has an invalid enumerate
value.

3.2.88. cudnnSetPoolingNdDescriptor ()

cudnnStatus t cudnnSetPoolingNdDescriptor (

cudnnPoElingDescriptor_t poolingDesc,
const cudnnPoolingMode t mode,

const cudnnNanPropagation t maxpoolingNanOpt,
int nbDims,

const int windowDimA[],
const int paddingAl],

const int strideA[])

NVIDIA cuDNN PR-09702-001_v8.4.1 | 91

cudnn_ops_infer.so Library

This function initializes a previously created generic pooling descriptor object.

Parameters
poolingDesc
Input/Output. Handle to a previously created pooling descriptor.
mode
Input. Enumerant to specify the pooling mode.
maxpoolingNanOpt
Input. Enumerant to specify the Nan propagation mode.
nbDims
Input. Dimension of the pooling operation. Must be greater than zero.
windowDimA

Input. Array of dimension nbDims containing the window size for each dimension. The value
of array elements must be greater than zero.

paddingA

Input. Array of dimension nbDims containing the padding size for each dimension. Negative
padding is allowed.

strideA

Input. Array of dimension nbDims containing the striding size for each dimension. The
value of array elements must be greater than zero (meaning, negative striding size is not
allowed).

Returns

CUDNN_STATUS_SUCCESS

The object was initialized successfully.

CUDNN_STATUS_NOT_SUPPORTED

If (nbDims > CUDNN_DIM MAX-2).
CUDNN_STATUS BAD PARAM

Either nbDims, or at least one of the elements of the arrays windowDimA or strideA is
negative, or mode or maxpoolingNanOpt has an invalid enumerate value.

3.2.89. cudnnSetReduceTensorDescriptor ()

cudnnStatus t cudnnSetReduceTensorDescriptor (

cudnnReduceTensorDescriptor t reduceTensorDesc,
cudnnReduceTensorOp t reduceTensorOp,
cudnnDataType t reduceTensorCompType,
cudnnNanPropagation t reduceTensorNanOpt,
cudnnReduceTensorIndices t reduceTensorIndices,
cudnnIndicesType t reduceTensorIndicesType)

NVIDIA cuDNN PR-09702-001_v8.4.1 | 92

cudnn_ops_infer.so Library

This function initializes a previously created reduce tensor descriptor object.

Parameters
reduceTensorDesc

Input/Output. Handle to a previously created reduce tensor descriptor.

reduceTensorOp

Input. Enumerant to specify the reduce tensor operation.

reduceTensorCompType

Input. Enumerant to specify the computation datatype of the reduction.

reduceTensorNanOpt

Input. Enumerant to specify the Nan propagation mode.

reduceTensorIndices

Input. Enumerant to specify the reduced tensor indices.

reduceTensorIndicesType

Input. Enumerant to specify the reduce tensor indices type.

Returns

CUDNN_STATUS_SUCCESS

The object was set successfully.

CUDNN_STATUS_BAD PARAM

reduceTensorDesciSNULL[reduceTensorOp,reduceTensorCompType
reduceTensorNanOpt, reduceTensorIndices or reduceTensorIndicesType has an
invalid enumerant value).

3.2.90. cudnnSetSpatialTransformerNdDescriptor ()

cudnnStatus t cudnnSetSpatialTransformerNdDescriptor (

cudnnSpatialTransformerDescriptor t stDesc,
cudnnSamplerType t samplerType,
cudnnDataType t dataType,
const int nbDims,
const int dimAT[])

This function initializes a previously created generic spatial transformer descriptor object.

Parameters
stDesc

Input/Output. Previously created spatial transformer descriptor object.

samplerType

Input. Enumerant to specify the sampler type.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 93

cudnn_ops_infer.so Library

dataType

Input. Data type.
nbDims

Input. Dimension of the transformed tensor.
dimA

Input. Array of dimension nbDims containing the size of the transformed tensor for every
dimension.

Returns

CUDNN_STATUS_SUCCESS

The call was successful.

CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:

> Either stDesc or dima is NULL.

> Either dataType or samplerType has an invalid enumerant value

3.2.91. cudnnSetStream|()

cudnnStatus t cudnnSetStream(
cudnnHandle t handle,
cudaStream t streamId)

This function sets the user’'s CUDA stream in the cuDNN handle. The new stream will be used
to launch cuDNN GPU kernels or to synchronize to this stream when cuDNN kernels are
launched in the internal streams. If the cuDNN library stream is not set, all kernels use the
default (NULL) stream. Setting the user stream in the cuDNN handle guarantees the issue-
order execution of cuDNN calls and other GPU kernels launched in the same stream.
Parameters

handle

Input. Pointer to the cuDNN handle.

streamlD

Input. New CUDA stream to be written to the cuDNN handle.

Returns
CUDNN_STATUS BAD PARAM

Invalid (NuLL) handle.
CUDNN_STATUS MAPPING ERROR

Mismatch between the user stream and the cuDNN handle context.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 94

cudnn_ops_infer.so Library

CUDNN_STATUS_SUCCESS

The new stream was set successfully.

3.2.92. cudnnSetTensor ()

cudnnStatus t cudnnSetTensor (

cudnnHandle t handle,
const cudnnTensorDescriptor t yDesc,
void *Yy

const void *valuePtr)

This function sets all the elements of a tensor to a given value.

Parameters
handle

Input. Handle to a previously created cuDNN context.

yDesc

Input. Handle to a previously initialized tensor descriptor.

Input/Output. Pointer to data of the tensor described by the ybesc descriptor.

valuePtr

Input. Pointer in host memory to a single value. All elements of the y tensor will be set to
value[0]. The data type of the element in value[0] has to match the data type of tensor y.

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.

CUDNN_STATUS_BAD_PARAM

One of the provided pointers is nil.

CUDNN_STATUS_EXECUTION FAILED

The function failed to launch on the GPU.

3.2.93. cudnnSetTensor4dDescriptor ()

cudnnStatus t cudnnSetTensor4dDescriptor (
cudnnTensorDescriptor t tensorDesc,

cudnnTensorFormat t format,
cudnnDataType t dataType,
int n,

int @

int h,

int w)

NVIDIA cuDNN PR-09702-001_v8.4.1 | 95

cudnn_ops_infer.so Library

This function initializes a previously created generic tensor descriptor object into a 4D tensor.
The strides of the four dimensions are inferred from the format parameter and set in such a
way that the data is contiguous in memory with no padding between dimensions.

S| Note: The total size of a tensor including the potential padding between dimensions is limited
to 2 Giga-elements of type datatype.

Parameters
tensorDesc

Input/Output. Handle to a previously created tensor descriptor.

format

Input. Type of format.
datatype

Input. Data type.

Input. Number of images.

Input. Number of feature maps per image.
Input. Height of each feature map.

Input. Width of each feature map.

Returns

CUDNN_STATUS_SUCCESS

The object was set successfully.

CUDNN_STATUS_BAD_PARAM

At least one of the parameters n, ¢, h, w was negative or format has an invalid enumerant
value or dataType has an invalid enumerant value.

CUDNN_STATUS_NOT_SUPPORTED

The total size of the tensor descriptor exceeds the maximum limit of 2 Giga-elements.

3.2.94. cudnnSetTensor4dDescriptorEx ()

cudnnStatus_t cudnnSetTensor4dDescriptorEx (

cudnnTensorDescriptor t tensorDesc,
cudnnDataType t dataType,
int n,

int cy

NVIDIA cuDNN PR-09702-001_v8.4.1 | 96

int h,
int w,
int nStride,
int cStride,
int hStride,
int wStride)

This function initializes a previously created generic tensor descriptor object into a 4D tensor,

cudnn_ops_infer.so Library

similarly to cudnnSetTensor4dDescriptor () but with the strides explicitly passed as

parameters. This can be used to lay out the 4D tensor in any order or simply to define gaps

between dimensions.

@ Note:

» At present, some cuDNN routines have limited support for strides. Those routines will

return CUDNN_STATUS NOT SUPPORTED if a 4D tensor object with an unsupported stride is

used. cudnnTransformTensor() can be used to convert the data to a supported layout.

» The total size of a tensor including the potential padding between dimensions is limited to 2

Giga-elements of type datatype.

Parameters
tensorDesc

Input/Output. Handle to a previously created tensor descriptor.

datatype

Input. Data type.

Input. Number of images.

Input. Number of feature maps per image.

Input. Height of each feature map.

Input. Width of each feature map.
nStride

Input. Stride between two consecutive images.

cStride

Input. Stride between two consecutive feature maps.

hStride

Input. Stride between two consecutive rows.

wStride

Input. Stride between two consecutive columns.

NVIDIA cuDNN

PR-09702-001_v8.4.1

97

cudnn_ops_infer.so Library

Returns
CUDNN_STATUS SUCCESS

The object was set successfully.
CUDNN_STATUS_BAD PARAM

At least one of the parameters n, ¢, h, wor nStride, cStride, hStride, wStride Is
negative or dataType has an invalid enumerant value.

CUDNN_STATUS_NOT_SUPPORTED

The total size of the tensor descriptor exceeds the maximum limit of 2 Giga-elements.

3.2.95. cudnnSetTensorNdDescriptor ()

cudnnStatus t cudnnSetTensorNdDescriptor (
cudnnTensorDescriptor t tensorDesc,

cudnnDataType t dataType,
int nbDims,
const int dimA[],
const int strideA[])

This function initializes a previously created generic tensor descriptor object.

S Note: The total size of a tensor including the potential padding between dimensions is limited
to 2 Giga-elements of type datatype. Tensors are restricted to having at least 4 dimensions,
and at most CUDNN_DIM Max dimensions (defined in cudnn.h). When working with lower
dimensional data, it is recommended that the user create a 4D tensor, and set the size along
unused dimensions to 1.

Parameters
tensorDesc

Input/Output. Handle to a previously created tensor descriptor.
datatype
Input. Data type.

nbDims

Input. Dimension of the tensor.

@ Note: Do not use 2 dimensions. Due to historical reasons, the minimum number
of dimensions in the filter descriptor is three. For more information, refer to
cudnnGetRNNLinLayerBiasParamsl).

dimA
Input. Array of dimension nbDims that contain the size of the tensor for every dimension.
The size along unused dimensions should be set to 1. By convention, the ordering of

NVIDIA cuDNN PR-09702-001_v8.4.1 | 98

cudnn_ops_infer.so Library

dimensions in the array follows the format - [N, ¢, D, H, w], with w occupying the smallest
index in the array.

strideA
Input. Array of dimension nbDims that contain the stride of the tensor for every dimension.
By convention, the ordering of the strides in the array follows the format - [Nstride,

Cstride, Dstride, Hstride, Wstride], with Wstride occupying the smallest index in
the array.

Returns

CUDNN_STATUS_SUCCESS
The object was set successfully.
CUDNN_STATUS_BAD_PARAM

At least one of the elements of the array dima was negative or zero, or dataType has an
invalid enumerant value.
CUDNN_STATUS_NOT SUPPORTED

The parameter nbDims Is outside the range [4, CUDNN DIM MAX], or the total size of the
tensor descriptor exceeds the maximum limit of 2 Giga-elements.

3.2.96. cudnnSetTensorNdDescriptorEx ()

cudnnStatus_t cudnnSetTensorNdDescriptorEx (
cudnnTensorDescriptor t tensorDesc,

cudnnTensorFormat t format,
cudnnDataType t dataType,
int nbDims,
const int dimA[])

This function initializes an n-D tensor descriptor.

Parameters

tensorDesc

Output. Pointer to the tensor descriptor struct to be initialized.

format

Input. Tensor format.

dataType

Input. Tensor data type.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 99

cudnn_ops_infer.so Library

nbDims

Input. Dimension of the tensor.

@ Note: Do not use 2 dimensions. Due to historical reasons, the minimum number
of dimensions in the filter descriptor is three. For more information, refer to
cudnnGetRNNLinLayerBiasParamsl).

dimA

Input. Array containing the size of each dimension.

Returns

CUDNN_STATUS_SUCCESS

The function was successful.

CUDNN_STATUS_BAD_ PARAM

Tensor descriptor was not allocated properly; or input parameters are not set correctly.
CUDNN_STATUS_NOT SUPPORTED

Dimension size requested is larger than maximum dimension size supported.

3.2.97. cudnnSetTensorTransformDescriptor ()

cudnnStatus_ t cudnnSetTensorTransformDescriptor (
cudnnTensorTransformDescriptor t transformDesc,
const uint32 t nbDims,

const cudnnTensorFormat t destFormat,

const int32 t padBeforeA[],

const int32 t padAfterAl[],

const uint32 t foldA[],

const cudnnFoldingDirection t direction);

This function initializes a tensor transform descriptor that was previously created using the
cudnnCreateTensorTransformDescriptor(] function.

Parameters

transformDesc

Output. The tensor transform descriptor to be initialized.

nbDims

Input. The dimensionality of the transform operands. Must be greater than 2. For more
information, refer to Tensor Descriptor in the cuDNN Developer Guide.

destFormat

Input. The desired destination format.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 100

https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#tensor-descriptor

cudnn_ops_infer.so Library

padBeforeAl]
Input. An array that contains the amount of padding that should be added before each
dimension. Set to NULL for no padding.

padAfterAl]
Input. An array that contains the amount of padding that should be added after each
dimension. Set to NULL for no padding.

foldAl]
Input. An array that contains the folding parameters for each spatial dimension (dimensions
2 and up). Set to NULL for no folding.

direction

Input. Selects folding or unfolding. This input has no effect when folding parameters are all
<= 1. For more information, refer to cudnnFoldingDirection_t.

Returns
CUDNN_STATUS SUCCESS

The function was launched successfully.
CUDNN_STATUS_BAD PARAM
The parameter transformbesc IS NULL, or if direction is invalid, or nbDims is <= 2.

CUDNN_STATUS_NOT_SUPPORTED

If the dimension size requested is larger than maximum dimension size supported
(meaning, one of the nbDims is larger than CUDNN_DIM MAaX]), or if destFromat is something
other than NCHW or NHWC.

3.2.98. cudnnSoftmaxForward ()

cudnnStatus_t cudnnSoftmaxForward (

cudnnHandle t handle,
cudnnSoftmaxAlgorithm t algorithm,
cudnnSoftmaxMode t mode,
const void *alpha,
const cudnnTensorDescriptor t xDesc,
const void *x,

const void *beta,
const cudnnTensorDescriptor t yDesc,
void *y)

This routine computes the softmax function.

Note: All tensor formats are supported for all modes and algorithms with 4 and 5D tensors.
Performance is expected to be highest with NCHW fully-packed tensors. For more than 5
dimensions tensors must be packed in their spatial dimensions

NVIDIA cuDNN PR-09702-001_v8.4.1 | 101

cudnn_ops_infer.so Library

Parameters
handle

Input. Handle to a previously created cuDNN context.
algorithm
Input. Enumerant to specify the softmax algorithm.

mode

Input. Enumerant to specify the softmax mode.
alpha, beta
Input. Pointers to scaling factors (in host memory) used to blend the computation result

with prior value in the output layer as follows:
dstValue = alpha[0O]*result + beta[0]*priorDstValue

For more information, refer to Scaling Parameters in the cuDNN Developer Guide.

xDesc

Input. Handle to the previously initialized input tensor descriptor.

Input. Data pointer to GPU memory associated with the tensor descriptor xDesc.

yDesc

Input. Handle to the previously initialized output tensor descriptor.

Output. Data pointer to GPU memory associated with the output tensor descriptor yDesc.

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.

CUDNN_STATUS BAD PARAM
At least one of the following conditions are met:

» The dimensions n, c, h, w of the input tensor and output tensors differ.
> The datatype of the input tensor and output tensors differ.

> The parameters algorithm or mode have an invalid enumerant value.
CUDNN_STATUS_EXECUTION FAILED

The function failed to launch on the GPU.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 102

https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#scaling-parameters

cudnn_ops_infer.so Library

3.2.99. cudnnSpatialTfGridGeneratorForward ()

cudnnStatus t cudnnSpatialTfGridGeneratorForward (

cudnnHaHdle_t handle,
const cudnnSpatialTransformerDescriptor t stDesc,
const void *theta,
void *grid)

This function generates a grid of coordinates in the input tensor corresponding to each pixel
from the output tensor.

Note: Only 2d transformation is supported.

Parameters
handle

Input. Handle to a previously created cuDNN context.

stDesc

Input. Previously created spatial transformer descriptor object.

theta

Input. Affine transformation matrix. It should be of size n*2*3 for a 2d transformation,
where n is the number of images specified in stDesc.

grid
Output. A grid of coordinates. It is of size n*h*w*2 for a 2d transformation, where n, h,
w is specified in stDesc. In the 4th dimension, the first coordinate is x, and the second
coordinate is y.

Returns

CUDNN_STATUS_SUCCESS

The call was successful.

CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:

» handle is NULL.

» One of the parameters grid or theta is NULL.
CUDNN_STATUS NOT SUPPORTED

The function does not support the provided configuration. See the following for some
examples of non-supported configurations:

> The dimension of the transformed tensor specified in stDesc > 4.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 103

cudnn_ops_infer.so Library

CUDNN_STATUS_EXECUTION FAILED

The function failed to launch on the GPU.

3.2.100. cudnnSpatialTfSamplerForward ()

cudnnStatus t cudnnSpatialTfSamplerForward (

cudnnHandle t handle,
const cudnnSpatialTransformerDescriptor t stDesc,
const void *alpha,
const cudnnTensorDescriptor t xDesc,
const void *x,
const void *grid,
const void *beta,
cudnnTensorDescriptor t yDesc,
void *y)

This function performs a sampler operation and generates the output tensor using the grid
given by the grid generator.

Note: Only 2d transformation is supported.

Parameters
handle
Input. Handle to a previously created cuDNN context.
stDesc
Input. Previously created spatial transformer descriptor object.
alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the source value with prior

value in the destination tensor as follows:
dstValue = alpha[0]*srcValue + beta[0]*priorDstValue

For more information, refer to Scaling Parameters in the cuDNN Developer Guide.

xDesc

Input. Handle to the previously initialized input tensor descriptor.

Input. Data pointer to GPU memory associated with the tensor descriptor xDesc.

grid

Input. A grid of coordinates generated by cudnnSpatialTfGridGeneratorForward|().
yDesc

Input. Handle to the previously initialized output tensor descriptor.

Output. Data pointer to GPU memory associated with the output tensor descriptor yDesc.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 104

https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#scaling-parameters

cudnn_ops_infer.so Library

Returns
CUDNN_STATUS SUCCESS

The call was successful.
CUDNN_STATUS_BAD PARAM

At least one of the following conditions are met:

» handle is NULL.

» One of the parameters x, y or grid is NULL.
CUDNN_STATUS_NOT SUPPORTED

The function does not support the provided configuration. See the following for some
examples of non-supported configurations:

» The dimension of transformed tensor > 4.
CUDNN_STATUS_EXECUTION FAILED

The function failed to launch on the GPU.

3.2.101. cudnnTransformFilter ()

cudnnStatus t cudnnTransformFilter (
cudnnHandle t handle,
const cudnnTensorTransformDescriptor t transDesc,

const void *alpha,

const cudnnFilterDescriptor t srcDesc,
const void *srcData,

const void *beta,

const cudnnFilterDescriptor t destDesc,
void *destData) ;

This function converts the filter between different formats, data types, or dimensions based

on the described transformation. It can be used to convert a filter with an unsupported layout
format to a filter with a supported layout format.

This function copies the scaled data from the input filter srcbesc to the output tensor
destDesc with a different layout. If the filter descriptors of srcDesc and destDesc have
different dimensions, they must be consistent with folding and padding amount and order
specified in transDesc.

The srcDesc and destDesc tensors must not overlap in any way (imeaning, tensors cannot be
transformed in place).

Note: When performing a folding transform or a zero-padding transform, the scaling factors
(alpha, beta) should be set to (1, 0). However, unfolding transforms support any (alpha, betal
values. This function is thread safe.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 105

cudnn_ops_infer.so Library

Parameters

handle

Input. Handle to a previously created cuDNN context. For more information, refer to
cudnnHandle_t.

transDesc

Input. A descriptor containing the details of the requested filter transformation. For more
information, refer to cudnnTensorTransformDescriptor_t.

alpha, beta

Input. Pointers, in the host memory, to the scaling factors used to scale the data in the
input tensor srcbDesc. beta is used to scale the destination tensor, while alpha is used to
scale the source tensor. For more information, refer to Scaling Parameters in the cuDNN
Developer Guide.

The beta scaling value is not honored in the folding and zero-padding cases. Unfolding
supports any (alpha, betal.

srcDesc, destDesc

Input. Handles to the previously initiated filter descriptors. srcbesc and destbesc must not
overlap. For more information, refer to cudnnTensorDescriptor_t.

srcData, destData

Input. Pointers, in the host memory, to the data of the tensor described by srcbesc and
destDesc respectively.

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_BAD_PARAM

A parameter is uninitialized or initialized incorrectly, or the number of dimensions is
different between srcDesc and destDesc.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration. Also, in the folding and padding
paths, any value other than a=1 and B=0 will result in a CUDNN STATUS NOT SUPPORTED.

CUDNN_STATUS_EXECUTION_ FAILED

The function failed to launch on the GPU.

3.2.102. cudnnTransformTensor ()

cudnnStatus_t cudnnTransformTensor (
cudnnHandle t handle,

NVIDIA cuDNN PR-09702-001_v8.4.1 | 106

https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#scaling-parameters

cudnn_ops_infer.so Library

const void *alpha,
const cudnnTensorDescriptor t xDesc,
const wvoid *x,
const void *beta,
const cudnnTensorDescriptor t yDesc,
void *y)

This function copies the scaled data from one tensor to another tensor with a different layout.
Those descriptors need to have the same dimensions but not necessarily the same strides.
The input and output tensors must not overlap in any way (meaning, tensors cannot be
transformed in place). This function can be used to convert a tensor with an unsupported
format to a supported one.

Parameters
handle

Input. Handle to a previously created cuDNN context.
alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the source value with prior
value in the destination tensor as follows:
dstValue = alpha[0]*srcValue + beta[0]*priorDstValue

For more information, refer to Scaling Parameters in the cuDNN Developer Guide.

xDesc

Input. Handle to a previously initialized tensor descriptor. For more information, refer to
cudnnTensorDescriptor_t.

X
Input. Pointer to data of the tensor described by the xDesc descriptor.
yDesc
Input. Handle to a previously initialized tensor descriptor. For more information, refer to
cudnnTensorDescriptor_t.
Y
Output. Pointer to data of the tensor described by the yDesc descriptor.
Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.

CUDNN_STATUS_BAD_PARAM

The dimensions n, c, h, w or the dataType of the two tensor descriptors are different.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 107

https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#scaling-parameters

cudnn_ops_infer.so Library

CUDNN_STATUS_EXECUTION FAILED

The function failed to launch on the GPU.

3.2.103. cudnnTransformTensorEx ()

cudnnStatus t cudnnTransformTensorEx (
cudnnHandle t handle,
const cudnnTensorTransformDescriptor t transDesc,

const void *alpha,
const cudnnTensorDescriptor t srcDesc,
const void *srcData,
const void *beta,
const cudnnTensorDescriptor t destDesc,
void *destData);
This function converts the tensor layouts between different formats. It can be used to convert a

tensor with an unsupported layout format to a tensor with a supported layout format.

This function copies the scaled data from the input tensor srcbesc to the output tensor
destDesc with a different layout. The tensor descriptors of srcDesc and destDesc should
have the same dimensions but need not have the same strides.

The srcbesc and destDesc tensors must not overlap in any way (meaning, tensors cannot be
transformed in place).

Note: When performing a folding transform or a zero-padding transform, the scaling
factors (alpha,beta) should be set to (1, 0). However, unfolding transforms support any
(alpha,beta) values. This function is thread safe.

Parameters

handle

Input. Handle to a previously created cuDNN context. For more information, refer to
cudnnHandle_t.

transDesc

Input. A descriptor containing the details of the requested tensor transformation. For more
information, refer to cudnnTensorTransformDescriptor t.

alpha, beta

Input. Pointers, in the host memory, to the scaling factors used to scale the data in the
Input tensor srchDesc. beta Is used to scale the destination tensor, while alpha is used to
scale the source tensor. For more information, refer to Scaling Parameters in the cuDNN
Developer Guide.

The beta scaling value is not honored in the folding and zero-padding cases. Unfolding
supports any (alpha, betal.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 108

https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#scaling-parameters

cudnn_ops_infer.so Library

srcDesc, destDesc

Input. Handles to the previously initiated tensor descriptors. srcbesc and destDesc must
not overlap. For more information, refer to cudnnTensorDescriptor_t.

srcData, destData

Input. Pointers, in the host memory, to the data of the tensor described by srcDesc and
destDesc respectively.

CUDNN_STATUS_SUCCESS

The function was launched successfully.

CUDNN_STATUS_BAD_PARAM

A parameter is uninitialized or initialized incorrectly, or the number of dimensions is
different between srcbesc and destDesc.

CUDNN_STATUS_NOT_SUPPORTED

Function does not support the provided configuration. Also, in the folding and padding
paths, any value other than A=1 and B=0 will result in a CUDNN_STATUS NOT SUPPORTED.

CUDNN_STATUS_EXECUTION_ FAILED

Function failed to launch on the GPU.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 109

Chapter 4. cudnn ops train.so
Library

4.1. APl Functions

4.1.1. cudnnActivationBackward ()

cudnnStatus t cudnnActivationBackward (

cudnnHaHdle_t handle,
cudnnActivationDescriptor t activationDesc,
const void *alpha,
const cudnnTensorDescriptor t yDesc,
const void BV,
const cudnnTensorDescriptor t dyDesc,
const void *dy,
const cudnnTensorDescriptor t xDesc,
const void *x,
const void *beta,
const cudnnTensorDescriptor t dxDesc,
void *dx)

This routine computes the gradient of a neuron activation function.

%] Note:

» In-place operation is allowed for this routine; meaning dy and dx pointers may be equal.
However, this requires the corresponding tensor descriptors to be identical (particularly,
the strides of the input and output must match for an in-place operation to be allowed).

» Alltensor formats are supported for 4 and 5 dimensions, however, the best performance is
obtained when the strides of yDesc and xDesc are equal and Hii-packed. For more than 5
dimensions the tensors must have their spatial dimensions packed.

Parameters

handle

Input. Handle to a previously created cuDNN context. For more information, refer to
cudnnHandle_t.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 110

cudnn_ops_train.so Library

activationDesc

Input. Activation descriptor. For more information, refer to cudnnActivationDescriptor_t.

alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the computation result

with prior value in the output layer as follows:
dstValue = alpha[0O]*result + beta[0]*priorDstValue

For more information, refer to Scaling Parameters in the cuDNN Developer Guide.

yDesc

Input. Handle to the previously initialized input tensor descriptor. For more information,
refer to cudnnTensorDescriptor_t.

Input. Data pointer to GPU memory associated with the tensor descriptor yDesc.
dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.
dy

Input. Data pointer to GPU memory associated with the tensor descriptor dyDesc.
xDesc

Input. Handle to the previously initialized output tensor descriptor.

Input. Data pointer to GPU memory associated with the output tensor descriptor xDesc.

dxDesc

Input. Handle to the previously initialized output differential tensor descriptor.

dx

Output. Data pointer to GPU memory associated with the output tensor descriptor dxDesc.

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:

» The strides nStride, cStride, hStride, wStride of the input differential tensor
and output differential tensor differ and in-place operation is used.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration. See the following for some
examples of non-supported configurations:

NVIDIA cuDNN PR-09702-001_v8.4.1 | 111

https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#scaling-parameters

cudnn_ops_train.so Library

» The dimensionsn, c, h, woftheinputtensorand outputtensor differ.

» The datatype of the input tensor and output tensor differs.

» The strides nStride, cStride, hStride, wStride of the inputtensor and the input
differential tensor differ.

» The strides nstride, cStride, hStride, wStride of the output tensor and the
output differential tensor differ.

CUDNN_STATUS_EXECUTION_ FAILED

The function failed to launch on the GPU.

4.1.2.

cudnnBatchNormalizationBackward ()

cudnnStatus t cudnnBatchNormalizationBackward (

cudnnHandle t handle,
cudnnBatchNormMode t mode,

const void *alphaDataDiff,
const void *betaDataDiff,
const void *alphaParamDiff,
const void *betaParamDiff,
const cudnnTensorDescriptor t xDesc,

const void R

const cudnnTensorDescriptor t dyDesc,

const void “ely,

const cudnnTensorDescriptor t dxDesc,

void *dx,

const cudnnTensorDescriptor t bnScaleBiasDiffDesc,
const void *bnScale,

void *resultBnScaleDiff,
void *resultBnBiasDiff,
double epsilon,

const void *savedMean,

const void *savedInvVariance)

This function performs the backward batch normalization layer computation. This layeris
based on the paper Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift, S. loffe, C. Szegedy, 2015. .

@ Note:

» Only 4D and 5D tensors are supported.
» The epsilon value has to be the same during training, backpropagation, and inference.

» Higher performance can be obtained when HW-packed tensors are used for all of x, dy,
dx.

For more information, refer to cudnnDeriveBNTensorDescriptor() for the secondary tensor
descriptor generation for the parameters used in this function.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor. For more information, refer
to cudnnHandle_t.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 112

https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167

cudnn_ops_train.so Library

mode

Input. Mode of operation (spatial or per-activation]. For more information, refer to
cudnnBatchNormMode_t.

*alphaDataDiff, *betaDataDiff

Inputs. Pointers to scaling factors (in host memory) used to blend the gradient output dx

with a prior value in the destination tensor as follows:
dstValue = alphaDataDiff[0]*resultValue + betaDataDiff[0]*priorDstValue

For more information, refer to Scaling Parameters in the cuDNN Developer Guide.
*alphaParamDiff, *betaParamDiff

Inputs. Pointers to scaling factors (in host memory) used to blend the gradient outputs

resultBnScaleDiff and resultBnBiasDiff with prior values in the destination tensor as

follows:
dstValue = alphaParamDiff[0]*resultValue + betaParamDiff[0] *priorDstValue

For more information, refer to Scaling Parameters.

xDesc, dxDesc, dyDesc

Inputs. Handles to the previously initialized tensor descriptors.

*x
Inputs. Data pointer to GPU memory associated with the tensor descriptor xDesc, for the
layer’s x data.

*dy
Inputs. Data pointer to GPU memory associated with the tensor descriptor dybesc, for the
backpropagated differential dy input.

*dx
Inputs/Outputs. Data pointer to GPU memory associated with the tensor descriptor dxDesc,
for the resulting differential output with respect to x.

bnScaleBiasDiffDesc
Input. Shared tensor descriptor for the following five tensors: bnscale,
resultBnScaleDiff, resultBnBiasDiff, savedMean, savedInvVariance. lhe

dimensions for this tensor descriptor are dependent on normalization mode. For more
information, refer to cudnnDeriveBNTensorDescriptor().

S Note: The data type of this tensor descriptor must be f1oat for FP16 and FP32 input
tensors, and double for FP64 input tensors.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 113

https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#scaling-parameters
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#scaling-parameters

cudnn_ops_train.so Library

*bnScale
Input. Pointer in the device memory for the batch normalization scale parameter (in the

original paper the quantity scale is referred to as gamma).

Note: The bnBias parameter is not needed for this layer's computation.

resultBnScaleDiff, resultBnBiasDiff
Outputs. Pointers in device memory for the resulting scale and bias differentials computed
by this routine. Note that these scale and bias gradients are weight gradients specific to
this batch normalization operation, and by definition are not backpropagated.

epsilon
Input. Epsilon value used in batch normalization formula. Its value should be equal to or

greater than the value defined for CUDNN BN MIN EPSILON in cudnn.h. The same epsilon
value should be used in forward and backward functions.

*savedMean, *savedInvVariance
Inputs. Optional cache parameters containing saved intermediate results that were
computed during the forward pass. For this to work correctly, the layer's x and bnScale
data have to remain unchanged until this backward function is called.

S Note: Both these parameters can be NULL but only at the same time. It is recommended to
use this cache since the memory overhead is relatively small.

Supported configurations

This function supports the following combinations of data types for various descriptors.

Table 12. Supported configurations
alphaDataDiff,
Data Type betaDataDiff,al
Configurations xDesc bnScaleBiasM¢ betaParamDiff dyDesc dxDesc

PSEUDO_ HALF CONFDSN DATA HALEUDNN DATA FLOZBUDNN DATA FLOGUDNN DATA HALEUDNN DATA HALF
FLOAT CONFIG A CUDNN DATA FLOZBUDNN DATA FLOZUDNN DATA FLOGUDNN DATA FLOZUDNN DATA FLOAT

DOUBLE CONFIG CUDNN DATA DOUBUBENN DATA DOUBUBNN DATA DOUBUENN DATA DOUBUENN DATA DOUBLE

Returns
CUDNN_STATUS_SUCCESS

The computation was performed successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 114

CUDNN_STATUS_BAD_ PARAM

At least one of the following conditions are met:

cudnn_ops_train.so Library

» Any of the pointers alpha, beta, x, dy, dx, bnScale, resultBnScaleDiff,
resultBnBiasDiff IS NULL.

» The number of xDesc or yDesc or dxDesc tensor descriptor dimensions is not within

the range of (4, 5] (only 4D and 5D tensors are supported).

» bnScaleBiasDiffDesc dimensions are not 1xCx1x1 for 4D and 1xCx1x1x1 for 5D for
spatial, and are not TxCxHxW for 4D and TxCxDxHxW for 5D for per-activation mode.

» Exactly one of savedMean, savedInvVariance pointers is NULL.

> epsilonvalueis less than CUDNN BN MIN EPSILON.

» Dimensions or data types mismatch for any pair of xDesc, dyDesc, dxDesc.

4.1.3.

const
const
const
const
const
const
const
const
const
const
const
void
const
void
const
const
const
void
void
double
const
const

const cudnnActivationDescriptor t

void
size t
void
size t

cudnnBatchNormalizationBackwardEx ()

cudnnStatus_t cudnnBatchNormalizationBackwardEx (
cudnnHandle t
cudnnBatchNormMode t
cudnnBatchNormOps t

void
void
void
void
cudnnTensorDescriptor t
void
cudnnTensorDescriptor t
void
cudnnTensorDescriptor t
void
cudnnTensorDescriptor t

cudnnTensorDescriptor t
cudnnTensorDescriptor t

void
void

void
void

handle,

mode,

bnOps,
*alphaDataDiff,
*betaDataDiff,
*alphaParamDiff,
*betaParamDiff,
xDesc,

*xData,

yDesc,

*yData,

dyDesc,

*dyData,

dzDesc,

*dzData,

dxDesc,

*dxData,
dBnScaleBiasDesc,
*bnScaleData,
*bnBiasData,
*dBnScaleData,
*dBnBiasData,
epsilon,
*savedMean,
*savedInvVariance,
activationDesc,
*workspace,

workSpaceSizeInBytes

*reserveSpace

reserveSpaceSizeInBytes) ;

This function is an extension of the cudnnBatchNormalizationBackward() for performing the
backward batch normalization layer computation with a fast NHWC semi-persistent kernel.
This APl will trigger the new semi-persistent NHWC kernel when the following conditions are

true:

» Alltensors, namely, x, y, dz, dy, dx mustbe NHWC-fully packed, and must be of the
type CUDNN DATA HALF.

» The input parameter mode must be set to CUDNN BATCHNORM SPATIAL PERSISTENT.

NVIDIA cuDNN

PR-09702-001_v8.4.1 | 115

cudnn_ops_train.so Library

> workspace IS not NULL.

» Before cuDNN version 8.2.0, the tensor ¢ dimension should always be a multiple of
4. After 8.2.0, the tensor ¢ dimension should be a multiple of 4 only when bnoOps is
CUDNN_BATCHNORM OPS BN ADD ACTIVATION.

> workSpaceSizelInBytes is equal to or larger than the amount required by
cudnnGetBatchNormalizationBackwardExWorkspaceSize().

» reserveSpaceSizeInBytes is equalto or larger than the amount required by
cudnnGetBatchNormalizationTrainingExReserveSpaceSizel().

» The content in reserveSpace stored by cudnnBatchNormalizationForwardTrainingEx(]
must be preserved.

If workspace IS NULL and workSpaceSizeInBytes of zero is passed in, this APl will function
exactly like the non-extended function cudnnBatchNormalizationBackward.

This workspace is not required to be clean. Moreover, the workspace does not have to
remain unchanged between the forward and backward pass, as it is not used for passing any
information.

This extended function can accept a *workspace pointer to the GPU workspace, and
workSpaceSizelInBytes, the size of the workspace, from the user.

The bnOps input can be used to set this function to perform either only the batch
normalization, or batch normalization followed by activation, or batch normalization followed
by element-wise addition and then activation.

Only 4D and 5D tensors are supported. The epsilon value has to be the same during the
training, the backpropagation, and the inference.

When the tensor layout is NCHW, higher performance can be obtained when HW-packed
tensors are used for x, dy, dx.

Parameters

handle

Input. Handle to a previously created cuDNN library descriptor. For more information, refer
to cudnnHandle_t.

mode

Input. Mode of operation (spatial or per-activation]. For more information, refer to
cudnnBatchNormMode_t.

bnOps
Input. Mode of operation. Currently, CUDNN_BATCHNORM OPS BN ACTIVATION and
CUDNN_ BATCHNORM OPS BN ADD ACTIVATION are only supported in the NHWC layout.
For more information, refer to cudnnBatchNormOps_t. This input can be used to set this
function to perform either only the batch normalization, or batch normalization followed by
activation, or batch normalization followed by element-wise addition and then activation.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 116

cudnn_ops_train.so Library

*alphaDataDiff, *betaDataDiff

Inputs. Pointers to scaling factors (in host memory) used to blend the gradient output dx

with a prior value in the destination tensor as follows:
dstValue = alpha[0O]*resultValue + beta[0]*priorDstValue

For more information, refer to Scaling Parameters in the cuDNN Developer Guide.

*alphaParamDiff, *betaParamDiff

Inputs. Pointers to scaling factors (in host memory) used to blend the gradient outputs

dBnScaleData and dBnBiasData with prior values in the destination tensor as follows:
dstValue = alpha[0O]*resultValue + beta[0]*priorDstValue

For more information, refer to Scaling Parameters in the cuDNN Developer Guide.

xDesc, *x, yDesc, *yData, dyDesc, *dyData

Inputs. Tensor descriptors and pointers in the device memory for the layer’s x data,
backpropagated gradient input dy, the original forward output y data. ybesc and yData are
not needed if bnOps Is set to CUDNN BATCHNORM OPS BN, users may pass NULL. For more
information, refer to cudnnTensorDescriptor_t.

dzDesc, *dzData, dxDesc, *dxData
Outputs. Tensor descriptors and pointers in the device memory for the computed
gradient output dz, and dx. dzDesc and *dzData are not needed when bnoOps Is
CUDNN_BATCHNORM OPS BN or CUDNN BATCHNORM OPS BN ACTIVATION, USers may pass
NULL. For more information, refer to cudnnTensorDescriptor_t.

dBnScaleBiasDesc

Input. Shared tensor descriptor for the following six tensors: bnScaleData, bnBiasData,
dBnScaleData, dBnBiasData, savedMean, and savedInvVariance. For more information,
refer to cudnnDeriveBNTensorDescriptor().

