
PG-06702-001_v8.8.0 | April 2024

NVIDIA cuDNN

Developer Guide | NVIDIA Docs

NVIDIA cuDNN PG-06702-001_v8.8.0 | ii

Table of Contents

Chapter 1. Overview.. 1

Chapter 2. Core Concepts.. 2
2.1. cuDNN Handle...2

2.2. Tensors and Layouts...2

2.2.1. Tensor Descriptor...2

2.2.1.1. WXYZ Tensor Descriptor...3

2.2.1.2. 3-D Tensor Descriptor..3

2.2.1.3. 4-D Tensor Descriptor..3

2.2.1.4. 5-D Tensor Descriptor..3

2.2.1.5. Fully-Packed Tensors.. 4

2.2.1.6. Partially-Packed Tensors... 4

2.2.1.7. Spatially Packed Tensors.. 4

2.2.1.8. Overlapping Tensors... 4

2.2.2. Data Layout Formats..4

2.2.2.1. Example Tensor...5

2.2.2.2. Convolution Layouts... 6

2.2.2.3. MatMul Layouts... 10

2.3. Tensor Core Operations..10

2.3.1. Notes on Tensor Core Precision..11

Chapter 3. Graph API..13
3.1. Key Concepts.. 13

3.1.1. Operations and Operation Graphs... 13

3.1.2. Engines and Engine Configurations.. 14

3.1.3. Heuristics.. 14

3.2. Graph API Example with Operation Fusion...15

3.2.1. Creating Operation and Tensor Descriptors to Specify the Graph Dataflow....... 15

3.2.2. Finalizing The Operation Graph... 16

3.2.3. Configuring An Engine That Can Execute The Operation Graph.................................16

3.2.4. Executing The Engine..17

3.3. Supported Graph Patterns..17

3.3.1. Pre-compiled Single Operation Engines..17

3.3.2. Runtime Fusion Engine... 18

3.3.2.1. Limitations..24

3.3.2.2. Examples of Supported Patterns... 28

3.3.2.3. Operation specific Constraints for the Runtime Fusion Engine.......................... 30

NVIDIA cuDNN PG-06702-001_v8.8.0 | iii

3.3.3. Pre-Compiled Specialized Engines... 39

3.3.4. Mapping with Backend Descriptors..45

Chapter 4. Legacy API..47
4.1. Convolution Functions...47

4.1.1. Prerequisites.. 47

4.1.2. Supported Algorithms...47

4.1.3. Data and Filter Formats... 48

4.2. RNN Functions..48

4.2.1. Prerequisites.. 48

4.2.2. Supported Algorithms...48

4.2.3. Data and Filter Formats... 49

4.2.4. Features of RNN Functions...49

4.3. Tensor Transformations..52

4.3.1. Conversion Between FP32 and FP16..52

4.3.2. Padding.. 53

4.3.3. Folding.. 53

4.3.4. Conversion Between NCHW And NHWC...54

4.4. Mixed Precision Numerical Accuracy.. 54

Chapter 5. Odds and Ends...55
5.1. Thread Safety..55

5.2. Reproducibility (Determinism)..55

5.3. Scaling Parameters...56

5.4. cuDNN API Compatibility... 57

5.5. Deprecation Policy.. 58

5.6. GPU And Driver Requirements.. 59

5.7. Convolutions.. 59

5.7.1. Convolution Formulas..59

5.7.2. Grouped Convolutions... 61

5.7.3. Best Practices for 3D Convolutions.. 63

5.7.3.1. Recommended Settings... 63

5.7.3.2. Limitations..64

Chapter 6. Troubleshooting... 65
6.1. Error Reporting And API Logging...65

6.2. FAQs...67

6.3. Support.. 70

Chapter 7. Acknowledgments.. 72
7.1. University of Tennessee... 72

NVIDIA cuDNN PG-06702-001_v8.8.0 | iv

7.2. University of California, Berkeley... 72

7.3. Facebook AI Research, New York... 72

NVIDIA cuDNN PG-06702-001_v8.8.0 | v

List of Figures

Figure 1. Example with N=1, C=64, H=5, W=4.. 5

Figure 2. NCHW Memory Layout.. 7

Figure 3. NHWC Memory Layout...8

Figure 4. NC/32HW32 Memory Layout.. 9

Figure 5. Tensor operation with FP16 inputs. The accumulation is in FP32, which could
be the input for other kernel features (for example, activation/bias, beta blending,
etc). The final output in this example would be FP16... 12

Figure 6. A set of operation descriptors the user passes to the operation graph.................. 16

Figure 7. The operation graph after finalization..16

Figure 8. ConvolutionFwd Engine... 17

Figure 9. ConvolutionBwFilter Engine...18

Figure 10. ConvolutionBwData Engine...18

Figure 11. Graphical Representation of the Generic Patterns Supported by the
Runtime Fusion Engine.. 20

Figure 12. DAGs of cuDNN operations.. 21

Figure 13. cuDNN graph depicting DAG:Padding Mask..22

Figure 14. cuDNN graph depicting DAG:Causal Mask...22

Figure 15. cuDNN graph depicting DAG:Softmax...22

Figure 16. cuDNN graph depicting DAG:Dropout..23

Figure 17. cuDNN graph depicting g5... 23

Figure 18. cuDNN graph depicting g6... 24

Figure 19. cuDNN graph depicting g7... 24

Figure 20. This example illustrates the Runtime Fusion Engine with a Single
Operation..29

Figure 21. ConvolutionFwd Followed by a DAG with Two Operations...29

Figure 22. ConvolutionFwd Followed by a DAG with Three Operations....................................... 29

NVIDIA cuDNN PG-06702-001_v8.8.0 | vi

Figure 23. MatMul Preceded by a DAG with Two Operations.. 30

Figure 24. This example illustrates fusion of operations before and after the
ConvolutionFwd operation. In addition we observe that the output of
ConvolutionFwd can feed anywhere in g2.. 30

Figure 25. Values In the Index Tensors..38

Figure 26. The pre-compiled ConvBNfprop engine fuses several pointwise operations
with ConvolutionFwd and GenStats...40

Figure 27. The ConvBNwgrad pre-compiled engine fuses several (optional) pointwise
operations with ConvolutionBwFilter...40

Figure 28. ConvBiasAct, another pre-compiled engine, fuses ConvolutionFwd with
several pointwise operations...41

Figure 29. The pre-compiled engine, ConvScaleBiasAct..41

Figure 30. The pre-compiled engine, dBNapply...42

Figure 31. The DualdBNapply engine... 43

Figure 32. DgradDreluBNBwdWeight is a pre-compiled engine that can be used in
conjunction with the dBNApply pattern to compute the backwards path of batch
norm... 44

Figure 33. Tensor Operation with FP32 Inputs.. 53

Figure 34. Scaling Parameters for Convolution... 56

Figure 35. INT8 for cudnnConvolutionBiasActivationForward...57

Figure 36. Software Stack With cuDNN... 68

NVIDIA cuDNN PG-06702-001_v8.8.0 | vii

List of Tables

Table 1. Limitations to g1..25

Table 2. Limitations to Mha-Fprop fusions..26

Table 3. Limitations to Mha-Bprop fusions... 26

Table 4. Layout Requirements per Pattern.. 27

Table 5. Tensor Attributes for all Three Operations...31

Table 6. Constraints for all Three Operations...31

Table 7. I/O Tensors Alignment Requirements... 32

Table 8. Batch Size Requirements Per Operation..32

Table 9. Recommended compute type for FP8 tensor computations for Hopper
architecture...33

Table 10. Constraints for MatMul Operations..33

Table 11. MatMul Alignment Requirements.. 33

Table 12. Constraints for Pointwise Operations..34

Table 13. Constraints for GenStats Operations...35

Table 14. Constraints for Reduction Operations...35

Table 15. Supported Reduction Patterns... 36

Table 16. Specific Restrictions for the Downsampling Modes..37

Table 17. Specific Restrictions for Upsampling Mode CUDNN_RESAMPLE_BILINEAR......... 37

Table 18. Specific Restrictions for the Backwards Downsampling Modes................................ 39

Table 19. Notations and Backend Descriptors...45

Table 20. Two-step, deprecation policy... 58

Table 21. Convolution terms...60

Table 22. Recommended settings while performing 3D convolutions for cuDNN..................63

Table 23. API Logging Using Environment Variables... 67

NVIDIA cuDNN PG-06702-001_v8.8.0 | viii

NVIDIA cuDNN PG-06702-001_v8.8.0 | 1

Chapter 1. Overview

NVIDIA® CUDA® Deep Neural Network LIbrary (cuDNN) is a GPU-accelerated library
of primitives for deep neural networks. It provides highly tuned implementations of
operations arising frequently in DNN applications:

‣ Convolution forward and backward, including cross-correlation

‣ Matrix multiplication

‣ Pooling forward and backward

‣ Softmax forward and backward

‣ Neuron activations forward and backward: relu, tanh, sigmoid, elu, gelu, softplus,
swish

‣ Arithmetic, mathematical, relational, and logical pointwise operations (including
various flavors of forward and backward neuron activations)

‣ Tensor transformation functions

‣ LRN, LCN, batch normalization, instance normalization, and layer normalization
forward and backward

Beyond just providing performant implementations of individual operations, the library
also supports a flexible set of multi-operation fusion patterns for further optimization.
The goal is to achieve the best available performance on NVIDIA GPUs for important
deep learning use cases.

In cuDNN version 7 and older, the API was designed to support a fixed set of operations
and fusion patterns. We informally call this the “legacy API”. Starting in cuDNN version 8,
to address the quickly expanding set of popular fusion patterns, we added a graph API,
which allows the user to express a computation by defining an operation graph, rather
than by selecting from a fixed set of API calls. This offers better flexibility versus the
legacy API, and for most use cases, is the recommended way to use cuDNN.

Note that while the cuDNN library exposes a C API, we also provide an open source C+
+ layer which wraps the C API and is considered more convenient for most users. It is,
however, limited to just the graph API, and does not support the legacy API.

https://github.com/NVIDIA/cudnn-frontend
https://github.com/NVIDIA/cudnn-frontend

NVIDIA cuDNN PG-06702-001_v8.8.0 | 2

Chapter 2. Core Concepts

Before we discuss the details of the graph and legacy APIs, this section introduces the
key concepts that are common to both.

2.1. cuDNN Handle
The cuDNN library exposes a host API but assumes that for operations using the GPU,
the necessary data is directly accessible from the device.

An application using cuDNN must initialize a handle to the library context by calling
cudnnCreate(). This handle is explicitly passed to every subsequent library function that
operates on GPU data. Once the application finishes using cuDNN, it can release the
resources associated with the library handle using cudnnDestroy(). This approach allows
the user to explicitly control the library's functioning when using multiple host threads,
GPUs, and CUDA streams.

For example, an application can use cudaSetDevice (prior to creating a cuDNN handle)
to associate different devices with different host threads, and in each of those host
threads, create a unique cuDNN handle that directs the subsequent library calls to
the device associated with it. In this case, the cuDNN library calls made with different
handles would automatically run on different devices.

The device associated with a particular cuDNN context is assumed to remain unchanged
between the corresponding cudnnCreate() and cudnnDestroy() calls. In order for the
cuDNN library to use a different device within the same host thread, the application
must set the new device to be used by calling cudaSetDevice() and then create another
cuDNN context, which will be associated with the new device, by calling cudnnCreate().

2.2. Tensors and Layouts
Whether using the graph API or the legacy API, cuDNN operations take tensors as input
and produce tensors as output.

2.2.1. Tensor Descriptor
The cuDNN library describes data with a generic n-D tensor descriptor defined with the
following parameters:

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnCreate
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnDestroy
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__DEVICE.html#group__CUDART__DEVICE_1g69e73c7dda3fc05306ae7c811a690fac

Core Concepts

NVIDIA cuDNN PG-06702-001_v8.8.0 | 3

‣ a number of dimensions from 3 to 8

‣ a data type (32-bit floating-point, 64 bit-floating point, 16-bit floating-point...)

‣ an integer array defining the size of each dimension

‣ an integer array defining the stride of each dimension (for example, the number of
elements to add to reach the next element from the same dimension)

This tensor definition allows, for example, to have some dimensions overlapping each
other within the same tensor by having the stride of one dimension smaller than the
product of the dimension and the stride of the next dimension. In cuDNN, unless
specified otherwise, all routines will support tensors with overlapping dimensions for
forward-pass input tensors, however, dimensions of the output tensors cannot overlap.
Even though this tensor format supports negative strides (which can be useful for data
mirroring), cuDNN routines do not support tensors with negative strides unless specified
otherwise.

2.2.1.1. WXYZ Tensor Descriptor
Tensor descriptor formats are identified using acronyms, with each letter referencing a
corresponding dimension. In this document, the usage of this terminology implies:

‣ all the strides are strictly positive

‣ the dimensions referenced by the letters are sorted in decreasing order of their
respective strides

2.2.1.2. 3-D Tensor Descriptor
A 3-D tensor is commonly used for matrix multiplications, with three letters: B, M,
and N. B represents the batch size (for batch GEMM, set to 1 for single GEMM), M
represents the number of rows, and N represents the number of columns. Refer to the
CUDNN_BACKEND_OPERATION_MATMUL_DESCRIPTOR operation for more information.

2.2.1.3. 4-D Tensor Descriptor
A 4-D tensor descriptor is used to define the format for batches of 2D images with 4
letters: N,C,H,W for respectively the batch size, the number of feature maps, the height
and the width. The letters are sorted in decreasing order of the strides. The commonly
used 4-D tensor formats are:

‣ NCHW

‣ NHWC

‣ CHWN

2.2.1.4. 5-D Tensor Descriptor
A 5-D tensor descriptor is used to define the format of the batch of 3D images with
5 letters: N,C,D,H,W for respectively the batch size, the number of feature maps, the
depth, the height, and the width. The letters are sorted in decreasing order of the
strides. The commonly used 5-D tensor formats are called:

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#CUDNN_BACKEND_OPERATION_MATMUL_DESCRIPTOR

Core Concepts

NVIDIA cuDNN PG-06702-001_v8.8.0 | 4

‣ NCDHW

‣ NDHWC

‣ CDHWN

2.2.1.5. Fully-Packed Tensors
A tensor is defined as XYZ-fully-packed if, and only if:

‣ the number of tensor dimensions is equal to the number of letters preceding the
fully-packed suffix

‣ the stride of the i-th dimension is equal to the product of the (i+1)-th dimension by
the (i+1)-th stride

‣ the stride of the last dimension is 1

2.2.1.6. Partially-Packed Tensors
The partially XYZ-packed terminology only applies in the context of a tensor format
described with a superset of the letters used to define a partially-packed tensor. A WXYZ
tensor is defined as XYZ-packed if, and only if:

‣ the strides of all dimensions NOT referenced in the -packed suffix are greater or
equal to the product of the next dimension by the next stride

‣ the stride of each dimension referenced in the -packed suffix in position i is equal to
the product of the (i+1)-st dimension by the (i+1)-st stride

‣ if the last tensor's dimension is present in the -packed suffix, its stride is 1

For example, an NHWC tensor WC-packed means that the c_stride is equal to 1 and
w_stride is equal to c_dim x c_stride. In practice, the -packed suffix is usually applied
to the minor dimensions of a tensor but can be applied to only the major dimensions; for
example, an NCHW tensor that is only N-packed.

2.2.1.7. Spatially Packed Tensors
Spatially-packed tensors are defined as partially-packed in spatial dimensions. For
example, a spatially-packed 4D tensor would mean that the tensor is either NCHW HW-
packed or CNHW HW-packed.

2.2.1.8. Overlapping Tensors
A tensor is defined to be overlapping if iterating over a full range of dimensions
produces the same address more than once. In practice an overlapped tensor will have
stride[i-1] < stride[i]*dim[i] for some of the i from [1,nbDims] interval.

