IIIIIII

(61101 =] i B 0 Y] o 1= PPN 1

Chapter 2. General DesCriPtioN. . ..iceeeieeeiieeeeeeeiereeeeeeeeesaeeeeeceessnaseeccssssasscccsessnssscccnns 2
2.1, Programming MOlciiiinueeiiiiiiiiiiiiiiiteeeeeeireeeeeeeernaneeeeesnnnneeessessnnssessssnnns 2
2.2, CoNVOLULION FOIMULAS. ... utttiiiiiit ittt ettt et ittt eeeeeeiaeeeeeeeannseeeeeeennnneeeenn 3
20 TR 1 o - L o o A 4
PR T[] 1o) gl D1l [o] o] (P PPN 5

T BRR'') A =1 o g DTl ol] o] o | S PP 6
2.4.2. 4-D TeNSOr DeSCIIPIO . .t ettt ittt ittt e ei et teeaineeeeeeaannseeeeeanannenes 6
2 T B D B 110 Eo Tl D1=H ol 1] 6 [0 P O PP 6
2.4.4. FUlly-pacKked LENSOrS. ..uiiiiiiiittt ittt ieiiiiteeteeeieeeeeeeannaeeeeeesnnnaeeseesennnneess 6
2.4.5. Partially-packed LENSOIS. ...uiienttieitteeitteeiteeeieeeeneeeeneeeaaieeeeaneeesnaeeesneeesnneens 6
2.4.6. Spatially PacKed LENSOIS. . uuettiiiiiittttieiiitteeeeerieeeeeeeerraeeeeeesnnnsseeeessnnnsseeennn 7
P N R 01y - To o) [T B T3 o P 7
P T 111 = T Y- L 1= 1 PP 7
2.6. Reproducibility (determinisSm).......ooeiieiiieiiiuiiitiiiii i reaaaes 7
2.7, SCAlING ParamM O OrS. e e ittt ttreiiiteeeeeenrnneeeesessnneeeesesennnneeesessnnesessessnnnnssssssnnnes 8
2.8, TeNSOr COre OPEratioNS. . .ueeeieiiitttttteeiitteteteeaieteeteeaieteeeeeesseeeseesesseseseesennneeees 9
2.8.1. Tensor Core Operations NOTES.ciiiiiiietttiiiiiiiteiiiiteereerneeeesessnnnneessennnnes 11
2.8.2. Tensor Operations SPEEAUP TiPS. .ccuueettireiiteeeereriieeeeeeeainseeeeeesnsseseeeesenneeeens 11
2.9. GPU and driver reqUiremeNtS.eeee et tereteeeeeteieteeaneeeeaneerenateeanseeesneerenneeesnseeanns 12
2.10. Backward compatibility and deprecation poliCy......cceviiiiiiiiiiiiiiiiiiiiiiiiiiiiiie e, 12
2.11. Grouped CONVOIULIONS. ... vt tiitttiit ittt eiieeeeteeeieeeeeeeeenaeeeanaeeenneeeenneesonneennnens 13
N 7\ o I o {3 1o T S PPN 14
2.13. Features of RNN FUNCHIONS.oiutiitiitiiitiiiii it ee et et e eeeeaeaaens 16
2.14. Mixed Precision NUMEriCal ACCUIACY.....uiiiiriiueteereeiineeeereeernreeeessnsneseeeessnnaseeeenns 18

Chapter 3. cuDNN Datatypes Reference.......c.cccceeiiiieiiiieiiieneeineereieneeenencecanascscnascnnnsans 19
K P I 0Ta []9 V:d (3] D=3 el o] o] g S PP 19
3.2, cUdNNALENQUENYMAP T n e nttitieiit et eeeteeeieteeeeeeeaneeeenneeeeaeeesneeessneessnaessennens 19
I M elila [31V:Yetd A7 [o]] D11 ol g10) o] S PP PP 19
3.4, cudnNACTIVAtIONMOAE T ittt it et et et e eeiiaeeeeeeennnaeaeeannn 19
3.5. cudnnBatchNOIrMMOdE_t......onuiiiiiiii i et e e eas 20
3.6. cUANNBAtChNOIMOPS ..t ttttiiiiiiiit ittt ittt eeeeireeeeeeeaaateesessnnseeeesennnnanes 21
3.7, CUANNCTCLOSSALGO tennttieittieittteitt ettt teeteeeiaeeeaneeeanneeeanneeesneeeesnsessnnesesnneens 21
KI¥: (8 a | 100 N6l o33 DI<i el 0] o] SN PP PP 22
3.9. cudnnConvolutionBwdDataAlgoPerf_t.....c.ueieiiiiiiiiiii it ieiieeieeieeeeaeeaans 22
3.10. cudnnConvolutionBwdDataAlZ0_T...ccuueeiiiiiiitiiiiiiieeereeiieeeeeeeaneeeeeseennneeeesanns 23
3.11. cudnnConvolutionBwdDataPreferenCe _t.....ivviiiiiiiiiiiiii it iiiiieeeiieeeeas 24
3.12. cudnnConvolutionBwdFilterAlgoPerf t........vviiiiiiiiiiiiiiiiiiii it eeeiieeeeaannnnes 24
3.13. cudnnConvolutionBWAFILEErALO_t......cceiuuiiiiiiiiiiiiiii e eeas 25
3.14. cudnnConvolutionBwdFilterPreference_t.........ccoviuiiiiiiiiiiiiiiiii i eeieeees 26
www.nvidia.com

CcuDNN 7.5.0 DU-06702-001_v07 | ii

3.15. cudnnConVolUtIONDESCIIPLOr_L....uetttiiiiiit ittt ee ettt eeeeiieeeeeeeniaeaeeeenannnnes 26
3.16. cudnnConvolutionFWAALGOPEIciiuiiiiiiiii i i e e e e e i e naaens 26
3.17. cudnnConVOolULIONFWAALGO .. .uueiiiiiiiiii it ittt et ee et eeeiiaeeeeeannnaaaes 27
3.18. cudnnConvolutionFWAPreferenCe_t.......cvvuiiiiiitiiiiiiiiiiiiiei e i e eeneeeneens 28
3.19. cudnnConVolULIONMOE_L...ecnnntirit i e et e e e et eeeeerennneeanneeaannanans 28
3.20. CUANNDAEATY POt uuetiiinttiiittteiteeettteineeeeneeeanneeeenaeeeeneeessneeesnneessnesesnneesennens 29
P (e (a1 a 10T o g)TN E T 30
RV elU e (310101 ¢=Tet (0] 0,11 To Lo [N PPN 30
3.23. cudnnDIVNOIMMOE ... ettt et e ettt et et e e e eeeeeenaeeeenaasannnes 30
3.24. cudNNDIrOPOULDESCIIPTOr T uuetieittieiteeeetrertereneeeeaneerenaeeeaneeeanneesenneesonneesnnens 31
Ao T o{UTe [| g g O 10 1=T 1Y/ o T [P 31
RIVL T elile 3101 S IRV g DIT el o o] o] o SO PP 31
3.27. cudnnFoldingDireCtion _t...cieeneeeiiiiiiiittteiiiteeeeearaeeeeseenanaeeeeseennnnnesssessnnnnes 31
RV et Ta 3101 o - 1y Lo | L= PPN 32
3.29. CUANNINAICES TY PO L. uttiiittiii it et ettt ee e teeeeeenaeeeanaeeaaneerenneeesnseeannes 32
I 10 I {8 a 13T a1 24 Vo T L= o N 32
I b D ai e [T = Y Y o I S PP PP 32
3.32. cudnnMultiHeadAttnWeightKind_t....ccouieiiiiiiiiiiii it i eeire e reeeaaneees 33
3.33. cudnnNaNPropagation_t.....co.uiiuiiitiiiiiiiii ittt ettt e e eaaaas 33
3.34. cudNNOPTENSOIDESCIIPLOr T etttiiiiiieteteiiieteeteearneeeeeeesnnneeeessssnnnseseesonnnnes 33
3.35. CUANNOPTENSOIOP _t.uuuiineiieiieeit ettt ettt ettt eetteatteaetaeetaeetaaetaeeneeenaeens 34
3.36. cudnnPersistentRNNPLAN_t......eiiii i et eeaes 34
3.37. cudnNnPOOlINGDESCIIPLOr L. ettt tteit it eeeteeeneeeeaeerenaeeeaneeranneesenneesnens 34
3.38. cUdNNPOOLINGMOAE _t...eiiiitiiiiiiii e ieeiiiteeeeeennneeeereennnneessessnnnneessessnnneessenns 34
3.39. CUANNRNNALGO ..ttt ettt ittt eeeiaeeeeeeeanaseseesennnaeeeesanns 35
3.40. cUdNNRNNBIASMOAE L. uueinntiiniiiiiei ittt ee e et eeeeeeeenteaneeaneennennnes 36
3.41. CUANNRNNCUHPMOAE L. . utiiiiiiiiiii ittt ettt eeeiieeeeeeeenaeaseeeesnneseesesannnnes 36
3.42. CUANNRNNDESCIIPEON _te.uuttiiinttiiitteeite ettt eeieteeaeerenneeeenaeeeaneerenneeesnseeennaesanns 36
3.43. cUANNRNNDALADESCIIPEOr T iiiittttiiiiiiitetieeiieeeeeeeaiaeeeeeeesnnseeeesesenseseesesnnnnes 37
3.44. cudnNRNNINPUEMOAE L. . .uiiiiiiiii it iii e e e it e et eeeeeeenaeeenneesanneeeanneeannes 37
3.45. cUANNRNNMOE L. ..ottt ettt ettt e e et e eeaeeeannesannnesenanaeanaesannnes 37
3.46. cudnNRNNPaddingMOde_t.......uiineiieiitiiitiii ittt et et e eeeeaeeaaes 39
3.47. cudnnReduceTensOrDeSCriPIOr _t. . it ii it iiiiiiieeeiiiteeteeaineneeeaennnneeesresannnneess 40
3.48. cudnnNRedUCETENSOIINAICES _t.uuiiiiiiiiit ittt it et et eeeiieeeeeeeeaiaaeeeeanns 40
3.49. cUdNNREAUCETENSOIOP _tu et iiiiiiettteieiieteereearaeeeeeeenrnneeessessnnnsesssesnnneessessnnnnes 40
3.50. CUANNSAM P O T POt ittt ittt ettt ettt et eeeeaiaeeeeeeeansaaeesesennnsessesannnes 41
KIS R o{UTe 3] g N =Ta | DE= 1 2=V) PP 41
KRy elile [T N=Te D TE101T ol] o] o) ol SO PP PP PP 42
3.53. cudnnSoftmaxALGOrithm _t......oiieiiii i i i e e eee e naeeaaaeas 42
3.54. cudnnSOftMAXMOAE L. . enet ittt e et e et eeaeerenneeeaneerenneesannaaannes 42
3.55. cudnnSpatialTransformerDesCriptor_f....cee e i irie i et ei i eeieeeeeeeneeaanaaes 43
K T T T o 8o 3T 1] - 0 o 43
K YA «(8a [aTa N [s o] DTt ol o) o] ol S RN 44
www.nvidia.com

CcuDNN 7.5.0 DU-06702-001_v07 | iii

R T: ol VT [A W] A o] o 30T 1 1 1= A 44

3.59. cudnnTensorTransformDeEsCriPLOr_t.....uiiii i iiii i e e e e et eeieeeeneeeaanaann 45
3.60. cUANNWEradMOAE L. .ueiiiiiiiitiiiiiiiii i ee ittt teeaieeeeeeeannseeeeeeeanaeseesesennseeseenn 45

Chapter 4. CUDNN AP| Ref@reNCe.....ciiiiniiiiiiiiiieiieteeneteeanetecanceesnnsecanesecnsecnnnsennnes 47
4.1. cudnnActivationBackWard........coveeiiiiiiiiiii i e et er e 47
4.2, cudnnACEIVAtiONFOrWard.uoineiiiiit i e e e eeneenes 49
2 3% T o 8o [T gV [J =1 41T) O 50
4.4, cudnnBatchNormalizationBackward..........cooiiiiiiiiiiiiiiiiiiiiiii it e i e eeaas 51
4.5. cudnnBatchNormalizationBackWardEX.......cvveueiiiiiiiiiiiiiiiii e e ereeeaas 54
4.6. cudnnBatchNormalizationForwardInference........ovviiiiiiiiiiiiiiiiiii i, 57
4.7. cudnnBatchNormalizationForwardTraining.......eeeereeeeiireiiieeeereriieeeereenrnneeeerennnnnnes 59
4.8. cudnnBatchNormalizationForwardTrainingEX.....cciveiiiiiieiiiiiiiiiiiiiiiieeieiiiieeeeeaennns 62
I R o8 Ta 3 o O I o S N 66
4.10. cudnnConvolutionBaCKWardBias.oeuieeiiiiiiitteiiiiiieeteeeiieeeeeeeninaeeeeeensnaseeeennn 67
4.11. cudnnConvolutionBackwardData.cceeiiiiiiiiiiiiiiiiiiiii i i rieenieerneeeneeaneees 68
4.12. cudnnConvolutionBackwardFilter........ccuiiriiiiiii i eeieeeneeeeeenanneenas 75
4.13. cudnnConvolutionBiasActivationForward..........c.ccevieiiieiiiiiiiiiiiiiiiiiiieierieanaens 81
4.14. cudnnConVOLULIONFOIWAId.eiitetiit ettt ree e eaeereeaeerenneeeaneerenneesanneaannes 84
o B TR ol U T [o [=T N 91
4.16. cudnnCreateACtivationDEsCriPtOr. . viie ittt i ieiiiiteeeeeeieeeeeeeennneeeeeessnnnneess 92
4.17. cudnnCreateAlgorithmDesCriptor. .. o.vvveiiieiii it eeeees 92
4.18. cudnnCreateAlgorithmPerformanCe.c.oiiiiiiieiiiiiiiii i eeeiieeeeerenrnneeeeanns 93
4.19. cudnNCreateAtENDESCIIPIO . .. ettt ettt eert ettt rerteeeeerenneerenaeeeaneerenneerenneeennes 93
4.20. cudnnCreateCT CLOSSDESCIIPION. . uetttieiiiit et teeeiieeeeeeearneeeereeannnneeesessnnesessssnnnnnes 93
4.21. cudnnCreateConVolutioNDESCIIPLO . . uiii ittt ittt e ittt eeeieeeeeaaannaes 94
4.22. cudnnCreateDropoUtDESCIIPLOttt it e i e e et eeeeeenneeeanaeeannas 94
4.23. cudnnCreateFilterDesCriPlor. ..o ettt ittt et e e iiteeeeeeeineaeeeaannnaes 94
4.24. cudnnCreateLRNDESCIIPEOr. .. vttt iiit it eei ettt tereeeeeeeeenaeeeanaeeanneeeanneeennens 95
4.25. cudnnCreateOpTeNnsOrDESCIIPIOr. . uutt e ittt eiiiie e eeeiieeeeeeineeeeeesannnneseesannnes 95
4.26. cudnnCreatePersistentRNNPLAN.ciiuiiitiiii e e reaeeas 96
4.27. cudnnCreatePo0lingDesCriPtor. . uuu ettt tiiiiiitetieeiiiteeeeeeirneeeeeesnnaseeeessnnnneeeeennns 96
4.28. cudnnCreateRNNDESCIIPTON. . .vit ettt ettt ettt ettt e taeetieeeeeeneeaneens 96
4.29. cudnnCreateRNNDataDESCIIPIOr. . vettitirii e tteiiiteereeriereeeeenrnaeeeesesrnnenessesnnnnnes 97
4.30. cudnnCreateReduceTenSOrDESCIiPLOr. ..uueuuttrerteeeeeeeneeeereeeeaneeeerneeeaneeeeeneeesaneens 97
4.31. cudnnCreateSeqDataDesCriPlOr. . ..uueiiiriiiitttteeiiieteeteearneeeeeeennneeessesennnnessesannnns 98
4.32. cudnnCreateSpatialTransformerDesCriplor. .. .cuiiiiiiii it i eeeeaes 98
4.33. cudnnCreateTensOrDeSCrIPLOr. . uue ittt itiiii i eteeeteereeanneeeeeeessnneeessesonnnneess 98
4.34. cudnnCreateTensorTransformDESCriPIOr. ...uuiitiiiiiiii ettt eiiie e eeeiiieeeeeeaannaeas 99
4.35. cudnnDeriveBNTENSOrDESCIIPEO . .. ut ettt it iit et eeiteeeetereiaeeeaneeeenneeeanneeannes 99
4.36. CUANNDESTIOY .ttt iiiiitttttteiiieteeteteieteeeeeernaeeeeeesanseseesessnsesessessnnssesssssnnsaeeeens 100
4.37. cudnnDestroyACtivationDeSCriPLOr. . ..uu it iii i ei e ere e eeieeeaeeeaanaees 101
4.38. cudnnDestroyAlgorithmDEsCriPEOr. . .ui i ittt ittt ieiiiieeeeeeiieeeeeeeannaeeeeaannnnes 101
4.39. cudnnDestroyAlgorithmPerformanCe.oovviiiiiiiiiiiiiiiiiiiii it eeieeenees 101
www.nvidia.com

cuDNN 7.5.0 DU-06702-001_vO07 | iv

4.40. cudnnDestroyAtENDESCIIPIO . .\ttt ittt ettt et ettt eeeieeeeeeaennaaaeans 102
4.41. cudnnDestroyCTCLOSSDESCIIPLON. vttt ittt it teeieieieeteieeeaaeeraraeeeaneeeenneeeennenns 102
4.42. cudnnDestroyConvolutionDESCIiPEO . ..uiiii ittt it ieiiiieeeeeeaieeeeeeeennneeaeeanns 102
4.43. cudnnDestroyDropOUtDESCIIPIO . . . ittt it eiieei ettt eeereeeeaneeeaneeeaaneaenns 102
4.44. cudnnDestroyFilterDesCriPlOr. . ..ttt i e eiie et teeeiateeeaaannaes 103
4.45. cudnnNDEStrOYLRNDESCIIPIOr . . ut ittt ittt teitteeeteeeeteeennteeaeeeaaneeeenaeeesneesenneeenns 103
4.46. cudnnDestroyOpTeNsOrDESCIIPIOr. . uue it iiiiii it ieiiiii e eeeiiieeeereeaineeeeeeesnnneeeeeanns 103
4.47. cudnnDestroyPersistentRNNPLAN.viiiii e e e e e i e aeneeenaneans 104
4.48. cudnnDestroyPOOliNgDESCriPtOr. . ittt iieiiiietieeeiieeeeeeerreeeeeeesnnnneeeesennnnneeens 104
4.49. cudnnDeStrOyRNNDESCIIPIO . . . ettt tteittreteeeieerereeeeaeereraeeeeneeeanneesenneesaneens 104
4.50. cudnnDestroyRNNDataDeSCrIPLOr. . uutiiiteriitereiiiteereeeieeeeeeesnnneeessessnnnnesseennns 104
4.51. cudnnDestroyReduceTensorDeSCriPLOr. . ..uuetiiiiiii it eeeiieeeeeanannnaas 105
4.52. cudnnDestroySeqDataDesCriPLOr. . .uueiireerriettereerieterreeanneeeereenrnneeesressnnneesseannns 105
4.53. cudnnDestroySpatialTransformerDesCriplor.cviiiiiiiiiiiiiiiiiii it eeiiieeeeaaas 105
4.54. cudnnDestroyTENSOrDESCIIPLOr. .\t e e ittt ettt e i eeieeeeieeeenaeeaanaeeannens 106
4.55. cudnnDestroyTensorTransformbDesCriPlOr.uueeiiiiiiii it ieiiiieeeeeeeiiaeeeeaaanns 106
4.56. cudnnDivisiveNormalizationBackward...........cveiiieiiiiiiiiiiiiiiiiiiiiiieieeeeaens 106
4.57. cudnnDivisiveNormalizationFOrward..........ceieriiiiiiiiiiiiriiieeerereeeeeneeeaaneenns 108
4.58. cudnnDropoUtBaCKWAId.oiuuiitii ittt ettt tieerneeaneeeneens 110
4.59. cudNNDIrOPOULFOIWaArd. .. i eeeiiiiiiit e itiiii et eeeeieeeeerernnneneesesannnneeesssnnnneeenns 111
4.60. cudnnDropoutGetReserveSPaCESIZE. . ..viintiiiiiii i eeeeees 113
4.61. cudnnNDropoUtGetStateSSIZE. . vt ittt ii ittt e eei it eeeeennneeeesannnneaeens 113
4.62. cudnnFindConvolutionBackwardDataAlgorithm........c.cooiiiiiiiiiiiiiiiiiiiiiiii e 114
4.63. cudnnFindConvolutionBackwardDataAlgorithmEX......cceveviiriiiiiiiiiiiiiiiiiiiiiiiaeinnes 115
4.64. cudnnFindConvolutionBackwardFilterAlgorithm........c.cooiiiiiiiiiiiiiiiiiiiiiiiii s 117
4.65. cudnnFindConvolutionBackwardFilterAlgorithmEX.......ccoeeiiiiiiiiiiiiiiiiiiiiiiiiiieeaee, 119
4.66. cudnnFindConvolutionForwardAlgorithm.ceiiiiiiiiiiii i e e ereeees 121
4.67. cudnnFindConvolutionForwardAlgorithmEX.......cevieiiiiiiiiiiiiiiiiiiii i eiieeeaees 122
4.68. cudnnFindRNNBackwardDataAlgorithmEX.coueiiiiiiiiiiiiiiiiiiii i eeeeineeeenns 124
4.69. cudnnFindRNNBackwardWeightsAlgorithmEX.......cvvveiiiiieiiiiiiiiiiiiiiiiii i eei e 130
4.70. cudnnFindRNNForwardInferenceAlgorithmEX.......ccovviiiiiiiiiiiiiiii i eiiieeeens 133
4.71. cudnnFindRNNForwardTrainingAlgorithmEX.......ceeieieiiieiriiiiiiiiiiiieiieneieeeannees 138
4.72. cudnnGetACtIVAtiONDESCIIPIO . . v et ittt it eeeiieeeereeenneeeeeaennnneeeerennnnnnes 142
4.73. cudnnGetAlgOrtRMDESCIIPEON. ... ettt ieii e eei e eieereneeeaeeeeenaeeraneeeannens 143
4.74. cudnnGetAlgorithmPerformManCe. ... eeiiiiiiiii it e eiii e eeeenneeeeaaennnneeeens 143
4.75. cudnnGetAlgorithmSPaCESIZE. ..ui ittt it e ettt e e e e e naaaeen 144
W 0a [l [€T=1 7:Yud g1 D=2l o] (o] PP PP 145
4.77. cudnnBatchNormalizationBackwardEXWorkspaceSize......covvviiiiiiiiiiiiiieiiiiiiinnnnnnn. 146
4.78. cudnnBatchNormalizationForwardTrainingExWorkspaceSize........cccvvviiiiiiiinininnnnn. 147
4.79. cudnnGetBatchNormalizationTrainingExReserveSpaceSize.......ccovvvvviiiiiiiiiiiiiiinnnnn, 149
4.80. cUANNGELCTCLOSSDESCIIPIO . 1t tttteietteettteiteeereeeeaneerenaeeeaneeeanneeeenneeesneeesnnees 150
4.81. cudnNGEtCTCLOSSWOIKSPACESIZE. v vt tiieiitttttteiiieeteeeeninaeeeeeesreseseesesennsseeeesnnnnes 150
4.82. cUdNNGELCAIIDACK. ..ttt et ieei i e it et it e et eeeeeeanneeeenaeeaanaeeanneas 151
www.nvidia.com

cuDNN 7.5.0 DU-06702-001_v07 | v

4.83. cudnnGetConvolutioN2dDesCriPtOr. oottt tiiiiii e teiiiieeeeeeiieeeeeeeaireeeeeenannnnes 152
4.84. cudnnGetConvolution2dForwardOutputDim......c.ceiiieiiiiiiiiiiiiiiiiiiiii e eeeieeeanns 153
4.85. cudnnGetConvolutionBackwardDataAlgorithm........cooieiiiiiiiiiiiiiiiiiiiiiiiiiiiieeen, 154
4.86. cudnnGetConvolutionBackwardDataAlgorithmMaxCount........cccoveiiiiiiiiiiiiiiiiennnn... 155
4.87. cudnnGetConvolutionBackwardDataAlgorithm_v7.......c.cceiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeens 156
4.88. cudnnGetConvolutionBackwardDataWorkspaceSize.cvvvuiieiiiiiniiiiiiiiinnieeennnnennns 157
4.89. cudnnGetConvolutionBackwardFilterAlgorithm........cooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeens 158
4.90. cudnnGetConvolutionBackwardFilterAlgorithmMaxCount..........ccceeviiiiiiiiiiiennnnn. 159
4.91. cudnnGetConvolutionBackwardFilterAlgorithm_v7.......ccoeiiiiiiiiiiiiiiiiiiiiiiiiiiiieeenns 160
4.92. cudnnGetConvolutionBackwardFilterWorkspaceSize......coeviveieiiriieiiinieiriieennnnennns 161
4.93. cudnnGetConvolutionForwardAlgorithm.........ceiiiiiiiiiiiiiiiiii i iiiiiieeaenieeeeenanns 162
4.94. cudnnGetConvolutionForwardAlgorithmMaxCount........cceveiiiiiiiiiiiiiiiiiiiieiiiineeen. 163
4.95. cudnnGetConvolutionForwardAlgorithm_V7.....ceueiiiiiiiiiiiiiieiiiiieeeeeiineeeeeannnas 164
4.96. cudnnGetConvolutionForwardWorkspaceSize....ovvueeiiiiiiiiii ittt ieiiiieieeeeiaaas 165
4.97. cudnnGetConvolutioNGroUPCOUNE.eeiiit it i ei e eeeieeeeieeeeaneeeanneeennaees 166
4.98. cudnnGetConvolUutioNMathTYPE. . ..uui ittt et ee et e e eeeairaeeeeaannns 167
4.99. cudnnGetConvolutioNNADESCIIPLO . . . ettt ei e e i eereeeeeeeeeneeeeaeeeannes 167
4.100. cudnnGetConvolutionNdForwardOutputDim......ccuiiiiiiiiiiiiiiiiiiiiii it e eeenaas 168
4.101. cudnNNGEtCUAArTVEISION. ... ue ettt it tii ettt teieeeeeerenneerenaeeaaneeeenneeseneeesnnens 169
4.102. cudnNNGEtDropPOULDESCIIPLOr. ... ettt tiiiiiit et ieiiiiteeteerirneeeeeesrnnanessessnnnneessssnnnns 170
4.103. cudNNGELEITOrSEIING. . ettt ettt e et e eeeeaeaaaes 170
4.104. cudnNNGEtFIlEErddDesCriPlOr. .o v ettt ieeiiit et teeeieeeeeeeannneeesreesnnnneeeesonnnneeeens 171
4.105. cudnNNGetFilterNADESCIIPLOr. .. vt ittt teeiteeeeeereeeieeeeaneeeenneeeanaeeeaneessnneens 171
4.106. CUANNGETLRNDESCIIPEO . .ttt iiiitttttieiiieteereiaineeeereesrnneeessessnnneessessnnnnesssesnnnns 172
4.107. cudnnGetMultiHeadAtENBUTferS. ..ouue it e e e e e eeeeeaaees 173
4.108. cudnnGetMultiHeadAttNWeIghtS. .. cui it e e eaees 173
4.109. cudnNNGEtOPTENSOrDESCIIPIO . vttt ittt ittt teeiiiteeeeeaireeeeeeeaneeeeeesnnneneeens 175
4.110. cudnNNGEetPOOlING2ADESCIIPLON. . vttt ettt it teitteeteeteieeretaeeeaneeeenneeeanaeeenneens 175
4.111. cudnnGetPooling2dForwardOUtPULDIM.uiiiiiiiiiiiiiiiii e eiiiieeeeeeiineeeeaeannnns 176
4.112. cudnNGetPOOlINGNADESCIIPEON. .. v it ettt ittt teiteeieeeeeereneeeeaeeeanneerenaeennnens 177
4.113. cudnnGetPoolingNdForwardOULPUEDIM.uureeiiiiiiiiii it e eiiieeeeeennnaeeenns 178
4,114, CUANNGEIPIOPEITY. .. ettt et et ettt t e aneeeneeenees 179
4.115. cudnNNGEtRNNBIASMOAE.uiieiiii i ettt ere e eeerenaeenanns 180
4.116. cudNNGEtRNNDAtADESCIIPLOr . .\ttt et eeiiteeetteereeeeieeeeaneeeeaneeeanaeeeaneeeennees 180
4.117. cUANNGETRNNDESCIIPION . .. utttitieeiiitttereiieteereeeareeeeeenrnneeeesessnnnnessessnnnneesees 181
4.118. cudnnGetRNNLinLayerBiasParams.covvieiiiiiiiiiiiiiiiiiiiiii it eeiiieaeeeanas 182
4.119. cudnnGetRNNLIiNLayerMatriXParams.ccveeeieeeeerreriineeeererenneeeereesrnneeessesonnnneess 185
4.120. cudnNNGEtRNNPAramMSSIZe. . uuuetiiit et iee et reteeeaneerenneeraneerenneerenneesannesenns 188
4.121. cudnnNGetRNNPaddingMOde.iiiiiiiiiii e e e e e i ee e eaeneeeannees 189
4.122. cudNNGETRNNPIOJECHIONLAYEIS. . titttttiiiiitetteeiiiteeeeeenreeeeeesennnseseeesnnnasaeens 189
4.123. cudnnGEetRNNTrainiNgRESEIVESIZE. . uu ittt i eie et eaeeeeenneeaanaeas 190
4.124. cudnNNGEtRNNWOIKSPACESIZE. i iiittt it eiiiieeeeiiteeeeeeineeeeeeennnaseeeennn 191
4.125. cudnnGetReduceTensorDeSCrIPLOr. ..o.uuieniii ittt ettt eeeeaess 192
www.nvidia.com

cuDNN 7.5.0 DU-06702-001_vO07 | vi

4.126. cudnnGetRedUCtionINdiCESSIZE. .ot i it et e e e e e eas 193
4.127. cudnnGetReductionWOrKSPaCeSiZe. . uvvuueiiii it e ittt eeieeeeieeeeiaeeaanaenn 194
4.128. cudnNNGetSeqDataDeSCriPLOr. . .uee ettt ii it eiiiieeeeeeiraeeeeteeaaeeeeeeeenneneens 194
4.129. CUANNGEESII@AM . ..ttt ettt ettt ettt ettt ettt e et eeeeenteenteentsenesanseoassnness 195
4.130. cudnNNGELTENSOr4dDESCrIPLOr. .. ettt eeeiiiteteeeeiiteeeeeeiineeeeeeensneseeeessnnnseseeeanns 196
4.131. cudnNNGEtTENSOrNADESCIIPLO . .t tuuttttetteeitteeiteeeeeeennteeenaeeeaneeeesneeeenseeenneeenns 197
4.132. cudnNNGetTENSOrSIZEINBYLES. . .uetiiiiiiii it i eeiiieeeeeeiieeeeeeaannaneeeeeannnneees 198
4.133. cudnnGetTensorTransformDeSCriPLOr.u.t it ittt i iieireeeneenes 198
4.134. CUANNGEEVEISION. ...ttt ittt ettt ettt et e eeeerenneesaneesenneeranneananes 199
4,135, CUANNIMZCO0 . ettt ittt ettt ettt eit et eeeaaaaeeeeeannsaeeseesnnsssseeeennnnes 199
4.136. cudnnInitTransformMDEST. ... co.uuiiiit i ettt et e e eraeeeaaees 200
4.137. cudnnLRNCrossChannelBackward.........cciviiiiiiiiiiiiiiiiiiiiiiiiiiie i eeeiiaeaenn 201
4.138. cudnnLRNCrossChannelForward.oo.eeiiiniiiiiiiiii it riieeieeeaneenas 203
4.139. cudnnMultiHeadAttnBackwardData........covviiuiiiiiiiiiiiiiiiiiiiiii i eeeiineeaens 204
4.140. cudnnMultiHeadAttnBackwardWeights........ccvuiiiiiiiiiiiiiiiiiiiiiiiiiiiii i e eaaas 206
4.141. cudnnMultiHeadAtENFOrWard. veeriiiii ettt e e e e reeeeeeneeeaanaanans 207
o By A (1 e (31010 s] =] 4 o | S PP PP 209
4.143. cudnnPoolingBaCkWard........ciiiiiiuiiiiiiiiiiiiieiiiiiteeeireeeeresenaeeseeesnnneeeseannn 210
4.144. cudnnPOoOlINGFOIWArd.c.uiiniieiii ittt ettt tea et eaneeenaenns 212
4.145. cudnnNQUENYRUNEIMEEITON ettt ittt eeeeiereeeeaennnseeeeeennnnseseessnnnnes 213
4.146. cUANNRNNBACKWaAIrADAta. . eiviiiitttiiiiiiiiiiiiietteeiiieeeeeteaiseeeeeenannsseeeeennnnes 215
4.147. cudnnNRNNBackwardDataEX.cuviieiiiiiiiiii ittt reeeenees 220
4.148. cudnnRNNBackwardWeights. . ..ooouiiiiiiiiiiiii it it e eeei e 225
4.149. cudnnNRNNBacKWardWeightSEX....cuvirueiiiiiiiiiietiieiiiieetreeeiineeeeeeennnneeeseesnnnneees 227
4.150. cudnNNRNNFOrWwardINferenCe.cuiiiiiiiiiii ittt e eeieeetaeeiiaeeeeeaaannanns 230
4.151. cudnNRNNFOrwardiNferenCeEX.ccvuuiiiitiiiitiiiiii et et eeeieerenneeeanaaeannes 233
4.152. cudnnNRNNFOrwardTraining....cceeiueeeiiiiiiitiiaiiiiteeieeiiieeeeeeenireeeesesannaseseennnns 237
4.153. cudnnNRNNFOrwardTrainingEX. ...ccvueirietiiiiiiiiieiiieiieeieeieeeeeeeeenneeannaeenns 241
4,154, CUANNRNNGEEC .ttt iiiiittt ittt ieeiiit et teeiieeeeeeeennaeeeeeesnnnesessessnnaseseeannns 245
4,155, CUANNRNNSEECHID. ettt e e e et ettt e et e eeeeeeaneeranneeeanaeeannes 246
4.156. CUANNREAUCETENSON ettt ettt ettt e eeeeeeaaeerenaeeeaneeranaeesennessannasennnss 247
4.157. cudnnReStOreAlGOritNM. ... ittt i e e et e et eenaeeeeneeeennaeeannaannn 249
4.158. cudnNNReStOreDrOPOULDESCIIPLOr. . i ittt tttreiiieteereeiineeeeeeenrneeeeesessnnnneeeaennnnes 249
4.159. cudnnSaveAlgOritRM. ... et i i e e e e e et reeae e e e e aaeeaanas 250
4.160. CUANNSCALETENSON .. ettt ettt ettt ee et teetereaeteeaaeerenntesanneeennnesenneesanns 251
4.161. cudnnSetACtiVatioNDESCIiPLOr. .oii ittt i it et eeeiieeeeeeeannaaaeans 252
4.162. cudnnSetAlgorithmDesCriPtOr. oo ettt it eeiiieeeeeinneeeereeannneeessesnnnneesnes 252
4.163. cudnnSetAlgorithmPerformManCe.uiiii i it et e ee i eeaanaas 253
4.164. cUANNSEtALENDESCIIPEO . ¢ ettt i e e eer ettt eeteeeanaeeeenaeeaanens 254
4.165. cUANNSELCTCLOSSDESCII PO .ttt tteiittttteeiieteeeeeiieeeeeeeenraeeeeeesnnssseeesennnesaseennn 255
4.166. cudNNSELCAIDACK. ... eieeie it a e as 256
4.167. cudnnSetConvolution2dDeSCriPLOr. . .uueiiiiiiii it eeeeiiiteeeeeennneeeeeeeennneneens 257
4.168. cudnnSetConvolutioNGroUPCOUNT.viuiiieiiieii ittt eenteeteeteeneeeaeraaeaaness 258
www.nvidia.com

cuDNN 7.5.0 DU-06702-001_v07 | vii

4.169. cudnnSetConvolutionNMathTYPe. .o i i et eeeeaaeens 259

4.170. cudnnSetConvolutioNNADESCIIPLOr. . uuiitt ettt eeii e eeeieeeereeeeieeaanaeeaaneens 259
4.171. cudnnSetDropPOULDESCIIPIOr. .. it ittt e ittt eeiireeeeeeaeniaeeeeeaennneaeens 260
4.172. cudnNNSEtFilEerddDesCriPtOr. v ettt ieiteiitteeeteteteeeeneeeenneerenaeeesneeeenneeeanns 261
4.173. cudnnSetFilterNADES PO . . ittt ittt eeiiieteeeeeeiieeeeeeeennnaaeeeeesnnneaeeennn 262
4.174. cUdNNSEELRNDESCIIPEO . ¢ .ttt ettt e e ee e ee it eeeneeeaeaeeanneeeenaeeaanneeennens 264
4.175. cudnnSetOpPTENSOrDESCIIPIO . et ittt ittt ttieiiteeeeeiieeeeeeenrnaeeeeeennneeeesennnnnneens 265
4.176. cudnnSetPersisteNtRNNPLAN.viiii i e e e i e e earneeeenaeeanees 265
4.177. cudnnSetPoOlING2dDES PO . . e ettt ittt ieeeiieeeereeieeeeeeeannereeeeesnnnneeeessnnnnseeens 266
4.178. cudnnSetPOOlINGNADESCIIPLON. .. ve ittt ittt terteeeeerenneereeeeaaneerenaeeraneeeennees 267
4.179. cudnnSEtRNNBIASMOAE.eiiiiiii ittt ettt e e reeeeanaees 268
4.180. cudNNSEtRNNDALADESCIIPEO . .ttt ittt iiiiiiteeteiiie et teeiieeeeeeeaiaeeeeeeennneeeeenn 268
4.181. CUANNSETRNNDESCIIPION. .. .ttt tiiiiiitetteieiiteeteeerraeeeeeeenaneeessesnnneessessnnnneesnes 270
4.182. cudnNNSEtRNNDESCIIPLON V. . it iiiiiiiii it ettt e it eeeeeieaeeeaannnaes 271
4.183. cudNNSEtRNNDESCIIPLOr_VO...nnutiiiitiiiitiiit i et eeieeeeieeeeeeeeenaeeeaaeeannees 272
4.184. cudnnSetRNNMaAtriXMathTYPe. . c i i e et e e e it e eeinaaaeans 274
4.185. cudnnSetRNNPaddingMOde.ciinnriiiitt i eii e e e ee e et eeneeeenaeeaanaaans 274
4.186. cUANNSETRNNPIOJECTIONLAYEIS. c o uuetttttieiiietetreeiiteeeeeernneeeeeeessnseeeeesnnnseaeesanns 275
4.187. cudnnSetReduceTensorDeSCriPLOr. . .o.viiuiiiiii ittt et e e eeaeees 276
4.188. cudnnSetSeqDataDesCriPLOr. . .vu et i e ttteeiiteereiiieeeeeeearneeeeeeesrnneeessesnnnnneens 277
4.189. cudnnSetSpatialTransformerNdDesCriptor.......ccovueiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeaees 279
4.190. CUANNSEES I AM. ¢ ettt ettt ettt et et e et e renatesannneaaneesannnenen 280
4,191, CUANN SO TS0 . ¢t tttiieteeetteeeteterteeeentereaneerenneeeaneesenneesenneessneesennessonsasenns 280
4.192. cudnnSetTensOrddD S riPlOr. . ..ue e et treriietttreeiieteeeeenrnneeeeressnneeessessnnnnesssesnnnes 281
4.193. cudnnSetTensorddDesCriptorEX.uuiiiiiiiiiii it i it e e et ireee e eanas 282
4.194. cudnnSetTeNSOrNADESCIIPLON. . vt ettt teiteteitteeeteeeateeeieeeeaeerenneeaeneesesnaeenns 283
4.195. cudnnSetTensorNADeSCIiPLOrEX. ..uuuueiitiiiiiii it e it eeeiieeeeeaeenaaaeenns 284
4.196. cudnnSetTensorTransformMDeESCIiPLOr. . v vt i ieii i e eeieeieeeeieeeeneeeannenn 285
4.197. cudnnSOftMAaxBaCkWard.c.eeiieiiiiiiii it e e et eeneereeaeerenaeeaaneens 286
4.198. cudnnSOftMAaXFOrWard.cvuuiieiiiiiiiit ittt et et eeteenteeneeeaeaaaaaans 288
4.199. cudnnSpatialTfGridGeneratorBackward.......ccovveiiiiiiiiiiiiiiiiiiiiiieeiiiieeeeenannnnes 289
4.200. cudnnSpatialTfGridGeneratorFOrward........c.ooeeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiieinaenns 290
4.201. cudnnSpatialTfSamplerBackward.......c.cceiieiiiiiiiiiiiiiiiiiiieeriiieeeeeeeennneeeeanns 291
4.202. cudnnSpatialTfSamplerFOrward.......co.eeeeeiiiiiiriiiiii i eenereeeereneeeeaneaeanns 293
4.203. cudnnTransfOrMTENSOr. ...ttt ettt ettt eaeeeeaaeerenneerannesenneeranns 294
4.204. cudnnTransfOrMTENSOTEX. .. cvuutirettiei i eiieeeeeerteeeeerenneeeanneeeaneesannnennn 295

Chapter 5. ACKNOWIEdgmMENtS. .. .uueiieiiiiiiiiiiiiieeeireeeeaneeeeeneecnnneccsnccecnnssennnsecnnneans 297
5.1, UNIVErSItY Of TONNESSEE. .t iiii ittt ettt eeeiieteeeeeeaanaeeeeeeennasseeesennneeenns 297
5.2. University of California, Berkeley.....o.ueiiiuiiiiiiiiiiiiiiiiiiii e e e e aaees 297
5.3. Facebook Al RESEArCh, NEW YOrIK.iiiiiiiiiiiiiiiei i eereeeeereeeseeeneanennes 298
www.nvidia.com

CcuDNN 7.5.0 DU-06702-001_v07 | viii

Chapter 1.
OVERVIEW

NVIDIA® cuDNN is a GPU-accelerated library of primitives for deep neural networks.
It provides highly tuned implementations of routines arising frequently in DNN
applications:

Convolution forward and backward, including cross-correlation
Pooling forward and backward

Softmax forward and backward

Neuron activations forward and backward:

» Rectified linear (ReLU)
» Sigmoid
» Hyperbolic tangent (TANH)
» Tensor transformation functions
» LRN, LCN and batch normalization forward and backward

vV v v v

cuDNN's convolution routines aim for a performance that is competitive with the
fastest GEMM (matrix multiply)-based implementations of such routines, while using
significantly less memory.

cuDNN features include customizable data layouts, supporting flexible dimension
ordering, striding, and subregions for the 4D tensors used as inputs and outputs to

all of its routines. This flexibility allows easy integration into any neural network
implementation, and avoids the input/output transposition steps sometimes necessary
with GEMM-based convolutions.

cuDNN offers a context-based API that allows for easy multithreading and (optional)
interoperability with CUDA streams.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 1

Chapter 2.
GENERAL DESCRIPTION

Basic concepts are described in this section.

2.1. Programming Model

The cuDNN Library exposes a Host API but assumes that for operations using the GPU,
the necessary data is directly accessible from the device.

An application using cuDNN must initialize a handle to the library context by calling
cudnnCreate (). This handle is explicitly passed to every subsequent library function
that operates on GPU data. Once the application finishes using cuDNN, it can release
the resources associated with the library handle using cudnnDestroy (). This approach
allows the user to explicitly control the library's functioning when using multiple host
threads, GPUs and CUDA Streams.

For example, an application can use cudaSetDevice () to associate different devices
with different host threads, and in each of those host threads, use a unique cuDNN
handle that directs the library calls to the device associated with it. Thus the cuDNN
library calls made with different handles will automatically run on different devices.

The device associated with a particular cuDNN context is assumed to remain unchanged
between the corresponding cudnnCreate () and cudnnDestroy () calls. In order for
the cuDNN library to use a different device within the same host thread, the application
must set the new device to be used by calling cudaSetDevice () and then create
another cuDNN context, which will be associated with the new device, by calling
cudnnCreate ().

cuDNN API Compatibility

Beginning in cuDNN 7, the binary compatibility of patch and minor releases is
maintained as follows:

» Any patch release x.y.z is forward- or backward-compatible with applications
built against another cuDNN patch release x.y.w (i.e., of the same major and minor
version number, but having w!=z)

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 2

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__DEVICE.html#group__CUDART__DEVICE_1g69e73c7dda3fc05306ae7c811a690fac

General Description

» cuDNN minor releases beginning with cuDNN 7 are binary backward-compatible
with applications built against the same or earlier patch release (i.e., an app built
against cuDNN 7.x is binary compatible with cuDNN library 7.y, where y>=x)

» Applications compiled with a cuDNN version 7.y are not guaranteed to work with
7.x release when y > x.

2.2. Convolution Formulas

This section describes the various convolution formulas implemented in cuDNN
convolution functions.

The convolution terms described in the table below apply to all the convolution
formulas that follow.

TABLE OF CONVOLUTION TERMS

Term Description

X Input (image) Tensor

w Weight Tensor

y Output Tensor

n Current Batch Size

c Current Input Channel

C Total Input Channels

H Input Image Height

w Input Image Width

k Current Output Channel

K Total Output Channels

p Current Output Height Position

q Current Output Width Position

G Group Count

pad Padding Value

u Vertical Subsample Stride (along Height)
v Horizontal Subsample Stride (along Width)
dilp, Vertical Dilation (along Height)
dily, Horizontal Dilation (along Width)
r Current Filter Height

R Total Filter Height

s Current Filter Width

S Total Filter Width

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 3

General Description

Term Description
C <

$ G
K K

$ G

Normal Convolution (using cross-correlation mode)
C R
r

yn,k,p,qzz

Convolution with Padding

s
Z Xn ¢ ptrgts X Wikers
S

X<0, <0 = 0

X>H,>W =0

cC R S

-yn, kb q = zc: Z ZS: Xn, ¢ p+r-pad, q+s-pad X Wiers

T

Convolution with Subsample-Striding

C R S
yn,k,p,qzzc:Zzs: Xn ¢ (pru) +r, (qv)+s X Wkers

Convolution with Dilation

C R S
yn, kb, q = Z - Z Xn, ¢ p+ (r'dilh), q + (s*dilw) X Wkegrs

Convolution using Convolution Mode

C R S
yn’k’p’q:zc:zr: = Xncgp+rq+s x Wk,c,R-r-],S-s-I

Convolution using Grouped Convolution

Cg:

Qx QO

Kg:
Cg

R S
Yokoaq- Z 2 Z Xn, Cg*floor(k/Kg)+c p+r, q+s X Wkerns
r S

c

2.3. Notation

www.nvidia.com
cuDNN 7.5.0

DU-06702-001_v07 | 4

General Description

As of CUDNN v4 we have adopted a mathematicaly-inspired notation for layer inputs
and outputs using x,y,dx,dy,b,w for common layer parameters. This was done to
improve the readability and ease of understanding of the meaning of the parameters. All
layers now follow a uniform convention as below:

During Inference:

y = layerFunction (x, otherParams).

During backpropagation:

(dx, dOtherParams) = layerFunctionGradient (x,y,dy,otherParams)

For convolution the notation is
y = x*w+b

where w is the matrix of filter weights, x is the previous layer's data (during inference), y
is the next layer's data, b is the bias and * is the convolution operator.

In backpropagation routines the parameters keep their meanings.

The parameters dx,dy, dw, db always refer to the gradient of the final network error
function with respect to a given parameter. So dy in all backpropagation routines always
refers to error gradient backpropagated through the network computation graph so far.
Similarly other parameters in more specialized layers, such as, for instance, dMeans or
dBnBias refer to gradients of the loss function wrt those parameters.

w is used in the API for both the width of the x tensor and convolution filter

matrix. To resolve this ambiguity we use w and £ilter notation interchangeably for
convolution filter weight matrix. The meaning is clear from the context since the
layer width is always referenced near its height.

2.4. Tensor Descriptor

The cuDNN Library describes data holding images, videos and any other data with
contents with a generic n-D tensor defined with the following parameters :

a dimension nbDims from 3 to 8
a data type (32-bit floating point, 64 bit-floating point, 16 bit floating point...)
dimA integer array defining the size of each dimension

strideA integer array defining the stride of each dimension (e.g the number of
elements to add to reach the next element from the same dimension)

vV v v v

The first dimension of the tensor defines the batch size n, and the second dimension
defines the number of features maps c. This tensor definition allows for example to have
some dimensions overlapping each others within the same tensor by having the stride
of one dimension smaller than the product of the dimension and the stride of the next
dimension. In cuDNN, unless specified otherwise, all routines will support tensors with
overlapping dimensions for forward pass input tensors, however, dimensions of the

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 5

General Description

output tensors cannot overlap. Even though this tensor format supports negative strides
(which can be useful for data mirroring), cuDNN routines do not support tensors with
negative strides unless specified otherwise.

2.4.1. WXYZ Tensor Descriptor

Tensor descriptor formats are identified using acronyms, with each letter referencing a
corresponding dimension. In this document, the usage of this terminology implies :

» all the strides are strictly positive
» the dimensions referenced by the letters are sorted in decreasing order of their
respective strides

2.4.2. 4-D Tensor Descriptor

A 4-D Tensor descriptor is used to define the format for batches of 2D images with 4
letters : N,C,H,W for respectively the batch size, the number of feature maps, the height
and the width. The letters are sorted in decreasing order of the strides. The commonly
used 4-D tensor formats are :

» NCHW
» NHWC
» CHWN

2.4.3. 5-D Tensor Description

A 5-D Tensor descriptor is used to define the format of batch of 3D images with 5 letters :
N,C,D,H,W for respectively the batch size, the number of feature maps, the depth, the
height and the width. The letters are sorted in descreasing order of the strides. The
commonly used 5-D tensor formats are called :

» NCDHW
» NDHWC
» CDHWN

2.4.4. Fully-packed tensors

A tensor is defined as XYz-fully-packed if and only if :

» the number of tensor dimensions is equal to the number of letters preceding the
fully-packed suffix.

» the stride of the i-th dimension is equal to the product of the (i+1)-th dimension by
the (i+1)-th stride.
» the stride of the last dimension is 1.

2.4.5. Partially-packed tensors

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 6

General Description

The partially 'XYZ-packed' terminology only applies in a context of a tensor format
described with a superset of the letters used to define a partially-packed tensor. A
WXYZ tensor is defined as XYz-packed if and only if :

> the strides of all dimensions NOT referenced in the -packed suffix are greater or
equal to the product of the next dimension by the next stride.

> the stride of each dimension referenced in the -packed suffix in position i is equal to
the product of the (i+1)-st dimension by the (i+1)-st stride.

» if last tensor's dimension is present in the -packed suffix, its stride is 1.

For example a NHWC tensor WC-packed means that the c_stride is equal to 1 and
w_stride is equal to c_dim x c_stride. In practice, the -packed suffix is usually with
slowest changing dimensions of a tensor but it is also possible to refer to a NCHW tensor
that is only N-packed.

2.4.6. Spatially packed tensors

Spatially-packed tensors are defined as partially-packed in spatial dimensions.

For example a spatially-packed 4D tensor would mean that the tensor is either NCHW
HW-packed or CNHW HW-packed.

2.4.7. Overlapping tensors

A tensor is defined to be overlapping if a iterating over a full range of dimensions
produces the same address more than once.

In practice an overlapped tensor will have stride[i-1] < stride[i]*dim[i] for some of the i
from [1,nbDims] interval.

2.5. Thread Safety

The library is thread safe and its functions can be called from multiple host threads, as
long as threads to do not share the same cuDNN handle simultaneously.

2.6. Reproducibility (determinism)

By design, most of cuDNN's routines from a given version generate the same bit-wise
results across runs when executed on GPUs with the same architecture and the same
number of SMs. However, bit-wise reproducibility is not guaranteed across versions,

as the implementation of a given routine may change. With the current release, the
following routines do not guarantee reproducibility because they use atomic operations:

» cudnnConvolutionBackwardFilter when
CUDNN_CONVOLUTION BWD_FILTER ALGO_0 or
CUDNN_CONVOLUTION BWD_FILTER ALGO_3is used

» cudnnConvolutionBackwardData when
CUDNN_CONVOLUTION BWD DATA ALGO 0 isused

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 7

General Description

» cudnnPoolingBackward when CUDNN_POOLING_ MAX is used
» cudnnSpatialTfSamplerBackward

2.7. Scaling Parameters

Many cuDNN routines like cudnnConvolutionForward accept pointers in host memory
to scaling factors alpha and beta. These scaling factors are used to blend the computed
values with the prior values in the destination tensor as follows (see Figure 1):

dstValue = alpha*computedValue + beta*priorDstValue.

n The dstvalue is written to after being read.

computedValue

/ N dstValue
(.

beta 5

priorDstValue 1
Z -+

Figure 1 Scaling Parameters for Convolution

When beta is zero, the output is not read and may contain uninitialized data (including
NaN).

These parameters are passed using a host memory pointer. The storage data types for
alpha and beta are:

» float for HALF and FLOAT tensors, and
» double for DOUBLE tensors.

For improved performance use beta = 0.0. Use a non-zero value for beta only when
you need to blend the current output tensor values with the prior values of the output
tensor.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 8

General Description

Type Conversion

When the data input x, the filter input w and the output y are all in INT8 data type,
the function cudnnConvolutionBiasActivationForward () will perform the type
conversion as shown in Figure 2:

n Accumulators are 32-bit integers which wrap on overflow.

data

input x
NTE P CONVOLUTION
filter Integer Accumulate) INT3Zto
;
INTa —PPUtW | muitiply Add | | to INT32 FLOAT W
l FLOAT
alphat AN
FLOAT ——»()
l\ /‘. Clamp to
— FLOAT FLOAT FLOAT (-128.0, 127.0) fat:
- AT output y
4 A 4 3\ L Clamp
\ / 4"\ —* Activation (FMNMX) INT8
- //. e .//
| T
alphaz [/ \ bias
FLOAT —— | I
A\

Pointer to
zDesc

Figure 2 INT8 for cudnnConvolutionBiasActivationForward

2.8. Tensor Core Operations

cuDNN v7 introduced the acceleration of compute intensive routines using Tensor Core
hardware on supported GPU SM versions. Tensor Core acceleration (using Tensor Core
Operations) can be exploited by the library user via the cudnnMathType_t enumerator.
This enumerator specifies the available options for Tensor Core enablement and is
expected to be applied on a per-routine basis.

Kernels using Tensor Core Operations for are available for both Convolutions and
RNNS.

Tensor Core Operations for Convolution Functions

The below Convolution functions can be run as Tensor Core operations:

» cudnnConvolutionForward
» cudnnConvolutionBackwardData

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 9

General Description

» cudnnConvolutionBackwardFilter
Tensor Core Operations kernels will be triggered in these paths only when:

» cudnnSetConvolutionMathType is called on the appropriate convolution descriptor
setting mathType to CUDNN_TENSOR_OP_MATH.

» cudnnConvolutionForward is called using algo =
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM or
CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED

» cudnnConvolutionBackwardData using algo =
CUDNN_CONVOLUTION_BWD_DATA_ALGO_1 or
CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED, and

» cudnnConvolutionBackwardFilter using algo =
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1 or
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD_NONFUSED

For algorithms other than *_ ALGO_WINOGRAD_NONFUSED, the following are a few
requirements to run Tensor Core operations:

» Input, Filter and Output descriptors (xDesc, yDesc, wDesc, dxDesc, dyDesc
and dwDesc as applicable) have dataType = CUDNN_DATA_HALF.

» The number of Input and Output feature maps is a multiple of 8.

» The Filter is of type CUDNN_TENSOR_NCHW or CUDNN_TENSOR_NHWC.
When using a filter of type CUDNN_TENSOR_NHWC, Input, Filter and Output
data pointers (X, Y, W, dX, dY, and dW as applicable) need to be aligned to 128 bit
boundaries.

Tensor Core Operations for RNN Functions

The RNN functions are:

» cudnnRNNForwardInference

» cudnnRNNForwardTraining

» cudnnRNNBackwardData

» cudnnRNNBackwardWeights

» cudnnRNNForwardInferenceEx
» cudnnRNNForwardTrainingEx
» cudnnRNNBackwardDataEx

» cudnnRNNBackwardWeightsEx

Tensor Core Operations kernels will be triggered in these paths only when:

» cudnnSetRNNMatrixMathType is called on the appropriate RNN descriptor setting
mathType to CUDNN_TENSOR_OP_MATH.

» All routines are called using algo = CUDNN_RNN_ALGO_STANDARD or
CUDNN_RNN_ALGO_PERSIST_STATIC. (new for 7.1)

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 10

General Description

» For algo = CUDNN_RNN_ALGO_STANDARD, Hidden State size, Input size and
Batch size are all multiples of 8. (new for 7.1)

» For algo = CUDNN_RNN_ALGO_PERSIST_STATIC, Hidden State size and Input
size are multiples of 32, Batch size is a multiple of 8. If Batch size exceeds 96
(forward training or inference) or 32 (backward data), Batch sizes constraints may be
stricter and large power-of-two Batch sizes may be needed. (new for 7.1)

See also Features of RNN Functions.

For all cases, the CUDNN_TENSOR_OP_MATH enumerator is an indicator that the
use of Tensor Cores is permissible, but not required. cuDNN may prefer not to use
Tensor Core Operations (for instance, when the problem size is not suited to Tensor
Core acceleration), and instead use an alternative implementation based on regular
floating point operations.

2.8.1. Tensor Core Operations Notes

Some notes on Tensor Core Operations use in cuDNN v7 on sm_70:

Tensor Core operations are supported on the Volta GPU family, those operations
perform parallel floating point accumulation of multiple floating point products.
Setting the math mode to CUDNN_TENSOR_OP_MATH indicates that the

library will use Tensor Core operations as mentioned previously. The default is
CUDNN_DEFAULT_MATH, this default indicates that the Tensor Core operations
will be avoided by the library. The default mode is a serialized operation, the Tensor
Core operations are parallelized operation, thus the two might result in slight different
numerical results due to the different sequencing of operations. Note: The library falls
back to the default math mode when Tensor Core operations are not supported or not
permitted.

The result of multiplying two matrices using Tensor Core Operations is very close, but
not always identical, to the product achieved using some sequence of legacy scalar
floating point operations. So cuDNN requires explicit user opt-in before enabling the
use of Tensor Core Operations. However, experiments training common Deep Learning
models show negligible difference between using Tensor Core Operations and legacy
floating point paths as measured by both final network accuracy and iteration count to
convergence. Consequently, the library treats both modes of operation as functionally
indistinguishable, and allows for the legacy paths to serve as legitimate fallbacks for
cases in which the use of Tensor Core Operations is unsuitable.

2.8.2. Tensor Operations Speedup Tips

Some tips on Reducing Computation Time for Tensor Core Operations:

» The computation time for FP32 tensors can be reduced by selecting
CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION enum value for
cudnnMathType_t. In this mode the FP32 tensors are internally down-converted to
FP16, the tensor op math is performed, and finally up-converted to FP32 as outputs.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 11

General Description

» When the input channel size ¢ is a multiple of 32, you can use the new data type
CUDNN_DATA_INT8x32 to accelerate your convolution computation. If you are
already using INT8, which is INT8x4, then to use the new INT8x32, ensure that your
data is such that the input channel size ¢ is a multiple of 32, instead of a multiple
of 4, as you would have had it for INT8x4. The new CUDNN_DATA_INT8x32 data
type defines the data as 32-element vectors, each element being 8-bit signed integer.

This data type is only supported with the tensor format
CUDNN_TENSOR_NCHW_VECT_C. See the description for cudnnDataType_t.

This new data type can only be used with
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM. See
cudnnConvolutionFwdAlgo_t.

2.9. GPU and driver requirements

cuDNN v7.0 supports NVIDIA GPUs of compute capability 3.0 and higher. For x86_64
platform, cuDNN v7.0 comes with two deliverables: one requires a NVIDIA Driver
compatible with CUDA Toolkit 8.0, the other requires a NVIDIA Driver compatible with
CUDA Toolkit 9.0.

If you are using cuDNN with a Volta GPU, version 7 or later is required.

2.10. Backward compatibility and deprecation
policy

When changing the API of an existing cuDNN function "foo" (usually to support some
new functionality), first, a new routine "foo_v<n>" is created where n represents the
cuDNN version where the new API is first introduced, leaving "foo" untouched. This
ensures backward compatibility with the version n-1 of cuDNN. At this point, "foo" is
considered deprecated, and should be treated as such by users of cuDNN. We gradually
eliminate deprecated and suffixed API entries over the course of a few releases of the
library per the following policy:

» Inrelease n+1, the legacy API entry "foo" is remapped to a new API "foo_v<£>"
where £ is some cuDNN version anterior to n.

» Also in release n+1, the unsuffixed API entry "foo" is modified to have the same
signature as "foo_<n>". "foo_<n>" is retained as-is.

» The deprecated former API entry with an anterior suffix _v<£>and new API entry
with suffix _v<n> are maintained in this release.

» Inrelease n+2, both suffixed entries of a given entry are removed.

As a rule of thumb, when a routine appears in two forms, one with a suffix and one with
no suffix, the non-suffixed entry is to be treated as deprecated. In this case, it is strongly
advised that users migrate to the new suffixed API entry to guarantee backwards

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 12

General Description

compatibility in the following cuDNN release. When a routine appears with multiple
suffixes, the unsuffixed API entry is mapped to the higher numbered suffix. In that
case it is strongly advised to use the non-suffixed API entry to guarantee backward
compatibiliy with the following cuDNN release.

2.11. Grouped Convolutions

cuDNN supports grouped convolutions by setting groupCount > 1 for the convolution
descriptor convDesc, using cudnnSetConvolutionGroupCount ().

By default the convolution descriptor convDesc is set to groupCount of 1.

Basic Idea

Conceptually, in grouped convolutions the input channels and the filter channels

are split into groupCount number of independent groups, with each group having a
reduced number of channels. Convolution operation is then performed separately on
these input and filter groups.

For example, consider the following: if the number of input channels is 4, and the
number of filter channels of 12. For a normal, ungrouped convolution, the number of
computation operations performed are 12*4.

If the groupCount is set to 2, then there are now two input channel groups of two input
channels each, and two filter channel groups of six filter channels each.

As a result, each grouped convolution will now perform 2*6 computation operations,
and two such grouped convolutions are performed. Hence the computation savings are
2x: (12*4)/(2*(2*6))

cuDNN Grouped Convolution

» When using groupCount for grouped convolutions, you must still define all tensor
descriptors so that they describe the size of the entire convolution, instead of
specifying the sizes per group.

» Grouped convolutions are supported for all formats
that are currently supported by the functions
cuDNNConvolutionForward (), cudnnConvolutionBackwardData () and
cudnnConvolutionBackwardFilter ().

» The tensor stridings that are set for groupCount of 1 are also valid for any group
count.

» By default the convolution descriptor convDesc is set to groupCount of 1.

See Convolution Formulas for the math behind the cuDNN Grouped Convolution.

Example

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 13

General Description

Below is an example showing the dimensions and strides for grouped convolutions for
NCHW format, for 2D convolution.

Note that the symbols "*" and "/" are used to indicate multiplication and division.

xDesc or dxDesc:

» Dimensions: [batch_size, input _channel, x_height, x_width]
» Strides: [input channels*x height*x width, x height*x width,
x_width, 1]

wDesc or dwDesc:

» Dimensions: [output_channels, input_channels/groupCount, w_height,
w_width]
» Format: NCHW

convDesc:

» Group Count: groupCount

yDesc or dyDesc:

» Dimensions: [batch_size, output_channels, y height, y width]
» Strides: [output channels*y height*y width, y height*y width,
y_width, 1]

2.12. API Logging

cuDNN API logging is a tool that records all input parameters passed into every cuDNN
API function call. This functionality is disabled by default, and can be enabled through
methods described in this section.

The log output contains variable names, data types, parameter values, device pointers,
process ID, thread ID, cuDNN handle, cuda stream ID, and metadata such as time of the
function call in microseconds.

When logging is enabled, the log output will be handled by the built-in default
callback function. The user may also write their own callback function, and use the
cudnnSetCallback to pass in the function pointer of their own callback function. The
following is a sample output of the API log.

Function cudnnSetActivationDescriptor () called:

mode: type=cudnnActivationMode t; val=CUDNN ACTIVATION RELU (1);
reluNanOpt: type=cudnnNanPropagation t; val=CUDNN NOT PROPAGATE NAN (0);
coef: type=double; val=1000.000000;

Time: 2017-11-21T14:14:21.366171 (0d+0h+1lm+5s since start)

Process: 21264, Thread: 21264, cudnn_handle: NULL, cudnn_ stream: NULL.

There are two methods to enable API logging.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 14

General Description

Method 1: Using Environment Variables
To enable API logging using environment variables, follow these steps:

» Set the environment variable CUDNN_LOGINFO_DBG to “1”, and
» Set the environment varialbe CUDNN_LOGDEST DBG to one of the following:

» stdout, stderr, or a user-desired file path, for example, /home/userNamel/
log. txt.

» Include the conversion specifiers in the file name. For example:

» Toinclude date and time in the file name, use the date and time conversion
specificers: log_%Y_%m_%d_%H_3%M_%S.txt. The conversion specifiers will be
automatically replaced with the date and time when the program is initiated,
resulting in log_2017_11 21 09 41 00.txt.

» To include the process id in the file name, use the $i conversion
specifier: log_%Y %m %d_%H %M %S_%i.txt for the result:
log_2017_11 21 09_41 00_21264.txt when the processid is 21264. When
you have several processes running, using the process id conversion specifier
will prevent these processes writing to the same file at the same time.

The supported conversion specifiers are similar to the strftime function.

If the file already exists, the log will overwrite the existing file.

These environmental variables are only checked once at the initialization. Any
subsequent changes in these environmental variables will not be effective in the
current run. Also note that these environment settings can be overridden by the
Method 2 below.

See also Table 1 for the impact on performance of API logging using environment
variables.

Table 1 API Logging Using Environment Variables

Environment variables CUDNN_LOGINFO_DBG=0 CUDNN_LOGINFO_DBG=1
CUDNN_LOGDEST_DBG not set - No logging output - No logging output

- No performance loss - No performance loss
CUDNN_LOGDEST_DBG=NULL - No logging output - No logging output

- No performance loss - No performance loss
CUDNN_LOGDEST_DBG=stdout - No logging output - Logging to stdout or stderr
Or stderr - No performance loss - Some performance loss

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 15

General Description

Environment variables

CUDNN_LOGINFO_DBG=0

CUDNN_LOGINFO_DBG=1

CUDNN_LOGDEST_DBG=

filename. txt

- No logging output

- No performance loss

- Logging to filename. txt

- Some performance loss

Method 2

Method 2: To use API function calls to enable API logging, refer to the API description of

cudnnSetCallback () and cudnnGetCallback ().

2.13. Features of RNN Functions

The RNN functions are:

vV Vv v vV v v VY

cudnnRNNForwardInference
cudnnRNNForwardTraining
cudnnRNNBackwardData
cudnnRNNBackwardWeights
cudnnRNNForwardInferenceEx
cudnnRNNForwardTraining Ex
cudnnRNNBackwardDataEx
cudnnRNNBackwardWeightsEx

See the table below for a list of features supported by each RNN function:

For each of these terms, the short-form versions shown in the paranthesis

are used in the tables below for brevity: CUDNN_RNN_ALGO_STANDARD
(_LALGO_STANDARD), CUDNN_RNN_ALGO_PERSIST STATIC (_ALGO_PERSIST_STATIC),
CUDNN_RNN_ALGO_PERSIST DYNAMIC (_ALGO_PERSIST_DYNAMIC), and
CUDNN_TENSOR_OP_MATH ALLOW_CONVERSION (_ALLOW_CONVERSION).

Functions

Input output
layout
supported

Supports variable
sequence length
in batch

Commonly supported

cudnnRNNForwardInference

Only Sequence

cudnnRNNForwardTraining

major, packed
(non-padded)

cudnnRNNBackwardData

cudnnRNNBackwardWeights

Only with
_ALGO_STANDARD

Require input
sequences
descending sorted
according to
length

cudnnRNNForwardInferenceEx

Sequence major

cudnnRNNForwardTrainingEx

unpacked,

Batch major

cudnnRNNBackwardDataEx

unpacked**,

www.nvidia.com
cuDNN 7.5.0

Only with
_ALGO_STANDARD

For unpacked
layout**, no input
sorting required.