The dimensions for this tensor descriptor are dependent on normalization mode.

S Note: The data type of this tensor descriptor must be float for FP16 and FP32 input
tensors and double for FP64 input tensors.

For more information, refer to cudnnTensorDescriptor t.

*bnScaleData

Input. Pointer in the device memory for the batch normalization scale parameter (in the
original paper the quantity scale is referred to as gammal).

*bnBiasData
Input. Pointers in the device memory for the batch normalization bias parameter [in the
original paper bias is referred to as beta). This parameter is used only when activation
should be performed.

*dBnScaleData, dBnBiasData
Inputs. Pointers in the device memory for the gradients of bnScaleData and bnBiasData,
respectively.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 117

https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#scaling-parameters
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#scaling-parameters
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167

cudnn_ops_train.so Library

epsilon

Input. Epsilon value used in batch normalization formula. Its value should be equal to or
greater than the value defined for CUDNN BN MIN EPSILON in cudnn.h. The same epsilon
value should be used in forward and backward functions.

*savedMean, *savedInvVariance
Inputs. Optional cache parameters containing saved intermediate results computed during
the forward pass. For this to work correctly, the layer's x and bnScaleData, bnBiasData
data has to remain unchanged until this backward function is called. Note that both these
parameters can be NULL but only at the same time. It is recommended to use this cache
since the memory overhead is relatively small.

activationDesc
Input. Descriptor for the activation operation. When the bnops input is set to either
CUDNN BATCHNORM OPS BN ACTIVATION Or CUDNN BATCHNORM OPS BN ADD ACTIVATION
then this activation is used, otherwise user may pass NULL.

workspace
Input. Pointer to the GPU workspace. If workspace is NULL and workSpaceSizeInBytes
of zero is passed in, then this APl will function exactly like the non-extended function
cudnnBatchNormalizationBackward().

workSpaceSizeInBytes
Input. The size of the workspace. It must be large enough to trigger the fast NHWC semi-
persistent kernel by this function.

*reserveSpace
Input. Pointer to the GPU workspace for the reserveSpace.

reserveSpaceSizelInBytes
Input. The size of the reserveSpace. It must be equal or larger than the amount required
by cudnnGetBatchNormalizationTrainingExReserveSpaceSize(].

This function supports the following combinations of data types for various descriptors.

Table 13. Supported configurations

alphaDataDiff,
Data Type betaDataDiff,alphi dyDesc, dzDesc,
Configurations xDesc, yDesc dBnScaleBiasDes betaParamDiff dxDesc

PSEUDO_HALF CONFIGUDNN DATA HALF | CUDNN DATA FLOAT CUDNN DATA FLOAT CUDNN DATA HALF
FLOAT CONFIG CUDNN_DATA FLOAT CUDNN DATA FLOAT CUDNN DATA FLOAT CUDNN DATA FLOAT

DOUBLE CONFIG CUDNN_ DATA DOUBLECUDNN DATA DOUBLECUDNN DATA DOUBLECUDNN DATA DOUBLE

NVIDIA cuDNN PR-09702-001_v8.4.1 | 118

cudnn_ops_train.so Library

Returns
CUDNN_STATUS SUCCESS

The computation was performed successfully.
CUDNN_STATUS_NOT SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD PARAM

At least one of the following conditions are met:

» Any of the pointers alphabDataDiff, betaDataDiff, alphaParamDiff,
betaParamDiff, x, dy, dx, bnScale, resultBnScaleDiff, resultBnBiasDiff
IS NULL.

» The number of xDesc or yDesc or dxDesc tensor descriptor dimensions is not within
the range of (4, 5] (only 4D and 5D tensors are supported).

» dBnScaleBiasDesc dimensions not TxCx1x1 for 4D and 1xCx1x1x1 for 5D for spatial,
and are not 1xCxHxW for 4D and 1xCxDxHxW for 5D for per-activation mode.

> Exactly one of savedMean, savedInvVariance pointers is NULL.
> epsilonvalueis less than CUDNN BN MIN EPSILON.

» Dimensions or data types mismatch for any pair of xDesc, dyDesc, dxDesc.

4.1.4. cudnnBatchNormalizationForwardTraining ()
cudnnStatus_ t cudnnBatchNormalizationForwardTraining (
cudnnHandle t handle,
cudnnBatchNormMode t mode,
const void *alpha,
const void *beta,
const cudnnTensorDescriptor t xDesc,
const void X,
const cudnnTensorDescriptor t yDesc,
void =Yy
const cudnnTensorDescriptor t bnScaleBiasMeanVarDesc,
const void *bnScale,
const void *bnBias,
double exponentialAverageFactor,
void *resultRunningMean,
void *resultRunningVariance,
double epsilon,
void *resultSaveMean,
void *resultSaveInvVariance)

This function performs the forward batch normalization layer computation for the training
phase. This layer is based on the paper Batch Normalization: Accelerating Deep Network
Iraining by Reducing Internal Covariate Shift, S. loffe, C. Szegedy, 2015.

@ Note:

» Only 4D and 5D tensors are supported.

» The epsilon value has to be the same during training, backpropagation, and inference.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 119

https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167

cudnn_ops_train.so Library

» Forthe inference phase, use cudnnBatchNormalizationForwardInference.

» Higher performance can be obtained when HW-packed tensors are used for both x and y.

Refer to cudnnDeriveBNTensorDescriptor(] for the secondary tensor descriptor generation for
the parameters used in this function.

Parameters
handle

Handle to a previously created cuDNN library descriptor. For more information, refer to
cudnnHandle_t.

mode

Mode of operation (spatial or per-activation). For more information, refer to
cudnnBatchNormMode_t.

alpha, beta

Inputs. Pointers to scaling factors (in host memory) used to blend the layer output value

with prior value in the destination tensor as follows:
dstValue = alpha[0O]*resultValue + beta[0]*priorDstValue

For more information, refer to Scaling Parameters in the cuDNN Developer Guide.

xDesc, yDesc

Tensor descriptors and pointers in device memory for the layer's x and y data. For more
information, refer to cudnnTensorDescriptor_t.

*x
Input. Data pointer to GPU memory associated with the tensor descriptor xDesc, for the
layer’s x input data.

*y
Input. Data pointer to GPU memory associated with the tensor descriptor ybesc, for the
youtput of the batch normalization layer.

bnScaleBiasMeanVarDesc
Shared tensor descriptor desc for the secondary tensor that was derived by

cudnnDeriveBNTensorDescriptor(). The dimensions for this tensor descriptor are
dependent on the normalization mode.

bnScale, bnBias
Inputs. Pointers in device memory for the batch normalization scale and bias parameters
(in the original paper bias is referred to as beta and scale as gammal). Note that bnBias
parameter can replace the previous layer's bias parameter for improved efficiency.
exponentialAverageFactor
Input. Factor used in the moving average computation as follows:

runningMean = runningMean* (1-factor) + newMean*factor

NVIDIA cuDNN PR-09702-001_v8.4.1 | 120

https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#scaling-parameters
https://arxiv.org/abs/1502.03167

cudnn_ops_train.so Library

Use a factor=1/ (1+n) at N-th call to the function to get Cumulative Moving Average (CMA)

behavior such that:
CMA[n] = (x[1]+...+x[n])/n

This is proved below:

CMA[n+l1] = (n*CMA[n]+x[n+1])/ (n+l)

= ((n+l)*CMA[n]-CMA[n])/(n+l) + x[n+1]/(n+1)
= CMA[n]*(1-1/(n+1))+x[n+1]1*1/ (n+1)

= CMA[n]*(l-factor) + x(n+l)*factor

resultRunningMean, resultRunningVariance

Inputs/Outputs. Running mean and variance tensors (these have the same descriptor as the
bias and scale). Both of these pointers can be NULL but only at the same time. The value
stored in resultRunningVariance (or passed as an input in inference mode) is the sample
variance and is the moving average of variance [x] where the variance is computed either
over batch or spatial+batch dimensions depending on the mode. If these pointers are not
NULL, the tensors should be initialized to some reasonable values or to 0.

epsilon

Input. Epsilon value used in the batch normalization formula. Its value should be equal to or
greater than the value defined for CUDNN_BN MIN EPSILON in cudnn.h. The same epsilon
value should be used in forward and backward functions.

resultSaveMean, resultSaveInvVariance
Outputs. Optional cache to save intermediate results computed during the forward
pass. These buffers can be used to speed up the backward pass when supplied to the
cudnnBatchNormalizationBackward(] function. The intermediate results stored in
resultSaveMean and resultSavelInvVariance buffers should not be used directly
by the user. Depending on the batch normalization mode, the results stored in
resultSavelInvVariance may vary. For the cache to work correctly, the input layer data
must remain unchanged until the backward function is called. Note that both parameters
can be NULL but only at the same time. In such a case, intermediate statistics will not
be saved, and cudnnBatchNormalizationBackward(] will have to re-compute them. It is
recommended to use this cache as the memory overhead is relatively small because these
tensors have a much lower product of dimensions than the data tensors.

Supported configurations

This function supports the following combinations of data types for various descriptors.

Table 14. Supported configurations
Data Type
Configurations xDesc bnScaleBiasMean alpha, beta yDesc

PSEUDO_HALF CONFIGUDNN DATA HALF A CUDNN DATA FLOAT CUDNN DATA FLOAT CUDNN DATA HALF

FLOAT CONFIG CUDNN_ DATA FLOAT CUDNN DATA FLOAT CUDNN DATA FLOAT CUDNN DATA FLOAT

NVIDIA cuDNN PR-09702-001_v8.4.1 | 121

cudnn_ops_train.so Library

Data Type
Configurations xDesc bnScaleBiasMean alpha, beta yDesc
DOUBLE CONFIG CUDNN DATA DOUBLECUDNN DATA DOUBLECUDNN DATA DOUBLECUDNN DATA DOUBLE

PSE

Ret

UDO BFLOAT16 CCWENN; DATA BFLOATAWDNN DATA FLOAT CUDNN DATA FLOAT CUDNN DATA BFLOAT16

urns

CUDNN_STATUS_ SUCCESS

T

he computation was performed successfully.

CUDNN_STATUS_NOT_SUPPORTED

T

he function does not support the provided configuration.

CUDNN_STATUS_BAD_ PARAM

A

>

>

vV v v Vv

4.1

cud

NVIDI

t least one of the following conditions are met:

One of the pointers alpha, beta, x, y, bnScale, bnBias iS NULL.

The number of xDesc or yDesc tensor descriptor dimensions is not within the range of
[4,5] (only 4D and 5D tensors are supported).

bnScaleBiasMeanVarDesc dimensions are not 1xCx1x1 for 4D and 1xCx1x1x1 for 5D for
spatial, and are not 1xCxHxW for 4D and 1xCxDxHxW for 5D for per-activation mode.

Exactly one of resultSaveMean, resultSaveInvVariance pointers are NULL.
Exactly one of resultRunningMean, resultRunningInvVariance pointers are NULL.
epsilon value is less than CUDNN BN MIN EPSILON.
Dimensions or data types mismatch for xDesc, yDesc.

. cudnnBatchNormalizationForwardTrainingEx ()

nnStatus t cudnnBatchNormalizationForwardTrainingEx (

cudnnHandle t handle,

cudnnBatchNormMode t mode,

cudnnBatchNormOps t bnOps,

const void *alpha,

const void *beta,

const cudnnTensorDescriptor t xDesc,

const void *xData,

const cudnnTensorDescriptor t zDesc,

const void *zData,

const cudnnTensorDescriptor t yDesc,

void *yData,

const cudnnTensorDescriptor t bnScaleBiasMeanVarDesc,

const void *bnScaleData,

const void *bnBiasData,

double exponentialAverageFactor,

void *resultRunningMeanData,

void *resultRunningVarianceData,

double epsilon,

void *saveMean,

void *savelInvVariance,

const cudnnActivationDescriptor t activationDesc,

void *workspace,

size t workSpaceSizeInBytes

A cuDNN PR-09702-001_v8.4.1 | 122

cudnn_ops_train.so Library

void *reserveSpace
size t reserveSpaceSizeInBytes) ;

This function is an extension of the cudnnBatchNormalizationForwardTraining() for performing
the forward batch normalization layer computation.

This APl will trigger the new semi-persistent NHWC kernel when the following conditions are
true:

» Alltensors, namely, x, y, dz, dy, dx mustbe NHWC-fully packed and must be of the
type CUDNN DATA HALF.
» The input parameter mode must be set to CUDNN BATCHNORM SPATIAL PERSISTENT.

» workspace iS not NULL.

» Before cuDNN version 8.2.0, the tensor ¢ dimension should always be a multiple of
4. After 8.2.0, the tensor ¢ dimension should be a multiple of 4 only when bnoOps is
CUDNN BATCHNORM OPS BN ADD ACTIVATION.

» workSpaceSizeInBytes Is equal to or larger than the amount required by
cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize|().

» reserveSpaceSizeInBytes Is equal to or larger than the amount required by
cudnnGetBatchNormalizationTrainingExReserveSpaceSizel().

» The content in reserveSpace stored by cudnnBatchNormalizationForwardTrainingEx(]
must be preserved.

If workspace IS NULL and workSpaceSizeInBytes of zero is passed in, this APl will function
exactly like the non-extended function cudnnBatchNormalizationForwardTraining().

This workspace is not required to be clean. Moreover, the workspace does not have to
remain unchanged between the forward and backward pass, as it is not used for passing any
information.

This extended function can accept a *workspace pointer to the GPU workspace, and
workSpaceSizelInBytes, the size of the workspace, from the user.

The bnOps input can be used to set this function to perform either only the batch
normalization, or batch normalization followed by activation, or batch normalization followed
by element-wise addition and then activation.

Only 4D and 5D tensors are supported. The epsilon value has to be the same during the
training, the backpropagation, and the inference.

When the tensor layout is NCHW, higher performance can be obtained when HW-packed
tensors are used for x, dy, dx.

Parameters
handle

Handle to a previously created cuDNN library descriptor. For more information, refer to
cudnnHandle_t.

mode

Mode of operation (spatial or per-activation). For more information, refer to
cudnnBatchNormMode_t.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 123

cudnn_ops_train.so Library

bnOps
Input. Mode of operation for the fast NHWC kernel. For more information, refer to
cudnnBatchNormOps_t. This input can be used to set this function to perform either
only the batch normalization, or batch normalization followed by activation, or batch
normalization followed by element-wise addition and then activation.

*alpha, *beta

Inputs. Pointers to scaling factors (in host memory) used to blend the layer output value

with prior value in the destination tensor as follows:
dstValue = alpha[0O]*resultValue + beta[0]*priorDstValue

For more information, refer to Scaling Parameters in the cuDNN Developer Guide.

xDesc, *xData, zDesc, *zData, yDesc, *yData

Tensor descriptors and pointers in device memory for the layer's input x and output y, and
for the optional z tensor input for residual addition to the result of the batch normalization
operation, prior to the activation. The optional zDes and *zData descriptors are only used
when bnOps IS CUDNN_BATCHNORM OPS BN ADD ACTIVATION, otherwise users may pass
NULL. When in use, z should have exactly the same dimension as x and the final output y.
For more information, refer to cudnnTensorDescriptor_t.

bnScaleBiasMeanVarDesc

Shared tensor descriptor desc for the secondary tensor that was derived by
cudnnDeriveBNTensorDescriptor(]. The dimensions for this tensor descriptor are
dependent on the normalization mode.

*bnScaleData, *bnBiasData
Inputs. Pointers in device memory for the batch normalization scale and bias parameters (in
the original paper, bias is referred to as beta and scale as gamma). Note that bnBiasData
parameter can replace the previous layer’s bias parameter for improved efficiency.
exponentialAverageFactor
Input. Factor used in the moving average computation as follows:

runningMean = runningMean* (1-factor) + newMean*factor

Use a factor=1/ (1+n) at N-th call to the function to get Cumulative Moving Average (CMA)

behavior such that:

CMA[n] = (x[1l]+...+x[n])/n

This is proved below:

Writing

CMA[n+1l] = (n*CMA[n]+x[n+1])/ (n+1)
((n+l)*CMA[n]-CMA[n])/ (n+l) + x[n+1]/(n+1)

CMA[n]*(1-1/(n+l))+x[n+1]1*1/ (n+1)
CMA[n]*(l-factor) + x(n+l)*factor

*resultRunningMeanData, *resultRunningVarianceData

Inputs/Outputs. Pointers to the running mean and running variance data. Both

these pointers can be NULL but only at the same time. The value stored in
resultRunningVarianceData (or passed as an input in inference mode] is the sample
variance and is the moving average of variance [x] where the variance is computed either

NVIDIA cuDNN PR-09702-001_v8.4.1 | 124

https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#scaling-parameters
https://arxiv.org/abs/1502.03167

cudnn_ops_train.so Library

over batch or spatial+batch dimensions depending on the mode. If these pointers are not
NULL, the tensors should be initialized to some reasonable values or to 0.

epsilon

Input. Epsilon value used in the batch normalization formula. Its value should be equal to or
greater than the value defined for CUDNN BN MIN EPSILON in cudnn.h. The same epsilon
value should be used in forward and backward functions.

*saveMean, *saveInvVariance
Outputs. Optional cache parameters containing saved intermediate results computed
during the forward pass. For this to work correctly, the layer's x and bnScaleData,
bnBiasData data has to remain unchanged until this backward function is called. Note that
both these parameters can be NULL but only at the same time. It is recommended to use
this cache since the memory overhead is relatively small.

activationDesc
Input. The tensor descriptor for the activation operation. When the
bnOps Input is set to either CUDNN BATCHNORM OPS BN ACTIVATION Or
CUDNN_ BATCHNORM OPS BN ADD ACTIVATION then this activation is used, otherwise user
may pass NULL.

*workspace, workSpaceSizeInBytes
Inputs. *workspace is a pointer to the GPU workspace, and workSpaceSizeInBytes is
the size of the workspace. When *workspace is not NULL and *workSpaceSizeInBytes IS
large enough, and the tensor layout is NHWC and the data type configuration is supported,
then this function will trigger a new semi-persistent NHWC kernel for batch normalization.
The workspace is not required to be clean. Also, the workspace does not need to remain
unchanged between the forward and backward passes.

*reserveSpace
Input. Pointer to the GPU workspace for the reserveSpace.

reserveSpaceSizelInBytes
Input. The size of the reserveSpace. Must be equal or larger than the amount required by
cudnnGetBatchNormalizationTrainingExReserveSpaceSize().

Supported configurations

This function supports the following combinations of data types for various descriptors.

Table 15. Supported configurations
Data Type
Configurations xDesc bnScaleBiasM¢ alpha, beta zDesc yDesc

PSEUDO_HALF CONBDEN DATA HALEUDNN DATA FLOGUDNN DATA FLOBUDNN DATA HALEUDNN DATA HALF
FLOAT CONFIG | CUDNN_DATA FLOGUDNN DATA FLOGUDNN DATA FLONDt supported | CUDNN DATA FLOAT

DOUBLE_CONFIG CUDNN_DATA DOUBDENN DATA DOUBEDENN DATA DOUBGE supported | CUDNN_DATA DOUBLE

NVIDIA cuDNN PR-09702-001_v8.4.1 | 125

cudnn_ops_train.so Library

Returns

CUDNN_STATUS_SUCCESS

The computation was performed successfully.
CUDNN_STATUS_NOT SUPPORTED

The function does not support the provided configuration.

CUDNN_STATUS BAD PARAM
At least one of the following conditions are met:

» One of the pointers alpha, beta, x, y, bnScaleData, bnBiasData IS NULL.

» The number of xDesc or yDesc tensor descriptor dimensions is not within the [4, 5]
range (only 4D and 5D tensors are supported).

> bnScaleBiasMeanVarDesc dimensions are not 1xCx1x1 for 4D and 1xCx1x1x1 for 5D for
spatial, and are not 1xCxHxW for 4D and 1xCxDxHxW for 5D for per-activation mode.

> Exactly one of saveMean, saveInvVariance pointers are NULL.

» Exactly one of resultRunningMeanData, resultRunningInvVarianceData pointers
are NULL.

> epsilonvalue is less than CUDNN BN MIN EPSILON.

» Dimensions or data types mismatch for xDesc, yDesc.

4.1.6. cudnnDivisiveNormalizationBackward ()

cudnnStatus t cudnnDivisiveNormalizationBackward (

cudnnHandle t handle,
cudnnLRNDescriptor t normDesc,
cudnnDivNormMode t mode,
const void *alpha,
const cudnnTensorDescriptor t xDesc,
const void 5%,
const void *means,
const void *dy,
void *temp,
void *temp2,
const void *beta,
const cudnnTensorDescriptor t dxDesc,
void *dx,
void *dMeans)

This function performs the backward DivisiveNormalization layer computation.

S| Note: Supported tensor formats are NCHW for 4D and NCDHW for 5D with any non-overlapping
non-negative strides. Only 4D and 5D tensors are supported.

Parameters

handle

Input. Handle to a previously created cuDNN library descriptor.

NVIDIA cuDNN

PR-09702-001_v8.4.1 | 126

cudnn_ops_train.so Library

normDesc
Input. Handle to a previously initialized LRN parameter descriptor (this descriptor is used
for both LRN and DivisiveNormalization layers).

mode
Input. DivisiveNormalization layer mode of operation. Currently only

CUDNN_ DIVNORM PRECOMPUTED MEANS is implemented. Normalization is performed using
the means input tensor that is expected to be precomputed by the user.

alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the layer output value with

prior value in the destination tensor as follows:
dstValue = alpha[0O]*resultValue + beta[0]*priorDstValue

For more information, refer to Scaling Parameters in the cuDNN Developer Guide.

xDesc, X, means

Input. Tensor descriptor and pointers in device memory for the layer's x and means data.
Note that the means tensor is expected to be precomputed by the user. It can also contain
any valid values [not required to be actual means, and can be for instance a result of a
convolution with a Gaussian kernel).

dy

Input. Tensor pointer in device memory for the layer's dy cumulative loss differential data
(error backpropagation).

temp, temp2

Workspace. Temporary tensors in device memory. These are used for computing
intermediate values during the backward pass. These tensors do not have to be preserved
from forward to backward pass. Both use xDesc as a descriptor.

dxDesc

Input. Tensor descriptor for dx and dMeans.
dx, dMeans

Output. Tensor pointers (in device memory] for the layers resulting in cumulative gradients
dx and dMeans (dLoss/dx and dLoss/dMeans). Both share the same descriptor.

Returns

CUDNN_STATUS_SUCCESS

The computation was performed successfully.

CUDNN_STATUS BAD PARAM
At least one of the following conditions are met:

> One of the tensor pointers x, dx, temp, tmep2, dy IS NULL.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 127

https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#scaling-parameters

cudnn_ops_train.so Library

Number of any of the input or output tensor dimensions is not within the [4, 5] range.
Either alpha or beta pointer is NULL.
A mismatch in dimensions between xDesc and dxDesc.

LRN descriptor parameters are outside of their valid ranges.

vV vV v Vv VY

Any of the tensor strides is negative.
CUDNN_STATUS_UNSUPPORTED

The function does not support the provided configuration, for example, any of the input and
output tensor strides mismatch (for the same dimension] is a non-supported configuration.

4.1.7. cudnnDropoutBackward ()

cudnnStatus_t cudnnDropoutBackward (
cudnnHandle t handle,
const cudnnDropoutDescriptor t dropoutDesc,
const cudnnTensorDescriptor t dydesc,

const void #ely,

const cudnnTensorDescriptor t dxdesc,

void welx,

void *reserveSpace,

size t reserveSpaceSizeInBytes)

This function performs backward dropout operation over dy returning results in dx. If during
forward dropout operation value from x was propagated to y then during backward operation
value from dy will be propagated to dx, otherwise, dx value will be set to 0.

Note: Better performance is obtained for fully packed tensors.

Parameters
handle

Input. Handle to a previously created cuDNN context.

dropoutDesc

Input. Previously created dropout descriptor object.

dyDesc
Input. Handle to a previously initialized tensor descriptor.
dy
Input. Pointer to data of the tensor described by the dyDesc descriptor.

dxDesc

Input. Handle to a previously initialized tensor descriptor.
dx

Output. Pointer to data of the tensor described by the dxDesc descriptor.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 128

reserveSpace

cudnn_ops_train.so Library

Input. Pointer to user-allocated GPU memory used by this function. It is expected that
reserveSpace was populated during a call to cudnnDropoutForward and has not been

changed.

reserveSpaceSizelInBytes

Input. Specifies the size in bytes of the provided memory for the reserve space

Returns
CUDNN_STATUS_SUCCESS

The call was successful.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.

CUDNN_STATUS BAD PARAM

At least one of the following conditions are met:

» The number of elements of input tensor and output tensors differ.

>

The datatype of the input tensor and output tensors differs.

» The strides of the input tensor and output tensors differ and in-place operation is used

li.e., x and y pointers are equall.

» The provided reserveSpaceSizeInBytes is less than the value returned by

cudnnDropoutGetReserveSpaceSize.

» cudnnSetDropoutDescriptor has not been called on dropoutDesc with the non-NULL

states argument.
CUDNN_STATUS_EXECUTION FAILED

The function failed to launch on the GPU.

4.1.8.

cudnnGetBatchNormalizationBackwardExWorkspac

cudnnStatus t cudnnGetBatchNormalizationBackwardExWorkspaceSize (

cudnnHandle t
cudnnBatchNormMode t
cudnnBatchNormOps t

const cudnnTensorDescriptor t
const cudnnTensorDescriptor t
const cudnnTensorDescriptor t
const cudnnTensorDescriptor t
const cudnnTensorDescriptor t
const cudnnTensorDescriptor t
const cudnnActivationDescriptor_ t
size t

handle,

mode,

bnOps,

xDesc,

yDesc,

dyDesc,

dzDesc,

dxDesc,
dBnScaleBiasDesc,
activationDesc,
*sizelnBytes) ;

This function returns the amount of GPU memory workspace the user should allocate to be
able to call cudnnGetBatchNormalizationBackwardExWorkspaceSize () function for the
specified bnOps input setting. The workspace allocated will then be passed to the function
cudnnGetBatchNormalizationBackwardExWorkspaceSize ()

NVIDIA cuDNN

PR-09702-001_v8.4.1 |

cudnn_ops_train.so Library

Parameters

handle

Input. Handle to a previously created cuDNN library descriptor. For more information, refer
to cudnnHandle_t.

mode

Input. Mode of operation (spatial or per-activation]. For more information, refer to
cudnnBatchNormMode_t.

bnOps

Input. Mode of operation for the fast NHWC kernel. For more information, refer to
cudnnBatchNormOps_t. This input can be used to set this function to perform either
only the batch normalization, or batch normalization followed by activation, or batch
normalization followed by element-wise addition and then activation.

xDesc, yDesc, dyDesc, dzDesc, dxDesc

Tensor descriptors and pointers in the device memory for the layer’s x data, back
propagated differential dy (inputs), the optional y input data, the optional dz output, and the
dx output, which is the resulting differential with respect to x. For more information, refer
to cudnnTensorDescriptor_t.

dBnScaleBiasDesc

Input. Shared tensor descriptor for the following six tensors: bnScalebata, bnBiasData,
dBnScaleData, dBnBiasData, savedMean, and savedInvVariance. Thisis

the shared tensor descriptor desc for the secondary tensor that was derived by
cudnnDeriveBNTensorDescriptor(). The dimensions for this tensor descriptor are
dependent on normalization mode. Note that the data type of this tensor descriptor must be
float for FP16 and FP32 input tensors, and double for FP64 input tensors.

activationDesc
Input. Descriptor for the activation operation. When the bnops input is set to either
CUDNN_BATCHNORM OPS BN ACTIVATION Or CUDNN BATCHNORM OPS BN ADD ACTIVATION,
then this activation is used, otherwise user may pass NULL.

*sizeInBytes

Output. Amount of GPU memory required for the workspace, as determined by this function,
to be able to execute the cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize()
function with the specified bnops input setting.

Returns
CUDNN_STATUS SUCCESS

The computation was performed successfully.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 130

cudnn_ops_train.so Library

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:
» Number of xDesc, yDesc or dxDesc tensor descriptor dimensions is not within the

range of [4,5] (only 4D and 5D tensors are supported).

> dBnScaleBiasDesc dimensions not 1xCx1x1 for 4D and 1xCx1x1x1 for 5D for spatial,
and are not 1xCxHxW for 4D and 1xCxDxHxW for 5D for per-activation mode.

» Dimensions or data types mismatch for any pair of xDesc, dyDesc, dxDesc.

4.1.9. cudnnGetBatchNormalizationForwardTrainingExW
cudnnStatus t cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize (
cudnnHandle t handle,
cudnnBatchNormMode t mode,
cudnnBatchNormOps t bnOps,
const cudnnTensorDescriptor t xDesc,
const cudnnTensorDescriptor t zDesc,
const cudnnTensorDescriptor t yDesc,
const cudnnTensorDescriptor t bnScaleBiasMeanVarDesc,
const cudnnActivationDescriptor t activationDesc,
size t *sizeInBytes) ;

This function returns the amount of GPU memory workspace the user should allocate to be
able to call cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize () function
for the specified bnops input setting. The workspace allocated should then be passed by the
user to the function cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize ().

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor. For more information, refer
to cudnnHandle_t.

mode

Input. Mode of operation (spatial or per-activation]. For more information, refer to
cudnnBatchNormMode_t.

bnOps
Input. Mode of operation for the fast NHWC kernel. For more information, refer to
cudnnBatchNormOps_t. This input can be used to set this function to perform either
only the batch normalization, or batch normalization followed by activation, or batch
normalization followed by element-wise addition and then activation.

xDesc, zDesc, yDesc

Tensor descriptors and pointers in the device memory for the layer's x data,
the optional z input data, and the y output. zDesc is only needed when bnOps is

NVIDIA cuDNN PR-09702-001_v8.4.1 | 131

cudnn_ops_train.so Library

CUDNN_BATCHNORM OPS BN ADD ACTIVATION, otherwise the user may pass NULL. For
more information, refer to cudnnTensorDescriptor _t.

bnScaleBiasMeanVarDesc

Input. Shared tensor descriptor for the following six tensors: bnScaleData, bnBiasData,
dBnScaleData, dBnBiasData, savedMean, and savedInvVariance. Thisis

the shared tensor descriptor desc for the secondary tensor that was derived by
cudnnDeriveBNTensorDescriptor(). The dimensions for this tensor descriptor are
dependent on normalization mode. Note that the data type of this tensor descriptor must be
float for FP16 and FP32 input tensors, and double for FP64 input tensors.

activationDesc
Input. Descriptor for the activation operation. When the bnops input is set to either
CUDNN BATCHNORM OPS BN ACTIVATION Or CUDNN BATCHNORM OPS BN ADD ACTIVATION
then this activation is used, otherwise the user may pass NULL.

*sizeInBytes
Output. Amount of GPU memory required for the workspace,
as determined by this function, to be able to execute the
cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize () function with the
specified bnOps input setting.

Returns

CUDNN_STATUS_SUCCESS

The computation was performed successfully.

CUDNN_STATUS NOT SUPPORTED
The function does not support the provided configuration.
CUDNN_STATUS BAD PARAM

At least one of the following conditions are met:

» Number of xDesc, yDesc or dxDesc tensor descriptor dimensions is not within the
range of [4,5] (only 4D and 5D tensors are supported).

» dBnScaleBiasDesc dimensions not 1xCx1x1 for 4D and 1xCx1x1x1 for 5D for spatial,
and are not 1xCxHxW for 4D and 1xCxDxHxW for 5D for per-activation mode.

» Dimensions or data types mismatch for xDesc, yDesc.

4.1.10. cudnnGetBatchNormalizationTrainingExReserveS

cudnnStatus_t cudnnGetBatchNormalizationTrainingExReserveSpaceSize (

cudnnHandle t handle,
cudnnBatchNormMode t mode,
cudnnBatchNormOps t bnOps,

const cudnnActivationDescriptor t activationDesc,
const cudnnTensorDescriptor t xDesc,

size t *sizelInBytes) ;

NVIDIA cuDNN PR-09702-001_v8.4.1 | 132

cudnn_ops_train.so Library

This function returns the amount of reserve GPU memory workspace the user should allocate
for the batch normalization operation, for the specified bnOps input setting. In contrast to the
workspace, the reserved space should be preserved between the forward and backward calls,
and the data should not be altered.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor. For more information, refer
to cudnnHandle_t.

mode

Input. Mode of operation (spatial or per-activation]. For more information, refer to
cudnnBatchNormMode_t.

bnOps
Input. Mode of operation for the fast NHWC kernel. For more information, refer to
cudnnBatchNormOps_t. This input can be used to set this function to perform either
only the batch normalization, or batch normalization followed by activation, or batch
normalization followed by element-wise addition and then activation.

xDesc

Tensor descriptors for the layer's x data. For more information, refer to
cudnnTensorDescriptor._t.

activationDesc
Input. Descriptor for the activation operation. When the bnops input is set to either
CUDNN_BATCHNORM OPS BN ACTIVATION Or CUDNN BATCHNORM OPS BN ADD ACTIVATION
then this activation is used, otherwise user may pass NULL.

*sizeInBytes
Output. Amount of GPU memory reserved.

Returns

CUDNN_STATUS_SUCCESS

The computation was performed successfully.

CUDNN_STATUS NOT SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD PARAM

At least one of the following conditions are met:

» The xDesc tensor descriptor dimension is not within the [4, 5] range (only 4D and 5D
tensors are supported).

4.1.11. cudnnGetNormalizationBackwardWorkspaceSize ()

cudnnStatus_t

NVIDIA cuDNN PR-09702-001_v8.4.1 | 133

cudnn_ops_train.so Library

cudnnGetNormalizationBackwardWorkspaceSize (cudnnHandle t handle,
cudnnNormMode t mode,
cudnnNormOps t normOps,
cudnnNormAlgo t algo,
const cudnnTensorDescriptor t xDesc,
const cudnnTensorDescriptor t yDesc,
const cudnnTensorDescriptor t dyDesc,
const cudnnTensorDescriptor t dzDesc,
const cudnnTensorDescriptor t dxDesc,
const cudnnTensorDescriptor t
dNormScaleBiasDesc,
const cudnnActivationDescriptor t
activationDesc,
const cudnnTensorDescriptor t
normMeanVarDesc,
size t *sizelnBytes,
int groupCnt) ;

This function returns the amount of GPU memory workspace the user should allocate
to be able to call cudnnNormalizationBackward() function for the specified normops

and algo input setting. The workspace allocated will then be passed to the function
cudnnNormalizationBackward().

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor. For more information, refer
to cudnnHandle_t.

mode
Input. Mode of operation (per-channel or per-activation). For more information, refer to
cudnnNormMode_t.

normOps

Input. Mode of post-operative. Currently CUDNN_NORM OPS NORM ACTIVATION and
CUDNN NORM OPS NORM ADD ACTIVATION are only supported in the NHWC layout. For
more information, refer to cudnnNormOps_t. This input can be used to set this function
to perform either only the normalization, or normalization followed by activation, or
normalization followed by element-wise addition and then activation.

algo

Input. Algorithm to be performed. For more information, refer to cudnnNormAlgo_t.

xDesc, yDesc, dyDesc, dzDesc, dxDesc

Tensor descriptors and pointers in the device memory for the layer's x data, back
propagated differential dy (inputs), the optional y input data, the optional dz output, and the
dx output, which is the resulting differential with respect to x. For more information, refer
to cudnnTensorDescriptor_t.

dNormScaleBiasDesc

Input. Shared tensor descriptor for the following four tensors: normScaleData,
normBiasData, dNormScaleData, dNormBiasData. [he dimensions for this tensor
descriptor are dependent on normalization mode. Note that the data type of this tensor

NVIDIA cuDNN PR-09702-001_v8.4.1 | 134

cudnn_ops_train.so Library

descriptor must be float for FP16 and FP32 input tensors, and double for FP64 input
tensors.

activationDesc

Input. Descriptor for the activation operation. When the normOps input is set to either
CUDNN_NORM OPS NORM ACTIVATION Or CUDNN NORM OPS NORM ADD ACTIVATION, then
this activation is used, otherwise the user may pass NULL.

normMeanVarDesc

Input. Shared tensor descriptor for the following tensors: savedMean and
savedInvVariance. The dimensions for this tensor descriptor are dependent on
normalization mode. Note that the data type of this tensor descriptor must be float for FP16
and FP32 input tensors, and double for FP64 input tensors.

*sizeInBytes
Output. Amount of GPU memory required for the workspace, as determined by this function,

to be able to execute the cudnnGetNormalizationForwardTrainingWorkspaceSize() function
with the specified normOps input setting.

groutCnt

Input. Only support 1 for now.

Returns

CUDNN_STATUS_SUCCESS

The computation was performed successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.

CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:

» Number of xDesc, yDesc or dxDesc tensor descriptor dimensions is not within the
range of [4,5] (only 4D and 5D tensors are supported).

» dNormScaleBiasDesc dimensions not 1xCx1x1 for 4D and 1xCx1x1x1 for 5D for per-
channel, and are not TxCxHxW for 4D and 1xCxDxHxW for 5D for per-activation mode.

» Dimensions or data types mismatch for any pair of xDesc, dyDesc, dxDesc.

4.1.12. cudnnGetNormalizationForwardTrainingWorkspac

cudnnStatus t

cudnnGetNormalizationForwardTrainingWorkspaceSize (cudnnHandle t handle,
cudnnNormMode t mode,
cudnnNormOps_t normOps,
cudnnNormAlgo t algo,

const cudnnTensorDescriptor t xDesc,
const cudnnTensorDescriptor t
zDesc,

NVIDIA cuDNN PR-09702-001_v8.4.1 | 135

cudnn_ops_train.so Library

const cudnnTensorDescriptor t
yDesc,

const cudnnTensorDescriptor t
normScaleBiasDesc,

const cudnnActivationDescriptor t
activationDesc,

const cudnnTensorDescriptor t
normMeanVarDesc,

size t *sizelnBytes,

int groupCnt) ;
This function returns the amount of GPU memory workspace the user should allocate to be
able to call cudnnNormalizationForwardTraining() function for the specified normops and
algo input setting. The workspace allocated should then be passed by the user to the function
cudnnNormalizationForwardTraining().

