
RN-08667-001_v8.9.3 | April 2024

NVIDIA cuDNN

Release Notes | NVIDIA Docs

NVIDIA cuDNN RN-08667-001_v8.9.3 | ii

Table of Contents

Chapter 1. cuDNN Release 8.x.x...1
1.1. cuDNN Release 8.9.3.. 1

1.2. cuDNN Release 8.9.2.. 9

1.3. cuDNN Release 8.9.1..16

1.4. cuDNN Release 8.9.0..25

1.5. cuDNN Release 8.8.1..33

1.6. cuDNN Release 8.8.0..40

1.7. cuDNN Release 8.7.0..49

1.8. cuDNN Release 8.6.0..58

1.9. cuDNN Release 8.5.0..66

1.10. cuDNN Release 8.4.1...74

1.11. cuDNN Release 8.4.0...79

1.12. cuDNN Release 8.3.3...86

1.13. cuDNN Release 8.3.2...92

1.14. cuDNN Release 8.3.1...97

1.15. cuDNN Release 8.3.0.. 102

1.16. cuDNN Release 8.2.4.. 111

1.17. cuDNN Release 8.2.2.. 115

1.18. cuDNN Release 8.2.1.. 120

1.19. cuDNN Release 8.2.0.. 126

1.20. cuDNN Release 8.1.1.. 133

1.21. cuDNN Release 8.1.0.. 139

1.22. cuDNN Release 8.0.5.. 144

1.23. cuDNN Release 8.0.4.. 148

1.24. cuDNN Release 8.0.3.. 153

1.25. cuDNN Release 8.0.2.. 158

1.26. cuDNN Release 8.0.1 Preview... 163

1.27. cuDNN Release 8.0.0 Preview... 168

Chapter 2. cuDNN Release 7.x.x... 176
2.1. cuDNN Release 7.6.5...176

2.2. cuDNN Release 7.6.4...178

2.3. cuDNN Release 7.6.3...179

2.4. cuDNN Release 7.6.2...181

2.5. cuDNN Release 7.6.1...183

2.6. cuDNN Release 7.6.0...186

NVIDIA cuDNN RN-08667-001_v8.9.3 | iii

2.7. cuDNN Release 7.5.1...188

2.8. cuDNN Release 7.5.0...189

2.9. cuDNN Release 7.4.2...194

2.10. cuDNN Release 7.4.1.. 195

2.11. cuDNN Release 7.3.1.. 196

2.12. cuDNN Release 7.3.0.. 197

2.13. cuDNN Release 7.2.1.. 199

2.14. cuDNN Release 7.1.4.. 202

2.15. cuDNN Release 7.1.3.. 203

2.16. cuDNN Release 7.1.2.. 204

2.17. cuDNN Release 7.1.1.. 205

2.18. cuDNN Release 7.0.5.. 208

2.19. cuDNN Release 7.0.4.. 209

2.20. cuDNN Release 7.0.3.. 210

2.21. cuDNN Release 7.0.2.. 211

2.22. cuDNN Release 7.0.1.. 212

NVIDIA cuDNN RN-08667-001_v8.9.3 | iv

NVIDIA cuDNN RN-08667-001_v8.9.3 | 1

Chapter 1. cuDNN Release 8.x.x

1.1. cuDNN Release 8.9.3
These are the NVIDIA cuDNN 8.9.3 Release Notes. These Release Notes include fixes
from the previous cuDNN releases as well as the following additional changes.

These Release Notes are applicable to both cuDNN and NVIDIA JetPack™ users of cuDNN
unless appended specifically with (not applicable for Jetson platforms).

For previously released cuDNN documentation, refer to the NVIDIA cuDNN Archives.

Key Features and Enhancements

The following features and enhancements have been added to this release:

‣ Major improvements in the FP16/BF16 fused flash attention engine:

‣ The supported layout of Q, K, V and O tensors and their gradients have been
generalized. Now, the only requirement is that the d dimension must have stride 1.
All other dimensions can have arbitrary strides.

‣ The engine now supports both self attention and cross attention.

‣ The engine now allows online generation of padding mask and causal mask; each
one can be turned on/off independently.

‣ The engine now supports an extra additive bias passed in as a tensor after
the first batch MatMul and before the Softmax, which can be used to pass in
customized masks (for example, Alibi).

‣ The engine now supports multi-query attention where the headcount dimension
of K and V tensors are 1

‣ The engine now supports (padded) variable sequence length computation.

‣ The engine now supports head dimensions to be 64 or 128.

‣ The engine now supports arbitrary sequence length, batch size, and headcount.

‣ The engine now supports both dropouts turned on and off.

‣ The engine now supports the dropout mask to be accepted as a tensor rather
than being generated inside the kernel.

https://docs.nvidia.com/deeplearning/cudnn/archives/index.html

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 2

‣ The engine now supports the mask before Softmax to be an input tensor created
by the user, rather than being online generated.

‣ Improved CUDNN_HEUR_MODE_A heuristic recommendations for depthwise convolution
on NVIDIA Hopper GPUs.

‣ Improved error reporting during cuDNN handle creation. For more information on how
to enable error reporting, refer to the NVIDIA cuDNN Developer Guide.

Fixed Issues

The following issues have been fixed in this release:

‣ Use of CUDNN_ATTR_ENGINE_GLOBAL_INDEX = 17 for fused convolutions with bias and
ReLU could generate incorrect results on the Maxwell GPU architectures. This issue is
now fixed in 8.9.3.

‣ Running Scale-Bias-Add-Relu-Conv-GenStats (refer to ConvBNfprop) with
CUDNN_ATTR_ENGINE_GLOBAL_INDEX = 0 could generate incorrect results on NVIDIA
Ampere GPUs. This applies to whether dual tensors are set or not in the cited
pattern. This pattern is no longer supported on NVIDIA Ampere GPUs.

‣ A bug in FP16/BF16 fused flash attention for large problem sizes, that is, when b *
h * s * d > 512 * 64 * number of SMs, which was resulting in incorrect values being
computed, has been fixed.

Known Issues

‣ The FP8 fused flash attention is known to be slower than FP16 fused flash attention
for small batch sizes.

‣ cuDNN's usage of cuBLAS from CUDA Toolkit 12.1 may result in race-check failures
when the library is tested under compute sanitizer. These failures are believed to
be a cuBLAS issue and are being investigated. A workaround for this issue is to use
cuBLAS from CUDA Toolkit 12.0.

‣ A compiler bug in NVRTC in CUDA version 11.7 and earlier, was causing incorrect
outputs when computing logical operations on boolean input tensors in the runtime
fusion engine. A workaround had been integrated to avoid the most common
issues. However, it is highly recommended to update to at least CUDA version
11.7u1 for a fix. Specifically, known failure cases are when pointwise operations
of mode CUDNN_POINTWISE_LOGICAL_NOT, CUDNN_POINTWISE_LOGICAL_AND or
CUDNN_POINTWISE_LOGICAL_OR operates on boolean tensors. This issue has been fixed
in this release.

‣ CUDNN_ATTR_ENGINE_GLOBAL_INDEX = 57 for convolution forward and
CUDNN_ATTR_ENGINE_GLOBAL_INDEX = 62 for convolution backward data may have
performance regressions for non-zero beta problems. However, they are not typically
recommended by cuDNN heuristics, so the observable impact should be minimal.

https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#unique_988125865
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#convbnfprop

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 3

‣ Use of cudnnFusedOpsExecute() on NVIDIA Volta compatible architectures hosted on
AArch64 systems may generate incorrect results when used with cudnnFusedOps_t
set to CUDNN_FUSED_SCALE_BIAS_ACTIVATION_WGRAD.

‣ With CUDA 11.7, the NVRTC library may cause a small memory leak when using the
runtime fusion engine. The issue has been addressed in CUDA Toolkit 11.8 or later.

‣ CUDNN_ATTR_ENGINE_GLOBAL_INDEX = 0 for DgradDreluBnBwdWeights may see a
performance regression when moving from cuDNN 8.8 to cuDNN 8.9.

‣ If cuDNN 8.4.1 or earlier statically links with libcudart.so from the CUDA Toolkit
11.7 or later, when the LFL feature is activated, the results from cudnnFind*Algo will
not be accurate.

‣ Some convolution models are experiencing lower performance on NVIDIA RTX
3090 compared to 2080 Ti. This includes EfficientNet with up to 6x performance
difference, UNet up to 1.6x performance difference and Tacotron up to 1.6x
performance difference.

‣ cudnnPoolingForward() with pooling mode CUDNN_POOLING_AVG
might output NaN for pixel in output tensor outside the value
recommended by cudnnGetPoolingNdForwardOutputDim() or
cudnnGetPooling2dForwardOutputDim().

‣ Convolutions (ConvolutionForward, ConvolutionBackwardData, and
ConvolutionBackwardFilter) may experience performance regressions when run
with math type CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION on CUDNN_DATA_FLOAT
data (input and output).

‣ Compared to cuDNN 8.1.0, there are known performance regressions on certain
dgrad NHWC configurations from FastPitch and WaveGlow models on V100 and
NVIDIA A100 GPUs.

‣ The numeric behavior of INT8 operations including saturation behavior, accumulator
data types, and so on, have not been documented as of yet.

‣ There is a known 25% performance regression for inference on the PyTorch SSD
model on the NVIDIA Turing architecture.

‣ Compared to cuDNN 8.0.5, there is a known ~17% performance regression on SSD
models running on V100.

‣ FFT and Winograd based algorithms for convolution do not support graph capture.

‣ There is a known regression when running some convolutions with filter size 1x1. The
severity would be different depending on which version of the CUDA Toolkit the user
is using.

‣ There is a known regression when running some convolutions with high group count.
The issue is more severe on V100.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnPoolingForward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetPoolingNdForwardOutputDim
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetPooling2dForwardOutputDim

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 4

Compatibility

For the latest compatibility software versions of the OS, CUDA, the CUDA driver, and the
NVIDIA hardware, refer to the NVIDIA cuDNN Support Matrix.

Limitations

‣ Disabling CUDA context preemption on Windows can sometimes lead to
CUDNN_INTERNAL_ERRORS being returned from convolution runs. When using cuDNN,
do not disable CUDA context preemption.

‣ When using the cuDNN static library, you will need to use the same major.minor
version of the CUDA Toolkit by which cuDNN was built to build your application. Refer
to the NVIDIA cuDNN Support Matrix for the exact supported CUDA versions.

‣ In cuDNN 8.9.0, runtime fusion engines (with
CUDNN_BEHAVIOR_NOTE_RUNTIME_COMPILATION) will only work with NVRTC from CUDA
Toolkit 11.8, 12.0 and 12.1. They are not guaranteed to be forward compatible with
future CUDA 12.x Toolkits.

‣ Within the cuDNN version 8 backend API, the following engines are known not to be
thread-safe when executed simultaneously with multiple threads sharing the same
execution plan:

Table 1. Engines That Are Not Thread-Safe

CUDNN_ATTR_ENGINE_GLOBAL_INDEX
convolution
forward

convolution
backward data

convolution
backward
filter cudnnConvolutionBiasActivationForward

A100 ‣ 36

‣ 38

‣ 45

‣ 46

‣ 47

‣ 48

‣ 1

‣ 2

‣ 3

‣ 19

‣ 22

‣ 25

‣ 26

‣ 28

‣ 40

‣ 46

‣ 51

‣ 56

‣ 57

‣ 9

‣ 10

‣ 21

‣ 23

‣ 33

‣ 37

‣ 47

‣ 48

‣ 49

‣ 50

‣ 4024

‣ 4026

‣ 4032

‣ 4033

https://docs.nvidia.com/deeplearning/sdk/cudnn-support-matrix/index.html#cudnn-cuda-hardware-versions
https://docs.nvidia.com/deeplearning/cudnn/support-matrix/index.html

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 5

CUDNN_ATTR_ENGINE_GLOBAL_INDEX
convolution
forward

convolution
backward data

convolution
backward
filter cudnnConvolutionBiasActivationForward

‣ 58

‣ 59

‣ 60

‣ 65

V100 ‣ 8

‣ 9

‣ 10

‣ 12

‣ 16

‣ 26

‣ 30

‣ 31

‣ 34

‣ 42

‣ 49

‣ 1

‣ 2

‣ 3

‣ 8

‣ 12

‣ 13

‣ 19

‣ 21

‣ 25

‣ 26

‣ 29

‣ 37

‣ 38

‣ 44

‣ 6

‣ 7

‣ 21

‣ 35

‣ 36

‣ 43

‣ 44

‣ 51

‣ 52

‣ 4002

‣ 4015

‣ 4008

‣ 4018

‣ 4019

‣ 4020

‣ 4030

T4 ‣ 9

‣ 12

‣ 13

‣ 14

‣ 16

‣ 18

‣ 26

‣ 30

‣ 31

‣ 34

‣ 42

‣ 50

‣ 1

‣ 2

‣ 3

‣ 8

‣ 9

‣ 12

‣ 13

‣ 15

‣ 18

‣ 19

‣ 21

‣ 25

‣ 26

‣ 29

‣ 12

‣ 21

‣ 27

‣ 28

‣ 43

‣ 44

‣ 51

‣ 53

‣ 4015

‣ 4003

‣ 4004

‣ 4009

‣ 4018

‣ 4019

‣ 4020

‣ 4031

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 6

CUDNN_ATTR_ENGINE_GLOBAL_INDEX
convolution
forward

convolution
backward data

convolution
backward
filter cudnnConvolutionBiasActivationForward

‣ 30

‣ 37

‣ 39

‣ 44

‣ 45

‣ The status returned by cudnnBackendFinalize() or cudnnBackendExecute() on a
CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR may change depending on the version
of the dynamic dependencies of cuDNN. As of this writing, only cuBLAS is known to
affect the return status of these function calls.

‣ The functional support criteria of cuDNN's convolution kernels is not required to
consider padding. Users of cuDNN can witness an unexpected lack of problem
support when forward convolution spatial dimensions are less than the filter size and
padding is nonzero but is sufficient to extend spatial dimensions to or beyond filter
dimensions. This is commonly observed with, but not limited to, INT8 convolution
kernels.

‣ When performing batch normalization in cuDNN, the operation is allowed to proceed
if the output tensor strides are overlapping, however, there is no guarantee of
deterministic results.

‣ CUDNN_ATTR_ENGINE_GLOBAL_INDEX = 25 for convolution backwards data (which is
part of legacy CUDNN_CONVOLUTION_BWD_DATA_ALGO_0) does not support tensors in
which the product N*C*H*W of the output gradient tensor equals to or exceeds 2^31.

‣ CUDNN_ATTR_ENGINE_GLOBAL_INDEX =1 for convolution backwards data (which is
part of legacy CUDNN_CONVOLUTION_BWD_DATA_ALGO_1) does not support tensors in
which the product N*H*W of the output gradient tensor equals to or exceeds 2^31.
This issue has been present in all previous releases of cuDNN and exercising the use
case for the engine would show incorrect results.

‣ The runtime fusion engine is only supported in the cuDNN build based on
CUDA Toolkit 11.2 update 1 or later. It also requires the NVRTC from CUDA
11.2 update 1 or later. If this condition is not satisfied, the error status of
CUDNN_STATUS_NOT_SUPPORTED or CUDNN_STATUS_RUNTIME_PREREQUISITE_MISSING will
be returned.

‣ Samples must be installed in a writable location. If not installed in a writable location,
the samples can crash.

‣ RNN and multihead attention API calls may exhibit nondeterministic behavior when
the cuDNN library is built with CUDA Toolkit 10.2 or higher. This is the result of
a new buffer management and heuristics in the cuBLAS library. As described in
Results Reproducibility, numerical results may not be deterministic when cuBLAS

https://docs.nvidia.com/cuda/cublas/index.html#cublasXtApi_reproducibility

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 7

APIs are launched in more than one CUDA stream using the same cuBLAS handle.
This happens when two buffer sizes (16 KB and 4 MB) are used in the default
configuration.

When a larger buffer size is not available at runtime, instead of waiting for a buffer
of that size to be released, a smaller buffer may be used with a different GPU
kernel. The kernel selection may affect numerical results. The user can eliminate the
nondeterministic behavior of cuDNN RNN and multihead attention APIs, by setting
a single buffer size in the CUBLAS_WORKSPACE_CONFIG environmental variable, for
example, :16:8 or :4096:2.

The first configuration instructs cuBLAS to allocate eight buffers of 16 KB each in
GPU memory while the second setting creates two buffers of 4 MB each. The default
buffer configuration in cuBLAS 10.2 and 11.0 is :16:8:4096:2, that is, we have two
buffer sizes. In earlier cuBLAS libraries, such as cuBLAS 10.0, it used the :16:8 non-
adjustable configuration. When buffers of only one size are available, the behavior of
cuBLAS calls is deterministic in multi-stream setups.

‣ The tensor pointers and the filter pointers require at a minimum 4-byte alignment,
including INT8 data in the cuDNN library.

‣ Some computational options in cuDNN require increased alignment on tensors in
order to run efficiently. As always, cuDNN recommends users to align tensors to
16 byte boundaries that will be sufficiently aligned for any computational option
in cuDNN. Doing otherwise may cause performance regressions in cuDNN 8.0.x
compared to cuDNN v7.6.

‣ For certain algorithms, when the computation is in float (32-bit float) and the output
is in FP16 (half float), there are cases where the numerical accuracy between the
different algorithms might differ. cuDNN 8.0.x users can target the backend API to
query the numerical notes of the algorithms to get the information programmatically.
There are cases where algo0 and algo1 will have a reduced precision accumulation
when users target the legacy API. In all cases, these numerical differences are not
known to affect training accuracy even though they might show up in unit tests.

‣ For the _ALGO_0 algorithm of convolution backward data and backward filter, grouped
convolution with groups larger than 1 and with odd product of dimensions C, D (if 3D
convolution), H, and W is not supported on devices older than NVIDIA Volta. To prevent
a potential illegal memory access by an instruction that only has a 16-bit version in
NVIDIA Volta and later, pad at least one of the dimensions to an even value.

‣ In INT8x32 Tensor Core cases, the parameters supported by cuDNN v7.6 are limited
to W >= (R-1) * dilationW && H >= (S-1) * dilationH, whereas, in cuDNN
v8.0.x, W == (R-1) * dilationW || H == (S-1) * dilationH cases are no longer
supported.

‣ In prior versions of cuDNN, some convolution algorithms can use texture-based
load structure for performance improvements particularly in older hardware
architectures. Users can opt out of using texture using the environmental variable

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 8

CUDNN_TEXOFF_DBG. In cuDNN 8.x, this variable is removed. Texture loading is turned
off by default. Users who want to continue to use texture-based load, can adapt the
new backend API, and toggle the engine knob CUDNN_KNOB_TYPE_USE_TEX to 1 for
engines that support texture-based load instructions.

‣ In the backend API, convolution forward engine with
CUDNN_ATTR_ENGINE_GLOBAL_INDEX=1 is not supported when the product (channels
* height * width) of the input image exceeds 536,870,912 that is 2^29.

‣ cudnnSpatialTfSamplerBackward() returns CUDNN_STATUS_NOT_SUPPORTED when the
number of channels exceeds 1024.

‣ When using graph-capture, users should call the sub library version check API (for
example, cudnnOpsInferVersionCheck()) to load the kernels in the sub library before
opening graph capture.

‣ Users of cuDNN must add the dependencies of cuBLAS to the linkers command
explicitly to resolve the undefined symbols from cuDNN static libraries.

‣ Starting in version 8.1, cuDNN uses AVX intrinsics on the x86_64 architecture; users
of this architecture without support for AVX intrinsics may see illegal instruction
errors.

‣ The spatial persistent batch normalization API is only available for NVIDIA Pascal and
later architectures. Pre-Pascal architectures return CUDNN_STATUS_ARCH_MISMATCH
instead. The affected APIs include:

‣ cudnnBatchNormalizationBackward()

‣ cudnnBatchNormalizationBackwardEx()

‣ cudnnBatchNormalizationForwardTraining()

‣ cudnnBatchNormalizationForwardTrainingEx()

‣ cudnnGetBatchNormalizationBackwardExWorkspaceSize()

‣ cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize()

‣ cudnnGetBatchNormalizationTrainingExReserveSpaceSize()

‣ cudnnGetNormalizationBackwardWorkspaceSize()

‣ cudnnGetNormalizationForwardTrainingWorkspaceSize()

‣ cudnnGetNormalizationTrainingReserveSpaceSize()

‣ cudnnNormalizationBackward()

‣ cudnnNormalizationForwardTraining()

‣ cudnnAddTensor() performance may regress from 8.2 to 8.3 for pre-Pascal
architectures.

‣ When applications using cuDNN with an older 11.x CUDA toolkit in compatibility
mode are tested with compute-sanitizer, cuGetProcAddress failures with error code
500 will arise due to missing functions. This error can be ignored, or suppressed with
the --report-api-errors no option, as this is due to CUDA backward compatibility
checking if a function is usable with the CUDA toolkit combination. The functions are

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnSpatialTfSamplerBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnOpsInferVersionCheck
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationBackwardEx
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationForwardTraining
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationForwardTrainingEx
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetBatchNormalizationBackwardExWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetBatchNormalizationTrainingExReserveSpaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetNormalizationBackwardWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetNormalizationForwardTrainingWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetNormalizationTrainingReserveSpaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnNormalizationBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnNormalizationForwardTraining

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 9

introduced in a later version of CUDA but are not available on the current platform.
The absence of these functions is harmless and will not give rise to any functional
issues.

‣ Users of cudnn_cnn_infer_static.a may need to update their application
linkage so that symbols absent in that library are subsequently made available
with cudnn_ops_infer_static.a. On Linux, this is specifying the ops library
after cnn on the linker line. The same applies to cudnn_cnn_train_static.a and
cudnn_ops_train_static.a.

1.2. cuDNN Release 8.9.2
These are the NVIDIA cuDNN 8.9.2 Release Notes. These Release Notes include fixes
from the previous cuDNN releases as well as the following additional changes.

These Release Notes are applicable to both cuDNN and NVIDIA JetPack™ users of cuDNN
unless appended specifically with (not applicable for Jetson platforms).

For previously released cuDNN documentation, refer to the NVIDIA cuDNN Archives.

Key Features and Enhancements

The following features and enhancements have been added to this release:

‣ Improvements in the fused flash attention runtime fusion engine:

‣ Added new performance knobs for the engine.

‣ Updated heuristics for the engine for both fprop and bprop.

‣ Extended fused (non-flash) attention engine to accept dropout mask as an input
rather than being generated inside the kernel.

‣ Improved the performance of the runtime fusion engine for the NVIDIA Hopper
architecture and improved the compilation time.

‣ Updated runtime fusion engine heuristics for FP16 and FP8 convolution fprop, dgrad,
and Matmul operations to support new kernels on the NVIDIA Hopper architecture.

‣ Relaxed the limitation that only one reduction operation is allowed in the DAG of g2 of
Generic Runtime Fusion Engines.

Fixed Issues

The following issues have been fixed in this release:

‣ Use of CUDNN_ATTR_ENGINE_GLOBAL_INDEX = 15 for fused convolutions
with bias and ReLU could generate incorrect results on the Pascal GPU
architectures for cuDNN 8.9 releases. This issue is now fixed in 8.9.2. Users of
cudnnConvolutionBiasActivationForward would have been similarly affected.

https://docs.nvidia.com/deeplearning/cudnn/archives/index.html
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#runtime-fusion-engine

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 10

‣ Additional fixes were implemented in cudnnRNNBackwardWeights_v8() to
harden the process of transferring the variable sequence length array from the
RNN data descriptor to device memory. As in cuDNN 8.9.1, the const int32_t
devSeqLengths[] argument is no longer used and can be set to NULL by the user.

Known Issues

‣ The FP8 fused flash attention is known to be slower than FP16 fused flash attention
for small batch sizes.

‣ cuDNN's usage of cuBLAS from CUDA Toolkit 12.1 may result in race-check failures
when the library is tested under compute sanitizer. These failures are believed to
be a cuBLAS issue and are being investigated. A workaround for this issue is to use
cuBLAS from CUDA Toolkit 12.0.

‣ A compiler bug in NVRTC in CUDA version 11.7 and earlier, was causing incorrect
outputs when computing logical operations on boolean input tensors in the runtime
fusion engine. A workaround had been integrated to avoid the most common
issues. However, it is highly recommended to update to at least CUDA version
11.7u1 for a fix. Specifically, known failure cases are when pointwise operations
of mode CUDNN_POINTWISE_LOGICAL_NOT, CUDNN_POINTWISE_LOGICAL_AND or
CUDNN_POINTWISE_LOGICAL_OR operates on boolean tensors. This issue has been fixed
in this release.

‣ CUDNN_ATTR_ENGINE_GLOBAL_INDEX = 57 for convolution forward and
CUDNN_ATTR_ENGINE_GLOBAL_INDEX = 62 for convolution backward data may have
performance regressions for non-zero beta problems. However, they are not typically
recommended by cuDNN heuristics, so the observable impact should be minimal.

‣ Use of cudnnFusedOpsExecute() on NVIDIA Volta compatible architectures hosted on
AArch64 systems may generate incorrect results when used with cudnnFusedOps_t
set to CUDNN_FUSED_SCALE_BIAS_ACTIVATION_WGRAD.

‣ With CUDA 11.7, the NVRTC library may cause a small memory leak when using the
runtime fusion engine. The issue has been addressed in CUDA Toolkit 11.8 or later.

‣ CUDNN_ATTR_ENGINE_GLOBAL_INDEX = 0 for DgradDreluBnBwdWeights may see a
performance regression when moving from cuDNN 8.8 to cuDNN 8.9.

‣ If cuDNN 8.4.1 or earlier statically links with libcudart.so from the CUDA Toolkit
11.7 or later, when the LFL feature is activated, the results from cudnnFind*Algo will
not be accurate.

‣ The documentation for cudnnReorderFilterAndBias() requires corrections for
clarity.

‣ Some convolution models are experiencing lower performance on NVIDIA RTX
3090 compared to 2080 Ti. This includes EfficientNet with up to 6x performance
difference, UNet up to 1.6x performance difference and Tacotron up to 1.6x
performance difference.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnReorderFilterAndBias

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 11

‣ cudnnPoolingForward() with pooling mode CUDNN_POOLING_AVG
might output NaN for pixel in output tensor outside the value
recommended by cudnnGetPoolingNdForwardOutputDim() or
cudnnGetPooling2dForwardOutputDim().

‣ Convolutions (ConvolutionForward, ConvolutionBackwardData, and
ConvolutionBackwardFilter) may experience performance regressions when run
with math type CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION on CUDNN_DATA_FLOAT
data (input and output).

‣ Compared to cuDNN 8.1.0, there are known performance regressions on certain
dgrad NHWC configurations from FastPitch and WaveGlow models on V100 and
NVIDIA A100 GPUs.

‣ The numeric behavior of INT8 operations including saturation behavior, accumulator
data types, and so on, have not been documented as of yet.

‣ There is a known 25% performance regression for inference on the PyTorch SSD
model on the NVIDIA Turing architecture.

‣ Compared to cuDNN 8.0.5, there is a known ~17% performance regression on SSD
models running on V100.

‣ FFT and Winograd based algorithms for convolution do not support graph capture.

‣ Users of cuDNN 8.4.0 may observe a slowdown in the Single Shot Multibox Detector
(SSD) model. This will be fixed in a future release.

‣ There is a known regression when running some convolutions with filter size 1x1. The
severity would be different depending on which version of the CUDA Toolkit the user
is using.

‣ There is a known regression when running some convolutions with high group count.
The issue is more severe on V100.

Compatibility

For the latest compatibility software versions of the OS, CUDA, the CUDA driver, and the
NVIDIA hardware, refer to the NVIDIA cuDNN Support Matrix.

Limitations

‣ Disabling CUDA context preemption on Windows can sometimes lead to
CUDNN_INTERNAL_ERRORS being returned from convolution runs. When using cuDNN,
do not disable CUDA context preemption.

‣ When using the cuDNN static library, you will need to use the same major.minor
version of the CUDA Toolkit by which cuDNN was built to build your application. Refer
to the NVIDIA cuDNN Support Matrix for the exact supported CUDA versions.

‣ In cuDNN 8.9.0, runtime fusion engines (with
CUDNN_BEHAVIOR_NOTE_RUNTIME_COMPILATION) will only work with NVRTC from CUDA

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnPoolingForward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetPoolingNdForwardOutputDim
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetPooling2dForwardOutputDim
https://docs.nvidia.com/deeplearning/sdk/cudnn-support-matrix/index.html#cudnn-cuda-hardware-versions
https://docs.nvidia.com/deeplearning/cudnn/support-matrix/index.html

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 12

Toolkit 11.8, 12.0 and 12.1. They are not guaranteed to be forward compatible with
future CUDA 12.x Toolkits.

‣ Within the cuDNN version 8 backend API, the following engines are known not to be
thread-safe when executed simultaneously with multiple threads sharing the same
execution plan:

Table 2. Engines That Are Not Thread-Safe

CUDNN_ATTR_ENGINE_GLOBAL_INDEX
convolution
forward

convolution
backward data

convolution
backward
filter cudnnConvolutionBiasActivationForward

A100 ‣ 36

‣ 38

‣ 45

‣ 46

‣ 47

‣ 48

‣ 1

‣ 2

‣ 3

‣ 19

‣ 22

‣ 25

‣ 26

‣ 28

‣ 40

‣ 46

‣ 51

‣ 56

‣ 57

‣ 58

‣ 59

‣ 60

‣ 65

‣ 9

‣ 10

‣ 21

‣ 23

‣ 33

‣ 37

‣ 47

‣ 48

‣ 49

‣ 50

‣ 4024

‣ 4026

‣ 4032

‣ 4033

V100 ‣ 8

‣ 9

‣ 10

‣ 12

‣ 16

‣ 26

‣ 30

‣ 31

‣ 1

‣ 2

‣ 3

‣ 8

‣ 12

‣ 13

‣ 19

‣ 21

‣ 6

‣ 7

‣ 21

‣ 35

‣ 36

‣ 43

‣ 44

‣ 51

‣ 4002

‣ 4015

‣ 4008

‣ 4018

‣ 4019

‣ 4020

‣ 4030

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 13

CUDNN_ATTR_ENGINE_GLOBAL_INDEX
convolution
forward

convolution
backward data

convolution
backward
filter cudnnConvolutionBiasActivationForward

‣ 34

‣ 42

‣ 49

‣ 25

‣ 26

‣ 29

‣ 37

‣ 38

‣ 44

‣ 52

T4 ‣ 9

‣ 12

‣ 13

‣ 14

‣ 16

‣ 18

‣ 26

‣ 30

‣ 31

‣ 34

‣ 42

‣ 50

‣ 1

‣ 2

‣ 3

‣ 8

‣ 9

‣ 12

‣ 13

‣ 15

‣ 18

‣ 19

‣ 21

‣ 25

‣ 26

‣ 29

‣ 30

‣ 37

‣ 39

‣ 44

‣ 45

‣ 12

‣ 21

‣ 27

‣ 28

‣ 43

‣ 44

‣ 51

‣ 53

‣ 4015

‣ 4003

‣ 4004

‣ 4009

‣ 4018

‣ 4019

‣ 4020

‣ 4031

‣ The status returned by cudnnBackendFinalize() or cudnnBackendExecute() on a
CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR may change depending on the version
of the dynamic dependencies of cuDNN. As of this writing, only cuBLAS is known to
affect the return status of these function calls.

‣ The functional support criteria of cuDNN's convolution kernels is not required to
consider padding. Users of cuDNN can witness an unexpected lack of problem
support when forward convolution spatial dimensions are less than the filter size and
padding is nonzero but is sufficient to extend spatial dimensions to or beyond filter

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 14

dimensions. This is commonly observed with, but not limited to, INT8 convolution
kernels.

‣ When performing batch normalization in cuDNN, the operation is allowed to proceed
if the output tensor strides are overlapping, however, there is no guarantee of
deterministic results.

‣ CUDNN_ATTR_ENGINE_GLOBAL_INDEX = 25 for convolution backwards data (which is
part of legacy CUDNN_CONVOLUTION_BWD_DATA_ALGO_0) does not support tensors in
which the product N*C*H*W of the output gradient tensor equals to or exceeds 2^31.

‣ CUDNN_ATTR_ENGINE_GLOBAL_INDEX =1 for convolution backwards data (which is
part of legacy CUDNN_CONVOLUTION_BWD_DATA_ALGO_1) does not support tensors in
which the product N*H*W of the output gradient tensor equals to or exceeds 2^31.
This issue has been present in all previous releases of cuDNN and exercising the use
case for the engine would show incorrect results.

‣ The runtime fusion engine is only supported in the cuDNN build based on
CUDA Toolkit 11.2 update 1 or later. It also requires the NVRTC from CUDA
11.2 update 1 or later. If this condition is not satisfied, the error status of
CUDNN_STATUS_NOT_SUPPORTED or CUDNN_STATUS_RUNTIME_PREREQUISITE_MISSING will
be returned.

‣ Samples must be installed in a writable location. If not installed in a writable location,
the samples can crash.

‣ RNN and multihead attention API calls may exhibit nondeterministic behavior when
the cuDNN library is built with CUDA Toolkit 10.2 or higher. This is the result of
a new buffer management and heuristics in the cuBLAS library. As described in
Results Reproducibility, numerical results may not be deterministic when cuBLAS
APIs are launched in more than one CUDA stream using the same cuBLAS handle.
This happens when two buffer sizes (16 KB and 4 MB) are used in the default
configuration.

When a larger buffer size is not available at runtime, instead of waiting for a buffer
of that size to be released, a smaller buffer may be used with a different GPU
kernel. The kernel selection may affect numerical results. The user can eliminate the
nondeterministic behavior of cuDNN RNN and multihead attention APIs, by setting
a single buffer size in the CUBLAS_WORKSPACE_CONFIG environmental variable, for
example, :16:8 or :4096:2.

The first configuration instructs cuBLAS to allocate eight buffers of 16 KB each in
GPU memory while the second setting creates two buffers of 4 MB each. The default
buffer configuration in cuBLAS 10.2 and 11.0 is :16:8:4096:2, that is, we have two
buffer sizes. In earlier cuBLAS libraries, such as cuBLAS 10.0, it used the :16:8 non-
adjustable configuration. When buffers of only one size are available, the behavior of
cuBLAS calls is deterministic in multi-stream setups.

‣ The tensor pointers and the filter pointers require at a minimum 4-byte alignment,
including INT8 data in the cuDNN library.

https://docs.nvidia.com/cuda/cublas/index.html#cublasXtApi_reproducibility

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 15

‣ Some computational options in cuDNN require increased alignment on tensors in
order to run efficiently. As always, cuDNN recommends users to align tensors to
16 byte boundaries that will be sufficiently aligned for any computational option
in cuDNN. Doing otherwise may cause performance regressions in cuDNN 8.0.x
compared to cuDNN v7.6.

‣ For certain algorithms, when the computation is in float (32-bit float) and the output
is in FP16 (half float), there are cases where the numerical accuracy between the
different algorithms might differ. cuDNN 8.0.x users can target the backend API to
query the numerical notes of the algorithms to get the information programmatically.
There are cases where algo0 and algo1 will have a reduced precision accumulation
when users target the legacy API. In all cases, these numerical differences are not
known to affect training accuracy even though they might show up in unit tests.

‣ For the _ALGO_0 algorithm of convolution backward data and backward filter, grouped
convolution with groups larger than 1 and with odd product of dimensions C, D (if 3D
convolution), H, and W is not supported on devices older than NVIDIA Volta. To prevent
a potential illegal memory access by an instruction that only has a 16-bit version in
NVIDIA Volta and later, pad at least one of the dimensions to an even value.

‣ In INT8x32 Tensor Core cases, the parameters supported by cuDNN v7.6 are limited
to W >= (R-1) * dilationW && H >= (S-1) * dilationH, whereas, in cuDNN
v8.0.x, W == (R-1) * dilationW || H == (S-1) * dilationH cases are no longer
supported.

‣ In prior versions of cuDNN, some convolution algorithms can use texture-based
load structure for performance improvements particularly in older hardware
architectures. Users can opt out of using texture using the environmental variable
CUDNN_TEXOFF_DBG. In cuDNN 8.x, this variable is removed. Texture loading is turned
off by default. Users who want to continue to use texture-based load, can adapt the
new backend API, and toggle the engine knob CUDNN_KNOB_TYPE_USE_TEX to 1 for
engines that support texture-based load instructions.

‣ In the backend API, convolution forward engine with
CUDNN_ATTR_ENGINE_GLOBAL_INDEX=1 is not supported when the product (channels
* height * width) of the input image exceeds 536,870,912 that is 2^29.

‣ cudnnSpatialTfSamplerBackward() returns CUDNN_STATUS_NOT_SUPPORTED when the
number of channels exceeds 1024.

‣ When using graph-capture, users should call the sub library version check API (for
example, cudnnOpsInferVersionCheck()) to load the kernels in the sub library before
opening graph capture.

‣ Users of cuDNN must add the dependencies of cuBLAS to the linkers command
explicitly to resolve the undefined symbols from cuDNN static libraries.

‣ Starting in version 8.1, cuDNN uses AVX intrinsics on the x86_64 architecture; users
of this architecture without support for AVX intrinsics may see illegal instruction
errors.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnSpatialTfSamplerBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnOpsInferVersionCheck

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 16

‣ The spatial persistent batch normalization API is only available for NVIDIA Pascal and
later architectures. Pre-Pascal architectures return CUDNN_STATUS_ARCH_MISMATCH
instead. The affected APIs include:

‣ cudnnBatchNormalizationBackward()

‣ cudnnBatchNormalizationBackwardEx()

‣ cudnnBatchNormalizationForwardTraining()

‣ cudnnBatchNormalizationForwardTrainingEx()

‣ cudnnGetBatchNormalizationBackwardExWorkspaceSize()

‣ cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize()

‣ cudnnGetBatchNormalizationTrainingExReserveSpaceSize()

‣ cudnnGetNormalizationBackwardWorkspaceSize()

‣ cudnnGetNormalizationForwardTrainingWorkspaceSize()

‣ cudnnGetNormalizationTrainingReserveSpaceSize()

‣ cudnnNormalizationBackward()

‣ cudnnNormalizationForwardTraining()

‣ cudnnAddTensor() performance may regress from 8.2 to 8.3 for pre-Pascal
architectures.

‣ When applications using cuDNN with an older 11.x CUDA toolkit in compatibility
mode are tested with compute-sanitizer, cuGetProcAddress failures with error code
500 will arise due to missing functions. This error can be ignored, or suppressed with
the --report-api-errors no option, as this is due to CUDA backward compatibility
checking if a function is usable with the CUDA toolkit combination. The functions are
introduced in a later version of CUDA but are not available on the current platform.
The absence of these functions is harmless and will not give rise to any functional
issues.

‣ Users of cudnn_cnn_infer_static.a may need to update their application
linkage so that symbols absent in that library are subsequently made available
with cudnn_ops_infer_static.a. On Linux, this is specifying the ops library
after cnn on the linker line. The same applies to cudnn_cnn_train_static.a and
cudnn_ops_train_static.a.

1.3. cuDNN Release 8.9.1
These are the NVIDIA cuDNN 8.9.1 Release Notes. These Release Notes include fixes
from the previous cuDNN releases as well as the following additional changes.

These Release Notes are applicable to both cuDNN and NVIDIA JetPack™ users of cuDNN
unless appended specifically with (not applicable for Jetson platforms).

For previously released cuDNN documentation, refer to the NVIDIA cuDNN Archives.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationBackwardEx
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationForwardTraining
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationForwardTrainingEx
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetBatchNormalizationBackwardExWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetBatchNormalizationTrainingExReserveSpaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetNormalizationBackwardWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetNormalizationForwardTrainingWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetNormalizationTrainingReserveSpaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnNormalizationBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnNormalizationForwardTraining
https://docs.nvidia.com/deeplearning/cudnn/archives/index.html

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 17

Key Features and Enhancements

The following features and enhancements have been added to this release:

‣ Improved library-wide error reporting coverage by providing the triggered error
condition for CUDNN_STATUS_BAD_PARAM and CUDNN_STATUS_NOT_SUPPORTED in the
error and warning level logging. The majority of error logs now include not just the
error code, but also the error "reason" (that is, the condition that failed). Refer to
Error Reporting And API Logging for instructions to enable the error reporting
feature.

‣ Expanded support of fused flash attention inference and training to sequence
lengths of multiples of 64 and hidden dimension of 64 and 128.

‣ Expanded support of fused attention to accept a general mask as an input for
training, added backward pass for relative positional encoding, and added support for
sequence lengths of multiples of 64 (not multiples of 128) up to 512.

‣ Fine-tuned runtime fusion heuristics for NVIDIA Ada architecture for FP16 and INT8
convolution forward propagation.

‣ HEUR_MODE_A supports BnAddRelu and DReluForkDBn patterns. The support is
currently limited to operation graphs with single node multi-GPU batch norms
without any pointwise node fusions.

Fixed Issues

The following issues have been fixed in this release:

‣ Corrected the engine config returned by heuristics for FP8 convolution.

‣ cudnnGetConvolutionForwardAlgorithm_v7(),
cudnnGetConvolutionBackwardDataAlgorithm_v7(), and
cudnnGetConvolutionBackwardFilterAlgorithm_v7() would exhibit a memory leak
on NVIDIA Hopper GPUs. This issue has been fixed in this release.

‣ For packed NCHW tensors using the FP16 datatype, cuDNN attempted to run an
optimized kernel if the values of N, C, H, and W were even. In cuDNN versions before
8.4, it was possible that incorrect values were generated if odd values for the strides
of N or C were used. This issue has been fixed in this release.

‣ cuDNN 8.9.1 added tensor alignment checks to instance norm and layer norm
engines to prevent IMA issues.

‣ Starting in cuDNN 8.9.1, the const int32_t devSeqLengths[]
argument in cudnnRNNForward(), cudnnRNNBackwardData_v8(), and
cudnnRNNBackwardWeights_v8() APIs will be ignored. All three functions will source
variable sequence length arrays from RNN data descriptors, configured through
the seqLengthArray parameter of cudnnSetRNNDataDescriptor(). The user does
not need to transfer this array to device memory; the operation will be performed
automatically by RNN APIs. This refinement simplifies the usage of cuDNN RNN

https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#unique_1476739855
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#bnaddrelu
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#dreluforkdbn

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 18

APIs. It is also a workaround for random crashes in multi-GPU RNN training on
TensorFlow. Replacing earlier versions of cuDNN 8.x shared libraries with cuDNN
8.9.1 will eliminate those crashes without forcing the user to switch the TensorFlow
version. The cause of intermittent corruptions of devSeqLengths[], fed to RNN APIs,
is still being investigated.

‣ Compared to cuDNN 7.6, there were known performance regressions up to 2x on
select configurations for AlexNet-like models on NVIDIA Turing GPUs. This issue has
been fixed in this release.

Known Issues

‣ cuDNN's usage of cuBLAS from CUDA Toolkit 12.1 may result in race-check failures
when the library is tested under compute sanitizer. These failures are believed to
be a cuBLAS issue and are being investigated. A workaround for this issue is to use
cuBLAS from CUDA Toolkit 12.0.

‣ A compiler bug in NVRTC in CUDA version 11.7 and earlier, was causing incorrect
outputs when computing logical operations on boolean input tensors in the runtime
fusion engine. A workaround had been integrated to avoid the most common
issues. However, it is highly recommended to update to at least CUDA version
11.7u1 for a fix. Specifically, known failure cases are when pointwise operations
of mode CUDNN_POINTWISE_LOGICAL_NOT, CUDNN_POINTWISE_LOGICAL_AND or
CUDNN_POINTWISE_LOGICAL_OR operates on boolean tensors. This issue has been fixed
in this release.

‣ CUDNN_ATTR_ENGINE_GLOBAL_INDEX = 57 for convolution forward and
CUDNN_ATTR_ENGINE_GLOBAL_INDEX = 62 for convolution backward data may have
performance regressions for non-zero beta problems. However, they are not typically
recommended by cuDNN heuristics, so the observable impact should be minimal.

‣ Use of cudnnFusedOpsExecute() on NVIDIA Volta compatible architectures hosted on
AArch64 systems may generate incorrect results when used with cudnnFusedOps_t
set to CUDNN_FUSED_SCALE_BIAS_ACTIVATION_WGRAD.

‣ With CUDA 11.7, the NVRTC library may cause a small memory leak when using the
runtime fusion engine. The issue has been addressed in CUDA Toolkit 11.8 or later.

‣ CUDNN_ATTR_ENGINE_GLOBAL_INDEX = 0 for DgradDreluBnBwdWeights may see a
performance regression when moving from cuDNN 8.8 to cuDNN 8.9.

‣ If cuDNN 8.4.1 or earlier statically links with libcudart.so from the CUDA Toolkit
11.7 or later, when the LFL feature is activated, the results from cudnnFind*Algo will
not be accurate.

‣ The documentation for cudnnReorderFilterAndBias() requires corrections for
clarity.

‣ Some convolution models are experiencing lower performance on NVIDIA RTX
3090 compared to 2080 Ti. This includes EfficientNet with up to 6x performance

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnReorderFilterAndBias

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 19

difference, UNet up to 1.6x performance difference and Tacotron up to 1.6x
performance difference.

‣ cudnnPoolingForward() with pooling mode CUDNN_POOLING_AVG
might output NaN for pixel in output tensor outside the value
recommended by cudnnGetPoolingNdForwardOutputDim() or
cudnnGetPooling2dForwardOutputDim().

‣ Convolutions (ConvolutionForward, ConvolutionBackwardData, and
ConvolutionBackwardFilter) may experience performance regressions when run
with math type CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION on CUDNN_DATA_FLOAT
data (input and output).

‣ Compared to cuDNN 8.1.0, there are known performance regressions on certain
dgrad NHWC configurations from FastPitch and WaveGlow models on V100 and
NVIDIA A100 GPUs.

‣ The numeric behavior of INT8 operations including saturation behavior, accumulator
data types, and so on, have not been documented as of yet.

‣ There is a known 25% performance regression for inference on the PyTorch SSD
model on the NVIDIA Turing architecture.

‣ Compared to cuDNN 8.0.5, there is a known ~17% performance regression on SSD
models running on V100.

‣ FFT and Winograd based algorithms for convolution do not support graph capture.

‣ Users of cuDNN 8.4.0 may observe a slowdown in the Single Shot Multibox Detector
(SSD) model. This will be fixed in a future release.

‣ There is a known regression when running some convolutions with filter size 1x1. The
severity would be different depending on which version of the CUDA Toolkit the user
is using.

‣ There is a known regression when running some convolutions with high group count.
The issue is more severe on V100.

Compatibility

For the latest compatibility software versions of the OS, CUDA, the CUDA driver, and the
NVIDIA hardware, refer to the NVIDIA cuDNN Support Matrix.

Limitations

‣ Disabling CUDA context preemption on Windows can sometimes lead to
CUDNN_INTERNAL_ERRORS being returned from convolution runs. When using cuDNN,
do not disable CUDA context preemption.

‣ When using the cuDNN static library, you will need to use the same major.minor
version of the CUDA Toolkit by which cuDNN was built to build your application. Refer
to the NVIDIA cuDNN Support Matrix for the exact supported CUDA versions.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnPoolingForward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetPoolingNdForwardOutputDim
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetPooling2dForwardOutputDim
https://docs.nvidia.com/deeplearning/sdk/cudnn-support-matrix/index.html#cudnn-cuda-hardware-versions
https://docs.nvidia.com/deeplearning/cudnn/support-matrix/index.html

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 20

‣ In cuDNN 8.9.0, runtime fusion engines (with
CUDNN_BEHAVIOR_NOTE_RUNTIME_COMPILATION) will only work with NVRTC from CUDA
Toolkit 11.8, 12.0 and 12.1. They are not guaranteed to be forward compatible with
future CUDA 12.x Toolkits.

‣ Within the cuDNN version 8 backend API, the following engines are known not to be
thread-safe when executed simultaneously with multiple threads sharing the same
execution plan:

Table 3. Engines That Are Not Thread-Safe

CUDNN_ATTR_ENGINE_GLOBAL_INDEX
convolution
forward

convolution
backward data

convolution
backward
filter cudnnConvolutionBiasActivationForward

A100 ‣ 36

‣ 38

‣ 45

‣ 46

‣ 47

‣ 48

‣ 1

‣ 2

‣ 3

‣ 19

‣ 22

‣ 25

‣ 26

‣ 28

‣ 40

‣ 46

‣ 51

‣ 56

‣ 57

‣ 58

‣ 59

‣ 60

‣ 65

‣ 9

‣ 10

‣ 21

‣ 23

‣ 33

‣ 37

‣ 47

‣ 48

‣ 49

‣ 50

‣ 4024

‣ 4026

‣ 4032

‣ 4033

V100 ‣ 8

‣ 9

‣ 10

‣ 12

‣ 16

‣ 26

‣ 30

‣ 1

‣ 2

‣ 3

‣ 8

‣ 12

‣ 13

‣ 19

‣ 6

‣ 7

‣ 21

‣ 35

‣ 36

‣ 43

‣ 44

‣ 4002

‣ 4015

‣ 4008

‣ 4018

‣ 4019

‣ 4020

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 21

CUDNN_ATTR_ENGINE_GLOBAL_INDEX
convolution
forward

convolution
backward data

convolution
backward
filter cudnnConvolutionBiasActivationForward

‣ 31

‣ 34

‣ 42

‣ 49

‣ 21

‣ 25

‣ 26

‣ 29

‣ 37

‣ 38

‣ 44

‣ 51

‣ 52

‣ 4030

T4 ‣ 9

‣ 12

‣ 13

‣ 14

‣ 16

‣ 18

‣ 26

‣ 30

‣ 31

‣ 34

‣ 42

‣ 50

‣ 1

‣ 2

‣ 3

‣ 8

‣ 9

‣ 12

‣ 13

‣ 15

‣ 18

‣ 19

‣ 21

‣ 25

‣ 26

‣ 29

‣ 30

‣ 37

‣ 39

‣ 44

‣ 45

‣ 12

‣ 21

‣ 27

‣ 28

‣ 43

‣ 44

‣ 51

‣ 53

‣ 4015

‣ 4003

‣ 4004

‣ 4009

‣ 4018

‣ 4019

‣ 4020

‣ 4031

‣ The status returned by cudnnBackendFinalize() or cudnnBackendExecute() on a
CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR may change depending on the version
of the dynamic dependencies of cuDNN. As of this writing, only cuBLAS is known to
affect the return status of these function calls.

‣ The functional support criteria of cuDNN's convolution kernels is not required to
consider padding. Users of cuDNN can witness an unexpected lack of problem
support when forward convolution spatial dimensions are less than the filter size and

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 22

padding is nonzero but is sufficient to extend spatial dimensions to or beyond filter
dimensions. This is commonly observed with, but not limited to, INT8 convolution
kernels.

‣ When performing batch normalization in cuDNN, the operation is allowed to proceed
if the output tensor strides are overlapping, however, there is no guarantee of
deterministic results.

‣ CUDNN_ATTR_ENGINE_GLOBAL_INDEX = 25 for convolution backwards data (which is
part of legacy CUDNN_CONVOLUTION_BWD_DATA_ALGO_0) does not support tensors in
which the product N*C*H*W of the output gradient tensor equals to or exceeds 2^31.

‣ CUDNN_ATTR_ENGINE_GLOBAL_INDEX =1 for convolution backwards data (which is
part of legacy CUDNN_CONVOLUTION_BWD_DATA_ALGO_1) does not support tensors in
which the product N*H*W of the output gradient tensor equals to or exceeds 2^31.
This issue has been present in all previous releases of cuDNN and exercising the use
case for the engine would show incorrect results.

‣ The runtime fusion engine is only supported in the cuDNN build based on
CUDA Toolkit 11.2 update 1 or later. It also requires the NVRTC from CUDA
11.2 update 1 or later. If this condition is not satisfied, the error status of
CUDNN_STATUS_NOT_SUPPORTED or CUDNN_STATUS_RUNTIME_PREREQUISITE_MISSING will
be returned.

‣ Samples must be installed in a writable location. If not installed in a writable location,
the samples can crash.

‣ RNN and multihead attention API calls may exhibit nondeterministic behavior when
the cuDNN library is built with CUDA Toolkit 10.2 or higher. This is the result of
a new buffer management and heuristics in the cuBLAS library. As described in
Results Reproducibility, numerical results may not be deterministic when cuBLAS
APIs are launched in more than one CUDA stream using the same cuBLAS handle.
This happens when two buffer sizes (16 KB and 4 MB) are used in the default
configuration.

When a larger buffer size is not available at runtime, instead of waiting for a buffer
of that size to be released, a smaller buffer may be used with a different GPU
kernel. The kernel selection may affect numerical results. The user can eliminate the
nondeterministic behavior of cuDNN RNN and multihead attention APIs, by setting
a single buffer size in the CUBLAS_WORKSPACE_CONFIG environmental variable, for
example, :16:8 or :4096:2.

The first configuration instructs cuBLAS to allocate eight buffers of 16 KB each in
GPU memory while the second setting creates two buffers of 4 MB each. The default
buffer configuration in cuBLAS 10.2 and 11.0 is :16:8:4096:2, that is, we have two
buffer sizes. In earlier cuBLAS libraries, such as cuBLAS 10.0, it used the :16:8 non-
adjustable configuration. When buffers of only one size are available, the behavior of
cuBLAS calls is deterministic in multi-stream setups.

https://docs.nvidia.com/cuda/cublas/index.html#cublasXtApi_reproducibility

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 23

‣ The tensor pointers and the filter pointers require at a minimum 4-byte alignment,
including INT8 data in the cuDNN library.

‣ Some computational options in cuDNN require increased alignment on tensors in
order to run efficiently. As always, cuDNN recommends users to align tensors to
16 byte boundaries that will be sufficiently aligned for any computational option
in cuDNN. Doing otherwise may cause performance regressions in cuDNN 8.0.x
compared to cuDNN v7.6.

‣ For certain algorithms, when the computation is in float (32-bit float) and the output
is in FP16 (half float), there are cases where the numerical accuracy between the
different algorithms might differ. cuDNN 8.0.x users can target the backend API to
query the numerical notes of the algorithms to get the information programmatically.
There are cases where algo0 and algo1 will have a reduced precision accumulation
when users target the legacy API. In all cases, these numerical differences are not
known to affect training accuracy even though they might show up in unit tests.

‣ For the _ALGO_0 algorithm of convolution backward data and backward filter, grouped
convolution with groups larger than 1 and with odd product of dimensions C, D (if 3D
convolution), H, and W is not supported on devices older than NVIDIA Volta. To prevent
a potential illegal memory access by an instruction that only has a 16-bit version in
NVIDIA Volta and later, pad at least one of the dimensions to an even value.

‣ In INT8x32 Tensor Core cases, the parameters supported by cuDNN v7.6 are limited
to W >= (R-1) * dilationW && H >= (S-1) * dilationH, whereas, in cuDNN
v8.0.x, W == (R-1) * dilationW || H == (S-1) * dilationH cases are no longer
supported.

‣ In prior versions of cuDNN, some convolution algorithms can use texture-based
load structure for performance improvements particularly in older hardware
architectures. Users can opt out of using texture using the environmental variable
CUDNN_TEXOFF_DBG. In cuDNN 8.x, this variable is removed. Texture loading is turned
off by default. Users who want to continue to use texture-based load, can adapt the
new backend API, and toggle the engine knob CUDNN_KNOB_TYPE_USE_TEX to 1 for
engines that support texture-based load instructions.

‣ In the backend API, convolution forward engine with
CUDNN_ATTR_ENGINE_GLOBAL_INDEX=1 is not supported when the product (channels
* height * width) of the input image exceeds 536,870,912 that is 2^29.

‣ cudnnSpatialTfSamplerBackward() returns CUDNN_STATUS_NOT_SUPPORTED when the
number of channels exceeds 1024.

‣ When using graph-capture, users should call the sub library version check API (for
example, cudnnOpsInferVersionCheck()) to load the kernels in the sub library before
opening graph capture.

‣ Users of cuDNN must add the dependencies of cuBLAS to the linkers command
explicitly to resolve the undefined symbols from cuDNN static libraries.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnSpatialTfSamplerBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnOpsInferVersionCheck

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 24

‣ Starting in version 8.1, cuDNN uses AVX intrinsics on the x86_64 architecture; users
of this architecture without support for AVX intrinsics may see illegal instruction
errors.

‣ The spatial persistent batch normalization API is only available for NVIDIA Pascal and
later architectures. Pre-Pascal architectures return CUDNN_STATUS_ARCH_MISMATCH
instead. The affected APIs include:

‣ cudnnBatchNormalizationBackward()

‣ cudnnBatchNormalizationBackwardEx()

‣ cudnnBatchNormalizationForwardTraining()

‣ cudnnBatchNormalizationForwardTrainingEx()

‣ cudnnGetBatchNormalizationBackwardExWorkspaceSize()

‣ cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize()

‣ cudnnGetBatchNormalizationTrainingExReserveSpaceSize()

‣ cudnnGetNormalizationBackwardWorkspaceSize()

‣ cudnnGetNormalizationForwardTrainingWorkspaceSize()

‣ cudnnGetNormalizationTrainingReserveSpaceSize()

‣ cudnnNormalizationBackward()

‣ cudnnNormalizationForwardTraining()

‣ cudnnAddTensor() performance may regress from 8.2 to 8.3 for pre-Pascal
architectures.

‣ When applications using cuDNN with an older 11.x CUDA toolkit in compatibility
mode are tested with compute-sanitizer, cuGetProcAddress failures with error code
500 will arise due to missing functions. This error can be ignored, or suppressed with
the --report-api-errors no option, as this is due to CUDA backward compatibility
checking if a function is usable with the CUDA toolkit combination. The functions are
introduced in a later version of CUDA but are not available on the current platform.
The absence of these functions is harmless and will not give rise to any functional
issues.

‣ Users of cudnn_cnn_infer_static.a may need to update their application
linkage so that symbols absent in that library are subsequently made available
with cudnn_ops_infer_static.a. On Linux, this is specifying the ops library
after cnn on the linker line. The same applies to cudnn_cnn_train_static.a and
cudnn_ops_train_static.a.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationBackwardEx
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationForwardTraining
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationForwardTrainingEx
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetBatchNormalizationBackwardExWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetBatchNormalizationTrainingExReserveSpaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetNormalizationBackwardWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetNormalizationForwardTrainingWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetNormalizationTrainingReserveSpaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnNormalizationBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnNormalizationForwardTraining

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 25

1.4. cuDNN Release 8.9.0
These are the NVIDIA cuDNN 8.9.0 Release Notes. These Release Notes include fixes
from the previous cuDNN releases as well as the following additional changes.

These Release Notes are applicable to both cuDNN and NVIDIA JetPack™ users of cuDNN
unless appended specifically with (not applicable for Jetson platforms).

For previously released cuDNN documentation, refer to the NVIDIA cuDNN Archives.

Key Features and Enhancements

The following features and enhancements have been added to this release:

‣ Added support for transformer models training and inference using Flash Attention
in cuDNN runtime fusion engine. For more information, refer to the flash fused multi-
head attention fprop and bprop patterns listed in the NVIDIA cuDNN Developer
Guide.

‣ Added support for FP8 fused-multi-head attention training and inference support
targeting BERT on NVIDIA Hopper GPUs.

‣ The runtime fusion engine has been split into four engines (with engine id 0, 1, 2, and
3) according to functional coverage and device architecture.

‣ Engine id 0 targets general runtime fusion for the NVIDIA Volta and NVIDIA Turing
architectures.

‣ Engine id 1 targets general runtime fusion for the NVIDIA Ampere architecture.

‣ Engine id 2 targets general runtime fusion for the NVIDIA Hopper architecture.

‣ Engine id 3 targets multihead attention related fusions for the NVIDIA Ampere
and NVIDIA Hopper architectures.

This split has enabled the heuristics to have more control over kernel selection. Knob
information is now more precise for each splitted engine. As a result, internal testing
coverage has also improved.

‣ A new runtime fusion engine (with engine id 4) has been introduced to enable up
to 4x better compilation time and better epilogue fusion efficiency. It’s currently
recommended by heuristics for a subset of patterns and problem sizes. We expect
the coverage to grow further in future releases.

‣ Improved FP8 Dgrad heuristics to have generally good out-of-the-box support for
both CUDNN_DATA_FLOAT and CUDNN_DATA_FAST_FLOAT_FOR_FP8 compute type.

‣ Enabled a new knob CUDNN_KNOB_TYPE_SPLIT_K_SLC in runtime fusion engines that
can be used to control Split-K in SM 7.X, SM 8.X or Segment-K in SM 9.X convolution
or GEMM kernels.

‣ Added TF32 heuristics for runtime fusion for the NVIDIA Hopper architecture.

https://docs.nvidia.com/deeplearning/cudnn/archives/index.html
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#specialized-runtime-fusion-engines
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#specialized-runtime-fusion-engines

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 26

‣ Added support for the DgradDreluBNBwdWeight fusion pattern on NVIDIA Hopper
GPUs. For more information, refer to the DgradDreluBNBwdWeight pattern listed in
the NVIDIA cuDNN Developer Guide.

‣ Two new patterns were added to the ConvBNFprop fusion patterns. These are
supported on NVIDIA Hopper GPU’s. For more information, refer to the ConvBNFprop
pattern listed in the NVIDIA cuDNN Developer Guide.

‣ Added a new runtime compiled engine with some fusion capabilities to support single
GPU and single node multi-GPU batch normalization. Previously, this engine was
statically compiled, but it’s now a runtime compiled engine in cuDNN 8.9. For more
information, refer to the BNAddRelu pattern listed in the NVIDIA cuDNN Developer
Guide.

Fixed Issues

The following issues have been fixed in this release:

‣ When cuDNN executed FP8 matrix multiplication and convolution kernels with
compute type CUDNN_DATA_FLOAT, the numerical precision was lower than expected.
This issue has been fixed in this release.

‣ Some engines incorrectly returned a success status when calling
cudnnBackendFinalize() with a backend engine descriptor for a bfloat16 problem
on hardware that did not support the bfloat16 type. Attempted execution of
the problem with cudnnBackendExecute() would return the expected status
CUDNN_STATUS_ARCH_MISMATCH. This issue has been fixed in this release.

Known Issues

‣ cudnnGetConvolutionForwardAlgorithm_v7(),
cudnnGetConvolutionBackwardDataAlgorithm_v7(), and
cudnnGetConvolutionBackwardFilterAlgorithm_v7() exhibit a memory leak on
NVIDIA Hopper GPUs.

‣ CUDNN_ATTR_ENGINE_GLOBAL_INDEX = 57 for convolution forward and
CUDNN_ATTR_ENGINE_GLOBAL_INDEX = 62 for convolution backward data may have
performance regressions for non-zero beta problems. However, they are not typically
recommended by cuDNN heuristics, so the observable impact should be minimal.

‣ Use of cudnnFusedOpsExecute() on NVIDIA Volta compatible architectures hosted on
AArch64 systems may generate incorrect results when used with cudnnFusedOps_t
set to CUDNN_FUSED_SCALE_BIAS_ACTIVATION_WGRAD.

‣ With CUDA 11.7, the NVRTC library may cause a small memory leak when using the
runtime fusion engine. The issue has been addressed in CUDA Toolkit 11.8 or later.

‣ CUDNN_ATTR_ENGINE_GLOBAL_INDEX = 0 for DgradDreluBnBwdWeights may see a
performance regression when moving from cuDNN 8.8 to cuDNN 8.9.

https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#dgraddrelubnbwdweight
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#convbnfprop
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 27

‣ A compiler bug in NVRTC in CUDA version 11.7 and earlier, was causing incorrect
outputs when computing logical operations on boolean input tensors in the runtime
fusion engine. A workaround has been integrated in this release to avoid the
most common issues. However, it is highly recommended to update to at least
CUDA version 11.7u1 for a fix. Specifically, known failure cases are when pointwise
operations of mode CUDNN_POINTWISE_LOGICAL_NOT, CUDNN_POINTWISE_LOGICAL_AND
or CUDNN_POINTWISE_LOGICAL_OR operates on boolean tensors.

‣ If cuDNN 8.4.1 or earlier statically links with libcudart.so from the CUDA Toolkit
11.7 or later, when the LFL feature is activated, the results from cudnnFind*Algo will
not be accurate.

‣ For packed NCHW tensors using the FP16 datatype, cuDNN attempts to run an
optimized kernel if the values of N, C, H, and W are even. In cuDNN versions before
8.4, it is possible that incorrect values are generated if odd values for the strides of N
or C are used.

‣ The documentation for cudnnReorderFilterAndBias() requires corrections for
clarity.

‣ Some convolution models are experiencing lower performance on NVIDIA RTX
3090 compared to 2080 Ti. This includes EfficientNet with up to 6x performance
difference, UNet up to 1.6x performance difference and Tacotron up to 1.6x
performance difference.

‣ cudnnPoolingForward() with pooling mode CUDNN_POOLING_AVG
might output NaN for pixel in output tensor outside the value
recommended by cudnnGetPoolingNdForwardOutputDim() or
cudnnGetPooling2dForwardOutputDim().

‣ Convolutions (ConvolutionForward, ConvolutionBackwardData, and
ConvolutionBackwardFilter) may experience performance regressions when run
with math type CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION on CUDNN_DATA_FLOAT
data (input and output).

‣ Compared to cuDNN 7.6, there are known performance regressions up to 2x on
select configurations for AlexNet-like models on NVIDIA Turing GPUs.

‣ Compared to cuDNN 8.1.0, there are known performance regressions on certain
dgrad NHWC configurations from FastPitch and WaveGlow models on V100 and
NVIDIA A100 GPUs.

‣ The numeric behavior of INT8 operations including saturation behavior, accumulator
data types, and so on, have not been documented as of yet.

‣ There is a known 25% performance regression for inference on the PyTorch SSD
model on the NVIDIA Turing architecture.

‣ Compared to cuDNN 8.0.5, there is a known ~17% performance regression on SSD
models running on V100.

‣ FFT and Winograd based algorithms for convolution do not support graph capture.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnReorderFilterAndBias
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnPoolingForward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetPoolingNdForwardOutputDim
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetPooling2dForwardOutputDim

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 28

‣ Users of cuDNN 8.4.0 may observe a slowdown in the Single Shot Multibox Detector
(SSD) model. This will be fixed in a future release.