2.2.2. Data Layout Formats
This section describes how cuDNN tensors are arranged in memory according to several
data layout formats.

Core Concepts

NVIDIA cuDNN PG-06702-001_v8.8.0 | 5

The recommended way to specify the layout format of a tensor is by setting its strides
accordingly. For compatibility with the v7 API, a subset of the layout formats can also
be configured through the cudnnTensorFormat_t enum. The enum is only supplied for
legacy reasons and is deprecated.

2.2.2.1. Example Tensor
Consider a batch of images with the following dimensions:

‣ N is the batch size; 1

‣ C is the number of feature maps (that is,, number of channels); 64

‣ H is the image height; 5

‣ W is the image width; 4

To keep the example simple, the image pixel elements are expressed as a sequence of
integers, 0, 1, 2, 3, and so on. Refer to Figure 1.

Figure 1. Example with N=1, C=64, H=5, W=4

In the following subsections, we’ll use the above example to demonstrate the different
layout formats.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnTensorFormat_t

Core Concepts

NVIDIA cuDNN PG-06702-001_v8.8.0 | 6

2.2.2.2. Convolution Layouts
cuDNN supports several layouts for convolution, as described in the following sections.

2.2.2.2.1. NCHW Memory Layout
The above 4D tensor is laid out in the memory in the NCHW format as below:

 1. Beginning with the first channel (c=0), the elements are arranged contiguously in
row-major order.

 2. Continue with second and subsequent channels until the elements of all the channels
are laid out. Refer to Figure 2.

 3. Proceed to the next batch (if N is > 1).

Core Concepts

NVIDIA cuDNN PG-06702-001_v8.8.0 | 7

Figure 2. NCHW Memory Layout

2.2.2.2.2. NHWC Memory Layout
For the NHWC memory layout, the corresponding elements in all the C channels are laid
out first, as below:

 1. Begin with the first element of channel 0, then proceed to the first element of
channel 1, and so on, until the first elements of all the C channels are laid out.

Core Concepts

NVIDIA cuDNN PG-06702-001_v8.8.0 | 8

 2. Next, select the second element of channel 0, then proceed to the second element of
channel 1, and so on, until the second element of all the channels are laid out.

 3. Follow the row-major order of channel 0 and complete all the elements. Refer to
Figure 3.

 4. Proceed to the next batch (if N is > 1).

Figure 3. NHWC Memory Layout

Core Concepts

NVIDIA cuDNN PG-06702-001_v8.8.0 | 9

2.2.2.2.3. NC/32HW32 Memory Layout
The NC/32HW32 is similar to NHWC, with a key difference. For the NC/32HW32 memory
layout, the 64 channels are grouped into two groups of 32 channels each - first group
consisting of channels c0 through c31, and the second group consisting of channels c32
through c63. Then each group is laid out using the NHWC format. Refer to Figure 4.

Figure 4. NC/32HW32 Memory Layout

For the generalized NC/xHWx layout format, the following observations apply:

‣ Only the channel dimension, C, is grouped into x channels each.

‣ When x = 1, each group has only one channel. Hence, the elements of one channel
(that is, one group) are arranged contiguously (in the row-major order), before
proceeding to the next group (that is, next channel). This is the same as NCHW
format.

Core Concepts

NVIDIA cuDNN PG-06702-001_v8.8.0 | 10

‣ When x = C, then NC/xHWx is identical to NHWC, that is, the entire channel depth C
is considered as a single group. The case x = C can be thought of as vectorizing the
entire C dimension as one big vector, laying out all the Cs, followed by the remaining
dimensions, just like NHWC.

‣ The tensor format cudnnTensorFormat_t can also be interpreted in the following way:
The NCHW INT8x32 format is really N x (C/32) x H x W x 32 (32 Cs for every W),
just as the NCHW INT8x4 format is N x (C/4) x H x W x 4 (4 Cs for every W). Hence
the VECT_C name - each W is a vector (4 or 32) of Cs.

2.2.2.3. MatMul Layouts
As discussed in 3-D Tensor Descriptor, matmul uses 3D tensors, described using BMN
dimensions. The layout can be specified through the following strides. The following are
two examples of recommended layouts:

‣ Packed Row-major: dim [B,M,N] with stride [MN, N, 1], or

‣ Packed Column-major: dim [B,M,N] with stride [MN, 1, M]

Unpacked layouts for 3-D tensors are supported as well, but their support surface is
more ragged.

2.3. Tensor Core Operations
The cuDNN v7 library introduced the acceleration of compute-intensive routines using
Tensor Core hardware on supported GPU SM versions. Tensor Core operations are
supported beginning with the NVIDIA Volta GPU.

Tensor Core operations accelerate matrix math operations; cuDNN uses Tensor Core
operations that accumulate into FP16, FP32, and INT32 values. Setting the math mode
to CUDNN_TENSOR_OP_MATH via the cudnnMathType_t enumerator indicates that the library
will use Tensor Core operations. This enumerator specifies the available options to enable
the Tensor Core and should be applied on a per-routine basis.

The default math mode is CUDNN_DEFAULT_MATH, which indicates that the Tensor Core
operations will be avoided by the library. Because the CUDNN_TENSOR_OP_MATH mode
uses the Tensor Cores, it is possible that these two modes generate slightly different
numerical results due to different sequencing of the floating-point operations.

For example, the result of multiplying two matrices using Tensor Core operations is
very close, but not always identical, to the result achieved using a sequence of scalar
floating-point operations. For this reason, the cuDNN library requires an explicit user opt-
in before enabling the use of Tensor Core operations.

However, experiments with training common deep learning models show negligible
differences between using Tensor Core operations and scalar floating point paths, as
measured by both the final network accuracy and the iteration count to convergence.
Consequently, the cuDNN library treats both modes of operation as functionally
indistinguishable and allows for the scalar paths to serve as legitimate fallbacks for
cases in which the use of Tensor Core operations is unsuitable.

Kernels using Tensor Core operations are available for:

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnTensorFormat_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnMathType_t

Core Concepts

NVIDIA cuDNN PG-06702-001_v8.8.0 | 11

‣ Convolutions

‣ RNNs

‣ Multi-Head Attention

For more information, refer to NVIDIA Training with Mixed Precision.

For a deep learning compiler, the following are the key guidelines:

‣ Make sure that the convolution operation is eligible for Tensor Cores by avoiding any
combinations of large padding and large filters.

‣ Transform the inputs and filters to NHWC, pre-pad channel and batch size to be a
multiple of 8.

‣ Make sure that all user-provided tensors, workspace, and reserve space are aligned to
128-bit boundaries. Note that 1024-bit alignment may deliver better performance.

2.3.1. Notes on Tensor Core Precision
For FP16 data, Tensor Cores operate on FP16 input, output in FP16, and may accumulate
in FP16 or FP32. The FP16 multiply leads to a full-precision result that is accumulated in
FP32 operations with the other products in a given dot product for a matrix with m x n x
k dimensions. Refer to Figure 5.

For an FP32 accumulation, with FP16 output, the output of the accumulator is down-
converted to FP16. Generally, the accumulation type is of greater or equal precision to
the output type.

http://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html

Core Concepts

NVIDIA cuDNN PG-06702-001_v8.8.0 | 12

Figure 5. Tensor operation with FP16 inputs. The accumulation is in
FP32, which could be the input for other kernel features
(for example, activation/bias, beta blending, etc). The final
output in this example would be FP16.

NVIDIA cuDNN PG-06702-001_v8.8.0 | 13

Chapter 3. Graph API

The cuDNN library provides a declarative programming model for describing computation
as a graph of operations. This graph API was introduced in cuDNN 8.0 to provide a more
flexible API, especially with the growing importance of operation fusion.

At a high level, the user is describing a dataflow graph of operations on tensors. Given
a finalized graph, the user then selects and configures an engine that can execute that
graph. There are several methods for selecting and configuring engines, which have
tradeoffs with respect to ease-of-use, runtime overhead, and engine performance.

The graph API has two entry points:

‣ NVIDIA cuDNN Backend API (lowest level entry point into the graph API)

‣ NVIDIA cuDNN Frontend API (convenience layer on top of the C backend API)

We expect that most users prefer the cuDNN frontend API because:

‣ It is less verbose without loss of control - all functionality accessible through the
backend API is also accessible through the frontend API.

‣ It adds functionality on top of the backend API, like errata filters and autotuning.

‣ It is open source.

In either case (that is, the backend or frontend API), the high level concepts are the
same.

3.1. Key Concepts
As mentioned previously, the key concepts in the graph API are:

‣ Operations and Operation Graphs

‣ Engines and Engine Configurations

‣ Heuristics

3.1.1. Operations and Operation Graphs
An operation graph is a dataflow graph of operations on tensors. It is meant to be a
mathematical specification and is decoupled from the underlying engines that can
implement it, as there may be more than one engine available for a given graph.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnn-backend-api
https://github.com/NVIDIA/cudnn-frontend

Graph API

NVIDIA cuDNN PG-06702-001_v8.8.0 | 14

I/O tensors connect the operations implicitly, for example, an operation A may produce a
tensor X, which is then consumed by operation B, implying that operation B depends on
operation A.

3.1.2. Engines and Engine Configurations
For a given operation graph, there are some number of engines that are candidates
for implementing that graph. The typical way to query for a list of candidate engines is
through a heuristics query, covered below.

An engine has knobs for configuring properties of the engine, like tile size (refer to
cudnnBackendKnobType_t).

3.1.3. Heuristics
A heuristic is a way to get a list of engine configurations that are intended to be sorted
from the most performant to least performant for the given operation graph. There are
three modes:

CUDNN_HEUR_MODE_A
Intended to be fast and be able to handle most operation graph patterns. It returns a
list of engine configs ranked by the expected performance.

CUDNN_HEUR_MODE_B
Intended to be more generally accurate than mode A, but with the tradeoff of higher
CPU latency to return the list of engine configs. The underlying implementation may
fall back to the mode A heuristic in cases where we know mode A can do better.

CUDNN_HEUR_MODE_FALLBACK
Intended to be fast and provide functional fallbacks without expectation of optimal
performance.

The recommended workflow is to query either mode A or B and check for support. The
first engine config with support is expected to have the best performance.

You can “auto-tune”, that is, iterate over the list and time for each engine config and
choose the best one for a particular problem on a particular device. The cuDNN frontend
API provides a convenient function, cudnnFindPlan(), which does this.

If all the engine configs are not supported, then use the mode fallback to find the
functional fallbacks.

Expert users may also want to filter engine configs based on properties of the engine,
such as numerical notes, behavior notes, or adjustable knobs. Numerical notes inform
the user about the numerical properties of the engine such as whether it does datatype
down conversion at the input or during output reduction. The behavior notes can signal
something about the underlying implementation like whether or not it uses runtime
compilation. The adjustable knobs allow fine grained control of the engine’s behavior and
performance.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBackendKnobType_t

Graph API

NVIDIA cuDNN PG-06702-001_v8.8.0 | 15

3.2. Graph API Example with Operation
Fusion

The following example implements a fusion of convolution, bias, and activation.

3.2.1. Creating Operation and Tensor Descriptors
to Specify the Graph Dataflow

First, create three cuDNN backend operation descriptors.

As can be seen in Figure 6, the user specified one forward convolution operation
(using CUDNN_BACKEND_OPERATION_CONVOLUTION_FORWARD_DESCRIPTOR), a pointwise
operation for the bias addition (using CUDNN_BACKEND_OPERATION_POINTWISE_DESCRIPTOR
with mode CUDNN_POINTWISE_ADD), and a pointwise operation for the ReLU
activation (using CUDNN_BACKEND_OPERATION_POINTWISE_DESCRIPTOR with mode
CUDNN_POINTWISE_RELU_FWD). Refer to the NVIDIA cuDNN Backend API for more
details on setting the attributes of these descriptors. For an example of how a forward
convolution can be set up, refer to the Setting Up An Operation Graph For A Grouped
Convolution use case in the cuDNN backend API.

You should also create tensor descriptors for the inputs and outputs of all of the
operations in the graph. The graph dataflow is implied by the assignment of tensors
(refer to Figure 6), for example, by specifying the backend tensor Tmp0 as both the
output of the convolution operation and the input of the bias operation, cuDNN infers
that the dataflow runs from the convolution into the bias. The same applies to tensor
Tmp1. If the user doesn’t need the intermediate results Tmp0 and Tmp1 for any other
use, then the user can specify them to be virtual tensors, so the memory I/Os can later
be optimized out.

‣ Note that graphs with more than one operation node do not support in-place
operations (that is, where any of the input UIDs matches any of the output UIDs).
Such in-place operations are considered cyclic in later graph analysis and deemed
unsupported. In-place operations are supported for single-node graphs.

‣ Also note that the operation descriptors can be created and passed into cuDNN
in any order, as the tensor UIDs are enough to determine the dependencies in the
graph.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnn-backend-api
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#use-case-op-graph-group-convo
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#use-case-op-graph-group-convo

Graph API

NVIDIA cuDNN PG-06702-001_v8.8.0 | 16

Figure 6. A set of operation descriptors the user passes to the
operation graph

3.2.2. Finalizing The Operation Graph
Second, the user finalizes the operation graph. As part of finalization, cuDNN performs
the dataflow analysis to establish the dependency relationship between operations and
connect the edges, as illustrated in the following figure. In this step, cuDNN performs
various checks to confirm the validity of the graph.

Figure 7. The operation graph after finalization

3.2.3. Configuring An Engine That Can Execute
The Operation Graph

Third, given the finalized operation graph, the user must select and configure an engine
to execute that graph, which results in an execution plan. As mentioned in Heuristics, the
typical way to do this is:

 1. Query heuristics mode A or B.

Graph API

NVIDIA cuDNN PG-06702-001_v8.8.0 | 17

 2. Look for the first engine config with functional support (or auto-tune all the engine
configs with functional support).

 3. If no engine config was found in (2), try querying the fallback heuristic for more
options.

3.2.4. Executing The Engine
Finally, with the execution plan constructed and when it comes time to run it, the user
should construct the backend variant pack by providing the workspace pointer, an array
of UIDs, and an array of device pointers. The UIDs and the pointers should be in the
corresponding order. With the handle, the execution plan and variant pack, the execution
API can be called and the computation is carried out on the GPU.

3.3. Supported Graph Patterns
The cuDNN Graph API supports a set of graph patterns. These patterns are supported
by a large number of engines, each with their own support surfaces. These engines are
grouped into three different classes, as reflected by the following three subsections: pre-
compiled single operation engines, runtime fusion engines, and specialized pre-compiled
engines.

Since these engines have some overlap in the patterns they support, a given pattern may
result in zero, one, or more engines.

3.3.1. Pre-compiled Single Operation Engines
One basic class of engines includes pre-compiled engines that support an operation
graph with just one operation; specifically: ConvolutionFwd, ConvolutionBwFilter,
ConvolutionBwData, or ConvolutionBwBias. Their more precise support surface can be
found in the NVIDIA cuDNN API Reference.

3.3.1.1. ConvolutionFwd
ConvolutionFwd computes the convolution of X with filter data W. In addition, it uses
scaling factors and to blend this result with the previous output. This graph operation
is similar to cudnnConvolutionForward().

Figure 8. ConvolutionFwd Engine

https://docs.nvidia.com/deeplearning/cudnn/api/index.html
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionForward

Graph API

NVIDIA cuDNN PG-06702-001_v8.8.0 | 18

3.3.1.2. ConvolutionBwFilter
ConvolutionBwFilter computes the convolution filter gradient of the tensor dy. In
addition, it uses scaling factors and to blend this result with the previous output. This
graph operation is similar to cudnnConvolutionBackwardFilter().