Mode (cell type) supported:

CUDNN_RNN_RELU,
CUDNN_RNN_TANH,

CUDNN_LSTM, CUDNN_GRU

Algo supported* (see
the table below for an
elaboration on these
algorithms):

_ALGO_STANDARD,
_ALGO_PERSIST STATIC,
_ALGO_PERSIST DYNAMIC

Math mode supported:

DU-06702-001_vO07 | 16

cudnnRNNBackwardWeightsEx

Sequence major
packed**

For packed
layout, require
input sequences

descending sorted

according to
length

General Description

CUDNN_DEFAULT_ MATH,

CUDNN_TENSOR_OP_MATH

(will automatically fall back
if run on pre-Volta, or if
algo doesn’t support HMMA
acceleration)

_ALLOW_CONVERSION (may
do down conversion to utilize
HMMA acceleration)

Direction mode supported:

CUDNN_UNIDIRECTIONAL,
CUDNN_BIDIRECTIONAL

RNN input mode:

CUDNN_LINEAR INPUT,
CUDNN_SKIP_ INPUT

* Do not mix different algos for different steps of training. It’s also not recommended to
mix non-extended and extended API for different steps of training.

** To use unpacked layout, user need to set CUDNN_RNN_PADDED_IO_ENABLED
through cudnnSetRNNPaddingMode.

The following table provides the features supported by the algorithms referred in the
above table: CUDNN_RNN_ALGO_STANDARD, CUDNN_RNN_ALGO_PERSIST_STATIC, and
CUDNN_RNN_ALGO_PERSIST DYNAMIC.

accumulation

Single accumulation

Features _ALGO_STANDARD _ALGO_PERSIST STATIC | ALGO PERSIST DYNAMIC
Half input Supported
Single Half intermediate storage

accumulation

Single output

Half output
Single input Supported
Single If running on Volta, with CUDNN_TENSOR_OP_MATH ALLOW_CONVERSION', will down-

convert and use half intermediate storage.

Otherwise: Single intermediate storage

Single accumulation

Double input | Supported Not Supported Supported
Double Double intermediate Double intermediate storage
accumulation [storage .
Double accumulation
Double output | Double accumulation
LSTM Supported Not Supported Not Supported
recurrent
projection
LSTM cell Supported
clipping

www.nvidia.com

cuDNN 7.5.0

DU-06702-001_v07 | 17

General Description

Variable Supported Not Supported Not Supported
sequence
length in batch
HMMA Supported Not Supported, will
acceleration execute normally ignoring

]
on Yolta/ For half input/output, acceleration requires CUDNN_TENSOR_OP_MATH' Or

‘ _ALLOW_CONVERSION'
CUDNN_TENSOR_OP_MATH' or

CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION'

Acceleration requires inputSize and hiddenSize
to be multiple of 8

For single input/output, acceleration requires
setting

CUDNN_TENSOR_OP_MATH ALLOW_CONVERSION !

Acceleration requires inputSize and hiddenSize
to be multiple of 8

Other Max problem size Requires real time compilation
limitations is limited by GPU through NVRTC
specifications.

ICUDNN_TENSOR OP MATH or CUDNN_TENSOR OP MATH ALLOW_CONVERSION can be set
through cudnnSetRNNMatrixMathType.

2.14. Mixed Precision Numerical Accuracy

When the computation precision and the output precision are not the same, it is possible
that the numerical accuracy will vary from one algorithm to the other.

For example, when the computation is performed in FP32 and the output is in FP16, the
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0 ("ALGO_0") has lower accuracy
compared to the CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1 ("ALGO_1").
This is because ALGO_0 does not use extra workspace, and is forced to accumulate the
intermediate results in FP16, i.e., half precision float, and this reduces the accuracy. The
ALGO_1, on the other hand, uses additonal workspace to accumulate the intermediate
values in FP32, i.e., full precision float.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 18

Chapter 3.
CUDNN DATATYPES REFERENCE

This chapter describes all the types and enums of the cuDNN library APL

3.1. cudnnAttnDescriptor_t

cudnnAttnDescriptor_t is a pointer to an opaque structure holding the description
of attention. Use the function cudnnCreateAttnDescriptor to create one instance, and
cudnnDestroyAttnDescriptor to destroy a previously created descriptor.

3.2. cudnnAttnQueryMap_t

cudnnAttnQueryMap_t is an enumerated type to select the query mapping type.

Member Description

CUDNN_ATTN_QUERYMAP_ALL_TO_ONE = 0 | When beam width > 1, multiple query sequences are
mapped to the same key and value sequences.

CUDNN_ATTN_QUERYMAP_ONE_TO_ONE = 1 | When beam width > 1, multiple query sequences are
mapped to corresponding key and value sequences.

3.3. cudnnActivationDescriptor_t

cudnnActivationDescriptor_tis a pointer to an opaque structure holding the
description of a activation operation. cudnnCreateActivationDescriptor () is used
to create one instance, and cudnnSetActivationDescriptor () must be used to
initialize this instance.

3.4. cudnnActivationMode_t

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 19

cuDNN Datatypes Reference

cudnnActivationMode_t is an enumerated type used to select the neuron activation
function used in cudnnActivationForward (), cudnnActivationBackward () and
cudnnConvolutionBiasActivationForward().

Values
CUDNN_ACT IVATI ON_S IGMOID

Selects the sigmoid function.
CUDNN_ACTIVATION RELU

Selects the rectified linear function.
CUDNN_ACT IVATI ON_TAN H

Selects the hyperbolic tangent function.
CUDNN_ACTIVATION CLIPPED RELU

Selects the clipped rectified linear function.
CUDNN_ACTIVATION_ ELU

Selects the exponential linear function.
CUDNN_ACTIVATION IDENTITY (new for 7.1)

Selects the identity function, intended for bypassing the activation

step in cudnnConvolutionBiasActivationForward() . (The
cudnnConvolutionBiasActivationForward () function must use
CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM.) Does not
work with cudnnActivationForward () or cudnnActivationBackward ().

3.5. cudnnBatchNormMode t

cudnnBatchNormMode_t is an enumerated type used to specify the mode

of Operation in cudnnBatchNormalizationForwardInference (),
cudnnBatchNormalizationForwardTraining(),
cudnnBatchNormalizationBackward () and cudnnDeriveBNTensorDescriptor ()
routines.

Values
CUDNN_BATCHNORM_PER_ACT IVATION

Normalization is performed per-activation. This mode is intended to be used after
non-convolutional network layers. In this mode the tensor dimensions of bnBias
and bnScale, the parameters used in the cudnnBatchNormalization* functions, are
IxCxHxW.

CUDNN_BATCHNORM SPATIAL
Normalization is performed over N+spatial dimensions. This mode is intended for

use after convolutional layers (where spatial invariance is desired). In this mode the
bnBias, bnScale tensor dimensions are 1xCx1x1.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 20

cuDNN Datatypes Reference

CUDNN_BATCHNORM SPATIAL PERSISTENT

This mode is similar to CUDNN_BATCHNORM_SPATIAL but it can be faster for
some tasks.

An optimized path may be selected for CUDNN_DATA_FLOAT and
CUDNN_DATA_HALF types, compute capability 6.0 or higher for the following two
batch normalization API calls: cudnnBatchNormalizationForwardTraining (),
and cudnnBatchNormalizationBackward (). In the case of
cudnnBatchNormalizationBackward(), the savedMean and savedInvVariance
arguments should not be NULL.

The rest of this section applies for NCHW mode only:

This mode may use a scaled atomic integer reduction that is deterministic but
imposes more restrictions on the input data range. When a numerical overflow occurs
the algorithm may produce NaN-s or Inf-s (infinity) in output buffers.

When Inf-s/NaN-s are present in the input data, the output in this mode is the same
as from a pure floating-point implementation.

For finite but very large input values, the algorithm may encounter overflows
more frequently due to a lower dynamic range and emit Inf-s/NaN-s while
CUDNN_BATCHNORM_SPATIAL will produce finite results. The user can invoke
cudnnQueryRuntimeError () to check if a numerical overflow occurred in this
mode.

3.6. cudnnBatchNormOps_t

cudnnBatchNormOps_t is an enumerated type used to specify the mode of operation
in cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize (),
cudnnBatchNormalizationForwardTrainingEx (),
cudnnGetBatchNormalizationBackwardExWorkspaceSize (),
cudnnBatchNormalizationBackwardEx (), and
cudnnGetBatchNormalizationTrainingExReserveSpaceSize () functions.

Values
CUDNN_BATCHNORM OPS_BN

Only batch normalization is performed, per-activation.
CUDNN_BATCHNORM OPS BN ACTIVATION

First the batch normalization is performed, and then the activation is performed.
CUDNN_BATCHNORM OPS BN _ADD ACTIVATION

Performs the batch normalization, then element-wise addition, followed by the
activation operation.

3.7. cudnnCTCLossAlgo_t

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 21

cuDNN Datatypes Reference

cudnnCTCLossAlgo_t is an enumerated type that exposes the different algorithms
available to execute the CTC loss operation.

Values

CUDNN_CTC_LOSS ALGO_ DETERMINISTIC

Results are guaranteed to be reproducible
CUDNN_CTC_LOSS_ALGO_NON DETERMINISTIC

Results are not guaranteed to be reproducible

3.8. cudnnCTCLossDescriptor_t

cudnnCTCLossDescriptor_tis a pointer to an opaque structure holding the
description of a CTC loss operation. cudnnCreateCTCLossDescriptor () is used
to create one instance, cudnnSetCTCLossDescriptor () is be used to initialize this
instance, cudnnDestroyCTCLossDescriptor () is be used to destroy this instance.

3.9. cudnnConvolutionBwdDataAlgoPerf_t

cudnnConvolutionBwdDataAlgoPerf_t is a structure containing performance results
returned by cudnnFindConvolutionBackwardDataAlgorithm() or heuristic results
returned by cudnnGetConvolutionBackwardDataAlgorithm v7().

Data Members
cudnnConvolutionBwdDataAlgo_t algo

The algorithm run to obtain the associated performance metrics.
cudnnStatus_t status

If any error occurs during the workspace allocation or timing of
cudnnConvolutionBackwardData (), this status will represent
that error. Otherwise, this status will be the return status of
cudnnConvolutionBackwardData ().

» CUDNN_STATUS_ALLOC_FAILED if any error occured during workspace allocation
or if provided workspace is insufficient.

> CUDNN_STATUS_ INTERNAL ERROR if any error occured during timing
calculations or workspace deallocation.

» Otherwise, this will be the return status of
cudnnConvolutionBackwardData().

float time

The execution time of cudnnConvolutionBackwardData () (in milliseconds).

size_t memory

The workspace size (in bytes).

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 22

cuDNN Datatypes Reference

cudnnDeterminism t determinism

The determinism of the algorithm.
cudnnMathType t mathType

The math type provided to the algorithm.

int reserved[3]

Reserved space for future properties.

3.10. cudnnConvolutionBwdDataAlgo_t

cudnnConvolutionBwdDataAlgo_t is an enumerated type that exposes the different
algorithms available to execute the backward data convolution operation.

Values
CUDNN_C ONVOLUTI ON_BWD_DATA_ALGO_O

This algorithm expresses the convolution as a sum of matrix product without actually
explicitly form the matrix that holds the input tensor data. The sum is done using
atomic adds operation, thus the results are non-deterministic.

CUDNN_CONVOLUTION BWD DATA ALGO_1

This algorithm expresses the convolution as a matrix product without actually
explicitly form the matrix that holds the input tensor data. The results are
deterministic.

CUDNN_CONVOLUTION BWD DATA ALGO_ FFT

This algorithm uses a Fast-Fourier Transform approach to compute the convolution.
A significant memory workspace is needed to store intermediate results. The results
are deterministic.

CUDNN_CONVOLUTION BWD DATA ALGO FFT TILING

This algorithm uses the Fast-Fourier Transform approach but splits the inputs into
tiles. A significant memory workspace is needed to store intermediate results but less

than CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT for large size images. The
results are deterministic.

CUDNN_CONVOLUTION BWD DATA ALGO_WINOGRAD

This algorithm uses the Winograd Transform approach to compute the convolution.
A reasonably sized workspace is needed to store intermediate results. The results are
deterministic.

CUDNN_CONVOLUTION BWD DATA ALGO WINOGRAD NONFUSED
This algorithm uses the Winograd Transform approach to compute the convolution.

Significant workspace may be needed to store intermediate results. The results are
deterministic.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 23

cuDNN Datatypes Reference

3.11. cudnnConvolutionBwdDataPreference t

cudnnConvolutionBwdDataPreference_t is an enumerated type used by
cudnnGetConvolutionBackwardDataAlgorithm() to help the choice of the
algorithm used for the backward data convolution.

Values
CUDNN_CONVOLUTION BWD DATA NO WORKSPACE
In this configuration, the routine

cudnnGetConvolutionBackwardDataAlgorithm() is guaranteed to return an
algorithm that does not require any extra workspace to be provided by the user.

CUDNN_CONVOLUTION BWD DATA PREFER FASTEST
In this configuration, the routine

cudnnGetConvolutionBackwardDataAlgorithm () will return the fastest
algorithm regardless how much workspace is needed to execute it.

CUDNN_CONVOLUTION BWD_DATA_ SPECIFY WORKSPACE LIMIT

In this configuration, the routine
cudnnGetConvolutionBackwardDataAlgorithm () will return the fastest
algorithm that fits within the memory limit that the user provided.

3.12. cudnnConvolutionBwdFilterAlgoPerf_t

cudnnConvolutionBwdFilterAlgoPerf tisa
structure containing performance results returned by

cudnnFindConvolutionBackwardFilterAlgorithm () or heuristic results returned

by cudnnGetConvolutionBackwardFilterAlgorithm v7().

Data Members
cudnnConvolutionBwdFilterAlgo_ t algo

The algorithm run to obtain the associated performance metrics.
cudnnStatus_t status

If any error occurs during the workspace allocation or timing of
cudnnConvolutionBackwardFilter (), this status will represent
that error. Otherwise, this status will be the return status of
cudnnConvolutionBackwardFilter ().

» CUDNN_STATUS_ALLOC_FAILED if any error occured during workspace allocation

or if provided workspace is insufficient.

> CUDNN_STATUS_ INTERNAL_ERROR if any error occured during timing
calculations or workspace deallocation.

» Otherwise, this will be the return status of
cudnnConvolutionBackwardFilter ().

www.nvidia.com

CcuDNN 7.5.0 DU-06702-001_v07 | 24

cuDNN Datatypes Reference

float time

The execution time of cudnnConvolutionBackwardFilter () (in milliseconds).

size_t memory

The workspace size (in bytes).

cudnnDeterminism t determinism

The determinism of the algorithm.
cudnnMathType t mathType

The math type provided to the algorithm.

int reserved[3]

Reserved space for future properties.

3.13. cudnnConvolutionBwdFilterAlgo_t

cudnnConvolutionBwdFilterAlgo_t is an enumerated type that exposes the different
algorithms available to execute the backward filter convolution operation.

Values
CUDNN_CONVOLUT I ON_BWD_FI LTER_ALGO_O

This algorithm expresses the convolution as a sum of matrix product without actually
explicitly form the matrix that holds the input tensor data. The sum is done using
atomic adds operation, thus the results are non-deterministic.

CUDNN_CONVOLUTION BWD_ FILTER ALGO 1

This algorithm expresses the convolution as a matrix product without actually
explicitly form the matrix that holds the input tensor data. The results are
deterministic.

CUDNN_CONVOLUTION BWD FILTER ALGO_FFT

This algorithm uses the Fast-Fourier Transform approach to compute the convolution.
Significant workspace is needed to store intermediate results. The results are
deterministic.

CUDNN_CONVOLUTION BWD_ FILTER ALGO_ 3

This algorithm is similar to CUDNN_CONVOLUTION BWD FILTER ALGO 0 but uses
some small workspace to precomputes some indices. The results are also non-
deterministic.

CUDNN_CONVOLUTION BWD FILTER WINOGRAD NONFUSED
This algorithm uses the Winograd Transform approach to compute the convolution.

Significant workspace may be needed to store intermediate results. The results are
deterministic.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 25

cuDNN Datatypes Reference

CUDNN_CONVOLUTION BWD FILTER ALGO FFT TILING

This algorithm uses the Fast-Fourier Transform approach to compute the convolution
but splits the input tensor into tiles. Significant workspace may be needed to store
intermediate results. The results are deterministic.

3.14. cudnnConvolutionBwdFilterPreference_t

cudnnConvolutionBwdFilterPreference_t is an enumerated type used by
cudnnGetConvolutionBackwardFilterAlgorithm() to help the choice of the
algorithm used for the backward filter convolution.

Values
CUDNN_CONVOLUT I ON_BWD_F I LTER_NO_WORKS PACE
In this configuration, the routine

cudnnGetConvolutionBackwardFilterAlgorithm() is guaranteed to return an
algorithm that does not require any extra workspace to be provided by the user.

CUDNN_CONVOLUT I ON_BWD_FI LTER_PRE FER_FAS TEST
In this configuration, the routine

cudnnGetConvolutionBackwardFilterAlgorithm () will return the fastest
algorithm regardless how much workspace is needed to execute it.

CUDNN_CONVOLUT I ON_BWD_F I LTER_S PECI FY_WORKS PACE_L IMIT
In this configuration, the routine

cudnnGetConvolutionBackwardFilterAlgorithm () will return the fastest
algorithm that fits within the memory limit that the user provided.

3.15. cudnnConvolutionDescriptor_t

cudnnConvolutionDescriptor_t is a pointer to an opaque structure holding the
description of a convolution operation. cudnnCreateConvolutionDescriptor ()
is used to create one instance, and cudnnSetConvolutionNdDescriptor () or
cudnnSetConvolution2dDescriptor () must be used to initialize this instance.

3.16. cudnnConvolutionFwdAlgoPerf_t

cudnnConvolutionFwdAlgoPerf_t is a structure containing performance results
returned by cudnnFindConvolutionForwardAlgorithm () or heuristic results
returned by cudnnGetConvolutionForwardAlgorithm v7().

Data Members
cudnnConvolutionFwdAlgo_ t algo

The algorithm run to obtain the associated performance metrics.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 26

cuDNN Datatypes Reference

cudnnStatus_t status

If any error occurs during the workspace allocation or timing of
cudnnConvolutionForward (), this status will represent that error. Otherwise, this
status will be the return status of cudnnConvolutionForward ().

>

>

CUDNN_STATUS_ALLOC_FAILED if any error occured during workspace allocation
or if provided workspace is insufficient.

CUDNN_STATUS_INTERNAL_ ERROR if any error occured during timing
calculations or workspace deallocation.

Otherwise, this will be the return status of cudnnConvolutionForward ().

float time

The execution time of cudnnConvolutionForward () (in milliseconds).

size_t memory

The workspace size (in bytes).

cudnnDeterminism t determinism

The determinism of the algorithm.
cudnnMathType t mathType

The math type provided to the algorithm.

int reserved[3]

Reserved space for future properties.

3.17. cudnnConvolutionFwdAlgo_t

cudnnConvolutionFwdAlgo_tis an enumerated type that exposes the different
algorithms available to execute the forward convolution operation.

Values

CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT GEMM

This algorithm expresses the convolution as a matrix product without actually
explicitly form the matrix that holds the input tensor data.

CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT PRECOMP_GEMM

This algorithm expresses the convolution as a matrix product without actually
explicitly form the matrix that holds the input tensor data, but still needs some
memory workspace to precompute some indices in order to facilitate the implicit
construction of the matrix that holds the input tensor data.

CUDNN_CONVOLUTION_FWD_ALGO_GEMM

This algorithm expresses the convolution as an explicit matrix product. A significant
memory workspace is needed to store the matrix that holds the input tensor data.

CUDNN_CONVOLUTION_ FWD_ALGO_ DIRECT

This algorithm expresses the convolution as a direct convolution (e.g without
implicitly or explicitly doing a matrix multiplication).

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 27

cuDNN Datatypes Reference

CUDNN_CONVOLUTION_ FWD_ALGO_ FFT
This algorithm uses the Fast-Fourier Transform approach to compute the convolution.
A significant memory workspace is needed to store intermediate results.
CUDNN_CONVOLUTION FWD_ALGO FFT TILING
This algorithm uses the Fast-Fourier Transform approach but splits the inputs into

tiles. A significant memory workspace is needed to store intermediate results but less
than CUDNN_CONVOLUTION FWD_ALGO_FFT for large size images.

CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD
This algorithm uses the Winograd Transform approach to compute the convolution.
A reasonably sized workspace is needed to store intermediate results.
CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED

This algorithm uses the Winograd Transform approach to compute the convolution.
Significant workspace may be needed to store intermediate results.

3.18. cudnnConvolutionFwdPreference_t

cudnnConvolutionFwdPreference_t is an enumerated type used by
cudnnGetConvolutionForwardAlgorithm() to help the choice of the algorithm used
for the forward convolution.

Values
CUDNN_C ONVOLUTI ON_FWD_NO_WORKS PACE

In this configuration, the routine cudnnGetConvolutionForwardAlgorithm() is
guaranteed to return an algorithm that does not require any extra workspace to be
provided by the user.

CUDNN_CONVOLUTION_ FWD PREFER FASTEST
In this configuration, the routine cudnnGetConvolutionForwardAlgorithm () will
return the fastest algorithm regardless how much workspace is needed to execute it.
CUDNN_CONVOLUTION_ FWD SPECIFY WORKSPACE LIMIT

In this configuration, the routine cudnnGetConvolutionForwardAlgorithm () will
return the fastest algorithm that fits within the memory limit that the user provided.

3.19. cudnnConvolutionMode t

cudnnConvolutionMode_t is an enumerated type used by
cudnnSetConvolutionDescriptor () to configure a convolution descriptor. The
filter used for the convolution can be applied in two different ways, corresponding
mathematically to a convolution or to a cross-correlation. (A cross-correlation is
equivalent to a convolution with its filter rotated by 180 degrees.)

Values

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 28

cuDNN Datatypes Reference

CUDNN_CONVOLUTION
In this mode, a convolution operation will be done when applying the filter to the
images.

CUDNN_CROSS_CORRELATION

In this mode, a cross-correlation operation will be done when applying the filter to
the images.

3.20. cudnnDataType_t

cudnnDataType_t is an enumerated type indicating the data type to which a tensor
descriptor or filter descriptor refers.

Values

CUDNN_DATA FLOAT

The data is 32-bit single-precision floating point (£loat).
CUDNN_DATA DOUBLE

The data is 64-bit double-precision floating point (double).
CUDNN_DATA_ HALF

The data is 16-bit floating point.
CUDNN_DATA_ INT8

The data is 8-bit signed integer.
CUDNN_DATA UINT8 (new for 7.1)

The data is 8-bit unsigned integer.
CUDNN_DATA_ INT32

The data is 32-bit signed integer.
CUDNN_DATA INT8x4
The data is 32-bit elements each composed of 4 8-bit signed integer. This data type is
only supported with tensor format CUDNN_TENSOR_NCHW_VECT_C.
CUDNN_DATA INT8x32
The data is 32-element vectors, each element being 8-bit signed integer. This data
type is only supported with the tensor format CUDNN_TENSOR_NCHW_VECT_C.
Moreover, this data type can only be used with “algo 1,” i.e.,

CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM. See
cudnnConvolutionFwdAlgo_t.

CUDNN_DATA UINT8x4 (new for 7.1)

The data is 32-bit elements each composed of 4 8-bit unsigned integer. This data type
is only supported with tensor format CUDNN_TENSOR_NCHW_VECT_C.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 29

cuDNN Datatypes Reference

3.21. cudnnDeterminism_t

cudnnDeterminism_t is an enumerated type used to indicate if the computed results
are deterministic (reproducible). See section 2.5 (Reproducibility) for more details on
determinism.

Values
CUDNN_NON_DETERMINI STIC

Results are not guaranteed to be reproducible
CUDNN_DETERMINISTIC

Results are guaranteed to be reproducible

3.22. cudnnDirectionMode _t

cudnnDirectionMode _t is an enumerated type used to specify the recurrence
pattern in the cudnnRNNForwardInference (), cudnnRNNForwardTraining (),
cudnnRNNBackwardData () and cudnnRNNBackwardWeights () routines.

Values

CUDNN_UNIDIRECTIONAL
The network iterates recurrently from the first input to the last.
CUDNN_BIDIRECTIONAL
Each layer of the the network iterates recurrently from the first input to the last and
separately from the last input to the first. The outputs of the two are concatenated at
each iteration giving the output of the layer.

3.23. cudnnDivNormMode t

cudnnDivNormMode _t is an enumerated type used to specify the
mode of operation in cudnnDivisiveNormalizationForward () and
cudnnDivisiveNormalizationBackward().

Values
CUDNN_DIVNORM_PRECOMPUTED_MEAN S

The means tensor data pointer is expected to contain means or other kernel
convolution values precomputed by the user. The means pointer can also be
NULL, in that case it's considered to be filled with zeroes. This is equivalent to
spatial LRN. Note that in the backward pass the means are treated as independent
inputs and the gradient over means is computed independently. In this mode to
yield a net gradient over the entire LCN computational graph the destDiffMeans
result should be backpropagated through the user's means layer (which can be

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 30

cuDNN Datatypes Reference

impelemented using average pooling) and added to the destDiffData tensor
produced by cudnnDivisiveNormalizationBackward.

3.24. cudnnDropoutDescriptor_t

cudnnDropoutDescriptor_t is a pointer to an opaque structure holding the
description of a dropout operation. cudnnCreateDropoutDescriptor () is used
to create one instance, cudnnSetDropoutDescriptor () is used to initialize this
instance, cudnnDestroyDropoutDescriptor () is used to destroy this instance,
cudnnGetDropoutDescriptor () is used to query fields of a previously initialized
instance, cudnnRestoreDropoutDescriptor () is used to restore an instance to a
previously saved off state.

3.25. cudnnErrQueryMode_t

cudnnErrQueryMode_t is an enumerated type passed to cudnnQueryRuntimeError ()
to select the remote kernel error query mode.

Values

CUDNN_ERRQUERY RAWCODE
Read the error storage location regardless of the kernel completion status.
CUDNN_ERRQUERY NONBLOCKING
Report if all tasks in the user stream of the cuDNN handle were completed. If that is
the case, report the remote kernel error code.
CUDNN_ERRQUERY BLOCKING
Wait for all tasks to complete in the user stream before reporting the remote kernel
error code.

3.26. cudnnFilterDescriptor_t

cudnnFilterDescriptor_t is a pointer to an opaque structure holding the description
of a filter dataset. cudnnCreateFilterDescriptor () is used to create one instance,
and cudnnSetFilter4dDescriptor () or cudnnSetFilterNdDescriptor () must be
used to initialize this instance.

3.27. cudnnFoldingDirection_t

cudnnFoldingDirection_t is an enumerated type used to select the folding direction. See
also cudnnTensorTransformDescriptor_t.

Member Description
CUDNN_TRANSFORM_FOLD = 0U Selects folding.
CUDNN_TRANSFORM_UNFOLD = 1U Selects unfolding.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 31

cuDNN Datatypes Reference

3.28. cudnnHandle t

cudnnHandle_t is a pointer to an opaque structure holding the cuDNN library context.
The cuDNN library context must be created using cudnnCreate () and the returned
handle must be passed to all subsequent library function calls. The context should be
destroyed at the end using cudnnDestroy () . The context is associated with only one
GPU device, the current device at the time of the call to cudnnCreate () . However
multiple contexts can be created on the same GPU device.

3.29. cudnnindicesType_t

cudnnIndicesType t isan enumerated type used to indicate the data type for the
indices to be computed by the cudnnReduceTensor () routine. This enumerated type is
used as a field for the cudnnReduceTensorDescriptor_t descriptor.

Values
CUDNN_32BIT_INDICES

Compute unsigned int indices
CUDNN_64BIT_INDICES

Compute unsigned long long indices
CUDNN_16BIT_INDICES

Compute unsigned short indices
CUDNN_8BIT_ INDICES

Compute unsigned char indices

3.30. cudnnLRNMode t

cudnnLRNMode_t is an enumerated type used to specify the mode of operation in
cudnnLRNCrossChannelForward () and cudnnLRNCrossChannelBackward ().

Values
CUDNN_LRN_CROSS_CHANNEL DIM1

LRN computation is performed across tensor's dimension dimA[1].

3.31. cudnnMathType_t

cudnnMathType t is an enumerated type used to indicate if the use of Tensor Core
Operations is permitted a given library routine.

Values

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 32

cuDNN Datatypes Reference

CUDNN_DEFAULT MATH

Tensor Core Operations are not used.
CUDNN_TENSOR OP_ MATH

The use of Tensor Core Operations is permitted.
CUDNN_TENSOR OP MATH ALLOW_CONVERSION

Enables the use of FP32 tensors for both input and output.

3.32. cudnnMultiHeadAttnWeightKind_t

cudnnMultiHead AttnWeightKind_t is an enumerated type to specify the multi-head
weight group.

Member Description

CUDNN_ATTN_Q WEIGHTS =0 Selects the multi-head query weight group.
CUDNN_ATTN_K_WEIGHTS =1 Selects the multi-head key weight group.
CUDNN_ATTN_V_WEIGHTS =2 Selects the multi-head value weight group.
CUDNN_ATTN_O_WEIGHTS = 3 Selects the multi-head output weight group.

3.33. cudnnNanPropagation_t

cudnnNanPropagation_t is an enumerated type used to indicate if a given routine
should propagate Nan numbers. This enumerated type is used as a field for the
cudnnActivationDescriptor_t descriptor and cudnnPoolingDescriptor_t
descriptor.

Values
CUDNN_NOT_PROPAGATE_NAN

Nan numbers are not propagated
CUDNN_PROPAGATE NAN

Nan numbers are propagated

3.34. cudnnOpTensorDescriptor_t

cudnnOpTensorDescriptor_t is a pointer to an opaque structure holding the
description of a Tensor Ccore Operation, used as a parameter to cudnnOpTensor ().
cudnnCreateOpTensorDescriptor () is used to create one instance, and
cudnnSetOpTensorDescriptor () must be used to initialize this instance.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 33

cuDNN Datatypes Reference

3.35. cudnnOpTensorOp_t

cudnnOpTensorOp_t is an enumerated type used to indicate the Tensor Core Operation
to be used by the cudnnOpTensor () routine. This enumerated type is used as a field for
the cudnnOpTensorDescriptor_t descriptor.

Values

CUDNN_OP_TENSOR_ADD

The operation to be performed is addition
CUDNN_OP_TENSOR MUL

The operation to be performed is multiplication
CUDNN_OP_TENSOR_MIN

The operation to be performed is a minimum comparison
CUDNN_OP_TENSOR MAX

The operation to be performed is a maximum comparison
CUDNN_OP_TENSOR_SQRT

The operation to be performed is square root, performed on only the A tensor
CUDNN_OP_TENSOR NOT

The operation to be performed is negation, performed on only the A tensor

3.36. cudnnPersistentRNNPlan_t

cudnnPersistentRNNPlan_t is a pointer to an opaque structure holding a plan to
execute a dynamic persistent RNN. cudnnCreatePersistentRNNPlan () is used to
create and initialize one instance.

3.37. cudnnPoolingDescriptor_t

cudnnPoolingDescriptor_t is a pointer to an opaque structure holding
the description of a pooling operation. cudnnCreatePoolingDescriptor ()
is used to create one instance, and cudnnSetPoolingNdDescriptor () or
cudnnSetPooling2dDescriptor () must be used to initialize this instance.

3.38. cudnnPoolingMode_t

cudnnPoolingMode_t is an enumerated type passed to
cudnnSetPoolingDescriptor () to select the pooling method to be used by
cudnnPoolingForward () and cudnnPoolingBackward ().

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 34

cuDNN Datatypes Reference

Values
CUDNN_POOLING MAX

The maximum value inside the pooling window is used.
CUDNN_POOLING AVERAGE COUNT INCLUDE PADDING

Values inside the pooling window are averaged. The number of elements used to
calculate the average includes spatial locations falling in the padding region.

CUDNN_POOLING_AVERAGE_COUNT EXCLUDE_PADDING

Values inside the pooling window are averaged. The number of elements used to
calculate the average excludes spatial locations falling in the padding region.

CUDNN_POOLING MAX DETERMINISTIC

The maximum value inside the pooling window is used. The algorithm used is
deterministic.

3.39. cudnnRNNAlgo_t

cudnnRNNAlgo_t is an enumerated type used to specify the algorithm used
in the cudnnRNNForwardInference (), cudnnRNNForwardTraining (),
cudnnRNNBackwardData () and cudnnRNNBackwardWeights () routines.

Values

CUDNN_RNN ALGO_ STANDARD
Each RNN layer is executed as a sequence of operations. This algorithm is expected to
have robust performance across a wide range of network parameters.
CUDNN_RNN ALGO PERSIST STATIC

The recurrent parts of the network are executed using a persistent kernel approach.
This method is expected to be fast when the first dimension of the input tensor is
small (ie. a small minibatch).

CUDNN_RNN ALGO_ PERSIST STATIC is only supported on devices with compute
Capablhty >=6.0.

CUDNN_RNN ALGO_PERSIST DYNAMIC

The recurrent parts of the network are executed using a persistent kernel approach.
This method is expected to be fast when the first dimension of the input tensor is
small (ie. a small minibatch). When using CUDNN_RNN_ALGO PERSIST DYNAMIC
persistent kernels are prepared at runtime and are able to optlmlzed using

the specific parameters of the network and active GPU. As such, when using
CUDNN_RNN ALGO_ PERSIST DYNAMIC a one-time plan preparation stage must be
executed. These plans can then be reused in repeated calls with the same model
parameters.

The limits on the maximum number of hidden units supported when using
CUDNN_RNN_ALGO_PERSIST_ DYNAMIC are significantly higher than the limits
when using CUDNN_RNN_ALGO_PERSIST_ STATIC, however throughput is
likely to significantly reduce when exceeding the maximums supported by

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 35

cuDNN Datatypes Reference

CUDNN_RNN_ALGO_PERSIST STATIC. In this regime this method will still outperform
CUDNN_RNN_ALGO_STANDARD for some cases.

CUDNN_RNN_ALGO_PERSIST_DYNAMIC is only supported on devices with compute
capability >= 6.0 on Linux machines.

3.40. cudnnRNNBiasMode_t

cudnnRNNBiasMode t is an enumerated type used to specify the number of bias
vectors for RNN functions. See the description of the cudnnRNNMode_t enumerated
type for the equations for each cell type based on the bias mode.

Values
CUDNN_RNN_NO_BIAS

Applies RNN cell formulas that do not use biases.
CUDNN_RNN_ SINGLE INP BIAS

Applies RNN cell formulas that use one input bias vector in the input GEMM.
CUDNN_RNN DOUBLE BIAS

Applies RNN cell formulas that use two bias vectors.
CUDNN_RNN_ SINGLE REC_BIAS

Applies RNN cell formulas that use one recurrent bias vector in the recurrent GEMM.

3.41. cudnnRNNClipMode_t

cudnnRNNClipMode t is an enumerated type used to select the LSTM cell clipping
mode. It is used with cudnnRNNSetClip (), cudnnRNNGetClip () functions, and
internally within LSTM cells.

Values
CUDNN_RNN_CL I P_NONE

Disables LSTM cell clipping.
CUDNN_RNN CLTIP_ MINMAX

Enables LSTM cell clipping.

3.42. cudnnRNNDescriptor_t

cudnnRNNDescriptor_t is a pointer to an opaque structure holding the description of
an RNN operation. cudnnCreateRNNDescriptor () is used to create one instance, and
cudnnSetRNNDescriptor () must be used to initialize this instance.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 36

cuDNN Datatypes Reference

3.43. cudnnRNNDataDescriptor_t

cudnnRNNDataDescriptor_t is a pointer to an opaque structure holding the
description of a RNN data set. The function cudnnCreateRNNDataDescriptor () is
used to create one instance, and cudnnSetRNNDataDescriptor () must be used to
initialize this instance.

3.44. cudnnRNNInputMode_t

cudnnRNNInputMode t is an enumerated type used to specify the behavior of the
tirst layer in the cudnnRNNForwardInference (), cudnnRNNForwardTraining (),
cudnnRNNBackwardData () and cudnnRNNBackwardWeights () routines.

Values

CUDNN_LINEAR INPUT
A biased matrix multiplication is performed at the input of the first recurrent layer.
CUDNN_SKIP_ INPUT
No operation is performed at the input of the first recurrent layer. If
CUDNN_SKIP_INPUT is used the leading dimension of the input tensor must be equal
to the hidden state size of the network.

3.45. cudnnRNNMode_t

cudnnRNNMode_t is an enumerated type used to specify the type of network
used in the cudnnRNNForwardInference (), cudnnRNNForwardTraining (),
cudnnRNNBackwardData () and cudnnRNNBackwardWeights () routines.

Values
CUDNN_RNN_RELU

A single-gate recurrent neural network with a ReLU activation function.

In the forward pass, the output hy for a given iteration can be computed from the
recurrent input h¢_; and the previous layer input x, given the matricesW, R and the
bias vectors, where ReLU (x) = max(x, 0).

If cudnnRNNBiasMode_t biasMode in rnnDesc is CUDNN_RNN DOUBLE_ BIAS
(default mode), then the following equation with biasesby and by applies:

h; = ReLU(WiX:c + Rihi.1 + bw; + bRi)

If cudnnRNNBiasMode t biasMode in rnnDesc is CUDNN_RNN SINGLE INP BIAS
or CUDNN_RNN_SINGLE REC_BIAS, then the following equation 1 with bias b apphes
ht = ReLU(Wixt + Riht—l + bl)

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 37

cuDNN Datatypes Reference

If cudnnRNNBiasMode_t biasMode in rnnDesc is CUDNN_RNN_NO_BIAS, then the
following equation applies:

ht = ReLU(WiXt + Riht-l)
CUDNN_RNN_TANH

A single-gate recurrent neural network with a tanh activation function.

In the forward pass, the output hy for a given iteration can be computed from the
recurrent input h¢_; and the previous layer input x, given the matricesW, Rand the
bias vectors, and where tanh is the hyperbolic tangent function.

If cudnnRNNBiasMode_t biasMode in rnnDesc is CUDNN_RNN DOUBLE BIAS
(default mode), then the following equation with biasesby and by apphes

hy = tanh (W;x¢y + Rijhe-; + byi + Dbri)

If cudnnRNNBiasMode t biasMode in rnnDesc is CUDNN_RNN_ SINGLE INP_ BIAS
or CUDNN_RNN_SINGLE REC_BIAS, then the following equation 1 with bias b apphes

hy = tanh (Wijxy + Rihy-y + bj)

If cudnnRNNBiasMode_t biasMode in rnnDesc is CUDNN_RNN_NO_BIAS, then the
following equation applies:

hy = tanh (W;x¢ + Rihe-q)
CUDNN_LSTM
A four-gate Long Short-Term Memory network with no peephole connections.

In the forward pass, the output h and cell output ¢ for a given iteration can be
computed from the recurrent input h._,, the cell input c¢_; and the previous layer
input x¢, given the matrices W, R and the bias vectors.

In addition, o is the sigmoid operator: o(x) = 1 / (1 + e™™), o represents a point-
wise multiplication, and tanh is the hyperbolic tangent function. iy, £, o¢, ¢'¢
represent the input, forget, output and new gates respectively.

If cudnnRNNBiasMode_t biasMode in rnnDesc is CUDNN_RNN DOUBLE_ BIAS
(default mode), then the following equations with biasesby and bg apply

o(Wixy + Rihg-1 + byi + Dgri)

fe o (Wexy + Reheop + bye + Dre)

Ot 0(Woxt + Roht—l + bWo + bRo)

c't = tanh (Wexty + Rchi-1 + bye + bre)
ft °© Cg-1 i j—t ®© C't

ot ° tanh(ct)

i¢

If cudnnRNNBiasMode_t biasMode in rnnDesc is CUDNN_RNN_SINGLE INP_BIAS
or CUDNN_RNN_SINGLE REC_BIAS, then the following equatlons with bias b apply

lt O'(W xXe + Ry ht 1+ b)

ft O'(Wth 1F tht 1 1F bf)

Ot O(W x¢ + R ht 1+ b)
c't = tanh (Wexty + Rchio1 + be)
Ct fr o ceo1 + it ° c'¢

h¢ ot ° tanh(ct)

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 38

cuDNN Datatypes Reference

If cudnnRNNBiasMode_t biasMode in rnnDesc is CUDNN_RNN_NO_BIAS, then the
following equations apply:

it = o(Wixe + Riheog)
ft = o(Wexe + Reheoq)
Ot = O(Woxt + Roht—l)

c't = tanh (Wex¢ + Rcheoq)

Ct = fr ° Cce-1 + 1t ° c't
hy = oreotanh (cy)
CUDNN_GRU

A three-gate network consisting of Gated Recurrent Units.

In the forward pass, the output hy for a given iteration can be computed from the
recurrent input he_; and the previous layer input x, given matrices W, R and the bias
vectors.

In addition, o is the sigmoid operator: o(x) = 1 / (1 + e™), o represents a
point-wise multiplication and tanh is the hyperbolic tangent function. iy, re, h'y
represent the input, reset, new gates respectively.

If cudnnRNNBiasMode_t biasMode in rnnDesc is CUDNN_RNN DOUBLE BIAS
(default mode), then the following equations with biasesby and bg apply:

ig o(Wixt + Rihe-1 + byi + bru)

L O (Wext + Rehie-1 + byr + Dbry)

h't S tanh (WhXt P ree (tht—l ar th) ar bwh)

he (1 - i¢) ° h'¢ + i¢ ° hea

If cudnnRNNBiasMode t biasMode in rnnDesc is

CUDNN_RNN_ SINGLE INP BIAS,then the following equations with bias b apply:
ie o(Wixy + Rihi-1 + by)

e o (Wext + Rehioq + Dby)

h'y = tanh (Wpx: + rt ° (Rphi-1) + Dbyn)

he (1 - i¢) ° h't + i¢ ° he

If cudnnRNNBiasMode t biasMode in rnnDesc is

CUDNN_RNN_ SINGLE REC_BIAS, then the following equations with bias b apply:
ie o(Wixy + Rihe-1 + bj)

e o (Wext + Rehioq + Dby)

h'y = tanh (Wpx: + rt ° (Rphi-1) + Dbgp)

hy = (1 - i¢) ° h'y + it ° he-g

If cudnnRNNBiasMode_t biasMode in rnnDesc is CUDNN_RNN_NO_BIAS, then the
following equations apply:

ie o (Wixy + Rihe-q)
re = 0(Wexe + Reheoq)
h'y = tanh (Wyxt + r¢ ° (Rphe-1)
hy = (1 - i) ° h't + it ° hy_g

3.46. cudnnRNNPaddingMode_t

cudnnRNNPaddingMode_t is an enumerated type used to enable or disable the padded
input/output.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 39

cuDNN Datatypes Reference

Values

CUDNN_RNN PADDED IO DISABLED
Disables the padded input/output.

CUDNN_RNN_PADDED IO ENABLED
Enables the padded input/output.

3.47. cudnnReduceTensorDescriptor_t

cudnnReduceTensorDescriptor_t is a pointer to an opaque structure

holding the description of a tensor reduction operation, used as a parameter to
cudnnReduceTensor (). cudnnCreateReduceTensorDescriptor () is used to create
one instance, and cudnnSetReduceTensorDescriptor () must be used to initialize
this instance.

3.48. cudnnReduceTensorlindices_t

cudnnReduceTensorIndices_t is an enumerated type used to indicate whether
indices are to be computed by the cudnnReduceTensor () routine. This enumerated
type is used as a field for the cudnnReduceTensorDescriptor_t descriptor.

Values
CUDNN_REDUCE_TENSOR NO_INDICES

Do not compute indices
CUDNN_REDUCE_TENSOR_FLATTENED_INDICES

Compute indices. The resulting indices are relative, and flattened.

3.49. cudnnReduceTensorOp_t

cudnnReduceTensorOp_t is an enumerated type used to indicate the Tensor Core
Operation to be used by the cudnnReduceTensor () routine. This enumerated type is
used as a field for the cudnnReduceTensorDescriptor_t descriptor.

Values
CUDNN_REDUCE_TENSOR_ADD

The operation to be performed is addition
CUDNN_REDUCE_TENSOR MUL

The operation to be performed is multiplication
CUDNN_REDUCE_TENSOR MIN

The operation to be performed is a minimum comparison
CUDNN_REDUCE_TENSOR MAX

The operation to be performed is a maximum comparison

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 40

cuDNN Datatypes Reference

CUDNN_REDUCE_TENSOR AMAX

The operation to be performed is a maximum comparison of absolute values
CUDNN_REDUCE_TENSOR_AVG

The operation to be performed is averaging
CUDNN_REDUCE_TENSOR NORM1

The operation to be performed is addition of absolute values
CUDNN_REDUCE_TENSOR NORM2

The operation to be performed is a square root of sum of squares
CUDNN_REDUCE TENSOR MUL NO_ZEROS

The operation to be performed is multiplication, not including elements of value zero

3.50. cudnnSamplerType_t

cudnnSamplerType t is an enumerated type passed to
cudnnSetSpatialTransformerNdDescriptor () to select the sampler type to be used
by cudnnSpatialTfSamplerForward () and cudnnSpatialTfSamplerBackward().

Values

CUDNN_SAMPLER BILINEAR
Selects the bilinear sampler.

3.51. cudnnSegDataAxis_t

cudnnSeqDataAxis_t is an enumerated type to specify each supported sequence data
axis.

For continued API compatibility, the user is recommended to use these enumerated
labels when fetching and storing axes-arrays such as dima, and axes.

User should:

1. Specify the dimension of sequence data buffer as follows:

int dimA[CUDNN_SEQDATA DIM COUNT];

dimA [CUDNN_SEQDATA TIME DIM] = n_timesteps;
dimA [CUDNN_SEQDATA BATCH DIM] = n_batch;
dimA [CUDNN SEQDATA BEAM DIM]] = beam size;
dimA [CUDNN_SEQDATA VECT DIM]] = hidden size;

2. Specity the axes order as follows:

cudnnSegDataAxis t axes[CUDNN SEQDATA DIM COUNT] =
{CUDNN_SEQDATA TIME DIM,

CUDNN_SEQDATA BATCH DIM,

CUDNN_SEQDATA BEAM DIM,

CUDNN_SEQDATA VECT DIM};

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 41

cuDNN Datatypes Reference
The CUDNN_SEQDATA_DIM_COUNT defines the number of supported
dimensions or axes for sequential data. This value is currently set to 4.

The user is advised against using the equivalent integer values for the
enumerated labels.

Member Description
CUDNN_SEQDATA_TIME_DIM =0 Time step index.
CUDNN_SEQDATA_BATCH_DIM = 1 Batch index.
CUDNN_SEQDATA_BEAM_DIM = 2 Beam index.
CUDNN_SEQDATA_VECT_DIM =3 Hidden vector index.

3.52. cudnnSeqDataDescriptor_t

cudnnSeqDataDescriptor_t is a pointer to an opaque structure holding the description of
sequence data. Use the function cudnnCreateSeqDataDescriptor to create one instance,
and cudnnDestroySeqDataDescriptor to destroy a previously created descriptor.

3.53. cudnnSoftmaxAlgorithm_t

cudnnSoftmaxAlgorithm_t is used to select an implementation of the softmax
function used in cudnnSoftmaxForward () and cudnnSoftmaxBackward ().

Values
CUDNN_SOFTMAX_FAST

This implementation applies the straightforward softmax operation.
CUDNN_SOFTMAX ACCURATE

This implementation scales each point of the softmax input domain by its maximum
value to avoid potential floating point overflows in the softmax evaluation.

CUDNN_SOFTMAX LOG

This entry performs the Log softmax operation, avoiding overflows by scaling each
point in the input domain as in CUDNN_SOFTMAX ACCURATE

3.54. cudnnSoftmaxMode_t

cudnnSoftmaxMode_t is used to select over which data the cudnnSoftmaxForward ()
and cudnnSoftmaxBackward () are computing their results.

Values

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 42

cuDNN Datatypes Reference

CUDNN_SOFTMAX MODE INSTANCE

The softmax operation is computed per image (N) across the dimensions C,H,W.
CUDNN_SOFTMAX MODE CHANNEL

The softmax operation is computed per spatial location (H,W) per image (N) across
the dimension C.

3.55. cudnnSpatialTransformerDescriptor_t

cudnnSpatialTransformerDescriptor_t is a pointer to an opaque

structure holding the description of a spatial transformation operation.
cudnnCreateSpatialTransformerDescriptor () is used to create one instance,
cudnnSetSpatialTransformerNdDescriptor () is used to initialize this instance,
cudnnDestroySpatialTransformerDescriptor () is used to destroy this instance.

3.56. cudnnStatus_t

cudnnStatus_t is an enumerated type used for function status returns. All cuDNN
library functions return their status, which can be one of the following values:
Values

CUDNN_STATUS_SUCCESS

The operation completed successfully.

CUDNN_STATUS_NOT_INITIALIZED
The cuDNN library was not initialized properly. This error is usually returned when
a call to cudnnCreate () fails or when cudnnCreate () has not been called prior to

calling another cuDNN routine. In the former case, it is usually due to an error in the
CUDA Runtime API called by cudnnCreate () or by an error in the hardware setup.

CUDNN_STATUS_ALLOC_FAILED

Resource allocation failed inside the cuDNN library. This is usually caused by an
internal cudaMalloc () failure.

To correct: prior to the function call, deallocate previously allocated memory as much
as possible.

CUDNN_STATUS_BAD PARAM
An incorrect value or parameter was passed to the function.

To correct: ensure that all the parameters being passed have valid values.
CUDNN_STATUS_ARCH_MISMATCH

The function requires a feature absent from the current GPU device. Note that
cuDNN only supports devices with compute capabilities greater than or equal to 3.0.

To correct: compile and run the application on a device with appropriate compute
capability.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 43

cuDNN Datatypes Reference

CUDNN_STATUS MAPPING_ ERROR

An access to GPU memory space failed, which is usually caused by a failure to bind a
texture.

To correct: prior to the function call, unbind any previously bound textures.

Otherwise, this may indicate an internal error/bug in the library.
CUDNN_STATUS EXECUTION_ FAILED

The GPU program failed to execute. This is usually caused by a failure to launch
some cuDNN kernel on the GPU, which can occur for multiple reasons.

To correct: check that the hardware, an appropriate version of the driver, and the
cuDNN library are correctly installed.
Otherwise, this may indicate a internal error/bug in the library.

CUDNN_STATUS INTERNAL ERROR

An internal cuDNN operation failed.
CUDNN_STATUS NOT_ SUPPORTED

The functionality requested is not presently supported by cuDNN.
CUDNN_STATUS LICENSE ERROR

The functionality requested requires some license and an error was detected when
trying to check the current licensing. This error can happen if the license is not
present or is expired or if the environment variable NVIDIA_LICENSE_FILE is not
set properly.

CUDNN_STATUS RUNTIME PREREQUISITE MISSING

Runtime library required by RNN calls (libcuda.so or nvcuda.dll) cannot be found in
predefined search paths.

CUDNN_STATUS RUNTIME IN PROGRESS

Some tasks in the user stream are not completed.
CUDNN_STATUS RUNTIME FP_ OVERFLOW

Numerical overflow occurred during the GPU kernel execution.

3.57. cudnnTensorDescriptor_t

cudnnCreateTensorDescriptor_t is a pointer to an opaque structure holding the
description of a generic n-D dataset. cudnnCreateTensorDescriptor () is used

to create one instance, and one of the routrines cudnnSetTensorNdDescriptor (),
cudnnSetTensor4dDescriptor () or cudnnSetTensor4dDescriptorEx () must be
used to initialize this instance.

3.58. cudnnTensorFormat_t

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_vO07 | 44

cuDNN Datatypes Reference

cudnnTensorFormat_t is an enumerated type used by
cudnnSetTensor4dDescriptor () to create a tensor with a pre-defined layout.

Values
CUDNN_TENSOR_NCHW

This tensor format specifies that the data is laid out in the following order: batch
size, feature maps, rows, columns. The strides are implicitly defined in such a way
that the data are contiguous in memory with no padding between images, feature
maps, rows, and columns; the columns are the inner dimension and the images are
the outermost dimension.

CUDNN_TENSOR_NHWC

This tensor format specifies that the data is laid out in the following order: batch size,
rows, columns, feature maps. The strides are implicitly defined in such a way that
the data are contiguous in memory with no padding between images, rows, columns,
and feature maps; the feature maps are the inner dimension and the images are the
outermost dimension.

CUDNN_TENSOR_NCHW_VECT C

This tensor format specifies that the data is laid out in the following order: batch
size, feature maps, rows, columns. However, each element of the tensor is a vector
of multiple feature maps. The length of the vector is carried by the data type of the
tensor. The strides are implicitly defined in such a way that the data are contiguous
in memory with no padding between images, feature maps, rows, and columns;
the columns are the inner dimension and the images are the outermost dimension.
This format is only supported with tensor data types CUDNN_DATA_INT8x4,
CUDNN_DATA_INT8x32, and CUDNN_DATA_UINT8x4.

3.59. cudnnTensorTransformDescriptor_t

cudnnTensorTransformDescriptor_t is an opaque structure

containing the description of the Tensor transform. Use the
cudnnCreateTensorTransformDescriptor function to create an instance of this descriptor,
and cudnnDestroyTensorTransformDescriptor function to destroy a previously created
instance.

3.60. cudnnWgradMode_t

cudnnWgradMode_t is an enumerated type to select how the weight gradient output
buffers should be updated with the partial gradients.

Member Description

CUDNN_WGRAD_MODE_ADD =0 Adds the partial gradients to the weight gradient output
buffers (i.e., weight gradient output buffers = weight gradient
output buffers + partial gradients).

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 45

cuDNN Datatypes Reference

CUDNN_WGRAD_MODE_ADD = 1 Replaces the weight gradient output buffer values with the
partial gradients (i.e., weight gradient output buffers = partial
gradients).

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 46

Chapter 4.
CUDNN APl REFERENCE

This chapter describes the API of all the routines of the cuDNN library.

4.1. cudnnActivationBackward

cudnnStatus t cudnnActivationBackward (

cudnnHandle t handle,
cudnnActivationDescriptor t activationDesc,
const void *alpha,
const cudnnTensorDescriptor t yDesc,
const void &7
const cudnnTensorDescriptor t dyDesc,
const void *dy,
const cudnnTensorDescriptor t xDesc,
const void *x,
const void *beta,
const cudnnTensorDescriptor t dxDesc,
void *dx)

This routine computes the gradient of a neuron activation function.

In-place operation is allowed for this routine; i.e. dy and dx pointers may be

equal. However, this requires the corresponding tensor descriptors to be identical
(particularly, the strides of the input and output must match for in-place operation to
be allowed).

All tensor formats are supported for 4 and 5 dimensions, however best performance
is obtained when the strides of yDesc and xDesc are equal and HW-packed. For more
than 5 dimensions the tensors must have their spatial dimensions packed.

Parameters
handle

Input. Handle to a previously created cuDNN context. See cudnnHandle_t.
activationDesc

Input. Activation descriptor. See cudnnActivationDescriptor_t.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 47

cuDNN API Reference

alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the computation
result with prior value in the output layer as follows: dstValue = alpha[0]*result +
beta[0]*priorDstValue. Refer to this section for additional details.

yDesc

Input. Handle to the previously initialized input tensor descriptor. See
cudnnTensorDescriptor_t.

Input. Data pointer to GPU memory associated with the tensor descriptor yDesc.
dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.
dy

Input. Data pointer to GPU memory associated with the tensor descriptor dyDesc.
xDesc

Input. Handle to the previously initialized output tensor descriptor.

Input. Data pointer to GPU memory associated with the output tensor descriptor
xDesc.

dxDesc

Input. Handle to the previously initialized output differential tensor descriptor.
dx

Output. Data pointer to GPU memory associated with the output tensor descriptor
dxDesc.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

The function launched successfully.
CUDNN_STATUS BAD PARAM

At least one of the following conditions are met:

» The strides nStride, cStride, hStride, wStride of the input differential
tensor and output differential tensors differ and in-place operation is used.

CUDNN_STATUS NOT_ SUPPORTED

The function does not support the provided configuration. See the following for some
examples of non-supported configurations:

» The dimensions n, ¢, h,w of the input tensor and output tensors differ.
» The datatype of the input tensor and output tensors differs.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 48

cuDNN API Reference

» The strides nStride, cStride, hStride, wStride of the input tensor and
the input differential tensor differ.

» The strides nStride, cStride, hStride, wStride of the output tensor and
the output differential tensor differ.

CUDNN_STATUS_EXECUTION_FAILED
The function failed to launch on the GPU.

4.2. cudnnActivationForward

cudnnStatus t cudnnActivationForward (
cudnnHandle t handle,

cudnnActivationDescriptor t activationDesc,
const void *alpha,

const cudnnTensorDescriptor t xDesc,

const wvoid B,

const void *beta,

const cudnnTensorDescriptor t yDesc,

void *y)

This routine applies a specified neuron activation function element-wise over each input
value.

In-place operation is allowed for this routine; i.e., xData and yData pointers

may be equal. However, this requires xDesc and yDesc descriptors to be identical
(particularly, the strides of the input and output must match for in-place operation to
be allowed).

All tensor formats are supported for 4 and 5 dimensions, however best performance
is obtained when the strides of xDesc and yDesc are equal and EHW-packed. For more
than 5 dimensions the tensors must have their spatial dimensions packed.

Parameters
handle

Input. Handle to a previously created cuDNN context. See cudnnHandle_t.
activationDesc

Input. Activation descriptor. See cudnnActivationDescriptor_t.
alpha, beta
Input. Pointers to scaling factors (in host memory) used to blend the computation

result with prior value in the output layer as follows: dstValue = alpha[0]*result +
beta[0]*priorDstValue. Please refer to this section for additional details.

xDesc

Input. Handle to the previously initialized input tensor descriptor. See
cudnnTensorDescriptor_t.

Input. Data pointer to GPU memory associated with the tensor descriptor xDesc.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 49

cuDNN API Reference

yDesc

Input. Handle to the previously initialized output tensor descriptor.

Output. Data pointer to GPU memory associated with the output tensor descriptor
yDesc.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

The function launched successfully.
CUDNN_STATUS NOT_ SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD PARAM

At least one of the following conditions are met:

The parameter mode has an invalid enumerant value.
The dimensions n, ¢, h,w of the input tensor and output tensors differ.
The datatype of the input tensor and output tensors differs.

The strides nStride,cStride,hStride,wStride of the input tensor and
output tensors differ and in-place operation is used (i.e., x and y pointers are
equal).

vV v v VY

CUDNN_STATUS_EXECUTION_FAILED
The function failed to launch on the GPU.

4.3. cudnnAddTensor

cudnnStatus t cudnnAddTensor (

cudnnHandle t handle,
const void *alpha,
const cudnnTensorDescriptor t aDesc,
const void *A,
const void *beta,
const cudnnTensorDescriptor t cDesc,
void *C)

This function adds the scaled values of a bias tensor to another tensor. Each dimension
of the bias tensor A must match the corresponding dimension of the destination tensor
C or must be equal to 1. In the latter case, the same value from the bias tensor for those
dimensions will be used to blend into the C tensor.

Up to dimension 5, all tensor formats are supported. Beyond those dimensions, this
routine is not supported

Parameters

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 50

handle

cuDNN API Reference

Input. Handle to a previously created cuDNN context. See cudnnHandle_t.

alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the source value
with prior value in the destination tensor as follows: dstValue = alpha[0]*srcValue +
beta[0]*priorDstValue. Refer to this section for additional details.

aDesc

Input. Handle to a previously initialized tensor descriptor. See
cudnnTensorDescriptor_t.

A

Input. Pointer to data of the tensor described by the aDesc descriptor.

cDesc

Input. Handle to a previously initialized tensor descriptor.

C

Input/Output. Pointer to data of the tensor described by the cDesc descriptor.

The possible error values returned by this function and their meanings are listed below.

Returns

CUDNN_STATUS_ SUCCESS

The function executed successfully.
CUDNN_STATUS NOT_ SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD PARAM

The dimensions of the bias tensor refer to an amount of data that is incompatible the
output tensor dimensions or the dataType of the two tensor descriptors are different.

CUDNN_STATUS EXECUTION_ FAILED

The function failed to launch on the GPU.

4.4. cudnnBatchNormalizationBackward

cudnnStatus t cudnnBatchNormalizationBackward (
cudnnHandle t
cudnnBatchNormMode t

const
const
const
const
const
const
const
const
const
void

const
const

void
void
void
void
cudnnTensorDescriptor t
void
cudnnTensorDescriptor t
void
cudnnTensorDescriptor t

cudnnTensorDescriptor t
void

www.nvidia.com

cuDNN 7.5.0

handle,
mode,
*alphaDataDiff,
*betaDataDiff,
*alphaParamDiff,
*betaParamDiff,
xDesc,
*x,
dyDesc,
*dy,
dxDesc,
#EbR,
bnScaleBiasDiffDesc,
*bnScale,

DU-06702-001_v07 | 51

cuDNN API Reference

void *resultBnScaleDiff,
void *resultBnBiasDiff,
double epsilon,

const void *savedMean,

const void *savedInvVariance)

This function performs the backward batch normalization layer computation. This layer
is based on the paper Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift, S. loffe, C. Szegedy, 2015.

See cudnnDeriveBNTensorDescriptor for the secondary tensor descriptor
generation for the parameters using in this function.

Only 4D and 5D tensors are supported.

The epsilon value has to be the same during training, backpropagation and
inference.

Higher performance can be obtained when HW-packed tensors are used for all of x,
dy, dx.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor. See cudnnHandle_t.
mode

Input. Mode of operation (spatial or per-activation). See cudnnBatchNormMode_t.
*alphaDataDiff, *betaDataDiff

Inputs. Pointers to scaling factors (in host memory) used to blend the gradient output
dx with a prior value in the destination tensor as follows:

dstValue = alphaDataDiff[0] *resultValue +

betaDataDiff[0] *priorDstValue. Refer to this section for additional details.
*alphaParamDiff, *betaParamDiff

Inputs. Pointers to scaling factors (in host memory) used to blend the gradient outputs

resultBnScaleDiff and resultBnBiasDiff with prior values in the destination
tensor as follows:

dstValue = alphaParamDiff[0] *resultValue +
betaParamDiff[0] *priorDstValue. Refer to this section for additional details.

xDesc, dxDesc, dyDesc
Inputs. Handles to the previously initialized tensor descriptors.
*
X

Input. Data pointer to GPU memory associated with the tensor descriptor xDesc, for
the layer’s x data.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 52

https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167

cuDNN API Reference

Inputs. Data pointer to GPU memory associated with the tensor descriptor dyDesc,
for the backpropagated differential dy input.

*dx

Inputs. Data pointer to GPU memory associated with the tensor descriptor dxDesc,
for the resulting differential output with respect to x.

bnScaleBiasDiffDesc

Input. Shared tensor descriptor for the following five tensors: bnScale,
resultBnScaleDiff, resultBnBiasDiff, savedMean, savedInvVariance.
The dimensions for this tensor descriptor are dependent on normalization mode. See
cudnnDeriveBNTensorDescriptor.

The data type of this tensor descriptor must be ‘float’ for FP16 and FP32 input
tensors, and ‘double’ for FP64 input tensors.

*bnScale

Input. Pointer in the device memory for the batch normalization scale parameter (in
original paper the quantity scale is referred to as gamma).

The bnBias parameter is not needed for this layer's computation.

resultBnScaleDiff, resultBnBiasDiff
Outputs. Pointers in device memory for the resulting scale and bias differentials
computed by this routine. Note that these scale and bias gradients are weight
gradients specific to this batch normalization operation, and by definition are not
backpropagated.

epsilon

Input. Epsilon value used in batch normalization formula. Its value should be equal to
or greater than the value defined for CUDNN_BN_MIN_EPSILON in cudnn.h. Same
epsilon value should be used in forward and backward functions.

*savedMean, *savedInvVariance
Inputs. Optional cache parameters containing saved intermediate results that were
computed during the forward pass. For this to work correctly, the layer's x and
bnScale data has to remain unchanged until this backward function is called.

Both these parameters can be NULL but only at the same time. It is recommended
to use this cache since the memory overhead is relatively small.

Returns
CUDNN_STATUS_ SUCCESS

The computation was performed successfully.
CUDNN_STATUS NOT_ SUPPORTED

The function does not support the provided configuration.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 53

cuDNN API Reference

CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:

» Any of the pointers alpha, beta, x, dy, dx, bnScale,
resultBnScaleDiff, resultBnBiasDiff is NULL.

» Number of xDesc or yDesc or dxDesc tensor descriptor dimensions is not within
the range of [4,5] (only 4D and 5D tensors are supported.)

» bnScaleBiasDiffDesc dimensions are not 1xCx1x1 for 4D and 1xCx1x1x1 for
5D for spatial, and are not IxCxHxW for 4D and 1xCxDxHxW for 5D for per-
activation mode.

» Exactly one of savedMean, savedInvVariance pointers is NULL.
» epsilon value is less than CUDNN_BN_MIN_EPSILON.
» Dimensions or data types mismatch for any pair of xDesc, dyDesc, dxDesc.

4.5. cudnnBatchNormalizationBackwardEx

cudnnStatus t cudnnBatchNormalizationBackwardEx (

cudnnHaHdle_t handle,
cudnnBatchNormMode t mode,
cudnnBatchNormOps t bnOps,

const void *alphaDataDiff,
const void *betaDataDiff,
const void *alphaParamDiff,
const void *betaParamDiff,
const cudnnTensorDescriptor t xDesc,

const void *xData,

const cudnnTensorDescriptor t yDesc,

const void *yData,

const cudnnTensorDescriptor t dyDesc,

const wvoid *dyData,

const cudnnTensorDescriptor t dzDesc,

void *dzData,

const cudnnTensorDescriptor t dxDesc,

void *dxData,

const cudnnTensorDescriptor t dBnScaleBiasDesc,
const void *bnScaleData,
const void *bnBiasData,

void *dBnScaleData,
void *dBnBiasData,
double epsilon,

const void *savedMean,

const void *savedInvVariance,
const cudnnActivationDescriptor t activationDesc,
void *workspace,

size t workSpaceSizeInBytes
void *reserveSpace
size t reserveSpaceSizeInBytes) ;

This function is an extension of the cudnnBatchNormalizationBackward () for
performing the backward batch normalization layer computation with a fast NHWC
semi-persistent kernel. This API will trigger the new semi-persistent NHWC kernel
when the below conditions are true:

» All tensors, namely, x, y, dz, dy, dx mustbe NHWC-fully packed, and must be
of the type CUDNN_DATA_HALF.

» The tensor C dimension should be a multiple of 4.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 54

cuDNN API Reference

» The input parameter mode must be set to
CUDNN_BATCHNORM_SPATIAL_PERSISTENT.

» workspace isnot NULL.

» workSpaceSizeInBytes isequal or larger than the amount required by
cudnnGetBatchNormalizationBackwardExWorkspaceSize().

» reserveSpaceSizeInBytes isequal or larger than the amount required by
cudnnGetBatchNormalizationTrainingExReserveSpaceSize().

» The content in reserveSpace stored by
cudnnBatchNormalizationForwardTrainingEx() must be preserved.

If workspace is NULL and workSpaceSizeInBytes of zero is passed in, this API will
function exactly like the non-extended function cudnnBatchNormalizationBackward.

This workspace is not required to be clean. Moreover, the workspace does not have to
remain unchanged between the forward and backward pass, as it is not used for passing
any information.

This extended function can accept a *workspace pointer to the GPU workspace, and
workSpaceSizeInBytes, the size of the workspace, from the user.

The bnOps input can be used to set this function to perform either only the batch
normalization, or batch normalization followed by activation, or batch normalization
followed by element-wise addition and then activation.

Only 4D and 5D tensors are supported. The epsilon value has to be the same during
the training, the backpropagation and the inference.

When the tensor layout is NCHW, higher performance can be obtained when HW-
packed tensors are used for x, dy, dx.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor. See cudnnHandle_t.

mode

Input. Mode of operation (spatial or per-activation). See cudnnBatchNormMode_t.
bnOps
Input. Mode of operation for the fast NHWC kernel. See cudnnBatchNormOps_t..
This input can be used to set this function to perform either only the batch
normalization, or batch normalization followed by activation, or batch normalization
followed by element-wise addition and then activation.
*alphaDataDiff, *betaDataDiff

Inputs. Pointers to scaling factors (in host memory) used to blend the gradient output
dx with a prior value in the destination tensor as follows:

dstValue = alpha[0] *resultValue + beta[0] *priorDstValue. Refer to
this section for additional details.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 55

cuDNN API Reference

*alphaParamDiff, *betaParamDiff

Inputs. Pointers to scaling factors (in host memory) used to blend the gradient outputs
dBnScaleData and dBnBiasData with prior values in the destination tensor as
follows:

dstValue = alpha[0]*resultValue + beta[0]*priorDstValue. Referto
this section for additional details.

xDesc, *x,yDesc, *yData, dyDesc, *dyData, dzDesc, *dzData, dxDesc, *dx/dt

Inputs. Tensor descriptors and pointers in the device memory for the layer's x data,
back propagated differential dy (inputs), the optional y input data, the optional dz
output, and the dx output, which is the resulting differential with respect to x. See
cudnnTensorDescriptor_t.

dBnScaleBiasDesc

Input. Shared tensor descriptor for the following six tensors: bnScaleData,
bnBiasData, dBnScaleData, dBnBiasData, savedMean, and
savedInvVariance. See cudnnDeriveBNTensorDescriptor.