‣ There is a known regression when running some convolutions with filter size 1x1. The
severity would be different depending on which version of the CUDA Toolkit the user
is using.

‣ There is a known regression when running some convolutions with high group count.
The issue is more severe on V100.

Compatibility

For the latest compatibility software versions of the OS, CUDA, the CUDA driver, and the
NVIDIA hardware, refer to the NVIDIA cuDNN Support Matrix.

Limitations

‣ Disabling CUDA context preemption on Windows can sometimes lead to
CUDNN_INTERNAL_ERRORS being returned from convolution runs. When using cuDNN,
do not disable CUDA context preemption.

‣ When using the cuDNN static library, you will need to use the same major.minor
version of the CUDA Toolkit by which cuDNN was built to build your application. Refer
to the NVIDIA cuDNN Support Matrix for the exact supported CUDA versions.

‣ In cuDNN 8.9.0, runtime fusion engines (with
CUDNN_BEHAVIOR_NOTE_RUNTIME_COMPILATION) will only work with NVRTC from CUDA
Toolkit 11.8, 12.0 and 12.1. They are not guaranteed to be forward compatible with
future CUDA 12.x Toolkits.

‣ Within the cuDNN version 8 backend API, the following engines are known not to be
thread-safe when executed simultaneously with multiple threads sharing the same
execution plan:

Table 4. Engines That Are Not Thread-Safe

CUDNN_ATTR_ENGINE_GLOBAL_INDEX
convolution
forward

convolution
backward data

convolution
backward
filter cudnnConvolutionBiasActivationForward

A100 ‣ 36

‣ 38

‣ 45

‣ 46

‣ 47

‣ 48

‣ 1

‣ 2

‣ 3

‣ 19

‣ 22

‣ 25

‣ 26

‣ 9

‣ 10

‣ 21

‣ 23

‣ 33

‣ 37

‣ 47

‣ 4024

‣ 4026

‣ 4032

‣ 4033

https://docs.nvidia.com/deeplearning/sdk/cudnn-support-matrix/index.html#cudnn-cuda-hardware-versions
https://docs.nvidia.com/deeplearning/cudnn/support-matrix/index.html

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 29

CUDNN_ATTR_ENGINE_GLOBAL_INDEX
convolution
forward

convolution
backward data

convolution
backward
filter cudnnConvolutionBiasActivationForward

‣ 28

‣ 40

‣ 46

‣ 51

‣ 56

‣ 57

‣ 58

‣ 59

‣ 60

‣ 65

‣ 48

‣ 49

‣ 50

V100 ‣ 8

‣ 9

‣ 10

‣ 12

‣ 16

‣ 26

‣ 30

‣ 31

‣ 34

‣ 42

‣ 49

‣ 1

‣ 2

‣ 3

‣ 8

‣ 12

‣ 13

‣ 19

‣ 21

‣ 25

‣ 26

‣ 29

‣ 37

‣ 38

‣ 44

‣ 6

‣ 7

‣ 21

‣ 35

‣ 36

‣ 43

‣ 44

‣ 51

‣ 52

‣ 4002

‣ 4015

‣ 4008

‣ 4018

‣ 4019

‣ 4020

‣ 4030

T4 ‣ 9

‣ 12

‣ 13

‣ 14

‣ 16

‣ 18

‣ 26

‣ 30

‣ 1

‣ 2

‣ 3

‣ 8

‣ 9

‣ 12

‣ 13

‣ 15

‣ 12

‣ 21

‣ 27

‣ 28

‣ 43

‣ 44

‣ 51

‣ 53

‣ 4015

‣ 4003

‣ 4004

‣ 4009

‣ 4018

‣ 4019

‣ 4020

‣ 4031

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 30

CUDNN_ATTR_ENGINE_GLOBAL_INDEX
convolution
forward

convolution
backward data

convolution
backward
filter cudnnConvolutionBiasActivationForward

‣ 31

‣ 34

‣ 42

‣ 50

‣ 18

‣ 19

‣ 21

‣ 25

‣ 26

‣ 29

‣ 30

‣ 37

‣ 39

‣ 44

‣ 45

‣ The status returned by cudnnBackendFinalize() or cudnnBackendExecute() on a
CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR may change depending on the version
of the dynamic dependencies of cuDNN. As of this writing, only cuBLAS is known to
affect the return status of these function calls.

‣ The functional support criteria of cuDNN's convolution kernels is not required to
consider padding. Users of cuDNN can witness an unexpected lack of problem
support when forward convolution spatial dimensions are less than the filter size and
padding is nonzero but is sufficient to extend spatial dimensions to or beyond filter
dimensions. This is commonly observed with, but not limited to, INT8 convolution
kernels.

‣ When performing batch normalization in cuDNN, the operation is allowed to proceed
if the output tensor strides are overlapping, however, there is no guarantee of
deterministic results.

‣ CUDNN_ATTR_ENGINE_GLOBAL_INDEX = 25 for convolution backwards data (which is
part of legacy CUDNN_CONVOLUTION_BWD_DATA_ALGO_0) does not support tensors in
which the product N*C*H*W of the output gradient tensor equals to or exceeds 2^31.

‣ CUDNN_ATTR_ENGINE_GLOBAL_INDEX =1 for convolution backwards data (which is
part of legacy CUDNN_CONVOLUTION_BWD_DATA_ALGO_1) does not support tensors in
which the product N*H*W of the output gradient tensor equals to or exceeds 2^31.
This issue has been present in all previous releases of cuDNN and exercising the use
case for the engine would show incorrect results.

‣ The runtime fusion engine is only supported in the cuDNN build based on
CUDA Toolkit 11.2 update 1 or later. It also requires the NVRTC from CUDA
11.2 update 1 or later. If this condition is not satisfied, the error status of

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 31

CUDNN_STATUS_NOT_SUPPORTED or CUDNN_STATUS_RUNTIME_PREREQUISITE_MISSING will
be returned.

‣ Samples must be installed in a writable location. If not installed in a writable location,
the samples can crash.

‣ RNN and multihead attention API calls may exhibit nondeterministic behavior when
the cuDNN library is built with CUDA Toolkit 10.2 or higher. This is the result of
a new buffer management and heuristics in the cuBLAS library. As described in
Results Reproducibility, numerical results may not be deterministic when cuBLAS
APIs are launched in more than one CUDA stream using the same cuBLAS handle.
This happens when two buffer sizes (16 KB and 4 MB) are used in the default
configuration.

When a larger buffer size is not available at runtime, instead of waiting for a buffer
of that size to be released, a smaller buffer may be used with a different GPU
kernel. The kernel selection may affect numerical results. The user can eliminate the
nondeterministic behavior of cuDNN RNN and multihead attention APIs, by setting
a single buffer size in the CUBLAS_WORKSPACE_CONFIG environmental variable, for
example, :16:8 or :4096:2.

The first configuration instructs cuBLAS to allocate eight buffers of 16 KB each in
GPU memory while the second setting creates two buffers of 4 MB each. The default
buffer configuration in cuBLAS 10.2 and 11.0 is :16:8:4096:2, that is, we have two
buffer sizes. In earlier cuBLAS libraries, such as cuBLAS 10.0, it used the :16:8 non-
adjustable configuration. When buffers of only one size are available, the behavior of
cuBLAS calls is deterministic in multi-stream setups.

‣ The tensor pointers and the filter pointers require at a minimum 4-byte alignment,
including INT8 data in the cuDNN library.

‣ Some computational options in cuDNN require increased alignment on tensors in
order to run efficiently. As always, cuDNN recommends users to align tensors to
16 byte boundaries that will be sufficiently aligned for any computational option
in cuDNN. Doing otherwise may cause performance regressions in cuDNN 8.0.x
compared to cuDNN v7.6.

‣ For certain algorithms, when the computation is in float (32-bit float) and the output
is in FP16 (half float), there are cases where the numerical accuracy between the
different algorithms might differ. cuDNN 8.0.x users can target the backend API to
query the numerical notes of the algorithms to get the information programmatically.
There are cases where algo0 and algo1 will have a reduced precision accumulation
when users target the legacy API. In all cases, these numerical differences are not
known to affect training accuracy even though they might show up in unit tests.

‣ For the _ALGO_0 algorithm of convolution backward data and backward filter, grouped
convolution with groups larger than 1 and with odd product of dimensions C, D (if 3D
convolution), H, and W is not supported on devices older than NVIDIA Volta. To prevent

https://docs.nvidia.com/cuda/cublas/index.html#cublasXtApi_reproducibility

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 32

a potential illegal memory access by an instruction that only has a 16-bit version in
NVIDIA Volta and later, pad at least one of the dimensions to an even value.

‣ In INT8x32 Tensor Core cases, the parameters supported by cuDNN v7.6 are limited
to W >= (R-1) * dilationW && H >= (S-1) * dilationH, whereas, in cuDNN
v8.0.x, W == (R-1) * dilationW || H == (S-1) * dilationH cases are no longer
supported.

‣ In prior versions of cuDNN, some convolution algorithms can use texture-based
load structure for performance improvements particularly in older hardware
architectures. Users can opt out of using texture using the environmental variable
CUDNN_TEXOFF_DBG. In cuDNN 8.x, this variable is removed. Texture loading is turned
off by default. Users who want to continue to use texture-based load, can adapt the
new backend API, and toggle the engine knob CUDNN_KNOB_TYPE_USE_TEX to 1 for
engines that support texture-based load instructions.

‣ In the backend API, convolution forward engine with
CUDNN_ATTR_ENGINE_GLOBAL_INDEX=1 is not supported when the product (channels
* height * width) of the input image exceeds 536,870,912 that is 2^29.

‣ cudnnSpatialTfSamplerBackward() returns CUDNN_STATUS_NOT_SUPPORTED when the
number of channels exceeds 1024.

‣ When using graph-capture, users should call the sub library version check API (for
example, cudnnOpsInferVersionCheck()) to load the kernels in the sub library before
opening graph capture.

‣ Users of cuDNN must add the dependencies of cuBLAS to the linkers command
explicitly to resolve the undefined symbols from cuDNN static libraries.

‣ Starting in version 8.1, cuDNN uses AVX intrinsics on the x86_64 architecture; users
of this architecture without support for AVX intrinsics may see illegal instruction
errors.

‣ The spatial persistent batch normalization API is only available for NVIDIA Pascal and
later architectures. Pre-Pascal architectures return CUDNN_STATUS_ARCH_MISMATCH
instead. The affected APIs include:

‣ cudnnBatchNormalizationBackward()

‣ cudnnBatchNormalizationBackwardEx()

‣ cudnnBatchNormalizationForwardTraining()

‣ cudnnBatchNormalizationForwardTrainingEx()

‣ cudnnGetBatchNormalizationBackwardExWorkspaceSize()

‣ cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize()

‣ cudnnGetBatchNormalizationTrainingExReserveSpaceSize()

‣ cudnnGetNormalizationBackwardWorkspaceSize()

‣ cudnnGetNormalizationForwardTrainingWorkspaceSize()

‣ cudnnGetNormalizationTrainingReserveSpaceSize()

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnSpatialTfSamplerBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnOpsInferVersionCheck
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationBackwardEx
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationForwardTraining
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationForwardTrainingEx
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetBatchNormalizationBackwardExWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetBatchNormalizationTrainingExReserveSpaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetNormalizationBackwardWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetNormalizationForwardTrainingWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetNormalizationTrainingReserveSpaceSize

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 33

‣ cudnnNormalizationBackward()

‣ cudnnNormalizationForwardTraining()

‣ cudnnAddTensor() performance may regress from 8.2 to 8.3 for pre-Pascal
architectures.

‣ When applications using cuDNN with an older 11.x CUDA toolkit in compatibility
mode are tested with compute-sanitizer, cuGetProcAddress failures with error code
500 will arise due to missing functions. This error can be ignored, or suppressed with
the --report-api-errors no option, as this is due to CUDA backward compatibility
checking if a function is usable with the CUDA toolkit combination. The functions are
introduced in a later version of CUDA but are not available on the current platform.
The absence of these functions is harmless and will not give rise to any functional
issues.

‣ Users of cudnn_cnn_infer_static.a may need to update their application
linkage so that symbols absent in that library are subsequently made available
with cudnn_ops_infer_static.a. On Linux, this is specifying the ops library
after cnn on the linker line. The same applies to cudnn_cnn_train_static.a and
cudnn_ops_train_static.a.

1.5. cuDNN Release 8.8.1
These are the NVIDIA cuDNN 8.8.1 Release Notes. These Release Notes include fixes
from the previous cuDNN releases as well as the following additional changes.

These Release Notes are applicable to both cuDNN and NVIDIA JetPack™ users of cuDNN
unless appended specifically with (not applicable for Jetson platforms).

For previously released cuDNN documentation, refer to the NVIDIA cuDNN Archives.

Fixed Issues

‣ In cuDNN 8.8.0, the runtime fusion engine failed with NVRTC from CUDA 12.1. This
bug is fixed in cuDNN 8.8.1, but the limitation still remains that the runtime fusion
engine is not forward compatible beyond CUDA 12.1. This limitation will be addressed
in a future release.

Known Issues

‣ Some engines will incorrectly return a success status when calling
cudnnBackendFinalize() with a backend engine descriptor for a bfloat16 problem
on hardware that does not support the bfloat16 type. Attempted execution
of the problem with cudnnBackendExecute() will return the expected status
CUDNN_STATUS_ARCH_MISMATCH.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnNormalizationBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnNormalizationForwardTraining
https://docs.nvidia.com/deeplearning/cudnn/archives/index.html

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 34

‣ Use of cudnnFusedOpsExecute() on NVIDIA Volta compatible architectures hosted on
AArch64 systems may generate incorrect results when used with cudnnFusedOps_t
set to CUDNN_FUSED_SCALE_BIAS_ACTIVATION_WGRAD.

‣ The cuDNN 8.7.0 library may exhibit some slowdowns in wgrad calculation for
EfficientDet, EfficientNet, Mask R-CNN, ResNet, ResNeXt, and SSD layers when it was
built with CUDA Toolkit 10.2.

‣ With CUDA 11.7, the NVRTC library may cause a small memory leak when using the
runtime fusion engine. The issue has been addressed in CUDA Toolkit 11.8 or later.

‣ A compiler bug in NVRTC in CUDA version 11.7 and earlier, was causing incorrect
outputs when computing logical operations on boolean input tensors in the runtime
fusion engine. A workaround has been integrated in this release to avoid the
most common issues. However, it is highly recommended to update to at least
CUDA version 11.7u1 for a fix. Specifically, known failure cases are when pointwise
operations of mode CUDNN_POINTWISE_LOGICAL_NOT, CUDNN_POINTWISE_LOGICAL_AND
or CUDNN_POINTWISE_LOGICAL_OR operates on boolean tensors.

‣ If cuDNN 8.4.1 or earlier statically links with libcudart.so from the CUDA Toolkit
11.7 or later, when the LFL feature is activated, the results from cudnnFind*Algo will
not be accurate.

‣ For packed NCHW tensors using the FP16 datatype, cuDNN attempts to run an
optimized kernel if the values of N, C, H, and W are even. In cuDNN versions before
8.4, it is possible that incorrect values are generated if odd values for the strides of N
or C are used.

‣ The documentation for cudnnReorderFilterAndBias() requires corrections for
clarity.

‣ Some convolution models are experiencing lower performance on NVIDIA RTX
3090 compared to 2080 Ti. This includes EfficientNet with up to 6x performance
difference, UNet up to 1.6x performance difference and Tacotron up to 1.6x
performance difference.

‣ cudnnPoolingForward() with pooling mode CUDNN_POOLING_AVG
might output NaN for pixel in output tensor outside the value
recommended by cudnnGetPoolingNdForwardOutputDim() or
cudnnGetPooling2dForwardOutputDim().

‣ Convolutions (ConvolutionForward, ConvolutionBackwardData, and
ConvolutionBackwardFilter) may experience performance regressions when run
with math type CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION on CUDNN_DATA_FLOAT
data (input and output).

‣ Compared to cuDNN 7.6, there are known performance regressions up to 2x on
select configurations for AlexNet-like models on NVIDIA Turing GPUs.

‣ Compared to cuDNN 8.1.0, there are known performance regressions on certain
dgrad NHWC configurations from FastPitch and WaveGlow models on V100 and
NVIDIA A100 GPUs.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnReorderFilterAndBias
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnPoolingForward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetPoolingNdForwardOutputDim
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetPooling2dForwardOutputDim

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 35

‣ The numeric behavior of INT8 operations including saturation behavior, accumulator
data types, and so on, have not been documented as of yet.

‣ There is a known 25% performance regression for inference on the PyTorch SSD
model on the NVIDIA Turing architecture.

‣ Compared to cuDNN 8.0.5, there is a known ~17% performance regression on SSD
models running on V100.

‣ FFT and Winograd based algorithms for convolution do not support graph capture.

‣ Users of cuDNN 8.4.0 may observe a slowdown in the Single Shot Multibox Detector
(SSD) model. This will be fixed in a future release.

‣ There is a known regression when running some convolutions with filter size 1x1. The
severity would be different depending on which version of the CUDA Toolkit the user
is using.

‣ There is a known regression when running some convolutions with high group count.
The issue is more severe on V100.

‣ On Windows 10, the knob settings of
CUDNN_CONVOLUTION_CUTLASS_ANALYTIC_16816_NHWC_ENGINE and
CUDNN_CONVOLUTION_IMPLICIT_PRECOMPUTED_GEMM_CUTLASS_16816_NHWC_ENGINE are
incorrect. Therefore, these two engines cannot be configured properly. It will impact
the performance of convolution cases that use them on a Windows system.

Compatibility

For the latest compatibility software versions of the OS, CUDA, the CUDA driver, and the
NVIDIA hardware, refer to the NVIDIA cuDNN Support Matrix.

Limitations

‣ In cuDNN 8.8.1 for CUDA 12.x, runtime fusion engines will only work with NVRTC
from CUDA Toolkit 12.0 and 12.1. It is not forward compatible with future CUDA 12.x
Toolkits.

‣ Within the cuDNN version 8 backend API, the following engines are known not to be
thread-safe when executed simultaneously with multiple threads sharing the same
execution plan:

Table 5. Engines That Are Not Thread-Safe

CUDNN_ATTR_ENGINE_GLOBAL_INDEX
convolution
forward

convolution
backward data

convolution
backward
filter cudnnConvolutionBiasActivationForward

A100 ‣ 36

‣ 38

‣ 1

‣ 2

‣ 9

‣ 10

‣ 4024

‣ 4026

https://docs.nvidia.com/deeplearning/sdk/cudnn-support-matrix/index.html#cudnn-cuda-hardware-versions

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 36

CUDNN_ATTR_ENGINE_GLOBAL_INDEX
convolution
forward

convolution
backward data

convolution
backward
filter cudnnConvolutionBiasActivationForward

‣ 45

‣ 46

‣ 47

‣ 48

‣ 3

‣ 19

‣ 22

‣ 25

‣ 26

‣ 28

‣ 40

‣ 46

‣ 51

‣ 56

‣ 57

‣ 58

‣ 59

‣ 60

‣ 65

‣ 21

‣ 23

‣ 33

‣ 37

‣ 47

‣ 48

‣ 49

‣ 50

‣ 4032

‣ 4033

V100 ‣ 8

‣ 9

‣ 10

‣ 12

‣ 16

‣ 26

‣ 30

‣ 31

‣ 34

‣ 42

‣ 49

‣ 1

‣ 2

‣ 3

‣ 8

‣ 12

‣ 13

‣ 19

‣ 21

‣ 25

‣ 26

‣ 29

‣ 37

‣ 38

‣ 44

‣ 6

‣ 7

‣ 21

‣ 35

‣ 36

‣ 43

‣ 44

‣ 51

‣ 52

‣ 4002

‣ 4015

‣ 4008

‣ 4018

‣ 4019

‣ 4020

‣ 4030

T4 ‣ 9

‣ 12

‣ 13

‣ 1

‣ 2

‣ 3

‣ 12

‣ 21

‣ 27

‣ 4015

‣ 4003

‣ 4004

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 37

CUDNN_ATTR_ENGINE_GLOBAL_INDEX
convolution
forward

convolution
backward data

convolution
backward
filter cudnnConvolutionBiasActivationForward

‣ 14

‣ 16

‣ 18

‣ 26

‣ 30

‣ 31

‣ 34

‣ 42

‣ 50

‣ 8

‣ 9

‣ 12

‣ 13

‣ 15

‣ 18

‣ 19

‣ 21

‣ 25

‣ 26

‣ 29

‣ 30

‣ 37

‣ 39

‣ 44

‣ 45

‣ 28

‣ 43

‣ 44

‣ 51

‣ 53

‣ 4009

‣ 4018

‣ 4019

‣ 4020

‣ 4031

‣ The status returned by cudnnBackendFinalize() or cudnnBackendExecute() on a
CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR may change depending on the version
of the dynamic dependencies of cuDNN. As of this writing, only cuBLAS is known to
affect the return status of these function calls.

‣ The functional support criteria of cuDNN's convolution kernels is not required to
consider padding. Users of cuDNN can witness an unexpected lack of problem
support when forward convolution spatial dimensions are less than the filter size and
padding is nonzero but is sufficient to extend spatial dimensions to or beyond filter
dimensions. This is commonly observed with, but not limited to, INT8 convolution
kernels.

‣ When performing batch normalization in cuDNN, the operation is allowed to proceed
if the output tensor strides are overlapping, however, there is no guarantee of
deterministic results.

‣ CUDNN_ATTR_ENGINE_GLOBAL_INDEX = 25 for convolution backwards data (which is
part of legacy CUDNN_CONVOLUTION_BWD_DATA_ALGO_0) does not support tensors in
which the product N*C*H*W of the output gradient tensor equals to or exceeds 2^31.

‣ CUDNN_ATTR_ENGINE_GLOBAL_INDEX =1 for convolution backwards data (which is
part of legacy CUDNN_CONVOLUTION_BWD_DATA_ALGO_1) does not support tensors in
which the product N*H*W of the output gradient tensor equals to or exceeds 2^31.

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 38

This issue has been present in all previous releases of cuDNN and exercising the use
case for the engine would show incorrect results.

‣ The runtime fusion engine is only supported in the cuDNN build based on
CUDA Toolkit 11.2 update 1 or later. It also requires the NVRTC from CUDA
11.2 update 1 or later. If this condition is not satisfied, the error status of
CUDNN_STATUS_NOT_SUPPORTED or CUDNN_STATUS_RUNTIME_PREREQUISITE_MISSING will
be returned.

‣ Samples must be installed in a writable location. If not installed in a writable location,
the samples can crash.

‣ RNN and multihead attention API calls may exhibit nondeterministic behavior when
the cuDNN library is built with CUDA Toolkit 10.2 or higher. This is the result of
a new buffer management and heuristics in the cuBLAS library. As described in
Results Reproducibility, numerical results may not be deterministic when cuBLAS
APIs are launched in more than one CUDA stream using the same cuBLAS handle.
This happens when two buffer sizes (16 KB and 4 MB) are used in the default
configuration.

When a larger buffer size is not available at runtime, instead of waiting for a buffer
of that size to be released, a smaller buffer may be used with a different GPU
kernel. The kernel selection may affect numerical results. The user can eliminate the
nondeterministic behavior of cuDNN RNN and multihead attention APIs, by setting
a single buffer size in the CUBLAS_WORKSPACE_CONFIG environmental variable, for
example, :16:8 or :4096:2.

The first configuration instructs cuBLAS to allocate eight buffers of 16 KB each in
GPU memory while the second setting creates two buffers of 4 MB each. The default
buffer configuration in cuBLAS 10.2 and 11.0 is :16:8:4096:2, that is, we have two
buffer sizes. In earlier cuBLAS libraries, such as cuBLAS 10.0, it used the :16:8 non-
adjustable configuration. When buffers of only one size are available, the behavior of
cuBLAS calls is deterministic in multi-stream setups.

‣ The tensor pointers and the filter pointers require at a minimum 4-byte alignment,
including INT8 data in the cuDNN library.

‣ Some computational options in cuDNN require increased alignment on tensors in
order to run efficiently. As always, cuDNN recommends users to align tensors to
16 byte boundaries that will be sufficiently aligned for any computational option
in cuDNN. Doing otherwise may cause performance regressions in cuDNN 8.0.x
compared to cuDNN v7.6.

‣ For certain algorithms, when the computation is in float (32-bit float) and the output
is in FP16 (half float), there are cases where the numerical accuracy between the
different algorithms might differ. cuDNN 8.0.x users can target the backend API to
query the numerical notes of the algorithms to get the information programmatically.
There are cases where algo0 and algo1 will have a reduced precision accumulation

https://docs.nvidia.com/cuda/cublas/index.html#cublasXtApi_reproducibility

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 39

when users target the legacy API. In all cases, these numerical differences are not
known to affect training accuracy even though they might show up in unit tests.

‣ For the _ALGO_0 algorithm of convolution backward data and backward filter, grouped
convolution with groups larger than 1 and with odd product of dimensions C, D (if 3D
convolution), H, and W is not supported on devices older than NVIDIA Volta. To prevent
a potential illegal memory access by an instruction that only has a 16-bit version in
NVIDIA Volta and later, pad at least one of the dimensions to an even value.

‣ In INT8x32 Tensor Core cases, the parameters supported by cuDNN v7.6 are limited
to W >= (R-1) * dilationW && H >= (S-1) * dilationH, whereas, in cuDNN
v8.0.x, W == (R-1) * dilationW || H == (S-1) * dilationH cases are no longer
supported.

‣ In prior versions of cuDNN, some convolution algorithms can use texture-based
load structure for performance improvements particularly in older hardware
architectures. Users can opt out of using texture using the environmental variable
CUDNN_TEXOFF_DBG. In cuDNN 8.x, this variable is removed. Texture loading is turned
off by default. Users who want to continue to use texture-based load, can adapt the
new backend API, and toggle the engine knob CUDNN_KNOB_TYPE_USE_TEX to 1 for
engines that support texture-based load instructions.

‣ In the backend API, convolution forward engine with
CUDNN_ATTR_ENGINE_GLOBAL_INDEX=1 is not supported when the product (channels
* height * width) of the input image exceeds 536,870,912 that is 2^29.

‣ cudnnSpatialTfSamplerBackward() returns CUDNN_STATUS_NOT_SUPPORTED when the
number of channels exceeds 1024.

‣ When using graph-capture, users should call the sub library version check API (for
example, cudnnOpsInferVersionCheck()) to load the kernels in the sub library before
opening graph capture.

‣ Users of cuDNN must add the dependencies of cuBLAS to the linkers command
explicitly to resolve the undefined symbols from cuDNN static libraries.

‣ Starting in version 8.1, cuDNN uses AVX intrinsics on the x86_64 architecture; users
of this architecture without support for AVX intrinsics may see illegal instruction
errors.

‣ The spatial persistent batch normalization API is only available for NVIDIA Pascal and
later architectures. Pre-Pascal architectures return CUDNN_STATUS_ARCH_MISMATCH
instead. The affected APIs include:

‣ cudnnBatchNormalizationBackward()

‣ cudnnBatchNormalizationBackwardEx()

‣ cudnnBatchNormalizationForwardTraining()

‣ cudnnBatchNormalizationForwardTrainingEx()

‣ cudnnGetBatchNormalizationBackwardExWorkspaceSize()

‣ cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize()

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnSpatialTfSamplerBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnOpsInferVersionCheck
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationBackwardEx
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationForwardTraining
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationForwardTrainingEx
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetBatchNormalizationBackwardExWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 40

‣ cudnnGetBatchNormalizationTrainingExReserveSpaceSize()

‣ cudnnGetNormalizationBackwardWorkspaceSize()

‣ cudnnGetNormalizationForwardTrainingWorkspaceSize()

‣ cudnnGetNormalizationTrainingReserveSpaceSize()

‣ cudnnNormalizationBackward()

‣ cudnnNormalizationForwardTraining()

‣ cudnnAddTensor() performance may regress from 8.2 to 8.3 for pre-Pascal
architectures.

‣ When applications using cuDNN with an older 11.x CUDA toolkit in compatibility
mode are tested with compute-sanitizer, cuGetProcAddress failures with error code
500 will arise due to missing functions. This error can be ignored, or suppressed with
the --report-api-errors no option, as this is due to CUDA backward compatibility
checking if a function is usable with the CUDA toolkit combination. The functions are
introduced in a later version of CUDA but are not available on the current platform.
The absence of these functions is harmless and will not give rise to any functional
issues.

‣ Users of cudnn_cnn_infer_static.a may need to update their application
linkage so that symbols absent in that library are subsequently made available
with cudnn_ops_infer_static.a. On Linux, this is specifying the ops library
after cnn on the linker line. The same applies to cudnn_cnn_train_static.a and
cudnn_ops_train_static.a.

1.6. cuDNN Release 8.8.0
These are the NVIDIA cuDNN 8.8.0 Release Notes. These Release Notes include fixes
from the previous cuDNN releases as well as the following additional changes.

These Release Notes are applicable to both cuDNN and NVIDIA JetPack™ users of cuDNN
unless appended specifically with (not applicable for Jetson platforms).

For previously released cuDNN documentation, refer to the NVIDIA cuDNN Archives.

Announcements

‣ cuDNN 8.7.0 was the last release supporting NVIDIA Kepler (SM 3.x) devices. It has
been removed in cuDNN 8.8.0.

‣ cuDNN 8.8.0 changed the linking procedure of NVRTC in the static build. cuDNN 8.8.0
requires NVRTC to be statically linked in the static build rather than the previous
dynamic linking. This will also remove support for static linking of cuDNN with CUDA
toolkits < 11.5. Refer to the updated instructions in the NVIDIA cuDNN Installation
Guide. There were no changes for the linking procedure in the dynamic build.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetBatchNormalizationTrainingExReserveSpaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetNormalizationBackwardWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetNormalizationForwardTrainingWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetNormalizationTrainingReserveSpaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnNormalizationBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnNormalizationForwardTraining
https://docs.nvidia.com/deeplearning/cudnn/archives/index.html
https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html#install-linux
https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html#install-linux

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 41

Key Features and Enhancements

The following features and enhancements have been added to this release:

‣ This release adds CUDA 12 support.

‣ Added three precompiled engines for instance normalization: instance normalization
forward training engine, instance normalization forward inference engine, and
instance normalization backward engine.

‣ Added three precompiled engines for layer normalization: layer normalization forward
training engine, layer normalization forward inference engine, and layer normalization
backward engine.

‣ Added further fusion patterns possible in Mha-Fprop fusions, which target causal
masking, relative positional embedding bias, and cross attention giving cuDNN
full support for the T5 model. For more information, refer to the Mha-Fprop fusion
pattern in the NVIDIA cuDNN Developer Guide.

‣ Added support for Mha-Bprop fusions using the runtime fusion engine, targeting
MHA training. For more information, refer to the Mha-Bprop fusion pattern in the
NVIDIA cuDNN Developer Guide. The cuDNN implementation provides a speedup of
~2x-3x in BERT and T5 patterns in training over native unfused PyTorch. Samples can
also be found in the cuDNN frontend repository.

‣ Double precision is supported for the CTC loss in the cuDNN 8.x
API by cudnnCTCLoss_v8(), cudnnSetCTCLossDescriptor_v8() and
cudnnGetCTCLossWorkspaceSize_v8(), and in all other cuDNN API
versions by cudnnCTCLoss(), cudnnSetCTCLossDescriptor() and
cudnnGetCTCLossWorkspaceSize().

‣ CUDNN_HEUR_MODE_A supports the following new operation graphs: ConvBNfprop,
ConvBNwgrad, and DgradDreluBNBwdWeight.

‣ The dBNapply and DualdBNapply patterns are now generally supported by the
runtime fusion engine. Heuristics query for these two patterns are also now
supported. This provides more flexible support in data types and also provides a
5% speed up compared to the original pre-compiled specialized engines for these
patterns across a wide range of workloads.

‣ Improved performance for 1D NHWC depthwise convolution.

‣ Improved performance for Tensor Core accelerated FP32 operations on NVIDIA
Hopper.

Fixed Issues

‣ Use of CUDNN_ATTR_ENGINE_GLOBAL_INDEX = 0 for convolution, backward data, and
backward filter batch normalization fusions resulted in a performance regression
in cuDNN v8.7 on NVIDIA Ampere architecture. This has been improved upon in this
release.

https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#op-fusion
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#op-fusion
https://github.com/NVIDIA/cudnn-frontend
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnCTCLoss_v8
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnSetCTCLossDescriptor_v8
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetCTCLossWorkspaceSize_v8
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnCTCLoss_v8
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnSetCTCLossDescriptor_v8
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetCTCLossWorkspaceSize_v8
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#convbnfprop
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#convbnwgrad
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#dgraddrelubnbwdweight
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#dbnapply
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#dualdbnapply

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 42

‣ For NCHW spatially packed input tensors,
cudnnBatchNormalizationForwardInference() with mode
CUDNN_BATCHNORM_SPATIAL or CUDNN_BATCHNORM_SPATIAL_PERSISTENT can now
support up to size 2147483136 (2^31-512) in the spatial dimension (D)HW. For
NCHW spatially packed input tensors, cudnnBatchNormalizationBackward() with
mode CUDNN_BATCHNORM_SPATIAL or CUDNN_BATCHNORM_SPATIAL_PERSISTENT can now
support up to size 2147483136 (2^31-512) in the spatial dimension (D)HW for some
cases.

‣ Use of CUDNN_ATTR_ENGINE_GLOBAL_INDEX = 0 for batch normalization forwards
training and batch normalization backwards could generate illegal memory access
errors for large tensors. This is fixed in this release by limiting the input tensor size to
be less than or equal to 2^31.

‣ Documentation was updated for the API function cudnnReorderFilterAndBias() to
list other possible return statuses and what would cause them to be returned.

‣ The cuDNN static builds no longer dynamically load NVRTC, and therefore requires
static linking of NVRTC instead.

‣ Fixed incorrect RNN results on Pascal family GPUs with 6.0 or 6.1 compute capability,
also in the CUDNN_RNN_ALGO_PERSIST_STATIC_SMALL_H algorithm, in the RNN forward
and backward APIs, when the input data minibatch was divisible by eight, and for
certain hidden size values.

Known Issues

‣ Some engines will incorrectly return a success status when calling
cudnnBackendFinalize() with a backend engine descriptor for a bfloat16 problem
on hardware that does not support the bfloat16 type. Attempted execution
of the problem with cudnnBackendExecute() will return the expected status
CUDNN_STATUS_ARCH_MISMATCH.

‣ Use of cudnnFusedOpsExecute() on NVIDIA Volta compatible architectures hosted on
AArch64 systems may generate incorrect results when used with cudnnFusedOps_t
set to CUDNN_FUSED_SCALE_BIAS_ACTIVATION_WGRAD.

‣ The cuDNN 8.7.0 library may exhibit some slowdowns in wgrad calculation for
EfficientDet, EfficientNet, Mask R-CNN, ResNet, ResNeXt, and SSD layers when it was
built with CUDA Toolkit 10.2.

‣ With CUDA 11.7, the NVRTC library may cause a small memory leak when using the
runtime fusion engine. The issue has been addressed in CUDA Toolkit 11.8 or later.

‣ A compiler bug in NVRTC in CUDA version 11.7 and earlier, was causing incorrect
outputs when computing logical operations on boolean input tensors in the runtime
fusion engine. A workaround has been integrated in this release to avoid the
most common issues. However, it is highly recommended to update to at least
CUDA version 11.7u1 for a fix. Specifically, known failure cases are when pointwise

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 43

operations of mode CUDNN_POINTWISE_LOGICAL_NOT, CUDNN_POINTWISE_LOGICAL_AND
or CUDNN_POINTWISE_LOGICAL_OR operates on boolean tensors.

‣ If cuDNN 8.4.1 or earlier statically links with libcudart.so from the CUDA Toolkit
11.7 or later, when the LFL feature is activated, the results from cudnnFind*Algo will
not be accurate.

‣ For packed NCHW tensors using the FP16 datatype, cuDNN attempts to run an
optimized kernel if the values of N, C, H, and W are even. In cuDNN versions before
8.4, it is possible that incorrect values are generated if odd values for the strides of N
or C are used.

‣ The documentation for cudnnReorderFilterAndBias() requires corrections for
clarity.

‣ Some convolution models are experiencing lower performance on NVIDIA RTX
3090 compared to 2080 Ti. This includes EfficientNet with up to 6x performance
difference, UNet up to 1.6x performance difference and Tacotron up to 1.6x
performance difference.

‣ cudnnPoolingForward() with pooling mode CUDNN_POOLING_AVG
might output NaN for pixel in output tensor outside the value
recommended by cudnnGetPoolingNdForwardOutputDim() or
cudnnGetPooling2dForwardOutputDim().

‣ Convolutions (ConvolutionForward, ConvolutionBackwardData, and
ConvolutionBackwardFilter) may experience performance regressions when run
with math type CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION on CUDNN_DATA_FLOAT
data (input and output).

‣ Compared to cuDNN 7.6, there are known performance regressions up to 2x on
select configurations for AlexNet-like models on NVIDIA Turing GPUs.

‣ Compared to cuDNN 8.1.0, there are known performance regressions on certain
dgrad NHWC configurations from FastPitch and WaveGlow models on V100 and
NVIDIA A100 GPUs.

‣ The numeric behavior of INT8 operations including saturation behavior, accumulator
data types, and so on, have not been documented as of yet.

‣ There is a known 25% performance regression for inference on the PyTorch SSD
model on the NVIDIA Turing architecture.

‣ Compared to cuDNN 8.0.5, there is a known ~17% performance regression on SSD
models running on V100.

‣ FFT and Winograd based algorithms for convolution do not support graph capture.

‣ Users of cuDNN 8.4.0 may observe a slowdown in the Single Shot Multibox Detector
(SSD) model. This will be fixed in a future release.

‣ There is a known regression when running some convolutions with filter size 1x1. The
severity would be different depending on which version of the CUDA Toolkit the user
is using.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnReorderFilterAndBias
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnPoolingForward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetPoolingNdForwardOutputDim
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetPooling2dForwardOutputDim

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 44

‣ There is a known regression when running some convolutions with high group count.
The issue is more severe on V100.

‣ On Windows 10, the knob settings of
CUDNN_CONVOLUTION_CUTLASS_ANALYTIC_16816_NHWC_ENGINE and
CUDNN_CONVOLUTION_IMPLICIT_PRECOMPUTED_GEMM_CUTLASS_16816_NHWC_ENGINE are
incorrect. Therefore, these two engines cannot be configured properly. It will impact
the performance of convolution cases that use them on a Windows system.

Compatibility

For the latest compatibility software versions of the OS, CUDA, the CUDA driver, and the
NVIDIA hardware, refer to the NVIDIA cuDNN Support Matrix.

Limitations

‣ cuDNN 8.8.0 runtime fusion will only work with NVRTC from CUDA ToolKit 12.0. It is
not forward compatible with CUDA Toolkit 12.1 and later.

‣ Within the cuDNN version 8 backend API, the following engines are known not to be
thread-safe when executed simultaneously with multiple threads sharing the same
execution plan:

Table 6. Engines That Are Not Thread-Safe

CUDNN_ATTR_ENGINE_GLOBAL_INDEX
convolution
forward

convolution
backward data

convolution
backward
filter cudnnConvolutionBiasActivationForward

A100 ‣ 36

‣ 38

‣ 45

‣ 46

‣ 47

‣ 48

‣ 1

‣ 2

‣ 3

‣ 19

‣ 22

‣ 25

‣ 26

‣ 28

‣ 40

‣ 46

‣ 51

‣ 56

‣ 57

‣ 58

‣ 9

‣ 10

‣ 21

‣ 23

‣ 33

‣ 37

‣ 47

‣ 48

‣ 49

‣ 50

‣ 4024

‣ 4026

‣ 4032

‣ 4033

https://docs.nvidia.com/deeplearning/sdk/cudnn-support-matrix/index.html#cudnn-cuda-hardware-versions

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 45

CUDNN_ATTR_ENGINE_GLOBAL_INDEX
convolution
forward

convolution
backward data

convolution
backward
filter cudnnConvolutionBiasActivationForward

‣ 59

‣ 60

‣ 65

V100 ‣ 8

‣ 9

‣ 10

‣ 12

‣ 16

‣ 26

‣ 30

‣ 31

‣ 34

‣ 42

‣ 49

‣ 1

‣ 2

‣ 3

‣ 8

‣ 12

‣ 13

‣ 19

‣ 21

‣ 25

‣ 26

‣ 29

‣ 37

‣ 38

‣ 44

‣ 6

‣ 7

‣ 21

‣ 35

‣ 36

‣ 43

‣ 44

‣ 51

‣ 52

‣ 4002

‣ 4015

‣ 4008

‣ 4018

‣ 4019

‣ 4020

‣ 4030

T4 ‣ 9

‣ 12

‣ 13

‣ 14

‣ 16

‣ 18

‣ 26

‣ 30

‣ 31

‣ 34

‣ 42

‣ 50

‣ 1

‣ 2

‣ 3

‣ 8

‣ 9

‣ 12

‣ 13

‣ 15

‣ 18

‣ 19

‣ 21

‣ 25

‣ 26

‣ 29

‣ 30

‣ 12

‣ 21

‣ 27

‣ 28

‣ 43

‣ 44

‣ 51

‣ 53

‣ 4015

‣ 4003

‣ 4004

‣ 4009

‣ 4018

‣ 4019

‣ 4020

‣ 4031

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 46

CUDNN_ATTR_ENGINE_GLOBAL_INDEX
convolution
forward

convolution
backward data

convolution
backward
filter cudnnConvolutionBiasActivationForward

‣ 37

‣ 39

‣ 44

‣ 45

‣ The status returned by cudnnBackendFinalize() or cudnnBackendExecute() on a
CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR may change depending on the version
of the dynamic dependencies of cuDNN. As of this writing, only cuBLAS is known to
affect the return status of these function calls.

‣ The functional support criteria of cuDNN's convolution kernels is not required to
consider padding. Users of cuDNN can witness an unexpected lack of problem
support when forward convolution spatial dimensions are less than the filter size and
padding is nonzero but is sufficient to extend spatial dimensions to or beyond filter
dimensions. This is commonly observed with, but not limited to, INT8 convolution
kernels.

‣ When performing batch normalization in cuDNN, the operation is allowed to proceed
if the output tensor strides are overlapping, however, there is no guarantee of
deterministic results.

‣ CUDNN_ATTR_ENGINE_GLOBAL_INDEX = 25 for convolution backwards data (which is
part of legacy CUDNN_CONVOLUTION_BWD_DATA_ALGO_0) does not support tensors in
which the product N*C*H*W of the output gradient tensor equals to or exceeds 2^31.

‣ CUDNN_ATTR_ENGINE_GLOBAL_INDEX =1 for convolution backwards data (which is
part of legacy CUDNN_CONVOLUTION_BWD_DATA_ALGO_1) does not support tensors in
which the product N*H*W of the output gradient tensor equals to or exceeds 2^31.
This issue has been present in all previous releases of cuDNN and exercising the use
case for the engine would show incorrect results.

‣ The runtime fusion engine is only supported in the cuDNN build based on
CUDA Toolkit 11.2 update 1 or later. It also requires the NVRTC from CUDA
11.2 update 1 or later. If this condition is not satisfied, the error status of
CUDNN_STATUS_NOT_SUPPORTED or CUDNN_STATUS_RUNTIME_PREREQUISITE_MISSING will
be returned.

‣ Samples must be installed in a writable location. If not installed in a writable location,
the samples can crash.

‣ RNN and multihead attention API calls may exhibit nondeterministic behavior when
the cuDNN library is built with CUDA Toolkit 10.2 or higher. This is the result of
a new buffer management and heuristics in the cuBLAS library. As described in
Results Reproducibility, numerical results may not be deterministic when cuBLAS
APIs are launched in more than one CUDA stream using the same cuBLAS handle.

https://docs.nvidia.com/cuda/cublas/index.html#cublasXtApi_reproducibility

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 47

This happens when two buffer sizes (16 KB and 4 MB) are used in the default
configuration.

When a larger buffer size is not available at runtime, instead of waiting for a buffer
of that size to be released, a smaller buffer may be used with a different GPU
kernel. The kernel selection may affect numerical results. The user can eliminate the
nondeterministic behavior of cuDNN RNN and multihead attention APIs, by setting
a single buffer size in the CUBLAS_WORKSPACE_CONFIG environmental variable, for
example, :16:8 or :4096:2.

The first configuration instructs cuBLAS to allocate eight buffers of 16 KB each in
GPU memory while the second setting creates two buffers of 4 MB each. The default
buffer configuration in cuBLAS 10.2 and 11.0 is :16:8:4096:2, that is, we have two
buffer sizes. In earlier cuBLAS libraries, such as cuBLAS 10.0, it used the :16:8 non-
adjustable configuration. When buffers of only one size are available, the behavior of
cuBLAS calls is deterministic in multi-stream setups.

‣ The tensor pointers and the filter pointers require at a minimum 4-byte alignment,
including INT8 data in the cuDNN library.

‣ Some computational options in cuDNN require increased alignment on tensors in
order to run efficiently. As always, cuDNN recommends users to align tensors to
16 byte boundaries that will be sufficiently aligned for any computational option
in cuDNN. Doing otherwise may cause performance regressions in cuDNN 8.0.x
compared to cuDNN v7.6.

‣ For certain algorithms, when the computation is in float (32-bit float) and the output
is in FP16 (half float), there are cases where the numerical accuracy between the
different algorithms might differ. cuDNN 8.0.x users can target the backend API to
query the numerical notes of the algorithms to get the information programmatically.
There are cases where algo0 and algo1 will have a reduced precision accumulation
when users target the legacy API. In all cases, these numerical differences are not
known to affect training accuracy even though they might show up in unit tests.

‣ For the _ALGO_0 algorithm of convolution backward data and backward filter, grouped
convolution with groups larger than 1 and with odd product of dimensions C, D (if 3D
convolution), H, and W is not supported on devices older than NVIDIA Volta. To prevent
a potential illegal memory access by an instruction that only has a 16-bit version in
NVIDIA Volta and later, pad at least one of the dimensions to an even value.

‣ In INT8x32 Tensor Core cases, the parameters supported by cuDNN v7.6 are limited
to W >= (R-1) * dilationW && H >= (S-1) * dilationH, whereas, in cuDNN
v8.0.x, W == (R-1) * dilationW || H == (S-1) * dilationH cases are no longer
supported.

‣ In prior versions of cuDNN, some convolution algorithms can use texture-based
load structure for performance improvements particularly in older hardware
architectures. Users can opt out of using texture using the environmental variable
CUDNN_TEXOFF_DBG. In cuDNN 8.x, this variable is removed. Texture loading is turned

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 48

off by default. Users who want to continue to use texture-based load, can adapt the
new backend API, and toggle the engine knob CUDNN_KNOB_TYPE_USE_TEX to 1 for
engines that support texture-based load instructions.

‣ In the backend API, convolution forward engine with
CUDNN_ATTR_ENGINE_GLOBAL_INDEX=1 is not supported when the product (channels
* height * width) of the input image exceeds 536,870,912 that is 2^29.

‣ cudnnSpatialTfSamplerBackward() returns CUDNN_STATUS_NOT_SUPPORTED when the
number of channels exceeds 1024.

‣ When using graph-capture, users should call the sub library version check API (for
example, cudnnOpsInferVersionCheck()) to load the kernels in the sub library before
opening graph capture.

‣ Users of cuDNN must add the dependencies of cuBLAS to the linkers command
explicitly to resolve the undefined symbols from cuDNN static libraries.

‣ Starting in version 8.1, cuDNN uses AVX intrinsics on the x86_64 architecture; users
of this architecture without support for AVX intrinsics may see illegal instruction
errors.

‣ The spatial persistent batch normalization API is only available for NVIDIA Pascal and
later architectures. Pre-Pascal architectures return CUDNN_STATUS_ARCH_MISMATCH
instead. The affected APIs include:

‣ cudnnBatchNormalizationBackward()

‣ cudnnBatchNormalizationBackwardEx()

‣ cudnnBatchNormalizationForwardTraining()

‣ cudnnBatchNormalizationForwardTrainingEx()

‣ cudnnGetBatchNormalizationBackwardExWorkspaceSize()

‣ cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize()

‣ cudnnGetBatchNormalizationTrainingExReserveSpaceSize()

‣ cudnnGetNormalizationBackwardWorkspaceSize()

‣ cudnnGetNormalizationForwardTrainingWorkspaceSize()

‣ cudnnGetNormalizationTrainingReserveSpaceSize()

‣ cudnnNormalizationBackward()

‣ cudnnNormalizationForwardTraining()

‣ cudnnAddTensor() performance may regress from 8.2 to 8.3 for pre-Pascal
architectures.

‣ When applications using cuDNN with an older 11.x CUDA toolkit in compatibility
mode are tested with compute-sanitizer, cuGetProcAddress failures with error code
500 will arise due to missing functions. This error can be ignored, or suppressed with
the --report-api-errors no option, as this is due to CUDA backward compatibility
checking if a function is usable with the CUDA toolkit combination. The functions are
introduced in a later version of CUDA but are not available on the current platform.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnSpatialTfSamplerBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnOpsInferVersionCheck
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationBackwardEx
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationForwardTraining
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationForwardTrainingEx
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetBatchNormalizationBackwardExWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetBatchNormalizationTrainingExReserveSpaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetNormalizationBackwardWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetNormalizationForwardTrainingWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetNormalizationTrainingReserveSpaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnNormalizationBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnNormalizationForwardTraining

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 49

The absence of these functions is harmless and will not give rise to any functional
issues.

‣ Users of cudnn_cnn_infer_static.a may need to update their application
linkage so that symbols absent in that library are subsequently made available
with cudnn_ops_infer_static.a. On Linux, this is specifying the ops library
after cnn on the linker line. The same applies to cudnn_cnn_train_static.a and
cudnn_ops_train_static.a.

Deprecated and Removed Features

The following features are deprecated in cuDNN 8.8.0:

‣ cuDNN 8.7.0 was the last release supporting NVIDIA Kepler (SM 3.x) devices. It has
been removed in cuDNN 8.8.0.

1.7. cuDNN Release 8.7.0
These are the NVIDIA cuDNN 8.7.0 Release Notes. These Release Notes include fixes
from the previous cuDNN releases as well as the following additional changes.

These Release Notes are applicable to both cuDNN and NVIDIA JetPack™ users of cuDNN
unless appended specifically with (not applicable for Jetson platforms).

For previously released cuDNN documentation, refer to the NVIDIA cuDNN Archives.

Key Features and Enhancements

‣ Added the cudnnRngDistribution_t, CUDNN_BACKEND_OPERATION_RNG_DESCRIPTOR
and CUDNN_BACKEND_RNG_DESCRIPTOR functions to the Backend API. This new
operation helps a cuDNN graph to create a tensor using a probability distribution
which can then be used as an input to other operations. For example, it can be used
as a mask in dropout. Currently, it has limited support via the runtime fusion engine
in particular patterns. For more information refer to the NVIDIA cuDNN Developer
Guide. Support will be extended in future versions. For more information, refer to the
NVIDIA cuDNN Backend API documentation.

‣ Added support for MatMul-MatMul fusions via the runtime fusion engine, targeting
MHA inference. For more information, refer to the MatMul-MatMul fusion pattern in
the NVIDIA cuDNN Developer Guide. The cuDNN implementation provides a speedup
of ~4x-4.5x in BERT and T5 patterns in inference over native unfused PyTorch.

‣ Added native NVIDIA Hopper support for matrix multiplication and its fusions in
FP16 mixed precision (FP16 I/O with FP32 compute), which improves performance of
matmul ops on Hopper compared to cuDNN 8.6.0.

‣ Added FP8 input support for convolution backward data and backward weights
operations, with two possible compute precision types CUDNN_DATA_FLOAT and
CUDNN_DATA_FAST_FLOAT_FOR_FP8 (faster but lower precision).

https://docs.nvidia.com/deeplearning/cudnn/archives/index.html
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#op-fusion
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#op-fusion
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnn-backend-api
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#op-fusion

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 50

‣ cudnnPoolingBackward() enables both x and y data pointers (together with the
related tensor descriptor handles) to be NULL for avg-pooling. This could save
memory footprint and bandwidth.

‣ Added support for ConvBNfprop and ConvBNwgrad fusion patterns on NVIDIA Hopper
GPU’s. For more information, refer to the ConvBNfprop and ConvBNwgrad patterns
listed in the NVIDIA cuDNN Developer Guide.

‣ Additional tensor layout support was added for the forward and backwards
resampling modes that were added in cuDNN 8.6.0.

Fixed Issues

‣ The backend engine 6000 was not respecting the CUDNN_KNOB_TYPE_TILE_SIZE knob
that was passed by the user and it had runtime failures on Windows. Both of these
issues have been fixed in this release.

‣ In CUDA graph capture mode, CUDA streams internal to cuDNN were not guaranteed
to have the same priority as the user stream that is set by cudnnSetStream(). This
issue is fixed in cuDNN 8.7.0, but requires CUDA 11.8 or later.

‣ On Turing, Volta, Kepler, and Maxwell GPUs, 3D convolutions used to exhibit some
slowdowns when the padding size was larger than the filter size. 2D convolutions
used to encounter an illegal memory access error when the padding size was larger
than the filter size and the horizontal stride was larger than 1. These issues have
been fixed in this release.

‣ The performance of the runtime fusion engine was suboptimal on Windows. This has
been fixed in this release.

‣ Users of cuDNN's CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING could see
CUDNN_STATUS_BAD_PARAM returned for a problem that should otherwise be supported
by that choice of algo. This has been fixed in this release.

‣ cudnnDropoutForward() and cudnnDropoutBackward() would return incorrect results
when input and/or output tensors have overlapping strides. This issue has been fixed
in this release.

‣ Users of CUDNN_ATTR_ENGINE_GLOBAL_INDEX = 0 for batch normalization forwards
training and batch normalization backwards could obtain incorrect results when the
batch size was greater than 1 and when channel count was not evenly divisible by
8. These values of CUDNN_ATTR_ENGINE_GLOBAL_INDEX correspond to newly added
multi-GPU batch normalization support within cuDNN 8.5. Use of single-GPU batch
normalization was unaffected by this issue. This limitation has been fixed in this
release.

‣ In cuDNN 8.5 built with CUDA 11.x, all RNN APIs started to use internal
CUDA streams of the same priority as the user stream passed through the
cudnnSetStream() function. This update introduced a bug. When the internal
heuristic decided to transpose RNN weights in cudnnRNNForward()or corresponding,
deprecated functions: cudnnRNNForwardInference(), cudnnRNNForwardTraining(),

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnPoolingBackward
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#convbnfprop

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 51

cudnnRNNForwardInferenceEx(), cudnnRNNForwardTrainingEx(), and
cudnnRNNAlgo_t was set to CUDNN_RNN_ALGO_STANDARD, the matrix transposition
was performed in the synchronous stream 0 instead of a CUDA stream of the
same priority as user stream. This caused serial execution of transpose kernels and
excessive synchronization in the initial stage of the forward API. The bug affected
cuDNN 8.5 and 8.6 built with both CUDA 11.x and CUDA 10.2. This issue has been
fixed in this release.

‣ cudnnNormalizationForwardTraining() did not support BFLOAT16. If an input
tensor used BFLOAT16, the API would return BAD_PARAM. This issue has been fixed in
this release.

Known Issues

‣ Use of cudnnFusedOpsExecute() on Volta compatible architectures hosted on
AArch64 systems may generate incorrect results when used with cudnnFusedOps_t
set to CUDNN_FUSED_SCALE_BIAS_ACTIVATION_WGRAD.

‣ The cuDNN 8.7.0 library may exhibit some slowdowns in wgrad calculation for
EfficientDet, EfficientNet, Mask R-CNN, ResNet, ResNeXt, and SSD layers when it was
built with CUDA Toolkit 10.2.

‣ With CUDA 11.7, the NVRTC library may cause a small memory leak when using the
runtime fusion engine. The issue has been addressed in CUDA Toolkit 11.8 or later.

‣ A compiler bug in NVRTC in CUDA version 11.7 and earlier, was causing incorrect
outputs when computing logical operations on boolean input tensors in the runtime
fusion engine. A workaround has been integrated in this release to avoid the
most common issues. However, it is highly recommended to update to at least
CUDA version 11.7u1 for a fix. Specifically, known failure cases are when pointwise
operations of mode CUDNN_POINTWISE_LOGICAL_NOT, CUDNN_POINTWISE_LOGICAL_AND
or CUDNN_POINTWISE_LOGICAL_OR operates on boolean tensors.

‣ If cuDNN 8.4.1 or earlier statically links with libcudart.so from the CUDA Toolkit
11.7 or later, when the LFL feature is activated, the results from cudnnFind*Algo will
not be accurate.

‣ For packed NCHW tensors using the FP16 datatype, cuDNN attempts to run an
optimized kernel if the values of N, C, H, and W are even. In cuDNN versions before
8.4, it is possible that incorrect values are generated if odd values for the strides of N
or C are used.

‣ The documentation for cudnnReorderFilterAndBias() requires corrections for
clarity.

‣ Some convolution models are experiencing lower performance on NVIDIA RTX
3090 compared to 2080 Ti. This includes EfficientNet with up to 6x performance
difference, UNet up to 1.6x performance difference and Tacotron up to 1.6x
performance difference.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnNormalizationForwardTraining
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnReorderFilterAndBias

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 52

‣ cudnnPoolingForward() with pooling mode CUDNN_POOLING_AVG
might output NaN for pixel in output tensor outside the value
recommended by cudnnGetPoolingNdForwardOutputDim() or
cudnnGetPooling2dForwardOutputDim().

‣ Convolutions (ConvolutionForward, ConvolutionBackwardData, and
ConvolutionBackwardFilter) may experience performance regressions when run
with math type CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION on CUDNN_DATA_FLOAT
data (input and output).

‣ Compared to cuDNN 7.6, there are known performance regressions up to 2x on
select configurations for AlexNet-like models on NVIDIA Turing GPUs.

‣ Compared to cuDNN 8.1.0, there are known performance regressions on certain
dgrad NHWC configurations from FastPitch and WaveGlow models on V100 and
NVIDIA A100 GPUs.

‣ The numeric behavior of INT8 operations including saturation behavior, accumulator
data types, and so on, have not been documented as of yet.

‣ There is a known 25% performance regression for inference on the PyTorch SSD
model on the NVIDIA Turing architecture.

‣ Compared to cuDNN 8.0.5, there is a known ~17% performance regression on SSD
models running on V100.

‣ FFT and Winograd based algorithms for convolution do not support graph capture.

‣ Users of cuDNN 8.4.0 may observe a slowdown in the Single Shot Multibox Detector
(SSD) model. This will be fixed in a future release.

‣ There is a known regression when running some convolutions with filter size 1x1. The
severity would be different depending on which version of the CUDA Toolkit the user
is using.

‣ There is a known regression when running some convolutions with high group count.
The issue is more severe on V100.

‣ On Windows 10, the knob settings of
CUDNN_CONVOLUTION_CUTLASS_ANALYTIC_16816_NHWC_ENGINE and
CUDNN_CONVOLUTION_IMPLICIT_PRECOMPUTED_GEMM_CUTLASS_16816_NHWC_ENGINE are
incorrect. Therefore, these two engines cannot be configured properly. It will impact
the performance of convolution cases that use them on a Windows system.

Compatibility

For the latest compatibility software versions of the OS, CUDA, the CUDA driver, and the
NVIDIA hardware, refer to the NVIDIA cuDNN Support Matrix.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnPoolingForward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetPoolingNdForwardOutputDim
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetPooling2dForwardOutputDim
https://docs.nvidia.com/deeplearning/sdk/cudnn-support-matrix/index.html#cudnn-cuda-hardware-versions

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 53

Limitations

‣ Within the cuDNN version 8 backend API, the following engines are known to not be
thread-safe when executed simultaneously with multiple threads sharing the same
execution plan:

Table 7. Engines That Are Not Thread-Safe

CUDNN_ATTR_ENGINE_GLOBAL_INDEX
convolution
forward

convolution
backward data

convolution
backward
filter cudnnConvolutionBiasActivationForward

A100 ‣ 36

‣ 38

‣ 45

‣ 46

‣ 47

‣ 48

‣ 1

‣ 2

‣ 3

‣ 19

‣ 22

‣ 25

‣ 26

‣ 28

‣ 40

‣ 46

‣ 51

‣ 56

‣ 57

‣ 58

‣ 59

‣ 60

‣ 65

‣ 9

‣ 10

‣ 21

‣ 23

‣ 33

‣ 37

‣ 47

‣ 48

‣ 49

‣ 50

‣ 4024

‣ 4026

‣ 4032

‣ 4033

V100 ‣ 8

‣ 9

‣ 10

‣ 12

‣ 16

‣ 26

‣ 30

‣ 31

‣ 1

‣ 2

‣ 3

‣ 8

‣ 12

‣ 13

‣ 19

‣ 21

‣ 6

‣ 7

‣ 21

‣ 35

‣ 36

‣ 43

‣ 44

‣ 51

‣ 4002

‣ 4015

‣ 4008

‣ 4018

‣ 4019

‣ 4020

‣ 4030

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 54

CUDNN_ATTR_ENGINE_GLOBAL_INDEX
convolution
forward

convolution
backward data

convolution
backward
filter cudnnConvolutionBiasActivationForward

‣ 34

‣ 42

‣ 49

‣ 25

‣ 26

‣ 29

‣ 37

‣ 38

‣ 44

‣ 52

T4 ‣ 9

‣ 12

‣ 13

‣ 14

‣ 16

‣ 18

‣ 26

‣ 30

‣ 31

‣ 34

‣ 42

‣ 50

‣ 1

‣ 2

‣ 3

‣ 8

‣ 9

‣ 12

‣ 13

‣ 15

‣ 18

‣ 19

‣ 21

‣ 25

‣ 26

‣ 29

‣ 30

‣ 37

‣ 39

‣ 44

‣ 45

‣ 12

‣ 21

‣ 27

‣ 28

‣ 43

‣ 44

‣ 51

‣ 53

‣ 4015

‣ 4003

‣ 4004

‣ 4009

‣ 4018

‣ 4019

‣ 4020

‣ 4031

‣ The status returned by cudnnBackendFinalize() or cudnnBackendExecute() on a
CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR may change depending on the version
of the dynamic dependencies of cuDNN. As of this writing, only cuBLAS is known to
affect the return status of these function calls.

‣ The cuDNN static builds load NVRTC dynamically when using the runtime fusion
engine.

‣ The functional support criteria of cuDNN's convolution kernels is not required to
consider padding. Users of cuDNN can witness an unexpected lack of problem

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 55

support when forward convolution spatial dimensions are less than the filter size and
padding is nonzero but is sufficient to extend spatial dimensions to or beyond filter
dimensions. This is commonly observed with, but not limited to, INT8 convolution
kernels.

‣ When performing batch normalization in cuDNN, the operation is allowed to proceed
if the output tensor strides are overlapping, however, there is no guarantee of
deterministic results.

‣ CUDNN_ATTR_ENGINE_GLOBAL_INDEX = 25 for convolution backwards data (which is
part of legacy CUDNN_CONVOLUTION_BWD_DATA_ALGO_0) does not support tensors in
which the product N*C*H*W of the output gradient tensor equals to or exceeds 2^31.

‣ CUDNN_ATTR_ENGINE_GLOBAL_INDEX =1 for convolution backwards data (which is
part of legacy CUDNN_CONVOLUTION_BWD_DATA_ALGO_1) does not support tensors in
which the product N*H*W of the output gradient tensor equals to or exceeds 2^31.
This issue has been present in all previous releases of cuDNN and exercising the use
case for the engine would show incorrect results.

‣ The runtime fusion engine is only supported in the cuDNN build based on
CUDA Toolkit 11.2 update 1 or later. It also requires the NVRTC from CUDA
11.2 update 1 or later. If this condition is not satisfied, the error status of
CUDNN_STATUS_NOT_SUPPORTED or CUDNN_STATUS_RUNTIME_PREREQUISITE_MISSING will
be returned.

‣ Samples must be installed in a writable location. If not installed in a writable location,
the samples can crash.

‣ RNN and multihead attention API calls may exhibit nondeterministic behavior when
the cuDNN library is built with CUDA Toolkit 10.2 or higher. This is the result of
a new buffer management and heuristics in the cuBLAS library. As described in
Results Reproducibility, numerical results may not be deterministic when cuBLAS
APIs are launched in more than one CUDA stream using the same cuBLAS handle.
This happens when two buffer sizes (16 KB and 4 MB) are used in the default
configuration.

When a larger buffer size is not available at runtime, instead of waiting for a buffer
of that size to be released, a smaller buffer may be used with a different GPU
kernel. The kernel selection may affect numerical results. The user can eliminate the
nondeterministic behavior of cuDNN RNN and multihead attention APIs, by setting
a single buffer size in the CUBLAS_WORKSPACE_CONFIG environmental variable, for
example, :16:8 or :4096:2.

The first configuration instructs cuBLAS to allocate eight buffers of 16 KB each in
GPU memory while the second setting creates two buffers of 4 MB each. The default
buffer configuration in cuBLAS 10.2 and 11.0 is :16:8:4096:2, that is, we have two
buffer sizes. In earlier cuBLAS libraries, such as cuBLAS 10.0, it used the :16:8 non-
adjustable configuration. When buffers of only one size are available, the behavior of
cuBLAS calls is deterministic in multi-stream setups.

https://docs.nvidia.com/cuda/cublas/index.html#cublasXtApi_reproducibility

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 56

‣ The tensor pointers and the filter pointers require at a minimum 4-byte alignment,
including INT8 data in the cuDNN library.

‣ Some computational options in cuDNN require increased alignment on tensors in
order to run efficiently. As always, cuDNN recommends users to align tensors to
16 byte boundaries that will be sufficiently aligned for any computational option
in cuDNN. Doing otherwise may cause performance regressions in cuDNN 8.0.x
compared to cuDNN v7.6.

‣ For certain algorithms, when the computation is in float (32-bit float) and the output
is in FP16 (half float), there are cases where the numerical accuracy between the
different algorithms might differ. cuDNN 8.0.x users can target the backend API to
query the numerical notes of the algorithms to get the information programmatically.
There are cases where algo0 and algo1 will have a reduced precision accumulation
when users target the legacy API. In all cases, these numerical differences are not
known to affect training accuracy even though they might show up in unit tests.