Figure 9. ConvolutionBwFilter Engine

3.3.1.3. ConvolutionBwData
ConvolutionBwData computes the convolution data gradient of the tensor dy. In
addition, it uses scaling factors and to blend this result with the previous output. This
graph operation is similar to cudnnConvolutionBackwardData().

Figure 10. ConvolutionBwData Engine

3.3.2. Runtime Fusion Engine
The engines documented in the previous section support single-op patterns. Of
course, for fusion to be interesting, the graph needs to support multiple operations.
And ideally, we want the supported patterns to be flexible to cover a diverse set of
use cases. To accomplish this generality, cuDNN has a runtime fusion engine that
generates the kernel (or kernels) at runtime based on the graph pattern. This section
outlines the patterns supported by these runtime fusion engines (that is, engines with
CUDNN_BEHAVIOR_NOTE_RUNTIME_COMPILATION behavioral note).

We can think of the support surface as covering the follwing generic patterns:

 1. ConvolutionFwd fusions

 2. ConvolutionBwFilter fusions

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionBackwardFilter
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionBackwardData

Graph API

NVIDIA cuDNN PG-06702-001_v8.8.0 | 19

 3. ConvolutionBwData fusions

 4. MatMul fusions

 5. Pointwise fusions

 6. Mha-Fprop fusions

 7. Mha-Bprop fusions

This pattern is executed in a fused pattern in a single kernel.

Graph API

NVIDIA cuDNN PG-06702-001_v8.8.0 | 20

Figure 11. Graphical Representation of the Generic Patterns Supported
by the Runtime Fusion Engine

Graph API

NVIDIA cuDNN PG-06702-001_v8.8.0 | 21

g1 is a directed acyclic graph (DAG) that can consist of zero or any number of the
following operation:

‣ CUDNN_BACKEND_OPERATION_CONCAT_DESCRIPTOR

‣ CUDNN_BACKEND_OPERATION_SIGNAL_DESCRIPTOR

‣ CUDNN_BACKEND_OPERATION_POINTWISE_DESCRIPTOR

g2 is a DAG that can consist of zero or any number of the following operations:

‣ CUDNN_BACKEND_OPERATION_POINTWISE_DESCRIPTOR

‣ CUDNN_BACKEND_OPERATION_RESAMPLE_FWD_DESCRIPTOR

‣ CUDNN_BACKEND_OPERATION_RESAMPLE_BWD_DESCRIPTOR

‣ CUDNN_BACKEND_OPERATION_GEN_STATS_DESCRIPTOR

‣ CUDNN_BACKEND_OPERATION_REDUCTION_DESCRIPTOR

‣ CUDNN_BACKEND_OPERATION_SIGNAL_DESCRIPTOR

MatMul-MatMul has been added to the runtime fusion engine to serve patterns that are
commonly used in multihead attention. g3 and g4 are limited to a certain few DAGs of
operations.

g3 can be a empty graph or a single scale operation with the scale being a scalar value
(CUDNN_BACKEND_OPERATION_POINTWISE_DESCRIPTOR with mode CUDNN_POINTWISE_MUL).

g4 can be empty or the combination of the following DAGs of cuDNN operations. Each of
these DAGs is optional, as shown by the dotted line.

Figure 12. DAGs of cuDNN operations

The combination has to obey the order in which we present them. For example: if you
want to use the padding mask and softmax, the padding mask has to appear before
softmax.

These operations are commonly used in multihead attention. In the following diagram,
we depict how to create a DAG for each of the operations. In later versions, we will be
expanding the possible DAGs for g3 and g4.

Graph API

NVIDIA cuDNN PG-06702-001_v8.8.0 | 22

Padding Mask

Figure 13. cuDNN graph depicting DAG:Padding Mask

Causal Mask

Figure 14. cuDNN graph depicting DAG:Causal Mask

Softmax

Figure 15. cuDNN graph depicting DAG:Softmax

Graph API

NVIDIA cuDNN PG-06702-001_v8.8.0 | 23

Dropout

Figure 16. cuDNN graph depicting DAG:Dropout

g4 is capable of storing an intermediate tensor to global memory marked as S, which
can be used for pattern 7. Both DAG:Softmax and DAG:Dropout have this capability. You
should set S as the output from the last DAG in the graph.

The tensor descriptor marked as S needs to have the
CUDNN_ATTR_TENSOR_REORDERING_MODE set to CUDNN_TENSOR_REORDERING_F16x16. This is
because the tensor is stored in a special format and can only be consumed by pattern 7.

g5, g6, and g7 can only support a fixed DAG. We are working towards generalizing these
graphs.

Figure 17. cuDNN graph depicting g5

g6 represents the backward pass of Softmax and masking, to get dP.

Graph API

NVIDIA cuDNN PG-06702-001_v8.8.0 | 24

Figure 18. cuDNN graph depicting g6

g7 is the transpose of dP the output of g6.

Figure 19. cuDNN graph depicting g7

Note:

‣ The arrow going into g2 can go into any of g2's nodes and does not necessarily need to
feed into a root node.

‣ The abbreviated notations for operations are used in the diagrams and throughout the
text for visualization purposes.

3.3.2.1. Limitations
While the generic patterns listed previously are widely applicable, there are some cases
where we do not have full support.

Limitations Common to all Generic Patterns

Limitations to g1:

‣ Concatenation or signaling operations, if present, should be before any pointwise
operations.

‣ For compute capability < 8.0, g1 is not supported.

Limitations to g2:

‣ As specified in the previous section, g2 can include only Pointwise operations,
ResampleFwd, ResampleBwd, GenStats, and Reduction.

Graph API

NVIDIA cuDNN PG-06702-001_v8.8.0 | 25

‣ The I/O (that is, non-virtual) tensor data type can be any of {FP32, FP16, BF16,
INT8, packed-BOOLEAN}.

‣ For pointwise operations, non-virtual tensors need to be either all NCHW (or row-
major), or all NHWC (or column-major).

‣ The intermediate virtual tensor data type can be any of {FP32, FP16, BF16, INT8,
BOOLEAN}, and this intermediate storage type is obeyed by the code-generator.
Generally, FP32 is recommended.

‣ The input tensor to a ResampleFwd or ResampleBwd operation should not be produced
by another operation within this graph, but should come from global memory. The
two operations cannot be used in the ConvolutionBwFilter, ConvolutionBwData,
and MatMul fusion patterns.

‣ There can be at most one reduction operation, and it needs to be at the final node of
g2.

‣ Signaling operations, if present, must be the final nodes in g2. Hence, signaling
operations cannot be used in conjunction with reduction operations.

‣ For ResampleFwd or ResampleBwd operations, when the tensor format is NCHW/
NCDHW, there are some limitations.

‣ Upsampling is not supported

‣ Int64_t indices is not supported

‣ Only support symmetric padding using the prepadding backend API

‣ X, Y, and DY are required when max pooling.

Limitations per Generic Pattern

Table 1. Limitations to g1

Limitations to g1

ConvolutionFwd fusions ‣ Fusion operations on input tensors
can be only a chain of three specific
pointwise operations, in this exact order:
Pointwise:mul, Pointwise:add, and
Pointwise:ReLU. This specific support is
added to realize convolution batch norm
fusion use cases.

‣ All tensors involved can only be FP16.

‣ Pointwise:mul can only be with a tensor of
scalars per channel.

‣ Pointwise:add can only be a column
broadcast.

Graph API

NVIDIA cuDNN PG-06702-001_v8.8.0 | 26

Limitations to g1

ConvolutionBwFilter fusions Same limitations specified for ConvolutionFwd
fusions apply here.

ConvolutionBwData fusions No fusion on input tensors for backward data
convolution is supported.

MatMul fusions ‣ Can be any combination of pointwise
operations.

‣ Only fusible with operand A, not with B.

‣ Operand A should have an FP16 data type.

‣ Broadcasted input can have any data type.

‣ Compute type is FP32 only.

Pointwise fusions Not Applicable

Table 2. Limitations to Mha-Fprop fusions

Limitations to Mha-Fprop fusions

MatMul ‣ Compute type for both MatMul ops needs
to be float

‣ Input tensors need to have datatype FP16
or BF16

‣ Output tensors need to have datatype
FP16, BF16, or FP32 (TF32) datatype

Pointwise operations in g3 and g4 Compute type needs to be FP32 (TF32)

Reduction operations in g3 and g4 I/O types and compute type needs to be FP32
(TF32)

RNG operation in g3 and g4 ‣ Data type of yTensor needs to be FP32
(TF32)

‣ The CUDNN_TYPE_RNG_DISTRIBUTION needs
to be CUDNN_RNG_DISTRIBUTION_BERNOULLI

Table 3. Limitations to Mha-Bprop fusions

Limitations to Mha-Bprop fusions

MatMul ‣ Compute type for all MatMul ops needs to
be float

Graph API

NVIDIA cuDNN PG-06702-001_v8.8.0 | 27

Limitations to Mha-Bprop fusions
‣ Input tensors need to have datatype FP16

or BF16

‣ Output tensors need to have datatype
FP16, BF16, or FP32 (TF32) datatype

Pointwise operations in g5 , g6 and g7 Compute type needs to be FP32 (TF32)

Reduction operations in g5 , g6 and g7 I/O types and compute type needs to be FP32
(TF32)

Tensor Layout Requirements

Lastly, there are some layout requirements to the I/O tensors involved in fusion graphs.
For more information, refer to the Tensor Descriptor and Data Layout Formats sections.
The following table describes the requirements per fusion pattern:

Table 4. Layout Requirements per Pattern

Pattern Layout Requirement

ConvolutionFwd, ConvolutionBwFilter,
ConvolutionBwData fusions

‣ All tensors are fully packed NHWC.

MatMul fusions ‣ Input operands can have either row-major
or all column-major.

‣ In g1, the tensor operating with Matrix A
(dim[B, M, K]) can be either a scalar with
dim[1, 1, 1], a row vector with dim[B, M, 1],
a column vector with dim[B, 1, K], or a full
matrix with dim[B, M, K].

‣ In g2, all I/O tensors should be either all
row-major or all column-major.

Pointwise fusions ‣ If all tensors are 3D, the same layout
requirements as matmul g2.

‣ If all tensors are 4D or 5D, the same
requirements as ConvolutionFwd,
ConvolutionBwFilter, ConvolutionBwData
layout.

Mha-Fprop fusions ‣ All I/O tensors need to have 4 dimensions,
with the first two denoting the batch
dimensions. The usage of rank-4 tensors in

Graph API

NVIDIA cuDNN PG-06702-001_v8.8.0 | 28

Pattern Layout Requirement
matmul ops can be read from the NVIDIA
cuDNN Backend API documentation.

‣ The contracting dimension (dimension K)
for the first matmul needs to be 64.

‣ The non contracting dimension
(dimensions M and N) for the first matmul
needs to be equal and less than or equal to
512.

‣ The last dimension (corresponding to
hidden dimensions) in Q, V and O is
expected to have stride 1.

‣ For the K tensor, the stride is expected to
be 1 for the 2nd last dimension.

‣ The S tensor is expected to have the
CUDNN_ATTR_TENSOR_REORDERING_MODE set
to CUDNN_TENSOR_REORDERING_F16x16

Mha-Bprop fusions ‣ All I/O tensors need to have 4 dimensions,
with the first two denoting the batch
dimensions. The usage of rank-4 tensors in
matmul ops can be read from the NVIDIA
cuDNN Backend API documentation.

‣ The contracting dimension (dimension K)
for the second matmul needs to be 64.

‣ The contracting dimension (dimension K)
for the 1st, 2nd and 3rd matmul needs to
be equal and less than or equal to 512.

‣ The last dimension (corresponding to
hidden dimensions) in Q, K, V, O and dO is
expected to have stride 1.

‣ The S tensor and dP tensor
is expected to have the
CUDNN_ATTR_TENSOR_REORDERING_MODE set
to CUDNN_TENSOR_REORDERING_F16x16

3.3.2.2. Examples of Supported Patterns
The following sections provide examples of supported patterns, in order of increasing
complexity. We employ the same color scheme as in the overall pattern to aid in
identifying the structure of g1 (blue) and g2 (purple).

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnn-backend-api
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnn-backend-api
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnn-backend-api
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnn-backend-api

Graph API

NVIDIA cuDNN PG-06702-001_v8.8.0 | 29

For illustration purposes, we abbreviated the operations used. For a full mapping to the
actual backend descriptors, refer to the Mapping with Backend Descriptors.

3.3.2.2.1. Single Operation
The following example illustrates a convolution operation without any operations before
or after it. This means, g1 and g2, are empty graphs.

Figure 20. This example illustrates the Runtime Fusion Engine with a
Single Operation

3.3.2.2.2. Pointwise Operations After Convolution 1
In this example, g2 consists of a sequential set of two pointwise operations after the
convolution.

Figure 21. ConvolutionFwd Followed by a DAG with Two Operations

3.3.2.2.3. Pointwise Operations After Convolution 2
Similar to the previous example, g2 consists of a sequential set of multiple pointwise
operations.

Figure 22. ConvolutionFwd Followed by a DAG with Three Operations

Graph API

NVIDIA cuDNN PG-06702-001_v8.8.0 | 30

3.3.2.2.4. Pointwise Operations Before Matrix Multiplication
Pointwise operations can also precede a convolution or matrix multiplication, that is, g1 is
composed of pointwise operations.

Figure 23. MatMul Preceded by a DAG with Two Operations

3.3.2.2.5. Convolution Producer Node in Middle of DAG
The following pattern shows g1 as a DAG of pointwise operations feeding into a
convolution. In addition, g2 is a DAG consisting of two pointwise operations. Note that
the convolution is being consumed in the middle of g2 as opposed to g2’s first node. This
is a valid pattern.

Figure 24. This example illustrates fusion of operations before and
after the ConvolutionFwd operation. In addition we observe
that the output of ConvolutionFwd can feed anywhere in
g2.

3.3.2.3. Operation specific Constraints for the Runtime
Fusion Engine

Every operation in the supported generic patterns of the runtime fusion engine is
subject to a few specific constraints regarding their parameter surface. The following
subsections document these.

Note that these constraints are in addition to (1) any constraints mentioned in the
NVIDIA cuDNN Backend API, and (2) limitations in relation to other operations in the
directed acyclic graph (DAG), as mentioned in the Limitations section.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnn-backend-api

Graph API

NVIDIA cuDNN PG-06702-001_v8.8.0 | 31

3.3.2.3.1. Convolutions
There are three operation nodes that represent different types of convolutions namely:

ConvolutionFwd
This operation represents forward convolution, that is, computing the
response tensor of image tensor convoluted with filter tensor. For complete
details on the interface, as well as general constraints, refer to the
CUDNN_BACKEND_OPERATION_CONVOLUTION_FORWARD_DESCRIPTOR section.

ConvolutionBwFilter
This operation represents convolution backward filters, that is, computing
filter gradients from a response and an image tensor. For complete
details on the interface, as well as general constraints, refer to the
CUDNN_BACKEND_OPERATION_CONVOLUTION_BACKWARD_FILTER_DESCRIPTOR section.

ConvolutionBwData
This operation represents convolution backward data, that is, computing
input data gradients from a response and a filter tensor. For complete
details on the interface, as well as general constraints, refer to the
CUDNN_BACKEND_OPERATION_CONVOLUTION_BACKWARD_DATA_DESCRIPTOR section.