The dimensions for this tensor descriptor are dependent on normalization mode.

Note: The data type of this tensor descriptor must be ‘float’ for FP16 and FP32
input tensors, and 'double’ for FP64 input tensors.

See cudnnTensorDescriptor_t.
*bnScaleData

Input. Pointer in the device memory for the batch normalization scale parameter (in
the original paper the quantity scale is referred to as gamma).

*bnBiasData
Input. Pointers in the device memory for the batch normalization bias parameter
(in the original paper bias is referred to as beta). This parameter is used only when
activation should be performed.

*dBnScaleData, dBnBiasData
Inputs. Pointers in the device memory for the gradients of bnScaleData and
bnBiasData, respectively.

epsilon

Input. Epsilon value used in batch normalization formula. Its value should be equal to
or greater than the value defined for CUDNN_BN_MIN_EPSILON in cudnn.h. Same
epsilon value should be used in forward and backward functions.

*savedMean, *savedInvVariance
Inputs. Optional cache parameters containing saved intermediate results computed
during the forward pass. For this to work correctly, the layer's x and bnScaleData,
bnBiasData data has to remain unchanged until this backward function is called.
Note that both these parameters can be NULL but only at the same time. It is
recommended to use this cache since the memory overhead is relatively small.
activationDesc
Input. Tensor descriptor for the activation operation.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 56

https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167

cuDNN API Reference

workspace
Input. Pointer to the GPU workspace. If workspace is NULL and
workSpaceSizeInBytes of zero is passed in, then this API will function exactly like
the non-extended function cudnnBatchNormalizationBackward().
workSpaceSizelnBytes
Input. The size of the workspace. Must be large enough to trigger the fast NHWC
semi-persistent kernel by this function.
*reserveSpace
Input. Pointer to the GPU workspace for the reserveSpace.
reserveSpaceSizelnBytes
Input. The size of the reserveSpace. Must be equal or larger than the amount
required by cudnnGetBatchNormalizationTrainingExReserveSpaceSize ().

Returns
CUDNN_STATUS_ SUCCESS

The computation was performed successfully.
CUDNN_STATUS NOT_ SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD PARAM

At least one of the following conditions are met:

» Any of the pointers alphaDataDiff, betaDataDiff, alphaParamDiff,
betaParamDiff, x, dy, dx, bnScale, resultBnScaleDiff,
resultBnBiasDiff is NULL.

» Number of xDesc or yDesc or dxDesc tensor descriptor dimensions is not within
the range of [4,5] (only 4D and 5D tensors are supported.)

» dBnScaleBiasDesc dimensions not 1xCx1x1 for 4D and 1xCx1x1x1 for 5D for
spatial, and are not IXCxHxW for 4D and 1xCxDxHxW for 5D for per-activation
mode. .

» Exactly one of savedMean, savedInvVariance pointers is NULL.
» epsilon value is less than CUDNN_BN_MIN_EPSILON.
» Dimensions or data types mismatch for any pair of xDesc, dyDesc, dxDesc.

4.6. cudnnBatchNormalizationForwardinference

cudnnStatus t cudnnBatchNormalizationForwardInference (

cudnnHandle t handle,
cudnnBatchNormMode t mode,

const void *alpha,

const void *beta,

const cudnnTensorDescriptor t xDesc,

const void *x,

const cudnnTensorDescriptor t yDesc,

void &7

const cudnnTensorDescriptor t bnScaleBiasMeanVarDesc,
const void *bnScale,

const void *bnBias,

const void *estimatedMean,
const void *estimatedVariance,
double epsilon)

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 57

cuDNN API Reference

This function performs the forward batch normalization layer computation for the
inference phase. This layer is based on the paper Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift, S. lIoffe, C. Szegedy, 2015.

See cudnnDeriveBNTensorDescriptor for the secondary tensor descriptor
generation for the parameters using in this function.

Only 4D and 5D tensors are supported.

The input transformation performed by this function is defined as:

y = beta*y + alpha *[bnBias + (bnScale * (x-estimatedMean)/
sqgrt(epsilon + estimatedVariance)]

The epsilon value has to be the same during training, backpropagation and
inference.

For training phase use cudnnBatchNormalizationForwardTraining.

Higher performance can be obtained when HW-packed tensors are used for all of x
and dx.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor. See cudnnHandle_t.
mode

Input. Mode of operation (spatial or per-activation). See cudnnBatchNormMode_t.
alpha, beta

Inputs. Pointers to scaling factors (in host memory) used to blend the layer output
value with prior value in the destination tensor as follows:

dstValue = alpha[0] *resultValue + beta[0]*priorDstValue. Refer to this
section for additional details.

xDesc, yDesc
Input. Handles to the previously initialized tensor descriptors.
*
X

Input. Data pointer to GPU memory associated with the tensor descriptor xDesc, for
the layer’s x input data.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 58

https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167

cuDNN API Reference

'y
Input. Data pointer to GPU memory associated with the tensor descriptor yDesc, for
the youtput of the batch normalization layer.

bnScaleBiasMeanVarDesc, bnScale, bnBias

Inputs. Tensor descriptor and pointers in device memory for the batch normalization
scale and bias parameters (in the original paper bias is referred to as beta and scale as
gamma).

estimatedMean, estimated Variance

Inputs. Mean and variance tensors (these have the same

descriptor as the bias and scale). The resul tRunningMean and
resultRunningVariance, accumulated during the training phase from the
cudnnBatchNormalizationForwardTraining () call, should be passed as inputs
here.

epsilon
Input. Epsilon value used in the batch normalization formula. Its value should be
equal to or greater than the value defined for CUDNN_BN_MIN_EPSILON in
cudnn.h.

Returns

CUDNN_STATUS_SUCCESS

The computation was performed successfully.
CUDNN_STATUS_NOT SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD PARAM

At least one of the following conditions are met:

» One of the pointers alpha, beta, x, y, bnScale, bnBias,
estimatedMean, estimatedInvVariance is NULL.

» Number of xDesc or yDesc tensor descriptor dimensions is not within the range
of [4,5] (only 4D and 5D tensors are supported.)

» bnScaleBiasMeanVarDesc dimensions are not IxCx1x1 for 4D and 1xCx1x1x1
for 5D for spatial, and are not IxXCxHxW for 4D and IxCxDxHxW for 5D for per-
activation mode.

» epsilon value is less than CUDNN_BN_MIN_EPSILON.
» Dimensions or data types mismatch for xDesc, yDesc.

4.7. cudnnBatchNormalizationForwardTraining

cudnnStatus_t cudnnBatchNormalizationForwardTraining (

cudnnHandle t handle,
cudnnBatchNormMode t mode,
const void *alpha,
const void *beta,
const cudnnTensorDescriptor t xDesc,
const void *x,

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 59

https://arxiv.org/abs/1502.03167

cuDNN API Reference

const cudnnTensorDescriptor t yDesc,

void “Wp

const cudnnTensorDescriptor t bnScaleBiasMeanVarDesc,
const void *bnScale,

const void *bnBias,

double exponentialAverageFactor,
void *resultRunningMean,

void *resultRunningVariance,
double epsilon,

void *resultSaveMean,

void *resultSaveInvVariance)

This function performs the forward batch normalization layer computation for the
training phase. This layer is based on the paper Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift, S. loffe, C. Szegedy, 2015.

See cudnnDeriveBNTensorDescriptor for the secondary tensor descriptor
generation for the parameters using in this function.

Only 4D and 5D tensors are supported.

The epsilon value has to be the same during training, backpropagation and
inference.

For inference phase use cudnnBatchNormalizationForwardInference.

Higher performance can be obtained when HW-packed tensors are used for both x
and y.

Parameters
handle

Handle to a previously created cuDNN library descriptor. See cudnnHandle_t.
mode

Mode of operation (spatial or per-activation). See cudnnBatchNormMode_t.
alpha, beta

Inputs. Pointers to scaling factors (in host memory) used to blend the layer output
value with prior value in the destination tensor as follows:

dstValue = alpha[0]*resultValue + beta[0]*priorDstValue. Referto
this section for additional details.
xDesc, yDesc

Tensor descriptors and pointers in device memory for the layer's x and y data. See
cudnnTensorDescriptor_t.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 60

https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167

cuDNN API Reference

*X
Input. Data pointer to GPU memory associated with the tensor descriptor xDesc, for
the layer’s x input data.

'y
Input. Data pointer to GPU memory associated with the tensor descriptor yDesc, for
the youtput of the batch normalization layer.

bnScaleBiasMeanVarDesc

Shared tensor descriptor desc for the secondary tensor that was derived by
cudnnDeriveBNTensorDescriptor. The dimensions for this tensor descriptor are
dependent on the normalization mode.

bnScale, bnBias
Inputs. Pointers in device memory for the batch normalization scale and bias
parameters (in the original paper bias is referred to as beta and scale as gamma). Note
that bnBias parameter can replace the previous layer's bias parameter for improved
efficiency.

exponential AverageFactor
Input. Factor used in the moving average computation as follows:

runningMean = runningMean¥* (1-factor) + newMean*factor

Use a factor=1/ (1+n) at N-th call to the function to get Cumulative Moving
Average (CMA) behavior such that:

CMA[n] = (x[1]+...+x[n])/n. Thisis proved below:
Writing CMA[n+1] = (n*CMA[n]+x[n+1])/(n+1)

= ((n+l) *CMA[n]-CMA[n])/ (n+l) + x[n+1]/(n+1)

CMA[n]*(1-1/(n+1))+x[n+1]*1/(n+1)

CMA[n]* (1-factor) + x(n+l) *factor.
resultRunningMean, resultRunningVariance

Inputs/Outputs. Running mean and variance tensors (these have the same descriptor
as the bias and scale). Both of these pointers can be NULL but only at the same time.
The value stored in resultRunningVariance (or passed as an input in inference
mode) is the sample variance, and is the moving average of variance[x] where
variance is computed either over batch or spatial+batch dimensions depending on
the mode. If these pointers are not NULL, the tensors should be initialized to some
reasonable values or to 0.

epsilon
Input. Epsilon value used in the batch normalization formula. Its value should be

equal to or greater than the value defined for CUDNN_BN_MIN_EPSILON in
cudnn.h. Same epsilon value should be used in forward and backward functions.

resultSaveMean, resultSavelnvVariance
Outputs. Optional cache to save intermediate results computed during the forward
pass. These buffers can be used to speed up the backward pass when supplied to the

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 61

https://arxiv.org/abs/1502.03167

cuDNN API Reference

cudnnBatchNormalizationBackward () function. The intermediate results stored
in resultSaveMean and resultSaveInvVariance buffers should not be used
directly by the user. Depending on the batch normalization mode, the results stored
in resultSaveInvVariance may vary. For the cache to work correctly, the input
layer data must remain unchanged until the backward function is called. Note that
both parameters can be NULL but only at the same time. In such a case intermediate
statistics will not be saved, and cudnnBatchNormalizationBackward () will have
to re-compute them. It is recommended to use this cache as the memory overhead is
relatively small because these tensors have a much lower product of dimensions than
the data tensors.

Returns
CUDNN_STATUS_ SUCCESS

The computation was performed successfully.
CUDNN_STATUS NOT_ SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD PARAM

At least one of the following conditions are met:

» One of the pointers alpha, beta, x, y, bnScale, bnBiasis NULL.

» Number of xDesc or yDesc tensor descriptor dimensions is not within the range
of [4,5] (only 4D and 5D tensors are supported.)

» bnScaleBiasMeanVarDesc dimensions are not 1xCx1x1 for 4D and 1xCx1x1x1
for 5D for spatial, and are not IxCxHxW for 4D and 1xCxDxHxW for 5D for per-
activation mode.

» Exactly one of resultSaveMean, resultSaveInvVariance pointers is NULL.

» Exactly one of resultRunningMean, resultRunningInvVariance pointers is
NULL.

» epsilon value is less than CUDNN_BN_MIN_EPSILON.
» Dimensions or data types mismatch for xDesc, yDesc

4.8. cudnnBatchNormalizationForwardTrainingEx

cudnnStatus t cudnnBatchNormalizationForwardTrainingEx (

cudnnHandle t handle,
cudnnBatchNormMode t mode,

cudnnBatchNormOps t bnOps,

const void *alpha,

const void *beta,

const cudnnTensorDescriptor t xDesc,

const void *xData,

const cudnnTensorDescriptor t zDesc,

const void *zData,

const cudnnTensorDescriptor t yDesc,

void *yData,

const cudnnTensorDescriptor t bnScaleBiasMeanVarDesc,
const void *bnScaleData,

const void *bnBiasData,

double exponentialAverageFactor,
void *resultRunningMeanData,

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 62

cuDNN API Reference

void *resultRunningVarianceData,
double epsilon,

void *saveMean,

void *savelInvVariance,

const cudnnActivationDescriptor t activationDesc,

void *workspace,

size t workSpaceSizeInBytes

void *reserveSpace

size t reserveSpaceSizeInBytes) ;

This function is an extension of the cudnnBatchNormalizationForwardTraining ()
for performing the forward batch normalization layer computation.

This API will trigger the new semi-persistent NHWC kernel when the below conditions
are true:

» All tensors, namely, x, y, dz, dy, dxmustbe NHWC-fully packed, and must be
of the type CUDNN_DATA_HALF.

» The tensor C dimension should be a multiple of 4.

» The input parameter mode must be set to
CUDNN_BATCHNORM_SPATIAL_PERSISTENT.

» workspace isnot NULL.

» workSpaceSizeInBytes isequal or larger than the amount required by
cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize().

» reserveSpaceSizeInBytes isequal or larger than the amount required by
cudnnGetBatchNormalizationTrainingExReserveSpaceSize ().

» The content in reserveSpace stored by
cudnnBatchNormalizationForwardTrainingEx() must be preserved.

If workspace is NULL and workSpaceSizeInBytes of zero is passed
in, this API will function exactly like the non-extended function
cudnnBatchNormalizationForwardTraining ().

This workspace is not required to be clean. Moreover, the workspace does not have to
remain unchanged between the forward and backward pass, as it is not used for passing
any information.

This extended function can accept a *workspace pointer to the GPU workspace, and
workSpaceSizeInBytes, the size of the workspace, from the user.

The bnOps input can be used to set this function to perform either only the batch
normalization, or batch normalization followed by activation, or batch normalization
followed by element-wise addition and then activation.

Only 4D and 5D tensors are supported. The epsilon value has to be the same during
the training, the backpropagation and the inference.

When the tensor layout is NCHW, higher performance can be obtained when HW-

packed tensors are used for x, dy, dx.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor. See cudnnHandle_t.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 63

cuDNN API Reference

mode

Input. Mode of operation (spatial or per-activation). See cudnnBatchNormMode_t.
bnOps
Input. Mode of operation for the fast NHWC kernel. See cudnnBatchNormOps_t..
This input can be used to set this function to perform either only the batch
normalization, or batch normalization followed by activation, or batch normalization
followed by element-wise addition and then activation.
*alpha, *beta

Inputs. Pointers to scaling factors (in host memory) used to blend the layer output
value with prior value in the destination tensor as follows:

dstValue = alpha[0]*resultValue + beta[0]*priorDstValue. Refer to this
section for additional details.

xDesc, *xData, zDesc, *zData, yDesc, *yData

Tensor descriptors and pointers in device memory for the layer's x and y data,

and for the optional z tensor input for residual addition to the result of the batch
normalization operation, prior to the activation. The optional tensor input z should
be exact the same size as x and the final output y. This z input is element-wise added
to the output of batch normalization. This addition optionally happens after batch
normalization and before the activation. See cudnnTensorDescriptor_t.

bnScaleBiasMeanVarDesc

Shared tensor descriptor desc for the secondary tensor that was derived by
cudnnDeriveBNTensorDescriptor(). The dimensions for this tensor descriptor are
dependent on the normalization mode.

*bnScaleData, *bnBiasData
Inputs. Pointers in the device memory for the for the batch normalization scale and
bias data. In the original paper bias is referred to as beta and scale as gamma. Note
that bnBiasData parameter can replace the previous operation’s bias parameter for
improved efficiency.

exponential AverageFactor
Input. Factor used in the moving average computation as follows:

runningMean = runningMean¥* (1-factor) + newMean*factor

Use a factor=1/ (1+n) at N-th call to the function to get Cumulative Moving
Average (CMA) behavior such that:

CMA[n] = (x[1]+...+x[n])/n. This is proved below:
Writing CMA[n+1] = (n*CMA[n]+x[n+1])/ (n+1)

= ((n+l)*CMA[n]-CMA[n])/(n+l) + x[n+1l]/(n+l)

CMA[n]*(1-1/(n+l1))+x[n+1]*1/ (n+1)

CMA[n]* (1-factor) + x(n+l)*factor.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 64

https://arxiv.org/abs/1502.03167

cuDNN API Reference

*resultRunningMeanData, *resultRunningVarianceData

Inputs/Outputs. Pointers to the running mean and running variance data. Both
these pointers can be NULL but only at the same time. The value stored in
resultRunningVarianceData (or passed as an input in inference mode) is

the sample variance, and is the moving average of variance[x] where variance is
computed either over batch or spatial+batch dimensions depending on the mode. If
these pointers are not NULL, the tensors should be initialized to some reasonable
values or to 0.

epsilon

Input. Epsilon value used in the batch normalization formula. Its value should be
equal to or greater than the value defined for CUDNN_BN_MIN_EPSILON in
cudnn.h. Same epsilon value should be used in forward and backward functions.

*saveMean, *savelnvVariance
Inputs. Optional cache parameters containing saved intermediate results computed
during the forward pass. For this to work correctly, the layer's x and bnScaleData,
bnBiasData data has to remain unchanged until this backward function is called.
Note that both these parameters can be NULL but only at the same time. It is
recommended to use this cache since the memory overhead is relatively small.
activationDesc
Input. Tensor descriptor for the activation operation. When the bnOps
input is set to either CUDNN_BATCHNORM_OPS_BN_ACTIVATION or
CUDNN_BATCHNORM_OPS_BN_ADD_ACTIVATION then this activation is used.
*workspace, workSpaceSizeInBytes
Inputs. *workspace is a pointer to the GPU workspace, and
workSpaceSizeInBytes is the size of the workspace. When the *workspace is
not NULL and *workSpaceSizeInBytes is large enough, and the tensor layout is
NHWC and the data type configuration is supported, then this function will trigger
a new semi-persistent NHWC kernel for batch normalization. The workspace is
not required to be clean. Also, the workspace does not need to remain unchanged
between the forward and backward passes.
*reserveSpace
Input. Pointer to the GPU workspace for the reserveSpace.
reserveSpaceSizelnBytes
Input. The size of the reserveSpace. Must be equal or larger than the amount
required by cudnnGetBatchNormalizationTrainingExReserveSpaceSize ().

Returns
CUDNN_STATUS_ SUCCESS

The computation was performed successfully.
CUDNN_STATUS NOT_ SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD PARAM

At least one of the following conditions are met:

» One of the pointers alpha, beta, x, y, bnScaleData, bnBiasData is
NULL.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 65

cuDNN API Reference

» Number of xDesc or yDesc tensor descriptor dimensions is not within the [4,5]
range (only 4D and 5D tensors are supported.).

» bnScaleBiasMeanVarDesc dimensions are not 1xCx1x1 for 4D and 1xCx1x1x1
for 5D for spatial, and are not IxXCxHxW for 4D and 1xCxDxHxW for 5D for per-
activation mode.

» Exactly one of saveMean, saveInvVariance pointers is NULL.

» Exactly one of resultRunningMeanData, resultRunningInvVarianceData
pointers is NULL.

» epsilon value is less than CUDNN_BN_MIN_EPSILON.

» Dimensions or data types mismatch for xDesc, yDesc

4.9. cudnnCTCLoss

cudnnStatus t cudnnCTCLoss (

cudnnHandle t handle,

const cudnnTensorDescriptor t probsDesc,
const void *probs,

const int *labels,

const int *labellengths,
const int *inputLengths,
void *costs,

const cudnnTensorDescriptor t gradientsDesc,
const void *gradients,
cudnnCTCLossAlgo t algo,

const cudnnCTCLossDescriptor t ctcLossDesc,
void *workspace,
size t *workSpaceSizeInBytes)

This function returns the ctc costs and gradients, given the probabilities and labels.

Parameters
handle

Input. Handle to a previously created cuDNN context. See cudnnHandle_t.
probsDesc

Input. Handle to the previously initialized probabilities tensor descriptor. See
cudnnTensorDescriptor_t.

probs

Input. Pointer to a previously initialized probabilities tensor.
labels

Input. Pointer to a previously initialized labels list.
labelLengths

Input. Pointer to a previously initialized lengths list, to walk the above labels list.
inputLengths

Input. Pointer to a previously initialized list of the lengths of the timing steps in each
batch.

costs

Output. Pointer to the computed costs of CTC.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 66

cuDNN API Reference

gradientsDesc

Input. Handle to a previously initialized gradients tensor descriptor.
gradients

Output. Pointer to the computed gradients of CTC.

algo
Input. Enumerant that specifies the chosen CTC loss algorithm. See
cudnnCTCLossAlgo_t.

ctcLossDesc
Input. Handle to the previously initialized CTC loss descriptor. See
cudnnCTCLossDescriptor_t.

workspace
Input. Pointer to GPU memory of a workspace needed to able to execute the specified
algorithm.

sizeInBytes

Input. Amount of GPU memory needed as workspace to be able to execute the CTC
loss computation with the specified algo.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

The query was successful.
CUDNN_STATUS BAD PARAM

At least one of the following conditions are met:

The dimensions of probsDesc do not match the dimensions of gradientsDesc.
The inputLengths do not agree with the first dimension of probsDesc.

The workSpaceSizeInBytes is not sufficient.

The labelLengths is greater than 256.

vV v v VY

CUDNN_STATUS_NOT_SUPPORTED

A compute or data type other than FLOAT was chosen, or an unknown algorithm
type was chosen.

CUDNN_STATUS_EXECUTION_FAILED
The function failed to launch on the GPU

4.10. cudnnConvolutionBackwardBias

cudnnStatus_t cudnnConvolutionBackwardBias (

cudnnHandle t handle,
const void *alpha,
const cudnnTensorDescriptor t dyDesc,
const void *dy,
const void *beta,

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 67

cuDNN API Reference

const cudnnTensorDescriptor t dbDesc,
void *db)

This function computes the convolution function gradient with respect to the bias, which
is the sum of every element belonging to the same feature map across all of the images of
the input tensor. Therefore, the number of elements produced is equal to the number of
features maps of the input tensor.

Parameters

handle

Input. Handle to a previously created cuDNN context. See cudnnHandle_t.
alpha, beta
Input. Pointers to scaling factors (in host memory) used to blend the computation

result with prior value in the output layer as follows: dstValue = alpha[0]*result +
beta[0]*priorDstValue. Refer to this section for additional details.

dyDesc

Input. Handle to the previously initialized input tensor descriptor. See
cudnnTensorDescriptor_t.

dy
Input. Data pointer to GPU memory associated with the tensor descriptor dyDesc.
dbDesc

Input. Handle to the previously initialized output tensor descriptor.
db

Output. Data pointer to GPU memory associated with the output tensor descriptor
dbDesc.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_S TATUS_SUCCESS

The operation was launched successfully.
CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

» One of the parameters n, height,width of the output tensor is not 1.
» The numbers of feature maps of the input tensor and output tensor differ.
» The dataType of the two tensor descriptors are different.

4.11. cudnnConvolutionBackwardData

cudnnStatus_t cudnnConvo lutionBackwardData (
cudnnHandle t handle,

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 68

cuDNN API Reference

const void *alpha,
const cudnnFilterDescriptor t wDesc,
const wvoid *w,

const cudnnTensorDescriptor t dyDesc,
const void “ely,

const cudnnConvolutionDescriptor t convDesc,
cudnnConvolutionBwdDataAlgo t algo,

void *workSpace,
size t workSpaceSizeInBytes,
const void *beta,
const cudnnTensorDescriptor t dxDesc,
void *dx)

This function computes the convolution data gradient of the tensor dy, where y is

the output of the forward convolution in cudnnConvolutionForward (). It uses the
specified algo, and returns the results in the output tensor dx. Scaling factors alpha
and beta can be used to scale the computed result or accumulate with the current dx.
Parameters

handle

Input. Handle to a previously created cuDNN context. See cudnnHandle_t.
alpha, beta
Input. Pointers to scaling factors (in host memory) used to blend the computation

result with prior value in the output layer as follows: dstValue = alpha[0]*result +
beta[0]*priorDstValue. Refer to this section for additional details.

wDesc

Input. Handle to a previously initialized filter descriptor. See cudnnFilterDescriptor_t.
4

Input. Data pointer to GPU memory associated with the filter descriptor wDesc.
dyDesc
Input. Handle to the previously initialized input differential tensor descriptor. See
cudnnTensorDescriptor_t.
dy
Input. Data pointer to GPU memory associated with the input differential tensor
descriptor dyDesc.
convDesc
Input. Previously initialized convolution descriptor. See
cudnnConvolutionDescriptor_t.
algo
Input. Enumerant that specifies which backward data convolution algorithm shoud be
used to compute the results. See cudnnConvolutionBwdDataAlgo_t.
workSpace
Input. Data pointer to GPU memory to a workspace needed to able to execute the

specified algorithm. If no workspace is needed for a particular algorithm, that pointer
can be nil.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 69

cuDNN API Reference

workSpaceSizelnBytes

Input. Specifies the size in bytes of the provided workSpace.
dxDesc

Input. Handle to the previously initialized output tensor descriptor.
dx

Input/Output. Data pointer to GPU memory associated with the output tensor
descriptor dxDesc that carries the result.

TABLE OF THE SUPPORTED CONFIGURATIONS

This function supports the following combinations of data types for wDesc,
dyDesc, convDesc, and dxDesc. See the following table for a list of the supported
configurations.

wDesc's, dyDesc's and
Data Type Configurations | dxDesc's Data Type convDesc's Data Type

TRUE_HALF_CONFIG (only CUDNN_DATA_HALF CUDNN_DATA_HALF
supported on architectures
with true fp16 support, i.e.,
compute capability 5.3 and

later).

PSEUDO_HALF_CONFIG CUDNN_DATA_HALF CUDNN_DATA_FLOAT
FLOAT_CONFIG CUDNN_DATA_FLOAT CUDNN_DATA_FLOAT
DOUBLE_CONFIG CUDNN_DATA_DOUBLE CUDNN_DATA_DOUBLE

Specifying a separate algorithm can cause changes in performance, support and
computation determinism. See the following for a list of algorithm options, and their
respective supported parameters and deterministic behavior.

TABLE OF THE SUPPORTED ALGORITHMS

The table below shows the list of the supported 2D and 3D convolutions. The 2D
convolutions are described first, followed by the 3D convolutions.

For the following terms, the short-form versions shown in the paranthesis are used in
the table below, for brevity:

CUDNN_CONVOLUTION_BWD_DATA_ALGO_0 (_ALGO_0)
CUDNN_CONVOLUTION_BWD_DATA_ALGO_1 (_ALGO_1)
CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT (_FFT)
CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING (_FFT_TILING)
CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD (_WINOGRAD)

CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED
(WINOGRAD_NONFUSED)

CUDNN_TENSOR_NCHW (_NCHW)
» CUDNN_TENSOR_NHWC (_NHWCQC)
» CUDNN_TENSOR_NCHW_VECT_C (_NCHW_VECT_C)

vV Vv v v VY

v

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 70

FOR 2D CONVOLUTIONS.

cuDNN API Reference

Filter descriptor wDesc: _NHWC. See cudnnTensorFormat_t.

Algo Name Deterministir Tensor Tensor Data Type Important
(see below for 3D (Yes or No) | Formats Formats Configurations
- Supported | Supported | Supported
Convolutions)
for dyDesc | for dxDesc
_ALGO_1 NHWC NHWC .
HWC- HWC- TRUE_HALF_CONFIG
packed packed
PSEUDO_HALF_CONHIG,
and
- FLOAT_CONFIG
Filter descriptor wDesc: _NCHW.
Algo Name Deterministit Tensor Tensor Data Type Important
(Yes or No) | Formats Formats Configurations
Supported | Supported | Supported
for dyDesc | for dxDesc
_ALGO_0 No NCHW All except - - Dilation: greater
CHVIZ- . _NCHW_VECT| @SEUDO_HALF_CONFHIGhan 0 for all
acke i i
p - FLOAT_CONFIG, dimensions
and - convDesc Group
) Count Support:
DOUBLE_CONFIG Greater than 0.
-ALGO_1 Yes NCHW _All except | - - Dilation: 1 for all
CHW- NcHW_VECT| GRUE_HALF_CONFIG| dimensions
packed - - T
- - convDesc Group
PSEUDO_HALF_CONHIGpunt Support:
- FLOAT_CONFIG, Greater than 0.
and
- DOUBLE_CONFIG
_FFT Yes NCHW NCHW HW- | - - Dilation: 1 for all
CHW- packed PSEUDO_HALF_CONHI@jmensions
packed and

www.nvidia.com

cuDNN 7.5.0

- FLOAT_CONFIG

- convDesc Group
Count Support:
Greater than 0.

- dxDesc's feature
map height + 2 *
convDesc'S Zero-
padding height
must equal 256 or
less

- dxDesc's feature
map width + 2 *
convDesc's zero-
padding width must
equal 256 or less

DU-06702-001_v07 | 71

cuDNN API Reference

- convDesc's
vertical and
horizontal filter
stride must equal 1

- whesc's filter
height must be
greater than
convDesc'S Zero-

padding height

- whesc's filter
width must be
greater than
convDesc's zero-

padding width

_FFT_TILING

Yes

NCHW
CHW-
packed

NCHW HW-
packed

PSEUDO_HALF_CONH
and

- FLOAT_CONFIG

- DOUBLE_CONFIG
is also supported
when the task can
be handled by 1D
FFT, ie, one of the
filter dimension,
width or height is
1.

- Dilation: 1 for all
I@jmensions

- convDesc Group
Count Support:
Greater than 0.

- When neither

of whesc's filter
dimension is 1, the
filter width and
height must not be
larger than 32

- When either

of wbhesc's filter
dimension is 1,
the largest filter
dimension should
not exceed 256

- convDesc's
vertical and
horizontal filter
stride must equal

1 when either

the filter width

or filter height is
1, otherwise the
stride can be 1 or 2

- whesc's filter
height must be
greater than
convDesc's zero-

padding height

- whesc's filter
width must be
greater than
convDesc's zero-

padding width

_WINOGRAD

www.nvidia.com

cuDNN 7.5.0

Yes

NCHW
CHW-
packed

All except
_NCHW_VECT|

| @SEUDO_HALF_CONFH

- Dilation: 1 for all
I@jmensions

and

DU-06702-001_v07 | 72

cuDNN API Reference

- FLOAT_CONFIG

- convDesc Group
Count Support:
Greater than 0.

- convDesc's
vertical and
horizontal filter
stride must equal 1

- whesc's filter
height must be 3

- whesc's filter
width must be 3

_WINOGRAD_NONFH|

USED

NCHW
CHW-
packed

All except
_NCHW_VECT|

| TRUE_HALF_CONFIG

PSEUDO_HALF_CONFH
and

- FLOAT_CONFIG

- Dilation: 1 for all
dimensions

- convDesc Group
IGpunt Support:
Greater than 0.

- convDesc's
vertical and
horizontal filter
stride must equal 1

- whesc's filter
(height, width)
must be (3,3) or
(5,5)

- If whesc's filter
(height, width)

is (5,5) then the
data type config
TRUE_HALF_CONFIG
is not supported

FOR 3D CONVOLUTIONS.

Filter descriptor wDesc: _NCHW

Algo Name (3D
Convolutions)

Deterministi
(Yes or No)

c Tensor
Formats
Supported
for dyDesc

Tensor
Formats
Supported
for dxDesc

Data Type
Configurations
Support

Important

_ALGO_O

Yes

NCDHW
CDHW-
packed

All except
_NCDHW_VEC

I PSEUDO_HALF_CONR

- FLOAT_CONFIG,
and

- DOUBLE_CONFIG.

- Dilation: greater
IG&han 0 for all
dimensions

- convDesc Group
Count Support:
Greater than 0.

_ALGO_1

Yes

www.nvidia.com
cuDNN 7.5.0

NCDHW-
fully-
packed

NCDHW-
fully-
packed

TRUE_HALF_CONFIG

PSEUDO_HALF_CONH
- FLOAT_CONFIG,

and

- Dilation: 1 for all
dimensions

- convDesc Group
IGpunt Support:
Greater than 0.

DU-06702-001_vO07 | 73

cuDNN API Reference

- DOUBLE_CONFIG.

_FFT_TILING Yes NCDHW NCDHW - - Dilation: 1 for all
CDHW- DHW- PSEUDO_HALF_CONFI@jmensions

acked
P packed - FLOAT_CONFIG, | - convbesc Group
and Count Support:

- DOUBLE_CONFIG. Greater than 0.

- whesc's filter
height must equal
16 or less

- whesc's filter
width must equal
16 or less

- whesc's filter
depth must equal
16 or less

- convDesc's must
have all filter
strides equal to 1

- whesc's filter
height must be
greater than
convDesc's zero-

padding height

- whesc's filter
width must be
greater than
convDesc's zero-

padding width

- whesc's filter
depth must be
greater than
convDesc's zero-

padding width

Returns
CUDNN_STATUS_ SUCCESS

The operation was launched successfully.
CUDNN_STATUS BAD PARAM

At least one of the following conditions are met:

» Atleast one of the following is NULL: handle, dyDesc, wDesc, convDesc,
dxDesc, dy, w, dx, alpha, beta

wDesc and dyDesc have a non-matching number of dimensions

wDesc and dxDesc have a non-matching number of dimensions

wDesc has fewer than three number of dimensions

wDesc, dxDesc and dyDesc have a non-matching data type.

wDesc and dxDesc have a non-matching number of input feature maps per
image (or group in case of Grouped Convolutions).

vV vV v v VY

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 74

cuDNN API Reference

» dyDescs's spatial sizes do not match with the expected size as determined by
cudnnGetConvolutionNdForwardOutputDim

CUDNN_STATUS NOT_ SUPPORTED

At least one of the following conditions are met:

» dyDesc or dxDesc have negative tensor striding

» dyDesc, wDesc or dxDesc has a number of dimensions that is not 4 or 5

» The chosen algo does not support the parameters provided; see above for
exhaustive list of parameter support for each algo

» dyDesc or wDesc indicate an output channel count that isn't a multiple of group
count (if group count has been set in convDesc).

CUDNN_STATUS MAPPING_ERROR

An error occurs during the texture binding of the filter data or the input differential

tensor data
CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

4.12. cudnnConvolutionBackwardFilter

cudnnStatus t cudnnConvolutionBackwardFilter (

cudnnHandle t

const void

const cudnnTensorDescriptor t
const void

const cudnnTensorDescriptor t
const void

const cudnnConvolutionDescriptor t
cudnnConvolutionBwdFilterAlgo t
void

size t

const void

const cudnnFilterDescriptor t
void

handle,
*alpha,
xDesc,
*x,
dyDesc,
*dy,
convDesc,
algo,
*workSpace,
workSpaceSizeInBytes,
*beta,
dwDesc,
*dw)

This function computes the convolution weight (filter) gradient of the tensor dy, where
y is the output of the forward convolution in cudnnConvolutionForward (). It uses
the specified algo, and returns the results in the output tensor dw. Scaling factors alpha
and beta can be used to scale the computed result or accumulate with the current dw.

Parameters
handle

Input. Handle to a previously created cuDNN context. See cudnnHandle_t.

alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the computation
result with prior value in the output layer as follows: dstValue = alpha[0]*result +
beta[0]*priorDstValue. Refer to this section for additional details.

www.nvidia.com
cuDNN 7.5.0

DU-06702-001_v07 | 75

cuDNN API Reference

xDesc

Input. Handle to a previously initialized tensor descriptor. See
cudnnTensorDescriptor_t.

Input. Data pointer to GPU memory associated with the tensor descriptor xDesc.
dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.

dy
Input. Data pointer to GPU memory associated with the backpropagation gradient
tensor descriptor dyDesc.

convDesc
Input. Previously initialized convolution descriptor. See
cudnnConvolutionDescriptor_t.

algo
Input. Enumerant that specifies which convolution algorithm shoud be used to
compute the results. See cudnnConvolutionBwdFilterAlgo_t.

workSpace
Input. Data pointer to GPU memory to a workspace needed to able to execute the

specified algorithm. If no workspace is needed for a particular algorithm, that pointer
can be nil.

workSpaceSizelnBytes

Input. Specifies the size in bytes of the provided workspace.

dwDesc
Input. Handle to a previously initialized filter gradient descriptor. See
cudnnFilterDescriptor_t.

dw

Input/Output. Data pointer to GPU memory associated with the filter gradient
descriptor dwDesc that carries the result.

TABLE OF THE SUPPORTED CONFIGURATIONS

This function supports the following combinations of data types for xDesc,
dyDesc, convDesc, and dwDesc. See the following table for a list of the supported
configurations.

xDesc's, dyDesc's and
Data Type Configurations | dwDesc's Data Type convDesc's Data Type

TRUE_HALF_CONFIG (only CUDNN_DATA_HALF CUDNN_DATA_HALF
supported on architectures

with true fp16 support, i.e.,
compute capability 5.3 and

later).

PSEUDO_HALF_CONFIG CUDNN_DATA_HALF CUDNN_DATA_FLOAT

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 76

cuDNN API Reference

xDesc's, dyDesc's and
Data Type Configurations | dwDesc's Data Type convDesc's Data Type
FLOAT_CONFIG CUDNN_DATA_FLOAT CUDNN_DATA_FLOAT
DOUBLE_CONFIG CUDNN_DATA_DOUBLE CUDNN_DATA_DOUBLE

Specifying a separate algorithm can cause changes in performance, support and
computation determinism. See the following for an exhaustive list of algorithm
options and their respective supported parameters and deterministic behavior.

TABLE OF THE SUPPORTED ALGORITHMS

The table below shows the list of the supported 2D and 3D convolutions. The 2D
convolutions are described first, followed by the 3D convolutions.

For the following terms, the short-form versions shown in the paranthesis are used in
the table below, for brevity:

CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0 (_ALGO_0)
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1 (_ALGO_1)
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_3 (_ALGO_3)
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_FFT (_FFT)
CUDNN_CONVOLUTION_BWD_FILTER_ALGO_FFT_TILING (_FFT_TILING)

CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD_NONFUSED
(_WINOGRAD_NONFUSED)

CUDNN_TENSOR_NCHW (_NCHW)
» CUDNN_TENSOR_NHWC (_NHWCQ)
» CUDNN_TENSOR_NCHW_VECT_C (_NCHW_VECT_C)

FOR 2D CONVOLUTIONS.

vV Vv v v VY

v

Filter descriptor dwDesc: _NHWC. See cudnnTensorFormat_t.

Algo Name Deterministic| Tensor Tensor Data Type Important
(Yes or No) Formats Formats Configurations
Supported | Supported Supported

for xDesc | for dyDesc

(see below for 3D
Convolutions)

_ALGO_0, and NHWC NHWC HWC- | .
_ALGO_1 HWC- packed PSEUDO_HALF_CONFIG,
packed and

FLOAT_CONFIG

Filter descriptor wDesc: _NCHW.

Algo Name Deterministic| Tensor Tensor Data Type Important
(Yes or No) Formats Formats Configurations
Supported | Supported Supported

for xDesc | for dyDesc

~ALGO_0O No All except [NCHW CHW- | - - Dilation: greater
_NCHW_VECT pmacked PSEUDO_HALF_CPDK#6 0 for all
dimensions

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 77

cuDNN API Reference

FLOAT_CONFIG,
and

DOUBLE_CONFIG

- convDesc Group
Count Support:
Greater than 0.

- This algo is

not supported if
output is of type
CUDNN_DATA_ HALF
and the number of
elements in dw is
odd.

_ALGO_1

Yes

_NCHW or
_NHWC

NCHW CHW-
packed

TRUE_HALF_CON
PSEUDO_HALF_C

FLOAT_CONFIG,
and

DOUBLE_CONFIG

- Dilation: 1 for all
Ftmensions

- convDesc Group
DNBLG Support:
Greater than 0.

_FFT

Yes

NCHW
CHW-
packed

NCHW CHW-
packed

PSEUDO_HALF_C
and

FLOAT_CONFIG

- Dilation: 1 for all
DNfri@nsions

- convDesc Group
Count Support:
Greater than 0.

- xDesc's feature
map height + 2 *
convDesc's Zzero-
padding height
must equal 256 or
less

- xDesc's feature
map width + 2 *
convDesc's Zzero-
padding width
must equal 256 or
less

- convDesc's
vertical and
horizontal filter
stride must equal 1

- dwDesc's filter
height must be
greater than
convDesc's Zzero-

padding height

- dwDesc's filter
width must be
greater than
convDesc's Zzero-

padding width

_ALGO_3

www.nvidia.com
cuDNN 7.5.0

Yes

All except

_NCHW_VECT

NCHW CHW-
' macked

PSEUDO_HALF_C

- Dilation: 1 for all

DNfri@&nsions

DU-06702-001_v07 | 78

cuDNN API Reference

FLOAT_CONFIG,
and

DOUBLE_CONFIG

- convDesc Group
Count Support:
Greater than 0.

_WINOGRAD_NONFU

All except
_NCHW_VECT

NCHW CHW-
' packed

TRUE_HALF_CON

PSEUDO_HALF_C
and

FLOAT_CONFIG

- Dilation: 1 for all
FtGmensions

- convDesc Group
DNBLG Support:
Greater than 0.

- convDesc's
vertical and
horizontal filter
stride must equal 1

- whesc's filter
(height, width)
must be (3,3) or
(5,5)

- If whesc's filter
(height, width)

is (5,5), then the
data type config
TRUE_HALF_CONFIG
is not supported.

_FFT_TILING

www.nvidia.com
cuDNN 7.5.0

Yes

NCHW
CHW-
packed

NCHW CHW-
packed

PSEUDO_HALF_C

FLOAT_CONFIG,
and

DOUBLE_CONFIG

- Dilation: 1 for all
DNfri@nsions

- convDesc Group
Count Support:
Greater than 0.

- xDesc's width or
height must equal
1

- dyDesc's width
or height must
equal 1 (the same
dimension as in
xDesc.) The other
dimension must
be less than or
equal to 256, i.e.,
the largest 1D
tile size currently
supported.

- convDesc's
vertical and
horizontal filter
stride must equal 1

- dwDesc's filter
height must be
greater than
convDesc's Zzero-

padding height.

DU-06702-001_v07 | 79

cuDNN API Reference

- dwbesc's filter
width must be
greater than
convDesc's zero-

padding width.

FOR 3D CONVOLUTIONS.

Filter descriptor wDesc: _NCHW

Algo Name Deterministic| Tensor Tensor Data Type Important
(Yes or No) Formats Formats Configurations
Supported | Supported Support
for xDesc | for dyDesc
—ALGO_0 No All except | NCDHW - - Dilation: greater
_NCDHW_VEQERHW- PSEUDO_HALF_COKF46 0 for all
packed i dimensions
FLOAT_CONFIG, | - convDesc Group
and Count Support:
i Greater than 0.
DOUBLE_CONFIG
_ALGO_3 No NCDHW- NCDHW-fully- | - - Dilation: 1 for all
fully- packed PSEUDO_HALF_CONfrtensions
packed
- - convDesc Group
FLOAT_CONFIG, | Count Support:
and Greater than 0.
DOUBLE_CONFIG
Returns

CUDNN_STATUS_SUCCESS

The operation was launched successfully.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

» At least one of the following is NULL: handle, xDesc, dyDesc, convDesc,
dwDesc, xData, dyData, dwData, alpha, beta

vV V. v v VY

xDesc and dyDesc have a non-matching number of dimensions
xDesc and dwDesc have a non-matching number of dimensions
xDesc has fewer than three number of dimensions

xDesc, dyDesc and dwDesc have a non-matching data type.
xDesc and dwDesc have a non-matching number of input feature maps per

image (or group in case of Grouped Convolutions).
» yDesc or wDesc indicate an output channel count that isn't a multiple of group
count (if group count has been set in convDesc).

CUDNN_STATUS_NOT SUPPORTED
At least one of the following conditions are met:

» xDesc or dyDesc have negative tensor striding

www.nvidia.com
cuDNN 7.5.0

DU-06702-001_vO07 | 80

cuDNN API Reference

» xDesc, dyDesc or dwDesc has a number of dimensions that is not 4 or 5

» The chosen algo does not support the parameters provided; see above for
exhaustive list of parameter support for each algo

CUDNN_STATUS_MAPPING_ERROR

An error occurs during the texture binding of the filter data.

CUDNN_STATUS_EXECUTION_ FAILED

The function failed to launch on the GPU.

4.13. cudnnConvolutionBiasActivationForward

cudnnStatus t cudnnConvolutionBiasActivationForward (

cudnnHandle t handle,

const void *alphal,

const cudnnTensorDescriptor t xDesc,

const void R

const cudnnFilterDescriptor t wDesc,

const void *w,

const cudnnConvolutionDescriptor t convDesc,
cudnnConvolutionFwdAlgo t algo,

void *workSpace,

size t workSpaceSizeInBytes,
const void *alpha2,

const cudnnTensorDescriptor t zDesc,

const void 7

const cudnnTensorDescriptor t biasDesc,

const void *bias,

const cudnnActivationDescriptor t activationDesc,
const cudnnTensorDescriptor t yDesc,

void *y)

This function applies a bias and then an activation to the convolutions or cross-
correlations of cudnnConvolutionForward(), returning results in y. The full computation
follows the equationy = act (alphal * conv(x) + alpha2 * z + bias).

The routine cudnnGetConvolution2dForwardOutputDim Or
cudnnGetConvolutionNdForwardOutputDim can be used to determine the proper
dimensions of the output tensor descriptor yDesc with respect to xDesc, convDesc
and wDesc.

Only the CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM

algo is enabled with CUDNN_ACTIVATION_IDENTITY. In other words, in the
cudnnActivationDescriptor_t structure of the input activationbDesec,

if the mode of the cudnnActivationMode_t field is set to the enum value
CUDNN_ACTIVATION_IDENTITY, then the input cudnnConvolutionFwdAlgo_t oOf this
function cudnnConvolutionBiasActivationForward () must be set to the enum
value CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM. See also the
documentation for the function cudnnSetActivationDescriptor ().

Parameters

www.nvidia.com

CcuDNN 7.5.0 DU-06702-001_v07 | 81

cuDNN API Reference

handle

Input. Handle to a previously created cuDNN context. See cudnnHandle_t.
alphal, alpha2
Input. Pointers to scaling factors (in host memory) used to blend the computation

result with prior value in the output layer as described by the above equation. Please
refer to this section for additional details.

xDesc

Input. Handle to a previously initialized tensor descriptor. See
cudnnTensorDescriptor_t.

Input. Data pointer to GPU memory associated with the tensor descriptor xDesc.
wDesc

Input. Handle to a previously initialized filter descriptor. See cudnnFilterDescriptor_t.
w

Input. Data pointer to GPU memory associated with the filter descriptor wbesc.
convDesc
Input. Previously initialized convolution descriptor. See
cudnnConvolutionDescriptor_t.
algo
Input. Enumerant that specifies which convolution algorithm should be used to
compute the results. See cudnnConvolutionfFwdAlgo_t.
workSpace
Input. Data pointer to GPU memory to a workspace needed to able to execute the

specified algorithm. If no workspace is needed for a particular algorithm, that pointer
can be nil.

workSpaceSizelnBytes

Input. Specifies the size in bytes of the provided workspace.
zDesc

Input. Handle to a previously initialized tensor descriptor.

Input. Data pointer to GPU memory associated with the tensor descriptor zDesc.
biasDesc

Input. Handle to a previously initialized tensor descriptor.
bias
Input. Data pointer to GPU memory associated with the tensor descriptor biasDesc.

activationDesc

Input. Handle to a previously initialized activation descriptor. See
cudnnActivationDescriptor_t.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 82

cuDNN API Reference

yDesc

Input. Handle to a previously initialized tensor descriptor.

Input/Output. Data pointer to GPU memory associated with the tensor descriptor
yDesc that carries the result of the convolution.

For the convolution step, this function supports the specific combinations of data

types for xDesc, wDesc, convDesc and yDesc as listed in the documentation of
cudnnConvolutionForward(). The following table specifies the supported combinations
of data types for x, y, z, bias, and alphal/alpha2.

Table Key: X = CUDNN_DATA

X w y and z bias alpha1/alpha2
X_DOUBLE X_DOUBLE X_DOUBLE X_DOUBLE X_DOUBLE
X_FLOAT X_FLOAT X_FLOAT X_FLOAT X_FLOAT
X_HALF X_HALF X_HALF X_HALF X_FLOAT
X_INT8 X_INT8 X_INT8 X_FLOAT X_FLOAT
X_INT8 X_INT8 X_FLOAT X_FLOAT X_FLOAT
X_INT8x4 X_INT8x4 X_INT8x4 X_FLOAT X_FLOAT
X_INT8x4 X_INT8x4 X_FLOAT X_FLOAT X_FLOAT
X_UINT8 X_INT8 X_INT8 X_FLOAT X_FLOAT
X_UINT8 X_INT8 X_FLOAT X_FLOAT X_FLOAT
X_UINT8x4 X_INT8x4 X_INT8x4 X_FLOAT X_FLOAT
X_UINT8x4 X_INT8x4 X_FLOAT X_FLOAT X_FLOAT

In addition to the error values listed by the documentation of
cudnnConvolutionForward(), the possible error values returned by this function and
their meanings are listed below.

Returns
CUDNN_S TATUS_SUCCESS

The operation was launched successfully.

CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:

» Atleast one of the following is NULL: zDesc, zData, biasDesc, bias,
activationDesc.

» The second dimension of biasDesc and the first dimension of £ilterDesc are
not equal.

» zDesc and destDesc do not match.

CUDNN_STATUS NOT_ SUPPORTED
The function does not support the provided configuration. See the following for some
examples of non-supported configurations:

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 83

cuDNN API Reference

» The mode of activationDesc is neither CUDNN_ACTIVATION RELU or
CUDNN_ACTIVATION IDENTITY.

» The reluNanOpt of activationDesc is not CUDNN_NOT PROPAGATE NAN.
» The second stride of biasDesc is not equal to one.

» The data type of biasDesc does not correspond to the data type of yDesc as
listed in the above data types table.

CUDNN_STATUS_EXECUTION_FAILED
The function failed to launch on the GPU.

4.14. cudnnConvolutionForward

cudnnStatus t cudnnConvolutionForward (

cudnnHandle t handle,
const void *alpha,
const cudnnTensorDescriptor t xDesc,
const void *x,

const cudnnFilterDescriptor t wDesc,
const void *w,

const cudnnConvolutionDescriptor t convDesc,
cudnnConvolutionFwdAlgo t algo,

void *workSpace,
size t workSpaceSizeInBytes,
const void *beta,
const cudnnTensorDescriptor t yDesc,
void *y)

This function executes convolutions or cross-correlations over x using filters specified
with w, returning results in y. Scaling factors alpha and beta can be used to scale the
input tensor and the output tensor respectively.

The routine cudnnGetConvolution2dForwardOutputDim Or
cudnnGetConvolutionNdForwardOutputDim can be used to determine the proper
dimensions of the output tensor descriptor yDesc with respect to xDesc, convDesc
and wDesc.

Parameters
handle

Input. Handle to a previously created cuDNN context. See cudnnHandle_t.
alpha, beta
Input. Pointers to scaling factors (in host memory) used to blend the computation

result with prior value in the output layer as follows: dstValue = alpha[0]*result +
beta[0]*priorDstValue. Refer to this section for additional details.

xDesc

Input. Handle to a previously initialized tensor descriptor. See
cudnnTensorDescriptor_t.

Input. Data pointer to GPU memory associated with the tensor descriptor xDesc.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 84

wDesc

Input. Handle to a previously initialized filter descriptor. See cudnnFilterDescriptor_t.

w

cuDNN API Reference

Input. Data pointer to GPU memory associated with the filter descriptor wbesc.

convDesc

Input. Previously initialized convolution descriptor. See
cudnnConvolutionDescriptor_t.

algo

Input. Enumerant that specifies which convolution algorithm shoud be used to
compute the results. See cudnnConvolutionFwdAlgo_t.

workSpace

Input. Data pointer to GPU memory to a workspace needed to able to execute the

specified algorithm. If no workspace is needed for a particular algorithm, that pointer

can be nil.

workSpaceSizelnBytes

Input. Specifies the size in bytes of the provided workspace.

yDesc

Input. Handle to a previously initialized tensor descriptor.

Input/Output. Data pointer to GPU memory associated with the tensor descriptor
yDesc that carries the result of the convolution.

TABLE OF THE SUPPORTED CONFIGURATIONS

This function supports the following combinations of data types for xDesc, wDesc,

convDesc, and yDesc. See the following table for a list of the supported configurations.

Data Type
Configurations

xDesc and wDesc

convDesc

yDesc

TRUE_HALF_CONFIG
(only supported on
architectures with
true fp16 support,
i.e., compute
capability 5.3 and
later).

CUDNN_DATA_HALF

CUDNN_DATA_HALF

CUDNN_DATA_HALF

PSEUDO_HALF_CONFIQ

CUDNN_DATA_HALF

CUDNN_DATA_FLOAT

CUDNN_DATA_HALF

FLOAT_CONFIG

CUDNN_DATA_FLOAT

CUDNN_DATA_FLOAT

CUDNN_DATA_FLOAT

DOUBLE_CONFIG

CUDNN_DATA_DOUBLE

CUDNN_DATA_DOUBLE

CUDNN_DATA_DOUBLE

INT8_CONFIG
(only supported on
architectures with

DP4A support, i.e.,

www.nvidia.com
cuDNN 7.5.0

CUDNN_DATA_INT8

CUDNN_DATA_INT32

CUDNN_DATA_INT8

DU-06702-001_vO07 | 85

cuDNN API Reference

Data Type
Configurations

xDesc and wDesc

convDesc

yDesc

compute capability
6.1 and later).

INT8_EXT_CONFIG
(only supported on
architectures with
DP4A support, i.e.,
compute capability
6.1 and later).

CUDNN_DATA_INT8

CUDNN_DATA_INT32

CUDNN_DATA_FLOAT

INT8x4_CONFIG
(only supported on
architectures with
DP4A support, i.e.,
compute capability
6.1 and later).

CUDNN_DATA_INT8x4

CUDNN_DATA_INT32

CUDNN_DATA_INT8x4

(only supported on
architectures with

DP4A support, i.e.,
compute capability
6.1 and later).

INT8x4_EXT_CONFIG

CUDNN_DATA_INT8x4

CUDNN_DATA_INT32

CUDNN_DATA_FLOAT

UINT8x4_CONFIG
(new for 7.1)

(only supported on
architectures with
DP4A support, i.e.,
compute capability
6.1 and later).

CUDNN_DATA_UINT8x4

CUDNN_DATA_INT32

CUDNN_DATA_UINT8x4

(new for 7.1)

(only supported on
architectures with

DP4A support, i.e.,
compute capability
6.1 and later).

UINT8x4_EXT_CONFIG

CUDNN_DATA_UINT8x4

CUDNN_DATA_INT32

CUDNN_DATA_FLOAT

For this function, all algorithms perform deterministic computations. Specifying a
separate algorithm can cause changes in performance and support.

TABLE OF THE SUPPORTED ALGORITHMS
The table below shows the list of the supported 2D and 3D convolutions. The 2D

convolutions are described first, followed by the 3D convolutions.

For the following terms, the short-form versions shown in the paranthesis are used in
the table below, for brevity:

» CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_GEMM (_IMPLICIT_GEMM)

» CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM
(_IMPLICIT_PRECOMP_GEMM)

» CUDNN_CONVOLUTION_FWD_ALGO_GEMM (_GEMM)

www.nvidia.com
cuDNN 7.5.0

DU-06702-001_vO07 | 86

vV V. v v VY

>

>

FOR 2D CONVOLUTIONS.

CUDNN_CONVOLUTION_FWD_ALGO_DIRECT (_DIRECT)
CUDNN_CONVOLUTION_FWD_ALGO_FFT (_FFT)
CUDNN_CONVOLUTION_FWD_ALGO_FFT_TILING (_FFT_TILING)
CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD (_WINOGRAD)

CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED
(WINOGRAD_NONFUSED)

CUDNN_TENSOR_NCHW (_NCHW)
CUDNN_TENSOR_NHWC (_NHWC)
CUDNN_TENSOR_NCHW_VECT_C (NCHW_VECT_C)

cuDNN API Reference

Filter descriptor wbesc: _NCHW. See cudnnTensorFormat_t.

convDesc Group count support: Greater than 0, for all algos.

www.nvidia.com
cuDNN 7.5.0

Algo Name Tensor Tensor Formats | Data Type Important
(see below for 3D gzrm:::ed Sl;pported for ggnflogrtrea;wns
Convolutions) PP ybesc PP
for xDesc
_IMPLICIT_GEMM All except All except - Dilation: Greater than
_NCHW_VECT_¢. NCHW_VECT_C. | pSEUDO_HALF_CONKIG for all dimensions.
- FLOAT_CONFIG,
and
- DOUBLE_CONFIG
TRUE_HALF_CONFIG, dimensions.
PSEUDO_HALF_CONKIG,
- FLOAT_CONFIG,
and
- DOUBLE_CONFIG.
_GEMM - Dilation: 1 for all
PSEUDO_HALF_CONKI@imensions.
- FLOAT_CONFIG,
and
- DOUBLE_CONFIG
_FFT NCHW HW- | NCHW HW- - Dilation: 1 for all
packed packed PSEUDO_HALF_CONFIGimensions.

and
- FLOAT_CONFIG

- xDesc's feature map
height + 2 * convDesc's
zero-padding height
must equal 256 or less
- xDesc's feature map

width + 2 * convDesc's
zero-padding width

must equal 256 or less

DU-06702-001_vO07 | 87

cuDNN API Reference

- convDesc's vertical
and horizontal filter
stride must equal 1

- wDesc's filter height
must be greater than
convDesc's zero-
padding height

- wDesc's filter width
must be greater than
convDesc's zero-
padding width

_FFT_TILING Dilation: 1 for all

PSEUDO_HALF_CONKI@imensions.

and - When neither

- FLOAT_CONFIG of wDesc's filter
dimension is 1, the
DOUBLE_CONFIG filter width and height

is also supported | must not be larger
when the task than 32

can be handled .
by 1D FFT, i.e., - When either
one of the filter | of wDesc's filter

dimension, width | dimension is 1,
or height is 1. the largest filter

dimension should not
exceed 256

- convDesc's vertical
and horizontal filter
stride must equal 1
when either the filter
width or filter height
is 1, otherwise the
stride can be 1 or 2

- wDesc's filter height
must be greater than
convDesc’s zero-
padding height

- wDesc's filter width
must be greater than
convDesc's zero-
padding width

_WINOGRAD All except: All except: Dilation: 1 for all

PSEUDO_HALF_CONKI@imensions.

_NCHW_VECT_|C_NCHW_VECT_C and

- convDesc's vertical
- FLOAT_CONFIG and horizontal filter
stride must equal 1

- wDesc's filter height
must be 3

- wDesc's filter width
must be 3

_WINOGRAD_NONFUSED Dilation: 1 for all

TRUE_HALF_CONFIG, dimensions.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 88

PSEUDO_HALF_CONH
and

- FLOAT_CONFIG

cuDNN API Reference

- convDesc's vertical
Flénd horizontal filter
stride must equal 1

- wDesc's filter
(height, width) must
be (3,3) or (5,5)

- If wDesc's filter
(height, width)

is (5,5), then

data type config
TRUE_HALF_CONFIG is
not supported

_DIRECT

Currently not implemented in cuDNN.

Filter descriptor whesc:

_NHWC

convDesc Group count support: Greater than 0.

convDesc Group count support: Greater than 0.

Algo Name xDesc yDesc Data Type Important
Configurations
Support

_IMPLICIT_GEMM NCHWC HWC- | NCHWC HWC- - Dilation: Greater than

packed packed PSEUDO_HALF_CONKIG for all dimensions.

and
- FLOAT_CONFIG

Filter descriptor wDesc: _NHWC

Algo Name xDesc yDesc Data Type Important
Configurations
Support

_IMPLICIT_PRECOMP_GEMMIWC NHWC - INT8_CONFIG, Dilation: 1 for all
i dimensions.
INT8_EXT_CONFIG, | Input and output
- INT8x4_CONFIG, featgres maps must be

multiple of 4.
INT8x4_EXT_CONFI(Q,
- UINT8x4_CONFIG,
and
UINT8x4_EXT_CONFIG
FOR 3D CONVOLUTIONS.
Filter descriptor wDesc: _NCHW

convDesc Group count support: Greater than 0, for all algos.

Algo Name

xDesc

yDesc

Data Type
Configurations

Important

Support

www.nvidia.com
cuDNN 7.5.0

DU-06702-001_vO07 | 89

cuDNN API Reference

_IMPLICIT_GEMM All except All except
_NCHW_VECT_(. NCHW_VECT C.

_IMPLICIT_PRECOMP_GEMM

PSEUDO_HALF_CONFK

Dilation: Greater than
IG for all dimensions.

- FLOAT_CONFIG,
and

- DOUBLE_CONFIG.

Dilation: 1 for all
dimensions.

_FFT_TILING NCDHW DHW- [NCDHW DHW-
packed packed

PSEUDO_HALF_CONFK

- FLOAT_CONFIG,
and

- DOUBLE_CONFIG.

Dilation: 1 for all
IGimensions.

-wDesc's filter height
must equal 16 or less

- wbhesc's filter width
must equal 16 or less

-wDesc's filter depth
must equal 16 or less

- convDesc's must
have all filter strides
equal to 1

- whesc's filter height
must be greater than
convDesc's Zzero-

padding height

- whesc's filter width
must be greater than
convDesc's zero-

padding width

- whesc's filter depth
must be greater than
convDesc's Zzero-

padding width

Tensors can be converted to, and from, CUDNN_TENSOR_NCHW_VECT_C with

cudnnTransformTensor () .

Returns
CUDNN_STATUS_ SUCCESS

The operation was launched successfully.

CUDNN_STATUS BAD PARAM
At least one of the following conditions are met:

» Atleast one of the following is NULL: handle, xDesc, wDesc, convDesc, yDesc,

xData, w, yData, alpha, beta

vV vV v v VY

(or group in case of Grouped Convolutions)

www.nvidia.com
cuDNN 7.5.0

xDesc has fewer than three number of dimensions
xDesc's number of dimensions is not equal to convDesc's array length + 2
xDesc and wDesc have a non-matching number of input feature maps per image

xDesc and yDesc have a non-matching number of dimensions
xDesc and wDesc have a non-matching number of dimensions

DU-06702-001_v07 | 90

cuDNN API Reference

» yDesc or wDesc indicate an output channel count that isn't a multiple of group
count (if group count has been set in convDesc).

» xDesc, wDesc and yDesc have a non-matching data type

» For some spatial dimension, wDesc has a spatial size that is larger than the input
spatial size (including zero-padding size)

CUDNN_STATUS_NOT SUPPORTED
At least one of the following conditions are met:

» xDesc or yDesc have negative tensor striding
» xDesc, wDesc or yDesc has a number of dimensions that is not 4 or 5

» yDescs's spatial sizes do not match with the expected size as determined by
cudnnGetConvolutionNdForwardOutputDim

» The chosen algo does not support the parameters provided; see above for
exhaustive list of parameter support for each algo

CUDNN_STATUS_MAPPING_ERROR

An error occured during the texture binding of the filter data.
CUDNN_STATUS_EXECUTION_ FAILED

The function failed to launch on the GPU.

4.15. cudnnCreate

cudnnStatus_t cudnnCreate (cudnnHandle t *handle)

This function initializes the cuDNN library and creates a handle to an opaque structure
holding the cuDNN library context. It allocates hardware resources on the host and
device and must be called prior to making any other cuDNN library calls.

The cuDNN library handle is tied to the current CUDA device (context). To use the
library on multiple devices, one cuDNN handle needs to be created for each device.

For a given device, multiple cuDNN handles with different configurations (e.g., different
current CUDA streams) may be created. Because cudnnCreate allocates some internal
resources, the release of those resources by calling cudnnDestroy will implicitly

call cudaDeviceSynchronize; therefore, the recommended best practice is to call
cudnnCreate/cudnnDestroy outside of performance-critical code paths.

For multithreaded applications that use the same device from different threads, the
recommended programming model is to create one (or a few, as is convenient) cuDNN
handle(s) per thread and use that cuDNN handle for the entire life of the thread.

Parameters
handle

Output. Pointer to pointer where to store the address to the allocated cuDNN handle.
See cudnnHandle_t.

Returns

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 91

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__DEVICE.html#group__CUDART__DEVICE_1g10e20b05a95f638a4071a655503df25d

cuDNN API Reference

CUDNN_STATUS_BAD_PARAM

Invalid (NULL) input pointer supplied.
CUDNN_STATUS NOT_ INITIALIZED

No compatible GPU found, CUDA driver not installed or disabled, CUDA runtime
API initialization failed.

CUDNN_STATUS ARCH MISMATCH

NVIDIA GPU architecture is too old.
CUDNN_STATUS_ALLOC_FAILED

Host memory allocation failed.
CUDNN_STATUS INTERNAL ERROR

CUDA resource allocation failed.
CUDNN_STATUS_LICENSE_ERROR

cuDNN license validation failed (only when the feature is enabled).
CUDNN_STATUS_ SUCCESS

cuDNN handle was created successfully.

4.16. cudnnCreateActivationDescriptor

cudnnStatus_t cudnnCreateActivationDescriptor (
cudnnActivationDescriptor t *activationDesc)

This function creates a activation descriptor object by allocating the memory needed to
hold its opaque structure. See cudnnActivationDescriptor_t.

Returns
CUDNN_STATUS_ SUCCESS

The object was created successfully.
CUDNN_STATUS ALLOC_FAILED

The resources could not be allocated.

4.17. cudnnCreateAlgorithmDescriptor

cudnnStatus t cudnnCreateAlgorithmDescriptor (
cudnnAlgorithmDescriptor t *algoDesc)

(New for 7.1)

This function creates an algorithm descriptor object by allocating the memory needed to
hold its opaque structure.

Returns
CUDNN_STATUS_SUCCESS

The object was created successfully.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 92

cuDNN API Reference

CUDNN_STATUS ALLOC_FAILED

The resources could not be allocated.

4.18. cudnnCreateAlgorithmPerformance

cudnnStatus_t cudnnCreateAlgorithmPerformance (
cudnnAlgorithmPerformance t *algoPerf,
int numberToCreate)

(New for 7.1)

This function creates multiple algorithm performance objects by allocating the memory
needed to hold their opaque structures.

Returns
CUDNN_STATUS_SUCCESS

The object was created successfully.
CUDNN_STATUS_ALLOC_FAILED

The resources could not be allocated.

4.19. cudnnCreateAttnDescriptor

cudnnStatus_t cudnnCreateAttnDescriptor(cudnnAttnDescriptor_t *attnDesc) ;

This function creates an attention descriptor object by allocating the memory needed to
hold its structure. Use the cudnnSetAttnDescriptor function to initialize the descriptor,
and the cudnnDestroyAttnDescriptor function to destroy the descriptor.

Parameters:
Parameter Input / Output Description
attnDesc Output An uninitialized attention descriptor.
Returns:
Return Value Description
CUDNN_STATUS_SUCCESS The descriptor object is created successfully.
CUDNN_STATUS_BAD_PARAM The attnDesc is NULL.
CUDNN_STATUS_ALLOC_FAILED The memory allocation failed.

4.20. cudnnCreateCTCLossDescriptor

cudnnStatus t cudnnCreateCTCLossDescriptor (
cudnnCTCLossDescriptor t* ctcLossDesc)

This function creates a CTC loss function descriptor. .

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 93

cuDNN API Reference

Parameters
ctcLossDesc

Output. CTC loss descriptor to be set. See cudnnCTCLossDescriptor_t.