‣ For the _ALGO_0 algorithm of convolution backward data and backward filter, grouped
convolution with groups larger than 1 and with odd product of dimensions C, D (if 3D
convolution), H, and W is not supported on devices older than NVIDIA Volta. To prevent
a potential illegal memory access by an instruction that only has a 16-bit version in
NVIDIA Volta and later, pad at least one of the dimensions to an even value.

‣ In INT8x32 Tensor Core cases, the parameters supported by cuDNN v7.6 are limited
to W >= (R-1) * dilationW && H >= (S-1) * dilationH, whereas, in cuDNN
v8.0.x, W == (R-1) * dilationW || H == (S-1) * dilationH cases are no longer
supported.

‣ In prior versions of cuDNN, some convolution algorithms can use texture-based
load structure for performance improvements particularly in older hardware
architectures. Users can opt out of using texture using the environmental variable
CUDNN_TEXOFF_DBG. In cuDNN 8.x, this variable is removed. Texture loading is turned
off by default. Users who want to continue to use texture-based load, can adapt the
new backend API, and toggle the engine knob CUDNN_KNOB_TYPE_USE_TEX to 1 for
engines that support texture-based load instructions.

‣ In the backend API, convolution forward engine with
CUDNN_ATTR_ENGINE_GLOBAL_INDEX=1 is not supported when the product (channels
* height * width) of the input image exceeds 536,870,912 that is 2^29.

‣ cudnnSpatialTfSamplerBackward() returns CUDNN_STATUS_NOT_SUPPORTED when the
number of channels exceeds 1024.

‣ When using graph-capture, users should call the sub library version check API (for
example, cudnnOpsInferVersionCheck()) to load the kernels in the sub library before
opening graph capture.

‣ Users of cuDNN must add the dependencies of cuBLAS to the linkers command
explicitly to resolve the undefined symbols from cuDNN static libraries.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnSpatialTfSamplerBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnOpsInferVersionCheck

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 57

‣ Starting in version 8.1, cuDNN uses AVX intrinsics on the x86_64 architecture; users
of this architecture without support for AVX intrinsics may see illegal instruction
errors.

‣ The spatial persistent batch normalization API is only available for NVIDIA Pascal and
later architectures. Pre-Pascal architectures return CUDNN_STATUS_ARCH_MISMATCH
instead. The affected APIs include:

‣ cudnnBatchNormalizationBackward()

‣ cudnnBatchNormalizationBackwardEx()

‣ cudnnBatchNormalizationForwardTraining()

‣ cudnnBatchNormalizationForwardTrainingEx()

‣ cudnnGetBatchNormalizationBackwardExWorkspaceSize()

‣ cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize()

‣ cudnnGetBatchNormalizationTrainingExReserveSpaceSize()

‣ cudnnGetNormalizationBackwardWorkspaceSize()

‣ cudnnGetNormalizationForwardTrainingWorkspaceSize()

‣ cudnnGetNormalizationTrainingReserveSpaceSize()

‣ cudnnNormalizationBackward()

‣ cudnnNormalizationForwardTraining()

‣ cudnnAddTensor() performance may regress from 8.2 to 8.3 for pre-Pascal
architectures.

‣ When applications using cuDNN with an older 11.x CUDA toolkit in compatibility
mode are tested with compute-sanitizer, cuGetProcAddress failures with error code
500 will arise due to missing functions. This error can be ignored, or suppressed with
the --report-api-errors no option, as this is due to CUDA backward compatibility
checking if a function is usable with the CUDA toolkit combination. The functions are
introduced in a later version of CUDA but are not available on the current platform.
The absence of these functions is harmless and will not give rise to any functional
issues.

‣ Users of cudnn_cnn_infer_static.a may need to update their application
linkage so that symbols absent in that library are subsequently made available
with cudnn_ops_infer_static.a. On Linux, this is specifying the ops library
after cnn on the linker line. The same applies to cudnn_cnn_train_static.a and
cudnn_ops_train_static.a.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationBackwardEx
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationForwardTraining
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationForwardTrainingEx
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetBatchNormalizationBackwardExWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetBatchNormalizationTrainingExReserveSpaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetNormalizationBackwardWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetNormalizationForwardTrainingWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetNormalizationTrainingReserveSpaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnNormalizationBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnNormalizationForwardTraining

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 58

1.8. cuDNN Release 8.6.0
These are the NVIDIA cuDNN 8.6.0 Release Notes. These Release Notes include fixes
from the previous cuDNN releases as well as the following additional changes.

These Release Notes are applicable to both cuDNN and NVIDIA JetPack™ users of cuDNN
unless appended specifically with (not applicable for Jetson platforms).

For previously released cuDNN documentation, refer to the NVIDIA cuDNN Archives.

Key Features and Enhancements

The following features and enhancements have been added to this release:

‣ Added support for the NVIDIA Hopper™ (H100) architecture.

‣ Added support for FP8 on H100 using the runtime fusion engine. Support is currently
limited to convolution forward. We will release code examples in the cuDNN frontend
GitHub repository shortly.

‣ Added support for the NVIDIA Ada Lovelace architecture.

‣ Added support for the following new resampling modes:

‣ Resampling forward: CUDNN_RESAMPLE_AVGPOOL_EXCLUDE_PADDING

‣ Resampling backward: CUDNN_RESAMPLE_AVGPOOL_EXCLUDE_PADDING,
CUDNN_RESAMPLE_AVGPOOL_INCLUDE_PADDING, and CUDNN_RESAMPLE_MAXPOOL

Fixed Issues

The following issues have been fixed in this release:

‣ CUDNN_ATTR_ENGINE_GLOBAL_INDEX 58 for forward convolution, 63 for backwards
data, and 62 for backwards filter used to falsely advertise the Tensor Core numerical
note on SM 7.2 and SM 7.5 when running FP32 input, FP32 output, and FP32
accumulation convolutions. They are fixed in this release and correctly advertise non
Tensor Core numerical notes.

‣ CUDNN_ATTR_ENGINE_GLOBAL_INDEX 58 for forward convolution, 63 for backwards
data, and 62 for backwards filter used to allow tensor alignments of less than 16
bytes. To execute the advertised tensor core property, they have been fixed to require
16 byte alignment.

‣ With the cuDNN version 8 backend API, CUDNN_ATTR_ENGINE_GLOBAL_INDEX=1 for
forward convolution is not thread-safe when being executed simultaneously with
multi-threads that share the same execution plan. This issue has been fixed in this
release.

‣ cudNN 8.5.0 introduced the approximated version of GELU for
both forward and backward paths as new pointwise modes. While

https://docs.nvidia.com/deeplearning/cudnn/archives/index.html
https://github.com/NVIDIA/cudnn-frontend
https://github.com/NVIDIA/cudnn-frontend

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 59

CUDNN_POINTWISE_GELU_APPROX_TANH_FWD introduced a performance improvement
over CUDNN_POINTWISE_GELU_FWD, CUDNN_POINTWISE_GELU_APPROX_TANH_BWD was
showing regressions compared to CUDNN_POINTWISE_GELU_BWD. This has now been
addressed, and the approximated version of backward GELU is now showing slight
improvements.

Known Issues

‣ On Turing, Volta, Kepler, and Maxwell GPUs, 3D convolutions may exhibit some
slowdowns when the padding size is larger than the filter size. 2D convolutions may
encounter an illegal memory access error when the padding size is larger than the
filter size and the horizontal stride is larger than 1. This issue will be resolved in the
next release.

‣ The performance of the runtime fusion engine is suboptimal on Windows.

‣ Use of cudnnFusedOpsExecute() on Volta compatible architectures hosted on
AArch64 systems may generate incorrect results when used with cudnnFusedOps_t
set to CUDNN_FUSED_SCALE_BIAS_ACTIVATION_WGRAD.

‣ The cuDNN 8.6.0 library may exhibit some slowdowns in wgrad calculation for
EfficientDet, EfficientNet, Mask R-CNN, ResNet, ResNeXt, and SSD layers when it was
built with CUDA Toolkit 10.2.

‣ cudnnNormalizationForwardTraining() does not currently support BFLOAT16. If an
input tensor uses BFLOAT16, the API will return BAD_PARAM.

‣ With CUDA 11.7, the NVRTC library may cause a small memory leak when using
the runtime fusion engine. The issue has been addressed in the next CUDA Toolkit
update.

‣ A compiler bug in NVRTC in CUDA version 11.7 and earlier, was causing incorrect
outputs when computing logical operations on boolean input tensors in the runtime
fusion engine. A workaround has been integrated in this release to avoid the
most common issues. However, it is highly recommended to update to at least
CUDA version 11.7u1 for a fix. Specifically, known failure cases are when pointwise
operations of mode CUDNN_POINTWISE_LOGICAL_NOT, CUDNN_POINTWISE_LOGICAL_AND
or CUDNN_POINTWISE_LOGICAL_OR operates on boolean tensors.

‣ If cuDNN 8.4.1 or earlier statically links with libcudart.so from the CUDA Toolkit
11.7 or later, when the LFL feature is activated, the results from cudnnFind*Algo will
not be accurate.

‣ For packed NCHW tensors using the FP16 datatype, cuDNN attempts to run an
optimized kernel if the values of N, C, H, and W are even. In cuDNN versions before
8.4, it is possible that incorrect values are generated if odd values for the strides of N
or C are used.

‣ Users of cuDNN's CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING may see
CUDNN_STATUS_BAD_PARAM returned for a problem that should otherwise be supported
by that choice of algo.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnNormalizationForwardTraining

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 60

‣ cudnnDropoutForward() and cudnnDropoutBackward() will return incorrect results
when input or output tensors have overlapping strides.

‣ The documentation for cudnnReorderFilterAndBias() requires corrections for
clarity.

‣ Some convolution models are experiencing lower performance on NVIDIA RTX
3090 compared to 2080 Ti. This includes EfficientNet with up to 6x performance
difference, UNet up to 1.6x performance difference and Tacotron up to 1.6x
performance difference.

‣ cudnnPoolingForward() with pooling mode CUDNN_POOLING_AVG
might output NaN for pixel in output tensor outside the value
recommended by cudnnGetPoolingNdForwardOutputDim() or
cudnnGetPooling2dForwardOutputDim().

‣ Convolutions (ConvolutionForward, ConvolutionBackwardData, and
ConvolutionBackwardFilter) may experience performance regressions when run
with math type CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION on CUDNN_DATA_FLOAT
data (input and output).

‣ Compared to cuDNN 7.6, there are known performance regressions up to 2x on
select configurations for AlexNet-like models on NVIDIA Turing GPUs.

‣ Compared to cuDNN 8.1.0, there are known performance regressions on certain
dgrad NHWC configurations from FastPitch and WaveGlow models on V100 and
NVIDIA A100 GPUs.

‣ The numeric behavior of INT8 operations including saturation behavior, accumulator
data types, and so on, have not been documented as of yet.

‣ It is possible, starting in cuDNN 7.6 and up to but not including 8.1.1, to leak memory
when computing common convolution operations in rare cases.

‣ There is a known 25% performance regression for inference on the PyTorch SSD
model on the NVIDIA Turing architecture.

‣ Compared to cuDNN 8.0.5, there is a known ~17% performance regression on SSD
models running on V100.

‣ FFT and Winograd based algorithms for convolution do not support graph capture.

‣ Compared to cuDNN version 8.0.2, there is a known 3x performance regression for a
single cudnnConvolutionBackwardFilter() use case.

‣ In CUDA graph capture mode, CUDA streams internal to cuDNN are not guaranteed
to have the same priority as the user stream that is set by cudnnSetStream().

‣ cudnnPoolingBackward() enables both x and y data pointers (together with the
related tensor descriptor handles) to be NULL for avg-pooling. This could save
memory footprint and bandwidth.

‣ Users of cuDNN 8.4.0 may observe a slowdown in the Single Shot Multibox Detector
(SSD) model. This will be fixed in a future release.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnReorderFilterAndBias
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnPoolingForward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetPoolingNdForwardOutputDim
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetPooling2dForwardOutputDim
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionBackwardFilter
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnPoolingBackward

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 61

‣ There is a known regression when running some convolutions with filter size 1x1. The
severity would be different depending on which version of the CUDA Toolkit the user
is using.

‣ There is a known regression when running some convolutions with high group count.
The issue is more severe on V100.

Compatibility

For the latest compatibility software versions of the OS, CUDA, the CUDA driver, and the
NVIDIA hardware, refer to the NVIDIA cuDNN Support Matrix.

Limitations

‣ Within the cuDNN version 8 backend API, the following engines are known to not be
thread-safe when executed simultaneously with multiple threads sharing the same
execution plan:

Table 8. Engines That Are Not Thread-Safe

CUDNN_ATTR_ENGINE_GLOBAL_INDEXFprop Dgrad Wgrad

A100 ‣ 36

‣ 38

‣ 45

‣ 46

‣ 47

‣ 48

‣ 1

‣ 2

‣ 3

‣ 19

‣ 22

‣ 25

‣ 26

‣ 28

‣ 40

‣ 46

‣ 51

‣ 56

‣ 57

‣ 58

‣ 59

‣ 60

‣ 65

‣ 9

‣ 10

‣ 21

‣ 23

‣ 33

‣ 37

‣ 47

‣ 48

‣ 49

‣ 50

V100 ‣ 8

‣ 9

‣ 1

‣ 2

‣ 6

‣ 7

https://docs.nvidia.com/deeplearning/sdk/cudnn-support-matrix/index.html#cudnn-cuda-hardware-versions

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 62

CUDNN_ATTR_ENGINE_GLOBAL_INDEXFprop Dgrad Wgrad

‣ 10

‣ 12

‣ 16

‣ 26

‣ 30

‣ 31

‣ 34

‣ 42

‣ 49

‣ 3

‣ 8

‣ 12

‣ 13

‣ 19

‣ 21

‣ 25

‣ 26

‣ 29

‣ 37

‣ 38

‣ 44

‣ 21

‣ 35

‣ 36

‣ 43

‣ 44

‣ 51

‣ 52

T4 ‣ 9

‣ 12

‣ 13

‣ 14

‣ 16

‣ 18

‣ 26

‣ 30

‣ 31

‣ 34

‣ 42

‣ 50

‣ 1

‣ 2

‣ 3

‣ 8

‣ 9

‣ 12

‣ 13

‣ 15

‣ 18

‣ 19

‣ 21

‣ 25

‣ 26

‣ 29

‣ 30

‣ 37

‣ 39

‣ 44

‣ 45

‣ 12

‣ 21

‣ 27

‣ 28

‣ 43

‣ 44

‣ 51

‣ 53

‣ The status returned by cudnnBackendFinalize() or cudnnBackendExecute() on a
CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR may change depending on the version

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 63

of the dynamic dependencies of cuDNN. As of this writing, only cuBLAS is known to
affect the return status of these function calls.

‣ The cuDNN static builds load NVRTC dynamically when using the runtime fusion
engine.

‣ The functional support criteria of cuDNN's convolution kernels is not required to
consider padding. Users of cuDNN can witness an unexpected lack of problem
support when forward convolution spatial dimensions are less than the filter size and
padding is nonzero but is sufficient to extend spatial dimensions to or beyond filter
dimensions. This is commonly observed with, but not limited to, INT8 convolution
kernels.

‣ When performing batch normalization in cuDNN, the operation is allowed to proceed
if the output tensor strides are overlapping, however, there is no guarantee of
deterministic results.

‣ It is possible, starting in cuDNN 7.6 and up to but not including 8.1.1, to leak memory
when computing common convolution operations in rare cases.

‣ CUDNN_ATTR_ENGINE_GLOBAL_INDEX = 25 for convolution backwards data (which is
part of legacy CUDNN_CONVOLUTION_BWD_DATA_ALGO_0) does not support tensors in
which the product N*C*H*W of the output gradient tensor equals to or exceeds 2^31.

‣ CUDNN_ATTR_ENGINE_GLOBAL_INDEX =1 for convolution backwards data (which is part
of legacy CUDNN_CONVOLUTION_BWD_DATA_ALGO_1) does not support tensors in which
the product N*H*W of the output gradient tensor equals to or exceeds 2^31. This
issue has been present in all previous releases of cuDNN and exercising the use case
for the engine would show incorrect results.

‣ Versions of cuDNN before the 8.0 release series do not support the NVIDIA Ampere
Architecture and will generate incorrect results if used on that architecture.
Furthermore, if used, training operations can succeed with a NaN loss for every
epoch.

‣ The runtime fusion engine is only supported in the cuDNN build based on
CUDA Toolkit 11.2 update 1 or later. It also requires the NVRTC from CUDA
11.2 update 1 or later. If this condition is not satisfied, the error status of
CUDNN_STATUS_NOT_SUPPORTED or CUDNN_STATUS_RUNTIME_PREREQUISITE_MISSING will
be returned.

‣ Samples must be installed in a writable location. If not installed in a writable location,
the samples can crash.

‣ RNN and multihead attention API calls may exhibit nondeterministic behavior when
the cuDNN library is built with CUDA Toolkit 10.2 or higher. This is the result of
a new buffer management and heuristics in the cuBLAS library. As described in
Results Reproducibility, numerical results may not be deterministic when cuBLAS
APIs are launched in more than one CUDA stream using the same cuBLAS handle.
This happens when two buffer sizes (16 KB and 4 MB) are used in the default
configuration.

https://docs.nvidia.com/cuda/cublas/index.html#cublasXtApi_reproducibility

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 64

When a larger buffer size is not available at runtime, instead of waiting for a buffer
of that size to be released, a smaller buffer may be used with a different GPU
kernel. The kernel selection may affect numerical results. The user can eliminate the
nondeterministic behavior of cuDNN RNN and multihead attention APIs, by setting
a single buffer size in the CUBLAS_WORKSPACE_CONFIG environmental variable, for
example, :16:8 or :4096:2.

The first configuration instructs cuBLAS to allocate eight buffers of 16 KB each in
GPU memory while the second setting creates two buffers of 4 MB each. The default
buffer configuration in cuBLAS 10.2 and 11.0 is :16:8:4096:2, that is, we have two
buffer sizes. In earlier cuBLAS libraries, such as cuBLAS 10.0, it used the :16:8 non-
adjustable configuration. When buffers of only one size are available, the behavior of
cuBLAS calls is deterministic in multi-stream setups.

‣ The tensor pointers and the filter pointers require at a minimum 4-byte alignment,
including INT8 data in the cuDNN library.

‣ Some computational options in cuDNN require increased alignment on tensors in
order to run efficiently. As always, cuDNN recommends users to align tensors to
16 byte boundaries that will be sufficiently aligned for any computational option
in cuDNN. Doing otherwise may cause performance regressions in cuDNN 8.0.x
compared to cuDNN v7.6.

‣ For certain algorithms, when the computation is in float (32-bit float) and the output
is in FP16 (half float), there are cases where the numerical accuracy between the
different algorithms might differ. cuDNN 8.0.x users can target the backend API to
query the numerical notes of the algorithms to get the information programmatically.
There are cases where algo0 and algo1 will have a reduced precision accumulation
when users target the legacy API. In all cases, these numerical differences are not
known to affect training accuracy even though they might show up in unit tests.

‣ For the _ALGO_0 algorithm of convolution backward data and backward filter, grouped
convolution with groups larger than 1 and with odd product of dimensions C, D (if 3D
convolution), H, and W is not supported on devices older than NVIDIA Volta. To prevent
a potential illegal memory access by an instruction that only has a 16-bit version in
NVIDIA Volta and later, pad at least one of the dimensions to an even value.

‣ In INT8x32 Tensor Core cases, the parameters supported by cuDNN v7.6 are limited
to W >= (R-1) * dilationW && H >= (S-1) * dilationH, whereas, in cuDNN
v8.0.x, W == (R-1) * dilationW || H == (S-1) * dilationH cases are no longer
supported.

‣ In prior versions of cuDNN, some convolution algorithms can use texture-based
load structure for performance improvements particularly in older hardware
architectures. Users can opt out of using texture using the environmental variable
CUDNN_TEXOFF_DBG. In cuDNN 8.x, this variable is removed. Texture loading is turned
off by default. Users who want to continue to use texture-based load, can adapt the

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 65

new backend API, and toggle the engine knob CUDNN_KNOB_TYPE_USE_TEX to 1 for
engines that support texture-based load instructions.

‣ In the backend API, convolution forward engine with
CUDNN_ATTR_ENGINE_GLOBAL_INDEX=1 is not supported when the product (channels
* height * width) of the input image exceeds 536,870,912 that is 2^29.

‣ cudnnSpatialTfSamplerBackward() returns CUDNN_STATUS_NOT_SUPPORTED when the
number of channels exceeds 1024.

‣ When using graph-capture, users should call the sub library version check API (for
example, cudnnOpsInferVersionCheck()) to load the kernels in the sub library before
opening graph capture.

‣ Users of cuDNN must add the dependencies of cuBLAS to the linkers command
explicitly to resolve the undefined symbols from cuDNN static libraries.

‣ Starting in version 8.1, cuDNN uses AVX intrinsics on the x86_64 architecture; users
of this architecture without support for AVX intrinsics may see illegal instruction
errors.

‣ The spatial persistent batch normalization API is only available for NVIDIA Pascal and
later architectures. Pre-Pascal architectures return CUDNN_STATUS_ARCH_MISMATCH
instead. The affected APIs include:

‣ cudnnBatchNormalizationBackward()

‣ cudnnBatchNormalizationBackwardEx()

‣ cudnnBatchNormalizationForwardTraining()

‣ cudnnBatchNormalizationForwardTrainingEx()

‣ cudnnGetBatchNormalizationBackwardExWorkspaceSize()

‣ cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize()

‣ cudnnGetBatchNormalizationTrainingExReserveSpaceSize()

‣ cudnnGetNormalizationBackwardWorkspaceSize()

‣ cudnnGetNormalizationForwardTrainingWorkspaceSize()

‣ cudnnGetNormalizationTrainingReserveSpaceSize()

‣ cudnnNormalizationBackward()

‣ cudnnNormalizationForwardTraining()

‣ cudnnAddTensor() performance may regress from 8.2 to 8.3 for pre-Pascal
architectures.

‣ When applications using cuDNN with an older 11.x CUDA toolkit in compatibility
mode are tested with compute-sanitizer, cuGetProcAddress failures with error code
500 will arise due to missing functions. This error can be ignored, or suppressed with
the --report-api-errors no option, as this is due to CUDA backward compatibility
checking if a function is usable with the CUDA toolkit combination. The functions are
introduced in a later version of CUDA but are not available on the current platform.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnSpatialTfSamplerBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnOpsInferVersionCheck
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationBackwardEx
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationForwardTraining
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationForwardTrainingEx
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetBatchNormalizationBackwardExWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetBatchNormalizationTrainingExReserveSpaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetNormalizationBackwardWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetNormalizationForwardTrainingWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetNormalizationTrainingReserveSpaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnNormalizationBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnNormalizationForwardTraining

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 66

The absence of these functions is harmless and will not give rise to any functional
issues.

‣ Users of CUDNN_ATTR_ENGINE_GLOBAL_INDEX = 0 for batch normalization forwards
training and batch normalization backwards may obtain incorrect results when
batch size is greater than 1 and when channel count is not evenly divisible by 8.
These values of CUDNN_ATTR_ENGINE_GLOBAL_INDEX correspond to newly added
multi-GPU batch normalization support within cuDNN 8.5. Use of single-GPU batch
normalization is unaffected by this issue. cuDNN will be revised to reject incorrectly
supported multi-GPU batch normalization problems in a future release.

1.9. cuDNN Release 8.5.0
These are the NVIDIA cuDNN 8.5.0 Release Notes. These Release Notes include fixes
from the previous cuDNN releases as well as the following additional changes.

These Release Notes are applicable to both cuDNN and NVIDIA JetPack™ users of cuDNN
unless appended specifically with (not applicable for Jetson platforms).

For previously released cuDNN documentation, refer to the NVIDIA cuDNN Archives.

Key Features and Enhancements

The following features and enhancements have been added to this release:

‣ Achieved 30% reduction in library size by removing unused kernels. The current
cuDNN 8.5.0 library size is 850 MB down from 1.2 GB compared to the 8.4.x releases.

‣ Four new pointwise modes were added:

‣ CUDNN_POINTWISE_GELU_APPROX_TANH_FWD and
CUDNN_POINTWISE_GELU_APPROX_TANH_BWD, which are used for approximating
GELU in the forward and backward pass, respectively.

‣ CUDNN_POINTWISE_ERF, which can be used to piecewise create the GELU operator.

‣ CUDNN_POINTWISE_IDENTITY, which can be used for explicitly converting between
formats.

‣ Improved graph API runtime compilation support:

‣ Added support for performant adaptive pooling for NHWC layout supporting
flexible I/O datatypes. It also supports large tensors with more than 4 trillion
elements.

‣ Added support for passing host scalars by value as B tensor in the pointwise
operations.

‣ Added support for generating code for more broadcasting patterns in the
pointwise operations.

‣ The CPU overhead associated with the subgraph execution has been reduced by
30 - 40%.

https://docs.nvidia.com/deeplearning/cudnn/archives/index.html

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 67

‣ NVIDIA Ampere Architecture INT8 conv fusion heuristics have been updated to
recommend more performant kernel configs for smaller problem sizes.

‣ Added support for error reporting in the RNN APIs.

‣ When using cuDNN builds against CUDA 11.x with cuBLAS version >= 11.6 U1, all
kernels are now guaranteed to be launched in streams whose priorities match the
user stream that is set by cudnnSetStream().

‣ Documented operation specific constraints for the runtime fusion engine in the
newly added Operation Specific Constraints for the Runtime Fusion Engine section.

‣ Double precision support for the CTC loss.

‣ Added support for Ubuntu 22.04 on x86_64 and AArch64 ARM. For more information,
refer to the supported Linux versions of cuDNN section.

‣ Added support for CUDA 11.7. For more information, refer to the GPU, CUDA Toolkit,
and CUDA Driver Requirements section.

‣ Added the cudnnBackendNormFwdPhase_t, cudnnBackendNormMode_t,
CUDNN_BACKEND_OPERATION_NORM_FORWARD_DESCRIPTOR,
CUDNN_BACKEND_OPERATION_NORM_BACKWARD_DESCRIPTOR,
cudnnSignalMode_t, CUDNN_BACKEND_OPERATION_CONCAT_DESCRIPTOR, and
CUDNN_BACKEND_OPERATION_SIGNAL_DESCRIPTOR functions to the Backend API. These
new operations help a cuDNN graph communicate and/or synchronize with another
cuDNN graph possibly on a peer GPU. For more information, refer to the NVIDIA
cuDNN Backend API documentation.

‣ Added new data structure cudnnFraction_t to the Backend API. This more precisely
describes the size ratio between the I/O images under fractional up/downsampling
and adaptive pooling use cases. For more information, refer to the NVIDIA cuDNN
Backend API documentation.

Fixed Issues

‣ For packed NCHW tensors using the FP16 data-type, cuDNN attempted to run an
optimized kernel if the values of N, C, H, and W were even. In cuDNN versions prior to
8.5, it was possible that incorrect values were generated if odd values for N or C were
used. Starting in cuDNN 8.5, if an odd value for N or C is specified, cuDNN runs with
an unoptimized kernel.

‣ cuDNN was not enforcing the CUDNN_ATTR_EXECUTION_PLAN_HANDLE attribute for
the CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR. It is now enforced in cuDNN 8.5.0.
cudnnBackendFinalize() returns CUDNN_STATUS_BAD_PARAM if the handle attribute is
not set.

‣ Running depthwise convolutions in NHWC layout with CUDNN_CONVOLUTION mode and
batch size >= 8 could produce incorrect results with cuDNN 8.1 and later. This has
been fixed in this release.

https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#op-specific-contraints-runtime-fusion-engine
https://docs.nvidia.com/deeplearning/cudnn/support-matrix/index.html#cudnn-versions-linux
https://docs.nvidia.com/deeplearning/cudnn/support-matrix/index.html#cudnn-cuda-hardware-versions
https://docs.nvidia.com/deeplearning/cudnn/support-matrix/index.html#cudnn-cuda-hardware-versions
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnn-backend-api
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnn-backend-api
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnn-backend-api
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnn-backend-api

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 68

‣ Cases of folding transform which were not supported were erroring out with
BAD_PARAM, this has been fixed to return the correct error code of NOT_SUPPORTED.

‣ Improved runtime fusion heuristics for INT8 convolution, correcting small problem
sizes.

‣ Fixed an issue to ensure CUDNN_HEUR_MODE_B redirects to CUDNN_HEUR_MODE_A when
unsupported. Frontend version 0.6.3 has been updated with a similar change to
redirect CUDNN_HEUR_MODE_B to CUDNN_HEUR_MODE_A in older cuDNN versions when
CUDNN_HEUR_MODE_B is not supported.

‣ Fixed an issue in the runtime fusion engine where successive broadcasting patterns
(for example, scalars broadcasting into vectors, then broadcasting into tensors) are
not handled correctly and may produce wrong results.

‣ In the build for CUDA 11.x, we fixed a couple of issues where some cuDNN
internal streams were not guaranteed to match the priority of the stream set by
cudnnSetStream. Now, all internal streams have that guarantee, except in the case of
CUDA graph capture mode.

‣ It was suggested that users of the static library requiring the best possible
convolution performance use whole-archive linking with the cnn_infer and
cnn_train static sub-libraries. This is no longer needed, however, this will come at a
cost to the binary size of the application. This linkage requirement will be relaxed in a
future release.

Performance Results

The following table shows the average speed-up of unique cuDNN 3D convolution calls
for each network on V100 and A100 GPUs that satisfies the conditions in Recommended
Settings section of the cuDNN Developer Guide. The end-to-end training performance
will depend on a number of factors, such as framework overhead, kernel run time, and
model architecture type.

Table 9. cuDNN version 8.5.0 compared to 8.4.1

A100 8.5.0 vs V100 8.4.1 V100 8.5.0 vs V100 8.4.1

Model Batchsize FP16 FP32 FP16 FP32

2 1.1x 2.9x 1.0x 1.0x

8 1.4x 3.4x 1.0x 1.0x

16 1.6x 3.8x 1.0x 1.1x

V-Net (3D-
Image
segmentation)

32 1.8x 3.7x 1.0x 1.0x

2 2.1x 6.0x 1.0x 1.2x3D-UNet
(3D-Image
Segmentation)

4 2.1x 5.7x 1.0x 1.4x

https://github.com/NVIDIA/DeepLearningExamples

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 69

Known Issues

‣ cudnnNormalizationForwardTraining() does not currently support BFLOAT16. If an
input tensor uses BFLOAT16, the API will return BAD_PARAM.

‣ With CUDA 11.7, the NVRTC library may cause a small memory leak when using
the runtime fusion engine. The issue has been addressed in the next CUDA Toolkit
update.

‣ A compiler bug in NVRTC in CUDA version 11.7 and earlier, was causing incorrect
outputs when computing logical operations on boolean input tensors in the runtime
fusion engine. A workaround has been integrated in this release to avoid the
most common issues. However, it is highly recommended to update to at least
CUDA version 11.7u1 for a fix. Specifically, known failure cases are when pointwise
operations of mode CUDNN_POINTWISE_LOGICAL_NOT, CUDNN_POINTWISE_LOGICAL_AND
or CUDNN_POINTWISE_LOGICAL_OR operates on boolean tensors.

‣ If cuDNN 8.4.1 or earlier statically links with libcudart.so from the CUDA Toolkit
11.7 or later, when the LFL feature is activated, the results from cudnnFind*Algo will
not be accurate.

‣ For packed NCHW tensors using the FP16 datatype, cuDNN attempts to run an
optimized kernel if the values of N, C, H, and W are even. In cuDNN versions before
8.4, it is possible that incorrect values are generated if odd values for the strides of N
or C are used. This issue will be resolved in a future release.

‣ Users of cuDNN's CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING may see
CUDNN_STATUS_BAD_PARAM returned for a problem that should otherwise be supported
by that choice of algo.

‣ cudnnDropoutForward() and cudnnDropoutBackward() will return incorrect results
when input or output tensors have overlapping strides.

‣ The documentation for cudnnReorderFilterAndBias() requires corrections for
clarity.

‣ Some convolution models are experiencing lower performance on NVIDIA RTX
3090 compared to 2080 Ti. This includes EfficientNet with up to 6x performance
difference, UNet up to 1.6x performance difference and Tacotron up to 1.6x
performance difference.

‣ cudnnPoolingForward() with pooling mode CUDNN_POOLING_AVG
might output NaN for pixel in output tensor outside the value
recommended by cudnnGetPoolingNdForwardOutputDim() or
cudnnGetPooling2dForwardOutputDim().

‣ Convolutions (ConvolutionForward, ConvolutionBackwardData, and
ConvolutionBackwardFilter) may experience performance regressions when run
with math type CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION on CUDNN_DATA_FLOAT
data (input and output).

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnNormalizationForwardTraining
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnPoolingForward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetPoolingNdForwardOutputDim
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetPooling2dForwardOutputDim

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 70

‣ Compared to cuDNN 7.6, there are known performance regressions up to 2x on
select configurations for AlexNet-like models on NVIDIA Turing GPUs.

‣ Compared to cuDNN 8.1.0, there are known performance regressions on certain
dgrad NHWC configurations from FastPitch and WaveGlow models on V100 and
NVIDIA A100 GPUs.

‣ The numeric behavior of INT8 operations including saturation behavior, accumulator
data types, and so on, have not been documented as of yet.

‣ It is possible, starting in cuDNN 7.6 and up to but not including 8.1.1, to leak memory
when computing common convolution operations in rare cases.

‣ There is a known 25% performance regression for inference on the PyTorch SSD
model on the NVIDIA Turing architecture.

‣ Compared to cuDNN 8.0.5, there is a known ~17% performance regression on SSD
models running on V100.

‣ FFT and Winograd based algorithms for convolution do not support graph capture.

‣ Compared to cuDNN version 8.0.2, there is a known 3x performance regression for a
single cudnnConvolutionBackwardFilter() use case.

‣ In CUDA graph capture mode, CUDA streams internal to cuDNN are not guaranteed
to have the same priority as the user stream that is set by cudnnSetStream().

‣ The functional support criteria of cuDNN's convolution kernels is not required to
consider padding. Users of cuDNN can witness an unexpected lack of problem
support when forward convolution spatial dimensions are less than the filter size
and padding is nonzero, however, is sufficient to extend spatial dimensions to or
beyond filter dimensions. This is commonly observed with, but not limited to, INT8
convolution kernels.

‣ cudnnPoolingBackward() enables both x and y data pointers (together with the
related tensor descriptor handles) to be NULL for avg-pooling. This could save
memory footprint and bandwidth.

‣ Users of cuDNN 8.4.0 may observe a slowdown in the Single Shot Multibox Detector
(SSD) model. This will be fixed in a future release.

‣ There is a known regression when running some convolutions with filter size 1x1. The
severity would be different depending on which version of the CUDA Toolkit the user
is using.

‣ There is a known regression when running some convolutions with high group count.
The issue is more severe on V100.

Compatibility

For the latest compatibility software versions of the OS, CUDA, the CUDA driver, and the
NVIDIA hardware, see the NVIDIA cuDNN Support Matrix.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionBackwardFilter
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnPoolingBackward
https://docs.nvidia.com/deeplearning/sdk/cudnn-support-matrix/index.html#cudnn-cuda-hardware-versions

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 71

Limitations

‣ When performing batch normalization in cuDNN, the operation is allowed to proceed
if the output tensor strides are overlapping, however, there is no guarantee of
deterministic results.

‣ It is possible, starting in cuDNN 7.6 and up to but not including 8.1.1, to leak memory
when computing common convolution operations in rare cases.

‣ CUDNN_ATTR_ENGINE_GLOBAL_INDEX = 1025 (which is part of legacy
CUDNN_CONVOLUTION_BWD_DATA_ALGO_0) does not support tensors in which the
product N*C*H*W of the output gradient tensor equals to or exceeds 2^31.

‣ CUDNN_ATTR_ENGINE_GLOBAL_INDEX =1001 (which is part of legacy
CUDNN_CONVOLUTION_BWD_DATA_ALGO_1) does not support tensors in which the
product N*H*W of the output gradient tensor equals to or exceeds 2^31. This issue
has been present in all previous releases of cuDNN and exercising the use case for
the engine would show incorrect results.

‣ Versions of cuDNN before the 8.0 release series do not support the NVIDIA Ampere
Architecture and will generate incorrect results if used on that architecture.
Furthermore, if used, training operations can succeed with a NaN loss for every
epoch.

‣ The runtime fusion engine is only supported in the cuDNN build based on
CUDA Toolkit 11.2 update 1 or later. It also requires the NVRTC from CUDA
11.2 update 1 or later. If this condition is not satisfied, the error status of
CUDNN_STATUS_NOT_SUPPORTED or CUDNN_STATUS_RUNTIME_PREREQUISITE_MISSING will
be returned.

‣ Samples must be installed in a writable location. If not installed in a writable location,
the samples can crash.

‣ RNN and multihead attention API calls may exhibit nondeterministic behavior when
the cuDNN library is built with CUDA Toolkit 10.2 or higher. This is the result of
a new buffer management and heuristics in the cuBLAS library. As described in
Results Reproducibility, numerical results may not be deterministic when cuBLAS
APIs are launched in more than one CUDA stream using the same cuBLAS handle.
This happens when two buffer sizes (16 KB and 4 MB) are used in the default
configuration.

When a larger buffer size is not available at runtime, instead of waiting for a buffer
of that size to be released, a smaller buffer may be used with a different GPU
kernel. The kernel selection may affect numerical results. The user can eliminate the
nondeterministic behavior of cuDNN RNN and multihead attention APIs, by setting
a single buffer size in the CUBLAS_WORKSPACE_CONFIG environmental variable, for
example, :16:8 or :4096:2.

The first configuration instructs cuBLAS to allocate eight buffers of 16 KB each in
GPU memory while the second setting creates two buffers of 4 MB each. The default

https://docs.nvidia.com/cuda/cublas/index.html#cublasXtApi_reproducibility

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 72

buffer configuration in cuBLAS 10.2 and 11.0 is :16:8:4096:2, that is, we have two
buffer sizes. In earlier cuBLAS libraries, such as cuBLAS 10.0, it used the :16:8 non-
adjustable configuration. When buffers of only one size are available, the behavior of
cuBLAS calls is deterministic in multi-stream setups.

‣ The tensor pointers and the filter pointers require at a minimum 4-byte alignment,
including INT8 data in the cuDNN library.

‣ Some computational options in cuDNN require increased alignment on tensors in
order to run efficiently. As always, cuDNN recommends users to align tensors to
16 byte boundaries that will be sufficiently aligned for any computational option
in cuDNN. Doing otherwise may cause performance regressions in cuDNN 8.0.x
compared to cuDNN v7.6.

‣ For certain algorithms, when the computation is in float (32-bit float) and the output
is in FP16 (half float), there are cases where the numerical accuracy between the
different algorithms might differ. cuDNN 8.0.x users can target the backend API to
query the numerical notes of the algorithms to get the information programmatically.
There are cases where algo0 and algo1 will have a reduced precision accumulation
when users target the legacy API. In all cases, these numerical differences are not
known to affect training accuracy even though they might show up in unit tests.

‣ For the _ALGO_0 algorithm of convolution backward data and backward filter, grouped
convolution with groups larger than 1 and with odd product of dimensions C, D (if 3D
convolution), H, and W is not supported on devices older than NVIDIA Volta. To prevent
a potential illegal memory access by an instruction that only has a 16-bit version in
NVIDIA Volta and later, pad at least one of the dimensions to an even value.

‣ In INT8x32 Tensor Core cases, the parameters supported by cuDNN v7.6 are limited
to W >= (R-1) * dilationW && H >= (S-1) * dilationH, whereas, in cuDNN
v8.0.x, W == (R-1) * dilationW || H == (S-1) * dilationH cases are no longer
supported.

‣ In prior versions of cuDNN, some convolution algorithms can use texture-based
load structure for performance improvements particularly in older hardware
architectures. Users can opt out of using texture using the environmental variable
CUDNN_TEXOFF_DBG. In cuDNN 8.x, this variable is removed. Texture loading is turned
off by default. Users who want to continue to use texture-based load, can adapt the
new backend API, and toggle the engine knob CUDNN_KNOB_TYPE_USE_TEX to 1 for
engines that support texture-based load instructions.

‣ In the backend API, convolution forward engine with
CUDNN_ATTR_ENGINE_GLOBAL_INDEX=1 is not supported when the product (channels
* height * width) of the input image exceeds 536,870,912 that is 2^29.

‣ cudnnSpatialTfSamplerBackward() returns CUDNN_STATUS_NOT_SUPPORTED when the
number of channels exceeds 1024.

‣ When using graph-capture, users should call the sub library version check API (for
example, cudnnOpsInferVersionCheck()) to load the kernels in the sub library before
opening graph capture.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnSpatialTfSamplerBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnOpsInferVersionCheck

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 73

‣ Users of cuDNN must add the dependencies of cuBLAS to the linkers command
explicitly to resolve the undefined symbols from cuDNN static libraries.

‣ Starting in version 8.1, cuDNN uses AVX intrinsics on the x86_64 architecture; users
of this architecture without support for AVX intrinsics may see illegal instruction
errors.

‣ The spatial persistent batch normalization API is only available for NVIDIA Pascal and
later architectures. Pre-Pascal architectures return CUDNN_STATUS_ARCH_MISMATCH
instead. The affected APIs include:

‣ cudnnBatchNormalizationBackward()

‣ cudnnBatchNormalizationBackwardEx()

‣ cudnnBatchNormalizationForwardTraining()

‣ cudnnBatchNormalizationForwardTrainingEx()

‣ cudnnGetBatchNormalizationBackwardExWorkspaceSize()

‣ cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize()

‣ cudnnGetBatchNormalizationTrainingExReserveSpaceSize()

‣ cudnnGetNormalizationBackwardWorkspaceSize()

‣ cudnnGetNormalizationForwardTrainingWorkspaceSize()

‣ cudnnGetNormalizationTrainingReserveSpaceSize()

‣ cudnnNormalizationBackward()

‣ cudnnNormalizationForwardTraining()

‣ cudnnAddTensor() performance may regress from 8.2 to 8.3 for pre-Pascal
architectures.

‣ When applications using cuDNN with an older 11.x CUDA toolkit in compatibility
mode are tested with compute-sanitizer, cuGetProcAddress failures with error code
500 will arise due to missing functions. This error can be ignored, or suppressed with
the --report-api-errors no option, as this is due to CUDA backward compatibility
checking if a function is usable with the CUDA toolkit combination. The functions are
introduced in a later version of CUDA but are not available on the current platform.
The absence of these functions is harmless and will not give rise to any functional
issues.

‣ Users of CUDNN_ATTR_ENGINE_GLOBAL_INDEX = 11000 and 12000 may obtain
incorrect results when batch size is greater than 1 and when channel count is not
evenly divisible by 8. These values of CUDNN_ATTR_ENGINE_GLOBAL_INDEX correspond
to newly added multi-GPU batch normalization support within cuDNN 8.5. Use of
single-GPU batch normalization is unaffected by this issue. cuDNN will be revised
to reject incorrectly supported multi-GPU batch normalization problems in a future
release.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationBackwardEx
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationForwardTraining
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationForwardTrainingEx
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetBatchNormalizationBackwardExWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetBatchNormalizationTrainingExReserveSpaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetNormalizationBackwardWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetNormalizationForwardTrainingWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetNormalizationTrainingReserveSpaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnNormalizationBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnNormalizationForwardTraining

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 74

1.10. cuDNN Release 8.4.1
These are the NVIDIA cuDNN 8.4.1 Release Notes. These Release Notes include fixes
from the previous cuDNN releases as well as the following additional changes.

These Release Notes are applicable to both cuDNN and NVIDIA JetPack™ users of cuDNN
unless appended specifically with (not applicable for Jetson platforms).

For previously released cuDNN documentation, refer to the NVIDIA cuDNN Archives.

Key Features and Enhancements

The following features and enhancements have been added to this release:

‣ Improved runtime subgraph compilation support

‣ Added support for CUDNN_BACKEND_OPERATION_RESAMPLE_FWD for the
CUDNN_ATTR_RESAMPLE_MODE set to CUDNN_RESAMPLE_AVGPOOL and
CUDNN_RESAMPLE_MAXPOOL through the runtime fusion engine. It can achieve up
to 3x speed up compared to the legacy cudnnPoolingForward() API. Pointwise
fusions to the output of this operation are also supported. Documentation about
the patterns supported can be found in the Supported Graph Patterns section.

‣ Newly added micro tile sizes for pointwise fusions that provide significantly
improved performance on smaller problem sizes.

‣ The NVIDIA cuDNN Developer Guide now includes an expanded section on supported
patterns of the Graph API. It takes a systematic approach to explain which graph
patterns are supported, along with various graphical examples, and details on some
of the restrictions.

Fixed Issues

‣ A buffer was shared between threads and caused segmentation faults. There was
previously no way to have a per-thread buffer to avoid these segmentation faults.
The buffer has been moved to the cuDNN handle. Ensure you have a cuDNN handle
for each thread because the buffer in the cuDNN handle is only for the use of one
thread and cannot be shared between two threads.

‣ Fixed operation graph logging under cudnnBackendExecuteGraphVisualize()
section upon calling cudnnBackendExecute() on generic fusion patterns.
Added logging for CUDNN_BACKEND_OPERATION_MATMUL_DESCRIPTOR and
CUDNN_BACKEND_MATMUL_DESCRIPTOR. Fixed logging for pointwise mode to show the
enum value name.

‣ Users specifying backend engines 58, 1063, 2062, and 4039 using
CUDNN_ATTR_ENGINE_GLOBAL_INDEX with 1x1 convolutions and tensors with more

https://docs.nvidia.com/deeplearning/cudnn/archives/index.html
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#support-graph-patterns
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 75

than two GB elements (2G) would see CUDNN_STATUS_EXECUTION_FAILED in cuDNN
8.3.x. This issue has been fixed in this release.

‣ cuDNN returned CUDNN_STATUS_EXECUTION_FAILED from
cudnnConvolutionForward(), cudnnConvolutionBiasActivationForward(), or
cudnnConvolutionBackwardData() when computing convolutions with large spatial
dimensions and batch sizes. This issue has been fixed. Such problems instead return
CUDNN_STATUS_NOT_SUPPORTED where applicable.

Known Issues

‣ A compiler bug in NVRTC in CUDA version 11.7 and earlier, was causing incorrect
outputs when computing logical operations on boolean input tensors in the runtime
fusion engine. A workaround has been integrated in this release to avoid the
most common issues. However, it is highly recommended to update to at least
CUDA version 11.7u1 for a fix. Specifically, known failure cases are when pointwise
operations of mode CUDNN_POINTWISE_LOGICAL_NOT, CUDNN_POINTWISE_LOGICAL_AND
or CUDNN_POINTWISE_LOGICAL_OR operates on boolean tensors.

‣ cuDNN is not enforcing the CUDNN_ATTR_EXECUTION_PLAN_HANDLE attribute for the
CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR. This issue will be fixed in a future
release.

‣ If cuDNN 8.4.1 or earlier statically links with libcudart.so from the CUDA Toolkit
11.7 or later, when the LFL feature is activated, the results from cudnnFind*Algo will
not be accurate.

‣ For packed NCHW tensors using the FP16 datatype, cuDNN attempts to run an
optimized kernel if the values of N, C, H, and W are even. In cuDNN versions before
8.4, it is possible that incorrect values are generated if odd values for the strides of N
or C are used. This issue will be resolved in a future release.

‣ Users of cuDNN's CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING may see
CUDNN_STATUS_BAD_PARAM returned for a problem that should otherwise be supported
by that choice of algo.

‣ cudnnDropoutForward() and cudnnDropoutBackward() will return incorrect results
when input or output tensors have overlapping strides.

‣ The documentation for cudnnReorderFilterAndBias() requires corrections for
clarity.

‣ Some convolution models are experiencing lower performance on NVIDIA RTX
3090 compared to 2080 Ti. This includes EfficientNet with up to 6x performance
difference, UNet up to 1.6x performance difference and Tacotron up to 1.6x
performance difference.

‣ cudnnPoolingForward() with pooling mode CUDNN_POOLING_AVG
might output NaN for pixel in output tensor outside the value
recommended by cudnnGetPoolingNdForwardOutputDim() or
cudnnGetPooling2dForwardOutputDim().

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnReorderFilterAndBias
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnPoolingForward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetPoolingNdForwardOutputDim
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetPooling2dForwardOutputDim

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 76

‣ Convolutions (ConvolutionForward, ConvolutionBackwardData, and
ConvolutionBackwardFilter) may experience performance regressions when run
with math type CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION on CUDNN_DATA_FLOAT
data (input and output).

‣ Compared to cuDNN 7.6, there are known performance regressions up to 2x on
select configurations for AlexNet-like models on NVIDIA Turing GPUs.

‣ Compared to cuDNN 8.1.0, there are known performance regressions on certain
dgrad NHWC configurations from FastPitch and WaveGlow models on V100 and
NVIDIA A100 GPUs.

‣ The numeric behavior of INT8 operations including saturation behavior, accumulator
data types, and so on, have not been documented as of yet.

‣ There is a known 25% performance regression for inference on the PyTorch SSD
model on the NVIDIA Turing architecture.

‣ Compared to cuDNN 8.0.5, there is a known ~17% performance regression on SSD
models running on V100.

‣ FFT and Winograd based algorithms for convolution do not support graph capture.

‣ Compared to cuDNN version 8.0.2, there is a known 3x performance regression for a
single cudnnConvolutionBackwardFilter() use case.

‣ CUDA streams internal to cuDNN are not guaranteed to have the same priority as the
user stream that is set by cudnnSetStream(). We recently discovered some issues
that break our ability to document exceptions to this clearly.

‣ The functional support criteria of cuDNN's convolution kernels is not required to
consider padding. Users of cuDNN can witness an unexpected lack of problem
support when forward convolution spatial dimensions are less than the filter size
and padding is nonzero, however, is sufficient to extend spatial dimensions to or
beyond filter dimensions. This is commonly observed with, but not limited to, INT8
convolution kernels.

‣ cudnnPoolingBackward() enables both x and y data pointers (together with the
related tensor descriptor handles) to be NULL for avg-pooling. This could save
memory footprint and bandwidth.

‣ Users of the static library requiring the best possible convolution performance
should use whole-archive linking with the cnn_infer and cnn_train static sub
libraries. This will come at a cost to the binary size of the application. This linkage
requirement will be relaxed in a future release.

‣ Users of cuDNN 8.4.0 may observe a slowdown in the Single Shot Multibox Detector
(SSD) model. This will be fixed in a future release.

Compatibility

For the latest compatibility software versions of the OS, CUDA, the CUDA driver, and the
NVIDIA hardware, see the NVIDIA cuDNN Support Matrix.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionBackwardFilter
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnPoolingBackward
https://docs.nvidia.com/deeplearning/sdk/cudnn-support-matrix/index.html#cudnn-cuda-hardware-versions

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 77

Limitations

‣ It is possible, starting in cuDNN 7.6 and up to but not including 8.1.1, to leak memory
when computing common convolution operations in rare cases.

‣ CUDNN_ATTR_ENGINE_GLOBAL_INDEX = 1025 (which is part of legacy
CUDNN_CONVOLUTION_BWD_DATA_ALGO_0) does not support tensors in which the
product N*C*H*W of the output gradient tensor equals to or exceeds 2^31.

‣ CUDNN_ATTR_ENGINE_GLOBAL_INDEX = 1001 (which is part of legacy
CUDNN_CONVOLUTION_BWD_DATA_ALGO_1) does not support tensors in which the
product N*H*W of the output gradient tensor equals to or exceeds 2^31. This issue
has been present in all previous releases of cuDNN and exercising the use case for
the engine would show incorrect results.

‣ Versions of cuDNN before the 8.0 release series do not support the NVIDIA Ampere
Architecture and will generate incorrect results if used on that architecture.
Furthermore, if used, training operations can succeed with a NaN loss for every
epoch.

‣ The runtime fusion engine is only supported in the cuDNN build based on
CUDA Toolkit 11.2 update 1 or later. It also requires the NVRTC from CUDA
11.2 update 1 or later. If this condition is not satisfied, the error status of
CUDNN_STATUS_NOT_SUPPORTED or CUDNN_STATUS_RUNTIME_PREREQUISITE_MISSING will
be returned.

‣ Samples must be installed in a writable location. If not installed in a writable location,
the samples can crash.

‣ RNN and multihead attention API calls may exhibit nondeterministic behavior when
the cuDNN library is built with CUDA Toolkit 10.2 or higher. This is the result of
a new buffer management and heuristics in the cuBLAS library. As described in
Results Reproducibility, numerical results may not be deterministic when cuBLAS
APIs are launched in more than one CUDA stream using the same cuBLAS handle.
This happens when two buffer sizes (16 KB and 4 MB) are used in the default
configuration.

When a larger buffer size is not available at runtime, instead of waiting for a buffer
of that size to be released, a smaller buffer may be used with a different GPU
kernel. The kernel selection may affect numerical results. The user can eliminate the
nondeterministic behavior of cuDNN RNN and multihead attention APIs, by setting
a single buffer size in the CUBLAS_WORKSPACE_CONFIG environmental variable, for
example, :16:8 or :4096:2.

The first configuration instructs cuBLAS to allocate eight buffers of 16 KB each in
GPU memory while the second setting creates two buffers of 4 MB each. The default
buffer configuration in cuBLAS 10.2 and 11.0 is :16:8:4096:2, that is, we have two
buffer sizes. In earlier cuBLAS libraries, such as cuBLAS 10.0, it used the :16:8 non-

https://docs.nvidia.com/cuda/cublas/index.html#cublasXtApi_reproducibility

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 78

adjustable configuration. When buffers of only one size are available, the behavior of
cuBLAS calls is deterministic in multi-stream setups.

‣ The tensor pointers and the filter pointers require at a minimum 4-byte alignment,
including INT8 data in the cuDNN library.

‣ Some computational options in cuDNN require increased alignment on tensors in
order to run efficiently. As always, cuDNN recommends users to align tensors to
16 byte boundaries that will be sufficiently aligned for any computational option
in cuDNN. Doing otherwise may cause performance regressions in cuDNN 8.0.x
compared to cuDNN v7.6.

‣ For certain algorithms, when the computation is in float (32-bit float) and the output
is in FP16 (half float), there are cases where the numerical accuracy between the
different algorithms might differ. cuDNN 8.0.x users can target the backend API to
query the numerical notes of the algorithms to get the information programmatically.
There are cases where algo0 and algo1 will have a reduced precision accumulation
when users target the legacy API. In all cases, these numerical differences are not
known to affect training accuracy even though they might show up in unit tests.

‣ For the _ALGO_0 algorithm of convolution backward data and backward filter, grouped
convolution with groups larger than 1 and with odd product of dimensions C, D (if 3D
convolution), H, and W is not supported on devices older than NVIDIA Volta. To prevent
a potential illegal memory access by an instruction that only has a 16-bit version in
NVIDIA Volta and later, pad at least one of the dimensions to an even value.

‣ In INT8x32 Tensor Core cases, the parameters supported by cuDNN v7.6 are limited
to W >= (R-1) * dilationW && H >= (S-1) * dilationH, whereas, in cuDNN
v8.0.x, W == (R-1) * dilationW || H == (S-1) * dilationH cases are no longer
supported.

‣ In prior versions of cuDNN, some convolution algorithms can use texture-based
load structure for performance improvements particularly in older hardware
architectures. Users can opt out of using texture using the environmental variable
CUDNN_TEXOFF_DBG. In cuDNN 8.x, this variable is removed. Texture loading is turned
off by default. Users who want to continue to use texture-based load, can adapt the
new backend API, and toggle the engine knob CUDNN_KNOB_TYPE_USE_TEX to 1 for
engines that support texture-based load instructions.

‣ In the backend API, convolution forward engine with
CUDNN_ATTR_ENGINE_GLOBAL_INDEX=1 is not supported when the product (channels
* height * width) of the input image exceeds 536,870,912 that is 2^29.

‣ cudnnSpatialTfSamplerBackward() returns CUDNN_STATUS_NOT_SUPPORTED when the
number of channels exceeds 1024.

‣ When using graph-capture, users should call the sub library version check API (for
example, cudnnOpsInferVersionCheck()) to load the kernels in the sub library before
opening graph capture.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnSpatialTfSamplerBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnOpsInferVersionCheck

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 79

‣ Users of cuDNN must add the dependencies of cuBLAS to the linkers command
explicitly to resolve the undefined symbols from cuDNN static libraries.

‣ Starting in version 8.1, cuDNN uses AVX intrinsics on the x86_64 architecture; users
of this architecture without support for AVX intrinsics may see illegal instruction
errors.

‣ The spatial persistent batch normalization API is only available for NVIDIA Pascal and
later architectures. Pre-Pascal architectures return CUDNN_STATUS_ARCH_MISMATCH
instead. The affected APIs include:

‣ cudnnBatchNormalizationBackward()

‣ cudnnBatchNormalizationBackwardEx()

‣ cudnnBatchNormalizationForwardTraining()

‣ cudnnBatchNormalizationForwardTrainingEx()

‣ cudnnGetBatchNormalizationBackwardExWorkspaceSize()

‣ cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize()

‣ cudnnGetBatchNormalizationTrainingExReserveSpaceSize()

‣ cudnnGetNormalizationBackwardWorkspaceSize()

‣ cudnnGetNormalizationForwardTrainingWorkspaceSize()

‣ cudnnGetNormalizationTrainingReserveSpaceSize()

‣ cudnnNormalizationBackward()

‣ cudnnNormalizationForwardTraining()

‣ cudnnAddTensor() performance may regress from 8.2 to 8.3 for pre-Pascal
architectures.

‣ When applications using cuDNN with an older 11.x CUDA toolkit in compatibility
mode are tested with compute-sanitizer, cuGetProcAddress failures with error code
500 will arise due to missing functions. This error can be ignored, or suppressed with
the --report-api-errors no option, as this is due to CUDA backward compatibility
checking if a function is usable with the CUDA toolkit combination. The functions are
introduced in a later version of CUDA but are not available on the current platform.
The absence of these functions is harmless and will not give rise to any functional
issues.

1.11. cuDNN Release 8.4.0
These are the NVIDIA cuDNN 8.4.0 Release Notes. These Release Notes include fixes
from the previous cuDNN releases as well as the following additional changes.

These Release Notes are applicable to both cuDNN and NVIDIA JetPack™ users of cuDNN
unless appended specifically with (not applicable for Jetson platforms).

For previously released cuDNN documentation, refer to the NVIDIA cuDNN Archives.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationBackwardEx
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationForwardTraining
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationForwardTrainingEx
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetBatchNormalizationBackwardExWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetBatchNormalizationTrainingExReserveSpaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetNormalizationBackwardWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetNormalizationForwardTrainingWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetNormalizationTrainingReserveSpaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnNormalizationBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnNormalizationForwardTraining
https://docs.nvidia.com/deeplearning/cudnn/archives/index.html

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 80

Key Features and Enhancements

The following features and enhancements have been added to this release:

‣ API additions

‣ Added API and support for the GEN_INDEX capability. CUDNN_POINTWISE_GEN_INDEX
returns the position of an element in an input tensor along a given axis. This
operation is similar to NumPy’s mesh grid operation as it returns a tensor with
the index of all elements calculated according to the specified axis in the original
tensor dimensions.

‣ Added API and support for the BINARY_SELECT capability.
CUDNN_POINTWISE_BINARY_SELECT is similar to the ternary operation and selects
between two input elements based on a predicate element.

‣ Experimentally supports serialization of execution plans to or from a string
representation to enable the user to avoid recompilation of the fusion kernels.
This feature only supports the runtime fusion engine currently. Generalized
support for additional engines is planned for future releases.

‣ Runtime fusion engine improvements

‣ Previous versions of the runtime fusion engine only supported a minimum 128-
bit alignment for tensors in all the operations. From this release onwards, the
minimum alignment requirement has been relaxed down to 32 bit for input
tensors in matrix multiplication and convolution for NVIDIA Ampere Architecture
GPUs. For output tensors in any operation and input tensors for pointwise
operations, the minimum alignment requirement has been relaxed down to 8 bit.

‣ Added support for ARM servers.

‣ Documentation improvements functions:

‣ We added documentation for the following data types and API.

‣ CUDNN_BACKEND_OPERATION_REDUCTION_DESCRIPTOR

‣ CUDNN_BACKEND_POINTWISE_DESCRIPTOR

‣ CUDNN_BACKEND_REDUCTION_DESCRIPTOR

‣ cudnnBackendBehaviorNote_t

‣ cudnnBackendTensorReordering_t

‣ cudnnBnFinalizeStatsMode_t

‣ cudnnPaddingMode_t

‣ cudnnResampleMode_t

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#CUDNN_BACKEND_OPERATION_REDUCTION_DESCRIPTOR
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#CUDNN_BACKEND_POINTWISE_DESCRIPTOR
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#CUDNN_BACKEND_REDUCTION_DESCRIPTOR
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBackendBehaviorNote_t
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBackendTensorReordering_t
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBnFinalizeStatsMode_t
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnPaddingMode_t
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnResampleMode_t

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 81

Fixed Issues

‣ Users of cuDNN’s CUDNN_ATTR_ENGINE_GLOBAL_INDEX when set to 3000 previously
could experience a floating point exception when the filter size (filter width * filter
height) is greater than or equal to 32. This issue is fixed in this release.

‣ Users of cuDNN's CUDNN_ATTR_ENGINE_GLOBAL_INDEX when set to 58, 1063, or 2062
may now use the knob count CUDNN_KNOB_TYPE_WORKSPACE to set the allowable
workspace of these engines.

‣ The documentation of cudnnNormalizationForwardInference() and
cudnnBatchNormalizationForwardInference() has been improved for clarity.

‣ Previous versions of cuDNN may produce wrong results when used to compute a
matrix multiplication or fusions containing a matrix multiplication on NVIDIA Ampere
Architecture based GPUs. This issue has been fixed in this release.

Known Issues

‣ Users of cuDNN's CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING may see
CUDNN_STATUS_BAD_PARAM returned for a problem that should otherwise be supported
by that choice of algo.

‣ cudnnConvolutionForward(), cudnnConvolutionBiasActivationForward(), and
cudnnConvolutionBackwardData() may generate illegal memory address errors on
the NVIDIA Volta and NVIDIA Turing architectures. This issue existed in previous 8.3
releases as well.

‣ cudnnDropoutForward() and cudnnDropoutBackward() will return incorrect results
when input or output tensors have overlapping strides.

‣ Users specifying backend engines 58, 1063, 2062, and 4039 using
CUDNN_ATTR_ENGINE_GLOBAL_INDEX with 1x1 convolutions and tensors with more
than two GB elements (2G) will see CUDNN_STATUS_EXECUTION_FAILED in cuDNN 8.3.x.

‣ cuDNN may return CUDNN_STATUS_EXECUTION_FAILED from
cudnnConvolutionForward(), cudnnConvolutionBiasActivationForward(), or
cudnnConvolutionBackwardData() when computing convolutions with large spatial
dimensions and batch sizes. This issue will be addressed in a future release so that
such problems will instead return CUDNN_STATUS_NOT_SUPPORTED where applicable.

‣ CUDNN_ATTR_ENGINE_GLOBAL_INDEX = 1025 (which is part of legacy
CUDNN_CONVOLUTION_BWD_DATA_ALGO_0) does not support tensors in which the
product N*C*H*W of the output gradient tensor equals to or exceeds 2^31. This issue
has been present in all previous releases of cuDNN and exercising the use case for
the engine results in incorrect results.

‣ The documentation for cudnnReorderFilterAndBias() requires corrections for
clarity.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnNormalizationForwardInference
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationForwardInference
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnReorderFilterAndBias

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 82

‣ Some convolution models are experiencing lower performance on NVIDIA RTX
3090 compared to 2080 Ti. This includes EfficientNet with up to 6x performance
difference, UNet up to 1.6x performance difference and Tacotron up to 1.6x
performance difference.

‣ cudnnPoolingForward() with pooling mode CUDNN_POOLING_AVG
might output NaN for pixel in output tensor outside the value
recommended by cudnnGetPoolingNdForwardOutputDim() or
cudnnGetPooling2dForwardOutputDim().

‣ Convolutions (ConvolutionForward, ConvolutionBackwardData, and
ConvolutionBackwardFilter) may experience performance regressions when run
with math type CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION on CUDNN_DATA_FLOAT
data (input and output).

‣ Compared to cuDNN 7.6, there are known performance regressions up to 2x on
select configurations for AlexNet-like models on NVIDIA Turing GPUs.

‣ Compared to cuDNN 8.1.0, there are known performance regressions on certain
dgrad NHWC configurations from FastPitch and WaveGlow models on V100 and
NVIDIA A100 GPUs.

‣ The numeric behavior of INT8 operations including saturation behavior, accumulator
data types, and so on, have not been documented as of yet.

‣ It is possible, starting in cuDNN 7.6 and up to but not including 8.1.1, to leak memory
when computing common convolution operations in rare cases.

‣ There is a known 25% performance regression for inference on the PyTorch SSD
model on the NVIDIA Turing architecture.

‣ Compared to cuDNN 8.0.5, there is a known ~17% performance regression on SSD
models running on V100.

‣ FFT and Winograd based algorithms for convolution do not support graph capture.

‣ Compared to cuDNN version 8.0.2, there is a known 3x performance regression for a
single cudnnConvolutionBackwardFilter() use case.

‣ CUDA streams internal to cuDNN are not guaranteed to have the same priority as the
user stream that is set by cudnnSetStream(). We recently discovered some issues
that break our ability to document exceptions to this clearly.

‣ The functional support criteria of cuDNN's convolution kernels is not required to
consider padding. Users of cuDNN can witness an unexpected lack of problem
support when forward convolution spatial dimensions are less than the filter size
and padding is nonzero, however, is sufficient to extend spatial dimensions to or
beyond filter dimensions. This is commonly observed with, but not limited to, INT8
convolution kernels.