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor. For more information, refer
to cudnnHandle_t.

mode

Input. Mode of operation (per-channel or per-activation). For more information, refer to
cudnnNormMode_t.

normOps

Input. Mode of post-operative. Currently CUDNN NORM OPS NORM ACTIVATION and
CUDNN NORM OPS NORM ADD ACTIVATION are only supported in the NHWC layout. For
more information, refer to cudnnNormOps_t. This input can be used to set this function
to perform either only the normalization, or normalization followed by activation, or
normalization followed by element-wise addition and then activation.

algo

Input. Algorithm to be performed. For more information, refer to cudnnNormAlgo_t.

xDesc, zDesc, yDesc

Tensor descriptors and pointers in the device memory for the layer's x data, the
optional z input data, and the y output. zDesc is only needed when normoOps is

CUDNN NORM OPS NORM ADD ACTIVATION, otherwise the user may pass NULL. For more
information, refer to cudnnTensorDescriptor _t.

normScaleBiasDesc

Input. Shared tensor descriptor for the following tensors: normScalebata and
normBiasData. The dimensions for this tensor descriptor are dependent on normalization
mode. Note that the data type of this tensor descriptor must be float for FP16 and FP32
input tensors, and double for FP64 input tensors.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 136

cudnn_ops_train.so Library

activationDesc

Input. Descriptor for the activation operation. When the normOps input is set to either
CUDNN_NORM OPS NORM ACTIVATION Or CUDNN NORM OPS NORM ADD ACTIVATION, then
this activation is used, otherwise the user may pass NULL.

normMeanVarDesc

Input. Shared tensor descriptor for the following tensors: savedMean and
savedInvVariance. The dimensions for this tensor descriptor are dependent on
normalization mode. Note that the data type of this tensor descriptor must be float for FP16
and FP32 input tensors, and double for FP64 input tensors.

*sizeInBytes
Output. Amount of GPU memory required for the workspace, as determined by this function,

to be able to execute the cudnnGetNormalizationForwardTrainingWorkspaceSize() function
with the specified normOps input setting.

groutCnt

Input. Only support 1 for now.

Returns

CUDNN_STATUS_SUCCESS

The computation was performed successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.

CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:

» Number of xDesc, yDesc or zDesc tensor descriptor dimensions is not within the range
of [4,5] {only 4D and 5D tensors are supported).

» normScaleBiasDesc dimensions not 1xCx1x1 for 4D and 1xCx1x1x1 for 5D for per-
channel, and are not TxCxHxW for 4D and 1xCxDxHxW for 5D for per-activation mode.

» Dimensions or data types mismatch for xDesc, yDesc.

4.1.13. cudnnGetNormalizationTrainingReserveSpaceSiz

cudnnStatus_t
cudnnGetNormalizationTrainingReserveSpaceSize (cudnnHandle t handle,
cudnnNormMode t mode,
cudnnNormOps t normOps,
cudnnNormAlgo t algo,
const cudnnActivationDescriptor t
activationDesc,
const cudnnTensorDescriptor t xDesc,
size t *sizelnBytes,
int groupCnt) ;

NVIDIA cuDNN PR-09702-001_v8.4.1 | 137

cudnn_ops_train.so Library

This function returns the amount of reserve GPU memory workspace the user should allocate
for the normalization operation, for the specified normOps input setting. In contrast to the
workspace, the reserved space should be preserved between the forward and backward calls,
and the data should not be altered.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor. For more information, refer
to cudnnHandle_t.

mode
Input. Mode of operation (per-channel or per-activation). For more information, refer to
cudnnNormMode_t.

normOps

Input. Mode of post-operative. Currently CUDNN_ NORM OPS NORM ACTIVATION and
CUDNN_NORM OPS NORM ADD ACTIVATION are only supported in the NHWC layout. For
more information, refer to cudnnNormOps_t . This input can be used to set this function
to perform either only the normalization, or normalization followed by activation, or
normalization followed by element-wise addition and then activation.

algo

Input. Algorithm to be performed. For more information, refer to cudnnNormAlgo_t.

xDesc

Tensor descriptors for the layer's x data. For more information, refer to
cudnnTensorDescriptor_t.

activationDesc

Input. Descriptor for the activation operation. When the normOps input is set to either
CUDNN_NORM OPS NORM ACTIVATION or CUDNN NORM OPS NORM ADD ACTIVATION then
this activation is used, otherwise the user may pass NULL.

*sizeInBytes

Output. Amount of GPU memory reserved.

groutCnt

Input. Only support 1 for now.

Returns
CUDNN_STATUS_SUCCESS

The computation was performed successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 138

cudnn_ops_train.so Library

CUDNN_STATUS BAD PARAM
At least one of the following conditions are met:

» The xDesc tensor descriptor dimension is not within the [4,5] range (only 4D and 5D
tensors are supported).

4.1.14. cudnnLRNCrossChannelBackward ()

cudnnStatus t cudnnLRNCrossChannelBackward (

cudnnHaHdle_t handle,
cudnnLRNDescriptor t normDesc,
cudnnLRNMode t lrnMode,
const void *alpha,
const cudnnTensorDescriptor t yDesc,
const void ®W

const cudnnTensorDescriptor t dyDesc,
const void *dy,
const cudnnTensorDescriptor t xDesc,
const void X,

const void *beta,
const cudnnTensorDescriptor t dxDesc,
void *dx)

This function performs the backward LRN layer computation.

S Note: Supported formats are: positive-strided, NCHW and NHWC for 4D x and y, and only
NCDHW DHW-packed for 5D (for both x and y]. Only non-overlapping 4D and 5D tensors are
supported. NCHW layout is preferred for performance.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor.

normDesc

Input. Handle to a previously initialized LRN parameter descriptor.

lrnMode

Input. LRN layer mode of operation. Currently, only CUDNN LRN CROSS CHANNEL DIMI is
implemented. Normalization is performed along the tensor’'s dima[1].
alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the layer output value with

prior value in the destination tensor as follows:
dstValue = alpha[0]*resultValue + beta[0]*priorDstValue

For more information, refer to Scaling Parameters in the cuDNN Developer Guide.

yDesc, y

Input. Tensor descriptor and pointer in device memory for the layer's y data.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 139

https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#scaling-parameters

cudnn_ops_train.so Library

dyDesc, dy

Input. Tensor descriptor and pointer in device memory for the layer's input cumulative loss
differential data dy (including error backpropagation).

xDesc, x

Input. Tensor descriptor and pointer in device memory for the layer's x data. Note that
these values are not modified during backpropagation.

dxDesc, dx
Output. Tensor descriptor and pointer in device memory for the layer’s resulting cumulative
loss differential data dx (including error backpropagation).

Returns

CUDNN_STATUS_SUCCESS

The computation was performed successfully.

CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:

One of the tensor pointers x, y is NULL.
Number of input tensor dimensions is 2 or less.

LRN descriptor parameters are outside of their valid ranges.

vV v v VY

One of the tensor parameters is 5D but is not in NCDHW DHW-packed format.
CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration. See the following for some
examples of non-supported configurations:

> Any of the input tensor datatypes is not the same as any of the output tensor datatype.
> Any pairwise tensor dimensions mismatch for %, y, dx, dy.

> Any tensor parameters strides are negative.

4.1.15. cudnnNormalizationBackward ()

cudnnStatus t
cudnnNormalizationBackward (cudnnHandle t handle,
cudnnNormMode t mode,
cudnnNormOps t normOps,
cudnnNormAlgo t algo,
const void *alphaDataDiff,
const void *betaDataDiff,
const void *alphaParamDiff,
const void *betaParamDiff,
const cudnnTensorDescriptor t xDesc,
const void *xData,
const cudnnTensorDescriptor t yDesc,
const void *yData,
const cudnnTensorDescriptor t dyDesc,
const void *dyData,
const cudnnTensorDescriptor t dzDesc,

NVIDIA cuDNN PR-09702-001_v8.4.1 | 140

cudnn_ops_train.so Library

void *dzData,
const cudnnTensorDescriptor t dxDesc,
void *dxData,
const cudnnTensorDescriptor t dNormScaleBiasDesc,
const void *normScaleData,
const void *normBiasData,
void *dNormScaleData,
void *dNormBiasData,
double epsilon,
const cudnnTensorDescriptor t normMeanVarDesc,
const void *savedMean,
const void *savedInvVariance,
cudnnActivationDescriptor t activationDesc,
void *workSpace,
size t workSpaceSizeInBytes,
void *reserveSpace,
size t reserveSpaceSizelnBytes,
int groupCnt)

This function performs backward normalization layer computation that is specified by mode.
Per-channel normalization layer is based on the paper Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift, S. loffe, C. Szegedy, 2015.

Note: Only 4D and 5D tensors are supported.

The epsilon value has to be the same during training, backpropagation, and inference.

This workspace is not required to be clean. Moreover, the workspace does not have to
remain unchanged between the forward and backward pass, as it is not used for passing any
information.

This function can accept a *workspace pointer to the GPU workspace, and
workSpaceSizelInBytes, the size of the workspace, from the user.

The normOps input can be used to set this function to perform either only the normalization, or
normalization followed by activation, or normalization followed by element-wise addition and
then activation.

When the tensor layout is NCHW, higher performance can be obtained when HW-packed
tensors are used for x, dy, dx.

Higher performance for CUDNN_NORM PER CHANNEL mode can be obtained when the following
conditions are true:

» All tensors, namely, x, y, dz, dy, and dx must be NHWC-fully packed, and must be of the
type CUDNN DATA HALF.

» The tensor C dimension should be a multiple of 4.

» The input parameter mode must be set to CUDNN_NORM PER CHANNEL.
» The input parameter algo must be set to CUDNN_NORM ALGO PERSIST.
» Workspace is not NULL.

» workSpaceSizelInBytes is equal to or larger than the amount required by
cudnnGetNormalizationBackwardWorkspaceSize().

» reserveSpaceSizeInBytes Is equalto or larger than the amount required by
cudnnGetNormalizationTrainingReserveSpaceSize().

NVIDIA cuDNN PR-09702-001_v8.4.1 | 141

https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167

cudnn_ops_train.so Li

brary

» The content in reserveSpace stored by cudnnNormalizationForwardTraining(] must be

preserved.

Parameters

handle

Input. Handle to a previously created cuDNN library descriptor. For more information, refer

to cudnnHandle t.

mode
Input. Mode of operation (per-channel or per-activation). For more information, refer to
cudnnNormMode_t.

normOps

Input. Mode of post-operative. Currently CUDNN NORM OPS NORM ACTIVATION and
CUDNN NORM OPS NORM ADD ACTIVATION are only supported in the NHWC layout. For
more information, refer to cudnnNormOps_t. This input can be used to set this function
to perform either only the normalization, or normalization followed by activation, or
normalization followed by element-wise addition and then activation.

algo

Input. Algorithm to be performed. For more information, refer to cudnnNormAlgo_t.

*alphaDataDiff, *betaDataDiff

Inputs. Pointers to scaling factors (in host memory) used to blend the gradient output dx

with a prior value in the destination tensor as follows:
dstValue = alpha[0] *resultValue + beta[0] *priorDstValue

For more information, refer to Scaling Parameters in the cuDNN Developer Guide.

*alphaParamDiff, *betaParamDiff

Inputs. Pointers to scaling factors (in host memory) used to blend the gradient outputs
dNormScaleData and dNormBiasData with prior values in the destination tensor as
follows:

dstValue = alpha[0] *resultValue + beta[0] *priorDstValue

For more information, refer to Scaling Parameters in the cuDNN Developer Guide.

xDesc, *xData, yDesc, *yData, dyDesc, *dyData

Inputs. Tensor descriptors and pointers in the device memory for the layer’'s x data,

backpropagated gradient input dy, the original forward output y data. ybesc and yData are
not needed if normOps is set to CUDNN_NORM OPS_NORM, Users may pass NULL. For more

information, refer to cudnnTensorDescriptor_t.

dzDesc, *dzData, dxDesc, *dxData

Outputs. Tensor descriptors and pointers in the device memory for the computed
gradient output dz and dx. dzDesc and *dzData is not needed when normOps is

CUDNN NORM OPS NORM Or CUDNN NORM OPS NORM ACTIVATION, users may pass NULL.

more information, refer to cudnnTensorDescriptor t.

NVIDIA cuDNN PR-09702-001_v8.4.1

For

| 142

https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#scaling-parameters
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#scaling-parameters

cudnn_ops_train.so Library

dNormScaleBiasDesc

Input. Shared tensor descriptor for the following six tensors: normScaleData,
normBiasData, dNormScaleData, and dNormBiasData. IThe dimensions for this tensor
descriptor are dependent on normalization mode.

Note: The data type of this tensor descriptor must be float for FP16 and FP32 input tensors
and double for FP64 input tensors.

For more information, refer to cudnnTensorDescriptor t.

*normScaleData
Input. Pointer in the device memory for the normalization scale parameter (in the original
paper the quantity scale is referred to as gamma).

*normBiasData
Input. Pointers in the device memory for the normalization bias parameter (in the original

paper bias is referred to as beta). This parameter is used only when activation should be
performed.

*dNormScaleData, dNormBiasData
Inputs. Pointers in the device memory for the gradients of normScalebata and
normBiasData, respectively.
epsilon
Input. Epsilon value used in normalization formula. Its value should be equal to or greater
than zero. The same epsilon value should be used in forward and backward functions.
normMeanVarDesc
Input. Shared tensor descriptor for the following tensors: savedMean and

savedInvVariance. The dimensions for this tensor descriptor are dependent on
normalization mode.

S Note: The data type of this tensor descriptor must be float for FP16 and FP32 input tensors
and double for FP64 input tensors.

For more information, refer to cudnnTensorDescriptor t.

*savedMean, *savedInvVariance

Inputs. Optional cache parameters containing saved intermediate results computed
during the forward pass. For this to work correctly, the layer's x and normScaleData,
normBiasData data has to remain unchanged until this backward function is called. Note
that both these parameters can be NULL but only at the same time. It is recommended to
use this cache since the memory overhead is relatively small.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 143

https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167

cudnn_ops_train.so Library

activationDesc

Input. Descriptor for the activation operation. When the normOps input is set to either
CUDNN_NORM OPS NORM ACTIVATION Or CUDNN NORM OPS NORM ADD ACTIVATION then
this activation is used, otherwise the user may pass NULL.

workspace

Input. Pointer to the GPU workspace.

workSpaceSizeInBytes

Input. The size of the workspace. It must be large enough to trigger the fast NHWC semi-
persistent kernel by this function.

*reserveSpace

Input. Pointer to the GPU workspace for the reservespace.

reserveSpaceSizelInBytes

Input. The size of the reserveSpace. It must be equal or larger than the amount required
by cudnnGetNormalizationTrainingReserveSpaceSize(].

groutCnt

Input. Only support 1 for now.

Returns
CUDNN_STATUS SUCCESS

The computation was performed successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.

CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

» Any of the pointers alphaDataDiff, betaDataDiff, alphaParamDiff
betaParamDiff,xData,dyData,deata,normScaleData,dNormScaleData,and
dNormBiasData IS NULL.

> The number of xDesc or yDesc or dxDesc tensor descriptor dimensions is not within
the range of [4,5] (only 4D and 5D tensors are supported).

» dNormScaleBiasDesc dimensions not 1xCx1x1 for 4D and 1xCx1x1x1 for 5D for per-
channel, and are not TxCxHxW for 4D and 1xCxDxHxW for 5D for per-activation mode.

> Exactly one of savedMean, savedInvVariance pointers is NULL.
> epsilon value is less than zero.

» Dimensions or data types mismatch for any pair of xDesc, dyDesc, dxDesc,

dNormScaleBiasDesc, and normMeanVarDesc

NVIDIA cuDNN PR-09702-001_v8.4.1 | 144

cudnn_ops_train.so Library

4.1.16. cudnnNormalizationForwardTraining ()

cudnnStatus t
cudnnNormalizationForwardTraining (cudnnHandle t handle,
cudnnNormMode t mode,
cudnnNormOps_t normOps,
cudnnNormAlgo t algo,
const void *alpha,
const void *beta,
const cudnnTensorDescriptor t xDesc,
const void *xData,
const cudnnTensorDescriptor t normScaleBiasDesc,
const void *normScale,
const void *normBias,
double exponentialAverageFactor,
const cudnnTensorDescriptor t normMeanVarDesc,
void *resultRunningMean,
void *resultRunningVariance,
double epsilon,
void *resultSaveMean,
void *resultSavelInvVariance,
cudnnActivationDescriptor t activationDesc,
const cudnnTensorDescriptor t zDesc,
const void *zData,
const cudnnTensorDescriptor t yDesc,
void *yData,
void *workspace,
size t workSpaceSizeInBytes,
void *reserveSpace,
size t reserveSpaceSizelInBytes,
int groupCnt) ;

This function performs the forward normalization layer computation for the training phase.
Depending on mode, different normalization operations will be performed. Per-channel layer

is based on the paper Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift, S. loffe, C. Szegedy, 2015.

@ Note:

» Only 4D and 5D tensors are supported.
» The epsilon value has to be the same during training, back propagation, and inference.

» For the inference phase, refer to cudnnNormalizationForwardInference().

» Higher performance can be obtained when HW-packed tensors are used for both x and y.

This APl will trigger the new semi-persistent NHWC kernel when the following conditions are
true:

» All tensors, namely, xData, yData must be NHWC-fully packed and must be of the type
CUDNN_DATA HALF.

» The tensor C dimension should be a multiple of 4.
» The input parameter mode must be set to CUDNN NORM PER CHANNEL.
» The input parameter algo must be set to CUDNN_NORM ALGO PERSIST.

> workspace IS not NULL

NVIDIA cuDNN PR-09702-001_v8.4.1 | 145

https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167

cudnn_ops_train.so Library

> workSpaceSizelInBytes is equal to or larger than the amount required by
cudnnGetNormalizationForwardTrainingWorkspaceSizel().

» reserveSpaceSizeInBytes is equalto or larger than the amount required by
cudnnGetNormalizationTrainingReserveSpaceSize().

» The content in reserveSpace stored by cudnnNormalizationForwardTraining(] must be
preserved.

This workspace is not required to be clean. Moreover, the workspace does not have to
remain unchanged between the forward and backward pass, as it is not used for passing any
information. This extended function can accept a *workspace pointer to the GPU workspace,
and workSpaceSizeTInBytes, the size of the workspace, from the user.

The normOps input can be used to set this function to perform either only the normalization, or
normalization followed by activation, or normalization followed by element-wise addition and
then activation.

Only 4D and 5D tensors are supported. The epsilon value has to be the same during the
training, the backpropagation, and the inference.

When the tensor layout is NCHW, higher performance can be obtained when HW-packed
tensors are used for xData, yData.
Parameters

handle

Input. Handle to a previously created cuDNN library descriptor. For more information, refer
to cudnnHandle_t.

mode
Input. Mode of operation (per-channel or per-activation). For more information, refer to
cudnnNormMode_t.

normOps

Input. Mode of post-operative. Currently CUDNN NORM OPS NORM ACTIVATION and
CUDNN NORM OPS NORM ADD ACTIVATION are only supported in the NHWC layout. For
more information, refer to cudnnNormOps_t. This input can be used to set this function
to perform either only the normalization, or normalization followed by activation, or
normalization followed by element-wise addition and then activation.

algo

Input. Algorithm to be performed. For more information, refer to cudnnNormAlgo_t.

*alpha, *beta

Inputs. Pointers to scaling factors (in host memory) used to blend the layer output value

with prior value in the destination tensor as follows:
dstValue = alpha[0] *resultValue + beta[0] *priorDstValue

For more information, refer to Scaling Parameters in the cuDNN Developer Guide.

xDesc, yDesc

Input. Handles to the previously initialized tensor descriptors.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 146

https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#scaling-parameters

cudnn_ops_train.so Library

*xData

Input. Data pointer to GPU memory associated with the tensor descriptor xDesc, for the
layer’'s x input data.

*yData

Output. Data pointer to GPU memory associated with the tensor descriptor yDesc, for the y
output of the normalization layer.

zDesc, *zData

Input. Tensor descriptors and pointers in device memory for residual addition to the result
of the normalization operation, prior to the activation. zbesc and *zData are optional and
are only used when normOps is CUDNN_NORM OPS NORM ADD ACTIVATION, otherwise the
user may pass NULL. When in use, z should have exactly the same dimension as xData and
the final output ybata. For more information, refer to cudnnTensorDescriptor_t.

normScaleBiasDesc, normScale, normBias

Inputs. Tensor descriptors and pointers in device memory for the normalization scale and
bias parameters (in the original paper bias is referred to as beta and scale as gamma). The
dimensions for the tensor descriptor are dependent on the normalization mode.

exponentialAverageFactor

Input. Factor used in the moving average computation as follows:

runningMean = runningMean* (1-factor) + newMean*factor

Use a factor=1/ (1+n) at N-th call to the function to get Cumulative Moving Average (CMA)

behavior such that:
CMA[n] = (x[1]+...+x[n])/n

This is proved below:

Writing

CMA[n+l] = (n*CMA[n]+x[n+1])/(n+1)

((n+1) *CMA[n]-CMA[n])/ (n+1l) + x[n+1]/(n+1)
CMA[n]*(1-1/(n+l))+x[n+1]*1/ (n+1)
CMA[n] * (1-factor) + x(n+l)*factor

normMeanVarDesc

Inputs. Tensor descriptor used for following tensors: resultRunningMean,

resultRunningVariance, resultSaveMean, resultSaveInvVariance

*resultRunningMean, *resultRunningVariance

Inputs/Outputs. Pointers to the running mean and running variance data. Both

these pointers can be NULL but only at the same time. The value stored in
resultRunningVariance (or passed as an input in inference mode) is the sample variance
and is the moving average of variance [x] where the variance is computed either over
batch or spatial+batch dimensions depending on the mode. If these pointers are not NULL,
the tensors should be initialized to some reasonable values or to 0.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 147

https://arxiv.org/abs/1502.03167

cudnn_ops_train.so Library

epsilon

Input. Epsilon value used in the normalization formula. Its value should be equal to or
greater than zero.

*resultSaveMean, *resultSaveInvVariance

Outputs. Optional cache parameters containing saved intermediate results computed
during the forward pass. For this to work correctly, the layer's x and normScale, normBias
data has to remain unchanged until this backward function is called. Note that both these
parameters can be NULL but only at the same time. It is recommended to use this cache
since the memory overhead is relatively small.

activationDesc
Input. The tensor descriptor for the activation operation. When the normOps input is set to

either CUDNN_NORM OPS NORM ACTIVATION Or CUDNN NORM OPS NORM ADD ACTIVATION
then this activation is used, otherwise the user may pass NULL.

*workspace, workSpaceSizeInBytes
Inputs. *workspace is a pointer to the GPU workspace, and workSpaceSizeInBytes is
the size of the workspace. When *workspace is not NULL and *workSpaceSizeInBytes IS
large enough, and the tensor layout is NHWC and the data type configuration is supported,
then this function will trigger a semi-persistent NHWC kernel for normalization. The

workspace is not required to be clean. Also, the workspace does not need to remain
unchanged between the forward and backward passes.

*reserveSpace

Input. Pointer to the GPU workspace for the reservespace.

reserveSpaceSizelInBytes

Input. The size of the reservespace. Must be equal or larger than the amount required by
cudnnGetNormalizationTrainingReserveSpaceSize|().

groutCnt

Input. Only support 1 for now.

CUDNN_STATUS_SUCCESS

The computation was performed successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.

CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:

One of the pointers alpha, beta, xData, yData, normScale, and normBias iS NULL.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 148

vV v v VY

4.1.

cudnn_ops_train.so Library

The number of xDesc or ybDesc tensor descriptor dimensions is not within the [4,5]
range (only 4D and 5D tensors are supported).

normScaleBiasDesc dimensions are not 1xCx1x1 for 4D and 1xCx1x1x1 for 5D for per-
channel mode, and are not TXCxHxW for 4D and TxCxDxHxW for 5D for per-activation
mode.

Exactly one of resultSaveMean, resultSaveInvVariance pointers are NULL.
ExacﬂyoneOfresultRunningMean,resultRunningIanariancepOHﬂersareNULL
epsilon value is less than zero.

Dimensions or data types mismatch for xDesc, yDesc.

17. cudnnOpsTrainVersionCheck ()

cudnnStatus_t cudnnOpsTrainVersionCheck (void)

This function checks whether the version of the OpsTrain subset of the library is consistent
with the other sub-libraries.

Returns

CUDNN_STATUS_SUCCESS

The version is consistent with other sub-libraries.

CUDNN_STATUS_VERSION_ MISMATCH

The version of OpsTrain is not consistent with other sub-libraries. Users should check the
installation and make sure all sub-component versions are consistent.

4.1.

18. cudnnPoolingBackward ()

cudnnStatus_t cudnnPoolingBackward (

cudnnHandle t handle,
const cudnnPoolingDescriptor t poolingDesc,
const void *alpha,
const cudnnTensorDescriptor t yDesc,
const void “Wp
const cudnnTensorDescriptor t dyDesc,
const void #elky,
const cudnnTensorDescriptor t xDesc,
const void *xData,
const void *beta,
const cudnnTensorDescriptor t dxDesc,
void *dx)

This function computes the gradient of a pooling operation.

As of cuDNN version 6.0, a deterministic algorithm is implemented for max backwards
pooling. This algorithm can be chosen via the pooling mode enum of poolingDesc. The

NVIDIA cuDNN PR-09702-001_v8.4.1 | 149

cudnn_ops_train.so Library

deterministic algorithm has been measured to be up to 50% slower than the legacy max
backwards pooling algorithm, or up to 20% faster, depending upon the use case.

Note: Tensor vectorization is not supported for any tensor descriptor arguments in this
function. Best performance is expected when using HW-packed tensors. Only 2 and 3 spatial
dimensions are supported.

Parameters

handle

Input. Handle to a previously created cuDNN context.
poolingDesc

Input. Handle to the previously initialized pooling descriptor.
alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the computation result

with prior value in the output layer as follows:
dstValue = alpha[0]*resultValue + beta[0]*priorDstValue

For more information, refer to Scaling Parameters in the cuDNN Developer Guide.

yDesc

Input. Handle to the previously initialized input tensor descriptor. Can be NULL for avg
pooling.

Y
Input. Data pointer to GPU memory associated with the tensor descriptor yDesc. Can be
NULL for avg pooling.
dyDesc
Input. Handle to the previously initialized input differential tensor descriptor. Must be of
type FLOAT, DOUBLE, HALF, or BFLOAT16. For more information, refer to cudnnDataType t.
dy
Input. Data pointer to GPU memory associated with the tensor descriptor dybata.
xDesc
Input. Handle to the previously initialized output tensor descriptor. Can be NULL for avg
pooling.
X
Input. Data pointer to GPU memory associated with the output tensor descriptor xDesc. Can
be NULL for avg pooling.
dxDesc

Input. Handle to the previously initialized output differential tensor descriptor. Must be of
type FLOAT, DOUBLE, HALF, or BFLOAT16. For more information, refer to cudnnDataType t.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 150

https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#scaling-parameters

cudnn_ops_train.so Library

dx

Output. Data pointer to GPU memory associated with the output tensor descriptor dxDesc.

Returns
CUDNN_STATUS SUCCESS

The function launched successfully.

CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:

» The dimensions n, ¢, h, w of the ybDesc and dyDesc tensors differ.

» The strides nStride, cStride, hStride, wStride of the yDesc and dyDesc tensors
differ.

» The dimensions n, ¢, h, w of the dxDesc and dxDesc tensors differ.

» The strides nStride, cStride, hStride, wStride of the xDesc and dxDesc tensors
differ.

» The datatype of the four tensors differ.
CUDNN_STATUS NOT SUPPORTED

The function does not support the provided configuration. See the following for some
examples of non-supported configurations:

» The wStride of input tensor or output tensor is not 1.
CUDNN_STATUS_EXECUTION_ FAILED

The function failed to launch on the GPU.

4.1.19. cudnnSoftmaxBackward ()

cudnnStatus t cudnnSoftmaxBackward (

cudnnHandle t handle,
cudnnSoftmaxAlgorithm t algorithm,
cudnnSoftmaxMode t mode,
const void *alpha,
const cudnnTensorDescriptor t yDesc,
const void *yData,
const cudnnTensorDescriptor t dyDesc,
const void “ely,
const void *beta,
const cudnnTensorDescriptor t dxDesc,
void *dx)

This routine computes the gradient of the softmax function.

@ Note:

» In-place operation is allowed for this routine; meaning, dy and dx pointers may be equal.
However, this requires dybesc and dxDesc descriptors to be identical (particularly, the
strides of the input and output must match for in-place operation to be allowed).

NVIDIA cuDNN PR-09702-001_v8.4.1 | 151

cudnn_ops_train.so Library

» All tensor formats are supported for all modes and algorithms with 4 and 5D tensors.
Performance is expected to be highest with NCHW fully-packed tensors. For more than 5
dimensions tensors must be packed in their spatial dimensions.

Parameters
handle

Input. Handle to a previously created cuDNN context.
algorithm

Input. Enumerant to specify the softmax algorithm.
mode

Input. Enumerant to specify the softmax mode.
alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the computation result

with prior value in the output layer as follows:
dstValue = alpha[0O]*result + beta[0]*priorDstValue

For more information, refer to Scaling Parameters in the cuDNN Developer Guide.

yDesc

Input. Handle to the previously initialized input tensor descriptor.

Input. Data pointer to GPU memory associated with the tensor descriptor yDesc.

dyDesc
Input. Handle to the previously initialized input differential tensor descriptor.
dy
Input. Data pointer to GPU memory associated with the tensor descriptor dybata.

dxDesc

Input. Handle to the previously initialized output differential tensor descriptor.
dx

Output. Data pointer to GPU memory associated with the output tensor descriptor dxDesc.

Returns
CUDNN_STATUS_SUCCESS

The function launched successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 152

https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#scaling-parameters

cudnn_ops_train.so Library

CUDNN_STATUS_BAD_ PARAM

At least one of the following conditions are met:

» The dimensions n, ¢, h, w of the yDesc, dyDesc and dxDesc tensors differ.

» The strides nStride, cStride, hStride, wStride of the yDesc and dybesc tensors

differ.

> The datatype of the three tensors differs.
CUDNN_STATUS EXECUTION FAILED

The function failed to launch on the GPU.

4.1.20. cudnnSpatialTfGridGeneratorBackward ()

cudnnStatus_t cudnnSpatialTfGridGeneratorBackward (

cudnnHandle t handle,
const cudnnSpatialTransformerDescriptor t stDesc,
const void *dgrid,

void *dtheta)

This function computes the gradient of a grid generation operation.
Note: Only 2d transformation is supported.

Parameters
handle

Input. Handle to a previously created cuDNN context.
stDesc

Input. Previously created spatial transformer descriptor object.
dgrid

Input. Data pointer to GPU memory contains the input differential data.
dtheta

Output. Data pointer to GPU memory contains the output differential data.

Returns

CUDNN_STATUS_SUCCESS

The call was successful.

CUDNN_STATUS_BAD_ PARAM
At least one of the following conditions are met:

» handle iS NULL.

» One of the parameters dgrid or dtheta is NULL.

NVIDIA cuDNN PR-09702-001_v8.4.1

153

cudnn_ops_train.so Library

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration. See the following for some
examples of non-supported configurations:

» The dimension of the transformed tensor specified in stDesc > 4.
CUDNN_STATUS_EXECUTION FAILED

The function failed to launch on the GPU.

4.1.21. cudnnSpatialTfSamplerBackward ()

cudnnStatus t cudnnSpatialTfSamplerBackward (

cudnnHaHdle_t handle,
const cudnnSpatialTransformerDescriptor t stDesc,
const void *alpha,
const cudnnTensorDescriptor t xDesc,
const void *x,

const void *beta,
const cudnnTensorDescriptor t dxDesc,
void “ebR,

const void *alphaDgrid,
const cudnnTensorDescriptor t dyDesc,
const void *dy,

const void *grid,
const void *betabDgrid,
void *dgrid)

This function computes the gradient of a sampling operation.
Note: Only 2d transformation is supported.

Parameters
handle
Input. Handle to a previously created cuDNN context.
stDesc
Input. Previously created spatial transformer descriptor object.
alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the source value with prior

value in the destination tensor as follows:
dstValue = alpha[0]*srcValue + beta[0]*priorDstValue

For more information, refer to Scaling Parameters in the cuDNN Developer Guide.

xDesc

Input. Handle to the previously initialized input tensor descriptor.

Input. Data pointer to GPU memory associated with the tensor descriptor xDesc.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 154

https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#scaling-parameters

cudnn_ops_train.so Library

dxDesc

Input. Handle to the previously initialized output differential tensor descriptor.
dx

Output. Data pointer to GPU memory associated with the output tensor descriptor dxDesc.

alphaDgrid, betaDgrid

Input. Pointers to scaling factors (in host memory) used to blend the gradient outputs dgrid

with prior value in the destination pointer as follows:
dstValue = alpha[0]*srcValue + beta[0]*priorDstValue

For more information, refer to Scaling Parameters in the cuDNN Developer Guide.

dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.
dy

Input. Data pointer to GPU memory associated with the tensor descriptor dyDesc.
grid

Input. A grid of coordinates generated by cudnnSpatialTfGridGeneratorForward|().

dgrid

Output. Data pointer to GPU memory contains the output differential data.

CUDNN_STATUS_SUCCESS

The call was successful.

CUDNN_STATUS_BAD_ PARAM

At least one of the following conditions are met:

handle is NULL.
One of the parameters x, dx, y, dy, grid, dgrid is NULL.

The dimension of dy differs from those specified in stDesc.
CUDNN_STATUS_NOT SUPPORTED

The function does not support the provided configuration. See the following for some
examples of non-supported configurations:

The dimension of transformed tensor > 4.

CUDNN_STATUS_EXECUTION_ FAILED

The function failed to launch on the GPU.

NVIDIA cuDNN PR-09702-001_v8.4.1

155

https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#scaling-parameters

Chapter 5. cudnn cnn infer.so

Libra ry

For the backend data and descriptor types, refer to the cuDNN Backend API section.

5.1. Data Type References

5.1.1. Pointer To Opaque Struct Types

5.1.1.1. cudnnConvolutionDescriptor t

cudnnConvolutionDescriptor tis a pointer to an opaque structure holding the description
of a convolution operation. cudnnCreateConvolutionDescriptor(] is used to create one instance,
and cudnnSetConvolutionNdDescriptor() or cudnnSetConvolution2dDescriptor() must be used
to initialize this instance.

5.1.2. Struct Types

5.1.2.1. cudnnConvolutionBwdDataAlgoPerf t

cudnnConvolutionBwdDataAlgoPerf t is a structure containing performance results
returned by cudnnFindConvolutionBackwardDataAlgorithm(] or heuristic results returned by
cudnnGetConvolutionBackwardDataAlgorithm_v7().

Data Members

cudnnConvolutionBwdDataAlgo_t algo
The algorithm runs to obtain the associated performance metrics.
cudnnStatus_t status

If any error occurs during the workspace allocation or timing of
cudnnConvolutionBackwardDatal(), this status will represent that error. Otherwise, this
status will be the return status of cudnnConvolutionBackwardDatal().

NVIDIA cuDNN PR-09702-001_v8.4.1 | 156

cudnn_cnn_infer.so Library

» CUDNN_ STATUS ALLOC_FAILED if any error occurred during workspace allocation or if
the provided workspace is insufficient.

> CUDNN STATUS INTERNAL ERROR If any error occurred during timing calculations or

workspace deallocation.

> Otherwise, this will be the return status of cudnnConvolutionBackwardDatal(].

float time

The execution time of cudnnConvolutionBackwardDatal() (in milliseconds).

size_t memory

The workspace size (in bytes).
cudnnDeterminism t determinism

The determinism of the algorithm.
cudnnMathType t mathType

The math type provided to the algorithm.
int reserved[3]

Reserved space for future properties.

5.1.2.2. cudnnConvolutionFwdAlgoPerf t

cudnnConvolutionFwdAlgoPerf t isa structure containing performance results
returned by cudnnFindConvolutionForwardAlgorithm() or heuristic results returned by
cudnnGetConvolutionForwardAlgorithm_v7().

Data Members

cudnnConvolutionFwdAlgo t algo
The algorithm runs to obtain the associated performance metrics.
cudnnStatus_t status

If any error occurs during the workspace allocation or timing of
cudnnConvolutionForward(], this status will represent that error. Otherwise, this status will
be the return status of cudnnConvolutionForward(].

> CUDNN_ STATUS ALLOC_FAILED if any error occurred during workspace allocation or if
the provided workspace is insufficient.

» CUDNN STATUS INTERNAL ERROR if any error occurred during timing calculations or

workspace deallocation.

> Otherwise, this will be the return status of cudnnConvolutionForward|().

float time

The execution time of cudnnConvolutionForward(] (in milliseconds).

NVIDIA cuDNN PR-09702-001_v8.4.1 | 157

cudnn_cnn_infer.so Library

size_t memory

The workspace size (in bytes).

cudnnDeterminism t determinism

The determinism of the algorithm.

cudnnMathType t mathType

The math type provided to the algorithm.

int reserved[3]

Reserved space for future properties.

5.1.3. Enumeration Types

5.1.3.1. cudnnConvolutionBwdDataAlgo t

cudnnConvolutionBwdDataAlgo t is an enumerated type that exposes the different
algorithms available to execute the backward data convolution operation.

Values
CUDNN_CONVOLUTION BWD DATA ALGO 0

This algorithm expresses the convolution as a sum of matrix products without actually
explicitly forming the matrix that holds the input tensor data. The sum is done using the
atomic add operation, thus the results are non-deterministic.

CUDNN_CONVOLUTION BWD DATA ALGO_ 1
This algorithm expresses the convolution as a matrix product without actually explicitly
forming the matrix that holds the input tensor data. The results are deterministic.
CUDNN_CONVOLUTION BWD DATA ALGO_FFT
This algorithm uses a Fast-Fourier Transform approach to compute the convolution. A

significant memory workspace is needed to store intermediate results. The results are
deterministic.

CUDNN_CONVOLUTION BWD DATA ALGO FFT TILING
This algorithm uses the Fast-Fourier Transform approach but splits the inputs into
tiles. A significant memory workspace is needed to store intermediate results but less

than CUDNN CONVOLUTION BWD DATA ALGO FET for large size images. The results are
deterministic.

CUDNN_CONVOLUTION BWD_ DATA ALGO_WINOGRAD

This algorithm uses the Winograd Transform approach to compute the convolution. A
reasonably sized workspace is needed to store intermediate results. The results are
deterministic.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 158

cudnn_cnn_infer.so Library

CUDNN_CONVOLUTION BWD_ DATA ALGO_WINOGRAD NONFUSED

This algorithm uses the Winograd Transform approach to compute the convolution.
A significant workspace may be needed to store intermediate results. The results are
deterministic.

5.1.3.2. cudnnConvolutionBwdFilterAlgo t

cudnnConvolutionBwdFilterAlgo tisan enumerated type that exposes the different
algorithms available to execute the backward filter convolution operation.

Values
CUDNN_CONVOLUTION BWD FILTER ALGO 0

This algorithm expresses the convolution as a sum of matrix products without actually
explicitly forming the matrix that holds the input tensor data. The sum is done using the
atomic add operation, thus the results are non-deterministic.