Table 5. Tensor Attributes for all Three Operations

Input Tensor Attribute
Name

Output Tensor Attribute
Name

ConvolutionFwd CUDNN_ATTR_OPERATION_CONVOLUTION_FORWARD_X

CUDNN_ATTR_OPERATION_CONVOLUTION_FORWARD_W

CUDNN_ATTR_OPERATION_CONVOLUTION_FORWARD_Y

ConvolutionBwFilter CUDNN_ATTR_OPERATION_CONVOLUTION_BWD_DATA_DX

CUDNN_ATTR_OPERATION_CONVOLUTION_BWD_DATA_DY

CUDNN_ATTR_OPERATION_CONVOLUTION_BWD_DATA_W

ConvolutionBwData CUDNN_ATTR_OPERATION_CONVOLUTION_BWD_FILTER_DW

CUDNN_ATTR_OPERATION_CONVOLUTION_BWD_FILTER_DY

CUDNN_ATTR_OPERATION_CONVOLUTION_BWD_FILTER_X

The following tables list the constraints for all three operations, in addition to any
constraints mentioned in the NVIDIA cuDNN Backend API, and any constraints listed
in the Limitations section, in relation to other operations. Note that these additional
constraints only apply when these operations are used in the runtime fusion engine.

Table 6. Constraints for all Three Operations

Attribute Support

CUDNN_ATTR_CONVOLUTION_MODE CUDNN_CROSS_CORRELATION

CUDNN_ATTR_CONVOLUTION_COMP_TYPE ‣ For ConvolutionFwd
CUDNN_DATA_HALF,CUDNN_DATA_INT32,
andCUDNN_DATA_FLOAT

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#CUDNN_BACKEND_OPERATION_CONVOLUTION_FORWARD_DESCRIPTOR
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#CUDNN_BACKEND_OPERATION_CONVOLUTION_BACKWARD_FILTER_DESCRIPTOR
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#CUDNN_BACKEND_OPERATION_CONVOLUTION_BACKWARD_DATA_DESCRIPTOR
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnn-backend-api

Graph API

NVIDIA cuDNN PG-06702-001_v8.8.0 | 32

Attribute Support
‣ For ConvolutionBwDataand

ConvolutionBwFilter

‣ Only CUDNN_DATA_FLOAT

CUDNN_ATTR_CONVOLUTION_SPATIAL_DIMS 2 or 3

CUDNN_ATTR_OPERATION_CONVOLUTION_BWD_FILTER_ALPHA1.0f

CUDNN_ATTR_OPERATION_CONVOLUTION_BWD_FILTER_BETA0.0f

Table 7. I/O Tensors Alignment Requirements

Tensor Data Type

Number of input
and output
channels for
NVIDIA Hopper
Architecture

Number of input
and output
channels for NVIDIA
Ampere and Ada
Lovelace

Number of input
and output
channels for NVIDIA
Volta/Turing
Architecture

INT8 Multiple of 4 Multiple of 4 Multiple of 16

FP8 Multiple of 16 N/A N/A

FP16/BF16 Multiple of 2 Multiple of 2 Multiple of 8

FP32(TF32) Any value Any value Multiple of 4

Lastly, there are some batch size requirements per operation:

Table 8. Batch Size Requirements Per Operation

Operation

Batch size for FP8 data
type on NVIDIA Hopper
Architecture

Batch size for other data
types

ConvolutionFwd Any Any

ConvolutionBwFilter Multiple of 16 Any

ConvolutionBwData Multiple of 16 Any

The FP8 data type since Hopper architecture has two variants; CUDNN_DATA_FP8_E4M3
and CUDNN_DATA_FP8_E5M2 as I/O data types. It also has two possible compute types;
CUDNN_DATA_FLOAT and CUDNN_DATA_FAST_FLOAT_FOR_FP8, which is a faster, but less
accurate option for FP8 Tensor Core operations. It is sufficiently accurate for inference
or the forward pass of training. However, for FP8 training backward pass computations
(that is, computing weight and activation gradients), we recommend choosing the more
accurate CUDNN_DATA_FLOAT compute type to preserve a higher level of accuracy which
can be necessary for some models.

Graph API

NVIDIA cuDNN PG-06702-001_v8.8.0 | 33

Table 9. Recommended compute type for FP8 tensor computations
for Hopper architecture

Operation Recommended I/O type
Recommended compute
type

ConvolutionFwd CUDNN_DATA_FP8_E4M3 ‣ CUDNN_DATA_FAST_FLOAT_FOR_FP8

‣ CUDNN_DATA_FLOAT

ConvolutionBwData CUDNN_DATA_FP8_E4M3 CUDNN_DATA_FLOAT

BatchNorm CUDNN_DATA_FP8_E4M3 CUDNN_DATA_FLOAT

Pooling ‣ CUDNN_DATA_FP8_E4M3

‣ CUDNN_DATA_FP8_E5M2

CUDNN_DATA_FLOAT

Pointwise ‣ CUDNN_DATA_FP8_E4M3

‣ CUDNN_DATA_FP8_E5M2

CUDNN_DATA_FLOAT

3.3.2.3.2. MatMul
This operation represents matrix-matrix multiplication: A * B = C. For complete details on
the interface, refer to the CUDNN_BACKEND_OPERATION_MATMUL_DESCRIPTOR section.

The following two tables list the constraints for MatMul operations, in addition to any
general constraints as listed in the NVIDIA cuDNN Backend API, and any constraints
listed in the Limitations section, in relation to other operations. Note that these
additional constraints only apply when MatMul is used in the runtime fusion engine.

Table 10. Constraints for MatMul Operations

Attribute Support

CUDNN_ATTR_MATMUL_COMP_TYPE CUDNN_DATA_HALF,CUDNN_DATA_INT32, and
CUDNN_DATA_FLOAT

Table 11. MatMul Alignment Requirements

Tensor Data Type

Innermost dimension
for NVIDIA Ampere
Architecture and later

Innermost dimension
for NVIDIA Volta/Turing
Architecture

INT8 Multiple of 4 Multiple of 16

FP16/BF16 Multiple of 2 Multiple of 8

FP32(TF32) Any value Multiple of 4

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#CUDNN_BACKEND_OPERATION_MATMUL_DESCRIPTOR
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#CUDNN_BACKEND_OPERATION_MATMUL_DESCRIPTOR

Graph API

NVIDIA cuDNN PG-06702-001_v8.8.0 | 34

3.3.2.3.3. Pointwise
Represents a pointwise operation that implements the equation Y
= op (alpha1 * X) or Y = op (alpha1 * X, alpha2 * B). Refer
to the CUDNN_BACKEND_OPERATION_POINTWISE_DESCRIPTOR and
CUDNN_BACKEND_POINTWISE_DESCRIPTOR sections for more information and general
constraints.

The following table lists the constraints for pointwise operations, in addition to the
general constraints listed above, and any constraints listed in the Limitations section,
in relation to other operations. Note that these additional constraints only apply when
these operations are used in the runtime fusion engine.

Table 12. Constraints for Pointwise Operations

Attribute Requirement

Tensor data type for
CUDNN_ATTR_OPERATION_POINTWISE_XDESC,
CUDNN_ATTR_OPERATION_POINTWISE_YDESC
and, if applicable,
CUDNN_ATTR_OPERATION_POINTWISE_BDESC

‣ For any of the logical operators
(CUDNN_POINTWISE_LOGICAL_AND,
CUDNN_POINTWISE_LOGICAL_OR, and
CUDNN_POINTWISE_LOGICAL_NOT), data
type can be any of CUDNN_DATA_INT32,
CUDNN_DATA_INT8, or CUDNN_DATA_BOOLEAN.

‣ For all other operators, all data types are
supported.

CUDNN_ATTR_POINTWISE_MATH_PREC ‣ For any of the logical operators
(CUDNN_POINTWISE_LOGICAL_AND,
CUDNN_POINTWISE_LOGICAL_OR, and
CUDNN_POINTWISE_LOGICAL_NOT), math
precision needs to be CUDNN_DATA_BOOLEAN.

‣ For all other operators, only
CUDNN_DATA_FLOAT is supported.

CUDNN_ATTR_OPERATION_POINTWISE_ALPHA1 1.0f

CUDNN_ATTR_OPERATION_POINTWISE_ALPHA2 1.0f

3.3.2.3.4. GenStats
Represents an operation that generates per-channel statistics. Refer to the
CUDNN_BACKEND_OPERATION_GEN_STATS_DESCRIPTOR section for more information and
general constraints.

The following table lists the constraints for GenStats operations, in addition to the
general constraints listed above, and any constraints listed in the Limitations section,
in relation to other operations. Note that these additional constraints only apply when
GenStats operations are used in the runtime fusion engine.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#CUDNN_BACKEND_OPERATION_POINTWISE_DESCRIPTOR
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#CUDNN_BACKEND_POINTWISE_DESCRIPTOR
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#CUDNN_BACKEND_OPERATION_GEN_STATS_DESCRIPTOR

Graph API

NVIDIA cuDNN PG-06702-001_v8.8.0 | 35

Table 13. Constraints for GenStats Operations

Attribute Requirement

Tensor data type for
CUDNN_ATTR_OPERATION_GENSTATS_XDESC

‣ Prior to the NVIDIA Ampere architecture
GPU: CUDNN_DATA_HALF

‣ On NVIDIA Ampere architecture and later:
CUDNN_DATA_HALF and CUDNN_DATA_FLOAT

Tensor shape for
CUDNN_ATTR_OPERATION_GENSTATS_SUMDESC
and
CUDNN_ATTR_OPERATION_GENSTATS_SQSUMDESC

Both should be of shape [1, C, 1, 1] for 2D conv
or [1, C, 1, 1, 1] for 3D conv.

Tensor data type for
CUDNN_ATTR_OPERATION_GENSTATS_SUMDESC
and
CUDNN_ATTR_OPERATION_GENSTATS_SQSUMDESC

CUDNN_DATA_FLOAT

CUDNN_ATTR_POINTWISE_MATH_PREC CUDNN_DATA_FLOAT

Tensor layout for
CUDNN_ATTR_OPERATION_GENSTATS_XDESC,
CUDNN_ATTR_OPERATION_GENSTATS_SUMDESC
and
CUDNN_ATTR_OPERATION_GENSTATS_SQSUMDESC

NHWC fully packed

3.3.2.3.5. Reduction
This operation represents reducing values of a tensor in one or more dimensions. Refer
to the CUDNN_BACKEND_OPERATION_REDUCTION_DESCRIPTOR section for more information
and general constraints.

The following two tables are constraints for Reduction forward operations, in addition to
the general constraints listed above, and any constraints listed in the Limitations section,
in relation to other operations. Note that these additional constraints only apply when
Reduction operations are used in the runtime fusion engine.

Table 14. Constraints for Reduction Operations

Attribute Requirement

Tensor data type for
CUDNN_ATTR_OPERATION_REDUCTION_YDESC

CUDNN_DATA_FLOAT

CUDNN_ATTR_REDUCTION_COMP_TYPE CUDNN_DATA_FLOAT

Tensor layout for
CUDNN_ATTR_OPERATION_REDUCTION_XDESC and
CUDNN_ATTR_OPERATION_REDUCTION_YDESC

NHWC/NDHWC/BMN fully packed

CUDNN_ATTR_REDUCTION_OPERATOR CUDNN_REDUCE_TENSOR_ADD,
CUDNN_REDUCE_TENSOR_MIN, and
CUDNN_REDUCE_TENSOR_MAX

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#CUDNN_BACKEND_OPERATION_REDUCTION_DESCRIPTOR

Graph API

NVIDIA cuDNN PG-06702-001_v8.8.0 | 36

Table 15. Supported Reduction Patterns

Reduction Pattern

Reduction Operation Input Output

[N, 1, H, W]

[1, C, 1, 1]

Standalone reduction
operation

[N, C, H, W]

[1, 1, 1, 1]

[N, 1, P, Q]

[1, K, 1, 1]

Reduction fused after
convolution backward filter
gradient

[N, K, P, Q]

[1, 1, 1, 1]

[N, 1, H, W]

[1, C, 1, 1]

Reduction fused after
convolution backward data
gradient

[N, C, H, W]

[1, 1, 1, 1]

[K, 1, 1, 1]

[1, C, R, S]

Reduction fused after
convolution backward filter
gradient

[K, C, R, S]

[1, 1, 1, 1]

[B, M, 1]Reduction fused after matrix
multiplication operation

[B, M, N]

[B, 1, N]

3.3.2.3.6. ResampleFwd
This operation represents resampling of the spatial dimensions of an image
to a desired value. Resampling is supported in both directions, upsampling
and downsampling. Downsampling represents the standard operation of
pooling, commonly used in convolutional neural networks. Refer to the
CUDNN_BACKEND_OPERATION_RESAMPLE_FWD_DESCRIPTOR section for more information and
general constraints.

The following are constraints for Resample operations, in addition to the general
constraints listed above, and any constraints listed in the Limitations section, in relation
to other operations. Note that these additional constraints only apply when Resample
forward operations are used in the runtime fusion engine.

We allow a choice amongst four modes for resample. All modes have the following
common support specifications:

‣ Supported layout: NHWC or NDHWC, NCHW or NCDHW

‣ Spatial dimensions supported: 2 or 3

‣ Input dimensions supported: 4 or 5

‣ If specified, the index tensor dimension should be equal to the response tensor
dimension.

There are some mode specific restrictions also. The following tables list the values that
are allowed for particular parameters. For the parameters not listed, we allow any value
which is mathematically correct.

The following downsampling modes are supported:

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#CUDNN_BACKEND_OPERATION_RESAMPLE_FWD_DESCRIPTOR

Graph API

NVIDIA cuDNN PG-06702-001_v8.8.0 | 37

‣ CUDNN_RESAMPLE_AVGPOOL_INCLUDE_PADDING

‣ CUDNN_RESAMPLE_AVGPOOL_EXCLUDE_PADDING

‣ CUDNN_RESAMPLE_MAXPOOL

Table 16. Specific Restrictions for the Downsampling Modes

Attribute Average Pooling Max Pooling

CUDNN_ATTR_RESAMPLE_PADDING_MODECUDNN_ZERO_PAD CUDNN_NEG_INF_PAD

CUDNN_ATTR_OPERATION_RESAMPLE_FWD_ALPHA1.0 1.0

CUDNN_ATTR_OPERATION_RESAMPLE_FWD_BETA0.0 0.0

CUDNN_ATTR_RESAMPLE_COMP_TYPECUDNN_DATA_FLOAT CUDNN_DATA_FLOAT

For the upsampling modes, CUDNN_RESAMPLE_NEAREST is not supported for any
combination of parameters. CUDNN_RESAMPLE_BILINEAR has the following support
specifications.

Table 17. Specific Restrictions for Upsampling Mode
CUDNN_RESAMPLE_BILINEAR

Attribute Bilinear

Input dimensions Equal to 0.5 x output dimensions

CUDNN_ATTR_RESAMPLE_PRE_PADDINGS 0.5

CUDNN_ATTR_RESAMPLE_POST_PADDINGS 1

CUDNN_ATTR_RESAMPLE_STRIDES 0.5

CUDNN_ATTR_RESAMPLE_WINDOW_DIMS 2

Data type for
CUDNN_ATTR_OPERATION_RESAMPLE_FWD_XDESC
and
CUDNN_ATTR_OPERATION_RESAMPLE_FWD_YDESC

CUDNN_DATA_FLOAT

CUDNN_ATTR_RESAMPLE_COMP_TYPE CUDNN_DATA_FLOAT

CUDNN_ATTR_OPERATION_RESAMPLE_FWD_ALPHA 1.0

CUDNN_ATTR_OPERATION_RESAMPLE_FWD_BETA 0.0

CUDNN_ATTR_RESAMPLE_PADDING_MODE CUDNN_EDGE_VAL_PAD

3.3.2.3.6.1. Resampling Index Tensor Dump for Training
For max-pooling resampling mode, an index tensor can be provided to be used as a mask
for backpropagation.

Values in the index tensors are:

‣ Zero-indexed row-major position of maximum value of input tensor in the resampling
window.