‣ cudnnPoolingBackward() enables both x and y data pointers (together with the
related tensor descriptor handles) to be NULL for avg-pooling. This could save
memory footprint and bandwidth.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnPoolingForward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetPoolingNdForwardOutputDim
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetPooling2dForwardOutputDim
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionBackwardFilter
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnPoolingBackward

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 83

‣ Users of the static library requiring the best possible convolution performance
should use whole-archive linking with the cnn_infer and cnn_train static sub
libraries. This will come at a cost to the binary size of the application. This linkage
requirement will be relaxed in a future release.

‣ Users of cuDNN 8.4.0 may observe a slowdown in the Single Shot Multibox Detector
(SSD) model. This will be fixed in a future release.

Compatibility

For the latest compatibility software versions of the OS, CUDA, the CUDA driver, and the
NVIDIA hardware, see the NVIDIA cuDNN Support Matrix.

Limitations

‣ CUDNN_ATTR_ENGINE_GLOBAL_INDEX = 1001 (which is part of legacy
CUDNN_CONVOLUTION_BWD_DATA_ALGO_1) does not support tensors in which the
product N*H*W of the output gradient tensor equals to or exceeds 2^31. This issue
has been present in all previous releases of cuDNN and exercising the use case for
the engine would show incorrect results.

‣ Versions of cuDNN before the 8.0 release series do not support the NVIDIA Ampere
Architecture and will generate incorrect results if used on that architecture.
Furthermore, if used, training operations can succeed with a NaN loss for every
epoch.

‣ The runtime fusion engine is only supported in the cuDNN build based on
CUDA Toolkit 11.2 update 1 or later. It also requires the NVRTC from CUDA
11.2 update 1 or later. If this condition is not satisfied, the error status of
CUDNN_STATUS_NOT_SUPPORTED or CUDNN_STATUS_RUNTIME_PREREQUISITE_MISSING will
be returned.

‣ Samples must be installed in a writable location. If not installed in a writable location,
the samples can crash.

‣ RNN and multihead attention API calls may exhibit nondeterministic behavior when
the cuDNN library is built with CUDA Toolkit 10.2 or higher. This is the result of
a new buffer management and heuristics in the cuBLAS library. As described in
Results Reproducibility, numerical results may not be deterministic when cuBLAS
APIs are launched in more than one CUDA stream using the same cuBLAS handle.
This happens when two buffer sizes (16 KB and 4 MB) are used in the default
configuration.

When a larger buffer size is not available at runtime, instead of waiting for a buffer
of that size to be released, a smaller buffer may be used with a different GPU kernel.
The kernel selection may affect numerical results. The user can eliminate the non-
deterministic behavior of cuDNN RNN and multihead attention APIs, by setting
a single buffer size in the CUBLAS_WORKSPACE_CONFIG environmental variable, for
example, :16:8 or :4096:2.

https://docs.nvidia.com/deeplearning/sdk/cudnn-support-matrix/index.html#cudnn-cuda-hardware-versions
https://docs.nvidia.com/cuda/cublas/index.html#cublasXtApi_reproducibility

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 84

The first configuration instructs cuBLAS to allocate eight buffers of 16 KB each in
GPU memory while the second setting creates two buffers of 4 MB each. The default
buffer configuration in cuBLAS 10.2 and 11.0 is :16:8:4096:2, that is, we have two
buffer sizes. In earlier cuBLAS libraries, such as cuBLAS 10.0, it used the :16:8 non-
adjustable configuration. When buffers of only one size are available, the behavior of
cuBLAS calls is deterministic in multi-stream setups.

‣ The tensor pointers and the filter pointers require at a minimum 4-byte alignment,
including INT8 data in the cuDNN library.

‣ Some computational options in cuDNN require increased alignment on tensors in
order to run efficiently. As always, cuDNN recommends users to align tensors to
16 byte boundaries that will be sufficiently aligned for any computational option
in cuDNN. Doing otherwise may cause performance regressions in cuDNN 8.0.x
compared to cuDNN v7.6.

‣ For certain algorithms, when the computation is in float (32-bit float) and the output
is in FP16 (half float), there are cases where the numerical accuracy between the
different algorithms might differ. cuDNN 8.0.x users can target the backend API to
query the numerical notes of the algorithms to get the information programmatically.
There are cases where algo0 and algo1 will have a reduced precision accumulation
when users target the legacy API. In all cases, these numerical differences are not
known to affect training accuracy even though they might show up in unit tests.

‣ For the _ALGO_0 algorithm of convolution backward data and backward filter, grouped
convolution with groups larger than 1 and with odd product of dimensions C, D (if 3D
convolution), H, and W is not supported on devices older than NVIDIA Volta. To prevent
a potential illegal memory access by an instruction that only has a 16-bit version in
NVIDIA Volta and later, pad at least one of the dimensions to an even value.

‣ In INT8x32 Tensor Core cases, the parameters supported by cuDNN v7.6 are limited
to W >= (R-1) * dilationW && H >= (S-1) * dilationH, whereas, in cuDNN
v8.0.x, W == (R-1) * dilationW || H == (S-1) * dilationH cases are no longer
supported.

‣ In prior versions of cuDNN, some convolution algorithms can use texture-based
load structure for performance improvements particularly in older hardware
architectures. Users can opt out of using texture using the environmental variable
CUDNN_TEXOFF_DBG. In cuDNN 8.x, this variable is removed. Texture loading is turned
off by default. Users who want to continue to use texture-based load, can adapt the
new backend API, and toggle the engine knob CUDNN_KNOB_TYPE_USE_TEX to 1 for
engines that support texture-based load instructions.

‣ In the backend API, convolution forward engine with
CUDNN_ATTR_ENGINE_GLOBAL_INDEX=1 is not supported when the product (channels
* height * width) of the input image exceeds 536,870,912 that is 2^29.

‣ cudnnSpatialTfSamplerBackward() returns CUDNN_STATUS_NOT_SUPPORTED when the
number of channels exceeds 1024.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnSpatialTfSamplerBackward

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 85

‣ When using graph-capture, users should call the sub library version check API (for
example, cudnnOpsInferVersionCheck()) to load the kernels in the sub library before
opening graph capture.

‣ Users of cuDNN must add the dependencies of cuBLAS to the linkers command
explicitly to resolve the undefined symbols from cuDNN static libraries.

‣ Starting in version 8.1, cuDNN uses AVX intrinsics on the x86_64 architecture; users
of this architecture without support for AVX intrinsics may see illegal instruction
errors.

‣ The spatial persistent batch normalization API is only available for NVIDIA Pascal and
later architectures. Pre-Pascal architectures return CUDNN_STATUS_ARCH_MISMATCH
instead. The affected APIs include:

‣ cudnnBatchNormalizationBackward()

‣ cudnnBatchNormalizationBackwardEx()

‣ cudnnBatchNormalizationForwardTraining()

‣ cudnnBatchNormalizationForwardTrainingEx()

‣ cudnnGetBatchNormalizationBackwardExWorkspaceSize()

‣ cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize()

‣ cudnnGetBatchNormalizationTrainingExReserveSpaceSize()

‣ cudnnGetNormalizationBackwardWorkspaceSize()

‣ cudnnGetNormalizationForwardTrainingWorkspaceSize()

‣ cudnnGetNormalizationTrainingReserveSpaceSize()

‣ cudnnNormalizationBackward()

‣ cudnnNormalizationForwardTraining()

‣ cudnnAddTensor() performance may regress from 8.2 to 8.3 for pre-Pascal
architectures.

‣ When applications using cuDNN with an older 11.x CUDA toolkit in compatibility
mode are tested with compute-sanitizer, cuGetProcAddress failures with error code
500 will arise due to missing functions. This error can be ignored, or suppressed with
the --report-api-errors no option, as this is due to CUDA backward compatibility
checking if a function is usable with the CUDA toolkit combination. The functions are
introduced in a later version of CUDA but are not available on the current platform.
The absence of these functions is harmless and will not give rise to any functional
issues.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnOpsInferVersionCheck
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationBackwardEx
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationForwardTraining
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationForwardTrainingEx
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetBatchNormalizationBackwardExWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetBatchNormalizationTrainingExReserveSpaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetNormalizationBackwardWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetNormalizationForwardTrainingWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetNormalizationTrainingReserveSpaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnNormalizationBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnNormalizationForwardTraining

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 86

1.12. cuDNN Release 8.3.3
These are the NVIDIA cuDNN 8.3.3 Release Notes. These Release Notes include fixes
from the previous cuDNN releases as well as the following additional changes.

These Release Notes are applicable to both cuDNN and NVIDIA JetPack™ users of cuDNN
unless appended specifically with (not applicable for Jetson platforms).

For previously released cuDNN documentation, refer to the NVIDIA cuDNN Archives.

Key Features and Enhancements

The following features and enhancements have been added to this release:

‣ Various improvements were made in the runtime fusion engine:

‣ Added heuristics for convolution + x fusion and matmul + x fusion for NVIDIA
Volta and NVIDIA Turing architectures.

‣ Updated the heuristics for matmul + x fusion for NVIDIA Ampere Architecture.

‣ Small performance improvement for the matmul + x fusion.

‣ Compilation time reduction.

‣ Improved the performance for NHWC INT8 max pooling.

‣ Updated the list of supported enums in the following data type references:

‣ cudnnBackendAttributeName_t

‣ cudnnBackendAttributeType_t

‣ cudnnBackendDescriptorType_t

‣ cudnnBackendNumericalNote_t

‣ Updated and migrated the content from the Best Practices For Using cuDNN 3D
Convolutions to the NVIDIA cuDNN Developer Guide. The Best Practices document
has been deprecated.

Fixed Issues

The following issues have been fixed in this release:

‣ Fixed an issue when fusing pointwise operation with a scalar (that is a [1, 1, 1, 1]
shaped tensor) at the output of a matmul or a convolution. When the output is of
integer type, the results may be inaccurate or wrong (due to float to INT8 truncation).
After the fix, it will properly round to nearest with clamping.

‣ Fixed an issue inside the batch norm finalize descriptor where an implementation
detail was erroneously logged. Such unexpected access could intermittently cause a
segment fault.

https://docs.nvidia.com/deeplearning/cudnn/archives/index.html
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBackendAttributeName_t
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBackendAttributeType_t
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBackendDescriptorType_t
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBackendNumericalNote_t
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 87

‣ Convolution batch norm fusion engines invoked through the graph API only worked
with cudnnBackendTensor descriptors with dimensions specified in “n,c,g,h,w” format.
This has been fixed and cudnnBackendTensors with dimensions specified any of
“n,c,h,w” and “n,c,g,h,w” formats can now be passed.

‣ Fixed a numerical overflow issue in the computation of softplus activation function
in the runtime fusion engine that was resulting in log(exp(x)) being computed as
infinity for sufficiently large positive values of x.

‣ In previous releases, cudnnTransformFilter() andcudnnTransformTensorEx() could
produce wrong values at some pixels when doing a folding transform. This has been
fixed in the current release.

‣ Documentation has been updated for pooling forward and backward API functions.
The documentation now discusses which data types and vectorizations are
supported for the tensor descriptor arguments (this information was previously
incomplete). For more information, refer to the cudnnPoolingForward() and
cudnnPoolingBackward().

Known Issues

‣ cudnnConvolutionForward(), cudnnConvolutionBiasActivationForward(), and
cudnnConvolutionBackwardData() may generate illegal memory address errors on
the NVIDIA Volta and NVIDIA Turing architectures. This issue existed in previous 8.3
releases as well.

‣ cudnnDropoutForward() and cudnnDropoutBackward() will return incorrect results
when input or output tensors have overlapping strides.

‣ Users specifying backend engines 58, 1063, 2062, and 4039 using
CUDNN_ATTR_ENGINE_GLOBAL_INDEX with 1x1 convolutions and tensors with more
than two GB elements (2G) will see CUDNN_STATUS_EXECUTION_FAILED in cuDNN 8.3.x.

‣ cuDNN may return CUDNN_STATUS_EXECUTION_FAILED from
cudnnConvolutionForward(), cudnnConvolutionBiasActivationForward(), or
cudnnConvolutionBackwardData() when computing convolutions with large spatial
dimensions and batch sizes. This issue will be addressed in a future release so that
such problems will instead return CUDNN_STATUS_NOT_SUPPORTED where applicable.

‣ CUDNN_ATTR_ENGINE_GLOBAL_INDEX = 1025 (which is part of legacy
CUDNN_CONVOLUTION_BWD_DATA_ALGO_0) does not support tensors in which the
product N*C*H*W of the output gradient tensor equals to or exceeds 2^31. This issue
has been present in all previous releases of cuDNN and exercising the use case for
the engine results in incorrect results.

‣ The documentation for cudnnReorderFilterAndBias() requires corrections for
clarity.

‣ Some convolution models are experiencing lower performance on NVIDIA RTX
3090 compared to 2080 Ti. This includes EfficientNet with up to 6x performance

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnTransformFilter
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnTransformTensorEx
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnPoolingForward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnPoolingBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnReorderFilterAndBias

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 88

difference, UNet up to 1.6x performance difference and Tacotron up to 1.6x
performance difference.

‣ cudnnPoolingForward() with pooling mode CUDNN_POOLING_AVG
might output NaN for pixel in output tensor outside the value
recommended by cudnnGetPoolingNdForwardOutputDim() or
cudnnGetPooling2dForwardOutputDim().

‣ Convolutions (ConvolutionForward, ConvolutionBackwardData, and
ConvolutionBackwardFilter) may experience performance regressions when run
with math type CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION on CUDNN_DATA_FLOAT
data (input and output).

‣ Compared to cuDNN 7.6, there are known performance regressions up to 2x on
select configurations for AlexNet-like models on NVIDIA Turing GPUs.

‣ Compared to cuDNN 8.1.0, there are known performance regressions on certain
dgrad NHWC configurations from FastPitch and WaveGlow models on V100 and
NVIDIA A100 GPUs.

‣ The numeric behavior of INT8 operations including saturation behavior, accumulator
data types, and so on, have not been documented as of yet.

‣ It is possible, starting in cuDNN 7.6 and up to but not including 8.1.1, to leak memory
when computing common convolution operations in rare cases.

‣ There is a known 25% performance regression for inference on the PyTorch SSD
model on the NVIDIA Turing architecture.

‣ Compared to cuDNN 8.0.5, there is a known ~17% performance regression on SSD
models running on V100.

‣ FFT and Winograd based algorithms for convolution do not support graph capture.

‣ Compared to cuDNN version 8.0.2, there is a known 3x performance regression for a
single cudnnConvolutionBackwardFilter() use case.

‣ CUDA streams internal to cuDNN are not guaranteed to have the same priority as the
user stream that is set by cudnnSetStream(). We recently discovered some issues
that break our ability to document exceptions to this clearly.

‣ The functional support criteria of cuDNN's convolution kernels is not required to
consider padding. Users of cuDNN can witness an unexpected lack of problem
support when forward convolution spatial dimensions are less than the filter size
and padding is nonzero, however, is sufficient to extend spatial dimensions to or
beyond filter dimensions. This is commonly observed with, but not limited to, INT8
convolution kernels.

‣ cudnnPoolingBackward() enables both x and y data pointers (together with the
related tensor descriptor handles) to be NULL for avg-pooling. This could save
memory footprint and bandwidth.

‣ Users of the static library requiring the best possible convolution performance
should use whole-archive linking with the cnn_infer and cnn_train static sub

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnPoolingForward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetPoolingNdForwardOutputDim
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetPooling2dForwardOutputDim
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionBackwardFilter
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnPoolingBackward

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 89

libraries. This will come at a cost to the binary size of the application. This linkage
requirement will be relaxed in a future release.

Compatibility

For the latest compatibility software versions of the OS, CUDA, the CUDA driver, and the
NVIDIA hardware, see the NVIDIA cuDNN Support Matrix.

Limitations

‣ CUDNN_ATTR_ENGINE_GLOBAL_INDEX =1001 (which is part of legacy
CUDNN_CONVOLUTION_BWD_DATA_ALGO_1) does not support tensors in which the
product N*H*W of the output gradient tensor equals to or exceeds 2^31. This issue
has been present in all previous releases of cuDNN and exercising the use case for
the engine would show incorrect results.

‣ Versions of cuDNN before the 8.0 release series do not support the NVIDIA Ampere
Architecture and will generate incorrect results if used on that architecture.

‣ The runtime fusion engine is only supported in the cuDNN build based on
CUDA Toolkit 11.2 update 1 or later. It also requires the NVRTC from CUDA
11.2 update 1 or later. If this condition is not satisfied, the error status of
CUDNN_STATUS_NOT_SUPPORTED or CUDNN_STATUS_RUNTIME_PREREQUISITE_MISSING will
be returned.

‣ Samples must be installed in a writable location. If not installed in a writable location,
the samples can crash.

‣ RNN and multihead attention API calls may exhibit nondeterministic behavior when
the cuDNN library is built with CUDA Toolkit 10.2 or higher. This is the result of
a new buffer management and heuristics in the cuBLAS library. As described in
Results Reproducibility, numerical results may not be deterministic when cuBLAS
APIs are launched in more than one CUDA stream using the same cuBLAS handle.
This happens when two buffer sizes (16 KB and 4 MB) are used in the default
configuration.

When a larger buffer size is not available at runtime, instead of waiting for a buffer
of that size to be released, a smaller buffer may be used with a different GPU kernel.
The kernel selection may affect numerical results. The user can eliminate the non-
deterministic behavior of cuDNN RNN and multihead attention APIs, by setting
a single buffer size in the CUBLAS_WORKSPACE_CONFIG environmental variable, for
example, :16:8 or :4096:2.

The first configuration instructs cuBLAS to allocate eight buffers of 16 KB each in
GPU memory while the second setting creates two buffers of 4 MB each. The default
buffer configuration in cuBLAS 10.2 and 11.0 is :16:8:4096:2, that is, we have two
buffer sizes. In earlier cuBLAS libraries, such as cuBLAS 10.0, it used the :16:8 non-
adjustable configuration. When buffers of only one size are available, the behavior of
cuBLAS calls is deterministic in multi-stream setups.

https://docs.nvidia.com/deeplearning/sdk/cudnn-support-matrix/index.html#cudnn-cuda-hardware-versions
https://docs.nvidia.com/cuda/cublas/index.html#cublasXtApi_reproducibility

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 90

‣ The tensor pointers and the filter pointers require at a minimum 4-byte alignment,
including INT8 data in the cuDNN library.

‣ Some computational options in cuDNN require increased alignment on tensors in
order to run efficiently. As always, cuDNN recommends users to align tensors to
16 byte boundaries that will be sufficiently aligned for any computational option
in cuDNN. Doing otherwise may cause performance regressions in cuDNN 8.0.x
compared to cuDNN v7.6.

‣ For certain algorithms, when the computation is in float (32-bit float) and the output
is in FP16 (half float), there are cases where the numerical accuracy between the
different algorithms might differ. cuDNN 8.0.x users can target the backend API to
query the numerical notes of the algorithms to get the information programmatically.
There are cases where algo0 and algo1 will have a reduced precision accumulation
when users target the legacy API. In all cases, these numerical differences are not
known to affect training accuracy even though they might show up in unit tests.

‣ For the _ALGO_0 algorithm of convolution backward data and backward filter, grouped
convolution with groups larger than 1 and with odd product of dimensions C, D (if 3D
convolution), H, and W is not supported on devices older than NVIDIA Volta. To prevent
a potential illegal memory access by an instruction that only has a 16-bit version in
NVIDIA Volta and later, pad at least one of the dimensions to an even value.

‣ In INT8x32 Tensor Core cases, the parameters supported by cuDNN v7.6 are limited
to W >= (R-1) * dilationW && H >= (S-1) * dilationH, whereas, in cuDNN
v8.0.x, W == (R-1) * dilationW || H == (S-1) * dilationH cases are no longer
supported.

‣ In prior versions of cuDNN, some convolution algorithms can use texture-based
load structure for performance improvements particularly in older hardware
architectures. Users can opt out of using texture using the environmental variable
CUDNN_TEXOFF_DBG. In cuDNN 8.x, this variable is removed. Texture loading is turned
off by default. Users who want to continue to use texture-based load, can adapt the
new backend API, and toggle the engine knob CUDNN_KNOB_TYPE_USE_TEX to 1 for
engines that support texture-based load instructions.

‣ In the backend API, convolution forward engine with
CUDNN_ATTR_ENGINE_GLOBAL_INDEX=1 is not supported when the product (channels
* height * width) of the input image exceeds 536,870,912 that is 2^29.

‣ cudnnSpatialTfSamplerBackward() returns CUDNN_STATUS_NOT_SUPPORTED when the
number of channels exceeds 1024.

‣ When using graph-capture, users should call the sub library version check API (for
example, cudnnOpsInferVersionCheck()) to load the kernels in the sub library before
opening graph capture.

‣ Users of cuDNN must add the dependencies of cuBLAS to the linkers command
explicitly to resolve the undefined symbols from cuDNN static libraries.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnSpatialTfSamplerBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnOpsInferVersionCheck

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 91

‣ Starting in version 8.1, cuDNN uses AVX intrinsics on the x86_64 architecture; users
of this architecture without support for AVX intrinsics may see illegal instruction
errors.

‣ The spatial persistent batch normalization API is only available for NVIDIA Pascal and
later architectures. Pre-Pascal architectures return CUDNN_STATUS_ARCH_MISMATCH
instead. The affected APIs include:

‣ cudnnBatchNormalizationBackward()

‣ cudnnBatchNormalizationBackwardEx()

‣ cudnnBatchNormalizationForwardTraining()

‣ cudnnBatchNormalizationForwardTrainingEx()

‣ cudnnGetBatchNormalizationBackwardExWorkspaceSize()

‣ cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize()

‣ cudnnGetBatchNormalizationTrainingExReserveSpaceSize()

‣ cudnnGetNormalizationBackwardWorkspaceSize()

‣ cudnnGetNormalizationForwardTrainingWorkspaceSize()

‣ cudnnGetNormalizationTrainingReserveSpaceSize()

‣ cudnnNormalizationBackward()

‣ cudnnNormalizationForwardTraining()

‣ cudnnAddTensor() performance may regress from 8.2 to 8.3 for pre-Pascal
architectures.

‣ When applications using cuDNN with an older 11.x CUDA toolkit in compatibility
mode are tested with compute-sanitizer, cuGetProcAddress failures with error code
500 will arise due to missing functions. This error can be ignored, or suppressed with
the --report-api-errors no option, as this is due to CUDA backward compatibility
checking if a function is usable with the CUDA toolkit combination. The functions are
introduced in a later version of CUDA but are not available on the current platform.
The absence of these functions is harmless and will not give rise to any functional
issues.

Deprecated Features

The following features are deprecated in cuDNN 8.3.3:

‣ We are deprecating the reporting of performance results in the Best Practices For
Using cuDNN 3D Convolutions and will instead update these Release Notes if there is
anything interesting to report release-over-release. Starting with cuDNN 8.4.0, this
section will be removed. For past performance tables, refer to the NVIDIA cuDNN
Archives.

‣ Updated and migrated the content from the Best Practices For Using cuDNN 3D
Convolutions to the NVIDIA cuDNN Developer Guide. The Best Practices document
has been deprecated.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationBackwardEx
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationForwardTraining
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationForwardTrainingEx
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetBatchNormalizationBackwardExWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetBatchNormalizationTrainingExReserveSpaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetNormalizationBackwardWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetNormalizationForwardTrainingWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetNormalizationTrainingReserveSpaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnNormalizationBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnNormalizationForwardTraining
https://docs.nvidia.com/deeplearning/cudnn/archives/index.html
https://docs.nvidia.com/deeplearning/cudnn/archives/index.html
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 92

1.13. cuDNN Release 8.3.2
This is the NVIDIA cuDNN 8.3.2 Release Notes. This release includes fixes from the
previous cuDNN v8.1.x releases as well as the following additional changes. These
Release Notes are applicable to both cuDNN and NVIDIA JetPack™ users of cuDNN
unless appended specifically with (not applicable for Jetson platforms).

For previously released cuDNN documentation, refer to the NVIDIA cuDNN Archives.

Key Features and Enhancements

The following features and enhancements have been added to this release:

‣ In the runtime fusion engine, pointwise fusion for batched matmul was extended to
support operations with full tensor in the epilog.

Announcements

‣ Debian and RPM local installers are now provided on the cuDNN download page. For
more information, refer to the NVIDIA cuDNN Installation Guide.

‣ Individual cuDNN packages can be found in the CUDA repository:https://
developer.download.nvidia.com/compute/cuda/repos/

‣ As part of a renewed effort to provide tarball and zip archive deliverables for NVIDIA
products, the format has changed from existing .txz archives. For more information
about *-archive.tar.xz and *-archive.zip deliverables, refer to the Tarball and Zip
Archive Deliverables and the README for build-system-archive-import-examples.

Fixed Issues

‣ cuDNN multihead attention produces incorrect results in case the postDropout
feature is enabled. The issue has been fixed in this release.

‣ Running convBiasAct in CUDNN_CROSS_CORRELATION mode could result in incorrect
results if the GroupedDirect engine is selected.

‣ Documentation has been updated for pooling forward and backward API functions,
to update which data types and vectorizations are supported for the tensor
descriptor arguments. For more information, refer to the cudnnPoolingForward()
and cudnnPoolingBackward().

‣ The documentation in the Reproducibility section in the NVIDIA cuDNN Developer
Guide has been improved upon for clarity.

‣ The documentation for the CUDNN_BACKEND_OPERATION_MATMUL_DESCRIPTOR,
CUDNN_BACKEND_OPERATION_RESAMPLE_FWD_DESCRIPTOR, and
CUDNN_BACKEND_OPERATION_RESAMPLE_BWD_DESCRIPTOR in the NVIDIA cuDNN API
Reference has been improved upon for clarity.

https://docs.nvidia.com/deeplearning/cudnn/archives/index.html
https://developer.nvidia.com/cudnn
https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html
https://developer.download.nvidia.com/compute/cuda/repos/
https://developer.download.nvidia.com/compute/cuda/repos/
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/#tarball-zipfile-overview
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/#tarball-zipfile-overview
https://github.com/NVIDIA/build-system-archive-import-examples
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnPoolingForward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnPoolingBackward
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#reproducibility
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnn-backend-api
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnn-backend-api

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 93

‣ Use of CUDNN_TENSOR_NCHW_VECT_C with cudnnReorderFilterAndBias()
could generate incorrect results when the reordered filter data was used
incorrectly within cuDNN. Direct use of cudnnConvolutionForward()
or cudnnConvolutionBiasActivationForward() without
cudnnReorderFilterAndBias() was unaffected by this issue.

‣ Compared to cuDNN 8.3.0, there was an overall ~5% regression on convBiasAct
layers on PG199/PG189. The maximum performance regression was around 3x for a
select few cases. This issue has been fixed in this release.

Known Issues

‣ cuDNN may return CUDNN_STATUS_EXECUTION_FAILED from
cudnnConvolutionForward(), cudnnConvolutionBiasActivationForward(), or
cudnnConvolutionBackwardData() when computing convolutions with large spatial
dimensions and batch sizes. This issue will be addressed in a future release so that
such problems will instead return CUDNN_STATUS_NOT_SUPPORTED where applicable.

‣ Versions of cuDNN before the 8.0 release series do not support the NVIDIA Ampere
Architecture and will generate incorrect results if used on that architecture.

‣ Data gradient backendEngine 25 (which is part of legacy
CUDNN_CONVOLUTION_BWD_DATA_ALGO_0) does not support tensors in which the
product N*C*H*W of the output gradient tensor equals to or exceeds 2^31. This issue
has been present in all previous releases of cuDNN and exercising the use case for
the engine results in incorrect results.

‣ The documentation for cudnnReorderFilterAndBias() needs some corrections for
clarity.

‣ Some convolution models are experiencing lower performance on NVIDIA RTX
3090 compared to 2080 Ti. This includes EfficientNet with up to 6x performance
difference, UNet up to 1.6x performance difference and Tacotron up to 1.6x
performance difference.

‣ cudnnPoolingForward() with pooling mode CUDNN_POOLING_AVG
might output NaN for pixel in output tensor outside the value
recommended by cudnnGetPoolingNdForwardOutputDim() or
cudnnGetPooling2dForwardOutputDim().

‣ Convolutions (ConvolutionForward, ConvolutionBackwardData, and
ConvolutionBackwardFilter) may experience performance regressions when run
with math type CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION on CUDNN_DATA_FLOAT
data (input and output).

‣ Compared to cuDNN 7.6, there are known performance regressions up to 2x on
select configurations for AlexNet-like models on NVIDIA Turing GPUs.

‣ Compared to cuDNN 8.1.0, there are known performance regressions on certain
dgrad NHWC configurations from FastPitch and WaveGlow models on V100 and
NVIDIA A100 GPUs.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnReorderFilterAndBias
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnPoolingForward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetPoolingNdForwardOutputDim
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetPooling2dForwardOutputDim

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 94

‣ The numeric behavior of INT8 operations including saturation behavior, accumulator
data types, and so on, have not been documented as of yet.

‣ It is possible, starting in cuDNN 7.6 and up to but not including 8.1.1, to leak memory
when computing common convolution operations in rare cases.

‣ There is a known 25% performance regression for inference on the PyTorch SSD
model on the NVIDIA Turing architecture.

‣ Compared to cuDNN 8.0.5, there is a known ~17% performance regression on SSD
models running on V100.

‣ FFT and Winograd based algorithms for convolution do not support graph capture.

‣ Compared to cuDNN version 8.0.2, there is a known 3x performance regression for a
single cudnnConvolutionBackwardFilter() use case.

‣ CUDA streams internal to cuDNN are not guaranteed to have the same priority as the
user stream that is set by cudnnSetStream(). We recently discovered some issues
that break our ability to document exceptions to this clearly.

‣ The functional support criteria of cuDNN's convolution kernels is not required to
consider padding. Users of cuDNN can witness an unexpected lack of problem
support when forward convolution spatial dimensions are less than the filter size
and padding is nonzero, however, is sufficient to extend spatial dimensions to or
beyond filter dimensions. This is commonly observed with, but not limited to, INT8
convolution kernels.

‣ cudnnPoolingBackward() allows both x and y data pointers (together with the
related tensor descriptor handles) to be NULL for avg-pooling. This could save
memory footprint and bandwidth.

‣ Users of the static library requiring the best possible convolution performance
should use whole-archive linking with the cnn_infer and cnn_train static sub
libraries. This will come at a cost to the binary size of the application. This linkage
requirement will be relaxed in a future release.

Compatibility

For the latest compatibility software versions of the OS, CUDA, the CUDA driver, and the
NVIDIA hardware, see the NVIDIA cuDNN Support Matrix.

Limitations

‣ The runtime fusion engine is only supported in the cuDNN build based on
CUDA Toolkit 11.2 update 1 or later; it also requires the NVRTC from CUDA
11.2 update 1 or later. If this condition is not satisfied, the error status of
CUDNN_STATUS_NOT_SUPPORTED or CUDNN_STATUS_RUNTIME_PREREQUISITE_MISSING will
be returned.

‣ Samples can crash unless they are installed in a writable location.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionBackwardFilter
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnPoolingBackward
https://docs.nvidia.com/deeplearning/sdk/cudnn-support-matrix/index.html#cudnn-cuda-hardware-versions

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 95

‣ RNN and multihead attention API calls may exhibit non-deterministic behavior when
the cuDNN library is built with CUDA Toolkit 10.2 or higher. This is the result of a new
buffer management and heuristics in the cuBLAS library. As described in Results
Reproducibility, numerical results may not be deterministic when cuBLAS APIs are
launched in more than one CUDA stream using the same cuBLAS handle. This is
caused by two buffer sizes (16 KB and 4 MB) used in the default configuration.

When a larger buffer size is not available at runtime, instead of waiting for a buffer
of that size to be released, a smaller buffer may be used with a different GPU kernel.
The kernel selection may affect numerical results. The user can eliminate the non-
deterministic behavior of cuDNN RNN and multihead attention APIs, by setting
a single buffer size in the CUBLAS_WORKSPACE_CONFIG environmental variable, for
example, :16:8 or :4096:2.

The first configuration instructs cuBLAS to allocate eight buffers of 16 KB each in
GPU memory while the second setting creates two buffers of 4 MB each. The default
buffer configuration in cuBLAS 10.2 and 11.0 is :16:8:4096:2, that is, we have two
buffer sizes. In earlier cuBLAS libraries, such as cuBLAS 10.0, it used the :16:8 non-
adjustable configuration. When buffers of only one size are available, the behavior of
cuBLAS calls is deterministic in multi-stream setups.

‣ The tensor pointers and the filter pointers require at a minimum 4-byte alignment,
including INT8 data in the cuDNN library.

‣ Some computational options in cuDNN require increased alignment on tensors in
order to run efficiently. As always, cuDNN recommends users to align tensors to
16 byte boundaries that will be sufficiently aligned for any computational option
in cuDNN. Doing otherwise may cause performance regressions in cuDNN 8.0.x
compared to cuDNN v7.6.

‣ For certain algorithms, when the computation is in float (32-bit float) and the output
is in FP16 (half float), there are cases where the numerical accuracy between the
different algorithms might differ. cuDNN 8.0.x users can target the backend API to
query the numerical notes of the algorithms to get the information programmatically.
There are cases where algo0 and algo1 will have a reduced precision accumulation
when users target the legacy API. In all cases, these numerical differences are not
known to affect training accuracy even though they might show up in unit tests.

‣ For the _ALGO_0 algorithm of convolution backward data and backward filter, grouped
convolution with groups larger than 1 and with odd product of dimensions C, D (if 3D
convolution), H, and W is not supported on devices older than NVIDIA Volta. To prevent
a potential illegal memory access by an instruction that only has a 16-bit version in
NVIDIA Volta and later, pad at least one of the dimensions to an even value.

‣ In INT8x32 Tensor Core cases, the parameters supported by cuDNN v7.6 are limited
to W >= (R-1) * dilationW && H >= (S-1) * dilationH, whereas, in cuDNN
v8.0.x, W == (R-1) * dilationW || H == (S-1) * dilationH cases are no longer
supported.

https://docs.nvidia.com/cuda/cublas/index.html#cublasXtApi_reproducibility
https://docs.nvidia.com/cuda/cublas/index.html#cublasXtApi_reproducibility

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 96

‣ In prior versions of cuDNN, some convolution algorithms can use texture-based
load structure for performance improvements particularly in older hardware
architectures. Users can opt out of using texture using the environmental variable
CUDNN_TEXOFF_DBG. In cuDNN 8.x, this variable is removed. Texture loading is turned
off by default. Users who want to continue to use texture-based load, can adapt the
new backend API, and toggle the engine knob CUDNN_KNOB_TYPE_USE_TEX to 1 for
engines that support texture-based load instructions.

‣ In the backend API, convolution forward engine with
CUDNN_ATTR_ENGINE_GLOBAL_INDEX=1 is not supported when the product (channels
* height * width) of the input image exceeds 536,870,912 that is 2^29.

‣ cudnnSpatialTfSamplerBackward() returns CUDNN_STATUS_NOT_SUPPORTED when the
number of channels exceeds 1024.

‣ When using graph-capture, users should call the sub library version check API (for
example, cudnnOpsInferVersionCheck()) to load the kernels in the sub library before
opening graph capture.

‣ Users of cuDNN must add the dependencies of cuBLAS to the linkers command
explicitly to resolve the undefined symbols from cuDNN static libraries.

‣ Starting in version 8.1, cuDNN uses AVX intrinsics on the x86_64 architecture; users
of this architecture without support for AVX intrinsics may see illegal instruction
errors.

‣ The spatial persistent batch normalization API is only available for NVIDIA Pascal and
later architectures. Pre-Pascal architectures return CUDNN_STATUS_ARCH_MISMATCH
instead. The affected APIs include:

‣ cudnnBatchNormalizationBackward()

‣ cudnnBatchNormalizationBackwardEx()

‣ cudnnBatchNormalizationForwardTraining()

‣ cudnnBatchNormalizationForwardTrainingEx()

‣ cudnnGetBatchNormalizationBackwardExWorkspaceSize()

‣ cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize()

‣ cudnnGetBatchNormalizationTrainingExReserveSpaceSize()

‣ cudnnGetNormalizationBackwardWorkspaceSize()

‣ cudnnGetNormalizationForwardTrainingWorkspaceSize()

‣ cudnnGetNormalizationTrainingReserveSpaceSize()

‣ cudnnNormalizationBackward()

‣ cudnnNormalizationForwardTraining()

‣ cudnnAddTensor() performance may regress from 8.2 to 8.3 for pre-Pascal
architectures.

‣ When applications using cuDNN with an older 11.x CUDA toolkit in compatibility
mode are tested with compute-sanitizer, cuGetProcAddress failures with error code

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnSpatialTfSamplerBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnOpsInferVersionCheck
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationBackwardEx
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationForwardTraining
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationForwardTrainingEx
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetBatchNormalizationBackwardExWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetBatchNormalizationTrainingExReserveSpaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetNormalizationBackwardWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetNormalizationForwardTrainingWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetNormalizationTrainingReserveSpaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnNormalizationBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnNormalizationForwardTraining

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 97

500 will arise due to missing functions. This error can be ignored, or suppressed with
the --report-api-errors no option, as this is due to CUDA backward compatibility
checking if a function is usable with the CUDA toolkit combination. The functions are
introduced in a later version of CUDA but are not available on the current platform.
The absence of these functions is harmless and will not give rise to any functional
issues.

Deprecated Features

The following features are deprecated in cuDNN 8.3.2:

‣ We are deprecating the reporting of performance results in the Best Practices For
Using cuDNN 3D Convolutions and will instead update these Release Notes if there is
anything interesting to report release-over-release. Starting with cuDNN 8.4.0, this
section will be removed. For past performance tables, refer to the NVIDIA cuDNN
Archives > Best Practices For Using cuDNN 3D Convolutions.

1.14. cuDNN Release 8.3.1
This is the NVIDIA cuDNN 8.3.1 Release Notes. This release includes fixes from the
previous cuDNN v8.1.x releases as well as the following additional changes. These
Release Notes are applicable to both cuDNN and NVIDIA JetPack™ users of cuDNN
unless appended specifically with (not applicable for Jetson platforms).

For previously released cuDNN documentation, refer to the NVIDIA cuDNN Archives.

Announcements

‣ Debian and RPM local installers are now provided on the cuDNN download page. For
more information, refer to the NVIDIA cuDNN Installation Guide.

‣ Individual cuDNN packages can be found in the CUDA repository:https://
developer.download.nvidia.com/compute/cuda/repos/

‣ As part of a renewed effort to provide tarball and zip archive deliverables for NVIDIA
products, the format has changed from existing .txz archives. For more information
about *-archive.tar.xz and *-archive.zip deliverables, refer to the Tarball and Zip
Archive Deliverables and the README for build-system-archive-import-examples.

Key Features and Enhancements

The following features and enhancements have been added to this release:

‣ In the runtime fusion engine:

‣ Pointwise logical and comparison operators are now supported, including
CUDNN_POINTWISE_LOGICAL_AND, CUDNN_POINTWISE_LOGICAL_OR,
CUDNN_POINTWISE_LOGICAL_NOT, CUDNN_POINTWISE_CMP_EQ,

https://docs.nvidia.com/deeplearning/cudnn/archives/index.html
https://docs.nvidia.com/deeplearning/cudnn/archives/index.html
https://docs.nvidia.com/deeplearning/cudnn/archives/index.html
https://developer.nvidia.com/cudnn
https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html
https://developer.download.nvidia.com/compute/cuda/repos/
https://developer.download.nvidia.com/compute/cuda/repos/
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/#tarball-zipfile-overview
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/#tarball-zipfile-overview
https://github.com/NVIDIA/build-system-archive-import-examples

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 98

CUDNN_POINTWISE_CMP_NEQ, CUDNN_POINTWISE_CMP_GT, CUDNN_POINTWISE_CMP_GE,
CUDNN_POINTWISE_CMP_LT, and CUDNN_POINTWISE_CMP_LE. As part of this feature,
support for loading/storing/computing with boolean tensors has also been added.

‣ Batch support was added for matmul operation. Also, it is allowed to have batch
broadcasting. The same matrix A or B can be broadcasted across the batch for
matmul operation.

‣ The leading dimension support (reflected in the strides of the tensors) was added
for matmul operation. It is allowed to compute matmul operation with unpacked
tensors.

Fixed Issues

The following issues have been fixed in this release:

‣ cudnnConvolutionBiasActivationForward() could in some cases silently apply
a ReLU operation when Identity was requested. This issue has been fixed in this
release.

‣ CUDNN_CONVOLUTION_BWD_FILTER_ALGO_FFT_TILING,
CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING, and
CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING could exhibit illegal memory access in
cuDNN v8 releases. This issue has been fixed in this release.

‣ CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0 was wrongly marked with numerical note
CUDNN_NUMERICAL_NOTE_REDUCED_PRECISION_REDUCTION when output data type is
float or double. This issue has been fixed in this release.

‣ There was an error in the documentation for determinism of
cudnnConvolutionBackwardFilter() by algo. This issue has been corrected in this
release.

‣ When the user selected algo0 (CUDNN_RNN_ALGO_STANDARD) in
cudnnRNNBackwardData_v8() or invoked the legacy functions, such as
cudnnRNNBackwardDataEx(), cudnnRNNBackwardData(), and the number of
RNN layers was more than eight in a unidirectional model or more than four in a
bidirectional model, then some internal streams used to parallelize computations may
be default streams (aka stream 0). The computational performance would most likely
be affected in those cases. This issue has been fixed in this release.

‣ Calling cudnnSoftmaxForward() with CUDNN_SOFTMAX_MODE_CHANNEL mode and N==1
in NCHW layout would result in incorrect results in cuDNN 8.3.0. This has been fixed
in this release.

Known Issues

‣ Some convolution models are experiencing lower performance on NVIDIA RTX
3090 compared to 2080 Ti. This includes EfficientNet with up to 6x performance
difference, UNet up to 1.6x performance difference and Tacotron up to 1.6x
performance difference.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionBiasActivationForward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionBackwardFilter
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnSoftmaxForward

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 99

‣ cudnnPoolingForward() with pooling mode CUDNN_POOLING_AVG
might output NaN for pixel in output tensor outside the value
recommended by cudnnGetPoolingNdForwardOutputDim() or
cudnnGetPooling2dForwardOutputDim().

‣ Convolutions (ConvolutionForward, ConvolutionBackwardData, and
ConvolutionBackwardFilter) may experience performance regressions when run
with math type CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION on CUDNN_DATA_FLOAT
data (input and output).

‣ Compared to cuDNN 7.6, there are known performance regressions up to 2x on
select configurations for AlexNet-like models on NVIDIA Turing GPUs.

‣ Compared to cuDNN 8.1.0, there are known performance regressions on certain
dgrad NHWC configurations from FastPitch and WaveGlow models on V100 and
NVIDIA A100 GPUs.

‣ The numeric behavior of INT8 operations including saturation behavior, accumulator
data types, and so on, have not been documented as of yet.

‣ It is possible, starting in cuDNN 7.6 and up to but not including 8.1.1, to leak memory
when computing common convolution operations in rare cases.

‣ There is a known 25% performance regression for inference on the PyTorch SSD
model on the NVIDIA Turing architecture.

‣ Compared to cuDNN 8.0.5, there is a known ~17% performance regression on SSD
models running on V100.

‣ FFT and Winograd based algorithms for convolution do not support graph capture.

‣ Compared to cuDNN version 8.0.2, there is a known 3x performance regression for a
single cudnnConvolutionBackwardFilter() use case.

‣ In general, the internal CUDA streams inside cuDNN will have the same priority as
the user stream that is set by cudnnSetStream() (instead of always having default
priority). There are two exceptions:

 1. When the user stream is in capture mode (that is,
cudaStreamCaptureStatusActive==1), the cuDNN-owned streams will still have
default priority, and

 2. RNN functions cudnnRNNForward(), cudnnRNNBackwardData_v8(),
cudnnRNNBackwardWeights_v8(), and their legacy counterparts still use default
priority CUDA streams or higher priority streams to launch concurrent and
cooperative grids.

‣ The functional support criteria of cuDNN's convolution kernels is not required to
consider padding. Users of cuDNN can witness an unexpected lack of problem
support when forward convolution spatial dimensions are less than the filter size
and padding is nonzero, however, is sufficient to extend spatial dimensions to or
beyond filter dimensions. This is commonly observed with, but not limited to, INT8
convolution kernels.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnPoolingForward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetPoolingNdForwardOutputDim
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetPooling2dForwardOutputDim
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionBackwardFilter

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 100

‣ cudnnPoolingBackward() allows both x and y data pointers (together with the
related tensor descriptor handles) to be NULL for avg-pooling. This could save
memory footprint and bandwidth.

‣ Users of the static library requiring the best possible convolution performance
should use whole-archive linking with the cnn_infer and cnn_train static sub
libraries. This will come at a cost to the binary size of the application. This linkage
requirement will be relaxed in a future release.

‣ Compared to cuDNN 8.3.0, there is an overall ~5% regression on convBiasAct layers
on PG199/PG189. The maximum performance regression is around 3x for a select
few cases.

Compatibility

For the latest compatibility software versions of the OS, CUDA, the CUDA driver, and the
NVIDIA hardware, see the NVIDIA cuDNN Support Matrix.

Limitations

‣ The runtime fusion engine is only supported in the cuDNN build based on
CUDA Toolkit 11.2 update 1 or later; it also requires the NVRTC from CUDA
11.2 update 1 or later. If this condition is not satisfied, the error status of
CUDNN_STATUS_NOT_SUPPORTED or CUDNN_STATUS_RUNTIME_PREREQUISITE_MISSING will
be returned.

‣ Samples can crash unless they are installed in a writable location.

‣ RNN and multihead attention API calls may exhibit non-deterministic behavior when
the cuDNN library is built with CUDA Toolkit 10.2 or higher. This is the result of a new
buffer management and heuristics in the cuBLAS library. As described in Results
Reproducibility, numerical results may not be deterministic when cuBLAS APIs are
launched in more than one CUDA stream using the same cuBLAS handle. This is
caused by two buffer sizes (16 KB and 4 MB) used in the default configuration.

When a larger buffer size is not available at runtime, instead of waiting for a buffer
of that size to be released, a smaller buffer may be used with a different GPU kernel.
The kernel selection may affect numerical results. The user can eliminate the non-
deterministic behavior of cuDNN RNN and multihead attention APIs, by setting
a single buffer size in the CUBLAS_WORKSPACE_CONFIG environmental variable, for
example, :16:8 or :4096:2.

The first configuration instructs cuBLAS to allocate eight buffers of 16 KB each in
GPU memory while the second setting creates two buffers of 4 MB each. The default
buffer configuration in cuBLAS 10.2 and 11.0 is :16:8:4096:2, that is, we have two
buffer sizes. In earlier cuBLAS libraries, such as cuBLAS 10.0, it used the :16:8 non-
adjustable configuration. When buffers of only one size are available, the behavior of
cuBLAS calls is deterministic in multi-stream setups.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnPoolingBackward
https://docs.nvidia.com/deeplearning/sdk/cudnn-support-matrix/index.html#cudnn-cuda-hardware-versions
https://docs.nvidia.com/cuda/cublas/index.html#cublasXtApi_reproducibility
https://docs.nvidia.com/cuda/cublas/index.html#cublasXtApi_reproducibility

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 101

‣ The tensor pointers and the filter pointers require at a minimum 4-byte alignment,
including INT8 data in the cuDNN library.

‣ Some computational options in cuDNN require increased alignment on tensors in
order to run efficiently. As always, cuDNN recommends users to align tensors to
16 byte boundaries that will be sufficiently aligned for any computational option
in cuDNN. Doing otherwise may cause performance regressions in cuDNN 8.0.x
compared to cuDNN v7.6.

‣ For certain algorithms, when the computation is in float (32-bit float) and the output
is in FP16 (half float), there are cases where the numerical accuracy between the
different algorithms might differ. cuDNN 8.0.x users can target the backend API to
query the numerical notes of the algorithms to get the information programmatically.
There are cases where algo0 and algo1 will have a reduced precision accumulation
when users target the legacy API. In all cases, these numerical differences are not
known to affect training accuracy even though they might show up in unit tests.

‣ For the _ALGO_0 algorithm of convolution backward data and backward filter, grouped
convolution with groups larger than 1 and with odd product of dimensions C, D (if 3D
convolution), H, and W is not supported on devices older than NVIDIA Volta. To prevent
a potential illegal memory access by an instruction that only has a 16-bit version in
NVIDIA Volta and later, pad at least one of the dimensions to an even value.

‣ In INT8x32 Tensor Core cases, the parameters supported by cuDNN v7.6 are limited
to W >= (R-1) * dilationW && H >= (S-1) * dilationH, whereas, in cuDNN
v8.0.x, W == (R-1) * dilationW || H == (S-1) * dilationH cases are no longer
supported.

‣ In prior versions of cuDNN, some convolution algorithms can use texture-based
load structure for performance improvements particularly in older hardware
architectures. Users can opt out of using texture using the environmental variable
CUDNN_TEXOFF_DBG. In cuDNN 8.x, this variable is removed. Texture loading is turned
off by default. Users who want to continue to use texture-based load, can adapt the
new backend API, and toggle the engine knob CUDNN_KNOB_TYPE_USE_TEX to 1 for
engines that support texture-based load instructions.

‣ In the backend API, convolution forward engine with
CUDNN_ATTR_ENGINE_GLOBAL_INDEX=1 is not supported when the product (channels
* height * width) of the input image exceeds 536,870,912 that is 2^29.

‣ cudnnSpatialTfSamplerBackward() returns CUDNN_STATUS_NOT_SUPPORTED when the
number of channels exceeds 1024.

‣ When using graph-capture, users should call the sub library version check API (for
example, cudnnOpsInferVersionCheck()) to load the kernels in the sub library before
opening graph capture.

‣ Users of cuDNN must add the dependencies of cuBLAS to the linkers command
explicitly to resolve the undefined symbols from cuDNN static libraries.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnSpatialTfSamplerBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnOpsInferVersionCheck

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 102

‣ Starting in version 8.1, cuDNN uses AVX intrinsics on the x86_64 architecture; users
of this architecture without support for AVX intrinsics may see illegal instruction
errors.

‣ The spatial persistent batch normalization API is only available for NVIDIA Pascal and
later architectures. Pre-Pascal architectures return CUDNN_STATUS_ARCH_MISMATCH
instead. The affected APIs include:

‣ cudnnBatchNormalizationBackward()

‣ cudnnBatchNormalizationBackwardEx()

‣ cudnnBatchNormalizationForwardTraining()

‣ cudnnBatchNormalizationForwardTrainingEx()

‣ cudnnGetBatchNormalizationBackwardExWorkspaceSize()

‣ cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize()

‣ cudnnGetBatchNormalizationTrainingExReserveSpaceSize()

‣ cudnnGetNormalizationBackwardWorkspaceSize()

‣ cudnnGetNormalizationForwardTrainingWorkspaceSize()

‣ cudnnGetNormalizationTrainingReserveSpaceSize()

‣ cudnnNormalizationBackward()

‣ cudnnNormalizationForwardTraining()

‣ cudnnAddTensor() performance may regress from 8.2 to 8.3 for pre-Pascal
architectures.

‣ When applications using cuDNN with an older 11.x CUDA toolkit in compatibility
mode are tested with compute-sanitizer, cuGetProcAddress failures with error code
500 will arise due to missing functions. This error can be ignored, or suppressed with
the --report-api-errors no option, as this is due to CUDA backward compatibility
checking if a function is usable with the CUDA toolkit combination. The functions are
introduced in a later version of CUDA but are not available on the current platform.
The absence of these functions is harmless and will not give rise to any functional
issues.

1.15. cuDNN Release 8.3.0
This is the NVIDIA cuDNN 8.3.0 release notes. This release includes fixes from the
previous cuDNN v8.1.x releases as well as the following additional changes. These
release notes are applicable to both cuDNN and NVIDIA JetPack™ users of cuDNN unless
appended specifically with (not applicable for Jetson platforms).

For previously released cuDNN documentation, refer to the NVIDIA cuDNN Archives.

Announcements

‣ cuDNN version 8.3.0 depends on cuBLAS as a shared library dependency.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationBackwardEx
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationForwardTraining
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationForwardTrainingEx
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetBatchNormalizationBackwardExWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetBatchNormalizationTrainingExReserveSpaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetNormalizationBackwardWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetNormalizationForwardTrainingWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetNormalizationTrainingReserveSpaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnNormalizationBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnNormalizationForwardTraining
https://docs.nvidia.com/deeplearning/cudnn/archives/index.html

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 103

‣ The cuDNN version 8.3.0 libcudnn_static.a deliverable is replaced with the
following:

‣ libcudnn_ops_infer_static.a

‣ libcudnn_ops_train_static.a

‣ libcudnn_cnn_infer_static.a

‣ libcudnn_cnn_train_static.a

‣ libcudnn_adv_infer_static.a

‣ libcudnn_adv_train_static.a

‣ cuDNN version 8.3.0 depends on zlib as a shared library dependency. Refer to the zlib
instructions in the NVIDIA cuDNN Installation Guide for instructions.

Key Features and Enhancements

The following features and enhancements have been added to this release:

‣ WSL 2 is released as a preview feature in this cuDNN 8.3.0.

‣ Various improvements were made in our multihead attention API:

‣ Added HSH support - FP16 data type with FP32 math precision. Allow to achieve
FP16 mixed-precision Tensor Core performance without sacrificing accuracy.

‣ Added support to bias gradient computation. Before cuDNN 8.3.0, bias was
supported only for inference.

‣ Multihead attention has two dropout layers active in training mode. The first
dropout operation is applied directly to the softmax output. The second dropout
operation alters the multihead attention output, just before the point where
residual connections are added. Before cuDNN 8.3.0, only the first dropout layer
was supported.

‣ Significant performance improvement out of the box (no changes are required
from users) for both multihead attention forward and backward paths.

‣ Various improvements were made in our runtime fusion engine:

‣ The cuDNN runtime fusion engine now supports resample operations of
upsample and downsample. Support has been added for 2*2 average pooling with
stride 2 and upsample by a factor of 2 using bilinear interpolation. The datatype
supported is FP32 and the compute datatype is FP32. The resample operations
can also be fused with other operations provided the input to the resample
operation is located in global memory.

‣ The cuDNN runtime fusion engine is now generalized to accurately obey the
intermediate storage datatype users specified in the operation graph. The
support datatypes include INT8, BF16, FP16, INT32, FP32. As a general rule, we
recommend users to use FP32 as the intermediate storage type that provides
balanced numerical precision and performance.

https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 104

‣ The cuDNN runtime fusion engine now supports batched matmul operation with
row/column broadcast or row/column reduction operations in the epilog.

‣ The cuDNN runtime fusion engine now does numeric clamping while converting
from a data type with a larger dynamic range to one with a relatively smaller
dynamic range to avoid numeric overflows at all times.

‣ The cuDNN runtime fusion engine extends the support for broadcast pointwise
operations in the epilogue to now include those between a tensor and a scalar
value as well.

‣ Extended general fusion heuristic support to convolution forward and backward
data and weight gradient operation patterns, with FP16, TF32, INT8 I/O
data types, to ensure a good heuristic selection to improve out-of-the-box
performance.

‣ Added more detailed error reporting that is accessible from the existing API log or
the logging callback function. Error and warning severity levels are added into the
error reporting. Environment variables CUDNN_LOGERR_DBG and CUDNN_LOGWARN_DBG
can be used to enable these severity levels respectively. Within these error severity
levels, the error or warning message will now include a traceback of the error
conditions triggered the error as hints for troubleshooting purposes.

‣ Engine heuristics now supports a new mode called HEUR_MODE_FALLBACK which gives
a list of engine configurations that run most of the convolution problems without the
performance guarantee. Use this mode when all engines suggested by heuristics are
not supported.

‣ In prior cuDNN versions, certain engines required reordered filters for
int8x32 format, but there was no way to disambiguate whether the filter was
reordered. Engines that require reordered filters now have a new behavior note
CUDNN_BEHAVIOR_NOTE_REQUIRES_FILTER_REORDER which specifies the tensors must
be reordered before being passed to the engine.

‣ RNN functions cudnnRNNBackwardData_v8(), cudnnRNNBackwardDataEx(), and
cudnnRNNBackwardData()have been improved to internally invoke the cooperative
group API cudaLaunchCooperativeKernel() to launch GPU kernels when threads
must synchronize across all CUDA® thread blocks of a grid. Starting in CUDA
11.2, the cudaLaunchCooperativeKernel() function is able to run multiple
cooperative grids concurrently in multiple streams. This feature has been used in
CUDNN_RNN_ALGO_PERSIST_STATIC and CUDNN_RNN_ALGO_PERSIST_DYNAMIC algorithms
to improve the computational performance. A method of launching these types
of kernels using cudaLaunchCooperativeKernel() is more robust in preventing
potential deadlocks when in rare scenarios when multiple cooperative grids are
launched concurrently.

cuDNN 8.3 compiled with CUDA 10.2 must still rely on a regular method of launching
kernels. Deadlocks are mitigated by employing higher priority CUDA streams.
Currently, cuDNN RNN APIs still use higher priority streams, however, in future

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 105

cuDNN versions, priorities of auxiliary streams will match the priority of the user
stream defined by the cudnnSetStream() call. Future cuDNN versions will also use
the cudaLaunchCooperativeKernel() API to launch cooperative grids in forward RNN
functions such as cudnnRNNForward().

Fixed Issues

The following issues have been fixed in this release:

‣ cudnnAddTensor() did not support some tensor shapes that were previously
specified as supported. This issue has been fixed in this release.

‣ When using the cuDNN CTC Loss API function, the computed gradients array was not
zero initialized. This meant it was possible the gradients array returned a mix of valid
values and uninitialized values. This issue has been fixed in this release.

‣ Compared to version 8.0.5, legacy convolution APIs increased CPU computational
costs. On x86, this was measured to be as high as 10 microseconds. This issue has
been fixed in this release.

‣ cudnnSetStream() API was generating errors when graph capture was enabled. This
issue is fixed in this release.

‣ There was a known 60% performance regression for ResNet-50 on the GTX 1080
when run using FP16 data with large batch sizes (over 128). This regression has been
fixed in this release.

‣ In some cases, cudnnConvolutionBackwardFilter() generates numerically imprecise
results when used with algo set to CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1. This
issue is most frequently encountered with three-dimensional spatial tensors.
Users of the backend API may explicitly avoid backend engine 2032 or consider the
numerical notes of engines and reject any marked as offering reduced precision
reduction (CUDNN_NUMERICAL_NOTE_REDUCED_PRECISION_REDUCTION).

‣ For cudnnConvolutionBiasActivationForward(), there was previously a restriction
on aliasing device memory pointers labeled X and Z in the documentation of that
function. This restriction has been relaxed so that X may alias Z by pointing to the
same device memory location if desired. Note that the restriction against aliasing the
pointers labeled X and Y remains.

‣ cuDNN may be observed to contain a small leak related to the use of dlopen.
Currently, this is believed to be a false positive when indicated by valgrind. Should this
thinking change, the known issues of this document will reflect that understanding in
subsequent releases.

‣ Previously, on NVIDIA Pascal and Maxwell architectures, users of cuDNN's 8.X's
backend engine 34 with CUDNN_CONVOLUTION mode set for forward convolution could
witness-illegal memory access when this engine is specifically selected outside of
heuristic query. This issue has been fixed in this release.

‣ Previously, on K80 GPUs when cudnnConvolutionForward() is used with
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM algorithm and half I/O data

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 106

types a silent error might occur when the output width Q is 1 and both height and
width padding are zero; this particular case will now be rejected by cuDNN as not
supported in this and all other successive releases for this GPU architecture.

‣ cuDNN does not package libfreeimg as a static library for users of cuDNN's MNIST
sample code. The included readme.txt file contains instructions on where to locate
this dependency and how to compile and link this sample.

‣ The parameters section for cudnnBatchNormalizationForwardInference() has been
updated to reflect a correct *y description.

‣ Compared to cuDNN 7.6.5, there was a known performance regression on various
convolutional models using INT8 data types on NVIDIA Volta GPUs. This issue has
been fixed in this release.

‣ A memory leak as well as a possible delayed memory deallocation in the cuDNN
runtime fusion engine have been fixed.

‣ In previous releases of cuDNN 8, user applications might crash in rare instances due
to large stack allocation requirements; this issue is fixed in this release by preferring
heap allocation in cases where large stack allocations were previously occurring.

‣ Some dgrad batchnorm fusion engines were previously not supported on Windows.
We now support this starting in cuDNN 8.3.0.

‣ The documentation for cudnnReorderFilterAndBias() needed some corrections for
clarity. The topic has been updated in this release.

Known Issues

‣ When the user selects algo0 (CUDNN_RNN_ALGO_STANDARD) in
cudnnRNNBackwardData_v8() or invokes the legacy functions, such as
cudnnRNNBackwardDataEx(), cudnnRNNBackwardData(), and the number of RNN
layers is more than eight in a unidirectional model or more than four in a bidirectional
model, then some internal streams used to parallelize computations may be default
streams (aka stream 0). RNN algo0 dgrad APIs will not crash and the numerical
results will be correct but the computational performance will likely be affected in
those cases.

‣ Users of the static library requiring best possible convolution performance should
use whole-archive linking. This will come at a cost to binary size that will require
resolution in future releases, either through static sub libraries or relaxing the whole-
archive linkage requirement altogether.

‣ Some convolution models are experiencing lower performance on NVIDIA RTX
3090 compared to 2080 Ti. This includes EfficientNet with up to 6x performance
difference, UNet up to 1.6x performance difference and Tacotron up to 1.6x
performance difference.

‣ cudnnPoolingForward() with pooling mode CUDNN_POOLING_AVG
might output NaN for pixel in output tensor outside the value

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationForwardInference
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnReorderFilterAndBias
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnPoolingForward

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 107

recommended by cudnnGetPoolingNdForwardOutputDim() or
cudnnGetPooling2dForwardOutputDim().

‣ Convolutions (ConvolutionForward, ConvolutionBackwardData, and
ConvolutionBackwardFilter) may experience performance regressions when run
with math type CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION on CUDNN_DATA_FLOAT
data (input and output).

‣ Compared to cuDNN 7.6, there are known performance regressions up to 2x on
select configurations for AlexNet-like models on NVIDIA Turing GPUs.

‣ Compared to cuDNN 8.1.0, there are known performance regressions on certain
dgrad NHWC configurations from FastPitch and WaveGlow models on V100 and
NVIDIA A100 GPUs.

‣ The numeric behavior of INT8 operations including saturation behavior, accumulator
data types, and so on, have not been documented as of yet.

‣ It is possible, starting in cuDNN 7.6 and up to but not including 8.1.1, to leak memory
when computing common convolution operations in rare cases.

‣ There is a known 25% performance regression for inference on the PyTorch SSD
model on the NVIDIA Turing architecture.

‣ Compared to cuDNN 8.0.5, there is a known ~17% performance regression on SSD
models running on V100.

‣ FFT and Winograd based algorithms for convolution do not support graph capture.

‣ Compared to cuDNN version 8.0.2, there is a known 3x performance regression for a
single cudnnConvolutionBackwardFilter() use case.

‣ The internal CUDA streams inside cuDNN 8.3.0 will have the same priority as the user
stream that is set by cudnnSetStream() (instead of always having default priority).
There are two limitations:

 1. When the user stream is in capture mode (that is,
cudaStreamCaptureStatusActive==1), the cuDNN-owned streams will still have
default priority, and

 2. RNN functions cudnnRNNForward(), cudnnRNNBackwardData_v8(),
cudnnRNNBackwardWeights_v8(), and their legacy counterparts still use default
priority CUDA streams or higher priority streams to launch concurrent and
cooperative grids.

‣ The functional support criteria of cuDNN's convolution kernels is not required to
consider padding. Users of cuDNN can witness an unexpected lack of problem
support when forward convolution spatial dimensions are less than the filter size
and padding is nonzero, however, is sufficient to extend spatial dimensions to or
beyond filter dimensions. This is commonly observed with, but not limited to, INT8
convolution kernels.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetPoolingNdForwardOutputDim
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetPooling2dForwardOutputDim
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionBackwardFilter

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 108

‣ cudnnPoolingBackward() allows both x and y data pointers (together with the
related tensor descriptor handles) to be NULL for avg-pooling. This could save
memory footprint and bandwidth.

‣ When applications using cuDNN with an older 11.x CUDA toolkit in compatibility
mode are tested with compute-sanitizer, cuGetProcAddress failures with error code
500 will arise due to missing functions. This error can be ignored, or suppressed with
the --report-api-errors no option, as this is due to CUDA backward compatibility
checking if a function is usable with the CUDA toolkit combination. The functions are
introduced in a later version of CUDA but are not available on the current platform.
The absence of these functions is harmless and will not give rise to any functional
issues.

‣ Calling cudnnSoftmaxForward() with CUDNN_SOFTMAX_MODE_CHANNEL mode and N==1
in NCHW layout may result in incorrect results. This will be fixed in the next release.

Compatibility

For the latest compatibility software versions of the OS, CUDA, the CUDA driver, and the
NVIDIA hardware, see the NVIDIA cuDNN Support Matrix.

Limitations

‣ The runtime fusion engine is only supported in the cuDNN build based on
CUDA Toolkit 11.2 update 1 or later; it also requires the NVRTC from CUDA
11.2 update 1 or later. If this condition is not satisfied, the error status of
CUDNN_STATUS_NOT_SUPPORTED or CUDNN_STATUS_RUNTIME_PREREQUISITE_MISSING will
be returned.

‣ Samples can crash unless they are installed in a writable location.

‣ RNN and multihead attention API calls may exhibit non-deterministic behavior when
the cuDNN library is built with CUDA Toolkit 10.2 or higher. This is the result of a new
buffer management and heuristics in the cuBLAS library. As described in Results
Reproducibility, numerical results may not be deterministic when cuBLAS APIs are
launched in more than one CUDA stream using the same cuBLAS handle. This is
caused by two buffer sizes (16 KB and 4 MB) used in the default configuration.

When a larger buffer size is not available at runtime, instead of waiting for a buffer
of that size to be released, a smaller buffer may be used with a different GPU kernel.
The kernel selection may affect numerical results. The user can eliminate the non-
deterministic behavior of cuDNN RNN and multihead attention APIs, by setting
a single buffer size in the CUBLAS_WORKSPACE_CONFIG environmental variable, for
example, :16:8 or :4096:2.