CUDNN_CONVOLUTION BWD FILTER ALGO 1
This algorithm expresses the convolution as a matrix product without actually explicitly
forming the matrix that holds the input tensor data. The results are deterministic.
CUDNN_CONVOLUTION BWD FILTER ALGO FFT
This algorithm uses the Fast-Fourier Transform approach to compute the convolution.

A significant workspace is needed to store intermediate results. The results are
deterministic.

CUDNN_CONVOLUTION BWD FILTER ALGO 3
This algorithm is similar to CUDNN_CONVOLUTION BWD FILTER ALGO_ 0 butuses some
small workspace to precompute some indices. The results are also non-deterministic.
CUDNN_CONVOLUTION BWD_ FILTER WINOGRAD NONFUSED
This algorithm uses the Winograd Transform approach to compute the convolution.

A significant workspace may be needed to store intermediate results. The results are
deterministic.

CUDNN_CONVOLUTION BWD_FILTER ALGO_FFT TILING

This algorithm uses the Fast-Fourier Transform approach to compute the convolution
but splits the input tensor into tiles. A significant workspace may be needed to store
intermediate results. The results are deterministic.

5.1.3.3. cudnnConvolutionFwdAlgo t

cudnnConvolutionFwdAlgo_ t is an enumerated type that exposes the different algorithms
available to execute the forward convolution operation.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 159

cudnn_cnn_infer.so Library

CUDNN_CONVOLUTION FWD ALGO IMPLICIT GEMM
This algorithm expresses the convolution as a matrix product without actually explicitly
forming the matrix that holds the input tensor data.
CUDNN_CONVOLUTION FWD ALGO IMPLICIT PRECOMP_ GEMM
This algorithm expresses convolution as a matrix product without actually explicitly forming
the matrix that holds the input tensor data, but still needs some memory workspace to

precompute some indices in order to facilitate the implicit construction of the matrix that
holds the input tensor data.

CUDNN_CONVOLUTION FWD_ ALGO_ GEMM

This algorithm expresses the convolution as an explicit matrix product. A significant

memory workspace is needed to store the matrix that holds the input tensor data.
CUDNN_CONVOLUTION FWD ALGO DIRECT

This algorithm expresses the convolution as a direct convolution (for example, without

implicitly or explicitly doing a matrix multiplication).
CUDNN_CONVOLUTION FWD ALGO_FFT

This algorithm uses the Fast-Fourier Transform approach to compute the convolution. A

significant memory workspace is needed to store intermediate results.
CUDNN_CONVOLUTION FWD_ALGO_FFT TILING

This algorithm uses the Fast-Fourier Transform approach but splits the inputs into tiles.

A significant memory workspace is needed to store intermediate results but less than
CUDNN_ CONVOLUTION FWD ALGO FFT for large size images.

CUDNN_CONVOLUTION FWD ALGO_WINOGRAD
This algorithm uses the Winograd Transform approach to compute the convolution. A
reasonably sized workspace is needed to store intermediate results.
CUDNN_CONVOLUTION FWD_ALGO_WINOGRAD NONFUSED

This algorithm uses the Winograd Transform approach to compute the convolution. A
significant workspace may be needed to store intermediate results.

cudnnConvolutionMode t isan enumerated type used by cudnnSetConvolution2dDescriptor()
to configure a convolution descriptor. The filter used for the convolution can be applied in two
different ways, corresponding mathematically to a convolution or to a cross-correlation. (A
cross-correlation is equivalent to a convolution with its filter rotated by 180 degrees.]

NVIDIA cuDNN PR-09702-001_v8.4.1 | 160

cudnn_cnn_infer.so Library

Values

CUDNN_CONVOLUTION

In this mode, a convolution operation will be done when applying the filter to the images.

CUDNN_CROSS_CORRELATION

In this mode, a cross-correlation operation will be done when applying the filter to the
images.

5.1.3.0. cudnnReorderType t

typedef enum {

CUDNN DEFAULT REORDER
CUDNN_NO REORDER

} cudnnReorderType t;

0,
1,

cudnnReorderType tisan enumerated type to set the convolution reordering type. The
reordering type can be set by cudnnSetConvolutionReorderType(] and its status can be read by
cudnnGetConvolutionReorderType(].

H.2. APl Functions

5.2.1. cudnnCnnInferVersionCheck ()

cudnnStatus t cudnnCnnInferVersionCheck (void)

This function checks whether the version of the cnnInfer subset of the library is consistent
with the other sub-libraries.

Returns

CUDNN_STATUS_SUCCESS
The version is consistent with other sub-libraries.

CUDNN_STATUS_VERSION MISMATCH
The version of cnniInfer is not consistent with other sub-libraries. Users should check the
installation and make sure all sub-component versions are consistent.

Hh.2.2. cudnnConvolutionBackwardData ()
cudnnStatus_t cudnnConvolutionBackwardData (

cudnnHandle t handle,

const void *alpha,

const cudnnFilterDescriptor t wDesc,

const void *w,

const cudnnTensorDescriptor t dyDesc,

const void *dy,

const cudnnConvolutionDescriptor t convDesc,

cudnnConvolutionBwdDataAlgo t algo,

void *workSpace,

size t workSpaceSizeInBytes,

const void *beta,

NVIDIA cuDNN PR-09702-001_v8.4.1 | 161

cudnn_cnn_infer.so Library

const cudnnTensorDescriptor t dxDesc,

void *dx)
This function computes the convolution data gradient of the tensor dy, where y is the output of
the forward convolution in cudnnConvolutionForward(). It uses the specified algo, and returns
the results in the output tensor dx. Scaling factors alpha and beta can be used to scale the
computed result or accumulate with the current dx.

Parameters
handle

Input. Handle to a previously created cuDNN context. For more information, refer to
cudnnHandle_t.

alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the computation result

with prior value in the output layer as follows:
dstValue = alpha[0O]*result + beta[0]*priorDstValue

For more information, refer to Scaling Parameters in the cuDNN Developer Guide.

wDesc

Input. Handle to a previously initialized filter descriptor. For more information, refer to
cudnnFilterDescriptor_t.

w
Input. Data pointer to GPU memory associated with the filter descriptor wbesc.
dyDesc
Input. Handle to the previously initialized input differential tensor descriptor. For more
information, refer to cudnnTensorDescriptor_t.
dy
Input. Data pointer to GPU memory associated with the input differential tensor descriptor
dyDesc.
convDesc
Input. Previously initialized convolution descriptor. For more information, refer to
cudnnConvolutionDescriptor_t.
algo

Input. Enumerant that specifies which backward data convolution algorithm should be used
to compute the results. For more information, refer to cudnnConvolutionBwdDataAlgo_t.

workSpace

Input. Data pointer to GPU memory to a workspace needed to be able to execute the
specified algorithm. If no workspace is needed for a particular algorithm, that pointer can
be nil.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 162

https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#scaling-parameters

cudnn_cnn_infer.so Library

workSpaceSizeInBytes

Input. Specifies the size in bytes of the provided workspace.
dxDesc

Input. Handle to the previously initialized output tensor descriptor.
dx

Input/Output. Data pointer to GPU memory associated with the output tensor descriptor
dxDesc that carries the result.

Supported configurations

This function supports the following combinations of data types for wbesc, dyDesc, convDesc,
and dxDesc.

wDesc, dyDesc and dxDesc
Data Type Configurations Data Type convDesc Data Type

TRUE_HALF CONFIG (only CUDNN_DATA HALF CUDNN_ DATA HALF
supported on architectures

with true FP16 support,

meaning, compute capability

5.3 and later)

PSEUDO_HALF CONFIG CUDNN_DATA HALF CUDNN_DATA FLOAT
PSEUDO_BFLOAT16 CONFIG | CUDNN DATA BFLOAT16 CUDNN_DATA_ FLOAT
FLOAT CONFIG CUDNN_DATA_ FLOAT CUDNN_DATA FLOAT
DOUBLE_CONFIG CUDNN_DATA DOUBLE CUDNN_DATA DOUBLE

Supported algorithms

S Note: Specifying a separate algorithm can cause changes in performance, support and
computation determinism. See the following for a list of algorithm options, and their respective
supported parameters and deterministic behavior.

The table below shows the list of the supported 2D and 3D convolutions. The 2D convolutions
are described first, followed by the 3D convolutions.

For the following terms, the short-form versions shown in the parentheses are used in the
table below, for brevity:

CUDNN_CONVOLUTION BWD DATA ALGO 0 (_ALGO_0)

CUDNN CONVOLUTION BWD DATA ALGO 1 (_ALGO_1)

CUDNN CONVOLUTION BWD DATA ALGO FFT (_FFT)

vV v v VY

CUDNN_CONVOLUTION BWD DATA ALGO FFT TILING (_FFT_TILING)

NVIDIA cuDNN PR-09702-001_v8.4.1 | 163

cudnn_cnn_infer.so Library

CUDNN_CONVOLUTION BWD DATA ALGO WINOGRAD (_WINOGRAD)

CUDNN_CONVOLUTION BWD DATA ALGO WINOGRAD NONFUSED (_WINOGRAD_NONFUSED)
CUDNN TENSOR NCHW (_NCHW)

CUDNN TENSOR NHWC (_NHWC)

CUDNN TENSOR NCHW VECT C (_NCHW_VECT_C)

Table 16. For 2D convolutions: whesc: NHWC

Filter descriptor wbesc: NHWC (refer to cudnnTensorFormat_t)

Tensor Tensor
Formats Formats Data Type
Deterministic Supported for Supported for Configurations
Algo Name (Yes or No) dyDesc dxDesc Supported Important
_ALGO 0 NHWC HWC- NHWC HWC- TRUE_HALF CONFIG
packed packed
ALGO 1 PSEUDO_HALF CONFIG
PSEUDO_BFLOAT16 CONFIG
FLOAT CONFIG
Table 17. For 2D convolutions: wbesc: NCHW

Filter descriptor wbesc: NCHwW.

Tensor Tensor
Formats Formats Data Type
Deterministic Supported for Supported for Configurations
Algo Name (Yes or No) dyDesc dxDesc Supported Important
ALGO 0 No NCHW CHW- | All except TRUE_HALF_CONFDdation:
packed NCHW_VECT_C. reater than
- - -~ PSEUDO_HALF CONF1G
- ~ | Oforall
PSEUDO_BFLOAT1§iReNEERs
FLOAT CONFIG | <onvDesc
DOUBLE_coNrIg Oroup Count
Support:
Greater than 0
_ALGO 1 Yes NCHW CHW- All except TRUE_HALF cONFDdation:
packed NCHW_VECT_C. reater than
- - —~ PSEUDO_HALF CONFIG
- ~ | Oforall

PSEUDO_BFLOATI§heNEibns

FLOAT CONFIG

NVIDIA cuDNN PR-09702-001_v8.4.1 | 164

Filter descriptor wbesc: NCHW.

Deterministic

Algo Name (Yes or No)
_FFT Yes
NVIDIA cuDNN

Supported for

NCHW CHW-

Tensor
Formats
Supported for
dxDesc

NCHW HW-
packed

cudnn_cnn_infer.so Library

Data Type
Configurations
Supported Important
DOUBLE CONFIG convDesc
Group Count
Support:

Greater than 0

PSEUDO HALF_ cOBilation: 1 for

all dimensions
FLOAT CONFIG

convDesc
Group Count
Support:
Greater than 0

dxDesc feature
map height +

2 * convDesc
zero-padding
height must
equal 256 or
less

dxDesc feature
map width +

2 * convDesc
zero-padding
width must
equal 256 or
less

convDesc
vertical and
horizontal filter
stride must
equal 1

wDesc filter
height must

be greater
than convbDesc
zero-padding
height

PR-09702-001_v8.4.1 | 165

Filter descriptor wbesc: NCHW.

Tensor Tensor
Formats Formats
Deterministic Supported for Supported for Configurations
Algo Name (Yes or No) dyDesc dxDesc
_FFT TILING | Yes NCHW CHW- NCHW HW-
packed packed

NVIDIA cuDNN

cudnn_cnn_infer.so Library

Data Type

Supported

Important
wDesc filter
width must

be greater
than convDesc
zero-padding
width

PSEUDO HALF coBilation: 1 for

FLOAT CONFIG

DOUBLE_CONFIG
is also
supported
when the task
can be handled
by 1D FFT,
meaning, one
of the filter
dimensions,
width or height
is 1.

all dimensions

convDesc
Group Count
Support:
Greater than 0

When neither
of wbesc filter
dimensionis 1,
the filter width
and height
must not be
larger than 32

When either
of wbesc filter
dimension

is 1, the
largest filter
dimension
should not
exceed 256

convDesc
vertical and
horizontal filter
stride must
equal 1 when
either the filter
width or filter
height is 1,
otherwise, the

PR-09702-001_v8.4.1 | 166

cudnn_cnn_infer.so Library

Filter descriptor wbesc: NCHW.

Algo Name

_WINOGRAD

Tensor Tensor
Formats Formats Data Type
Deterministic Supported for Supported for Configurations
(Yes or No) dyDesc dxDesc Supported Important
stride can be 1
or?2

wDesc filter
height must

be greater
than convbDesc
zero-padding
height

wDesc filter
width must

be greater
than convDesc
zero-padding
width

Yes NCHW CHW- All except PSEUDO_HALF COBHation: 1 for

acked NCHW VECT C. all dimensions
p
— - — " FLOAT CONFIG

convDesc
Group Count
Support:
Greater than O

convDesc
vertical and
horizontal filter
stride must
equal 1

wDesc filter
height must be
3

wDesc filter
width must be
3

_WINOGRAD NONFY&ED NCHW CHW- | All except TRUE HALF CoNFD#ation: 1 for

NVIDIA cuDNN

packed NCHW_VECT C. all dimensions
- - —" PSEUDO HALF CONFIG

PSEUDO BFLOAT16 CONFIG

PR-09702-001_v8.4.1 | 167

cudnn_cnn_infer.so Library

Filter descriptor wbesc: NCHW.

Tensor Tensor
Formats Formats Data Type
Deterministic Supported for Supported for Configurations
Algo Name (Yes or No) dyDesc dxDesc Supported Important
FLOAT CONFIG convDesc
Group Count
Support:
Greater than 0
convDesc
vertical and
horizontal filter
stride must
equal 1
wDesc filter
(height, width)
must be (3,3)
or (5,5)
If whesc
filter (height,
width) is (5,5)
then the data
type config
TRUE HALF CONFIG
is not
supported
Table 18. For 3D convolutions: whesc: NCHW
Filter descriptor wbesc: NCHW.
Tensor Tensor
Formats Formats Data Type
Deterministic Supported for Supported for Configurations
Algo Name (Yes or No) dyDesc dxDesc Supported Important
_ALGO 0 Yes NCDHW All except pPSEUDO HALF coBilation:

CDHW-packed | NCDHW VECT C

FLOAT CONFIG

DOUBLE CONFIG

NVIDIA cuDNN

r rth
PSEUDO BFLOAT1% CONFIG

PR-09702-001_v8.4.1 |

eate an
OFor all

dimensions

convDesc

Group Count

168

Filter descriptor wbesc: NCHW.

Deterministic

Algo Name (Yes or No)
_ALGO 1 Yes
_FFT TILING | Yes

NVIDIA cuDNN

Tensor
Formats
Supported for
dyDesc

NCDHW

CDHW-packed

NCDHW
CDHW-packed

Tensor
Formats
Supported for
dxDesc

NCDHW
CDHW-packed

NCDHW DHW-
packed

cudnn_cnn_infer.so Library

Data Type

Configurations

Supported Important
Support:

Greater than 0

TRUE_HALF cONFDdation: 1 for

all dimensions
PSEUDO BFLOATL16 CONFIG

nvDesc

co
PSEUDO_HALF CONFIG
Group Count

FLOATiCONFIGDOQQBBQgQNFIG

Greater than 0

PSEUDO HALF coBilation: 1 for

all dimensions
FLOAT CONFIG

convDesc
DOUBLE_CONFIG

Group Count

Support:

Greater than 0

wDesc filter

height must
equal 16 or
less

wDesc filter
width must
equal 16 or
less

wDesc filter
depth must
equal 16 or
less

convDesc
must have all
filter strides
equal to 1

wDesc filter
height must
be greater

than convbDesc

PR-09702-001_v8.4.1 | 169

cudnn_cnn_infer.so Library

Filter descriptor wbesc: NCHW.

Tensor Tensor
Formats Formats Data Type
Deterministic Supported for Supported for Configurations
Algo Name (Yes or No) dyDesc dxDesc Supported Important
zero-padding
height
wDesc filter
width must
be greater
than convbDesc
zero-padding
width
wDesc filter
depth must
be greater
than convbDesc
zero-padding
width
Table 19. For 3D convolutions: wbesc: NHWC
Filter descriptor wbesc: NHWC
Tensor Tensor
Algo Formats Formats Data Type
Name (3D Deterministic Supported for Supported for Configurations
Convolutions) (Yes or No) dyDesc dxDesc Supported Important
_ALGO 1 Yes NDHWC NDHWC TRUE_HALF cONFDdation:
DHWC-packed | DHWC-packed @ PSEUDO HALF cogf%%}er
- ~ than O forall

PESUDO BFLOATL4iReNEHAs

FLOAT CONFIG | ~onvDesc

Group Count
Support:
Greater than 0

CUDNN_STATUS_SUCCESS

The operation was launched successfully.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 170

cudnn_cnn_infer.so Library

CUDNN_STATUS_BAD_ PARAM

At least one of the following conditions are met:

> At least one of the following is NULL: handle, dyDesc, wDesc, convDesc, dxDesc, dy, w,
dx, alpha, beta

wDesc and dyDesc have a non-matching number of dimensions

wDesc and dxDesc have a non-matching number of dimensions

wDesc has fewer than three number of dimensions

wDesc, dxDesc, and dyDesc have a non-matching data type.

vV v v v Vv

wDesc and dxDesc have a non-matching number of input feature maps per image (or
group in case of grouped convolutions).

> dyDesc spatial sizes do not match with the expected size as determined by

cudnnGetConvolutionNdForwardOutputDim

CUDNN_STATUS_NOT SUPPORTED
At least one of the following conditions are met:
» dyDesc or dxDesc have a negative tensor striding
> dyDesc, wDesc or dxDesc has a number of dimensions that is not 4 or 5

» The chosen algo does not support the parameters provided; see above for an exhaustive
list of parameters that support each algo

» dyDesc or wDesc indicate an output channel count that isn't a multiple of group count [if
group count has been set in convDesc].

CUDNN_STATUS_MAPPING_ERROR

An error occurs during the texture binding of texture object creation associated with the
filter data or the input differential tensor data.

CUDNN_STATUS_EXECUTION_ FAILED

The function failed to launch on the GPU.

5.2.3. cudnnConvolutionBiasActivationForward ()
cudnnStatus t cudnnConvolutionBiasActivationForward (

cudnnHandle t handle,

const void *alphal,

const cudnnTensorDescriptor t xDesc,

const void W0

const cudnnFilterDescriptor t wDesc,

const void *w,

const cudnnConvolutionDescriptor t convDesc,

cudnnConvolutionFwdAlgo t algo,

void *workSpace,

size t workSpaceSizeInBytes,

const void *alphaz,

const cudnnTensorDescriptor t zDesc,

const void *z,

const cudnnTensorDescriptor t biasDesc,

const void *bias,

const cudnnActivationDescriptor t activationDesc,

NVIDIA cuDNN PR-09702-001_v8.4.1 | 171

cudnn_cnn_infer.so Library

const cudnnTensorDescriptor t yDesc,

void *y)
This function applies a bias and then an activation to the convolutions or cross-correlations of
cudnnConvolutionForward(), returning results in y. The full computation follows the equation y
= act (alphal * conv(x) + alpha2 * z + bias).

@ Note:

» The routine cudnnGetConvolution2dForwardQutputDim() or
cudnnGetConvolutionNdForwardQutputDim() can be used to determine the proper
dimensions of the output tensor descriptor yDesc with respect to xDesc, convDesc, and
wDesc.

» Only the CUDNN CONVOLUTION FWD ALGO IMPLICIT PRECOMP GEMM algo is enabled
with CUDNN ACTIVATION IDENTITY. |n other words, in the cudnnActivationDescriptor_t
structure of the input activationDesc, if the mode of the cudnnActivationMode_t
field is set to the enum value CUDNN ACTIVATION IDENTITY, then the input
cudnnConvolutionFwdAlgo_t of this function cudnnConvolutionBiasActivationForward()
must be set to the enum value CUDNN CONVOLUTION FWD ALGO IMPLICIT PRECOMP GEMM.
For more information, refer to cudnnSetActivationDescriptor().

» Device pointer z and y may be pointing to the same buffer, however, x cannot point to the
same buffer as z or y.
Parameters
handle

Input. Handle to a previously created cuDNN context. For more information, refer to
cudnnHandle t.

alphal, alpha2

Input. Pointers to scaling factors (in host memory) used to blend the computation result of
convolution with z and bias as follows:
y = act (alphal * conv(x) + alpha2 * z + bias)

For more information, refer to Scaling Parameters in the cuDNN Developer Guide.

xDesc

Input. Handle to a previously initialized tensor descriptor. For more information, refer to
cudnnTensorDescriptor_t.

Input. Data pointer to GPU memory associated with the tensor descriptor xDesc.

wDesc

Input. Handle to a previously initialized filter descriptor. For more information, refer to
cudnnFilterDescriptor_t.

Input. Data pointer to GPU memory associated with the filter descriptor wbesc.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 172

https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#scaling-parameters

cudnn_cnn_infer.so Library

convDesc

Input. Previously initialized convolution descriptor. For more information, refer to
cudnnConvolutionDescriptor_t.

algo

Input. Enumerant that specifies which convolution algorithm should be used to compute the
results. For more information, refer to cudnnConvolutionFwdAlgo_t.

workSpace

Input. Data pointer to GPU memory to a workspace needed to be able to execute the
specified algorithm. If no workspace is needed for a particular algorithm, that pointer can
be nil.

workSpaceSizeInBytes

Input. Specifies the size in bytes of the provided workspace.

zDesc

Input. Handle to a previously initialized tensor descriptor.

Input. Data pointer to GPU memory associated with the tensor descriptor zDesc.

biasDesc
Input. Handle to a previously initialized tensor descriptor.
bias
Input. Data pointer to GPU memory associated with the tensor descriptor biasDesc.

activationDesc

Input. Handle to a previously initialized activation descriptor. For more information, refer to
cudnnActivationDescriptor_t.

yDesc

Input. Handle to a previously initialized tensor descriptor.

Input/Output. Data pointer to GPU memory associated with the tensor descriptor ybesc that
carries the result of the convolution.

For the convolution step, this function supports the specific combinations of data

types for xDesc, wDesc, convDesc, and yDesc as listed in the documentation of
cudnnConvolutionForward(]. The following table specifies the supported combinations of data
types for x, y, z, bias, and alphal/alpha2.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 173

Table 20.

X
X_DOUBLE
X_FLOAT
X_HALF
X_BFLOAT16
X_INT8
X_INT8
X_INT8x4
X_INT8x4
X_UINTS
X_UINTS
X_UINT8x4
X_UINT8x4

X_INT8x32

Returns

cudnn_cnn_infer.so Library

Supported combinations of data types (X = CUDNN DATA]

w
X_DOUBLE
X_FLOAT
X_HALF

X BFLOAT16
X_INT8
X_INT8
X_INT8x4
X_INT8x4
X_INT8
X_INT8
X_INT8x4
X_INT8x4

X_INT8x32

convDesc
X_DOUBLE
X_FLOAT
X_FLOAT
X_FLOAT
X_INT32
X_INT32
X_INT32
X_INT32
X_INT32
X_INT32
X_INT32
X_INT32

X_INT32

y and z
X_DOUBLE
X FLOAT
X_HALF

X _BFLOAT16
X _INTS8
X_FLOAT
X INT8x4
X_FLOAT
X _INTS8
X_FLOAT
X _INT8x4
X FLOAT

X_INT8x32

bias

X DOUBLE
X FLOAT
X _HALF

X BFLOAT16
X _FLOAT
X _FLOAT
X FLOAT
X FLOAT
X _FLOAT
X _FLOAT
X FLOAT
X FLOAT

X_FLOAT

alphal/
alpha2

X_DOUBLE
X_FLOAT
X_FLOAT
X_FLOAT
X_FLOAT
X_FLOAT
X_FLOAT
X_FLOAT
X_FLOAT
X_FLOAT
X_FLOAT
X_FLOAT

X_FLOAT

In addition to the error values listed by the documentation of cudnnConvolutionForward(], the
possible error values returned by this function and their meanings are listed below.
CUDNN_STATUS_SUCCESS

The operation was launched successfully

CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:

> At least one of the following is NULL: handle, xDesc, wDesc, convDesc, yDesc, zDesc

biasDesc, activationDesc, xData, wData, yData, zData, bias, alphal, alpha2

» The number of dimensions of xDesc, wDesc, yDesc, zDesc is not equal to the array

length of convbesc + 2.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration. Some examples of non-supported

configurations are as follows:

» The mode of activationDesc Is neither CUDNN ACTIVATION RELU Or

CUDNN_ ACTIVATION IDENTITY

» The reluNanOpt of activationDesc IS not CUDNN_NOT PROPAGATE NAN.

» The second stride of biasDesc is not equal to one.

NVIDIA cuDNN

PR-09702-001_v8.4.1 | 174

cudnn_cnn_infer.so Library

» The first dimension of biasDesc is not equal to one.

» The second dimension of biasDesc and the first dimension of filterDesc are not
equal.

» The data type of biasDesc does not correspond to the data type of yDesc as listed in the
above data types table.

> zDesc and destDesc do not match.
CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

h.2.4. cudnnConvolutionForward ()
cudnnStatus t cudnnConvolutionForward (

cudnnHandle t handle,

const void *alpha,

const cudnnTensorDescriptor t xDesc,

const void R

const cudnnFilterDescriptor t wDesc,

const void *w,

const cudnnConvolutionDescriptor t convDesc,

cudnnConvolutionFwdAlgo t algo,

void *workSpace,

size t workSpaceSizeInBytes,

const void *beta,

const cudnnTensorDescriptor t yDesc,

void *y)

This function executes convolutions or cross-correlations over x using filters specified with w,
returning results in y. Scaling factors alpha and beta can be used to scale the input tensor
and the output tensor respectively.

Note: The routine cudnnGetConvolution2dForwardOutputDim(] or
cudnnGetConvolutionNdForwardOutputDim() can be used to determine the proper dimensions
of the output tensor descriptor yDesc with respect to xDesc, convDesc, and whesc.

Parameters
handle

Input. Handle to a previously created cuDNN context. For more information, refer to
cudnnHandle_t.

alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the computation result

with prior value in the output layer as follows:
dstValue = alpha[0]*result + beta[0]*priorDstValue

For more information, refer to Scaling Parameters in the cuDNN Developer Guide.

xDesc

Input. Handle to a previously initialized tensor descriptor. For more information, refer to
cudnnTensorDescriptor_t.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 175

https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#scaling-parameters

cudnn_cnn_infer.so Library

X
Input. Data pointer to GPU memory associated with the tensor descriptor xDesc.
wDesc
Input. Handle to a previously initialized filter descriptor. For more information, refer to
cudnnFilterDescriptor_t.
w
Input. Data pointer to GPU memory associated with the filter descriptor wbesc.
convDesc
Input. Previously initialized convolution descriptor. For more information, refer to
cudnnConvolutionDescriptor_t.
algo
Input. Enumerant that specifies which convolution algorithm should be used to compute the
results. For more information, refer to cudnnConvolutionFwdAlgo_t.
workSpace

Input. Data pointer to GPU memory to a workspace needed to be able to execute the
specified algorithm. If no workspace is needed for a particular algorithm, that pointer can
be nil.

workSpaceSizelInBytes

Input. Specifies the size in bytes of the provided workspace.

yDesc

Input. Handle to a previously initialized tensor descriptor.

Input/Output. Data pointer to GPU memory associated with the tensor descriptor ybesc that
carries the result of the convolution.

Supported configurations

This function supports the following combinations of data types for xDesc, whesc, convDesc,

and yDesc.

Table 21. Supported configurations

Data Type

Configurations xDesc and wDesc convDesc yDesc

TRUE HALF CONFIG | CUDNN DATA HALF CUDNN_DATA HALF CUDNN DATA HALF

(only supported on
architectures with
true FP16 support,

NVIDIA cuDNN PR-09702-001_v8.4.1 | 176

Data Type
Configurations
meaning, compute
capability 5.3 and
later)

xDesc and wDesc

PSEUDO_HALF CONFIG CUDNN DATA HALF

PSEUDO BFLOAT16 CONIUINN DATA BFLOAT16

(only support on
architecture with
bfloatl6 support,
meaning, compute
capability 8.0 and
later)

FLOAT CONFIG
DOUBLE CONFIG

INT8 CONFIG
(only supported

on architectures
with DP4A support,
meaning, compute
capability 6.1 and
later)

INT8 EXT CONFIG
(only supported

on architectures
with DP4A support,
meaning, compute
capability 6.1 and
later)

INT8x4 CONFIG
(only supported

on architectures
with DP4A support,
meaning, compute
capability 6.1 and
later)

INT8x4 EXT CONFIG

(only supported
on architectures
with DP4A support,
meaning, compute

NVIDIA cuDNN

CUDNN_DATA FLOAT

CUDNN DATA DOUBLE

CUDNN_DATA INT8

CUDNN_DATA INT8

CUDNN DATA INT8x4

CUDNN_DATA INT8x4

convDesc

CUDNN_DATA FLOAT

CUDNN_DATA FLOAT

CUDNN_DATA FLOAT
CUDNN DATA DOUBLE

CUDNN DATA INT32

CUDNN DATA INT32

CUDNN DATA INT32

CUDNN_DATA INT32

cudnn_cnn_infer.so Library

yDesc

CUDNN_DATA HALF

CUDNN_ DATA BFLOAT16

CUDNN_DATA FLOAT
CUDNN_DATA DOUBLE

CUDNN DATA INTS

CUDNN_DATA FLOAT

CUDNN DATA INT8x4

CUDNN_ DATA FLOAT

PR-09702-001_v8.4.1 | 177

Data Type
Configurations
capability 6.1 and
later)

UINT8 CONFIG
(only supported

on architectures
with DP4A support,
meaning, compute
capability 6.1 and
later)

UINT8x4 CONFIG
(only supported

on architectures
with DP4A support,
meaning, compute
capability 6.1 and
later)

UINT8 EXT CONFIG
(only supported

on architectures
with DP4A support,
meaning, compute
capability 6.1 and
later)

UINT8x4 EXT CONFIG

(only supported

on architectures
with DP4A support,
meaning, compute
capability 6.1 and
later)

INT8x32 CONFIG
(only supported

on architectures
with IMMA support,
meaning compute
capability 7.5 and
later)

NVIDIA cuDNN

xDesc and wDesc

xDesc:

CUDNN_DATA UINTS8

wDesc:

CUDNN_DATA INTS8

xDesc:

CUDNN DATA UINT8x4

wDesc:

CUDNN_DATA INT8x4

xDesc:

CUDNN_DATA UINTS8

wDesc:

CUDNN_DATA INTS8

xDesc:

CUDNN_ DATA UINT8x4

wDesc:

CUDNN_DATA INT8x4

CUDNN_DATA INT8x32

convDesc

CUDNN DATA INT32

CUDNN DATA INT32

CUDNN_DATA INT32

CUDNN_DATA INT32

CUDNN_DATA INT32

cudnn_cnn_infer.so Library

yDesc

CUDNN DATA INTS

CUDNN DATA INT8x4

CUDNN_ DATA FLOA

CUDNN_DATA FLOAT

CUDNN_DATA INT8x32

PR-09702-001_v8.4.1

cudnn_cnn_infer.so Library

Supported algorithms

S Note: For this function, all algorithms perform deterministic computations. Specifying a
separate algorithm can cause changes in performance and support.

The table below shows the list of the supported 2D and 3D convolutions. The 2D convolutions
are described first, followed by the 3D convolutions.

For the following terms, the short-form versions shown in the parenthesis are used in the
table below, for brevity:

» CUDNN_CONVOLUTION FWD ALGO IMPLICIT GEMM (_IMPLICIT_GEMM)

» CUDNN_CONVOLUTION FWD ALGO IMPLICIT PRECOMP GEMM (_IMPLICIT_PRECOMP_GEMM)
> CUDNN CONVOLUTION FWD ALGO GEMM (_GEMM)

» CUDNN_CONVOLUTION FWD ALGO DIRECT (_DIRECT)

> CUDNN CONVOLUTION FWD ALGO FFT (_FFT)

» CUDNN_CONVOLUTION FWD ALGO FFT TILING (_FFT_TILING)

» CUDNN_CONVOLUTION FWD ALGO WINOGRAD (_WINOGRAD)

» CUDNN_CONVOLUTION FWD ALGO WINOGRAD NONFUSED (_WINOGRAD_NONFUSED)

» CUDNN TENSOR NCHW (_NCHW)

» CUDNN TENSOR NHWC (_NHWC)

» CUDNN TENSOR NCHW VECT C (_NCHW_VECT_C)

Table 22. For 2D convolutions: whesc: NCHW

Filter descriptor wDesc: _NCHW (refer to cudnnTensorFormat_t)

convDesc Group count support: Greater than 0, for all algos.

Tensor Formats Tensor Formats Data Type
Supported for Supported for Configurations

Algo Name xDesc yDesc Supported Important
_IMPLICIT GEMM | All except All except TRUE_HALF CONFIG Dilation: Greater
NCHW_VECT_C. NCHW_VECT_C. than O for all
- - - - - - PSEUDO HALF CONFIG _
dimensions

PSEUDO BFLOAT16 CONFIG
FLOAT CONFIG
DOUBLE_CONFIG
_IMPLICIT PRECOMPAGEMMept All except TRUE HALF CONFIG Dilation: 1 for all

NCHW VECT C. NCHW VECT C. dimensions
- - - — - - PSEUDO_HALF CONFIG

NVIDIA cuDNN PR-09702-001_v8.4.1 | 179

cudnn_cnn_infer.so Library

Filter descriptor wDesc: _NCHW (refer to cudnnTensorFormat_t)

convDesc Group count support: Greater than 0, for all algos.

Tensor Formats Tensor Formats Data Type
Supported for Supported for Configurations
Algo Name xDesc yDesc Supported Important
PSEUDO_BFLOAT16 CONFIG

FLOAT CONFIG
DOUBLE CONFIG

_GEMM All except All except PSEUDO HALF CONFIBilation: 1 for all

NCHW VECT C. NCHW VECT C. dimensions
- - - - - - FLOAT CONFIG

DOUBLE CONFIG

FFT NCHW HW-packed | NCHW HW-packed PSEUDO HALF CONF1IBilation: 1 for all

dimensions
FLOAT CONFIG

xDesc feature
map height + 2 *
convDesc zero-
padding height
must equal 256 or
less

xDesc feature
map width + 2 *
convDesc zero-
padding width
must equal 256 or
less

convDesc vertical
and horizontal
filter stride must
equal 1

wDesc filter height
must be greater
than convbDesc
zero-padding
height

wDesc filter width
must be greater

than convbesc

NVIDIA cuDNN PR-09702-001_v8.4.1 | 180

cudnn_cnn_infer.so Library

Filter descriptor wDesc: _NCHW (refer to cudnnTensorFormat_t)

convDesc Group count support: Greater than 0, for all algos.

Tensor Formats
Supported for

yDesc

Tensor Formats
Supported for

xDesc

Algo Name

_FFT_TILING

NVIDIA cuDNN

Data Type
Configurations
Supported

Important

zero-padding

width

PSEUDO HALF CONFIBilation: 1 for all

FLOAT CONFIG

DOUBLE CONFIG
is also supported
when the task can
be handled by 1D
FFT, meaning,
one of the filter
dimensions, width
or heightis 1.

dimensions

When neither

of wbesc filter
dimensionis 1, the
filter width and
height must not be
larger than 32

When either

of wbesc filter
dimensionis 1,
the largest filter
dimension should
not exceed 256

convDesc vertical
and horizontal
filter stride

must equal 1
when either the
filter width or
filter height is

1, otherwise the
stride can be a 1
or2

wDesc filter height
must be greater
than convbDesc
zero-padding
height

wDesc filter width
must be greater

than convbesc

PR-09702-001_v8.4.1 | 181

cudnn_cnn_infer.so Library

Filter descriptor wDesc: _NCHW (refer to cudnnTensorFormat_t)

convDesc Group count support: Greater than 0, for all algos.

Tensor Formats Tensor Formats Data Type
Supported for Supported for Configurations

Algo Name xDesc yDesc Supported Important
zero-padding
width

_WINOGRAD All All PSEUDO HALF CONFIBilation: 1 for all

except NCHW VECT @xcept NCHW VECT C dimensions

T FLOAT CONFIG

convDesc vertical
and horizontal
filter stride must
equal 1

wDesc filter height
must be 3

wDesc filter width
must be 3

_WINOGRAD NONFUSED TRUE_HALF CONFIG Dilation: 1 for all

dimensions

PSEUDO_ HALF CONEIG

convDesc vertical

PSEUDO_BFLOAT16 CONFIG

FLOAT CONFIG

_DIRECT Currently not implemented in cuDNN.

and horizontal
filter stride must
equal 1

wDesc filter
(height, width)
must be (3,3) or
(5,5)

If wDesc filter
(height, width)

is (5,5), then

data type config
TRUE_HALF CONFIG
is not supported.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 182

cudnn_cnn_infer.so Library

Table 23. For 2D convolutions: whesc: NCHWC

Filter descriptor wDesc: _NCHWC

convDesc Group count support: Greater than 0.

Data Type
Configurations
Algo Name xDesc yDesc Supported Important
_IMPLICIT GEMM | NCHW VECT C _NCHW_VECT C INT8x4 CONFIG Dilation: 1 for all
- dimensions
_IMPLICIT PRECOMP GEMM UINT8x4 CONFIG
_IMPLICIT PRECOMP MENW VECT C _NCHW_VECT_C INT8x32 CONFIG | Dilation: 1 forall
dimensions
Requires compute
capability 7.2 or
above
Table 24. For 2D convolutions: wbesc: NHWC
Filter descriptor wDesc: _NHWC
convDesc Group count support: Greater than 0.
Data Type
Configurations
Algo Name xDesc yDesc Supported Important
_IMPLICIT GEMM NHWC fully- NHWC fully- INT8 CONFIG Dilation: 1 for all
Ppacked packed dimensions
_IMPLICIT PRECOMP GEMM INT8 EXT CONFIG

Input and output
UINT8_ CONFIG

feature maps must
UINT8_EXT_CONFIG pe a multiple of 4.
Qutput features
maps can be
non-multiple
in the case of
INT8 EXT CONFIG
or
UINT8 EXT CONFIG

_IMPLICIT GEMM NHWC HWC- NHWC HWC- TRUE_HALF CONFIG
packed. acked.
IMPLICIT PRECOMP GEMM P PSEUDO_HALF_CONEFIG
NCHW CHW- PSEUDO BFLOAT16 CONFIG
packed

NVIDIA cuDNN PR-09702-001_v8.4.1 | 183

Filter descriptor wDesc: _NHWC

convDesc Group count support: Greater than 0.

cudnn_cnn_infer.so Library

Data Type
Configurations

Algo Name xDesc yDesc Supported Important
FLOAT CONFIG
DOUBLE CONFIG

Table 25. For 3D convolutions: whesc: NCHW

Filter descriptor wDesc: _NCHW

convDesc Group count support: Greater than 0, for all algos.
Data Type
Configurations

Algo Name xDesc yDesc Supported Important

IMPLICIT GEMM | All except All except PSEUDO HALF CONF1IBilation: Greater

_NCHW_VECT_C.