Returns
CUDNN_STATUS_SUCCESS

The function returned successfully.
CUDNN_STATUS_BAD PARAM

CTC loss descriptor passed to the function is invalid.
CUDNN_STATUS_ALLOC_FAILED

Memory allocation for this CTC loss descriptor failed.

4.21. cudnnCreateConvolutionDescriptor

cudnnStatus t cudnnCreateConvolutionDescriptor (
cudnnConvolutionDescriptor t *convDesc)

This function creates a convolution descriptor object by allocating the memory needed to
hold its opaque structure. See cudnnConvolutionDescriptor_t.

Returns
CUDNN_STATUS_SUCCESS

The object was created successfully.
CUDNN_STATUS_ALLOC_FAILED

The resources could not be allocated.

4.22. cudnnCreateDropoutDescriptor

cudnnStatus t cudnnCreateDropoutDescriptor (
cudnnDropoutDescriptor t *dropoutDesc)

This function creates a generic dropout descriptor object by allocating the memory
needed to hold its opaque structure. See cudnnDropoutDescriptor_t.

Returns
CUDNN_STATUS_SUCCESS

The object was created successfully.
CUDNN_STATUS_ALLOC_FAILED

The resources could not be allocated.

4.23. cudnnCreateFilterDescriptor

cudnnStatus t cudnnCreateFilterDescriptor (

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 94

cuDNN API Reference

cudnnFilterDescriptor t *filterDesc)

This function creates a filter descriptor object by allocating the memory needed to hold
its opaque structure. See cudnnFilterDescriptor_t.

Returns
CUDNN_STATUS_ SUCCESS

The object was created successfully.
CUDNN_STATUS ALLOC_FAILED

The resources could not be allocated.

4.24. cudnnCreateLRNDescriptor

cudnnStatus_t cudnnCreateLRNDescriptor (
cudnnLRNDescriptor t *poolingDesc)

This function allocates the memory needed to hold the data needed for LRN and
DivisiveNormalization layers operation and returns a descriptor used with subsequent
layer forward and backward calls.

Returns
CUDNN_STATUS_ SUCCESS

The object was created successfully.
CUDNN_STATUS ALLOC_FAILED

The resources could not be allocated.

4.25. cudnnCreateOpTensorDescriptor

cudnnStatus_t cudnnCreateOpTensorDescriptor (
cudnnOpTensorDescriptor t* opTensorDesc)

This function creates a Tensor Pointwise math descriptor. See
cudnnOpTensorDescriptor_t.

Parameters
opTensorDesc

Output. Pointer to the structure holding the description of the Tensor Pointwise math
such as Add, Multiply, and more.

Returns
CUDNN_STATUS SUCCESS

The function returned successfully.
CUDNN_STATUS_BAD PARAM

Tensor Pointwise math descriptor passed to the function is invalid.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 95

cuDNN API Reference

CUDNN_STATUS ALLOC_FAILED

Memory allocation for this Tensor Pointwise math descriptor failed.

4.26. cudnnCreatePersistentRNNPlan

cudnnStatus_t cudnnCreatePersistentRNNPlan (

cudnnRNNDescriptor t rnnDesc,
const int minibatch,
const cudnnDataType t dataType,

cudnnPersistentRNNPlan t *plan)

This function creates a plan to execute persistent RNNs when using the
CUDNN_RNN_ALGO_PERSIST_ DYNAMIC algo. This plan is tailored to the current
GPU and problem hyperparemeters. This function call is expected to be expensive
in terms of runtime, and should be used infrequently. See cudnnRNNDescriptor_t,
cudnnDataType_t, and cudnnPersistentRNNPlan_t.

Returns
CUDNN_STATUS_ SUCCESS

The object was created successfully.
CUDNN_STATUS ALLOC_FAILED

The resources could not be allocated.
CUDNN_S TATUS_RUNT IME_PREREQUI SI TE_MI SSING

A prerequisite runtime library cannot be found.
CUDNN_STATUS NOT_ SUPPORTED

The current hyperparameters are invalid.

4.27. cudnnCreatePoolingDescriptor

cudnnStatus t cudnnCreatePoolingDescriptor (
cudnnPoolingDescriptor t *poolingDesc)

This function creates a pooling descriptor object by allocating the memory needed to
hold its opaque structure,

Returns
CUDNN_S TATUS_SUCCESS

The object was created successfully.
CUDNN_STATUS_ALLOC_FAILED

The resources could not be allocated.

4.28. cudnnCreateRNNDescriptor

cudnnStatus t cudnnCreateRNNDescriptor (
cudnnRNNDescriptor t *rnnDesc)

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 96

cuDNN API Reference

This function creates a generic RNN descriptor object by allocating the memory needed
to hold its opaque structure.

Returns
CUDNN_STATUS_ SUCCESS

The object was created successfully.
CUDNN_STATUS ALLOC_FAILED

The resources could not be allocated.

4.29. cudnnCreateRNNDataDescriptor

cudnnStatus_t cudnnCreateRNNDataDescriptor (
cudnnRNNDataDescriptor t *RNNDataDesc)

This function creates a RNN data descriptor object by allocating the memory needed to
hold its opaque structure.

Returns
CUDNN_STATUS_ SUCCESS

The RNN data descriptor object was created successfully.
CUDNN_STATUS_BAD PARAM

RNNDataDesc is NULL.
CUDNN_S TATUS_ALLOC_FAI LED

The resources could not be allocated.

4.30. cudnnCreateReduceTensorDescriptor

cudnnStatus_t cudnnCreateReduceTensorDescriptor (
cudnnReduceTensorDescriptor t* reduceTensorDesc)

This function creates a reduce tensor descriptor object by allocating the memory needed
to hold its opaque structure.

Parameters
None.

Returns
CUDNN_STATUS_ SUCCESS

The object was created successfully.
CUDNN_STATUS BAD PARAM

reduceTensorDesc is a NULL pointer.
CUDNN_STATUS ALLOC_FAILED

The resources could not be allocated.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 97

cuDNN API Reference

4.31. cudnnCreateSegDataDescriptor

cudnnStatus t cudnnCreateSeqgDataDescriptor (cudnnSegDataDescriptor t
*segDataDesc) ;

This function creates a sequence data descriptor object by allocating the memory needed
to hold its opaque structure. The sequence data is initialized to be all zero. Use the
cudnnSetSeqDataDescriptor function to initialize the descriptor created by this function.

Parameters:
Parameter Input / Output Description
seqDataDesc Output A sequence data descriptor whose
sequence data is initialized to be all zero.
Returns:
Return Value Description
CUDNN_STATUS_SUCCESS The descriptor object was created successfully.
CUDNN_STATUS_BAD_PARAM The segDataDesc is NULL.
CUDNN_STATUS_ALLOC_FAILED The memory allocation failed.

4.32. cudnnCreateSpatialTransformerDescriptor

cudnnStatus t cudnnCreateSpatialTransformerDescriptor (
cudnnSpatialTransformerDescriptor t *stDesc)

This function creates a generic spatial transformer descriptor object by allocating the
memory needed to hold its opaque structure.

Returns
CUDNN_STATUS_ SUCCESS

The object was created successfully.
CUDNN_STATUS ALLOC_FAILED

The resources could not be allocated.

4.33. cudnnCreateTensorDescriptor

cudnnStatus t cudnnCreateTensorDescriptor (
cudnnTensorDescriptor t *tensorDesc)

This function creates a generic tensor descriptor object by allocating the memory needed
to hold its opaque structure. The data is initialized to be all zero.

Parameters

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 98

cuDNN API Reference

tensorDesc

Input. Pointer to pointer where the address to the allocated tensor descriptor object
should be stored.

Returns

CUDNN_STATUS_BAD PARAM
Invalid input argument.

CUDNN_STATUS_ALLOC_FAILED

The resources could not be allocated.

CUDNN_STATUS_SUCCESS

The object was created successfully.

4.34. cudnnCreateTensorTransformDescriptor

cudnnStatus_ t cudnnCreateTensorTransformDescriptor (
cudnnTensorTransformDescriptor_t *transformDesc) ;

This function creates a Tensor transform descriptor object by allocating the memory
needed to hold its opaque structure. The Tensor data is initialized to be all zero. Use the

cudnnSetTensorTransformDescriptor function to initialize the descriptor created by this
function.

Parameters:
Parameter Input / Output Description
transformDesc Output A pointer to an uninitialized Tensor

transform descriptor.

Returns:
Return Value Description
CUDNN_STATUS_SUCCESS The descriptor object was created successfully.
CUDNN_STATUS_BAD_PARAM The transformbesc is NULL.
CUDNN_STATUS_ALLOC_FAILED The memory allocation failed.

4.35. cudnnDeriveBNTensorDescriptor

cudnnStatus t cudnnDeriveBNTensorDescriptor (

cudnnTensorDescriptor t derivedBnDesc,
const cudnnTensorDescriptor t xDesc,
cudnnBatchNormMode t mode)

This function derives a secondary tensor descriptor for the batch normalization scale,
invVariance, bnBias, bnScale subtensors from the layer's x data descriptor.

Use the tensor descriptor produced by this function as the bnScaleBiasMeanVarDesc
parameter for the cudnnBatchNormalizationForwardInference and

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 99

cuDNN API Reference

cudnnBatchNormalizationForwardTraining functions, and as the
bnScaleBiasDiffDesc parameter in the cudnnBatchNormalizationBackward
function.

The resulting dimensions will be 1xCx1x1 for 4D and 1xCx1x1x1 for 5D for
BATCHNORM_MODE_SPATIAL, and 1xCxHxW for 4D and 1xCxDxHxW for 5D for
BATCHNORM_MODE_PER_ACTIVATION mode.

For HALF input data type the resulting tensor descriptor will have a FLOAT type. For
other data types it will have the same type as the input data.

n Only 4D and 5D tensors are supported.

n The derivedBnDesc should be first created using cudnnCreateTensorDescriptor.

xDesc is the descriptor for the layer's x data and has to be setup with proper
dimensions prior to calling this function.

Parameters
derivedBnDesc

Output. Handle to a previously created tensor descriptor.
xDesc

Input. Handle to a previously created and initialized layer's x data descriptor.
mode

Input. Batch normalization layer mode of operation.

Returns
CUDNN_STATUS_SUCCESS

The computation was performed successfully.

CUDNN_STATUS_BAD PARAM
Invalid Batch Normalization mode.

4.36. cudnnDestroy

cudnnStatus_t cudnnDestroy(cudnnHandle t handle)

This function releases resources used by the cuDNN handle. This function is usually the
last call with a particular handle to the cuDNN handle. Because cudnnCreate allocates
some internal resources, the release of those resources by calling cudnnDestroy will
implicitly call cudaDeviceSynchronize; therefore, the recommended best practice is to
call cudnnCreate/cudnnDestroy outside of performance-critical code paths.

Parameters

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 100

cuDNN API Reference

handle
Input. Pointer to the cuDNN handle to be destroyed.

Returns
CUDNN_STATUS SUCCESS

The cuDNN context destruction was successful.
CUDNN_STATUS_BAD PARAM

Invalid (NULL) pointer supplied.

4.37. cudnnDestroyActivationDescriptor

cudnnStatus_t cudnnDestroyActivationDescriptor (
cudnnActivationDescriptor t activationDesc)

This function destroys a previously created activation descriptor object.

Returns
CUDNN_STATUS_SUCCESS

The object was destroyed successfully.

4.38. cudnnDestroyAlgorithmDescriptor

cudnnStatus_t cudnnDestroyAlgorithmDescriptor (
cudnnActivationDescriptor t algorithmDesc)

(New for 7.1)
This function destroys a previously created algorithm descriptor object.

Returns
CUDNN_STATUS_SUCCESS

The object was destroyed successfully.

4.39. cudnnDestroyAlgorithmPerformance

cudnnStatus t cudnnDestroyAlgorithmPerformance (
cudnnAlgorithmPerformance t algoPerf)

(New for 7.1)
This function destroys a previously created algorithm descriptor object.

Returns
CUDNN_STATUS_ SUCCESS

The object was destroyed successfully.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 101

cuDNN API Reference

4.40. cudnnDestroyAttnDescriptor

cudnnStatus t cudnnDestroyAttnDescriptor (
cudnnAttnDescriptor t attnDesc);

This function destroys a previously created attention descriptor.

Parameters:

Parameter Input / Output Description

attnDesc Input The attention descriptor to be destroyed.
Returns:

Return Value Description

CUDNN_STATUS_SUCCESS The descriptor was destroyed successfully.

4.41. cudnnDestroyCTCLossDescriptor

cudnnStatus_t cudnnDestroyCTCLossDescriptor (
cudnnCTCLossDescriptor_t ctcLossDesc)

This function destroys a CTC loss function descriptor object.

Parameters
ctcLossDesc

Input. CTC loss function descriptor to be destroyed.

Returns
CUDNN_STATUS_SUCCESS

The function returned successfully.

4.42. cudnnDestroyConvolutionDescriptor

cudnnStatus_ t cudnnDestroyConvolutionDescriptor (
cudnnConvolutionDescriptor t convDesc)

This function destroys a previously created convolution descriptor object.

Returns
CUDNN_STATUS_SUCCESS

The object was destroyed successfully.

4.43. cudnnDestroyDropoutDescriptor

cudnnStatus_ t cudnnDestroyDropoutDescriptor (

www.nvidia.com

CcuDNN 7.5.0 DU-06702-001_v07 | 102

cuDNN API Reference

cudnnDropoutDescriptor t dropoutDesc)
This function destroys a previously created dropout descriptor object.

Returns
CUDNN_STATUS_ SUCCESS

The object was destroyed successfully.

4.44. cudnnDestroyFilterDescriptor

cudnnStatus_t cudnnDestroyFilterDescriptor (
cudnnFilterDescriptor t filterDesc)

This function destroys a previously created Tensor4D descriptor object.

Returns
CUDNN_STATUS_ SUCCESS

The object was destroyed successfully.

4.45. cudnnDestroyLRNDescriptor

cudnnStatus_t cudnnDestroyLRNDescriptor (
cudnnLRNDescriptor t lrnDesc)

This function destroys a previously created LRN descriptor object.

Returns
CUDNN_STATUS SUCCESS

The object was destroyed successfully.

4.46. cudnnDestroyOpTensorDescriptor

cudnnStatus_t cudnnDestroyOpTensorDescriptor (
cudnnOpTensorDescriptor t opTensorDesc)

This function deletes a Tensor Pointwise math descriptor object.

Parameters
opTensorDesc

Input. Pointer to the structure holding the description of the Tensor Pointwise math to
be deleted.

Returns
CUDNN_STATUS SUCCESS

The function returned successfully.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 103

cuDNN API Reference

4.47. cudnnDestroyPersistentRNNPlan

cudnnStatus_t cudnnDestroyPersistentRNNPlan (
cudnnPersistentRNNPlan t plan)

This function destroys a previously created persistent RNN plan object.

Returns
CUDNN_STATUS_SUCCESS

The object was destroyed successfully.

4.48. cudnnDestroyPoolingDescriptor

cudnnStatus_t cudnnDestroyPoolingDescriptor (
cudnnPoolingDescriptor t poolingDesc)

This function destroys a previously created pooling descriptor object.

Returns
CUDNN_STATUS_SUCCESS

The object was destroyed successfully.

4.49. cudnnDestroyRNNDescriptor

cudnnStatus_t cudnnDestroyRNNDescriptor (
cudnnRNNDescriptor t rnnDesc)

This function destroys a previously created RNN descriptor object.

Returns
CUDNN_STATUS_SUCCESS

The object was destroyed successfully.

4.50. cudnnDestroyRNNDataDescriptor

cudnnStatus t cudnnDestroyRNNDataDescriptor (
cudnnRNNDataDescriptor_t RNNDataDesc)

This function destroys a previously created RNN data descriptor object.

Returns
CUDNN_S TATUS_SUCCESS

The RNN data descriptor object was destroyed successfully.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 104

cuDNN API Reference

4.51. cudnnDestroyReduceTensorDescriptor

cudnnStatus t cudnnDestroyReduceTensorDescriptor (
cudnnReduceTensorDescriptor t tensorDesc)

This function destroys a previously created reduce tensor descriptor object. When the
input pointer is NULL, this function performs no destroy operation.

Parameters
tensorDesc

Input. Pointer to the reduce tensor descriptor object to be destroyed.

Returns
CUDNN_STATUS_ SUCCESS

The object was destroyed successfully.

4.52. cudnnDestroySeqDataDescriptor

cudnnStatus t cudnnDestroySegDataDescriptor (cudnnSegDataDescriptor t
segDataDesc) ;

Destroys a previously created sequence data descriptor.

Parameters:
Parameter Input / Output Description
segDataDesc Input The sequence data descriptor to be
destroyed.
Returns:
Return Value Description
CUDNN_STATUS_SUCCESS The descriptor was destroyed successfully.

4.53. cudnnDestroySpatialTransformerDescriptor

cudnnStatus t cudnnDestroySpatialTransformerDescriptor (
cudnnSpatialTransformerDescriptor t stDesc)

This function destroys a previously created spatial transformer descriptor object.

Returns
CUDNN_STATUS_SUCCESS

The object was destroyed successfully.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 105

cuDNN API Reference

4.54. cudnnDestroyTensorDescriptor

cudnnStatus_t cudnnDestroyTensorDescriptor (cudnnTensorDescriptor t tensorDesc)

This function destroys a previously created tensor descriptor object. When the input
pointer is NULL, this function performs no destroy operation.

Parameters
tensorDesc

Input. Pointer to the tensor descriptor object to be destroyed.

Returns
CUDNN_STATUS_SUCCESS

The object was destroyed successfully.

4.55. cudnnDestroyTensorTransformDescriptor

cudnnStatus t cudnnDestroyTensorTransformDescriptor (
cudnnTensorTransformDescriptor t transformDesc);

Destroys a previously created Tensor transform descriptor.

Parameters:
Parameter Input / Output Description
transformDesc Input The Tensor transform descriptor to be
destroyed.
Returns:
Return Value Description
CUDNN_STATUS_SUCCESS The descriptor was destroyed successfully.

4.56. cudnnDivisiveNormalizationBackward

cudnnStatus t cudnnDivisiveNormalizationBackward (

cudnnHanale_t handle,
cudnnLRNDescriptor t normDesc,
cudnnDivNormMode t mode,
const void *alpha,
const cudnnTensorDescriptor t xDesc,
const void *x,
const void *means,
const void *dy,
void *temp,
void *temp2,
const void *beta,
const cudnnTensorDescriptor t dxDesc,
void *dx,
void *dMeans)

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 106

cuDNN API Reference

This function performs the backward DivisiveNormalization layer computation.

Supported tensor formats are NCHW for 4D and NCDHW for 5D with any non-
overlapping non-negative strides. Only 4D and 5D tensors are supported.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor.

normDesc
Input. Handle to a previously intialized LRN parameter descriptor (this descriptor is
used for both LRN and DivisiveNormalization layers).

mode
Input. DivisiveNormalization layer mode of operation. Currently only
CUDNN_DIVNORM_PRECOMPUTED_MEANS is implemented. Normalization is

performed using the means input tensor that is expected to be precomputed by the
user.

alpha, beta
Input. Pointers to scaling factors (in host memory) used to blend the layer
output value with prior value in the destination tensor as follows: dstValue =

alpha[0]*resultValue + beta[0]*priorDstValue. Please refer to this section for
additional details.

xDesc, x, means
Input. Tensor descriptor and pointers in device memory for the layer's x and means
data. Note: the means tensor is expected to be precomputed by the user. It can also

contain any valid values (not required to be actual means, and can be for instance a
result of a convolution with a Gaussian kernel).

dy
Input. Tensor pointer in device memory for the layer's dy cumulative loss differential
data (error backpropagation).

temp, temp2
Workspace. Temporary tensors in device memory. These are used for computing

intermediate values during the backward pass. These tensors do not have to be
preserved from forward to backward pass. Both use xDesc as a descriptor.

dxDesc

Input. Tensor descriptor for dx and dMeans.
dx, dMeans

Output. Tensor pointers (in device memory) for the layer's resulting cumulative
gradients dx and dMeans (dLoss/dx and dLoss/dMeans). Both share the same
descriptor.

Possible error values returned by this function and their meanings are listed below.

Returns

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 107

cuDNN API Reference

CUDNN_STATUS_ SUCCESS

The computation was performed successfully.
CUDNN_STATUS BAD PARAM

At least one of the following conditions are met:

» One of the tensor pointers x, dx, temp, tmep2, dyis NULL.

» Number of any of the input or output tensor dimensions is not within the [4,5]
range.

Either alpha or beta pointer is NULL.
A mismatch in dimensions between xDesc and dxDesc.
LRN descriptor parameters are outside of their valid ranges.

v vV v v

Any of the tensor strides is negative.
CUDNN_STATUS_ UNSUPPORTED

The function does not support the provided configuration. See the following for some
examples of non-supported configurations:

» Any of the input and output tensor strides mismatch (for the same dimension).

4.57. cudnnDivisiveNormalizationForward

cudnnStatus_t cudnnDivisiveNormalizationForward (

cudnnHandle t handle,
cudnnLRNDescriptor t normDesc,
cudnnDivNormMode t mode,
const void *alpha,
const cudnnTensorDescriptor t xDesc,
const void R
const void *means,
void *temp,
void *temp2,
const void *beta,
const cudnnTensorDescriptor t yDesc,
void *y)

This function performs the forward spatial DivisiveNormalization layer computation.
It divides every value in a layer by the standard deviation of its spatial neighbors as
described in "What is the Best Multi-Stage Architecture for Object Recognition”, Jarrett
2009, Local Contrast Normalization Layer section. Note that Divisive Normalization
only implements the x/max(c, sigma_x) portion of the computation, where sigma_x

is the variance over the spatial neighborhood of x. The full LCN (Local Contrastive
Normalization) computation can be implemented as a two-step process:

X_m = x-mean(x);

y =x_m/max(c, sigma(x_m));

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 108

cuDNN API Reference

The "x-mean(x)" which is often referred to as "subtractive normalization" portion of the
computation can be implemented using cuDNN average pooling layer followed by a call
to addTensor.

Supported tensor formats are NCHW for 4D and NCDHW for 5D with any non-
overlapping non-negative strides. Only 4D and 5D tensors are supported.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor.
normDesc

Input. Handle to a previously intialized LRN parameter descriptor. This descriptor is
used for both LRN and DivisiveNormalization layers.

divNormMode

Input. DivisiveNormalization layer mode of operation. Currently only
CUDNN_DIVNORM_PRECOMPUTED_MEANS is implemented. Normalization is
performed using the means input tensor that is expected to be precomputed by the
user.

alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the layer
output value with prior value in the destination tensor as follows: dstValue =
alpha[0]*resultValue + beta[0]*priorDstValue. Please refer to this section for
additional details.

xDesc, yDesc

Input. Tensor descriptor objects for the input and output tensors. Note that xDesc is
shared between x, means, temp and temp?2 tensors.

Input. Input tensor data pointer in device memory.
means

Input. Input means tensor data pointer in device memory. Note that this tensor can
be NULL (in that case its values are assumed to be zero during the computation).
This tensor also doesn't have to contain means, these can be any values, a frequently
used variation is a result of convolution with a normalized positive kernel (such as
Gaussian).

temp, temp2

Workspace. Temporary tensors in device memory. These are used for computing
intermediate values during the forward pass. These tensors do not have to be
preserved as inputs from forward to the backward pass. Both use xDesc as their
descriptor.

Output. Pointer in device memory to a tensor for the result of the forward
DivisiveNormalization computation.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 109

cuDNN API Reference

Possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

The computation was performed successfully.
CUDNN_STATUS BAD PARAM

At least one of the following conditions are met:

One of the tensor pointers x, y, temp, temp2is NULL.
Number of input tensor or output tensor dimensions is outside of [4,5] range.
A mismatch in dimensions between any two of the input or output tensors.

For in-place computation when pointers x ==y, a mismatch in strides between the
input data and output data tensors.

Alpha or beta pointer is NULL.
» LRN descriptor parameters are outside of their valid ranges.
» Any of the tensor strides are negative.

vV v v VY

v

CUDNN_STATUS_UNSUPPORTED

The function does not support the provided configuration. See the following for some
examples of non-supported configurations:

» Any of the input and output tensor strides mismatch (for the same dimension).

4.58. cudnnDropoutBackward

cudnnStatus_t cudnnDropoutBackward (
cudnnHandle t handle,
const cudnnDropoutDescriptor t dropoutDesc,
const cudnnTensorDescriptor t dydesc,

const void “ely,

const cudnnTensorDescriptor t dxdesc,

void “ebz,

void *reserveSpace,

size t reserveSpaceSizeInBytes)

This function performs backward dropout operation over dy returning results in dx.

If during forward dropout operation value from x was propagated to y then during
backward operation value from dy will be propagated to dx, otherwise, dx value will be
set to 0.

Better performance is obtained for fully packed tensors

Parameters
handle

Input. Handle to a previously created cuDNN context.
dropoutDesc

Input. Previously created dropout descriptor object.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 110

cuDNN API Reference

dyDesc

Input. Handle to a previously initialized tensor descriptor.
dy

Input. Pointer to data of the tensor described by the dyDesc descriptor.
dxDesc

Input. Handle to a previously initialized tensor descriptor.
dx

Output. Pointer to data of the tensor described by the dxDesc descriptor.
reserveSpace
Input. Pointer to user-allocated GPU memory used by this function. It is expected that

reserveSpace was populated during a call to cudnnDropoutForward and has not
been changed.

reserveSpaceSizelnBytes
Input. Specifies size in bytes of the provided memory for the reserve space
The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

The call was successful.
CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD PARAM

At least one of the following conditions are met:

» The number of elements of input tensor and output tensors differ.
» The datatype of the input tensor and output tensors differs.

» The strides of the input tensor and output tensors differ and in-place operation is
used (i.e., x and y pointers are equal).

» The provided reserveSpaceSizeInBytes is less then the value returned by
cudnnDropoutGetReserveSpaceSize

» cudnnSetDropoutDescriptor has not been called on dropoutDesc with the
non-NULL states argument

CUDNN_STATUS_EXECUTION_FAILED
The function failed to launch on the GPU.

4.59. cudnnDropoutForward

cudnnStatus t cudnnDropoutForward (

cudnnHandle t handle,
const cudnnDropoutDescriptor t dropoutDesc,
const cudnnTensorDescriptor t xdesc,

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 111

cuDNN API Reference

const void X,

const cudnnTensorDescriptor t ydesc,

void “W

void *reserveSpace,

size t reserveSpaceSizeInBytes)

This function performs forward dropout operation over x returning results in

y. If dropout was used as a parameter to cudnnSetDropoutDescriptor, the
approximately dropout fraction of x values will be replaces by 0, and the rest will
be scaled by 1/ (1-dropout) This function should not be running concurrently with
another cudnnDropoutForward function using the same states.

Better performance is obtained for fully packed tensors

Should not be called during inference

Parameters
handle

Input. Handle to a previously created cuDNN context.
dropoutDesc

Input. Previously created dropout descriptor object.
xDesc

Input. Handle to a previously initialized tensor descriptor.

Input. Pointer to data of the tensor described by the xDesc descriptor.
yDesc

Input. Handle to a previously initialized tensor descriptor.

Output. Pointer to data of the tensor described by the yDesc descriptor.

reserveSpace

Output. Pointer to user-allocated GPU memory used by this function. It is expected
that contents of reserveSpace doe not change between cudnnDropoutForward and
cudnnDropoutBackward calls.

reserveSpaceSizelnBytes
Input. Specifies size in bytes of the provided memory for the reserve space.
The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The call was successful.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 112

cuDNN API Reference

CUDNN_STATUS NOT_ SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD PARAM

At least one of the following conditions are met:

» The number of elements of input tensor and output tensors differ.

» The datatype of the input tensor and output tensors differs.

» The strides of the input tensor and output tensors differ and in-place operation is
used (i.e., x and y pointers are equal).

» The provided reserveSpaceSizeInBytes is less then the value returned by
cudnnDropoutGetReserveSpaceSize.

» cudnnSetDropoutDescriptor has not been called on dropoutDesc with the
non-NULL states argument.

CUDNN_STATUS_EXECUTION_FAILED
The function failed to launch on the GPU.

4.60. cudnnDropoutGetReserveSpaceSize

cudnnStatus_t cudnnDropoutGetReserveSpaceSize (
cudnnTensorDescriptor t xDesc,
size t *sizeInBytes)

This function is used to query the amount of reserve needed to run dropout with the
input dimensions given by xDesc. The same reserve space is expected to be passed to
cudnnDropoutForward and cudnnDropoutBackward, and its contents is expected
to remain unchanged between cudnnDropoutForward and cudnnDropoutBackward
calls.

Parameters
xDesc

Input. Handle to a previously initialized tensor descriptor, describing input to a
dropout operation.

sizeInBytes

Output. Amount of GPU memory needed as reserve space to be able to run dropout
with an input tensor descriptor specified by xDesc.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_S TATUS_SUCCESS

The query was successful.

4.61. cudnnDropoutGetStatesSize

cudnnStatus_t cudnnDropoutGetStatesSize (

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 113

cuDNN API Reference

cudnnHandle t handle,
size t *sizeInBytes)

This function is used to query the amount of space required to store the states of the
random number generators used by cudnnDropoutForward function.

Parameters
handle

Input. Handle to a previously created cuDNN context.
sizeInBytes

Output. Amount of GPU memory needed to store random generator states.
The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_S TATUS_SUCCESS

The query was successful.

4.62. cudnnFindConvolutionBackwardDataAlgorithm

cudnnStatus t cudnnFindConvolutionBackwardDataAlgorithm (

cudnnHandle t handle,

const cudnnFilterDescriptor t wDesc,

const cudnnTensorDescriptor t dyDesc,

const cudnnConvolutionDescriptor t convDesc,

const cudnnTensorDescriptor t dxDesc,

const int requestedAlgoCount,
int *returnedAlgoCount,
cudnnConvolutionBwdDataAlgoPerf t *perfResults)

This function attempts all cuDNN algorithms (including
CUDNN_TENSOR_OP_MATH and CUDNN_DEFAULT_MATH versions
of algorithms where CUDNN_TENSOR_OP_MATH may be available)

for cudnnConvolutionBackwardData (), using memory allocated via
cudaMalloc () and outputs performance metrics to a user-allocated array
of cudnnConvolutionBwdDataAlgoPerf t. These metrics are written
in sorted fashion where the first element has the lowest compute time.
The total number of resulting algorithms can be queried through the API
cudnnGetConvolutionBackwardMaxCount ().

This function is host blocking.

It is recommend to run this function prior to allocating layer data; doing otherwise
may needlessly inhibit some algorithm options due to resource usage.

Parameters
handle

Input. Handle to a previously created cuDNN context.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 114

cuDNN API Reference

wDesc

Input. Handle to a previously initialized filter descriptor.
dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.
convDesc

Input. Previously initialized convolution descriptor.
dxDesc

Input. Handle to the previously initialized output tensor descriptor.
requestedAlgoCount

Input. The maximum number of elements to be stored in perfResults.
returnedAlgoCount

Output. The number of output elements stored in perfResults.
perfResults

Output. A user-allocated array to store performance metrics sorted ascending by
compute time.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

The query was successful.
CUDNN_STATUS BAD PARAM

At least one of the following conditions are met:

handle is not allocated properly.

wDesc, dyDesc or dxDesc is not allocated properly.
wDesc, dyDesc or dxDesc has fewer than 1 dimension.
Either returnedCount or perfResults is nil.

vV vV v v VY

requestedCount is less than 1.
CUDNN_STATUS ALLOC_FAILED

This function was unable to allocate memory to store sample input, filters and output.
CUDNN_STATUS INTERNAL ERROR

At least one of the following conditions are met:

» The function was unable to allocate neccesary timing objects.
» The function was unable to deallocate neccesary timing objects.
» The function was unable to deallocate sample input, filters and output.

4.63. cudnnFindConvolutionBackwardDataAlgorithmEx

cudnnStatus_t cudnnFindConvolutionBackwardDataAlgorithmEx (

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 115

cuDNN API Reference

cudnnHandle t handle,

const cudnnFilterDescriptor t wDesc,

const wvoid *w,

const cudnnTensorDescriptor t dyDesc,

const void *dy,

const cudnnConvolutionDescriptor t convDesc,

const cudnnTensorDescriptor t dxDesc,

void *dx,

const int requestedAlgoCount,
int *returnedAlgoCount,
cudnnConvolutionBwdDataAlgoPerf t *perfResults,

void *workSpace,

size t workSpaceSizelInBytes)

This function attempts all cuDNN algorithms (including
CUDNN_TENSOR_OP_MATH and CUDNN_DEFAULT_MATH versions
of algorithms where CUDNN_TENSOR_OP_MATH may be available)

for cudnnConvolutionBackwardData, using user-allocated GPU
memory, and outputs performance metrics to a user-allocated array of
cudnnConvolutionBwdDataAlgoPerf_t. These metrics are written

in sorted fashion where the first element has the lowest compute time.
The total number of resulting algorithms can be queried through the API
cudnnGetConvolutionBackwardMaxCount ().

This function is host blocking.

Parameters
handle

Input. Handle to a previously created cuDNN context.
wDesc

Input. Handle to a previously initialized filter descriptor.
w

Input. Data pointer to GPU memory associated with the filter descriptor wbesc.
dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.
dy
Input. Data pointer to GPU memory associated with the filter descriptor dyDesc.

convDesc

Input. Previously initialized convolution descriptor.
dxDesc

Input. Handle to the previously initialized output tensor descriptor.
dxDesc

Input/Output. Data pointer to GPU memory associated with the tensor descriptor
dxDesc. The content of this tensor will be overwritten with arbitary values.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 116

cuDNN API Reference

requestedAlgoCount

Input. The maximum number of elements to be stored in perfResults.
returnedAlgoCount

Output. The number of output elements stored in perfResults.

perfResults
Output. A user-allocated array to store performance metrics sorted ascending by
compute time.

workSpace

Input. Data pointer to GPU memory that is a necessary workspace for some
algorithms. The size of this workspace will determine the availabilty of algorithms. A
nil pointer is considered a workSpace of 0 bytes.

workSpaceSizelnBytes
Input. Specifies the size in bytes of the provided workSpace

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

The query was successful.
CUDNN_STATUS BAD PARAM

At least one of the following conditions are met:

handle is not allocated properly.

wDesc, dyDesc or dxDesc is not allocated properly.
wDesc, dyDesc or dxDesc has fewer than 1 dimension.
w, dy or dx is nil.

Either returnedCount or perfResults is nil.
requestedCount is less than 1.

vV V. v v v Vv

CUDNN_STATUS INTERNAL ERROR
At least one of the following conditions are met:

» The function was unable to allocate neccesary timing objects.
» The function was unable to deallocate neccesary timing objects.
» The function was unable to deallocate sample input, filters and output.

4.64. cudnnFindConvolutionBackwardFilterAlgorithm

cudnnStatus_t cudnnFindConvolutionBackwardFilterAlgorithm(

cudnnHandle t handle,

const cudnnTensorDescriptor t xDesc,

const cudnnTensorDescriptor t dyDesc,

const cudnnConvolutionDescriptor t convDesc,

const cudnnFilterDescriptor t dwDesc,

const int requestedAlgoCount,
int *returnedAlgoCount,

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 117

cuDNN API Reference

cudnnConvolutionBwdFilterAlgoPerf t *perfResults)

This function attempts all cuDNN algorithms (including
CUDNN_TENSOR_OP_MATH and CUDNN_DEFAULT_MATH versions

of algorithms where CUDNN_TENSOR_OP_MATH may be available) for
cudnnConvolutionBackwardFilter (), using GPU memory allocated

via cudaMalloc (), and outputs performance metrics to a user-allocated
array of cudnnConvolutionBwdFilterAlgoPerf_t. These metrics are
written in sorted fashion where the first element has the lowest compute time.
The total number of resulting algorithms can be queried through the API
cudnnGetConvolutionBackwardMaxCount ().

This function is host blocking.

It is recommend to run this function prior to allocating layer data; doing otherwise
may needlessly inhibit some algorithm options due to resource usage.

Parameters
handle

Input. Handle to a previously created cuDNN context.
xDesc

Input. Handle to the previously initialized input tensor descriptor.
dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.

convDesc

Input. Previously initialized convolution descriptor.
dwDesc

Input. Handle to a previously initialized filter descriptor.
requestedAlgoCount

Input. The maximum number of elements to be stored in perfResults.
returnedAlgoCount

Output. The number of output elements stored in perfResults.
perfResults

Output. A user-allocated array to store performance metrics sorted ascending by
compute time.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The query was successful.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 118

cuDNN API Reference

CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:

handle is not allocated properly.

xDesc, dyDesc or dwDesc is not allocated properly.
xDesc, dyDesc or dwDesc has fewer than 1 dimension.
Either returnedCount or perfResults is nil.

vV V. v v Vv

requestedCount is less than 1.
CUDNN_STATUS_ALLOC_FAILED

This function was unable to allocate memory to store sample input, filters and output.
CUDNN_STATUS_INTERNAL ERROR

At least one of the following conditions are met:

» The function was unable to allocate neccesary timing objects.
» The function was unable to deallocate neccesary timing objects.
» The function was unable to deallocate sample input, filters and output.

4.65. cudnnFindConvolutionBackwardFilterAlgorithmEx

cudnnStatus t cudnnFindConvolutionBackwardFilterAlgorithmEx (

cudnnHaHdle_t handle,

const cudnnTensorDescriptor t xDesc,

const void *x,

const cudnnTensorDescriptor t dyDesc,

const void *dy,

const cudnnConvolutionDescriptor t convDesc,

const cudnnFilterDescriptor t dwDesc,

void *dw,

const int requestedAlgoCount,
int *returnedAlgoCount,
cudnnConvolutionBwdFilterAlgoPerf t *perfResults,

void *workSpace,

size t workSpaceSizeInBytes)

This function attempts all cuDNN algorithms (including
CUDNN_TENSOR_OP_MATH and CUDNN_DEFAULT_MATH versions
of algorithms where CUDNN_TENSOR_OP_MATH may be available)

for cudnnConvolutionBackwardFilter, using user-allocated GPU
memory, and outputs performance metrics to a user-allocated array of
cudnnConvolutionBwdFilterAlgoPerf t. These metrics are written
in sorted fashion where the first element has the lowest compute time.
The total number of resulting algorithms can be queried through the API
cudnnGetConvolutionBackwardMaxCount ().

This function is host blocking.

Parameters

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 119

cuDNN API Reference

handle

Input. Handle to a previously created cuDNN context.
xDesc

Input. Handle to the previously initialized input tensor descriptor.

Input. Data pointer to GPU memory associated with the filter descriptor xDesc.
dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.
dy
Input. Data pointer to GPU memory associated with the tensor descriptor dyDesc.

convDesc

Input. Previously initialized convolution descriptor.
dwDesc

Input. Handle to a previously initialized filter descriptor.
dw
Input/Output. Data pointer to GPU memory associated with the filter descriptor
dwDesc. The content of this tensor will be overwritten with arbitary values.
requestedAlgoCount

Input. The maximum number of elements to be stored in perfResults.
returnedAlgoCount

Output. The number of output elements stored in perfResults.
perfResults

Output. A user-allocated array to store performance metrics sorted ascending by
compute time.

workSpace

Input. Data pointer to GPU memory that is a necessary workspace for some
algorithms. The size of this workspace will determine the availabilty of algorithms. A
nil pointer is considered a workSpace of 0 bytes.

workSpaceSizelnBytes
Input. Specifies the size in bytes of the provided worksSpace
The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

The query was successful.
CUDNN_STATUS BAD PARAM

At least one of the following conditions are met:

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 120

cuDNN API Reference

handle is not allocated properly.

xDesc, dyDesc or dwDesc is not allocated properly.
xDesc, dyDesc or dwDesc has fewer than 1 dimension.
x, dy or dw is nil.

Either returnedCount or perfResults is nil.

vV Vv v v Vv

requestedCount is less than 1.
CUDNN_STATUS_INTERNAL ERROR
At least one of the following conditions are met:

» The function was unable to allocate neccesary timing objects.
» The function was unable to deallocate neccesary timing objects.
» The function was unable to deallocate sample input, filters and output.

4.66. cudnnFindConvolutionForwardAlgorithm

cudnnStatus t cudnnFindConvolutionForwardAlgorithm (

cudnnHandle t handle,

const cudnnTensorDescriptor t xDesc,

const cudnnFilterDescriptor t wDesc,

const cudnnConvolutionDescriptor t convDesc,

const cudnnTensorDescriptor t yDesc,

const int requestedAlgoCount,
int *returnedAlgoCount,
cudnnConvolutionFwdAlgoPerf t *perfResults)

This function attempts all cuDNN algorithms (including CUDNN_TENSOR_OP_MATH
and CUDNN_DEFAULT_MATH versions of algorithms where
CUDNN_TENSOR_OP_MATH may be available) for cudnnConvolutionForward (),
using memory allocated via cudaMalloc (), and outputs performance metrics

to a user-allocated array of cudnnConvolutionFwdAlgoPerf_t. These metrics

are written in sorted fashion where the first element has the lowest compute

time. The total number of resulting algorithms can be queried through the API
cudnnGetConvolutionForwardMaxCount ().

This function is host blocking.

It is recommend to run this function prior to allocating layer data; doing otherwise
may needlessly inhibit some algorithm options due to resource usage.

Parameters
handle

Input. Handle to a previously created cuDNN context.
xDesc

Input. Handle to the previously initialized input tensor descriptor.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 121

cuDNN API Reference

wDesc

Input. Handle to a previously initialized filter descriptor.
convDesc

Input. Previously initialized convolution descriptor.
yDesc

Input. Handle to the previously initialized output tensor descriptor.
requestedAlgoCount

Input. The maximum number of elements to be stored in perfResults.
returnedAlgoCount

Output. The number of output elements stored in perfResults.
perfResults

Output. A user-allocated array to store performance metrics sorted ascending by
compute time.

The possible error values returned by this function and their meanings are listed below.
Returns
CUDNN_STATUS_ SUCCESS

The query was successful.
CUDNN_STATUS BAD PARAM

At least one of the following conditions are met:

handle is not allocated properly.

xDesc, wDesc or yDesc is not allocated properly.
xDesc, wDesc or yDesc has fewer than 1 dimension.
Either returnedCount or perfResults is nil.

vV vV v v VY

requestedCount is less than 1.
CUDNN_STATUS ALLOC_FAILED

This function was unable to allocate memory to store sample input, filters and output.
CUDNN_STATUS INTERNAL ERROR

At least one of the following conditions are met:

» The function was unable to allocate neccesary timing objects.
» The function was unable to deallocate neccesary timing objects.
» The function was unable to deallocate sample input, filters and output.

4.67. cudnnFindConvolutionForwardAlgorithmEx

cudnnStatus t cudnnFindConvolutionForwardAlgorithmEx (

cudnnHandle t handle,
const cudnnTensorDescriptor t xDesc,
const void *x,

const cudnnFilterDescriptor t wDesc,

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 122

cuDNN API Reference

const void *w,

const cudnnConvolutionDescriptor t convDesc,

const cudnnTensorDescriptor t yDesc,

void V5

const int requestedAlgoCount,
int *returnedAlgoCount,
cudnnConvolutionFwdAlgoPerf t *perfResults,

void *workSpace,

size t workSpaceSizelInBytes)

This function attempts all available cuDNN algorithms (including
CUDNN_TENSOR_OP_MATH and CUDNN_DEFAULT_MATH versions

of algorithms where CUDNN_TENSOR_OP_MATH may be available) for
cudnnConvolutionForward, using user-allocated GPU memory, and outputs
performance metrics to a user-allocated array of cudnnConvolutionFwdAlgoPerf t.
These metrics are written in sorted fashion where the first element has the lowest
compute time. The total number of resulting algorithms can be queried through the API
cudnnGetConvolutionForwardMaxCount ().

This function is host blocking.

Parameters
handle

Input. Handle to a previously created cuDNN context.
xDesc

Input. Handle to the previously initialized input tensor descriptor.

Input. Data pointer to GPU memory associated with the tensor descriptor xDesc.
wDesc

Input. Handle to a previously initialized filter descriptor.
w

Input. Data pointer to GPU memory associated with the filter descriptor wbesc.
convDesc

Input. Previously initialized convolution descriptor.
yDesc

Input. Handle to the previously initialized output tensor descriptor.

Input/Output. Data pointer to GPU memory associated with the tensor descriptor
yDesc. The content of this tensor will be overwritten with arbitary values.

requestedAlgoCount

Input. The maximum number of elements to be stored in perfResults.
returnedAlgoCount

Output. The number of output elements stored in perfResults.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 123

perfResults

cuDNN API Reference

Output. A user-allocated array to store performance metrics sorted ascending by

compute time.

workSpace

Input. Data pointer to GPU memory that is a necessary workspace for some

algorithms. The size of this workspace will determine the availability of algorithms. A

nil pointer is considered a workSpace of 0 bytes.

workSpaceSizelnBytes

Input. Specifies the size in bytes of the provided workspace.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

The query was successful.
CUDNN_STATUS BAD PARAM

At least one of the following conditions are met:

x, w Or y is nil.

vV V. v v v Vv

CUDNN_STATUS INTERNAL ERROR

handle is not allocated properly.

requestedCount is less than 1.

xDesc, wDesc or yDesc is not allocated properly.
xDesc, wDesc or yDesc has fewer than 1 dimension.

Either returnedCount or perfResults is nil.

At least one of the following conditions are met:

» The function was unable to allocate neccesary timing objects.
» The function was unable to deallocate neccesary timing objects.
» The function was unable to deallocate sample input, filters and output.

4.68. cudnnFindRNNBackwardDataAlgorithmEx

cudnnStatus t cudnnFindRNNBackwardDataAlgorithmEx (

cudnnHandle t

const cudnnRNNDescriptor t
const int

const cudnnTensorDescriptor t
const void

const cudnnTensorDescriptor t
const void

const cudnnTensorDescriptor t
const void

const cudnnTensorDescriptor t
const void

const cudnnFilterDescriptor t
const void

const cudnnTensorDescriptor t

www.nvidia.com
cuDNN 7.5.0

handle,
rnnDesc,
seglLength,
*yDesc,
Y,
*dyDesc,
*dy,
dhyDesc,
*dhy,
dcyDesc,
*dcy,
wDesc,
*W,
hxDesc,

DU-06702-001_v07 | 124

cuDNN API Reference

const void *nx,

const cudnnTensorDescriptor t cxDesc,

const wvoid WEsE,

const cudnnTensorDescriptor t *dxDesc,

void *dx,

const cudnnTensorDescriptor t dhxDesc,

void *dhx,

const cudnnTensorDescriptor t dcxDesc,

void *dex,

const float findIntensity,

const int requestedAlgoCount,

int *returnedAlgoCount,

cudnnAlgorithmPerformance t *perfResults,

void *workspace,

size t workSpaceSizeInBytes,

const void *reserveSpace,

size t reserveSpaceSizelInBytes)
(New for 7.1)

This function attempts all available cuDNN algorithms for cudnnRNNBackwardData,
using user-allocated GPU memory. It outputs the parameters that

influence the performance of the algorithm to a user-allocated array of
cudnnAlgorithmPerformance_t. These parameter metrics are written in sorted
fashion where the first element has the lowest compute time.

Parameters
handle

Input. Handle to a previously created cuDNN context.
rnnDesc

Input. A previously initialized RNN descriptor.
seqLength

Input. Number of iterations to unroll over. The value of this seqLength must not
exceed the value that was used in cudnnGetRNNWorkspaceSize () function for
querying the workspace size required to execute the RNN.

yDesc

Input. An array of fully packed tensor descriptors describing the output from each
recurrent iteration (one descriptor per iteration). The second dimension of the tensor
depends on the direction argument passed to the cudnnSetRNNDescriptor call
used to initialize rnnDesc:

» Ifdirection is CUDNN_UNIDIRECTIONAL the second dimension should match
the hiddenSize argument passed to cudnnSetRNNDescriptor.

» Ifdirection is CUDNN_BIDIRECTIONAL the second dimension should match
double the hiddenSize argument passed to cudnnSetRNNDescriptor.

The first dimension of the tensor n must match the first dimension of the tensor n in
dyDesc.

Input. Data pointer to GPU memory associated with the output tensor descriptor
yDesc.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 125

cuDNN API Reference

dyDesc

Input. An array of fully packed tensor descriptors describing the gradient at the
output from each recurrent iteration (one descriptor per iteration). The second
dimension of the tensor depends on the direction argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc:

» Ifdirectionis CUDNN UNIDIRECTIONAL the second dimension should match
the hiddenSize argument passed to cudnnSetRNNDescriptor.

» Ifdirection is CUDNN_BIDIRECTIONAL the second dimension should match
double the hiddenSize argument passed to cudnnSetRNNDescriptor.

The first dimension of the tensor n must match the second dimension of the tensor n
in dxDesc.

dy

Input. Data pointer to GPU memory associated with the tensor descriptors in the
array dyDesc.

dhyDesc

Input. A tully packed tensor descriptor describing the gradients at the final hidden
state of the RNN. The first dimension of the tensor depends on the direction
argument passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc:

» Ifdirection is CUDNN_UNIDIRECTIONAL the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor.

» Ifdirection is CUDNN_BIDIRECTIONAL the first dimension should match
double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the first dimension of the tensors described in
dxDesc. The third dimension must match the hiddenSize argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully
packed.

dhy

Input. Data pointer to GPU memory associated with the tensor descriptor dhyDesc. If
a NULL pointer is passed, the gradients at the final hidden state of the network will
be initialized to zero.

dcyDesc

Input. A fully packed tensor descriptor describing the gradients at the final cell state
of the RNN. The first dimension of the tensor depends on the direction argument
passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc:

» Ifdirection is CUDNN_UNIDIRECTIONAL the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor.

» Ifdirection is CUDNN_BIDIRECTIONAL the first dimension should match
double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the first dimension of the tensors described in
dxDesc. The third dimension must match the hiddenSize argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully
packed.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 126

cuDNN API Reference

dcy

Input. Data pointer to GPU memory associated with the tensor descriptor dcyDesc.
If a NULL pointer is passed, the gradients at the final cell state of the network will be
initialized to zero.

wDesc

Input. Handle to a previously initialized filter descriptor describing the weights for
the RNN.

w

Input. Data pointer to GPU memory associated with the filter descriptor wbesc.
hxDesc

Input. A fully packed tensor descriptor describing the initial hidden state of the RNN.
The first dimension of the tensor depends on the direction argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc:

» Ifdirection is CUDNN UNIDIRECTIONAL the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor.

» Ifdirection is CUDNN_BIDIRECTIONAL the first dimension should match
double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the first dimension of the tensors described in
dxDesc. The third dimension must match the hiddenSize argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully
packed.

hx

Input. Data pointer to GPU memory associated with the tensor descriptor hxDesc. If
a NULL pointer is passed, the initial hidden state of the network will be initialized to
zero.

cxDesc

Input. A tully packed tensor descriptor describing the initial cell state for LSTM
networks. The first dimension of the tensor depends on the direction argument
passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc:

» Ifdirection is CUDNN_UNIDIRECTIONAL the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor.

» Ifdirection is CUDNN_BIDIRECTIONAL the first dimension should match
double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the first dimension of the tensors described in
dxDesc. The third dimension must match the hiddenSize argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully
packed.

cX

Input. Data pointer to GPU memory associated with the tensor descriptor cxDesc. If a
NULL pointer is passed, the initial cell state of the network will be initialized to zero.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 127

cuDNN API Reference

dxDesc

Input. An array of fully packed tensor descriptors describing the gradient at the
input of each recurrent iteration (one descriptor per iteration). The first dimension
(batch size) of the tensors may decrease from element n to element n+1 but may
not increase. Each tensor descriptor must have the same second dimension (vector
length).

dx

Output. Data pointer to GPU memory associated with the tensor descriptors in the
array dxDesc.

dhxDesc

Input. A tully packed tensor descriptor describing the gradient at the initial hidden
state of the RNN. The first dimension of the tensor depends on the direction
argument passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc:

» Ifdirectionis CUDNN UNIDIRECTIONAL the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor.

» Ifdirection is CUDNN_BIDIRECTIONAL the first dimension should match
double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the first dimension of the tensors described in
dxDesc. The third dimension must match the hiddenSize argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully
packed.

dhx

Output. Data pointer to GPU memory associated with the tensor descriptor dhxDesc.
If a NULL pointer is passed, the gradient at the hidden input of the network will not
be set.

dexDesc

Input. A tully packed tensor descriptor describing the gradient at the initial cell state
of the RNN. The first dimension of the tensor depends on the direction argument
passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc:

» Ifdirection is CUDNN_UNIDIRECTIONAL the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor.

» Ifdirection is CUDNN_BIDIRECTIONAL the first dimension should match
double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the first dimension of the tensors described in
dxDesc. The third dimension must match the hiddenSize argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully
packed.

dex
Output. Data pointer to GPU memory associated with the tensor descriptor dexDesc.

If a NULL pointer is passed, the gradient at the cell input of the network will not be
set.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 128

cuDNN API Reference

findIntensity

Input. This input was previously unused in versions prior to 7.2.0. It is used in cuDNN
7.2.0 and later versions to control the overall runtime of the RNN find algorithms, by
selecting the percentage of a large Cartesian product space to be searched.

» Setting findIntensity within the range (0,1.] will set a percentage of the entire
RNN search space to search. When findIntensity is set to 1.0, a full search is
performed over all RNN parameters.

» When findIntensity is set to 0.0f, a quick, minimal search is performed. This
setting has the best runtime. However, in this case the parameters returned
by this function will not correspond to the best performance of the algorithm;
a longer search might discover better parameters. This option will execute
up to three instances of the configured RNN problem. Runtime will vary
proportionally to RNN problem size, as it will in the other cases, hence no
guarantee of an explicit time bound can be given.

» Setting f£indIntensity within the range [-1.,0) sets a percentage of a reduced
Cartesian product space to be searched. This reduced searched space has been
heuristically selected to have good performance. The setting of -1.0 represents a
full search over this reduced search space.

» Values outside the range [-1,1] are truncated to the range [-1,1], and then
interpreted as per the above.

» Setting findIntensity to 1.0 in cuDNN 7.2 and later versions is equivalent to
the behavior of this function in versions prior to cuDNN 7.2.0.

» This function times the single RNN executions over large parameter spaces--one
execution per parameter combination. The times returned by this function are
latencies.

requestedAlgoCount

Input. The maximum number of elements to be stored in perfResults.
returnedAlgoCount

Output. The number of output elements stored in perfResults.
perfResults

Output. A user-allocated array to store performance metrics sorted ascending by
compute time.

workspace

Input. Data pointer to GPU memory to be used as a workspace for this call.
workSpaceSizelnBytes

Input. Specifies the size in bytes of the provided workspace.
reserveSpace

Input/Output. Data pointer to GPU memory to be used as a reserve space for this call.
reserveSpaceSizelnBytes

Input. Specifies the size in bytes of the provided reserveSpace.

The possible error values returned by this function and their meanings are listed below.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 129

cuDNN API Reference

Returns
CUDNN_STATUS SUCCESS

The function launched successfully.
CUDNN_STATUS_NOT SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD PARAM

At least one of the following conditions are met:

» The descriptor rnnDesc is invalid.

» Atleast one of the descriptors dhxDesc, wDesc, hxDesc, cxDesc,
dcxDesc, dhyDesc, dcyDesc or one of the descriptors in yDesc, dxdesc,
dydesc is invalid.

» The descriptors in one of yDesc, dxDesc, dyDesc, dhxDesc, wDesc,
hxDesc, cxDesc, dcxDesc, dhyDesc, dcyDesc has incorrect strides or

dimensions.

» workSpaceSizeInBytes is too small.

» reserveSpaceSizeInBytes is too small.

CUDNN_STATUS_EXECUTION_ FAILED

The function failed to launch on the GPU.

CUDNN_STATUS_ALLOC_FAILED

The function was unable to allocate memory.

4.69. cudnnFindRNNBackwardWeightsAlgorithmEx

cudnnStatus t cudnnFindRNNBackwardWeightsAlgorithmEx (

cudnnHaHdle_t handle,

const cudnnRNNDescriptor t rnnDesc,

const int seqglength,

const cudnnTensorDescriptor t *xDesc,

const void *x,

const cudnnTensorDescriptor t hxDesc,

const void WIAsK

const cudnnTensorDescriptor t *yDesc,

const void W,

const float findIntensity,

const int requestedAlgoCount,

int *returnedAlgoCount,

cudnnAlgorithmPerformance t *perfResults,

const void *workspace,

size t workSpaceSizelInBytes,

const cudnnFilterDescriptor t dwDesc,

void *dw,

const void *reserveSpace,

size t reserveSpaceSizelInBytes)
(New for 7.1)

This function attempts all available cuDNN algorithms for
cudnnRNNBackwardWeights, using user-allocated GPU memory. It outputs the

www.nvidia.com
cuDNN 7.5.0

DU-06702-001_v07 | 130

cuDNN API Reference

parameters that influence the performance of the algorithm to a user-allocated array
of cudnnAlgorithmPerformance_t. These parameter metrics are written in sorted
fashion where the first element has the lowest compute time.

Parameters
handle

Input. Handle to a previously created cuDNN context.
rmnDesc

Input. A previously initialized RNN descriptor.
seqLength

Input. Number of iterations to unroll over. The value of this seqLength must not
exceed the value that was used in cudnnGetRNNWorkspaceSize () function for
querying the workspace size required to execute the RNN.

xDesc

Input. An array of fully packed tensor descriptors describing the input to each
recurrent iteration (one descriptor per iteration). The first dimension (batch size) of
the tensors may decrease from element n to element n+1 but may not increase. Each
tensor descriptor must have the same second dimension (vector length).

Input. Data pointer to GPU memory associated with the tensor descriptors in the
array xDesc.

hxDesc

Input. A fully packed tensor descriptor describing the initial hidden state of the RNN.
The first dimension of the tensor depends on the direction argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc:

» Ifdirection is CUDNN_UNIDIRECTIONAL the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor.

» Ifdirection is CUDNN_BIDIRECTIONAL the first dimension should match
double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the first dimension of the tensors described in
xDesc. The third dimension must match the hiddenSize argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully
packed.

hx

Input. Data pointer to GPU memory associated with the tensor descriptor hxDesc. If
a NULL pointer is passed, the initial hidden state of the network will be initialized to
zero.

yDesc

Input. An array of fully packed tensor descriptors describing the output from each
recurrent iteration (one descriptor per iteration). The second dimension of the tensor
depends on the direction argument passed to the cudnnSetRNNDescriptor call
used to initialize rnnDesc:

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 131

cuDNN API Reference

If direction is CUDNN_UNIDIRECTIONAL the second dimension should match
the hiddenSize argument passed to cudnnSetRNNDescriptor.

If direction is CUDNN_BIDIRECTIONAL the second dimension should match
double the hiddenSize argument passed to cudnnSetRNNDescriptor.

The first dimension of the tensor n must match the first dimension of the tensor n in
dyDesc.

Input. Data pointer to GPU memory associated with the output tensor descriptor
yDesc.

findIntensity

Input.This input was previously unused in versions prior to 7.2.0. It is used in cuDNN
7.2.0 and later versions to control the overall runtime of the RNN find algorithms, by
selecting the percentage of a large Cartesian product space to be searched.

>

Setting £indIntensity within the range (0,1.] will set a percentage of the entire
RNN search space to search. When findIntensity is set to 1.0, a full search is
performed over all RNN parameters.

When findIntensity is set to 0.0f, a quick, minimal search is performed. This
setting has the best runtime. However, in this case the parameters returned

by this function will not correspond to the best performance of the algorithm;

a longer search might discover better parameters. This option will execute

up to three instances of the configured RNN problem. Runtime will vary
proportionally to RNN problem size, as it will in the other cases, hence no
guarantee of an explicit time bound can be given.

Setting £indIntensity within the range [-1.,0) sets a percentage of a reduced
Cartesian product space to be searched. This reduced searched space has been
heuristically selected to have good performance. The setting of -1.0 represents a
full search over this reduced search space.

Values outside the range [-1,1] are truncated to the range [-1,1], and then
interpreted as per the above.

Setting findIntensity to 1.0 in cuDNN 7.2 and later versions is equivalent to
the behavior of this function in versions prior to cuDNN 7.2.0.

This function times the single RNN executions over large parameter spaces--one
execution per parameter combination. The times returned by this function are
latencies.

requestedAlgoCount

Input. The maximum number of elements to be stored in perfResults.

returnedAlgoCount

Output. The number of output elements stored in perfResults.

perfResults

Output. A user-allocated array to store performance metrics sorted ascending by
compute time.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 132

cuDNN API Reference

workspace

Input. Data pointer to GPU memory to be used as a workspace for this call.
workSpaceSizelnBytes

Input. Specifies the size in bytes of the provided workspace.
dwDesc

Input. Handle to a previously initialized filter descriptor describing the gradients of
the weights for the RNN.

dw

Input/Output. Data pointer to GPU memory associated with the filter descriptor
dwDesc.

reserveSpace

Input. Data pointer to GPU memory to be used as a reserve space for this call.
reserveSpaceSizelnBytes

Input. Specifies the size in bytes of the provided reserveSpace
The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

The function launched successfully.
CUDNN_STATUS NOT_ SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD PARAM

At least one of the following conditions are met:

» The descriptor rnnDesc is invalid.

» At least one of the descriptors hxDesc, dwDesc or one of the descriptors in
xDesc, yDesc isinvalid.

» The descriptors in one of xDesc, hxDesc, yDesc, dwDesc has incorrect
strides or dimensions.

» workSpaceSizeInBytes is too small.
» reserveSpaceSizeInBytes is too small.

CUDNN_STATUS EXECUTION_ FAILED

The function failed to launch on the GPU.
CUDNN_STATUS_ALLOC_FAILED

The function was unable to allocate memory.

4.70. cudnnFindRNNForwardInferenceAlgorithmEx

cudnnStatus_t cudnnFindRNNForwardInferenceAlgorithmEx (

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 133

cuDNN API Reference

cudnnHandle t handle,

const cudnnRNNDescriptor t rnnDesc,

const int seqglength,

const cudnnTensorDescriptor t *xDesc,

const void X,

const cudnnTensorDescriptor t hxDesc,

const wvoid *hx,

const cudnnTensorDescriptor t cxDesc,

const void *ex,

const cudnnFilterDescriptor t wDesc,

const wvoid *w,

const cudnnTensorDescriptor t *yDesc,

void w5

const cudnnTensorDescriptor t hyDesc,

void =057

const cudnnTensorDescriptor t cyDesc,

void ey

const float findIntensity,

const int requestedAlgoCount,

int *returnedAlgoCount,

cudnnAlgorithmPerformance t *perfResults,

void *workspace,

size t workSpaceSizeInBytes)
(New for 7.1)

This function attempts all available cuDNN algorithms for
cudnnRNNForwardInference, using user-allocated GPU memory. It outputs the
parameters that influence the performance of the algorithm to a user-allocated array
of cudnnAlgorithmPerformance_t. These parameter metrics are written in sorted
fashion where the first element has the lowest compute time.

Parameters
handle

Input. Handle to a previously created cuDNN context.
rnnDesc

Input. A previously initialized RNN descriptor.
seqLength

Input. Number of iterations to unroll over. The value of this seqLength must not
exceed the value that was used in cudnnGetRNNWorkspaceSize () function for
querying the workspace size required to execute the RNN.

xDesc

Input. An array of fully packed tensor descriptors describing the input to each
recurrent iteration (one descriptor per iteration). The first dimension (batch size) of
the tensors may decrease from element n to element n+1 but may not increase. Each
tensor descriptor must have the same second dimension (vector length).

Input. Data pointer to GPU memory associated with the tensor descriptors in the
array xDesc. The data are expected to be packed contiguously with the first element
of iteration n+1 following directly from the last element of iteration n.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 134

cuDNN API Reference

hxDesc

Input. A fully packed tensor descriptor describing the initial hidden state of the RNN.
The first dimension of the tensor depends on the direction argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc:

» Ifdirectionis CUDNN UNIDIRECTIONAL the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor.

» Ifdirection is CUDNN_BIDIRECTIONAL the first dimension should match
double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the first dimension of the tensors described in
xDesc. The third dimension must match the hiddensSize argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully
packed.

hx

Input. Data pointer to GPU memory associated with the tensor descriptor hxDesc. If
a NULL pointer is passed, the initial hidden state of the network will be initialized to
zero.

cxDesc

Input. A tully packed tensor descriptor describing the initial cell state for LSTM
networks. The first dimension of the tensor depends on the direction argument
passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc:

» Ifdirection is CUDNN_UNIDIRECTIONAL the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor.

» Ifdirection is CUDNN_BIDIRECTIONAL the first dimension should match
double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the first dimension of the tensors described in
xDesc. The third dimension must match the hiddenSize argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully
packed.

cX

Input. Data pointer to GPU memory associated with the tensor descriptor cxDesc. If a
NULL pointer is passed, the initial cell state of the network will be initialized to zero.

wDesc

Input. Handle to a previously initialized filter descriptor describing the weights for
the RNN.

Input. Data pointer to GPU memory associated with the filter descriptor wDesc.
yDesc

Input. An array of fully packed tensor descriptors describing the output from each
recurrent iteration (one descriptor per iteration). The second dimension of the tensor
depends on the direction argument passed to the cudnnSetRNNDescriptor call
used to initialize rnnDesc:

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 135

cuDNN API Reference

» Ifdirection is CUDNN_UNIDIRECTIONAL the second dimension should match
the hiddenSize argument passed to cudnnSetRNNDescriptor.

» Ifdirection is CUDNN_BIDIRECTIONAL the second dimension should match
double the hiddenSize argument passed to cudnnSetRNNDescriptor.

The first dimension of the tensor n must match the first dimension of the tensor n in
xDesc.

Output. Data pointer to GPU memory associated with the output tensor descriptor
yDesc. The data are expected to be packed contiguously with the first element of
iteration n+1 following directly from the last element of iteration n.

hyDesc

Input. A fully packed tensor descriptor describing the final hidden state of the RNN.
The first dimension of the tensor depends on the direction argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc:

» Ifdirection is CUDNN_UNIDIRECTIONAL the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor.

» Ifdirection is CUDNN_BIDIRECTIONAL the first dimension should match
double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the first dimension of the tensors described in
xDesc. The third dimension must match the hiddensize argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully
packed.

hy

Output. Data pointer to GPU memory associated with the tensor descriptor hyDesc. If
a NULL pointer is passed, the final hidden state of the network will not be saved.

cyDesc

Input. A fully packed tensor descriptor describing the final cell state for LSTM
networks. The first dimension of the tensor depends on the direction argument
passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc:

» Ifdirection is CUDNN_UNIDIRECTIONAL the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor.

» Ifdirection is CUDNN_BIDIRECTIONAL the first dimension should match
double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the first dimension of the tensors described in
xDesc. The third dimension must match the hiddenSize argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully
packed.

cy

Output. Data pointer to GPU memory associated with the tensor descriptor cyDesc. If
a NULL pointer is passed, the final cell state of the network will be not be saved.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 136

cuDNN API Reference

findIntensity

Input. This input was previously unused in versions prior to 7.2.0. It is used in cuDNN
7.2.0 and later versions to control the overall runtime of the RNN find algorithms, by
selecting the percentage of a large Cartesian product space to be searched.

» Setting findIntensity within the range (0,1.] will set a percentage of the entire
RNN search space to search. When findIntensity is set to 1.0, a full search is
performed over all RNN parameters.

» When findIntensity is set to 0.0f, a quick, minimal search is performed. This
setting has the best runtime. However, in this case the parameters returned
by this function will not correspond to the best performance of the algorithm;
a longer search might discover better parameters. This option will execute
up to three instances of the configured RNN problem. Runtime will vary
proportionally to RNN problem size, as it will in the other cases, hence no
guarantee of an explicit time bound can be given.

» Setting f£indIntensity within the range [-1.,0) sets a percentage of a reduced
Cartesian product space to be searched. This reduced searched space has been
heuristically selected to have good performance. The setting of -1.0 represents a
full search over this reduced search space.

» Values outside the range [-1,1] are truncated to the range [-1,1], and then
interpreted as per the above.

» Setting findIntensity to 1.0 in cuDNN 7.2 and later versions is equivalent to
the behavior of this function in versions prior to cuDNN 7.2.0.

» This function times the single RNN executions over large parameter spaces--one
execution per parameter combination. The times returned by this function are
latencies.

requestedAlgoCount

Input. The maximum number of elements to be stored in perfResults.
returnedAlgoCount

Output. The number of output elements stored in perfResults.
perfResults

Output. A user-allocated array to store performance metrics sorted ascending by
compute time.

workspace

Input. Data pointer to GPU memory to be used as a workspace for this call.
workSpaceSizelnBytes

Input. Specifies the size in bytes of the provided workspace.