The first configuration instructs cuBLAS to allocate eight buffers of 16 KB each in
GPU memory while the second setting creates two buffers of 4 MB each. The default
buffer configuration in cuBLAS 10.2 and 11.0 is :16:8:4096:2, that is, we have two
buffer sizes. In earlier cuBLAS libraries, such as cuBLAS 10.0, it used the :16:8 non-

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnPoolingBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnSoftmaxForward
https://docs.nvidia.com/deeplearning/sdk/cudnn-support-matrix/index.html#cudnn-cuda-hardware-versions
https://docs.nvidia.com/cuda/cublas/index.html#cublasXtApi_reproducibility
https://docs.nvidia.com/cuda/cublas/index.html#cublasXtApi_reproducibility

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 109

adjustable configuration. When buffers of only one size are available, the behavior of
cuBLAS calls is deterministic in multi-stream setups.

‣ The tensor pointers and the filter pointers require at a minimum 4-byte alignment,
including INT8 data in the cuDNN library.

‣ Some computational options in cuDNN require increased alignment on tensors in
order to run efficiently. As always, cuDNN recommends users to align tensors to
16 byte boundaries that will be sufficiently aligned for any computational option
in cuDNN. Doing otherwise may cause performance regressions in cuDNN 8.0.x
compared to cuDNN v7.6.

‣ For certain algorithms, when the computation is in float (32-bit float) and the output
is in FP16 (half float), there are cases where the numerical accuracy between the
different algorithms might differ. cuDNN 8.0.x users can target the backend API to
query the numerical notes of the algorithms to get the information programmatically.
There are cases where algo0 and algo1 will have a reduced precision accumulation
when users target the legacy API. In all cases, these numerical differences are not
known to affect training accuracy even though they might show up in unit tests.

‣ For the _ALGO_0 algorithm of convolution backward data and backward filter, grouped
convolution with groups larger than 1 and with odd product of dimensions C, D (if 3D
convolution), H, and W is not supported on devices older than NVIDIA Volta. To prevent
a potential illegal memory access by an instruction that only has a 16-bit version in
NVIDIA Volta and later, pad at least one of the dimensions to an even value.

‣ Several cuDNN APIs are unable to directly support computations using integer types
(CUDNN_DATA_INT8, CUDNN_DATA_INT8x4, CUDNN_DATA_INT8x32 or CUDNN_DATA_INT32).
Floating types (particularly CUDNN_DATA_FLOAT) are much more widely supported. If
an API does not support the desired type, cudnnTransformTensor() can be used to
support the use case by converting to/from a supported type and the desired type.
Here are the steps for doing so:

 1. Convert all input tensors from their native type to a supported type
(CUDNN_DATA_FLOAT is recommended).

 2. Run cuDNN API using the converted input tensors and output tensor descriptors
set as CUDNN_DATA_FLOAT.

 3. Convert all output tensors from a supported type to your desired output type.

Note: This will require extra memory use for the temporary buffers. Further, this
will introduce an additional round trip to memory that might noticeably impact
performance.

‣ In INT8x32 Tensor Core cases, the parameters supported by cuDNN v7.6 are limited
to W >= (R-1) * dilationW && H >= (S-1) * dilationH, whereas, in cuDNN
v8.0.x, W == (R-1) * dilationW || H == (S-1) * dilationH cases are no longer
supported.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnTransformTensor

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 110

‣ In prior versions of cuDNN, some convolution algorithms can use texture-based
load structure for performance improvements particularly in older hardware
architectures. Users can opt out of using texture using the environmental variable
CUDNN_TEXOFF_DBG. In cuDNN 8.x, this variable is removed. Texture loading is turned
off by default. Users who want to continue to use texture-based load, can adapt the
new backend API, and toggle the engine knob CUDNN_KNOB_TYPE_USE_TEX to 1 for
engines that support texture-based load instructions.

‣ In the backend API, convolution forward engine with
CUDNN_ATTR_ENGINE_GLOBAL_INDEX=1 is not supported when the product (channels
* height * width) of the input image exceeds 536,870,912 that is 2^29.

‣ cudnnSpatialTfSamplerBackward() returns CUDNN_STATUS_NOT_SUPPORTED when the
number of channels exceeds 1024.

‣ When using graph-capture, users should call the sub library version check API (for
example, cudnnOpsInferVersionCheck()) to load the kernels in the sub library before
opening graph capture.

‣ Users of cuDNN must add the dependencies of cuBLAS to the linkers command
explicitly to resolve the undefined symbols from cuDNN static libraries.

‣ Starting in version 8.1, cuDNN uses AVX intrinsics on the x86_64 architecture; users
of this architecture without support for AVX intrinsics may see illegal instruction
errors.

‣ The spatial persistent batch normalization API is only available for NVIDIA Pascal and
later architectures. Pre-Pascal architectures return CUDNN_STATUS_ARCH_MISMATCH
instead. The affected APIs include:

‣ cudnnBatchNormalizationBackward()

‣ cudnnBatchNormalizationBackwardEx()

‣ cudnnBatchNormalizationForwardTraining()

‣ cudnnBatchNormalizationForwardTrainingEx()

‣ cudnnGetBatchNormalizationBackwardExWorkspaceSize()

‣ cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize()

‣ cudnnGetBatchNormalizationTrainingExReserveSpaceSize()

‣ cudnnGetNormalizationBackwardWorkspaceSize()

‣ cudnnGetNormalizationForwardTrainingWorkspaceSize()

‣ cudnnGetNormalizationTrainingReserveSpaceSize()

‣ cudnnNormalizationBackward()

‣ cudnnNormalizationForwardTraining()

‣ cudnnAddTensor() performance may regress from 8.2 to 8.3 for pre-Pascal
architectures.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnSpatialTfSamplerBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnOpsInferVersionCheck
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationBackwardEx
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationForwardTraining
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationForwardTrainingEx
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetBatchNormalizationBackwardExWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetBatchNormalizationTrainingExReserveSpaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetNormalizationBackwardWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetNormalizationForwardTrainingWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetNormalizationTrainingReserveSpaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnNormalizationBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnNormalizationForwardTraining

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 111

1.16. cuDNN Release 8.2.4
This is the cuDNN 8.2.4 release notes. This release includes fixes from the previous
cuDNN v8.1.x releases as well as the following additional changes. These release notes
are applicable to both cuDNN and NVIDIA JetPack users of cuDNN unless appended
specifically with (not applicable for Jetson platforms).

For previous cuDNN documentation, refer to the NVIDIA cuDNN Archives.

Compatibility

For the latest compatibility software versions of the OS, CUDA, the CUDA driver, and the
NVIDIA hardware, refer to the NVIDIA cuDNN Support Matrix.

Known Issues

‣ Users of the static library requiring best possible convolution performance should
use whole-archive linking. This will come at a cost to binary size that will require
resolution in future releases, either through static sub libraries or relaxing the whole-
archive linkage requirement altogether.

‣ Some convolution models are experiencing lower performance on NVIDIA RTX
3090 compared to 2080 Ti. This includes EfficientNet with up to 6x performance
difference, UNet up to 1.6x performance difference and Tacotron up to 1.6x
performance difference.

‣ Compared to version 8.0.5, legacy convolution APIs have increased CPU
computational costs. On x86, this has been measured to be as high as 10
microseconds.

‣ cudnnAddTensor() does not support all tensor shapes even though the cuDNN
documentation says otherwise.

‣ cudnnPoolingForward() with pooling mode CUDNN_POOLING_AVG
might output NaN for pixel in output tensor outside the value
recommended by cudnnGetPoolingNdForwardOutputDim() or
cudnnGetPooling2dForwardOutputDim().

‣ Convolutions (ConvolutionForward, ConvolutionBackwardData, and
ConvolutionBackwardFilter) may experience performance regressions when run
with math type CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION on CUDNN_DATA_FLOAT
data (input and output).

‣ Compared to cuDNN 7.6, there are known performance regressions up to 2x on
select configurations for AlexNet-like models on NVIDIA Turing GPUs.

‣ Compared to cuDNN 8.1.0, there are known performance regressions on certain
dgrad NHWC configurations from FastPitch and WaveGlow models on V100 and
NVIDIA A100 GPUs.

https://docs.nvidia.com/deeplearning/sdk/cudnn-archived/index.html
https://docs.nvidia.com/deeplearning/sdk/cudnn-support-matrix/index.html#cudnn-cuda-hardware-versions
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnAddTensor
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnPoolingForward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetPoolingNdForwardOutputDim
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetPooling2dForwardOutputDim

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 112

‣ Compared to cuDNN 7.6.5, there are known performance regressions on various
convolutional models using INT8 data types on NVIDIA Volta GPUs.

‣ The numeric behavior of INT8 operations including saturation behavior, accumulator
data types, and so on, have not been documented as of yet.

‣ It is possible, starting in cuDNN 7.6 and up to but not including 8.1.1, to leak memory
when computing common convolution operations in rare cases.

‣ There is a known 25% performance regression for inference on the PyTorch SSD
model on the NVIDIA Turing architecture.

‣ The documentation for cudnnReorderFilterAndBias() needs some corrections for
clarity.

‣ Compared to cuDNN 8.0.5, there is a known ~17% performance regression on SSD
models running on V100.

‣ NVIDIA Turing users of cuDNN can observe intermittent illegal memory access errors
for some convolution workloads.

‣ FFT and Winograd based algorithms for convolution do not support graph capture.

‣ In a multi-GPU setting, with complex scheduling, cuDNN can segfault. It is not clear
that this is a cuDNN issue, but the issue is under active investigation so that the
known limitations section of this document can be updated in a future release.

‣ Compared to cuDNN version 8.0.2, there is a known 3x performance regression for a
single cudnnConvolutionBackwardFilter() use case.

‣ There is a known 60% performance regression for ResNet-50 on the GTX 1080 when
run using FP16 data with large batch sizes (over 128).

‣ Users of the static library requiring the best possible convolution performance
should use whole-archive linking. This will come at a cost to the binary size that will
require resolution in a future release, either through static sub libraries or relaxing the
whole-archive linkage requirement altogether.

‣ cuDNN may contain a small memory leak related to the usage of dlopen() within the
library; this is not confirmed but currently under investigation. The possible leak does
not affect Windows users or users of the static library.

‣ On NVIDIA Pascal and Maxwell architectures, users of cuDNN's 8.0 backend
engine 34 for forward convolution can witness-illegal memory access when this
engine is specifically selected outside of heuristic query. Heuristics users of these
architectures will not witness this issue, as happened in previous versions. The
possibility of the illegal memory access affects all previous versions of cuDNN 8.0
and will be fixed in a future release.

‣ When using the cuDNN CTC Loss API function, the computed gradients array is not
zero initialized. When sequence lengths are exceeded, some gradient entries are
returned uninitialized.

‣ The internal CUDA streams inside cuDNN 8.2.4 will have the same priority (instead
of the default priority) as the user stream that is set by cudnnSetStream(), while an

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnReorderFilterAndBias
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionBackwardFilter

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 113

exception/limitation is that they will have priority as (highest - 1) for the user stream
with the highest priority. This is true only when the user stream is NOT in capture
mode (cudaStreamCaptureStatusActive), otherwise the behavior does not change.

‣ Fusion engine operation mode 16 is not currently supported on Windows; this will be
fixed in a future release.

‣ The functional support criteria of cuDNN's convolution kernels is not required to
consider padding. Users of cuDNN can witness an unexpected lack of problem
support when forward convolution spatial dimensions are less than the filter size
and padding is nonzero, however, is sufficient to extend spatial dimensions to or
beyond filter dimensions. This is commonly observed with, but not limited to, INT8
convolution kernels.

Limitations

‣ The runtime fusion engine is only supported in the cuDNN build based on
CUDA Toolkit 11.2 update 1 or later; it also requires the NVRTC from CUDA
11.2 update 1 or later. If this condition is not satisfied, the error status of
CUDNN_STATUS_NOT_SUPPORTED or CUDNN_STATUS_RUNTIME_PREREQUISITE_MISSING will
be returned.

‣ Samples can crash unless they are installed in a writable location.

‣ RNN and multihead attention API calls may exhibit non-deterministic behavior when
the cuDNN library is built with CUDA Toolkit 10.2 or higher. This is the result of a new
buffer management and heuristics in the cuBLAS library. As described in Results
Reproducibility, numerical results may not be deterministic when cuBLAS APIs are
launched in more than one CUDA stream using the same cuBLAS handle. This is
caused by two buffer sizes (16 KB and 4 MB) used in the default configuration.

When a larger buffer size is not available at runtime, instead of waiting for a buffer
of that size to be released, a smaller buffer may be used with a different GPU kernel.
The kernel selection may affect numerical results. The user can eliminate the non-
deterministic behavior of cuDNN RNN and multihead attention APIs, by setting
a single buffer size in the CUBLAS_WORKSPACE_CONFIG environmental variable, for
example, :16:8 or :4096:2.

The first configuration instructs cuBLAS to allocate eight buffers of 16 KB each in
GPU memory while the second setting creates two buffers of 4 MB each. The default
buffer configuration in cuBLAS 10.2 and 11.0 is :16:8:4096:2, that is, we have two
buffer sizes. In earlier cuBLAS libraries, such as cuBLAS 10.0, it used the :16:8 non-
adjustable configuration. When buffers of only one size are available, the behavior of
cuBLAS calls is deterministic in multi-stream setups.

‣ The tensor pointers and the filter pointers require at a minimum 4-byte alignment,
including INT8 data in the cuDNN library.

‣ Some computational options in cuDNN require increased alignment on tensors in
order to run efficiently. As always, cuDNN recommends users to align tensors to

https://docs.nvidia.com/cuda/cublas/index.html#cublasXtApi_reproducibility
https://docs.nvidia.com/cuda/cublas/index.html#cublasXtApi_reproducibility

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 114

16 byte boundaries that will be sufficiently aligned for any computational option
in cuDNN. Doing otherwise may cause performance regressions in cuDNN 8.0.x
compared to cuDNN v7.6.

‣ For certain algorithms, when the computation is in float (32-bit float) and the output
is in FP16 (half float), there are cases where the numerical accuracy between the
different algorithms might differ. cuDNN 8.0.x users can target the backend API to
query the numerical notes of the algorithms to get the information programmatically.
There are cases where algo0 and algo1 will have a reduced precision accumulation
when users target the legacy API. In all cases, these numerical differences are not
known to affect training accuracy even though they might show up in unit tests.

‣ For the _ALGO_0 algorithm of convolution backward data and backward filter, grouped
convolution with groups larger than 1 and with odd product of dimensions C, D (if 3D
convolution), H, and W is not supported on devices older than NVIDIA Volta. To prevent
a potential illegal memory access by an instruction that only has a 16-bit version in
NVIDIA Volta and later, pad at least one of the dimensions to an even value.

‣ On K80 GPUs, when cudnnConvolutionForward() is used with
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM algorithm and half I/O data
types a silent error might occur when the output width Q is 1 and both height and
width padding are zero.

‣ Several cuDNN APIs are unable to directly support computations using integer types
(CUDNN_DATA_INT8, CUDNN_DATA_INT8x4, CUDNN_DATA_INT8x32 or CUDNN_DATA_INT32).
Floating types (particularly CUDNN_DATA_FLOAT) are much more widely supported. If
an API does not support the desired type, cudnnTransformTensor() can be used to
support the use case by converting to/from a supported type and the desired type.
Here are the steps for doing so:

 1. Convert all input tensors from their native type to a supported type
(CUDNN_DATA_FLOAT is recommended).

 2. Run cuDNN API using the converted input tensors and output tensor descriptors
set as CUDNN_DATA_FLOAT.

 3. Convert all output tensors from a supported type to your desired output type.

Note: This will require extra memory use for the temporary buffers. Further, this
will introduce an additional round trip to memory that might noticeably impact
performance.

‣ In INT8x32 Tensor Core cases, the parameters supported by cuDNN v7.6 are limited
to W >= (R-1) * dilationW && H >= (S-1) * dilationH, whereas, in cuDNN
v8.0.x, W == (R-1) * dilationW || H == (S-1) * dilationH cases are no longer
supported.

‣ In prior versions of cuDNN, some convolution algorithms can use texture-based
load structure for performance improvements particularly in older hardware
architectures. Users can opt out of using texture using the environmental variable

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionForward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnTransformTensor

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 115

CUDNN_TEXOFF_DBG. In cuDNN 8.x, this variable is removed. Texture loading is turned
off by default. Users who want to continue to use texture-based load, can adapt the
new backend API, and toggle the engine knob CUDNN_KNOB_TYPE_USE_TEX to 1 for
engines that support texture-based load instructions.

‣ In the backend API, convolution forward engine with
CUDNN_ATTR_ENGINE_GLOBAL_INDEX=1 is not supported when the product (channels
* height * width) of the input image exceeds 536,870,912 that is 2^29.

‣ cudnnSpatialTfSamplerBackward() returns CUDNN_STATUS_NOT_SUPPORT when the
number of channels exceeds 1024.

‣ When using graph-capture, users should call the sub library version check API (for
example, cudnnOpsInferVersionCheck()) to load the kernels in the sub library before
opening graph capture.

‣ Starting in cuDNN version 8.1.0, we are no longer shipping the libfreeimg static
library with the MNIST sample. Users can follow the instructions in the readme.txt
file to download and compile the library separately and link with the MNIST sample.

‣ For pre-Volta devices, users should align all buffers to at least 4 bytes; this applies to
half-precision data as well.

‣ Users of cuDNN must add the dependencies of cuBLAS to the linkers command
explicitly to resolve the undefined symbols from cuDNN static libraries.

‣ Starting in version 8.1, cuDNN uses AVX intrinsics on the x86_64 architecture; users
of this architecture without support for AVX intrinsics may see illegal instruction
errors.

1.17. cuDNN Release 8.2.2
This is the cuDNN 8.2.2 release notes. This release includes fixes from the previous
cuDNN v8.1.x releases as well as the following additional changes. These release notes
are applicable to both cuDNN and NVIDIA JetPack users of cuDNN unless appended
specifically with (not applicable for Jetson platforms).

For previous cuDNN documentation, refer to the NVIDIA cuDNN Archives.

Key Features and Enhancements

The following features and enhancements have been added to this release:

‣ Experimental runtime fusion heuristics are now supported to facilitate an intelligent
and efficient heuristic recommendation based on the predicted execution time
for the runtime fusion engine. The current coverage is limited to fusion patterns
involving a convolution forward operation in FP16 mixed precision configuration
on NVIDIA Ampere Architecture GPUs. We will continue to expand the support and
improve the prediction accuracy in future releases.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnSpatialTfSamplerBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnOpsInferVersionCheck
https://docs.nvidia.com/deeplearning/sdk/cudnn-archived/index.html

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 116

‣ The cuDNN runtime fusion now supports pure pointwise fusion or pointwise plus
reduction fusion. It supports FP16/FP32 as I/O type and FP32 as compute type.

Compatibility

For the latest compatibility software versions of the OS, CUDA, the CUDA driver, and the
NVIDIA hardware, see the NVIDIA cuDNN Support Matrix.

Fixed Issues

The following issues have been fixed in this release:

‣ For platforms that ship a compiler version older than GCC 6 by default, linking to
static cuDNN using the default compiler is not supported.

‣ There was a 15% performance regression for inference on the PyTorch WaveGlow
model on the NVIDIA Turing architecture. This regression has been fixed.

‣ The convolve_common_engine_int8_NHWC kernel had an undesired FP32 > INT32
truncation before outputting the FP32 result directly. This issue has been fixed in this
release.

‣ In previous cuDNN versions, cudnnRNNBackwardData(), cudnnRNNBackwardDataEx(),
or cudnnRNNBackwardData_v8() could return CUDNN_STATUS_INTERNAL_ERROR when
CUDNN_RNN_ALGO_PERSIST_STATIC and CUDNN_LSTM were selected. This issue
occurred mainly on smaller GPUs, such as NVIDIA Turing with 36 or 48 SMs and
smaller hiddenSize values. This issue has been fixed in this release.

‣ NVIDIA Turing GTX 16xx users of cuDNN would observe invalid values in convolution
output. This issue has been fixed in this release.

‣ Users would experience NCHW transformations causing a floating point exception
and the CPU reference code producing incorrect results for tensor format
CUDNN_TENSOR_NCHW_VECT_C. Corner cases in the convolution sample code have been
fixed in this release.

Known Issues

‣ Users of the static library requiring best possible convolution performance should
use whole-archive linking. This will come at a cost to binary size that will require
resolution in future releases, either through static sub libraries or relaxing the whole-
archive linkage requirement altogether.

‣ Some convolution models are experiencing lower performance on NVIDIA RTX
3090 compared to 2080 Ti. This includes EfficientNet with up to 6x performance
difference, UNet up to 1.6x performance difference and Tacotron up to 1.6x
performance difference.

‣ Compared to version 8.0.5, legacy convolution APIs have increased CPU
computational costs. On x86, this has been measured to be as high as 10
microseconds.

https://docs.nvidia.com/deeplearning/sdk/cudnn-support-matrix/index.html#cudnn-cuda-hardware-versions

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 117

‣ cudnnAddTensor() does not support all tensor shapes even though the cuDNN
documentation says otherwise.

‣ cudnnPoolingForward() with pooling mode CUDNN_POOLING_AVG
might output NaN for pixel in output tensor outside the value
recommended by cudnnGetPoolingNdForwardOutputDim() or
cudnnGetPooling2dForwardOutputDim().

‣ Convolutions (ConvolutionForward, ConvolutionBackwardData, and
ConvolutionBackwardFilter) may experience performance regressions when run
with math type CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION on CUDNN_DATA_FLOAT
data (input and output).

‣ Compared to cuDNN 7.6, there are known performance regressions up to 2x on
select configurations for AlexNet-like models on NVIDIA Turing GPUs.

‣ Compared to cuDNN 8.1.0, there are known performance regressions on certain
dgrad NHWC configurations from FastPitch and WaveGlow models on V100 and
NVIDIA A100 GPUs.

‣ Compared to cuDNN 7.6.5, there are known performance regressions on various
convolutional models using INT8 data types on NVIDIA Volta GPUs.

‣ The numeric behavior of INT8 operations including saturation behavior, accumulator
data types, and so on, have not been documented as of yet.

‣ It is possible, starting in cuDNN 7.6 and up to but not including 8.1.1, to leak memory
when computing common convolution operations in rare cases.

‣ There is a known 25% performance regression for inference on the PyTorch SSD
model on the NVIDIA Turing architecture.

‣ The documentation for cudnnReorderFilterAndBias() needs some corrections for
clarity.

‣ Compared to cuDNN 8.0.5, there is a known ~17% performance regression on SSD
models running on V100.

‣ NVIDIA Turing users of cuDNN can observe intermittent illegal memory access errors
for some convolution workloads.

‣ FFT and Winograd based algorithms for convolution do not support graph capture.

‣ In a multi-GPU setting, with complex scheduling, cuDNN can segfault. It is not clear
that this is a cuDNN issue, but the issue is under active investigation so that the
known limitations section of this document can be updated in a future release.

‣ Compared to cuDNN version 8.0.2, there is a known 3x performance regression for a
single cudnnConvolutionBackwardFilter() use case.

‣ There is a known 60% performance regression for ResNet-50 on the GTX 1080 when
run using FP16 data with large batch sizes (over 128).

‣ Users of the static library requiring the best possible convolution performance
should use whole-archive linking. This will come at a cost to the binary size that will

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnAddTensor
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnPoolingForward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetPoolingNdForwardOutputDim
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetPooling2dForwardOutputDim
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnReorderFilterAndBias
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionBackwardFilter

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 118

require resolution in a future release, either through static sub libraries or relaxing the
whole-archive linkage requirement altogether.

‣ cuDNN may contain a small memory leak related to the usage of dlopen() within the
library; this is not confirmed but currently under investigation. The possible leak does
not affect Windows users or users of the static library.

‣ On NVIDIA Pascal and Maxwell architectures, users of cuDNN's 8.0 backend engine
34 for forward convolution can witness-illegal memory access; this affects all
previous versions of cuDNN 8.0 and will be fixed in a future release.

‣ When using the cuDNN CTC Loss API function, the computed gradients array is not
zero initialized. When sequence lengths are exceeded, some gradient entries are
returned uninitialized.

Limitations

‣ The runtime fusion engine is only supported in the cuDNN build based on
CUDA Toolkit 11.2 update 1 or later; it also requires the NVRTC from CUDA
11.2 update 1 or later. If this condition is not satisfied, the error status of
CUDNN_STATUS_NOT_SUPPORTED or CUDNN_STATUS_RUNTIME_PREREQUISITE_MISSING will
be returned.

‣ Samples can crash unless they are installed in a writable location.

‣ RNN and multihead attention API calls may exhibit non-deterministic behavior when
the cuDNN library is built with CUDA Toolkit 10.2 or higher. This is the result of a new
buffer management and heuristics in the cuBLAS library. As described in Results
Reproducibility, numerical results may not be deterministic when cuBLAS APIs are
launched in more than one CUDA stream using the same cuBLAS handle. This is
caused by two buffer sizes (16 KB and 4 MB) used in the default configuration.

When a larger buffer size is not available at runtime, instead of waiting for a buffer
of that size to be released, a smaller buffer may be used with a different GPU kernel.
The kernel selection may affect numerical results. The user can eliminate the non-
deterministic behavior of cuDNN RNN and multihead attention APIs, by setting
a single buffer size in the CUBLAS_WORKSPACE_CONFIG environmental variable, for
example, :16:8 or :4096:2.

The first configuration instructs cuBLAS to allocate eight buffers of 16 KB each in
GPU memory while the second setting creates two buffers of 4 MB each. The default
buffer configuration in cuBLAS 10.2 and 11.0 is :16:8:4096:2, that is, we have two
buffer sizes. In earlier cuBLAS libraries, such as cuBLAS 10.0, it used the :16:8 non-
adjustable configuration. When buffers of only one size are available, the behavior of
cuBLAS calls is deterministic in multi-stream setups.

‣ The tensor pointers and the filter pointers require at a minimum 4-byte alignment,
including INT8 data in the cuDNN library.

‣ Some computational options in cuDNN require increased alignment on tensors in
order to run efficiently. As always, cuDNN recommends users to align tensors to

https://docs.nvidia.com/cuda/cublas/index.html#cublasXtApi_reproducibility
https://docs.nvidia.com/cuda/cublas/index.html#cublasXtApi_reproducibility

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 119

16 byte boundaries that will be sufficiently aligned for any computational option
in cuDNN. Doing otherwise may cause performance regressions in cuDNN 8.0.x
compared to cuDNN v7.6.

‣ For certain algorithms, when the computation is in float (32-bit float) and the output
is in FP16 (half float), there are cases where the numerical accuracy between the
different algorithms might differ. cuDNN 8.0.x users can target the backend API to
query the numerical notes of the algorithms to get the information programmatically.
There are cases where algo0 and algo1 will have a reduced precision accumulation
when users target the legacy API. In all cases, these numerical differences are not
known to affect training accuracy even though they might show up in unit tests.

‣ For the _ALGO_0 algorithm of convolution backward data and backward filter, grouped
convolution with groups larger than 1 and with odd product of dimensions C, D (if 3D
convolution), H, and W is not supported on devices older than NVIDIA Volta. To prevent
a potential illegal memory access by an instruction that only has a 16-bit version in
NVIDIA Volta and later, pad at least one of the dimensions to an even value.

‣ On K80 GPUs, when cudnnConvolutionForward() is used with
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM algorithm and half I/O data
types a silent error might occur when the output width Q is 1 and both height and
width padding are zero.

‣ Several cuDNN APIs are unable to directly support computations using integer types
(CUDNN_DATA_INT8, CUDNN_DATA_INT8x4, CUDNN_DATA_INT8x32 or CUDNN_DATA_INT32).
Floating types (particularly CUDNN_DATA_FLOAT) are much more widely supported. If
an API does not support the desired type, cudnnTransformTensor() can be used to
support the use case by converting to/from a supported type and the desired type.
Here are the steps for doing so:

 1. Convert all input tensors from their native type to a supported type
(CUDNN_DATA_FLOAT is recommended).

 2. Run cuDNN API using the converted input tensors and output tensor descriptors
set as CUDNN_DATA_FLOAT.

 3. Convert all output tensors from a supported type to your desired output type.

Note: This will require extra memory use for the temporary buffers. Further, this
will introduce an additional round trip to memory that might noticeably impact
performance.

‣ In INT8x32 Tensor Core cases, the parameters supported by cuDNN v7.6 are limited
to W >= (R-1) * dilationW && H >= (S-1) * dilationH, whereas, in cuDNN
v8.0.x, W == (R-1) * dilationW || H == (S-1) * dilationH cases are no longer
supported.

‣ In prior versions of cuDNN, some convolution algorithms can use texture-based
load structure for performance improvements particularly in older hardware
architectures. Users can opt out of using texture using the environmental variable

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionForward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnTransformTensor

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 120

CUDNN_TEXOFF_DBG. In cuDNN 8.x, this variable is removed. Texture loading is turned
off by default. Users who want to continue to use texture-based load, can adapt the
new backend API, and toggle the engine knob CUDNN_KNOB_TYPE_USE_TEX to 1 for
engines that support texture-based load instructions.

‣ In the backend API, convolution forward engine with
CUDNN_ATTR_ENGINE_GLOBAL_INDEX=1 is not supported when the product (channels
* height * width) of the input image exceeds 536,870,912 that is 2^29.

‣ cudnnSpatialTfSamplerBackward() returns CUDNN_STATUS_NOT_SUPPORT when the
number of channels exceeds 1024.

‣ When using graph-capture, users should call the sub library version check API (for
example, cudnnOpsInferVersionCheck()) to load the kernels in the sub library before
opening graph capture.

‣ Starting in cuDNN version 8.1.0, we are no longer shipping the libfreeimg static
library with the MNIST sample. Users can follow the instructions in the readme.txt
file to download and compile the library separately and link with the MNIST sample.

‣ For pre-Volta devices, users should align all buffers to at least 4 bytes; this applies to
half-precision data as well.

‣ Users of cuDNN must add the dependencies of cuBLAS to the linkers command
explicitly to resolve the undefined symbols from cuDNN static libraries.

Deprecated Features

The following features are deprecated in cuDNN 8.2.2:

‣ Support for Ubuntu 16.04 has been deprecated in cuDNN 8.2.2 for CUDA 11.4. For a
list of supported OS, refer to the NVIDIA cuDNN Support Matrix.

‣ Support for RHEL7 for ppc64le has been deprecated in cuDNN 8.2.2 for CUDA 11.4.
For a list of supported OS, refer to the NVIDIA cuDNN Support Matrix.

1.18. cuDNN Release 8.2.1
This is the cuDNN 8.2.1 release notes. This release includes fixes from the previous
cuDNN v8.1.x releases as well as the following additional changes. These release notes
are applicable to both cuDNN and NVIDIA JetPack users of cuDNN unless appended
specifically with (not applicable for Jetson platforms).

For previous cuDNN documentation, see the NVIDIA cuDNN Archives.

Key Features and Enhancements

The following features and enhancements have been added to this release:

‣ The cuDNN runtime fusion engine now supports generating Tensor Core kernels with
input tensors of:

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnSpatialTfSamplerBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnOpsInferVersionCheck
https://docs.nvidia.com/deeplearning/cudnn/support-matrix/index.html
https://docs.nvidia.com/deeplearning/cudnn/support-matrix/index.html
https://docs.nvidia.com/deeplearning/sdk/cudnn-archived/index.html

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 121

‣ Bfloat16 type and compute precision of FP32 (requires compute capability 8.0 or
later). For Bfloat16 support, convolution I/O channels are required to be a multiple
of 8.

‣ INT8 and compute precision of INT32 (requires compute capability 7.5 or later)
datatype and in NHWC layout. For INT8 support, the convolution I/O channels are
required to be a multiple of 16, and unlike the NCHW_VECT_C kernels, filter and bias
reordering is not required.

In the fused pointwise/reduction operations, FP32 is the compute precision
supported.

‣ The cuDNN runtime fusion engine has added experimental Tensor Core kernel
generation support for NVIDIA Volta (compute capability 7.0) and NVIDIA Xavier
(compute capability 7.2). The supported input tensor data type is FP16, compute
precision is FP32, and the supported layout is NHWC. However, reduction fusion is
not yet supported and we are working on further generalizing the support.

‣ Equations in the documentation are now supported in Chrome.

‣ The backend API now supports fused convolution-scale-bias-activation with per-
channel-scaling by matching the operation graph.

‣ cudnnPoolingBackward() allows both x and y data pointers (together with the
related tensor descriptor handles) to be NULL for avg-pooling. This could save
memory footprint and bandwidth.

Compatibility

For the latest compatibility software versions of the OS, CUDA, the CUDA driver, and the
NVIDIA hardware, refer to the NVIDIA cuDNN Support Matrix.

Fixed Issues

The following issues have been fixed in this release:

‣ In some cases, NVIDIA Ampere Architecture users of cuDNN 8.1
cudnnGetConvolutionBackwardFilterAlgorithm_v7() could receive
a workspace that was insufficient for computing the calculation with
cudnnConvolutionBackwardFilter(). This issue has been fixed in this release.

‣ Many convolution models were experiencing lower performance on NVIDIA RTX 3090
compared to 2080 Ti. This included ResNet-50 with up to 2x performance difference
and ResNeXt up to 10x the performance difference. Many of these performance
issues have been fixed in this release.

‣ Compared to cuDNN version 8.0.5, there was a known 8% performance regression on
the SSD ResNet-50 model on the NVIDIA Ampere Architecture. This issue has been
fixed in this release.

‣ L4T users of cuDNN could observe CUDNN_STATUS_EXECUTION_FAILED
errors in some cases when performing convolutions using

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnPoolingBackward
https://docs.nvidia.com/deeplearning/sdk/cudnn-support-matrix/index.html#cudnn-cuda-hardware-versions
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetConvolutionBackwardFilterAlgorithm_v7
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionBackwardFilter

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 122

CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM. This issue has been fixed in
this release.

‣ In cuDNN 8.2.0, if the user runs a Bi-directional RNN network with dropout enabled,
the user may see non-deterministic outputs. This issue has been fixed in 8.2.1.

‣ There was a known 18% performance regression for inference on the PyTorch
ResNet-50 v1.5 model on the NVIDIA Turing architecture. This issue has been fixed in
this release.

‣ Known regressions on certain layers in cuDNN 8 regression in algorithm selection
heuristics have been fixed on NVIDIA Volta and NVIDIA Pascal platforms.

‣ In older versions of cuDNN, when calling the API cudnnSetDropoutDescriptor(), a
kernel launched by this API used to require a substantial amount of GPU memory
for the stack. The memory is released when the kernel finishes and the stack size is
changed back in a way that is not thread safe. Starting in the 8.2.1 release, the extra
memory is no longer required, and as a result, the thread safety concern is no longer
present.

‣ In cuDNN 8.1.1, compared to cuDNN 8.1.0, there was a known regression in
performance of the runtime fusion engine for convolution fused with ReLU in the
epilog. This was caused due to the generalized support for parameterized ReLU. This
issue has been fixed since the 8.2.0 release.

‣ Since cuDNN 8.0.4 until 8.2.0, certain SKUs of V100 GPU may encounter
CUDNN_STATUS_EXECUTION_FAILED status or unspecified launch failure in a
subsequent call to cudaDeviceSynchronize() when running RNN with cell mode of
CUDNN_LSTM and CUDNN_RNN_ALGO_PERSIST_STATIC algorithm. This issue has been
fixed in this release.

‣ Between cuDNN 8.1.0 and 8.2.0, if the user runs cudnnRNN*() API under CUDA
compute sanitizer with CUDNN_RNN_ALGO_PERSIST_STATIC_SMALL_H algorithm, users
may see errors like Invalid __global__ read reported by the CUDA compute
sanitizer. This issue has been fixed in this release.

‣ Compared to cuDNN 8.0.0 preview, there is a known ~12% performance regression on
vgg16 when run on Jetson Nano and TX2. This issue has been fixed in this release.

‣ Compared to cuDNN 7.6, there is a significant performance regression on Darknet
when run on Jetson Nano. This issue has been fixed in this release.

Known Issues

‣ Users of the static library requiring best possible convolution performance should
use whole-archive linking. This will come at a cost to binary size that will require
resolution in future releases, either through static sub libraries or relaxing the whole-
archive linkage requirement altogether.

‣ Some convolution models are experiencing lower performance on NVIDIA RTX
3090 compared to 2080 Ti. This includes EfficientNet with up to 6x performance

https://forums.developer.nvidia.com/t/cudnn8-regression-in-algorithm-selection-heuristics/153667
https://forums.developer.nvidia.com/t/cudnn8-regression-in-algorithm-selection-heuristics/153667
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnSetDropoutDescriptor
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudaDeviceSynchronize

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 123

difference, UNet up to 1.6x performance difference and Tacotron up to 1.6x
performance difference.

‣ Compared to version 8.0.5, legacy convolution APIs have increased CPU
computational costs. On x86, this has been measured to be as high as 10
microseconds.

‣ cudnnAddTensor() does not support all tensor shapes even though the cuDNN
documentation says otherwise.

‣ cudnnPoolingForward() with pooling mode CUDNN_POOLING_AVG
might output NaN for pixel in output tensor outside the value
recommended by cudnnGetPoolingNdForwardOutputDim() or
cudnnGetPooling2dForwardOutputDim().

‣ Convolutions (ConvolutionForward, ConvolutionBackwardData, and
ConvolutionBackwardFilter) may experience performance regressions when run
with math type CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION on CUDNN_DATA_FLOAT
data (input and output).

‣ Compared to cuDNN 7.6, there are known performance regressions up to 2x on
select configurations for AlexNet-like models on NVIDIA Turing GPUs.

‣ Compared to cuDNN 8.1.0, there are known performance regressions on certain
dgrad NHWC configurations from FastPitch and WaveGlow models on V100 and
NVIDIA A100 GPUs.

‣ Compared to cuDNN 7.6.5, there are known performance regressions on various
convolutional models using INT8 data types on NVIDIA Volta GPUs.

‣ The numeric behavior of INT8 operations including saturation behavior, accumulator
data types, and so on, have not been documented as of yet.

‣ It is possible, starting in cuDNN v7.6 and up to but not including 8.1.1, to leak
memory when computing common convolution operations in rare cases.

‣ There is a known 15% performance regression for inference on the PyTorch
WaveGlow model on the NVIDIA Turing architecture.

‣ There is a known 25% performance regression for inference on the PyTorch SSD
model on the NVIDIA Turing architecture.

‣ The documentation for cudnnReorderFilterAndBias() needs some corrections for
clarity.

‣ Compared to cuDNN 8.0.5, there is a known ~17% performance regression on SSD
models running on V100.

‣ NVIDIA Turing GTX 16xx users of cuDNN can observe invalid values in convolution
output.

‣ NVIDIA Turing users of cuDNN can observe intermittent illegal memory access errors
for some convolution workloads.

‣ FFT and Winograd based algorithms for convolution do not support graph capture.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnAddTensor
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnPoolingForward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetPoolingNdForwardOutputDim
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetPooling2dForwardOutputDim
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnReorderFilterAndBias

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 124

‣ In a multi-GPU setting, with complex scheduling, cuDNN can segfault. It is not clear
that this is a cuDNN issue, but the issue is under active investigation so that the
known limitations section of this document can be updated in a future release.

‣ Compared to cuDNN version 8.0.2, there is a known 3x performance regression for a
single cudnnConvolutionBackwardFilter() use case.

‣ There is a known 60% performance regression for ResNet-50 on the GTX 1080 when
run using FP16 data with large batch sizes (over 128).

Limitations

‣ The runtime fusion engine is only supported in the cuDNN build based on
CUDA Toolkit 11.2 update 1 or later; it also requires the NVRTC from CUDA
11.2 update 1 or later. If this condition is not satisfied, the error status of
CUDNN_STATUS_NOT_SUPPORTED or CUDNN_STATUS_RUNTIME_PREREQUISITE_MISSING will
be returned.

‣ Samples can crash unless they are installed in a writable location.

‣ RNN and multihead attention API calls may exhibit non-deterministic behavior when
the cuDNN library is built with CUDA Toolkit 10.2 or higher. This is the result of a new
buffer management and heuristics in the cuBLAS library. As described in Results
Reproducibility, numerical results may not be deterministic when cuBLAS APIs are
launched in more than one CUDA stream using the same cuBLAS handle. This is
caused by two buffer sizes (16 KB and 4 MB) used in the default configuration.

When a larger buffer size is not available at runtime, instead of waiting for a buffer
of that size to be released, a smaller buffer may be used with a different GPU kernel.
The kernel selection may affect numerical results. The user can eliminate the non-
deterministic behavior of cuDNN RNN and multihead attention APIs, by setting
a single buffer size in the CUBLAS_WORKSPACE_CONFIG environmental variable, for
example, :16:8 or :4096:2.

The first configuration instructs cuBLAS to allocate eight buffers of 16 KB each in
GPU memory while the second setting creates two buffers of 4 MB each. The default
buffer configuration in cuBLAS 10.2 and 11.0 is :16:8:4096:2, that is, we have two
buffer sizes. In earlier cuBLAS libraries, such as cuBLAS 10.0, it used the :16:8 non-
adjustable configuration. When buffers of only one size are available, the behavior of
cuBLAS calls is deterministic in multi-stream setups.

‣ The tensor pointers and the filter pointers require at a minimum 4-byte alignment,
including INT8 data in the cuDNN library.

‣ Some computational options in cuDNN require increased alignment on tensors in
order to run efficiently. As always, cuDNN recommends users to align tensors to
16 byte boundaries that will be sufficiently aligned for any computational option
in cuDNN. Doing otherwise may cause performance regressions in cuDNN 8.0.x
compared to cuDNN v7.6.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionBackwardFilter
https://docs.nvidia.com/cuda/cublas/index.html#cublasXtApi_reproducibility
https://docs.nvidia.com/cuda/cublas/index.html#cublasXtApi_reproducibility

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 125

‣ For certain algorithms, when the computation is in float (32-bit float) and the output
is in FP16 (half float), there are cases where the numerical accuracy between the
different algorithms might differ. cuDNN 8.0.x users can target the backend API to
query the numerical notes of the algorithms to get the information programmatically.
There are cases where algo0 and algo1 will have a reduced precision accumulation
when users target the legacy API. In all cases, these numerical differences are not
known to affect training accuracy even though they might show up in unit tests.

‣ For the _ALGO_0 algorithm of convolution backward data and backward filter, grouped
convolution with groups larger than 1 and with odd product of dimensions C, D (if 3D
convolution), H, and W is not supported on devices older than NVIDIA Volta. To prevent
a potential illegal memory access by an instruction that only has a 16-bit version in
NVIDIA Volta and later, pad at least one of the dimensions to an even value.

‣ On K80 GPUs, when cudnnConvolutionForward() is used with
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM algorithm and half I/O data
types a silent error might occur when the output width Q is 1 and both height and
width padding are zero.

‣ Several cuDNN APIs are unable to directly support computations using integer types
(CUDNN_DATA_INT8, CUDNN_DATA_INT8x4, CUDNN_DATA_INT8x32 or CUDNN_DATA_INT32).
Floating types (particularly CUDNN_DATA_FLOAT) are much more widely supported. If
an API does not support the desired type, cudnnTransformTensor() can be used to
support the use case by converting to/from a supported type and the desired type.
Here are the steps for doing so:

 1. Convert all input tensors from their native type to a supported type
(CUDNN_DATA_FLOAT is recommended).

 2. Run cuDNN API using the converted input tensors and output tensor descriptors
set as CUDNN_DATA_FLOAT.

 3. Convert all output tensors from a supported type to your desired output type.

Note: This will require extra memory use for the temporary buffers. Further, this
will introduce an additional round trip to memory that might noticeably impact
performance.

‣ In INT8x32 Tensor Core cases, the parameters supported by cuDNN v7.6 are limited
to W >= (R-1) * dilationW && H >= (S-1) * dilationH, whereas, in cuDNN
v8.0.x, W == (R-1) * dilationW || H == (S-1) * dilationH cases are no longer
supported.

‣ In prior versions of cuDNN, some convolution algorithms can use texture-based
load structure for performance improvements particularly in older hardware
architectures. Users can opt out of using texture using the environmental variable
CUDNN_TEXOFF_DBG. In cuDNN 8.x, this variable is removed. Texture loading is turned
off by default. Users who want to continue to use texture-based load, can adapt the

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionForward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnTransformTensor

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 126

new backend API, and toggle the engine knob CUDNN_KNOB_TYPE_USE_TEX to 1 for
engines that support texture-based load instructions.

‣ In the backend API, convolution forward engine with
CUDNN_ATTR_ENGINE_GLOBAL_INDEX=1 is not supported when the product (channels
* height * width) of the input image exceeds 536,870,912 that is 2^29.

‣ cudnnSpatialTfSamplerBackward() returns CUDNN_STATUS_NOT_SUPPORT when the
number of channels exceeds 1024.

‣ When using graph-capture, users should call the sub library version check API (for
example, cudnnOpsInferVersionCheck()) to load the kernels in the sub library before
opening graph capture.

‣ Starting in cuDNN version 8.1.0, we are no longer shipping the libfreeimg static
library with the MNIST sample. Users can follow the instructions in the readme.txt
file to download and compile the library separately and link with the MNIST sample.

‣ For pre-Volta devices, users should align all buffers to at least 4 bytes; this applies to
half-precision data as well.

‣ Users of cuDNN must add the dependencies of cuBLAS to the linkers command
explicitly to resolve the undefined symbols from cuDNN static libraries.

Deprecated Features

The following features are deprecated in cuDNN 8.2.1:

‣ Support for Ubuntu 16.04 will be deprecated in cuDNN 8.2.2 for CUDA 11.4. For a list
of supported OS, refer to the NVIDIA cuDNN Support Matrix.

‣ Support for RHEL7 for ppc64le will be deprecated in cuDNN 8.2.2 for CUDA 11.4. For
a list of supported OS, refer to the NVIDIA cuDNN Support Matrix.

1.19. cuDNN Release 8.2.0
This is the cuDNN 8.2.0 release notes. This release includes fixes from the previous
cuDNN v8.1.x releases as well as the following additional changes. These release notes
are applicable to both cuDNN and NVIDIA JetPack users of cuDNN unless appended
specifically with (not applicable for Jetson platforms).

For previous cuDNN documentation, refer to the NVIDIA cuDNN Archives.

Key Features and Enhancements

The following features and enhancements have been added to this release:

‣ Convolution with the backend API now supports tensor with more than 2**31
elements. The size and stride of each tensor dimension are still limited to 32-bit
values.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnSpatialTfSamplerBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnOpsInferVersionCheck
https://docs.nvidia.com/deeplearning/cudnn/support-matrix/index.html
https://docs.nvidia.com/deeplearning/cudnn/support-matrix/index.html
https://docs.nvidia.com/deeplearning/sdk/cudnn-archived/index.html

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 127

‣ Convolution Heuristics Generalization has been improved for several GPUs. These
improvements can be observed in the legacy API and version 8 API. In the version
8 API, these improvements are available in both CUDNN_HEUR_MODE_INSTANT and
CUDNN_HEUR_MODE_B.

‣ The cuDNN runtime fusion engine now supports generating Tensor Core based fusion
kernels in the following scenarios:

‣ When there is a scale+bias+ReLU pattern in the graph fused to the x input of a
convolution forward operation

‣ When the graph contains 3D convolution forward, backward data, or backward
filter operation

‣ When the graph contains a convolution backward data operation with non-unit
convolution strides

We are working on further generalization of this support.

‣ cuDNN C++ frontend has released the 0.2 version that adds more general support to
activation forward and backward operations, matMul operation, and contains various
bug fixes and clean ups. A few runtime fusion samples have also been added. For
more information, refer to GitHub: cuDNN frontend.

‣ The new RNN ALGO_STANDARD implementation and heuristics tuning provides
significant speedup (up to 100%), especially when the overall problem size is small
(hidden size, batch size, and the number of timesteps).

‣ The RNN dropout implementation has been heavily optimized. The new
implementation brings significant speed-up to all RNN algorithms when dropout is
enabled.

‣ cuDNN RNN has moved to calling cuBLASLt on newer architectures (compute
capability >= 7.0). As a result, the CUBLAS_WORKSPACE_CONFIG workaround for cuBLAS
non-deterministic behavior is no longer needed on those architectures. In addition,
under repeated CUDA graph capture, cuBLASLt no longer allocates workspace
repeatedly like cuBLAS.

‣ In the cuDNN v8 backend API, a new CUDNN_ATTR_ENGINE_BEHAVIOR_NOTE attribute
has been added. Users can query the engine behaviors using this attribute similar to
the numerical behaviors queried through the CUDNN_ATTR_ENGINE_NUMERICAL_NOTE
attribute. Currently, the engine behavior note only shows whether an engine does
runtime compilation or not. More behaviors may be added in future releases.

‣ cuDNN API logging for the v8 backend API has been significantly improved. Now
more detailed information can be printed from the backend data structures, for
example, tensors, operations, engines, and execution plans. We hope this can improve
the development and debugging experience of cuDNN. Refer to this link for more
instructions of how to enable API logging.

‣ cuDNN now supports SWISH activation in both forward and backward
directions. It can be configured for use with cudnnActivationForward()

https://github.com/NVIDIA/cudnn-frontend/releases/tag/v0.2
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#api-logging
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnActivationForward

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 128

and cudnnActivationBackward() by using CUDNN_ACTIVATION_SWISH
with cudnnSetActivationDescriptor(). SWISH activation's parameter,
commonly known as beta, may further be set using the newly added API
function cudnnSetActivationDescriptorSwishBeta() and queried with
cudnnGetActivationDescriptorSwishBeta().

Compatibility

For the latest compatibility software versions of the OS, CUDA, the CUDA driver, and the
NVIDIA hardware, refer to the NVIDIA cuDNN Support Matrix.

Fixed Issues

The following issues have been fixed in this release:

‣ There was a performance regression in certain use cases comparing NVIDIA RTX
3090 using cuDNN version 8.x to NVIDIA RTX 2080 Ti using cuDNN version 7.x. This
regression has been fixed in this release.

‣ There was a performance regression in the runtime engine for convolution fused with
ReLU in the epilog in cuDNN 8.1.1. This regression has been fixed in this release.

‣ Compared to cuDNN version 7.6.5, there was a performance regression in certain
grouped ConvolutionBackwardFilter cases on the NVIDIA Volta GPU architecture.
This regression has been fixed in this release.

‣ CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT returned an internal error when the number
of channels in the filter was greater than or equal to 65536. This issue has been fixed
in this release.

‣ Compared to cuDNN version 8.0.2, there was a known 3x performance regression for
a single cudnnConvolutionBackwardFilter() use case. This issue has been fixed in
this release.

‣ Although the overall cuDNN library size has improved in cuDNN 8.1.0 with CUDA
Toolkit 11.2 and greater, as compared to cuDNN 8.0.x, the cuDNN library remains
large. We have attempted to moderate the severity of this issue in this release.

‣ Many convolution models were experiencing lower performance on NVIDIA RTX 3090
compared to 2080 Ti. This included ResNet-50 with up to 2x performance difference,
ResNeXt up to 10x performance difference and U-Net up to 3x performance
difference. The performance issues have been fixed in this release.

‣ The ResNet-50 native FP32 inference issues have been fixed on NVIDIA Volta, NVIDIA
Turing, and NVIDIA Ampere Architecture GPUs.

‣ We have eliminated anonymous structs in cuDNN public headers cudnn_cnn_infer.h,
cudnn_cnn_train.h, and cudnn_ops_infer.h to allow forward struct declarations.
The following five typedef-s were updated: cudnnConvolutionFwdAlgoPerf_t,
cudnnConvolutionBwdDataAlgoPerf_t, cudnnConvolutionBwdFilterAlgoPerf_t,
cudnnAlgorithm_t, and cudnnDebug_t

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnActivationBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnSetActivationDescriptor
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnSetActivationDescriptorSwishBeta
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetActivationDescriptorSwishBeta
https://docs.nvidia.com/deeplearning/sdk/cudnn-support-matrix/index.html#cudnn-cuda-hardware-versions
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionBackwardFilter
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionFwdAlgoPerf_t
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionBwdDataAlgoPerf_t
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionBwdFilterAlgoPerf_t
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnAlgorithm_t
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnDebug_t

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 129

‣ cudnnActivationForward() could generate illegal memory access errors for tensors
of more than 2**30 elements in the previous version of cuDNN 8. This issue has been
fixed in this release.

‣ In previous releases, cudnnRNNBackwardWeights(), cudnnRNNBackwardWeightsEx(),
and cudnnRNNBackwardWeights_v8() may generate wrong and non-deterministic
results when dropout is enabled. A stream dependency issue has been fixed in the
current release so users will no longer observe this issue.

‣ The heuristics in cudnnConvolutionBackwardFilter() have been improved for
generalized cases. We have observed several convolution cases with up to ~100x
performance improvements compared to cuDNN version 8.1.

‣ Compared to cuDNN 8.0.4, there was a known ~6% performance regression on
ONNX-WaveGlow when run on NVIDIA TITAN RTX. This issue has been fixed in this
release.

‣ Compared to cuDNN 7.6, there were known performance regressions up to 2x on
select configurations for AlexNet-like models on NVIDIA Turing GPUs. This issue has
been fixed in this release.

Known Issues

‣ Users of the static library requiring best possible convolution performance should
use whole-archive linking. This will come at a cost to binary size that will require
resolution in future releases, either through static sub libraries or relaxing the whole-
archive linkage requirement altogether.

‣ Compared to version 8.0.5, legacy convolution APIs have increased CPU
computational costs. On x86, this has been measured to be as high as 10
microseconds.

‣ cudnnAddTensor() does not support all broadcast-able tensor shapes even though
the cuDNN documentation says otherwise.

‣ cudnnPoolingForward() with pooling mode CUDNN_POOLING_AVG
might output NaN for pixel in output tensor outside the value
recommended by cudnnGetPoolingNdForwardOutputDim() or
cudnnGetPooling2dForwardOutputDim().

‣ Compared to cuDNN 8.0.0 Preview, there is a known ~12% performance regression on
vgg16 when run on Jetson Nano and TX2.

‣ Compared to cuDNN 8.0.4, there is a known ~6% performance regression on ONNX-
WaveGlow when run on NVIDIA TITAN RTX.

‣ Compared to cuDNN 7.6, there is a significant performance regression on Darknet
when run on Jetson Nano.

‣ Convolutions (ConvolutionForward, ConvolutionBackwardData, and
ConvolutionBackwardFilter) may experience performance regressions when run
with math type CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION on CUDNN_DATA_FLOAT
data (input and output).

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnActivationForward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnRNNBackwardWeights
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnRNNBackwardWeightsEx
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnRNNBackwardWeights_v8
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionBackwardFilter()
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnAddTensor
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnPoolingForward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetPoolingNdForwardOutputDim
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetPooling2dForwardOutputDim

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 130

‣ Compared to cuDNN 7.6, there are known performance regressions up to 2x on
select configurations for AlexNet-like models on NVIDIA Turing GPUs.

‣ L4T users of cuDNN may observe CUDNN_STATUS_EXECUTION_FAILED
errors in some cases when performing convolutions using
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM. This issue is being
investigated.

‣ Users of the static library requiring the best possible convolution performance
should use whole-archive linking. This will come at a cost to the binary size that will
require resolution in a future release, either through static sub libraries or relaxing the
whole-archive linkage requirement altogether.

‣ Compared to cuDNN 8.1.0, there are known performance regressions on certain
dgrad NHWC configurations from FastPitch and WaveGlow models on V100 and
NVIDIA A100 GPUs.

‣ Compared to cuDNN 7.6.5, there are known performance regressions on various
convolutional models using INT8 data types on NVIDIA Volta GPUs.

‣ Compared to cuDNN 8.1.0, there is a known regression in performance of the runtime
fusion engine for convolution fused with ReLU in the epilog. This is caused due to the
generalized support for parameterized ReLU. Further optimizations are being worked
on.

‣ The numeric behavior of INT8 operations including saturation behavior, accumulator
data types, and so on, have not been documented as of yet. This is being worked on
and will be resolved in a future release.

‣ It is possible, starting in cuDNN v7.6, to leak memory when computing common
convolution operations in rare cases.

‣ There is a known 15% performance regression for inference on the PyTorch
WaveGlow model on the NVIDIA Turing architecture.

‣ There is a known 25% performance regression for inference on the PyTorch SSD
model on the NVIDIA Turing architecture.

‣ There is a known 18% performance regression for inference on the PyTorch
ResNet-50 v1.5 model on the NVIDIA Turing architecture.

‣ The documentation for cudnnReorderFilterAndBias() needs some corrections for
clarity. This will be fixed in a future release.

‣ Compared to cuDNN 8.0.5, there is a known ~17% performance regression on SSD
models running on V100.

Limitations

‣ The runtime fusion engine is only supported in the cuDNN build based on
CUDA Toolkit 11.2 update 1 or later; it also requires the NVRTC from CUDA
11.2 update 1 or later. If this condition is not satisfied, the error status of

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 131

CUDNN_STATUS_NOT_SUPPORTED or CUDNN_STATUS_RUNTIME_PREREQUISITE_MISSING will
be returned.

‣ Samples can crash unless they are installed in a writable location.

‣ RNN and multihead attention API calls may exhibit non-deterministic behavior when
the cuDNN library is built with CUDA Toolkit 10.2 or higher. This is the result of a new
buffer management and heuristics in the cuBLAS library. As described in Results
Reproducibility, numerical results may not be deterministic when cuBLAS APIs are
launched in more than one CUDA stream using the same cuBLAS handle. This is
caused by two buffer sizes (16 KB and 4 MB) used in the default configuration.

When a larger buffer size is not available at runtime, instead of waiting for a buffer
of that size to be released, a smaller buffer may be used with a different GPU kernel.
The kernel selection may affect numerical results. The user can eliminate the non-
deterministic behavior of cuDNN RNN and multihead attention APIs, by setting
a single buffer size in the CUBLAS_WORKSPACE_CONFIG environmental variable, for
example, :16:8 or :4096:2.

The first configuration instructs cuBLAS to allocate eight buffers of 16 KB each in
GPU memory while the second setting creates two buffers of 4 MB each. The default
buffer configuration in cuBLAS 10.2 and 11.0 is :16:8:4096:2, that is, we have two
buffer sizes. In earlier cuBLAS libraries, such as cuBLAS 10.0, it used the :16:8 non-
adjustable configuration. When buffers of only one size are available, the behavior of
cuBLAS calls is deterministic in multi-stream setups.

‣ The tensor pointers and the filter pointers require at a minimum 4-byte alignment,
including INT8 data in the cuDNN library.

‣ Some computational options in cuDNN require increased alignment on tensors in
order to run efficiently. As always, cuDNN recommends users to align tensors to
16 byte boundaries that will be sufficiently aligned for any computational option
in cuDNN. Doing otherwise may cause performance regressions in cuDNN 8.0.x
compared to cuDNN v7.6.

‣ For certain algorithms, when the computation is in float (32-bit float) and the output
is in FP16 (half float), there are cases where the numerical accuracy between the
different algorithms might differ. cuDNN 8.0.x users can target the backend API to
query the numerical notes of the algorithms to get the information programmatically.
There are cases where algo0 and algo1 will have a reduced precision accumulation
when users target the legacy API. In all cases, these numerical differences are not
known to affect training accuracy even though they might show up in unit tests.

‣ For the _ALGO_0 algorithm of convolution backward data and backward filter, grouped
convolution with groups larger than 1 and with odd product of dimensions C, D (if 3D
convolution), H, and W is not supported on devices older than NVIDIA Volta. To prevent
a potential illegal memory access by an instruction that only has a 16-bit version in
NVIDIA Volta and later, pad at least one of the dimensions to an even value.

https://docs.nvidia.com/cuda/cublas/index.html#cublasXtApi_reproducibility
https://docs.nvidia.com/cuda/cublas/index.html#cublasXtApi_reproducibility

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 132

‣ On K80 GPUs, when cudnnConvolutionForward() is used with
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM algorithm and half I/O data
types a silent error might occur when the output width Q is 1 and both height and
width padding are zero.

‣ Several cuDNN APIs are unable to directly support computations using integer types
(CUDNN_DATA_INT8, CUDNN_DATA_INT8x4, CUDNN_DATA_INT8x32 or CUDNN_DATA_INT32).
Floating types (particularly CUDNN_DATA_FLOAT) are much more widely supported. If
an API does not support the desired type, cudnnTransformTensor() can be used to
support the use case by converting to/from a supported type and the desired type.
Here are the steps for doing so:

 1. Convert all input tensors from their native type to a supported type
(CUDNN_DATA_FLOAT is recommended).

 2. Run cuDNN API using the converted input tensors and output tensor descriptors
set as CUDNN_DATA_FLOAT.

 3. Convert all output tensors from a supported type to your desired output type.

Note: This will require extra memory use for the temporary buffers. Further, this
will introduce an additional round trip to memory that might noticeably impact
performance.

‣ In INT8x32 Tensor Core cases, the parameters supported by cuDNN v7.6 are limited
to W >= (R-1) * dilationW && H >= (S-1) * dilationH, whereas, in cuDNN
v8.0.x, W == (R-1) * dilationW || H == (S-1) * dilationH cases are no longer
supported.

‣ In prior versions of cuDNN, some convolution algorithms can use texture-based
load structure for performance improvements particularly in older hardware
architectures. Users can opt out of using texture using the environmental variable
CUDNN_TEXOFF_DBG. In cuDNN 8.x, this variable is removed. Texture loading is turned
off by default. Users who want to continue to use texture-based load, can adapt the
new backend API, and toggle the engine knob CUDNN_KNOB_TYPE_USE_TEX to 1 for
engines that support texture-based load instructions.

‣ In the backend API, convolution forward engine with
CUDNN_ATTR_ENGINE_GLOBAL_INDEX=1 is not supported when the product (channels
* height * width) of the input image exceeds 536,870,912 that is 2^29.

‣ cudnnSpatialTfSamplerBackward() returns CUDNN_STATUS_NOT_SUPPORT when the
number of channels exceeds 1024.

‣ When using graph-capture, users should call the sub library version check API (for
example, cudnnOpsInferVersionCheck()) to load the kernels in the sub library before
opening graph capture.

‣ Starting in cuDNN version 8.1.0, we are no longer shipping the libfreeimg static
library with the MNIST sample. Users can follow the instructions in the readme.txt
file to download and compile the library separately and link with the MNIST sample.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionForward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnTransformTensor
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnSpatialTfSamplerBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnOpsInferVersionCheck

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 133

‣ For pre-Volta devices, users should align all buffers to at least 4 bytes; this applies to
half-precision data as well.

1.20. cuDNN Release 8.1.1
This is the cuDNN 8.1.1 release notes. This release includes fixes from the previous
cuDNN v8.0.x releases as well as the following additional changes. These release notes
are applicable to both cuDNN and NVIDIA JetPack users of cuDNN unless appended
specifically with (not applicable for Jetson platforms).

For previous cuDNN documentation, refer to the NVIDIA cuDNN Archives.

Key Features and Enhancements

The following features and enhancements have been added to this release:

‣ The runtime fusion engine now supports the canonical NCHW/KCRS/NKPQ format for
describing a tensor, in addition to the version 8 format that has the explicit group
dimension NGCHW/GKCRS/NGKPQ that is already supported.

‣ The runtime fusion engine now supports NVIDIA Ampere Architecture cards with
compute capability 86 (that is, GA10x) in addition to compute capability 80 (GA100)
and compute capability 75 (Tu10x).

‣ The runtime fusion engine fully supports fusing configurable ReLU (a generalization
of ReLU, clipped ReLU, and leaky ReLU), Tanh, Sigmoid, configurable EluGelu,
configurable Softplus, and configurable Swish forward and backward activations
into the epilog of a convolution forward, a convolution backward data, or a matrix
multiplication operation.

‣ The runtime fusion engine now fully supports [N, H, W, C] to [1, 1, 1, C]
reduction and [N, H, W, C] to [N, H, W, 1] reduction on the output of a
convolution forward, a convolution backward data operation, and [1, M, N] to [1,
M, 1] and [1, M, N] to [1, 1, N] reduction in matrix multiplication operations.
For convolution backward filter operation, [N, H, W, C] to [1, H, W, C] reduction
and [N, H, W, C] to> [N, 1, 1, 1]reduction are supported. The supported
reduction operators are CUDNN_REDUCE_TENSOR_ADD, CUDNN_REDUCE_TENSOR_MIN, and
CUDNN_REDUCE_TENSOR_MAX.

‣ API logging in cudnnBackendExecute() has been greatly improved to print out the
internal information in descriptors like operation graphs, engines, and execution
plans.

Compatibility

For the latest compatibility software versions of the OS, CUDA, the CUDA driver, and the
NVIDIA hardware, refer to the NVIDIA cuDNN Support Matrix.

https://docs.nvidia.com/deeplearning/sdk/cudnn-archived/index.html
https://docs.nvidia.com/deeplearning/sdk/cudnn-support-matrix/index.html#cudnn-cuda-hardware-versions

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 134

Fixed Issues

The following issues have been fixed in this release:

‣ In some cases, cudnnConvolutionBackwardData(), on the NVIDIA Turing and NVIDIA
Volta architectures performs operations on the GPU resulting in illegal memory
access. This issue was fixed in version 8.0 and subsequent releases.

‣ When running a convolution forward, convolution backward data/weights, or a matrix
multiplication fusion with pointwise and reduction operations with engine index
0, the runtime fusion engine used to be allowed to run on the CUDA Toolkit 10.2.
However, not all the features it relies upon are supported in the CUDA Toolkit 10.2.
For better stability and targeted optimizations, the engine now requires CUDA Toolkit
11.2 update 1. We have blocked the engine from running in cuDNN built against
CUDA Toolkit 10.2. See the Limitations section for more details.