_IMPLICIT PRECOMP GEMM

NCDHW DHW-
packed

_FFT TILING

NVIDIA cuDNN

_NCHW_VECT_C.

NCDHW DHW-
packed

than 0 for all
PSEUDO BFLOAT16 CONFIG

7 dimensions

FLOAT CONFIG .
- Dilation: Greater

than O for all
dimensions

DOUBLE CONFIG

Dilation: 1 for all
dimensions

wDesc filter height
must equal 16 or
less

wDesc filter width
must equal 16 or
less

wDesc filter depth
must equal 16 or
less

convDesc must
have all filter
strides equal to 1

wDesc filter height
must be greater

PR-09702-001_v8.4.1 | 184

cudnn_cnn_infer.so Library

Filter descriptor wDesc: _NCHW

convDesc Group count support: Greater than 0, for all algos.

Data Type
Configurations
Algo Name xDesc yDesc Supported Important
than convbDesc
zero-padding
height
wDesc filter width
must be greater
than convbDesc
zero-padding
width
wDesc filter depth
must be greater
than convDesc
zero-padding
depth
Table 26. For 3D convolutions: whesc: NHWC
Filter descriptor wDesc: _NHWC
convDesc Group count support: Greater than 0, for all algos.
Data Type
Configurations
Algo Name xDesc yDesc Supported Important
_IMPLICIT PRECOMPNERIYC NDHWC PSEUDO HALF CONF1IBilation: Greater
DHWC-packed DHWC-packed PSEUDO_BFLOAT16 C%}?FnI%f_or all
- “] dimensions

FLOAT CONFIG

S Note: Tensors can be converted to and from CUDNN_ TENSOR NCHW_VECT C with
cudnnTransformTensor().

CUDNN_STATUS_SUCCESS

The operation was launched successfully.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 185

cudnn_cnn_infer.so Library

CUDNN_STATUS BAD PARAM
At least one of the following conditions are met:

» At least one of the following is NULL: handle, xDesc, wDesc, convDesc, yDesc, xData, w,
yData, alpha, beta

xDesc and yDesc have a non-matching number of dimensions

xDesc and wDhesc have a non-matching number of dimensions

xDesc has fewer than three number of dimensions

xDesc's number of dimensions is not equal to convDesc array length + 2

vV v v v Vv

xDesc and wDesc have a non-matching number of input feature maps per image (or
group in case of grouped convolutions]

» yDesc or wDesc indicate an output channel count that isn't a multiple of group count (if
group count has been set in convDesc].

> xDesc, wDesc, and yDesc have a non-matching data type
» For some spatial dimension, wbesc has a spatial size that is larger than the input

spatial size (including zero-padding size)

CUDNN_STATUS_NOT SUPPORTED
At least one of the following conditions are met:
> xDesc or yDesc have negative tensor striding
> xDesc, wDesc, Or yDesc has a number of dimensions thatis not 4 or 5

> yDesc spatial sizes do not match with the expected size as determined by
cudnnGetConvolutionNdForwardQutputDim(]

» The chosen algo does not support the parameters provided; see above for an exhaustive
list of parameters supported for each algo

CUDNN_STATUS_MAPPING_ERROR

An error occurs during the texture object creation associated with the filter data.

CUDNN_STATUS_EXECUTION_ FAILED

The function failed to launch on the GPU.

5.2.5. cudnnCreateConvolutionDescriptor ()

cudnnStatus t cudnnCreateConvolutionDescriptor (
cudnnConvolutionDescriptor t *convDesc)

This function creates a convolution descriptor object by allocating the memory needed to hold
its opaque structure. For more information, refer to cudnnConvolutionDescriptor_t.

Returns
CUDNN_STATUS SUCCESS

The object was created successfully.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 186

cudnn_cnn_infer.so Library

CUDNN_STATUS_ALLOC_FAILED

The resources could not be allocated.

5.2.6. cudnnDestroyConvolutionDescriptor ()

cudnnStatus t cudnnDestroyConvolutionDescriptor (
cudnnConvolutionDescriptor t convDesc)

This function destroys a previously created convolution descriptor object.
Returns

CUDNN_STATUS_SUCCESS
The descriptor was destroyed successfully.

5.2.7. cudnnFindConvolutionBackwardDataAlgorithm ()

cudnnStatus t cudnnFindConvolutionBackwardDataAlgorithm (

cudnnHandle t handle,

const cudnnFilterDescriptor t wDesc,

const cudnnTensorDescriptor t dyDesc,

const cudnnConvolutionDescriptor t convDesc,

const cudnnTensorDescriptor t dxDesc,

const int requestedAlgoCount,
int *returnedAlgoCount,
cudnnConvolutionBwdDataAlgoPerf t *perfResults)

This function attempts all algorithms available for cudnnConvolutionBackwardDatal(). It will

attempt both the provided convbesc mathType and CUDNN_DEFAULT MATH (assuming the two
differ).

S Note: Algorithms without the CUDNN TENSOR OP MATH availability will only be tried with
CUDNN DEFAULT MATH, and returned as such.

Memory is allocated via cudaMalloc (). The performance metrics are returned in
the user-allocated array of cudnnConvolutionBwdDataAlgoPerf_t. These metrics
are written in a sorted fashion where the first element has the lowest compute
time. The total number of resulting algorithms can be queried through the API
cudnnGetConvolutionBackwardDataAlgorithmMaxCount().

[g] Note:

» This function is host blocking.

» Itis recommended to run this function prior to allocating layer data; doing otherwise may
needlessly inhibit some algorithm options due to resource usage.

Parameters
handle

Input. Handle to a previously created cuDNN context.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 187

cudnn_cnn_infer.so Library

wDesc

Input. Handle to a previously initialized filter descriptor.

dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.

convDesc

Input. Previously initialized convolution descriptor.

dxDesc

Input. Handle to the previously initialized output tensor descriptor.

requestedAlgoCount

Input. The maximum number of elements to be stored in perfResults.

returnedAlgoCount

Output. The number of output elements stored in perfResults.

perfResults

Output. A user-allocated array to store performance metrics sorted ascending by compute
time.

CUDNN_STATUS_SUCCESS

The query was successful.
CUDNN_STATUS_BAD_ PARAM
At least one of the following conditions are met:
handle is not allocated properly.
wDesc, dyDesc, or dxDesc is not allocated properly.
wDesc, dyDesc, or dxDesc has fewer than 1 dimension.
Either returnedCount or perfResults is nil.

requestedCount is less than 1.
CUDNN_STATUS ALLOC_ FAILED

This function was unable to allocate memory to store sample input, filters and output.

CUDNN_STATUS_INTERNAL ERROR
At least one of the following conditions are met:

The function was unable to allocate necessary timing objects.
The function was unable to deallocate necessary timing objects.

The function was unable to deallocate sample input, filters and output.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 188

cudnn_cnn_infer.so Library

5.2.8. cudnnFindConvolutionBackwardDataAlgorithmEx (

cudnnStatus t cudnnFindConvolutionBackwardDataAlgorithmEx (

cudnnHaHdle_t handle,

const cudnnFilterDescriptor t wDesc,

const void *w,

const cudnnTensorDescriptor t dyDesc,

const void *dy,

const cudnnConvolutionDescriptor t convDesc,

const cudnnTensorDescriptor t dxDesc,

void bR,

const int requestedAlgoCount,
int *returnedAlgoCount,
cudnnConvolutionBwdDataAlgoPerf t *perfResults,

void *workSpace,

size t workSpaceSizeInBytes)

This function attempts all algorithms available for cudnnConvolutionBackwardData(]. It will
attempt both the provided convbDesc mathType and CUDNN DEFAULT MATH [assuming the two
differ).

S Note: Algorithms without the CUDNN TENSOR OP MATH availability will only be tried with
CUDNN DEFAULT MATH, and returned as such.

Memory is allocated via cudaMalloc (). The performance metrics are returned in
the user-allocated array of cudnnConvolutionBwdDataAlgoPerf_t. These metrics
are written in a sorted fashion where the first element has the lowest compute
time. The total number of resulting algorithms can be queried through the AP!I
cudnnGetConvolutionBackwardDataAlgorithmMaxCount(].

Note: This function is host blocking.

Parameters
handle

Input. Handle to a previously created cuDNN context.

wDesc

Input. Handle to a previously initialized filter descriptor.

Input. Data pointer to GPU memory associated with the filter descriptor wbesc.

dyDesc
Input. Handle to the previously initialized input differential tensor descriptor.

dy
Input. Data pointer to GPU memory associated with the filter descriptor dyDesc.

convDesc

Input. Previously initialized convolution descriptor.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 189

cudnn_cnn_infer.so Library

dxDesc

Input. Handle to the previously initialized output tensor descriptor.

dxDesc
Input/Output. Data pointer to GPU memory associated with the tensor descriptor dxDesc.
The content of this tensor will be overwritten with arbitrary values.

requestedAlgoCount

Input. The maximum number of elements to be stored in perfResults.

returnedAlgoCount

Output. The number of output elements stored in perfResults.

perfResults

Output. A user-allocated array to store performance metrics sorted ascending by compute
time.

workSpace
Input. Data pointer to GPU memory is a necessary workspace for some algorithms. The size

of this workspace will determine the availability of algorithms. A nil pointer is considered a
workSpace of 0 bytes.

workSpaceSizelInBytes

Input. Specifies the size in bytes of the provided workSpace.

CUDNN_STATUS_SUCCESS
The query was successful.
CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:
handle is not allocated properly.
wDesc, dyDesc, or dxDesc Is not allocated properly.
wDesc, dyDesc, or dxDesc has fewer than 1 dimension.
w, dy, or dx is nil.
Either returnedCount or perfResults is nil.
requestedCount is less than 1.
CUDNN_STATUS_INTERNAL ERROR

At least one of the following conditions are met:

The function was unable to allocate necessary timing objects.
The function was unable to deallocate necessary timing objects.

The function was unable to deallocate sample input, filters and output.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 190

cudnn_cnn_infer.so Library

5.2.9. cudnnFindConvolutionForwardAlgorithm ()

cudnnStatus t cudnnFindConvolutionForwardAlgorithm (

cudnnHaHdle_t handle,

const cudnnTensorDescriptor t xDesc,

const cudnnFilterDescriptor t wDesc,

const cudnnConvolutionDescriptor t convDesc,

const cudnnTensorDescriptor t yDesc,

const int requestedAlgoCount,
int *returnedAlgoCount,
cudnnConvolutionFwdAlgoPerf t *perfResults)

This function attempts all algorithms available for cudnnConvolutionForward(). It will attempt
both the provided convbDesc mathType and CUDNN DEFAULT MATH (assuming the two differ).

S Note: Algorithms without the CUDNN TENSOR OP MATH availability will only be tried with
CUDNN DEFAULT MATH, and returned as such.

Memory is allocated via cudaMalloc (). The performance metrics are returned
in the user-allocated array of cudnnConvolutionFwdAlgoPerf_t. These metrics
are written in a sorted fashion where the first element has the lowest compute
time. The total number of resulting algorithms can be queried through the API
cudnnGetConvolutionForwardAlgorithmMaxCount().

@ Note:

» This function is host blocking.

» Itis recommended to run this function prior to allocating layer data; doing otherwise may
needlessly inhibit some algorithm options due to resource usage.

Parameters
handle

Input. Handle to a previously created cuDNN context.
xDesc

Input. Handle to the previously initialized input tensor descriptor.
wDesc

Input. Handle to a previously initialized filter descriptor.
convDesc

Input. Previously initialized convolution descriptor.
yDesc

Input. Handle to the previously initialized output tensor descriptor.

requestedAlgoCount

Input. The maximum number of elements to be stored in perfResults.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 191

cudnn_cnn_infer.so Library

returnedAlgoCount

Output. The number of output elements stored in perfResults.

perfResults
Output. A user-allocated array to store performance metrics sorted ascending by compute
time.

Returns

CUDNN_STATUS_SUCCESS

The query was successful.

CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:

handle is not allocated properly.

xDesc, wDesc, or yDesc are not allocated properly.

>
>
> xDesc, wDesc, Or yDesc has fewer than 1 dimension.
» Either returnedCount or perfResults is nil.

>

requestedCount is less than 1.
CUDNN_STATUS ALLOC_ FAILED

This function was unable to allocate memory to store sample input, filters and output.

CUDNN_STATUS_INTERNAL ERROR
At least one of the following conditions are met:

» The function was unable to allocate necessary timing objects.
» The function was unable to deallocate necessary timing objects.

» The function was unable to deallocate sample input, filters and output.

5.2.10. cudnnFindConvolutionForwardAlgorithmEx ()

cudnnStatus_t cudnnFindConvolutionForwardAlgorithmEx (

cudnnHandle t handle,

const cudnnTensorDescriptor t xDesc,

const void *x,

const cudnnFilterDescriptor t wDesc,

const void *w,

const cudnnConvolutionDescriptor t convDesc,

const cudnnTensorDescriptor t yDesc,

void ®Vy

const int requestedAlgoCount,
int *returnedAlgoCount,
cudnnConvolutionFwdAlgoPerf t *perfResults,

void *workSpace,

size t workSpaceSizeInBytes)

NVIDIA cuDNN PR-09702-001_v8.4.1 | 192

cudnn_cnn_infer.so Library

This function attempts all algorithms available for cudnnConvolutionForward(). It will attempt
both the provided convDesc mathType and CUDNN DEFAULT MATH (assuming the two differ].

S Note: Algorithms without the CUDNN TENSOR OP MATH availability will only be tried with
CUDNN DEFAULT MATH, and returned as such.

Memory is allocated via cudaMalloc (). The performance metrics are returned
in the user-allocated array of cudnnConvolutionFwdAlgoPerf t. These metrics
are written in a sorted fashion where the first element has the lowest compute
time. The total number of resulting algorithms can be queried through the AP!I
cudnnGetConvolutionForwardAlgorithmMaxCount().

Note: This function is host blocking.

Parameters
handle

Input. Handle to a previously created cuDNN context.

xDesc

Input. Handle to the previously initialized input tensor descriptor.

Input. Data pointer to GPU memory associated with the tensor descriptor xDesc.

wDesc

Input. Handle to a previously initialized filter descriptor.

Input. Data pointer to GPU memory associated with the filter descriptor wbesc.

convDesc

Input. Previously initialized convolution descriptor.

yDesc

Input. Handle to the previously initialized output tensor descriptor.

Input/Output. Data pointer to GPU memory associated with the tensor descriptor ybesc. The
content of this tensor will be overwritten with arbitrary values.

requestedAlgoCount

Input. The maximum number of elements to be stored in perfResults.

returnedAlgoCount

Output. The number of output elements stored in perfResults.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 193

cudnn_cnn_infer.so Library

perfResults

Output. A user-allocated array to store performance metrics sorted ascending by compute
time.

workSpace
Input. Data pointer to GPU memory is a necessary workspace for some algorithms. The size

of this workspace will determine the availability of algorithms. A nil pointer is considered a
workSpace of 0 bytes.

workSpaceSizelInBytes

Input. Specifies the size in bytes of the provided workSpace.

Returns

CUDNN_STATUS_SUCCESS

The query was successful.

CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:

handle Is not allocated properly.

xDesc, wDesc, Or yDesc are not allocated properly.
xDesc, wDesc, or yDesc has fewer than 1 dimension.
%, w, or yis nil.

Either returnedCount or perfResults is nil.

vV vV v v v YVv

requestedCount Is less than 1.
CUDNN_STATUS_ INTERNAL ERROR
At least one of the following conditions are met:

» The function was unable to allocate necessary timing objects.
» The function was unable to deallocate necessary timing objects.

> The function was unable to deallocate sample input, filters and output.

5.2.11. cudnnGetConvolution2dDescriptor ()

cudnnStatus_t cudnnGetConvolution2dDescriptor (
const cudnnConvolutionDescriptor t convDesc,

int *pad h,

int *pad w,

int *u,

int B

int *dilation h,
int *dilation w,
cudnnConvolutionMode t *mode,
cudnnDataType t *computeType)

This function queries a previously initialized 2D convolution descriptor object.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 194

cudnn_cnn_infer.so Library

Parameters
convDesc

Input/Output. Handle to a previously created convolution descriptor.
pad_h

Output. Zero-padding height: number of rows of zeros implicitly concatenated onto the top
and onto the bottom of input images.

pad_w

Output. Zero-padding width: number of columns of zeros implicitly concatenated onto the
left and onto the right of input images.

Output. Vertical filter stride.

Output. Horizontal filter stride.
dilation_h

Output. Filter height dilation.
dilation_w

Output. Filter width dilation.

mode

Output. Convolution mode.

computeType

Output. Compute precision.

Returns
CUDNN_STATUS_SUCCESS

The operation was successful.

CUDNN_STATUS_BAD PARAM

The parameter convDesc is nil.

5.2.12. cudnnGetConvolution2dForwardOutputDim ()

cudnnStatus_t cudnnGetConvolution2dForwardOutputDim (
const cudnnConvolutionDescriptor t convDesc,

const cudnnTensorDescriptor t inputTensorDesc,
const cudnnFilterDescriptor t filterDesc,

int *n,

int ¥@,

int Sy

int *w)

NVIDIA cuDNN PR-09702-001_v8.4.1 | 195

cudnn_cnn_infer.so Library

This function returns the dimensions of the resulting 4D tensor of a 2D convolution, given the
convolution descriptor, the input tensor descriptor and the filter descriptor This function can
help to setup the output tensor and allocate the proper amount of memory prior to launch the
actual convolution.

Each dimension h and w of the output images is computed as follows:

outputDim = 1 + (inputDim + 2*pad - (((filterDim-1)*dilation)+1))/
convolutionStride;

Note: The dimensions provided by this routine must be strictly respected when calling
cudnnConvolutionForward(] or cudnnConvolutionBackwardBias(). Providing a smaller or larger
output tensor is not supported by the convolution routines

Parameters
convDesc

Input. Handle to a previously created convolution descriptor.

inputTensorDesc

Input. Handle to a previously initialized tensor descriptor.

filterDesc

Input. Handle to a previously initialized filter descriptor.
Output. Number of output images.

Output. Number of output feature maps per image.
Output. Height of each output feature map.

Output. Width of each output feature map.

Returns

CUDNN_STATUS_BAD_PARAM

One or more of the descriptors has not been created correctly or there is a mismatch
between the feature maps of inputTensorDesc and filterDesc.

CUDNN_STATUS_SUCCESS

The object was set successfully.

5.2.13. cudnnGetConvolutionBackwardDataAlgorithmMaxC

cudnnStatus_t cudnnGetConvolutionBackwardDataAlgorithmMaxCount (

NVIDIA cuDNN PR-09702-001_v8.4.1 | 196

cudnn_cnn_infer.so Library

cudnnHandle t handle,

int *count)
This function returns the maximum number of algorithms which can
be returned from cudnnFindConvolutionBackwardDataAlgorithm(] and
cudnnGetConvolutionForwardAlgorithm_v7(). This is the sum of all algorithms plus the sum of
all algorithms with Tensor Core operations supported for the current device.

Parameters
handle

Input. Handle to a previously created cuDNN context.

count

Output. The resulting maximum number of algorithms.

Returns

CUDNN_STATUS_SUCCESS

The function was successful.

CUDNN_STATUS_BAD_ PARAM

The provided handle is not allocated properly.

5.2.14. cudnnGetConvolutionBackwardDataAlgorithm v7 (

cudnnStatus t cudnnGetConvolutionBackwardDataAlgorithm v7 (

cudnnHaHdle_t handle,

const cudnnFilterDescriptor t wDesc,

const cudnnTensorDescriptor t dyDesc,

const cudnnConvolutionDescriptor t convDesc,

const cudnnTensorDescriptor t dxDesc,

const int requestedAlgoCount,
int *returnedAlgoCount,
cudnnConvolutionBwdDataAlgoPerf t *perfResults)

This function serves as a heuristic for obtaining the best suited algorithm for
cudnnConvolutionBackwardData(] for the given layer specifications. This function will

return all algorithms (including CUDNN_TENSOR_OP MATH and CUDNN DEFAULT MATH

versions of algorithms where CUDNN_TENSOR OP_MATH may be available) sorted by

expected (based on internal heuristic) relative performance with the fastest being

index 0 of perfResults. For an exhaustive search for the fastest algorithm, use
cudnnFindConvolutionBackwardDataAlgorithm(). The total number of resulting algorithms can
be queried through the returnedalgoCount variable.

Parameters
handle

Input. Handle to a previously created cuDNN context.

wDesc

Input. Handle to a previously initialized filter descriptor.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 197

cudnn_cnn_infer.so Library

dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.

convDesc

Input. Previously initialized convolution descriptor.

dxDesc

Input. Handle to the previously initialized output tensor descriptor.

requestedAlgoCount

Input. The maximum number of elements to be stored in perfResults.

returnedAlgoCount

Output. The number of output elements stored in perfResults.

perfResults

Output. A user-allocated array to store performance metrics sorted ascending by compute
time.

Returns

CUDNN_STATUS_SUCCESS

The query was successful.
CUDNN_STATUS_BAD PARAM

At least one of the following conditions are met:

» One of the parameters handle, wbesc, dyDesc, convDesc, dxDesc, perfResults
returnedAlgoCount IS NULL.

> The numbers of feature maps of the input tensor and output tensor differ.

» The dataType of the two tensor descriptors or the filters are different.

» requestedAlgoCount is less than or equal to 0.

5.2.15. cudnnGetConvolutionBackwardDataWorkspaceSize

cudnnStatus t cudnnGetConvolutionBackwardDataWorkspaceSize (

cudnnHandle t handle,
const cudnnFilterDescriptor t wDesc,

const cudnnTensorDescriptor t dyDesc,
const cudnnConvolutionDescriptor t convDesc,
const cudnnTensorDescriptor t dxDesc,
cudnnConvolutionBwdDataAlgo t algo,

size t *sizeInBytes)

This function returns the amount of GPU memory workspace the user needs to allocate to be
able to call cudnnConvolutionBackwardData(] with the specified algorithm. The workspace
allocated will then be passed to the routine cudnnConvolutionBackwardDatal(]. The specified
algorithm can be the result of the call to cudnnGetConvolutionBackwardDataAlgorithm_v7()
or can be chosen arbitrarily by the user. Note that not every algorithm is available for every
configuration of the input tensor and/or every configuration of the convolution descriptor.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 198

cudnn_cnn_infer.so Library

Parameters
handle

Input. Handle to a previously created cuDNN context.

wDesc

Input. Handle to a previously initialized filter descriptor.

dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.

convDesc

Input. Previously initialized convolution descriptor.
dxDesc

Input. Handle to the previously initialized output tensor descriptor.
algo
Input. Enumerant that specifies the chosen convolution algorithm.

sizeInBytes

Output. Amount of GPU memory needed as workspace to be able to execute a forward
convolution with the specified algo.

Returns

CUDNN_STATUS_SUCCESS
The query was successful.
CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:
> The numbers of feature maps of the input tensor and output tensor differ.
» The dataType of the two tensor descriptors or the filter are different.
CUDNN_STATUS_NOT SUPPORTED

The combination of the tensor descriptors, filter descriptor and convolution descriptor is
not supported for the specified algorithm.

5.2.16. cudnnGetConvolutionForwardAlgorithmMaxCount (

cudnnStatus t cudnnGetConvolutionForwardAlgorithmMaxCount (

cudnnHandle t handle,

int *count)
This function returns the maximum number of algorithms which can be returned from
cudnnFindConvolutionForwardAlgorithm(] and cudnnGetConvolutionForwardAlgorithm v7().

NVIDIA cuDNN PR-09702-001_v8.4.1 | 199

cudnn_cnn_infer.so Library

This is the sum of all algorithms plus the sum of all algorithms with Tensor Core operations
supported for the current device.

Parameters
handle

Input. Handle to a previously created cuDNN context.

count

Output. The resulting maximum number of algorithms.

Returns
CUDNN_STATUS_SUCCESS

The function was successful.

CUDNN_STATUS_BAD_PARAM

The provided handle is not allocated properly.

5.2.17. cudnnGetConvolutionForwardAlgorithm v7 ()

cudnnStatus_t cudnnGetConvolutionForwardAlgorithm v7 (

cudnnHandle t handle,

const cudnnTensorDescriptor t xDesc,

const cudnnFilterDescriptor t wDesc,

const cudnnConvolutionDescriptor t convDesc,

const cudnnTensorDescriptor t yDesc,

const int requestedAlgoCount,
int *returnedAlgoCount,
cudnnConvolutionFwdAlgoPerf t *perfResults)

This function serves as a heuristic for obtaining the best suited algorithm for
cudnnConvolutionForward(] for the given layer specifications. This function will return

all algorithms (including CUDNN_ TENSOR OP MATH and CUDNN DEFAULT MATH versions of
algorithms where CUDNN TENSOR OP MATH may be available) sorted by expected (based on
internal heuristic) relative performance with the fastest being index 0 of perfResults. For an
exhaustive search for the fastest algorithm, use cudnnFindConvolutionForwardAlgorithm().
The total number of resulting algorithms can be queried through the returnedaAlgoCount
variable.

Parameters
handle

Input. Handle to a previously created cuDNN context.

xDesc

Input. Handle to the previously initialized input tensor descriptor.

wDesc

Input. Handle to a previously initialized convolution filter descriptor.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 200

cudnn_cnn_infer.so Library

convDesc

Input. Previously initialized convolution descriptor.
yDesc

Input. Handle to the previously initialized output tensor descriptor.
requestedAlgoCount

Input. The maximum number of elements to be stored in perfResults.
returnedAlgoCount

Output. The number of output elements stored in perfResults.
perfResults

Output. A user-allocated array to store performance metrics sorted ascending by compute
time.

Returns

CUDNN_STATUS_SUCCESS

The query was successful.
CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:
» One of the parameters handle, xDesc, wDesc, convDesc, yDesc, perfResults
returnedAlgoCount iS NULL.
Either yDesc or wbesc have different dimensions from xDesc.
The data types of tensors xDesc, yDesc or wDesc are not all the same.
The number of feature maps in xDesc and wbesc differs.

The tensor xDesc has a dimension smaller than 3.

vV vV v Vv VY

requestedAlgoCount is less than or equal to 0.

5.2.18. cudnnGetConvolutionForwardWorkspaceSize ()

cudnnStatus t cudnnGetConvolutionForwardWorkspaceSize (
cudnnHandle t handle,

const cudHnTensorDescriptor_t xDesc,

const cudnnFilterDescriptor t wDesc,

const cudnnConvolutionDescriptor t convDesc,
const cudnnTensorDescriptor t yDesc,
cudnnConvolutionFwdAlgo t algo,

size t *sizelInBytes)

This function returns the amount of GPU memory workspace the user needs to allocate to be
able to call cudnnConvolutionForward(] with the specified algorithm. The workspace allocated
will then be passed to the routine cudnnConvolutionForward(]. The specified algorithm can

be the result of the call to cudnnGetConvolutionForwardAlgorithm_v7(] or can be chosen
arbitrarily by the user. Note that not every algorithm is available for every configuration of the
input tensor and/or every configuration of the convolution descriptor.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 201

cudnn_cnn_infer.so Library

Parameters
handle

Input. Handle to a previously created cuDNN context.

xDesc

Input. Handle to the previously initialized x tensor descriptor.

wDesc

Input. Handle to a previously initialized filter descriptor.

convDesc

Input. Previously initialized convolution descriptor.

yDesc

Input. Handle to the previously initialized y tensor descriptor.
algo

Input. Enumerant that specifies the chosen convolution algorithm.

sizeInBytes

Output. Amount of GPU memory needed as workspace to be able to execute a forward
convolution with the specified algo.

Returns

CUDNN_STATUS SUCCESS
The query was successful.
CUDNN_STATUS_BAD_PARAM
At least one of the following conditions are met:
One of the parameters handle, xDesc, wDesc, convDesc, yDesc iS NULL.
The tensor yDesc or whesc are not of the same dimension as xDesc.

The tensor xDesc, yDesc or wDesc are not of the same data type.

The numbers of feature maps of the tensor xDesc and wbDesc differ.

vV v v v VY

The tensor xDesc has a dimension smaller than 3.
CUDNN_STATUS NOT SUPPORTED

The combination of the tensor descriptors, filter descriptor and convolution descriptor is
not supported for the specified algorithm.

5.2.19. cudnnGetConvolutionGroupCount ()

cudnnStatus t cudnnGetConvolutionGroupCount (
cudnnConvolutionDescriptor t convDesc,
int *groupCount)

NVIDIA cuDNN PR-09702-001_v8.4.1 | 202

cudnn_cnn_infer.so Library

This function returns the group count specified in the given convolution descriptor.

Returns

CUDNN_STATUS_SUCCESS

The group count was returned successfully.

CUDNN_STATUS_BAD PARAM

An invalid convolution descriptor was provided.

5.2.20. cudnnGetConvolutionMathType ()

cudnnStatus t cudnnGetConvolutionMathType (
cudnnConvolutionDescriptor t convDesc,
cudnnMathType t *mathType)

This function returns the math type specified in a given convolution descriptor.

Returns

CUDNN_STATUS_ SUCCESS

The math type was returned successfully.

CUDNN_STATUS_BAD_ PARAM

An invalid convolution descriptor was provided.

5.2.21. cudnnGetConvolutionNdDescriptor ()

cudnnStatus_t cudnnGetConvolutionNdDescriptor (
const cudnnConvolutionDescriptor t convDesc,

int arrayLengthRequested,
int *arrayLength,

int padAll]l,

int filterStrideAl[],

int dilationA[],
cudnnConvolutionMode t *mode,

cudnnDataType t *dataType)

This function queries a previously initialized convolution descriptor object.

Parameters

convDesc

Input/Output. Handle to a previously created convolution descriptor.

arrayLengthRequested

Input. Dimension of the expected convolution descriptor. It is also the minimum size of the
arrays pada, filterStridea, and dilationA in order to be able to hold the results

arrayLength

Output. Actual dimension of the convolution descriptor.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 203

cudnn_cnn_infer.so Library

pada

Output. Array of dimension of at least arrayLengthRequested that will be filled with the
padding parameters from the provided convolution descriptor.

filterStrideA

Output. Array of dimension of at least arrayLengthRequested that will be filled with the
filter stride from the provided convolution descriptor.

dilationA

Output. Array of dimension of at least arrayLengthRequested that will be filled with the
dilation parameters from the provided convolution descriptor.

mode

Output. Convolution mode of the provided descriptor.

datatype

Output. Datatype of the provided descriptor.

Returns
CUDNN_STATUS SUCCESS

The query was successful.

CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:

» The descriptor convDesc is nil.

» The arrayLengthRequest Is negative.
CUDNN_STATUS NOT SUPPORTED

The arrayLengthRequested Is greater than CUDNN_DIM MAX-2.

5.2.22. cudnnGetConvolutionNdForwardOutputDim ()

cudnnStatus t cudnnGetConvolutionNdForwardOutputDim (
const cudnnConvolutionDescriptor t convDesc,

const cudnnTensorDescriptor t inputTensorDesc,
const cudnnFilterDescriptor t filterDesc,

int nbDims,

int tensorOuputDimAT[])

This function returns the dimensions of the resulting n-D tensor of a nbbims-2-D convolution,
given the convolution descriptor, the input tensor descriptor and the filter descriptor This
function can help to setup the output tensor and allocate the proper amount of memory prior
to launch the actual convolution.

Each dimension of the (nbDims-2) -D images of the output tensor is computed as follows:

outputDim = 1 + (inputDim + 2*pad - (((filterDim-1)*dilation)+1l))/
convolutionStride;

NVIDIA cuDNN PR-09702-001_v8.4.1 | 204

cudnn_cnn_infer.so Library

Note: The dimensions provided by this routine must be strictly respected when calling
cudnnConvolutionForward() or cudnnConvolutionBackwardBias(). Providing a smaller or larger
output tensor is not supported by the convolution routines

Parameters
convDesc

Input. Handle to a previously created convolution descriptor.
inputTensorDesc

Input. Handle to a previously initialized tensor descriptor.
filterDesc

Input. Handle to a previously initialized filter descriptor.

nbDims

Input. Dimension of the output tensor.
tensorOuputDimA

Output. Array of dimensions nbDims that contains on exit of this routine the sizes of the
output tensor.

Returns

CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:

» One of the parameters convDesc, inputTensorDesc, and filterDesc is nil.

> The dimension of the filter descriptor filterDesc is different from the dimension of
input tensor descriptor inputTensorDesc.

» The dimension of the convolution descriptor is different from the dimension of input
tensor descriptor inputTensorDesc-2.

» The features map of the filter descriptor filterDesc Is different from the one of input
tensor descriptor inputTensorDesc.

> The size of the dilated filter filterDesc is larger than the padded sizes of the input
tensor.

» The dimension nbDims of the output array is negative or greater than the dimension of
input tensor descriptor inputTensorDesc.

CUDNN_STATUS_SUCCESS

The routine exited successfully.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 205

cudnn_cnn_infer.so Library

5.2.23. cudnnGetConvolutionReorderType ()

cudnnStatus_t cudnnGetConvolutionReorderType (
cudnnConvolutionDescriptor t convDesc,
cudnnReorderType t *reorderType);

This function retrieves the convolution reorder type from the given convolution descriptor.

Parameters

convDesc

Input. The convolution descriptor from which the reorder type should be retrieved.
reorderType

Output. The retrieved reorder type. For more information, refer to cudnnReorderType_t.

Returns

CUDNN_STATUS_BAD PARAM

One of the inputs to this function is not valid.
CUDNN_STATUS_SUCCESS

The reorder type is retrieved successfully.

5.2.24. cudnnGetFoldedConvBackwardDataDescriptors ()

cudnnStatus_t

cudnnGetFoldedConvBackwardDataDescriptors (const cudnnHandle t handle,
const cudnnFilterDescriptor t filterDesc,
const cudnnTensorDescriptor t diffDesc,
const cudnnConvolutionDescriptor t

convDesc,
const cudnnTensorDescriptor t gradDesc,
const cudnnTensorFormat t transformFormat,
cudnnFilterDescriptor t foldedFilterDesc,
cudnnTensorDescriptor t paddedDiffDesc,
cudnnConvolutionDescriptor t
foldedConvDesc,

cudnnTensorDescriptor_ t foldedGradDesc,

cudnnTensorTransformDescriptor t
filterFoldTransDesc,

cudnnTensorTransformDescriptor t

diffPadTransDesc,

cudnnTensorTransformDescriptor t
gradFoldTransDesc,

cudnnTensorTransformDescriptor t
gradUnfoldTransDesc) ;

This function calculates folding descriptors for backward data gradients. It takes as input
the data descriptors along with the convolution descriptor and computes the folded data
descriptors and the folding transform descriptors. These can then be used to do the actual
folding transform.

Parameters

handle

Input. Handle to a previously created cuDNN context.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 206

cudnn_cnn_infer.so Library

filterDesc
Input. Filter descriptor before folding.
diffDesc

Input. Diff descriptor before folding.

convDesc

Input. Convolution descriptor before folding.

gradDesc

Input. Gradient descriptor before folding.

transformFormat

Input. Transform format for folding.

foldedFilterDesc

Output. Folded filter descriptor.
paddedDiffDesc

Output. Padded Diff descriptor.

foldedConvDesc

Output. Folded convolution descriptor.

foldedGradDesc

Output. Folded gradient descriptor.

filterFoldTransDesc

Output. Folding transform descriptor for filter.

diffPadTransDesc

Output. Folding transform descriptor for Desc.

gradFoldTransDesc

Output. Folding transform descriptor for gradient.

gradUnfoldTransDesc

Output. Unfolding transform descriptor for folded gradient.

CUDNN_STATUS_SUCCESS

Folded descriptors were computed successfully.

CUDNN_STATUS_BAD_ PARAM

If any of the input parameters is NULL or if the input tensor has more than 4 dimensions.

CUDNN_STATUS_EXECUTION_ FAILED

Computing the folded descriptors failed.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 207

cudnn_cnn_infer.so Library

5.2.25. cudnnIm2Col ()

cudnnStatus t cudnnIm2Col (

cudnnHandle t handle,
cudnnTensorDescriptor t srcDesc,
const void *srcData,
cudnnFilterDescriptor t filterDesc,
cudnnConvolutionDescriptor t convDesc,
void *colBuffer)

This function constructs the A matrix necessary to perform a forward pass of GEMM
convolution. This A matrix has a height of batch size*y height*y width and width of

input_channels*filter_height*filter_width,Wher&

» Dbatch size is xDesc first dimension

» vy height/y width are computed from cudnnGetConvolutionNdForwardOutputDim ()

» input channels Is xDesc second dimension

» filter height/filter width are wDesc third and fourth dimension

The A matrix is stored in format HW fully-packed in GPU memory.

Parameters
handle

Input. Handle to a previously created cuDNN context.

srcDesc

Input. Handle to a previously initialized tensor descriptor.

srcData

Input. Data pointer to GPU memory associated with the input tensor descriptor.

filterDesc

Input. Handle to a previously initialized filter descriptor.

convDesc

Input. Handle to a previously initialized convolution descriptor.

colBuffer

Output. Data pointer to GPU memory storing the output matrix.

Returns
CUDNN_STATUS BAD PARAM

srcData Or colBuffer iS NULL.

NVIDIA cuDNN PR-09702-001_v8.4.1

208

cudnn_cnn_infer.so Library

CUDNN_STATUS_NOT_SUPPORTED

Any of srcDesc, filterDesc, convDesc has dataType of CUDNN_ DATA INTS,
CUDNN DATA INT8x4, CUDNN DATA INT8 or CUDNN DATA INT8x4 convDesc has
groupCount larger than 1.

CUDNN_STATUS_EXECUTION_ FAILED

The CUDA kernel execution was unsuccessful.

CUDNN_STATUS_SUCCESS

The output data array is successfully generated.

H5.2.26. cudnnReorderFilterAndBias ()

cudnnStatus_t cudnnReorderFilterAndBias (
cudnnHandle t handle,

const cudnnFilterDescriptor t filterDesc,
cudnnReorderType t reorderType,

const void *filterData,

void *reorderedFilterData,

int reorderBias,

const void *biasData,

void *reorderedBiasData) ;

This function cudnnReorderFilterAndBias(], reorders the filter and bias values for tensors with
data type CUDNN_ DATA INT8x32 and tensor format CUDNN TENSOR NCHW VECT C. It can be
used to enhance the inference time by separating the reordering operation from convolution.