Graph API

NVIDIA cuDNN PG-06702-001_v8.8.0 | 38

‣ In case of multiple input pixels with maximum value, the first index in a left-to-right
top-to-bottom scan is selected.

Example of index element selection:

Figure 25. Values In the Index Tensors

Select an appropriate element size for the index tensor. As a reference, any element size
such that the maximum zero-indexed window position fits should be sufficient.

3.3.2.3.7. ResampleBwd
This operation represents backward resampling of the spatial dimensions of an output
response to a desired value. Resampling is supported in both directions, upsampling
and downsampling. Backwards downsampling represents the standard operation
of backward pooling, commonly used in convolutional neural networks. Refer to the
CUDNN_BACKEND_OPERATION_RESAMPLE_BWD_DESCRIPTOR section for more information and
general constraints.

The following are constraints for Resample backward operations, in addition to the
general constraints listed above, and any constraints listed in the Limitations section,
in relation to other operations. Note that these additional constraints only apply when
Resample backward operations are used in the runtime fusion engine.

We allow a choice amongst four modes for resample. All modes have the following
common support specifications:

‣ Supported layout: NHWC or NDHWC, NCHW or NCDHW

‣ Spatial dimensions supported: 2 or 3

‣ Input dimensions supported: 4 or 5

‣ The index tensor dimensions should be equal to the input gradient tensor
dimensions.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#CUDNN_BACKEND_OPERATION_RESAMPLE_BWD_DESCRIPTOR

Graph API

NVIDIA cuDNN PG-06702-001_v8.8.0 | 39

Index tensor should be provided for only max pooling mode, and should adhere to the
format described in the resampling forward index dump section.

There are some mode specific restrictions also. The following tables list the values that
are allowed for particular parameters. For the parameters not listed, we allow any value
which is mathematically correct.

The following backward downsampling modes are supported:

‣ CUDNN_RESAMPLE_AVGPOOL_INCLUDE_PADDING

‣ CUDNN_RESAMPLE_AVGPOOL_EXCLUDE_PADDING

‣ CUDNN_RESAMPLE_MAXPOOL

Table 18. Specific Restrictions for the Backwards Downsampling
Modes

Attribute Average Pooling Max Pooling

CUDNN_ATTR_RESAMPLE_PADDING_MODECUDNN_ZERO_PAD CUDNN_NEG_INF_PAD

CUDNN_ATTR_OPERATION_RESAMPLE_BWD_ALPHA1.0 1.0

CUDNN_ATTR_OPERATION_RESAMPLE_BWD_BETA0.0 0.0

CUDNN_ATTR_RESAMPLE_COMP_TYPECUDNN_DATA_FLOAT CUDNN_DATA_FLOAT

Backward upsampling modes are currently not supported.

3.3.3. Pre-Compiled Specialized Engines
The pre-compiled specialized engines target and optimize for a specialized graph pattern
with a ragged support surface. Because of this targeting, these graphs do not require
runtime compilation.

In most cases, the specialized patterns are just special cases of the generic patterns
used in the runtime fusion engine, but there are some cases where the specialized
pattern does not fit any of the generic patterns. If your graph pattern matches a
specialized pattern, you will get at least a pattern matching engine, and you might also
get a runtime fusion engine as another option.

Currently, the following patterns are supported by the pattern matching engines. Some
nodes are optional. Optional nodes are indicated by dashed outlines.

3.3.3.1. ConvBNfprop
In Figure 26, the ConvBNfprop pattern is illustrated. Its restrictions and options include:

‣ The three pointwise nodes scale, bias, and ReLU are optional.

‣ X, Z, W, s1, b1 must all be of FP16 data type.

‣ Z needs to be of shape [N, C, H, W] with NHWC packed layout.

‣ W needs to be of shape [K, C, R, S] with KRSC packed layout.

Graph API

NVIDIA cuDNN PG-06702-001_v8.8.0 | 40

‣ s1, b1 need to be of shape [1, C, 1, 1] with NHWC packed layout.

‣ Only ReLU activation is supported.

‣ All of the intermediate tensors need to be virtual, except, Y needs to be non-virtual.

‣ I/O pointers should be 16 bytes aligned.

Figure 26. The pre-compiled ConvBNfprop engine fuses several
pointwise operations with ConvolutionFwd and GenStats.

3.3.3.2. ConvBNwgrad
In Figure 27, the ConvBNwgrad pattern is illustrated. Its restrictions and options include:

‣ The three pointwise operations are all optional, as indicated by the dashed outlines.

‣ Only ReLU activation is supported.

‣ X, s1, b1, and dy must all be of FP16 datatype.

‣ I/O pointers should be 16 bytes aligned.

Figure 27. The ConvBNwgrad pre-compiled engine fuses several
(optional) pointwise operations with ConvolutionBwFilter.

3.3.3.3. ConvBiasAct
In the following figure, the ConvBiasAct pattern is illustrated. Its restrictions and options
include:

‣ and need to be scalars.

‣ The activation node is optional.

‣ The size of the bias tensor should be [1, K, 1, 1].

Graph API

NVIDIA cuDNN PG-06702-001_v8.8.0 | 41

‣ Internal conversions are not supported. That is, the virtual output between nodes
need to have the same data type as the node’s compute type, which should be the
same as the epilog type of the convolution node.

‣ There are some restrictions on the supported combination of
data types, which can be found in the API Reference (refer to
cudnnConvolutionBiasActivationForward()).

Figure 28. ConvBiasAct, another pre-compiled engine, fuses
ConvolutionFwd with several pointwise operations.

3.3.3.4. ConvScaleBiasAct
In the following figure, the ConvScaleBiasAct pattern is illustrated. Its restrictions and
options include:

‣ and and should have the same data type/layout and can only be FP32.

‣ X, W, and Z can only be INT8x4 or INT8x32.

‣ The size of the bias tensor should be [1, K, 1, 1].

‣ Internal conversions are not supported. Meaning, "virtual output" between nodes
needs to be the same as their compute type.

‣ Currently, Pointwise:ReLU is the only optional pointwise node.

Figure 29. The pre-compiled engine, ConvScaleBiasAct

This pattern is very similar as ConvBiasAct. The difference is that here, the scales
 and are tensors, not scalars. If they are scalars, this pattern becomes a normal

ConvBiasAct.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionBiasActivationForward

Graph API

NVIDIA cuDNN PG-06702-001_v8.8.0 | 42

3.3.3.5. dBNapply
In Figure 30, the dBNapply pattern is illustrated. Its restrictions and options include:

‣ One of the inputs to the mul nodes and the input to the final add node must be of
FP32 datatype (A, B, C).

‣ The other inputs to the mul nodes (X and Y) must be of FP16 data type.

‣ X, Y and Z are 4D tensors – [N,C,H,W] with NHWC packed layout.

‣ A, B, C are 1D tensors - [1,C,1,1] with NHWC packed layout.

‣ Channel C should be a multiple of 16 for all the tensors.

‣ Tensors A and B should be attached to the B port of the mul nodes; tensors X and Y
should be attached to the X port.

Figure 30. The pre-compiled engine, dBNapply

The pattern implements a simple linear combination:

‣ Z = A*X + B*Y + C

3.3.3.6. DualdBNapply
In Figure 26, the DualdBNapply pattern is illustrated. Its restrictions and options include:

‣ One tensor X is shared between the two linear combinations.

‣ Five tensors, X, Y1, Y2, Z1, Z2 are 4D tensors [N,C,H,W] with NHWC packed layout.

‣ Six tensors A1, A2, B1, B2 ,C1,C2 are 1D tensors [1,C,1,1].

‣ Channel C should be a multiple of 16 for all the tensors.

In essence, DualdBNapply runs the previous pattern, dBNapply twice, as two subgraphs.
However, both subgraphs share one input tensor, X.

Graph API

NVIDIA cuDNN PG-06702-001_v8.8.0 | 43

Note that for visibility purposes, the Inputs block is split into Inputs_1 and Inputs_2.
This has no semantic meaning.

Figure 31. The DualdBNapply engine

This pattern implements two linear combinations:

‣ Z1 = A1* X + B1* Y1 + C1

‣ Z2 = A2* X + B2* Y2 + C2

3.3.3.7. DgradDreluBNBwdWeight
In Figure 32, the DgradDreluBNBwdWeight pattern is illustrated. Its restrictions and
options include:

‣ Dgrad input dy and W are of FP16 datatypes.

‣ Batch norm fwd inputs, X_bn is of FP16 datatype while the other tensors mean_bn,
invstd_dev_bn, scale_bn, and bias_bn are FP32.

Graph API

NVIDIA cuDNN PG-06702-001_v8.8.0 | 44

‣ Outputs: dScale, dBias, A,B,C are of FP32 data type.

‣ All pointers are 16 byte aligned.

‣ Only supported on NVIDIA Ampere architecture GPUs.

Figure 32. DgradDreluBNBwdWeight is a pre-compiled engine that
can be used in conjunction with the dBNApply pattern to
compute the backwards path of batch norm.

The BNBwdWeight operation takes in five inputs: X_bn, mean_bn, invstddev_bn, scale_bn,
and dy_bn (that is, the output from the ReLUBwd node).

It produces five outputs: gradients of the batch norm scale and bias params, dScale,
dBias, and coefficients A,B,C. Note that for illustration purposes, the inputs are
duplicated. The inputs on the left and right are however exactly the same.

This pattern is typically used in the computation of the Batch Norm Backward Pass.

When computing the backward pass of batch norm, dScale, dBias, and dX_bn are
needed. The DgradDreluBnBwdWeight pattern computes the former two. Using the
generated A, B, and C we can use the dBNApply pattern above to compute dX, the input
gradient, as follows dx_bn = A*dy_bn + B*X_bn +C.

Note that this pattern is used in combination with the forward pass, the ConvBNfprop
pattern. Because of performance reasons, the output of batch norm Y_bn, which
was calculated in ConvBNfprop (output of scale-bias), needs to be recalculated by
DgradDreluBnBwdWeight. The pointwise add node subtracts mean_bn from X_bn, hence
the alpha2 parameter for that node should be set to -1.

Graph API

NVIDIA cuDNN PG-06702-001_v8.8.0 | 45

3.3.4. Mapping with Backend Descriptors
For readability, the operations used in this section are abbreviated. The mapping with the
actual backend descriptors can be found in this table:

Table 19. Notations and Backend Descriptors

Notation used in this section Backend descriptor

Pointwise:scale CUDNN_BACKEND_OPERATION_POINTWISE_DESCRIPTOR
with mode CUDNN_POINTWISE_MUL and with
operand B broadcasting into operand X

Pointwise:bias CUDNN_BACKEND_OPERATION_POINTWISE_DESCRIPTOR
with mode CUDNN_POINTWISE_ADD and with
operand B broadcasting into operand X

Pointwise:add CUDNN_BACKEND_OPERATION_POINTWISE_DESCRIPTOR
with mode CUDNN_POINTWISE_ADD and with
operand B with same dimensions as X

Pointwise:mul CUDNN_BACKEND_OPERATION_POINTWISE_DESCRIPTOR
with mode CUDNN_POINTWISE_MUL and with
operand B with same dimensions as X

Pointwise:ReLU CUDNN_BACKEND_OPERATION_POINTWISE_DESCRIPTOR
with mode CUDNN_POINTWISE_RELU_FWD

Pointwise:ReLUBwd CUDNN_BACKEND_OPERATION_POINTWISE_DESCRIPTOR
with mode CUDNN_POINTWISE_RELU_BWD

Pointwise:tanh CUDNN_BACKEND_OPERATION_POINTWISE_DESCRIPTOR
with mode CUDNN_POINTWISE_TANH_FWD

Pointwise:sigmoid CUDNN_BACKEND_OPERATION_POINTWISE_DESCRIPTOR
with mode CUDNN_POINTWISE_SIGMOID_FWD

Pointwise:ELU CUDNN_BACKEND_OPERATION_POINTWISE_DESCRIPTOR
with mode CUDNN_POINTWISE_ELU_FWD

Pointwise:{ReLU,tanh,sigmoid,ELU} CUDNN_BACKEND_OPERATION_POINTWISE_DESCRIPTOR
with one of the following modes:
CUDNN_POINTWISE_RELU_FWD,
 CUDNN_POINTWISE_TANH_FWD,
 CUDNN_POINTWISE_SIGMOID_FWD,
 CUDNN_POINTWISE_ELU_FWD

MatMul CUDNN_BACKEND_OPERATION_MATMUL_DESCRIPTOR

ConvolutionFwd CUDNN_BACKEND_OPERATION_CONVOLUTION_FORWARD_DESCRIPTOR

ConvolutionBwFilter CUDNN_BACKEND_OPERATION_CONVOLUTION_BACKWARD_FILTER_DESCRIPTOR

ConvolutionBwData CUDNN_BACKEND_OPERATION_CONVOLUTION_BACKWARD_DATA_DESCRIPTOR

GenStats CUDNN_BACKEND_OPERATION_GEN_STATS_DESCRIPTOR

ResampleFwd CUDNN_BACKEND_OPERATION_RESAMPLE_FWD_DESCRIPTOR

GenStats CUDNN_BACKEND_OPERATION_GEN_STATS_DESCRIPTOR

Reduction CUDNN_BACKEND_OPERATION_REDUCTION_DESCRIPTOR

Graph API

NVIDIA cuDNN PG-06702-001_v8.8.0 | 46

Notation used in this section Backend descriptor

BnBwdWeight CUDNN_BACKEND_OPERATION_BN_BWD_WEIGHTS_DESCRIPTOR

BOOLEAN/packed-BOOLEAN CUDNN_DATA_BOOLEAN: As described in the
NVIDIA cuDNN API Reference, this type implies
that eight boolean values are packed in a single
byte, with the lowest index on the right (that is,
least significant bit).

packed-BOOLEAN and BOOLEAN are used
interchangeably, where the former is used
to emphasize and remind the user about the
semantics.

INT8 CUDNN_DATA_INT8

FP8 CUDNN_DATA_FP8_E4M3 or
CUDNN_DATA_FP8_E5M2

FP16 CUDNN_DATA_HALF

BF16 CUDNN_DATA_BFLOAT16

FP32 CUDNN_DATA_FLOAT

TF32 A tensor core operation mode used to
accelerate floating point convolutions or
matmuls. This can be used for an operation
with compute type CUDNN_DATA_FLOAT, on
NVIDIA Ampere architecture or later and be
disabled with NVIDIA_TF32_OVERRIDE=1.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnn-ops-infer-so-library

NVIDIA cuDNN PG-06702-001_v8.8.0 | 47

Chapter 4. Legacy API

4.1. Convolution Functions

4.1.1. Prerequisites
For the supported GPUs, the Tensor Core operations will be triggered for convolution
functions only when cudnnSetConvolutionMathType() is called on the appropriate
convolution descriptor by setting the mathType to CUDNN_TENSOR_OP_MATH or
CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION.

4.1.2. Supported Algorithms
When the prerequisite is met, the below convolution functions can be run as Tensor Core
operations:

‣ cudnnConvolutionForward()

‣ cudnnConvolutionBackwardData()

‣ cudnnConvolutionBackwardFilter()

Refer to the following table for a list of supported algorithms:

Supported Convolution Function Supported Algos

cudnnConvolutionForward CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM

CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED

cudnnConvolutionBackwardData CUDNN_CONVOLUTION_BWD_DATA_ALGO_1

CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED

cudnnConvolutionBackwardFilter CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1

CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD_NONFUSED

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnSetConvolutionMathType
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionForward
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBackwardData
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBackwardFilter

Legacy API

NVIDIA cuDNN PG-06702-001_v8.8.0 | 48

4.1.3. Data and Filter Formats
The cuDNN library may use padding, folding, and NCHW-to-NHWC transformations to
call the Tensor Core operations. For more information, refer to Tensor Transformations.