‣ The supported check in the runtime fusion engine has been improved to return
proper error codes in currently unsupported operation graphs, such as:

‣ an operation graph that contains more than one convolution of matrix
multiplication operations

‣ convolutions with compute type that is not FP32

‣ grouped convolutions

‣ when the convolution mode is not CUDNN_CROSS_CORRELATION

‣ When running a convolution backward data/weights fusion with pointwise and
reduction operations with engine index 0, the runtime fusion engine may be
launching kernel with more shared memory specified than necessary, causing sub-
optimal performance. This issue has been fixed in this release.

‣ Execution of a plan for convolution forward operation graph, with engine-global
index 1 returned CUDNN_STATUS_INTERNAL_ERROR when the filter format is NHWC and
padding was larger than zero. This issue has been fixed in this release.

‣ Compared to cuDNN version 8.0.5, there was a known performance regression of
10-50% on Tacotron2 and WaveGlow models. This issue has been fixed in this release.

‣ cudnnConvolutionBiasActivationForward() does not invoke TF32 Tensor
Core kernels when the math type in the convolution descriptor is set to
CUDNN_DEFAULT_MATH. This leads to suboptimal performance under this math mode.
This issue has been fixed in this release.

‣ Fixed an issue where the version 8 graph API’s execution plan descriptor may
internally refer to a descriptor outside of the data structure, which can cause
unexpected errors when the external descriptors have been destroyed. Now all the
information is recorded within the data structure.

‣ There was a performance regression where NHWC was slower than NCHW on 3D
convolution up to 40% on V100 and NVIDIA A100 GPUs. This issue has been fixed in
this release.

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 135

‣ There was a performance regression in certain use cases comparing NVIDIA RTX
3090 using cuDNN version 8.x to NVIDIA RTX 2080 Ti using cuDNN version 7.x. This
regression has been fixed in this release.

‣ Compared to cuDNN version 7.6, there were known performance regressions up to 2x
on select configurations for AlexNet-like models on NVIDIA Volta and NVIDIA Ampere
Architecture GPUs. These regressions has been fixed in this release.

‣ When calling:

‣ cudnnRNNForwardInference()

‣ cudnnRNNForwardInferenceEx()

‣ cudnnRNNForwardTraining()

‣ cudnnRNNForwardTrainingEx()

‣ cudnnRNNBackwardData()

‣ cudnnRNNBackwardDataEx()

the API will crash when called with CUDNN_RNN_ALGO_PERSIST_DYNAMIC algo but the
cudnnPersistentRNNPlan_t was not created. This has been fixed in this release.

Known Issues

‣ Users of the static library requiring best possible convolution performance should
use whole-archive linking. This will come at a cost to binary size that will require
resolution in future releases, either through static sub libraries or relaxing the whole-
archive linkage requirement altogether.

‣ The ResNet-50 native FP32 inference issues have been fixed on NVIDIA Volta and
NVIDIA Turing. Few performance regressions exist in the NVIDIA Ampere Architecture
GPUs.

‣ Compared to version 8.0.5, legacy convolution APIs have increased CPU
computational costs. On x86, this has been measured to be as high as 10
microseconds.

‣ cudnnAddTensor() does not support all broadcast-able tensor shapes even though
the cuDNN documentation says otherwise.

‣ cudnnPoolingForward() with pooling mode CUDNN_POOLING_AVG
might output NaN for pixel in output tensor outside the value
recommended by cudnnGetPoolingNdForwardOutputDim() or
cudnnGetPooling2dForwardOutputDim().

‣ Compared to cuDNN 8.0.0 Preview, there is a known ~12% performance regression on
vgg16 when run on Jetson Nano and TX2.

‣ Compared to cuDNN 8.0.4, there is a known ~6% performance regression on ONNX-
WaveGlow when run on NVIDIA TITAN RTX.

‣ Compared to cuDNN 7.6, there is a significant performance regression on Darknet
when run on Jetson Nano.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnRNNForwardInference
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnRNNForwardInferenceEx
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnRNNForwardTraining
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnRNNForwardTrainingEx
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnRNNBackwardData
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnRNNBackwardDataEx
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnPersistentRNNPlan_t
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnAddTensor
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnPoolingForward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetPoolingNdForwardOutputDim
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetPooling2dForwardOutputDim

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 136

‣ For pre-Volta devices, users should align all buffers to at least 4 bytes; this applies to
half-precision data as well.

‣ Compared to cuDNN version 8.0.2, there is a known 3x performance regression for
a single cudnnConvolutionBackwardFilter() use case. We are not aware of any
popular model that uses this unique use case.

‣ Although the overall cuDNN library size has improved in cuDNN 8.1.0 with CUDA
Toolkit 11.2 and greater as compared to cuDNN 8.0.x, the cuDNN library remains
large; future releases will attempt to moderate the severity of this issue.

‣ CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT returns an internal error when the number
of channels in the filter is greater than or equal to 65536.

‣ Execution of a plan for convolution forward operation graph, with engine-global
index 1 returns CUDNN_STATUS_INTERNAL_ERROR when the filter format in NHWC and
padding is larger than zero.

‣ Convolutions (ConvolutionForward, ConvolutionBackwardData, and
ConvolutionBackwardFilter) may experience performance regressions when run
with math type CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION on CUDNN_DATA_FLOAT
data (input and output).

‣ Compared to cuDNN 7.6, there are known performance regressions up to 2x on
select configurations for AlexNet-like models on NVIDIA Turing GPUs.

‣ cudnnActivationForward() can cause an illegal memory access CUDA error for
tensors with more than 2**30 elements.

‣ L4T users of cuDNN may observe CUDNN_STATUS_EXECUTION_FAILED
errors in some cases when performing convolutions using
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM. This issue is being
investigated.

‣ Users of the static library requiring the best possible convolution performance
should use whole-archive linking. This will come at a cost to the binary size that will
require resolution in a future release, either through static sub libraries or relaxing the
whole-archive linkage requirement altogether.

‣ Compared to cuDNN 8.1.0, there are known performance regressions on certain
dgrad NHWC configurations from FastPitch and WaveGlow models on V100 and
NVIDIA A100 GPUs.

‣ Compared to cuDNN 7.6.5, there are known performance regressions on various
convolutional models using INT8 data types on NVIDIA Volta GPUs.

‣ Compared to cuDNN 8.1.0, there is a known regression in performance of the runtime
fusion engine for convolution fused with ReLU in the epilog. This is caused due to the
generalized support for parameterized ReLU. Further optimizations are being worked
on.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionBackwardFilter

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 137

Limitations

‣ The runtime fusion engine was only supported in the cuDNN build based on CUDA
Toolkit 11.2 update 1; it now requires the NVRTC from CUDA 11.2 update 1. If this
condition is not satisfied, the error status of CUDNN_STATUS_NOT_SUPPORTED or
CUDNN_STATUS_RUNTIME_PREREQUISITE_MISSING will be returned.

‣ Samples can crash unless they are installed in a writable location.

‣ RNN and multihead attention API calls may exhibit non-deterministic behavior when
the cuDNN library is built with CUDA Toolkit 10.2 or higher. This is the result of a new
buffer management and heuristics in the cuBLAS library. As described in Results
Reproducibility, numerical results may not be deterministic when cuBLAS APIs are
launched in more than one CUDA stream using the same cuBLAS handle. This is
caused by two buffer sizes (16 KB and 4 MB) used in the default configuration.

When a larger buffer size is not available at runtime, instead of waiting for a buffer
of that size to be released, a smaller buffer may be used with a different GPU kernel.
The kernel selection may affect numerical results. The user can eliminate the non-
deterministic behavior of cuDNN RNN and multihead attention APIs, by setting
a single buffer size in the CUBLAS_WORKSPACE_CONFIG environmental variable, for
example, :16:8 or :4096:2.

The first configuration instructs cuBLAS to allocate eight buffers of 16 KB each in
GPU memory while the second setting creates two buffers of 4 MB each. The default
buffer configuration in cuBLAS 10.2 and 11.0 is :16:8:4096:2, that is, we have two
buffer sizes. In earlier cuBLAS libraries, such as cuBLAS 10.0, it used the :16:8 non-
adjustable configuration. When buffers of only one size are available, the behavior of
cuBLAS calls is deterministic in multi-stream setups.

‣ The tensor pointers and the filter pointers require at a minimum 4-byte alignment,
including INT8 data in the cuDNN library.

‣ Some computational options in cuDNN require increased alignment on tensors in
order to run efficiently. As always, cuDNN recommends users to align tensors to
16 byte boundaries that will be sufficiently aligned for any computational option
in cuDNN. Doing otherwise may cause performance regressions in cuDNN 8.0.x
compared to cuDNN v7.6.

‣ For certain algorithms, when the computation is in float (32-bit float) and the output
is in FP16 (half float), there are cases where the numerical accuracy between the
different algorithms might differ. cuDNN 8.0.x users can target the backend API to
query the numerical notes of the algorithms to get the information programmatically.
There are cases where algo0 and algo1 will have a reduced precision accumulation
when users target the legacy API. In all cases, these numerical differences are not
known to affect training accuracy even though they might show up in unit tests.

‣ For the _ALGO_0 algorithm of convolution backward data and backward filter, grouped
convolution with groups larger than 1 and with odd product of dimensions C, D (if 3D

https://docs.nvidia.com/cuda/cublas/index.html#cublasXtApi_reproducibility
https://docs.nvidia.com/cuda/cublas/index.html#cublasXtApi_reproducibility

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 138

convolution), H, and W is not supported on devices older than NVIDIA Volta. To prevent
a potential illegal memory access by an instruction that only has a 16-bit version in
NVIDIA Volta and later, pad at least one of the dimensions to an even value.

‣ On K80 GPUs when cudnnConvolutionForward() is used with
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM algorithm and half I/O data
types a silent error might occur when the output width Q is 1 and both height and
width padding are zero.

‣ Several cuDNN APIs are unable to directly support computations using integer types
(CUDNN_DATA_INT8, CUDNN_DATA_INT8x4, CUDNN_DATA_INT8x32 or CUDNN_DATA_INT32).
Floating types (particularly CUDNN_DATA_FLOAT) are much more widely supported. If
an API does not support the desired type, cudnnTransformTensor() can be used to
support the use case by converting to/from a supported type and the desired type.
Here are the steps for doing so:

 1. Convert all input tensors from their native type to a supported type
(CUDNN_DATA_FLOAT is recommended).

 2. Run cuDNN API using the converted input tensors and output tensor descriptors
set as CUDNN_DATA_FLOAT.

 3. Convert all output tensors from a supported type to your desired output type.

Note: This will require extra memory use for the temporary buffers. Further, this
will introduce an additional round trip to memory that might noticeably impact
performance.

‣ In INT8x32 Tensor Core cases, the parameters supported by cuDNN v7.6 are limited
to W >= (R-1) * dilationW && H >= (S-1) * dilationH, whereas, in cuDNN
v8.0.x, W == (R-1) * dilationW || H == (S-1) * dilationH cases are no longer
supported.

‣ In prior versions of cuDNN, some convolution algorithms can use texture-based
load structure for performance improvements particularly in older hardware
architectures. Users can opt out of using texture using the environmental variable
CUDNN_TEXOFF_DBG. In cuDNN 8.x, this variable is removed. Texture loading is turned
off by default. Users who want to continue to use texture-based load, can adapt the
new backend API, and toggle the engine knob CUDNN_KNOB_TYPE_USE_TEX to 1 for
engines that support texture-based load instructions.

‣ In the backend API, convolution forward engine with
CUDNN_ATTR_ENGINE_GLOBAL_INDEX=1 is not supported when the product (channels
* height * width) of the input image exceeds 536,870,912 that is 2^29.

‣ cudnnSpatialTfSamplerBackward() returns CUDNN_STATUS_NOT_SUPPORT when the
number of channels exceeds 1024.

‣ When using graph-capture, users should call the sub library version check API (for
example, cudnnOpsInferVersionCheck()) to load the kernels in the sub library before
opening graph capture.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionForward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnTransformTensor
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnSpatialTfSamplerBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnOpsInferVersionCheck

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 139

‣ Starting in cuDNN version 8.1.0, we are no longer shipping the libfreeimg static
library with the MNIST sample. Users can follow the instructions in the readme.txt
file to download and compile the library separately and link with the MNIST sample.

1.21. cuDNN Release 8.1.0
This is the cuDNN 8.1.0 release notes. This release includes fixes from the previous
cuDNN v8.0.x releases as well as the following additional changes. These release notes
are applicable to both cuDNN and NVIDIA JetPack users of cuDNN unless appended
specifically with (not applicable for Jetson platforms).

For previous cuDNN documentation, refer to the NVIDIA cuDNN Archives.

Key Features and Enhancements

The following features and enhancements have been added to this release:

‣ A preview of the cuDNN runtime operation fusion capabilities is included in this
release. This feature is exposed as a new backend engine in the version 8.0 graph
API. With runtime op fusion, the engine can generate and compile fused tensor-
core kernels on the fly for the specified operation graph during the execution plan
finalization stage. Some of the operation graph patterns supported in this preview
are: convolution or matrix multiplication operation with arbitrary combination of
one or more pointwise operations, and reduction operations fused onto the output
tensor. Examples include but are not limited to conv-bias-leaky_relu, and gemm-
bias-gelu. This feature is supported on GPUs with compute capability 7.5 and 8.0.
The current implementation supports FP16 I/O with FP32 compute or FP32 (TF32)
I/O with FP32 compute. In this release, the support for this feature is restricted
to Linux on x86-64. We will continue to work on this feature to provide additional
support and improved performance. In the meantime, we welcome your feedback. E-
mail:cudnn@nvidia.com

‣ We have released our C++ frontend via GitHub which implements a series of classes
wrapping around the v8 backend C API. The user must include a few headers to
enjoy the convenience from graph construction, heuristics query to execution. The
frontend also implements a significantly improved autotuning feature that can
accurately time the executions from a list of functionally equivalent implementations
and return the fastest implementation.

‣ Heuristics have been improved for TF32 and PSEUDO_HALF (with Tensor Core enabled)
convolutions. On one known model, performance was improved 1.3x (when not auto-
tuning). On select cases in several models, we have seen performance improvements
up to ~50x.

‣ Added support for PSEUDO_BFLOAT16_CONFIG on NVIDIA Ampere Architecture GPU
for CNNs. While most of the algos/engines that are available for PSEUDO_HALF_CONFIG
are available for PSEUDO_BFLOAT16_CONFIG, a few are not available. The available

https://docs.nvidia.com/deeplearning/sdk/cudnn-archived/index.html
mailto:cudnn@nvidia.com
https://github.com/NVIDIA/cudnn-frontend

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 140

engines for PSEUDO_BFLOAT16_CONFIG can achieve at least 90% performance of
PSEUDO_HALF_CONFIG for layers in standard models. There is a known limitation for
layers having three or four channels for the filter and convolution of stride 2, such as
the first layer of ResNet.

‣ EfficientNet performances have improved. Depthwise convolution is now optimized in
NHWC layout in cuDNN 8.1.0. From EfficientNet, we see an average of 2.9x speed-up
for 5x5 layers, and 1.7x speed-up for 3x3 layers.

‣ Added support for TF32 engines to compute operation graphs that match
the fused conv-bias-activation pattern. TF32 kernels are also supported in
cudnnConvolutionBiasActivationForward() API.

‣ Added support for a new RNN algo CUDNN_RNN_ALGO_PERSIST_STATIC_SMALL_H,
specialized for small hidden sizes. It is expected to be faster than other algos for
those small hidden sizes.

‣ The cuDNN build against CUDA Toolkit 11.2 is now backward compatible with earlier
CUDA 11 drivers, including 450, 455, in addition to the 460 driver.

Compatibility

For the latest compatibility software versions of the OS, CUDA, the CUDA driver, and the
NVIDIA hardware, refer to the NVIDIA cuDNN Support Matrix.

Fixed Issues

The following issues have been fixed in this release:

‣ Kernel calc_bias_diff_nhwc_packedhas a known functional issue from 8.0.2. It
happens when running cudnnConvolutionBackwardBias(bgrad) with NHWC/NDHWC
packed tensors and even C && (C >= 6). This issue was fixed in this release.

‣ Kernel convolve_common_engine_int8 may cause accuracy degradation when
running cudnnConvolutionBiasActivationForward() with INT8 in cuDNN version
8.0.5 because there was not a rounding when converting the results from single to
INT8. This issue was fixed in this release.

‣ On some NVIDIA Turing GPUs, when users are running persistent RNN with
hiddenSize greater than or equal to 768 but less than 1024, users may get incorrect
results and refer to CUDA error 719, cudaErrorLaunchFailure the next time they call
cudaDeviceSynchronize(). This bug has been fixed in this release.

‣ Calling cudnnConvolutionBiasActivationForward() or executing a cuDNN backend
plan for fused convolution-bias-activation operation graphs, can lead to a memory
leak. This issue is fixed in the current release.

‣ On Windows, calling API cudnnGetFoldedConvBackwardDataDescriptors() results
in failure to find symbols. This issue has been present in all versions since cuDNN
version 8.0.0 and is fixed in this release.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionBiasActivationForward
https://docs.nvidia.com/deeplearning/sdk/cudnn-support-matrix/index.html#cudnn-cuda-hardware-versions
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionBiasActivationForward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionBiasActivationForward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetFoldedConvBackwardDataDescriptors

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 141

‣ The backend convolution operation had external dependencies on the user created
backend tensor descriptors even after finalization. Deletion of the tensor descriptors
might cause the operation to seg-fault when constructing the operation graph. This
bug affects all versions since cuDNN version 8.0.0, and has been fixed in 8.1.0.

‣ Many convolution models were experiencing lower performance on NVIDIA RTX 3090
compared to 2080 Ti. This included ResNet-50 with up to 2x performance difference,
ResNeXt up to 10x performance difference and U-Net up to 3x performance
difference. The performance issues have been fixed in this release.

Known Issues

‣ Users of the static library requiring best possible convolution performance should
use whole-archive linking. This will come at a cost to binary size that will require
resolution in future releases, either through static sub libraries or relaxing the whole-
archive linkage requirement altogether.

‣ The ResNet-50 native FP32 inference issues have been fixed on NVIDIA Volta and
NVIDIA Turing. Few performance regressions exist in the NVIDIA Ampere Architecture
GPU.

‣ Compared to version 8.0.5, legacy convolution APIs have increased CPU
computational costs. On x86, this has been measured to be as high as 10
microseconds.

‣ cudnnAddTensor() does not support all broadcast-able tensor shapes even though
the cuDNN documentation says otherwise.

‣ Users have reported that in RNN training with non-zero dropout rate, and if the RNN
network is unidirectional, the output of cudnnRNNBackwardWeights() may be non-
deterministic. We are still investigating this issue.

‣ cudnnPoolingForward() with pooling mode CUDNN_POOLING_AVG
might output NaN for pixel in output tensor outside the value
recommended by cudnnGetPoolingNdForwardOutputDim() or
cudnnGetPooling2dForwardOutputDim().

‣ Compared to cuDNN 8.0.0 Preview, there is a known ~12% performance regression on
vgg16 when run on Nano and TX2.

‣ Compared to cuDNN 8.0.4, there is a known ~6% performance regression on ONNX-
WaveGlow when run on NVIDIA TITAN RTX.

‣ Compared to cuDNN 7.6, there is a significant performance regression on Darknet
when run on Nano.

‣ For pre-Volta devices, users should align all buffers to at least 4 bytes; this applies to
half-precision data as well.

‣ Compared to cuDNN version 8.0.2, there is a known 3x performance regression for
a single cudnnConvolutionBackwardFilter() use case. We are not aware of any
popular model that uses this unique use case.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnAddTensor
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnRNNBackwardWeights
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnPoolingForward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetPoolingNdForwardOutputDim
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetPooling2dForwardOutputDim
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionBackwardFilter

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 142

‣ Although the overall cuDNN library size has improved in cuDNN 8.1.0 with CUDA
Toolkit 11.2 and greater as compared to cuDNN 8.0.x, the cuDNN library remains
large; future releases will attempt to moderate the severity of this issue.

‣ CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT returns an internal error when the number
of channels in the filter is greater than or equal to 65536.

‣ Execution of a plan for convolution forward operation graph, with engine-global
index 1 returns CUDNN_STATUS_INTERNAL_ERROR when the filter format in NHWC and
padding is larger than zero.

‣ Convolutions (ConvolutionForward, ConvolutionBackwardData, and
ConvolutionBackwardFilter) may experience performance regressions when run
with math type CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION on CUDNN_DATA_FLOAT
data (input and output).

‣ Compared to cuDNN 7.6, there are known performance regressions up to 2x on
select configurations for AlexNet-like models on NVIDIA Turing, NVIDIA Volta, and
NVIDIA Ampere Architecture GPUs.

Limitations

‣ Samples can crash unless they are installed in a writable location.

‣ RNN and multihead attention API calls may exhibit non-deterministic behavior when
the cuDNN library is built with CUDA Toolkit 10.2 or higher. This is the result of a new
buffer management and heuristics in the cuBLAS library. As described in Results
Reproducibility, numerical results may not be deterministic when cuBLAS APIs are
launched in more than one CUDA stream using the same cuBLAS handle. This is
caused by two buffer sizes (16 KB and 4 MB) used in the default configuration.

When a larger buffer size is not available at runtime, instead of waiting for a buffer
of that size to be released, a smaller buffer may be used with a different GPU kernel.
The kernel selection may affect numerical results. The user can eliminate the non-
deterministic behavior of cuDNN RNN and multihead attention APIs, by setting
a single buffer size in the CUBLAS_WORKSPACE_CONFIG environmental variable, for
example, :16:8 or :4096:2.

The first configuration instructs cuBLAS to allocate eight buffers of 16 KB each in
GPU memory while the second setting creates two buffers of 4 MB each. The default
buffer configuration in cuBLAS 10.2 and 11.0 is :16:8:4096:2, that is, we have two
buffer sizes. In earlier cuBLAS libraries, such as cuBLAS 10.0, it used the :16:8 non-
adjustable configuration. When buffers of only one size are available, the behavior of
cuBLAS calls is deterministic in multistream setups.

‣ The tensor pointers and the filter pointers require at a minimum 4-byte alignment,
including INT8 data in the cuDNN library.

‣ Some computational options in cuDNN require increased alignment on tensors in
order to run efficiently. As always, cuDNN recommends users to align tensors to
16 byte boundaries that will be sufficiently aligned for any computational option

https://docs.nvidia.com/cuda/cublas/index.html#cublasXtApi_reproducibility
https://docs.nvidia.com/cuda/cublas/index.html#cublasXtApi_reproducibility

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 143

in cuDNN. Doing otherwise may cause performance regressions in cuDNN 8.0.x
compared to cuDNN v7.6.

‣ For certain algorithms, when the computation is in float (32-bit float) and the output
is in FP16 (half float), there are cases where the numerical accuracy between the
different algorithms might differ. cuDNN 8.0.x users can target the backend API to
query the numerical notes of the algorithms to get the information programmatically.
There are cases where algo0 and algo1 will have a reduced precision accumulation
when users target the legacy API. In all cases, these numerical differences are not
known to affect training accuracy even though they might show up in unit tests.

‣ For the _ALGO_0 algorithm of convolution backward data and backward filter, grouped
convolution with groups larger than 1 and with odd product of dimensions C, D (if 3D
convolution), H, and W is not supported on devices older than NVIDIA Volta. To prevent
a potential illegal memory access by an instruction that only has a 16-bit version in
NVIDIA Volta and later, pad at least one of the dimensions to an even value.

‣ On K80 GPUs, when cudnnConvolutionForward() is used with
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM algorithm and half I/O data
types a silent error might occur when the output width Q is 1 and both height and
width padding are zero.

‣ Several cuDNN APIs are unable to directly support computations using integer types
(CUDNN_DATA_INT8, CUDNN_DATA_INT8x4, CUDNN_DATA_INT8x32 or CUDNN_DATA_INT32).
Floating types (particularly CUDNN_DATA_FLOAT) are much more widely supported. If
an API does not support the desired type, cudnnTransformTensor() can be used to
support the use case by converting to/from a supported type and the desired type.
Here are the steps for doing so:

 1. Convert all input tensors from their native type to a supported type
(CUDNN_DATA_FLOAT is recommended).

 2. Run cuDNN API using the converted input tensors and output tensor descriptors
set as CUDNN_DATA_FLOAT.

 3. Convert all output tensors from a supported type to your desired output type.

Note: This will require extra memory use for the temporary buffers. Further, this
will introduce an additional round trip to memory that might noticeably impact
performance.

‣ In INT8x32 Tensor Core cases, the parameters supported by cuDNN v7.6 are limited
to W >= (R-1) * dilationW && H >= (S-1) * dilationH, whereas, in cuDNN
v8.0.x, W == (R-1) * dilationW || H == (S-1) * dilationH cases are no longer
supported.

‣ In prior versions of cuDNN, some convolution algorithms can use texture-based
load structure for performance improvements particularly in older hardware
architectures. Users can opt out of using texture using the environmental variable
CUDNN_TEXOFF_DBG. In cuDNN 8.x, this variable is removed. Texture loading is turned

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionForward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnTransformTensor

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 144

off by default. Users who want to continue to use texture-based load, can adapt the
new backend API, and toggle the engine knob CUDNN_KNOB_TYPE_USE_TEX to 1 for
engines that support texture-based load instructions.

‣ In the backend API, convolution forward engine with
CUDNN_ATTR_ENGINE_GLOBAL_INDEX=1 is not supported when the product (channels
* height * width) of the input image exceeds 536,870,912 that is 2^29.

‣ cudnnSpatialTfSamplerBackward() returns CUDNN_STATUS_NOT_SUPPORT when the
number of channels exceeds 1024.

‣ When using graph-capture, users should call the sub library version check API (for
example, cudnnOpsInferVersionCheck()) to load the kernels in the sub library before
opening graph capture.

‣ Starting in cuDNN version 8.1.0, we are no longer shipping the libfreeimg static
library with the MNIST sample. Users can follow the instructions in the readme.txt
file to download and compile the library separately and link with the MNIST sample.

1.22. cuDNN Release 8.0.5
This is the cuDNN 8.0.5 release notes. This release includes fixes from the previous
cuDNN v8.0.x releases as well as the following additional changes. These release notes
are applicable to both cuDNN and NVIDIA JetPack users of cuDNN unless appended
specifically with (not applicable for Jetson platforms).

For previous cuDNN documentation, refer to the NVIDIA cuDNN Archives.

Key Features and Enhancements

The following features and enhancements have been added to this release:

‣ RNN now supports zero-length sequences within the batch when the
RNN data layout is CUDNN_RNN_DATA_LAYOUT_SEQ_MAJOR_UNPACKED or
CUDNN_RNN_DATA_LAYOUT_BATCH_MAJOR_UNPACKED. For more information, see
cudnnSetRNNDataDescriptor().

‣ Users can now set the environment variable CUDNN_CONV_WSCAP_DBG
to a value in MiB to limit the workspace size returned
by cudnnConvolutionForwardGetWorkspaceSize(),
cudnnConvolutionBackwardDataGetWorkspaceSize(), and
cudnnConvolutionBackwardFilterGetWorkspaceSize(). Limiting the workspace
might result in performance lost.

‣ Significant performance improvements were made for NVIDIA RTX 3090 for many
models on many configurations.

‣ Performance improvements were made:

‣ For EfficientNet, when run using NHWC FP16 Tenor Core configurations on V100
and A100 GPU architectures.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnSpatialTfSamplerBackward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnOpsInferVersionCheck
https://docs.nvidia.com/deeplearning/sdk/cudnn-archived/index.html
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnSetRNNDataDescriptor
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionForwardGetWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionBackwardDataGetWorkspaceSize
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionBackwardFilterGetWorkspaceSize

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 145

‣ For PilotNet, AH-Net, MobileNet V3 on V100 and A100 GPU architectures.

‣ For various 3D convolution cases on NVIDIA RTX 8000.

‣ Support for the 3D NDHWC layout was added in cudnnConvolutionBackwardFilter().

‣ Added instructions for installing cuDNN using the Package Manager for Linux and
RHEL users. For step-by-step instructions, refer to the Package Manager Installation.

Compatibility

For the latest compatibility software versions of the OS, CUDA, the CUDA driver, and the
NVIDIA hardware, refer to the NVIDIA cuDNN Support Matrix.

Fixed Issues

The following issues have been fixed in this release:

‣ cudnnBackendFinalize(descriptor), where descriptor
is of type CUDNN_BACKEND_ENGINE_DESCRIPTOR() or
CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR(), might result in a hang if the
operation graph has backward filter operation and the user links against libcudnn.so
(cudnn64.dll on Windows). This issue has been fixed in this release.

‣ Call to cudnnConvolutionBiasActivationForward() might result in a memory leak in
release 8.0.1. This issue has been fixed.

‣ Performance regression on the U-Net Industrial network on NVIDIA Volta for certain
batch sizes has been fixed.

‣ cudnnRNN*() with LSTM mode may produce incorrect results on the cy outputs when
clipping is enabled on all GPUs. This issue also exists in previous cuDNN releases
since version 7.2.1. This issue has been fixed in this release.

‣ cudnnRNNForward* with LSTM mode may produce incorrect results in case of clipping
when CUDNN_RNN_ALGO_PERSIST_STATIC is used. This issue also exists in previous
cuDNN releases since version 7.2.1. This issue has been fixed in this release.

‣ In previous cuDNN versions, cudnnRNNBackwardData() or
cudnnRNNBackwardDataEx()may produce non-deterministic outputs when running
configurations such as hiddenSize=128 or less, LSTM cell type, and FP32 with
CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION. This issue has been fixed in this release.

‣ Compared to cuDNN 7.6, there was a known ~6% performance regression on
Inception V3 and ResNet-50 models when run using NHWC FP16 configurations on
various NVIDIA Turing and NVIDIA TITAN V architectures. This issue has been fixed in
this release.

‣ Compared to cuDNN v8.0.3, there was a known ~18% performance regression on the
U-Net Industrial model when run using NCHW TF32 configurations on V100 and A100
GPU architectures. This issue has been fixed in this release.

‣ Updated: November 25, 2020

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionBackwardFilter
https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html#cudnn-package-manager-installation-overview
https://docs.nvidia.com/deeplearning/sdk/cudnn-support-matrix/index.html#cudnn-cuda-hardware-versions

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 146

When calling cudnnConvolutionBiasActivationForward() with INT8x4 or INT8x32
I/O tensors, it could result in CUDNN_STATUS_BAD_PARAM in 8.0.4. This issue has been
fixed in this release.

Known Issues

‣ When using cudnnRNN* APIs with the problem sizes (input size, hidden size) not
being multiples of 16 for FP16 tensors or multiples of 8 for FP32 tensors, users
encountered a return status of CUDNN_STATUS_EXECUTION_FAILED in cudnn built
against CUDA 11.0. This issue has been fixed with cuDNN built against CUDA 11.1.

‣ The ResNet-50 native FP32 inference issues have been fixed on NVIDIA Volta and
NVIDIA Turing. Few performance regressions exist in the NVIDIA Ampere Architecture
GPU.

‣ cudnnAddTensor() does not support all broadcast-able tensor shapes even though
the cuDNN documentation says otherwise.

‣ Users have reported that in RNN training with non-zero dropout rate, and if the RNN
network is unidirectional, the output of cudnnRNNBackwardWeights() may be non-
deterministic. We are still investigating this issue.

‣ cudnnPoolingForward() with pooling mode CUDNN_POOLING_AVG
might output NaN for pixel in output tensor outside the value
recommended by cudnnGetPoolingNdForwardOutputDim() or
cudnnGetPooling2dForwardOutputDim().

‣ Compared to cuDNN 8.0.0 Preview, there is a known ~12% performance regression on
vgg16 when run on Nano and TX2.

‣ Compared to cuDNN 8.0.4, there is a known ~6% performance regression on ONNX-
WaveGlow when run on NVIDIA TITAN RTX.

‣ Compared to cuDNN 7.6, there is a significant performance regression on Darknet
when run on Nano.

Limitations

‣ Samples can crash unless they are installed in a writable location.

‣ RNN and multihead attention API calls may exhibit non-deterministic behavior when
the cuDNN library is built with CUDA Toolkit 10.2 or higher. This is the result of a new
buffer management and heuristics in the cuBLAS library. As described in Results
Reproducibility, numerical results may not be deterministic when cuBLAS APIs are
launched in more than one CUDA stream using the same cuBLAS handle. This is
caused by two buffer sizes (16 KB and 4 MB) used in the default configuration.

When a larger buffer size is not available at runtime, instead of waiting for a buffer
of that size to be released, a smaller buffer may be used with a different GPU kernel.
The kernel selection may affect numerical results. The user can eliminate the non-
deterministic behavior of cuDNN RNN and multihead attention APIs, by setting

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnAddTensor
https://docs.nvidia.com/cuda/cublas/index.html#cublasXtApi_reproducibility
https://docs.nvidia.com/cuda/cublas/index.html#cublasXtApi_reproducibility

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 147

a single buffer size in the CUBLAS_WORKSPACE_CONFIG environmental variable, for
example, :16:8 or :4096:2.

The first configuration instructs cuBLAS to allocate eight buffers of 16 KB each in
GPU memory while the second setting creates two buffers of 4 MB each. The default
buffer configuration in cuBLAS 10.2 and 11.0 is :16:8:4096:2, that is, we have two
buffer sizes. In earlier cuBLAS libraries, such as cuBLAS 10.0, it used the :16:8 non-
adjustable configuration. When buffers of only one size are available, the behavior of
cuBLAS calls is deterministic in multi-stream setups.

‣ The tensor pointers and the filter pointers require at a minimum 4-byte alignment,
including INT8 data in the cuDNN library.

‣ Some computational options in cuDNN require increased alignment on tensors in
order to run efficiently. As always, cuDNN recommends users to align tensors to
16 byte boundaries that will be sufficiently aligned for any computational option
in cuDNN. Doing otherwise may cause performance regressions in cuDNN 8.0.x
compared to cuDNN v7.6.

‣ For certain algorithms, when the computation is in float (32-bit float) and the output
is in FP16 (half float), there are cases where the numerical accuracy between the
different algorithms might differ. cuDNN 8.0.x users can target the backend API to
query the numerical notes of the algorithms to get the information programmatically.
There are cases where algo0 and algo1 will have a reduced precision accumulation
when users target the legacy API. In all cases, these numerical differences are not
known to affect training accuracy even though they might show up in unit tests.

‣ For the _ALGO_0 algorithm of convolution backward data and backward filter, grouped
convolution with groups larger than 1 and with odd product of dimensions C, D (if 3D
convolution), H, and W is not supported on devices older than NVIDIA Volta. To prevent
a potential illegal memory access by an instruction that only has a 16-bit version in
NVIDIA Volta and later, pad at least one of the dimensions to an even value.

‣ On K80 GPUs, when cudnnConvolutionForward() is used with
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM algorithm and half I/O data
types a silent error might occur when the output width Q is 1 and both height and
width padding are zero.

‣ Several cuDNN APIs are unable to directly support computations using integer types
(CUDNN_DATA_INT8, CUDNN_DATA_INT8x4, CUDNN_DATA_INT8x32 or CUDNN_DATA_INT32).
Floating types (particularly CUDNN_DATA_FLOAT) are much more widely supported. If
an API does not support the desired type, cudnnTransformTensor() can be used to
support the use case by converting to/from a supported type and the desired type.
Here are the steps for doing so:

 1. Convert all input tensors from their native type to a supported type
(CUDNN_DATA_FLOAT is recommended).

 2. Run cuDNN API using the converted input tensors and output tensor descriptors
set as CUDNN_DATA_FLOAT.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionForward

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 148

 3. Convert all output tensors from a supported type to your desired output type.

Note: This will require extra memory use for the temporary buffers. Further, this
will introduce an additional round trip to memory that might noticeably impact
performance.

‣ In INT8x32 Tensor Core cases, the parameters supported by cuDNN v7.6 are limited
to W >= (R-1) * dilationW && H >= (S-1) * dilationH, whereas, in cuDNN
v8.0.x, W == (R-1) * dilationW || H == (S-1) * dilationH cases are no longer
supported.

‣ In prior versions of cuDNN, some convolution algorithms can use texture-based
load structure for performance improvements particularly in older hardware
architectures. Users can opt out of using texture using the environmental variable
CUDNN_TEXOFF_DBG. In cuDNN 8.x, this variable is removed. Texture loading is turned
off by default. Users who want to continue to use texture-based load, can adapt the
new backend API, and toggle the engine knob CUDNN_KNOB_TYPE_USE_TEX to 1 for
engines that support texture-based load instructions.

‣ In the backend API, convolution forward engine with
CUDNN_ATTR_ENGINE_GLOBAL_INDEX=1 is not supported when the product (channels
* height * width) of the input image exceeds 536,870,912 that is 2^29.

‣ cudnnSpatialTfSamplerBackward() returns CUDNN_STATUS_NOT_SUPPORT when the
number of channels exceeds 1024.

‣ When using graph-capture, users should call the sub library version check API (for
example, cudnnOpsInferVersionChec()) to load the kernels in the sub library before
opening graph capture.

1.23. cuDNN Release 8.0.4
This is the cuDNN 8.0.4 release notes. This release includes fixes from the previous
cuDNN v8.0.x releases as well as the following additional changes. These release notes
are applicable to both cuDNN and NVIDIA JetPack users of cuDNN unless appended
specifically with (not applicable for Jetson platforms).

For previous cuDNN documentation, refer to the NVIDIA cuDNN Archives.

Key Features and Enhancements

The following features and enhancements have been added to this release:
GA102 support with improved convolution performance

Now includes convolution heuristics targeting the NVIDIA GA102 GPU. (not applicable
for Jetson platforms)

https://docs.nvidia.com/deeplearning/sdk/cudnn-archived/index.html

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 149

RNN API v8 sample
The new RNN sample illustrating the usage of the new RNN version 8 API has
been added. The sample's workflow consists of the several routines to create
RNN descriptors, create RNN data descriptors, set up weight space, and compute
routines. The sample takes several input parameters that can set up different RNN
configurations and input data specifications (data type, cell mode, bias mode, and so
on).

RNN functional and performance improvements

‣ When using RNN with padded data, the RNN padding and padding removal kernel
at the beginning and at end of the computation may achieve up to 4x speedup,
and has been generalized to work with any batch sizes.

‣ Updated the following API functions return codes:

‣ cudnnBuildRNNDynamic()

‣ cudnnCreatePersistentRNNPlan()

‣ cudnnRNNBackwardData_v8()

‣ cudnnRNNBackwardData()

‣ cudnnRNNBackwardDataEx()

‣ cudnnSetDropoutDescriptor()

ARM Server Base System Architecture (SBSA)
Added support for ARM SBSA for Linux.

Compatibility

For the latest compatibility software versions of the OS, CUDA, the CUDA driver, and the
NVIDIA hardware, refer to the NVIDIA cuDNN Support Matrix.

Limitations

‣ Samples can crash unless they are installed in a writable location.

‣ RNN and multihead attention API calls may exhibit non-deterministic behavior when
the cuDNN 8.0.4 library is built with CUDA Toolkit 10.2 or higher. This is the result
of a new buffer management and heuristics in the cuBLAS library. As described in
Results Reproducibility, numerical results may not be deterministic when cuBLAS
APIs are launched in more than one CUDA stream using the same cuBLAS handle.
This is caused by two buffer sizes (16 KB and 4 MB) used in the default configuration.

When a larger buffer size is not available at runtime, instead of waiting for a buffer
of that size to be released, a smaller buffer may be used with a different GPU kernel.
The kernel selection may affect numerical results. The user can eliminate the non-
deterministic behavior of cuDNN RNN and multihead attention APIs, by setting
a single buffer size in the CUBLAS_WORKSPACE_CONFIG environmental variable, for
example, :16:8 or :4096:2.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBuildRNNDynamic
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnCreatePersistentRNNPlan
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnRNNBackwardData_v8
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnRNNBackwardData
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnRNNBackwardDataEx
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnSetDropoutDescriptor
https://docs.nvidia.com/deeplearning/sdk/cudnn-support-matrix/index.html#cudnn-cuda-hardware-versions
https://docs.nvidia.com/cuda/cublas/index.html#cublasXtApi_reproducibility

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 150

The first configuration instructs cuBLAS to allocate eight buffers of 16 KB each in
GPU memory while the second setting creates two buffers of 4 MB each. The default
buffer configuration in cuBLAS 10.2 and 11.0 is :16:8:4096:2, that is, we have two
buffer sizes. In earlier cuBLAS libraries, such as cuBLAS 10.0, it used the :16:8 non-
adjustable configuration. When buffers of only one size are available, the behavior of
cuBLAS calls is deterministic in multi-stream setups.

‣ The tensor pointers and the filter pointers require at a minimum 4-byte alignment,
including INT8 data in the cuDNN library.

‣ Some computational options in cuDNN 8.0.4 now require increased alignment on
tensors in order to run efficiently. As always, cuDNN recommends users to align
tensors to 128-bit boundaries that will be sufficiently aligned for any computational
option in cuDNN. Doing otherwise may cause performance regressions in cuDNN
8.0.4 compared to cuDNN v7.6.

‣ For certain algorithms, when the computation is in float (32-bit float) and the output
is in FP16 (half float), there are cases where the numerical accuracy between the
different algorithms might differ. cuDNN 8.0.4 users can target the backend API to
query the numerical notes of the algorithms to get the information programmatically.
There are cases where algo0 and algo1 will have a reduced precision accumulation
when users target the legacy API. In all cases, these numerical differences are not
known to affect training accuracy even though they might show up in unit tests.

‣ For the _ALGO_0 algorithm of convolution backward data and backward filter, grouped
convolution with groups larger than 1 and with odd product of dimensions C, D (if 3D
convolution), H, and W is not supported on devices older than NVIDIA Volta. To prevent
a potential illegal memory access by an instruction that only has a 16-bit version in
NVIDIA Volta and later, pad at least one of the dimensions to an even value.

‣ On K80 GPUs, when cudnnConvolutionForward() is used with
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM algorithm and half I/O data
types a silent error might occur when the output width Q is 1 and both height and
width padding are zero.

‣ Several cuDNN APIs are unable to directly support computations using integer types
(CUDNN_DATA_INT8, CUDNN_DATA_INT8x4, CUDNN_DATA_INT8x32 or CUDNN_DATA_INT32).
Floating types (particularly CUDNN_DATA_FLOAT) are much more widely supported. If
an API does not support the desired type, cudnnTransformTensor() can be used to
support the use case by converting to/from a supported type and the desired type.
Here are the steps for doing so:

 1. Convert all input tensors from their native type to a supported type
(CUDNN_DATA_FLOAT is recommended).

 2. Run cuDNN API using the converted input tensors and output tensor descriptors
set as CUDNN_DATA_FLOAT.

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBiasActivationForward

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 151

 3. Convert all output tensors from a supported type to your desired output type.

Note: This will require extra memory use for the temporary buffers. Further, this
will introduce an additional round trip to memory that might noticeably impact
performance.

‣ In INT8x32 Tensor Core cases, the parameters supported by cuDNN v7.6 are limited
to W >= (R-1) * dilationW && H >= (S-1) * dilationH, whereas, in cuDNN
v8.0.x, W == (R-1) * dilationW || H == (S-1) * dilationH cases are no longer
supported.

‣ In prior versions of cuDNN, some convolution algorithms can use texture-based
load structure for performance improvements particularly in older hardware
architectures. Users can opt out of using texture using the environmental variable
CUDNN_TEXOFF_DBG. In cuDNN 8.x, this variable is removed. Texture loading is turned
off by default. Users who want to continue to use texture-based load, can adapt the
new backend API, and toggle the engine knob CUDNN_KNOB_TYPE_USE_TEX to 1 for
engines that support texture-based load instructions.

‣ In the backend API, convolution forward engine with
CUDNN_ATTR_ENGINE_GLOBAL_INDEX=1 is not supported when the product (channels
* height * width) of the input image exceeds 536,870,912 that is 2^29.

Deprecated Features

The following features are deprecated in cuDNN 8.0.4:

‣ Support for Ubuntu 18.04 ppc64le builds will be dropped post cuDNN 8.0.4.

Fixed Issues

‣ cudnnConvolutionBackwardFilter() and
cudnnGetConvolutionBackwardFilterWorkspaceSize() can result in a segmentation
fault in multi-threaded usage due to a race condition. This issue has been fixed in this
release.

‣ The libfreeimage.a library in the RHEL 8 ppc64le RPM package was for the wrong
architecture. This issue has been fixed in this release.

‣ In previous cuDNN versions, cudnnRNNBackwardData() or cudnnRNNBackwardDataEx()
may return CUDNN_STATUS_INTERNAL_ERROR, NaN-s, or non-deterministic finite
values when CUDNN_RNN_ALGO_PERSIST_STATIC was selected. These issues
occurred mainly on smaller GPUs, such as NVIDIA Turing with 30 or 36 SMs
and smaller hiddenSize values. Most of those issues have been fixed in this
release. However, configurations such as hiddenSize=128, LSTM, FP32 with
CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION may still output non-deterministic
results.

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 152

‣ There was an issue in upgrading the cuDNN version using the RPM and Debian
packages in the 8.0.3 version. This issue has been fixed in this release.

‣ The ResNet-50 native FP32 inference issues have been fixed on NVIDIA Volta and
NVIDIA Turing. Few performance regressions exist in the NVIDIA Ampere Architecture
GPU.

‣ cuDNN exhibited performance regressions for GoogLeNet and U-Net on V100. This
issue has been fixed in this release.

‣ cuDNN exhibited performance regressions for VGG16 on GA100. This issue has been
fixed in this release.

‣ The performance regression across Tacotron2 and WaveGlow seen on the NVIDIA
Turing architecture have been fixed.

‣ The performance regressions in the FastPitch network seen on the NVIDIA Volta and
NVIDIA Turing architecture have been fixed.

‣ The cuDNN API unconditionally triggers CUDA context initialization. This causes
unnecessary host-side performance overhead. This is an issue that was introduced in
cuDNN version 8.0.2. This issue has been fixed in this release.

‣ Some ResNet-50 and SSD mixed precision inference use-cases may have
performance regressions compared to cuDNN 7.6 on V100. V-Net 3D models might
have performance regressions on NVIDIA Turing based architectures. This issue has
been fixed in this release.

‣ Previous cuDNN 8 releases exhibited performance regressions when compared to
version 7.6, for some important convolutional networks on the NVIDIA Pascal GPU
architecture. In particular, the performance regressions of ResNet-50 seen previously
on NVIDIA Pascal with cuDNN versions 8.0.3 and earlier, are fixed with this release.

‣ cudnnConvolutionBiasActivationForward() could result in incorrect results when
the alpha2 value is zero and the device buffer zData contains NaN. This issue has
been fixed in this release.

‣ When using cudnnRNN*Ex() APIs, if the layout of RNN
data is CUDNN_RNN_DATA_LAYOUT_SEQ_MAJOR_UNPACKED or
CUDNN_RNN_DATA_LAYOUT_BATCH_MAJOR_UNPACKED, and if the batch size is larger than
6144 on NVIDIA Volta or NVIDIA Ampere Architecture A100 GPUs, or larger than 4096
on NVIDIA Turing GPUs, CUDNN_STATUS_EXECUTION_FAILED would be returned. This
issue has been fixed in this release. cuDNN supports arbitrary batch size.

‣ When the user upgraded from cuDNN 8.0.2 to 8.0.3 through the Debian or RPM
package, users had to manually uninstall the old libcudnn8-doc package before they
installed libcudnn8-samples_*.deb/rpm, otherwise a file conflict could happen. This
has been fixed and is no longer the case in the 8.0.4 release.

‣ Performance regressions on NVIDIA Turing, NVIDIA Volta, and NVIDIA Pascal
architectures for True Half convolutions have been resolved.

‣ When using cudnnRNN* APIs with the problem sizes (input size, hidden size) not
being multiples of 16 for FP16 tensors or multiples of 8 for FP32 tensors, users

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 153

encountered a return status of CUDNN_STATUS_EXECUTION_FAILED in cudnn built
against cuda 11.0. This issue has been fixed with cuDNN built against CUDA 11.1.

Known Issues

‣ When using cudnnRNN* APIs with the problem sizes (input size, hidden size) not
being multiples of 16 for FP16 tensors or multiples of 8 for FP32 tensors, users
encountered a return status of CUDNN_STATUS_EXECUTION_FAILED. This issue affects
earlier cuDNN 8.0.1 Preview and cuDNN 8.0.2 releases built against CUDA 11.0.

‣ There is a known minor performance regression on small batch sizes for ResNet-50
native FP32 inference that exists on the NVIDIA Ampere Architecture GPU.

1.24. cuDNN Release 8.0.3
This is the cuDNN 8.0.3 release notes. This release includes fixes from the previous
cuDNN v8.0.x releases as well as the following additional changes. These release notes
are applicable to both cuDNN and NVIDIA JetPack users of cuDNN unless appended
specifically with (not applicable for Jetson platforms).

For previous cuDNN documentation, refer to the NVIDIA cuDNN Archives.

Key Features and Enhancements

cuDNN backend API

Documentation for the cuDNN backend API has been included in this release. Users
specify the computational case, set up an execution plan for it, and execute the
computation using numerous descriptors. The typical use pattern for a descriptor
with attributes consists of the following sequence of API calls:

 1. cudnnBackendCreateDescriptor() creates a descriptor of a specified type.

 2. cudnnBackendSetAttribute() sets the values of a settable attribute for the
descriptor. All required attributes must be set before the next step.

 3. cudnnBackendFinalize() finalizes the descriptor.

 4. cudnnBackendGetAttribute() gets the values of an attribute from a finalized
descriptor.

For more information, refer to the NVIDIA cuDNN Backend API.

Compatibility

For the latest compatibility software versions of the OS, CUDA, the CUDA driver, and the
NVIDIA hardware, refer to the NVIDIA cuDNN Support Matrix.

Limitations

‣ Samples can crash unless they are installed in a writable location.

https://docs.nvidia.com/deeplearning/sdk/cudnn-archived/index.html
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#backend-cudnnBackendCreateDescriptor
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#backend-cudnnBackendSetAttribute
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#backend-cudnnBackendFinalize
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#backend-cudnnBackendGetAttribute
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnn-backend-api
https://docs.nvidia.com/deeplearning/sdk/cudnn-support-matrix/index.html#cudnn-cuda-hardware-versions

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 154

‣ RNN and multihead attention API calls may exhibit non-deterministic behavior when
the cuDNN 8.0.3 library is built with CUDA Toolkit 10.2 or higher. This is the result
of a new buffer management and heuristics in the cuBLAS library. As described in
Results Reproducibility, numerical results may not be deterministic when cuBLAS
APIs are launched in more than one CUDA stream using the same cuBLAS handle.
This is caused by two buffer sizes (16 KB and 4 MB) used in the default configuration.

When a larger buffer size is not available at runtime, instead of waiting for a buffer
of that size to be released, a smaller buffer may be used with a different GPU kernel.
The kernel selection may affect numerical results. The user can eliminate the non-
deterministic behavior of cuDNN RNN and multihead attention APIs, by setting
a single buffer size in the CUBLAS_WORKSPACE_CONFIG environmental variable, for
example, :16:8 or :4096:2.

The first configuration instructs cuBLAS to allocate eight buffers of 16 KB each in
GPU memory while the second setting creates two buffers of 4 MB each. The default
buffer configuration in cuBLAS 10.2 and 11.0 is :16:8:4096:2, that is, we have two
buffer sizes. In earlier cuBLAS libraries, such as cuBLAS 10.0, it used the :16:8 non-
adjustable configuration. When buffers of only one size are available, the behavior of
cuBLAS calls is deterministic in multi-stream setups.

‣ The tensor pointers and the filter pointers require at a minimum 4-byte alignment,
including INT8 data in the cuDNN library.

‣ Some computational options in cuDNN 8.0.3 now require increased alignment on
tensors in order to run efficiently. As always, cuDNN recommends users to align
tensors to 128-bit boundaries that will be sufficiently aligned for any computational
option in cuDNN. Doing otherwise may cause performance regressions in cuDNN
8.0.3 compared to cuDNN v7.6.

‣ For certain algorithms, when the computation is in float (32-bit float) and the output
is in FP16 (half float), there are cases where the numerical accuracy between the
different algorithms might differ. cuDNN 8.0.3 users can target the backend API to
query the numerical notes of the algorithms to get the information programmatically.
There are cases where algo0 and algo1 will have a reduced precision accumulation
when users target the legacy API. In all cases, these numerical differences are not
known to affect training accuracy even though they might show up in unit tests.

‣ For the _ALGO_0 algorithm of convolution backward data and backward filter, grouped
convolution with groups larger than 1 and with odd product of dimensions C, D (if 3D
convolution), H, and W is not supported on devices older than NVIDIA Volta. To prevent
a potential illegal memory access by an instruction that only has a 16-bit version in
NVIDIA Volta and later, pad at least one of the dimensions to an even value.

‣ On K80 GPUs, when cudnnConvolutionForward() is used with
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM algorithm and half I/O data
types a silent error might occur when the output width Q is 1 and both height and
width padding are zero.

https://docs.nvidia.com/cuda/cublas/index.html#cublasXtApi_reproducibility
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBiasActivationForward

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 155

‣ Several cuDNN APIs are unable to directly support computations using integer types
(CUDNN_DATA_INT8, CUDNN_DATA_INT8x4, CUDNN_DATA_INT8x32 or CUDNN_DATA_INT32).
Floating types (particularly CUDNN_DATA_FLOAT) are much more widely supported. If
an API does not support the desired type, cudnnTransformTensor() can be used to
support the use case by converting to/from a supported type and the desired type.
Here are the steps for doing so:

 1. Convert all input tensors from their native type to a supported type
(CUDNN_DATA_FLOAT is recommended).

 2. Run cuDNN API using the converted input tensors and output tensor descriptors
set as CUDNN_DATA_FLOAT.

 3. Convert all output tensors from a supported type to your desired output type.

Note: This will require extra memory use for the temporary buffers. Further, this
will introduce an additional round trip to memory that might noticeably impact
performance.

‣ In INT8x32 Tensor Core cases, the parameters supported by cuDNN v7.6 are limited
to W >= (R-1) * dilationW && H >= (S-1) * dilationH, whereas, in cuDNN
v8.0.x, W == (R-1) * dilationW || H == (S-1) * dilationH cases are no longer
supported.

‣ In prior versions of cuDNN, some convolution algorithms can use texture-based
load structure for performance improvements particularly in older hardware
architectures. Users can opt out of using texture using the environmental variable
CUDNN_TEXOFF_DBG. In cuDNN 8.x, this variable is removed. Texture loading is turned
off by default. Users who want to continue to use texture-based load, can adapt the
new backend API, and toggle the engine knob CUDNN_KNOB_TYPE_USE_TEX to 1 for
engines that support texture-based load instructions.

‣ In the backend API, convolution forward engine with
CUDNN_ATTR_ENGINE_GLOBAL_INDEX=1 is not supported when the product (channels
* height * width) of the input image exceeds 536,870,912 that is 2^29.

Fixed Issues

‣ For cudnnConvolutionBackwardFilter(), the 3D convolution table, wDesc: _NCHW,
_ALGO_1 and FFT_TILING had incorrect data fields. This has been fixed in this release.

‣ In prior versions of cuDNN, cudnnPoolingForward() with pooling mode
CUDNN_POOLING_MAX might return incorrect result when one of the spatial
dimensions has negative padding and the output tensor is larger than
the value recommended by cudnnGetPoolingNdForwardOutputDim() or
cudnnGetPooling2dForwardOutputDim(). This issue has been fixed in this release.

‣ In cudnnPoolingForward() with average-pooling, when the output tensor
data is INT8 type, it is possible for some pixels result to be off by 1. Note that

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionBackwardFilter
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnPoolingForward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetPoolingNdForwardOutputDim
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnGetPooling2dForwardOutputDim
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnPoolingForward

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 156

cudnnPoolingForward() rounds to the nearest-even integer. This issue has been
fixed in this release.

‣ The performance of cudnnConvolutionBiasActivationForward() for INT8x4 use
cases on NVIDIA Volta and NVIDIA Turing, INT8x32 use cases on NVIDIA Turing, FP32,
and pseudo-FP16 use cases on NVIDIA Volta, NVIDIA Turing, and NVIDIA Ampere
Architecture GPU have been improved.

‣ We have updated our public headers to fully reflect the documented dependencies
between the six sub libraries.

‣ There were libcudnn_ops/cnn/adv_infer/train_static.a binaries in the cuDNN
Debian and tgz packages. Users were advised not to link against those and link
against libcudnn_static.a instead. Those binaries have been removed from the
release packages.

‣ On NVIDIA Volta and NVIDIA Pascal architectures, performance regressions were
present for various TRUE_HALF convolutions. This has been fixed in this release.

‣ In prior versions of cuDNN, API functions cudnnGetConvolution*Algorithm_v7()
return a workspace size in the result for algo1 that is inconsistent with the result of
the corresponding cudnnGet*Workspace() calls if the math type of the convolution
descriptor is set to CUDNN_FMA_MATH. This issue has been fixed in this release.

‣ The new RNN APIs: cudnnRNNForward(), cudnnRNNBackwardData_v8(), and
cudnnRNNBackwardWeights_v8() were available as a preview in the cuDNN 8.0.2
release. They no longer hold preview status.

‣ When using cudnnRNN*Ex() APIs, if the user planned to
use CUDNN_RNN_DATA_LAYOUT_SEQ_MAJOR_UNPACKED or
CUDNN_RNN_DATA_LAYOUT_BATCH_MAJOR_UNPACKED as the layout of the RNN data
descriptors, the user would have had to call cudnnSetRNNPaddingMode() to set
the mode to CUDNN_RNN_PADDED_IO_ENABLED after initializing an RNNDescriptor
but before calling cudnnGetRNNWorkspaceSize(). Not doing this would result
in CUDNN_STATUS_EXECUTION_FAILED. We have added internal checks to return
CUDNN_STATUS_BAD_PARAM to prevent hitting EXECUTION_FAILED.

‣ When cudnnBatchNormalizationForwardTrainingEx() is called with NHWC tensors
with pseudo-half configuration, under rare occasions the kernel would produce
incorrect results, including possible NaNs in the results. This has been fixed in this
release. This issue affects earlier releases since 7.4.1.

‣ Fused convolution-scale-bias-activation with per-channel α1 and α2 scaling gives
incorrect results when the reorder type in the convolution descriptor is set to
CUDNN_NO_REORDER. This is an issue in cuDNN version 8.0.2 This issue has been fixed
in this release.

‣ On NVIDIA Ampere Architecture GA100, cudnnConvolutionBackwardData()
for Tensor Core enabled problems with half input and output could, in rare
cases, could produce incorrect results; the same could happen for users of
cudnnBackendExecute() using engine with CUDNN_ATTR_ENGINE_GLOBAL_INDEX 57

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionBiasActivationForward
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBatchNormalizationForwardTrainingEx
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnConvolutionBackwardData
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBackendExecute

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 157

for backward data. This has been fixed in this release. (not applicable for Jetson
platforms)

‣ There was a performance regression in MaskRCNN inference with automatic mixed
precision on V100. This has been fixed in this release.

‣ Two-dimensional forward convolutions using algo1 may segfault when the filter size
is large. For example, we have observed this issue when the filter width and height are
more than or equal to 363. This has been fixed in this release.

‣ For some 3D spatial non-Tensor-Core convolutions on Maxwell, NVIDIA Pascal,
NVIDIA Volta, and NVIDIA Turing architectures, cudnnBackwardFilter() can
return incorrect results when the convolution width padding exceeds the value
(filterWidth - 1)/2. Likewise, users of cudnnBackendExecute() can experience
the same issue when using the engine with CUDNN_ATTR_ENGINE_GLOBAL_INDEX
32 for backward filter. The issue affecting cudnnBackwardFilter() has been
fixed in this release. With cudnnBackendFinalize(), an engine descriptor with
CUDNN_ATTR_ENGINE_GLOBAL_INDEX 32 and a backward filter operation that satisfies
the previous condition will return CUDNN_STATUS_NOT_SUPPORTED.

Known Issues

‣ Occasionally, inaccurate results were observed in outputs of the
cudnnRNNBackwardWeights() and cudnnRNNBackwardWeightsEx() functions when
the RNN cell type was GRU and the NVIDIA Ampere Architecture GPU was used
with FP32 I/O and mathType of CUDNN_DEFAULT_MATH or CUDNN_TENSOR_OP_MATH.
Users may switch to CUDNN_FMA_MATH as a temporary workaround. This issue is being
investigated.

‣ cudnnRNN*() with LSTM mode may produce inaccurate results on the cy outputs
when clipping is enabled on all GPUs. This issue exists in previous cuDNN releases as
well.

‣ On NVIDIA Volta and NVIDIA Pascal architectures, performance regressions may be
present for various TRUE_HALF convolutions.

‣ When the user is using cudnnRNN* APIs with the problem sizes (input size, hidden
size) being not multiples of 16 for FP16 tensors or multiples of 8 for FP32 tensors,
users may encounter a return status of CUDNN_STATUS_EXECUTION_FAILED. This issue
also affects earlier releases cuDNN 8.0.1 Preview and cuDNN 8.0.2.

‣ Some ResNet-50 and SSD mixed precision inference use-cases may have
performance regressions compared to cuDNN 7.6 on V100. V-Net 3D models might
have performance regressions on NVIDIA Turing based architectures.

‣ When using cudnnRNN*Ex() APIs, if the user used
CUDNN_RNN_DATA_LAYOUT_SEQ_MAJOR_UNPACKED or
CUDNN_RNN_DATA_LAYOUT_BATCH_MAJOR_UNPACKED as the layout of the RNN data
descriptors, and if the batch size is larger than 6144 on NVIDIA Volta or NVIDIA

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBackwardFilter
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBackendExecute
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBackwardFilter
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBackendFinalize

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 158

Ampere Architecture A100 GPUs, or larger than 4096 on NVIDIA Turing GPUs,
CUDNN_STATUS_EXECUTION_FAILED would be returned.

‣ Documentation of the backend API is not complete. The
CUDNN_BACKEND_OPERATION_GEN_STATS_DESCRIPTOR and
CUDNN_BACKEND_OPERATION_POINTWISE_DESCRIPTOR descriptor types will be
documented in a future release.

‣ The conv_sample_v8.0 sample is not included in the Debian and RPM packages. This
will be fixed in a future release.

‣ The libfreeimage.a library in the RHEL 8 ppc64le RPM is for the wrong architecture.
This will be fixed in a future release.

‣ When the user is upgrading from cuDNN 8.0.2 to 8.0.3 through the Debian or RPM
package, before installing libcudnn8-samples_*.deb/rpm, users should manually
uninstall the old libcudnn8-doc package, otherwise a file conflict may happen.

1.25. cuDNN Release 8.0.2
This is the cuDNN 8.0.2 release notes and first GA release of cuDNN 8.x. This release
includes fixes from the previous cuDNN v8.0.x releases as well as the following additional
changes. These release notes are applicable to both cuDNN and NVIDIA JetPack users of
cuDNN unless appended specifically with (not applicable for Jetson platforms).

For previous cuDNN documentation, refer to the NVIDIA cuDNN Archives.

Key Features and Enhancements

cuDNN 8.0.1 Preview and 8.0.0 Preview
The key features mentioned in cuDNN 8.0.1 Preview and 8.0.0 Preview are now GA
quality in this release.

Added new API functions to the documentation
cudnnRNNBackwardData_v8() and cudnnRNNBackwardWeights_v8() are now
documented in the cudnn_adv_train.so Library. For a list of functions and data types
that were added in this release, see API changes for cuDNN 8.0.2.

TF32 performance

‣ TF32 for 3D convolutions and deconvolution performance is significantly better,
up to 3.9x, compared to cuDNN 8.0.1.

‣ TF32 for grouped convolutions on A100 were improved up to 1.5x performance
compared to cuDNN 8.0.1 on ResNext convolution layers and up to 3x the
performance compared to V100 with cuDNN v7.6. (not applicable for Jetson
platforms)

The above performance improvements were measured using only cuDNN operations.
The observed performance improvements will depend on a number of factors, such as
non-cuDNN operations, kernel run time, and model architecture type.

https://docs.nvidia.com/deeplearning/sdk/cudnn-archived/index.html
https://docs.nvidia.com/deeplearning/sdk/cudnn-release-notes/rel_8.html#rel-801-Preview
https://docs.nvidia.com/deeplearning/sdk/cudnn-release-notes/rel_8.html#rel-800-Preview
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#release-800

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 159

Performance improvements
This release includes performance improvements on all architectures for 2D and 3D
grouped convolutions compared with version 7.6. Additionally, we improved kernel
selection heuristics on several known deep learning GitHub examples (also known as
model scripts).

Compatibility

For the latest compatibility software versions of the OS, CUDA, the CUDA driver, and the
NVIDIA hardware, refer to the NVIDIA cuDNN Support Matrix.

Limitations

‣ Samples can crash unless they are installed in a writable location.

‣ RNN and multihead attention API calls may exhibit non-deterministic behavior when
the cuDNN 8.0.2 library is built with CUDA Toolkit 10.2 or higher. This is the result
of a new buffer management and heuristics in the cuBLAS library. As described in
Results Reproducibility, numerical results may not be deterministic when cuBLAS
APIs are launched in more than one CUDA stream using the same cuBLAS handle.
This is caused by two buffer sizes (16 KB and 4 MB) used in the default configuration.

When a larger buffer size is not available at runtime, instead of waiting for a buffer
of that size to be released, a smaller buffer may be used with a different GPU kernel.
The kernel selection may affect numerical results. The user can eliminate the non-
deterministic behavior of cuDNN RNN and multihead attention APIs, by setting
a single buffer size in the CUBLAS_WORKSPACE_CONFIG environmental variable, for
example, :16:8 or :4096:2.

The first configuration instructs cuBLAS to allocate eight buffers of 16 KB each in
GPU memory while the second setting creates two buffers of 4 MB each. The default
buffer configuration in cuBLAS 10.2 and 11.0 is :16:8:4096:2, that is, we have two
buffer sizes. In earlier cuBLAS libraries, such as cuBLAS 10.0, it used the :16:8 non-
adjustable configuration. When buffers of only one size are available, the behavior of
cuBLAS calls is deterministic in multi-stream setups.

‣ The tensor pointers and the filter pointers require at a minimum 4-byte alignment,
including INT8 data in the cuDNN library.