Filter and bias tensors with data type CUDNN DATA INT8x32 (also implying tensor

format CUDNN_ TENSOR NCHW VECT c) requires permutation of output channel axes

in order to take advantage of the Tensor Core IMMA instruction. This is done in every
cudnnConvolutionForward() and cudnnConvolutionBiasActivationForward() call when the
reorder type attribute of the convolution descriptor is set to CUDNN DEFAULT REORDER. Users
can avoid the repeated reordering kernel call by first using this call to reorder the filter and
bias tensor and call the convolution forward APIs with reorder type set to CUDNN_NO REORDER.

For example, convolutions in a neural network of multiple layers can require reordering of
kernels at every layer, which can take up a significant fraction of the total inference time.
Using this function, the reordering can be done one time on the filter and bias data followed by
the convolution operations at the multiple layers, thereby enhancing the inference time.

Parameters

handle
Input. Handle to a previously created cuDNN context.
filterDesc
Input. Descriptor for the kernel dataset.
reorderType
Input. Setting to either perform reordering or not. For more information, refer to
cudnnReorderType_t.
filterData
Input. Pointer to the filter (kernel] data location in the device memory.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 209

cudnn_cnn_infer.so Library

reorderedFilterData
Output. Pointer to the location in the device memory where the reordered filter data will be
written to, by this function. This tensor has the same dimensions as filterData.
reorderBias
Input. If > 0, then reorders the bias data also. If <= 0 then does not perform reordering
operations on the bias data.
biasData
Input. Pointer to the bias data location in the device memory.
reorderedBiasData
Output. Pointer to the location in the device memory where the reordered bias data will be
written to, by this function. This tensor has the same dimensions as biasData.

Returns

CUDNN_STATUS_ SUCCESS

Reordering was successful.
CUDNN_STATUS_EXECUTION FAILED

Either the reordering of the filter data or of the bias data failed.

5.2.27. cudnnSetConvolution2dDescriptor ()

cudnnStatus t cudnnSetConvolution2dDescriptor (

cudnnConvolutionDescriptor t convDesc,
int pad_h,

int pad w,

int u,

int v,

int dilation_h,
int dilation w,
cudnnConvolutionMode t mode,
cudnnDataType t computeType)

This function initializes a previously created convolution descriptor object into a 2D
correlation. This function assumes that the tensor and filter descriptors correspond to
the forward convolution path and checks if their settings are valid. That same convolution
descriptor can be reused in the backward path provided it corresponds to the same layer.

Parameters

convDesc
Input/Output. Handle to a previously created convolution descriptor.

pad_h
Input. Zero-padding height: number of rows of zeros implicitly concatenated onto the top
and onto the bottom of input images.

pad_w
Input. Zero-padding width: number of columns of zeros implicitly concatenated onto the left
and onto the right of input images.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 210

cudnn_cnn_infer.so Library

Input. Vertical filter stride.

Input. Horizontal filter stride.
dilation h

Input. Filter height dilation.
dilation_w

Input. Filter width dilation.

mode

Input. Selects between CUDNN CONVOLUTION and CUDNN CROSS CORRELATION.

computeType

Input. Compute precision.

Returns
CUDNN_STATUS SUCCESS

The object was set successfully.
CUDNN_STATUS_BAD PARAM

At least one of the following conditions are met:
The descriptor convbesc is nil.
One of the parameters pad_h, pad_w is strictly negative.

One of the parameters u, v is negative or zero.

One of the parameters dilation h, dilation wis negative or zero.

vV v v v Vv

The parameter mode has an invalid enumerant value.

5.2.28. cudnnSetConvolutionGroupCount ()

cudnnStatus t cudnnSetConvolutionGroupCount (
cudnnConvolutionDescriptor t convDesc,
int groupCount)

This function allows the user to specify the number of groups to be used in the associated
convolution.

Returns
CUDNN_STATUS SUCCESS

The group count was set successfully.

CUDNN_STATUS_BAD_ PARAM

An invalid convolution descriptor was provided

NVIDIA cuDNN PR-09702-001_v8.4.1 | 211

cudnn_cnn_infer.so Library

5.2.29. cudnnSetConvolutionMathType ()

cudnnStatus_t cudnnSetConvolutionMathType (
cudnnConvolutionDescriptor t convDesc,
cudnnMathType t mathType)

This function allows the user to specify whether or not the use of tensor op is permitted in the
library routines associated with a given convolution descriptor.

Returns

CUDNN_STATUS_SUCCESS

The math type was set successfully.

CUDNN_STATUS_BAD_ PARAM

Either an invalid convolution descriptor was provided or an invalid math type was specified.

5.2.30. cudnnSetConvolutionNdDescriptor ()

cudnnStatus_t cudnnSetConvolutionNdDescriptor (

cudnnConvolutionDescriptor t convDesc,

int arrayLength,
const int padAl],

const int filterStrideAl[],
const int dilationA[],
cudnnConvolutionMode t mode,
cudnnDataType t dataType)

This function initializes a previously created generic convolution descriptor object into a n-D
correlation. That same convolution descriptor can be reused in the backward path provided

it corresponds to the same layer. The convolution computation will be done in the specified

dataType, which can be potentially different from the input/output tensors.

Parameters
convDesc
Input/Output. Handle to a previously created convolution descriptor.
arrayLength
Input. Dimension of the convolution.
padA

Input. Array of dimension arrayLength containing the zero-padding size for each
dimension. For every dimension, the padding represents the number of extra zeros
implicitly concatenated at the start and at the end of every element of that dimension.

filterStrideA

Input. Array of dimension arrayLength containing the filter stride for each dimension. For
every dimension, the filter stride represents the number of elements to slide to reach the
next start of the filtering window of the next point.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 212

cudnn_cnn_infer.so Library

dilationA

Input. Array of dimension arrayLength containing the dilation factor for each dimension.

mode

Input. Selects between CUDNN CONVOLUTION and CUDNN CROSS CORRELATION.

datatype

Input. Selects the data type in which the computation will be done.

=1 Note: cupNy_DATA_HALF in cudnnSetConvolutionNdDescriptor{] with
HALF CONVOLUTION BWD FILTER is not recommended as it is known to not
be useful for any practical use case for training and will be considered to
be blocked in a future cuDNN release. The use of CUDNN DATA HALF for

input tensors in cudnnSetTensorNdDescriptor() and CUDNN_DATA FLOAT in

cudnnSetConvolutionNdDescriptor() with HALF_CONVOLUTION BWD FILTER is recommended

and is used with the automatic mixed precision (AMP) training in many well known deep
learning frameworks.

Returns
CUDNN_STATUS_SUCCESS

The object was set successfully.
CUDNN_STATUS_BAD PARAM

At least one of the following conditions are met:

The descriptor convbesc is nil.

The arrayLengthRequest Is negative.

The enumerant mode has an invalid value.

The enumerant datatype has an invalid value.
One of the elements of pada is strictly negative.

One of the elements of strideA is negative or zero.

vV vV v vV v v VY

One of the elements of dilationA is negative or zero.
CUDNN_STATUS_NOT_SUPPORTED
At least one of the following conditions are met:

» The arrayLengthRequest is greater than CUDNN DIM MAX.

5.2.31. cudnnSetConvolutionReorderType ()
cudnnStatus t cudnnSetConvolutionReorderType (
cudnnConvqutionDescriptor_t convDesc,

cudnnReorderType t reorderType);

This function sets the convolution reorder type for the given convolution descriptor.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 213

cudnn_cnn_infer.so Library

Parameters

convDesc
Input. The convolution descriptor for which the reorder type should be set.

reorderType
Input. Set the reorder type to this value. For more information, refer to

cudnnReorderType t.

Returns

CUDNN_STATUS_BAD PARAM
The reorder type supplied is not supported.
CUDNN_STATUS_SUCCESS
Reorder type is set successfully.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 214

Chapter 6. cudnn cnn train.so

Libra ry

For the backend data and descriptor types, refer to the cuDNN Backend API section.

6.1. Data Type References

6.1.1. Pointer To Opaque Struct Types

6.1.1.1. cudnnFusedOpsConstParamPack t

cudnnFusedOpsConstParamPack t Is a pointer to an opaque structure holding

the description of the cudnnFusedOps constant parameters. Use the function
cudnnCreateFusedOpsConstParamPack(] to create one instance of this structure, and the
function cudnnDestroyFusedOpsConstParamPack(] to destroy a previously-created descriptor.

6.1.1.2. cudnnFusedOpsPlan_t

cudnnFusedOpsPlan_t is a pointer to an opaque structure holding the description of the
cudnnFusedOpsPlan. This descriptor contains the plan information, including the problem
type and size, which kernels should be run, and the internal workspace partition. Use the
function cudnnCreateFusedOpsPlan(] to create one instance of this structure, and the function
cudnnDestroyFusedOpsPlan(] to destroy a previously-created descriptor.

6.1.1.3. cudnnFusedOpsVariantParamPack t

cudnnFusedOpsVariantParamPack tis a pointer to an opaque structure holding

the description of the cudnnFusedOps variant parameters. Use the function
cudnnCreateFusedOpsVariantParamPack|() to create one instance of this structure, and
the function cudnnDestroyFusedOpsVariantParamPack(] to destroy a previously-created
descriptor.

6.1.2. Struct Types

NVIDIA cuDNN PR-09702-001_v8.4.1 | 215

cudnn_cnn_train.so Library

6.1.2.1. cudnnConvolutionBwdFilterAlgoPerf t

cudnnConvolutionBwdFilterAlgoPerf tis a structure containing performance results
returned by cudnnFindConvolutionBackwardFilterAlgorithm() or heuristic results returned by
cudnnGetConvolutionBackwardFilterAlgorithm_v7().

Data Members

cudnnConvolutionBwdFilterAlgo t algo

The algorithm runs to obtain the associated performance metrics.
cudnnStatus_t status
If any error occurs during the workspace allocation or timing of

cudnnConvolutionBackwardFilter(), this status will represent that error. Otherwise, this
status will be the return status of cudnnConvolutionBackwardFilter().

> CUDNN_STATUS ALLOC_FAILED if any error occurred during workspace allocation or if
the provided workspace is insufficient.

» CUDNN STATUS INTERNAL ERROR if any error occurred during timing calculations or

workspace deallocation.

> Otherwise, this will be the return status of cudnnConvolutionBackwardFilter().
float time

The execution time of cudnnConvolutionBackwardFilter(] (in milliseconds).

size_t memory

The workspace size [(in bytes).

cudnnDeterminism t determinism

The determinism of the algorithm.

cudnnMathType t mathType

The math type provided to the algorithm.

int reserved[3]

Reserved space for future properties.

6.1.3. Enumeration Types

6.1.3.1. cudnnFusedOps_t

The cudnnFusedOps_t type is an enumerated type to select a specific sequence of
computations to perform in the fused operations.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 216

Member

cudnn_cnn_train.so Library

Description

CUDNN_FUSED SCALE BIAS ACTIVATION CONV_ BNSORTESper-channel basis, it performs these

=0

CUDNN_ FUSED SCALE BIAS ACTIVATION WGRAD
=1

operations in this order: scale, add bias,
activation, convolution, and generate batchnorm
statistics.

On a per-channel basis, it performs these
operations in this order: scale, add bias,
activation, convolution backward weights, and
generate batchnorm statistics.

CUDNN_FUSED_SCALE_BIAS_ACTIVATION_WGRAD

Output

Input

Y

r

dw «—] wgrad

RelLU

X
-—

equivalent scale
l————

equivalent bias
f—————

Yo Scale &

Bias

[3

v, = ReLU(y;) v,= scale(x)+bias

dy

CUDNN_FUSED BN FINALIZE STATISTICS TRAININGomputes the equivalent scale and bias from

= 2

ySum, ySqSum and learned scale, bias.

Optionally update running statistics and generate
saved stats

CUDNN_FUSED BN FINALIZE STATISTICS INFERENCEmMputes the equivalent scale and bias from the

=3

learned running statistics and the learned scale,
bias.

CUDNN_FUSED CONV_SCALE BIAS ADD ACTIVATIONOnN a per-channel basis, performs these

= 4

operations in this order: convolution, scale, add
bias, element-wise addition with another tensor,
and activation.

CUDNN_FUSED SCALE BIAS ADD ACTIVATION GEN BnmMpsr-channel basis, performs these

=5

NVIDIA cuDNN

operations in this order: scale and bias on one
tensor, scale, and bias on a second tensor,
element-wise addition of these two tensors, and
on the resulting tensor perform activation, and
generate activation bit mask.

PR-09702-001_v8.4.1 | 217

cudnn_cnn_train.so Library

Member Description

CUDNN_FUSED DACTIVATION FORK DBATCHNORM | On a per-channel basis, performs these

=6 operations in this order: backward activation
fork (meaning, write out gradient for the residual
branch), and backward batch norm.

6.1.3.2. cudnnFusedOpsConstParamlLabel t

The cudnnFusedOpsConstParamLabel tisanenumerated type for the selection
of the type of the cudnnFusedoOps descriptor. For more information, refer to
cudnnSetFusedOpsConstParamPackAttribute(].

typedef enum {

CUDNN_PARAM XDESC =
CUDNN_ PARAM XDATA PLACEHOLDER =
CUDNN_PARAM BN MODE =
CUDNN_PARAM BN EQSCALEBIAS DESC =
CUDNN_ PARAM BN EQSCALE PLACEHOLDER =
CUDNN_ PARAM BN EQBIAS PLACEHOLDER =
CUDNN_PARAM ACTIVATION DESC =
CUDNN_PARAM CONV_DESC =
CUDNN_PARAM WDESC =
CUDNN_ PARAM WDATA PLACEHOLDER =
CUDNN_PARAM DWDESC =
CUDNN PARAM DWDATA PLACEHOLDER =
CUDNN_PARAM YDESC =
CUDNN_ PARAM YDATA PLACEHOLDER =
CUDNN_PARAM DYDESC =
CUDNN PARAM DYDATA PLACEHOLDER =
CUDNN_ PARAM YSTATS DESC =
CUDNN_ PARAM YSUM PLACEHOLDER =
CUDNN_PARAM YSQSUM PLACEHOLDER =
CUDNN PARAM BN SCALEBIAS MEANVAR DESC =

N N SN SN SN S S S~

OO JoUuldwh - O

~
~ N 0~ 0~

~

~ 0~ N

R R = T = = W =SSy SRRy Y
O T U WN O
<

~

CUDNN_PARAM BN SCALE PLACEHOLDER = 20,

CUDNN PARAM BN BIAS PLACEHOLDER = 21,

CUDNN PARAM BN SAVED MEAN PLACEHOLDER = 22,

CUDNN_ PARAM BN SAVED INVSTD PLACEHOLDER = 23,

CUDNN_PARAM BN RUNNING MEAN PLACEHOLDER = 24,

CUDNN PARAM BN RUNNING VAR PLACEHOLDER = 25,

CUDNN_PARAM ZDESC = 26,

CUDNN_PARAM ZDATA PLACEHOLDER = 217,

CUDNN_PARAM BN 7 EQSCALEBIAS DESC = 28,

CUDNN PARAM BN 7 EQSCALE PLACEHOLDER = 29,

CUDNN_ PARAM BN 7 EQBIAS PLACEHOLDER = 30,

CUDNN_PARAM ACTIVATION BITMASK DESC = 31,

CUDNN_PARAM ACTIVATION BITMASK PLACEHOLDER = 32,

CUDNN_PARAM DXDESC = 33,

CUDNN_ PARAM DXDATA PLACEHOLDER = 34,

CUDNN_PARAM DZDESC = 35,

CUDNN_PARAM DZDATA PLACEHOLDER = 36,

CUDNN PARAM BN DSCALE PLACEHOLDER = 37,

CUDNN_ PARAM BN DBIAS PLACEHOLDER = 38,

} cudnnFusedOpsConstParamLabel t;

Short-form used Stands for

Setter cudnnSetFusedOpsConstParamPackAttribute()

Getter cudnnGetFusedOpsConstParamPackAttributel()

X _PointerPlaceHolder t cudnnFusedOpsPointerPlaceHolder t

x_ prefix in the Attribute column Stands for CUDNN PARAM in the enumerator
name

NVIDIA cuDNN PR-09702-001_v8.4.1 | 218

cudnn_cnn_train.so Library

Table 27. CUDNN_ FUSED SCALE BIAS ACTIVATION CONV_BNSTATS

For the attribute CUDNN_FUSED_SCALE_BIAS_ACTIVATION CONV_BNSTATS in
cudnnFusedOp_t

Expected Descriptor

Type Passed in, in Default Value After
Attribute the Setter Description Creation
X _XDESC In the setter, the Tensor descriptor NULL
*param should be describing the size,
xDesc, a pointer to a layout, and datatype of
previously initialized the x (input] tensor.
cudnnTensorDescriptor t.
X_XDATA PLACEHOLDER | In the setter, the Describes whether CUDNN_PTR NULL
*param should xData pointerin the
be a pointer to a VariantParamPack
previously initialized will be NULL, or if not,
X_PointerPlaceHolder wser promised pointer
alignment *.
X _BN_MODE In the setter, the Describes the mode of | CUDNN BATCHNORM PER ACTIVATION
*param should operation for the scale,
be a pointer to a bias and the statistics.

previously initialized

cudnnBatchNormMode t*AS of cuDNN 7.6.0, only

CUDNN_BATCHNORM SPATIAL

and
CUDNN_BATCHNORM SPATIAL PERSISTENT
are supported,

meaning, scale, bias,

and statistics are all

per-channel.

X_BN_EQSCALEBIAS DESCIn the setter, the Tensor descriptor NULL
*param should describing the size,
be a pointer to a layout, and datatype
previously initialized of the batchNorm

cudnnTensorDescriptor_t.equivalent scale and
bias tensors. The
shapes must match
the mode specified in
CUDNN_PARAM BN MODE.
If set to NULL, both
scale and bias
operation will become a

NOP.
X_BN EQSCALE PLACEHOLDEfhe setter, the Describes whether CUDNN_ PTR NULL
*param should batchnorm equivalent
be a pointer to a scale pointer in the
previously initialized VariantParamPack

X_PointerPlaceHolder_wﬂ[be NULL, or if not,
user promised pointer
alignment *.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 219

cudnn_cnn_train.so Library

For the attribute CUDNN_FUSED_SCALE_BIAS_ACTIVATION CONV_BNSTATS in

cudnnFusedOp_t

Expected Descriptor

Type Passed in, in Default Value After
Attribute the Setter Description Creation
If set to
CUDNN_PTR NULL, then
the scale operation
becomes a NOP.
X BN EQBIAS PLACEHOLDHERthe setter, the Describes whether CUDNN_PTR NULL
*param should batchnorm equivalent
be a pointer to a bias pointerin the
previously initialized VariantParamPack

X ACTIVATION DESC

X_CONV_DESC

X_WDESC

X WDATA PLACEHOLDER

NVIDIA cuDNN

X_PointerPlaceHolder wil be NULL, orif not,
user promised pointer
alignment *.

If set to

CUDNN_PTR NULL,
then the bias operation
becomes a NOP.

In the setter, the Describes the activation | NULL
*param should operation.

be a pointer to a As of cuDNN 7.6.0, only
previously initialized o
AR . a%mvahon modes of
cudnnActivationDescriptor_t*.
CUDNN_ACTIVATION RELU
and
CUDNN ACTIVATION IDENTITY
are supported. If
set to NULL or if the
activation mode is set to
CUDNN ACTIVATION IDENTITY,
then the activation
in the op sequence
becomes a NOP.

In the setter, the Describes the NULL
*param should convolution operation.

be a pointer to a

previously initialized

cudnnConvolutionDescriptor t*.

In the setter, the Filter descriptor NULL

*param should describing the size,

be a pointer to a layout and datatype of

previously initialized the w (filter) tensor.

cudnnFilterDescriptor t*.

In the setter, the Describes whether w CUDNN_PTR NULL
*param should (filter] tensor pointer in

be a pointer to a the variantParamPack

previously initialized will be NULL, or if not,

X PointerPlaceHolder| t*.

PR-09702-001_v8.4.1

| 220

cudnn_cnn_train.so Library

For the attribute CUDNN_FUSED_SCALE_BIAS_ACTIVATION CONV_BNSTATS in
cudnnFusedOp_t

Expected Descriptor

Type Passed in, in Default Value After
Attribute the Setter Description Creation
user promised pointer
alignment *.
X _YDESC In the setter, the Tensor descriptor NULL
*param should describing the size,
be a pointer to a layout and datatype of
previously initialized the y (output] tensor.
cudnnTensorDescriptor t*.
X_YDATA PLACEHOLDER In the setter, the Describes whether CUDNN_PTR NULL
*param should y loutput) tensor
be a pointerto a pointer in the
previously initialized VariantParamPack

X_PointerPlaceHolder wil be NULL, or if not,
user promised pointer
alignment *.

X_YSTATS DESC In the setter, the Tensor descriptor NULL
*param should describing the size,
be a pointer to a layout and datatype of
previously initialized the sum of y and sum of

cudnnTensorDescriptorytsguare tensors. The
shapes need to match
the mode specified in
CUDNN_PARAM BN MODE.

If set to NULL, the y
statistics generation
operation will become a

NOP.
X_YSUM PLACEHOLDER Inthe setter, the Describes whether CUDNN_PTR NULL
*param should sum of y painter in the
be a pointer to a VariantParamPack
previously initialized will be NULL, or if not,
X_PointerPlaceHolder| tiser promised pointer
alignment *.
If set to

CUDNN_PTR NULL, the
y statistics generation
operation will become a

NOP.
X_YSQSUM PLACEHOLDER In the setter, the Describes whether sum | CUDNN_PTR NULL
*param should of y square pointer in
be a pointer to a the variantParamPack
previously initialized will be NULL, or if not,

X_PointerPlaceHolder| tiser promised pointer
alignment *.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 221

cudnn_cnn_train.so Library

For the attribute CUDNN_FUSED_SCALE_BIAS_ACTIVATION CONV_BNSTATS in

cudnnFusedOp_t
Expected Descriptor

Type Passed in, in

Attribute the Setter

@ Note:

Default Value After

Description Creation

If set to
CUDNN_PTR_NULL, the
y statistics generation
operation will become a
NOP.

» If the corresponding pointer placeholder in ConstParamPack is set to CUDNN_PTR NULL,
then the device pointer in the variantParamPack needs to be NULL as well.

» If the corresponding pointer placeholder in ConstParamPack is set to
CUDNN PTR ELEM ALIGNED Oor CUDNN_ PTR 16B ALIGNED, then the device pointerin the
VariantParamPack may not be NULL and need to be at least element-aligned or 16 bytes-

aligned, respectively.

As of cuDNN 7.6.0, if the conditions in Table 28 are met, then the fully fused fast path will be
triggered. Otherwise, a slower partially fused path will be triggered.

Table 28.

Parameter
Device compute capability
CUDNN_PARAM XDESC

CUDNN_ PARAM XDATA PLACEHOLDER

CUDNN PARAM BN EQSCALEBIAS DESC
CUDNN_ PARAM BN EQSCALE PLACEHOLDER

CUDNN PARAM BN EQBIAS PLACEHOLDER

CUDNN_PARAM CONV_DESC
CUDNN_PARAM WDESC

CUDNN_ PARAM WDATA PLACEHOLDER

NVIDIA cuDNN

Conditions for Fully Fused Fast Path (Forward)

Condition
Need to be one of 7.0, 7.2 or 7.5.

Tensor is 4 dimensional

Datatype is CUDNN_DATA HALF

Layout is nawWC fully packed

Alignment is CUDNN_PTR_16B_ALIGNED
Tensor’s ¢ dimension is a multiple of 8.

If either one of scale and bias operation is not
turned into a NOP:

Tensor is 4 dimensional with shape 1TxCx1x1
Datatype is CUDNN_DATA HALF

Layout is fully packed

Alignment is CUDNN_PTR_16B_ALIGNED

Convolution descriptor’'s mode needs to be
CUDNN_CROSS_CORRELATION.

Convolution descriptor’s dataType needs to be
CUDNN DATA FLOAT.

Convolution descriptor's dilationais (1,1).

PR-09702-001_v8.4.1 | 222

Parameter

CUDNN_ PARAM YDESC

CUDNN_ PARAM YDATA PLACEHOLDER

CUDNN_ PARAM YSTATS DESC
CUDNN_ PARAM YSUM PLACEHOLDER

CUDNN_ PARAM YSQSUM PLACEHOLDER

cudnn_cnn_train.so Library

Condition

Convolution descriptor’s group count needs to be
1

Convolution descriptor's mathType
needs to be CUDNN_ TENSOR_OP_MATH or
CUDNN_TENSOR_OP MATH ALLOW CONVERSION.

Filter is in NHWC layout

Filter's data type is CUDNN_DATA HALF
Filter's K dimension is a multiple of 32
Filter size RxS is either 1x1 or 3x3

If filter size RxS is 1x1, convolution descriptor’s
padA needs to be (0,0) and filterStrideA needs
to be (1,1).

Filter's alignment is CUDNN_PTR 16B_ALIGNED
Tensor is 4 dimensional

Datatype is CUDNN_DATA HALF

Layout is nawc fully packed

Alignment is CUDNN_PTR_16B ALIGNED

If the generate statistics operation is not turned
into a NOP:

Tensor is 4 dimensional with shape TxKx1x1
Datatype is CUDNN_DATA FLOAT
Layout is fully packed

Alignment is CUDNN_PTR_16B_ALIGNED

CUDNN FUSED SCALE BIAS ACTIVATION WGRAD

For the attribute CUDNN_FUSED_ SCALE BIAS ACTIVATION WGRAD in cudnnFusedOp_ t

Table 29.
Expected
Descriptor Type
Passed in, in the
Attribute Setter
X_XDESC In the setter, the

*param should be

xDesc, a pointer to a
previously initialized

Default Value After
Description Creation
Tensor descriptor NULL

describing the size,
layout and datatype of
the x (input] tensor

cudnnTensorDescriptor t.

X _XDATA PLACEHOLDER In the setter, the
*param should

be a pointerto a

previously initialized

Describes whether
xData pointer in the
VariantParamPack
will be NULL, or if not,

CUDNN_PTR NULL

X PointerPlaceHolder t*.

NVIDIA cuDNN

PR-09702-001_v8.4.1 | 223

cudnn_cnn_train.so Library

For the attribute CUDNN_FUSED_SCALE_BIAS_ACTIVATION_ WGRAD in cudnnFusedOp t

Expected
Descriptor Type
Passed in, in the Default Value After
Attribute Setter Description Creation
user promised pointer
alignment *.
X BN MODE In the setter, the Describes the mode CUDNN BATCHNORM PER ACTIVATION
- *param should of operation for the - o
be a pointerto a scale, bias and the

previously initialized | statistics.

oy *
cudnnBatchNormMode,ﬁtS.O]c cUDNN

7.6.0, only

CUDNN BATCHNORM SPATIAL

and

CUDNN BATCHNORM SPATIAL PERSISTENT
are supported,

meaning, scale, bias,

and statistics are all

per-channel.

X BN EQSCALEBIAS DESC In the setter, the Tensor descriptor NULL
*param should describing the size,
be a pointerto a layout and datatype

previously initialized | of the batchNorm

cudnnTensorDescriptoretuivalent scale and
bias tensors. The
shapes must match
the mode specified in
CUDNN_PARAM BN MODE,
If set to NULL, both
scale and bias
operation will become

a NOP.
X BN EQSCALE PLACEHOLDER | In the setter, the Describes whether CUDNN PTR NULL
*param should batchnorm equivalent
be a pointerto a scale pointerin the

previously initialized | variantParamPack

X_PointerPlaceHoldewilt be NULL, or if not,
user promised pointer
alignment *.

If set to

CUDNN_PTR NULL, then
the scale operation
becomes a NOP.

X BN EQBIAS PLACEHOLDER | In the setter, the Describes whether CUDNN_PTR NULL
*param should batchnorm equivalent
be a pointerto a bias pointer in the

previously initialized | variantParamPack
X_PointerPlaceHoldewilt be NULL, or if not,

NVIDIA cuDNN PR-09702-001_v8.4.1 | 224

cudnn_cnn_train.so Library

For the attribute CUDNN_FUSED_SCALE_BIAS_ACTIVATION_ WGRAD in cudnnFusedOp t

Attribute

X_ACTIVATION DESC

X_CONV_DESC

X_DWDESC

X DWDATA PLACEHOLDER

X_DYDESC

NVIDIA cuDNN

Expected
Descriptor Type
Passed in, in the
Setter

In the setter, the
*param should

be a pointerto a
previously initialized
cudnnActivationDescri

Description
user promised pointer
alignment *.

If set to
CUDNN_PTR NULL,

then the bias operation

becomes a NOP.

Describes the
activation operation.

As of cuDNN

In the setter, the
*param should

be a pointerto a
previously initialized

Dgoér?.'q*onty the

ctivation mode of

Default Value After

Creation

NULL

CUDNN ACTIVATION RELU

and

CUDNN_ACTIVATION IDENTITY

is supported. If
set to NULL or
if the activation
mode is set to

CUDNN_ACTIVATION IDENTITY

then the activation
in the op sequence
becomes a NOP.

Describes the
convolution operation.

cudnnConvolutionDescriptor_t*.

In the setter, the
*param should

be a pointerto a
previously initialized

Filter descriptor
describing the size,
layout and datatype of
the aw (filter gradient

cudnnFilterDescriptor| Butput) tensor.

In the setter, the
*param should

be a pointerto a
previously initialized

Describes whether dw
(filter gradient output]
tensor pointer in the
VariantParamPack

X_PointerPlaceHoldewilt be NULL, or if not,

In the setter, the
*param should

be a pointerto a
previously initialized

user promised pointer
alignment *.

Tensor descriptor
describing the size,
layout and datatype of
the dy (gradient input]

cudnnTensorDescriptortdfisor.

NULL

NULL

CUDNN_PTR_NULL

NULL

PR-09702-001_v8.4.1

225

cudnn_cnn_train.so Library

For the attribute CUDNN_FUSED_SCALE_BIAS_ACTIVATION_ WGRAD in cudnnFusedOp t

Expected
Descriptor Type
Passed in, in the
Setter

In the setter, the
*param should
be a pointerto a

Attribute

X DYDATA PLACEHOLDER

previously initialized

Default Value After

Description Creation

Describes whether
dy [gradient input]
tensor pointer in the
VariantParamPack

CUDNN_PTR NULL

X_PointerPlaceHoldewilt be NULL, or if not,

@ Note:

user promised pointer
alignment *.

» If the corresponding pointer placeholder in ConstParamPack is set to CUDNN_PTR NULL,
then the device pointer in the VariantParamPack needs to be NULL as well.

» If the corresponding pointer placeholder in ConstParamPack is set to
CUDNN PTR ELEM ALIGNED Or CUDNN_ PTR 16B ALIGNED, then the device pointerin the
VariantParamPack may not be NULL and needs to be at least element-aligned or 16 bytes-

aligned, respectively.

As of cuDNN 7.6.0, if the conditions in Table 30 are met, then the fully fused fast path will be
triggered. Otherwise a slower partially fused path will be triggered.

Table 30.

Parameter
Device compute capability

CUDNN_PARAM XDESC

CUDNN_ PARAM XDATA PLACEHOLDER

CUDNN_PARAM BN EQSCALEBIAS DESC
CUDNN_ PARAM BN EQSCALE PLACEHOLDER

CUDNN_ PARAM BN EQBIAS PLACEHOLDER

CUDNN_PARAM CONV_DESC
CUDNN_PARAM DWDESC

CUDNN_ PARAM DWDATA PLACEHOLDER

NVIDIA cuDNN

Conditions for Fully Fused Fast Path (Backward)

Condition
Needs to be one of 7.0, 7.2 or 7.5.

Tensor is 4 dimensional

Datatype is CUDNN DATA HALF

Layout is nawWC fully packed

Alignment is CUDNN_PTR 16B ALIGNED
Tensor’s ¢ dimension is a multiple of 8.

If either one of scale and bias operation is not
turned into a NOP:

Tensor is 4 dimensional with shape 1xCx1x1
Datatype is CUDNN_DATA HALF

Layout is fully packed

Alignment is CUDNN_PTR 16B ALIGNED

Convolution descriptor’'s mode needs to be
CUDNN_CROSS_CORRELATION.

Convolution descriptor’s dataType needs to be
CUDNN_DATA FLOAT.

PR-09702-001_v8.4.1 | 226

cudnn_cnn_train.so Library

Parameter Condition
Convolution descriptor’s dilationAis (1,1)

Convolution descriptor’s group count needs to be
1.

Convolution descriptor's mathType
needs to be CUDNN_ TENSOR_OP_MATH or
CUDNN_TENSOR_OP MATH ALLOW_ CONVERSION.

Filter gradient is in NHWC layout

Filter gradient’s data type is CUDNN_DATA HALF
Filter gradient’s K dimension is a multiple of 32.
Filter gradient size RxS is either 1x1 or 3x3

If filter gradient size RxS is 1x1, convolution
descriptor’s pada needs to be (0,0) and
filterStrideA needs to be (1,1).

Filter gradient’s alignment is
CUDNN_PTR 16B_ALIGNED

CUDNN_PARAM DYDESC Tensor is 4 dimensional
CUDNN PARAM DYDATA PLACEHOLDER Datatype is CUDNN_DATA HALF
Layout is nawC fully packed

Alignment is CUDNN_PTR_16B ALIGNED

Table 31. CUDNN_FUSED BN FINALIZE STATISTICS TRAINING

For the attribute CUDNN_FUSED_ BN FINALIZE STATISTICS TRAINING in cudnnFusedOp_t

Expected
Descriptor Type
Passed in, in the Default Value After
Attribute Setter Description Creation
X BN MODE In the setter, the Describes the mode CUDNN BATCHNORM PER ACTIVATION
- *param should of operation for the - o
be a pointerto a scale, bias and the

previously initialized | statistics.

oy *
cudnnBatchNormMode,ﬁtS.O]c cUDNN

7.6.0, only

CUDNN BATCHNORM SPATIAL

and

CUDNN BATCHNORM SPATIAL PERSISTENT
are supported,

meaning, scale, bias

and statistics are all

per-channel.

X _YSTATS DESC In the setter, the Tensor descriptor NULL
*param should describing the size,

NVIDIA cuDNN PR-09702-001_v8.4.1 | 227

cudnn_cnn_train.so Library

For the attribute CUDNN_FUSED_BN_FINALIZE STATISTICS TRAINING iN cudnnFusedOp_t

Expected

Descriptor Type

Passed in, in the Default Value After
Attribute Setter Description Creation

be a pointerto a layout and datatype

previously initialized | of the sum of y and

cudnnTensorDescriptsm‘E’t@f y square
tensors. The shapes
need to match the
mode specified in
CUDNN_PARAM BN MODE|

X _YSUM PLACEHOLDER In the setter, the Describes whether CUDNN_PTR NULL
*param should sum of y pointer in the
be a pointerto a VariantParamPack

previously initialized | will be NULL, or if not,
X _PointerPlaceHoldeuserpromised pointer
alignment *.

X _YSQSUM PLACEHOLDER In the setter, the Describes whether CUDNN_PTR NULL
*param should sum of y square
be a pointerto a pointer in the

previously initialized | variantParamPack

X_PointerPlaceHoldewilt be NULL, or if not,
user promised pointer
alignment *.

X BN SCALEBIAS MEANVAR DESK the setter, the A common tensor NULL
*param should descriptor describing
be a pointerto a the size, layout

previously initialized | and datatype of the
cudnnTensorDescriptorbatchNorm trained
scale, bias and
statistics tensors. The
shapes need to match
the mode specified in
CUDNN_PARAM BN MODE
(similar to the
bnScaleBiasMeanVarDesc

field in the
cudnnBatchNormalization*
API).
X BN _SCALE PLACEHOLDER In the setter, the Describes whether the | CUDNN_PTR NULL
*param should batchNorm trained
be a pointerto a scale pointer in the

previously initialized | variantParamPack

X_PointerPlaceHoldewilt be NULL, or if not,
user promised pointer
alignment *.

If the output of
BN_EQSCALE is not
needed, then this is

NVIDIA cuDNN PR-09702-001_v8.4.1 | 228

cudnn_cnn_train.so Library

For the attribute CUDNN_FUSED_BN_FINALIZE STATISTICS TRAINING iN cudnnFusedOp_t

Expected
Descriptor Type
Passed in, in the
Attribute Setter Description
not needed and may
be NULL.
X BN BIAS PLACEHOLDER In the setter, the Describes whether the
- - *param should batchNorm trained
be a pointerto a bias pointerin the

previously initialized | variantParamPack

X_PointerPlaceHoldewilt be NULL, or if not,
user promised pointer
alignment *.

If neither output

of BN_EQSCALE or
BN_EQBIAS is needed,
then this is not needed
and may be NULL.

X BN SAVED MEAN PLACEHOLDER the setter, the Describes whether
*param should the batchNorm saved
be a pointerto a mean pointerin the

previously initialized | variantParamPack

X_PointerPlaceHoldewilt be NULL, or if not,
user promised pointer
alignment *.

If set to

CUDNN_PTR NULL, then
the computation for
this output becomes a

NOP.
X BN SAVED INVSTD PLACEHOLDERe setter, the Describes whether
*param should the batchNorm saved
be a pointerto a inverse standard

previously initialized | deviation pointer in the

X PointerPlaceHolde¥ar*antParamPack
will be NULL, or if not,
user promised pointer
alignment *.

If set to

CUDNN_PTR NULL, then
the computation for
this output becomes a

NOP.

X BN _RUNNING MEAN PLACEHOLIDEthe setter, the Describes whether the
*param should batchNorm running
be a pointerto a mean pointer in the

VariantParamPack

will be NULL, or if not,

Default Value After
Creation

CUDNN_PTR NULL

CUDNN_PTR NULL

CUDNN_PTR NULL

CUDNN_PTR NULL

NVIDIA cuDNN PR-09702-001_v8.4.1 | 229

cudnn_cnn_train.so Library

For the attribute CUDNN_FUSED_BN_FINALIZE STATISTICS TRAINING iN cudnnFusedOp_t

Expected
Descriptor Type
Passed in, in the Default Value After
Attribute Setter Description Creation
previously initialized | user promised pointer
X_PointerPlaceHoldegligmment *.
If set to
CUDNN_PTR NULL, then
the computation for
this output becomes a
NOP.
X BN RUNNING VAR PLACEHOLDERthe setter, the Describes whether the | CUDNN_PTR NULL
*param should batchNorm running
be a pointerto a variance pointer in the

X_BN_EQSCALEBIAS DESC

X BN EQSCALE PLACEHOLDER

NVIDIA cuDNN

previously initialized | variantParamPack

X_PointerPlaceHoldewilt be NULL, or if not,
user promised pointer
alignment *.