For algorithms other than *_ALGO_WINOGRAD_NONFUSED, when the following requirements
are met, the cuDNN library will trigger the Tensor Core operations:

‣ Input, filter, and output descriptors (xDesc, yDesc, wDesc, dxDesc, dyDesc and dwDesc
as applicable) are of the dataType = CUDNN_DATA_HALF (that is, FP16). For FP32
dataType, refer to Conversion Between FP32 and FP16.

‣ The number of input and output feature maps (that is, channel dimension C) is a
multiple of 8. When the channel dimension is not a multiple of 8, refer to Padding.

‣ The filter is of type CUDNN_TENSOR_NCHW or CUDNN_TENSOR_NHWC.

‣ If using a filter of type CUDNN_TENSOR_NHWC, then the input, filter, and output data
pointers (X, Y, W, dX, dY, and dW as applicable) are aligned to 128-bit boundaries.

4.2. RNN Functions

4.2.1. Prerequisites
Tensor Core operations are triggered for these RNN functions only when
cudnnSetRNNMatrixMathType() is called on the appropriate RNN descriptor setting
mathType to CUDNN_TENSOR_OP_MATH or CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION.

4.2.2. Supported Algorithms
When the above prerequisites are met, the RNN functions below can be run as Tensor
Core operations:

‣ cudnnRNNForwardInference()

‣ cudnnRNNForwardTraining()

‣ cudnnRNNBackwardData()

‣ cudnnRNNBackwardWeights()

‣ cudnnRNNForwardInferenceEx()

‣ cudnnRNNForwardTrainingEx()

‣ cudnnRNNBackwardDataEx()

‣ cudnnRNNBackwardWeightsEx()

‣ cudnnRNNForward()

‣ cudnnRNNBackwardData_v8()

‣ cudnnRNNBackwardWeights_v8()

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnSetRNNMatrixMathType
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnRNNForwardInference
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnRNNForwardTraining
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnRNNBackwardData
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnRNNBackwardWeights
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnRNNForwardInferenceEx
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnRNNForwardTrainingEx
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnRNNBackwardDataEx
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnRNNBackwardWeightsEx
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnRNNForward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnRNNBackwardData_v8
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnRNNBackwardWeights_v8

Legacy API

NVIDIA cuDNN PG-06702-001_v8.8.0 | 49

Refer to the following table for a list of supported algorithms:

RNN Function Support Algos

All RNN functions that support Tensor Core
operations.

CUDNN_RNN_ALGO_STANDARD

CUDNN_RNN_ALGO_PERSIST_STATIC

4.2.3. Data and Filter Formats
When the following requirements are met, then the cuDNN library triggers the Tensor
Core operations:

‣ For algo = CUDNN_RNN_ALGO_STANDARD:

‣ The hidden state size, input size, and the batch size is a multiple of 8.

‣ All user-provided tensors, workspace, and reserve space are aligned to 128-bit
boundaries.

‣ For FP16 input/output, the CUDNN_TENSOR_OP_MATH or
CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION is selected.

‣ For FP32 input/output, CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION is selected.

‣ For algo = CUDNN_RNN_ALGO_PERSIST_STATIC:

‣ The hidden state size and the input size is a multiple of 32.

‣ The batch size is a multiple of 8.

‣ If the batch size exceeds 96 (for forward training or inference) or 32 (for backward
data), then the batch size constraints may be stricter, and large power-of-two
batch sizes may be needed.

‣ All user-provided tensors, workspace, and reserve space are aligned to 128-bit
boundaries.

‣ For FP16 input/output, CUDNN_TENSOR_OP_MATH or
CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION is selected.

‣ For FP32 input/output, CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION is selected.

For more information, refer to Features of RNN Functions.

4.2.4. Features of RNN Functions
Refer to the following table for a list of features supported by each RNN function.

Note:

For each of these terms, the short-form versions shown in the parenthesis
are used in the tables below for brevity: CUDNN_RNN_ALGO_STANDARD
(_ALGO_STANDARD), CUDNN_RNN_ALGO_PERSIST_STATIC (_ALGO_PERSIST_STATIC),
CUDNN_RNN_ALGO_PERSIST_DYNAMIC (_ALGO_PERSIST_DYNAMIC), and
CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION (_ALLOW_CONVERSION).

Legacy API

NVIDIA cuDNN PG-06702-001_v8.8.0 | 50

Functions
I/O layout
supported

Supports variable
sequence length in
batch

Commonly
supported

cudnnRNNForwardInference()

cudnnRNNForwardTraining()

cudnnRNNBackwardData()

cudnnRNNBackwardWeights()

Only Sequence major,
packed (non-padded)

Only with
_ALGO_STANDARD

Require input
sequences descending
sorted according to
length.

cudnnRNNForwardInferenceEx()

cudnnRNNForwardTrainingEx()

cudnnRNNBackwardDataEx()

cudnnRNNBackwardWeightsEx()

Sequence major
unpacked

Batch major
unpacked2

Sequence major
packed3

Only with
_ALGO_STANDARD

For unpacked layout,
no input sorting
required. 4

For packed layout,
require input
sequences descending
sorted according to
length.

Mode (cell type)
supported:CUDNN_RNN_RELU,
CUDNN_RNN_TANH,
CUDNN_LSTM,
CUDNN_GRU

Algo supported1 (refer
to the table for for
information on these
algorithms):_ALGO_STANDARD,
_ALGO_PERSIST_STATIC,
_ALGO_PERSIST_DYNAMIC

Math mode
supported:
CUDNN_DEFAULT_MATH,CUDNN_TENSOR_OP_MATH

(will automatically fall
back if run on pre-
Volta or if algo doesn’t
support Tensor Cores)

_ALLOW_CONVERSION
(may perform down
conversion to utilize
Tensor Cores)

Direction mode
supported:
CUDNN_UNIDIRECTIONAL,
CUDNN_BIDIRECTIONAL

RNN input mode:
CUDNN_LINEAR_INPUT,
CUDNN_SKIP_INPUT

The following table provides the features supported by the algorithms referred in
the above table: CUDNN_RNN_ALGO_STANDARD, CUDNN_RNN_ALGO_PERSIST_STATIC, and
CUDNN_RNN_ALGO_PERSIST_DYNAMIC.

Features _ALGO_STANDARD _ALGO_PERSIST_STATICCUDNN_RNN_ALGO_PERSIST_STATIC_SMALL_H_ALGO_PERSIST_DYNAMIC

Half input

Single
accumulation

Half output

Supported

Half intermediate storage

Single accumulation

1 Do not mix different algos for different steps of training. It’s also not recommended to mix non-extended and extended
API for different steps of training.

2 To use an unpacked layout, users need to set CUDNN_RNN_PADDED_IO_ENABLED through cudnnSetRNNPaddingMode().
4 To use an unpacked layout, set CUDNN_RNN_PADDED_IO_ENABLED through cudnnSetRNNPaddingMode().
3 To use an unpacked layout, users need to set CUDNN_RNN_PADDED_IO_ENABLED through cudnnSetRNNPaddingMode().

Legacy API

NVIDIA cuDNN PG-06702-001_v8.8.0 | 51

Features _ALGO_STANDARD _ALGO_PERSIST_STATICCUDNN_RNN_ALGO_PERSIST_STATIC_SMALL_H_ALGO_PERSIST_DYNAMIC

Single input

Single
accumulation

Single output

Supported

If running on Volta, with CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION5, will
down-convert and use half intermediate storage.

Otherwise: Single intermediate storage

Single accumulation

Double input

Double
accumulation

Double output

Supported

Double
intermediate
storage

Double
accumulation

Not Supported Not Supported Supported

Double
intermediate
storage

Double
accumulation

LSTM recurrent
projection

Supported Not Supported Not Supported Not Supported

LSTM cell
clipping

Supported

Variable
sequence length
in batch

Supported Not Supported Not Supported Not Supported

Tensor Cores Supported

For half input/output, acceleration requires setting

CUDNN_TENSOR_OP_MATH6 or
CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION 7

Acceleration requires inputSize and hiddenSize to be a
multiple of 8

For single input/output on NVIDIA Volta, NVIDIA Xavier,
and NVIDIA Turing, acceleration requires setting

CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION8

Acceleration requires inputSize and hiddenSize to be a
multiple of 8

For single input/output on NVIDIA Ampere architecture,
acceleration requires setting

Not Supported,
will execute
normally ignoring
CUDNN_TENSOR_OP_MATH10

or
_ALLOW_CONVERSION11

5 CUDNN_TENSOR_OP_MATH or CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION can be set through
cudnnSetRNNMatrixMathType().

10 CUDNN_TENSOR_OP_MATH or CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION can be set through
cudnnSetRNNMatrixMathType().

6 CUDNN_TENSOR_OP_MATH or CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION can be set through
cudnnSetRNNMatrixMathType().

7 CUDNN_TENSOR_OP_MATH or CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION can be set through
cudnnSetRNNMatrixMathType().

11 CUDNN_TENSOR_OP_MATH or CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION can be set through
cudnnSetRNNMatrixMathType().

8 CUDNN_TENSOR_OP_MATH or CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION can be set through
cudnnSetRNNMatrixMathType().

Legacy API

NVIDIA cuDNN PG-06702-001_v8.8.0 | 52

Features _ALGO_STANDARD _ALGO_PERSIST_STATICCUDNN_RNN_ALGO_PERSIST_STATIC_SMALL_H_ALGO_PERSIST_DYNAMIC
CUDNN_DEFAULT_MATH, CUDNN_TENSOR_OP_MATH, or
CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION9

Acceleration requires inputSize and hiddenSize to be a
multiple of 4.

Other limitations Max problem size
is limited by GPU
specifications.

Forward RNN:

‣ RELU and
TANH RNN:
hidden_size
<= 384

‣ LSTM
and GRU:
hidden_size
<= 192

BackwardData
RNN:

‣ RELU and
TANH RNN:
hidden_size
<= 256

‣ LSTM
and GRU:
hidden_size
<= 128

Requires real
time compilation
through NVRTC

4.3. Tensor Transformations
A few functions in the cuDNN library will perform transformations such as folding,
padding, and NCHW-to-NHWC conversion while performing the actual function
operation.

4.3.1. Conversion Between FP32 and FP16
The cuDNN API Reference allows you to specify that FP32 input data may be
copied and converted to FP16 data internally to use Tensor Core operations
for potentially improved performance. This can be achieved by selecting
CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION enum for cudnnMathType_t. In this mode, the
FP32 tensors are internally down-converted to FP16, the Tensor Op math is performed,
and finally up-converted to FP32 as outputs. For more information, refer to Figure 33.

9 CUDNN_TENSOR_OP_MATH or CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION can be set through
cudnnSetRNNMatrixMathType().

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnMathType_t

Legacy API

NVIDIA cuDNN PG-06702-001_v8.8.0 | 53

Figure 33. Tensor Operation with FP32 Inputs

For Convolutions

For convolutions, the FP32-to-FP16 conversion can be achieved by
passing the CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION enum value to the
cudnnSetConvolutionMathType() call.
// Set the math type to allow cuDNN to use Tensor Cores:
checkCudnnErr(cudnnSetConvolutionMathType(cudnnConvDesc,
 CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION));

For RNNs

For RNNs, the FP32-to-FP16 conversion can be achieved by passing
the CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION enum value to the
cudnnSetRNNMatrixMathType() call to allow FP32 data to be converted for use in RNNs.
// Set the math type to allow cuDNN to use Tensor Cores:
checkCudnnErr(cudnnSetRNNMatrixMathType(cudnnRnnDesc,
 CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION));

4.3.2. Padding
For packed NCHW data, when the channel dimension is not a multiple of 8, then the
cuDNN library will pad the tensors as needed to enable Tensor Core operations. This
padding is automatic for packed NCHW data in both the CUDNN_TENSOR_OP_MATH and the
CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION cases.

4.3.3. Folding
In the folding operation, the cuDNN library implicitly performs the formatting of input
tensors and saves the input tensors in an internal workspace. This can lead to an
acceleration of the call to Tensor Cores.

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnSetConvolutionMathType
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnSetRNNMatrixMathType

Legacy API

NVIDIA cuDNN PG-06702-001_v8.8.0 | 54

With folding or channel-folding, cuDNN can implicitly format the input tensors within an
internal workspace to accelerate the overall calculation. Performing this transformation
for the user often allows cuDNN to use kernels with restrictions on convolution stride to
support a strided convolution problem.

4.3.4. Conversion Between NCHW And NHWC
Tensor Cores require that the tensors be in the NHWC data layout. Conversion between
NCHW and NHWC is performed when the user requests Tensor Op math. However, a
request to use Tensor Cores is just that, a request and Tensor Cores may not be used in
some cases. The cuDNN library converts between NCHW and NHWC if and only if Tensor
Cores are requested and are actually used.

If your input (and output) are NCHW, then expect a layout change.

Non-Tensor Op convolutions will not perform conversions between NCHW and NHWC.

In very rare and difficult-to-qualify cases that are a complex function of padding and
filter sizes, it is possible that Tensor Ops is not enabled. In such cases, users can pre-pad
to enable the Tensor Ops path.

4.4. Mixed Precision Numerical
Accuracy

When the computation precision and the output precision are not the same, it is possible
that the numerical accuracy will vary from one algorithm to the other.

For example, when the computation is performed in FP32 and the output is in FP16,
the CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0 (ALGO_0) has lower accuracy compared to
the CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1 (ALGO_1). This is because ALGO_0 does not
use extra workspace, and is forced to accumulate the intermediate results in FP16, that
is, half precision float, and this reduces the accuracy. The ALGO_1, on the other hand,
uses additional workspace to accumulate the intermediate values in FP32, that is, full
precision float.

NVIDIA cuDNN PG-06702-001_v8.8.0 | 55

Chapter 5. Odds and Ends

This section includes a random set of topics and concepts.

5.1. Thread Safety
The cuDNN library is thread-safe. Its functions can be called from multiple host threads,
so long as the threads do not share the same cuDNN handle simultaneously.

When creating a per-thread cuDNN handle, it is recommended that a single synchronous
call of cudnnCreate() be made first before each thread creates its own handle
asynchronously.

Per cudnnCreate(), for multi-threaded applications that use the same device from
different threads, the recommended programming model is to create one (or a few, as is
convenient) cuDNN handles per thread and use that cuDNN handle for the entire life of
the thread.

5.2. Reproducibility (Determinism)
By design, most of cuDNN's routines from a given version generate the same bit-wise
results across runs when executed on GPUs with the same architecture. There are some
exceptions. For example, the following routines do not guarantee reproducibility across
runs, even on the same architecture, because they use atomic operations in a way that
introduces truly random floating point rounding errors:

‣ cudnnConvolutionBackwardFilter when CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0 or
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_3 is used

‣ cudnnConvolutionBackwardData when CUDNN_CONVOLUTION_BWD_DATA_ALGO_0 is
used

‣ cudnnPoolingBackward when CUDNN_POOLING_MAX is used

‣ cudnnSpatialTfSamplerBackward

‣ cudnnCTCLoss and cudnnCTCLoss_v8 when CUDNN_CTC_LOSS_ALGO_NON_DETERMINSTIC
is used

Across different architectures, no cuDNN routines guarantee bit-wise reproducibility.
For example, there is no guarantee of bit-wise reproducibility when comparing the same

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnCreate
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnCreate

Odds and Ends

NVIDIA cuDNN PG-06702-001_v8.8.0 | 56

routine run on NVIDIA Volta™ and NVIDIA Turing™, NVIDIA Turing, and NVIDIA Ampere
architecture.