‣ Some computational options in cuDNN 8.0.2 now require increased alignment on
tensors in order to run efficiently. As always, cuDNN recommends users to align
tensors to 128-bit boundaries that will be sufficiently aligned for any computational
option in cuDNN. Doing otherwise may cause performance regressions in cuDNN
8.0.2 compared to cuDNN v7.6.

‣ For certain algorithms, when the computation is in float (32-bit float) and the output
is in FP16 (half float), there are cases where the numerical accuracy between the
different algorithms might differ. cuDNN 8.0.2 users can target the backend API to
query the numerical notes of the algorithms to get the information programmatically.

https://github.com/NVIDIA/DeepLearningExamples
https://github.com/NVIDIA/DeepLearningExamples
https://docs.nvidia.com/deeplearning/sdk/cudnn-support-matrix/index.html#cudnn-cuda-hardware-versions
https://docs.nvidia.com/cuda/cublas/index.html#cublasXtApi_reproducibility

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 160

There are cases where algo0 and algo1 will have a reduced precision accumulation
when users target the legacy API. In all cases, these numerical differences are not
known to affect training accuracy even though they might show up in unit tests.

‣ For the _ALGO_0 algorithm of convolution backward data and backward filter, grouped
convolution with groups larger than 1 and with odd product of dimensions C, D (if 3D
convolution), H, and W is not supported on devices older than NVIDIA Volta. To prevent
a potential illegal memory access by an instruction that only has a 16-bit version in
NVIDIA Volta and above, pad at least one of the dimensions to an even value.

‣ On K80 GPUs, when cudnnConvolutionForward() is used with
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM algorithm and half I/O data
types a silent error might occur when the output width Q is 1 and both height and
width padding are zero.

‣ Several cuDNN APIs are unable to directly support computations using integer types
(CUDNN_DATA_INT8, CUDNN_DATA_INT8x4, CUDNN_DATA_INT8x32 or CUDNN_DATA_INT32).
Floating types (particularly CUDNN_DATA_FLOAT) are much more widely supported. If
an API does not support the desired type, cudnnTransformTensor() can be used to
support the use case by converting to/from a supported type and the desired type.
Here are the steps for doing so:

 1. Convert all input tensors from their native type to a supported type
(CUDNN_DATA_FLOAT is recommended).

 2. Run cuDNN API using the converted input tensors and output tensor descriptors
set as CUDNN_DATA_FLOAT.

 3. Convert all output tensors from a supported type to your desired output type.

Note: This will require extra memory use for the temporary buffers. Further, this
will introduce an additional round trip to memory that might noticeably impact
performance.

‣ In INT8x32 Tensor Core cases, the parameters supported by cuDNN v7.6 are limited
to W >= (R-1) * dilationW && H >= (S-1) * dilationH, whereas, in cuDNN
v8.0.x, W == (R-1) * dilationW || H == (S-1) * dilationH cases are no longer
supported.

‣ In prior versions of cuDNN, some convolution algorithms can use texture-based
load structure for performance improvements particularly in older hardware
architectures. Users can opt out of using texture using the environmental variable
CUDNN_TEXOFF_DBG. In cuDNN 8.x, this variable is removed. Texture loading is turned
off by default. Users who want to continue to use texture-based load, can adapt the
new backend API, and toggle the engine knob CUDNN_KNOB_TYPE_USE_TEX to 1 for
engines that support texture-based load instructions.

Fixed Issues

The following issues have been fixed in this release:

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBiasActivationForward

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 161

‣ The implementation of cuDNNLRNCrossChannelBackward() for even-sized
normalization windows was incorrect in all previous releases. This issue has been
fixed in this release.

‣ There is not a dedicated API to query the supported or the most performant algo for
cudnnConvolutionBiasActivationForward() in cuDNN. It is not recommended to
query w using cudnnGetConvolutionForwardAlgorithm_v7. Instead, we recommend
using the cuDNN version 8 backend API. The number of supported engines can be
queried using enum CUDNN_ATTR_OPERATIONGRAPH_ENGINE_GLOBAL_COUNT from an
operation graph descriptor using cudnnBackendGetAttribute().

‣ A memcheck error may have occurred on cuDNN version 7.x builds when calling
cudnnConvolutionBackwardFilter() on NVIDIA Volta or NVIDIA Turing GPUs. This
issue has been fixed in this release.

‣ Various convolutions that exhibited sub-optimal performance on GA100 GPUs are
now achieving ideal performance. (not applicable for Jetson platforms)

‣ cudnnCnnTrainVersionCheck() and cudnnCnnInferVersionCheck() were missing in
past releases. This issue has been fixed in this release.

‣ Documentation of RNN new APIs and deprecations is not complete. The
cudnnRNNBackwardData_v8() and cudnnRNNBackwardWeights_v8() have been added
to this release.

‣ cuDNN 8.0.1 built with Windows and CUDA 11.0 RC had reduced performance on 2D,
3D, and grouped convolutions compared to Linux. This issue has been fixed in this
release. (not applicable for Jetson platforms)

‣ There was a known issue in cuDNN 8.0.1 when linking statically to cuDNN and using
the library's 3D algo1 backward filter convolutions. Users would see that the library
emits an internal error or incorrectly state that a shared library was missing. This
issue has been fixed in this release.

‣ When using an RPM file on RedHat for installation, upgrading from cuDNN v7 to
cuDNN v8 directly or indirectly using TensorRT 7.1.3 would cause installation errors.
This issue has been fixed in this release.

‣ The implementation of cuDNNLRNCrossChannelBackward was inconsistent with the
implementation of cuDNNLRNCrossChannelForward and returned incorrect results
when the normalization window was even. This issue has been fixed in this release.

‣ RNN APIs in cuDNN v8.0.1, compiled with CUDA 11.0, used an incorrect default down-
conversion on GPUs with CUDA SM version SM80 (NVIDIA Ampere Architecture GPU
family) when supplied input data and weights have the CUDNN_DATA_FLOAT type and
cudnnMathType_t set using cudnnSetRNNMatrixMathType() is CUDNN_DEFAULT_MATH
or CUDNN_TENSOR_OP_MATH. Instead of using the default TF32 computation when
Tensor Cores are used, a down conversion to FP16 (half-precision) was performed;
same as in the CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION mode. This introduced a
lower dynamic range of intermediate data but possibly faster execution. To disable
the automatic down conversion of CUDNN_DATA_FLOAT weights and data in RNN

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 162

APIs, the user needed to set the environmental variable NVIDIA_TF32_OVERRIDE to
0 (notice this would have disabled the use of TF32 in the entire library, which might
have a performance impact on CNNs that are not affected by this issue). Another
workaround was to assign the CUDNN_FMA_MATH mode to the cudnnMathType_t
argument in cudnnSetRNNMatrixMathType(). Due to this, the A100 GPU TF32 feature
was not accessible for RNNs in cuDNN v8.0.1. This issue has been fixed in this release.
(not applicable for Jetson platforms)

‣ cuDNN convolution APIs may return CUDNN_STATUS_EXECUTION_FAILED when the
number of input or output channels equals to or exceeds 2097152. This issue exists
for all cuDNN 8.0.x releases. This issue has been fixed in this release.

‣ Since version 8.0.0 Preview, cudnnConvolutionForward(),
cudnnConvolutionBackwardData(), and cudnnConvolutionBackwardFilter()
erroneously returned CUDNN_STATUS_INTERNAL_ERROR when the workspace
size argument value was less than the required workspace size as returned
by their respective cudnnGetWorkspace() API. This issue has been fixed and
CUDNN_STATUS_BAD_PARAMS is returned as documented.

Known Issues

‣ In this release, the performance of cudnnConvolutionBiasActivationForward() for
true-half use cases on NVIDIA Pascal, INT8x4 use cases on NVIDIA Volta, and NVIDIA
Turing, compared to version 7.6 is still lower. In addition, FP32 and pseudo-FP16
performance on NVIDIA Volta, NVIDIA Turing, and the NVIDIA Ampere Architecture
GPU is still not fully optimized.

‣ The new RNN APIs: cudnnRNNForward(), cudnnRNNBackwardData_v8(), and
cudnnRNNBackwardWeights_v8() are available as a preview in the cuDNN 8.0.2
release.

‣ Occasionally, inaccurate results were observed in outputs of the
cudnnRNNBackwardWeights() and cudnnRNNBackwardWeightsEx() functions when
the RNN cell type was GRU and the NVIDIA Ampere Architecture GPU was used
with FP32 I/O and mathType of CUDNN_DEFAULT_MATH or CUDNN_TENSOR_OP_MATH.
Users may switch to CUDNN_FMA_MATH as a temporary workaround. This issue is being
investigated.

‣ cudnnRNN*() with LSTM mode may produce inaccurate results on the cy outputs
when clipping is enabled on all GPUs. This issue exists in previous cuDNN releases as
well.

‣ On NVIDIA Volta and NVIDIA Pascal architectures, performance regressions may be
present for TRUE_HALF convolution backward filter.

‣ When using cudnnRNN*Ex() APIs, if the user uses
CUDNN_RNN_DATA_LAYOUT_SEQ_MAJOR_UNPACKED or
CUDNN_RNN_DATA_LAYOUT_BATCH_MAJOR_UNPACKED as the layout of the RNN data
descriptors, and if the batch size is larger than 6144 on NVIDIA Volta or NVIDIA

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBiasActivationForward

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 163

Ampere Architecture A100 GPUs, or larger than 4096 on NVIDIA Turing GPUs,
CUDNN_STATUS_EXECUTION_FAILED may be returned.

‣ Currently, there are libcudnn_ops/cnn/adv_infer/train_static.a binaries in the
cuDNN Debian and tgz packages. Users are advised not to link against those and link
against libcudnn_static.a instead. Those binaries will be removed from the release
packages in the next release.

‣ When using cudnnRNN*Ex() APIs, if the user plans to
use CUDNN_RNN_DATA_LAYOUT_SEQ_MAJOR_UNPACKED or
CUDNN_RNN_DATA_LAYOUT_BATCH_MAJOR_UNPACKED as the layout of the RNN
data descriptors, the user should call cudnnSetRNNPaddingMode() to set the
mode to CUDNN_RNN_PADDED_IO_ENABLED after initializing an RNNDescriptor
but before calling cudnnGetRNNWorkspaceSize(). Not doing this may result in
CUDNN_STATUS_EXECUTION_FAILED.

‣ Updated: August 24, 2020

Fused convolution-scale-bias-activation with per-channel α1 and α2 scaling gives
incorrect results when the reorder type in the convolution descriptor is set to
CUDNN_NO_REORDER.

‣ Updated: August 24, 2020

When the user is using cudnnRNN* APIs with the problem sizes (input size, hidden
size) being not multiples of 16 for FP16 tensors or multiples of 8 for FP32 tensors,
users may encounter a return status of CUDNN_STATUS_EXECUTION_FAILED.

‣ Updated: August 24, 2020

For some 3D spatial non-Tensor-Core convolutions on Maxwell, NVIDIA Pascal,
NVIDIA Volta, and NVIDIA Turing architectures, cudnnBackwardFilter() can
return incorrect results when the convolution width padding exceeds the value
(filterWidth - 1)/2. Likewise, users of cudnnBackendExecute() can experience
the same issue when using the engine with CUDNN_ATTR_ENGINE_GLOBAL_INDEX
32 for backward filter. The issue affecting cudnnBackwardFilter() has been
fixed in this release. With cudnnBackendFinalize(), an engine descriptor with
CUDNN_ATTR_ENGINE_GLOBAL_INDEX 32 and a backward filter operation that satisfies
the above condition will return CUDNN_STATUS_NOT_SUPPORTED.

1.26. cuDNN Release 8.0.1 Preview

ATTENTION: This is the cuDNN 8.0.1 Preview release. This Preview release is for early
testing and feedback, therefore, for production use of cuDNN, continue to use cuDNN
7.6.5. This release is subject to change based on ongoing performance tuning and
functional testing. For feedback on the new backend API and deprecations, e-mail
cudnn@nvidia.com.

https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBackwardFilter
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBackendExecute
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBackwardFilter
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnBackendFinalize
https://docs.nvidia.com/deeplearning/sdk/cudnn-archived/index.html#cudnn_7
https://docs.nvidia.com/deeplearning/sdk/cudnn-archived/index.html#cudnn_7
mailto:cudnn@nvidia.com

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 164

These release notes are applicable to NVIDIA JetPack users of cuDNN unless appended
specifically with (not applicable for Jetson platforms).

For previous cuDNN documentation, refer to the NVIDIA cuDNN Archives.

Key Features and Enhancements

‣ Added new kernels to improve the performance of fusion.

Compatibility

For the latest compatibility software versions of the OS, CUDA, the CUDA driver, and the
NVIDIA hardware, refer to the NVIDIA cuDNN Support Matrix.

Limitations

‣ Samples can crash unless they are installed in a writable location.

‣ RNN and multihead attention API calls may exhibit non-deterministic behavior when
the cuDNN 8.0.1 library is built with CUDA Toolkit 10.2 or higher. This is the result
of a new buffer management and heuristics in the cuBLAS library. As described in
Results Reproducibility, numerical results may not be deterministic when cuBLAS
APIs are launched in more than one CUDA stream using the same cuBLAS handle.
This is caused by two buffer sizes (16 KB and 4 MB) used in the default configuration.

When a larger buffer size is not available at runtime, instead of waiting for a buffer
of that size to be released, a smaller buffer may be used with a different GPU kernel.
The kernel selection may affect numerical results. The user can eliminate the non-
deterministic behavior of cuDNN RNN and multihead attention APIs, by setting
a single buffer size in the CUBLAS_WORKSPACE_CONFIG environmental variable, for
example, :16:8 or :4096:2.

The first configuration instructs cuBLAS to allocate eight buffers of 16 KB each in
GPU memory while the second setting creates two buffers of 4 MB each. The default
buffer configuration in cuBLAS 10.2 and 11.0 is :16:8:4096:2, that is, we have two
buffer sizes. In earlier cuBLAS libraries, such as cuBLAS 10.0, it used the :16:8 non-
adjustable configuration. When buffers of only one size are available, the behavior of
cuBLAS calls is deterministic in multi-stream setups.

‣ Some data types are not widely supported by all cuDNN API. For example,
CUDNN_DATA_INT8x4 is not supported by many functions. In such cases, support
is available by using cudnnTransformTensor() to transform the tensors from the
desired type to a type supported by the API. For example, a user is able to transform
input tensors from CUDNN_DATA_INT8x4 to CUDNN_DATA_INT8, run the desired API and
then transform output tensors from CUDNN_DATA_INT8 to CUDNN_DATA_INT8x4. Note
that this transformation will incur an extra round trip to memory.

‣ The tensor pointers and the filter pointers require at a minimum 4-byte alignment,
including INT8 data in the cuDNN library.

https://docs.nvidia.com/deeplearning/sdk/cudnn-archived/index.html
https://docs.nvidia.com/deeplearning/sdk/cudnn-support-matrix/index.html#cudnn-cuda-hardware-versions
https://docs.nvidia.com/cuda/cublas/index.html#cublasXtApi_reproducibility
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnTransformTensor

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 165

‣ Some computational options in cuDNN 8.0.1 now require increased alignment on
tensors in order to run efficiently. As always, cuDNN recommends users to align
tensors to 128-bit boundaries that will be sufficiently aligned for any computational
option in cuDNN. Doing otherwise may cause performance regressions in cuDNN
8.0.1 compared to cuDNN v7.6.

‣ For certain algorithms, when the computation is in float (32-bit float) and the output
is in FP16 (half float), there are cases where the numerical accuracy between the
different algorithms might differ. cuDNN 8.0.1 users can target the backend API to
query the numerical notes of the algorithms to get the information programmatically.
There are cases where algo0 and algo1 will have a reduced precision accumulation
when users target the legacy API. In all cases, these numerical differences are not
known to affect training accuracy even though they might show up in unit tests.

‣ For the _ALGO_0 algorithm of convolution backward data and backward filter, grouped
convolution with groups larger than 1 and with odd product of dimensions C, D (if 3D
convolution), H, and W is not supported on devices older than NVIDIA Volta. To prevent
a potential illegal memory access by an instruction that only has a 16-bit version in
Volta and later, pad at least one of the dimensions to an even value.

‣ On K80 GPUs, when cudnnConvolutionForward() is used with
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM algorithm and half I/O data
types a silent error might occur when the output width Q is 1 and both height and
width padding are zero.

Fixed Issues

The following issues have been fixed in this release:

‣ The dimA and strideA parameters in cudnnSetTensorNdDescriptor() do not
document the tensor layout. The documentation has been updated to include this
information.

‣ cuDNN 8.0.0 Preview will not work with GA10x NVIDIA Ampere Architecture GPUs.
This has been fixed in 8.0.1 Preview.

‣ cuDNN 8.0.0 Preview removed a restriction on convolution backward filter for output
filter with odd products of dimensions (N*C*D*H*W) for a kernel in algo0 for pre-Volta
GPUs. This can potentially lead to an illegal memory access error. This restriction
is restored in cuDNN 8.0.1 Preview. cuDNN will use a kernel that does not have this
restriction for this computation case.

‣ Fixed performance issues for pre-Vola architectures for convolutions (except when
the compute type is half).

‣ Mitigated the performance regression to less than 10% end to end.

Known Issues

‣ On pre-Volta, there are significant performance issues on convolution layers when the
compute type is half.

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBiasActivationForward
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnSetTensorNdDescriptor

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 166

‣ Sub-optimal performance is present in this release for all INT8 convolutions for all
GPUs.

‣ The performance of cudnnConvolutionBiasActivationForward() is slower than v7.6
in most cases. This is being actively worked on and performance optimizations will be
available in the upcoming releases.

‣ There are some peer-to-peer documentation links that are broken within the NVIDIA
cuDNN API Reference. These links will be fixed in the next release.

‣ cudnnCnnTrainVersionCheck() and cudnnCnnInferVersionCheck() are missing in
this release and will be added in the GA release.

‣ Documentation of RNN new APIs and deprecations is not complete. The
cudnnRNNBackwardData_v8() and cudnnRNNBackwardWeights_v8() functions will be
implemented in the next release.

‣ cuDNN 8.0.1 Preview build with Windows and CUDA 11.0 RC has reduced
performance on 2D, 3D, and grouped convolutions compared to Linux.

‣ There is a known issue in cuDNN 8.0.1 when linking statically to cuDNN and using the
library's 3D algo1 backward filter convolutions. Users will see that the libraries emit
an internal error or incorrectly state that a shared library is missing. This is a bug that
will be fixed in a future release.

‣ When using an RPM file on RedHat for installation, installing cuDNN v8 directly
or using TensorRT 7.1.3 will enable users to build their application with cuDNN v8.
However, in order for the user to compile an application with cuDNN v7 after cuDNN
v8 is installed, the user must perform the following steps:

 1. Issue sudo mv /usr/include/cudnn.h /usr/include/cudnn_v8.h.

 2. Issue sudo ln -s /etc/alternatives/libcudnn /usr/include/cudnn.h.

 3. Switch to cuDNN v7 by issuing sudo update-alternatives --config libcudnn
and choose cuDNN v7 from the list.

Steps 1 and 2 are required for the user to be able to switch between v7 and v8
installations. After steps 1 and 2 are performed once, step 3 can be used repeatedly
and the user can choose the appropriate cuDNN version to work with. For more
information, refer to Installing From An RPM File and Upgrading From v7 To v8.

‣ When FFT Tiled aglo (that is, CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING in forward
convolution or CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING for backward data)
is used for 3D convolution, an intermittent silent failure might happen due to an
incorrect stream used for kernel execution. In some cases, this might be manifested
as undefined values seen in the output.

‣ The implementation of cuDNNLRNCrossChannelBackward is inconsistent with the
implementation of cuDNNLRNCrossChannelForward and returns incorrect results
when the normalization window is even. This will be fixed in a future release.

‣ RNN APIs in cuDNN v8.0.1, compiled with CUDA 11.0, use an incorrect default down-
conversion on GPUs with CUDA SM version SM80 (NVIDIA Ampere Architecture GPU

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBiasActivationForward
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html
https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installlinux-rpm
https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#upgrade

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 167

family) when supplied input data and weights have the CUDNN_DATA_FLOAT type and
cudnnMathType_t set using cudnnSetRNNMatrixMathType() is CUDNN_DEFAULT_MATH
or CUDNN_TENSOR_OP_MATH. Instead of using the default TF32 computation when
Tensor Cores are used, a down conversion to FP16 (half-precision) is performed;
same as in the CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION mode. This introduces
a lower dynamic range of intermediate data but possibly faster execution. To
disable the automatic down conversion of CUDNN_DATA_FLOAT weights and data in
RNN APIs, set the environmental variable NVIDIA_TF32_OVERRIDE to 0 (notice this
will disable the use of TF32 in the entire library, which might have a performance
impact on CNNs that are not affected by this issue). Another workaround is
to assign the CUDNN_FMA_MATH mode to the cudnnMathType_t argument in
cudnnSetRNNMatrixMathType(). Due to this, the A100 TF32 feature is not accessible
for RNNs in cuDNN v8.0.1.

‣ Several cuDNN APIs are unable to directly support computations using integer types
(CUDNN_DATA_INT8, CUDNN_DATA_INT8x4, CUDNN_DATA_INT8x32 or CUDNN_DATA_INT32).
Floating types (particularly CUDNN_DATA_FLOAT) are much more widely supported. If
an API does not support the desired type, cudnnTransformTensor() can be used to
support the use case by converting to/from a supported type and the desired type.
Here are the steps for doing so:

 1. Convert all input tensors from their native type to a supported type
(CUDNN_DATA_FLOAT is recommended).

 2. Run cuDNN API using the converted input tensors and output tensor descriptors
set as CUDNN_DATA_FLOAT.

 3. Convert all output tensors from a supported type to your desired output type.

Note: This will require extra memory use for the temporary buffers. Further, this
will introduce an additional round trip to memory that might noticeably impact
performance.

‣ Updated: August 24, 2020

cuDNN convolution APIs may return CUDNN_STATUS_EXECUTION_FAILED when the
number of input or output channels equals to or exceeds 2097152.

‣ Updated: August 24, 2020

When the user is using cudnnRNN* APIs with the problem sizes (input size, hidden
size) being not multiples of 16 for FP16 tensors or multiples of 8 for FP32 tensors,
users may encounter a return status of CUDNN_STATUS_EXECUTION_FAILED.

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 168

1.27. cuDNN Release 8.0.0 Preview

ATTENTION: This is the cuDNN 8.0.0 Preview release. This Preview release is for early
testing and feedback, therefore, for production use of cuDNN, continue to use cuDNN
7.6.5. This release is subject to change based on ongoing performance tuning and
functional testing. For feedback on the new backend API and deprecations, e-mail
cudnn@nvidia.com.

These release notes are applicable to NVIDIA JetPack users of cuDNN unless appended
specifically with (not applicable for Jetson platforms).

Note: cuDNN 8.0.0 passed GA quality testing and validation for TensorRT and JetPack
users.

For previous cuDNN documentation, see the cuDNN Archived Documentation.

Key Features and Enhancements

The following features and enhancements have been added to this release:
cuDNN library

‣ The cuDNN library has been split into the following libraries:

‣ cudnn_ops_infer - This entity contains the routines related to cuDNN context
creation and destruction, tensor descriptor management, tensor utility
routines, and the inference portion of common machine learning algorithms
such as batch normalization, softmax, dropout, and so on.

‣ cudnn_ops_train - This entity contains common training routines and
algorithms, such as batch normalization, softmax, dropout, and so on. The
cudnn_ops_train library depends on cudnn_ops_infer.

‣ cudnn_cnn_infer - This entity contains all routines related to convolutional
neural networks needed at inference time. The cudnn_cnn_infer library
depends on cudnn_ops_infer.

‣ cudnn_cnn_train - This entity contains all routines related to convolutional
neural networks needed during training time. The cudnn_cnn_train library
depends on cudnn_ops_infer, cudnn_ops_train, and cudnn_cnn_infer.

‣ cudnn_adv_infer - This entity contains all other features and algorithms. This
includes RNNs, CTC loss, and multihead attention. The cudnn_adv_infer library
depends on cudnn_ops_infer.

https://docs.nvidia.com/deeplearning/sdk/cudnn-archived/index.html#cudnn_7
https://docs.nvidia.com/deeplearning/sdk/cudnn-archived/index.html#cudnn_7
mailto:cudnn@nvidia.com
https://docs.nvidia.com/deeplearning/sdk/cudnn-archived/index.html

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 169

‣ cudnn_adv_train - This entity contains all the training counterparts of
cudnn_adv_infer. The cudnn_adv_train library depends on cudnn_ops_infer,
cudnn_ops_train, and cudnn_adv_infer.

‣ cudnn - This is an optional shim layer between the application layer and the
cuDNN code. This layer opportunistically opens the correct library for the API
at runtime.

‣ cuDNN does not support mixing sub library versions. If there is a mismatch in the
cuDNN version numbers in the cuDNN sub library header files, the build will crash.
The versions must match on the major number and minor number, as well as the
patch level.

‣ The cuDNN sub libraries must be installed under a single directory.

Multiple dynamic libraries
In order to link against a subset of cuDNN, you must know which subset of the API
you are using and then link against the appropriate cuDNN sub components. The
cuDNN sub components are as follows:

‣ cudnn_ops_infer.so

‣ cudnn_ops_train.so

‣ cudnn_cnn_infer.so

‣ cudnn_cnn_train.so

‣ cudnn_adv_infer.so

‣ cudnn_adv_train.so

cuDNN linking options
There are two different linking options:

‣ Linking against individual sub libraries: Users who link against individual sub
libraries must be able to identify the API exposed by each cuDNN sub library.
Users also must know the hierarchy of the different cuDNN sub libraries. Each
.so or .a needs to be specified explicitly in the user’s linking command, as well
as any external dependencies cuDNN require. For more information, refer to the
Limitations section below.

‣ Linking against the full cuDNN (compatibility option): This would allow users to use
-lcudnn. libcudnn.so is provided as a shim layer that would open the appropriate
cuDNN sub-library for any particular cuDNN API call. While libcudnn.a is largely
unchanged, it is a statically linked file for all of cuDNN.

cuDNN loading options
For users who want a smaller memory footprint, there are two ways of loading the
library.

‣ Cherry-pick loading: Each sub library is loaded only when accessed. This will cause
the first reference to that sub library to take a long time but will ensure the user
isn’t loading more libraries than they need.

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 170

‣ All access loading: All available cuDNN sub libraries are loaded early during runtime.

New API functions
For a list of functions and data types that were added in this release, refer to the API
changes for cuDNN 8.0.0.

General Support of CUDA Graph Capture

CUDA Graphs are now supported for all functions in this release; with the following
restrictions.

‣ CUDA Toolkit 10.2 or higher is required.

‣ cuDNN 8.0.0 graphs are captured using the CUDA graph-capture APIs.

‣ any non-default use of textures by users of cuDNN must be disabled prior to
capture

cuDNN 8.0.0 does not at this time offer API support to add operations to an existing
CUDA graph directly; however, the captured graph may be added to an existing graph
through the existing CUDA Graphs API.

Regarding texture usage, cuDNN 8.0.0 by default will not enable texture usage;
expert users may enable texture usage where allowed, but that usage will prevent a
successful CUDA Graph capture until disabled. In order for cuDNN 8.0.0 to be graph-
capture compatible library-wide, the cuDNN 8.0.0 CTC API was updated as described
elsewhere.

The usual restrictions for CUDA Graphs apply in addition to these restrictions here.

New APIs for convolution
A new set of API functions to provide a brand new approach to cuDNN that offers
more fine-grain control of performance, numerical properties, and so on for
convolution. Using this API, users directly access various engines that compute
convolution forward propagation, backward data, backward filter, and generic support
for fusion starting with a limited support in this cuDNN 8.0.0 release and expanding
support in follow-up releases. Each engine has performance-tuning knobs such as
GEMM tiling and split-K. Users can use this API to fine-tune their network by querying
cuDNN’s heuristics, or doing their own, to find the most optimal engine configuration
with which cuDNN computes each network layer.

NVIDIA Ampere architecture GPU support (not applicable for Jetson platforms)

‣ Added support for A100 GPU based on NVIDIA Ampere Architecture.

‣ cuDNN 8.0.0 has seen significant improvements when using A100 GPUs compared
to NVIDIA Volta V100 with cuDNN 7.6.

‣ Added support for Tensor Float 32 (TF32) for 1D and 2D convolutions. Full support
for TF32 will come in future releases such as grouped convolutions and 3D
convolutions in addition to further performance tuning.

‣ Increased performance for the legacy Tensor Cores (mixed precision for 1D, 2D,
3D, and grouped convolutions.

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#release-800
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#release-800

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 171

NVIDIA Turing and NVIDIA Volta architecture improvements

‣ New kernels for Tensor Cores and heuristics update for 1D convolution resulting
in performance improvements for speech networks such as Jasper and Tacotron2
and WaveGlow, in addition to support for grouped 1D convolution (QuartzNet).

‣ Added 3D convolutions support of NHWC and improved heuristics and kernels for
Tensor Cores in NCHW resulting in performance improvements for VNet, UNet-
Medical, and UNet-Industrial. Additionally, FP16 3D convolutions are supported as
well.

‣ Better utilization of Tensor Cores and heuristics for grouped convolutions result in
improvements for ResNext.

‣ More tuning for vision networks like ResNet-50 ([MXNet] [PyTorch] [TensorFlow])
and SSD ([PyTorch] [TensorFlow]) with new updated heuristics.

Operation fusion
Operation fusion can be achieved using the backend API. The general workflow
is similar to running unfused operations, except that instead of creating a single
operation Operation Graph, the user may specify a multi-operation Operation Graph.
For more information, refer to Operation Fusion using the Backend API.

Depthwise convolution extension
We have extended the fprop and dgrad NHWC depthwise kernels to support more
combinations (filter sizes/strides) such as 5x5/1x1, 5x5/2x2, 7x7/1x1, 7x7/2x2 (in
addition to what we already have, 1x1/1x1, 3x3/1x1, 3x3/2x2), which provides good
performance.

Compatibility

For the latest compatibility software versions of the OS, CUDA, the CUDA driver, and the
NVIDIA hardware, refer to the NVIDIA cuDNN Support Matrix.

Limitations

‣ Samples must be installed in a writable location, otherwise the samples can crash.

‣ RNN and multihead attention API calls may exhibit non-deterministic behavior when
the cuDNN 8.0.0 library is built with CUDA Toolkit 10.2 or higher. This is the result
of a new buffer management and heuristics in the cuBLAS library. As described in
Results Reproducibility, numerical results may not be deterministic when cuBLAS
APIs are launched in more than one CUDA stream using the same cuBLAS handle.
This is caused by two buffer sizes (16 KB and 4 MB) used in the default configuration.

When a larger buffer size is not available at runtime, instead of waiting for a buffer
of that size to be released, a smaller buffer may be used with a different GPU kernel.
The kernel selection may affect numerical results. The user can eliminate the non-
deterministic behavior of cuDNN RNN and multihead attention APIs, by setting

https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/SpeechRecognition/Jasper
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/SpeechSynthesis/Tacotron2
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/SpeechSynthesis/Tacotron2
https://github.com/NVIDIA/NeMo/tree/main/examples/asr/conf/quartznet
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Segmentation/VNet
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Segmentation/UNet_Medical
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Segmentation/UNet_Medical
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Segmentation/UNet_Industrial
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Classification/ConvNets
https://github.com/NVIDIA/DeepLearningExamples/tree/master/MxNet/Classification/RN50v1.5
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Classification/ConvNets
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Classification/RN50v1.5
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Detection/SSD
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow/Detection/SSD
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#op-fusion
https://docs.nvidia.com/deeplearning/sdk/cudnn-support-matrix/index.html#cudnn-cuda-hardware-versions
https://docs.nvidia.com/cuda/cublas/index.html#cublasXtApi_reproducibility

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 172

a single buffer size in the CUBLAS_WORKSPACE_CONFIG environmental variable, for
example, :16:8 or :4096:2.

The first configuration instructs cuBLAS to allocate eight buffers of 16 KB each in
GPU memory while the second setting creates two buffers of 4 MB each. The default
buffer configuration in cuBLAS 10.2 and 11.0 is :16:8:4096:2, that is, we have two
buffer sizes. In earlier cuBLAS libraries, such as cuBLAS 10.0, it used the :16:8 non-
adjustable configuration. When buffers of only one size are available, the behavior of
cuBLAS calls is deterministic in multi-stream setups.

‣ Some data types are not widely supported by all cuDNN API. For example,
CUDNN_DATA_INT8x4 is not supported by many functions. In such cases, support
is available by using cudnnTransformTensor() to transform the tensors from the
desired type to a type supported by the API. For example, a user is able to transform
input tensors from CUDNN_DATA_INT8x4 to CUDNN_DATA_INT8, run the desired API and
then transform output tensors from CUDNN_DATA_INT8 to CUDNN_DATA_INT8x4. Note
that this transformation will incur an extra round trip to memory.

‣ The tensor pointers and the filter pointers require at a minimum 4-byte alignment,
including INT8 data in the cuDNN library.

‣ Some computational options in cuDNN 8.0.0 now require increased alignment on
tensors in order to run efficiently. As always, cuDNN recommends users to align
tensors to 128-bit boundaries that will be sufficiently aligned for any computational
option in cuDNN. Doing otherwise may cause performance regressions in cuDNN
8.0.0 compared to cuDNN v7.6.

‣ For certain algorithms, when the computation is in float (32-bit float) and the output
is in FP16 (half float), there are cases where the numerical accuracy between the
different algorithms might differ. cuDNN 8.0.0 users can target the backend API to
query the numerical notes of the algorithms to get the information programmatically.
There are cases where algo0 and algo1 will have a reduced precision accumulation
when users target the legacy API. In all cases, these numerical differences are not
known to affect training accuracy even though they might show up in unit tests.

Deprecated Features

The following features are deprecated in cuDNN 8.0.0:

‣ Support for Ubuntu 14.04 has been deprecated in this release. Upgrade to 16.04 or
18.04 for continued support.

‣ Support for Mac OS X has been deprecated in this release. Linux and Windows OS are
currently supported.

‣ cuDNN version 8 introduces a new API deprecation policy to enable a faster pace
of innovation. A streamlined, two-step, deprecation policy will be used for all API
changes starting with cuDNN version 8. For details about this new deprecation policy,
refer to the Backward Compatibility and Deprecation Policy.

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnTransformTensor
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#backward-compatibility

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 173

‣ Removed and deprecated API changes. For a list of removed and deprecated APIs,
refer to the API changes for cuDNN 8.0.0.

Fixed Issues

The following issues have been fixed in this release:

‣ There is a known issue in that cudnnDestroy() does not destroy all that
cudnnCreate() created. Calling cudnnDestroy() after cudnnCreate() has a memory
leak in some tests of about 1.6 MB on host memory. This issue has been fixed in
cuDNN 8.0.0.

‣ Starting in cuDNN 7.6.1, when using the experimental multihead attention API, it is
possible that the forward and backward paths produce different results for the BERT
model, when the batch size is greater than one and the number of heads is greater
than one. This issue has been fixed in cuDNN 8.0.0.

‣ The description of cudnnSetCTCLossDescriptorEx() is not clear. This issue has been
fixed in cuDNN 8.0.0.

‣ Documentation affecting 1x1 convolution functions are not clear, for example
cudnnFindConvolutionBackwardDataAlgorithm(). This issue has been fixed in
cuDNN 8.0.0.

‣ cuDNN forward convolution with
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM does not propagate NANs in
weights. This issue has been fixed in cuDNN 8.0.0.

‣ Document mathematical definitions of all operations in cuDNN. We include full
mathematical descriptions for the convolution functions.

‣ The functions cudnnGetConvolutionForwardAlgorithm_v7() and
cudnnGetConvolutionForwardWorkspaceSize() may return CUDNN_STATUS_SUCCESS
while the execution of the same convolution returns CUDNN_STATUS_NOT_SUPPORTED.
Similar issues may also happen for convolutionBackwardData() and
convolutionBackwardFilter(). This issue is present in cuDNN 7.2.2 library and later
versions. This has been fixed in cuDNN 8.0.0.

‣ Algorithms returned by cudnnGetConvolution*Algorithm() may, in some limited use
cases, fail to execute when they are actually run. This is a cuDNN library-wide issue
and applies for convolution forward, convolution backward data, and convolution
backward filter operations. This issue is also present in versions before cuDNN 8.0.0
EA.

‣ cuDNN does not support CUDA graphs. When launching a CUDA graph constructed
using a stream capture that includes a cudnnConvolutionForward() operation, you
may see cudaErrorLaunchFailure error. This is because CUDA graphs were not
supported. The user can proceed.

‣ There was a known performance drop in 3D convolutions for some cases on NVIDIA
Turing GPUs since cuDNN 7.4.2. This has been fixed on T4. (not applicable for Jetson
platforms)

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#release-800

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 174

‣ There are rare cases where cudnnConvolution* will return STATUS_NOT_SUPPORTED
when cudnn*GetWorkspaceSize might return success for a given algorithm. This has
been fixed in cuDNN 8.0.0.

‣ In previous versions of cuDNN,
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM did not propagate NaN
values in some cases. This is fixed in the current release. Users desiring the old
behavior can configure ReLU activation and set the floor to be -Inf.

‣ The multiHeadAttention sample code was added to the cuDNN 7.6.3 release. The
sample code includes a simple NumPy/Autograd reference model of the multihead
attention block that computes the forward response and all derivatives. The test
code demonstrates how to use the multihead attention API, access attention
weights, and sequence data.

‣ Updated: July 22, 2020

In version 7.6.x, cudnnConvolutionBackwardData() with
PSEUDO_HALF_CONFIG with CUDNN_TENSOR_OP_MATH or FLOAT_CONFIG with
CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION returns incorrect results in 3D
convolution when the filter size of the w dimension is 1 and padding of the w
dimension is 0. This issue has been fixed in this release.

Known Issues

‣ Performance regressions on V100 are observed in this release on SSD inference use
cases if not using TensorRT.

‣ There are significant performance regressions on pre-Volta GPUs and some NVIDIA
Turing GPUs based on the TU102 architecture. This performance regression is not
applicable to T4, NVIDIA JetPack, and NVIDIA Tegra.

‣ Sub-optimal performance is present in this release for all INT8 convolutions for all
GPUs.

‣ The performance of cudnnConvolutionBiasActivationForward() is slower than v7.6
in most cases. This is being actively worked on and performance optimizations will be
available in the upcoming releases.

‣ On K80 GPUs, when cudnnConvolutionForward() is used with
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM algorithm and half I/O data
types a silent error might occur.

‣ There are some peer-to-peer documentation links that are broken within the NVIDIA
cuDNN API Reference. These links will be fixed in the next release.

‣ cudnnCnnTrainVersionCheck() and cudnnCnnInferVersionCheck() are missing in
this release and will be added in the GA release.

‣ Documentation of RNN new APIs and deprecations is not complete. The
cudnnRNNBackwardData_v8() and cudnnRNNBackwardWeights_v8() functions will be
implemented in the next release.

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBiasActivationForward
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBiasActivationForward
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html

cuDNN Release 8.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 175

‣ cuDNN 8.0.0 Preview will not work with GA10x NVIDIA Ampere Architecture GPUs.
This will be fixed in the next release.

‣ cuDNN 8.0.0 Preview build with Windows and CUDA 11.0 RC has reduced
performance on 2D, 3D, and grouped convolutions compared to Linux.

‣ Updated: June 12, 2020

There is a known issue in cuDNN 8.0.0 when linking statically to cuDNN and using the
library's 3D algo1 backward filter convolutions. Users will see that the libraries emit
an internal error or incorrectly state that a shared library is missing. This is a bug that
will be fixed in a future release.

‣ Updated: June 25, 2019

There is a known issue in cuDNN 8.0.0 when linking statically to cuDNN and using the
library's 3D algo1 backward filter convolutions. Users will see that the library emit an
internal error or incorrectly state that a shared library is missing. This is a bug that
will be fixed in a future release.

‣ Updated: June 25, 2019

When using an RPM file on RedHat for installation, installing cuDNN v8 directly
or using TensorRT 7.1.3 will enable users to build their application with cuDNN v8.
However, in order for the user to compile an application with cuDNN v7 after cuDNN
v8 is installed, the user must perform the following steps:

 1. Issue sudo mv /usr/include/cudnn.h /usr/include/cudnn_v8.h.

 2. Issue sudo ln -s /etc/alternatives/libcudnn /usr/include/cudnn.h.

 3. Switch to cuDNN v7 by issuing sudo update-alternatives --config libcudnn
and choose cuDNN v7 from the list.

Steps 1 and 2 are required for the user to be able to switch between v7 and v8
installations. After steps 1 and 2 are performed one time, step 3 can be used
repeatedly and the user can choose the appropriate cuDNN version to work with. For
more information, refer to Installing from an RPM File and Upgrading from v7 to v8.

‣ Updated: July 22, 2020

cudnnConvolutionForward(), cudnnConvolutionBackwardData(),
and cudnnConvolutionBackwardFilter() erroneously returns
CUDNN_STATUS_INTERNAL_ERROR when the workspace size argument value is less than
the required workspace size as returned by their respective cudnnGetWorkspace()
API.

‣ Updated: August 24, 2020

cuDNN convolution APIs may return CUDNN_STATUS_EXECUTION_FAILED when the
number of input or output channels equals to or exceeds 2097152.

https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installlinux-rpm
https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#upgrade

NVIDIA cuDNN RN-08667-001_v8.9.3 | 176

Chapter 2. cuDNN Release 7.x.x

2.1. cuDNN Release 7.6.5
This is the cuDNN 7.6.5 release notes. This release includes fixes from the previous
cuDNN v7.x.x releases as well as the following additional changes. These release notes
are applicable to both cuDNN and NVIDIA JetPack users unless appended specifically
with (not applicable for Jetson platforms).

For previous cuDNN release notes, refer to the NVIDIA cuDNN Archives.

Key Features and Enhancements

The following features and enhancements have been added to this release:

‣ Made performance improvements to several APIs including cudnnAddTensor,
cudnnOpTensor, cudnnActivationForward, and cudnnActivationBackward.

‣ Separated the cuDNN datatype references and APIs from the NVIDIA cuDNN
Developer Guide into a new NVIDIA cuDNN API Reference.

‣ Published Best Practices For Using cuDNN 3D Convolutions.

Compatibility

For the latest compatibility software versions of the OS, CUDA, the CUDA driver, and the
NVIDIA hardware, see the NVIDIA cuDNN Support Matrix.

Limitations

Updated: June 5, 2020

‣ RNN and multihead attention API calls may exhibit non-deterministic behavior when
the cuDNN 7.6.5 library is built with CUDA Toolkit 10.2 or higher. This is the result of
a new buffer management and heuristics in the cuBLAS library. As described in the
Results Reproducibility section in the cuBLAS Library User's Guide, numerical results
may not be deterministic when cuBLAS APIs are launched in more than one CUDA
stream using the same cuBLAS handle. This is caused by two buffer sizes (16 KB and
4 MB) used in the default configuration.

https://docs.nvidia.com/deeplearning/sdk/cudnn-archived/index.html
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html
https://docs.nvidia.com/deeplearning/sdk/cudnn-best-practices/index.html
https://docs.nvidia.com/deeplearning/sdk/cudnn-support-matrix/index.html#cudnn-cuda-hardware-versions
https://docs.nvidia.com/cuda/cublas/index.html#cublasXtApi_reproducibility

cuDNN Release 7.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 177

When a larger buffer size is not available at runtime, instead of waiting for a buffer
of that size to be released, a smaller buffer may be used with a different GPU kernel.
The kernel selection may affect numerical results. The user can eliminate the non-
deterministic behavior of cuDNN RNN and multihead attention APIs, by setting
a single buffer size in the CUBLAS_WORKSPACE_CONFIG environmental variable, for
example, :16:8 or :4096:2.

The first configuration instructs cuBLAS to allocate eight buffers of 16 KB each in
GPU memory while the second setting creates two buffers of 4 MB each. The default
buffer configuration in cuBLAS 10.2 and 11.0 is :16:8:4096:2, that is, we have two
buffer sizes. In earlier cuBLAS libraries, such as cuBLAS 10.0, it used the :16:8 non-
adjustable configuration. When buffers of only one size are available, the behavior of
cuBLAS calls is deterministic in multi-stream setups.

Fixed Issues

The following issues have been fixed in this release:

‣ Corrected the documentation for cudnnBatchNormalization* API functions,
clarifying which are optional arguments and when the user must pass them to the
API.

‣ Fixed a lack-of-synchronization issue when cudnnRNNBackwardData() and
cudnnRNNBackwardDataEx() calls a kernel that is not synchronized back to the
application's stream. This issue only appears when users are using bidirectional
RNN using algo of CUDNN_RNN_ALGO_STANDARD. This issue affects cuDNN versions 5
through 7.6.4.

‣ Corrected-supported tensor format tables for cudnnConvolutionForward().

‣ cudnnConvolutionBackwardData used to give wrong answers when the kernel size
was >=30 in any dimension and the stride is 2 in that dimension; with the algorithm
set to CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING. This has been fixed.

‣ Fixed an issue where if the user uses cudnnBatchNormalizationForwardInference
with the mode of CUDNN_BATCHNORM_SPATIAL_PERSISTENT, the API will return
CUDNN_STATUS_NOT_SUPPORTED and not fall back to CUDNN_BATCHNORM_SPATIAL
mode. Now, it falls back correctly similar to the behavior of the other batch
normalization APIs including cudnnBatchNormalizationForwardTraining,
cudnnBatchNormalizationForwardTrainingEx, cudnnBatchNormalizationBackward,
and cudnnBatchNormalizationBackwardEx.

‣ Previously, when cuDNN invoked convolve_common_engine_int8_NHWC kernel for
NHWC format, irrespective of the output data precision, the output values were
clipped to be in the range from -128 to 127. In this release, we have fixed the issue.
As a result, output values are clipped only for INT8 precision. Whereas if the output
data is float precision, the values are not clipped.

cuDNN Release 7.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 178

Known Issues

‣ Updated: August 24, 2020

Two-dimensional forward convolutions using algo1 may segfault when the filter size
is large. For example, we have observed this issue when the filter width and height are
more than or equal to 363.

‣ Updated: September 28, 2020

cudnnConvolutionForward(), cudnnConvolutionBackwardData(), and
cudnnConvolutionBackwardFilter() calls with algo0 or algo1 can result in an illegal
memory access for PSEUDO_HALF_CONFIG data configuration when the number of
elements in the output tensor is odd. This can be mitigated by allocating one extra
element in the output buffer.

2.2. cuDNN Release 7.6.4
This is the cuDNN 7.6.4 release notes. This release includes fixes from the previous
cuDNN v7.x.x releases as well as the following additional changes.

For previous cuDNN release notes, refer to the NVIDIA cuDNN Archives.

Key Features and Enhancements

The following features and enhancements have been added to this release:

‣ Gained significant speed-up in multihead-attention forward training and inference.

Compatibility

For the latest compatibility software versions of the OS, CUDA, the CUDA driver, and the
NVIDIA hardware, see the NVIDIA cuDNN Support Matrix.

Limitations

‣ When launching a CUDA graph constructed using a stream capture that includes a
cudnnConvolutionForward operation, the subsequent synchronization point reports
a cudaErrorLaunchFailure error. This error appears when cuDNN is set to use a non-
default stream.

Fixed Issues

The following issues have been fixed in this release:

‣ Earlier versions of cuDNN v7.6 contained symbols that would conflict with those of
in TensorRT 5.1 and later. In some cases, these conflicts could lead to application

https://docs.nvidia.com/deeplearning/sdk/cudnn-archived/index.html
https://docs.nvidia.com/deeplearning/sdk/cudnn-support-matrix/index.html#cudnn-cuda-hardware-versions

cuDNN Release 7.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 179

crashes when applications linked against cuDNN and TensorRT. This issue is fixed in
cuDNN 7.6.4.

‣ Addressed the regressions that were introduced in the
cudnnConvolutionBiasActivationForward function in cuDNN 7.6.3. Previously, if this
API had different values in destination data buffer and zData buffer, then incorrect
results were computed. This issue has been resolved and now the API will compute
correct results even if users provide an arbitrary set of values to the destination data
and zData.

‣ Multihead attention will now return CUDNN_STATUS_ARCH_MISMATCH for true-half
configuration on devices with compute capability less than 5.3 (for example,
most of Maxwell and all of NVIDIA Kepler, and so on), which do not have
native hardware support for true half computation. Previously, an error like
CUDNN_STATUS_EXECUTION_FAILED may be triggered or inaccurate results may be
produced.

2.3. cuDNN Release 7.6.3
This is the cuDNN 7.6.3 release notes. This release includes fixes from the previous
cuDNN v7.x.x releases as well as the following additional changes. These release notes
are applicable to both cuDNN and NVIDIA JetPack users unless appended specifically
with (not applicable for Jetson platforms).

For previous cuDNN release notes, refer to the NVIDIA cuDNN Archives.

Key Features and Enhancements

The following features and enhancements have been added to this release:

‣ The cuDNN 7.6.3 library now supports auto-padding for NHWC layout. The functional
behavior, and the benefits of auto-padding as follows: (not applicable for Jetson
platforms)

‣ For use cases where C and K dimensions of input and filter Tensors are not
multiples of 8, the auto-padding feature increases the Tensor size so that the
Tensor dimensions are multiples of eight.

‣ With auto-padding, the cuDNN library invokes faster kernels, improving the
performance.

‣ With auto-padding, the performance with NHWC data layout is now comparable
to that of the NCHW layout.

‣ Added support for dataType=CUDNN_DATA_HALF and computePrec=CUDNN_DATA_HALF
in multihead attention forward (cudnnMultiHeadAttnForward())
and backward (gradient) (cudnnMultiHeadAttnBackwardData() and
cudnnMultiHeadAttnBackwardWeights()) API functions. (not applicable for Jetson
platforms)

https://docs.nvidia.com/deeplearning/sdk/cudnn-archived/index.html
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnMultiHeadAttnForward
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnMultiHeadAttnBackwardData
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnMultiHeadAttnBackwardWeights

cuDNN Release 7.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 180

‣ Multihead attention API now supports bias after the projections on Q, K, V, and
O in the cudnnMultiHeadAttnForward() call (backward bias gradient is not yet
supported). (not applicable for Jetson platforms)

The new feature required a small API change in cudnnSetAttnDescriptor(): the
cudnnAttnQueryMap_t queryMap argument is replaced with unsigned attnMode to
pass various on and off options. This change is backward compatible with earlier API
versions. (not applicable for Jetson platforms)

‣ Significantly improved the performance in typical multihead attention use cases in
forward inference and training, especially when the vector length of each head is a
multiple of 32 up to 128. (not applicable for Jetson platforms)

‣ Tensor Core support is added for true half and single-precision use
cases in multihead attention. Users may use it by setting the mathType
argument in cudnnSetAttnDescriptor() to CUDNN_TENSOR_OP_MATH or
CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION. (not applicable for Jetson platforms)

‣ The multiHeadAttention sample code is added. The sample code includes a compact
NumPy/Autograd reference model of the multihead attention block that computes
the forward response and all first-order derivatives. The test code demonstrates how
to use the multihead attention API, access attention weights, and sequence data.
(not applicable for Jetson platforms)

‣ Improved depth-wise convolution for forward, dgrad, and wgrad under the following
conditions:

‣ Algorithm is algo1.

‣ Tensor format for filter is NCHW (wgrad supports NHWC also).

‣ Input and outputs are in FP16 and computation is in FP32.

‣ Filter size: 1x1, 3x3, 5x5, 7x7 (dgrad only supports stride 1).

‣ Math type is CUDNN_DEFAULT_MATH.

‣ Improved-grouped convolution for cudnnConvolutionBackwardFilter() in the
configuration under the following conditions:

‣ Algorithm is CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1.

‣ Math type is CUDNN_DEFAULT_MATH.

‣ Tensor format for filter is NCHW.

‣ Input and outputs are in FP16 and computation is in FP32.

‣ Filter size: 1x1, 3x3, 5x5, 7x7

‣ Improved the performance of grouped convolution, for cudnnConvolutionForward()
in the configuration under the following conditions:

‣ Algorithm is CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM

‣ Math type is CUDNN_TENSOR_OP_MATH or CUDNN_TENSOROP_MATH_ALLOW_CONVERSION

‣ Tensor format for filter is NHWC.

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnMultiHeadAttnForward
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnSetAttnDescriptor
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnSetAttnDescriptor

cuDNN Release 7.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 181

‣ Input and outputs are in FP16 and computation is in FP16/ FP32.

‣ Per group C and K == 4/8/16/32

‣ Filter size: 3x3

‣ Improved the performance of grouped convolution, for
cudnnConvolutionBackwardFilter() in the configuration under the following
conditions:

‣ Algorithm is CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1

‣ Math type is CUDNN_TENSOR_OP_MATH or CUDNN_TENSOROP_MATH_ALLOW_CONVERSION

‣ Tensor format for filter is NHWC.

‣ Input and outputs are in FP16 and computation is in FP32.

‣ On NVIDIA Volta (compute capability 7.0)

‣ Per group C and K == 4/8/16/32

‣ Filter size: 1x1, 3x3

Fixed Issues

The following issues have been fixed in this release:

‣ Fixed an issue where cudnnMultiHeadAttnBackwardData() was producing incorrect
results when K sequence length is longer than 32.

‣ Fixed a race condition in cudnnMultiHeadAttnBackwardData() that was producing
intermittent incorrect results.

‣ The function cudnnCTCLoss() produced incorrect gradient result for label whose
length is smaller than the maximal sequence length in the batch. This is fixed in
cuDNN 7.6.3.

2.4. cuDNN Release 7.6.2
This is the cuDNN 7.6.2 release notes. This release includes fixes from the previous
cuDNN v7.x.x releases as well as the following additional changes.

For previous cuDNN release notes, refer to the NVIDIA cuDNN Archives.

Key Features and Enhancements

The following features and enhancements have been added to this release:

‣ Enhanced the performance of 3D deconvolution using
cudnnConvolutionBackwardData(), for the following configuration:

‣ 2x2x2 filter and 2x2x2 convolution stride.

‣ For FP16 for data input and output, and for accumulation.

‣ For FP32 for data input and output, and for accumulation.

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnMultiHeadAttnBackwardData
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnMultiHeadAttnBackwardData
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnCTCLoss
https://docs.nvidia.com/deeplearning/sdk/cudnn-archived/index.html
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBackwardData

cuDNN Release 7.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 182

‣ Enhanced the performance of 3D convolution using cudnnConvolutionForward(), for
the following configuration:

‣ Tensor Core for FP16 for data input and output and FP32 accumulation when
cudnnMathType_t is set.

‣ Tensor Core for FP32 for data input and output and FP32 accumulation when
cudnnMathType_t is set.

‣ Enhanced the functionality of the data type cudnnFusedOps_t by adding the
following three enums:

‣ CUDNN_FUSED_CONV_SCALE_BIAS_ADD_ACTIVATION

‣ CUDNN_FUSED_SCALE_BIAS_ADD_ACTIVATION_GEN_BITMASK, and

‣ CUDNN_FUSED_DACTIVATION_FORK_DBATCHNORM

Fixed Issues

The following issues have been fixed in this release:

‣ In cuDNN 7.6.1, on NVIDIA Volta architecture only, there may be a performance
degradation when the function cudnnConvolutionBackwardFilter() is used for 3D
convolutions with cudnnConvolutionBwdFilterAlgo_t. This is fixed in cuDNN 7.6.2.

‣ In cuDNN 7.6.1, on NVIDIA Turing and NVIDIA Pascal architectures, performance may
be degraded for cudnnConvolutionBackwardData(), when used with the following
conditions:

‣ cudnnConvolutionBwdDataAlgo_t for 3D convolutions

‣ wDesc, dyDesc, and dxDesc are all in NCDHW.

‣ Data type configuration is FLOAT_CONFIG (that is, single-precision data and
compute).

This is fixed in cuDNN 7.6.2.

‣ In cuDNN 7.6.1, in some cases the function cudnnConvolutionBackwardData() may
fail with “disallowed mismatches” error on NVIDIA Turing (T4) and NVIDIA Volta (V100)
architectures, when used with the following configuration:

‣ Algorithm is cudnnConvolutionBwdDataAlgo_t

‣ cudnnMathType_t is CUDNN_TENSOR_OP_MATH or
CUDNN_TENSOROP_MATH_ALLOW_CONVERSION

‣ cudnnTensorFormat_t for filter is NCHW.

‣ Input and outputs are in FP16 and computation is in FP32.

This is fixed in cuDNN 7.6.2.

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionForward
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnMathType_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnMathType_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnFusedOps_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBackwardFilter
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBwdFilterAlgo_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBackwardData
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBwdDataAlgo_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBackwardData
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBwdDataAlgo_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnMathType_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnTensorFormat_t

cuDNN Release 7.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 183

2.5. cuDNN Release 7.6.1
This is the cuDNN 7.6.1 release notes. This release includes fixes from the previous
cuDNN v7.x.x releases as well as the following additional changes.

Key Features and Enhancements

The following features and enhancements have been added to this release:

‣ Performance is enhanced for 3D convolutions using Tensor Core for FP16 input and
output data types, whenever they are supported. Moreover, for single-precision
(FP32) I/O, cuDNN 7.6.1 will use these enhanced kernels whenever possible, and
only when cudnnMathType_t is set to CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION.
See cudnnConvolutionForward() and cudnnConvolutionBackwardData() and
cudnnConvolutionBackwardFilter().

‣ On Maxwell and NVIDIA Pascal architectures only, the performance
of 3D convolutions with the kernel size of 128^3, when used with
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1, is enhanced.

‣ API logging is fully implemented for the experimental multihead attention API,
namely, for the following functions:

‣ cudnnCreateAttnDescriptor()

‣ cudnnDestroyAttnDescriptor()

‣ cudnnSetAttnDescriptor()

‣ cudnnGetAttnDescriptor()

‣ cudnnGetMultiHeadAttnBuffers()

‣ cudnnGetMultiHeadAttnWeights()

‣ cudnnMultiHeadAttnForward()

‣ cudnnMultiHeadAttnBackwardData()

‣ cudnnMultiHeadAttnBackwardWeights()

‣ cudnnSetSeqDataDescriptor()

‣ cudnnGetSeqDataDescriptor()

‣ cudnnCreateSeqDataDescriptor()

‣ cudnnDestroySeqDataDescriptor()

‣ Performance of the experimental multihead attention forward API is enhanced. For
more information, refer to cudnnMultiHeadAttnForward().

‣ Performance is enhanced for the fused convolution and fused wgrad fallback path.
For more information, refer to cudnnFusedOps_t.

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnMathType_t
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionForward
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBackwardData
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBackwardFilter
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#api-logging
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnCreateAttnDescriptor
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnDestroyAttnDescriptor
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnSetAttnDescriptor
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnGetAttnDescriptor
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnGetMultiHeadAttnBuffers
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnGetMultiHeadAttnWeights
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnMultiHeadAttnForward
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnMultiHeadAttnBackwardData
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnMultiHeadAttnBackwardWeights
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnSetSeqDataDescriptor
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnGetSeqDataDescriptor
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnCreateSeqDataDescriptor
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnDestroySeqDataDescriptor
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnMultiHeadAttnForward
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnFusedOps_t

cuDNN Release 7.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 184

Fixed Issues

The following issues have been fixed in this release:

‣ In cuDNN 7.6.0, the function cudnnGetConvolutionBackwardDataWorkspaceSize()
returns a value for which cudnnConvolutionBackwardData(),
when used with CUDNN_CONVOLUTION_BWD_DATA_ALGO_0, returns
CUDNN_STATUS_NOT_SUPPORTED. This is fixed in cuDNN 7.6.1 so that now
cudnnGetConvolutionBackwardDataWorkspaceSize() returns a proper value for
cudnnConvolutionBackwardData().

‣ In cuDNN 7.6.0 and earlier versions, when all the following conditions are true,

‣ RNN model is bi-directional,

‣ Cell type is LSTM,

‣ cudnnRNNAlgo_t= CUDNN_RNN_ALGO_STANDARD, and

‣ Dropout probability was greater than zero,

then the cudnnRNNBackwardWeights() function produces inaccurate and occasionally
non-deterministic results. This is fixed in cuDNN 7.6.1.

An underlying issue, where the same buffer was used for left to right and right-to-
left directions when re-computing forward dropout results passed from one RNN
layer to the next, was the cause of the bug.

‣ A bug in cuDNN 7.6.0 and earlier versions, in the cudnnRNNForwardTraining()
function, related to dropout, is fixed in cuDNN 7.6.1.

When all the following conditions are true:

‣ cudnnRNNAlgo_t=CUDNN_RNN_ALGO_PERSIST_STATIC,

‣ cudnnMathType_t is CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION, and

‣ input data type is CUDNN_DATA_FLOAT,

then the FP32-to-FP16 conversion might be applied as a performance optimization.

When this down conversion is scheduled, a GPU kernel invoked by
cudnnDropoutForward() would crash due to incorrect parameters being passed. In
this case CUDA runtime reports the "misaligned address" error when reading the data
from global memory.

‣ In cuDNN 7.6.0, on RHEL7 only, the /usr/src/cudnn_samples_v7/samples_common.mk
file is missing. This requires a workaround to compile the cuDNN samples. This is
fixed in cuDNN 7.6.1 and the workaround is not needed for cuDNN 7.6.1.

‣ In cuDNN 7.6.0, on pre-Volta hardware only, the function
cudnnGetConvolutionBackwardFilterWorkspaceSize() can erroneously return
CUDNN_STATUS_SUCCESS for cudnnConvolutionBackwardFilter() for 3D convolutions,
using CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1 with NDHWC layout. When this
occurs, the cudnnConvolutionBackwardFilter() function will process the data

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnGetConvolutionBackwardDataWorkspaceSize
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBackwardData
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnRNNBackwardWeights
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnRNNForwardTraining
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnDropoutForward
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnGetConvolutionBackwardFilterWorkspaceSize
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBackwardFilter

cuDNN Release 7.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 185

using a kernel that expects the data in NCDHW layout (the only format supported
by wDesc in this case), leading to incorrect results. In cuDNN 7.6.1, this is fixed
so that cudnnGetConvolutionBackwardFilterWorkspaceSize() will now return
CUDNN_STATUS_NOT_SUPPORTED.

‣ In cuDNN 7.5.x and 7.6.0 for Jetson platform, in some cases the
function cudnnConvolutionBackwardData() , when used with
CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD, might return incorrect results. This is
fixed in cuDNN 7.6.1.

‣ When the data type configuration is FLOAT_CONFIG, then
cudnnGetConvolution*Algorithm(), for a few convolution sizes, incorrectly returns
a slow algorithm for the NVIDIA Pascal architecture. This is fixed in cuDNN 7.5.0 and
later versions.

‣ When using the fusedOps API with the enum
CUDNN_FUSED_SCALE_BIAS_ACTIVATION_CONV_BNSTATS or
CUDNN_FUSED_SCALE_BIAS_ACTIVATION_WGRAD, and when input tensor is in NCHW
format or is not fully packed, then incorrect results may be produced. This is now
fixed in cuDNN 7.6.1.

Known Issues

The following issues and limitations exist in this release:

‣ Algorithms returned by cudnnGetConvolution*Algorithm() may, in some limited use
cases, fail to execute when they are actually run. This is a cuDNN library-wide issue
and applies for convolution forward, convolution backward data, and convolution
backward filter operations. This issue is also present in versions before cuDNN 7.6.1.

‣ When the input and output tensors are in NHWC and the filter is 1x1 and NCHW, the
performance of the function cudnnConvolutionBackwardData() might be degraded.

‣ In cuDNN 7.6.1, when using the experimental multihead attention API, it is possible
that the forward and backward paths produce different results for the BERT model,
when the batch size is greater than one and the number of heads is greater than one.

‣ In cuDNN 7.6.1, on NVIDIA Volta architecture only, there may be a performance
degradation when the function cudnnConvolutionBackwardFilter() is used for 3D
convolutions with CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1.

‣ In cuDNN 7.6.1, on NVIDIA Turing and NVIDIA Pascal architectures, performance may
be degraded for cudnnConvolutionBackwardData(), when used with the following
conditions:

‣ CUDNN_CONVOLUTION_BWD_DATA_ALGO_0 for 3D convolutions.

‣ wDesc, dyDesc, and dxDesc are all in NCDHW.

‣ Data type configuration is FLOAT_CONFIG (that is, single-precision data and
compute).

https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBackwardData
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBackwardData
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBackwardFilter
https://docs.nvidia.com/deeplearning/sdk/cudnn-api/index.html#cudnnConvolutionBackwardData

cuDNN Release 7.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 186

2.6. cuDNN Release 7.6.0
This is the cuDNN 7.6.0 release notes. This release includes fixes from the previous
cuDNN v7.x.x releases as well as the following additional changes.

Key Features and Enhancements

The following features and enhancements have been added to this release:

‣ A new API is introduced for fused ops, which can accelerate many use cases in
ResNet-like networks. With this new API, it is now possible to execute various fused
operations such as apply per channel scale and bias, perform activation, compute
convolution, and generate batchnorm statistics. Below is a list of supported datatype
and functions in this API:

Datatypes:

‣ cudnnFusedOpsVariantParamPack_t

‣ cudnnFusedOpsConstParamPack_t

‣ cudnnFusedOpsPlan_t

‣ cudnnFusedOps_t

‣ cudnnFusedOpsConstParamLabel_t

‣ cudnnFusedOpsPointerPlaceHolder_t

‣ cudnnFusedOpsVariantParamLabel_t

Functions:

‣ cudnnCreateFusedOpsConstParamPack

‣ cudnnDestroyFusedOpsConstParamPack

‣ cudnnSetFusedOpsConstParamPackAttribute

‣ cudnnGetFusedOpsConstParamPackAttribute

‣ cudnnCreateFusedOpsVariantParamPack

‣ cudnnDestroyFusedOpsVariantParamPack

‣ cudnnSetFusedOpsVariantParamPackAttribute

‣ cudnnGetFusedOpsVariantParamPackAttribute

‣ cudnnCreateFusedOpsPlan

‣ cudnnDestroyFusedOpsPlan

‣ cudnnMakeFusedOpsPlan

‣ cudnnFusedOpsExecute

‣ Improved the performance of grouped convolution layers in ResNeXt-50, for
cudnnConvolutionBackwardData() in the configuration below:

cuDNN Release 7.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 187

‣ On NVIDIA Volta (compute capability 7.0)

‣ Algorithm is CUDNN_CONVOLUTION_BWD_DATA_ALGO_1

‣ Stride of 1

‣ Math type is CUDNN_TENSOR_OP_MATH or CUDNN_TENSOROP_MATH_ALLOW_CONVERSION

‣ Tensor format for filter is NHWC.