If set to

CUDNN_PTR NULL, then
the computation for
this output becomes a

NOP.
In the setter, the Tensor descriptor NULL
*param should describing the size,
be a pointerto a layout and datatype

previously initialized | of the batchNorm

cudnnTensorDescriptoretiiivalent scale and
bias tensors. The
shapes need to match
the mode specified in
CUDNN_PARAM BN MODE,

If neither output

of BN_EQSCALE or
BN_EQBIAS is needed,
then this is not needed
and may be NULL.

In the setter, the Describes whether CUDNN_PTR NULL
*param should batchnorm equivalent
be a pointerto a scale pointer in the

previously initialized | variantParamPack

X_PointerPlaceHoldewilt be NULL, orif not,
user promised pointer
alignment *.

If setto
CUDNN_PTR NULL, then
the computation for

PR-09702-001_v8.4.1 | 230

cudnn_cnn_train.so Library

For the attribute CUDNN_FUSED_BN_FINALIZE STATISTICS TRAINING iN cudnnFusedOp_t

Expected
Descriptor Type
Passed in, in the Default Value After
Attribute Setter Description Creation
this output becomes a
NOP.
X BN EQBIAS PLACEHOLDER | In the setter, the Describes whether CUDNN PTR NULL
- B *param should batchnorm equivalent -
be a pointerto a bias pointerin the

previously initialized | variantParamPack

X_PointerPlaceHoldewilt be NULL, or if not,
user promised pointer
alignment *.

If set to

CUDNN_PTR NULL, then
the computation for
this output becomes a
NOP.

Table 32. CUDNN_ FUSED BN FINALIZE STATISTICS INFERENCE

For the attribute CUDNN_FUSED BN FINALIZE STATISTICS_INFERENCE in cudnnFusedOp_t

Expected
Descriptor Type
Passed in, in the Default Value After
Attribute Setter Description Creation
X BN MODE In the setter, the Describes the mode CUDNN BATCHNORM PER ACTIVATION
o *param should of operation for the - S
be a pointerto a scale, bias and the

previously initialized | statistics.

N *
cudrmBatchNormMode_ﬁtS.Of cUDNN

7.6.0, only

CUDNN_ BATCHNORM SPATIAL

and

CUDNN_ BATCHNORM SPATIAL PERSISTENT
are supported,

meaning, scale, bias

and statistics are all

per-channel.

X BN SCALEBIAS MEANVAR DESH the setter, the A common tensor NULL
*param should descriptor describing
be a pointerto a the size, layout

previously initialized | and datatype of the

cudnnTensorDescriptorbatchNorm trained
scale, bias and
statistics tensors. The

NVIDIA cuDNN PR-09702-001_v8.4.1 | 231

cudnn_cnn_train.so Library

For the attribute CUDNN_FUSED BN FINALIZE STATISTICS_INFERENCE in cudnnFusedOp_t

Attribute

X_BN_SCALE PLACEHOLDER

X_BN_BIAS PLACEHOLDER

Expected
Descriptor Type
Passed in, in the Default Value After
Setter Description Creation
shapes need to match
the mode specified in
CUDNN_PARAM BN MODE
(similar to the
bnScaleBiasMeanVarDesc
field in the
cudnnBatchNormalization*
API).
In the setter, the Describes whether the | CUDNN_PTR NULL
*param should batchNorm trained
be a pointerto a scale pointerin the

previously initialized | variantParamPack

X_PointerPlaceHoldemi&be]NULL,Orifnot
user promised pointer
alignment *.

In the setter, the Describes whether the
*param should batchNorm trained
be a pointerto a bias pointer in the

previously initialized | variantParamPack

X_PointerPlaceHoldewilt be NULL, or if not,
user promised pointer
alignment *.

X BN RUNNING MEAN PLACEHOLDEfe setter, the Describes whether the

*param should batchNorm running
be a pointerto a mean pointer in the
previously initialized | variantParamPack
X_PointerPlaceHoldewilt be NULL, orif not,
user promised pointer

alignment *.
X BN RUNNING VAR PLACEHOLDERthe setter, the Describes whether the
*param should batchNorm running
be a pointerto a variance pointer in the

X_BN_EQSCALEBIAS DESC

NVIDIA cuDNN

previously initialized | variantParamPack
X_PointerPlaceHoldewilt be NULL, or if not,
user promised pointer

alignment *.
In the setter, the Tensor descriptor
*param should describing the size,
be a pointerto a layout and datatype

previously initialized | of the batchNorm

cudnnTensorDescriptoregivalent scale and
bias tensors. The
shapes need to match
the mode specified in

CUDNN_PARAM BN MODE,

CUDNN_PTR NULL

CUDNN_PTR NULL

CUDNN_PTR NULL

NULL

PR-09702-001_v8.4.1

232

cudnn_cnn_train.so Library

For the attribute CUDNN_FUSED BN FINALIZE STATISTICS_INFERENCE in cudnnFusedOp_t

Expected
Descriptor Type
Passed in, in the Default Value After
Attribute Setter Description Creation
X BN _EQSCALE PLACEHOLDER | In the setter, the Describes whether CUDNN_PTR NULL
*param should batchnorm equivalent
be a pointerto a scale pointerin the

previously initialized | variantParamPack

X_PointerPlaceHoldewilt be NULL, or if not,
user promised pointer
alignment *.

If set to
CUDNN_PTR_NULL, then
the computation for
this output becomes a

NOP.
X BN EQBIAS PLACEHOLDER | In the setter, the Describes whether CUDNN PTR NULL
*param should batchnorm equivalent
be a pointerto a bias pointer in the

previously initialized | variantParamPack

X_PointerPlaceHoldewilt be NULL, or if not,
user promised pointer
alignment *.

If set to

CUDNN_PTR NULL, then
the computation for
this output becomes a
NOP.

Table 33. CUDNN_FUSED CONVOLUTION SCALE BIAS ADD RELU

For the attribute CUDNN_FUSED CONVOLUTION SCALE BIAS ADD RELU in cudnnFusedOp t

This operation performs the following computation, where * denotes convolution operator:
y=1 (w*x)+2 z+b

Expected Descriptor

Type Passed in, in Default Value After
Attribute the Setter Description Creation
X _XDESC In the setter, the Tensor descriptor NULL
*param should be describing the size,
xDesc, a pointer to a layout and datatype of
previously initialized the x (input] tensor.
cudnnTensorDescriptor t.
X_XDATA PLACEHOLDER | In the setter, the Describes whether CUDNN_PTR NULL
*param should xData pointerin the
be a pointer to a VariantParamPack

will be NULL, or if not,

NVIDIA cuDNN PR-09702-001_v8.4.1 | 233

cudnn_cnn_train.so Library

For the attribute CUDNN_FUSED_CONVOLUTION SCALE BIAS ADD_ RELU iN cudnnFusedOp_t

This operation performs the following computation, where * denotes convolution operator:

y=1 (w*x)+2 z+b

Expected Descriptor
Type Passed in, in

Attribute the Setter

previously initialized

X_PointerPlaceHolder| abignment *.

In the setter, the
*param should
be a pointer to a

X_CONV_DESC

previously initialized

cudnnConvolutionDescriptor_t.

In the setter, the
*param should
be a pointer to a

X_WDESC

previously initialized
cudnnFilterDescriptor_t.

X_WDATA PLACEHOLDER | In the setter, the
*param should
be a pointerto a

previously initialized

Default Value After
Description Creation
user promised pointer
Describes the NULL
convolution operation.
Filter descriptor NULL

describing the size,
layout and datatype of
the w (filter) tensor.

Describes whether w
(filter] tensor pointer in
the variantParamPack
will be NULL, or if not,

CUDNN_PTR NULL

X _PointerPlaceHolder| tiser promised pointer

X_BN_EQSCALEBIAS DESCIn the setter, the
*param should
be a pointer to a

previously initialized

alignment *.

Tensor descriptor NULL
describing the size,
layout and datatype
of the a7 scale and

cudnnTensorDescriptor_t.bias tensors. The

X BN EQSCALE PLACEHOLDEHe setter, the
*param should
be a pointer to a

previously initialized

tensor should have
shape (1,K,1,1], Kis
the number of output
features.

Describes whether
batchnorm equivalent
scale or aj tensor
pointerin the

CUDNN_PTR NULL

X PointerPlaceHolder VYariantParamPack

In the setter, the
*param should be

X_ZDESC

xDesc, a pointer to a

NVIDIA cuDNN

will be NULL, or if not,
user promised pointer
alignment *.

If set to

CUDNN_PTR NULL, then
a1 scaling becomes an
NOP.

Tensor descriptor NULL
describing the size,

layout and datatype of

the z tensor.

PR-09702-001_v8.4.1

| 234

cudnn_cnn_train.so Library

For the attribute CUDNN_FUSED_CONVOLUTION SCALE BIAS ADD_ RELU iN cudnnFusedOp_t

This operation performs the following computation, where * denotes convolution operator:
y=1 (w*x)+2 z+b

Expected Descriptor

Type Passed in, in Default Value After
Attribute the Setter Description Creation

previously initialized If unset, then z scale-

cudnnTensorDescriptoradd term becomes a

NOP.

CUDNN PARAM ZDATA PLAREHwLBEHer, the Describes whether z CUDNN_PTR NULL

*param should tensor pointerin the

be a pointer to a VariantParamPack

previously initialized will be NULL, or if not,

X_PointerPlaceHolder| tiser promised pointer
alignment *.

If set to

CUDNN_PTR NULL,
then z scale-add term
becomes a NOP.

CUDNN PARAM BN 7 EQSCHLHEI&sttBEShe Tensor descriptor NULLPTR
*param should describing the size,
be a pointerto a layout and datatype of
previously initialized the as tensor.

cudnnTensorDescriptor t.

If set to NULL then
scaling for input z
becomes a NOP.

CUDNN_PARAM BN 7 EQSCALHhesaUtERGhBER Describes whether CUDNN PTR NULL
*param should batchnorm z-equivalent
be a pointerto a scaling pointer in the
previously initialized VariantParamPack

X _PointerPlaceHolder| will be NULL, or if not,
user promised pointer
alignment *.

If set to

CUDNN_PTR NULL, then
the scaling for input z
becomes a NOP.

X _ACTIVATION DESC In the setter, the Describes the activation | NULL
*param should operation.

b ointer to
€apointer o a As of 7.6.0, only
previously initialized o
A . a%t|vat|on modes of
cudnnActivationDescriptor f.
CUDNN_ACTIVATION RELU
and
CUDNN_ACTIVATION IDENTITY
are supported. If
set to NULL or if the

activation mode is set to

NVIDIA cuDNN PR-09702-001_v8.4.1 | 235

cudnn_cnn_train.so Library

For the attribute CUDNN_FUSED_CONVOLUTION SCALE BIAS ADD_ RELU iN cudnnFusedOp_t

This operation performs the following computation, where * denotes
y=1(w*x)+2 z+b

Expected Descriptor
Type Passed in, in
Attribute the Setter Description

convolution operator:

Default Value After
Creation

CUDNN_ACTIVATION IDENTITY

then the activation
in the op sequence
becomes a NOP.

X _YDESC In the setter, the Tensor descriptor
*param should describing the size,
be a pointerto a layout and datatype of
previously initialized the y (output] tensor.

cudnnTensorDescriptor t*.

X_YDATA PLACEHOLDER | In the setter, the Describes whether
*param Should y (output) tensor
be a pointer to a pointerin the
previously initialized VariantParamPack

X_PointerPlaceHolder wil be NULL, orif not,
user promised pointer
alignment *.

NULL

CUDNN_PTR NULL

6.1.3.3. cudnnFusedOpsPointerPlaceHolder t

cudnnFusedOpsPointerPlaceHolder t isan enumerated type used to select the alignment

type of the cudnnFusedops descriptor pointer.

Member Description
CUDNN_PTR NULL = 0 Indicates that the pointer

to the tensor in the

variantPack will be NULL.

CUDNN_PTR ELEM ALIGNED = 1 Indicates that the pointer

to the tensor in the

variantPack will not be NULL, and will have

element alignment.

CUDNN PTR 16B ALIGNED = 2 Indicates that the pointer

to the tensor in the

variantPack will not be NULL, and will have 16

byte alignment.

6.1.3.4. cudnnFusedOpsVariantParamLabel t

The cudnnFusedOpsVariantParamLabel t isan enumerated type thatis used to set the

buffer pointers. These buffer pointers can be changed in each iteration.

typedef enum {
CUDNN_ PTR_XDATA
CUDNN_PTR BN EQSCALE
CUDNN_PTR BN EQBIAS
CUDNN_PTR WDATA
CUDNN_ PTR DWDATA
CUDNN_PTR YDATA
CUDNN_PTR DYDATA

1 [| [R A
U WN RO
N~ S N~ N~~~

NVIDIA cuDNN

PR-09702-001_v8.4.1 | 236

CUDNN_PTR_ YSUM

CUDNN_PTR YSQSUM

CUDNN_PTR_WORKS PACE
CUDNN_PTR BN SCALE

CUDNN_PTR BN BIAS

CUDNN_ PTR BN SAVED MEAN
CUDNN_PTR BN SAVED INVSTD
CUDNN_PTR BN RUNNING MEAN
CUDNN_PTR BN RUNNING VAR

CUDNN_PTR ZDATA

CUDNN PTR BN Z EQSCALE
CUDNN_PTR BN Z EQBIAS

CUDNN_ PTR ACTIVATION BITMASK
CUDNN_PTR DXDATA

CUDNN_PTR_D ZDATA

CUDNN_PTR BN DSCALE
CUDNN_PTR BN DBIAS

CUDNN SCALAR SIZE T WORKSPACE SIZE IN BYTES
CUDNN_SCALAR INT64 T BN ACCUMULATION COUNT
CUDNN_SCALAR DOUBLE BN EXP AVG FACTOR
CUDNN_SCALAR DOUBLE BN EPSILON

} cudnnFusedOpsVariantParamLabel_t;

Table 34.

Short-form used
Setter

cudnn_cnn_train.so Library

= 100,
- 101,
= 102,
= 103,

Legend For Tables in This Section

Stands for
cudnnSetFusedOpsVariantParamPackAttribute()

Getter

cudnnGetFusedOpsVariantParamPackAttribute()

x_ prefix in the Attribute key column

enumerator name.

Table 35.

CUDNN_FUSED SCALE BIAS ACTIVATION CONV_BNSTATS

For the attribute CUDNN_FUSED_SCALE_BIAS_ACTIVATION_ CONV_BNSTATS in

cudnnFusedOp_t

Expected
Descriptor
Type
Passed
in, in the

Attribute key Setter

X_XDATA

I/0 Type
input

void *

X BN EQSCALE input

void *

NVIDIA cuDNN

Default
Description Value
Pointer to x (input) NULL

tensor on device, need to

agree with previously set
CUDNN_PARAM XDATA PLACEHOLDER
attribute *.

Pointer to batchnorm equivalent
scale tensor on device, need

to agree with previously set
CUDNN_PARAM BN EQSCALE PLACEHOLDER
attribute *.

NULL

PR-09702-001_v8.4.1 |

Stands for CUDNN_PTR or CUDNN_ SCALAR in the

237

cudnn_cnn_train.so Library

For the attribute CUDNN_FUSED_SCALE_BIAS_ACTIVATION CONV_BNSTATS in

cudnnFusedOp_t

Expected
Descriptor
Type
Passed
in, in the

Attribute key Setter

X_ BN _EQBIAS void *

X_WDATA void *

X_YDATA void *

X _YSUM void *

X YSQSUM void *

X WORKSPACE void *

X _SIZE T WORKSPACE SIZEsINeBY¥TES

@ Note:

1/0 Type
input

input

output

output

output

input

input

Default
Description Value
Pointer to batchnorm equivalent | NULL

bias tensor on device, need

to agree with previously set

CUDNN_ PARAM BN EQBIAS PLACEHOLDER
attribute *.

Pointer to w (filter) tensor
on device, need to agree
with previously set
CUDNN PARAM WDATA PLACEHOLDER
attribute *.

NULL

Pointer to y (output)
tensor on device, need to
agree with previously set
CUDNN PARAM YDATA PLACEHOLDER
attribute *.

NULL

Pointer to sum of y

tensor on device, need to

agree with previously set
CUDNN_PARAM YSUM PLACEHOLDER
attribute *.

NULL

Pointer to sum of y square
tensor on device, need to
agree with previously set
CUDNN PARAM YSQSUM PLACEHOLDER
attribute *.

NULL

Pointer to user allocated NULL
workspace on device. Can be

NULL if the workspace size

requested is 0.

Pointer to a size_t valuein 0

host memory describing the
user allocated workspace
size in bytes. The amount
needs to be equal or larger
than the amount requested in
cudnnMakeFusedOpsPlan.

» If the corresponding pointer placeholder in ConstParamPack is set to CUDNN_PTR NULL,
then the device pointer in the VariantParamPack needs to be NULL as well

NVIDIA cuDNN

PR-09702-001_v8.4.1 |

238

cudnn_cnn_train.so Library

» If the corresponding pointer placeholder in ConstParamPack is set to
CUDNN_ PTR ELEM ALIGNED Oor CUDNN PTR 16B ALIGNED, then the device pointer in the
VariantParamPack may not be NULL and needs to be at least element-aligned or 16 bytes-
aligned, respectively.

Table 36.

CUDNN FUSED SCALE BIAS ACTIVATION WGRAD

For the attribute CUDNN_FUSED_SCALE_BIAS_ACTIVATION WGRAD in cudnnFusedOp t

Attribute key

X_XDATA

X_BN_EQSCALE

X_BN EQBIAS

X DWDATA

X DYDATA

X WORKSPACE

Expected
Descriptol

Type
Passed
in, in the
Setter

void *

void *

void *

void *

void *

void *

X _SIZE T WORKSPACE SIZE IN BYSESe t *

NVIDIA cuDNN

I/0 Type
input

input

input

output

input

input

input

Default
Description Value
Pointer to x (input] NULL

tensor on device, need to

agree with previously set
CUDNN_PARAM XDATA PLACEHOLDER
attribute *.

Pointer to batchnorm NULL
equivalent scale tensor

on device, need to agree

with previously set
CUDNN_PARAM BN EQSCALE PLACEHOLDER
attribute *.

Pointer to batchnorm NULL
equivalent bias tensor

on device, need to agree

with previously set
CUDNN_PARAM BN EQBIAS PLACEHOLDER
attribute *.

Pointer to aw (filter NULL
gradient output] tensor

on device, need to agree

with previously set

CUDNN PARAM WDATA PLACEHOLDER
attribute *.

Pointer to dy (gradient input] ' NULL
tensor on device, need to

agree with previously set
CUDNN_PARAM YDATA PLACEHOLDER
attribute *.

Pointer to user allocated NULL
workspace on device. Can be

NULL if the workspace size
requested is 0.

Pointerto a size tvaluein |0
host memory describing the

PR-09702-001_v8.4.1 | 239

cudnn_cnn_train.so Library

For the attribute CUDNN_FUSED_SCALE_BIAS_ACTIVATION_ WGRAD in cudnnFusedOp t

Expected
Descriptol
Type
Passed
in, in the Default
Attribute key Setter I/0 Type Description Value
user allocated workspace
size in bytes. The amount
needs to be equal or larger
than the amount requested
IN cudnnMakeFusedOpsPlan.

@ Note:

» If the corresponding pointer placeholder in ConstParamPack is set to CUDNN_PTR NULL,
then the device pointer in the variantParamPack needs to be NULL as well.

» If the corresponding pointer placeholder in ConstParampPack is set to
CUDNN_PTR ELEM ALIGNED Or CUDNN PTR 16B ALIGNED, then the device pointer in the
VariantParamPack may not be NULL and needs to be at least element-aligned or 16 bytes-
aligned, respectively.

Table 37. CUDNN_FUSED BN FINALIZE STATISTICS TRAINING

For the attribute CUDNN_FUSED_BN_FINALIZE STATISTICS TRAINING iN cudnnFusedOp_t

Expected
Descripta
Type
Passed
in, in the Default
Attribute key Setter I/0 Type Description Value
X_YSUM void * | input Pointer to sum of y NULL
tensor on device, need to
agree with previously set
CUDNN_PARAM YSUM PLACEHOLDER
attribute *. -
X_YSQSUM void * input Pointer to sum of y square NULL
tensor on device, need to
agree with previously set
CUDNN_PARAM YSQSUM PLACEHOLDER
attribute *. -
X _BN_SCALE void * input Pointer to sum of y square NULL

tensor on device, need to

agree with previously set
CUDNN_PARAM BN SCALE PLACEHOLDER
attribute *.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 240

cudnn_cnn_train.so Library

For the attribute CUDNN_FUSED_BN_FINALIZE STATISTICS TRAINING iN cudnnFusedOp_t

Attribute key

X_BN_BIAS

X_BN_SAVED MEAN

X_BN_SAVED INVSTD

X_BN_RUNNING MEAN

X_BN_RUNNING VAR

X_BN_EQSCALE

X_BN_EQBIAS

Expected
Descripta

Type
Passed
in, in the
Setter

void *

void *

void *

void *

void *

void *

void *

X_INT64 T BN ACCUMULATION COUNE64 t

NVIDIA cuDNN

*

Default
I/0 Type Description Value
input Pointer to sum of y square NULL
tensor on device, need to
agree with previously set
CUDNN_PARAM BN BIAS PLACEHOLDER
attribute *.
output Pointer to sum of y square NULL
tensor on device, need to
agree with previously set
CUDNN_PARAM BN SAVED MEAN PLACEHOLDER
attribute *.
output Pointer to sum of y square NULL
tensor on device, need to
agree with previously set
CUDNN_PARAM BN SAVED INVSTD PLACEHOLDER
attribute *.
input/ Pointer to sum of y square NULL
output tensor on device, need to
agree with previously set
CUDNN_PARAM BN RUNNING MEAN PLACEHOLDER
attribute *.
input/ Pointer to sum of y square NULL
output tensor on device, need to
agree with previously set
CUDNN_PARAM BN RUNNING VAR PLACEHOLDER
attribute *.
output Pointer to batchnorm equivalent | NULL
scale tensor on device, need
to agree with previously set
CUDNN_PARAM BN EQSCALE PLACEHOLDER
attribute *.
output Pointer to batchnorm equivalent | NULL
bias tensor on device, need
to agree with previously set
CUDNN_PARAM BN EQBIAS PLACEHOLDER
attribute *.
input Pointer to a scalar value in 0

int64 t on host memory.

This value should describe the
number of tensor elements
accumulated in the sum of v
and sum of y square tensors.

PR-09702-001_v8.4.1 | 241

cudnn_cnn_train.so Library

For the attribute CUDNN_FUSED_BN_FINALIZE STATISTICS TRAINING iN cudnnFusedOp_t

Attribute key

X_DOUBLE BN EXP AVG FACTOR

X_DOUBLE_BN EPSILON

X WORKSPACE

Expected
Descripta
Type
Passed
in, in the
Setter

double

*

double

*

void *

X_SIZE T WORKSPACE SIZE IN B¥iE® t

NVIDIA cuDNN

*

I/0 Type Description

input

input

input

input

For example, in the single
GPU use case, if the mode is
CUDNN_BATCHNORM SPATIAL Or

Default

Value

CUDNN_ BATCHNORM SPATIAL PERSISTENT

the value should be equal to
N*H*W of the tensor from which
the statistics are calculated.

In multi-GPU use case, if all-
reduce has been performed

on the sum of y and sum of

y square tensors, this value
should be the sum of the single
GPU accumulation count on
each of the GPUs.

Pointer to a scalar value in
double on host memory.

Factor used in the moving
average computation. See
exponentialAverageFactor
in cudnnBatchNormalization*

APls.

Pointer to a scalar value in
double on host memory.

A conditioning constant used
in the batch normalization
formula. Its value should

be equal to or greater

than the value defined for
CUDNN_BN MIN EPSILON in
cudnn.h

See
exponentialAverageFactor
in cudnnBatchNormalization*

APls.

Pointer to user allocated
workspace on device. Can be
NULL if the workspace size
requested is 0.

Pointer to a size tvaluein
host memory describing the
user allocated workspace

NULL

PR-09702-001_v8.4.1

242

cudnn_cnn_train.so Library

For the attribute CUDNN_FUSED_BN_FINALIZE STATISTICS TRAINING iN cudnnFusedOp_t

Expected

Descripta

Type

Passed

in, in the Default

Attribute key Setter I/0 Type Description Value

size in bytes. The amount
needs to be equal or larger
than the amount requested in
cudnnMakeFusedOpsPlan.

@ Note:

» If the corresponding pointer placeholder in ConstParamPack is set to CUDNN_PTR NULL,
then the device pointer in the variantParamPack needs to be NULL as well.

» If the corresponding pointer placeholder in ConstParampPack is set to
CUDNN_PTR ELEM ALIGNED or CUDNN PTR 16B ALIGNED, then the device pointer in the
VariantParamPack may not be NULL and needs to be at least element-aligned or 16 bytes-
aligned, respectively.

Table 38. CUDNN_FUSED BN FINALIZE STATISTICS INFERENCE

For the attribute CUDNN_FUSED BN FINALIZE STATISTICS_INFERENCE in cudnnFusedOp_t

Expected
Descripto
Type
Passed
in, in the Default
Attribute key Setter I/0 Type Description Value
X BN SCALE void * input Pointer to sum of y square NULL
tensor on device, need to
agree with previously set
CUDNN_PARAM BN SCALE PLACEHOLDER
attribute *.
X BN BIAS void * input Pointer to sum of y square NULL
tensor on device, need to
agree with previously set
CUDNN PARAM BN BIAS PLACEHOLDER
attribute *.
X_BN_RUNNING MEAN void * input/ Pointer to sum of y square NULL
output tensor on device, need to
agree with previously set
CUDNN_PARAM BN RUNNING MEAN PLACEHOLDER
attribute *.
X BN RUNNING VAR void * input/ Pointer to sum of y square NULL
output tensor on device, need to

NVIDIA cuDNN PR-09702-001_v8.4.1 | 243

cudnn_cnn_train.so Library

For the attribute CUDNN_FUSED BN FINALIZE STATISTICS_INFERENCE in cudnnFusedOp_t

Expected

Descripto

Type

Passed

in, in the Default
Attribute key Setter I/0 Type Description Value

agree with previously set
CUDNN_PARAM BN RUNNING VAR PLACEHOLDER
attribute *.

X BN EQSCALE void * output Pointer to batchnorm equivalent ' NULL
scale tensor on device, need
to agree with previously set
CUDNN_PARAM BN EQSCALE PLACEHOLDER
attribute *.

X BN EQBIAS void * output Pointer to batchnorm equivalent ' NULL
bias tensor on device, need
to agree with previously set
CUDNN_PARAM BN EQBIAS PLACEHOLDER
attribute *.

X_DOUBLE BN EPSILON double * input Pointer to a scalar value in 0.0
double on host memory.

A conditioning constant used in
the batch normatlization formula.
Its value should be equal to or
greater than the value defined
for CUDNN BN MIN EPSILON in
cudnn.h.

See
exponentialAverageFactor
in cudnnBatchNormalization*

APls.

X _WORKSPACE void * input Pointer to user allocated NULL
workspace on device. Can be
NULL if the workspace size
requested is 0.

X _SIZE T WORKSPACE SIZE IN BWERES t * input Pointer to a size tvaluein 0
host memory describing the
user allocated workspace
size in bytes. The amount
needs to be equal or larger
than the amount requested in
cudnnMakeFusedOpsPlan.

@ Note:

» If the corresponding pointer placeholder in ConstParamPack is set to CUDNN_PTR NULL,
then the device pointer in the variantParamPack needs to be NULL as well.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 244

cudnn_cnn_train.so Library

» If the corresponding pointer placeholder in ConstParamPack is set to
CUDNN_ PTR ELEM ALIGNED Oor CUDNN PTR 16B ALIGNED, then the device pointer in the
VariantParamPack may not be NULL and needs to be at least element-aligned or 16 bytes-
aligned, respectively.

Table 39. CUDNN FUSED SCALE BIAS ADD RELU

For the attribute CUDNN_FUSED BN FINALIZE STATISTICS_INFERENCE in cudnnFusedOp_t

Expected
Descriptor Type
Passed in, in the
Attribute key Setter I/0 Type Description Default Value

X_XDATA void * input Pointer to x NULL
(image) tensor
on device, need
to agree with
previously set
CUDNN_PARAM XDATA PLACEHOLDER
attribute *.

X_WDATA void * input Pointer to w (filter] | NULL
tensor on device,
need to agree with
previously set
CUDNN_PARAM WDATA PLACEHOLDER
attribute *.

X BN _EQSCALE void * input Pointer to alphal | NULL
or batchnorm
equivalent scale
tensor on device;
need to agree with
previously set
CUDNN_PARAM BN EQSCALE PLACEHOLDER
attribute *.

X _ZDATA void * input Pointer to z NULL
(tensor on device:
Need to agree
with previously set
CUDNN_PARAM YDATA PLACEHOLDER
attribute *.

X BN Z EQSCALE | void * input Pointer to alpha2, | NULL
equivalent scale
tensor for z; Need
to agree with
previously set
CUDNN_PARAM BN 7 EQSCALE PLACEHOLDER
attribute *.

X BN _Z EQBIAS void * input Pointer to NULL
batchnorm
equivalent bias

NVIDIA cuDNN PR-09702-001_v8.4.1 | 245

cudnn_cnn_train.so Library

For the attribute CUDNN_FUSED_BN_FINALIZE STATISTICS_ INFERENCE in cudnnFusedOp_t

Expected

Descriptor Type

Passed in, in the
Attribute key Setter I/0 Type
X _YDATA void * output
X_WORKSPACE void * input

X_SIZE T WORKSPACEiS4ZE TN BYTES input

@ Note:

Description Default Value

tensor on device,

need to agree with

previously set
CUDNN_PARAM BN 7 EQBIAS PLACEHOLDER
attribute *.

Pointer to y NULL

(output] tensor

on device, need

to agree with

previously set
CUDNN_PARAM YDATA PLACEHOLDER
attribute *.

Pointer to NULL
user allocated
workspace on

device. Can

be NULL if the

workspace size
requested is 0.

Pointer to a 0
size tvalue

in host memory
describing the

user allocated
workspace size

in bytes. The

amount needs to

be equal or larger
than the amount
requested in
cudnnMakeFusedOpsPlan.

» If the corresponding pointer placeholder in ConstParamPack is set to CUDNN_PTR_ NULL,
then the device pointer in the variantParamPack needs to be NULL as well.

» If the corresponding pointer placeholder in ConstParamPack is set to
CUDNN_PTR ELEM ALIGNED Or CUDNN PTR 16B ALIGNED, then the device pointerin the
VariantParamPack may not be NULL and needs to be at least element-aligned or 16 bytes-

aligned, respectively.

6.2. APl Functions

NVIDIA cuDNN

PR-09702-001_v8.4.1 | 246

cudnn_cnn_train.so Library

6.2.1. cudnnCnnTrainVersionCheck ()

cudnnStatus_t cudnnCnnTrainVersionCheck (void)

This function checks whether the version of the cnnTrain subset of the library is consistent
with the other sub-libraries.

Returns

CUDNN_STATUS_SUCCESS
The version is consistent with other sub-libraries.

CUDNN_STATUS_VERSION MISMATCH
The version of cnnTrain is not consistent with other sub-libraries. Users should check the
installation and make sure all sub-component versions are consistent.

6.2.2. cudnnConvolutionBackwardBias ()
cudnnStatus_t cudnnConvolutionBackwardBias (

cudnnHandle t handle,

const void *alpha,

const cudnnTensorDescriptor t dyDesc,

const void *dy,

const void *beta,

const cudnnTensorDescriptor t dbDesc,

void *db)

This function computes the convolution function gradient with respect to the bias, which is the
sum of every element belonging to the same feature map across all of the images of the input
tensor. Therefore, the number of elements produced is equal to the number of features maps
of the input tensor.

Parameters

handle

Input. Handle to a previously created cuDNN context. For more information, refer to
cudnnHandle_t.

alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the computation result

with prior value in the output layer as follows:
dstValue = alpha[0O]*resultValue + beta[0]*priorDstValue

For more information, refer to Scaling Parameters in the cuDNN Developer Guide.

dyDesc

Input. Handle to the previously initialized input tensor descriptor. For more information,
refer to cudnnTensorDescriptor_t.

dy

Input. Data pointer to GPU memory associated with the tensor descriptor dyDesc.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 247

https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#scaling-parameters

cudnn_cnn_train.so Library

dbDesc

Input. Handle to the previously initialized output tensor descriptor.
db

Output. Data pointer to GPU memory associated with the output tensor descriptor dbDesc.

Returns
CUDNN_STATUS_SUCCESS

The operation was launched successfully.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

» One of the parameters n, height, width of the output tensoris not 1.

» The numbers of feature maps of the input tensor and output tensor differ.

» The dataType of the two tensor descriptors is different.

6.2.3. cudnnConvolutionBackwardFilter ()
cudnnStatus_t cudnnConvolutionBackwardFilter (

cudnnHandle t handle,

const void *alpha,

const cudnnTensorDescriptor t xDesc,

const void *x,

const cudnnTensorDescriptor t dyDesc,

const void *dy,

const cudnnConvolutionDescriptor t convDesc,

cudnnConvolutionBwdFilterAlgo t algo,

void *workSpace,

size t workSpaceSizeInBytes,

const void *beta,

const cudnnFilterDescriptor t dwDesc,

void *dw)

This function computes the convolution weight (filter) gradient of the tensor dy, where y is the
output of the forward convolution in cudnnConvolutionForward(). It uses the specified algo,
and returns the results in the output tensor dw. Scaling factors alpha and beta can be used to
scale the computed result or accumulate with the current dw.

Parameters
handle

Input. Handle to a previously created cuDNN context. For more information, refer to
cudnnHandle_t.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 248

cudnn_cnn_train.so Library

alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the computation result

with prior value in the output layer as follows:
dstValue = alpha[0O]*result + betal[0]*priorDstValue

For more information, refer to Scaling Parameters in the cuDNN Developer Guide.

xDesc

Input. Handle to a previously initialized tensor descriptor. For more information, refer to
cudnnTensorDescriptor_t.

Input. Data pointer to GPU memory associated with the tensor descriptor xDesc.
dyDesc
Input. Handle to the previously initialized input differential tensor descriptor.
dy
Input. Data pointer to GPU memory associated with the backpropagation gradient tensor
descriptor dyDesc.

convDesc

Input. Previously initialized convolution descriptor. For more information, refer to
cudnnConvolutionDescriptor_t.

algo

Input. Enumerant that specifies which convolution algorithm should be used to compute the
results. For more information, refer to cudnnConvolutionBwdFilterAlgo_t.

workSpace

Input. Data pointer to GPU memory to a workspace needed to be able to execute the
specified algorithm. If no workspace is needed for a particular algorithm, that pointer can
be nil.

workSpaceSizeInBytes
Input. Specifies the size in bytes of the provided workspace.

dwDesc

Input. Handle to a previously initialized filter gradient descriptor. For more information,
refer to cudnnFilterDescriptor t.

dw

Input/Output. Data pointer to GPU memory associated with the filter gradient descriptor
dwDesc that carries the result.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 249

https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#scaling-parameters

cudnn_cnn_train.so Library

Supported configurations

This function supports the following combinations of data types for xDesc, dyDesc, convDesc,
and dwbDesc.

xDesc, dyDesc, and dwDesc
Data Type Configurations Data Type convDesc Data Type

TRUE_HALF_CONFIG (only CUDNN DATA HALF CUDNN_DATA HALF
supported on architectures

with true FP16 support,

meaning, compute capability

5.3 and later]

PSEUDO_HALF CONFIG CUDNN_DATA HALF CUDNN_DATA FLOAT
PSEUDO BFLOAT16 CONFIG CUDNN DATA BFLOAT16 CUDNN_ DATA FLOAT
FLOAT CONFIG CUDNN_DATA FLOAT CUDNN_ DATA FLOAT
DOUBLE CONFIG CUDNN_DATA DOUBLE CUDNN_DATA DOUBLE

Supported algorithms

S Note: Specifying a separate algorithm can cause changes in performance, support and
computation determinism. See the following table for an exhaustive list of algorithm options
and their respective supported parameters and deterministic behavior.

The table below shows the list of the supported 2D and 3D convolutions. The 2D convolutions
are described first, followed by the 3D convolutions.

For the following terms, the short-form versions shown in the parentheses are used in the
table below, for brevity:

» CUDNN_CONVOLUTION BWD FILTER ALGO 0 (_ALGO_0)
> CUDNN_CONVOLUTION BWD FILTER ALGO 1 (_ALGO_1)

» CUDNN CONVOLUTION BWD FILTER ALGO 3 (_ALGO_3)

» CUDNN CONVOLUTION BWD FILTER ALGO FFT (_FFT)

» CUDNN CONVOLUTION BWD FILTER ALGO FFT TILING (_FFT_TILING)

» CUDNN_ CONVOLUTION BWD FILTER ALGO WINOGRAD NONFUSED (_WINOGRAD_NONFUSED)
» CUDNN TENSOR NCHW (_NCHW)

» CUDNN TENSOR NHWC (_NHWC)

» CUDNN TENSOR NCHW VECT C (_NCHW_VECT_C)

NVIDIA cuDNN PR-09702-001_v8.4.1 | 250

Table 40.

For 2D convolutions: dwbesc: NHWC

cudnn_cnn_train.so Library

Filter descriptor dwbDesc: NHWC (refer to cudnnTensorFormat_t)

Algo Name

_ALGO_0 and
_ALGO_1

Table 41.