Returns
CUDNN_S TATUS_SUCCESS

The function launched successfully.
CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 137

cuDNN API Reference

CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:

» The descriptor rnnDesc is invalid.

» Atleast one of the descriptors hxDesc, cxDesc, wDesc, hyDesc, cyDesc or
one of the descriptors in xDesc, yDesc is invalid.

» The descriptors in one of xDesc, hxDesc, cxDesc, wDesc, yDesc,
hyDesc, cyDesc have incorrect strides or dimensions.
» workSpaceSizeInBytes is too small.

CUDNN_STATUS_EXECUTION_ FAILED

The function failed to launch on the GPU.
CUDNN_STATUS_ALLOC_FAILED

The function was unable to allocate memory.

4.71. cudnnFindRNNForwardTrainingAlgorithmEx

cudnnStatus t cudnnFindRNNForwardTrainingAlgorithmEx (

cudnnHandle t handle,

const cudnnRNNDescriptor t rnnDesc,

const int seglLength,

const cudnnTensorDescriptor t *xDesc,

const void *x,

const cudnnTensorDescriptor t hxDesc,

const void *hx,

const cudnnTensorDescriptor t cxDesc,

const void BEsK,

const cudnnFilterDescriptor t wDesc,

const void *w,

const cudnnTensorDescriptor t *yDesc,

void “Vp

const cudnnTensorDescriptor t hyDesc,

void IR,

const cudnnTensorDescriptor t cyDesc,

void el

const float findIntensity,

const int requestedAlgoCount,

int *returnedAlgoCount,

cudnnAlgorithmPerformance t *perfResults,

void *workspace,

size t workSpaceSizeInBytes,

void *reserveSpace,

size t reserveSpaceSizeInBytes)
(New for 7.1)

This function attempts all available cuDNN algorithms for
cudnnRNNForwardTraining, using user-allocated GPU memory. It outputs the
parameters that influence the performance of the algorithm to a user-allocated array
of cudnnAlgorithmPerformance_t. These parameter metrics are written in sorted
fashion where the first element has the lowest compute time.

Parameters

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 138

cuDNN API Reference

handle

Input. Handle to a previously created cuDNN context.
rnnDesc

Input. A previously initialized RNN descriptor.
xDesc

Input. An array of fully packed tensor descriptors describing the input to each
recurrent iteration (one descriptor per iteration). The first dimension (batch size) of
the tensors may decrease from element n to element n+1 but may not increase. Each
tensor descriptor must have the same second dimension (vector length).

seqLength

Input. Number of iterations to unroll over. The value of this seqLength must not
exceed the value that was used in cudnnGetRNNWorkspaceSize () function for
querying the workspace size required to execute the RNN.

Input. Data pointer to GPU memory associated with the tensor descriptors in the
array xDesc.

hxDesc

Input. A fully packed tensor descriptor describing the initial hidden state of the RNN.
The first dimension of the tensor depends on the direction argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc:

» Ifdirectionis CUDNN UNIDIRECTIONAL the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor.

» Ifdirection is CUDNN_BIDIRECTIONAL the first dimension should match
double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the first dimension of the tensors described in
xDesc. The third dimension must match the hiddenSize argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully
packed.

hx

Input. Data pointer to GPU memory associated with the tensor descriptor hxDesc. If
a NULL pointer is passed, the initial hidden state of the network will be initialized to
zero.

cxDesc

Input. A tully packed tensor descriptor describing the initial cell state for LSTM
networks. The first dimension of the tensor depends on the direction argument
passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc:

» Ifdirection is CUDNN_UNIDIRECTIONAL the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor.

» Ifdirection is CUDNN_BIDIRECTIONAL the first dimension should match
double the numLayers argument passed to cudnnSetRNNDescriptor.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 139

cuDNN API Reference

The second dimension must match the first dimension of the tensors described in
xDesc. The third dimension must match the hiddenSize argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully
packed.

CX

Input. Data pointer to GPU memory associated with the tensor descriptor cxDesc. If a
NULL pointer is passed, the initial cell state of the network will be initialized to zero.

wDesc

Input. Handle to a previously initialized filter descriptor describing the weights for
the RNN.

Input. Data pointer to GPU memory associated with the filter descriptor wDesc.
yDesc

Input. An array of fully packed tensor descriptors describing the output from each
recurrent iteration (one descriptor per iteration). The second dimension of the tensor
depends on the direction argument passed to the cudnnSetRNNDescriptor call
used to initialize rnnDesc:

» Ifdirection is CUDNN_UNIDIRECTIONAL the second dimension should match
the hiddenSize argument passed to cudnnSetRNNDescriptor.

» Ifdirection is CUDNN_BIDIRECTIONAL the second dimension should match
double the hiddenSize argument passed to cudnnSetRNNDescriptor.

The first dimension of the tensor n must match the first dimension of the tensor n in
xDesc.

Output. Data pointer to GPU memory associated with the output tensor descriptor
yDesc.

hyDesc

Input. A fully packed tensor descriptor describing the final hidden state of the RNN.
The first dimension of the tensor depends on the direction argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc:

» Ifdirection is CUDNN_UNIDIRECTIONAL the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor.

» Ifdirection is CUDNN_BIDIRECTIONAL the first dimension should match
double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the first dimension of the tensors described in
xDesc. The third dimension must match the hiddenSize argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully
packed.

hy

Output. Data pointer to GPU memory associated with the tensor descriptor hyDesc. If
a NULL pointer is passed, the final hidden state of the network will not be saved.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 140

cuDNN API Reference

cyDesc

Input. A fully packed tensor descriptor describing the final cell state for LSTM
networks. The first dimension of the tensor depends on the direction argument
passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc:

» Ifdirectionis CUDNN UNIDIRECTIONAL the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor.

» Ifdirection is CUDNN_BIDIRECTIONAL the first dimension should match
double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the first dimension of the tensors described in
xDesc. The third dimension must match the hiddensSize argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully
packed.

cy

Output. Data pointer to GPU memory associated with the tensor descriptor cyDesc. If
a NULL pointer is passed, the final cell state of the network will be not be saved.

findIntensity

Input.This input was previously unused in versions prior to 7.2.0. It is used in cuDNN
7.2.0 and later versions to control the overall runtime of the RNN find algorithms, by
selecting the percentage of a large Cartesian product space to be searched.

» Setting f£indIntensity within the range (0,1.] will set a percentage of the entire
RNN search space to search. When £indIntensity is set to 1.0, a full search is
performed over all RNN parameters.

» When findIntensity is set to 0.0f, a quick, minimal search is performed. This
setting has the best runtime. However, in this case the parameters returned
by this function will not correspond to the best performance of the algorithm;

a longer search might discover better parameters. This option will execute
up to three instances of the configured RNN problem. Runtime will vary
proportionally to RNN problem size, as it will in the other cases, hence no
guarantee of an explicit time bound can be given.

» Setting findIntensity within the range [-1.,0) sets a percentage of a reduced
Cartesian product space to be searched. This reduced searched space has been
heuristically selected to have good performance. The setting of -1.0 represents a
full search over this reduced search space.

» Values outside the range [-1,1] are truncated to the range [-1,1], and then
interpreted as per the above.

» Setting findIntensity to 1.0 in cuDNN 7.2 and later versions is equivalent to
the behavior of this function in versions prior to cuDNN 7.2.0.

» This function times the single RNN executions over large parameter spaces--one
execution per parameter combination. The times returned by this function are
latencies.

requestedAlgoCount

Input. The maximum number of elements to be stored in perfResults.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 141

cuDNN API Reference

returnedAlgoCount

Output. The number of output elements stored in perfResults.
perfResults

Output. A user-allocated array to store performance metrics sorted ascending by
compute time.

workspace

Input. Data pointer to GPU memory to be used as a workspace for this call.
workSpaceSizelnBytes

Input. Specifies the size in bytes of the provided workspace.
reserveSpace

Input/Output. Data pointer to GPU memory to be used as a reserve space for this call.
reserveSpaceSizelnBytes

Input. Specifies the size in bytes of the provided reserveSpace
The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

The function launched successfully.
CUDNN_STATUS BAD PARAM

At least one of the following conditions are met:

» The descriptor rnnDesc is invalid.

» Atleast one of the descriptors hxDesc, cxDesc, wDesc, hyDesc, cyDesc or
one of the descriptors in xDesc, yDesc is invalid.

» The descriptors in one of xDesc, hxDesc, cxDesc, wDesc, yDesc,
hyDesc, cyDesc have incorrect strides or dimensions.

» workSpaceSizeInBytes is too small.

» reserveSpaceSizelInBytes is too small.

CUDNN_STATUS EXECUTION_ FAILED

The function failed to launch on the GPU.
CUDNN_STATUS_ALLOC_FAILED

The function was unable to allocate memory.

4.72. cudnnGetActivationDescriptor

cudnnStatus t cudnnGetActivationDescriptor (

const cudnnActivationDescriptor t activationDesc,
cudnnActivationMode t *mode,
cudnnNanPropagation t *reluNanOpt,
double *coef)

This function queries a previously initialized generic activation descriptor object.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 142

cuDNN API Reference

Parameters
activationDesc

Input. Handle to a previously created activation descriptor.
mode

Output. Enumerant to specify the activation mode.
reluNanOpt

Output. Enumerant to specify the Nan propagation mode.
coef

Output. Floating point number to specify the clipping threashod when the activation
mode is set to CUDNN_ACTIVATION CLIPPED_ RELU or to specify the alpha coefficient
when the activation mode is set to CUDNN_ACTIVATION ELU.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_S TATUS_SUCCESS

The object was queried successfully.

4.73. cudnnGetAlgorithmDescriptor

cudnnStatus_t cudnnGetAlgorithmDescriptor (

const cudnnAlgorithmDescriptor t algoDesc,
cudnnAlgorithm t *algorithm)
(New for 7.1)

This function queries a previously initialized generic algorithm descriptor object.

Parameters
algorithmDesc

Input. Handle to a previously created algorithm descriptor.
algorithm

Input. Struct to specify the algorithm.

Returns
CUDNN_STATUS_ SUCCESS

The object was queried successfully.

4.74. cudnnGetAlgorithmPerformance

cudnnStatus_t cudnnGetAlgorithmPerformance (
const cudnnAlgorithmPerformance t algoPerf,

cudnnAlgorithmDescriptor t* algoDesc,
cudnnStatus t* status,
float* time,
size t* memory)

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 143

cuDNN API Reference

(New for 7.1)
This function queries a previously initialized generic algorithm performance object.

Parameters
algoPerf

Input/Output. Handle to a previously created algorithm performance object.
algoDesc

Output. The algorithm descriptor which the performance results describe.
status

Output. The cudnn status returned from running the algoDesc algorithm.
timecoef

Output. The GPU time spent running the algoDesc algorithm.
memory

Output. The GPU memory needed to run the algoDesc algorithm.

Returns
CUDNN_STATUS_SUCCESS

The object was queried successfully.

4.75. cudnnGetAlgorithmSpaceSize

cudnnStatus t cudnnGetAlgorithmSpaceSize (

cudnnHandle t handle,

cudnnAlgorithmDescriptor t algoDesc,

size t* algoSpaceSizeInBytes)
(New for 7.1)

This function queries for the amount of host memory needed to call
cudnnSaveAlgorithm, much like the “get workspace size” functions query for the
amount of device memory needed.

Parameters
handle

Input. Handle to a previously created cuDNN context.
algoDesc

Input. A previously created algorithm descriptor.
algoSpaceSizeInBytes

Ouptut. Amount of host memory needed as workspace to be able to save the
metadata from the specified algoDesc.

Returns
CUDNN_STATUS_SUCCESS

The function launched successfully.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 144

CUDNN_STATUS BAD PARAM

At least one of the arguments is null.

cuDNN API Reference

4.76. cudnnGetAttnDescriptor

cudnnStatus t cudnnGetAttnDescriptor (
cudnnAttnDescriptor t attnDesc,
cudnnAttnQueryMap t *queryMap,

int *nHeads,
double *smScaler,

cudnnDataType t *dataType,
cudnnDataType t *computePrec,
cudnnMathType t *mathType,

cudnnDropoutDescriptor t *attnDropoutDesc,
cudnnDropoutDescriptor t *postDropoutDesc,

int *gSize,

int *kSize,

int *vSize,

int *gProjSize,

int *kProjSize,

int *vProjSize,

int *oProjSize,

int *goMaxSegLength,
int *kvMaxSeqgLength,
int *maxBatchSize,
int *maxBeamSize) ;

This function retrieves the values from a previously initialized attention descriptor.

Parameters:

Parameter Input / Output Description

attnDesc Input Attention descriptor whose values are to
be retrieved.

queryMap Output Query mapping mode.

nHeads Output Number of attention heads.

smScaler Output Softmax smoothing, or sharpening,
coefficient.

dataType Output Data type for Q,K,V inputs, weights, and
the output.

computePrec Output Compute data type (precision).

mathType Output The Tensor Core Operations settings.

attnDropoutDesc Output Dropout descriptor for the dropout at the
attention layer.

postDropoutDesc Output Dropout descriptor for the dropout at the
output.

qSize, kSize, vSize Output Hidden size of Q, K, and V input sequence
data.

qProjSize, kProjSize, vProjSize | Output Hidden size of projected Q, K and V
sequence data; 0 if no projection.

oProjSize Output Output projection size.

www.nvidia.com
cuDNN 7.5.0

DU-06702-001_v07 | 145

cuDNN API Reference

goMaxSeqgLength Output Largest sequence length allowed in
sequence data Q and O.

kvMaxSegLength Output Largest sequence length allowed in
sequence data K and V.

maxBatchSize Output Largest batch size allowed in sequence
data.

maxBeamSize Output Largest beam size allowed in sequence
data.

Returns:
Return Value Description

CUDNN_STATUS_BAD_PARAM

attDesc is a NULL pointer.

CUDNN_STATUS_SUCCESS

The attention descriptor structure values are
retrieved successfully.

4.77. cudnnBatchNormalizationBackwardExWorkspaceSize

cudnnStatus t cudnnGetBatchNormalizationBackwardExWorkspaceSize (

cudnnHandle t
cudnnBatchNormMode t
cudnnBatchNormOps t

const cudnnTensorDescriptor t
const cudnnTensorDescriptor t
const cudnnTensorDescriptor t
const cudnnTensorDescriptor t
const cudnnTensorDescriptor t
const cudnnTensorDescriptor t
const cudnnActivationDescriptor t
size t

handle,

mode,

bnoOps,

xDesc,

yDesc,

dyDesc,

dzDesc,

dxDesc,
dBnScaleBiasDesc,
activationDesc,
*sizelInBytes) ;

This function returns the amount of GPU memory workspace the user should allocate
to be able to call cudnnGetBatchNormalizationBackwardEx() function for the specified
bnOps input setting. The workspace allocated will then be passed to the function
cudnnGetBatchNormalizationBackwardEx ().

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor. See cudnnHandle_t.

mode

Input. Mode of operation (spatial or per-activation). See cudnnBatchNormMode_t.

bnOps

Input. Mode of operation for the fast NHWC kernel. See cudnnBatchNormOps_t. This
input can be used to set this function to perform either only the batch normalization,
or batch normalization followed by activation, or batch normalization followed by
element-wise addition and then activation.

www.nvidia.com
cuDNN 7.5.0

DU-06702-001_v07 | 146

cuDNN API Reference

xDesc, yDesc, dyDesc, dzDesc, dxDesc

Tensor descriptors and pointers in the device memory for the layer's x data, back
propagated differential dy (inputs), the optional y input data, the optional dz
output, and the dx output, which is the resulting differential with respect to x. See
cudnnTensorDescriptor_t.

dBnScaleBiasDesc

Input. Shared tensor descriptor for the following six tensors: bnScaleData,
bnBiasData, dBnScaleData, dBnBiasData, savedMean, and
savedInvVariance. This is the shared tensor descriptor desc for the secondary
tensor that was derived by cudnnDeriveBNTensorDescriptor(). The dimensions for
this tensor descriptor are dependent on normalization mode. Note: The data type of
this tensor descriptor must be 'float' for FP16 and FP32 input tensors, and 'double’ for
FP64 input tensors.

activationDesc
Input. Tensor descriptor for the activation operation.
*sizeInBytes

Output. Amount of GPU memory required for the workspace, as determined by this
function, to be able to execute the cudnnGetBatchNormalizationBackwardEx ()
function with the specified bnOps input setting.

Possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

The computation was performed successfully.
CUDNN_STATUS NOT_ SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD PARAM

At least one of the following conditions are met:

» Number of xDesc or yDesc or dxDesc tensor descriptor dimensions is not within
the range of [4,5] (only 4D and 5D tensors are supported.)

» dBnScaleBiasDesc dimensions not 1xCx1x1 for 4D and 1xCx1x1x1 for 5D for
spatial, and are not IxCxHxW for 4D and IxCxDxHxW for 5D for per-activation
mode.

» Dimensions or data types mismatch for any pair of xDesc, dyDesc, dxDesc

4.78. cudnnBatchNormalizationForwardTrainingExWorkspac

cudnnStatus_t cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize (

cudnnHandle t handle,
cudnnBatchNormMode t mode,

cudnnBatchNormOps t bnOps,

const cudnnTensorDescriptor t xDesc,

const cudnnTensorDescriptor t zDesc,

const cudnnTensorDescriptor t yDesc,

const cudnnTensorDescriptor t bnScaleBiasMeanVarDesc,

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 147

cuDNN API Reference

const cudnnActivationDescriptor t activationDesc,

size t *sizelInBytes) ;
This function returns the amount of GPU memory workspace the user should allocate
to be able to call cudnnGetBatchNormalizationForwardTrainingEx () function for
the specified bnOps input setting. The workspace allocated should then be passed by the
user to the function cudnnGetBatchNormalizationForwardTrainingEx ().

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor. See cudnnHandle_t.
mode

Input. Mode of operation (spatial or per-activation). See cudnnBatchNormMode_t.
bnOps
Input. Mode of operation for the fast NHWC kernel. See cudnnBatchNormOps_t..
This input can be used to set this function to perform either only the batch
normalization, or batch normalization followed by activation, or batch normalization
followed by element-wise addition and then activation.
xDesc, zDesc, yDesc

Tensor descriptors and pointers in the device memory for the layer's x data, the
optional z input data, and the y output. See cudnnTensorDescriptor_t.

bnScaleBiasMeanVarDesc

Input. Shared tensor descriptor for the following six tensors: bnScaleData,
bnBiasData, dBnScaleData, dBnBiasData, savedMean, and
savedInvVariance. This is the shared tensor descriptor desc for the secondary
tensor that was derived by cudnnDeriveBNTensorDescriptor(). The dimensions for
this tensor descriptor are dependent on normalization mode. Note: The data type of
this tensor descriptor must be 'float' for FP16 and FP32 input tensors, and 'double’ for
FP64 input tensors.
activationDesc
Input. Tensor descriptor for the activation operation. When the bnOps
input is set to either CUDNN_BATCHNORM_OPS_BN_ACTIVATION or
CUDNN_BATCHNORM_OPS BN_ADD_ACTIVATION then this activation is used.
*sizeInBytes
Output. Amount of GPU memory required for the workspace,
as determined by this function, to be able to execute the
cudnnGetBatchNormalizationForwardTrainingEx () function with the specified
bnOps input setting.

Returns
CUDNN_S TATUS_SUCCESS

The computation was performed successfully.
CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 148

cuDNN API Reference

CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:

» Number of xDesc or yDesc or dxDesc tensor descriptor dimensions is not within
the range of [4,5] (only 4D and 5D tensors are supported.)

» dBnScaleBiasDesc dimensions not 1xCx1x1 for 4D and 1xCx1x1x1 for 5D for
spatial, and are not IXCxHxW for 4D and 1xCxDxHxW for 5D for per-activation
mode.

» Dimensions or data types mismatch for xDesc, yDesc.

4.79. cudnnGetBatchNormalizationTrainingExReserveSpace!

cudnnStatus_t cudnnGetBatchNormalizationTrainingExReserveSpaceSize (

cudnnHandle t handle,
cudnnBatchNormMode t mode,
cudnnBatchNormOps t bnoOps,

const cudnnActivationDescriptor t activationDesc,
const cudnnTensorDescriptor t xDesc,

size t *sizeInBytes) ;

This function returns the amount of reserve GPU memory workspace the user should
allocate for the batch normalization operation, for the specified bnOps input setting. In
contrast to the workspace, the reserved space should be preserved between the forward
and backward calls, and the data should not be altered.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor. See cudnnHandle_t.
mode

Input. Mode of operation (spatial or per-activation). See cudnnBatchNormMode_t.

bnOps
Input. Mode of operation for the fast NHWC kernel. See cudnnBatchNormOps_t..
This input can be used to set this function to perform either only the batch
normalization, or batch normalization followed by activation, or batch normalization
followed by element-wise addition and then activation.

xDesc

Tensor descriptors for the layer's x data. See cudnnTensorDescriptor_t.

activationDesc

Input. Tensor descriptor for the activation operation.
*sizeInBytes

Output. Amount of GPU memory reserved.

Possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

The computation was performed successfully.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 149

cuDNN API Reference

CUDNN_STATUS NOT_ SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD PARAM

At least one of the following conditions are met:

» The xDesc tensor descriptor dimension is not within the [4,5] range (only 4D and
5D tensors are supported.)

4.80. cudnnGetCTCLossDescriptor

cudnnStatus t cudnnGetCTCLossDescriptor (
cudnnCTCLossDescriptor t ctcLossDesc,
cudnnDataType t* compType)
This function returns configuration of the passed CTC loss function descriptor.

Parameters
ctcLossDesc

Input. CTC loss function descriptor passed, from which to retrieve the configuration.
compType
Output. Compute type associated with this CTC loss function descriptor.

Returns
CUDNN_STATUS_SUCCESS

The function returned successfully.
CUDNN_STATUS_BAD PARAM

Input OpTensor descriptor passed is invalid.

4.81. cudnnGetCTCLossWorkspaceSize

cudnnStatus t cudnnGetCTCLossWorkspaceSize (

cudnnHandle t handle,

const cudnnTensorDescriptor t probsDesc,
const cudnnTensorDescriptor t gradientsDesc,
const int *labels,

const int *labellengths,
const int *inputLengths,
cudnnCTCLossAlgo t algo,

const cudnnCTCLossDescriptor t ctcLossDesc,
size t *sizelInBytes)

This function returns the amount of GPU memory workspace the user needs to allocate
to be able to call cudnnCTCLoss with the specified algorithm. The workspace allocated
will then be passed to the routine cudnnCTCLoss.

Parameters
handle

Input. Handle to a previously created cuDNN context.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 150

cuDNN API Reference

probsDesc

Input. Handle to the previously initialized probabilities tensor descriptor.
gradientsDesc

Input. Handle to a previously initialized gradients tensor descriptor.
labels

Input. Pointer to a previously initialized labels list.
labelLengths
Input. Pointer to a previously initialized lengths list, to walk the above labels list.
inputLengths
Input. Pointer to a previously initialized list of the lengths of the timing steps in each
batch.
algo
Input. Enumerant that specifies the chosen CTC loss algorithm
ctcLossDesc

Input. Handle to the previously initialized CTC loss descriptor.
sizeInBytes

Output. Amount of GPU memory needed as workspace to be able to execute the CTC
loss computation with the specified algo.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

The query was successful.
CUDNN_STATUS BAD PARAM

At least one of the following conditions are met:

The dimensions of probsDesc do not match the dimensions of gradientsDesc.
The inputLengths do not agree with the first dimension of probsDesc.

The workSpaceSizeInBytes is not sufficient.

The labelLengths is greater than 256.

vV v v VY

CUDNN_STATUS_NOT_SUPPORTED

A compute or data type other than FLOAT was chosen, or an unknown algorithm
type was chosen.

4.82. cudnnGetCallback

cudnnStatus_t cudnnGetCallback (

unsigned mask,
void **udata,
cudnnCallback t fptr)

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 151

cuDNN API Reference

(New for 7.1)
This function queries the internal states of cuDNN error reporting functionality.

Parameters

mask
Output. Pointer to the address where the current internal error reporting message bit
mask will be outputted.

udata
Output. Pointer to the address where the current internally stored udata address will
be stored.

fptr
Output. Pointer to the address where the current internally stored callback function
pointer will be stored. When the built-in default callback function is used, NULL will
be outputted.

Returns

CUDNN_STATUS_SUCCESS

The function launched successfully.
CUDNN_STATUS_BAD PARAM

If any of the input parameters are NULL.

4.83. cudnnGetConvolution2dDescriptor

cudnnStatus_t cudnnGetConvolution2dDescriptor (
const cudnnConvolutionDescriptor t convDesc,

int *pad h,

int *pad w,

int w56l

int =,

int *dilation h,
int *dilation w,
cudnnConvolutionMode t *mode,
cudnnDataType t *computeType)

This function queries a previously initialized 2D convolution descriptor object.

Parameters
convDesc

Input/Output. Handle to a previously created convolution descriptor.
pad_h

Output. zero-padding height: number of rows of zeros implicitly concatenated onto
the top and onto the bottom of input images.
pad_w

Output. zero-padding width: number of columns of zeros implicitly concatenated
onto the left and onto the right of input images.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 152

cuDNN API Reference

Output. Vertical filter stride.

Output. Horizontal filter stride.
dilation_h

Output. Filter height dilation.
dilation_w

Output. Filter width dilation.
mode

Output. Convolution mode.
computeType

Output. Compute precision.
The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

The operation was successful.
CUDNN_STATUS BAD PARAM

The parameter convDesc is nil.

4.84. cudnnGetConvolution2dForwardOutputDim

cudnnStatus t cudnnGetConvolution2dForwardOutputDim (
const cudnnConvolutionDescriptor t convDesc,

const cudnnTensorDescriptor t inputTensorDesc,
const cudnnFilterDescriptor t filterDesc,

int s

int glcp

int *h,

int *W)

This function returns the dimensions of the resulting 4D tensor of a 2D convolution,
given the convolution descriptor, the input tensor descriptor and the filter descriptor
This function can help to setup the output tensor and allocate the proper amount of
memory prior to launch the actual convolution.

Each dimension h and w of the output images is computed as followed:

outputDim = 1 + (inputDim + 2*pad - (((filterDim-1)*dilation)+1))/
convolutionStride;

The dimensions provided by this routine must be strictly respected when calling
cudnnConvolutionForward () Or cudnnConvolutionBackwardBias (). Providing a
smaller or larger output tensor is not supported by the convolution routines.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 153

cuDNN API Reference

Parameters
convDesc

Input. Handle to a previously created convolution descriptor.
inputTensorDesc

Input. Handle to a previously initialized tensor descriptor.
filterDesc

Input. Handle to a previously initialized filter descriptor.
Output. Number of output images.

Output. Number of output feature maps per image.
h

Output. Height of each output feature map.
\

Output. Width of each output feature map.
The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_BAD PARAM

One or more of the descriptors has not been created correctly or there is a mismatch
between the feature maps of inputTensorDesc and filterDesc.

CUDNN_STATUS_SUCCESS

The object was set successfully.

4.85. cudnnGetConvolutionBackwardDataAlgorithm

cudnnStatus t cudnnGetConvolutionBackwardDataAlgorithm (

cudnnHandle t handle,

const cudnnFilterDescriptor t wDesc,

const cudnnTensorDescriptor t dyDesc,

const cudnnConvolutionDescriptor t convDesc,

const cudnnTensorDescriptor t dxDesc,
cudnnConvolutionBwdDataPreference t preference,

size t memoryLimitInBytes,
cudnnConvolutionBwdDataAlgo t *algo)

This function serves as a heuristic for obtaining the best suited algorithm for
cudnnConvolutionBackwardData for the given layer specifications. Based on the
input preference, this function will either return the fastest algorithm or the fastest
algorithm within a given memory limit. For an exhaustive search for the fastest
algorithm, please use cudnnFindConvolutionBackwardDataAlgorithm.

Parameters

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 154

cuDNN API Reference

handle

Input. Handle to a previously created cuDNN context.
wDesc

Input. Handle to a previously initialized filter descriptor.
dyDesc
Input. Handle to the previously initialized input differential tensor descriptor.
convDesc
Input. Previously initialized convolution descriptor.
dxDesc
Input. Handle to the previously initialized output tensor descriptor.
preference
Input. Enumerant to express the preference criteria in terms of memory requirement

and speed.
memoryLimitInBytes

Input. It is to specify the maximum amount of GPU memory the user is willing to use
as a workspace. This is currently a placeholder and is not used.

algo

Output. Enumerant that specifies which convolution algorithm should be used to
compute the results according to the specified preference

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

The query was successful.
CUDNN_STATUS BAD PARAM

At least one of the following conditions are met:

» The numbers of feature maps of the input tensor and output tensor differ.
» The dataType of the two tensor descriptors or the filter are different.

4.86. cudnnGetConvolutionBackwardDataAlgorithmMaxCoul

cudnnStatus_ t cudnnGetConvolutionBackwardDataAlgorithmMaxCount (

cudnnHandle t handle,

int *count)
This function returns the maximum number of algorithms which can be
returned from cudnnFindConvolutionBackwardDataAlgorithm() and
cudnnGetConvolutionForward Algorithm_v7(). This is the sum of all algorithms plus the
sum of all algorithms with Tensor Core operations supported for the current device.

Parameters

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 155

cuDNN API Reference

handle

Input. Handle to a previously created cuDNN context.
count

Output. The resulting maximum number of algorithms.

Returns
CUDNN_STATUS SUCCESS

The function was successful.
CUDNN_STATUS_BAD PARAM

The provided handle is not allocated properly.

4.87. cudnnGetConvolutionBackwardDataAlgorithm_v7

cudnnStatus_t cudnnGetConvolutionBackwardDataAlgorithm v7 (

cudnnHandle t handle,

const cudnnFilterDescriptor t wDesc,

const cudnnTensorDescriptor t dyDesc,

const cudnnConvolutionDescriptor t convDesc,

const cudnnTensorDescriptor t dxDesc,

const int requestedAlgoCount,
int *returnedAlgoCount,
cudnnConvolutionBwdDataAlgoPerf t *perfResults)

This function serves as a heuristic for obtaining the best suited algorithm for
cudnnConvolutionBackwardData for the given layer specifications. This
function will return all algorithms (including CUDNN_TENSOR_OP_MATH
and CUDNN_DEFAULT_MATH versions of algorithms where
CUDNN_TENSOR_OP_MATH may be available) sorted by expected

(based on internal heuristic) relative performance with fastest being

index 0 of perfResults. For an exhaustive search for the fastest algorithm,
please use cudnnFindConvolutionBackwardDataAlgorithm. The

total number of resulting algorithms can be queried through the API
cudnnGetConvolutionBackwardMaxCount ().

Parameters

handle

Input. Handle to a previously created cuDNN context.
wDesc

Input. Handle to a previously initialized filter descriptor.
dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.
convDesc

Input. Previously initialized convolution descriptor.
dxDesc

Input. Handle to the previously initialized output tensor descriptor.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 156

cuDNN API Reference

requestedAlgoCount

Input. The maximum number of elements to be stored in perfResults.
returnedAlgoCount

Output. The number of output elements stored in perfResults.
perfResults

Output. A user-allocated array to store performance metrics sorted ascending by
compute time.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

The query was successful.
CUDNN_STATUS BAD PARAM

At least one of the following conditions are met:

» One of the parameters handle, wDesc, dyDesc, convDesc, dxDesc, perfResults,
returnedAlgoCount is NULL.

» The numbers of feature maps of the input tensor and output tensor differ.
» The dataType of the two tensor descriptors or the filter are different.
» requestedAlgoCount is less than or equal to 0.

4.88. cudnnGetConvolutionBackwardDataWorkspaceSize

cudnnStatus t cudnnGetConvolutionBackwardDataWorkspaceSize (

cudnnHandle t handle,
const cudnnFilterDescriptor t wDesc,

const cudnnTensorDescriptor t dyDesc,
const cudnnConvolutionDescriptor t convDesc,
const cudnnTensorDescriptor t dxDesc,
cudnnConvolutionBwdDataAlgo t algo,

size t *sizeInBytes)

This function returns the amount of GPU memory workspace the user needs

to allocate to be able to call cudnnConvolutionBackwardData with the

specified algorithm. The workspace allocated will then be passed to the routine
cudnnConvolutionBackwardData. The specified algorithm can be the result of the call
to cudnnGetConvolutionBackwardDataAlgorithm or can be chosen arbitrarily by
the user. Note that not every algorithm is available for every configuration of the input
tensor and/or every configuration of the convolution descriptor.

Parameters
handle

Input. Handle to a previously created cuDNN context.
wDesc

Input. Handle to a previously initialized filter descriptor.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 157

cuDNN API Reference

dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.
convDesc

Input. Previously initialized convolution descriptor.
dxDesc

Input. Handle to the previously initialized output tensor descriptor.
algo

Input. Enumerant that specifies the chosen convolution algorithm
sizeInBytes

Output. Amount of GPU memory needed as workspace to be able to execute a
forward convolution with the specified algo

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

The query was successful.
CUDNN_STATUS BAD PARAM

At least one of the following conditions are met:

» The numbers of feature maps of the input tensor and output tensor differ.
» The dataType of the two tensor descriptors or the filter are different.

CUDNN_STATUS NOT_ SUPPORTED

The combination of the tensor descriptors, filter descriptor and convolution
descriptor is not supported for the specified algorithm.

4.89. cudnnGetConvolutionBackwardFilterAlgorithm

cudnnStatus t cudnnGetConvolutionBackwardFilterAlgorithm(

cudnnHandle t handle,

const cudnnTensorDescriptor t xDesc,

const cudnnTensorDescriptor t dyDesc,

const cudnnConvolutionDescriptor t convDesc,

const cudnnFilterDescriptor t dwDesc,
cudnnConvolutionBwdFilterPreference t preference,

size t memoryLimitInBytes,
cudnnConvolutionBwdFilterAlgo t *algo)

This function serves as a heuristic for obtaining the best suited algorithm for
cudnnConvolutionBackwardFilter for the given layer specifications. Based on

the input preference, this function will either return the fastest algorithm or the
fastest algorithm within a given memory limit. For an exhaustive search for the fastest
algorithm, please use cudnnFindConvolutionBackwardFilterAlgorithm.

Parameters

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 158

cuDNN API Reference

handle

Input. Handle to a previously created cuDNN context.
xDesc

Input. Handle to the previously initialized input tensor descriptor.
dyDesc
Input. Handle to the previously initialized input differential tensor descriptor.
convDesc
Input. Previously initialized convolution descriptor.
dwDesc
Input. Handle to a previously initialized filter descriptor.
preference
Input. Enumerant to express the preference criteria in terms of memory requirement

and speed.
memoryLimitInBytes

Input. It is to specify the maximum amount of GPU memory the user is willing to use
as a workspace. This is currently a placeholder and is not used.

algo

Output. Enumerant that specifies which convolution algorithm should be used to
compute the results according to the specified preference.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

The query was successful.
CUDNN_STATUS BAD PARAM

At least one of the following conditions are met:

» The numbers of feature maps of the input tensor and output tensor differ.
» The dataType of the two tensor descriptors or the filter are different.

4.90. cudnnGetConvolutionBackwardFilterAlgorithmMaxCot

cudnnStatus_ t cudnnGetConvolutionBackwardFilterAlgorithmMaxCount (

cudnnHandle t handle,

int *count)
This function returns the maximum number of algorithms which can be
returned from cudnnFindConvolutionBackwardFilterAlgorithm() and
cudnnGetConvolutionForward Algorithm_v7(). This is the sum of all algorithms plus the
sum of all algorithms with Tensor Core operations supported for the current device.

Parameters

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 159

cuDNN API Reference

handle

Input. Handle to a previously created cuDNN context.
count

Output. The resulting maximum count of algorithms.

Returns
CUDNN_STATUS SUCCESS

The function was successful.
CUDNN_STATUS_BAD PARAM

The provided handle is not allocated properly.

4.91. cudnnGetConvolutionBackwardFilterAlgorithm_v7

cudnnStatus_ t cudnnGetConvolutionBackwardFilterAlgorithm v7 (

cudnnHandle t handle,

const cudnnTensorDescriptor t xDesc,

const cudnnTensorDescriptor t dyDesc,

const cudnnConvolutionDescriptor t convDesc,

const cudnnFilterDescriptor t dwDesc,

const int requestedAlgoCount,
int *returnedAlgoCount,

cudnnConvolutionBwdFilterAlgoPerf t *perfResults)

This function serves as a heuristic for obtaining the best suited algorithm for
cudnnConvolutionBackwardFilter for the given layer specifications. This
function will return all algorithms (including CUDNN_TENSOR_OP_MATH
and CUDNN_DEFAULT_MATH versions of algorithms where
CUDNN_TENSOR_OP_MATH may be available) sorted by expected

(based on internal heuristic) relative performance with fastest being

index 0 of perfResults. For an exhaustive search for the fastest algorithm,
please use cudnnFindConvolutionBackwardFilterAlgorithm. The

total number of resulting algorithms can be queried through the API
cudnnGetConvolutionBackwardMaxCount ().

Parameters

handle

Input. Handle to a previously created cuDNN context.
xDesc

Input. Handle to the previously initialized input tensor descriptor.
dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.
convDesc

Input. Previously initialized convolution descriptor.
dwDesc

Input. Handle to a previously initialized filter descriptor.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 160

cuDNN API Reference

requestedAlgoCount

Input. The maximum number of elements to be stored in perfResults.
returnedAlgoCount

Output. The number of output elements stored in perfResults.
perfResults

Output. A user-allocated array to store performance metrics sorted ascending by
compute time.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

The query was successful.
CUDNN_STATUS BAD PARAM

At least one of the following conditions are met:

» One of the parameters handle, xDesc, dyDesc, convDesc, dwDesc, perfResults,
returnedAlgoCount is NULL.

» The numbers of feature maps of the input tensor and output tensor differ.
» The dataType of the two tensor descriptors or the filter are different.
» requestedAlgoCount is less than or equal to 0.

4.92. cudnnGetConvolutionBackwardFilterWorkspaceSize

cudnnStatus t cudnnGetConvolutionBackwardFilterWorkspaceSize (

cudnnHandle t handle,
const cudnnTensorDescriptor t xDesc,

const cudnnTensorDescriptor t dyDesc,
const cudnnConvolutionDescriptor t convDesc,
const cudnnFilterDescriptor t dwDesc,
cudnnConvolutionBwdFilterAlgo t algo,

size t *sizeInBytes)

This function returns the amount of GPU memory workspace the user needs

to allocate to be able to call cudnnConvolutionBackwardFilter with the

specified algorithm. The workspace allocated will then be passed to the routine
cudnnConvolutionBackwardFilter. The specified algorithm can be the result of the
call to cudnnGetConvolutionBackwardFilterAlgorithm or can be chosen arbitrarily
by the user. Note that not every algorithm is available for every configuration of the
input tensor and/or every configuration of the convolution descriptor.

Parameters
handle

Input. Handle to a previously created cuDNN context.
xDesc

Input. Handle to the previously initialized input tensor descriptor.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 161

cuDNN API Reference

dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.
convDesc

Input. Previously initialized convolution descriptor.
dwDesc

Input. Handle to a previously initialized filter descriptor.
algo

Input. Enumerant that specifies the chosen convolution algorithm.
sizeInBytes

Output. Amount of GPU memory needed as workspace to be able to execute a
forward convolution with the specified algo.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

The query was successful.
CUDNN_STATUS BAD PARAM

At least one of the following conditions are met:

» The numbers of feature maps of the input tensor and output tensor differ.
» The dataType of the two tensor descriptors or the filter are different.

CUDNN_STATUS NOT_ SUPPORTED

The combination of the tensor descriptors, filter descriptor and convolution
descriptor is not supported for the specified algorithm.

4.93. cudnnGetConvolutionForwardAlgorithm

cudnnStatus t cudnnGetConvolutionForwardAlgorithm (

cudnnHandle t handle,

const cudnnTensorDescriptor t xDesc,

const cudnnFilterDescriptor t wDesc,

const cudnnConvolutionDescriptor t convDesc,

const cudnnTensorDescriptor t yDesc,
cudnnConvolutionFwdPreference t preference,

size t memoryLimitInBytes,
cudnnConvolutionFwdAlgo t *algo)

This function serves as a heuristic for obtaining the best suited algorithm for
cudnnConvolutionForward for the given layer specifications. Based on the input
preference, this function will either return the fastest algorithm or the fastest algorithm
within a given memory limit. For an exhaustive search for the fastest algorithm, please
use cudnnFindConvolutionForwardAlgorithm.

Parameters

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 162

cuDNN API Reference

handle

Input. Handle to a previously created cuDNN context.
xDesc

Input. Handle to the previously initialized input tensor descriptor.
wDesc

Input. Handle to a previously initialized convolution filter descriptor.
convDesc

Input. Previously initialized convolution descriptor.
yDesc

Input. Handle to the previously initialized output tensor descriptor.
preference
Input. Enumerant to express the preference criteria in terms of memory requirement
and speed.
memoryLimitInBytes
Input. It is used when enumerant preference is set to

CUDNN_CONVOLUTION_ FWD_SPECIFY WORKSPACE LIMIT to SpeCify the maximum
amount of GPU memory the user is willing to use as a workspace

algo
Output. Enumerant that specifies which convolution algorithm should be used to
compute the results according to the specified preference

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

The query was successful.
CUDNN_STATUS BAD PARAM

At least one of the following conditions are met:

One of the parameters handle, xDesc, wDesc, convDesc, yDesc is NULL.
Either yDesc or wDesc have different dimensions from xDesc.

The data types of tensors xDesc, yDesc or wDesc are not all the same.
The number of feature maps in xDesc and wDesc differs.

The tensor xDesc has a dimension smaller than 3.

vV vV v v VY

4.94. cudnnGetConvolutionForwardAlgorithmMaxCount

cudnnStatus t cudnnGetConvolutionForwardAlgorithmMaxCount (
cudnnHandle t handle,
int *count)

This function returns the maximum number of algorithms which can
be returned from cudnnFindConvolutionForward Algorithm() and

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 163

cuDNN API Reference

cudnnGetConvolutionForward Algorithm_v7(). This is the sum of all algorithms plus the
sum of all algorithms with Tensor Core operations supported for the current device.

Parameters
handle

Input. Handle to a previously created cuDNN context.
count

Output. The resulting maximum number of algorithms.

Returns
CUDNN_S TATUS_SUCCESS

The function was successful.
CUDNN_STATUS_BAD_PARAM

The provided handle is not allocated properly.

4.95. cudnnGetConvolutionForwardAlgorithm_v7

cudnnStatus t cudnnGetConvolutionForwardAlgorithm v7 (

cudnnHandle t handle,

const cudnnTensorDescriptor t xDesc,

const cudnnFilterDescriptor t wDesc,

const cudnnConvolutionDescriptor t convDesc,

const cudnnTensorDescriptor t yDesc,

const int requestedAlgoCount,
int *returnedAlgoCount,
cudnnConvolutionFwdAlgoPerf t *perfResults)

This function serves as a heuristic for obtaining the best suited algorithm

for cudnnConvolutionForward for the given layer specifications. This

function will return all algorithms (including CUDNN_TENSOR_OP_MATH

and CUDNN_DEFAULT_MATH versions of algorithms where
CUDNN_TENSOR_OP_MATH may be available) sorted by expected (based

on internal heuristic) relative performance with fastest being index 0 of

perfResults. For an exhaustive search for the fastest algorithm, please use
cudnnFindConvolutionForwardAlgorithm. The total number of resulting algorithms
can be queried through the API cudnnGetConvolutionForwardMaxCount ().
Parameters

handle

Input. Handle to a previously created cuDNN context.
xDesc

Input. Handle to the previously initialized input tensor descriptor.
wDesc

Input. Handle to a previously initialized convolution filter descriptor.
convDesc

Input. Previously initialized convolution descriptor.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 164

cuDNN API Reference

yDesc

Input. Handle to the previously initialized output tensor descriptor.
requestedAlgoCount

Input. The maximum number of elements to be stored in perfResults.
returnedAlgoCount

Output. The number of output elements stored in perfResults.
perfResults

Output. A user-allocated array to store performance metrics sorted ascending by
compute time.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

The query was successful.
CUDNN_STATUS BAD PARAM

At least one of the following conditions are met:

» One of the parameters handle, xDesc, wDesc, convDesc, yDesc, perfResults,
returnedAlgoCount is NULL.

Either yDesc or wDesc have different dimensions from xDesc.

The data types of tensors xDesc, yDesc or wDesc are not all the same.
The number of feature maps in xDesc and wDesc differs.

The tensor xDesc has a dimension smaller than 3.

requested AlgoCount is less than or equal to 0.

vV vV v v VY

4.96. cudnnGetConvolutionForwardWorkspaceSize

cudnnStatus_t cudnnGetConvolutionForwardWorkspaceSize (
cudnnHandle t handle,

const cudHnTensorDescriptor_t xDesc,

const cudnnFilterDescriptor t wDesc,

const cudnnConvolutionDescriptor t convDesc,
const cudnnTensorDescriptor t yDesc,
cudnnConvolutionFwdAlgo t algo,

size t *sizeInBytes)

This function returns the amount of GPU memory workspace the user needs

to allocate to be able to call cudnnConvolutionForward with the specified
algorithm. The workspace allocated will then be passed to the routine
cudnnConvolutionForward. The specified algorithm can be the result of the call to
cudnnGetConvolutionForwardAlgorithm or can be chosen arbitrarily by the user.
Note that not every algorithm is available for every configuration of the input tensor
and/or every configuration of the convolution descriptor.

Parameters

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 165

cuDNN API Reference

handle

Input. Handle to a previously created cuDNN context.
xDesc

Input. Handle to the previously initialized x tensor descriptor.
wDesc

Input. Handle to a previously initialized filter descriptor.
convDesc

Input. Previously initialized convolution descriptor.
yDesc

Input. Handle to the previously initialized y tensor descriptor.
algo
Input. Enumerant that specifies the chosen convolution algorithm

sizeInBytes

Output. Amount of GPU memory needed as workspace to be able to execute a
forward convolution with the specified algo

The possible error values returned by this function and their meanings are listed below.
Returns

CUDNN_STATUS_ SUCCESS

The query was successful.
CUDNN_STATUS BAD PARAM

At least one of the following conditions are met:

One of the parameters handle, xDesc, wDesc, convDesc, yDesc is NULL.
The tensor yDesc or wDesc are not of the same dimension as xDesc.

The tensor xDesc, yDesc or wDesc are not of the same data type.

The numbers of feature maps of the tensor xDesc and wDesc differ.

The tensor xDesc has a dimension smaller than 3.

vV vV v v VY

CUDNN_STATUS NOT_ SUPPORTED

The combination of the tensor descriptors, filter descriptor and convolution
descriptor is not supported for the specified algorithm.

4.97. cudnnGetConvolutionGroupCount

cudnnStatus t cudnnGetConvolutionGroupCount (
cudnnConvolutionDescriptor t convDesc,
int *groupCount)
This function returns the group count specified in the given convolution descriptor.

Returns

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 166

cuDNN API Reference

CUDNN_STATUS_ SUCCESS

The group count was returned successfully.
CUDNN_STATUS BAD PARAM

An invalid convolution descriptor was provided.

4.98. cudnnGetConvolutionMathType

cudnnStatus_t cudnnGetConvolutionMathType (
cudnnConvolutionDescriptor t convDesc,
cudnnMathType t *mathType)
This function returns the math type specified in a given convolution descriptor.

Returns
CUDNN_S TATUS_SUCCESS

The math type was returned successfully.
CUDNN_STATUS_BAD_PARAM

An invalid convolution descriptor was provided.

4.99. cudnnGetConvolutionNdDescriptor

cudnnStatus_t cudnnGetConvolutionNdDescriptor (
const cudnnConvolutionDescriptor t convDesc,

int arrayLengthRequested,
int *arrayLength,

int padAl],

int filterStrideA[],

int dilationA[],
cudnnConvolutionMode t *mode,

cudnnDataType t *dataType)

This function queries a previously initialized convolution descriptor object.

Parameters
convDesc

Input/Output. Handle to a previously created convolution descriptor.
arrayLengthRequested
Input. Dimension of the expected convolution descriptor. It is also the minimum size

of the arrays padA, filterStrideA and dilationA in order to be able to hold the
results

arrayLength

Output. Actual dimension of the convolution descriptor.
padA

Output. Array of dimension of at least arrayLengthRequested that will be filled
with the padding parameters from the provided convolution descriptor.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 167

cuDNN API Reference

filterStrideA

Output. Array of dimension of at least arrayLengthRequested that will be filled
with the filter stride from the provided convolution descriptor.

dilationA

Output. Array of dimension of at least arrayLengthRequested that will be filled
with the dilation parameters from the provided convolution descriptor.

mode

Output. Convolution mode of the provided descriptor.
datatype

Output. Datatype of the provided descriptor.

Returns
CUDNN_STATUS SUCCESS

The query was successfully.
CUDNN_STATUS_BAD PARAM

At least one of the following conditions are met:

» The descriptor convDesc is nil.
» The arrayLengthRequest is negative.

CUDNN_STATUS_NOT_SUPPORTED

The arrayLengthRequested is greater than CUDNN_DIM_MAX-2.

4.100. cudnnGetConvolutionNdForwardOutputDim

cudnnStatus_t cudnnGetConvolutionNdForwardOutputDim (
const cudnnConvolutionDescriptor t convDesc,

const cudnnTensorDescriptor t inputTensorDesc,
const cudnnFilterDescriptor t filterDesc,

int nbDims,

int tensorOuputDimA[])

This function returns the dimensions of the resulting n-D tensor of a nbDims-2-D
convolution, given the convolution descriptor, the input tensor descriptor and the filter
descriptor This function can help to setup the output tensor and allocate the proper
amount of memory prior to launch the actual convolution.

Each dimension of the (nbDims-2) -D images of the output tensor is computed as
followed:

outputDim = 1 + (inputDim + 2*pad - (((filterDim-1)*dilation)+1))/
convolutionStride;

The dimensions provided by this routine must be strictly respected when calling
cudnnConvolutionForward () Or cudnnConvolutionBackwardBias (). Providing a
smaller or larger output tensor is not supported by the convolution routines.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 168

cuDNN API Reference

Parameters
convDesc

Input. Handle to a previously created convolution descriptor.
inputTensorDesc

Input. Handle to a previously initialized tensor descriptor.
filterDesc

Input. Handle to a previously initialized filter descriptor.
nbDims

Input. Dimension of the output tensor
tensorOuputDimA

Output. Array of dimensions nbDims that contains on exit of this routine the sizes of
the output tensor

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_BAD PARAM

At least one of the following conditions are met:

» One of the parameters convDesc, inputTensorDesc, and filterDesc, isnil
» The dimension of the filter descriptor £ilterDesc is different from the
dimension of input tensor descriptor inputTensorDesc.

» The dimension of the convolution descriptor is different from the dimension of
input tensor descriptor inputTensorDesc -2 .

» The features map of the filter descriptor £ilterDesc is different from the one of
input tensor descriptor inputTensorDesc.

» The size of the dilated filter filterDesc is larger than the padded sizes of the
input tensor.

» The dimension nbDims of the output array is negative or greater than the
dimension of input tensor descriptor inputTensorDesc.

CUDNN_STATUS_ SUCCESS

The routine exits successfully.

4.101. cudnnGetCudartVersion

size t cudnnGetCudartVersion ()

The same version of a given cuDNN library can be compiled against different CUDA
Toolkit versions. This routine returns the CUDA Toolkit version that the currently used
cuDNN library has been compiled against.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 169

cuDNN API Reference

4.102. cudnnGetDropoutDescriptor

cudnnStatus t cudnnGetDropoutDescriptor (

cudnnDropoutDescriptor t dropoutDesc,
cudnnHandle t handle,
float *dropout,
void **states,
unsigned long long *seed)

This function queries the fields of a previously initialized dropout descriptor.

Parameters
dropoutDesc

Input. Previously initialized dropout descriptor.
handle

Input. Handle to a previously created cuDNN context.
dropout

Output. The probability with which the value from input is set to 0 during the
dropout layer.

states

Output. Pointer to user-allocated GPU memory that holds random number generator
states.

seed
Output. Seed used to initialize random number generator states.
The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The call was successful.
CUDNN_STATUS_BAD PARAM

One or more of the arguments was an invalid pointer.

4.103. cudnnGetErrorString

const char * cudnnGetErrorString(cudnnStatus t status)

This function converts the cuDNN status code to a NUL terminated (ASCIIZ) static
string. For example, when the input argument is CUDNN_STATUS_SUCCESS, the
returned string is "CUDNN_STATUS_SUCCESS". When an invalid status value is passed
to the function, the returned string is "CUDNN_UNKNOWN_STATUS".

Parameters

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 170

cuDNN API Reference

status
Input. cuDNN enumerated status code.
Returns

Pointer to a static, NUL terminated string with the status name.

4.104. cudnnGetFilter4dDescriptor

cudnnStatus t cudnnGetFilter4dDescriptor (

const cudnnFilterDescriptor t filterDesc,
cudnnDataType t *dataType,
cudnnTensorFormat t *format,

int IR,

int glcp

int *h,

int *W)

This function queries the parameters of the previouly initialized filter descriptor object.

Parameters
filterDesc

Input. Handle to a previously created filter descriptor.
datatype

Output. Data type.
format

Output. Type of format.
k

Output. Number of output feature maps.

Output. Number of input feature maps.
h

Output. Height of each filter.
4

Output. Width of each filter.
The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_S TATUS_SUCCESS

The object was set successfully.

4.105. cudnnGetFilterNdDescriptor

cudnnStatus_t cudnnGetFilterNdDescriptor (
const cudnnFilterDescriptor t wDesc,

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 171

cuDNN API Reference

int nbDimsRequested,
cudnnDataType t *dataType,
cudnnTensorFormat t *format,

int *nbDims,

int filterDimAT[])

This function queries a previously initialized filter descriptor object.

Parameters
wDesc

Input. Handle to a previously initialized filter descriptor.
nbDimsRequested

Input. Dimension of the expected filter descriptor. It is also the minimum size of the
arrays £ilterDimA in order to be able to hold the results

datatype

Output. Data type.
format

Output. Type of format.
nbDims

Output. Actual dimension of the filter.
filterDimA

Output. Array of dimension of at least nbDimsRequested that will be filled with the
tilter parameters from the provided filter descriptor.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

The object was set successfully.
CUDNN_STATUS BAD PARAM

The parameter nbDimsRequested is negative.

4.106. cudnnGetLRNDescriptor

cudnnStatus t cudnnGetLRNDescriptor (

cudnnLRNDescriptor t normDesc,
unsigned *1rnN,
double *1rnAlpha,
double *1lrnBeta,
double *1rnK)

This function retrieves values stored in the previously initialized LRN descriptor object.

Parameters
normDesc

Output. Handle to a previously created LRN descriptor.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 172

cuDNN API Reference

IrnN, IrnAlpha, IrnBeta, IrnK

Output. Pointers to receive values of parameters stored in the descriptor object. See
cudnnSetLRNDescriptor for more details. Any of these pointers can be NULL (no
value is returned for the corresponding parameter).

Possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

Function completed successfully.

4.107. cudnnGetMultiHeadAttnBuffers

cudnnStatus t cudnnGetMultiHeadAttnBuffers (
cudnnHandle t handle,
const cudnnAttnDescriptor t attnDesc,
size t *weightSizeInBytes,
size t *workSpaceSizelInBytes,
size t *reserveSpaceSizelInBytes);

This function obtains workspace and reserve space sizes for the multihead
attention. When only the workspace size is requested with NULL value for
reserveSpaceSizeInBytes, it is assumed that the user intention is to invoke
cudnnMultiHead AttnForward in the "inference" mode.

Parameters:
Parameter Input / Output Description
handle Input cuDNN handle.
attnDesc Input Pointer to a previously initialized multi-
head attention descriptor.
weightSizelnBytes Output Size required to store various projection
weights.
workSpaceSizelnBytes Output Size required for workspace.
reserveSpaceSizelnBytes Output Size required for the reserve space in
training mode.
Returns:
Return Value Description
CUDNN_STATUS_SUCCESS The requested spaces values are evaluated
successfully.
CUDNN_STATUS_BAD_PARAM Either invalid values in attnDesc or
workSpaceSizeInBytes is NULL.

4.108. cudnnGetMultiHeadAttnWeights

cudnnStatus t cudnnGetMultiHeadAttnWeights (

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 173

cudnnHandle t handle,

const cudnnAttnDescriptor t attnDesc,
cudnnMultiHeadAttnWeightKind t wKind,

size t weightSizeInBytes,
const void *w,
cudnnTensorDescriptor t wDesc,
void **wAddr) ;

cuDNN API Reference

This function obtains the tensor descriptors and pointers to project weight of a particular
kind in the weight buffer w of size weightSizeInBytes. There are four kinds of
weights, enumerated in the type cudnnMultiHead AttnWeightKind_t.

Parameters:

Parameter Input / Output

Description

handle Input

A cuDNN context handle.

attnDesc Input

A previously initialized multi-head
attention descriptor.

wKind Input

The specific weight group (Q, K, V, or
0) whose attention weights should be
retrieved.

weightSizelnBytes Input

Pointer to a location, in host memory,
where the attention weight sizes (in
bytes) are stored.

w Input

Pointer to weight buffer in device
memory.

wDesc Output

Tensor descriptor for the attention
weights.

- wDesc.dima are all [nHeads, projected
size, input size]

- wDesc.stridea describe how the
buffer is packed, depending on the
projection weight kind.

wAddr Output

Pointer to a location, in device memory,
of the requested weight tensor. Weight
tensor is three dimensional whose
dimensions and layout are also returned in
tensor descriptor wDesc.

If any of queries, keys, values, or output
projection size is zero in the attention
descriptor, then waddr is set to NULL.
Check for this before applying the
weights.

Returns:

Return Value

Description

CUDNN_STATUS_SUCCESS

When weight tensor descriptor and address in the
device memory are successfully determined.

CUDNN_STATUS_BAD_PARAM

www.nvidia.com
cuDNN 7.5.0

Invalid or inconsistent value is found. For
example when wKind does not have a valid
value or when weightSizeInBytes is not

DU-06702-001_v07 | 174

cuDNN API Reference

equal to the weight buffer size as computed by
cudnnGetMultiHeadAttnBuffers.

4.109. cudnnGetOpTensorDescriptor

cudnnStatus t cudnnGetOpTensorDescriptor (
const cudnnOpTensorDescriptor t opTensorDesc,

cudnnOpTensorOp_t *opTensorOp,
cudnnDataType t *opTensorCompType,
cudnnNanPropagation t *opTensorNanOpt)

This function returns configuration of the passed Tensor Pointwise math descriptor.

Parameters
opTensorDesc

Input. Tensor Pointwise math descriptor passed, to get the configuration from.
opTensorOp

Output. Pointer to the Tensor Pointwise math operation type, associated with this
Tensor Pointwise math descriptor.

opTensorCompType

Output. Pointer to the cuDNN data-type associated with this Tensor Pointwise math
descriptor.

opTensorNanOpt

Output. Pointer to the NAN propagation option associated with this Tensor Pointwise
math descriptor.

Returns
CUDNN_STATUS_ SUCCESS

The function returned successfully.
CUDNN_STATUS BAD PARAM

Input Tensor Pointwise math descriptor passed is invalid.

4.110. cudnnGetPooling2dDescriptor

cudnnStatus t cudnnGetPooling2dDescriptor (

const cudnnPoolingDescriptor t poolingDesc,
cudnnPoolingMode t *mode,
cudnnNanPropagation t *maxpoolingNanOpt,
int *windowHeight,

int *windowWidth,

int *verticalPadding,
int *horizontalPadding,
int *verticalStride,
int *horizontalStride)

This function queries a previously created 2D pooling descriptor object.

Parameters

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 175

cuDNN API Reference

poolingDesc

Input. Handle to a previously created pooling descriptor.
mode

Output. Enumerant to specify the pooling mode.
maxpoolingNanOpt

Output. Enumerant to specify the Nan propagation mode.
windowHeight

Output. Height of the pooling window.
windowWidth

Output. Width of the pooling window.
verticalPadding

Output. Size of vertical padding.
horizontalPadding

Output. Size of horizontal padding.
verticalStride

Output. Pooling vertical stride.
horizontalStride

Output. Pooling horizontal stride.
The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

The object was set successfully.

4.111. cudnnGetPooling2dForwardOutputDim

cudnnStatus t cudnnGetPooling2dForwardOutputDim (

const cﬁdnnPoolingDescriptorit poolingDesc,
const cudnnTensorDescriptor t inputDesc,
int *outN,

int *outC,

int *outH,

int *outW)

This function provides the output dimensions of a tensor after 2d pooling has been
applied

Each dimension h and w of the output images is computed as followed:

outputDim = 1 + (inputDim + 2*padding - windowDim) /poolingStride;

Parameters

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 176

cuDNN API Reference

poolingDesc

Input. Handle to a previously inititalized pooling descriptor.
inputDesc

Input. Handle to the previously initialized input tensor descriptor.
N

Output. Number of images in the output.
C

Output. Number of channels in the output.
H

Output. Height of images in the output.
W

Output. Width of images in the output.
The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

The function launched successfully.
CUDNN_STATUS BAD PARAM

At least one of the following conditions are met:

» poolingDesc has not been initialized.
» poolingDesc or inputDesc has an invalid number of dimensions (2 and 4
respectively are required).

4.112. cudnnGetPoolingNdDescriptor

cudnnStatus_t cudnnGetPoolingNdDescriptor (

const cudnnPoolingDescriptor t poolingDesc,

int nbDimsRequested,
cudnnPoolingMode t *mode,
cudnnNanPropagation t *maxpoolingNanOpt,
int *nbDims,

int windowDimAT[],

int paddingAl[],

int strideA[])

This function queries a previously initialized generic pooling descriptor object.

Parameters
poolingDesc

Input. Handle to a previously created pooling descriptor.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 177

cuDNN API Reference

nbDimsRequested

Input. Dimension of the expected pooling descriptor. It is also the minimum size
of the arrays windowDimA, paddingA and stridea in order to be able to hold the
results.

mode

Output. Enumerant to specify the pooling mode.
maxpoolingNanOpt

Input. Enumerant to specify the Nan propagation mode.
nbDims

Output. Actual dimension of the pooling descriptor.
windowDimA

Output. Array of dimension of at least nbDimsRequested that will be filled with the
window parameters from the provided pooling descriptor.

paddingA

Output. Array of dimension of at least nbDimsRequested that will be filled with the
padding parameters from the provided pooling descriptor.

strideA

Output. Array of dimension at least nbDimsRequested that will be filled with the
stride parameters from the provided pooling descriptor.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

The object was queried successfully.
CUDNN_STATUS NOT_ SUPPORTED

The parameter nbDimsRequested is greater than CUDNN_DIM_MAX.

4.113. cudnnGetPoolingNdForwardOutputDim

cudnnStatus t cudnnGetPoolingNdForwardOutputDim (
const cudnnPoolingDescriptor t poolingDesc,

const cudnnTensorDescriptor t inputDesc,
int nbDims,
int outDimA[])

This function provides the output dimensions of a tensor after Nd pooling has been
applied

Each dimension of the (nbDims-2) -D images of the output tensor is computed as
followed:

outputDim = 1 + (inputDim + 2*padding - windowDim) /poolingStride;

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 178

cuDNN API Reference

Parameters
poolingDesc

Input. Handle to a previously inititalized pooling descriptor.
inputDesc

Input. Handle to the previously initialized input tensor descriptor.
nbDims

Input. Number of dimensions in which pooling is to be applied.
outDimA

Output. Array of nbDims output dimensions.
The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The function launched successfully.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

» poolingDesc has not been initialized.
» The value of nbDims is inconsistent with the dimensionality of poolingDesc and
inputDesec.

4.114. cudnnGetProperty

cudnnStatus t cudnnGetProperty (
libraryPropertyType type,
int *value)

This function writes a specific part of the cuDNN library version number into the
provided host storage.

Parameters
type

Input. Enumerated type that instructs the function to report the numerical value of
the cuDNN major version, minor version, or the patch level.

value
Output. Host pointer where the version information should be written.

Returns
CUDNN_S TATUS_INVALID_VALUE

Invalid value of the type argument.
CUDNN_STATUS_SUCCESS

Version information was stored successfully at the provided address.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 179

cuDNN API Reference

4.115. cudnnGetRNNBiasMode

cudnnStatus t cudnnGetRNNBiasMode (
cudnnRNNDescriptor t rnnDesc,
cudnnRNNBiasMode t *biasMode)

This function retrieves the RNN bias mode that was configured by
cudnnSetRNNBiasMode (). The default value of biasMode in rnnDesc after
cudnnCreateRNNDescriptor ()is CUDNN_RNN DOUBLE_BIAS.

Parameters
rnnDesc

Input. A previously created RNN descriptor.

*biasMode
Input. Pointer where RNN bias mode should be saved.

Returns
CUDNN_STATUS_BAD_PARAM

Either the rnnDesc or *biasMode is NULL.
CUDNN_STATUS_ SUCCESS

The biasMode parameter was retrieved set successfully.

4.116. cudnnGetRNNDataDescriptor

cudnnStatus_t cudnnGetRNNDataDescriptor (

cudnnRNNDataDescriptor t RNNDataDesc,
cudnnDataType t *dataType,
cudnnRNNDataLayout t *layout,

int *maxSeglLength,

int *batchSize,

int *vectorSize,

int arrayLengthRequested,
int seqglengthArrayl],
void *paddingFill) ;

This function retrieves a previously created RNN data descriptor object.

Parameters
RNNDataDesc

Input. A previously created and initialized RNN descriptor.
dataType

Output. Pointer to the host memory location to store the datatype of the RNN data
tensor.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 180

cuDNN API Reference

layout
Output. Pointer to the host memory location to store the memory layout of the RNN
data tensor.

maxSeqLength
Output. The maximum sequence length within this RNN data tensor, including the
padding vectors.

batchSize

Output. The number of sequences within the mini-batch.

vectorSize
Output. The vector length (i.e. embedding size) of the input or output tensor at each
timestep.

arrayLengthRequested

Input. The number of elements that the user requested for seqLengthArray.
seqLengthArray
Output. Pointer to the host memory location to store the integer array describing the

length (i.e. number of timesteps) of each sequence. This is allowed to be a NULL
pointer if arrayLengthRequested is zero.

paddingFill

Output. Pointer to the host memory location to store the user defined symbol. The
symbol should be interpreted as the same data type as the RNN data tensor.

Returns
CUDNN_STATUS SUCCESS

The parameters are fetched successfully.
CUDNN_STATUS_BAD PARAM

Any one of these have occurred:

» Any of RNNDataDesc, dataType, layout, maxSeqLength, batchSize,
vectorSize, paddingFill is NULL.

» seqLengthArray is NULL while arrayLengthRequested is greater than zero.

» arrayLengthRequested is less than zero.

4.117. cudnnGetRNNDescriptor

cudnnStatus t cudnnGetRNNDescriptor (

cudnnHandle t handle,
cudnnRNNDescriptor t rnnDesc,

aliae & hiddenSize,
int * numLayers,
cudnnDropoutDescriptor t * dropoutDesc,
cudnnRNNInputMode t * inputMode,
cudnnDirectionMode t * direction,
cudnnRNNMode t * mode,
cudnnRNNAlgo t * algo,
cudnnDataType t * dataType)

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 181

cuDNN API Reference

This function retrieves RNN network parameters that were configured by
cudnnSetRNNDescriptor(). All pointers passed to the function should be not-NULL or
CUDNN_STATUS_BAD_PARAM is reported. The function does not check the validity
of retrieved network parameters. The parameters are verified when they are written to
the RNN descriptor.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor.
rmnDesc

Input. A previously created and initialized RNN descriptor.
hiddenSize

Output. Pointer where the size of the hidden state should be stored (the same value is
used in every layer).

numLayers

Output. Pointer where the number of RNN layers should be stored.
dropoutDesc

Output. Pointer where the handle to a previously configured dropout descriptor
should be stored.

inputMode

Output. Pointer where the mode of the first RNN layer should be saved.
direction

Output. Pointer where RNN uni-directional/bi-directional mode should be saved.
mode

Output. Pointer where RNN cell type should be saved.
algo
Output. Pointer where RNN algorithm type should be stored.
dataType
Output. Pointer where the data type of RNN weights/biases should be stored.

Returns
CUDNN_S TATUS_SUCCESS

RNN parameters were successfully retrieved from the RNN descriptor.
CUDNN_STATUS_BAD_PARAM

At least one pointer passed to the cudnnGetRNNDescriptor() function is NULL.