‣ Input and outputs are in FP16 and computation is in FP32.

‣ A new API is introduced to enhance the inference time. With this new API, it is now
possible to separate the filter layout transformation that was applied on every call,
which in turn leads to inference time enhancement. Below is a list of supported
datatype and functions in this API.

‣ cudnnReorderType_t

‣ cudnnReorderFilterAndBias

‣ cudnnSetConvolutionReorderType

‣ cudnnGetConvolutionReorderType

‣ Performance is enhanced (by selecting a faster kernel) on NVIDIA T4 cards for INT8x4
and INT8x32.

Fixed Issues

The following issues have been fixed in this release:

‣ In cuDNN 7.5.0 and cuDNN 7.5.1, a bug in the cudnnRNNBackwardData() function
affected the thread synchronization. This effect is limited to only the first iteration
of the loop, and only in some paths. This occurs when using the function with the
CUDNN_RNN_ALGO_PERSIST_STATIC method. This is fixed in cuDNN 7.6.0.

Known Issues

The following issues and limitations exist in this release:

‣ The cudnnConvolutionBackwardData() function for
CUDNN_CONVOLUTION_BWD_DATA_ALGO_0 fails with CUDNN_STATUS_NOT_SUPPORTED when
the input size is large.

‣ A general known issue for cuDNN library: the Tensor pointers and the filter pointers
require at a minimum 4-byte alignment, including for FP16 or INT8 data.

‣ On RHEL7 only, the /usr/src/cudnn_samples_v7/samples_common.mk file is missing.
This will prevent compiling the cuDNN samples. The workaround is to copy the
below contents into samples_common.mk text file and place this file in the /usr/
src/cudnn_samples_v7/ directory, so that the /usr/src/cudnn_samples_v7/
samples_common.mk file exists.

Setting SMS for all samples
architecture

cuDNN Release 7.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 188

ifneq ($(TARGET_ARCH), ppc64le)
CUDA_VERSION := $(shell cat $(CUDA_PATH)/include/cuda.h |grep "define
 CUDA_VERSION" |awk '{print $$3}')
else
CUDA_VERSION := $(shell cat $(CUDA_PATH)/targets/ppc64le-linux/include/cuda.h |
grep "define CUDA_VERSION" |awk '{print $$3}')
endif

#Link against cublasLt for CUDA 10.1 and up.
CUBLASLT:=false
ifeq ($(shell test $(CUDA_VERSION) -ge 10010; echo $$?),0)
CUBLASLT:=true
endif
$(info Linking agains cublasLt = $(CUBLASLT))

ifeq ($(CUDA_VERSION),8000)
SMS_VOLTA =
else
ifneq ($(TARGET_ARCH), ppc64le)
ifeq ($(CUDA_VERSION), $(filter $(CUDA_VERSION), 9000 9010 9020))
SMS_VOLTA ?= 70
else
ifeq ($(TARGET_OS), darwin)
SMS_VOLTA ?= 70
else
SMS_VOLTA ?= 70 72 75
endif #ifneq ($(TARGET_OS), darwin)
endif #ifeq ($(CUDA_VERSION), $(filter $(CUDA_VERSION), 9000 9010 9020))
else
SMS_VOLTA ?= 70
endif #ifneq ($(TARGET_ARCH), ppc64le)
endif #ifeq ($(CUDA_VERSION),8000)
SMS ?= 30 35 50 53 60 61 62 $(SMS_VOLTA)

2.7. cuDNN Release 7.5.1
This is the cuDNN 7.5.1 release notes. This release includes fixes from the previous
cuDNN v7.x.x releases as well as the following additional changes.

Key Features and Enhancements

The following features and enhancements have been added to this release:

‣ The function cudnnMultiHeadAttnForward() is now enabled to sweep through all
the time steps in a single API call. This is indicated by a negative value of the currIdx
argument in the inference mode, that is, when reserveSpace=NULL so that either
cudnnMultiHeadAttnBackwardData() or cudnnMultiHeadAttnBackwardWeights()
will not be invoked. This sweep mode can be used to implement self-attention on the
encoder side of the transformer model.

Fixed Issues

The following issues have been fixed in this release:

‣ In cuDNN 7.5.0, using the static link for cudnnConvolutionBiasActivationForward()
function may result in CUDNN_STATUS_NOT_SUPPORTED error message. The workaround
is to perform a whole-archive link. This issue is fixed in cuDNN 7.5.1.

cuDNN Release 7.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 189

‣ In cuDNN 7.5.0 and 7.4.x, in some cases of input images with
large dimensions, the 3D forward convolution operations with
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM will cause a crash with
illegal memory access error. This is fixed in cuDNN 7.5.1.

‣ In cuDNN 7.5.0, setting attnDropoutDesc=NULL in cudnnSetAttnDescriptor()
triggered a segmentation fault in cudnnMultiHeadAttnForward(), even though the
user is required to set it to NULL in the inference mode. This is fixed in cuDNN 7.5.1.

Known Issues

The following issues and limitations exist in this release:

‣ In cuDNN7.5 and cudnn7.5.1, image size smaller than filter size is unsupported, even
with sufficient padding.

2.8. cuDNN Release 7.5.0
This is the cuDNN 7.5.0 release notes. This release includes fixes from the previous
cuDNN v7.x.x releases as well as the following additional changes.

Key Features and Enhancements

The following features and enhancements have been added to this release:

‣ In cudnnConvolutionForward() for 2D convolutions, for wDesc NCHW, the
IMPLICIT_GEMM algorithm (algo 0) now supports the data type configuration of
INT8x4_CONFIG and INT8x4_EXT_CONFIG.

‣ A new set of APIs is added to provide support for multihead attention computation.
The following is a list of the new functions and data types:

Datatypes:

‣ cudnnSeqDataAxis_t

‣ cudnnMultiHeadAttnWeightKind_t

‣ cudnnSeqDataDescriptor_t

‣ cudnnWgradMode_t

‣ cudnnAttnQueryMap_t

‣ cudnnAttnDescriptor_t

Functions:

‣ cudnnCreateAttnDescriptor

‣ cudnnDestroyAttnDescriptor

‣ cudnnSetAttnDescriptor

‣ cudnnGetAttnDescriptor

cuDNN Release 7.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 190

‣ cudnnGetMultiHeadAttnBuffers

‣ cudnnGetMultiHeadAttnWeights

‣ cudnnMultiHeadAttnForward

‣ cudnnMultiHeadAttnBackwardData

‣ cudnnMultiHeadAttnBackwardWeights

‣ cudnnSetSeqDataDescriptor

‣ cudnnGetSeqDataDescriptor

‣ cudnnCreateSeqDataDescriptor

‣ cudnnDestroySeqDataDescriptor

‣ A new set of APIs for general tensor folding is introduced. The following is a list of
the new functions and data types:

Datatypes:

‣ cudnnTensorTransformDescriptor_t

‣ cudnnFoldingDirection_t

Functions:

‣ cudnnTransformTensorEx

‣ cudnnCreateTensorTransformDescriptor

‣ cudnnDestroyTensorTransformDescriptor

‣ cudnnInitTransformDest

‣ cudnnSetTensorTransformDescriptor

‣ cudnnGetTensorTransformDescriptor

‣ A new set of APIs, and enhancements for the existing APIs, are introduced for RNNs.
The following is the list of the new and enhanced functions and data types:

Datatypes:

‣ cudnnRNNBiasMode_t (new)

‣ cudnnRNNMode_t (enhanced)

Functions:

‣ cudnnSetRNNBiasMode (new)

‣ cudnnGetRNNBiasMode (new)

‣ cudnnGetRNNLinLayerBiasParams (enhanced)

‣ All cudnnRNNForward/Backward* functions are enhanced to support FP16 math
precision mode when both input and output are in FP16. To switch to FP16
math precision, set the mathPrec parameter in cudnnSetRNNDescriptor to
CUDNN_DATA_HALF. To switch to FP32 math precision, set the mathPrec parameter
in cudnnSetRNNDescriptor to CUDNN_DATA_FLOAT. This feature is only available for
CUDNN_ALGO_STANDARD and for the compute capability 5.3 or higher.

cuDNN Release 7.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 191

‣ Added support for INT8x4 and INT8x32 data type for cudnnPoolingForward. Using
these will provide improved performance over scalar data type.

Fixed Issues

The following issues have been fixed in this release:

‣ When the following is true for the cudnnConvolutionBackwardData() function:

‣ used with CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING, and

‣ convDesc's vertical stride is exactly 2, and

‣ the vertical padding is a multiple of 2, and

‣ the filter height is a multiple of 2

or

‣ used with CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING, and

‣ convDesc's horizontal stride is exactly 2, and

‣ the horizontal padding is a multiple of 2, and

‣ the filter width is a multiple of 2

then the resulting output is incorrect. This issue was present in cuDNN 7.3.1 and
later. This is fixed in cuDNN 7.5.0.

‣ The mathPrec parameter in cudnnSetRNNDescriptor is reserved for controlling math
precision in RNN, but was not checked or enforced. This parameter is now strictly
enforced. As a result, the following applies:

‣ For the I/O in FP16, the parameter mathPrec can be CUDNN_DATA_HALF or
CUDNN_DATA_FLOAT.

‣ For the I/O in FP32, the parameter mathPrec can only be CUDNN_DATA_FLOAT.

‣ For the I/O in FP64, double type, the parameter mathPrec can only be
CUDNN_DATA_DOUBLE.

‣ Users upgrading to cuDNN 7.4 may see insufficiently small values returned from the
function cudnnGetConvolutionBackwardFilterWorkspaceSize () for dimensions 5
and greater, resulting in a CUDNN_STATUS_EXECUTION_FAILED error message. In cuDNN
7.4, the workaround for this issue is to calculate the workspace by using the formula
below:
Let M be the product of output tensor (gradDesc) dimensions starting at 1.
Let N be the output tensor dimension 0.
Let Mp = (M+31)/32
Let Np = (N+31)/32
W = 2 * M * N * sizeof(int) is the workspace that should be used.

This is fixed.

‣ In earlier cuDNN versions, when all the conditions below are true:

‣ 3D convolution

‣ Batch size > 1

cuDNN Release 7.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 192

‣ Algorithm is CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1

‣ convDesc's dataType is CUDNN_DATA_HALF, then, calls to
cudnnConvolutionBackwardFilter() may produce incorrect (and non-
deterministic) results. This is fixed in cuDNN 7.5.0.

‣ In cuDNN 7.4.2, for some cases the 3D convolution resulted in a reduced
performance on NVIDIA Turing GPUs, compared to the previous cuDNN releases. This
is fixed.

‣ For int8x32 datatype, the function cudnnSetTensor4dDescriptorEx erroneously
returns CUDNN_STATUS_BAD_PARAM. Now it is fixed in cuDNN 7.5 so it no longer returns
bad param.

‣ In cuDNN 7.4.1 and 7.4.2, when cudnnBatchNormMode_t is set to
CUDNN_BATCHNORM_SPATIAL_PERSISTENT and the I/O tensors are in NHWC
format and of CUDNN_DATA_HALF datatype, then, on Windows only, the
cudnnBatchNormalization*Ex functions are supported only with the device in TCC
mode. Refer to Tesla Compute Cluster Mode for Windows for more information.

Starting with cuDNN 7.5.0, the following checks are added for the driver mode on
Windows. If on Windows and not in TCC mode:

‣ The functions fallback to a slower implementation if bnOps in the
cudnnBatchNormalization*Ex function is set to CUDNN_BATCHNORM_OPS_BN.

‣ If bnOps is set to CUDNN_BATCHNORM_OPS_BN_ACTIVATION, or
CUDNN_BATCHNORM_OPS_BN_ADD_ACTIVATION, the CUDNN_STATUS_NOT_SUPPORTED is
returned.

‣ In cuDNN 7.4.2, in some cases the cudnnConvolutionBackwardData() function, when
used with NHWC tensor format, resulted in the disallowed mismatches error. This is
fixed.

‣ In some cases, using cudnnConvolutionBiasActivationForward() with
GroupCount() > 1 and xDesc's data type is CUDNN_DATA_HALF will produce incorrect
results for all groups except the first. This is fixed.

‣ When using cuDNN 7.3.1 on Quadro P4000, when
calling the cudnnConvolutionForward() function with
CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED algorithm, there was a small
chance of seeing intermittent inaccurate results. This is fixed.

‣ When cudnnConvolutionForward() is called with these settings:

‣ The datatype is CUDNN_DATA_INT8x4.

‣ The convolution is 2D.

‣ The architecture is sm_61.

‣ The filter size is larger than 8x8.

Then, incorrect results and potential illegal memory access errors occur. This is fixed.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#tesla-compute-cluster-mode-for-windows

cuDNN Release 7.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 193

‣ For sm_72 and sm_75, the function cudnnConvolutionBiasActivationForward(),
when used with INT8x32, failed to run. This is fixed.

‣ In the function cudnnSetRNNDataDescriptor , if API logging is turned on, the
seqLengthArray field in the log may not display the correct number of array
elements. This is fixed.

‣ For the batchNorm functions cudnnBatchNormalization{Backward|BackwardEx|
ForwardInference|ForwardTraining|ForwardTrainingEx}, the value of epsilon
is required to be greater or equal to CUDNN_BN_MIN_EPSILON that was defined in the
cudnn.h file to the value 1e-5. This threshold value is now lowered to 0.0 to allow a
wider range of epsilon value. However, users should still choose the epsilon value
carefully, since a too small a value of epsilon may cause batchNormalization to
overflow when the input data's standard deviation is close to 0.

‣ Some grouped convolutions (particularly those used in depthwise-separable
convolutions) may return
INTERNAL_ERROR

if they have all inputs/outputs as NHWC-packed and do not match one of the
following criteria:

‣ filter_height = 1, filter_width = 1, vertical_conv_stride = 1,

horizontal_conv_stride = 1

‣ filter_height = 3, filter_width = 3, vertical_conv_stride = 1,

horizontal_conv_stride = 1

‣ filter_height = 3, filter_width = 3, vertical_conv_stride = 2,

horizontal_conv_stride = 2

Known Issues

The following issues and limitations exist in this release:

‣ The RNN persist-static algorithm returns incorrect results for GRU problems
in backwards mode, when the hidden size is greater than 1024. Due to this,
RNN persist-static algorithm is disabled in cuDNN 7.5.0. Users with such GRU
problems are advised to use the standard or persist-dynamic RNN algorithms. See
cudnnRNNAlgo_t. This note applies to all previous cuDNN 7 releases.

‣ The function cudnnConvolutionBackwardFilter(), when used with
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1, returns the error "Uninitialized
__global__ memory read of size 4".

cuDNN Release 7.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 194

2.9. cuDNN Release 7.4.2
This is the cuDNN 7.4.2 release notes. This release includes fixes from the previous
cuDNN v7.x.x releases as well as the following additional changes.

Fixed Issues

The following issues have been fixed in this release:

‣ In some cases when the data is in CUDNN_DATA_HALF and NHWC, illegal memory
access may occur for cudnnBatchNormalization* functions in the cuDNN 7.4.1
library. This is now fixed.

‣ When the data is in CUDNN_DATA_HALF and NHWC, for cudnnBatchNormalization*
functions when (N*H*W) is large and odd number, the output may contain wrong
results. This is fixed.

‣ When calling the cudnnConvolutionBiasActivationForward() function with the
algo parameter set to CUDNN_CONVOLUTION_FWD_ALGO_FFT and the activationDesc
parameter set to CUDNN_ACTIVATION_RELU and sufficiently large inputs, the ReLU
operation is not applied and negative values are passed through to the output. This
issue is now fixed. This issue was present in all previous cuDNN versions.

‣ Performance regression was introduced in cuDNN 7.4.1
for cudnnConvolutionBwdFilterAlgo_t() function with
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1 algorithm. This is fixed.

Known Issues

The following issues and limitations exist in this release:

‣ When cudnnBatchNormMode_t is set to CUDNN_BATCHNORM_SPATIAL_PERSISTENT and
the I/O tensors are in NHWC format and of CUDNN_DATA_HALF datatype, then, on
Windows only, the cudnnBatchNormalization*Ex functions are supported only with
the device in TCC mode. See Tesla Compute Cluster Mode for Windows. This issue is
not present on Linux systems. This issue is present in cuDNN 7.4.1 and this current
version.

‣ In some cases, the 3D convolution will have a reduced performance on NVIDIA Turing
GPUs, compared to the previous cuDNN releases.

‣ The functions cudnnGetConvolutionForwardAlgorithm_v7() and
cudnnGetConvolutionForwardWorkspaceSize() will return CUDNN_STATUS_SUCCESS,
but the execution of the convolution returns CUDNN_STATUS_NOT_SUPPORTED. This
issue is present in cuDNN 7.2.2 library and later versions.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#tesla-compute-cluster-mode-for-windows

cuDNN Release 7.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 195

2.10. cuDNN Release 7.4.1
This is the cuDNN 7.4.1 release notes. This release includes fixes from the previous
cuDNN v7.x.x releases as well as the following additional changes.

Key Features and Enhancements

The following enhancements have been added to this release:

‣ Added a new family of fast NHWC batch normalization functions. Refer to the
following five new functions and one new type descriptor:

‣ cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize() function

‣ cudnnBatchNormalizationForwardTrainingEx function

‣ cudnnGetBatchNormalizationBackwardExWorkspaceSize() function

‣ cudnnBatchNormalizationBackwardEx() function

‣ cudnnGetBatchNormalizationTrainingExReserveSpaceSize() function

‣ cudnnBatchNormOps_t type descriptor

‣ For API Logging, a conversion specifier for the process id is added. With this, the
process id can be included in the log file name. Refer to API Logging for more
information.

‣ Performance of cudnnPoolingBackward() is enhanced for
the average pooling when using NHWC data format-for both
the CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING and
CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING cases of cudnnPoolingMode_t.

‣ Performance of the strided convolution in cudnnConvolutionBackwardData() is
enhanced when the filter is in NHWC format and the data type is TRUE_HALF_CONFIG,
PSEUDO_HALF_CONFIG, or FLOAT_CONFIG. For strides u,v < r,s the performance is
further enhanced.

‣ Significantly improved the performance of cudnnConvolutionForward(),
cudnnConvolutionBackwardData(), and cudnnConvolutionBackwardFilter()
functions on RCNN models such as Fast RCNN, Faster RCNN, and Mask RCNN.

Fixed Issues

The following issues have been fixed in this release:

‣ The following set-up was giving Misaligned Address error in cuDNN 7.3.x. This
is fixed in cuDNN 7.4.1: For the cudnnConvolutionForward() function with the
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM algorithm, in the data type
configuration of PSEUDO_HALF_CONFIG, when the input and output tensors are in
NHWC and the filter is 1x1 and NCHW, and Tensor Op is enabled.

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#api-logging

cuDNN Release 7.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 196

‣ For a few convolution sizes for ALGO_0 and ALGO_1, the performance of the function
cudnnConvolutionBackwardFilter() was degraded in cuDNN 7.3.1. This is now fixed.

‣ Fixed. In cuDNN 7.3.1, the function cudnnAddTensor was computing incorrect results
when run on GPUs with the compute capability < 6.0 (before NVIDIA Pascal).

Known Issues

The following issues and limitations exist in this release:

‣ When calling the cudnnConvolutionBiasActivationForward() function with the
algo parameter set to CUDNN_CONVOLUTION_FWD_ALGO_FFT and the activationDesc
parameter set to CUDNN_ACTIVATION_RELU and sufficiently large inputs, the ReLU
operation is not applied and negative values are passed through to the output. This
issue is present in all previous cuDNN versions.

2.11. cuDNN Release 7.3.1
This is the cuDNN 7.3.1 release notes. This release includes fixes from the previous
cuDNN v7.x.x releases as well as the following additional changes.

Key Features and Enhancements

The following enhancements have been added to this release:

‣ The FFT tiling algorithms for convolution have been
enhanced to support strided convolution. In specific, for the
algorithms CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING and
CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING, the convDesc's vertical and
horizontal filter stride can be 2 when neither the filter width nor the filter height is 1.

‣ The CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD algorithm for
cudnnConvolutionForward() and cudnnConvolutionBackwardData() now give
superior performance for NVIDIA Volta architecture. In addition, the mobile version
of this algorithm in the same functions gives superior performance for Maxwell and
NVIDIA Pascal architectures.

‣ Dilated convolutions now give superior performance for
cudnnConvolutionForward(), cudnnConvolutionBackwardData(), and
cudnnConvolutionBackwardFilter() on NVIDIA Volta architecture, in some cases.

Known Issues and Limitations

The following issues and limitations exist in this release:

‣ For the cudnnConvolutionForward(), when using a 1x1 filter with input and output
tensors of NHWC format and of CUDNN_DATA_HALF (half precision) type, and the filter
format is NCHW, with compute type of float, cuDNN will generate incorrect results.

cuDNN Release 7.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 197

‣ On Quadro P4000, when calling cudnnConvolutionForward() function with
CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED algorithm, there may be a small
chance of seeing intermittent inaccurate results.

‣ When using cudnnConvolutionBackwardFilter() with
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0 in mixed precision computation, with I/O
in CUDNN_DATA_HALF (half precision) and compute type of float, when the number
of batches (N) is larger than 1 the results might include INF due to an intermediate
down convert to half float. In other words, with an accumulation of float for all
intermediate values (such as in CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1) the result
will be a finite half precision float. This limitation also exists in all previous cuDNN
versions.

Fixed Issues

The following issues have been fixed in this release:

‣ Fixed a pointer arithmetic integer overflow issue in RNN forward and backward
functions, when sequence length and mini-batch size are sufficiently large.

‣ When tensor cores are enabled in cuDNN 7.3.0, the
cudnnConvolutionBackwardFilter() calculations were performing an illegal memory
access when K and C values are both non-integral multiples of 8. This issue is fixed.

‣ For the CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1 algorithm in
cudnnConvolutionBackwardFilter(), on NVIDIA Volta, the tensor operations were
occasionally failing when the filter-spatial size (filter h * filter w) was greater than 64.
This issue is fixed.

‣ While running cuDNN 7.3.0 on NVIDIA Turing with CUDA 10.0, r400 driver, the
functions cudnnRNNForwardTraining(Ex) and cudnnRNNForwardInference(Ex)
errored out returning CUDNN_STATUS_NOT_SUPPORTED. This issue is fixed.

‣ In cuDNN 7.3.0, when using CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1 with tensor
data or filter data in NHWC format, the function might have resulted in a silent failure.
This is now fixed.

2.12. cuDNN Release 7.3.0
This is the cuDNN 7.3.0release notes. This release includes fixes from the previous
cuDNN v7.x.x releases as well as the following additional changes.

Key Features and Enhancements

The following enhancements have been added to this release:

‣ Support is added to the following for the dilated convolution, for NCHW and NHWC filter
formats:

‣ cudnnConvolutionForward() for 2D

cuDNN Release 7.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 198

‣ CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM

‣ cudnnConvolutionBackwardData() for 2D

‣ CUDNN_CONVOLUTION_BWD_DATA_ALGO_1

‣ cudnnConvolutionBackwardFilter() for 2D

‣ CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1

For these supported cases, the dilated convolution is expected to offer superior
speed, compared to the existing dilated convolution with algo 0.

‣ Grouped convolutions for depth-wise separable convolutions are optimized for the
following NHWC formats: HHH (input: Half, compute: Half, output: Half), HSH, and
SSS.

‣ While using CUDNN_TENSOR_OP_MATH or CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION,
with the tensor cores, the c, and k dimensions of the tensors are now padded to
multiples of 8 (as needed), to allow a tensor core kernel to run.

‣ The CUDNN_BATCHNORM_SPATIAL_PERSISTENT algo is enhanced
in cudnnBatchNormalizationForwardTraining() and
cudnnBatchNormalizationBackward() to propagate NaN-s or Inf-s as in a pure
floating point implementation (the "persistent" flavor of the batch normalization is
optimized for speed and it uses integer atomics for inter thread-block reductions).
In earlier versions of cuDNN, we recommended invoking cudnnQueryRuntimeError()
to ensure that no overflow was encountered. When it happened, the best practice
was to discard the results, and use CUDNN_BATCHNORM_SPATIAL instead, as some
results generated by CUDNN_BATCHNORM_SPATIAL_PERSISTENT could be finite but
invalid. This behavior is now corrected: NaN-s and Inf-s are consistently output when
intermediate results are out of range. The refined implementation simulates math
operations on special floating point values, for example, +Inf-Inf=NaN.

Known Issues and Limitations

Following issues and limitations exist in this release:

‣ When tensor cores are enabled in cuDNN 7.3.0, the wgrad calculations will perform
an illegal memory access when K and C values are both non-integral multiples
of 8. This will not likely produce incorrect results, but may corrupt other memory
depending on the user buffer locations. This issue is present on NVIDIA Volta and
NVIDIA Turing architectures.

‣ Using cudnnGetConvolution*_v7 routines with cudnnConvolutionDescriptor_t
set to CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION leads to incorrect outputs. These
incorrect outputs will consist only of CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION
cases, instead of also returning the performance results for both DEFAULT_MATH and
CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION cases.

cuDNN Release 7.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 199

Fixed Issues

The following issues have been fixed in this release:

‣ Using cudnnConvolutionBackwardData() with
CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD algorithm produced incorrect results
due to an incorrect filter transform. This issue was present in cuDNN 7.2.1.

‣ For INT8 type, with xDesc and yDesc of NHWC format, the
cudnnGetConvolutionForwardAlgorithm_v7 function was incorrectly returning
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM as a valid algorithm. This is fixed.

‣ cudnnConvolutionForward() using CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD
intermittently produced incorrect results in cuDNN 7.2, due to a race condition. This
issue is fixed.

‣ When running cudnnConvolutionBackwardFilter() with NHWC filter format, when
n, c, and k are all multiple of 8, and when the workSpace input is exactly as indicated
by cudnnGetConvolutionBackwardFilterWorkspaceSize(), leads to error in cuDNN
7.2. This is fixed.

‣ When the user runs cudnnRNNForward* or cudnnRNNBackward* with
FP32 I/O on sm_70 or sm_72, with RNN descriptor's algo field set to
CUDNN_RNN_ALGO_PERSIST_STATIC, and cudnnMathType_t type set to
CUDNN_TENSOR_OP_MATH using cudnnSetRNNMatrixMathType, then the results were
incorrect. This is fixed.

‣ When the user runs cudnnRNNForward* or cudnnRNNBackward* with
FP32 I/O on sm_70 or sm_72, with RNN descriptor's algo field set to
CUDNN_RNN_ALGO_PERSIST_STATIC, and cudnnMathType_t type set to
CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION using cudnnSetRNNMatrixMathType, then
the resulting performance was suboptimal. This is fixed.

‣ Convolution routines with filter format as NHWC require both input and output
formats to be NHWC. However, in cuDNN 7.2 and earlier, this condition was not being
checked for, as a result of which silent failures may have occurred. This is fixed in
7.3.0 to correctly return CUDNN_STATUS_NOT_SUPPORTED.

2.13. cuDNN Release 7.2.1
This is the cuDNN 7.2.1 release notes. This release includes fixes from the previous
cuDNN v7.x.x releases as well as the following additional changes.

Key Features and Enhancements

The following enhancements have been added to this release:

‣ The following new functions are added to provide support for the padding mask for
the cudnnRNN* family of functions:

cuDNN Release 7.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 200

‣ cudnnSetRNNPaddingMode(): Enables/disables the padded RNN I/O.

‣ cudnnGetRNNPaddingMode(): Reads the padding mode status.

‣ cudnnCreateRNNDataDescriptor() and cudnnDestroyRNNDataDescriptor():
Creates and destroys, respectively, cudnnRNNDataDescriptor_t, an RNN data
descriptor.

‣ cudnnSetRNNDataDescriptor() and cudnnGetRNNDataDescriptor(): Initializes
and reads, respectively, the RNN data descriptor.

‣ cudnnRNNForwardTrainingEx(): An extended version of the
cudnnRNNForwardTraining() to allow for the padded (unpacked) layout for the I/
O.

‣ cudnnRNNForwardInferenceEx(): An extended version of the
cudnnRNNForwardInference() to allow for the padded (unpacked) layout for the I/
O.

‣ cudnnRNNBackwardDataEx(): An extended version of the
cudnnRNNBackwardData() to allow for the padded (unpacked) layout for the I/O.

‣ cudnnRNNBackwardWeightsEx(): An extended version of the
cudnnRNNBackwardWeights() to allow for the padded (unpacked) layout for the I/
O.

‣ Added support for cell clipping in cuDNN LSTM. The following new functions are
added:

‣ cudnnRNNSetClip() and cudnnRNNGetClip(): Sets and retrieves, respectively, the
LSTM cell clipping mode.

‣ Accelerate your convolution computation with this new feature: When the input
channel size c is a multiple of 32, you can use the new data type CUDNN_DATA_INT8x32
to accelerate your convolution computation.

Note: This new data type CUDNN_DATA_INT8x32 is only supported by sm_72.

‣ Enhanced the family of cudnnFindRNN* functions. The findIntensity input to
these functions now enables the user to control the overall runtime of the RNN
find algorithms, by selecting a percentage of a large Cartesian product space to be
searched.

‣ A new mode CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION is added to
cudnnMathType_t. The computation time for FP32 tensors can be reduced by
selecting this mode.

‣ The functions cudnnRNNForwardInference(), cudnnRNNForwardTraining(),
cudnnRNNBackwardData(), and cudnnRNNBackwardWeights() will now perform down
conversion of FP32 I/O only when CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION is set.

‣ Improved the heuristics for cudnnGet*Algorithm() functions.

cuDNN Release 7.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 201

Known Issues and Limitations

Following issues and limitations exist in this release:

‣ For FP16 inputs, the functions cudnnGetConvolutionForwardAlgorithm(),
cudnnGetConvolutionBackwardDataAlgorithm(), and
cudnnGetConvolutionBackwardFilterAlgorithm() will obtain a slower algorithm.

‣ For cases where beta is not equal to zero, and when the input channel size is greater
than 65535, then the below cudnnConvolutionBackwardFilter() algorithms may
return EXECUTION_FAILED error:

‣ CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0

‣ CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1

‣ CUDNN_CONVOLUTION_BWD_FILTER_ALGO_3

‣ This is a rare occurrence: When beta is not equal to zero, the function
cudnnFindConvolutionBackwardFilterAlgorithm() may not return the fastest
algorithm available for cudnnConvolutionBackwardFilter().

‣ Grouped convolutions are not supported in the TRUE_HALF_CONFIG (convDesc
is CUDNN_DATA_HALF) data type configuration. As a workaround, the
PSEUDO_HALF_CONFIG (convDesc is CUDNN_DATA_FLOAT) data type configuration can be
used without losing any precision.

‣ For the cudnnConvolutionBiasActivationForward() function, if the input
cudnnActivationMode_t is set to enum value CUDNN_ACTIVATION_IDENTITY,
then the input cudnnConvolutionFwdAlgo_t must be set to the enum value
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM.

‣ When the user runs cudnnRNNForward* or cudnnRNNBackward* with
FP32 I/O, on sm_70 or sm_72, with RNN descriptor's algo field set to
CUDNN_RNN_ALGO_PERSIST_STATIC, and math type set to CUDNN_TENSOR_OP_MATH
using cudnnSetRNNMatrixMathType(), then the results are incorrect.

‣ When the user runs cudnnRNNForward* or cudnnRNNBackward* with
FP32 I/O, on sm_70 or sm_72, with RNN descriptor's algo field
set to CUDNN_RNN_ALGO_PERSIST_STATIC, and math type set to
CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION using cudnnSetRNNMatrixMathType(),
then the resulting performance is suboptimal.

Fixed Issues

The following issues have been fixed in this release:

‣ The cudnnConvolutionBackwardData() function produced incorrect result under
these conditions:

‣ The algo input is set to CUDNN_CONVOLUTION_BWD_DATA_ALGO_1 in
cudnnConvolutionBwdDataAlgo_t, and

cuDNN Release 7.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 202

‣ CUDNN_TENSOR_OP_MATH is selected.

Under these conditions, the dgrad computation was giving incorrect results when
the data is not packed and the data format is NCHW. This is fixed.

‣ When the cudnnConvolutionFwdAlgo_t() was set to
CONVOLUTION_FWD_ALGO_FFT_TILING then the function cudnnConvolutionForward()
was leading to illegal memory access. This is now fixed.

‣ cudnnPoolingBackward() was failing when using a large kernel size used for
'global_pooling' with NHWC I/O layout. This is fixed.

‣ The below two items are fixed: If you set RNN mathtype to CUDNN_TENSOR_OP_MATH,
and run RNN on sm6x or earlier hardware:

‣ You may have received CUDNN_STATUS_NOT_SUPPORTED when algo selected is
CUDNN_RNN_ALGO_STANDARD or CUDNN_RNN_ALGO_PERSIST_STATIC.

‣ You may have received incorrect results when algo selected is
CUDNN_RNN_ALGO_PERSIST_DYNAMIC.

‣ If you passed in variable sequence length input tensor to
cudnnRNNForwardInference(), cudnnRNNForwardTraining(),
cudnnRNNBackwardData(), and used CUDNN_RNN_ALGO_PERSIST_STATIC or
CUDNN_RNN_ALGO_PERSIST_DYNAMIC, then you may have received incorrect results.
Now this is being checked, and CUDNN_STATUS_NOT_SUPPORTED will be returned.

2.14. cuDNN Release 7.1.4
This is the cuDNN 7.1.4 release notes. This release includes fixes from the previous
cuDNN v7.x.x releases as well as the following additional changes.

Key Features and Enhancements

The following enhancements have been added to this release:

‣ Improved performance for some cases of data-gradient convolutions and
maxpooling. This is expected to improve performance of ResNet-50 like networks.

‣ The runtime of the RNN Find algorithm suite is improved in v7.1.4 resulting in slightly
improved runtime of cudnnFindRNN***AlgorithmEx.

Known Issues

Following are known issues in this release:

‣ cudnnGet picks a slow algorithm that does not use Tensor Cores on NVIDIA Volta
when inputs are FP16 and it is possible to do so.

‣ The cudnnConvolutionBackwardFilter() function may output incorrect results for
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_FFT_TILING when the convolution mode is
CUDNN_CONVOLUTION. This function should not be used in this mode.

cuDNN Release 7.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 203

Fixed Issues

The following issues have been fixed in this release:

‣ cudnnAddTensorNd might cause a segmentation fault if called with bad arguments
(for example, null pointer). This issue is in 7.1.3 only and fixed in 7.1.4.

‣ cudnnRNNBackwardData LSTM cell with FP16 (half) inputs might generate wrong
values (silently). This issue exists in cuDNN 7.1.3 binaries compiled with CUDA Toolkit
9.0 and 9.2. This issue does not exist in cuDNN 7.1.3 binaries compiled with CUDA
Toolkit 9.1.

‣ cudnnGetRNNLinLayerMatrixParams wrongly returns CUDNN_STATUS_BAD_PARAM
when cudnnSetRNNDescriptor is called with dataType == CUDNN_DATA_FLOAT. This
is an issue in 7.1.3 only and will be fixed in 7.1.4. The dataType argument as of today
supports only CUDNN_DATA_FLOAT. We plan to support additional compute types in the
future.

‣ There is a small memory leak issue when calling cudnnRNNBackwardData with
CUDNN_RNN_ALGO_STANDARD. This issue also affects previous cuDNN v7 releases. This
is fixed in 7.1.4.

‣ RNN with half-precision returns CUDNN_EXECUTION_FAILED on NVIDIA Kepler GPU in
7.1.3. This is fixed in 7.1.4.

‣ The RNN Find algorithm suite mistakenly did not test
CUDNN_RNN_ALGO_PERSIST_STATIC and CUDNN_RNN_ALGO_PERSIST_DYNAMIC kernels
with tensor operations enabled when it was possible to do so. This is fixed in v7.1.4.

2.15. cuDNN Release 7.1.3
This is the cuDNN 7.1.3 release notes. This release includes fixes from the previous
cuDNN v7.x.x releases as well as the following additional changes.

Known Issues

Following are known issues in this release:

‣ cudnnGet picks a slow algorithm that does not use Tensor Cores on NVIDIA Volta
when inputs are FP16 and it is possible to do so.

‣ The cudnnConvolutionBackwardFilter() function may output incorrect results
for CUDNN_CONVOLUTION_BWD_FILTER_ALGO_FFT_TILING when the convolution
mode is CUDNN_CONVOLUTION and the product n*k (n - batch size, k - number of
output feature maps) is large, that is, several thousand or more. It appears that the
CUDNN_CROSS_CORRELATION mode is not affected by this bug.

‣ There is a small memory leak issue when calling cudnnRNNBackwardData with
CUDNN_RNN_ALGO_STANDARD. This issue also affects previous cuDNN v7 releases.

cuDNN Release 7.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 204

‣ RNN with half precision will not work on NVIDIA Kepler GPUs and will return
CUDNN_EXECUTION_FAILED. This will be fixed in future releases to return
CUDNN_STATUS_UNSUPPORTED.

Fixed Issues

The following issues have been fixed in this release:

‣ cudnnRNNbackwardData for LSTM with recurrent projection in half-precision may fail
in rare cases with misaligned memory access on NVIDIA Pascal and Maxwell.

‣ cudnnRNNbackwardData for bidirectional LSTM with recurrent projection may produce
inaccurate results or CUDNN_STATUS_UNSUPPORTED.

‣ Algo 1 for forward convolution and dgrad may produce erroneous results when the
filter size is greater than the input size. This issue is fixed in 7.1.3.

‣ For very large RNN networks, the function cudnnGetRNNWorkspaceSize and
cudnnGetRNNTrainingReserveSize may internally overflow and give incorrect results.

‣ The small performance regression on multi-layer RNNs using the STANDARD
algorithm and Tensor Core math in 7.1.2, as compared to 7.0.5, is fixed in this release.

‣ Fixed an issue with persistent LSTM backward pass with a hidden state size in the
range 257 to 512 on GPUs with number of SMs between 22 and 31 might hang. This
issue also exists in 7.1.1. This is fixed in 7.1.3.

‣ Fixed an issue persistent GRU backward pass with a hidden state size in the range
513->720 on GPUs with exactly 30 SMs would hang. This issue also exists in 7.1.1.
This is fixed in 7.1.3.

2.16. cuDNN Release 7.1.2
This is the cuDNN 7.1.2 release notes. This release includes fixes from the previous
cuDNN v7.x.x releases as well as the following additional changes.

Key Features and Enhancements

The following enhancements have been added to this release:

‣ RNN search API extended to support all RNN algorithms.

‣ Newly added projection layer supported for inference bidirectional RNN cells and for
backward data and gradient.

‣ Support IDENTITY activation for all cudnnConvolutionBiasActivationForward data
types for CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM.

‣ Added documentation to clarify RNN/LSTM weight formats.

Known Issues

Following are known issues in this release:

cuDNN Release 7.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 205

‣ cudnnGet picks a slow algorithm that does not use Tensor Cores on NVIDIA Volta
when inputs are FP16 and it is possible to do so.

‣ There may be a small performance regression on multi-layer RNNs using the
STANDARD algorithm with Tensor Core math in this release compared to v7.0.5.

‣ LSTM projection dgrad half precision may fail in rare cases with misaligned memory
access on NVIDIA Pascal and Maxwell.

‣ Dgrad for bidirectional LSTM with projection should not be used, may produce
inaccurate results, or CUDNN_STATUS_UNSUPPORTED.

‣ The cudnnConvolutionBackwardFilter() function may output incorrect results
for CUDNN_CONVOLUTION_BWD_FILTER_ALGO_FFT_TILING when the convolution
mode is CUDNN_CONVOLUTION and the product n*k (n - batch size, k - number of
output feature maps) is large, that is, several thousand or more. It appears that the
CUDNN_CROSS_CORRELATION mode is not affected by this.

‣ Persistent LSTM backward passes with a hidden state size in the range 257 to 512 on
GPUs with number of SMs between 22 and 31 might hang. This issue also exists in
7.1.1 and will be fixed in 7.1.3.

‣ Persistent GRU backward passes with a hidden state size in the range 513 to 720 on
GPUs with exactly 30 SMs would hang. This issue also exists in 7.1.1 and will be fixed
in 7.1.3.

‣ Algo 1 for forward convolution and dgrad may produce erroneous results when the
filter size is greater than the input size.

Fixed Issues

The following issues have been fixed in this release:

‣ The uint8 input for convolution is restricted to NVIDIA Volta
and later. We added support for older architectures, for algo:
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM.

‣ In some cases when algorithm CUDNN_CONVOLUTION_BWD_FILTER_ALGO1 was selected,
the routine cudnnConvolutionBackwardFilter could fail at runtime and return
CUDNN_STATUS_EXECUTION_FAILED. It now returns CUDNN_STATUS_NOT_SUPPORTED.

‣ cudnnSetRNNDescriptor no longer needs valid Dropout Descriptor in inference mode,
user can pass NULL for Dropout Descriptor in inference mode.

2.17. cuDNN Release 7.1.1
This is the cuDNN 7.1.1 release notes. This release includes fixes from the previous
cuDNN v7.x.x releases as well as the following additional changes.

Key Features and Enhancements

The following enhancements have been added to this release:

cuDNN Release 7.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 206

‣ Added new API cudnnSetRNNProjectionLayers and cudnnGetRNNProjectionLayers
to support Projection Layer for the RNN LSTM cell. In this release, only the inference
use case will be supported. The bi-directional and the training forward and backward
for training is not supported in 7.1.1 but will be supported in the upcoming
7.1.2 release without API changes. For all the unsupported cases in this release,
CUDNN_NOT_SUPPORTED is returned when projection layer is set and the RNN is called.

‣ The cudnnGetRNNLinLayerMatrixParams() function was enhanced and a bug was
fixed without modifying its prototype. Specifically:

‣ The cudnnGetRNNLinLayerMatrixParams() function was updated to support
the RNN projection feature. An extra linLayerID value of eight can be used to
retrieve the address and the size of the “recurrent” projection weight matrix
when "mode" in cudnnSetRNNDescriptor() is configured to CUDNN_LSTM and the
recurrent projection is enabled using cudnnSetRNNProjectionLayers().

‣ Instead of reporting the total number of elements in each weight matrix in the
linLayerMatDesc filter descriptor, the cudnnGetRNNLinLayerMatrixParams()
function returns the matrix size as two dimensions: rows and columns. This
allows the user to easily print and initialize RNN weight matrices. Elements
in each weight matrix are arranged in the row-major order. Due to historical
reasons, the minimum number of dimensions in the filter descriptor is three. In
previous versions of the cuDNN library, cudnnGetRNNLinLayerMatrixParams()
returned the total number of weights as follows: filterDimA[0]=total_size,
filterDimA[1]=1, filterDimA[2]=1. In v7.1.1, the format was changed to:
filterDimA[0]=1, filterDimA[1]=rows, filterDimA[2]=columns. In both
cases, the "format" field of the filter descriptor should be ignored when retrieved
by cudnnGetFilterNdDescriptor().

‣ A bug in cudnnGetRNNLinLayerMatrixParams() was fixed to return a zeroed
filter descriptor when the corresponding weight matrix does not exist. This
occurs, for example, for linLayerID values of 0-3 when the first RNN layer
is configured to exclude matrix multiplications applied to RNN input data
(inputMode=CUDNN_SKIP_INPUT in cudnnSetRNNDescriptor() specifies
implicit, fixed identity weight matrices for RNN input). Such cases in previous
versions of the cuDNN library caused cudnnGetRNNLinLayerMatrixParams()
to return corrupted filter descriptors with some entries from the previous
call. A workaround was to create a new filter descriptor for every invocation of
cudnnGetRNNLinLayerMatrixParams().

‣ The cudnnGetRNNLinLayerBiasParams() function was updated to report
the bias column vectors in linLayerBiasDesc in the same format as
cudnnGetRNNLinLayerMatrixParams(). In previous versions of the cuDNN library,
cudnnGetRNNLinLayerBiasParams() returned the total number of adjustable
bias parameters as follows: filterDimA[0]=total_size, filterDimA[1]=1,
filterDimA[2]=1. In v7.1.1, the format was changed to: filterDimA[0]=1,
filterDimA[1]=rows, filterDimA[2]=1 (number of columns). In both cases,

cuDNN Release 7.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 207

the format field of the filter descriptor should be ignored when retrieved by
cudnnGetFilterNdDescriptor(). The recurrent projection GEMM does not have a
bias so the range of valid inputs for the linLayerID argument remains the same.

‣ Added support for use of Tensor Core for the CUDNN_RNN_ALGO_PERSIST_STATIC. This
required cuDNN v7.1 built with CUDA 9.1 and 387 or higher driver. It will not work
with CUDA 9.0 and 384 driver.

‣ Added RNN search API that allows the application to provide an RNN descriptor and
get a list of possible algorithm choices with performance and memory usage, to allow
applications to choose between different implementations. For more information,
refer to the documentation of: cudnnFindRNNForwardInferenceAlgorithmEx,
cudnnFindRNNForwardTrainingAlgorithmEx,
cudnnFindRNNBackwardDataAlgorithmEx, and
cudnnFindRNNBackwardWeightsAlgorithmEx. In this release, the search will operate
on STANDARD algorithm and will not support PERSISTENT algorithms of RNN.

‣ Added uint8 for support for the input data for
cudnnConvolutionBiasActivationForward and cudnnConvolutionForward.
Currently, the support is on NVIDIA Volta (sm 70) and later architectures. Support for
older architectures will be gradually added in the upcoming releases.

‣ Support for CUDNN_ACTIVATION_IDENTITY is added to
cudnnConvolutionBiasActivationForward. This allows users to perform convolution
and bias without activation.

‣ All API functions now support logging. User can trigger logging by setting
environment variable CUDNN_LOGINFO_DBG=1 and CUDNN_LOGDEST_DBG= <option>
where <option> (that is, the output destination of the log) can be chosen from
stdout, stderr, or a file path. User may also use the new Set/GetCallBack
functions to install their customized callback function. Log files can be added to
the reported bugs or shared with us for analysis and future optimizations through
partners.nvidia.com.

‣ Improved performance of 3D convolution on NVIDIA Volta architecture.

‣ The following algo-related functions have been added for this release:
cudnnGetAlgorithmSpaceSize, cudnnSaveAlgorithm, cudnnRestoreAlgorithm,
cudnnCreateAlgorithmDescriptor, cudnnSetAlgorithmDescriptor,
cudnnGetAlgorithmDescriptor, cudnnDestroyAlgorithmDescriptor,
cudnnCreateAlgorithmPerformance, cudnnSetAlgorithmPerformance,
cudnnGetAlgorithmPerformance, cudnnDestroyAlgorithmPerformance.

‣ All algorithms for convolutions now support groupCount > 1. This includes
cudnConvolutionForward(), cudnnConvolutionBackwardData(), and
cudnnConvolutionBackwardFilter().

Known Issues

Following are known issues in this release:

cuDNN Release 7.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 208

‣ RNN search Algorithm is restricted to STANDARD algorithm.

‣ Newly added projection Layer supported for inference and one directional RNN cell.

‣ uint8 input for convolution is restricted to NVIDIA Volta and later.

‣ cudnnGet picks a slow algorithm that does not use Tensor Cores on NVIDIA Volta
when inputs are FP16 and it is possible to do so.

‣ There may be a small performance regression on multi-layer RNNs using the
STANDARD algorithm with Tensor Core math in this release compared to 7.0.5.

Fixed Issues

The following issues have been fixed in this release:

‣ 3D convolution performance improvements for NVIDIA Volta.

‣ Added support for Algorithm 0 data gradients to cover cases previously not
supported.

‣ Removed the requirement for dropout descriptor in RNN inference. Before application
had to set a non-point for the dropout Descriptor that was not used.

‣ Use of CUDNN_TENSOR_NCHW_VECT_C with non-zero padding resulted in a return status
of CUDNN_STATUS_INTERNAL_ERROR. This issue is now fixed.

2.18. cuDNN Release 7.0.5
This is the cuDNN 7.0.5 release notes. This release includes fixes from the previous
cuDNN v7.x.x releases as well as the following additional changes.

Known Issues

Following are known issues in this release:

‣ cuDNN library may trigger a CPU floating point exception when FP exceptions are
enabled by user. This issue exists for all 7.0.x releases.

‣ There are heavy use cases of RNN layers that might hit a memory allocation issue in
the CUDA driver when using cuDNN v7 with CUDA 8.0 and R375 driver on pre-Pascal
architectures (NVIDIA Kepler and Maxwell). In these cases, subsequent CUDA kernels
may fail to launch with an Error Code 30. To resolve the issue, it is recommended
to use the latest R384 driver (from NVIDIA driver downloads) or to ensure that the
persistence daemon is started. This behavior is observed on all 7.0.x releases.

‣ When using TENSOR_OP_MATH mode with cudnnConvolutionBiasActivationForward,
the pointer to the bias must be aligned to 16 bytes and the size of allocated memory
must be multiples of 256 elements. This behavior exists for all 7.0.x releases.

Fixed Issues

The following issues have been fixed in this release:

cuDNN Release 7.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 209

‣ Corrected the algorithm fallback behavior in RNN when user set to use
CUDNN_TENSOR_OP_MATH when using compute card without Tensor Cores. Instead of
returning CUDNN_STATUS_NOT_SUPPORTED, the RNN algorithm will now continue to run
using CUDNN_DEFAULT_MATH. The correct behavior is to fall back to using default math
when Tensor Core is not supported. Fixed to the expected behavior.

‣ On NVIDIA Volta hardware, BWD_FILTER_ALGO_1 and BWD_DATA_ALGO_1
convolutions using a number of filter elements greater than 512 were causing
CUDA_ERROR_ILLEGAL_ADDRESS and CUDNN_STATUS_INTERNAL_ERROR errors. Logic was
added to fall back to a generic kernel for these filter sizes.

‣ cuDNN v7 with CUDA 8.0 produced erroneous results on NVIDIA Volta for some
common cases of Algo 1. Logic was added to fall back to a generic kernel when
cudnn v7 with CUDA 8.0 is used on NVIDIA Volta.

2.19. cuDNN Release 7.0.4
This is the cuDNN 7.0.4 release notes. This release includes fixes from the previous
cuDNN v7.x.x releases as well as the following additional changes.

Key Features and Enhancements

‣ Performance improvements for grouped convolutions when input channels and
output channels per group are one, two, or four for the following algorithms:

‣ CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM

‣ CUDNN_CONVOLUTION_BWD_DATA_ALGO0

‣ CUDNN_CONVOLUTION_BWD_DATA_ALGO_1

‣ CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0

‣ CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1

Known Issues

Following are known issues in this release:

‣ The CUDA 8.0 build of cuDNN may produce incorrect computations when run on
NVIDIA Volta.

‣ cuDNN library triggers CPU floating point exception when FP exceptions are enabled
by user. This issue exists for all 7.0.x releases.

‣ There are heavy use cases of RNN layers that might hit a memory allocation issue in
the CUDA driver when using cuDNN v7 with CUDA 8.0 and R375 driver on pre-Pascal
architectures (NVIDIA Kepler and Maxwell). In these cases, subsequent CUDA kernels
may fail to launch with an Error Code 30. To resolve the issue, it is recommended
to use the latest R384 driver (from NVIDIA driver downloads) or to ensure that the
persistence daemon is started. This behavior is observed on all 7.0.x releases.

cuDNN Release 7.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 210

‣ When using TENSOR_OP_MATH mode with cudnnConvolutionBiasActivationForward,
the pointer to the bias must be aligned to 16 bytes and the size of allocated memory
must be multiples of 256 elements. This behavior exists for all 7.0.x releases.

Fixed Issues

The following issues have been fixed in this release:

‣ Fixed out-of-band global memory accesses in the 256-point 1D FFT kernel. The
problem-affected convolutions with 1x1 filters and tall but narrow images, for
example, 1x500 (WxH). In those cases, the workspace size for the FFT_TILING algo
was computed incorrectly. There was no error in the FFT kernel.

‣ Eliminated a source of floating point exceptions in the
CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED algorithm. The host code to
generate a negative infinity-floating point value was substituted with a different
logic. By default, FP exceptions are disabled. However, a user program enabled them
by invoking feenableexcept(). There are at least two other sources of FP exceptions
in the cuDNN library, affecting for example BATCHNORM_SPATIAL_PERSISTENT. Those
sources of FP exceptions will be eliminated in future releases of the cuDNN library.

2.20. cuDNN Release 7.0.3
This is the cuDNN 7.0.3 release notes. This release includes fixes from the previous
cuDNN v7.x.x releases as well as the following additional changes.

Key Features and Enhancements

Performance improvements for various cases:

‣ Forward-grouped convolutions where input channel per groups is one, two, or four
and hardware is NVIDIA Volta or NVIDIA Pascal.

‣ cudnnTransformTensor() where input and output tensor is packed.

Note: This is an improved fallback, improvements will not be seen in all cases.

Known Issues

The following are known issues in this release:

‣ CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING may cause
CUDA_ERROR_ILLEGAL_ADDRESS. This issue affects input images of just one pixel in
width and certain n, c, k, h combinations.

Fixed Issues

The following issues have been fixed in this release:

cuDNN Release 7.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 211

‣ AddTensor and TensorOp produce incorrect results for half and INT8 inputs for
various use cases.

‣ cudnnPoolingBackward() can produce incorrect values for rare cases of non-
deterministic MAX pooling with window_width > 256. These rare cases are when the
maximum element in a window is duplicated horizontally (along width) by a stride
of 256*k for some k. The behavior is now fixed to accumulate derivatives for the
duplicate that is left most.

‣ cudnnGetConvolutionForwardWorkspaceSize() produces incorrect workspace
size for algorithm FFT_TILING for 1d convolutions. This only occurs for large sized
convolutions where intermediate calculations produce values greater than 2^31 (2 to
the power of 31).

‣ CUDNN_STATUS_NOT_SUPPORTED returned by cudnnPooling*() functions for small x
image (channels * height * width < 4).

2.21. cuDNN Release 7.0.2
This is the cuDNN 7.0.2 release notes. This release includes fixes from the previous
cuDNN v7.x.x releases as well as the following additional changes.

Key Features and Enhancements

‣ This is a patch release of cuDNN 7.0 and includes bug fixes and performance
improvements mainly on NVIDIA Volta.
Algo 1 Convolutions Performance Improvements

Performance improvements were made to
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM,
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1, and
CUDNN_CONVOLUTION_BWD_DATA_ALGO_1. These improvements consist of new SASS
kernels and improved heuristics. The new kernels implement convolutions over
various data sizes and tile sizes. The improved heuristics take advantage of these
new kernels.

Known Issues

The following are known issues in this release:

‣ cudnnGetConvolutionForwardWorkspaceSize() returns overflowed size_t value for
certain input shape for CUDNN_CONVOLUTION_*_ALGO_FFT_TILING.

‣ cudnnPoolingBackward() fails for pooling window size > 256.

Fixed Issues

The following issues have been fixed in this release:

cuDNN Release 7.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 212

‣ Batch Norm CUDNN_BATCHNORM_SPATIAL_PERSISTENT might get into race conditions in
certain scenarios.

‣ cuDNN convolution layers using TENSOR_OP_MATH with FP16 inputs and outputs and
FP32 compute will use “round to nearest” mode instead of “round to zero” mode as in
7.0.1. This rounding mode has proven to achieve better results in training.

‣ Fixed synchronization logic in the CUDNN_CTC_LOSS_ALGO_DETERMINISTIC algo for
CTC. The original code would hang in rare cases.

‣ Convolution algorithms using TENSOR_OP_MATH returned a workspace size from
*GetWorkspaceSize() smaller than actually necessary.

‣ The results of INT8 are inaccurate in certain cases when calling
cudnnConvolutionForward() in convolution layer.

‣ cudnnConvolutionForward() called with xDesc’s channel = yDesc’s channel =
groupCount could compute incorrect values when vertical padding > 0.

2.22. cuDNN Release 7.0.1
This is the cuDNN 7.0.1 release notes. This release includes the following changes.

cuDNN v7.0.1 is the first release to support the NVIDIA Volta GPU architecture.
In addition, cuDNN v7.0.1 brings new layers, grouped convolutions, and improved
convolution find as error query mechanism.

Key Features and Enhancements

This cuDNN release includes the following key features and enhancements.

Tensor Cores
Version 7.0.1 of cuDNN is the first to support the Tensor Core operations in its
implementation. Tensor Cores provide highly optimized matrix multiplication
building blocks that do not have an equivalent numerical behavior in the traditional
instructions, therefore, its numerical behavior is slightly different.

cudnnSetConvolutionMathType, cudnnSetRNNMatrixMathType, and cudnnMathType_t
The cudnnSetConvolutionMathType and cudnnSetRNNMatrixMathType functions
enable you to choose whether or not to use Tensor Core operations in the
convolution and RNN layers respectively by setting the math mode to either
CUDNN_TENSOR_OP_MATH or CUDNN_DEFAULT_MATH.

Tensor Core operations perform parallel floating point accumulation of multiple
floating point products.

Setting the math mode to CUDNN_TENSOR_OP_MATH indicates that the library will use
Tensor Core operations.

The default is CUDNN_DEFAULT_MATH. This default indicates that the Tensor Core
operations will be avoided by the library. The default mode is a serialized operation

cuDNN Release 7.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 213

whereas, the Tensor Core is a parallelized operation, therefore, the two might result in
slightly different numerical results due to the different sequencing of operations.

Note: The library falls back to the default math mode when Tensor Core operations are
not supported or not permitted.

cudnnSetConvolutionGroupCount
A new interface that allows applications to perform convolution groups in the
convolution layers in a single API call.

cudnnCTCLoss
cudnnCTCLoss provides a GPU implementation of the Connectionist Temporal
Classification (CTC) loss function for RNNs. The CTC loss function is used for
phoneme recognition in speech and handwriting recognition.

CUDNN_BATCHNORM_SPATIAL_PERSISTENT
The CUDNN_BATCHNORM_SPATIAL_PERSISTENT function is a new batch
normalization mode for cudnnBatchNormalizationForwardTraining
and cudnnBatchNormalizationBackward. This mode is similar to
CUDNN_BATCHNORM_SPATIAL, however, it can be faster for some tasks.

cudnnQueryRuntimeError
The cudnnQueryRuntimeError function reports error codes written by GPU
kernels when executing cudnnBatchNormalizationForwardTraining and
cudnnBatchNormalizationBackward with the CUDNN_BATCHNORM_SPATIAL_PERSISTENT
mode.

cudnnGetConvolutionForwardAlgorithm_v7
This new API returns all algorithms sorted by expected performance
(using internal heuristics). These algorithms are output similarly to
cudnnFindConvolutionForwardAlgorithm.

cudnnGetConvolutionBackwardDataAlgorithm_v7
This new API returns all algorithms sorted by expected performance
(using internal heuristics). These algorithms are output similarly to
cudnnFindConvolutionBackwardAlgorithm.

cudnnGetConvolutionBackwardFilterAlgorithm_v7
This new API returns all algorithms sorted by expected performance
(using internal heuristics). These algorithms are output similarly to
cudnnFindConvolutionBackwardFilterAlgorithm.

CUDNN_REDUCE_TENSOR_MUL_NO_ZEROS
The MUL_NO_ZEROS function is a multiplication reduction that ignores zeros in the data.

CUDNN_OP_TENSOR_NOT
The OP_TENSOR_NOT function is a unary operation that takes the negative of (alpha*A).

cudnnGetDropoutDescriptor
The cudnnGetDropoutDescriptor function allows applications to get dropout values.

cuDNN Release 7.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 214

Using cuDNN v7.0.1

Ensure you are familiar with the following notes when using this release.

‣ Multi-threading behavior has been modified. Multi-threading is allowed only when
using different cuDNN handles in different threads.

‣ In cudnnConvolutionBackwardFilter, dilated convolution did not support cases
where the product of all filter dimensions was odd for half precision-floating point.
These are now supported by CUDNN_CONVOLUTION_BWD_FILTER_ALGO1.

‣ Fixed bug that produced a silent computation error for when a batch size was larger
than 65536 for CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM.

‣ In getConvolutionForwardAlgorithm, an error was not correctly reported in v5 when
the output size was larger than expected. In v6 the CUDNN_STATUS_NOT_SUPPORTED,
error message displayed. In v7, this error is modified to CUDNN_STATUS_BAD_PARAM.

‣ In cudnnConvolutionBackwardFilter, cuDNN now runs some exceptional cases
correctly where it previously erroneously returned CUDNN_STATUS_NOT_SUPPORTED.
This impacted the algorithms CUDNN_CONVOLUTION_BWD_FILTER_ALGO0 and
CUDNN_CONVOLUTION_BWD_FILTER_ALGO3.

Deprecated Features

The following routines have been removed:

‣ cudnnSetConvolution2dDescriptor_v4

‣ cudnnSetConvolution2dDescriptor_v5

‣ cudnnGetConvolution2dDescriptor_v4

‣ cudnnGetConvolution2dDescriptor_v5

Note: Only the non-suffixed versions of these routines remain.

The following routines have been created and have the same API prototype as their non-
suffixed equivalent from cuDNN v6:

‣ cudnnSetRNNDescriptor_v5 - The non-suffixed version of the routines in cuDNN
v7.0.1 are now mapped to their _v6 equivalent.

ATTENTION: It is strongly advised using the non-suffixed version as the _v5 and _v6
routines will be removed in the next cuDNN release.

‣ cudnnGetConvolutionForwardAlgorithm,
cudnnGetConvolutionBackwardDataAlgorithm, and
cudnnGetConvolutionBackwardFilterAlgorithm - A _v7 version of this routine has
been created. For more information, see the Backward compatibility and deprecation
policy chapter of the cuDNN documentation for details.

cuDNN Release 7.x.x

NVIDIA cuDNN RN-08667-001_v8.9.3 | 215

Known Issues

‣ cuDNN pooling backwards fails for pooling window size > 256.

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a
product. NVIDIA Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information
contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of
such information or for any infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to
develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without
notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise
agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual
obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in
applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use
is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each
product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained
in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in
order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA
product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability
related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary
to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or
a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights
of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full
compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the
products described herein shall be limited in accordance with the Terms of Sale for the product.

Arm

Arm, AMBA and Arm Powered are registered trademarks of Arm Limited. Cortex, MPCore and Mali are trademarks of Arm Limited. "Arm" is used to represent
Arm Holdings plc; its operating company Arm Limited; and the regional subsidiaries Arm Inc.; Arm KK; Arm Korea Limited.; Arm Taiwan Limited; Arm France
SAS; Arm Consulting (Shanghai) Co. Ltd.; Arm Germany GmbH; Arm Embedded Technologies Pvt. Ltd.; Arm Norway, AS and Arm Sweden AB.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

Blackberry/QNX

Copyright © 2020 BlackBerry Limited. All rights reserved.

Trademarks, including but not limited to BLACKBERRY, EMBLEM Design, QNX, AVIAGE, MOMENTICS, NEUTRINO and QNX CAR are the trademarks or
registered trademarks of BlackBerry Limited, used under license, and the exclusive rights to such trademarks are expressly reserved.

Google

Android, Android TV, Google Play and the Google Play logo are trademarks of Google, Inc.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

Trademarks

NVIDIA, the NVIDIA logo, and BlueField, CUDA, DALI, DRIVE, Hopper, JetPack, Jetson AGX Xavier, Jetson Nano, Maxwell, NGC, Nsight, Orin, Pascal, Quadro,
Tegra, TensorRT, Triton, Turing and Volta are trademarks and/or registered trademarks of NVIDIA Corporation in the United States and other countries.
Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright

© 2014-2024 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	cuDNN Release 8.x.x
	1.1. cuDNN Release 8.9.3
	1.2. cuDNN Release 8.9.2
	1.3. cuDNN Release 8.9.1
	1.4. cuDNN Release 8.9.0
	1.5. cuDNN Release 8.8.1
	1.6. cuDNN Release 8.8.0
	1.7. cuDNN Release 8.7.0
	1.8. cuDNN Release 8.6.0
	1.9. cuDNN Release 8.5.0
	1.10. cuDNN Release 8.4.1
	1.11. cuDNN Release 8.4.0
	1.12. cuDNN Release 8.3.3
	1.13. cuDNN Release 8.3.2
	1.14. cuDNN Release 8.3.1
	1.15. cuDNN Release 8.3.0
	1.16. cuDNN Release 8.2.4
	1.17. cuDNN Release 8.2.2
	1.18. cuDNN Release 8.2.1
	1.19. cuDNN Release 8.2.0
	1.20. cuDNN Release 8.1.1
	1.21. cuDNN Release 8.1.0
	1.22. cuDNN Release 8.0.5
	1.23. cuDNN Release 8.0.4
	1.24. cuDNN Release 8.0.3
	1.25. cuDNN Release 8.0.2
	1.26. cuDNN Release 8.0.1 Preview
	1.27. cuDNN Release 8.0.0 Preview

	cuDNN Release 7.x.x
	2.1. cuDNN Release 7.6.5
	2.2. cuDNN Release 7.6.4
	2.3. cuDNN Release 7.6.3
	2.4. cuDNN Release 7.6.2
	2.5. cuDNN Release 7.6.1
	2.6. cuDNN Release 7.6.0
	2.7. cuDNN Release 7.5.1
	2.8. cuDNN Release 7.5.0
	2.9. cuDNN Release 7.4.2
	2.10. cuDNN Release 7.4.1
	2.11. cuDNN Release 7.3.1
	2.12. cuDNN Release 7.3.0
	2.13. cuDNN Release 7.2.1
	2.14. cuDNN Release 7.1.4
	2.15. cuDNN Release 7.1.3
	2.16. cuDNN Release 7.1.2
	2.17. cuDNN Release 7.1.1
	2.18. cuDNN Release 7.0.5
	2.19. cuDNN Release 7.0.4
	2.20. cuDNN Release 7.0.3
	2.21. cuDNN Release 7.0.2
	2.22. cuDNN Release 7.0.1