5.3. Scaling Parameters
Many cuDNN routines like cudnnConvolutionForward() accept pointers in host memory
to scaling factors alpha and beta. These scaling factors are used to blend the computed
values with the prior values in the destination tensor as follows (refer to Figure 34):
dstValue = alpha*computedValue + beta*priorDstValue

Note: The dstValue is written to after being read.

Figure 34. Scaling Parameters for Convolution

When beta is zero, the output is not read and may contain uninitialized data (including
NaN).

These parameters are passed using a host memory pointer. The storage data types for
alpha and beta are:

‣ float for HALF and FLOAT tensors, and

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionForward

Odds and Ends

NVIDIA cuDNN PG-06702-001_v8.8.0 | 57

‣ double for DOUBLE tensors.

Note: For improved performance use beta = 0.0. Use a non-zero value for beta only when
you need to blend the current output tensor values with the prior values of the output
tensor.

Type Conversion

When the data input x, the filter input w and the output y are all in INT8 data type, the
function cudnnConvolutionBiasActivationForward() will perform the type conversion
as shown in Figure 35:

Note: Accumulators are 32-bit integers that wrap on overflow.

Figure 35. INT8 for cudnnConvolutionBiasActivationForward

5.4. cuDNN API Compatibility
Beginning in cuDNN 7, the binary compatibility of a patch and minor releases is
maintained as follows:

‣ Any patch release x.y.z is forward or backward-compatible with applications built
against another cuDNN patch release x.y.w (meaning, of the same major and minor
version number, but having w!=z).

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBiasActivationForward

Odds and Ends

NVIDIA cuDNN PG-06702-001_v8.8.0 | 58

‣ cuDNN minor releases are binary backward-compatible with applications built
against the same or earlier patch release (meaning, cuDNN x.y is binary compatible
with an app built against cuDNN x.z, where z<=y).

‣ Applications compiled with a cuDNN version x.z are not guaranteed to work with x.y
release when z>y.

5.5. Deprecation Policy
cuDNN version 8 introduces a new API deprecation policy to enable a faster pace of
innovation.

The old deprecation policy required three major library releases to complete an API
update. During this process, the original function name was first assigned to the legacy
API, and then to the revised API, depending on the library version. The user wishing to
migrate to the new API version had to update his or her code twice. In the first update,
the original call foo() had to be changed to foo_vN(), where N is the new major cuDNN
version. After the next major cuDNN release, the foo_vN() function had to be renamed
back as foo(). Clearly, the above process could be difficult for code maintenance,
especially when many functions are upgraded.

A streamlined, two-step, deprecation policy will be used for all API changes starting
with cuDNN version 8. Let us explain the process using two subsequent, major cuDNN
releases, version 8 and 9:

Table 20. Two-step, deprecation policy

cuDNN version Explanation

Major release 8 The updated API is introduced as foo_v8().
The deprecated API foo() is kept unchanged
to maintain backward compatibility until the
next major release.

Major release 9 The deprecated API foo() is permanently
removed and its name is not reused. The
foo_v8() function supersedes the retired call
foo().

If the existing API needs to be updated, a new function flavor is introduced with the
_v tag followed by the current, major cuDNN version. In the next major release, the
deprecated function is removed, and its name is never reused. A brand-new API is first
introduced without the _v tag.

The revised depreciation scheme allows us to retire the legacy API in just one major
release. Similarly to the previous API deprecation policy, the user is able to compile the
legacy code without any changes using the next major release of the cuDNN library. The
backward compatibility ends when another major cuDNN release is introduced.

The updated function name embeds the information in which the cuDNN version of the
API call was modified. As a result, the API changes will be easier to track and document.

Odds and Ends

NVIDIA cuDNN PG-06702-001_v8.8.0 | 59

The new deprecation policy is applied also to pending API changes from
previous cuDNN releases. For example, according to the old deprecation policy,
cudnnSetRNNDescriptor_v6() should be removed in cuDNN version 8 and the upgraded
call cudnnSetRNNDescriptor() with the same arguments and behavior should be kept.
Instead, the new deprecation policy is applied to this case and the tagged function is
kept.

Prototypes of deprecated functions will be prepended in cuDNN version 8 headers using
the CUDNN_DEPRECATED macro. When the -DCUDNN_WARN_DEPRECATED switch is passed to
the compiler, any deprecated function call in the user's code will emit a compiler warning,
for example:
warning: ‘cudnnStatus_t cudnnSetRNNMatrixMathType(cudnnRNNDescriptor_t, cudnnMathType_t)’ is
 deprecated [-Wdeprecated-declarations]

Or
warning C4996: 'cudnnSetRNNMatrixMathType': was declared deprecated

The above warnings are disabled by default to avoid potential build breaks in software
setups where compiler warnings are treated as errors.

Note that the simple swapping of older cuDNN version 7 shared library files will not work
with the cuDNN version 8 release. The user source code needs to be recompiled from
scratch with the cuDNN version 8 headers and linked with the version 8 libraries.

5.6. GPU And Driver Requirements
For the latest compatibility software versions of the OS, CUDA, the CUDA driver, and the
NVIDIA hardware, refer to the NVIDIA cuDNN Support Matrix.

5.7. Convolutions
The convolution functions are:

‣ cudnnConvolutionBackwardData()

‣ cudnnConvolutionBiasActivationForward()

‣ cudnnConvolutionForward()

‣ cudnnConvolutionBackwardBias()

‣ cudnnConvolutionBackwardFilter()

5.7.1. Convolution Formulas
This section describes the various convolution formulas implemented in cuDNN
convolution functions for the cudnnConvolutionForward() path.

The convolution terms described in the table below apply to all the convolution formulas
that follow.

https://docs.nvidia.com/deeplearning/sdk/cudnn-support-matrix/index.html
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionBackwardData
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionBiasActivationForward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionForward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionBackwardBias
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionBackwardFilter

Odds and Ends

NVIDIA cuDNN PG-06702-001_v8.8.0 | 60

Table 21. Convolution terms

Term Description

Input (image) Tensor

Weight Tensor

Output Tensor

Current Batch Size

Current Input Channel

Total Input Channels

Input Image Height

Input Image Width

Current Output Channel

Total Output Channels

Current Output Height Position

Current Output Width Position

Group Count

Padding Value

Vertical Subsample Stride (along Height)

Horizontal Subsample Stride (along Width)

Vertical Dilation (along Height)

Horizontal Dilation (along Width)

Current Filter Height

Total Filter Height

Current Filter Width

Total Filter Width

Convolution (convolution mode set to CUDNN_CROSS_CORRELATION)

Convolution with Padding

Odds and Ends

NVIDIA cuDNN PG-06702-001_v8.8.0 | 61

Convolution with Subsample-Striding

Convolution with Dilation

Convolution (convolution mode set to CUDNN_CONVOLUTION)

Convolution using Grouped Convolution

5.7.2. Grouped Convolutions
cuDNN supports grouped convolutions by setting groupCount > 1 for the convolution
descriptor convDesc, using cudnnSetConvolutionGroupCount().

Note: By default, the convolution descriptor convDesc is set to groupCount of 1.

Basic Idea

Conceptually, in grouped convolutions, the input channels and the filter channels
are split into a groupCount number of independent groups, with each group having a
reduced number of channels. The convolution operation is then performed separately on
these input and filter groups.

For example, consider the following: if the number of input channels is 4, and the
number of filter channels of 12. For a normal, ungrouped convolution, the number of
computation operations performed are 12*4.

If the groupCount is set to 2, then there are now two input channel groups of two input
channels each, and two filter channel groups of six filter channels each.

Odds and Ends

NVIDIA cuDNN PG-06702-001_v8.8.0 | 62

As a result, each grouped convolution will now perform 2*6 computation operations, and
two such grouped convolutions are performed. Hence the computation savings are 2x:
(12*4)/(2*(2*6)) .

cuDNN Grouped Convolution

‣ When using groupCount for grouped convolutions, you must still define all tensor
descriptors so that they describe the size of the entire convolution, instead of
specifying the sizes per group.

‣ Grouped convolutions are supported for all formats that are currently supported by
the functions cudnnConvolutionForward(), cudnnConvolutionBackwardData() and
cudnnConvolutionBackwardFilter().

‣ The tensor stridings that are set for groupCount of 1 are also valid for any group
count.

‣ By default, the convolution descriptor convDesc is set to groupCount of 1.

Note: Refer to Convolution Formulas for the math behind the cuDNN grouped convolution.

Example

Below is an example showing the dimensions and strides for grouped convolutions for
NCHW format, for 2D convolution.

Note: The symbols * and / are used to indicate multiplication and division.

xDesc or dxDesc

‣ Dimensions: [batch_size, input_channel, x_height, x_width]

‣ Strides: [input_channels*x_height*x_width, x_height*x_width, x_width, 1]

wDesc or dwDesc

‣ Dimensions: [output_channels, input_channels/groupCount, w_height,
w_width]

‣ Format: NCHW

convDesc

‣ Group Count: groupCount

yDesc or dyDesc

‣ Dimensions: [batch_size, output_channels, y_height, y_width]

‣ Strides: [output_channels*y_height*y_width, y_height*y_width, y_width,
1]

Odds and Ends

NVIDIA cuDNN PG-06702-001_v8.8.0 | 63

5.7.3. Best Practices for 3D Convolutions

ATTENTION: These guidelines are applicable to 3D convolution and deconvolution
functions starting in cuDNN v7.6.3.

The following guidelines are for setting the cuDNN library parameters to enhance the
performance of 3D convolutions. Specifically, these guidelines are focused on settings
such as filter sizes, padding and dilation settings. Additionally, an application-specific
use-case, namely, medical imaging, is presented to demonstrate the performance
enhancement of 3D convolutions with these recommended settings.

Specifically, these guidelines are applicable to the following functions and their
associated data types:

‣ cudnnConvolutionForward()

‣ cudnnConvolutionBackwardData()

‣ cudnnConvolutionBackwardFilter()

For more information, refer to the NVIDIA cuDNN API Reference.

5.7.3.1. Recommended Settings
The following table shows the recommended settings while performing 3D convolutions
for cuDNN.

Table 22. Recommended settings while performing 3D convolutions
for cuDNN

cuDNN 8.8.0

Platform NVIDIA Hopper architecture

NVIDIA Ampere architecture

NVIDIA Turing architecture

NVIDIA Volta architecture

Convolution (3D or 2D) 3D and 2D

Convolution or deconvolution (fprop, dgrad, or wgrad) fprop

dgrad

wgrad

Grouped convolution size C_per_group ==
K_per_group ==

{1,4,8,16,32,64,128,256}

Not supported for INT8

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionForward
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBackwardData
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBackwardFilter
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html

Odds and Ends

NVIDIA cuDNN PG-06702-001_v8.8.0 | 64

cuDNN 8.8.0

Data layout format (NHWC/NCHW)12 NDHWC

Input/output precision (FP16, FP32, INT8, or FP64) FP16, FP3213, INT814

Accumulator (compute) precision (FP16, FP32, INT32 or FP64) FP32, INT32

Filter (kernel) sizes No limitation

Padding No limitation

Image sizes 2 GB limitation for a tensor

C 0 mod 8

0 mod 16 (for INT8)

Number of channels

K 0 mod 8

0 mod 16 (for INT8)

Convolution mode Cross-correlation
and convolution

Strides No limitation

Dilation No limitation

Data pointer alignment All data pointers are
16-bytes aligned.

5.7.3.2. Limitations
Your application will be functional but could be less performant if the model has channel
counts lower than 32 (gets worse the lower it is).

If the above is in the network, use cuDNNFind to get the best option.

12 NHWC/NCHW corresponds to NDHWC/NCDHW in 3D convolution.
13 With CUDNN_TENSOROP_MATH_ALLOW_CONVERSION pre-Ampere. Default TF32 math in NVIDIA Ampere architecture.
14 INT8 does not support dgrad and wgrad. INT8 3D convolutions are only supported in the

backend API. Refer to the tables in cudnnConvolutionForward() for more information.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionForward

NVIDIA cuDNN PG-06702-001_v8.8.0 | 65

Chapter 6. Troubleshooting

The following sections help answer the most commonly asked questions regarding
typical use cases.

6.1. Error Reporting And API Logging
The cuDNN error reporting and API logging is a utility for recording the cuDNN API
execution and error information. For each cuDNN API function call, all input parameters
are reported in the API logging. If errors occur during the execution of the cuDNN API,
a traceback of the error conditions can also be reported to help troubleshooting. This
functionality is disabled by default, and can be enabled using the methods described in
the later part of this section through three logging severity levels: CUDNN_LOGINFO_DBG,
CUDNN_LOGWARN_DBG and CUDNN_LOGERR_DBG.

The log output contains variable names, data types, parameter values, device pointers,
process ID, thread ID, cuDNN handle, CUDA stream ID, and metadata such as time of the
function call in microseconds.

For example, when the severity level CUDNN_LOGINFO_DBG is enabled, the user will receive
the API loggings, such as:
cuDNN (v8300) function cudnnSetActivationDescriptor() called:
 mode: type=cudnnActivationMode_t; val=CUDNN_ACTIVATION_RELU (1);
 reluNanOpt: type=cudnnNanPropagation_t; val=CUDNN_NOT_PROPAGATE_NAN (0);
 coef: type=double; val=1000.000000;
Time: 2017-11-21T14:14:21.366171 (0d+0h+1m+5s since start)
Process: 21264, Thread: 21264, cudnn_handle: NULL, cudnn_stream: NULL.

Starting in cuDNN 8.3.0, when the severity level CUDNN_LOGWARN_DBG or
CUDNN_LOGERR_DBG are enabled, the log output additionally reports an error traceback
such as the example below (currently only cuDNN version 8 graph APIs and legacy
convolution APIs are using this error reporting feature). This traceback reports the
relevant error/warning conditions, aiming to provide the user hints for troubleshooting
purposes. Within the traceback, each message may have their own severity and will only
be reported when the respective severity level is enabled. The traceback messages are
printed in the reverse order of the execution so the messages at the top will be the root
cause and tend to be more helpful for debugging.
cuDNN (v8300) function cudnnBackendFinalize() called:
 Info: Traceback contains 5 message(s)
 Error: CUDNN_STATUS_BAD_PARAM; reason: out <= 0
 Error: CUDNN_STATUS_BAD_PARAM; reason: is_valid_spacial_dim(xSpatialDimA[dim],
 wSpatialDimA[dim], ySpatialDimA[dim], cDesc.getPadLowerA()[dim], cDesc.getPadUpperA()[dim],
 cDesc.getStrideA()[dim], cDesc.getDilationA()[dim])

Troubleshooting

NVIDIA cuDNN PG-06702-001_v8.8.0 | 66

 Error: CUDNN_STATUS_BAD_PARAM; reason: is_valid_convolution(xDesc, wDesc, cDesc,
 yDesc)
 Error: CUDNN_STATUS_BAD_PARAM; reason: convolution.init(xDesc, wDesc, cDesc, yDesc)
 Error: CUDNN_STATUS_BAD_PARAM; reason: finalize_internal()
Time: 2021-10-05T17:11:07.935640 (0d+0h+0m+15s since start)
Process=87720; Thread=87720; GPU=NULL; Handle=NULL; StreamId=NULL.

There are two methods, as described below, to enable the error/warning reporting and
API logging. For convenience, the log output can be handled by the built-in default
callback function, which will direct the output to a log file or the standard I/O as
designated by the user. The user may also write their own callback function to handle
this information programmably, and use the cudnnSetCallback() to pass in the function
pointer of their own callback function.

Method 1: Using Environment Variables

To enable API logging using environment variables, follow these steps:

‣ Decide which logging severity levels to include from these three options:
CUDNN_LOGINFO_DBG, CUDNN_LOGWARN_DBG, or CUDNN_LOGERR_DBG. The logging severity
levels are independent of each other. Any combination of them is valid.