4.118. cudnnGetRNNLinLayerBiasParams

cudnnStatus_t cudnnGetRNNLinLayerBiasParams (
cudnnHandle t handle,

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 182

cuDNN API Reference

const cudnnRNNDescriptor t rnnDesc,
const int pseudolayer,
const cudnnTensorDescriptor t xDesc,

const cudnnFilterDescriptor t wDesc,

const void *w,

const int linLayerID,
cudnnFilterDescriptor t linLayerBiasDesc,
void **linLayerBias)

This function is used to obtain a pointer and a descriptor of every RNN bias column
vector in each pseudo-layer within the recurrent network defined by rnnDesc and its
input width specified in xDesc.

The cudnnGetRNNLinLayerBiasParams () function was changed in cuDNN version
7.1.1 to match the behavior of cudnnGetRNNLinLayerMatrixParams ().

The cudnnGetRNNLinLayerBiasParams () function returns the RNN bias vector size
in two dimensions: rows and columns.

Due to historical reasons, the minimum number of dimensions in the filter descriptor is
three. In previous versions of the cuDNN library, the function returned the total number
of vector elements in linLayerBiasDesc as follows:

filterDimA[O]=total size,
filterDimA[1]=1,
filterDimA[2]=1

(see the description of the cudnnGetFilterNdDescriptor() function).

In v7.1.1, the format was changed to:

filterDimA[O0]=1,
filterDimA[l]=rows,
filterDimA[2]=1 (number of columns).

In both cases, the "format" field of the filter descriptor should be ignored when retrieved
by cudnnGetFilterNdDescriptor ().

Note that the RNN implementation in cuDNN uses two bias vectors before the cell non-
linear function (see equations in Chapter 3 describing the cudnnRNNMode _t enumerated

type).

Note that the RNN implementation in cuDNN depends on the number

of bias vectors before the cell non-linear function. See the equations in the
cudnnRNNMode_t description, for the enumerated type based on the value of
cudnnRNNBiasMode_tbiasMode in rnnDesc. If nonexistent biases are referenced by
linLayerID, then this function sets linLayerBiasDesc to a zeroed filter descriptor
where:

filterDimA[O0]
filterDimA[1]

0,
0, and
filterDimA[2]=2

and sets linLayerBias to NULL. See the details for function parameter 1inLayerID to
determine the relevant values of 1inLayerID based on biasMode.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 183

cuDNN API Reference

rnnDesc

Input. A previously initialized RNN descriptor.
pseudoLayer

Input. The pseudo-layer to query. In uni-directional RNN-s, a pseudo-layer is the
same as a "physical” layer (pseudoLayer=0 is the RNN input layer, pseudoLayer=1 is
the first hidden layer). In bi-directional RNN-s there are twice as many pseudo-layers
in comparison to "physical" layers (pseudoLayer=0 and pseudoLayer=1 are both input
layers; pseudoLayer=0 refers to the forward part and pseudoLayer=1 refers to the
backward part of the "physical” input layer; pseudoLayer=2 is the forward part of the
tirst hidden layer, and so on).

xDesc

Input. A fully packed tensor descriptor describing the input to one recurrent iteration
(to retrieve the RNN input width).

wDesc

Input. Handle to a previously initialized filter descriptor describing the weights for
the RNN.

w

Input. Data pointer to GPU memory associated with the filter descriptor wbesc.
linLayerID

Input. The linear layer to obtain information about:
» » Ifmode in rnnDesc was set to CUDNN_RNN_RELU or CUDNN_RNN_TANH:

» Value 0 references the bias applied to the input from the previous layer
(relevant if biasMode in rnnDesc is CUDNN_RNN_SINGLE_INP_BIAS or
CUDNN_RNN_DOUBLE_BIAS).

» Value 1 references the bias applied to the recurrent input (relevant
if biasMode in rnnDesc is CUDNN_RNN_DOUBLE_BIAS or
CUDNN_RNN_SINGLE REC_BIAS).

» If mode in rnnDesc was set to CUDNN_LSTM,

» Values of 0, 1, 2 and 3 reference bias applied to the input
from the previous layer (relevant if biasMode in rnnDesc is
CUDNN_RNN_SINGLE_INP BIAS or CUDNN_RNN DOUBLE_BIAS).

» Values of 4, 5, 6 and 7 reference bias applied to the recurrent input
(relevant if biasMode in rnnDesc is CUDNN_RNN_DOUBLE_BIAS or
CUDNN_RNN_SINGLE_ REC_BIAS).

» Values and their associated gates:

Values 0 and 4 reference the input gate.

Values 1 and 5 reference the forget gate.
Values 2 and 6 reference the new memory gate.
Values 3 and 7 reference the output gate.

» If mode in rnnDesc was set to CUDNN_GRU,

v vV v v

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 184

cuDNN API Reference

» Values of 0, 1 and 2 reference bias applied to the input from
the previous layer (relevant if biasMode in rnnDesc is
CUDNN_RNN_SINGLE_INP_BIAS or CUDNN_RNN DOUBLE_BIAS).

» Values of 3, 4 and 5 reference bias applied to the recurrent input
(relevant if biasMode in rnnDesc is CUDNN_RNN_DOUBLE_BIAS or
CUDNN_RNN_SINGLE_REC_BIAS).

» Values and their associated gates:

» Values 0 and 3 reference the reset gate.
» Values 1 and 4 reference the update gate.
» Values 2 and 5 reference the new memory gate.

Also refer to cudnnRNNMode_t for additional details on modes and bias modes.
linLayerBiasDesc

Output. Handle to a previously created filter descriptor.
linLayerBias

Output. Data pointer to GPU memory associated with the filter descriptor
linLayerBiasDesc.

The possible error values returned by this function and their meanings are listed below.
Returns

CUDNN_STATUS_ SUCCESS

The query was successful.
CUDNN_STATUS NOT_ SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD PARAM

At least one of the following conditions are met:

» One of the following arguments is NULL: handle, rnnDesc, xDesc, wDesc,
linLayerBiasDesc, linLayerBias.

» A data type mismatch was detected between rnnDesc and other descriptors.
» Minimum requirement for the 'w' pointer alignment is not satisfied.
» The value of pseudoLayer or linLayerID is out of range.

CUDNN_STATUS_INVALID VALUE

Some elements of the 1inLayerBias vector are be outside the 'w' buffer boundaries
as specified by the wbesc descriptor.

4.119. cudnnGetRNNLinLayerMatrixParams

cudnnStatus t cudnnGetRNNLinLayerMatrixParams (

cudnnHandle t handle,
const cudnnRNNDescriptor t rnnDesc,
const int pseudolayer,

const cudnnTensorDescriptor t xDesc,

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 185

cuDNN API Reference

const cudnnFilterDescriptor t wDesc,

const void *w,

const int linLayerID,
cudnnFilterDescriptor t linLayerMatDesc,
void **linLayerMat)

This function is used to obtain a pointer and a descriptor of every RNN weight matrix in
each pseudo-layer within the recurrent network defined by rnnDesc and its input width
specified in xDesc.

The cudnnGetRNNLinLayerMatrixParams () function was enhanced in cuDNN
version 7.1.1 without changing its prototype. Instead of reporting the total number
of elements in each weight matrix in the “linLayerMatDesc” filter descriptor, the
function returns the matrix size as two dimensions: rows and columns. Moreover,
when a weight matrix does not exist, e.g due to CUDNN_SKIP_INPUT mode, the
function returns NULL in 1inLayerMat and all fields of linLayerMatDesc are zero.

The cudnnGetRNNLinLayerMatrixParams () function returns the RNN matrix
size in two dimensions: rows and columns. This allows the user to easily print and
initialize RNN weight matrices. Elements in each weight matrix are arranged in the
row-major order. Due to historical reasons, the minimum number of dimensions
in the filter descriptor is three. In previous versions of the cuDNN library, the
function returned the total number of weights in linLayerMatDesc as follows:
tilterDimA[O]=total_size, filterDimA[1]=1, filterDimA[2]=1 (see the description of
the cudnnGetFilterNdDescriptor() function). In v7.1.1, the format was changed

to: filterDimA[0]=1, filterDimA[1]=rows, filterDimA[2]=columns. In both cases,
the "format" field of the filter descriptor should be ignored when retrieved by
cudnnGetFilterNdDescriptor ().

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor.

rnnDesc

Input. A previously initialized RNN descriptor.
pseudoLayer

Input. The pseudo-layer to query. In uni-directional RNN-s, a pseudo-layer is the
same as a "physical” layer (pseudoLayer=0 is the RNN input layer, pseudoLayer=1 is
the first hidden layer). In bi-directional RNN-s there are twice as many pseudo-layers
in comparison to "physical" layers (pseudoLayer=0 and pseudoLayer=1 are both input
layers; pseudoLayer=0 refers to the forward part and pseudoLayer=1 refers to the
backward part of the "physical” input layer; pseudoLayer=2 is the forward part of the
tirst hidden layer, and so on).

xDesc

Input. A tully packed tensor descriptor describing the input to one recurrent iteration
(to retrieve the RNN input width).

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 186

cuDNN API Reference

wDesc

Input. Handle to a previously initialized filter descriptor describing the weights for
the RNN.

w

Input. Data pointer to GPU memory associated with the filter descriptor wbesc.
linLayerID

Input. The linear layer to obtain information about:

» If mode in rnnDesc was set to CUDNN_RNN RELU or CUDNN_RNN TANH a value of 0
references the matrix multiplication applied to the input from the previous layer,
a value of 1 references the matrix multiplication applied to the recurrent input.

» If mode in rnnDesc was set to CUDNN_LSTM values of 0-3 reference matrix
multiplications applied to the input from the previous layer, value of 4-7
reference matrix multiplications applied to the recurrent input.

Values 0 and 4 reference the input gate.

Values 1 and 5 reference the forget gate.
Values 2 and 6 reference the new memory gate.
Values 3 and 7 reference the output gate.

Value 8 references the "recurrent” projection matrix when enabled by the

cudnnSetRNNProjectionLayers() function.

» Ifmode in rnnDesc was set to CUDNN_GRU values of 0-2 reference matrix
multiplications applied to the input from the previous layer, value of 3-5
reference matrix multiplications applied to the recurrent input.

vV V. v v VY

» Values 0 and 3 reference the reset gate.
» Values 1 and 4 reference the update gate.
» Values 2 and 5 reference the new memory gate.

Please refer to Chapter 3 for additional details on modes.
linLayerMatDesc

Output. Handle to a previously created filter descriptor. When the weight matrix does
not exist, the returned filer descriptor has all fields set to zero.

linLayerMat

Output. Data pointer to GPU memory associated with the filter descriptor

linLayerMatDesc. When the weight matrix does not exist, the returned pointer is
NULL.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_S TATUS_SUCCESS

The query was successful.
CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 187

cuDNN API Reference

CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:

» One of the following arguments is NULL: handle, rnnDesc, xDesc, wDesc,
linLayerMatDesc, linLayerMat.

» A data type mismatch was detected between rnnDesc and other descriptors.
» Minimum requirement for the 'w' pointer alignment is not satisfied.
» The value of pseudoLayer or linLayerID is out of range.

CUDNN_STATUS_INVALID VALUE

Some elements of the 1inLayerMat vector are be outside the 'w' buffer boundaries
as specified by the wbesc descriptor.

4.120. cudnnGetRNNParamsSize

cudnnStatus t cudnnGetRNNParamsSize (

cudnnHandle t handle,
const cudnnRNNDescriptor t rnnDesc,
const cudnnTensorDescriptor t xDesc,

size t *sizelInBytes,
cudnnDataType t dataType)

This function is used to query the amount of parameter space required to execute the
RNN described by rnnDesc with inputs dimensions defined by xDesc.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor.
rnnDesc

Input. A previously initialized RNN descriptor.
xDesc

Input. A tully packed tensor descriptor describing the input to one recurrent iteration.
sizeInBytes

Output. Minimum amount of GPU memory needed as parameter space to be able to
execute an RNN with the specified descriptor and input tensors.

dataType
Input. The data type of the parameters.
The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_S TATUS_SUCCESS

The query was successful.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 188

cuDNN API Reference

The descriptor rnnDesc is invalid.

The descriptor xDesc is invalid.

The descriptor xDesc is not fully packed.

The combination of dataType and tensor descriptor data type is invalid.

vV v v VY

CUDNN_STATUS NOT_SUPPORTED

The combination of the RNN descriptor and tensor descriptors is not supported.

4.121. cudnnGetRNNPaddingMode

cudnnStatus_t cudnnGetRNNPaddingMode (
cudnnRNNDescriptor t rnnDesc,
cudnnRNNPaddingMode t *paddingMode)
This function retrieves the RNN padding mode from the RNN descriptor.

Parameters
rnnDesc

Input/Output. A previously created RNN descriptor.
*paddingMode

Input. Pointer to the host memory where the RNN padding mode is saved.

Returns
CUDNN_STATUS_SUCCESS

The RNN padding mode parameter was retrieved successfully.
CUDNN_STATUS_BAD PARAM

Either the rnnDesc or *paddingMode is NULL.

4.122. cudnnGetRNNProjectionLayers

cudnnStatus t cudnnGetRNNProjectionLayers (

cudnnHaHdle_t handle,

cudnnRNNDescriptor t rnnDesc,

int *recProjSize,

int *outProjSize)
(New for 7.1)

This function retrieves the current RNN “projection” parameters. By default

the projection feature is disabled so invoking this function immediately after
cudnnSetRNNDescriptor() will yield recProjSize equal to hiddenSize and outProjSize set
to zero. The cudnnSetRNNProjectionLayers () method enables the RNN projection.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 189

cuDNN API Reference

rnnDesc

Input. A previously created and initialized RNN descriptor.
recProjSize

Output. Pointer where the “recurrent” projection size should be stored.
outProjSize

Output. Pointer where the “output” projection size should be stored.

Returns
CUDNN_STATUS SUCCESS

RNN projection parameters were retrieved successfully.
CUDNN_STATUS_BAD PARAM

A NULL pointer was passed to the function.

4.123. cudnnGetRNNTrainingReserveSize

cudnnStatus t cudnnGetRNNTrainingReserveSize (

cudnnHandle t handle,
const cudnnRNNDescriptor t rnnDesc,
const int seqglLength,
const cudnnTensorDescriptor t *xDesc,

size t *sizeInBytes)

This function is used to query the amount of reserved space required for training

the RNN described by rnnDesc with inputs dimensions defined by xDesc. The

same reserved space buffer must be passed to cudnnRNNForwardTraining,
cudnnRNNBackwardData and cudnnRNNBackwardWeights. Each of these calls
overwrites the contents of the reserved space, however it can safely be backed up and
restored between calls if reuse of the memory is desired.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor.
rnnDesc

Input. A previously initialized RNN descriptor.
seqLength

Input. Number of iterations to unroll over. The value of this seqLength must not
exceed the value that was used in cudnnGetRNNWorkspaceSize () function for
querying the workspace size required to execute the RNN.

xDesc

Input. An array of tensor descriptors describing the input to each recurrent iteration
(one descriptor per iteration). The first dimension (batch size) of the tensors may
decrease from element n to element n+1 but may not increase. Each tensor descriptor
must have the same second dimension (vector length).

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 190

cuDNN API Reference

sizeInBytes

Output. Minimum amount of GPU memory needed as reserve space to be able to train
an RNN with the specified descriptor and input tensors.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

The query was successful.
CUDNN_STATUS BAD PARAM

At least one of the following conditions are met:

» The descriptor rnnDesc is invalid.

» At least one of the descriptors in xDesc is invalid.

» The descriptors in xDesc have inconsistent second dimensions, strides or data
types.

» The descriptors in xDesc have increasing first dimensions.
» The descriptors in xDesc is not fully packed.

CUDNN_STATUS NOT_ SUPPORTED

The the data types in tensors described by xDesc is not supported.

4.124. cudnnGetRNNWorkspaceSize

cudnnStatus t cudnnGetRNNWorkspaceSize (

cudnnHandle t handle,
const cudnnRNNDescriptor t rnnDesc,
const int seglLength,
const cudnnTensorDescriptor t *xDesc,

size t *sizelInBytes)

This function is used to query the amount of work space required to execute the RNN
described by rnnDesc with inputs dimensions defined by xDesc.

Parameters

handle

Input. Handle to a previously created cuDNN library descriptor.
rnnDesc

Input. A previously initialized RNN descriptor.
seqLength
Input. Number of iterations to unroll over. Workspace that is allocated, based on the
size this function provides, cannot be used for sequences longer than seqLength.
xDesc
Input. An array of tensor descriptors describing the input to each recurrent iteration

(one descriptor per iteration). The first dimension (batch size) of the tensors may
decrease from element n to element n+1 but may not increase. For example, if you

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 191

cuDNN API Reference

have multiple time series in a batch, they can be different lengths. This dimension is
the batch size for the particular iteration of the sequence, and so it should decrease
when a sequence in the batch has terminated.

Each tensor descriptor must have the same second dimension (vector length).
sizeInBytes

Output. Minimum amount of GPU memory needed as workspace to be able to
execute an RNN with the specified descriptor and input tensors.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

The query was successful.
CUDNN_STATUS BAD PARAM

At least one of the following conditions are met:

» The descriptor rnnDesc is invalid.

» At least one of the descriptors in xDesc is invalid.

» The descriptors in xDesc have inconsistent second dimensions, strides or data
types.

» The descriptors in xDesc have increasing first dimensions.
» The descriptors in xDesc is not fully packed.

CUDNN_STATUS NOT_ SUPPORTED

The data types in tensors described by xDesc is not supported.

4.125. cudnnGetReduceTensorDescriptor

cudnnStatus t cudnnGetReduceTensorDescriptor (
const cudnnReduceTensorDescriptor t reduceTensorDesc,

cudnnReduceTensorOp t *reduceTensorOp,
cudnnDataType t *reduceTensorCompType,
cudnnNanPropagation t *reduceTensorNanOpt,
cudnnReduceTensorIndices t *reduceTensorIndices,
cudnnIndicesType t *reduceTensorIndicesType)

This function queries a previously initialized reduce tensor descriptor object.

Parameters
reduceTensorDesc

Input. Pointer to a previously initialized reduce tensor descriptor object.
reduceTensorOp

Output. Enumerant to specify the reduce tensor operation.
reduceTensorCompType

Output. Enumerant to specify the computation datatype of the reduction.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 192

cuDNN API Reference

reduceTensorNanOpt

Input. Enumerant to specify the Nan propagation mode.
reduceTensorIndices

Output. Enumerant to specify the reduce tensor indices.
reduceTensorIndicesType

Output. Enumerant to specify the reduce tensor indices type.

Returns
CUDNN_STATUS SUCCESS

The object was queried successfully.
CUDNN_STATUS_BAD PARAM

reduceTensorDesc is NULL.

4.126. cudnnGetReductionIindicesSize

cudnnStatus t cudnnGetReductionIndicesSize (

cudnnHandle t handle,
const cudnnReduceTensorDescriptor t reduceDesc,
const cudnnTensorDescriptor t aDesc,

const cudnnTensorDescriptor t cDesc,

size t *sizelInBytes)

This is a helper function to return the minimum size of the index space to be passed to
the reduction given the input and output tensors.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor.
reduceDesc

Input. Pointer to a previously initialized reduce tensor descriptor object.
aDesc

Input. Pointer to the input tensor descriptor.
cDesc

Input. Pointer to the output tensor descriptor.
sizeInBytes

Output. Minimum size of the index space to be passed to the reduction.

Returns
CUDNN_STATUS_SUCCESS

The index space size is returned successfully.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 193

cuDNN API Reference

4.127. cudnnGetReductionWorkspaceSize

cudnnStatus t cudnnGetReductionWorkspaceSize (

cudnnHaHdle_t handle,

const cudnnReduceTensorDescriptor t reduceDesc,
const cudnnTensorDescriptor t aDesc,

const cudnnTensorDescriptor t cDesc,

size t *sizelInBytes)

This is a helper function to return the minimum size of the workspace to be passed to the
reduction given the input and output tensors.

Parameters

handle

Input. Handle to a previously created cuDNN library descriptor.
reduceDesc

Input. Pointer to a previously initialized reduce tensor descriptor object.
aDesc

Input. Pointer to the input tensor descriptor.
cDesc

Input. Pointer to the output tensor descriptor.
sizeInBytes

Output. Minimum size of the index space to be passed to the reduction.

Returns
CUDNN_STATUS_ SUCCESS

The workspace size is returned successfully.

4.128. cudnnGetSeqgDataDescriptor

cudnnStatus t cudnnGetSegDataDescriptor (
const cudnnSegDataDescriptor t segDataDesc,
cudnnDataType t *dataType,

int *nbDims,

int nbDimsRequested,

int dimA[],

cudnnSegDataAxis t axes|[],

size t *seqlengthArraySize,

size t seqlengthSizeRequsted,

int seglengthArrayl[],

void *paddingFill) ;

This function returns the current values stored in a previously initialized sequence data
descriptor.

Parameters:

Parameter Input / Output Description

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 194

cuDNN API Reference

seqDataDesc Input A sequence data descriptor whose present
value is requested.

dataType Output The data type of the sequence data.

nbDims Output Number of dimensions.

nbDimsRequested Input Number of elements of dima (the
axes array) requested. Only the first
nbDimsRequested elements or nbDims
elements, whichever is smaller, is
reported.

dimA[] Output Size of the axes dimensions.

axes[] Output Axes, in the order of outermost to
innermost dimension.

segLengthArraySize Output Length of seqLengthArray.

segLengthSizeRequested Input Number of elements of seqLengthArray
requested. Only the first
seqlLengthArraySize elements, or
seqgLengthSizeRequsted elements,
whichever is smaller, is reported.

segLengthArray[] Output Length of each sequence.

paddingFill Output Value used for filling the padding elements
in the buffer.

Returns:

Return Value

Description

CUDNN_STATUS_SUCCESS

The requested values were obtained successfully.

CUDNN_STATUS_BAD_PARAM

Any of the below is true for the input arguments:
-segDataDesc is NULL.
-nbDimsRequested is not positive.

-seqLengthSizeRequsted is

larger than seqLengthArraySize
dimA[CUDNN_SEQDATA BATCH DIM] *
dimA[CUDNN_SEQDATA BEAM DIM]

CUDNN_STATUS_NOT_SUPPORTED

A value not supported is encountered. For
example, the nbDimsRequested is larger
than CUDNN_SEQDATA_DIM_COUNT. See
cudnnSeqDataAxis_t.

CUDNN_STATUS_INTERNAL_ERROR

Encountered an invalid field value in
segDataDesc.

4.129. cudnnGetStream

cudnnStatus t cudnnGetStream (
cudnnHandle t handle,
cudaStream t *streamld)

www.nvidia.com
cuDNN 7.5.0

DU-06702-001_v07 | 195

cuDNN API Reference

This function retrieves the user CUDA stream programmed in the cuDNN handle.
When the user's CUDA stream was not set in the cuDNN handle, this function reports
the null-stream.

Parameters
handle

Input. Pointer to the cuDNN handle.
streamID

Output. Pointer where the current CUDA stream from the cuDNN handle should be
stored.

Returns
CUDNN_STATUS_BAD PARAM

Invalid (NULL) handle.
CUDNN_STATUS_SUCCESS

The stream identifier was retrieved successfully.

4.130. cudnnGetTensor4dDescriptor

cudnnStatus_t cudnnGetTensor4dDescriptor (
const cudnnTensorDescriptor t tensorDesc,

cudnnDataType t *dataType,
int i,

int glep

int lnl

int *w,

int *nStride,
int *cStride,
int *hStride,
int *wStride)

This function queries the parameters of the previouly initialized Tensor4D descriptor
object.

Parameters
tensorDesc

Input. Handle to a previously insitialized tensor descriptor.
datatype

Output. Data type.
Output. Number of images.
Output. Number of feature maps per image.

h
Output. Height of each feature map.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 196

cuDNN API Reference

Output. Width of each feature map.
nStride

Output. Stride between two consecutive images.
cStride

Output. Stride between two consecutive feature maps.
hStride

Output. Stride between two consecutive rows.
wStride

Output. Stride between two consecutive columns.
The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

The operation succeeded.

4.131. cudnnGetTensorNdDescriptor

cudnnStatus t cudnnGetTensorNdDescriptor (

const cﬁdnnTensorDescriptorit tensorDesc,

int nbDimsRequested,
cudnnDataType t *dataType,

int *nbDims,

int dimA[],

int strideA[])

This function retrieves values stored in a previously initialized Tensor descriptor object.

Parameters
tensorDesc

Input. Handle to a previously initialized tensor descriptor.
nbDimsRequested
Input. Number of dimensions to extract from a given tensor descriptor. It is also the

minimum size of the arrays dimA and strideA. If this number is greater than the
resulting nbDims[0], only nbDims[0] dimensions will be returned.

datatype

Output. Data type.
nbDims

Output. Actual number of dimensions of the tensor will be returned in nbDims[0].
dimA

Output. Array of dimension of at least nbDimsRequested that will be filled with the
dimensions from the provided tensor descriptor.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 197

cuDNN API Reference

strideA

Input. Array of dimension of at least nbDimsRequested that will be filled with the
strides from the provided tensor descriptor.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

The results were returned successfully.
CUDNN_STATUS BAD PARAM

Either tensorDesc or nbDims pointer is NULL.

4.132. cudnnGetTensorSizelnBytes

cudnnStatus t cudnnGetTensorSizeInBytes (
const cudnnTensorDescriptor t tensorDesc,
size t *size)

This function returns the size of the tensor in memory in respect to the given descriptor.
This function can be used to know the amount of GPU memory to be allocated to hold
that tensor.

Parameters

tensorDesc

Input. Handle to a previously initialized tensor descriptor.
size
Output. Size in bytes needed to hold the tensor in GPU memory.
The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

The results were returned successfully.

4.133. cudnnGetTensorTransformDescriptor

cudnnStatus_ t cudnnGetTensorTransformDescriptor (
cudnnTensorTransformDescriptor t transformDesc,
uint32 t nbDimsRequested,

cudnnTensorFormat t *destFormat,

int32 t padBeforeA[],

int32 t padAfterA[],

uint32 t foldA[],

cudnnFoldingDirection t *direction);

This function returns the values stored in a previously initialized Tensor transform
descriptor.

Parameters:

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 198

cuDNN API Reference

Parameter Input / Output

Description

transformDesc Input

A previously initialized Tensor transform
descriptor.

nbDimsRequested Input

The number of dimensions to consider.
See also https://docs.nvidia.com/
deeplearning/sdk/cudnn-developer-guide/
index.html#tensor-descriptor

destFormat Output

The transform format that will be
returned.

padBeforeA[] Output

An array filled with the amount of
padding to add before each dimension.
The dimension of this padBeforeal]
parameter equal to nbDimsRequested.

padAfterA[] Output

An array filled with the amount of
padding to add after each dimension.

The dimension of this padBeforea[]
parameter is equal to nbDimsRequested.

foldA[] Output

An array that was filled with the folding
parameters for each spatial dimension.
The dimension of this folda[] array is
nbDimsRequested - 2.

direction Output

The setting that selects folding or
unfolding. See cudnnFoldingDirection_t.

Returns:

Return Value

Description

CUDNN_STATUS_SUCCESS

The results were obtained successfully.

CUDNN_STATUS_BAD_PARAM

If transformbDesc is NULL, or if
nbDimsRequested is less than 3 or greater than
CUDNN_DIM_MAX.

4.134. cudnnGetVersion

size t cudnnGetVersion ()

This function returns the version number of the cuDNN Library. It returns the
CUDNN_VERSION define present in the cudnn.h header file. Starting with release R2, the
routine can be used to identify dynamically the current cuDNN Library used by the
application. The define CUDNN_VERSION can be used to have the same application linked
against different cuDNN versions using conditional compilation statements.

4.135. cudnnim2Col

cudnnStatus_t cudnnIm2Col (
cudnnHandle t
cudnnTensorDescriptor t
const void

www.nvidia.com
cuDNN 7.5.0

DU-06702-001_v07 | 199

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#tensor-descriptor
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#tensor-descriptor
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#tensor-descriptor

cuDNN API Reference

cudnnFilterDescriptor t filterDesc,
cudnnConvolutionDescriptor t convDesc,
void *colBuffer)

This function constructs the A matrix necessary to perform a forward pass of
GEMM convolution. This A matrix has a height of batch_size*y_height*y_width

and width of input_channels*filter_height*filter_width, where batch_size

is xDesc's first dimension, y_height/y_width are computed from
cudnnGetConvolutionNdForwardOutputDim (), input_channels is xDesc's second
dimension, filter_height/filter_width are wDesc's third and fourth dimension. The A
matrix is stored in format HW-fully-packed in GPU memory.

Parameters
handle

Input. Handle to a previously created cuDNN context.
srcDesc

Input. Handle to a previously initialized tensor descriptor.
srcData

Input. Data pointer to GPU memory associated with the input tensor descriptor.
filterDesc

Input. Handle to a previously initialized filter descriptor.
convDesc

Input. Handle to a previously initialized convolution descriptor.
colBuffer

Output. Data pointer to GPU memory storing the output matrix.

Returns
CUDNN_S TATUS_BAD_PARAM

srcData or colBuffer is NULL.
CUDNN_STATUS_NOT_SUPPORTED
Any of srcDesc, filterDesc, convDesc has dataType of CUDNN_DATA_INTS,

CUDNN_DATA_INT8x4, CUDNN_DATA_INTS, or CUDNN_DATA_INT8x4
convDesc has groupCount larger than 1.

CUDNN_STATUS EXECUTION_ FAILED

The cuda kernel execution was unsuccessful.
CUDNN_STATUS_ SUCCESS

The output data array is successfully generated.

4.136. cudnnlnitTransformDest

cudnnStatus t cudnnInitTransformDest (

const cudnnTransformDescriptor t transformDesc,
const cudnnTensorDescriptor t srcDesc,
cudnnTensorDescriptor t destDesc,

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 200

size t *destSizelnBytes);

cuDNN API Reference

This function initializes and returns a destination Tensor descriptor destDesc for Tensor
transform operations. The initialization is done with the desired parameters described in
the transform descriptor cudnnTensorDescriptor_t.

The returned Tensor descriptor will be packed.

Parameters:
Parameter Input / Output Description
transformDesc Input Handle to a previously initialized Tensor
transform descriptor.
srcDesc Input Handle to a previously initialized Tensor
descriptor.
destDesc Output Handle of the Tensor descriptor that will
be initialized and returned.
destSizelnBytes Output A pointer to hold the size, in bytes, of the
new Tensor.
Returns:
Return Value Description

CUDNN_STATUS_SUCCESS

The Tensor descriptor was initialized successfully.

CUDNN_STATUS_BAD_PARAM

If either srcDesc or destDesc is NULL, or if the
Tensor descriptor’s nbDims is incorrect.

CUDNN_STATUS_NOT_SUPPORTED

If the provided configuration is not 4D.

CUDNN_STATUS_EXECUTION_FAILED

Function failed to launch on the GPU.

4.137. cudnnLRNCrossChannelBackward

cudnnStatus t cudnnLRNCrossChannelBackward (

cudnnHaHdle_t
cudnnLRNDescriptor t
cudnnLRNMode t

const void

const cudnnTensorDescriptor t
const void

const cudnnTensorDescriptor t
const void

const cudnnTensorDescriptor t
const void

const void

const cudnnTensorDescriptor t
void

www.nvidia.com
cuDNN 7.5.0

handle,
normDesc,
lrnMode,
*alpha,
yDesc,
*Ys
dyDesc,
*dy,
xDesc,
*x,
*beta,
dxDesc,
*dx)

DU-06702-001_v07 | 201

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#tensor-descriptor

cuDNN API Reference

This function performs the backward LRN layer computation.

Supported formats are: positive-strided, NCHW for 4D x and y, and only NCDHW
DHW-packed for 5D (for both x and y). Only non-overlapping 4D and 5D tensors are
supported.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor.
normDesc

Input. Handle to a previously intialized LRN parameter descriptor.
IrnMode
Input. LRN layer mode of operation. Currently only

CUDNN_LRN_CROSS_CHANNEL_DIM1 is implemented. Normalization is
performed along the tensor's dimA[1].

alpha, beta
Input. Pointers to scaling factors (in host memory) used to blend the layer
output value with prior value in the destination tensor as follows: dstValue =

alpha[0]*resultValue + beta[0]*priorDstValue. Please refer to this section for
additional details.

yDesc, y

Input. Tensor descriptor and pointer in device memory for the layer's y data.
dyDesc, dy

Input. Tensor descriptor and pointer in device memory for the layer's input
cumulative loss differential data dy (including error backpropagation).

xDesc, x

Input. Tensor descriptor and pointer in device memory for the layer's x data. Note
that these values are not modified during backpropagation.

dxDesc, dx

Output. Tensor descriptor and pointer in device memory for the layer's resulting
cumulative loss differential data dx (including error backpropagation).

Possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The computation was performed successfully.
CUDNN_STATUS_BAD PARAM

At least one of the following conditions are met:

» One of the tensor pointers x, yis NULL.
» Number of input tensor dimensions is 2 or less.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 202

cuDNN API Reference

» LRN descriptor parameters are outside of their valid ranges.
» One of tensor parameters is 5D but is not in NCDHW DHW-packed format.

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration. See the following for some
examples of non-supported configurations:

» Any of the input tensor datatypes is not the same as any of the output tensor
datatype.

» Any pairwise tensor dimensions mismatch for x,y,dx,dy.
» Any tensor parameters strides are negative.

4.138. cudnnLRNCrossChannelForward

cudnnStatus t cudnnLRNCrossChannelForward (

cudnnHandle t handle,
cudnnLRNDescriptor t normDesc,
cudnnLRNMode t lrnMode,
const void *alpha,
const cudnnTensorDescriptor t xDesc,
const void Ay

const void *beta,
const cudnnTensorDescriptor t yDesc,
void *y)

This function performs the forward LRN layer computation.

Supported formats are: positive-strided, NCHW for 4D x and y, and only NCDHW
DHW-packed for 5D (for both x and y). Only non-overlapping 4D and 5D tensors are
supported.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor.
normDesc

Input. Handle to a previously intialized LRN parameter descriptor.
IrnMode
Input. LRN layer mode of operation. Currently only

CUDNN_LRN_CROSS_CHANNEL_DIM1 is implemented. Normalization is
performed along the tensor's dimA[1].

alpha, beta
Input. Pointers to scaling factors (in host memory) used to blend the layer
output value with prior value in the destination tensor as follows: dstValue =

alpha[0]*resultValue + beta[0]*priorDstValue. Please refer to this section for
additional details.

xDesc, yDesc

Input. Tensor descriptor objects for the input and output tensors.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 203

cuDNN API Reference

Input. Input tensor data pointer in device memory.

Output. Output tensor data pointer in device memory.
Possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

The computation was performed successfully.
CUDNN_STATUS BAD PARAM

At least one of the following conditions are met:

One of the tensor pointers x, yis NULL.

Number of input tensor dimensions is 2 or less.

LRN descriptor parameters are outside of their valid ranges.

One of tensor parameters is 5D but is not in NCDHW DHW-packed format.

vV v v VY

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration. See the following for some
examples of non-supported configurations:

» Any of the input tensor datatypes is not the same as any of the output tensor
datatype.

» xand y tensor dimensions mismatch.
» Any tensor parameters strides are negative.

4.139. cudnnMultiHeadAttnBackwardData

cudnnStatus_t cudnnMultiHeadAttnBackwardData (
cudnnHandle t handle,

const cudnnAttnDescriptor t attnDesc,
const int *loWinIdx,

const int *hiWinIdx,

const int *seqlengthArrayDQDO,

const int *seglLengthArrayDKDV,

const cudnnSegDataDescriptor t doDesc,
const void *dout,

const cudnnSegDataDescriptor t dgDesc,
void *dqueries,

const void *queries,

const cudnnSegDataDescriptor t dkDesc,
void *dkeys,

const void *keys,

const cudnnSegDataDescriptor t dvDesc,
void *dvalues,

const void *values,

size t weightSizeInBytes,

const void *w,

size t workSpaceSizeInBytes,

void *workSpace,

size t reserveSpaceSizelnBytes,

void *reserveSpace) ;

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 204

cuDNN API Reference

This function computes the data gradients with backpropagation.

Parameters:

Parameter Input / Output Description

handle Input A cuDNN context handle.

attnDesc Input A previously initialized multi-head
attention descriptor.

loWinldx, hiWinldx Input An array of lower (inclusive) and upper
(exclusive) key and value time steps
windows.

seqLengthArrayDQDO Input Sequence lengths of queries and output
sequences data.

segLengthArrayDKDV Input Sequence lengths of keys and values
sequences data.

doDesc Input Descriptor for output gradient sequence
data.

dout Input Output gradient data in device memory.

dgDesc Input Descriptor for queries sequence data.

dqueries Output Queries gradient data in device memory.

queries Input Queries data in device memory.

dkDesc Input Descriptor for the keys vectors.

dkeys Output Keys gradient data in device memory.

keys Input Keys data in device memory.

dvDesc Input Descriptor for the values vectors.

dvalues Output Values gradient data in device memory.

values Input Values data in device memory.

weightSizelnBytes Input Pointer to a location, in host memory,
where the attention weight sizes (in
bytes) are stored.

w Input Weight data in device memory.

workSpaceSizelnBytes Input Pointer to a location, in host memory,
of the workspace size (in bytes). For
inference and training.

workSpace Input Workspace data in device memory.

reserveSpaceSizelnBytes Input Pointer to a location, in host memory,
of the reserve space size (in bytes). For
training.

reserveSpace Input/Output Reserve space data in device memory.

Returns:

Return Value

Description

CUDNN_STATUS_SUCCESS

The forward calculation is successful.

www.nvidia.com
cuDNN 7.5.0

DU-06702-001_v07 | 205

cuDNN API Reference

CUDNN_STATUS_EXECUTION_FAILED

Failed to launch the kernel, or other kernel errors.

4.140. cudnnMultiHeadAttnBackwardWeights

cudnnStatus_t cudnnMultiHeadAttnBackwardWeights (

cudnnHandle t handle,

const cudnnAttnDescriptor t attnDesc,
cudnnWgradMode t addGrad,

const cudnnSegDataDescriptor t gDesc,
const void *queries,

const cudnnSegDataDescriptor t kDesc,
const void *keys,

const cudnnSegDataDescriptor t vDesc,
const void *values,

const cudnnSegDataDescriptor t doDesc,
const void *dout,

size t weightSizelInBytes,

const void *w,

void *dw,

size t workSpaceSizeInBytes,

void *workSpace,

size t reserveSpaceSizelInBytes,

void *reserveSpace);

This function computes the weight gradients with backpropagation.

Parameters:

Parameter Input / Output Description

handle Input A cuDNN context handle.

attnDesc Input A previously initialized multi-head
attention descriptor.

addGrad Input Weight gradient output mode. See
cudnnWgradMode_t <link>.

qgDesc Input Descriptor of the query sequence data.

queries Input Query data in device memory.

kDesc Input Descriptor for the keys sequence data.

keys Input Keys data in device memory.

vDesc Input Descriptor for the values sequence data.

values Input Values data in device memory.

doDesc Input Descriptor for the output gradient
sequence data.

dout Input Output gradient data in device memory.

weightSizelnBytes Input Pointer to a location, in host memory,
where the attention weight sizes (in
bytes) are stored.

w Input Pointer to the weight buffer address.

dw Output Weight gradient data in device memory.

www.nvidia.com
cuDNN 7.5.0

DU-06702-001_v07 | 206

cuDNN API Reference

workSpaceSizelnBytes Input Pointer to a location, in host memory,
of the workspace size (in bytes). For
inference and training.

workSpace Input Workspace data in device memory.

reserveSpaceSizelnBytes Input Pointer to a location, in host memory,
of the reserve space size (in bytes). For
training.

reserveSpace Input Reserve space data in device memory.

Returns:

Return Value

Description

CUDNN_STATUS_SUCCESS

The forward calculation is successful.

CUDNN_STATUS_EXECUTION_FAILED

Failed to launch the kernel, or other kernel errors.

4.141. cudnnMultiHeadAttnForward

cudnnStatus t cudnnMultiHeadAttnForward (

cudnnHandlg_t handle,

const cudnnAttnDescriptor t attnDesc,

int currldx,
const int *loWinIdx,
const int *hiWinIdx,

const int *seqlLengthArrayQRO,
const int *seqlengthArrayKV,

const cudnnSegDataDescriptor t

const void *queries,
const void *residuals,

const cudnnSegDataDescriptor t

const void *keys,

const cudnnSegDataDescriptor t

const void *values,

const cudnnSegDataDescriptor t

void *out,
size t weightSizeInBytes,
const void *w,

size t workSpaceSizeInBytes,

void *workSpace,

size t reserveSpaceSizelnBytes,

void *reserveSpace) ;

gDesc,

kDesc,
vDesc,

oDesc,

The function cudnnMultiHead AttnForward() performs the multi-head attention
response computation, as described in the paper Attention Is All You Need.

Parameters:

Parameter Input / Output Description

handle Input A cuDNN context handle.

attnDesc Input A previously initialized multi-head
attention descriptor.

currldx Input Output timestep(s) to compute. <0
for the training mode, and >=0 for the
inference mode.

www.nvidia.com
cuDNN 7.5.0

DU-06702-001_v07 | 207

https://arxiv.org/abs/1706.03762

cuDNN API Reference

loWinldx, hiWinldx Input An array of lower (inclusive) and upper
(exclusive) key and value time steps
windows.

segLengthArrayQRO Input Length of each sequence of the query,
residual, and output data.

segLengthArrayKV Input Length of each sequence of the key and
value data.

qDesc Input Descriptor for the queries and residual
sequence data.

queries Input Queries data in device memory.

residuals Input Residual data in device memory. NULL if
no residual connection.

kDesc Input Descriptor for the keys sequence data.

keys Input Keys data in device memory.

vDesc Input Descriptor for the values sequence data.

values Input Values data in device memory.

oDesc Input Descriptor for the multi-head attention
output sequence data.

out Output Output data in device memory.

weightSizelnBytes Input Pointer to a location, in host memory,
where the attention weight sizes (in
bytes) are stored.

w Input Weight data in device memory.

workSpaceSizelnBytes Input Pointer to a location, in host memory,
of the workspace size (in bytes). For
inference and training.

workSpace Input Workspace data in device memory.

reserveSpaceSizelnBytes Input Pointer to a location, in host memory,
of the reserve space size (in bytes). For
training.

reserveSpace Input/Output Reserve space data in device memory.
If this is NULL it is inference mode,
otherwise it is training.

Returns:

Return Value

Description

CUDNN_STATUS_SUCCESS

The forward calculation is successful.

CUDNN_STATUS_EXECUTION_FAILED

Failed to launch the kernel, or other kernel errors.

CUDNN_STATUS_INTERNAL_ERROR

Inconsistent internal state(s) encountered.

CUDNN_STATUS_BAD_PARAM

www.nvidia.com
cuDNN 7.5.0

An invalid or incompatible parameter value is
encountered. For example:

- Any required input pointers are NULL

DU-06702-001_v07 | 208

cuDNN API Reference

- currldx is out of bound or is negative in inference
mode (indicated by reserveSpace == NULL)

- The descriptor value for attention, query, key,
value, and output are incompatible with one
another.

- Dropout is enabled but with dropout rate >= 1.

CUDNN_STATUS_NOT_SUPPORTED An unsupported parameter value is encountered.
For example:

- A combination of dataType and mathPrec that is
not supported.

CUDNN_STATUS_ALLOC_FAILED Not enough device share memory to launch kernel.

4.142. cudnnOpTensor

cudnnStatus_t cudnnOpTensor (

cudnnHandle t handle,
const cudnnOpTensorDescriptor t opTensorDesc,
const void *alphal,
const cudnnTensorDescriptor t aDesc,
const void *A,
const void *alphaz,
const cudnnTensorDescriptor t bDesc,
const void *B,
const void *beta,
const cudnnTensorDescriptor t cDesc,
void “C))

This function implements the equation C = op (alphal[0] * A, alpha2[0] * B) + beta[0] *
C, given tensors A, B, and C and scaling factors alphal, alpha2, and beta. The op to use
is indicated by the descriptor opTensorDesc. Currently-supported ops are listed by the
cudnnOpTensorOp_t enum.

Each dimension of the input tensor A must match the corresponding dimension of

the destination tensor C, and each dimension of the input tensor B must match the
corresponding dimension of the destination tensor C or must be equal to 1. In the latter
case, the same value from the input tensor B for those dimensions will be used to blend
into the C tensor.

The data types of the input tensors A and B must match. If the data type of the
destination tensor C is double, then the data type of the input tensors also must be
double.

If the data type of the destination tensor C is double, then opTensorCompType in
opTensorDesc must be double. Else opTensorCompType must be float.

If the input tensor B is the same tensor as the destination tensor C, then the input tensor
A also must be the same tensor as the destination tensor C.

Up to dimension 5, all tensor formats are supported. Beyond those dimensions, this
routine is not supported

Parameters

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 209

cuDNN API Reference

handle

Input. Handle to a previously created cuDNN context.
opTensorDesc

Input. Handle to a previously initialized op tensor descriptor.
alphal, alpha2, beta

Input. Pointers to scaling factors (in host memory) used to blend the source value with
prior value in the destination tensor as indicated by the above op equation. Please
refer to this section for additional details.

aDesc, bDesc, cDesc

Input. Handle to a previously initialized tensor descriptor.
A B

Input. Pointer to data of the tensors described by the aDesc and bDesc descriptors,
respectively.

C
Input/Output. Pointer to data of the tensor described by the cDesc descriptor.
The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

The function executed successfully.
CUDNN_STATUS NOT_ SUPPORTED

The function does not support the provided configuration. See the following for some
examples of non-supported configurations:

» The dimensions of the bias tensor and the output tensor dimensions are above 5.
» opTensorCompType is not set as stated above.

CUDNN_STATUS BAD PARAM

The data type of the destination tensor C is unrecognized or the conditions in the
above paragraphs are unmet.

CUDNN_STATUS EXECUTION_ FAILED

The function failed to launch on the GPU.

4.143. cudnnPoolingBackward

cudnnStatus t cudnnPoolingBackward (

cudnnHandle t handle,
const cudnnPoolingDescriptor t poolingDesc,
const void *alpha,

const cudnnTensorDescriptor t yDesc,

const void W,

const cudnnTensorDescriptor t dyDesc,
const void “ely,

const cudnnTensorDescriptor t xDesc,

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 210

cuDNN API Reference

const void *xData,
const void *beta,
const cudnnTensorDescriptor t dxDesc,
void *dx)

This function computes the gradient of a pooling operation.

As of cuDNN version 6.0, a deterministic algorithm is implemented for max backwards
pooling. This algorithm can be chosen via the pooling mode enum of poolingDesc. The
deterministic algorithm has been measured to be up to 50% slower than the legacy max
backwards pooling algorithm, or up to 20% faster, depending upon the use case.

All tensor formats are supported, best performance is expected when using HW-
packed tensors. Only 2 and 3 spatial dimensions are allowed

Parameters
handle

Input. Handle to a previously created cuDNN context.
poolingDesc

Input. Handle to the previously initialized pooling descriptor.
alpha, beta
Input. Pointers to scaling factors (in host memory) used to blend the computation

result with prior value in the output layer as follows: dstValue = alpha[0]*result +
beta[0]*priorDstValue. Please refer to this section for additional details.

yDesc

Input. Handle to the previously initialized input tensor descriptor.

Input. Data pointer to GPU memory associated with the tensor descriptor yDesc.
dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.
dy

Input. Data pointer to GPU memory associated with the tensor descriptor dyData.
xDesc

Input. Handle to the previously initialized output tensor descriptor.

Input. Data pointer to GPU memory associated with the output tensor descriptor
xDesc.

dxDesc

Input. Handle to the previously initialized output differential tensor descriptor.
dx

Output. Data pointer to GPU memory associated with the output tensor descriptor
dxDesc.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 211

cuDNN API Reference

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

The function launched successfully.
CUDNN_STATUS BAD PARAM

At least one of the following conditions are met:

» The dimensions n, c,h,w of the yDesc and dyDesc tensors differ.

» The strides nStride, cStride, hStride, wStride of the yDesc and dyDesc
tensors differ.

» The dimensions n, ¢, h,w of the dxDesc and dxDesc tensors differ.

» The strides nStride, cStride, hStride, wStride of the xDesc and dxDesc
tensors differ.

» The datatype of the four tensors differ.
CUDNN_STATUS NOT_ SUPPORTED

The function does not support the provided configuration. See the following for some
examples of non-supported configurations:

» The wStride of input tensor or output tensor is not 1.
CUDNN_STATUS_EXECUTION_ FAILED
The function failed to launch on the GPU.

4.144. cudnnPoolingForward

cudnnStatus t cudnnPoolingForward (

cudnnHandle t handle,
const cudnnPoolingDescriptor t poolingDesc,
const void *alpha,

const cudnnTensorDescriptor t xDesc,

const void Ay

const void *beta,

const cudnnTensorDescriptor t yDesc,

void *y)

This function computes pooling of input values (i.e., the maximum or average of several
adjacent values) to produce an output with smaller height and/or width.

All tensor formats are supported, best performance is expected when using HW-
packed tensors. Only 2 and 3 spatial dimensions are allowed.

The dimensions of the output tensor yDesc can be smaller or bigger than the
dimensions advised by the routine cudnnGetPooling2dForwardOutputDim Or
cudnnGetPoolingNdForwardOutputDim.

Parameters

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 212

cuDNN API Reference

handle

Input. Handle to a previously created cuDNN context.
poolingDesc

Input. Handle to a previously initialized pooling descriptor.
alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the computation
result with prior value in the output layer as follows: dstValue = alpha[0]*result +
beta[0]*priorDstValue. Refer to this section for additional details.

xDesc

Input. Handle to the previously initialized input tensor descriptor. Must be of type
FLOAT, or DOUBLE, or HALF, or INTS. See cudnnDataType_t.

Input. Data pointer to GPU memory associated with the tensor descriptor xDesc.
yDesc

Input. Handle to the previously initialized output tensor descriptor. Must be of type
FLOAT, or DOUBLE, or HALF, or INTS. See cudnnDataType_t.

Output. Data pointer to GPU memory associated with the output tensor descriptor
yDesc.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

The function launched successfully.
CUDNN_STATUS BAD PARAM

At least one of the following conditions are met:

» The dimensions n, ¢ of the input tensor and output tensors differ.
» The datatype of the input tensor and output tensors differs.

CUDNN_STATUS NOT_ SUPPORTED

The function does not support the provided configuration. See the following for some
examples of non-supported configurations:

» The wStride of input tensor or output tensor is not 1.
CUDNN_STATUS EXECUTION_ FAILED
The function failed to launch on the GPU.

4.145. cudnnQueryRuntimeError

cudnnStatus t cudnnQueryRuntimeError (

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 213

cuDNN API Reference

cudnnHandle t handle,
cudnnStatus_t *rstatus,
cudnnErrQueryMode t mode,
cudnnRuntimeTag t *taqg)

cuDNN library functions perform extensive input argument checking before launching
GPU kernels. The last step is to verify that the GPU kernel actually started. When

a kernel fails to start, CUDNN_STATUS_EXECUTION_FAILED is returned by the
corresponding API call. Typically, after a GPU kernel starts, no runtime checks are
performed by the kernel itself -- numerical results are simply written to output buffers.

When the CUDNN_BATCHNORM_SPATIAL_PERSISTENT

mode is selected in cudnnBatchNormalizationForwardTraining or
cudnnBatchNormalizationBackward, the algorithm may encounter numerical overflows
where CUDNN_BATCHNORM_SPATIAL performs just fine albeit at a slower speed.
The user can invoke cudnnQueryRuntimeError to make sure numerical overflows did
not occur during the kernel execution. Those issues are reported by the kernel that
performs computations.

cudnnQueryRuntimeError can be used in polling and blocking software control
flows. There are two polling modes (CUDNN_ERRQUERY_RAWCODE,
CUDNN_ERRQUERY_NONBLOCKING) and one blocking mode
CUDNN_ERRQUERY_BLOCKING.

CUDNN_ERRQUERY_RAWCODE reads the error storage location regardless of the
kernel completion status. The kernel might not even started and the error storage
(allocated per cuDNN handle) might be used by an earlier call.

CUDNN_ERRQUERY_NONBLOCKING checks if all tasks in the user stream
completed. The cudnnQueryRuntimeError function will return immediately and report
CUDNN_STATUS_RUNTIME_IN_PROGRESS in 'rstatus' if some tasks in the user
stream are pending. Otherwise, the function will copy the remote kernel error code to
'rstatus'.

In the blocking mode (CUDNN_ERRQUERY_BLOCKING), the function

waits for all tasks to drain in the user stream before reporting the remote

kernel error code. The blocking flavor can be further adjusted by calling
cudaSetDeviceFlags with the cudaDeviceScheduleSpin, cudaDeviceScheduleYield, or
cudaDeviceScheduleBlockingSync flag.

CUDNN_ERRQUERY_NONBLOCKING and CUDNN_ERRQUERY_BLOCKING
modes should not be used when the user stream is changed in the cuDNN handle, i.e.,
cudnnSetStream is invoked between functions that report runtime kernel errors and the
cudnnQueryRuntimeError function.

The remote error status reported in rstatus can be set to:
CUDNN_STATUS_SUCCESS, CUDNN_STATUS_RUNTIME_IN_PROGRESS,
or CUDNN_STATUS_RUNTIME_FP_OVERFLOW. The remote kernel error is
automatically cleared by cudnnQueryRuntimeError.

The cudnnQueryRuntimeError function should be used in
conjunction with cudnnBatchNormalizationForwardTraining and

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 214

cuDNN API Reference

cudnnBatchNormalizationBackward when the cudnnBatchNormMode_t argument is
CUDNN_BATCHNORM_SPATIAL_PERSISTENT.

Parameters
handle

Input. Handle to a previously created cuDNN context.
rstatus

Output. Pointer to the user's error code storage.

mode
Input. Remote error query mode.
tag
Input/Output. Currently, this argument should be NULL.
The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

No errors detected (rstatus holds a valid value).
CUDNN_STATUS_BAD PARAM

Invalid input argument.
CUDNN_STATUS_ INTERNAL ERROR

A stream blocking synchronization or a non-blocking stream query failed.
CUDNN_STATUS MAPPING_ERROR

Device cannot access zero-copy memory to report kernel errors.

4.146. cudnnRNNBackwardData

cudnnStatus t cudnnRNNBackwardData (

cudnnHandle t handle,
const cudnnRNNDescriptorit rnnDesc,
const int seqglength,
const cudnnTensorDescriptor t *yDesc,
const void W,

const cudnnTensorDescriptor t *dyDesc,
const void “ely,
const cudnnTensorDescriptor t dhyDesc,
const void *dhy,
const cudnnTensorDescriptor t dcyDesc,
const void “eley,
const cudnnFilterDescriptor t wDesc,
const void *w,

const cudnnTensorDescriptor t hxDesc,
const void WISk,
const cudnnTensorDescriptor t cxDesc,
const void BEx,
const cudnnTensorDescriptor t *dxDesc,
void “elx,
const cudnnTensorDescriptor t dhxDesc,
void *dhx,

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 215

cuDNN API Reference

const cudnnTensorDescriptor t dcxDesc,

void *dcx,

void *workspace,

size t workSpaceSizeInBytes,
const void *reserveSpace,

size t reserveSpaceSizeInBytes)

This routine executes the recurrent neural network described by rnnDesc with output
gradients dy, dhy, dhc, weights wand input gradients dx, dhx, dcx. workspace

is required for intermediate storage. The data in reserveSpace must have previously
been generated by cudnnRNNForwardTraining. The same reserveSpace data must be
used for future calls to cudnnRNNBackwardWeights if they execute on the same input
data.

Parameters
handle

Input. Handle to a previously created cuDNN context. See cudnnHandle_t.
rnnDesc

Input. A previously initialized RNN descriptor. See cudnnRNNDescriptor_t.
seqLength

Input. Number of iterations to unroll over. The value of this seqLength must not
exceed the value that was used in cudnnGetRNNWorkspaceSize () function for
querying the workspace size required to execute the RNN.

yDesc

Input. An array of fully packed tensor descriptors describing the output from each
recurrent iteration (one descriptor per iteration). See cudnnTensorDescriptor_t. The
second dimension of the tensor depends on the direction argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc:

» Ifdirection is CUDNN_UNIDIRECTIONAL the second dimension should match
the hiddenSize argument passed to cudnnSetRNNDescriptor.

» Ifdirection is CUDNN_BIDIRECTIONAL the second dimension should match
double the hiddenSize argument passed to cudnnSetRNNDescriptor.

The first dimension of the tensor n must match the first dimension of the tensor n in
dyDesc.

Input. Data pointer to GPU memory associated with the output tensor descriptor
yDesc.

dyDesc

Input. An array of fully packed tensor descriptors describing the gradient at the
output from each recurrent iteration (one descriptor per iteration). The second
dimension of the tensor depends on the direction argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc:

» Ifdirection is CUDNN_UNIDIRECTIONAL the second dimension should match
the hiddenSize argument passed to cudnnSetRNNDescriptor.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 216

cuDNN API Reference

» Ifdirection is CUDNN_BIDIRECTIONAL the second dimension should match
double the hiddenSize argument passed to cudnnSetRNNDescriptor.

The first dimension of the tensor n must match the first dimension of the tensor n in
dxDesc.

dy

Input. Data pointer to GPU memory associated with the tensor descriptors in the
array dyDesc.

dhyDesc

Input. A fully packed tensor descriptor describing the gradients at the final hidden
state of the RNN. The first dimension of the tensor depends on the direction
argument passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc:

» Ifdirection is CUDNN_UNIDIRECTIONAL the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor.

» Ifdirection is CUDNN_BIDIRECTIONAL the first dimension should match
double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the first dimension of the tensors described in
xDesc. The third dimension must match the hiddenSize argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully
packed.

dhy

Input. Data pointer to GPU memory associated with the tensor descriptor dhyDesc. If
a NULL pointer is passed, the gradients at the final hidden state of the network will
be initialized to zero.

dcyDesc

Input. A fully packed tensor descriptor describing the gradients at the final cell state
of the RNN. The first dimension of the tensor depends on the direction argument
passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc:

» Ifdirection is CUDNN_UNIDIRECTIONAL the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor.

» Ifdirectionis CUDNN_BIDIRECTIONAL the first dimension should match
double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the first dimension of the tensors described in
xDesc. The third dimension must match the hiddenSize argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully
packed.

dcy
Input. Data pointer to GPU memory associated with the tensor descriptor dcyDesc.

If a NULL pointer is passed, the gradients at the final cell state of the network will be
initialized to zero.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 217

cuDNN API Reference

wDesc

w

Input. Handle to a previously initialized filter descriptor describing the weights for
the RNN. See cudnnFilterDescriptor_t.

Input. Data pointer to GPU memory associated with the filter descriptor wbesc.

hxDesc

hx

Input. A fully packed tensor descriptor describing the initial hidden state of the RNN.
The first dimension of the tensor depends on the direction argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc:

» Ifdirection is CUDNN UNIDIRECTIONAL the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor.

» Ifdirection is CUDNN_BIDIRECTIONAL the first dimension should match
double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the second dimension of the tensors described in
xDesc. The third dimension must match the hiddenSize argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully
packed.

Input. Data pointer to GPU memory associated with the tensor descriptor hxDesc. If
a NULL pointer is passed, the initial hidden state of the network will be initialized to
zero.

cxDesc

cX

Input. A tully packed tensor descriptor describing the initial cell state for LSTM
networks. The first dimension of the tensor depends on the direction argument
passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc:

» Ifdirection is CUDNN_UNIDIRECTIONAL the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor.

» Ifdirection is CUDNN_BIDIRECTIONAL the first dimension should match
double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the second dimension of the tensors described in
xDesc. The third dimension must match the hiddenSize argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully
packed.

Input. Data pointer to GPU memory associated with the tensor descriptor cxDesc. If a
NULL pointer is passed, the initial cell state of the network will be initialized to zero.

dxDesc

Input. An array of fully packed tensor descriptors describing the gradient at the
input of each recurrent iteration (one descriptor per iteration). The first dimension
(batch size) of the tensors may decrease from element n to element n+1 but may

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 218

cuDNN API Reference

not increase. Each tensor descriptor must have the same second dimension (vector
length).
dx

Output. Data pointer to GPU memory associated with the tensor descriptors in the
array dxDesc.

dhxDesc

Input. A fully packed tensor descriptor describing the gradient at the initial hidden
state of the RNN. The first dimension of the tensor depends on the direction
argument passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc:

» Ifdirection is CUDNN_UNIDIRECTIONAL the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor.

» Ifdirection is CUDNN_BIDIRECTIONAL the first dimension should match
double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the first dimension of the tensors described in
xDesc. The third dimension must match the hiddenSize argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully
packed.

dhx

Output. Data pointer to GPU memory associated with the tensor descriptor dhxDesc.
If a NULL pointer is passed, the gradient at the hidden input of the network will not
be set.

dexDesc

Input. A fully packed tensor descriptor describing the gradient at the initial cell state
of the RNN. The first dimension of the tensor depends on the direction argument
passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc:

» Ifdirection is CUDNN_UNIDIRECTIONAL the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor.

» Ifdirection is CUDNN_BIDIRECTIONAL the first dimension should match
double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the first dimension of the tensors described in
xDesc. The third dimension must match the hiddenSize argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully
packed.

dex
Output. Data pointer to GPU memory associated with the tensor descriptor dexDesc.

If a NULL pointer is passed, the gradient at the cell input of the network will not be
set.

workspace

Input. Data pointer to GPU memory to be used as a workspace for this call.
workSpaceSizeInBytes

Input. Specifies the size in bytes of the provided workspace.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 219

cuDNN API Reference

reserveSpace

Input/Output. Data pointer to GPU memory to be used as a reserve space for this call.
reserveSpaceSizelnBytes

Input. Specifies the size in bytes of the provided reservespace.
The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

The function launched successfully.
CUDNN_STATUS NOT_ SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD PARAM

At least one of the following conditions are met:

» The descriptor rnnDesc is invalid.

» Atleast one of the descriptors dhxDesc, wDesc, hxDesc, cxDesc,
dcxDesc, dhyDesc, dcyDesc or one of the descriptors in yDesc, dxdesc,
dydesc is invalid.

» The descriptors in one of yDesc, dxDesc, dyDesc, dhxDesc, wDesc,
hxDesc, cxDesc, dcxDesc, dhyDesc, dcyDesc has incorrect strides or
dimensions.

» workSpaceSizeInBytes is too small.
» reserveSpaceSizeInBytes istoo small.

CUDNN_STATUS EXECUTION_ FAILED

The function failed to launch on the GPU.
CUDNN_STATUS_ALLOC_FAILED

The function was unable to allocate memory.

4.147. cudnnRNNBackwardDataEx

cudnnStatus t cudnnRNNBackwardDataEx (

cudnnHandle t handle,
const cudnnRNNDescriptor t rnnDesc,
const cudnnRNNDataDescriptor t yDesc,
const void ®,
const cudnnRNNDataDescriptor t dyDesc,
const void *dy,
const cudnnRNNDataDescriptor t dcDesc,
const void *dcAttn,
const cudnnTensorDescriptor t dhyDesc,
const void *dhy,
const cudnnTensorDescriptor t dcyDesc,
const void *dcy,
const cudnnFilterDescriptor t wDesc,
const void *w,
const cudnnTensorDescriptor t hxDesc,

www.nvidia.com

cuDNN 7.5.0

DU-06702-001_v07 | 220

cuDNN API Reference

const void *hx,

const cudnnTensorDescriptor t cxDesc,

const wvoid HEsR,

const cudnnRNNDataDescriptor t dxDesc,

void *dx,

const cudnnTensorDescriptor t dhxDesc,

void *dhx,

const cudnnTensorDescriptor t dcxDesc,

void *dex,

const cudnnRNNDataDescriptor t dkDesc,

void *dkeys,

void *workSpace,

size t workSpaceSizeInBytes,
void *reserveSpace,

size t reserveSpaceSizelnBytes)

This routine is the extended version of the function cudnnRNNBackwardData. This
function cudnnRNNBackwardDataEx allows the user to use unpacked (padded) layout
for input y and output dx.

In the unpacked layout, each sequence in the mini-batch is considered to be of fixed
length, specified by maxSeqLength in its corresponding RNNDataDescriptor.

Each fixed-length sequence, for example, the nth sequence in the mini-batch, is
composed of a valid segment specified by the seqLengthArray[n] in its corresponding
RNNDataDescriptor; and a padding segment to make the combined sequence length
equal to maxSeqLength.

With the unpacked layout, both sequence major (i.e. time major) and batch major are
supported. For backward compatibility, the packed sequence major layout is supported.
However, similar to the non-extended function cudnnRNNBackwardData, the sequences
in the mini-batch need to be sorted in descending order according to length.

Parameters
handle

Input. Handle to a previously created cuDNN context.
rnnDesc

Input. A previously initialized RNN descriptor.
yDesc

Input. A previously initialized RNN data descriptor. Must match or be the exact same
descriptor previously passed into cudnnRNNForwardTrainingEx.

Input. Data pointer to the GPU memory associated with the RNN data descriptor
yDesc. The vectors are expected to be laid out in memory according to the layout
specified by yDesc. The elements in the tensor (including elements in the padding
vector) must be densely packed, and no strides are supported. Must contain the exact
same data previously produced by cudnnRNNForwardTrainingEx.

dyDesc
Input. A previously initialized RNN data descriptor. The dataType, layout,

maxSeqgLength, batchSize, vectorSize and seqLengthArray need to match the
yDesc previously passed to cudnnRNNForwardTrainingEx.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 221

cuDNN API Reference

dy
Input.Data pointer to the GPU memory associated with the RNN data descriptor
dyDesc. The vectors are expected to be laid out in memory according to the layout
specified by dyDesc. The elements in the tensor (including elements in the padding
vector) must be densely packed, and no strides are supported.

dhyDesc

Input. A tully packed tensor descriptor describing the gradients at the final hidden
state of the RNN. The first dimension of the tensor depends on the direction
argument passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc.
Moreover:

» Ifdirectionis CUDNN UNIDIRECTIONAL the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor.

» Ifdirection is CUDNN_BIDIRECTIONAL the first dimension should match
double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the batchSize parameter in xDesc.

The third dimension depends on whether RNN mode is CUDNN_LSTM and whether
LSTM projection is enabled. Moreover:

» If RNN mode is CUDNN_LSTM and LSTM projection is enabled, the
third dimension must match the recProjSize argument passed to
cudnnSetRNNProjectionLayers call used to set rnnDesc.

» Otherwise, the third dimension must match the hiddenSize argument passed to
the cudnnSetRNNDescriptor call used to initialize rnnDesc.

dhy

Input. Data pointer to GPU memory associated with the tensor descriptor dhyDesc. If
a NULL pointer is passed, the gradients at the final hidden state of the network will
be initialized to zero.

dcyDesc

Input. A fully packed tensor descriptor describing the gradients at the final cell state
of the RNN. The first dimension of the tensor depends on the direction argument
passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc. Moreover:

» Ifdirection is CUDNN_UNIDIRECTIONAL the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor.

» Ifdirection is CUDNN_BIDIRECTIONAL the first dimension should match
double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the first dimension of the tensors described in
xDesc.

The third dimension must match the hiddenSize argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully
packed.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 222

cuDNN API Reference

dcy

Input. Data pointer to GPU memory associated with the tensor descriptor dcyDesc.
If a NULL pointer is passed, the gradients at the final cell state of the network will be
initialized to zero.

wDesc

Input. Handle to a previously initialized filter descriptor describing the weights for
the RNN.

w

Input. Data pointer to GPU memory associated with the filter descriptor wbesc.
hxDesc

Input. A tully packed tensor descriptor describing the initial hidden state of
the RNN. Must match or be the exact same descriptor previously passed into
cudnnRNNForwardTrainingEx.

hx

Input. Data pointer to GPU memory associated with the tensor descriptor
hxDesc. If a NULL pointer is passed, the initial hidden state of the network will
be initialized to zero. Must contain the exact same data previously passed into
cudnnRNNForwardTrainingEx, or be NULL if NULL was previously passed to
cudnnRNNForwardTrainingEx.

cxDesc

Input. A fully packed tensor descriptor describing the initial cell state for LSTM
networks. Must match or be the exact same descriptor previously passed into
cudnnRNNForwardTrainingEx.