Deterministic
(Yes or No)

For 2D convolutions: dwbesc: NCHW

Tensor Tensor
Formats Formats
Supported for Supported for
dyDesc dxDesc

NHWC HWC- NHWC HWC-
packed. packed

Filter descriptor dwbDesc: NCHW

Algo Name

_ALGO 0

_ALGO_1

FET

NVIDIA cuDNN

Deterministic
(Yes or No)

No

Yes

Yes

Tensor Tensor
Formats Formats
Supported for Supported for
dyDesc dxDesc

All except NCHW CHW-
_NCHW_VECT C | packed

All except NCHW CHW-
_NCHW_VECT C | packed

NCHW CHW- NCHW CHW-
packed packed

Data Type
Configurations

Supported Important

PSEUDO_ HALF CONFIG
PSEUDO BFLOAT16 CONFIG

FLOAT CONFIG

Data Type
Configurations

Supported Important

pPSEUDO_HALF coBilation:

reater th
PSEUDO BFLOAT1% CONFIG

OFor all
FLOAT CONFIG | dimensions

an

DOUBLE_CONFIG ~onyDesc

Group Count
Support:
Greater than 0

PSEUDO HALF cOBilation:
reater than
TRUE_HALF CONFIG
0 forall

PSEUDO_BFLOATI1HReENEHRAS

FLOAT CONFIG | ~onvDesc

DOUBLE_coNrIg Oroup Count
Support:
Greater than 0

PSEUDO HALF_cOBilation: 1 for

all dimensions
FLOAT CONFIG

convDesc

Group Count

PR-09702-001_v8.4.1 | 251

cudnn_cnn_train.so Library

Filter descriptor dwDesc: NCHW

Tensor Tensor
Formats Formats Data Type
Deterministic Supported for Supported for Configurations
Algo Name (Yes or No) dyDesc dxDesc Supported

Important

Support:
Greater than 0

xDesc feature
map height +
2 * convDesc
zero-padding
height must
equal 256 or
less

xDesc feature
map width +
2 * convDesc
zero-padding
width must
equal 256 or
less

convDesc
vertical and
horizontal filter
stride must
equal 1

dwbesc filter
height must
be greater
than convDesc
zero-padding
height

dwbesc filter
width must

be greater
than convbDesc
zero-padding
width

ALGO 3 No All except NCHW CHW- pPSEUDO HALF coBilation: 1 for

_NCHW_VECT C | packed

all dimensions

PSEUDO BFLOAT16 CONFIG

NVIDIA cuDNN PR-09702-001_v8.4.1 | 252

Filter descriptor dwDesc: NCHW

Deterministic

Algo Name (Yes or No)

_WINOGRAD NONFYSED

_FFT TILING | Yes

NVIDIA cuDNN

Tensor Tensor
Formats Formats
Supported for Supported for
dyDesc dxDesc

All except NCHW CHW-
_NCHW VECT C | packed

NCHW CHW- NCHW CHW-
packed packed

cudnn_cnn_train.so Library

Data Type

Configurations
Supported Important
FLOAT CONFIG convDesc

Group Count
DOUBLE_CONFIG
Support:

Greater than 0

TRUE_HALF cONFDdation: 1 for

all dimensions
PSEUDO HALF CONFIG

nvDesc

PSEUDO_BFLOATI%OCONFIG

Group Count
FLOAT_CONFIG ' Sypport:

Greater than 0

convDesc
vertical and
horizontal filter
stride must
equal 1

dwbDesc filter
(height, width)
must be (3,3)
or (5,5)

If dwbesc
filter (height,
width) is (5,5,
then the data
type config

TRUE_HALF CONFIG

is not
supported.

PSEUDO_HALF COBHation: 1 for

all dimensions
FLOAT CONFIG

convDesc
DOUBLE CONFIG

Group Count

Support:

Greater than 0

PR-09702-001_v8.4.1 | 253

cudnn_cnn_train.so Library

Filter descriptor dwDesc: NCHW

Tensor Tensor
Formats Formats Data Type
Deterministic Supported for Supported for Configurations
Algo Name (Yes or No) dyDesc dxDesc Supported Important

dyDesc width
or height
must equal
1 (the same
dimension
as in xDesc).
The other
dimension
must be
less than or
equal to 256,
meaning, the
largest 1D tile
size currently
supported.

convDesc
vertical and
horizontal filter
stride must
equal 1

dwbDesc filter
height must
be greater
than convDesc
zero-padding
height

dwDesc filter
width must

be greater
than convbDesc
zero-padding
width

NVIDIA cuDNN PR-09702-001_v8.4.1 | 254

Table 42. For 3D convolutions: dwbesc: NCHW

Filter descriptor dwDesc: NCHW.

Tensor Tensor
Algo Formats Formats
Name (3D Deterministic Supported for Supported for
Convolutions) (Yes or No) dyDesc dxDesc
_ALGO_0 No All except NCDHW
_NCDHW_VECT_ C| CDHW-
packed
NCDHW
W-packed
NDHWC
_ALGO_1 No All except NCDHW
_NCDHW_VECT C CDHW-
packed
NCDHW
W-packed
NDHWC
_ALGO_3 No NCDHW fully- | NCDHW fully-
packed packed

NVIDIA cuDNN

cudnn_cnn_train.so Library

Data Type
Configurations
Supported Important

pPSEUDO HALF coBilation:

reater th
PSEUDO BFLOAT1% CONFIG

OFor all
FLOAT_CONFIG | dimensions

an

DOUBLE_CONFIG ~onyDesc

Group Count
Support:
Greater than 0

PSEUDO HALF cODilation:

reater th
PSEUDO BFLOATL1® CONFIG

OFor all
FLOAT CONFIG | dimensions

an

DOUBLE_CONFIG oonyDesc

Group Count
Support:
Greater than 0

PSEUDO_HALF coBilation:
eater than

-
PSEUDO BFLOATL8 CONFIG
O0For all

FLOAT_CONFIG | dimensions

DOUBLE_CONFIG| ~onyDesc

Group Count
Support:
Greater than 0

PR-09702-001_v8.4.1 | 255

cudnn_cnn_train.so Library

Table 43. For 3D convolutions: dwbesc: NHWC

Filter descriptor dwDesc: NHWC.

Tensor Tensor
Algo Formats Formats Data Type
Name (3D Deterministic Supported for Supported for Configurations
Convolutions) (Yes or No) xDesc dyDesc Supported Important
_ALGO 1 Yes NDHWC HWC- | NDHWC HWC- pseubo HALF cOBHation:

packed packed greater than

PSEUDO BFLOT16~CONFIG
- U for all

FLOAT_CONFIG | dimensions

TRUE_HALF_CONFIGnyDesc

Group Count
Support:
Greater than 0

CUDNN_STATUS_SUCCESS

The operation was launched successfully.
CUDNN_STATUS_ BAD PARAM

At least one of the following conditions are met:
At least one of the following is NULL: handle, xDesc, dyDesc, convDesc, dwDesc,
xData, dyData, dwData, alpha, beta
xDesc and dyDesc have a non-matching number of dimensions
xDesc and dwDesc have a non-matching number of dimensions
xDesc has fewer than three number of dimensions
xDesc, dyDesc, and dwDesc have a non-matching data type.

xDesc and dwDesc have a non-matching number of input feature maps per image (or
group in case of grouped convolutions).

yDesc or dwDesc indicate an output channel count that isn't a multiple of group count (if
group count has been set in convDesc].

CUDNN_STATUS_NOT SUPPORTED
At least one of the following conditions are met:
xDesc or dyDesc have negative tensor striding
xDesc, dyDesc or dwDesc has a number of dimensions thatis not 4 or b

The chosen algo does not support the parameters provided; see above for exhaustive
list of parameter support for each algo

NVIDIA cuDNN PR-09702-001_v8.4.1 | 256

cudnn_cnn_train.so Library

CUDNN_STATUS_MAPPING_ERROR

An error occurs during the texture object creation associated with the filter data.

CUDNN_STATUS_EXECUTION_ FAILED

The function failed to launch on the GPU.

6.2.4. cudnnCreateFusedOpsConstParamPack ()

cudnnStatus_t cudnnCreateFusedOpsConstParamPack (
cudnnFusedOpsConstParamPack t *constPack,
cudnnFusedOps_t ops);

This function creates an opaque structure to store the various problem size information, such
as the shape, layout and the type of tensors, and the descriptors for convolution and activation,
for the selected sequence of cudnnFusedOps computations.

Parameters

constPack
Input. The opaque structure that is created by this function. For more information, refer to
cudnnFusedOpsConstParamPack_t.

ops
Input. The specific sequence of computations to perform in the cudnnFusedOps
computations, as defined in the enumerant type cudnnFusedOps_t.

Returns

CUDNN_STATUS BAD PARAM

If either constPack or ops is NULL.
CUDNN_STATUS ALLOC_ FAILED

The resources could not be allocated.
CUDNN_STATUS_SUCCESS

If the descriptor is created successfully.

6.2.5. cudnnCreateFusedOpsPlan ()

cudnnStatus_t cudnnCreateFusedOpsPlan (
cudnnFusedOpsPlan t *plan,
cudnnFusedOps_t ops);

This function creates the plan descriptor for the cudnnFusedops computation. This descriptor
contains the plan information, including the problem type and size, which kernels should be
run, and the internal workspace partition.

Parameters

plan
Input. A pointer to the instance of the descriptor created by this function.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 257

cudnn_cnn_train.so Library

ops
Input. The specific sequence of fused operations computations for which this plan
descriptor should be created. For more information, refer to cudnnFusedOps_t.

Returns

CUDNN_STATUS_BAD PARAM

If either the input *plan is NULL or the ops input is not a valid cudnnFusedOp enum.
CUDNN_STATUS_ALLOC_FAILED

The resources could not be allocated.
CUDNN_STATUS_SUCCESS

The plan descriptor is created successfully.

6.2.6. cudnnCreateFusedOpsVariantParamPack ()

cudnnStatus t cudnnCreateFusedOpsVariantParamPack (
cudnnFusedOpsVariantParamPack t *varPack,
cudnnFusedOps_t ops) ;

This function creates the variant pack descriptor for the cudnnFusedOps computation.

Parameters

varPack
Input. Pointer to the descriptor created by this function. For more information, refer to
cudnnFusedOpsVariantParamPack_t.

ops
Input. The specific sequence of fused operations computations for which this descriptor
should be created.

Returns

CUDNN_STATUS_SUCCESS

The descriptor is successfully created.
CUDNN_STATUS_ALLOC_FAILED

The resources could not be allocated.
CUDNN_STATUS_BAD PARAM

If any input is invalid.

6.2.7. cudnnDestroyFusedOpsConstParamPack ()

cudnnStatus_t cudnnDestroyFusedOpsConstParamPack (
cudnnFusedOpsConstParamPack t constPack);

This function destroys a previously-created cudnnFusedOpsConstParamPack_t structure.

Parameters

constPack
Input. The cudnnFusedOpsConstParamPack t structure that should be destroyed.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 258

cudnn_cnn_train.so Library

Returns

CUDNN_STATUS_SUCCESS

If the descriptor is destroyed successfully.
CUDNN_STATUS_INTERNAL ERROR

If the ops enum value is not supported or invalid.

6.2.8. cudnnDestroyFusedOpsPlan ()

cudnnStatus t cudnnDestroyFusedOpsPlan (
cudnnFusedOpsPlan t plan);

This function destroys the plan descriptor provided.

Parameters
plan

Input. The descriptor that should be destroyed by this function.
Returns

CUDNN_STATUS_SUCCESS
If either the plan descriptor is NULL or the descriptor is successfully destroyed.

6.2.9. cudnnDestroyFusedOpsVariantParamPack ()

cudnnStatus_t cudnnDestroyFusedOpsVariantParamPack (
cudnnFusedOpsVariantParamPack t varPack) ;

This function destroys a previously-created descriptor for cudnnFusedOps constant
parameters.

Parameters

varPack
Input. The descriptor that should be destroyed.

Returns

CUDNN_STATUS_SUCCESS
The descriptor is successfully destroyed.

6.2.10. cudnnFindConvolutionBackwardFilterAlgorithm (

cudnnStatus_t cudnnFindConvolutionBackwardFilterAlgorithm(

cudnnHandle t handle,

const cudnnTensorDescriptor t xDesc,

const cudnnTensorDescriptor t dyDesc,

const cudnnConvolutionDescriptor t convDesc,

const cudnnFilterDescriptor t dwDesc,

const int requestedAlgoCount,
int *returnedAlgoCount,

NVIDIA cuDNN PR-09702-001_v8.4.1 | 259

cudnn_cnn_train.so Library

cudnnConvolutionBwdFilterAlgoPerf t *perfResults)

This function attempts all algorithms available for cudnnConvolutionBackwardFilter(). It will
attempt both the provided convbDesc mathType and CUDNN_DEFAULT MATH (assuming the two
differ].

S Note: Algorithms without the CUDNN TENSOR OP MATH availability will only be tried with
CUDNN DEFAULT MATH, and returned as such.

Memory is allocated via cudaMalloc (). The performance metrics are returned in
the user-allocated array of cudnnConvolutionBwdFilterAlgoPerf t. These metrics
are written in a sorted fashion where the first element has the lowest compute
time. The total number of resulting algorithms can be queried through the API
cudnnGetConvolutionBackwardFilterAlgorithmMaxCount(].

@ Note:

» This function is host blocking.

» Itis recommended to run this function prior to allocating layer data; doing otherwise may
needlessly inhibit some algorithm options due to resource usage.

Parameters
handle

Input. Handle to a previously created cuDNN context.
xDesc

Input. Handle to the previously initialized input tensor descriptor.
dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.
convDesc

Input. Previously initialized convolution descriptor.
dwDesc

Input. Handle to a previously initialized filter descriptor.
requestedAlgoCount

Input. The maximum number of elements to be stored in perfResults.
returnedAlgoCount

Output. The number of output elements stored in perfResults.

perfResults

Output. A user-allocated array to store performance metrics sorted ascending by compute
time.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 260

cudnn_cnn_train.so Library

Returns
CUDNN_STATUS SUCCESS

The query was successful.
CUDNN_STATUS_BAD PARAM

At least one of the following conditions are met:
handle Is not allocated properly.
xDesc, dyDesc, or dwDesc are not allocated properly.

xDesc, dyDesc, or dwDesc has fewer than 1 dimension.

Either returnedCount or perfResults is nil.

vV v v v Vv

requestedCount is less than 1.
CUDNN_STATUS ALLOC_ FAILED

This function was unable to allocate memory to store sample input, filters and output.
CUDNN_STATUS_INTERNAL ERROR

At least one of the following conditions are met:

» The function was unable to allocate necessary timing objects.
» The function was unable to deallocate necessary timing objects.

» The function was unable to deallocate sample input, filters and output.

6.2.11. cudnnFindConvolutionBackwardFilterAlgorithmE

cudnnStatus t cudnnFindConvolutionBackwardFilterAlgorithmEx (

cudnnHandle t handle,

const cudnnTensorDescriptor t xDesc,

const void 520

const cudnnTensorDescriptor t dyDesc,

const void *dy,

const cudnnConvolutionDescriptor t convDesc,

const cudnnFilterDescriptor t dwDesc,

void *dw,

const int requestedAlgoCount,
int *returnedAlgoCount,
cudnnConvolutionBwdFilterAlgoPerf t *perfResults,

void *workSpace,

size t workSpaceSizelInBytes)

This function attempts all algorithms available for cudnnConvolutionBackwardFilter(). It will

attempt both the provided convbesc mathType and CUDNN_DEFAULT MATH (assuming the two
differ).

S Note: Algorithms without the CUDNN TENSOR OP MATH availability will only be tried with
CUDNN DEFAULT MATH, and returned as such.

Memory is allocated via cudaMalloc (). The performance metrics are returned in
the user-allocated array of cudnnConvolutionBwdFilterAlgoPerf t. These metrics

NVIDIA cuDNN PR-09702-001_v8.4.1 | 261

cudnn_cnn_train.so Library

are written in a sorted fashion where the first element has the lowest compute
time. The total number of resulting algorithms can be queried through the API
cudnnGetConvolutionBackwardFilterAlgorithmMaxCount(].

Note: This function is host blocking.

Parameters
handle

Input. Handle to a previously created cuDNN context.

xDesc

Input. Handle to the previously initialized input tensor descriptor.

X
Input. Data pointer to GPU memory associated with the filter descriptor xDesc.
dyDesc
Input. Handle to the previously initialized input differential tensor descriptor.
dy
Input. Data pointer to GPU memory associated with the tensor descriptor dyDesc.
convDesc
Input. Previously initialized convolution descriptor.
dwDesc
Input. Handle to a previously initialized filter descriptor.
dw
Input/Output. Data pointer to GPU memory associated with the filter descriptor dwbesc. The
content of this tensor will be overwritten with arbitrary values.
requestedAlgoCount

Input. The maximum number of elements to be stored in perfResults.
returnedAlgoCount

Output. The number of output elements stored in perfResults.

perfResults

Output. A user-allocated array to store performance metrics sorted ascending by compute
time.

workSpace
Input. Data pointer to GPU memory is a necessary workspace for some algorithms. The size

of this workspace will determine the availability of algorithms. A nil pointer is considered a
workSpace of 0 bytes.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 262

cudnn_cnn_train.so Library

workSpaceSizeInBytes

Input. Specifies the size in bytes of the provided workspace.

Returns
CUDNN_STATUS_SUCCESS
The query was successful.
CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:
handle Is not allocated properly.
xDesc, dyDesc, or dwDesc are not allocated properly.
xDesc, dyDesc, or dwDesc has fewer than 1 dimension.
%, dy, or dw is nil.

Either returnedCount or perfResults is nil.

vV v v v v Vv

requestedCount is less than 1.
CUDNN_STATUS INTERNAL ERROR
At least one of the following conditions are met:

» The function was unable to allocate necessary timing objects.
» The function was unable to deallocate necessary timing objects.

» The function was unable to deallocate sample input, filters and output.

6.2.12. cudnnFusedOpsExecute ()

cudnnStatus_t cudnnFusedOpsExecute (
cudnnHandle t handle,

const cudnnFusedOpsPlan t plan,
cudnnFusedOpsVariantParamPack t varPack);

This function executes the sequence of cudnnFusedOps operations.

Parameters

handle

Input. Pointer to the cuDNN Llibrary context.
plan

Input. Pointer to a previously-created and initialized plan descriptor.
varPack

Input. Pointer to the descriptor to the variant parameters pack.

Returns

CUDNN_STATUS_BAD PARAM
If the type of cudnnFusedOps_t in the plan descriptor is unsupported.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 263

cudnn_cnn_train.so Library

6.2.13. cudnnGetConvolutionBackwardFilterAlgorithmMa

cudnnStatus_t cudnnGetConvolutionBackwardFilterAlgorithmMaxCount (

cudnnHandle t handle,

int *count)
This function returns the maximum number of algorithms which can
be returned from cudnnFindConvolutionBackwardFilterAlgorithm() and
cudnnGetConvolutionForwardAlgorithm_v7(). This is the sum of all algorithms plus the sum of
all algorithms with Tensor Core operations supported for the current device.

Parameters
handle

Input. Handle to a previously created cuDNN context.

count

Output. The resulting maximum count of algorithms.

Returns

CUDNN_STATUS_SUCCESS

The function was successful.

CUDNN_STATUS_BAD_PARAM

The provided handle is not allocated properly.

6.2.14. cudnnGetConvolutionBackwardFilterAlgorithm v

cudnnStatus_t cudnnGetConvolutionBackwardFilterAlgorithm v7 (

cudnnHandle t handle,

const cudnnTensorDescriptor t xDesc,

const cudnnTensorDescriptor t dyDesc,

const cudnnConvolutionDescriptor t convDesc,

const cudnnFilterDescriptor t dwDesc,

const int requestedAlgoCount,
int *returnedAlgoCount,

cudnnConvolutionBwdFilterAlgoPerf t *perfResults)

This function serves as a heuristic for obtaining the best suited algorithm for
cudnnConvolutionBackwardFilter(] for the given layer specifications. This function will
return all algorithms (including CUDNN_TENSOR_OP_MATH and CUDNN DEFAULT MATH
versions of algorithms where CUDNN_TENSOR OP MATH may be available) sorted

by expected (based on internal heuristic] relative performance with fastest being

index 0 of perfResults. For an exhaustive search for the fastest algorithm, use
cudnnFindConvolutionBackwardFilterAlgorithm(). The total number of resulting algorithms
can be queried through the returnedAlgoCount variable.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 264

cudnn_cnn_train.so Library

Parameters
handle

Input. Handle to a previously created cuDNN context.

xDesc

Input. Handle to the previously initialized input tensor descriptor.

dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.

convDesc

Input. Previously initialized convolution descriptor.

dwDesc

Input. Handle to a previously initialized filter descriptor.

requestedAlgoCount

Input. The maximum number of elements to be stored in perfResults.

returnedAlgoCount

Output. The number of output elements stored in perfResults.

perfResults

Output. A user-allocated array to store performance metrics sorted ascending by compute
time.

Returns

CUDNN_STATUS_SUCCESS

The query was successful.

CUDNN_STATUS BAD PARAM
At least one of the following conditions are met:

» One of the parameters handle, xDesc, dyDesc, convDesc, dwDesc, perfResults
returnedAlgoCount iS NULL.

» The numbers of feature maps of the input tensor and output tensor differ.

» The dataType of the two tensor descriptors or the filter are different.

» requestedAlgoCount is less than or equal to 0.

6.2.15. cudnnGetConvolutionBackwardFilterWorkspaceSi

cudnnStatus_t cudnnGetConvolutionBackwardFilterWorkspaceSize (

cudnnHandle t handle,
const cudnnTensorDescriptor t xDesc,
const cudnnTensorDescriptor t dyDesc,

const cudnnConvolutionDescriptor t convDesc,

NVIDIA cuDNN PR-09702-001_v8.4.1 | 265

cudnn_cnn_train.so Library

const cudnnFilterDescriptor t dwDesc,
cudnnConvolutionBwdFilterAlgo t algo,
size t *sizeInBytes)

This function returns the amount of GPU memory workspace the user needs to allocate to be
able to call cudnnConvolutionBackwardFilter() with the specified algorithm. The workspace
allocated will then be passed to the routine cudnnConvolutionBackwardFilter(]. The specified
algorithm can be the result of the call to cudnnGetConvolutionBackwardFilterAlgorithm_v7(]
or can be chosen arbitrarily by the user. Note that not every algorithm is available for every
configuration of the input tensor and/or every configuration of the convolution descriptor.

Parameters
handle

Input. Handle to a previously created cuDNN context.

xDesc

Input. Handle to the previously initialized input tensor descriptor.

dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.

convDesc

Input. Previously initialized convolution descriptor.

dwDesc
Input. Handle to a previously initialized filter descriptor.
algo
Input. Enumerant that specifies the chosen convolution algorithm.

sizeInBytes
Output. Amount of GPU memory needed as workspace to be able to execute a forward
convolution with the specified algo.

Returns

CUDNN_STATUS_SUCCESS

The query was successful.

CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:

> The numbers of feature maps of the input tensor and output tensor differ.

> The dataType of the two tensor descriptors or the filter are different.
CUDNN_STATUS_NOT_SUPPORTED

The combination of the tensor descriptors, filter descriptor and convolution descriptor is
not supported for the specified algorithm.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 266

cudnn_cnn_train.so Library

6.2.16. cudnnGetFusedOpsConstParamPackAttribute ()

cudnnStatus_t cudnnGetFusedOpsConstParamPackAttribute (
const cudnnFusedOpsConstParamPack t constPack,
cudnnFusedOpsConstParamLabel t paramLabel,

void *param,

int *isNULL) ;

This function retrieves the values of the descriptor pointed to by the param pointer input. The
type of the descriptor is indicated by the enum value of paramLabel input.

Parameters

constPack
Input. The opaque cudnnFusedOpsConstParamPack_t structure that contains the various
problem size information, such as the shape, layout and the type of tensors, and the
descriptors for convolution and activation, for the selected sequence of cudnnFusedOps_t
computations.

paramLabel
Input. Several types of descriptors can be retrieved by this getter function. The param input
points to the descriptor itself, and this input indicates the type of the descriptor pointed to
by the param input. The cudnnFusedOpsConstParamlabel t enumerant type enables the
selection of the type of the descriptor. Refer to the param description below.

param
Input. Data pointer to the host memory associated with the descriptor that should be
retrieved. The type of this descriptor depends on the value of paramLabel. For the given
paramLabel, if the associated value inside the constPack is set to NULL or by default
NULL, then cuDNN will copy the value or the opaque structure in the constPack to
the host memory buffer pointed to by param. For more information, see the table in
cudnnFusedOpsConstParamLabel t.

isNULL
Input/Output. Users must pass a pointer to an integer in the host memory in this field. If
the value in the constPack associated with the given paramLabel is by default NULL or
previously set by the user to NULL, then cuDNN will write a non-zero value to the location
pointed by isNULL.

Returns

CUDNN_STATUS_SUCCESS

The descriptor values are retrieved successfully.
CUDNN_STATUS_BAD PARAM

If either constPack, param or isNULL iS NULL; or if paramLabel is invalid

6.2.17. cudnnGetFusedOpsVariantParamPackAttribute ()

cudnnStatus t cudnnGetFusedOpsVariantParamPackAttribute (
const cudnnFusedOpsVariantParamPack t varPack,
cudnnFusedOpsVariantParamLabel t paramLabel,

NVIDIA cuDNN PR-09702-001_v8.4.1 | 267

cudnn_cnn_train.so Library

void *ptr);

This function retrieves the settings of the variable parameter pack descriptor.

Parameters

varPack
Input. Pointer to the cudnnFusedOps variant parameter pack (varPack] descriptor.
paramLabel
Input. Type of the buffer pointer parameter (in the varpack descriptor]). For more
information, refer to cudnnFusedOpsConstParamLlabel t. The retrieved descriptor values
vary according to this type.
ptr
Output. Pointer to the host or device memory where the retrieved value is written
by this function. The data type of the pointer, and the host/device memory location,
depend on the paramLabel input selection. For more information, refer to
cudnnFusedOpsVariantParamlabel t.

Returns

CUDNN_STATUS_SUCCESS

The descriptor values are retrieved successfully.
CUDNN_STATUS BAD PARAM

If either varPack or ptr is NULL, or if paramLabel is set to invalid value.

6.2.18. cudnnMakeFusedOpsPlan ()

cudnnStatus_t cudnnMakeFusedOpsPlan (
cudnnHandle t handle,

cudnnFusedOpsPlan t plan,

const cudnnFusedOpsConstParamPack t constPack,
size t *workspaceSizelInBytes);

This function determines the optimum kernel to execute, and the workspace size
the user should allocate, prior to the actual execution of the fused operations by
cudnnFusedOpsExecute().

Parameters

handle
Input. Pointer to the cuDNN Llibrary context.
plan
Input. Pointer to a previously-created and initialized plan descriptor.
constPack
Input. Pointer to the descriptor to the const parameters pack.
workspaceSizelInBytes
Output. The amount of workspace size the user should allocate for the execution of this
plan.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 268

cudnn_cnn_train.so Library

Returns

CUDNN_STATUS_BAD PARAM
If any of the inputs is NULL, or if the type of cudnnFusedOps_t in the constPack descriptor
Is unsupported.

CUDNN_STATUS_SUCCESS
The function executed successfully.

6.2.19. cudnnSetFusedOpsConstParamPackAttribute ()

cudnnStatus t cudnnSetFusedOpsConstParamPackAttribute (
cudnnFusedOpsConstParamPack t constPack,
cudnnFusedOpsConstParamLabel t paramLabel,

const void *param) ;

This function sets the descriptor pointed to by the param pointer input. The type of the
descriptor to be set is indicated by the enum value of the paramLabel input.

Parameters

constPack
Input. The opaque cudnnFusedOpsConstParamPack_t structure that contains the various
problem size information, such as the shape, layout and the type of tensors, the descriptors
for convolution and activation, and settings for operations such as convolution and

activation.

paramLabel
Input. Several types of descriptors can be set by this setter function. The param input points
to the descriptor itself, and this input indicates the type of the descriptor pointed to by
the param input. The cudnnFusedOpsConstParamlLabel_t enumerant type enables the
selection of the type of the descriptor.

param
Input. Data pointer to the host memory, associated with the specific descriptor. The type
of the descriptor depends on the value of paramLabel. For more information, refer to the
table in cudnnFusedOpsConstParamLabel t.

If this pointer is set to NULL, then the cuDNN Llibrary will record as such.
If not, then the values pointed to by this pointer [meaning, the value or the
opaque structure underneath) will be copied into the constPack during
cudnnSetFusedOpsConstParamPackAttribute()Operaﬂon

Returns

CUDNN_STATUS_SUCCESS
The descriptor is set successfully.
CUDNN_STATUS_BAD PARAM
If constPack Is NULL, or if paramLabel or the ops setting for constPack is invalid.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 269

cudnn_cnn_train.so Library

6.2.20. cudnnSetFusedOpsVariantParamPackAttribute ()

cudnnStatus_t cudnnSetFusedOpsVariantParamPackAttribute (
cudnnFusedOpsVariantParamPack t varPack,
cudnnFusedOpsVariantParamLabel t paramLabel,

void *ptr);

This function sets the variable parameter pack descriptor.

Parameters

varPack
Input. Pointer to the cudnnFusedops variant parameter pack (varPack] descriptor.
paramLabel
Input. Type to which the buffer pointer parameter (in the varpack descriptor] is set by this
function. For more information, refer to cudnnFusedOpsConstParamlLabel t.

ptr
Input. Pointer, to the host or device memory, to the value to which the descriptor
parameter is set. The data type of the pointer, and the host/device memory
location, depend on the paramLabel input selection. For more information, refer to
cudnnFusedOpsVariantParamlLabel t.

Returns

CUDNN_STATUS_BAD_ PARAM

If varPack Is NULL or if paramLabel Is set to an unsupported value.
CUDNN_STATUS_SUCCESS

The descriptor was set successfully.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 270

Chapter 7. cudnn_adv_infer.so
Library

7.1. Data Type References

7.1.1. Pointer To Opaque Struct Types

7.1.1.1. cudnnAttnDescriptor t
cudnnAttnDescriptor t isa pointer to an opaque structure holding parameters of the multi-
head attention layer such as:

» weight and bias tensor shapes (vector lengths before and after linear projections)

» parameters that can be set in advance and do not change when invoking functions to
evaluate forward responses and gradients (number of attention heads, softmax smoothing/
sharpening coefficient]

» other settings that are necessary to compute temporary buffer sizes.

Use the cudnnCreateAttnDescriptor(] function to create an instance of the attention descriptor
object and cudnnDestroyAttnDescriptor(] to delete the previously created descriptor. Use the
cudnnSetAttnDescriptor(] function to configure the descriptor.

7.1.1.2. cudnnPersistentRNNPlan t
This function is deprecated starting in cuDNN 8.0.0.

cudnnPersistentRNNPlan t is a pointer to an opaque structure holding a plan to execute a
dynamic persistent RNN. cudnnCreatePersistentRNNPlan(] is used to create and initialize one
instance.

7.1.1.3. cudnnRNNDataDescriptor t

cudnnRNNDataDescriptor t is a pointer to an opaque structure holding the description of an
RNN data set. The function cudnnCreateRNNDataDescriptor() is used to create one instance,
and cudnnSetRNNDataDescriptor() must be used to initialize this instance.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 271

cudnn_adv_infer.so Library

7.1.1.4. cudnnRNNDescriptor t

cudnnRNNDescriptor t isa pointer to an opaque structure holding the description of an RNN
operation. cudnnCreateRNNDescriptor(] is used to create one instance.

7.1.1.5. cudnnSeqgDataDescriptor t

cudnnSegDataDescriptor t is a pointer to an opaque structure holding parameters of the
sequence data container or buffer. The sequence data container is used to store fixed size
vectors defined by the VECT dimension. Vectors are arranged in additional three dimensions:
TIME, BATCH and BEAM.

The TIME dimension is used to bundle vectors into sequences of vectors. The actual sequences
can be shorter than the TIME dimension, therefore, additional information is needed about
each sequence length and how unused [padding] vectors should be saved.

It is assumed that the sequence data container is fully packed. The TIME, BATCH and BEAM
dimensions can be in any order when vectors are traversed in the ascending order of
addresses. Six data layouts (permutation of TIME, BATCH and BEAM) are possible.

The cudnnSegDataDescriptor_t object holds the following parameters:

» data type used by vectors

» TIME, BATCH, BEAM and VECT dimensions

» data layout

» the length of each sequence along the TIME dimension

» an optional value to be copied to output padding vectors

Use the cudnnCreateSegDataDescriptor() function to create one instance of the sequence

data descriptor object and cudnnDestroySegDataDescriptor() to delete a previously created
descriptor. Use the cudnnSetSegDataDescriptor(] function to configure the descriptor.

This descriptor is used by multi-head attention API functions.

7.1.2. Enumeration Types

7.1.2.1. cudnnDirectionMode t

cudnnDirectionMode t isan enumerated type used to specify the recurrence pattern in the
cudnnRNNForwardInference(), cudnnRNNForwardTraining(], cudnnRNNBackwardDatal() and
cudnnRNNBackwardWeights(] routines.

Values

CUDNN_UNIDIRECTIONAL
The network iterates recurrently from the first input to the last.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 272

cudnn_adv_infer.so Library

CUDNN_BIDIRECTIONAL
Each layer of the network iterates recurrently from the first input to the last and separately
from the last input to the first. The outputs of the two are concatenated at each iteration
giving the output of the layer.

7.1.2.2. cudnnForwardMode t

cudnnForwardMode t is an enumerated type to specify inference or training mode in
RNN API. This parameter allows the cuDNN library to tune more precisely the size of the
workspace buffer that could be different in inference and training regimens.

Values

CUDNN_FWD_MODE_INFERENCE

Selects the inference mode.

CUDNN_FWD_MODE_TRAINING

Selects the training mode.

7.1.2.3. cudnnMultiHeadAttnWeightKind t

cudnnMultiHeadAttnWeightKind t is an enumerated type that specifies a group of weights
or biases in the cudnnGetMultiHeadAttnWeights() function.

Values
CUDNN MH ATTN Q WEIGHTS

Selects the input projection weights for queries.

CUDNN_MH_ATTN K WEIGHTS

Selects the input projection weights for keys.

CUDNN_MH_ATTN_V_WEIGHTS

Selects the input projection weights for values.

CUDNN_MH_ATTN_O_WEIGHTS

Selects the output projection weights.

CUDNN_MH_ATTN_Q BIASES

Selects the input projection biases for queries.

CUDNN_MH_ATTN_K_BIASES

Selects the input projection biases for keys.

CUDNN_MH_ATTN V_BIASES

Selects the input projection biases for values.

CUDNN_MH_ATTN_O_BIASES

Selects the output projection biases.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 273

cudnn_adv_infer.so Library

7.1.2.4. cudnnRNNBiasMode t

cudnnRNNBiasMode t is an enumerated type used to specify the number of bias vectors
for RNN functions. See the description of the cudnnRNNMode_t enumerated type for the
equations for each cell type based on the bias mode.

Values

CUDNN_RNN_NO_BIAS

Applies RNN cell formulas that do not use biases.

CUDNN_RNN SINGLE INP BIAS

Applies RNN cell formulas that use one input bias vector in the input GEMM.

CUDNN_RNN DOUBLE_BIAS

Applies RNN cell formulas that use two bias vectors.

CUDNN_RNN_SINGLE REC_BIAS

Applies RNN cell formulas that use one recurrent bias vector in the recurrent GEMM.

7.1.2.5. cudnnRNNClipMode t

cudnnRNNClipMode t is an enumerated type used to select the LSTM cell clipping mode. It is
used with cudnnRNNSetClip(J, cudnnRNNGetClip() functions, and internally within LSTM cells.

Values

CUDNN_RNN_ CLIP_NONE

Disables LSTM cell clipping.
CUDNN_RNN CLIP MINMAX

Enables LSTM cell clipping.

7.1.2.6. cudnnRNNDatalayout t

cudnnRNNDataLayout t isan enumerated type used to select the RNN data layout. It is used
in the API calls cudnnGetRNNDataDescriptor() and cudnnSetRNNDataDescriptor().

Values
CUDNN RNN DATA LAYOUT SEQ MAJOR UNPACKED

Data layout is padded, with outer stride from one time-step to the next.

CUDNN_RNN_DATA LAYOUT SEQ MAJOR PACKED

The sequence length is sorted and packed as in the basic RNN API.
CUDNN_RNN_DATA LAYOUT BATCH MAJOR_UNPACKED

Data layout is padded, with outer stride from one batch to the next.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 274

cudnn_adv_infer.so Library

7.1.2.7. cudnnRNNInputMode t

cudnnRNNInputMode t Isan enumerated type used to specify the behavior of the first layer in
the cudnnRNNForwardInference(), cudnnRNNForwardTraining(), cudnnRNNBackwardData()
and cudnnRNNBackwardWeights() routines.

Values

CUDNN_LINEAR INPUT

A biased matrix multiplication is performed at the input of the first recurrent layer.
CUDNN_SKIP_ INPUT
No operation is performed at the input of the first recurrent layer. If CUDNN_SKIP INPUT Is

used the leading dimension of the input tensor must be equal to the hidden state size of the
network.

7.1.2.8. cudnnRNNMode t

cudnnRNNMode t is an enumerated type used to specify the type of network used in the
cudnnRNNForwardInference, cudnnRNNForwardTraining, cudnnRNNBackwardData and
cudnnRNNBackwardWeights routines.

Values
CUDNN_RNN_RELU
A single-gate recurrent neural network with a ReLU activation function.

In the forward pass, the output h, for a given iteration can be computed from the recurrent
input h.q and the previous layer input x;, given the matrices w, R and the bias vectors, where

ReLU (x) = max (X, O).

If cudnnRNNBiasMode t biasMode in rnnDesc iS CUDNN_RNN DOUBLE BIAS (default
mode), then the following equation with biases by, and by applies:

he = ReLU(Wx, + Ry + by + byy)

If cudnnRNNBiasMode t biasMode In rnnDesc iS CUDNN RNN SINGLE INP BIAS Or
CUDNN RNN SINGLE REC BIAS, then the following equation with bias b applies:

ht = ReLU(WiXt + Riht-l + bl)

If cudnnRNNBiasMode t biasMode In rnnDesc iS CUDNN RNN NO BIAS, then the following
equation applies:

h, = ReLU(Wx, + Rh,.,)
CUDNN_RNN TANH

A single-gate recurrent neural network with a tanh activation function.

NVIDIA cuDNN PR-09702-001_v8.4.1 | 275

cudnn_adv_infer.so Library

In the forward pass, the output h; for a given iteration can be computed from the recurrent
input h.q and the previous layer input x;, given the matrices w, R and the bias vectors, and
where tanh Is the hyperbolic tangent function.

If cudnnRNNBiasMode t biasMode in rnnDesc iS CUDNN RNN DOUBLE BIAS (default
mode), then the following equation with biases by, and by applies:

he = tanh(W,-xt + Rh.q + by; + bR,-)

If cudnnRNNBiasMode t biasMode in rnnDesc iS CUDNN RNN SINGLE INP BIAS or
CUDNN_RNN SINGLE REC BIAS, then the following equation with bias b applies:

ht = tanh (Wixt + Riht-l + bI)

If cudnnRNNBiasMode t biasMode In rnnDesc IS CUDNN RNN NO BIAS, then the following
equation applies:

ht’ = tanh (Wlxt + Riht-].)
CUDNN_LSTM
A four-gate Long Short-Term Memory (LSTM) network with no peephole connections.

In the forward pass, the output h, and cell output ¢, for a given iteration can be computed
from the recurrent input h4, the cell input ¢.; and the previous layer input x,, given the
matrices W, R and the bias vectors.

In addition, the following applies:

” o is the sigmoid operator such that: G(X) =1 / (1 +e‘X),
» o represents a point-wise multiplication,
> tanh is the hyperbolic tangent function, and

Iy f, op € represent the input, forget, output and new gates respectively.

If cudnnRNNBiasMode t biasMode in rnnDesc is CUDNN RNN DOUBLE BIAS (default
mode), then the following equations with biases by, and bg apply:

k=0 (Wixt + Rihyq +by; + bRi)
f,=o0 (fot + Rehyq + by + be)
0= 0 (Woxt + Rohyq + by, + bR