‣ Set the environment variables CUDNN_LOGINFO_DBG, CUDNN_LOGWARN_DBG, or
CUDNN_LOGERR_DBG to 1, and

‣ Set the environment variable CUDNN_LOGDEST_DBG to one of the following:

‣ stdout, stderr, or a user-desired file path, for example, /home/userName1/
log.txt.

‣ Include the conversion specifiers in the file name. For example:

‣ To include date and time in the file name, use the date and time conversion
specifiers: log_%Y_%m_%d_%H_%M_%S.txt. The conversion specifiers will be
automatically replaced with the date and time when the program is initiated,
resulting in log_2017_11_21_09_41_00.txt.

‣ To include the process id in the file name, use the %i conversion specifier: log_
%Y_%m_%d_%H_%M_%S_%i.txt for the result: log_2017_11_21_09_41_00_21264.txt
when the process id is 21264. When you have several processes running, using the
process id conversion specifier will prevent these processes from writing to the
same file at the same time.

Note: The supported conversion specifiers are similar to the strftime function.

If the file already exists, the log will overwrite the existing file.

Note: These environmental variables are only checked once at the initialization. Any
subsequent changes in these environmental variables will not be effective in the
current run. Also note that these environment settings can be overridden by Method 2
below.

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnSetCallback

Troubleshooting

NVIDIA cuDNN PG-06702-001_v8.8.0 | 67

Refer to Table 23 for the impact on the performance of API logging using environment
variables. The CUDNN_LOG{INFO,WARN,ERR}_DBG notation in the table header means the
conclusion is applicable to either one of the environment variables.

Table 23. API Logging Using Environment Variables

Environment variables CUDNN_LOG{INFO,WARN,ERR}_DBG=0CUDNN_LOG{INFO,WARN,ERR}_DBG=1

CUDNN_LOGDEST_DBG not set No logging output

No performance loss

No logging output

No performance loss

CUDNN_LOGDEST_DBG=NULL No logging output

No performance loss

No logging output

No performance loss

CUDNN_LOGDEST_DBG=stdout or
stderr

No logging output

No performance loss

Logging to stdout or stderr

Some performance loss

CUDNN_LOGDEST_DBG=filename.txtNo logging output

No performance loss

Logging to filename.txt

Some performance loss

Method 2: Using the API

To use API function calls to enable API logging, refer to the API description of
cudnnSetCallback() and cudnnGetCallback().

6.2. FAQs

Q: Where in the software stack does cuDNN sit? What is the interaction
between CUDA, cuDNN, and TensorRT?

A: The following graphic shows how cuDNN relates to other software in the stack.

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnSetCallback
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnGetCallback

Troubleshooting

NVIDIA cuDNN PG-06702-001_v8.8.0 | 68

Figure 36. Software Stack With cuDNN

Q: I’m not sure if I should use cuDNN for inference or training. How does it
compare with TensorRT?

A: cuDNN provides the building blocks for common routines such as convolution, pooling,
activation and RNN/LSTMs. You can use cuDNN for both training and inference. However,
where it differs from TensorRT is that the latter (TensorRT) is a programmable inference
accelerator; just like a framework. TensorRT sees the whole graph and optimizes the
network by fusing/combining layers and optimizing kernel selection for improved latency,
throughout, power efficiency and for reducing memory requirements.

A rule of thumb you can apply is to check out TensorRT, see if it meets your inference
needs, if it doesn't, then look at cuDNN for a closer, more in-depth perspective.

Q: How does heuristics in cuDNN work? How does it know what is the
optimal solution for a given problem?

A: NVIDIA actively monitors the Deep Learning space for important problem
specifications such as commonly used models. The heuristics are produced by sampling
a portion of these problem specifications with available computational choices. Over
time, more models are discovered and incorporated into the heuristics.

Q: Is cuDNN going to support running arbitrary graphs?

A: No, we don’t plan to become a framework and execute the whole graph one op at
a time. At this time, we are focused on a subgraph given by the user, where we try to

Troubleshooting

NVIDIA cuDNN PG-06702-001_v8.8.0 | 69

produce an optimized fusion kernel. We will document the rules regarding what can be
fused and what cannot. The goal is to support general and flexible fusion, however, it will
take time and there will be limits in what it can do in the cuDNN version 8.0.0 launch.

Q: What’s the difference between TensorRT, TensorFlow/XLA’s fusion, and
cuDNN’s fusion?

A: TensorRT and TensorFlow are frameworks; they see the whole graph and can do
global optimization, however, they generally only fuse pointwise ops together or pattern
match to a limited set of pre-compiled fixed fusion patterns like conv-bias-relu. On the
other hand, cuDNN targets a subgraph, but can fuse convolutions with pointwise ops,
thus providing potentially better performance. CuDNN fusion kernels can be utilized by
TensorRT and TensorFlow/XLA as part of their global graph optimization.

Q: Can I write an application calling cuDNN directly?

A: Yes, you can call the C/C++ API directly. Usually, data scientists would wait for
framework integration and use the Python API which is more convenient. However, if
your use case requires better performance, you can target the cuDNN API directly.

Q: How does mixed precision training work?

A: Several components need to work together to make mixed precision training possible.
CuDNN needs to support the layers with the required datatype config and have
optimized kernels that run very fast. In addition, there is a module called automatic
mixed precision (AMP) in frameworks which intelligently decides which op can run in
a lower precision without affecting convergence and minimize the number of type
conversions/transposes in the entire graph. These work together to give you speed up.
For more information, refer to Mixed Precision Numerical Accuracy.

Q: How can I pick the fastest convolution kernels with cuDNN version
8.0.0?

A: In the API introduced in cuDNN v8, convolution kernels are grouped by similar
computation and numerical properties into engines. Every engine has a queryable set
of performance tuning knobs. A computation case such as a convolution operation
graph can be computed using different valid combinations of engines and their knobs,
known as an engine configuration. Users can query an array of engine configurations
for any given computation case ordered by performance, from fastest to slowest
according to cuDNN’s own heuristics. Alternately, users can generate all possible engine
configurations by querying the engine count and available knobs for each engine.
This generated list could be used for auto-tuning or the user could create their own
heuristics.

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#mixed-precision-numerical-accuracy

Troubleshooting

NVIDIA cuDNN PG-06702-001_v8.8.0 | 70

Q: Why is cuDNN version 8.0 convolution API call much slower on the first
call than subsequent calls?

A: Due to the library split, cuDNN version 8.0 API will only load the necessary kernels
on the first API call that requires it. In previous versions, this load would have been
observed in the first cuDNN API call that triggers CUDA context initialization, typically
cudnnCreate(). In version 8.0, this is delayed until the first sub-library call that triggers
CUDA context initialization. Users who desire to have CUDA context preloaded can call
the new cudnnCnnInferVersionCheck() API (or its related cousins), which has the side
effect of initializing a CUDA context. This will reduce the run time for all subsequent API
calls.

Q: How do I build the cuDNN version 8.0.0 split library?

A: cuDNN v8.0 library is split into multiple sub-libraries. Each library contains a subset of
the API. Users can link directly against the individual libraries or link with a dlopen layer
which follows a plugin architecture.

To link against an individual library, users can directly specify it and its dependencies
on the linker command line. For example, for infer libraries: -lcudnn_adv_infer, -
lcudnn_cnn_infer, or -lcudnn_ops_infer.

For all libraries, -lcudnn_adv_train, -lcudnn_cnn_train, -lcudnn_ops_train, -
lcudnn_adv_infer, -lcudnn_cnn_infer, and -lcudnn_ops_infer.

The dependency order is documented in the NVIDIA cuDNN 8.0.0 Preview Release Notes
and the NVIDIA cuDNN API Reference.

Alternatively, the user can continue to link against a shim layer (-libcudnn) which can
dlopen the correct library that provides the implementation of the function. When the
function is called for the first time, the dynamic loading of the library takes place.

Linker argument:
-lcudnn

Q: What are the new APIs in cuDNN version 8.0.0?

A: The new cuDNN APIs are listed in the cuDNN 8.0.0 Release Notes as well as in the API
changes for cuDNN 8.0.0.

6.3. Support
Support, resources, and information about cuDNN can be found online at https://
developer.nvidia.com/cudnn. This includes downloads, webinars, NVIDIA Developer
Forums, and more.

https://docs.nvidia.com/deeplearning/sdk/cudnn-release-notes/rel_8.html#rel-800-Preview
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#release-800-preview
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#release-800-preview
https://developer.nvidia.com/cudnn
https://developer.nvidia.com/cudnn
http://devtalk.nvidia.com/
http://devtalk.nvidia.com/

Troubleshooting

NVIDIA cuDNN PG-06702-001_v8.8.0 | 71

We appreciate all types of feedback. Consider posting on the forums with questions,
comments, and suspected bugs that are appropriate to discuss publicly. cuDNN-related
posts are reviewed by the cuDNN engineering team, and internally we will file bugs where
appropriate. It’s helpful if you can paste or attach an API log to help us reproduce.

External users can also file bugs directly by following these steps:

 1. Register for the NVIDIA Developer website.
 2. Log in to the developer site.
 3. Click on your name in the upper right corner.
 4. Click My account > My Bugs and select Submit a New Bug.
 5. Fill out the bug reporting page. Be descriptive and if possible, provide the steps that

you are following to help reproduce the problem. If possible, paste or attach an API
log.

 6. Click Submit a bug.

https://developer.nvidia.com/

NVIDIA cuDNN PG-06702-001_v8.8.0 | 72

Chapter 7. Acknowledgments

Some of the cuDNN library routines were derived from code developed by others and are
subject to the following:

7.1. University of Tennessee

7.2. University of California, Berkeley

7.3. Facebook AI Research, New York

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a
product. NVIDIA Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information
contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of
such information or for any infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to
develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without
notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise
agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual
obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in
applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use
is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each
product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained
in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in
order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA
product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability
related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary
to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or
a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights
of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full
compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the
products described herein shall be limited in accordance with the Terms of Sale for the product.

Arm

Arm, AMBA and Arm Powered are registered trademarks of Arm Limited. Cortex, MPCore and Mali are trademarks of Arm Limited. "Arm" is used to represent
Arm Holdings plc; its operating company Arm Limited; and the regional subsidiaries Arm Inc.; Arm KK; Arm Korea Limited.; Arm Taiwan Limited; Arm France
SAS; Arm Consulting (Shanghai) Co. Ltd.; Arm Germany GmbH; Arm Embedded Technologies Pvt. Ltd.; Arm Norway, AS and Arm Sweden AB.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

Blackberry/QNX

Copyright © 2020 BlackBerry Limited. All rights reserved.

Trademarks, including but not limited to BLACKBERRY, EMBLEM Design, QNX, AVIAGE, MOMENTICS, NEUTRINO and QNX CAR are the trademarks or
registered trademarks of BlackBerry Limited, used under license, and the exclusive rights to such trademarks are expressly reserved.

Google

Android, Android TV, Google Play and the Google Play logo are trademarks of Google, Inc.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

Trademarks

NVIDIA, the NVIDIA logo, and BlueField, CUDA, DALI, DRIVE, Hopper, JetPack, Jetson AGX Xavier, Jetson Nano, Maxwell, NGC, Nsight, Orin, Pascal, Quadro,
Tegra, TensorRT, Triton, Turing and Volta are trademarks and/or registered trademarks of NVIDIA Corporation in the United States and other countries.
Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright

© 2017-2024 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	List of Figures
	List of Tables
	Overview
	Core Concepts
	2.1. cuDNN Handle
	2.2. Tensors and Layouts
	2.2.1. Tensor Descriptor
	2.2.1.1. WXYZ Tensor Descriptor
	2.2.1.2. 3-D Tensor Descriptor
	2.2.1.3. 4-D Tensor Descriptor
	2.2.1.4. 5-D Tensor Descriptor
	2.2.1.5. Fully-Packed Tensors
	2.2.1.6. Partially-Packed Tensors
	2.2.1.7. Spatially Packed Tensors
	2.2.1.8. Overlapping Tensors

	2.2.2. Data Layout Formats
	2.2.2.1. Example Tensor
	2.2.2.2. Convolution Layouts
	2.2.2.2.1. NCHW Memory Layout
	2.2.2.2.2. NHWC Memory Layout
	2.2.2.2.3. NC/32HW32 Memory Layout

	2.2.2.3. MatMul Layouts

	2.3. Tensor Core Operations
	2.3.1. Notes on Tensor Core Precision

	Graph API
	3.1. Key Concepts
	3.1.1. Operations and Operation Graphs
	3.1.2. Engines and Engine Configurations
	3.1.3. Heuristics

	3.2. Graph API Example with Operation Fusion
	3.2.1. Creating Operation and Tensor Descriptors to Specify the Graph Dataflow
	3.2.2. Finalizing The Operation Graph
	3.2.3. Configuring An Engine That Can Execute The Operation Graph
	3.2.4. Executing The Engine

	3.3. Supported Graph Patterns
	3.3.1. Pre-compiled Single Operation Engines
	3.3.1.1. ConvolutionFwd
	3.3.1.2. ConvolutionBwFilter
	3.3.1.3. ConvolutionBwData

	3.3.2. Runtime Fusion Engine
	3.3.2.1. Limitations
	3.3.2.2. Examples of Supported Patterns
	3.3.2.2.1. Single Operation
	3.3.2.2.2. Pointwise Operations After Convolution 1
	3.3.2.2.3. Pointwise Operations After Convolution 2
	3.3.2.2.4. Pointwise Operations Before Matrix Multiplication
	3.3.2.2.5. Convolution Producer Node in Middle of DAG

	3.3.2.3. Operation specific Constraints for the Runtime Fusion Engine
	3.3.2.3.1. Convolutions
	3.3.2.3.2. MatMul
	3.3.2.3.3. Pointwise
	3.3.2.3.4. GenStats
	3.3.2.3.5. Reduction
	3.3.2.3.6. ResampleFwd
	3.3.2.3.6.1. Resampling Index Tensor Dump for Training

	3.3.2.3.7. ResampleBwd

	3.3.3. Pre-Compiled Specialized Engines
	3.3.3.1. ConvBNfprop
	3.3.3.2. ConvBNwgrad
	3.3.3.3. ConvBiasAct
	3.3.3.4. ConvScaleBiasAct
	3.3.3.5. dBNapply
	3.3.3.6. DualdBNapply
	3.3.3.7. DgradDreluBNBwdWeight

	3.3.4. Mapping with Backend Descriptors

	Legacy API
	4.1. Convolution Functions
	4.1.1. Prerequisites
	4.1.2. Supported Algorithms
	4.1.3. Data and Filter Formats

	4.2. RNN Functions
	4.2.1. Prerequisites
	4.2.2. Supported Algorithms
	4.2.3. Data and Filter Formats
	4.2.4. Features of RNN Functions

	4.3. Tensor Transformations
	4.3.1. Conversion Between FP32 and FP16
	4.3.2. Padding
	4.3.3. Folding
	4.3.4. Conversion Between NCHW And NHWC

	4.4. Mixed Precision Numerical Accuracy

	Odds and Ends
	5.1. Thread Safety
	5.2. Reproducibility (Determinism)
	5.3. Scaling Parameters
	5.4. cuDNN API Compatibility
	5.5. Deprecation Policy
	5.6. GPU And Driver Requirements
	5.7. Convolutions
	5.7.1. Convolution Formulas
	5.7.2. Grouped Convolutions
	5.7.3. Best Practices for 3D Convolutions
	5.7.3.1. Recommended Settings
	5.7.3.2. Limitations

	Troubleshooting
	6.1. Error Reporting And API Logging
	6.2. FAQs
	6.3. Support

	Acknowledgments
	7.1. University of Tennessee
	7.2. University of California, Berkeley
	7.3. Facebook AI Research, New York