CcX

Input. Data pointer to GPU memory associated with the tensor descriptor
cxDesc. If a NULL pointer is passed, the initial cell state of the network will be
initialized to zero. Must contain the exact same data previously passed into
cudnnRNNForwardTrainingEx, or be NULL if NULL was previously passed to
cudnnRNNForwardTrainingEx.

dxDesc

Input. A previously initialized RNN data descriptor. The dataType, layout,
maxSeqLength, batchSize, vectorSize and seqLengthArray need to match that
of xDesc previously passed to cudnnRNNForwardtrainingEx.

dx

Output. Data pointer to the GPU memory associated with the RNN data descriptor
dxDesc. The vectors are expected to be laid out in memory according to the layout
specified by dxDesc. The elements in the tensor (including elements in the padding
vector) must be densely packed, and no strides are supported.

dhxDesc

Input. A tully packed tensor descriptor describing the gradient at the initial hidden
state of the RNN. The descriptor must be set exactly the same way as dhyDesc.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 223

cuDNN API Reference

dhx

Output. Data pointer to GPU memory associated with the tensor descriptor dhxDesc.
If a NULL pointer is passed, the gradient at the hidden input of the network will not
be set.

dcxDesc
Input. A fully packed tensor descriptor describing the gradient at the initial cell state
of the RNN. The descriptor must be set exactly the same way as dcyDesc.

dex
Output. Data pointer to GPU memory associated with the tensor descriptor dexDesc.

If a NULL pointer is passed, the gradient at the cell input of the network will not be
set.

dkDesc

Reserved. User may pass in NULL.
dkeys

Reserved. User may pass in NULL.
workspace

Input. Data pointer to GPU memory to be used as a workspace for this call.

workSpaceSizelnBytes

Input. Specifies the size in bytes of the provided workspace.
reserveSpace

Input/Output. Data pointer to GPU memory to be used as a reserve space for this call.
reserveSpaceSizelnBytes

Input. Specifies the size in bytes of the provided reservespace.

Returns
CUDNN_STATUS SUCCESS

The function launched successfully.
CUDNN_STATUS_NOT SUPPORTED

At least one of the following conditions are met:

» Variable sequence length input is passed in while
CUDNN_RNN ALGO PERSIST STATIC orCUDNN RNN ALGO PERSIST DYNAMIC is
used.

» CUDNN_RNN ALGO PERSIST STATIC or CUDNN RNN ALGO PERSIST DYNAMIC is
used on pre-Pascal devices.

» Double input/output is used for CUDNN_RNN_ALGO_PERSIST_ STATIC.

CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:

» The descriptor rnnDesc is invalid.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 224

cuDNN API Reference

» At least one of the descriptors yDesc, dxdesc, dydesc, dhxDesc, wDesc, hxDesc,
cxDesc, dexDesc, dhyDesc, deyDesc is invalid or has incorrect strides or
dimensions.

» workSpaceSizeInBytes is too small.

» reserveSpaceSizeInBytes is too small.

CUDNN_STATUS_EXECUTION_ FAILED

The function failed to launch on the GPU.
CUDNN_STATUS_ALLOC_FAILED

The function was unable to allocate memory.

4.148. cudnnRNNBackwardWeights

cudnnStatus t cudnnRNNBackwardWeights (

cudnnHaHdle_t handle,

const cudnnRNNDescriptor t rnnDesc,

const int seqglLength,

const cudnnTensorDescriptor t *xDesc,

const void R

const cudnnTensorDescriptor t hxDesc,

const void *hx,

const cudnnTensorDescriptor t *yDesc,

const void “Vp

const wvoid *workspace,

size t workSpaceSizeInBytes,
const cudnnFilterDescriptor t dwDesc,

void *dw,

const wvoid *reserveSpace,

size t reserveSpaceSizeInBytes)

This routine accumulates weight gradients dw from the recurrent neural network
described by rnnDesc with inputs x, hx, and outputs y. The mode of operation in this
case is additive, the weight gradients calculated will be added to those already existing
in dw. workspace is required for intermediate storage. The data in reserveSpace must
have previously been generated by cudnnRNNBackwardData.

Parameters
handle

Input. Handle to a previously created cuDNN context.

rnnDesc

Input. A previously initialized RNN descriptor.

seqLength

Input. Number of iterations to unroll over. The value of this seqLength must not
exceed the value that was used in cudnnGetRNNWorkspaceSize () function for
querying the workspace size required to execute the RNN.

xDesc

Input. An array of fully packed tensor descriptors describing the input to each
recurrent iteration (one descriptor per iteration). The first dimension (batch size) of

www.nvidia.com
cuDNN 7.5.0

DU-06702-001_v07 | 225

cuDNN API Reference

the tensors may decrease from element n to element n+1 but may not increase. Each
tensor descriptor must have the same second dimension (vector length).

Input. Data pointer to GPU memory associated with the tensor descriptors in the
array xDesc.

hxDesc

Input. A fully packed tensor descriptor describing the initial hidden state of the RNN.
The first dimension of the tensor depends on the direction argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc:

» Ifdirection is CUDNN_UNIDIRECTIONAL the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor.

» Ifdirection is CUDNN_BIDIRECTIONAL the first dimension should match
double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the first dimension of the tensors described in
xDesc. The third dimension must match the hiddenSize argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully
packed.

hx

Input. Data pointer to GPU memory associated with the tensor descriptor hxDesc. If
a NULL pointer is passed, the initial hidden state of the network will be initialized to
zero.

yDesc
Input. An array of fully packed tensor descriptors describing the output from each
recurrent iteration (one descriptor per iteration). The second dimension of the tensor

depends on the direction argument passed to the cudnnSetRNNDescriptor call
used to initialize rnnDesc:

» Ifdirection is CUDNN_UNIDIRECTIONAL the second dimension should match
the hiddenSize argument passed to cudnnSetRNNDescriptor.

» Ifdirection is CUDNN_BIDIRECTIONAL the second dimension should match
double the hiddenSize argument passed to cudnnSetRNNDescriptor.

The first dimension of the tensor n must match the first dimension of the tensor n in
dyDesc.

Input. Data pointer to GPU memory associated with the output tensor descriptor
yDesc.

workspace

Input. Data pointer to GPU memory to be used as a workspace for this call.
workSpaceSizeInBytes

Input. Specifies the size in bytes of the provided workspace.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 226

cuDNN API Reference

dwDesc

Input. Handle to a previously initialized filter descriptor describing the gradients of
the weights for the RNN.

dw

Input/Output. Data pointer to GPU memory associated with the filter descriptor
dwDesc.

reserveSpace

Input. Data pointer to GPU memory to be used as a reserve space for this call.
reserveSpaceSizelnBytes

Input. Specifies the size in bytes of the provided reserveSpace
The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

The function launched successfully.
CUDNN_STATUS NOT_ SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD PARAM

At least one of the following conditions are met:

» The descriptor rnnDesc is invalid.

» At least one of the descriptors hxDesc, dwDesc or one of the descriptors in
xDesc, yDesc isinvalid.

» The descriptors in one of xDesc, hxDesc, yDesc, dwDesc has incorrect
strides or dimensions.

» workSpaceSizeInBytes is too small.

» reserveSpaceSizeInBytes istoo small.

CUDNN_STATUS EXECUTION_ FAILED

The function failed to launch on the GPU.
CUDNN_STATUS_ALLOC_FAILED

The function was unable to allocate memory.

4.149. cudnnRNNBackwardWeightsEx

cudnnStatus t cudnnRNNBackwardWeightsEx (

cudnnHandle t handle,
const cudnnRNNDescriptor t rnnDesc,
const cudnnRNNDataDescriptor t xDesc,
const void *x,
const cudnnTensorDescriptor t hxDesc,
const void *hx,
const cudnnRNNDataDescriptor t yDesc,
const void Wy

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 227

cuDNN API Reference

void *workSpace,

size t workSpaceSizeInBytes,
const cudnnFilterDescriptor t dwDesc,

void *dw,

void *reserveSpace,

size t reserveSpaceSizelInBytes)

This routine is the extended version of the function cudnnRNNBackwardWeights. This
function cudnnRNNBackwardWeightsEx allows the user to use unpacked (padded)
layout for input x and output dw.

In the unpacked layout, each sequence in the mini-batch is considered to be of fixed
length, specified by maxSeqLength in its corresponding RNNDataDescriptor. Each
fixed-length sequence, for example, the nth sequence in the mini-batch, is composed
of a valid segment specified by the seqLengthArray[n] in its corresponding
RNNDataDescriptor; and a padding segment to make the combined sequence length
equal to maxSeqLength.

With the unpacked layout, both sequence major (i.e. time major) and batch major are
supported. For backward compatibility, the packed sequence major layout is supported.
However, similar to the non-extended function cudnnRNNBackwardWeights, the
sequences in the mini-batch need to be sorted in descending order according to length.

Parameters
handle

Input. Handle to a previously created cuDNN context.
rnnDesc

Input. A previously initialized RNN descriptor.
xDesc

Input. A previously initialized RNN data descriptor. Must match or be the exact same
descriptor previously passed into cudnnRNNForwardTrainingEx.

Input. Data pointer to GPU memory associated with the tensor descriptors
in the array xDesc. Must contain the exact same data previously passed into
cudnnRNNForwardTrainingEx.

hxDesc

Input. A fully packed tensor descriptor describing the initial hidden state of
the RNN. Must match or be the exact same descriptor previously passed into
cudnnRNNForwardTrainingEx.

hx

Input. Data pointer to GPU memory associated with the tensor descriptor
hxDesc. If a NULL pointer is passed, the initial hidden state of the network will
be initialized to zero. Must contain the exact same data previously passed into
cudnnRNNForwardTrainingEx, or be NULL if NULL was previously passed to
cudnnRNNForwardTrainingEx.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 228

cuDNN API Reference

yDesc

Input. A previously initialized RNN data descriptor. Must match or be the exact same
descriptor previously passed into cudnnRNNForwardTrainingEx.

Input. Data pointer to GPU memory associated with the output tensor
descriptor yDesc. Must contain the exact same data previously produced by
cudnnRNNForwardTrainingEx.

workspace

Input. Data pointer to GPU memory to be used as a workspace for this call.
workSpaceSizelnBytes

Input. Specifies the size in bytes of the provided workspace.
dwDesc

Input. Handle to a previously initialized filter descriptor describing the gradients of
the weights for the RNN.

dw

Input/Output. Data pointer to GPU memory associated with the filter descriptor
dwDesc.

reserveSpace

Input. Data pointer to GPU memory to be used as a reserve space for this call.
reserveSpaceSizelnBytes

Input. Specifies the size in bytes of the provided reserveSpace

Returns
CUDNN_STATUS SUCCESS

The function launched successfully.
CUDNN_STATUS_NOT SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD PARAM

At least one of the following conditions are met:

» The descriptor rnnDesc is invalid.

» Atleast one of the descriptors xDesc, yDesc, hxDesc, dwDesc isinvalud, or
has incorrect strides or dimensions.

» workSpaceSizeInBytes is too small.
» reserveSpaceSizeInBytes is too small.

CUDNN_STATUS EXECUTION_ FAILED

The function failed to launch on the GPU.
CUDNN_STATUS_ALLOC_FAILED

The function was unable to allocate memory.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 229

4.150. cudnnRNNForwardInference

cudnnStatus_t cudnnRNNForwardInference (
cudnnHandle t

const
const
const
const
const
const
const
const
const
const
const
void

const
void

const
void

void

size t

cudnnﬁNNDescriptorit
int
cudnnTensorDescriptor t
void
cudnnTensorDescriptor t
void
cudnnTensorDescriptor t
void
cudnnFilterDescriptor t
void
cudnnTensorDescriptor t

cudnnTensorDescriptor t

cudnnTensorDescriptor t

handle,

rnnDesc,

seqlLength,
*xDesc,
*x,

hxDesc,
*hx,

cxDesc,
WEsR,

wDesc,
*w,

*yDesc,
Y,

hyDesc,
*hy,

cyDesc,
*cy,
*workspace,

workSpaceSizeInBytes)

cuDNN API Reference

This routine executes the recurrent neural network described by rnnDesc with
inputs x, hx, cx, weightswand outputsy, hy, cy.workspace is required for
intermediate storage. This function does not store intermediate data required for
training; cudnnRNNForwardTraining should be used for that purpose.

Parameters

handle

Input. Handle to a previously created cuDNN context.

rnnDesc

Input. A previously initialized RNN descriptor.

seqLength

Input. Number of iterations to unroll over. The value of this seqLength must not
exceed the value that was used in cudnnGetRNNWorkspaceSize () function for

querying the workspace size required to execute the RNN.

xDesc

Input. An array of 'seqLength' fully packed tensor descriptors. Each descriptor in

the array should have three dimensions that describe the input data format to one
recurrent iteration (one descriptor per RNN time-step). The first dimension (batch
size) of the tensors may decrease from iteration n to iteration n+1 but may not
increase. Each tensor descriptor must have the same second dimension (RNN input
vector length, inputSize). The third dimension of each tensor should be 1. Input data
are expected to be arranged in the column-major order so strides in xDesc should be

set as follows: strideA[0]=inputSize, strideA[1]=1, strideA[2]=1.

Input. Data pointer to GPU memory associated with the array of tensor descriptors
xDesc. The input vectors are expected to be packed contiguously with the first vector

www.nvidia.com

cuDNN 7.5.0

DU-06702-001_v07 | 230

cuDNN API Reference

of iteration (time-step) n+1 following directly from the last vector of iteration n. In
other words, input vectors for all RNN time-steps should be packed in the contiguous
block of GPU memory with no gaps between the vectors.

hxDesc

Input. A fully packed tensor descriptor describing the initial hidden state of the RNN.
The first dimension of the tensor depends on the direction argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc:

» Ifdirection is CUDNN_UNIDIRECTIONAL the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor.

» Ifdirection is CUDNN_BIDIRECTIONAL the first dimension should match
double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the first dimension of the tensors described in
xDesc. The third dimension must match the hiddenSize argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully
packed.

hx

Input. Data pointer to GPU memory associated with the tensor descriptor hxDesc. If
a NULL pointer is passed, the initial hidden state of the network will be initialized to
zero.

cxDesc

Input. A fully packed tensor descriptor describing the initial cell state for LSTM
networks. The first dimension of the tensor depends on the direction argument
passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc:

» Ifdirection is CUDNN_UNIDIRECTIONAL the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor.

» Ifdirection is CUDNN_BIDIRECTIONAL the first dimension should match
double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the first dimension of the tensors described in
xDesc. The third dimension must match the hiddenSize argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully
packed.

CX

Input. Data pointer to GPU memory associated with the tensor descriptor cxDesc. If a
NULL pointer is passed, the initial cell state of the network will be initialized to zero.

wDesc

Input. Handle to a previously initialized filter descriptor describing the weights for
the RNN.

Input. Data pointer to GPU memory associated with the filter descriptor wDesc.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 231

cuDNN API Reference

yDesc

Input. An array of fully packed tensor descriptors describing the output from each
recurrent iteration (one descriptor per iteration). The second dimension of the tensor
depends on the direction argument passed to the cudnnSetRNNDescriptor call
used to initialize rnnDesc:

» Ifdirectionis CUDNN UNIDIRECTIONAL the second dimension should match
the hiddenSize argument passed to cudnnSetRNNDescriptor.

» Ifdirection is CUDNN_BIDIRECTIONAL the second dimension should match
double the hiddenSize argument passed to cudnnSetRNNDescriptor.

The first dimension of the tensor n must match the first dimension of the tensor n in
xDesc.

Output. Data pointer to GPU memory associated with the output tensor descriptor
yDesc. The data are expected to be packed contiguously with the first element of
iteration n+1 following directly from the last element of iteration n.

hyDesc

Input. A tully packed tensor descriptor describing the final hidden state of the RNN.
The first dimension of the tensor depends on the direction argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc:

» Ifdirection is CUDNN_UNIDIRECTIONAL the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor.

» Ifdirection is CUDNN_BIDIRECTIONAL the first dimension should match
double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the first dimension of the tensors described in
xDesc. The third dimension must match the hiddenSize argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully
packed.

hy

Output. Data pointer to GPU memory associated with the tensor descriptor hyDesc. If
a NULL pointer is passed, the final hidden state of the network will not be saved.

cyDesc

Input. A fully packed tensor descriptor describing the final cell state for LSTM
networks. The first dimension of the tensor depends on the direction argument
passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc:

» Ifdirection is CUDNN_UNIDIRECTIONAL the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor.

» Ifdirection is CUDNN_BIDIRECTIONAL the first dimension should match
double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the first dimension of the tensors described in
xDesc. The third dimension must match the hiddenSize argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully
packed.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 232

cuDNN API Reference

cy

Output. Data pointer to GPU memory associated with the tensor descriptor cyDesc. If
a NULL pointer is passed, the final cell state of the network will be not be saved.

workspace

Input. Data pointer to GPU memory to be used as a workspace for this call.
workSpaceSizelnBytes

Input. Specifies the size in bytes of the provided workspace.
The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

The function launched successfully.
CUDNN_STATUS NOT_ SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD PARAM

At least one of the following conditions are met:

» The descriptor rnnDesc is invalid.

» Atleast one of the descriptors hxDesc, cxDesc, wDesc, hyDesc, cyDesc or
one of the descriptors in xDesc, yDesc is invalid.

» The descriptors in one of xDesc, hxDesc, cxDesc, wDesc, yDesc,
hyDesc, cyDesc have incorrect strides or dimensions.
» workSpaceSizeInBytes is too small.

CUDNN_STATUS_EXECUTION_ FAILED

The function failed to launch on the GPU.
CUDNN_STATUS_ALLOC_FAILED

The function was unable to allocate memory.

4.151. cudnnRNNForwardInferenceEx

cudnnStatus t cudnnRNNForwardInferenceEX (

cudnnHaHdle_t handle,
const cudnnRNNDescriptor t rnnDesc,
const cudnnRNNDataDescriptor t xDesc,
const void SR
const cudnnTensorDescriptor t hxDesc,
const void *hx,
const cudnnTensorDescriptor t cxDesc,
const void WESR,
const cudnnFilterDescriptor t wDesc,
const void *w,
const cudnnRNNDataDescriptor t yDesc,
void B2
const cudnnTensorDescriptor t hyDesc,
void *hy,

www.nvidia.com

cuDNN 7.5.0

DU-06702-001_v07 | 233

cuDNN API Reference

const cudnnTensorDescriptor t cyDesc,
void “EV,

const cudnnRNNDataDescriptor t kDesc,
const void *keys,
const cudnnRNNDataDescriptor t cDesc,

void *cAttn,
const cudnnRNNDataDescriptor t iDesc,

void *iAttn,
const cudnnRNNDataDescriptor t gDesc,

void *queries,
void *workSpace,
size t workSpaceSizeInBytes)

This routine is the extended version of the cudnnRNNForwardInference function.

The cudnnRNNForwardTrainingEx allows the user to use unpacked (padded) layout
for input x and output y. In the unpacked layout, each sequence in the mini-batch

is considered to be of fixed length, specified by maxSeqLength in its corresponding
RNNDataDescriptor. Each fixed-length sequence, for example, the nth sequence in the
mini-batch, is composed of a valid segment, specified by the seqLengthArray[n] in
its corresponding RNNDataDescriptor, and a padding segment to make the combined
sequence length equal to maxSeqLength.

With unpacked layout, both sequence major (i.e. time major) and batch major are
supported. For backward compatibility, the packed sequence major layout is supported.
However, similar to the non-extended function cudnnRNNForwardInference, the
sequences in the mini-batch need to be sorted in descending order according to length.

Parameters
handle

Input. Handle to a previously created cuDNN context.
rnnDesc

Input. A previously initialized RNN descriptor.
xDesc

Input. A previously initialized RNN Data descriptor. The dataType, layout,
maxSeqLength , batchSize, and seqLengthArray need to match that of yDesc.

Input. Data pointer to the GPU memory associated with the RNN data descriptor
xDesc. The vectors are expected to be laid out in memory according to the layout
specified by xDesc. The elements in the tensor (including elements in the padding
vector) must be densely packed, and no strides are supported.

hxDesc

Input. A fully packed tensor descriptor describing the initial hidden state of the RNN.
The first dimension of the tensor depends on the direction argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc:

» Ifdirection is CUDNN_UNIDIRECTIONAL the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor.

» Ifdirection is CUDNN_BIDIRECTIONAL the first dimension should match
double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the batchSize parameter described in xDesc.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 234

cuDNN API Reference

The third dimension depends on whether RNN mode is CUDNN_LSTM and whether
LSTM projection is enabled. In specific:

» If RNN mode is CUDNN_LSTM and LSTM projection is enabled, the
third dimension must match the recProjsize argument passed to
cudnnSetRNNProjectionLayers call used to set rnnDesc.

» Otherwise, the third dimension must match the hiddenSize argument passed to
the cudnnSetRNNDescriptor call used to initialize rnnDesc.

hx

Input. Data pointer to GPU memory associated with the tensor descriptor hxDesc. If
a NULL pointer is passed, the initial hidden state of the network will be initialized to
zero.

cxDesc

Input. A tully packed tensor descriptor describing the initial cell state for LSTM
networks. The first dimension of the tensor depends on the direction argument
passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc:

» Ifdirection is CUDNN_UNIDIRECTIONAL the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor.

» Ifdirection is CUDNN_BIDIRECTIONAL the first dimension should match
double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the batchSize parameter in xDesc.
The third dimension must match the hiddenSize argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc.

cX

Input. Data pointer to GPU memory associated with the tensor descriptor cxDesc. If a
NULL pointer is passed, the initial cell state of the network will be initialized to zero.

wDesc

Input. Handle to a previously initialized filter descriptor describing the weights for
the RNN.

Input. Data pointer to GPU memory associated with the filter descriptor wDesc.
yDesc

Input. A previously initialized RNN data descriptor. The dataType, layout,
maxSeqLength , batchSize, and seqLengthArray must match that of dyDesc and
dxDesc. The parameter vectorSize depends on whether RNN mode is CUDNN_LSTM
and whether LSTM projection is enabled and whether the network is bidirectional. In
specific:

» For uni-directional network, if RNN mode is CUDNN_LSTM and LSTM projection
is enabled, the parameter vectorSize must match the recProjSize argument
passed to cudnnSetRNNProjectionLayers call used to set rnnDesc. If the
network is bidirectional, then multiply the value by 2.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 235

cuDNN API Reference

» Otherwise, for uni-directional network, the parameter vectorSize must match
the hiddenSize argument passed to the cudnnSetRNNDescriptor call used to
initialize rnnDesc. If the network is bidirectional, then multiply the value by 2.

Output. Data pointer to the GPU memory associated with the RNN data descriptor
yDesc. The vectors are expected to be laid out in memory according to the layout
specified by yDesc. The elements in the tensor (including elements in the padding
vector) must be densely packed, and no strides are supported.

hyDesc

Input. A fully packed tensor descriptor describing the final hidden state of the RNN.
The descriptor must be set exactly the same way as hxDesc.

hy
Output. Data pointer to GPU memory associated with the tensor descriptor hyDesc. If
a NULL pointer is passed, the final hidden state of the network will not be saved.
cyDesc

Input. A fully packed tensor descriptor describing the final cell state for LSTM
networks. The descriptor must be set exactly the same way as cxDesc.

cy

Output. Data pointer to GPU memory associated with the tensor descriptor cyDesc. If
a NULL pointer is passed, the final cell state of the network will be not be saved.

kDesc

Reserved. User may pass in NULL.
Keys

Reserved. User may pass in NULL.

cDesc

Reserved. User may pass in NULL.
cAttn

Reserved. User may pass in NULL.
iDesc

Reserved. User may pass in NULL.
iAttn

Reserved. User may pass in NULL.
qDesc

Reserved. User may pass in NULL.

Queries

Reserved. User may pass in NULL.
workspace

Input. Data pointer to GPU memory to be used as a workspace for this call.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 236

cuDNN API Reference

workSpaceSizelnBytes

Input. Specifies the size in bytes of the provided workspace.

Returns
CUDNN_STATUS SUCCESS

The function launched successfully.
CUDNN_STATUS_NOT SUPPORTED

At least one of the following conditions are met:

>

>

Variable sequence length input is passed in while

CUDNN_RNN ALGO_PERSIST STATIC or CUDNN_RNN ALGO PERSIST DYNAMIC is
used.

CUDNN_RNN ALGO PERSIST STATIC or CUDNN RNN ALGO PERSIST DYNAMIC is
used on pre-Pascal devices.

Double input/output is used for CUDNN_RNN_ALGO_PERSIST STATIC.

CUDNN_STATUS BAD PARAM

At least one of the following conditions are met:

>

>

>

>

The descriptor rnnDesc is invalid.

At least one of the descriptors in xDesc, yDesc, hxDesc, cxDesc, wDesc, hyDesc,
cyDesc is invalid, or have incorrect strides or dimensions.

reserveSpaceSizeInBytes is too small.
workSpaceSizeInBytes is too small.

CUDNN_STATUS_EXECUTION_ FAILED

The function failed to launch on the GPU.
CUDNN_STATUS_ALLOC_FAILED

The function was unable to allocate memory.

4.152. cudnnRNNForwardTraining

cudnnStatus t cudnnRNNForwardTraining (

cudnnHandle t handle,
const cudnnRNNDescriptor t rnnDesc,
const int seglLength,
const cudnnTensorDescriptor t *xDesc,
const void *x,

const cudnnTensorDescriptor t hxDesc,
const void *hx,

const cudnnTensorDescriptor t cxDesc,
const void BEsK,

const cudnnFilterDescriptor t wDesc,
const void *w,

const cudnnTensorDescriptor t *yDesc,
void “Vp

const cudnnTensorDescriptor t hyDesc,
void =07

const cudnnTensorDescriptor t cyDesc,
void el

void *workspace,

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 237

cuDNN API Reference

size t workSpaceSizeInBytes,
void *reserveSpace,
size t reserveSpaceSizelnBytes)

This routine executes the recurrent neural network described by rnnDesc with
inputs x, hx, cx, weightswand outputsy, hy, cy.workspace is required for
intermediate storage. reserveSpace stores data required for training. The same
reserveSpace data must be used for future calls to cudnnRNNBackwardData and
cudnnRNNBackwardWeights if these execute on the same input data.

Parameters
handle

Input. Handle to a previously created cuDNN context.
rnnDesc

Input. A previously initialized RNN descriptor.
seqLength

Input. Number of iterations to unroll over. The value of this seqLength must not
exceed the value that was used in cudnnGetRNNWorkspaceSize () function for
querying the workspace size required to execute the RNN.

xDesc

Input. An array of 'seqLength' fully packed tensor descriptors. Each descriptor in
the array should have three dimensions that describe the input data format to one
recurrent iteration (one descriptor per RNN time-step). The first dimension (batch
size) of the tensors may decrease from iteration element n to iteration element n+1
but may not increase. Each tensor descriptor must have the same second dimension
(RNN input vector length, inputSize). The third dimension of each tensor should be
1. Input vectors are expected to be arranged in the column-major order so strides in
xDesc should be set as follows: strideA[0]=inputSize, strideA[1]=1, strideA[2]=1.

Input. Data pointer to GPU memory associated with the array of tensor descriptors
xDesc. The input vectors are expected to be packed contiguously with the first vector
of iteration (time-step) n+1 following directly the last vector of iteration n. In other
words, input vectors for all RNN time-steps should be packed in the contiguous block
of GPU memory with no gaps between the vectors.

hxDesc

Input. A fully packed tensor descriptor describing the initial hidden state of the RNN.
The first dimension of the tensor depends on the direction argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc:

» Ifdirection is CUDNN_UNIDIRECTIONAL the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor.

» Ifdirection is CUDNN_BIDIRECTIONAL the first dimension should match
double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the first dimension of the tensors described in
xDesc. The third dimension must match the hiddenSize argument passed to the

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 238

cuDNN API Reference

cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully
packed.

hx

Input. Data pointer to GPU memory associated with the tensor descriptor hxDesc. If
a NULL pointer is passed, the initial hidden state of the network will be initialized to
zero.

cxDesc

Input. A fully packed tensor descriptor describing the initial cell state for LSTM
networks. The first dimension of the tensor depends on the direction argument
passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc:

» Ifdirection is CUDNN_UNIDIRECTIONAL the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor.

» Ifdirection is CUDNN_BIDIRECTIONAL the first dimension should match
double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the first dimension of the tensors described in
xDesc. The third dimension must match the hiddenSize argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully
packed.

CX

Input. Data pointer to GPU memory associated with the tensor descriptor cxDesc. If a
NULL pointer is passed, the initial cell state of the network will be initialized to zero.

wDesc
Input. Handle to a previously initialized filter descriptor describing the weights for
the RNN.

w

Input. Data pointer to GPU memory associated with the filter descriptor wbesc.
yDesc

Input. An array of fully packed tensor descriptors describing the output from each
recurrent iteration (one descriptor per iteration). The second dimension of the tensor
depends on the direction argument passed to the cudnnSetRNNDescriptor call
used to initialize rnnDesc:

» Ifdirection is CUDNN_UNIDIRECTIONAL the second dimension should match
the hiddenSize argument passed to cudnnSetRNNDescriptor.

» Ifdirection is CUDNN_BIDIRECTIONAL the second dimension should match
double the hiddenSize argument passed to cudnnSetRNNDescriptor.

The first dimension of the tensor n must match the first dimension of the tensor n in
xDesc.

Output. Data pointer to GPU memory associated with the output tensor descriptor
yDesc.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 239

cuDNN API Reference

hyDesc

Input. A fully packed tensor descriptor describing the final hidden state of the RNN.
The first dimension of the tensor depends on the direction argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc:

» Ifdirectionis CUDNN UNIDIRECTIONAL the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor.

» Ifdirection is CUDNN_BIDIRECTIONAL the first dimension should match
double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the first dimension of the tensors described in
xDesc. The third dimension must match the hiddensSize argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully
packed.

hy
Output. Data pointer to GPU memory associated with the tensor descriptor hyDesc. If
a NULL pointer is passed, the final hidden state of the network will not be saved.
cyDesc
Input. A tully packed tensor descriptor describing the final cell state for LSTM

networks. The first dimension of the tensor depends on the direction argument
passed to the cudnnSetRNNDescriptor call used to initialize rnnDesc:

» Ifdirection is CUDNN_UNIDIRECTIONAL the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor.

» Ifdirection is CUDNN_BIDIRECTIONAL the first dimension should match
double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the first dimension of the tensors described in
xDesc. The third dimension must match the hiddenSize argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully
packed.

cy

Output. Data pointer to GPU memory associated with the tensor descriptor cyDesc. If
a NULL pointer is passed, the final cell state of the network will be not be saved.

workspace

Input. Data pointer to GPU memory to be used as a workspace for this call.
workSpaceSizelnBytes

Input. Specifies the size in bytes of the provided workspace.
reserveSpace

Input/Output. Data pointer to GPU memory to be used as a reserve space for this call.
reserveSpaceSizelnBytes

Input. Specifies the size in bytes of the provided reserveSpace
The possible error values returned by this function and their meanings are listed below.

Returns

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 240

cuDNN API Reference

CUDNN_STATUS_ SUCCESS

The function launched successfully.
CUDNN_STATUS BAD PARAM

At least one of the following conditions are met:

» The descriptor rnnDesc is invalid.

» Atleast one of the descriptors hxDesc, cxDesc, wDesc, hyDesc, cyDesc or
one of the descriptors in xDesc, yDesc is invalid.

» The descriptors in one of xDesc, hxDesc, cxDesc, wDesc, yDesc,
hyDesc, cyDesc have incorrect strides or dimensions.

» workSpaceSizeInBytes is too small.
» reserveSpaceSizeInBytes istoo small.

CUDNN_STATUS_EXECUTION_ FAILED

The function failed to launch on the GPU.
CUDNN_STATUS_ALLOC_FAILED

The function was unable to allocate memory.

4.153. cudnnRNNForwardTrainingEx

cudnnStatus t cudnnRNNForwardTrainingEx (

cudnnHandle t handle,

const cudnnRNNDescriptor t rnnDesc,

const cudnnRNNDataDescriptor t xDesc,

const void Xy

const cudnnTensorDescriptor t hxDesc,

const void *hx,

const cudnnTensorDescriptor t cxDesc,

const void A,

const cudnnFilterDescriptor t wDesc,

const void *w,

const cudnnRNNDataDescriptor t yDesc,

void W

const cudnnTensorDescriptor t hyDesc,

void wIny

const cudnnTensorDescriptor t cyDesc,

void HEy,

const cudnnRNNDataDescriptor t kDesc,

const void *keys,

const cudnnRNNDataDescriptor t cDesc,

void *cAttn,

const cudnnRNNDataDescriptor t iDesc,

void *iAttn,

const cudnnRNNDataDescriptor t gDesc,

void *queries,

void *workSpace,
size t workSpaceSizelInBytes,
void *reserveSpace,
size t reserveSpaceSizelInBytes) ;

This routine is the extended version of the cudnnRNNForwardTraining function. The
cudnnRNNForwardTrainingEx allows the user to use unpacked (padded) layout for
input x and output y.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 241

cuDNN API Reference

In the unpacked layout, each sequence in the mini-batch is considered to be of fixed
length, specified by maxSeqLength in its corresponding RNNDataDescriptor.

Each fixed-length sequence, for example, the nth sequence in the mini-batch, is
composed of a valid segment specified by the seqLengthArray[n] in its corresponding
RNNDataDescriptor; and a padding segment to make the combined sequence length
equal to maxSeqLength.

With the unpacked layout, both sequence major (i.e. time major) and batch major are
supported. For backward compatibility, the packed sequence major layout is supported.
However, similar to the non-extended function cudnnRNNForwardTraining, the
sequences in the mini-batch need to be sorted in descending order according to length.

Parameters
handle

Input. Handle to a previously created cuDNN context.
rnnDesc

Input. A previously initialized RNN descriptor.
xDesc

Input. A previously initialized RNN Data descriptor. The dataType, layout,
maxSeqLength, batchSize, and seqLengthArray need to match that of yDesc.

Input. Data pointer to the GPU memory associated with the RNN data descriptor
xDesc. The input vectors are expected to be laid out in memory according to the

layout specified by xDesc. The elements in the tensor (including elements in the

padding vector) must be densely packed, and no strides are supported.

hxDesc
Input. A fully packed tensor descriptor describing the initial hidden state of the RNN.

The first dimension of the tensor depends on the direction argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc. Moreover:

» Ifdirection is CUDNN_UNIDIRECTIONAL then the first dimension should match
the numLayers argument passed to cudnnSetRNNDescriptor.

» Ifdirectionis CUDNN_BIDIRECTIONAL then the first dimension should match
double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the batchSize parameter in xDesc.

The third dimension depends on whether RNN mode is CUDNN_LSTM and whether
LSTM projection is enabled. Moreover:

» If RNN mode is CUDNN_LSTM and LSTM projection is enabled, the
third dimension must match the recProjSize argument passed to
cudnnSetRNNProjectionLayers call used to set rnnDesc.

» Otherwise, the third dimension must match the hiddenSize argument passed to
the cudnnSetRNNDescriptor call used to initialize rnnDesc .

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 242

cuDNN API Reference

hx

Input. Data pointer to GPU memory associated with the tensor descriptor hxDesc. If
a NULL pointer is passed, the initial hidden state of the network will be initialized to
Zero.

cxDesc

Input. A fully packed tensor descriptor describing the initial cell state for LSTM
networks.

The first dimension of the tensor depends on the direction argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc. Moreover:

» Ifdirection is CUDNN_UNIDIRECTIONAL the first dimension should match the
numLayers argument passed to cudnnSetRNNDescriptor.

» Ifdirection is CUDNN_BIDIRECTIONAL the first dimension should match
double the numLayers argument passed to cudnnSetRNNDescriptor.

The second dimension must match the first dimension of the tensors described in
xDesc.

The third dimension must match the hiddenSize argument passed to the
cudnnSetRNNDescriptor call used to initialize rnnDesc. The tensor must be fully
packed.

CX

Input. Data pointer to GPU memory associated with the tensor descriptor cxDesc. If a
NULL pointer is passed, the initial cell state of the network will be initialized to zero.

wDesc

Input. Handle to a previously initialized filter descriptor describing the weights for
the RNN.

Input. Data pointer to GPU memory associated with the filter descriptor wbesc.
yDesc

Input. A previously initialized RNN data descriptor. The dataType, layout,
maxSeqLength, batchSize, and seqLengthArray need to match that of dyDesc
and dxDesc. The parameter vectorSize depends on whether RNN mode is
CUDNN_LSTM and whether LSTM projection is enabled and whether the network is
bidirectional. In specific:

» For uni-directional network, if RNN mode is CUDNN_LSTM and LSTM projection
is enabled, the parameter vectorsSize must match the recProjSize argument
passed to cudnnSetRNNProjectionLayers call used to set rnnDesc. If the
network is bidirectional, then multiply the value by 2.

» Otherwise, for uni-directional network, the parameter vectorSize must match
the hiddenSize argument passed to the cudnnSetRNNDescriptor call used to
initialize rnnDesc. If the network is bidirectional, then multiply the value by 2.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 243

cuDNN API Reference

Output. Data pointer to GPU memory associated with the RNN data descriptor
yDesc. The input vectors are expected to be laid out in memory according to the
layout specified by yDesc. The elements in the tensor (including elements in the
padding vector) must be densely packed, and no strides are supported.

hyDesc

Input. A fully packed tensor descriptor describing the final hidden state of the RNN.

The descriptor must be set exactly the same as hxDesc.

hy

Output. Data pointer to GPU memory associated with the tensor descriptor hyDesc. If
a NULL pointer is passed, the final hidden state of the network will not be saved.

cyDesc

Input. A fully packed tensor descriptor describing the final cell state for LSTM

networks. The descriptor must be set exactly the same as cxDesc.

cy

Output. Data pointer to GPU memory associated with the tensor descriptor cyDesc. If
a NULL pointer is passed, the final cell state of the network will be not be saved.

kDesc

Reserved. User may pass in NULL.
Keys

Reserved. User may pass in NULL.

cDesc

Reserved. User may pass in NULL.
cAttn

Reserved. User may pass in NULL.
iDesc

Reserved. User may pass in NULL.
iAttn

Reserved. User may pass in NULL.
qDesc

Reserved. User may pass in NULL.
Queries

Reserved. User may pass in NULL.
workspace

Input. Data pointer to GPU memory to be used as a workspace for this call.

workSpaceSizelnBytes

Input. Specifies the size in bytes of the provided workspace.

www.nvidia.com
cuDNN 7.5.0

DU-06702-001_v07 | 244

cuDNN API Reference

reserveSpace

Input/Output. Data pointer to GPU memory to be used as a reserve space for this call.
reserveSpaceSizelnBytes

Input. Specifies the size in bytes of the provided reserveSpace

Returns
CUDNN_STATUS SUCCESS

The function launched successfully.
CUDNN_STATUS_NOT SUPPORTED

At least one of the following conditions are met:

» Variable sequence length input is passed in while
CUDNN_RNN ALGO_PERSIST STATIC or CUDNN_RNN ALGO PERSIST DYNAMIC is
used.

» CUDNN_RNN ALGO PERSIST STATIC or CUDNN RNN ALGO PERSIST DYNAMIC is
used on pre-Pascal devices.

» Double input/output is used for CUDNN_RNN_ALGO_PERSIST_ STATIC.
CUDNN_STATUS BAD PARAM
At least one of the following conditions are met:

» The descriptor rnnDesc is invalid.

» At least one of the descriptors xDesc, yDesc, hxDesc, cxDesc, wDesc,
hyDesc, cyDesc isinvalid, or have incorrect strides or dimensions.

» workSpaceSizeInBytes is too small.
» reserveSpaceSizeInBytes istoo small.

CUDNN_STATUS_EXECUTION_ FAILED

The function failed to launch on the GPU.
CUDNN_STATUS_ALLOC_FAILED

The function was unable to allocate memory.

4.154. cudnnRNNGetClip

cudnnStatus t cudnnRNNGetClip (

cudnnHaHdle_t handle,
cudnnRNNDescriptor t rnnDesc,
cudnnRNNClipMode t *clipMode,
cudnnNanPropagation t *clipNanOpt,
double “lelip,
double *rclip);

Retrieves the current LSTM cell clipping parameters, and stores them in the arguments
provided.

Parameters

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 245

cuDNN API Reference

*clipMode

Output. Pointer to the location where the retrieved clipMode is stored. The clipMode

can be CUDNN_RNN_CLIP_NONE in which case no LSTM cell state clipping is
being performed; or CUDNN_RNN_CLIP_MINMAX, in which case the cell state
activation to other units are being clipped.

*Iclip, *rclip

Output. Pointers to the location where the retrieved LSTM cell clipping range [lclip,
rclip] is stored.

*clipNanOpt
Output. Pointer to the location where the retrieved clipNanOpt is stored.

Returns
CUDNN_STATUS SUCCESS

The function launched successfully.
CUDNN_STATUS_BAD PARAM

If any of the pointer arguments provided are NULL.

4.155. cudnnRNNSetClip

cudnnStatus t cudnnRNNSetClip (

cudnnHaHdle_t handle,
cudnnRNNDescriptor t rnnDesc,
cudnnRNNClipMode t clipMode,
cudnnNanPropagation t clipNanOpt,
double lclip,
double rclip);

Sets the LSTM cell clipping mode. The LSTM clipping is disabled by default. When
enabled, clipping is applied to all layers. This cudnnRNNSetClip () function may be
called multiple times.
Parameters
clipMode
Input. Enables or disables the LSTM cell clipping. When clipMode is set to
CUDNN_RNN_CLIP_NONE no LSTM cell state clipping is performed. When

clipMode is CUDNN_RNN_CLIP_MINMAX the cell state activation to other units
are clipped.

Iclip, rclip

Input. The range [Iclip, rclip] to which the LSTM cell clipping should be set.
clipNanOpt

Input. When set to CUDNN_PROPAGATE_NAN (See the description for
cudnnNanPropagation_t), NaN is propagated from the LSTM cell, or it can be set
to one of the clipping range boundary values, instead of propagating.

Returns

www.nvidia.com

CcuDNN 7.5.0 DU-06702-001_v07 | 246

cuDNN API Reference

CUDNN_STATUS_ SUCCESS

The function launched successfully.
CUDNN_STATUS BAD PARAM

Returns this value if 1elip > relip; or if either 1elip or relip is NaN.

4.156. cudnnReduceTensor

cudnnStatus t cudnnReduceTensor (

cudnnHandle t handle,

const cudnnReduceTensorDescriptor t reduceTensorDesc,
void *indices,

size t indicesSizeInBytes,
void *workspace,

size t workspaceSizeInBytes,
const void *alpha,

const cudnnTensorDescriptor t aDesc,

const void *A,

const void *beta,

const cudnnTensorDescriptor t cDesc,

void *C)

This function reduces tensor A by implementing the equation C = alpha * reduce op (A)
+beta * C, given tensors A and C and scaling factors alpha and beta. The reduction op

to use is indicated by the descriptor reduceTensorDesc. Currently-supported ops are
listed by the cudnnReduceTensorOp_t enum.

Each dimension of the output tensor C must match the corresponding dimension of the
input tensor A or must be equal to 1. The dimensions equal to 1 indicate the dimensions
of A to be reduced.

The implementation will generate indices for the min and max ops only, as indicated
by the cudnnReduceTensorIndices_t enum of the reduceTensorDesc. Requesting
indices for the other reduction ops results in an error. The data type of the indices is
indicated by the cudnnIndicesType_t enum; currently only the 32-bit (unsigned int)
type is supported.

The indices returned by the implementation are not absolute indices but relative to the
dimensions being reduced. The indices are also flattened, i.e. not coordinate tuples.

The data types of the tensors A and € must match if of type double. In this case, alpha
and beta and the computation enum of reduceTensorDesc are all assumed to be of
type double.

The half and int8 data types may be mixed with the float data types. In these cases, the
computation enum of reduceTensorDesc is required to be of type float.

Up to dimension 8, all tensor formats are supported. Beyond those dimensions, this
routine is not supported

Parameters
handle

Input. Handle to a previously created cuDNN context.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 247

cuDNN API Reference

reduceTensorDesc

Input. Handle to a previously initialized reduce tensor descriptor.
indices

Output. Handle to a previously allocated space for writing indices.

indicesSizeInBytes

Input. Size of the above previously allocated space.
workspace

Input. Handle to a previously allocated space for the reduction implementation.
workspaceSizeInBytes

Input. Size of the above previously allocated space.
alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the source value with
prior value in the destination tensor as indicated by the above op equation. Please
refer to this section for additional details.

aDesc, cDesc

Input. Handle to a previously initialized tensor descriptor.
A

Input. Pointer to data of the tensor described by the aDesc descriptor.
C

Input/Output. Pointer to data of the tensor described by the cDesc descriptor.
The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

The function executed successfully.
CUDNN_STATUS NOT_ SUPPORTED

The function does not support the provided configuration. See the following for some
examples of non-supported configurations:

» The dimensions of the input tensor and the output tensor are above 8.
» reduceTensorCompType is not set as stated above.

CUDNN_STATUS BAD PARAM

The corresponding dimensions of the input and output tensors all match, or the
conditions in the above paragraphs are unmet.

CUDNN_INVALID VALUE

The allocations for the indices or workspace are insufficient.
CUDNN_STATUS EXECUTION_ FAILED

The function failed to launch on the GPU.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 248

cuDNN API Reference

4.157. cudnnRestoreAlgorithm

cudnnStatus t cudnnRestoreAlgorithm(

cudnnHaHdle_t handle,
void* algoSpace,
size t algoSpaceSizeInBytes,
cudnnAlgorithmDescriptor t algoDesc)
(New for 7.1)

This function reads algorithm metadata from the host memory space provided by the
user in algoSpace, allowing the user to use the results of RNN finds from previous
cuDNN sessions.

Parameters
handle

Input. Handle to a previously created cuDNN context.

algoDesc

Input. A previously created algorithm descriptor.
algoSpace

Input. Pointer to the host memory to be read.

algoSpaceSizelnBytes

Input. Amount of host memory needed as workspace to be able to hold the metadata
from the specified algoDesc.

Returns
CUDNN_STATUS_ SUCCESS

The function launched successfully.
CUDNN_STATUS NOT_ SUPPORTED

The metadata is from a different cudnn version.
CUDNN_STATUS_BAD PARAM

At least one of the following conditions is met:

» One of the arguments is null.
» The metadata is corrupted.

4.158. cudnnRestoreDropoutDescriptor

cudnnStatus_t cudnnRestoreDropoutDescriptor (
cudnnDropoutDescriptor t dropoutDesc,

cudnnHandle t handle,

float dropout,

void *states,

size t stateSizeInBytes,
unsigned long long seed)

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 249

cuDNN API Reference

This function restores a dropout descriptor to a previously saved-off state.

Parameters
dropoutDesc

Input/Output. Previously created dropout descriptor.
handle

Input. Handle to a previously created cuDNN context.
dropout

Input. Probability with which the value from an input tensor is set to 0 when
performing dropout.

states

Input. Pointer to GPU memory that holds random number generator states initialized
by a prior call to cudnnSetDropoutDescriptor.

stateSizeInBytes

Input. Size in bytes of buffer holding random number generator states.
seed

Input. Seed used in prior call to cudnnSetDropoutDescriptor that initialized
'states' buffer. Using a different seed from this has no effect. A change of seed, and
subsequent update to random number generator states can be achieved by calling
cudnnSetDropoutDescriptor.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The call was successful.
CUDNN_S TATUS_INVALID_VALUE

States buffer size (as indicated in stateSizeInBytes) is too small.

4.159. cudnnSaveAlgorithm

cudnnStatus t cudnnSaveAlgorithm(

cudnnHandle t handle,

cudnnAlgorithmDescriptor t algoDesc,

void* algoSpace

size t algoSpaceSizeInBytes)
(New for 7.1)

This function writes algorithm metadata into the host memory space provided by the
user in algoSpace, allowing the user to preserve the results of RNN finds after cuDNN
exits.

Parameters

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 250

cuDNN API Reference

handle

Input. Handle to a previously created cuDNN context.
algoDesc

Input. A previously created algorithm descriptor.
algoSpace

Input. Pointer to the host memory to be written.
algoSpaceSizelnBytes

Input. Amount of host memory needed as workspace to be able to save the metadata
from the specified algoDesc.

Returns
CUDNN_STATUS SUCCESS

The function launched successfully.
CUDNN_STATUS_BAD PARAM

At least one of the following conditions is met:

» One of the arguments is null.
» algoSpaceSizeInBytes is too small.

4.160. cudnnScaleTensor

cudnnStatus t cudnnScaleTensor (

cudnnHandle t handle,
const cudnnTensorDescriptor t yDesc,
void *Yp
const void *alpha)

This function scale all the elements of a tensor by a given factor.

Parameters
handle

Input. Handle to a previously created cuDNN context.

yDesc

Input. Handle to a previously initialized tensor descriptor.

Input/Output. Pointer to data of the tensor described by the yDesc descriptor.
alpha

Input. Pointer in Host memory to a single value that all elements of the tensor will be
scaled with. Please refer to this section for additional details.

The possible error values returned by this function and their meanings are listed below.

Returns

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 251

cuDNN API Reference

CUDNN_STATUS_ SUCCESS

The function launched successfully.
CUDNN_STATUS NOT_ SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD PARAM

one of the provided pointers is nil
CUDNN_STATUS EXECUTION_ FAILED

The function failed to launch on the GPU.

4.161. cudnnSetActivationDescriptor

cudnnStatus_t cudnnSetActivationDescriptor (

cudnnActivationDescriptor t activationDesc,
cudnnActivationMode t mode,
cudnnNanPropagation t reluNanOpt,
double coef)

This function initializes a previously created generic activation descriptor object.

Parameters
activationDesc

Input/Output. Handle to a previously created pooling descriptor.
mode

Input. Enumerant to specify the activation mode.
reluNanOpt

Input. Enumerant to specify the Nan propagation mode.
coef

Input. floating point number to specify the clipping threashold when the activation
mode is set to CUDNN_ACTIVATION CLIPPED_ RELU or to specify the alpha coefficient
when the activation mode is set to CUDNN_ACTIVATION ELU.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The object was set successfully.
CUDNN_STATUS_BAD PARAM

mode or reluNanOpt has an invalid enumerant value.

4.162. cudnnSetAlgorithmDescriptor

cudnnStatus t cudnnSetAlgorithmDescriptor (
cudnnAlgorithmDescriptor t algorithmDesc,

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 252

cuDNN API Reference

cudnnAlgorithm t algorithm)
(New for 7.1)
This function initializes a previously created generic algorithm descriptor object.

Parameters
algorithmDesc

Input/Output. Handle to a previously created algorithm descriptor.
algorithm

Input. Struct to specify the algorithm.

Returns
CUDNN_S TATUS_SUCCESS

The object was set successfully.

4.163. cudnnSetAlgorithmPerformance

cudnnStatus t cudnnSetAlgorithmPerformance (

cudnnAlEorithmPerformance_t algoPerf,
cudnnAlgorithmDescriptor t algoDesc,
cudnnStatus_t status,
float time,
size t memory)
(New for 7.1)
This function initializes a previously created generic algorithm performance object.
Parameters
algoPerf

Input/Output. Handle to a previously created algorithm performance object.
algoDesc

Input. The algorithm descriptor which the performance results describe.
status

Input. The cudnn status returned from running the algoDesc algorithm.
time

Input. The GPU time spent running the algoDesc algorithm.
memory

Input. The GPU memory needed to run the algoDesc algorithm.

Returns
CUDNN_STATUS SUCCESS

The object was set successfully.
CUDNN_STATUS_BAD PARAM

mode or reluNanOpt has an invalid enumerant value.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 253

cuDNN API Reference

4.164. cudnnSetAttnDescriptor

cudnnStatus_t cudnnSetAttnDescriptor (
cudnnAttnDescriptor t attnDesc,
cudnnAttnQueryMap t queryMap,

int

nHeads,

double smScaler,

cudnnDataType t dataType,

cudnnDataType t computePrec,
cudnnMathType t mathType,
cudnnDropoutDescriptor t attnDropoutDesc,
cudnnDropoutDescriptor t postDropoutDesc,

int
int
int
int
int
int
int
int
int
int
int

gSize,

kSize,

vSize,
gProjSize,
kProjSize,
vProjSize,
oProjSize,
goMaxSegLength,
kvMaxSegLength,
maxBatchSize,
maxBeamSize) ;

This function initializes a multi-head attention descriptor that was previously created
using the cudnnCreateAttnDescriptor function.

For query, key, and value input data, the effective projection size is equal to the
respective [gkv]ProjSize when the value is positive, and is equal to [gkv]Size
otherwise.

The output projection size decides the hidden vector size of the forward output sequence
data. It is equal to oProjSize when the value is positive, otherwise is equal to nHeads
times effective value-projection size.

Parameters:

Parameter Input / Output Description

attnDesc Output Attention descriptor whose values are to
be initialized.

queryMap Input Query mapping mode.

nHeads Input Number of attention heads.

smScaler Input Softmax smoothing, or sharpening,
coefficient.

dataType Input Data type for Q,K,V inputs, weights, and
the output.

computePrec Input Compute data type (precision).

mathType Input The Tensor Core Operations settings.

attnDropoutDesc Input Dropout descriptor for the dropout at the
attention layer.

postDropoutDesc Input Dropout descriptor for the dropout at the
output.

www.nvidia.com
cuDNN 7.5.0

DU-06702-001_v07 | 254

cuDNN API Reference

gSize, kSize, vSize Input Hidden size of Q, K, and V input sequence
data.
qProjSize, kProjSize, vProjSize | Input Hidden size of projected Q, Kand V
sequence data; 0 if no projection.
oProjSize Input Output projection size.
qoMaxSeqLength Input Largest sequence length allowed in
sequence data Q and O.
kvMaxSeqgLength Input Largest sequence length allowed in
sequence data K and V.
maxBatchSize Input Largest batch size allowed in sequence
data.
maxBeamSize Input Largest beam size allowed in sequence
data.
Returns:
Return Value Description
CUDNN_STATUS_SUCCESS The attnDesc field values are updated
successfully.
CUDNN_STATUS_BAD_PARAM An invalid input value is encountered. For
example:

- attnDesc is NULL

- queryMap is not one of enumerated labels of
cudnnAttnQueryMap t

- Effective Q, K projection size are not equal (see
remark below)

- dataType, computePrec, mathType are invalid
Any of the following valid ranges are violated:

- nHeads, gSize, kSize, vSize,
goMaxSeqLength, kvMaxSeqLength,
maxBatchSize, maxBeamSize >= 1

- gProjSize, kProjSize, vProjSize >=0

- smScaler >= 0.0

CUDNN_STATUS_NOT_SUPPORTED An unsupported value is encountered.

4.165. cudnnSetCTCLossDescriptor

cudnnStatus t cudnnSetCTCLossDescriptor (
cudnnCTCLossDescriptor t ctcLossDesc,
cudnnDataType t compType)

This function sets a CTC loss function descriptor.

Parameters

ctcLossDesc

Output. CTC loss descriptor to be set.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 255

cuDNN API Reference

compType
Input. Compute type for this CTC loss function.

Returns
CUDNN_STATUS SUCCESS

The function returned successfully.
CUDNN_STATUS_BAD PARAM

At least one of input parameters passed is invalid.

4.166. cudnnSetCallback

cudnnStatus_t cudnnSetCallback (

unsigned mask,
void *udata,
cudnnCallback t fptr)
(New for 7.1)
This function sets the internal states of cuDNN error reporting functionality.
Parameters
mask

Input. An unsigned integer. The four least significant bits (LSBs) of this unsigned
integer are used for switching on and off the different levels of error reporting
messages. This applies for both the default callbacks, and for the customized
callbacks. The bit position is in correspondence with the enum of cudnnSeverity t.
The user may utilize the predefined macros CUDNN_SEV_ERROR_EN,
CUDNN_SEV_WARNING_EN, and CUDNN_SEV_INFO_EN to form the bit mask.
When a bit is set to 1, the corresponding message channel is enabled.

For example, when bit 3 is set to 1, the API logging is enabled. Currently only

the log output of level CUDNN_SEV_INFO is functional; the others are not yet
implemented. When used for turning on and off the logging with the default callback,
the user may pass NULL to udata and fptr. In addition, the environment variable
CUDNN_LOGDEST_DBG must be set (see Section 2.11).

CUDNN_SEV_INFO_EN = (0b1000 (functional).

CUDNN_SEV_ERROR_EN = 0b0010 (not yet functional).

CUDNN_SEV_WARNING_ EN = 0b0100 (not yet functional).

The output of CUDNN_SEV_FATAL is always enabled, and cannot be disabled.
udata

Input. A pointer provided by the user. This pointer will be passed to the user’s
custom logging callback function. The data it points to will not be read, nor be
changed by cuDNN. This pointer may be used in many ways, such as in a mutex or
in a communication socket for the user’s callback function for logging. If the user

is utilizing the default callback function, or doesn’t want to use this input in the
customized callback function, they may pass in NULL.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 256

cuDNN API Reference

fptr

Input. A pointer to a user-supplied callback function. When NULL is passed to this
pointer, then cuDNN switches back to the built-in default callback function. The user-
supplied callback function prototype must be similar to the following (also defined in
the header file):

void customizedLoggingCallback (cudnnSeverity t sev, void *udata,
const cudnnDebug_t *dbg, const char *msgqg);

» The structure cudnnDebug_t is defined in the header file. It provides the
metadata, such as time, time since start, stream ID, process and thread ID, that
the user may choose to print or store in their customized callback.

» The variable msgq is the logging message generated by cuDNN. Each line of this
message is terminated by “\0”, and the end of message is terminated by “\0\0".
User may select what is necessary to show in the log, and may reformat the
string.

Returns
CUDNN_STATUS_ SUCCESS

The function launched successfully.

4.167. cudnnSetConvolution2dDescriptor

cudnnStatus t cudnnSetConvolution2dDescriptor (

cudnnConvolutionDescriptor t convDesc,
int pad_h,

int pad w,

int o,

int v,

int dilation h,
int dilation w,
cudnnConvolutionMode t mode,
cudnnDataType t computeType)

This function initializes a previously created convolution descriptor object into a 2D
correlation. This function assumes that the tensor and filter descriptors corresponds
to the formard convolution path and checks if their settings are valid. That same
convolution descriptor can be reused in the backward path provided it corresponds to
the same layer.

Parameters

convDesc
Input/Output. Handle to a previously created convolution descriptor.
pad_h

Input. zero-padding height: number of rows of zeros implicitly concatenated onto the
top and onto the bottom of input images.
pad_w

Input. zero-padding width: number of columns of zeros implicitly concatenated onto
the left and onto the right of input images.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 257

cuDNN API Reference

Input. Vertical filter stride.

Input. Horizontal filter stride.
dilation_h

Input. Filter height dilation.
dilation_w

Input. Filter width dilation.

mode

Input. Selects between CUDNN_CONVOLUTION and CUDNN_CROSS_CORRELATION.
computeType

Input. compute precision.
The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

The object was set successfully.
CUDNN_STATUS BAD PARAM

At least one of the following conditions are met:

The descriptor convDesc is nil.

One of the parameters pad_h,pad_w is strictly negative.

One of the parameters u, v is negative or zero.

One of the parameters dilation_h,dilation_w is negative or zero.

vV vV v v VY

The parameter mode has an invalid enumerant value.

4.168. cudnnSetConvolutionGroupCount

cudnnStatus t cudnnSetConvolutionGroupCount (
cudnnConvolutionDescriptor t convDesc,
int groupCount)

This function allows the user to specify the number of groups to be used in the
associated convolution.

Returns
CUDNN_STATUS_ SUCCESS

The group count was set successfully.
CUDNN_STATUS BAD PARAM

An invalid convolution descriptor was provided

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 258

cuDNN API Reference

4.169. cudnnSetConvolutionMathType

cudnnStatus t cudnnSetConvolutionMathType (
cudnnConvolutionDescriptor t convDesc,
cudnnMathType t mathType)

This function allows the user to specify whether or not the use of tensor op is permitted
in library routines associated with a given convolution descriptor.

Returns
CUDNN_STATUS_ SUCCESS

The math type was was set successfully.
CUDNN_STATUS_BAD_ PARAM

Either an invalid convolution descriptor was provided or an invalid math type was
specified.

4.170. cudnnSetConvolutionNdDescriptor

cudnnStatus t cudnnSetConvolutionNdDescriptor (

cudnnConvolutionDescriptor t convDesc,

int arrayLength,
const int padAl],

const int filterStrideAl[],
const int dilationA[],
cudnnConvolutionMode t mode,
cudnnDataType t dataType)

This function initializes a previously created generic convolution descriptor object into

a n-D correlation. That same convolution descriptor can be reused in the backward path
provided it corresponds to the same layer. The convolution computation will done in the
specified dataType, which can be potentially different from the input/output tensors.

Parameters
convDesc

Input/Output. Handle to a previously created convolution descriptor.
arrayLength

Input. Dimension of the convolution.
padA

Input. Array of dimension arrayLength containing the zero-padding size for
each dimension. For every dimension, the padding represents the number of extra
zeros implicitly concatenated at the start and at the end of every element of that
dimension .

filterStrideA
Input. Array of dimension arrayLength containing the filter stride for each

dimension. For every dimension, the fitler stride represents the number of elements
to slide to reach the next start of the filtering window of the next point.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 259

cuDNN API Reference

dilationA
Input. Array of dimension arrayLength containing the dilation factor for each
dimension.

mode

Input. Selects between CUDNN_CONVOLUTION and CUDNN_CROSS_CORRELATION.
datatype

Input. Selects the datatype in which the computation will be done.
The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

The object was set successfully.
CUDNN_STATUS BAD PARAM

At least one of the following conditions are met:

The descriptor convDesc is nil.

The arrayLengthRequest is negative.

The enumerant mode has an invalid value.

The enumerant datatype has an invalid value.

One of the elements of pada is strictly negative.

One of the elements of stridea is negative or zero.
One of the elements of dilationA is negative or zero.

vV Vv v v v Y

CUDNN_STATUS_NOT SUPPORTED
At least one of the following conditions are met:

» The arrayLengthRequest is greater than CUDNN_DIM_MAX.

4.171. cudnnSetDropoutDescriptor

cudnnStatus_t cudnnSetDropoutDescriptor (

cudnnDropoutDescriptor t dropoutDesc,
cudnnHandle t handle,

float dropout,

void *states,

size t stateSizeInBytes,
unsigned long long seed)

This function initializes a previously created dropout descriptor object. If states
argument is equal to NULL, random number generator states won't be initialized, and
only dropout value will be set. No other function should be writing to the memory
pointed at by states argument while this function is running. The user is expected not
to change memory pointed at by states for the duration of the computation.

Parameters

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 260

cuDNN API Reference

dropoutDesc

Input/Output. Previously created dropout descriptor object.
handle

Input. Handle to a previously created cuDNN context.
dropout

Input. The probability with which the value from input is set to zero during the
dropout layer.

states

Output. Pointer to user-allocated GPU memory that will hold random number
generator states.

stateSizeInBytes

Input. Specifies size in bytes of the provided memory for the states
seed

Input. Seed used to initialize random number generator states.
The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

The call was successful.
CUDNN_S TATUS_INVALID_VALUE

sizeInBytes is less than the value returned by cudnnDropoutGetStatesSize.
CUDNN_STATUS EXECUTION_ FAILED

The function failed to launch on the GPU

4.172. cudnnSetFilter4dDescriptor

cudnnStatus t cudnnSetFilter4dDescriptor (

cudnnFilterDescriptor t filterDesc,
cudnnDataType t dataType,
cudnnTensorFormat t format,

int k,

int €y

int h,

int w)

This function initializes a previously created filter descriptor object into a 4D filter. The
layout of the filters must be contiguous in memory.

Tensor format CUDNN_TENSOR_NHWC has limited support in
cudnnConvolutionForward, cudnnConvolutionBackwardData and
cudnnConvolutionBackwardFilter; please refer to the documentation for each
function for more information.

Parameters

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 261

cuDNN API Reference

filterDesc
Input/Output. Handle to a previously created filter descriptor.
datatype

Input. Data type.
format

Input.Type of the filter layout format. If this input is set to
CUDNN_TENSOR_NCHW, which is one of the enumerated values allowed by
cudnnTensorFormat_t descriptor, then the layout of the filter is in the form of KCRS
(K represents the number of output feature maps, C the number of input feature
maps, R the number of rows per filter, and S the number of columns per filter.)

If this input is set to CUDNN_TENSOR_NHWG, then the layout of the filter is in the
form of KRSC. See also the description for cudnnTensorFormat_t.

Input. Number of output feature maps.

Input. Number of input feature maps.

h

Input. Height of each filter.
w

Input. Width of each filter.
The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS SUCCESS

The object was set successfully.
CUDNN_STATUS_BAD PARAM

At least one of the parameters k, ¢, h,w is negative or dataType or format has an
invalid enumerant value.

4.173. cudnnSetFilterNdDescriptor

cudnnStatus t cudnnSetFilterNdDescriptor (
cudnnFilterDescriptor t filterDesc,

cudnnDataType t dataType,
cudnnTensorFormat t format,

int nbDims,

const int filterDimA[])

This function initializes a previously created filter descriptor object. The layout of the
tilters must be contiguous in memory.

The tensor format CUDNN_TENSOR_NHWC has limited support in

cudnnConvolutionForward, cudnnConvolutionBackwardData and

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 262

cuDNN API Reference

cudnnConvolutionBackwardFilter; please refer to the documentation for each
function for more information.

Parameters

filterDesc

Input/Output. Handle to a previously created filter descriptor.
datatype

Input. Data type.
format

Input.Type of the filter layout format. If this input is set to
CUDNN_TENSOR_NCHW, which is one of the enumerated values allowed by
cudnnTensorFormat_t descriptor, then the layout of the filter is as follows:

» For N=4, i.e., for a 4D filter descriptor, the filter layout is in the form of KCRS (K
represents the number of output feature maps, C the number of input feature
maps, R the number of rows per filter, and S the number of columns per filter.)

» For N=3, i.e,, for a 3D filter descriptor, the number S (number of columns per
filter) is omitted.

» For N=5 and greater, the layout of the higher dimensions immediately follow RS.

On the other hand, if this input is set to CUDNN_TENSOR_NHWGC, then the layout
of the filter is as follows:

» For N=4, i.e., for a 4D filter descriptor, the filter layout is in the form of KRSC.

» For N=3, i.e., for a 3D filter descriptor, the number S (number of columns per
filter) is omitted, and the layout of C immediately follows R.

» For N=5 and greater, the layout of the higher dimensions are inserted between S
and C. See also the description for cudnnTensorFormat_t.

nbDims

Input. Dimension of the filter.
filterDimA

Input. Array of dimension nbDims containing the size of the filter for each dimension.
The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The object was set successfully.
CUDNN_STATUS_BAD PARAM

At least one of the elements of the array £ilterDimA is negative or dataType or
format has an invalid enumerant value.

CUDNN_STATUS_NOT_ SUPPORTED
The parameter nbDims exceeds CUDNN_DIM_MAX.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 263

cuDNN API Reference

4.174. cudnnSetLRNDescriptor

cudnnStatus_t cudnnSetLRNDescriptor (
cudnnLRNDescriptor t normDesc,

unsigned 1lrnN,
double lrnAlpha,
double lrnBeta,
double 1rnkK)

This function initializes a previously created LRN descriptor object.

Macros CUDNN_LRN_MIN_N, CUDNN_LRN_MAX_N, CUDNN_LRN_MIN_K,
CUDNN_LRN_MIN_BETA defined in cudnn.h specify valid ranges for parameters.

Values of double parameters will be cast down to the tensor datatype during
computation.

Parameters
normDesc

Output. Handle to a previously created LRN descriptor.
IrnN

Input. Normalization window width in elements. LRN layer uses a window [center-
lookBehind, center+lookAhead], where lookBehind = floor((IrnN-1)/2), lookAhead
= lrnN-lookBehind-1. So for n=10, the window is [k-4...k...k+5] with a total of 10
samples. For DivisiveNormalization layer the window has the same extents as above
in all 'spatial' dimensions (dimA[2], dimA[3], dimA[4]). By default IrnN is set to 5 in
cudnnCreateLRNDescriptor.

IrnAlpha
Input. Value of the alpha variance scaling parameter in the normalization formula.
Inside the library code this value is divided by the window width for LRN and by

(window width)*#spatialDimensions for DivisiveNormalization. By default this value
is set to 1le-4 in cudnnCreateLRNDescriptor.

IrnBeta

Input. Value of the beta power parameter in the normalization formula. By default
this value is set to 0.75 in cudnnCreateLRNDescriptor.

IrnK

Input. Value of the k parameter in normalization formula. By default this value is set
to 2.0.

Possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

The object was set successfully.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 264

cuDNN API Reference

CUDNN_STATUS BAD PARAM

One of the input parameters was out of valid range as described above.

4.175. cudnnSetOpTensorDescriptor

cudnnStatus_t cudnnSetOpTensorDescriptor (
cudnnOpTensorDescriptor t opTensorDesc,

cudnnOpTensorOp_t opTensorOp,
cudnnDataType t opTensorCompType,
cudnnNanPropagation t opTensorNanOpt)

This function initializes a Tensor Pointwise math descriptor.

Parameters
opTensorDesc

Output. Pointer to the structure holding the description of the Tensor Pointwise math
descriptor.

opTensorOp

Input. Tensor Pointwise math operation for this Tensor Pointwise math descriptor.
opTensorCompType

Input. Computation datatype for this Tensor Pointwise math descriptor.
opTensorNanOpt

Input. NAN propagation policy
Returns
CUDNN_STATUS_ SUCCESS

The function returned successfully.
CUDNN_STATUS BAD PARAM

At least one of input parameters passed is invalid.

4.176. cudnnSetPersistentRNNPlan

cudnnStatus_t cudnnSetPersistentRNNPlan (
cudnnRNNDescriptor t rnnDesc,
cudnnPersistentRNNPlan_t plan)

This function sets the persistent RNN plan to be executed when using rnnDesc and
CUDNN_RNN ALGO_PERSIST DYNAMIC algo.

Returns
CUDNN_STATUS_SUCCESS

The plan was set successfully.
CUDNN_STATUS_BAD PARAM

The algo selected in rnnDesc is not CUDNN_RNN_ALGO_PERSIST DYNAMIC.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 265

4.177. cudnnSetPooling2dDescriptor

cudnnStatus t cudnnSetPooling2dDescriptor (

cudnnPoSlingDescriptor_t
cudnnPoolingMode t
cudnnNanPropagation t
int

int

int

int

int

int

poolingDesc,

mode,
maxpoolingNanOpt,
windowHeight,
windowWidth,
verticalPadding,
horizontalPadding,
verticalStride,
horizontalStride)

cuDNN API Reference

This function initializes a previously created generic pooling descriptor object into a 2D

description.

Parameters
poolingDesc

Input/Output. Handle to a previously created pooling descriptor.

mode

Input. Enumerant to specify the pooling mode.

maxpoolingNanOpt

Input. Enumerant to specify the Nan propagation mode.

windowHeight

Input. Height of the pooling window.

windowWidth

Input. Width of the pooling window.

verticalPadding

Input. Size of vertical padding.
horizontalPadding

Input. Size of horizontal padding

verticalStride

Input. Pooling vertical stride.
horizontalStride

Input. Pooling horizontal stride.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS SUCCESS

The object was set successfully.

www.nvidia.com
cuDNN 7.5.0

DU-06702-001_v07 | 266

cuDNN API Reference

CUDNN_STATUS BAD PARAM

At least one of the parameters windowHeight, windowWidth, verticalStride,
horizontalStride is negative or mode or maxpoolingNanOpt has an invalid
enumerant value.

4.178. cudnnSetPoolingNdDescriptor

cudnnStatus_t cudnnSetPoolingNdDescriptor (

cudnnPoolingDescriptor t poolingDesc,
const cudnnPoolingMode t mode,

const cudnnNanPropagation t maxpoolingNanOpt,
int nbDims,

const int windowDimA[],
const int paddingAl],

const int strideA[])

This function initializes a previously created generic pooling descriptor object.

Parameters
poolingDesc

Input/Output. Handle to a previously created pooling descriptor.
mode

Input. Enumerant to specify the pooling mode.
maxpoolingNanOpt

Input. Enumerant to specify the Nan propagation mode.
nbDims

Input. Dimension of the pooling operation. Must be greater than zero.
windowDimA
Input. Array of dimension nbDims containing the window size for each dimension.
The value of array elements must be greater than zero.
paddingA
Input. Array of dimension nbDims containing the padding size for each dimension.
Negative padding is allowed.
strideA
Input. Array of dimension nbDims containing the striding size for each dimension.
The value of array elements must be greater than zero (i.e., negative striding size is
not allowed).
Returns
CUDNN_STATUS_ SUCCESS

The object was initialized successfully.
CUDNN_STATUS NOT_ SUPPORTED

If (nbDims > CUDNN_DIM_MAX - 2).

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 267

cuDNN API Reference

CUDNN_STATUS BAD PARAM

Either nbDims, or at least one of the elements of the arrays windowDimA, or
strideA is negative, or mode or maxpoolingNanOpt has an invalid enumerant value.

4.179. cudnnSetRNNBiasMode

cudnnStatus_t cudnnSetRNNBiasMode (
cudnnRNNDescriptor t rnnDesc,
cudnnRNNBiasMode t biasMode)

The cudnnSetRNNBiasMode () function sets the number of bias vectors for a
previously created and initialized RNN descriptor. This function should be called
after cudnnSetRNNDescriptor () to enable the specified bias mode in an RNN.
The default value of biasMode in rnnDesc after cudnnCreateRNNDescriptor () is
CUDNN_RNN_DOUBLE_BIAS.

Parameters
rnnDesc

Input/Output. A previously created RNN descriptor.
biasMode

Input. Sets the number of bias vectors. See cudnnRNNBiasMode_t.

Returns
CUDNN_STATUS_BAD_PARAM

Either the rnnDesc is NULL, or biasMode has an invalid enumerant value.
CUDNN_STATUS_ SUCCESS

The biasMode was set successfully.
CUDNN_STATUS NOT_ SUPPORTED

Non-default bias mode (an enumerated type besides CUDNN_RNN_DOUBLE_BIAS)
applied to RNN algo other than CUDNN_RNN_ALGO STANDARD.

4.180. cudnnSetRNNDataDescriptor

cudnnStatus_t cudnnSetRNNDataDescriptor (

cudnnRNNDataDescriptor t RNNDataDesc,
cudnnDataType t dataType,
cudnnRNNDataLayout t layout,

int maxSeqglength,

int batchSize,

int vectorSize,

const int seglengthArray|[],
void *paddingFill) ;

This function initializes a previously created RNN data descriptor object. This data
structure is intended to support the unpacked (padded) layout for input and output of

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 268

cuDNN API Reference

extended RNN inference and training functions. A packed (unpadded) layout is also
supported for backward compatibility.

Parameters

RNNDataDesc

Input/Output. A previously created RNN descriptor. See cudnnRNNDataDescriptor_t.
dataType

Input. The datatype of the RNN data tensor. See cudnnDataType._t.
layout

Input. The memory layout of the RNN data tensor.

maxSeqLength
Input. The maximum sequence length within this RNN data tensor. In the unpacked
(padded) layout, this should include the padding vectors in each sequence. In

the packed (unpadded) layout, this should be equal to the greatest element in
seqLengthArray.

batchSize

Input. The number of sequences within the mini-batch.

vectorSize
Input. The vector length (i.e. embedding size) of the input or output tensor at each
timestep.

seqLengthArray
Input. An integer array with batchSize number of elements. Describes the length
(i.e. number of timesteps) of each sequence. Each element in seqLengthArray must
be greater than 0 but less than or equal to maxSeqLength. In the packed layout, the

elements should be sorted in descending order, similar to the layout required by the
non-extended RNN compute functions.

paddingFill
Input. A user-defined symbol for filling the padding position in RNN output. This is
only effective when the descriptor is describing the RNN output, and the unpacked
layout is specified. The symbol should be in the host memory, and is interpreted as
the same data type as that of the RNN data tensor. If NULL pointer is passed in, then
the padding position in the output will be undefined.

Returns

CUDNN_STATUS_SUCCESS

The object was set successfully.
CUDNN_STATUS_NOT_SUPPORTED

dataType is not one of CUDNN_DATA_ HALF, CUDNN_DATA FLOAT,
CUDNN_DATA DOUBLE.

CUDNN_STATUS_BAD_PARAM

Any one of these have occurred:

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 269

cuDNN API Reference

» RNNDataDesc is NULL.

» Any one of maxSeqLength, batchSize, or vectorSize is less than or equal to

zero.

» An element of seqLengthArray is less than or equal to zero or greater than
maxSeqLength.

» Layout is not one of CUDNN_RNN_DATA LAYOUT SEQ MAJOR UNPACKED,
CUDNN_RNN_DATA LAYOUT SEQ MAJOR_PACKED, Or
CUDNN_RNN_DATA LAYOUT BATCH_MAJOR_UNPACKED.

CUDNN_STATUS ALLOC_FAILED
The allocation of internal array storage has failed.

4.181. cudnnSetRNNDescriptor

cudnnStatus t cudnnSetRNNDescriptor (

cudnnHaHdle_t handle,
cudnnRNNDescriptor t rnnDesc,

int hiddenSize,
int numLayers,
cudnnDropoutDescriptor t dropoutDesc,
cudnnRNNInputMode t inputMode,
cudnnDirectionMode t direction,
cudnnRNNMode t mode,
cudnnRNNAlgo t algo,
cudnnDataType t mathPrec)

This function initializes a previously created RNN descriptor object.

Larger networks (e.g., longer sequences, more layers) are expected to be more
efficient than smaller networks.

Parameters
rnnDesc

Input/Output. A previously created RNN descriptor.
hiddenSize

Input. Size of the internal hidden state for each layer.
numLayers

Input. Number of stacked layers.
dropoutDesc

Input. Handle to a previously created and initialized dropout descriptor. Dropout will

be applied between layers; a single layer network will have no dropout applied.
inputMode

Input. Specifies the behavior at the input to the first layer.
direction

Input. Specifies the recurrence pattern. (e.g., bidirectional).

www.nvidia.com

CcuDNN 7.5.0 DU-06702-001_v07 | 270

cuDNN API Reference

mode

Input. Specifies the type of RNN to compute.
mathPrec

Input. Math precision. This parameter is used for controlling the math precision in
RNN. The following applies:

» For the input/output in FP16, the parameter mathPrec can be
CUDNN_DATA_HALF or CUDNN_DATA_FLOAT.

» For the input/output in FP32, the parameter mathPrec can only be
CUDNN_DATA_FLOAT, and

» For the input/output in FP64, double type, the parameter mathPrec can only be

CUDNN_DATA_DOUBLE.

Returns
CUDNN_STATUS SUCCESS

The object was set successfully.
CUDNN_STATUS BAD PARAM

Either at least one of the parameters hiddenSize, numlLayers was zero or negative,
one of inputMode, direction, mode, dataType has an invalid enumerant value,

dropoutDesc is an invalid dropout descriptor or rnnDesc has not been created
correctly.

4.182. cudnnSetRNNDescriptor_v5

cudnnStatus t cudnnSetRNNDescriptor v5 (

cudnnRNNDescriptor t rnnDesc,

int hiddenSize,
int numLayers,
cudnnDropoutDescriptor t dropoutDesc,
cudnnRNNInputMode t inputMode,
cudnnDirectionMode t direction,
cudnnRNNMode t mode,
cudnnDataType t mathPrec)

This function initializes a previously created RNN descriptor object.

Larger networks (e.g., longer sequences, more layers) are expected to be more
efficient than smaller networks.

Parameters
rnnDesc

Input/Output. A previously created RNN descriptor.
hiddenSize

Input. Size of the internal hidden state for each layer.
numLayers

Input. Number of stacked layers.

www.nvidia.com

CcuDNN 7.5.0 DU-06702-001_v07 | 271

cuDNN API Reference

dropoutDesc
Input. Handle to a previously created and initialized dropout descriptor. Dropout will
be applied between layers (e.g., a single layer network will have no dropout applied).
inputMode

Input. Specifies the behavior at the input to the first layer
direction

Input. Specifies the recurrence pattern. (e.g., bidirectional)
mode

Input. Specifies the type of RNN to compute.
mathPrec

Input. Math precision. This parameter is used for controlling the math precision in
RNN. The following applies:

» For the input/output in FP16, the parameter mathPrec can be
CUDNN_DATA_HALF or CUDNN_DATA_FLOAT.

» For the input/output in FP32, the parameter mathPrec can only be
CUDNN_DATA_FLOAT, and

» For the input/output in FP64, double type, the parameter mathPrec can only be
CUDNN_DATA_DOUBLE.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The object was set successfully.
CUDNN_STATUS_BAD PARAM

Either at least one of the parameters hiddenSize, numLayers was zero or
negative, one of inputMode, direction, mode, algo, dataType has an invalid
enumerant value, dropoutDesc is an invalid dropout descriptor or rnnDesc has not
been created correctly.

4.183. cudnnSetRNNDescriptor_vé

cudnnStatus_t cudnnSetRNNDescriptor vé6 (

cudnnHaHdle_t handle,
cudnnRNNDescriptor t rnnDesc,
cudnnDropoutDescriptor t dropoutDesc,
cudnnRNNInputMode t inputMode,
cudnnDirectionMode t direction,
cudnnRNNMode t mode,
cudnnRNNAlgo t algo,
cudnnDataType t mathPrec)

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 272

cuDNN API Reference

This function initializes a previously created RNN descriptor object.

Larger networks (e.g., longer sequences, more layers) are expected to be more
efficient than smaller networks.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor.
rnnDesc

Input/Output. A previously created RNN descriptor.
hiddenSize

Input. Size of the internal hidden state for each layer.
numLayers

Input. Number of stacked layers.
dropoutDesc
Input. Handle to a previously created and initialized dropout descriptor. Dropout will
be applied between layers (e.g., a single layer network will have no dropout applied).
inputMode

Input. Specifies the behavior at the input to the first layer
direction

Input. Specifies the recurrence pattern. (e.g., bidirectional)
mode

Input. Specifies the type of RNN to compute.
algo

Input. Specifies which RNN algorithm should be used to compute the results.
mathPrec

Input. Math precision. This parameter is used for controlling the math precision in
RNN. The following applies:

» For the input/output in FP16, the parameter mathPrec can be
CUDNN_DATA_HALF or CUDNN_DATA_FLOAT.

» For the input/output in FP32, the parameter mathPrec can only be
CUDNN_DATA_FLOAT, and

» For the input/output in FP64, double type, the parameter mathPrec can only be
CUDNN_DATA_DOUBLE.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_S TATUS_SUCCESS

The object was set successfully.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 273

cuDNN API Reference

CUDNN_STATUS BAD PARAM

Either at least one of the parameters hiddenSize, numLayers was zero or
negative, one of inputMode, direction, mode, algo, dataType has an invalid
enumerant value, dropoutDesc is an invalid dropout descriptor or rnnDesc has not
been created correctly.

4.184. cudnnSetRNNMatrixMathType

cudnnStatus_t cudnnSetRNNMatrixMathType (

cudnnRNNDescriptor t rnnDesc,

cudnnMathType t mType)
This function sets the preferred option to use NVIDIA Tensor Cores
accelerators on Volta GPU-s (SM 7.0 or higher). When the mType parameter is
CUDNN_TENSOR_OP_MATH, inference and training RNN API-s will attempt
use Tensor Cores when weights/biases are of type CUDNN_DATA_HALF
or CUDNN_DATA_FLOAT. When RNN weights/biases are stored in the
CUDNN_DATA_FLOAT format, the original weights and intermediate results will be
down-converted to CUDNN_DATA_HALF before they are used in another recursive
iteration.

Parameters
rnnDesc

Input. A previously created and initialized RNN descriptor.

mType
Input. A preferred compute option when performing RNN GEMM-s (general matrix-
matrix multiplications). This option has an “advisory” status meaning that Tensor
Cores may not be utilized, e.g., due to specific GEMM dimensions.

Returns

CUDNN_STATUS_SUCCESS

The preferred compute option for the RNN network was set successfully.
CUDNN_STATUS_BAD PARAM

An invalid input parameter was detected.

4.185. cudnnSetRNNPaddingMode

cudnnStatus_t cudnnSetRNNPaddingMode (
cudnnRNNDescriptor t rnnDesc,
cudnnRNNPaddingMode t paddingMode)

This function enables or disables the padded RNN input/output for a previously
created and initialized RNN descriptor. This information is required before calling the
cudnnGetRNNWorkspaceSize and cudnnGetRNNTrainingReserveSize functions,
to determine whether additional workspace and training reserve space is needed. By
default the padded RNN input/output is not enabled.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 274

cuDNN API Reference

Parameters
rnnDesc

Input/Output. A previously created RNN descriptor.
paddingMode

Input. Enables or disables the padded input/output. See the description for
cudnnRNNPaddingMode_t.

Returns
CUDNN_STATUS_SUCCESS

The paddingMode was set successfully.
CUDNN_STATUS_BAD PARAM

Either the rnnDesc is NULL, or paddingMode has an invalid enumerant value.

4.186. cudnnSetRNNProjectionLayers

cudnnStatus t cudnnSetRNNProjectionLayers (

cudnnHaHdle_t handle,

cudnnRNNDescriptor t rnnDesc,

int recProjSize,

int outProjSize)
(New for 7.1)

The cudnnSetRNNProjectionLayers () function should be called after
cudnnSetRNNDescriptor () to enable the "recurrent” and/or "output” projection

in a recursive neural network. The "recurrent” projection is an additional matrix
multiplication in the LSTM cell to project hidden state vectors h; into smaller vectors r =
W:h;, where W, is a rectangular matrix with recProjSize rows and hiddenSize columns.
When the recurrent projection is enabled, the output of the LSTM cell (both to the

next layer and unrolled in-time) is r¢ instead of h;. The dimensionality of i, f;, o, and

¢t vectors used in conjunction with non-linear functions remains the same as in the
canonical LSTM cell. To make this possible, the shapes of matrices in the LSTM formulas
(see the chapter describing the cudnnRNNMode_t type), such as W; in hidden RNN
layers or R; in the entire network, become rectangular versus square in the canonical
LSTM mode. Obviously, the result of "R;* W," is a square matrix but it is rank deficient,
reflecting the "compression” of LSTM output. The recurrent projection is typically
employed when the number of independent (adjustable) weights in the RNN network
with projection is smaller in comparison to canonical LSTM for the same hiddenSize
value.

The "recurrent” projection can be enabled for LSTM cells and
CUDNN_RNN_ALGO_STANDARD only. The recProjSize parameter should be smaller than
the hiddenSize value programmed in the cudnnSetRNNDescriptor () call. It is legal
to set recProjSize equal to hiddenSize but in that case the recurrent projection feature is
disabled.

The "output” projection is currently not implemented.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 275

cuDNN API Reference

For more information on the "recurrent" and "output” RNN projections see the paper
by Hasim Sak, et al.: Long Short-Term Memory Based Recurrent Neural Network
Architectures For Large Vocabulary Speech Recognition.

Parameters
handle

Input. Handle to a previously created cuDNN library descriptor.
rmnDesc

Input. A previously created and initialized RNN descriptor.
recProjSize

Input. The size of the LSTM cell output after the “recurrent” projection. This value
should not be larger than hiddenSize programmed via cudnnSetRNNDescriptor().

outProjSize
Input. This parameter should be zero.

Returns
CUDNN_S TATUS_SUCCESS

RNN projection parameters were set successfully.
CUDNN_STATUS_BAD_PARAM

An invalid input argument was detected (e.g., NULL handles, negative values for
projection parameters).

CUDNN_STATUS_NOT_SUPPORTED

Projection applied to RNN algo other than CUDNN_RNN_ALGO STANDARD, cell type
other than CUDNN_LSTM, recProjSize larger than hiddenSize.

4.187. cudnnSetReduceTensorDescriptor

cudnnStatus_t cudnnSetReduceTensorDescriptor (

cudnnReduceTensorDescriptor t reduceTensorDesc,
cudnnReduceTensorOp t reduceTensorOp,
cudnnDataType t reduceTensorCompType,
cudnnNanPropagation t reduceTensorNanOpt,
cudnnReduceTensorIndices t reduceTensorIndices,
cudnnIndicesType t reduceTensorIndicesType)

This function initializes a previously created reduce tensor descriptor object.

Parameters
reduceTensorDesc

Input/Output. Handle to a previously created reduce tensor descriptor.
reduceTensorOp

Input. Enumerant to specify the reduce tensor operation.
reduceTensorCompType

Input. Enumerant to specify the computation datatype of the reduction.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 276

cuDNN API Reference

reduceTensorNanOpt

Input. Enumerant to specify the Nan propagation mode.
reduceTensorIndices

Input. Enumerant to specify the reduce tensor indices.
reduceTensorIndicesType

Input. Enumerant to specify the reduce tensor indices type.

Returns
CUDNN_STATUS SUCCESS

The object was set successfully.
CUDNN_STATUS_BAD PARAM

reduceTensorDesc is NULL (reduceTensorOp, reduceTensorCompType,
reduceTensorNanOpt, reduceTensorIndices or reduceTensorIndicesType has an
invalid enumerant value).

4.188. cudnnSetSeqDataDescriptor

cudnnStatus_t cudnnSetSegDataDescriptor (

cudnnSeqgDataDescriptor t segDataDesc,

cudnnDataType t dataType,

int nbDims,

const int dimA[],

const cudnnSquatanis_t axes|[],

size t seqglLengthArraySize,

const int seqlLengthArrayl[],

void *paddingFill) ;
This function initializes a previously created sequence data descriptor object. This
descriptor points to a buffer that holds a batch of sequence samples. Each sample

consists of a fixed beam size number of sequences.

Sequence data are regularly strided in memory with the order of time, batch, beam, and
vector axes specified by the array axes[].

Each sequence has different sequence length and is specified in seqLengthArray, an
array of size seqLengthArraySize.

The value of seqLengthArraySize is <dimA[CUDNN_SEQDATA TIME DIM].

Parameters:

Parameter Input / Output Description

seqDataDesc Output Pointer to a previously created
cudnnSeqgDataDescriptor structure to
initialize.

dataType Input Data type of the sequence data.

nbDims Input Number of sequence data dimensions.

dimA[] Input Size of each axes dimension. Array that
contains the dimensions of the buffer that

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 277

cuDNN API Reference

holds a batch of sequence samples. This
dima is an array of 4 positive integers,
where:

- dimA [CUDNN_SEQDATA TIME DIM] is
the maximum allowed sequence length

- dimA [CUDNN_SEQDATA BATCH DIM] is
the maximum allowed batch size

- dimA [CUDNN_SEQDATA BEAM DIM] is
the number of beam in each sample

- dimA [CUDNN_SEQDATA VECT_ DIM] is
the vector length.

axes[] Input Array of axes, sorted from outermost
to innermost dimension. The array size
is CUDNN_SEQDATA_DIM_COUNT. The
elements of axes[] array is a valid
permutation of enumerated labels of
cudnnSegDataAxis_t (in the order from
the outermost to the innermost axes in
memory.)

segLengthArraySize Input Number of elements in, i.e., the length
of, the segqLengthArray. The value

of this seqLengthArraySize is <
dimA[CUDNN_SEQDATA TIME DIM].

segLengthArray([] Input Array that holds the sequence lengths of
each sequence.

paddingFill Input Points to a value, of dataType,

that is used to fill up the buffer
beyond the sequence length of each
sequence. The only supported value for
paddingFill isO.

Returns:

Return Value Description

CUDNN_STATUS_SUCCESS All input values are validated and the descriptor
value updated successfully.

CUDNN_STATUS_BAD_PARAM Any of the below invalid inputs has occurred:
- seqDataDesc == NULL

- dateType is not a valid data type

- nbDims is not positive.

- Any element of dimA is not positive

- seqLengthArraySize is not equal to
dimA[CUDNN_SEQDATA BATCH_DIM] *
dimA [CUDNN_SEQDATA BEAM DIM]

- Any element of seqLengthArray is not positive

- Any element of seqLengthArray is larger than
dimA [CUDNN_SEQDATA TIME DIM]

CUDNN_STATUS_NOT_SUPPORTED Encountered any of the below unsupported values:

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 278

cuDNN API Reference

- nbDims is not equal to
CUDNN_SEQDATA_DIM_COUNT (4)

- paddingFill is not a NULL pointer, and the
value pointed to is not of the dataType.

CUDNN_STATUS_ALLOC_FAILED Failed to allocate storage for some field of the
descriptor structure.

4.189. cudnnSetSpatialTransformerNdDescriptor

cudnnStatus_t cudnnSetSpatialTransformerNdDescriptor (

cudnnSpatialTransformerDescriptor t stDesc,
cudnnSamplerType t samplerType,
cudnnDataType t dataType,
const int nbDims,
const int dimA[])

This function initializes a previously created generic spatial transformer descriptor
object.

Parameters
stDesc

Input/Output. Previously created spatial transformer descriptor object.
samplerType

Input. Enumerant to specify the sampler type.
dataType

Input. Data type.
nbDims

Input. Dimension of the transformed tensor.
dimA

Input. Array of dimension nbDims containing the size of the transformed tensor for
every dimension.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

The call was successful.
CUDNN_S TATUS_BAD_PARAM

At least one of the following conditions are met:

» Either stDesc or dimA is NULL.
» Either dataType or samplerType has an invalid enumerant value

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 279

cuDNN API Reference

4.190. cudnnSetStream

cudnnStatus_t cudnnSetStream (
cudnnHandle t handle,
cudaStream t streamId)

This function sets the user's CUDA stream in the cuDNN handle. The new stream will
be used to launch cuDNN GPU kernels or to synchronize to this stream when cuDNN
kernels are launched in the internal streams. If the cuDNN library stream is not set, all
kernels use the default (NULL) stream. Setting the user stream in the cuDNN handle
guarantees the issue-order execution of cuDNN calls and other GPU kernels launched in
the same stream.

Parameters
handle

Input. Pointer to the cuDNN handle.
streamID

Input. New CUDA stream to be written to the cuDNN handle.

Returns
CUDNN_S TATUS_BAD_PARAM

Invalid (NULL) handle.
CUDNN_STATUS MAPPING_ ERROR

Mismatch between the user stream and the cuDNN handle context.
CUDNN_STATUS_ SUCCESS

The new stream was set successfully.

4.191. cudnnSetTensor

cudnnStatus t cudnnSetTensor (

cudnnHandle t handle,
const cudnnTensorDescriptor t yDesc,
void Yy

const void *valuePtr)

This function sets all the elements of a tensor to a given value.

Parameters
handle

Input. Handle to a previously created cuDNN context.
yDesc

Input. Handle to a previously initialized tensor descriptor.

Input/Output. Pointer to data of the tensor described by the yDesc descriptor.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 280

cuDNN API Reference

valuePtr

Input. Pointer in Host memory to a single value. All elements of the y tensor will be
set to value[0]. The data type of the element in value[0] has to match the data type of
tensor y.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

The function launched successfully.
CUDNN_STATUS NOT_ SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD PARAM

one of the provided pointers is nil
CUDNN_STATUS EXECUTION_ FAILED

The function failed to launch on the GPU.

4.192. cudnnSetTensor4dDescriptor

cudnnStatus t cudnnSetTensor4dDescriptor (
cudnnTensorDescriptor t tensorDesc,

cudnnTensorFormat t format,
cudnnDataType t dataType,
int n,

int P

int h,

int w)

This function initializes a previously created generic Tensor descriptor object into a
4D tensor. The strides of the four dimensions are inferred from the format parameter
and set in such a way that the data is contiguous in memory with no padding between
dimensions.

The total size of a tensor including the potential padding between dimensions is
limited to 2 Giga-elements of type datatype.

Parameters
tensorDesc

Input/Output. Handle to a previously created tensor descriptor.
format

Input. Type of format.
datatype

Input. Data type.

Input. Number of images.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 281

cuDNN API Reference

Input. Number of feature maps per image.
h

Input. Height of each feature map.
4

Input. Width of each feature map.
The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

The object was set successfully.
CUDNN_STATUS BAD PARAM

At least one of the parameters n, ¢, h,w was negative or format has an invalid
enumerant value or dataType has an invalid enumerant value.

CUDNN_STATUS NOT_ SUPPORTED

The total size of the tensor descriptor exceeds the maximim limit of 2 Giga-elements.

4.193. cudnnSetTensor4dDescriptorEx

cudnnStatus t cudnnSetTensor4dDescriptorEx (

cudnnTeHsorDescriptorit tensorDesc,
cudnnDataType t dataType,
int n,

int cy

int h,

int w,

int nStride,
int cStride,
int hStride,
int wStride)

This function initializes a previously created generic Tensor descriptor object into a

4D tensor, similarly to cudnnSetTensor4dDescriptor but with the strides explicitly
passed as parameters. This can be used to lay out the 4D tensor in any order or simply to
define gaps between dimensions.

At present, some cuDNN routines have limited support for strides; Those routines will
return CUDNN_STATUS_NOT_SUPPORTED if a Tensor4D object with an unsupported
stride is used. cudnnTransformTensor can be used to convert the data to a
supported layout.

The total size of a tensor including the potential padding between dimensions is
limited to 2 Giga-elements of type datatype.

Parameters

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 282

cuDNN API Reference

tensorDesc

Input/Output. Handle to a previously created tensor descriptor.
datatype

Input. Data type.
Input. Number of images.

Input. Number of feature maps per image.
h

Input. Height of each feature map.
4

Input. Width of each feature map.
nStride

Input. Stride between two consecutive images.
cStride

Input. Stride between two consecutive feature maps.
hStride

Input. Stride between two consecutive rows.
wStride

Input. Stride between two consecutive columns.
The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

The object was set successfully.
CUDNN_STATUS BAD PARAM

At least one of the parameters n,c,h,wor nStride, cStride,hStride,wStride is
negative or dataType has an invalid enumerant value.

CUDNN_STATUS NOT_ SUPPORTED

The total size of the tensor descriptor exceeds the maximim limit of 2 Giga-elements.

4.194. cudnnSetTensorNdDescriptor

cudnnStatus t cudnnSetTensorNdDescriptor (
cudnnTensorDescriptor t tensorDesc,

cudnnDataType t dataType,
int nbDims,
const int dimAT[],
const int strideA[])

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 283

cuDNN API Reference

This function initializes a previously created generic Tensor descriptor object.

The total size of a tensor including the potential padding between dimensions is
limited to 2 Giga-elements of type datatype. Tensors are restricted to having at least
4 dimensions, and at most CUDNN_DIM_MAX dimensions (defined in cudnn.h). When
working with lower dimensional data, it is recommended that the user create a 4D
tensor, and set the size along unused dimensions to 1.

Parameters
tensorDesc

Input/Output. Handle to a previously created tensor descriptor.
datatype

Input. Data type.
nbDims

Input. Dimension of the tensor.

Do not use 2 dimensions. Due to historical reasons, the minimum
number of dimensions in the filter descriptor is three. See also the
cudnnGetRNNLinLayerBiasParams().

dimA
Input. Array of dimension nbDims that contain the size of the tensor for every
dimension. Size along unused dimensions should be set to 1.

strideA

Input. Array of dimension nbDims that contain the stride of the tensor for every
dimension.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The object was set successfully.

CUDNN_S TATUS_BAD_PARAM
At least one of the elements of the array dimA was negative or zero, or dataType has
an invalid enumerant value.

CUDNN_STATUS_NOT SUPPORTED

The parameter nbDims is outside the range [4, CUDNN_DIM_MAX], or the total size
of the tensor descriptor exceeds the maximim limit of 2 Giga-elements.

4.195. cudnnSetTensorNdDescriptorEx

cudnnStatus_t cudnnSetTensorNdDescriptorEx (
cudnnTensorDescriptor t tensorDesc,
cudnnTensorFormat t format,

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 284

cuDNN API Reference

cudnnDataType t dataType,
int nbDims,
const int dimAl[])

This function initializes an n-D tensor descriptor.

Parameters
tensorDesc

Output. Pointer to the tensor descriptor struct to be initialized.
format

Input. Tensor format.
dataType

Input. Tensor data type.
nbDims

Input. Dimension of the tensor.

Do not use 2 dimensions. Due to historical reasons, the minimum
number of dimensions in the filter descriptor is three. See also the
cudnnGetRNNLinLayerBiasParams().

dimA
Input. Array containing size of each dimension.

Returns
CUDNN_S TATUS_SUCCESS

The function was successful.
CUDNN_STATUS_BAD_PARAM

Tensor descriptor was not allocated properly; or input parameters are not set
correctly.

CUDNN_STATUS_NOT_SUPPORTED

Dimension size requested is larger than maximum dimension size supported.

4.196. cudnnSetTensorTransformDescriptor

cudnnStatus t cudnnSetTensorTransformDescriptor (
cudnnTensorTransformDescriptor t transformDesc,
const uint32 t nbDims,
const cudnnTensorFormat t destFormat,
const int32 t padBeforeA[],
const int32 t padAfterAl[],
const uint32 t foldA[],
const cudnnFoldingDirection t direction);

This function initializes a Tensor transform descriptor that was previously created using
the cudnnCreateTensorTransformDescriptor function.

Parameters:

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 285

cuDNN API Reference

Parameter

Input / Output

Description

transformDesc

Output

The Tensor transform descriptor to be
initialized.

nbDims

Input

The dimensionality of the transform

operands. Must be greater than 2.

See also https://docs.nvidia.com/
deeplearning/sdk/cudnn-developer-guide/
index.html#tensor-descriptor

destFormat Input

The desired destination format.

padBeforeA[] Input

An array that contains the amount of
padding that should be added before each
dimension. Set to NULL for no padding.

padAfterA[] Input

An array that contains the amount of
padding that should be added after each
dimension. Set to NULL for no padding.

foldA[] Input

An array that contains the folding
parameters for each spatial dimension
(dimensions 2 and up). Set to NULL for no
folding.

direction Input

Selects folding or unfolding. This input has
no effect when folding parameters are all
<= 1. See cudnnFoldingDirection_t.

Returns:

Return Value

Description

CUDNN_STATUS_SUCCESS

The function was launched successfully.

CUDNN_STATUS_BAD_PARAM

The parameter transformbesc is NULL, or if
direction is invalid, or nbDims is <= 2.

CUDNN_STATUS_NOT_SUPPORTED

If the dimension size requested is larger than
maximum dimension size supported (i.e., one of
the nbDims is larger than CUDNN_DIM_MAX), or
if destFromat is something other than NCHW or
NHWC.

4.197. cudnnSoftmaxBackward

cudnnStatus t cudnnSoftmaxBackward (

cudnnHandle t handle,
cudnnSoftmaxAlgorithm t algorithm,
cudnnSoftmaxMode t mode,
const wvoid *alpha,
const cudnnTensorDescriptor t yDesc,
const void *yData,
const cudnnTensorDescriptor t dyDesc,
const wvoid *dy,
const void *beta,
const cudnnTensorDescriptor t dxDesc,
void *dx)

www.nvidia.com
cuDNN 7.5.0

DU-06702-001_v07 | 286

https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#tensor-descriptor
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#tensor-descriptor
https://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#tensor-descriptor

cuDNN API Reference

This routine computes the gradient of the softmax function.

In-place operation is allowed for this routine; i.e., dy and dx pointers may be equal.
However, this requires dyDesc and dxDesc descriptors to be identical (particularly,
the strides of the input and output must match for in-place operation to be allowed).

All tensor formats are supported for all modes and algorithms with 4 and 5D tensors.
Performance is expected to be highest with NCHW fully-packed tensors. For more
than 5 dimensions tensors must be packed in their spatial dimensions

Parameters
handle

Input. Handle to a previously created cuDNN context.
algorithm

Input. Enumerant to specify the softmax algorithm.
mode

Input. Enumerant to specify the softmax mode.
alpha, beta

Input. Pointers to scaling factors (in host memory) used to blend the computation
result with prior value in the output layer as follows: dstValue = alpha[0]*result +
beta[0]*priorDstValue. Please refer to this section for additional details.

yDesc

Input. Handle to the previously initialized input tensor descriptor.

Input. Data pointer to GPU memory associated with the tensor descriptor yDesc.
dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.
dy

Input. Data pointer to GPU memory associated with the tensor descriptor dyData.
dxDesc

Input. Handle to the previously initialized output differential tensor descriptor.
dx

Output. Data pointer to GPU memory associated with the output tensor descriptor
dxDesc.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_SUCCESS

The function launched successfully.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 287

cuDNN API Reference

CUDNN_STATUS NOT_ SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD PARAM

At least one of the following conditions are met:

» The dimensions n, ¢, h,w of the yDesc, dyDesc and dxDesc tensors differ.

» Thestrides nStride, cStride, hStride, wStride of the yDesc and dyDesc
tensors differ.

» The datatype of the three tensors differs.
CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

4.198. cudnnSoftmaxForward

cudnnStatus t cudnnSoftmaxForward (

cudnnHandle t handle,
cudnnSoftmaxAlgorithm t algorithm,
cudnnSoftmaxMode t mode,
const void *alpha,
const cudnnTensorDescriptor t xDesc,
const void *x,

const void *beta,
const cudnnTensorDescriptor t yDesc,
void *y)

This routine computes the softmax function.

All tensor formats are supported for all modes and algorithms with 4 and 5D tensors.
Performance is expected to be highest with NCHW fully-packed tensors. For more
than 5 dimensions tensors must be packed in their spatial dimensions

Parameters
handle

Input. Handle to a previously created cuDNN context.
algorithm

Input. Enumerant to specify the softmax algorithm.
mode

Input. Enumerant to specify the softmax mode.
alpha, beta
Input. Pointers to scaling factors (in host memory) used to blend the computation

result with prior value in the output layer as follows: dstValue = alpha[0]*result +
beta[0]*priorDstValue. Please refer to this section for additional details.

xDesc

Input. Handle to the previously initialized input tensor descriptor.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 288

cuDNN API Reference

Input. Data pointer to GPU memory associated with the tensor descriptor xDesc.
yDesc

Input. Handle to the previously initialized output tensor descriptor.

Output. Data pointer to GPU memory associated with the output tensor descriptor
yDesc.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

The function launched successfully.
CUDNN_STATUS NOT_ SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD PARAM

At least one of the following conditions are met:

» The dimensions n, ¢, h,w of the input tensor and output tensors differ.
» The datatype of the input tensor and output tensors differ.
» The parameters algorithm or mode have an invalid enumerant value.

CUDNN_STATUS_EXECUTION_FAILED
The function failed to launch on the GPU.

4.199. cudnnSpatialTfGridGeneratorBackward

cudnnStatus_ t cudnnSpatialTfGridGeneratorBackward (

cudnnHandle t handle,
const cudnnSpatialTransformerDescriptor t stDesc,
const void *dgrid,

void *dtheta)

This function computes the gradient of a grid generation operation.

Only 2d transformation is supported.

Parameters
handle

Input. Handle to a previously created cuDNN context.
stDesc

Input. Previously created spatial transformer descriptor object.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 289

cuDNN API Reference

dgrid
Input. Data pointer to GPU memory contains the input differential data.
dtheta
Output. Data pointer to GPU memory contains the output differential data.
The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

The call was successful.
CUDNN_S TATUS_BAD_PARAM

At least one of the following conditions are met:

» handleis NULL.
» One of the parameters dgrid, dthetais NULL.

CUDNN_STATUS NOT_ SUPPORTED

The function does not support the provided configuration. See the following for some
examples of non-supported configurations:

» The dimension of transformed tensor specified in stDesc > 4.
CUDNN_STATUS EXECUTION_ FAILED
The function failed to launch on the GPU.

4.200. cudnnSpatialTfGridGeneratorForward

cudnnStatus t cudnnSpatialTfGridGeneratorForward (

cudnnHandle t handle,
const cudnnSpatialTransformerDescriptor t stDesc,
const void *theta,
void *grid)

This function generates a grid of coordinates in the input tensor corresponding to each
pixel from the output tensor.

Only 2d transformation is supported.

Parameters
handle

Input. Handle to a previously created cuDNN context.
stDesc

Input. Previously created spatial transformer descriptor object.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 290

cuDNN API Reference

theta

Input. Affine transformation matrix. It should be of size n*2*3 for a 2d transformation,
where n is the number of images specified in stDesc.

grid

Output. A grid of coordinates. It is of size n*h*w*2 for a 2d transformation, where n,
h, w is specified in stDesc. In the 4th dimension, the first coordinate is x, and the
second coordinate is y.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

The call was successful.
CUDNN_STATUS_BAD_PARAM

At least one of the following conditions are met:

» handleis NULL.
» One of the parameters grid, thetais NULL.

CUDNN_STATUS NOT_ SUPPORTED

The function does not support the provided configuration. See the following for some
examples of non-supported configurations:

» The dimension of transformed tensor specified in stDesc > 4.
CUDNN_STATUS EXECUTION_ FAILED
The function failed to launch on the GPU.

4.201. cudnnSpatialTfSamplerBackward

cudnnStatus t cudnnSpatialTfSamplerBackward (

cudnnHandle t handle,
const cudnnSpatialTransformerDescriptor t stDesc,
const void *alpha,
const cudnnTensorDescriptor t xDesc,
const void *x,

const void *beta,
const cudnnTensorDescriptor t dxDesc,
void #ebR,

const void *alphaDgrid,
const cudnnTensorDescriptor t dyDesc,
const void *dy,

const void “eredel,
const void *betaDgrid,
void *dgrid)

This function computes the gradient of a sampling operation.

Only 2d transformation is supported.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 291

cuDNN API Reference

Parameters
handle

Input. Handle to a previously created cuDNN context.
stDesc

Input. Previously created spatial transformer descriptor object.
alpha,beta
Input. Pointers to scaling factors (in host memory) used to blend the source value

with prior value in the destination tensor as follows: dstValue = alpha[0]*srcValue +
beta[0]*priorDstValue. Please refer to this section for additional details.

xDesc

Input. Handle to the previously initialized input tensor descriptor.

Input. Data pointer to GPU memory associated with the tensor descriptor xDesc.
dxDesc

Input. Handle to the previously initialized output differential tensor descriptor.

dx
Output. Data pointer to GPU memory associated with the output tensor descriptor
dxDesc.

alphaDgrid,betaDgrid
Input. Pointers to scaling factors (in host memory) used to blend the gradient
outputs dgrid with prior value in the destination pointer as follows: dstValue =

alpha[0]*srcValue + beta[0]*priorDstValue. Please refer to this section for additional
details.

dyDesc

Input. Handle to the previously initialized input differential tensor descriptor.
dy

Input. Data pointer to GPU memory associated with the tensor descriptor dyDesc.
grid

Input. A grid of coordinates generated by
cudnnSpatialTfGridGeneratorForward.

dgrid
Output. Data pointer to GPU memory contains the output differential data.
The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_S TATUS_SUCCESS

The call was successful.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 292

cuDNN API Reference

CUDNN_STATUS_BAD PARAM
At least one of the following conditions are met:

» handleis NULL.
» One of the parameters x,dx,y,dy,grid,dgrid is NULL.
» The dimension of dy differs from those specified in stDesc

CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration. See the following for some
examples of non-supported configurations:

» The dimension of transformed tensor > 4.
CUDNN_STATUS_EXECUTION_FAILED
The function failed to launch on the GPU.

4.202. cudnnSpatialTfSamplerForward

cudnnStatus t cudnnSpatialTfSamplerForward (

cudnnHandle t handle,
const cudnnSpatialTransformerDescriptor t stDesc,
const void *alpha,
const cudnnTensorDescriptor t xDesc,
const void *x,
const void *grid,
const void *beta,
cudnnTensorDescriptor t yDesc,
void *y)

This function performs a sampler operation and generates the output tensor using the
grid given by the grid generator.

Only 2d transformation is supported.

Parameters
handle

Input. Handle to a previously created cuDNN context.
stDesc

Input. Previously created spatial transformer descriptor object.
alpha,beta
Input. Pointers to scaling factors (in host memory) used to blend the source value

with prior value in the destination tensor as follows: dstValue = alpha[0]*srcValue +
beta[0]*priorDstValue. Please refer to this section for additional details.

xDesc

Input. Handle to the previously initialized input tensor descriptor.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 293

cuDNN API Reference

Input. Data pointer to GPU memory associated with the tensor descriptor xDesc.
grid

Input. A grid of coordinates generated by
cudnnSpatialTfGridGeneratorForward.

yDesc

Input. Handle to the previously initialized output tensor descriptor.

Output. Data pointer to GPU memory associated with the output tensor descriptor
yDesc.

The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_STATUS_ SUCCESS

The call was successful.
CUDNN_S TATUS_BAD_PARAM

At least one of the following conditions are met:

» handleis NULL.
» One of the parameters x, y, grid is NULL.

CUDNN_STATUS NOT_ SUPPORTED

The function does not support the provided configuration. See the following for some
examples of non-supported configurations:

» The dimension of transformed tensor > 4.
CUDNN_STATUS_EXECUTION_FAILED
The function failed to launch on the GPU.

4.203. cudnnTransformTensor

cudnnStatus t cudnnTransformTensor (

cudnnHandle t handle,
const void *alpha,
const cudnnTensorDescriptor t xDesc,
const void *x,
const void *beta,
const cudnnTensorDescriptor t yDesc,
void *y)

This function copies the scaled data from one tensor to another tensor with a different
layout. Those descriptors need to have the same dimensions but not necessarily the
same strides. The input and output tensors must not overlap in any way (i.e., tensors
cannot be transformed in place). This function can be used to convert a tensor with an
unsupported format to a supported one.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 294

cuDNN API Reference

Parameters
handle

Input. Handle to a previously created cuDNN context.
alpha, beta
Input. Pointers to scaling factors (in host memory) used to blend the source value

with prior value in the destination tensor as follows: dstValue = alpha[0]*srcValue +
beta[0]*priorDstValue. Please refer to this section for additional details.

xDesc

Input. Handle to a previously initialized tensor descriptor.

Input. Pointer to data of the tensor described by the xDesc descriptor.
yDesc

Input. Handle to a previously initialized tensor descriptor.

Output. Pointer to data of the tensor described by the yDesc descriptor.
The possible error values returned by this function and their meanings are listed below.

Returns
CUDNN_S TATUS_SUCCESS

The function launched successfully.
CUDNN_STATUS_NOT_SUPPORTED

The function does not support the provided configuration.
CUDNN_STATUS_BAD_PARAM

The dimensions n, ¢, h,w or the dataType of the two tensor descriptors are different.
CUDNN_STATUS_EXECUTION_FAILED

The function failed to launch on the GPU.

4.204. cudnnTransformTensorEx

cudnnStatus_t cudnnTransformTensorEx (
cudnnHandle t handle,
const cudnnTransformDescriptor t transDesc,
const void *alpha,
const cudnnTensorDescriptor t srcDesc,
const void *srcData,
const void *beta,
const cudnnTensorDescriptor t destDesc,
void *destData) ;

This function converts the Tensor layouts between different formats. It can be used to
convert a Tensor with an unsupported layout format to a Tensor with a supported layout
format.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 295

cuDNN API Reference

This function copies the scaled data from the input Tensor srcDesc to the output Tensor
destDesc with a different layout. The Tensor descriptors of srcDesc and destDesc
should have the same dimensions but need not have the same strides.

The srcDesc and destDesc Tensors must not overlap in any way (i.e., Tensors cannot

be transformed in place).

When performing a folding transform or a zero-padding transform, the scaling factors
(alpha,beta) should be set to (1, 0). However, unfolding transforms support any
(alpha,beta) values. This function is thread safe.

Parameters:

Parameter

Input / Output

Description

handle

Input

Handle to a previously created cuDNN
context.

transDesc

Input

A descriptor containing the details of the
requested Tensor transformation.

alpha, beta

Input

Pointers, in the host memory, to the
scaling factors used to scale the data in
the input Tensor srcDesc.

Beta is used to scale the destination
tensor, while alpha is used to scale the
source tensor.

The beta scaling value is not honored
in the folding and zero-padding cases.
Unfolding supports any (alpha,beta).

srcDesc, destDesc

Input

Handles to the previously initialed Tensor
descriptors. srcDesc and destDesc must
not overlap.

srcData, destData

Input

Pointers, in the host memory, to the data
of the Tensor described by srcDesc and
destData respectively.

Returns:

Return Value

Description

CUDNN_STATUS_SUCCESS

The function was launched successfully.

CUDNN_STATUS_BAD_PARAM

A parameter is uninitialized, or initialized
incorrectly, or the number of dimensions is
different between srcDesc and destDesc.

CUDNN_STATUS_NOT_SUPPORTED

Function does not support the provided
configuration. Also, in the folding and padding
paths, any value other than A=1 and B=0 will result
in @ CUDNN_STATUS_NOT_SUPPORTED.

CUDNN_STATUS_EXECUTION_FAILED

Function failed to launch on the GPU.

www.nvidia.com
cuDNN 7.5.0

DU-06702-001_v07 | 296

Chapter 5.
ACKNOWLEDGMENTS

Some of the cuDNN library routines were derived from code developed by others and
are subject to the following:

5.1. University of Tennessee

Copyright (c) 2010 The University of Tennessee.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer listed in this license in the documentation and/or
other materials provided with the distribution.

* Neither the name of the copyright holders nor the names of its
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

5.2. University of California, Berkeley

COPYRIGHT

All contributions by the University of California:
Copyright (c) 2014, The Regents of the University of California (Regents)

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 297

Acknowledgments

All rights reserved.

All other contributions:
Copyright (c) 2014, the respective contributors
All rights reserved.

Caffe uses a shared copyright model: each contributor holds copyright over
their contributions to Caffe. The project versioning records all such
contribution and copyright details. If a contributor wants to further mark
their specific copyright on a particular contribution, they should indicate
their copyright solely in the commit message of the change when it is
committed.

LICENSE

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND

ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

CONTRIBUTION AGREEMENT

By contributing to the BVLC/caffe repository through pull-request, comment,
or otherwise, the contributor releases their content to the
license and copyright terms herein.

5.3. Facebook Al Research, New York

Copyright (c) 2014, Facebook, Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

* Neither the name Facebook nor the names of its contributors may be used to
endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 298

Acknowledgments

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Additional Grant of Patent Rights
"Software" means fbcunn software distributed by Facebook, Inc.

Facebook hereby grants you a perpetual, worldwide, royalty-free, non-exclusive,
irrevocable (subject to the termination provision below) license under any
rights in any patent claims owned by Facebook, to make, have made, use, sell,
offer to sell, import, and otherwise transfer the Software. For avoidance of
doubt, no license is granted under Facebookd€™s rights in any patent claims that
are infringed by (i) modifications to the Software made by you or a third party,
or (ii) the Software in combination with any software or other technology
provided by you or a third party.

The license granted hereunder will terminate, automatically and without notice,
for anyone that makes any claim (including by filing any lawsuit, assertion or
other action) alleging (a) direct, indirect, or contributory infringement or
inducement to infringe any patent: (i) by Facebook or any of its subsidiaries or
affiliates, whether or not such claim is related to the Software, (ii) by any
party if such claim arises in whole or in part from any software, product or
service of Facebook or any of its subsidiaries or affiliates, whether or not
such claim is related to the Software, or (iii) by any party relating to the
Software; or (b) that any right in any patent claim of Facebook is invalid or
unenforceable.

www.nvidia.com
cuDNN 7.5.0 DU-06702-001_v07 | 299

Notice

THE INFORMATION IN THIS GUIDE AND ALL OTHER INFORMATION CONTAINED IN NVIDIA DOCUMENTATION
REFERENCED IN THIS GUIDE IS PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED,
STATUTORY, OR OTHERWISE WITH RESPECT TO THE INFORMATION FOR THE PRODUCT, AND EXPRESSLY
DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE. Notwithstanding any damages that customer might incur for any reason whatsoever,
NVIDIA’s aggregate and cumulative liability towards customer for the product described in this guide shall

be limited in accordance with the NVIDIA terms and conditions of sale for the product.

THE NVIDIA PRODUCT DESCRIBED IN THIS GUIDE IS NOT FAULT TOLERANT AND IS NOT DESIGNED,
MANUFACTURED OR INTENDED FOR USE IN CONNECTION WITH THE DESIGN, CONSTRUCTION, MAINTENANCE,
AND/OR OPERATION OF ANY SYSTEM WHERE THE USE OR A FAILURE OF SUCH SYSTEM COULD RESULT IN A
SITUATION THAT THREATENS THE SAFETY OF HUMAN LIFE OR SEVERE PHYSICAL HARM OR PROPERTY DAMAGE
(INCLUDING, FOR EXAMPLE, USE IN CONNECTION WITH ANY NUCLEAR, AVIONICS, LIFE SUPPORT OR OTHER
LIFE CRITICAL APPLICATION). NVIDIA EXPRESSLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY OF FITNESS
FOR SUCH HIGH RISK USES. NVIDIA SHALL NOT BE LIABLE TO CUSTOMER OR ANY THIRD PARTY, IN WHOLE OR
IN PART, FOR ANY CLAIMS OR DAMAGES ARISING FROM SUCH HIGH RISK USES.

NVIDIA makes no representation or warranty that the product described in this guide will be suitable for
any specified use without further testing or modification. Testing of all parameters of each product is not
necessarily performed by NVIDIA. It is customer’s sole responsibility to ensure the product is suitable and
fit for the application planned by customer and to do the necessary testing for the application in order
to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect
the quality and reliability of the NVIDIA product and may result in additional or different conditions and/
or requirements beyond those contained in this guide. NVIDIA does not accept any liability related to any
default, damage, costs or problem which may be based on or attributable to: (i) the use of the NVIDIA

product in any manner that is contrary to this guide, or (ii) customer product designs.

Other than the right for customer to use the information in this guide with the product, no other license,
either expressed or implied, is hereby granted by NVIDIA under this guide. Reproduction of information
in this guide is permissible only if reproduction is approved by NVIDIA in writing, is reproduced without

alteration, and is accompanied by all associated conditions, limitations, and notices.

Trademarks

NVIDIA, the NVIDIA logo, and cuBLAS, CUDA, cuDNN, cuFFT, cuSPARSE, DALI, DIGITS, DGX, DGX-1, Jetson,
Kepler, NVIDIA Maxwell, NCCL, NVLink, Pascal, Tegra, TensorRT, and Tesla are trademarks and/or registered
trademarks of NVIDIA Corporation in the Unites States and other countries. Other company and product

names may be trademarks of the respective companies with which they are associated.

Copyright

© 2019 NVIDIA Corporation. All rights reserved.

www.nvidia.com ﬁVIbIA®

	Table of Contents
	Overview
	General Description
	2.1. Programming Model
	2.2. Convolution Formulas
	2.3. Notation
	2.4. Tensor Descriptor
	2.4.1. WXYZ Tensor Descriptor
	2.4.2. 4-D Tensor Descriptor
	2.4.3. 5-D Tensor Description
	2.4.4. Fully-packed tensors
	2.4.5. Partially-packed tensors
	2.4.6. Spatially packed tensors
	2.4.7. Overlapping tensors

	2.5. Thread Safety
	2.6. Reproducibility (determinism)
	2.7. Scaling Parameters
	2.8. Tensor Core Operations
	2.8.1. Tensor Core Operations Notes
	2.8.2. Tensor Operations Speedup Tips

	2.9. GPU and driver requirements
	2.10. Backward compatibility and deprecation policy
	2.11. Grouped Convolutions
	2.12. API Logging
	2.13. Features of RNN Functions
	2.14. Mixed Precision Numerical Accuracy

	cuDNN Datatypes Reference
	3.1. cudnnAttnDescriptor_t
	3.2. cudnnAttnQueryMap_t
	3.3. cudnnActivationDescriptor_t
	3.4. cudnnActivationMode_t
	3.5. cudnnBatchNormMode_t
	3.6. cudnnBatchNormOps_t
	3.7. cudnnCTCLossAlgo_t
	3.8. cudnnCTCLossDescriptor_t
	3.9. cudnnConvolutionBwdDataAlgoPerf_t
	3.10. cudnnConvolutionBwdDataAlgo_t
	3.11. cudnnConvolutionBwdDataPreference_t
	3.12. cudnnConvolutionBwdFilterAlgoPerf_t
	3.13. cudnnConvolutionBwdFilterAlgo_t
	3.14. cudnnConvolutionBwdFilterPreference_t
	3.15. cudnnConvolutionDescriptor_t
	3.16. cudnnConvolutionFwdAlgoPerf_t
	3.17. cudnnConvolutionFwdAlgo_t
	3.18. cudnnConvolutionFwdPreference_t
	3.19. cudnnConvolutionMode_t
	3.20. cudnnDataType_t
	3.21. cudnnDeterminism_t
	3.22. cudnnDirectionMode_t
	3.23. cudnnDivNormMode_t
	3.24. cudnnDropoutDescriptor_t
	3.25. cudnnErrQueryMode_t
	3.26. cudnnFilterDescriptor_t
	3.27. cudnnFoldingDirection_t
	3.28. cudnnHandle_t
	3.29. cudnnIndicesType_t
	3.30. cudnnLRNMode_t
	3.31. cudnnMathType_t
	3.32. cudnnMultiHeadAttnWeightKind_t
	3.33. cudnnNanPropagation_t
	3.34. cudnnOpTensorDescriptor_t
	3.35. cudnnOpTensorOp_t
	3.36. cudnnPersistentRNNPlan_t
	3.37. cudnnPoolingDescriptor_t
	3.38. cudnnPoolingMode_t
	3.39. cudnnRNNAlgo_t
	3.40. cudnnRNNBiasMode_t
	3.41. cudnnRNNClipMode_t
	3.42. cudnnRNNDescriptor_t
	3.43. cudnnRNNDataDescriptor_t
	3.44. cudnnRNNInputMode_t
	3.45. cudnnRNNMode_t
	3.46. cudnnRNNPaddingMode_t
	3.47. cudnnReduceTensorDescriptor_t
	3.48. cudnnReduceTensorIndices_t
	3.49. cudnnReduceTensorOp_t
	3.50. cudnnSamplerType_t
	3.51. cudnnSeqDataAxis_t
	3.52. cudnnSeqDataDescriptor_t
	3.53. cudnnSoftmaxAlgorithm_t
	3.54. cudnnSoftmaxMode_t
	3.55. cudnnSpatialTransformerDescriptor_t
	3.56. cudnnStatus_t
	3.57. cudnnTensorDescriptor_t
	3.58. cudnnTensorFormat_t
	3.59. cudnnTensorTransformDescriptor_t
	3.60. cudnnWgradMode_t

	cuDNN API Reference
	4.1. cudnnActivationBackward
	4.2. cudnnActivationForward
	4.3. cudnnAddTensor
	4.4. cudnnBatchNormalizationBackward
	4.5. cudnnBatchNormalizationBackwardEx
	4.6. cudnnBatchNormalizationForwardInference
	4.7. cudnnBatchNormalizationForwardTraining
	4.8. cudnnBatchNormalizationForwardTrainingEx
	4.9. cudnnCTCLoss
	4.10. cudnnConvolutionBackwardBias
	4.11. cudnnConvolutionBackwardData
	4.12. cudnnConvolutionBackwardFilter
	4.13. cudnnConvolutionBiasActivationForward
	4.14. cudnnConvolutionForward
	4.15. cudnnCreate
	4.16. cudnnCreateActivationDescriptor
	4.17. cudnnCreateAlgorithmDescriptor
	4.18. cudnnCreateAlgorithmPerformance
	4.19. cudnnCreateAttnDescriptor
	4.20. cudnnCreateCTCLossDescriptor
	4.21. cudnnCreateConvolutionDescriptor
	4.22. cudnnCreateDropoutDescriptor
	4.23. cudnnCreateFilterDescriptor
	4.24. cudnnCreateLRNDescriptor
	4.25. cudnnCreateOpTensorDescriptor
	4.26. cudnnCreatePersistentRNNPlan
	4.27. cudnnCreatePoolingDescriptor
	4.28. cudnnCreateRNNDescriptor
	4.29. cudnnCreateRNNDataDescriptor
	4.30. cudnnCreateReduceTensorDescriptor
	4.31. cudnnCreateSeqDataDescriptor
	4.32. cudnnCreateSpatialTransformerDescriptor
	4.33. cudnnCreateTensorDescriptor
	4.34. cudnnCreateTensorTransformDescriptor
	4.35. cudnnDeriveBNTensorDescriptor
	4.36. cudnnDestroy
	4.37. cudnnDestroyActivationDescriptor
	4.38. cudnnDestroyAlgorithmDescriptor
	4.39. cudnnDestroyAlgorithmPerformance
	4.40. cudnnDestroyAttnDescriptor
	4.41. cudnnDestroyCTCLossDescriptor
	4.42. cudnnDestroyConvolutionDescriptor
	4.43. cudnnDestroyDropoutDescriptor
	4.44. cudnnDestroyFilterDescriptor
	4.45. cudnnDestroyLRNDescriptor
	4.46. cudnnDestroyOpTensorDescriptor
	4.47. cudnnDestroyPersistentRNNPlan
	4.48. cudnnDestroyPoolingDescriptor
	4.49. cudnnDestroyRNNDescriptor
	4.50. cudnnDestroyRNNDataDescriptor
	4.51. cudnnDestroyReduceTensorDescriptor
	4.52. cudnnDestroySeqDataDescriptor
	4.53. cudnnDestroySpatialTransformerDescriptor
	4.54. cudnnDestroyTensorDescriptor
	4.55. cudnnDestroyTensorTransformDescriptor
	4.56. cudnnDivisiveNormalizationBackward
	4.57. cudnnDivisiveNormalizationForward
	4.58. cudnnDropoutBackward
	4.59. cudnnDropoutForward
	4.60. cudnnDropoutGetReserveSpaceSize
	4.61. cudnnDropoutGetStatesSize
	4.62. cudnnFindConvolutionBackwardDataAlgorithm
	4.63. cudnnFindConvolutionBackwardDataAlgorithmEx
	4.64. cudnnFindConvolutionBackwardFilterAlgorithm
	4.65. cudnnFindConvolutionBackwardFilterAlgorithmEx
	4.66. cudnnFindConvolutionForwardAlgorithm
	4.67. cudnnFindConvolutionForwardAlgorithmEx
	4.68. cudnnFindRNNBackwardDataAlgorithmEx
	4.69. cudnnFindRNNBackwardWeightsAlgorithmEx
	4.70. cudnnFindRNNForwardInferenceAlgorithmEx
	4.71. cudnnFindRNNForwardTrainingAlgorithmEx
	4.72. cudnnGetActivationDescriptor
	4.73. cudnnGetAlgorithmDescriptor
	4.74. cudnnGetAlgorithmPerformance
	4.75. cudnnGetAlgorithmSpaceSize
	4.76. cudnnGetAttnDescriptor
	4.77. cudnnBatchNormalizationBackwardExWorkspaceSize
	4.78. cudnnBatchNormalizationForwardTrainingExWorkspaceSize
	4.79. cudnnGetBatchNormalizationTrainingExReserveSpaceSize
	4.80. cudnnGetCTCLossDescriptor
	4.81. cudnnGetCTCLossWorkspaceSize
	4.82. cudnnGetCallback
	4.83. cudnnGetConvolution2dDescriptor
	4.84. cudnnGetConvolution2dForwardOutputDim
	4.85. cudnnGetConvolutionBackwardDataAlgorithm
	4.86. cudnnGetConvolutionBackwardDataAlgorithmMaxCount
	4.87. cudnnGetConvolutionBackwardDataAlgorithm_v7
	4.88. cudnnGetConvolutionBackwardDataWorkspaceSize
	4.89. cudnnGetConvolutionBackwardFilterAlgorithm
	4.90. cudnnGetConvolutionBackwardFilterAlgorithmMaxCount
	4.91. cudnnGetConvolutionBackwardFilterAlgorithm_v7
	4.92. cudnnGetConvolutionBackwardFilterWorkspaceSize
	4.93. cudnnGetConvolutionForwardAlgorithm
	4.94. cudnnGetConvolutionForwardAlgorithmMaxCount
	4.95. cudnnGetConvolutionForwardAlgorithm_v7
	4.96. cudnnGetConvolutionForwardWorkspaceSize
	4.97. cudnnGetConvolutionGroupCount
	4.98. cudnnGetConvolutionMathType
	4.99. cudnnGetConvolutionNdDescriptor
	4.100. cudnnGetConvolutionNdForwardOutputDim
	4.101. cudnnGetCudartVersion
	4.102. cudnnGetDropoutDescriptor
	4.103. cudnnGetErrorString
	4.104. cudnnGetFilter4dDescriptor
	4.105. cudnnGetFilterNdDescriptor
	4.106. cudnnGetLRNDescriptor
	4.107. cudnnGetMultiHeadAttnBuffers
	4.108. cudnnGetMultiHeadAttnWeights
	4.109. cudnnGetOpTensorDescriptor
	4.110. cudnnGetPooling2dDescriptor
	4.111. cudnnGetPooling2dForwardOutputDim
	4.112. cudnnGetPoolingNdDescriptor
	4.113. cudnnGetPoolingNdForwardOutputDim
	4.114. cudnnGetProperty
	4.115. cudnnGetRNNBiasMode
	4.116. cudnnGetRNNDataDescriptor
	4.117. cudnnGetRNNDescriptor
	4.118. cudnnGetRNNLinLayerBiasParams
	4.119. cudnnGetRNNLinLayerMatrixParams
	4.120. cudnnGetRNNParamsSize
	4.121. cudnnGetRNNPaddingMode
	4.122. cudnnGetRNNProjectionLayers
	4.123. cudnnGetRNNTrainingReserveSize
	4.124. cudnnGetRNNWorkspaceSize
	4.125. cudnnGetReduceTensorDescriptor
	4.126. cudnnGetReductionIndicesSize
	4.127. cudnnGetReductionWorkspaceSize
	4.128. cudnnGetSeqDataDescriptor
	4.129. cudnnGetStream
	4.130. cudnnGetTensor4dDescriptor
	4.131. cudnnGetTensorNdDescriptor
	4.132. cudnnGetTensorSizeInBytes
	4.133. cudnnGetTensorTransformDescriptor
	4.134. cudnnGetVersion
	4.135. cudnnIm2Col
	4.136. cudnnInitTransformDest
	4.137. cudnnLRNCrossChannelBackward
	4.138. cudnnLRNCrossChannelForward
	4.139. cudnnMultiHeadAttnBackwardData
	4.140. cudnnMultiHeadAttnBackwardWeights
	4.141. cudnnMultiHeadAttnForward
	4.142. cudnnOpTensor
	4.143. cudnnPoolingBackward
	4.144. cudnnPoolingForward
	4.145. cudnnQueryRuntimeError
	4.146. cudnnRNNBackwardData
	4.147. cudnnRNNBackwardDataEx
	4.148. cudnnRNNBackwardWeights
	4.149. cudnnRNNBackwardWeightsEx
	4.150. cudnnRNNForwardInference
	4.151. cudnnRNNForwardInferenceEx
	4.152. cudnnRNNForwardTraining
	4.153. cudnnRNNForwardTrainingEx
	4.154. cudnnRNNGetClip
	4.155. cudnnRNNSetClip
	4.156. cudnnReduceTensor
	4.157. cudnnRestoreAlgorithm
	4.158. cudnnRestoreDropoutDescriptor
	4.159. cudnnSaveAlgorithm
	4.160. cudnnScaleTensor
	4.161. cudnnSetActivationDescriptor
	4.162. cudnnSetAlgorithmDescriptor
	4.163. cudnnSetAlgorithmPerformance
	4.164. cudnnSetAttnDescriptor
	4.165. cudnnSetCTCLossDescriptor
	4.166. cudnnSetCallback
	4.167. cudnnSetConvolution2dDescriptor
	4.168. cudnnSetConvolutionGroupCount
	4.169. cudnnSetConvolutionMathType
	4.170. cudnnSetConvolutionNdDescriptor
	4.171. cudnnSetDropoutDescriptor
	4.172. cudnnSetFilter4dDescriptor
	4.173. cudnnSetFilterNdDescriptor
	4.174. cudnnSetLRNDescriptor
	4.175. cudnnSetOpTensorDescriptor
	4.176. cudnnSetPersistentRNNPlan
	4.177. cudnnSetPooling2dDescriptor
	4.178. cudnnSetPoolingNdDescriptor
	4.179. cudnnSetRNNBiasMode
	4.180. cudnnSetRNNDataDescriptor
	4.181. cudnnSetRNNDescriptor
	4.182. cudnnSetRNNDescriptor_v5
	4.183. cudnnSetRNNDescriptor_v6
	4.184. cudnnSetRNNMatrixMathType
	4.185. cudnnSetRNNPaddingMode
	4.186. cudnnSetRNNProjectionLayers
	4.187. cudnnSetReduceTensorDescriptor
	4.188. cudnnSetSeqDataDescriptor
	4.189. cudnnSetSpatialTransformerNdDescriptor
	4.190. cudnnSetStream
	4.191. cudnnSetTensor
	4.192. cudnnSetTensor4dDescriptor
	4.193. cudnnSetTensor4dDescriptorEx
	4.194. cudnnSetTensorNdDescriptor
	4.195. cudnnSetTensorNdDescriptorEx
	4.196. cudnnSetTensorTransformDescriptor
	4.197. cudnnSoftmaxBackward
	4.198. cudnnSoftmaxForward
	4.199. cudnnSpatialTfGridGeneratorBackward
	4.200. cudnnSpatialTfGridGeneratorForward
	4.201. cudnnSpatialTfSamplerBackward
	4.202. cudnnSpatialTfSamplerForward
	4.203. cudnnTransformTensor
	4.204. cudnnTransformTensorEx

	Acknowledgments
	5.1. University of Tennessee
	5.2. University of California, Berkeley
	5.3. Facebook AI Research, New York

